
c⃝ 2012 IEEE. Personal use of this ma-
terial is permitted. Permission from IEEE
must be obtained for all other uses, in any
current or future media, including reprint-
ing/republishing this material for advertising
or promotional purposes, creating new col-
lective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted
component of this work in other works.



Sentiment polarity classification using statistical data compression models

Dominique Ziegelmayer and Rainer Schrader
Institut für Informatik
Universiẗat zu K̈oln

Weyertal 80, 50931 K̈oln
{ziegelmayer, schrader}@zpr.uni-koeln.de

Abstract

With growing availability and popularity of user
generated content, the discipline of sentiment analysis
has come to the attention of many researchers. Existing
work has mainly focused on either knowledge based
methods or standard machine learning techniques. In
this paper we investigate sentiment polarity classifi-
cation based on adaptive statistical data compression
models. We evaluate the classification performance
of the lossless compression algorithm Prediction by
Partial Matching (PPM) as well as compression based
measures using PPM-like character n-gram frequency
statistics. Comprehensive experiments on three corpora
show that compression based methods are efficient,
easy to apply and can compete with the accuracy of so-
phisticated classifiers such as support vector machines.

1. Introduction

Today, a huge amount of information is publicly
available on the world wide web. Especially popular
e-commerce and review sites offer a high number
of evaluative, user generated texts. They have thus
become a valuable source of opinions on various
objects such as products, services and institutions. With
growing availability of opinionated texts, the discipline
of sentiment analysis has come to the attention of many
researchers and organizations.
Most of the existing work on sentiment analysis fo-
cuses on document level or sentence level sentiment
polarity classification, i.e. the task of determining the
opinion orientation (e.g. positive or negative) of a
document or a sentence. Early solutions to this problem
mainly employed knowledge based methods such as
linguistic heuristics or predefined seed words [1], [2].
With the widespread availability of opinionated online
documents in forums, blogs, news and review sites,

data-driven-approaches had a significant upturn. Espe-
cially the increase in labeled sentiment relevant data
opened the door for both supervised and unsupervised
learning algorithms. With a few exceptions (e.g. sentic
computing [3]), most of the active research can be
seen as the application of standard text categorization
techniques [4]. For a survey on the developments
in sentiment analysis as well as state-of-the-art ap-
proaches, see [5]–[7].
We investigate a novel approach that has proven suc-
cessful in conventional text classification tasks such
as authorship attribution or topic categorization. We
employ statistical data compression as a non-standard
method to sentiment polarity classification. Using com-
pression in classical text categorization was discovered
independently by researchers and has been applied to
a variety of problems [8]–[13]. One appealing point
about compression based text classification is that it
requires virtually no preprocessing and has the poten-
tial to automatically capture non-word or metaword
features (i.e. features spanning more than one word).
In this paper, we evaluate the classification perfor-
mance of the lossless compression algorithm Predic-
tion by Partial Matching (PPM) as well as compression
based measures using PPM-like frequency statistics
over charactern-grams (i.e. character sequences of a
fixed lengthn). Comprehensive experiments on dif-
ferent data sets show that compression based methods
are efficient, easy to apply and can compete with the
accuracy of sophisticated classifiers such as support
vector machines (SVM). Moreover, since the com-
pression models are based on characters rather than
on words, our methods can cope better with spelling
mistakes and informal language.

1.1. Classification using compression models

Statistical compression algorithms build up models
consisting of extensive statistics about the documents



processed. Hence, they can easily be applied to text
classification tasks. For this, compression models for
each class are created and subsequently used to eval-
uate the target document. In order to determine the
affiliation of a target documentd to some modelM of
classC, we are basically interested in the cross entropy
[14] between the optimal probability distributionp
for the source of documentd and the probability
distribution q given by the compression model used
for evaluation.
The cross entropyH(p, q) determines the average
number of bits per symbol required to identify an
event from a set of possibilities if a coding scheme
is used based on a given probability distributionq,
rather than the true distributionp. Cross entropy for
two probability distributionsp and q over the same
probability space is defined as:

H(p, q) := Ep[− log q] = H(p) +DKL(p∥q)

whereH(p) is the entropy ofp, and DKL(p∥q) is the
Kullback-Leibler divergence ofq from p [14].
The exact cross entropy is hard to compute, since
it would require knowing the source distributionp.
Therefore, in practice, it is mostly estimated using
criteria that sufficiently correlate with the cross entropy
such as the joint compression ratio or the length of
resulting compression models [9], [13], [15].

2. Approach

Taking the success of compression based text classi-
fication as a motivation, we have conducted extensive
experiments on three different corpora, containing doc-
uments from the movie database IMDb, the popular e-
commerce site Amazon and the microblogging service
Twitter.

2.1. Corpus creation and analysis

We have performed a detailed analysis of all corpora
employed in our experiments and found that they vary
greatly in size, complexity and language employed.
Besides the average number of characters per text we
evaluated the average number of words per text, the
average number of words per sentence and the number
of unique words employed. Although we are aware
that this is not complete, we defined all words to be
separated by blanks and all sentences to end with a
period, a question mark or an exclamation mark in our
analysis.

2.1.1. IMDb corpus. For our experiments we
employed the popular polarity dataset
v2.0 extracted by Pang and Lee [16] from
the Internet Movie Database (IMDb) archive of
rec.arts.movies.reviews newsgroup. To
avoid domination of the corpus by a small number of
profilic reviewers, Pang et al. imposed a limit of less
than 20 reviews per author per sentiment category.
This resulted in a set of 2,000 reviews written by 312
authors with a total of length of 7,786,004 characters.
The IMDb corpus exhibits an average text length
of 3,893 characters (755 words) ranging from a
minimum of 91 characters to a maximum of 14,957
characters. Moreover, with 22 words per sentence and
48,205 distinct words the language employed seems
to be quite complex. This confirms the assessment of
Turney [17], who found the movie review domain to
be one of the most challenging for sentiment polarity
classification.

2.1.2. Amazon corpus.Using a custom-build web-
spider, we have extracted a high number of product
reviews from the websiteamazon.com, mainly from
the category electronics. From those, we randomly
extracted 1,000 positive sentiment (5-star) and 1,000
negative sentiment (1-star) documents with the con-
straint that the whole corpus may not contain more
than 20 reviews per author. This resulted in a set of
2,000 reviews with a total length of 682,124 characters
written by 1,999 different authors. The Amazon corpus
exhibits an average text length of 341 characters (66
words) ranging from 48 to 3,001 characters. With an
average length of 13 words per sentence and 9,380
distinct words, the language employed in the Amazon
corpus seems to be less complex than the one em-
ployed in the IMDb corpus.

2.1.3. Twitter corpus. In order to evaluate our meth-
ods with short and possibly noisy data, containing
mainly informal language, we chose to use docu-
ments from the microblogging service Twitter. We
employed the free twitter data set from sanders ana-
lytics (http://www.sananalytics.com/lab/
twitter-sentiment), containing of 5,513 hand-
classified tweets. Unfortunately, only a few tweets were
labeled as positive or negative rather then irrelevant
or neutral. Hence, we extracted a maximum of 500
positive labeled and 500 negative labeled documents.
This resulted in a set of 500 positive labeled and
500 negative labeled documentss with a total length
of 97,261 characters. The Twitter corpus exhibits an
average text length of 97 characters (15 words) ranging
from 9 to 140 characters. With an average length of



8 words per sentence and 3,716 distinct words, the
language employed in the Twitter corpus seems to be
rather simple.

2.2. Cross Entropy measures

We have conducted experiments with a variety of
measures as estimates for cross entropy. These con-
sisted of the joint compression ratio of the PPM
algorithm as well as compression based measures using
PPM-like charactern-gram frequency statistics. Our
choice to employ PPM was basically motivated by
its success in other text classification tasks (e.g. [9],
[13], [15]). We have, however, performed additional
experiments using different compression algorithms
as well as off-the-shelf programs such asRAR and
ZIP that led to consistent results. Yet, due to space
limitations, we are forced to postpone any details to a
subsequent article.
In order to allow for an unbiased comparison with the
standard approach, namely a support vector machine,
we have implemented an interface, exporting data for
the svmlight [18] package. Following Pang et al.
[16], [19], we use unigram-presence features occurring
at least four times in the training text. Please note that
no parameter tuning has been performed.
Hereinafter, we denote the set of positive training doc-
uments byT+ = {d+1 , d

+
2 , ..., d

+
o }, the set of negative

training documents byT− = {d−1 , d
−
2 , ..., d

−
p } and

the set of test documents byT ? = {d?1, d
?
2, ..., d

?
q}.

The context (i.e. substring)i of order n (i.e. the
fixed context length used for the model) for an ar-
bitrary documentdj = {x1, x2, ..., xm} is defined
as ci,n := {xi−n, xi−n+1, ..., xi−1}. Finally, g(T, s)
denotes the number of repetitions of a strings in a set
of documentsT .

2.2.1. Prediction by partial matching. Prediction by
Partial Matching was first published by [20] and is
used today in popular implementations such as theRAR
compression program. Even though it was invented
almost three decades ago, PPM remains among the
best-performing lossless compression algorithms for
natural text.
The basic concept behind PPM is to predict a symbol
xi by its context ci,n = {xi−n, xi−n+1, ..., xi−1}.
For each order a probability distributionpj is used
to predict the successor symbol from its context and
is updated after a symbol has been processed. If a
symbol has not yet occurred in the model of order
i, the algorithm switches to the next lower orderi−1.
If necessary, a default model of order−1 is used
which always predicts a uniform distribution among

all possible symbols.
Please note that although we employed the PPMd im-
plementation from [21], any implementation (including
off-the-shelf such asRAR or ZIP) may be used.

2.2.2. C-measure.An interesting criteria, namely the
C-measure, was introduced by Hunnisett and Teahan
[22]. It is based on the PPM compression algorithm
but does not store lower order contexts.
In the subsequent definitions, letd?j = {x1, x2, ..., xm}
be an arbitrary test document of lengthm and n be
the order of the model. Formally, theC-measure for
d?j w.r.t. a positive (resp. a negative) model is defined
as follows:

C{+,−} :=

m
∑

i=n

a
{+,−}
i,n with

a
{+,−}
i,n :=

{

1, if g(T {+,−}, ci,n) > 0
0, otherwise

Hunnisett showed that theC-measure and the joint
compression ratio for PPM are highly correlated and
that it slightly outperforms the compression based
approach in the author attribution task [22].

2.2.3. Ck-measure. With a small modification, we
were able to keep the computational properties of
the C-measure and optimize it for sentiment polarity
classification. We define theCk-measure ford?j w.r.t.
a positive (resp. a negative) model as follows:

C
{+,−}
k :=

m
∑

i=n

a
{+,−}
i,n,k with

a+i,n,k :=

{

1, if g(T+, ci,n) > k ⋅ g(T−, ci,n)
0, otherwise

a−i,n,k :=

{

1, if g(T−, ci,n) > k ⋅ g(T+, ci,n)
0, otherwise

Moreover, we define theC1/�-measure as the special
case of theCk-measure, where� is an arbitrary small
number such that theC1/�-measure counts the presence
of contextci,n if it is exclusive to one of the training
setsT+ or T−. Finally, we define theC-measure as the
C0-measure, where contexts are counted independently
from their ratio inT+ andT−.

2.2.4. Fk-measure. To exploit the frequency infor-
mation in the training documents, we have modified
the Ck-measure further. We define theFk-measure
(frequency measure) ford?j w.r.t. a positive (resp. a
negative) model as follows:

F
{+,−}
k :=

m
∑

i=n

b
{+,−}
i,n,k with



b+i,n,k :=

⎧

⎨

⎩

g(T+, ci,n), if g(T+, ci,n) >
k ⋅ g(T−, ci,n)

0, otherwise

b−i,n,k :=

⎧

⎨

⎩

g(T−, ci,n), if g(T−, ci,n) >
k ⋅ g(T+, ci,n)

0, otherwise

Finally, we defineF1/� andF0 analogous to theCk-
measure.

2.3. Computational complexity

All compression based measures presented above
(i.e. C-, Ck- and Fk-measure) can be implemented
efficiently. Given a set of training documentsT =
T− ∪ T+ with n = ∣T ∣, our implementation requires
O(n log(n)) time andO(n) space for model creation.
Moreover, using a perfect hash function in the training
phase, an arbitrary test documentd?j with ∣d?j ∣ = m

can be classified inO(m) time.

2.4. Model creation

In order to minimize the effects of an unfortunate
split of training and test data we employed ak-
fold cross validation method to measure the average
accuracy [23]. Moreover, to ensure comparability to
the results by Pang and Lee [16], we chosek to be
ten. Hence, all corpora were divided into ten equal
sized folds, maintaining balanced class distributions.
In each pass we divide the training setT =
{d1, d2, ..., do+p} (consisting of nine folds) into two
disjoint subsets,T+ containing the positive labeled
documents (e.g. 5-Star reviews) andT− containing the
negative labeled documents (e.g. 1-Star reviews).
Please note that we do not apply any preprocessing
methods such as stemming, tagging or negation reso-
lution. The only intermediate step performed is a data
cleansing such as a removal of all HTML-tags as well
as a conversion of all characters to upper case.

2.5. Evaluation

From an information-theoretic perspective we are
interested in the cross entropy between the training
documents of each class and documents from the test
set. For compression based classification with PPM, we
basically employ an approximate minimum description
length (AMDL) procedure [11], [12]. Givenn cate-
goriesC1, C2, ..., Cn and corresponding training sets
T1, T2, ..., Tn, ADML runs the compression algorithm
on eachTi to produce a compressed fileCo(Ti). Sub-
sequently it appendsTi to each test documentd?j ∈ T ?

and runs the compression algorithm to produce com-
pressed filesCo(Ti ∪ d?j). Finally, it assignsd?j to the
categoryCi that minimizes the difference in the size
of the compressed filessi := ∣Co(Ti∪d?j)∣−∣Co(Ti)∣.
In our case we slightly modify the ADML-procedure
to derive a measure for cross entropy and postpone the
classification step. We compute a scores+j , s

−
j (joint

compression ratio) for each test documentd?j ∈ T ? and
each training setT+ andT− as follows:

s
{+,−}
j :=

∣Co(T {+,−} ∪ d?j)∣ − ∣Co(T {+,−})∣

∣d?j ∣

When using theCk- or Fk-measure, ADML is not
needed. Since the value returned is already a measure
for cross entropy it may be used without any further
modification.
Classification is usually performed by assigning the
test documents to the class whose training text maxi-
mizes cross entropy. We basically follow this approach,
but instead of an immediate classification, we first
compute a ratio between cross entropy measures of the
positive and the negative model. This allows to account
for differences in the size of positive and negative
models and to treat the ratio as a regression value to
determine not only the polarity direction but also the
polarity strength of the documents. On the downside,
however, we are forced to estimate a threshold to
convert the regression into a binary classification.
To obtain a normalized, one-dimensional value for
cross entropy, we treat the output of the measures as
well as the scores defined above equally and derive a
regression ratiorj . Let sj,+ (resp.sj,−) be the score or
the value of an arbitrary measure for cross entropy for
the test documentd?j and the positive (resp. negative)
trainings setT+ (resp.T−). The regression ratiorj
for the test documentd?j ∈ T? is defined as:

rj :=
(s+j − s−j )

(s+j + s−j )

In our training phase, we separate a small amount
of documents fromT+ (resp.T−) and compute their
regression ratio using the other documents as reduced
trainings sets. Given a uniform distribution of positive
and negative documents among this set, we found the
median to be a rather simple but good choice to derive
a threshold. In order to build maximal models (i.e. use
the maximum amount of training data available), we
subsequently add the documents to the corresponding
model. Finally, in the test phase, we classify the
documents into our sentiment classes (i.e. positive
vs. negative) by comparing their respective regression
ratios with the precomputed threshold.



Table 1. Results for the IMDb corpus

No Method Accuracy

(1) PPMd 82.35%

(2) C0-measure 83.10%

(3) C2.5-measure 84.90%

(4) F2.5-measure 85.30%

(5) SVM (pres. unigram) 86.35%

3. Results

All results reported below reflect the average ac-
curacies of a ten-fold cross validation test. Moreover,
all data contains balanced class distributions (i.e. the
same number of positive and negative texts) such that
the random-choice baseline result obviously would be
50%.

3.1. IMDb corpus

The average classification accuracies for the IMDb
corpus are shown in lines (1)-(5) of Table 1. All com-
pression based classifiers clearly surpass the random
baseline of 50% as well as the 65.83% reported early
by Turney [17]. However, they all remain below the
results reported by Pang and Lee [16] and particulary
below state-of-the art approaches (e.g. see [24]).
The PPMd algorithm performs worst with an average
accuracy of 82.35%. It is slightly outperformed by the
C0-measure exhibiting and average accurcy of 83.10%.
Several experiments with thek-measure family (i.e.
theCk-, andFk-measure) have shown that the optimal
size fork ranges between 1.5 and 2.5. Using theC2.5-
measure instead of theC0-measure leads to an increase
in the accuracy of roughly 2%. Even better results
are achieved using theF2.5-measure with an average
accuracy of 85.30%. As a reference, the SVM using
unigram-presence features exhibits the best classifica-
tion performance with an average accuracy of 86.35%.
Running a McNemar’s test [25], however, suggests that
there is not a statistically significant difference between
average accuracies of theF2.5-measure and the SVM.
Please note that using the same method, Pang and Lee
[16] reported an accuracy of 87.15%. We suppose that
this is due to preprocessing, parameter tuning or to
slightly different feature vectors.
Even though we have not yet analyzed all misclassifi-
cations, we took a closer look at documents that were
misclassified by most of our methods. Among those,
we found mostly subjective reviews that we suppose
are even hard to classify by humans. Below, we quote
an example that has no obvious sentiment polarity but
is marked as a negative sentiment review in the corpus:

Table 2. Results for the Amazon corpus

No Method Accuracy

(1) PPMd 86.15%

(2) C0-measure 85.15%

(3) C2.5-measure 87.95%

(4) F2.5-measure 90.55%

(5) SVM (pres. unigram) 86.35%

”He is duncan Macleod of the clan
Macleod. He’s been pimpin’ it since he was
born in the village of glennfillan in 15some-
thingsomething, and he continues to pimp it
in modern day. He is immortal and he cannot
die.”

Altogether, the results show that compression based
sentiment classification is indeed possible and roughly
on par with sophisticated classifiers such as SVMs.

3.2. Amazon corpus

The average classification accuracies for the Ama-
zon corpus are shown in lines (1)-(5) of Table 2.
The C0-measure performs worst with an average ac-
curacy of 85.35%. With 86.15% and thus an increase
of roughly 1%, PPMd performs slightly better than
the C0-measure. Our experiments with thek-measure
family on the Amazon corpus confirm that the best
choice for k ranges between 1.5 and 2.5. Using the
C2.5-measure instead of theC0-measure, leads to an
increase in the average accuracy of almost 3%. Finally,
with an average accuracy of 90.55%, theF2.5-measure
exhibits the best classification performance. As a refer-
ence, the SVM using unigram-presence features leads
to an average accuracy of only 86.35%. Please note
that the average accuracy for SVM obtained on the
Amazon corpus incidentially equals the one obtained
on the IMDb corpus and that the results per fold differ
greatly.
When analyzing the worst misclassifications, we found
the Amazon corpus to contain a significant amount
of spelling mistakes as well as false data. Among
those is either mislabeled data (possibly due to a
misunderstanding of the rating scale) or subjective
texts given a star-rating that does not match a humans
intitution. An example is the review quoted below.
Even though it was labeled to be negative (1-star), it
clearly expresses a positive sentiment polarity. Please
note that we have marked spelling mistakes.

”Excel ent product. I get about 15 times the
life of ordinary batteries. I would reccomend
to anybody who uses their camera a lot.”



Table 3. Results for the Twitter corpus

No Method Accuracy

(1) PPMd 78.80%

(2) C0-measure 76.20%

(3) C2.5-measure 83.10%

(4) F2.5-measure 84.40%

(5) SVM (pres. unigram) 77.80%

This review is also an example for the advantage of
a character based method such as compression. Al-
though the words that contain most sentiment relevant
information, namely ”Excellent” and ”recommend”
both suffer from spelling mistakes, the document was
clearly identified to be positive. This is mainly due to
the fact that sequences around the misspellings were
successfully processed and led to an overall correct
classification. We suppose that both spelling mistakes
and false data are the main reason for the better classi-
fication performance of thek-measure family over the
standard approach using SVM. A further discussion,
however, will be postponed to the subsequent section.

3.3. Twitter corpus

The average classification accuracies for the Twitter
corpus are shown in lines (1)-(5) of Table 3.
Analogous to the results obtained on the Amazon
corpus, theC0-measure exhibits the lowest average ac-
curacy with 76.20%, followed by PPMd with 78.80%.
Again, using ak between 1.5 and 2.5 for theCk-
andFk-measure leads to the best classification results.
Thus we recommendk = 2.5 as a standard parameter
for thek-measure family. A drastical increase of more
than 5% can be achieved using theC2.5-measure
instead of theC0-measure. Finally, with an average
accuracy of 84.40%, theF2.5-measure exhibits the best
classification performance. As a reference, the SVM
using unigram-presence features leads to an average
accuracy of only 77.80% and is thus more than 6%
below our result.
To complete our experiments, we again analyzed the
worst misclassifications. Although the Twitter corpus
employs mainly informal language, it contains signifi-
cantly less spelling mistakes than the Amazon corpus.
This is probably due to the fact, that tweets usually
consist of only one or two sentences.
Unfortunately, the analysis was not as enlightening as
we hoped: The misclassifications seem to have no clear
similarity and are generally easy to classify by humans.
However, we found a few mislabeled documents as
well as one document clearly showing the advantage

of our approach.
The example quoted below was labeled positive al-
though it clearly states a negative sentiment. We as-
sume that in this case the annotator was labeling rather
reputation than on sentiment:

hey @apple I hate my computer i need a
#mack wanna send me a free one.

The second example was a short text without any
separators between words. Although it is impossible
for word based approaches to derive a valid sentiment
polarity, our method may recognize subwords and thus
correctly classified the document:

#Twitter’sMalfunctioningAgain

We suppose that the advantage of our methods is
mainly due to the fact that they operate on character
sequences rather than words. Moreover, adjustingk

to a value between 1.5 and 2.5 seems to effectively
suppress irrelevant or false features and leads to a
significant increase in the average accuracy.

4. Discussion

In order to understand the comparatively good per-
formance of our methods, especially on the Amazon
and Twitter corpus, we have analyzed misclassification
as well as random documents from all corpora. We
have experienced a significant amount of false data
such as misclassification especially in the Amazon
and the Twitter corpus. Using thek-measure family,
however, helps effectively eliminate such noise by
learning patterns only if they appear at leastk-times
more often in the corresponding model. Our results
show that this may lead to an improvement of more
than 5%.
Besides false data, we have experienced a high number
of spelling mistakes, especially in the Amazon corpus.
This obviously poses a problem to most automatic
classification approaches, including ours. However,
since compression based methods are mostly character
based, they have an advantage over word based ap-
proaches. Although they cannot successfully process
misspelled words, they are able to process substrings
around the misspelling. Compression based classifica-
tion may thus correctly determine a document’s sen-
timent even if most sentiment relevant words contain
spelling mistakes.
To complete our experiments we performed a de-
tailed analysis of all compression models and found
that besides sentiment relevant sequences such as
’s_very_good’ (e.g. a substring from the sentence
”This product is very good”) the models also included
sequences containing object names (e.g. product-, film-



Table 4. Means for the regression ratio per rating

Rating C2.5-measure F2.5-measure

5-star 0.1908 0.2565

4-star 0.0833 0.1141

3-star -0.1985 -0.2683

2-star -0.3702 -0.5034

1-star -0.5597 -0.6882

or actor names). Given this, we were challenged to val-
idate that our methods did actually learn the sentiment
polarity and not correlations or rules of the form: A
review about film XX is likely to be positive. For this,
we created a test set of 5,000 documents, containing
Amazon reviews of all ratings (i.e. 1-star, 2-star, ...,
5-star) in a balanced distribution. Moreover, we gener-
ated a training set containing 2,000 Amazon reviews of
1-star and 5-star ratings in a balanced distribution (that
were not present in the test set). Finally, we derived a
regression ratio for each document in the test set and
calculated the means per class. We have found that
although our training set contained 1-star and 5-star
ratings only, we were basically able derive a ratio for
all classes, such that a linear order (1-star< 2-star<
... < 5-star) is clearly observable (see table 4). Please
note that due to space limitations, we have to postpone
further details to a subsequent article.

5. Conclusions and Future Work

In this paper we empirically and systematically
evaluated the performance of the lossless compression
algorithm Prediction by Partial Matching (PPM) as
well as compression based measures using PPM-like
charactern-gram frequency statistics on the task of
sentiment polarity classification. We have conducted
extensive experiments on three representative corpora
varying in size, complexity and language employed.
We achieved a top accuracy of 90.55% using the
F2.5-measure on the Amazon corpus and outperformed
support vector machines on the Twitter corpus by more
than 6%.
Altogether, our experiments have shown that sentiment
analysis based on compression models is possible
and can compete with sophisticated classifiers. Our
approach is rather simple and efficient in terms of
running time and memory consumption. Moreover, it
requires no preprocessing and may be performed with
standard off-the-shelf compression programs such as
RAR andZIP. Although our methods are (yet) known
to be inferior to state-of-the art approaches at least
on the IMDb corpus, their simplicity and efficiency

may make them to a promising alternative in sentiment
polarity classification.
With the proposed evaluation framework, we not only
obtain a binary classification, but a regression value
that may effectively work in multi-class classification
or regression tasks. Our experiments pinpointed that
the accuracies vary greatly with the complexity, size
and type of the language used in the corpora and
the degree of false data. Using ourk-measure family,
we can cope better with spelling mistakes as well as
misclassifications in the training set.
In the context of our experiments, we started evaluating
the performance of thek-measures on the task of cross-
domain polarity classification (i.e. learning a model
using texts from one domain and testing with data
from a different one). For this, we have downloaded
John Blitzer’s Multi-domain sentiment data set and re-
produced their test setting [26]. Although our methods
performed slightly better than Blitzer’s baseline, they
were not able to match the results after domain adap-
tion using SCL and SCL-MI. We assume, however, that
using appropriate feature selection and weighting as in
[7], [24] as well as domain adaption techniques as in
Blitzer’s work, our methods may be able to compete.
Yet, since our research in this subject is not final, we
will postpone details to a subsequent article.
Another interesting branch of our research is motivated
by the work of McNamee et al. [27]. They evaluated
the use of charactern-grams instead of words in
information retrieval and found charactern-gram tok-
enization to be highly effective especially in inflective
languages. We thus started experimenting on texts in
languages such as Italian, French and German. Our
preliminary experiments indicate that their result is
partly transferable to the domain of sentiment analysis.
However, the improvement is yet not as strong as it is
for information retrieval.
Finally, a deeper analysis of all corpora, our misclassi-
fications and compression models may lead to a deeper
understanding why and how our methods outperform
the standard approach, especially on noisy corpora.

References

[1] W. Sack, “On the computation of point of view,” in
Proceedings of AAAI, 1994, p. 1488, student abstract.

[2] A. Huettner and P. Subasic, “Fuzzy typing for docu-
ment management,” inACL 2000 Companion Volume:
Tutorial Abstracts and Demonstration Notes, 2000, pp.
26–27.

[3] E. Cambria,Sentic Computing Techniques, Tools, and
Applications, A. Hussain, Ed. Dordrecht: Springer
Netherlands, 2012, 2012.



[4] F. Sebastiani, “Machine learning in automated
text categorization,”ACM Comput. Surv., vol. 34,
no. 1, pp. 1–47, 2002. [Online]. Available:
http://portal.acm.org/citation.cfm?id=505283

[5] B. Pang and L. Lee, “Opinion mining
and sentiment analysis,”Foundation and Trends
in Information Retrieval, vol. 2, no. 1-
2, pp. 1–135, 2008. [Online]. Available:
http://dx.doi.org/http:/dx.doi.org/10.1561/1500000001

[6] B. Liu, Sentiment Analysis and Opinion Mining, ser.
Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers, 2012.

[7] T. O’Keefe and I. Koprinska, “Feature Selection
andWeighting Methods in Sentiment Analysis,” inPro-
ceedings of 14th Australasian Document Computing
Symposium, December 2009.

[8] D. Benedetto, E. Caglioti, and V. Loreto, “Language
trees and zipping,”Phys. Rev. Lett., vol. 88, no. 4, p.
048702, Jan 2002.

[9] E. Frank, C. Chui, and I. H. Witten, “Text
categorization using compression models,” in
Proceedings of the Conference on Data Compression,
ser. DCC ’00. Washington, DC, USA: IEEE
Computer Society, 2000, pp. 555–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=789087.789742

[10] J. Goodman, “Extended comment on language trees and
zipping,” Condensed Matter Archive, Feb, vol. 21, p.
0202383, 2002.

[11] D. V. Khmelev and W. J. Teahan, “A repetition
based measure for verification of text collections
and for text categorization,” inProceedings of the
26th annual international ACM SIGIR conference
on Research and development in informaion
retrieval, ser. SIGIR ’03. New York, NY, USA:
ACM, 2003, pp. 104–110. [Online]. Available:
http://doi.acm.org/10.1145/860435.860456

[12] O. V. Kukushkina, A. A. Polikarpov, and D. V.
Khmelev, “Using literal and grammatical statistics for
authorship attribution,” inProblems of Information
Transmission, 2002, pp. 172–184.

[13] S. Goldwasser, A. C. Smith, N. Thaper, and N. Thaper,
“Using compression for source based classification of
text,” 2001.

[14] S. Kullback and R. A. Leibler, “On Information and
Sufficiency,” The Annals of Mathematical Statistics,
vol. 22, no. 1, pp. 79–86, 1951.

[15] W. J. Teahan and D. J. Harper,Using Compression-
Based Language Models for Text Categorization.
Kluwer Academic Publishers, 2003.

[16] B. Pang and L. Lee, “A sentimental education: Senti-
ment analysis using subjectivity summarization based
on minimum cuts,” inProceedings of the ACL, 2004,
pp. 271–278.

[17] P. Turney, “Thumbs up or thumbs down? Semantic
orientation applied to unsupervised classification of
reviews,” in Proceedings of the Association for Com-
putational Linguistics (ACL), 2002, pp. 417–424.

[18] T. Joachims, “Making Large-Scale SVM Learning
Practical,” in Advances in Kernel Methods - Support
Vector Learning, B. Scḧolkopf, C. J. Burges, and
A. Smola, Eds. Cambridge, MA, USA: MIT Press,
1999.

[19] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?
Sentiment classification using machine learning tech-
niques,” inProc. of the 2002 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
2002, pp. 79–86.

[20] J. G. Cleary, Ian, and I. H. Witten, “Data compression
using adaptive coding and partial string matching,”
IEEE Transactions on Communications, vol. 32, pp.
396–402, 1984.

[21] D. Shkarin, “Ppm: One step to practicality.” inDCC.
IEEE Computer Society, 2002, pp. 202–211.

[22] D. S. Hunnisett and W. J. Teahan, “Context-based
methods for text categorisation,” inProceedings of the
27th annual international ACM SIGIR conference
on Research and development in information
retrieval, ser. SIGIR ’04. New York, NY, USA:
ACM, 2004, pp. 578–579. [Online]. Available:
http://doi.acm.org/10.1145/1008992.1009129

[23] P. A. Devijver and J. Kittler,Pattern recognition: A
statistical approach. Prentice Hall, 1982.

[24] G. Paltoglou and M. Thelwall, “A study of information
retrieval weighting schemes for sentiment analysis,” in
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, ser. ACL ’10.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2010, pp. 1386–1395. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1858681.1858822

[25] Q. McNemar, “Note on the Sampling Error
of the Difference Between Correlated Proportions
or Percentages,”Psychometrika, vol. 12, no. 2,
pp. 153–157, Jun. 1947. [Online]. Available:
http://dx.doi.org/10.1007/BF02295996

[26] J. Blitzer, M. Dredze, and F. Pereira, “Biographies, bol-
lywood, boomboxes and blenders: Domain adaptation
for sentiment classification,” inIn ACL, 2007, pp. 187–
205.

[27] P. McNamee, C. Nicholas, and J. Mayfield, “Addressing
morphological variation in alphabetic languages,”
in Proceedings of the 32nd international ACM
SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’09. New York, NY,
USA: ACM, 2009, pp. 75–82. [Online]. Available:
http://doi.acm.org/10.1145/1571941.1571957


