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Binary tanglegrams

Binary tanglegram

An embedding (drawing) in the plane of a pair of rooted binary trees which
leaf sets are in one-to-one correspondence (perfect matching).
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Important questions:

1. Is there an embedding inducing no crossings? → planarity test

2. If not, find an embedding with as few crossings as possible?
→ crossing minimization
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Generalized tanglegrams

Motivation
I good display of hierarchical structure, e.g., in software engineering,

database design, project management [di Battista, 1998]
I matching and aligning phylogenetic trees in computational biology

[DasGupta et al., 1999; Dufayard et al., 2005]

Complexity results for binary tanglegrams

I planarity test decidable in linear time [Fernau et al., ’10]
I crossing minimization is NP-complete (MAX-CUT) [Fernau et al., ’10]

Generalized tanglegram [Bansal et al., 2009]

I the number of leaves in the two binary trees may be different
I no perfect matching required
I can address more problems in bioinformatics
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Generalized tanglegrams on level graphs

Generalized tanglegram (G,F ) on a level graph

I forest F of k -ary trees T1,T2, ...

I level graph G with n nodes and
inter-tree edges E

I Question: Does there simultaneously
exist a planar embedding of G
(horizontal plane) with planar
embeddings for F (vertical planes)?
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Observation 1

I crossing minimization in level graphs is NP-hard [Eades/Wormald ’94]
I level graphs with |E | > 2|V | − 4 are not planar [Randerath et al., ’01]
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Generalized tanglegram as a satisfiability problem

Given an instance (G,F ) of a generalized tanglegram on a level graph G with n
nodes and k -ary trees F defined on the levels of G, for some fixed k > 1

Goal a satisfiability-based formulation of crossing minimization for (G,F )

Transformation procedure

I Step 1: Construction of a CNF-formula CG for the level graph G
I Step 2: Construction of a CNF-formula CF for the forest F

Result: a CNF-formula CGF := CG ∧CF for (G,F ) such that CGF is satisfiable
iff (G,F ) has planar embedding (no crossings).
Crossing minimization as an instance of PARTIAL MAX-SAT on CGF .

University of Cologne 6/18



Level embedding by a Boolean formula

Consider two adjacent levels i and i + 1 of G
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Observation 2
Two arcs e = (u, a) and f = (v , b) connecting levels i and i + 1 with different
tails u 6= v and heads a 6= b do not cross wrt. linear orders on i and i + 1 iff

u < v ⇔ a < b
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Step 1: Construction of CG for level graph G

1. For each pair {u, v} of distinct nodes from each level i ∈ L, create a
Boolean variable uv such that

uv = true iff u < v in a linear order on level i .

2. Create the following Boolean subformulas:
(I) non-crossing conditions CI : for every two arcs e = (u, a) and f = (v , b)

connecting levels i and i + 1 with u 6= v and a 6= b

uv ↔ ab

(II) antisymmerty conditions CII : for each node pair {u, v} from each level in L

uv ↔ vu

(III) transitivity conditions CIII : for each node triple {u, v ,w} from each level in L

uv ∧ vw → uw

Result: CG = CI ∧CII ∧CIII , where CI ∧CII ∈ 2-CNF and CIII ∈ 3-CNF.
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Preliminary results on CG

It holds:
I CG has O(n2) Boolean variables
I CG has O(n3 + |E |2) clauses
I by Observation 1, for the planarity test only O(n2) 2-clauses in CI

I for the planarity test CIII can be dropped [Randerath et al., 2001]
⇒ CG\CIII ∈ 2-CNF

Proposition 1

A level graph G with n nodes has a planar embedding iff CG\CIII is satisfiable.
The test can be done in time O(n2).
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Plane embedding of tree Ti ∈ F

Observation 3
Let Ti be a complete k -ary tree of height d on a level i with fixed linear order:

I for d = 1 the edges of Ti never cross in any drawing Ti

I let w ∈ Ti such that the height of subtree Ti(w) is at least 2

w
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I the edges leaving w never cross in any drawing of Ti(w)

I let e = {u, a} and f = {v , b} be two edges from Ti(w) with u 6= v having
both depth 1. In a drawing of Ti(w), e and f do not cross iff

u < v ⇔ a < b.
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Step 2: Construction of CF for forest F

Repeat for each Ti ∈ F
1. For each level j = 1, ..., d of Ti and each pair {u, v} of distinct nodes

from j , create a Boolean variable uv such that

uv = true iff u < v in a linear order on level i .

2. Create the following Boolean subformulas:

(IV) non-crossing conditions CTi
IV : for each level j and two edges e = {u, a},

f = {v , b} of Ti such that u 6= v have depth j and a, b have depth j + 1

(uv ↔ ab) ∧ (vu ↔ ba)

(V) antisymmerty conditions CTi
V : for each node pair {u, v} from each level in Ti

uv ↔ vu

Result: CTi = CTi
IV ∧ CTi

V ∈ 2-CNF
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Satisfiability-based formulation of (G,F )

CNF-Formula for the forest F :

CF =
∧

Ti∈F

CTi

I CF has O(n2) Boolean variables
I CF has O(n2) 2-clauses

Finally, by applying the 2-step transformation procedure to (G,F ), we obtain

CGF = CG ∧ CF = (CI ∧ CII ∧ CIII) ∧ CF

I CGF has O(n2) Boolean variables
I CGF has O(n3 + |E |2) clauses
I only the transitivity conditions CIII ∈ 3-CNF, the rest ∈ 2-CNF
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Main complexity results

By Proposition 1, for the planarity test CIII can be omitted
⇒ CGF\CIII ∈ 2-CNF solvable for SAT efficiently [Aspvall et al., 1979]

Theorem 1 [Wotzlaw et al., 2012]

(G,F ) has a planar embedding iff CGF\CIII is satisfiable. The test needs
O(n2) time, for some fixed integer k > 1.

Crossing minimization is an instance of PARTIAL MAX-SAT ∈ NP-hard.

Theorem 2 [Wotzlaw et al., 2012]

Let t be a truth assignment satisfying CGF\CI and minimizing the number τ
of not satisfied clauses in CI for some fixed integer k > 1. Then τ is the
minimum number of arc crossings in an embedding of (G,F ).

University of Cologne 13/18



Experimental evaluation

Goals
Evaluation of SatTG for generalized binary tanglegrams (GBT) in terms of:

I computation of optimal layouts
I performance ratio ρ := 1+τ

1+τOPT

I computation time t

Details on SatTG [Wotzlaw et al., 2012]
I performs crossing minimization as described above
I resulting PARTIAL MAX-SAT encodings contain up to one million

Boolean variables and 40 millions clauses
I utilizes several complete PARTIAL MAX-SAT solvers, depending on the

problem type and size, e.g., akmaxsat, clasp, QMaxSAT0.4
I computes exact or approximate solutions (with timeout set)
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Experimental setup

We compare SatTG with
I an exact integer LP-based method ILPTG (using CPLEX 12.1)
I three polynomial-time heuristics AH, LH, and LAH [Bansal et al., 2009]
→ the fastest heuristics for GBT known so far

Test data:
I random GBTs: n ≤ 800 and |E | = 1.15n [Bansal et al., 2009]
I simulated gene/species trees: n ≤ 1200 and |E | ≤ 2n [Syvanen, 1985;

Arvestad et al., 2004]
I real-world GBTs: n ≤ 101 and |E | ≤ 3n [Sanderson/McMahon, ’07]
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Evaluation results

Computation of optimal layouts:
I SatTG and ILPTG comparable for instances with n < 200
I instances with n > 400 very time and resource consuming

Average performance ratios ρ:
Category n AH LH LAH IPLTG SatTG
random ≤ 100 1.109 1.020 1.006 1∗ 1∗
random ≥ 200 1.026 1.016 1.011 1.082 1.076

simulated ≤ 100 1.269 1.023 1.001 1∗ 1.003
simulated ≥ 200 1.265 1.072 1.024 5.533 1.017
real-world 10-200 1.668 1.012 1.001 1∗ 1∗

Computation time of SatTG:
I the fastest method for real-world GBTs with n < 200 and random and

simulated GBTs with n < 60
I better than ILPTG and similar to LAH for simulated GBTs
I outperformed for random GBTs with n ≥ 60
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Summary

Conclusion:
I generalization of the tanglegram problem on level graphs
I planarity test solvable efficiently in O(n2)

I crossing minimization intractable (PARTIAL MAX-SAT)
I competitive for computing optimal layouts of medium-sized instances
I very well qualified for application in interactive visualization tools

Open problems:
I bounds for the approximation ratio for generalized tanglegrams
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Thank you for your attention!
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