A Satisfiability-based Approach for Generalized Tanglegrams on Level Graphs*

Andreas Wotzlaw¹ Ewald Speckenmeyer¹ Stefan Porschen²

¹Department of Computer Science University of Cologne, Germany

> ²Department 4 HTW-Berlin, Germany

Dagstuhl Seminar "SAT Interactions", Nov. 18-23, 2012

^{*}This talk has been presented at EURO 2012, Vilnius, Lithuania.

Outline

Introduction

Binary and generalized tanglegrams Generalized tanglegrams on level graphs

Generalized tanglegrams as satisfiability problems

Level embedding by a Boolean formula Satisfiability-based formulation of crossing minimization Complexity results

Experimental evaluation

Goals and experimental setup Performance and computation time results

Summary

Binary tanglegrams

Binary tanglegram

An embedding (drawing) in the plane of a pair of rooted binary trees which leaf sets are in one-to-one correspondence (perfect matching).

Important questions:

- 1. Is there an embedding inducing no crossings? \rightarrow planarity test
- If not, find an embedding with as few crossings as possible?
 → crossing minimization

Generalized tanglegrams

Motivation

- good display of hierarchical structure, e.g., in software engineering, database design, project management [di Battista, 1998]
- matching and aligning phylogenetic trees in computational biology [DasGupta et al., 1999; Dufayard et al., 2005]

Complexity results for binary tanglegrams

- planarity test decidable in linear time [Fernau et al., '10]
- crossing minimization is NP-complete (MAX-CUT) [Fernau et al., '10]

Generalized tanglegram [Bansal et al., 2009]

- the number of leaves in the two binary trees may be different
- no perfect matching required
- can address more problems in bioinformatics

Generalized tanglegrams on level graphs

Generalized tanglegram (G, F) on a level graph

- ▶ forest *F* of *k*-ary trees *T*₁, *T*₂, ...
- level graph G with n nodes and inter-tree edges E
- Question: Does there simultaneously exist a planar embedding of G (horizontal plane) with planar embeddings for F (vertical planes)?

Observation 1

- crossing minimization in level graphs is NP-hard [Eades/Wormald '94]
- ► level graphs with |E| > 2|V| 4 are not planar [Randerath et al., '01]

Generalized tanglegram as a satisfiability problem

- Given an instance (G, F) of a generalized tanglegram on a level graph G with n nodes and k-ary trees F defined on the levels of G, for some fixed k > 1
 - Goal a satisfiability-based formulation of crossing minimization for (G, F)

Transformation procedure

- ▶ Step 1: Construction of a CNF-formula C_G for the level graph G
- Step 2: Construction of a CNF-formula C_F for the forest F

Result: a CNF-formula $C_{GF} := C_G \wedge C_F$ for (G, F) such that C_{GF} is satisfiable iff (G, F) has planar embedding (no crossings). Crossing minimization as an instance of PARTIAL MAX-SAT on C_{GF} .

Level embedding by a Boolean formula

Consider two adjacent levels i and i + 1 of G

Observation 2

Two arcs e = (u, a) and f = (v, b) connecting levels *i* and i + 1 with different tails $u \neq v$ and heads $a \neq b$ do not cross wrt. linear orders on *i* and i + 1 iff

 $u < v \Leftrightarrow a < b$

Step 1: Construction of C_G for level graph G

1. For each pair $\{u, v\}$ of distinct nodes from each level $i \in L$, create a Boolean variable uv such that

uv = true iff u < v in a linear order on level *i*.

- 2. Create the following Boolean subformulas:
 - (I) non-crossing conditions C_i : for every two arcs e = (u, a) and f = (v, b) connecting levels *i* and *i* + 1 with $u \neq v$ and $a \neq b$

 $uv \leftrightarrow ab$

(II) antisymmetry conditions C_{II} : for each node pair $\{u, v\}$ from each level in L

 $uv \leftrightarrow \overline{vu}$

(III) transitivity conditions C_{III} : for each node triple $\{u, v, w\}$ from each level in L

 $\mathit{uv} \land \mathit{vw} \to \mathit{uw}$

Result: $C_G = C_I \wedge C_{II} \wedge C_{III}$, where $C_I \wedge C_{II} \in 2$ -CNF and $C_{III} \in 3$ -CNF.

Preliminary results on C_G

It holds:

- C_G has $O(n^2)$ Boolean variables
- C_G has $O(n^3 + |E|^2)$ clauses
- ▶ by Observation 1, for the planarity test only $O(n^2)$ 2-clauses in C_I
- ► for the planarity test C_{III} can be dropped [Randerath et al., 2001] $\Rightarrow C_G \setminus C_{III} \in 2\text{-CNF}$

Proposition 1

A level graph *G* with *n* nodes has a planar embedding iff $C_G \setminus C_{III}$ is satisfiable. The test can be done in time $O(n^2)$.

Plane embedding of tree $T_i \in F$

Observation 3

Let T_i be a complete k-ary tree of height d on a level i with fixed linear order:

- for d = 1 the edges of T_i never cross in any drawing T_i
- ▶ let $w \in T_i$ such that the height of subtree $T_i(w)$ is at least 2

- the edges leaving w never cross in any drawing of $T_i(w)$
- let e = {u, a} and f = {v, b} be two edges from T_i(w) with u ≠ v having both depth 1. In a drawing of T_i(w), e and f do not cross iff

$$u < v \Leftrightarrow a < b.$$

Step 2: Construction of C_F for forest F

Repeat for each $T_i \in F$

1. For each level j = 1, ..., d of T_i and each pair $\{u, v\}$ of distinct nodes from j, create a Boolean variable uv such that

uv = true iff u < v in a linear order on level *i*.

2. Create the following Boolean subformulas:

(IV) non-crossing conditions $C_{IV}^{T_i}$: for each level *j* and two edges $e = \{u, a\}$, $f = \{v, b\}$ of T_i such that $u \neq v$ have depth *j* and *a*, *b* have depth *j* + 1

 $(uv \leftrightarrow ab) \land (vu \leftrightarrow ba)$

(V) antisymmetry conditions $C_V^{T_i}$: for each node pair $\{u, v\}$ from each level in T_i

 $uv \leftrightarrow \overline{vu}$

Result: $C_{T_i} = C_{IV}^{T_i} \land C_V^{T_i} \in 2\text{-CNF}$

Satisfiability-based formulation of (G, F)

CNF-Formula for the forest F:

$$C_F = \bigwedge_{T_i \in F} C_{T_i}$$

- C_F has $O(n^2)$ Boolean variables
- C_F has O(n²) 2-clauses

Finally, by applying the 2-step transformation procedure to (G, F), we obtain

$$C_{GF} = C_G \wedge C_F = (C_I \wedge C_{II} \wedge C_{III}) \wedge C_F$$

- C_{GF} has $O(n^2)$ Boolean variables
- C_{GF} has $O(n^3 + |E|^2)$ clauses
- ▶ only the transitivity conditions $C_{III} \in$ 3-CNF, the rest \in 2-CNF

Main complexity results

By Proposition 1, for the planarity test C_{III} can be omitted $\Rightarrow C_{GF} \setminus C_{III} \in 2$ -CNF solvable for SAT efficiently [Aspvall et al., 1979]

Theorem 1 [Wotzlaw et al., 2012]

(G, F) has a planar embedding iff $C_{GF} \setminus C_{III}$ is satisfiable. The test needs $O(n^2)$ time, for some fixed integer k > 1.

Crossing minimization is an instance of PARTIAL MAX-SAT \in NP-hard.

Theorem 2 [Wotzlaw et al., 2012]

Let *t* be a truth assignment satisfying $C_{GF} \setminus C_l$ and **minimizing the number** τ of not satisfied clauses in C_l for some fixed integer k > 1. Then τ is the minimum number of arc crossings in an embedding of (G, F).

Experimental evaluation

Goals

Evaluation of SatTG for generalized binary tanglegrams (GBT) in terms of:

- computation of optimal layouts
- performance ratio $\rho := \frac{1+\tau}{1+\tau_{OPT}}$
- computation time t

Details on SatTG [Wotzlaw et al., 2012]

- performs crossing minimization as described above
- resulting PARTIAL MAX-SAT encodings contain up to one million Boolean variables and 40 millions clauses
- utilizes several complete PARTIAL MAX-SAT solvers, depending on the problem type and size, e.g., akmaxsat, clasp, QMaxSAT0.4
- computes exact or approximate solutions (with timeout set)

Experimental setup

We compare SatTG with

- an exact integer LP-based method ILPTG (using CPLEX 12.1)
- ► three polynomial-time heuristics AH, LH, and LAH [Bansal et al., 2009] → the fastest heuristics for GBT known so far

Test data:

- ▶ random GBTs: *n* ≤ 800 and |*E*| = 1.15*n* [Bansal et al., 2009]
- simulated gene/species trees: n ≤ 1200 and |E| ≤ 2n [Syvanen, 1985; Arvestad et al., 2004]
- ▶ real-world GBTs: $n \le 101$ and $|E| \le 3n$ [Sanderson/McMahon, '07]

Evaluation results

Computation of optimal layouts:

- ▶ SatTG and ILPTG comparable for instances with *n* < 200
- instances with n > 400 very time and resource consuming

Average performance ratios ρ :

U 1						
Category	п	AH	LH	LAH	IPLTG	SatTG
random	\leq 100	1.109	1.020	1.006	1*	1*
random	\geq 200	1.026	1.016	1.011	1.082	1.076
simulated	\leq 100	1.269	1.023	1.001	1*	1.003
simulated	\geq 200	1.265	1.072	1.024	5.533	1.017
real-world	10-200	1.668	1.012	1.001	1*	1*

Computation time of SatTG:

- ► the fastest method for real-world GBTs with n < 200 and random and simulated GBTs with n < 60</p>
- better than ILPTG and similar to LAH for simulated GBTs
- outperformed for random GBTs with $n \ge 60$

Summary

Conclusion:

- generalization of the tanglegram problem on level graphs
- planarity test solvable efficiently in $O(n^2)$
- crossing minimization intractable (PARTIAL MAX-SAT)
- competitive for computing optimal layouts of medium-sized instances
- very well qualified for application in interactive visualization tools

Open problems:

bounds for the approximation ratio for generalized tanglegrams

Thank you for your attention!