Solving k-way Graph Partitioning Problems to
Optimality: The Impact of Semidefinite
Relaxations and the Bundle Method

Miguel F. Anjos, Bissan Ghaddar, Lena Hupp, Frauke Lierd,Aangelika Wiegele

Abstract This paper is concerned with computing global optimal sohs for max-
imum k-cut problems. We improve on the SBC algorithm of Ghaddaijpémand
Liers in order to compute such solutions in less time. Werektbe design princi-
ples of the successful BigMac solver for maximum 2-cut togbaeral maximum
k-cut problem. As part of this extension, we investigateeddht ways of choosing
variables for branching. We also study the impact of the isejom of clique inequal-
ities within this new framework and observe that it freqen¢duces the number
of subproblems considerably. Our computational resuligest that the proposed
approach achieves a drastic speedup in comparison to SB€xiakly whenk = 3.
We also made a comparison with the orbitopal fixing approdétadel, Peinhardt
and Pfetsch. The results suggest that while their perfocemas better for sparse
instances and larger values kfour proposed approach is superior for smakler
and for dense instances of medium size. Furthermore, we @QB&&EX for solv-

Miguel F. Anjos]
Canada Research Chair in Discrete Nonlinear Optimization girteering, GERAD &Ecole Poly-
technique de Monéal, Monteéal, QC, Canada H3C 3A7, e-mail: anjos@stanfordalumni.org

Bissan Ghaddar

Centre for Operational Research and Analysis, Defence ResaadcBevelopment Canada, De-
partment of National Defence, 101 Colonel By Drive, Ottawata®io, Canada, K1A 0K2, e-mail:
bghaddar@uwaterloo.ca

Lena Hupp
Department Mathematik, Friedrich-Alexander UniveisiErlangen-Nrnberg, Cauerstrale 11,
91058 Erlangen, Germany, e-mail: lena.hupp@math.uni-eztadg

Frauke Liers
Department Mathematik, Friedrich-Alexander UniveisiErlangen-Nirnberg, Cauerstrale 11,
91058 Erlangen, Germany, e-mail: frauke.liers@math.uningda.de

Angelika Wiegele
Alpen-Adria-Universiat Klagenfurt, Institutiir Mathematik, Universétsstr. 65-67, 9020 Klagen-
furt, Austria, e-mail: angelika.wiegele@aau.at

2 Anjos et al.

ing the ILP formulation underlying the orbitopal fixing alithm and conclude that
especially on dense instances the new algorithm outpesf@®B1LEX by far.

1 Introduction

The maximunk-cut (maxk-cut) problem is a graph partitioning problem concerned
with finding an optimak-way partitioning of the set of nodes of an undirected sim-
ple graph with weights on the edges. An edge is cut if its emdpare in different
sets of the partition, and a partition is also called a cuhefgraph. Thus the weight
of a cut is equal to the sum of the weights on the edges cut goitesponding
partition. There are a number of different versions of graatitioning problems in
the literature, depending on the number of sets allowed iarttijon, on the types
of edge weights allowed, and on the possible presence di@uialiside constraints
such as restrictions on the number of nodes allowed in eatitigga Most versions
are known to be NP-hard. Graph partitioning problems haveadyapplications
in areas as varied as telecommunications network plan2@f YLSI circuit de-
sign [9], sports scheduling [45, 21], and statistical pby$89].

The special case of makeut with k=2 is known as the max-cut problem. The
max-cut problem has been extensively studied; in parti¢uigknown to be equiv-
alent to quadratic unconstrained binary optimization. Agnéhe numerous refer-
ences for max-cut, we point out Barahona and Mahjoub [10fa2ed Laurent [18],
and Boros and Hammer [12]. A prominent application of makisun determin-
ing energy-minimum states, i.e., ground states, of Ising glasses. The first exact
branch-and-cut approach for its solution was presente@]iarid developed fur-
ther in [39]. Extending the number of shoreskio- 2, maximumk-cuts need to be
computed when determining ground states of Potts glass#d® physics literature,
ground states are usually computed heuristically, but madigble conclusions can
be drawn by analyzing exact solutions.

The maxk-cut problem is sometimes also called the minimkxpartition prob-
lem by noting that maximizing thk-cut is equivalent to minimizing the sum of
the weights of the edges connecting nodes in the same partitiwas studied by
Chopra and Rao in [14] who identified several valid and faledining inequalities
for the k-partition polytope. Further results can be found in Chagnd Rao [15]
and Deza, Gitschel, and Laurent [17].

Armbruster et al. [8] consider the minimum bisection problevherek = 2 and
the number of nodes in both partitions has to be less thanem galueF < 5. The
caseF = [J] corresponds to a minimum equipartition problem since thessof
both partitions then have to be (as close as possible to).efjli@rnatively, this
latter constraint added to the max-cut problem gives théatproblem which can
be motivated by an application to Coulomb glasses in thealgihysics. Motivated
by this application, Anjos et al. [5] recently proposed ahaced branch-and-cut
algorithm for equicut based on an approach proposed by Beuetal. [13].

k-way Graph Partitioning 3

More generally, th&-way equipartition problem is a minimukapartition prob-
lem with the additional constraint that thepartitions have to be of the same size.
Mitchell [44] applied a branch-and-cut algorithm basedioedr programming (LP)
to thek-way equipartition problem with application to a sportsgea realignment
problem. Lisser and Rendl [41] considered an applicatiokwhy equipartition in
telecommunications and investigated both semidefinitdiagdr relaxations of the
problem with iterative cutting plane algorithms.

Strong approximation guarantees have been obtained feralesf these NP-
hard problems. A famous example is the randomized apprdiimalgorithm for
max-cut proposed by Goemans and Williamson [25] that usesrédgfinite pro-
gramming (SDP) relaxation. Frieze and Jerrum [23] exteride@pproach of Goe-
mans and Williamson to malk-cut and obtained a polynomial-time approximation
algorithm and a corresponding rounding technique. In galar, they proved the
existence of constantg, k > 2, such that

E(W(%)) > aw(%)

wherew(7) = Y1<rs<k Yiew,jevs Wij» ¥ determines an optimal cut, arkdl de-
notes the expected value. For small value&,ahe best-known lower bounds for
these constants are given by de Klerk et al. [16]. The imgt&BP relaxation for
max-cut of Anjos and Wolkowicz [7] provides very tight bownfibr max-cut and
perfectly captures the faces of dimension 1 of the cut pplytf]. This ability
to capture portions of the structure of the underlying pmbgt was proved for the
whole Lasserre hierarchy by Laurent [34]. Eiseéxitadr [20] used an SDP relaxation
for the minimumk-partition problem and proved that all the feasible sohaidor
the SDP problem cannot violate the (facet-defining) triaragid clique inequalities
for thek-partition polytope by more than a small amount, thus shguliat an SDP
relaxation can closely approximate the structure ofktpartition polytope.

Our interest is in computing global optimal solutions forxylacut problems.
Computationally speaking, SDP relaxations often yieldrager bounds than LP
relaxations. However, this strength usually comes at thperese of long running
times. Thus, it is not clear beforehand whether linear oridefimite relaxations
lead to best performance.

For max-cut, sparse instances can usually be solved efficieith LP-based
methods for large graphs. The web-based Spin Glass Seivexr ¢$pecially de-
signed for fast solutions of instances defined on grids thise an statistical
physics [39]. For instance, for a two-dimensional lattidehvi. < 80 and periodic
boundary conditions, one ground-state computation tassthan two minutes on
average on a SUN Opteron (2.2 GHz) machine; for?liaftices the computation
takes 28 minutes [40]. On the other hand, SDP-based metlesttsp better for
dense instances of max-cut [46]. The SDP-based web sergdtagi[1] can solve
max-cut instances with arbitrary structure with up to 10figes [48].

For thek-way equipartition problem, the LP-based branch-and-lggrahm of
Mitchell [44] found the optimal solution for the NFL realigrent problem where
k =8 andn = 32, whereas a percentage gap of less than 2.5% was giverafuigr

4 Anjos et al.

of sizes 100 to 500. Lisser and Rendl [41] found that for grsigks ranging from
100 to 900 vertices and fdc=5 andk = 10, the SDP approach produced a gap
between 4%-6% from the optimal solution and had overalebgterformance than
the LP approach.

For sparse instances of minimum bisection, the computati@sults of Arm-
bruster et al. [8] suggest that SDP relaxations are suptrithhe corresponding LP
relaxations. On the other hand, Anjos et al. [5] comparedchal and SDP re-
laxations for the equicut problem, and found that linearfaisucan be competitive
with the semidefinite ones and can be computed much fastefe\Widir results
appear to contradict the above observations, it is impbttanote that they focus
on dense instances coming from the physics applicationttaidheir specialized
relaxation includes constraints that are not valid for ti@mum bisection polytope
in general.

In this paper, we focus on mdxeut for k > 3. Our motivation is that while
effective computational procedures that yield globallyimal solution for arbitrary
instances with up to 100 vertices and sparse graphs of aabiy larger sizes
have been implemented for the2 case, to the best of our knowledge, most of the
procedures proposed in the literature either cannot beeapfalr generak, provide
no guarantee of global optimality, or enforce additionaistoaints.

Among the exceptions, Kaibel, Peinhardt and Pfetsch [3[la@@ied a symmetry-
breaking method called orbitopal fixing (OF) to graph pantiing problems within
an LP-based branch-and-cut. Symmetry arises in graphipaniroblems because
different feasible solutions may represent the same martiThe feasible set of
the problem can thus be partitioned into orbits so that &lgblutions in an orbit
represent the same partition. This structure is exploite®B through choosing
one representative solution from each orbit, namely thiedgxaphically maximal
one, and the branching and pruning steps are adjusted t@trdélse enumeration
to only such solutions. This is a specialization to panitiwoblems of the isomor-
phism pruning technique of Margot [42, 43]. The authors @nésesults for the
minimum k-partition problem in sparse graphs with up to 50 nodes aravehiun-
dred edges [31].

Another exception is the SDP-based branch-and-cut afgoribr the minimum
k-partition problem proposed by Ghaddar, Anjos and Lierg.[Z#eir SBC algo-
rithm combines the SDP relaxation proposed by Eisttdai [20] with valid inequal-
ities for thek-partition polytope and with a novel iterative clusterirepinistic (ICH)
that finds feasible solutions using the SDP optimal solufidre computational re-
sults reported in [24] show that ICH consistently providessible solutions that are
better than those obtained using the hyperplane roundoimigues of Goemans
and Williamson (fork = 2) and of Frieze and Jerrum (fer> 3). Ghaddar et al.
presented results showing that SBC computes globally gptmiutions for dense
graphs with up to 60 nodes, for (sparse) grid graphs with uldtbnodes, and for
different values ok > 3.

In this paper, we combine the approach of Ghaddar et al. Wwéldesign prin-
ciples of BigMac [48] to compute globally optimal solutiofte maxk-cut more

k-way Graph Partitioning 5

efficiently. We refer to this new approach as bundleBC. Aliostraightforward in
principle, this combination raises several challengeduding the following:

e branching decisions may lead to subproblems that are ibleaw that have no
interior (this can be avoided for max-cut by appropriatetsiwing and shrinking
steps);

e awider variety of cutting planes needs to be generated andgea dynamically;
and

e the constraints of the SDP relaxation itself need to be teahdifferently, i.e., we
relax the lower bound constraints of the initial SDP relao@aand treat them as
cuts.

Our computational results suggest that bundleBC achiestessstic speedup in com-
parison to SBC, especially whén= 3. Furthermore, a comparison with the results
reported by Kaibel et al. [31], suggests that kor 3 and medium-sized dense in-
stances (30 nodes), our approach performs better thanQReaipproach, whereas
their performance is better for sparse instances and fgedamlues ok. Addition-
ally, we used CPLEX to evaluate the ILP model underlying tieapproach.

This paper is organized as follows. In Section 2 we state ahmdl definition
of the maxk-cut problem and briefly summarize the relevant formulatiand re-
laxations in the literature. The proposed exact algoriterddscribed in Section 3.
Section 3.1 is concerned with the upper bound computatiomy @sbundle to solve
the SDP relaxations, and Section 3.2 is described the liewns use for computing
lower bounds. Section 3.3 describes the 6 branching rubgsnté tested, and how
we handle the possibility that branching sometimes yield® Subproblems that
are infeasible or that have no interior. Section 4 presém@dbasic implementation
details of bundleBC. Computational results are reportefdntion 5. Section 5.1
describes the benchmark sets of instances that we usetr5&& reports the per-
formance of the 6 branching rules that we considered, antioB€es.3 studies the
impact of cliqgue inequalities on the performance of bun@eBection 5.4 presents
comparisons of bundleBC with SBC, and Section 5.5 compdregpérformance
of bundleBC with the orbitopal fixing approach and presenes@PLEX results.
Section 6 concludes the paper.

2 Problem Description, Formulations and Relaxations

An instance of the mak-cut problem is specified by fixing an undirected graph
G = (V,E) with edge weightsv;; of the edges, and a positive inteder 2. The
objective is to find a partition d¥ into at mostk disjoint partitionsvy, ...,V such
that the sum of the weights of edges joining different parig is maximized. We
assume without loss of generality tiais a complete graph (missing edges can be
added with a corresponding weight of zero).

From a semidefinite perspective, the miagut problem can be formulated as:

6 Anjos et al.

max W”w (1)
i,jeV/i<]
stXi=1 VieVv (2)
-1 - .
xlje{mvl} Vi,jeV,i<] (3)
X =0,

whereX;; = k%ll if verticesi and j are in different partitions, ang; = 1 if they are
in the same partition. Replacing the binary constraint 68&&1— < Xj <1results
in a semidefinite relaxation. However, the constraint< 1 can be dropped since

it is enforced implicitly by the constrain®$; = 1 andX > 0. We end up with the
following SDP relaxation:

(SMKC) max wy K= DE=%)) @
i,jeVii<j k
stXi=1 VieVv (5)
X‘J'Zm Vi,jeV,i<j (6)
X=0

or, alternatively, using the Laplace mattixof the graph and rewriting the con-
straintsX;; = 1, we end up with

(SMKC) max% (L,X) @)
s.t. diagX) =e (8)
-1 . .
lezm V|,]€V,|<J (9)
X>0

with e being the vector of all ones of lengi¥i|. Note that if we fixk = 2 in (SMkC),
we obtain the SDP relaxation used for max-cut by Goemans alidMéon [25].

The relaxation (SMC) was first used by Frieze and Jerrum [23]; it is the basis of
the SBC algorithm of Ghaddar et al. [24]. In that algorithhe SDP relaxation was
further tightened by adding valid inequalities. The twodgmf valid inequalities
used in SBC are the triangle and the clique inequalities tiitwegle inequalities are
based on the observation that if any two nodasd j are in the same patrtition, and
and another nodeare in the same partition, then also nodasdk necessarily have
to be in the same partition. For the SDP formulation, tb‘é‘jﬂtriangle inequalities
have the form:

Xij +Xjh —Xin < 1, (10)

k-way Graph Partitioning 7
wherei, j, andh e V. The (k‘\ﬁl) cligue inequalities ensure that for every subset of
k+ 1 nodes, at least two of the nodes must belong to the samé&qoarti

Xij > *g VYQCV where|Q| =k+ 1.

i,jeQ,i<]

Together with the constraints (10), this implies that themeat mosk partitions.

3 Proposed Exact Algorithm

We use a branch-and-bound framework to solve the kaewt problem to global
optimality. To set up the framework, the following threeuiss must be addressed:

e how to obtain upper bounds;
e how to obtain lower bounds, i.e., high-quality cuts; and
e how to branch.

The computation of the upper bounds is the subject of Se8tibrComputing lower

bounds is discussed in Section 3.2, and the question hovatwbris addressed in
Section 3.3. Algorithm 1 gives the steps as they are exeaittedch node of the
branch-and-bound tree.

3.1 Computing Upper Bounds

It is well known that the bounds obtained by the LP relaxatibthe ILP formu-
lation are often weaker than the bounds obtained using the @Iaxation (see
e.g. [20, 24]). However, their computation is usually tinemsuming. In this work,
we focus on an approach that maintains the strength of thgabns using a fast
approximation procedure to speed up computing times.

To this end, we make use of the SDP relaxation kEtightened by facets of
the partition polytope. Specifically we use triangle andudi inequalities. Solving
the resulting relaxation is not trivial because the numbieénequalities (for large
graphs) is too large and the SDP problem becomes intractabiaterior point
methods. Thus we need an alternative machinery to obtasnbibiind, namely a
dynamic version of the bundle method.

3.1.1 Bundle Methods
The bundle method was first proposed by Lemarechal [37], atet bn further

investigated and refined by several authors, e.g., [33,80]thas been developed
for finding the approximate minimizer of a non-smooth confuexction f(y) over

8 Anjos et al.

y € R". In order to apply the bundle method it is necessary to betabdbtain for
any giveny the function valuef (y) and a subgradierg € 9 f(y). We assume that
an oracle is available to return these values (see SectioB fair the specifics of
the oracle that we use). This information is collected fdfedent ys in a so-called
“bundle” and used to construct a minorizing cutting planejm(f of f.

To find a new value of, the displacement from the current pojnis penalized
by adding a term proportional ty — y|| to the cutting plane modei. Thus, the
bundle algorithm requires minimizing

)+ 5 Iy =7 a1)

with o being some suitably chosen weight. Solving this problenoigedy solving
a sequence of convex quadratic problems of “small” dimemsie. dimension equal
to the size of the bundle. The minimizer gives a new trial pgiior which the oracle
supplies the function value and a subgradient. This newnmdtion is added to the
bundle and used to improve the cutting plane model. Then th@eaprocess is
repeated until the subgradient at the current point is seiffity close to zero.

The bundle method as a tool for solving SDP problems hasdirbaen used
by Poljak and Rendl [47] for solving the basic SDP relaxafi@nmax-cut. Later
on, the spectral bundle method has been introduced [29/12726] a variant of
the spectral bundle method is developed that allows addidglaleting of cutting
planes on the fly, and convergence of this method is proved.

Here we follow the concept of Fischer et al. [22]. Their idsaa apply the
bundle method to the partial Lagrangian dual function,igkirt the sense that only
some of the constraints are dualized and lifted into theativje function by using
Lagrangian multipliers, whereas constraints that are idensd to be “easy” are
handled directly inside the oracle. In other words, an @raall amounts in solving
a semidefinite program having only “easy” constraints.

In contrast to interior point methods, bundle methods apmalke of solving
semidefinite programs with a few thousand constraints. Tioe pne pays for this
is in the accuracy of the solution. However, the results R flemonstrate that the
bundle algorithm often returns a reasonably accurate appeation.

3.1.2 Conic Bundle

Our aim is to solve the semidefinite program

(SMKCstrengthenel max (kz_kl) (L,X) (12)
s.t. diagX) =e (13)
o (X)<b (14)

X=0

k-way Graph Partitioning 9

where we collect in (X) < ball the bound constraints, i.e; > k%ll, Vi,jeV,i<
i, the set of triangle-inequalities and the set of cliquegiradities. Dualizing all the
inequality constraints, we obtain the partial Lagrangian:

20¢y) =0 %) 4y (b ()

2k
Ty <("2‘k”L—M(v>,x>,

and the dual functional reads

- L 15
D= o206 "
k—1)
v x>o,ma%()§<)e< 2k), >

The number of inequality constraints is too large to handeneafter they are du-
alized. Our approach is to include all the bound constraarig to add only those
inequalities that are active at the optimum. Since thisrmgtion is not known at
the beginning, the choice of triangle- and clique-inedigdiis updated in the course
of the algorithm, as described below in Section 3.1.4.

The function (15) is then minimized ov&¥. ; using the bundle method. We use
the Conic Bundle software of Helmberg [2]. This implemeiotatof the bundle
method supports the minimization of the function arisimgpira Lagrangian dual,
as in our case, i.e., it allows to generate primal solutiGusthermore it offers the
possibility of adding and removing constraints in the ceuo$ the algorithm, as
needed for our purposes.

3.1.3 Oracle
As already mentioned, in each bundle iteration an oraclalied to compute the

function value and a subgradient at the curnenthe function evaluation amounts
to solving the SDP problem

(SMCoasid max<“‘2_kl)L—M<v>,x>
stXj=1 VieV
X >=0.

The optimal solutiorX of this SDP is then used to compute the function value

f(y)=b"y+ <(k2_k1)L—%T(v),>~<>

and a subgradient

10 Anjos et al.

a(y) =b—(X).

Note that the cost matrix depends pand therefore changes at each iteration. The
feasible set of (SMggsid is the so-called elliptope, which has been well studied,
see e.g. [36, 35]. The problem (SMGiJ can thus be solved efficiently by interior
point methods, even for large dimension. We implementegtimeal-dual interior
point method proposed in [30].

After branching, we have to add equality constraints of thenfX;; = k%ll to
(SMGpasio, as explained in Section 3.3 below. Since the number o&thesstraints
is small, we can still use an interior point method to solve $DP problem. How-
ever, we may end up with a problem having no interior, for eglenif we have
ak-clique for which all the edge variable§; = k%ll If this happens, we solve the
SDP problem using CSDP [11] since its infeasible interidnpalgorithm runs well
in this situation.

3.1.4 Adding Valid Inequalities

Once the SDP relaxation (@) is solved, one can look for violated inequalities
and add them to the relaxation, hence improving the uppendhotiriangle and
cligue inequalities are added at each iteration of the luattjorithm and non-
binding inequalities are detected and removed. Lookingvfolated triangle in-
equalities by complete enumeration is not computatioretlyensive. We describe
in Section 4.1 how we manage the search and addition of elsiangle inequali-
ties.

On the other hand, exact separation of clique inequalisi@nis” 2?-hard prob-
lem, and complete enumeration becomes intractable alfeadynall values ok.
Therefore, we use a separation heuristic that generatgsatfites that are promis-
ing. It does not necessarily determine a violated inequalitenever one exists,
however the algorithm is fast and yields good bounds.

The clique inequalities that are binding at optimality usuaover the whole
graph, and each vertex in the graph is contained in sevdfatetit clique inequali-
ties. The separation heuristic is designed to have a sibelaaviour. For each vertex
v in the graph, the algorithm grows a clique of skz¢ 1 containingv. Vertices are
added to the cliques in a greedy fashion. In each iteratiorerex is added to a
clique of size smaller thak+ 1 that contributes the smallest amount to the left-
hand side of the corresponding clique inequality. The Is¢iaris described in detail
in [24]. For a graph witm vertices, this procedure generateslique inequalities.
Violated ones are added to the problem formulation.

k-way Graph Partitioning 11

3.2 Lower Bound Heuristic

Using the conic bundle we can generate approximate prinhaigios in the course
of the minimization algorithm. We use a heuristic methoddmpute a feasibl&-
cut from these approximate primal matric€s This way we produce lower bounds
which are useful for fathoming in the branch-and-cut tree.

There are two heuristics for extractitkgcuts from a primal solutiorX*. The
first one is the heuristic proposed by Frieze and Jerrum [B8]aalled FJ in the
following. It works as follows:

1. Compute unit vectorg,, ..., v, € R" satisfyingv v; = Xjj wherei, j €V.

2. Randomly generatk vectorsri,...,rx € R" with their kn components drawn
from independent and identically distributed random \@da with a standard
normal distribution with mean 0 and variance 1.

3. PartitionV into % = {V4,...,Vk} according to

Vi={i:vi-rj>vi-ry, forj#j}for1<j<k

The second heuristic is called ICH. It was proposed by Ghaetal. [24] and
used in their SBC algorithm. ICH works by aggregating infation fromX* cor-
responding to subgraphs G Specifically, ICH sums th&;j values on the edges
between each of thé])) subsets ok vertices, then sorts the resulting list of val-
ues, and places a subsetloVertices all in the same partition (or all in different
partitions) when the sum is one of the largest values (or drikeosmallest). The
intuition behind this approach is that aggregated inforomais more reliable than
single elements of data.

The implementation of the lower bound computation is degctin Section 4.2
below.

3.3 Branching

The final ingredient of a branch-and-bound algorithm is howttbdivide the set of
feasible solutions. It is well known that part of the succefsa branch-and-bound
algorithm depends on the choice of the branching varizple

3.3.1 Branching Rules

We use the information in the solutioti’ of the SDP relaxation of the current node
to choose a branching varial¥§ . We adapt the rules R1-R4 of [28] for max-cut in
order to derive different choices for branching variables.

There are two important differences with respect to the mxease in [28]
that we must address. First, while for max-cut the entrieX‘irare all in the in-

12 Anjos et al.

terval[—1,1], the SDP relaxation (SkC) restricts the entries iK* to the interval
[—kfll, 1]. Second, since we dualize the bound constraf{jts- —kfll, some values
of Xjj may lie outside this interval. We considered different waydeal with these
differences.

Rules R1 and R3 are adapted most easily. Rule R1 chooses tst tiecided”
variable, i.e., we simply branch on the edgehat is closest t(}kfll orto 1. By
choosing an edge that seems to be already decided, the hibja¢ fier the opposite
decision the node will be fathomed quickly. This results deap but narrow branch-
and-bound tree.

Rule R3 branches on the variable that is “least decided’,we branch on the
edgeij for which X;j is closest to the middle of the intenvat 15, 1]. If all the vari-

ables are either nearly 1 or less than or equa#&éL, we choosej corresponding
to the minimum value ok;j. By branching on the most undecided edge, we hope
that the upper bounds will improve quickly.

Rules R1 and R3 do not distinguish between the variableswaltres outside the
interval[— 11, 1] and the others.

Rules R2 and R4 are more elaborate. Instead of working witivithual entries,
these rules are based on the closeness of the rows of thexi{atto {—kfll,l}
vectors.

Rule R2 looks for the two rows and j’ that are closest to @—kfll, 1} vector.

Let mdenote the middle of the intervpmlkfll, 1]. The branching edgé, j’ is chosen

as
n

= argming, 3 ((L-m)— X —m)?
r#i,r=1

L 2
. . .
jl=argmin oy ((1—m)— X —m)~.

r#£),r=1
Rule R4 looks for rows’ and j’ such thati’ is closest to a{— 15,1} vector
wherasj’ is farthest from being feasible. Heifeand j” are chosen such that

n

= argminic, Y ((1—m)— X —m)?
r#,r=1

n
j'=argmin o, 5 (X - m)2.
r#£J,r=1

Concerning the variables that are outside the inte[erE—l, 1], we investigated
two options for each of R2 and R4. The first option is to treathust like the others
(this corresponds to our rules R2 and R4). The second optioRR2 is our rule
R2a according to which we do not consider these variablesaehing candidates
unless all the variables inside the feasible interval atekip 1 or— kfll When this
is the case, rule R2a selects the variable outside the aiteith the smallest value.

k-way Graph Partitioning 13

Similarly, rule R4a works just as R4 but first considers oraiables with values
in the interval[—ﬁ,l] as candidates. If all those variables are already equal to 1

or — 27, R4a selects the variab; with the smallest value.

3.3.2 Shrinking and SDP Relaxations Without Interior

In the case where we fiX;;; = 1 at a particular node of the branch and bound tree,
the resulting problem is equivalent to maximirout of dimensiom— 1. Hence we
can shrink the graph, i.e., we reduce the graph size by edimigthe verteX'. The
Laplacian matrix_ for the shrunken graph has entriqsl ie{1,...,n\{i'}, as
follows:

lij ifi,jAi
- Iii"Hij’ ifi£i, j=1i
DU 1y ifi=i,j£1

|i/i/—|—2|i/j/—|—|j/j/ if |,J =i

When we fixX; = k%ll we cannot shrink the graph immediately, but we could
shrink the graph as soon as there Is@ique with all the values on its edges fixed
to k%ll However, performing this shrinking would require eithg&pensive clique
searches or more than two branches at each node of the baiadebeund tree. Nei-
ther possibility is attractive, and moreover good cuts tbon the shrunken graph
cannot be extended to the original graph in a straightfaiwaay. Therefore we omit
these shrinkings, but as a consequence the SDP relaxatierstived by the oracle
may have no interior. When this happens, we solve the retangtising CSDP [11]
as mentioned earlier in Section 3.1.3.

Algorithm 1 One node of the branch-and-bound algorithm

1. Initialize y and solve (SMggsi using the oracle. Obtain a primal mati& and an upper
boundub.
2. Apply a heuristic to the curreitt* to obtain a-cut and a lower bountb.
3. Separate triangle inequalities.
4. While progress is made
a. Do adescent step, i.e., obtain improwéd
b. If number of descent stepsod 10= 0, apply a heuristic to the curreit to obtain a
k-cut and a lower bountb..
c. Iflb > ubthen stop: return and fathom node.
d. Remove triangles and cliques if non-binding.
e. Separate triangle and clique inequalities.
5. Apply a heuristic to the curreidt* to obtain ak-cut and a lower bountb.
If Ib > ubthen stop: return and fathom node.
7. Choose an edge for branching and return.

o

14 Anjos et al.

4 Implementation Details

In this section we explain how we set various parametersifooverall algorithm.

We used the Conic Bundle with its default settings. In palég the relative pre-
cision requirement for successful termination was seteatfault value of 10°.

The following subsections describe the preliminary experits we performed to
decide on a strategy for adding triangle inequalities arssidy clique inequalities,
and a heuristic for computing lower bounds. In principlerthare several different
parameter values and their combinations to test. We focaseithe instances on
complete graphs with Gaussian or bimodal distribution, alagys averaged over
five instances of the same size. In the course of our expetawen found that the
resulting settings also worked well for the other types afoips.

4.1 Adding Triangle Inequalities

In the course of the bundle iterations we have to find a goodfdgangle inequal-
ities to add. Since enumeration of all triangle inequaiiiecheap, we do this after
every descent step of the bundle algorithm. The tolerancedosidering an in-
equality as violated is &, and we build a heap of (at most) 5000 most-violated
triangle inequalities.

Then we want to addh violated inequalities. We experimented with doing this
in three different ways:

e selectingminequalities randomly among the 5000;
o selecting the] most violated ones angl randomly from the remaining;
e selecting then most violated.

It turned out that none of these options clearly stood ounftiee others, though the
second option seemed to be slightly better. Thus we chossettend strategy for
our algorithm.

As for the choice ofn, we ran experiments wittn = 500 andm = 1000. Again
there was no clear winner bot= 500 was slightly better so we chose this value.

4.2 Computing Lower Bounds

As mentioned in Section 3.2 we have two candidates for comgldwer bounds,
namely the heuristics ICH and FJ. While the computationalltegor minimum
k-partition in [24] suggest that ICH consistently providegtbrk-cuts than FJ, its
running times are much longer. For this reason, and becaeseant to solve large
instances of mak-cut, we choose to use FJ.

We experimented with how often to run the heuristic at eaateraf the branch-
and-bound tree. While calling the heuristic often is tim&siaming, not having a

k-way Graph Partitioning 15

good lower bound at hand can cause the tree to be much largetridd three
different settings for the frequency of the heuristic catieach node:

e after every descent step;
o after every 18 descent step;
e only at the beginning and at the end.

The computational results did not give strong evidencedhatof above mentioned
options is better than the others. The second setting ineprelightly over the oth-
ers, therefore this was our choice for our algorithm.

5 Computational Results

Our 32-Bit executables were run on 2.3 GHz Intel Xeon pramesswith 32 GB
memory. For each instance, we allowed a maximum CPU time didlfs. We
refer to our new algorithm as bundleBC.

5.1 The Benchmark Sets of I nstances

We used the following sets of instances for our computaticesults:

Set A To have instances with varying number of vertices, we geedrgraphs
with V| ranging from 1020,...,50. Edges are chosen randomly such that we
yield graphs with edge densities 2580%, and 100%. The weights on the edges
are randomly chosen, either following a Gaussian or a bim&dadistribution.
For each combination d¥ | and edge density, we generated 5 different instances
and we always report averages over the 5 instances with the galues ofV|,
edge density, and weight distribution.

Set B We also considered the instances from [3] for our numerigpéements.
The first two classes of instances consist of complete grdfdge weights are
either chosen ag— j| for edge(i, j), or are drawn randomly if0,1,...,9}.

A different class of instances stems from an application higsps in which
energy-minimum states of so-called Potts glasses need wetegmined. In
this application, instances are regular two- or three-dsi@nal grids with edge
weights that are either Gaussian distributed around zerod&ariance one, or
they are taken fron{+1}, where 50% of the weights are negative. These in-
stances were generated using rudy graph generator [49].

The name of an instance encodes its size followed by thellistn of the
weights and the random seed that initializes rudy. For exantpe instance
20-3.93 denotes a two-dimensional grid with Gaussian distribwteights of
size ¥ and random seed 93, whereas instance 28234 denotes a three-
dimensional grid witht1 weights of size % 3 x 4 and random seed 234.

16 Anjos et al.

Set C Finally, we take the set of instances from [31]. They gereiratances with
[V| = 30 and different number of edges namelym = 200 (sparse),n = 300
(medium), andn= 400 (dense). Furthermore they consider graphs |Vith= 50
andm = 560. Edges are chosen uniformly at random until the speaifirdber
of edges is reached. The weights on these edges are drawpeintly and
uniformly at random from{1,...,1000}. For each|V| and each edge density
three instances are generated.

The values ok were chosen ds= 3 andk = 5. For instances from [3] we tested
additionallyk = 7, and for the instances from [31] we considter {3,6,9,12} to
allow a comparison with the results in [31].

5.2 Choosing a Branching Rule

We implemented the six branching rules R1, R2, R2a, R3, Rd,Rda as they
were explained in Section 3.3 and ran experiments usinghdtances described in
Section 5.1. The different types of instances all displayralar behavior; thus we
restrict our presentation to the results on the instancbsiéhmark set A.

We use performance profiles as proposed by Dolan and @] to facilitate
the comparison of the branching rules. We set up our profge®oldows. LetP
be the set of parameters we want to compare (for example thef adl different
branching rules) and létbe the set of instances for which we ran our experiments
with the different parameter settingse P. For each instandeand parametep € P
the performance ratio for the running time is calculated as

lee

RunningTime ,
min{ RunningTime ,: p € P}’

and the performance ratio for the number of subproblemstaimdd as

subproblems,
min{# subproblems,: p€ P}’

Rsub

If an instance could not be solved for parameter settipgvithin the given time
limit of 10h = 36,000sthen we sePR'M® = PRITE andPRP\ = PRAS, for suitably

large values. (The specific choice of these does not affecr‘eﬁ;ultlng profiles.) Our
performance profiles are defined by the empirical distrdsufunction

F(pr)=P(i €l :log,(PR p) < pr)

where we use a lggscale for ease of visualization.

Unlike the observations in Sections 4.1 and 4.2, we found tthea choice of
branching rule has a strong influence on the computing timdeed the CPU times
sometimes differ by more than two orders of magnitude betwdiferent rules.
The main observation is that branching rule R2a is best, laadR?2 is usually the

k-way Graph Partitioning 17

second best. This dominance of R2a and R2 is independerg sfzé of the graph,
its density, and the value & On the other hand, R1 usually leads to the worst
performance.

The performance profiles of the CPU time for the differeniam of choosing
a branching variable are shown in Figure 1. The top figureessmt the time com-
parison for complete graphs, the bottom figures for graphis 26% and 50% edge
density. Figures on the left refer ko= 3, figures on the right tk = 5.

These results demonstrate that the impact of the diffenamtdhing strategies is
greater folk = 3 than fork = 5. In other words, fok = 5 the lines in the profile are
closer to each other. Considering complete graphs versiphgwith edge densities
25% and 50%, the performance profiles indicate that the bragsstrategy has a
greater impact on the run time for complete graphs.

1.0

0.8

0.6
L

F(logs(performance ratio))
F(log;(performance ratio))

— branching rule 1 — branching rule 1
B -~ branching rule 2 -~ branching rule 2
— branching rule 3 — branching rule 3
branching rule 4 branching rule 4
branching rule 2a branching rule 2a
branching rule 4a branching rule 4a
T T T T T T T
o 2 4 6 8 10 o 2 a4 6 8 10

0.2
0.2

0.0
0.0

log,(performance ratio) log;(performance ratio)

(a) k= 3, edge density 100% (b) k=5, edge density 100%

1.0

F(logs(performance ratio))
F(log;(performance ratio))

— branching rule 1 — branching rule 1
B -~ branching rule 2 -~ branching rule 2
— branching rule 3 — branching rule 3
branching rule 4 branching rule 4
branching rule 2a branching rule 2a
branching rule 4a branching rule 4a
T T T T T T T T
o 2 4 6 8 10 o 2 4 6 8 10

0.2
0.2

0.0
0.0

log,(performance ratio) log;(performance ratio)

(c) k=3, edge densities 25% and 50% (d) k =5, edge densities 25% and 50%

Fig. 1 Performance profiles for the 6 branching rules with respettgouinning times for complete
graphs (top profiles) and graphs with edge density 25% and 56%o(b profiles). Edge weights
follow a Gaussian or a bimodal distribution.

18 Anjos et al.

F(log(performance ratio))

= /
— branching rule 1 j/ — branching rule 1

-~ branching rule 2 -~ branching rule 2
— branching rule 3 — branching rule 3
branching rule 4 branching rule 4
branching rule 2a branching rule 2a
branching rule 4a branching rule 4a
T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

0.2
L
0.2
L

0.0
0.0

loga(performance ratio) logz (performance ratio)

(a) k=3, edge density 100% (b) k=15, edge density 100%

F(log;(performance ratio))

— branching rule 1 — branching rule 1

S -~ branching rule 2 3 -~ branching rule 2

— branching rule 3 — branching rule 3

branching rule 4 branching rule 4
branching rule 2a branching rule 2a
branching rule 4a branching rule 4a

S T T T T T 3 T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

logz(performance ratio) log,(performance ratio)

(c) k=3, edge densities 25%60% (d) k=15, edge densities 25960%

Fig. 2 Performance profiles for the 6 branching rules with respedtéanumber of nodes in the
branch-and-bound tree for complete graphs (top profiles) amohg with edge density 25% and
50% (bottom profiles). Edge weights follow a Gaussian or a bimdidadibution.

The number of nodes in the branch-and-bound tree is clealdyed to the time
needed for solving the problem. However, since in eachtiteraf the bundle algo-
rithm we obtain a valid upper bound, we may be able to stop dhet computation
after very few bundle iterations. This usually happens iédge seems to be already
decided whether it is cut or not: the opposite decision shiadd to fathoming the
node quickly. Therefore a larger number of nodes in the tramad-bound tree may
still lead to shorter overall run times if the bound compiotatan be stopped early
in many of the nodes.

We looked at the influence of the different branching striategn the number of
nodes in the branch-and-bound tree. The performance wrafiegiven in Figure 2.
We do not observe any significant differences in the perfoagrofiles showing
the CPU time (Figure 1) and those referring to the number deran the branch-

k-way Graph Partitioning 19

and-bound tree (Figure 2). Indeed, R2a is again the beginpeef and R2 is usually
second best. Concerning the different characteristicBeoptoblem, once more the
impact of the branching rule is greater fo= 3 than fork = 5, and is less evident
for instances having edge density 25% and 50%.

For all subsequent results, we fixed the branching rule toliR2ause it usually
gives the best results.

5.3 Separating Cliques

In this section we study the impact of clique separation anphrformance of
bundleBC. We first compared bundleBC with and without clicgeparation for
k = 3,5 for the benchmark set A of randomly generated graphs withing edge
density. The performance profiles comparing the CPU timetamdumber of nodes
in the branch-and-bound tree for the entire benchmark seteAesented in Fig-
ure 3.

For the bimodal instances we report detailed results in€gabland 2. (Detailed
results for the instances with Gaussian distributed wsiglith clique separation
turned on are reported in Table 4 of Section 5.5, where theyised for the com-
parison with the results from an integer LP model.) TablesdlZareport the average
CPU time (in seconds) and the average number of subproblémshs) for solv-
ing the instances to optimality. The results in each lingespond to the average
over five different instances or over those instances thaltidoe solved within the
time limit. The columns entitled nrinst report the numbeinsitances that could be
solved within the time limit.

The profiles in Figure 3 show that while run times do not diffigmificantly, the
number of subproblems is smaller when clique separatioariset! on. These re-
sults are explained by the fact that a subproblem takes tdngmlve when clique
separation is turned on than when it is turned off. Howewsesting this additional
CPU time may pay off if the bounds are sufficiently tighter éduce the number
of subproblems, and hence the running time of the algorithinis effect is par-
ticularly observable for the bimodal instances in Tablesd 2. We see there that
in most cases the number of subproblems is considerablyeéedoy using clique
separation, and the computational time may also improyeeaally for instances
with edge density 25% and 50%. Moreover, there is one instéofcype|V| = 40
with 50% edge density) that can only be solved within the tirmét when clique
separation is used.

We also compared bundleBC with and without clique separdtok = 3,5,7
for the benchmark set B from [3]. The detailed results arentepl in Table 3. These
results support the same conclusions, namely that the nuaitsibproblems is
often reduced when clique separation is turned on, and titational time fre-
quently improved. Furthermore, three of the instances cay loe solved within
the time limit if clique separation is turned on (d&tg 8_37, data2g 8 648, and
datarandom40._k=3).

20

Anjos et al.

In summary, there are several instances for which the numibsubproblems
is not improved by the use of cliques in bundleBC. Although ieuristic separa-
tion of cliques is fast, for these cases the overall runnimg tis obviously longer
than without using cliques. On the other hand, for seversthinces the separation
of cliques reduces the number of subproblems considergbtghermore, certain
instances can only be solved within the time limit if cliqueparation is used. We
conclude that it is beneficial to use clique separation irdleBC, and we use it for

all subsequent computations.

08
L

F(log;(performance ratio))
04 06
L
~—

— clique inequalities not added
. clique inequalities added

S T T T T T
0 2 4 6 8 10

log;(performance ratio)

(@) CPUtimek=3

10

0.4 06 08
L

F(log,(performance ratio)

0.2

— clique inequalities not added
clique inequalities added

0.0

T T T T T
0 2 4 6 8 10

loga(performance ratio)

(c) Number of subproblemg&,= 3

F(log;(performance ratio))

F(log;(performance ratio))

08

0.6

0.4

1.0

0.8

0.6

0.4

0.2

0.0

— clique inequalities not added
clique inequalities added

0 2 4 6 8 10

log;(performance ratio)

(b) CPUtimek=5

— clique inequalities not added
clique inequalities added

0 2 4 6 8 10

logs(performance ratio)

(d) Number of subproblemg&,= 5

Fig. 3 Performance profiles concerning clique separation with rédpewinning time (top pro-
files) and the number of subproblems (bottom profiles) for theeebgnchmark set A.

k-way Graph Partitioning 21

without cliques with cliques
V| | k ||time (sec.) # subsnrinst|time (sec) # subsnrinst
10 | 3 0 1] 5 0 1] 5
20 | 3 0.6 34 5 2.2 4.2 5
30 | 3 35.6 45 5 356 294 5
40 | 3 37734 2254 5 728.4 279.8 5
50 | 3 12,925.0 4,340.2 5 10,758.82,467.4 5
10 | 5 0.0 1.00 5 0.0 1.00 5
20 | 5 7.0 146 5 9.00 144 5
30 | 5 818.4 666.2 5 640.8 473.8 5
40 | 5 28,198.012,076.0 2 23,435.09,457.0 2

Table 1 Results for instances of benchmark set A with 100% edge densityedge weights
following a bimodal distribution.

edge density without cliques with cliques
\ in % k ||time (sec.) # subsnrinst|time (sec) # subsnrinst
10 50 3 0 1 5 0 1 5
20 25 3 0 1.4 5 0 1.4 5
20 50 3 0.8 3.0 5 0.2 22 5
30 25 3 9.4 58 5 8.8 38 5
30 50 3 262 282 5 22.4 15 5
40 25 3 169.4 60.6 5 1514 37.8 5
40 50 3 479.0 22109 5 846.4 1854 5
50 25 3 3,326.6 722.2 5 2,201.6 3524 5
50 50 3 8,851.62,630.6 5 8,277.81,519.8 5
10 50 5 0 1 5 0 1 5
20 25 5 0.2 1.4 5 0 1.4 5
20 50 5 8.8 134 5 144 194 5
30 25 5 18.4 94 5 13.2 58 5
30 50 5 513.4 368.2 5 321. 209.8 5
40 25 5 3,242.41,033.8 5 2,865.8 804.4 5
40 50 5 6,844.82,092.0 2 18,451.35,151.7 3
50 25 5 4270 470 1 1,480.0 1850 1
50 50 5 - - 0 - - 0

Table 2 Results for instances of benchmark set A with varying edge de(2586 and 50%) and
edge weights following a bimodal distribution.

5.4 Comparison with SBC

In this section we present some comparisons of the perfarenahbundleBC with

that of SBC [24]. For this purpose we use the results in Tablé8re we solved
the instances of benchmark set B to optimality koe 3, k =5, andk = 7 using

bundleBC. In contrast to SBC, we now solve the SDP-relaratapproximately in
a shorter time using a bundle method. It is therefore interg@$o compare SBC and
bundleBC in terms of the quality of the bounds as well as thel Ges necessary
to compute them. We use the percentage gap calculated sjibctto the value of

22 Anjos et al.

without cliques with cliques
k=3 k= k=7 k=3 k=5 k=7

instance cpu | #subg cpu | #subg cpu |#subs| cpu | #subg cpu | #subg cpu | #subg
data2g.3.93 0 11 0 25 1| 45 0 11 0 25 0 43
data2g 4.164 0 3 5| 601 1 7 1 21 16| 359 18| 1,059
data2g 525 2 7 17| 29 3 3 6 47 38 57 8 7
data2g 6.366 19 27 6 5 191 81 6 45 24 13 37 11]
data2g 6.66 25 15| 245 77 87 35 30 21 77 23 72 21
data2g 6.701 7 17 6 3 5 3 9 47 21 13 6 3
data2g 7.1034 13 3| 388 85| 833 243 33 7| 186 39| 177 23
data2g 7491 6 3|22,66117,339 - - 5 3| 5,724 3,623 - -
data2g.7-77 27 7| 127 29| 567 91 44 17| 193] 29 52 11
data2g 8.37 792 47| 1,979 261 - - 111 9| 2,355 231{30,370 6,703
data2g 8648 381 29| 141 7 - —|| 104 5| 3,035 389 169 9
data2g 888 28 7| 2,594 253 393 33 39 7 89 7| 1,439 113
data2g.9.819 214 9| 1,128 27|12,874 627|| 380 17| 1,106 39| 150 5
data2g 9.9211 1,768 75| 523 13| 2,418 65| 169 5| 2246 51{11,607 691
data2g.10.1001 106 5 - -] - - 182 7 - - - -
data2g.10.824 104 5 - —| - - 201 11 - - -
data2pm4.44 0 1 1 0 0 1 0 1 0 1 0 1
data2pm5.55 0 1 0 1 0 1 0 1 0 1 0 1
data2pm 6_66 16 5 10, 3 7 1 11 3 11 3 11 3
data2pm.7.777 1 1| 115 17 93 13 0 1| 266 29 56 7
data2pm 8_888 254 21| 493 21 309 11)| 116 7| 245 11| 303 13|
data2pm.9.999 576 21| 7,215 337 3,369 127|| 789 29| 2,507 51| 963 23
data3g.234234 0 3 28 47 4 5 0 3 6 7 1 3
data3g.244 244 16 15 11 7 9 7 20 11 19| 17 45 43
data3g.333.333 1 5 10| 7 21| 25 0 3 26 21 13 11]
data3g 334334 23 27 84 27 51 9 16 19 40| 13 36 11]
data3g.344.344 4 13| 456 119 66 5 4 13 48 5 89 7
data3g.444444 198 7| 979 37| 1,674 81| 222 11| 1,548 73| 868 29
data3pm.234.234 0 1 0 1 0 1 0 1 0 1 0 1
data3pm.244.244 3 1 6 1 29 7 3 1 6 1 12 7
data3pm.333.333 3 7 0 1 0 1 0 3 0 1 0 1
data3pm.334.334 39 13| 156 19 81 9 8 3| 141 35 91 27
data3pm444.444 (/11,094 887|11,959 341/11,315 303||23,667 875/12,95 429 9,843 423
data3pm.344.344 160 21| 1,618 205/ 1,240 191 102 13| 2,269 349 2,493 413
data3pm.345.345 162 11| 3,787 303 576 41 625 53| 909 39| 724 57
datacliqgue.20 0 1 0 1 3 21 0 1 0 1 1 9
dataclique-30 0 1 4 7 15| 41 0 1 3 7 5 15
dataclique-40 1 3 20| 13 3 5 1 3 6 5 13 17
dataclique.50 9 9 4 3 44 27 2 3 17 9 76 45
dataclique.60 3 3 7 3 91| 33 4 3 9 3 79 29
dataclique-70 36 11 17 3| 1520 31 20 7 78 13| 276 53
datarandom20.-k=3 0 11 1 1 9| 51 0 3 0 1 13 67,
datarandom30.k=2 39| 275 614 3,231 3401,111 32| 217| 588 2,673 269 825
datarandom30.k=3 32| 317 1,009 5,671 9443,339 10 73| 932 3,991 1,104 3,327
datarandom40.k=2 255 1,493 - —| 2,8895,747| 130 521 - —| 4,994 9,653
datarandom40_k=3 29| 145 9,05723,877 - - 32| 137 7,92518,24332,16457,489
datarandom50.k=2|| 2,606 8,267 - - - —|| 5,24814,337 - - - -
datarandom50.k=3|| 5,24814,337 — — - —|| 3,96310,741 - — - —

Table 3 Number of subproblems and running times for solving the instaniceer@hmark set B
to optimality using bundleBC fok = 3, k = 5, andk = 7. Instances that could not be solved to
optimality within the time limit are indicated by -.

k-way Graph Partitioning 23
the best known primal solution prim as the ratio

bound at root- prim
prim '

gap=

We first comment on the quality of the bounds and the runninggiof bundleBC
at the root node only, i.e., before any branching is done.rébenode bounds for
SBC are typically zero or close to zero for two- and threeatisional grids so
that branching rarely takes place [24]. However, their cotation can take very
long. For example, it took SBC more than ten hours to reachpaofid % at the
root node for an instance with= 3 on a 18 grid with Gaussian distributed edge
weights [24, Table 5], while bundleBC solved the instancesf[3] defined on 19
grids to optimality within at most 4 minutes and needing amiyto 11 subproblems
(see Table 3). Hence, while the bounds computed by bundleBQvaaker than
those determined by SBC, their calculation is much faster this makes them
more useful within a branch-and-bound procedure.

Turning to the solution of instances to optimality, we réf@m [24] that SBC
almost never has to branch. However, several instanced ootilbe solved within
24 hours of computation time. While it is not surprising thah8leBC branches
more often than SBC, bundleBC gains from the fact that thebmurraf subproblems
is often in the order of several hundreds only for this setnstances. Because
computing one subproblem is much faster for bundleBC thaSRC for smallk,
bundleBC achieves a drastic speedup over SBC. On the othel tiee instances
get more difficult for bundleBC ak increases, unlike what we observed for SBC
in [24].

5.5 Comparison with [31]

Kaibel et al. [31] report experimental results on magut instances for an LP-
based branch-and-cut algorithm using orbitopal fixing (Bfrthermore, some of
the instances in [3] were addressed in the more recent p&ggrip particular,
several of the Gaussian distributed instances defined arfaregrids were solved
using OF in very short computing times.

We evaluated bundleBC (with clique separation active) antibnchmark set
C of instances from [31]. Our results are reported in Tablehén the first three
columns indicate for each line the number of nod¥$)(the number of edgesK|)
and the value ok of the instances averaged. The subsequent two columng tepor
number of subproblems and the CPU time of bundleBC for sgltire instances
to optimality. Similarly to what was done in [31], averagesre/taken over three
instances for each row unless some of the instances coulersatived to optimality
within the time limit, in which case the number of instancesravhich the average
is taken is denoted in the last column.

24 Anjos et al.

bundleBC
V| | |E| k |[time (sec.) # subs[nrinst
30 | 200 | 3 60.6 99.0 3
30 | 300 | 3 41.0 1023 3
30 | 400 | 3 13.6 503 3
50 | 560 | 3 17,497.%10,167.0 2
30 | 200 | 6 47271 6810 3
30 | 300 | 6 324.3 558.3 3
30 | 400 | 6 627.7 1,691.0 3
50 | 560 | 6 — - 0
30 | 200 | 9 — - 0
30 | 300 | 9 1,514.7 2,610.3 3
30 | 400 | 9 1,181.3 2,554.3 3
50 | 560 | 9 - - 0
30 | 200 | 12 — - 0
30 | 300 |12 - -{ 0
30 | 400 | 12 462.q 898.3 3
50 | 560 | 12 — -{ 0

Table 4 Results for the instances of benchmark set C.

We first compare the performance of bundleBC with that regubim [31]. The
instances classified as ‘easy’ in [31] wii| = 30, |E| = 200 need almost always
zero time with the OF approach for all considered valuds whereas for bundleBC
not all of these instances are easy. In factkfer9 andk = 12, bundleBC timed out
on all three instances. On the other hand, for the instanithgW = 30, |E| = 400
that are denser and more difficult for [31], it is clear thahieBC needs fewer
subproblems than OF. Moreover, the average number of shlgons for OF are
9,864(k = 3), 159298 k = 6), 70,844(k = 9), and 2098k = 12). The fact that for
bundleBC these numbers are almost always at least one drdeagnitude lower
shows that our bounds are considerably stronger than tlevsrated by OF.

Computation times are trickier to compare because we udtatatit modern
machines from [31]. Nevertheless, it seems thatkfer 3 and the medium-sized
instances with 30 nodes our approach performs better thaagpEcially for denser
graphs. On the other hand, their performance is better fgetavalues ok as OF
can exploit symmetries well, while these instances are mifiieult for bundleBC.
Finally, we cannot solve the most difficult instances fror][Bhat can be solved
within several hours of computing time with OF.

Even though we do not have the implementation of the algoritom [31] at
hand, we implemented their integer LP model with variakjgspecifying whether
nodei is contained in partitiorp or not. This formulation is polynomially-sized
in the xjp variables. As a comparison with our approach, we solve tieger LP
problem with CPLEX 12.1 using the standard parameter ggttamd 6 cores per
job. For each job a real time limit of 10 hours was imposed. |kager values of
k, the integer LP model is not effective in practice becausthefsymmetries that
are present. However, for small valuesko$uch ask = 3 andk = 5, the speedup

k-way Graph Partitioning 25

achieved by using OF is not so significant and hence the seatdt likely more
representative of the behaviour of OF [31].

We used our benchmark set A of instances to test this modelr&ults for both
CPLEX and bundleBC on the subset of instances that have @audistributed
edge weights are reported in Tables 5 and 6 where we averagadb row over 5
instances or the number of instances that finished withitirthe limit. It turned out
that CPLEX ran out of memory even for relatively small instesy for example, for
an instance wittkk = 3 and|V| = 40, CPLEX ran out of memory after more than
8000 seconds and still had a gap of 43%. The results of CPLEXh#&instances
with bimodal edge weights have a similar outcome, as showalafes 7 and 8. This
is in marked contrast with bundleBC that solved many of thestances within a
few minutes to optimality.

CPLEX bundleBC
V] | k ||real time(sec)nrinst|real time(sed) # subsnrinst
10 | 3 0.03 5 0 1| 5
20 | 3 1796 5 42 158 5
30 | 3 8,113.31 5 724 382 5
40 | 3 - 0 375. 119.8 5
50 | 3 - 0 8228.0 1582.3 3
10 | 5 0.14 5 0.2 7.0 5
20 | 5 6,674.24 3 16.8 374 5
30 | 5 - 0 1,126.8 807.9 5
40 | 5 - 0 11,489.02,919.0 3

Table 5 Results for instances of benchmark set A with 100% edge densityedge weights
following a Gaussian distribution.

6 Conclusion

We extended the SBC algorithm of Ghaddar, Anjos and Liersniorimum k-
partition using the design principles of the successfuMgiq solver for maximum
2-cut to obtain bundleBC, a new algorithm for computing @lodptimal solutions
for maximumk-cut problems. As part of this extension, we investigatdtbaint
ways of choosing variables for branching. We also studiedrtipact of the separa-
tion of clique inequalities within this new framework andsebved that it frequently
reduces the number of subproblems considerably. The catiqual results sug-
gest that bundleBC achieves a significant speedup in cosgretd® SBC, especially
whenk = 3. A comparison with the results reported from the applaabtf the OF
technique by Kaibel, Peinhardt and Pfetsch suggests this ieir performance
is better for sparse instances and larger valuds béindleBC is superior fok = 3
and for dense instances of medium size. Solving the ILP ftation for maxk-cut
used by Kaibel, Peinhardt and Pfetsch with CPLEX clearly alestrates the advan-

26 Anjos et al.

edge density CPLEX bundleBC
V| in % k [[time (sec.)nrinst|time (sec) # subsnrinst
10 50 3 0.02 5 0.0 20.6 5
20 25 3 0.03 5 1.0 17.0 5
20 50 3 1.69 5 4.6 30.6 5
30 25 3 261 5 11.4 8.2 5
30 50 3 184.48 5 24.6 18.2 5
40 25 3 9590 5 108.§ 1478 5
40 50 3 - 0 265.0 4550 5
50 25 3 9,763.68 3 2,833.4 57742 5
50 50 3 - 0 10,237.617,323.8 5
10 50 5 0.03 5 0.4 80.2 5
20 25 5 0.08 5 16.0 17449 5
20 50 5 7.07 5 4.4 94 5
30 25 5 8594 5 50.6 286 5
30 50 5 - 0 124.2 67.8 5
40 25 5 - 0 1,609.2 1,672.2 5
40 50 5 -1 0 2,081.4 606.4 5
50 25 5 - 0 3,780.724,272.3 3
50 50 5 - 0 - - O

Table 6 Results for instances of benchmark set A with varying edge de(2886 and 50%) and
edge weights following a Gaussian distribution.

CPLEX
V| | k ||time (sec.)nrinst
10 | 3 0.03 5
20 | 3 88.7 5
30 | 3 6,053.06 5
40 | 3 -1 O
50 | 3 -1 0
10 | 5 0.2 5
20 | 5 -1 0
30 | 5 - 0
40 | 5 -1 O

Table 7 Results for instances of benchmark set A with 100% edge densityedgd weights
following a bimodal distribution. The results for solving thesstances with bundleBC are given
in Table 1.

tage of our semidefinite approach. The strength of bundleB&specially evident
on dense instances and small valuek.of

Acknowledgements We are grateful to Vera Schmitz for providing us with her implatagon

of a generic branch-and-bound procedure and to Andreas Szénfar help with various aspects
of the implementation. We thank Brian Borchers and ChristoplmHerg for support with csdp
and conic bundle respectively. We thank an anonymous referegefailed criticism that helped
improve the paper. We also thank Matthias Peinhardt for piogids with data for the instances
from [31]. Finally we acknowledge the financial support of German Science Foundation under
contract Li 1675/1 and of the Natural Sciences and EngingdResearch Council of Canada.

k-way Graph Partitioning 27

edge density CPLEX
V| in % k |[time (sec.)nrinst
10 50 3 0.02 5
20 25 3 0.05 5
20 50 3 240 5
30 25 3 448 5
30 50 3 1,215.32 5
40 25 3 1,504.37 5
40 50 3 - 0
50 25 3 29,8174 1
50 50 3 - 0
10 50 5 0.04 5
20 25 5 0.27 5
20 50 5 405.58 5
30 25 5 1624.80 4
30 50 5 4459.24 1
40 25 5 5299.18 3
40 50 5 - 0
50 25 5 - 0
50 50 5 - 0

Table 8 Results for instances of benchmark set A with varying edge de(@&% and 50%)
and edge weights following a bimodal distribution. The restdtssolving these instances with
bundleBC are given in Table 2.

References

10.

11.

. BigMac solver. http://bigmac.uni-klu.ac,aetrieved 07/06/2012.
. Conic Bundle Library. http://www-user.tu-chemnitz.dbeélmberg/ConicBundlg/retrieved

28/10/2011.

. maxk-cut instances, from http://www.eng.uwaterloo-ebghaddar/Publications.htm

, retrieved 10/03/2011.

. Spin-glass server. http://www.informatik.uni-koeln.dgdisnger/research/sgs/index.htmé-

trieved 07/06/2012.

. M.F. Anjos, F. Liers, G. Pardella, and A. Schmutzer. Engingdoranch-and-cut algorithms

for the equicut problem. Cahier du GERAD G-2012-15, GERAD nwleal, QC, Canada,
2012. To appear in the Fields Institute Communications on Dis€eometry and Optimiza-
tion.

. M.F. Anjos and H. Wolkowicz. Geometry of semidefinite max-alaxations via matrix

ranks.J. Comb. Optim.6(3):237-270, 2002.

. M.F. Anjos and H. Wolkowicz. Strengthened semidefinitexati@ns via a second lifting for

the max-cut problemDiscrete Appl. Math.119(1-2):79-106, 2002.

. M. Armbruster, M. lgenschuh, C. Helmberg, and A. Martin. LP and SDP branch-ahd-c

algorithms for the minimum graph bisection problem: a computaticomparison. Math.
Program. Comput.4(3):275-306, 2012.

. F. Barahona, M. Gitschel, M. dinger, and G. Reinelt. An application of combinatorial op-

timization to statistical physics and circuit layout desi@perations Resear¢t36:493-513,

1988.

F. Barahona and A.R. Mahjoub. On the cut polytopthematical Programming36:157—

173, 1986.

B. Borchers. CSDP, a C library for semidefinite programmi@gptimization Methods and
Software 11/12(1-4):613-623, 1999.

28

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Anjos et al.

E. Boros and P. Hammer. The max-cut problem and quadratio@ihization: Polyhedral
aspects, relaxations and boundsinals of Operations Resear@38:151-180, 1991.

L. Brunetta, M. Conforti, and G. Rinaldi. A Branch-And#Algorithm for the Equicut Prob-
lem. Math. Program. B78(2):243-263, 1997.

S. Chopra and M. R. Rao. The partition probleltathematical Programmings9:87-115,
1993.

S. Chopra and M. R. Rao. Facets of khgartition problem.Discrete Applied Mathematics
61:27-48, 1995.

E. de Klerk, D.V. Pasechnik, and J.P. Warners. On approxigrafgh colouring and Mak-
Cut algorithms based on thH&-function. Journal of Combinatorial Optimizatiqr8(3):267—
294, 2004.

M. Deza, M. Gotschel, and M. Laurent. Complete descriptions of small multiolittppes.
Applied Geometry and Discrete Mathematics - The Victor Klestdedrift 4:205-220, 1991.
M. Deza and M. LaurentGeometry of Cuts and MetricsAlgorithms and Combinatorics,
Springer Verlag, 1997.

E.D. Dolan and J.J. Mér Benchmarking optimization software with performance prsfile
Math. Program, 91(2, Ser. A):201-213, 2002.

A. Eisenbitter. The semidefinite relaxation of thepartition polytope is strongProceed-
ings of the 9th International IPCO Conference on Integer Pangming and Combinatorial
Optimization 2337:273-290, 2002.

M. EIf, M. Jinger, and G. Rinaldi. Minimizing breaks by maximizing cut®perations
Research Letter81(5):343-349, 2003.

I. Fischer, G. Gruber, F. Rendl, and R. Sotirov. Computati@xperience with a bundle
approach for semidefinite cutting plane relaxations of Max-4a equipartitionMath. Pro-
gramming 105(2-3, Ser. B):451-469, 2006.

A. Frieze and M. Jerrum. Improved approximation algorithmsrfax k-cut and max bisec-
tion. Algorithmica 18:67-81, 1997.

B. Ghaddar, M.F. Anjos, and F. Liers. A branch-and-cutrilgm based on semidefinite pro-
gramming for the minimurk-partition problemAnnals of Operations Researct88(1):155—
174, 2011.

M. Goemans and D. Williamson. Ne%vapproximation algorithms for the maximum satisfi-
ability problem.SIAM Journal of Discrete Mathematicg(4):656—666, 1994,

C. Helmberg. A cutting plane algorithm for large scale sefiride relaxations. InThe
sharpest cutMPS/SIAM Ser. Optim., pages 233-256. SIAM, Philadelphis, 7004.

C. Helmberg and K. C. Kiwiel. A spectral bundle method withids.Math. Program, 93(2,
Ser. A):173-194, 2002.

C. Helmberg and F. Rendl. Solving quadratic (0,1)-pnoisidy semidefinite programs and
cutting planesMathematical Programming2(3, Series A):291-315, 1998.

C. Helmberg and F. Rendl. A spectral bundle method for semitdefirogramming SIAM J.
Optim, 10(3):673—-696 (electronic), 2000.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. ierior-point method for
semidefinite programmingsIAM J. Optim, 6(2):342-361, 1996.

V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fgirin Matteo Fischetti and David
Williamson, editors)nteger Programming and Combinatorial Optimizatjomlume 4513 of
Lecture Notes in Computer Scienpages 74-88. Springer Berlin / Heidelberg, 2007.

V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fiiliscrete Optim.8(4):595-610,
2011.

K. C. Kiwiel. Methods of descent for nondifferentiable optimizatisiume 1133 ot ecture
Notes in MathematicsSpringer-Verlag, Berlin, 1985.

M. Laurent. Semidefinite relaxations for max-cut. Tlhe sharpest cutMPS/SIAM Ser.
Optim., pages 257-290. SIAM, Philadelphia, PA, 2004.

M. Laurent and S. Poljak. On a positive semidefinite relaradif the cut polytopeLinear
Algebra Appl, 223/224:439-461, 1995.

M. Laurent and S. Poljak. On the facial structure of the ebrrelation matricesSIAM J.
Matrix Anal. Appl, 17(3):530-547, 1996.

k-way Graph Partitioning 29

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

C. Lemagchal. Bundle methods in nonsmooth optimization. Nensmooth optimization
(Proc. IASA Workshop, Laxenburg, 197v9lume 3 ofllASA Proc. Ser.pages 79-102. Perg-
amon, Oxford, 1978.

C. Lemagchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle¢hnds. Math.
Programming 69(1, Ser. B):111-147, 1995.

F. Liers, M. dinger, G. Reinelt, and G. RinaldiComputing Exact Ground States of Hard
Ising Spin Glass Problems by Branch-and-Cpages 47—68. New Optimization Algorithms
in Physics, Wiley, 2004.

F. Liers, J. Lukic, E. Marinari, A. Pelissetto, and E. Vicatero-temperature behavior of the
random-anisotropy model in the strong-anisotropy linkihysical Review Br6(17):174423,
2007.

A. Lisser and F. Rendl. Telecommunication clustering usireglimnd semidefinite program-
ming. Mathematical Programmindg5:91-101, 2003.

F. Margot. Pruning by isomorphism in branch-and-8&th. Program, 94(1, Ser. A):71-90,
2002.

F. Margot. Exploiting orbits in symmetric ILRMath. Program, 98(1-3, Ser. B):3-21, 2003.
Integer programming (Pittsburgh, PA, 2002).

J. Mitchell. Branch-and-cut for theway equipartition problem. Technical report, Department
of Mathematical Sciences, Rensselaer Polytechnic Institu€d,.20

J. E. Mitchell. Realignment in the National Football LeagDid they do it right? Naval
Research Logistic$0(7):683—701, 2003.

L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wedg. Computational approaches to
max-cut. InHandbook on semidefinite, conic and polynomial optimizatimiume 166 of
Internat. Ser. Oper. Res. Management Smages 821-847. Springer, New York, 2012.

S. Poljak and F. Rendl. Solving the max-cut problem usiggreialues.

Discrete Appl. Math.62(1-3):249-278, 1995. Partitioning and decompositioroimiginato-
rial optimization.

F. Rendl, G. Rinaldi, and A. Wiegele. Solving max-cut ttirplity by intersecting semidef-
inite and polyhedral relaxation®athematical Programmingl21:307-335, 2010.

G. Rinaldi.Rudy. http://www-user.tu-chemnitz.déelmberg/rudy.tar.gz

, retrieved 07/04/2010.

H. Schramm and J. Zowe. A version of the bundle idea for minitgizi nonsmooth func-
tion: conceptual idea, convergence analysis, numerical seSIAM J. Optim.2(1):121-152,
1992.

