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Abstract. We present a probabilistic analysis of random mixed Horn
formulas (MHF), i.e., formulas in conjunctive normal form consisting of a
positive monotone part of quadratic clauses and a part of Horn clauses,
with m clauses, n variables, and up to n literals per Horn clause. For
MHFs parameterized by n and m with uniform distribution of instances
and for large n, we derive upper bounds for the expected number of
models. For the class of random negative MHFs, where only monotone
negative Horn clauses are allowed to occur, we give a lower bound for
the probability that formulas from this class are satisfiable. We expect
that the model studied theoretically here may be of interest for the de-
termination of hard instances, which are conjectured to be found in the
transition area from satisfiability to unsatisfiability of the instances from
the parameterized classes of formulas.
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1 Introduction

In this paper we study probabilistically random mixed Horn formulas. A con-
junctive normal form (CNF) formula is a mixed Horn formula (MHF) if each of
its clauses is either a monotone positive 2-clause, or it is a Horn clause. This
class of Boolean formulas has received some attention recently. Reducing many
NP-complete problems to the satisfiability problem (SAT) of CNF formulas re-
sults in a natural way into MHFs [10, 14]. Hence, dedicated algorithms could be
developed with good worst-case upper bounds for solving SAT of MHFs [11, 7].

We consider not only general MHFs but also negative MHFs, where only
monotone negative Horn clauses are allowed to occur. For both classes the size
of Horn clauses is at most n. It is known that the satisfiability problem of both
classes is NP-complete [11]. For the class of general MHFs with uniform distribu-
tion of instances and for large n, we derive, by means of a probabilistic analysis,
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the upper bounds for the expected number of solutions. In the case of negative
MHFs we give a lower bound for the probability that formulas parameterized by
n and m are satisfiable. To this end, we apply non-algorithmic techniques involv-
ing the computation of the second moment. A similar approach has already been
used for random k-SAT by Achlioptas et al. [2, 1] and recently by Schuh [13].

Our study is closely related to the research on random k-SAT, the satisfia-
bility problem of random k-CNF formulas. A random k-CNF formula, Fk(n,m),
is formed by selecting uniformly, independently, and without replacement m k-
clauses from the set of all 2k

(
n
k

)
possible clauses on n variables and taking their

conjunction. Random formulas have been studied extensively in probabilistic
combinatorics in the last three decades. The mathematical investigation of ran-
dom k-SAT began with the works of Goldberg et al. [6], Franco and Paull [5],
Purdom [12], and Chao and Franco [3].

In the early 1990s, random instances of the k-SAT problem have been un-
derstood to undergo a phase transition as a ratio of k-clauses to variables passes
through some critical threshold. That is, for a given number of variables, the
probability that a random instance is satisfiable drops rapidly from 1 to 0 around
a critical number of clauses. This sharp threshold phenomenon discovered ex-
perimentally first for k = 3 [4, 8] has led to a popular satisfiability threshold
conjecture: For each k ≥ 3, there exists a constant rk such that

lim
n→∞

Pr(Fk(n, rn) is satisfiable) =

{
1 if r < rk,
0 if r > rk.

More recently, Namasivayam and Truszczyński [9] proved that the SAT prob-
lem for mixed Horn formulas of which the structure of the Horn part is drastically
constrained remains NP-complete. Moreover, they identified experimentally re-
gions of low and high satisfiability depending on the density m

n and the clause size
k. They observed for their model that the hardness of the instances in the phase
transition region shows the well-known easy-hard-easy pattern as a function of
k. They stated as an open problem to determine tight bounds on the location of
the phase transition for their model. Motivated by their experimental results and
inspired by the analysis of random unrestricted k-SAT by Schuh [13], the goal of
our study is to bring more understanding in the phase transition phenomenon
in the context of random MHFs and random negative MHFs first.

We expect that the model studied theoretically here, may be of interest for
the determination of hard instances, which are conjectured to be found in the
transition area from satisfiability to unsatisfiability of the instances from the
parameterized classes of formulas.

2 Preliminaries

Let V = {x1, ..., xn} be a set of n Boolean variables. Each variable induces a
positive literal (variable x) or a negative literal (negated variable, x). A clause
c is considered as a disjunction of different literals over V and is represented
as a set c = {l1, ..., l|c|}. A clause is termed a k-clause if it contains at most



k > 0 literals. A clause containing at most one positive literal is termed a Horn
clause. It is a definite Horn clause if it contains exactly one positive literal. A
propositional formula C over V is considered as a clause set C = {c1, ..., c|C|}.
The number of clauses in C is denoted by |C|. A formula is called a mixed
Horn formula if it is composed only of Horn or monotone positive 2-clauses. In
this paper we consider also mixed Horn formulas with monotone negative Horn
clauses. We call them negative mixed Horn formulas.

Let t : V → {0, 1} be a truth assignment. t satisfies a literal l iff t(l) = 1.
A clause is said to be satisfied by a truth assignment t iff t satisfies any of its
literals. t is said to satisfy formula C iff all clauses of C are satisfied by t. In this
case t is called a model of C. We write t(C) = 1 iff t is a model of C, t(C) = 0
otherwise. A formula C is said to be satisfiable iff it has at least one model.
Otherwise it is unsatisfiable.

Definition 1. Let H(V ) (H−(V )) denote the set of (monotone negative) Horn
clauses of length at most n > 0 on V , and let P (V ) denote the set of all monotone
positive 2-clauses on V . Furthermore, both H(V ) ∪ P (V ) and H−(V ) ∪ P (V )
contain no empty clauses.

Definition 2. Let MH(n,m) (MH−(n,m)) denote the set of all (negative)
mixed Horn formulas of m clauses on n variables. Each formula from MH(n,m)
(MH−(n,m)) is formed by selecting uniformly, independently, and without re-
placement m clauses from H(V )∪ P (V ) (H−(V )∪ P (V )) and taking their con-
junction.

Note that each formula from MH(n,m) and MH−(n,m) is free of duplicate

clauses. Hence there are
(|P (V )∪H(V )|

m

)
and

(|P (V )∪H−(V )|
m

)
formulas in MH(n,m)

and MH−(n,m), respectively. We do not consider empty formulas, i.e., m > 0.

Proposition 1. For a set V of n Boolean variables:

1. |P (V )| =
(
n
2

)
2. |H−(V )| =

∑n
i=1

(
n
i

)
3. |H(V )| = |H−(V )|+

∑n
i=1 n

(
n−1
i−1

)
Proof. Observe that in |H(V )| there are

(
n
i

)
monotone negative i-clauses and

n
(
n−1
i−1

)
definite Horn i-clauses, for i = 1, ..., n. ut

Proposition 2. Let t be some truth assignment on V and w.l.o.g. assume that
λ := |{x ∈ V : t(x) = 0}|. Let Pλ(V ) ⊆ P (V ), Hλ

−(V ) ⊆ H−(V ), and Hλ(V ) ⊆
H(V ) denote the sets of clauses satisfied by t. It holds that

1. |Pλ(V )| = |P (V )| −
(
λ
2

)
2. |Hλ

−(V )| = |H−| −
∑n−λ
i=1

(
n−λ
i

)
3. |Hλ(V )| = |H(V )| −

∑n−λ
i=1

(
n−λ
i

)
−
∑n−λ
i=0 λ

(
n−λ
i

)
Proof. Observe that in order to obtain |Hλ(V )| we must remove from H(V ) all
monotone negative clauses containing only variables from {x ∈ V : t(x) = 1} and
all definite Horn j-clauses containing one positive literal lp such that t(lp) = 0
and j − 1 negative literals assigned by t to 1, for j = 1, ..., n. ut



3 Expectation value for the number of models

The number of formulas from MH(n,m) satisfied by a truth assignment t ∈
{0, 1}n is given by

C(t) :=
∑

C∈MH(n,m)

t(C).

Let N denote the number of all models of formulas from MH(n,m). Since
N =

∑
t∈{0,1}n C(t) and due to the linearity of expectation, the expected value

of N is given by

E[N ] = E

[∑
t

C(t)

]
=
∑
t

∑
C

E[t(C)] =
∑
t

∑
C

p(C)t(C).

In the last term the summations run over all truth assignments t ∈ {0, 1}n and
all formulas C ∈ MH(n,m), respectively, whereas p(C) denotes the occurrence
probability of formula C.

Similar to the models for random k-SAT, we assume that the formulas from
MH(n,m) are distributed uniformly, i.e., for all C ∈MH(n,m)

p(C) =
1

|MH(n,m)|
=

(
|P (V )|+ |H(V )|

m

)−1

=: p

for m ≤ |P (V )|+ |H(V )|. Under this assumption we have

E[N ] = p
∑
t

∑
C

t(C).

According to Proposition 2, for a truth assignment t assigning exactly λ
variables from V to 0, there are at most

C(λ) :=

(
|Pλ(V )|+ |Hλ(V )|

m

)
formulas of length m in MH(n,m) satisfied by t. Thus, the expected value of N
for MH(n,m) is given by

E[N ] = p

n∑
λ=0

(
n

λ

)
C(λ) =

(
|P (V )|+ |H(V )|

m

)−1 n∑
λ=0

(
n

λ

)(
|Pλ(V )|+ |Hλ(V )|

m

)

=

n∑
λ=0

(
n

λ

)m−1∏
=0

|Pλ(V )|+ |Hλ(V )| − j
|P (V )|+ |H(V )| − j

=:

n∑
λ=0

(
n

λ

)m−1∏
=0

β(λ, j) (1)

for m ≤ |Pλ(V )|+ |Hλ(V )|, since |Pλ(V )|+ |Hλ(V )| ≤ |P (V )|+ |H(V )|.



We analyze now E[N ] for large values of n. To this end, we first estimate the
value of β(λ, j). For n→∞ and by Proposition 1 and 2, we have

β(λ, j) =
|P (V )|+ |H(V )| −

(
λ
2

)
− 2n−λ(1 + λ) + 1− j

|P (V )|+ |H(V )| − j

= 1−
(
λ
2

)
+ 2n−λ(1 + λ)− 1(

n
2

)
+ 2n − 1 + n2n−1 − j

→ 1− 2(1 + λ)

(n+ 2)2λ
< e

−2(1+λ)

(n+2)2λ

By applying this result to (1), we obtain finally

E[N ] ≤
n∑
λ=0

(
n

λ

)
e
−2m(1+λ)

(n+2)2λ ≤ 2ne
−2m(1+n)
(n+2)2n .

Analogously, we obtain the expected value of the number of all models N−
of formulas from MH−(n,m).

E[N−] =
n∑
λ=0

(
n

λ

)m−1∏
=0

|Pλ(V )|+ |Hλ
−(V )| − j

|P (V )|+ |H−(V )| − j

=:

n∑
λ=0

(
n

λ

)m−1∏
=0

β−(λ, j)

for m ≤ |Pλ(V )|+ |Hλ
−(V )|, since |Pλ(V )|+ |Hλ

−(V )| ≤ |P (V )|+ |H−(V )|.
For E[N−] we can show that β−(λ, j) → 1− 1

2λ
with n approaching infinity

what can be bounded from above by e−
1

2λ . Thus we obtain

E[N−] ≤
n∑
λ=0

(
n

λ

)
e−

m

2λ ≤ 2ne−
m
2n .

Theorem 1. The expected number of models of mixed Horn formulas in MH(n,m)
and MH−(n,m) is bounded from above by respectively

E[N ] ≤ 2ne
−2m(1+n)
(n+2)2n and E[N−] ≤ 2ne−

m
2n .

ut

Observe that since N is a non-negative integer-valued random variable, we
can apply Markov’s inequality in order to obtain an upper bound for the prob-
ability that N > 0, i.e.,

Pr(N > 0) = Pr(N ≥ 1) ≤ E[N ].

Unfortunately, the bounds from Theorem 1 are too rough to obtain useful upper
bounds for Pr(N > 0). Hence, is it an interesting question whether both E[N ]
and E[N−] can be bounded more tightly from above.



4 Lower bound for Pr(N− > 0)

Large values for E[N ] do not imply that Pr(N = 0) is small. Since the first mo-
ment E[N ] gives only a rough upper bound for satisfiability of MH(n,m), one
can investigate the lower bound for Pr(N > 0) by considering the second mo-
ment method. More specifically, by a direct application of the Cauchy-Schwartz
inequality for non-negative random variables N and X (X = 1 if N > 0, other-
wise 0), we obtain that

Pr(N > 0) ≥ E[N ]2

E[N2]

where the second moment

E[N2] = p
∑
C

(∑
t

t(C)

)2

= p
∑
C

∑
t

t(C) + 2
∑
t1 6=t2

t1(C)t2(C)


= E[N ] + 2p

∑
C

∑
t1 6=t2

t1(C)t2(C)

=: E[N ] + 2α. (2)

Using the same arguments, we can also derive the lower bound for the proba-
bility Pr(N− > 0) that most of the formulas in MH−(n,m) are satisfiable. That
is

Pr(N− > 0) ≥ E[N−]2

E[N−] + 2α−
(3)

where α− is defined in a similar way as in (2).
We deliver the lower bound only for Pr(N− > 0). To this end, we proceed

first with the computation of α−. Again, we estimate it for large values of n.
Thus we write

α− =
1

|MH−(n,m)|
∑
t1 6=t2

∑
C

t1(C)t2(C) =
1

|MH−(n,m)|
∑
t1 6=t2

C(t1, t2),

where C(t1, t2) denotes the number of formulas from MH−(n,m) satisfied si-
multaneously by a pair of truth assignments t1 and t2.

In order to compute C(t1, t2) for a fixed pair of unequal truth assignments t1
and t2, imagine each of them as a sequence of n bits, where each bit corresponds
to some variable xi from V . Without loss of generality, the order of bits is defined
by the vector (x1, ..., xn), and is the same for all sequences. For any pair of bit
sequences we denote by λ1 ≤ n the number of non-matching (unequal) bits and
by n − λ1 the number of matching bits (see Figure 1). Note that the matching
(non-matching) bits do not have to form a consecutive block of size n− λ1 (λ1)
within the bit sequence they belong to. Furthermore, denote by λ2 the number
of bits equal to 0 among the n − λ1 equal bits of t1. Observe that λ2 has the
same value for t2. Similarly, denote by λ3 the number of bits equal to 1 among
the λ1 unequal bits of t1. Note, that the number of bits equal to 1 among the
λ1 unequal bits in t2 is λ1 − λ3.
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Fig. 1. Example of two truth assignments with n− λ1 matching bits.

Note that the triples (λ1, λ2, λ3) partition the set of all pairs of unequal truth
assignments, such that the number of formulas from MH−(n,m) satisfied by any
pair from the same partition is the same. Thus we can write

α− =
1

|MH−(n,m)|

n∑
λ1=1

(
n

λ1

) n−λ1∑
λ2=0

(
n− λ1

λ2

) λ1−1∑
λ3=0

(
λ1 − 1

λ3

)
C(λ1, λ2, λ3),

where C(λ1, λ2, λ3) denotes the number of formulas from MH−(n,m) satisfied
by any pair of unequal truth assignments specified by λ1, λ2, and λ3. This
number can be traced back to the number of clauses from P (V )∪H−(V ) satisfied
by those truth assignments. More specifically,

C(λ1, λ2, λ3) =

(
|P (V )|+ |H−(V )| −∆(λ1, λ2, λ3)

m

)
,

where ∆(λ1, λ2, λ3) denotes the number of clauses from P (V ) ∪ H−(V ) not
satisfied by those truth assignments. Here, m ≤ |P (V )|+|H−(V )|−∆(λ1, λ2, λ3).
It can be determined by elementary considerations that

∆(λ1, λ2, λ3) =

(
λ2

2

)
+

n−λ1−λ2∑
i=1

(
n− λ1 − λ2

i

)
+

(
λ3

2

)
+

(
λ1 − λ3

2

)
+

λ3∑
i=1

(
λ3

i

)
+

λ1−λ3∑
i=1

(
λ1 − λ3

i

)
+

λ1λ2 +

n−λ1−λ2∑
i=1

(
n− λ1 − λ2

i

) λ3∑
j=1

(
λ3

j

)
+

λ1−λ3∑
j=1

(
λ1 − λ3

j

) ,

which minimal value determined with the help of a computer algebra system is

∆min := ∆(1, n− 1, 0) = ∆(2, n− 2, 1) =
n(n− 1)

2
+ 1.

Inserting these results into α−, we obtain

α− =

n∑
λ1=1

(
n

λ1

) n−λ1∑
λ2=0

(
n− λ1

λ2

) λ1−1∑
λ3=0

(
λ1 − 1

λ3

)m−1∏
j=0

(
1− ∆(λ1, λ2, λ3)

|P (V )|+ |H−(V )| − j

)

≤
n∑

λ1=1

(
n

λ1

) n−λ1∑
λ2=0

(
n− λ1

λ2

) λ1−1∑
λ3=0

(
λ1 − 1

λ3

)
e
− m∆min
|P (V )|+|H−(V )|

= 2n−1(2n − 1)e
− m∆min
|P (V )|+|H−(V )| .



In order to proceed with the estimation of (3), we need the lower bound for
E[N−]. According to Section 3 we have for large values of n:

E[N−] =

n∑
λ=0

(
n

λ

)(
1− 1

2λ

)m
≥ 2n − 1

2m
.

By setting this result and the estimation for α− into (3), we get for large n:

E[N−]2

E[N−] + 2α−
≥ E[N−]2

E[N−] + 2n(2n − 1)e
− m∆min
|P (V )|+|H(V )−|

≥ 2n − 1

2m
(

1 + 2n2me
−m∆min

|P (V )|+|H(V )−|

) ≥ 2n − 1

2m(1 + 2n2m)
.

Finally, we are ready to give the lower bound for Pr(N− > 0).

Theorem 2. The probability that most of the negative Horn formulas from
MH−(n,m) are satisfiable is bounded from below by

2n − 1

2m(1 + 2n2m)
≤ Pr(N− > 0)

ut

5 Conclusion and open problems

We have investigated by means of a probabilistic analysis the upper bounds for
the expected number of models for general random MHFs and for random nega-
tive MHFs. We have also derived a lower bound for the probability that formulas
from the latter class with uniform distribution of instances and parameterized
by n and m are satisfiable. With our theoretical study, we hope to shed more
light onto random MHFs. However, in order to localize the phase transition in
MHFs by the methodology of this paper, one need better bounds on the expected
number of models than the ones proved here. If such estimations exist remains
an interesting open question.

Furthermore, similar to the more general random k-SAT, we can formulate
the satisfiability threshold conjecture for MH−k (n,m), where the length of the
negative Horn clauses is restricted by k ≤ n, as follows: For each k > 0 there
exists a constant rk such that

lim
n→∞

Pr(MH−k (n, rn) is satisfiable) =

{
1 if r < rk,
0 if r > rk.

It would be interesting to establish the existence of rk both for general k as well
as for some specific k. Moreover, proving an upper and a lower bound for rk is
also a highly desirable goal from the theoretical point of view. We believe that
our results should shed more light on the sharp threshold phenomenon observed
already experimentally for other subclasses of MHFs [9].
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