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We study a single-commodity Robust Network Design problem (sRND) defined
on an undirected graph. Our goal is to determine minimum cost capacities such
that any traffic demand from a given uncertainty set can be satisfied by a feasi-
ble single-commodity flow. We consider two ways of representing the uncertainty
set, either as a finite list of scenarios or as a polytope. We propose a branch-and-
cut algorithm to derive optimal solutions to sRND, built on a capacity-based inte-
ger linear programming formulation. It is strenghtened with valid inequalities de-
rived as {0, 1

2}-Chvátal-Gomory cuts. Since the formulation contains exponentially
many constraints, we provide practical separation algorithms. Extensive computa-
tional experiments show that our approach is effective, in comparison to existing
approaches from the literature as well as to solving a flow based formulation by a
general purpose solver.

∗We thank the Ateneo Italo-Tedesco VIGONI programme 2011-2012 for its financial support.

1



Cacchiani, Jünger, Liers, Lodi and Schmidt 2

1 Introduction

We consider a single-commodity network design problem (sRND) that is robust in the sense
of Ben-Tal and Nemirowski [11]: Given an undirected graph G = (V,E) and an (bounded)
uncertainty set of traffic demands D ⊆ RV , we can install multiples of a unit capacity on the
edges of G. Installing one unit of capacity on e ∈ E incurs a cost of ce. The goal is to find
minimum cost capacities u such that for all traffic demand vectors b ∈D, there exists a feasible
directed single-commodity flow in (G,u) that routes b. Problems of this type arise in the design
process of different kind of networks, e.g., transportation and telecommunication networks, but
also in energy and gas distribution planning. As even small changes in the traffic demands
can cause congestion and network failures, practical solutions should be robust against traffic
demands that fluctuate over time or cannot be known with arbitrary precision. This is where
robust network design comes in.

Most network design models go back to a problem definition by Gomory and Hu [26] where
there is a traffic requests ri j for each pair i, j of nodes and ri j units of flow have to be sent
from i to j. This means that the underlying flow model is a multi-commodity flow and that the
assignment of sources to sinks is fixed, which is not always desirable. Imagine for example a
network where several identical servers can answer all the traffic requests of the clients: There,
cheaper solutions can be obtained when the optimization process is allowed to map clients to
servers instead of using a fixed mapping from the problem input. In that case, the underlying
flow model should be a single-commodity flow. One example of such networks would be a
movie streaming network [16] or a network of servers for mirrored software distribution. Gas
and energy distribution networks also ship a single commodity, but since we do not want to
model the complex physical properties of these networks here, we focus on communication
networks as our application.

The above single-commodity model is due to Buchheim, Liers and Sanità [41, 16] who addi-
tionally assume that D is a finite set in the spirit of Minoux [36]. They propose an integer linear
programming formulation that is based on arc-flow variables and strengthen it with certain gen-
eral cutting planes called target cuts. The model allows to compute a different routing for each
b ∈D. We call this way of routing a dynamic routing, as opposed to static routing schemes that
route all scenarios on the same fixed set of paths. As a consequence, one set of arc-flow variables
is needed for each b∈D. In a previous joint work [4] with Álvarez-Miranda and Parriani, the au-
thors of this article present a linear programming based heuristic for this model. Here, however,
we are interested in solving the problem with an exact algorithm and show a different integer
programming formulation whose size does not depend on |D|. Parts of these results appeared
in [3] as an extended abstract. Our alternative formulation is based on cut-set and 3-partition
inequalities. Both types originally appeared in non-robust network design, see [31] for the orig-
inal application of these inequalities and [9, 15, 14] for examples of advanced cut-set based
branch-and-cut algorithms. Additionally, Atamtürk [6] and Raack, Koster and Wessäly [40]
give extensive surveys of the use of these inequalities in network design. Avello, Mattia and
Sassano [7] derive a branch-and-cut algorithm for robust multi-commodity network design with
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a finite demand set that is based on the more general metric inequalities.
Moreover, we apply the robustification approach by Ben-Tal and Nemirowski [11] to the

above model. In their approach, the uncertainty set D is given by a polytope in a linear de-
scription. Several prior applications of the approach to multi-commodity network design exist
and many of them are again succesfully using cut-set inequalities: Ben-Ameur and Kerivin [10]
consider the multicommodity network design problem by [26] with a general demand poly-
tope and static routing. There is an extension to dynamic routing by Mudchanatongsuk, Or-
dóñez and Liu [37]. Koster, Kutschka and Raack apply the Γ-robustness approach by Bertsimas
and Sim [13], using again static routing. Altın, Amaldi, Belotti and Pınar instead consider the
Hose uncertainty model that was proposed by Fingerhut, Suri and Turner [23] and Duffield et
al. [22]. They also consider a combination with the Γ-robustness model. Mattia [34] considers
the Hose model with dynamic routing. We show a natural adaption of the Hose model to single-
commodity flows in the model by Buchheim et al. [16] and solve it again with a cut-set model.
Pesenti, Rinaldi and Ukovich [39] solve the related Minimum Cost Network Containment prob-
lem using cut-set inequalities (see Section 4).

Our contribution. In this paper, we consider the sRND problem and distinguish two ways of
representing the uncertainty set D in the input: it can be given as a finite list of scenarios or as
a linear description of a polytope. Our goal is to determine optimum solutions for the sRND
by providing an effective branch-and-cut algorithm in both cases. To this aim, we present a
capacity-based ILP formulation. The formulation was introduced in [3] for the case of finite
scenario list and uses cut-set inequalities. We prove that the corresponding polyhedron is full
dimensional and define the conditions under which a cut-set inequality defines a facet. The
size of the model depends only on the size of the network, but not on the number of scenarios,
as opposed to the flow-based model by Buchheim et al. [16]. On the other hand, it contains
exponentially many constraints. We provide a polynomial time algorithm for the separation of
cut-set inequalities for the case that D is finite. We prove that the separation problem is NP-hard
when D is given as a polytope, even when D is based on an adaption of the Hose model [22].
Still, in this case we propose a practical separation algorithm using a simple mixed integer
program (MIP). We strengthen our formulation with 3-partition inequalities and show how to
separate them as {0, 1

2}-Chvátal-Gomory cuts, as defined by [17]. Extensive computational
experiments show that our approach is effective, in comparison to existing approaches from the
literature as well as to solving a flow based formulation by a general purpose solver.

General notation and problem definition. For a ∈ Rn, b ∈ Rm and n,m ∈ N, we say that
aT x∗− b is the slack of the inequality aT x ≥ b with respect to a vector x∗ ∈ Rn. We say that
aT x≥ b is binding for x∗ if its slack with respect to x∗ is zero and we say that aT x≥ b is violated
by x∗ if its slack with respect to x∗ is negative.

Given an undirected graph G = (V,E) with capacities u : E→ Z≥0 and a node balance vector
b ∈ RV , a directed, single-commodity b-flow is commonly defined as a directed flow f ∈ RE
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that satisfies the following two conditions.

1. For all nodes i ∈V , we require that ∑ j∈δ (i)( fi j− f ji) = bi and call this condition the flow
balance condition.

2. For all edges {i, j} ∈ E, we have fi j + f ji ≤ ui j. We also say that f respects u.

Using this definition we can define the Single-Commodity Robust Network Design Problem
(sRND) as follows. The input is an undirected graph G = (V,E), an uncertainty set D ⊆ RV

of balance vectors and a cost function c : E→R such that installing one unit of capacity on edge
e costs ce. The task is to determine integral capacities u : E → Z≥0 such that for all balance
vectors b ∈ D there exists a directed single-commodity b-flow in G that satisfies the capacity
conditions with respect to u and minimizes the total capacity installation cost ∑e∈E ceue.

Thus, we need to design a network that supports a certain b-flow, but due to uncertain in-
formation, we cannot know b exactly. Therefore, we create a set D that contains all possible
realizations of b and guarantee that no matter what b ∈D is actually realized, we can route it.
We refer to the vectors in D as scenarios for this reason. If D finite, we call the corresponding
problem a finite sRND problem. If D is a polytope, we refer to the underlying problem as the
polytopal sRND problem.

Finite Versus Polyhedral Uncertainty Sets. The finite and the polytopal sRND problem are
equivalent in the following sense: Any finite uncertainty set can be replaced by the polytope
defined by its convex hull and any polytopal (i.e., bounded) uncertainty set can be replaced by
the finite set of its vertices. Both reductions do not change the set of feasible flows. However,
they do change the size of the problem input. In general, its size can grow exponentially (see
Section 5). Therefore, in any given application, the suitable model needs to be chosen carefully:
The finite sRND model should be preferred when the extreme points of the uncertainty set are
known and if their number is small. On the other hand, the polytopal model is suited better when
the uncertainty set has a small linear description. Thus, we will consider both cases in the scope
of this article in spite of their apparent equivalence. Nonetheless, all results that we prove for
finite scenario sets also hold for a polytopal scenario set (and vice-versa), as far as they do not
concern computational complexity.

Organisation of the article. The paper is organized as follows. In Section 2 we present results
that concern both the finite and the polytopal case. Specialized results for both cases follow in
Section 3 and Section 4, respectively. We conclude in Section 5 with a branch-and-cut algorithm
and computational results.

2 Integer Programming Formulations and Polyhedral Results

We start our considerations with results that concern both the finite and the polyhedral case.
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2.1 A Capacity-Based Integer Programming Formulation

In order to obtain a cut-based formulation for the sRND problem, consider some subset S ⊆ V
of a graph’s node set. We denote the set of edges that have one end-node in S by δ (S) and call
δ (S) an (edge) cut in G. Consequently, we also call S a cut-set. We can compute the maximum
total balance of S as RS := maxb∈D

∣∣∑i∈S bi
∣∣ and we observe that RS is exactly the amount of

flow that cannot be balanced out within S. At least RS units of flow must cross the cut δ (S) and
therefore, for any S⊆V , the capacity of δ (S) must be at least RS. This gives rise to the concept
of a cut-set inequality.

Definition 1. Let G = (V,E) be an undirected graph, let S⊆V and assume that D is a finite or
a polyhedral uncertainty set. We then call the inequality

∑
{i, j}∈δ (S)

ui j ≥max
b∈D

∣∣∣∑
i∈S

bi

∣∣∣ (CSS)

the cut-set-inequality induced by S. We use (CSS) as a short-hand notation for the inequality
and we denote its right hand side by RS.

Writing down the cut-set inequalities for all node subsets, we obtain the following integer
linear programming problem that will turn out to be a cut-based formulation for the sRND
problem:

min ∑
{i, j}∈E

ci jui j

s.t. ∑
{i, j}∈δ (S)

ui j ≥max
b∈D

∣∣∣∑
i∈S

bi

∣∣∣ for all S⊆V

ui j ∈ Z≥0 for all {i, j} ∈ E

(IP-CS)

Denote by P f
sRND(G,D) the set of all, possibly fractional, capacity vectors u ∈ RE

≥0 that permit
sending a b-flow on G for all scenarios b ∈D and by PsRND(G,D) the convex hull of all integer
points in P f

sRND(G,D) (both sets are unbounded). Then, the linear programming relaxation of
the cut-set formulation (IP-CS) exactly describes P f

sRND(G,D), as we show in Theorem 2.

Theorem 2. A vector u ∈ RE
≥0 is feasible for the linear programming relaxation of the integer

program (IP-CS) if and only if there exists a feasible b-flow that respects the capacities u in G
for all scenarios b ∈D.

Proof. For the first part, let u ∈ P f
sRND(G,D). We consider an arbitrary subset S ⊆ V of the

nodes and any scenario b ∈ D. By our assumption, there exists a feasible b-flow f on G that
respects u. Adding up the flow-conservation conditions for all i ∈ S yields the well-known result
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that: ∣∣∑
i∈S

bi
∣∣= ∣∣∑

i∈S
∑

j∈δ (i)
( fi j− f ji)

∣∣= ∣∣∑
i∈S

∑
j∈δ (i)∩S

( fi j− f ji)︸ ︷︷ ︸
=0

+∑
i∈S

∑
j∈δ (i)∩V\S

( fi j− f ji)
∣∣

=
∣∣∑

{i, j}∈δ (S)
( fi j− f ji)

∣∣ f≥0
≤
∣∣∑

{i, j}∈δ (S)
( fi j + f ji)

∣∣≤∑
{i, j}∈δ (S)

ui j.

This shows that u satisfies all cut-set inequalities.
On the other hand, let u be a feasible vector for (IP-CS) and let again b ∈D be some arbitrary

scenario. To show that u ∈ P f
sRND(G,D), we need to show that for every b ∈ D, there exists

a feasible b-flow under u. Yet, iff for some b ∈ D, no feasible b-flow exists in (G,u), then
by the MaxFlow-MinCut theorem [24] there exists some cut S with a capacity ∑{i, j}∈δ (S) ui j

strictly less than
∣∣∑i∈S bi

∣∣. This is a contradiction to the assumption that u satisfies all cut-set-
inequalities.

In particular, the (non-relaxed) cut-set formulation (IP-CS) exactly characterizes all (infinitely
many) integral points in PsRND(G,D).

Corollary 3. A capacity vector u ∈ ZE
≥0 is feasible for the sRND instance (G,D) if and only if

it is feasible for the cut-set formulation (IP-CS).

The exponential size of the cut-set formulation (IP-CS) naturally raises the question of cut-
set constraint separation which we postpone to Sections 3 and 4. To conclude this section, we
state that PsRND(G,D) has full dimension and that the cut-set inequalities are facet-defining for
PsRND(G,D). Both results were already known for the non-robust multi-commodity network
design problem [31] since the 90’s, before Mattia [34] gave a much shorter proof for the mRND
in 2010. Finally, Dorneth observed in his diploma thesis [21] that Mattia’s proofs only need
small adaptations for the finite sRND. We repeat a more concise version here in order to make
the adapted proofs available and to extend them to the polyhedral demand case. As before we
define RS := maxb∈D

∣∣∑i∈S bi
∣∣. We let B∗ := maxb∈D ∑i∈V |bi| be an upper bound for the capacity

on any edge.

Theorem 4 ([34, 21]). For any network G = (V,E) and any (finite or polyhedral) demand set
D, the polyhedron PsRND(G,D) is full dimensional, i.e. its dimension is |E|.

Proof. We define a capacity vector ue for every edge e ∈ E in the following way:

ue
e′ :=

{
B∗+1, if e′ = e
B∗, otherwise

for all e′ ∈ E

and additionally define U ≡ B∗ as the capacity vector whose entries are all equal to B∗. Since
we have to install at most a capacity of B∗ on any edge, we have U ∈ PsRND(G,D) and ue ∈
PsRND(G,D) for all e ∈ E. Also, we obtain |E| distinct unit vectors by looking at ue−U for all
e ∈ E. Thus, dim(PsRND(G,D)) = |E|.
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Theorem 5 ([34, 21]). For any cut S ⊆ V , (CSS) defines a facet of PsRND(G,D) if and only if
RS > 0 and the subgraphs induced by S and V \S are connected.

Proof. If RS = 0, (CSS) cannot be stronger than the trivial inequalities ue ≥ 0 for e∈ δ (S). Also,
if S (or likewise, V \S) decomposes into several connected components S1, . . . ,Sk, then summing
up the inequalities we get from S1, . . . ,Sk yields the same left hand side as we get from S; yet,
the right-hand side of (CSS1)+ · · ·+(CSSk) can only be stronger than the one of (CSS) by the
triangle inequality.

Finally, in order to show that (CSS) defines a facet of PsRND(G,D) we define a vector ue for
every edge e ∈ E in the way suggested by Mattia [34, Theorem 3.14]. In doing so, our choice
depends on whether e lies in δ (S). For all e ∈ δ (S), define ue as

ue
e′ :=


RS if e′ ∈ δ (S),e′ = e
0 if e′ ∈ δ (S), e′ 6= e
B∗ if e′ 6∈ δ (S)

for all e′ ∈ E

Now, for all e 6∈ δ (S) and some fixed h ∈ δ (S) choose ue as

ue
e′ :=


RS if e′ ∈ δ (S),e′ = h
0 if e′ ∈ δ (S),e′ 6= h
B∗+1 if e′ 6∈ δ (S),e′ = e
B∗ if e′ 6∈ δ (S),e′ 6= e

for all e′ ∈ E

Because we have RS 6= 0, the vectors ue,e ∈ E, are linearly independent. This is easily verfi-
fied by considering the upper triangular matrix with the rows ue for e ∈ δ (S) followed by the
rows ue− uh for e 6∈ δ (S). For all e ∈ δ (S), the vector ue satisfies (CSS) with equality since
∑e′∈δ (S) ue

e′ = ue
e = RS by the definition of ue. If e 6∈ δ (S), we have instead ∑e′∈δ (S) ue

e′ = ue
h = RS

and again, (CSS) is satisfied with equality.
It remains to show that ue ∈PsRND(G,D) for all e∈E. We fix an arbitrary cut X ⊆V such that

the subgraphs G[X ] and G[V \X ] which are induced by X and V \X , respectively, are connected
and show that ue satisfies (CSX) for all e ∈ E. We can assume that X 6= S and that X 6= V \ S
since we have already shown validity for those two cases. Thus, if δ (X) ⊆ δ (S) was true, then
either G[X ] or G[V \X ] would not be connected and therefore, there exists at least one edge
e∗ ∈ δ (X)\δ (S). Using this observation for any e ∈ E we have

∑
e′∈δ (X)

ue
e′ ≥ ∑

e′∈δ (X)\δ (S)
ue

e′ ≥ ue
e∗ ≥ B∗ = max

b∈D ∑
i∈V

∣∣bi
∣∣≥max

b∈D

∣∣∣∑
i∈X

bi

∣∣∣
which tells us that ue satisfies (CSX). We conclude that (CSS) defines a face of dimension |E|−1
and, therefore, is a facet of PsRND(G,D).
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2.2 Valid 3-Partition Inequalities Derived from Chvátal-Gomory Cuts

The cut-set inequalities (CSS) give a lower bound on the amount of capacity that is needed along
the cut that separates a 2-partition S ⊆ V and V \S. In general, however, one can ask for lower
bounds on the capacity between any k-partition, k ≥ 2, of the graph. This leads to the definition
of k-partition inequalities, an idea that was e.g. explored by [1]. We will see that 3-partition
inequalities can be separated as {0, 1

2}-Chvátal-Gomory cuts as defined by [17] and elaborate on
the details in this subsection. A similar result has been obtained by Magnanti, Michandani and
Vachani [32] for a non-robust multi-commodity network design problem.

For any given linear program Ax ≥ b with a constraint matrix A = (ai j) ∈ Zm×n and vectors
x ∈ Rn,b ∈ Zm one can generate a valid inequality for Ax ≥ b by selecting some subset I ⊆
{1, . . . ,m} of the constraints and computing the inequality 1

2 ·∑
n
j=1 ∑i∈I ai jx j ≥ 1

2 ∑i∈I bi. If the
coefficients ∑i∈I

1
2 ai j are integral for all j = 1, . . . ,n, we can round up the right hand side of the

inequality and thus obtain a 0- 1
2 -cut [17]. The problem is, of course, to select a suitable set I that

generates integral coefficients. Due to the structure of the cut-set inequalities, we can solve this
problem if we restrict to |I| = 3,4. Indeed, observe that for two non-empty sets S,T ( V and
any vector u ∈ RE

≥0, we have by a counting argument

∑
e∈δ (S)

ue + ∑
e∈δ (T )

ue + ∑
e∈δ (S∪T )

ue + ∑
e∈δ (S∩T )

ue = 2∑
e∈δ (S∪T )

ue + 2∑
e∈(S:T )

ue + 2∑
e∈δ (S∩T )

ue.

where (S : T ) is defined as the set of edges δ (S)∩ δ (T ) having one end node in S and one end
node in T . Therefore, given cut-set inequalities (CSS) and (CST ), we obtain a valid zero-half
cut by adding up 1

2((CSS)+(CST )+(CSS∪T )+(CSS∩T )) to

∑
e∈δ (S∪T )

ue + ∑
e∈(S:T )

ue + ∑
e∈δ (S∩T )

ue ≥
⌈1

2
(RS +RT +RS∪T +RS∩T )

⌉
. (ZHS,T )

If RS +RT +RS∪T +RS∩T is odd, the violation of (ZHS,T ) with respect to a solution u∗ is maxi-
mum if (CSS),(CST ),(CSS∪T ) and (CSS∩T ) are binding for u∗. Therefore, we should select sets
S,T where the corresponding cut-set inequalities have small slack.

This observation implies a simple separation algorithm EnumZH: We iterate over all pairs
(CSS),(CST ) of binding cut-set inequalities in our constraint set. We then build the correspond-
ing zero-half cut (ZHS,T ) and check if it is violated. The running time of the algorithm is
quadratic in the number of binding cut-set constraints. While these can be exponentially many
(see Figure 1), our experiments show that it pays off to use the algorithm at the root node of the
branch and cut tree, see Section 5.

We can replace (CSS∪T ) by (CSV\(S∪T )) in the above construction without changing (ZHS,T ).
Then, if S and T are disjoint sets, an edge e ∈ E has a non-zero coefficient in (ZHS,T ) if and
only if it is contained in (S : T ), (S : V \ (S∪T )) or (T : V \ (S∪T )). Thus, (ZHS,T ) defines a
3-partition inequality for the partitions S, T and V \ (S∪T ). In this way, EnumZH is a separation
heuristic for 3-partition inequalities.
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t6 t5

t4

t3

t2
t1

td

.
.
. s

Figure 1: An instance that has a high number of binding cut-set inequalities at the optimum.
We define a single scenario: node s has a supply of d and all other nodes t1, . . . , td
have a demand of 1. By setting u∗e = 1 for all edges e we obtain a feasible capacity
vector and we notice that u∗ is a vertex PsRND. With respect to u∗, any set {s}∪X
with X ⊂ {t1, . . . , td} defines a binding cut-set inequality. Since there are 2d possible
choices for X , we have 2d binding cut-set inequalities at the basic solution u∗.

3 Robust Network Design with a Finite Scenario List

3.1 A Flow-Based Integer Linear Programming Formulation

When the uncertainty set D = {b1, . . . ,bk} is finite, there is a natural, flow-based integer linear
programming formulation of the sRND problem. It contains a set of flow variables for each
scenario together with the corresponding flow-conservation and capacity constraints [16]:

min ∑
{i, j}∈E

ci jui j

s.t. ∑
{i, j}∈E

( f q
i j− f q

ji) = bq
i for all i ∈V,q = 1, . . . ,k

f q
i j + f q

ji ≤ ui j for all {i, j} ∈ E,q = 1, . . . ,k

f q
i j, f q

ji ≥ 0 for all {i, j} ∈ E,q = 1, . . . ,k

ui j ∈ Z≥0 for all {i, j} ∈ E

(IP-F)

This formulation is similar to classical integer multicommodity flow (MCF) formulations.
The only difference is that in the robust context the b-flows f 1, . . . , f k are not simultaneous and
thus do not share the edge capacities. Like for the MCF problem, the finite sRND with integral
capacities is NP-hard [41], while its fractional variant can be solved in polynomial time (as is
proven by the above compact linear programming formulation). Another property is shared with
the MCF problem. While the size of the scenario-expanded formulation (IP-F) is polynomial in
the input size, it grows impractically large when the number of scenarios (or commodities, in
the MCF case) is high. We therefore concentrate on the cut based formulation for the rest of this
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article. We notice, however, that both formulations are equivalent in the sense of the following
corollary of Theorem 6. In particular, (IP-CS) can be seen as an orthogonal projection of (IP-F).

Corollary 6. A vector u ∈RE
≥0 is feasible for the linear programming relaxation of the capacity

formulation (IP-CS) iff there exist flows f 1, . . . , f k such that ( f 1, . . . , f k,u) is feasible for the
linear programming relaxation of the flow formulation (IP-F).

In the non-robust case, the capacity formulation can be obtained by applying Benders’ de-
composition [12] to the flow formulation, see e.g. [33], and although Benders’ original decom-
position technique yields a slightly weaker version of (IP-CS), the same principle applies here.

3.2 Polynomial Time Separation of Cut-Set Inequalities

In order to use formulation (IP-CS) in practice, we need a fast separation algorithm for its con-
straints, i.e., we need to decide if a given capacity vector u∗ violates any cut-set constraints on
a network G = (V,E) with uncertainty set D. We show in this section how this can be achieved
when D is finite.

To this end, we define an auxiliary graph Ĝ = (V ∪{s}, Ê) with

Ê := E ∪{(s,τ) | τ ∈V}.

We now iterate over all scenarios in D. For some fixed scenario b∈D, we obtain a cost function
for the edges of Ĝ by extending u∗ to Ê:

û∗e :=

{
−bτ , if e = {s,τ}
u∗e , otherwise.

Then, we can rewrite the value b(X ∪{s}) of any minimum s-cut X ∪{s} in Ĝ as

valb(X ∪{s}) = ∑
e∈δĜ(X∪{s})

û∗e = ∑
e∈δĜ(X∪{s})

s6∈e

û∗e + ∑
e∈δĜ(X∪{s})

s∈e

û∗e = ∑
e∈δG(X)

u∗e − ∑
i∈V\X

bi.

Therefore, any minimum s-cut X ∪{s} satisfies that ∑i∈V\X bi ≥ 0 – as otherwise, (V \X)∪{s}
has a better objective value. As a consequence, the value of X ∪{s} is exactly the slack of the
cut-set inequality that X would induce if b was the only scenario. The slack of the true cut-set
inequality induced by X can only be smaller and therefore we know that if valb(X ∪{s}) < 0,
then also

0 > ∑
e∈δG(X)

u∗e− ∑
i∈V\X

bi ≥ ∑
e∈δG(X)

u∗e−max
b∈D

∣∣∑
i∈V\X

bi
∣∣

and X defines a violated cut-set inequality in G. On the other hand, if some X ⊆ V induces a
violated cut-set inequality, then there is a scenario b∗ ∈D such that

0 > ∑
e∈δG(X)

u∗e−max
b∈D

∣∣∑
i∈V\X

bi
∣∣= ∑

e∈δG(X)

u∗e− ∑
i∈V\X

b∗i = valb∗(X ∪{s})
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since we can again assume w.l.o.g. that ∑i∈V\X b∗i ≥ 0. Thus, by computing a minimum cut on
Ĝ for each scenario, we can find up to |D| violated cut-set inequalities or decide that none exist.

In the construction of Ĝ, the signs of the used edge weights are mixed (i.e., positive and
negative). In general, the problem of finding a minimum cut in an arbitrary graph with mixed
weights is NP-hard. In our case, however, all edges with negative weight are incident to s. This
allows us to use a construction for star-negative graphs by McCormick, Rao and Rinaldi [35]
which reduces the problem to an ordinary minimum s-t-cut problem with non-negative weights.
Since this construction changes the size of G by a constant only, we obtain the main theorem of
this section.

Theorem 7. Let (V,E,D) be an instance of the sRND problem and let u∗ ∈ RE
≥0. Then, we

can find a cut-set inequality that is violated by u∗ or decide that no such inequality exists in time
O(|D| ·Tmincut), where Tmincut denotes the time need to compute a minimum cut in G=(V,E).

Any maximum flow algorithm can be used to compute a minimum s-t-cut. We implemented
the preflow-push algorithm by Goldberg and Tarjan [25, 19] with the highest label strategy and
the gap heuristic. We stop the algorithm when a maximum preflow is found and thus omit
its second stage. This results in an overall runtime of Θ(|D| · |V |2 ·

√
|E|) for the separation

procedure.

3.3 Separating 3-Partition Inequalities more Efficiently

The assumption that D is finite does not only help us to find an efficient separation procedure for
cut-set inequalities; it also enables us to find a more efficient alternative to the general 3-partition
separation algorithm from Section 2. There, we observed that we can obtain valid 3-partition
inequalities by combining two cut-set inequalities with small slack. Instead of enumerating all
pairs of binding cut-set inequalities as in Section 2, however, we can now develop an algorithm
whose runtime is linear in the number of binding cut-set inequalities.

The key observation for this more efficient algorithm is the following: Our cut-set separation
algorithm yields an inequality with maximum violation. Thus, if we try to separate a point u∗

that already satisfies all cut-set inequalities, it returns an inequality with minimum slack. We use
this fact to search for candidates for the zero-half cut generation in our algorithm MinCutZH: For
each binding cut-set inequality (CSS) in the current LP relaxation, we call the cut-set separation
from the previous subsection on the subgraph G[S] that is induced by S. This yields up to
|D| cut-sets T1 . . . ,Tk ⊂ S. By adding up (CSTi), (CSS\Ti) and (CSTi∪S\Ti) = (CSS) we thus
obtain one 3-partition inequality for each i = 1, . . . ,k. This algorithm mhas a running time
of O(C · |D| · Tmincut) where C is the number of binding cut-set inequalities in the current LP
relaxation and Tmincut again denotes the time needed to compute a minimum s-t-cut in G. It thus
depends linearly on the number of binding cut-set inequalities.

Apart from the running time, the algorithm has another advantage over EnumZH: There might
be good candidate cut-set inequalities that are not part of the current LP solution – and these
can only be found by MinCutZH. On the other hand, we cannot guarantee that the right hand
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side of (CSS)+(CST )+(CSS) is odd and therefore it can happen that MinCutZH does not find a
violated 3-partition inequality even though one exists (as is the case with EnumZH).

4 Robust Network Design with Polyhedral Demand Uncertainties

Duffield et al. [22] propagate the Hose demand polytope for multi-commodity network design.
Rather than specifying demands for all pairs of nodes (which can be impractical in large net-
works), they propose to define two bounds for each node i that limit how much flow in total
the node i can send to (or receive from, respectively) all other nodes. This is a natural model
as these bounds can stem from technical specifications, legal contracts or educated guesses by
experienced engineers.

Pesenti, Rinaldi and Ukovich [39] propose a similar model for single-commodity flows: They
start from the multi-commodity model and limit the traffic demand ri j for each pair of nodes by
an individual upper and lower bound, rmax

i j and rmin
i j . Given any such matrix r = (ri j)i, j∈V with

rmin
i j ≤ ri j ≤ rmax

i j , they aggregate the commodities to a demand vector (bi)i∈V := (∑ j∈V ri j −
r ji)i∈V . Any demand vector that can be obtained in this fashion is a scenario that needs to be
considered in the optimization. This problem is called the Network Containment Problem in
the literature. Pesenti, Rinaldi and Ukovich subsequently propose to solve the problem with a
branch-and-cut algorithm based on a cut-set formulation and a separation MIP.

We propose a different adaptation of the Hose model that is simpler and does not have a
point-to-point traffic component. For each node i ∈ V , we define an upper bound bmax

i and a
lower bound bmin

i . We then say that any supply- and demand vector that obeys these bounds
while remaining balanced is a possible scenario for our optimization. The resulting uncertainty
set is the polytope

H(V,bmin,bmax) :=
{

b ∈ RV
∣∣∣ bi ∈ [bmin

i ,bmax
i ] for all i ∈V and ∑

i∈V
bi = 0

}
.

Due to its similarity to the Hose uncertainty set that is used for multi-commodity network design
problems, we call it the single commodity Hose polytope. In the following, we assume that our
uncertainty set D is the polytope H(V,bmin,bmax) and denote the corresponding (sRND) problem
by (sRND-Hose).

4.1 Complexity of Robust Network Design with Single Commodity Hose Demands

Finding an optimum integer solution for (sRND-Hose) is NP-hard, as the problem contains
Steiner Tree as a special case (see [41] for a similar reduction for finite D).

Theorem 8. The (sRND-Hose) problem is NP-hard.

Proof. Let I = (VI,EI,cI,T) be an input for the Steiner Tree problem, i.e., suppose that GI =
(VI,EI) is an undirected graph with edge weights cI and that /0 ( T⊆VI is a set of terminals that
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need to be connected at minimum cost. Steiner Tree is NP-hard [29]. Then, finding an optimum
solution for I is equivalent to finding an optimum solution for the following sRND instance J:
Select some arbitrary node s ∈ T. We set b̂min

s = 0 and b̂max
s = 1. For all other nodes i ∈ T\{s},

set b̂min
i = −1 and b̂max

i = 0. Now, the vertices of H(VI, b̂min, b̂max) are exactly the scenarios b
where bs = 1 and bi = −1 for some node i ∈ T. This means that in any feasible solution for J,
there must be a path of capacity 1 from s to all terminals i ∈ T\{s}. Also, if the support of any
feasible integer solution for J contains a cycle, then one edge of the cycle can be deleted. Thus,
any optimum solution for J induces a Steiner Tree and any Steiner Tree solution for I defines
a solution for J; moreover, the costs of the solutions are identical in both cases. Thus, when
D= H(V,bmin,bmax), solving sRND is at least as hard as solving Steiner Tree.

We shall see in the remainder of the section that the separation problem for cut-set inequalities
is also NP-hard for (sRND-Hose). This proves that (sRND-Hose) remains hard even if we relax
the integrality requirement.

4.2 Separating Cut Set Inequalities over H(V,bmin,bmax)

Finding optimum solutions for the sRND problem in practice becomes significantly harder when
the uncertainty set is the polytope H(V,bmin,bmax). Following our previous approach, we want to
to solve the linear programming relaxation of the capacity-based formulation (IP-CS) in order to
generate dual bounds in a branch-and-bound algorithm. As opposed to the case that D is finite,
however, finding a cut-set inequality with maximum violation will turn out to be NP-hard when
D = H(V,bmin,bmax). The NP-hardness of this problem is somewhat surprising: We could ex-
pect to solve the separation problem for (IP-CS) with a minimum cut algorithm. Here, however,
the main obstacle is to compute the correct right hand side for a given cut S inside of the mini-
mum cut computation. When D is finite, we can simply enumerate all possible scenarios b and
interpret b as linear node costs that are easily integrated into any minimum cut algorithm. When
D = H(V,bmin,bmax), however, this is no longer possible, as a more sophisticated optimization
problem needs to be solved to obtain the correct right hand side for the cut-set inequalities. This
is true even though computing the correct right-hand side for a fixed S is possible in polynomial
time; the difficulty lies in computing it while computing a minimum cut.

Summarizing, our problem is that (IP-CS) contains a non-trivial optimization problem on the
right hand side. Still, solving such formulations is at the core of robust optimization and several
ideas from the literature can be applied here. We observe, for instance, that if we interpret the
bi on the right hand side of (IP-CS) as variables, we obtain a bi-level optimization problem. It
minimizes the capacities on the outer level and maximizes the total demands on the its inner
level, i.e., the right hand side of each of the cut-set inequalities. Now, if the right hand side
optimization problem was a minimization problem, we could collapse (IP-CS) a single level –
hoping to obtain inequalities that can be separated more easily. Thus, we only need to replace
the linear program maxb∈D |∑i∈S | by its dual. This technique has been applied successfully to
the multi-commodity robust network design problem by Ben-Ameur and Kerivin [10] in the case
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of static routing. In their case, it results in a separable linear formulation. Applying the same
technique to the multi-commodity robust network design problem with dynamic routing leads
to a non-convex quadratic separation problem, as was shown by Mattia [34]. The same is true
in our case. However, when the underlying network flow has several commodities, Mattia ob-
serves that linearizing the separation problem yields a mixed integer linear program with big-M
constraints. Ben-Tal and Nemirovski [11] give a general solution algorithm for robust linear pro-
grams, requiring only that the uncertainty set is compact and that separation over it is possible.
They show that any linear program with row-wise uncertainty of this type can be optimized by
solving an auxilliary linear program for each row of its deterministic (i.e., non-robust) counter-
part. Potentially, each auxilliary problem yields a valid cutting plane for the robust formulation.
While we can certainly separate over H(V,bmin,bmax), the deterministic counterpart of (IP-CS)
unfortunately has an exponential number of rows. We would therefore require an oracle that
gives us a row for which the auxilliary problem yields a valid cutting plane. Finding such an
oracle is equivalent to solving our original separation problem. Another alternative could be
to use a polynomially sized flow-based formulation as deterministic counterpart, but short of
introducing a full set of flow-variables for each vertex of H(V,bmin,bmax), it is not clear how to
robustify the flow-conservation equalities of such a formulation. We conclude that we need to
find an alternative to these standard-techniques if we want to solve our separation problem.

Our first step to a practical separation algorithm is to actually write down the separation
problem: The following bi-level program will give us a separating hyperplane for any u∗ 6∈
PsRND(G,H). Since S⊆V is variable here, the formulation is not a linear or quadratic program
in the strict sense. It can, however, be transformed into a bi-level quadratic program. For now,
we stick to the more abstract formulation to benefit from the easier notation. Solving

min
S⊆V

∑
e∈δ (S)

u∗e−max
b∈H ∑

i∈S
bi (H-SEP)

yields a cut-set inequality that is violated if and only if the optimum objective value of (H-SEP)
is negative. As in the finite case, we do not need to take the absolute value of the second sum,
as we can assume w.l.o.g. that the total balance ∑i∈S bi is non-negative in an optimum solution
(S,b). Moreover, we say that S is a hose source set iff ∑i∈S bmax

i ≥ 0 and ∑i∈V\S bmin
i ≤ 0.

We only consider hose source sets in the following. If S is not a hose source set, then either
H(V,bmin,bmax) is empty or ∑i∈S bi < 0 for all b ∈ H(V,bmin,bmax). Finally, we say that a hose
source set S is limiting, if ∑i∈S bmax

i ≤ −∑i∈V\S bmin
i . Otherwise, we say that V \ S is limiting.

We will show next that we can re-write the inner level

BS := max
b∈H ∑

i∈S
bi for a fixed S⊆V (MAX-B)

such that (H-SEP) reduces to a single-level mixed integer linear program.
We proceed in two steps: First, we give an algorithm that both functions as a scenario sep-

aration and proves that there exists a solution of a certain value for (MAX-B). At the same
time, we will see that we can compute the value of the solution with a closed formula without
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actually running the algorithm. This will enable us to integrate the solution value into (H-SEP).
Secondly, we prove that our solution maximizes (MAX-B).

To get a better intuition for the algorithm, suppose that 0 ∈ H(V,bmin,bmax) and consider
the following preliminary method to find an optimum solution for (MAX-B). We start with
the vector b ≡ 0 ∈ H(V,bmin,bmax) and our aim is to install as much supply as possible in S.
Equivalently, we could try to install as much demand as possible in S, but since we assumed
w.l.o.g. that the maximum total balance of S is non-negative, we rather stick to the maximum
supply case. We now select an arbitrary node i ∈ S with bi < bmax

i and another arbitrary node
j ∈V \S with b j > bmin

j . If no such nodes can be found, the algorithm stops. Finally, we increase
bi by one unit and, at the same time, decrease b j by one unit to maintain a balanced vector.

To analyse the algorithm, we observe that it maintains ∑i∈S b ≤ ∑i∈S bmax
i and ∑i∈S bi =

−∑i∈V\S bi ≤ −∑i∈V\S bmin
i . The algorithm stops as soon as equality holds in one of the con-

ditions. Thus, if b is the vector that we obtain once the algorithm stops, we have ∑i∈S bi =
min{∑i∈S bmax

i ,−∑i∈V\S bmin
i } and we realize that we can compute the value of this solution

without actually running the algorithm. Also, increasing the objective value of b further would
make b necessarily imbalanced.

The idea of our preliminary algorithm was to start from a feasible vector and to then increase
its objective value. We follow the same idea in the case that 0∈ [bmin

i ,bmax
i ] for all i∈V , however,

we need a slightly more involved algorithm to do so. The problem is that the starting vector b≡ 0
might be infeasible. More verbosely, the node bounds can force us to install supply on a node
in V \ S or to install demand on a node in S and thereby change the amount of imbalance that
we have to distribute. The bounds can also force us to install a minimum amount of supply
or demand on some nodes in S or V \ S – which is a problem if we already distributed all the
imbalance before reaching such nodes. Both problems can be solved by starting from a different
vector. This is why, in contrast to the preliminary algorithm, we start with a vector b that simply
satisfies bi ∈ [bmin

i ,bmax
i ] for all i ∈V and then make sure that ∑i∈V bi = 0 in a second phase.

Additionally, the runnning time of our previous algorithm is only pseudopolynomial, as the
algorithm needs min{∑i∈S bmax

i ,∑i∈V\S bmin
i }many iterations. We overcome this second problem

by increasing the b values by as much possible in every iteration. To know this amount, it is
necessary to precompute which of the two bounds is reached first, i.e., whether S or V \S is the
limiting set. If S has more limiting bounds than V \S, we set bi = bmax

i for all i∈ S; otherwise, we
set bi = bmin

i for all i∈V \S. In both cases, it only remains to distribute the inbalance of b among
the nodes in the non-limiting set. To do this, we iterate over all nodes i in the non-limiting set
in arbitrary order and decrease or increase bi as much as possible in the first and second case,
respectively. See Algorithm 1 for the pseudo-code of this procedure. When the algorithm stops
with a balanced vector b, we obtain again a solution b of value min{∑i∈S bmax

i ,−∑i∈V\S bmin
i }.

Lemma 9. Given a hose source set /0( S(V , Algorithm 1 computes a scenario b∈H(V,bmin,bmax)
with

∑
i∈S

bi = min{∑
i∈S

bmax
i ,−∑

i∈V\S
bmin

i }
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or it correctly decides that H(V,bmin,bmax) is empty.

Proof. Let L = S or L = V \ S be the set that limits how much supply we can install in S. We
prove the correctness of the algorithm by showing that Lines 13–27 maintain two invariants: (1)
At all times, b respects all bounds, i.e., bi ∈ [bmin

i ,bmax
i ] for all i ∈V . (2) At all times, r stores the

balance of our current b vector, i.e. r = ∑i∈V bi.
We establish Invariant 1 in lines 3–9 and 10/11 for i ∈ L and i ∈ F , respectively. Line 12

establishes Invariant 2. Suppose now that r < 0 in line 13 (the other case works analogeously).
We already know that both invariants hold before the first iteration of the loop in lines 14–19 and
we assume by induction that the same is true before the j-th iteration, for some j ≥ 2. Suppose
that the j-th iteration considers i ∈ F . Then, bi is at most increased to bi + bmax

i − bi = bmax
i ,

i.e. Invariant 1 is maintained. Also, r is changed by the same value as bi and thus still stores
the current balance of b. This means that Invariant 2 still holds. When the algorithm stops
with r = 0, we have found a scenario b ∈ H(V,bmin,bmax). Also, by our choice in lines 3–9, we
have ∑i∈S bi = ∑i∈S bmax

i if S is limiting and ∑i∈S bi = −∑i∈V\S = −∑i∈V\S bmin
i otherwise. If

the algorithm stops with r < 0, then m = bmax
i − bi in all iterations and thus, bi = bmax

i for all
i ∈ F where bmax

i > 0. From line 11, we know that bi = bmax
i for all i ∈ F with bmax

i < 0 and
our initialization guarantees 0 = bi = bmax

i for all the i ∈ F with bmax
i = 0. We conclude that

0 > r = ∑i∈F bi = ∑i∈F bmax
i . If F = S, we directly have a contradiction to S being a hose source

set. If F =V \S instead, we also have bi = bmax
i for all i∈ L. It follows that ∑i∈V bi =∑i∈V bmax

i <
0. Now, let b′ ∈ H(V,bmin,bmax). Then, ∑i∈V b′i ≤ ∑i∈V bmax

i < 0 which is a contradiction to
∑i∈V b′i = 0. Consequently, H(V,bmin,bmax) = /0.

It remains to show that Algorithm 1 computes an optimum scenario for (MAX-B).

Theorem 10. Let S⊆V be a hose source set. Then

BS = min
{
∑
i∈S

bmax
i ,−∑

i∈V\S
bmin

i

}
.

Proof. For i = 1, . . . , |V |, introduce dual variables υi,λi for the upper/lower bound constraints
of bi, repectively, and define a dual variable β for the balance constraint. This gives us the
dual (MAX-B∗) of (MAX-B)

min ∑
i∈V

bmax
i υi−∑

i∈V
bmin

i λi

υi−λi +β ≥ 1 for all i ∈ S

υi−λi +β ≥ 0 for all i ∈V \S

υi,λi ≥ 0 for all i ∈V

(MAX-B∗)

If ∑i∈S bmax
i ≤−∑i∈V\S bmin

i , running Algorithm 1 gives us a scenario b with ∑i∈S bi = ∑i∈S bmax
i .

We choose υi = 1 for all i ∈ S, υi = 0 for all i ∈ V \ S, λi = 0 for all i ∈ V and finally β = 0.
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Our choice (υ ,λ ,β ) is feasible for (H∗S ) and satisfies complementary slackness with b. Other-
wise, we suppose ∑i∈S bmax

i > −∑i∈V\S bmin
i and Algorithm 1 yields a scenario b with ∑i∈S =

−∑i∈V\S bmin
i . Choosing λi = 1 for all i∈V \S, λi = 0 for all i∈ S, υi = 0 for all i∈V and β = 1

is a feasible solution for (H∗S ) and b satisfies complementary slackness with (υ ,λ ,β ).

Theorem 10 tells us that we can write (H-SEP) as the much easier problem

min
S⊆V

∑
e∈δ (S)

u∗e−min
{
∑
i∈S

bmax
i ,−∑

i∈V\S
bmin

i

}
. (H-SEP’)

In this formulation, we omitted the constraint that ∑i∈S bi ≥ 0, because the inner part of the
problem yields a negative value if it is violated. Thus, omitting the constraint does not produce
more optimum solutions. We can now write (H-SEP’) as a MIP that is a maximum cut problem
with additional constraints:

min ∑
{i, j}∈E

u∗i jyi j−B

B≤ ∑
i∈V

xibmax
i

B≤−∑
i∈V

(1− xi)bmin
i

xi− x j ≤ yi j for all {i, j} ∈ E

x j− xi ≤ yi j for all {i, j} ∈ E

xi ∈ {0,1} for all i ∈V

yi j ∈ {0,1} for all {i, j} ∈ E

(IP-H-SEP)

The MIP will not give us an actual worst-case scenario; however, we can easily call Algorithm 1
on the set S := {i ∈V | xi = 1} to obtain one. If we want more than one worst-case scenario, we
can even call it several times while permuting the order in which it considers the nodes.

In contrast to the finite case, separating cut-set inequalities in the polyhedral case is NP-hard,
as we show in the following theorem by a reduction from minimum expansion. Chekuri, Oriolo,
Scutellà and Shepherd [18] show the same result for the multi-commodity case. In fact, they
also use a (more complicated) reduction from minimum expansion.

Theorem 11. Given an instance (G,H(V,bmin,bmax)) of the (sRND-Hose) problem and a frac-
tional capacity vector u ∈ RE , the problem of finding a cut-set inequality that is violated by u is
NP-hard. In particular, the feasibility test for u is co-NP-complete.

Proof. Minimum expansion is defined in the following way: Given an undirected graph G =
(V,E) and edge capacities ue for all edges e ∈ E, find a set /0 ( S ( V with |S| ≤ |V |/2 that
minimizes the expansion ∑e∈δ (S) ue/|S| of G. Minimum expansion is NP-hard [30, Section 3.2].
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If we have an input (V,E,u) for minimum expansion, we can define an instance for the cut-set
separation problem on the same graph G = (V,E). Set b̂max

i := 1 and b̂min
i = −1 for all i ∈ V .

We claim that G has an expansion of strictly less than 1 if and only if there is a violated cut-set
inequality with respect to u and H(V, b̂min, b̂max).

By our definition of b̂max and b̂min, we obtain from Theorem 10 that BS = |S| for any S⊆V with
|S| ≤ |V |/2. Thus, there is a violated cut-set inequality in G iff for some S, ∑e∈δ (S) ue < BS = |S|.
This is equivalent to ∑e∈δ (S) ue/|S|< 1.

5 Computational results

In this section we describe the outcome of our extensive computational campaign conducted to
assert the effectiveness of the cut-set formulation within a classical branch-and-cut framework
for both the finite and Hose cases. The branch-and-cut algorithm is implemented in C++ within
the ABACUS 3.2U2 framework [28] and run on an Intel XEON 5410 2.3 GHz with 3 GB RAM,
and Cplex 12.1 is used as an LP solver inside our branch and cut. The main ingredients to
enhance the basic scheme are described in the following, while Section 5.1 and Section 5.2
report the results on the finite and Hose cases, respectively.

Preprocessing. We partition the graph into its biconnected components as suggested in [16].
It is straight-forward to generalize the approach to the polytopal case.

Cutting Plane Separation. We use the cut-set separation both for the finite and the Hose case,
as described in Sections 3 and 4, respectively. In the Hose case, after the exact separation from
Section 4 is invoked, we repeatedly call Algorithm 1 to obtain a list of 10 non-routable scenarios.
Then, the polynomial separation of Section 3 is called until the 10 scenarios can be routed. The
separation algorithm EnumZH is called at the root node only, as well as the {0, 1

2}-cut separation
code by Andreello, Caprara and Fischetti [5] which is called at the root node when the other
algorithms fail.

Primal Heuristics. We execute several fast primal heuristics at each branch-and-cut node
when no more cut-set inequality is violated. They are all based on rounding operations. More
precisely,

• The Simple rounding rounds up all fractional values to produce a feasible solution.

• The Cycle rounding looks for a cycle C with only fractional edges by a depth first search.
On C the heuristic rounds down the edge with the smallest fractional value, say, p and
increases the capacity of all other edges on C by p. When no more cycles are found, all
remaining fractional capacities are rounded up.
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• The Shortest Path rounding works in the same way as the Cycle rounding, but it obtains
the cycle C by removing an edge with a smallest fractional value and connecting its end-
nodes by a shortest path of fractional edges.

In the finite case, we also use the rounding heuristic described in [16]. Finally, we use the large
neighborhood search heuristic introduced in [3, 4], but only at the root node, in the finite case
and with a time limit of 120 CPU seconds.

Settings. Very few special settings have been used within the branch-and-cut framework pro-
vided by ABACUS. Namely, we used aggressive strong branching, the branch-and-cut tree is
traversed in best-first order, and we removed non-binding cutting planes after 10 iterations.

5.1 Experiments with Finite Uncertainty Sets

Testbed. We consider four different classes of instances for our experiments. (These instances,
as well as those for the Hose case (Section 5.2), are available upon request from the authors.)
Each instance consists of a network topology and a scenario set.

• BLS: The instances have been used in [16] and are based on realistic network topologies
introduced in [2].

• JMP: The instances are generated according to the method in [27] with zero-one balances
as proposed in [4].

• SNDLib: The SNDLib [38] is an established standard benchmark set for real-world net-
work topologies. We augmented the real-world topologies with random balances to adapt
the instances to our specific problems.

• PA: The preferential attachment model [8] defines a standard way to create realistic net-
works: For some parameter a ≥ 2, one starts with a complete graph on a nodes and it-
eratively adds more nodes and edges to the network. When a new node v is inserted, it
connects to exactly a existing nodes. In this way, the parameter a controls the density of
the graph. The probability that v connects to an existing node w is proportional to the de-
gree of w. Again, we augmented the resulting network topologies with random balances.

Comparison with the flow formulation. Our experiments for the finite case compare the cut-
set formulation (IP-CS) with the flow formulation introduced in [16]. For the BLS instances
the comparison is performed with the algorithm in [16] that solved the flow formulation by
enhancing it through target cuts (see, Section 1). We have access to the original computational
data by [16] and conducted the experiments on the same machines, making direct comparison
possible. For the other set of instances, instead, the flow formulation has been solved as a black-
box MIP through Cplex 12.1 by using default settings and in single-thread mode. This is to
provide a fair comparison with the sequential ABACUS implementation. Finally, the time limit
for each instance was set to 4 hours of CPU time.
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Description of the tables. In Tables 1–4 we show instances that could be solved to optimality
by both of the compared methods and averages over sub-classes of instances for each table
entry. Computing times are expressed in CPU seconds. We first show the instance size and the
percentage gap between the optimum fractional and integer solution values. Recall that the flow
formulation and the cut-set one are proven to be equivalent in terms of LP relaxation bound.
For each method we show the number of instances that could be solved to optimality within
14,400 CPU seconds (4 hours) and in brackets number of instances that stopped due to memory
limit of 3 GB. Then, we report the average CPU time over all instances that could be solved
to optimality by both methods and the corresponding number of branch-and-bound nodes. The
root gap reported is the average percentage gap of the dual root bound (after all cuts were added)
with respect to the optimum integer solution value. Finally, we report the time that is needed to
solve the LP-relaxation. For the cut-set formulation only, we also report the overall separation
time and the overall heuristic time. For the PA instances (Table 4) the results for each size are
average over a ∈ {2,3,4,5,6,7}.

Results. Table 1 shows that our branch-and-cut algorithm based on the cut-set formulation
is superior to the branch-and-cut algorithm (also ABACUS-based) in [16] both in terms of the
number of solved instances and the CPU time. In particular, these instances turn out to be rather
easy for our algorithm that only has some issues due to memory limits. Specifically, the memory
limit prevents us from finding the optimum solution of 10 out of 1,156 instances.

Instances JMP (Table 2) turn out to be much more challenging and the comparison with the
flow formulation solved by Cplex is interesting. Until |V | = 35 both methods can solve all in-
stances (in roughly the same computing time) and we can observe that the cut-set formulation
amended by {0, 1

2}-cuts gives a better bound than the flow formulation with Cplex cuts. On
larger instances |V | ≥ 40 both algorithms start to suffer and the algorithm based on the cut-set
formulation frequently reaches the memory limit. Instead, when Cplex is unable to solve the
problem it is because of the time limit (14,400 CPU seconds), which is a clear indication that the
formulation became too big. As the bound at the root node is better for our algorithm, this behav-
ior seems to indicate that the memory limit reached by our algorithm is likely a software limit
(essentially due to the less sophisticated implementation of ABACUS with respect to Cplex)
and not a problem of the formulation, whose LP size is always kept under control through cut
purging.

The above analysis is confirmed by the results on Tables 3 and 4 for the classes SNDlib
and PA, respectively. Especially on the PA instances one can start too appreciate that, for large
values of |V | and many scenarios, the cut-set formulation becomes more effective while the flow
formulation is too large. That can be expected as the separation limits the size of the cut-set LP
to the needed cuts. For Tables 3 and 4 the numbers in brackets for the “#solved(m)” column
of the flow formulation refer to the number of times the memory limit is reached. So, it is
worth mentioning that for PA instances, cplex reaches both the time and the memory limit (the
number of solved instances plus those not solved due to the memory limit is sometimes smaller
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than 180), showing that the size of the flow formulation gives rise to all sort of issues. The
two numbers instead almost always sum to 180 in the cut-set formulation case, thus confirming
that the management of the tree of ABACUS is likely to be the issue. Nevertheless, for large
instances with many scenarios our algorithm can solve many more instances in significantly
shorter computing times.

5.2 Experiments with the Hose Uncertainty Set

In order to obtain a flow formulation in the Hose uncertainty case, we would have to convert
the linear description of the Hose polytope H(V,bmin,bmax) into a list of its vertices. This can
be done with a software like PORTA [20]. Table 5 shows that this approach is not practical:
Already for small instances, we cannot rely on being able to convert the description within 1800
seconds and, additionally, the list of vertices can easily become too large to be useful. Therefore,
we cannot present a comparison with the flow formulation in the Hose case.

Testbed. To limit the space needed to present our results, we only report the results on the
most general instances, i.e., the SNDLib and PA topologies. The Hose uncertainty sets have been
generated according to three different distributions:

• geometric: The width of the demand intervals is chosen with a geometric distribution,
i.e., there are many nodes with narrow demand intervals and few nodes with broad inter-
vals. The center of the intervals is chosen uniformly at random.

• uniform: Both the width and the center of the intervals are chosen uniformly at random
for each node.

• zero-one: All intervals are [−1,1].

Description of the tables. In Tables 6 and 7, we report the CPU time and number of solved
instances for the random Hose instances, grouped by network topology in the SNDLib case and
according to the density parameter a in the PA case, respectively. We also show the number of
times that the separation MIP needs to be solved on average over all separation calls. Again, we
use a time limit of 4 hours.

Results. The results in Table 6 show that the branch-and-cut algorithm based on the flow
formulation is effective in the Hose uncertainty case. More precisely, very few of the SNDlib
instances cannot be solved to optimality and both the computing times and the number of branch-
and-bound nodes are small on average. The same holds for the PA instances (Table 7) where the
difficulty grows with the value of a. In terms of the difference of the random distribution, the
behavior on geometric and uniform instances is quite similar, while the zero-one case turns
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out to be rather easy, except for 9 instances with |V | = 100 and a = 6 and one instance with
|V |= 100 and a = 7.

In Table 8 we report a disaggregated picture of our cut-set based algorithm. We consider the
PA instances for the three distributions and a = 6. In addition to the previous information, we
show the time (“ip-sep-time”) needed to solve the exact separation MIP (see Section 4), and the
corresponding number of calls, “ip sepcalls (in %)”. The results for other values of parameter a
are comparable. The disaggregated results in Table 8 allow us to assert that the quality of both
the LP and root lower bounds is very high. However, the difficulty of the instances with respect
to the finite uncertainty case seems to be associated with closing the small gap within the time
limit. Indeed, all unsolved PA instances reach the time limit (not a memory limit). This is due to
the size of the resulting problems: The LPs start to be time consuming as well as the separation
time, especially due to exact separation MIP.
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Algorithm 1: Computing a worst-case scenario for a fixed S.
input : Vectors bmin,bmax, a hose source set S⊆V
output: A worst-case scenario b for S.

1 let F := /0
2 let b≡ 0
3 if ∑i∈S bmax ≤−∑i∈V\S bmin then Determine which of S and V \ S

is limiting according to our earlier
definition. Store the non-limiting
set in F. All nodes in the limiting
set V \F can be set to one of their
bounds.

4 set F :=V \S
5 for i ∈ S do set bi := bmax

i
6 else
7 set F := S
8 for i ∈V \S do set bi := bmin

i
9 end

10 for i ∈ F with bmin
i > 0 do set bi := bmin

i Define b for all nodes i∈ F. Choose
the value from [bmin

i ,bmax
i ] that is

closest possible to zero
11 for i ∈ F with bmax

i < 0 do set bi := bmax
i

12 let r := ∑i∈V bi

13 if r < 0 then
14 for i ∈ F with bmax

i > 0 do Distribute the imbalance r among
the nodes in F. If the imbalance
is negative, we only consider nodes
that can take positive b values. All
other nodes cannot reduce the im-
balance (due to our choice in lines
10/11).

15 let m := min{bmax
i −bi,−r}

16 set bi := bi +m
17 set r := r+m
18 if r == 0 then return b
19 end
20 else if r > 0 then
21 for i ∈ F with bmin

i < 0 do Distribute the imbalance r among
the nodes in F. If the imbalance
is positive, we only consider nodes
that can take negative b values. All
other nodes cannot reduce the im-
balance (due to our choice in lines
10/11).

22 let m := max{bmin
i −bi,−r}

23 set bi := bi +m
24 set r := r+m
25 if r == 0 then return b
26 end
27 end
28 return “H(V,bmin,bmax) is empty.”
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Cut-Set formulation (CS) BLS [16]
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0≤ |V | ≤ 149 2 153 0.02% 153 (0) 2 111 0.00% 0 (0) 0 0 153 0.7
0≤ |V | ≤ 149 3 153 0.03% 152 (1) 7 265 0.00% 0 (0) 0 0 152 1.1
0≤ |V | ≤ 149 4 153 0.03% 151 (2) 2 105 0.00% 0 (0) 0 0 150 4.8
0≤ |V | ≤ 149 5 185 0.02% 182 (3) 0 127 0.00% 0 (0) 0 0 183 5.9

150≤ |V | ≤ 299 2 68 0.00% 67 (1) 2 78 0.00% 0 (0) 1 0 66 85.6
150≤ |V | ≤ 299 3 68 0.01% 68 (0) 45 205 0.00% 0 (0) 8 0 61 4.9
150≤ |V | ≤ 299 4 68 0.00% 66 (2) 2 95 0.00% 0 (0) 1 0 63 27.3
150≤ |V | ≤ 299 5 68 0.00% 67 (1) 82 186 0.00% 0 (0) 11 0 62 141.2
300≤ |V | ≤ 499 2 60 0.00% 60 (0) 0 197 0.00% 0 (0) 0 0 60 81.3
300≤ |V | ≤ 499 3 60 0.00% 60 (0) 0 169 0.00% 0 (0) 0 0 60 103.4
300≤ |V | ≤ 499 4 60 0.00% 60 (0) 0 221 0.00% 0 (0) 0 0 59 129.8
300≤ |V | ≤ 499 5 60 0.00% 60 (0) 0 547 0.00% 0 (0) 0 0 55 166.8

Table 1: Comparison to [16] on the BLS class. We use the same grouping and the same machines
as the original authors.

Cut-Set formulation (CS) Flow formulation (CPLEX)
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25 104 5 13.3 3 ( 0) 1 46 2.9 0 (0) 0 0 3 ( 0) 0 410 7.7 0 ( 0)
25 104 10 17.1 3 ( 0) 24 2016 7.1 0 (0) 3 0 3 ( 0) 26 2701 12.2 0 ( 0)
30 121 5 10.6 3 ( 0) 7 436 2.5 0 (0) 1 0 3 ( 0) 5 1175 5.6 0 ( 0)
30 121 10 14.3 3 ( 0) 125 6875 6.6 0 (0) 15 1 3 ( 0) 123 12661 9.5 0 ( 0)
35 155 5 12.3 3 ( 0) 75 6157 5.3 0 (0) 7 0 3 ( 0) 9 1808 7.1 0 ( 0)
35 155 10 12.3 3 ( 0) 1196 47858 6.2 0 (0) 115 20 3 ( 0) 597 31355 9.2 0 ( 0)
40 182 5 17.2 2 ( 1) 51 1886 6.8 0 (0) 8 0 3 ( 0) 6 1121 12.0 0 ( 0)
40 182 10 — 0 ( 3) — — — 0 (0) — — 3 ( 0) — — — 0 ( 0)
45 223 5 16.1 1 ( 2) 15 243 5.6 0 (0) 6 0 3 ( 0) 10 1106 8.4 0 ( 0)
45 223 10 — 0 ( 3) — — — 0 (0) — — 1 ( 0) — — — 0 ( 0)
50 254 5 — 0 ( 3) — — — 0 (0) — — 2 ( 0) — — — 0 ( 0)
50 274 10 — 0 ( 3) — — — 0 (0) — — 0 ( 0) — — — 0 ( 0)

Table 2: Computational results for the instances of the JMP class. We consider 3 instances for
each pair (|V |, |D|).



Cacchiani, Jünger, Liers, Lodi and Schmidt 25

Cut-Set formulation (CS) Flow-formulation (CPLEX)
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11 34 5 20.6 30 ( 0) 1 495 10.5 0 (0) 0 0 30 ( 0) 0 206 17.6 0 ( 0)
11 34 10 29.4 30 ( 0) 45 13173 21.9 0 (0) 3 0 30 ( 0) 9 7150 28.6 0 ( 0)
11 34 15 27.9 30 ( 0) 1518 65333 20.8 0 (0) 22 5 30 ( 0) 59 29047 27.0 0 ( 0)
11 34 20 29.2 30 ( 0) 1486 74290 22.5 0 (0) 35 8 30 ( 0) 166 37476 28.6 0 ( 0)
11 34 30 23.4 20 ( 10) 113 11587 19.3 0 (0) 13 2 30 ( 0) 112 5485 22.8 0 ( 0)
11 34 40 22.1 20 ( 10) 63 6050 18.1 0 (0) 9 1 30 ( 0) 109 2963 21.0 0 ( 0)
11 34 50 22.0 20 ( 10) 60 4531 18.1 0 (0) 10 1 30 ( 0) 142 2569 21.1 0 ( 0)
11 34 75 19.8 20 ( 10) 41 2902 15.8 0 (0) 10 1 20 ( 0) 500 5708 18.8 0 ( 0)
11 34 100 18.5 20 ( 10) 75 5699 14.7 0 (0) 22 3 20 ( 0) 1441 11260 18.5 0 ( 0)

ne
wy

or
k

16 49 5 15.7 30 ( 0) 11 2001 10.1 0 (0) 0 0 30 ( 0) 3 2460 14.1 0 ( 0)
16 49 10 12.2 20 ( 10) 102 8510 9.2 0 (0) 7 0 30 ( 0) 57 6658 9.8 0 ( 0)
16 49 15 12.2 20 ( 10) 568 38671 9.3 0 (0) 41 6 20 ( 0) 200 13906 10.7 0 ( 0)
16 49 20 11.4 20 ( 10) 281 19674 9.0 0 (0) 29 3 20 ( 0) 226 8238 10.5 0 ( 0)
16 49 30 12.5 20 ( 10) 84 5675 9.6 0 (0) 14 1 20 ( 0) 282 4747 12.0 0 ( 0)
16 49 40 9.7 20 ( 10) 251 15611 7.1 0 (0) 45 5 20 ( 0) 1131 13451 9.1 0 ( 0)
16 49 50 13.8 20 ( 10) 1611 58553 11.5 0 (0) 197 31 20 ( 0) 3730 28587 12.8 0 ( 0)
16 49 75 12.0 20 ( 10) 628 29130 9.2 0 (0) 152 22 20 ( 0) 2851 10278 11.3 1 ( 0)
16 49 100 1.6 20 ( 10) 1 20 1.6 0 (0) 0 0 10 ( 0) 5 0 1.0 1 ( 0)

ta
1

24 55 5 9.2 30 ( 0) 0 220 3.9 0 (0) 0 0 30 ( 0) 0 188 5.7 0 ( 0)
24 55 10 11.0 30 ( 0) 10 1450 6.3 0 (0) 1 0 30 ( 0) 2 524 8.7 0 ( 0)
24 55 15 5.6 20 ( 10) 4 522 3.2 0 (0) 0 0 30 ( 0) 3 626 5.6 0 ( 0)
24 55 20 5.6 20 ( 10) 4 541 3.2 0 (0) 1 0 30 ( 0) 6 343 5.1 0 ( 0)
24 55 30 11.8 30 ( 0) 201 14939 6.9 0 (0) 34 4 30 ( 0) 67 2673 8.6 0 ( 0)
24 55 40 11.5 30 ( 0) 85 7119 6.6 0 (0) 22 2 30 ( 0) 88 2254 8.5 0 ( 0)
24 55 50 5.4 20 ( 10) 3 290 3.1 0 (0) 1 0 30 ( 0) 15 209 3.7 0 ( 0)
24 55 75 9.6 30 ( 0) 57 3925 5.7 0 (0) 22 3 30 ( 0) 239 1743 7.9 0 ( 0)
24 55 100 8.8 30 ( 0) 46 3094 5.5 1 (0) 22 4 30 ( 0) 169 565 7.7 1 ( 0)

fr
an

ce

25 45 5 16.1 30 ( 0) 7 2680 9.6 0 (0) 0 0 30 ( 0) 0 905 12.3 0 ( 0)
25 45 10 12.3 30 ( 0) 25 6762 7.0 0 (0) 3 0 30 ( 0) 3 1234 9.2 0 ( 0)
25 45 15 11.1 30 ( 0) 23 5171 6.4 0 (0) 4 0 30 ( 0) 10 1960 8.4 0 ( 0)
25 45 20 12.0 30 ( 0) 134 17488 7.4 0 (0) 16 2 30 ( 0) 24 3682 9.7 0 ( 0)
25 45 30 10.5 30 ( 0) 174 21039 6.7 0 (0) 29 4 30 ( 0) 93 4917 7.7 0 ( 0)
25 45 40 9.7 30 ( 0) 23 3817 5.9 0 (0) 7 0 30 ( 0) 31 1220 7.9 0 ( 0)
25 45 50 8.4 30 ( 0) 7 1111 4.8 0 (0) 3 0 30 ( 0) 18 313 6.3 0 ( 0)
25 45 75 8.0 30 ( 0) 3 432 4.5 0 (0) 1 0 30 ( 0) 23 218 5.5 0 ( 0)
25 45 100 9.3 30 ( 0) 32 3883 5.6 0 (0) 17 2 30 ( 0) 377 3949 7.4 0 ( 0)

no
rw

ay

27 51 5 10.2 30 ( 0) 3 454 6.2 0 (0) 0 0 30 ( 0) 0 292 8.4 0 ( 0)
27 51 10 14.1 30 ( 0) 105 11186 8.7 0 (0) 14 1 30 ( 0) 14 2699 11.2 0 ( 0)
27 51 15 12.4 30 ( 0) 294 22944 7.2 0 (0) 39 4 30 ( 0) 48 5065 9.6 0 ( 0)
27 51 20 11.1 30 ( 0) 64 5722 7.4 0 (0) 14 1 30 ( 0) 45 2668 9.8 0 ( 0)
27 51 30 10.4 30 ( 0) 429 26232 6.3 0 (0) 79 10 30 ( 0) 394 11838 8.5 0 ( 0)
27 51 40 9.6 30 ( 0) 1625 50713 5.7 0 (0) 188 24 30 ( 0) 1792 47327 2.4 0 ( 0)
27 51 50 9.7 30 ( 0) 473 24332 6.5 0 (0) 112 15 30 ( 0) 919 12656 8.5 0 ( 0)
27 51 75 9.1 30 ( 0) 359 18175 5.9 2 (0) 125 17 30 ( 0) 1658 10226 8.5 1 ( 0)
27 51 100 3.8 20 ( 10) 12 118 1.8 2 (0) 2 9 20 ( 0) 25 54 3.1 2 ( 0)

co
st

26
6

37 57 5 9.7 30 ( 0) 18 2245 5.3 0 (0) 2 0 30 ( 0) 0 530 6.5 0 ( 0)
37 57 10 10.3 30 ( 0) 246 15950 6.0 0 (0) 36 2 30 ( 0) 18 2704 7.0 0 ( 0)
37 57 15 9.8 30 ( 0) 712 32368 5.7 0 (0) 105 7 30 ( 0) 25 1434 7.2 0 ( 0)
37 57 20 8.9 30 ( 0) 169 10715 5.1 0 (0) 44 3 30 ( 0) 29 1094 6.8 0 ( 0)
37 57 30 8.5 30 ( 0) 577 26413 5.5 1 (0) 145 12 30 ( 0) 135 2523 7.2 0 ( 0)
37 57 40 6.7 30 ( 0) 73 3867 3.6 2 (0) 30 3 30 ( 0) 197 2417 5.6 0 ( 0)
37 57 50 7.4 30 ( 0) 36 1442 3.9 3 (0) 14 4 30 ( 0) 68 429 5.9 0 ( 0)
37 57 75 6.0 30 ( 0) 60 2455 4.1 81 (0) 32 9 30 ( 0) 203 654 5.5 1 ( 0)
37 57 100 6.3 30 ( 0) 105 3948 4.4 15 (0) 62 14 30 ( 0) 414 1053 5.3 3 ( 0)

ge
rm

an
y5

0

50 88 5 2.3 10 ( 20) 1 48 2.3 0 (0) 0 0 30 ( 0) 0 14 1.8 0 ( 0)
50 88 10 1.3 10 ( 20) 3 90 1.3 0 (0) 0 0 10 ( 0) 1 19 1.0 0 ( 0)
50 88 15 1.4 10 ( 20) 4 66 1.4 0 (0) 0 0 20 ( 0) 3 30 1.1 0 ( 0)
50 88 20 0.0 10 ( 20) 3 0 0.0 1 (0) 0 2 20 ( 0) 0 0 0.0 0 ( 0)
50 88 30 3.1 20 ( 10) 327 5573 2.4 1 (0) 75 7 20 ( 0) 160 693 2.7 0 ( 0)
50 88 40 0.7 10 ( 20) 11 62 0.7 3 (0) 1 8 20 ( 0) 11 11 0.7 1 ( 0)
50 88 50 3.2 20 ( 10) 441 6811 2.4 6 (0) 133 15 20 ( 0) 971 2124 2.9 2 ( 0)
50 88 75 2.2 20 ( 10) 400 5707 1.7 10 (0) 153 29 20 ( 0) 4685 4734 2.1 7 ( 0)
50 88 100 0.7 20 ( 10) 35 40 0.7 13 (0) 2 31 10 ( 0) 63 19 0.6 11 ( 0)

ta
2

65 108 5 5.7 20 ( 10) 292 10274 2.9 0 (0) 37 2 30 ( 0) 5 868 3.9 0 ( 0)
65 108 10 2.4 10 ( 20) 39 1276 1.7 0 (0) 7 0 30 ( 0) 4 163 1.6 0 ( 0)
65 108 15 2.3 10 ( 20) 165 5202 2.2 0 (0) 33 2 20 ( 0) 37 693 2.1 0 ( 0)
65 108 20 1.8 10 ( 20) 89 2758 1.7 1 (0) 23 1 30 ( 0) 39 471 1.6 0 ( 0)
65 108 30 4.1 20 ( 10) 738 15962 2.6 3 (0) 215 19 30 ( 0) 195 958 3.3 1 ( 0)
65 108 40 4.0 20 ( 10) 1303 31502 2.4 6 (0) 487 46 30 ( 0) 376 1396 3.1 3 ( 0)
65 108 50 3.6 20 ( 10) 421 9131 2.0 10 (0) 187 20 30 ( 0) 350 817 2.6 3 ( 0)
65 108 75 3.3 20 ( 10) 709 11252 2.2 19 (0) 358 67 30 ( 0) 630 809 2.4 8 ( 0)
65 108 100 3.1 20 ( 10) 352 4776 1.9 57 (0) 181 50 20 ( 0) 872 562 2.3 23 ( 0)

Table 3: Computational results for the instances of the SNDlib class. We consider 30
instances for each network topology and for each number of scenarios |D| ∈
{5,10,15,20,30,40,50,75,100}.
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Cut-Set formulation (CS) Flow formulation (CPLEX)
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20 76 5 8.1 180 ( 0) 0 21 2.5 0 (0) 0 0 180 ( 0) 0 43 4.6 0 ( 0)
20 76 10 8.6 180 ( 0) 0 51 3.2 0 (0) 0 0 180 ( 0) 0 101 5.5 0 ( 0)
20 76 30 7.8 180 ( 0) 0 45 3.0 0 (0) 0 0 180 ( 0) 3 102 5.0 0 ( 0)
20 76 50 7.3 180 ( 0) 0 42 2.7 0 (0) 0 0 180 ( 0) 7 88 4.8 0 ( 0)
20 76 75 6.8 180 ( 0) 0 31 2.4 0 (0) 0 0 180 ( 0) 15 80 4.4 0 ( 0)
20 76 100 6.3 180 ( 0) 0 25 2.0 0 (0) 0 0 180 ( 0) 19 63 4.0 1 ( 0)
25 98 5 9.3 180 ( 0) 1 163 3.7 0 (0) 0 0 180 ( 0) 0 258 6.0 0 ( 0)
25 98 10 9.7 180 ( 0) 5 489 4.4 0 (0) 1 0 180 ( 0) 7 651 6.8 0 ( 0)
25 98 30 8.4 180 ( 0) 6 366 3.9 0 (0) 2 0 180 ( 0) 57 684 6.2 0 ( 0)
25 98 50 8.0 180 ( 0) 7 323 3.7 0 (0) 3 0 180 ( 0) 140 681 6.0 1 ( 0)
25 98 75 7.7 180 ( 0) 9 312 3.6 0 (0) 4 0 180 ( 0) 306 693 5.8 2 ( 0)
25 98 100 7.4 180 ( 0) 10 319 3.4 0 (0) 6 0 180 ( 0) 497 689 5.6 4 ( 0)
30 121 5 6.3 180 ( 0) 3 213 2.5 0 (0) 0 0 180 ( 0) 1 212 4.0 0 ( 0)
30 121 10 6.6 180 ( 0) 9 529 2.8 0 (0) 2 0 180 ( 0) 15 469 4.5 0 ( 0)
30 121 30 5.9 180 ( 0) 8 322 2.6 0 (0) 3 0 180 ( 0) 122 469 4.1 0 ( 0)
30 121 50 5.4 180 ( 0) 12 365 2.4 0 (0) 5 0 180 ( 0) 399 541 3.9 2 ( 0)
30 121 75 5.2 180 ( 0) 10 233 2.4 0 (0) 5 0 178 ( 0) 544 397 3.8 5 ( 0)
30 121 100 4.9 180 ( 0) 9 178 2.3 0 (0) 5 0 172 ( 0) 792 368 3.6 8 ( 0)
35 143 5 7.7 180 ( 0) 8 399 3.2 0 (0) 1 0 180 ( 0) 2 326 4.9 0 ( 0)
35 143 10 8.2 180 ( 0) 36 1610 3.9 0 (0) 6 0 180 ( 0) 39 967 5.7 0 ( 0)
35 143 30 7.6 180 ( 0) 79 2609 3.8 0 (0) 21 2 180 ( 0) 582 1950 5.7 1 ( 0)
35 143 50 7.1 180 ( 0) 57 1539 3.6 0 (0) 21 2 180 ( 0) 1327 1447 5.3 4 ( 0)
35 143 75 6.6 180 ( 0) 45 998 3.3 0 (0) 21 2 174 ( 0) 2540 1216 5.0 10 ( 0)
35 143 100 5.6 180 ( 0) 30 488 2.8 0 (0) 16 2 158 ( 0) 2906 729 4.2 14 ( 0)
40 166 5 6.6 180 ( 0) 6 259 2.4 0 (0) 1 0 180 ( 0) 2 283 3.8 0 ( 0)
40 166 10 6.7 180 ( 0) 15 568 2.8 0 (0) 3 0 180 ( 0) 24 510 4.2 0 ( 0)
40 166 30 6.0 180 ( 0) 28 772 2.5 0 (0) 9 0 180 ( 0) 338 788 4.0 2 ( 0)
40 166 50 5.5 180 ( 0) 26 582 2.4 0 (0) 11 1 179 ( 0) 944 742 3.8 6 ( 0)
40 166 75 4.9 180 ( 0) 18 357 2.1 0 (0) 10 1 169 ( 0) 1496 550 3.4 13 ( 0)
40 166 100 4.4 180 ( 0) 11 187 1.8 0 (0) 7 0 132 ( 30) 1405 387 3.1 21 ( 0)
45 188 5 5.8 180 ( 0) 6 226 2.1 0 (0) 2 0 180 ( 0) 1 235 3.2 0 ( 0)
45 188 10 6.2 180 ( 0) 15 576 2.6 0 (0) 5 0 180 ( 0) 27 518 4.0 0 ( 0)
45 188 30 5.2 180 ( 0) 21 553 2.3 0 (0) 9 0 180 ( 0) 318 645 3.6 2 ( 0)
45 188 50 4.8 180 ( 0) 23 477 2.2 0 (0) 13 0 180 ( 0) 999 629 3.4 9 ( 0)
45 188 75 4.3 180 ( 0) 20 322 2.0 0 (0) 13 1 174 ( 0) 1985 572 3.2 21 ( 0)
45 188 100 4.2 180 ( 0) 21 374 1.9 0 (0) 13 1 89 ( 90) 1883 645 3.0 26 ( 30)
50 211 5 6.9 173 ( 7) 113 3042 2.9 0 (0) 14 0 180 ( 0) 17 909 4.0 0 ( 0)
50 211 10 6.2 152 ( 28) 196 4766 2.8 0 (0) 29 2 180 ( 0) 102 1372 4.0 0 ( 0)
50 211 30 5.2 146 ( 34) 192 3900 2.4 0 (0) 52 5 146 ( 0) 913 1743 3.5 5 ( 0)
50 211 50 4.7 143 ( 37) 167 3083 2.2 0 (0) 61 6 133 ( 0) 1664 1721 3.2 18 ( 0)
50 211 75 4.4 153 ( 27) 92 1672 2.0 0 (0) 46 5 117 ( 29) 2101 1064 3.0 38 ( 0)
50 211 100 4.7 152 ( 28) 58 1099 2.5 0 (0) 33 3 45 (120) 1356 888 3.1 23 ( 60)
60 256 5 6.3 169 ( 11) 165 3272 2.7 0 (0) 20 1 180 ( 0) 20 842 3.7 0 ( 0)
60 256 10 5.3 133 ( 47) 269 5525 2.4 0 (0) 43 4 177 ( 0) 125 1407 3.3 0 ( 0)
60 256 30 4.5 135 ( 45) 279 4841 2.2 0 (0) 79 9 142 ( 0) 1290 1884 3.0 12 ( 0)
60 256 50 3.9 134 ( 46) 154 2409 1.9 0 (0) 61 6 119 ( 0) 2523 1458 2.6 40 ( 0)
60 256 75 3.8 138 ( 42) 103 1623 1.8 0 (0) 52 5 68 ( 90) 2112 1188 2.6 56 ( 30)
60 256 100 4.0 141 ( 39) 24 477 1.5 0 (0) 17 1 30 (150) 382 509 2.3 169 ( 60)
70 301 5 4.5 135 ( 45) 181 2909 1.9 0 (0) 23 1 180 ( 0) 21 694 2.5 0 ( 0)
70 301 10 3.5 109 ( 71) 228 3921 1.5 0 (0) 40 3 160 ( 0) 92 919 2.2 1 ( 0)
70 301 30 3.0 107 ( 73) 212 2979 1.3 0 (0) 61 5 120 ( 0) 821 1042 1.9 18 ( 0)
70 301 50 2.6 110 ( 70) 219 2399 1.3 0 (0) 77 7 111 ( 0) 2278 867 1.8 80 ( 0)
70 301 75 3.3 110 ( 70) 279 3899 1.4 0 (0) 138 13 44 (120) 1431 1111 2.2 121 ( 60)
70 301 100 — 107 ( 72) — — — 0 (0) — — 0 (180) — — — 129 (120)
80 346 5 3.3 107 ( 73) 169 2260 1.2 0 (0) 21 1 180 ( 0) 10 405 1.8 0 ( 0)
80 346 10 2.6 91 ( 89) 148 2649 1.1 0 (0) 28 1 145 ( 0) 48 440 1.5 2 ( 0)
80 346 30 2.5 93 ( 87) 368 3951 1.3 0 (0) 95 7 100 ( 0) 1215 765 1.6 39 ( 0)
80 346 50 3.2 93 ( 85) 366 3652 1.5 0 (0) 131 12 66 ( 60) 2402 781 2.0 131 ( 0)
80 346 75 3.6 89 ( 87) 102 1527 1.3 0 (0) 64 4 30 (150) 512 634 2.0 304 ( 60)
80 346 100 — 88 ( 90) — — — 0 (0) — — 0 (180) — — — 29 (150)
90 391 5 2.7 88 ( 92) 330 4393 1.1 0 (0) 41 2 177 ( 0) 11 381 1.4 0 ( 0)
90 391 10 1.2 68 (111) 136 2142 0.6 0 (0) 30 1 121 ( 0) 31 223 0.7 3 ( 0)
90 391 30 1.0 67 (111) 261 1603 0.7 0 (0) 55 3 85 ( 0) 2070 640 0.8 66 ( 0)
90 391 50 1.6 71 (109) 634 7437 0.9 0 (0) 262 21 49 ( 90) 1544 1814 1.1 141 ( 30)
90 391 75 2.1 72 (108) 1285 11281 1.2 0 (0) 586 47 23 (150) 1767 1426 1.4 220 (120)
90 391 100 — 72 (107) — — — — — — 0 (180) — — — —

100 436 5 2.0 81 ( 99) 186 2042 0.7 0 (0) 25 0 170 ( 0) 6 230 1.0 0 ( 0)
100 436 10 1.3 71 (109) 264 3055 0.7 0 (0) 49 2 103 ( 0) 104 382 0.8 4 ( 0)
100 436 30 1.2 67 (108) 383 3043 0.7 1 (0) 100 7 63 ( 0) 1753 774 0.9 104 ( 0)
100 436 50 1.7 66 (108) 817 6624 1.0 1 (0) 311 23 38 ( 90) 2010 1425 1.2 221 ( 30)
100 436 75 — 62 (107) — — — 0 (0) — — 0 (180) — — — 20 (150)
100 436 100 — 59 (110) — — — — — — 0 (180) — — — —

Table 4: Computational results for the PA class. We report aggregated results over all values of
a ∈ {2,3,4,5,6,7}, thus having 180 instances for each pair (|V |, |D|).
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t
|V | a 0.25 0.5 0.75 1.0
10 2 8 7 7 6
10 3 9 8 9 6
10 4 7 9 6 5
10 5 7 6 9 9
10 6 6 8 8 5
10 7 7 9 7 7
15 2 8 5 7 4
15 3 6 9 8 8
15 4 7 9 7 7
15 5 6 8 10 8
15 6 8 8 6 8
15 7 7 5 6 8
20 2 9 10 7 8
20 3 6 7 7 6
20 4 8 9 3 7
20 5 7 9 7 8
20 6 4 7 9 9
20 7 8 9 6 7
25 2 7 8 5 5
25 3 8 7 6 6
25 4 6 6 8 1
25 5 7 9 7 5
25 6 8 8 8 6
25 7 5 7 6 6

t
|V | a 0.25 0.5 0.75 1
10 2 1 11 39 153
10 3 1 3 18 117
10 4 1 8 34 89
10 5 1 8 21 144
10 6 1 8 25 92
10 7 1 8 20 207
15 2 2 7 263 2625
15 3 2 36 205 1433
15 4 2 12 95 2051
15 5 2 28 235 1217
15 6 2 15 358 1489
15 7 3 19 71 1443
20 2 7 207 7090 29302
20 3 6 126 594 9668
20 4 6 86 2848 12644
20 5 9 82 4110 72987
20 6 3 118 1323 15300
20 7 6 95 1134 15654
25 2 6 297 8556 49176
25 3 17 307 1355 109225
25 4 10 442 19433 115704
25 5 10 210 4542 84910
25 6 8 808 5126 52224
25 7 9 321 9294 106710

Table 5: Using PORTA to convert the linear description of the instances from the PA Hose class,
geometric demand distribution. Grouping by the percentage t ∈ {0.25,0.5,0.75,1.0} of
terminal nodes. On the left: Number of instances that could be converted within 1800
seconds. On the right: Resulting average number of vertices of the demand polytope.
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pdh 11 34 39 5 30 40 0 33 40 1 45
newyork 16 49 40 19 58 38 61 59 40 0 98

ta1 24 55 40 154 74 39 331 73 40 0 70
france 25 45 31 13 63 30 38 64 40 0 54
norway 27 51 38 189 109 39 34 114 40 0 84

cost266 37 57 38 15 183 37 423 217 40 7 203
germany50 50 88 31 411 498 30 239 662 40 172 575

ta2 65 108 39 558 525 39 38 510 40 0 413

Table 6: Computational results on the SNDLibHose instances. For each of the three distributions,
we consider 40 different Hose uncertainty sets per topology.
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a = 2 a = 3 a = 4 a = 5 a = 6 a = 7
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10 42 40 0 21 40 0 21 40 0 23 40 0 25 40 0 26 40 0 29
15 77 40 0 17 40 0 40 40 0 41 40 0 56 40 0 54 40 0 52
20 112 40 0 56 40 0 69 40 0 83 40 0 77 40 0 75 40 0 82
25 147 40 0 86 40 0 76 40 4 138 40 0 106 40 0 115 40 0 121
30 182 40 0 97 40 0 116 40 0 114 40 0 148 40 0 161 40 21 216
35 217 40 0 118 40 0 140 40 3 193 40 0 175 40 3 261 40 5 274
40 252 40 0 128 40 0 225 40 0 213 40 2 293 40 3 270 40 2 265
45 287 40 0 185 40 0 161 40 1 299 40 9 277 40 10 369 40 0 253
50 322 40 0 208 40 5 417 40 1 281 40 33 583 40 344 573 40 224 649
60 392 40 0 278 40 6 429 40 25 757 40 57 774 39 579 898 39 680 973
70 462 40 3 361 40 13 920 36 731 2121 40 4 821 37 357 1830 40 46 1400
80 532 40 1 499 40 11 1035 31 436 2908 40 207 2083 38 547 2418 39 322 2366
90 602 40 7 824 40 98 1917 40 23 2068 35 785 3212 37 1041 3938 34 677 4799

100 672 40 56 1410 39 400 3524 40 525 3442 31 968 6508 19 645 7996 19 965 7299

un
if

or
m

10 42 40 0 23 40 0 24 40 0 23 40 0 29 40 0 29 40 0 28
15 77 40 0 21 40 0 41 40 0 44 40 0 54 40 0 51 40 0 56
20 112 40 0 59 40 0 71 40 0 85 40 0 90 40 0 92 40 0 92
25 147 40 0 92 40 0 92 40 25 166 40 0 117 40 0 116 40 5 130
30 182 40 0 98 40 0 125 40 0 125 40 0 154 40 1 174 40 84 259
35 217 40 0 131 40 0 142 40 1 215 40 1 197 40 5 278 40 8 292
40 252 40 0 144 40 0 220 40 1 242 40 6 322 40 4 328 40 3 264
45 287 40 1 200 40 0 190 40 3 336 40 1 313 40 10 384 40 0 290
50 322 40 1 240 40 53 445 40 0 311 40 45 639 40 139 718 40 94 720
60 392 40 1 297 40 11 492 40 255 862 40 125 962 37 638 988 38 162 1250
70 462 40 5 436 40 42 1018 28 1808 2539 40 5 818 38 698 2030 40 708 1735
80 532 40 7 547 40 16 1172 30 1142 3588 37 364 2302 31 459 2628 37 852 2544
90 602 40 119 977 39 381 2066 40 20 2045 37 1090 3705 34 1081 3823 33 944 5423

100 672 40 213 1782 35 806 4401 40 163 3770 33 1439 7469 12 1232 7347 18 1730 7706

ze
ro

-o
ne

10 42 40 0 18 40 0 18 40 0 19 40 0 24 40 0 27 40 0 20
15 77 40 0 21 40 0 35 40 0 33 40 0 52 40 0 39 40 0 35
20 112 40 0 67 40 0 62 40 0 93 40 0 80 40 0 82 40 0 90
25 147 40 0 83 40 0 76 40 1 211 40 0 111 40 0 117 40 0 137
30 182 40 0 87 40 0 106 40 0 118 40 0 141 40 0 181 40 4 329
35 217 40 0 115 40 0 118 40 0 163 40 0 119 40 0 245 40 0 247
40 252 40 0 149 40 0 231 40 0 213 40 0 321 40 0 376 40 1 285
45 287 40 0 154 40 0 114 40 0 230 40 0 213 40 2 332 40 0 169
50 322 40 0 184 40 1 372 40 0 211 40 1 506 40 6 600 40 4 565
60 392 40 0 217 40 0 346 40 2 667 40 14 1063 40 37 1169 40 3 873
70 462 40 0 315 40 2 681 40 37 2718 40 1 540 40 12 2010 40 7 1245
80 532 40 0 390 40 3 842 40 19 2896 40 7 1682 40 317 3399 40 13 2352
90 602 40 1 506 40 4 1062 40 7 1365 40 21 2756 40 19 2546 40 30 3733

100 672 40 6 1131 40 16 2380 40 16 2391 40 58 6271 31 924 14748 39 100 7632

Table 7: Computational results on the PA Hose instances. For each of the three distributions, we
consider 40 instances per pair (|V |, |E|) and per a ∈ {2,3,4,5,6,7}.
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10 39 0.32 40 (0) 0 25 0.00 0 (0) 0 0 14.07 0
15 69 0.24 40 (0) 0 53 0.03 0 (0) 0 0 10.45 0
20 99 0.17 40 (0) 0 74 0.03 0 (0) 0 0 10.42 0
25 129 0.22 40 (0) 0 114 0.03 0 (0) 0 0 9.33 0
30 159 0.08 40 (0) 0 160 0.02 0 (0) 0 0 10.27 0
35 189 0.16 40 (0) 3 260 0.08 0 (0) 2 2 12.60 0
40 219 0.10 40 (0) 3 269 0.04 0 (0) 3 2 9.92 0
45 249 0.19 40 (0) 10 368 0.09 0 (0) 8 6 13.10 0
50 279 0.15 40 (0) 344 572 0.10 2 (0) 300 284 16.88 0
60 339 0.13 39 (0) 579 897 0.11 6 (0) 517 486 16.26 0
70 399 0.12 37 (0) 357 1829 0.09 15 (0) 330 303 8.31 0
80 459 0.08 38 (0) 547 2417 0.06 26 (0) 481 440 11.93 0
90 519 0.13 37 (0) 1041 3937 0.10 43 (0) 897 751 8.74 0

100 579 0.07 19 (0) 645 7995 0.06 219 (0) 519 373 3.93 0

un
if

or
m

10 39 0.28 40 (0) 0 28 0.01 0 (0) 0 0 14.68 0
15 69 0.31 40 (0) 0 50 0.05 0 (0) 0 0 13.50 0
20 99 0.32 40 (0) 0 91 0.06 0 (0) 0 0 11.70 0
25 129 0.16 40 (0) 0 115 0.05 0 (0) 0 0 11.59 0
30 159 0.37 40 (0) 1 173 0.08 0 (0) 0 0 13.47 0
35 189 0.20 40 (0) 5 277 0.11 0 (0) 4 3 14.83 0
40 219 0.19 40 (0) 4 327 0.08 0 (0) 3 2 13.90 0
45 249 0.11 40 (0) 10 383 0.07 1 (0) 8 7 13.06 0
50 279 0.16 40 (0) 139 717 0.11 4 (0) 127 120 18.38 0
60 339 0.13 37 (0) 638 987 0.10 9 (0) 570 543 18.25 0
70 399 0.11 38 (0) 698 2029 0.09 17 (0) 631 572 12.69 0
80 459 0.06 31 (0) 459 2627 0.05 38 (0) 413 382 11.66 0
90 519 0.08 34 (0) 1081 3822 0.07 50 (0) 962 849 10.00 0

100 579 0.12 12 (0) 1232 7346 0.10 391 (0) 1065 877 4.57 0

ze
ro

-o
ne

10 39 1.53 40 (0) 0 26 0.00 0 (0) 0 0 15.81 0
15 69 2.03 40 (0) 0 38 0.31 0 (0) 0 0 17.27 0
20 99 1.11 40 (0) 0 81 0.10 0 (0) 0 0 12.87 0
25 129 0.22 40 (0) 0 116 0.09 0 (0) 0 0 10.31 0
30 159 0.66 40 (0) 0 180 0.07 0 (0) 0 0 10.64 0
35 189 0.19 40 (0) 0 244 0.08 0 (0) 0 0 8.17 0
40 219 0.05 40 (0) 0 375 0.05 0 (0) 0 0 7.13 0
45 249 0.51 40 (0) 2 331 0.16 0 (0) 2 0 10.17 0
50 279 0.22 40 (0) 6 599 0.10 2 (0) 5 3 9.70 0
60 339 0.49 40 (0) 37 1168 0.24 10 (0) 33 25 13.97 0
70 399 0.07 40 (0) 12 2009 0.00 11 (0) 9 3 3.52 0
80 459 0.32 40 (0) 317 3398 0.32 47 (0) 293 269 14.46 0
90 519 0.00 40 (0) 19 2545 0.00 17 (0) 13 2 2.00 0

100 579 0.26 31 (0) 924 14747 0.17 604 (0) 832 713 6.98 0

Table 8: Detailed computational results for the Hose uncertainty set on the PA instances with
a = 6.
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