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Abstract

We introduce the non-unit count of an interval graph as the minimum number of intervals
in an interval representation whose lengths deviate from one. We characterize a variant
of the non-unit count (where all interval lengths are required to be at least one) and
graphs with non-unit count 1.

Key words: interval graph, unit interval graph, comparability invariant, intersection
graph

1. Introduction

Interval graphs reflect the intersection structure of intervals in the real line. For each
vertex of an interval graph G = (V,E) there is an interval Iv such that (u, v) ∈ E if
and only if Iu ∩ Iv 6= ∅. Each such collection also defines an interval order as a partial
order P = (V,<) via u < v if and only if Iu is completely left of Iv. Interval graphs and
interval orders have been characterized in various ways (cf., e.g. [6, 8, 11]). For more
details, the interested reader is referred to [5, 9].

A natural question, apparently first asked by R.L. Graham, is how many different
interval lengths are needed to represent an interval graph. He introduced the interval
count as the minimum number of distinct interval lengths necessary in an interval repre-
sentation of an interval graph. Interval graphs with interval count 1 are the unit interval
graphs. They were first characterized by Roberts [15] as the class of proper interval
graphs or, equivalently, as the claw-free interval graphs. Shorter proofs of these charac-
terizations and efficient recognition algorithms can be found in, e.g., [1, 4, 7, 12]. For
interval graphs with interval count k, k ≥ 2 the recognition problem seems to be open.
Further results on the interval count can be found in, e.g. [2, 3].

Graham conjectured that the interval count of a graph G is at most k+ 1 if for some
vertex x the graph Gr x has interval count k. This conjecture was proved by Leibowitz
et al. [10] for k = 1 and disproved for k ≥ 2. Observe that in the first case, G r x is a
unit interval graph and x must be contained in every claw of G.

Skrien [16] and Rautenbach and Szwarcfiter [13] investigated a subclass of graphs
with interval count 2. In [13] Rautenbach and Szwarcfiter give a forbidden subgraph

∗Corresponding author

Preprint submitted to Elsevier March 25, 2014



characterization of those graphs that have an interval representation using unit intervals
and single points. They also describe a linear time recognition algorithm. In [14] the same
authors characterize graphs having a representation by open and closed unit intervals.

In the following we ask a slightly different question: how many intervals in an interval
representation must have a length different from one. In Section 2 we collect the basic
notations and definitions. In Sections 3 and 4 we present some general results and give
exact answers for two special cases where all interval lengths are required to be at least
one or where all but one interval have the same length.

2. Preleminaries

Let G = (V,E) be an interval graph and R a collection of intervals such that for
each v ∈ V there is an interval Iv ∈ R and (u, v) ∈ E if and only if Iu and Iv have
a nonempty intersection. We then say that R realizes G. The set of all collections of
intervals realizing G is denoted by R(G). For an interval I let l(I) (r(I)) be its left
(right) endpoint. W.l.o.g. we assume throughout that all interval endpoints are distinct.
Let |I| denote the lenght of I. The collection R of intervals also realizes the partial order
(V,<) given by u < v if and only if r(Iu) < l(Iv). R(P ) is the set of all realizers of the
interval order P .

We call two interval orders P1, P2 equivalent (P1 ∼ P2) if they have realizers which
realize the same interval graph G. The corresponding equivalence class is denoted by
P(G). A function f operating on interval orders is a comparability invariant if f(P1) =
f(P2) whenver P1 ∼ P2.

We call a bipartite graph K1,r, r ≥ 3, a star and a claw, if r = 3. A vertex u of a graph
G is a center of G if u together with its neighbors N(u) induces a star in G. The vertices
in N(u) are then called leaves. The set of centers of G is denoted by Z = Z(G), the set
of leaves by U = U(G). Observe that the sets Z and U do not have to be disjoint. For
an interval order P the centers Z(P ) of P are the centers of the corresponding interval
graph.

An interval graph is a unit interval graph if it has a realizer in which all intervals have
the same length. The corresponding partial order is then called a semiorder. Roberts
[15] showed that unit interval graphs are characterized by the fact that they have a
realization by a proper collection of intervals in which no interval properly contains
another. Moreover, they are precisely the interval graphs having no induced claw.

Let P be an interval order and R ∈ R(P ) a realization. The non-unit count τ(R) is
the number of intervals in R with length different from one. Similarly, let

τ(P ) = min{τ(R)|R ∈ R(P )} (1)

and
τ(G) = min{τ(R)|R ∈ R(G)}. (2)

Then, for an interval graph G and P ∈ P(G) we have τ(G) ≤ τ(P ) and, obviously,
τ(G) = min{τ(P )|P ∈ P(G)}. For unit interval graphs G we have τ(G) = τ(P ) =
0 for all semiorders P ∈ P(G). This seems to suggest that the non-unit count is a
comparability invariant. This, however, is not true. Figure 1 shows two interval orders
with P1 ∼ P2 and τ(P1) = 3, τ(P2) = 2.
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Figure 1: Two equivalent interval orders with different non-unit count

Since unit interval graphs are the claw-free interval graphs, one may conjecture that
the non-unit count is the cardinality ν(G) of the smallest set W ⊆ V such that G rW
is claw-free. Again, this is not true. To see this, consider Figure 2.
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Figure 2: G r a is claw-free but τ(G) = 2

If we remove either a or b, the resulting graph is claw-free. On the other hand, the
intervals Ia and Ib have to overlap and both have to cover two non-overlapping intervals.
So τ(G) = 2.

Indeed, in general we have ν(G) ≤ τ(G). A related parameter is introduced in [5].
Fishburn defines κ(n) as the maximum cardinality k such that every interval graph on n
vertices contains a unit interval graph on k vertices. For interval graphs G on n vertices
this obviously gives ν(G) ≤ n− κ(n).

3. The normalized non-unit count

In this section we consider the normalized non-unit count where we consider only
interval representations in which all intervals have length at least one. We denote the
normalized non-unit count as τ>(R)(τ>(P ), τ>(G), resp.).

Consider an interval representation R ∈ R(G) and a center z ∈ Z. Then Iz properly
contains at least one interval Ix for some x ∈ V r Z. Hence, if |Ix| ≥ 1, then |Iz| > 1.
This immediatley implies τ>(G) ≥ |Z|. Since τ>(P ) ≥ τ>(G) for all P ∈ P(G), we also
have τ>(P ) ≥ |Z|.

Let G be an interval graph G and R ∈ R(G) some realization. We call a subset
V ′ ⊆ V R-proper if the restriction R[V ′] to V ′ is a proper collection of intervals. We
adopt a technique from [1] to normalize the intervals in V ′ to one. We proceed in two
steps. In the first step we may create intervals of length less than one. This will be
corrected in the second step.
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Lemma 1. Let P = (V,≤) be an interval order and R ∈ R(P ) a realization with |I| ≥ 1

for all I ∈ R. Let V ′ ⊆ V be R-proper. Then there exists a realization R̂ ∈ R(P ) with

R̂ = {Îx|x ∈ V } such that |Îx| = 1 for all x ∈ V ′.

Proof. Since V ′ is R-proper we may order the vertices in V ′ according to increas-
ing left (resp. right) endpoints of their corresponding intervals in R[V ′]. So let V ′ =
{x1, ..., x|V ′|}. We perform induction on |V ′|. If |Ix1

| > 1 we do the following.
In a first step we move all endpoints p in the interval (l(Ix1), r(Ix1)) to a new point

p̂ in the interval (l(Ix1), l(Ix1) + 1) via

p 7→ p̂ = l(Ix1) +
p− l(Ix1

)

r(Ix1)− l(Ix1)
. (3)

This transformation preserves the order of the endpoints so that the new intervals are

still in R(P ). Moreover, for all p ∈ (l(Ix1
), r(Ix1

)) we have
p−l(Ix1

)

r(Ix1 )−l(Ix1 )
< 1. Hence after

the transformation there are no endpoints in the interval [l(Ix1) + 1, r(Ix1)). This allows

us to move r(Ix1
) to r(Îx1

) = l(Ix1
) + 1 without changing the intersection structure of

the intervals. Setting l(Îx1) = l(Ix1), we get |Îx1 | = 1.
Assume that we have already constructed a realization R ∈ R(P ) with |Ix1

| = . . . =

|Ixi−1
| = 1. If |Ixi

| > 1 let mi := max{l(Ixi
), r(Îxi−1

)} Since by induction |Îxi−1
| = 1

and l(Îxi−1
) < l(Ixi

) we have r(Îxi−1
) < l(Ixi

) + 1 and also mi < l(Ixi
) + 1. Hence the

interval Ii := (mi, l(Ixi
) + 1) has a positive length.

We now apply the transformation

p 7→ p̂ = mi + |Ii|
p−mi

r(Ixi
)−mi

to move all endpoints p in the interval (mi, r(Ixi)) into the interval (mi, l(Ixi) + 1).
As before, this transformation does not affect the order of the endpoints and there is
no endpoint in the interval [l(Ixi

) + 1, r(Ixi
)). Hence we may move r(Ixi

) to r(Îxi
) =

l(Ixi
) + 1.

This operation transforms the interval Ixi to the interval Îxi of length one. Since by

the choice of mi, the endpoints of the intervals Îx1
, . . . , Îxi−1

are to the left of mi and
points p < mi are not moved, we still have |Ix1

| = . . . = |Ixi−1
| = 1. As the resulting set

of intervals is a realization of P , the claim follows. �

The previous construction may create intervals of length less than one. This will be
corrected in the next Lemma where we link R-proper subsets V ′ to the set of non-centers.

Lemma 2. Let P = (V,≤) be an interval order and V := V \Z(P ). Then there is an
R ∈ R(P ) such that V is R-proper.

Proof. Consider some R ∈ R(P ). If V is not R-proper there exist x, y ∈ V with
Iy ⊂ Ix. Then l(Ix) < l(Iy) < r(Iy) < r(Ix). Let r(Iv) be the right interval end next to
the left of l(Iy).

If l(Ix) > r(Iv) or no such interval Iv exists then we may move l(Iy) to the left
beyond l(Ix) without changing the overlap structure of the intervals. Then Ix and Iy do
not properly contain each other.
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If l(Ix) ≤ r(Iv) let l(Iw) be a first left interval end to the right of r(Iy). Assume
such an interval Iw exists and l(Iw) ≤ r(Ix). Then the intervals Iw and Ix overlap and
{x, y, v, w} induces a claw with center x, in contradiction to x ∈ V . Hence l(Iw) > r(Ix)
or there is no interval starting to the right of r(Iy). As above we may move r(Iy) to the
right beyond r(Ix) without changing the overlap structure of the intervals. Again, Ix
and Iy do not properly contain each other.

Repeating this for all x, y ∈ V with Iy ⊂ Ix we end up with a collection R ∈ R(P )
such that V is R-proper. �

Putting the previous lemmas together, we can now show that every interval order
P ∈ P(G) has an interval representation in which the centers of G precisely correspond
to intervals of length greater than one.

Theorem 3. Let G = (V,E) be an interval graph. Then for all P ∈ P(G)

τ>(P ) = |Z|

Proof. According to Lemma 2 every interval order P ∈ P(G) has an interval represen-
tation R ∈ R(P ) in which V is R-proper. After scaling we may assume that |I| ≥ 1 for
all I ∈ R. Lemma 1 allows us to transform R further such that |Ix| = 1 for all x ∈ V .

This transformation does not change the sequence of interval ends. So for all z ∈ Z(P )
we have an interval Ix with x ∈ V such that Ix ( Iz. Since |Ix| = 1 for all x ∈ V we
must have |Iz| > 1.

So for all P ∈ P(G) there is an interval representation with |Ix| = 1 for all x ∈ V
and |Iz| > 1 for all z ∈ Z(P ). Hence τ>(P ) ≤ |Z(P )| for all P ∈ P(G). Since also
τ>(P ) ≥ τ>(G) ≥ |Z| for all P ∈ P(G) and the centers of P and G are the same, we get
τ>(P ) = |Z| for all P ∈ P(G). �

In particular, Theorem 3 shows that τ> is a comparability invariant. It also implies

Corollary 4. Let G be an interval graph. Then τ>(G) = |Z|. �

Since centers can be found in polynomial time we can compute τ>(G) efficiently.

4. Graphs with non-unit count 1

We now return to the general case and allow interval lengths smaller than one. First
observe that τ(G) ≤ τ>(G). Strict inequality may hold as the example in Figure 3 shows.

The centers of G are the vertices {e, f, g}. Hence τ>(G) = 3 while the interval
representation R2 of G needs only two non-unit intervals. The example in Figure 1
shows that τ is not a comparability invariant even if τ(G) = 2.

In the following we restrict ourselves to the first nontrivial case where the length of
only one interval may deviate from one. So we consider graphs G with τ(G) = 1. In view
of Corollary 4 we know that |Z| = 1 is sufficient to ensure τ(G) = 1. We will analyze
graphs with more than one center and characterize those with τ(G) = 1. Recall that Z
is the set of centers of G, U the set of leaves.

Lemma 5. Let G be an interval graph with τ(G) = 1. Then Z induces a nonempty
clique in G.
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Figure 3: τ(G) < τ>(G)

Proof. If |Z| = 0 then G is claw-free and hence τ(G) = 0. If |Z| = 1 the claim trivially
holds. So we may assume that |Z| > 1. Suppose the assertion is not true. Let z1, z2 ∈ Z
be two nonadjacent centers.

If z1, z2 have two common neighbors, x, y say, then (x, y) ∈ E since otherwise
{z1, x, z2, y, z1} induces a cycle of length 4 without chord. Therefore, the two centers
z1 and z2 have at most one leave in common.

If z1, z2 have no leaf in common then, in any interval representation of G, Iz1 properly
contains some interval Iul

and Iz2 properly contains some interval Iur
with ul 6= ur.

Hence Iz1 and Iul
have different length, and the same is true for Iz2 and Iul

. So τ(G) ≥ 2.
So we may assume that z1, z2 have exactly one leaf in common. LetM1 = {z1, u1, u2, u3}

und M2 = {z2, u3, u4, u5} be two claws with center z1 and z2. We claim that U∗ =
{u1, u2, u3, u4, u5} is a stable set. Suppose not. Then, since {u1, u2, u3} and {u3, u4, u5}
are stable, the set {u1, u2, u4, u5} is not stable. W.l.o.g. let (u1, u4) ∈ E. Then G
contains a cycle (u1, z1, u3, z2, u4, u1) of length 5 (cf. Figure 4).

z2

u1 u2 u3 u4 u5

z1

Figure 4: Two stars with nonadjacent centers and a common leaf. The dashed edge creates an induced
cycle of length at least four.

We claim that this cycle has no chord, in contradiction to G being an interval graph.
Obviously, (u1, u3) /∈ E and (u3, u4) /∈ E. Also, by assumption, (z1, z2) /∈ E. Suppose
(z1, u4) ∈ E. Then {z1, u3, z2, u4} induce a 4-cycle without chord, a contradiction (cf.
Figure 4). Similarly, (z2, u1) /∈ E. Hence U∗ is a stable set.

We may then assume that in an interval representation R r(Iz1) < l(Iz2) and r(Iui
) <

l(Iuj
) for i, j ∈ {1, . . . , 5}, i < j hold. Since u3 is adjacent to both z1 and z2 we must

have l(Iu3
) < r(Iz1) < l(Iz2) < r(Iu3

). Since Iz1 intersects the intervals Iu1
and Iu2
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left of Iu3 , it has to properly contain Iu2 . Hence Iz1 and Iu2 have different length. The
same holds for the intervals Iz2 and Iu4 and Iu5 right of Iu3 . In both cases we have two
intervals of different length, i.e. τ(G) > 1. Thus z1, z2 are adjacent and Z is a clique. �

We call a vertex x short if x is a leaf vertex contained in every claw and the following
two conditions hold

U splits into three disconnected cliques Ul, {x} and Ur, (4)

y ∈ N(x) r Z ⇐⇒ y ∈
⋂

z∈Z
N(z) r U, (5)

We want to show that for graphs G with more than one claw the existence of a short
vertex is necessary and sufficient for τ(G) = 1 to hold.

Lemma 6. Let G be an interval graph with |Z| > 1 and τ(G) = 1. Then (4) holds.

Proof. Every interval representing a center properly contains at least one interval rep-
resenting a leave. Hence, if two center intervals have different lengths, these two and the
shorter of the properly contained intervals have three different length, i.e. τ(G) > 1. So,
since τ(G) = 1, all center intervals must have the same length. By |Z| > 1 they all have
unit length. Any interval properly contained in some other then has length less than
one. Hence there is only one such interval, Ix say. Moreover, Ix is properly contained in
all center intervals.

Let Ul be the set of leaves whose intervals are to the left of Ix. We claim that Ul

is a clique. For suppose there are two vertices y, z ∈ Ul with Iy ∩ Iz = ∅. Let Iz be
the interval closer to Ix. Since Iy has a nonempty intersection with some center interval
and this center interval properly contains Ix, it must also properly contain Iz. As Ix is
the only properly contained leave interval, we must have (y, z) ∈ E, i.e. Ul is a clique.
Similarly, the set Ur of leaves whose intervals are to the right of Ix is a clique.

Suppose there is an interval Iy with y ∈ U which intersects Ix. Then there must exist
intervals Iul

, Iur
and Iz such that Iz intersects both Iul

and Iur
and properly contains

Iy. This contradicts the fact that Ix is the only interval that is properly contained in
some other interval. So U splits into three cliques Ul, {x} and Ur. Moreover, since every
claw has precisely one vertex in every clique, there is no edge between them. �

Lemma 7. Let G be an interval graph with |Z| > 1 and τ(G) = 1. Then (5) holds.

Proof. If y ∈ N(x) r Z then y /∈ U and in every representation of G the interval Iy
intersects Ix. Since Ix ⊆

⋂
z∈Z Iz, this proves one direction.

Conversely, let y ∈ ⋂
z∈Z N(z) r U . Suppose y /∈ N(x) r Z. Consider a claw

(z, x, ul, ur). Since y /∈ U , (z, x, y, ul) is not a claw. Hence ul ∈ N(y). Repeating this
argument gives ul ⊆ N(y) and ur ⊆ N(y). Then Iy intersects all intervals Iul

and Iur.
Thus Iy ∩ Ix 6= ∅, i.e. y ∈ N(x), a contradiction. �

The Lemmas 6 and 7 show that the existence of a short vertex is necessary for graphs
with |Z| > 1 to have τ(G) = 1. Before we prove that it is also sufficient, we state a
technical lemma.

Lemma 8. Let G be an interval graph satisfying (4). Then the following hold:
7



(i) for all y ∈ N(x) r Z either Ul ⊆ N(y) or Ur ⊆ N(y) but not both,

(ii) for all a, b ∈ N(x) r Z we have (a, b) ∈ E or Ul ⊆ N(a) and Ur ⊆ N(b),

(iii) Z induces a clique,

(iv) there are u ∈ Ul, z1, z2 ∈ Z, v ∈ Ur such that Z ⊆ N(u) ∩ N(v), Ul ⊆ N(z1) and
Ur ⊆ N(z2)

Proof. (i) Consider some claw (z, x, ul, ur) with ul ∈ Ul, ur ∈ Ur. Since (z, y, ul, ur) is
not a claw we must have (y, ul) ∈ E or (y, ur) ∈ E. Assume (y, ul) ∈ E. Then (y, v) /∈ E
for all v ∈ Ur since otherwise (y, ul, x, v) induces a claw, contradicting y /∈ Z. Hence
Ul ⊆ N(y) or, by symmetry, Ur ⊆ N(y).

(ii) By (i) the neighborhoods of a and b contain Ul or Ur. Suppose Ul ⊆ N(a)∩N(b).
Then (a, b) ∈ E since otherwise a, x, b, ul induce a 4-cycle.

(iii) Consider two centers z1, z2 ∈ Z and claws (z1, ul, x, ur) and (z2, v1, x, v2) with
ul, v1 ∈ Ul and ur, v2 ∈ Ur. If z1, z2 ∈ Z are not connected then x, z1, ul, v1, z2 induce a
cycle of length 5 (or of length 4 if ul = v1, (ul, z2) ∈ E or (v1, z1) ∈ E), a contradiction.

(iv) let (z1, x, ul, ur) and (z2, x, v1, v2) be two claws. Then (z1, z2, ul, v1) induces a
4-cycle unless (z1, v1) ∈ E or (z2, ul) ∈ E. Hence for any two centers their neighbors
in Ul are ordered by inclusion which proves Ul ⊆ N(z1) for some z1 ∈ Z. The other
assertions follow similarly. �

Theorem 9. Let G be an interval graph. Then τ(G) = 1 if and only if |Z| = 1 or G
has a short vertex.

Proof. If G contains a star K1,r, r ≥ 4, then U has a stable set of size r, r ≥ 4. Now
by Lemma 6 τ(G) = 1 can only hold if Z = 1. If G contains only claws K1,3 then the
Lemmas 6 and 7 show that the vertex x is short.

Conversely, if Z = 1 then also τ(G) = 1 by Corollary 4. So assume that G has a short
vertex x. As x is contained in every claw, G r x is claw-free and hence a unit interval
graph. Let R ∈ R(G r x) be an interval representation. Since by (4) Ul, Ur are two
disconnected cliques, we may assume that in R the intervals representing Ur are to the
right of those representing Ul.

Z induces a clique by Lemma 8 . Then Helly’s Theorem implies that the intervals
Iz, z ∈ Z have a nonempty intersection. We may assume that I :=

⋂
z∈Z Iz has length

|I| > 0.
Let y ∈ N(x)rZ. Again by Lemma 8 we know that either Ul ⊆ N(y) or Ur ⊆ N(y).

W.l.o.g. let Ur ⊆ N(y). Since y ∈ N(x), condition (5) ensures that Iy has a nonempty
intersection with I. We claim that we may assume |I ∩ Iy| > |I ∩ Iu| for all u ∈ Ur. If
this is not the case we move the interval Iy appropriately to increase |I ∩ Iy|. Such a
shift will not change the intersection structure unless we lose a neigbor a of y or create a
new neighbor a of y. Since |Iy| = |Iu|, this can only happen if one of the cases in Figure
5 holds.

In case (a) we have Ia ∩ I = ∅ and (y, a) ∈ E, (u, a) /∈ E. Since y is not a center,
(y, x, u, a) cannot induce a claw in G. Hence we have (a, x) ∈ E, i.e. a ∈ N(x). Then,
by (5) Ia must intersect I, a contradiction. In case (b) we have Ia ∩ I 6= ∅ and (y, a) /∈
E, (u, a) ∈ E. By (5) a ∈ N(x) and so, by Lemma 8 either Ul ⊆ N(a) or Ur ⊆ N(a)
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Figure 5: A shift of Iy to increase |I ∩ Iy | such that (a) a neighbor a is lost or (b) a new neighbor a is
created.

but not both. Since (u, a) ∈ E, we have Ur ⊆ N(a). This, together with Ur ⊆ N(y) and
Lemma 8 (ii) implies (y, a) ∈ E, a contradiction.

We now construct the missing interval for x. Let r = max{l(Iu) : u ∈ Ur} and
l = min{l(Iu) : u ∈ Ul}. By the previous argument we may find an ε > 0 such that
Ix = [l + ε, r − ε] has a nonempty intersection with every Iy, y ∈ N(x). We add the
interval Ix to the interval representation R of G r x. Let G′ be the resulting graph.
Obviously, NG′(u) = NG(u) for all u 6= x. Also, by construction, NG(x) ⊆ NG′(x).
Conversely, if y ∈ NG′(x) then, by construction of Ix, y /∈ U . Then, since Iv intersects
Ix ⊆ I, (5) ensures that y ∈ NG(x). Hence R ∪ Ix is an interval representation for G
using one interval of length shorter than one. Thus τ(G) = 1. �

Since centers are comparability invariant we obtain the following

Corollary 10. Let P1 ∼ P2. Then τ(P1) = 1 if and only if τ(P2) = 1. �

Acknowledgement We want to thank two anonymous referees for their helpful
suggestions and remarks.

References

[1] K. P. Bogart and D. B. West. A short proof that ’proper=unit’. Discrete Math., 201:21–23, 1999.
[2] M.R. Cerioli, F. de S. Oliveira, and J.L. Szwarcfiter. On counting interval lengths of interval graphs.

Discrete Appl. Math., 159:532–543, 2011.
[3] M.R. Cerioli, F. de S. Oliveira, and J.L. Szwarcfiter. The interval count of interval graphs: a short

survey. J. Braz. Comput. Soc., 18(2):103–112, 2012.
[4] D.G. Corneil. A simple 3-sweep lbfs algorithm for recognition of unit interval graphs. Discrete

Appl. Math., 138(3):371–379, 2004.
[5] P.C. Fishburn. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. John

Wiley Sons Inc., 1985.
[6] D.R. Fulkerson and O.A. Gross. Incidence matrices and interval graphs. Pacific J. Math., 15(3):835–

855, 1965.
[7] F. Gardi. The Roberts characterization of proper and unit interval graphs. Discrete Mathematics,

307:2906–2908, 2007.
[8] P.C. Gilmore and A.J. Hoffman. A characterization of comparability graphs and of interval graphs.

Canad. J. Math., 16:539–548, 1964.
[9] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

[10] R. Leibowitz, S.F. Assmann, and G.W. Peck. The interval count of a graph. SIAM J. Algebr.
Discrete Methods, 3(4):485–494, 1982.

[11] C.G. Lekkerkerker and J.C. Boland. Representation of a finite graph by a set of intervals on the
real line. Fund. Math., 51:45–64, 1962.

9



[12] M.C. Lin, F.J. Soulignac, and J.L. Szwarcfiter. Short models for unit interval graphs. Electr. Notes.
Discr. Math.., 35:247–255, 2009.

[13] D. Rautenbach and J.L. Szwarcfiter. Unit and single point interval graphs. Discrete Appl. Math.,
160:1601–1609, 2012.

[14] D. Rautenbach and J.L. Szwarcfiter. Unit interval graphs of open and closed intervals. J. Graph
Theory, 72:418–429, 2013.

[15] F.S. Roberts. Indifference graphs. In Proof techniques in graph theory, Proceedings of the Second
Ann Arbor Graph Theory Conference, pages 139–146. Academic Press, 1969.

[16] D. Skrien. Chronological orderings of interval graphs. Discrete Appl. Math., 8:69–83, 1984.

10


