
Appears in A. Balint, A. Belov, D. Diepold, S. Gerber, M. Järvisalo, and C. Sinz (eds.), Proceedings of SAT Challenge 2012: Solver and Benchmark

Descriptions, volume B-2012-2 of Department of Computer Science Series of Publications B, University of Helsinki 2012. ISBN 978-952-10-8106-4

satUZK: Solver Description

Alexander van der Grinten∗, Andreas Wotzlaw∗, Ewald Speckenmeyer∗, Stefan Porschen†
∗Institut für Informatik

Universität zu Köln, Pohligstr. 1, D-50969 Köln, Germany
Email: {vandergrinten,wotzlaw,esp}informatik.uni-koeln.de

†Fachgruppe Mathematik, FB4
HTW-Berlin, Treskowallee 8, D-10318 Berlin, Germany

Email: porschen@htw-berlin.de

I. SOLVER DESCRIPTION

satUZK is a conflict-driven clause learning solver for the
boolean satisfiability problem (SAT). It is written in C++ from
scratch and aims to be flexible and easily extendable.

In addition to the standard DPLL [1] algorithm with clause
learning the solver is able to perform various preprocessing
and inprocessing techniques.

A. Preprocessing

We implemented SatELite-like variable elimination and self-
subsumption [2], unhiding [3], a distillation technique similar
to the one presented in [4], blocked clause elimination [5], and
variable probing to detect failed literals, equivalent literals, and
literals that must be true in every model.

The preprocessing starts with unhiding, followed by self-
subsumption and variable probing in order to fix some vari-
ables and increase the number of literals that can be propagated
by binary constraint propagation (BCP).

After that the size of the formula is reduced by blocked
clause elimination and SatELite-like variable elimination.
These techniques can reduce the reasoning power of BCP and
that is why they are scheduled after the previous preprocessing
steps.

Preprocessing generally tries to eliminate 0.5% of the re-
maining variables in 1% of the available time. All preprocess-
ing techniques are repeated until the number of variables that
are affected by each simplification pass becomes too low or a
limit of 10% of the time budget is reached. The available time
must be specified to the solver with a command-line parameter
-budget <time in sec>.

By default, the preprocessing phase is disabled
and can be activated with a command-line parameter
-preproc-adaptive.

B. Search

The data structures required for BCP are implemented in
the same way as in MiniSAT 2.2 [6]. Binary clauses are stored
in a separate watch list.

We are using the standard 1-UIP [1] learning scheme
together with conflict clause minimization and the VSIDS
decision heuristic with phase saving.

For learned clause deletion the solver can use a MiniSAT-like
learned clause deletion strategy or a more aggressive literal

blocks distance based deletion strategy [7]. The first strategy
is the default one, whereas the latter one can be enabled
with command-line parameters -clause-red-agile

-restart-glucose -learn-minimize-glucose

-learn-bump-glue-twice.
Both Luby restarts and glucose-like dynamic restarts are

implemented [7].

C. Inprocessing

The DPLL procedure is interleaved with inprocessing steps
that perform unhiding, variable probing and distillation. These
techniques do not require literal occurrence lists and thus they
can be integrated into the search without great performance
overheads.

Variable probing and distillation is only applied to the most
active variables and clauses.

At most 10% of the available time is used for inprocessing.

II. SAT CHALLENGE 2012 SPECIFICS

For the challenge in tracks ”Hard Combinatorial
SAT+UNSAT” and ”Application SAT+UNSAT” we have
submitted three parametrized versions of our solver, started
with the following commands:

• satUZK: satUZK -budget 900 -preproc-adaptive

-show-model <cnf instance>

• satUZKg: satUZK -budget 900 -show-model

-preproc-adaptive -clause-red-agile

-restart-glucose -learn-minimize-glucose

-learn-bump-glue-twice <cnf instance>

• satUZKs: satUZK_wrapper satUZK -budget 900

-preproc-adaptive <cnf instance>

The last solver uses first SatELite [2] for preprocessing of the
input instance before the satUZK solver is called.

All three solvers have been submitted both as precompiled
(with gcc 4.4.3 and -O3) and statically linked 64-bit binaries
as well as sources written in C++.

REFERENCES

[1] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Satisfi-
ability: Volume 185 Frontiers in Artificial Intelligence and Applications,
2009.

[2] N. Eén and A. Biere, “Effective preprocessing in sat through variable and
clause elimination,” in Proceedings of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT 2005), ser. Lecture
Notes in Computer Science, vol. 3569, 2005, pp. 61–75.

54



[3] M. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification based
on binary implication graphs,” in Proceedings to the 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT
2011), ser. Lecture Notes in Computer Science, vol. 6695, 2011, pp.
201–215.

[4] H. Han and F. Somenzi, “Alembic: An efficient algorithm for cnf
preprocessing,” in Proceedings of the 44th Design Automation Conference
(DAC 2007), 2007, pp. 582–587.

[5] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the 16th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2010),
ser. Lecture Notes in Computer Science, vol. 6015, 2010, pp. 129–144.

[6] N. Eén and N. Sörensson, “Minisat 2.2.” [Online]. Available:
http://minisat.se/downloads/minisat-2.2.0.tar.gz

[7] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers,” in Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI 2009), 2009, pp. 399–404.

55


