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Abstract

For the approximate solution of partial di�erential equations (PDEs), which model many
physical processes in nature, often numerical algorithms are used. Usually, the numer-
ical solution relies on a discretization of the considered PDE, e.g., by �nite elements,
and leads to large systems of equations which have to be solved. Domain decomposition
methods are robust and parallel scalable, preconditioned iterative algorithms for the solu-
tion of these large linear systems arising in the discretization of elliptic partial di�erential
equations by �nite elements. Domain decomposition methods rely on the subdivision of
the computational domain into a number of smaller nonoverlapping or overlapping sub-
domains for which the local solutions can be computed completely in parallel on di�erent
cores of a parallel computer. In two-level domain decomposition methods, an additional
coarse problem is solved in each iteration of the iterative solution process, to ensure a
global transport of information between the di�erent subdomains.
The FETI-DP and BDDC methods are highly scalable nonoverlapping domain decom-

position methods which obtain their scalability and robustness from the de�nition of
an appropriate coarse space. However, in a parallel implementation, the exact solution
of the corresponding coarse problem can eventually become a bottleneck, given a large
size of the coarse space which is often the case for three-dimensional model problems.
Thus, we are interested in e�cient coarse spaces which are preferably small and can be
computed with low computational e�ort. One common approach to design more e�cient
coarse spaces is to replace the exact solution of the coarse problem by an approximate
solution.
On the other hand, classic coarse spaces which exclusively use geometric information

of the domain decomposition, usually experience a deteriorating convergence rate for
second-order elliptic PDEs with coe�cient distributions with a large contrast. In this
case, robust, i.e., adaptive coarse spaces are necessary which enhance the coarse space
with speci�c, problem-dependent constraints usually resulting from the solution of certain
local eigenvalue problems.
In this thesis, we introduce and compare di�erent e�cient and robust FETI-DP and

BDDC coarse spaces for two- and three-dimensional model problems. First, we present
three approximate, i.e., e�cient BDDC coarse spaces which are implemented in the same
parallel software framework. Furthermore, we introduce a heuristic coarse space for both
FETI-DP and BDDC which can be interpreted as a generalization of classic coarse spaces
as well as a low-dimensional approximation of a speci�c adaptive coarse space. We will
observe that this heuristic coarse space shows robust results for di�erent real-world prob-
lems. Finally, we introduce a hybrid approach which exclusively implements adaptive
constraints on certain equivalence classes of the domain decomposition which are classi-
�ed as critical by a neural network in a preprocessing step. We show numerical results for
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both, two- and three-dimensional test problems. We can observe very promising results
where a large number of the eigenvalue problems can be avoided to be computed while
at the same time obtaining a robust convergence behavior for highly complex coe�cient
distributions.
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Zusammenfassung

Für die approximative Lösung von partiellen Di�erentialgleichungen (PDGLen), welche
viele physikalische Prozesse in der Natur modellieren, werden häu�g numerische Ver-
fahren verwendet. Im Allgemeinen basiert die numerische Lösung auf einer Diskretisierung
der betrachteten PDGL, z.B. mit Hilfe Finiter Elemente, und führt auf groÿe Glei-
chungssysteme, die gelöst werden müssen. Gebietszerlegungsverfahren sind robuste und
parallel skalierbare, vorkonditionierte iterative Algorithmen für die Lösung solcher groÿer
linearer Systeme, die aus der Diskretisierung von elliptischen partiellen Di�erentialglei-
chungen mittels Finiter Elemente entstehen. Gebietszerlegungsverfahren basieren auf
der Idee, ein Gebiet in eine feste Anzahl an kleineren, nicht überlappenden oder über-
lappenden Teilgebieten zu unterteilen, für die die lokalen Lösungen komplett parallel auf
verschiedenen Kernen eines parallelen Computers berechnet werden können. In Zwei-
Level Gebietszerlegungsverfahren wird zusätzlich in jeder Iteration des iterativen Lö-
sungsprozesses auch immer ein globales, grobes Problem gelöst, welches den globalen
Informationsaustausch zwischen den einzelnen Teilgebieten sicherstellt.
Die FETI-DP und BDDC Methoden sind hoch skalierbare, nicht überlappende Ge-

bietszerlegungsverfahren, die ihre Skalierbarkeit und Robustheit durch die De�nition
eines geeigneten Grobgitterraumes erhalten. Allerdings kann die exakte Lösung des zuge-
hörigen groben Problems aufgrund der hohen Dimension des Grobgitterraumes in einer
parallelen Implementierung zu einer Art Flaschenhals werden, was insbesondere bei drei-
dimensionalen Modellproblemen oft der Fall ist. Daher sind wir an e�zienten Grobgitter-
räumen interessiert, die möglichst klein sind und mit geringem Rechenaufwand berechnet
werden können. Ein gebräuchlicher Ansatz, um e�zientere Grobgitterräume zu konstru-
ieren, ist es, die exakte Lösung des groben Problems durch eine approximative Lösung
zu ersetzen.
Andererseits zeigen klassische Grobgitterräume, die lediglich geometrische Informatio-

nen der Gebietszerlegung nutzen, für elliptische PDGL zweiter Ordnung mit Koe�zien-
tenverteilungen mit hohen Kontrasten häu�g eine verschlechterte Konvergenzrate. In
diesem Fall sind robuste, d.h. adaptive Grobgitterräume notwendig, welche den Grobgit-
terraum mit speziellen, problemabhängigen Bedingungen aus der Lösung von bestimmten
lokalen Eigenwertproblemen verbessern.
In dieser Arbeit führen wir verschiedene e�ziente und robuste FETI-DP und BDDC

Grobgitterräume für zwei- und dreidimensionale Modellprobleme ein und vergleichen
diese miteinander. Zuerst präsentieren wir drei approximative, d.h. e�ziente BDDC
Grobgitterräume, die in derselben parallelen Software implementiert sind. Anschlieÿend
führen wir einen heuristischen Grobgitterraum für FETI-DP und BDDC ein, der als eine
Verallgemeinerung von klassischen Grobgitterräumen sowie als eine niedrig-dimensionale
Approximation eines speziellen adaptiven Grobgitterraumes interpretiert werden kann.
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Wir werden sehen, dass dieser heuristische Grobgitterraum für verschiedene realisti-
sche Probleme robuste Ergebnisse liefert. Schlieÿlich werden wir einen hybriden Ansatz
vorstellen, der nur auf ausgewählten Äquivalenzklassen der Gebietszerlegung adaptive
Bedingungen implementiert, die in einem vorherigen Schritt durch ein neuronales Netz
als notwendig klassi�ziert wurden. Wir zeigen numerische Ergebnisse sowohl für zwei- als
auch für dreidimensionale Testprobleme. Wir können sehr vielversprechende Ergebnisse
beobachten, bei denen wir eine groÿe Anzahl an Eigenwertproblemen einsparen können,
während wir gleichzeitig ein robustes Konvergenzverhalten für hochkomplexe Koe�zien-
tenverteilungen erhalten.
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1 Introduction

Many physical processes in natural science, engineering, and medical research can be
modeled by partial di�erential equations, often with prescribed boundary values on the
boundary of the respective computational domain. In particular, in many engineering
applications as, e.g., solid and structural mechanics, elliptic partial di�erential equations
play an important role. Common examples for the application of partial di�erential
equations are, for instance, the deformation of an elastic body under the action of external
and internal forces or the prediction of �ow within porous media; see, e.g., [22, 31, 36,
49,84, 147,156]. For many of these problems, the existence and uniqueness of a solution
can be proven under certain assumptions on the boundary and the underlying domain.
However, it is often impossible to derive a classic solution analytically; see, e.g., [49].
Here, numerical algorithms can be used to compute approximate solutions to a given
problem.
In order to numerically compute an approximate solution of a given partial di�erential

equation (PDE), the respective PDE is usually discretized. A popular technique in this
context is the Finite Element Method (FEM), which discretizes the corresponding vari-
ational problem of the PDE in an appropriate, �nite-dimensional �nite element space;
see, e.g., [22, 49]. This leads to a linear or nonlinear system of equations, whose solu-
tion corresponds to an approximate solution of the considered PDE. The precision of
the computed solution is mainly determined by the mesh resolution. Thus, the precision
is limited by the available computational resources and the condition of the considered
problem. In particular, in FEMs, the accuracy of the numerical solution directly depends
on the dimension of the respective �nite element space. This results in very large systems
of equations which need to be solved and which are, usually, also very ill-conditioned; see,
e.g., [147, 165]. As a consequence, direct solution methods based on sophisticated vari-
ants of the Gaussian elimination algorithm are, especially in three spatial dimensions,
often not feasible for the solution of the respective systems, due to a high demand of
memory and limited computational resources. Even though direct solvers can, in prin-
ciple, also be parallelized for the application on parallel computers, their potential with
regard to parallel scalability is limited to a certain size of the considered system for three-
dimensional problems. On the other hand, iterative methods as, e.g., Krylov subspace
methods, which gradually approximate the solution, usually require a high number of
iterations given the poor condition of the respective systems of equations and the result-
ing slow convergence behavior. Thus, adequate preconditioners are needed to accelerate
the convergence and to obtain a robust iterative solver. In particular, given the increas-
ingly parallel architecture of modern computers and supercomputers, we are interested
in robust preconditioners which perform e�ciently on such parallel environments.
For the iterative solution of linear systems of equations resulting from FEMs, usu-
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1 Introduction

ally, preconditioned Krylov subspace methods as the preconditioned conjugate gradient
(PCG) method [64,81,153] or the generalized minimal residual (GMRES) method [64,154]
are used. Here, one e�cient approach to design an appropriate preconditioner are the
class of domain decomposition methods; cf., e.g., [147, 165]. Domain decomposition
methods (DDMs) are highly scalable, iterative methods which have been shown to be
numerically stable for many practically relevant model problems and which are designed
for the application on parallel computers. They rely on a divide-and-conquer strat-
egy and decompose the original global problem into a number of smaller subproblems.
Mathematically, this corresponds to a subdivision of the domain into a number of smaller
subdomains, where the local problems can be solved in parallel on di�erent processors.
Depending on the speci�c method, the di�erent local subdomains can be either over-
lapping or nonoverlapping. In order to obtain a continuous solution across the di�erent
subdomains, also communication between the di�erent processors is necessary, i.e., a
global coupling between the di�erent subdomains has to be ensured. Among the his-
torically �rst and best-known domain decomposition methods are the one- or two-level
(overlapping) Schwarz methods; see, e.g., [157,165] and the references therein. One-level
DDMs, where information is only exchanged between neighboring subdomains, result in a
rate of convergence which deteriorates with a growing number of subdomains when used
for the approximate solution of elliptic systems of PDEs; see, e.g., [165]. A remedy is
obtained in two-level DDMs by the setup and the solution of an additional, small global
problem which needs to be solved in each iteration of the iterative solver. In particular,
in two-level DDMs, the additional global problem ensures the fast global transport of
information between the di�erent subdomains as well as the scalability and robustness of
the iterative method. In the context of two-level DDMs, we refer to this global problem
as coarse problem and to the related solution space as coarse space.
In the following, we focus on two speci�c nonoverlapping domain decomposition meth-

ods, i.e., the FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) [50,
51, 116, 165] and the BDDC (Balancing Domain Decomposition by Constraints) [33, 38,
125,128,129] method. FETI-DP and BDDC have been shown to be numerically scalable
for a range of di�erent problems [116,123,124,128,133,142] and have been tested exten-
sively on up to half a million cores of a parallel computer; see, e.g., [3,4,99�102,112,173].
Both methods obtain their parallel potential and scalability from the setup and the so-
lution of an appropriate coarse problem. However, in a parallel implementation, the
exact solution of the coarse problem can also become a bottleneck, i.e., a limiting factor
with respect to the expected time to solution. Generally speaking, we are interested in
a coarse problem, or a related coarse space, respectively, which ful�lls the following two
properties. First, we want to design a coarse space which is robust in the sense that it
results in a good rate of convergence for highly heterogeneous and arbitrary coe�cient
distributions of the considered model problem. In general, the convergence rate of FETI-
DP and BDDC methods is determined by the eigenvalues of the preconditioned system.
For second-order elliptic PDEs, coe�cient discontinuities with a large contrast can lead
to a deterioration of the convergence rate. We will observe that this is usually the case
for classic coarse spaces, which exclusively use geometric information of the domain de-
composition. Second, we aim to design an e�cient coarse space in the sense that it is
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preferably small and computationally cheap. We will see that, to a certain extent, both
preferences can be contradictory and that the design of a coarse space which ful�lls both
desired properties is usually a trade-o� between di�erent strategies.
In this thesis, we present and numerically compare a range of di�erent coarse spaces

for the FETI-DP and BDDC method in two and three spatial dimensions. Let us note
that it has been shown in [125,129] that the FETI-DP and the BDDC method are dual
to each other and share essentially the same spectra. Thus, many theoretical results
are equally valid for both methods. In general, the condition number in FETI-DP and
BDDC strongly depends on the choice of the primal variables, i.e., the coarse space and
the considered PDE. Originally, coarse spaces which exclusively use geometric informa-
tion of the domain decomposition were used. We refer to these coarse spaces as classic
coarse spaces. In their most elementary form, exclusively primal constraints associated
with the vertices at the cross points shared by two or more subdomains of the domain
decomposition are chosen to set up the coarse problem. For scalar elliptic problems
in two spatial dimensions and with constant coe�cients on each subdomain, this re-
sults in a polylogarithmic condition number bound, where the constant is independent
of the coe�cient contrast. For more complex coe�cient functions as well as in three
spatial dimensions, additional primal constraints associated with averages along edges or
faces of the domain decomposition are necessary to retain the robustness of the solver.
In [111], the authors introduced weighted averages along faces between two neighboring
subdomains, which have been numerically shown to be robust also for coe�cient hetero-
geneities not aligned with the domain decomposition interface. However, for completely
arbitrary or highly complex coe�cient distributions, also weighted average constraints
are not su�cient anymore. In particular, this results in a constant within the condition
number estimate which depends on the contrast of the coe�cient function. Thus, the
potential with respect to robustness of classic coarse spaces is clearly limited. Let us note
that coe�cient functions with sharp jumps along and across the domain decomposition
interface can occur, for instance, when modeling composite materials in solid or struc-
tural mechanics, as, e.g., the microstructure of a dual-phase steel. On top of that, classic
coarse spaces can obtain a rather high dimension, given a coarse problem where weighted
averages on all edges and faces of a three-dimensional domain decomposition are imple-
mented. As mentioned above, the exact solution of the respective coarse problem can
become a limiting factor in a parallel implementation with respect to scalability.
One approach to alleviate the latter problem is the usage of approximate coarse spaces

for FETI-DP and BDDC methods. In principle, these methods replace certain compo-
nents of the preconditioner, usually the solution of the coarse problem, by an approximate
solution. During the recent two decades, di�erent approximate variants of the BDDC and
the FETI-DP method became popular and were numerically tested for the solution of
di�erent linear and nonlinear PDEs [3,4,39,41,99,100,102,110,112,126,149,150,167,168].
Especially in the context of BDDC methods, multilevel methods in di�erent variations
have been used; see, e.g., [4, 131,161,167,168]. Here, exact BDDC is applied recursively
to the original coarse problem. This leads to a smaller coarse problem which has to be
solved exactly on the coarsest level and can thus delay the observed bottleneck within
a parallel implementation. In this sense, approximate coarse spaces can be regarded
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as more e�cient compared to the classic approaches, since the solution of the coarse
problem can, in principle, be computed with less computational e�ort. Even though
approximate coarse spaces can signi�cantly increase the parallel potential of the respec-
tive domain decomposition method, as a drawback, they usually also result in a higher
condition number estimate. On top of that, for most approximate coarse spaces, the
convergence can also deteriorate for highly complex coe�cient distributions with sharp
jumps, resulting in a reduced robustness.
As a remedy, adaptive, i.e., problem-dependent coarse spaces have been proposed to

design robust FETI-DP and BDDC methods. Typically, despite using geometric in-
formation, these coarse spaces use speci�c constraints which are computed from certain
eigenvectors of local generalized eigenvalue problems. In [130,159], adaptive coarse spaces
for FETI-DP and BDDC methods in two spatial dimensions were proposed, at this time
without providing a corresponding theoretical bound. In [53, 54], the authors proposed
eigenvalue problems on complete subdomains, which replaced a Poincaré inequality to set
up adaptive coarse spaces for additive Schwarz methods. Later, in [132,161], the authors
implemented the adaptive coarse space presented in [130, 159] in a parallel framework
and tested it with BDDC in three spatial dimensions. In [97], the authors introduced an
adaptive coarse space for FETI-DP and BDDC in two dimensions which also replaced
a Poincaré inequality and an extension theorem. The complete theory for the resulting
coarse space was provided in [107, 148]. In [108, 148], this adaptive coarse space was
compared to those of [130,159], and [37] as well as a variant thereof introduced in [106],
with respect to their robustness and performance for di�erent two-dimensional test prob-
lems. Moreover, in [108, 148], a theoretical condition number estimate for the adaptive
FETI-DP coarse space of [130, 159] was provided for two-dimensional model problems.
In particular, the constant in the respective condition number estimate is independent
of the contrast of the coe�cient function, which ensures a robust convergence behavior.
In [89], an adaptive coarse space for BDDC in two spatial dimensions was introduced.
For three-dimensional problems, it was shown in [92,119], that the coarse space of [130,

159] can result in high condition numbers and iteration counts for highly heterogeneous
coe�cient functions when only adaptive constraints on faces are implemented. Hence,
the authors of [92, 119] proposed to additionally enrich the coarse space by adaptive
constraints computed for edges between neighboring subdomains that do not share a
face. Under this assumption, it is also possible to derive a theoretical condition number
bound which exclusively depends on geometrical constants and which is independent of
the coe�cient contrast; cf. [92, 119]. Thus, the resulting adaptive coarse space is robust
also for arbitrary coe�cient distributions.
For the BDDC method in three spatial dimensions, di�erent authors proposed related

adaptive coarse spaces in [12,29,141]. Furthermore, in [88], an adaptive coarse space has
been considered both for FETI-DP and BDDC in three dimensions.
Let us note that the above enumeration of adaptive coarse spaces is not an exhaustive

list of all existing methods. Especially for the overlapping Schwarz domain decomposition
method, a range of di�erent adaptive approaches exist which have not been mentioned
here, e.g., [55,69,70]. In this thesis, however, we focus on nonoverlapping domain decom-
position methods and, in particular, the adaptive FETI-DP coarse space as introduced
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in [130,132,159].
As mentioned above, most adaptive coarse spaces rely on the solution of local gener-

alized eigenvalue problems to enhance the coarse space with selected eigenvectors. Even
though this ensures the robustness of the iterative solver, the setup and the solution of
the respective eigenvalue problems can become a limiting factor in the expected time
to solution, especially in a parallel implementation. In [92, 93, 108, 119], di�erent strate-
gies to reduce the number of necessary eigenvalue problems based on the residual after
one step of the adaptive FETI-DP or BDDC method have been considered, as well as
heuristic approaches based on the identi�cation of coe�cient jumps on the considered
parts of the interface. In [72, 75], an alternative approach which uses deep learning to
design an e�cient and robust FETI-DP coarse space has been proposed. This approach
uses principles from the newly developing �eld of scienti�c machine learning [7] which
combines concepts from machine learning with numerical algorithms for the approximate
solution of PDEs. The publications [72,75] are based on Chapter 8 of this thesis.
The remainder of this thesis is organized as follows. In the next chapter, we introduce

two di�erent model problems which we use as test problems to numerically compare the
di�erent approximate and adaptive coarse spaces presented in this thesis. Moreover, we
brie�y describe the Galerkin method and comment on the concepts of numerical and
parallel scalability. In Chapter 3, we outline the two nonoverlapping domain decomposi-
tion methods FETI-DP and BDDC. In addition to a short presentation of classic coarse
spaces, we also describe the adaptive FETI-DP coarse space as introduced in [130, 159]
(for two dimensions) and [92,119] (for three dimensions). In Chapter 4, we present com-
mon techniques to implement coarse space enrichments for both FETI-DP and BDDC.
Followingly, in Chapter 5, we introduce and compare three di�erent approximate BDDC
coarse spaces in a common framework. Here, we especially focus on a three-level BDDC
preconditioner, which uses the concept of BDDC recursively and is based on a third
level of the domain decomposition into subregions. In Chapter 6, we present a heuris-
tic coarse space for FETI-DP and BDDC, to which we refer to as frugal coarse space

due to its relatively low computational e�ort. This coarse space can be interpreted as a
low-dimensional approximation of the adaptive coarse space presented in Chapter 3. We
numerically test this frugal coarse space for a range of di�erent model problems, both for
FETI-DP using MATLAB [134] as well as for BDDC using our parallel implementation
based on PETSc [8, 9] and MPI [65, 158]. Chapter 7 provides a short overview of super-
vised machine learning techniques and deep learning. Finally, in Chapter 8, we present a
hybrid approach that enhances the FETI-DP coarse space with adaptive constraints only
on edges or faces, which are classi�ed as critical by a neural network in a preprocessing
step. On all other edges or faces, respectively, we do not enforce additional constraints
and omit the respective eigenvalue problem. In the �rst part of Chapter 8, we describe
the speci�c concept of our proposed method and explain the generation of training and
validation data for the neural network both for two- and three-dimensional problems.
In the second part of Chapter 8, we test the resulting coarse space for di�erent realistic
test problems, using both regular domain decompositions as well as irregular obtained by
METIS [87]. Eventually, we summarize the main observations of this thesis and provide
an outlook on possible and planned future work in Chapter 9.
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2 Model problems and �nite elements

In the present chapter, we introduce some basic concepts and some notation which will be
used throughout this thesis. At �rst, we present two types of partial di�erential equations
(PDEs) which serve as model problems for the numerical experiments discussed in this
thesis. In particular, we will introduce stationary linear di�usion problems in Section 2.1
as well as compressible linear elasticity problems in Section 2.2. Both problems will be
considered for two- and three-dimensional domains Ω ⊂ Rd, d = 2, 3, and in both cases,
we will focus on highly heterogeneous problems with large discontinuities in the material
sti�ness or the di�usion coe�cient, respectively. For more details and a theoretical
description of the model problems, especially in the context of �nite elements, please refer
to, e.g., [22,24,31,147,165]. In Section 2.3, we will brie�y summarize the Galerkin method
for the discretization of the variational formulation of the partial di�erential equations
presented in Sections 2.1 and 2.2. The discretization using the Galerkin method then
leads to a linear system of equations which can - in principle - be solved with a direct or an
iterative method. However, iterative methods are usually less robust than direct methods
which is why often iterative Krylov subspace methods with robust preconditioners are
used. In this context, we will comment on linear system solvers for the resulting linear
system of equations in Section 2.4. In particular, we introduce the concepts of numerical
and parallel scalability, which are highly relevant in the context of domain decomposition
methods.
Throughout this chapter, let Ω ⊂ Rd, d = 2, 3, be a bounded polygonal or polyhedral

domain and let ∂ΩD ⊂ ∂Ω be a closed subset of nonvanishing measure where we impose
Dirichlet boundary conditions. On the remaining part of the boundary ∂ΩN := ∂Ω\∂ΩD,
we impose Neumann boundary conditions.
For the description of the variational formulation of our model problems, we further

de�ne the Sobolev space

H1
0 (Ω, ∂ΩD)k := {v ∈ H1(Ω)k : v = 0 on ∂ΩD}

of weakly di�erentiable functions on Ω. Let us note that we have k = 1 for the scalar
di�usion equation for both d = 2, 3, whereas for the linear elasticity problem, we have
k = d and vector valued functions.

2.1 Stationary di�usion equation

As a �rst model problem for the numerical experiments presented in the remainder of
this thesis, we consider a scalar elliptic boundary value problem which is also known as
stationary di�usion equation. In particular, for a su�ciently smooth coe�cient function

7



2 Model problems and �nite elements

ρ : Ω→ R and appropriate functions f : Ω→ R and g : ∂ΩN → R, we have the boundary
value problem

−∇ · (ρ∇u) = f in Ω

u = 0 on ∂ΩD

ρ∇u · n = g on ∂ΩN

(2.1)

where n denotes the outer unit normal on ∂ΩN .
Let us note that throughout this thesis, we only consider a homogeneous �ow g = 0.

Thus, for a piecewise constant parameter distribution ρ ∈ L∞(Ω) with ρ ≥ ρmin > 0 and
f ∈ L2(Ω), we obtain the weak formulation: Find u ∈ V = H1

0 (Ω, ∂ΩD) such that

a(u, v) = F (v) ∀v ∈ V = H1
0 (Ω, ∂ΩD),

where

a(u, v) :=

∫
Ω
ρ∇u · ∇v dx and F (v) :=

∫
Ω
fv dx. (2.2)

For a detailed investigation of the existence and uniqueness of the solution of this model
problem, based on Lax-Milgram's theorem, we refer to, e.g., [22, 165].

2.2 Compressible linear elasticity

As a second type of model problem, we consider compressible linearized or simply linear

elasticity problems. Here, the domain Ω ⊂ Rd, d = 2, 3, can be interpreted as a body of
elastic material which is deformed under the action of internal and external forces. In
particular, we denote by f : Ω→ Rd a given (internal) body force and by g : ∂ΩN → Rd
a given (external) surface force. Then, the di�erence between the starting or reference
con�guration and the deformed con�guration of the body is denoted as the displacement
and can be expressed by a displacement function u : Ω → Rd. In a linear elasticity
model, the displacement u is the solution of the following boundary value problem

−div(σ(u)) = f in Ω

σ(u) · n = g on ∂ΩN

u = 0 on ∂ΩD,

(2.3)

where n denotes the outer unit normal on ∂ΩN . Here,

σ(u) := λtr(ε(u)) I + 2µε(u)

denotes the stress tensor and λ and µ are the material dependent Lamé constants. Fur-
thermore, in (2.3), the linearized strain tensor ε(v) is de�ned by the symmetric gradient

ε(v) :=
1

2
(∇v +∇vT ) and εij(v) :=

1

2

( ∂vi
∂xj

+
∂vj
∂xi

)
, 1 ≤ i, j ≤ d. (2.4)
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2.3 The Galerkin method and �nite elements

Let us note that the Lamé constants of a material can easily be calculated from Young's
modulus E > 0 and Poisson's ratio ν ∈ (0, 1

2) by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

In this thesis, we will consider only compressible linear elasticity problems which means
that the Poisson ratio ν is bounded away from 1/2. For ν → 1/2, i.e., almost incom-
pressible linear elasticity, the value of λ tends to in�nity and locking e�ects occur when
using a discretization with standard �nite elements, which leads to a slow convergence.
This will not be further discussed in this thesis.
In the following, we assume the material parameters E and ν to be piecewise constant

and bounded on Ω. For f ∈ L2(Ω) and g ∈ L2(∂Ω), we then obtain the variational
formulation of compressible linear elasticity: Find u ∈ V = H1

0 (Ω, ∂ΩD)d such that

a(u, v) = F (v) ∀v ∈ V = H1
0 (Ω, ∂ΩD)d,

where
a(u, v) :=

∫
Ω

2µε(u) : ε(v)dx+

∫
Ω
λdiv(u)div(v)dx

and F (v) :=

∫
Ω
f · vdx+

∫
∂ΩN

g · vds.
(2.5)

Here, we use the notation

ε(u) : ε(v) :=
d∑

i,j=1

εij(u)εij(v)

for the product of the linearized strain tensors.
For more details on the derivation of the variational formulation and theoretical state-

ments regarding the existence and uniqueness of solutions of linear elasticity problems,
see, e.g., [22, 31,165].

2.3 The Galerkin method and �nite elements

As we have seen in Sections 2.1 and 2.2, we can derive a variational formulation for both
the stationary di�usion problem as well as the linear elasticity problem which is of the
general form: Find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V (2.6)

for a given bilinear form a(·, ·), a linear functional F (·), and an appropriate Sobolev space
V .
The main idea of the classic Galerkin approach is now to replace the in�nite dimen-

sional Sobolev space V by a �nite dimensional subspace V h ⊂ V . This can be seen as
a discretization of the in�nite dimensional space V . Common examples for the �nite
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2 Model problems and �nite elements

dimensional subspace V h are, e.g., the space of conforming piecewise linear or quadratic
�nite element (FE) functions. We denote by ϕi, i = 1, . . . , n the basis of V h and note
that n <∞. Then, by replacing v ∈ V by vh ∈ V h in (2.6), we obtain

a(uh, vh) = F (vh) ∀vh ∈ V h. (2.7)

We can then express uh ∈ V h as a linear combination of the basis functions ϕi, i =
1, . . . , n which, using uh =

∑n
i=1 uiϕi, yields

n∑
i=1

uia(ϕi, ϕj) = F (ϕj) ∀j = 1, . . . , n. (2.8)

The discretized variational formulation in (2.8) can equivalently be written as

Au = b, (2.9)

where A = (aij)i,j with aij = a(ϕi, ϕj), u = (ui)i, and b = (bi)i with bi = F (ϕi). Thus,
in order to �nd the discretized solution uh of (2.7) we have to solve the system of linear
equations (2.9) for u.
Let us note that the speci�c choice of the �nite element space V h strongly depends on

the considered model problem. For instance, for the numerical experiments in this thesis,
we use conforming P1 �nite elements for the numerical solution of stationary di�usion
problems, whereas we use conforming P1 or P2 �nite elements for compressible linear
elasticity problems.

2.4 Solvers for systems of linear equations

As we have seen in Section 2.3, the discretization of the variational formulation in (2.6)
using the Galerkin approach and �nite elements leads to a linear system of equations.
The solution of this linear system of equations basically corresponds to an approximate
solution of the considered PDE. The precision of the computed solution using the Finite
Element Method (FEM) is mainly determined, i.e., limited by the available computa-
tional resources and the condition of the considered problem. In principle, the solution
of the linear system of equations (2.9) can be computed either by direct or iterative
methods. However, in FEMs, the accuracy of the numerical solution directly depends
on the dimension of the �nite element space V h. This usually results in very large
systems of equations which need to be solved. Additionally, these systems are usually
very ill-conditioned; see, e.g., [147, 165]. As a consequence, direct solution methods for
the resulting system have a complexity which polynomially depends on the number of
unknowns and thus a high demand of memory. Therefore, especially in three spatial
dimensions, it is often not feasible to solve the respective system with a direct method
and iterative methods are necessary.
For the iterative solution of linear systems of equations resulting from FEMs, usu-

ally, preconditioned Krylov subspace methods as the preconditioned conjugate gradient
(PCG) method [64,81,153] or the generalized minimal residual (GMRES) method [64,154]
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2.4 Solvers for systems of linear equations

are used. For both methods, the convergence of the linear solver applied to elliptic sys-
tems of PDEs strongly depends on the condition number of the considered system. Thus,
to obtain a fast and robust solver, appropriate preconditioners are needed.
As also described in the introduction, an e�cient approach to precondition the obtained

linear system in (2.9) is the application of domain decomposition methods (DDMs).
These methods are based on a divide-and-conquer strategy and use a subdivison of the
domain into a number of smaller subdomains. Thus, DDMs are by construction designed
for a parallel implementation, since the smaller subdomain problems can be solved in par-
allel on di�erent processors. A detailed mathematical description of two speci�c DDMs
will be given in Chapter 3. Even though DDMs are tailored for a parallel execution, also
communication between the di�erent processors is necessary to obtain a solution which
is continuous across the di�erent subdomains. In general, using a one-level DDM for
elliptic systems of PDEs, in which information is only exchanged between neighboring
subdomains, results in a rate of convergence which deteriorates with a growing number
of subdomains; see, e.g., [165]. A remedy is obtained in two-level DDMs by the set-up
and solution of an additional global problem which needs to be solved in each iteration
of the iterative solver. In particular, in two-level DDMs, the additional global problem
ensures the global transport of information between the di�erent subdomains.
The global or coarse problem within DDMs further ensures the scalability and robust-

ness of the iterative method. Generally speaking, the concept of scalability provides a
measure whether a given algorithm performs well on a parallel machine. We distinguish
between two types of scalability, i.e., numerical and parallel scalability. In general, we
say that an algorithm is scalable if the computational e�ort to obain a solution of the
same accuracy is proportional to the problem size. In the context of DDMs, we denote
an algorithm as numerically scalable if its rate of convergence does not deteriorate with a
growing number of subdomains. We further say that a DDM is weakly parallel scalable if
the time to solution remains constant while varying the problem size and the number of
parallel processors proportional to each other. Finally, a DDM is strongly parallel scalable
if a problem with constant size is solved in half the time when doubling the number of
parallel processors. Let us note that, in general, it is harder to achieve strong parallel
scalability of an algorithm than weak parallel scalability. In this thesis, we will consider
two speci�c DDMs, the FETI-DP and the BDDC method which are numerically scalable
and can achieve weak and strong scalability in a parallel implementation; see Chapter 3
for more details and the respective references.
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3 FETI-DP and BDDC � classic and

adaptive coarse spaces

In this chapter, we give an algorithmic description of the FETI-DP (Finite Element Tear-
ing and Interconnecting - Dual Primal) [50, 51, 116, 165] and the BDDC (Balancing Do-
main Decomposition by Constraints) method; see, e.g., [33,38,125,128,129]. Both meth-
ods are nonoverlapping domain decomposition methods [157, 165] and are very closely
related to each other. Thus, we will �rst explain the main idea of nonoverlapping domain
decomposition methods and introduce some basic notation in Section 3.1. In Section 3.2,
we will then give a detailed description of the classic FETI-DP method and present
the corresponding condition number bound using a classic FETI-DP coarse space which
is usually based on the selection of primal vertices and weighted averages along edges
or faces of the domain decomposition. Analogously, we will review the classic BDDC
method and the resulting condition number estimate in Section 3.3. In Section 3.4,
we will give a brief mathematical description of classic weighted average constraints for
three-dimensional problems. However, we will see that the classic condition number
bounds for both FETI-DP and BDDC only guarantee robustness of the iterative solver
under fairly restrictive assumptions on the underlying coe�cient or material distribution,
respectively, of the considered model problem. A remedy can be obtained by comput-
ing adaptive coarse spaces [12,17,29,44,48,53�55,69,70,89,92�94,107,108,130,132,141,
143, 162, 163]. In this thesis, we will focus on a very speci�c adaptive coarse space for
the FETI-DP method, which relies on a local jump operator and is based on the work
in [92�94,107,108,119,130,132,148]. We will give an algorithmic description of this very
speci�c adaptive coarse space in Section 3.5 and again present the corresponding condi-
tion number bound. Finally, in Section 3.6, we will formulate some concluding remarks
with respect to central di�erences between classic and adaptive FETI-DP and BDDC
coarse spaces as well as with respect to the related expected computational e�ort.
Parts of this chapter have already been published in modi�ed or unmodi�ed form

in [72,73,75].

3.1 Nonoverlapping domain decomposition

As already mentioned, both the FETI-DP and the BDDC method are nonoverlapping do-
main decompositon methods. Generally speaking, domain decomposition methods (see,
e.g., [157, 165]) are iterative methods which are used for the parallel solution of linear
systems arising from a �nite element discretization of partial di�erential equations; see
also Section 2.4. They rely on a divide-and-conquer strategy and are based on a geometric
decomposition of the domain into a �nite number of nonoverlapping subdomains, i.e., a
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3 FETI-DP and BDDC � classic and adaptive coarse spaces

�nite number of local problems. For both FETI-DP and BDDC, these local problems are
coupled in a relatively low number of degrees of freedom. To ensure a fast convergence
towards a continuous global solution for the entire domain, a coarse problem or global
problem is solved in each iteration of the iterative solver which ensures a global transport
of information among the subdomains. Additionally, the coarse problem, i.e., the de�ni-
tion of an appropriate coarse space, guarantees the scalability in the number of iterations
of the iterative linear system solver. For completeness, let us mention that also the pre-
viously developed methods FETI (also FETI-1) and Balancing Neumann-Neumann (also
Balancing Domain Decomposition) [21, 46, 52, 121, 127] have been fundamental for the
development of FETI-DP and BDDC.
Let us now describe the preliminaries and notations for our domain decomposition

methods to introduce the FETI-DP and BDDC algorithms. Parts of this chapter have
already been published in modi�ed or unmodi�ed form in [72,73,75].
For a given domain Ω ⊂ Rd, d = 2, 3, we assume a decomposition into N ∈ N nonover-

lapping subdomains Ωi, i = 1, . . . , N , such that Ω =
⋃N
i=1 Ωi. We further assume that

each of the subdomains Ωi is the union of �nite elements with matching �nite element
nodes on the interface

Γ :=

(
N⋃
i=1

∂Ωi

)
\ ∂ΩD.

In our case, each subdomain is the union of shape regular elements of diameter O(h).
The diameter of a subdomain Ωi is denoted by Hi or, generically, by H = maxi(Hi).
Additionally, we denote byWi the local �nite element space associated with a subdomain
Ωi. In case of a two-dimensional domain Ω ⊂ R2, the �nite element nodes on the interface
are either vertex nodes, belonging to the boundary of more than two subdomains, or
edge nodes, belonging to the boundary of exactly two subdomains; see also Fig. 3.1 for
an exemplary domain decomposition in two dimensions. Let us note that vertex nodes
are often also referred to as corners or corner nodes. For the case of a three-dimensional
domain Ω ⊂ R3, edge nodes also belong to the boundary of more than two subdomains,
and the interface further consists of face nodes, belonging to the boundary of exactly
two subdomains; see, e.g., [109, Def. 2.1 and Def. 2.2] and [116, Def. 3.1]. For the
remainder of this thesis, we will denote by Eij an edge and by Fij a face, respectively,
between the subdomains Ωi and Ωj . All �nite element nodes inside a subdomain Ωi

are denoted as interior nodes. For a given domain decomposition, we obtain local �nite
element problems

K(i) u(i) = f (i)

with K(i) : Wi → Wi and f (i) ∈ Wi by restricting the considered di�erential equation
(see Sections 2.1 and 2.2) to Ωi for each subdomain and discretizing its variational for-
mulation in the �nite element space Wi; see also Section 2.3. Let us remark that the
local problems associated with the subdomains can be solved completely in parallel and
independently of each other. However, the matrices K(i) are, in general, not invertible
for subdomains which have no contact to the Dirichlet boundary ∂ΩD. We de�ne the
product spaceW :=

∏N
i=1Wi and denote by Ŵ ⊂W the subspace of functions inW that

are continuous on the interface Γ. For a detailed description of FETI-DP and BDDC
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3.2 Classic FETI-DP

in the following sections, we partition the �nite element variables u(i) ∈Wi into interior
variables u(i)

I , and, on the interface, into dual variables u(i)
∆ and primal variables u(i)

Π . We
denote the respective degrees of freedom by the indizes I,∆, and Π. For the remainder
of this thesis, we always choose (at least) all degrees of freedom belonging to vertices
as primal variables. Thus, the dual variables always belong to edges in two dimensions
and to edges and faces in three dimensions, respectively. Let us note that also other
choices are possible; see, e.g., [116]. Finally, we introduce the space W̃ , consisting of
functions w ∈W that are continuous in the primal variables. We thus have the relation
Ŵ ⊂ W̃ ⊂W .

Ω1,W1 Ω2,W2

Ω3,W3 Ω4,W4

Γ

E13 E24

E12

E34RT

R

Ω, V h

Figure 3.1: Left: Decomposition of a discretized domain Ω ⊂ R2 into four subdomains
Ωi, i = 1, ..., 4. Right: Discretized domain Ω, corresponding �nite element
space V h, interface Γ (marked in red), four edges Eij (marked in blue), and
one vertex (marked in green). The operator RT acts as a �nite element
assembly operator on the interface. Figure in modi�ed form in [104].

3.2 Classic FETI-DP

3.2.1 The FETI-DP preconditioner

As mentioned before, the FETI-DP method was �rst introduced in [50,51]. As a �rst step
in the FETI-DP (and also the BDDC [38,128]) algorithm, we compute the local sti�ness
matricesK(i) and the local right-hand sides f (i) for each subdomain Ωi, i = 1, . . . , N . The
local problems are completely decoupled and, as already mentioned, the matrices K(i)

are, in general, not invertible for subdomains without contact to the Dirichlet boundary
∂ΩD. These subdomains are also called �oating subdomains. As a consequence, the local
solution on �oating subdomains is, in general, not unique and can be di�erent from the
global solution u of the partial di�erential equation, restricted to the respective subdo-
main, i.e., u|Ωi

. In particular, the local sti�ness matrices of �oating subdomains have
a non-trivial null space. For stationary di�usion problems, this non-trivial null space
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Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

Figure 3.2: Decomposition of a square subdomain Ω ⊂ R2 into nine subdomains Ωi, i =
1, . . . , 9. The global assembly in primal vertices is marked with blue circles.
On the remaining interface variables, i.e., the dual variables, continuity is
iteratively enforced with Lagrange multipliers λ, marked in red.

consists of the constant functions whereas for linear elasticity problems, the respective
null space consists of the rigid body modes, i.e., translations and rotations of the entire
subdomain. In both cases, the null space needs to be controlled by the domain decompo-
sition algorithm in order to obtain a continuous global solution. Both the FETI-DP and
the BDDC algorithm deal with this di�culty by sub-assembling the decoupled system in
selected primal variables Π.
For an algorithmic description of the FETI-DP method, let us �rst introduce the

simple restriction operators Ri : V h → Wi, i = 1, ..., N , the block vectors uT :=(
u(1)T , ..., u(N)T

)
and fT :=

(
f (1)T , ..., f (N)T

)
, and the block matricesRT :=

(
RT1 , ..., R

T
N

)
and K = diag

(
K(1), ...,K(N)

)
. We then obtain the fully assembled system

Kg = RTKR (3.1)

and the fully assembled right-hand side

fg = RT f. (3.2)

The block matrix K is not invertible as long as a single subdomain has no contact to the
Dirichlet boundary. Thus, the system

Ku = f

has no unique solution, i.e., an unknown vector u might be discontinuous on the interface;
cf. also the explanations at the beginning of this section. Let us now describe how the
continuity of u ∈W := W1× ...×WN on the interface is enforced using FETI-DP. Here,
we use a presentation of the FETI-DP method which is very similar to the compact
notation in [108] and which is also based on the description in [72,73,75].
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3.2 Classic FETI-DP

We assume the following partitioning of the local sti�ness matrices K(i), the local load
vectors f (i), and the local solutions u(i) using the subdivision of the degrees of freedom
as introduced in Section 3.1 into interior, primal and dual variables:

K(i) =

K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ

 , u(i) =

u
(i)
I

u
(i)
∆

u
(i)
Π

 , and f (i) =

f
(i)
I

f
(i)
∆

f
(i)
Π

 .
It is often convenient to further introduce the union of interior and dual degrees of
freedom as an additional set of degrees of freedom denoted by the index B. This leads
to a more compact notation and we can de�ne the following matrices and vectors

K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K

(i)
ΠB =

[
K

(i)
ΠI K

(i)
Π∆

]
, and f (i)

B =
[
f

(i)T
I f

(i)T
∆

]T
.

We then introduce the block diagonal matrices

KBB = diagNi=1K
(i)
BB,

KII = diagNi=1K
(i)
II ,

K∆∆ = diagNi=1K
(i)
∆∆,

and KΠΠ = diagNi=1K
(i)
ΠΠ.

(3.3)

Analogously, we obtain the block vector uB = [u
(1)T
B , . . . , u

(N)T
B ]T and the block right-

hand side fB =
[
f

(1)T
B , . . . , f

(N)T
B

]T
which can be partitioned accordingly. As discussed

before, the solution of the decoupled block diagonal system is, in general, not unique.
For the FETI-DP algorithm, continuity in the primal variables Π is enforced by a �nite
element assembly process, while continuity in the dual variables ∆ is enforced iteratively
by Lagrangian multipliers λ. To describe the primal assembly process, we introduce the
assembly operators R(i)T

Π , i = 1, . . . , N , which consist of values in {0, 1}. This yields the
primally assembled matrices

K̃ΠΠ =

N∑
i=1

R
(i)T
Π K

(i)
ΠΠR

(i)
Π and K̃ΠB =

[
R

(1)T
Π K

(1)
ΠB, . . . , R

(N)T
Π K

(N)
ΠB

]
, (3.4)

as well as the corresponding right-hand side

f̃ =

[
fTB ,

(∑N
i=1R

(i)T
Π f

(i)
Π

)T]T
.

A graphical representation of a typical FETI-DP decomposition can be found in Fig. 3.2
where the assembly in the primal vertices is exemplarily visualized by the blue circles.
In order to additionally enforce continuity in the dual degrees of freedom, we introduce

a jump operator BB = [B
(1)
B , . . . , B

(N)
B ] with B

(i)
B having zero entries for the interior
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Ωi Ωj

Ωk Ωl

Ωi Ωj

Ωk Ωl

Figure 3.3: Visualization of nonredundant and redundant choice of Lagrange multipliers
for FETI-DP. Example of four subdomains sharing a vertex. Left: Nonredun-
dant choice of Lagrange multipliers, visualized by the green arrows. Right:
Fully redundant choice of Langrange multipliers, visualized by the red arrows
which are implemented in addition to the green arrows.

degrees of freedom and entries out of {−1, 1} for the dual degrees of freedom. The
entries for the dual degrees of freedom are chosen such that BBuB = 0 if and only if uB
is continuous on the interface. In particular, a row in BBuB = 0 enforces equality of two
variables associated with the same physical point but two di�erent subdomains. Thus, a
typical row in BB contains only a single 1 and a single −1. This continuity condition is
enforced by the Lagrange multipliers λ, which act between two degrees of freedom each.
In Fig. 3.2, the Lagrange multipliers are exemplarily indicated by the red lines.
Let us brie�y comment on the observation that the de�nition of the jump matrix B,

i.e., the choice of the Lagrange multipliers λ is not uniquely de�ned. First, the orientation
of the Langrange multipliers is not uniquely de�ned, i.e., the rows of the matrix B can be
multiplied by−1 without changing the continuity constraint nor the solution. Second, the
Langrange multipliers can be chosen either nonredundantly or redundantly. For example,
for a vertex in two dimensions (under the temporary assumption that this vertex is a
dual variable) which is shared by four subdomains, a minimum of three and a maximum
of six Langrange multipliers can be chosen without changing the solution; see Fig. 3.3 for
a visualization of the nonredundant and the fully redundant choice. For a more detailed
description of the possible choices of the Lagrange multipliers also for three dimensions,
we further refer to [119]. In our implementations, we always use the fully redundant
implementation of the Lagrange multipliers.
The FETI-DP master system is then given by KBB K̃T

ΠB BT
B

K̃ΠB K̃ΠΠ O
BB O O

 uB
ũΠ

λ

 =

 fB
f̃Π

0

 . (3.5)

To solve (3.5), the variables uB and ũΠ are eliminated, resulting in a linear system
in the Lagrange multipliers λ. By a block Gaussian elimination, we thus obtain the
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3.2 Classic FETI-DP

(unpreconditioned) standard FETI-DP system

Fλ = d, (3.6)

with

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B and

d = BBK
−1
BBfB +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ

((
N∑
i=1

R
(i)T
Π f

(i)
Π

)
− K̃ΠBK

−1
BBfB

)
.

(3.7)

Here, the Schur complement S̃ΠΠ for the primal variables is de�ned as

S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB. (3.8)

As we can observe from (3.7), the application of F can be split into two additive parts.
Due to its block structure, the �rst part requires only local operations and can be executed
completely in parallel. The second part, however, requires the solution of a coupled coarse
problem in form of the application of S̃−1

ΠΠ. Here, S̃ΠΠ represents the (global) coarse space.
Let us recall that, in general, all matrices including the primal variables Π are partially
assembled in these primal variables and thus global. However, their size strongly depends
on the choice of the primal variables, i.e., the global coarse space. This is especially valid
for the global matrix S̃ΠΠ.
The considered system of equations (3.6) is then solved by a Krylov subspace method,

such as the PCG or GMRES method; see also Section 2.4. Thus, the FETI-DP method
is the iterative solution of the preconditioned system

M−1Fλ = M−1d. (3.9)

In this thesis, we always use the PCG method and the standard Dirichlet preconditioner
M−1
D =: M−1 given by

M−1
D = BB,D [0 I∆]T

(
K∆∆ −K∆IK

−1
II K

T
∆I

)
[0 I∆]BT

B,D = BDS̃B
T
D;

see, e.g., [50, 51]. Here, I∆ is the identity matrix on the dual degrees of freedom. The
matrices BB,D and BD are scaled variants of the jump operators BB and B, respectively;
cf. also the following explanations below. Thus, the Dirichlet preconditioner M−1

D is
basically a weighted sum of local Schur complements

S
(i)
∆∆ = K

(i)
∆∆ −K

(i)
∆I(K

(i)
II )−1K

(i)T
∆I

which can be computed and applied in parallel. Let us remark that also several other
choices for the preconditioner M−1 are possible, such as, e.g., the lumped preconditioner
given by

M−1
L :=

N∑
i=1

B
(i)
∆,DK

(i)
∆,∆B

(i)T
∆,D,
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which only considers the sti�ness matrices on the interface.
Finally, let us comment on the choice of the scaling procedure for the scaled matrices

BB,D and BD and the choice of the primal variables. In our implementations, we will -
unless not explicitly mentioned otherwise - consider the ρ-scaling approach; see, e.g., [111,
119,148,165] for a mathematical description of this approach in two and three dimensions.
In this case, the scaling matrices D(i) : range(B) → range(B), i = 1, . . . , N, depend on
the coe�cient function and are diagonal, and we can write

BD = [D(1)B(1), . . . , D(N)B(N)]. (3.10)

Note that also non-diagonal scaling matrices exist, e.g., resulting from deluxe scaling;
see [13, 42, 43, 108] and the references therein. In this case, the scaling matrices are
obtained from local Schur complements and thus computationally more expensive but
often more robust; see also [119].
Despite the choice of the scaling matrices and proper weights for the preconditioner

induced by the PDE coe�cients, the choice of the primal variables Π fundamentally
determines the convergence properties of the FETI-DP method. As already mentioned,
throughout this thesis, we will always choose all vertices as primal variables. However,
it is well-known in the literature, that, especially in three dimensions, using exclusively
primal vertex constraints is not su�cient to obtain a robust convergence behavior and
further coarse space enhancements are necessary; see also the references in Section 3.2.2.

3.2.2 Condition number bound

In general, the convergence behavior and the condition number estimate for the FETI-
DP method depend strongly on the chosen primal constraints Π and the induced scaling
matrices for the preconditioner of the FETI-DP system. In order to estimate the spectral
condition number κ(M−1

D F ) of the preconditioned FETI-DP system, we have to estimate
the largest eigenvalue λmax(M−1

D F ) and the smallest eigenvalue λmin(M−1
D F ) from below

and above. In particular, it is su�cient to show that the Rayleigh quotient

〈M−1
D Fλ, λ〉F
〈λ, λ〉F

is bounded from below and above to obtain estimates for λmin(M−1
D F ) and λmax(M−1

D F )
by simple algebraic arguments. Here, we de�ne 〈M−1

D Fλ, λ〉F := 〈M−1
D Fλ, Fλ〉. Without

recapitulating all the technical details, let us recall that this condition number estimate
of FETI-DP is strongly connected to an estimate of the operator

PD := BT
DB. (3.11)

Then, for arbitrary λ and w := S̃−1BTλ ∈ W̃ , the following relation is valid:

〈M−1
D Fλ, λ〉F
〈λ, λ〉F

=
〈BDS̃BT

DBS̃
−1BTλ,BS̃−1BTλ〉

〈S̃−1BTλ, S̃−1BTλ〉
S̃

=
〈PDw,PDw〉S̃
〈w,w〉

S̃

=
|PDw|2S̃
|w|2

S̃

. (3.12)
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It can be shown that the lower bound of the Rayleigh quotient in (3.12) is given by one
and thus we are interested in deriving an upper bound of the type

|PDw|S̃ ≤ C|w|S̃ ∀w ∈ W̃ (3.13)

for the operator PD as de�ned in (3.11); see also [115, 117] for a �rst usage of the PD-
operator in this context.
At the end of this section on classic FETI-DP, let us now brie�y recall the condition

number bounds for the FETI-DP method as described in Section 3.2.1 for the stationary
di�usion problem and compressible linear elasticity. Please note that this is not an
exhaustive list of results since more results exists under very speci�c assumptions on the
coe�cient functions and for di�erent model problems.
In two dimensions, the preconditioned FETI-DP method with a standard vertex coarse

space satis�es the polylogarithmic condition number bound

κ(M−1
D F ) ≤ C̃

(
1 + log

(H
h

))2
(3.14)

with the constant C̃ independent ofH, h, and jumps in the PDE coe�cients; see [114,116,
117]. However, this condition number bound does only hold under certain assumptions
on the coe�cient function or the material distribution, e.g., for constant or slowly varying
coe�cients within each subdomain; see, e.g., [133,165].
In three dimensions, the preconditioned FETI-DP method with a standard vertex

coarse space performs less well [50] and the condition number bound (3.14) cannot be
retained; see [117]. Therefore, enforcing additional coarse constraints based on averages
over edges or faces was proposed by several authors; see, e.g., [51, 116, 117]. Then, the
condition number bound in (3.14) also holds in three dimensions for heterogeneous co-
e�cients that are constant within each subdomain or slowly varying coe�cients; see,
e.g., [116, 117]. For a detailed and technical proof of the cited condition number es-
timates based on an upper and a lower bound of the Rayleigh quotient of the pre-
conditioned FETI-DP system and Poincaré inequalities, we refer to, e.g., [114, 133] for
two-dimensional model problems and [116,117] for three dimensions.
To conclude this section, let us note that in [111, Sect. 7], weighted edge averages

for coe�cient jumps not aligned with the interface were studied numerically for the
FETI-DP algorithm. In this thesis, in Chapter 6, we propose a di�erent approach to
enhance the coarse space, using generalized weighted edge or face averages, which is
strongly motivated by the adaptive coarse space introduced in Section 3.5 as well as by
the heuristic approach presented in [111]. As we will observe in Sections 6.4 and 6.5,
these generalized weighted averages are able to retain a robust convergence behavior for
many heterogeneous coe�cient functions. However, for completely arbitrary coe�cient
distributions with high contrasts, usually, adaptively computed, i.e., problem-dependent
coarse spaces are necessary to guarantee a robust convergence behavior. In contrast
to the heuristically motivated approach presented in Chapter 6, a theoretical condition
number bound can be derived for such adaptive FETI-DP and BDDC coarse spaces;
see Section 3.5 where a very speci�c adaptive FETI-DP coarse space is considered.
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3 FETI-DP and BDDC � classic and adaptive coarse spaces

3.3 Classic BDDC

3.3.1 The BDDC preconditioner

As mentioned before, the FETI-DP and the BDDC method are closely related to each
other. Therefore, we can reuse some of the notation introduced in Section 3.2 from the
FETI-DP method for the description of BDDC. The BDDC method has been proposed
and studied by di�erent authors; see [33,38,125,128,129].
For the description of the BDDC algorithm, we use the same sub-partitioning of the

degrees of freedom into the index sets I,Γ,Π and ∆ as already introduced in Section 3.2.
Here, we present the original BDDC formulation for the Schur complement system;
see [38, 128]. Equivalently, it is also possible to formulate the BDDC preconditioner
as a preconditioner for the fully assembled system Kgu = fg; see, e.g., [126]. Please note
that the BDDC method is dual to the FETI-DP method and therefore, the condition
number bounds for both methods are closely related; see [125,129]. In particular, it was
shown in [125, 129] that FETI-DP and BDDC share essentially the same spectra except
for eigenvalues that are equal to zero and one; see also Section 3.3.2.
In contrast to the FETI-DP method, we now use a slightly di�erent ordering of the

variables to describe the BDDC method. In particular, for this section, we introduce the
block diagonal matrices

KΠΠ = diag
(
K

(1)
ΠΠ, ...,K

(N)
ΠΠ

)
,

KΠI = diag
(
K

(1)
ΠI , ...,K

(N)
ΠI

)
,

and KΠ∆ = diag
(
K

(1)
Π∆, ...,K

(N)
Π∆

) (3.15)

as well as the corresponding right-hand sides

fTI :=
(
f

(1)T
I , ..., f

(N)T
I

)
,

fT∆ :=
(
f

(1)T
∆ , ..., f

(N)T
∆

)
,

and fTΠ :=
(
f

(1)T
Π , ..., f

(N)T
Π

)
.

(3.16)

The matrices KII ,KI∆,K∆I , and K∆∆ are de�ned analogously to Section 3.2. Thus,
the global block matrix KBDDC for the BDDC algorithm can be written as

KBDDC =

KII KI∆ KIΠ

K∆I K∆∆ K∆Π

KΠI KΠ∆ KΠΠ

 .
Throughout this section, we will use the subindex 'BDDC ' to distinguish the matrices
in this section from the global matrices used in FETI-DP (see Section 3.2). Please note
that KBDDC is assembled only inside the subdomains and not across the interface. In
fact, KBDDC can be obtained from the block matrix K de�ned in Section 3.2 by row and
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column permutations. The global elimination of the inner variables uI in KBDDC yields
the unassembled Schur complement matrix

SBDDC =

[
S∆∆ S∆Π

SΠ∆ SΠΠ

]
=

[
K∆∆ K∆Π

KΠ∆ KΠΠ

]
−
[
K∆I

KΠI

]
K−1
II

[
KI∆ KIΠ

]
as well as the corresponding right-hand side

gBDDC =

[
g∆

gΠ

]
=

[
f∆ −K∆IK

−1
II fI

fΠ −KΠIK
−1
II fI

]
.

In the BDDC algorithm, we use a dual assembly operator RT∆ =
(
R

(1)T
∆ , ..., R

(N)T
∆

)
instead of the Boolean jump operator from FETI-DP to enforce continuity in the dual
variables. The unpreconditioned BDDC system then corresponds to the global Schur
complement system Sgug = gg with the assembled global Schur complement given by

Sg =

[
RT∆ 0
0 RTΠ

] [
S∆∆ S∆Π

SΠ∆ SΠΠ

] [
R∆ 0
0 RΠ

]
(3.17)

and

gg =

[
RT∆ 0
0 RTΠ

]
gBDDC,

where RTΠ =
(
R

(1)T
Π , ..., R

(N)T
Π

)
; see also Section 3.2.1 for a de�nition of the primal

assembly operators R(i)T
Π , i = 1, . . . , N .

As for the FETI-DP algorithm, we use an appropriate preconditioner to accelerate
the convergence of the iterative solver. Throughout this thesis, we again use the PCG
algorithm and the Dirichlet preconditioner given by

M−1
D,BDDC =

[
RT∆,D 0

0 IΠ

]
S̃−1
BDDC

[
R∆,D 0

0 IΠ

]
. (3.18)

Here, S̃BDDC denotes the primally assembled Schur complement matrix de�ned by

S̃BDDC =

[
I∆ 0
0 RTΠ

] [
S∆∆ S∆Π

SΠ∆ SΠΠ

] [
I∆ 0
0 RΠ

]
and R∆,D is a scaled variant of the dual assembly operator R∆. Generally, the same
scalings as in the FETI-DP algorithm can be used in the BDDC preconditioner. However,
instead of scaling the jump operator associated with the dual degrees of freedom as
in (3.10), here, we scale the assembly operator RT∆ which connects the dual degrees of
freedom along the interface. In particular, for the ρ-scaling, an entry in a row of RT∆
associated with a node x in subdomain Ωj will be scaled by the respective scaling factor
associated with Ωj . This is di�erent to FETI-DP, where the respective entry in B(j) will
be scaled by the respective scaling factor associated with Ωi. For a more detailed and
mathematical description of the ρ-scaling for BDDC and other scaling variants, we refer
to [148] and [119] as well as the references therein.

23



3 FETI-DP and BDDC � classic and adaptive coarse spaces

Since the FETI-DP and the BDDC method are dual and therefore very closely related
to each other, in general, the same consideration for the selection of primal constraints
are valid for BDDC as for FETI-DP. In particular, our aim is again to construct a BDDC
coarse problem which is robust for a wide range of coe�cient problems but, at the same
time, preferably computationally cheap and small. As for the FETI-DP method, also for
BDDC, we will select all vertices as primal variables Π. For more complex model problems
as presented later in this section, the primal coarse space will be further modi�ed by using
an approximate coarse space, cf. Chapter 5, or by using an enhanced coarse space based
on frugal constraints; cf. Chapter 6.

3.3.2 Condition number bound

As mentioned before, it was shown in [129] that the BDDC and the FETI-DP meth-
ods have, except for some eigenvalues equal to zero and one, the same spectra (see
also [25, 125] for an alternative proof). Thus, the condition number estimates given
in Section 3.2.2 for FETI-DP are also valid for the BDDC algorithm. Let us recall
from Section 3.2.2 that the proof for the condition number estimate for FETI-DP relies
on an estimate for the jump operator PD as de�ned in (3.11) as well as on related esti-
mates for the Rayleigh quotient of the preconditioned FETI-DP system. For the BDDC
method, however, a more natural approach is to consider the closely related operator

ED := I − PD. (3.19)

It can be shown that the task of estimating the eigenvalues of the preconditioned BDDC
system M−1

D,BDDCSg can be reduced to the problem of estimating the eigenvalues of ED;
see [63, 115, 125, 129]. Thus, as well as by using the relation in (3.19), the operator PD
is again essential for deriving a condition number bound of the preconditioned BDDC
method.

3.4 Classic weighted average constraints in three dimensions

As we have just observed for FETI-DP and BDDC, in three dimensions, using exclusively
primal vertex constraints is not su�cient to obtain a robust condition number estimate
and additional coarse space enhancements are necessary. In this section, we brie�y
describe classic coarse constraints based on weighted averages along edges and faces of
the domain decomposition as introduced in [111]. To avoid a proliferation of notation,
we will focus on the three-dimensional case. However, the presented ideas can equally be
adapted to two dimensions, where we only consider weighted averages along edges.
For classic coarse spaces in three dimensions, we introduce weighted averages∑

xi∈Xij

r̂j(xi)u(xi)∑
xi∈Xij

r̂j(xi)2
, j = 1, ..., l (3.20)

24



3.5 FETI-DP with an adaptive coarse space based on a local jump operator

for equivalence classes Xij on parts of the interface, e.g., edges Eij or faces Fij , and
points x on Xij . Here, we have l = 1 for the scalar di�usion case and l = 3 or l = 6
in the case of linear elasticity. Let us remark that in the latter case only �ve of the
six constraints might be linearly independent on straight edges; see [111, 116]. For the
stationary di�usion case, we consider the weights de�ned by the coe�cient ρ via

ρ̂(x) = max
y∈ω(x)

ρ(y).

For the case of linear elasticity, the weights are de�ned by the maximum Young modulus,
i.e., we choose

Ê(x) = max
y∈ω(x)

E(y).

We further de�ne pointwise
r̂1(x) = ρ̂(x)

in the scalar case and
r̂j(x) = Ê(x)rj(x), j = 1, ..., 6

in case of linear elasticity, where r1, r2, and r3 are the three translations and r4, r5, and
r6 the three rotations, respectively. More precisely, we have ri := ei, i = 1, 2, 3, where
ei, i = 1, 2, 3, are the three standard unit vectors, and the three linear (approximations
to) rotations

r4 :=
1

H

 x2 − x̂2

−x1 + x̂1

0

 , r5 :=
1

H

−x3 + x̂3

0
x1 − x̂1

 , r6 :=
1

H

 0
x3 − x̂3

−x2 + x̂2

 ,
where x̂ ∈ Ω̂ is the center of the linear rotations; see, e.g., [111, Sect. 2].
Let us note that the weighted average in (3.20) is reduced to the standard average

along edges or faces as introduced in, e.g., [51, 111, 116, 117], in the case of coe�cient
jumps aligned with the interface. On top of that, the weighted average in (3.20) can be
helpful in cases where the discontinuities do not align with the interface [111]. However,
also the robustness of these weighted classic averages is limited; cf. [111]. Finally, let us
remark that in [111], only weighted translations, i.e., r̂k, k = 1, ..., 3, have been used and
thus the coarse space described in this subsection is in fact an extension of the robust
coarse space presented in [111].

3.5 FETI-DP with an adaptive coarse space based on a

local jump operator

As described in the introduction of this thesis as well as in Sections 3.2.2 and 3.3.2,
during the past decades, a relatively wide range of nonadaptive coarse spaces has been
developed for the FETI-DP and the BDDC method for di�erent model problems and
speci�c heterogeneous coe�cient or material distributions [38,51,57,58,109,111,116,117,
125, 146, 165]. However, as we have also seen in Section 3.2.2, for completely arbitrary
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coe�cient distributions, the constant C̃ in the condition number estimate (3.14) usually
depends on the contrast of the coe�cient function and thus the classic methods might not
converge. At the beginning of this section, we will present two simple two-dimensional
examples where the classic FETI-DP coarse space with classic averages along the edges
of the domain decomposition interface shows a poor convergence behavior. For both
examples, we will show comparative results for the frugal coarse space which will be
introduced in Chapter 6 and a speci�c adaptive FETI-DP coarse space [130,132].
Parts of this chapter have already been published in modi�ed or unmodi�ed form

in [73].
Let us consider two small motivating examples of stationary di�usion on the unit

square which is partitioned into N = 4 × 4 regular subdomains. We enforce homoge-
neous Dirichlet boundary conditions on the left side of the unit square. On the remaining
part of the boundary, we impose homogeneous Neumann boundary conditions. For this
model problem, we consider two di�erent heterogeneous coe�cient distributions. As a
�rst example, we consider shifted boxes of a high coe�cient crossing an edge as shown
in Fig. 3.4 (left). As the results in Table 3.1 show, a standard FETI-DP method with a
classic nonadaptive coarse space (middle column), where all vertices and all edge averages
are made primal, experiences a bad convergence behavior, since the condition number
estimate increases in proportion to the coe�cient contrast. For this speci�c example,
a frugal coarse space which uses generalized weighted averages along each edge of the
domain decomposition (right column) is able to retain a robust convergence behavior.
As we can observe from Table 3.1, using the frugal coarse space, we obtain a condition
number estimate which is independent of the coe�cient contrast. Additionally, we ob-
serve satisfactory iteration numbers. In particular, in this case, the performance of the
frugal coarse space is comparable to the adaptive FETI-DP coarse space presented in this
section; see Table 3.1 (left column). A detailed description of frugal coarse spaces for
stationary di�usion and linear elasticity problems will be given in Chapter 6. In a next
step, we extend the example given in Fig. 3.4 (left) to the more complex case in Fig. 3.4
(right), where we have two straight horizontal channels of a high coe�cient crossing
each subdomain. In this case, the frugal coarse space deteriorates in convergence as well;
see Table 3.2 (right column). In particular, we obtain a condition number estimate which
also depends on the contrast of the coe�cient function, even though the iteration number
stays modest. A similar behavior is also observed for the classic FETI-DP coarse space;
see Table 3.2 (middle column).
A remedy for the observed behavior can be obtained by adaptive coarse spaces, which

have been proposed by several authors for both overlapping and nonoverlapping domain
decomposition methods [12,17,29,44,48,53�55,69,70,89,92,93,93,107,108,130,132,141,
143, 162, 163]. These coarse spaces are adapted with respect to the speci�c considered
model problem and are thus problem-dependent and robust for arbitrary heterogeneities.
We can observe from Table 3.2 that the adaptive FETI-DP coarse space shows a robust
rate of convergence also for the heterogeneous example in Fig. 3.4 (right). The basic
idea of most of these adaptive methods is to use additional coarse modes or primal
constraints obtained by solving localized eigenvalue problems on edges, local interfaces,
or subdomains to enhance the coarse space prior to the �rst iteration of the iterative

26



3.5 FETI-DP with an adaptive coarse space based on a local jump operator

Figure 3.4: Two exemplary heterogeneous coe�cient distributions for a stationary di�u-
sion problem on the unit square decomposed into 4× 4 subdomains. In both
cases, dark blue corresponds to the high coe�cient (ρ = 1e6) and light blue
corresponds to the low coe�cient (ρ = 1). Left: Coe�cient distribution with
shifted boxes associated with a high coe�cient. Visualization for H/h = 8.
Right: Coe�cient distribution with two straight channels crossing each sub-
domain associated with a high coe�cient. Visualization for H/h = 10.

solver. Moreover, adaptive coarse spaces are built in a local fashion and exploit the
parallel structure of the underlying domain decomposition. In this thesis, we will focus
on a very speci�c adaptive, i.e., problem-dependent coarse space which has successfully
been applied to FETI-DP and BDDC for various heterogeneous model problems [92,
107,108,119,130,132,148]. In Section 3.5.1, we will provide a motivation for the speci�c
construction of this adaptive coarse space and describe the corresponding local eigenvalue
problems as well the computation of the respective adaptive coarse constraints in more
detail. In Section 3.5.2, we will cite the corresponding condition number estimate which
does not depend on the jump of the discontinuous material parameters.
To conclude this section, let us note that, in general, di�erent approaches to implement

coarse space enrichments for FETI-DP and BDDC exist. Common approaches are a
de�ation or balancing approach [108, 113] and a transformation-of-basis approach [112,
116]. In this thesis, the de�ation and the balancing approach is only applied to the FETI-
DP method since using de�ation for the BDDC method is not equivalent to the BDDC
using a transformation of basis; see [113]. Thus, we use a generalized transformation-of-
basis approach to enhance additional coarse constraints for the BDDC method; see [94].
Details on the implementation for both the balancing approach and the approach using
a transformation of basis will be presented in Chapter 4.

3.5.1 Computing adaptive constraints based on local generalized
eigenvalue problems

In this section, we present a very speci�c adaptive FETI-DP coarse space which is based
on the work in [92,107,108,119,130,132,148]. Let us note that even though this adaptive
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adaptive classic weighted avg. frugal

H/h # c. cond it # c. cond it # c. cond it

stationary di�usion

8 4 3.60 12 24 61 559.3 20 4 3.60 12
16 4 3.95 13 24 99 656.1 24 4 3.96 13
32 4 5.02 15 24 1.1775e05 26 4 5.04 15

Table 3.1: Dimensions of the coarse space (# c.), condition numbers (cond) and itera-
tion numbers (it) for di�erent FETI-DP coarse spaces for a stationary di�usion
problem on the unit square with 4 × 4 subdomains for the coe�cient distri-
bution as in Fig. 3.4 (left). Homogeneous Dirichlet boundary conditions on
the left side of the unit square. The higher coe�cient is 1e6 and the lower
coe�cient is 1. Table already published in [73, Table 1.1].

adaptive classic weighted avg. frugal

H/h # c. cond it # c. cond it # c. cond it

stationary di�usion

10 24 1.04 2 24 9 508.5 12 12 9 508.4 9
20 24 1.15 3 24 9 607.1 12 12 9 606.1 11
33 24 1.25 3 24 9 648.2 13 12 9 648.1 12

Table 3.2: Dimensions of the coarse space, condition numbers and iteration numbers
for di�erent FETI-DP coarse spaces for a stationary di�usion problem on the
unit square with 4×4 subdomains for the coe�cient distribution as in Fig. 3.4
(right). Homogeneous Dirichlet boundary conditions on the left side of the unit
square. The higher coe�cient is 1e6 and the lower coe�cient is 1. See Table 3.1
for the column labeling.

coarse space has also successfully been applied to the BDDC method, here, we will focus
on its presentation for FETI-DP. To motivate this approach, we will recapitulate some
relations between the Rayleigh quotient of the preconditioned FETI-DP system and the
operator PD as introduced in Section 3.2.2.

Parts of this chapter have already been published in modi�ed or unmodi�ed form
in [72,73,75]. Additionally, some passages of the motivating part of this section are also
closely related to the presentation in [119].

In general, in order to guarantee the convergence and robustness of the iterative solver
for the FETI-DP system, it is necessary to obtain an upper bound for the condition
number of the preconditioned FETI-DP system matrix, which is problem- and coarse
space-dependent. As mentioned in Sections 3.3.2 and 3.5.2, we can derive a relation
between the spectral condition number estimate of the FETI-DP method and an estimate
of the PD-operator; cf. especially (3.12) and the related explanations. This yields that we
can reduce the problem of computing an upper bound for the spectral condition number
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Ωi Ωj

Ωk Ωl

EilFik

Fij

Figure 3.5: Exemplary visualization of four subdomains in three spatial dimensions shar-
ing an edge (marked in blue) in a regular partition. The subdomain Ωi shares
a face Fij and Fik (marked in red) with Ωj and Ωk, respectively, but only an
edge Eil with Ωl.

to the problem of �nding a constant C ∈ R such that

|PDw|2S̃
|w|2

S̃

≤ C for all w ∈ W̃ ; (3.21)

see also the references given in Section 3.2.2. Using this relation, a straightforward and
intuitive approach to bound the constant C in (3.21) from above would be to consider
the generalized eigenvalue problem of the form

〈PDv, S̃PDw〉 = µ〈v, S̃w〉 (3.22)

for all v ∈ W̃ = range(S̃). Under the assumption that we have an a priori, i.e., non-
adaptive coarse space, which ensures the invertibility of all local subdomain problems,
the Schur complement S̃ in (3.22) is symmetric positive de�nite and thus 0 ≤ µ ≤ ∞
holds for all eigenvalues of (3.22). Let us assume that the eigenvalues are ordered in a
nondescending order 0 ≤ µ1 ≤ . . . ≤ µn and let us denote the corresponding eigenvectors
by w1, . . . , wn. Then, we can select a user-de�ned tolerance TOL and choose all eigen-
vectors wi, i ∈ {1, . . . ,m}, whose corresponding eigenvalues µi are greater than or equal
to TOL to construct a speci�c constant for the estimation in (3.21). More formally, let
the index k be given such that µk ≥ TOL and µk−1 < TOL. By de�ning the matrix

U :=
(
BDS̃PDwk, . . . , BDS̃PDwn

)
(3.23)

which depends on the eigenvectors whose eigenvalues are equal to or greater than TOL,
we obtain the estimate

|PDw|2S̃
|w|2

S̃

≤ Ĉ · TOL for all w ∈ W̃U := {w ∈ W̃ : UTBw = 0}, (3.24)
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where the constant Ĉ only depends on geometrical constants. This is valid since the
eigenvectors can be chosen to be orthogonal with respect to the inner products de�ned
by 〈·, P TD S̃PD·〉 and 〈·, S̃·〉, and can be proven by arguments from standard linear algebra
as well as by using (3.22).
So far, we have given a motivation why it is intuitive to consider the generalized eigen-

value problem (3.22) related to the PD-operator in order to derive a condition number
bound for the FETI-DP method. However, in the context of domain decomposition
methods, the solution of (3.22) is not feasible since this equation represents a global
eigenvalue problem for the entire domain Ω. Therefore, instead of solving (3.22) glob-
ally, we make use of the substructures of the nonoverlapping domain decomposition and
derive local versions of the generalized eigenvalue problem (3.22). In particular, we will
consider local generalized eigenvalue problems on edges and/or faces of the domain de-
composition. This drastically reduces the number of subdomains which are a�ected by
each eigenvalue problem such that the solution of the local eigenvalue problems can be
parallelized (to a certain extent) quite well.
Let us now describe in detail the de�nition of the local eigenvalue problems as in-

troduced in [130, 132] and provide some necessary notation. Note again that for both
stationary di�usion as well as linear elasticity problems we assume the existence of an a
priori, i.e., nonadaptive coarse space that ensures the invertibility of the local problems
of each subdomain, e.g., we assume that all vertices are chosen as primal variables. The
following description is based on [73] and [119, 148]. Since, in this thesis, we consider
both two- and three-dimensional domains Ω ⊂ Rd, d = 2, 3, we formulate the following
equations generically such that they are equally valid for both cases.
Let us consider Xij ⊂ ∂Ωi ∩ ∂Ωj , e.g., Xij could be a face Fij or an edge Eij between

the two neighboring subdomains Ωi and Ωj ; cf. also Fig. 3.5 for a visualization of four
cubic subdomains sharing an edge. Then, for each equivalence class Xij between two
neighboring subdomains Ωi and Ωj , a single eigenvalue problem has to be solved. To
mathematically formulate the respective local eigenvalue problem, we �rst introduce the
local restriction of the jump matrix B to the equivalence class Xij . We de�ne

BXij :=
(
B

(i)
Xij
, B

(j)
Xij

)
as the submatrix of

(
B(i), B(j)

)
with the rows consisting of exactly one 1 and one −1

and being zero elsewhere. Analogously, we denote by

BD,Xij :=
(
B

(i)
D,Xij

, B
(j)
D,Xij

)
the corresponding scaled submatrix of

(
B

(i)
D , B

(j)
D

)
, i.e., the scaled variant of BXij . We

then de�ne

Sij :=

(
S(i) 0

0 S(j)

)
∈ R(ni+nj)×(ni+nj) (3.25)

with S(i) and S(j) being the local Schur complements of the local sti�ness matrices K(i)

and K(j), respectively, with respect to the interface variables and nl, l ∈ {i, j}, the
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number of degrees of freedom on the local part of the interface. We further de�ne

PDij := BT
D,Xij

BXij

as a local version of the jump operator PD = BT
DB. Then, according to [92, 108, 119,

130, 132, 148], one has to solve the following generalized eigenvalue problem for each
equivalence class Xij : Find wij ∈ (KerSij)

⊥ such that

〈PDijvij , SijPDijwij〉 = µij〈vij , Sijwij〉 ∀vij ∈ (KerSij)
⊥ . (3.26)

Let us brie�y comment on the choice of the speci�c subspace (KerSij)
⊥. A more straight-

forward localized version of the eigenvalue problem given in (3.22) is the following for-
mulation: Find wij ∈ R(ni+nj) such that

〈PDijvij , SijPDijwij〉 = µij〈vij , Sijwij〉 ∀vij ∈ R(ni+nj). (3.27)

However, this formulation su�ers from the di�culty that neither the left-hand side nor the
right-hand side operator is positive de�nite. Since the local Schur complement matrices
originate from the local sti�ness matrices, we know that both operators are at least
symmetric positive semide�nite. In particular, the null space of the matrix Sij is given
by the single rigid body modes of the two subdomain interfaces; cf. also the related
explanations at the beginning of Section 3.2.1. As assumed for the a priori coarse space,
we couple the two subdomains Ωi and Ωj in the primal vertices. However, if neither of
the two subdomains have direct contact to the Dirichlet boundary on an essential part
of their boundary, i.e., ∂ΩD ∩ (∂Ωi ∪ ∂Ωj) = ∅, the common rigid body modes are still
in the null space of the coupled right-hand side operator; cf. also [92, 119]. Thus, it is
necessary to remove the common rigid body modes in (3.27) and consider the respective
eigenvalue problem in the subspace (KerSij)

⊥ as it is done in (3.26).
For an explicit expression of the positive de�nite right-hand side operator on the sub-

space (KerSij)
⊥, two orthogonal projection matrices Πij and Πij are used to control the

single and common rigid body modes of the two neighboring subdomains Ωi and Ωj ; see,
e.g., [108, 119, 148]. Let us brie�y introduce some additional notation to de�ne the two
projections without going into all the technical details. The following derivation of the
projections is closely related to the presentations in [108,119,148] to which we also refer
for more technical details.
For the derivation of the two projection matrices, we denote by W̃ij the space of

functions in the product spaceWi×Wj that are continuous in the primal variables which
are shared by the subdomains Ωi and Ωj . We further denote by Πij the l2-orthogonal
projection from Wi × Wj to W̃ij . Additionally, we introduce a second l2-orthogonal
projection from Wi×Wj to range(ΠijSijΠij +σ(I−Πij)) which we denote by Πij . Here,
σ is a positive constant used for stability reasons and can be chosen as, e.g., the maximum
value of the diagonal entries of Sij ; see [130, 132]. Let us now describe how to build the
two projection matrices Πij and Πij . Note that both projection matrices are set up such
that they are symmetric.
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We �rst de�ne the matrix R(l)T
ij , l = i, j, as the local part of the assembly operator of

primal variables on ∂Ωi ∩ ∂Ωj and as the identity on the rest of
(
Γ ∩ ∂Ωi

)
×
(
Γ ∩ ∂Ωj

)
.

We then obtain

Rij :=

(
R

(i)
ij

R
(j)
ij

)

and can thus de�ne the orthogonal projection onto W̃ij by

Πij := Rij(R
T
ijRij)

−1RTij . (3.28)

For the de�nition of Πij we make use of the fact that I −Πij is an orthogonal projection
onto the rigid body modes or, in general, the null space, which is continuous onWi×Wj .
Under the assumption that {r̃1, . . . , r̃k} is the largest set of linear independent rigid
body modes that are continuous on Wi ×Wj , we use a modi�ed Gram-Schmidt method
to create an orthonormal basis {r1, . . . , rk} and de�ne the projection

Πij := I −
k∑
p=1

rpr
T
p . (3.29)

We can then establish and solve the following generalized eigenvalue problems of the
form

ΠijΠijP
T
Dij
SijPDijΠijΠijwij

= µij(Πij(ΠijSijΠij + σ(I −Πij))Πij + σ(I −Πij))wij .
(3.30)

One would then select all eigenvectors wlij , l = 1, . . . , L belonging to eigenvalues µlij , l =
1, . . . , L, which are larger than or equal to a user-de�ned tolerance TOL and enforce the
constraints

wlTij P
T
Dij
SijPDijwij = clTij BXijwij = 0, (3.31)

for given constraint vectors

clij := BD,XijSijPDijw
l
ij , l = 1, . . . , L, (3.32)

e.g., with a projector preconditioning or a transformation-of-basis approach. To provide
an illustrative motivation for the speci�c form of (3.30) let us summarize again that
the purpose of the two introduced projection matrices is to obtain a right-hand side of
the eigenvalue problem in (3.30) which is symmetric positive de�nite; cf. [130]. For this
purpose, the projection Πij removes the rigid body modes or, more generally, the null
space of each of the single subdomains Ωi and Ωj while I−Πij is an orthogonal projection
onto the space of rigid body modes that are continuous on Wi ×Wj and move Ωi and
Ωj as a connected entity; see also [119, Sect. 5.2].
Finally, let us comment on some special aspects of the eigenvalue problem in (3.30)

for the three-dimensional case. Usually, in case of a three-dimensional model problem,
the eigenvalue problems in adaptive FETI-DP are de�ned for closed faces, i.e., we have
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Xij = F ij for the eigenvalue problem of a face which is shared by the two subdomains Ωi

and Ωj . As proposed in [132] and [119], in our implementation, we split the computed
face constraint vectors into a part related to the open face Fij as well as into several
edge parts which lay on the boundary of the respective face. Thus, in case of a regular
domain decomposition into cubes, we would obtain one face constraint and four edge
constraints from a single eigenvector de�ned on a closed face. For more details, we refer
to, e.g., [119, Sect. 5.2.1]. Additionally, in three dimensions, we also have to control the
jump w(i) − w(l) across an edge Eil for two subdomains Ωi and Ωl that only share an
edge but not a face; see also Fig. 3.5. This means that, for three-dimensional problems,
we also have to solve a number of edge eigenvalue problems in addition to the eigenvalue
problems on faces. In particular, we have to solve an additional edge eigenvalue problem
for all edges with multiplicity greater than three; cf. also [119, Sect. 5.2.1]. This variant
ensures a sound theoretical condition number bound for the obtained adaptive FETI-DP
coarse space; see [92]. According to numerical experiments presented in [149] and [119],
however, the respective eigenvalue problems are usually related to only a small number
of edges or a slightly higher number of short edges. Therefore, the additional e�ort for
the setup and the solution of these edge eigenvalue problems is rather small. This will
become important again in Chapter 8 of this thesis, where we propose to train neural
networks to automatically identify edges or faces, where the computation of adaptive
constraints is necessary.

3.5.2 Condition number bound

Analogously to classic FETI-DP and BDDC methods, the spectral condition number for
the adaptive FETI-DP method presented in Section 3.5.1 is also closely related to an
estimate of the PD-operator; see also (3.12) for this relation.
In this section, we present the respective condition number bounds in two and three

spatial dimensions for the adaptive FETI-DP coarse space as described in Section 3.5.1.
For the technical details and a detailed proof of the cited condition number bounds we
refer to the literature. For both a two- and a three-dimensional domain Ω, enhancing
the FETI-DP and BDDC coarse space with the adaptive coarse constraints in (3.31), we
are able to derive a condition number bound which is of the form

κ(M̃−1F ) ≤ C̃ · TOL (3.33)

with C̃ independent of H and h; see [92,108,130,132]. In particular, the constant C̃ does
only depend on geometric constants of the domain decomposition, i.e., on the maximum
number of edges of a subdomain in two dimensions or on the maximum number of faces
of a subdomain and the maximum multiplicity of an edge in three dimensions, but is
independent of the contrast of the coe�cient. This is a very desirable property since it
ensures a robust convergence of the algorithm even for highly heterogeneous coe�cient
or material distributions.
For the sake of completeness, let us brie�y present the concrete constants for the two-

and the three-dimensional case. In two dimensions, we can derive the following estimate
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of the PD-operator for the FETI-DP algorithm with adaptive constraints as de�ned
in Section 3.5.1:

|PDw|2S̃ ≤ N
2
E · TOL |w|2S̃ for all w ∈ W̃U , (3.34)

where NE denotes the maximum number of edges of a subdomain. Using the relation
in (3.12), this yields the respective condition number bound

κ(M̃−1F ) ≤ N2
E · TOL (3.35)

with M̃−1 being either the projector or the balancing preconditioner; see also Chapter 4
for more details on balancing and de�ation preconditioners. For a detailed proof of the
cited condition number bound in two dimensions, we refer to [148, Theorem 3.3.1].
In three dimensions, the argumentation is - in principle - similar although the proof

of the estimate for the operator PD is more complex. In this case, we can derive the
estimate

|PDw|2S̃ ≤ 4 max{NF , NEME}2 · TOL |w|2S̃ for all w ∈ W̃U , (3.36)

where NF denotes the maximum number of faces of a subdomain, NE the maximum
number of edges of a subdomain, and ME the maximum multiplicity of an edge; see
also [119, Lemma 5.5]. Using (3.36) and again the relation in (3.12), this yields the
condition number bound

κ(M̃−1F ) ≤ 4 max{NF , NEME}2 · TOL (3.37)

with M̃−1 being again the balancing or the de�ation preconditioner; see also [119, The-
orem 5.7] for a detailed proof.

3.6 Summarizing remarks with respect to robustness and

computational e�ort

At the end of this chapter on classic and adaptive coarse spaces, let us summarize some
of the main observations. For both, the FETI-DP and the BDDC method, the design of
an appropriate coarse space is at the heart of the respective algorithm. On the one hand,
the coarse space ensures the fast global transport of information between the di�erent
subdomains and thus the fast convergence towards a continuous global solution. At the
same time, in a parallel implementation, the solution of the coarse problem can become
a scaling bottleneck. Thus, in principle, we are interested in a coarse space which is
preferably small. On the other hand, we want our DD algorithm to be robust, i.e., to
show a stable convergence behavior also for highly heterogeneous coe�cient functions.
In theory, this is ensured by an upper bound of the condition number, serving as a worst
case estimate, which is independent of the coe�cient distribution.
In classic FETI-DP and BDDC methods, the coarse space usually consists of primal

vertices and/or classic averages along edges or faces of the domain decomposition. Ad-
ditionally, for linear elasticity problems, �rst order moments play an important role. As
a result, classic coarse spaces are usually relatively small. However, they are only robust
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under some restrictive assumptions on the coe�cient function. As we have seen in Sec-
tions 3.2.2 and 3.3.2, for completely arbitrary coe�cient distributions, the constants in
the condition number estimates depend on the contrast of the coe�cient function for clas-
sic FETI-DP and BDDC methods. Consequently, for a high contrast or high jumps in
the coe�cient function, the convergence behavior of classic coarse spaces will deteriorate
and we obtain condition numbers in the dimension of the coe�cient contrast. In Sec-
tion 3.5, we have introduced an adaptive, i.e., problem-dependent coarse space which
uses certain eigenmodes to enhance the classic coarse space. As a result, we can derive
a condition number bound which exclusively depends on some geometrical constants of
the domain decomposition but not on the speci�c coe�cient distribution. This results
in a robust convergence behavior also for high contrasts in the coe�cient distributions;
cf. also the motivating example in Table 3.2. Thus, the presented adaptive algorithm
ful�lls our desire to construct a robust coarse space.
However, as a drawback, the adaptive FETI-DP coarse space presented in Section 3.5

requires the setup and the solution of certain local eigenvalue problems on edges and/or
faces of the DD. It should be stated that, in a parallel FETI-DP implementation, the
solution of these eigenvalue problems can be distributed to the compute cores, due to
the local structure of the eigenvalue problems. Nonetheless, usually more than a single
eigenvalue problem has to be solved on a single compute core. Especially for three-
dimensional computational domains, the subsequent assembly and solution of several
eigenvalue problems can take up the larger part of the total time to solution; see also [96].
In particular, the assembly of the local eigenvalue problems includes the computation of
local Schur complements, see (3.25), which often takes up a signi�cant part of the total
computing time. Additionally, the communication of Schur complements, which is in
general necessary, can put a high pressure on the network of the parallel computer.
Taking all the above observations into account, it is desirable to develop strategies to
reduce the number of eigenvalue problems which have to be solved, e.g., by discarding
eigenvalue problems which do not result in any new constraints for a given tolerance value
TOL. Alternatively, we can try to develop fundamentally di�erent, i.e., new approaches
which compute small and robust coarse spaces.
In [93,94,107], di�erent heuristic approaches to reduce the number of necessary eigen-

value problems have been presented, which are - roughly speaking - based on the iden-
ti�cation of coe�cient jumps on the considered edge or face as well as on the residual
after one step of the adaptive FETI-DP or BDDC method. We refer to the experiments
in [93, 94, 107] for more details. In [96, 119], these concepts have been extended with
regard to a parallel implementation. In particular, the authors have presented ideas to
improve the load balance of the algorithm by using static and asynchronous dynamic
processes to achieve a more balanced distribution of the local eigenvalue problems.
In this thesis, we present di�erent approaches of how to design coarse spaces which are

preferably robust and small, i.e., e�cient. Let us note that, usually, we have to make a
trade-o� between both desired properties. In Chapter 5, we present an approach which
mainly focuses on delaying the bottleneck which is caused by the exact solution of the
coarse problem in a parallel implementation. This is achieved by introducing a third level
of the domain decomposition. Then, only a coarse problem on the coarsest level has to
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be solved, which is usually much smaller. In Chapter 6, we introduce a frugal approach
which builds a coarse space that is relatively small but at the same time robust for a wider
range of di�erent model problems. This coarse space is inspired by the adaptive FETI-DP
coarse space in Section 3.5 and can be interpreted as a low-dimensional approximation
of it. Finally, in Chapter 8, we develop an alternative approach using concepts from
scienti�c machine learning. Here, neural networks are trained to automatically identify
critical edges or faces where the solution of an eigenvalue problem is necessary to obtain
a robust coarse space. Thus, this method aims to obtain robustness for heterogeneous
coe�cient distributions while, at the same time, maintaining a relatively small size of
the resulting coarse space.
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enrichments for FETI-DP and BDDC

In this chapter, we describe di�erent approaches to implement coarse space enrichments
for both FETI-DP and BDDC domain decomposition methods. As already discussed
in Chapter 3, di�erent approaches to enrich the FETI-DP or BDDC coarse space by
additional constraints exist. The construction of classic coarse spaces was already men-
tioned in Sections 3.2 and 3.3. Additionally, a detailed mathematical description of classic
weighted averages was given in Section 3.4. In Section 3.5, we have introduced a very
speci�c adaptive coarse space which basically relies on the solution of certain localized
eigenvalue problems and uses selected eigenvectors to enhance the FETI-DP or BDDC
coarse space. On top of that, we introduce a heuristic coarse space which we name frugal
coarse space and which is numerically tested in Chapter 6. This coarse space is strongly
motivated by the adaptive coarse space presented in Section 3.5 and can be interpreted
as a low-dimensional approximation of it. In all cases named above, in general, di�er-
ent approaches of how to implement these coarse space enrichments exist. Parts of this
chapter have already been published in modi�ed or unmodi�ed form in [72].
One way to enforce additional coarse constraints is by using a projector preconditioning

approach or a balancing approach. The technique of projector preconditioning is also
known as de�ation; see, e.g., [45,139]. In the context of domain decomposition methods
the approach of de�ation and balancing has already been used extensively and for a
wider range of di�erent model problems and coe�cient or material distributions; see,
e.g., [59, 85, 113, 136]. In this thesis, the de�ation and the balancing approach are only
applied to the FETI-DP method since using de�ation for the BDDC method is not
equivalent to the BDDC method using a transformation of basis; see [113].
Thus, to enhance additional coarse constraints for the BDDC method, we use a general-

ized transformation-of-basis approach; see [94]. In principle, in a standard transformation-
of-basis approach, the nodal basis of the �nite element method is transformed such that
general constraints can be enforced by a partial nodal assembly; see, e.g., [94,109,116,117,
125]. In particular, under the assumption of a constant scaling on any face and any edge,
as, e.g., valid for a multiplicity-scaling, the standard transformation-of-basis approach can
be proven to be equivalent to a corresponding de�ation approach; see [113]. For more
general, i.e., arbitrary coe�cient distributions and scalings, a generalized transformation-
of-basis approach has been proposed in [94,95]; see also [119] for more technical details.
However, as a drawback, explicitly transformed local sti�ness matrices can become

dense when using face constraints in three dimensions. To obtain an e�cient parallel
implementation, we instead use the equivalent approach of local saddle point problems
as suggested in [116, subsection 4.2.2] for our numerical parallel results for a frugal BDDC
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coarse space in Section 6.5. This technique will be presented at the end of this chapter.

4.1 Projector preconditioning and balancing

Let us now describe in more detail how to implement additional coarse constraints using
projections; see, e.g., [85, 113]. This section is partly based on the already published
description in [72]. Additionally, we will recall the notation for projector preconditioning
and de�ation as used in [148] and [119]. For more details on projection methods in the
context of Krylov subspace methods, see [45,136,139].
The starting point of the projector preconditioning approach is to aggregate a set of

additional primal constraints, as, e.g., averages, �rst order moments over certain edges,
or constraint vectors obtained from certain eigenvectors, as columns of a rectangular
matrix U ; see, e.g., [85,113]. Then, in each iteration of the PCG method, we enforce the
constraint

UTBu = 0. (4.1)

Let us note again that, in analogy to the description in Section 3.5.1 and [119], in the
context of de�ation and balancing we refer to cTBw = 0 as a constraint while we refer
to the vector c as a constraint vector. Thus, we can de�ne the matrix U in (4.1) as

U = (c1, . . . , cm) (4.2)

for given constraint vectors ci, i = 1, . . . ,m. To enforce the respective constraints we
introduce the F -orthogonal projection onto the range of U as

P = U(UTFU)−1UTF

if F is symmetric positive de�nite, or in the more general form

P = U(UTFU)+UTF

if F is symmetric positive semide�nite and UTFU is singular. Here, (UTFU)+ denotes
a pseudoinverse of the matrix UTFU ; cf., e.g., [14]. For the resulting projection P , we
have range(P ) = range(U(UTFU)+) and ker(P ) = ker((UTFU)+UTF ).
We then multiply the FETI-DP system Fλ = d (see (3.6)) by (I − P )T which yields

the de�ated and singular but consistent system

(I − P )TFλ = (I − P )Td. (4.3)

For λ ∈ range(U), we also have λ ∈ ker((I − P )TF ) since

(I − P )TFλ = Fλ− P TFλ = FUλ̂− P TFUλ̂

= FUλ̂− FU(UTFU)+(UTFU)λ̂

= 0,

with Uλ̂ = λ. This yields
UT (I − P )TFλ = 0
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and since U has full column rank, we obtain

λ ∈ ker((I − P )TF ).

Similarly, for λ ∈ ker((I − P )TF ) and F nonsingular, we have

(I − P )TFλ = (F − FU(UTFU)−1UTF )λ = 0

which yields
λ = U(UTFU)−1UTFλ

and we obtain that λ ∈ range(U). We thus have the relation

ker((I − P )TF ) = range(U).

Let λ∗ be the exact solution of the original system Fλ = d and λ the solution of the
preconditioned system

M−1
D (I − P )TFλ = M−1

D (I − P )Td,

where M−1
D is the Dirichlet preconditioner. We then de�ne

λ = U(UTFU)−1UTd = PF−1d

for invertible F or

λ = PF+d

for any pseudoinverse F+, respectively. We can then �nally compute the solution of the
original system in (3.6) as

λ∗ = λ+ (I − P )λ ∈ ker (I − P )⊕ range (I − P ).

The matrices P TF (= FP ) and (I−P )TF (= F (I−P )) are symmetric and the spectrum
is thus not changed by projecting the correction onto range(I − P ) in each iteration;
cf. [113]. Therefore, we include the projection (I − P )T into the preconditioner and
obtain the symmetric projector preconditioner

M−1
PP = (I − P )M−1

D (I − P )T

which can also be denoted as de�ation preconditioner. We then solve the original system
applying the preconditioner M−1

PP , i.e., we solve the system

M−1
PPFλ = M−1

PPd.

The solution λ of this system is in the subspace range(I −P ). Adding the correction, we
compute the solution λ∗ of the original system by

λ∗ = λ+ λ.
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4 Implementation of coarse space enrichments for FETI-DP and BDDC

Ωi Ωj

Eij

Π ∆1∆2 Π

Figure 4.1: Transformation of basis for a primal edge average. Left: Two subdomains
Ωi and Ωj sharing the edge Eij which consists of two dual nodes (marked
in green) and one primal edge node (marked in red). Middle: Nodal basis
functions for all three edge nodes before the transformation of basis. Right:
Transformed basis function for the primal edge node Π after the transforma-
tion of basis. The edge average constraint is enforced at the primal degree of
freedom (marked in red).

An alternative approach is the inclusion of the computation of λ into the precondi-
tioner. This results in the balancing preconditioner

M−1
BP = (I − P )M−1

D (I − P )T + PF−1. (4.4)

Since PF−1 = U(UTFU)−1UT , this preconditioner is symmetric and can be computed
e�ciently.
Let us note that, depending on the number of additional primal constraints, UTFU is

usually of much smaller dimension than F .
In this thesis, we always use the balancing preconditioner in our numerical experiments

for the FETI-DP method and directly obtain the solution without computing an addi-
tional correction. All constraints added to the a priori vertex constraints are included
using the matrix U .

4.2 The standard transformation-of-basis approach

In this section, we describe how to transform the basis of FETI-DP or BDDC methods
such that weighted average constraints along edges or faces can be enforced by subassem-
bly using a standard transformation-of-basis approach; see, e.g., [109, 113, 116, 117, 125].
Let us note that for this approach, we assume a constant scaling on any face or edge, as,
e.g., multiplicity scaling or ρ-scaling for certain coe�cient distributions. For more general
scalings and coe�cient distributions, an extended approach was proposed in [94,95,119],
which is also referred to as generalized transformation of basis.
The starting point of the transformation-of-basis approach is the observation that con-

tinuity of the solution u across the subdomain boundary in certain degrees of freedom can
be enforced for the corresponding �nite element basis function using partial �nite element
assembly. Similarly, using a transformation of basis from a nodal �nite element basis to
a di�erent basis, more general constraints can be enforced using the same technique.
For a more readable and simpli�ed mathematical description of this technique, we

will demonstrate the approach with a two-dimensional example as illustrated in Fig. 4.1
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4.2 The standard transformation-of-basis approach

(left). We consider the two neighboring subdomains Ωi and Ωj which share the edge Eij .
The edge Eij consists of a primal node Π and two dual nodes ∆1 and ∆2; see also Fig. 4.1
(middle) for a visualization of the corresponding nodal basis functions. During the Krylov
iteration of the iterative solution process, the iterates u should ful�ll a constraint involv-
ing the nodes on the edge Eij which should be enforced by assembling the primal edge
node Π. To further simplify the following description, we additionally assume that this
constraint is the only additional constraint which is implemented using a transformation
of basis, and that this constraint is a weighted edge average. To implement this edge av-
erage, we transform our local sti�ness matrices K(l), l ∈ {i, j}, and the right-hand sides
f (l), l ∈ {i, j}, with a transformation matrix T (l), l ∈ {i, j}. In particular, the trans-

formed sti�ness matrices K
(l)
, the transformed load vectors f

(l)
, and the transformed

variables u(l) on Ωl can be obtained by

K
(l)

= T (l)TK(l)T (l),

f
(l)

= T (l)T f (l),

and u(l) = T (l)Tu(l), l ∈ {i, j}.

(4.5)

The transformed sti�ness matrices K
(l)

and transformed right-hand sides f
(l)

will then
replace K(l) and f (l) in the FETI-DP and the BDDC algorithm; see also [105] for more
details. In general, the transformation matrices T (l), l ∈ {i, j} in (4.5) are de�ned edge by
edge. Let us consider again the example in Fig. 4.1 and let us recall the above assumption
that the constraint on Eij is the only additional constraint which is implemented using
a transformation of basis. We then denote by T

(l)
E the restriction of T (l) to the edge

Eij for l ∈ {i, j}. We further denote by cu the normalized constraint vector for the
transformation of basis which is de�ned on ∂Ωi∩Eij and ∂Ωj ∩Eij , and which is equal on
both sets. Then, the respective constraint which should be enforced by the transformation
of basis writes

cTu (u
(i)
Eij − u

(j)
Eij ) = 0 ⇔ cTuu

(i)
Eij = cTuu

(j)
Eij (4.6)

with u
(l)
Eij = u|∂Ωl∩Eij , l ∈ {i, j}. For example, cu = 1

nE
(1, . . . , 1)T corresponds to a

continuous edge average along the edge Eij shared by Ωi and Ωj , where nE is the length
of cu. This corresponds to the use of a nonnodal basis function which is imposed on the
primal variable on the edge Eij ; see Fig. 4.1 (right) for a visualization of this transformed
nonnodal basis function.
In a next step, we de�ne the square transformation matrices T (l)

E by

T
(l)
E =

(
cu, C

(l)⊥
u

)
, l ∈ {i, j}, (4.7)

where C(l)⊥
u is computed such that T (l)

E is an orthogonal matrix. The matrix T (l)
E de-

scribes the change of basis from the new to the original nodal basis. We then de�ne the
transformation matrix T (l) which acts on the entire subdomain Ωl, l ∈ {i, j}, by

T (l) =

II 0 0
0 IV 0

0 0 T
(l)
E

 , (4.8)
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4 Implementation of coarse space enrichments for FETI-DP and BDDC

where II and IV denote the identities on interior and on vertex variables, respectively.
Finally, after the transformation of basis has been performed, assembly in the new

primal variables is used to enforce the given constraint. In other words, in the transformed
basis, the constraints along edges can be handled as simple nodal constraints and an
assembly can be performed to construct the coarse problem. Let us note that faces
in three dimensions can be handled completely analogously to the already described
procedure for edges. However, computing explicit transformations on faces negatively
a�ects the sparsity pattern of the transformed sti�ness matrices. In [116], a technique
was proposed to reduce this e�ect which avoids a�ecting the sparsity pattern of the
matrices K

(i)
BB by the explicit transformation of basis. We will explain this approach in

more detail in the following section.

4.3 E�cient implementation of the transformation of basis

using local saddle point problems

In general, the simplest approach to implement a transformation of basis into FETI-
DP or BDDC is to transform the sti�ness matrix and the right-hand side locally, i.e.,
to compute f

(i)
= T (i)T f (i) and K

(i)
= T (i)TK(i)T (i) as described in Section 4.2. As

already mentioned, as long as T (i) is su�ciently sparse, e.g., only edge constraints and
no face constraints are used, this is a fast and very e�cient option. However, using richer
coarse spaces and denser transformation matrices T (i), the performance can decrease
drastically due to the higher density of K

(i)
compared to K(i). Thus, the time to solution

will increase as well as the memory consumption. In our parallel BDDC implementation,
which is used for the experiments presented in Chapter 5 and Section 6.5, we therefore
have implemented an alternative technique which relies on the solution of local saddle
point problems; see [116, Sect. 4.2.2].
Let us now brie�y describe this strategy. In the application of the operator F , in case

of FETI-DP, the local expressions B(i)
B

(
K

(i)
BB

)−1
v

(i)
B have to be computed for a vector

v
(i)
B . This can be done locally by applying a direct solver to K

(i)
BB, i = 1, ..., N , on each

subdomain. However, if K
(i)
BB gets too dense, the performance of the direct solver is very

poor. Alternatively, local saddle point problems can be solved; see [94,116,119].
At �rst, we observe that instead of minimizing

u
(i)T
B K

(i)
BBu

(i)
B

we can equivalently consider the minimization of

[
u

(i)T
B 0

] [K(i)
BB K

(i)T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

][
u

(i)
B

0

]
, (4.9)

where the values at the primal variables Π are set to zero. Then, instead of minimizing
the bilinear form in (4.9) in the transformed variables u(i)

B , we introduce a corresponding
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4.3 E�cient implementation of the transformation of basis

constraint Q(i)Tu(i) = 0 for the nontransformed variables, where the local matrices Q(i)T

enforce the selected primal constraints. Thus, every time we have to solve a system with
a local block from KBB, we instead solve the following saddle point problemK

(i)
II K

(i)T
ΓI 0

K
(i)
ΓI K

(i)
ΓΓ Q(i)

0 Q(i)T 0


u

(i)
I

u
(i)
Γ

µ(i)

 =

v(i)
I

v
(i)
Γ

0

 , (4.10)

with additional local Lagrange multipliers µ(i); cf. [116, Sect. 4.2.2] for more details.
Note that the right-hand side (v

(i)T
I , v

(i)T
Γ ) in (4.10) corresponds to (vTB, 0) transformed

back to the original basis and restricted to the local subdomain; see also [119, Sect.
4.4]. Summarizing the above explanations, we replace the solution of the local problems
with K

(i)
BB by the solution of much sparser saddlepoint systems in our parallel BDDC

implementation. Additionally, it can also be quite expensive to explicitly compute the
transformation matrix T and to explicitly compute Galerkin products of the type K

(i)
=

T (i)TK(i)T (i). Therefore, all applications of the transformed matrices K
(i)
ΓI , K

(i)
ΠB, and

K
(i)
ΠΠ have to be replaced by equivalent formulations. Here, equivalent means that the

solution of a system in the transformed solution space can be simply obtained by a
multiplication of T T with the respective solution in the untransformed space, and vice
versa by a multiplication with T . Thus, the speci�c implementation does not a�ect the
convergence of the iterative method but only the time to solution. More details on the
implementation as well as a mathematical proof of the equivalence of the reformulation
are given in [98].
To conclude this section, let us note that similar techniques of using local saddle point

problems to enforce additional constraints have also been proposed in [61, 129, 130] by
di�erent authors. Moreover, in [51], global Lagrange multipliers are used in combination
with saddle point problems, which is slightly di�erent from our approach.
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5 BDDC with a three-level

preconditioner as an approximate

coarse space

As we have seen in Chapter 3, both the FETI-DP and the BDDC method are divide-and-
conquer algorithms and obtain their robustness and parallel scalability from an appro-
priate coarse space, i.e., a second level. Even though the coarse space in both methods
is of crucial importance for the parallel scalability and ensures the approximation of a
solution, which is continuous across the subdomains, it can also become a bottleneck in a
parallel implementation. This means that the exact solution of the FETI-DP or BDDC
coarse problem with a sparse direct solver can become a limiting factor for the parallel
scalability of the respective method on large scales. As a consequence, during the last
decade, di�erent approximate variants of the BDDC and the FETI-DP method became
popular, which were numerically tested for the solution of various linear and nonlinear
partial di�erential equations [3, 4, 39, 41, 99, 100, 102, 110, 112, 126, 149, 150, 167, 168]. In
principle, these methods di�er from their respective exact methods by using an approx-
imate solution of certain components of the preconditioner, most noticeably the coarse
problem. While, as a drawback, computing only an approximative solution of the coarse
problem can reduce the numerical robustness, it usually increases the scalability of the
considered method signi�cantly. One widely used approach of approximate coarse prob-
lems in the context of BDDC aremultilevel methods; see, e.g., [4,131,161,167,168]. In this
case, exact BDDC is applied recursively to the coarse problem leading to a new coarse
problem of much smaller dimension at the highest level. Similarly, in other approximate
BDDC variants, cycles of algebraic multigrid (AMG) are applied to the coarse problem;
see, e.g., [39, 101,126].
Here, we will focus on a very speci�c approximate BDDC coarse space which is based

on the work in [166�168]. The proposed three-level BDDC preconditioner relies - as
the name already suggests - on the introduction of a third level and approximates the
original BDDC coarse space by the solution of a coarser problem on the highest level.
To numerically test this three-level BDDC method and compare it to other approxi-
mate BDDC coarse spaces, we integrate it into our parallel software framework which
has already been used in [101]. In particular, in [101], the authors have compared, in
a common framework, several linear and nonlinear BDDC variants using AMG-based
approximations of the coarse space, based on the BDDC formulation of [126] for linear
problems. At the basis of this framework is a highly scalable PETSc-based [8�10] BDDC
implementation, which applies BoomerAMG [80] for all AMG solves. For the results
presented in this chapter, we have extended this implementation and also included the
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5 BDDC with a three-level preconditioner as an approximate coarse space

aforementioned three-level BDDC method in our framework as well as in our software
package. Additionally, we have also implemented a vertex-based BDDC coarse space [41]
in the same software to provide a broader range of comparison.
The outline of this chapter is as follows. At �rst, in Section 5.1, we will present an

alternative of the original formulation of the BDDC preconditioner for the Schur comple-
ment system as introduced in Section 3.3.1. In particular, we will present an equivalent
formulation of the BDDC method as a preconditioner for the fully assembled system
Kgu = fg, see, e.g., [126], which lays at the heart of our parallel software. In Section 5.2,
we will then describe three di�erent approximate BDDC preconditioners in a common
framework, using the description of the exact BDDC preconditioner in Section 5.1 as a
common basis. Here, we will especially focus on the three-level BDDC preconditioner
which is similar to the proposed approach in [167, 168] but also formulated as a precon-
ditioner for the fully assembled matrix Kg. Additionally, we will also brie�y introduce
the already mentioned BDDC preconditioner using AMG as well as a vertex-based pre-
conditioner using a Gauss-Seidel method. We will then cite or prove, respectively, the
condition number bounds for all three aforementioned approximate BDDC precondi-
tioners in Section 5.3. In Section 5.4, we will provide some details of our parallel BDDC
implementation which explicitly uses the same building blocks for all approximate BDDC
preconditioners to ensure a fair comparison. Finally, in Section 5.5, we present numerical
results for the three-level BDDC method for linear elasticity problems in three dimen-
sions. In particular, we show comparative results to the approximate AMG-based coarse
space which performed best in [101]. For the sake of completeness, we further show �rst
parallel results for the vertex-based BDDC preconditioner [41].
Parts of this chapter have already been published in modi�ed or unmodi�ed form

in [103]. Let us note that preliminary results for the three-level BDDC preconditioner
have also been published in the master thesis [170]; which can be seen as a preparation of
the publication [103]. However, prior to the publication [103], the implemented method
has been revised algorithmically as well as with respect to several parallel implemen-
tational details to further increase the parallel scalability of the considered approach.
Hence, the results presented here signi�cantly di�er from the results presented in [170].

5.1 An alternative formulation of the exact BDDC

preconditioner for the assembled system

In Section 3.3.1, we have already presented a description of the original formulation of
the BDDC preconditioner for the Schur complement system Sgug = gg where Sg is the
assembled global Schur complement; cf. also (3.17). Our parallel software, however,
in which we have implemented the three-level BDDC preconditioner as well as other
approximate BDDC coarse spaces, is based on an equivalent formulation of the BDDC
method as a preconditioner for the fully assembled system Kgu = fg; see, e.g., [126].
In particular, the exact BDDC preconditioner formulation from [126] is applied directly
to the fully assembled matrix in (3.1). For reasons of completeness, let us now brie�y
present this alternative formulation of the exact BDDC preconditioner.
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In principle, we can reuse most of the notation as introduced in Sections 3.2.1 and 3.3.1.
First, let us recall from (3.1) and (3.2) that the fully assembled system is given by

Kg = RTKR

with the corresponding right-hand side

fg = RT f,

where K and f are a block matrix or block vector, respectively, and RT is an assembly
operator with RT : W → V h. We use the same sub-partitioning of the degrees of freedom
into the index sets I,Γ,Π and ∆ as already introduced in Sections 3.2.1 and 3.3.1.
Additionally, let us de�ne the global assembly operators qRT and R̃T with qRT : W → W̃
and R̃T : W̃ → V h. We then introduce the partially assembled system

K̃ := qRTK qR. (5.1)

Note that we can also obtain the globally assembled �nite element matrix Kg from K̃ by

Kg = R̃T K̃R̃. (5.2)

Ordering the interior variables �rst and the interface variables last, we obtain

K̃ =

(
KII K̃T

ΓI

K̃ΓI K̃ΓΓ

)
. (5.3)

The matrix KII is block-diagonal and applications of K−1
II only require local solves on

the interior parts of the subdomains and are thus easily parallelizable.
As already described in Sections 3.2.1 and 3.3.1, we can add di�erent scalings, e.g.,

ρ-scaling [111] or deluxe-scaling [13], to the prolongation operators and thus de�ne the
scaled operator R̃D : V h → W̃ . We can then formulate the BDDC preconditioner for Kg

by
M−1
D,BDDC-K :=

(
R̃TD −HPD

)
K̃−1

(
R̃D − P TDHT

)
; (5.4)

see [126]. Here, the operator H : W̃ → V h is the discrete harmonic extension to the
interior of the subdomains given by

H :=

(
0 − (KII)

−1 K̃T
ΓI

0 0

)
. (5.5)

Let us recall from the de�nition in (3.11) in Section 3.2.2, that the operator PD : W̃ → W̃
is de�ned by

PD := BT
DB.

Additionally, in the context of BDDC methods, the operator PD is sometimes also de�ned
as

PD = I − ED := I − R̃R̃TD; (5.6)
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5 BDDC with a three-level preconditioner as an approximate coarse space

see [165, Chapter 6] for more details. Let us note again that in the standard de�nition,
the BDDC preconditioner is formulated for the reduced interface problem, i.e., as

M−1
D,BDDCSg := R̃TD,ΓS̃

−1
BDDCR̃D,ΓSg; (5.7)

cf. also (3.18) in Section 3.3.1. Here, the prolongation operator R̃D,Γ is formed in the
same way as R̃D but it is restricted to the interface variables on Γ, and Sg and S̃BDDC are
the Schur complements of the matrices Kg and K̃, respectively; see also Section 3.3.1.
To further examine the relation between the BDDC preconditioner formulated for

the fully assembled system Kg and the original formulation for the Schur complement
system Sg, we can compare the spectra of both methods, which are central for the
convergence properties of the related algorithm. In particular, it can be shown that
the preconditioned system M−1

D,BDDC-KKg has, except for some eigenvalues equal to one,
the same spectrum as the standard BDDC preconditioner formulated using the Schur
complement; see [126, Theorem 1]. Here, we provide a related but slightly more direct
proof, which has already been published by the author of this thesis and her coauthors
in [103].
First, we explicitly write the BDDC preconditionerM−1

D,BDDC-K for the fully assembled
system as

M−1
D,BDDC-K :=

(
R̃TD −HPD

)
K̃−1

(
R̃D − P TDHT

)
=

(
I K−1

II K̃
T
ΓI(I − R̃ΓR̃

T
D,Γ)

0 R̃TD,Γ

)
K̃−1

(
I 0

(I − R̃D,ΓR̃TΓ )K̃ΓIK
−1
II R̃D,Γ

)

=

(
I K−1

II K̃
T
ΓI(I − ED,Γ)

0 R̃TD,Γ

)
K̃−1

(
I 0

(I − ETD,Γ)K̃ΓIK
−1
II R̃D,Γ

)
.

Using the block factorization

K̃−1 =

(
I −K−1

II K̃
T
ΓI

0 I

)(
K−1
II 0

0 S̃−1
BDDC

)(
I 0

−K̃ΓIK
−1
II I

)
,

we obtain, by a direct computation, the alternative representation

M−1
D,BDDC-K =

(
K−1
II +K−1

II K̃
T
ΓIED,ΓS̃

−1
BDDCE

T
D,ΓK̃ΓIK

−1
II −K−1

II K̃
T
ΓIED,ΓS̃

−1
BDDCR̃D,Γ

−R̃TD,ΓS̃
−1
BDDCE

T
D,ΓK̃ΓIK

−1
II R̃TD,ΓS̃

−1
BDDCR̃D,Γ

)
.

Computing M−1
D,BDDC-KKg �nally yields

M−1
D,BDDC-KKg =

(
I U

0 M−1
D,BDDCSg

)
where U := K−1

II KIΓ − K−1
II K

T
ΓIR̃

T
D,ΓS̃

−1
BDDCR̃D,ΓSg, using that ED,Γ = R̃ΓR̃

T
D,Γ, and

KΓI = R̃TΓ K̃ΓI . Here, M−1
D,BDDC is the classic BDDC preconditioner for the Schur com-

plement; see (5.7). The result then follows from the fact, that the set of eigenvalues of a
block-triangular matrix equals the union of the sets of eigenvalues of the diagonal blocks.
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5.2 Approximate BDDC preconditioners

As mentioned in the introduction of this chapter, in general, di�erent approaches exist
of how to construct an approximate BDDC preconditioner. Speci�cally, all approximate
BDDC methods considered in this thesis are based on an approximate solution of the
coarse problem of BDDC, i.e., an approximation of the original coarse space is computed.
To ensure a simple and fair comparison between the di�erent methods, all approximate
preconditioners are implemented using the same software framework; see also [99, 101].
In the following, we will derive a common representation of approximate BDDC pre-

conditioners which can be generically used for all approaches considered in this thesis.
By a block factorization of the partially assembled matrix K̃−1, we obtain

K̃−1 =

(
K−1
BB 0
0 0

)
+

(
−K−1

BBK̃
T
ΠB

I

)
S̃−1

ΠΠ

(
−K̃ΠBK

−1
BB I

)
, (5.8)

where S̃ΠΠ is the primally assembled Schur complement; see also (3.8). In particular, the
matrix S̃ΠΠ represents the BDDC coarse operator or the coarse problem, respectively.
By replacing S̃−1

ΠΠ by an approximation Ŝ−1
ΠΠ in (5.8), we obtain an approximation for

K̃−1 by

K̂−1 =

(
K−1
BB 0
0 0

)
+

(
−K−1

BBK̃
T
ΠB

I

)
Ŝ−1

ΠΠ

(
−K̃ΠBK

−1
BB I

)
. (5.9)

As a next step, replacing K̃−1 in (5.4) by the approximated factorization of K̂−1, we can
de�ne a generic approximation to the BDDC preconditioner, i.e.,

M̂−1
BDDC-K :=

(
R̃TD −HPD

)
K̂−1

(
R̃D − P TDHT

)
. (5.10)

Thus, we basically obtain the approximate BDDC preconditioner M̂−1
BDDC-K by replacing

the solution of the coarse problem S̃−1
ΠΠ in M−1

D,BDDC-K by an approximate solution. The
concrete de�nition of the approximate BDDC preconditioner then exclusively depends
on the speci�c method which is used for the approximation of the coarse problem related
to S̃−1

ΠΠ.
For the remainder of this chapter, all approximate BDDC preconditioners are marked

with a hat. Moreover, to avoid a proliferation of notation, we will drop the additional
subindex '-K ' in M̂−1

BDDC-K for the approximate BDDC preconditioners since all presented
variants will be formulated as a preconditioner for the assembled system matrix Kg; see
also Section 5.1.
In the following sections, we compare three di�erent approaches to form Ŝ−1

ΠΠ:

a) using exact BDDC recursively forming a three-level BDDC method, denoted by
M̂−1

BDDC,3L;

b) using AMG to precondition S̃ΠΠ, denoted by M̂−1
BDDC,AMG;
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Γ
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Figure 5.1: Example of a three-level domain decomposition into 16 regular subdomains
(bottom) and 4 regular subregions (top). We mark in blue the interface Γ
between subdomains and in red the interface Γ between subregions. Primal
nodes Π on the third level are visualized as red circles, while primal nodes
Π on the second level are visualized as blue circles. Inner or dual nodes on
the third level, i.e., I or ∆, are visualized as green triangles or red squares,
respectively.

c) using an exact solution of a smaller vertex-based coarse space in combination with
a Jacobi/Gauss-Seidel method, denoted by M̂−1

BDDC,VB.

In Section 5.5, we will especially focus on a numerical comparison of the three-level
BDDC preconditioner M̂−1

BDDC,3L and the AMG-based approach de�ned by M̂−1
BDDC,AMG.

Additionally, we will further show some parallel results for the vertex-based precondi-
tioner M̂−1

BDDC,VB for completeness. Let us remark that M̂−1
BDDC,AMG was denoted M̂−1

3

in [101].

5.2.1 A three-level BDDC preconditioner

The main idea of the three-level BDDC method as proposed in [166�168] is to recursively
apply the exact BDDC preconditioner to the Schur complement matrix S̃ΠΠ and thus
forming a multilevel approach. Related methods have also been considered in [4, 131,
160, 161]. We therefore recursively introduce a further, i.e., a third level of the domain
decomposition of Ω into N nonoverlapping subregions Ω1, ...,ΩN . Each subregion then
comprises a given number of subdomains. On the subregion level, we have as many
degrees of freedom as we have primal variables on the subdomain level. All primal
variables Π on the subdomain level are then again partitioned into interior, primal, and
dual variables, denoted by I,Π, and ∆, with respect to the subregions; see also Fig. 5.1
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5.2 Approximate BDDC preconditioners

for a possible selection in two dimensions. Now, in principle, the subdomains take over
the role of �nite elements on the third level and the subregions the role of the subdomains.
In particular, this means that the basis functions of the third level are the coarse basis
functions of the second level, localized to the subregions.
Let us note that the three-level BDDC preconditioner in its original formulation

in [167, 168] is a preconditioner for the Schur complement system Sg. In [167, 168], the
BDDC formulation for the Schur complement system on the interface is used and applied
recursively. Here, we adopt this approach and formulate a corresponding preconditioner
for the fully assembled system matrix Kg. We thus use the alternative formulation of
the exact BDDC preconditioner for the assembled system in Section 5.1 as a starting
point and apply this approach to form the third level. For the remainder of this chapter,
we mark all operators and spaces de�ned for the third level with bars, e.g., I represents
the interior variables of the third level, while I represent the respective variables on the
second level. Additionally, in Section 5.3, we derive the same condition number bound
as in [167,168] for the three-level BDDC method.
Let us now describe the application of BDDC to S̃ΠΠ in some more details. The

following presentation of the three-level BDDC method has already been published in a
slighlty modi�ed form in [103].
We �rst de�ne the global space V

h
, which is spanned by all coarse basis functions

of the second level and denote by W i, i = 1, ..., N the local spaces which are spanned
by the restrictions of the coarse basis functions to the subregions Ωi, i = 1, ..., N . The
product space W is now de�ned as W = W 1 × ...×WN .

Using local Schur complements S(i)
ΠΠ = K

(i)
ΠΠ − K

(i)
ΠBK

(i)−1
BB K

(i)T
ΠB on the subdomains

and the block matrix SΠΠ = diag(S
(1)
ΠΠ, ..., S

(N)
ΠΠ ), we can rede�ne the coarse problem as

S̃ΠΠ =
N∑
i=1

R
(i)T
Π S

(i)
ΠΠR

(i)
Π ,

where RT =
(
R(1)T , ..., R(N)T

)
and R(i) = diag

(
R

(i)
B , R

(i)
Π

)
, i = 1, ..., N . Alternatively,

we can perform this assembly process only on the subregions, i.e.,

Sj =

Nj∑
i=1

R
(i)T
Π S

(i)
ΠΠR

(i)
Π , ∀j = 1, ..., N, (5.11)

where Nj is the number of subdomains belonging to subregion Ωj . Obviously, S̃ΠΠ takes
over the role of Kg on the third level, while Sj takes over the role of Ki. Consequently,
de�ning a prolongation R : V

h →W on the subregion level, we can also write

S̃ΠΠ = R
T
S R,

with S = diag(S1, ..., SN ).

As a next step, let us introduce the space W̃ ⊂ W of functions, which are continuous
in all primal variables Π on the third level, and the corresponding assembly operators
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5 BDDC with a three-level preconditioner as an approximate coarse space

qR
T

: W → W̃ and R̃
T

: W̃ → V
h
. Using qR, we can form the partially assembled system

on the subregion level

S̃ := qR
T
S qR. (5.12)

Adding scalings to the prolongations as before and thus de�ning R̃D : V
h → W̃ , we

obtain the BDDC preconditioner for the third level by

M
−1
BDDC :=

(
R̃
T

D −HPD
)
S̃
−1 (

R̃D − P
T
DH

T
)
. (5.13)

Here, the operator H : W̃ → V
h
is the discrete harmonic extension to the interior of the

subregions and writes

H :=

(
0 −

(
SII
)−1

S̃
T

ΓI

0 0

)
, (5.14)

with the blocks SII and S̃ΓI of the partially assembled matrix

S̃ =

(
SII S̃

T

ΓI

S̃ΓI S̃ΓΓ

)
, (5.15)

and the jump operator de�ned as PD := I − R̃R̃
T

D.
Now, by choosing Ŝ−1

ΠΠ := M
−1
BDDC as an approximation for S̃−1

ΠΠ in (5.9), we obtain

K̂−1
3L =

(
K−1
BB 0
0 0

)
+

(
−K−1

BBK̃
T
ΠB

I

)
M
−1
BDDC

(
−K̃ΠBK

−1
BB I

)
, (5.16)

and can formally de�ne the three-level BDDC preconditioner by

M̂−1
BDDC,3L :=

(
R̃TD −HPD

)
K̂−1
3L

(
R̃D − P TDHT

)
. (5.17)

With regard to an e�cient parallel implementation, let us note that instead of inverting
S̃ in (5.13) directly, we again can use a block factorization

S̃
−1

=

(
S
−1
BB 0
0 0

)
+

(
−S−1

BBS̃
T

ΠB

I

)
T̃
−1

ΠΠ

(
−S̃ΠBS

−1
BB I

)
, (5.18)

where the primal Schur complement on the subregion level is de�ned by

T̃ΠΠ := S̃ΠΠ − S̃ΠBS
−1
BBS̃

T

ΠB.

Thus, using a three-level BDDC preconditioner, we can reduce the problem of solving
the coarse problem S̃ΠΠ directly in (5.8) to the solution of a smaller coarse problem

T̃ΠΠ on the subregion level. Note that the solution of the coarse problem is usually the
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5.2 Approximate BDDC preconditioners

bottleneck in a parallel implementation. In general, the dimension of T̃ΠΠ is much smaller
compared to the size of S̃ΠΠ (depending on the number of subdomains per subregion)
which increases the parallel scalabilty of the method signi�cantly.
To conclude this section let us note that, following [126, Theorem 1], the preconditioned

systemM
−1
BDDCS̃ΠΠ on the subregion level has the same eigenvalues as R̃

T

D,ΓT̃
−1

ΓΓR̃D,ΓT̃ΓΓ

except for some eigenvalues equal to one. Here, we have the Schur complement T̃ΓΓ of

S̃ΠΠ on the interface of the subregions, the primally assembled Schur complement T̃ΓΓ of

S̃ on the interface of the subregions, and the splitting R̃D = diag(II R̃D,Γ). Therefore,
we can use the condition number estimates provided in [167,168] as in Section 5.3.

5.2.2 BDDC with an AMG-based coarse preconditioner

As a second approximate BDDC approach, we brie�y describe a BDDC method which
uses an AMG-based preconditioner for the solution of the coarse problem S̃ΠΠ. The
resulting BDDC preconditioner has already been introduced in [101], where the authors
have compared several linear and nonlinear BDDC variants using AMG-based approxi-
mations of the coarse space. Since we numerically compare the respective AMG-based
preconditioner with the previously introduced three-level BDDC method in Section 5.5,
we also include a brief description of the linear BDDC method with an AMG-based
preconditioner for completeness.
Generally speaking, algebraic as well as geometric multigrid methods are based on

de�ning a hierarchy of coarser grids or levels and restricting the considered linear system
of PDEs to each of them. Then, by de�ning appropriate smoothing or relaxation schemes
for each level as well as restriction and interpolation operators between the neighboring
levels, a mathematical relation between the di�erent levels is established. Finally, the
considered system is solved only on the coarsest level, which is usually small and therefore
computationally e�cient. The solution of the coarse grid is then interpolated back to
the original grid using the de�ned prolongation operators as well as some smoothing
operators to correct the error of the interpolated solution. Such an iteration, i.e., starting
at the original grid as well as terminating at the original grid with the interpolated and
smoothed solution which has been computed at the coarse grid, is referred to as a V-cycle
in the context of multigrid methods. In AMG-based methods, other than in geometric
multigrid methods, the coarsening is performed without using any geometrical or mesh-
related information but by exclusively considering the entries of the respective system
matrix. Since a more detailed description of AMG methods is beyond the scope of this
thesis, we refer to, e.g., [152, 164] for more details on AMG methods. Additionally,
for a detailed description of the application of AMG for systems of PDEs, we refer
to [120, Chap. 4].
For a mathematical description of the approximate BDDC method using AMG, let

us denote the application of a �xed number of V-cycles of an AMG method to S̃ΠΠ

by M−1
AMG. By choosing M−1

AMG in (5.9) as an approximation of S̃ΠΠ, i.e., by choosing
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5 BDDC with a three-level preconditioner as an approximate coarse space

Ŝ−1
ΠΠ := M−1

AMG, we obtain

K̂−1
AMG =

(
K−1
BB 0
0 0

)
+

(
−K−1

BBK̃
T
ΠB

I

)
M−1

AMG

(
−K̃ΠBK

−1
BB I

)
. (5.19)

Again, by using K̂−1
AMG as an approximation for K̃−1 in (5.10), we obtain the inexact

reduced preconditioner M̂−1
BDDC,AMG.

5.2.3 A vertex-based BDDC preconditioner

As third and last approximate BDDC method considered in this thesis, we brie�y de-
scribe a vertex-based preconditioner for the coarse problem, as introduced by Dohrmann,
Pierson, and Widlund [40, 41], in our framework. As already de�ned at the beginning
of Section 5.2, we denote this approach by M̂−1

BDDC,VB. Here, the preconditioner for
the coarse problem can be interpreted as a standard two-level additive or multiplicative
Schwarz algorithm. In particular, the direct solution of the coarse problem S̃−1

ΠΠ is re-
placed by a preconditioner M−1

VB based on a smaller vertex-based coarse space. This can
reduce the memory and computational requirements of the method signi�cantly.
Even though the use of a standard vertex coarse space has similar memory bene�ts, it

was shown early in the history of FETI-DP and BDDC, that vertex nodes alone as coarse
nodes do not give us competitive algorithms [51,111]; cf. also the respective explanations
in Sections 3.2.2 and 3.3.2 on classic coarse spaces. As a remedy, the classic FETI-DP
or BDDC coarse spaces are usually enhanced by additional (weighted) average values
over certain equivalence classes, i.e., edges and/or faces. Taking this observation as a
starting point, the basic idea of the coarse component of the preconditioner M−1

VB is to
approximate the averages over edges or faces using adjacent vertex values. This technique
allows to delay the point, i.e., the bottleneck, when a new level has to be introduced and,
in a multilevel context, may help to reduce the number of levels.
For a mathematical description of this technique, we denote the vertex-based coarse

space by W̃Ψ and the original coarse space by W̃Π. Then, as in [41], we de�ne Ψ : W̃Ψ →
W̃Π as the coarse interpolant between the coarse space based on vertices and the original
coarse space based on certain equivalence classes. It is important that the coarse basis
functions of W̃Ψ, i.e., the columns of Ψ, provide a partition of unity in the original coarse
space W̃Π. This is, e.g., ful�lled for the following de�nition of Ψ as suggested in [41]. Let
us �rst assume that W̃Π consists of edge averages only. Then, each row of Ψ corresponds
to a single edge constraint and has, in the case of an inner edge, two entries of 1/2 in the
two columns corresponding to the two vertices located at the endpoints of the edge. All
other entries of the row are zero. In case of an edge touching the Dirichlet boundary with
one endpoint, the corresponding row has a single entry of 1 in the column corresponding
to the vertex located at the other end of the edge. Completely analogously, a partition
of unity can also be formed for coarse spaces W̃Π consisting of face constraints.
Again as in [41], we de�ne S̃ΠΠ,r := ΨT S̃ΠΠΨ as the reduced coarse matrix. Note

that the number of rows and columns of S̃ΠΠ,r equals the number of vertices for scalar
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5.3 Condition number bounds

problems. The preconditioner M−1
VB for the coarse matrix S̃ΠΠ is then given as

M−1
VB = ΨS̃−1

ΠΠ,rΨ
T + GS(S̃ΠΠ), (5.20)

where GS denotes the application of a Gauss-Seidel preconditioner. In particular, M−1
VB

can be interpreted as a Gauss-Seidel preconditioner with an additive coarse correction.
Let us note that in [41], only edge averages or only face averages are used which are

each reduced to vertex-based coarse spaces as described above. In general, also the
combination of vertices, edge, and face averages as coarse components can be considered
and can be reduced to an exclusively vertex-based coarse space.
Eventually, we can formally de�ne the vertex-based approximate BDDC preconditioner

by choosing Ŝ−1
ΠΠ := M−1

VB as an approximation for S̃−1
ΠΠ in (5.9). We then obtain the

approximation K̂−1
VB of K̃−1 as

K̂−1
VB =

(
K−1
BB 0
0 0

)
+

(
−K−1

BBK̃
T
ΠB

I

)
M−1

VB

(
−K̃ΠBK

−1
BB I

)
, (5.21)

and �nally
M̂−1

BDDC,VB =
(
R̃TD −HPD

)
K̂−1
VB

(
R̃D − P TDHT

)
; (5.22)

using the notation from (5.10); see also [41].

5.3 Condition number bounds

In this section, we will derive speci�c condition number bounds for all three approximate
BDDC coarse spaces presented in Section 5.2. To further provide a common framework
we will �rst prove a generic condition number bound for the approximate BDDC pre-
conditioner M̂−1

BDDC-K as de�ned in (5.10) and, in a second step, explicitly examine the
generic constants to obtain speci�c upper bounds for the three considered approximate
BDDC variants. The following theory and related proofs have already been published by
the author of this thesis and her coauthors in [103].
First, we need to make two assumptions, which are equivalent to Assumptions 1 and

2 in [126].

Assumption 1. For the averaging operator ED,2 := R̃(R̃TD −HPD) we have

|ED,2w|2K̃ ≤ Φ(H,h)|w|2
K̃
∀w ∈ W̃ ,

with Φ(H,h) being a function of the mesh size h and the subdomain diameter H.

Under Assumption 1, the condition number of the exactly preconditioned system is
bounded by

κ(M−1
BDDC-KKg) ≤ Φ(H,h); (5.23)

see, e.g., Theorem 3 in [126].
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5 BDDC with a three-level preconditioner as an approximate coarse space

If appropriate primal constraints, e.g., edge averages and vertex constraints, are cho-
sen, we obtain the condition number bound with Φ(H,h) = C(1 + log(H/h))2 for our
homogeneous linear elasticity test case in Section 5.5 as well as for homogeneous sta-
tionary di�usion problems; see also Section 3.3.2 for a corresponding statement for the
original formulation of the exact BDDC preconditioner for the Schur complement sys-
tem as well as the proof at the end of Section 5.1 for a direct relation between the two
variants.
Additionally, we need a second assumption which establishes a connection between the

primally assembled system matrix K̃ and its approximate variant K̂.

Assumption 2. There are positive constants c̃ and C̃, which might depend on h and H,

such that

c̃uT K̃u ≤ uT K̂u ≤ C̃uT K̃u ∀u ∈ W̃ .

Using the two assumptions above, we can now prove the following Theorem 5.1 for
the preconditioned operator M̂−1

BDDC-KKg, where M̂−1
BDDC-K is the approximate BDDC

preconditioner for the fully assembled system; cf. also (5.10). In the proof, we basically
follow the arguments in the proof of Theorem 4 in [126], but here, we use exact discrete
harmonic extension operators, i.e., an exact ED,2. This is in contrast to Theorem 4
in [126], where inexact discrete harmonic extensions are used, which is not necessary in
our case. Although large parts of the proof are identical, we recapitulate the complete
line of arguments for the convenience of the reader.

Theorem 5.1. Let Assumptions 1 and 2 hold. Then, the preconditioned system operator

M̂−1
BDDC-K

Kg is symmetric, positive de�nite with respect to the bilinear form 〈·, ·〉Kg
and

we have

1

C̃
〈u, u〉Kg ≤ 〈M̂−1

BDDC-K
Kgu, u〉Kg ≤

Φ(H,h)

c̃
〈u, u〉Kg ∀u ∈ V h.

Therefore, we obtain the condition number bound κ(M̂−1
BDDC-K

Kg) ≤ C̃
c̃ Φ(H,h) for the

approximate BDDC preconditioner M̂−1
BDDC-K

as de�ned in (5.10).

Proof. Let u ∈ V h be given. We de�ne

w = K̂−1(R̃D − P TDHT )Kgu ∈ W̃ (5.24)

and thus also have
K̂w = (R̃D − P TDHT )Kgu.

Using R̃T R̃D = I, yields R̃TP TD = R̃T (I − R̃DR̃T ) = 0 and thus range(P TD) ⊂ null(R̃T ).
Hence, we obtain

〈u, u〉Kg = uT R̃T (R̃D − P TDHT )Kgu = uT R̃T K̂w = 〈w, R̃u〉
K̂
. (5.25)
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Using the Cauchy-Schwarz inequality and Assumption 2, we can further estimate

〈w, R̃u〉
K̂
≤ 〈w,w〉1/2

K̂
〈R̃u, R̃u〉1/2

K̂

Asm. 2
≤

√
C̃〈w,w〉1/2

K̂
〈R̃u, R̃u〉1/2

K̃

(5.2)
=

√
C̃〈w,w〉1/2

K̂
〈u, u〉1/2Kg

. (5.26)

Combining equations (5.25) and (5.26), we have 〈u, u〉Kg ≤ C̃〈w,w〉K̂ . Using (5.24) and
(5.10), we can prove the lower bound:

1

C̃
〈u, u〉Kg ≤ 〈w,w〉

K̂

(5.24)
= uTKg(R̃

T
D −HPD)K̂−1K̂K̂−1(R̃D − P TDHT )Kg)u

= 〈u, (R̃TD −HPD)K̂−1(R̃D − P TDHT )Kgu〉Kg

(5.10)
= 〈u, M̂−1

BDDC-KKgu〉Kg . (5.27)

Let us now prove the upper bound using Assumption 1, (5.24), and (5.10):

〈M̂−1
BDDC-KKgu, M̂

−1
BDDC-KKgu〉Kg = 〈(R̃TD −HPD)w, (R̃TD −HPD)w〉Kg

= 〈R̃(R̃TD −HPD)w, R̃(R̃TD −HPD)w〉
K̃

= 〈ED,2w,ED,2w〉K̃ = |ED,2w|2K̃
Asm.1
≤ Φ(H,h)|w|2

K̃
. (5.28)

Together with Assumption 2, we obtain

〈M̂−1
BDDC-KKgu, M̂

−1
BDDC-KKgu〉Kg

(5.28)

≤ Φ(H,h)|w|2
K̃

Asm.2
≤ 1

c̃
Φ(H,h)|w|2

K̂

(5.27)
=

1

c̃
Φ(H,h)〈u, M̂−1

BDDC-KKgu〉Kg . (5.29)

Using a Cauchy-Schwarz inequality in combination with (5.29), we �nally obtain

〈u, M̂−1
BDDC-KKgu〉Kg ≤

Φ(H,h)

c̃
〈u, u〉Kg .

Let us recall from Section 5.2 that, for the preconditioners considered here, we re-
place the inverse operator of the Schur complement in the primal variables S̃−1

ΠΠ by an
approximation Ŝ−1

ΠΠ. Therefore, we have to show that Assumption 2 used in the proof of
Theorem 5.1 is still relevant and holds under certain assumptions.
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5 BDDC with a three-level preconditioner as an approximate coarse space

Assumption 3. There are positive constants ĉ and Ĉ, which might depend on h and H,

such that

ĉũTΠS̃ΠΠũΠ ≤ ũTΠŜΠΠũΠ ≤ ĈũTΠS̃ΠΠũΠ ∀ũΠ ∈ W̃Π.

Using Assumption 3, we can now prove the following lemma.

Lemma 5.2. Let Assumption 3 hold and K̂−1 be de�ned as in (5.9). Then, Assumption 2
holds with c̃ := min(ĉ, 1) and C̃ := max(Ĉ, 1).

Proof. We �rst split K̂−1 = A1 +A2 into its two additive parts

A1 :=

(
K−1
BB 0
0 0

)
and

A2 :=

(
−K−1

BBK̃
T
ΠB

I

)
Ŝ−1

ΠΠ

(
−K̃ΠBK

−1
BB I

)
;

cf. also (5.9). Computing the product A1K̃ then yields

A1K̃ =

(
K−1
BB 0
0 0

)(
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

)
=

(
I K−1

BBK̃
T
ΠB

0 0

)
. (5.30)

Simultaneously, by a direct computation, we obtain

A2K̃ =

(
−K−1

BBK̃
T
ΠB

I

)
Ŝ−1

ΠΠ

(
−K̃ΠBK

−1
BB I

)( KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

)

=

(
−K−1

BBK̃
T
ΠB

I

)
Ŝ−1

ΠΠ

(
0 S̃ΠΠ

)
=

(
−K−1

BBK̃
T
ΠB

I

)(
0 Ŝ−1

ΠΠS̃ΠΠ

)
=

(
0 −K−1

BBK̃
T
ΠBŜ

−1
ΠΠS̃ΠΠ

0 Ŝ−1
ΠΠS̃ΠΠ

)
. (5.31)

Adding (5.30) and (5.31) yields the �nal result

K̂−1K̃ =

(
I G

0 Ŝ−1
ΠΠS̃ΠΠ

)
with G := K−1

BBK̃
T
ΠB(I − Ŝ−1

ΠΠS̃ΠΠ).
Therefore, except for additional eigenvalues equal to one, K̂−1K̃ and Ŝ−1

ΠΠS̃ΠΠ have the

same spectrum, and we have λmin(K̂−1K̃) = min
(
λmin(Ŝ−1

ΠΠS̃ΠΠ), 1
)
and λmax(K̂−1K̃) =

max
(
λmax(Ŝ−1

ΠΠS̃ΠΠ), 1
)
. Consequently, Assumption 2 holds with c̃ := min(ĉ, 1) and

C̃ := max(Ĉ, 1).
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In the following subsections, we will explicitly specify the constants c̃ and C̃ in Theo-
rem 5.1 as well as ĉ and Ĉ in Lemma 5.2, respectively, for the three considered approxi-
mate BDDC methods as introduced in Section 5.2.

5.3.1 Three-level BDDC

For the three-level BDDC preconditioner M̂−1
BDDC,3L (see Section 5.2.1) we obtain, with

Lemma 4.6 in [168] in two spatial dimensions and Lemma 4.7 in [167] in three spatial
dimensions,

ĉ =
1

C3L

(
1 + log( ĤH )

)2

and
Ĉ = 1

for the constants ĉ and Ĉ in Assumption 3. Here, Ĥ is the maximum diameter of a
subregion and of course, depending on the considered problem and the dimension of the
domain, su�cient primal constraints on the second level have to be chosen; see [167,168]
and the discussion at the end of this chapter. Let us note that the results in [167, 168]
are only proven for scalar di�usion problems. To the best of our knowledge, an extension
to linear elasticity problems has not been published so far and might still be an open
problem. Using Lemma 5.2 and Theorem 5.1, we obtain, for scalar elliptic problems, the
following condition number bound for the three-level BDDC preconditioner M̂−1

BDDC,3L:

κ(M̂−1
BDDC,3LKg) ≤

C̃

c̃
Φ(H,h) = C3L

(
1 + log

(
Ĥ

H

))2

Φ(H,h); (5.32)

see also [167,168].

5.3.2 Approximate BDDC using AMG

For the preconditioner M̂−1
BDDC,AMG based on AMG (see Section 5.2.2), we �nd that the

constants Ĉ and ĉ in Assumption 3 depend on the properties of the AMG V-cycle used.
Therefore, without de�ning further details on the chosen AMG V-cycle, we obtain the
general condition number bound for the approximate BDDC preconditioner M̂−1

BDDC,AMG

based on AMG:

κ(M̂−1
BDDC,AMGKg) ≤

C̃

c̃
Φ(H,h) =

max(Ĉ, 1)

min(ĉ, 1)
Φ(H,h). (5.33)

Our aim is, of course, to obtain good constants c̃, C̃ and ĉ, Ĉ, respectively, to ensure a
small condition number bound and thus a fast convergence of the approximate BDDC
method.
In general, it is well-known that, especially for sophisticated linear elasticity prob-

lems, problem-related and customized AMG variants can improve the performance sig-
ni�cantly. Classic AMG methods are designed for scalar elliptic PDEs and assume that
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5 BDDC with a three-level preconditioner as an approximate coarse space

the null space of the discretized operator only consists of constant vectors. However,
as already explained in Section 3.2.1, this assumption does not hold for linear elasticity
problems where the null space contains the rigid body modes, i.e., also linear rotations.
Thus, several approaches have been considered to handle linear elasticity problems with
AMG. One of these approaches, which we also use in our parallel implementation, is the
global matrix approach [6]. The main idea of this method is to interpolate near null
space vectors exactly. This can help to improve the scalability and performance of AMG
methods for elasticity problems signi�cantly; see also [6]. More details on the global
matrix approach to obtain good constants in (5.33) will be given in Section 5.3.4.

5.3.3 Vertex-based BDDC

For the vertex-based BDDC preconditioner M̂−1
BDDC,VB (see Section 5.2.3) we obtain,

with Theorem 3 in [41] for edge-based or face-based coarse spaces and quasi-monotone
face-connected paths,

ĉ ≥ 1

C1
, max(Ĉ, 1) ≤ CC

and

Φ(H,h) = C

(
1 + log

(
H

h

))2

;

see [41, Theorem 3]. Here, CC is obtained by a coloring argument and therefore usually
ful�lls CC ≥ 1. The constant C1 depends on geometric constants, e.g., the maximum
number of subdomains connected by an edge (see [41, Lemma 2]), the maximum number
of neighbors of a subdomain (see [41, Eq. (4.3)]), or typical subdomain sizes (see [41,
Assumption 3]). Additionally, C1 depends on a tolerance for the lowest coe�cient along
an acceptable path; see [41, Assumption 1 and 2]; cf. also [116]. The results in [41]
are proven for scalar di�usion and linear elasticity problems. Altogether, with another
constant CV B, we obtain

max(Ĉ, 1)

min(ĉ, 1)
≤ CV B;

see also [41, Theorem 1 and 3] where ĉ = β1 and Ĉ = β2 for the constants β1 and β2

used in [41]. Typically, we have C1 ≥ 1, and we can then de�ne CV B = C1 · CC . Using
Theorem 5.1, we thus obtain the following condition number bound for the vertex-based
preconditioner M̂−1

BDDC,VB:

κ(M̂−1
BDDC,VBKg) ≤

C̃

c̃
Φ(H,h) ≤ CV BΦ(H,h); (5.34)

see also [41, Theorem 3].

5.3.4 The global matrix approach

As already mentioned in Section 5.3.2, good constants c̃, C̃ in Assumption 2 or, respec-
tively, ĉ, Ĉ in Assumption 3, are important for a small condition number bound and
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therefore a fast convergence of the approximate BDDC method. It is well known that for
a good scalability of multigrid methods the preconditioner should preserve the null space
or near null space vectors of the operator of the considered PDE. Therefore, the AMG
method should preserve the null space of the operator on all levels and this, in turn,
means that the null space vectors have to be in the range of the AMG interpolation. In
general, classic AMG methods guarantee this property only for constant vectors, i.e., for
the null space of scalar elliptic di�erential equations. Thus, di�erent modi�ed approaches
of classic AMG have been developed to handle linear elasticity problems. One of these
methods is the global matrix (GM) approach, which was originally introduced in [6].
The GM approach allows the user to specify certain near null space vectors, which are
interpolated exactly from the coarsest to the �nest level; more details on the method
and its scalability for linear elasticity problems can be found in, e.g., [5, 6]. Since we
are interested in the solution of linear elasticity problems in Section 5.5, we implement
the GM approach and choose the rotational rigid body modes for the exact interpola-
tion. All translations of the computational domain are already interpolated exactly in
classic AMG approaches for systems of PDEs since they use classic interpolation applied
component-by-component. In M̂−1

BDDC,AMG, the AMG method is applied to the primally

assembled matrix S̃ΠΠ and thus we need to include the three rotations in the space
W̃Π, which is the restriction of W̃ to the primal constraints. To achieve this, we �rst
assemble the rotations of a subdomain Ωi locally, extract the primal components, and
�nally insert them into three global vectors in W̃Π. In our implementation, we always
use BoomerAMG from the HYPRE package [80], where a highly scalable implementation
of the GM2 approach is implemented; see [5] for more details on two di�erent variants
how to implement the GM approach, which are named GM1 and GM2. Let us remark
that BoomerAMG provides both variants of interpolation, and GM2 is recommended
for use instead of GM1. In [5], the GM2 variant also showed a better scalability than
GM1. In Section 5.5, we will compare the use of the GM2 approach with a hybrid AMG
approach for systems of PDEs. By hybrid AMG approaches we refer to methods, where
the coarsening is based on the physical nodes (nodal coarsening) but the interpolation is
based on the degrees of freedom. In general, a nodal coarsening approach is bene�cial for
the solution of systems of PDEs, and all degrees of freedom belonging to the same physi-
cal node are either all coarse or �ne on each level. The latter condition is also mandatory
for the GM2 approach. Therefore, GM2 is based on the same nodal coarsening and can
also be considered as a hybrid approach.

5.4 Parallel implementation details of approximate BDDC

coarse spaces

As already mentioned, the three approximate BDDC variants which we have introduced
in Section 5.2 are implemented in the same parallel software framework and using the
same building blocks. Our parallel software is implemented in C/C++ using PETSc ver-
sion 3.9.2 [10] (for the presented results) and MPI [65,158]. All matrices are implemented
as completely local to the computational cores. For the assembly and prolongation op-

61



5 BDDC with a three-level preconditioner as an approximate coarse space

erators between the di�erent solution spaces, we use PETSc VecScatter and VecGather

operations. A more detailed description of the parallel data structures of our imple-
mentation of the BDDC preconditioner can be found in [101], where di�erent linear and
nonlinear BDDC methods are applied to hyperelasticity and elasto-plasticity problems.
Let us describe some more details on the implementation of the di�erent precondition-

ers for the coarse problem since this is the main di�erence between the various approxi-
mate BDDC coarse spaces. In general, the coarse problem S̃ΠΠ is always assembled on a
subset of the available cores. The number of cores can, in principle, be chosen arbitrarily
and should depend on the size of the coarse problem to obtain a good performance. The
three-level BDDC preconditioner as well as BoomerAMG for the preconditioning based
on AMG can be applied to S̃ΠΠ in parallel. For the exact BDDC preconditioner, which
we always include in our computations to provide a common baseline, a sequential copy
of S̃ΠΠ is sent to each computational core where a sparse direct solver is applied. Thus,
the coarse problem is solved redundantly on all cores. Alternatively, one could just create
a single sequential copy on a single core without signi�cantly changing the expected time
to solution.
For the construction of the vertex-based preconditioner M̂−1

BDDC,VB, we always build Ψ

and S̃ΠΠ as parallel matrices on the same subset of cores and compute a parallel Galerkin
product to compute S̃ΠΠ,r := ΨT S̃ΠΠΨ. Afterwards, we create sequential copies of S̃ΠΠ

and S̃ΠΠ,r := ΨT S̃ΠΠΨ in order to perform a redundant sparse factorization of S̃ΠΠ,r and
a redundant, i.e., a sequential Gauss-Seidel iteration for S̃ΠΠ. When using a sequential
Gauss-Seidel implementation to construct M̂−1

BDDC,VB, for simplicity, we also create a
sequential copy of Ψ. In principle, this could also be avoided by slight modi�cations of
our implementation.
For the second implemented variant of M̂−1

BDDC,VB using PETSc's parallel SOR/Gauss-
Seidel implementation, no sequential copies of Ψ are created. Let us note that the parallel
SOR/Gauss-Seidel implementation in PETSc is in fact a block Jacobi preconditioner in
between the local blocks associated with the di�erent MPI ranks and an SOR/Gauss-
Seidel preconditioner on the local blocks themselves. Consequently, its use can obviously
decrease the convergence rate of the method. As an advantage, however, we only have
to build a sequential copy of S̃ΠΠ,r, which is much smaller compared to S̃ΠΠ. The
matrices S̃ΠΠ and Ψ are then kept in a distributed fashion as described above. Let us
�nally remark that we can apply the Gauss-Seidel preconditioner additively as described
in (5.20) as well as multiplicatively, which is more robust. We will consider both variants
in Section 5.5.2.

5.5 Numerical results

In this section, we provide comparative results for the di�erent approximate BDDC
coarse spaces as presented in Section 5.2. The key focus of this section is on the numer-
ical investigation of the three-level BDDC preconditioner M̂−1

BDDC,3L. Let us note that

M̂−1
BDDC,3L can also be extended to a multilevel preconditioner by again applying the
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BDDC method recursively on the coarse problem of the subregion level; see, e.g., [4,131].
Since the AMG method applied in M̂−1

BDDC,AMG naturally consists of several levels, both
named approaches have a similar parallel potential. Thus, we show comparative numer-
ical results for M̂−1

BDDC,3L and M̂−1
BDDC,AMG in Section 5.5.1. We will observe that due

to the large coarsening ratio from the second to the coarsest level, both methods have a
large parallel potential.
For the vertex-based preconditioner M̂−1

BDDC,VB, the parallel scalability is limited by
construction, since the constructed vertex-based coarse space is always solved by a sparse
direct solver in our implementation; cf. also Section 5.4. Therefore, we analyze and
compare M̂−1

BDDC,VB separately in Section 5.5.2. Additionally, to provide a common
theoretical baseline for all considered approximate BDDC variants, we always include
the exact BDDC preconditioner M−1

BDDC in all �gures in Sections 5.5.1 and 5.5.2.
As a common test problem for the following numerical experiments, we use homoge-

neous linear elasticity problems, i.e., with constant coe�cients; see also Section 2.2. Since
the focus of this chapter lays on the parallel e�ciency, i.e., the scalability of the presented
approaches, here, we will not consider any heterogeneous coe�cient distributions. For
heterogeneous examples or other model problems than linear elasticity, we refer to [101]
for M̂−1

BDDC,AMG and to [41] for M̂−1
BDDC,VB.

All computations in this chapter are performed on the supercomputers magnitUDE
(University of Duisburg-Essen) or JUWELS (FZ Juelich). The results presented in the
following sections have already been published in [103].

5.5.1 Comparison of three-level BDDC and BDDC with AMG coarse
preconditioner

Let us now compare the three-level BDDC preconditioner M̂−1
BDDC,3L and the AMG-based

approximate BDDC preconditioner M̂−1
BDDC,AMG which are both based on a multilevel

structure. As the test problem, we consider a linear elastic cube decomposed into 512
subdomains with Young's modulus E = 210GPa and two di�erent Poisson ratios ν. For
the de�nition of a coarse space, we enforce continuity of the values at all subdomain
vertices and in all edge averages.
First, we verify the quadratic dependence of the condition number of both precondi-

tioners on the logarithm of H/h, which can be seen as a measure of the subdomain size,
in Fig. 5.2. From Fig. 5.2 (top) we can observe that with a Poisson ratio of ν = 0.3,
all methods show the expected logarithmic dependence of the condition number on the
subdomain size; cf. also Section 5.3. For all tested values of H/h the preconditioner
M̂−1

BDDC,AMG has slightly higher condition numbers than the three-level BDDC methods
and the exact BDDC preconditioner. In particular, we can see that it is useful to include
the GM approach in M̂−1

BDDC,AMG since this leads to smaller condition numbers. For

the three-level BDDC preconditioner M̂−1
BDDC,3L, both tested setups, i.e., 8 or 64 subdo-

mains per subregion, have nearly the same condition number. Additionally, as expected,
the condition numbers are slightly higher than for the exact, i.e., the two-level BDDC
preconditioner M−1

BDDC; cf. also Section 5.3.1.
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5 BDDC with a three-level preconditioner as an approximate coarse space

For the larger Poisson ratio of ν = 0.49 in Fig. 5.2 (bottom), the BDDC preconditioner
M̂−1

BDDC,AMG based on AMG has signi�cantly higher condition numbers than the compet-
ing methods, especially for small subdomain sizes. For larger subdomain sizes and using
the GM approach, M̂−1

BDDC,AMG is again competitive with three-level BDDC. In particu-

lar, we observe that M̂−1
BDDC,AMG for ν = 0.49 shows the logarithmic dependence of the

condition number only for H/h larger than 16. Let us remark that for M̂−1
BDDC,AMG, we

always use a highly scalable AMG setup, i.e., aggressive Hybrid Maximal Independent
Set (HMIS) coarsening [35], ext+ i long range interpolation [34, 172], nodal coarsening,
a threshold of 0.3 for the detection of strong couplings, and a maximum of three en-
tries per row in the AMG interpolation matrices. Less aggressive strategies might show
lower condition numbers, but we explicitly choose the parameters to obtain good parallel
scalability; see [5].
Second, we perform a weak scaling study for up to 4 096 cores in Fig. 5.3 for the same

setup as before with a Poisson ratio of ν = 0.3 but �xed H/h = 24. By considering the
number of CG iterations until convergence in Fig. 5.3 (top), we observe that the GM
approach is necessary in M̂−1

BDDC,AMG to obtain results of similar quality as for M̂−1
BDDC,3L.

The same can be observed considering the time to solution; see Fig. 5.3 (bottom). Here,
the reported time to solution is always the complete runtime measured for the respective
program to �nish. In particular, this includes the time for the assembly of the linear
system, the setup of the preconditioner, and the iterative solution of the preconditioned
system. Additionally, we provide more detailed timings in Fig. 5.4, where the assembly
of the sti�ness matrix, the BDDC setup, and the time for the iterative solution using
CG are shown separately for the largest experiment from Fig. 5.3. Finally, we note
from Fig. 5.3 that - as expected - the exact BDDC preconditioner does not scale due to
the sequential coarse solve of the relatively large coarse problem on the second level.

5.5.2 Vertex-based BDDC

For completeness, we have also implemented an �economic� variant of the edge-based
coarse space as introduced in [41, section 6]. This means that, in our implementation,
e.g., three translational degrees of freedom on edges are reduced to three translational
degrees of freedom of an adjacent vertex. In Fig. 5.5, we perform a weak scaling test for up
to 5 832 cores for the vertex-based preconditioner M̂−1

BDDC,VB for a similar model problem
as in Section 5.5.1, i.e., a homogeneous linear elasticity problem with a Poisson ratio of
ν = 0.3 and a Young's modulus of E = 210GPa. In Fig. 5.5 (top) and Fig. 5.5 (bottom),
respectively, we also provide the CG iterations and the time to solution for exact BDDC
and M̂−1

BDDC,AMG using GM for a direct comparison with M̂−1
BDDC,VB. Additionally, we

present more detailed timings in Fig. 5.6, where the time for the assembly of the sti�ness
matrix, the BDDC setup, and the time for the iterative solution of the preconditioned
system are shown separately for the largest experiment from Fig. 5.5. As we can observe
from Fig. 5.5 and Fig. 5.6, for M̂−1

BDDC,VB, a multiplicative combination of Gauss-Seidel

applied to S̃ΠΠ and the direct solve of the vertex-based coarse problem is a better choice
than an additive variant. The parallel Gauss-Seidel method, which - as implemented
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Figure 5.2: Condition number estimates of M−1
BDDC, M̂

−1
BDDC,3L with 8 or 64 subregions,

and M̂−1
BDDC,AMG with and without GM for a homogeneous linear elastic cube

decomposed into 512 subdomains with H/h = 4, 6, ..., 26. Top: E = 210.0
and ν = 0.3. Bottom: E = 210.0 and ν = 0.49. Computed on the
magnitUDE supercomputer. The shown results have already been published
in [103].
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Figure 5.3: Weak scaling study for M−1
BDDC, M̂

−1
BDDC,3L with 8 or 64 subregions, and

M̂−1
BDDC,AMG with and without GM. Using vertex and edge constraints. Ho-

mogeneous linear elastic cube decomposed into 64, 512, and 4 096 subdomains
with H/h = 24. Top: Number of CG iterations. Bottom: Total time to
solution including assembly of sti�ness matrices, setup of the preconditioner
and solution phase. See also Fig. 5.4 for detailed setup and solve times for the
largest experiment. Computed on JUWELS. The shown results have already
been published in [103].
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Figure 5.4: Comparison of BDDC setup and solve times of M−1
BDDC, M̂

−1
BDDC,3L with 8

or 64 subregions, and M̂−1
BDDC,AMG with and without GM. Using vertex and

edge constraints. Homogeneous linear elastic cube decomposed into 4 096
subdomains with H/h = 24. The corresponding weak scaling experiment can
be found in Fig. 5.3. Computed on JUWELS. The shown results have already
been published in [103].

in PETSc - is in fact a block Jacobi with SOR/Gauss-Seidel blocks, always results in
more CG iterations but faster runtimes. With respect to parallel scalability, the best
variant of M̂−1

BDDC,VB is competitive with M̂−1
BDDC,AMG, at least up to the moderate core

count of 5 832. For an increasing number of cores, we expect M̂−1
BDDC, AMG to outperform

M̂−1
BDDC,VB due to its inherent multilevel structure. Here, a three-level extension of

M̂−1
BDDC,VB would be needed. Alternatively, M̂−1

BDDC,VB could be used to precondition
the coarsest level of a three-level BDDC method. These ideas will be further discussed
in the conclusion of this chapter.

5.5.3 Summarizing remarks

In this chapter, we have presented three di�erent approaches of approximate BDDC
coarse spaces and compared them with respect to theory and parallel scalability in a
common framework. From the numerical experiments presented above we can observe
that the three-level BDDC preconditioner M̂−1

BDDC,3L and the approximate preconditioner

M̂−1
BDDC,AMG based on AMG show a very similar behavior and parallel scalability, given

that an appropriate AMG approach is available, e.g., the GM approach in the case of
linear elasticity problems. Thus, with regard to the aim to increase the parallel scalability
of the iterative solver, both methods can be recommended as an alternative of the classic,
i.e., two-level BDDCmethod. However, as expected, both approaches also result in higher
condition number estimates and thus in a higher number of necessary CG iterations as
the two-level BDDC method.
Additionally, up to a moderate number of compute cores, also the vertex-based BDDC
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Figure 5.5: Weak scaling study for M−1
BDDC, M̂

−1
BDDC,VB using additive/multiplicative se-

quential/parallel Gauss-Seidel, and M̂−1
BDDC,AMG with GM. Using only edge

constraints. Homogeneous linear elastic cube with H/h = 22. Top: Num-
ber of CG iterations. Bottom: Total time to solution including assembly
of sti�ness matrices, setup of the preconditioner and solution phase. See
also Fig. 5.6 for detailed setup and solve times for the largest experiment.
Computed on the magnitUDE supercomputer. The shown results have al-
ready been published in [103].
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Figure 5.6: Comparison of BDDC setup and solve times of M−1
BDDC, M̂

−1
BDDC,VB with dif-

ferent Gauss-Seidel setups, and M̂−1
BDDC,AMG with GM. Using edge transla-

tions as constraints. Homogeneous linear elastic cube decomposed into 5 832
subdomains with H/h = 22. The corresponding weak scaling experiment can
be found in Fig. 5.5. Computed on magnitUDE supercomputer. The shown
results have already been published in [103].

preconditioner M̂−1
BDDC,VB can be an adequate alternative to the classic two-level BDDC

method. An advantage of M̂−1
BDDC,VB is the fact that neither a further decomposition

into subregions is necessary nor an appropriate AMG method has to be chosen. On the
other hand, the parallel potential of M̂−1

BDDC,VB as a two-level method is limited. For a

larger number of subdomains, a three-level extension of M̂−1
BDDC,VB would be necessary,

which is, to the best of our knowledge, not available yet. Another possible extension of
M̂−1

BDDC,VB could be to combine it with the recursive structure of the three-level BDDC
approach and to compute a vertex-based coarse space on the coarsest level of a three-level
BDDC method. A numerical investigation of such a combined method, especially with
regards to parallel scalability, is still a topic of future research.
To conclude this section, let us note that the presented approximate BDDC methods

are not expected to be robust for completely arbitrary coe�cient distributions. Similar
as for the classic BDDC method, we expect the condition numbers to deteriorate for
high contrasts in the coe�cient function or the material distribution of the considered
model problem; see, e.g., [101] for M̂−1

BDDC,AMG and [41] for M̂−1
BDDC,VB. To further im-

prove the robustness of the considered approaches while preserving the advanced parallel
scalability, for instance, multilevel adaptive methods have been proposed for the BDDC
method [160, 161]. These approaches combine the computation of an adaptive, i.e., a
problem-dependent coarse space (see also Section 3.5) with the bene�ts of a multilevel
method to increase the parallel potential. Furthermore, we propose to combine our
three-level BDDC implementation with the frugal coarse space which will be presented
in Chapter 6.
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coarse space

As we have elaborated in the introduction and in Chapter 3, both the FETI-DP and the
BDDC method obtain their robustness and parallel scalability from an appropriate coarse
space, i.e., a second level. As we have seen in Sections 3.2.2 and 3.3.2, classic coarse
spaces which are constructed by simply sub-assembling the system in selected primal
variables using geometric information only guarantee a robust condition number estimate
under certain restrictive assumptions on the coe�cient function of the considered PDE.
For more general and arbitrary coe�cient functions with jumps along and across the
interface, the classic condition number bounds do not hold anymore and the convergence
behavior of the respective methods usually deteriorates.
In Section 3.5, we have introduced a very speci�c adaptive FETI-DP coarse space which

relies on the solution of certain local generalized eigenvalue problems and uses selected
eigenvectors to enhance the coarse space. By including these adaptive, i.e., problem-
dependent constraints, the resulting algorithm is again robust with respect to highly
heterogeneous coe�cient functions for both, stationary di�usion and linear elasticity
problems. In particular, we can prove a contrast-independent condition number estimate;
cf. Section 3.5.2. However, as a drawback, in a parallel implementation the setup and the
solution of the eigenvalue problems take up a signi�cant amount of time of the entire time
to solution. Additionally, for many realistic coe�cient distributions, only a small number
of the eigenvalue problems is actually necessary for robustness since for many edges and
faces, only a single or a small number of constraints is necessary; see also Section 3.6 for
a related discussion.
In this section, we propose a di�erent and more heuristic coarse space. In principle,

we aim to compute a low-dimensional approximation of the adaptive coarse space de-
scribed in Section 3.5 by constructing generalized weighted averages along edges and
faces of the domain decomposition. The resulting coarse space is supposed to be compu-
tationally inexpensive and robust for a broad range of di�erent model problems. Earlier
works [68,69,118] showed that heuristic coarse spaces, which approximate adaptive coarse
spaces and do not require the solution of local generalized eigenvalue problems, can be
constructed for overlapping Schwarz domain decomposition methods. Further approaches
to design nonoverlapping domain decomposition methods which are robust for a broader
range of coe�cient distributions are presented in [2], where the domain is decomposed
based on the coe�cient distribution, and in [11], where deluxe scaling is introduced to
obtain a more robust BDDC or FETI-DP method. In [58, 59], a robust coarse space for
almost incompressible elasticity problems for the FETI-DP method is suggested.
Here, we construct constraints in a similar approach. We denote the proposed coarse
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space as a frugal approach due to the fact that the computed constraints do not require
the solution of any eigenvalue problems or the explicit computation of Schur comple-
ments and are thus computationally very cheap. Let us note that the new frugal coarse
space (FR) can be interpreted as a generalization of the weighted edge averages suggested
in [111, Sect. 7, p.1412]; cf. also Section 3.4. In Section 6.1, we provide a heuristic moti-
vation of the constructed frugal coarse space, which is strongly inspired by the adaptive
coarse space presented in Section 3.5, and explicitly de�ne the computed constraints. For
the convenience of the reader, we �rst explain the construction for stationary di�usion
problems in two spatial dimensions, which is the simplest case. We then extend the def-
initions and provide the respective formulae for both di�usion as well as linear elasticity
problems in three spatial dimensions in Sections 6.2 and 6.3, respectively. In Sections 6.4
and 6.5, we provide �rst serial results for frugal FETI-DP and BDDC as well as results for
our parallel frugal BDDC implementation compared to classic averages and the adaptive
coarse space presented in Section 3.5. In our numerical experiments, we will consider a
broader range of heterogeneities to prove that the frugal approach is robust for a wider
range of coe�cient distributions.
Parts of this chapter have already been published in modi�ed or unmodi�ed form

in [73]. Additionally, �rst preliminary results for di�usion problems in two dimensions
using the frugal constraints instead of constraints resulting from the solution of a speci�c
edge eigenvalue problem were already published in [72,74].

6.1 Heuristic motivation and construction for stationary

di�usion in two dimensions

In the following section, we aim to give a heuristic motivation for the construction of our
frugal coarse space, which is closely related to the adaptive FETI-DP coarse presented
in Section 3.5 and the approach introduced in [111].
The following section has already been published by the author of this thesis and her

coauthors in a slightly modi�ed form in [73].
The construction of the frugal coarse space is strongly motivated by the generalized

eigenvalue problem (3.26) from the adaptive coarse space [92, 130, 132]. Equivalently to
the de�nition in (3.26), the respective generalized eigenvalue problem can also be written
as

〈H(PDijvij),KijH(PDijwij)〉 = µij〈H(vij),KijH(wij)〉 = µij〈H(vEij ),KijH(wEij )〉,

where Kij = diag(K(i),K(j)) and H(·) is the discrete harmonic extension from the in-
terface of Ωi and Ωj to the interior of the subdomains Ωi and Ωj ; cf., e.g., [165, Sect. 4].
Then, as described in Section 3.5, all eigenmodes which ful�ll the condition

µij =
|H(PDijvij)|Kij

|H(vij)|Kij

> TOL (6.1)

with eigenvalues µij ≥ 0 are selected and are subsequently used to construct the adap-
tive constraints which are integrated into the coarse space. In particular, we select the
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6.1 Heuristic motivation and construction for stationary di�usion in two dimensions

respective eigenmodes where |H(PDijvij)|Kij is large, i.e., in the order of the contrast of
the coe�cient function, while |H(vij)|Kij is small.
Now, in our new frugal approach, we propose a speci�c construction of an edge func-

tion vEij which often has the desired properties of the energies |H(PDijvEij )|Kij and
|H(vEij )|Kij as described above. Therefore, the space spanned by all edge functions vEij

can be regarded as a lower-dimensional approximation of the original adaptive coarse
space.
For simplicity, let us �rst consider the case of stationary di�usion problems in two spa-

tial dimensions. In this case, we only compute constraints corresponding to the edges of
the domain decomposition. As before, we denote by Eij the edge between two neighbor-
ing subdomains Ωi and Ωj . We further denote by ω(x) the support of the �nite element
basis functions associated with a �nite element node x ∈ (Ωi ∪ Ωj). For each node x on
∂Ωi or ∂Ωj , respectively, we then compute

ρ̂(i)(x) = max
y∈ω(x)∩Ωi

ρ(y)

and
ρ̂(j)(x) = max

y∈ω(x)∩Ωj

ρ(y).

Then, in a second step, we de�ne v(l)
Eij

on ∂Ωl for l = i, j by

v
(l)
Eij

(x) :=

{
ρ̂(l)(x), x ∈ ∂Ωl\Π(l),

0, x ∈ Π(l) (6.2)

and
vTEij

:= (v
(i)T
Eij

,−v(j)T
Eij

).

Here, Π(l) denotes the index set of all local primal variables of Ωl for l ∈ {i, j}. An
exemplary visualization of this edge function for a speci�c heterogeneous coe�cient dis-
tribution is presented in Fig. 6.1. Additionally, we provide visualizations of the two
discrete harmonic extensions H(vEij ) and H(PDijvEij ) for two di�erent heterogeneous
coe�cient distributions of an exemplary model problem in Fig. 6.2 and Fig. 6.3. As can
be observed from Fig. 6.2 (left) and Fig. 6.3 (left), in both cases, the energy |H(vEij )|Kij

is low. On the other hand, the energy |H(PDijvEij )|Kij is large for those two examples;
see in Fig. 6.2 (right), where the energy is large due to the homogeneous Dirichlet bound-
ary enforced by PDij , and Fig. 6.3 (right), where the energy is large due to the gradient
of the scaled jump PDijvEij on the edge.
Finally, we obtain the frugal edge constraint by

cEij := BDijSijPDijvEij (6.3)

as in the adaptive coarse space; cf. Section 3.5. Let us recapitulate that we denote by
BDij the submatrix of (B

(i)
D , B

(j)
D ) with the rows restricted to the edge Eij . We further

have de�ned

Sij =

(
S(i) 0

0 S(j)

)
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6 FETI-DP and BDDC with a frugal coarse space

Ωi Ωj
Eij

xω(x) ∩ Ωi ω(x) ∩ Ωj

Eij

v
(i)
Eij |Eij

Eij

−v(j)
Eij |Eij

Figure 6.1: Visualization of the construction of a frugal edge constraint in two dimensions
for a given heterogeneous coe�cient distribution. Left: Maximum coe�cient
per �nite element node of Eij with respect to Ωi for the coe�cient distribution
in the middle. Middle: Exemplary heterogeneous coe�cient distribution for
two neighboring subdomains Ωi and Ωj sharing the edge Eij . High coe�-
cients are marked in grey and low coe�cients are marked in white. Right:
Maximum coe�cient per �nite element node of Eij with respect to Ωj for the
coe�cient distribution in the middle. Figure in modi�ed form in [73].

in Section 3.5, where S(i) and S(j) are the Schur complement matrices ofK(i) andK(j), re-
spectively, with respect to the interface variables, as well as the operator PDij = BT

Dij
Bij .

Let us note that the construction (6.2) can be further simpli�ed by exploiting the fact
that the scaled jumped operator PDij is zero everywhere except on the edge Eij . This
has the e�ect that, after the application of PDij in (6.3) to a computed constraint vector
vEij , all entries which do not correspond to degrees of freedom associated with the edge
Eij are set to zero. Therefore, our new constraint can equivalently also be constructed as

v
(l)
Eij

(x) =

{
ρ̂(l)(x), x ∈ Eij
0, x ∈ ∂Ωl \ Eij

(6.4)

for l = i, j; cf. the de�nition in [72]. In particular, due to the subsequent application of
PDij in (6.3), both de�nitions of v(l)

Eij
result in the same edge constraints cEij .

For our parallel implementation, we use the latter de�nition of v(l)
Eij

. There, we exploit
the extension by zero to the remaining interface ∂Ωl \ Eij and reduce the applications of
several local PDij -operators to a few global applications of PD; see also Section 6.5 for
more details.

6.2 A frugal coarse space for stationary di�usion in three

dimensions

In principle, the extension of the proposed frugal edge constraints in Section 6.1 to
di�usion problems in three spatial dimensions is relatively straightforward. The main
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Figure 6.2: Visualization of the discrete harmonic extensions relevant for the motivation
of the frugal coarse space for a heterogeneous coe�cient distribution which
is symmetric with respect to all edges. Left: Coe�cient distribution with
one channel associated with a high coe�cient crossing each subdomain. Dark
blue corresponds to the high coe�cient (ρ = 1e6) and light blue to the low
coe�cient (ρ = 1). Visualization for 4 × 4 subdomains and H/h = 9. Mid-

dle: Visualization of the discrete harmonic extension H(vEij ) for a �oating
subdomain. The visualized constraint leads to an energy of 17.49. Right:

Visualization of the discrete harmonic extension H(PDijvEij ) for the same
�oating subdomain. The visualized constraint leads to an energy of 6.67e+5.
Taken from [73].

Figure 6.3: Visualization of the discrete harmonic extensions relevant for the motivation
of the frugal coarse space for a heterogeneous coe�cient distribution which is
asymmetric with respect to the relevant edges. Left: Coe�cient distribution
with shifted boxes associated with a high coe�cient. Dark blue corresponds
to the high coe�cient (ρ = 1e6) and light blue to the low coe�cient (ρ = 1).
Visualization for 4 × 4 subdomains and H/h = 8. Middle: Visualization
of the discrete harmonic extension H(vEij ) for a �oating subdomain, which
is nearly constant in the area with a high coe�cient marked in red. The
visualized constraint leads to an energy of 17.39. Right: Visualization of the
discrete harmonic extension H(PDijvEij ) for the same �oating subdomain,
which has high gradients (see green ellipse) in the area with a high coe�cient
marked in red. The visualized constraint leads to an energy of 1.96e+6.
Taken from [73].
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6 FETI-DP and BDDC with a frugal coarse space

di�erence is that we now compute our new constraint for open faces Fij or, alternatively,
closed faces F ij which are shared by the two neighboring subdomains Ωi and Ωj instead
of for edges Eij .
For a mathematical description, let us �rst de�ne

v
(l)
Fij

(x) :=

{
ρ̂(l)(x), x ∈ Fij ,
0, x ∈ ∂Ωl \ Fij ,

(6.5)

and

v
(l)

F ij
(x) :=

{
ρ̂(l)(x), x ∈ F ij ,
0, x ∈ ∂Ωl \ F ij .

(6.6)

Analogously to the two-dimensional case, we then obtain our frugal constraints cF ij
by

applying BDijSijPDij to either vFij or vF ij
, respectively. Thus, we de�ne

vTFij
:= (v

(i)T
Fij

,−v(j)T
Fij

)

for open faces and
vT
F ij

:= (v
(i)T

F ij
,−v(j)T

F ij
)

for closed faces, respectively, as well as

cF ij
:= BDijSijPDijvFij (6.7)

for the constraint vector vFij on open faces, and replace vFij by vF ij
in (6.7) for the

corresponding closed face variant. Let us remark that, due to the structures of the
Schur complement matrix Sij as well as PDij , in both cases the obtained constraint cF ij

can have nonzero entries on the closed face, i.e., on the open face Fij and on all edges
Em,m = 1, 2, . . . ,M belonging to the closed face F ij . We can therefore split a constraint
cF ij

into a constraint cFij on the open face and constraints cEm , m = 1, ...,M , on the
neighboring edges. The same approach of splitting the constraints into face- and edge-
related parts has already been proposed in [92, 119] for the adaptive FETI-DP coarse
space in Section 3.5.
Depending on the decision whether we also integrate the edge-related components into

the coarse space or not, we can de�ne four di�erent possible variants of the frugal coarse
space based on face constraints:

FR1: Compute vT
F ij

for the closed face F ij , and enforce both the edge-related components
cEm , m = 1, ...,M , as well as the component related to the open face of cFij .

FR2: Compute vT
F ij

for the closed face F ij , but just extract the terms of cFij related to
the open face, while discarding the respective edge-related components.

FR3: Compute vTFij
for the open face Fij , and enforce both the edge-related components

cEm , m = 1, ...,M , as well as the component related to the open face of cFij .
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6.3 A frugal coarse space for linear elasticity in three dimensions

FR4: Compute vTFij
for the open face Fij , but just extract the terms of cFij related to

the open face, while discarding the respective edge-related components.

In Section 6.4, we will compare the robustness of the four di�erent variants with respect
to the condition number estimates and iteration counts for a range of di�erent model
problems. Let us remark that FR1 implements the frugal constraints in closest analogy
to the two-dimensional case in Section 6.1. With respect to a parallel implementation,
FR4 is the most promising variant, since the di�erent open faces have no intersections
with each other and therefore many local operations, such as, e.g., local applications of
PDij , can be grouped to global operations and can thus be carried out for all faces at
once; see also Section 6.5.

6.3 A frugal coarse space for linear elasticity in three

dimensions

For the case of three-dimensional linear elasticity problems, we have to slightly extend
our de�nitions made above of the frugal face constraints. For linear elasticity problems
in three dimensions, we know that when applying the FETI-DP or BDDC algorithm, we
need six constraints, i.e., six rigid body modes to control the null space of subdomains
which have boundaries that do not intersect ∂ΩD; cf. also the explanations at the
beginning of Section 3.2.1. Let us recall that for a generic domain Ω̂ with diameter H,
the basis for the null space ker(ε) is given by the three translations

r1 :=

1
0
0

 , r2 :=

0
1
0

 , r3 :=

0
0
1

 , (6.8)

and the three linear (approximations to) rotations

r4 :=
1

H

 x2 − x̂2

−x1 + x̂1

0

 , r5 :=
1

H

−x3 + x̂3

0
x1 − x̂1

 , r6 :=
1

H

 0
x3 − x̂3

−x2 + x̂2

 , (6.9)

where x̂ ∈ Ω̂ is the center of the linear rotations; see, e.g., [111, Sect. 2]. We now
construct six weighted constraints per face to set up a frugal coarse space. In principle,
these constraints are based on the maximum coe�cients per element, i.e., the maximum
Young modulus E > 0, as well as on the three translations and the three rotations for the
respective face shared by two neighboring subdomains. For a mathematical description,
let Fij be the open face shared by the two neighboring subdomains Ωi and Ωj , and
F ij the respective closed face. For each �nite element node x on ∂Ωi or ∂Ωj , we then
compute

Ê(l)(x) = max
y∈ω(x)∩Ωl

E(y)

for l = i, j. Subsequently, we compute six scaled rigid body modes denoted by r̂(l)
m ,m =

1, . . . , 6, l = i, j, by pointwise scaling the rigid body modes rm,m = 1, . . . , 6, in (6.8)
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6 FETI-DP and BDDC with a frugal coarse space

and (6.9) with the respective vectors of maximum coe�cients Ê(l)(x), l = i, j. Note that
(in three dimensions) all three degrees of freedom belonging to a given node x ∈ ∂Ωi∪∂Ωj

are scaled with the same value of Ê(l)(x) for l = i, j. For m = 1, . . . , 6 and l = i, j, we
then de�ne

v
(m,l)
Fij

(x) :=

{
r̂

(l)
m (x), x ∈ Fij

0, x ∈ ∂Ωl \ Fij .
(6.10)

By again combining the two vectors for both neighboring subdomains to

v
(m)T
Fij

:= (v
(m,i)T
Fij

,−v(m,j)T
Fij

)

we obtain the weights for the six face constraints by

c
(m)

F ij
:= BDijSijPDijv

(m)
Fij

, m = 1, . . . , 6. (6.11)

The variants for closed faces are de�ned completely analogously; see also (6.6). Thus, the
four di�erent variants FR1 to FR4 of frugal coarse spaces can be implemented as in the
di�usion case. Please note that the resulting constraints can, in certain cases, be linearly
dependent and thus result in less than six constraints per face. Therefore, we always
apply a modi�ed Gram-Schmidt algorithm after constructing the six aforementioned
constraints in our implementation. For the case of linear elasticity in two dimensions,
the computation of c(m)

Eij
,m = 1, . . . , 3, is completely analogous to the three-dimensional

case. For two dimensions, we just scale the two degrees of freedom belonging to a given
node x with the same value of Ê(l)(x) for l = i, j. Since the three-dimensional case is
more general, we here chose to describe the three-dimensional case in more detail.
Due to the possible existence of hinge modes for two neighboring subdomains in case

of linear elasticity problems, using only face constraints and edge constraints arising as
a byproduct, as, e.g., in variants FR1 and FR3, might not always lead to a robust al-
gorithm for complex coe�cient distributions. In particular, in some cases the use of
additional edge constraints is necessary to obtain moderate condition number bounds
as well as parallel scalability. We will explicitly consider such a coe�cient distribution
in Table 6.7, where the exclusive implementation of frugal face constraints is not su�cient
to obtain a robust coarse space. For this special case, we enforce additional frugal edge
constraints besides the generalized weighted face and edge constraints as already intro-
duced. The construction of these edge constraints is, in principle, completely analogous
to the aforementioned face constraints. More precisely, the construction is basically the
same except that we now operate on the index set of open edges between two neighboring
subdomains that do not share a face. Alternatively, we can additionally construct frugal
edge constraints for all edges, for simplicity, and �nally apply a modi�ed Gram-Schmidt
algorithm to eliminate linearly dependent constraints. We thus obtain an additional �fth
variant of the frugal coarse space in three dimensions, which we denote by FR5 and
which will be numerically tested in Section 6.4.2. Note that this approach is motivated
by an analogous procedure for an adaptive coarse space in [92] which is an extension of
the variant presented in [130]. Let us remark that in our implementation, we �rst use
FR1 for all faces and ensure that we have no redundancies in the face-related constraints
and additional frugal edge constraints by applying a Gram-Schmidt orthogonalization.
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6.4 Numerical results for frugal FETI-DP and BDDC

In this section, we present numerical results for the frugal coarse space obtained using
our serial MATLAB [134] implementations of the FETI-DP and BDDC algorithms.
Parts of this section have already been published in modi�ed or unmodi�ed form in [73].
In the following, we consider three-dimensional stationary di�usion and linear elastic-

ity problems on the unit cube, Ω = [0, 1]3, with Dirichlet boundary conditions on the
left-hand side of the boundary ∂Ω, i.e., ∂ΩD := 0 × [0, 1]2. In all presented numeri-
cal experiments, we use the ρ-scaling approach and, as the iterative solver, the PCG
algorithm. As the stopping criterion for PCG we use a relative reduction of the precon-
ditioned residual by a factor of 1e-8. As already mentioned in Sections 3.2.2 and 3.3.2, we
obtain the same quantitative condition number bounds for FETI-DP and BDDC since
the two methods are dual to each other; see also [125,129]. Therefore, we do not provide
results for both methods for all tested coe�cient distributions.
Let us remark that, in addition to the implemented face- or edge-based frugal or classic

constraints, respectively, we always choose all vertices as primal variables. In all tables
and �gures, we use the following notation to distinguish between the di�erent classic
coarse spaces based on weighted averages; see also Section 3.4:

e: Using vertex constraints and edge constraints (e), i.e., enforcing (3.20) for all edges
E . In case of linear elasticity, only weighted translations are enforced, i.e., we have
l = 3 in (3.20).

f : Using vertex constraints and face constraints (f), i.e., enforcing (3.20) for all faces
F . In case of linear elasticity, only weighted translations are enforced, i.e., we have
l = 3 in (3.20).

f+r: Using vertex constraints and face constraints (f), i.e., enforcing (3.20) for all faces
F . In case of linear elasticity, translations and rotations (r) are enforced, i.e., we
have l = 6 in (3.20).

Let us note that, instead of �xing the global coe�cient distribution, we always keep
the coe�cient distribution �xed for each subdomain in our weak scaling studies. Conse-
quently, the global coe�cient distribution actually changes while increasing the number
of subdomains.

6.4.1 Straight and shifted beams

As a �rst set of experiments, we provide numerical results for the frugal FETI-DP coarse
space for straight and shifted beams of high coe�cients crossing each subdomain as
shown in Figs. 6.4 and 6.5. We consider both stationary di�usion problems as well as
linear elasticity problems and compare the results for our frugal approach to the classic
approach from [111]. Here, we explicitly compare all four variants of the frugal coarse
space as introduced in the beginning of this section within our serial implementation to
evaluate the di�erences in their performance and rates of convergence. For the straight
channels which only cut through faces in Table 6.1, all four variants FR1 to FR4 of the
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.4: Left andMiddle: Coe�cient function with one central beam per subdomain.
High coe�cients are shown in red, and subdomains are shown in purple and
by half-transparent slices. Right: Visualization of the corresponding solution
for a stationary di�usion problem. Visualization for 3×3×3 = 27 subdomains
and H/h = 12. Taken from [73].

frugal coarse space show a more or less equivalent performance. In this case, the classic
approach also provides comparable and robust condition number bounds and iteration
counts. For the shifted channels, see Table 6.2, the edge-related frugal variants FR1 and
FR3 show a slightly better performance compared to FR2 and FR4 which exclusively
include face-related components. This e�ect is mostly noticeable for the linear elasticity
problem presented in Table 6.2. However, also the exclusively face-based variants FR2
and FR4 show robust condition numbers which are independent of the coe�cient jump
in all computations. On the contrary, in this case, the classic weighted averages are not
su�cient to provide a robust preconditioner since they result in condition numbers which
depend on the coe�cient contrast. This observation shows that the frugal approach is
indeed more general than classic averages and provides robustness for more complex
coe�cient distributions.

To provide a more detailed investigation of the robustness and performance of the
proposed frugal coarse space, we present further results for varying contrasts of the
coe�cients. In Table 6.3, we show the condition number estimates and iteration numbers
for a stationary di�usion problem and the shifted beams as in Fig. 6.5 with an increasing
contrast between the two di�erent coe�cients for the frugal and the classic FETI-DP
coarse space. As we can observe from Table 6.3, the classic coarse space performs clearly
poorer than the frugal coarse space for all tested coe�cient contrasts. In particular, for
the higher coe�cient ρ ∈ {1e4, 1e5, 1e6}, the classic coarse space is not able anymore to
provide a robust algorithm since the condition number estimates increase in proportion
to the contrast of the coe�cients. On the contrary, the frugal coarse space is proved to
be robust with respect to the di�erent coe�cient contrasts.

We further provide exemplary experiments for stationary di�usion problems and two
straight beams of a high coe�cient crossing each subdomain in Table 6.4. We can observe
that for a higher number of jumps in the coe�cient function across and along faces of
the domain decomposition, computing only one frugal constraint per face may not be
su�cient. Analogously, also the classic coarse space does not provide robustness for
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Figure 6.5: Left and Middle: Coe�cient function with one beam per subdomain with
o�sets. High coe�cients are shown in red, and subdomains are shown in pur-
ple and by half-transparent slices. Right: Visualization of the corresponding
solution for a stationary di�usion problem. Visualization for 3 × 3 × 3 = 27
subdomains and H/h = 12. Taken from [73].

this example. In this special case, computing a frugal constraint for each separate beam
using algebraic information could restore the robustness; cf. also [68,69,118] for a related
heuristic approach for overlapping Schwarz methods. In summary, these results provide
an evidence that, in general, for completely arbitrary coe�cient distributions, adaptive
coarse spaces as presented in Section 3.5 are necessary to retain the robustness of the
iterative solver.
Finally, we provide numerical results for the shifted channels and the frugal BDDC

coarse space in Table 6.5 to prove that the frugal constraints work equally well for
the FETI-DP and the BDDC algorithm. As expected, the condition number estimates
and iteration counts for the frugal BDDC coarse space are very similar to those of the
respective FETI-DP coarse space in Table 6.2. This is in accordance with the theory
presented in Sections 3.2.2 and 3.3.2 concerning the duality of the two speci�c domain
decomposition methods.

6.4.2 Cubic inclusions within subdomains

As a next example, we consider the case of inclusions of high coe�cients within subdo-
mains; see Fig. 6.6. Let us note that we only consider the case of inclusions which have
a nonempty intersection with the respective subdomain boundary. For inclusions within
subdomains which have a positive distance to the boundary of the respective subdomain,
already standard FETI-DP and BDDC coarse spaces yield a robust domain decompo-
sition method and no additional constraints have to be added to the coarse space; see,
e.g., [58] for FETI-DP or [144] for FETI. We partition each subdomain into eight cubes
of equal size and de�ne a high coe�cient in two of these cubes, which intersect only in a
single vertex; see Fig. 6.6 for a schematic visualization. As the results in Table 6.6 show,
the frugal face constraints lead to a robust algorithm for the di�usion problem for all
variants FR1 to FR4. For elasticity problems, however, the resulting algorithm including
only face constraints shows a bad convergence behavior or even diverges; see Table 6.7
(�rst column). For a comparison, we further include results for an adaptive FETI-DP
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6 FETI-DP and BDDC with a frugal coarse space

frugal classic

N FR1 FR2 FR3 FR4 f

stationary di�usion

cond it cond it cond it cond it cond it
23 1.25 5 1.44 6 1.25 5 1.44 6 1.44 7
33 1.25 6 1.51 8 1.25 6 1.51 8 1.51 10
43 1.25 6 1.53 8 1.25 6 1.53 8 1.53 10

linear elasticity

cond it cond it cond it cond it cond it
23 1.59 10 2.70 13 1.59 10 2.71 14 2.71 14
33 1.63 11 2.78 16 1.62 10 2.78 16 2.78 15
43 1.63 11 2.86 16 1.62 10 2.85 16 2.85 16

Table 6.1: Condition numbers (cond) and iteration numbers (it) for frugal and classic
FETI-DP coarse spaces for stationary di�usion and linear elasticity problems
in three dimensions with H/h = 6 for one straight beam per subdomain as
in Fig. 6.4. The higher coe�cient is ρ = 1e6 for stationary di�usion and E =
1e6 for linear elasticity (with ν = 0.3 everywhere). Table already published
in [73, Table 4.1].

method in Table 6.7. Here, we use the adaptive coarse space as proposed by Man-
del and Sousedík [130] and a variant thereof as implemented by Klawonn, Kühn, and
Rheinbach [92] which has been developed to obtain a sound theoretical condition num-
ber bound; cf. also Section 3.5. Let us recall that for this speci�c adaptive FETI-DP
method, the solution of certain local generalized eigenvalue problems on faces or edges
is used to enrich the coarse space. In Table 6.7, we denote by:

a) adaptive, face EVP: the adaptive FETI-DP method from [130,132] using exclu-
sively eigenvalue problems on faces;

b) adaptive, edge EVP: the adaptive FETI-DP method from [92], using additional
eigenvalue problems on edges to enrich the coarse space.

As the results in Table 6.7 show, the adaptive FETI-DP algorithm also shows a bad con-
vergence behavior for this speci�c linear elasticity problem when using exclusively face
constraints. However, the use of additional edge constraints restores a robust algorithm,
as the last column in Table 6.7 shows. This indicates that for this speci�c coe�cient
distribution with two cubes per subdomain of high coe�cients only intersecting in a sin-
gle vertex, a hinge mode exists in the case of linear elasticity, which is not controlled
by our frugal face constraints. Thus, we also consider an additional, extended variant of
the frugal coarse space which explicitly enforces frugal constraints on edges in addition
to the already constructed (frugal) face constraints. We denote this variant by FR5. In
the second column of Table 6.7, we present numerical results for this extended variant,
given the inclusions per subdomain intersecting only in a single vertex as before. Please
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frugal classic

N FR1 FR2 FR3 FR4 f

stationary di�usion

cond it cond it cond it cond it cond it
23 1.36 8 1.72 10 1.36 8 1.68 10 43 613.4 16
33 1.41 9 1.88 11 1.41 9 1.83 11 46 336.5 47
43 1.41 9 1.91 12 1.41 9 1.86 12 46 622.0 78

linear elasticity

cond it cond it cond it cond it cond it
23 1.92 12 3.92 18 1.90 13 3.68 17 37 930.9 54
33 1.90 12 4.48 19 1.89 12 4.37 19 68 238.5 124
43 1.92 12 4.91 21 1.90 12 4.76 21 76 027.6 264

Table 6.2: Condition numbers (cond) and iteration numbers (it) for frugal and classic
FETI-DP coarse spaces for stationary di�usion and linear elasticity problems
in three dimensions with H/h = 6 for one beam per subdomain with o�sets as
in Fig. 6.5. The higher coe�cient is ρ = 1e6 for stationary di�usion and E =
1e6 for linear elasticity (with ν = 0.3 everywhere). Table already published
in [73, Table 4.2].

note that the additional use of explicit edge constraints, in principle, corresponds to the
solution of additional edge eigenvalue problems for subdomains that do not share a face
in the context of the adaptive coarse space proposed in [92,119]; see also Section 3.5. To
obtain a robust algorithm, we again use a modi�ed Gram-Schmidt algorithm to elimi-
nate all linearly dependent constraints resulting from edge-related parts of weighted face
constraints and the explicitly constructed edge constraints.

6.4.3 Non-binary coe�cient distribution with slowly varying coe�cients

In the previous sections, we have exclusively considered binary coe�cient distributions,
i.e., coe�cient functions with only two di�erent values of the coe�cient. In our experi-
ence, this is the hardest scenario since it results in a high number of sharp jumps of the
coe�cient across the interface, which negatively a�ects the rate of convergence of the
iterative solver. However, in order to investigate our frugal coarse space also for more
general coe�cient distributions, we additionally consider a coe�cient function which has
more than two di�erent coe�cient values and which is constructed as follows. Similar as
in Fig. 6.6, each cubic subdomain is decomposed into eight regular cubes of equal size.
For each of these cubes, we randomly generate a single coe�cient of the form 10e with
the exponent e being randomly uniformly distributed in [1, 6] ∩ Z. In Fig. 6.7, we show
an exemplary visualization of such a coe�cient distribution for 2×2×2 subdomains and
H/h = 8. The scaling of the included colorbar refers to the exponent e of the value 10e

for the respective coe�cients.
We use this coe�cient distribution for both stationary di�usion and linear elasticity
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6 FETI-DP and BDDC with a frugal coarse space

N coe�2 frugal, FR1 classic, f

stationary di�usion

H/h cond it H/h cond it
43 1e0 9 1.60 10 9 2.13 13
43 1e3 9 1.63 10 9 53.41 38
43 1e4 9 1.64 10 9 525.91 59
43 1e5 9 1.65 10 9 5 250.98 78
43 1e6 9 1.93 12 9 52 501.63 87

Table 6.3: Condition numbers (cond) and iteration numbers (it) for frugal and classic
FETI-DP coarse spaces for stationary di�usion problems in three dimensions
with H/h = 9 for one beam per subdomain with o�sets as in Fig. 6.5. The
higher coe�cient is varied as coe�2 = 10e, e ∈ {0, 3, 4, 5, 6}, and the lower
coe�cient is 1. Table already published in [73, Table 4.4].

N coe�2 frugal, FR1 classic, f

stationary di�usion

H/h cond it H/h cond it
43 1e0 10 1.64 10 10 2.23 13
43 1e3 10 5.88 20 10 6.18 21
43 1e4 10 51.08 40 10 52.51 41
43 1e5 10 503.30 64 10 517.20 67
43 1e6 10 5 025.51 86 10 5 164.14 92

Table 6.4: Condition numbers (cond) and iteration numbers (it) for frugal and classic
FETI-DP coarse spaces for stationary di�usion problems in three dimensions
with H/h = 10 for two straight beams per subdomain. The higher coe�cient
is varied as coe�2 = 10e, e ∈ {0, 3, 4, 5, 6}, and the lower coe�cient is 1. Table
already published in [73, Table 4.5].

problems and our frugal coarse space variant FR1. The corresponding numerical results
are summarized in Table 6.8. As we can observe from the condition number estimates
and the iteration counts in Table 6.8, our proposed frugal approach is robust for this non-
binary, random coe�cient distribution. In particular, the variant FR1 shows condition
numbers which are independent of the (maximum) coe�cient contrast also for linear elas-
ticity problems. In contrast, for the binary coe�cient distribution in Fig. 6.6, additional
frugal edge constraints are necessary to obtain robustness in case of linear elasticity prob-
lems; see Table 6.7. Due to these observations from Table 6.8 as well as due to di�erent
experimental results using adaptive coarse spaces, we believe that non-binary materials
with more than two di�erent random coe�cients are in fact computationally easier than
binary materials in the sense that a smaller number of jumps with a high contrast occurs
at the interface between subdomains. Thus, in Section 6.5, we have decided to focus the
numerical investigations on binary materials.
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N FR1 FR2 FR3 FR4

stationary di�usion

cond it cond it cond it cond it
23 1.29 8 1.72 11 1.28 8 1.68 11
33 1.35 9 1.88 12 1.33 9 1.83 11
43 1.35 9 1.90 13 1.34 9 1.86 12

linear elasticity

cond it cond it cond it cond it
23 1.89 12 3.91 18 1.88 12 3.90 17
33 1.87 11 4.45 19 1.86 11 4.37 19
43 1.88 11 4.92 20 1.88 12 4.76 20

Table 6.5: Condition numbers (cond) and iteration numbers (it) for the frugal BDDC
coarse space for stationary di�usion and linear elasticity problems in three di-
mensions withH/h = 6 for one beam per subdomain with o�sets as in Fig. 6.5.
The higher coe�cient is ρ = 1e6 for stationary di�usion and E = 1e6 for linear
elasticity (with ν = 0.3 everywhere). Table already published in [73, Table
4.3].

6.4.4 A frugal coarse space of reduced dimension

As we have observed above, the introduced frugal FETI-DP or BDDC coarse space gen-
erally is of a similar size as the classic coarse space introduced in [111]. In particular, we
construct frugal constraints for all faces and/or edges of the domain decomposition. How-
ever, for many real world problems, i.e., problems with realistic coe�cient distributions,
constraints on certain faces or edges are not necessary and can be omitted. Therefore,
we further propose a modi�ed variant to reduce the size of the frugal coarse space, which
only requires moderate additional e�ort. Since the exact solution of the coarse problem
can become a scaling bottleneck in a parallel implementation, the frugal coarse space of
reduced size can potentially increase the parallel e�ciency and reduce the total time to
solution signi�cantly, compared to our original frugal coarse space.
Let us recall that our frugal constraints are inspired by the eigenvalue problems intro-

duced in [130,132]; see also Section 3.5. Hence, we can use the quotient (6.1) correspond-
ing to the eigenvalue problems to select, i.e., to estimate the constraints actually required
for a robust coarse space. Numerical experimental results have shown that for faces or
edges, for which the left-hand side of the speci�c eigenvalue problem yields a high energy
and the respective right-hand side yields a low energy, additional coarse constraints are
essential for robustness. For the convenience of the reader, we again write down the
right-hand side (RS) and the left-hand side (LS) of the eigenvalue problem (3.26):

LS := P TDij
SijPDij and RS := Sij .

Please see Section 3.5 and [130, 132, 148] for more technical details on the eigenvalue
problem. To estimate the energy of our computed frugal constraints, we evaluate the
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.6: Coe�cient distribution with inclusions of high coe�cients within subdomains.
High coe�cients are shown in red, and subdomains are shown by grey slices.
Visualization for 3× 3× 3 subdomains and H/h = 12. Taken from [73].

N FR1 FR2 FR3 FR4

stationary di�usion

cond it cond it cond it cond it
23 3.55 14 3.55 14 3.55 14 3.55 14
33 4.05 20 4.05 20 4.05 20 4.05 20
43 4.41 22 4.41 22 4.41 21 4.41 22

Table 6.6: Condition numbers (cond) and iteration numbers (it) for the frugal FETI-DP
coarse space for di�usion problems in three dimensions with H/h = 8 with
two inclusions per subdomain as in Fig. 6.6. The higher coe�cient is ρ1 = 1e6
and the lower coe�cient is ρ2 = 1. Table already published in [73, Table 4.6].

product terms
RSe := vTEij

RSvEij and LSe := vTEij
LSvEij

in two spatial dimensions, or

RSe := vTFij
RSvFij and LSe := vTFij

LSvFij

in three spatial dimensions, respectively. In a next step, we evaluate the ratio LSe/RSe
for all faces (and, depending on the chosen variant, for all edges). For the frugal coarse
space of reduced size, we now only integrate face constraints into the coarse space, for
which the ratio LSe/RSe is above a user-de�ned tolerance TOL; see, e.g., [78] for a
discussion on the choice of TOL. We denote this reduced coarse space variant by FR2-
red.. We show �rst numerical results for this reduced variant for straight channels of high
coe�cients in Table 6.9. For all shown cases, we are able to reduce the dimension of the

86



6.5 Parallel numerical results for frugal BDDC

frugal adaptive

N FR1 FR5 face EVP edge EVP

linear elasticity

# c. cond it # c. cond it # c. cond it # c. cond it
23 288 25 158 54 324 1.72 10 39 58 679 58 173 3.70 15
33 1 452 18 530 180 1 668 1.73 10 164 87 156 246 838 3.42 20
43 4 032 19 626 232 4 680 1.74 10 429 114 882 471 2 319 3.44 20

Table 6.7: Condition numbers (cond), iteration numbers (it), and the size of the coarse
space (# c.) for frugal and adaptive FETI-DP coarse spaces for linear elasticity
problems in three dimensions withH/h = 6 with two inclusions per subdomain
as in Fig. 6.6. The higher coe�cient is E1 = 1e6 and the lower coe�cient is
E2 = 1 , with ν = 0.3 everywhere. Table already published in [73, Table 4.7].

N FR1 FR1

stationary di�usion linear elasticity

H/h cond it H/h cond it
23 8 2.301 12 6 4.440 18
33 8 2.111 14 6 9.141 21
43 8 2.602 16 6 19.423 35

Table 6.8: Condition numbers (cond) and iteration numbers (it) for the frugal FETI-DP
coarse space for stationary di�usion and linear elasticity problems in three di-
mensions with a non-binary, randomized coe�cient distribution as in Fig. 6.7.
For stationary di�usion, the coe�cient ρ is of the form 10e with e randomly
uniformly distributed in [1, 6]∩Z which is equally valid for the Young modulus
E for linear elasticity (with ν = 0.3 everywhere).

frugal coarse space to exactly one third of the original size while preserving both robust
condition numbers and iteration counts. In Table 6.10, we further show numerical results
for �ve spherical inclusions of di�erent radii as shown in Fig. 6.12; see also Section 6.5 for
detailed parallel results for this speci�c coe�cient distribution. For the di�usion case,
we are able to reduce the size of the coarse space up to a factor of 2.4. For the case of
linear elasticity, the coarse space dimension is reduced by a factor of up to 1.6. At the
same time, the condition numbers and iteration counts increase only in the same order
of magnitude and especially remain independent of the coe�cient contrast.

6.5 Parallel numerical results for frugal BDDC

For the numerical experiments presented in this section, we have added the frugal coarse
space FR4 to our parallel BDDC implementation described in Section 5.4 and, in more
details, in [101]. We compare the frugal coarse space with classic coarse spaces based
on weighted edge or face translations and rotations as introduced in [111]; see also Sec-
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.7: Non-binary coe�cient distribution with randomly generated coe�cients of
the form 10e with e randomly uniformly distributed in [1, 6]∩Z. The scaling
of the colorbar on the right refers to the exponent e of the value 10e for the
respective coe�cients. Discretization with 2 × 2 × 2 subdomains, visualized
by the red slices, and H/h = 8.

tion 3.4. As a model problem, we consider stationary di�usion and linear elasticity
problems. Unless stated otherwise, we use Dirichlet boundary conditions on the com-
plete boundary of the domain Ω. As in Section 6.4, we use the PCG algorithm as the
iterative solver for our computations. As the stopping criterion for PCG, we again use a
relative reduction of the preconditioned residual by a factor of 1e-8.
Parts of this section have already been published in modi�ed or unmodi�ed form in [73].

6.5.1 Parallel implementation and computational e�ort

Let us recall from Chapter 5 that our parallel PETSc-based implementation of the BDDC
method is based on a BDDC preconditioner for the complete system Kg; see also Sec-
tion 5.1 for a mathematical description. Consequently, no Schur complement systems are
built explicitly. Therefore, we also avoid the computation of the local Schur complement
matrix Sij , which is used for the construction of our frugal edge or face constraints;
see (6.11). Instead of computing S(i)w

(i)
Γ , we always compute the equivalent product

R
(i)
Γ ·K

(i) ·

(
−
(
K

(i)
II

)−1
K

(i)T
ΓI

I

)
w

(i)
Γ , (6.12)

where R(i)
Γ is the restriction from the complete subdomain Ωi to its interface and

−
(
K

(i)
II

)−1
K

(i)T
ΓI w

(i)
Γ
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N FR2 FR2-red.

linear elasticity

# c. cond it # c. cond it
23 72 2.70 13 24 3.54 15
33 324 2.78 16 108 4.17 19
43 864 2.86 16 288 4.44 20

Table 6.9: Condition numbers (cond) and iteration numbers (it) for the frugal FETI-DP
coarse space for linear elasticity problems in three dimensions with H/h = 6
for one straight beam per subdomain as in Fig. 6.4. Variant with reduced

coarse space dimension and TOL = 10. The higher coe�cient is E1 = 1e6
and the lower coe�cient is E2 = 1, with ν = 0.3 everywhere. Table already
published in [73, Table 4.8].

is the discrete harmonic extension of w(i)
Γ from the interface to the interior of Ωi. For

the parallel implementation, we chose FR4 out of the di�erent frugal variants, since this
coarse space can be computed cheaply with an e�ort less than a few CG iterations; see
the following discussion below. Additionally, FR4 showed promising results for most
problems considered in the previous section.

Parallel computation of FR4 For simplicity, we only describe the implementation for
the scalar di�usion case. Considering linear elasticity problems, the building blocks are
identical and just called six times for each of the six rigid body modes.
Let us consider an exemplary face Fij shared by the two subdomains Ωi and Ωj . Then,

in our parallel BDDC implementation, we do not directly enforce the constraints

cFij = BDijSijPDijvFij

in the space of interface jumps, e.g., by a projector preconditioning approach, but equiv-
alently the constraint

C
(i)T
Fij

= −C(j)T
Fij

by a generalized transformation-of-basis approach. In particular, we use an e�cient
implementation of the transformation of basis using local saddle point problems and an
equivalent reformulation for the related Galerkin products; see Section 4.3 and [98] for
more details. Here, we consider

CFij =
(
C

(i)T
Fij

, C
(j)T
Fij

)
with

CFij = P TDij
SijPDijvFij ; (6.13)

cf. also (6.7). Let us note that with PD = I − ED, we compute

CFij = (I − EDij )
TSij(I − EDij )vFij
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6 FETI-DP and BDDC with a frugal coarse space

N FR2 FR2-red.

stationary di�usion

# c. cond it # c. cond it
23 12 6.90 19 5 17.02 22
33 54 3.64 17 29 18.92 27
43 144 5.59 22 74 18.55 39

linear elasticity

# c. cond it # c. cond it
23 72 31.89 44 55 61.83 54
33 324 70.35 46 199 70.36 64
43 864 232.36 67 633 430.11 95

Table 6.10: Condition numbers (cond) and iteration numbers (it) for the frugal FETI-DP
coarse space for di�usion and linear elasticity problems in three dimensions
with H/h = 10 for �ve spherical inclusions as in Fig. 6.12. Variant with
reduced coarse space dimension and TOL = 100. The higher coe�cient
is ρ = 1e6 for stationary di�usion and E = 1e6 for linear elasticity (with
ν = 0.3 everywhere). Table already published in [73, Table 4.9].

instead of (6.13), which is more convenient in the context of BDDC.
Let us recapitulate that in the FR4 variant, only open faces are considered and thus

the computation of
xFij := (I − EDij )vFij

can be carried out for all faces at once. Here, we exploit the fact that the functions vFij

can be chosen to be zero on the remaining interface; see Section 6.1 and the following
arguments. Therefore, all values vFij for all faces Fij are collected in a single vector v.
The remaining interface components in v can be set arbitrarily. Then,

x := (I − ED)v

can be computed in parallel using the parallel implementation of ED based on PETSc
VecScatter operations; see [101] for a detailed description of the implementation. All local
vectors xFij for all open faces can be easily obtained from x by extracting local values
on faces and extending them by zero to the remaining local interface. Additionally, let
us remark that with xFij = (x

(i)
Fij
, x

(j)
Fij

), the computation of SijxFij actually decomposes

into two local computations S(l)x
(l)
Fij
, l = i, j, which are carried out following (6.12).

This process is completely local but (6.12) has to be computed separately for each face
of a subdomain. The results for all local faces can again be collected in a single vector
y and subsequently, I −ED can again be applied globally. Finally, all coarse constraints
are locally extracted face by face from (I − ED)y.

Computational e�ort As we have observed in Section 6.4, the frugal coarse space FR4
is of a similar size compared to classic face- or edge-based coarse spaces. However, we
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have to take into account that the computation of the constraints is more costly than for
classic constraints, even though it requires signi�cantly less computational e�ort than the
computation of adaptive constraints which includes the solution of local generalized eigen-
value problems. Therefore, the e�ort will only pay o� compared to classic approaches
such as, e.g., those from [111], if a su�cient number of CG iterations is saved. To obtain
a useful estimate for the computational e�ort of frugal constraints, we compare the cost
to compute the coarse constraints to the cost of a speci�c number of CG iterations, i.e.,
a speci�c number of applications of the system matrix and the BDDC preconditioner.
In a single application of the BDDC preconditioner, the operator (I − ED) is applied

twice, as here in the construction of the coarse space FR4. The discrete harmonic ex-
tension which appears in (6.12) is also applied twice in each application of the BDDC
preconditioner. Finally, in each CG iteration, the matrix K(i) is applied once to a vector
in the application of the system matrix. Considering six faces per subdomain for a reg-
ular decomposition, the construction of the coarse space has thus cost less than six CG
iterations. Assuming that the computation of the discrete harmonic extensions is the
most expensive operation in this process, we can approximately compare the computa-
tional cost with the cost of three CG iterations. Therefore, if we can save at least three
CG iterations, the frugal coarse space FR4 will pay o�. Of course, since the computation
of the constraints of FR4 does not include any coarse solve, it will be even less expen-
sive, especially for problems with many subdomains and compute cores. Therefore, the
estimate with 3 CG iterations is in fact way too pessimistic.
For the case of linear elasticity with six rigid body modes for each of the six faces,

we end up with an approximate cost of 18 CG iterations for the construction of the
respective frugal face constraints - following the argumentation above. Again, we expect
much less e�ort especially for larger problems. In practical experiments, e.g., considering
the example from Fig. 6.11, we measure a time of approximately 8.1 CG iterations to
construct the coarse space for the 48 subdomain case and only 2.4 CG iterations for
the 3 072 subdomain case. For completeness, let us �nally remark that the construction
might be more expensive for irregular domain decompositions with more than six faces
per subdomain.

6.5.2 Sanity check with a checkerboard problem

As a �rst sanity check of our parallel software, we provide results for the classic checker-
board problem shown in Fig. 6.8 for a stationary di�usion problem. Here, we have a
single constant coe�cient inside each subdomain which varies between two di�erent val-
ues within the separate subdomains in an alternating checkerboard pattern. In Fig. 6.9,
we provide the respective results for frugal and classic BDDC coarse spaces in terms of
the number of CG iterations and the time to solution. As expected, using ρ-scaling, the
classic coarse space with vertices and edges performs slightly better compared to face-
based approaches since an acceptable edge path can be found; see [111]. Additionally,
the frugal coarse space FR4 and the classic face constraints de�ned in Section 3.4 deliver
similar results both with respect to the number of CG iterations and the time to solution.
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.8: Coe�cient distribution in a checkerboard pattern with constant coe�cients
per subdomain. High coe�cients are shown in red and subdomains with a
low coe�cient are indicated by the purple slices. Visualization for 4× 4× 3
subdomains and H/h = 12. Taken from [73].

6.5.3 Straight and shifted beams

As a next set of experiments, we provide parallel weak scaling results for straight and
shifted beams as already considered in Section 6.4.1; see Figs. 6.4 and 6.5. Here, we
consider both a stationary di�usion problem as well as a linear elasticity problem. The
respective numerical results are presented in Fig. 6.10 and Fig. 6.11, respectively. For all
examples, we can observe that face constraints are necessary to obtain satisfactory (weak)
parallel scalability and a good rate of convergence. While for the straight channels FR4
is more or less equivalently robust compared to the classic face constraints (see Figs. 6.10
and 6.11 (left)), it is clearly superior for the more complicated model problem with shifted
beams (see Figs. 6.10 and 6.11 (right)). In particular, the frugal coarse space FR4 is up
to a factor of 9.2 faster in time to solution for the stationary di�usion problem. For the
case of linear elasticity, the time to solution is reduced by a factor of up to 2.5.

6.5.4 Five spherical inclusions and an RVE

In this section, we investigate the proposed frugal coarse space for more general and
more realistic coe�cient distributions, which are chosen independently of the domain
decomposition. For this purpose, we provide two additional examples.

Five Spherical Inclusions First, we consider �ve spherical inclusions of di�erent radii
in the unit cube, which share the same high coe�cient; see Fig. 6.12. Let us remark
that considering our structured mesh, each voxel is discretized by six tetrahedral �nite
elements and these six elements always share the same coe�cient. Each voxel within
the �ve spheres will have an identical high coe�cient, i.e., a large ρ in the di�usion case
or a large E in the linear elasticity case. The remaining matrix material will have a
smaller coe�cient. For the exemplary decomposition into 384 regular subdomains, we
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Figure 6.9: Parallel weak scaling test for frugal and classic BDDC coarse spaces; station-
ary di�usion problem with a constant coe�cient on each subdomain, varying
in a checkerboard pattern. The higher coe�cient is ρ = 1e6 and the lower
coe�cient is ρ = 1; see Fig. 6.8. Taken from [73].

Figure 6.10: Parallel weak scaling test for frugal and classic BDDC coarse spaces; station-
ary di�usion problem with a single beam crossing each subdomain; higher
coe�cient ρ = 1e6 inside the beams and ρ = 1 in the remaining domain;
Left: Straight beams; see Fig. 6.4. Right: Shifted beams; see Fig. 6.5.
Missing data corresponds to runs which did not converge within 1 000 CG
iterations. Taken from [73].
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.11: Parallel weak scaling test for frugal and classic BDDC coarse spaces; linear
elasticity problem with one beam crossing each subdomain; higher coe�cient
E = 210 000 inside the beams and E = 210 in the remaining matrix material;
Left: Straight beams; see Fig. 6.4. Right: Shifted beams; see Fig. 6.5.
Taken from [73].

illustrate a face between two subdomains (see Fig. 6.13 (left)) and mark the parts of the
spheres which lie inside these two subdomains in blue and red, respectively. Zooming
in (Fig. 6.13 (right)), we observe a similar situation as in the case of the shifted chan-
nels. Additionally, the spherical inclusions cut or touch also edges and vertices of the
interface. In our experience, these coe�cient jumps along and across the interface make
this model problem di�cult for the solution using an iterative solver and can lead to a
deteriorating convergence behavior. Considering this model problem, the frugal coarse
space FR4 outperforms all tested classic approaches signi�cantly; see Table 6.11. Espe-
cially for the largest considered coe�cient jump of 1e+6, FR4 alone is robust for both,
di�usion and linear elasticity problems. The latter observation indicates, that the pro-
posed frugal coarse space is indeed superior to classic coarse spaces for complex coe�cient
distributions.

RVE Second, we consider an RVE (representative volume element) of a dual-phase steel
which consists of two di�erent material phases, i.e., a martensite and a ferrite phase. The
considered RVE represents the microscopic structure of a DP600 steel and is obtained by
an EBDS (electronic backscatter di�raction) measurement. Let us note that this RVE is
part of a larger structure presented in [23]. The martensitic inclusions are visualized in
red in Fig. 6.14 (left) and the ferritic matrix material is marked in purple. The RVE is
decomposed into 512 subdomains (see Fig. 6.14 (left)) and a corresponding linear elastic
solution is shown in Fig. 6.14 (right). For our parallel computations, we use this coe�cient
distribution for di�usion and linear elasticity problems and de�ne high coe�cients in the
martensitic phase and low coe�cients in the ferritic phase. We summarize the results
of a weak scaling study, i.e., the condition numbers, iteration counts, and the required
time to solution as well as the size of the coarse space for frugal and classic BDDC
in Table 6.12. Here, the most realistic computation is the linear elasticity problem with
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Figure 6.12: Five spheres with di�erent radii in the unit cube. Resolution of 128×128×96
voxel corresponding to computations with H/h = 16 and 8 × 8 × 6 = 384
subdomains in Table 6.11. Taken from [73].

Figure 6.13: Left: Example visualization of the coe�cient function in Fig. 6.12 for two
neighboring subdomains, marked in red and blue, and the face between those
subdomains, marked in green. Right: Zoom-in of the coe�cient jump along
the green face between two neighboring subdomains. Taken from [73].
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6 FETI-DP and BDDC with a frugal coarse space

Figure 6.14: Coe�cient distribution on a representative volume element (RVE). Left:
Visualization of the domain decomposition into 8× 8× 8 = 512 subdomains
and H/h = 16. High coe�cients are shown in red, and subdomains are
shown in purple and by half-transparent slices. Right: Visualization of the
corresponding linear elastic solution of the RVE. Based on data from [23].
Taken from [73].

a coe�cient jump of 1e+3, since this parameters are most representative for a real dual-
phase steel. Let us remark that for large deformations steel shows a plastic behavior and
therefore a linear elastic material model is not su�cient anymore. Considering the results
in Table 6.12, the frugal coarse space FR4 again shows the best performance and the
iteration counts are acceptable in all cases, even though for the linear elasticity problem
the condition number is also signi�cantly large. This implies that the potential in terms of
robustness of the frugal coarse space is also limited, however, it is clearly higher than for
the classic approaches. In this case, additional coarse space enhancements are necessary,
as, e.g., adaptive constraints obtained by solving certain localized eigenvalue problems
as presented in Section 3.5.

6.5.5 Using an approximate coarse solver

Generally speaking, the exact solution of the coarse problem with a sparse direct solver
becomes a scaling bottleneck in all domain decomposition methods. This observation, in
principle, is valid regardless of the decision which speci�c coarse space is chosen, since
the size of the coarse space grows at least linearly with the number of subdomains. As
we have discussed extensively in Chapter 5, this bottleneck can be overcome in BDDC
by approximating the coarse solve by, e.g., a recursive application of BDDC [167,168] or
an application of an AMG method [39,101,103]. We have implemented both approaches
in our parallel BDDC software framework.
Here, we extend the results presented in Section 5.5 and provide numerical results using

AMG for an approximate solution of the frugal coarse problem of BDDC. See Section 5.4
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6.5 Parallel numerical results for frugal BDDC

Figure 6.15: Weak scalability of BDDC in three dimensions using BoomerAMG to solve
the FR4 coarse problem approximatively. Di�usion problem with high coef-
�cient of ρ = 1e6 inside shifted channels and ρ = 1 in the remaining domain;
see Fig. 6.5 for the coe�cient distribution. Computed on Theta at Argonne
National Laboratory, USA. Taken from [73].

for more details on our implementation of AMG as an approximate coarse solver for
BDDC. In Fig. 6.15, we provide the results of a weak scaling experiment for a stationary
di�usion problem. The experiment on Theta presented in Fig. 6.15 has been carried out
by Martin Lanser using our parallel implementation since the author of this thesis did
not have access to that machine. As already in Section 5.5.1, we use BoomerAMG [80]
from the HYPRE package with an aggressive HMIS coarsening [35] and ext+i long range
interpolation [34,172]. As a coe�cient distribution, we again choose the shifted channels
(see Fig. 6.5) and a coe�cient contrast of 1e6. For all tested setups in Fig. 6.15, the
number of CG iterations only varies between 18 and 22. In particular, this is also valid for
the discretization using 262 144 subdomains on 262 144 cores with a total problem size of
more than 12 billion degrees of freedom (H/h = 36). Therefore, we can conclude that the
frugal coarse space FR4 is combinable with an approximate AMG solve without loosing
robustness - at least for the considered coe�cient distribution. For larger subdomain
sizes (not shown in the �gure), the scalability is still satisfying with more than 55%
parallel e�ciency scaling from one KNL node to 4 096 nodes.
Finally, let us note that it is also possible to combine the frugal coarse space with the

three-level BDDC preconditioner presented in Section 5.2.1 as an approximate coarse
solver. In particular, it is possible to construct frugal constraints both on the level of the
subdomains and the subregions, as well as to combine frugal constraints on the second
level with adaptive constraints on the third level, thus leading to smaller eigenvalue
problems which have to be set up and solved on the coarsest level. Preliminary numerical
results for both approaches exist and look promising. A detailed numerical investigation
with respect to robustness and parallel scalability is still ongoing work and a topic of
future research. This will be further elaborated in Chapter 9.
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6 FETI-DP and BDDC with a frugal coarse space

stationary di�usion linear elasticity

coe�cient jump 1e+ 3; H/h = 16

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 237 7.42e+0 19 1.7s 6 687 3.05e+1 44 19.9s

f 1 237 1.04e+2 45 2.7s 3 711 1.60e+3 259 55.1s
f + r - - - - 6 687 9.76e+2 144 38.3s

e 1 141 5.00e+3 135 7.3s 3 423 7.00e+2 212 48.7s

coe�cient jump 1e+ 3; H/h = 24

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 237 8.73e+0 22 8.3s 6 687 4.77e+1 54 100.5s

f 1 237 3.83e+1 41 9.7s 3 711 1.68e+3 269 264.2s
f + r - - - - 6 687 2.07e+2 114 143.9s

e 1 141 1.08e+4 194 36.1s 3 423 9.17e+2 238 245.9s

coe�cient jump 1e+ 6; H/h = 16

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 237 7.51e+0 19 1.7s 6 687 3.22e+1 47 20.7s

f 1 237 1.02e+5 189 11.3s 3 711 1.46e+6 >1000 >204.8s
f + r - - - - 6 687 5.40e+5 >1000 >222.0s

e 1 141 4.97e+6 283 14.6s 3 423 6.87e+5 >1000 >210.6s

coe�cient jump 1e+ 6; H/h = 24

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 237 8.84e+0 21 6.7s 6 687 5.14e+1 57 103.1s

f 1 237 3.54e+4 195 36.4s 3 711 1.36e+6 >1000 >889.9s
f + r - - - - 6 687 1.01e+5 >1000 >915.5s

e 1 141 1.07e+7 434 78.5s 3 423 8.78e+5 >1000 >900.4s

Table 6.11: Condition numbers, iteration numbers, coarse space dimensions, and time to
solution for frugal and classic BDDC coarse spaces for the coe�cient distri-
bution with �ve spherical inclusions of di�erent size; see Fig. 6.12; Resolution
of 128 × 128 × 96 voxel (H/h = 16) or 192 × 192 × 144 voxel (H/h = 24);
Each voxel is discretized with six �nite elements; stationary di�usion: co-
e�cients of ρ = 1e3 or ρ = 1e6 inside the spheres and ρ = 1 in the remaining
matrix material; linear elasticity: coe�cients of E = 210 000 or 210 000 000
in the spheres and E = 210 in the remaining matrix material; ν = 0.3 every-
where. Decomposition into 384 subdomains; computed on 192 cores. Using
ρ-scaling. The acronym v stands for vertex constraints, e for weighted edge
translations, f for weighted face translations, and r for weighted edge or face
rotations; TtS abbreviates Time to Solution and # c. the size of the coarse
space. Table already published in [73, Table 5.1].
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6.5 Parallel numerical results for frugal BDDC

stationary di�usion linear elasticity

coe�cient jump 1e+ 3; H/h = 24

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 687 5.17e+1 29 6.6s 9 093 1.67e+2 76 123.8s

f 1 687 2.52e+2 94 14.2s 5 061 1.19e+3 274 275.6s
f + r - - - - 9 093 5.09e+2 179 211.7s

coe�cient jump 1e+ 6; H/h = 24

coarse space # c. cond it TtS # c. cond it TtS
FR4 1 687 7.88e+1 28 6.5s 9 093 2.44e+4 179 210.9s

f 1 687 2.50e+5 910 123.9s 5 061 9.73e+5 >1000 >893.7s
f + r - - - - 9 093 4.70e+5 >1000 >924.9s

Table 6.12: Condition numbers, iteration numbers, coarse space dimensions, and time to
solution for frugal and classic BDDC coarse spaces for the coe�cient distribu-
tion obtained by an EBSD measurement of a dual-phase steel; see Fig. 6.14;
Resolution of 192×192×192 voxel (H/h = 24); Each voxel is discretized with
six �nite elements; stationary di�usion: coe�cients of 1e3 or 1e6 inside
the inclusions and 1 in the remaining matrix material; linear elasticity:

coe�cients of E = 210 000 or E = 210 000 000 in the inclusions and E = 210
in the remaining matrix material; ν = 0.3 everywhere. Decomposition into
512 subdomains; computed on 256 cores. Using ρ-scaling. See Table 6.11
for the row and column labeling. Table already published in [73, Table 5.2].
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7 A short overview of deep learning

Due to the development towards increasing amounts of data in various �elds of research
and in various sectors of the industry, using deep learning and other machine learn-
ing techniques has experienced increasing popularity during the last decades in order
to automatically process these data and to automate processes related to the data; see,
e.g., [138]. In general, machine learning algorithms process high amounts of data and
are trained to recognize certain patterns and correlations in the data or, roughly speak-
ing, to gain some sort of experience which can then be generalized to other, previously
unseen data and situations. Common examples for the application of machine learning
techniques are, e.g., image recognition, natural language processing or the identi�cation
of disease patterns in medical research, to name only a very small fraction of possible
applications. One attempt to structure the wide �eld of machine learning (ML) is to
subdivide it into supervised and unsupervised learning [169]. Additionally, the �eld of
reinforcement learning is often regarded as a third and separate domain within machine
learning; see, e.g., [16, 30].
In this thesis, we will make use of techniques from deep learning [62], an important

sub�eld of supervised machine learning, to construct a FETI-DP coarse space which is
robust for many heterogeneous coe�cient distributions and, at the same time, preferably
small. Since the aim of this thesis is to develop robust and e�cient FETI-DP and BDDC
coarse spaces rather than to give an exhaustive introduction into machine learning, we
will concentrate on the description of the concrete machine learning tools which we use
for our speci�c application. For the convenience of the reader, we will also give a short
description of deep learning which is by no means exhaustive. For a more comprehensive
introduction into deep learning, also with respect to di�erent network architectures, we
refer to, e.g., [30, 62,66] and the references therein.
In the following, we give a short introduction of supervised machine learning in Sec-

tion 7.1 and continue with a description of dense feedforward neural networks in Sec-
tion 7.2. In Section 7.3, we brie�y comment on some theoretical and numerical details
with respect to the training and evaluation procedure of feedforward neural networks.

7.1 Supervised learning as a high-dimensional nonlinear

optimization problem

As already mentioned, the wide �eld of machine learning can roughly be subdivided
into the sub�elds of supervised, unsupervised, and reinforcement learning. For all three
types of machine learning models the collection and processing of data is one of the most
fundamental tasks. In supervised learning, other than for unsupervised learning, the
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7 A short overview of deep learning

data usually consist of a set of input data, which are called features, and a corresponding
set of output data, which are usually referred to as labels [169]. In our application,
which is the design of a robust and e�cient FETI-DP and BDDC coarse space, we will
train a carefully designed supervised machine learning model and thus, we will focus on
the principles of supervised learning for the remainder of this chapter. The following
description of a supervised learning model is based on [72] and [169] and the references
mentioned therein.
From a high-level point of view, supervised machine learning models approximate (in

general) nonlinear functions F , which associate input and output data:

F : I → O. (7.1)

Here, the input space I can be a product of R, N, and Boolean vector spaces. The output
space O is typically either an R vector space or an N vector space. Depending on the
general numeric type of the output space, the supervised learning problem (7.1) is either
a regression or a classi�cation problem, i.e., the output space O is an R vector space for
regression problems or an N vector space for classi�cation problems.
In order to compute a machine learning model which approximates the function F

in (7.1), a large set of a priori known data {ip, op}Pp=1 is necessary, with {ip}Pp=1 ∈ I and
{op}Pp=1 ∈ O. These data are then used to determine proper parameters which de�ne the
machine learning model. The iterative process of determining appropriate parameters is
referred to as the training of a model and is based on a set of techniques known from
mathematical and numerical optimization; cf. also Section 7.3. The amount of data used
for the training of a model is typically partitioned into two separate sets of batches of
examples which are usually referred to as training and validation data. In the training and
optimization phase, the model is trained to �t the training data. Intuitively, the larger
and more diverse the training set, the better is the performance of the trained machine
learning model since the model has gained more experience due to a wider breadth of
examples [169]. Additionally, the validation data are used to control the generalization
properties of the model, i.e., to ensure that the model is not �tted too closely to the
training data but is also able to accurately predict the output for new, previously unseen
input data; cf., e.g., [169, Sec. 6.4] and [135, pp. 25�29]. In that way, over- or under�tting
of the machine learning model should be minimized.
As already mentioned, the aim of training a supervised machine learning model is to

train a hypothesis function h : I → O which approximates the function F in (7.1) as
good as possible. In the machine learning context this task is usually formulated by
de�ning a cost or loss function

l : I ×O → R (7.2)

which returns a score how well a given learning task is accomplished with respect to the
training and validation data for a speci�c choice of the model parameters. In particular,
a high value of the loss function indicates a choice of the model parameters that results
in a poor performance of the learning task, whereas a low value corresponds to a set of
parameters that results in a good performance; see [169]. Therefore, we are interested
in �nding a set of model parameters which provides the smallest value, i.e., a minimum
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7.2 Neural networks for the solution of nonlinear classi�cation problems

of the loss function l(·) in (7.2). For a more mathematical description, we recall that
we denote by {op}Pp=1 the output data for given input data {ip}Pp=1. We further denote
by {ôp}Pp=1 the approximated output data which we obtain by evaluating the hypothesis
function h for given input data {ip}Pp=1, i.e., we have h(ip) = ôp for p = 1, . . . , P. Thus,
the training of a supervised machine learning model can be written as the following
nonlinear high-dimensional optimization problem

min
θ∈Rn

l(hθ|o), (7.3)

where θ ∈ Rn denotes the model parameters of the hypothesis function hθ. The speci�c
form or de�nition of the hypothesis function hθ depends strongly on the supervised
machine learning task, i.e., classi�cation or regression, as well as on the chosen machine
learning model which can be, e.g., a linear model or a neural network; see also Section 7.2.
The loss function l(·) depends on the given learning problem and also on the chosen
optimization method. Common choices for the loss function l(·) are, e.g., the mean
squared error (MSE) function

l(hθ|o) =
1

P

P∑
p=1

(hθ(ip)− op)2 =
1

P

P∑
p=1

(ôp − op)2 (7.4)

and the cross-entropy softmax function

l(hθ|o) = − 1

P

∑
k

P∑
p=1

[
op,k log(hθ,k(ip)) + (1− op,k) log(1− hθ,k(ip))

]

= − 1

P

∑
k

P∑
p=1

[
op,k log(ôp,k) + (1− op,k) log(1− ôp,k)

] (7.5)

where the index k denotes the class indices in a multiclass classi�cation problem; see,
e.g., [169, Sect. 6.3]. For the minimization of the loss function, concepts from mathe-
matical and numerical optimization are used.
Let us note, that while the training of machine learning models can be computationally

very expensive, the evaluation of the model is typically cheap. In particular, the training
of a machine learning model corresponds to a nonlinear high-dimensional optimization
problem. However, the training can be performed a priori in an o�ine phase and the
resulting model is then saved for online usage, i.e., it can be evaluated with relatively low
computational e�ort for new input data to predict the unknown output for these data.

7.2 Neural networks for the solution of nonlinear

classi�cation problems

In this thesis, we propose a hybrid approach, which uses feedforward neural networks
for the classi�cation of critical edges or faces of a domain decomposition, where the
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Figure 7.1: Structure of a dense feedforward neural network with n input nodes (marked
in green), m output nodes (marked in orange), and N hidden layers with K
neurons per layer (marked in blue). Figure in modi�ed form in [72].

computation of additional adaptive constraints is necessary to obtain a robust coarse
space; cf. also Section 3.5. This approach can be classi�ed in the new, recently rapidly
developing �eld of scienti�c machine learning in which existing techniques of scienti�c
computing and machine learning are combined and further developed [7]. The details of
the speci�c approach, which we denote by ML-FETI-DP, will be described in Chapter 8.
Since our approach in Chapter 8 is based on deep learning, in this chapter, we give
a mathematical introduction of dense feedforward neural networks or, more precisely,
multilayer perceptrons; see, e.g., [62, Chapt. 4], [135, pp. 104�119], and [169, Sec. 5.1.4].
Parts of this section have already been published in slightly modi�ed form in [72].
On an abstract level, the concept of neural networks is inspired by a simpli�cation of

neurons in the human brain; see, e.g., [16,169]. Here, we will present a rather mathemat-
ical presentation of neural networks which interprets a neural network as a graph, which
de�nes a high-dimensional, concatenated nonlinear function.
A possible approach to de�ne a feedforward neural network is to interpret it as a

directed, weighted graph G = (V, E) with a set of nodes V, a set of edges E , and a weight
function w : E → R; see, e.g., [155, Chapt. 20.1]. An exemplary visualization of the graph
of a dense feedforward neural network is presented in Fig. 7.1. The neural network is
assumed to be organized in layers, i.e., the set of nodes V can be represented as the union
of nonempty, disjoint subsets Vi ⊂ V, i = 0, . . . , N + 1. These sets are de�ned such that
for each edge e ∈ E there exists an i ∈ {0, . . . , N} with e being an edge between a node
in Vi and one in Vi+1; see [155, Chapt. 20.1]. In general, di�erent layers can perform
di�erent transformations on their input. A neural network usually starts with an input
layer (marked in green in Fig. 7.1), where the features {ip}Pp=1 of the external data are
used as input data, and concludes with an output layer (marked in orange in Fig. 7.1).
Depending on the supervised machine learning task (i.e., classi�cation or regression),
the output values can be interpreted, e.g., as the probability distribution of the di�erent
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7.2 Neural networks for the solution of nonlinear classi�cation problems

classes of a multiclass classi�cation problem. The layers in between the input and the
output layer are called hidden layers. The nodes in a neural network are called neurons

and, in dense feedforward neural networks, each neuron (in a chosen layer) is in�uenced
by all neurons from the previous layer.
Mathematically, the relation between two consecutive layers is the conjunction of a

linear mapping de�ned by the weight function w and a nonlinear activation function.
In particular, the nonlinearity of the activation function enables a neural network to
approximate highly complex relations between the input and output data.
Recently, many di�erent choices for the activation function α have been developed,

which are often modi�cations and combinations of relatively simple mathematical func-
tions. For the numerical experiments in Chapter 8, we choose the Recti�ed Linear Unit
(ReLU) function [60,86,137] which is de�ned by

α(x) = max {0, x} .

This function is almost linear and its evaluation is computationally cheap. However,
its nonlinearity is su�cient for the approximation of many nonlinear relations. Other
common choices for the activation function α are, for instance, the hyperbolic tangent
function (tanh) or further modi�cations of the ReLU function as, e.g., the Gaussian
Error Linear Unit (GELU) [79], the Exponential Linear Unit (ELU) [32], and the Scaled
Exponential Linear Unit (SELU) function [91]. The optimal choice of the activation
function strongly depends on the given machine learning problem, the network structure
as well as on the optimization method used for the training of the model; see [169,
Sec. 13.3]. In our case, using the ReLU function as activation function α, the output of
the k-th layer of the neural network can be written as

y = αk(x,W k, bk) = max
{

0, (W k)Tx+ bk
}
,

where W k= (wkij)i,j and b
k are the weight matrix and the bias vector, respectively. Note

that an entry wkij ofW
k corresponds to the value of the weight function w associated with

the corresponding edge between layer Vk−1 and Vk. Then, the application of a complete
neural network with N hidden layers to an input vector i ∈ I is given by

h1 = α1(i,W 1, b1),

hk+1 = αk+1(hk,W k+1, bk+1), 1≤k < N,

o = (WN+1)ThN + bN+1

(7.6)

where hk is the output of the k-th hidden layer and o ∈ O is the (�nal) output vector.
The computation of the output vector o is performed without an additional application
of the activation function. Since we use dense neural networks, all entries of the matrices
w and W k, k = 1, ..., N , are nonzero, but using a dropout rate, a certain number of
randomly chosen entries can be set to zero. The weights W k= (wkij)i,j and bias vectors
bk in (7.6) are optimized in an iterative process, i.e., during the training phase of the
model (see Section 7.1) such that the relation (7.1) between the input and the output
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data is approximated as accurately as possible and the value of the loss function (7.2)
is minimized. Typically, the loss functions associated with dense neural network models
are highly nonconvex which results in certain di�culties when searching for the global
minimum of the loss function in (7.3); see also [169]. This issue will be further addressed
in Section 7.3.
Finally, let us note that for our software framework in Chapter 8, we employ machine

learning and data analysis implementations from the software libraries Tensor�ow [1] and
Scikit-learn [145].

7.3 Some remarks on the training procedure of neural

networks

Due to the complexity of neural networks and their ability to approximate complicated
nonlinear functions, the loss functions of multi-layer neural networks are usually high-
dimensional and nonconvex [122, 169]. In particular, the loss surface of the respective
loss function often contains long or wide valleys, many �at areas as well as saddle point
problems and local minima; see [169, Sec. 13.5]. Additionally, the speci�c form of the
loss surface depends strongly on the chosen network architecture, the initialization of the
model parameters and the used mathematical optimiziation method (e.g., batch-based
or full batch) [122]. An exemplary visualization of the loss surface for a residual network
(ResNet) [67] with 56 layers without skip connections is shown in Fig. 7.2. The shown
loss surface in Fig. 7.2 is generated using the proposed visualization techniques in [122]
which are based on a projection approach and a �lter-wise normalization to obtain a
normalized, two-dimensional representation of the high-dimensional loss function of a
neural network. Even though we have to consider that the surface in Fig. 7.2 is only
a projection of the high-dimensional loss function, we can still observe the previously
described di�culties of local minima and saddle points which complicate the training
procedure of neural networks.
In general, numerical optimization methods of �rst- and second-order schemes are

used for the optimization, i.e., the minimization of the loss function of neural networks.
Popular optimizers which are widely used for the training of neural networks are modi�ed
variants of a stochastic gradient descent (SGD) method [19,20,62,151]. In principle, SGD
methods use a stochastic approximation of the gradient of a function which is computed
from a randomly drawn subset of the data. This subset of data is usually referred to as a
batch of examples in the machine learning context. Due to the di�culties explained above
when minimizing the loss functions of neural networks, a wide range of modi�cations of
the standard SGD method has been developed. These modi�cations include momentum-
based and normalized gradient methods [169, Sec. 13.5]. Additionally, both modi�cations
can be combined to further enhance gradient-based optimization methods such that they
can minimize loss functions of deep neural networks more e�ectively. Popular examples
of modi�ed SGD methods which combine the ideas of a momentum-accelerated and a
normalized gradient are the Adaptive Moment Estimation (ADAM) [90] and Root Mean
Square Propagation (RSMProp) [82, 83] �rst-order methods. Usually, both methods are
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Figure 7.2: Exemplary visualization of the loss surface of a ResNet with 56 layers without
skip connections using the projection techniques proposed in [122]. Blue areas
correspond to low values of the loss function, whereas red areas correspond
to high values.

implemented as a batch-based approach, i.e., using only a batch of examples to compute
approximations of the gradient of the loss function instead of using the entire set of data
at once. Since the neural networks which we train in Chapter 8 are relatively shallow
and thin, in our experiments, we use a batch-based approach of the ADAM optimizer for
the training; cf. also Chapter 8.
For completeness, let us mention that also optimization methods based on second-order

schemes as, e.g., stochastic variants of the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method [27,28,140] have drawn an increasing interest in recent years to
accelerate the training of neural networks and obtain a better performance with respect
to a given learning problem; see, e.g., [15, 18, 26, 171]. However, the relation between
di�erent optimization methods and speci�c network architectures or speci�c learning
problems is still ongoing research and would be beyond the scope of this thesis.
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adaptive FETI-DP coarse space using

deep learning

In Chapter 6, we have observed that the new frugal coarse space which is a heuristic
extension, i.e., a generalization of weighted averages along edges and/or faces, is able to
provide a robust algorithm for a wider range of di�erent heterogeneous coe�cient distri-
butions. However, for completely arbitrary coe�cient distributions with numerous sharp
jumps along and across the interface of the domain decomposition, the frugal coarse space
can also deteriorate in convergence; cf. also the examples considered in Section 6.5.4.
In this case, adaptive, i.e., problem-dependent coarse spaces are necessary to retain an
algorithm for which we can again prove a condition number bound which is independent
of the contrast of the coe�cient function.
As explained in Section 3.5, most adaptive coarse spaces rely on the solution of certain

localized eigenvalue problems on parts of the domain decomposition interface and use a
selection of the corresponding eigenmodes to construct appropriate constraints. These
constraints are integrated into the coarse space prior to the �rst iteration of the itera-
tive solver. In general, the respective eigenvalue problems in the adaptive approaches
are typically small and related only to a small number of neighboring subdomains; the
concrete number depends strongly on the speci�c approach. For the adaptive FETI-DP
coarse space which we have introduced in Section 3.5, we always consider eigenvalue
problems on edges or faces between two neighboring subdomains. Hence, it is feasible
to parallelize the setup and the solution of the di�erent local eigenvalue problems and
thus the computation of the adaptive constraints; see also, e.g., [96, 119]. Nevertheless,
in a parallel implementation, a signi�cant number of subsequent eigenvalue problems can
occur on single compute cores. Thus, building the adaptive coarse space can make up
the larger part of the total time to solution. On the other hand, as we have also seen
in Section 6.4.4, for many realistic coe�cient distributions, only a few adaptive or frugal
constraints on a few edges or faces are necessary for a robust coarse space. This means
that, practically, often many of the eigenvalue problems are indeed unnecessary to be
solved. It is usually not known a priori which of the eigenvalue problems are necessary
to obtain a robust coarse space. A heuristic approach to decide which of the eigenvalue
problems can be omitted based on the coe�cient jumps as well as on the residual af-
ter one step of the FETI-DP or BDDC method has been considered in [93, 94, 119]; see
also [107] for �rst preliminary results in this direction. Additionally, a similar heuris-
tic approach for the detection of necessary eigenvalue problems and the construction of
adaptive constraints without the solution of eigenvalue problems for overlapping Schwarz
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methods is proposed in [68,69].
Here, we propose a fundamentally di�erent and more general approach. Our key idea

is to train a neural network to make an automatic decision whether we have to solve
a certain eigenvalue problem or not. In the remainder of this chapter, we will apply
this idea to a speci�c adaptive FETI-DP coarse space as described in Section 3.5. Since
the FETI-DP and the BDDC domain decomposition method are dual to each other, the
described procedure can equally be applied to an adaptive BDDC method. In particular,
our approach can - in principle - be generalized to any adaptive DD algorithm which
relies on the solution of local eigenvalue problems. In [71], we have also shown that it is
possible to adapt our approach to the selection of critical edges in an adaptive GDSW
(Generalized Dryja�Smith�Widlund) method [70], i.e., an overlapping DD method. This
will be not discussed in detail in this thesis.
To extensively test our approach for adaptive FETI-DP, we consider both, two- and

three-dimensional model problems. This implies that we use neural networks both for
the classi�cation of critical edges (in the two-dimensional case) and critical faces (in the
three-dimensional case). Let us recapitulate that our predominant goal throughout this
thesis is to design a robust and e�cient FETI-DP or BDDC coarse space. Thus, we aim
at a coarse space which is on the one hand robust in the sense that it has a condition
number which is independent of the contrast of the considered coe�cient function, and
on the other hand, is preferably small and can be computed cheaply. For this purpose,
we generate an appropriate amount of training and validation data to train a neural
network in an o�ine phase. In particular, the neural network is designed such that it
makes a decision whether for a speci�c edge or face, the eigenvalue problem is necessary
for robustness, based on local information of the coe�cient distribution. The trained
neural network is then saved with the obtained weights and hyper parameters. Then, in
an online phase, we generate the respective input data for the neural network for a speci�c
test problem by using again a carefully designed representation of the local coe�cient
function associated with an edge or a face, and evaluate the already trained network for
the respective input data. As a result, we obtain an automated decision, whether for
the respective edge or face, the eigenvalue problem needs to be solved or not. The basic
tools for designing and training a dense feedforward neural network have already been
presented in Chapter 7. In this chapter, we will extend this rather general description by
focusing on the concrete adaptation of neural networks to our speci�c application which
is the detection of critical edges or faces to construct a robust and e�cient coarse space.
The remainder of this chapter is basically subdivided into two parts. In the �rst

part, in Section 8.1, we present the theoretical considerations to design a neural network
which is speci�cally tailored to our application. Here, we explicitly focus on the design
and generation of the input and the output data which are necessary to train the neural
network in a preprocessing phase. In the second part of this chapter, in Sections 8.2
and 8.3, we will present a range of di�erent numerical experiments using the proposed
approach for both two- and three-dimensional stationary di�usion and linear elasticity
problems. We will explicity use test problems which are highly heterogeneous and which
are not included in the training and validation data. Since the proposed approach makes
use of supervised machine learning techniques as presented in Chapter 7 and will be
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applied to the adaptive FETI-DP method introduced in Section 3.5, we denote our new
approach by ML-FETI-DP. The proposed method is a hybrid approach since it combines
the principles of deep learning with adaptive domain decomposition methods. The idea
of using machine learning to improve numerical algorithms (and vice versa) is part of
the rapidly developing �eld of scienti�c machine learning [7] which has drawn increasing
attention in recent years; cf. also Chapter 7.
Let us note that we explicitly split the theoretical description of our techniques as

well as the presentation of the numerical experiments into separate subsections for two-
dimensional and for three-dimensional problems. In particular, the generation of su�-
cient training and validation data for the network is more complex in three dimensions
than for two dimensions which is why, for three dimensions, additional e�ort and expla-
nations are necessary. This will be further discussed in Section 8.1.4.
Parts of this chapter have already been published in modi�ed or unmodi�ed form

in [72,74�77].

8.1 ML-FETI-DP � FETI-DP with an adaptive coarse space

based on deep learning

As described in the beginning of this chapter, we propose to train a feedforward neural
network to detect edges (in two spatial dimensions) or faces (in three spatial dimensions)
for which the solution of the eigenvalue problem presented in Section 3.5.1 is actually
necessary to ensure a robust convergence behavior of the FETI-DP method. We will
denote these edges or faces, respectively, by critical edges or faces for the remainder of
this chapter. Edges and faces where the eigenvalue problem is not needed for robustness
are denoted as uncritical.

8.1.1 The idea of using a neural network to detect critical edges or faces

Let us now describe in more detail how we design the preprocessing step in ML-FETI-DP
to identify critical edges and/or faces using a classi�cation neural network. Parts of this
section have already been published in modi�ed or unmodi�ed form in [72,75].
Prior to the �rst iteration of the iterative solver, we aim, for each edge or face of the

domain decomposition, to obtain a classi�cation whether the local eigenvalue problem
should be set up and solved, or not. Subsequently, we only compute the local eigenvalue
problems on edges or faces which are classi�ed as critical by the neural network. On all
uncritical edges or faces, we do not set up nor solve the respective eigenvalue problem
and do not enforce any constraints. Consequently, depending on the number of edges
and faces which are categorized as uncritical by the neural network, a potentially high
number of eigenvalue problems can be avoided to be computed and the computational
e�ort of the adaptive DD method can be reduced.
As we have seen in Section 7.2, a fundamental task when de�ning a neural network to

approximate the solution of a speci�c classi�cation problem is the design of appropriate
input and output data for the network. In our application within the context of adaptive

111



8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

Ωi ΩjEij

...

...

...
...

Input
layer

Hidden
layers

Output
layer

ρ(x1)

ρ(x2)

ρ(xk)

ρ(xM )

use evp?

Figure 8.1: Sampling of the coe�cient function in two dimensions; white color corre-
sponds to a low coe�cient and red color to a high coe�cient. In this repre-
sentation, the sampling points are used as input data for a neural network
with two hidden layers. Here, only sampling points from slabs around the
edge are chosen (marked in orange). Figure in modi�ed form in [77].

coarse spaces, we know from our experience that, in general, the distribution of the
coe�cient function in the neighborhood of an edge or a face is relevant for the decision
whether adaptive constraints are necessary for the respective equivalence class. Thus, as
input for our neural network, we use samples, i.e., function evaluations of the coe�cient
function within the two subdomains adjacent to an edge (in two dimensions) or a face
(in three dimensions); cf. Fig. 8.1 for an exemplary visualization of computed sampling
points around an edge Eij . As output for the neural network, we save the information
whether at least one adaptive coarse constraint has to be computed on the corresponding
edge (or face) or not. Thus, we so far obtain a two-class classi�cation problem where the
neural network is trained to distinguish between critical and uncritical edges or faces.
Additionally, this two-class classi�cation approach can be extended by a third class for
which we impose the frugal constraint as introduced in Chapter 6. This will be further
discussed in Section 8.1.2.

In general, there are some common considerations for the generation of the input data
for the neural network which are valid for both the two- and the three-dimensional case.
Let us clarify that we need to train (at least) two separate neural networks, i.e., (at
least) one network which can be applied to two-dimensional problems and (at least)
one network which can be applied to three-dimensional problems. Especially, as already
mentioned, the generation of the training data is more complex in three dimensions than
for two dimensions. Before we describe the concrete generation of training data for both
cases in Sections 8.1.3 and 8.1.4, let us brie�y comment on the similarities between them.
In order to design our machine learning approach as e�cient as possible, we aim to train
only one neural network for each case with a �xed number of input nodes which can
be evaluated for a range of di�erent coe�cient distributions and mesh discretizations.
Therefore, we have carefully designed a technique to generate the input for the network
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Figure 8.2: Left: Visualization of the ordering of the sampling points in two dimensions
(marked in red) for a straight edge (marked in blue). Right: Visualization
of the computed sampling points in three dimensions (marked in red) for
a regular face (marked in blue) between two neighboring subdomains. The
di�erent shades correspond to increasing distance of the sampling points to
the face and therefore to a higher numbering of the sampling points. Figure
in modi�ed form in [75].

that is independent of the underlying �nite element discretization and ensures a consis-
tent ordering of the input data. In our context, we refer to this approach as sampling
procedure and to the computed function evaluations of the underlying coe�cient function
as sampling points. For both the two-dimensional as well as the three-dimensional case,
we always use a �xed number of sampling points as input data for all mesh resolutions. In
particular, we choose the sampling to be �ner than all meshes used in our computations.
As a rule of thumb, we assume that the sampling grid resolves all geometric details of
the coe�cient function. In Fig. 8.2, we show an exemplary visualization of the location
and order of the sampling points for a two-dimensional (left) and a three-dimensional
problem (right); note that other orderings are possible as well. However, for a satisfac-
tory performance of the neural network, it is essential that the ordering of the sampling
points is consistent among all data. For all cases, the aim is to obtain an input vector
for the neural network which is of �xed length; i.e., number of sampling points in the
direction of the edge times number of sampling points orthogonal to the edge for the
two-dimensional example visualized in Fig. 8.2 (left).
Additionally, we ensure that all input values are real numbers and use dummy val-

ues, i.e., values of −1, to encode computed sampling points which lay outside the two
neighboring subdomains of an edge or a face, respectively. This will especially become
relevant for the computation of input data for irregular domain decompositions, as, e.g.,
obtained by METIS [87]; cf. Sections 8.1.3 and 8.1.4. In addition to that, we scale all
input values using a min-max-scaling before starting the training of the neural network.
Thus, we obtain input values which range only between zero and one. This is bene�cial
for the training performance and the classi�cation accuracy of a neural network.
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8.1.2 An extended three-class classi�cation approach using frugal
constraints

In Chapter 6, we have presented a frugal coarse space which, in many cases, provides
a robust FETI-DP or BDDC preconditioner also for heterogeneous coe�cient functions
or material distributions. In particular, our experiments presented in Sections 6.4.1
and 6.5.3 have shown that for edges or faces which require only adaptive constraints
resulting from the �rst eigenmode of the respective eigenvalue problem, the constraint can
successfully be replaced by the manually constructed frugal constraint. Consequently, if
known a priori, it is not necessary to solve any eigenvalue problems on these edges or faces.
Based on this observation, we also propose an extended approach of ML-FETI-DP, which
uses a three-class classi�cation. For this purpose, we train an adapted neural network
which - for stationary di�usion problems - distinguishes between the following three
classes: edges (or faces), where the eigenvalue problem is unnecessary (class 0), edges (or
faces) where the eigenvalue problem results in exactly one additional adaptive constraint
(class 1), and those where the eigenvalue problem selects more than one constraint (class
2). For linear elasticity problems, the three classes are de�ned analogously except that
class 1 contains edges (or faces) where the eigenvalue problem results in no more than
three (in two dimensions) or six (in three dimensions) constraints, respectively, and the
de�nition of class 2 is adjusted accordingly. For all named cases, we do not enforce any
constraints on an edge or a face assigned to class 0. If an edge or a face is assigned
to class 1, we enforce the frugal constraints on the respective edge or face as de�ned
in Section 6.2 for the case of a stationary di�usion problem or as de�ned in Section 6.3
for the case of a linear elasticity problem. For edges and faces assigned to class 2, we set
up and solve the local eigenvalue problem as de�ned in (3.26) and subsequently enforce
the computed adaptive constraints.
Let us mention that for the numerical experiments presented in Sections 8.2 and 8.3,

we use di�erent thresholds τ ∈ (0, 1) for the decision boundary between the two or three
classes of the classi�cation obtained by the neural network. For the case of two classes,
the interpretation of the value of τ is straightforward. If the obtained probability for class
1 ist lower or equal to the threshold value τ , the respective edge or face will be assigned to
class 0, otherwise to class 1. For the three-class classi�cation, we use a modi�ed approach
which works as follows. We �rst apply the standard multi-class classi�cation rule

arg max
c=0,1,2

{P (p ∈ ωc)}

for a classi�cation problem with more than two classes; cf. [169, p. 100]. Basically, this
implies that we assign the data point p to the class of class 0, 1, or 2, for which we obtain
the highest probability value as output of the neural network. Then, if p is assigned to
any of {class 1, class 2}, we rescale the probabilities for the �nal classi�cation in class 1
or 2 using the rule:

arg max

{
P (p ∈ ω1)

(1− τ)(P (p ∈ ω1) + P (p ∈ ω2))
,

P (p ∈ ω2)

τ(P (p ∈ ω1) + P (p ∈ ω2))

}
.
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Figure 8.3: Sampling points for an irregular edge without smoothing the edge a priori
(left) and using the smoothing strategy shown in Fig. 8.4 (right). Figure in
modi�ed form in [72].

Consequently, a threshold of τ = 0.5 results in an equal scaling between class 1 and
class 2, whereas, e.g., a threshold of τ = 0.4 results in more edges assigned to class
2. Let us remark that a pro�cient choice of the decision threshold τ can improve the
robustness of our approach. In particular, the speci�c value of τ can be chosen by
using the Receiver Operating Characteristics (ROC) curve as well as the precision-recall
graph of the training and validation data; cf. also [71]. Please refer to [135, Sec. 5]
for a de�nition of a precision-recall graph and a ROC curve. The speci�c choice of the
threshold τ will be further motivated and discussed in Section 8.1.5.

8.1.3 Generation of training and validation data in two dimensions

In this section, we describe the speci�c procedure to generate a su�cient and appropriate
amount of training and validation data to apply our ML-FETI-DP algorithm to two-
dimensional model problems, i.e., stationary di�usion or linear elasticity problems in two
dimensions. Parts of this section have already been published in modi�ed or unmodi�ed
form in [72].

8.1.3.1 Sampling procedure for regular and irregular edges

As we have described in the beginning of this section, our goal is to provide a sampling
procedure which always uses a �xed number of sampling points and, at the same time,
ensures a consistent order of the sampling points for all mesh resolutions as well as for
regular and irregular domain decompositions. In Fig. 8.1 and Fig. 8.2 (left), we show
an exemplary visualization for the location and the order of the sampling points in two
dimensions in the surrounding of an edge Eij . By using the speci�c ordering of the sam-
pling points as visualized in Fig. 8.2 (left), we ensure that the input vector of the neural
network is of �xed length, i.e., number of sampling points in direction of the edge times
number of sampling points orthogonal to the edge, as well as a consistent ordering of the
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Figure 8.4: Exemplary visualization of the smoothing procedure for an irregular edge
prior to the computation of sampling points. Left: Smoothing a jagged edge
by identifying the kinks and using a moving average close to the kinks of
the edge. Right: Smoothing of an example for an irregular edge. Figure in
modi�ed form in [72].

sampling points among all data. As we can observe from Fig. 8.2 (left), by construction,
our sampling grid is oriented to the tangential and orthogonal direction of an edge. Thus,
our sampling strategy is not restricted to the case of square subdomains, as indicated in
Fig. 8.1, but can also be extended to more general subdomain geometries. In this case,
we make sure to only use sampling points within the two subdomains adjacent to the con-
sidered edge in order to re�ect the structure of the edge eigenvalue problems; cf. Fig. 8.3
where computed sampling points which lay outside the two neighboring subdomains are
indicated as grey stars. For all sampling points which are outside the two subdomains,
we use −1 as input data.

However, computing the sampling points strictly in the direction of the edge and in
the directions orthogonal to the edge may lead to gaps within the sampling grid for
non-smooth edges; cf. Fig. 8.3 (left). In particular, this results in gaps in the sampling
grid in the close surroundings of an edge. Since, usually, especially the coe�cient distri-
bution in this area is highly relevant for the decision whether adaptive constraints are
necessary, we aim to cover this area as carefully as possible with the computed sam-
pling points. Therefore, we use a moving average to smooth out discontinuities in the
tangential and orthogonal vectors of the edge before computing the respective sampling
points. In particular, we use a �xed window length of �ve sampling points, and slide this
window stepwise along the edge while computing the average of the subset of sampling
points in each local window. As shown in Fig. 8.4, we smooth out kinks twice using
a moving average recursively. Let us remark that, for our purpose, it is su�cient to
consider a neighborhood of a kink instead of applying the moving average to the full
edge. To identify all kinks of a given edge, we compute an approximation of the discrete
second derivative for the entire edge. Subsequently, we use the smoothed version of the
edge, i.e., the smoothed normal vectors, to compute the sampling points in both neig-
boring subdomains. In Fig. 8.3 (right), we show the resulting grid of sampling points
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64h 21h 22h 21h

Figure 8.5: Geometric con�gurations used in the training data for two-dimensional prob-
lems: straight and jagged edges; subdomain size H/h = 64. Taken from [72].

Figure 8.6: Nine di�erent types of coe�cient functions used for the training and vali-
dation of the neural network for two-dimensional problems. The inclusions,
channels, boxes, and combs with high coe�cient are displaced, modi�ed in
sized, and mirrored with respect to the edge in order to generate the complete
training data set. We refer to the resulting data set as smart data. Taken
from [72].

after the described smoothing procedure of the orthogonal vectors of the edge. As we
can observe from Fig. 8.3, the smoothing procedure ensures that we cover at least the
coe�cient function very close to the edge which is decisive for the classi�cation whether
the eigenvalue problem is necessary for the respective edge or not.
For the training and validation of the neural network, we have generated and numeri-

cally tested di�erent sets of training and validation data for two-dimensional problems.
All in all, we have obtained the best results, i.e., the highest accuracy values for the
training and validation data as well as the best generalization properties for a carefully
selected data set which is inspired by the coe�cient functions used in [69,108]. Since the
included coe�cient distributions are, to a certain extent, manually designed such that
they cover a wide range of con�gurations which occur in practical model problems, we
refer to this data set as smart data. Additionally, we have also generated di�erent sets of
randomized training data, to which we refer to as random data, as well as combinations
of both. A more detailed comparison of the di�erent sets of training data as well as a
numerical investigation of their generalization properties with respect to di�erent test
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Hyper parameter Range tested by grid search Optimal choice

# hidden layers {1, 2, 3, 4} 3
# neurons per layer {10, 20, 30, 50} 30
dropout rate {0, 0.2, 0.25, 0.5} 0.2
learning rate {0, 0.001, 0.005, 0.01, 0.1, 1} 0.01
optimization algorithm {Adam, AdaGrad} Adam

Table 8.1: Hyper parameters of the neural network for two-dimensional problems and
its training, and the optimal choice obtained by a grid search. Table already
published in [72, Table 1].

Figure 8.7: ROC curve and precision-recall plot for the optimal model for two-
dimensional problems obtained by a grid search; cf. Table 8.1. We de�ne
precision as true positives divided by (true positives+false positives), and re-
call as true positives divided by (true positives+false negatives). The thresh-
olds used in Section 8.2 are indicated as circles. Taken from [72].

problems will be presented in Section 8.2.4. Since the smart data, all in all, have shown
the best performance properties for two-dimensional problems, we now continue with a
detailed description of this data set and use it as an illustrating example to provide more
details on the training of our speci�c neural network.
The training and validation data to which we refer to as smart data consist of 4 500

data con�gurations with varying coe�cient functions and two di�erent geometries of an
edge Eij which is shared by two subdomains Ωi and Ωj . To generate the corresponding
output data that are necessary for the training of the neural network, we have to solve the
eigenvalue problem described in Section 3.5 for each of the 4 500 training and validation
con�gurations and save the classi�cation, whether for a considered edge, at least one
adaptive constraint has to be computed.
In a preliminary phase of our machine learning approach, we have observed that it is

su�cient to train the network on two geometric con�gurations, i.e., two regular sub-
domains sharing a straight edge and two regular subdomains sharing a jagged edge
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(see Fig. 8.5), in order to generalize to arbitrary shapes of subdomains. For the sam-
pling procedure in the generation of training and validation data, we select 127 points
in the direction of the edge and 2 × 127 points in the orthogonal direction. Thus, we
roughly obtain two sampling points in each �nite element for the subdomain size de�ned
by H/h = 64. We combine the two geometric con�gurations shown in Fig. 8.5 with coef-
�cient functions of the types shown in Fig. 8.6. In order to obtain the full set of training
data for the smart data, the inclusions, channels, boxes, and combs with high coe�cient
are varied in size, location, and orientation which actually leads to more con�gurations
than the nine basic ones given in Fig. 8.6. Let us note again that in Section 8.2.4, we will
provide comparative results for di�erent types of training data sets for two-dimensional
domains, i.e., the manually constructed training data presented here and training data
sets obtained by a randomized coe�cient distribution. For the remainder of this subsec-
tion and for the numerical results presented in Sections 8.2.2 and 8.2.3, however, we will
use the training data set shown in Fig. 8.6 since it produces the best results in terms of
the highest acccuracy values; cf. also Section 8.2.4.
During the iterative training of the neural network, we minimize the softmax cross-

entropy loss function

g(b1, ..., bN+1,W 1, ...,WN+1) =

C∑
c=1

∑
p∈ωc

log

 C∑
j=1

eop,j

− op,c
 (8.1)

with respect to the weights and bias vectors of the neural network; cf. [169, Sect. 6.3]
and Section 7.1. Here, C is the total number of classes in the classi�cation problem,
op,j is the output corresponding to class j in the output vector of data p, and ωc is the
subset of the training data corresponding to class c. Thus, the softmax cross-entropy
loss function minimizes the cross-entropy between the deterministic class labels of the
training and validation data and the model's prediction for the same data. Minimizing
the cross-entropy is equivalent to minimizing the Kullback-Leibler divergence, which is a
measure for the di�erence of two probability distributions from information theory; cf.,
e.g., [62, Sec. 3.13]. Note that the prediction

P (p ∈ ωc) =
eop,c

C∑
j=1

eop,j
(8.2)

of the output layer is the probability that the input with index p belongs to class c.
Hence, using the softmax function as the activation function for the output layer of the
neural network, the output values can be interpreted as a probability distribution of the
di�erent classes of our classi�cation problem.
To �nd an approximative solution of this nonlinear optimization problem, we apply an

SGD method with an adaptive scaling of the learning rate and a batch size of 100. For the
adaptive scaling of the learning rates, we consider the AdaGrad (Adaptive Gradient) [47]
and the Adam [90] algorithm.
In order to optimize the hyper parameters of the neural network, we apply a grid search

algorithm on a discrete search space of parameters. Here, we use as hyper parameters the
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classi�cation type threshold τ fp fn acc

two-class classi�cation
0.45 8.8% 1.9% 89.2%
0.5 5.4% 5.1% 89.5%

three-class classi�cation
0.4 5.1% 1.0% 93.9%
0.5 3.2% 2.3% 94.5%

Table 8.2: Results on the complete smart training data set in two spatial dimensions.
The numbers are averages over all 4 500 training con�gurations. We de�ne
the accuracy (acc) as the number of true positives and true negatives divided
by the total number of training con�gurations. Table already published in [72,
Table 2].

number of hidden layers, the number of neurons per layer, the dropout rate, the learning
rate, and the type of the optimization algorithm. The corresponding hyper parameters,
the search space, and the optimal choices for the parameters are given in Table 8.1.
We compare and optimize the generalization properties of the neural network by cross-
validation using a random splitting of our data set into 80 % training and 20 % validation
data for each iteration of the grid search algorithm. The ROC curve and a precision-
recall plot of the neural network with optimal hyper parameters are shown in Fig. 8.7.
In both plots, the threshold τ for the decision boundary between critical and uncritical
edges is varied between zero and one. When increasing τ , the false positive rate, which
corresponds to the number of critical edges that are not detected by the algorithm,
decreases. Consequently, the robustness of our ML-FETI-DP approach is improved.
In Fig. 8.7, we additionally indicate the thresholds used in the numerical experiments
in Section 8.2 as colored circles. More details on heuristic strategies for the choice of the
ML threshold τ are given in Section 8.1.5.

8.1.3.2 Results on the training data in two dimensions

On the complete set of the smart training data in two dimensions, we obtain the results
listed in Table 8.2. Here, we use the hyper parameters of the neural network and the
training procedure which have performed best in Table 8.1. We observe a signi�cantly
better accuracy for the three-class classi�cation compared to the two-class classi�cation.
Furthermore, we observe that a classi�cation threshold of τ = 0.5 yields the best accuracy
for both types of classi�cation. However, for the cases of irregular subdomains in Sec-
tion 8.2, we will use a lower threshold τ to improve the robustness of the ML-FETI-DP
approach. This will be further discussed in Section 8.2.

8.1.4 Generation of training and validation data in three dimensions

In this section, we describe the speci�c procedure to generate appropriate training and
validation data to extend our ML-FETI-DP approach to three-dimensional problems,
i.e., stationary di�usion or linear elasticity problems in three spatial dimensions. Parts
of this section have already been published in modi�ed or unmodi�ed form in [75].
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In analogy to Section 8.1.3, we aim to train and test our neural network for both, regu-
lar domain decompositions and for domain decompositions obtained from the graph par-
titioning software METIS [87]. We will observe that extending our methods introduced
in Section 8.1.3 from two dimensions to three dimensions causes substantial challenges
and additional e�ort is needed to preprocess the input data for our machine learning
model. Consequently, we have to adapt and extend our sampling procedure, especially
for irregular decompositions of three-dimensional domains. Let us note that the prepro-
cessing of the input data is at the core of our hybrid ML-FETI-DP algorithm. Hence, the
preprocessing of the three-dimensional input data is one of the main novelties compared
to the two-dimensional case.

As described in Section 3.5, for adaptive FETI-DP in three spatial dimensions, lo-
cal eigenvalue problems on edges as well as faces have to be solved to set up a robust
coarse space and to obtain a sound theoretical condition number bound; cf also [92].
However, the respective edges typically only possess a relatively small number of nodes,
and hence, the corresponding eigenvalue problems are rather small. Therefore, in our
three-dimensional ML-FETI-DP approach, we restrict ourselves to the identi�cation of
necessary face eigenvalue problems and solve all eigenvalue problems for edges which be-
long to more than three subdomains. Note that, for unstructured domain decompositions,
these edges are rather rare. In the following, we will thus describe the design of a neu-
ral network which is trained for the classi�cation of critical faces in a three-dimensional
domain.

Generally, the sampling should cover all elements in a neighborhood of the respec-
tive interface component. Therefore, in analogy to irregular edges in two dimensions, a
smoothing procedure is necessary for irregular faces in three dimensions to prevent an
incorrect or incomplete picture of the material distribution resulting from gaps in the
sampling grid. Moreover, an additional challenge in the sampling procedure for irregular
faces, such as faces obtained using METIS (in the following denoted by METIS faces),
with an arbitrary orientation in the three-dimensional space, arises. In particular, a con-
sistent ordering of the sampling points is neither a priori given nor obvious in most cases.
More precisely, there is no natural ordering of a grid of points on an irregular face, such
as going from the lower left corner to the upper right corner. A consistent ordering of the
sampling points is, however, essential when using them as input data to train a neural
network. In particular, given that neural networks rely on input data with a �xed struc-
ture, an important requirement of our data preprocessing is to provide samples of the
coe�cient distribution with a consistent spatial structure in relation to each face in our
domain decomposition, even though the faces may vary in their location, orientation, and
shape. For our generalized approach presented below, some of the computed sampling
points may lay outside the two subdomains adjacent to a face. As already done for the
two-dimensional case, we encode these points using a speci�c dummy value which clearly
di�ers from all true coe�cient values. Since all coe�cient values are positive, we encode
sampling points outside the adjacent subdomains by the value −1. This is essential to
ensure that we always generate input data of a �xed length for the neural network for
all mesh resolutions; see also Section 8.1.3.
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8.1.4.1 Sampling procedure for regular faces

In the case of regular faces, the sampling procedure is fairly similar to the approach for
straight edges in a two-dimensional domain decomposition; see Section 8.1.3. Basically,
we compute a tensor product sampling grid by sampling in both, tangential directions of a
face and in the directions orthogonal to the face. This results in a box-shaped structure of
the sampling points in both neighboring subdomains of the face; see also Fig. 8.2 (right).
A required consistent ordering of the sampling points for this case is naturally given by
passing through the sampling points layer by layer with growing distance relative to the
face. The ordering of the sampling points in layers parallel to the face is indicated by
the changing color gradation in Fig. 8.2 (right).

8.1.4.2 Sampling procedure for METIS faces

Our sampling procedure for METIS faces consists of two essential steps. First, we con-
struct a consistently ordered two-dimensional auxiliary grid on a planar projection of
each face. Second, we extrude this auxiliary grid into the two adjacent subdomains of
the face. The resulting three-dimensional sampling grid has both a �xed size and a con-
sistent ordering for all faces. Sampling points which do not lie on the face or within the
two adjacent subdomains are encoded using the dummy value −1.

First step � Construction of a consistently ordered auxiliary grid for METIS faces

In order to construct the auxiliary grid for a METIS face, we �rst compute a projec-
tion of the original face represented in the three-dimensional Euclidean space onto an
appropriate two-dimensional plane. In particular, we project a given METIS face onto a
two-dimensional plane, such that we obtain a consistently sorted grid covering the face.
This grid is induced by a tensor product grid on the two-dimensional projection plane.
Note that since we use tetrahedral �nite elements in three dimensions, each METIS face
is naturally decomposed into triangles. Due to the projection from three dimensions to
two dimensions, elements, i.e., triangles of the face, can be degraded or deformed, i.e.,
they can have a large aspect ratio. On top of that, we can also obtain �ipped triangles;
see Fig. 8.8 for an example where both cases occur. Hence, we have to regularize the
two-dimensional projection of the face before constructing the sampling grid.
To obtain a well-shaped projection of the face which is appropriate for our purpose, we

numerically solve an optimization problem with respect to the two-dimensional projection
of the face. More precisely, the objective functions of the optimization problem are
carefully designed such that �ipped triangles (phase 1) as well as sharp-angled triangles
(phase 2) are prevented:

min
x

∑
Tj

λ1 · e−λ2·det(Tj(x)) + λreg · ‖d(x)‖22 (phase 1) (8.3)

and

min
x

∑
Tj

l2pj (x) + l2qj (x)

2 ·Aj(x)
(phase 2). (8.4)
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Here, we denote by x the coordinate vector of all corner points of all triangles of a
given face after the projection onto the two-dimensional plane, by Aj(x) the area of a
given triangle Tj(x), and by lpj (x), lqj (x) the lengths of two of its edges. By d(x) we
denote the displacement vector containing the displacements of all points x from the
initial state prior to the optimization process. Furthermore, we denote by det(Tj(x)) the
determinant of the transformation matrix which belongs to the a�ne mapping from the
unit triangle, i.e., the triangle with the corner points (0, 0), (1, 0), and (0, 1), to a given
triangle Tj(x). We also introduce scalar weighting factors λ1, λ2, and λreg to control the
ratio of the di�erent terms within the objective functions. The speci�c values for these
weights were chosen heuristically and for all our computations, we have used the values
λ1 = 1, λ2 = 50, and λreg = 10.
Let us brie�y motivate our objective functions in more details. Prior to the optimiza-

tion of phase 1, we locally reorder the triangle corners, such that det(Tj(x)) is negative
for all �ipped triangles. In order to do so, we start with one triangle and de�ne it either
as �ipped or non-�ipped. Then, we go through the remaining triangles of the projected
face and classify them based on the following equivalence relation: two adjacent triangles
are equivalent if and only if they do not overlap. Depending on the label of the initial
triangle, we obtain two values for the objective function of phase 1, and we choose our
classi�cation into �ipped and non-�ipped triangles such that we start with the lower
value. After this, �ipped triangles can always be identi�ed by a negative determinant
of the respective transformation matrix. Therefore, we explicitly penalize such negative
determinants in phase 1 of our optimization by minimizing the factors λ1 · e−λ2·det(Tj(x)).
Note that we also add the regularization term λreg · ‖d(x)‖22 to the objective function to
prevent that the projection can be arbitrarily shifted or rotated in the given plane. In
phase 2, we minimize the sum of all fractions

l2pj (x) + l2qj (x)

2 ·Aj(x)
.

This speci�c fraction is inspired by geometrical arguments; see also [56, Sect. 4]. It is min-
imized for equilateral triangles, i.e., a high value in this fraction corresponds to a triangle
with a large aspect ratio. Note that the fraction may actually be in�nity if Aj(x) = 0.
This may happen if a triangle is initially projected onto a straight line. However, in the
�rst optimization phase, small areas are penalized in terms of the determinant, such that
we do not obtain values close to zero in the second phase.
We start the optimization procedure with the initial projection onto the plane x = 0,

y = 0, or z = 0 that results in the lowest objective value when adding the objective
functions (8.3) and (8.4) of phase 1 and phase 2, respectively. Then, we use the gradi-
ent descent algorithm as an iterative solver and optimize, i.e., minimize, alternating in
succession the two aforementioned objective functions. The optimization procedure is
stopped if the norm of the relative change of the coordinate vector of the triangles with
respect to the previous iteration is below a factor of 1e-6 in both phases. In Figs. 8.9
and 8.10, we show an exemplary visualization of the di�erent steps of the optimization
procedure in phase 1 and phase 2, respectively, for a METIS face consisting of ten trian-
gles. Let us note that for all tested faces in Section 8.3, the optimization procedure did

123



8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

Figure 8.8: Left: Example of a typical METIS face in the three-dimensional space (blue
triangles) and its corresponding projection onto the two-dimensional plane
z = 0 (green triangles). Right: Due to the projection, we obtain both �ipped
triangles, which are marked in grey with red edges, and degraded triangles
with a large aspect ratio, of which one is marked in blue. The di�erent shades
of green are only introduced for visualization purposes and do not have any
physical meaning. Taken from [75].

always converge in phase 1 and phase 2 before the maximum number of iterations was
reached, which we set to 500. Additionally, in almost all cases, only optimizing twice
in phase 1 and once in phase 2 - alternating in succession - was necessary to obtain an
appropriate projection of a given METIS face.
As the next step, we construct the smallest possible two-dimensional tensor product

grid aligned with the coordinate axes covering the obtained optimized two-dimensional
projection of the face; see also Fig. 8.11 (left) for an example. Let us remark that this
grid has a natural ordering of the grid points, e.g., starting in the lower left corner and
proceeding row by row to the upper right corner. We then make use of barycentric
coordinates to map the grid, while conserving the corresponding ordering, back into
the original triangles in the three-dimensional space. Based on the ordering of the grid
points in two dimensions, we can now establish a consistent ordering of the points in
three dimension; see also Fig. 8.11 (right).
Let us brie�y recapitulate the complete process for obtaining the auxiliary grid points

with a consistent ordering for each face. First, we project the face from the three-
dimensional space onto a two-dimensional plane; see Fig. 8.8 (left). Second, we remove
all �ipped triangles (phase 1) and optimize the shape of all triangles (phase 2) of the
projected face in an iterative optimization process; see Figs. 8.9 and 8.10. Finally, we
cover this optimized face by a two-dimensional tensor product grid with a natural ordering
and project these points back to the original face in three spatial dimensions; see Fig. 8.11.
For this purpose, local barycentric coordinates can be used.
Let us note that, in our numerical experiments in Section 8.3, the described procedure

was always successful. However, in general, there may be rare cases where our optimiza-
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Figure 8.9: Visualization of the optimization process of the original projection of a
METIS face in two dimensions in phase 1 after 0, 20, 30, 50, 100 and 150
iteration steps (from upper left to lower right). Taken from [75].

tion does not converge to an acceptable two-dimensional triangulation. For instance, in
case of irregular decompositions, it is possible that a subdomain is completely enclosed
by another subdomain, such that the face between the two subdomains is actually the
complete boundary of the interior subdomain. In this case, we cannot remove all �ipped
triangles without changing the structure of the face. If we detect that our optimization
does not converge to an acceptable solution, we can still proceed in one of the two follow-
ing ways: either we mark the eigenvalue problem corresponding to the face as necessary,
or we split the face into smaller faces and consider each of the smaller faces separately
in our ML-FETI-DP algorithm.

Second step � Extrusion of the auxiliary grid into three dimensions Starting from the
ordered auxiliary points on the face, we can now build a three-dimensional sampling grid.
For this purpose, for each of the auxiliary points on the face, we �rst de�ne a sampling

direction vector pointing into one of the two adjacent subdomains. Second, we extrude
the two-dimensional auxiliary grid on the actual METIS face into the two neighboring
subdomains along the sampling directions, resulting in a three-dimensional sampling
grid. Note that the �rst layer of sampling nodes does not lie on the face itself but next
to it; cf. Fig. 8.2. Moreover, we neglect all points of the auxiliary grid, which lay outside
the METIS face, and encode all corresponding points in the three-dimensional sampling
grid by the dummy value −1. Similar as for edges obtained by a two-dimensional METIS
decomposition, choosing the normal vectors of the triangles as sampling direction vectors
in the extrusion process can lead to gaps in the three-dimensional sampling grid close to

125



8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

Figure 8.10: Visualization of the optimization process of the original projection of a
METIS face in two dimensions in phase 2 after 0, 10, 30, 50, 70 and 100
iteration steps (from upper left to lower right). Here, the initial state is the
same as the �nal state in Fig. 8.9. Taken from [75].

the face; see also Fig. 8.3 for a two-dimensional graphical representation. This is caused
by the fact that, in general, METIS faces are not smooth. As we have already explained
for edges in the two-dimensional case, the neighborhood of an equivalence class is usually
the most relevant for the decision if adaptive constraints are necessary or not. Therefore,
the aforementioned gaps in the sampling grid should be minimized; see also Section 8.1.3
and the related numerical experiments in Section 8.2.5. To avoid these gaps and to
obtain sampling points in a preferably high number of �nite elements close to the face,
we suggest the use of sampling directions obtained by a moving average iteration over
the normal vectors of the face. In some sense, this can be interpreted as a smoothing of
the face or, more precisely, a smoothing of the �eld of normal vectors of the face.
The following procedure turned out to be the most appropriate for our purposes in

the sense that, on average, for each face and each neighboring subdomain, it results in
the highest number of sampled elements relative to the overall number of elements in
the subdomain. Here, we �rst uniformly re�ne all triangles of a given METIS face once
by subdividing each triangle of the face into four new regular triangles. For each of the
resulting �ner triangles, we compute the normal vector originating in its centroid. We
then use the normal vectors of the re�ned triangulation to compute a single sampling di-
rection for each triangle of the original triangulation of the face. For this purpose, we �rst
smooth the �eld of normal vectors of the re�ned triangulation by using a component-wise
moving average, applied twice recursively with a �xed window length of 3. Subsequently,
we obtain the �nal sampling direction of the original triangles by computing the average
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Figure 8.11: Visualization of the natural ordering of the grid points obtained by project-
ing and optimizing a METIS face. Left: Two-dimensional projection of the
original face (shown on the right) after both optimization phases have been
carried out; the optimized projection is covered by a regular grid with nat-
ural ordering; same face as in the last picture of Fig. 8.10. Right: Original
face in three dimensions with corresponding grid points; numbers are ob-
tained by a projection from two dimensions (left) back to three dimensions
using barycentric coordinates. Taken from [75].

of the resulting normal vectors of all corresponding four �ner triangles. Subsequently, we
use the same sampling direction for all points of the auxiliary grid which are located in
the same triangle.
Let us brie�y describe the moving average approach and the meaning of the window

length in more detail. For each triangle of the re�ned face, one after another, we replace
the normal vector by a component-wise average of the normal vector itself and the normal
vectors of certain surrounding triangles. The triangles considered in the averaging process
are aggregated recursively as follows. In a �rst step, for a given triangle, we consider
all neighboring triangles that share an edge with the given triangle to obtain a patch
of triangles with a window length of 1. Recursively, for an increasing window length,
we additionally consider all triangles that share an edge with a triangle that has been
selected in the previous step. Please see also Fig. 8.12 for an exemplary visualization of
all considered triangles for a moving average with the window length of 3.
Finally, we use the obtained sampling directions to compute the �nal three-dimensional

sampling grid in the two neighboring subdomains of the face. In Fig. 8.13, we visualize all
sampled (middle) and non-sampled (right) �nite elements using the described procedure
for an exemplary METIS face. Here, we denote a �nite element as sampled if it contains
at least one sampling point, otherwise as non-sampled. We can observe from Fig. 8.13
that, especially in the close neighborhood of the face, we obtain sampling points in almost
all �nite elements. In analogy to the two-dimensional case, we obtain the �nal input for
our neural network by creating a vector which contains the evaluations of the coe�cient
function ρ or the Young modulus E, respectively, for all points in the computed sampling
grid.
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Figure 8.12: Visualization of the moving average procedure for METIS faces to obtain
the sampling direction vectors for the extrusion of the auxiliary grid. For
the red triangle, all grey, light blue and dark blue triangles are considered
recursively as grouped by colors for a moving average with a window length
of 3. Taken from [75].

8.1.4.3 Training and validation phase

For the training and validation of the neural network applicable to three-dimensional
problems, we use a data set containing approximately 3 000 con�gurations of pairs of
coe�cient functions and subdomain geometries for two subdomains sharing a face. To
obtain the output data, i.e., the correct classi�cation labels for the training of the neural
network, we solve the face eigenvalue problem described in Section 3.5 for each of these
con�gurations. Note that the correct classi�cation label for a speci�c face Fij does not
only depend on the geometry and the coe�cient distribution, but also on the underlying
PDE. Therefore, we will use the same con�gurations for di�usion and elasticity problems
but compute the correct classi�cation labels separately.
For the two-dimensional case, we use only two edge geometries, i.e., a regular edge and

an edge with a single jag, and combine them with a set of carefully designed coe�cient
distributions, resulting in a total of 4 500 con�gurations; see Section 8.1.3. We refer to
this data set based on manually designed coe�cient distributions as smart data. Since
both the domain decomposition and the coe�cient distribution may be more complex in
three dimensions compared to two dimensions, we need to use a modi�ed approach for
the generation of training and validation data for three-dimensional decompositions. In
particular, we consider six di�erent mesh discretizations resulting from regular domain
decompositions of the unit cube into 4 × 4 × 4 = 64 or 6 × 6 × 6 = 216 subdomains of
a size de�ned by H/h ∈ {6, 7, 8}. For each of these mesh discretizations, we generate 30
di�erent randomly generated coe�cient distributions based on the approach discussed
in Section 8.2.4. More precisely, we control the ratio of high versus low coe�cient voxels
and impose some light geometrical structure. In particular, we build connected beams of
a high coe�cient with a prede�ned length in x, y, or z direction, and additionally com-
bine them by a pairwise superimposition; cf. Section 8.2.4 for a more detailed description
of the analogous two-dimensional case. In Fig. 8.14, we show an exemplary coe�cient
distribution in three dimensions which has been generated using the described technique.
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Figure 8.13: Visualization of a METIS face between two neighboring subdomains (left)
and all sampled (middle) and non-sampled (right) FE's when using the
described sampling procedure. The two di�erent subdomains are visualized
by yellow and blue FE voxels. Taken from [75].

In analogy to the two-dimensional case, we refer to this set of coe�cient functions as ran-
dom data. For each combination of mesh and coe�cient distribution, we now consider
the aforementioned regular domain decomposition as well as a corresponding irregular
domain decomposition into 64 or 216 subdomains, respectively, obtained using the graph
partitioning software METIS [87]. Finally, we consider the eigenvalue problems corre-
sponding to all resulting faces combined with the di�erent coe�cient distributions. As
mentioned before, we obtain a total of approximately 3 000 con�gurations. Note that, in
general, using a smaller number of METIS subdomains than 64 for the generation of the
training data, we obtained face geometries which resulted in poor generalization prop-
erties of our neural network. Moreover, in contrast to the two-dimensional case, where
we need at least 4 500 smart data con�gurations, we are now able to obtain very good
accuracy values for a total of only roughly 3 000 data con�gurations. This is likely due to
the much smaller number of �nite elements per subdomain in practical experiments with
three-dimensional domains, compared to the two-dimensional experiments in Section 8.2.
For the sampling within the generation of training and validation data, we select 22

points in both of the two tangential directions of the auxiliary grid of a face and 22 points
in the orthogonal direction for each of the two adjacent subdomains. Hence, we obtain
approximately two sampling points in each �nite element when using a subdomain size
of H/h = 10.
As in Section 8.1.3, we train the neural network using the Adam [90] optimizer, a

speci�c variant of the SGD method with an adaptive learning rate. The hyper parameters
for the training process and the neural network architecture are again chosen based on
a grid search with cross-validation. More precisely, we have compared the training and
generalization properties of di�erent neural networks for several random splittings of our
entire data set into 80 % training and 20 % validation data; cf. also Section 8.1.3 for
details on the hyper parameter search space. For three-dimensional problems, using a
neural network with [40, 30, 25] hidden layers, i.e., three hidden layers with 40, 30, and
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Figure 8.14: Example of a randomly distributed coe�cient function in the unit cube
obtained by using the same randomly generated coe�cient for a horizontal
or vertical beam of a maximum length of 4 �nite element voxels. The grey
voxels correspond to a high coe�cient and we have a low coe�ent of 1
otherwise. Visualization for 2× 2× 2 subdomains and H/h = 5.

25 neurons, respectively, results in the highest accuracy values for both the training and
validation data. The ROC curve and a precision-recall plot of the neural network with
the optimal hyper parameters are presented in Fig. 8.15. Let us note that we use the
same neural network for both, regular and METIS decompositions, in our numerical
experiments in Section 8.3.

8.1.4.4 Results on the training data in three dimensions

On the complete set of training and validation data, we obtain the results listed in
Table 8.3. As in Section 8.1.3, we use the classi�cation thresholds τ ∈ {0.45, 0.5} for the
two-class classi�cation and τ ∈ {0.4, 0.5} for the three-class classi�cation, respectively.
For the two-class classi�cation, we observe nearly the same accuracy values when using
the classi�cation threshold τ = 0.5 or τ = 0.45. For the three-class classi�cation, however,
lowering the threshold to τ = 0.4 results in a lower accuracy value than for using the
threshold of τ = 0.5. In both cases, the number of false negative faces, which corresponds
to the number of critical faces not detected by the algorithm and which are critical for the
convergence of the iterative FETI-DP solver, can be reduced by decreasing the threshold
τ . In our context, we denote this approach to improve the robustness as overshooting.
In Section 8.3, we will always compare the results for the default threshold τ = 0.5, and
the overshooting threshold, i.e., τ = 0.45 and τ = 0.4 for the two-class and three-class
model, respectively. More details on heuristic strategies for the choice of the threshold τ
are given in Section 8.1.5.
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Figure 8.15: ROC curve and precision-recall plot for the optimal model for three-
dimensional problems obtained by a grid search. See Section 8.1.5 for a
de�nition of precision and recall. The thresholds used in Section 8.3 are
indicated as circles. Taken from [75].

classi�cation type threshold τ fp fn acc

two-class classi�cation
0.45 2.76% 1.76% 95.5%
0.5 1.70% 3.40% 94.9%

three-class classi�cation
0.4 5.2% 1.7% 93.1%
0.5 2.1% 2.3% 95.6%

Table 8.3: Results on the complete randomized training and validation data set in three
spatial dimensions. We de�ne the accuracy (acc) as the number of true posi-
tives and true negatives divided by the total number of training and validation
con�gurations. Table already published in [75, Table 1].

8.1.5 Heuristic strategies for the choice of the ML threshold

As already stated above, we use the softmax function as the activation function for the
output layer of our neural network. Thus, for a multi-class classi�cation problem, the
obtained output values of the neural network can be interpreted as the probability values
that a given input vector belongs to each of the given classes; see also (8.2). Given
an output vector of probability values, the machine learning algorithm has to make a
decision into which of the di�erent classes a given input vector should be categorized.
Illustratively spoken, we have to de�ne a decision boundary between the di�erent classes.
The most intuitive classi�cation approach would be to always select the respective class
with the highest corresponding probability value; cf. also [169]. However, in our speci�c
application within adaptive coarse spaces, this may not always be the best choice.
For an illustrative analysis of the problem, let us consider an exemplary neural network

which is trained to distinguish between critical and uncritical edges in a two-dimensional
domain decomposition. Hence, we consider a two-class classi�cation problem. In order
to transfer the following discussion to the standard terminology within machine learning,
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we also refer to edges where (at least) one adaptive coarse basis function is necessary as
positive or positive edges and to edges where the eigenvalue problem is unnecessary as
negative or negative edges.
Of course, using our machine learning method, we are interested in a preferably high

accuracy of the classi�cation. On the one hand, expecting a perfect accuracy of 100% is
a rather unrealistic expectation since the training of a neural network is a highly non-
linear optimization process and also depends on stochastic variables, as, e.g., the choice
of the parameter initialization and the choice of the batches in an SGD method. On the
other hand, we can take advantage of available information regarding our speci�c ML
problem to optimize the decision of the neural network speci�cally with respect to our
purposes. Generally speaking, our predominant goal is to identify all critical edges, for
which adaptive coarse constraints are necessary to obtain a robust FETI-DP algorithm.
In particular, we preferably try to avoid edges, which are incorrectly identi�ed as negative
by the neural network since they might decrease the rate of convergence of the resulting
FETI-DP algorithm. We refer to these edges as false negatives or false negative edges. On
the contrary, edges which are incorrectly identi�ed as positive by the neural network, are
not critical for the convergence properties but only result in the solution of an additional
eigenvalue problem which does not lead to any additional coarse constraints since the
tolerance criterion will not be satis�ed. We refer to the latter edges as false positives or
false positive edges. Consequently, only false negative edges might negatively a�ect the
rate of convergence of the iterative solver whereas false positive edges only correspond to
some extra computational e�ort. Therefore, our predominant goal is to avoid any false
negative edges, while false positive edges are - to a certain extent - acceptable. With
this in mind, we try to de�ne an optimal choice for the ML decision threshold τ for
the decision boundary between the two classes. Given that - roughly speaking - we aim
to avoid false negative edges at the cost of some false positive edges, using a value of
τ = 0.5, which results in an equal weighting between the two classes, might not always
be the optimal choice.
For a two-class classi�cation problem, we can use the ROC curve as well as a precision-

recall graph of the training and validation data as an indicator for the selection of an
appropriate decision threshold τ . For the sake of completeness, let us brie�y present
the de�nitions of two di�erent performance metrics named precision and recall. In a
two-class classi�cation problem, the precision is de�ned by

precision :=
TP

TP + FP
(8.5)

and the recall by

recall :=
TP

TP + FN
, (8.6)

where TP denotes the number of true positives, FP the number of false positives, and
FN the number of false negatives. Thus, the precision measures how many of the data
predicted as positive are actually positive, whereas recall measures how many of the
positive samples are categorized correctly by the positive predictions [135]. Consequently,
recall is often used as a performance metric when we need to identify all positive examples,

132



8.2 Numerical results for adaptive FETI-DP and ML-FETI-DP for two dimensions

which is the case in our application where we aim to correctly identify all critical edges.
Hence, we principally want the recall to reach a high value. Simultaneously, we also
prefer the precision to be high as well, since a recall of one could also be achieved for a
neural network that categorizes all edges simply to class 1. This, however, would simply
result in the original adaptive FETI-DP coarse space and no eigenvalue problems or
computational e�ort would be saved. As we can observe from the latter explanations,
the optimal choice of the decision threshold τ is always a trade-o� between precision and
recall of the resulting ML algorithm. In our application, we aim to de�ne the value of τ
such that, predominantly, the number of false negative edges is reduced to an essential
minimum or, if possible, to zero, whereas the number of false positive edges remains
at a modest value. As we will observe in Section 8.2, for almost all tested problems,
it is possible to completely eliminate all false negative edges for the decision threshold
τ ∈ {0.4, 0.45} while also obtaining an acceptable number of false positive edges. This
implies that the considered classi�cation problem can be handled quite well by the trained
neural networks.
For completeness, let us mention that the above described strategies are also equally

valid for three-dimensional domain decompositions and the classi�cation of critical faces.

8.2 Numerical results for adaptive FETI-DP and

ML-FETI-DP for two-dimensional test problems

In this section, we provide comparative results for classic FETI-DP, the adaptive FETI-
DP method introduced in Section 3.5, and our hybrid ML-FETI-DP algorithm for di�er-
ent test problems in two spatial dimensions. As already mentioned in the beginning of
this chapter, we deliberately present the results for two- and three-dimensional problems
in separate subsections. Although the idea of using deep learning for the identi�cation
of critical edges or faces is the same in both cases, the speci�c implementation di�ers in
some aspects. In particular, the design and generation of training and validation data is
more complex in three dimensions. Additionally, a slightly di�erent network architecture
as well as di�erent values for the decision threshold τ are used.
In the following, we show numerical results for two types of di�erent coe�cient distri-

butions which are used for stationary di�usion and linear elasticity problems; see Sec-
tion 8.2.1 for a detailed description. We consider both regular domain decompositions of
the unit square as well as irregular decompositions obtained by METIS [87]. For both
cases, we will consider a two-class classi�cation model as well as an extended three-class
classi�cation model using frugal constraints; cf. Section 8.1.2. The presented results
in Sections 8.2.2 and 8.2.3 rely on the carefully selected set of smart data which are used
for the training and validation of the respective neural networks. In Section 8.2.4, we
extend these results by comparing the performance of ML-FETI-DP for di�erent sets
of training data used for the optimization of the neural network. Thus, we compare
the smart training data with di�erent sets of randomized training data and combina-
tions of both types. In Section 8.2.5, we further examine the sampling procedure for
two-dimensional problems in more detail by reducing the number of computed sampling
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points and investigate the e�ect on the generalization properties of the resulting neural
network.
Parts of this section have already been published in modi�ed or unmodi�ed form

in [72,74,76,77].

8.2.1 Description of the tested coe�cient functions

In the following subsections, we consider two types of discontinuous coe�cient functions
or discontinuous material distributions, respectively, which result in sharp jumps along
and across the interface of the domain decomposition. First, we consider a synthetic
coe�cient distribution as visualized in Fig. 8.16 (left) to which we refer to as circle

problem. We use this coe�cient distribution to de�ne a stationary di�usion problem
where we consider a coe�cient of ρ = 1e6 in the dark blue circles and ρ = 1 in the rest of
Ω. Second, we consider a more realistic coe�cient distribution as visualized in Fig. 8.16
(middle). We refer to the respective model problem as microsection problem. We use this
coe�cient distribution to de�ne both a stationary di�usion as well as a linear elasticity
problem. For the scalar di�usion case, we consider a coe�cient of ρ = 1e6 in the black
part of the microsection and ρ = 1 elsewhere. For linear elasticity, we set the Poisson ratio
constantly to ν = 0.3 and only consider jumps in the Young modulus E. In particular,
we set E = 1e3 in the black part of the microsection and E = 1 elsewhere.
Let us note that the microsection presented in Fig. 8.16 (middle) is a subsection of the

larger microsection in Fig. 8.16 (right) of a dual-phase steel. In our numerical results,
we discuss our approach in more detail for a single subsection of the microsection whose
size is suitable for our MATLAB [134] computations. Additionally, we consider a total
of ten di�erent subsections of the microsection in Fig. 8.16 (right) that cover the whole
structure of the microsection to prove that our ML-FETI-DP algorithm is robust for
di�erent coe�cient distributions.
Finally, let us remark that in the following experiments, we always choose the mesh

resolution such that the coe�cient function is constant on each �nite element. Then, the
predictions and the accuracy of our machine learning classi�cation algorithm is indepen-
dent of the mesh resolution of the �nite element mesh.

8.2.2 Numerical results for the two-class model

Let us �rst discuss our experiments for the two-class classi�cation model. Here, we train
a neural network to distinguish between critical edges, where the eigenvalue problem
results in additional adaptive constraints, and edges where the eigenvalue problem is
unnecessary. For the remainder of this section, we will refer to edges where (at least) an
adaptive coarse basis function is necessary for robustness as positive or positive edges and
to edges where the eigenvalue problem is unnecessary as negative or negative edges. To
obtain the corresponding classi�cation for each edge which is used as output data for the
neural network, we use a tolerance of TOL = 100 in the adaptive FETI-DP algorithm.
For the classi�cation of edges in ML-FETI-DP, we will consider two di�erent values for
the (ML) threshold τ , i.e., τ ∈ {0.45, 0.5} for the two-class model.
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Figure 8.16: Two heterogeneous coe�cient distributions used for the numerical compar-
ison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP in two di-
mensions. Left: Coe�cient function with randomly distributed circles of
di�erent radii. We have ρ = 1e6 in the dark blue circles and ρ = 1 elsewhere.
Middle: Subsection of a microsection of a dual-phase steel obtained from
the image on the right. We consider ρ = 1e6 or E = 1e3, respectively, in
the black part of the microsection and ρ = 1 or E = 1 elsewhere. Right:
Complete microsection of a dual-phase steel. Courtesy of Jörg Schröder,
University of Duisburg-Essen, Germany, orginating from a cooperation with
thyssenkrupp. Taken from [72].

8.2.2.1 Regular domain decompositions

As a �rst set of numerical experiments, we consider a regular domain decomposition of the
circle problem in the unit cube and the microsection problem in Fig. 8.16 into 8×8 = 64
subdomains. For both problems, we use a discretization with 8 192 �nite elements per
subdomain. For the numerical solution of both problems we apply classic FETI-DP,
adaptive FETI-DP and ML-FETI-DP. In Fig. 8.17 (left) and Fig. 8.18, we visualize the
ML classi�cation of critical edges as obtained by ML-FETI-DP for a stationary di�usion
problem using the following color code: edges which ML-FETI-DP correctly identi�es
as positive are marked in green (true positive), edges which ML-FETI-DP incorrectly
identi�es as positive are marked in yellow (false positive), and edges which ML-FETI-
DP incorrectly identi�es as negative are marked in red (false negative). All edges which
are correctly identi�ed as negative (true negative) are not marked. Let us remark that
the false positives, i.e., yellow edges are not critical for the robustness and convergence
of the algorithm. In fact, for each false positive edge only a single unnecessary eigenvalue
problem is solved which - in principle - could be omitted. In contrast, false negatives,
i.e., red edges might decrease the rate of convergence of the resulting adaptive FETI-DP
algorithm. Therefore, we also consider the approach of overshooting and lowering the
ML-threshold τ in some cases.
In Fig. 8.17 (left), we see that only two yellow edges (false positives) but no critical

red edges (false negatives) occur for the circle problem. Here, we potentially save 92%
of the eigenvalue problems. For the microsection problem used to de�ne a stationary
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Figure 8.17: Circle problem for stationary di�usion with marked edges as obtained by
ML-FETI-DP for the two-class model: true positives are marked in green,
false positives are marked in yellow, and false negatives are marked in red.
Left: Regular domain decomposition into 8 × 8 subdomains; cf. also Ta-
ble 8.4. Right: METIS domain decomposition into 64 subdomains; cf.
also Table 8.7. Figure in modi�ed form in [72].

di�usion problem, we save 65% of the eigenvalue problems using an ML threshold of
τ = 0.5 and 60% using an ML threshold of τ = 0.45 for the decision boundary between
the two classes; cf. also Table 8.4. In the latter case, we have no false negative edges
and two false negative edges in the �rst case. See Fig. 8.18 for a graphical representation
of both results. Additionally, we provide the condition numbers and iteration counts for
all discussed examples in Table 8.4. As we can observe from Table 8.4, the two false
negative edges for the microsection problem and τ = 0.5 increase the condition number,
but the convergence of ML-FETI-DP is still fast. In particular, the iteration number
is still satisfactory which implies that the relatively high condition number estimate is
caused by only a few high eigenvalues of the preconditioned system. To obtain also a low
condition number, which is comparable to adaptive FETI-DP, an overshooting with the
ML threshold of τ = 0.45 works as expected. In this case, we obtain no false negative
edges for ML-FETI-DP and the same condition number as for adaptive FETI-DP.
To prove the robustness of ML-FETI-DP independently of the speci�c subsection of

the microstructure shown in Fig. 8.16 (right), we additionally summarize numerical re-
sults for ten di�erent subsections in an aggregated form. We therefore present averages
and maximum values of the condition number and iteration counts aggregated for all
subsections in Table 8.5. Here, we can observe that for all subsections, we are able to
obtain no false negative edges when using the ML threshold τ = 0.45. In particular,
the application of ML-FETI-DP results in almost the same condition numbers and iter-
ation counts as the adaptive FETI-DP method, whereas a high number of the eigenvalue
problems can be omitted.
We further provide numerical results for linear elasticity problems in two dimensions

for the same ten di�erent subsections of the microsection problem in Table 8.6. As for the
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Figure 8.18: Microsection problem for stationary di�usion with marked edges as obtained
by ML-FETI-DP for the two-class model for a regular domain decomposition
into 8×8 subdomains: true positives are marked in green, false positives are
marked in yellow, and false negatives are marked in red; cf. also Table 8.4.
Left: ML threshold τ = 0.5. Right: ML threshold τ = 0.45. Figure in
modi�ed form in [72].

Model Problem Algorithm τ cond it evp fp fn acc

classic - 1.04e6 56 0 - - -
Circle Problem adaptive - 8.82 35 112 - - -

ML 0.5 8.83 35 9 2 0 0.98
classic - - >300 0 - - -

Microsection adaptive - 15.86 36 112 - - -
Problem ML 0.5 9.64e4 45 39 2 2 0.96

ML 0.45 15.86 36 44 5 0 0.95

Table 8.4: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
regular domain decomposition for the two-class model for stationary
di�usion; cf. also Fig. 8.17 (left) and Fig. 8.18. We show the ML threshold
(τ), the condition number (cond), the number of CG iterations (it), the number
of solved eigenvalue problems (evp), the number of false positives (fp), the
number of false negatives (fn), and the accuracy in the classi�cation (acc).
Table already published in [72, Table 3].
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Ten Di�erent Microsection Problems

Algorithm τ cond it evp fp fn acc

adaptive - 11.04 34.6 112.0 - - -
(15.87) (38) (112) - - -

ML 0.5 8.61e4 39.5 45.0 1.6 1.9 0.97
(9.73e4) (52) (57) (2) (3) (0.96)

ML 0.45 11.04 34.6 46.9 4.4 0 0.96
(15.87) (38) (59) (6) (0) (0.94)

Table 8.5: Results for 10 di�erent subsections of a microsection of a dual-phase steel
for the two-class model for stationary di�usion. Comparison of adap-
tive FETI-DP and ML-FETI-DP for regular domain decompositions. We
show the average values as well as the maximum values (in brackets). See Ta-
ble 8.4 for the column labeling. Table already published in [72, Table 4].

stationary di�usion problem, we use the smart data set for the training and validation
of the neural network. Here, we consider a domain decomposition into 8× 8 subdomains
and use a discretization of 1 800 �nite elements per subdomain. We present average and
maximum values of the condition numbers and iteration counts for all considered sub-
sections of the microsection in Table 8.6. Analogously to the di�usion case in Table 8.5,
we are able to eliminate all false negative edges and thus obtain a robust algorithm when
using the ML threshold of τ = 0.45. Consequently, for τ = 0.45, we obtain almost the
same condition numbers for ML-FETI-DP as for adaptive FETI-DP.

8.2.2.2 METIS domain decompositions

As a second set of experiments, we consider METIS domain decompositions into 64
subdomains of the circle problem as well as the microsection problem from Fig. 8.16. In
analogy to Section 8.2.2.1, we apply classic FETI-DP, adaptive FETI-DP, and ML-FETI-
DP for the numerical solution of both model problems. In Fig. 8.17 (right) and Fig. 8.19,
we visualize the ML classi�cation of critical edges as obtained by ML-FETI-DP for a
stationary di�usion problem using the same color code as before. Let us recall that only
false negative, i.e., red edges are critical for the robustness and the convergence of the
iterative solver. As explained in the beginning of this chapter, we can make an e�ort
to improve the robustness of ML-FETI-DP by using an overshooting approach. This
usually results in some false positive, i.e., yellow marked edges, which are not critical for
the convergence of the algorithm but correspond to additional computational e�ort.
In Fig. 8.17 (right), we observe that, as for a regular domain decomposition, only two

yellow edges (false positives) but no critical red edges (false negatives) occur for the
circle problem. Here, we potentially save 96% of the eigenvalue problems compared to
adaptive FETI-DP. For the microsection problem, we save the computation of 61% of the
eigenvalue problems considering an ML threshold of τ = 0.5 as well as τ = 0.45. In the
�rst case, ML-FETI-DP misses three critical edges (red edges), whereas in the second
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Ten Di�erent Microsection Problems

Algorithm τ cond it evp fp fn acc

adaptive - 79.07 87.4 112.0 - - -
(92.83) (91) (112) - - -

ML 0.5 9.32e4 92.2 44.0 2.2 2.4 0.96
(10.32e4) (95) (56) (3) (3) (0.95)

ML 0.45 79.07 87.4 48.2 4.8 0 0.95
(92.83) (91) (61) (7) (0) (0.93)

Table 8.6: Results for 10 di�erent subsections of a microsection of a dual-phase steel for
the two-class model for linear elasticity. Comparison of adaptive FETI-
DP and ML-FETI-DP for regular domain decompositions. We show the
average values as well as the maximum values (in brackets). See Table 8.4 for
the column labeling. Table already published in [72, Table 5].

case, we are able to eliminate all red edges. See Fig. 8.19 for a visualization of both
results. We also provide condition numbers and iteration counts for all discussed examples
in Table 8.7. Although ML-FETI-DP misses three critical edges for the microsection
problem for an ML threshold of τ = 0.5, the number of iterations remains moderate.
Again, this e�ect is likely to be caused by a small number of high eigenvalues of the
preconditioned system. Nonetheless, using a lower threshold of τ = 0.45, we obtain the
same robustness as adaptive FETI-DP, i.e., a condition number which is independent
of the coe�cient contrast. Also for METIS decompositions, we again provide numerical
results for ten di�erent subsections of the microsection shown in Fig. 8.16 (right). We
present average and maximum values of the condition numbers and iteration counts
in Table 8.8. Here, we can observe that for all ten subsections we are able to achieve
almost the same condition number and iteration number (on average) for ML-FETI-DP
and τ = 0.45 as for adaptive FETI-DP, whereas we can omit a high number of the edge
eigenvalue problems.
Furthermore, we additionally test the two-class model of ML-FETI-DP for linear elas-

ticity problems and a METIS domain decomposition into 64 subdomains of the mi-
crosection problem. The respective aggregated results for ten di�erent subsections are
summarized in Table 8.9. Here, as in the di�usion case, we also obtain a robust algo-
rithm with no false negative edges when using the ML threshold of τ = 0.45, leading to
condition number estimates which are independet of the contrast of the Young modulus.

8.2.3 Numerical results for the three-class model

In this section, we discuss numerical results for the extended three-class model of ML-
FETI-DP; cf. Section 8.1.2. Here, we slightly modify the de�nition of edges of class 1
and class 2 and use the frugal constraints as introduced in Chapter 6 to approximate the
�rst eigenmodes for edges assigned to class 1. Consequently, we only set up and solve the
eigenvalue problem for edges which are assigned to class 2 by the neural network. This
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Figure 8.19: Microsection problem for stationary di�usion with marked edges as obtained
by ML-FETI-DP for the two-class model for a METIS domain decomposi-
tion into 64 subdomains: true positives are marked in green, false positives
are marked in yellow, and false negatives are marked in red; cf. also Ta-
ble 8.7. Left: ML threshold τ = 0.5. Right: ML threshold τ = 0.45.
Figure in modi�ed form in [72].

Model Problem Algorithm τ cond it evp fp fn acc

classic - 9.18e5 75 0 - - -
Circle Problem adaptive - 13.56 37 160 - - -

ML 0.5 13.56 37 7 2 0 0.99
classic - - >350 - - - -

Microsection adaptive - 16.52 35 160 - - -
Problem ML 0.5 1.78e4 51 62 3 3 0.96

ML 0.45 16.52 35 68 6 0 0.96

Table 8.7: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
METIS domain decomposition for the two-class model for stationary
di�usion; cf. also Fig. 8.17 (right) and Fig. 8.19. See Table 8.4 for the column
labeling. Table already published in [72, Table 6].
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Ten Di�erent Microsection Problems

Algorithm τ cond it evp fp fn acc

adaptive - 14.81 35.6 160.0 - - -
(22.58) (38) (160) - - -

ML 0.5 1.38e4 51.0 63.2 2.0 2.0 0.97
(2.07e4) (52) (73) (3) (3) (0.96)

ML 0.45 14.81 35.6 65.4 6.2 0 0.96
(22.58) (38) (75) (7) (0) (0.95)

Table 8.8: Results for 10 di�erent subsections of a microsection of a dual-phase steel
for the two-class model for stationary di�usion. Comparison of adaptive
FETI-DP and ML-FETI-DP for METIS domain decompositions. We
show the average values as well as the maximum values (in brackets). See Ta-
ble 8.4 for the column labeling. Table already published in [72, Table 7].

Ten Di�erent Microsection Problems

Algorithm τ cond it evp fp fn acc

adaptive - 85.73 89.4 160.0 - - -
(99.05) (97) (160) - - -

ML 0.5 2.74e4 92.8 65.0 2.4 2.6 0.96
(2.89e4) (102) (74) (3) (3) (0.96)

ML 0.45 85.73 89.4 67.2 7.4 0 0.96
(99.05) (97) (77) (8) (0) (0.95)

Table 8.9: Results for 10 di�erent subsections of a microsection of a dual-phase steel for
the two-class model for linear elasticity. Comparison of adaptive FETI-
DP and ML-FETI-DP for METIS domain decompositions. We show the
average values as well as the maximum values (in brackets). See Table 8.4 for
the column labeling. Table already published in [72, Table 8].
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potentially further decreases the number of necessary eigenvalue problems.
As before, we always use a tolerance of TOL = 100 in the adaptive FETI-DP algorithm

and, if not stated otherwise, an ML threshold of τ = 0.5 for ML-FETI-DP. Let us remark
that we only consider the microsection problem for the following experiments in this
section, since for the circle problem, only edges from class 0 and class 1 occur. Thus,
using a three-class model for the circle problem does not result in di�erent accuracy
values and false positive or false negative rates as for the two-class model.

8.2.3.1 Regular domain decompositions

In the following numerical experiments, we consider the same discretization and domain
decomposition as in Section 8.2.2.1. Here, besides classic FETI-DP with primal vertices,
adaptive FETI-DP, and ML-FETI-DP, we additionally compare FETI-DP with primal
vertex constraints and frugal edge constraints on all edges as described in Chapter 6. Let
us recall that the construction of a frugal coarse space does not require the solution of
any eigenvalue problems but can be interpreted as a low-dimensional approximation of
the adaptive FETI-DP coarse space described in Section 3.5.
In Fig. 8.20, we visualize the ML classi�cation of critical edges using the three-

class model of ML-FETI-DP for a stationary di�usion problem. As we can observe
from Fig. 8.20 (left), for τ = 0.5, we obtain a single red edge, where ML-FETI-DP as-
signs this edge falsely to class 1 instead of class 2. Nonetheless, ML-FETI-DP is still
robust, since this single edge is not critical for the convergence of the iterative solver;
see also Table 8.10. Here, ML-FETI-DP using the three-class model saves 93% of the
eigenvalue problems compared to adaptive FETI-DP. Let us note that this is a signi�-
cant improvement compared to ML-FETI-DP using the two-class model as investigated
in Section 8.2.2.1, where we have saved 65% for exactly the same model problem. This is
due to the fact that, here, we additionally omit the eigenvalue problem for edges assigned
to class 1 where we impose a frugal constraint. Again, considering a lower ML threshold
of τ = 0.4 as described in Section 8.1.2, we can eliminate all false negative edges for
the prize of additional false positives; see Fig. 8.20 (right). As already mentioned, the
latter ones do not negatively a�ect the robustness of ML-FETI-DP but result in addi-
tional computational e�ort. Also for the three-class model, we test ML-FETI-DP for
the same ten subsections of the complete microsection as considered in Section 8.2.2.
We present the respective average and maximum values of the condition numbers and
iteration counts in an aggregated form in Table 8.11.

8.2.3.2 METIS domain decompositions

To complete the set of numerical examples for ML-FETI-DP based on the smart training
data, we consider the same test problem as in Section 8.2.3.1, but using irregular domain
decompositions obtained by METIS. In particular, we use the same discretization and
number of subdomains as in Section 8.2.2.2 for the two-class model to enable a direct
comparison. The obtained classi�cations of critical edges using the three-class model for
the microsection problem and a stationary di�usion problem are visualized in Fig. 8.21.
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Figure 8.20: Microsection problem for stationary di�usion with marked edges as obtained
by ML-FETI-DP for the three-class model for a regular domain decomposi-
tion into 8× 8 subdomains. Correctly assigned edges from class 1 and class
2 are marked in green. Edges from class 1 which are falsely assigned to class
0, and edges from class 2 which are falsely assigned to class 0, are marked
in red. Edges from class 0, which are falsely assigned to class 1, and edges
from class 1, which are falsely assigned to class 2, are marked in yellow; cf.
also Table 8.10. Left: ML threshold of τ = 0.5. Right: ML threshold
τ = 0.4. Figure in modi�ed form in [72].

Model Problem Algorithm τ cond it evp e-avg fp fn acc

classic - - >300 0 - - - -
Microsection frugal - 8.21e4 127 0 112 - - -

Problem adaptive - 15.86 36 112 - - - -
ML 0.5 231.37 56 8 30 1 1 0.98
ML 0.4 16.21 37 24 18 16 0 0.85

Table 8.10: Comparison of classic FETI-DP, frugal FETI-DP, adaptive FETI-DP, and
ML-FETI-DP for regular domain decompositions for the three-class
model for stationary di�usion; cf. also Fig. 8.20. See Table 8.4 for the
column labeling. Additionally, we report the number of edges on which we
impose a frugal constraint (e-avg). Table already published in [72, Table 9].
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Ten Di�erent Microsection Problems

Algorithm τ cond it evp e-avg fp fn acc

adaptive - 11.04 34.6 112.0 - - - -
(15.87) (38) (112) - - - -

ML 0.5 147.41 48.8 4.1 43.6 1.7 1.3 0.97
(271.38) (58) (10) (46) (3) (3) (0.95)

ML 0.4 12.37 34.8 16.0 24.2 10.5 0.0 0.90
(16.41) (39) (24) (28) (16) (0) (0.85)

Table 8.11: Results for 10 di�erent subsections of a microsection of a dual-phase steel
for the three-class model for stationary di�usion. Comparison of adap-
tive FETI-DP and ML-FETI-DP for regular domain decompositions.
We show the average values as well as the maximum values (in brackets).
See Table 8.4 for the column labeling. Additionally, we report the num-
ber of edges on which we impose a frugal constraint (e-avg). Table already
published in [72, Table 10].

Model Problem Algorithm τ cond it evp e-avg fp fn acc

classic - - >350 0 - - - -
Microsection frugal - - >350 0 160 - - -

Problem adaptive - 16.52 35 160 - - - -
ML 0.5 245.71 56 9 42 2 1 0.98
ML 0.4 17.82 36 26 31 16 0 0.90

Table 8.12: Comparison of classic FETI-DP, frugal FETI-DP, adaptive FETI-DP, and
ML-FETI-DP for METIS domain decompositions for the three-class
model for stationary di�usion; cf. also Fig. 8.21. See Table 8.4 for the
column labeling. Additionally, we report the number of edges on which we
impose a frugal constraint (e-avg). Table already published in [72, Table 11].

Using the ML threshold τ = 0.5, we obtain again only one single false negative edge,
which is marked in red; see Fig. 8.21 (left). As for the regular domain decomposition,
the false negative edge can be removed by choosing τ = 0.4; see Fig. 8.21 (right). In
both cases, ML-FETI-DP is robust, converges fast, and up to 94% of the eigenvalue
problems can be saved; see Table 8.12. The behavior does not change for the ten di�erent
microsections and we again provide average and maximum values in an aggregated form
in Table 8.13.

8.2.4 Comparative results for di�erent sets of training data

So far, all previously presented results for ML-FETI-DP were based on a neural network
which has been trained using a speci�c and carefully designed set of training data. In
particular, this training set is based on the coe�cient distributions shown in Fig. 8.6
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Figure 8.21: Microsection problem for stationary di�usion with marked edges as obtained
by ML-FETI-DP for the three-class model for a METIS domain decomposi-
tion into 64 subdomains. Correctly assigned edges from class 1 and class 2
are marked in green. Edges from class 1 which are falsely assigned to class
0, and edges from class 2 which are falsely assigned to class 0, are marked
in red. Edges from class 0 which are falsely assigned to class 1, and edges
from class 1 which are falsely assigned to class 2, are marked in yellow; cf.
also Table 8.12. Left: ML threshold τ = 0.5. Right: ML threshold τ = 0.4.
Figure in modi�ed form in [72].

Ten Di�erent Microsection Problems

Algorithm τ cond it evp e-avg fp fn acc

adaptive - 14.81 35.6 160.0 - - - -
(22.58) (38) (160) - - - -

ML 0.5 233.55 53.2 7.5 46.2 1.6 2.0 0.97
(256.51) (57) (10) 49 (2) (3) (0.96)

ML 0.4 15.73 36.8 23.8 28.8 15.8 0.0 0.89
(24.04) (40) (26) (31) (21) (0) (0.86)

Table 8.13: Results for 10 di�erent subsections of a microsection of a dual-phase steel
for the three-class model for stationary di�usion. Comparison of adap-
tive FETI-DP and ML-FETI-DP for METIS domain decompositions.
We show the average values as well as the maximum values (in brackets).
See Table 8.4 for the column labeling. Additionally, we report the num-
ber of edges on which we impose a frugal constraint (e-avg). Table already
published in [72, Table 12].
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and is referred to as smart data. However, for three-dimensional problems, the manual
construction of training data which ensure satisfactory generalization properties is more
complex, especially for irregular domain decompositions. Thus, we additionally test the
feasibility of randomly generated training data for the neural network in this section. In
particular, we aim to design training data which can easily be generated without any
a priori knowledge of the considered model problem. In the following, we investigate
and compare the robustness of the resulting hybrid algorithms for four di�erent sets of
training and validation data. For all considered choices of training data sets, we provide
numerical results for both, stationary di�usion and linear elasticity problems.
Parts of this section have already been published in modi�ed or unmodi�ed form

in [74,76,77].
First, let us note that for the numerical results presented in this section, we only

train the neural network on two regular subdomains sharing a straight edge. Regarding
the coe�cient functions, we use di�erent sets of coe�cient distributions to generate
di�erent sets of training data. Despite the varying sets of training data, we use the same
setup and the same hyper parameters for the training of the neural network as described
in Section 8.1.3.
Besides the already introduced and tested set of smart data, here, we consider random

data to train the neural network. Let us note that a completely random coe�cient
distribution is not appropriate since in this case, coe�cient jumps appear at almost all
edges. Thus, for almost every edge an eigenvalue problem has to be solved. This yields a
neural network which strongly overestimates the number of eigenvalue problems needed
and thus leads to a large number of false positive edges in the test data.
Consequently, as a second set of training data, we use a slightly more structured set of

randomly generated coe�cients with a varying ratio of high and low coe�cient values.
For the �rst part of this training set, we randomly generate the coe�cient for each pixel,
consisting of two triangular �nite elements, independently and only control the ratio of
high and low coe�cient values. Here, we use 30%, 20%, 10%, and 5% of high coe�cient
values. For the second part, we also control the distribution of the coe�cients to a
certain degree by randomly generating either horizontal or vertical stripes of a maximum
length of four or eight pixels, respectively; see Fig. 8.22 for an exemplary coe�cient
distribution. Additionally, we generate new coe�cient distributions by superimposing
pairs of horizontal and vertical coe�cient distributions. We refer to this second set of
training data as random data. Please note that this set of training data can be generated
without any a priori knowledge of the underlying model problem.
To generate the output data that are necessary to train the neural network, we solve the

eigenvalue problems as described in Section 3.5 for all the aforementioned training and
validation con�gurations. In analogy to the results presented in Sections 8.2.2 and 8.2.3
for the smart training data, we again consider both a two-class classi�cation as well as
a three-class classi�cation variant of ML-FETI-DP using the random training data. For
all our training and validation data sets, we use a tolerance of TOL = 100 to generate
the output data for each edge.
In the following, we compare the performance of the ML-FETI-DP algorithm using

the di�erent choices of sets of training and validation data to train our neural network.
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8.2 Numerical results for adaptive FETI-DP and ML-FETI-DP for two dimensions

Figure 8.22: Examples of three di�erent randomly distributed coe�cient functions in two
dimensions obtained by using the same randomly generated coe�cient for
a horizontal (left) or vertical (middle) stripe of a maximum length of four
�nite element pixels, as well as by a pairwise superimposing (right). Taken
from [74].

In particular, we use the set of 4,500 smart data con�gurations (denoted by 'S' ) and sets
of 4,500 and 9,000 random data con�gurations (denoted by 'R1' and 'R2', respectively)
each individually as well as a combination of 4,500 smart and 4,500 random data con�g-
urations, which will be denoted by 'SR'. Let us note that we did not observe a signi�cant
improvement for the larger number of 18,000 random data con�gurations.
First, we present results for the whole set of training data using cross-validation and

a �xed ratio of 20% as validation data to test the generalization properties of our neural
network. Please note that due to a di�erent heterogeneity of the various training data
sets, the accuracy values in Table 8.14 and Table 8.16 are not directly comparable with
each other. To mathematically illustrate the varying heterogeneities of the di�erent
training data sets, we additionally provide the distribution among the two or three,
respectively, di�erent classes for each data set in Table 8.14. However, the provided
results in both tables serve as a sanity check to prove that the trained model is able
to generate appropriate predictions. With respect to the training data for stationary
di�usion problems, the results in terms of accuracy in Table 8.14 show that, besides
training the neural network with the set of smart data, also the training with randomly
generated coe�cient functions as well as with a combination of both training sets leads
to a reliable machine learning model. Similarly, the same observation can be made with
respect to the training data for linear elasticity problems in Table 8.16. Thus, in both
cases, it is reasonable to apply all of the trained models to our test problem in form of
microsection subsections.
Second, we use ten di�erent randomly chosen subsections of a microsection of a dual-

phase steel as shown in Fig. 8.16 (right) as a test problem for the trained neural networks.
In particular, we use exactly the same subsections of the microsection as before. In all
presented computations, we consider ρ1 = 1e6 in the black part of the microsection and
ρ2 = 1 elsewhere in case of a stationary di�usion problem, and E1 = 1e6, E2 = 1, and
a constant value of ν = 0.3 in case of a linear elasticity problem, respectively. For the
discretization of both test problems, we use a regular decomposition of the domain Ω
into 8 × 8 square subdomains and a subdomain size de�ned by H/h = 64. Please note
that also other mesh resolutions of the �nite element mesh can be used without a�ecting
the accuracy of our classi�cation algorithm as long as the coe�cient function is constant
on each �nite element; cf. also Section 8.1.1.
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class

training con�guration τ fp fn acc 0 1 2

S, two-class
0.45 8.8% 1.9% 89.2%

67% 33% -
0.5 5.4% 5.1% 89.5%

S, three-class
0.4 5.1% 1.0% 93.9%

67% 20% 13%
0.5 3.2% 2.3% 94.5%

R1, two-class
0.45 11.4% 6.7% 81.9%

49% 51% -
0.5 8.8% 9.0% 82.2%

R1, three-class
0.4 9.1% 7.1% 83.8%

49% 39% 12%
0.5 8.9% 7.0% 84.1%

R2, two-class
0.45 9.6% 5.3% 85.1%

53% 47% -
0.5 7.2% 7.5% 85.3%

R2, three-class
0.4 10.7% 4.4% 84.9%

53% 28% 19%
0.5 7.4% 6.9% 85.7%

SR, two-class
0.45 5.1% 2.1% 92.8%

58% 42% -
0.5 3.4% 3.5% 93.1%

SR, three-class
0.4 5.2% 2.0% 92.8%

58% 29.5% 12.5%
0.5 4.3% 2.2% 93.5%

Table 8.14: Comparative results on the di�erent sets of training data for stationary di�u-
sion problems in two dimensions. The numbers are averages over all respec-
tive training con�gurations. We show the ML threshold (τ), the number of
false positives (fp), the number of false negatives (fn), and the accuracy in
the classi�cation (acc). Table in a slightly modi�ed form already published
in [74, Table 1].

For the ten mircosections and the stationary di�usion problem, all four di�erent train-
ing data sets result in a robust algorithm when using an ML threshold τ = 0.45; see Ta-
ble 8.15. For all these approaches, we obtain no false negative edges, which are critical
for the convergence of the algorithm. However, the use of 4,500 and 9,000 random data
(see R1 and R2) results in a higher number of false positive edges compared to the
sole use of 4,500 smart data, which results in a larger number of computed eigenvalue
problems. For linear elasticity problems and the ten microsections, the results are fairly
comparable; see Table 8.17. Again, the use of the smart training data set provides the
best trade-o� between robustness and computation cost since we obtain no false negative
edges and only 4.8 false positive edges on average. Additionally, also using 9,000 random
data (R2) as well as the combined training data set (SR) provides no false negative edges
when choosing the ML threshold τ = 0.45. However, for both cases, we have a slightly
increased number of false positive edges compared to the smart training data set which
results in a slightly higher computational e�ort.
As a conclusion, we observe that we are able to achieve comparable results when using

randomly generated coe�cient distributions as training data compared to the manually
selected smart data. However, we need a higher number of random data and a slight
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Alg. T-Data τ cond it evp fp fn acc

classic - - - >300 0 - - -
adaptive - - 11.0 ( 15.9) 34.6 (38) 112.0 (112) - - -

ML S 0.5 8.6e4 (9.7e4) 39.5 (52) 45.0 ( 57) 1.6 ( 2) 1.9 (3) 0.97 (0.96)
S 0.45 11.0 ( 15.9) 34.6 (38) 46.9 ( 59) 4.4 ( 6) 0 (0) 0.96 (0.94)

R1 0.5 1.3e5 (1.6e5) 49.8 (52) 43.2 ( 44) 7.4 ( 8) 3.8 (4) 0.88 (0.87)
R1 0.45 11.0 ( 15.9) 34.6 (38) 53.8 ( 58) 14.6 (16) 0 (0) 0.86 (0.84)
R2 0.5 1.5e5 (1.6e5) 50.2 (51) 40.4 ( 41) 5.6 ( 6) 3.4 (4) 0.91 (0.89)
R2 0.45 11.0 ( 15.9) 34.6 (38) 50.4 ( 52) 11.2 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.6e4 (9.8e4) 45.8 (48) 38.2 ( 39) 1.8 ( 2) 1.6 (2) 0.96 (0.95)
SR 0.45 11.0 ( 15.9) 34.6 (38) 43.4 ( 44) 4.8 ( 5) 0 (0) 0.96 (0.94)

Table 8.15: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
regular domain decompositions for the two-class model with di�er-
ent sets of training data, for 10 di�erent subsections of the microsection
in Fig. 8.16 (right) for a stationary di�usion problem, with TOL = 100.
Here, training data is denoted as T-Data. See Table 8.4 for the column
labeling. Table already published in [74, Table 2].

structure in the randomized coe�cient distributions to achieve the same accuracy and
generalization properties as for the smart data. On the other hand, the advantage of the
randomized training data lies in the random generation of the coe�cient distributions
which is possible without any speci�c problem-related knowledge. This is especially
relevant for the training of a neural network which can be evaluated for three-dimensional
domains. Let us also remark that setting up a smart data set in three dimensions is
very complicated and we thus prefer a randomly generated set of training data in this
case; cf. also Section 8.1.4. Given the relatively low ratio of additional false positive
edges compared to the number of saved eigenvalue problems, we can conclude that we
can achieve comparable results using the randomized training data when generating a
su�cient amount of coe�cient con�gurations.

8.2.5 Experiments on reducing the computational e�ort for the
generation of training data

As already explained in detail in Section 8.1.1, the design of appropriate input and output
data is fundamental for the training of a neural network which approximates our speci�c
classi�cation model. In our application within adaptive coarse spaces, we use samples of
the coe�cient function as input data of the neural network and in Section 8.2.4, we have
observed that the choice of the underlying coe�cient distributions can have a signi�cant
impact on the generalization properties of the trained network. For the di�erent sets of
training data presented in Section 8.2.4, in case of regular decompositions of the domain,
the resulting sampling points usually cover the complete neighboring subdomains for a
speci�c edge. Even though the training of the neural network as well as the generation
of the training and validation data can be performed in an a priori o�ine-phase, we
aim to further reduce the complexity of our approach. In particular, in this section,
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two-class three-class

training con�guration τ fp fn acc τ fp fn acc

S, full sampling 0.45 8.9% 2.7% 88.4% 0.4 5.2% 2.0% 92.8%
0.5 5.5% 5.6% 88.9% 0.5 3.3% 3.3% 93.4%

R1, full sampling 0.45 12.9% 6.4% 80.7% 0.4 10.7% 8.0% 81.3%
0.5 8.6% 9.1% 82.3% 0.5 8.9% 9.3% 81.8%

R2, full sampling 0.45 9.9% 5.5% 84.6% 0.4 9.8% 4.8% 85.4%
0.5 7.0% 7.2% 85.8% 0.5 7.2% 6.4% 86.4%

SR, full sampling 0.45 8.7% 3.1% 88.2% 0.4 6.7% 2.9% 90.4%
0.5 5.3% 5.4% 89.3% 0.5 4.5% 4.4% 91.1%

Table 8.16: Comparative results on the di�erent sets of training data for linear elasticity
problems in two dimensions. The numbers are averages over all respective
training con�gurations. See Table 8.14 for the column labeling. Table in
modi�ed form already published in [76, Table 6].

we aim to reduce the size of the input data by using fewer sampling points, i.e., by
computing sampling points only in slabs of varying width around a given edge between
two subdomains; see also Fig. 8.1 for an exemplary visualization. Let us note that, in
principle, our machine learning problem is an image classi�cation task, and thus the
approach of reducing the number of sampling points corresponds to the idea of using
only a fraction of pixels of the original image as input data for the neural network. In
the following, we investigate and compare the accuracy of the resulting machine learning
classi�cation model for di�erent widths of the slabs for the sampling points. We provide
numerical results for linear elasticity problems and both the two-class and the three-class
model.
Parts of this section have already been published in modi�ed or unmodi�ed form

in [76,77].
Let us note that for the numerical results presented in this section, we only train the

neural network on two regular subdomains sharing a straight edge. Since the smart
training data as well as an increased number of randomized training data showed a
comparable performance in Section 8.2.4, here, we focus on the smart training data.
Additionally, we focus on the ML thresholds τ = 0.45 and τ = 0.4 for the two-class
and the three-class approach, respectively, which led to the most robust results for the
full sampling approach. Moreover, as already mentioned, we focus on linear elasticity
problems for the following discussion. Despite the di�erent sets of training data, we use
the same setup and the same hyper parameters for the training of the neural network as
described in Section 8.1.3.
Let us now describe in more detail how we reduce the number of sampling points used

as input data for the neural network. In general, for all computed sampling points, we
need to determine the corresponding �nite element as well as to evaluate the coe�cient
function for the same �nite element. Therefore, there is clearly potential to save resources
and compute time in the training as well as in the evaluation phase by reducing the num-
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Alg. T-Data τ cond it evp fp fn acc

classic - - - >300 0 - - -
adaptive - - 79.1 ( 92.8) 87.4 (91) 112.0 (112) - - -

ML S 0.5 9.3e4 (1.3e5) 92.2 (95) 44.0 ( 56) 2.2 ( 3) 2.4 (3) 0.96 (0.95)
S 0.45 79.1 ( 92.8) 87.4 (91) 48.2 ( 61) 4.8 ( 7) 0 (0) 0.95 (0.93)

R1 0.5 1.4e5 (1.6e5) 96.6 (98) 47.2 ( 48) 7.6 ( 8) 4.0 (5) 0.90 (0.88)
R1 0.45 1.7e3 (2.1e4) 90.4 (91) 53.6 ( 57) 13.4 (16) 0.8 (1) 0.87 (0.86)
R2 0.5 1.1e5 (1.3e5) 96.2 (97) 46.8 ( 48) 7.0 ( 8) 3.6 (5) 0.91 (0.89)
R2 0.45 79.1 ( 92.8) 87.4 (91) 52.8 ( 57) 11.6 (12) 0 (0) 0.90 (0.87)
SR 0.5 9.7e4 (9.9e4) 94.8 (97) 45.8 ( 47) 5.8 ( 6) 3.0 (4) 0.92 (0.93)
SR 0.45 79.1 ( 92.8) 87.4 (91) 50.6 ( 61) 8.8 (10) 0 (0) 0.92 (0.90)

Table 8.17: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
regular domain decompositions for the two-class model with di�er-
ent sets of training data, for 10 di�erent subsections of the microsection
in Fig. 8.16 (right) for a linear elasticity problem, with TOL = 100. See Ta-
ble 8.4 for the column labeling. Table already published in [77, Table 1].

ber of sampling points used as input data for the neural network. Usually, the coe�cient
variations close to the edge are the most relevant, i.e., the most critical for the condition
number bound of FETI-DP. Therefore, to reduce the total number of sampling points
in the sampling grid, reducing the density of the grid points with increasing distance to
the edge is a natural approach. More drastically, one could exclusively consider sampling
points in a neighborhood of the edge, i.e., on slabs next to the edge. We consider the
latter approach here; see also Fig. 8.1 for an illustration of the sampling points inside
slabs around an edge Eij . In particular, for subdomains of width H, we consider the
cases of sampling in one half and one quarter, i.e., H/2 and H/4, as well as the extreme
case of sampling only inside minimal slabs of the width of one �nite element, i.e., h.
For the training data, both sampling in slabs of width H/2 and H/4 leads to accu-

racy values which are only slightly lower than for the original full sampling approach;
see Table 8.18. In particular, we get slightly higher false positive values, especially for
the three-class classi�cation. For the extreme case of sampling only in slabs of width h,
i.e., using slabs with the minimal possible width in terms of �nite elements, the accuracy
value drops from 92.8% for the three-class model to only 68.4% for the threshold τ = 0.4.
Note that we did not observe a signi�cant improvement for this sampling strategy for
more complex network architectures. Hence, it is questionable if the latter sampling
approach still provides a reliable machine learning model.
Subsequently, we apply the di�erent machine learning models to the microsection prob-

lem in Fig. 8.16 (middle) using a regular domain decomposition into 8 × 8 subdomains
and H/h = 64. We consider E = 1e3 in the black part of the microsection and E = 1
elsewhere, and set the Poisson ratio to the constant value ν = 0.3. For this test prob-
lem, sampling in slabs of width H/2 and H/4 results in robust algorithms for both the
two-class and the three-class model when using the ML threshold τ = 0.45 or τ = 0.4, re-
spectively; see Tables 8.19 and 8.20. For all these approaches, we obtain no false negative
edges, which are critical for the convergence of the algorithm. However, the use of fewer
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two-class three-class

training con�guration τ fp fn acc τ fp fn acc

S, full sampling 0.45 8.9% 2.7% 88.4% 0.4 5.2% 2.0% 92.8%
0.5 5.5% 5.6% 88.9% 0.5 3.3% 3.3% 93.4%

S, sampling in H/2 0.45 8.0% 2.6% 89.4% 0.4 9.6% 4.3% 86.1%
0.5 5.9% 4.0% 90.1% 0.5 7.4% 5.0% 87.6%

S, sampling in H/4 0.45 8.2% 2.7% 89.1% 0.4 10.4% 3.9% 85.7%
0.5 5.7% 4.5% 89.8% 0.5 8.1% 4.8% 87.1%

S, sampling in h 0.45 20.8% 7.5% 71.7% 0.4 22.4% 9.2% 68.4%
0.5 15.4% 12.9% 72.3% 0.5 15.0% 15.3% 69.7%

Table 8.18: Comparative results on the smart training data set for sampling points in
slabs of di�erent widths around the edge for linear elasticity problems in two
dimensions. The numbers are averages over all respective training con�g-
urations. See Table 8.14 for the column labeling. Table already published
in [77, Table 2].

sampling points results in more false positive edges and therefore in a larger number of
computed eigenvalue problems. When sampling only in slabs of minimal width h, we do
not obtain a robust algorithm for the microsection problem for neither the two-class nor
the three-class classi�cation model. This is caused by the existence of a relatively high
number of false negative edges.
With respect to our model problems, we can summarize that reducing the e�ort in the

training and evaluation of the neural network by reducing the size of the sampling grid
still leads to a robust algorithm. This is also observed during the training and validation
of the neural network in terms of high accuracy values. However, we can also conclude
that the slab width for the sampling procedure cannot be chosen too small and a su�cient
number of �nite elements close to the edge have to be covered by the sampling grid.

8.3 Numerical results for adaptive FETI-DP and

ML-FETI-DP for three-dimensional test problems

In this section, we provide comparative results for the classic FETI-DP, adaptive FETI-
DP, and our hybrid ML-FETI-DP method for three-dimensional problems. Thus, we
verify that our proposed approach can also be extended to three-dimensional domains,
although this requires some additional e�ort in the training phase of the neural network;
cf. Section 8.1.4. We present numerical results for stationary di�usion problems with
di�erent heterogeneous coe�cient functions ρ and linear elasticity problems with di�erent
distributions for the Young modulus E, respectively. In analogy to the experiments
in Section 8.2 for two spatial dimensions, we provide results for both the two-class as
well as the three-class model of ML-FETI-DP. For the three-class model in three spatial
dimensions, we omit the eigenvalue problem also for faces assigned to class 1 and replace
the respective eigenmodes by frugal constraints. Let us recall that for ML-FETI-DP in
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Model Problem Algorithm τ cond it evp fp fn acc

classic - - >300 0 - - -
Microsection adaptive - 84.72 89 112 - - -

Problem ML, full sampling 0.5 9.46e4 91 41 2 2 0.96
ML, full sampling 0.45 84.72 89 46 5 0 0.95

ML, sampling in H/2 0.45 84.72 89 47 6 0 0.95
ML, sampling in H/4 0.45 85.31 90 48 7 0 0.94

ML, sampling in h 0.45 10.9e5 137 50 19 10 0.74

Table 8.19: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
regular domain decompositions for the two-class model with di�erent
slab widths for the computation of sampling points, for the microsection
subsection in Fig. 8.16 (middle) for a linear elasticity problem, with TOL =
100. See Table 8.4 for the column labeling. Table already published in [77,
Table 3].

Model Problem Algorithm τ cond it evp e-avg fp fn acc

classic - - >300 0 - - - -
Microsection adaptive - 84.72 89 112 - - - -

Problem ML, full sampling 0.5 274.73 101 15 31 3 2 0.96
ML, full sampling 0.4 86.17 90 22 24 6 0 0.95

ML, sampling in H/2 0.4 85.29 90 25 26 9 0 0.92
ML, sampling in H/4 0.4 85.37 90 25 27 10 0 0.92

ML, sampling in h 0.4 2.43e4 111 27 52 29 7 0.68

Table 8.20: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
regular domain decompositions for the three-class model with di�erent
slab widths for the computation of sampling points, for the microsection
subsection in Fig. 8.16 (middle) for a linear elasticity problem, with TOL =
100. See Table 8.4 for the column labeling. Additionally, we report the
number of edges on which we impose a frugal constraint (e-avg). Table
already published in [77, Table 4].
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three spatial dimensions, we apply the neural networks exclusively for the identi�cation
of critical faces. Additionally, we solve all eigenvalue problems for edges which belong to
more than three subdomains; see also the related explanations in Section 8.1.4 for more
details.
In the following experiments, we always use structured tetrahedral meshes of the unit

cube constructed from discretizing each voxel of a regular voxel mesh by �ve piecewise
linear tetrahedral �nite elements. Let us note that all considered coe�cient distributions
are chosen to be constant on each voxel. For all our numerical computations, we use
the PCG algorithm as the iterative solver. As the stopping criterion for PCG, we use a
relative reduction of the preconditioned residual by a factor of 1e-8. For adaptive FETI-
DP, we use the tolerance TOL = 100 for the selection of adaptive coarse constraints. In
our comparison, we consider both domain decompositions into regular, cubic subdomains
as well as irregular domain decompositions obtained by METIS [87]. Please note that the
con�gurations appearing in the numerical experiments in this section are generally not
part of our training and validation data set. In particular, we have chosen both di�erent
coe�cient distributions as well as di�erent combinations of the numbers of �nite elements
and numbers of subdomains.
Parts of this section have already been published in modi�ed or unmodi�ed form

in [75,76].

8.3.1 Description of the tested coe�cient functions

In this section, we brie�y describe the two types of discontinuous coe�cient distributions
which we use for a comparison of the di�erent FETI-DP coarse spaces. First, we con-
sider a stationary di�usion problem with a coe�cient function ρ based on �ve randomly
distributed spherical inclusions of di�erent radii in the unit cube; see Fig. 6.12. All �ve
spherical inclusions share the same high coe�cient. In particular, we consider the same
coe�cient distribution which we have already used in the numerical tests for the frugal
coarse space in Chapter 6. As indicated in Fig. 6.13, the spherical inclusions cut or touch
edges and faces of the domain decomposition interface, which makes this synthetic coef-
�cient distribution relatively hard for an iterative solver, i.e., it leads to a deteriorating
rate of convergence for classic coarse spaces. In our computations, all voxels within the
�ve spheres have an identical high coe�cient ρ = 1e6, whereas the remaining voxels all
have a small coe�cient ρ = 1.
As the second model problem, we consider a linear elastic RVE of a dual-phase steel

representing the microstructure of a DP600 steel and obtained by an electronic backscat-
ter di�raction (EBDS) measurement; see Fig. 8.23. This dual-phase steel consists of
a martensitic phase and a ferritic phase. In our computations, we use a high Young's
modulus in the martensitic phase and a low Young's modulus in the ferritic phase of the
material. The most realistic model problem considered here is the case of a coe�cient
contrast of 1e3 for the Young modulus E and a constant value for the Poisson ratio
ν = 0.3. Let us note that the RVE is part of a larger microstructure which was presented
in [23].
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Figure 8.23: Coe�cient distribution of an RVE of a dual-phase steel in the unit cube,
used for the numerical comparison of classic FETI-DP, adaptive FETI-DP,
and ML-FETI-DP in three dimensions. The RVE is part of a larger structure
presented in [23]. The higher coe�cient is E1 = 1e3 (shown in black) and the
lower coe�cient is E2 = 1, with ν = 0.3 everywhere. Left: Discretization
with 512 subdomains and H/h = 4. Right: Visualization for a domain
decomposition into 8 × 8 × 8 cubic subdomains, visualized by the di�erent
shades of blue, and H/h = 4.

8.3.2 Numerical results for the two-class model

Let us �rst discuss our experiments for the two-class model of ML-FETI-DP. Here, the
neural network distinguishes between faces, where the eigenvalue problem results in at
least one (in case of stationary di�usion) or six (in case of linear elasticity) additional
adaptive constraints and faces, where the eigenvalue is unnecessary. In analogy to Sec-
tion 8.2, we will refer to the latter case as negative or negative faces and to the �rst
case as positive or positive faces. For the adaptive FETI-DP algorithm as well as to
obtain the output data for the training of the neural network, we always use a tolerance
of TOL = 100. For the classi�cation of faces in ML-FETI-DP, we will consider two
di�erent values for the ML threshold τ , i.e., τ ∈ {0.45, 0.5}.

8.3.2.1 Regular domain decompositions

Let us �rst consider the stationary di�usion problem, where the coe�cient distribution
is given by the spherical inclusions shown in Fig. 6.12. We partition the unit cube into
4×4×4 regular subdomains with the subdomain size de�ned byH/h = 10. In Table 8.21,
we compare the iteration counts and condition number estimates for the classic FETI-DP,
adaptive FETI-DP, and our hybrid ML-FETI-DP method. Analogously to Section 8.2,
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Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
Five adaptive - 44.97 63 144 - - -

Spheres ML 0.5 2.73e4 67 7 2 2 0.97
ML 0.45 44.97 63 12 5 0 0.96

Table 8.21: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
regular domain decomposition for the two-class model for stationary
di�usion and �ve spherical inclusions; cf. Fig. 6.12. See Table 8.4 for the
column labeling. In particular, here, we denote by evpF the number of solved
eigenvalue problems on faces. Table already published in [75, Table 2].

besides the accuracy of the ML classi�cation using ML-FETI-DP, we also report the
number of false negative and false positive faces obtained for two di�erent ML thresholds
τ ; cf. also the related discussion in Section 8.1 and Section 8.2. Let us note that only
false negative faces are critical for the convergence of the ML-FETI-DP method. On
the other hand, false positive faces correspond to eigenvalue problems which are solved
even though they are not necessary for the robustness of the algorithm since they do not
result in any adaptive constraints. Thus, they result in additional computational e�ort
but do not negatively a�ect the rate of convergence. We can observe from Table 8.21,
that we obtain two false negative faces for ML-FETI-DP when using the ML threshold of
τ = 0.5. This leads to a worse condition number estimate compared to adaptive FETI-
DP, while the iteration number of the algorithm is still satisfactory. By lowering the
ML decision threshold to τ = 0.45, we are able to eliminate all false negative faces and
thus to correctly identify all critical faces where the eigenvalue problem is necessary. In
particular, using our ML-FETI-DP method with an overshooting strategy, we solve only
12 eigenvalue problems on faces in contrast to 144 face eigenvalue problems for the fully
adaptive FETI-DP algorithm. Nonetheless, we are still able to retain the same condition
number estimate and iteration count as for adaptive FETI-DP. This is indeed a major
saving in the number of eigenvalue problems on faces and thus computation time.

We further provide numerical results for the linear elasticity problem using the RVE
visualized in Fig. 8.23 as material distribution. Here, we decompose our domain into
8 × 8 × 8 regular subdomains with a reduced subdomain size de�ned by H/h = 4. For
completeness, let us recall that for linear elasticity problems, we use a di�erent neural
network than for stationary di�usion problems since the correct machine learning labels
may di�er; cf. Section 8.1. We summarize the comparative results for this model problem
in Table 8.22. As for the stationary di�usion problem in Table 8.21, we are able to
obtain zero false negative faces and thus can retain a robust algorithm when using the
ML threshold of τ = 0.45. Furthermore, we observe that only 66 eigenvalue problems
on faces have to be solved for ML-FETI-DP in comparison to 1 344 eigenvalue problems
solved for the fully adaptive FETI-DP method.
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8.3 Numerical results for adaptive FETI-DP and ML-FETI-DP for three dimensions

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
RVE adaptive - 16.89 39 1344 - - -

Problem ML 0.5 3.76e4 45 52 10 5 0.98
ML 0.45 16.89 40 66 19 0 0.98

Table 8.22: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
a regular domain decomposition for the two-class model for linear
elasticity and an RVE; cf. Fig. 8.23. See Table 8.21 for the column labeling.
Table already published in [75, Table 3].

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
Five adaptive - 30.24 49 288 - - -

Spheres ML 0.5 3.17e4 55 27 5 4 0.97
ML 0.45 30.25 50 38 12 0 0.96

Table 8.23: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
METIS domain decomposition for the two-class model for stationary
di�usion and �ve spherical inclusions; cf. Fig. 6.12. See Table 8.21 for the
column labeling. Table already published in [75, Table 4].

8.3.2.2 METIS domain decompositions

As a next set of test problems, we consider irregular domain decompositions obtained
by METIS for the same stationary di�usion and linear elasticity problems as in Sec-
tion 8.3.2.1. Here, we decompose the unit cube into 64 subdomains for the stationary
di�usion problem and into 512 subdomains for the linear elasticity problem.
The corresponding results are summarized in Table 8.23 and Table 8.24, respectively.

For the stationary di�usion problem, the ML algorithm misses 4 critical faces when using
the ML threshold τ = 0.5. However, when lowering the ML threshold to τ = 0.45, we
are again able to identify all critical faces. Consequently, we can retain nearly the same
convergence behavior as for the adaptive FETI-DP method, while solving only 38 instead
of 288 eigenvalue problems; see Table 8.23. For the linear elasticity problem, the results
are fairly comparable; see Table 8.24. Again, when using the ML threshold of τ = 0.45,
we are able to identify all faces which are critical for the convergence of the algorithm and
where the local eigenvalue problem needs to be set up and solved. In this speci�c case,
we only have to solve 92 eigenvalue problems on faces instead of 1 547 for the adaptive
FETI-DP approach.

8.3.3 Numerical results for the three-class model

Let us now discuss the results for our extended three-class model in three spatial di-
mensions. Let us brie�y recall from Section 8.1.2, that in the three-class approach of
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8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
RVE adaptive - 20.13 41 1547 - - -

Problem ML 0.5 3.57e4 47 77 10 6 0.98
ML 0.45 20.13 41 91 18 0 0.98

Table 8.24: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
a METIS domain decomposition for the two-class model for linear
elasticity and an RVE; cf. Fig. 8.23. See Table 8.21 for the column labeling.
Table already published in [75, Table 5].

ML-FETI-DP, we construct frugal face constraints instead of solving an eigenvalue prob-
lem for all faces which are classi�ed in class 1 by our neural network; see also Chapter 6
for a detailed description of the respective frugal constraints. Thus, we do not need to
solve any eigenvalue problems for the corresponding faces and can omit the respective
eigenvalue problems.
As for the two-class model, we always use a tolerance of TOL = 100 in the adaptive

FETI-DP algorithm as well as to determine the output label for our ML classi�cation of
the training data. To provide a direct and fair comparison between the two-class and the
three-class model, we consider the same coe�cient functions and material distributions,
respectively, as in Section 8.3.2. In the following, we consider two di�erent values of the
ML threshold τ , i.e., τ ∈ {0.4, 0.5}.

8.3.3.1 Regular domain decompositions

First, we summarize the results for the stationary di�usion problem and �ve spherical
inclusions of a high coe�cient as in Fig. 6.12 for classic FETI-DP, adaptive FETI-DP
and ML-FETI-DP in Table 8.25. Analogously to the two-class model, we are able to
eliminate all false negative faces for the three-class model, when using the ML threshold
τ = 0.4. However, in comparison to the two-class model in Table 8.23, we now only need
to solve 9, instead of 12, of the original 144 face eigenvalue problems. Thus, due to the
computation of the frugal constraints for faces of class 1, we are able to further reduce
the number of necessary eigenvalue problems, while retaining a robust algorithm.
Second, we present the respective results for the linear elasticity problem and an RVE

in Table 8.26. All in all, the observations with respect to robustness and e�ciency of
the coarse space are again fairly similar. In this case, we are able to further reduce the
number of necessary eigenvalue problems from 66 in Table 8.25 to 32 by using frugal face
constraints for all faces classi�ed to class 1.

8.3.3.2 METIS domain decompositions

For the sake of completeness, we �nally present numerical results for the three-class
model and irregular decompositions of the unit cube obtained by METIS. In this case,
we obtain similar results compared to those for regular domain decompositions in Sec-

158



8.3 Numerical results for adaptive FETI-DP and ML-FETI-DP for three dimensions

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
Five adaptive - 44.97 63 144 - - -

Spheres ML 0.5 1.36e4 66 5 4 3 0.95
ML 0.4 46.77 64 9 13 0 0.91

Table 8.25: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
regular domain decomposition for the three-class model for station-
ary di�usion and �ve spherical inclusions; cf. Fig. 6.12. See Table 8.21 for
the column labeling. Table already published in [75, Table 6].

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
RVE adaptive - 16.89 39 1344 - - -

Problem ML 0.5 4.27e3 44 27 11 5 0.98
ML 0.4 18.49 40 32 26 0 0.98

Table 8.26: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
a regular domain decomposition for the three-class model for linear
elasticity and an RVE; cf. Fig. 8.23. See Table 8.21 for the column labeling.
Table already published in [75, Table 7].

tion 8.3.3.1. In Table 8.27, we present the results for the stationary di�usion problem
and the heterogeneous coe�cient distribution de�ned by �ve spheres with a high coe�-
cient. We observe that, for an appropriate choice of the ML threshold τ , the number of
necessary face eigenvalue problems can be further reduced to 19 for τ = 0.4, compared
to the respective value of 38 for the two-class model in Table 8.23 and the ML thresh-
old τ = 0.45. Considering the results for the linear elasticity problem and the chosen
RVE in Table 8.28 delivers very similar observations. Using the three-class classi�cation
model of ML-FETI-DP and τ = 0.45, we only need to solve 45 out of originally 1 547
eigenvalue problems on faces for adaptive FETI-DP, while retaining the robustness and
fast convergence rate of the algorithm.

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
Five adaptive - 30.24 49 288 - - -

Spheres ML 0.5 3.75e4 56 12 8 4 0.96
ML 0.4 33.52 50 19 15 0 0.95

Table 8.27: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for a
METIS domain decomposition for the three-class model for station-
ary di�usion and �ve spherical inclusions; cf. Fig. 6.12. See Table 8.21 for
the column labeling. Table already published in [75, Table 8].

159



8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

Model Problem Algorithm τ cond it evpF fp fn acc

classic - - >350 0 - - -
RVE adaptive - 20.13 41 1547 - - -

Problem ML 0.5 4.12e4 47 28 11 5 0.98
ML 0.4 24.22 42 45 28 0 0.98

Table 8.28: Comparison of classic FETI-DP, adaptive FETI-DP, and ML-FETI-DP for
a METIS domain decomposition for the three-class model for linear
elasticity and an RVE; cf. Fig. 8.23. See Table 8.21 for the column labeling.
Table already published in [75, Table 9].

8.4 Some summarizing remarks regarding the computational

e�ort

In this chapter, we have introduced a hybrid approach which combines adaptive FETI-
DP methods with techniques from machine learning to design robust and e�cient coarse
spaces. The aim of the proposed technique was to identify critical edges or faces of the
domain decomposition which are responsible for outliers of the spectrum of the precondi-
tioned system. In general, for these edges, problem-dependent constraints are necessary
to design a robust algorithm. We have numerically tested this approach both in two
and three spatial dimensions for a range of di�erent synthetic and practically inspired
problems. In all considered cases, the number of necessary eigenvalue problems in an
adaptive FETI-DP method could be reduced signi�cantly, while almost the same itera-
tion counts and condition numbers could be maintained. Additionally, we have proposed
and tested an extended three-class classi�cation method, which unites the idea of ML-
FETI-DP with the heuristic frugal coarse space from Chapter 6. In particular, by using
frugal constraints as a low-dimensional approximation of adaptive constraints for certain
selected edges or faces, we are able to further reduce the number of necessary eigen-
value problems in an adaptive FETI-DP method. Let us recall that usually, in a parallel
implementation, the setup and the solution of the eigenvalue problems as well as the
computation of the required local Schur complements take up a signi�cant part of the
total time to solution. Taking this observation into account, the proposed ML-FETI-DP
method can potentially reduce the computational e�ort and the expected overall time
to solution. Furthermore, computing only adaptive constraints on selected equivalence
classes instead of categorically for all edges or faces of a domain decomposition, ful�lls
the desire to construct a preferably small but robust coarse space which also increases
the parallel potential of the obtained iterative solver.
Of course, to enable a fair evaluation of the proposed ML-FETI-DP method compared

to classic, frugal, or completely adaptive coarse spaces, we cannot neglect the time and the
computational e�ort which is needed for the setup, i.e., the training, and the evaluation
of the neural networks. First, let us recall that the training and validation of the neural
network can be completely conducted in an a priori o�ine-phase. This includes the
generation of training and validation data as well as the iterative process of training the
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8.4 Some summarizing remarks regarding the computational e�ort

neural network, i.e., the iterative optimization of the network parameters. Here, the main
idea is to train a network once for a class of model problems and subsequently apply it to
numerous computations based on this model problem, e.g., stationary di�usion problems
with many di�erent di�usion coe�cient functions. Note that we explicitly designed our
procedure such that it is independent of the underlying �nite element discretization.
Even though the approach is not advocated for the solution of a single problem, we have
to consider that our neural networks are relatively small. Thus, the required time to train
the neural networks is expected to be low when using optimized code and appropriate
hardware, e.g., GPUs. Hence, we believe that the proposed method already amortizes
for a small number of di�erent problems.
Second, we have to consider the time which is needed for the evaluation of the already

trained and saved network for previously unseen test problems. Let us recapitulate that
as input data, i.e., features of the neural network, we use function evaluations of the
coe�cient function of the underlying PDE. In our context, we refer to these input data
as sampling points. Consequently, for the generation of the input data for a given test
problem, we have to compute the geometric location of the sampling points as well as to
determine the associated �nite elements. The computation of the geometric location of
the sampling points only requires scalar operations and is thus negligible. To determine
the corresponding �nite element index for all sampling points, e�cient search algorithms
can be used, as, e.g., a binary search which results in a logarithmic runtime depending
on the number of computed sampling points. Moreover, we have shown in Section 8.2.5
that for two-dimensional problems, it is possible to reduce the number of sampling points
to a relatively close surrounding of an edge without severly impairing the accuracy of the
ML classi�cation, especially for the two-class model. The same concept can analogously
be applied to three-dimensional test problems and further reduces the required compu-
tational e�ort needed for the classi�cation of the considered equivalence class. On top of
that, as already mentioned, our applied networks are rather shallow which makes their
evaluation cheap once the sampling points have been computed.
Finally, let us formulate a general conclusion with respect to the di�erent modi�cations

or variants of the described ML-FETI-DP method. Given that our predominant goal is to
design a coarse space which shows a stable rate of convergence for highly heterogeneous
coe�cient distributions and is - at the same time - preferably small, we highly recommend
the three-class model for most practical applications. In this case, a potentially higher
number of unnecessary eigenvalue problems can be saved due to the introduction of an
additional, third class of edges or faces, respectively, for which we replace the eigenvalue
problem by the corresponding frugal constraints. Furthermore, we would generally use
a training and validation data set based on randomized coe�cient distributions. In
particular, these data can be generated without any a priori knowledge of the considered
class of test problems and are applicable both for regular and irregular decompositions
in two and three spatial dimensions.
To conclude this chapter, let us note again that our present implementation uses

Python and Tensor�ow [1] for the training of the di�erent neural networks while the
adaptive FETI-DP method is implemented in MATLAB [134]. Thus, it is hard or unreli-
able, respectively, to compare the actual times to solution for ML-FETI-DP and adaptive
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8 Designing an e�cient and robust adaptive FETI-DP coarse space using deep learning

FETI-DP based on the current implementations. To be able to obtain a �nal evalua-
tion of this question, we plan to integrate the described hybrid approach, using adaptive
constraints only for certain equivalence classes as predicted by the machine learning
algorithm, into our parallel software of BDDC; cf. also Chapter 9.
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9 Conclusion and Future Work

In this thesis, we have presented and numerically investigated several approximate and
adaptive coarse spaces for the FETI-DP and the BDDC domain decomposition methods.
For the BDDC method, we have considered three di�erent approximate coarse spaces in
a common framework, using our parallel BDDC software based on PETSc [8, 9]. With
respect to parallel scalability, the considered three-level BDDC method as well as the
approximate BDDC preconditioner based on AMG showed the largest parallel potential.
In particular, due to their multilevel structure, these methods only require the exact
solution of a coarse problem on the coarsest level, which usually is of a much smaller size
than the original coarse problem. Of course, as a drawback, the approximate solution
of the coarse problem results in higher condition number estimates compared to classic
BDDCmethods. This also supports the theoretical upper bounds of the condition number
of the di�erent methods which we have compared within a common framework.
Furthermore, we have presented a frugal coarse space for both the BDDC and the

FETI-DP method. The frugal coarse space is a heuristic approach and can be interpreted
as a low-dimensional approximation of a certain adaptive method. The computation of
the frugal coarse space is computationally cheap and does not require the solution of any
eigenvalue problems on parts of the domain decomposition interface. In our MATLAB
experiments, the resulting frugal FETI-DP coarse space has shown very promising results
for di�erent heterogeneous model problems in both two and three spatial dimensions. In
particular, we have presented a heuristic strategy to further reduce the size of the frugal
FETI-DP coarse space, based on estimates of the energy related to the computed frugal
constraints. Thus, it is possible to further increase the parallel potential of the respective
method while simultaneously maintaining its robust rate of convergence. Additionally,
we have implemented and compared the frugal coarse space in the same parallel BDDC
implementation as the previously mentioned approximate BDDC preconditioners. In the
related parallel experiments, we have observed that the frugal coarse space is clearly more
general and thus more robust than classic BDDC coarse spaces, especially for realistic
coe�cient distributions. Hence, we suggest to establish the presented frugal coarse space
as a new default approach given its superiority compared to classic coarse spaces and its
relatively low computational e�ort.
On top of that, we have discussed a hybrid approach, which combines the concept of

adaptive coarse spaces with techniques from deep learning. Here, we have trained neural
networks to make an automated prediction in a preprocessing phase, for which edges or
faces of a domain decomposition, adaptive constraints are necessary to retain a robust
solver. We have applied this approach to a speci�c adaptive FETI-DP method which
relies on the solution of certain localized eigenvalue problems on the respective equiva-
lence classes between two neighboring subdomains. Let us recall that in our experiments
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9 Conclusion and Future Work

with regard to frugal FETI-DP and BDDC, we have observed that also the frugal coarse
space might deteriorate in convergence for completely arbitrary or highly complex coe�-
cient distributions, even though the iteration numbers are still satisfactory. In this case,
adaptive, i.e., problem-dependent coarse spaces are necessary for which we can prove a
condition number estimate which is independent of the coe�cient contrast. However, as
a drawback, the setup and the solution of the respective eigenvalue problems are usually
computationally expensive. Additionally, for many real-world problems, a high number
of the eigenvalue problems are actually unnecessary since they do not result in any ad-
ditional constraints. In this thesis, we have presented a modi�ed approach, where we
only set up and solve the eigenvalue problems for edges or faces, which are classi�ed
as critical by the neural network. We have tested the proposed approach for stationary
di�usion and linear elasticity problems in both, two and three spatial dimensions. In
both cases, we have numerically shown the stability and the robustness of the resulting
ML-FETI-DP coarse space. In particular, in the two-dimensional case, we were able to
save up to 94 % of the eigenvalue problems for realistic coe�cient functions obtained
from a microsection of a dual-phase steel. For the three-dimensional case, we were able
to save up to 97 % of the eigenvalue problems on faces in the best case. Let us note that
the presented results are based on our MATLAB [134] implementations of the considered
adaptive FETI-DP method. For the training and subsequent evaluation of the neural
networks, we have used Python and Tensor�ow [1].
Moreover, we have also proposed an extended three-class variant of ML-FETI-DP

which combines the described method with our frugal constraints. Here, we further
distinguish between a third class of edges or faces, respectively, where we also omit
the eigenvalue problem and instead implement the respective frugal constraints. As a
result, the number of necessary eigenvalue problems can be further reduced and thus
the related computational e�ort of the adaptive FETI-DP method. Hence, we would
recommend the three-class classi�cation for most practical model problems compared to
the two-class approach.
Similarly as we were able to combine our frugal constraints with the concept of ML-

FETI-DP, it is also possible to unite other combinations of the presented approximate and
adaptive coarse spaces. For instance, we have shown that it is possible to use an AMG
method for the approximate solution of a three-dimensional frugal coarse problem for
BDDC. We have observed that the resulting algorithm is again robust and thus suggest
that combinations of the presented approximate coarse spaces can be used to further
increase the parallel scalability of FETI-DP and BDDC.
As a further approximate coarse space, we propose to combine the frugal coarse space

with the presented three-level BDDC preconditioner, which are both integrated into our
parallel BDDC implementation. This would include the construction of frugal constraints
both on the level of the subdomains as well as on the level of the subregions. Alterna-
tively, it is also possible to combine frugal constraints on the second level with adaptive
constraints on the third level. This would lead to smaller eigenvalue problems which
have to be set up and solved on the coarsest level, compared to a standard adaptive
BDDC method. A numerical investigation and comparison of both variants with respect
to robustness and parallel scalability is an interesting topic of future research.
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Given that our results for ML-FETI-DP are, so far, based on our MATLAB imple-
mentation of the respective FETI-DP coarse space, we plan to implement the related
adaptive BDDC method in our parallel software framework as well as to integrate the
considered deep learning-based classi�cations, i.e., computing adaptive constraints only
for certain equivalence classes as predicted by the neural network. Especially, this would
enable us to �nally evaluate the question, how much time to solution and computational
e�ort is actually saved for the hybrid ML approach compared to adaptive FETI-DP or
BDDC, respectively.
Finally, we also plan to predict the adaptive constraints themselves for a given het-

erogeneous coe�cient distribution in the near future. Here, we could bene�t from our
work involving ML-FETI-DP in order to provide an approach which is independent of
the underlying �nite element discretization and is applicable both to regular as well as
irregular domain decompositions.
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