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Summary 

Although the whole-genome tumour DNA from human primary cancers have been 

routinely sequenced in recent large-scale cancer sequencing studies to identify somatic 

mutations, little is known about their roles in DNA replication timing. However, 

mechanisms underlying this timing programme are also implicated in transcriptional 

activities and the mutational landscape of the cancer genome in a cell type-specific 

manner. Understanding where exactly, and how differently, DNA replication is initiated 

and terminated across different cancer genomes is of fundamental importance and will 

help to understand the cellular plasticity that give rise to cancer and help cancer cells 

survive during cancer cell proliferation. 

In this thesis, I propose to fully explore the entire primary cancer whole-genome 

sequences, and hypothesise that they may provide a snapshot in time, in space, and in 

specific cell type of the tumour replication timing programme. 

In Chapter 2, I measure the proportion of S phase cells present in a primary tumour 

using whole-genome sequencing (WGS) data, and use it to separate tumour samples 

based on their cell cycle status, referred to as in silico sample sorting method. Upon in 

silico sorting of primary tumour samples, in Chapter 3, I adapt the S to G1 read depth 

ratio approach, and apply it to directly profile the tumour replication timing (RT) from 

256 cancer whole genomes of three tumour types. Finally, I demonstrate that the 

temporal dynamics of tumour replication timing is preserved in closely related normal 

tissues, as well as in lineage-specific cancer cell lines, suggesting the cellular plasticity 

of the timing programme captured by my direct profiling approach. 

Furthermore, in Chapter 4, I introduce a novel resampling-based replication fork 

directionality (RFD) methodology to model the stochastic but symmetrical nature of bi-

directional replication, and use it to simultaneously fine map the replication origins and 

termini at 1 kb (kilobase) resolution using the same primary cancer WGS data. 

Unexpectedly, I find that the genome-wide distribution of termination events is tightly 

coordinated with the initiation activities in both the normal and cancer genomes, which 

has not been previously reported in humans using directional sequencing of Okazaki 

fragments (OK-seq) in vitro. However, the distribution of my reconstructed RFD 
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domains suggests that replication termini are determined by, and located between two 

activating origin firings in the human genome, which is consistent with the consensus 

notion widely reported in yeast. 

Nevertheless, I find that the spatial landscapes of my reconstructed RFD domains are 

also preserved in closely related normal tissues and lineage-specific cancer cell lines, in 

line with the cellular plasticity of tumour RT shown in Chapter 3. Furthermore, in 

Chapter 5, I demonstrate that my reconstructed RFD domains are significantly coupled 

with the transcriptional activities across three tumour types, thus providing strong 

support for a bona fide mapping on fork initiation, progression, and termination by my 

novel resampling-based RFD methodology.  

Altogether, my novel in silico framework allows one to assess the tumour RT and RFD 

domains directly using primary cancer whole-genome sequences without the need for in 

vitro sorting procedures, and therefore opens up opportunities for the routinely 

performed WGS data from the broader cancer genomics community. The cell type 

specificity of the tumour timing programme recapitulated by my novel in silico 

framework also adds a new spatiotemporal perspective to the three-dimensional cancer 

genome, thus could provide new insights into the identification of potential cancer 

targets that is topologically preserved in specific cancer types. 
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Zusammenfassung 

Große Tumor DNA Sequenzierungsstudien zielen auf die umfassende Beschreibung 

und Funktion von somatischen Mutationen in Primärtumoren ab, dennoch ist wenig 

über den Einfluss von „DNA Replication Timing“  hierauf bekannt. Mechanismen, die 

dem Timing Programm zu Grunde liegen, stehen in Verbindung mit den Zelltyp 

spezifischen transkriptionellen Aktivitäten und dem Mutationsspektrum in 

Krebsgenomen. Ein besseres Verständnis wo und wie verschiedenartig DNA 

Replikation in Krebsgenomen initiiert oder terminiert ist würde dazu beitragen die 

zellulare Plastizität, welche den Krebszellen eine weitere Proliferation ermöglicht, zu 

verstehen. 

In der vorliegenden Arbeit, werde ich Genomsequenzierungen (WGS) von 

Primärtumoren untersuchen mit dem Ziel einen zeitlichen, räumlichen und Zelltyp bzw. 

Krebstyp spezifischen Einblick in das Replication Timing Programmes zu bekommen. 

Hierzu werde ich in Kapitel 2 ein Maß für den Anteil der Zellen, die sich in der S-Phase 

befinden, aus WGS Daten ableiten um somit einzelne Tumorproben nach ihrem 

Zellzyklus zu klassifizieren. Diese Methode bezeichne ich als „In Silico Sorting“. Um 

die Tumor Replication Timing (RT) direkt aus WGS Daten zu bestimmen, werde ich in 

Kapitel 3 meine In Silico Sorting Methode benutzen (in Anlehnung an das S- zu G1-

Zellzyklusphasen Verhältnis bei FACS sortierten WGS Daten von Zelllinien) und auf 

256 WGS Datensätzen von drei Tumorentitäten anwenden. Hiermit werde ich zeigen, 

dass die zeitliche Dynamik des Tumor Replication Timing Programmes in dem jeweilig 

korrespondierenden Normalgewebe und in Zelllinien des gleichen Tumortyps erhalten 

bleibt, was suggeriert, dass die zelluläre Plastizität des Timing Programmes durch 

meinen Ansatz abgebildet wird. 

Ferner werde ich in Kapitel 4 eine neue Methode zur „Replication Fork Directionality” 

(RFD) vorstellen, mit der sich die stochastische aber symmetrische Bidirektionale DNA 

Replikation modellieren lässt um somit Replikationsursprünge und deren Terminierung 

in einer 1 kbp (Kilobasenpaare) Auflösung bestimmen zu können. Dies ergab, dass die 

Genomweite Verteilung Replikationsursprünge und der Termini sowohl im Normal- 

wie auch im Tumorgewebe stark miteinander verknüpft sind. Eine alternative Methode, 

die RFD mittels einer gerichteten Sequenzierung von Okazaki Fragmenten in vitro 
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bestimmt kommt allerdings zu einem anderen Ergebnis. In Gegensatz liegt meine 

Bestimmung der RFD nahe, dass sich Replikationsursprünge und Terminationen in 

geordneter weise abwechseln und ist somit im Einklang mit dem, was in Hefegenomen 

gefunden wurde. 

Ähnlich zu den RT Profilen aus Kapitel 3, konnte ich zeigen, dass räumliche RFD 

Profile von Tumoren denen derer korrespondierenden Normalgeweben oder Zelllinien 

des gleichen Tumortyps am ähnlichsten sind. Darüber hinaus konnte ich in Kapitel 5 

zeigen, dass meine rekonstruierten RFD Profile signifikant mit transkriptionellen 

Aktivitäten in den drei Tumorentitäten korreliert ist. Diese Ergebnisse weisen stark auf 

die Validität meiner RFD Methode zur Bestimmung der Initiation, Progression und 

Terminierung der Replikationsgabel. 

Zusammenfassend erlaubt die hier vorgestellte in silico Methodik Replication Timing 

und Replication Fork Directionality direkt aus WGS von Primärtumoren zu bestimmen 

und steht folglich einer breiteren Gruppe von Krebsgenomforschern zur Verfügung. Da 

meine in silico Methoden zur Bestimmung des Replication Timing Programmes Zelltyp 

spezifisch sind, könnte diese neue Erkenntnisse über die Identifikation von potentiell 

neuen Ansatzpunkten für eine zielgerichtete Therapie in topologisch konservierten 

Regionen liefern. 
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Graphical summary 
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Chapter 1 

Introduction 

DNA sequences that underwent somatic alterations across primary cancer samples have 

been comprehensively studied in recent large-scale sequencing projects over the past 

decades (Yates and Campbell 2012; Campbell et al. 2020). However, the vast majority 

of accurately replicated sequences of the same primary cancer genomes have not been 

widely explored, and little is known about their roles in cancers. Indeed, cancers are the 

consequences as well as the survivors of genomic aberrations through an extremely 

robust DNA replication timing programme during cancer cell proliferation (Marchal, 

Sima, and Gilbert 2019). Moreover, the mechanisms underlying this timing programme 

are also implicated in transcriptional activity (Lawrence et al. 2013; Pourkarimi et al. 

2016; Chen et al. 2019), developmental regulation (Ryba et al. 2010; Pope et al. 2014), 

and the mutational landscape of the cancer genome (Lawrence et al. 2013; Polak et al. 

2015; Haradhvala et al. 2016; Du et al. 2019; Li et al. 2019). Therefore, in this thesis I 

propose to analyse cancer genome in a complementary approach by looking at ‘the 

other side of the same coin’ through the analysis of accurately replicated sequences of 

the cancer genomes. A thorough understanding of the replication timing programme in 

cancers is essentially important to fully understand the cellular mechanisms that give 

rise to cancer and help cancer cells survive during the course of cancer development. 

1.1 The human cancer genome 
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1.1.1 Somatic alterations in cancer 

Replication of the entire human genome is required during the synthesis phase of each 

round of cell cycle. Failure to accurately replicate or repair DNA sequences leads to 

damage and errors in the genome over time (Tubbs and Nussenzweig 2017). One of the 

current theories of cancer development suggests that accumulation of such somatic 

alterations in the DNA may provide selective advantage to the cancerous cells 

throughout their evolutionary lifetime (Jolly and Van Loo 2018). With recent 

technological advances in sequencing, several types of somatic alterations have been 

well identified across primary cancer specimens, including point mutations, copy 

number alterations, and genome rearrangements. Therefore, to date, the identification of 

cancer driver genes has been traditionally focused on DNA sequences that underwent 

somatic alterations across primary cancer samples, such as comprehensive studies from 

the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas 

(TCGA) communities. 

1.1.2 Survivorship bias  

However, only around 4-5 of the coding and non-coding somatic alterations found in 

tumour cells are under positive selection and drive cancer development (Martincorena et 

al. 2017; Campbell et al. 2020). In contrast, the majority of the alterations are known to 

be passengers and have no or neural selection effects to the cancer cells (Dietlein et al. 

2018). Therefore, it is undeniable that cancer develops also as a survivor of genomic 

aberrations under neutral selection (Nik-Zainal and Hall 2019). Furthermore, recent 

cancer dependency screenings have begun to address a fundamental bias in current 

cancer driver gene approaches; that is, there are also genes that are not mutated but are 

nonetheless essential for proliferation and survival of cancer cells (Hahn et al. 2021; 

Malone et al. 2021). 

Indeed, if we assume that mutations on essential genes required for cell proliferation 

and survival are deleterious, then it is reasonable to presume that these mutations 

resulted in cell death and did not become a data point when we sequence the tumour 

samples. This is known as survivorship bias (Mangel and Samaniego 1984; Pyatnitskiy 
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et al. 2015). Toward this end, essential genes are expected to contain fewer mutations, 

whereas non-essential genes are expected to contain higher mutational burdens. It is 

therefore important to study DNA sequences that underwent somatic alterations, but 

also the sequences that accurately replicated in the same cancer genome. 

1.1.3 DNA replication timing shapes the mutational landscape of the 

cancer genome  

In recent large-scale cancer sequencing studies, the distribution and patterns of somatic 

mutations have been identified to vary among different parts of chromosomes and 

different cancer types (Lawrence et al. 2013; Haradhvala et al. 2016). Variations in 

DNA replication timing, chromatin compartments, and gene expression levels have all 

been proposed as major determinants underlying the mutational processes that 

constantly change the somatic genome (Polak et al. 2015; Haradhvala et al. 2016). 

Collectively, chromatin accessibility and replication timing account for up to 86% of the 

variation in mutation densities along cancer genomes (Polak et al. 2015). Furthermore, 

replication timing and epigenome remodelling have also been associated with the nature 

of chromosomal rearrangements in cancers (Du et al. 2019). Therefore, understanding 

where exactly, and how differently, DNA replication is initiated and terminated across 

different cell types is an important prerequisite for studying the mutational strand 

asymmetries (Haradhvala et al. 2016), for modelling the cancer evolution (Nik-Zainal et 

al. 2012), and for identifying cancer target genes (Lawrence et al. 2013). 

1.2 DNA replication 

1.2.1 The replication timing programme  

During the synthesis phase of the cell cycle, human chromosomes are not replicated 

linearly from telomere to telomere (Miga et al. 2020). Instead, DNA replication 

stochastically initiates and terminates from different parts of the chromosome at 

different times (Hawkins et al. 2013; Petryk et al. 2016; Marchal, Sima, and Gilbert 
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2019). This process, despite its stochasticity, is strictly orchestrated in a temporal and 

spatial order known as the DNA replication-timing programme in higher eukaryotes 

(Koren et al. 2014; Pope et al. 2014; Fragkos et al. 2015). The temporal order of DNA 

replication, from early to late, is highly associated with the spatial landscape of 

chromatin compartments, from open to close, respectively (Pope et al. 2014; Petryk et 

al. 2016; Du et al. 2019). Therefore, the timing programme is known to be topologically 

preserved in distinct cell types in humans (Pope et al. 2014). This also indicates that the 

replication domains, including origins and termini, are among the most cell type-

specific genomic properties in the human genome (Rhind and Gilbert 2013; Haradhvala 

et al. 2016). 

1.2.2 Profiling of replication timing (RT) in the cancer genome 

By comparing the difference between replicated and un-replicated DNA, whole-genome 

sequencing (WGS) of DNA has been developed to profile replication timing (RT). 

Currently, WGS of DNA from flow-sorted cancer cell lines can provide a snapshot in 

time and space of the timing programme from a specific tumour type (Woodfine et al. 

2004; Hansen et al. 2010; Takahashi et al. 2019). However, not all cell or cancer types 

can be established as proliferative and immortalised cell lines (Masters 2000; Sasaki et 

al. 2017), and appropriate cell lines are limited for the cells of origin of distinct tumours 

(Sutherland et al. 2011; Joshy George et al. 2016). Therefore, to date, a single reference 

timing profile derived from flow-sorted lymphoblastoid cell lines has been widely used 

in the cancer genomics community to study replication timing in multiple types of 

cancers (Koren et al. 2014; Polak et al. 2015; Haradhvala et al. 2016; Li et al. 2019). 

This major one-size-fits-all limitation has hampered the possibility to investigate the 

most cell type-specific genomic properties, i.e. replication initiation and termination 

domains, in the human cancer genome (Ryba et al. 2010; Haradhvala et al. 2016). 

Previously, an alternative method has shown that when a cell population contains 

appropriate high proportion of S phase cells, its sequencing read depth patterns would 

become highly correlated with the reference timing profile (Koren et al. 2014; Marchal 

et al. 2018). Despite these megabase-scale read depth patterns are also reportedly to be 

individual- or sequence-specific (Ryba et al. 2012; Koren et al. 2014; Sasaki et al. 
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2017), the authors further proposed to directly use them as de facto replication timing 

profiles. Nevertheless, methods for direct reconstruction of cell type-specific replication 

timing from primary bulk tumours without the need for in vitro flow sorting procedures 

have not been previously reported. 

1.2.3 Replication initiation and termination  

Despite intensive studies, the usage and timing of replication origins and termini are 

among the least understood genomic properties of the human genome (Petryk et al. 

2016; Chen et al. 2019). This is because the heterogeneity of the timing programme is 

two-fold; that is, not only the usage of replication origins are different between cell 

types, even cells of the same type use different origins to initiate replication in each cell 

cycle (Hawkins et al. 2013; Audit et al. 2013; Bartholdy et al. 2015; Takahashi et al. 

2019). Therefore, in principle, rather than aiming to identify the individual initiation and 

termination events at single-cell or single-molecular level (Chen et al. 2019; Takahashi 

et al. 2019), current replication profiling and domain mapping methods focus on 

measurements of the central tendency, i.e. average replication timing, in a cell 

population of the same type (Woodfine et al. 2004; Audit et al. 2013; Marchal et al. 

2018). 

Although timing profile itself can already be used to infer the position of replication 

origins and termini along its timing transition slopes using algorithms (Audit et al. 

2013; Zhao, Sasaki, and Gilbert 2020), these methods rely only on one fixed snapshot 

of timing profile and therefore could not fully reflect the stochastic nature of the timing 

programme. 

1.2.4 Mapping of replication fork directionality (RFD) domains 

Upon stochastic origin firings, replication forks progress bi-directionally away from the 

initiation sites during the synthesis phase of the cell cycle (Ticau et al. 2015; Aria and 

Yeeles 2019). Therefore, the nature of DNA replication is stochastic but symmetrical. 

Most recently, directional sequencing of Okazaki fragments (OK-seq) has been 
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developed to map the replication fork directionality (RFD) domains along the 

chromosomes (Smith and Whitehouse 2012; McGuffee, Smith, and Whitehouse 2013; 

Petryk et al. 2016), by comparing the difference between the proportions of rightward- 

and leftward-moving forks. 

However, RFD domains mapped by the OK-seq method do not always overlap with the 

RT profiled by the WGS data (Pope et al. 2014; Petryk et al. 2016; Tubbs et al. 2018). 

A plausible explanation for the discrepancy between the two in vitro methods is that 

they were independently measuring different replication events from different cell 

populations at different times, in line with the heterogeneity of the timing programme. 

To date, methods for simultaneous reconstruction of RT profiles and RFD domains 

from the same cell population have not been previously reported. 

More broadly, it is worth noting that OK-seq only employs nascent Okazaki sequences 

from the discontinuously replicated lagging strands (Smith and Whitehouse 2012). 

Therefore, methods for reconstruction of RFD domains using sequences from both the 

leading and lagging strands have also not been previously reported. 

1.2.5 Transcription shapes the landscape of DNA replication 

During the synthesis phase of the cell cycle, DNA replication machineries must 

interfere, overcome, or compete with a range of genomic properties on the same DNA 

template; for examples, transcription machineries, chromatin features, and G-

quadruplex (G4) structures (Besnard et al. 2012; Haradhvala et al. 2016; Hamperl and 

Cimprich 2016; Du et al. 2019). Despite intensive investigation, it remains poorly 

understood where exactly, and how differently, DNA replication starts and ends in the 

human genome. However, it is well known that early-replicating regions are enriched 

with highly expressed genes (Pope et al. 2014; Polak et al. 2015; Haradhvala et al. 

2016; Marchal, Sima, and Gilbert 2019). Most recently, OK-seq mappings have further 

revealed that origin firing preferentially initiates at the transcription start site (TSS) of 

highly transcribed genes (Petryk et al. 2016; Chen et al. 2019). 
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1.3 Research objectives  

In this thesis, I propose to fully explore the entire WGS data from primary bulk 

tumours, and hypothesise that they may provide a snapshot in time, in space, and in 

specific cell type of the tumour replication timing programme. In summary, the aims of 

this study are to (i) measure the proportion of S phase cells within a primary tumour 

sample using WGS data, referred to as in silico sorting; (ii) profile the temporal 

dynamics of tumour replication timing directly from primary tumour samples rather that 

from cancer cell lines; and (iii) map the spatial landscape of replication origins and 

termini simultaneously from the same primary cancer WGS data using a novel 

resampling-based RFD methodology in a number of steps (as shown in Graphical 

Summary). 
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Chapter 2 

Using DNA sequencing data to infer 
the proportion of S phase cells within 
a primary tumour sample 

2.1 Introduction 

The separation of proliferating cells from resting cells is the first and foremost 

procedure when profiling DNA replication timing. But not all cell or cancer types can 

be established as cell lines (Masters 2000; Sasaki et al. 2017), followed by in vitro flow 

sorting procedures. This has proven to be even challenging for the low proliferating 

hematological cancers, hence patient-derived xenografts of human leukemia are 

subsequently established as an experimental alternative (Sasaki et al. 2017).  

Previously, a study has shown that when a cell population contains appropriate high 

proportion of S phase cells, its sequencing read depth patterns would become highly 

correlated with the reference timing profile, and can be even directly used as de facto 

timing profiles (Koren et al. 2014; Marchal et al. 2018). 

Here, in this chapter, instead of directly using read depth patterns from the highly 

proliferating primary tumour samples as de facto timing profiles, I propose that ordering 

the extent of individual tumours’ read depth correlations (i.e. similarities) with the 

reference timing profile, a novel separation method could then be introduced, which I 

refer to as in silico sorting. Subsequently, by comparing the difference between 
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proliferating and resting tumour samples hitherto separated by this in silico sorting 

procedure, I envision that the average replication timing of a distinct cancer or cell type 

could also be directly reconstructed, in line with the existing in vitro profiling methods. 

By doing so, I could also average out sequence- or patient-specific heterogeneities in a 

cell population. 

2.2 Material and methods 

2.2.1 Datasets 

Whole-genome sequencing data of six unsynchronised, flow-sorted lymphoblastoid cell 

lines (LCLs; with one experiment repetition) (Koren et al. 2012) were reconstructed as 

the reference replication timing profile in this study. Cancer whole genomes from three 

cancer types, including 101 small cell lung cancer (SCLC) (George et al. 2015), 56 

neuroblastoma (NBL) (Peifer et al. 2015), and 99 chronic lymphocytic leukemia (CLL) 

(Puente et al. 2011) were reconstructed as the tumour replication timing profiles. 

Sequencing data of 92 (out of 101) adjacent normal lung tissues from the same SCLC 

patients was reconstructed as normal replication timing (SCLC-NL) (George et al. 

2015). Finally, the validation sequencing data of 8 unsynchronised, neuroblastoma cell 

lines (NBL-CLs) was also included in this chapter to validate my in silico sorting 

method. 

 
Table 2.1: Whole-genome sequencing data 

Published data Source Identifier 

Lymphoblastoid cell lines (LCL)  Koren et al. 2012 SRA052697 

Small cell lung cancer (SCLC) George et al. 2015 EGAS00001000925 

Neuroblastomas (NBL) Peifer et al. 2015 EGAS00001001308 
Chronic lymphocytic leukemia (CLL) Puente et al. 2011 EGAS00000000092 

Neuroblastomas cell line (NBL-CL)  Rosswog et al. 2021 ENA: PRJEB45367 
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2.2.2 Quantification and normalisation of whole-genome sequencing 

All paired reads were aligned to GRCh37 human reference genome (hs37d5) using 

BWA-MEM (version 0.7.15-r1140) with the parameters -T 0 -M -Y by our in-house 

analysis pipeline as previously described (Peifer et al. 2012). For LCL reference 

genome, single-end reads were aligned by GATK (version 4.0.0) following its Best 

Practices pre-processing workflow. To ensure cross-comparability, the human reference 

genome was uniformly partitioned into ~2.6 million non-overlapping 1 kb windows 

(Hawkins et al. 2013; Sasaki et al. 2017). Sequencing read depth/counts per 1 kb 

window were calculated by our Sclust copy number analysis tool (Cun et al. 2018), 

followed by local GC content correction for each window. For cancer genomes, read 

counts were further corrected for copy number states estimated by Sclust to avoid bias 

from somatic alteration events, i.e. amplifications and deletions. Partitioned windows 

with zero reads were precluded from downstream analyses. Reads per kilobase, per 

million (RPKM) normalisation was performed in each library (Sasaki et al. 2017; Tubbs 

et al. 2018). 

Median normalised read counts (median RPKM) were then calculated across different 

samples or cells in the respective subgroups or cell populations (Woodfine et al. 2004). 

By doing so, one can also averaged out the putative sequence-specific replication timing 

between individuals (Ryba et al. 2012; Koren et al. 2014; Sasaki et al. 2017), copy 

number variations between normal samples (Marchal et al. 2018), and potential 

asynchronous replication of chromosomes between tumour samples (Marchal, Sima, 

and Gilbert 2019). 

2.2.3 Reconstruction of S/G1 reference replication timing profile 

The LCL reference replication timing profile was determined from the S/G1 (S to G1) 

read depth ratio, by comparing the difference between proliferating and resting reads as 

broadly described (Woodfine et al. 2004; Ryba et al. 2011; Koren et al. 2012; Tubbs et 

al. 2018). S/G1 ratios were log2 transformed, and scaled to genome-wide mean of 0 and 

SD of 1 (Koren et al. 2012) to ensure cross-comparability. Early and late replication 

timing regions were defined by log2 ratio greater than or less than 0. Smoothed read 
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depth and timing profiles were performed on total 1 kb windows using smooth.spline 

package with the default parameters in R (https://www.r-project.org). 

2.2.4 Visualisation of replication timing profiles 

Chromosomal profiles were generated by purpose-written R scripts using chromosome 

and cytoband information (chromInfo.txt.gz and cytoBand.txt.gz) downloaded from 

UCSC Genome Browser (GRCh37/hg19). Published consensus replication timing 

profile was downloaded from author’s website (http://mccarrolllab.org/resources) 

(Koren et al. 2012), which was calculated by pooling total read counts from all LCL 

cells at ~2 kb variable-size, equal-coverage windows. Genomic coordinates were 

converted to hg19 using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Given 

the resolution differences, this consensus timing profile was merely used for visual 

comparison in Figure 2.1A (bottom panel, green line). As for the reference timing 

profile reconstructed by my approach at 1 kb resolution can be seen in Figure 3.1C, 

3.3A and 3.4A,B (green smoothed lines). 

2.2.5 Statistical analysis 

Spearman's rank correlation coefficient was performed in read depth correlation 

analysis, and a Spearman’s rho was given. 

2.3 Results 

2.3.1 Opposing sequencing read depth pattern between S and G1 

phase cells 

The separation of proliferating cells from resting cells is the first and foremost 

procedure when profiling DNA replication timing, therefore I set out to first study DNA 

content differences between cell cycle time points. Whole-genome sequencing of 6 

unsynchronised, flow-sorted lymphoblastoid cell lines (LCLs) were used as my 
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reference for S and G1 phase reads (Koren et al. 2012). Then, sequencing reads were 

uniformly partitioned at 1 kb resolution (Hawkins et al. 2013; Sasaki et al. 2017), 

followed by local GC content correlation and reads per kilobase million (RPKM) 

normalisation. To measure the central tendency in a cell population (Woodfine et al. 

2004), I calculated median read counts across different experiments per kb window in 

the respective S and G1 cell populations (Figure 2.1A, top panel). Finally, I 

reconstructed reference timing profiles using the log2 S/G1 read depth ratio as widely 

described (Woodfine et al. 2004; Ryba et al. 2011; Koren et al. 2012) (Figure 2.1A, 

bottom panel). 

 
A 

 

B 

 
  

Figure 2.1: (A) LCL reference replication timing (RT) profile for human chromosome 
2. (Top panel) Normalised S phase (red smoothed line) and G1 phase (blue) reads at 1 
kb resolution across 7 LCLs (median RPKM). (Bottom panel) Reference RT profile 
(black smoothed line) inferred from log2 S/G1 read depth ratio (genome-wide mean of 0 
and SD of 1). Early- and late-replicating regions are defined by a log2 ratio greater than 
(red dots) or less than (blue) 0. (B) Simplified scatterplot showing S phase reads 
positively correlated with the reference RT (red linear regression line), whereas G1 
phase reads negatively correlated (blue) in chromosome 2. Spearman's rank correlations 
are given (see unsimplified scatterplots in Figure A.1 and A.2). 
 

Patterns of S phase reads are known to correlate with the timing profiles (Koren et al. 

2014; Marchal et al. 2018), and have been extensively studied when profiling DNA 

replication timing (Ryba et al. 2012; Hawkins et al. 2013; Koren et al. 2014). In 

contrast, G1 phase reads are less studied, and only served as controls in each uniformly-

partitioned window (Hawkins et al. 2013; Sasaki et al. 2017), or fixed to a constant 
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coverage in each variable-sized window (Koren et al. 2012; Siefert et al. 2017). 

Interestingly, I observed that G1 phase reads appeared not to be a flat line, and still 

exhibited peak and valley patterns along the chromosome arms even after GC correction 

(Figure 2.1A, blue line in top panel). This observation prompted me to speculate that 

there might be a background signal from an unknown source, and suggested that it 

could have underpinning impacts on both S and G1 phase reads. Nevertheless, this 

unknown background signal would be eventually cancelled out in the canonical S/G1 

ratio approach. 

To determine whether patterns of G1 phase reads are also associated with the timing 

profiles, I performed read depth correlation analyses (Koren et al. 2014). Using 

chromosome 2 as an example, I first observed that S phase reads had a positive 

correlation with the timing profile (Figure 2.1B, red line); whereas, in contrast, G1 

phase reads had a negative correlation with the timing profile (Figure 2.1B, blue). 

Intriguingly, I found that this opposite read depth correlation trend is ubiquitous across 

22 autosomes in the LCL reference genome (Figure 2.2). Moreover, I also observed that 

G1 phase reads correlated more strongly but negatively with the timing profile (Figure 

2.3A), further suggesting an indispensible role of G1 phase reads when profiling DNA 

replication. Together, I hypothesised that such distinct, opposing correlation trend could 

allow the discrimination of any given cell population into S or G1 phase-like cell cycle 

status.  

2.3.2 In silico sorting of primary tumour samples using cancer whole-

genome sequences 

To test this hypothesis, I next examined whether patterns of the primary cancer whole 

genomes are also associated with the timing profiles. Whole-genome sequencing of 

primary tumour samples across three different cancer types, including 101 small cell 

lung cancers (SCLC) (George et al. 2015), 56 neuroblastomas (NBL) (Peifer et al. 

2015), and 96 chronic lymphocytic leukemia (CLL) (Puente et al. 2011) were used to 

initiate this idea, which I refer to as in silico sorting hereafter. To ensure cross- 
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Figure 2.2: Comparison of read depth correlations with the reference timing profile 
across 22 human autosomes. Overlays of two simplified scatterplots (from Figure A.1 
and A.2) demonstrating a distinct, opposing correlation trend between S phase and G1 
phase read depths, when compared them with the RT profile (the log2 S/G1 ratio; rho = 
Spearman's rank correlation coefficient; solid regression line = Linear regression) 
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A 

 

B 

 
 
Figure 2.3: G1 phase reads correlated more strongly but negatively with the timing 
profiles. (A) A stronger but negative correlation trend was observed between G1 reads 
and the reference RT (S/G1 ratio) across most autosomes (excepted for chr10, chr15 and 
chr22) in the reference LCL genome, thus challenging the significance of S phase reads 
as widely accepted. (B) A similar correlation trend was observed between NBL Q1 (i.e. 
the most G1 phase-like) reads and the NBL tumour timing profiles (Q4/Q1 ratio) across 
most autosomes (expected for chr9, chr18) in the NBL cancer genome. 

 

comparability, cancer whole genomes were also uniformly partitioned at 1 kb 

resolution, followed by local GC content correction and RPKM normalisation. 

Additionally, to avoid bias from potential somatic alteration events in the cancer 

genomes, i.e. amplifications and/or deletions, sequencing read counts were further 

corrected for copy number states in the respective tumour samples. Consistent with the 

opposing correlation trend observed earlier in the LCL reference genome (Figure 2.4A), 

I found that patterns of the tumour reads were also proportionally correlated with the 

reference timing profiles across 22 autosomes in the respective cancer types (Figure 

2.4B). 

Subsequently, I conducted in silico sorting prediction (y-axis in Figure 2.4C) by 

ordering the degree of individual tumours’ overall read depth correlation (i.e. 

similarities) with the reference timing profiles in the respective cancer types. I found 

that SCLC tumours exhibited the highest median overall read depth correlation among 
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Figure 2.4: In silico sorting of primary tumours using cancer whole-genome sequences 
(A) Opposing read depth correlation trends with the reference RT profile between S 
phase (red) and G1 phase (blue) reads across 22 human autosomes (full scatterplots in 
Figure 2.4). (B) Proportional read depth correlation trends with the reference RT profile 
among primary cancer genomes across 22 autosomes in three cancer types. (C) Boxplot 
showing our in silico sorting predictions (y-axis) for 256 primary tumour samples. 
Tumour samples are then grouped into equal-sized four quartiles in the respective cancer 
types. (D) Unsupervised principal component analysis (PCA) of tumour samples’ 
overall read depth patterns, showing that the direction of PC1 (x-axis) is generally in 
parallel to the distribution of the quartile subgroups (as in A). 
 

the three cancer types, indicating a higher proportion of S phase cells in their cancer cell 

populations. A possible explanation is that due to the bi-allelic RB1 loss in nearly all of 

the SCLC tumours (George et al. 2015), defects of the cell cycle arrest is a hallmark of 

SCLC (Burkhart and Sage 2008), resulting cell proliferation in an unchecked manner 

(Hanahan and Weinberg 2011). On the other hand, all but one CLL cells appeared to be 

negatively correlated with the reference timing profiles (Figure 2.4C), indicating a 

lower proportion of S phase cells. This can also be explained by the low proliferative 

activity widely reported in human hematological cancers (Sasaki et al. 2017). Finally, 

tumour samples were grouped into equal-sized four quartiles in the respective cancer 

●

● ●
●

●
●

●

●

●

●

● ●
● ●

●

● ●

●

●
●

● ●

LCL read depth vs. RT

Chromosome

● ●

●
●

●
●

● ●
●

●

● ●

●
●

●

●

●

● ●
●

●

●

S vs. RT

G1 vs. RT

0.45

−0.50

2 6 10 14 18 224 8 12 16 20

−0
.8

−0
.4

0
0.

4
0.

8
C

or
re

la
tio

n 
[rh

o]

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

SCLC read depth vs. RT

Chromosome
2 6 10 14 18 224 8 12 16 20

−0
.8

−0
.4

0
0.

4
0.

8
C

or
re

la
tio

n 
[rh

o]

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●●

●

●●

●●
●
●
●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

NBL read depth vs. RT

Chromosome
2 6 10 14 18 224 8 12 16 20

−0
.8

−0
.4

0
0.

4
0.

8
C

or
re

la
tio

n 
[rh

o]

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●
●
●●●
●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

CLL read depth vs. RT

Chromosome
2 6 10 14 18 224 8 12 16 20

−0
.8

−0
.4

0
0.

4
0.

8
C

or
re

la
tio

n 
[rh

o]

In silico sorting

● ●
●●● ●

●●
● ●

●
●

● ●●
● ●●●●

●● ●
●

●●
● ●●●● ● ●●●● ●● ●●

●●●●●●
●

●●●● ●● ● ●●● ● ●● ● ●●●

● ●
● ● ●● ● ●●

● ● ●
● ●
●● ●
● ●●

●● ●●●

●●● ●●●●●● ●● ●● ● ●●●● ● ●●●● ● ●●● ●● ● ●● ●●● ● ●●

●
●

●●●
●

●
●

●
●

●
●

● ●
●

●

●
●

●
● ●

●●

●●

●●●
● ●
●

●● ●●
●

●

●

●
● ●● ●●● ●● ● ●● ●● ● ●●●● ●●● ● ● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●● ● ●●
●●

● ●●●●● ●

●

●
●●●

●

● ●

●

●

●

●

Q4
Q3
Q2
Q1

−0
.8

−0
.4

0
0.

4
0.

8
O

ve
ra

ll 
re

ad
 d

ep
th

 v
s.

 R
T 

[rh
o]

SCLC NBL CLL
n=101 n=56 n=96

−1000 0 1000 2000 3000

−1
50

0
−5

00
0

50
0

SCLC overall read depth

PC1 (33%)

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●
●

●
●

●

●

●

●

Q4
Q3
Q2
Q1

PC
2 

(7
%

)

−1000 0 1000 3000

−1
50

0
−5

00
50

0
15

00

NBL overall read depth

PC1 (51.2%)

●●
●
●●●

●
●
●●
●
●
●

●
● ●

●
●

●

●

●
●●●

●

●

●

●
●●●●●
●●●●●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Q4
Q3
Q2
Q1

PC
2 

(1
4.

6%
)

−2000 0 2000 4000−2
00

0
−1

00
0

0
10

00

CLL overall read depth

PC1 (29%)

●●●

●
●● ●

●●●●●●

●
●●

●

●

●●●

●
●

●

●

●

●●●

●

●

●

●
●
●
●

●

●

●

●

●●●

●

●●

●
●

●●
●●

●
●
●

●
●
●

●●●

●●

●

●

●

●

●

●

●
●

● ●●
●●●

●

●

●●●●●●● ●●

●

●●●
●

●

●

●

●

●

●

●

Q4
Q3
Q2
Q1

PC
2 

(1
3.

1%
)



	 17	

types based on their overall correlations (coloured legends in Figure 2.4C). Together, I 

conclude that primary tumour samples can be computationally discriminated using 

cancer whole-genome sequences, and their overall read depth patterns can be used to 

infer the proportion of S phase cells in a cell population. 

To determine whether the cell cycle distribution predicted by my in silico sorting was 

directly associated with their sequencing reads, I performed unsupervised principle 

component analysis (PCA) on tumours’ overall read depth patterns in the respective 

cancer types. The PCA analyses showed that the first principle component (PC1) was 

consistent with the quartile distribution (coloured legends in Figure 2.4D), which were 

predicted independently as shown earlier (y-axis in Figure 2.4C). Moreover, PC1 not 

only reflected this visible trend of quartile distribution, it also explained up to 33%, 

51.2% and 29% of the variance in SCLC, NBL and CLL cancer genomes, respectively 

(Figure 2.4D). This suggests that tumours’ overall read depth patterns play a dominant 

role in the quartile distribution predicted by our in silico sorting. 

2.3.3 Flow cytometry reflects in silico sorting prediction in 8 

neuroblastoma cell lines 

To experimentally validate the cell cycle distribution predicted by our in silico method, 

I performed in silico sorting in a separate cohort of 8 neuroblastoma cell lines (NBL-

CLs), followed by flow cytometry analysis in vitro. Whole-genome sequencing of these 

8 unsynchronised NBL-CLs were used to conduct in silico sorting prediction by 

ordering the degree of cancer cell lines’ overall read depth correlations with the 

reference timing profiles (y-axis in Figure 2.5A), in line with the premises approach 

(Figure 2.4C). I reasoned that the forth quartile (Q4) GLBGA and NGP cells would 

have the highest proportion of S phase cells, and the first quartile (Q1) GIMEN and 

LAN6 cells the highest proportion of G1 phase cells. Subsequently, in vitro cell cycle 

distribution was measured by flow cytometry (Figure 2.5D), and the proportion of DNA 

contents in each cell cycle phase was calculated using Dean-Jett-Fox algorithm (Figure 

2.5C). 
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A 
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D                    CLBGA B                     NGP E                  SKNAS D                    LS 

 
 

F                     SKNFI C                    TR14 G                 GIMEN A                  LAN6 

 
 

Figure 2.5:  Flow cytometry validation reflects in silico sorting prediction in 8 
neuroblastoma cell lines (NBL-CLs). (A) Boxplot showing the proportion of S phase 
cells predicted by our in silico sorting in 8 NBL-CLs. (B) Scatterplot showing 
correlations between our in silico predictions (y-axis; as in A) and in vitro flow 
cytometry validations (x-axis; as in C) in the respective cell cycle phases. (C) Barchart 
showing the proportion of cells in each cell cycle phase calculated by the Dean-Jett-Fox 
algorithm following flow cytometry analysis (as in D). (D) Histograms showing the 
number of cells (y-axis) with distinct DNA contents (2n, 2-4n and 4n; x-axis) in the 
respective cell cycle phases (G0/G1, S and G2/M) measured by flow cytometry in 8 
NBL-CLs. 
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Finally, the in silico prediction was compared with the in vitro validation (Figure 2.5B). 

I found that my proposed in silico predictions had a strong positive correlation with the 

sorted S phase cells (red line; Spearman's rho = 0.8), a strong negative correlation with 

the sorted G0/G1 phase cells (blue; rho = -0.8), and no correlation with the sorted G2/M 

phase cells (gray; rho = 0.4). Therefore, I conclude that the overall read depth patterns 

of a cancer whole genome is strongly correlated with the cell cycle distribution, and can 

be directly used to infer the proportion of S phase cells in a cell population. 

2.4 Discussion 

In this chapter, I presented a novel in silico sorting method to measure the proportion of 

S phase cells using whole-genome sequencing data, and verified it with flow cytometry 

in vitro. Through the analysis of accurately replicated DNA sequences of the primary 

tumour samples, my novel approach highlights that their overall sequencing read depth 

patterns can be directly used to perform in silico prediction without the need for in vitro 

sorting procedures. Therefore, after the separation of proliferating and resting primary 

tumour samples, and pooling them into a virtual population of the same type, I 

hypothesise that the average replication timing profile from a distinct cancer type could 

then be directly reconstructed as described in detail in Chapter 3. 
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Chapter 3 

Temporal dynamics of tumour 
replication timing in primary cancer 
whole-genome sequences 

3.1 Introduction 

Recent studies have begun to address the cellular heterogeneity of the replication timing 

programme in humans (Hansen et al. 2010; Pope et al. 2014; Klein et al. 2019). 

Currently, whole-genome sequencing data from flow-sorted cancer cell lines can 

provide a snapshot in time and space of the replication programme that is topologically 

preserved in distinct cellular types (Koren et al. 2012; Fragkos et al. 2015). However, 

not all cell or cancer types can be established as cell lines, followed by cell sorting in 

vitro (Masters 2000; Sasaki et al. 2017). Therefore, to date, a single reference timing 

profile derived from sorted lymphoblastoid cell lines has been widely used in the cancer 

genomics community to study replication timing in multiple types of cancers (Koren et 

al. 2014; Polak et al. 2015; Haradhvala et al. 2016; Li et al. 2019). This major one-size-

fits-all limitation has hampered the possibility to investigate the most cell type-specific 

genomic properties, i.e. replication initiation and termination domains, in the human 

cancer genome (Ryba et al. 2010; Haradhvala et al. 2016). 

Previously, an alternative profiling method has shown that when a cell line population 

contains an appropriate high proportion of cells in S phase, its sequencing read depth 
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patterns would become highly correlated with the reference timing profile (Koren et al. 

2014; Marchal et al. 2018). Despite these megabase-scale read depth patterns are also 

reportedly to be individual- or sequence-specific (Ryba et al. 2012; Koren et al. 2014; 

Sasaki et al. 2017), the authors further proposed to directly use them as de facto 

replication timing profiles. Nevertheless, methods to reconstruct cell type-specific 

replication timing directly from primary cancer genomes without the need for in vitro 

sorting procedures have not been previously reported. 

Upon in silico sorting of primary tumour samples into S and G1 phase-like cell cycle 

status as described above (Figure 2.4C), I hypothesised that tumour replication timing 

could then be directly profiled in a cancer- or cell type-specific manner. To this end, cell 

cycle enrichment (i.e. cell synchronization) is not required in the isolation process of 

current established methods when profiling average replication timing in a given cell 

population (Woodfine et al. 2004; Audit et al. 2013; Marchal et al. 2018). Therefore, I 

reasoned that I can directly inferred replication timing by using the canonical S/G1 read 

depth ratio approach as widely described (Woodfine et al. 2004; Ryba et al. 2011; 

Koren et al. 2012). Notably, I have reported above that it is the G1 phase reads that 

correlated more strongly but negatively with the reference timing profile, and neither S 

nor G1 phase reads match the full extent of the timing profile (Figure 2.3A; maximum 

Spearman’s |rho| = 0.72), suggesting an unknown background signal. Therefore, instead 

of directly using S phase-like reads as de facto timing profiles as previously described 

in an alternative method (Koren et al. 2014; Marchal et al. 2018), I reasoned that the 

canonical S/G1 ratio approach is nevertheless required for cancelling out this unknown 

background in both S and G1 phase reads when profiling DNA replication. 

3.2 Material and methods 

3.2.1 Signal-to-noise ratio 

The strength of replication timing (RT) signal was determined by standard deviation of 

the timing profile (e.g. black smoothed spline in Figure 3.1A; bottom panel). The 

strength of RT noise was determined by standard deviation of the difference between 
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original read depth ratios (e.g. un-smoothed red and blue dots in Figure 3.1A; bottom 

panel) and the timing profile (i.e. smoothed curve). 

3.2.2 Replication timing skew (RTS) 

The RTS values were computed as the difference between the proportions of early-

replicating (E) and late-replicating (L) 1 kb windows in each chromosome as: 

RTS = (E – L) / (E + L). 

3.3 Results 

3.3.1 Direct profiling of tumour replication timing using human 

cancer whole-genome sequences 

First, I used the most variable (PC1 = 51.2% in Figure 2.4D) 28 out of 56 NBL tumours 

to perform my direct replication profiling approach, i.e. between the most S phase-like 

Q4 and the most G1 phase-like Q1 tumours predicted earlier by my novel in silico 

sorting approach (as in Figure 2.4C). To average out potential asynchronous replication 

of chromosomes (Marchal, Sima, and Gilbert 2019) and, as importantly, putative 

sequence-specific replication timing between individuals (Ryba et al. 2012; Koren et al. 

2014; Sasaki et al. 2017), I measured median read counts across tumour samples in the 

respective subgroups (Woodfine et al. 2004). Intriguingly, I found an inverted, near 

mirroring read depth pattern between NBL Q4 and Q1 tumour reads (Figure 3.1A, top 

panel), suggesting an opposing read depth correlation trend between S and G1 phase 

reads as shown earlier in the LCL reference genome (Figure 2.1B). By comparing Q4 

and Q1 tumour reads with the LCL reference timing profiles, I also reproduced this 

opposing trend across autosomes in the NBL cancer genome (Figure 3.1B, red and blue 

lines). Finally, NBL tumour timing profiles were reconstructed using a log2 Q4/Q1 read  
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A 
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C 

 

D 

 
 
Figure 3.1: Direct profiling of tumour replication timing from 56 neuroblastoma (NBL) 
primary cancer whole genomes. (A) NBL tumour timing profile for chromosome 2 
inferred from Q4 and Q1 tumours (as in Figure 1E). (Top panel) Normalised Q4 (red 
smoothed line) and Q1 (blue) tumour reads at 1 kb resolution across 28 NBLs (median 
RPKM). (Bottom panel) Tumour timing profile (black smoothed line) inferred from the 
log2 Q4/Q1 read depth ratio (genome-wide mean of 0 and SD of 1). (B) Correlations 
between tumour reads and LCL reference profiles across 22 autosomes. The composite 
black line showing NBL Q4/Q1 timing profiles were highly correlated with the LCL 
reference profiles (median rho = 0.77). (C) NBL tumour timing profile for chromosome 
2 inferred from M2 (the second median; Q4+Q3) and M1 tumours (the first median; 
Q2+Q1). (Top panel) Normalised M2 (red) and M1 (blue) tumour reads across 56 
NBLs. (Bottom panel) Tumour timing profile (black) inferred from the log2 M2/M1 
read depth ratio. (D) Correlations between tumour reads and LCL reference profiles 
across 22 autosomes. M2 reads flip to be negatively correlated with the LCL reference 
profile, when compared to the Q4 reads (as in B). 
 

depth ratio at 1 kb resolution across 28 NBL tumours (Figure 3.1A, bottom panel), 

which had a strong correlation with the LCL reference timing profiles across autosomes 

(median rho = 0.77; Figure 3.1B, black line). Consistently, I also observed that it is the 
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NBL Q1 (i.e. the most G1-like) tumour reads correlated more strongly but negatively 

with the NBL Q4/Q1 tumour timing profiles (Figure 2.3B). Moreover, neither Q4 nor 

Q1 tumour reads matched the full extent of the NBL Q4/Q1 tumour timing profiles 

(Figure 3.1B and 2.3B), in line with earlier observation in the LCL reference genome 

(Figure 2.3A). 

Second, to confirm the reproducibility of my direct approach, I used the total number of 

56 NBL tumours by dividing them into two equal-sized subgroups, i.e. between the S 

phase-like M2 (second media) and the G1 phase-like M1 (first median) tumours. 

Curiously, M2 tumour reads appeared to be a near flat line with very few peak and 

valley patterns along the chromosome arms (Figure 3.1C, red line in top panel). I 

reasoned that the visible S phase reads from Q4 tumours were consequently balanced 

out by the inverted G1 phase reads from Q3 tumours, when the two quartile subgroups 

were merged into M2 tumours. This could also explain why M2 reads flipped to be 

negatively correlated with the reference timing profiles across the autosomes (Figure 

3.1D, red line), when compared to the Q4 reads (Figure 3.1B, red line). Accordingly, 

NBL tumour timing profiles were reconstructed using a log2 M2/M1 read depth ratio at 

1 kb resolution across 56 NBL tumours (Figure 3.1C, bottom panel), which consistently 

had a strong correlation with the LCL reference timing profiles across autosomes 

(median rho = 0.77; Figure 3.1D, black line). Nevertheless, comparisons between the 

two hitherto NBL tumour timing profiles revealed that M2/M1 timing profiles were 

almost indistinguishable from their Q4/Q1 counterparts across autosomes (Figure 3.2A, 

black line in NBL; Spearman’s rhos ranging from 0.98 to 1), suggesting the robustness 

of the canonical S/G1 ratio approach. 

Third, to further confirm the reproducibility of my direct replication profiling approach, 

I repeated the above two steps to reconstruct SCLC and CLL tumour timing profiles 

from the rest of tumour samples (Figure A.3 and A.4). Consistently, I found that 

M2/M1 timing profiles were ubiquitously, indistinguishable from their Q4/Q1 

counterparts across autosomes in the respective cancer types (Figure 3.2A, black lines; 

Spearman’s rhos ranging from 0.96 to 1). 
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Figure 3.2: (A) Comparisons between timing profiles showing (Black lines) M2/M1 
and Q4/Q1 tumour timing profiles were almost indistinguishable (median rho = 1, 1, and 
0.98) across autosomes in the respective cancer types. (Yellow lines) SCLC-NL normal 
timing profiles were highly correlated with their SCLC tumour counterparts (median rho 
= 0.99), compared with NBL (median rho = 0.97) and CLL (median rho = 0.96) across 
autosomes. (B) Signal-to-noise ratio analyses (see Methods) among M2/M1 (black dots) 
and Q4/Q1 (gray) tumour timing profiles across the three cancer types (SCLC, NBL and 
CLL) and one matched normal type (SCLC-NL), showing the timing profiles were 
significantly positively correlated with the number of samples (Spearman's rho = 0.8). 
 

To determine the resolution between the two hitherto timing profiles, I performed 

signal-to-noise ratio (SNR) analyses. I identified that the resolution of timing profiles 

(i.e. SNR; x-axis in Figure 3.2B) had a strong positive correlation (black and gray lines; 

rhos = 0.8) with the size of their samples (y-axis). I also found that M2/M1 timing 

profiles (black dots in Figure 3.2B) in general had slightly higher resolution than their 

Q4/Q1 counterparts (gray), despite they are almost indistinguishable. Therefore, to 

simplify my approach and to maximise the statistical power, I hereafter only reported 

M2/M1 timing profiles in the following analyses. Altogether, I conclude that tumour 

replication timing can be directly profiled from the primary tumour sample using cancer 

whole genomes, and my novel direct profiling approach is robust and reproducible 

across different cancer types derived from independent studies. 

3.3.2 Tumour replication timing is preserved in closely related normal 

tissues and lineage-specific cancer cell lines 

To determine whether tumour timing profiles were cell type-specific, I further 

reconstructed normal timing profiles from 92 adjacent non-neoplastic lung tissues 
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derived from the same SCLC patients (SCLC-NL) (George et al. 2015) (Figure A.6). 

Intriguingly, I identified that SCLC-NL normal timing profiles correlated more strongly 

with their SCLC tumour counterparts across autosomes (median rho = 0.99) than NBL 

(median rho = 0.97) and CLL (median rho = 0.96) tumour timing profiles (Figure 3.2A, 

three yellow lines). This indicates that the cellular plasticity of the timing programme is 

preserved and shared between SCLC tumours and their adjacent normal lung tissues 

(Pope et al. 2014; Petryk et al. 2016; Du et al. 2019). 
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Figure 3.3: Direct profiling of tumour replication timing from 8 NBL-CL cancer cell 
lines using cancer whole genomes. (A and B) (A) Tumour timing profile for 
chromosome 2 as inferred between NBL-CL M2 and M1 cell lines (see in silico sorting 
predictions in Figure 2.5A). (B) Intriguingly, NBL-CL timing profiles had the lowest 
correlations with the LCL reference timing profiles (black line; median rho = 0.55), 
despite they were both derived from the same cell culture environment and, most 
importantly, with similar low number of samples (n = 8 and 7, respectively). (C) 
Comparisons between timing profiles showing that NBL-CL tumour timing profiles 
correlated more strongly with their NBL tumour counterparts across autosomes (median 
rho = 0.86), compared with SCLC (median rho = 0.79) and CLL (median rho = 0.66) 
tumour timing profiles. 
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To confirm the reproducibility, I further reconstructed tumour timing profiles from the 

validation cohort of 8 neuroblastoma cell lines (NBL-CLs) (Figure 3.3A). Consistently, 

I identified that NBL-CL tumour timing profiles correlated more strongly with their 

NBL tumour counterparts across autosomes (median rho = 0.86) than SCLC (median 

rho = 0.79) and CLL (median rho = 0.66) tumour timing profiles (Figure 3.3C, yellow 

lines). Intriguingly, NBL-CL timing profiles had the lowest correlations with the LCL 

reference timing profiles (Figure 3.3B, black line; median rho = 0.55), despite they were 

both derived from the similar cell culture environment and, most importantly, with 

similar low number of samples (n = 8 and 7, respectively). Together, I demonstrate that 

the topology of reconstructed tumour timing profiles is preserved and shared between 

SCLC and its matched normal lung tissues, as well as between NBL and its cancer cell 

lines that originate from the same cell type of origin. 

3.3.3 Early- and late-replicating compartments are intrinsic and 

conserved across different cell types in the human genome 

To determine whether the spatial dynamics of replication timing were influenced by the 

times when chromosomes enter the first half of the S phase (Woodfine et al. 2004; 

Marchal, Sima, and Gilbert 2019), I then investigated the imbalance between early- and 

late-replicating regions in the respective chromosomes. Intriguingly, I observed 

polarised distribution across human chromosomes. For example, chromosome 17 was 

dominated by the plateau-like, early-replicating compartments (Figure 3.4A, log2 ratios 

> 0 in bottom panel); whereas, in contrast, chromosome 13 was dominated by the basin-

like, late-replicating compartments (Figure 3.4B, log2 ratios < 0) in both SCLC cancer 

and LCL reference genomes (black and green lines in Figure 3.4A and 3.4B). To 

quantify this imbalance, replication timing skew (RTS) values were calculated as the 

difference between the proportions of early- (E) and late-replicating (L) 1 kb windows 

in the respective chromosomes (Figure 3.4C). Strikingly, skewed values derived from 

the SCLC cancer genome were significantly correlated with those from the LCL 

reference genome (Figure 3.4D; Spearman’s rho = 0.91, P = 4.48E-09), despite they 

were originated from different cell types. In fact, I identified this universal early-to-late 
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Figure 3.4: Replication timing is intrinsically conserved across different cell types in 
the human genome. (A and B) (A) Chromosome 17 is dominated by the plateau-like, 
early-replicating regions (log2 ratios > 0 in bottom panel), whereas (B) chromosome 13 
is dominated by the basin-like, late-replicating regions (log2 ratios < 0) in both SCLC 
tumour and LCL reference timing profiles (black and green lines). (C) Replication 
timing skew (RTS) in the indicated chromosomes shows that chromosomes 17, 19 and 
22 are among the earliest to enter the first-half of S phase in the human genome (red 
dots), and chromosomes 4 and 13 the latest (blue dots). (D) RTS values derived from the 
SCLC tumour timing profiles correlated significantly with those from the LCL reference 
timing profiles (Spearman’s rho = 0.91, P = 4.48E-09; green regression line for 
visualization only). This universal early-and-late division is ubiquitous across different 
normal and tumour timing profiles (see Figure A.8). 
 

were originated from different cell types. In fact, I identified this universal early-to-late 

skew across different normal and cancer genomes, including SCLC-NL, NBL and CLL 

(Figure A.7; rhos = 0.91, 0.91 and 0.89), indicating a strictly conserved replication-

timing programme in the human genome. Taken together, I can confirm that on average 

chromosomes 17, 19 and 22 are among the earliest to replicate in the first half of the S 
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phase, and chromosomes 4 and 13 the latest across different cell types in the human 

genome (Woodfine et al. 2004) (Figure 3.4C and 3.4D). 

However, I observed that patterns of focal peaks and valleys, which represent the exact 

locations of replication origins and termini, appeared to be equally distributed in the 

megabase-sized, early-replicating compartments (Figure 3.4A), as well as in the 

megabase-sized, late-replicating compartments (Figure 3.4B). I reasoned that this is 

because the early-and-late replication division is a comparative measurement on the 

genome-wide level, and cannot be used to determine where exactly and how differently 

DNA replication is initiated and terminated along the chromosome arms. This is also 

consistent with the notion that replication origins and termini are among the most cell 

type-specific genomic properties in the human genome (Rhind and Gilbert 2013; 

Haradhvala et al. 2016), despite that the replication-timing programme is intrinsic and 

conserved across different type of cells as I observed above (Figure 3.4D). Therefore, to 

fully understand the dynamics of genome replication, I proposed to further fine map the 

replication-domain landscape as described in detail in Chapter 4. 

3.4 Discussion 

Combining Chapter 2 and 3, I presented a novel in silico framework to assess the 

temporal dynamics of the replication timing programme directly from primary tumour 

samples rather than from cancer cell lines. Through the analysis of accurately replicated 

DNA sequences of the primary cancer genomes, I showed that the cellular plasticity of 

tumour replication timing is topologically preserved in closely related normal tissues, as 

well as in lineage-specific cancer cell lines. 

My complementary approaches, i.e. looking at ‘the other side of the same coin’, 

highlight that the majority of primary cancer genomes are accurately replicated during 

cancer cell proliferation thus provides a snapshot in time of the replication programme. 

Based on my in silico sorting predictions between primary tumours, their overall 

sequencing read depth patterns can also be directly used to infer the proportion of S 

phase cells within a cell population. However, my results suggest that it is the G1 phase 
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reads in a cell population that correlate more strongly, but negatively with the 

replication timing profiles (Figure 2.3A), thus challenging the direct use of S phase 

reads as de facto timing profiles (Koren et al. 2014; Marchal et al. 2018), and further 

emphasising the indispensible role of G1 phase reads when profiling DNA replication.  

Upon adapting the canonical S/G1 read depth ratio method, my direct replication 

profiling approach allows one to average out the individual- or sequence-specific 

replication timing in a cell population (Ryba et al. 2012; Koren et al. 2014; Sasaki et al. 

2017), as well as an unknown background signal, both of which have not been properly 

addressed in the alternative profiling method, as noted earlier. Together, the replication 

timing programme recapitulated by my novel in silico framework is not only 

intrinsically conserved across different normal and cancer genomes (Figure 3.4D), but is 

also topologically preserved in distinct cancer types, e.g. small cell lung cancers and 

neuroblastomas (Figure 3.2A and 3.3C). 

My findings also highlight that why we must be cautious to use a single one-size-fits-all 

reference timing profile in studying multiple cancer types (Koren et al. 2014; Polak et 

al. 2015; Li et al. 2019). However, my direct profiling approach allows one to assess the 

cell type-specific tumour replication timing programme directly from primary cancer 

genomes without the need for in vitro sorting procedures, and therefore opens up 

opportunities for the increasing numbers of whole-genome sequencing data published 

by the broader cancer genomics community. 
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Chapter 4 

The spatial landscapes of replication 
initiation and termination in primary 
cancer whole genomes 

4.1 Introduction 

Another major challenge in our understanding of human DNA replication is the 

heterogeneity of the timing programme is two-fold; that is, not only the replication 

origins are different between cell types, but even cells of the same type use different 

origins to initiate replication in each cell cycle (Hawkins et al. 2013; Takahashi et al. 

2019; Bartholdy et al. 2015). Upon stochastic origin firings, replication forks progress 

bi-directionally away from the initiation sites during the synthesis phase of the cell 

cycle (Ticau et al. 2015; Aria and Yeeles 2019). Therefore, the nature of DNA 

replication is stochastic but symmetrical. Most recently, by comparing the difference 

between the proportions of rightward- and leftward-moving forks, directional 

sequencing of Okazaki fragments (OK-seq) has been developed to map the replication 

fork directionality (RFD) domains along the chromosomes (Smith and Whitehouse 

2012; McGuffee, Smith, and Whitehouse 2013; Petryk et al. 2016). However, RFD 

domains mapped by the OK-seq method do not always overlap with the RT profiled by 

the WGS data (Pope et al. 2014; Petryk et al. 2016; Tubbs et al. 2018). A plausible 

explanation for the discrepancy between these two in vitro methods is that they were 
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independently measuring on different replication events from different cell populations 

at different times. This is in line with the aforementioned replication heterogeneities. To 

date, methods for simultaneous reconstruction of replication profiling and RFD 

mappings from the same cell population at the same time have not been previously 

reported. 

More broadly, although timing profile itself can already be used to infer RFD domains 

(Audit et al. 2013; Zhao, Sasaki, and Gilbert 2020), these methods rely solely on one 

fixed timing profile and therefore could not fully reflect the stochastic nature of the 

timing programme. Finally, it is worth noting that OK-seq mappings only employed 

nascent sequences from the lagging strands (Smith and Whitehouse 2012); whereas 

replication profiling methods comprised complete sequences from both strands. 

Therefore, methods for reconstruction of RFD domains using sequences from both the 

leading and lagging strands have also not been previously reported. 

Here, given that each timing profile represents a possible combination of replication 

origins and termini in a cell population, I envision that I could mathematically model 

every possible origin and terminus usage in the population using bootstrap resampling, 

followed by reconstruction of resampled timing profiles multiple times. Subsequently, 

by adapting the principle of OK-seq and applying it to the resampled profiles, a novel 

bootstrap-based RFD mapping methodology could then be introduced.  

4.2 Material and methods 

4.2.1 Defining the direction of replication fork movement 

Replication timing profile can be used to determine the direction of replication fork 

movement (Audit et al. 2013; Hawkins et al. 2013). Due to the bi-directional replication 

(Ticau et al. 2015; Aria and Yeeles 2019), rightward- and leftward-moving forks appear 

to be descending and ascending slopes along the timing profile, respectively (Figure 

4.1A, top). It is worth noting that the definition of rightward and leftward forks here is 
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based on the leading strand forks progressing bi-directionally away from the initiation 

sites. 

4.2.2 Bootstrap-based replication fork directionality (RFD) 

Non-parametric bootstrap resampling was performed with replacement 1,000 times for 

each genome, followed by reconstruction of 1,000 resampled replication timing profiles 

(Figure 4.1D). For each 1 kb window, the direction of replication fork movement for 

each resampled timing profile were calculated as described above by measuring the 

slopes along the timing profile. Then, in line with the principle of directional 

sequencing of Okazaki fragments (OK-seq) (Petryk et al. 2016), my proposed bootstrap-

based RFD values (Figure 4.1B) were computed as the difference between the 

proportions of resampled rightward- (R) and leftward-moving (L) forks for each 1 kb 

window as: 

RFD = (R – L) / (R + L). 

4.2.3 Mapping timing transition region (TTR) using RFD values 

TTR domains are elongated by uni-directional forks (Figure 4.1A), and would exhibit a 

skewed proportion of resampled forks (orange and skyblue bars in Figure 4.1B). 

Therefore, RFD > 0 indicates rightward-moving TTRs (orange, Figure 4.1C) and, 

likewise, RFD < 0 indicates leftward-moving TTRs (skyblue). Along the RFD plots, flat 

horizontal segments (RFD = 1 or RFD = -1) indicate near-consistent resampling results 

in each 1 kb window (Figure 4.1C, bottom panel). 

A confidence interval |RFD| >= 0.9 was applied to define timing transition region 

(TTR) across the genomes. RFD >= 0.9 (orange, Figure 4.1E) represents predominant 

(>900) rightward-moving forks upon 1,000 resampling per kb window, and vice versa 

for RFD <= -0.9 (skyblue). 

 



	34	

4.2.4 Mapping constant timing region (CTR) using RFD values 

CTR domains, including initiation and termination zones, are flanked by bi-directional 

forks (IZs and TZs; Figure 4.1A), and would exhibit a random proportion of near 

500:500 resampled rightward and leftward forks in each 1 kb window (RFD = 0 in 

Figure 4.1B). 

A confidence interval |RFD| < 0.9 was accordingly applied to define constant timing 

region (CTR) across the genomes (white bars in Figure 4.1D). Along the RFD plots, the 

slope of each 1 kb window was estimated within a 20-kb sliding window (stepped by 1 

kb) using the rollapply function from the zoo package in R (Reijns et al. 2015). It is 

worth noting that the slope of RFD profile described here (Figure 4.1C, bottom panel) is 

a different measurement compared to the slope of timing profile mentioned earlier 

(Figure 4.1C, top panel). 

After applying a 20-kb sliding window, only around 0.2%~0.3% RFD domains were 

undefined across the autosomes in the respective genomes (green in Figure 4.3). 

Notably, the choice of 15-kb sliding window used by OK-seq (Petryk et al. 2016; Tubbs 

et al. 2018) resulted in around 0.2~0.6% undefined RFD domains across the autosomes. 

Therefore, the difference between the two is marginal (green in Figure A.8). 

4.3 Results 

4.3.1 A novel bootstrap-based replication fork directionality (RFD) 

To infer the direction of replication fork movement, I leveraged the stochastic but 

symmetrical nature of bi-directional replication (Figure 4.1A, top schematic) with a 

mathematical model. Given that each RT profile represents a possible combination of 

replication origins and termini from a tumour population, I envisioned that I could 

therefore model every possible origin and terminus usage in a tumour population 

through bootstrap resampling (Figure 4.1D). To do so, I repeated random sampling with 

replacement 1,000 times in the respective cancer cell populations, followed by  
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Figure 4.1: A novel bootstrap-based replication fork directionality (RFD). (A) 
Schematic depiction of the replication fork movement centring on a replication origin. 
An initiation zone (IZ; red) is flanked by bi-directional rightward (orange) and leftward 
(skyblue) forks, which elongate and stop at two termination zones (TZs; blue) on each 
side. Forks between IZ and TZ also called timing transition regions (TTRs). (B) 
Distribution of the number of resampled rightward forks per kb window after 1,000 
bootstrap resampling. Bootstrap-based RFD = 0 indicates a random proportion 
(500:500) of resampled rightward (orange) and leftward (skyblue) forks. (C) (Top panel) 
RFD plot showing the direction of replication forks is color-coded by RFD values along 
the RT profile for part of chromosome 12. (Bottom panel) Flat horizontal segments 
(RFD = 1 or RFD = -1) indicate near-constant resampling results. (D) (Left) An 
inefficient, broad IZ is surrounded by delocalized origin firings (depicted as bubbles), 
resulting in a tilted jump with a positive slope along the RFD profile. (Right) An 
inefficient, broad TZ is surrounded by delocalized termination events (depicted as 
closed zippers), resulting in a tilted jump with a negative slope. (E) TTR domains (|RFD| 
>= 0.9) account for 80.7% of the SCLC genome. RFD > 0.9 (orange) represents 
predominant (>90%) rightward forks upon 1,000 resampling per kb window, and vice 
versa for the RFD < -0.9 (skyblue). (F) (Top panel) RFD plot showing the replication 
domains are color-coded by RFD values along the RT profile. (Bottom panel) IZ is 
defined as a vertical jump with positive slope (red; as in D, left), and TZ a vertical jumps 
with negative slope along the RFD profile (blue; as in D, right). 
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reconstruction of replication timing profiles for each resampled population. Finally, 

bootstrap-based replication fork directionality (RFD) values were calculated for each 1 

kb window as the difference between the proportions of resampled rightward- (orange) 

and leftward-moving (skyblue) forks (Figure 4.1B; see Methods), in line with the 

principle of directional sequencing of Okazaki fragments (OK-seq) (Smith and 

Whitehouse 2012; McGuffee, Smith, and Whitehouse 2013; Petryk et al. 2016).  

Owing to the stochastic but symmetrical nature of bi-directional replication, constant 

timing regions (CTRs; red and blue dotted lines in Figure 4.1A), which are flanked by 

bi-directional rightward and leftward forks, exhibited a random distribution of near 

500:500 fork directions per kb window across 1,000 resampled profiles (RFD = 0 in 

Figure 4.1B). In contrast, timing transition regions (TTRs; orange and skyblue forks in 

Figure 4.1A), which are elongated by unidirectional forks, exhibited a skewed 

distribution towards 0:1,000 or 1,000:0 fork directions per kb window (Figure 4.1B). 

Therefore, RFD > 0 indicates rightward TTRs (orange bars in Figure 4.1B) and, 

likewise, RFD < 0 indicates leftward TTRs (skyblue). Not surprisingly, I observed that 

flat horizontal segments appeared near |RFD| = 1 along the bootstrap-based RFD plots 

(Figure 4.1C, bottom panel). This indicates near-constant resampling results (i.e. in total 

0 or 1,000 rightward forks per kb window in Figure 4.1B), which is consistent with the 

Okazaki fragment strand bias measured by OK-seq in vitro (Petryk et al. 2016; Chen et 

al. 2019).  

To map TTR domains from the genome, I applied a confidence interval of |RFD| >= 0.9 

in the respective genomes (Figure 4.1E), in line with the OK-seq threshold (Petryk et al. 

2016). I observed that TTR domains dominated 80.7% of the SCLC autosomes (orange 

and skyblue bars in Figure 4.1E). In total, TTR accounted for 87.8%, 80.7%, 76.9% and 

75.5% of the SCLC-NL, SCLC, NBL and CLL autosomal genomes, respectively (black 

line in Figure 4.2B). Conversely, to map replication CTR domains, which comprise of 

initiation and termination zones (IZ and TZ; Figure 4.1A), I applied a confidence 

interval of |RFD| < 0.9 in the respective genomes (white bars in Figure 4.1E). Together, 

not only do I simultaneously perform replication profiling and RFD mappings from the 

same tumour populations, I also establish a novel bootstrap-based approach to 

determine RFD domains using sequences from both the leading and lagging strands. 
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4.3.2 Distribution of termination events coordinates with initiation 

activities in both normal and cancer genomes 

To further fine map replication initiation zones (IZs) from the CTR domains and 

quantify their efficiency (Figure 4.1D, left), I identified the vertical jumps with a 

positive slope along the RFD profiles (red segments in Figure 4.1F, bottom panel; see 

Methods) (Petryk et al. 2016). In total, IZs accounted for 6.1%, 9.5%, 11.6% and 11.9% 

of the SCLC-NL, SCLC, NBL and CLL autosomes, respectively (red line in Figure 

4.2B). Likewise, to fine map replication termination zones (TZs) and quantify their 

efficiency (Figure 4.1D, right), I identified the vertical jumps with a negative slope 

along the RFD profiles (blue segments in Figure 4.1F, bottom panel) (Petryk et al. 

2016). In total, TZ accounted for 6.1%, 9.7%, 11.5% and 12.6% of the SCLC-NL, 

SCLC, NBL and CLL autosomes (blue line in Figure 4.2B). 
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Figure 4.2: (A) RT and RFD profiles for chromosome 2 showing IZ and TZ domains 
appear alternately (red and blue jumps by turns, bottom panel). (B) Genome-wide 
distribution of termination events is closely coordinated with initiation activities in both 
normal and tumour genomes. 
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both normal and cancer genomes (blue and red lines in Figure 4.2B). Furthermore, I 

also found that IZ and TZ domains appeared alternately along the RFD profiles (red and 

blue jumps by turns in Figure 4.1F and 4.2A, bottom panel), which is in line with recent 

reports that termination zones are determined by and located between two activating 

origin firings (Hawkins et al. 2013; Petryk et al. 2016). 

To determine whether this coordinated distribution observed above in our data is 

reproducible, I conducted random downsampling analysis. In this analysis, I equally and 

randomly divided M2 and M1 tumours into two test populations in the respective  
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Figure 4.3: Random downsampling analysis by equally and randomly dividing tumour 
samples into two independent test populations in the respective normal and cancer 
genomes, followed by bootstrap-based RFD mapping separately in the two independent, 
randomlised test population 1 (R1) and 2 (R2). (A and B) Despite the randomised 
replication landscape slightly varied between the two independent test populations, the 
distribution of TZ domains is consistently coordinated with that of IZ domains in each 
test population. (C) The distribution of shared TZs between the two test populations is 
consistently coordinated with shared IZs, in line with our initial observations (as in 
Figure 4.2B). 
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normal and cancer genomes (Figure 4.3). By doing so, I equally distributed every 

possible origin and terminus usage in a population into two independent test sets, and at 

the same time maintained the same composition between M2 and M1 tumours in each 

test population. Finally, I performed bootstrap-based RFD to map the replication 

domains in the respective test populations. Intriguingly, despite the randomised 

replication landscape slightly varied between the two independent test populations 

owing to independent origins and termini usage, I constantly observed this coordinated 

distribution between TZ and IZ domains in both test populations (Figure 4.3A and 

4.3B). Furthermore, by identifying shared domains between the two test populations, 

the genome-wide distribution of shared TZs is consistently coordinated with the shared 

IZs (Figure 4.3C), in line with our initial observations (Figure 4.2B). Altogether, I 

conclude that replication-domain landscape can be directly mapped from the primary 

tumour samples using cancer whole genomes, and the genome-wide distribution of 

termination events is closely coordinated with the initiation activities in both normal 

and cancer genomes. 

4.3.3 Tumour replication-domain landscape is preserved in closely 

related normal tissues and lineage-specific cancer cell lines 

To determine whether reconstructed replication domains were cell type-specific in the 

respective cancer genomes, I further reconstructed RFD domains from 92 SCLC-NL 

normal lung tissues. I identified that SCLC-NL normal genome shared more RFD 

domains with its SCLC cancer counterpart (85.8%) than the NBL (76.9%) and CLL 

(74.5%) cancer genomes (Figure 4.4A-C, right panels). Besides, the number of shared 

domains was 6-fold more than that of specific ones between SCLC-NL and SCLC 

genomes, compared to only 3.3-fold and 2.9-fold changes between SCLC-NL and the 

rest of two cancer genomes (ratios in Figure 4.4A-C, right panels). This suggests that 

the cellular plasticity of replication domains is preserved and shared between SCLC 

tumours and their closely related normal lung tissues, consistent with our earlier 

observations in the replication timing profiles (as in Figure 3.2A). Moreover, the 

number of shared IZ and TZ domains was roughly 2-fold more than that of specific  
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Figure 4.4:  The landscape of SCLC tumour replication domains is topologically 
preserved in closely related SCLC-NL normal lung tissues. (A, B and C) (Right panels) 
Comparisons between RFD domains showing SCLC-NL normal genome shared more 
replication domains with its SCLC cancer counterpart (85.8%) than NBL (76.9%) and 
CLL (53.2.5%) cancer genomes. (Left panels) (A) Shared IZ and TZ domains were 
roughly 2-fold higher than those of specific ones between SCLC-NL and SCLC. (B and 
C) In contrast, shared IZ and TZ domains were around 1.3-fold lower than those of 
specific ones between SCLC-NL and the other two cancer genomes. 
 

ones between SCLC-NL and SCLC (ratios in Figure 4.4A, left panel), compared to 

around 1.3-fold lower between SCLC-NL and the other two cancer genomes (Figure 

4.4B-C), further demonstrating that IZ and TZ domains are among the most cell type-

specific genomics properties in the human genome. 
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Figure 4.5:  The landscape of NBL tumour replication domains is topologically 
preserved in lineage-specific NBL-CL cancer cell lines. (A, B, C and D) (Right panels) 
NBL-CL cancer genome shared more replication domains with its NBL cancer 
counterpart (59.3%) than the SCLC (58.1%) and CLL (53.2.5%) cancer genomes. 
Moreover, the number of shared domains (green bars) is 1.5-fold higher than that of 
specific ones (yellow) between NBL-CL and NBL genomes, compared to 1.4-fold and 
1.3-fold changes between NBL-CL and the other two cancer genomes. Notably, the 
NBL-CL cancer genome shared the fewest replication domains with the LCL reference 
genome (46.9%). 
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right panels). Finally, NBL-CL genome shared the least replication domains with LCL 

reference genome (46.9%; green bar in Figure 4.5D, right panel) despite they were both 

derived from the similar cell culture environment. This is consistently in line with our 

earlier observations of low correlation between NBL-CL and LCL timing profiles 

(Figure 3.3B), when compared with other tumour timing profiles (Figure 3.3C). All 

together, I demonstrate that the plasticity of our bootstrap-based replication-domain 

landscape is preserved and shared between SCLC and its matched normal lung tissues, 

as well as between NBL and its cancer cell lines that originate from the same cell type 

of origin. 

4.4 Discussion 

In this chapter, I extended my in silico framework to assess the spatial landscapes of the 

tumour replication domains. Not only did I introduce a novel bootstrap-based RFD 

method to model the bi-directional replication using sequences from both the leading 

and lagging strands, I also simultaneously reconstructed replication timing and RFD 

domains from the same primary cancer genomes. By adapting the principle of OK-seq, 

my novel bootstrap-based RFD approaches allow one to mathematically model every 

possible origin and terminus usage in a cell population (Figure 4.1D) and, thus, to 

simultaneously infer the direction of replication fork movement (Figure 4.1F). As 

illustrated above, CTR domains, either an initialization zone or a termination region, are 

generally flanked by two bi-directional TTR forks along the RFD profile (Figure 4.1A).  

However, I also observed a minority of CTRs that was flanked by two uni-directional 

TTR forks. For examples, some small but notable peaks around 120 Mb, 135 Mb and 

158 Mb of chromosome 2 from the SCLC RFD profile were found to be flanked by two 

leftward-moving TTR forks (Figure 4.2A, lower panel). Furthermore, these particular 

CTRs are a composition of an initialization zone adjacent to a termination region (as in 

Figure 4.2A). Most recently, a similar pattern has been suggested to be a breakage at the 

TTR regions (Zhao, Sasaki, and Gilbert 2020). Therefore, I presume that these 

particular domains may be prone to replication stress, leading to a random termination 

after the stalling of the replication fork (Hawkins et al. 2013; Petryk et al. 2016). Based 
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on my high-resolution RFD mappings, a putative dormant origin may then be fired 

immediately downstream of the random terminus in order to complete the fork 

progression. 

Unexpectedly, my data suggests that the genome-wide distribution of termination events 

is closely coordinated with the initiation activities in both the normal and cancer 

genomes (Figure 4.2B), which is consistent with the consensus notion reported in yeast 

(Hawkins et al. 2013), but has not been reported in humans using OK-seq (Petryk et al. 

2016; Zhao, Sasaki, and Gilbert 2020). Notably, I consistently reproduced this 

coordinated distribution in two randomly down-sampled test populations, as well as in 

shared domains between the two test populations (Figure 4.3), thus supporting a bona 

fide mapping on replication initiation, progression, and termination by our bootstrap-

based RFD method. 

My results reaffirm that replication origins and termini are among the most cell type-

specific genomic properties in the human genome (Figure 4.4 and 4.5), despite the 

megabase-sized early/late replicating compartments are intrinsic and conserved across 

different type of cells (Figure 3.4D). Together, the cellular plasticity of tumour 

replication domains recapitulated by my novel in silico framework adds a new 

spatiotemporal perspective to the three-dimensional human cancer genome. 
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Chapter 5 

Transcription-replication interference 

5.1 Introduction 

It is well known that highly expressed genes are enriched at early-replicating regions of 

the human genome (Pope et al. 2014; Polak et al. 2015; Haradhvala et al. 2016; 

Marchal, Sima, and Gilbert 2019). Most recently, OK-seq mappings have further 

revealed that origin firing preferentially initiates at the transcription start site (TSS) of 

highly transcribed genes (Petryk et al. 2016; Chen et al. 2019). Therefore, I reasoned 

that I could use this relationship between transcriptional activities and replication-

domain landscape to evaluate whether our proposed bootstrap-based RFD mappings 

also reflected this biological insight. 

5.2 Material and methods 

5.2.1 Datasets 

RNA sequencing (RNA-seq) of primary tumour samples derived from a subset of the 

same cancer patients were used in this analysis, including 70 small cell lung cancer 

(SCLC) (George et al. 2015), 53 neuroblastoma (NBL) (Peifer et al. 2015), and 71 

chronic lymphocytic leukemia (CLL) (Puente et al. 2011). 
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Table 5.1: Transcriptome sequencing data (RNA-seq) 

Published data Source Identifier 

Small cell lung cancer (SCLC) George et al. 2015 EGAS00001000925 

Neuroblastomas (NBL) Peifer et al. 2015 EGAS00001001308 
Chronic lymphocytic leukemia (CLL) Puente et al. 2011 EGAS00000000092 
 

5.2.2 Transcriptome sequencing quantification 

All paired reads were aligned to Ensembl GRCh37.74 cDNA sequences using kallisto 

0.43.1 (Bray et al. 2016). Additional 100 bootstraps per sample were performed to 

correct for sequence bias. Transcript-level abundance was subsequently estimated, 

followed by transcripts per million (TPM) normalisation. Aggregated gene-level TPMs 

were then calculated using sleuth 0.29.0 with default quality-control filters (Pimentel et 

al. 2017). To align each Ensembl gene to a RFD domain, I used the position of the TSS 

to retrieve RFD values from the allocated 1 kb window along the RFD profile in the 

respective cancer genomes. In total, out of 34,908 Ensembl genes, there were 31,612 

genes in the SCLC, 31,694 genes in the NBL, and 30,320 genes in the CLL cancer 

transcriptomes were mappable for a RFD value for further analysis. 

5.2.3 Statistical analysis 

Wilcoxon rank-sum test was used to test for differential analysis. 

5.3 Results 

5.3.1 Transcriptional activity strongly correlates with the landscape of 

replication domains across three cancer types  

In total, genes mapped to the termination zones accounted for 9.5%, 11.7% and 11.8% 

of the respective SCLC, NBL and CLL transcriptomes (blue line in Figure 5.1A), which  
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Figure 5.1:  Transcriptional activity strongly correlates with the replication domains 
across three cancer types. (A) Distribution of genes mapped to the RFD domains in the 
indicated cancer genomes, showing that the proportion of IZ genes (red line) is much 
higher than the proportion of IZ domains (as in 4.2B). (B) Density of genes per Mb plot 
showing human genes are unevenly clustered at initiation zones. (C) Boxplots of 
differential gene expression analyses between three replication domains in the indicated 
cancer transcriptomes, showing IZ genes are more highly expressed than their TZ and 
TTR counterparts (P < 2.27E-15, as in Figure A.9). (D) Boxplots of differential gene 
expression analyses between early and late replicating regions in the indicated replication 
domains, showing early-replicating genes are more highly expressed than their late-
replicating counterparts across IZ, TZ and TTR genes (P < 4.4E-58, as in Figure A.10) 
(Wilcoxon rank-sum test *P < 1E-03, **P < 1E-06, ***P < 1E-09). 
 

is similarly to the proportion of termination zones at the genome level (as in Figure 

4.2B). In contrast, genes mapped to the initiation zones accounted for 13.1%, 15.6% and 

15.9% of the respective transcriptomes (red line in Figure 5.1A), which is much higher 

than the proportion of initiation zones at the genome level (as in Figure 4.2B). This 

indicates that human genes are unevenly and constitutively clustered near replication 
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origins. On average, the density of IZ genes per Mb is roughly 1.4-fold more than that 

of TZ and TTR genes across three cancer types (Figure 5.1B). Subsequently, differential 

gene expression analyses further revealed that IZ genes were ubiquitously and 

significantly (P < 2.27E-15, Wilcoxon rank-sum test), highly expressed than their TZ 

and TTR counterparts in the respective cancer transcriptomes (Figure 5.1C; Figure 

A.9A-B). Therefore, I can confirm that not only human genes are constitutively 

clustered at initiation zones; genes near initiation zones are also highly transcribed. 

To determine whether transcription activities were also associated with earlier 

replication, I further separated early- and late-replicating regions in the respective 

cancer genomes (Figure A.10A) and transcriptomes (Figure A.10B). Indeed, early-

replicating genes were ubiquitously and significantly (P < 2.44E-58, Wilcoxon rank-

sum test), highly expressed than their late-replicating counterparts across IZ, TZ and 

TTR domains in the respective cancer transcriptomes (Figure 5.1D; Figure A10.D-F). 

Having earlier demonstrated that I can simultaneously perform replication profiling and 

RFD mappings from the same cancer cell population, this reaffirms the biological 

insights underlying our reconstructed replication timing landscapes. As expected, 

around two thirds (65.3% and 70.3%) of TZ and TTR genes were constitutively located 

in the early-replicating regions (Table 5.1), in line with the overall average in the human 

genome (Marchal, Sima, and Gilbert 2019). Intriguingly, I identified that up to 82.3% of 

IZ genes were located in the early-replicating regions (Table 5.2). Therefore, I can 

further confirm that DNA replication preferentially initiates at early-replicating IZ 

genes, in line with the recent OK-seq findings (Petryk et al. 2016; Chen et al. 2019). 

 
Table 5.2: Proportion of genes located in early-replicated regions 

RFD (Early) SCLC NBL CLL Average 

IZ 84.1% 82.3% 80.5% 82.3% 

TTR 73.6% 69.7% 67.5% 70.3% 

TZ 67.9% 66.2% 61.7% 65.3% 
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Table 5.3: Proportion of genes shared between three cancer types 

RFD (Shared) Early Late Total 

TZ 15.2% 16.2% 18.4% 

IZ 19.9% 13.3% 20.1% 

TTR 53.1% 63.8% 64.6% 
 

To further determine whether IZ and TZ genes were cell type-specific genomics 

properties in the human genome, I interrogated genes that were shared and 

constitutively conserved between three cancer types in the respective RFD domains. As 

expected, only 20.1% and 18.4% of IZ and TZ genes, compared to 64.6% of the TTR 

genes were shared between three cancers types (Table 5.3). This indicates that there are 

more cell type-specific genes topologically preserved in the initiation and termination 

zones. Most notably, this repeatedly explains why it should be prudent to use a single 

reference timing profile originated from an unrelated cell line (Koren et al. 2012, 2014) 

to study replication timing in multiple cancer types, especially when investigating IZ 

and TZ genes in recent large-scale cancer sequencing projects (Haradhvala et al. 2016; 

Li et al. 2019). Therefore, the differential gene expression analyses between the 

replication initiation and termination domains have not been previously reported in a 

cell type-specific manner in the human cancer genomes (Figure 5.1C and 5.1D). 

Collectively, I conclude that my tumour replication-domain landscape is strongly 

correlated with the transcriptional activities, and this correlation is robust and 

reproducible across different cancer genomes and transcriptomes from independent 

studies, thus providing strong support for my bootstrap-based RFD mappings on 

replication initiation, fork elongation, and termination as bona fide. 

5.4 Discussion 

In this chapter, I show that the landscape of tumour replication domains is strongly 

coupled with the transcriptional activities in the respective cancer types. My data 

confirms that human genes are not only unevenly clustered near IZ domains (Figure 

5.1A), but IZ genes are also more highly transcribed (Figure 5.1C). In addition, my data 
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further suggests that more IZ genes are located in the early-replicating regions, 

compared to their TZ and TTR counterparts (Table 5.2), reaffirming that origin firing 

preferentially initiates at the highly transcribed genes (Petryk et al. 2016; Chen et al. 

2019). Furthermore, our data show that fewer IZ and TZ genes were shared between the 

three cancer types (Table 5.3), indicating that human genes are topologically preserved 

in the initiation and termination zones in a cell type-specific manner. 

This again highlights that why we must be cautious to use a single reference timing 

profile to investigate genes near the IZ and TZ regions (Haradhvala et al. 2016). I now 

show that my tumour replication domains are significantly coupled with the 

transcriptional activities across three different cancer types, thus providing strong 

support for our bootstrap-based RFD mappings on where exactly, and how differently, 

DNA replication is initiated and terminated across human genomes (Figure 5.1A). 

Therefore, I now report for the first time where exactly transcriptional activities occur 

near the replication initiation and termination domains, and how differently this occurs 

in a cell type-specific manner across the three human cancer genomes and 

transcriptomes (Figure 5.1C and 5.1D). This could provide new insights into the 

identification of potential cancer target genes that is topologically preserved near the 

replication origins and termini of specific cancer types (Haradhvala et al. 2016; Chen et 

al. 2019; Marchal, Sima, and Gilbert 2019). 
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Chapter 6 

Future perspectives 

During the S phase of the cell cycle, DNA sequences are replicated in a temporal and 

spatial order known as the DNA replication timing programme. DNA replication timing 

implicates in the transcriptional and mutational landscape of the cancer genome, 

however, where exactly, and how differently, DNA replication is initiated and 

terminated across different cellular types remains poorly understood in the human 

genome. Understanding the cell type specificity of replication timing in cancers is 

essentially important to identify the underlying cellular mechanisms that give rise to 

cancer and help cancer cells survive. Although sequencing data from cell lines can 

reflect the replication programme in time, in space, and in disease, appropriate cancer 

cell lines for the cells of origin of specific primary cancers are limited. This has 

hampered the possibility to investigate the most cell type-specific genomic properties; 

that is, replication initiation and termination domains of the cancer genome. 

DNA sequences that underwent somatic alterations in primary cancers have been 

comprehensively studied in recent large-scale cancer sequencing projects. However, the 

rest of DNA sequences that accurately replicated in the same primary cancer genomes 

have not been widely explored, and almost nothing known about their roles in 

replication timing. 

In this study, I present a novel in silico framework to assess both the temporal dynamics 

and the spatial landscape of the replication timing programme directly from primary 

tumour samples rather than from cancer cell lines. I show that the cellular plasticity of 

tumour replication timing is topologically preserved in closely related normal tissues, as 
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well as in lineage-specific cancer cell lines. Unexpectedly, I find that the genome-wide 

distribution of termination events is closely coordinated with the initiation activities in 

both the normal and cancer genomes. Importantly, I demonstrate that the landscape of 

tumour replication domains is significantly coupled with the transcriptional activities in 

the respective cancer types. 

In Chapter 2, my results highlight that the majority of primary cancer genomes are 

accurately replicated during cancer cell proliferation, thus provide a snapshot in time 

and space of the replication programme. Based on my in silico sorting predictions of 

primary tumours, their overall sequencing read depth patterns can also be directly used 

to infer S phase cell fraction in a cell population. However, my data suggest that it is the 

G1 phase reads in a cell population correlate more strongly, but negatively with the 

replication timing profiles (Section 2.3.1), thus challenging the direct use of S phase 

reads as de facto timing profiles (Koren et al. 2014; Marchal et al. 2018), and further 

emphasizing the indispensible role of G1 phase reads when profiling DNA replication. 

Upon adapting the canonical S/G1 read depth ratio method in Chapter 3, my direct 

replication profiling approach allows one to average out the individual- or sequence-

specific replication timing in a cell population (Ryba et al. 2012; Koren et al. 2014; 

Sasaki et al. 2017), as well as an unknown background signal, both of which have not 

been properly addressed in the alternative profiling method, as noted earlier. Together, 

the replication timing programme recapitulated by my direct profiling approach is not 

only intrinsically conserved across different normal and cancer genomes (Section 3.3.3), 

but is also topologically preserved in distinct cancer types, e.g. small cell lung cancers 

and neuroblastomas (Section 3.3.2). 

Moving on to Chapter 4, my results also highlight that replication termini are 

determined by, and located between two activating origin firings in the human genome. 

Previous analyses of nascent Okazaki fragments (OK-seq) from the lagging strands may 

lead to seemingly over-represented termination events compared to the initiation 

activities (Petryk et al. 2016). However, my novel bootstrap-based RFD mapping is 

advantageous, since it allows one to mathematically model the bi-directional replication 

using sequences from both the leading and lagging strands. Unexpectedly, my data 

suggest that the genome-wide distribution of termination events is closely coordinated 
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with the initiation activities in both the normal and cancer genomes (Section 4.3.2), 

which is consistent with the consensus notion reported in yeast (Hawkins et al. 2013), 

but has not been previously reported in humans using only nascent lagging strands by 

the directional sequencing of Okazaki fragments (OK-seq) in vitro (Petryk et al. 2016; 

Zhao, Sasaki, and Gilbert 2020). Notably, I consistently reproduced this coordinated 

distribution in two randomly down-sampled test populations, as well as in shared 

domains between the two test populations (Section 4.3.2), thus supporting a bona fide 

mapping on replication initiation, progression, and termination by our bootstrap-based 

RFD method. 

Finally, my findings highlight that replication origins and termini are among the most 

cell type-specific genomic properties in the human genome. Furthermore, my data show 

that fewer IZ and TZ genes were shared between the three cancer types (Table 5.2), 

indicating that human genes are topologically preserved in the initiation and termination 

zones in a cell type-specific manner. This again highlights that why we must be cautious 

to use a single one-size-fits-all reference timing profile to study multiple cancer types 

(Koren et al. 2014; Polak et al. 2015; Li et al. 2019), especially when investigating IZ 

and TZ genes (Haradhvala et al. 2016). Importantly, I now report for the first time 

where exactly transcriptional activities occur near the replication initiation and 

termination domains, and how differently this occurs in a cell type-specific manner 

across the three human cancer genomes and transcriptomes (Figure 5.1C and 5.1D). 

All together, my novel in silico framework allows one to assess the tumour replication 

timing programme directly from primary cancer genomes without the need for in vitro 

sorting procedures, and therefore opens up opportunities for the increasing numbers of 

whole-genome sequencing studies published by the broader cancer genomics 

community. The cellular plasticity of the tumour replication programme recapitulated 

by my novel in silico framework adds a new spatiotemporal perspective to the three-

dimensional human cancer genome, thus could provide new insights into the 

identification of potential cancer target genes that is topologically preserved near the 

replication origins and termini of specific cancer types (Haradhvala et al. 2016; Chen et 

al. 2019; Marchal, Sima, and Gilbert 2019). 
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6.1 Code availability 

R scripts purpose-written for this project are available in the public domain at 

https://github.com/tsunpo/R under the GNU General Public License v3.0. Further 

details on the computational and statistical approaches can be found in code comments. 

6.2 Data availability 

Tumour replication timing (RT) profiles and RFD domain mppings for each 

chromosome in the respective cancer types are available at Mendeley Data 

https://data.mendeley.com/datasets/cj3gt6fz7y/draft?a=7b2e4996-2269-4846-91f5-

1750eb3d5f6a
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Appendix A 

Supplementary Figures 
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Figure A.1: A positive correlation trend between S phase read depth pattern and the 
reference timing profile across 22 human autosomes. Scatterplots demonstrating 
relationship between smoothed S phase read depth (y-axis) and smoothed replication 
timing (RT) profile (log2 S/G1 ratio; x-axis) across seven, non-synchronized 
lymphoblastoid cell lines (LCLs; with one repetition) from Koren et al. 2012 (rho = 
Spearman's rank correlation coefficient; solid regression line = Linear regression) 
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Figure A.2: A negative correlation trend between G1 phase read depth pattern and the 
reference timing profile across 22 human autosomes. Scatterplots demonstrating 
relationship between smoothed G1-phase read depth (y-axis) and smoothed RT profile 
(log2 S/G1 ratio; x-axis) across seven, non-synchronized LCLs from Koren et al. 2012 
(rho = Spearman's rank correlation coefficient; solid regression line = Linear regression) 
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Figure A.3: Direct profiling of tumour replication timing from 101 SCLC tumour 
samples using primary cancer whole genomes. (A and B) (A) SCLC tumour timing 
profile for chromosome 2 as inferred between Q4 (the forth quartile) and Q1 (the first 
quartile) tumour samples (as in Figure 2.4C). (B) Correlations between SCLC subgroup 
reads and the LCL reference timing profile across 22 autosomes. (C and D) (C) SCLC 
tumour timing profile for chromosome 2 as inferred between M2 (the second median; 
Q4+Q3) and M1 (the first median; Q2+Q1) tumour samples. (D) Correlation analyses as 
in (B) 
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A 
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C 

 

D 

 
 
Figure A.4: Direct profiling of tumour replication timing from 96 CLL tumour cells 
using primary cancer whole genomes. (A and B) (A) CLL tumour timing profile for 
chromosome 2 as inferred between Q4 (the forth quartile) and Q1 (the first quartile) 
tumour cells (as in Figure 2.4C). (B) Correlations between CLL subgroup reads and the 
LCL reference timing profile across 22 autosomes. (C and D) (C) CLL tumour timing 
profile for chromosome 2 as inferred between M2 (the second median; Q4+Q3) and M1 
(the first median; Q2+Q1) tumour cells. (D) Correlation analyses as in (B) 
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Figure 2.4A 

 

A 

 

 

 

 

 
B 

 

C 

 

 

 

 

 
 
Figure A.5: In silico sorting of matched normal samples using whole-genome sequences. 
(A) Correlations between read depth patterns and the reference RT profile across 22 
autosomes in three matched normal samples, consistent with the adversarial correlation 
trend in the LCL reference genome (as in Figure 2.4A). SCLC-NL: adjacent non-
neoplastic lung tissues derived from the same 92 SCLC patients; NBL-WB: whole blood 
samples from the same 56 NBL patients; CLL-WB: whole blood samples from the same 
96 CLL patients. (B and C) (B) Boxplot showing proposed in silico sorting predictions 
across the three matched normals. (C) Unsupervised principal component analysis (PCA) 
on normal samples’ overall read depth patterns, showing the direction of the first 
principal component (PC1; x-axis) is generally in parallel to the distribution of quartile 
subgroups in the SCLC-NL normal lung tissues. However, matched whole bloods from 
both 56 NBL-WB and 96 CLL-WB samples were shown unpredictable in our in silico 
sorting procedure, and were therefore precluded from further analyses. This is because 
peripheral blood cells are well known to contain multiple cell types (Tsaprouni et al. 
2014), and generally leave the cell cycle upon differentiation (Koren et al. 2014). 
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Figure A.6: Direct profiling of normal replication timing from 92 SCLC-NL matched 
normal samples using normal whole genomes. (A and B) (A) SCLC-NL normal timing 
profile for chromosome 2 as inferred between Q4 (the forth quartile) and Q1 (the first 
quartile) tumour samples (as in Figure 2.4C). (B) Correlations between SCLC-NL 
subgroup reads and the LCL reference timing profile across 22 autosomes. (C and D) (C) 
SCLC-NL normal timing profile for chromosome 2 as inferred between M2 (the second 
median; Q4+Q3) and M1 (the first median; Q2+Q1) normal samples. (D) Correlation 
analyses as in (B) 
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Figure A.7:  Universal early-and-late replication division identified across different 
normal and cancer genomes, related to Figure 3.3D. Replication timing skew (RTS) 
values derived from (A and B) SCLC-NL normal genome, (C and D) NBL, and (E and 
F) CLL cancer genomes were significantly correlated with those from the LCL reference 
genome. It is worth noting that, the RTS values of chromosome 2 in SCLC, NBL and 
CLL (0, -0.05, -0.15) also reflected our in silico sorting predictions as described earlier, 
and further suggested that this early-to-late ratio is correlated with the proportions of S 
phase cell in a cell population. 
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Figure A.8:  Only around 0.02% of the genome is unmappable across the autosomes, 
related to Figure 6B 
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Figure A.9:  Differential gene expression between three replication domains, related to 
Figure 5.1C. (A and B) Pairwise differential gene expression analyses between 
replication domains revealed that IZ genes are ubiquitously and significantly, highly 
expressed than TZ and TTR genes. (A and C) TZ genes ubiquitously have the lowest 
expression level in the respective transcriptomes, when compared to the IZ and TTR 
genes (Wilcoxon rank-sum test *P < 1E-03, **P < 1E-06, ***P < 1E-9). 
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Figure A.10:  Differential gene expression between early and late replicating regions, 
related to Figure 5.1D. (A and B) Distribution of early- and late-replicating regions in 
the respective (A) cancer genomes and (B) transcriptomes. (C) Intriguingly, we 
identified that the density of genes at late-replicating regions exhibited no difference 
across three RFD domains (dashed lines), but showed stark difference in IZ genes at 
early-replicating regions (solid lines). (D, E and F) Pairwise differential gene expression 
analyses between early- and late-replication regions in the respective RFD domains 
(Wilcoxon rank-sum test *P < 1E-03, **P < 1E-06, ***P < 1E-9). 
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List of abbreviations 

CLL chronic lymphocytic leukemia 
CTR constant timing region 

G1 phase gap 1 phase 

IZ initiation zone 
kb kilobase 

LCL lymphoblastoid cell lines 

M2 second median 

M1 first median 
Mb megabase 

NBL neuroblastomas 

OK-seq Okazaki fragment sequencing 
PCA principle component analysis 

Q4 forth quartile 

Q1 first quartile 
RPKM reads per kilobase, per million 

RT replication timing 

RTS replication timing skew 

RFD replication fork directionality 
SCLC small cell lung cancer 

SNR signal-to-noise ratio 

S phase synthesis phase 
TPM transcripts per million 

TTR timing transition region 

TZ termination zone 
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