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Chapter 1
Introduction

Microeconomic theories of individual behavior are based on choices. That is, individual

choices are taken as the primitive concept (i.e., the domain of observables) from which

we may postulate models of behavior incorporating preferences, beliefs and potentially

other factors that may enter the individual’s decision making procedure. Traditionally, the

standard framework has been to model individual choice as the result of the maximization

of well-defined and stable preferences. Even if this assumption did not always hold, the

procedural aspect could be ignored as long as the revealed preferences (i.e., the preferences

that are revealed through observable choice) did not conflict with the framework’s implied

consistency on choice behavior.

Motivated by systematic deviations of this neoclassical rationality consistency require-

ment, a large amount of research has emerged, in which the procedural aspects of choice

are modelled by considering the psychological interpretations of said deviations. Such

models, for instance, include non-standard preferences, as the two-stage procedures pro-

posed by Manzini and Mariotti (2007, 2012), or the inclusion of a reference point to which

the individual compares a given outcome (Kahneman and Tversky, 1979; Köszegi and Ra-

bin, 2006). A commonality that many such models share is that they are formulated in

a mathematical framework that allows us to investigate the intrinsic soundness of its

predictions on the domain of choice. In general, this is what this dissertation is about.

One way of conducting this investigation is by providing a behavioral foundation (or,

alternatively stated, axiomatic characterization) of the model, which, essentially, is a set of

conditions imposed on observable choice behavior, that hold if and only if individuals are

1



2 CHAPTER 1. INTRODUCTION

choosing according to the model. In addition to allowing for investigating the soundness

of its predictions, such a characterization also renders the model falsifiable. An alternative

way of doing so, if the proposed model allows for it, is to directly investigate how well

the model predicts choices on the considered domain compared to how well it could have

predicted. Such an approach additionally informs us how well an alternatively formulated

theory could predict. In what follows, the chapters of the dissertation are briefly intro-

duced and summarized. These chapters are structured like regular journal articles, each

with its own bibliography. My contribution to each of the chapters can be found in the

appendix to the dissertation.

Chapter 2 presents a joint research project with Christopher Kops that is published

in Theory and Decision (Armouti-Hansen and Kops, 2018). Herein we propose general-

izations of two well-known boundedly rational choice procedures, the rational shortlist

method (Manzini and Mariotti, 2007) and the categorize then choose procedure (Manzini

and Mariotti, 2012). Our generalization consists of defining these procedures as choice

correspondences, instead of choice functions. In turn, this imposes less of a restriction on

the contained rationales and allows for the decision maker (DM) to be indecisive as the

selection no longer needs to be unique.

Specifically, we consider a DM that chooses by sequentially eliminating inferior alter-

natives. The method in which alternatives are eliminated is based on pre-defined stage-

specific criteria. In the original procedures, a unique alternative remains at the end of this

procedure. In our generalization, we only require that the set of alternatives that remain

is nonempty. The motivation for doing so is to incorporate indecisiveness. In particular,

such a sequential elimination procedure may leave a conflict between the alternatives that

is hard to resolve given that more than one alternative remains. If the DM is required to

only choose one of these remaining alternatives, the observable choice behavior may be

such that we would observe the DM choosing any of these. Hence, if we observe her choice

from the same problem multiple times, this may involve different choices.

We provide the axiomatic characterizations of our generalizations by extending the ax-

ioms used to characterize the original models. Furthermore, we discuss ways in which an

indecisive DM may arrive at a unique choice. In addition, we show that the proposed gen-
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eralized models can explain behavioral anomalies that cannot be explained in the original

setup. This is due to the fact that these anomalies arise when more than one alternative

remains after the sequential elimination.

Chapter 3 is also a joint project with Christopher Kops. In it we develop a two-period

model of individual decision-making under risk based on recent evidence from neurobio-

logical studies showing that anticipating future outcomes may produce pleasure and pain

in the present (Berns et al., 2006, 2007; Schmitz and Grillon, 2012) and research showing

that anticipation, in turn, affects the joy from actual consumption (Abeler et al., 2011;

Baillon et al., 2020). Our formulated model is such that the DM derives utility from both

standard future consumption and non-standard present anticipation of such consumption.

In particular, we consider a setting in which the DM may choose her anticipation and

where this choice of anticipation, in turn, determines her reference point.

To elaborate on this, consider a DM purchasing a ticket to the state lottery. Quite

likely, the DM savors the possibility of becoming rich to the degree that she may become

slightly upset when she looses. Analogously, a home owner who fails to invest in home

insurance for the upcoming hurricane season may dread a potential disaster until the end

of the season brings her more than a relief.

Following the framework of Köszegi and Rabin (2006), we formulate equilibrium con-

cepts that dictates feasible choices of anticipation and consumption lotteries based on

when the DM commits to her decision. One requirement that all concepts share is an

individual rationality constraint that restricts the DM from anticipating outcomes that

are not possible according to her choice of consumption lottery. For instance, if the DM

does not purchase a ticket for the state lottery, as in our prior example, she can not antic-

ipate winning the grand prize. In addition, when the DM can only commit to her decision

after anticipation, our equilibrium concept requires that, given her choice of consumption

lottery, there should be nothing that she can anticipate from this choice that would make

her want to choose something else.

We show that our proposed model of anticipation-based and reference-dependent pref-

erences on the domain of choice is equivalent to a two-stage choice procedure. In the first

stage of this procedure, a subset of the available alternatives is chosen for consideration
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based on a filtering process that satisfies well-known internal consistency conditions. In

the second stage, the DM applies her preference relation to select the most preferred of the

considered alternatives. Furthermore, we provide the axiomatic characterization of this

procedure, and hence by extension, a characterization of our model of anticipation-based

and reference-dependent preferences. Finally, we show the extent to which the DM’s pref-

erence and consideration set can be identified from choice data.

Chapter 4 is an empirical study that aims at evaluating how well simple models

that incorporate social preferences predict individuals’ choices by using machine learning

(ML) models as a benchmark. Specifically, we consider panel data from the lab containing

experimental observations of binary dictator games and reciprocity games from Bruhin

et al. (2019). To evaluate a given model’s predictive capability we apply the concept of a

model’s completeness introduced by Fudenberg et al. (2021), which reveals (i) how large

a fraction of the predictable variation of the data the model captures, and (ii) how large

a gain in performance the model brings compared to a naive baseline model.

To elaborate on this, we define our naive baseline model as one in which the DM only

cares about her own payoff. The social preference models that we consider are then de-

signed in a way that sequentially increases the complexity by adding more other-regarding

motives. As such, our end point is a linear social preference model that includes potential

inequity aversion (or, alternatively, differentiated altruism) and both negative and positive

reciprocity.

Our findings on the aggregate level show that the full linear model that includes all

of the considered behavioral motives achieves a relatively high completeness estimate

of approximately 82%. Thus, the potential improvements of considering more complex

functional forms are quite limited on this domain.

We subsequently extend the setting by allowing for the existence of several types. To

evaluate the completeness of a model in this setting, we propose two extensions of the

original definition. The first proposal within-type completeness estimates the complete-

ness within each type that the given model proposes. Hence, this allows us to infer (i)

whether there is substantial variation in a model’s predictive capability across the types,

and (ii) whether a more complex social preference model is needed to fully capture the
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behavior of some of the types. The second proposal unrestricted completeness estimates

the completeness of a model with several types by comparing its predictive capability to

that of a fully flexible ML model that uses the subject identifier as a feature.

Our within-type completeness results suggest the existence of three types in all of the

considered models, with two relatively large ones and one minority type. The choices of

the first-type individuals are easily predicted by linear social preference models based on

completeness estimates ranging between 88% and 93%. The choices of the second-type

individuals, however, seem to be driven by more complex social preference models as we

only achieve completeness estimates between 60% and 65% for this type. Finally, due

to the relative small size of the minority type, we are unable to properly estimate the

within-type completeness of this type.

Finally, the unrestricted completeness estimates suggest that linear social preference

models with a parsimonious representation of individuals in the form of three types seems

to capture most of the individual variation in data. This is based on completeness estimates

between approximately 85% and 88%. However, we stress that these estimates should be

seen as upper bounds as there may exist more complex ML methods that lead to better

predictions.
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Chapter 2
This or that? - Sequential

rationalization of indecisive choice

behavior

This chapter is based on joint work with Christopher Kops.

Abstract. Decision makers frequently struggle to base their choices on an exhaustive

evaluation of all options at stake. This is particularly so when the choice problem at hand

is complex, because the available alternatives are hard (if not impossible) to compare.

Rather than striving to choose the most valuable alternative, in such situations decision

makers often settle for the choice of an alternative which is not inferior to any other

available alternative instead. In this paper, we extend two established models of boundedly

rational choice, the categorize then choose heuristic and the rational shortlist method, to

incorporate this kind of “indecisive” choice behavior. We study some properties of these

extensions and provide full behavioral characterizations.

Keywords: bounded rationality, choice correspondence, rational shortlist method,

categorize then choose, indecisiveness.

JEL Classification Numbers: D01
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2.1 Introduction

It is Friday and Herbert has a date for the night. He ponders the question of where to go

for dinner. Knowing thyself, he wants to avoid a lengthy and detailed pairwise comparison

of all dishes served across the city. Rather, he decides to directly compare entire categories

of dinner options (pasta, tacos, tapas) with respect to their cuisine type (Italian, Mexican,

Spanish). His experience tells him that he appreciates the Spanish cuisine more than the

Italian or the Mexican one, because it is by far his favorite type of cuisine. Browsing

through the online menus of Spanish restaurants he stumbles across a small selection of

his favorite tapas offered at some of these restaurants and concludes that he cannot narrow

down the set of available alternatives any further than to all restaurants serving such food.

Our paper builds on this theme of “indecisive” choice behavior and extends previous

research on sequential rationalization by Manzini and Mariotti (2007) and Manzini and

Mariotti (2012).

Our goal is to explicitly model the procedure of sequential elimination ascribed to

Herbert above. Specifically, we consider a decision maker (DM) who chooses according to

the following process of sequential elimination: At each stage of the elimination sequence,

the DM separately or jointly removes alternatives from further consideration provided

that he judges them to be inferior to other available alternatives with respect to certain

stage-specific decision criteria just as Herbert uses cuisine type and tapas selection in

the example above. At the last stage of such a sequence, the elimination of less attractive

alternatives may leave a conflict between the remaining alternatives that is hard to resolve

Shafir et al. (1993) to the extent that the DM settles for the choice of some of the remaining

alternatives instead of further pursuing the search for the most valuable alternative. This

mirrors Herbert’s decision to be fine with any restaurant that offers a selection of his

favorite tapas.

The literature is rather agnostic about how a DM’s conflict between “remaining” al-

ternatives should be interpreted. Eliaz and Ok (2006) suggest that the DM may either

be indifferent Kreps (1988) or indecisive Sen (1993) between such alternatives. Accord-

ing to the choice process described above, the remaining alternatives are incomparable

for the DM. That is, any remaining alternative is undominated by all other (initially)

available alternatives and with respect to any decision criterion used in the elimination
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sequence. Viewed from this perspective, the term indecisiveness best describes the DM’s

attitude towards these alternatives. Indeed, under the choice procedures in this paper,

it is conceivable that x and y each remain after sequential eliminating alternatives from

the set {x, y}, but sequentially eliminating alternatives from {x, y, z} leaves x as the only

remaining alternative. If the DM were indifferent between x and y, then, in any choice

problem where they are not available, we would expect him to settle for one of the two

alternatives if and only if he also considers settling for the other one.

It is this property of indecisiveness that our generalizations of the rational shortlist

method (RSM) by Manzini and Mariotti (2007) and the categorize then choose (CTC)

procedure by Manzini and Mariotti (2012) distinguish from the respective original ver-

sions. In the original formulations, a DM is always able to both identify and pick a unique

best alternative, which implies that any indecisiveness has to be resolved across the cor-

responding sequence of elimination stages. This requires that from all alternatives that

remain after the first stage of elimination, the asymmetric binary relation (rationale),

which is applied at the second stage (in both models) to remove inferior alternatives,

spares exactly one unique maximal element. In our restaurant example, this entails that

according to the rationale at the final stage all but one of the dinner options that sur-

vive the first stage are dominated by another alternative such that, for instance, there

exists only a single undominated tapa that is exclusively offered at one restaurant rather

than several favorite tapas offered at different restaurants. Furthermore, the decisiveness

demands that no other alternative is chosen if the same choice problem is to be faced

repeatedly.

The original version of the CTC by Manzini and Mariotti (2012) is fully character-

ized by a weak version of the weak axiom of revealed preferences (WWARP), and the

characterization of the RSM by Manzini and Mariotti (2007) requires, in addition to this

condition, a standard expansion axiom. The authors further note that “in general, we still

lack such conditions for general choice correspondences” (Manzini and Mariotti, 2007, p.

1833), so our characterization can also be interpreted as filling this gap. In it, we attempt

to closely follow the original axiomatizations by directly transforming these axioms from

the domain of choice functions to that of choice correspondences.

Our adjusted version of WWARP keeps the general intuition of the original condition



10 CHAPTER 2. THIS OR THAT? - INDECISIVE CHOICE BEHAVIOR

for choice functions, which is that of excluding a certain kind of choice reversals. In our

interpretation, choice behavior reveals such a choice reversal if an alternative is chosen

over another alternative in some set, but this relation is reversed in a superset of this

set. The structure that our axiomatization imposes on choice behavior generally allows

for such choice reversals to occur, but rules out choice re-reversals. In other words, our

version of WWARP requires that if the same alternative is chosen in a binary comparison

with some other alternative and from a set comprising either of these alternatives, then the

other alternative can neither be chosen from the set itself nor from any of its subsets that

comprise either alternative. Stated differently, our axiom excludes that choice reversals

between two alternatives can be reversed again. Our second axiom, a transformation of

the original expansion axiom to the structure of choice correspondences, shares its rather

straightforward intuition, as it demands that any alternative that is part of the chosen

subset of each of two sets is also part of the chosen subset of the union of these two sets.

In Section 2.2 we introduce the setup and formally define our choice procedures. Sec-

tion 2.3 gleans some intuition about their general properties and Section 2.4 provides

their axiomatic characterizations. The final section illustrates a peculiar feature concern-

ing indecisive choice behavior and relates our choice procedures to other models in the

axiomatic choice theory literature

2.2 Setup

Let X be a finite set of alternatives, with |X| > 2, and let P(X) denote the set of

all nonempty subsets of X. A choice function γ on X selects an alternative from each

possible element of P(X), so γ : P(X) → X with γ(S) ∈ S for all S ∈ P(X). A choice

correspondence Cc on X is a mapping Cc: P(X)→ P(X) that assigns a subset to each set

such that Cc(S) ⊆ S for all S ∈ P(X). Given S ⊆ X and an asymmetric binary relation

(rationale) P ⊆ X ×X, we define the set of P -maximal elements of S as

max(S;P ) = {x ∈ S|@y ∈ S for which (y, x) ∈ P}.

Given S ⊆ X and an asymmetric (shading) relation �⊆ P(X)×P(X), denote the set of

�-maximal elements of S by

max(S;�) = {x ∈ S|@R′, R′′ ⊆ S such that (R′, R′′) ∈� and x ∈ R′′}.
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We abuse notation in a standard way by suppressing set delimiters such that we write

γ(x, y) instead of γ({x, y}) and Cc(x, y) instead of Cc({x, y}).

The first generalized concept we introduce is the following.

Definition 2.1 A choice correspondence Cc is an rational shortlist method (RSM) when-

ever there exists an ordered pair (P1, P2) of asymmetric relations, with Pi ⊆ X × X for

i = 1, 2 such that:

Cc(S) = max(max(S;P1);P2) for all S ∈ P(X)

In that case we say that (P1;P2) sequentially rationalize Cc.

The choice from any set S can be represented as if the DM sequentially eliminates all

other alternatives in two stages. At the first stage, she eliminates all the alternatives that

are not maximal according to the first rationale P1, and from the remaining alternatives

she retains, after the second stage, only those specific alternatives that are also maximal

according to the second rationale P2. Any of these remaining alternatives may constitute

the DM’s choice. In particular, these alternatives are all those that the DM chooses if she

repeatedly faces the same choice problem. By this definition the rationales and the order

in which they are applied remain the same throughout all choice problems. In general,

each relation of the procedure may be incomplete, because the second rationale is not

required to be decisive on the alternatives that survive the first stage of elimination.

The following example establishes that the DM’s attitude towards the remaining al-

ternatives should be described as indecisiveness, rather than as indifference. It picks up

on the discussion raised in the Introduction that if the DM were indifferent between two

alternatives, say x and y, then, provided that they are both available, we would expect

him to settle for x as his choice if and only if he also considers y to be eligible.

Example 2.2.1 Let X = {x, y, z} be the set of alternatives and P1 = {(z, y)}, P2 =

{(x, z)} be the DM’s rationales. Then, max(max({x, y};P1);P2) = {x, y} and, thus, by the

RSM, Cc({x, y}) = {x, y}. On the other hand, max(X;P1) = {x, z} and max({x, z};P2) =

{x}. So, by the RSM, the DM’s choice correspondence is Cc(X) = {x}.

The second generalized concept we introduce is the following.
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Definition 2.2 A choice correspondence Cc is a categorize then choose (CTC) procedure

whenever there exists an asymmetric shading relation � on P(X), with �⊆ P(X)×P(X)

and an asymmetric binary relation P on X, with P ⊆ X ×X such that:

Cc(S) = max(max(S;�);P ) for all S ∈ P(X)

In that case we say that � and P sequentially rationalize Cc.

As for the RSM, the CTC choice from any set S can be represented as if the DM sequen-

tially eliminates all other alternatives in two stages. At the first stage, she eliminates all

categories of alternatives that are not maximal according to the shading relation �, and

from the remaining alternatives she retains, after the second stage, only those specific

alternatives that are maximal according to the rationale P . Any of these alternatives is

acceptable or satisfactory and might constitute the DM’s choice. In particular, these alter-

natives are all those that the DM chooses if she repeatedly faces the same choice problem.

By this definition the shading relation, the rationale and the sequence in which they are

applied remain the same throughout all choice problems. In general, each relation of the

procedure may be incomplete, because the rationale at the second stage is not required

to be decisive on the alternatives that survive the first stage of elimination.

The following example extends Example 2.2.1 to the CTC.

Example 2.2.2 Let X = {x, y, z} be the set of alternatives and {x, z} � {y}, P =

{(x, z)} be the DM’s rationales. Then, max(max({x, y};�);P ) = {x, y} and, thus, by

the CTC, Cc({x, y}) = {x, y}. On the other hand, it holds thatmax(X;�) = {x, z} and

max({x, z};P ) = {x}. So, by the CTC, the DM’s choice correspondence is Cc(X) = {x}.

Remark 2.1 In both definitions above P is an asymmetric binary relation in the form

of a strict rationale that captures the DM’s indecisiveness between any two remaining

alternatives. These definitions provide the most natural extensions of their original coun-

terparts. On the other hand, it is possible to introduce indifference into the models by

defining P to be a weak rationale. In this case, however, it is not clear whether the DM

is indecisive or indifferent between any two “weakly” P -maximal elements of S. Indeed,

it may well be the case that she is indifferent between some of the remaining alternatives

and indecisive between others.
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2.3 An example

Consider a DM who frequently invests in the stock market and assume that she chooses

among three different kinds of shares A, B and C. We assume that common fluctuations

in supply and demand can induce temporary unavailability of each of these assets such

that we are able to observe choices from the grand set {A,B,C} as well as from any of its

nonempty subsets. For our example the intuition of a choice correspondence is as follows:

when facing a certain set of available shares, the DM may select any of its nonempty

subsets. If the DM selects a subset that comprises just a single asset, she will also choose

this item. If the selected subset is not a singleton, the shares in that set are those that

the DM might choose, i.e., those are her acceptable alternatives.1

For each of the cases that follow below we fix the single item that is always part of the

selected subset of shares, singleton or not, when all three different shares are available, to

asset A. Anytime choices are decisive such that the DM is able to identify and pick a single

best share the generalized version of the choice procedures that we consider here coincides

with their respective original version. This applies to Case 1, 2, and 3, whereas the other

cases are specially geared to choice correspondences. Cases 1, 1.1 and 1.2 treat instances of

(in)decisive rational choice and the choice cycle in Case 2 is extended to indecisive choice

behavior in Case 2.1 and Case 2.2. The choice behaviors illustrated in Case 3.1 and Case

3.2 show aspects of indecisive choice that cannot be captured in the decisive counterpart

of default choice in Case 3. Finally, Case 4 and Case 4.1 highlight a peculiar feature of

indecisive choice behavior which we refer to as reversed Condorcet inconsistency. The

arrows in the following figures point away from the alternative that is (or may be) chosen

in pairwise comparisons, the double arrow indicates that both alternatives are acceptable,

i.e., may be chosen.

Figure 2.1 (dominance of the best share(s)): in Case 1, the DM chooses asset

A whenever it is available, regardless of her choice when it is not available. In Case 1.1,

the DM selects the subset {A,B}, when both shares are available, but she never chooses

share C when any other item is available. In Case 1.2, the DM always selects the entire
1Rubinstein and Salant (2006) provide another interpretation of choice correspondences that results

from choice that is sensitive to the order in which the decision maker is confronted with the available
alternatives. Namely, choice correspondences, which attach to every set of alternatives all the elements
that are chosen for some ordering of that set.
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Figure 2.1: Dominance of the best share(s)
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available set. If we let asset A be the single best item in 1, A and B be the best assets

in 1.1, and all three shares be equally good in 1.2, the choice behavior described above

for each of these scenarios can be represented by the maximization of an asymmetric and

negatively transitive order,2 i.e., it does not violate WARP for choice correspondences.

Figure 2.2: Pairwise cycle of choice
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Figure 2.2 (pairwise cycle of choice): in Case 2, the DM chooses asset A from

the grand set and when B is the only other available share, B when C is the only other

available share, and C when A is the only other available share. In Case 2.1, the DM’s

choices among {A,C} and {B,C} remain the same as in 2, i.e., A in the former and B

in the latter, but the DM now selects the entire set {A,B}, whenever it is available. In

Case 2.2, the DM’s choices among {A,B} and {B,C} remain the same as in 2.1, but the

DM now also selects the entire set {A,C}, when it is available. Clearly, there does not

exist a single asymmetric and negatively transitive order that can explain any of these

three cases, i.e., such choice behavior violates WARP. However, we can rationalize this

choice behavior by the sequential application of two rationales. Let us call P1 popularity

and P2 proximity and let the DM prefer the shares of more popular companies to those

of less popular ones and shares of domestic companies to foreign ones. Further, let the

DM know that share B is more popular than share C, but suppose that she is unable

to rank company A relative to B and C on this parameter. That is, she cannot judge
2A binary relation � is negatively transitive on X if x 6� y and y 6� z implies x 6� z for all x, y, z ∈ X.
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whether company A is more or less popular than B and C, respectively. Let C be issued

by a company that is closer to the DM’s place of abode than the issuer of A and lastly

B as the share of the company with the farthermost headquarters. Let the DM look first

at the popularity and then at proximity, the choices in 2 can then be rationalized by

applying the rationales in this order. Suppose now that the issuers of share A and B

are indistinguishable in proximity but that the rest remains the same as before, then the

choices in 2.1 can again be rationalized by applying the criteria popularity and proximity

in that order. Finally, suppose that in 2.2 all share issuers are incomparable with regard

to their proximity, then the choices in 2.2 can be rationalized by applying the criteria

popularity and proximity in that order.

Figure 2.3: Default share(s)
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Figure 2.3 (default share(s)): fix the choice behavior such that only A is chosen

from the grand set, and, in all three cases of binary choice, B is part of the selected subset

whenever it is available. Clearly, none of the three cases can be represented by a single

asymmetric and negatively transitive order on the grand set as the choice behavior in

each case violates WARP. Furthermore, such choice behavior cannot be rationalized by

the RSM. To see this, suppose by contradiction that it was the RSM with the rationales

popularity and proximity. Since in all three cases share B is always part of the selected

subset when it is available in pairwise comparisons with A and C, neither A nor C can

be more popular than B. If A (or C) survives the first stage, then its issuing company

cannot be closer to the DM’s place of abode than the issuer B as B is chosen in all pairwise

comparisons. This implies that B can never be eliminated by a sequential application of

the popularity and proximity rationales, which is a contradiction to B not being chosen

from the grand set. So, there exists no RSM that can represent any choice behavior in

Figure 2.3.

The CTC procedure, in turn, can rationalize either choice behavior in Figure 2.3. To
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see this, let the shading relation be popularity and let the DM know that share A is

the most popular asset when all three shares are available, but if only two shares are

available then popularity is uniformly distributed across the available shares. This implies

that share A is the unique choice from the grand set. Further, let the binary relation

that is applied after the shading stage be proximity. Let B be issued by the only domestic

company in Case 3, let the issuer of B and C be both domestic and that of A be foreign in

Case 3.1 and let all assets be domestic ones in Case 3.2. Then each case can be rationalized

by the respective ensuing CTC procedure with the shading relation of popularity and the

rationale of proximity.

Figure 2.4: Reversed Condorcet inconsistency
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Figure 2.4 (reversed Condorcet inconsistency): for each case, fix {A,B} to be

the subset that is selected from the grand set. In Case 4 and in Case 4.1, asset A is part

of the selected subset whenever it is available in pairwise comparisons and share B is not

chosen from the pairwise comparison with A.

Clearly, any choice behavior here violates WARP, so there does not exist a single

asymmetric and negatively transitive order that can represent the choice data. Further,

these choices can neither be rationalized by the RSM nor by the CTC. Note that any RSM

is a special case of a CTC, so to prove this statement it suffices to show that choices cannot

be rationalized by any CTC. Suppose by contradiction that there exists a generalized CTC

that can represent these choices, w.l.o.g. this CTC has popularity as the shading relation

and proximity as the binary relation at the second stage. First, neither A nor B can be

eliminated with respect to popularity in the grand set, because this contradicts {A,B}

being selected from that set. In particular, asset C can neither be more popular nor be

issued by a company that is closer to the DM’s place of abode than the issuer of A or

B, considering that {A,B} is selected from the grand set. Second, the issuer of B has

to be relatively more distant than that of A given that A is the unique choice from the
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binary comparison with B. This implies that in the grand set, A eliminates B by the

proximity rationale, which contradicts {A,B} being selected from the grand set. Hence,

choice behavior in Case 4 and Case 4.1 cannot be rationalized by any CTC.

2.4 Characterizations

2.4.1 Rational shortlist method

The first property we introduce for the characterization of the generalized RSM cap-

tures the intuition of choice reversals. In contrast to standard rational choice, the choice

procedure of the RSM explicitly allows for choice reversals to occur, but not for choice

re-reversals as we explained in the Introduction. This is formalized in the following axiom.

Axiom 2.1 (Weak WARP*) If x is the unique choice in a binary comparison with y

and x is chosen when y and other alternatives {z1, . . . , zk} are available, then y is not

chosen when x and a subset of {z1, . . . , zk} are available. Formally, for all S, T ∈ P(X) :

[{x, y} ⊂ S ⊆ T, y /∈ Cc(x, y) and x ∈ Cc(T )]⇒ [y /∈ Cc(S)]

The second property is a standard expansion axiom.

Axiom 2.2 (Expansion*) An alternative chosen from each of two sets is also chosen

from their union. Formally, for all S, T ∈ P(X) :

[x ∈ Cc(S) ∩ Cc(T )]⇒ [x ∈ Cc(S ∪ T )]

The axioms of Weak WARP* (WWARP*) and Expansion* are the only properties we

use in our characterization, so we can now state our first main result as follows.

Theorem 2.1 Let X be any finite set. A choice correspondence Cc on X is an RSM, if

and only if it satisfies Expansion* and WWARP*.

Proof: Necessity: Let Cc be an RSM on X and let P1, P2 be the rationales.

(a) Expansion*: Let x ∈ Cc(S) ∩ Cc(T ), for S, T ∈ P(X). For Expansion* to hold

we have to show that this implies x ∈ Cc(S ∪ T ). For this it is enough to show that for

any y ∈ S ∪ T , it cannot be (y, x) ∈ P1 and for any y ∈ max(S ∪ T ;P1), it cannot be
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(y, x) ∈ P2. Suppose (y, x) ∈ P1 for some y ∈ S ∪ T , then either y ∈ S or y ∈ T which

would immediately contradict x ∈ Cc(S) or x ∈ Cc(T ). Hence, this would contradict Cc
being an RSM. Suppose, now, that for some y ∈ max(S ∪T ;P1) we had (y, x) ∈ P2. Since

max(S ∪ T ;P1) ⊆ max(S;P1) ∪ max(T ;P1) we have y ∈ max(S;P1) or y ∈ max(T ;P1)

contradicting x ∈ max(max(S;P1);P2) or x ∈ max(max(T ;P1);P2). Hence, x ∈ Cc(S∪T ),

so Expansion* holds.

(b) WWARP*: Let y /∈ Cc(x, y), x ∈ Cc(T ), y ∈ T . For WWARP* to hold we have

show that for any S with {x, y} ⊂ S ⊆ T we have y /∈ Cc(S). The fact that y /∈ Cc(x, y)

implies that (x, y) ∈ P1 ∪ P2, i.e., either (x, y) ∈ P1 or P1 is indecisive and (x, y) ∈ P2.

Suppose (x, y) ∈ P1, then y /∈ S follows immediately. Suppose (x, y) ∈ P2. The fact that

x ∈ Cc(T ) implies that for all z ∈ S it is the case that (z, x) /∈ P1. Therefore, x never

drops out by P1, i.e., x ∈ max(S;P1) for all S ⊆ T for which x ∈ S. Since (x, y) ∈ P2,

then y /∈ max(max(S;P1);P2) for all such S, and thus y /∈ Cc(S).

Sufficiency: Suppose that Cc satisfies the axioms, i.e., WWARP* and Expansion*. We

construct the rationales explicitly. Define

P1 = {(x, y) ∈ X ×X|@S ∈ P(X) such that y ∈ Cc(S) and x ∈ S}

, i.e., (x, y) ∈ P1 if and only if y is never chosen when x is also available for all sets

S ∈ P(X). Next, define (x, y) ∈ P2 if and only if y /∈ Cc(x, y), i.e., (x, y) ∈ P2 if and only

if y is not chosen in the direct comparison {x, y}.

By these definitions P1 and P2 are both asymmetric: If (x, y) ∈ P1 and (y, x) ∈ P1,

then x, y /∈ Cc(x, y) which is not possible as by definition Cc(.) assigns a nonempty subset.

If (x, y) ∈ P2 and (y, x) ∈ P2, then x, y /∈ Cc(x, y) which is not possible as by definition

Cc(.) assigns a nonempty subset.

To check that P1 and P2 rationalize Cc, take any S ∈ P and let x ∈ Cc(S). First, we

show that all alternatives that are chosen over x in binary choice are eliminated in the first

round by P1. Second, we show that x survives both rounds, i.e., x is neither eliminated

by P1 nor by P2.

First, let z ∈ S be such that x /∈ Cc(x, z). Suppose, by contradiction, that for all

y ∈ S\{z} there exists Tyz ∈ P(X), y, z ∈ Tyz, such that z ∈ Cc(Tyz). By Expansion* z ∈

Cc(
⋃
y∈S\{z} Tyz). If S = ⋃

y∈S\{z} Tyz we have z ∈ Cc(S) which together with WWARP*

yields x /∈ Cc(S), i.e., a contradiction to x ∈ Cc(S). If S ⊂ ⋃
y∈S\{z} Tyz, then WWARP*



2.4. CHARACTERIZATIONS 19

yields again x /∈ Cc(S), i.e., a contradiction to x ∈ Cc(S). Thus for all z with x /∈ Cc(x, z)

there exists yz ∈ S such that (yz, z) ∈ P1

Second, x is not eliminated by either P1 or P2. For any y ∈ S, if (y, x) ∈ P1 then

by definition of P1, @T ∈ P(X) such that x ∈ Cc(T ), but this contradicts x ∈ Cc(S). If

(y, x) ∈ P2, then y would be chosen over x in binary choice, i.e., x /∈ Cc(x, y), and, by the

argument in the previous paragraph, y would have been eliminated by the application of

P1 before P2 can be applied. �

2.4.2 Categorize then choose

For our second main result the only property we use is that of the axiom of WWARP*,

so we can state our second main result as follows.

Theorem 2.2 Let X be any finite set. A choice correspondence Cc on X is a CTC, if

and only if it satisfies WWARP*.

Proof: Necessity: Let Cc be a CTC on X with a shading relation � and a binary

relation P . Suppose y /∈ Cc(x, y) and x ∈ Cc(S) for some S with y ∈ S. Now suppose

by contradiction that y ∈ Cc(R) for some R with x ∈ R ⊆ S. This implies that x /∈

max(R,�), since y /∈ Cc(x, y) implies (x, y) ∈ P (note that the possibility {x} � {y}

yields an immediate contradiction with y ∈ Cc(R)). In particular, there exist R′, R′′ ⊆ R

such that R′ � R′′ and x ∈ R′′. Since R′, R′′ ⊆ S this fact contradicts x ∈ Cc(S).

Suffiency: Suppose that Cc satisfies WWARP*. We construct the rationale and the

shading relation explicitly. Define (x, y) ∈ P if and only if y /∈ Cc(x, y). P is clearly

asymmetric, but may be incomplete. If (x, y), (y, x) ∈ P , then x, y 6∈ Cc(x, y) which

violates the property Cc(.) 6= ∅ of the definition of choice correspondences. Next, we

establish that P is well-defined. That is, it cannot be that y, z ∈ Cc(S) for some S ∈ P(X)

and (y, z) ∈ P . Suppose by contradiction that there exist S ∈ P(X) and y, z ∈ Cc(S)

such that (y, z) ∈ P . Then z /∈ Cc(y, z) and y ∈ Cc(S), but z ∈ Cc(R) for R = S, which

contradicts the fact that Cc satisfies WWARP*. So, P is well-defined. Fixing the choice

correspondence Cc, we define the upper and lower contour sets of an alternative on a set

S ∈ P(X) as

Up(Cc(S), S) = {y ∈ S\Cc(S)|(y, x) ∈ P for x ∈ Cc(S) ∨ (x, y) /∈ P, ∀x ∈ Cc(S)}
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and

Lo(Cc(S), S) = {y ∈ S|(y, x) /∈ P, ∀x ∈ Cc(S) ∧ (x, y) ∈ P for x ∈ Cc(S)}

respectively. Define R � S if and only if there exists a T ∈ P(X) such that

R = Cc(T ) ∪ Lo(Cc(T ), T )

and

S = Up(Cc(T ), T ) 6= ∅

By this definition � is asymmetric. If (R′, R′′) ∈� and (R′′, R′) ∈�, then Cc(R′ ∪R′′)

= ∅ which by definition is not possible.

Now, let S ∈ P(X) and let x ∈ Cc(S). Suppose (y, x) ∈ P for some y ∈ S. Then by

construction

Cc(S) ∪ Lo(Cc(S), S) � Up(Cc(S), S)

and y /∈ max(S,�).

Next, suppose by contradiction that x /∈ max(S,�). Then there exists R′, R′′ ⊂ S

with R′ � R′′ and x ∈ R′′. Define R = R′ ∪R′′. By construction of �, we must have

R′ = Cc(R) ∪ Lo(Cc(R), R)

and

R′′ = Up(Cc(R), R)

and x /∈ Cc(R). This means that (x, y) ∈ P for some y ∈ Cc(R) and, therefore, y /∈

Cc(x, y), for this y ∈ Cc(R). As R = R′∪R′′ ⊆ S and y ∈ Cc(R), the fact that y /∈ Cc(x, y)

together with x ∈ Cc(S) contradicts WWARP*.

Finally, by construction we have that (x, y) ∈ P , for all y ∈ max(S,�)\Cc(S) and

some x ∈ Cc(S) (since then y ∈ Lo(Cc(S), S)). �

2.5 Beyond sequential elimination

2.5.1 Indecisiveness vs. indifference

As we have defined our models in Section 2.2, it is, from our perspective, intuitive to think

of the remaining alternatives from a set after the sequential elimination as the alternatives
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among which the DM is indecisive. This is because the alternatives that remain constitute

the set of undominated (according to a strict relation), but not dominating (according

to a weak relation), options. Thus, each pair of these alternatives is incomparable with

respect to the rationale applied in the final stage. Hence, by the definition of the RSM

and CTC, if the choice correspondence is a non-singleton set, it must be that the DM is

indecisive between these alternatives, as the models allow no scope for indifference.

One could increase the scope of the models to include indifference by allowing the

relations used in the sequential elimination to be weak. In the following, we discuss a

generalization of the RSM choice procedure, but the same argumentation can easily be

applied to the CTC. In particular, we let the interpretation of the reflexive rationale

P ′ ⊆ X × X be such that (x, y) ∈ P ′ means “x is at least as good as y according to

P ′” and derive the asymmetric strict rationale P ⊆ P ′ such that (x, y) ∈ P if and only

if (x, y) ∈ P ′ and (y, x) 6∈ P ′. Notice now that there are two ways in which the DM can

maximize according to the weak rationale P ′:

max(S, P ′) = {x ∈ S|@y ∈ S such that (y, x) ∈ P ′ and (x, y) 6∈ P ′} (2.1)

and

max(S, P ′) = {x ∈ S|∀y ∈ S, (x, y) ∈ P ′} (2.2)

In words, (2.1) states that x ∈ S is maximal according to P ′ if, whenever there exists an

alternative y ∈ S which is “at least as good as x according to P ′”, it must be that the two

alternative are in fact equivalent according to P ′. Notice, however, that this is equivalent

to the maximization of the strict rationale P , i.e.,

max(S, P ) = {x ∈ S|@y ∈ S for which (y, x) ∈ P} (2.3)

which is the maximization principle used in the definition of the RSM in Section 2.2. The

maximization of S according to P ′ used in (2.2) states that x ∈ S is maximal according to

P ′ if it is “at least as good as every y ∈ S according to P ′”, that is, if x dominates all other

alternatives in S according to P ′. It follows immediately that the set of maximal alterna-

tives from (2.1) and (2.2) may not coincide. Whereas (2.2) will be empty whenever (2.1)

is empty, the inverse may not be true. In fact, as Danan (2003) states, (2.2) is nonempty

on all binary subsets of S if and only if P ′ is complete. Thus, (2.2) allows no scope for
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indecisiveness. Hence, for the sake of generality, we consider (2.1) here.3 Further, if we

keep the assumption that the strict relations applied in stage one and two may be jointly

incomplete, one may ask oneself: even if the preference judgments applied by the DM are

observable to us, can we then distinguish between alternatives among which the DM is

indecisive from those among which she is indifferent? For example, suppose that, when

choosing between alternative A and B, the DM finds the pair incomparable according

to the rationale used in the first stage (i.e., neither (A,B) 6∈ P ′1 nor (B,A) 6∈ P ′1) and,

according to the rationale used in the second stage, she finds the alternatives equivalent

(i.e., (A,B), (B,A) ∈ P ′2). It would then be intuitively appealing for us to think of the

DM being indifferent between A and B. However, if the situation is reversed such that

she is indifferent in the first stage and indecisive in the second, we would rather think of

her being indecisive between A and B. In the case that the alternatives are incomparable

(equivalent) according to the rationales in both stages, we would naturally think of the

DM being indecisive (indifferent) between the two. If we use this interpretation, we can

answer the question in the affirmative. Nevertheless, the separation between indecisive-

ness and indifference becomes fluid once introducing multiple criteria for decision making.

If we stick to the assumption of the revealed preference approach that we can only ob-

serve an individual’s choices but not her preference judgments, distinguishing between

indecisiveness and indifference is difficult, if not impossible.

In their method of distinguishing between indifferent and indecisive pairs of alterna-

tives, Eliaz and Ok (2006) call a pair of alternatives (x, y) Cc-incomparable if they are

both chosen in their binary comparison and if the alternative y is not equivalent to the

alternative x in one the following ways: (i) if x is chosen from a set S not including y,

then removing x and including y does not lead y to be chosen, (ii) if from the same set

S, x is not chosen, then removing x and including y leads y to be chosen, or (iii) if the

set of chosen alternatives of these two sets are not the same when excluding x and y. The

authors show that if the DM is behaving as if she is maximizing according to a possibly

incomplete weak preference relation4, i.e., Cc(·) = max(·,%), then a Cc-incomparable pair

is a pair between which the DM is indecisive according to the preference relation. How-
3Note that our characterization does not change by considering this more general version of the choice

procedure.
4That is, a reflexive and transitive (but not necessarily complete) binary relation.
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ever, since we do not require transitivity, it can easily be shown that this notion will not

necessarily reveal indecisiveness in our setting. Danan (2003), on the other hand, uses the

link between incompleteness of tastes (i.e., indecisiveness) and preference for flexibility to

derive a DM’s preferences. In particular, by defining preferences on menus of alternatives

and requiring that incompleteness of preferences implies a strict preference for flexibil-

ity, Danan (2003) shows that incompleteness of preferences can be uniquely derived from

observed choice behavior. Specifically, a DM has a preference for flexibility among the

menus S, T ∈ P(X) if and only if she strictly prefers the joint menu S ∪ T over S and

T , respectively. Savage (1954) argues that indifference between two alternatives can be

revealed by an experimental test. In particular, he suggests that indifference is indirectly

revealed when adding an arbitrarily small monetary bonus to one of the two alternatives

changes a decision maker’s choices between these two alternatives. Mandler (2009) shows

that indifference and indecisiveness cannot be distinguished from observable choice be-

havior in a standard one-shot choice setting. Furthermore, the author shows that, in a

sequential choice setting, even a sequentially rational choice correspondence, i.e., a choice

correspondence that selects all undominated alternatives according to a strict preference

relation, may lead to an irrational chain of trades leaving the DM strictly worse off. Fi-

nally, Hill (2012) tackles the issue of incompleteness of preferences by formally introducing

the notion of confidence in preferences. The conjecture is that the more important a choice

problem is, the more confident a DM has to be in her preferences to make a choice accord-

ing to it. The author provides an axiomatic characterization of choice behavior depending

on both the issue’s importance as well as the DM’s confidence.

If the DM is required to choose one, and only one among the alternatives between

which she is indecisive, one naturally must discuss ways of which she overcomes this

indecisiveness and ends up with a decision. Rubinstein and Salant (2008), for whom a

choice correspondence can be seen as a notion capturing indeterminacy of choice, extends

the standard choice problem by the inclusion of a frame f . Here, an extended choice

problem is captured by the double (S, f), where S ∈ P(X) is the standard set of feasible

alternatives and f ∈ F is a frame which may or may not effect the DM’s choice. By

this definition, an extended choice function γ : P(X) × F → X is a mapping that from

any extended choice problem (S, f) ∈ P(X)× F chooses a single alternative x ∈ S. The
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interpretation of this choice function is that the choice may be sensitive to the frame itself.

For example, Rubinstein and Salant (2006) consider a choice function from lists, where

altering the order in which the alternatives are displayed may alter the choice. Therefore,

as stated by Rubinstein and Salant (2008), one can think of the choice correspondence

Cc(S) as the set of alternatives chosen by an extended choice functions on S for some

frame f . Based on this thought, one may think of our RSM choice correspondence as a

correspondence induced by RSM choice functions sensitive to frames. In particular, we

can define an extended RSM choice function as

γ(S, f) = max(max(max(S;P1);P2); f) for all S ∈ P(X), f ∈ F

and require that the frame is able to reduce the choice to a singleton x ∈ S any time the

rationales fail to do so on any S ∈ P(X). Returning to the choice function from lists,

one could think of a DM choosing the first alternative in a list whenever more than one

alternative remains after the sequential elimination. Then, our general RSM can formally

be defined as

Cc(S) =
⋃
f∈F
{max(max(max(S;P1);P2); f)} for all S ∈ P(X)

implying that the correspondence and thus the characterization give forth the observable

choices observable when choice is sensitive to an impalpable frame. Closely related to this

is the model of behavioral data sets by Rubinstein and Salant (2012). Here it is assumed

that a DM has an underlying preference relation �, but that there might exist factors,

such as frames, affecting her ordering of alternatives. With this conjecture in mind, the

authors define a distortion function D(�) as a mapping from an ordering to the set of all

possible orderings a DM may display conditional on this ordering. Based on this function,

one can conclude that the behavioral data set Λ, which is also a set of orderings, revealed

by the DM, is consistent with the distortion of a given ordering if Λ ⊆ D(�). This setup

can be adapted to our setting by checking if a behavioral data set Λ is consistent with a

distortion of a DM choosing according to the RSM. That is, if Λ ⊆ D(P1, P2).

2.5.2 Pairwise and Condorcet consistency

We have shown in Section 2.3 that the generalized RSM accommodates instances of pair-

wise choice cycles and that the generalized CTC model can, in addition to such cyclical
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choice behavior, also explain a specific kind of choice reversals. Furthermore, we have

shown that there exists a third type of such “choice pathologies” that none of these mod-

els can rationalize. In this section, we show that it is this pathology and the violation of

WARP it induces that the axiomatization of a choice procedure has to address provided

that the procedure renders indecisive choice behavior possible. In fact, this pathology does

not arise for decisive choice behavior rather it is an exclusive feature of indecisive choice

behavior.

For the sake of completeness, we briefly restate the intuition of WARP, that is, if an

alternative is chosen over another alternative within a certain set of alternatives, then

changing the set cannot reverse this choice behavior. Formally, this axiom can be stated

as follows.

Definition 2.3 WARP: For all S, T ∈ P(X)

[
x = γ(S), y ∈ S, x ∈ T

]
⇒
[
y 6= γ(T )

]
For choice functions, we can decompose violations of WARP into two independent choice

pathologies which we illustrate in Figure 2.5.

Figure 2.5: Choice pathologies for decisive and indecisive choice behavior

{x, y} x

{y, z} y

{x, z} x

{x, y, z} x

Rational Choice

{x, y} x

{y, z} y

{x, z} z

{x, y, z}

Pathology 1

{x, y} x

{y, z}

{x, z} x

{x, y, z} y

Pathology 2

In “Pathology 1”, the choices exhibit a binary cycle, as x is chosen from {x, y} and

y is chosen from {y, z}, but z is chosen from {x, z}. Choice behavior that reveals such a

binary cycle is pairwise inconsistent with rational choice, independent of what alternative

is chosen from the set that contains all alternatives of the cycle, i.e., independent of what

is chosen from {x, y, z}. This is so because whatever alternative is chosen from {x, y, z},

we can remove one of the two unchosen alternatives such that from the resulting set the

other remaining unchosen alternative is now chosen over the alternative that is chosen
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from {x, y, z}. If, for instance, x is chosen from {x, y, z}, we can remove y such that from

the resulting set {x, z}, z is chosen over x.

In “Pathology 2”, x is chosen in the respective pairwise comparisons with y and z,

but fails to be chosen from {x, y, z}. The corresponding choice behavior is Condorcet

inconsistent with rational choice, because the alternative that is chosen from each pairwise

comparison with any alternative of a certain set is not chosen from that set, i.e., x is chosen

from {x, y} and {x, z}, but not from {x, y, z}.

If a choice procedure allows choice behavior to be indecisive, then a third pathology

may arise. This pathology takes the general form of the choice behavior illustrated in

Figure 2.6.

Figure 2.6: Additional choice pathology for indecisive choice behavior

{x, y} {y}

{y, z} {y}

{x, z} {x}

{x, y, z} {x, y}

Pathology 3

In “Pathology 3”, x is chosen from {x, y, z}, but it is not chosen from each pairwise

comparison with other alternatives of that set, more precisely, x is not chosen from {x, y}.

This pathology reverses the intuition of the second pathology, so the corresponding choice

behavior is Condorcet inconsistent with rational choice in the reversed way, because it

pertains to a situation in which an alternative that is chosen from a certain set, x from

{x, y, z}, is not chosen from each pairwise comparison with any alternative of that set,

i.e., x is not chosen from {x, y}.

This type of inconsistency cannot arise for procedures that require choice behavior

to be decisive and neither the generalized version of the RSM nor that of the CTC

procedure can accommodate this choice pathology. An elaborate explanation of this fact

is given after Figure 2.4 in Section 2.3, but it is also immediate from the transformation

of the axiom of WWARP to indecisive choice behavior in the previous section. In contrast

to WWARP, the axiom of WWARP* also requires that choice re-reversals are excluded

across just two sets, i.e., if some alternative is not chosen in a pairwise comparison with
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another alternative then there exists no set from which both alternatives are selected.

This highlights that “Pathology 3” constitutes a violation of WWARP* given that x is

not chosen from the pairwise comparison with y, but either alternative is chosen from

{x, y, z}.

2.5.3 Other sequential procedures of choice

In the rational shortlist method, Manzini and Mariotti (2007) consider a sequential choice

procedure defined by two asymmetric binary relations where these relations and the se-

quence in which they are applied are invariant with respect to the choice set. The fact

that the definition of the RSM requires choice behavior to be decisive makes it a special

case of our corresponding generalization, the RSM*. In a companion paper, Manzini and

Mariotti (2012) provide a characterization of a variation of this choice procedure in which

the first asymmetric relation in the sequence of rationales is not restricted, by definition,

to binary comparisons. The ensuing CTC choice procedure requires choice behavior to

be decisive which makes it a special case of our corresponding generalization, the CTC*.

Au and Kawai (2011) restrict the RSM model to the use of transitive rationales. The

axiom they introduce for this purpose is not affected by indecisiveness of choice behavior.

The rationalization model of Cherepanov et al. (2013) generates the same choice data

as a CTC choice procedure does such that it is also fully characterized by the axiom

of WWARP. Our reformulated version of this axiom, WWARP*, presumably suffices to

fully characterize the obvious variation of the rationalization model to indecisive choice

behavior.

In the choice procedures described by Kalai et al. (2002) and Apesteguia and Ballester

(2005) multiple rationales are used to explain choice behavior. Their focus is not on a

sequential application of several rationales, rather the authors are interested in identifying

the minimum number of rationales necessary to explain choice data if the application of

each relation can be restricted to specific subsets.

A completely different approach to choice behavior is taken by Masatlioglu et al.

(2012) in their revealed attention model. According to their two-stage procedure of choice

with limited attention (CLA), first an attention filter determines which of the available

alternatives are feasible and then the DM selects the unique option from the set of feasible
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alternatives that maximizes a complete and transitive binary relation. The authors show

that their model is fully characterized by a single axiom called Limited Attention WARP

(LA-WARP) which shares no logical connection to the characterizations of the RSM and

the CTC. Furthermore, they provide examples of an RSM that cannot be a CLA and the

other way around which suggests that a transformation of the CLA model to indecisive

choice behavior presumably retains this lack of a logical connection to the generalized

RSM and CTC.

In a companion paper, Lleras et al. (2014) introduce a variation of the revealed at-

tention model that they refer to as the limited consideration model. Choice with limited

consideration (CLC) is a two-stage choice procedure in which, at the first stage, a con-

sideration filter restricts the set of available alternatives to feasible ones and then in the

second stage the DM selects the unique option from the set of feasible alternatives that

maximizes a complete, transitive and asymmetric binary relation. Once an alternative is

unfeasible in a certain set, then this will remain unchanged in any superset of that set.

The authors show that the limited consideration model is fully characterized by a single

axiom called Limited Consideration WARP (LC-WARP). This property implies WWARP

such that every CLC is also a CTC which suggests that a transformation of the CLC to

choice correspondences is presumably also a generalized CTC.
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Chapter 3
Managing anticipation and

reference-dependent choice

This chapter is based on joint work with Christopher Kops.

Abstract. Anticipation of future consumption may provide pleasure and pain in the

present. Recent studies from neurobiology support this view. Building on this evidence,

our paper develops a model of individual decision-making under risk where the decision

maker derives utility from both standard future consumption and non-standard present

anticipation of such consumption. When future consumption is risky, anticipation may

range from rational expectations to the narrow focus of dreaming or worrying about a

single outcome. On the other hand, anticipation also sets a reference point for consump-

tion. We define a new solution concept, characterize it on the level of choice data and

identify the subjective parameters of our model.

Keywords: reference-dependent preferences, reference point, consideration sets, an-

ticipatory utility, information aversion, asymmetric matching pennies
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3.1 Introduction

Imagine a decision maker (DM) purchasing a ticket to the state lottery. The jackpot is at

a record high: $1.5 billion. Quite likely, the DM savors the possibility of becoming rich to

the degree that she may become slightly upset when she looses. Likewise, it is conceivable

that a DM who foregoes to invest in home insurance dreads a potential disaster, until the

end of hurricane season may bring her more than a relief. Indeed, recent neurobiological

studies show that anticipating future outcomes may produce pleasure and pain in the

present (e.g., Berns et al., 2006, 2007; Schmitz and Grillon, 2012). In turn, anticipation

is known to affect the joy from actual consumption (Abeler et al., 2011; Baillon et al.,

2020). We incorporate this evidence into a theory that generalizes Köszegi and Rabin

(2006), define new equilibrium concepts, characterizes them on the level of choice data

and identify the subjective parameters of our theory.

Earlier studies have suggested different generalizations of expected utility theory.

Among others, these generalizations allow to model loss aversion (Kahneman and Tver-

sky, 1979; Shalev, 2000; Köszegi and Rabin, 2006; Heidhues and Kőszegi, 2008; Kőszegi,

2010), regret aversion (Sugden, 1993), or, disappointment aversion (Bell, 1985; Loomes

and Sugden, 1986; Gul, 1991). Prominent examples of such theories explicitly rely on the

idea that DMs evaluate outcomes as gains and losses compared to some reference point.

Sometimes expectations are taken as the reference point (Köszegi and Rabin, 2006), at

other times it is the (augmented) status quo (Kahneman and Tversky, 1979). Experimen-

tal evidence on what shapes the reference point is mixed. Some evidence is consistent with

reference points being based on people’s expectations (Abeler et al., 2011), other evidence

is clearly not (Baillon et al., 2020), favoring security levels such as the maximum of the

minimal outcomes.

What separates our approach from these earlier generalizations is our new solution

concept. First, it allows the DM’s reference point for some lottery to be any convex com-

bination of the outcomes possible under that lottery. The reference point may, for instance,

be equal to the rational expectation or the lottery’s minimum (or maximum) outcome.

This way, our model helps to reconcile the theory of reference-dependent preferences with

the mixed experimental evidence (Abeler et al., 2011; Baillon et al., 2020). Second, when

the DM commits to her choice after anticipation, our solution concept imposes the fol-
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lowing consistency on choice: When the DM chooses a lottery, no convex combination

of its possible outcomes, as the choice of anticipation, should make her want to choose

otherwise. Our characterization and identification results show that the resulting model is

still falsifiable. Sharing the concerns that “reference-dependent preferences are inherently

difficult to test, as expectations are hard to observe in the field” (Abeler et al., 2011,

p.470), we establish these results on the level of observable choice data.

Such characterization and identification results establish to what extent meaning can

be inferred from choice data and, at the same time, to what extent the parameters of our

model are meaningful in terms of behavior (Dekel and Lipman, 2010). While central to

decision theory, identification also provides the grounds on which to draw applications

and policy implications (Spiegler, 2008). To further substantiate this claim and suggest

possible applications, a few examples may be instructive at this point. Their formalizations

are delayed to Section 3.2.4.

Example 3.1.1 (Possibility vs. probability) Harless and Camerer (1994) show that

expected utility theory (EUT) often provides a poor fit when individuals choose between

gambles with different support. Specifically, EUT explains behavior rather well when out-

come probabilities change from 24% to 25%, or, from 60% to 61%, but fails to do so when

probabilities change from 0% to 1%, or, from 99% to 100%. As our model ties the reference

point to the possibility of outcomes, it can account for such behavior.

Example 3.1.2 (Strategic interactions & anticipation) In strategic interactions, in-

dividuals have to consider what actions or strategies their opponents may settle for. Exper-

iments by Goeree and Holt (2001) on the matching pennies game show that play conforms

with Nash-equilibrium predictions when the game is symmetric, but deviates from it sys-

tematically in asymmetric instalments of the game. Anticipation in the form of savoring

a high payoff or dreading a low one, as is possible in our model, may rationalize such

behavior.

Example 3.1.3 (Information aversion) Huntington’s disease (HD) is a single-gene

disorder. Individuals with one parent with HD face a 50% chance of inheriting the mu-

tated gene and developing the disease. This means that predictive testing provides signif-

icant value. But, extensive evidence shows that at-risk individuals decline to undergo it
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(Evers-Kiebooms et al., 2002; Oster et al., 2013a). Data from self-reports (Oster et al.,

2013b) identifies overly optimistic beliefs as a potential driver for such behavior. When

anticipation produces pleasure and pain in the present holding such beliefs and stretching

the anticipation period may become a rational thing to do.

Example 3.1.4 (Defensive pessimism) People who score high on standardized anxi-

ety tests have been found to deliberately set significantly lower expectations for themselves,

in an effort to prevent the possibility of failure and potential threats to their self-esteem.

Norem and Cantor (1986) refer to this phenomenon as defensive pessimism. The frame-

work that we lay out here shows how such behavior can be optimal for individuals prone

to worrying about future outcomes.

The rest of the paper is organized as follows. Section 3.2 presents our model of anticipation-

based and reference-dependent preferences, defines our equilibrium concepts and formal-

izes the examples above. Section 3.3 presents a comparable model based on choice and

shows that it is equivalent to the model presented in Section 3.2. Section 3.4 provides the

behavioral foundation, and Section 3.5 the identification of the model parameters. Section

3.6 discusses our findings. Finally, Section 3.7 concludes.

3.2 A model of anticipation-based and

reference-dependent preferences

3.2.1 Primitives

Let X be a finite set of simple (objective) lotteries on some finite set of outcomes Y , where

we denote typical elements of Y by x, y and z, and let ∆ := ∆(Y ) be the set of all simple

(objective) lotteries on Y . Clearly, for |Y | ≥ 2, it holds that X ⊂ ∆, since X is finite. We

interpret elements of ∆ denoted by r as specifying the lotteries over anticipatory outcomes,

and elements of X denoted by p, q and w as lotteries over physical outcomes. Further,

for any lottery p ∈ X, supp(p) denotes the support of p, i.e., the set of outcomes that

are possible under the (potentially degenerate) lottery p. If p is the degenerate lottery

assigning a probability of 1 to the outcome x and 0 to all other outcomes in X, then
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supp(p) = {x}. P(X) denotes the set of nonempty subsets of X with typical elements

R, S and T . We refer to these as choice problems.

3.2.2 The model

Since anticipation plays such a key role in our model, the timing of decision-making and

consumption becomes a crucial aspect of our model. Formally, we consider a two-period

decision problem. In the initial phase of period 1, the DM chooses two lotteries. One is a

lottery over physical outcomes to be realized in period 2 and the other is a lottery over

anticipatory outcomes to be consumed in period 1.

To address the inherent commitment issue, the next section discusses the following

two interpretations of the aforementioned setup: (i) the DM commits to her choice at the

time of making the decision and (ii) the DM commits to her choice “shortly before” the

lottery over physical outcomes is realized, and hence after deriving anticipatory utility.

The equilibrium concepts that we then derive for these two interpretations spell out the

requirements for the tuple (r, p) of anticipatory lottery r and physical lottery p to be a

feasible choice. A requirement that both concepts share imposes the following rationality

constraint on the lottery r: In any equilibrium, the DM can only anticipate what under

her choice of a lottery over physical outcomes is theoretically possible. Formally, we can

express this as supp(r) ⊆ supp(p). For instance, this requirement rules out that the DM

dreams about winning the state lottery without purchasing a ticket for it. Furthermore,

the DM’s choice of r also serves as a reference point for her period 2 consumption of a

physical outcome and the utility she derives from it.

Formally, we consider a DM who has preferences % on ∆ × X. We assume that her

anticipation-preferences can be represented by a period 1 von Neumann-Morgenstern util-

ity function defined on ∆ and her consumption-preferences, likewise, by a period 2 von

Neumann-Morgenstern-type utility function defined on ∆×X. Specifically, given the DM’s

period-2-choice of a lottery over physical outcomes is p ∈ X and her period-1-choice of a

lottery over anticipatory outcomes is r ∈ ∆, we assume that her utility is given by

U(r, p) = ζU1(r) + δU2(r, p)

= ζ
∑

y∈supp(r)
r(y)u1(y) + δ

∑
z∈supp(p)

p(z)
∑

y∈supp(r)
r(y)u2(y, z)

(3.1)
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where u1, u2 are continuous Bernoulli utility functions on Y and Y ×Y , respectively, and

ζ and δ measures the weight of anticipatory and consumption utility, respectively. This

is naturally a very general specification. As our main focus is studying how anticipation

affects a DM that that attains gain-loss utility, we formulate a specification that extends

that of Köszegi and Rabin (2006) in our domain below.1

U(r, p) = ζ
∑

y∈supp(r)
r(y)u(y) + δ

∑
z∈supp(p)

p(z)
∑

y∈supp(r)
r(y) · (u(z) + µ(u(z)− u(y))) (3.2)

where u = u1 and where µ is a gain-loss-function that is increasing with µ(0) = 0. For

our exemplary applications here, we focus on the following linear form that extends the

one of Köszegi and Rabin (2006),

U(r, p) = ζ
∑

y∈supp(r)
r(y) · y + δ

∑
z∈supp(p)

p(z)
∑

y∈supp(r)
r(y) · (z + µ(z − y)) (3.3)

where µ is given by

µ(x) =


ηx, if x > 0

ηλx, otherwise,
(3.4)

and where η is the weight the DM attaches to gain-loss utility, and λ > 1 is the DM’s

“coefficient of loss aversion”.

3.2.3 Equilibrium concepts

To elaborate on the commitment issue, consider our state lottery example in more detail.

Suppose the DM sits at home and ponders the question of whether to go to the local

kiosk and buy a ticket for the state lottery. Further, suppose she does all of this shortly

before the lottery is resolved. In this case, the DM will derive anticipatory utility already

at home if she decides to go and buy the ticket. Note, however, that once at the kiosk she

may still renege on her decision to buy the lottery ticket. To address this, our definition

of a managing anticipations equilibrium (MAE) directly imposes a feasibility restriction

on what the DM can choose when she can only commit to her choice after anticipation.

Definition 3.1 (MAE) Given a two-period choice problem S ∈ P(X), the tuple (r∗p, p) ∈

∆× S is a managing anticipations equilibrium (MAE) if
1All of our results, however, also hold for the general specification in Equation (3.1).
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1. supp(r∗p) ⊆ supp(p),

2. U(r∗p, p) ≥ U(rp, q), for all (rp, q) ∈ ∆× S with supp(rp) ⊆ supp(p)

In other words, a tuple of lotteries, (r∗p, p), is a MAE for some two period choice problem

S if it satisfies the following three conditions. First, the consumption lottery p must be

available as a choice, i.e., p ∈ S. Second, if the DM chooses p from choice problem S, then

the only outcomes she may anticipate are those that are possible under her choice of p,

i.e., supp(r∗p) ⊆ supp(p). Third, given the DM chooses p, there should not be anything

that she can anticipate from this choice that changes her mind as to whether she wants

to choose p.

At first glance, the MAE concept may seem to allow for almost all types of behavior

one can think of. This is far from true. Consider, for instance, a DM who is asked to decide

whether or not she wants to purchase, at a cost of b > 0, a lottery that pays out a > 0

with probability p and nothing otherwise. If utility u1 is concave and u2 = u1 + µ, with µ

as defined in Equation (3.4), then it is straightforward to verify that any MAE involves

not buying the lottery if the lottery’s expected value is negative. Indeed, in this case,

purchasing the lottery and anticipating to win (resp., lose) is dominated by not buying

the lottery and anticipating to win (resp., lose). The second part of Definition 3.1, then

rules out that purchasing the lottery is a MAE. This illustrates how in our example above

the DM potentially will not buy the lottery if she commits to her decision only shortly

before the lottery is resolved.

Our definition above does not guarantee that the MAE unique. In fact, multiple MAEs

with different utility levels may arise. This naturally suggests a refinement of the MAE

concept. This refinement imposes that the DM will not just choose any or all of the MAEs,

but her most preferred ones, leading to the equilibrium concept that we name preferred

managing anticipation equilibrium (PMAE). We define it in the following way.

Definition 3.2 (PMAE) Given a two-period choice problem S ∈ P(X), the tuple (r∗p, p) ∈

∆× S is a preferred managing anticipations equilibrium (PMAE) if

1. (r∗p, p) is a MAE, and

2. U(r∗p, p) ≥ U(r∗q , q), for all MAEs (r∗q , q) with (r∗q , q) ∈ ∆× S
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In other words, the tuple (r∗p, p) is a PMAE for some two-period choice problem S if

it is a MAE and weakly preferred to any other possible MAE.

To motivate our final equilibrium concept, we return to the commitment issue from

before. In a MAE, the DM anticipates the decision situation, but commits to her actual

choice shortly before the lottery over consumption outcomes realizes, so that the reference

point stays fixed. In the equilibrium concept we introduce next, the choice-acclimating

managing anticipations equilibrium (CMAE), the DM commits to her choice “far in ad-

vance” so that the reference point may adapt. This is analogous to the difference between

the personal equilibrium (PE) and choice-acclimating PE (CPE) in Kőszegi and Rabin

(2007).

Definition 3.3 (CMAE) Given a two-period choice problem S ∈ P(X), the tuple (r∗p, p) ∈

∆× S is a choice-acclimating managing anticipations equilibrium (CMAE) if

1. supp(r∗p) ⊆ supp(p),

2. U(r∗p, p) ≥ U(rq, q), for all (rq, q) ∈ ∆× S with supp(rq) ⊆ supp(q)

In other words, the tuple (r∗p, p) is a CMAE for some two-period choice problem S if it

satisfies the first two conditions of a MAE and if the utility from (r∗p, p) is higher than

that from any other tuple (rq, q) that also satisfies the two first conditions of a MAE.

Note that the definition of the CMAE is less restrictive than that of the MAE, in the

sense that the DM can choose according to her preference over ∆ × X, as long as the

reference lottery is in the support of the physical lottery. This is so, because the DM can

commit to her choice at the time of choosing. Indeed, in our state lottery example, the

DM only needs to compare the choice of buying the ticket and dreaming about winning

to not buying and anticipating just that. This scenario is comparable to a situation where

the DM finds herself in the kiosk and decides whether to buy the ticket for tomorrow’s

state lottery without having anticipated this purchase in advance. Thus, this concept hints

at an “impulse” buying effect, in the sense that more alternatives are feasible when the

choice problem has not been anticipated in advance.
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3.2.4 Examples

We now present a couple of examples which show how the equilibrium concepts can be

applied and that elaborate on the examples presented in the Introduction. The first exam-

ple considers the famous Allais paradox. Typical Allais-type choices are inconsistent with

expected utility theory. Probability weighting as proposed in prospect theory (Kahneman

and Tversky, 1979) is usually invoked to explain these choices. Our approach in this paper

provides an alternative explanation for Allais-type behavior that is based on anticipation

being an important source of utility and the DM being considerably loss-averse. Such a

DM is prone to worrying a lot about a lottery resulting in a bad outcome, no matter how

unlikely this is to happen (as long as it is still possible, of course). In other words, such a

DM wants to safeguard herself from feeling any disappointment in the future.

Example 3.2.1 (Possibility vs. probability (cont’d)) Consider a DM who is con-

fronted with the two choice problems of the Allais Paradox. First, she is asked to choose be-

tween p = [$1M ] and q = ($1M, .89; $0, .01; $5M, .1), and, second, between p̃ = ($0, .89; $1M, .11)

and q̃ = ($0, .9; $5M, .1). Typical Allais choices are p from {p, q} and q̃ from {p̃, q̃}. If

anticipation is a rather important source of pleasure and pain for the DM, say ζ > δ, and

she is considerably loss averse, i.e., λ is large enough, then it is straightforward to show

that the typical Allais choices can be the unique CMAE and PMAE. The mere possibility

of $0 and $5M drives here choices of p from {p, q} and q̃ from {p̃, q̃}, respectively.

The next example illustrates that a model of anticipation is applicable in situations incor-

porating strategic considerations. In a series of experiments by Goeree and Holt (2001),

participants were asked to interact in several strategic situations. Two of these situations

took the form of the Matching Pennies Game depicted in Figure 3.1.

Figure 3.1: Symmetric (left) and asymmetric (right) versions of a Matching Pennies Game
between Player 1 (P1) and Player 2 (P2)

P2 P2

L (48%) R (52%) L (16%) R (84%)

P1
T (48%) 80,40 40,80

P1
T (96%) 320,40 40,80

B (52%) 40,80 80,40 B (4%) 40,80 80,40
Note: Percentages in brackets indicate how many participants in the experiment by Goeree and
Holt (2001) chose which pure strategy.
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With 48% and 52%, average play in the symmetric Matching Pennies Game was very

close to the mixed-strategy Nash equilibrium of 50–50 as predicted by standard game

theory. In the asymmetric Matching Pennies Game, however, average play of Player 1

with 96% for T and 4% for B was far off the equilibrium play. The following example

illustrates that PMAE cannot only account for these choices, it also provides an intuitive

explanation for why the observed play may be an equilibrium after all. This explanation

rests again on loss-aversion and anticipation being a non-negligible source of utility.

Example 3.2.2 (Strategic interactions & anticipation (cont’d)) There are two play-

ers, Player 1 and Player 2, with identical preferences, represented by Equation (3.3). Their

choice behavior is governed by PMAE2. Further, let them put almost equal weight on the

anticipatory and the consumption part of their utility function, i.e., δ = .52 > .48 = ζ, a

weight of η = .908 on gain-loss utility and let their coefficients of loss aversion be equal to

λ = 1.12. Then, in the asymmetric Matching Pennies Game in Figure 3.1, Player 1 play-

ing T with probability .96 and Player 2 playing L with probability .16 is a mixed-strategy

equilibrium built on PMAEs. This is so, because, while Player 1 dreams about receiving

320, when playing T, he worries about receiving 40, when playing B. Taking this into

account, Player 2 worries about receiving 40, when playing L, and dreams about receiving

80, when playing R.

The subsequent example we present shows how anticipatory utility is capable of ra-

tionalizing situations of information aversion.

Example 3.2.3 (Information aversion (cont’d)) Consider an at-risk individual with

one parent suffering from HD who is considering whether to get tested for the mutated

gene. Not getting tested is equivalent to choosing the lottery p = (a, .5; b, .5) where a > 0

is the outcome of no HD and b < 0 the outcome of having HD. Choosing to get tested will

resolve all uncertainty, and will thus make it impossible to anticipate anything else other

than the true state. However, when facing the choice problem, the state is not known. Let

the degenerate lottery q = [.5a+ .5b] be the outcome of getting tested. With linear utility,
2We focus on the case of PMAE here. However, as one may argue that the CMAE is more appropriate

in the experimental setup, we note that it is straightforward to show that similar parametric definitions
lead to the same conclusion.
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anticipating not having HD and not getting tested is a MAE if both

ζa+ δ(.5 ∗ a+ .5 ∗ (b+ ηλ(b− a))) ≥ ζa+ δ(.5 ∗ a+ .5 ∗ b+ ηλ(.5 ∗ b− .5 ∗ a))

and

ζa+ δ(.5 ∗ a+ .5 ∗ (b+ ηλ(b− a))) ≥ ζb+ δ(.5 ∗ a+ .5 ∗ b+ η(.5 ∗ a− .5 ∗ b))

Furthermore, this option is guaranteed to be an PMAE if, in addition, anticipating not

having HD not getting tested is better than getting tested. This holds if

ζa+ δ(.5 ∗ a+ .5 ∗ (b+ ηλ(b− a))) ≥ ζ(.5 ∗ a+ .5 ∗ b) + δ(.5 ∗ a+ .5 ∗ b)

It is straightforward to check that all inequalities are satisfied for ζ ≥ δηλ. That is, if

the weight on anticipatory utility is large enough. This shows that not getting tested and

anticipating not having the disease is an equilibrium. Anticipation driving information-

averse choice in this way matches the data on self-reports from at-risk individuals (Oster

et al., 2013b) suggesting overly optimistic beliefs as the driver for this information-averse

decision.

The final simple example shows how consciously anticipating the worst outcome may

be optimal in our theory.

Example 3.2.4 (Defensive pessimism (cont’d)) Consider an anxious young economist

who has presented her research paper at the most pertinent conferences, made sure that

her paper is as polished as it can be and has submitted it to a top ranked scientific journal

in her field. The publication process she faces is like a lottery that puts low probability

weight on her paper being published and a high probability on it being rejected. Let a > 0

be the outcome of publication and b < 0 the outcome of rejection. Furthermore, let p� .5

be the probability of publication. In then follows immediately that the young economist will

anticipate rejection if she is sufficiently loss averse.3

3.2.5 Comments on equilibrium existence and equivalence

Whereas it follows directly that the set of alternatives that are CMAE in a given choice

problem S is always nonempty, it is straightforward to see from Definition 3.1 that situa-
3Notice that since the economist has already chosen to submit her paper to the journal, PMAE and

CMAE coincide.
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tions with no MAE may arise. To address this, we note that a reformulated version of the

consistency requirement limited cycle inequalities (Freeman, 2017) imposed on the utility

function, U , is sufficient for equilibrium existence. Specifically, the following condition

suffices:

Definition 3.4 (Limited cycle inequalities) The function U : ∆ × X → R satis-

fies limited cycle inequalities if for any p0, . . . , pn ∈ X,U(r∗pi−1
, pi) > U(rpi−1 , pi−1) for

i = 1, . . . , n, then U(r∗pn
, pn) > U(rpn , p0), for some r∗pi−1

∈ supp(pi−1), for all rpi−1 ∈

supp(pi−1), for some r∗pn
∈ supp(pn), and for all rpn ∈ supp(pn).

In words, limited cycle inequalities state that, if there is a sequence of consumption

lotteries such that each succeeding lottery in the sequence makes the preceding lottery

non-feasible according to the MAE concept, then the first lottery in the sequence cannot

block the last lottery. Our results in later sections depend on U satisfying this property.4

Next, from the definitions of the equilibrium concepts, the following corollary shows

under which conditions (i) the set of MAEs is equivalent to the set of PMAEs and (ii)

the set of PMAEs is equivalent to the set of CMAEs.

Corollary 3.1 1. MAE is equivalent to PMAE if and only if for all p, q ∈ X, U(r∗p, p) ≥

U(rp, q) and U(r∗q , q) ≥ U(rq, p) imply that U(r∗p, p) = U(r∗q , q) for all rp ∈ ∆ with

supp(rp) ⊆ supp(p), for all rq ∈ ∆ with supp(rq) ⊆ supp(q), for some r∗p ∈ ∆ with

supp(r∗p) ⊆ supp(p), and for some r∗q ∈ ∆ with supp(r∗q) ⊆ supp(q).

2. PMAE is equivalent to CMAE if and only if for all p, q ∈ X, U(r∗p, p) ≥ U(rq, q)

implies that U(r∗p, p) ≥ v(rp, q) for some r∗p ∈ ∆ with supp(r∗p) ⊆ supp(p), for all

rp ∈ ∆ with supp(rp) ⊆ supp(p), and for all rq ∈ ∆ with supp(rq) ⊆ supp(q).

The corollary firstly states that all MAEs are PMAEs if and only if U is defined such

that the utility of any two MAE must be the same. Secondly, it states that all PMAEs

are CMAEs if and only if any CMAE is also an MAE.
4Note that Freeman (2016) shows that the property is satisfied for functional forms that are typically

used for modelling reference-dependent choice.
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3.3 Reference-dependent choice

The purpose of this and the following sections is to consider our model of anticipation-

based and reference-dependent preferences presented in Section 3.2 on the domain of

observables. The idea is that we may only observe the set of available alternatives S

and the DM’s chosen alternatives. In this domain, we show that the PMAE concept

(Definition 3.2) is equivalent to a two-stage choice procedure. In the first stage, a subset

of the available alternatives is chosen for consideration based on a filtering process that

satisfies well-known internal consistency conditions. Finally, in the second stage, the DM

applies her preference relation to select the most preferred of the considered alternatives.

The equivalence is further underlined by the fact that the first-stage filtering is equivalent

to the MAE concept (Definition 3.1). In addition, it follows immediately that the CMAE

concept (Definition 3.3) is equivalent to a DM choosing according to her preference relation

without being restricted by a filtering in the first stage.

3.3.1 Primitives

Let X be the set of lotteries over physical outcomes with typical elements denoted by

p, q and w as defined in Section 3.2. P(X) denotes the set of nonempty subsets of X

with typical elements R, S and T . A class is a collection of sets. A cover of a set S is a

collection of sets whose union contains S as a subset. Formally, if C = {Ti : 1 ≤ i ≤ n} is

an indexed class of sets Ti, then C is a cover of S if S ⊆ ⋃n
i=1 Ti. A binary relation R on

X is a subset of X ×X, where we abbreviate (p, q) ∈ R by pRq. R is a weak order if it

is complete (i.e., pRq or qRp for all p, q ∈ X) and transitive (i.e., pRq and qRw implies

pRw for all p, q, w ∈ X). The set of maximal alternatives according to a binary relation

R on some set S is given by

max(S;R) = {p ∈ S : pRq if qRp, ∀q ∈ S}

We denote the asymmetric component of the binary relation R by P . That is, for any

p, q ∈ X, pPq if and only if pRq and ¬[qRp]. A correspondence C : P(X) → P(X) is

a mapping that for any choice problem S ∈ P(X) picks a nonempty subset C(S) ⊆ S.

It follows that a choice correspondence is induced by a binary relation R, if and only if

C(S) = max(S;R) for all S ∈ P(X). In that case, we use the notation C(S) = C(S;R).
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3.3.2 The choice procedure

We consider a DM with preferences over X that are captured by a weak order %. The

starting point of our choice theoretical analysis is a choice correspondence on X. The

choice theory that we set up is such that the DM picks the preferred alternatives from all

alternatives which she considers for her choice owing to a filtering process. These may not

be the best of the available alternatives according to the DM’s preferences. Rather, it will

be the most preferred alternatives that receives her consideration, i.e., from a subset of the

available alternatives. Our goal is to later elicit the DM’s preference relation along with

her consideration set from choice data alone. This is impossible without any knowledge

about how she forms this consideration set. To see this, note that otherwise it would

always be possible to claim that the DM only considers the alternatives she chooses and

nothing else and that these are equally preferred, such that outside observers can hardly

infer anything about the DM’s preferences and consideration set. The next definition

states our assumptions on referential consideration formally.

Definition 3.5 A consideration set mapping Γ : P(X)→ P(X) is a reference-dependence

(RD) filter if for any S ∈ P(X) and any p ∈ S, it holds that p ∈ Γ(S), whenever there

exists a cover C of S such that p ∈ Γ(T ), for all T ∈ C.

The idea here draws on that of revealed preference extended to revealed referential con-

sideration. If the DM’s consideration and, ultimately, her choice is influenced by reference

points, then this influence should be internally consistent on the level of consideration.

Given this definition of the filter, we can now introduce the choice procedure that we are

proposing in this paper.

Definition 3.6 A choice correspondence C on X is a reference-dependent choice (RDC)

if there exists a weak preference relation % on X and an RD filter Γ such that for any

choice problem S ∈ P(X), C(S) is the set of %-best elements in Γ(S), formally

C(S) = C(Γ(S);%), ∀S ∈ P(X)

The definition of the RDC states that, in any choice problem, the DM first uses her

reference dependence (RD) filter to limit the set of alternatives. From this limited set, she

then applies her preference relation to select the most preferred alternatives. In the next
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section, we will show the equivalence of (i) the RDC and PMAE and (ii) the RD filter

and MAE.

3.3.3 Behavioral equivalence of PMAE and RDC

This section provides a behavioral equivalence result of the PMAE concept and the RDC

procedure. Such results enable any outside observer to verify whether choice data coming

out of a series of choice problems is consistent with a DM choosing based on anticipation

and reference-dependent preferences. To do so, we adopt the predominant view in the

literature on reference points (Freeman, 2017) and anticipations (Abeler et al., 2011) in

that these elements of our theory are hard if not impossible to observe. Therefore, the

primitives on which we provide our behavioral characterizations of the MAE and the

PMAE concept is choice over physical outcome-lotteries alone, that is, choice from X. To

start things, let ∆ be the set of lotteries over anticipatory outcomes, with typical elements

denoted by r as defined in Section 3.2. Let U : ∆×X → R be a reference-dependent utility

function as defined in Equation (3.1) satisfying the limited cycle inequalities property as

in Definition 3.4. For any alternative p ∈ X, define Rp as follows:

Rp = {r ∈ ∆ : supp(r) ⊆ supp(p)}

that is, Rp is the set of anticipatory choices that are in the support of the alternative p.

Following Definition 3.1, let C(·;UMAE) be a choice correspondence C induced by U

in accordance with the MAE concept. That is, for any S ∈ P(X), the correspondence is

given by

C(S;UMAE) = {p ∈ S : U(r∗p, p) ≥ U(rp, q),∀q ∈ S,∀rp ∈ Rp and some r∗p ∈ Rp}

The following result establishes that the MAE concept is equivalent to choosing directly

by the RD filter. As such, the RD filter can be thought of as a consideration set mapping

that spotlights the set of feasible alternatives, the ones that are MAE.

Proposition 3.1 Let X be a set of alternatives and C : P(X) → P(X) a choice corre-

spondence. There exists an RD filter Γ such that C(S) = Γ(S) for all S ∈ P(X) if and

only if there exists a U : ∆×X → R such that C(S) = C(S;UMAE).
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Proof: Please refer to Section 3.9.1.

The PMAE concept is a natural refinement on the set of MAEs, based on the DM

picking the optimal MAE according to her utility, U , conditionally on satisfying the

individual rationality requirement. Accordingly, C(S;UPMAE) is defined as follows

C(S;UPMAE) = {p ∈ S : U(r∗p, p) ≥ U(rq, q),∀q ∈ C(S;UMAE),∀rq ∈ Rq and some r∗p ∈ Rp}

The following proposition establishes the equivalence of RDC and PMAE.

Proposition 3.2 Let X be a set of alternatives and C : P(X) → P(X) a choice cor-

respondence. There exists a weak preference % and an RD filter Γ such that C(S) =

C(Γ(S);%) for all S ∈ P(X) if and only if there exists a U : ∆ × X → R such that

C(S) = C(S;UPMAE).

Proof: Please refer to Section 3.9.2.

Propositions 3.1 and 3.2 jointly show that the equivalence of the RDC and our model

of anticipation-based reference-dependent preferences defined in Section 3.2 is such that

the RD filter fully captures the set of alternatives from a choice problem S that are

MAE. Then the second-stage application of the weak order in the RDC fully captures the

the DM’s preference among the alternatives that are MAE. Finally, the simpler CMAE

concept merely requires that the DM chooses the best alternative in S according to U .

Thus, the definition of C(S;UCMAE) is given by

C(S;UCMAE) = {p ∈ S : U(r∗p, p) ≥ U(rq, q), ∀q ∈ S,∀rq ∈ Rq and some r∗p ∈ Rp}

The following straightforward result establishes that the CMAE concept is equivalent to

choosing by the weak order, that is, it is equivalent to a special case of the RDC in which

all alternatives receives consideration.

Corollary 3.2 Let X be a set of alternatives and C : P(X)→ P(X) a choice correspon-

dence. There exists a weak preference % such that C(S) = C(S;%) for all S ∈ P(X) if

and only if there exists a U : ∆×X → R such that C(S) = C(S;UCMAE).

3.4 Behavioral foundation

Based on our results in Section 3.3, we are now able to provide behavioral characterizations

of the RDC and its components. By extension, this provides a characterization of our
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model of anticipation-based reference-dependent preferences. Such characterizations deem

our model as well as its components falsifiable on observable choice data alone. We start

our investigation by defining the two axioms which jointly characterizes a DM choosing

solely by an RD filter.

Axiom 3.1 (Contraction (Property α))

[p ∈ C(T ) and S ⊂ T, p ∈ S]⇒ [p ∈ C(S)]

Contraction simply requires that if an alternative p is chosen from some set T , then it

must be chosen in any subset S that contains p. Thus, contraction imposes the behavioral

restriction that removing irrelevant alternatives (or relevant, that is, alternatives that are

also chosen from T ) do not alter the choice of p.

Axiom 3.2 (Expansion (Property γ∗)) For all S, T ∈ P(X),

[p ∈ C(S) ∩ C(T )] ⇒ [p ∈ C(S ∪ T )]

Expansion says that if an alternative is chosen from two sets, S and T , then this alternative

will also be chosen from the union of these sets, i.e., from S ∪T . It is a well-known axiom

that plays a vital role in the characterization of the rational shortlist method (RSM) of

Manzini and Mariotti (2007).5

The next proposition shows that a DM choosing based on a consideration set map-

ping being an RD filter is equivalent to satisfying contraction consistency and expansion

consistency.6

Proposition 3.3 Let X be a finite set of alternatives and C : P(X) → P(X) a choice

correspondence. There exists an RD filter Γ such that C(S) = Γ(S) for all S ∈ P(X) if

and only if C satisfies Contraction and Expansion.

Proof: Please refer to Section 3.9.3.

We now provide a behavioral characterization of the RDC procedure. By extension,

this serves as a characterization of the PMAE. Let us reiterate here that such a charac-

terization enables any outside observer to verify whether choice data is consistent with
5Note that the expansion axiom in Manzini and Mariotti (2007) is defined for choice function. The

expansion axiom defined here is a natural extension for choice correspondences (Sen, 1971).
6Note, that it is a well-known fact that contraction and expansion together are logically equivalent

to the weak axiom of revealed preferences (WARP) (Sen, 1971; Tyson, 2008).
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the RDC procedure or not, without knowing the DM’s RD filter and preferences. Before

we do this, note that because choices supported by CMAE are behaviorally equivalent to

choosing according to a weak order, the observed behavior is rational in the neoclassical

sense.7 To characterize the procedure, we will need to introduce two additional axioms.

Axiom 3.3 (Weak WARP (WWARP)) For all S, T ∈ P(X),

[{p, q} ⊂ S ⊆ T, q 6∈ C({p, q}) and p ∈ C(T )] ⇒ [q 6∈ C(S)]

This axiom is a weakening of the well-known weak axiom of revealed preferences

(WARP) and is an essential part of the behavioral characterizations of several choice

procedures such as the RSM (Manzini and Mariotti, 2007), categorize then choose (CTC)

(Manzini and Mariotti, 2012), and the rationalization model (Cherepanov et al., 2013).8

WWARP says that if an alternative p is chosen from a set T containing q and uniquely

chosen when q is the only other available alternative, then q cannot be chosen from any

subset S of T that contains p.

Axiom 3.4 (No Reversible Binary Cycles (NRBC)) For all p1, . . . , pn+1 ∈ X and

S1, . . . , Sn+1 ∈ P(X) with pi ∈ Si, for all i = 1, . . . , n+ 1

[pi ∈ C({pi, pi+1}), pi+1 ∈ C(Si), and p1 ∈ C(Sn+1),∀i = 1, . . . , n] ⇒ [p1 ∈ C({p1, pn+1})]

NRBC requires that there are no pairwise cycles of choice which are reversed in larger

sets. It is more restrictive than the condition of No Binary Cycles (Manzini and Mariotti,

2007) that requires that there are no pairwise cycles of choice whatsoever.

The following result then establishes that Expansion, WWARP, and NRBC form the

behavioral characterization of RDC.

Theorem 3.1 Let X be a finite set of alternatives and C : P(X) → P(X) a choice

correspondence. There exists a weak preference % and an RD filter Γ such that C(S) =

C(Γ(S);%) for all S ∈ P(X) if and only if C satisfies Expansion, WWARP, and NRBC.

Proof: Please refer to Section 3.9.4.
7That is, there exists a function U : ∆ ×X → R such that choices are induced by U in accordance

with CMAE if and only if they satisfy WARP.
8Note again that our WWARP axiom is a natural extension for choice correspondences introduced

in Armouti-Hansen and Kops (2018).
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3.5 Identification

The RDC is based on two key parameters that enter into the DM’s decision-making

procedure: her preferences and her consideration set. In the last section, we identified three

testable conditions that can be applied to any given choice data to determine whether

this data can be thought of as resulting from an RDC procedure. Now, suppose we have

choice data that is consistent with the RDC logic. The question that we address in this

section is about the extent to which the two key parameters of the RDC procedure can

be uniquely identified from such data.

We first consider the question of identification of the DM’s preferences. In contrast

to rational choice theory, with theories of bounded rationality like the RDC, there may

be multiple possible preferences which can rationalize the same choice data. To check

whether the DM ranks p above q, it, thus, seems natural to check whether every pos-

sible representation of choices ranks p above q (Masatlioglu et al., 2012). The following

definition is useful to organize the discussion.

Definition 3.7 Let C be an RDC. We say that p is revealed to be “weakly preferred” to

q by the DM, if for any (%,Γ) that is part of a RDC representation of C, we have p % q.

Furthermore, we say that p is revealed to be “strictly preferred” to q by the DM if for any

(%,Γ) that is part of a RDC representation of C, we have p % q and ¬[q % p].

Checking every possible representation of choices may not be a very practicable method.

Fortunately, there is a simpler way to identify the DM’s preferences. To capture this idea,

we define the following binary relation R on X via

pRq if p ∈ C({p, q}) and q ∈ C(S), for some S ∈ P(X) with {p, q} ⊆ S

The relation R can be interpreted as a revealed preference relation that can be directly

elicited from choice data. This is so because q is chosen from S and, thus, considered.

Further, we know from the definition of the RD filter that q ∈ C(S) and {p, q} ⊆ S

implies that q receives consideration in {p, q}, as well. Hence, q ∈ Γ({p, q}) and thus, by

definition of RDC, p ∈ C({p, q}) implies that p % q.

Next, define R∗ to be the transitive closure of R. It also follows that if pR∗q, then p

is revealed to be weakly preferred to q. Loosely speaking, this is true because if pRw and
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wRq (and hence pR∗q) for some w then, since the underlying weak preference relation

defining a RDC representation is transitive, it follows that p is revealed to be weakly

preferred to q even when pRq is not directly revealed from choices. The question remains

whether R∗ really captures all revealed preferences and, at the same time, not more than

that. The next proposition establishes that R∗ really is the revealed preference.

Proposition 3.4 Let C be an RDC. Then p is revealed to be weakly preferred to q if and

only if pR∗q.

Proof: Please refer to Section 3.9.5.

We now address the issue of identifying whether an alternative p is revealed to be

strictly preferred to q. Let P ∗ to be the transitive closure of the binary relation P , which

we defined as follows

pPq if C({p, q}) = {p} and q ∈ C(S), for some S ∈ P(X) with {p, q} ⊂ S

The intuition is as follows. Since q is chosen from S, it is considered in S. Since q is

considered in S, it is considered in all its subsets as well, i.e., also in {p, q}. Since p is

chosen from {p, q} but q is not, we must have p % q and ¬[q % p] by definition of the

RDC. The following corollary follows immediately.

Corollary 3.3 Let C be an RDC. Then p is revealed to be strictly preferred to q if and

only if pP ∗q.

Under the theory of rational choice, more can never be less in terms of individual

welfare. That is, if S ⊂ T , no rational DM will strictly prefer any alternative in C(S) to

any alternative in C(T ). Under theories of bounded rationality, more can indeed be less.

Based on this the next corollary boils the observation that more may be less down to an

easily testable statement.

Corollary 3.4 More is less (in terms of welfare) if C(S ∪ C(T )) 6= C(T ), for some

S ⊂ T .

In other words, less alternatives can be more in terms of the DM’s well-being. Specifically,

anytime it holds that C(S ∪ C(T )) 6= C(T ), for some S ⊂ T , then the DM is better off

choosing from the smaller set S, compared to choosing from the larger set T .
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Next, we consider the question of identification of the DM’s consideration set. Again,

to check whether the DM considers p at S for her choice, it seems natural to check whether

every possible RDC representation of the DM’s choices specifies that p receives the DM’s

consideration at S (Masatlioglu et al., 2012). In a similar way as before, the following

definition is useful to organize the discussion.

Definition 3.8 Let C be an RDC. We say that p is revealed to receive consideration at S

by the DM, if for any (%,Γ) that is part of a RDC representation of C, we have p ∈ Γ(S).

It turns out, there also exists a simple way to identify the DM’s revealed consideration

set. To this end, we define the following consideration set Γ∗ on P(X) via

p ∈ Γ∗(S) if p ∈ S and p ∈ C(T ) for some T ∈ P(X) with S ⊆ T

Again, the question remains whether Γ∗ really captures all revealed consideration and, at

the same time, not more than that. The next proposition establishes that Γ∗ really is the

revealed consideration set.

Proposition 3.5 Let C be an RDC. Then p is revealed to receive consideration at S if

and only if p ∈ Γ∗(S).

Proof: Please refer to Section 3.9.6.

Under the theory of rational choice, more implies more in terms of alternatives to

choose from. That is, if S ⊂ T , no rational DM will consider (weakly) less alternatives for

her choice from T than she does for her choice from S. Again, under theories of bounded

rationality, more can indeed be (weakly) less. Specifically, for the RDC, more does not

always imply (strictly) more in terms of consideration. The next corollary states this

formally.

Corollary 3.5 More does not imply (strictly) more (in terms of consideration). That is,

if C(S) 6= C(T ), for some S ⊂ T with C(T ) ⊆ S, then Γ(T ) ⊆ Γ(R), for some R ( T .

In other words, a larger set does not automatically imply that the DM also considers

more alternatives for her choice. Specifically, if C(S) 6= C(T ), for some S ⊂ T with

C(T ) ⊆ S, then there exists a subset R of T such that all alternatives that the DM

considers for her choice when choosing from T , she also considers for her choice when

choosing from R.
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3.6 Discussion

As we have shown, the definition of the RDC is behaviorally equivalent to the PMAE

concept. We find that this formulation, with a reference-dependent consideration filter, is

a natural translation of the model in terms of choice. On the other hand, there naturally

exist alternative definitions of the choice procedure that retain its behavioral equivalence

to PMAE. As Freeman (2017) shows for the preferred personal equilibrium (PPE), we

could instead define the RDC as a special case of an extension of the RSM of Manzini

and Mariotti (2007) to the case of choice correspondences. In the RSM, the DM arrives

at her choice by an ordered sequential elimination of inferior alternatives based on two

rationales P1 and P2, which are asymmetric binary relations. As is shown in Armouti-

Hansen and Kops (2018), the RSM extended to the case of choice correspondences is

characterized by Expansion and WWARP. Since the characterization of PMAE requires

NRBC in addition, it follows that the binary relations of the RSM need to be further

restricted to achieve equivalence. Thus, we could instead define the RDC as a special case

of an extension of the RSM in which P1 is asymmetric and the second stage rationale, P2,

is complete and transitive.9 In relation to this, a notable point is that, when only choices

are observable, the equilibrium concepts from this anticipation-based reference-dependent

model are indistinguishable from the equilibrium concepts of Köszegi and Rabin (2006);

Kőszegi and Rabin (2007) on our domain. In particular, the rules that governs admitable

choice behavior of the PE and PPE are equivalent to that of the MAE and PMAE,

respectively. Unsurprisingly, the same holds true for the CPE and CMAE.

Naturally, our proposed model in Section 3.2 can be extended on several accounts in

future research. Firstly, the domain of simple lotteries may be extended to include more

complex objects. Secondly, the number of periods may be extended to both highlight

and differentiate between anticipation prior to the DM’s commitment and anticipation

after commitment, but prior to the consumption lottery’s resolution. Thirdly, one may

extend our model to allow for situations in which a second party may influence the DM’s

choice of anticipation. In particular, from a marketing perspective, if exposing potential

consumers to a certain state influences the DM’s anticipation, this may, in turn, increase

her willingness to pay. Another potential application would be that of a transformational
9This follows from Proposition 2 in Freeman (2017).
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leader. If speaking about positive visions affect employees’ anticipation, this in turn may

increase their effort.

As a final point, we note that the definition of the RDC with its weak order is a

natural extension of the case of a strict linear order. We use it because it imposes less

restrictions on the utility function in order to establish equivalence between PMAE and

RDC. As it is common practice in choice theory to restrict the analysis to the case of

a choice function, we briefly address this here. The characterization of the special case

where the RDC is a choice function is given by the axioms of Expansion and WWARP

defined in Manzini and Mariotti (2007, 2012); Cherepanov et al. (2013) joint with the

following reformulation of NRBC: [c(pi, pi+1) = pi, c(Si) = pi+1, and c(Sn+1) = p1, ∀i =

1, . . . , n] ⇒ [c(p1, pn+1) 6= pn+1] for all p1, . . . , pn+1 ∈ X and S1, . . . , Sn+1 ∈ P(X) with

pi ∈ Si, for all i = 1, . . . , n+ 1. The proof of this is available upon request.

3.7 Conclusion

We propose a new two-period model of anticipation-based and reference-dependent pref-

erences that generalizes Köszegi and Rabin (2006) on the domain of simple lotteries. The

theory is based on the concept of anticipatory utility and its effect on utility from actual

consumption through the reference point. Furthermore, analogously to Köszegi and Ra-

bin (2006); Kőszegi and Rabin (2007), we define equilibrium concepts that spell out the

requirements of choice depending on when the DM actual commits to her decision. In

addition, we explicitly show how such a model is capable of rationalizing examples such

as information aversion and explicitly lowering ones reference point through strategically

anticipating the worst outcome. Sharing the concerns that theories of reference-dependent

preferences are difficult to test, we provide characterization and identification results which

show that our model is falsifiable based on choice data alone. Our main result show that

the observable behavior is characterized by three simple axioms, Expansion, WWARP

and NRBC. We additionally show that our main equilibrium concept (PMAE), on the

domain of choice, is equivalent to choosing according to a choice procedure, in which the

DM first selects a subset of the available alternatives based on a filtering before choosing

the most preferred of the remaining alternatives. The equivalence is further underlined
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by the fact that the first-stage filtering is equivalent to MAE. Finally, we show the extent

to which this consideration filter as well as the DM’s preference can be revealed through

choice data.
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3.9 Appendix

3.9.1 Proof of Proposition 3.1

Proof: Necessity: Suppose that C = C(·;UMAE). Define Γ : P(X) → P(X) as follows:

for any S ∈ P(X), we define p ∈ Γ(S) if there exists r∗p ∈ Rp such that U(r∗p, p) ≥ U(rp, q),

for all q ∈ S and for all rp ∈ Rp. Clearly, by this definition, Γ(.) satisfies Contraction and

Expansion. Hence, by Proposition 3.3, Γ(.) is an RD filter.

Sufficiency: Suppose that there exists an RD filter Γ on P(X) such that C(S) = Γ(S)

for all S ∈ P(X). Then, by Proposition 3.3, C satisfies Contraction and Expansion.

Note that it is a well-known fact that contraction and expansion together are logically

equivalent to the Weak Axiom of Revealed Preferences (WARP) (Sen, 1971; Tyson, 2008).

Standard results then allow us to define a weak preference relation % on X such that

C(S) = {x ∈ S| x % y, for all y ∈ S} and a function w : X → R that represents %, i.e.,

w(p) ≥ w(q) if and only if p % q. Next, we define a function U : ∆ ×X → R such that,

for any p ∈ X, U(r, p) = w(p), for all r ∈ ∆. This implies that C = C(·;UMAE), which

establishes the second part of the proof. �

3.9.2 Proof of Proposition 3.2

Proof: Necessity: Suppose that C = C(·;UPMAE). Define a binary relation R over X

and a filter Γ over P(X) as follows: (i) p ∈ Γ(T ) if and only if there exists r∗p ∈ Rp such

that U(r∗p, p) ≥ U(rp, q), for all q ∈ T and for all rp ∈ Rp, and (ii) pRq if and only if

there exists T ∈ P(X) with p, q ∈ Γ(T ) and r∗p ∈ Rp such that U(r∗p, p) ≥ U(rq, q), for all

rq ∈ Rq. Clearly, by this definition, Γ is an RD filter and the strict part of R is acyclic.

Let R∗ be the transitive closure of R. By Szpilrajn’s Theorem, we know that it can be

extended to a complete preorder % over X.

Sufficiency: Suppose that there exists a weak preference % and an RD filter Γ such

that C(S) = C(Γ(S);%), for all S ∈ P(X). Since % is complete and transitive, we can

define a function w : X → R that represents % on X such that w(p) ≥ w(q) if and only

if p % q, for all p, q ∈ X. Since X is finite, we can even define such a representation

on N. Next, we use a fixed such w(·) on N to define U : ∆ × X → R in several steps.

First, we define U(p, p) = w(p). Second, for all p, q ∈ X with p % q and p /∈ Γ({p, q}),



3.9. APPENDIX 59

we define U(p, r) = w(r) + (w(p) − w(q) + 1), for all r with r % q. Third, if p % q,

p /∈ Γ({p, q}), and the previous step defined U(r, p), for some r ∈ Rp, we furthermore set

U(r, q) = U(r, p) + 1. Fourth, for all p ∈ X and all r ∈ ∆ such that U(r, p) is hitherto

undefined, we define U(r, p) = minq∈X w(q).

To check that U(·, ·) thus defined rationalizes C(·), take any S ∈ P(X) and consider

C(S) = C(Γ(S);%). First, we show that all alternatives in S \ Γ(S) cannot be part of a

MAE. To this end, consider any p ∈ S with p /∈ C(S). Then, either (i) p % q, for all q ∈ S

and p /∈ Γ(S), or, (ii) q � p, for some q ∈ S.

In Case (ii), by our definition of U(·, ·) above, q � p implies that U(q, q) > U(p, p).

Next, suppose, by contradiction, that U(rp, p) ≥ U(q, q), for some rp ∈ Rp. By our def-

inition of U(., .) above, this implies that there exists p′ with rp % q � p % p′ and

rp /∈ Γ({rp, p′}). But, then, by our definition of U(., .) above, we have U(rp, q) = w(q) +

(w(rp)−w(p′)+1) and U(rp, p) = w(p)+(w(rp)−w(p′)+1) such that U(rp, p) ≥ U(rp, q)

implies that w(p) ≥ w(q) which contradicts q � p. Hence, p /∈ C(S;UPMAE).

In Case (i), by definition of an RD-filter, p /∈ Γ(S) implies that p /∈ Γ({p, q}), for

some q ∈ S. Since p % q, our definition of U(·, ·) above implies that U(p, q) > U(p, p).

Now, suppose U(rp, p) > U(p, q), for some rp ∈ Rp. Then, the third step in our definition

of U(·, ·) above applies such that U(rp, q) = U(rp, p) + 1 > U(rp, p). It follows that

p /∈ C(S;UPMAE).

Next, we consider any p ∈ S with p ∈ C(S). For such p it follows that p ∈ Γ(S) and,

by definition of an RD-filter, that p ∈ Γ({p, q}), for all q ∈ S. Furthermore, from p ∈ C(S)

it follows that p % q such that U(p, p) > U(q, q), for all q ∈ Γ(S). By our definition of

U(·, ·) above, it follows that U(rp, p) ≥ U(rq, q), for all q ∈ Γ(S), rq ∈ Rq and rp ∈ Rp if

and only if w(p) ≥ w(q). Hence, by our definition of w(·) above, p is a PMAE if and only

if p % q, for all q ∈ Γ(S). �

3.9.3 Proof of Proposition 3.3

Proof: We show that Γ is an RD filter if and only if it satisfies Contraction and Expan-

sion

Necessity: Let Γ be an RD filter.



60 CHAPTER 3. ANTICIPATION AND REFERENCE-DEPENDENCE

a) Contraction. Let p ∈ Γ(T ) and p ∈ S ⊂ T . Then C = {T} is a cover of S and, by

definition of the RD filter, it follows that p ∈ Γ(S), as well.

b) Expansion. Let p ∈ Γ(S)∩Γ(T ). Clearly, C = {S, T} is a cover of S ∪ T . Hence, by

definition of the RD filter, it follows that p ∈ Γ(S ∪ T ), as well.

This establishes necessity of Contraction and Expansion for an RD filter.

Sufficiency. Let Γ be a consideration set mapping that satisfies both Contraction and

Expansion. Now, consider any S ∈ P(X) and any p ∈ S. Let C be a cover of S such that

p ∈ Γ(T ), for all T ∈ C. Then, Expansion implies that p ∈ Γ(⋃T∈C T ). Since S ⊆ ⋃T∈C T ,
by Contraction, it follows that p ∈ Γ(S). This establishes our desired conclusion. �

3.9.4 Proof of Theorem 3.1

Proof: Necessity: Let C be an RDC on X, % be a preference relation on X and Γ be

an RD filter.

a) Expansion. Let p ∈ C(S) ∩ C(T ), for S, T ∈ P(X) and some p ∈ S ∩ T . For

Expansion to hold, we have to show that this implies that p ∈ C(S ∪ T ). Clearly, by

definition of an RDC, p ∈ C(S) ∩ C(T ) implies that p ∈ Γ(S) and p ∈ Γ(T ), for if an

alternative is chosen from a set, it must be considered in that set. Note that for any

q ∈ S ∪ T , it holds that either q ∈ S, or, q ∈ T . Hence, since p ∈ Γ(S) and p ∈ Γ(T ),

the definition of the RD filter implies that p ∈ Γ(S ∪ T ). Now, suppose, by contradiction,

that there exists q ∈ Γ(S ∪ T ) such that q % p and ¬[p % q], i.e., q � p. By q ∈ Γ(S ∪ T ),

it follows that q ∈ S ∪ T and that either q ∈ S, or, q ∈ T . W.L.O.G., assume that q ∈ S.

Then, by definition of the RD filter, q ∈ Γ(S∪T ) implies that q ∈ Γ(S), as well. But, then,

the definition of RDC and q � p imply that p 6∈ C(S) and we have arrived at our desired

contradiction. Hence, by completeness of %, it follows that p % q, for all q ∈ Γ(S ∪ T ),

and, thus, p ∈ C(S ∪ T ).

b) WWARP. Let S, T ∈ P(X) be such that q 6∈ C({p, q}), p ∈ C(T ) and {p, q} ⊂ S ⊂

T . For WWARP to hold, we have to show that this implies that q 6∈ C(S). By definition

of an RDC, p ∈ C(T ) implies that p ∈ Γ(T ), for if an alternative is chosen from a set, it

must be considered in that set. Clearly, by definition of the RD filter, p ∈ Γ(T ) implies

that p ∈ Γ(S), as well. Now, suppose, by contradiction, that q ∈ C(S). Clearly, since

{p, q} ⊆ Γ(S), this implies that and q % p. By definition of the RD filter, it follows that



3.9. APPENDIX 61

{p, q} = Γ(p, q). But, then, by definition of RDC, q % p implies that q ∈ C({p, q}) and

we have arrived at our desired contradiction.

c) NRBC. Let pi ∈ Si, pi ∈ C({pi, pi+1}), pi+1 ∈ C(Si), for all i = 1, . . . , n, and p1 ∈

C(Sn+1). For NRBC to hold, we have to show that this implies that p1 ∈ C({p1, pn+1}).

By definition of an RDC, p1 ∈ C(Sn+1) implies that p1 ∈ Γ(Sn+1), for if an alternative

is chosen from a set, it must be considered in that set. Since pn+1 ∈ Sn+1 and p1 ∈

Γ(Sn+1), by definition of the RD filter, this implies that p1 ∈ Γ({p1, pn+1}). Analogously,

pi+1 ∈ C(Si) implies that pi+1 ∈ Γ(Si), for all i = 1, . . . , n, and, since pi ∈ Si, it follows

that pi+1 ∈ Γ(pi, pi+1), for all i = 1, . . . , n. Therefore, by definition of an RDC, pi ∈

C({pi, pi+1}) implies that pi % pi+1, for all i = 1, . . . , n. Transitivity of % then gives us

p1 % p2 % · · · % pn+1. Hence, since p1 ∈ Γ({p1, pn+1}), the definition of an RDC implies

that p1 ∈ C({p1, pn+1}).

This establishes necessity of the axioms for the representation.

Sufficiency: Suppose that C satisfies the axioms, i.e., Expansion, WWARP, and NRBC.

We construct the RD filter Γ and the DM’s preferences % on X explicitly. First, define,

for any S ∈ P(X) with p ∈ S, p ∈ Γ(S) ⇔ p ∈ C(T ), for some T ∈ P(X) with

S ⊆ T . Next, for any p, q, define a binary relation R on X by pRq ⇔ p ∈ C({p, q}) and

q ∈ C(S), for some S ∈ P(X) with p, q ∈ S.

Next let R∗ be the transitive closure of R and let P be the asymmetric component of

R. It follows that R can be extended to a complete preorder % if and only if it satisfies a

variant of acyclicity named only weak cycles (OWC) given by the following condition

pR∗q ⇒ ¬[qPp]

Lemma 3.1 R on X as defined above satisfies OWC.

Proof: Let pR∗q for some p, q ∈ X and suppose, by means of contradiction, that qPp.

Since pR∗q, we either have that (i) pRq or (ii) there exists a sequence (wm)Mm=1 in X,

such that pRw1, wMRq, and for each m ∈ {1, . . . ,M − 1}, wmRwm+1. If (i) is true, then

our contradiction follows immediately, so suppose (ii) is true. Next, we establish that the

precondition of NRBC for p, (wm)Mm=1, and q holds. To this end, note that pRw1 implies,

by our definition above, that p ∈ C({p, w1}) and w1 ∈ C(S1), for some S1 ∈ P(X) with

p, w1 ∈ S1. Next, wMRq implies, by our definition above, that wM ∈ C({wM , q}) and
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q ∈ C(SM+1), for some SM+1 ∈ P(X) with wM , q ∈ SM+1. Furthermore, for any m ∈

{1, . . . ,M − 1}, wmRwm+1 implies, by our definition above, that wm ∈ C({wm, wm+1})

and wm+1 ∈ C(Sm+1), for some Sm+1 ∈ P(X) with wm, wm+1 ∈ Sm+1. On the other

hand, qPp implies, by our definition above, that q ∈ C({p, q}) and p ∈ C(S), for some

S ∈ P(X) with p, q ∈ S. This establishes the precondition of NRBC. On the other hand,

by our definition above, qPp also implies that p /∈ C({p, q}) (as otherwise our definition

above would imply that pRq which directly contradicts qPp). This violates NRBC and

we have arrived at our desired contradiction. �

We now verify that the objects (Γ,%) represent the choice correspondence C on X as

an RDC. To that end, pick any S ∈ P(X) and let p ∈ C(S). By our definition of Γ above,

it follows that p ∈ Γ(S). Next, we show that there is no alternative q ∈ Γ(S) with q % p

and ¬[p % q]. Suppose, to the contrary, that there is such a q ∈ S. Then, by our definition

of the RD filter above, it follows that there exists a T ∈ P(X) such that S ⊂ T and

q ∈ C(T ). Since {p, q} ⊂ T , the same definition also implies that q ∈ Γ({p, q}) and, thus,

by q % p and ¬[p % q], it follows that p 6∈ C({p, q}). But, then {p, q} ⊆ S ⊂ T together

with p 6∈ C({p, q}), q ∈ C(T ) and p ∈ C(S) violates WWARP and we have arrived at our

desired contradiction. It follows that p ∈ C(S) implies that p % w, for all w ∈ Γ(S). This

establishes our desired conclusion. �

3.9.5 Proof of Proposition 3.4

Proof: Necessity: Let C be an RDC. Suppose pR∗q does not hold. Then, there exists a

weak preference relation % that includes R∗ and q % p, but ¬[p % q], i.e., it holds that

q � p. By the proof of Theorem 3.1, there exists an RD filter Γ such that (Γ,%) represents

C. Since q � p, by definition, p cannot be revealed to be preferred to q.

Sufficiency: We have already shown in Section 3.5 that if pRq, then p is revealed to

be weakly preferred to q. Now, consider the case when pR∗q. Since R∗ is defined as the

transitive closure of R, this implies that there exists a sequence (wm)Mm=1 in X such that

pRw1, w1Rw2, . . . , wMRq. In this case, we know that for any % that is part of a RDC

representation, R ⊆ % and, hence, p % w1, w1 % w2, . . . , wM % q. Further, since % is

transitive it follows that p % q and, hence, p is revealed to be preferred to q. �
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3.9.6 Proof of Proposition 3.5

Proof: Necessity: Take any S ∈ P(X) and any p ∈ S with p /∈ Γ∗(S). By the proof of

Theorem 3.1, there exists an RD filter Γ with p /∈ Γ(S) and a preference % such that (Γ,%)

represents C. Since p /∈ Γ(S), by definition, p cannot be revealed to receive consideration

at S.

Sufficiency: Let p ∈ Γ∗(S). Then, p ∈ C(T ), for some T ∈ P(X) with S ⊆ T . Clearly,

p ∈ C(T ) implies that p ∈ Γ(T ). By definition of the RD filter, S ⊆ T and p ∈ Γ(T )

imply that p ∈ Γ(S). Then, it follows from the definition of RDC that p ∈ Γ(S) for any

Γ that is part of an RDC representation of these choices. �





Chapter 4
Evaluating the completeness of social

preference theories

Abstract.We use machine learning methods as a benchmark for evaluating the predictive

capability of simple parameterized social preference theories in a random utility frame-

work. To that end, we use panel data from the lab containing experimental observations

of binary dictator games and reciprocity games from Bruhin et al. (2019). To evaluate a

given model’s predictive capability we apply the concept of a model’s completeness intro-

duced by Fudenberg et al. (2021), which reveals (i) how large a fraction of the predictable

variation of the data a given model captures, and (ii) how large a gain in performance

the model brings compared to a naive baseline model. To address the potential remaining

patterns in the data that are not captured on the level of representative agent, we conduct

the analysis under a mixture model framework allowing for heterogeneity in the estimated

parameters.

JEL codes: C52, C53, D11, D12

Keywords: social preferences, dictator games, reciprocity games, theory evaluation,

machine learning, random utility models, finite mixture estimation
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4.1 Introduction

Laboratory data on choices provides the means to test whether actual decision making

matches with proposed theories of choice. In particular, the data makes it possible for

us to investigate the extent to which parameterized theories, in their proposed functional

form, are able to predict individuals’ choices. Such an investigation sheds light on two

important points that provide insights on the vary nature of decision making on the

considered domain. Firstly, given a theory’s included behavioral motives, it allows us

to conclude how well the theory is able to predict the choices, compared to how well a

theory could have predicted on the considered domain. In turn, this allows us to conclude

(i) whether the proposed functional form is optimal and (ii) how much better a theory

could perform by considering more complex functional forms. Secondly, it allows us to

conclude the extent to which the behavioral motives included in the model matter for

decision making. On the domain of other-regarding preferences, such motives might, for

instance, be inequity aversion or reciprocity.

In this paper, we address these two points on the domain of other-regarding prefer-

ences.1 In particular, we address them by evaluating simple linear parameterized social

preference theories using data on binary dictator games and reciprocity games from Bruhin

et al. (2019). The social preference theories are designed in a way that gradually increases

the complexity by sequentially adding behavioral motives. Our starting point is a simple

linear preference model, in which the decision maker (DM) only cares about her own

payoff. By sequentially adding more motives, our end point is a model that includes po-

tentially inequity aversion (or, alternatively, differentiated altruism) and both negative

and positive reciprocity.2

The insights mentioned above follow from the predictive capability of the models.

However, merely looking at the predictive capability of a model does not reveal the whole

picture. In particular, when we construct theories, we are potentially not including every

potential motive that may influence the choice. Furthermore, the act of choosing might
1We use the terms other-regarding preferences and social preferences interchangeably.
2To be precise, when we allow the weight that a decision maker assigns to her counterpart utility to

depend on their relative payoffs as in Fehr and Schmidt (1999), we will refer to them as follows: If the
weight is positive when the DM earns more than her counterpart, we denote this as altruism when ahead,
even though one might consider it to be aheadness aversion. Analogously, if the weight is positive when
the DM earns less, we will refer to this as altruism when behind, even though it may be a combination
of altruism and behindness aversion.
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be random on its own. In addition, there may be subjective variations influencing the

choice, that we do not account for if we restrict ourselves to the representative agent

level. Thus, conditional on the included variables in the theory, we should expect some

randomness in choice, leading to less than perfect predictions. It follows that to evaluate

the predictive capability of a given model, we need a measure that informs us on how well

we could predict, conditional on the included variables used in the models. Such a measure

would directly show us the potential improvement, in terms of predictive capability, an

alternative formulated theory could bring. Hence, this also allows for the comparison of

two models, such that the improvement of including a behavioral motive becomes clear.

In order to conduct this analysis, we first translate the social preference models into

prediction rules by subsuming a random utility framework in the same manner as Bruhin

et al. (2019). Subsequently, we apply the concept of a model’s completeness as proposed by

Fudenberg et al. (2021). A given parameterized model’s completeness is calculated by the

improvement in predictive capability the model brings compared to a naive benchmark

model, relative to the largest possible improvement in predictive capability in the data.

The naive benchmark model in our setting is based on a simple linear model that is

stripped of any other-regarding preferences. Hence, this coincides with the predictions we

would make if we consider a selfish agent. To calculate the largest possible improvement

in prediction, we use machine learning (ML) methods, which allows for a non-parametric

and flexible estimation of the predictive patterns in the data.

On the aggregate level, our findings show, that the full linear model that includes all of

the considered other-regarding behavioral motives, achieves a relatively high completeness

of approximately 82%. Thus, the potential improvements in terms of predictive capabil-

ity of considering alternative functional forms is quite limited. In addition, the findings

indicate that (i) altruism is more important on this domain than reciprocity, (ii) letting

altruism depend on whether the DM earns more or less than her counterpart substantially

raises the completeness of the model, and (iii) positive reciprocity seems to be slightly

more important than negative reciprocity.

We subsequently extend the setting by allowing, in each model, heterogeneity in the

parameters as in Bruhin et al. (2019). That is, in each of the models we allow for the

existence of several types, each characterized by their own set of parameter values. To
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evaluate the completeness of a model in this setting, we propose and explore two extensions

of the original definition of completeness. The first variant is what we refer to as a model’s

within-type completeness. Here we evaluate the completeness of a model by estimating the

completeness within each type that the given model proposes. Specifically, we compare

the predictive capability within the type of a given model to that of a ML model, as the

estimate of the optimal predictive performance, and to that of a simple model, as the

naive benchmark. Besides allowing us to estimate the partial impact of a given behavioral

motive, this will allow us to infer (i) whether there is substantial variation in a model’s

predictive capability across the types, and (ii) whether, for some of the types, a more

complex social preference model is needed to fully capture the within-type behavior.

The second variant that we introduce is what we call a model’s unrestricted com-

pleteness. Here we evaluate the predictability of a heterogeneous model by comparing its

predictive performance to a fully flexible ML model that uses the subject identifier as a

feature. This will provide us with an indication on how well a parametric theory consisting

of a parsimonious representation of individuals, in the form of types, predicts compared

to a fully flexible non-parametric model that may adjust its predictions to any of the

subjects.

Our within-type completeness results on this domain suggest the existence of three

types in all of the considered models, with two relatively large ones and one minority

type. The behavior of subjects belonging to the first of the large types, which can be

characterized by strong other-regarding preferences, seems to be very well predicted by

linear social preference models, with completeness estimates ranging between 88% and

93%. The behavior of the second-type subjects is characterized by modest other-regarding

preferences. However, the linear social preference theories are only able to achieve a within-

type completeness of between 60% and 65%. This indicates that a more complex theory

is needed to fully capture this type’s behavior. Finally, for the minority type, we find

that choices are very random, in the sense that only using the subjects’ own payoffs for

prediction leads to relative poor predictions. However, due to the type’s small size, we do

not have enough power to estimate the within-type completeness.

The unrestricted completeness results indicate that a linear social preference model

with only three types is able to capture most of the individual variation in the data.



4.1. INTRODUCTION 69

In particular, the completeness estimates range between approximately 85% and 88%.

However, we stress that these estimates should be seen as upper bounds of the models’

unrestricted completeness, as we cannot claim to have estimated the largest possible

improvement in terms of predictability on this expanded feature space. There may exist

more complex methods that lead to better predictions.

Our paper contributes to the recent literature on theory evaluation. The most related

paper is naturally that of Fudenberg et al. (2021), in which they propose the concept of

completeness and evaluate it on the domains of risky choice, initial play in games, and

human perception of randomness. Most notably, their findings suggest that, on the ag-

gregate level, cumulative prospect theory (CPT) is 95% complete. In a complementary

contribution, Fudenberg et al. (2020) introduce the concept of a model’s restrictiveness.

This measure is intended to evaluate non-linear paramaterized models’ ability to explain

real behavior, but exclude artificial infeasible behavior. Specifically, the authors propose a

measure to (i) generate artificial data based on a prior distribution, and (ii) evaluate the

model’s completeness on randomly selected samples of this data. If a model, in general,

shows a high completeness on these samples, then a model is unrestrictive. As we only

consider linear models, this measure is not directly implementable in our setting. One

of the most often used domains in the literature does indeed seem to be that of choice

under risk. For instance, Peysakhovich and Naecker (2017) use ML models in the form

of regularized regression as a benchmark to evaluate the predictive capability of choice

under risk and ambiguity. Specifically, they compare the performance of an expected util-

ity function that admits probability weighting to regularized regression on the domain of

risky choice. They do this both for the representative agent and on the individual level.

Furthermore, they perform the same analysis for a parameterized second order expected

utility model on the domain of ambiguity. Another recent related contribution is that of

Fudenberg and Puri (2021). Here completeness is again evaluated on the domain of risky

choice. However, in addition to the previous contributions they evaluate the completeness

of CPT combined with a parameterized preference for simplicity. Furthermore, this is

done in a mixture model framework similar to ours, and to the best of our understanding,

their completeness measure coincides with our unrestricted completeness. Another related

notable contribution is that of Peterson et al. (2021). Here the authors provide the means
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to both evaluate proposed theories of risky choice and derive insights to discover new

theories by using the by far largest experiment to date. Their findings suggest that pro-

posed theories, such as CPT, perform quite well on limited data and domains. However,

on larger data sets, the best performance is achieved by a mixture of theories (MOT)

model that, from the context, learns to apply one of two utility functions and one of two

probability weighting functions. Other related contributions include, among others, those

of Noti et al. (2016), Plonsky et al. (2017) and Plonsky et al. (2019) in which combinations

of ML methods and behavioral motives are utilized to predict individual choice. Based on

this, our main contribution is the extension of theory evaluation to the domain of social

preferences. Naturally, our contribution is limited in (i) the complexity of the models that

we consider, and (ii) the range of games, payoffs, and number of counterparts within the

games. Thus, our contribution should be seen as a starting point of the evaluation of

social preference theories.

The remainder of the paper is organized as follows. The next section describes the

setup. In this section, the primitives of our investigation will be defined, the data that we

are using will be described, and the social preference models will be presented and trans-

lated into parametric models that predict the probability of a decision maker choosing

one allocation over the other. Section 4.3 describes our estimation strategy for evaluat-

ing the completeness of the models on the aggregate level, as well as for the evaluation

of within-type completeness and unrestricted completeness given type heterogeneity. In

Section 4.4, we present the findings of our investigation, first on the aggregate level,

and subsequently in the heterogeneous setting. Section 4.5 discusses our findings. Finally,

Section 4.6 concludes.

4.2 Setup

In this section, we firstly lay out the primitives central to our investigation, based on that

of Fudenberg et al. (2020), and present the concept of a parametric model’s completeness,

as proposed by Fudenberg et al. (2021). Secondly, we introduce the data as well as the

social preference models that we consider. Afterwards, we show how the social preference

models can be translated into parametric models that, given a set of features that con-
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stitutes a game, predict the probability that a subject chooses one allocation over the

other.

4.2.1 Primitives

LetX be an observable random feature vector from a finite set X ⊂ Rd, and Y be a random

outcome variable taking values in {0, 1}. Let P denote the joint distribution of (X, Y )

and PY=1|X the conditional probability distribution of Y = 1 given X. We assume that

PY=1|X is non-degenerate. Our goal is to estimate a mapping p : X → [0, 1] that enables

us to learn the conditional distribution, PY=1|X . Let the set of all possible functions be

given by P and let a function that correctly learns the conditional distribution be given by

p∗ ∈ P , i.e. p∗(x) := PY=1|X=x for all x ∈ X . We call p∗ an optimal mapping. To evaluate

the error (or loss) of predicting p(x) given (x, y), we use the negative log-likelihood, which

is given by

`(y, p(x)) = − (y log(p(x)) + (1− y) log(1− p(x))) (4.1)

Note that if y = 1, then Equation (4.1) simplifies to the negative logarithm of the prob-

ability p(x) assigns to that event. Hence, the error is smaller the closer p(x) is to 1.

Analogously, if y = 0, then Equation (4.1) simplifies to the negative logarithm of one

minus the probability that p(x) assigns to y = 1. Thus, the error is smaller the closer

p(x) is to 0. It is a well-known fact that minimizing the expectation of Equation (4.1),

eP (`(p)) := EP [`(Y, p(X)], is equivalent to minimizing the expected Kullback-Leibler di-

vergence, a measure of the dissimilarity between the estimated and true distribution.

Hence the expected loss is minimized by the true conditional distribution. In such a pre-

diction problem, it thus follows that the irreducible loss is given by eP (`(p∗)). Denote

the expected difference (or distance) in loss between any p, p′ ∈ P by dP (p, p′). It follows

immediately that the expected loss of any p ∈ P can be formulated as

eP (`(p)) = eP (`(p∗)) + dP (p, p∗) (4.2)

Where the first term is the irreducible loss, and hence a lower bound of loss on the

considered feature space. The second term tells us how far below the mapping p is of the

optimal mapping in terms of predictive performance. Given finite data, the term will, in

general, consist of two sources of error. The first source relates to the misspecification of
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p in comparison to p∗, that is, the bias. If we impose parametric restrictions, we may not

be able to capture all of the predictive patterns. The second source relates to the variance

of p. Fitting very flexible functions on finite data may lead to overfitting and may thus

introduce variance, in the sense that the estimation would vary substantially based on

the finite data set drawn from P . Notice that this also raises a challenge when one wishes

to estimate the irreducible loss from finite data. In general, we wish to search P for the

optimal mapping p∗. However, this might require much data. In Section 4.3, we will discuss

ways in which we estimate the irreducible loss and when the limited data may force us

to choose a suboptimal estimation approach, such that our estimations rather should be

viewed as an upper bound of the irreducible loss. Nevertheless, given enough data, having

an estimate of the irreducible error informs us how well simple models predict the data

and is central to the concept of a parametric model’s completeness that we will introduce

shortly.

Let PΘ = {pθ|θ ∈ Θ} be a parametric model, where Θ denotes the parameter space.

The specific parametric models that we consider in our application will be defined in

Section 4.2.4. For any parametric model, we are interested in a measure that tells us how

good it predicts compared to (i) the optimal mapping described above and (ii) a naive

baseline predictive mapping. This will inform us on (i) the potential improvement by

allowing for more complex interactions and (ii) how much better than a simple mapping

the parametric model performs.3 For this, let PΘ0 be a naive parametric model. In our

setting, as we will show in Section 4.2.4, this will be a simple parametric model with a

single parameter. For any parametric model, we assume that PΘ0 ⊂ PΘ ⊂ P . For the

models PΘ and PΘ0 , denote the optimal model, in terms of lowest expected loss, by pθ∗

and pθ∗
0
, respectively.4 The following definition introduces the concept of completeness.

Definition 4.1 (Completeness (Fudenberg et al., 2021)) Let X and Y be a ran-

dom feature vector and random outcome variable, respectively, jointly distributed accord-

ing to P . Furthermore, let PΘ0 ⊂ PΘ ⊂ P. The completeness of the parametric model PΘ

is given by

κP (PΘ) :=
eP (`(pθ∗

0
))− eP (`(pθ∗))

eP (`(pθ∗
0
))− eP (`(p∗)) (4.3)

3For example, how much better a parametric model performs by adding linear altruism compared to
one that ignores such behavioral aspects.

4Specifically, θ∗ = arg minθ∈Θ eP (`(pθ)) and θ∗0 = arg minθ0∈Θ0 eP (`(pθ0)).
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A parametric model’s completeness is thus the ratio of the reduction in expected loss

relative to a naive benchmark, compared to the largest possible reduction. Hence, κ(PΘ) ∈

[0, 1], where a completeness of 0 implies that the parametric model performs no better

than the naive benchmark, and a completeness of 1 implies that the parametric model

perform as well as the optimal mapping. Naturally, for κ(PΘ) to exist, we need to impose

the restriction that dP (pθ∗
0
, p∗) > 0. Specifically, we need to assume that the optimal

mapping is strictly more predictive than the naive benchmark, which in most cases can

be seen as a non-restrictive assumption.

4.2.2 Data

In our application, we use data from Bruhin et al. (2019) on binary dictator games and

reciprocity games. The data consists of two sessions in which the same subjects, who were

students at the University of Zürich at the time, faced the same set of dictator games and

reciprocity games. We use the data from the first session. Both sessions contain the 174

subjects that participated in both sessions. The subjects made 117 decisions in the active

role of Player A. Thus, we have 20,358 observations on subjects in the role of Player A.

In addition to the choices, individual characteristics such as age and gender as well as

cognitive ability and Big 5 measures were collected by means of a questionnaire. Table

4.5 in the Appendix summarizes these characteristics and measures over the subject.5

Of the 117 binary decisions, 39 were dictator game decisions in which subjects in the

role of Player A were matched with subjects in the role of Player B, who had no active

role. In each of the dictator games, Player A was confronted with two possible allocations,

a and b. Each allocation contained a payoff for Player A and a payoff for Player B given

by πA and πB, respectively. Thus, the allocations a and b were given by (πAa , πBa ) and

(πAb , πBb ), respectively. The dictator games were constructed such that 1/3 were games in

which πA > πB regardless of whether Player A chose a or b. Analogously, 1/3 were games

in which πA < πB regardless of whether Player A chose a or b. Finally, the remaining 1/3

were constructed such that Player A would earn a higher payoff from one of the allocations

and Player B would earn a higher payoff from the other. In addition, in each of these three
5Note that each subject’s payment was based on a show-up fee, a fixed amount for completing the

questionnaire and the amounts of the outcomes of three randomly chosen games. The average payment
in the first session was 52.5 CHF (see Bruhin et al. (2019) for more information.).
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scenarios, games were constructed to vary Player A’s cost of altering Player B’s payoff in

such a way that inequity aversion (or differentiable altruism) parameters were identifiable

in the range [−3, 1].

The remaining 78 of the binary decisions were reciprocity games. In a reciprocity

game, Player B first decided whether to implement allocation c = (πAc , πBc ). If she chose

to do so, the game ended. If she chose not to do so, Player A, in the second stage, got

to decide among allocation a and b. Choices of player A were elicited using the strategy

method. The 78 reciprocity games were constructed such that 39 of them were “negative”

reciprocity games and the remaining 39 were “positive” reciprocity games. Each of the 39

“negative” and “positive” reciprocity games, respectively, consisted of the same allocation

combinations as in the dictator games. A reciprocity game was denoted “negative” if the

decision of Player B to not implement c, and thus let Player A choose between a and

b, implies that player A would receive a strictly lower payoff in any of the two feasible

allocations compared to c. Analogously, a reciprocity game was denoted “positive” if

Player A received a strictly higher payoff in any of a and b compared to c. The remaining

case in which Player A is better of in one allocation and worse of in another of a and b

compared to c were not considered.

4.2.3 Social preference models

In this section, we present the simple social preference models which we will translate into

parametric models by adding a random component such that they predict the probability

of Player A choosing allocation a over b in any game in Section 4.2.4. The models are

capable of capturing other-regarding aspects, such as altruism, inequity aversion, and

reciprocity in a simple way. The models will be presented in an ordered mode in which

every next step presents added complexity in the form of an additional behavioral aspect.

Let uA and uB denote the utility of Player A and Player B, respectively. Further, let πA

and πB denote A’s and B’s payoff, respectively, from a given allocation.

The first model we specify is one in which Player A lacks any form of other-regarding

preferences. Accordingly, her utility is simply given by

uA0 = πA (4.4)



4.2. SETUP 75

Notice that there are no parameters in the utility to be estimated. In our estimations of

completeness, the naive benchmark will be based on this model.

Suppose now that Player A’s preferences can be described by a simple altruism model.

That is, regardless of whether Player B will end up with more or less than Player A in

a given allocation, Player B’s payoff enters Player A’s utility in the same way. Formally,

her utility is then given by

uA1 = πA + γS(πB − πA) (4.5)

where γS is a parameter that dictates how much Player A cares about Player B’s payoff. If

γS > 0 then Player A’s utility increases in Player B’s payoff, ceteris paribus, and she thus

exhibits altruism towards Player B. If γS < 0 then Player A always attains a higher utility

by decreasing Player B’s payoff. If this is the case, then we say that Player A exhibits

malice.6

The next model we consider is a variant of the inequity aversion model by Fehr and

Schmidt (1999). In their model, Player A dislikes outcomes in which she receives a higher

payoff than her counterpart and outcomes in which she receives a lower payoff. However,

the magnitude to which she dislikes these two situations of inequity may vary. Her utility

is defined by

uA2 = πA + (γD1B + γA1A)(πB − πA) (4.6)

where 1B and 1A are dummy variables taking the value 1 if πB > πA and πB < πA,

respectively. In our application of the model we do not require that Player A is inequity

averse. As such we do not place restrictions on the parameters γD and γA. If γD < 0

then the parameter denotes Player A’s “behindness” aversion or malice when having a

lower payoff. On the other hand, if γD > 0 the parameter can be interpreted as the level

of altruism when πA is lower than πB. Similarly, if γA > 0 then the parameter denotes

Player A’s “aheadness” aversion or, alternatively, the level of altruism when πA is higher

than πB. If γA < 0, then the parameter measure A’s malice when she is ahead.7

6Note that specifying the model by uA1 = πA + γSπ
B would lead to the same predictability, but a

different parameter estimate. We use our specification as it makes comparing the weight on the the DM’s
own payoff and that of the counterpart possible.

7The reason that we do not restrict the parameters in the sense of Fehr and Schmidt (1999) is that we
do not find many subjects that exhibit this type of inequity aversion. As such, the parameter estimate of
“behindness” aversion on the aggregate level would go to zero with a significant reduction in the predictive
capability. This observation is also the reason why we do not consider other models of inequity aversion
as the one by Bolton and Ockenfels (2000).
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The remaining models that we consider adds an additional other-regarding aspect,

namely reciprocity. Notice that, based on the available data, reciprocity enters binary. As

such, in the reciprocity games, we denote 1K and 1U as dummy variables that takes the

value 1 if Player B’s preceding action is deemed “kind” and “unkind”, respectively.

Our next model combines simple altruism as defined in Equation (4.5) with both

positive and negative reciprocity. Thus, in this simple setting the model can be seen as

an implementation of the reciprocal altruism model of Levine (1998).

uA3 = πA + (γS + γK1K + γU1U)(πB − πA) (4.7)

One may interpret γK and γU as the change Player A’s altruism following a kind and

unkind action, respectively. Naturally, a result of the estimation with γK > 0 and γU <

0 would be intuitive as the DM would then exhibit positive and negative reciprocity.

However, we do not impose that requirement.

We now consider a model that is a direct application of the proposed model of Charness

and Rabin (2002) in which the DM’s utility form follows an unrestricted inequity aversion

model as in Equation (4.6), with the addition that an “unkind” action may affect both of

the parameters. In particular, we consider the following functional form

uA4 = πA + (γD1B + γA1A + γU1U)(πB − πA) (4.8)

Thus, if γU < 0 then the DM exhibits negative reciprocity and, if she satisfies the re-

quirements of Fehr and Schmidt (1999)-type inequity aversion, then an unkind preceding

action of B turns A more “behindness” averse and less “aheadness” averse. Naturally, we

do not expect to find behavioral patterns indicating γU > 0.

The final model we consider in this setup is a slight extension of the preceding one in

Equation (4.8). Specifically, in addition to “unkind” preceding actions potentially affecting

the parameters, we allow “kind” action to do the same as in Bruhin et al. (2019). In this

case, the DM’s utility is given by

uA5 = πA + (γD1B + γA1A + γK1K + γU1U)(πB − πA) (4.9)

Analogously to the previous case, if γK > 0 then the DM exhibits positive reciprocity and

if she satisfies the requirements of Fehr and Schmidt (1999) inequity aversion, then a kind

preceding action of B turns A less “behindness” averse and more “aheadness” averse.
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4.2.4 Parametric models

We now show how the social preference models introduced in Section 4.2.3 can be trans-

lated into parametric models, PΘ, by adding a random component such that they contain

prediction rules for the probability that Player A chooses allocation a over allocation b in

a random utility framework, for any game described in Section 4.2.2. We start in a repre-

sentative agent framework and subsequently expand the setting to allow for heterogeneity.

Let the set of games be indexed by {1, . . . , G}. A game g ∈ {1, . . . , G} is uniquely de-

fined by the features xg = (xg,a, xg,b), where xg,m = (πAg,m, πBg,m,1g,A,m,1g,B,m,1g,K ,1g,U),

for m ∈ {a, b}.8 For each of the social preference models defined in Section 4.2.3, uAi for

i ∈ {0, . . . , 5}, we assume that Player A’s utility of choosing allocation m in game g is

the sum of her deterministic utility and noise. Specifically, it is given by

uAi (xg,m) + εi(xg,m) (4.10)

Here, εi(xg,m) is a noise term capturing factors that affect Player A’s choice, but is not

included in the modelled utility function uAi . As in Bruhin et al. (2019), we assume that

εi(xg,m) is Gumbel distributed with scale parameter σi > 0.

For each of the social preference models, let λi for i ∈ {0, . . . , 5} be the set of param-

eters of model uAi and let yg = 1 if the allocation a is chosen by Player A in game g and

0 otherwise. From Train (2009), it follows that the probability of yg = 1 given uAi is given

by
pθi

(xg) = Pr
(
uAi (xg,a) + εi(xg,a) > uAi (xg,b) + εi(xg,b)

)
=

exp
{
uAi (xg,a)/σi

}
exp {uAi (xg,a)/σi}+ exp {uAi (xg,b)/σi}

(4.11)

Where θi = (λi, σi) and σi > 0. Notice the role of the scale parameter σi. As σi decreases

the probability of choosing the option with highest deterministic utility increases, so

that the choice becomes less noisy. Thus, one may think of 1/σi as the choice sensitivity

determining the randomness of choice. Let Θi be the set of all possible combinations of
8Note that 1g,B,m is here a dummy variable taking the value 1 if Player B’s payoff is larger than

Player A’s in allocationm, in game g and 0 otherwise. Similar explanations hold for the remaining dummy
variables. As the inequity dummies contain no additional information when the payoffs themselves are
present, we could just as well have removed them from xg,m. However, we choose to keep them in to
underline the connection between the games and the social preference models.
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the parameters.9 The parametric model PΘi
for i ∈ {0, . . . , 5} is then given by

PΘi
= {pθi

| θi ∈ Θi} (4.12)

To extend our setting to that of heterogeneous agents, we now allow that, for each

social preference model i ∈ {1, . . . , 5}, there may exist K types in the population. For

this, let θi,K = (θ1
i , . . . , θ

K
i , π

1
i , . . . , π

K
i ) be the tuple of parameters of model i, where θki

is the parameters of the kth type and πki ≥ 0 is the proportion of that type such that∑K
k=1 π

k
i = 1. Let Θi,K be the set of all possible combinations of the parameters. Based

on this, the parametric model PΘi,K
is a mixture mode of K types for i ∈ {0, . . . , 5} and

is given by

PΘi,K
=
{
pθi,K =

K∑
k=1

πki pθk
i
| θi,K ∈ Θi,K

}
(4.13)

Where pθk
i
follows from Equation (4.11).

4.3 Estimation strategy

We now describe how we estimate the completeness of the parametric models defined

in Section 4.2.4 on two different levels. These two levels vary on whether we allow for

heterogeneity in the parameter values of the parametric models. As shown in Section 4.2.1,

this estimation involves estimating the irreducible loss. Thus, for each of our applications,

we will thoroughly discuss this as well. Before we do so, we briefly describe our data-

splitting strategy which allows us to estimate the expected loss of any model.

4.3.1 Data-splitting strategy

We consider a balanced panel D = {(xng, yng)n=1,...,N,g=1,...,G} consisting of choices of N

individuals from G games. Specifically, xng = xg = (xg,a, xg,b) is the feature vector of game

g as defined in Section 4.2.4 and yng = 1 if individual n chose allocation a in game g,

and 0 otherwise. In all our applications, our panel will consist of 174 subjects and 117

games, hence N = 174 and G = 117. Figure 4.1 illustrates our data-splitting strategy,

which is similar to that of Peysakhovich and Naecker (2017). In particular, as can be seen
9For instance, if i = 2, then λ2 = (γA, γD), θ2 = (γA, γD, σ) and Θ2 = {(γA, γD, σ) | γA, γD ∈ R, σ >

0}.
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Figure 4.1: Data-splitting strategy
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Note: The figure on the left shows how the whole panel is randomly split into a training set (70%) and test
set (30%), stratifying on the subject level. The figure on the right shows the fold creation in the training
set for the 5-fold cross validation procedure.

from the left plot, we randomly split the whole panel data into a training set, consisting

of 70% of the observations, Dtrain, and a test set consisting of the remaining 30%, Dtest,

stratifying on the individual level. Specifically, for each individual, we randomly select

70% of the games as train data and the remaining 30% as test data. This means that (i)

each individual is present in both the training set and test set and (ii) we approximately

have the same number of observations for each individual in both the training set and test

set. Notice, however, that since games are randomly chosen on the individual level, we

do not necessarily, and most likely will not, observe two individuals with the exact same

games in the training set and test set, respectively. We split the data into a train and

test set to get an unbiased estimate of the expected loss of a given model. In general, we

use Dtrain to fit our models, and hence estimate the parameters, and use Dtest to evaluate

out-of-sample predictions. For the simple models on the aggregate level, the difference in

estimated loss between in-sample and out-of-sample predictions might be small. However,

this will not be the case for the ML models as well as for the parametric models that

allow for heterogeneity. Hence, if we would estimate the expected loss based on in-sample

predictions, we would get biased estimates heavily favoring the most flexible models.

In addition, when we consider parametric and non-parametric models with hyper-

parameters, that is, parameters that are not “learned” through model estimation, but

rather specified before, we need a method that allows us to choose the optimal of those

parameter(s).10 To perform this model selection we utilize a 5-fold cross validation (CV)
10For the ML models that we consider there are usually a variety of hyperparameters to optimize.
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technique on the training data. In particular, we randomly partition Dtrain into five equal

sized folds, D1
cv, . . . ,D5

cv in the same way that we split the training and test set. The right

plot of Figure 4.1 illustrates the folds on the training set. Based on these folds, the CV

procedure is as follows: For a given model and for any given combination of hyperparame-

ters, we train and evaluate the model 5 times. Specifically, in iteration i = 1, . . . , 5, we fit

the model on all folds except of the ith fold, ⋃j 6=iDjcv, and estimate the loss based on the

prediction of the model on the ith fold, Dicv. This results in five loss estimates of which

we take the mean as an estimate for model selection.11

4.3.2 Aggregate estimations

Note that in all estimations in this section, we ignore the subject identifier. That is, none

of our models on the aggregate level make use of the additional information provided by

knowing which individual made a given choice. We first show how the parameters and

the expected loss of the parametric models are estimated. Afterwards, we describe how

we estimate the optimal mapping, its expected loss and the completeness.

4.3.2.1 Parametric models

For the parametric models PΘi
, for i ∈ {0, . . . , 5}, our estimation follows two steps in

which we wish to (i) estimate the optimal parameters, θ̂∗i , and (ii) get an estimate of

the expected loss of the parametric model given the optimal parameters, ê(`(pθ̂∗
i
)). The

estimate of (i) follows on the training set, Dtrain and is given by

θ̂∗i = argmin
θi∈Θi

1
|Dtrain|

∑
(x,y)∈Dtrain

`(pθi
(x), y), for i ∈ {0, . . . , 5} (4.14)

Thus, the optimal parameters of a given parametric model are the ones in the parameter

space that results in the lowest average negative log-likelihood on the training set, Dtrain.

Based on our estimate of the optimal parameters for any given parametric model, we
Additionally, we view the optimal number of types K in heterogeneous parametric models as a hyperpa-
rameter.

11Estimating the expected loss and choosing the optimal hyperparameter(s) on the same test set
may lead to biased results. See Friedman et al. (2009) for a thorough treatment on model selection and
assessment.
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estimate (ii) on the test set, Dtest, as follows

ê(`(pθ̂∗
i
)) = 1

|Dtest|
∑

(x,y)∈Dtest

`(pθ̂∗
i
(x), y), for i ∈ {0, . . . , 5} (4.15)

Such that our estimate of the expected loss of parametric model i is the average negative

log-likelihood on the test set, Dtest, from the model’s predictions based on the optimal

parameters estimated on the train set, Dtrain. This procedure provides us with estimates

of the expected error of all the parametric models, including the naive benchmark (i.e.

for pθ0).

4.3.2.2 Completeness

We now turn to our estimation strategy of the optimal mapping, p̂∗ ∈ P , and its expected

loss, ê(`(p̂∗)), which will serve as our estimate of the irreducible loss. To estimate it, we

employ non-parametric and ML algorithms that are highly flexible.

The first algorithm that we consider is a table lookup algorithm, pTL. In this simple

algorithm, the optimal mapping is estimated as follows: For each game g ∈ {1, . . . , G}, let

pTL(xg) be the relative frequency with which allocation a was chosen in the data in that

game. Thus, the table lookup algorithm can be seen as a non-parametric estimation of the

conditional probability distribution. As such, the algorithm converges to the conditional

probability distribution asymptotically, but may be suboptimal on finite data. Naturally,

the estimation of the relative frequency is performed on the training set, Dtrain, and the

predictions are evaluated on the test set, Dtest.12

The remaining two algorithms that we consider are so-called ensemble ML methods,

that may improve over the table lookup algorithm on finite data. That they are ensemble

methods refer to the fact that they each consist of a collection of simple prediction rules,

but the way in which the decision rules are aggregated to arrive at a prediction defers

between the two models. In our application, we consider a random forest classifier, pRF ,

and a gradient boosting classifier, pGB, which both contain an ensemble of decision trees

(see Friedman et al. (2009)).
12Fudenberg et al. (2021) show that the table lookup algorithm slightly outperforms that of a variant

of a random forest in three applications. In their setting it is, however, unclear whether and to which
extent hyperparameter optimization is performed. Thus, it might be that ML methods outperforms the
table lookup algorithm if model selection is applied.
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The random forest is an ensemble of decision trees, generally trained via the bagging

(bootstrap aggregating) method. This means that each decision tree in the ensemble is

fitted on a sample drawn from the training set, Dtrain, with replacement. Out-of-sample

predictions on the test data, Dtest, are then made by averaging each decision tree’s predic-

tion in the ensemble. When using such a method, it is important to first find the optimal

hyperparameters.13 To estimate the optimal hyperparameters we utilize the previously

described 5-fold CV procedure. That is, we first find the optimal hyperparameters in the

5-fold CV procedure, then we fit the optimal random forest classifier on the training set,

Dtrain, and finally, we estimate the expected error by evaluating its predictions on the

test set, Dtest. Analogously to the random forest, the gradient boosting classifier contains

an ensemble of decision trees. However, here we consider a sequence of trees in which

each tree’s objective is to improve the prediction of the preceding ones. Thus, the trees in

the ensemble will be interdependent to a much higher degree than in the random forest.

As is standard, we use a learning rate hyperparameter to control how much weight to

attach to a new tree in the sequence. Thus, here again, it is important to find the optimal

hyperparameters, for which we follow the same method as in the random forest.14

From all of the above, our estimate of parametric model PΘi
’s completeness, κ̂(PΘi

),

for i ∈ {0, . . . , 5} is given by

κ̂(PΘi
) =

ê(`(pθ̂∗
0
))− ê(`(pθ̂∗

i
))

ê(`(pθ̂∗
0
))− ê(`(p̂∗)) (4.16)

Where ê(`(p̂∗)) = min{ê(`(p̂∗TL)), ê(`(p̂∗RF )), ê(`(p̂∗GB))}.

4.3.3 Heterogeneous estimations

The original definition of completeness refers to the aggregate level. To evaluate a para-

metric model’s completeness on the heterogeneous level, we consider two variants which

both offer insights into the predictive capability of the model. The first variant is the
13Important hyperparameters to consider here are (i) the number of trees in our ensemble, (ii) the

depth (or size) allowed for each of our trees and the minimum number of observations required to make
a split in the decision tree, and (iii) the number of features randomly available to each tree when making
a split.

14Important hyperparameters for the gradient boosting classifier are (i) number of trees in our ensem-
ble, (ii) the depth allowed for each of our trees and the minimum number of observations required to
make a split, since we want to have low complexity trees with high bias, (iii) the learning rate because
we do not want to over-adjust predictions based on a single new tree.
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within-type completeness. Here we estimate a parametric model’s completeness based

on the partitioning of subjects into K types determined in the estimation of the model.

Based on this, estimates of within-type completeness follows from comparing the pre-

dictive performance of a parametric model within each type that it defines to that of a

naive benchmark fitted within each of the type-dependent partitions and to that of a ML

model that uses the type-partitioning as a feature. Intuitively, we perform this estima-

tion because a parametric model of K types may perform well across types, but exhibit

substantial variation within types in terms of predictive capability. Thus having such an

estimate will reveal how well each type can be summarized by the given parametric model

that we consider, and whether, for some of the types, a more complex social preference

model is needed to fully capture their behavior. We thus see this approach as the natural

extension of the definition of completeness to the heterogeneous setting.15 The next vari-

ant of completeness that we consider is what we call the unrestricted completeness. Here

we evaluate the completeness of the heterogeneous parametric models by comparing their

performance to a fully flexible ML model that has information on the subject identifier in

each observation. This will provide an indication of how well a given parametric model,

with a parsimonious representation of subjects in the form of types, performs compared

to a non-parametric model that may adjust its predictions to any of the subjects. In the

following, we first show how we estimate the parametric models, and their expected loss,

on the heterogeneous level. Afterwards we address the estimation of the optimal map-

ping and the irreducible loss in this expanded feature space based on the two variants of

completeness that we wish to estimate.

4.3.3.1 Parametric models

In order to estimate the optimal parametric models allowing for K types, we treat it

as a “missing” data problem, in which each subject n ∈ {1, . . . , N} belong to a type

k ∈ {1, . . . , K}, but that this type membership in unobservable, as in Bruhin et al.

(2019).16 For this, let Dtrainn be the set of observations in the training set that involves
15Note that Fudenberg et al. (2021) proposes the use of a clustering algorithm to assign subjects

to types. This will naturally result in model-independent type assignment. However, we find that the
optimal way of assigning subjects to types should come through the given parametric model as the type
assignments should depend on the parameter estimates themselves.

16See McLachlan et al. (2019) for a recent review of finite mixture models.



84 CHAPTER 4. COMPLETENESS OF SOCIAL PREFERENCE THEORIES

subject n.17 It follows that subject n’s contribution to the likelihood conditional on being

type k in model i can be stated by the following

L(pθk
i
;n) =

∏
(x,y)∈Dtrainn

pθk
i
(x)y × (1− pθk

i
(x))1−y (4.17)

If we were searching for the optimal parameters on the individual level, i.e., when K = N ,

we would directly choose the parameters that minimize the average negative logarithm

of Equation (4.17) for each subject n. However, we are interested in an estimation of a

parsimonious representation involving K � N types. For this, denote subject n’s total

likelihood contribution across types by ∑K
k=1 π

k
i L(pθk

i
;n), where πki is the proportion of

type k in model i. Based on this, for a given number of types K, the estimated optimal

parameters of model i ∈ {1, . . . , 5} are defined as follows

θ̂∗i,K = argmax
θi,K∈Θi,K

N∑
n=1

log
(

K∑
k=1

πki L(pθk
i
;n)

)
(4.18)

As the objective function, in general, is not well-behaved, finding the optimal parameters

is not a trivial task. However, estimations can be achieved by utilizing the iterative ex-

pectation maximization (EM) algorithm (Dempster et al., 1977).18 An additional upside

of the estimation is that the posterior probability of type assignment for each individual

can be calculated by Bayesian updating. Hence, given K and the estimated optimal pa-

rameters θ̂∗i,K for model i, the estimated probability that subject n belongs to type k is

given by

τ̂ ki,n =
π̂ki L(pθ̂k

i
;n)∑K

j=1 π̂
j
iL(pθ̂j

i
;n)

(4.19)

We will use these probabilities to classify each subject into types and make out-of-sample

predictions on the test set, Dtest. Specifically, denote by kn the type k in which subject

n most likely belongs, for n = 1, . . . , N , based on estimations on the training set, Dtrain.

Based on this, our estimate of the overall expected loss of parametric model PΘi,K
is given

by

ê(`(pθ̂∗
i,K

)) = 1
|Dtest|

∑
(xng ,yng)∈Dtest

`
(
pθ̂kn

i
(xng), yng

)
(4.20)

It thus follows that for any subject n, we use the estimated parameters of the type in

which she most likely belongs to make predictions in each game that she encounters.
17Formally, for n ∈ {1, . . . , N}, Dtrainn

= {(xng, yng)g=1,...,G|(xng, yng) ∈ Dtrain}.
18As problems may be encountered when fitting a finite mixture model with a high number of com-

ponents, we only consider K ≤ 10.
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This methodology provides us with expected loss estimates for all parametric models i ∈

{1, . . . , 5} and for a given K. As a parametric model of K types may perform well across

types, but exhibit substantial variation within types in terms of predictive capability,

we also estimate the within-type expected loss of each type k ∈ {1, . . . , K}. Such an

estimation is analogous to the one given in Equation (4.20), following a partitioning of the

test set into K sets, Dtest1 , . . . ,DtestK , each containing the observations of the individuals

who belong to that type based on the estimated type membership probability. That is,

the parametric model PΘi,K
’s expected loss within type k is defined as

êk(`(pθ̂k
i
)) = 1

|Dtestk |
∑

(x,y)∈Dtestk

`
(
pθ̂k

i
(x), y

)
(4.21)

Notice that the number of types K is not “learned” in the fitting stage. As mentioned, we

treat K as a hyperparameter and once again utilize the 5-fold CV procedure. This will

result in five CV loss estimates for each K that we consider. To find the optimal number

of types for each parametric model, we apply the “one-standard-error” rule.19 Specifically,

let K̃ be the number of types in which the parametric model reaches its minimum of the

average CV loss across the 5 folds for all K’s that we consider and let K∗ be the smallest

K for which the average CV loss is within one standard error from that of K̃. If that is

the case, then we choose K∗ as the optimal number of types for model i.20 Our rationale

for applying this selection criterion is a combination of two reasons. Firstly, increasing

the number of types increases the dimensionality of the problem and, therefore, increases

the variance of our estimations. Thus, the average loss over the CV iterations provides

a noisier indication of the predictive capability of the model. Based on this, we prefer a

model with a smaller number of types given its estimation is within a reasonable range of

the noise. Secondly, our reasoning is also based on an intrinsic preference for parsimony
19The “one-standard-error” rule is commonly applied in optimization problems involving a single

hyperparameter, such as regularized regression. See, for instance, Friedman et al. (2009).
20Estimating the “optimal” number of types K in a mixture model is non-trivial, and there exists

a variety of methods in order to do so. In their application, Bruhin et al. (2019) apply the normalized
entropy criterion (NEC). The NEC is defined to favor models with a “clean” classification of types in
the sense that the probability of a given subject belonging to a given type is either close to zero or one.
However, as NEC is undefined for K = 1, it is not possible to determine whether a a model with K > 1
or K = 1 is more suitable based on this criterion. Using CV techniques to determine the optimal K is not
a new approach. Smyth (2000), for instance, reports reasonable results by utilizing a CV variant. Finally,
other criteria such as the Akaike information criterion (AIC) or the Bayesian information criterion (BIC)
have also commonly been applied (see Peel and MacLahlan (2000)). However, depending on whether some
regularity conditions, which are hard to check, are satisfied, both of these may suffer from their own set
of issues in determining the best K.
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in the economic theories. In general, we would prefer that any given economic theory can

capture the population with a smaller number of types that are distinct from each other

compared to a larger number of types in which type parameters vary only slightly without

an economically significant difference.

4.3.3.2 Within-type completeness

We now describe our estimation strategy of the within-type completeness. To estimate the

optimal mapping in this setting, we use the ML method in Section 4.3.2 that proved to be

the best in predicting choices on the aggregate level. However, in addition to the features

that the model could use on the aggregate level, we expand the feature space by adding a

type indicator. That is, for each observation, there is also a type indication available to the

ML model specifying to which type the individual who made the choice belong according

to the given parametric model to which we are comparing. As type membership and

the number of types potentially varies between the parametric models, we estimate the

ML model separately for each of the parametric models that we consider. Naturally, the

hyperparameters for each of the ML models are optimized using the 5-fold CV procedure.

This will result in a distinct optimal mapping, p̂∗i , for each of the parametric models.

Following this, we estimate the within-type expected loss of p̂∗i for parametric model i

by a partitioning of the test set into into K sets, Dtest1 , . . . ,DtestK , each containing the

observations of the individuals who belong to that type based on the parametric model. In

turn, based on the out-of-sample predictions of p̂∗i on each of these partitions, this will gives

us K within-type expected loss estimates, ê1(`(p̂∗i )), . . . , êK(`(p̂∗i )). To estimate the naive

benchmark, we fit pθ0 separately on K partitions of the training set, Dtrain1 , . . . ,DtrainK
,

defined in the same manner as the partitions on the test set. We then once again estimate

the within-type expected loss on each partition of the test set, resulting in K within-type

naive expected loss estimates, ê1(`(pθ̂∗
0
)), . . . , êK(`(pθ̂∗

0
)) for each parametric model. Our

estimation of the within-type completeness of parametric model PΘi,K is then a set of

completeness estimates of each type and is given as follows

κ̂(PΘi,K) =

 êk(`(pθ̂∗
0
))− êk(`(pθ̂k

i
))

êk(`(pθ̂∗
0
))− êk(`(p̂∗i ))

, for k = 1, . . . , K

 (4.22)
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4.3.3.3 Unrestricted completeness

Finally, we can describe our strategy for estimating the unconditional completeness. To

estimate the optimal mapping, p̂∗ ∈ P , in this setting, we consider four different variants

of the ML method that proved to be the best on the aggregate level. In the first variant,

we let the ML method use the subject identifier directly as a feature. Thus, the model is

fitted on each observation of the training data containing all of the available information,

and we once again optimize the hyperparameters using the 5-fold CV procedure. We

denote the optimal model in this variant p∗ind. As using the subject identifier directly

may introduce substantial variance due to the relative limited number of observations

for each individual, we also consider three additional variants that utilize a clustering

algorithm as a preprocessing step, which clusters the subjects into a pre-specified number

of groups based on their respective vector of choices over games in the training set, Dtrain.

In particular, we consider variants of K-means clustering, hierarchical clustering, and a

division of subjects based on a Bernoulli mixture model.21 We treat the number of clusters

in each of these algorithms as a hyperparameter. Thus, the optimal number of clusters

is determined jointly with the other hyperparameters of the ML method in the 5-fold

CV procedure.22 We denote the optimal models in these three variants p∗km, p∗hc and p∗ber,

respectively. Our estimation of the unconditional completeness of PΘi,K is then given as

follows

κ̂(PΘi,K) =
ê(`(pθ̂∗

0
))− ê(`(pθ̂∗

i,K
))

ê(`(pθ̂∗
0
))− ê(`(p̂∗j))

(4.23)

Where ê(`(p̂∗j)) = min{ê(`(p̂∗ind)), ê(`(p̂∗km)), ê(`(p̂∗hc)), ê(`(p̂∗ber))}. Notice that the naive

benchmark in Equation (4.23) is the same as the one used for completeness on the ag-

gregate level. Thus, the unrestricted completeness tells us (i) how much a parsimonious

heterogeneous representation of a given parametric model improves over a simple naive

representation of the subjects on a representative agent level, and (ii) how close it is, in

terms of predictive ability, to that of the optimal mapping, that may capture any form
21For K-means clustering, we consider a variant similar to that proposed by Chi et al. (2016) allowing

for clustering in the presence of missing data, after standardization. The hierachical clustering that we
implement follows a standard bottom-up approach in which each subject initially is assigned her own
cluster.

22Notice that we do not apply the “one-standard-error” rule when we optimize the hyperparameters of
the ML models. The reason for this is that we have multiple hyperparameters to optimize. It is therefore
not clear which of two potential candidate vector of hyperparameters leads to a more parsimonious model.
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of heterogeneity in the data. However, at this point, we would like to clarify that the

resulting estimation should be seen as a upper bound of the completeness of the model.

There may, in fact, exist methods of clustering the subjects that could result in better

performance than what we see here.

4.4 Results

We now present the results of our investigation. We will first show the results of the

parametric models’ completeness on the aggregate level. Afterwards, we will present the

completeness estimations of the models on the heterogeneous level. Specifically, for the

optimal heterogeneous parametric models we will investigate the models’ within-type

completeness. Such estimates will inform us on the potential improvement by extending

the model for a given subset of the subjects. Following, we will present the heterogeneous

parametric models unrestricted completeness.

4.4.1 Representative agent

Table 4.6 in the Appendix shows the results of the estimation of our non-parametric

and ML models. Specifically, the table shows (i) the average CV loss of the ML model

with its optimal hyperparameters and (ii) the expected loss estimate of all the models.

We see that the gradient boosting classifier p̂∗GB, has the lowest expected loss estimate,

slightly outperforming that of the random forest, p̂∗RF . It is also apparent that the expected

loss estimate of the table lookup algorithm, p̂∗TL, is substantially higher than that of

the other models. Hence, in contrast to the applications in Fudenberg et al. (2021), it

appears that that we do not have enough observation such that the algorithm approaches

the conditional distribution to a high enough degree. Having found the irreducible loss

estimate, p̂∗, namely the expected loss estimates of the gradient boosting classifier, p̂∗GB,

we now present the completeness and parameter estimates of the parametric models on

the aggregate level. Table 4.1 presents these, where the completeness estimates of the

naive benchmark, pθ̂∗
0
, and the optimal mapping, p̂∗, are 0% and 100% by definition,

respectively.

As can be seen, adding a single altruism parameter, pθ̂∗
1
, raises the completeness es-
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Table 4.1: Parameter estimates and completeness of parametric models on the aggregate
level

Model 1/σ̂ γ̂S γ̂A γ̂D γ̂K γ̂U ê(`(·)) κ̂(·)

pθ̂∗
0

0.0118∗∗∗ – – – – – 0.3862 0%
(0.0002)

pθ̂∗
1

0.0128∗∗∗ 0.1660∗∗∗ – – – – 0.3555 59.41%
(0.0007) (0.0161)

pθ̂∗
2

0.0130∗∗∗ – 0.2573∗∗∗ 0.0696∗∗∗ – – 0.3482 73.40%
(0.0007) (0.0196) (0.0169)

pθ̂∗
3

0.0129∗∗∗ 0.1568∗∗∗ – – 0.0722∗∗∗ −0.0477∗∗∗ 0.3512 67.66%
(0.0007) (0.0172) (0.0162) (0.0130)

pθ̂∗
4

0.0131∗∗∗ – 0.2849∗∗∗ 0.0970∗∗∗ – −0.0845∗∗∗ 0.3454 78.92%
(0.0007) (0.0203) (0.0173) – (0.0121)

pθ̂∗
5

0.0131∗∗∗ – 0.2483∗∗∗ 0.0602∗∗∗ 0.0726∗∗∗ −0.0479∗∗∗ 0.3439 81.71%
(0.0007) (0.0205) (0.0181) (0.0162) (0.0131)

p̂∗ – – – – – – 0.3345 100%

Number of subjects: 174
Number of observations: 20,358

Note: pθ̂∗
0
, pθ̂∗

1
, pθ̂∗

2
, pθ̂∗

3
, pθ̂∗

4
and pθ̂∗

5
are parametric models as defined in Section 4.2.4. p̂∗ is a gradient

boosting classifier. ê(`(·)) is the average negative log likelihood on the test set. κ̂(·) is the estimated
completeness on the test set. Standard errors clustered on the individual level in parentheses. Sig-
nificance levels; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

timate up to 59.41%. The altruism parameter estimate, γ̂S, in this simple model is sta-

tistically significant at the 1%-level and of non-negligible magnitude. In particular, the

representative agent is willing to give up roughly 17 cents to raise her counterpart’s payoff

by one dollar. The estimated choice sensitivity, 1/σ̂, also increases by adding the addi-

tional parameter compared to the naive benchmark model, pθ̂∗
0
. Thus, the agent’s choice

becomes less random with its inclusion compared to the naive benchmark.

Next, letting the altruism parameter depend on whether the agent earns a higher or

lower payoff than her counterpart, pθ̂∗
2
, raises the completeness estimate by approximately

14 percentage points to 73.40% compared to the model with a single altruism parameter,

pθ̂∗
1
. Both altruism parameter estimates are positive and statistically significant at the

1%-level, such that we do not find evidence for subjects being behindness averse on the

aggregate level.23 The point estimate of altruism when the agent earns less than her

counterpart, γ̂D is relatively small, indicated a willingness to give up approximately 7

cents to increase the counterpart’s payoff by one dollar. On the other hand, we observe
23To be precise, γ̂D may capture altruism and behindness aversion at the same time, with altruism

being the stronger of the two motives.
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a substantial point estimate of the altruism parameter when the agent is ahead, γ̂A. In

particular, this shows a willingness to give up approximately 26 cents to increase the

counterpart’s payoff by one dollar. In turn, it follows that the point estimate of altruism,

γ̂S, in model pθ̂∗
1
is roughly the mean of the point estimates of altruism, γ̂A and γ̂D,

in model pθ̂∗
2
. Finally, notice that the choice sensitivity increases even further by letting

altruism depend on whether the agent earns more or less than her counterpart.

The model that uses a single altruism parameter, but adds both negative and positive

reciprocity, pθ̂∗
3
, achieves a completeness estimate of 67.66%. Hence, not allowing for differ-

entiated altruism reduces the completeness, even when including reciprocal concerns. In

particular, the completeness is reduced by approximately 6 percentage points compared

to pθ̂∗
2
. In addition, we see that the choice sensitivity slightly decreases, whereas the pa-

rameter estimate of altruism, γ̂S, is similar to that in pθ̂∗
1
. We also see that the parameter

estimates of positive and negative reciprocity have the expected signs, are statistically

significant at the 1%-level and have relative small effect sizes (0.0722 and -0.0477, respec-

tively), with positive reciprocity having a slightly larger impact on utility than that of

negative reciprocity. This provides us with a first indication that differentiated altruism

is the most important behavioral motive on this domain.24

The next model that incorporates all behavioral motives except of positive reciprocity,

pθ̂∗
4
, substantially improves in the estimated completeness compared to the previous one.

The estimated completeness is 78.92% and it therefore also improves over pθ̂∗
2
. In partic-

ular, on this domain, adding negative reciprocity to a model of differentiated altruism

increases completeness by approximately 6 percentage points. In terms of parameter es-

timates, we see that (i) all are significant at the 1%-level, (ii) both altruism parameter

estimates, γ̂A and γ̂D, are higher than that of pθ̂∗
2
, and (iii) the parameter estimate of

negative reciprocity, γ̂U , is lower than that of pθ̂∗
3
. This suggests that positive reciprocity

plays a role on this domain, such that the altruism parameters absorbs this effect. In turn

the negative reciprocity parameter needs to be lower to compensate for this. Additionally,

we see that the choice sensitivity increases slightly.

Finally, we consider the model that incorporates all motives, pθ̂∗
5
.25 We once again

24In general, this might not be the case in richer domains where reciprocity enters in a non-binary
way.

25Note that our parameter estimates of this model are similar to but distinct from that of Bruhin et al.
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see an increase in the estimated completeness. The estimated completeness is 81.71%

suggesting that the partial impact of positive reciprocity is approximately 3 percentage

points compared to the previous model. We see that all parameter estimates are significant

at the 1%-level and that the choice sensitivity is similar to that in the previous model.

Furthermore, we see that the parameter estimates of altruism, γ̂A and γ̂D, are similar to

that of pθ̂∗
2
and that the reciprocity parameter estimates, γ̂K and γ̂U , are similar to that of

pθ̂∗
3
. Thus, we find that (i) letting altruism differentiate depending on the payoff allocations

raises completeness substantially and hence captures the choices of representative agent

significantly more accurately and (ii) the potential improvement of considering a more

flexible functional form is quite limited as the model that includes both differentiated

altruism and reciprocity linearly, pθ̂∗
5
, captures more than 4/5 of the predictable variation

in the data, relative to the naive benchmark.26 Based on these results, we exclude pθ̂∗
1
and

pθ̂∗
3
from the heterogeneous analysis.

4.4.2 Heterogeneity

We now consider the estimation of completeness on the heterogeneous level. We first

show the estimations of the within-type completeness of the parametric models, followed

by the parameter estimates of the models. Afterwards, we present the estimations of the

unrestricted completeness.

Before we present the completeness estimations, we briefly address the selection of the

optimal number of types for each of the parametric models that we consider. Figure 4.2

in the Appendix shows the CV loss estimates of the heterogeneous parametric models

pθ̂2,K
, pθ̂4,K

and pθ̂5,K
for K = 1, . . . , 10, where K is the number of types. For all of the

three models, we see a significant decrease in the CV loss going from K = 1 to K = 3.

After this initial decrease we see a flattening of the curve, in which the estimated loss

either increases or decreases slightly in the interval between K = 3 and K = 10. In this

interval we also see a monotonic increase in the variance of the CV loss estimation. Based
(2019) due to our inclusion of the whole sample.

26In this regard, we also note that in Online Appendix B of Bruhin et al. (2019), the authors estimate
pθ̂∗

5
in a specification in which uA5 has undergone a CES utility transformation. Herein, they find that

the parameter estimate of the curvature of the indifference curves is very close to one, indicating that
a linear specification, as the one above, is close to optimal in this setting. In turn this indicates that
improvements most likely do not come from non-linear utility specifications, but rather by considering
non-linear altruism.
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on our selection criterion (i.e. the “one-standard-error” rule), it is clear that the optimal

number of types in each of the models is K = 3.27

4.4.2.1 Within-type completeness

Having selected the optimal number of types for the three parametric models, we can now

show the estimated within-type completeness of the heterogeneous parametric models.

To do this, Table 4.2 shows, for each of the models, indicated in the left most column,

an estimation of the within-type completeness for each of the three types nested in the

models. As mentioned, the naive benchmark within each type is the same model used

as the naive benchmark on the aggregate level, but estimated on the subjects which are

assigned to that type. Furthermore, the optimal model is a gradient boosting classifier

using the type assignment of each individual as a feature. Finally, the table also shows

the estimated size of each type.

Table 4.2: Within-type completeness of heterogeneous parametric models

Model k N̂k ê(`(p̂θ̂∗
0
)) ê(`(·)) ê(`(p̂∗)) κ̂(·)

1 77 0.4030 0.2402 0.2191 88.53%
pθ̂k

2
2 70 0.1862 0.1668 0.1542 60.50%
3 27 0.5833 0.5191 0.5328 > 100%

1 76 0.4039 0.2325 0.2147 90.59%
pθ̂k

4
2 70 0.1862 0.1657 0.1548 65.11%
3 28 0.5775 0.5174 0.5366 > 100%

1 78 0.4148 0.2502 0.2381 93.11%
pθ̂k

5
2 73 0.1870 0.1660 0.1552 65.98%
3 23 0.5946 0.5040 0.5231 > 100%

Number of subjects: 174
Number of observations: 20,358

Note: pθ̂k
i
for k ∈ {1, 2, 3} and i ∈ {2, 4, 5} are parametric models contained in the mixture models pθ̂i,3

for i ∈ {2, 4, 5} as defined in Section 4.2.4. k is the type indicator and N̂k is the size of type k based on
the estimated ex post type membership probabilities. ê(`(p̂θ̂∗

0
)) is the average negative log likelihood on

the test set of the naive benchmark model. ê(`(f̂∗)) is the average negative log likelihood on the test set
of the optimal model. ê(`(·)) is the average negative log likelihood on the test set of respective models.
κ̂(·) is the estimated completeness on the test set.

We can see that all three models mostly agree on the sizes of the types. In particular,
27We note that the CV loss is not in fact minimized at K = 3 for any of the models. However, the CV

loss estimate at K = 3 is within 1/2 of a standard error of the minimum CV loss in all of the models.
Thus, given the increasing noise in the estimate and our preference for parsimony, we find K = 3 a
reasonable selection.



4.4. RESULTS 93

in all models, there are two relative large types and one small. In addition to this, we

see that the expected loss of the naive benchmark is very similar across models in the

same type. Specifically, this estimated loss for k = 1 is between 0.4030 and 0.4148, and

we see the same pattern for k = 2 and k = 3. The same is the case for the expected loss

of the optimal mapping. In turn this tells us that the type composition is very similar

across models. Specifically, if a given subject belongs to type k = 1 in one of these

models, then it is very likely the case that she also belongs to type k = 1 in any of the

others. Based on this, we also see a similar pattern in our estimations of within-type

completeness. In particular, all of the models show high completeness in k = 1, with pθ̂1
5

being most complete (93.11%). Hence, within this type, including negative reciprocity

increases completeness by about 2 percentage points and including both negative and

positive reciprocity increases completeness by an additional approximately 3 percentage

points. This shows that within this type (i) differentiated altruism is the by far most

important motive, (ii) the partial impact of negative reciprocity is slightly smaller than

on the aggregate level, but (iii) the partial impact of positive reciprocity is of comparable

size as in the aggregate level. The expected loss of the naive benchmark is quite high,

indicating that there is substantial variation within this type. That is, the predictive

performance of a parametric model that does not include any other-regarding preferences

is quite low. However, the models are able to pick up the vast majority of the predictable

patterns. Based on this, we conclude that a simple linear social preference theory can

capture the choices of this type very well.

In k = 2, we see that choices are relatively easily predictable by using the agents’ own

payoffs, based on the expected loss of the naive benchmark, and that the models are only

able to pick up some of the remaining predictable patterns, resulting in within-type com-

pleteness estimates of 60.50% for pθ̂2
2
, 65.11% for pθ̂2

4
and 65.98% for pθ̂2

5
. Hence, different

from the preceding type, positive reciprocity seems to hardly play a role here, whereas

only including negative reciprocity leads to an increase in completeness of approximately

5 percentage points. In addition, due to the relative low completeness of all models within

this type, we have an indication that subjects of this type potentially use a more complex

model of social preference, that may include non-linearity that we do not consider in these

models.
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Finally, for k = 3 we get unexpected results. The expected loss of the naive benchmark

for all of the models within this type reveals that choices are very random, in the sense that

they are not well predicted using only the agent’s own payoff. However, we see that the

expected loss of each of the models outperform that of the estimated optimal mapping.28

The most likely reason for this is a power issue. That is, our ML model is unable to pick

up the predictable patterns within this type because (i) choices are very random and (ii)

the type consists of a relatively small number of individuals. Based on this, we are unable

to evaluate whether the models perform well in terms of prediction within this type. We

thus turn to the parameter estimates to see whether these are stable.

Table 4.3: Parameter estimates of heterogeneous parametric models

Model k 1/σ̂ γ̂A γ̂D γ̂K γ̂U

1 0.0168∗∗∗ 0.4929∗∗∗ 0.1914∗∗∗ – –
(0.0008) (0.0206) (0.0179)

pθ̂k
2

2 0.0288∗∗∗ 0.1180∗∗∗ 0.0496∗∗∗ – –
(0.0020) (0.0145) (0.0100)

3 0.0044∗∗∗ −0.3194∗ −0.8593∗∗∗ – –
(0.0008) (0.1721) (0.2327)

1 0.0171∗∗∗ 0.5332∗∗∗ 0.2306∗∗∗ – −0.1222∗∗∗
(0.0009) (0.0226) (0.0216) (0.0213)

pθ̂k
4

2 0.0289∗∗∗ 0.1282∗∗∗ 0.0599∗∗∗ – −0.0312∗∗∗
(0.0019) (0.0161) (0.0108) (0.0099)

3 0.0045∗∗∗ −0.2072 −0.7434∗∗∗ – −0.3422∗∗
(0.0008) (0.1656) (0.2190) (0.1374)

1 0.0175∗∗∗ 0.4561∗∗∗ 0.1480∗∗∗ 0.1587∗∗∗ −0.0451∗∗
(0.0008) (0.0235) (0.0236) (0.0240) (0.0206)

pθ̂k
5

2 0.0289∗∗∗ 0.1290∗∗∗ 0.0622∗∗∗ −0.0022 −0.0314∗∗∗
(0.0018) (0.0154) (0.0121) (0.0114) (0.0112)

3 0.0045∗∗∗ −0.3152∗ −0.8511∗∗∗ 0.2005 −0.2415
(0.0007) (0.1698) (0.1938) (0.1727) (0.1677)

Number of subjects: 174
Number of observations: 20,358

Note: pθ̂k
2
, pθ̂k

4
, pθ̂k

5
for k ∈ {1, 2, 3} are parametric models contained in mixture models as defined in

Section 4.2.4. k is the type indicator. Standard errors clustered on the individual level in parentheses.
Significance levels; ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

28Note that this result is robust to fitting a distinct gradient boosting classifier within each type of
all three models. In addition, due to the small sample size within this type, it may be that a simpler
ML model fitted only on this type would be able to outperform the parametric models, although we did
not find such a model. However, this would only give us a crude upper bound estimation. The optimal
way to deal with this issue, in our opinion, would be to at least double the sample size, such that we
have enough observations to properly estimate the irreducible error. This is consistent with findings of
Peterson et al. (2021) showing that theory driven models can outperform ML models on smaller data
sets due to theory-driven efficiency.
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Table 4.3 shows the within-type parameters of each of the heterogeneous parametric

models, where the types are matched to those in Table 4.2. Not surprisingly, we see that

there is a positive correlation between the predictability within types and the estimated

choice sensitive for that type. In particular, in type k = 2, where choices are the least

random, we also see the highest choice sensitivity in all the models. The estimated choice

sensitivity is by far the lowest in k = 3 in all the models, which is also the type in which

choices, in general, are hard to predict.

From the parameter estimates in Table 4.3, we see that the first type, i.e. k = 1,

is characterized by substantial altruism in all of the models. The parameter estimate of

altruism when ahead, γ̂A, varies between 0.4561 and 0.5332 with statistical significance

at the 1%-level in all models, indicating a willingness to give up approximate 50 cents to

increase the counterpart’s payoff by 1 dollar. The parameter estimate of altruism when

behind is substantially smaller, but still larger than the estimates on the aggregate level

and significant at the 1%-level. Furthermore, we see that, for this type, the model that

includes negative reciprocity, γ̂U , but not positive reciprocity, pθ̂1
4
, reveals that negative

reciprocity has a small impact. However, through the altruism parameter estimates in this

model, we see that positive reciprocity plays a much larger role for this type. Only includ-

ing negative reciprocity leads to a sizeable increase in the altruism parameters, γ̂A and

γ̂D, as we also saw on the aggregate level, although to a lesser degree. Finally, pθ̂1
5
reveals

the impact of positive reciprocity, γ̂K . Specifically, the parameter estimate is significant at

the 1%-level and the magnitude is comparable to that of altruism when behind, γ̂D. Thus,

conditional on a kind preceding action of the counterpart, the agent is willing to sacrifice

approximately double as much when behind. On the other hand, negative reciprocity, γ̂U ,

has a much smaller, but statistically significant impact on altruism, which is of compa-

rable magnitude to the estimates on the aggregate level. Hence, from our within-type

completeness estimation and parameter estimation of this type, we can conclude that (i)

it is very well explained by a linear social preference model and (ii) it is characterized by

substantial other-regarding preferences.

In k = 2, we see substantially less altruism compared to the previous type. In partic-

ular, the parameter estimate of altruism when ahead, γ̂A, is between 0.1180 and 0.1290,

but significant at the 1%-level in all the models. The parameter estimate of altruism when
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behind, γ̂D, is also significant at the 1%-level for all models and varies between 0.0496 and

0.0622. These estimates are thus closer to those on the aggregate level than in the pre-

vious type. Finally, considering pθ̂2
4
and pθ̂2

5
, we see that negative reciprocity has a small,

but statistically significant impact on utility, whereas positive reciprocity seemingly plays

no role. Based on our parameter estimates, we can conclude that other-regarding prefer-

ences are much less important to this type than the previous. However, the within-type

completion estimate also reveals that the other-regarding preferences that are present,

are potentially used in a non-linear manner that is not captured by our simple preference

models. Hence, for this type, it might be worth exploring other functional forms that allow

for concave or convex altruism.

Finally, in the last type, k = 3, we see quite counter-intuitive estimates. In particular,

the parameter estimate of γ̂A varies between -0.3152 and -0.2072, indicating a willing-

ness to sacrifice a substantial amount to decrease the counterpart’s payoff when ahead.

However, the estimate is only significant in pθ̂3
2
and pθ̂3

5
, and only at the 10%-level, indi-

cating a high variance. For the estimates of γ̂D, we see substantial behindness aversion

with point estimates varying between -0.7434 and -0.8593. Notice also that these are all

significant at the 1%-level. Finally, we see that the parameter estimates of positive and

negative reciprocity, γ̂K and γ̂U , are substantial and have the expected signs. However,

due to the large variance, only negative reciprocity is statistically significant and only in

pθ̂3
4
. Based on these parameter estimates, we have an indication that a type exists that

exhibits severe behindness aversion and malice. Additionally, the type also seems to be

driven by both positive and negative reciprocity. However, due to the small sample size

and the magnitude of the parameters, we seemingly do not have enough power to fully

estimate the behavioral characteristics of this type. This is in line with the within-type

completeness estimate showing that the ML model is unable to pick up a substantial

part of the predictable patterns on the small sample. We conclude that we would need to

include substantially more subjects to get stable and reliable estimates for this type and

to evaluate whether a linear social preference model is appropriate for explaining their

choices. However, including more subjects may also complicate the estimations. Whereas

the two larger types, k = 1 and k = 2, appear stable, it might be that the smaller type,

k = 3, consist of two or more minority types that would appear in a larger sample size.
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4.4.2.2 Unrestricted completeness

Table 4.7 in the Appendix shows the results of the estimation of our gradient boosting

classifier in four distinct variants. The first variant, p∗GBind , that uses the subject identifier

has a lower expect loss estimate than the corresponding model on the aggregate level,

which ignores the identifier. However, the loss estimate is substantially higher than that

of any of the heterogeneous parametric models with three types. This indicates that we do

not have a sufficient amount of observations of each subject for the ML model to properly

capture the individual characteristics related to predicting the choice.29 Considering the

three variants of the gradient boosting classifier that use a clustering algorithm as a

preprocessing step, p∗GBkm , p∗GBhc and p∗GBber , we see that the ML model using the K-

means algorithm is most successful in terms of the lowest expected loss estimate. Hence,

for our estimation of the unrestricted completeness, we will use the expected loss of p∗GBkm

as our estimate of the optimal mapping, p̂∗. However, we would like to stress once again

that these estimations should be seen as upper bounds. We do not claim that we have

found the absolute minimum loss.

Table 4.4 shows our unrestricted completeness estimates of the three heterogenous

parametric models that we consider, pθ̂∗
2,3
, pθ̂∗

4,3
and pθ̂∗

5,3
. Here the naive benchmark model,

pθ̂0
, is identical to the one on the aggregate level, and once again, the completeness of the

naive benchmark and the optimal mapping, p̂∗, are 0% and 100% by definition, respec-

tively.

As can be seen, the expected loss estimate of all of the heterogeneous models are sub-

stantially lower than that of the naive benchmark model, and of that of the respective

parametric models on the aggregate level (see Table 4.1). In addition, we see that all of

the models are relatively complete, in the sense that they are much closer to the expected

loss of the optimal mapping than to that of the naive benchmark. Specifically, the model

including only differentiated altruism, pθ̂∗
2,3
, achieves an estimated completeness of 84.82%,

whereas the models that include negative reciprocity, pθ̂∗
4,3
, and positive and negative reci-

procity, pθ̂∗
5,3
, achieves a completeness estimate of 86.42% and 88.36%, respectively. Hence,

we conclude that (i) differentiated altruism is the by far most important other-regarding
29A similar result can be derived by fitting the parametric models on each individual separately. Here

the expected loss would be minimized by pθ̂1
, indicating a lack of power to fully estimate the parameters

of the individuals.
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Table 4.4: Unrestricted completeness of heterogeneous parametric models

Model ê(`(·)) κ̂(·)
pθ̂∗

0
0.3862 0%

pθ̂∗
2,3

0.2541 84.82%
pθ̂∗

4,3
0.2516 86.42%

pθ̂∗
5,3

0.2486 88.36%
p̂∗ 0.2305 100%
Number of subjects: 174
Number of observations: 20,358

Note: pθ̂0
is a parametric model and pθ̂∗

2,3
,pθ̂∗

4,3
,pθ̂∗

5,3
are mixture models as defined in Section 4.2.4. p̂∗

is a gradient boosting classifier. ê(`(·)) is the average negative log likelihood on the test set. κ̂(·) is the
estimated completeness on the test set.

behavioral motive for predicting the subjects’ choice, (ii) a parsimonious representation

of the subjects in three types is able to capture most of the individual variation in the

data, and (iii) there seems to be little predictive potential in considering models with

more types and with non-linear social preferences.

4.5 Discussion

We now shortly discuss the validity and generalizability of our results. The former refers

to our assumptions and estimation strategy. The latter refers to the extent that our results

on this limited domain can say something about the predictability of the social preference

models generally.

The strictest assumption that we impose is that utility noise follows an identical Gum-

bel distribution. This is a “convenience” assumption making the translation of the social

preference models into models that predict the probability of choosing a given allocation

straightforward. Whereas this assumption is standardly imposed, it may, naturally, be

violated and the extent of the impact on our results will most likely depend on the de-

gree of the violation. In this regard, we note a recent contribution by Alós-Ferrer et al.

(2021) showing that preferences of individuals can be recovered by imposing assumptions

on decision time rather than the utility noise. Hence, collecting decision time data may

be a way to overcome this “convenience” assumption in future work on this domain.

The next point that may influence the validity is our data-splitting strategy. The rea-
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sons for using our approach are as follows. Firstly, it provides maximal power in estimating

the completeness of the models on both the aggregate and heterogeneous level since each

individual is present in both the training and test set with the approximately same num-

ber of observations. This makes it more powerful than an approach in which we make our

splits completely random. Secondly, it makes it possible, on the heterogeneous level, to

construct models that depend on the subject identifier. This allows us to (i) consider very

flexible ML models that should be able to capture most of the predictable variation in

the data, and (ii) compare social preference models with an increasing number of types.

Alternatively, one could split the data in a way that holds out a fixed random subset of

the games for all subjects. However, this would result in the prediction problem being

not only out-of-sample, but also outside of the observed features in the training stage.

As our goal is to estimate the completeness conditional on the features, this is not an

optimal approach in this setting. However, such a strategy does not come without value.

In fact, such predictions would tell us how well a given model generalizes to settings from

which it has not “learned”. Finally, a viable alternative approach would be to split the

data in a way that holds out a fixed random subset of the individuals. This is indeed an

intuitive approach if one wishes to estimate how well a given (potential heterogeneous)

model generalizes to the population. However, this approach also introduces several issues

that have to be dealt with. For instance, it is not clear how to assign out-of-sample indi-

viduals to types as those assignments would be based on the out-of-sample choices. One

approach would be to assign out-of-sample individuals to the most prevalent type. How-

ever, intuitively, this should lead to even worse performance than aggregate estimation.

An alternative approach would be to assume that a random subset of the out-of-sample

individual’s decisions are known to us. In this way, one could use the information provided

by the known choices of the out-of-sample individuals to assign them to types and then

use the corresponding models to make predictions on the unknown choices. However, then

one might argue that these known choices should be in the training stage of the model in

the first place and then we arrive at an approach similar to the one that we are taking.

Finally, with regard to the generalizability of our results, we note that our results

may naturally be limited to (i) the domain (i.e., that of dictator games and reciprocity

games), (ii) the complexity of the games, and (iii) the number of counterparts that the



100 CHAPTER 4. COMPLETENESS OF SOCIAL PREFERENCE THEORIES

subject faces. Naturally, to fully grasp the completeness of the considered theories, we

should conduct the investigation on more games, in more complex settings (e.g., where

reciprocity enters non-binary), and with varying number of counterparts. As our investi-

gation indicates, this should be done with a much larger sample size, such that within-type

completeness estimates are possible for all types. An additional benefit of increasing the

sample size is that it makes it possible to see whether individual characteristics, such as

those collected in this data set (see Table 4.5), can predict the type assignment of the

subjects. If this indeed is the case, then that would provide us with information on which

characteristics the estimated types consists of. This is an exercise that unfortunately is

not possible here.

4.6 Conclusion

This paper extends the literature on theory evaluation to that of social preferences and

proposes ways in which parameterzed theories can be evaluated when allowing for het-

erogeneity. Our results suggest several interesting behavioral patterns on the considered

domain. Firstly, on the aggregate level, we find that a linear social preference model in-

cluding altruism that may depend on the payoff allocations as well as positive and negative

reciprocity captures most of the predictable patterns in the data. In particular, we find

that such a model is approximately 82% complete, so that potential improvement by con-

sidering more complex functional forms is rather limited. When allowing for heterogeneity

we see the emergence of three distinct types. The two first types are of similar proportion

and significantly larger than the third minority type. We find that the first of the larger

types is characterized by strong other-regarding preferences, and our within-type com-

pleteness measure indicates that the preferences of this type can be very well predicted

by a linear social preference model. The second of the large types is characterized by mod-

est social preferences, but based on our within-type completeness estimations, we find that

the behavioral motives most likely interact in a more complex functional form. For the

minority type, we find that we are unable to estimate the within-type completeness due

to the type’s small sample size. However, the parameter estimates indicate that the type

is characterized by strong behindness aversion and even inequity loving behavior when
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ahead. Finally, our unrestricted completeness estimations indicate that a linear social pref-

erence theory, as long as it admits differentiated altruism, with only three types is able to

capture most of the individual variation in the data. Our results are naturally limited in

several ways. Firstly, the domain of binary dictator games and reciprocity games contains

only a small subset of situations in which social preferences play a role. In addition, these

situations may contain more than the single counterpart that we include in this paper.

Thus, to fully grasp the completeness of social preference theories, this analysis should

be conducted on more games with varying numbers of counterparts and include other

aspects such as beliefs. We note, however, as this analysis shows, that the sample should

be sufficiently large to be able to estimate the completeness of all types once allowing for

heterogeneity.
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4.8 Appendix

Table 4.5: Descriptive statistics of the subjects

Variable Description Mean

Age – 21.71
(3.02)

Income Monthly (in CHF) 640.17
(491.37)

Female Binary indicator 0.53
–

Natural Sciences Binary indicator 0.60
–

Medical Sciences Binary indicator 0.14
–

Social Sciences Binary indicator 0.10
–

Law Binary indicator 0.07
–

Cognitive ability – 7.01
(2.39)

Consciousness Big 5 measure 6.98
(3.10)

Openness Big 5 measure 20.92
(3.85)

Extraversion Big 5 measure 6.07
(3.93)

Agreeableness Big 5 measure 8.07
(2.79)

Neuroticism Big 5 measure 3.88
(4.16)

Number of subjects: 174

Note: Standard deviation in parentheses.

Table 4.6: Non-parametric and ML benchmarks on the aggregate level

Model C̄V (·) ê(`(·))

p̂∗TL – 0.3651

p̂∗RF 0.3384 0.3348
(0.0126)

p̂∗GB 0.3374 0.3345
(0.0127)

Number of subjects: 174
Number of observations: 20,358

Note: ê(`(·)) is the average negative log likelihood on the test set of the model. C̄V (·) is the average
negative log likelihood of the model with its optimal hyperparameters averaged over the five CV folds.
Standard error of the cross validation estimation in parentheses.
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Figure 4.2: CV loss of heterogeneous parametric models with varying number of types

C̄V (pθ̂2,K
) for K = 1, . . . , 10

(a)

C̄V (pθ̂4,K
) for K = 1, . . . , 10

(b)

C̄V (pθ̂5,K
) for K = 1, . . . , 10

(c)
Note: In all plots the solid line is the average negative log likelihood averaged over the 5 estimates in the

cross validation procedure for the finite mixture model with K types. The dashed line is +/- one
standard error of this estimate.

Table 4.7: ML benchmarks on the heterogeneous level

Model C̄V (·) ê(`(·))

p̂∗GBind 0.3165 0.3081
(0.0159)

p̂∗GBkm 0.2344 0.2305
(0.0143)

p̂∗GBhc 0.2698 0.2434
(0.0105)

p̂∗GBber 0.2563 0.2363
(0.0180)

Number of subjects: 174
Number of observations: 20,358

Note: ê(`(·)) is the average negative log likelihood on the test set of the model. C̄V (·) is the average
negative log likelihood of the model with its optimal hyperparameters averaged over the five CV folds.
Standard error of the cross validation estimation in parentheses.
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