
Models and Algorithms for Robust Network
Design with Several Traffic Scenarios

Eduardo Álvarez-Miranda1, Valentina Cacchiani1, Tim Dorneth2,
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Abstract. We consider a robust network design problem in which op-
timum integral capacities need to be installed on the edges of a network
such that the supplies and demands in each of the explicitly known traf-
fic scenarios are satisfied by a single-commodity flow. In Buchheim et al.
(LNCS 6701, 7 - 17 (2011)), an integer-programming (IP) formulation
of polynomial size was given that uses both flow and capacity variables.
In this work, we introduce an IP formulation that only uses capacity
variables and exponentially many constraints that can be separated in
polynomial time. We argue that the latter formulation has advantageous
features when used within branch and cut and evaluate preliminary com-
putational results for the bounds in the root node. We introduce a class
of instances that is difficult for IP-based solution approaches. We design
and implement a heuristic solution approach based on the definition and
exploration of large neighborhoods of carefully selected size. The per-
formance of the heuristic is evaluated on the difficult class of instances.
The results are encouraging, with a good understanding of the trade-off
between solution quality and neighborhood size.

Keywords: robust network design, cut-set inequalities, separation, large neigh-
borhood search

1 Introduction

Due to their importance in modern life, network design problems have recently
received increased attention. In particular, the class of robust network design
problems has many applications and is currently studied intensively, see, e.g., [2,
1, 8, 6, 9]. For a survey, see Chekuri [5]. In this class of problems, we are given the
nodes and edges of a graph together with non-negative edge costs. Furthermore,
supplies and demands are explicitely or implicitely given for a set of scenarios.
The task is to determine, at minimum cost, the edge capacities such that the
supplies/demands of all scenarios are satisfied.
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In this work, we consider the following optimization problem. We are given an
undirected graph G = (V,E), a cost vector (ce)e∈E and an integer balance matrix

B = (bqv)
q=1,...,K
v∈V . The q-th row bq of B is called the q-th scenario. The Robust

Network Design (RND) problem asks for integer capacities (ue)e∈E ∈ Z|E|≥0 with

minimal costs cTu such that for each q = 1, . . . ,K, there is a directed network
flow fq in G that is feasible with respect to the capacities and the balances
of the q-th scenario, i. e., that fulfills fqu,v + fqv,u ≤ ue for all edges e ∈ E and∑
{u,v}∈E f

q
u,v−fqv,u = bqv for all nodes v ∈ V . Here, we denote by fu,v ∈ Z≥0 the

integral amount of flow that is sent along the arc (u, v) from u to v in scenario
q and by fq we denote the corresponding flow vector.

For a given scenario, we call a node with nonzero balance a terminal. More
specifically, a node v with positive balance is called a source and we call the bal-
ance of v its supply. A node with negative balance is called a sink and its balance
is called demand. Whereas for K = 1 the RND problem is a standard polynomial-
time minimum-cost flow problem, it is NP-hard already for K = 3 [21]. In [4],
an exact branch-and-cut algorithm was introduced for RND. It is based on a
flow formulation strengthened by the so-called local cuts [3]. We will show an
alternative formulation for RND using inequalities of cut-set type. Related for-
mulations are known for the survivable network design problems and its special
case, the steiner tree problem. They can lead to strengthened formulations and
approximation algorithms, see, e.g., [19] for a polyhedral study and [16, 11] for
approximation algorithms.

Other related problems have been studied in the literature. Ben-Ameur and
Kerivin [2] have introduced a widely-used model for robust network design in
which the considered traffic scenarios are not explicitely given but belong to a
polyhedron. A specific polyhedral set of traffic scenarios, the hose-model intro-
duced in [6, 9], is the basis of the Virtual Private Network Design problem [14,
13]. For robust network design with a polyhedral set of scenarios, exact methods
(see, e.g., [1, 8]) and approximation algorithms (see, e.g., [7, 10, 15]) exist.

If the scenarios are given as a finite list, the problem is a network synthesis
problem [18] with non-simultaneous (and usually multi-commodity) flows. As an
application, suppose some clients want to download some amount of data that
is stored at several servers. As the clients’ demands might change over time,
we wish to install edge capacities that are large enough in order to satisfy the
demands at all times.

In this work, we introduce a cut-set formulation for RND together with a
polynomial-time separation routine for the cut-set inequalities. It turns out that
the polytope that corresponds to the flow-formulation from [4] can be viewed as
an extended formulation of the new model introduced here. We then introduce a
class of instances that is difficult for IP-based solution approaches. We propose
a heuristic algorithm for solving RND and evaluate it on the class of difficult
instances. It turns out that it yields solutions of high quality within relatively
short computing time.
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2 Integer Linear Programming Models

In this section we introduce two possible IP formulations for RND (together with
separation algorithms), and we discuss the relation between them.

2.1 Flow Formulation of RND

In [4], an integer-programming (IP) formulation for RND is given that uses flow
variables. The capacity that needs to be installed on an edge {i, j} equals the
maximum amount of flow routed along (i, j) over all scenarios. Minimizing the
total costs thus yields a non-linear cost-function with integrality constraints that
make the problem NP-hard for the general case. Using capacity variables, it can
be linearized trivially, yielding the model (RNDflow) as

min
∑
{i,j}∈E cijuij∑
j:{j,i}∈E f

q
ji −

∑
j:{i,j}∈E f

q
ij = bqi ∀i ∈ V, q = 1, . . . ,K

(RNDflow) uij ≥ fqij + fqji ∀{i, j} ∈ E, q = 1, . . . ,K

fqij ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K

uij ∈ Z≥0 ∀{i, j} ∈ E

The first set of constraints ensures flow-conservation in each scenario. The second
set models that the capacity of an edge is at least as large as the flow it carries.
Integral flows are enforced through integrality of the capacity variables, as all
supplies and demands are integral.

We denote by Pflow the polytope that consists of the convex hull of all integral
solutions feasible for (RNDflow).

2.2 Cut-Set Formulation of RND

Let us now introduce an alternative formulation of the RND problem that only
uses capacity variables. In more detail, we denote by Pcut-set the convex hull

of all integer capacity vectors u ∈ Z|E|≥0 that permit sending a feasible flow on
G = (V,E) for each scenario in B. Next, we examine the structure of Pcut-set.

Lemma 1. For a node set S ⊆ V , the cut-set inequalities∑
e∈δ(S)

ue ≥ max
q=1...K

∣∣∣∑
i∈S

bqi

∣∣∣ (1)

are valid for Pcut-set.

Proof. The right-hand side of a cut-set inequality is exactly the amount of sup-
ply/demand that cannot be satisfied by the nodes inside S. This amount of flow
has to be sent along the cut δ(S) from S to V \ S, or vice versa. Thus, for each
scenario q, the capacity of the cut has to be at least as large as |

∑
i∈S b

q
i |.

We can now show that the cut-set-inequalities exactly characterize every integer
point in Pcut-set.
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Theorem 1. Let u ∈ Z|E|≥0 . Then u ∈ Pcut-set if and only if u satisfies the
corresponding cut-set inequality for all S ⊆ V (1).

Proof. Validity is shown in Lemma 1. We need to prove that a vector u ∈ Z≥0

that satisfies all cut-set inequalities is contained in Pcut-set. Assume that for some
vector u ∈ Z≥0 the supplies/demands of some scenario q cannot be met even
though u satisfies (1) for all W ⊆ V .

Then, let us run the algorithm by Ford and Fulkerson [17] (in a suitably
adapted version for undirected networks) on G. Denote by f the (directed) flow
that the algorithm computed and let Nf be the residual network corresponding
to f . Observe that there is no augmenting path in Nf . Let S := {s ∈ V | bqs > 0}
and R := {u ∈ V | there exists a path in Nf from some node in S to u}.

By construction, all outgoing edges from R must be saturated as otherwise
the endnode of an unsaturated outgoing edge belongs to R. Also, the flow on
all incoming edges of R is zero since with an easy modification of Ford and
Fulkerson’s algorithm we can w.l.o.g. assume that flow is sent along an edge in
only one direction. Thus,∑

e∈δ(R)

ue =
∑

{u,v}∈δ(R)

(fu,v + fv,u) =
∑

{u,v}∈δ(R)
u∈R

fu,v
Lemma 2
<

∣∣∣∑
u∈R

bqu

∣∣∣
Here, we get strict inequality from Lemma 2 as by our assumption, f does not
satisfy all supplies and demands and yet there is no augmenting path. On the
other hand, ∣∣∣∑

u∈R
bqu

∣∣∣ ≤ max
k=1,...,K

∣∣∣∑
u∈R

bku

∣∣∣ ≤ ∑
e∈δ(R)

ue

by the cut-set-inequality for R, yielding a contradiction. ut

The following Lemma provides the missing piece in the above proof. It is
proven in the Appendix.

Lemma 2. For an undirected graph G = (V,E) let b ∈ Z|V | be a balance vector

that satisfies
∑|V |
i=1 bi = 0. Let f be a (directed) flow on G that satisfies some but

not all supplies and demands in b. Let Nf be the residual network corresponding
to f . Then it holds that ∑

{u,v}∈δ(R)
u∈R

fu,v ≤
∣∣∣∑
u∈R

bu

∣∣∣ (2)

where R := {u ∈ V | there exists a path from a source node s to u in Nf}. If
there is no augmenting path in Nf , then (2) holds with strict inequality.

We thus have the following IP formulation for the RND problem:

(RNDcut-set)

min
∑
e∈E ceue∑
e∈δ(S) ue ≥ maxq=1,...,K

∣∣∣∑v∈S b
q
v

∣∣∣ ∀ S ⊆ V
ue ∈ Z≥0 ∀ e ∈ E
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2.3 Separation of Cut-Set Inequalities

Given a (possibly fractional) vector u∗ ∈ R|E|≥0 , the separation procedure answers
whether all cut-set inequalities are satisfied. If not, it returns a violated cut-set
inequality of form (1).

The cut-set inequalities can be separated independently for each scenario.

Indeed, if for some S ⊆ V and some scenario k it holds
∑
e∈δ(S) u

∗
e <

∣∣∣∑v∈S b
k
v

∣∣∣,
then this implies a violated cut-set inequality∑

e∈δ(S)

u∗e <
∣∣∣∑
v∈S

bkv

∣∣∣ ≤ max
q=1,...,K

∣∣∣∑
v∈S

bqv

∣∣∣.
For separating the cut-set inequalities for some scenario k, we consider the

graph G′ = (V ′, E′) that arises from G by inserting an additional node s. For
each node τ that is a terminal in scenario k, the weight of the edge {s, τ} in G′

is set to −bkτ . All edges that originally appear in G receive a weight of u∗e in G′.
Consider a node set S in G′ with s ∈ S. If the weight of the cut δ(S) is

smaller than zero, the corresponding cut-set inequality is violated. Indeed, the
weight w(δ(S)) can be written as

w(δ(S)) :=
∑
e∈δ(S)

u∗e =
∑
e∈δ(S)
e∈E

u∗e −
∑
e∈δ(S)
e={s,v}

bkv .

If w(δ(S)) < 0, this is equivalent to∑
e∈δ(S)
e∈E

u∗e <
∑
e∈δ(S)
e={s,v}

bkv and thus
∑
e∈δ(S)
e∈E

u∗e <
∣∣∣ ∑
e∈δ(S)
e={s,v}

bkv

∣∣∣.
If δ(S) represents a minimum cut in G′, the corresponding cut-set inequal-

ity is one with maximum violation. In general, the determination of cuts with
minimum or maximum weight in a graph with arbitrary weights is NP-hard.
However, in our case, edges with negative weights only appear as edges that are
incident to the single node s. McCormick et al. call such graphs star negative
in [20]. They show that minimum cuts in star negative graphs can be found in
polynomial time by determining a minimum s-t-cut in certain a network. We
summarize our findings in the following lemma.

Lemma 3. The cut-set inequalities (1) can be separated in polynomial time.

2.4 Comparison of the Flow Formulation with the Cut-Set
Formulation

There is a close connection between the polytopes Pflow and Pcut-set. In fact, an
orthogonal projection of Pflow to the capacity variables yields a polytope that is
isomorphic to Pcut-set. Conversely, Pflow can be seen as an extended formulation
of Pcut-set.
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We argue next that from a practical point of view, it is advantageous to work
with Pcut-set within a branch-and-cut method. In [4], general separation routines
have been used for solving (RNDflow). A way to improve over this method is
to exploit problem-specific polyhedral knowledge as well. A disadvantage of for-
mulation (RNDflow) is that the polytope Pflow is different for each graph, for
each number and each choice of scenarios. It turns out that a theoretic under-
standing of Pflow is difficult already for small instances. In contrast, formulation
(RNDcut-set) simply defines a polytope for every graph, independently of the
number and choice of scenarios. Polyhedral investigations of Pcut-set are thus
considerably easier. Furthermore, we can optimize over the LP-relaxation of
(RNDcut-set) within polynomial time, see Section 2.3. Therefore, we will use for-
mulation (RNDcut-set) within branch-and-cut methods. However, for the heuris-
tics in Section 4, it is favorable to work with flows and the formulation (RNDflow).

For an instance and some relaxation, let us define the integrality gap as the
value of an optimum integral solution, divided by the optimum value of the re-
laxation. Generally, the size of the integrality gap at the root node can serve as
a rough estimate for an instance’s computational difficulty. Usually, the larger
the gap is, the more difficult it is to solve with IP-based methods. In order to see
what performance can be expected from such an approach, we experimentally
evaluate the size of the integrality gap for a set of difficult instances. In Sec-
tions 3 and 4 we will present a class of instances on d-dimensional hypercubes,
both with uniform and random scenarios. On the same set of instances, we use
the cut-set based relaxation and initialize the LP with all cut-set inequalities,
i. e., no separation is used. It turns out that the linear programming relaxation
determines an optimum integral solution on all random instances, except for the
instance A2 where the gap is about 7%. This shows that our relaxation yields
very strong bounds. For the uniform instances, we get a bound of 50%, 75% and
75% for d = 2, 3, 4, respectively. If d > 4, the formulation is too large to be used
without separation.

3 Class of Instances with Large Integrality Gap

Next, we present a class of instances that is difficult for IP-based solution ap-
proaches. The instances are defined on a d-dimensional hypercube (for d ∈ Z>0)
and have a large integrality gap. More specifically, the ratio of an optimum
integral solution and an optimum fractional solution converges to 2 as d→∞.

Definition 1. A d-dimensional hypercube Hd is the result of the following re-
cursive construction: H0 is the graph that consists of a single node. For d > 0,
Hd is obtained by duplicating the nodes and edges of Hd−1 and connecting each
node v to its copy v′ with an additional edge {v, v′}.

We say that two nodes v, w are diagonally opposite on Hd iff the shortest path
from v to w in Hd has maximum length, i. e., length d. Notice that for every
node v in Hd there is exactly one node vo that is diagonally opposite to v. It is
well-known that Hd has Nd := 2d nodes and Md := d · 2d−1 edges.
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For d ∈ Z>0, consider the following instance Id of the RND problem on Hd.
First, observe that Hd is composed of two hypercubes Hsd−1,Htd−1 of dimension

d−1. Then, add 2d−1 scenarios to Hd: In scenario 1 ≤ q ≤ 2d−1, assign a supply
of 1 to the q-th node vq (in some fixed numbering) of Hsd−1 and a demand of
−1 to its diagonally opposite node voq which lies in Htd−1 by our construction.
Set all other balances of scenario q to zero and set the costs for each edge to 1.
Figure 1 shows the construction.

If we allow fractional capacities, we obtain an optimum LP-solution uF for
Id by setting all capacities to 1/d. This solution is feasible as for any pair v, vo

of diagonally opposite nodes, there are d disjoint paths from v to vo in Hd. In
scenario q, we need to send one unit of flow from vq to voq . By splitting this unit
equally over d disjoint vq-v

o
q -paths, we can send it while respecting the capacities.

For a lower bound on an integer solution uI , we show that any connected
component of the support graph of a feasible solution contains at least 2d nodes:
Each connected component C of uI must contain one source s and its corre-
sponding sink t. Yet, since the shortest path between any source-sink-pair in
Hd has length d, d − 1 additional nodes A ⊆ V must be contained in C. Each
node in A is a terminal in some scenario, as all nodes are terminals. However,
for no source or sink in A the corresponding terminal can lie in A as other-
wise the shortest path between such a terminal pair has length < d. Thus,
as uI is feasible, another d − 1 nodes need to be contained in C. This gives
d + 1 + d − 1 = 2d nodes in total. Therefore, no feasible solution can contain
more than Z := bNd/(2d)c = b2d/(2d)c connected components. However, in or-
der to have at most Z connected components, the solution must contain at least
Nd − Z edges. Thus, we can bound the integrality gap GAP (Id) as follows:

GAP (Id) ≥
|uI |
|uF |

≥ Nd − 2d/(2d)

1/d ·Md
=

2d − 2d−1/d

1/d · d · 2d−1
= 2− 1

d

d→∞−−−→ 2

1 1

1 2

12

1 2

34

3 4

12

7 8

56

3 4

12

1 2

34

5 6

78

Fig. 1: The hypercube instances in 1,2,3 and 4 dimensions. Copied nodes are
displayed in gray. The node numbering refers to the scenarios: The source-sink
pair for scenario i is depicted with number i.

.
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4 Heuristic Algorithm

In this section, we present our heuristic algorithm that consists of a forward
phase (FP) and a backward phase (BP).

4.1 Forward Phase

FP computes a feasible solution for the RND problem by solving a sequence of
Minimum Cost Flow (MCF) problems, one for each scenario q = 1, . . . ,K in the
directed graph Gdir = (V,A) defined as follows. It has the same set of nodes
of G and for each e = {i, j} ∈ E, we introduce four arcs ae1, ae2, ae3 and ae4: ae1
and ae2 are directed from i to j, while ae3 and ae4 are directed from j to i. For
each arc a ∈ A, let UBa be its upper bound on the capacity and ca its cost.
When solving the MCF problems, edge costs and bounds are set such that a
scenario can use the capacities for free that are already installed. Algorithm 1
illustrates the general structure of the FP procedure for the construction of an
RND-solution. Let uFP∗ be the solution that we obtain by applying FP.

foreach e ∈ E do
set UBae

1
:= ∞, UBae

2
:= 0, UBae

3
:= ∞ and UBae

4
:= 0;

set cae
1

:= ce, cae
2

:= 0, cae
3

:= ce and cae
4

:= 0;

set uFP∗ := 0;
foreach scenario q = 1, . . . ,K do

solve MCF for scenario q;
obtain solution fq∗;
foreach e ∈ E do

u∗e := fq∗
ae
1

+ fq∗
ae
3
;

UBae
2

:= UBae
2

+ u∗e and UBae
4

:= UBae
4

+ u∗e ;

uFP∗
e := uFP∗

e + u∗e
return uFP∗

Algorithm 1: FP procedure.

It is more likely that we can use some capacity “for free” later if we have
installed capacities on a larger set of edges. Thus, we apply a preprocessing at
the beginning of FP. We divide each scenario q = 1, . . . ,K in R sub-scenarios

gq1, . . . , g
q
R having balances b

gq1
v = bbqv/Rc, b

gq2
v = bbqv/(R − 1)c, up to b

gqR
v = bqv,

v ∈ V , where R is an integer positive number. Each sub-scenario is then dealt
with as an original scenario and we apply the FP procedure in the order gq1,
(q = 1, . . . ,K), gq2, (q = 1, . . . ,K), up to gqR, (q = 1, . . . ,K). In this way, the
generic sub-scenario gql of scenario q can already take into account the partial
solution computed for all the other scenarios q = 1, . . . ,K. This also means that
more likely the complete MCF-solution of a generic scenario q will have a split
integer flow, because each scenario might use different subsets of arcs.

4.2 Backward Phase

To improve the solution found in FP, BP uses a modified version of the compact
(RNDflow) model, described in Section 2.1 Indeed, the described compact formu-
lation appears suitable for performing a large neighborhood search while keeping
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the computing time short. BP starts from the solution uFP∗ found by FP. First,
edges {i, j} with uFP∗ij = 0 are removed from G which leads to a reduced graph

Ḡ = (V, Ē). In addition, the derived capacities uFP∗ij are used to impose upper
bounds on the capacity variables uij of (RNDflow). More precisely, in order to
perform a large neighborhood search, we allow an increase in the capacities with
respect to the solution uFP∗ up to a maximum total value T . This is obtained
by adding continuous variables wij ≥ 0, for {i, j} ∈ Ē and the constraints

uij ≤ uFP∗ij + wij , ∀{i, j} ∈ Ē (3)∑
{i,j}∈Ē

wij ≤ T, (4)

with a parameter T whose size has to be determined. It is not necessary to
impose the integrality of the wij variables because uij are imposed to be integer.
Parameter T is used to control the size of the neighborhood of the FP-solution
that we want to consider. If T is set to 0, then we are imposing the values uFP∗ij

as upper bounds of the capacity variables. If T is set to +∞, then we get the
(RNDflow) model on the reduced graph. The neighborhood is explored by solving
the proposed model for a fixed T to optimality.

4.3 Computational Results

We tested our heuristic on a set of d-dimensional hypercubes (see Section 3),
with randomly generated integer scenarios. We considered both the case of unit
demand and a more general uniform distribution in [1, 10]. Each instance has 2d

nodes and 2d−1 scenarios. Instead, because of space limitation, we did not report
results on instances like those in [4] that turn out to be much easier to solve.

Forward and backward phases were coded in C language and Cplex 12.3
was used. The tests were executed on a PC Intel(R) Core(TM) i7 CPU, 64 bit,
1.73 GHz, 6 Gb RAM, running Windows 7. Computing times are expressed in
seconds. In FP, the code CS2 by Goldberg [12] for solving MCF is used.

Unit demands. It is easy to see that for hypercubes with unit demands, the
capacity installed on any edge cannot be larger than 1 in an optimal solution:
indeed, we have one source-sink pair in each scenario. Thus, removing the edges
not used in FP cannot lead to an improvement of the solution because BP, as
described in the previous section, can only increase the capacity of used edges.
To overcome this difficulty, we randomly selected a percentage P of demands
and temporarily increased them to D before running FP, so as to enlarge the
set of edges in input to BP, which is then executed with T = 0 (BP0). We
tested this variant of the heuristic for d = {3, 4, 5, 6}, and compared it with
the (RNDflow) model initialized with the FP solution (RNDinit). Parameter P
is adaptively set to produce a reduced graph of manageable size for BP, namely
P = 100% for d = {3, 4, 5} and P = 20% for d = 6, while we set D = 2 in the
experiments. Both RNDinit and BP0 obtain the optimal solution for d ∈ {3, 4}.
For d = 5, BP0 improves the FP solution of value 31 decreasing it to 30 in
around 3 minutes (and finishes optimizing the neighborhood in 733.67 seconds),
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while RNDinit only obtains this value slightly before reaching the time limit of
7200 seconds. Finally, for d = 6 BP0 decreases to 62 the FP solution of value 63
in less than 2000 seconds and then reaches the time limit of 7200, while RNDinit

does not improve in the same time limit. As expected, these instances turn out
to be extremely difficult and other modification of the proposed heuristic are
under investigation.

Uniform demands. For the more general instances with demand uniformly
distributed in [1, 10] we considered d = {3, . . . , 7}, and 5 instances for each
value of d. After parameter tuning, the R parameter of FP was set to 10. We
tested BP with different values of T . As a trade-off between solution quality and
computing time we selected T = 25 (BP25 in the tables) and compared it with
solving (RNDflow) and to BP with T = +∞ (BP∞ in the tables). The latter case
corresponds to the (RNDflow) model on the reduced graph. All models, including
(RNDflow), receive on input the solution computed by FP. For this reason, model
(RNDflow) is indicated in the following as RNDinit. The aim of this comparison
is twofold. On the one side, testing the complete (RNDflow) model shows the
difficulty of these instances for Cplex. Its comparison with the approaches using
a backward phase highlights the speedup that can be obtained by exploring only
a portion of the solution space. On the other side, comparing BP∞ and BP25

allows to grasp the relation between the quality of the heuristic solution and
the size of the neighborhood T . For d ∈ {3, 4, 5}, RNDinit computes the optimal
solution very fast, the computing times of BP∞ and BP25 are negligible, and
their solutions are very accurate. Thus, we do not report the corresponding
results and focus on instances with d ∈ {6, 7}. The results of the comparison
among RNDinit, BP∞ and BP25 are reported in Table 1. More precisely, the
table reports, for each instance, its name (Inst., with the number representing
its size d), the best lower bound obtained by solving the RNDinit (LB), the
best upper bound computed by the three methods (UB), and, for each of the
algorithms, the computing times (time), the total number of branch-and-bound
nodes (nodes), and the percentage gap between its solution value (sol) and LB
(namely, 100 · (sol − LB)/LB). In addition, Table 1 reports computing times
and percentage gaps for FP. The results are obtained by imposing a time limit
of 7200 seconds, and TL indicates that the time limit was reached. Instances
reaching the time limit count with 7200 seconds in the averages. Finally, the
average results over the 5 instances with d = 6 and with d = 7 are reported.

The results in Table 1 show that FP is very fast in computing a feasible
solution, even if the quality of this solution is not very good. However, after
applying BP, the percentage gaps reduce significantly. This means that, on the
one side, FP is able to identify how to reduce the graph, and, on the other
hand, the neighborhood considered in BP is explored effectively. For instances
with d = 6, the computing times and the percentage gaps of BP∞ and BP25

are almost the same. Compared to RNDinit, both BP methods are more than
one order of magnitude faster to explore their neighborhood, while the average
percentage gap is acceptable (1.02% for both). The effectiveness of the proposed
heuristic is more evident on instances with d = 7. This time RNDinit reaches the
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FP RNDinit BP∞ BP25

Inst. LB UB time %gap time nodes %gap time nodes %gap time nodes %gap

A6 160 162 0.05 28.75 TL 44216 1.25 34.37 212 3.13 47.10 593 3.13
B6 212 212 0.06 16.04 119.95 407 0.00 5.29 0 0.00 4.98 0 0.00
C6 210 210 0.05 11.90 18.27 0 0.00 3.29 0 0.95 21.14 79 0.95
D6 192 192 0.08 9.38 106.11 162 0.00 3.04 0 1.04 2.81 0 1.04
E6 194 194 0.06 14.43 223.64 1100 0.00 63.13 682 0.00 5.43 0 0.00

Av.s 0.06 16.10 1533.59 9177 0.25 21.82 179 1.02 16.29 135 1.02

A7 376 383 0.35 27.66 TL 11 5.32 3549.62 551 1.86 1200.60 455 3.99
B7 374 383 0.26 25.94 TL 10 25.94 2587.78 489 2.41 78.52 0 6.68
C7 373 381 0.16 24.40 TL 10 7.24 TL 774 2.14 76.04 0 3.22
D7 357 364 0.24 22.69 TL 8 6.44 TL 558 1.96 473.92 45 3.64
E7 351 359 0.19 28.21 TL 6 8.55 2873.80 604 2.28 414.81 104 2.56

Av.s 0.24 25.78 7200.00 9 10.70 3003.73 596 2.13 448.77 121 4.02

Table 1: Comparison among RNDinit, BP∞ and BP25.

time limit for all instances. The average percentage gap of BP∞ is 2.13% and it
finds the best solution in all cases, while the gap of BP25 is 4.02%. In terms of
efficiency, BP∞ is able to fully explore its neighborhood in 3/5 cases in about
3000 CPU seconds on average, while for the 2 instances on which it reaches the
time limit the solution value is much better than the one of RNDinit. Instead,
BP25 is much faster in exploring its (smaller) neighborhood, with an average
CPU time of 448.77 seconds In that concern, BP25 seems to provide a good
compromise between quality of the solution and speed. However, it is interesting
to note that even very small neighborhoods like T = 5 and T = 1 are somehow
effective: for d = 7, the average FP percentage gap of 25.78% reduces to 8.75%
and to 9.9%, respectively, with average computing times of 40 and 6 seconds,
respectively. This means that neighborhoods of small size could be iteratively
explored by primal heuristics in a branch-and-cut algorithm.

5 Conclusions and Future Research

In this work, we have introduced a cut-set formulation for the RND problem.
It turns out that the LP-bounds are very strong. Moreover, we have proposed a
two-phase heuristic algorithm that explores large neighborhoods whose size can
be carefully controlled. Thus, the use of this heuristic framework can be foreseen
both as stand-alone algorithm and as primal heuristic within a branch-and-cut
approach, which represents the next step of our work. Furthermore, we intend
to investigate the polyhedral structure of Pcut-set in detail.
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21. L. Sanità. Robust Network Design. Ph.D. Thesis. Università La Sapienza, Roma,
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Appendix

Proof (of Lemma 2). We have
∑
u∈R bu ≥ 0, since

∑
v∈V bv = 0 and there

can only be nodes with non-positive balance outside of R. If we let bu :=∑
v∈δ(u) fu,v − fv,u be the residual balance of node u, then we get by the same

argument that
∑
u∈R b

q

u ≥ 0. Also, we can assume w.l.o.g. that all flow entering
R is zero, as R contains all sources and hence all incoming flow must originate
from R and can be suitably rerouted. Thus,∣∣∣∑

u∈R
bu

∣∣∣ =
∑
u∈R

bu

=
∑
u∈R

bu +
∑
v∈δ(u)

(fu,v − fv,u)


≥ 0 +

∑
u∈R

∑
v∈δ(u)
v∈R

(fu,v − fv,u) +
∑
u∈R

∑
v∈δ(u)
v∈V \R

(fu,v − fv,u)

= 0 +
∑
u∈R

∑
v∈δ(u)
v∈V \R

(fu,v − fv,u)

=
∑
u∈R

∑
v∈δ(u)
v∈V \R

fu,v

=
∑

{u,v}∈δ(R)
u∈R

fu,v

By our assumption, there is a source s and a sink t with residual balance
bs > 0 and bt < 0, respectively. Now, if we suppose that there is no augmenting
path in Nf , then s ∈ R by definition and thus t ∈ V \ R. Hence,

∑
u∈R bu > 0

and we get strict inequality in the above calculation. ut


