Solving the Simple Offset Assignment Problem as a
Traveling Salesman

Michael Jinger
Institut fir Informatik
Universitat zu Kéln
Cologne, Germany

mjuenger@informatik.uni-koeln.de

ABSTRACT

In this paper, we present an exact approach to the Simple
Offset Assignment problem arising in the domain of address
code generation for digital signal processors. It is based
on transformations to weighted Hamiltonian cycle problems
and integer linear programming. To the best of our knowl-
edge, it is the first approach capable to solve all instances
of the established OffsetStone benchmark set to optimality
within reasonable time. Therefore, it enables to evaluate the
quality of several heuristics relative to the optimum solutions
for the first time. Further, using the same transformations,
we present a simple and effective improvement heuristic. In
addition, we include an existing heuristic into our experi-
ments that has so far not been evaluated with OffsetStone.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers, Optimization; G.1.6 [Mathematics of
Computing]: Optimization—Integer programming

General Terms

compiler optimization

Keywords

address code generation, compiler optimization, simple off-
set assignment, integer programming

1. INTRODUCTION

Address code generation is an important field for compiler
optimizations since address calculations make up a signifi-
cant part of machine codes. This is especially true for dig-
ital signal processors (DSPs) which frequently do not sup-
port implicit indirect addressing modes with arbitrary off-
sets. Instead they usually provide an address generation unit
(AGU) with address registers (ARs) that need to be explic-
itly modified in order to compute memory access operands.
Typically, modifications of an AR can be encoded into and
performed with another instruction on that AR at no ex-
tra cost if the offset to the new address is within a certain
processor-specific autoin-/decrement range. Otherwise, an
explicit address arithmetic instruction is needed. Compilers
may freely choose the stack layout for local variables of a
function. It is therefore natural to ask for an optimization
of the order of variable storage locations, such that subse-
quent memory accesses apply to locations that are within
this range. Ideally, this may significantly reduce the code

Sven Mallach
Institut fir Informatik
Universitat zu Koln
Cologne, Germany

mallach@informatik.uni-koeln.de

size and speed up the program at the same time. How-
ever, the range r for the mentioned autoin- or decrements is
typically small. In fact, since many DSPs have a small in-
struction word length (e.g. 16 bits), they only allow autoin-
or decrements by a single word, i.e., r =1 [16, 14].

Given an access sequence of program variables, a range
r=1and k > 1 ARs, the problem to find a memory layout
that minimizes the address computation overhead is called
the General Offset Assignment (GOA) problem. For k = 1,
i.e. only a single AR, it is called the Simple Offset Assign-
ment (SOA) problem and already NP-hard. Although SOA
appears to be oversimplified, it reflects a real-world problem
since GOA is typically solved by first assigning variables to
ARs and then independently performing a SOA for each of
the ARs. A comprehensive and up-to-date overview on how
SOA and GOA correlate in practice and a discussion of the
large impact of memory layouts on code size and perfor-
mance was recently published by Huynh et al. [14]. In the
paper at hand, we restrict our attention to SOA.

1.1 Motivating example

The input to the SOA problem is an access sequence of
program variables. An access sequence is constructed from a
scheduled order of three-address-code instructions ¢ = a op b
by concatenating the accessed variables of each instruction
in the order a b c.

c=a+b; abcgcfcecctd
f=g-c;

c=¢-e; [a[b[c[8]f]e[d]
d=c *f; [a[b[E]c[f]d]e]

a) (b)

—

Figure 1: A sample code fragment (a), its access sequence
and two memory layouts (b).

Performing this for the code fragment in Fig. 1 results in
the access sequence shown on the right. Below, two example
memory layouts are shown. The first one corresponds to the
order of first use (OFU) of the variables and the second is
an optimized one. Once the stack layout has been fixed, an
address generator may add autoin-/decrement instructions
whenever this is applicable. Look at Tab. 1 for a pseudo
machine code of our exemplary code fragment. Increasing
the use of the autoin-/decrement instructions (* (AR)+ and
*(AR) -) results in fewer explicit address arithmetic instruc-
tions (ADAR and SBAR). In this very small example, the opti-
mized memory layout needs three less of them.

LDAR AR, &a AR = a LDAR AR, &a AR = a
LOAD *(AR)+ ACC = a,AR =b LOAD *(AR)+ ACC = a,AR =D

ADD *(AR)+ ACC += b,AR = c ADD *(AR) ACC += b

STOR *(AR)+ ¢ = ACC,AR = g ADAR AR,2 AR = ¢

LOAD *(AR)- ACC = g,AR = ¢ STOR *(AR)- «c = ACC,AR = g
SUB *(AR) ACC -= ¢ LOAD *(AR)+ ACC = g,AR = c
ADAR AR,2 AR = f SUB *(AR)+ ACC -= c,AR = f
STOR *(AR) £ = ACC STOR *(AR)- f = ACC,AR = ¢
SBAR AR,2 AR = ¢ LOAD *(AR) ACC = ¢

LOAD *(AR) ACC = ¢ ADAR AR,3 AR = e

ADAR AR,3 AR = e SUB *(AR) ACC -= e

SUB *(AR) ACC -= e SBAR AR,3 AR = ¢

SBAR AR,3 AR = ¢ STOR *(AR)+ ¢ = ACC,AR = f
STOR *(AR) c = ACC MUL *(AR)+ ACC *= f,AR = d
ADAR AR,2 AR = f STOR *(AR) d = ACC

MUL *(AR) ACC *= £

ADAR AR,2 AR = d

STOR *(AR) d = ACC

Table 1: Pseudo machine codes for the OFU and optimized
memory layouts for the code fragment from Fig. 1.

1.2 Our Contribution

In this paper, we present both - an integer linear program-
ming (ILP) algorithm to solve the SOA problem to optimal-
ity and a simple and effective heuristic.

The main purpose of the exact algorithm is to deliver
optimum solutions for the standard OffsetStone benchmark
set [16] for the first time. This allows for a first real evalu-
ation of the quality of existing heuristics. However, in con-
trast to existing ILP approaches for SOA and GOA, our al-
gorithm solves the majority of instances within milliseconds
of CPU time even though it has a quite simple design. Most
of the time, it is much faster than the genetic algorithm from
[17] which cannot guarantee an optimum solution. Still, an
ILP solver that is capable to solve any instance in acceptable
time cannot be expected. Nonetheless, we believe that an
exact solver could be interesting in practice whenever the
compilation of a particular program is carried out seldom
or even only once. This is the case, e.g., for small devices’
firmware to be stored in a small read-only memory. An-
other strategy could be to combine an exact solver with a
time limit and a fallback heuristic.

As a second approach, we build a new improvement heuris-
tic which provides a well-tunable trade-off between running
time and solution quality. On the OffsetStone instances, it
is capable to provide near-optimum solutions and can, e.g.,
produce better solutions than a previously proposed genetic
algorithm [17] in less time.

In addition, we include the tie-break heuristic proposed
by Ali et al. [2] in 2008 into our experiments. Before, it has
only been tested on instances randomly generated by the
authors.

The sequel of this paper is organized as follows. In Sect. 2,
we report on related work and in Sect. 3, we recall the
standard approach to solve the Simple Offset Assignment
problem and its relations to path and path cover problems.
Sect. 4 deals with the transformations necessary to apply
our new algorithms, which we present in Sect. 5. We report
on our experiments in Sect. 6 and 7 and, finally, the paper
closes with concluding remarks in Sect. 8.

2. RELATED WORK

Simple Offset Assignment was first considered by Bart-
ley [6] in 1992. He recognized a close relationship of SOA to
the Maximum Weight Hamiltonian Path (MWHP) problem

and developed a first greedy heuristic to solve it. In subse-
quent research, Liao [19] gave a formal proof for the strong
NP-hardness of SOA, a simpler and faster heuristic (yield-
ing the same results as Bartley’s [16]) and also a first exact
Branch-and-Bound procedure. In 1997, Leupers and Mar-
wedel [18] proposed to use a tie-break function for edges with
equal weight within Liao’s heuristic. One year later, Leu-
pers and David presented a genetic algorithm for GOA [17].
Atri et al. [5] developed an incremental algorithm that tries
to successively improve a known feasible solution. These yet
mentioned algorithms were subject to an exhaustive experi-
mental comparison by Leupers [16] in 2003. It revealed only
small differences in the quality of their solutions. However,
the performance of the heuristics relative to the optimum
solutions could only be verified for some small instances us-
ing Liao’s Branch-and-Bound procedure. The corresponding
benchmark set, called OffsetStone, which is freely available,
is since then a standard reference for performance measures
which we will also use in this paper.

Several research papers deal with integrated approaches
or variants of the offset assignment problem. Ozturk et
al. [24] provide an ILP approach for GOA with modify reg-
isters. Unfortunately, they did not evaluate their approach
with OffsetStone. However, their ILP formulation is very
generic, i.e., does not exploit polyhedral structure, has a
very large number of variables and its running times do not
allow for a direct use within a compiler. Similarly, Eriks-
son [12] proposed a dynamic programming algorithm to in-
tegrate scheduling, AR and offset assignment. However, the
algorithm is highly time and memory consuming and far
away from being capable to solve the SOA problem for all
instances from OffsetStone.

Another research branch reflects the fact that storage lo-
cations can be shared by different program variables whose
lifetimes do not overlap. The approach to group such vari-
ables is called wvariable coalescing. Ottoni et al. [23] pre-
sented a first heuristic which was followed by another one by
Salamy and Ramanujam [26]. Recently, the latter authors
also developed an ILP formulation for offset assignment with
variable coalescing [27]. However, again the instances solved
had to be restricted to sizes of about 30 variables due to the
running time of the solver.

Further research deals with address code optimizations
by computation or operand reordering. Rao and Pande [25]
apply algebraic transformations to expression trees in order
to find a least cost access sequence. Similarly, Atri et al. [4]
use commutative transformations of the access pattern to
obtain better solutions with existing heuristics. Choi and
Kim [7] perform code transformations and reschedule parts
of the code as a preprocessing step to offset assignment.

3. HAMILTONIAN PATHS, PATH COVERS
AND SIMPLE OFFSET ASSIGNMENT

Typically, an instance of the SOA problem is modeled by
an access graph G = (V, E). The set of vertices V corre-
sponds to the variables and there is an edge e = {u,v} € E
with weight w(e) if the variables u and v are neighbors
within the access sequence for w(e) times. Fig. 2 shows the
access graph that corresponds to the sample code fragment
shown in Fig. 1.

Let G’ = (V,E’) be the complete graph that results by
adding zero-weight edges between vertices that are not adja-

Figure 2: Access graph for the code fragment from Fig. 1.

cent in G. In the seminal paper [6] dealing with SOA, Bart-
ley already noted (without proof) that the problem is equiv-
alent to the Maximum Weight Hamiltonian Path (MWHP)
problem in G’. Liao [19] showed the NP-hardness of SOA by
reducing the decision variant of the Hamiltonian path prob-
lem to that of SOA. In view of the fact that the reduction
to the MWHP problem requires the addition of many zero-
weight edges, he reduced SOA to the Maximum Weight Path
Cover (MWPC) problem instead. In this light, the majority
of algorithms developed for SOA are heuristics to solve the
MWPC problem. For our algorithms, we stay closer to the
initial MWHP-oriented idea of Bartley. We recall formal
definitions of the two problems.

DEFINITION 1. (Mazimum Weight Path Cover Problem)
Given a graph G = (V, E) and a weight function w : E — Z,
compute a set of disjoint paths P such that each vertex is
visited by exactly one path P € P and the sum of the weights

of the selected edges, > > w(e), is maximum.
PePecP

DEFINITION 2. (Mazimum Weight Hamiltonian Path Pr.)
Given a complete graph G = (V, E) and a weight function
w: E — Z, compute a path of mazximum weight that visits
each verter v € V' exactly once.

Def. 7?7 allows for isolated vertices considered as paths of
length zero. In fact, the only difference between the two
problems is that a collection of disjoint paths covering all
vertices is feasible for the MWPC whereas it is not for the
MWHP. Clearly, any concatenation of these paths to a mem-
ory layout is also a feasible solution for SOA.

Figure 3: The path covers (solidly drawn), paths (with
dashed black) and uncovered edges (dashed gray) corre-
sponding to the two solutions from Fig. 1.

The cost of a solution expressed by a path cover is the
sum of the edge weights that are mot in the cover. It corre-
sponds to the number of address computations that cannot
be done by autoin- or decrements. Given a MWPC consist-
ing of multiple paths, permuting them has no effect on this
value. They can be concatenated to a memory layout in an
arbitrary order. This is an important result that we should
formalize.

LEMMA 1. Let G = (V, E) be an access graph and P be
an optimal disjoint path cover for G, |P| > 1. For any two
end-vertices p,q of different paths P,Q € P, the number of
access transitions between p and q is zero.

This result can be easily verified. If there were access
transitions between p and ¢, then there must be an edge e =
{p,q} in the access graph with a weight w(e) > 0. Adding
this edge to the solution of the MWPC (and therefore simply
connecting the two paths) would improve the solution which
was assumed to be optimal.

It is therefore viable for our purposes to transform an
access graph G = (V, E) into a complete graph G’ = (V, E’)
by adding zero-weight edges between vertices that are not
adjacent in G. Using this simple extension it is easy to show
the following important relationship between the MWPC
and the MWHP.

THEOREM 1. Let G = (V, E) be an undirected graph and
G' = (V',E’) the complete graph that results by adding a
zero-weight edge for every edge that is not in G. Then there
exists a mazimum-weight path cover P of weight w(P) in G
if and only if there exists a mazrimum-weight Hamiltonian
path P’ of weight w(P') = w(P) in G'.

PrROOF. Let P be a maximum-weighted path cover in G.
Clearly, if P consists only of a single path, then P is also
a maximum-weight Hamiltonian path. So let P consist of
k > 1 disjoint paths. By Lemma 1, there exists an Hamilto-
nian path P’ in G’ that consists of P and k — 1 additional
edges with zero weight. Hence, P’ has the same weight as
P. So suppose now that P’ is not a maximum-weighted
Hamiltonian path in G, i.e., there exists a different path
Q with weight w(Q) > w(P’). However, then Q, without
its zero-weight edges, is also a maximum-weight path cover
in G with weight greater than w(P). This is a contradic-
tion to the assumption that P is maximum. Conversely, a
maximum-weight Hamiltonian path P’ in G’ yields (by re-
moving zero-weight edges) directly a path cover P of the
same weight, and there cannot be a better one, because this
would contradict the optimality of P'. [

4. FROM OFFSET ASSIGNMENTS TO
TRAVELING SALESMEN

Theorem 1 allows us to calculate an optimum solution
to the SOA problem by finding a maximum-weight Hamil-
tonian path in a graph created from the access graph as
described above. Once formulated like this, it can be eas-
ily transformed into a Mazximum Weight Hamiltonian Cycle
(MHWC) problem and, by turning the maximization objec-
tive into a minimization objective, into the Traveling Sales-
man Problem (TSP).

DEFINITION 3. (Mazimum Weight Hamiltonian Cycle Pr.)
Given a complete graph G = (V, E) and a weight function
w: E — 7Z, compute an Hamiltonian cycle (a tour) T C E
of maximum weight visiting each verter v € V' ezactly once.

We will now describe how to transform an instance of
the MWHP (SOA) problem into an instance of the MWHC
problem and into an instance of the TSP, respectively.

4.1 Problem Transformations

Let G = (V, E) be the completed access graph for which
we wish to find an Hamiltonian path of maximum weight.
We create another graph G¢ = (Vio, E¢) as follows. We set
Vo = VU {z} where z is an additional vertex. E¢ consists
of F and additional edges {v, z} with zero weight for every
vertex v € V. Computing a (maximum-) minimum-weighted

(c) with inverted Welghts

Figure 4: Transforming an instance of the MWHP problem
into an instance of the TSP (dotted edges have zero weight,
their dashed counterparts maximum weight nine).

(c) opt. MWHP

Figure 5: Interpreting the optimum TSP or MWHC tour
to obtain a maximum-weight Hamiltonian path.

tour in G¢ and removing the vertex z from the cycle yields
a (maximum-) minimum-weighted Hamiltonian path in G.
In order to solve the problem as a TSP instance, we need to
account for the objective function. By computing wmaes =
max{w(e) | e € Ec}, we obtain the correct input graph
for the TSP by reassigning all weights such that w(e) =
Wmaz — w(e). In a slight abuse of language, we refer to the
last step as ‘inversion’ of edge weights.

Clearly, the transformations can be done in linear time
with respect to the size of the complete graph, i.e., in O(|V[?)
time. They yield much more than just another strongly NP-
hard problem. Due to the popularity and importance of the
TSP, there is a vast research effort in the area of combinato-
rial optimization that has been invested to solve it. Instead
of formulating some generic ILP, we can profit from the pro-
found knowledge that has been published about the polytope
corresponding to Hamiltonian cycles, e.g., known (facet-
defining) inequalities and separation algorithms. However,
even when linear programming is not applicable for imple-
mentation in practice, the transformation to the MWHC or
TSP can help to obtain better solutions. For instance, it is
then possible to apply well-performing TSP heuristics, such
as, e.g., the algorithm proposed by Lin and Kernighan [21].

4.2 An ILP for the MWHC problem
Let G = (V,E) be a complete graph on n vertices and

let z. € {0,1} be a decision variable for each edge e € E
expressing whether it is selected for the tour or not. For
each edge (variable), let c. denote the associated edge weight
(cost). Further, we denote the set of edges adjacent to a
vertex v € V with §(v) (the star graph of v) and similarly, for
any set of vertices W, the set of edges between the vertices

in W with E(W). Let z(S) = 3 . for any subset S C F.
e€S
Then, an integer programming formulation for the MWHC

can be stated as follows:

max Yy CeTe

20) =2 Vuev
w(E(W)) <|W|-1 V0#xWCV
Te € {0,1} VeeE

The objective function is to maximize the total cost of the
selected edges. The equations force any vertex to be adja-
cent to exactly two other vertices in the tour. Their number
is linear in |V|. The inequalities are the well-known subtour
elimination constraints (SECs) [9] which exclude solutions
with multiple cycles from the feasible set. Their number is
exponential in |V|, so they are usually not added to the prob-
lem formulation from the beginning but separated instead.
Finally, the last row enforces integrality of the decision vari-
ables. Again, changing the objective into a minimization
one yields an ILP formulation of the TSP. Many more valid
(and facet-defining) inequalities for the polytope of Hamil-
tonian cycles are known and used in sophisticated solvers,
such as, e.g., the comb inequalities [8]. For a comprehensive
(polyhedral) study of the TSP, we refer to [3].

4.3 The Lin-Kernighan TSP heuristic

The TSP heuristic proposed by Lin and Kernighan [21]
tries to successively improve a given initial tour by exchang-
ing edges. The basic procedure maintains a set of marked
vertices and tries to find improving sequences of edge flips
starting from one of the marked vertices. A usual approach
is to iteratively start the heuristic on different starting tours
as long as some limit of computation time is not exceeded [3].
A more sophisticated approach proposed by Martin and
Otto [22], called Chained Lin-Kernighan, is to perturb the
tours obtained by one run of the basic procedure instead
of creating new tours from scratch. The perturbations are
called kicks, each time selecting k edges to be swapped with
k being typically within the range [2,4]. Another successful
modification of the initial basic procedure has been proposed
by Helsgaun [13] and implemented in his LKH-algorithm.
An empirically [3] observed property of Lin-Kernighan heur-
istics is that it is often possible to trade quality for running
time, i.e., if the number of allowed kick attempts is large
then solutions are often close to optimal.

S. NEW ALGORITHMS

In principle, the presented transformation immediately
enables the use of sophisticated TSP solvers to solve the
SOA problem. However, in this paper, we rather want to
give evidence that real-world instances can be quickly solved
to optimality with a much simpler solver that could indeed
be part of a compiler. Further, we construct a new improve-
ment heuristic by combining a greedy MWPC heuristic with
the Lin-Kernighan TSP heuristic.

5.1 An exact Branch-and-Cut algorithm

SOA-MWHC is a rudimentary ILP solver for the MWHC
problem that we implemented using the Branch-and-Cut-
Framework ABACUS [11] and CPLEX 12.1 [1] as linear
program (LP) solver. It basically solves the ILP formulation
introduced in Sect. 4.2 and uses the transformation with the
additional vertex as described in Sect. 4.1. We give a high-
level description of the procedure, for a detailed discussion
of Branch-and-Cut algorithms we refer to [11].

The algorithm starts by relaxing the integrality and sub-
tour elimination constraints, resulting in an LP consisting
of variables z. € [0,1] for each edge e and only the degree
equations. Then the following iterative process is applied to
the solution z* after solving each LP: First, it is determined
whether z* violates any of the yet neglected SECs by com-
puting a minimum cut (yielding a most violated SEC if z*
has fractional components) or by finding connected compo-
nents (if * is integral). If no SEC can be found and z* has
fractional components, we check for violated 2-Matching-
inequalities [10] using the algorithm proposed in [15]. If
violated inequalities are found like this then they are added
to the LP (as ‘cutting planes’) and it is solved again. Oth-
erwise, if no violation is found or 50 iterations passed like
this, a branch takes place, i.e., two new subproblems are
created by fixing some 0 < z; < 1 once to zero and once
to one. If, at any point of the procedure, a solution z* is
integral and does not violate any SEC, it corresponds to a
tour. So if its weight cx™ is better than the best previously
known feasible solution, we update it accordingly. The al-
gorithm terminates if provably no better solution than the
currently best known can be found in any open subprob-
lem. The successive addition of cutting planes strengthens
the LP relaxation which leads to better upper bounds on
the optimum objective function value. In order to improve
the lower bound and to obtain good tours quickly, a primal
heuristic is run after the solution of each LP.

1: function PRIMALHEURISTIC

2: heapy < 0, heaps < 0, select < (), count < 0

3 fore=1— mdo

4 if z. > 0 and we > 0 then

5: heap.insert(e, we - Te)

6: else if we. > 0 then

7 heapz.insert(e, w.)

8 while —heapi.empty() and count < n do
9 Edge e = (u,v) < heap:.extractMax()

10: if selection of e is feasible then

11: select + select U {e}, count < count + 1
12: while —heapz.empty() and count < n do

13: Edge e < heap:.extractMax()

14: if selection of e is feasible then

15: select < select U {e}, count < count + 1

16: Extend select to a tour by adding zero-weight edges
17: return select

It is likely that edges with a high LP value are part of a
good or even optimum solution. Hence, our primal heuristic
works as follows: We use two heaps. The first one con-
tains the edges e with we > 0 and . > 0 in non-increasing
order of we - z.. The second one contains those edges e
that have LP value z. = 0 but strictly positive weight (in
non-increasing order, too). We then try to select edges one-
by-one from both heaps (prioritizing the first one) as long
they do not close a cycle and their end-vertices have degree

less than two (feasibility check in lines 10 and 14). This pro-
cess might lead to a partial solution, in fact a path cover,
which we then arbitrarily concatenate to a tour using zero-
weight edges. If its weight is greater than the currently best
known one, we update the best feasible solution and the
lower bound.

For reproducibility, we list those ABACUS parameters
that we did not leave on their default values.

Parameter value
NBranchingVariableCandidates 10
NStrongBranchingIterations 10
ObjInteger true
MaxIterations 50

Table 2: Manually set ABACUS parameters.

5.2 A new improvement heuristic

As an alternative to profit from the transformation to the
TSP without the need for linear programming, we combine
two combinatorial algorithms with each other. In particu-
lar, we use Liao’s algorithm with Leupers’ and Marwedel’s
tie-break function (called SOA-TB in the experiments) to find
an initial MWPC. The resulting offset assignment is a con-
catenation P of disjoint paths. Then, a complete graph
G = (V' E') with V' = V U {2} is created as described
in Sect. 4.1. We invert the edge weights and append z to
P interpreting the result as a tour starting and ending in z.
This tour then serves as a starting solution for the Chained-
Lin-Kernighan algorithm, as described in Sect. 4.3. After
obtaining a new solution, z is removed, yielding an Hamil-
tonian path again from which we can easily construct the re-
spective offset assignment. We call this procedure SOA-TBLK
in our experiments. It can be considered a new improvement
heuristic similar to the combination of the incremental algo-
rithm by Atri et. al [5] with SOA-TB (called SOA-INC-TB) [16].
The following is a high-level description of the algorithm:
1: function SOA-TBLK(AccessGraph G = (V, E))
2: path < SOA-TB(G)

z < new Vertex

G' = (V',E') + new CompleteGraph(G, z)

invert the weights of E’

tour < path U {z}

tour < ChainedLinKernighan(G', tour)

path <+ tour \ {z}

return offset assignment corresponding to path

For our experiments, we use the implementation of Chained-
Lin-Kernighan within the Concorde TSP solver library [3].
In this version, four edges are switched per kick (so-called
double-bridge kicks). It can be called with a few parameters
besides the initial tour, namely a list of edges considered
‘good’ (which we do not provide) as well as limits on the
number of kicks to perform without finding a better tour and
in total. Further, one may specify the type of kicks to use.
We allow at most mlogm kicks in total (with m = (“g‘))
and set the kick type to ‘random’ using 4711 as seed.

6. EXPERIMENTAL SETUP

Since we are now able to evaluate the performance of
heuristics relative to optimum solutions for all instances of
the OffsetStone benchmark set, we basically repeat the ex-

periments of Leupers [16]. However, besides replacing Liao’s
Branch-and-Bound algorithm by our optimal Branch-and-
Cut algorithm and adding the SOA-TBLK heuristic, we also
implemented the tie-break heuristic of Ali et al. [2] that has
so far only been tested on random instances generated by the
authors. We did not repeat the experiments for Bartley’s
heuristic, since Leupers already showed that Liao’s heuristic
produces the same results faster [16].

6.1 The OffsetStone benchmark set

The OffsetStone benchmark set consists of more than 3000
realistic SOA instances that have been extracted from 31
real-world application codes written in ANSI C. They com-
prise access sequences with up to 1336 variables and lengths
from 10 to 3640. Among them are computationally inten-
sive programs (e.g., audio, video and image compression,
Fourier transformation) as well as control-dominated appli-
cations (e.g., gzip). For more details on how the instances
were extracted, we refer to the original paper [16]. We also
give the results for the random instances that have been
used in this publication.

Each instance consists of one or multiple access sequences
which may refer to disjoint sets of program variables. Thus,
the access graphs of some of the instances have multiple
connected components. In this case, our exact solver was
started on each of the components and the resulting offset
assignments were concatenated. For our benchmarks, we
only considered instances that consist of at least 10 variables.

6.2 Test system

Our experiments were run with an Intel Core i7 960 pro-
cessor (3.2 GHz) on a Debian Linux system with 6 GB RAM.
We measure the offset assignment costs and average solution
CPU times of five runs of the algorithms summarized in the
following subsection. The time to create the access graphs
and all necessary transformations within the Hamiltonian
cycle oriented codes are considered part of the algorithms
and contribute to the measured CPU times.

6.3 Algorithms included in the evaluation

e S0A-Liao: The heuristic presented in [19, 20].

e SOA-TB: Liao’s heuristic extended by the tie-break heuris-

tic of Leupers and Marwedel [18].

e SOA-TB2: Like SOA-TB but with the new tie-break heuris-
tic of Ali et al. [2].

e SOA-INC: The incremental SOA-algorithm of Atri et
al. [5] using SOA-Liao for an initial solution.

e SOA-INC-TB: Like SOA-INC but using SOA-TB for an ini-
tial solution.

e SOA-TBLK: The combination of SOA-TB with the Lin-
Kernighan heuristic for TSPs presented in Sect. 5.2.

e SOA-GA: The genetic GOA-algorithm of Leupers and
David [17].

e SOA-MWHC: The optimal MWHC-based solver presented
in Sect. 5.1.

7. RESULTS

The most important result is that, if we sum up the offset
assignment costs for all access sequences of each benchmark,
all tested heuristics deliver solutions that are within 8.5% of

the optimum value. This relative average performance is vi-
sualized in Fig. 6. A comprehensive list that summarizes the
average solution quality as well as running times (rounded
to milliseconds) can be found in Table 4. One reason for the
small average deviation is that there are a lot of instances
with only a few variables where all algorithms find optimum
assignments. Still, considering single instances and abso-
lute numbers, the differences can be quite large. This be-
comes visible especially in the anthr, cavity, gsm, mp3 and
mpeg2 benchmarks. We list some interesting single access
sequences that had a larger deviation or make up significant
parts of the overall benchmark running time in Table 3.

Concerning the previously known heuristics, Leupers [16]
already found that SOA-INC-TB performs best on the Off-
setStone instances. With respect to the accumulated costs,
its deviation from the optimum value is never more than
3%. Considering single access sequences with more than 50
variables, we recognized instances with up to 10% devia-
tion for SOA-INC-TB and also SOA-TBLK. Since SOA-TBLK and
SOA-INC-TB are both initialized with the solution of SOA-
TB, they can never produce worse solutions and are espe-
cially interesting to be compared to each other. As could be
expected, the large number of allowed kicks lets SOA-TBLK
usually improve more starting solutions than SOA-INC-TB,
but this is paid for with higher running times as can be
seen in Table 4. Typically, the differences between the costs
produced by both algorithms are small, however for several
benchmarks, SOA-TBLX is the only heuristic with optimal or
close-to-optimal solutions. Furthermore, it seldom performs
worse than SOA-GA that sometimes produces slightly varying
results in different runs due to the use of randomly gener-
ated numbers. Another interesting comparison is between
the two tie-break-heuristics. In our experiments, the more
recent tie-break heuristic of Ali et al. [2] (SOA-TB2) is nearly
always inferior to the one by Leupers and Marwedel [18]
(S0A-TB). This is also true for the randomly generated in-
stances, whereas Ali et al. reported better results on their
own randomly generated ones [2]. In fact, only for anagram
and dct_unrolled it performed slightly better.

Let us now focus on the running times. First of all, those
of all previously known heuristics and also SOA-TB2 are negli-
gible and could sometimes even not be measured. We should
mention here that we implemented SOA-TB2 directly into the
OffsetStone code which does not provide a real notion of ad-
jacency lists. Hence, SOA-TB2 could be implemented more
efficiently. Although the heuristics are very fast, the over-
head of the exact solver is, in most of the cases, small and
usually acceptable. It is often much faster than SOA-GA and
SOA-TBLK. In these cases, the bounds of the LP relaxation
are strong and the primal heuristic helps to quickly find
(optimum) integral solutions. For some large instances (es-
pecially mp3 86), the running time of the exact solver was
dominated by the construction of the constraint matrix of
the linear program and its solution.

As expected, also SOA-TBLX is faster than SOA-GA on most
instances. However, it is much slower than all other heuris-
tics. It provides an alternative to SOA-GA and an exact solver
if genetic algorithms or linear programming are not applica-
ble since its running times never peak in an extreme manner.
Reducing the number of kicks to further reduce the running
time of SOA-TBLK, however, would cause it to improve far
less of the starting solutions obtained from SOA-TB.

Quality of SOA heuristics on OffsetStone

Summarized Offset Assignment Cost (% to Optimum)

Benchmark

Figure 6: Summarized relative offset assignment cost of all tested algorithms on the OffsetStone instances.

instance | #vars | OFU | Liao | TB | TB2 | INC | INC-TB | TBLK | GA | MWHC | time
gsm 22 437 260 260 260 260 260 260 260 260 237 0.496
gsm 28 446 260 260 260 260 260 260 260 260 237 0.436
mp3 86 1336 2893 | 1966 | 1983 | 2003 | 1966 1983 1953 1966 1918 40.044
mpeg2 80 313 415 344 343 344 344 343 343 343 336 0.146
viterbi 6 788 783 709 671 677 709 671 661 671 657 0.074
viterbi 8 820 786 718 678 683 718 678 670 678 666 0.060

Table 3: Some single instances with larger gaps (the last column displays the average CPU time needed by SOA-MWHC).

8. CONCLUSION

We presented a solution strategy for the Simple Offset As-
signment problem by transforming it into an Hamiltonian
cycle problem. In our experiments it became evident that
the instances of the OffsetStone benchmark can be solved
with a rudimentary Branch-and-Cut solver in acceptable
time. We also made some experiments with the Concorde
TSP solver [3] and compared the results to ours. As could
be expected, on some of the larger and denser instances,
the sophisticated solver finished even faster. However, the
overall performance of our simple solver was comparable
since the typical structure of the access graphs contained in
the benchmark set seems to be not too difficult. Although
OffsetStone is considered to reflect real world instances, it
would be interesting to know whether it really covers typical
challenges for today’s address code generators or whether
different types of instances occur in practice. This is also
interesting with respect to the results that we could obtain
for the relative quality of existing heuristic algorithms. On
the OffsetStone instances they provided solutions that are

within 8.5% of the optimum offset assignment cost. Apart
from that, we can mainly confirm the results obtained by
Leupers [16] in that SOA-INC-TB performs best on most in-
stances. If higher running times are acceptable, the results
can be slightly improved using the presented SOA-TBLK al-
gorithm that combines Leupers’ and Marwedel’s tie-break
version [18] of Liao’s heuristic with the Lin-Kernighan TSP
heuristic. Further, the tie-break-function proposed by Ali et
al. [2] could not be verified to produce better results than
the mentioned one.

Our results give hope that optimal or near-optimal solu-
tions to the Simple Offset Assignment problem are realizable
in practice. This is especially true since solving the first LP
and running the primal heuristic within SOA-MWHC on the
(usually fractional) LP solution (as described in Sect. 5.1)
already produces competitive offset assignments. Consid-
ered as a building block for more complicated and more re-
alistic General Offset Assignment scenarios, this could lead
to a much better exploitation of address generation units
in embedded digital signal processors. Based on the pre-

sented results, an exact approach could possibly be part

of a real compilation process.

An idea would be to com-

bine it with a time limit and a fallback heuristic in order to
protect against convergence problems for harder instances.
Concerning TSP-oriented heuristics, there is also room for
improvements, e.g., by experimenting with the LKH imple-
mentation of Helsgaun [13].

9.
i

2]

8]

[4

[5

[6]

[7]

8]

[9]

(10]

(11]

REFERENCES

CPLEX callable library version 12.1 C API. Reference
manual, IBM ILOG, 2009.

H. S. Ali, H. M. El-Boghdadi, and S. I. Shaheen. A
new heuristic for SOA problem based on effective tie
break function. In Proc. of the 11th Intern. Workshop
on Softw. and Compilers for Embed. Syst., SCOPES
’08, pages 53-59, New York, NY, USA, 2008. ACM.
D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J.
Cook. The Traveling Salesman Problem: A
Computational Study. Princeton University Press,
Princeton, NJ, USA, 2006.

S. Atri, J. Ramanujam, and M. T. Kandemir.
Improving offset assignment on embedded processors
using transformations. In Proc. of the 7th Intern.
Conf. on High Perf. Comput., HiPC ’00, pages
367-374, London, UK, 2000. Springer.

S. Atri, J. Ramanujam, and M. T. Kandemir.
Improving offset assignment for embedded processors.
In Proc. of the 13th Intern. Workshop on Lang. and
Compilers for Parallel Comput., LCPC 00, pages
158-172, London, UK, 2001. Springer.

D. H. Bartley. Optimizing stack frame accesses for
processors with restricted addressing modes. Softw.
Pract. Ezper., 22(2):101-110, 1992.

Y. Choi and T. Kim. Address assignment combined
with scheduling in DSP code generation. In Proc. of
the 89th Design Automation Conf., DAC 02, pages
225-230, New York, NY, USA, 2002. ACM.

V. Chvéatal. Edmonds polytopes and weakly
hamiltonian graphs. Math. Progr., 5:29-40, 1973.

G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson.
Solution of a large-scale traveling-salesman problem.
Operations Research, 3:393-410, 1954.

J. Edmonds. Maximum matching and a polyhedron
with 0,1-vertices. J. of Research of the National
Bureau of Standards, 69B(1-2):125-130, 1965.

M. Elf, C. Gutwenger, M. Jiinger, and G. Rinaldi.
Branch-and-cut algorithms for combinatorial
optimization and their implementation in ABACUS.
In Comput. Comb. Opt., Optimal or Provably
Near-Optimal Solutions, volume 2241 of LNCS, pages
157-222, London, UK, 2001. Springer.

M. Eriksson. Integrated Code Generation. PhD thesis,
Link6ping University, Dept. of Computer and Inform.
Science, The Institute of Technology, 2011.

K. Helsgaun. An effective implementation of the
lin-kernighan traveling salesman heuristic. European
Journal of Operational Research, 126:106-130, 2000.
J. Huynh, J. N. Amaral, P. Berube, and S. A. A.
Touati. Evaluating address register assignment and
offset assignment algorithms. ACM Trans. Embedded
Comput. Syst., 10(3):37, 2011.

(15]

(16]

(17]

(18]

(19]

20]

22]

23]

(24]

27]

A. N. Letchford, G. Reinelt, and D. O. Theis. A faster
exact separation algorithm for blossom inequalities. In
Proc. of the 10th Intern. Conf. on Integer
Programming and Comb. Opt. IPCO’04, volume 3064
of LNCS, pages 196-205. Springer, 2004.

R. Leupers. Offset assignment showdown: Evaluation
of DSP address code optimization algorithms. In Proc.
of the 12th Intern. Conf. on Compiler Constr., CC’03,
pages 290-302, Berlin, Heidelberg, 2003. Springer.

R. Leupers and F. David. A uniform optimization
technique for offset assignment problems. In Proc. of
the 11th Intern. Symp. on Syst. Synth., ISSS '98,
pages 3-8, Washington, DC, USA, 1998. IEEE
Computer Society.

R. Leupers and P. Marwedel. Algorithms for address
assignment in DSP code generation. In Proc. of the
1996 IEEE/ACM Intern. Conf. on Computer-Aided
Design, ICCAD ’96, pages 109-112, Washington, DC,
USA, 1996. IEEE Computer Society.

S. Liao. Code generation and optimization for
embedded digital signal processors. PhD thesis, 1996.
S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and

A. Wang. Storage assignment to decrease code size.
ACM Trans. Program. Lang. Syst., 18(3):235-253, 5
1996.

S. Lin and B. W. Kernighan. An effective heuristic
algorithm for the traveling-salesman problem.
Operations Research, 21(2):498-516, 1973.

O. Martin and S. Otto. Combining simulated
annealing with local search heuristics. Annals of
Operations Research, 63:57-75, 1996.

D. Ottoni, G. Ottoni, G. Araujo, and R. Leupers.
Offset assignment using simultaneous variable
coalescing. ACM Trans. Embed. Comput. Syst.,
5(4):864-883, November 2006.

O. Ozturk, M. T. Kandemir, and S. Tosun. An ILP
based approach to address code generation for digital
signal processors. In G. Qu, Y. L. Ismail,

N. Vijaykrishnan, and H. Zhou, editors, ACM Great
Lakes Symp. on VLSI, pages 37-42, Philadelphia, PA,
USA, April 2006. ACM.

A. Rao and S. Pande. Storage assignment
optimizations to generate compact and efficient code
on embedded DSPs. SIGPLAN Not., 34(5):128-138,
May 1999.

H. Salamy and J. Ramanujam. An effective heuristic
for simple offset assignment with variable coalescing.
In Proc. of the 19th Intern. Conf. on Lang. and
Compilers for Parallel Comput., LCPC’06, pages
158-172, Berlin, Heidelberg, 2007. Springer.

H. Salamy and J. Ramanujam. An ILP solution to
address code generation for embedded applications on
digital signal processors. ACM Trans. Des. Autom.
Electron. Syst., 17(3):28:1-28:23, June 2012.

benchmark OFU Liao TB TB2 INC | INC-TB | TBLK GA MWHC
8051 123 102 98 104 99 97 97 97 96
5 instances 0.000 0.000 0.000 0.002 0.000 0.210 2.564 0.018
adpcm 1260 1021 998 1013 1009 990 995 988 979
29 instances 0.000 0.002 0.006 0.046 0.016 4.218 22.494 0.228
anagram 148 104 101 100 103 100 99 99 98
9 instacnes 0.000 0.000 0.000 0.000 0.000 0.146 3.588 0.036
anthr 6686 5437 5362 5525 5428 5360 5353 5356 5318
89 instances 0.028 0.024 0.050 0.430 0.080 44.601 148.712 3.262
bdd 3551 2817 2757 2813 2811 2757 2755 2756 2753
148 instances 0.018 0.014 0.026 0.048 0.028 25.548 112.242 0.858
bison 3720 2934 2892 2922 2930 2890 2889 2889 2888
99 instances 0.010 0.026 0.024 0.038 0.026 23.626 111.074 0.778
cavity 958 815 791 837 812 789 787 789 782
5 instances 0.010 0.010 0.020 0.262 0.710 17.960 32.220 2.214
ccéb 4665 3679 3583 3634 3626 3582 3579 3581 3572
208 instances 0.010 0.006 0.024 0.064 0.026 16.378 127.986 0.926
codecs 618 505 497 504 504 497 495 497 495
12 instances 0.002 0.004 0.004 0.006 0.002 1.918 12.854 0.104
cpp 2349 1822 1797 1814 1821 1797 1795 1797 1793
54 instances 0.024 0.014 0.030 0.040 0.048 38.850 114.078 0.538
dct_unr. 2818 2187 2193 2187 2187 2181 2193 2181 2179
1 instance 0.010 0.014 0.022 0.092 8.934 24.978 52.920 1.268
dspstone 1442 1113 1084 1115 1106 1082 1083 1082 1067
23 instances 0.012 0.004 0.022 0.182 0.014 10.376 34.856 0.300
eqntott 132 85 85 85 85 85 85 85 85
8 instances 0.000 0.000 0.000 0.000 0.000 0.036 2.400 0.020
f2¢ 6473 4804 4741 4774 4798 4740 4734 4737 4732
287 instances 0.022 0.034 0.038 0.056 0.038 33.572 | 200.866 1.438
fft 17 17 17 17 17 17 17 17 17
5 instances 0.000 0.000 0.000 0.000 0.000 0.212 3.154 0.024
flex 1701 1216 1184 1200 1212 1183 1181 1183 1181
67 instances 0.002 0.004 0.008 0.012 0.010 6.506 43.662 0.290
fuzzy 166 133 128 129 132 128 128 128 128
6 instances 0.000 0.000 0.000 0.002 0.000 0.072 2.380 0.010
gif2asc 575 478 471 481 477 470 469 470 469
6 instances 0.002 0.000 0.012 0.034 0.018 6.780 19.068 0.250
gsm 3187 2604 2585 2642 2600 2584 2583 2584 2509
58 instances 0.026 0.012 0.066 0.062 0.058 58.140 137.052 2.456
gzip 3755 2898 2751 2829 2869 2751 2746 2751 2739
68 instances 0.022 0.020 0.026 0.132 0.034 20.378 90.650 0.738
h263 302 213 212 221 212 212 211 211 208
4 instances 0.000 0.000 0.000 0.002 0.000 0.678 4.678 0.032
hmm 786 553 533 553 548 532 533 532 531
28 instances 0.000 0.002 0.000 0.000 0.002 0.612 13.170 0.086
jpeg 9004 6642 6474 6640 6617 6465 6450 6460 6424
317 instances 0.012 0.014 0.028 0.054 0.050 21.546 195.928 1.530
klt 1288 882 855 869 873 854 854 852 849
50 instances 0.000 0.000 0.002 0.002 0.006 1.496 24.096 0.200
lpsolve 3951 3094 3054 3079 3084 3054 3050 3054 3049
83 instances 0.020 0.024 0.030 0.074 0.036 36.908 136.756 0.728
motion 384 348 350 359 348 344 349 344 343
1 instance 0.002 0.004 0.002 0.008 0.200 3.514 9.000 0.544
mp3 5988 4360 4319 4373 4354 4319 4285 4301 4247
79 instances 0.060 0.050 0.132 0.170 0.180 138.374 | 234.042 41.012
mpeg?2 5030 3884 3836 3904 3873 3828 3821 3824 3787
72 instances 0.020 0.016 0.030 0.104 0.090 30.370 114.412 0.970
sparse 2196 1670 1653 1674 1669 1653 1649 1653 1649
73 instances 0.002 0.006 0.018 0.020 0.026 12.246 66.586 0.424
triangle 1878 1243 1217 1226 1240 1217 1210 1214 1204
79 instances 0.006 0.014 0.038 0.034 0.010 42.417 61.842 16.184
viterbi 1881 1680 1598 1617 1677 1597 1579 1597 1569
10 instances 0.032 0.024 0.076 0.086 0.082 79.002 119.854 0.170
random 379559 | 353269 | 351375 | 354663 | 352839 351130 351158 350987 349988
2014 instances 0.132 0.090 0.492 4.246 3.782 96.736 | 1805.557 12.137

Table 4: Offset assignment cost and measured CPU times in seconds (average of five runs) of the evaluated algorithms.

