
Characterization and therapeutic exploitation of molecular 

vulnerabilities in genetically defined lung cancer 

Inaugural-Dissertation 

zur 

Erlangung des Doktorgrades 

der Mathematisch-Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

vorgelegt von 

Marcel A. Dammert 

aus  

Bruchsal 

Veröffentlichung: Köln, 2022 



Berichterstatter:  Prof. Dr. Martin L. Sos 

(Gutachter) Prof. Dr. Ana J. García Sáez 

Tag der mündlichen Prüfung: 01.12.2021 



Contents 

Summary __________________________________________________________ 2 

Zusammenfassung _________________________________________________ 4 

Introduction _______________________________________________________ 6 

Differential applicability of targeted therapy in lung cancer ___________________ 6 

Tyrosine kinase inhibitors in EGFR-mutant and RET-rearranged NSCLC _______ 7 

MYC family members define therapeutic vulnerabilities in small cell lung cancer 10 

Targeting deregulated transcription in NUT carcinoma_____________________ 13 

Aims of this work _________________________________________________ 14 

Publications ______________________________________________________ 15 

Overcoming EGFRG724S-mediated osimertinib resistance through unique binding 
characteristics of second-generation EGFR inhibitors _____________________ 15 

Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors
 _______________________________________________________________ 29 

MYC paralog-dependent apoptotic priming orchestrates a spectrum of 
vulnerabilities in small cell lung cancer _________________________________ 42 

Systematic kinase inhibitor profiling identifies CDK9 as a synthetic lethal target in 
NUT midline carcinoma ____________________________________________ 54 

Discussion _______________________________________________________ 69 

Overcoming EGFRG724S-mediated osimertinib resistance through unique binding 
characteristics of second-generation EGFR inhibitors _____________________ 69 

Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors
 _______________________________________________________________ 70 

MYC paralog-dependent apoptotic priming orchestrates a spectrum of 
vulnerabilities in small cell lung cancer _________________________________ 71 

Systematic kinase inhibitor profiling identifies CDK9 as a synthetic lethal target in 
NUT midline carcinoma ____________________________________________ 72 

Concluding remarks _______________________________________________ 74 

References _______________________________________________________ 76 

Erklärung zur Dissertation __________________________________________ 83 



2 

Summary
Lung cancer is one of the most common cancer types and responsible for the largest 

number of cancer-related deaths worldwide. Typically, lung cancer arises in individuals 

with heavy smoking background and only rarely in never-smokers. Various cells of 

origin within the lung give rise to distinct, molecularly heterogenous lung cancer 

subtypes with the two major subtypes non-small cell lung cancer (NSCLC) and small 

cell lung cancer (SCLC). Targeted therapy options also vary significantly between the 

specific subtypes and while oncogene-driven lung adenocarcinoma (LUAD) is already 

successfully treated with targeted drugs, no targeted therapies are available in SCLC. 

LUAD is often driven genetic alterations such as point mutations and 

rearrangements in genes of receptor tyrosine kinases (RTKs) like EGFR leading to 

aberrant activation of receptor tyrosine kinase signaling and oncogenic transformation. 

Mutation-selective small molecule RTK inhibitors have been developed to specifically 

kill oncogene-addicted cancer cells. Introduction of third generation EGFR inhibitor 

osimertinib substantially increased survival of EGFR-mutant LUAD patients but on-

target resistance mutations such as EGFR G724S limit osimertinib efficacy leading to 

tumor relapse. Remarkably, we observed that second-generation EGFR inhibitor 

afatinib displayed selective activity against EGFR G724S in cell line and animal 

models. In contrast to osimertinib, afatinib still binds to EGFR G724S and reduces 

cellular viability, EGFR signaling, transformation and in vivo growth of EGFR G724S 

cells, therefore providing a possible treatment strategy for patients that relapse after 

osimertinib treatment due to EGFR G724S. 

Oncogenic gene fusions involving RET also lead to cellular transformation and LUAD 

tumorigenesis. Previously, multi-kinase inhibitors were used to treat RET-rearranged 

cancers with limited success due to lack of RET-specificity and RET gatekeeper 

mutations impeding inhibitor binding. We identified AD80, a type II kinase inhibitor that 

binds RET in the DFG-out conformation. AD80 displayed selective activity against 

common RET fusions KIFB-RET and CCDC6-RET and retained activity against RET 

V804M gatekeeper mutation. AD80 efficiently reduced RET- and downstream 

signaling as well as RET-associated gene expression. AD80 also displayed in vivo 

efficacy in CCDC6-RET patient-derived xenograft (PDX) models, demonstrating the 

potential of type II inhibitors as targeted therapy against RET-rearranged LUAD. 

In contrast to NSCLC, SCLC is defined by inactivation of tumor suppressors TP53 and 

RB1 and lacks targetable oncogenic drivers. Frequent activation of MYC transcription 
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factor family members (MYC, MYCL, and MYCN) further accelerate tumor growth and 

aggressiveness. We found that activation of individual MYC family members entails 

differential molecular vulnerabilities. MYC overexpression is associated with high 

levels of DNA damage, repression of BCL2 expression and high apoptotic priming, 

leading to higher sensitivity towards Aurora kinase and MCL1 inhibition whereas high 

MYCL/MYCN expression is associated with resistance against these perturbations. 

Our study highlights that MYC status can be predictive for therapy response and might 

be used for molecularly-guided, patient stratification for future targeted therapy 

regimens in SCLC. 

A rare but very aggressive lung cancer type, NUT carcinoma is driven by BRD4-NUT 

fusion protein leading to large-scale epigenetic reprogramming and deregulated 

transcription of genes driving tumorigenesis. Using high-throughput viability screening, 

we identified that NUT carcinoma cells are preferentially sensitive against CDK9 

inhibition. We observed, that CDK9 inhibition increases RNA Polymerase II pausing 

possibly reverting BRD4-NUT-mediated, transcriptional activation of pro-tumor genes 

warranting further investigation of CDK9 inhibition in NUT carcinoma. 
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Zusammenfassung 
Lungenkrebs ist einer der häufigsten Krebsarten und verzeichnet pro Jahr die weltweit 

meisten Krebs-assoziierten Todesfälle. Lungenkrebs tritt typischerweise als Folge von 

langjährigem Rauchen auf und nur sehr selten in Nichtrauchern. Die verschiedenen, 

molekular unterschiedlichen Subtypen von Lungenkrebs entstehen aus bestimmten 

Vorläuferzellen in der Lunge und man unterscheidet hauptsächlich zwischen dem 

nichtkleinzelligen Bronchialkarzinom (non-small cell lung cancer, NSCLC) und dem 

kleinzelligen Bronchialkarzinom (small cell lung cancer, SCLC). Aufgrund der großen 

Heterogenität dieser Subtypen ergibt sich die unterschiedliche Anwendbarkeit 

zielgerichteter Tumortherapie, welche bisher nur in Patienten mit Adenokarzinom (lung 

adenocarcinoma, LUAD) erfolgreich eingesetzt werden kann. 

LUAD wird häufig durch aktivierende Punktmutationen oder genomische 

Rearrangements in Rezeptor-Tyrosinkinase (RTK) Genen wie z.B. EGFR verursacht. 

Dies führt zu deregulierter Aktivierung des RTK Signalwegs und onkogener 

Transformation. Selektive, kleinmolekulare Inhibitoren wurden entwickelt um 

zielgerichtet solche Onkogen-aktivierte Krebszellen zu töten. Die Einführung des 

Drittgenerations EGFR Inhibitors Osimertinib hat das Überleben von Patienten mit 

EGFR-mutierten Adenokarzinom wesentlich verlängert, jedoch entwickeln manche 

Patienten Osimertinib-resistente Mutationen in EGFR wie z.B. EGFR G724S, welche 

zur Tumorprogression führen. Wir haben herausgefunden, dass, im Gegensatz zu 

Osimertinib, der Zweitgenerations EGFR Inhibitor Afatinib an EGFR G724S binden 

kann und spezifisch den EGFR Signalweg inhibiert und somit das Wachstum und 

Überleben von EGFR G724S-mutierten Zellen reduziert. Somit wäre der Einsatz von 

Afatinib eine mögliche Therapieoption für Patienten mit EGFR G724S Mutation. 

Onkogene Genfusionen in RET fungieren ebenfalls als starke, transformierende 

Treiber im Adenokarzinom. Zunächst wurden RET-rearrangierte Tumore mit Multi-

Kinaseinhibitoren behandelt, welche aber aufgrund von fehlender Spezifität gegenüber 

RET und aufkommenden RET Resistenzmutationen nur begrenzt wirksam sind. Wir 

haben beobachtet, dass der type II Kinaseinhibitor AD80 an RET in der DFG-out 

Konformation bindet und RET inhibiert. Dies führt zu verminderter Aktivität des RET 

Signalwegs in Zellen mit KIF5B-RET und CCDC6-RET Fusionen und zudem in Zellen 

mit RET V804M Gatekeeper Mutation. Weiterhin verringert AD80 das Wachstum von 

CCDC6-RET Tumoren in Xenograft Modellen, was das Potenzial von type II 
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Kinaseinhibitoren als mögliche, zielgerichtete Therapie von RET-aktivierten 

Adenokarzinomen unterstreicht. 

Im Gegensatz zu NSCLC ist SCLC durch die Inaktivierung der Tumorsuppressorgene 

TP53 und RB1 gekennzeichnet und es existieren keine therapeutisch adressierbaren, 

onkogene Treibermutationen. In SCLC sind häufig die verschiedenen Mitglieder der 

MYC Transkriptionsfaktorfamilie (MYC, MYCL und MYCN) aktiviert was zu 

beschleunigtem und aggressiverem Wachstum führt. Wir haben herausgefunden, 

dass je nachdem welcher MYC Transkriptionsfaktor aktiviert ist, sich unterschiedliche 

Sensitivitäten der Tumorzellen ergeben. MYC Überexpression führt zu erhöhtem DNA 

Schaden, Repression der BCL2 Expression und verstärktem Apoptotic Priming. Dies 

korreliert mit erhöhter Sensitivität gegenüber Aurora Kinase- und MCL1 Inhibition. 

Hohe MYCL/MYCN Level hingegen vermitteln Resistenz gegen diese Therapie. Somit 

kann der MYC-Status des Tumors als prädiktiver Marker für das Ansprechen auf 

bestimmte Therapien fungieren. 

Das NUT Karzinom ist eine sehr seltene und aggressive Art von Lungenkrebs und wird 

durch das onkogene Fusionsprotein BRD4-NUT initiiert. BRD4-NUT führt zu einer 

genomweiten, epigenetischen Reprogrammierung welche zur Induktion von 

wachstumsfördernden Genen führt. Mittels Hochdurchsatz-Viabilitätsscreening haben 

wir herausgefunden, dass CDK9 Inhibition effektiv und präferenziell gegen NUT 

Karzinom Zellen wirkt. Die Inhibition von CDK9 erhöht die Retention von RNA 

Polymerase II am Genpromotor und verhindert so potenziell die Transkription von 

Tumor-fördernden Genen. Diese Ergebnisse rechtfertigen die weitere Untersuchung 

von CDK9 Inhibition im NUT Karzinom. 
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Introduction 
Differential applicability of targeted therapy in lung cancer 
Lung cancer is the second most prevalent cancer type worldwide with 2.1 million new 

cases in 2020 and the leading cause for cancer-related deaths with approximately 1.8 

million mortalities in 2020 (Sung et al., 2021). The relative 5-year survival rate of all 

lung cancer cases is 21.7% but varies significantly depending on particular lung cancer 

subtypes (National Cancer Institute, NCI). By far the highest risk factor for lung cancer 

is extensive, multi-year tobacco smoking accounting for approximately 80% of all lung 

cancer cases (Schabath and Cote, 2019). However, up to 20% of total lung cancer 

cases arise in never smokers with associated risk factors including exposure to 

secondhand smoke, inhalable carcinogens like asbestos, radon gas, high levels of air 

pollution, but also genetic predispositions and history of respiratory and immune-

compromising diseases (Schabath and Cote, 2019; Sung et al., 2021). Based on 

histology, lung cancer is divided into two major subtypes: non-small cell lung cancer 

(NSCLC) accounting for 85%, and small cell lung cancer (SCLC) accounting for 15% 

of all lung cancer cases, respectively (Schabath and Cote, 2019). Recently new 

classification criteria for NSCLC were proposed, classifying NSCLC into squamous 

(30% of NSCLC cases) and non-squamous NSCLC (70% of NSCLC cases). Lung 

adenocarcinoma (LUAD) is the predominant NSCLC subtype comprising 90% of non-

squamous NSCLC (Gridelli et al., 2015, Figure 1). 

 

Figure 1: Classification of lung cancer. Lung cancer is categorized into small cell lung cancer (SCLC) 

and non-small cell lung cancer (NSCLC). SCLC make up 15% whereas NSCLC make up 85% of total 

lung cancer cases. NSCLC is further sub-divided in squamous and non-squamous NSCLC. Lung 
adenocarcinoma (LUAD) is the most prevalent NSCLC subtype (Gridelli et al., 2015, modified). 
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Lung cancer is mainly treated using surgery, radiation therapy, chemotherapy, targeted 

therapy, and recently immunotherapy. However, large molecular differences among 

lung cancer subtypes impact suitable therapy options. LUAD treatment practice 

dramatically changed in recent years from pleiotropic, cytotoxic chemotherapy towards 

targeted therapy directed against specific genomic alterations whereas standard of 

care in squamous cell carcinoma and SCLC is still largely comprised of chemotherapy. 

 

Tyrosine kinase inhibitors in EGFR-mutant and RET-rearranged NSCLC 
LUAD tumorigenesis is often driven by aberrant activation of receptor tyrosine kinase 

(RTK) signaling, mostly caused by activating genomic alterations like mutations or 

rearrangements in RTK genes directly or genes of downstream signaling pathways 

(Blume-Jensen and Hunter, 2001). Receptor tyrosine kinases (RTKs) are a large 

superfamily of transmembrane receptor proteins that relay extracellular stimuli like 

mitogenic or proliferative cues into the cell by triggering several intracellular signaling 

cascades leading to regulatory and transcriptional responses. RTKs are activated 

through binding of ligands to the RTK extracellular domain inducing dimerization of the 

RTK, which activates the intracellular tyrosine kinase domain of the RTK leading to 

auto-phosphorylation of intracellular tyrosine residues using ATP as a substrate. These 

phospho-tyrosine residues are bound by adaptor proteins, which initiate signaling 

cascades through sequential phosphorylation culminating in the activation of 

transcription factors. Activation of diverse RTKs mainly converges on activation of four 

signaling cascades: RAS-MAPK (mitogen-activated protein kinase) pathway, 

phosphatidylinositol 3-kinase (PI3K)-AKT pathway, phospholipase c-γ (PLCγ) 

pathway, and JAK-STAT pathway (Casaletto and McClatchey, 2012, Figure 2). 
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Figure 2: Schematic representation of RTK-mediated signal transduction cascade. RTK activation 

is induced by ligand binding to the extracellular domain and subsequent autophosphorylation of tyrosine 

residues in the intracellular domain. The phosphorylation sites are recognized by adaptor proteins that 

mediate the activation of several signaling pathways (RAS-MAPK, PI3K-AKT, PLCγ, JAK-STAT) 

through sequential phosphorylation leading to increased proliferation, survival, differentiation, adhesion, 

migration, and metabolism (Casaletto and McClatchey, 2012).  

Activation of these signaling cascades is associated with increased cell growth, 

proliferation, cell cycle progression, and inhibition of apoptosis and thus, aberrant 

activation of these pathways leads to oncogenic transformation and cancer 

development (Lemmon and Schlessinger, 2010). Deregulated, oncogenic RTK activity 

is caused by specific genomic alterations in RTK genes. In LUAD, commonly found 

alterations of RTK genes include activating mutations, in-frame deletions or more 

complex intragenic insertions of epidermal growth factor receptor (EGFR), 

amplifications and intragenic insertions in ERBB2 (HER2), ALK rearrangements, gene 

fusion events in ROS1, RET, NTRK, or NRG1 creating oncogenic-fusion proteins, or 

exon skipping variants of MET. In addition, activating mutations in downstream 

effectors like KRAS and BRAF also lead to increased PI3K-AKT and/or MEK-ERK 

pathway activation and oncogenic signaling (Herbst et al., 2018). Activating EGFR 

mutations are detected in approximately 30% of LUAD patients and the majority of 

these mutations are located in the tyrosine kinase domain and mainly consist of in-

frame deletions in exon 19 (del19) and a point-mutation (L858R) in exon 21 (Collisson 

et al., 2014; Jordan et al., 2017; Skoulidis and Heymach, 2019). Building on the 

paradigm of oncogene addiction, i.e. cancer cells become dependent on one particular 

driver gene for their survival despite multiple co-occurring genomic lesions, small-

molecule tyrosine kinase inhibitors (TKIs) were developed to specifically target 

oncogenic kinase signaling thereby killing the oncogene-addicted cancer cells 

(Weinstein and Joe, 2008). Multiple generations of TKIs have been sequentially 

developed to target EGFR: erlotinib and gefitinib (first generation), dacomitinib and 

afatinib (second generation), and osimertinib (third generation). All these TKIs bind to 

the ATP-pocket of the EGFR tyrosine kinase domain inhibiting autophosphorylation 

and activation of EGFR and subsequent downstream signaling (Da Cunha Santos et 

al., 2011). Clinically, EGFR inhibitors dramatically improved response rate and 

progression-free survival in EGFR-mutant patients compared to standard 

chemotherapy demonstrating the superiority of targeted therapy directed against 

oncogenic drivers (Mok et al., 2009; Sequist et al., 2013; Soria et al., 2018). Another 
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key aspect is the improved quality of life exhibited due to reduced organismal toxicity 

of specific inhibitors of the mutated kinase in cancer cells compared cytotoxic 

chemotherapy affecting all dividing cells. Currently, 3rd generation EGFR inhibitor 

osimertinib is used as first line, standard of care treatment in EGFR-mutated lung 

cancer (Ramalingam et al., 2020) due to better clinical performance and suppression 

of resistance mutations against 1st and 2nd generation inhibitors like the EGFR T790M 

gatekeeper mutation. Despite these clinical advancements, nearly all patients relapse 

through acquired resistance against EGFR inhibitors and several on- and off-target 

resistance mechanisms have been described in response to osimertinib. The most 

prevalent on-target resistance mutations EGFR C797S, G724S, L718Q, and S768I all 

impede osimertinib-mediated inhibition of EGFR leading to reactivation of oncogenic 

EGFR signaling (Passaro et al., 2021; Tumbrink et al., 2021, Figure 3). 

 

Figure 3: Resistance mechanisms in response osimertinib in EGFR-mutant lung cancer. 
Frequency of known resistance mechanisms against first-line osimertinib treatment of EGFR-mutant 
lung cancer patients is displayed. On-target EGFR mutations include C797S, G724S, L718Q, and S768I 

point mutations. Off-target resistance mechanisms include alterations in cell cycle genes, MAPK-PI3K 

pathway mutations, oncogenic fusion/rearrangement events, amplification of secondary oncogenes like 

ERBB2(HER2) or MET, and SCLC/SCC transformation (Tumbrink et al., 2021, modified). 

Therefore, one of the main efforts of ongoing research in EGFR-targeted therapy is to 

combat the various resistance mechanisms against osimertinib. 

Similar to EGFR, oncogenic alterations of the RTK rearranged during 

transfection (RET) proto-oncogene are also potent drivers of tumorigenesis, albeit with 

a lower prevalence – detected in about 2% of LUAD patients (Collisson et al., 2014; 
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Jordan et al., 2017; Skoulidis and Heymach, 2019). While activating point mutations in 

of RET such as RET M918T, C634R/Y/W, A883F, or C630R are common in thyroid 

tumors, RET rearrangements that create oncogenic gene fusions of RET and genes 

such as kinesin family member 5B (KIF5B) or coiled-coil domain containing 6 (CCDC6) 

are commonly found in lung cancer patients (Subbiah et al., 2020). The resulting 

fusion-proteins KIF5B-RET and CCDC6-RET display constitutively active tyrosine 

kinase activity leading to increased downstream signaling via RAS/MAPK, PI3K/AKT, 

JAK/STAT, PKA, and PKC pathways, which leads to oncogenic transformation and 

proliferation (Thein et al., 2021). Clinical treatment strategies targeting RET-

rearranged NSCLC originally relied on non-specific, multi-kinase inhibitors (MKIs) like 

vandetanib and cabozantinib before recent approval of RET-specific inhibitors 

selpercatinib and pralsetinib (Thein et al., 2021). Similar to the clinical reality of EGFR 

TKIs however, RET MKI and RET-specific TKI-treated patients relapse carrying on-

target, gatekeeper (RET V804M/L) or non-gatekeeper (RET G810C/S/R, Y806C/N, or 

V738A) mutations or off-target oncogenic alterations (Thein et al., 2021). 

Thus, despite substantial clinical improvements provided by biomarker-driven, 

targeted therapy in NSCLC, relapse through acquired resistance requires more potent 

treatment strategies leading to full cancer eradication to break the vicious circle of 

response-resistance-relapse. 

 

MYC family members define therapeutic vulnerabilities in small cell lung cancer 
In sharp contrast to NSCLC, SCLC lacks directly targetable oncogenic drivers like 

RTKs. Moreover, RTKs are rarely mutated in SCLC, and, if mutated, do not function 

as oncogenic drivers of the tumor. Because of these premises, TKI-mediated targeted 

therapy is not applicable to SCLC. Standard of care treatment still relies on 

combination chemotherapy like cisplatin/etoposide, with the recent addition of immune 

checkpoint inhibitors to chemotherapy regimens (Iams et al., 2020). In contrast to 

NSCLC, SCLC is typically a neuroendocrine carcinoma, almost exclusively arising in 

heavy smokers and originating form pulmonary neuroendocrine cells (Rudin et al., 

2021). However, recently non-neuroendocrine tuft cells were found to give rise to a 

rare non-neuroendocrine subtype of SCLC (Huang et al., 2018). Moreover, SCLC is a 

highly aggressive cancer with early metastatic spread. Approximately 250 000 new 

SCLC cases are diagnosed per year with 200 000 SCLC-related deaths (Sung et al., 

2021) and an overall 5-year survival rate below 5% making SCLC the most deadly 
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form of lung cancer (Rudin et al., 2021). Initially SCLC displays high response rates of 

60-90% depending on tumor stage at diagnosis to platinum-based chemotherapy 

(Demedts et al., 2010). However, almost all patients rapidly relapse with 

chemorefractory tumors. Extensive intratumoral heterogeneity is a major contributor to 

the rapid outgrowth of chemoresistant sub-clones in progressive SCLC tumors (Su et 

al., 2019). Genetically, SCLC is defined by near universal loss-of-function mutations in 

both tumor suppressor genes TP53 and retinoblastoma-associated protein (RB1). 

Based on the expression of lineage-defining transcription factors, four SCLC subtypes 

were proposed: ASCL1high and NEUROD1high comprise the neuroendocrine subtypes 

SCLC-A and SCLC-N whereas POU2F3high and YAP1high SCLC comprise the non-

neuroendocrine subtypes SCLC-P and SCLC-Y (Rudin et al., 2019, Figure 4). 

 

Figure 4: Molecular subtypes of SCLC are defined by lineage transcription factor expression. 
Heatmap showing relative expression of subtype-defining transcription factors in SCLC patients and 

patient-derived cell lines. SCLC is divided into neuroendocrine (NE) and non-neuroendocrine (Non-NE) 
subtypes. NE-SCLC is further subdivided into ASCL1high SCLC-A and NEUROD1high SCLC-N whereas 

POU2F3high SCLC-P and YAP1high SCLC-Y comprise Non-NE SCLC (Rudin et al., 2019, modified). 

Another key genetic feature of SCLC are frequent amplifications and overexpression 

of MYC transcription factor family genes (MYC, MYCL, MYCN) (George et al., 2015; 

Peifer et al., 2012; Rudin et al., 2012). Notably, high MYC expression is more 

frequently observed in SCLC-N/P/Y than SCLC-A tumors, whereas high MYCL or 

MYCN expression is more prevalent in SCLC-A tumors (Rudin et al., 2021; Wooten et 

al., 2019). All MYC family members are structurally homologous basic helix-loop-helix 

transcription factors that bind DNA at E-box motifs leading to transcriptional activation 

or transcriptional repression depending on MYC-interaction partners. The MYC/MAX 

complex is associated with transcriptional activation whereas the MYC/MIZ1 complex 

is associated with transcriptional repression (Kress et al., 2015). In general, aberrant 

activation of all MYC family members induces metabolic activity, cell growth, cell cycle 
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progression and proliferation leading to oncogenic transformation and tumorigenesis 

(Wolf and Eilers, 2020). In SCLC, MYC paralogs are activated by overexpression 

(MYC, MYCL), amplification (all MYC family members) or gene-fusion (only MYCL) 

(Ciampricotti et al., 2021; George et al., 2015). Notably, expression of MYC family 

members is mutually exclusive, i.e. only one particular MYC family member is activated 

in a specific tumor cell (Brägelmann et al., 2017a; Dammert et al., 2019; George et al., 

2015). Studies of genetically engineered SCLC mouse models demonstrated that 

activation of all MYC family members leads to substantially increased SCLC 

tumorigenesis and aggressiveness (Grunblatt et al., 2020; Kim et al., 2016; Mollaoglu 

et al., 2017). Their roles as driving oncogenes would define MYC family members as 

ideal drug targets, but due to their structural composition, direct targeting of MYC family 

members has so far not been achieved. To circumvent this predicament, indirect 

targeting of MYC based on synthetic lethality represents a promising approach against 

MYC-driven cancers. Applied to MYC, synthetic lethality strategies target pathways, 

which are deregulated after oncogenic MYC activation and become essential for the 

survival of the cancer cell but of untransformed cells, e.g. high MYC levels lead to 

increased rRNA transcription to fuel protein synthesis for rapid cell growth and 

proliferation, which renders these cells dependent on components of rRNA and protein 

synthesis pathways. Thus targeting of these pathways could specifically inhibit/kill 

MYC-activated cancer cells without harming normal cells (Thng et al., 2021, Figure 5). 
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Figure 5: Synthetic lethal vulnerabilities in MYC-driven cancer cells. Several cellular pathways are 

deregulated upon MYC activation and contribute to malignant growth and thus represent potential 

targets for therapeutic intervention: transcription factors and chromatin modifiers regulating MYC 

expression (purple), MYC-activated cell cycle regulators (yellow), deregulated metabolic modulators 

(green), MYC-cofactors and interaction partners (pink), novel non-MYC-regulated synthetic lethal 

targets (brown) (Thng et al., 2021). 

In SCLC, several synthetic lethal, MYC family member-associated vulnerabilities have 

been observed. High MYC expression leads to increased sensitivity towards Aurora 

kinase A (AURKA) inhibition (Mollaoglu et al., 2017; Sos et al., 2012), high MYCL 

expression leads to vulnerability against RNA polymerase I inhibition (Kim et al., 2016), 

and targeting de-ubiquitination enzyme USP7 was observed as a MYCN-induced 

synthetic vulnerability (Grunblatt et al., 2020). Due to the pleiotropic influence of MYC 

family members regulating virtually all cellular processes either directly or indirectly, 

many more possible co-vulnerabilities are yet to be discovered. Furthermore, the 

detailed understanding of molecular differences and vulnerabilities induced by each 

MYC family member in SCLC could provide a basis for patient stratification for certain 

therapies depending on their MYC-status. 

 

Targeting deregulated transcription in NUT carcinoma 
Only recently, nuclear protein in testis (NUT) carcinoma formerly NUT midline 

carcinoma was officially classified as neuroendocrine lung cancer type in the category 

of «Other and Unclassified carcinomas» (Travis et al., 2015). NUT carcinoma is an 

extremely rare and very aggressive cancer with a dismal median survival of only 6.7 

months (French, 2018). NUT carcinoma is genetically defined by oncogenic fusion of 

the NUT gene to multiple fusion partners, mostly bromodomain and extraterminal 

domain-containing (BET) family genes BRD4 and BRD3. The BRD4-NUT fusion 

protein combines the acetyl-histone-binding capability of BRD4 with NUT-mediated 

binding of histone acetyl transferase (HAT) and transcriptional activator p300 (French, 

2012). This dual function induces oncogenicity through the formation of aberrantly 

large euchromatic chromosomal domains marked by p300 occupancy and active 

histone marks driving the transcription of growth- and proliferation-related genes while 

precluding these activators from genomic regions of differentiation-associated genes 

leading to their repression (Alekseyenko et al., 2015). Pre-clinically, BET inhibitors like 

JQ1 that competitively bind to the acetyl histone binding site within the bromodomain 

of the BRD4 part of BRD4-NUT were highly effective against NUT carcinoma cells but 
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failed clinically due to limited efficacy and high toxicity (French, 2018). Similar to MYC 

in SCLC, direct targeting of deregulated transcription in NUT tumor driven by BRD4-

NUT fusions proved unsuccessful and indirect, synthetic lethal vulnerabilities are 

explored. 

 

In summary, the individual subtypes of lung cancer comprise a heterogenous disease 

with profoundly different molecular and genetic characteristics that influence 

aggressiveness and therapeutic possibilities. Oncogene-driven NSCLC is amenable 

to molecularly stratified, targeted therapy using TKIs whereas SCLC lacks directly 

targetable alterations and personalized therapeutic options. This differential availability 

of targeted therapy is reflected in prognosis and survival rates, which dramatically 

improved in recent years for targeted therapy-treated NSCLC but remained nearly 

unchanged for SCLC (Gazdar et al., 2017; Gridelli et al., 2015). 

 

Aims of this work 
The aims of this work are to address various aspects in the development, applicability 

and molecular characterization of targeted therapy strategies in different lung cancer 

subtypes with differential genetic characteristics. 

First, the EGFR G724S mutation that confers resistance against clinically used, third 

generation EGFR inhibitor osimertinib is investigated in search for inhibitors that are 

active against EGFR G724S and possibly provide a treatment strategy for osimertinib-

resistant tumors. 

Second, the previously existent lack of specific inhibitors against RET tyrosine kinase 

in RET-rearranged LUAD motivated the investigation of type II kinase inhibitors in RET-

rearranged cancer cells to possibly overcome the limitation of multi-kinase inhibitors. 

Third, the molecular impact of the activation of each individual MYC family member in 

SCLC is characterized to decipher which specific molecular pathways and 

vulnerabilities are induced by the individual MYC family members and to evaluate 

possible therapeutic consequences following MYC family member activation. 

Forth, high-throughput cell viability screening of an inhibitor library is conducted in a 

large number of lung cancer cell lines to find genetic features that determine inhibitor 

sensitivity. 

 

  



 15 

Publications 
 

Overcoming EGFRG724S-mediated osimertinib resistance through unique binding 
characteristics of second-generation EGFR inhibitors 
 

Fassunke J, Müller F, Keul M, Michels S, Dammert MA*, Schmitt A, Plenker D, 

Lategahn J, Heydt C, Brägelmann J, Tumbrink HL, Alber Y, Klein S, Heimsoeth A, 

Dahmen I, Fischer RN, Scheffler M, Ihle MA, Priesner V, Scheel AH, Wagener S, Kron 

A, Frank K, Garbert K, Persigehl T, Püsken M, Haneder S, Schaaf B, Rodermann E, 

Engel-Riedel W, Felip E, Smit EF, Merkelbach-Bruse S, Reinhardt HC, Kast SM, Wolf 

J, Rauh D, Büttner R, Sos ML. 

 

* co-first author 

 

Specific contributions: 

• Generation and validation of Ba/F3 and NIH-3T3 cell lines bearing different 

EGFR mutations (EGFR del19, EGFR del19/G724S, EGFR G724S) 

• Viability screening of EGFR-mutant cell lines against EGFR inhibitors 

• Western blot analysis of EGFR-mutant cell lines upon EGFR inhibitor treatment 

• Colony formation, soft-agar assays of EGFR-mutant cell lines upon EGFR 

inhibitor treatment 

• Data analysis of xenograft experiments 

• Manuscript editing 

 



 16 

ARTICLE

Overcoming EGFRG724S-mediated osimertinib
resistance through unique binding characteristics
of second-generation EGFR inhibitors
Jana Fassunke et al.#

The emergence of acquired resistance against targeted drugs remains a major clinical

challenge in lung adenocarcinoma patients. In a subgroup of these patients we identified an

association between selection of EGFRT790M-negative but EGFRG724S-positive subclones and

osimertinib resistance. We demonstrate that EGFRG724S limits the activity of third-generation

EGFR inhibitors both in vitro and in vivo. Structural analyses and computational modeling

indicate that EGFRG724S mutations may induce a conformation of the glycine-rich loop, which

is incompatible with the binding of third-generation TKIs. Systematic inhibitor screening and

in-depth kinetic profiling validate these findings and show that second-generation EGFR

inhibitors retain kinase affinity and overcome EGFRG724S-mediated resistance. In the case of

afatinib this profile translates into a robust reduction of colony formation and tumor growth

of EGFRG724S-driven cells. Our data provide a mechanistic basis for the osimertinib-induced

selection of EGFRG724S-mutant clones and a rationale to treat these patients with clinically

approved second-generation EGFR inhibitors.
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The identification of EGFR mutations and the discovery of
their exquisite sensitivity to epidermal growth factor
receptor (EGFR) inhibitors dramatically changed the

therapeutic routine for lung adenocarcinoma (LADC) patients1–3.
Selective inhibition of EGFR with tyrosine kinase inhibitors
(TKI), such as erlotinib or gefitinib, significantly prolongs the
progression-free survival (PFS) up to 13.6 months in the first-line
setting4–6. However, under therapeutic pressure resistant clones
emerge in virtually all tumors and ultimately lead to progressive
disease and failure of therapy7–9.

Third-generation EGFR inhibitors such as osimertinib have
been designed to overcome acquired resistance induced by the
EGFRT790M gatekeeper mutation10. Clinical results show that
patients treated with osimertinib respond in up to 71% in the
background of an acquired EGFRT790M mutation11,12. More
recent data indicate that osimertinib treatment is even superior to
single agent first-generation inhibitors such as erlotinib or gefi-
tinib in terms of PFS and overall survival (OS) in the first-line
setting13.

The recurrent acquisition of EGFRC797S mutations is currently
thought to be the most frequent mechanism of resistance to
osimertinib14–16. Alternative by-pass mechanisms involving MET
amplification or activation of the MAPK pathway may also play a
role in the development of resistance to third-generation EGFR
inhibitors14,15,17. Here, we characterized the role of the acquired
EGFRG724S mutation that was diagnosed in osimertinib-resistant
lesions of four individual EGFR19del-mutant LADC patients. We
performed systematic biochemical, cellular, and structural ana-
lyses to determine the functional relevance of this mutation in the
context of targeted EGFR inhibition.

Results
Acquisition of EGFRG724S is associated with cancer progres-
sion. Within our LADC re-biopsy program we performed tar-
geted sequencing of lesions that progressed under treatment with
third-generation EGFR inhibitors. Interestingly, we identified two
patients with no detectable EGFRG724S reads (P1,
EGFRE746_S752delinsV; P2, EGFRS752_I759del) and two patients with
low levels of EGFRG724S mutation (P3, EGFRE746_T751delinsIP; P4,
EGFRE746_T751delinsIP) prior to start of third-generation EGFR
inhibitor therapy (Fig. 1a–d; Supplementary Fig. 1A, Supple-
mentary Table 1). Patient P1 (UICC stage IIIA, 59 years old,
female) received osimertinib within the AURA trial
(NCT01802632) after progression on erlotinib and the detection
of an acquired EGFRT790M mutation (T1) (Fig. 1a). Osimertinib
treatment resulted in a partial response (54% reduction based on
RECIST 1.1) (Supplementary Fig. 1B, 1D). Even though pro-
gression occurred after 8.2 months with the growth of target
lesions and a new EGFRT790M-negative and EGFRG724S-positive
pleural effusion with a molecular fraction (MF, estimate of allelic
fraction without calculating the purity and ploidy) of 6.3% (T2)
(Supplementary Table 1C).

Patient P2 (UICC stage IV, 47 years old, female) received two
consecutive lines of third-generation EGFR inhibitors upon
progression to erlotinib and a combination of carboplatin/
pemetrexed/bevacizumab. Treatment with the third-generation
EGFR inhibitor EGF816 (CEGF816X2101; NCT02108964) was
initiated after detection of EGFRT790M (Fig. 1c). EGF816
treatment resulted in a stable disease according to RECIST 1.1
for almost 6 months. At the time point of progression to EGF816
two pulmonal lesion were resected (T2). In one (EPII), the
initially detected EGFRT790M mutation was lost and an
EGFRG724S mutation was acquired with a MF of 71.1%. In the
other sample (EPI), the EGFRT790M mutation (AF 39.3%) was still
present and no EGFRG724S reads were detected (Fig. 1c,

Supplementary Table 1). Osimertinib treatment was initiated
and resulted in a metabolic response of the liver metastases and
the stabilization of other solid tumor lesions, including the
remaining pulmonary lesions, as assessed by 18FDG positron
emission tomography (PET)-CT scans (Fig. 1d). However, a
progressive malignant pleural effusion that contained EGFRG724S-
mutant cells and no trace of the previously acquired EGFRT790M
mutation was recorded after seven months of treatment (T3). In
this example the MF of EGFRG724S exceeds the MF of our
reference EGFR19del reads but it is likely that the inherent noise of
our PCR-based method overestimates the EGFRG724S reads and
we assume similar levels of both mutants in this tumor18.

Two patients (P3, EGFRE746_T751delinsIP; P4, EGFRE746_T751de-
linsIP) were identified with a low MF of EGFRG724S before
initiation of osimertinib treatment and persisting EGFRG724S-
mutant reads at time of progression (Fig. 1a, Supplementary
Table 1). Patient P3 (68 years old, UICC stage IV, female) showed
a robust response to gefitinib and at time of progression after
32 months presented with a growing paravertebral EGFRT790M-
positive lesion (MF of 6.9%, T1) as well as an EGFRG724S
mutation (MF of 5.3%, T1; Supplementary Table 1). Treatment
with osimertinib resulted in a good partial response according to
RECIST 1.1 for a period of 6.8 months (Supplementary Fig. 1C).
However, the lesion in which the EGFRG724S mutation was
detected showed no significant decrease. A subsequent re-biopsy
of the same paravertebral lesion showed a loss of EGFRT790M and
the persistence of EGFRG724S (MF 49.6%, T2) (Fig. 1b).

The last patient (P4) (69 years old, UICC stage IV) with a
known mutation was initially treated with erlotinib (Fig. 1a,
Supplementary Fig. 1A, Supplementary Table 1). However,
progression occurred after 36 months of treatment and a re-
biopsy of a growing lesion revealed EGFRT790M- as well as
EGFRG724S-positive sequencing reads (T1). Treatment with
osimertinib resulted in a PFS of 2.5 months (objective efficacy
not determined by RECIST 1.1). Another re-biopsy of the growing
lesion in the left lower lobe was collected revealing the loss of
EGFRT790M and the outgrowth of a EGFRG724S-mutant subclone
(AF 39.3%, T2) (Supplementary Table 1). Thus, although
EGFRG724S-positive clones may be partially selected in tumors
treated with first-generation EGFR inhibitors, a pronounced
increase of EGFRG724S-positive sequencing reads is primarily
associated with third-generation EGFR inhibitor treatment.

EGFRG724S mutations have been identified as very rare driver
mutations and more recently, case reports have shown their
potential role in acquired osimertinib resistance in LADC
patients19–21. To assess the overall frequency of the acquired
EGFRG724S mutation and other changes in EGFR, we revisited re-
biopsy samples obtained from EGFRT790M-positive patients at
time of progression under treatment with third-generation EGFR
inhibitors. This cohort spans 30 patients; 22 of them received
osimertinib (73.3%), four EGF816 (13.3%) and four rociletinib
(13.3%). EGFRC797S was detected in three patients (10%), loss of
EGFRT790M without no detectable EGFR acquired mutation was
detected in 10 (33.3%) and loss of EGFRT790M and presence of
EGFRG724S was seen in four patients (13.3%) (Fig. 1e). As this
mutation seems to be less frequent in other cohorts, the actual
prevalence across a broader panel of patients with acquired
osimertinib resistance remains to be assessed14. Although only
EGFRC797S mutations have a direct impact on the binding of
third-generation EGFR inhibitors within the kinase, the mutual
exclusivity between EGFRC797S and EGFRG724S indicates that the
EGFRG724S mutations do not represent passenger events (Fig. 1f).

Overall, our data show that EGFRG724S mutations may emerge
or persist in osimertinib-resistant clones that may evolve
independently of acquired EGFRT790M mutations. The data
further suggest a negative relation of the allelic frequencies of
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EGFRG724S and EGFRT790M under third-generation EGFR
inhibition: increasing EGFRG724S frequencies were accompanied
by decreasing EGFRT790M frequencies.

EGFRG724S mediates resistance to third-generation EGFR
inhibitors. To test the functional relevance of the identified EGFR
mutation, we overexpressed different combinations of EGFRG724S
and EGFR19del mutations in NIH-3T3 cells. Erlotinib as well as
osimertinib treatment resulted in a major reduction of phospho-
EGFR levels in EGFR19del-mutant cells already at concentrations
of 0.3 µM of osimertinib but not in cells that expressed
EGFRG724S either alone or in combination with EGFR19del
(Fig. 2a, b). We observed similar results with the third-generation
EGFR inhibitor rociletinib, despite its lower potency against the
EGFR19del-mutant (Supplementary Fig. 2A).

To validate our findings in an independent cellular model we
generated Ba/F3 cells that overexpress EGFR19del or EGFRG724S
alone and the combination of these mutations. The survival of
these murine cells initially relies on IL-3 but can be switched to an
oncogene such as mutant EGFR22,23. As expected the introduc-
tion of EGFR19del or EGFRG724S alone led to a transformation of
Ba/F3 cells, but only EGFR19del showed high sensitivity to
erlotinib and osimertinib (Fig. 2c, d, Supplementary Fig. 7A, B).

Based on these results and the increasing relevance of
osimertinib in the front-line setting we focused on the resistance

phenotype against this third-generation EGFR inhibitor13. As in
the patients we assume the EGFRG724S resistance mutations to
occur in the background of EGFR19del we compared EGFR19del
and EGFR+G724S sensitivity to third-generation EGFR inhibitors
in vivo. To this end we employed murine xenograft models
in which genetically modified NIH-3T3 cells were injected
subcutaneously into nude mice (NCRnu/nu). Again, we
observed efficient tumor formation for both double-mutant
EGFR19del+G724S and single-mutant EGFR19del NIH-3T3 cells
(Fig. 2e). Confirming our in vitro results osimertinib (5 mg/kg
daily) treatment significantly slowed down tumor growth of
EGFR19del NIH-3T3 cells compared with vehicle-treated tumors
(p= 0.027). Of note, osimertinib has a favorable pharmacokinetic
profile and is known to halt tumor growth in EGFR-dependent
patient-derived cell line xenografts at doses as low as 1 mg/kg
daily10. However, we observed virtually no therapeutic effect
for osimertinib (5 mg/kg daily) treated in double-mutant
EGFR19del+G724S NIH-3T3 cells compared with vehicle-treated
tumors (Fig. 2e, f). Since NIH-3T3 cells can partially form tumors
in the absence of an oncogenic driver we did not observe any
tumor shrinkage in our xenograft model, as one would expect for
xenografts implanted with patient-derived cells24,25. As expected,
we observed a significant induction of cleaved caspase-3-positive
cells (p= 0.037) (Fig. 2g, h) and a robust reduction of
Ki67 positive cells only in EGFR19del-mutant but not in
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EGFR19del+G724S-mutant tumors that received osimertinib (Sup-
plementary Fig. 2B–F).

These results clearly indicate that the EGFRG724S point
mutation may confer resistance against third-generation EGFR
inhibitors.

Structural impact of an altered glycine-rich loop conformation.
The glycine-rich loop is a crucial structural element for substrate
and ligand binding. It is a highly conserved flexible element
located in the N-lobe of the kinase domain and contains the
canonical GxGxxG motif, where x may be any amino acid26,27.
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site (blue, PDB ID: 5UWD) with exon 20-mutant EGFR (white, PDB ID: 4LRM) that reveals steric hindrance of third-generation TKIs with the glycine-rich
loop and the adjacent sheet β1 upon a perturbed network between helix αC, ELREA motif, and glycine-rich loop. c Comparison of MD simulations of
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It does not come as a surprise that mutations in the glycine-rich
loop can interfere with ligand binding and thus mediate resis-
tance to kinase inhibitors as it was described previously for
chronic myelogenous leukemia, where mutations in the glycine-
rich loop in BCR-ABL cause resistance to imatinib28,29.

To assess the structural impact of the EGFRG724S mutation on
the EGFR kinase we performed structural analysis based on a
previously published co-crystal structure of rociletinib bound to
EGFR (PDB ID: 5UWD) (Fig. 3a)30. As described before the
glycine-rich loop is an essential element for ligand binding and
the glycine at position 724 is in direct contact with the adjacent
ELREA motif that is subject to deletion mutations in affected
patients. The ELREA sequence plays a crucial role in the
alignment of the regulatory helix αC that is a key element in
the transition between the active and inactive kinase domain
conformations30. It is therefore conceivable that the EGFRG724S
mutation influences structure and dynamics of the binding site
and thereby the affinity toward third-generation EGFR inhibitors.
To illustrate the resistance mutation on the molecular level, we
performed an alignment of a third-generation TKI bound to the
EGFR-binding site (PDB ID: 5UWD) with a crystal structure of
an exon 20-mutated form of EGFR (PDB ID: 4LRM). The
experimental structure determination of the exon 20 mutant
reveals a perturbed network of interactions within the regulatory

important helix αC, the adjacent ELREA motif and the glycine-
rich loop31,32, which we believe to be similar to the investigated
G724S mutant. The alignment of these structures suggests that
the glycine-rich loop can exist in a conformation that is
incompatible with third-generation inhibitor binding (Fig. 3b).
Therein, steric repulsion arises from the acrylamide-linker of
rociletinib or the methylindole moiety of osimertinib with the
sheets β1 and β2 adjacent to the G-rich loop. Although the
glycine-rich loop may undergo conformational changes upon
ligand binding, the rearrangement might be hindered in the case
of third-generation TKIs.

In line with these considerations, molecular dynamics (MD)
simulation (based on PDB ID: 4ZAU)33 revealed an altered
ELREA motif in EGFRG724S, as compared with simulated wild-
type protein when bound to osimertinib (Fig. 3c, Supplementary
Fig. 3A left). Moreover, the introduction of serine to position 724
induces a high degree of dynamic flexibility in the network
formed by helix αC, ELREA motif, and glycine-rich loop, as
represented by the determined root mean squared fluctuation
(RMSF) values (Fig. 3c, Supplementary Fig. 3B; raw data are
reported in the B-factor column of PDB structures for osimertinib
bound to the EGFR variants studied in Supplementary Data 1–4).
These enhanced fluctuations extend toward the methylindole
residue of osimertinib. As pointed out in seminal work by
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Kuriyan, Shaw and co-workers34, substantial conformational
impact of the exon 19 deletion on the helix αC can be expected,
whereas the structural and dynamical influence of additionally
introducing the G724S mutation is unknown. Hence, we
additionally simulated the corresponding EGFR19del and
EGFR19del+G724S systems (Fig. 3d, Supplementary Fig. 3A right).
Remarkably, despite the strain introduced by deleting the ELREA
motif, increased flexibility particularly of the G-rich loop within
the regulatory network is also evident for EGFR19del+G724S

relative to EGFR19del. This finding is robust with respect to
varying the starting structures of the simulations (Supplementary
Fig. 3B). It appears that the mutant Ser724 side chain renders the
regulatory network more flexible and induces altered conforma-
tions to the G-rich loop.

Based on these findings, a second line of argumentation could
be valid: rather than steric repulsion, the increased flexibility
might result in the loss of important interactions between third-
generation inhibitors and the binding site that lead to the
observed drug resistance. Taken together, we conclude that the
EGFRG724S mutation may provoke a conformation of the glycine-
rich loop, which is incompatible with ligand binding and
accounts for decreased binding efficiency as determined for
third-generation EGFR inhibitors.

Altered EGFR inhibitor activity pattern through EGFRG724S.
We next addressed the question whether the EGFRG724S mutation
might directly interfere with the ability of third-generation EGFR
inhibitors to bind to the EGFR kinase, as the mutation site is
located in the glycine-rich loop, which is an important regulatory
element (Supplementary Fig. 4A). Similar to our observations in
NIH-3T3 cells, we detected a marked increase of IC50-values in
kinase assays using osimertinib against the double-mutant
EGFR19del+G724S as compared with the EGFR19del single-
mutant protein (100-fold) (Fig. 4a).

Having established the kinase assay platform, we next sought to
test whether the EGFRG724S mutation induces resistance against a
specific class of EGFR inhibitors. Herein, we collected a library of
more than 120 compounds, of which 90 compounds are
proprietary and hence the results of 32 readily published
compounds with a known anti-EGFR profile covering clinically
relevant first-, second-, and third-generation EGFR inhibitors are
discussed in the following (Fig. 4b, Supplementary Fig. 4B,
Supplementary Table 2). We screened these inhibitors against
both the single and the double-mutant EGFR kinase and observed
two interesting patterns of inhibitor activity: (i) the introduction
of the EGFRG724S mutation in addition to the EGFR19del mutation
induces resistance against virtually all clinically used first- and
third-generation inhibitors and (ii) all second-generation inhibi-
tors including afatinib, poziotinib, and dacomitinib remained
active against the EGFR19del+G724S double-mutant kinase (Fig. 4b,
Supplementary Table 2). Although, first- and second-generation
inhibitors exhibit the same quinazoline scaffold, a remarkable
difference in biochemical potency is evident. Alkylation of Cys797
is a distinct feature of second-generation TKIs that discriminates
them from first-generation inhibitors. This finding indicates that
a covalent bond formation to the target kinase is crucial to occupy
the binding site efficiently. Interestingly, we also identified an
aminoindazole-based inhibitor with low nanomolar activity
against the double-mutant kinase that would not be classified as
a second-generation EGFR inhibitor but indeed exhibits a
different binding mode than osimertinib (Fig. 4b, Supplementary
Table 2)35.

We next tested whether the biochemical activity of second-
generation EGFR inhibitors in EGFRG724S-mutant cells translates
into a therapeutically relevant on-target activity in cellular
models. We therefore assessed phospho-EGFR levels following
afatinib exposure in NIH-3T3 cells expressing either the empty
vector or vectors with EGFR19del, EGFRG724S alone, or the
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Fig. 5 Kinetic evaluation of second- and third-generation EGFR TKIs against EGFR mutant proteins. a Schematic overview of two-step binding mechanism
of covalent inhibitors to kinases with Ki (quotient of koff and kon) describing the reversible binding affinity and kinact describing the rate of inactivation.
b Time-dependent IC50-determination of afatinib and osimertinib on EGFR mutant proteins. Representative curves of single measurements in duplicates
are shown. c Heatmap of biochemical IC50-, Ki-, and kinact determination of second- and third-generation EGFR TKIs against EGFR mutant proteins. Values
are the mean of three independent measurements in duplicates. d Immunoblotting results of NIH-3T3 cells (EGFR19del or EGFR19del+G724S) monitoring
phospho-EGFR and total EGFR. Cells were treated for indicated times (0, 1, 3, 6, and 24 h) with osimertinib (1 µM) or afatinib (1 µM). HSP90 was used as
loading control (n= 3)
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combination of both mutations EGFR19del+G724S (Fig. 4c,
Supplementary Fig. 7C). As expected, afatinib treatment led to
a reduction of phospho-EGFR signaling that was independent of
the presence of the EGFRG724S mutation in the glycine-rich loop
at concentrations between 10–100 nM (Fig. 4c, Supplementary
Fig. 4C). We validated these findings in our Ba/F3 cell lines and
found that EGFRG724S-mutant cells largely retained sensitivity to
afatinib at low nanomolar concentrations (Fig. 4d).

These results triggered us to revisit our previously analyzed
crystal structure of exon 20-mutant EGFR (PDB ID: 4LRM)
(Supplementary Fig. 5). In line with our biochemical data this
structure shows that the binding of second-generation TKIs based
on the 4-anilinoquinazoline scaffold (PD168393) to the altered
binding site is well tolerated (Fig. 4e).

Thus, our data indicate that the EGFRG724S mutation induces
resistance toward third- and first-generation but retains sensitiv-
ity toward 4-aminoquinazoline based second-generation EGFR
inhibitors.

EGFRG724S reduces binding of third-generation EGFR TKI.
Further in-depth kinetic evaluation including determination of
kinetic parameters Ki and kinact was conducted to more accurately
define differences between second- and third-generation inhibitor
binding. Binding of covalent inhibitors to a kinase is assumed to
succeed in a two-step process: first the inhibitor binds to the
kinase in a reversible fashion characterized by Ki and in a second

step the covalent bond is formed which can be specified with the
rate of inactivation (kinact) (Fig. 5a)36,37.

In these experiments, we identified marked differences in the
binding characteristics of second- and third-generation EGFR
inhibitors to EGFR-mutants (Fig. 5b, c, Supplementary Table 3).
For instance, the kinact of osimertinib and rociletinib appears to be
similar among the EGFR-mutants and the EGFRG724S mutation
does not negatively affect the covalent bond formation with
Cys797. Our data further indicate that the EGFRG724S mutation
has a strong impact on the formation of the reversible
protein–ligand complex in the context of these drugs which
prove to bind in a less-affine manner indicated by increased Ki-
values (osimertinib EGFR19del < 1 nM and EGFR19del+G724S 80
nM) (Fig. 5b, c). The second-generation EGFR inhibitor afatinib
and the structurally related inhibitor poziotinib exhibit constant
affinities and binding kinetics for EGFRWT, EGFR19del, and
EGFR19del+G724S kinases (Fig. 5b, c). In addition, our data reveal
that the loss of EGFRT790M, as observed in all of the relapsed
tumors that were enriched for EGFRG724S-positive clones, further
enhanced the loss of affinity of third-generation EGFR inhibitors.
Third-generation inhibitors are designed to target a methionine
gatekeeper residue in position 790, whereas second-generation
inhibitors afatinib and poziotinib exhibit a more pronounced
affinity toward threonine-carrying EGFR variants. Based on these
findings we hypothesized that such a marked difference between
afatinib and osimertinib in the engagement of the mutant kinase
should be also detectable in cellular assays. We therefore tested
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the ability of afatinib and osimertinib to inhibit phospho-EGFR
over time (Fig. 5d, Supplementary Fig. 7D, E). In line with our
biochemical data even at 1 µM concentrations osimertinib was
not able to reduce phospho-EGFR levels in NIH-3T3 cells
expressing EGFR19del+G724S. In contrast to that, afatinib depleted
phospho-EGFR levels in these cells as efficiently as in EGFR19del
cells (Fig. 5d, Supplementary Fig. 7D, E).

Thus, our data suggest that in EGFRG724S-mutant kinase the
reversible binding of second-generation EGFR inhibitors is
superior to third-generation EGFR inhibitors and might therefore
overcome EGFRG724S-driven resistance.

EGFRG724S is sensitive to second-generation EGFR inhibitors.
A previous case report of a patient with acquired EGFRG724S
mutation showed a remarkable response to the combination of
osimertinib and afatinib21. To test whether the observed affinity
to second-generation EGFR inhibitors translates into cellular
activity we tested the ability of afatinib as single agent to out-
perform osimertinib activity in EGFR19del+G724S-driven cells. To
this end, we plated NIH-3T3 cells that express either EGFR19del
or EGFR19del+G724S in soft agar and treated the cells with
increasing concentrations of both drugs over the time of 2 weeks.
In line with our in vivo results osimertinib was only effective
against the formation of EGFR19del-driven colonies at sub-
micromolar concentrations but not against EGFR19del+G724S-
mutant cells (Fig. 6a, b). However, afatinib largely prevented
outgrowth of both EGFR19del and EGFR19del+G724S-driven colo-
nies at submicromolar concentrations. Thus, the growth inhibi-
tion effect of afatinib compared with osimertinib was significantly
higher (p= 0.01) in EGFR19del+G724S-mutant cells (Fig. 6a, b).

To further evaluate the sensitivity of EGFRG724S either alone or
in combination with EGFR19del to third-generation EGFR
inhibitors in vivo we employed our murine xenograft models.
Again, both single-mutant EGFR19del and double-mutant
EGFR19del+G724S NIH-3T3 cells formed fast growing tumors in
nude mice (Fig. 6c). As expected, afatinib (20 mg/kg daily)
treatment significantly slowed down tumor growth of both
single-mutant EGFR19del (p= 0.0192) and double-mutant
EGFR19del+G724S (p < 0.0001) xenograft when compared with
vehicle-treated tumors (Fig. 6d, Supplementary Fig. 6).

Overall, our results indicate that acquired EGFRG724S muta-
tions robustly limit the activity of third-generation inhibitors,
whereas sparing the second-generation EGFR inhibitors such as
afatinib. Existing Food and Drug Administration (FDA)-
approvals for some of these drugs may facilitate the translation
of our results into clinical practice for genetically defined
osimertinib-resistant lung cancer patients.

Discussion
EGFR inhibitors represent a showcase for the therapeutic
power of precision cancer medicine in genetically selected
patients. Building on structural and functional insights, several
lines of drug development efforts provided a rich source of
clinically available drugs including second-generation EGFR
inhibitors38–40. So far, these drugs played only a minor role for
the targeted treatment of EGFR-mutant tumors as they largely
failed to induce pronounced effects in patients that acquired a
gatekeeper EGFRT790M mutation22,41,42. Although second-
generation EGFR inhibitors bind irreversibly to EGFR these
drugs lack the flexibility to circumvent a steric clash with the
gatekeeper mutation22. Second-generation EGFR inhibitors are
also very potent inhibitors of EGFRWT and therefore these drugs
are likely to induce diarrhea or skin rash41. At the same time,
afatinib is an FDA-approved drug for first-line treatment of

EGFR-mutant LADC with a known on-target resistance profile
derived from preclinical models43,44.

Our clinical and functional characterization of the acquired
EGFRG724S resistance mutation suggests a revision of the prop-
erties and clinical liabilities that are associated with second-
generation EGFR inhibitors. This is becoming an even more
relevant issue in the light of the encouraging results achieved with
osimertinib in the front-line setting that might challenge the
standard use of first-generation EGFR inhibitors in EGFR mutant
patients13. First of all, the emergence of an EGFRG724S resistance
mutation is associated with loss of EGFRT790M-positive sub-
clones, and thus providing the right genetic context for the use of
second-generation EGFR inhibitors. These observations are in
line with previous reports on acquired osimertinib resistance that
frequently report a loss of EGFRT790M -positive clones15,16.
Although we cannot exclude the fact that additional signaling
layers including FAK or SFK or co-occuring mutations that were
not part of our panel may be involved in the observed resistance
phenotype45–47, our genomic and functional data strongly sup-
port a dominant role of the acquired EGFRG724S mutation in the
context of third-generation EGFR inhibitors. Thus, our findings
might be relevant for a large group of patients receiving third-
generation inhibitors. Interestingly, previous studies that char-
acterized resistance patterns to third-generation EGFR inhibitors
did not capture recurrent EGFRG724S mutations14,48. Although
our limited sample size precludes broad conclusion on the real
prevalence of this mutation it is conceivable that the size of the
previous studies or a potential compound selection bias (osi-
mertinib vs. rociletinib) may have underestimated the relevance
of EGFRG724S mutations as a potential resistance mechanism.
Our data indicate that EGFRG724S mutations seem to primarily
affect the reversible first step of third-generation inhibitor binding
within the ATP-binding pocket before irreversible attachment to
Cys797 can occur. We conclude that the observed fluctuation of
the glycine-rich loop plays a role in this phenotype, similar to
other systems where anti-correlations between flexibility and
ligand-binding affinity have been observed49,50. However,
although the kinetics of third-generation EGFR inhibitor binding
are perturbed dramatically, second-generation EGFR inhibitors
are potent enough to establish such a reversible binding despite
the EGFRG724S mutation. Thus, their liability in terms of an
efficient engagement of EGFRWT, in the context of EGFRG724S
resistance mutations turns into an asset.

Given the increasing number of patients receiving osimertinib
our data are of high clinical relevance. Importantly, our study
provides a molecular basis for the ability of EGFRG724S to induce
resistance and suggest that second-generation EGFR inhibitors
might overcome osimertinib resistance in these patients.

Methods
Experimental design. The aim of this study was to examine the effects of the
acquired EGFRG724S mutation that was observed in lung tumors that become
resistant to osimertinib treatment. We conducted systematic cellular, in vivo,
biochemical, and structural analyses to determine the functional relevance of this
mutation in the context of first-, second-, and third-generation EGFR inhibition.
To investigate the EGFRG724S mutation in combination with the different EGFR
inhibitors we used the mouse fibroblast cell line NIH-3T3 and female nude mice.
All experiments including immunoblotting, tumor volume measurement, soft agar
assays, and biochemical assays were performed at least three times. For the bio-
chemical analysis, we used activity-based assay for IC50-determination and kinetic
characterization. Each reaction was performed in duplicate, and at least three
independent determinations of each IC50 were made. To characterize the acquired
EGFRG724S resistance mutation on a molecular level we used structural modeling of
EGFR kinase and validated our observations using computational modeling of
publically available co-crystal structures. For detailed information please see
“Methods”. The local animal protection committee and the local authorities
approved all animal procedures. All patients consented into the analyses according
to the local practice.
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Patients, efficacy assessments, and sample collection. The four patients
included into this analysis were treated with the third-generation EGFR inhibitor
osimertinib within the AURA trial (NCT01802632), the compassionate use pro-
gram or clinical routine upon progression to EGFR-targeted therapy (P1–P4). One
patient, P2, also received treatment with the third-generation EGFR inhibitor
EGF816 within the CEGF816X2101 phase I trial (NCT02108964). All patients
consented to treatment according to the good clinical practice guideline and were
treated according to the trial protocol and/or local practice. Patients received
osimertinib at a dose of 80 mg qd and were treated until progression. Treatment
doses were adapted if necessary in case of toxicity and adverse events. Tumor
assessment was performed by computed tomography (CT) or 18FDG PET and
magnetic resonance imaging according to the specifications given in the trial
protocols and/or according to local standards. Efficacy was assessed using the
response evaluation criteria for solid tumors, version 1.1 in patients P1 and P3
(RECIST 1.1)51. In patients P2 and P4 RECIST evaluation was not feasible.
Response to osimertinib treatment was performed by 18FDG PET-CT in P2. In P4
baseline CT scan was older than 4 weeks, not fulfilling the requirements set up by
RECIST 1.1. In patients where RECIST evaluation was not possible, progression
was defined by the treating physician as growth of clinically significant lesions.
Biopsy collection was performed through core needle biopsy, excisional biopsy, or
cytology according to local standard procedures at time points T0 to T3. Samples at
time points T1, T2, and T3 were collected in progressing tumor lesions. All tumor
samples were fixed in formalin (4%) and embedded in paraffin (FFPE). To assess
the frequency of EGFRG724S in the setting of acquired resistance to third-
generation EGFR inhibitors, we analyzed FFPE tissue of patients from the Network
Genomic Medicine and collaborating institutions. EGFR-mutant NSCLC patients
who fulfilled the following criteria were included into the analysis: (1) sufficient
tumor tissue for genomic characterization, (2) progressive disease while on treat-
ment with a third-generation EGFR inhibitor. All patients consented into the
analyses according to the local practice.

Targeted next-generation sequencing. Tumor tissue of patients was genomically
characterized by massively parallel sequencing (MPS) and fluorescence in situ
hybridization (FISH), if feasible. Until March 2015, MPS was carried out with an
Ion AmpliSeq Custom DNA Panel (Thermo Fisher Scientific, Waltham, MA, USA)
(Lun3 panel) and a MiSeq benchtop sequencer (Illumina, San Diego, USA). As
from March 2015 MPS was carried out with a GeneRead DNAseq Custom Panel
V2 (Qiagen, Hilden, Germany) consisting of 205 amplicons (Lun4 panel). Library
preparation was performed according to the GeneRead DNAseq Gene Panel
Handbook (Qiagen) as described earlier52.

Cell viability. In all, 5000 Ba/F3 cells/well were seeded in triplicates in a white-
bottom 96-well plate in 90 μl media/well. Compounds were prepared by serial
dilution. Dimethyl sulphoxide was added to control wells in the highest dilution
used in the assay. The cells were treated for 72 h with the compounds following
determination of ATP content as surrogate for viability by CellTiter-Glo® assay
(CTG) (Promega). CTG was incubated for at least 20 min on the cells without light.
Luminiscence was assessed on an Infinite 200 Pro microplate reader (Tecan). Data
were analyzed and plotted in PRISM.

Cell culture. NIH-3T3 cells were cultured in Dulbecco's Modified Eagle's medium
(DMEM) with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific) and 1%
penicillin–streptomycin (Thermo Fisher Scientific). Ba/F3 cells were cultured in
Roswell Park Memorial Institute with 20% FBS and 1% penicillin–streptomycin
(Thermo Fisher Scientific). The cells were incubated at 37 °C and 5% CO2 in a
humidified incubator. Cell lines expressing recombinant EGFR variants were
generated by retroviral transduction. In brief, cDNA sequences encoding
EGFRE746-S752del, EGFRG724S, or EGFRE746-S752del+G724S were cloned into a
pBabe-puro vector and co-transfected with pCL-Eco helper plasmid into HEK
293T cells using TransIT-LT1 reagent (Mirus). After 48 h of transfection, retroviral
particles were collected for infection of NIH-3T3 cells and Ba/F3 cells. After 24 h of
infection, medium was replenished with growth medium containing puromycin
(3 µg/ml) to select for transduced cell clones. Cells were treated with first-, second-,
and third-generation EGFR inhibitors (erlotinib, osimertinib, rociletinib (Sell-
eckchem), and afatinib (LC Laboratories)) with different concentrations. Ba/F3
cells were a kind gift from Nikolas von Bubnoff. NIH-3T3 cells were purchased
from the “Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ)
and the HEK 293T were purchased from the American Type Culture Collection
(ATCC)”. All cell lines were authenticated with the STR method and were tested
negative for mycoplasma contamination by qPCR analyses from GATC Biotech
services.

Soft agar assays. On a layer of 1% bottom agar (Sigma-Aldrich) 10000 NIH-3T3
cells per well of a 12-well plate were suspended in DMEM (Thermo Fisher Sci-
entific) containing 0.6% agar, 10% calf serum (PAA Laboratories), 0.5% sodium
bicarbonate (PAN Biotech) and 1% sodium pyruvate (Thermo Fisher Scientific).
After 16 days incubation pictures were taken with a Zeiss Axiovert 40 CFL
microscope at × 100 magnification and colony size was assessed with ImageJ
(http://rsbweb.nih.gov/ij/).

Immunoblotting. For immunoblot analysis, cells were harvested and lysed in cold
lysis buffer in the presence of protease and phosphatase inhibitors (Cell Signaling).
Equal amounts (20 µg) of protein were separated on 4–20% Novex Tris-Glycine
gels (Invitrogen), blotted on polyvinylidene difluoride membranes and incubated
with specific primary antibodies and fluorescently labeled secondary antibodies
(IRDye, LI-COR). Proteins were detected with the Odyssey CLx imaging system
(LI-COR). Protein levels were quantified with ImageStudio (LI-COR) and nor-
malized to loading control. The following primary antibodies were used: total
EGFR (Cell Signaling #2232, dilution 1:1000), HSP90 (Cell Signaling #4877, dilu-
tion 1:1000), p-EGFR Tyr1068 (Invitrogen #36-9700, dilution 1:1000). Anti-rabbit
IgG (Cell Signaling #5151, 1:10000) was used as secondary antibody. Uncropped
raw blots corresponding to data in Figs. 2a, 2b, 4c, and 5d can be found in the
Supplementary Information.

Xenograft models. The local animal protection committee and the local autho-
rities approved all animal procedures. Osimertinib (Cayman Chemical) was dis-
solved in 0.5% (Hydroxypropyl-) methylcellulose (Sigma-Aldrich) to a final
concentration of 20 mg/ml. Osimertinib was administered daily up to 12 days at a
dose of 5 mg/kg and afatinib at a dose of 20 mg/kg by oral gavage. NIH-3T3
EGFR19del and NIH-3T3 EGFR19del+G724S cells were resuspended in serum-free
DMEM medium with 1% penicillin–streptomycin (Thermo Fisher Scientific) (at a
concentration of 2 × 106 cells in 100 μl) and injected subcutaneously in both flanks
of 8–12 weeks old female nude mice (RJ:NMRI-FOXN1 NU, Janvier Labs). Upon
formation of palpable subcutaneous tumors (200–300 mm3 tumor volume), mice
were treated with vehicle solution (Hydroxypropyl-) methylcellulose (0.5%) or with
osimertinib. Tumor size was monitored every second day by measurement of
perpendicular diameters by an external caliper and calculated by use of the
modified ellipsoid formula: V= 0.5×(length×width2). Mice were killed and sub-
cutaneous tumors were resected and fixed in 4% formalin for 24 h and embedded
in paraffin. The harvested tumor samples were stained against the apoptotic-
marker Cleaved Caspase-3, and the proliferation marker Ki67. For a quantification
purpose, each marker was quantified using ten high-power-field (× 400) pictures
and the median was calculated for the given marker.

Immunohistochemical staining. Tissue samples were incubated in 4% formalin
overnight and subsequently embedded in paraffin. For tissue analysis, 3–5 μm
sections were cut, de-paraffinized, and antigen retrieval was performed using either
citrate at pH 6.0, or ethylenediaminetetraacetic acid (EDTA) at pH 9.0 for 20 min.
Washing steps were performed using phosphate-buffered saline. Primary anti-
bodies were purchased from Cell Signaling (Cleaved Caspase-3, #Asp175, dilution
1:100) and Cell Marque (Ki67, #SP6, dilution 1:100). Corresponding secondary
antibody detection kits were used from Histofine® Simple stain and stained on an
automated stainer (LabVision Autostainer 480S; Thermo Fisher).

Computational modeling. The structure 4ZAU deposited in the PDB was used as
basic template for modeling the noncovalently bound EGFR-osimertinib complex.
Missing residues were obtained from PDB entries 5CZH53 for residues 748–755
(LREATSPKA/LREATSPKA), 863–865 (GAE/GAE), 873–874 (GG/GG), 985–991
(ERMHLP/ERMHLP), 1003–1007 (DEEDM/DEEDM) and from 3PP054 for resi-
dues 748–755 (LREATSPKA/LRENTSPKA), 863–865 (GAE/GAE), 874 (G/G),
991–1001 (SPTDSNFYRAL/PLDSTFYRSLL). Terminal regions 693–697 and
1018–1022 were truncated, the mutation G724S and the still missing residue 1002
were introduced by Modeller 9.1455. For MD simulations, the proteins and ligand
were treated by the ff14SB force field56 and the GAFF model57, respectively, within
AMBER 1458. The resulting simulation system for the wild type consisted of 24,358
TIP3P water molecules, seven sodium cations59, 5158 protein atoms, and 72 ligand
atoms. The G724S system was composed of 25,651 TIP3P molecules, 7 sodium
cations, 5162 protein atoms, and 72 ligand atoms. For both, EGFRWT and
EGFRG724S mutation, the same simulation protocol was used, starting with a
geometry optimization down to a final RMS gradient of 0.0001 kcal mol−1 Å−1

followed by 4 ns heating to 298.15 K in the canonical ensemble (Langevin ther-
mostat) while applying harmonic restraints on protein Cα atoms. The resulting
system was then simulated over 4 ns in the isothermal–isobaric ensemble
(Berendsen barostat) at 1 bar pressure, also under der action of restraints. Finally,
restraints except for fixed hydrogen bond distances were removed and the systems
were run over 200 ns with a 2 fs time step using AMBER 1658. The stability of the
simulations systems was checked by computing the structural root mean square
deviations (RMSD) of Cα atoms from the respective initial snapshots of the pro-
duction runs over time. (Supplementary Fig. 3C). The final 100 ns were used for
clustering structures taken every 10 ps using the DBSCAN algorithm60 in AMBER
16 with distance cutoffs 1.18 Å (EGFRWT) and 1.205 Å (EGFRG724S) and a mini-
mum number of points to form a cluster set to 5. Final structures were obtained
from centroids of the maximally populated clusters by geometry optimization in an
implicit water environment (ALPB)61. RMSF fluctuations were computed over the
final 100 ns and mapped onto the resulting structures (Supplementary Data 1–4)
for further analysis. These structures were then modified by Modeller 9.1455 to
generate starting models for the simulation of EGFR19del and EGFR19del+G724S

complexes by deleting residues 746 to 750 followed by system preparation steps as
before, yielding 24271 water molecules, six sodium ions, 5075 protein- and 72
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ligand atoms for EGFR19del and 26,866 water molecules, six sodium ions, 5079
protein- and 72 ligand atoms EGFR19del+G724S. Trajectories were generated and
analyzed as before, using the last 75 ns (see RMSD plot Supplementary Fig. 3A) for
clustering (DBSCAN cutoffs of 1.16 Å for EGFR19del and EGFR19del+G724S) and
RMSF calculations. The simulations of the pure deletion and the double-mutant
complexes were performed in order to check the independence of the system
stability and fluctuation analysis of the initial conditions.

Activity-based assay and kinetic characterization. For biochemical assays
EGFRWT, EGFRL858R, and EGFRL858R+T790M were purchased from Carna
Bioscience (lot13CBS-0005K for EGFRWT; Carna, lot13CBS-0537B for EGFRL858R;
and Carna, lot12CBS-0765B for EGFRL858R+T790M). However, EGFR19del and
EGFR19del+G724S were expressed and purified as follows. First DNA-encoding
residues compromising the juxtamembrane segment, the kinase domain and the C-
terminal tail of human EGFR (UniProt entry P00533, residues 695–1210) were
synthesized (GeneArt, Life Technologies). The construct was cloned into pIEX/
Bac3 expression vector (MerckMillipore), using BamHI and Bsu36I restriction
sites. Mutations were introduced by side-directed mutagenesis (QuikChange,
Stratagene/Agilent Technologies). Transfection, virus generation, and amplification
were carried out in Spodoptera frugiperda cell line Sf9 following the BacMagic
protocol.

After three days of expression (27 °C, 110 rpm) the cells were harvested
(3000 × g, 20 min), resuspended in buffer A (50 mM Tris, 500 mM NaCl, 10%
glycerol, 1 mM dithiothreitol, pH 8) and homogenized by french press. The lysate
was cleared by centrifugation at 40,000 × g for 1 h at 4 °C and loaded on a
prepacked column (Glutathione HiCap from Qiagen). The elution was done with a
gradient of buffer B (buffer A+ 10 mM glutathione). For the final purification step
the fractions containing the target protein were combined, concentrated and
applied to a HiLoad 16/600 superdex 75 pg column (GE Healthcare) in buffer C
(25 mM TRIS, 250 mM NaCl, 10% glycerol, pH 8). The purified protein was
concentrated to 5 mg/mL and stored at − 80 °C until further use. Protein identity
was confirmed by ESI-MS analysis. IC50-determinations for EGFR and its mutants
were performed with the HTRF KinEASE-TK assay from Cisbio according to the
manufacturer’s instructions. Briefly, the amount of EGFR in each reaction well was
set to 0.60 ng of EGFRWT (0.67 nM), 0.10 ng of EGFRL858R (0.11 nM), 0.07 ng of
EGFRL858R+T790M (0.08 nM), 1 ng of EGFR19del (1.1 nM) and 0.10 ng of
EGFR19del+G724S (0.11 nM). An artificial substrate peptide (TK-substrate from
Cisbio) was phosphorylated by EGFR. After completion of the reaction (reaction
times: 25 min for WT, 15 min for EGFRL858R, 20 min for EGFRL858R+T790M,
15 min for EGFR19del and 25 min for EGFR19del+G724S), the reaction was stopped
by addition of buffer containing EDTA as well as an antiphosphotyrosine antibody
labeled with europium cryptate and streptavidin labeled with the fluorophore
XL665. FRET between europium cryptate and XL665 was measured after an
additional hour of incubation to quantify the phosphorylation of the substrate
peptide. An EnVision multimode plate reader (PerkinElmer) was used to measure
the fluorescence of the samples at 620 nm (Eu-labeled antibody) and 665 nm
(XL665 labeled streptavidin) 50 μs after excitation at 320 nm. The quotient of both
intensities for reactions made with eight different inhibitor concentrations was then
analyzed using the Quattro Software Suite for IC50-determination. Each reaction
was performed in duplicate, and at least three independent determinations of each
IC50 were made. For kinetic characterization (kinact/Ki), the inhibitors were
incubated with EGFR-mutants over different periods of time (2−90 min), whereas
durations of enzymatic and stop reactions were kept constant as stated above. A
sixfold dilution series (eight data points per IC50 curve) starting at 20 μM final
compound concentrations was applied. Calculated IC50-values were plotted versus
incubation time, and data were fit as described in the literature to determine kinact
and Ki

37. MAb PT66-Eu cryptate (61T66KLB) stock solution was prepared
according to manufactures instructions and diluted 1:1 with detection buffer for
activity-based assay.

MET and HER2 FISH analyses. FISH was performed for determination of MET
gene copy number using ZytoLight SPEC MET/CEN7 Dual Color Probe (Zyto-
Vision). High-level amplification was defined in tumors with (a) MET/CEN7
ratio ≥ 2.0 or (b) an average MET gene copy number per cell of ≥ 6.0, or (c) ≥ 10%
of tumor cells containing ≥ 15 MET signals. Intermediate level of gene copy
number gain being defined as (a) ≥ 50% of cells containing ≥ 5MET signals and (b)
criteria for high-level amplification are not fulfilled. Low level of gene copy number
gain was defined as (a) ≥ 40% of tumor cells showing ≥ 4 MET signals and (b)
criteria for high-level amplification or intermediate level of gene copy number gain
are not fulfilled. All other tumors were classified as negative. For determination of
HER2 (ERBB2) status FISH was performed using a ZytoLight SPEC ERBB2/CEN17
Dual Color Probe (ZytoVision). Amplification status was classified in analogy to
the recommendations of the American Society of Oncology for HER2 testing in
breast cancer. Amplification of HER2 was positive if (a) ERBB2/CEP17 ratio ≥ 2.0
or (b) HER2 GCN ≥ 6.0.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5
(GraphPad Software Inc). Data obtained from mice tumor analysis and in vitro
assays were subjected to unpaired Student’s t test. Data are plotted as means ±

standard error of the mean. Quantification of high-power-field analysis was cal-
culated by Mann–Whitney U test.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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Drugging the catalytically inactive state of RET kinase
in RET-rearranged tumors
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Rakhee Chauhan,3 Phillip P. Knowles,3 Carina Lorenz,1,2 Marina Keul,4 Mike Bührmann,4

Oliver Pagel,5 Verena Tischler,2 Andreas H. Scheel,6 Daniel Schütte,2 Yanrui Song,7 Justina Stark,4

Florian Mrugalla,4 Yannic Alber,4 André Richters,4 Julian Engel,4 Frauke Leenders,8

Johannes M. Heuckmann,8 Jürgen Wolf,9 Joachim Diebold,10 Georg Pall,11 Martin Peifer,2

Maarten Aerts,12,13 Kris Gevaert,12,13 René P. Zahedi,5 Reinhard Buettner,6 Kevan M. Shokat,14

Neil Q. McDonald,3,15 Stefan M. Kast,4 Oliver Gautschi,10† Roman K. Thomas,2,9,16† Martin L. Sos1,2†‡

Oncogenic fusion events have been identified in a broad range of tumors. Among them, RET rearrangements
represent distinct and potentially druggable targets that are recurrently found in lung adenocarcinomas. We
provide further evidence that current anti-RET drugs may not be potent enough to induce durable responses in
such tumors. We report that potent inhibitors, such as AD80 or ponatinib, that stably bind in the DFG-out con-
formation of RET may overcome these limitations and selectively kill RET-rearranged tumors. Using chemical
genomics in conjunction with phosphoproteomic analyses in RET-rearranged cells, we identify the CCDC6-
RET I788N mutation and drug-induced mitogen-activated protein kinase pathway reactivation as possible me-
chanisms by which tumors may escape the activity of RET inhibitors. Our data provide mechanistic insight into
the druggability of RET kinase fusions that may be of help for the development of effective therapies targeting
such tumors.

INTRODUCTION
Targeted inhibition of oncogenic drivermutationswith smallmolecules
is a cornerstone of precision cancermedicine.RET rearrangements have
been identified in a broad range of tumors, including 1 to 2% of lung
adenocarcinomas, and their discovery sparked the hope for an effective
treatment option in these patients (1–3). However, when compared to
other oncogenic “driver” alterations, such as rearranged anaplastic lym-
phoma kinase (ALK), rearranged RET seems to be a difficult target, and
to date, no drug has been successfully established for the treatment of
these tumors (4–6). Recent clinical data suggest that overall response
rates in patients treated with currently available RET-targeted drugs
are rather limited and range between 18 and 53% (7–10). Improved se-
lection of patients based on deep sequencing of individual tumors may

help increase these response rates, but still progression-free survival
seems to be very limited (7, 8, 10, 11). These observations are particu-
larly surprising from a chemical point of view because a broad spectrum
of kinase inhibitors is known to bind to RET and to inhibit its kinase
activity in vitro (6, 12). On the basis of these observations, we sought to
characterize rearranged RET in independent cancer models to identify
potent RET inhibitors with high selectivity and optimal biochemical
profile to target RET-rearranged tumors.

RESULTS
Kinase inhibitor AD80 shows extraordinary activity in
RET-rearranged cancer models
Because clinical experience with RET-targeted drugs in lung cancer
patients is rather disappointing, we sought to test a series of clinically
and preclinically available drugs with anti-RET activity in Ba/F3 cells
engineered to express either KIF5B-RET or CCDC6-RET (1, 2, 12, 13).
In these experiments, AD80 and ponatinib exhibited 100- to 1000-fold
higher cytotoxicity compared to all other tested drugs inRET-dependent,
but not interleukin-3–supplemented, Ba/F3 cells (Fig. 1A and fig. S1, A
and B). In line with these results, AD80, but not cabozantinib or vande-
tanib, prevented the phosphorylation of RET as well as of extracellular
signal–regulated kinase (ERK), AKT, and S6K at lownanomolar concen-
trations in kinesin family member 5B (KIF5B)–RET–expressing Ba/F3
cells (Fig. 1B and table S1). These data are in line with our own retro-
spective analysiswhere out of four patientswithRET-rearranged tumors,
we observed only one partial response in a patient receiving vandetanib
(P2) as first-line treatment (fig. S1, C to E, and table S2, A and B) (9).
Sequencing of rebiopsy samples did not reveal candidate drug resistance
mutations, suggesting that the target had been insufficiently inhibited
(table S2C).

To validate the efficacy of AD80 and ponatinib in an alternative
model, we induced KIF5B-RET rearrangements (KIF5B exon 15; RET
exon 12) in NIH-3T3 cells using clustered regularly interspaced short
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palindromic repeats (CRISPR)/Cas9–meditated genome editing. We
confirmed their anchorage-independent growth, increased proliferation
rate, and high sensitivity to AD80 and ponatinib (Fig. 1C and fig. S2, A
to C) (14). Again, treatment with AD80, but not cabozantinib or van-
detanib, led to inhibition of phosphorylated RET (phospho-RET) and
of downstream effectors of RET signaling at low nanomolar concentra-
tions (Fig. 1D). AD80 led to dephosphorylation of S6 also in parental

NIH-3T3 cells and Ba/F3myr-AKT control
cells, suggesting that S6 may represent
an off-target at micromolar concentra-
tions (Fig. 1D and fig. S2D) (13).

To further substantiate our results,
we next tested our panel of RET inhibi-
tors in the CCDC6-RET rearranged lung
adenocarcinoma cell line LC-2/AD (15).
We observed similar activity profiles with
AD80 followed by ponatinib as the most
potent inhibitors compared to all other
tested drugs in terms of cytotoxicity at
low nanomolar concentrations (Fig. 1E)
and inhibition of phospho-RET and other
downstream signaling molecules (Fig. 1F).
Overall, our data suggest that in RET-
rearranged cells, AD80 and ponatinib are
100- to 1000-fold more effective against
RET and its downstream signaling than
any other clinically tested anti-RET drug.

AD80 and ponatinib effectively
inhibit RET kinase in
DFG-out conformation
We benchmarked the genotype-specific
activity of AD80 and ponatinib against
well-described kinase inhibitors, such as
erlotinib, BGJ398, vandetanib, cabozan-
tinib, regorafenib, alectinib, and ceritinib,
in a panel of 18 cancer cell lines driven by
known oncogenic lesions, such as mutant
epidermal growth factor receptor (EGFR)
or rearranged ALK, including two RET-
rearranged cell lines (LC-2/AD and TPC-
1) (fig. S3A) (6, 12, 16). Again, we identified
AD80 and ponatinib as the most effective
drugs and, through the calculation of
median on-target versus off-target ratios,
also as the most specific drugs in RET
fusion–positive cells (fig. S3B and table S3).

To further characterize intracellular
signaling induced by an RET inhibitor,
such as AD80, we performed mass
spectrometry–based phosphoproteomic
analyses of LC-2/AD cells treated with
10 or 100 nM AD80. In AD80-treated
cells, we observed a significant decrease
of RETY900 phosphorylation with log2-
fold changes of −1.07 (P = 0.009; 10 nM
AD80) and −2.11 (P = 0.0002; 100 nM
AD80), respectively (Fig. 2A). Among
all phosphopeptides quantified under

control, 10 nM, and 100 nM conditions (n = 11912), the abundance
of RETY900 was among the most decreased phosphopeptides (control
versus 100 nM AD80; P = 0.00024) and the most decreased receptor
tyrosine kinases (fig. S3C). These results highlight that in these cells,
RET is the primary target of AD80.

On the basis of these observations, we speculated that activation
of RET-independent signaling pathways should largely abrogate the

Fig. 1. Cellular profiling of RET inhibitors identifies AD80 and ponatinib as potent compounds. (A) Dose-
response curves (72 hours) for AD80, cabozantinib (CAB), vandetanib (VAN), alectinib (ALE), regorafenib (REG), sora-
fenib (SOR), ponatinib (PON), crizotinib (CRI), ceritinib (CER), or PF06463922 (PF06) in KIF5B-RET–expressing Ba/F3 cells
(n = 3 technical replicates). (B) Immunoblotting results of KIF5B-RET–rearranged Ba/F3 cells after treatment (4 hours). C,
control. (C) Relative mean colony number of NIH-3T3 cells engineered with KIF5B-RET fusion by CRISPR/Cas9 was
assessed in soft agar assays after 7 days under treatment. Representative images of colonies under AD80 treatment
are displayed in the lower panel. Scale bars, 100 mm (n = 3) (D) Immunoblotting of CRISPR/Cas9-engineered, KIF5B-
RET–rearranged NIH-3T3 cells treated with AD80, cabozantinib, or vandetanib (4 hours). KIF5B-RET expressing Ba/F3 cells
(Ba/F3 ctrl.) serve as control for RET signaling (n = 3) (E) Dose-response curves (72 hours) for different inhibitors in LC-2/AD
cells. (F) Immunoblotting was performed in LC-2/AD cells treated with AD80, cabozantinib, or vandetanib (4 hours).
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cytotoxic effects of AD80. To this end, we supplemented LC-2/AD
cells with exogenous receptor ligands and found that the activity of
AD80 was significantly reduced (P ≤ 0.05) through the addition of
EGF, hepatocyte growth factor, and neuregulin 1, indicating that
RET is the primary cellular target in RET-rearranged LC-2/AD cells
(fig. S4A).

To further characterize the high potency of AD80 and ponatinib
against RET kinase fusions, we expressed and purified different trun-
cated versions of the RET core kinase and juxtamembrane-kinase do-
main, as well as truncated forms of both coiled-coil domain containing
6 (CCDC6) (DCCDC6-KD) and KIF5B (DKIF5B-KD) kinase domain
fusions (fig. S4, B and C) (17). We used these different RET fusion
kinase domain constructs to determine the extent to which binding
of a given compound has an effect on protein thermal stability, as
measured by the melting temperature (Tm). The difference in melting
temperature with and without drug (DTm) extrapolates the potency of
the individual drugs against the respective constructs (17). To our sur-
prise, we found that treatment with the type I inhibitors sunitinib or
vandetanib resulted in a DTm of only 1° to 4°C, whereas the type II
inhibitors sorafenib, ponatinib, or AD80 increased the DTm of up to
10° to 18°C (Fig. 2B and fig. S4, D to H). We observed the strongest
effects in DKIF5B-KD and DCCDC6-KD constructs treated with
AD80 and core KD with ponatinib (Fig. 2B, fig. S4D, and table S4).
Such a shift for inhibitors that stabilize the catalytically inactive con-
formation of RET kinase, inwhich theDFGmotif is flipped out (DFG-
out) relative to its conformation in the active state (DFG-in), does not
correlate with the differential in vitro kinase activity observed for sora-
fenib and other RET inhibitors (table S5) (6, 18).

To further characterize the relevance of a DFG-out conformation
for the activity of RET inhibitors, we performed structural analyses.
We used homology modeling based on a vascular EGFR (VEGFR) ki-
nase [Protein Data Bank (PDB) code 2OH4 (19)] in the DFG-out
complex similar to a previously published methodology (20), followed
by extensive molecular dynamics (MD) simulation refinement.We ob-
served that the root mean square deviation (RMSD) values remained
largely stable over the time course of the MD simulation (RETwt and
RETV804M), thus supporting our proposedmodel in which AD80 binds

in the DFG-out conformation of the kinase (fig. S5A). In this model,
AD80 forms a hydrogen bond (H-bond) with the aspartate of the
DFG motif that may be involved in the stabilization of the DFG-out
conformation (Fig. 3A). A similarH-bond is also observed for cabozan-
tinib, a known type II inhibitor, bound to RETwt (fig. S5B; see the Sup-
plementaryMaterials andMethods formodel generation). This finding
corroborates the validity of our binding mode hypothesis, although the
pose is biased by construction, being based on the refined RETwt/AD80
structure. Furthermore, we developed a binding pose model for AD57
(derivative of AD80) bound to RETwt (see below), which, upon super-
imposition, displays considerable similarity with the experimentally
determined structure of AD57 bound to cSrc (PDB code 3EL8) in
the DFG-out form, again validating our approach (figs. S4H and
S5C). Next, we performed free energy MD simulations to transform
AD80 into AD57. The calculations yielded a binding free energy
difference of DDG° = −0.21 ± 0.17 kcal mol−1 at 25°C, which compares
well with the values derived from median inhibitory concentration
(IC50) in in vitro kinase measurements. These latter concentration-
based measurements of binding affinity translate into an experimental
estimate of the binding free energy difference of −0.41 kcal mol−1 with
IC50(AD57) of 2 nM and IC50(AD80) of 4 nM (see the Supplementary
Materials and Methods) (13). Using an integral equation approxima-
tion as an alternative computational approach, we obtained 0.1 kcal
mol−1, also in close correspondence with both the MD and experimen-
tal results. Thus, these analyses further support the proposed DFG-out
conformation as the preferred binding mode because such agreement
between the experiment and the theorywould not have been expected if
the true and predicted binding modes were largely dissimilar.

Overall, our cellular screening, phosphoproteomic, biochemical,
and structural data indicate that potent type II inhibitors, such as
AD80 or ponatinib, have an optimal RET-specific profile that distin-
guishes them from currently available anti-RET drugs.

Introduction of RET kinase gatekeeper mutation reveals
differential activity of RET inhibitors
Secondary resistance mutations frequently target a conserved residue,
termed gatekeeper, that controls access to a hydrophobic subpocket of

Fig. 2. AD80 specifically targets RET and tightly binds to RET fusion kinase. (A) Scatterplot of log2-fold phosphorylation change for LC-2/AD cells treated (4 hours)
with either 10 or 100 nM AD80. Each dot represents a single phosphosite; phospho-RET (Y900) is highlighted in red. (B) Difference in melting temperatures after AD80,
sorafenib (SOR), vandetanib (VAN), or sunitinib (SUN) addition (DTm) and the respective SEM are shown for each construct. Thermal shift experiments were performed
using independent preparations of each protein and were carried out in triplicates (left). Representative thermal melting curves for DKIF5B-KD incubated with either
AD80 (1 mM) or the equivalent volume of dimethyl sulfoxide (DMSO) (ctrl.) are shown (right).
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the kinase domain (21). To test the impact of the gatekeeper resistance
mutations on RET inhibitors, we established Ba/F3 cells expressing
KIF5B-RETV804M or CCDC6-RETV804M and tested them against a panel
of different drugs. As expected, only ponatinib and AD80 showed
high activity in these gatekeeper mutant cells (Fig. 3B) (22). Similar
activity was observed when testing the AD80 derivatives AD57 and
AD81 for their inhibitory potential on Ba/F3 cells expressing wild-type
andV804M-mutatedKIF5B-RET orCCDC6-RET (fig. S6A). This effect
was also evident in the ability of AD80 to inhibit phosphorylation
of RET as well as of ERK, AKT, and S6K in these cells (Fig. 3C and

table S1). Next, we used computational
homology modeling coupled with MD
refinement of AD80 in RETwt in com-
parison with RETV804M-mutant kinases.
In line with our in vitro results, this anal-
ysis revealed high structural similarity and
similar binding free energy estimates for
both variants (−2.5 kcal mol−1 for
transforming RETwt to RETV804M bound
toAD80 from the integral equationmodel)
(seeFig.3AandtheSupplementaryMaterials
and Methods).

Inparallel,wenoticed that independent
of the individual treatment, RETphospho-
rylation tended to be higher in gatekeeper
mutant cells when compared to wild-type
RET (Fig. 3D). To further characterize
these differences, we performed in vitro
kinase assays and found that the introduc-
tion of theRETV804Mmutation significantly
(P < 0.001) increases the affinity of the re-
combinant receptor for adenosine 5′-
triphosphate (ATP) when compared to
the recombinant wild-type receptor (Fig.
3E). Thus, similar to gatekeeper-induced
effects on ATP affinity observed for
EGFRT790M mutations, our data suggest
that these effects may be of relevance for
the activity of RET inhibitors in KIF5B-
RETV804M andCCDC6-RETV804M cells (23).

Saturated mutagenesis screening
identifies CCDC6-RETI788N drug
resistance mutation
To identify RET kinase mutations that
may be associated with resistance against
targeted therapy,weperformedaccelerated
mutagenesis of RET fusion plasmids
(24, 25).WeidentifiedtheCCDC6-RETI788N

mutation by selection of an AD80-resistant
cell population (table S6). To validate this
finding, we engineered Ba/F3 cells ex-
pressing KIF5B-RET I788N or CCDC6-
RETI788N and observed a robust shift in
cytotoxicity in response to AD80 treat-
ment (Fig. 4A), as well as the other RET
inhibitors, cabozantinib and vandetanib,
but not ponatinib (Fig. 4B and fig. S6B).
Immunoblotting confirmed that the in-

troduction of the KIF5B-RET I788N mutation had a minor effect on
the efficacy of ponatinib but a major impact on AD80, as measured
by phospho-RET analysis (Fig. 4, C and D). Computational binding
mode analysis (Figs. 3A and 4E) suggests that both positions 804 and
788 are adjacent to the location of the central phenyl ring of AD80;
characteristic distances between the phenyl center ofmass and the near-
est adjacent protein nonhydrogen sites to Val804-C(wt), Ile788-C(wt),
Met804-S(V804M), and Ile788-C(V804M) are 4.77, 3.90, 4.29, and 4.61
Å, respectively.However, becauseV804Mand I788Nmutants responded
differently to AD80, a clear conclusion about the molecular origin was

Fig. 3. AD80 is active against gatekeeper mutant RETV804M cells. (A) Optimized structures after extensive MD
refinement followed by ALPB optimization. (i) RETwt/AD80 after 102 ns, (ii) RETwt/AD57 after 202 ns (92 ns from
RETwt/AD80 simulation followed by 110 ns from TI-MD), and (iii) RETV804M/AD80 after 107 ns (side view). The DFG motif
is shown in violet. Distances from the center of central phenyl to Val804-C(wt), Ile788-C(wt), andMet804-S(V804M) are 4.77,
3.90, and 4.29 Å, respectively. Dashed lines indicate the H-bond between the bound ligands and aspartate of the DFG
motif. (B) Heat map of mean 50% growth inhibition (GI50) values (n ≥ 3) of Ba/F3 cells expressing CCDC6-RETV804M or
KIF5B-RETV804M after 72 hours of treatment, as assessed for various inhibitors. (C) Immunoblotting of AD80-, cabozanti-
nib-, or vandetanib-treated (4 hours) KIF5B-RETV804M Ba/F3 cells. (D) Immunoblotting of Ba/F3 cells expressing CCDC6-
RET-RETwt or CCDC6-RETV804M under AD80 or vandetanib treatment (4 hours). wt, wild type. (E) Calculated Michaelis
constant (Km) values of ATP binding to RETwt or RETV804M from three independent experiments. ***P < 0.001, n = 3.
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not possible based on structural analysis alone, requiring further inves-
tigations. Thus, our data uncovered a resistance mutation RETI788N

that may arise in RET-rearranged tumors under RET inhibitor treat-
ment and that retains sensitivity against ponatinib.

Feedback-induced activation of MAPK signaling modulates
activity of RET inhibitors
Beyond the acquisition of secondary mutations, drug treatment of
cancer cells may also release feedback loops that override the activity
of targeted cancer treatment (26, 27). To systematically characterize
these effects, we analyzed altered gene expression by RNA-sequencing
(RNA-seq) of LC-2/AD cells under AD80 treatment and performed
gene set enrichment analysis (GSEA) (28). Our analyses revealed that
treatment with AD80 results in up-regulation of genes that are typi-

cally repressed by active KRAS (KRAS
down; adjusted P < 0.0001). On the con-
trary, genes that are activated by KRAS
were down-regulated (KRAS up; adjusted
P=0.003) (Fig. 5A).Accordingly, the list of
significantly down-regulated genes con-
tained DUSP6 (adjusted P < 1 × 10−250),
SPRY4 (adjusted P= 5.75 × 10−89),DUSP5
(adjusted P = 2.52 × 10−38), and other
genes that buffer mitogen-activated pro-
tein kinase (MAPK) pathway (Fig. 5B)
(29). This transcriptional deregulation
of MAPK signaling was accompanied by
residual phospho-ERK staining in immu-
noblotting analyses of RET-rearranged
LC-2/AD cells after 24 hours of inhibitor
treatment (fig. S6C). Using a Group-based
Prediction System (GPS 2.12) to identify
kinase-specific phosphosites that are
perturbed in AD80-treated LC-2/AD
cells assessed in our mass spectrometry–
based analysis, we identified a marked
enrichment of phosphosites known from
different families of noncanonical MAPK
kinases (MEKs), such as MAPK8 (66
phosphosites), MAPK13 (21 phospho-
sites), or MAPK12 (15 phosphosites)
(Fig. 5C).

We next tested the relevance of Ras-
MAPK pathway reactivation in RET-
rearranged cells treated with AD80 alone
or a combination of AD80 and the MEK
inhibitor trametinib. In TPC-1 cells with
limited vulnerability to RET inhibition,
we observed a pronounced phospho-ERK
signal in cells after inhibition with AD80
when compared to LC-2/AD cells (fig.
S6D). The combination of AD80 and
trametinib fully abrogated MAPK signal-
ing and depleted the outgrowth of resist-
ant cells in clonogenic assays and enhanced
the reduction of viability (Fig. 5D and fig.
S6, E and F).

To formally test the relevance of
MAPK pathway activation in the context

of resistance to RET-targeted therapies in RET-rearranged cells, we
stably transduced LC-2/AD cells with lentiviral KRASG12V. Introduc-
tion of the oncogenic KRAS allele into LC-2/AD cells largely elimi-
nated the activity of AD80, as measured in viability assays and by
staining of phospho-ERK (Fig. 5, E and F). Overall, our data suggest
that drug-induced transcriptional and posttranslational reactivation
of Ras-MAPK signaling may modulate the activity of RET-targeted
inhibitors in RET-rearranged cells.

AD80 potently shrinks RET-rearranged tumors in
patient-derived xenografts
To compare the in vivo efficacy of AD80 head-to-head with other
RET inhibitors, we engrafted NIH-3T3 cells driven by CRISPR/
Cas9-induced KIF5B-RET rearrangements into NSG (nonobese

Fig. 4. RETI788N mutations abrogate the activity of AD80 but not ponatinib. (A) Dose-response curves for AD80
against Ba/F3 cells expressing KIF5B-RETwt (black) or KIF5B-RETI788N (red) and CCDC6-RETwt (black dashed line) or CCDC6-
RETI788N (red dashed line) (n= 3). (B) Bar graph ofmeanGI50 values + SD (from n= 3) for KIF5B-RETwt or KIF5B-RETI788N Ba/
F3 cells treated (72 hours) with AD80, cabozantinib (CAB), vandetanib (VAN), or ponatinib (PON). ***P < 0.001; **P < 0.01;
n.s., not significant. (C) Immunoblot of Ba/F3 cells expressing KIF5B-RETwt or KIF5B-RETI788N and CCDC6-RETwt or CCDC6-
RETI788N treated (4 hours)withAD80. (D) Immunoblot of KIF5B-RETwt, KIF5B-RETV804M, or KIF5B-RETI788N expressingBa/F3 cells
treated (4 hours) with ponatinib. HSP90 is used as loading control. (E) Optimized structure after extensive MD refine-
ment followed by ALPB optimization. RETwt/AD80 after 102 ns (side view). Distance from the center of central phenyl
to Ile788-C(V804M) is 4.61 Å.
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diabetic/severe combined immunodeficient
gamma) mice. After the development of
tumors, mice were treated with either
vehicle or 12.5 to 25mg/kg of AD80, ca-
bozantinib, or vandetanib, and tumors
were explanted 4 hours later (30, 31).We
observed a pronounced reduction in
phosphorylation of RET as well as AKT
and ERK in tumors treated with AD80
(25 mg/kg) but not in tumors treated with cabozantinib or vandetanib
(Fig. 6A). Encouraged by these results, we next treated a cohort (n = 16)
of patient-derived xenograft (PDX) mice engrafted with tumor tissue
from a CCDC6-RET–rearranged colorectal cancer (CRC) patient with
either vehicle or AD80 (25 mg/kg). Treatment with AD80 induced sig-
nificant (P < 0.001) tumor shrinkage in CCDC6-RET PDXwt (Fig. 6, B
andC, and fig. S7A) (32). In linewith our in vitro data for cells harboring
RET gatekeepermutations, tumor shrinkage (P < 0.01) was robust but less
pronounced when we treated PDX mice (n = 16) engrafted with CRC
tissue that had developed aCCDC6-RETV804M gatekeepermutation under
ponatinib treatment (Fig. 6, B and D, and fig. S7B) (33). Furthermore,
we observed a robust reduction of cellular proliferation (CCDC6-RETwt,
P < 0.001; CCDC6-RETV804M, P < 0.05), as measured by KI-67 staining

in CCDC6-RETwt and CCDC6-RETV804M tumors (Fig. 6, E and F). AD80
treatment did not cause body weight loss in either PDX model over the
course of the study (fig. S7, C and D). Together, our data indicate that
AD80 is a highly potent RET inhibitor with a favorable pharmacokinetic
profile in clinically relevant RET fusion–driven tumor models.

DISCUSSION
Our chemical-genomic and chemical-proteomic analyses revealed
three interesting findings with major implications for the develop-
ment of effective therapies against RET-rearranged tumors: (i)
RET-rearranged tumors show exquisite vulnerability to a subset of
type II inhibitors that target the DFG-out conformation of RET kinase,

Fig. 5. MAPK pathway activation may be
involved in the development of resistance
against RET inhibition. (A) RNA-seq results
of LC-2/AD cells treated (48 hours) with 100 nM
AD80. Genes contained within the core enrich-
ments of GSEAagainst the hallmark gene setswith
genes up-regulated (KRAS up) or down-regulated
(KRAS down) by active KRAS are highlighted by
red and blue, respectively. The dashed line repre-
sents false discovery rate–adjustedQ value = 0.05.
(B) Relevant genes from the top 50 genes with the
strongest significant changes in RNA-seq after
AD80 treatment (100 nM; 48 hours). (C) Predicted
number of down-regulated phosphorylation sites
for each kinase. All kinases with greater than or
equal to six down-regulated phosphorylation sites
are shown in hierarchical order. Kinases associated
with MAPK pathway signaling are highlighted in
red. (D) In immunoblotting assays, RET signaling
was monitored in LC-2/AD and TPC-1 cells treated
(48 hours) with AD80 (0.1 mM), trametinib (TRA)
(0.1 mM), or a combination of both inhibitors.
(E) LC-2/ADev or LC-2/ADKRAS G12V cells were treated
(72 hours) with AD80. Results are shown asmeans +
SD (n = 3). ***P < 0.001; **P < 0.01; *P < 0.05. (F) Im-
munoblottingof LC-2/ADevor LC-2/ADKRAS G12V cells
under AD80 treatment (100 nM; 4 hours).
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(ii) compound specificity and compound activity can be faithfully
determined in complementary in vitro and in vivo models of rearranged
RET, and (iii) resistance mechanisms against targeted inhibition of RET
may involve RETI788N mutations and the reactivation ofMAPK signaling.

The repurposing of crizotinib for the
targeted treatment of ALK-rearranged
tumors enabled a fast-track introduction
of precision cancer medicine for this
group of cancer patients and raised hopes
that this approach may be a blueprint for
the targeted treatment of other driver on-
cogenes, such as RET (34). Although ini-
tial clinical response rates were promising
in selected patients, a median progression-
free survival of less than 6 months and
response rates of only about 18% in ret-
rospective studies indicated that RET
may be a difficult drug target after all
(7, 9, 10, 35).

Our systematic characterization of
anti-RET drugs revealed distinct activity
and specificity profiles for the type II ki-
nase inhibitors AD80 and ponatinib in
independent in vitro and in vivomodels
across different lineages of RET-rearranged
cancer. This finding is noteworthy be-
cause the biochemical profiling of these
compounds and structurally related com-
pounds would have suggested a broad
spectrum of kinase targets (13, 36, 37).
Our data also suggest that an inhibitory
profile, including a stable binding in the
DFG-out conformation of RET together
with a potent in vitro kinase activity, may
predict efficacy against RET-rearranged
cancer cells. At the same time, our study
is limited through the lack of insight
into drug residence time or structural
kinetics that may also contribute to the
overall activity of type II inhibitors such
as sorafenib and other RET inhibitors
(20, 38).

Notably, we identified a CCDC6-
RET I788N resistance mutation that ren-
ders a number of tested RET inhibitors
ineffective while retaining vulnerability
to ponatinib. These findings resemble
the experience with ALK inhibitors in
ALK-rearranged tumors, where the
availability of potent inhibitors allows
a mutant-specific selection of inhibi-
tors to overcome drug resistance (39).
In addition, our results suggest that the
reactivation of intracellular networks,
including MAPK signaling, may con-
tribute to drug tolerance and, over time,
may modulate the efficacy of RET ki-
nase inhibitors in RET-rearranged tu-
mors. Given the evident clinical need

for effective targeted drugs against RET, our results provide a strong
rationale for optimization of current therapeutic strategies and de-
velopment of RET inhibitors for the effective treatment of RET-
rearranged cancers.

Fig. 6. AD80 treatment effectively shrinks RET-rearranged tumors in PDX models. (A) Immunoblotting of tu-
mor tissue from CRISPR/Cas9-induced NIH-3T3KIF5B-RET xenografts was performed. Mice were treated (4 hours) with
vehicle control or 12.5 or 25 mg/kg AD80, CAB, or VAN and were sacrificed. (B) Median tumor volume was assessed
using consecutive measurements of PDX tumors driven by CCDC6-RETwt or CCDC6-RETV804M rearrangements under
treatment with either AD80 (25 mg/kg; 14 days) or vehicle control (14 days). Treatment started at day 0. (C) Waterfall plot
for each CCDC6-RETwt fusion–positive PDX depicting best response (14 days) under AD80 or vehicle control treatment.
***P < 0.001. (D) Waterfall plot for each CCDC6-RETV804M–positive PDX depicting best response (7 days) under AD80 or
vehicle control treatment. ***P < 0.001. (E) Representative immunohistochemistry (IHC) staining for hematoxylin and
eosin (H&E) and Ki-67 of AD80- or vehicle control–treated CCDC6-RETwt PDX. Scale bars, 100 mm. (F) Quantification of
Ki-67 IHC staining. ***P < 0.001; *P < 0.05.
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MATERIALS AND METHODS
Study design
The goal of our study was to systematically profile a series of kinase
inhibitors to identify features that predict high activity against RET-
rearranged tumors. In particular, we characterized the role of inhibitor
binding to RET kinase. Furthermore, we performed chemical genomic
analyses and transcriptional profiling to identify mechanisms of
resistance against RET inhibitors in RET-rearranged cancer cells.

The selection of cell lineswas based on availability ofRET-rearranged
cellular models.We used the RET-rearranged lung adenocarcinoma cell
line LC2/AD and theKIF5B-RET andCCDC6-RET viral transduced Ba/
F3 pro B cell line to benchmark the differential activity of different RET
inhibitors. We specifically focused on the characterization of AD80 and
ponatinib as the most active drugs. To further profile the intracellular
effects of AD80, we used phosphoproteomics to demonstrate that
phospho-RET is among the most decreased detected peptides. Because
it was not possible for us to obtain crystal structures of AD80 in a
complex with RET, we used homology-based modeling of the AD80:
RET complex to further substantiate our hypothesis of AD080 binding
the DFG-out conformation of RET. To identify resistance mutations
against AD80 in CCDC6-RET, we performed saturated mutagenesis
screening and found a I788N mutation but no mutations at the
gatekeeper position V804 of RET. Finally, we used murine PDXmodels
driven by CCDC6-RETwt or CCDC6-RETV804M showing potent in vivo
efficacy of AD80. All experiments were performed at least three times.
Screenings were performed in triplicates within each experiment.
IHC analyses of PDX tumors were randomly selected and reviewed
in a blinded fashion. More details for each individual experiment are
indicated in Materials and Methods as well as in the main text and
figure legends.

CRISPR/Cas9
CRISPR technology was used via a pLenti vector containing Cas9-
IRES-blasticidine and twoU6 promoters for expression of individual
single-guide RNAs (sgRNAs) [sgRNA1 (intron 15 murine KIF5B),
GGCACCAAACACTTCACCCC; sgRNA2 (intron 11 murine RET),
GGGTGTAGCGAAGTGTGCAT) (14)]. Twenty-four hours after
transfection, themediumwas changed tomedium supplemented with
blasticidin (10 mg/ml) (Life Technologies) for 4 days.

Immunoblot analyses
Immunoblot analyses were performed as previously described (40).
The individual antibodies are specified in the SupplementaryMaterials
and Methods. Detection of proteins was performed via horseradish
peroxidase or via near-infrared fluorescent antibodies using a LI-COR
Odyssey CLx imaging system.

Phosphoproteomic analyses
LC-2/AD cells were treated with 0, 10, or 100 nM AD80, lysed, pro-
teolytically digestedwith trypsin, and labeledwith an isobaricmass tag
(TMT10plex, Thermo Fisher Scientific). Peptides for global proteome
analysis were fractionated by high-pH reversed-phase chromatogra-
phy. Phosphopeptides were enriched via TiO2 beads and fractionated
using hydrophilic interaction chromatography (41). Fractions were
analyzed by nano-liquid chromatography–tandemmass spectrometry
on a Q Exactive HF mass spectrometer (Thermo Fisher Scientific),
and data were analyzed using the Proteome Discoverer 1.4 software
(Thermo Fisher Scientific). A detailed description can be found in
the Supplementary Materials and Methods.

Protein thermal shift assay
Different variants of RET kinase domain were designed and ordered
from GeneArt (Life Technologies). RET variants were expressed in
SF21 cells and harvested 72 hours after transfection. Subsequently,
proteins were purified and phosphorylated. To determine the protein
thermal shift, protein variants were incubated with DMSO or 1 mM
compound. SYPROOrange dye (Life Technologies) was added to each
drug-treated sample, and thermal shift was measured in a 7500 Fast
Real-TimePCRmachine (AppliedBiosystems) in a temperature range
of 25° to 90°C. Subsequent analysis was performed using Protein
Thermal Shift Software v1.2 (Applied Biosystems). A detailed descrip-
tion can be found in the Supplementary Materials and Methods.

Computational binding mode modeling
Briefly, VEGFR was taken as a template for modeling and filling of
sequence gaps, representing the relevant part of the wild-type RET
protein. All ligand-bound models were created by superpositioning,
followed by extensive MD simulations and energy minimization to
relax the structures (RETwt/AD80, RETV804M/AD80, and RETwt/
cabozantinib). For comparison with experimentally determined IC50

ratios, the binding free energy difference between RETwt/AD80 and
RETwt/AD57 was further estimated by MD simulations and inte-
gral equation calculations (42). The latter approach was also used
for approximate determination of the impact of the V804M muta-
tion on the binding affinity of AD80. A detailed description can be
found in the Supplementary Materials and Methods.

ATP-binding constant determination
ATP Km determination for RETwt and RETV804M mutant was per-
formed using the HTRF KinEASE TK assay (Cisbio) according to the
manufacturer’s instructions. To determine ATP Km, wild type and
V804M mutant were incubated with different ATP concentrations
(300 mM to 1.7 nM) for 20 min (RETwt) or 15 min (RETV804M). Phos-
phorylation of the substrate peptide was determined by Förster
resonance energy transfer between europium cryptate and XL665.
ATP Km (app) was calculated using a Michaelis-Menten plot.

Patient-derived xenografts
Tumor fragments from stock mice (BALB/c nude) inoculated with
CCDC6-RET fusion–positive patient-derived tumor tissues (provided
byCrownBioscience Inc.)were harvested and used for propagation into
BALB/c nudemice (32). Mice were randomly allocated into vehicle (5%
DMSO and 40% PEG400 in saline)– and AD80 (25 mg/kg)–treated
groups (oral gavage) when the average tumor volume reached 100 to
200mm3. Tumor volume wasmeasured twice weekly in two dimensions
using a caliper, and the volume is expressed in cubic millimeters [TV =
0.5(a × b2), wherea andb represent long and short diameter, respectively].

Immunohistochemistry
IHC was performed on Leica BOND automated staining systems
using Ki-67 andMib-1 (Dako) antibodies according to the manufac-
turer’s instructions. Ki-67 labeling index was determined by manu-
ally counting 100 tumor cells in the area of the highest proliferation.

Statistical analysis
All statistical analyses were performed usingMicrosoft Excel 2011 or
GraphPad Prism 6.0h for Mac or R (www.r-project.org/). P values
were assessed using Student’s t test, unless specified otherwise. Sig-
nificance is marked with *P ≤ 0.05, **P ≤ 0.01, or ***P ≤ 0.001.
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SUPPLEMENTARY MATERIALS
www.sciencetranslationalmedicine.org/cgi/content/full/9/394/eaah6144/DC1
Materials and Methods
Fig. S1. Selective inhibition of signaling induced by rearranged RET and clinical activity in vivo.
Fig. S2. Induction of KIF5B-RET rearrangements in NIH-3T3 cells via CRISPR/Cas9 and S6 kinase
as an off-target of AD80.
Fig. S3. Characterization of the activity profile of AD80.
Fig. S4. Delineation of the cellular targets of AD80 using ligand screens and thermal shift
experiments.
Fig. S5. RMSD of RET and AD80 or cabozantinib over time and ALPB-optimized structures.
Fig. S6. Inhibitory potential of AD80 derivatives and resistance mechanisms against RET
inhibition.
Fig. S7. Validation of PDX via fluorescent in situ hybridization (FISH) and in vivo effects induced
by treatment with AD80.
Table S1. IC50 values of AD80, cabozantinib, and vandetanib for phospho-RET in Ba/F3 cells
expressing wild type or V804M KIF5B-RET.
Table S2. Rates of clinical response to currently available anti-RET drugs and clinical
information of patients used in retrospective analysis.
Table S3. GI50 values of the panel of patient-derived cell lines.
Table S4. Tabulated derivative melting temperatures (Tm) and differences in melting
temperature (DTm) values.
Table S5. In vitro kinase assay of RETwt, RETV804M, and RETV804L mutants with different inhibitors.
Table S6. Experimental setup for saturated mutagenesis screening.
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ARTICLE

MYC paralog-dependent apoptotic priming
orchestrates a spectrum of vulnerabilities
in small cell lung cancer
Marcel A. Dammert1,2,3,14, Johannes Brägelmann1,2,3,4,14, Rachelle R. Olsen5,14, Stefanie Böhm2,3,14,
Niloufar Monhasery1,2,3, Christopher P. Whitney5, Milind D. Chalishazar5, Hannah L. Tumbrink1,2,3,
Matthew R. Guthrie5, Sebastian Klein2,3,4,6, Abbie S. Ireland5, Jeremy Ryan 7, Anna Schmitt8,9,
Annika Marx1,2,3, Luka Ozretić10, Roberta Castiglione4,6, Carina Lorenz1,2,3, Ron D. Jachimowicz8,9,
Elmar Wolf 11, Roman K. Thomas2, John T. Poirier 12, Reinhard Büttner6, Triparna Sen13, Lauren A. Byers13,
H. Christian Reinhardt4,8,9, Anthony Letai 7, Trudy G. Oliver 5 & Martin L. Sos1,2,3

MYC paralogs are frequently activated in small cell lung cancer (SCLC) but represent poor

drug targets. Thus, a detailed mapping of MYC-paralog-specific vulnerabilities may help to

develop effective therapies for SCLC patients. Using a unique cellular CRISPR activation

model, we uncover that, in contrast to MYCN and MYCL, MYC represses BCL2 transcription

via interaction with MIZ1 and DNMT3a. The resulting lack of BCL2 expression promotes

sensitivity to cell cycle control inhibition and dependency on MCL1. Furthermore, MYC

activation leads to heightened apoptotic priming, intrinsic genotoxic stress and susceptibility

to DNA damage checkpoint inhibitors. Finally, combined AURK and CHK1 inhibition sub-

stantially prolongs the survival of mice bearing MYC-driven SCLC beyond that of combination

chemotherapy. These analyses uncover MYC-paralog-specific regulation of the apoptotic

machinery with implications for genotype-based selection of targeted therapeutics in SCLC

patients.
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Small cell lung cancer (SCLC) is an aggressive neuroendo-
crine subtype of lung cancer with a 5-year survival rate of
only 6% that lacks effective targeted therapies or predictive

markers for patient stratification. Genomic amplification of one
of the transcription factor paralogs MYC, MYCN, or MYCL
occurs in approximately 20% of SCLC patients1,2. MYC paralog
activation is important for tumorigenesis and tumor main-
tenance, which would make MYC an ideal target for therapeutic
intervention3–5. While direct inhibition of MYC has not yet been
achieved, MYC paralog activation in SCLC induces distinct sen-
sitivity profiles to targeted agents such as Aurora Kinase (AURK)
or DNA damage checkpoint inhibitors that are preferentially
effective in MYC-activated cells6–9. At the same time, BH3
mimetics, including drugs directed against the anti-apoptotic
factors BCL2 and MCL1, represent an attractive class of inhibitors
in SCLC but it remains unclear which molecular factors prime
susceptibility to these targets10. How overexpression of the indi-
vidual MYC paralogs shapes the spectrum of vulnerabilities in
SCLC remains elusive.

We hypothesize that a mechanistic understanding of the phe-
notypic differences associated with activation of individual MYC
paralogs may allow the discovery of molecularly defined drug
targets in SCLC patients. Using CRISPR/dCas9-mediated MYC
paralog activation, we uncover a link between MYC signaling and
the regulation of the apoptotic machinery with direct implications
for the selection of targeted drugs for SCLC patients.

Results
MYC activation is associated with low BCL2 expression. We
analyzed transcriptomes of 42 patient-derived SCLC cell lines and
81 SCLC patient samples1,6,11 and found that overexpression of
individual MYC paralogs is largely mutually exclusive in both
datasets (Fig. 1a, b). At the same time, the impact of individual
MYC paralogs on overall survival remains unclear due to the
limited amount of available expression data in SCLC patient
cohorts (Supplementary Fig. 1a)12. These observations prompted
us to dissect the specific role of each MYC paralog in SCLC, with
the CRISPR/dCas9 Synergistic Activation Mediator (SAM)
CRISPR activation (CRISPRa) system13 that allows efficient
induction of endogenous gene expression. After single guide RNA
(sgRNA) selection and validation in NIH3T3 and GEMM-derived
(Trp53/Rb1-deficient mice, RP) mouse embryonic fibroblasts
(MEFs), we activated Myc, Mycn, or Mycl in genomically profiled
(whole-exome sequencing (WES)) cells derived from early stage
SCLC (RP) tumors14 (Supplementary Fig. 1b–d). We observed
increased transcription of the individual Myc paralogs and ele-
vated MYC and MYCN protein expression (Fig. 1c, d). Although
the magnitude of upregulation differed among Myc paralogs
(Fig. 1c and Supplementary Fig. 1b, c), canonical MYC target
genes6 were similarly upregulated and proliferation rates were
similar between individual cells (Fig. 1c and Supplementary
Fig. 1e). However,Myc- but notMycn- orMycl-activation induced
sensitivity to the AURK inhibitor, alisertib (Fig. 1e), and other cell
cycle checkpoint inhibitors (volasertib, p= 0.006 mock vs. Myc;
adavosertib, p= 0.05 mock vs. Myc, two-tailed unpaired t test)
similar to patient-derived SCLC cells6,7 (Supplementary Fig. 1f).

We next determined differentially expressed genes in MYC-
high (n= 22) vs. MYC-low (n= 20) human SCLC cell lines
(Fig. 1a)6,7 to investigate these MYC-specific vulnerabilities.
Consistent with the MYC-associated variant SCLC phenotype,
high MYC expression correlated with elevated NEUROD1
(Fig. 1f)6. Intriguingly, anti-apoptotic factor BCL2 was signifi-
cantly downregulated in MYC-overexpressing cells while other
BCL2 family members were not differentially expressed (Fig. 1f
and Supplementary Fig. 1g, h). In addition, we observed a modest

trend toward a negative correlation of MYC and BCL2 in an
independent cohort of SCLC patients15 (Supplementary Fig. 1i)
and significantly decreased Bcl2 expression inMyc-high tumors of
Myc-driven SCLC mice (RPM) compared to Trp53/Rb1-deficient
SCLC mouse tumors with low Myc expression (Supplementary
Fig. 1j)6. Furthermore, BCL2 and ASCL1 proteins were only
expressed in MYCN- and MYCL-amplified cells (Fig. 1g and
Supplementary Fig. 1k). We observed a similar anti-correlation of
MYC and BCL2 protein levels in immunohistochemical (IHC)
stainings of human SCLC tumor specimens (n= 48) (Fig. 1h and
Supplementary Table 1). Myc activation also suppressed Bcl2
expression in CRISPRa cells (p= 0.004 mock vs. Myc, two-tailed
unpaired t test) (Fig. 1i). This anti-correlation between MYC and
BCL2 appears to be an exception rather than the rule since we
primarily found a positive correlation between MYC and BCL2
expression in the pan-cancer CCLE cohort16,17 (Supplementary
Fig. 1l). Reintroduction of BCL2 strongly reduced sensitivity
toward alisertib in both MYC-amplified patient-derived cell lines
(Fig. 1j, k) and Myc-activated CRISPRa cells (Fig. 1l, m).
Conversely, co-treatment of BCL2-overexpressing Myc-activated
CRISPRa cells with BCL2-specific inhibitor venetoclax restored
the activity of alisertib (Fig. 1m). Of note, exogenous BCL2
overexpression did not alter cell cycle progression or proliferation
rates (Supplementary Fig. 1m, n). Thus MYC paralog expression
is tightly linked with BCL2 expression, which determines
susceptibility to cell cycle checkpoint inhibitors.

MYC represses BCL2 expression. As reported previously10,
BCL2 expression only partially translated into BCL2 inhibitor
activity (Fig. 2a, b and Supplementary Fig. 2a–d). Patient-derived
(n= 4) and murine CRISPRa cell lines with MYCN/Mycn over-
expression were sensitive to BCL2 inhibitors navitoclax and ABT-
737, whereas MYC/Myc-overexpressing cells were more resistant
to BCL2 inhibition (Fig. 2a, b and Supplementary Fig. 2a–d).
Since the CRISPRa cells showed an adherent growth phenotype
that is associated with basal activation ofMyc in these cells6,18, we
performed short hairpin RNA (shRNA)-mediated knockdown of
the endogenous Myc in Mycn-activated CRISPRa cells (Fig. 2c
and Supplementary Fig. 2e). Myc knockdown induced Bcl2
expression (Fig. 2c) and increased sensitivity to BCL2 inhibitors
(Fig. 2d, e and Supplementary Fig. 2f, g). Since repression of BCL2
correlates with high DNA methylation at the BCL2 promoter19,
we assayed DNA methylation levels of the CpG island within the
BCL2 promoter in human SCLC cell lines. MYC-amplified cell
lines (n= 3) displayed high DNA methylation levels at the BCL2
promoter (Fig. 2f), whereas MYCN- or MYCL-amplified cells
(n= 3) exhibited significantly less DNA methylation in this
region indicating active transcription (MYC-amplified vs. non-
MYC-amplified p= 0.0001, two-tailed unpaired t test; Fig. 2g).
Similarly, high MYC expression correlated with high levels of
BCL2 promoter methylation in published methylation data of
SCLC cell lines (n= 65) (Supplementary Fig. 2h)20 and patient-
derived xenograft SCLC models (Supplementary Fig. 2i, j)21.
These observations implicate a functional link between high MYC
expression, increased BCL2 promoter methylation, and low BCL2
expression.

MYC was shown to facilitate the establishment of DNA
methylation at gene promoters by cooperating with MIZ1 and
DNA methyltransferase 3a (DNMT3a)22. Using chromatin
immunoprecipitation (ChIP) assays, we observed co-occupancy
of MYC, MIZ1, and DNMT3a at the BCL2 promoter (Fig. 2h)
with MYC binding at the transcriptionally inactive BCL2
promoter being as pronounced as at the active ACTB promoter.
MIZ1 and DNMT3a were enriched only at the BCL2 promoter in
MYC-high cells (Fig. 2h). This suggests that MYC/MIZ1/
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DNMT3a may cooperatively mediate DNA methylation of the
BCL2 promoter (Fig. 2f). In contrast, in MYCN-amplified cells
only low levels of MIZ1 and DNMT3a were bound to the BCL2
promoter with no enrichment of DNMT3a compared to the
ACTB promoter (Fig. 2i). Consistent with previous studies, only
MYC but not MYCN or MYCL substantially interacted with

MIZ1 (Supplementary Fig. 2k), which is consistent with the
model of MYC-specific BCL2 repression23,24. Finally, both
pharmacological inhibition of DNA methylation by 5-
azacytidine in GLC1 cells as well as small interfering RNA
(siRNA)-mediated DNMT3a knockdown in two MYC-amplified
SCLC cell lines led to de-repression of BCL2 (Fig. 2j, k
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and Supplementary Fig. 2l). Thus DNMT3-mediated DNA
methylation may play an important role in the MYC-induced
repression of BCL2.

MYC drives apoptotic priming and MCL1 dependency. To
assess the impact of differential BCL2 expression on the apoptotic
machinery, we performed BH3 profiling25 and observed that
MYC-amplified SCLC cell lines (n= 4) were more primed for
apoptosis induction (Fig. 3a) especially by MS1 peptide, which
acts as an MCL1 antagonist (MYC-amplified vs. non-MYC-
amplified p= 0.01, two-tailed unpaired t test) (Fig. 3b). Con-
sistently, MYC-amplified SCLC cell lines (n= 4) were more
sensitive to MCL1 inhibitor S6384526 compared to MYCN- (n=
3) and MYCL- (n= 4) amplified cell lines (p= 0.003 MYC vs.
MYCN; p= 0.001 MYC vs. MYCL, two-tailed unpaired t test)
(Fig. 3c, d and Supplementary Fig. 3a). Despite a lower activity
against murine MCL127, we observed an increased susceptibility
to S63845 only in Myc but not in Mycn- or Mycl-activated
CRISPRa cells (Fig. 3e). We also observed this MYC-induced
sensitivity against MCL1 inhibition in clonogenic assays
(Supplementary Fig. 3b). In line with previous reports, we
observed a reduction of MCL1 protein stability upon AURK
inhibition (Supplementary Fig. 3c)28 potentially contributing to
the high alisertib sensitivity of MYC-overexpressing cells.

BCL2 overexpression mitigated the effects of MCL1 inhibition
(Fig. 3f, g), indicating the importance of MYC-induced BCL2
repression in defining MCL1 dependency and MYC-specific
vulnerabilities in SCLC. Consistently, siRNA-mediated MCL1
knockdown reduced viability only in MYC-overexpressing
cells (Fig. 3h, i) underlining the MYC-induced dependency on
MCL1. Interestingly, MYC-amplified cells exhibited increased
levels of the DNA-damage response (DDR) marker γH2AX
upon MCL1 knockdown and MCL1 inhibition (Fig. 3i; Supple-
mentary Fig. 3d).

To determine the effects of BCL2 family inhibition in vivo, we
evaluated the efficacy of BCL2 inhibitor venetoclax and MCL1
inhibitor S63845 in an Myc-driven SCLC mouse model (RPM)6.
As expected, BCL2 inhibition had no beneficial effect on overall
survival of RPM mice (Supplementary Fig. 3e). While single agent
S63845 (25 or 40 mg/kg) and combined S63845/chemotherapy at
25 mg/kg of the MCL1 inhibitor had a modest effect on the
survival of RPM mice, the 40 mg/kg S63845 and chemotherapy
combination failed to improve survival of the mice beyond
vehicle treatment (Supplementary Fig. 3e). While the trend for
the higher efficacy of single agent MCL1 vs. BCL2 inhibition is
consistent with our in vitro results, the limited affinity of S63845
for murine MCL122,27 may mask otherwise stronger effects in this
murine GEMM. In addition, S63845/chemotherapy regimens
induced pronounced weight loss indicating high toxicity for the
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combination that prohibited a dose escalation for the MCL1
inhibitor (Supplementary Fig. 3f). Taken together, lack of BCL2
expression favors a potentially druggable MCL1 dependency in
MYC-activated SCLC.

MYC triggers a druggable DDR in vivo. Next, we investigated
the impact of cell cycle checkpoint inhibition on the induction of
DDR and apoptosis. We observed that alisertib as well as volasertib
treatment led to a rapid induction of γH2AX and CC3 levels in
human MYC-amplified and murine CRISPRa Myc-activated cells
(Fig. 4a, b and Supplementary Fig. 4a, b). Using immuno-
fluorescence, we observed increased steady-state levels of γH2AX
(p < 0.0001, one-way analysis of variance (ANOVA)) and DNA
double-strand break (DSB) marker 53BP1 (p < 0.0001, one-way
ANOVA) in Myc-activated murine SCLC cells suggesting DSB-
mediated activation of the DDR in these cells (Fig. 4c, d). Basal
DDR activation was also observed in MYC-overexpressing human
SCLC cells (Supplementary Fig. 4c, d). Further elevation of DNA
damage by chemotherapeutics (etoposide and cisplatin) or check-
point kinase 1 (CHK1) inhibitors (prexasertib, PF-477736, MK-
8776)6,9 decreased viability preferentially inMyc-activated CRISPRa
cells (Fig. 4e). Consistently, etoposide treatment of Myc-activated
cells rapidly induced γH2AX and CC3 levels (Supplementary
Fig. 4e). Interestingly, BCL2 overexpression reduced γH2AX levels
after both etoposide and alisertib treatment of Myc-activated
CRISPRa cells (Fig. 4f, g). We next combined AURK and CHK1
inhibition and observed synergistic activity at low nanomolar
concentrations of alisertib and prexasertib in clonogenic and via-
bility assays (Fig. 4h, i) with more pronounced synergy in Myc-
activated cells (Supplementary Fig. 4f).

In SCLC patients who are routinely treated with first-line
cisplatin/etoposide combination chemotherapy, emergence of
chemo-resistance is rapid and frequent. To assess the efficacy of
combined AURK/CHK1 inhibition in the setting of chemo-
resistance, we generated chemo-resistant cell lines from Myc-
activated CRISPRa cells (Supplementary Fig. 4g) and subjected
these cells to combined AURK/CHK1 inhibition. We observed
that chemo-resistance substantially increased resistance against
combined AURK/CHK1 inhibition (Supplementary Fig. 4h)
arguing for efficacy of this treatment strategy in the first-line
setting but not upon chemo-resistance. Interestingly, chemo-
resistant cells displayed increased AURK and CHK1 phosphor-
ylation levels suggesting higher activity of both enzymes after
chemo-resistance (Supplementary Fig. 4i).

We next sought to validate the efficacy of AURK/CHK1
inhibition in vivo in the Myc-driven RPM mouse model.
Compared to vehicle treatment, CHK1 inhibitor treatment
(prexasertib) prolonged survival of RPM mice similar to
chemotherapy (cisplatin/etoposide) (Fig. 4j). The combination
of prexasertib and AURK inhibitor (alisertib) further prolonged
survival of RPM mice compared to chemotherapy (median
survival 22.5 vs. 28 days; p= 0.005, Log-rank (Mantel–Cox) test;
Fig. 4j). Furthermore, the combination of either prexasertib or
alisertib with chemotherapy was slightly less effective (median
survival 19 and 26 days) than the alisertib/prexasertib
combination (Fig. 4j). Vehicle-treated mice exhibited rapid
tumor growth while chemotherapy- or prexasertib-treated
animals exhibited a modest delay in tumor growth followed by
rapid relapse (Fig. 4k and Supplementary Fig. 4j). Of
importance, mice treated with the combination of targeted
therapy agents, alisertib and prexasertib, exhibited moderate
weight loss compared to regimens in which targeted agents
were combined with chemotherapy (Supplementary Fig. 4k).
This suggests manageable toxicity of combined AURK/CHK1
inhibition and further strengthens our model in which

MYC-dependent tumors are more susceptible to perturbation
of the cell cycle and DDR control pathways (Fig. 4i).

Discussion
Here we investigated how MYC paralogs modulate drug depen-
dencies in SCLC. We developed an isogenic CRISPRa-based
model to study the endogenous activation of the different MYC
paralogs in GEMM-derived SCLC cell lines. This cellular system
allowed us to molecularly define and phenotypically characterize
MYC-paralog-driven SCLC uncoupled from the divergent genetic
background of patient-derived cell lines.

In summary, our data provide mechanistic insight into MYC-
paralog-specific dependencies with direct implications for a per-
sonalized treatment against SCLC tumors. Our findings reveal a
pivotal role for BCL2 as a major regulator of response to cell cycle
and DNA damage checkpoint inhibitors. In SCLC cells, MYC
activation represses BCL2 thereby limiting the pool of anti-
apoptotic proteins. Indeed, we observed increased apoptotic
priming and a strong MCL1 dependency in MYC-overexpressing
cells, which are also vulnerable to direct and indirect DNA
damage induction (Fig. 4l). Differential MYC protein levels do
not alter MCL1 expression, so lack of BCL2 likely is the main
driver of MYC-induced MCL1 dependency. Consistent with
previous reports29, reintroduction of BCL2 mitigated DNA
damage-induced cell death. The specific silencing of an anti-
apoptotic protein such as BCL2 seems to be paradoxical since the
benefit to MYC-activated cells is not obvious. A study by Ichim
and colleagues described limited mitochondrial outer membrane
permeabilization (MOMP), a phenomenon termed minority
MOMP, as a trigger for cellular transformation and tumorigen-
esis30. In this scenario, limited caspase activity promotes DNA
damage induction and genome instability. The steady-state
γH2AX levels in cells with high MYC strongly resemble such a
limited MOMP baseline. Following this hypothesis, suppression
of BCL2 may facilitate the induction of this phenotype. On the
other hand, increased levels of γH2AX may contribute to DNA
damage accumulation in MYC-activated cells following che-
motherapy and/or CHK1 inhibition. Furthermore, a disruption of
the G2/M checkpoint via AURK inhibition, in the background of
TP53/RB1-loss-induced defective G1/S checkpoint, may have the
same cytotoxic effects. Failure to repair accumulated DNA lesions
likely induces apoptosis followed by cell death (Fig. 4l).

We show that this MYC-specific vulnerability can be ther-
apeutically exploited in vitro and in vivo by combined AURK/
CHK1 inhibition. A translation of this regimen into a clinical
setting might primarily be effective in a first-line setting since
chemo-resistant cell lines were also resistant to combined AURK/
CHK1 inhibition. The combination of two targeted therapy
agents at tolerable doses might overcome the need for pan-toxic
chemotherapy. Since the efficacy of combining targeted therapy
with chemotherapy was also superior compared to che-
motherapy alone, this strategy might prevent or delay the
emergence of resistance. We observed less toxicity for com-
bined AURK/CHK1 inhibition, which might overcome pre-
viously observed hematological toxicities for alisertib, especially
in combination with chemotherapy31. Several clinical trials are
already evaluating AURK (NCT03216343, NCT03092934,
NCT02719691, NCT02134067, NCT01118611) and CHK1
(NCT02735980, NCT02797964, NCT02797977, NCT02873975)
inhibitors either as single agents or in combination with che-
motherapy in SCLC patients. A recently completed Phase II
trial (NCT02038647) that investigated the effects of alisertib in
combination with paclitaxel as second-line therapy for SCLC
initially reported a significant increase in progression-free
survival32. Interestingly, retrospective analysis of a subset of
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patients revealed that the alisertib/paclitaxel combination pre-
ferentially improved survival of patients with high MYC protein
expression33. This is in line with our data that suggest high
MYC expression is predictive of response to AURK and/or
CHK1 inhibition. Therefore, our data may facilitate the

selection of patients who particularly benefit from this treat-
ment, reducing unnecessary toxicities. Thus our study bolsters
the mechanistic understanding of the role of specific MYC
paralogs for the fine-tuning of the apoptotic machinery and
druggable dependencies in SCLC.
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Methods
Cell culture. Human SCLC cell lines were obtained from ATCC and verified by
STR profiling at the University of Utah DNA sequencing core facility or at the
Institute for Forensic Medicine of the University Hospital of Cologne. GLC1,
GLC2, H82, H524, GLC8, SBC4, H69, COR-L303, SBC7, COR-L88, MEF, and
Myc-activated CRISPRa cells were cultured in RPMI; H1092, H2029, and H889
were cultured in HITES; NIH3T3 and HEK293T cells were cultured in DMEM. All
media were supplemented with 10% fetal bovine serum, 1% Penicillin/Strepto-
mycin, and 1% L-glutamine. All cells were grown at 37 °C in a humidified atmo-
sphere with 5% CO2.

Reagents. For cell culture studies, drugs were dissolved in dimethyl sulfoxide
(DMSO) to a final stock concentration of 10 mM except for prexasertib (4.5 mM).
With the exception of prexasertib (MedChemExpress), all compounds were pur-
chased from Selleckchem.

CRISPR activation. Briefly, sgRNA sequences (see Supplementary Table 2) tar-
geting promoters of Myc, Mycn, and Mycl were obtained from the sgRNA design
tool (http://sam.genome-engineering.org/database/, Cas9-Activators with SAM,
accessed 12/2015) and cloned into lentiSAMv2. Lentiviral particles of lenti-MS2-
p65-HSF1_Hygro and lentiSAMv2 (containing Myc paralog sgRNAs) were pro-
duced in HEK293T cells co-transfected with pMD.2 and pCMVd.8.9 helper plas-
mids. Target cells were first transduced with lentiviral particles of lentiMS2-p65-
HSF1_Hygro followed by hygromycin selection (400 µg/ml). Selected cells were
then transduced with lentiviral particles of lentiSAMv2 followed by blasticidin
selection (1.5 µg/ml).

Cell viability screening. To assess cell viability, cells were plated in 96-well plates
in triplicates and compounds were added at 8 decreasing compound concentra-
tions 24 h after seeding. Seventy-two hours later, cell viability was measured via
Cell Titer-Glo (CTG) assay (Promega) and was normalized to DMSO-treated
controls. Half-maximal growth inhibitory (GI50) concentrations of cell viability
were inferred by fitting sigmoidal dose–response curves using the Prism 8 software
(GraphPad). Data are represented as mean ± SEM and significance was calculated
by unpaired Student’s t tests.

Cell proliferation kinetics. In all, 2 × 104 cells were plated in triplicate in one well
of a 12-well plate. Cell number was determined daily for 4 consecutive days. Data
are presented as mean ± SEM.

Whole-exome sequencing. DNA from Myc-paralog-activated cells was extracted
using the Gentra Puregene Tissue Kit (Qiagen) according to the manufacturer’s
instructions. Library preparation for exome sequencing was performed with the
SureSelectXT Library Prep Kit and the Target Enrichment Kit using the Mouse All
Exon Capture ab (Agilent, USA) following the SureSelectXT Automated Target
Enrichment Illumina PE Multiplexed Seq protocol. Sequencing was performed with a
2 × 76 bp protocol on a HiSeq4000. Raw sequencing reads were aligned to the mouse
reference genome mm10 using BWA-MEM, followed by trimming of overlapping
read pairs, and removal of PCR duplicates and secondary alignments. For copy
number (CN) analysis, Sclust34 is applied to estimate purity-corrected CNs by con-
ditionally optimizing likelihoods of allelic imbalances and read ratios relative to
available mouse normal data. All sequencing data will be released upon publication.
Sequencing data are deposited at EBI Array Express, accession # E-MTAB-7412.

Transcriptome data analysis. Human SCLC RNA-seq cell line generated within
this study and SCLC cell line raw data used previously6 were aligned to the human
reference genome Hg38 using STAR35 followed by gene expression quantification
as transcript per million (TPM) and counts using RSEM36. For differential gene
expression, cell lines were grouped according to MYC expression into MYC-high
(n= 22, COR.L279, CPC.N, DMS114, DMS273, DMS454, DMS53, GLC1, GLC2,
H1048, H1341, H1930, H2171, H446, H524, H82, H841, NCI.H146, NCI.H2081,
NCI.N417, SCLC.21 H, SHP77, SW1271) and MYC-low (n= 20, COR.L303,COR.
L47, COR.L88, DMS153, DMS79, GLC8, H1836, H196, H1963, H2029, H209C,
H2141, H526, H69, H889, NCI.H1092, NCI.H187, NCI.H1882, NCI.H345, SBC7).
Differential gene expression between groups was calculated from count-level data
using DESeq237. Resulting p values were adjusted using Benjamini–Hochberg
correction. Annotation of MYC paralog amplification status in human SCLC cell
lines was obtained from published genomic data7,20,38. 3’ RNA-seq data was
aligned to the mouse reference genome GRCm38 using STAR and quantified with
RSEM prior to downstream analysis. Processed human primary SCLC tumor
sample data were acquired from a published study1. Primary samples were clas-
sified as MYC family member high vs. low based on gene expression, where cut-
offs were derived from Gaussian-mixture models. In brief, samples were grouped
by fitting two normal distributions to log-transformed expression of the MYC
family member. Cut-offs between high and low expression groups were derived
using the respective fitted distributions. Publicly available RNAseq data for a cohort
of 79 SCLC patients15 was obtained from GEO (GSE60052) including normalized
log2-transformed expression per gene. Patients were categorized in 15 bins based
on MYC expression. Median expression levels of MYC and BCL2 per bin were
calculated and correlated using Spearman correlation coefficient. To assess RNA
expression of Bcl2 in mouse tumor models, we used published expression data
including RNAseq of RPM (n= 11) and RPR2 (n= 4) mouse models6, supple-
mented with gene expression array data for (RP (n= 10) and RPP130 (n= 3)
mouse tumors (GSE18534)39. Log2-transformed intensity values were averaged per
gene if multiple probes were present. To account for potential effects of expression
analysis method, log2-FPKM values and log2-intensity values were transformed to
z-scores per sample followed by quantile normalization per gene across samples
prior to joined analysis. To assess correlation of MYC and BCL2 mRNA expression
across various cancer entities, cell line RNAseq data generated by the CCLE was
downloaded from www.depmap.org (Release 19Q1). To account for entity-specific
baseline expression differences of MYC and BCL2, log2-transformed expression
levels quantified as TPM were first scaled per gene within each of the 27 tumor
entities before calculating Pearson correlation.

Cell cycle analysis by flow cytometry. A total of 5 × 105 cells were seeded in 6-
well plates and incubated overnight, before addition of 2 mM thymidine for 16 h
(first block). After the first block, cells were washed twice with phosphate-buffered
saline (PBS) and incubated in growth medium for 8 h before addition of 2 mM
thymidine for 16 h (second block). Cells were washed twice with PBS and released.
Every 2 h in a period of 12 h, cells were trypsinized, washed with PBS, fixed with
70% ethanol, and incubated for half an hour on ice. Fixed cells were stored at 4 °C
for the cell cycle analysis. Ethanol-fixed cells were centrifuged for 5 min at 300 × g,
washed twice with cold PBS, and centrifuged for 5 min at 300 × g. Cells were then
incubated with 100 mg/ml DNase-free RNaseA in PBS for 30 min on ice. Next, cells
were washed with PBS and incubated with 100 mg/ml propidium iodide (PI) for 30
min at room temperature (RT) in the dark. Finally, cells were analyzed in a flow
cytometer (BD Biosciences). PI fluorescence was determined using FL-3 channel,
488 nm. Raw data were analyzed with the FlowJo software.

MIZ1/MYC co-immunoprecipitation. HEK293T cells were transfected with
pcDNA-HA-HA-MYC, pcDNA-HA-MYCN or pcDNA-HA-HA-MYCL in

Fig. 4MYC triggers a druggable DNA-damage response (DDR) in vivo. a, bWestern blot of cleaved caspase 3 (CC3) and γH2AX inMYC-variant-amplified
human small cell lung cancer (SCLC) cell lines (n= 6) (a) or Myc-activated CRISPRa cells (b) treated with alisertib for the indicated times. HSP90 was
used as a loading control. c Representative images of immunofluorescence (IF) experiments of Myc paralog-activated CRISPRa cells showing DAPI (DNA),
γH2AX (DDR activation), and 53BP1 (DNA double-strand breaks) staining (Scale bar: 20 µm). d Quantification of c showing mean number of γH2AX (top)
and 53BP1 (bottom) foci per cell (n= 30). Error bars indicate mean ± SEM. One-way analysis of variance, ****p < 0.0001. e Heatmap displaying sensitivity
(scaled log(GI50)) of Myc paralog-activated CRISPRa cells treated with CHK1 inhibitors (MK8776, PF477736, prexasertib) or chemotherapeutics
(etoposide, cisplatin) for 96 h (n= 3). f, g Western blot of γH2AX in Myc-activated CRISPRa cells ± BCL2 overexpression treated with etoposide (g) and
alisertib (h). HSP90 was used as a loading control. h Crystal violet assay of control and Myc-activated CRISPRa cells upon treatment with 120 nM alisertib,
40 nM prexasertib, and combined treatment for 96 h. i Viability of mock control and Myc-activated CRISPRa cells upon treatment with 120 nM alisertib,
40 nM prexasertib, and combined treatment for 96 h (n= 3). Error bars indicate mean ± SEM. Two-tailed unpaired t tests, ***p < 0.001. j Survival analysis
of RPM mice bearing MYC-driven SCLC treated with vehicle control (phosphate-buffered saline (PBS), n= 13), chemotherapy (cisplatin/etoposide, n=
18), Aurora Kinase (AURK) inhibitor alisertib (n= 11), checkpoint kinase 1 (CHK1) inhibitor prexasertib (n= 12), prexasertib+chemotherapy (n= 7),
alisertib+chemotherapy (n= 13), and prexasertib+alisertib (n= 15). Log-rank (Mantel–Cox) test, **p < 0.009. k Representative micro-computed
tomographic images of RPM mice pre-treatment and after treatment with vehicle control (PBS), chemotherapy (cisplatin/etoposide), CHK1 inhibitor
prexasertib, and prexasertib combined with AURK inhibitor alisertib. Tumors are colored in yellow, air space in purple. l Model of MYC paralog-dependent
apoptotic priming and vulnerabilities in SCLC. Source data are provided as a Source Data file
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combination with pcDNA-MIZ1. Two days post-transfection, cells were harvested
and subjected to MIZ1 IP using anti-MIZ1 antibody (sc-139685, Santa Cruz Bio-
technology, 4 µg). Antibody–protein complexes were captured using 20 µl protein
G sepharose beads (Santa Cruz Biotechnology). Immunoprecipitates were then
analyzed by western blot.

GDSC methylation data analysis. Publicly available human SCLC cancer cell
line data20 including gene expression were obtained from http://www.
cancerrxgene.org/ (Genomics of Drug Sensitivity in Cancer Project) and cor-
responding Illumina 450k methylation beta values (GSE68379) were down-
loaded from www.ncbi.nlm.nih.gov/geo (NCBI Gene Expression Omnibus, both
accessed 27 Dec 2017). SCLC cell lines were classified as MYC high vs. MYC low
based on RMA normalized basal MYC expression levels as described above. For
methylation analyses, CpGs were filtered using a detection p value <0.01 fol-
lowed by removal of probes containing single-nucleotide polymorphisms, non-
CpG probes, and cross-reactive probes40. Prior to further downstream analysis,
beta values were normalized by peak-based correction41. Illumina 450k array
annotation files were used to select probes in the BCL2 gene body and promoter
region.

Drug combination screening. Cells were plated in a 6 × 6 matrix of wells of a 96-
well plate and treated with alisertib and prexasertib in various independent con-
centration pairs (concentrations were fixed ranging from 40 nM to 3.3 μM for
alisertib and from 10 nM to 1.1 µM for prexasertib) for 96 h followed by viability
measurement using CTG assay. Results of three replicate experiments were pooled
and synergy was calculated applying a Bliss independence model using the R
package synergyfinder42.

Cycloheximide shutoff experiments. Cells were seeded and pre-treated with
DMSO (control) or 1 µM alisertib for 24 h before addition of 100 µg/ml cyclo-
heximide for 0, 1, 2, 3, and 4 h. Cell lysates were prepared and analyzed by western
blot. Protein amounts of MCL1 were calculated by the Image Studio Software
(LICOR Biosciences) and normalized to HSP90 amounts.

shRNA knockdown experiments. shRNA targeting Myc (TGTAAGCTTCAGCC
ATAATTT) was cloned into a Tet-pLKO-puro vector and cotransfected with
pMD2.G and pCMVd.8.9 helper plasmids into HEK 293T cells using TransIT-LT1
reagent (Mirus). Forty-eight hours post-transfection, replication-incompetent
lentiviruses were collected from the supernatant for infection in the presence of 8
μg/ml polybrene. Twenty-four hours after infection, growth medium was changed
and 3 μg/ml puromycin was added for selection. After 5 passages, Myc knockdown
was induced by addition of doxycycline (500 ng/ml) and Myc knockdown con-
firmed by RT-qPCR and immunoblot. For compound screenings, doxycycline was
added when cells were plated.

siRNA knockdown experiments. siRNA pools targeting MCL1 (siMCL1#1
GGUUUGGCAUAUCUAAUAA, siMCL1#2 GAAGGUGGCAUCAGGAAUG,
siMCL1#3 GAUUAUCUCUCGGUACCUU, siMCL1#4 CGAAGGAAGUAUCGA
AUUU), or DNMT3a (siDNMT3A#1 GCAUUCAGGUGGACCGCUA, siDNMT3
A#2 GCACUGAAAUGGAAAGGGU, siDNMT3A#3 CUCAGGCGCCUCAGAG
CUA, siDNMT3A#4 GGGACUUGGAGAAGCGGAGS) were purchased from
Dharmacon and transfected at 20 nM final concentration into SCLC cell lines
(H82, SBC4, GLC1, GLC2) using Dharmafect Transfection Reagent #2 (Dharma-
con). Growth medium was changed after 12 h. Experiments assessing knockdown
efficiency, cell viability, gene expression, and immunoblots to determine knock-
down effects were performed 48 h post-transfection.

Protein overexpression experiments. Vectors pMSCV-PIG (puro-IRES-GFP)
and pMSCV-PIG-BCL2 were cotransfected with pMD.2 and pCMVd.8.9 helper
plasmids into HEK 293T cells using TransIT-LT1 reagent (Mirus), respectively.
Forty-eight hours post-transfection, replication-incompetent lentiviruses were
collected from the supernatant for infection of Myc CRISPRa cells and H82 and
H524 cells in the presence of 8 μg/ml polybrene. Twenty-four hours after infection,
growth medium was changed and 3 μg/ml (Myc CRISPRa cells) or 1 µg/ml (H82/
H524) puromycin was added for selection for the duration of 6 days (3 passages).
After selection, cells were analyzed for protein expression.

RNA isolation qRT-PCR. Total RNA was isolated using the Qiazol reagent
(Qiagen) according to the manufacturer’s instructions. In all, 1.5 µg of total RNA
was subjected to DNaseI (Sigma) digestion and reverse transcribed using Super-
scriptIII (Thermo Fisher Scientific) with random hexamer primers. Quantitative
real-time PCR (qPCR) was performed using 7900HT Real-Time PCR System
(Applied Biosystems) and the Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific). The qPCR primers used to analyze mRNA levels are listed in Supple-
mentary Table 2. Data were normalized to 18S rRNA levels and are presented as
mean ± SEM and significance was calculated by unpaired Student’s t tests.

RNA sequencing. Total RNA was isolated using the RNeasy Mini Prep Kit
(Qiagen) according to the manufacturer’s instructions with a 75-bp paired-end
protocol on a HiSeq4000 (Illumina, USA). 3’ UTR RNA sequencing libraries for
murine CRISPRa cells were prepared using the QuantSeq 3’mRNA-Seq Library Kit
(Lexogen, Austria) and sequenced with a 50-bp single-end protocol on an Illumina
HiSeq4000 (Illumina, USA). Sequencing data are deposited at EBI Array Express,
accession # E-MTAB-7411.

Chromatin immunoprecipitation. Cells were crosslinked in 1% formaldehyde, and
chromatin was extracted and sonicated. Equal amounts of chromatin were incu-
bated overnight with specific antibodies against MYC (clone 9E11, ab56, Abcam,
5 µg), MYCN (clone B8.4.B, sc-53993, Santa Cruz Biotechnology, 4 µg), DNMT3a
(ab2850, Abcam, 4 µg), MIZ1 (clone 10E2, Elmar Wolf, Würzburg, 15 µl anti-
serum), or unspecific mouse IgG (sc-2025, Santa Cruz Biotechnology, 4 µg). ChIP
complexes were captured using protein G Dynabeads (Thermo Fisher Scientific),
washed, eluted, and decrosslinked. DNA was purified using the ChIP DNA Clean
& Concentrator Kit (Zymo Research) and analyzed by qRT-PCR using primers
listed in Supplementary Table 2. ChIP signals of non-specific background (IgG)
were subtracted from specific antibody ChIP signals. ChIP signals were calculated
as percentage of input. Data are presented as mean ± SEM and significance was
calculated by unpaired Student’s t tests.

BH3 profiling assay. Cells were pelleted, washed in PBS, resuspended in MEB2
buffer, and 1 × 104 to 2 × 104 cells were added to each well of a 384 non-binding
plate containing MEB2+ 20 µg/ml digitonin+ sensitizer peptides at 2× the final
concentration. Permeabilized cells were incubated for 1 h at RT in the presence of
peptides, fixed by the addition of formaldehyde to 1% final concentration for
10min at RT, and neutralized by the addition of N2 buffer (Tris/glycine) to terminate
fixation. Cells were stained overnight by adding Alexa647–Cytochrome C (clone 6H2.
B4, Biolegend) to 250 ng/ml final concentration and Hoechst 33342 to 1 µg/ml final
concentration. Analysis was conducted on a BD Fortessa or BD Fortessa X20 with
gating on DAPI+ singlets and normalization of the Cytochrome C mean fluorescent
intensity values to the buffer alone and 25 µM alamethicin controls.

Immunofluorescence. Murine Myc paralog-activated cells were grown on glass
coverslips and human SCLC cells were grown on NuncTM Lab-TekTM coated
with Gelatine solution 0.1% in PBS (PAN Biotech). Cells were fixed with 4%
paraformaldehyde at RT, permeabilized in PBS containing 0.25% Triton X-100,
and blocked in PBS containing 0.2% Tween 20 and 3% bovine serum albumin.
Cells were incubated overnight with primary antibodies to γH2AX (#05-636,
Merck, 1:500), MCL-1 (sc-819, Santa Cruz Biotechnology, 1:100), or 53BP1
(MAB3802, Merck, 1:500). After washing, cells were incubated with secondary
antibodies conjugated to Alexa Fluor-488 (A11029, Thermo Fisher Scientific,
1:1000) and Alexa Fluor-647 (A32733, Thermo Fisher Scientific, 1:1000) in com-
bination with DAPI (4′,6-diamidino-2-phenylindole; Sigma, 1:1000). Coverslips
were mounted using Fluromount-GTM (Thermo Fisher Scientific). Microscopy
was performed using a Zeiss Meta 710 confocal microscope and images were
analyzed by the ImageJ software.

Bisulfite sequencing. Cellular DNA was extracted using the Puregene Kit (Qia-
gen) according to the manufacturer’s instructions. Five hundred nanograms of
DNA were bisulfite converted using the EZ DNA Methylation-Gold Kit (Zymo
Research) according to the manufacturer’s instructions. Bisulfite-converted DNA
was subjected to methylation-specific PCR using specific primers for the BCL2
promoter listed in Supplementary Table 2. PCR product was resolved on a 2%
agarose gel and purified using the Monarch DNA Gel Extraction Kit (New England
BioLabs), cloned into pCR4-TOPO TA Vector (Thermo Fisher Scientific), trans-
formed into XL10-Gold Ultracompetent Cells (Agilent Technologies), and plated
onto ampicillin selection LB-agar plates. DNA of single colonies was extracted
using the NucleoSpin Plasmid EasyPure Mini Kit (Macherey-Nagel) and submitted
to Sanger sequencing using sequencing primers M13-for and M13-rev (see Sup-
plementary Table 2). Obtained sequences were analyzed and DNA methylation
plots were generated using the QUMA quantification tool for methylation
analysis43.

Crystal violet assay. In all, 2 × 105 cells were plated into one well of a 6-well plate
and treated with DMSO (control), 40 nM prexasertib, 120 nM alisertib, and the
combination of prexasertib and alisertib. Seventy-four hours after treatment, cells
were fixed in 4% paraformaldehyde in PBS, stained with 0.1% crystal violet in PBS,
and rinsed in PBS before image acquisition.

Generation of chemo-resistant cells. Myc-activated CRISPRa cells were subjected
to prolonged etoposide treatment at increasing concentrations starting from 500 nM
for several weeks. The resulting, proliferating cell line was maintained in growth
medium containing 2 µM etoposide.

Mouse drug treatments. To initiate lung tumors Rb1fl/fl;p53fl/fl;MycLSL/LSL (RPM)
mice were infected by intratracheal injection with 1 × 108 Ad-CGRP-Cre virus
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(University of Iowa Virus Vector Core). Mice were imaged with a Quantum FX or
GX2 microCT system (Perkin Elmer) and randomized into treatment groups upon
detection of ~10% lung tumor burden. Treatment groups included PBS control
(n= 15), chemotherapy (cisplatin/etoposide, n= 18), prexasertib (n= 12), or
prexasertib combined with alisertib (n= 15). Prexasertib (10 mg/kg in Captisol)
was administered via subcutaneous flank injection twice a day on a weekly schedule
of 2 days on and 5 days off. Prexasertib was provided by Dr. Lauren Byers and
manufactured by the Institute for Applied Chemical Science at MD Anderson,
Houston, TX. Alisertib (Apexbio Technology; 20 mg/kg in 10% β-cyclodextrin) was
administered via oral gavage twice a day on a weekly schedule of 5 days on and
2 days off. For weekly chemotherapy treatments, cisplatin (Sigma-Aldrich; 5 mg/kg
in PBS) was administered on day 1 and etoposide (Sigma-Aldrich; 10 mg/kg in 70%
PEG in water) was given on day 2 by intraperitoneal injection. To decrease toxicity,
mice treated with prexasertib and chemotherapy received cisplatin on day 1, eto-
poside on day 2, and prexasertib on days 5 and 6 of each weekly cycle. After 4
cycles of cisplatin/etoposide chemotherapy, mice were treated weekly with etopo-
side only. MCL1 inhibitor S63845 (25 mg/kg or 40 mg/kg in 20% β-cyclodextrin
with 25 mM HCl) was administered by tail vein injection. Mice were treated with
MCL1i at 25 mg/kg twice/week or 40 mg/kg once/week, and both treatment doses
were tested in combination with cisplatin/etoposide chemotherapy. Since neither
the 25 mg/kg nor 40 mg/kg monotherapy significantly improved survival, these
groups were combined for data analysis. Both tested doses of S63845+ che-
motherapy induced significant weight loss and toxicity. ABT-199 (50 mg/kg in 60%
Phosal50, 30% PEG400, 10% ethanol) was administered by oral gavage once
per day on a weekly schedule of 5 days on/2 days off. Mice were imaged at the start
of each treatment cycle and 4 days post cisplatin, and images were quantified using
the Analyze 11.0 (AnalyzeDirect) software. Endpoints for survival studies included
labored breathing, >20% weight loss, or signs of toxicity. Mice were sacrificed via
CO2 asphyxiation prior to necropsy. Survival curve analysis was performed with
the GraphPad Prism software. These experiments were approved by the HCI
Institutional Animal Care and Use Committee (IACUC), and mice were housed in
a specific pathogen-free barrier facility.

Micro-computed tomographic (microCT) imaging. Mice were scanned for 34 s
under isoflurane anesthesia using a small animal Quantum FX or GX2 microCT
(PerkinElmer) at 45 µm resolution, 90 kV, with 160 mA current. Images were
acquired using the PerkinElmer Quantum FX software and processed with Analyze
11.0 (AnalyzeDirect). Scans were calibrated for Hounsfield Units (HU) by deter-
mining the mean value of “Bed” and “Air” for representative scans using the region
of interest (ROI) tool. Those values were matched to their known HU (40 and
−1000 HU, respectively) by the “Image Algebra” tool. A 3 × 3 × 3 Median Filter
was applied to every image using the “Spatial Filters” window. Thresholds for “Air”
vs. “Dense Tissue” were set using the ROI and histogram tools. For total tumor
burden analyses, an object map was created using the previously established
thresholds and manually adjusted using “Spline Edit”, “Draw”, “Trace”, and
“Nudge Edit” tools. The object map was then morphed, i.e., made binary by using
the threshold morphing tool. Then the map was dilated 3 times using 5 × 5 × 5
Jack-shaped structuring elements. Holes were filled on every two-dimensional
orientation and the map was finally brought back to its original size with the
“Erode” tool 3 times using 5 × 5 × 5 Jack-shaped structuring elements. The volu-
metric analyses were then performed in the ROI window using the pre-established
thresholds and non-airspace was calculated using the formula: Nonairspace= 1−
(VolAir/ROIVol).

Immunohistochemistry. Tissues were fixed in formalin overnight, then transferred
to 70% ethanol, and embedded in paraffin (ARUP histology core). Formalin-fixed
paraffin-embedded sections (4 micron) were used for hematoxylin and eosin
and IHC staining. Antigen retrieval was performed by boiling slides for 20 min in
0.01M citrate buffer, pH 6.0. Slides were blocked for 15 min with 3% H2O2, fol-
lowed by 5% goat serum in PBS containing 0.1% Tween-20 (PBST). Primary
antibodies were incubated overnight at 4 °C and include the following: BCL2
(#M088701-2, clone 124, Agilent), MYC (ab32072, Abcam), NEUROD1
(ab205300, Abcam), and ASCL1 (#556604, BD Pharmingen). Slides were then
incubated with horseradish peroxidase (HRP)-conjugated secondary antibody
(Vector Laboratories, 1:200) and developed with DAB (Vector Laboratories). A
Nikon Eclipse Ci microscope and DS-Fi3 camera were used for imaging.

Immunoblot. Cell lysates were prepared using RIPA buffer supplemented with
protease inhibitors (cOmplete Mini Protease Inhibitor Cocktail, Roche). Protein
concentration was determined by BCA assay (Pierce) and equal amounts of protein
were separated on 4–20% Tris-glycine sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) gels (Thermo Fisher Scientific) and transferred to
PVDF-FL membrane (Millipore). Membranes were blocked in 3% cold-fish gelatin
blocking buffer in TBS, incubated with primary antibodies, washed, and incubated
with fluorescently labeled secondary antibodies prior to detection with Odyssey CLx
imaging system (LI-COR Biosciences). Images were processed using the Image Studio
Software (LI-COR Biosciences). Primary antibodies are: MYC (#9402, Cell Signaling
Technology, 1:1000), MYCN (sc-53993, Santa Cruz Biotechnology, 1:1000), MYCL
(AF4050, R&D Systems, 1:1000), BCL2 (#2872, Cell Signaling Technology, 1:1000),

BIM (#2933, Cell Signaling Technology, 1:1000), BAD (#610391, BD Biosciences,
1:1000), BCL-XL (#2764, Cell Signaling Technology, 1:1000), HA (#3724, Cell Sig-
naling Technology, 1:1000), MIZ1 (clone 10E2, Elmar Wolf, Würzburg, 1:500),
ASCL1 (#556604, BD Biosciences, 1:1000), MCL1 (sc-819, Santa Cruz Biotechnology,
1:1000), γH2AX (#05-636, Merck, 1:1000), Cleaved Caspase 3 – CC3 (#9664, Cell
Signaling Technology, 1:500), pAURKA/B/C (#2914, Cell Signaling Technology,
1:1000), pCHK1S345 (#2341, Cell Signaling Technology, 1:1000), and HSP90 (ADI-
SPA-835, Enzo Life Sciences, 1:5000). Secondary antibodies are: goat anti-rabbit
800CW (#926-32211, LI-COR Biosciences, 1:10,000), goat anti-mouse 800CW (#926-
3220, LI-COR Biosciences, 1:10,000), anti-rat 680 (#925-68029, LI-COR Biosciences,
1:10,000), goat anti-rabbit 680LT (#926-68021, LI-COR Biosciences, 1:10,000), and
goat anti-mouse 680LT (#926-68020, LI-COR Biosciences, 1:10,000). Alternatively,
cells were lysed in RIPA buffer supplemented with Pierce Protease inhibitors and
sodium orthovanadate. Protein concentrations were measured with the DC protein
assay (Bio-Rad), and equal protein volumes were resolved on SDS-PAGE gels.
Samples were transferred to 0.2 µm PVDF (Bio-Rad). Membranes were blocked in 5%
milk/PBS-T prior to overnight incubation in primary antibody. Membranes were then
incubated in secondary anti-rabbit-HRP or anti-mouse-HRP antibody (Jackson
ImmunoResearch, 1:4000). After washing, membranes were developed with Wes-
ternBright ECL HRP (Advansta) and imaged on Hyblot autoradiography film. Pri-
mary antibodies used include the following: BCL2 (#2872, Cell Signaling Technology,
1:2000); MCL1 (#94296, Cell Signaling Technology, 1:2000); HSP90 (#4877, Cell
Signaling Technology, 1:2000); and ACTIN (#A2066, Sigma, 1:10,000). Uncropped
blots are displayed in the Source Data file.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings in this study are available from the corresponding author
upon reasonable request. The primary data underlying the graphs are provided in the
Source Data File. Previously published datasets used in this study are available at Gene
Expression Omnibus through accession codes GSE60052 (expression data SCLC patients)
and GSE68379 (methylation data) and at European Genome-phenome Archive through
accession codes EGAS00001002115 and EGAS00001000334 (both RNAseq human SCLC
cell lines). RNAseq and WES data generated in this study have been deposited at EBI
Array Express with the accession codes E-MTAB-7410 (RNAseq NCI-H69, COR-L303),
E-MTAB-7411 (RNAseq rp181 CRISPRa), and E-MTAB-7412 (WES rp181).
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SUMMARY

Kinase inhibitors represent the backbone of targeted
cancer therapy, yet only a limited number of onco-
genic drivers are directly druggable. By interrogating
the activity of 1,505 kinase inhibitors, we found
that BRD4-NUT-rearranged NUT midline carcinoma
(NMC) cells are specifically killed by CDK9 inhibition
(CDK9i) and depend on CDK9 and Cyclin-T1 expres-
sion. We show that CDK9i leads to robust induction
of apoptosis and of markers of DNA damage
response in NMC cells. While both CDK9i and bro-
modomain inhibition over time result in reduced
Myc protein expression, only bromodomain inhibi-
tion induces cell differentiation and a p21-induced
cell-cycle arrest in these cells. Finally, RNA-seq and
ChIP-based analyses reveal a BRD4-NUT-specific
CDK9i-induced perturbation of transcriptional elon-
gation. Thus, our data provide a mechanistic basis
for the genotype-dependent vulnerability of NMC
cells to CDK9i that may be of relevance for the devel-
opment of targeted therapies for NMC patients.

INTRODUCTION

Systematic genomic profiling of tumors, combined with the
development of targeted therapeutics, paved the way for a num-

ber of breakthroughs in the treatment of cancer patients (Buett-
ner et al., 2013; Clinical Lung Cancer Genome Project (CLCGP)
Network Genomic Medicine (NGM), 2013; Hyman et al., 2015;
Kandoth et al., 2013). In genetically defined subgroups such as
EGFR-mutant lung cancer the therapeutic exploitation of these
alterations has already led to dramatic improvements in the clin-
ical care of cancer patients (Flaherty et al., 2012; Rosell et al.,
2012; Shaw et al., 2013; Van Cutsem et al., 2011). However,
most oncogenic driver lesions are still considered to be
undruggable.
Massively parallel interrogation of drug vulnerability across

large panels of cancer cell lines has proved to be a valid tool
for the identification and validation of genetically defined targets
(Barretina et al., 2012; Garnett et al., 2012; Iorio et al., 2016; Mar-
tins et al., 2015; Seashore-Ludlow et al., 2015; Sos et al., 2009a,
2009b). Such screens can identify compounds that directly
target driver alterations and offer the opportunity to discover
additional vulnerabilities in non-mutated genes that only become
essential in tumor-specific genetic backgrounds (Chan et al.,
2011; Fece de la Cruz et al., 2015). Exploitation of such syn-
thetic lethality has already provided alternative therapeutic ap-
proaches to selectively kill cancer cells while sparing normal tis-
sue (McLornan et al., 2014). The cyclin-dependent kinases
(CDKs) 1, 2, and 6 have been shown to gain relevance in several
MYC-driven tumors and were thus proposed as context-specific
synthetic lethal targets (Fece de la Cruz et al., 2015). Moreover,
CDK9, which, together with Cyclin-T1, forms the positive tran-
scription elongation factor b (P-TEFb) complex and induces tran-
scriptional activation by hyperphosphorylating RNA polymerase
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II (Pol II) (Lu et al., 2015; Morales and Giordano, 2016), was put
forth as a potential therapeutic target in hepatocellular carci-
noma (Huang et al., 2014), ovarian cancer (Lam et al., 2014),
and hematological malignancies (Gregory et al., 2015; Walsby
et al., 2014). As a consequence, several CDK inhibitors have
entered clinical trials, but so far, a lack of specificity and resulting
toxicity limits the clinical relevance of CDK inhibitors in cancer
(Chen et al., 2014; Kumar et al., 2015; Morales and Giordano,
2016).
Here we evaluated the cellular activity of a library of 1,505 ki-

nase inhibitors to systematically uncover genotype-specific vul-
nerabilities. Our data reveal that CDK9 inhibition specifically
modulates transcriptional elongation and effectively impairs
viability through induction of apoptosis and DNA damage
response of NUT midline carcinoma (NMC) cells.

RESULTS

High-Throughput Cell Line Screening
In total, 1,505 chemical compounds with a spectrum of common
kinase inhibitor motifs were screened against 78 cancer cell lines
(Figures 1A–1C) (Barretina et al., 2012; Garnett et al., 2012;
Sos et al., 2009b). Overall, 7.5% of all compound-cell line
combinations were classified as candidate hits (Z score < !2,
corresponding to a residual viability of <25.9% at 10 mM) (Fig-
ure S1A). The high number of compounds that elicited only low
or no cytotoxic effects across the cell lines is likely attributed
to most compounds not having undergone previous target-
based chemical or lead optimization (Figure 1A; Figure S1A).
Based on the number of hits across cell lines (nhits), compounds
showed a range of activity patterns ranging from lack of activity
(65.2% of all compounds, termed inactive; nhits < 2) to broad and
unselective toxicity (9.0%, termed toxic; nhits > 30% of cell lines)
(Figure 1A).
To assess the impact of chemical complexity on compound

activity, we calculated extended connectivity fingerprints
(ECFP6) (Riniker and Landrum, 2013), whose lengths correspond
to the number of distinct chemical features present in a given
molecule. Neither biological selectivity nor compound potency
depended on chemical complexity, as determined by the
ECFP6-fingerprint length (Figure 1B). Inactive, selective, and
toxic compounds were distributed at similar frequencies along
the fingerprint lengths (Figure 1B, upper panel). However, ana-
lyses of compounds grouped by basic chemical scaffold (Hu

and Bajorath, 2013) indicated that the number of active com-
pounds varied by core structures (Figure 1C). Specifically, com-
pounds with selective patterns of activity were typically based
on common scaffolds of established kinase inhibitors (e.g.,
amino-pyrimidines, imidazoles, indoles, pyrazoles, pyridines,
quinazolines, and thiazoles) (Figure 1C, boxplot). By contrast,
compounds based on a pyrazolopyrimidinone scaffold or those
with a highly complex core structure (mainly staurosporine and
derivatives thereof) were enriched in the group of primarily toxic
activity (Figure 1C). Thus, within our dataset core, scaffolds are a
major determinant of compound selectivity.
To discover genotype-specific effects of the selective com-

pounds, cell lines were grouped according to the presence or
absence of a given genomic alteration, and differences in the
viability in those cell lines bearing such alteration and in those
lacking it were tested by an ANOVA approach (Barretina et al.,
2012; Garnett et al., 2012; Iorio et al., 2016; Sos et al., 2009b).
Of all 6,664 possible compound-genotype combinations, 345
(hit rate = 5.2%) showed a significantly decreased viability in
altered versus wild-type cell lines (false discovery rate [FDR] %
0.1) with a significant enrichment of EGFR inhibitors scoring in
EGFR-mutant cell lines (Figure 1D).
We hypothesized that based on the structural diversity of in-

hibitors with differential activity against EGFR, we might also
be able to predict compound activity by chemical structure
alone. To this end, we applied elastic net modeling for regression
and classification of activity based on ECFP6 fingerprints using
a training subset (90% of compounds), coupled with 10-fold
cross-validation and subsequent testing on the remaining 10%
of the compounds (Figure 1E) (Zou and Hastie, 2005). We
first predicted median residual viability of EGFR-mutant cells
as a continuous measure based on the fingerprints of com-
pounds containing thiazoles (n = 398) or quinazolines (n = 172).
Overall, a high degree of correlation between predicted and
observed median viability was achieved for thiazoles (median
Pearson r = 0.74; p = 2.8 3 10!33) (Figure 1F; Figure S1B) and
quinazoline-based compounds (median Pearson r = 0.76; p =
2.2 3 10!47) (Figures S1C and S1D). Similarly, when performing
binary predictions of compounds as having either high or low
anti-EGFR activity in the complete compound set, irrespective
of underlying scaffolds, compounds predicted to have high
anti-EGFR activity exhibited significantly lower residual viabilities
(p = 1.0 3 10!8; area under the curve [AUC] 0.88) (Figure 1G). In
an independent validation with data of the GlaxoSmithKline

Figure 1. High-Throughput Cell Line Screening
(A) Unsupervised hierarchical clustering of cell lines (columns, n = 78) and compounds (rows, n = 1505) based on residual viability (heatmap). Color bar (rows)

represents classification of compounds based on the number of hits across cell lines. Bottom: annotation of known driver alterations and their frequency in the cell

line panel.

(B) Top: density plot of inactive, selective, and toxic compounds along the ECFP6-fingerprint length (color code as in A). Bottom: association of compound activity

defined by the number of hits across cell lines, with chemical complexity assessed by the compounds’ fingerprint lengths.

(C) Bar graph: distribution of the most frequent scaffolds in the compound library. Boxplot: number of hits of active compounds grouped by chemical scaffold.

(D) Volcano plot with viability reduction (x axis) and significance (y axis) of selective compounds (n = 392) in genotypes annotated in (A) (n = 17). (FDR, false

discovery rate in the ANOVA model; *H1975 was not included as EGFRmut due to its T790M resistance mutation.)

(E) Schematic of the model building for elastic net models predicting percentage of viability or classifying compounds as active or inactive.

(F) Correlation coefficients of predicted versus observed or randomly permutated residual viability in EGFRmut cell lines based on 100 elastic net models for

thiazoles (two-sided Mann-Whitney test).

(G) Classification of validation set compounds independent of underlying scaffold. Discriminatory capacity is indicated by the receiver operator analysis (ROC,

inset; p value, Mann-Whitney test between compounds predicted to have high versus low activity against EGFRmut cell lines; CI, 95% confidence interval).
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Protein Kinase Inhibitor Set (GSK PKIS) compounds, the elastic
net model also reliably predicted high versus low activity against
L858R-mutated EGFR (p = 1.9 3 10!19; AUC 0.85; sensitivity
77.2%; specificity 81.9%) (Figure S1E).

Thus, our inhibitor screening data capture major genomic de-
pendencies and our elastic net-based algorithm for the system-
atic deconvolution of genotype-chemotype relationships may be
useful for the analysis of similar large-scale screening datasets.

NMC Cells Are Sensitive to CDK9 Inhibition
The second most abundant genotype-chemotype interaction
present in our dataset was identified for a BRD4-NUT-rear-
ranged cell line (HCC2429) (Figure 1D) (Yan et al., 2011), which
was among the cell lines with the highest degree of sensitivity
toward several compounds (Figure S1F). BRD4-NUT fusions
are a hallmark of NMC, a rare but highly aggressive tumor type
associated with poor response to standard chemotherapy
(French et al., 2003; Stathis et al., 2016). Among selective com-
pounds with strong activity against HCC2429 cells, we identified
LDC67, a known CDK9 inhibitor, as the most genotype-selective
inhibitor (Figure 2A) (Albert et al., 2014). The 10 most active com-
pounds shared structural features with LDC67 and known CDK
inhibitors (Figure S2A) (Albert et al., 2014; Morales andGiordano,
2016; Rossi et al., 2005), suggesting that these chemotypes may
be suited as a backbone for CDK inhibitors. To further validate
our findings, we determined half-maximal growth inhibitory
(GI50) values of LDC67 across 64 cell lines, including three
NMC cell lines (HCC2429, 143100, and 690100), and found
significantly (p = 1 3 10!4) higher activity in all BRD4-NUT-rear-
ranged cells compared to tumor cells lacking the rearrangement
(Figure 2B; Figure S2B). We also observed a similar activity pro-
file in the cases of the CDK inhibitor AT7519 (p = 5 3 10!4)
(Squires et al., 2009) and the bromodomain inhibitor JQ1 (p =
1.4 3 10!7), which was previously shown to be active in NMC
cells (Figures S2C and S2D) (Filippakopoulos et al., 2010). In
line with these observations, CDK9 inhibition led to significantly
reduced cell growth of BRD4-NUT-rearranged cells in clono-
genic assays (p = 9 3 10!7) (Figure 2C) and an induction of
apoptosis at 24 hr (p = 0.001) and 48 hr (p = 0.005). Similarly,
LDC67 treatment led to a significant increase in the sub-G1
fraction (control, 8.0%; LDC67, 57%; p = 0.047) in BRD4-NUT-
rearranged cells, but not in control cells (Figure S2E). We subse-
quently sought to determine potential mechanistic links between
CDK9i and apoptosis induction. Because CDK9i has been
described as conferring an apoptosis-primed state by repres-
sing anti-apoptotic Mcl-1 (Gregory et al., 2015; Huang et al.,
2014; Lemke et al., 2014), we analyzed Mcl-1 expression levels
under LDC67 treatment as a function of time. Mcl-1 protein
expression was almost abrogated in HCC2429 cells, but not in
A549 (KRASmut) cells (Figure 2E). In addition to interfering with
global transcription and altering the balance of pro- and anti-
apoptotic proteins, CDK9 was shown to be involved in the
DNA damage response (Yu et al., 2010; Zhang et al., 2013).
We therefore investigated the levels of gH2AX and phospho-
Chk2, surrogate markers of DNA damage (Yu et al., 2010), under
LDC67 treatment. We observed strong upregulation of gH2AX
and phospho-Chk2 in HCC2429, while such induction was
considerably lower in A549 cells (Figure 2E). In addition, we

were able to confirm a significant increase of gH2AX-positive
HCC2429 cells (24 hr) by fluorescence-activated cell sorting
(FACS) analysis after co-staining for gH2AX and cleaved cas-
pase-3 (Figure 2F).
Overall, our data suggest that BRD4-NUT-rearranged NMC

cells may be particularly vulnerable to CDK9 inhibition.

BRD4-NUT-Driven Cells Display a Distinctive CDK9
Dependency
To test a specific dependency of NMC cells on CDK9 expression
that may explain the observed phenotype in CDK9i-treated cells,
we performed short hairpin RNA (shRNA)-mediated knockdown
of both components of P-TEFb, CDK9, and Cyclin-T1 (Figures
3A and 3B). Similar to CDK9 inhibition, we observed a significant
(p = 2 3 10!4) reduction in cellular viability of NMC cells
(HCC2429), but not of control cells (A549) (Figures 3A and 3B).
We next tested the effects of LDC67 in NMC and control cells
(A549 and HCC15) on phosphorylation of Pol II and observed a
dose-dependent decrease of Ser2 phosphorylation, irrespective
of theunderlyinggenotype (Figure3C).Previously, cellular efficacy
of CDK9 inhibitors has been linked with changes in the complex
formation of P-TEFb with its negative regulator HEXIM1 (Huang
et al., 2014; Itzen et al., 2014; Lu et al., 2015; Morales and Gior-
dano, 2016). Tomonitor suchdrug-inducedeffects,weperformed
immunoprecipitation assays of endogenous CDK9 in HCC2429
and A549 cells treated with LDC67. We observed a modest but
reproducible reduction of HEXIM1-bound CDK9 in both cell lines
(Figure 3D), with a more profound disruption of HEXIM1/CDK9
complexes in HCC2429 cells (72.6%) when compared to A549
cells (85.6%) after 4 hr LDC67 treatment (Figure 3D). We were
able to validate this CDK9 inhibitor-induced effect when overex-
pressing FLAG-CDK9 in HCC2429 cells with a HEXIM1/FLAG-
CDK9 ratio of 14.6% after LDC67 (4 hr) treatment (Figure S3A).
These data further highlight the relevance of CDK9 expression

in NMC and suggest that the effects achieved by LDC67 may be
attributable to direct inhibition of CDK9.

CDK9-Specific Effects in NMC Cells
Previous reports have implicated MYC expression as a relevant
downstream effector of BRD4-NUT-driven cells in the context of
BRD4 inhibitor treatment (Grayson et al., 2014; Sos et al.,
2009b). To test the relevance of MYC expression in BRD4-
NUT-rearranged cells, we performed shRNA-mediated MYC
knockdown and observed a significant (p = 8.13 10!5) reduction
of viability in HCC2429 cells that did not strongly differ (p = 0.1)
from that of A549 control cells (Figure S3B). When monitoring
Myc protein levels during drug treatment, bromodomain inhibi-
tion with JQ1 led to a constant decrease of Myc protein expres-
sion as expected (Figures 4A and 4B; Figure S3C). To our sur-
prise, we observed an initial moderate increase of Myc protein
levels and a subsequent reduction after 48 to 72 hr of LDC67
treatment in HCC2429 BRD4-NUT-rearranged cells, but not in
A549 control cells (Figures 4A and 4B; Figure S3C) (Lu et al.,
2015). We observed a similar reduction of Myc protein levels,
together with an increase in gH2AX and depletion of Mcl-1 in
the 143100 NMC cells but without the initial Myc increase, sug-
gesting that the effect on Myc expression may be cell line spe-
cific (Figure S3D). The overlapping effects on Myc expression
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Figure 2. CDK9 Inhibition Exhibits Distinct Effects on BRD4-NUT-Rearranged NMC Cells
(A) Activity of selective compounds against BRD4-NUT-rearranged HCC2429 cells. To obtain the most genotype-selective inhibitor, the percentage of cell lines

that were not impacted below the hit threshold was calculated for the ten most potent compounds (inset).

(B) GI50 values from LDC67 dose-response curves (72 hr) across 64 cell lines.

(C) Clonogenic survival assays of HCC2429 and A549 of LDC67 treatment or DMSO control (mean ± SD; n = 3).

(D) Apoptosis measured by Annexin V flow cytometry in BRD4-NUT-rearranged and control cells following treatment with 10 mM LDC67 (mean ± SD; n = 3).

(E) Immunoblot of HCC2429 and A549 cells treated with LDC67 for the indicated periods.

(F) HCC2429 cells treated for 24 hr with 10 mM LDC67, 0.5 mM JQ1, or DMSO were co-stained for cleaved caspase-3 (CC3) and gH2AX and measured by flow

cytometry (mean ± SEM; n = 3; p values calculated by two-tailed t tests).
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induced by JQ1 and LDC67 may partly explain the additive
effects observed for the combination of both compounds and
partial cross-resistance of JQ1-persistent HCC2429 clones
(GI50 = 11.62 mM JQ1P versus GI50 = 72 nM parental) (Figures
S3E–S3H).

We also observed that treatment with both inhibitors led to in-
duction of cleaved caspase-3 within 24–48 hr (Figure 4A). Using
a more quantitative approach, we noticed a significantly higher
fraction of apoptotic cells under LDC67 compared to JQ1 treat-
ment in flow cytometric analyses (LDC67 61% versus JQ1 31%;
p = 0.02) (Figure S3I). By contrast, only bromodomain inhibition,
not CDK9 inhibition, led to a dramatic induction of the p53 target
gene p21 and a block of S phase entry (Figures 4A–4E; Fig-
ure S3J). In parallel, in JQ1-treated, but not LDC67-treated,
HCC2429 cells, we observed disassembly of hyperacetylated/
p300-positive foci that may lead to restoration of p53 activity,
as described in previous reports (Figures 4F and 4G) (Huang
et al., 2014; Reynoird et al., 2010).

Thus, our data indicate that in contrast to bromodomain inhi-
bition, CDK9 inhibition does not lead to a cell-cycle arrest and

that over time, both perturbations induce a similar reduction of
Myc expression.

CDK9 Inhibition Perturbs Defined Transcriptional
Programs in NMC Cells
To further investigate the signaling patterns induced by CDK9
inhibition, we performed transcriptome profiling (RNA seq-
uencing [RNA-seq]) in NMC cells. RNA-seq indicated that
LDC67 treatment induces an initial increase (8 hr), followed
by downregulation (48 hr) of transcripts involved in RNA
binding and translation, of ribosomal subunits in gene set
enrichment analyses (GSEAs) and included known surrogate
markers of P-TEFb complex activity, such as FOS (Figures
5A–5C; Figure S4A; Tables S1 and S2) (Lu et al., 2015; Stathis
et al., 2016; Yan et al., 2011). We were also able to confirm
that LDC67 and JQ1 treatment was associated with a pertur-
bation of cellular processes linked with Myc activity (Figure 5C;
Tables S3 and S4). The changes induced by LDC67 were most
prevalent in genes regulated by promoters with high affinity for
Myc (Figure S4B) (Lorenzin et al., 2016; P.J. O’Dwyer et al.,

Figure 3. Effects of CDK9 or Cyclin-T1 Perturbation in NMC Cells
(A and B) shRNA-based gene knockdown of CDK9 or Cyclin-T1 was performed in HCC2429 and A549 cells and effects on viability (A) and protein levels (B) were

assessed compared to controls (mean ± SEM; n = 3).

(C) LDC67 on-target activity assessed by reduction of RNA polymerase II (Pol II) phosphorylation at Ser2 after 24 hr.

(D) Immunoprecipitations (IPs) of endogenous CDK9 show reduced HEXIM1/CDK9 complex abundance after 4 hr LDC67 treatment (n = 3; two-tailed t test). IgG

was used as unspecific negative IP control.
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2016, Cancer Res., abstract). As expected, the timing of
the transcriptional changes and the individual gene sets in
HCC2429 cells treated with the bromodomain inhibitor JQ1
strongly differed from those treated with the CDK9 inhibitor
LDC67 (Figure 5C; Figures S4A–S4D). We also observed a
robust enrichment of genes involved in cytoskeletal regulation
in JQ1-treated cells and a reduction of cell-cycle gene sets
(Figure 5C; Figure S4A; Tables S1 and S2), which may corre-
spond to the morphological changes induced by JQ1 (Fig-
ure S4E) (Alekseyenko et al., 2015; Filippakopoulos et al.,
2010; Grayson et al., 2014; Stathis et al., 2016).

Figure 4. Differential Effects of CDK9 and
BRD4 Inhibition on NMC Cells
(A and B) Effects of JQ1 and LDC67 treatment on

protein levels in HCC2429 were assessed by

immunoblotting (A) and Myc protein levels over

time were quantified and normalized to actin (B)

(mean ± SEM; n = 5).

(C and D) Immunofluorescence of p21 protein

expression in HCC2429 cells after 24 hr LDC67

(10 mM) or JQ1 (500 nM) treatment (C). For quan-

tification (D), in total, >100 cells were assessed per

condition (bars represent the percentage of p21-

positive cells ± 95% CI; p values were calculated

by chi-square tests).

(E) Cell-cycle distribution of cycling cells assessed

by flow cytometry of propidium iodine-stained

HCC2429 cells after 24 hr treatment with 10 mM

LDC67 or 500 nM JQ1.

(F and G) Representative immunofluorescence (IF)

images of HCC2429 cells stained for p300 foci

after 24 hr DMSO, JQ1 (500 nM), or LDC67 (10 mM)

(F). Number of foci per nucleus was quantified in

n = 3 experiments (G), with >250 cells per condition

(two-tailed Wilcoxon tests).

To validate our RNA-seq results and to
assess the impact of CDK9i on de novo
transcription, we performed qRT-PCR of
mature mRNA and of unspliced pre-
mRNA for a set of upregulated genes
(FOS, JUNB, and MYC) and downregu-
lated genes (FOXO6 and KLHL23) after
LDC67 treatment. We chose 18S rRNA
for qPCR normalization that remained
stable under inhibitor treatment while
RNA-seq normalizes expression relative
to the complete transcriptome. Overall,
the RNA-seq results validated well for
mature and pre-mRNA (Figures 5B and
5E). Increased pre-mRNA levels of FOS
and JUNB suggest that these genes are
actively transcribed despite CDK9i. How-
ever, the strong decrease of FOXO6 and
KLHL23 pre-mRNA indicates CDK9i-
mediated elongation defects and abroga-
tion of de novo transcription.MYCmRNA
did not increase but instead stayed
constant at 8 hr of LDC67 treatment,

followed by a delayed reduction at 48 hr (Figure 5B). The
apparent difference to the RNA-seq results is most likely due
to the aforementioned differences in normalization. Furthermore,
MYC pre-mRNA levels were decreased after 8 and 48 hr of
LDC67 treatment (Figure 5B). As expected, bromodomain inhibi-
tion with JQ1 led to a constant decrease of MYC pre-mRNA,
mature mRNA, and protein expression (Figure 4A; Figures 5D
and 5E). Depletion of CDK9 or Cyclin-T1 in these cells led to a
similar reduction of premature and mature MYC mRNA corre-
sponding to the respective knockdown efficacies (Figure 5F;
Figure S4F).
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Thus, CDK9 inhibition may lead to defined genotype-specific
transcriptional changes but may also interfere with MYC mRNA
stability and increase MYC translation rather than de novo
transcription.

CDK9 Inhibition Has a Major Effect on Transcriptional
Elongation in NMC Cells
We next sought to directly evaluate the effect of CDK9 inhibi-
tion on the process of transcriptional elongation. To this
end, we performed chromatin immunoprecipitation (ChIP) ex-
periments after short-term CDK9 inhibition and measured Pol
II occupancy for genes in which expression was increased
(MYC, FOS, JUNB, and SF3B4) or did not increase (FOXO6,
KLHL23, BRG1, and NPM1) relative to the global transcriptome

in RNA-seq analyses after short-term CDK9 inhibition (Figures
6A–6C; Figure S5). When assessing Pol II distribution with an
antibody raised against the unphosphorylated C-terminal
domain (CTD), Pol II occupancy in the gene body (GB) remained
constant or was even increased in upregulated genes, while the
GB signal was decreased in the other genes (Figures 6A–6C;
Figure S5). The signal at the transcription start site (TSS) was
more variable.
Overall, this translated into decreased pausing indices (PIs, or

the ratio of TSS-bound Pol II to GB-bound Pol II) for the upregu-
lated genes and constant or increased PI for the other genes
(Figure 6D). These findings are compatible with higher transcrip-
tion rates in the upregulated genes and correspond to signifi-
cantly lower RNA expression of the genes with increased

Figure 5. Transcriptional Dynamics after CDK9 Inhibition in NMC Cells
(A) Time course of RNA-seq log2 fold changes for all genes (gray lines) between LDC67-treated and control (cont.) HCC2429 cells. Two gene ontology (GO) gene

sets (yellow and green) andMYC and FOS (red) are indicated. Error bars represent median and 10% or 90% quantiles of all log2 fold changes at respective time

points.

(B) qRT-PCR (normalized to 18S rRNA) of selected genes following LDC67 (10 mM) or DMSO control (cont.) for mature mRNA (left) and for unspliced pre-mRNA

(right) (mean ± SD; n = 3).

(C) GO terms enriched in gene set enrichment analysis (GSEA, C5) of RNA-seq data from HCC2429 treated (48 hr) with JQ1 (gray) or LDC67 (blue) compared to

controls (x axis, normalized enrichment score; FDR-corrected q values < 0.1 are considered significant).

(D) Time course of RNA-seq log2 fold changes for all genes (gray lines) between JQ1-treated and control (cont.) HCC2429 cells. Color codes as in (A).

(E) qRT-PCR (normalized to 18S rRNA) of selected genes following JQ1 (500 nM) treatment for mature mRNA (left) and for unspliced pre-mRNA (right)

(mean ± SEM; n = 3).

(F) qRT-PCR time course of MYC mRNA normalized to 18S rRNA after CDK9 (black) or Cyclin-T1 (gray) knockdown compared to shGFP controls (mean ± SEM;

n = 3).
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pausing (p = 0.01 for PI > 1 versus PI < 1) (Figure 6E) (Huang et al.,
2014; P.J. O’Dwyer et al., 2016, Cancer Res., abstract). By
contrast, A549 cells showed reduced Pol II occupancy in all
genes on the GB and at varying degrees at the TSS (Figures
6B and 6C; Figure S5).

To further investigate CDK9i-induced Pol II distribution, we
performed ChIP analyses for Pol II p-Ser5 and Pol II p-Ser2,
which indicate poised Pol II and elongating Pol II, respectively.
As expected, the signal for p-Ser5 Pol II corresponded well
to the total CTD-Pol II across the TSS and GB (r = 0.98,

Figure 6. Effects of CDK9 Inhibition on Pol II Occupancy
(A and B) ChIP qPCR with an antibody raised against the unphosphorylated CTD assessing Pol II occupancy (displayed as a percentage of input DNA) at the

transcription start site (TSS) and the gene body (GB) of FOS and FOXO6 in HCC2429 (A) and A549 (B) after 4 hr LDC67 (10 mM) treatment compared to DMSO

controls (mean ± SD, n = 3).

(C) Relative changes of unphosphorylated CTD Pol II signal at TSS and GB between LDC67 and control cells.

(D) Pausing index (Pol II at TSS to Pol II in GB) for the selected genes normalized to DMSO control (mean ± SEM; n = 3).

(E) Log2 fold changes in RNA-seq of HCC2429 cells treatedwith LDC67 (8 hr and 10 mM) for the genes used for ChIP experiments. The p value between geneswith

high versus low PI was calculated by a Welch t test.

(F) Proposed model of the differential effects of CDK9 and JQ1 inhibition in NMC cells.
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p < 10!10). This substantiates the findings that LDC67 prevents
Pol II pause release and productive elongation at FOXO6 and
KLHL23, thereby causing transcriptional repression of these
genes (Figure S5). Surprisingly, we noticed a more pronounced
decrease of the p-Ser2 Pol II signal following CDK9i at the TSS
of FOS and JUNB than in the GB and higher p-Ser2 levels at
the TSS, rather than a predominance of p-Ser2 Pol II signals in
theGB (Figure S5). Even though this was unexpected, similar ob-
servations are known from other ChIP studies andmay be due to
the genes under study and the location of primers used in the
qPCR (Nojima et al., 2015; Odawara et al., 2011; Stock et al.,
2007; Zhang et al., 2016). However, the constant p-Ser2 levels
in the gene bodies of FOS and JUNB following LDC67 treatment,
as well as the increased pre-mRNA levels, indicate productive
elongation and ongoing transcription during CDK9i. Although
this might be due to incomplete block of P-TEFb activity or
release of P-TEFb from its inhibitory complex after short-time in-
hibitor treatment (Lu et al., 2015), it may be speculated that this
effect is potentially due to involvement of other CDKs (e.g.,
CDK12 and/or CDK13) that were shown to be capable of phos-
phorylating Ser2 of Pol II CTD (Bösken et al., 2014; Greifenberg
et al., 2016).

Overall, differential effects were observed not only between
HCC2429 and A549 but also among the genes investigated in
HCC2429. Altogether, these data underline the distinctive role
of CDK9 for transcriptional control in NMC cells, which may be
linked with their specific vulnerability to CDK9 inhibition.

DISCUSSION

Systematic screening of genetically annotated cancer cell lines
has proved to be a suitable tool for the identification of genetic
vulnerabilities and potential therapeutic targets (Barretina et al.,
2012; Garnett et al., 2012; Iorio et al., 2016; Martins et al.,
2015; Seashore-Ludlow et al., 2015; Sos et al., 2009b, 2009a).
Our screening approach involving 1,505 kinase inhibitors
coupledwith a systematic deconvolution and prediction of geno-
type-chemotype relationships enabled a structure-based pre-
diction of biological activity in silico and may thus be of value
to focus future screening projects on the most promising candi-
date compounds.

To our surprise, one of the most striking genotype-specific
vulnerabilities in our screen was the exquisite activity of
LDC67, a known CDK9 inhibitor in NMC cells (Albert et al.,
2014). Our chemical genomics approach uncovered a role of
CDK9 as a non-oncogenic driver for tumorigenesis in BRD4-
NUT-dependent cells mediated by regulation of transcription
and Myc protein levels in NMC. CDK9 has also been identified
as a key regulator of transcriptional regulation in MYC-overex-
pressing hepatocellular carcinoma (Huang et al., 2014). How-
ever, the evident CDK9i-induced differences on the level of Pol
II-mediated transcriptional elongation observed in NMC and
hepatocellular carcinoma indicate that these processes may
by distinct for individual lineages.

NMC is a rare but highly aggressive tumor with a median sur-
vival of 6.7months for which no approved therapies exist (Stathis
et al., 2016). An initial report from a BET inhibitor phase I/II trial
(GSK525762 and NCT01587703) described partial responses

in 2 of 10 NMC patients (P.J. O’Dwyer et al., 2016, Cancer
Res., abstract), while another preliminary analysis reported a
partial response in 3 of 4 NMC patients after BET inhibitor
OTX015/MK-8628 with relapse within a few months (Stathis
et al., 2016). Of 10 NMC cases treated with GSK525762, four pa-
tients responded with stable disease (P.J. O’Dwyer et al., 2016,
Cancer Res., abstract). This is in line with the previous observa-
tions and our results, indicating that BRD4 inhibition leads to
dissolution of hyperacetylated nuclear foci, release of p53 with
induction of p21, cell-cycle arrest, and differentiation (Figures
4, 5C, 5D, and 6F; Figure S4E) (Alekseyenko et al., 2015; Grayson
et al., 2014; Reynoird et al., 2010; Yan et al., 2011). By contrast,
our data reveal that CDK9i may lead to robust Mcl-1 suppres-
sion, induction of DNA damage response and apoptosis in these
cells (Figure 6F). For several genes, including FOS, transcription
is increased following CDK9 inhibition. This has partly been
attributed to CDK9i-induced release of P-TEFb from its inhibitory
complex with HEXIM1 by a CDK9 inhibitor (Lu et al., 2015), an ef-
fect we also observed in NMC cells (Figure 3D and 6F; Fig-
ure S3A). We speculate that this phenomenon may be related
to structural changes of P-TEFb induced by CDK9 inhibitor bind-
ing (Baumli et al., 2008). AlthoughCDK9i-induced perturbation of
MYC expression partially overlaps with the effects of bromodo-
main inhibition, it remains to be seen how much these effects
contribute to the overall cellular phenotype observed for these
types of inhibitors. Overall, our findings uncover major molecular
differences between the mode of action of bromodomain and
that of CDK9 inhibitors in NMC and suggest that CDK9 may be
an attractive drug target in NMC patients.
In the past, clinical studies investigating spectrum CDK inhib-

itors such as dinaciclib or flavopiridol reported high rates of side
effects and dose-limiting toxicities (Kumar et al., 2015; Morales
and Giordano, 2016), but more selective compounds such as ri-
bociclib (CDK4 and CDK6) demonstrated the feasibility of CDK
inhibition even as first-line cancer treatment (Hortobagyi et al.,
2016). For this reason, several CDK9 inhibitors with improved
selectivity profiles were developed and hold promise for future
development in clinical applications (Albert et al., 2014; Lam
et al., 2014; Lu et al., 2015; Morales and Giordano, 2016). Our
findings may therefore be of relevance for the future develop-
ment of these drugs and the stratification of patients receiving
these types of selective CDK9 inhibitors.
In conclusion, our study provides a framework for the decon-

volution and prediction of genotype-chemotype relationships in
a large-scale kinase inhibitor screen and identifies CDK9 as a
druggable target in NMC. Our results also provide insight into
CDK9 exerted control of transcriptional elongation and its geno-
type-specific effects in BRD4-NUT-rearranged tumors.

EXPERIMENTAL PROCEDURES

High-Throughput Screening
For high-throughput screening 78 genomically annotated patient-derived lung

cancer cell lines were assayed against 1,505 small-molecular compounds pre-

dominantly consisting of compounds before lead or target-based optimization

across a range of chemical scaffolds and a number of established reference

kinase inhibitors. For screening, cell lines were treated at a single-dose con-

centration, which was determined during a preliminary screen. Residual

viability was assessed after 72 hr by CellTiter-Glo (CTG, Promega). Chemical
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information was captured by simplified molecular input line entry specification

(SMILES) codes and by manual annotation of scaffolds (Figure S6). A number

of compounds and cell lines were screened in duplicate to assess reproduc-

ibility. Moreover, external validity was assessed in a subset of compounds

and cell lines by testing compound activity in dilution series to assess GI50 after

72 hr by CTG (Promega). Genotype-specific compound activity was assessed

using an ANOVA approach similar to previous studies (Barretina et al., 2012;

Garnett et al., 2012; Seashore-Ludlow et al., 2015), incorporating genotype

and histological subtype in a random effects model. Activity predictions

were done with elastic net regression models using ECFP6 fingerprints of

the compounds as the predictor and residual viability or compound activity

as the response. Models were trained on a subset of compounds with

10-fold cross-validation and were evaluated on the compounds not involved

in model building and on an external validation dataset (Elkins et al., 2016).

Apoptosis, Proliferation, and Survival Assays
Apoptosis was measured by flow cytometry following Annexin V and propi-

dium iodide staining on a FACSGallios FlowCytometer and the corresponding

Kaluza analysis software (Beckman Coulter, USA). Cell-cycle analyses were

performed by flow cytometry on methanol-fixed cells after propidium iodide

staining. For FACS analysis of cleaved caspase-3 (CC3) and gH2AX, cells

were treated for indicated times, harvested by trypsinization, and fixed in

80% methanol. Fixed cells were permeabilized and blocked with PBS/1%

BSA before they were incubated with primary antibodies at 4!C overnight.

The following day, cells were washed, incubated with Alexa Fluor secondary

antibodies (Thermo Scientific), and measured on a Gallios Flow Cytometer

(Beckman Coulter, USA).

For clonogenic survival assays, cells were seeded in 6-well plates, treated

for indicated times, fixed with 4% formaldehyde, and stained with crystal violet

solution. For quantification, a 1% SDS solution was added to the wells for

30 min and absorption was measured at 590 nm in the supernatant.

Immunoblot, Immunoprecipitation, and Immunofluorescence
Assays
Cellular signaling following LDC67 or JQ1 treatment was assessed by protein

gel electrophoresis. Equal amounts of protein lysates were separated on

4%–20% Novex Tris-glycine gels (Invitrogen), transferred to polyvinylidene

fluoride (PVDF) membrane, and incubated with indicated primary antibodies.

Proteins were detected with the Odyssey CLx imaging system (LI-CORBiosci-

ences). For immunoprecipitation, antibodies directed against endogenous

CDK9 or transiently transfected FLAG-CDK9 were used for precipitation at

4!C overnight, followed by immunoblotting. FLAG-CDK9 plasmids were a

gift of Prof. Qiang Zhou (University of California, Berkeley, USA) (Lu et al.,

2015) and were transiently transfected before immunoprecipitation.

For immunofluorescence, cells were grown on coverslips and treated for

24 hr before fixation with 4% formaldehyde, followed by staining with the indi-

cated primary antibodies at 4!Covernight. Samples were incubated with Alexa

Fluor secondary antibodies (Thermo Scientific) for 2 hr andmounted with DAPI

before imaging (Zeiss Meta 510 or Zeiss Meta 710).

shRNA Knockdowns
For knockdowns, respective shRNAs or shRNA against GFP (shGFP) were

generated with pLKO.1-puro vectors. Replication-deficient lentiviruses were

produced in HEK293T cells by co-transfection of pLKO.1-puro vectors and

helper plasmids. Supernatant collected 48 hr after transfection of HEK293T

cells was used to transfect HCC2429 and A549 cells. Knockdown efficiency

and effects on cell viability were validated by immunoblotting and CTG (Prom-

ega) 4–6 days after transfection, as described previously (Sos et al., 2009a).

ChIP
For ChIP experiments, cells were cross-linked with formaldehyde before chro-

matin was extracted, sonicated, and incubated with primary antibodies (Pol II,

pSer2-Pol II or pSer5-Pol II) or mouse immunoglobulin G (IgG) overnight. Anti-

body complexes were then captured with protein G beads, and DNA was

eluted, decrosslinked, and purified. ChIP signals were calculated by qPCR

(Table S5) relative to input levels after (IgG) background subtraction.

RNA Analysis
For RNA-seq and qPCR (Table S5) analyses, total RNA was isolated following

LDC67 or JQ1 treatment. 30 RNA-seq libraries were prepared with the Quant-

Seq FWD 30 mRNA-Seq Kit (Lexogen, Austria), sequenced on an Illumina Hi-

Seq 4000, and quantified after alignment to the human genome reference

hg38. Data processing and statistical analyses were performed using Micro-

soft Excel (Microsoft, USA), GraphPad (Prism, USA), and R (R Development

Core Team, 2011). Half-maximal growth inhibitory (GI50) concentrations of

cell viability were inferred by fitting sigmoidal dose-response curves. Data

are represented as mean ± SEM, and significance was calculated by unpaired

Student’s t tests or Mann-Whitney tests unless indicated otherwise. The p

values are always two-sided. For details, see Supplemental Information.
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cérologie and Associazione Italiana Oncologia Toracica (2012). Erlotinib

versus standard chemotherapy as first-line treatment for European patients

with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC):

a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13,

239–246.

Rossi, K.A., Markwalder, J.A., Seitz, S.P., Chang, C.-H., Cox, S., Boisclair,

M.D., Brizuela, L., Brenner, S.L., and Stouten, P.F.W. (2005). Understanding

and modulating cyclin-dependent kinase inhibitor specificity: molecular

modeling and biochemical evaluation of pyrazolopyrimidinones as CDK2/cy-

clin A and CDK4/cyclin D1 inhibitors. J. Comput. Aided Mol. Des. 19, 111–122.

Seashore-Ludlow, B., Rees, M.G., Cheah, J.H., Cokol, M., Price, E.V., Coletti,

M.E., Jones, V., Bodycombe, N.E., Soule, C.K., Gould, J., et al. (2015).

Harnessing connectivity in a large-scale small-molecule sensitivity dataset.

Cancer Discov. 5, 1210–1223.

Shaw, A.T., Kim, D.-W., Nakagawa, K., Seto, T., Crinó, L., Ahn, M.-J., De Pas,

T., Besse, B., Solomon, B.J., Blackhall, F., et al. (2013). Crizotinib versus

chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368,

2385–2394.

Sos, M.L., Fischer, S., Ullrich, R., Peifer, M., Heuckmann, J.M., Koker, M.,

Heynck, S., St€uckrath, I., Weiss, J., Fischer, F., et al. (2009a). Identifying geno-

type-dependent efficacy of single and combined PI3K- and MAPK-pathway

inhibition in cancer. Proc. Natl. Acad. Sci. USA 106, 18351–18356.

Sos, M.L., Michel, K., Zander, T., Weiss, J., Frommolt, P., Peifer, M., Li, D., Ull-

rich, R., Koker, M., Fischer, F., et al. (2009b). Predicting drug susceptibility of

non-small cell lung cancers based on genetic lesions. J. Clin. Invest. 119,

1727–1740.

Squires, M.S., Feltell, R.E., Wallis, N.G., Lewis, E.J., Smith, D.M., Cross, D.M.,

Lyons, J.F., and Thompson, N.T. (2009). Biological characterization of AT7519,

a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell

lines. Mol. Cancer Ther. 8, 324–332.

Stathis, A., Zucca, E., Bekradda, M., Gomez-Roca, C., Delord, J.P., de La

Motte Rouge, T., Uro-Coste, E., de Braud, F., Pelosi, G., and French, C.A.

(2016). Clinical response of carcinomas harboring the BRD4-NUT oncoprotein

to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6,

492–500.

Stock, J.K., Giadrossi, S., Casanova, M., Brookes, E., Vidal, M., Koseki, H.,

Brockdorff, N., Fisher, A.G., and Pombo, A. (2007). Ring1-mediated ubiquitina-

tion of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES

cells. Nat. Cell Biol. 9, 1428–1435.
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Discussion 
Overcoming EGFRG724S-mediated osimertinib resistance through unique binding 
characteristics of second-generation EGFR inhibitors 
Acquired resistance against 3rd generation EGFR inhibitor osimertinib is an emerging 

problem despite the substantial clinical effectiveness of osimertinib. The prevalent on-

target resistance mutations after osimertinib treatment are EGFR C797S and G724S 

(Brown et al., 2019; Ercan et al., 2015; Fassunke et al., 2018). In the present study, 

two patients with acquired EGFR T790M gatekeeper mutations after treatment with 

first generation EGFR inhibitors exhibited loss of EGFR T790M but gained EGFR 

G724S during osimertinib treatment leading to progressive disease. EGFR T790M loss 

coinciding with EGFR G724S gain was also frequently observed in other patients that 

progressed in response to third generation EGFR inhibitors arguing for oncogenic 

driver capacity of EGFR G724S. On a molecular level, glycine substitution with serine 

in the G-rich loop of the EGFR tyrosine kinase domain increases structural flexibility 

and prevents binding of osimertinib and other third generation EGFR inhibitors. 

Remarkably, second generation inhibitors like afatinib and dacomitinib remain active 

against EGFR G724S, showing in vitro and in vivo efficacy. These results definitely 

warrant considerations to repurpose second-generation EGFR inhibitors in specific 

clinical settings such as acquired EGFR G724S despite their unfavorable toxicity 

profile that initially limited their clinical use in contrast to first- and third generation 

inhibitors. In addition, FDA-approved drugs like afatinib could be readily translated into 

the clinical setting. Although this proof-of-concept study and a case report 

demonstrating that combined osimertinib and afatinib treatment can evoke response 

and suppression of EGFR T790M and EGFR G724S sub-clones (Peled et al., 2017), 

it remains to be determined whether sequential or situational rotation or combinations 

of first, second, and third generation inhibitors depending on are translatable into 

clinical reality. This would require detailed, individually personalized treatment 

regimens and complicate derivation of general practice guidelines and/or clinical study 

design to show efficacy of such convoluted regimens. Another emerging aspect is the 

benefit of closely monitoring patients during the course of treatment and integrating 

molecular screening platforms that enable rapid identification of resistance mutations, 

which can then be therapeutically addressed. As exemplified by the effectiveness of 

afatinib against EGFR G742S in the present study, successful repurposing of older 
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inhibitor generations might be useful against resistance mutations against newer 

generation inhibitors. Other possible treatment strategies to target acquired resistance 

mutations against osimertinib, apart from designing new ATP-competitive inhibitors, 

could be allosteric EGFR inhibitors. Several studies demonstrated potent pre-clinical 

activity of allosteric inhibitors in osimertinib-resistant EGFR C797S models but must 

be investigated more comprehensively to evaluate their clinical potential (Jia et al., 

2016; To et al., 2019). Another reason to continue the effort of TKI development against 

EGFR is that, to date, EGFR-mutant NSCLC displayed no clinically meaningful benefit 

from immune checkpoint inhibitors, despite their profound success in other entities 

(Hastings et al., 2019). 

 

Drugging the catalytically inactive state of RET kinase in RET-rearranged tumors 
Comparable to EGFR-mutant NSCLC, clinical management of RET-rearranged 

NSCLC also tremendously improved with the clinical application of tyrosine kinase 

inhibitors. However, only recently in 2020, the first RET-specific inhibitors selpercatinib 

and pralsetinib were clinically approved for treatment of RET-rearranged NSCLC 

owing to the difficult-to-target characteristic of RET (Pall and Gautschi, 2021). 

Previously, multi-kinase inhibitors were used to treat RET-activated tumors with some 

success but due to limited RET-specific activity and inhibition of multiple other kinases 

resulting in substantial dose-limiting toxicity, considerably narrowing the therapeutic 

window (Gautschi et al., 2017). In our study, type II kinase inhibitors AD80 and 

ponatinib were identified to potently target KIF5B-RET- and CCDC6-RET-driven 

NSCLC. Importantly, type II kinase inhibitors bind to a hydrophobic pocket in the 

vicinity of the ATP-binding site of the kinase domain, which induces a DFG-out 

conformation of the conserved DFG motif in the activation loop of the kinase thereby 

trapping the target kinase in an inactive state (Kufareva and Abagyan, 2008). 

Remarkably, chemical properties of AD80 and ponatinib suggest binding to a broad 

range of kinases, however they displayed pronounced selectivity in viability assays 

preferentially against RET-rearranged NSCLC cell lines and retained avtivity against 

canonical RET gatekeeper mutation RET V804M. In contrast, clinically approved RET 

inhibitors cabozantinib and vandetanib are blocked by RET V804M. These proof-of-

concept findings demonstrated that overcoming RET gatekeeper mutation is possible, 

even with multi-kinase inhibitors like AD80 and ponatinib. Nevertheless, recent RET-

specific inhibitors undeniably represent the most promising approach for the treatment 
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of RET-rearranged NSCLC exemplified by their performance (Pall and Gautschi, 

2021). However, repurposing of older generation inhibitors, just like second generation 

EGFR inhibitors in case of resistance against osimertinib might become more relevant 

with increasing number of acquired resistance mutations against newer generation 

inhibitors. 

  

MYC paralog-dependent apoptotic priming orchestrates a spectrum of 
vulnerabilities in small cell lung cancer 
Despite this central role in tumorigenesis and tumor maintenance, MYC family 

members are yet undruggable targets. In SCLC, all three MYC paralogs, MYC, MYCN, 

and MYCL are frequently deregulated and are expressed mutually exclusive of one 

another. Therefore, SCLC is an ideal platform to study similarities and differences 

associated with each MYC paralog. Although, all three paralogs share functional and 

structural protein domains, they induce differential phenotypic and biological 

characteristics upon activation. As exemplified in SCLC, solely activation of MYC but 

not MYCN or MYCL in an otherwise identical genetic background led to differential 

drug sensitivity, gene expression patterns and epigenetic changes, confirming 

previous observations and allowing to pinpoint these alterations to MYC (Dammert et 

al., 2019; Mollaoglu et al., 2017; Sos et al., 2012). Active downregulation of BCL2 

exposes a MYC-specific MCL1-dependency in SCLC, which warrants follow-up in vivo 

studies once adequate MCL1 inhibitors are developed. However, MCL1 can also be 

targeted indirectly, e.g. by CDK9 inhibition reducing MCL1 transcription and CDK9 

inhibitors are widely available and could be evaluated in MYC-activated SCLC 

(Brägelmann et al., 2017b). Similarly, MYCN activation induced sensitivity to BH3-

mimetics targeting BCL2 and BCL-xL but not MCL1 whereas high MYCL levels were 

associated with resistance to either of those compounds. Interestingly, the association 

of MYC and MIZ1, while MYCN and MYCL cannot bind MIZ1, marks the basis of BCL2 

repression by MYC/MIZ1-mediated DNMT3a recruitment and subsequent silencing of 

BCL2. Consequentially, comprehensive interactome studies of all three MYC paralogs 

could identify new candidates that differentially interact with particular MYC variants. 

Several studies have shown effectiveness of targeting the DNA damage response 

(DDR) machinery in SCLC in vitro, in vivo, and also in clinical settings (Dammert et al., 

2019; Farago et al., 2019; Sen et al., 2017, 2019). However, the molecular basis 

leading to this sensitivity is not well understood. One possibility could be that SCLC 
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cells experience constant DNA damage from transcriptional and replicative stress 

fueled by oncogene activation, which activates CHK1 in order to slow down cell cycle 

progression and allow for DNA damage repair. Universal lack of p53 in SCLC prevents 

cell cycle arrest at the G1/S checkpoint and cells rely on CHK1 activity to activate the 

G2/M checkpoint. Failure to stall cell cycle at G2/M through CHK1 inhibition could force 

the cell to progress to mitosis with too high levels of DNA damage to properly divide 

leading to death in mitosis. MYC-activated SCLC display comparably higher DNA 

damage levels correlating with higher sensitivity to Aurora kinase inhibition, i.e. 

inhibition of mitotic progression. The observed synergy in combined CHK1 and AURK 

inhibition could therefore be too rapid entry into mitosis and then prolonging mitosis 

without proper DNA damage repair. Another important finding warranting further 

investigation is the MYC-induced elevated apoptotic priming that could be caused by 

lack of BCL2 leading to leaky, more easily permeabilizable mitochondria. This in turn 

could trigger some mitochondria to release cytochrome c even in non-insulted cells 

triggering sub-lethal caspase activity and DNA damage (Ichim et al., 2015). So, it is 

important to investigate the molecular underpinnings of DNA damage induction and 

whether it is actively contributing to transformation and aberrant growth or just a mere 

byproduct of high replication speed and transcriptional activity or whether DNA 

damage is required at all in the process of CHK1 inhibition. The current findings also 

evoke another important question of whether and how MYC paralogs and/or SCLC 

subtype-defining transcription factors shape phenotype and vulnerabilities of SCLC. 

Comprehensive studies are required to deconvolute whether MYC paralog-associated 

vulnerabilities are independent or dependent on the underlying SCLC subtype. So far, 

SCLC subtype-specific vulnerabilities have not been identified and it remains 

questionable whether the classification of SCLC into the proposed subtypes will entail 

any therapeutic consequence. Importantly, MYC-status of SCLC patients might be a 

better predictor for suitable therapy options demonstrated by increased clinical 

response of high MYC-expressing SCLC patients to an AURKA inhibitor / 

chemotherapy combination (Owonikoko et al., 2020). 

 

Systematic kinase inhibitor profiling identifies CDK9 as a synthetic lethal target 
in NUT midline carcinoma 
Exemplified by the clinical failure of BET inhibitors in BRD4-NUT fusion carcinoma, 

druggability of transcription factors and chromatin modifiers remains challenging due 
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to the lack of structural features amenable for rational inhibitor design, the degenerated 

nature of binding sites leading to inhibition of multiple off-targets, or the pleiotropic role 

of these proteins in normal cellular processes apart from their oncogenic function. 

These disadvantages often lead to unspecific, toxicity-inducing adverse effects on 

organismal level resulting in dose reductions limiting clinical efficacy. Targeting BRD4-

NUT-mediated, aberrant transcription through CDK9 inhibition circumvents the need 

to directly target BRD4-NUT and demonstrates the potential of synthetic lethal 

approaches in NUT carcinoma. CDK9 is a pan-essential gene for cells due to its 

function in cellular transcription ensuring productive transcriptional elongation and 

genetic knockout of CDK9 is associated with widespread lethality in cell lines (Anshabo 

et al., 2021). Therefore, like other pan-essential such as PLK1 or AURKA, CDK9 is not 

an ideal drug target and requires comprehensive pre-clinical effort to demonstrate the 

efficacy of CDK9 inhibition in a molecularly-defined context in contrast to pan-cytoxic 

effects of CDK9 inhibition (Chang et al., 2021). To this end, the high throughput viability 

screening in our study strongly suggests preferential sensitivity to CDK9 inhibition is 

indeed associated with the molecular characteristics of NUT carcinoma. On top, CDK9-

specificity of the inhibitor is especially important in this scenario to limit inhibition of 

other off-target CDKs that also have key functions in cellular processes like cell cycle 

progression. Another possible emerging target in NUT carcinoma might be MCL1, 

which was markedly downregulated upon CDK9 inhibition and proved to be an 

actionable target in MYC-activated SCLC. Interestingly, MYC is a prime target and 

substantially upregulated by BRD4-NUT (Grayson et al., 2014) and MYC-mediated, 

synthetic vulnerabilities, possibly MCL1 dependency, might overlap between SCLC 

and NUT carcinoma. However, more experimental evidence is needed to show 

targetability of MCL1 in NUT carcinoma. Recently, specific MCL1 inhibitors were 

developed and displayed encouraging pre-clinical results in hematological cancer 

models and are on the verge of clinical evaluation (Caenepeel et al., 2018) providing 

yet another tool to potentially exploit synthetic vulnerabilities in NUT carcinoma. 

Therefore, because of the pleiotropic deregulation of MYC in various cancers, 

strategies targeting MYC-associated vulnerabilities could potentially benefit cancer 

patients of multiple entities. On top, targeting increased MYC expression by dual 

HDAC / PI3K inhibition in NUT carcinoma displayed promising results in vitro (Sun et 

al., 2017) and is currently pursued in a clinical study (NCT02307240) again highlighting 

the relevance of activated MYC in NUT carcinoma. 
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Concluding remarks 
The introduction of molecularly guided, targeted therapy in lung cancer, especially in 

oncogene-driven NSCLC has substantially improved the prognosis for patients and 

enhanced quality of life under treatment in contrast to chemotherapy. The steadily 

increasing rate of approvals of specific small molecule inhibitors enlarges the fraction 

of NSCLC patients that potentially benefit from those drugs. However, the repertoire 

of inhibitors is finite and the challenge of acquired resistance against targeted kinase 

inhibitors remains. On- and off-target resistance mutations increase the complexity to 

devise rational treatment strategies. Drug combinations to address multiple oncogenic 

drivers at once are a promising approach but vast individual differences in tumors from 

case to case complicate design of clinical trials as well as embedding and application 

of such approaches in clinical practice. In sharp contrast to NSCLC, for a large number 

of lung cancer patients, particularly SCLC patients, no targeted therapy options are 

available. Despite extensive research efforts and encouraging pre-clinical studies with 

ensuing clinical trials, no targeted drugs have been approved for SCLC to date. 

Standard of care treatment with combination chemotherapy has only recently been 

complemented by addition of immune checkpoint inhibitors (ICIs) leading to marginally 

increased overall survival from 10 to 12-13 months compared to chemotherapy alone 

(Iams et al., 2020). So, treatment strategies that target tumor cells and boost 

immunotherapy efficacy might represent a worthwhile approach. In addition, improved 

molecular screening is needed to better identify patients that potentially benefit from 

targeted therapeutics and/or immunotherapy. 

Another key aspect substantially complicating clinical management of NSCLC 

and SCLC is the high degree of intra-tumoral heterogeneity at time of diagnosis. The 

considerable level of heterogeneity at extensive stage disease increases the 

probability of therapy-resistant sub-clonal tumor populations already present within the 

tumor and facilitates the acquisition of drug-resistance mutations. Consequently, 

eradication of the dominant clonal tumor population by targeted therapy will not affect 

resistant sub-clones, which are then destined to grow out leading to tumor relapse. 

Therapeutic intervention at an earlier stage of tumor development might ameliorate 

this situation but requires better early detection methods. Liquid biopsy-based 

characterization of circulating tumor DNA (ctDNA) might be a suitable tool for early 

identification of actionable alterations. In conclusion, only concerted effort in better 

early detection, advancement of molecular understanding of the tumor to identify 
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tumor-specific vulnerabilities, the development of specific inhibitors targeting these 

vulnerabilities and rational design of clinical trials to provide these regiments to best-

suited patients might enable the leap from mere management of lung cancer to actually 

curing lung cancer. 

  



 76 

References 

Alekseyenko, A.A., Walsh, E.M., Wang, X., Grayson, A.R., Hsi, P.T., Kharchenko, P. 

V., Kuroda, M.I., and French, C.A. (2015). The oncogenic BRD4-NUT chromatin 

regulator drives aberrant transcription within large topological domains. Genes Dev. 

29, 1507–1523. 

Anshabo, A.T., Milne, R., Wang, S., and Albrecht, H. (2021). CDK9: A Comprehensive 

Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front. 

Oncol. 11, 1–24. 

Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411. 

Brägelmann, J., Böhm, S., Guthrie, M.R., Mollaoglu, G., Oliver, T.G., and Sos, M.L. 

(2017a). Family matters: How MYC family oncogenes impact small cell lung cancer. 

Cell Cycle 16, 1489–1498. 

Brägelmann, J., Dammert, M.A., Dietlein, F., Heuckmann, J.M., Choidas, A., Böhm, 

S., Richters, A., Basu, D., Tischler, V., Lorenz, C., et al. (2017b). Systematic Kinase 

Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline 

Carcinoma. Cell Rep. 20, 2833–2845. 

Brown, B.P., Zhang, Y.K., Westover, D., Yan, Y., Qiao, H., Huang, V., Du, Z., Smith, 

J.A., Ross, J.S., Miller, V.A., et al. (2019). On-target resistance to the mutant-selective 

EGFR inhibitor osimertinib can develop in an allele-specific manner dependent on the 

original EGFR-activating mutation. Clin. Cancer Res. 25, 3341–3351. 

Caenepeel, S., Brown, S.P., Belmontes, B., Moody, G., Keegan, K.S., Chui, D., 

Whittington, D.A., Huang, X., Poppe, L., Cheng, A.C., et al. (2018). AMG 176, a 

Selective MCL1 Inhibitor, is Effective in Hematological Cancer Models Alone and in 

Combination with Established Therapies. Cancer Discov. CD-18-0387. 

Casaletto, J.B., and McClatchey, A.I. (2012). Spatial regulation of receptor tyrosine 

kinases in development and cancer. Nat. Rev. Cancer 12, 387–400. 

Chang, L., Ruiz, P., Ito, T., and Sellers, W.R. (2021). Targeting pan-essential genes in 

cancer: Challenges and opportunities. Cancer Cell 39, 466–479. 



 77 

Ciampricotti, M., Karakousi, T., Richards, A.L., Quintanal-Villalonga, A., Karatza, A., 

Caeser, R., Costa, E.A., Allaj, V., Manoj, P., Spainhower, K.B., et al. (2021). Rlf-Mycl 

gene fusion drives tumorigenesis and metastasis in a mouse model of small cell lung 

cancer. Cancer Discov. 

Collisson, E.A., Campbell, J.D., Brooks, A.N., Berger, A.H., Lee, W., Chmielecki, J., 

Beer, D.G., Cope, L., Creighton, C.J., Danilova, L., et al. (2014). Comprehensive 

molecular profiling of lung adenocarcinoma: The cancer genome atlas research 

network. Nature 511, 543–550. 

Da Cunha Santos, G., Shepherd, F.A., and Tsao, M.S. (2011). EGFR Mutations and 

Lung Cancer. Annu. Rev. Pathol. Mech. Dis 6, 49–69. 

Dammert, M.A., Brägelmann, J., Olsen, R.R., Böhm, S., Monhasery, N., Whitney, C.P., 

Chalishazar, M.D., Tumbrink, H.L., Guthrie, M.R., Klein, S., et al. (2019). MYC paralog-

dependent apoptotic priming orchestrates a spectrum of vulnerabilities in small cell 

lung cancer. Nat. Commun. 10. 

Demedts, I.K., Vermaelen, K.Y., and Van Meerbeeck, J.P. (2010). Treatment of 

extensive-stage small cell lung carcinoma: Current status and future prospects. Eur. 

Respir. J. 35, 202–215. 

Ercan, D., Choi, H.G., Yun, C.H., Capelletti, M., Xie, T., Eck, M.J., Gray, N.S., and 

Jänne, P.A. (2015). EGFR mutations and resistance to irreversible pyrimidine-based 

EGFR inhibitors. Clin. Cancer Res. 21, 3913–3923. 

Farago, A.F., Yeap, B.Y., Stanzione, M., Hung, Y.P., Heist, R.S., Marcoux, J.P., 

Zhong, J., Rangachari, D., Barbie, D.A., Phat, S., et al. (2019). Combination olaparib 

and temozolomide in relapsed small-cell lung cancer. Cancer Discov. 9, 1372–1387. 

Fassunke, J., Müller, F., Keul, M., Michels, S., Dammert, M.A., Schmitt, A., Plenker, 

D., Lategahn, J., Heydt, C., Brägelmann, J., et al. (2018). Overcoming EGFR G724S -

mediated osimertinib resistance through unique binding characteristics of second-

generation EGFR inhibitors. Nat. Commun. 9. 

French, C.A. (2012). Pathogenesis of NUT midline carcinoma. Annu. Rev. Pathol. 

Mech. Dis. 7, 247–265. 

French, C.A. (2018). NUT Carcinoma: Clinicopathologic features, pathogenesis, and 

treatment. Pathol. Int. 68, 583–595. 



 78 

Gautschi, O., Milia, J., Filleron, T., Wolf, J., Carbone, D.P., Owen, D., Camidge, R., 

Narayanan, V., Doebele, R.C., Besse, B., et al. (2017). Targeting RET in patients with 

RET-rearranged lung cancers: Results from the global, multicenter RET registry. J. 

Clin. Oncol. 35, 1403–1410. 

Gazdar, A.F., Bunn, P.A., and Minna, J.D. (2017). Small-cell lung cancer: what we 

know, what we need to know and the path forward. Nat. Rev. Cancer. 

George, J., Lim, J.S., Jang, S.J., Cun, Y., Ozretić, L., Kong, G., Leenders, F., Lu, X., 

Fernández-Cuesta, L., Bosco, G., et al. (2015). Comprehensive genomic profiles of 

small cell lung cancer. Nature 524, 47–53. 

Grayson, A.R., Walsh, E.M., Cameron, M.J., Godec, J., Ashworth, T., Ambrose, J.M., 

Aserlind, A.B., Wang, H., Evan, G.I., Kluk, M.J., et al. (2014). MYC, a downstream 

target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in 

NUT midline carcinoma. Oncogene 33. 

Gridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Petrella, 

F., Spaggiari, L., and Rosell, R. (2015). Non-small-cell lung cancer. Nat. Rev. Dis. 

Prim. 1, 15009. 

Grunblatt, E., Wu, N., Zhang, H., Liu, X., Norton, J.P., Ohol, Y., Leger, P., Hiatt, J.B., 

Eastwood, E.C., Thomas, R., et al. (2020).  MYCN drives chemoresistance in small 

cell lung cancer while USP7 inhibition can restore chemosensitivity . Genes Dev. 1–

17. 

Hastings, K., Yu, H.A., Wei, W., Sanchez-Vega, F., Deveaux, M., Choi, J., Rizvi, H., 

Lisberg, A., Truini, A., Lydon, C.A., et al. (2019). EGFR mutation subtypes and 

response to immune checkpoint blockade treatment in non-small-cell lung cancer. Ann. 

Oncol. 30, 1311–1320. 

Herbst, R.S., Morgensztern, D., and Boshoff, C. (2018). The biology and management 

of non-small cell lung cancer. Nature 553. 

Huang, Y.H., Klingbeil, O., He, X.Y., Wu, X.S., Arun, G., Lu, B., Somerville, T.D.D., 

Milazzo, J.P., Wilkinson, J.E., Demerdash, O.E., et al. (2018). POU2F3 is a master 

regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 32, 915–928. 

Iams, W.T., Porter, J., and Horn, L. (2020). Immunotherapeutic approaches for small-

cell lung cancer. Nat. Rev. Clin. Oncol. 17. 



 79 

Ichim, G., Lopez, J., Ahmed, S.U., Muthalagu, N., Giampazolias, E., Delgado, M.E., 

Haller, M., Riley, J.S., Mason, S.M., Athineos, D., et al. (2015). Limited Mitochondrial 

Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell 

Death. Mol. Cell 57, 860–872. 

Jia, Y., Yun, C.-H., Park, E., Ercan, D., Manuia, M., Juarez, J., Xu, C., Rhee, K., Chen, 

T., Zhang, H., et al. (2016). Overcoming EGFR(T790M) and EGFR(C797S) resistance 

with mutant-selective allosteric inhibitors. Nature 534, 129–132. 

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J.J., Chang, 

M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective comprehensive 

molecular characterization of lung adenocarcinomas for efficient patient matching to 

approved and emerging therapies. Cancer Discov. 7, 596–609. 

Kim, D.W., Wu, N., Kim, Y.C., Cheng, P.F., Basom, R., Kim, D., Dunn, C.T., Lee, A.Y., 

Kim, K., Lee, C.S., et al. (2016). Genetic requirement for Mycl and efficacy of RNA Pol 

I inhibition in mouse models of small cell lung cancer. Genes Dev. 30, 1289–1299. 

Kress, T.R., Sabò, A., and Amati, B. (2015). MYC: connecting selective transcriptional 

control to global RNA production. Nat. Rev. Cancer 15, 593–607. 

Kufareva, I., and Abagyan, R. (2008). Type-II kinase inhibitor docking, screening, and 

profiling using modified structures of active kinase states. J. Med. Chem. 51, 7921–

7932. 

Lemmon, M.A., and Schlessinger, J. (2010). Cell signaling by receptor tyrosine 

kinases. Cell 141. 

Mok, T.S., Wu, Y.-L., Thongprasert, S., Yang, C.-H., Chu, D.-T., Saijo, N., 

Sunpaweravong, P., Han, B., Margono, B., Ichinose, Y., et al. (2009). Gefitinib or 

Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 361. 

Mollaoglu, G., Guthrie, M.R., Böhm, S., Brägelmann, J., Can, I., Ballieu, P.M., Marx, 

A., George, J., Heinen, C., Chalishazar, M.D., et al. (2017). MYC Drives Progression 

of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to 

Aurora Kinase Inhibition. Cancer Cell 31, 270–285. 



 80 

Owonikoko, T.K., Niu, H., Nackaerts, K., Csoszi, T., Ostoros, G., Mark, Z., Baik, C., 

Joy, A.A., Chouaid, C., Jaime, J.C., et al. (2020). Randomized Phase II Study of 

Paclitaxel plus Alisertib versus Paclitaxel plus Placebo as Second-Line Therapy for 

SCLC: Primary and Correlative Biomarker Analyses. In Journal of Thoracic Oncology, 

pp. 274–287. 

Pall, G., and Gautschi, O. (2021). Advances in the treatment of RET-fusion-positive 

lung cancer. Lung Cancer 156. 

Passaro, A., Jänne, P.A., Mok, T., and Peters, S. (2021). Overcoming therapy 

resistance in EGFR-mutant lung cancer. Nat. Cancer 2, 377–391. 

Peifer, M., Fernández-Cuesta, L., Sos, M.L., George, J., Seidel, D., Kasper, L.H., 

Plenker, D., Leenders, F., Sun, R., Zander, T., et al. (2012). Integrative genome 

analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 

44, 1104–1110. 

Peled, N., Roisman, L.C., Miron, B., Pfeffer, R., Lanman, R.B., Ilouze, M., Dvir, A., 

Soussan-Gutman, L., Barlesi, F., Tarcic, G., et al. (2017). Subclonal Therapy by Two 

EGFR TKIs Guided by Sequential Plasma Cell-free DNA in EGFR-Mutated Lung 

Cancer. J. Thorac. Oncol. 12, e81–e84. 

Ramalingam, S.S., Vansteenkiste, J., Planchard, D., Cho, B.C., Gray, J.E., Ohe, Y., 

Zhou, C., Reungwetwattana, T., Cheng, Y., Chewaskulyong, B., et al. (2020). Overall 

Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. 

Med. 382, 41–50. 

Rudin, C.M., Durinck, S., Stawiski, E.W., Poirier, J.T., Modrusan, Z., Shames, D.S., 

Bergbower, E.A., Guan, Y., Shin, J., Guillory, J., et al. (2012). Comprehensive genomic 

analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. 

Genet. 44, 1111–1116. 

Rudin, C.M., Poirier, J.T., Byers, L.A., Dive, C., Dowlati, A., George, J., Heymach, J. 

V., Johnson, J.E., Lehman, J.M., MacPherson, D., et al. (2019). Molecular subtypes of 

small cell lung cancer: a synthesis of human and mouse model data. Nat. Rev. Cancer. 

Rudin, C.M., Brambilla, E., Faivre-Finn, C., and Sage, J. (2021). Small-cell lung 

cancer. Nat. Rev. Dis. Prim. 7. 

Schabath, M.B., and Cote, M.L. (2019). Cancer progress and priorities: Lung cancer. 

Cancer Epidemiol. Biomarkers Prev. 28, 1563–1579. 



 81 

Sen, T., Tong, P., Stewart, C.A., Cristea, S., Valliani, A., Shames, D.S., Redwood, 

A.B., Fan, Y.H., Li, L., Glisson, B.S., et al. (2017). CHK1 inhibition in small-cell lung 

cancer produces single-agent activity in biomarker-defined disease subsets and 

combination activity with cisplatin or olaparib. Cancer Res. 77, 3870–3884. 

Sen, T., Rodriguez, B.L., Chen, L., Della Corte, C.M., Morikawa, N., Fujimoto, J., 

Cristea, S., Nguyen, T., Diao, L., Li, L., et al. (2019). Targeting DNA damage response 

promotes antitumor immunity through STING-mediated T-cell activation in small cell 

lung cancer. Cancer Discov. 9, 646–661. 

Sequist, L. V., Yang, J.C.H., Yamamoto, N., O’Byrne, K., Hirsh, V., Mok, T., Geater, 

S.L., Orlov, S., Tsai, C.M., Boyer, M., et al. (2013). Phase III study of afatinib or 

cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR 

mutations. J. Clin. Oncol. 31. 

Skoulidis, F., and Heymach, J. V. (2019). Co-occurring genomic alterations in non-

small-cell lung cancer biology and therapy. Nat. Rev. Cancer 19, 495–509. 

Soria, J.-C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., 

Lee, K.H., Dechaphunkul, A., Imamura, F., Nogami, N., Kurata, T., et al. (2018).  

Osimertinib in Untreated EGFR -Mutated Advanced Non–Small-Cell Lung Cancer . N. 

Engl. J. Med. 378. 

Sos, M.L., Dietlein, F., Peifer, M., Schöttle, J., Balke-Want, H., Müller, C., Koker, M., 

Richters, A., Heynck, S., Malchers, F., et al. (2012). A framework for identification of 

actionable cancer genome dependencies in small cell lung cancer. Proc. Natl. Acad. 

Sci. U. S. A. 109, 17034–17039. 

Su, Z., Wang, Z., Ni, X., Duan, J., Gao, Y., Zhuo, M., Li, R., Zhao, J., Ma, Q., Bai, H., 

et al. (2019). Inferring the evolution and progression of small-cell lung cancer by single-

cell sequencing of circulating tumor cells. Clin. Cancer Res. 25. 

Subbiah, V., Yang, D., Velcheti, V., Drilon, A., and Meric-Bernstam, F. (2020). State-

of-the-art strategies for targeting RET-dependent cancers. J. Clin. Oncol. 38, 1209–

1221. 

Sun, K., Atoyan, R., Borek, M.A., Dellarocca, S., Samson, M.E.S., Ma, A.W., Xu, G.X., 

Patterson, T., Tuck, D.P., Viner, J.L., et al. (2017). Dual HDAC and PI3K inhibitor 

CUDC-907 down regulates MYC and suppresses growth of MYC-dependent cancers. 

Mol. Cancer Ther. 16. 



 82 

Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and 

Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence 

and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 71, 209–

249. 

Thein, K.Z., Velcheti, V., Mooers, B.H.M., Wu, J., and Subbiah, V. (2021). Precision 

therapy for RET-altered cancers with RET inhibitors. Trends in Cancer xx, 1–15. 

Thng, D.K.H., Toh, T.B., and Chow, E.K.H. (2021). Capitalizing on Synthetic Lethality 

of MYC to Treat Cancer in the Digital Age. Trends Pharmacol. Sci. 42, 166–182. 

To, C., Jang, J., Chen, T., Park, E., Mushajiang, M., De Clercq, D.J.H., Xu, M., Wang, 

S., Cameron, M.D., Heppner, D.E., et al. (2019). Single and dual targeting of mutant 

egfr with an allosteric inhibitor. Cancer Discov. 9, 926–943. 

Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H.M., Beasley, M.B., 

Chirieac, L.R., Dacic, S., Duhig, E., Flieder, D.B., et al. (2015). The 2015 World Health 

Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic 

Advances since the 2004 Classification. J. Thorac. Oncol. 10, 1243–1260. 

Tumbrink, H.L., Heimsoeth, A., and Sos, M.L. (2021). The next tier of EGFR resistance 

mutations in lung cancer. Oncogene 40. 

Weinstein, I.B., and Joe, A. (2008). Oncogene addiction. Cancer Res. 68. 

Wolf, E., and Eilers, M. (2020). Targeting MYC Proteins for Tumor Therapy. Annu. 

Rev. Cancer Biol. 4, 61–75. 

Wooten, D.J., Groves, S.M., Tyson, D.R., Liu, Q., Lim, J.S., Albert, R., Lopez, C.F., 

Sage, J., and Quaranta, V. (2019). Systems-level network modeling of Small Cell Lung 

Cancer subtypes identifies master regulators and destabilizers. PLoS Comput. Biol. 

15, e1007343. 

 

  



 83 

Erklärung zur Dissertation 
Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation 
selbstständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel und 
Literatur angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus 
veröffentlichten und nicht veröffentlichten Werken dem Wortlaut oder dem Sinn nach 
entnommen wurden, sind als solche kenntlich gemacht. Ich versichere an Eides statt, 
dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung 
vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen und 
eingebundenen Artikeln und Manuskripten - noch nicht veröffentlicht worden ist sowie, 
dass ich eine Veröffentlichung der Dissertation vor Abschluss der Promotion nicht 
ohne Genehmigung des Promotionsausschusses vornehmen werde. Die 
Bestimmungen dieser Ordnung sind mir bekannt. Darüber hinaus erkläre ich hiermit, 
dass ich die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang 
mit wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen und sie bei der 
Durchführung der Dissertation zugrundeliegenden Arbeiten und der schriftlich 
verfassten Dissertation beachtet habe und verpflichte mich hiermit, die dort genannten 
Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen. Ich 
versichere, dass die eingereichte elektronische Fassung der eingereichten 
Druckfassung vollständig entspricht.  
 
Teilpublikationen:  
 
Fassunke, J., Müller, F., Keul, M., Michels, S., Dammert, M.A.*, Schmitt, A., Plenker, 
D., Lategahn, J., Heydt, C., Brägelmann, J., et al. (2018). Overcoming EGFR G724S -
mediated osimertinib resistance through unique binding characteristics of second-
generation EGFR inhibitors. Nat. Commun. 9. 
 
Plenker, D., Riedel, M., Brägelmann, J., Dammert, M.A., Chauhan, R., Knowles, P.P., 
Lorenz, C., Keul, M., Bührmann, M., Pagel, O., et al. (2017). Drugging the catalytically 
inactive state of RET kinase in RET-rearranged tumors. Sci. Transl. Med. 9, 1–12. 
 
Dammert, M.A., Brägelmann, J., Olsen, R.R., Böhm, S., Monhasery, N., Whitney, 
C.P., Chalishazar, M.D., Tumbrink, H.L., Guthrie, M.R., Klein, S., et al. (2019). MYC 
paralog-dependent apoptotic priming orchestrates a spectrum of vulnerabilities in 
small cell lung cancer. Nat. Commun. 10. 
 
Brägelmann, J., Dammert, M.A.*, Dietlein, F., Heuckmann, J.M., Choidas, A., Böhm, 
S., Richters, A., Basu, D., Tischler, V., Lorenz, C., et al. (2017). Systematic Kinase 
Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline 
Carcinoma. Cell Rep. 20, 2833–2845. 
 

* co-first author 

 

 

 

 

Datum, Name und Unterschrift 


	Deckblatt_pub
	Intro-Discussion-4-paper
	Erklärung zur Dissertation



