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One-letter-code and three-letter-code of aminoacids: 

 

A Ala Alanine 

R Arg Arginine 

N Asn Asparagine 

D Asp Aspartic acid 

C Cys Cysteine 

E Glu Glutamic acid 

Q Gln Glutamine 

G Gly Glycine 

H His  Histidine 

I Ile  Isoleucine 

L Leu Leucine 

K Lys Lysine 

M Met Methionine 

F Phe Phenylalanine 

P Pro  Proline 

S Ser  Serine 

T Thr Threonine 

W Trp Tryptophan 

Y Tyr Tyrosine 

V Val Valine 
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II. Zusammenfassung 
In nahezu allen eukaryotischen Zellen sind Mitochondrien die wichtigsten Zellorganellen für 

die Bereitstellung von Energie in Form von ATP. Neben der Energieproduktion spielen 

Mitochondrien auch eine wichtige Rolle in der Kalziumhomöostase, Apoptose oder der ß-

Oxidierung von Fettsäuren. Auf Grund ihrer Abstammung von Protobakterien besitzen diese 

Organellen ihre eigene DNA, die für einige mitochondriale OXPHOS Untereinheiten kodiert, 

aber auch die Information für tRNAs und rRNAs trägt, welche wichtige Komponenten der 

mitochondrialen Translationsmaschinerie darstellen. Die regulatorische Expression 

mitochondrialer DNA ist daher unverzichtbar für eine normal funktionierende Atmungskette. 

Mitochondriale Fehlfunktionen sind oftmals die Ursache für neurodegenerative Krankheiten, 

Krebs oder Diabetes und werden außerdem mit dem Alterungsprozess in Verbindung 

gebracht. 

Erkenntnisse aus in vitro Studien führten über viele Jahrzehnte zu der Annahme, dass die 

Transkription der beiden ribosomalen RNAs auf dem schweren mitochondrialen DNA-Strang 

durch das Protein Mitochondrial transcription factor 1 (MTERF1) reguliert wird, indem es 

gleichzeitig mit der Promotorregion und seiner Bindestelle interagiert. Diese Studien wurden 

jedoch nie in einem Tiermodell bestätigt. In der vorliegenden Arbeit wird zum ersten Mal 

beschrieben, dass sich das Fehlen von MTERF1 in einem Mausmodell nicht auf ribosomale 

RNA-Level auswirkt. Stattdessen wurden erhöhte RNA-Level auf dem „antisense“ Strang der 

ribosomalen RNA, und gleichzeitig eine verminderte Promotoraktivität auf dem selben DNA-

Strang beobachtet. Diese Daten lassen eine Rolle von MTERF1 in der 

Transkriptionstermination des leichten DNA-Strangs vermuten, um eine negative 

Beeinflussung der Transkriptionsmaschinerie auf den Promotor des leichten DNA – Strangs 

zu verhindern. 

Studien in Mäusen defizient für MTERF2 ergeben gesunde und fruchtbare Tiere mit einer 

normalen Lebenserwartung. Die Behandlung dieser Mäuse mit einer ketogenen Diät führt 

allerdings zu einem muskelspezifischen Phänotyp, der mit einer verminderten 

Transkriptionsrate und defizienter oxidativer Phosphorylierung in den Mitochondrien 

einhergeht. Ein zweites in unserem Labor kreiertes Mterf2 knockout Mausmodell kann diese 

Beobachtungen jedoch nicht bestätigen. Sogenannte „viral traps“, wie sie auch bei der 

Produktion einer der Mterf2 knockout Mausmodelle benutzt wurden, besitzen sehr starke 

Promotoren, die die Genexpression in unmittelbarer Umgebung des Zielgens beeinflussen 

können. Das Gen, das für das Protein chryptochrome 1 (CRY1) kodiert befindet sich nur 1,6 

kb vom Mterf2 Gen entfernt und seine Expression könnte von einem viral trap im Mterf2 Gen 

negative beeinflusst werden. Dies könnte der Grund für die unterschiedlichen Phänotypen 

beider Mterf2 knockout Mausmodelle sein. Zur Verifizierung dieser Hypothese wurden die 
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beiden Mterf2 knockout Maus Modelle, Cry1 knockout Mäuse und wildtyp Mäuse mittels 

molekularer Analysen direkt miteinander verglichen. Alle Mausmodelle weisen normale 

mitochondriale DNA Level, und unveränderte Transkriptionsraten und Proteinlevel von 

Untereinheiten des OXPHOS Systems auf, was eine Rolle von MTERF2 in mitochondrialer 

Transkription sehr unwahrscheinlich macht. Die eigentliche Funktion dieses Proteins in vivo 

ist jedoch immer noch unbekannt. 

Ein wichtiger Faktor der posttranskriptionalen Regulation ist das leucine-rich 

pentatricopeptide repeat domain containing protein (LRPPRC). Trotz eindeutiger 

Erkenntnisse aus einem Lrpprc knockout Mausmodell, die eine Rolle von LRPPRC in der 

Stabilisierung mitochondrialer mRNAs, sowie der Koordination der Translation unterstützen, 

ist die in vivo Funktion dieses Proteins immer noch umstritten. So beschreibt eine kürzlich 

publizierte Studie LRPPRC als mitochondrialen Transkriptionsfaktor, der direkt mit dem 

Enzym POLRMT interagiert. Um die Funktion von LRPPRC unter physiologischen 

Bedingungen näher zu untersuchen stellten wir „bacterial artificial chromosome“ (BAC) 

transgene Mäuse her, die dieses Protein leicht überexprimieren und ebenso Lrpprc 

heterozygote Mäuse mit leicht reduzierten LRPPRC Proteinmengen. Moderat erhöhte oder 

verminderte LRPPRC protein Level wirkten sich nicht auf mitochondriale Transkriptlevel 

oder die absolute Transkriptionsaktivität in Mitochondrien aus, was eine Rolle von LRPPRC 

als mitochondrialen Transkriptionsfaktor sehr unwahrscheinlich macht. Desweiteren führte 

die Zugabe von rekombinantem LRPPRC zu einer in vitro Transkriptionsreaktion nicht zu 

einer Stimulation der Transkription, und Immunpräzipitationsexperimente sowie Gel 

permeations chromatographische Untersuchungen konnten keine Interaktion zwischen 

LRPPRC und POLRMT nachweisen. 
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III. Abstract 
Mitochondria are the most important organelles for ATP supply in nearly all eukaryotic cells. 

Besides energy production, mitochondria also play important roles e.g. in calcium 

homeostasis, apoptosis or fatty acid ß-oxidation. They originated from a proto-bacterium and 

therefore contain their own genome encoding for a subset of mitochondrial OXPHOS 

components as well as tRNAs and rRNAs necessary for the translation machinery. Regulation 

of mtDNA expression is indispensable for normal OXPHOS function and defective 

mitochondrial function can cause neurodegenerative diseases but is also linked to aging, 

cancer and diabetes.  

Mitochondrial transcription factor 1 (MTERF1) has been reported to regulate H-strand 

transcription of the two ribosomal RNA genes through simultaneous binding of the heavy 

strand promoter and its termination site based on extensive in vitro studies during the last 

decades. However, evidence for its function in vivo is still missing. In this work, analysis of 

the first Mterf1 knockout mouse model reveals that lack of MTERF1 has no effect on 

ribosomal RNA levels, but instead causes increased RNA levels on the antisense region of 

mitochondrial rRNAs. At the same time transcription initiation events are decreased at the 

light-strand promoter suggesting that MTERF1 has a role in transcription termination on the 

L-strand to prevent transcriptional interference at the light-strand promoter. 

Studies in mice lacking the mitochondrial transcription termination factor 2 (MTERF2) show 

apparently healthy and fertile animals with normal lifespan. However, mice challenged with a 

ketogenic diet have been reported to develop a muscle-specific phenotype including 

decreased transcription and OXPHOS deficiency. A second Mterf2 knockout mouse model, 

created in our lab, however, does not confirm the reported phenotype. The viral trap, a genetic 

tool used to interrupt Mterf2 gene expression in one of the mouse models, could explain the 

observed differences since it contains a very strong promoter, which can influence the 

expression of other genes closely located to the target gene. A gene encoding cryptochrome 1 

(CRY1) is situated 1,6 kb downstream of Mterf2 and could be influenced by a viral trap 

targeting the Mterf2 gene. In order to test this hypothesis, we simultaneously analyzed the two 

Mterf2 knockout mouse models, a Cry1 knockout mouse and controls and found that all mice 

were healthy and fertile with a normal lifespan. MtDNA levels, mitochondrial transcription as 

well as steady state levels of OXPHOS protein components are unaffected in mice lacking 

Mterf2 or Cry1, contradicting a role of MTERF2 in mitochondrial transcription. However, 

Cry1 expression is decreased in both Mterf2 knockout mouse models, which suggests a 

putative influence of Cry1 expression when the Mterf2 gene is targeted.  

The leucine-rich pentatricopeptide repeat domain containing protein (LRPPRC) is an 

important factor of posttranscriptional regulation of mtDNA expression. Although data from a 
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Lrpprc knockout mouse model and patient fibroblasts carrying decreased LRPPRC protein 

levels support a role of LRPPRC in mitochondrial mRNA transcript stability and coordination 

of translation, its in vivo function is still highly debated in the literature. A recent report 

demonstrated that LRPPRC is involved in mitochondrial transcription initiation through direct 

interaction with POLRMT. In order to study this protein in a physiological environment we 

created bacterial artificial chromosome transgenic mice slightly overexpressing LRPPRC and 

Lrpprc heterozygous knockout mice with moderately decreased LRPPRC levels. Slightly 

increased or decreased LRPPRC protein levels did not affect steady state transcript levels as 

well as de novo transcription suggesting that LRPPRC does not have a role in mitochondrial 

transcription. In addition, increasing amounts of LRPPRC did not stimulate transcription in a 

recombinant in vitro system and immunoprecipitation as well as size exclusion 

chromatography did not detect any interaction between LRPPRC and POLRMT. 
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1 Introduction  
The first time mitochondria were mentioned in literature was in 1857 when Rudolph Albert 

von Kölliker described them as granular cytoplasmic compartments in the mammalian cells. It 

took another forty years until Carl Benda first used the name mitochondria in 1898, a name 

originated from the Greek words mitos (thread) and chondrion (grain) ((Liesa et al., 2009), 

(Benda et al. 1898). According to the endosymbiotic theory, mitochondria originated from α-

proteobacteria around 1.5 billion years ago (Gray, 1999; Lang et al., 1997). During evolution, 

an alphaproteobacteria was introduced into an archaebacterial cell, and the resulting 

endosymbiotic event lead to the contemporary eukaryotic cell. (Martin, W. & Mentel, M.et. 

al, 2010)(Gray et al., 2001)) The details about this process and the nature of the host and the 

physiological capabilities of the mitochondrial endosymbiont are still being debated (Gray et 

al., 2001). Mitochondria, often named as “powerhouses of the cell”, are the major source of 

cellular ATP production, but they also have other important biological functions such as Ca2+ 

homeostasis, fatty acid ß oxidation, cell cycle control, and apoptosis (Antico Arciuch et al., 

2012; Eaton et al., 1996; Liu et al., 1996; Vandecasteele et al., 2001). Furthermore, 

mitochondrial dysfunction is implicated in severe diseases including cancer, diabetes, 

neurodegenerative diseases, and aging and typically (but not exclusively) affects tissues and 

organs with a high energy demand such as heart, brain or muscle (Wallace; Wallace and Fan, 

2010). 

Genetic defects affecting mitochondrial function can appear at several regulatory levels, 

affecting mitochondrial DNA (mtDNA), as well as the nuclear genes encoding proteins 

involved in regulation of mitochondrial replication, transcription, translation and respiratory 

chain assembly, which all can generate serious mitochondrial dysfunction leading to a wide 

range of mitochondrial diseases. 

1.1 Structural organization and morphology of mammalian 

mitochondria 
The mammalian mitochondria consist of two membranes defining four distinct compartments 

within the organelle: the outer membrane, the intermembrane space, the inner membrane, and 

the matrix, each of them having its specific function. A remnant from their bacterial origin, 

mitochondria contain their own DNA, RNA and protein synthesis capabilities, making them 

semiautonomous organelles (Whelan and Zuckerbraun, 2013). During the course of evolution 

most of the mitochondrial encoded genes have been lost, transferred to the nucleus, or 

replaced by nuclear encoded proteins (Adams and Palmer, 2003). A typical animal 
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mitochondrial genome maintains a subset of genes encoding 13 proteins, 22 tRNAs and two 

rRNAs, all essential for the biogenesis of the oxidative phosphorylation system located in the 

mitochondrial matrix (Larsson and Clayton, 1995; Wallace, 1992). The question why these 

particular genes have not been shifted to the nucleus has not been definitely answered yet, but 

one of the possible explanations could be that the high degree of hydrophobicity of the 

mitochondrially encoded proteins makes their import in the mitochondria impossible (Heijne, 

1986). Another explanation could be that distribution of mitochondrial genes encoding 

respiratory chain subunits in nucleus and mitochondria is optimal for metabolic regulations of 

the oxidative phosphorylation system (Allen, 2003). 

The rest of the mitochondrial proteome, including mitochondrial replication, transcription and 

translation components, as well as the major part of the subunits of the oxidative 

phosphorylation system, is encoded in the nucleus, translated in the cytoplasm and imported 

into mitochondria (Larsson and Clayton, 1995).  

 

 

The inner mitochondrial membrane is densely folded to form mitochondrial cristae structures, 

which provides a large surface to accommodate the oxidative phosphorylation system 

(Mannella et al., 1997; Perkins et al., 1997). There are five complexes (Complex I – Complex 

V) forming the oxidative phosphorylation system, whereas only three of them (Complex I, III 

and IV) transfer protons from the matrix into the intermembrane space in order to create a 

proton gradient between the intermembrane space and the matrix (Mitchell, 1961; Mourier 

and Larsson, 2011; Vafai and Mootha, 2012). Complex I and Complex II transfer electrons 

from NADH and FADH2, respectively, to an electron carrier, coenzyme Q. Complex III 

receives electrons from reduced coenzyme Q and in turn forwards single electrons to 

cytochrome c. Complex IV, the last station for the electrons in the respiratory chain, accepts 

electrons from cytochrome c and uses them to reduce molecular oxygen to water. With the 

nucleoid

ribosomerespiratory chain
 complex

outer mitochondrial
membrane

inner mitochondrial
membrane

cristae

matrix
intermembrane
space

Figure 1.1: Schematic model of a mitochondrium. 
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exception of Complex II, the respiratory chain complexes couple electron transfer to the 

relocation of protons from the matrix to the intermembrane space, thus creating a proton 

gradient across the inner mitochondrial membrane (Mitchell, 1961). In the final step in 

oxidative phosphorylation, this membrane potential is to drive ATP synthesis by the F1FO-

ATPase (Complex V) by allowing the protons to re-enter the mitochondrial matrix through 

this complex (Stock et al., 1999; Vafai and Mootha, 2012). 

Importantly, shape and function of mammalian mitochondria cannot be subjected to a 

universal description as often seen in textbooks. Mitochondria form a dynamic network 

within the cell and also interact with other cellular organelles; they are migrating and 

constantly fusing and separating from each other in order to monitor, maintain and keep the 

system fully active by the exchange of organellar components (Nunnari et al., 1997) (Chen et 

al., 2007). In addition, the energy supply function of mitochondria can be highly tissue 

dependent. For example, while brain mitochondria preferentially oxidize ketones, 

mitochondria from skeletal muscle are specialized in fatty acid oxidation. Furthermore, cristae 

structure and mitochondrial content or size are tissue dependent and can be highly variable. 

Tissues with a higher energy demand, such as heart, tend to have mitochondria with a denser 

cristae structure (Vafai and Mootha, 2012).  

Up to approximately 1500 mitochondrial proteins are known to be encoded by the nucleus 

and a subset of those interact with the 13 mitochondrial encoded proteins to form the 

oxidative phosphorylation system (Nunnari and Suomalainen, 2012; Pagliarini et al., 2008). 

The dependence of mitochondria on both nuclear and mitochondrial-encoded genes requires 

precise adjustment of regulatory mechanisms at many different levels, from replication and 

transcription to protein synthesis and assembly of respiratory chain complexes. Efficient 

communication between the nucleus and mitochondria is essential to maintain mitochondrial 

metabolism (Scarpulla, 2008).  

 
Figure 1.2: Schematic illustration of the five protein complexes constituting the mammalian 
oxidative phosphorylation system. Complex I-IV constitutes the respiratory chain. Modified from 
Mourier et al., PLoS Biol. 2011. 
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1.2  Mitochondria in aging and disease 
Mitochondrial dysfunction can cause a broad range of multisystemic symptoms, such as 

diabetes, cardiomyopathy, deafness, retinal degeneration, dementia, ataxia, epilepsy, stroke 

and neuropathy, and is also implicated in the pathophysiology of several common diseases, 

e.g. Parkinson’s disease (Larsson, 2010; Tuppen et al., 2010; Wallace). Mutations in mtDNA 

occur much more often than mutations in the nuclear DNA. Due to their involvement in a 

manifold range of metabolic signaling pathways, defective mitochondria (Nunnari and 

Suomalainen, 2012) can affect nearly every organ at any age (Nunnari and Suomalainen, 

2012; Suomalainen, 2011). Mitochondrial malfunction can be caused by either point 

mutations or deletions of mitochondrial and/or nuclear DNA that affect the mitochondrial 

oxidative phosphorylation activity. MtDNA molecules carrying mutations or deletions can 

accumulate over time by the process of clonal expansion, due to the relaxed replication of 

mtDNA, which occurs independent from the cell cycle (Bogenhagen and Clayton, 1977). This 

leads to an apparently random distribution of mutated and non-mutated mtDNA molecules in 

different daughter cells, resulting in a mixture of normal and mutated mtDNA (heteroplasmy) 

with widely varying levels of mutated mtDNA in different cells of the same tissue. Cells from 

patients suffering from mitochondrial diseases are often heteroplasmic and the threshold at 

which mutated mtDNA induce respiratory chain deficiency differs depending on the type of 

mutation and can be ~90% for some tRNA mutations and ~60% for single large mtDNA 

deletions (Lagouge and Larsson, 2013). The proportion of wild type and mutated mtDNA 

molecules typically differs from cell to cell to result in a mosaic pattern of respiratory chain 

deficiency in the affected tissue (Stewart et al., 2008). The most common mitochondrial 

disorders are the Leigh syndrome, Kearns-Sayre syndrome (KSS) (Wallace, 1992), and 

Leber’s Hereditary Optic Neuropathy (LHON) (Wallace et al., 1988), which all are 

neurodegenerative diseases. 

Progressive accumulation of mtDNA mutations is not only causing a broad range of diseases, 

but is also occurring during the normal aging process. Many human diseases, e.g. cancer, type 

II diabetes, Alzheimer disease and Parkinson’s disease are associated with aging and 

defective oxidative phosphorylation (Bender et al., 2006; Wallace, 2005). It is known that 

respiratory chain capacity as well as mtDNA copy number is decreasing with age in humans 

and mice. However, observed mitochondrial dysfunction in aged organisms does not 

automatically imply a causative role of mitochondria in the aging process, because this could 

also be a secondary effect of other degenerative processes. 

Reactive oxygen species (ROS) have been considered to be the main culprit regarding the 

accumulation of mtDNA damage during aging (Fraga et al., 1990). Superoxide is primarily 

produced in complexes I and III of the respiratory chain, where it is considered as a 
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deleterious by-product formed during oxidative phosphorylation. Superoxide can be 

converted to hydrogen peroxide and a hydroxyl radical, which can cause oxidative damage to 

DNA, proteins and lipids. The so called “mitochondrial free radical theory of aging” claims 

that aging is the unavoidable outcome of a vicious cycle: mtDNA mutations cause respiratory 

chain deficiency leading to an increased ROS production, which in turn damages mtDNA as 

well as proteins and lipids (Miquel et al., 1980). The mtDNA mutator mouse was the first in 

vivo model, which provided evidence that accumulation of mtDNA mutations can lead to a 

premature aging phenotype, surprisingly without any major increase of ROS levels or 

oxidative damage (Trifunovic et al., 2004). In these mice the catalytic subunit of the mtDNA 

polymerase is defective in proofreading, which results in accumulation of mtDNA mutations 

and the production of an unusual linear, deleted mtDNA molecule. The mice display a range 

of phenotypes typically appearing during aging including greying of the hair, hearing loss, 

reduced fertility, weight loss and reduced life span (Kujoth et al., 2005; Trifunovic et al., 

2004). In addition, mtDNA mutator mice suffer from severe oxidative phosphorylation 

deficiency, but interestingly no appreciable increase of ROS could be found in these mice 

(Trifunovic, 2005). In other studies, efforts to reduce ROS did not result in prolonged life 

span as expected according to the free radical theory of aging. ROS have also been proposed 

to function as signaling factors important for stress resistance and longevity, which suggests 

that increased ROS production initially has a protective role that induces cellular defenses 

(Hekimi et al., 2011; Lagouge and Larsson, 2013; Sena and Chandel, 2012). A role for 

mitochondrial dysfunction in aging is supported by many studies, but the idea that ROS is a 

driver of the ageing process is increasingly losing support (Hekimi et al., 2011; Viña et al., 

2013). New methods capable of more accurate measurement of specific types of ROS levels 

as well as oxidative damage are needed to better understand the role of ROS in aging.  

 

 

1.3 Structural organization of mammalian mitochondrial DNA 
Mammalian mtDNA is a densely compacted molecule covered by many copies of the 

mitochondrial transcription factor A (TFAM) protein, which packages and bends mtDNA to 

mediate the formation of the nucleoid (Bogenhagen et al., 2008; Kukat et al., 2011). There are 

approximately 102 to 103 mtDNA molecules per mammalian cell, each being a circular, 

double stranded molecule of 16.6 kb in size. Due to a higher content of purines (guanosines 

and adenines) the heavy strand (H-strand), has a higher buoyant density in alkaline cesium 

chloride gradients than the light strand (L-strand), which is rich in pyrimidines (cytosines and 

thymidines) (Kasamatsu and Vinograd, 1974).  
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The H-strand encodes for most of the mitochondrial encoded mRNAs including cytochrome b 

(Cytb), NADH dehydrogenase 1 - 5 (ND1 - 5), cytochrome c oxidase I, II and III (COX I, II 

and III) and ATP synthase subunit 6 and 8 (ATP 6 and 8) (Larsson and Clayton, 1995). In 

addition, the H-strand encodes two ribosomal RNAs, 12S and 16S, and 14 tRNAs. According 

to the “tRNA punctuation model”, mRNAs are matured by processing the large polycistronic 

transcripts at the tRNAs and antisence tRNAs by specific enzymes (Ojala et al., 1981). 

However, this model cannot explain all processing of mRNAs as some of them do not contain 

flanking tRNAs at both ends, e.g. as seen in the junction of ATP6 and COXIII, as well as the 

junction between ND5 and the antisense ND6 sequence. There are two bicistronic mRNAs 

that are translated to generate two proteins (ATP8+ATP6 and ND4L+ND4) (Temperley et al., 

2010). Both strands of mtDNA are transcribed as a single, almost genome-length transcript 

product and abundant precursor transcript products are found in mitochondria, including 

RNA19 (the 18S rRNA fused to the ND1 mRNA) and the Cytb-ND5 precursor (Rackham et 

al., 2011). It is unclear if these large RNA species are functional or if they represent RNA 

processing intermediates that will undergo processing. The remaining mitochondrial encoded 

RNAs, namely ND6 and 8 tRNAs, are encoded on the L-strand. ND6 is also unique as it 

encodes a large 3’ UTR derived from the antisense ND5 sequence and as it lacks a polyA tail 

(Ruzzenente et al., 2012).  

Mammalian mtDNA does not contain introns (Falkenberg et al., 2007; Taanman, 1998) and 

the only large non-coding region on the mammalian mtDNA molecule is the control region 

also called the displacement loop (D-loop) (Bogenhagen and Clayton, 1978). This region has 

obtained its name from an event occurring during initiation of replication of mtDNA, when a 

triple-stranded DNA structure containing a nascent H strand is formed. This region contains 

elements involved in regulation of mtDNA replication and transcription, such as the H- strand 

promoter (HSP), the L – strand promoter (LSP) and the origin for mtDNA replication of the H 

- strand (OH). The origin of replication for the light strand (OL) sits in a cluster of five tRNAs 

outside of the D-loop region (Falkenberg et al., 2007). 

Additional functional sites present in the D-loop region are the conserved sequence blocks 

(CSB I - III) and the termination associated sequence (TAS), which are proposed to have 

roles in RNA primer formation and replication termination, respectively.  
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Figure 1.3: Schematic illustration of a mammalian mtDNA molecule. Mammalian mtDNA is a 
double-stranded circular molecule consisting of a heavy and a light strand. The molecule encodes 13 
proteins, 2rRNAs and 22 tRNAs. Modified from Larsson, Annu. Rev. Biochem., 2010. 

 

 

1.4  Transcription of mammalian mitochondrial DNA 
MtDNA transcription plays a fundamental role in maintaining mitochondrial and cellular 

homeostasis, as all of the proteins encoded by mtDNA are essential components of the 

mitochondrial oxidative phosphorylation system. Some basic components of the 

mitochondrial transcription machinery were found in the mid-1980s, when experiments using 

purified mitochondrial extracts reconstituted mitochondrial transcription in vitro (Polosa et 

al., 2011). Mitochondrial transcription requires a core transcription machinery consisting of 

only three components RNA polymerase (POLRMT), mitochondrial transcription factor A 

(TFAM) and mitochondrial transcription factor B2 (TFB2M) (Falkenberg et al., 2002). The 

initiation of H-strand transcription is dependent on the HSP promoter and produces a large 
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precursor encodes 10 mRNAs, 2 rRNAs and 14 tRNAs which are subsequently processed into 

the single RNA species (Rossmanith and Karwan, 1998).  
There are reports claiming the existence of a second HSP promoter (HSP2) that is located 

upstream of the tRNAPhe gene. According to this model, HSP1 is responsible for the 

transcription of only the two ribosomal RNAs and their flanking tRNAs (tRNAPhe and 
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of the HSP1-dependent transcription unit was postulated to explain the 50- to 100-fold higher 

transcription rate of ribosomal RNAs compared to the genes transcribed from HSP2 (Gelfand 

and Attardi, 1981). In one study attempts to identify HSP2 activity in an in vitro system failed 

as POLRMT was not able to recognize HSP2 (Litonin et al., 2010), whereas two other studies 

report the reconstitution of transcription from HSP2 in vitro (Lodeiro et al., 2012; Zollo et al., 

2012).  

L- strand transcription initiated at the LSP promoter gives rise to a polycistronic transcript, 

which contains the gene for ND6 and eight tRNAs. In addition, a portion of LSP transcription 

is prematurely stopped and processed to obtain the 7S RNA primer necessary for replication.  

 

1.4.1 The core machinery of mammalian mitochondrial transcription 

1.4.1.1 Mitochondrial RNA polymerase 

The enzyme catalyzing mammalian RNA transcription is the mitochondrial RNA polymerase 

(POLRMT). This protein is related to bacteriophage T7 single subunit RNA polymerases and 

consists of three different regions, the C-terminal domain (CTD), the N-terminal domain 

(NTD) and an N-terminal extension domain (NTE) (Arnold et al., 2012). The CTD of 

POLRMT shows the highest homology to its bacteriophage counterpart whereas the NTD 

exhibits only weak sequence similarity and NTE is even completely absent in the phage RNA 

polymerase. In contrast to its bacteriophage counterpart, POLRMT is not able to 

autonomously initiate transcription, but depends on the assistance of additional transcription 

factors (Arnold et al., 2012; Cermakian et al., 1997). 

The CTD of POLRMT contains the catalytic domain of POLRMT responsible for nucleic 

acid template binding and catalyzing nucleotide incorporation (Arnold et al., 2012). X-ray 

crystal structure revealed a right hand shape of the CTD of human POLRMT containing 

“finger”, “palm “ and “thumb” subdomains (Ringel et al., 2011) involved in different 

functions such as nucleotide binding, substrate selection or interaction between enzyme and 

the DNA/RNA substrate (Ringel et al., 2011).  

The finger subdomain of the CTD is defined by two characteristic structural elements, the O-

helix, necessary for substrate selection, catalysis and translocation (Arnold et al., 2012) and 

the specificity loop, which is indispensable for promoter recognition in T7 RNA polymerases. 

Similarities of this region where also found in human POLRMT suggesting a homologous 

function of these structures.  

The NTD of human POLRMT only shares weak sequence similarity with the phage RNA 

polymerase but has structural analogies such as ß-hairpin and AT-rich recognition loop 

(Ringel et al., 2011), which are both partly interacting with the PPR domain of the NTE. In 
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T7 RNA polymerases, the AT-rich recognition loop mediates promoter recognition, whereas 

the ß-hairpin helps to melt the promoter for initiation of transcription.  

The N-terminal extension part is unique to mitochondrial RNA polymerases and has a huge 

diversity among animals, plants, fungi etc. The N-terminal domain contains a mitochondrial 

targeting sequence and two pentatricopeptide repeat (PPR) motifs, which are known to 

facilitate RNA-protein interactions (Lightowlers and Chrzanowska-Lightowlers, 2008; Small 

and Peeters, 2000). The motif contains nine α-helices of which four represent the PPR motifs. 

The function of the pentatricopeptide domain still remains to be elucidated. 

After initiation of mitochondrial transcription, POLRMT catalyses nucleotide incorporation in 

the context of de novo RNA synthesis. This mechanism encompasses repeating cycles, 

consisting of four distinct steps including nucleotide binding, conformational change and 

translocation (Arnold et al., 2012). Due to its importance in mitochondrial transcription as 

well as mitochondrial replication mutations affecting POLRMT are expected to deep impact 

on the health of the organism.  

 

 

1.4.1.2 Mitochondrial transcription factor A 

TFAM is an essential multifunctional protein, which, besides its role in mitochondrial 

transcription initiation also has important roles in mtDNA packaging and maintenance. Due to 

its two high mobility group (HMG) box domains, TFAM belongs to the high mobility group 

(HMG) family, which is characterized by proteins being able to bind, unwind and package 

DNA(Parisi and Clayton, 1991). The HMG boxes enable TFAM to bind the minor DNA 

groove and bend mtDNA and a basic linker domain located between the two HMG boxes 

facilitates additional mtDNA contact sites (Gangelhoff et al., 2009; Ngo et al., 2011). The C-

terminus of TFAM is reported to be essential for specific transcription initiation (Dairaghi et 

al., 1995). 

It has been previously shown that TFAM covers mtDNA in vivo producing a discrete protein-

mtDNA structure named the nucleoid (Kukat et al., 2011) and in vitro studies reported that 

TFAM alone is sufficient to package mtDNA, through DNA looping and supercoiling 

(Campbell et al., 2012). 

Lack of TFAM in a knockout mouse model is embryonic lethal due to loss of mtDNA and 

abolished oxidative phosphorylation activity (Larsson et al., 1998). It was previously 

reported, that regulation of mtDNA copy number is directly connected to the TFAM protein 

levels. This was shown in a transgenic mouse model, where overexpression of human TFAM 

did not show altered mtDNA transcription activity or respiratory chain capacity, but increased 
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mtDNA copy number without affecting the endogenous TFAM expression in the mouse 

(Ekstrand et al., 2004). 

Due to its HMG domains TFAM unspecifically binds DNA. During transcription initiation 

however, TFAM is known to preferentially interact with a region upstream of transcription 

initiation sites of HSP and LSP. The carboxy terminus of TFAM is essential for direct 

interactions with the other components of the transcription machinery, but not for its DNA 

binding properties in general (Dairaghi et al., 1995). At low concentrations, TFAM 

preferentially binds to the LSP, but as TFAM concentrations increase, transcription activity 

switches to HSP (HSP1) (Campbell et al., 2012). TFAM bound to the upstream promoter 

region of LSP has been reported to promote a U-turn like bending of mtDNA, facilitating a 

correct positioning of the TFAM carboxy-terminus for transcription initiation (Rubio-Cosials 

et al., 2011). X-ray diffraction studies revealed a bending angle about 180°C when TFAM 

binds at the LSP (Campbell et al., 2012; Ngo et al., 2011), whereas non-specific DNA binding 

only reveals bend angles around 100° +/- 20°. The bending is thought to be important for 

mtDNA compaction (Kaufmann et al., 2007). 

 

1.4.1.3 Mitochondrial transcription factor B2 

The mitochondrial transcription factor B2 (TFB2M) as well as the paralogue mitochondrial 

transcription factor B1 (TFB1M) were thought to serve a similar function as the yeast 

transcription factor sc-mTFB. Although both proteins can activate transcription from a 

promoter containing DNA sequence in presence of TFAM and POLRMT in vitro, the 

efficiency of transcription activation of TFB1M is about 10 times lower compared to TFB2M 

(Falkenberg et al., 2002; McCulloch and Shadel, 2003). Besides their capability to bind DNA 

and to activate transcription, TFB1M and TFB2M also share sequence homology with the 

bacterial rRNA dimethyltransferases ((McCulloch and Shadel, 2003),(Falkenberg et al., 

2002)). In fact, TFB1M is able to methylate two adenine residues in a conserved stem loop 

region of the 12S rRNA, which is an important post-transcriptional modification in the 

process of mitochondrial ribosomal biogenesis (Seidel-Rogol et al., 2003),(Metodiev et al., 

2009). It has been previously shown that missing dimethylation of 12S rRNA leads to 

abnormal assembly of ribosomal subunits in mitochondria. Therefore, TFB1M is thought to 

have its main function in ribosomal maturation rather than in transcriptional initiation 

(Metodiev et al., 2009). This idea is consistent with the finding that overexpression of 

TFB1M does not promote mitochondrial transcription activation, whereas increased levels of 

TFB2M activates mitochondrial transcription and causes elevated steady-state levels of 

mitochondrial transcripts (Cotney et al., 2007) (Falkenberg et al., 2002)). Furthermore, 

TFB2M is reported to have a much higher transcriptional activity than TFB1M in vitro 
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(Falkenberg et al., 2002). In summary, TFB2M is indispensable for assisting in open complex 

formation during mitochondrial transcription initiation (Arnold et al., 2012; Sologub et al., 

2009) and crosslink experiments revealed direct interaction of TFB2M with the promoter 

starting site, where it is involved in promoter melting to facilitate transcription initiation by 

POLRMT (Sologub et al., 2009).  

1.4.2 Initiation of mammalian mitochondrial DNA transcription  
The initial step for specific promoter recognition in mammalian mitochondria is mediated by 

TFAM binding at the specific start site upstream of the mitochondrial promoter region. With 

the help of its carboxy terminus domain TFAM covers an area between -14 and -35 upstream 

of the LSP (Litonin et al., 2010) and causes a U-turn like bend in the mtDNA conducted by 

partial unwinding of mtDNA to expose this area for recognition by the transcription 

machinery (Falkenberg et al., 2007; Gaspari et al., 2004). In order to initiate mitochondrial 

transcription, TFB2M forms a heterodimer with POLRMT being collectively recruited by 

TFAM to the transcription initiation site (Falkenberg et al., 2007). During this process 

TFB2M melts the promoter and stabilizes the open promoter complex by simultaneous 

binding of the RNA primer and mtDNA template (Sologub et al., 2009). Once recruited to the 

start site the specificity loop of POLRMT was found to interact with the promoter region in 

the major grove of mtDNA (Arnold et al., 2012). Then, TFAM and TFB2M dissociate from 

transcription initiation complex allow POLRMT to catalyze nucleotide incorporation in order 

to produce elongating RNA transcripts. Interestingly, it has been reported that POLRMT itself 

is not able to transcribe the entire mitochondrial genome (Smidansky et al., 2011) but rather 

depends on another mitochondrial protein TEFM (transcription elongation factor in 

mitochondria) (Minczuk et al., 2011). Knockdown of this protein leads to oxidative 

phosphorylation deficiency and decreased steady state transcript levels of promoter distal 

genes, supporting the idea, that POLRMT elongation capacity is limited and dependent on 

this additional protein (Minczuk et al., 2011). 

Notably, transcription initiation in yeast doesn't require the yeast TFAM homologue Abf2. 

One can speculate that evolution of multicellular organisms required a more complex 

regulation of mtDNA transcription (Falkenberg et al., 2007). 

 

 

1.4.3 Transcription termination in mammalian mitochondrial DNA 
Mechanisms regarding mtDNA transcription termination in mammalian organisms are still 

poorly understood. Transcripts from HSP2 have been reported to encompass nearly the entire 

mitochondrial genome and to terminate in a region immediately upstream of the tRNAPhe 
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gene, where a conserved A/T rich sequence motif has been detected (Camasamudram et al., 

2003). Studies in a HeLa mtDNA transcription system revealed two uncharacterized proteins, 

which are supposed to bind in this area supporting transcriptional termination from HSP2 in a 

unidirectional manner (Camasamudram et al., 2003). However, further details about the 

termination mechanism and the nature of the two unknown proteins are needed for a complete 

understanding of this process.  

The MTERF family in total comprises four proteins MTERF1 – MTERF4, which are all 

located in mitochondria and characterized through MTERF domains consisting of three α-

helices, which are separated by loops (Roberti et al., 2009; Spåhr et al., 2010). MTERF 

proteins have been identified in metazoans and plants, but not in fungi (Roberti et al., 2009). 

MTERF1 and MTERFF2-like protein are found in vertebrates, echinoderms and flies, 

whereas MTERF3 and MTERF4 are more broadly distributed in animals, and are thought to 

be the ancestral MTERF family members (Roberti et al., 2009). Despite being denoted as 

transcription termination factors, MTERF family members appear to hold a diversified 

functional spectrum influencing mtDNA expression at different levels. 

 

 

 
Figure 1.4: Phylogenetic tree of the MTERF family proteins. Illustrated by Bianca Habermann. 
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1.4.3.1 Mitochondrial transcription termination factor 1 

Termination of transcripts initiated at the HSP1 promoter are proposed to be mediated by the 

DNA binding protein, mitochondrial transcription termination factor 1 (MTERF1) 

(Fernandez-Silva and Attardi, 1997). MTERF1 is the first identified member of the MTERF 

protein family and strongly binds within 28 bp in the tRNALeu region, where it is thought to 

block transcription of the ribosomal RNAs and their flanking tRNAPhe and tRNAVal (Roberti 

et al., 2006a). In vitro experiments have shown that MTERF1 promotes transcription 

termination in a bidirectional way, with an even higher termination efficiency of transcripts 

coming from the L-strand direction (Asin-Cayuela et al., 2005). Besides its function as 

transcriptional terminator, MTERF1 was also reported to be involved in HSP1 transcription 

activation by simultaneous binding at its termination site and a region in the HSP1. This 

binding is reported to result in a loop formation of the intermediate located rDNA (Martin et 

al., 2005) suggesting increased transcriptional efficiency through the direct delivery of 

POLRMT from the termination to the HSP1 transcription initiation site (Roberti et al., 2009). 

This hypothesis has been suggested to explain the finding that transcripts originating from the 

HSP1 are found to be more than 50-times more abundant compared to transcription from 

HSP2. Another study implicates MTERF1 in mitochondrial replication since a newly 

identified MTERF1-binding site in the non-coding region was associated with replication 

pausing and the strength of pausing was modulated by the expression level of MTERF1 

(Hyvarinen et al., 2007). However, all of the data mentioned above arose from in vitro 

experiments and experiments regarding the function of MTERF1 in vivo is still lacking.  
In patients carrying a A3243G mutation in the tRNALeu(UUR) region, which causes 

mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) 

syndrome, MTERF1 is not able to interact with its binding site (Hess et al., 1991). 

Interestingly, molecular characterization of the patients does not support a role of MTERF1 in 

mitochondrial transcription termination in the disease pathology, but suggests the defect in 

translation being responsible for the clinical manifestations due to the abolished function of 

tRNALeu(UUR) (Chomyn et al., 1992). 

Recently the atomic structure of MTERF1 bound to dsDNA has been solved with a clear 

definition of the binding mechanism to its specific binding sequence on mtDNA. MTERF1 

holds a half-doughnut like shape and binds DNA as a monomer covering a 20 bp region 

(Yakubovskaya et al., 2010). The MTERF1 protein contains eight MTERF motifs, consisting 

of two α-helices separated by a hydrophobic core (Yakubovskaya et al., 2010). Due to a 

positively charged path it can wrap around the DNA and bind along the major groove, 

causing slight bending and a partial unwinding of the mtDNA. During this process the central 
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DNA part is affected by eversion of three nucleotides, promoting a firm sequence specific 

anchorage on mtDNA (Terzioglu et al., 2013; Yakubovskaya et al., 2010), supporting a 

function of MTERF1 as mitochondrial transcription termination factor. Moreover, a high 

resolution crystal structure proposes more interacting residues of Mterf1 with the 

mitochondrial L-strand than the H-strand supporting a more effective termination activity on 

the L-strand (Yakubovskaya et al., 2010). 

1.4.3.2 Mitochondrial transcription termination factor 2 

MTERF2 has been demonstrated to be a component of the mitochondrial nucleoid with a 

relatively high abundance in the cell (Pellegrini et al., 2009). A recent in vivo study has 

reported MTERF2 being an important factor of mitochondrial transcription initiation (Wenz 

et al., 2009). Lack of Mterf2 in a knockout mouse model did not cause any apparent 

phenotype. However, after feeding the mice with a ketogenic diet, decreased steady state 

levels of mitochondrial transcripts involving impaired oxidative phosphorylation activity have 

been observed specifically in muscle. A ketogenic diet is a high fat, low carbohydrate diet 

particularly challenging the mitochondrial metabolism by shifting it from glycolysis to 

oxidative phosphorylation (Kennedy et al., 2007). In addition, mRNA levels of MTERF1 and 

MTERF3 were reported to be upregulated in the absence of MTERF2. As a result, a model 

has been hypothesized in which MTERF2 binds to the HSP promoter region together with 

MTERF1 and MTERF3 and regulates mitochondrial transcription (Wenz et al., 2009). 

Notably, the knockout strategy chosen for the Mterf2 knockout mouse model named “gene 

trap technology” is known to potentially affect genes, which are closely located to the target 

gene (Yamaguchi et al., 2012). Gene traps contain very strong promoters, which easily 

influence the activity of promoters in close proximity causing an additional unintended 

interruption or induction (Floss and Schnütgen, 2008; Springer, 2000). For this reason, the 

exact function of MTERF2 still remains unclear and further studies are needed to provide 

insights into its in vivo role. 

1.4.3.3 Mitochondrial transcription termination factor 3 

For a long time MTERF3 was considered as negative regulator of mitochondrial transcription 

termination. Due to embryonic lethality caused by the whole body knockout, conditional 

knockout mice specifically lacking MTERF3 in heart and skeletal muscle have been created 

and analysed (Park et al., 2007). Massively increased steady state transcript levels of most 

mitochondrial encoded genes and increased mitochondrial de novo transcription supported a 

role of MTERF3 as negative regulator of mitochondrial transcription (Park et al., 2007). 

However, a more detailed analysis regarding the in vivo function of MTERF3, supported by 

utilization of data from Drosophila melanogaster Mterf3 knockout and knockdown flies, 
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revealed a novel unexpected function of this protein. Wredenberg et al could demonstrate, 

that MTERF3 binds 16S rRNA to promote the assembly of the large ribosomal subunit and at 

the same time assure proper translation. This function is conserved in the fly as well as in the 

mouse (Wredenberg et al., 2013). 

1.4.3.4 Mitochondrial transcription termination factor 4 

The last remaining member of the MTERF family is MTERF4. This protein has been recently 

reported to form a heterodimer with the 5-methylcytosine methyltransferase NSUN4 and 

recruits this enzyme to the large ribosomal subunit, where it is suggested to modify 16S 

rRNA to regulate mitochondrial ribosomal biogenesis and translation (Cámara et al., 2011). 

The MTERF4 is essential for embryonic development and therefore molecular analyses of 

conditional knockout mice with loss of this protein in heart and skeletal muscle revealed 

massive increase of mtDNA transcript levels, impaired translation and defective ribosomal 

assembly (Cámara et al., 2011). The atomic structure of MTERF4 is similar to the one of 

MTERF1 and MTERF3 already described above representing a half-doughnut shape, with a 

positively charged surface for nucleic acid interaction (Cámara et al., 2011). 

1.4.4 Posttranscriptional modifications in mammalian mitochondria 

1.4.4.1 Posttranscriptional tRNA modifications 

Mammalian mitochondrial mRNAs are generated by processing and subsequent maturation of 

large polycistronic precursors synthesized by POLRMT. Despite their common derivation 

mitochondrial mRNAs, rRNAs and tRNAs can show distinct individual variations, illustrating 

the highly important function of post-transcriptional modifications (Mercer et al., 2011). An 

essential step after precursor transcription in mitochondria is the processing into individual 

RNA species. The “tRNA punctuation model”, which implies the co-transcriptional formation 

of cloverleaf structures of mitochondrial tRNA sequences, defines important tRNA 

processing sites on the mitochondrial precursor (Ojala et al., 1981). The main endonucleases 

involved in precursor maturation are RNase Z (ELAC2) and RNase P that are supposed to 

have recognition sites for the 3`-processing and the 5`-processing, respectively, and thus 

generate different processed RNA species in the mitochondria (Brzezniak et al., 2011; 

Holzmann et al., 2008; Sanchez et al., 2011). RNase Z is encoded by the ELAC2 gene and 

exists in two isoforms including a version with the mitochondrial targeting sequence (MTS) 

located to mitochondria and a short version without MTS located in the nucleus (Brzezniak et 

al., 2011; Rossmanith, 2011). Mutations in the ELAC2 gene have been recently linked with 

hypertrophic cardiomyopathy, mitochondrial dysfunction (Haack et al., 2013) and prostate 

cancer (Tavtigian et al., 2001) and decreased levels of the mitochondrial RNase Z lead to 

defective 3’ end processing of mitochondrial tRNAs as well as accumulation of mitochondrial 
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RNA precursor transcripts (Brzezniak et al., 2011). Furthermore, RNase Z is reported to 

interact with the pentatricopeptide repeat domain protein 1 (PTCD1), which is suggested to 

have a role in negative regulation of tRNALeu (UUR) and tRNALeu (CUN) 3’ end maturation 

(Rackham et al., 2012). 

The second enzyme known to be involved in tRNA maturation, RNase P, is responsible for 

tRNA 5’ end processing. It is a multiple protein complex, consisting of mitochondrial RNase 

P protein 1 (MRPP1), MRPP2 and MRPP3 (Rossmanith, 2008). Whereas MRPP1 is believed 

to be involved in tRNA binding and methylation (Vilardo et al., 2012), MRPP2 seems to be 

required for RNase P activity and MRPP3 containing three PPR domains and a putative 

metallonuclease domain is required for mitochondrial tRNA binding and processing. 

Knockdown of RNase P subunits leads to increased mitochondrial precursor transcripts and 

consequently decreased levels of mature mRNAs and tRNAs (Holzmann and Rossmanith, 

2009; Sanchez et al., 2011).  

The subsequent step after cleavage of mitochondrial tRNAs is their maturation, which 

includes a multitude of tRNA modifications. Essential for tRNA maturation is the addition of 

a CCA triplet to their 3’ end, which is required for amino acid coupling and binding of the 

aminoacyl-tRNA synthetase as well as the elongation factor Tu (Cusack, 1997; Levinger et 

al., 2004; Rackham et al., 2012). A second common modification is the pseudouridylation by 

the pseudouridylate synthase 1 (PUS1), whose absence was connected with mitochondrial 

myopathy and sideroblastic anemia (MLASA) if mutated (Bykhovskaya et al., 2004; Casas et 

al., 2004). Whereas the processes mentioned above are common for all mitochondrial tRNAs, 

there is also a broad spectrum of modifications specific for the function of individual tRNAs, 

as for example the 2-thiolation wobble modification mediated through the mitochondrial-

specific 2-thiouridylase (MTU-1) in order to promote mitochondrial translation. The same 

function is held by mitochondrial translation optimization 1 homolog (MTO1) and 

mitochondrial GTP binding protein 3 (GTPBP3), which might be involved in 5-

taurinomethyluridinylation, another tRNA modification, found at the wobble position of 

tRNALeu(UUR) and tRNATrp (Li and Guan, 2002). Variations in the amount of tRNAs can have 

deep impact on the mitochondrial metabolism and further identification of tRNA modifying 

enzymes will broaden our understanding of regulation of mitochondrial gene expression. 

1.4.4.2 Posttranscriptional rRNA modifications 

Besides tRNAs, the mitochondrial ribosomal RNAs also undergo various modifications. 

However, very little is known so far about the enzymes involved in this process in 

mammalian mitochondria. Mitochondrial ribosomes consist of two subunits, the 28S small 

subunit and the 39S large subunit containing a 12S rRNA and a 16S rRNA, respectively 

(O'Brien, 1971). To date, studies of hamster cells have revealed that five nucleotides in the 
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rRNA of the small ribosomal subunit are modified (Dubin, 1974). All modifications are 

conserved in humans, but there are only two rRNA modifying enzymes yet identified in 

mammalian mitochondria being responsible for two of these five modifications. The N6-

dimethylation of two highly conserved adenines m6
2A936 and m6

2A937 is mediated by TFB1M 

and dimethylation of these adenines is performed by an S-adenosylmethionine-dependent 

MTase domain (Falkenberg et al., 2002; McCulloch and Shadel, 2003). This process is shown 

to be required for full assembly of the 55S mitochondrial ribosome, as lack of TFB1M in a 

conditional knockout mouse model results in abolished formation of the small ribosomal 

subunit (Metodiev et al., 2009). The enzymes responsible for the remaining modifications still 

await identification (Rorbach and Minczuk, 2012).  

According to previous studies four modifications have been found in the 16S rRNA and to 

date just two methyltransferases are known to migrate with the large subunit: 

NSUN4/MTERF4 (Cámara et al., 2011) and RNMTL1 (Lee et al., 2013). While RNMTL1 

was recently found to be responsible for the methylation at position Gm1370 the complex 

NSUN4/MTERF4 does not have a defined substrate yet since it belongs to the m5c 

methyltransferases and in 16S there are no known modifications of this kind. However, there 

is a putative m5c modification site in the 12S rRNA and it is speculated that 

NSUN4/MTERF4, while interacting with the large subunit, could methylate 12S rRNA in the 

small subunit mediating the contact between the two subunits. Nevertheless in vivo evidence 

for this model is still missing. Two putative methyltransferases of the 16S rRNA, MRM1 and 

MRM2, have been recently found to be possibly involved in methylation of uridyl 2’-O-

ribose methylation at G1145 and U1369 respectively (Lee et al., 2013). However, in vivo 

evidence still remains to be presented. 

1.4.4.3 Polyadenylation in mammalian mitochondria 

The main maturation step for mitochondrial mRNAs after cleavage is 3`- polyadenylation 

mediated by the mitochondrial poly (A) polymerase (mtPAP) (Tomecki et al., 2004). 

Polyadenylation of mRNAs can have several functions, depending on the organism as well as 

the organelle. In bacteria and plants for example, polyadenylation of mitochondrial mRNAs 

mainly functions as degradation signal, since mature mRNAs are not polyadenylated at all 

(Chang and Tong, 2012). On the other hand, in trypanosomes polyadenylation in 

mitochondria occurs in connection with mRNA editing. Processed transcripts at all stages, 

from pre-edited and partially edited to fully edited, are stabilized through polyadenylation 

(Chang and Tong, 2012). In contrast, yeast mitochondrial mRNAs are not polyadenylated at 

all.  

In the mammalian cytosol polyadenylation mainly ensures mRNA stability, export from the 

nucleus and initial support of transcription and translation, whereas in mammalian 
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mitochondria mRNA polyadenylation creates a functional stop codon for most of the 

mitochondrial mRNAs and likely also has other functions, which remain to be elucidated 

(Tomecki et al., 2004). The length of mammalian polyadenylated transcripts in mitochondria 

is markedly varying dependent on the cell type or the type of transcript. The ND6 transcript in 

mouse, for example, is not polyadenylated at all but encodes a large, non-coding 3’ UTR. 

The enzyme mediating polyadenylation in human mitochondria is the human mitochondrial 

poly A polymerase (human mt-PAP). Downregulation of mt-PAP causes substantially 

shortened poly(A) tails (Nagaike et al., 2005; Tomecki et al., 2004), confirming the idea that 

this enzyme is accountable for polyadenylation in human mitochondria. However, to date 

there is no consensus concerning the role of poly(A) extensions in the stability of 

mitochondrial mRNAs. Knockdown of human PAP revealed only partial degradation of some 

mitochondrial transcripts, whereas others were not affected. (Rorbach et al., 2011) Even 

though the role of mt-PAP is not well understood it has been shown that its function is 

essential for mitochondria since a mutation in the mt- PAP gene is associated to spastic ataxia 

(Crosby et al., 2010). 

Notably, there is no mRNA detectable being completely free of adenine residues, when mt-

PAP levels are reduced suggesting the existence of another, yet unidentified enzyme 

undertaking oligoadenylation (Crosby et al., 2010; Tomecki et al., 2004). 

The polynucleotide phosphorylase (PNPase) is thought to be responsible for the degradation 

of mammalian mitochondrial mRNA transcripts, since the absence of this enzyme is reported 

to increase poly (A) tail length (Nagaike et al., 2005). However, its mitochondrial role is not 

solved completely, since this enzyme is supposed to be located in the inner mitochondrial 

membrane far away from mitochondrial mRNAs, which are located in the matrix.  

In addition to PNPase another protein involved in the specific deadenylation of certain 

mitochondrial mRNAs was characterized. The enzyme PDE12 is believed to be responsible 

for deadenylation of only some specific mitochondrial RNAs. This enzyme is an 

exoribonuclease sharing sequence homologies with other RNA deadenylases (Rorbach et al., 

2011). Its activity is suggested to affect only the stability of some mitochondrial transcripts, 

whereas steady state levels of other mRNAs remain normal, similar to the effect of PARN, 

described above. Notably, deadenylation of mitochondrial mRNAs was also shown to have 

negative affects on mitochondrial translation process (Rorbach et al., 2011) but its direct role 

in protein synthesis still remains to be elucidated. 
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Figure 1.5: Posttranscriptional modifications in mammalian mitochondria. After transcription the 
different RNA species can be subject to different modifications. Modified from Rackham et al., 2012. 

 

1.4.5  The PPR protein family 
The pentatricopeptide repeat (PPR) domain protein family was first identified in plants and 

consists of proteins predicted to play an important role in the mitochondrial RNA metabolism 

(Barkan et al., 2012). They are RNA-binding proteins characterized by a 35 amino acid PPR 

motif, related to the tetratricopeptide repeat (TPR) motif, which is repeated between 2 – 26 

times within a protein. With several hundred members in plants PPR proteins are highly 

abundant and mostly present in chloroplasts and mitochondria, where they fulfill a variety of 

functions from RNA editing and transcript processing to RNA stability and initiation of 

translation (Schmitz-Linneweber and Small, 2008; Zehrmann et al., 2011). The PPR domain 

consists of a hydrophilic residue, which interacts with the major groove and enables the 

protein to recognize and bind RNA (Delannoy et al., 2007). However, the molecular 

mechanism regarding the specific RNA-binding remains unclear. There are just seven PPR 

proteins known in mammals, all of them located in mitochondria: The RNA polymerase 

(POLRMT) (Tiranti et al., 1997) acts as the major enzyme catalyzing mitochondrial 

transcription, whereas pentatricopeptide repeat domain proteins 1-3 (PTCD 1-3) are involved 

in processing of mitochondrial tRNAs (PTCD1), Cytb mRNA processing (PTCD2) and 

mitochondrial protein synthesis (PTCD3), respectively (Davies et al., 2009; Rackham et al., 

2009; Xu et al., 2008). Mitochondrial ribosomal protein S27 (MRPS27) (Davies et al., 2009) 

is part of the small ribosomal subunit and mitochondrial ribonuclease P protein 3 (MRPP3) 

(Holzmann et al., 2008) is part of the mitochondrial protein RNAse P. The last remaining 

protein is leucine-rich pentatricopeptide repeat containing protein (LRPPRC) (Mili and Piñol-

Roma, 2003), which will be described in more detail below. 
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1.4.5.1 The leucine-rich pentatricopeptide repeat motif - containing protein 

(LRPPRC) 

LRPPRC is a 130 kDa, mitochondrial matrix protein featuring 22 PPR motifs. A recessive 

mutation creating an A354V amino acid substitution in the Lrpprc gene causes a 

neurodegenerative disease called Leigh syndrome French Canadian variant (LSFC) (Mootha 

et al., 2003). LSFC patients suffer from cytochrome c oxidase deficiency as well as reduced 

translational activity in mitochondria specifically in brain and liver (Merante et al., 1993; Xu 

et al., 2004). In addition, in vitro studies in cells from LSFC patients and cells where 

LRPPRC was knocked down revealed decreased mitochondrial mRNA levels suggesting a 

role in RNA stability (Sasarman et al., 2010). 

These findings have been confirmed by studying mice with a conditional knockout of 

LRPPRC in heart and skeletal muscle, since homozygous knockout of LRPPRC in mice is 

embryonic lethal. The mice suffer from a strong decrease in cytochrome c oxidase activity, 

reduced mt-mRNA levels, polyadenylation and misregulated translation (Ruzzenente et al., 

2012). It was also shown that LRPPRC plays an important role in stabilization of a non-

translationally active mt-mRNA pool. Besides its suggested role in mRNA stabilization and 

polyadenylation, others have proposed that LRPPRC interact with POLRMT to activate 

mitochondrial transcription. Overexpression of LRPPRC in mouse liver has been reported to 

cause a compaction of cristae and stimulation of oxidative phosphorylation (Liu et al., 2011) 

and there are several publications within the last years describing a range of potential 

functions and interaction partners of LRPPRC (Ruzzenente et al., 2012; Sasarman et al., 

2010). Cooper et al., for example, found LRPPRC in the nucleus, where it is supposed to bind 

PGC1-alpha and promote transcription of genes involved in gluconeogenesis (Cooper et al., 

2006). Another report of this group describes a direct interaction of LRPPRC and POLRMT 

promoting mitochondrial transcription (Liu et al., 2011) or claiming an impact of varying 

LRPPRC levels on nuclear encoded mitochondrial proteins suggesting that varying 

mitochondrial RNA levels influence nuclear gene expression (Gohil et al., 2010), (Rackham 

and Filipovska, 2012). Furthermore there are data, suggesting that LRPPRC is a cytoplasmic 

translational activator that functions as a shuttling protein helping to export nuclear mRNAs 

to the cytosol (Topisirovic et al., 2009). However, the only commonly accepted binding 

partner of LRPPRC so far, is the SRA stem-loop interacting RNA binding protein (SLIRP). 

SLIRP is another mitochondrial RNA binding protein repressing transactivation of nuclear 

receptors, via SRA-binding (Hatchell et al., 2006). A recent mouse model lacking SLIRP 

reports this protein being important for spermatogenesis and sperm motility (Colley et al., 
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2013). LRPPRC and SLIRP form a stable complex, which has been suggested to moderate 

mitochondrial RNA processing and stability (Sasarman et al., 2010)  

Despite several reports about LRPPRC having a nuclear and cytoplasmic function, the main 

localization of this protein is in mitochondria (Sterky et al., 2010) 

 

1.5  Projects 
Regarding the regulatory processes coordinating mitochondrial and nuclear gene expression, 

potential regulatory events could take place at several levels, such as maintenance and 

replication of mtDNA (mtDNA), mtDNA transcription and mitochondrial translation as well 

as protein quality control. This work focuses on transcriptional regulation in mammalian 

mitochondria mediated by the MTERF family members MTERF1 and MTERF2 as well as on 

posttranscriptional regulation by LRPPRC.  

Project I: To date MTERF1 has exclusively been studied in vitro, suggesting roles in H-

strand transcription termination and mitochondrial replication, which all awaits confirmation 

in an in vivo model. In this work, the first Mterf1 knockout mouse model is characterized, 

shedding the light on its role in a living organism.  

Project II: A second member of the MTERF family, MTERF2, has recently been reported to 

have a role in transcription initiation. Mterf2 knockout mice are claimed to develop decreased 

steady state transcript levels and impaired oxidative phosphorylation activity after treatment 

with a ketogenic diet for 6 months (Wenz et al., 2009). However, these results contradict 

existing data of our own Mterf2 mouse model, which does not show any apparent phenotype 

even after exposing the mice to cold. A feasible explanation could be the different knockout 

strategies used to generate these animals. In contrast to homologous recombination, the gene 

trap technique often comprises strong viral promoters making it prone to disturb the 

expression of genes located close to the target gene. A gene encoding the mouse 

cryptochrome 1 (CRY1) is located in close proximity to the Mterf2 gene and a gene trap in 

the latter position therefore increases the possibility of an unintended Mterf2/Cry1 double 

knockout mouse model. In order to test this hypothesis and gain new insights in the in vivo 

function of MTERF2, we performed comparative molecular characterization of the two 

distinct generated Mterf2 knockout mouse models and a mouse model lacking CRY1. 

Project III: LRPPRC is an RNA-binding protein, which stabilizes mitochondrial mRNAs, 

promotes mitochondrial mRNA polyadenylation and coordinates mitochondrial translation as 

already discussed above. However, recent studies have suggested that LRPPRC may have 

additional roles in mitochondrial transcription by directly interacting with POLRMT to 

stimulate mitochondrial transcription (Liu et al., 2011). In this work we examined Lrpprc 

heterozygous knockout mice with moderately decreased LRPPRC expression as well as 
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Lrpprc overexpressor mice with moderately increased LRPPRC expression mediated by an 

artificial bacterial chromosome (BAC). The only slightly increased or decreased LRPPRC 

protein levels in both mouse models allowed us to study this protein under physiological 

conditions giving us the opportunity to gain novel insights in its in vivo function and to 

provide certainty concerning its role in mitochondrial RNA metabolism. 
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2 Material and Methods 
 

2.1 Material 
Used chemicals were ordered from Ambion, AppliChem, Fisher Scientific, Fluka, Merck 

KGaA, Roth, Sigma Aldrich and VWR. Enzymes and their according buffers were delivered 

from New England Biolabs. Transfer of nucleic acids was done on Amersham Hybond-N+ 

nylon (GE Healthcare) membranes from. Protein transfer was performed on Hybond- C extra 

(GE Healthcare) nitrocellulose membranes or Hybond-P PVDF (GE Healthcare) membranes. 

Radioactivity (32P) to label nucleic acids was used from Perkin Elmer. Autoradiography was 

performed by using Amersham Hyperfilm MP (GE Healthcare) and ECL solutions were 

bought from Biorad. Protein samples for Western Blots were loaded on Invitrogen or 

Criterion gels from Biorad. For Blue Native PAGE experiments Invitrogen gels were used. 

 

2.1.1 Antibodies 

2.1.1.1 Commercial antibodies 

 

The following primary antibodies were used:  

Name species company 

Complex I (NDUFA9 subunit) mouse Invitrogen 

Complex II (SDHA subunit) mouse Invitrogen 

Complex IV (COXI and COX3 subunits) mouse Invitrogen 

Complex V (ATP5A1) mouse Invitrogen 

MitoProfile total oxidative phosphorylation mixture mouse Mitosciences 

Porin mouse Mitosciences 

Anti FLAG mouse Sigma 

POLRMT rabbit Abcam 

SLIRP rabbit Abcam 

Cryptochrome 1  mouse Abcam 
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2.1.1.2 In-house generated antibodies 

 

Name Host 

LRPPRC rabbit 

TFAM rabbit 

POLRMT rabbit 

TFB2M rabbit 

MTERF2 rabbit 

 

2.1.1.3 Secondary antibodies 

The following secondary antibodies were all purchased at GE Healthcare: 

HRP-conjugated sheep anti mouse IgG   

HRP-conjugated donkey anti rabbit IgG   

HRP-conjugated goat anti rat IgG   

 

2.1.2 Oligomers 
All oligomers were customized and ordered at eurofins.  

Primers used for genotyping: 

LRP forward 5`- GGA GAA CAG GCC GCA TCA CAA- 3’ 

LRP reverse 5`- GTA ACC CCA CCC CCT TAT GT- 3’ 

LSFC forward 5`-AAA TTT GTT TCT CTT TGG ACT TAT TAG TTT-3` 

LSFC reverse 5`- TTA TAA TAC TTA TGT GAA GAA CAC AGT GGA -3` 

MTERF1 loxp forward 5’-GAT CTG TTA GCC TCA AGC TG-3’ 

MTERF1 loxP reverse 5’-ATG GGT ATT GCT TCA TTG TC-3’ 

MTERF1 KO forward 5’-GTT TAG TTT GCG AGA GGT TG-3’ 

MTERF1 KO reverse 5’-ATG GGT ATT GCT TCA TTG TC-3’ 

MTERF2 KO forward 5’- CCT TGC CAG CTT AAA TTG - 3’ 

MTERF2 KO reverse 5’- CTG CAG ATA ATC GCT TCC- 3’ 

DII mCry1 5’- TGA ATG AAC TGC AGG ACG AG -3’ 

ex5 V2 mCry1 5’- CAG GAG GAG AAA CTG ACG CAC T -3’ 

ex7 mCry1 5’- GTG TCT GGC TAA ATG GTG G – 3’ 
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Primers used for amplification of mouse LRPPRC cDNA: 

 

mLRP forward 5’- AAA CAT ATG CCA CCA TGG CCA TCG TTG CTG AG – 3’ 

mLRP reverse 5’ - TTT GCG GCC GCT GAA GGG CTT TCC CT – 3’ 

 

2.1.3 Plasmids 
 

The following constructs were used for generation of radiolabeled probes and were made 

without exception in the department of Prof. Nils Göran Larsson: 

 

pCR2.1-cox1 

pCR2.1-cytb 

pCR2.1-12s 

pCR2.1-18s 

pCR2.1-nd1 

pCR–Blunt-II-nd5 

pCR–Blunt-II -nd6 

pCR–Blunt-II -16s 

 

Plasmid used for expression of recombinant LRPPRC in E.coli: 

pET-20(+)-Lrpprc 

2.1.4 Taqman probes 
The following probes were purchased at Life technologies 

 

Species Gene symbol Gene Name Reporter Dye 

mouse beta-actin Actb FAM 

mouse B2M beta2-microglobulin FAM 

mouse MMT-Cox1 mt cytochrome c oxidase FAM 

mouse MMT-Cytb mt cytochrome c FAM 

mouse MMT-ND1 NADH dehydrogenase 1 FAM 

mouse MMT-ND5 mt NADH dehydrogenase 5 FAM 

mouse MMT-ND6 mt NADH dehydrogenase 6 FAM 

mouse MMT-12s 12s rRNA FAM 

mouse MMT-7s 7s rRNA FAM 
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mouse Mterf4 MTERF4 FAM 

mouse Mterf3 MTERF3 FAM 

mouse Mterf2 MTERF2 FAM 

mouse Mterf1 MTERF1 FAM 

mouse LRP130 LRPPRC FAM 

mouse 16s 16s rRNA FAM 

mouse SLIRP SLIRP FAM 

mouse Tfam TFAM FAM 

mouse Tfb2m TFB2M FAM 

mouse Tfb1m TFB1M FAM 

mouse PGC-1 alpha PGC-1 alpha FAM 

mouse Polrmt POLRMT FAM 

mouse POLG POLG FAM 

mouse Cry1 cryptochrome 1 FAM 
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2.2 Transgenic mouse models 

2.2.1 Generation of LRPPRC (wt) BAC TG 505 mice 
We got the whole mouse Lrpprc gene in a BAC clone of 241 kb (RP24-100M10), which was 

obtained from Children’s Hospital Oakland-BAC-PAC Resources. To be able to distinguish 

between endogenous Lrpprc gene expression and the induced BAC clone, the BAC was 

modified by ET recombination. We introduced a silent mutation in exon 3, which eliminated 

a BglII site, but did not alter the encoded amino acid. The modified BAC was purified by 

cesium chloride gradient centrifugation and injected into the pronuclei of fertilized oocytes. 

Founder mice holding the correct genotype (+/BAC–LRPPRC) were verified by PCR and 

restriction enzyme analysis of genomic DNA to proof loss of the BglII site in the Lrpprc 

gene. Mice were maintained on an inbred C57BL6/N background. 

2.2.1.1 Genotyping of LRPPRC (wt) BAC TG 505 mice 

Tail DNA from offspring was genotyped for presence of the BAC transgene by analyzing 100 

ng tail DNA with the GoTaq (Promega) PCR reaction kit according to the manufacturers 

instruction by adding forward primer (5’-AAA TTT GTT TCT CTT TGG ACT TAT TAG 

TTT-3’) and reverse primer (5’- TTA TAA TAC TTA TGT GAA GAA CAC AGT GGA -

3’), 0.5 pmol each, for PCR with an initial denaturation for 3 min at 95°C, followed by 35 

cycles with 30 sec at 95°C, 30 sec at 53°C and 45 sec at 73°C. The reaction was ended with 

extension for 5 min at 72°C. Afterwards samples were digested with Bgl II in NEB Buffer 3 

(Biolabs) for 2 hrs at 37°C and then analyzed on a 1.8 % agarosegel at 135V for 45 min. 

Wildtype bands appear at 97 bp and 404 bp. Bands indicating the BAC transgene run at 500 

bp. 

 

2.2.2 Generation of LRPPRC heterozygous knockout mice 
Isogenic 129R1 DNA was used for creation of a targeting vector for disruption of Lrpprc in 

embryonic stem cells (ESCs). A cDNA probe containing a partial region of the Lrpprc gene 

was used to identify a genomic clone containing the Lrpprc gene in a 129Sv RPCI-22M BAC 

library (Invitrogen). We cloned a 14-kb BAC fragment, containing exons 2–10 into a 

pBluescript II SK ⎭ vector (Stratagene) using ET recombination to generate pBS-LRPPRC. 

Next, we modified the pDELBOY-3X plasmid, containing a loxP sequence and an Frt-PGK-

neomycin-Frt cassette, by introduction of MluI and BamHI sites in the XhoI site and an MluI 

site in the KpnI site. With these modifications we were able to remove the loxP sequence and 
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the Frt-PGK-neo-Frt cassette by performing MluI digestion, which was inserted into an MluI 

site of pBS-LRPPRC to create the plasmid pBS-LRPPRC-Neo. Subsequently, we removed a 

fragment comprising a loxP sequence and a KpnI restriction site from the pST7 plasmid and 

inserted it into the PacI site of the pBS-LRPPRC-Neo plasmid to create the targeting vector 

pBS-LRPPRC-TV. In summary, in this vector, a Frt-PGK-neomycin-Frt cassette and a loxP 

site were present between exons 2 and 3, whereas a second loxP site was present between 

exons 5 and 6. The targeting vector was linearized by NotI digestion, transformed into 129R1 

cells and ESC clones were selected with gentamycin and analyzed by Southern blotting. In 

total, 196 ESC clones were analyzed by KpnI digestion and only two clones were identified 

where homologous recombination took place. Afterwards, chimeras were generated by 

blastocyst injection and we found germline transmission in both clones. Mating of 

Lrpprc+/loxP-neo mice with transgenic mice ubiquitously expressing Flp recombinase allowed us 

to remove the PGK- Neomycin cassette. The resulting Lrpprc + /loxP mice were mated with 

mice ubiquitously expressing cre recombinase to generate heterozygous knockout Lrpprc + /- 

mice. 

2.2.2.1 Genotyping of LRPPRC heterozygous knockout mice 

100 ng tail DNA from offspring was used in a GoTaq (Promega) PCR reaction with the 

following primers: forward (5’- GGA GAA CAG GCC GCA TCA CAA- 3’) reverse (5’- 

GTA ACC CCA CCC CCT TAT GT- 3’) 0.5 pmol each. The PCR reaction was as described 

in the manufactorers recommendation with an initial denaturation for 3 min at 95°C, followed 

by 35 cycles with 30 sec at 95°C, 30 sec at 60°C and 35 sec at 72°C. The reaction was ended 

with an extension for 5 min at 72°C. Samples were loaded on a 1.3% agarose gel and ran at 

135V, 45min. A band at 280 bp indicated the knockout. No band was amplified in the wild 

type. 

 

2.2.3 Generation of Mterf1 knockout mice 
CDNA probes containing the genes for Mterf1a and Mterf1b were used to identify a bacterial 

artificial clone (BAC) containing these genes in a 129Sv RPCI-22M BAC library 

(Invitrogen). We used a 12.4 kb EcoRI fragment containing all exons of Mterf1a to clone it 

into pBluescript II SK+ (Stratagene) and generate pBS-T1a. Next, a loxP site in the intron 

following exon 2 was introduced in pBS-T1a using the PacI site for insertion of an 

oligonucleotide, thus creating the plasmid pBS-T1aLoxP. In the following, the Frt-PGK-neo-

Frt-loxP cassette (Frt site-flanked neomycin resistance gene with an adjacent loxP site) was 

inserted into the KpnI site of pBS-T1aLoxP. To create the final Mterf1a targeting vector 

(pBS-T1aKO), a KpnI fragment containing the Frt-PGK-neo-Frt-loxP cassette was cut from a 
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modified pDELBOY-3X plasmid containing a KpnI site introduced into the XhoI site. To 

create a double knockout of both actively transcribed Mterf1 genes, a 13.6 kb KpnI fragment 

containing all exons of the Mterf1b gene was cloned into pBluescript II SK+ (Stratagene) to 

generate pBS-T1b. Exon 2 of Mterf1b was replaced by a hygromycin resistance cassette using 

a SfiI/SpeI site to create pBS-T1bKO. 

Afterwards, embryonic stem cells were transfected with pBS-T1bKO and genomic DNA was 

isolated and digested with SacI. In total 145 clones were analyzed using Southern Blotting 

und one specifically targeted clone was found. Finally, pBS-T1aKO was used to transfect 

ESCs where Mterf1b already had been targeted, and Mterf1a-targeted ESC clones were 

identified by Southern blot analysis. 

 

2.2.3.1 Genotyping of Mterf1 knockout mice 

Tail DNA from offsprings was extracted by following the DNA extraction protocol as 

described in section 2.4.2.1. Genotyping was done by using 100 ng DNA of tail DNA in a 20 

µl PCR reaction mix with GoTaq (Promega) PCR reaction kit according to the manufacturers 

instructions. The PCR reaction was performed with two sets of primers in order to distinguish 

floxed, wild type and knockout alleles. For floxed and wild type alleles the following primer 

sequences; loxP forward (5’- GATCTGTTAGCCTCAAGCTG -3’) and loxP reverse (5`- 

ATGGGTATTGCTTCATTGTC -3`), with 0.5 pmol each were used in the PCR reaction 

with an initial denaturation for at 94°C for 5 min, followed by 30 cycles at 94°C with 30 sec, 

60°C with 30 sec and 72°C for 30 sec. The reaction was ended with extension at 72°C for 5 

min. The amplified bands were then analyzed on a 1.2 % agarose gel by distinguishing the 

wild type bands at 447 bp and floxed alleles at 547 bp. In order to define Mterf1a/Mterf1b 

double knockout, a second PCR for knockout allele was performed by using T1KO forward 

(5’- GTTTAGTTTGCGAGAGGTTG-3’) and T1KO reverse (5’-

ATGGGTATTGCTTCATTGTC-3’) primer set with 0,5 pmol each in a 20 µl PCR reaction 

mix followed by a PCR reaction with an initial denaturation at 94°C for 5 min, followed by 

30 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 45 sec with final extension at 

72°C for 5 min. Amplified PCR products were then checked on a 1.2 % agarose gel to 

distinguish the wild type allele (no band amplification) from knockout allele, amplification at 

the size of 709bp. 
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2.2.4 Generation of Mterf2 knockout mice 
To generate the targeting vector, we identified a bacterial artificial chromosome (BAC) clone 

containing the Mterf2 gene in a 129Sv RPCI-22M BAC library (Invitrogen) by using a cDNA 

probe. To construct the Mterf2 targeting vector, a 12.5 kb NcoI fragment containing all exons 

of Mterf2 was cloned into pBluescript II SK+ (Strategene). The Mterf2 gene sequence data 

was obtained from Celera in 2002. At that time, the targeting construct indicated an exon of 

mCG13745 on the antisense strand embedded in exon 3 of the Mterf2 gene. Due to this 

coincidence, the targeting strategy of Mterf2 gene has been changed. Instead of adding loxP 

sites to the active exon, site directed mutagenesis was performed to introduce mutations. The 

NsiI-BsrGI fragment was subcloned into pBS SKII+ and by site directed mutagenesis two 

mutations were introduced, one creating a premature STOP codon and the other a frameshift. 

The NsiI-BsrGI fragment containing the right mutations was cloned back into the right 

homology arm. On the 5 prime end of the targeting vector a 4.5 kb PacI-FseI homology arm 

was placed. The final targeting vector now contained a PacI-FseI homology arm-FRT-

tkNEO-FRT-KpnI-NotI exon 3 with mutations.  

The Mterf2-targeting vector was used to transfect ES cells and genomic DNA was isolated 

and digested with NheI. Digested DNA was transferred to nylon membranes by Southern 

blotting and probed with exon3 mCG13745 as a probe. Four specifically targeted clones were 

found among a total of 91 analyzed ES cell clones.  

2.2.4.1 Genotyping of Mterf2 knockout mice 

100 ng tail DNA from offspring was used in a GoTaq (Promega) PCR reaction with the 

following primers: MTERF2 forward (5’- CCT TGC CAG CTT AAA TTG - 3’) MTERF2 

reverse (5’- CTG CAG ATA ATC GCT TCC- 3’) 0,5 pmol each. The PCR reaction was as 

described in the manufactorers recommendation with an initial denaturation for 5 min at 

94°C, followed by 35 cycles with 30 sec at 94°C, 45 sec at 55°C and 45 sec at 72°C. The 

reaction was ended with an extension for 5 min at 72°C. To distinguish wild type from 

knockout samples, PCR products were digested with HindIII in a total volume of 20µl for 2-3 

hours at 37°C. Finally, samples were loaded on a 2% agarose gel and ran at 135V, 45min. A 

band at 500 bp indicated wild type, a band at 250 bp indicated Mterf2 knockout.  

 

2.2.5 Generation of Cry1 knockout mice 
Cry1 knockout mice were kindly provided from Dr E.H. Jacobs from the Erasmus University 

Medical Center, Department of Genetics in the workgroup Circadian Rhythms and 

Neuropsychiatric Disorders, Rotterdam 
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2.2.5.1 Genotyping of Cry1 knockout mice 

Tail DNA from offsprings was extracted by following the DNA extraction protocol as 

described in section 2.4.2.1. Genotyping was done by using 100 ng DNA of tail DNA in a 20 

µl PCR reaction mix with GoTaq (Promega) PCR reaction kit according to the manufacturers 

instructions. The PCR reaction was performed with three different primers in order to 

distinguish wild type and knockout alleles. The following primer sequences were used: DII 

Cry1 (5’- TGA ATG AAC TGC AGG ACG AG -3’) ex5 V2 Cry1 (5`- CAG GAG GAG 

AAA CTG ACG CAC T -3`) and ex7 Cry1 (5’- GTG TCT GGC TAA ATG GTG G – 3’), 

with 0.5 pmol each were used in the PCR reaction with an initial denaturation for at 94°C for 

3 min, followed by 30 cycles at 94°C with 30 sec, 63°C with 60 sec and 72°C with 60 sec. 

The reaction was ended with extension at 72°C for 10 min. The amplified bands were then 

analyzed on a 0.8 – 1% % agarose gel by distinguishing the wild type bands at 1600 bp and 

knockout bands at 2200 bp.  

 

2.3 Bacterial cells 

2.3.1 Transformation of chemically competent cells  
One shot® TOP 10 chemically competent bacteria (Invitrogen) were thawn on ice and 

supplied with 5ng plasmid DNA. The sample was mixed by flicking it several times followed 

by 30 min incubation on ice. A heat-shock at 42°C for 30 sec. and a 10 min incubation on ice 

allowed the DNA to enter the bacteria. Afterwards, 200µl S.O.C. media (Invitrogen) were 

added and bacteria were incubated at 37°C and 700 rpm for 30-60 min. Bacteria were plated 

on agar plates which contained 100µg/ml ampicillin to select for positively transformed 

clones. Agar plates were incubated o/n at 37°C. 

 

LB (lysogeny broth)-media  

10 g/l Tryptone 

 5 g/l yeast extract 

 10 g/l potassium chloride 

 15 g/l Agar-Agar 
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2.3.2 Overnight culture of bacterial cells 
Bacterial colonies grown on an agar plate were picked with a sterile tip and transferred in 2-

5ml LB-media containing an appropriate antibiotic. The culture was shaking overnight at 

37°C. Next, bacteria were spinned down at 6.000x g, 5min, RT and kept at -20°C or used for 

DNA isolation.
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2.4 Methods in molecular biology 

2.4.1 Plasmid preparation  
2ml (mini prep), 25ml (midi prep) or 100ml (maxi prep) of bacterial overnight culture 

supplied with an appropriate antibiotic were pelleted at 6.000 x g, 15 min at 4°C and DNA 

was isolated following the manufactorers instruction for QIAGEN Plasmid Mini, Midi and 

Maxi Kits. In the final step DNA was dissolved in dH2O and stored at -20°C. 

 

2.4.2 DNA isolation from mouse tissue  

2.4.2.1 Phenol chloroform extraction 

A small piece of mouse tissue from heart, liver, brain, kidney, muscle or tail was incubated in 

400 µl lysis solution supplied with 8µl proteinase K (10mg/ml) shaking at 55°C for 2-3 hrs, 

until the tissue was completely dissolved. Next, 75 µl of 8M potassium acetate and 0.5ml 

chloroform were added and the samples were vortexed for 10 sec. followed by incubation at -

80 °C for at least 30min or o/n. Phase separation was achieved by centrifugation at maximum 

speed in a bench top centrifuge (Eppendorf). The upper (aqueous) phase was transferred to a 

new eppendorf tube and 1 ml 99% ethanol was added to each sample to precipitate the DNA. 

Tubes were inverted several times at room temperature and centrifuged at maximum speed in 

a benchtop centrifuge for 10min at RT. Pellets were rinsed with 0.5 ml 75% ethanol and 

spinned for another 5 min at max speed. All residual ethanol was removed and the pellet was 

dissolved in an appropriate amount of dH2O. For long term storage samples were stored at -

20°C. 

Lysis Buffer 

0.5% sodium dodecyl sulfate 
0.1 M NaCl 
50mM Tris-HCl, pH8.0 
2.4mM EDTA 
 

2.4.2.2 Short protocol for DNA isolation from mouse tails 

75µl of Buffer I were added to a mouse tail and incubated at 96°C, 1hr., shaking. 

Next, 75µl of Buffer II were added, samples were spinned down and stored at 4°C. 
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Buffer I (10X) Buffer II (10X) 

250mM NaOH 400mM Tris pH 7.5-8.0 

2mM EDTA  

 

2.4.2.3 DNA extraction with DNeasy® Blood and tissue Kit (Qiagen) 

For very pure DNA preparations a small piece of frozen tissue from mouse brain, heart, liver, 

kidney or muscle was cut into pieces and transferred into an eppendorf tube. Next, 180µl 

buffer ATL (Qiagen) and 20µl Proteinase K (Qiagen) were added and DNA was extracted 

following the manufactorers instructions. DNA was kept at +4°C for short term and -20°C for 

long term storage. 

 

2.4.2.4 DNA extraction with Puregene® Core Kit A (Qiagen) 

A small piece of frozen tissue from mouse brain, heart, liver, kidney or muscle was grinded 

with mortar and pestle in liquid nitrogen. The frozen tissue powder was transferred into a new 

eppendorf tube and mixed with 300µl Cell lysis solution (Qiagen). DNA was extracted as 

recommended by the manufacturer and kept at +4°C for short term and -20°C for long term 

storage. 

 

2.4.3 RNA isolation from mouse tissue  

2.4.3.1 RNA isolation with ToTALLY RNATM kit (Ambion) 

A small piece of fresh or frozen tissue from mouse brain, heart, liver, kidney or muscle was 

extracted with Lysing Matrix D tubes from MP Bio and ToTALLY RNATM kit from Ambion 

by following manufacturers instructions. The final RNA pellet was dissolved in an 

appropriate amount of DEPC treated water at 50°C for 15 min. RNA was stored at -80°C. 

 

2.4.3.2 RNA isolation with TRIzol® (Invitrogen) 

A small piece of frozen tissue from mouse brain, heart, liver, kidney or muscle was grinded in 

liquid nitrogen using mortar and pestle. Next, 800µl TRIzol® were added to the still frozen 

sample and placed under the hood until it got liquid again. Samples were pipetted in a 2ml 

tube and homogenized by 20 strokes with a 23G syringe (BD Microlance). After incubation at 

RT for 5min, 200µl chloroform were added and mixed by vortexing, followed by another 

incubation at RT for 3 min. Phase separation was achieved by centrifugation of the samples at 

15.000 x g at 4°C for 15 min. The upper aqueous phase was transferred into a new RNase-
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free eppendorf tube and supplied with 500µl isopropanol. Next, samples were incubated at 

RT for 10 min, followed by a centrifugation at 15.000 x g at 4°C for 10 min. The pellet was 

washed with 1ml 70% ethanol at 15.000 x g at 4°C for 10 min and finally air-dried at 42°C in 

a heat block for 5-10 min. RNA pellet was dissolved in an appropriate volume of DEPC-

treated water at 55°C for 15 min and stored at -80°C. 

 

2.4.4  Quantification methods of nucleic acids 

2.4.4.1 DNA/RNA quantification with nanodrop 

DNA quantification was performed with NanoDrop 2000c (Thermo Scientific). 1µl of a DNA 

sample was placed on the pedestral and absorption was measured at 260nm. DH2O was used 

as blank. 

 

2.4.4.2 DNA quantification with Qubit® 1.0 fluorometer (Invitrogen) 

DNA quantification with the Qubit® 1.0 fluorometer is based on intercalation of the reagent 

in double stranded DNA. For standard preparation 190µl working solution (Invitrogen) and 

10µl Standard (Invitrogen) were vortexed and incubated at RT for 2 min. Sample preparation 

was performed by mixing 198µl working solution with 2µl DNA sample, vortexing and 

incubation at RT for 2 min. In the following, tubes were analysed in the Qubit® fluorometer 

(Invitrogen) according to the manufactorers instructions. 

 

2.4.5 DNA agarose gelelectrophoresis 
For separation of DNA fragments, DNA samples were run on a 0.8%-1.8 % agarose gel, 

depending on size and number of the DNA fragments. 0.8-1.8 g agarose were mixed with 

100ml 0.5 x TBE buffer and cooked in a microwave until the agarose got dissolved 

completely. Before the melted agarose was poured into a gel chamber, few microliter of 

ethidium bromide were added. After the gel was polymerized, DNA samples were loaded and 

run at 135 – 150 V. The gel was analysed in an UV imaging system (Syngene u:Genius). 

 

1 x TBE 

90mM Tris-Base 

90mM H3BO3 

2.5 mM EDTA 
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2.4.6 Polymerase chain reaction 

2.4.6.1 DNA amplification with GoTaq® DNA polymerase (Promega) 

Amplification of DNA fragments was performed using PCR reactions. 50-200 ng DNA were 

used in a 20µl GoTaq® reaction (Promega) as recommended by the manufacturer using 

0.2mM dNTPs and 0.5µl GoTag® polymerase in each reaction. If PCR product had to be 

digested 5x Green colorless GoTaq® Reaction Buffer instead of 5 x Green GoTaq® Reaction 

Buffer was used. 

 

Standard thermal cycling conditions  

Initial Denaturation: 95°C, 2 minutes 

30 cycles  

Denaturation: 95°C, 30 sec 

Annealing: 42–65°C (depending on the primer) 30 sec 

Extension: 72°C, 2min 

Final Extension: 72°C, 5 minutes 

Soak: 4°C, forever 

 

DNA products were analysed on 1.2% -1.8% agarose gels. 

 

2.4.6.2 DNA amplification with Phusion® High Fidelity DNA polymerase  

50-200ng DNA were applied in a 50µl Phusion® HF reaction (New England Biolabs) as 

recommended by the manufactorers instructions using 1µl of each primer (final concentration 

4µM). 

 

Standard thermal cycling conditions  

Initial Denaturation: 98°C, 30 seconds 

30 cycles  

Denaturation: 98°C, 10 sec 

Annealing: 45–72°C (depending on the primer) 30 sec 

Extension: 72°C, 15-30 sec/kb 

Final Extension: 72°C, 5 minutes 

Soak: 4°C, forever 

 

DNA products were analysed on 1.2% -1.8% agarose gels. 
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2.4.7 DNase treatment  
To clear RNA samples from DNA, e.g. in correlation with reverse transcription, RNA 

samples (10µg/50µl) were mixed with 0.1 volumes of 10 x TURBOTM DNase buffer 

(Ambion) and 1µl TURBOTM DNase (Ambion) in a final volume of 50 µl and incubated at 

37°C for 30 min. The reaction was inactivated by addition of 0.1 volumes DNase inactivation 

reagent (Ambion) and 5 min incubation at RT. Excess inactivation solution was pelleted at 

10.000 x g for 1.5 min and the supernatant was transferred to a new RNase free eppendorf 

tube. If not used immediately for reverse transcription, RNA was stored at -80°C. 

 

2.4.8 Reverse transcription  
1-2µg of DNase treated RNA (see section 2.4.7) was dissolved in DEPC-water with a final 

volume of 10µl. Another 10µl of a reverse transcription mastermix containing 10 x RT buffer, 

25 x dNTP mix, 10x random primers, reverse transcriptase, RNase inhibitor and nuclease-free 

H2O as recommended in the manufactorers instructions of the High capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) RT reaction was performed in a thermocycler 

(Applied Biosystems) as recommended in the manufactorers instructions. cDNA was stored at 

-20°C. 

 

2.4.9 Quantitative polymerase chain reaction 

2.4.9.1 Quantitative PCR using Taqman® Universal PCR master mix  

Total RNA from mouse liver was extracted using the ToTALLY RNATM kit (Ambion) (see 

section 2.4.3.1). Reverse transcription was performed using the High capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) (see section 2.4.8). A small volume of each cDNA 

(5-10µl) was diluted 1:10 and 1µl of each cDNA, placed as triplicates, was pipetted in a 96- 

or 384- well plate. H2O was used as control. In the following, a mastermix was prepared 

containing 12.5µl (4.8µl for 384-well plate) TaqMan® Universal PCR master mix 

(Invitrogen), 1.25µl (0.5µl for 384-well plate) probe and 10.25µl (3.7µl for 384-well plate) 

dH2O per reaction. In case of 96- well plates 24 µl, in the case of 385-well plate 9µl 

mastermix were added to each cDNA. The plate was covered with a plastic film, shortly 

centrifuged and finally analyzed in a realtime PCR cycler (Applied Biosystems).  
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2.4.9.2 QPCR using a pipetting robot 

To optimize pipetting accuracy especially for the performance of a 384-well plate qPCR, a 

pipetting robot (JANUS automated workstation, Perkin Elmer) was used. Mastermixes for 

each cDNA and probe were prepared in 1.5 ml eppendorf tubes as follows: 

 

cDNA mastermix: 

cDNA (1µl x 4 (quadruplicates) x number of primers x 1.3 (pipetting error) 

     + 

Taqman Mix (5µl x 4 (quadruplicates) x number of probes x 1.3 (pipetting error) 

 

Probe mastermix: 

Taqman® probe (0.5µl x 4 (quadruplicates) x number of cDNAs x 1.3 (pipetting error) 

+ 

dH2O (3.5µl x 4 (quadruplicates) x number of cDNAs x 1.3 (pipetting error) 

 

Tubes were placed in a JANUS automated workstation together with a 384-well plate and the 

robot was programmed to mix 6µl cDNA with 4µl probe mix by doing quadruplicates for 

every cDNA. Final analysis took place as described in section 2.4.8.  
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2.5 Methods in protein biochemistry 

2.5.1 Recombinant proteins 

2.5.1.1 Expression of human recombinant TFAM, TFB2M and LRPPRC 

For mitochondrial in vitro transcription Spodoptera frugiperda (Sf9) cells were maintained 

and propagated in suspension in SFM 900 medium (Gibco-BRL) containing 5% fetal calf 

serum at 27 °C. Genes encoding human LRPPRC, TFB2M and TFAM (without leader 

peptide) were amplified from cDNAs by PCR, and cloned into the vector pBacPAK9 

(Clontech). A 6×His tag had been introduced at the C terminus of all proteins. Autographa 

californica nuclear polyhedrosis viruses recombinant for the individual proteins were 

prepared as described in the BacPAK manual (Clontech). For protein expression, Sf9 cells 

were grown in suspension and collected 60–72 h after infection. Next, the infected cells were 

frozen in liquid nitrogen and thawn at 4 °C in lysis buffer containing 25 mM Tris-HCl (pH 

8.0), 20 mM 2-mercaptoethanol, and 1× protease inhibitors (for all purifications the 100× 

stock of protease inhibitors contained 100 mM phenylmethylsulfonyl fluoride, 200 mM 

pepstatin A, 60 mM leupeptin and 200 mM benzamidine in 100% ethanol). After incubation 

on ice for 20 min, the cells were transferred to a Dounce homogenizer and lysed by 20 strokes 

of a tight-fitting pestle. After adding NaCl to a final concentration of 0.8 M, the homogenate 

was swirled gently for 40 min at 4 °C. The extract was cleared by centrifugation at 45.000 

r.p.m. for 45 min at 4 °C using a Beckman TLA 100.3 rotor.  

 

2.5.1.2 Expression of human recombinant POLRMT and mouse LRPPRC 

Codon-optimized (DNA 2.0) DNAs encoding the mature form of mouse LRPPRC and human 

POLRMT fused to a 6xHis-tag at the N-terminus were cloned in the vector pJexpress 401 and 

heterologously expressed in Arctic express (DE3) cells (Stratagene) after induction with 0.2 

mM isopropyl-1-thio-β-D-galactopyranoside at 16 °C for 20 hours. 

 

2.5.1.3 Purification of human recombinant POLRMT 

Extracts from cells were infected with 5 plaque-forming units (p.f.u.) of His-tagged POLRMT 

together with 5 p.f.u. of TFB2M. The extracts were supplemented with 10 mM imidazole and 

2 ml of Ni2+- NTA matrix superflow (APBiotech) pre-equilibrated with buffer A were added. 

Next, we supplemented it with 10 mM imidazole and 0.3 M NaCl, and incubated it for 60 min 

at 4 °C with gentle rotation. His-POLRMT was further purified on a 1-ml HiTrap heparin 
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column (APBiotech) equilibrated in buffer B (0.1 M NaCl). After washing the column with 

three column volumes of buffer B (0.1 M NaCl), a linear gradient (10 ml) of buffer B (0.1–1 

M) was used to elute the His-POLRMT protein at 0.8 M NaCl. The yield of His-POLRMT 

protein from 400 ml of culture was ∼2 mg. The purity of the protein was estimated to be at 

least 95% by SDS–PAGE with Coomassie blue staining.  

 

Buffer A 

25 mM Tris-HCl (pH 8.0) 

10% glycerol 

20mM 2-mercaptoethanol 

1M NaCl 

Protease inhibitor 

 

 

2.5.1.4 Purification of human recombinant TFB2M 

His-TFB2M was purified by the method used for human recombinant His-POLRMT with the 

following modifications. Sf9 cells were infected with 10 p.f.u. of recombinant virus and 

TFB2M protein was eluted from the Hi-Trap Heparin column at 0.6 M NaCl. 

 

2.5.1.5 Purification of human recombinant TFAM 

TFAM was purified by the methods used for His-POLRMT with the following modifications. 

Sf9 cells were infected with 10 p.f.u. of recombinant virus. Dialyzed His-TFAM run from the 

Ni2+-NTA step through a Mono-Q column equilibrated with buffer B (0.1 M NaCl), and His-

TFAM eluted in the flow through fractions. The yield of His-TFAM from 400 ml of culture 

was ∼5 mg with a purity of at least 95%. All proteins were frozen in aliquots in liquid 

nitrogen and stored at –80 °C. 

 

2.5.1.6 Purification of human recombinant LRPPRC 

Human recombinant LRPPRC was purified over Ni2+-Agarose FF (Qiagen) as described 

before. LRPPRC was loaded on a 1 ml HiTrap Heparin column (Amersham Biosciences) 

equilibrated in buffer B containing 0.2 M NaCl. LRPPRC was eluted with a linear gradient 

(10 ml) of buffer B (0.2-1.2 M NaCl) and the peak fractions were diluted 3 times with buffer 

B (0 M NaCl), followed by further purification on a 1-ml Hi-Trap SP column (Amersham 

Biosciences) equilibrated in buffer B (0.2 M NaCl). After washing the column with three 



                                                                                                                 Material and Methods 

 41 

column volumes of buffer B (0.2 M NaCl), LRPPRC was eluted with a linear gradient (10

ml) of buffer B (0.2-1.2 M NaCl) and the peak of protein eluted at 600 mM NaCl. The peak 

fractions were dialyzed against buffer B containing 0.2 M NaCl. The estimated purity of the 

purified LRPPRC was at least 95% as estimated from Coomassie blue stained SDS–PAGE 

gels.  

Buffer B 

20 mM Tris-HCl (pH 8.0) 

0.5 mM EDTA (pH 8.0) 

10% glycerol 

1mM DTT 

 

2.5.1.7 Purification of mouse recombinant POLRMT, TFB2M and TFAM 

Recombinant proteins were purified to near homogenity over Ni 2+ - Agarose FF (Qiagen). 

The complexes were further purified on a 1 ml HiTrap Heparin column (Amersham 

Biosciences) equilibrated in buffer B (see section 2.5.1.6) (0.2 M NaCl) and a linear gradient 

(10 ml) of buffer B (0.2–1.2 M NaCl) was used as described above to elute the proteins. 

 

2.5.1.8 Purification of mouse recombinant LRPPRC 

LRPPRC was purified over a His-Select Ni2+ (Sigma-Aldrich) resin and dialyzed against H-

0.2 [25mMTris-HCl (pH 7.8), 0.5mM EDTA, 10% (vol/vol) glycerol, 1 mM DTT, 200 mM 

NaCl] after the addition of tobaccoetch virus (TEV) protease at a 1:100 protease:protein ratio. 

Dialyzed LRPPRC was purified to homogeneity over a HiLoad 16/60 Superdex 200 pg gel-

filtration column (GE Healthcare) in buffer H-0.2 lacking glycerol. 

 

2.5.2 Protein quantification with Bradford  
An undiluted or an 1:10 diluted protein solution as well as a BSA-standard curve (0.125, 0.25, 

0.5, 1 and 2mg/ml BSA) were mixed with 1:50 with Bradford reagent (Sigma) and incubated 

at RT for 5-15 min. Samples were analysed in an Infinite® 200 PRO multimode reader 

(Tecan). Absorption was measured at 595nm. 
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2.5.3 Isolation of mitochondria from mouse tissue 
Dissected heart, brain, muscle, liver or kidney from mouse was washed with mito isolation 

buffer, followed by homogenization on ice with a glass-teflon homogenizer (Sartorius, Potter 

S) in 10 ml (liver in 13 ml) mito isolation buffer 1X complete protease inhibitor cocktail 

(Roche) at 600rpm with 20 strokes. Next, the lysate was centrifuged for 10 min, at 1000xg, 

4°C. The supernatant was transferred in a fresh, pre-cooled falcon tube and spinned for 10 

min at 12.000 x g, 4°C. Mitochondria were washed with mito isolation buffer three times for 

5 min at 12.000 x g, 4°C, before the pellet was resuspended in an appropriate volume of mito 

isolation buffer. For storage, mitochondria were frozen in liquid nitrogen and put into -80°C. 

 

Mito isolation buffer 

0.32M sucrose 

1mM potassium EDTA 

10mM Tris-HCl pH 7.4 

2.5.4 SDS-Polyacrylamide gelelectrophoresis 

2.5.4.1 Selfmade gels 

For separation of proteins SDS-polyacrylamide gel electrophoresis was performed. For in 

organello translation experiments, protein samples were resuspended in 20µl 2 x gel loading 

dye (see 2.6.6) and pelleted at max. speed for 10 min. The gel was selfmade according to the 

following protocol: 

  
17% Running gel For 1 gel: 15ml 

H2O 5.325 ml 
40 % Acrylamide/Bisacrylamide (29:1) 5.625 ml 
1.5 M Tris/HCl, pH 8,8 3.75 ml 
10 % SDS 150 µl 
10 % APS (fresh made in H2O) 150 µl 
TEMED 6 µl 

 
APS and TEMED were added immediately before pouring the gel to prevent precocious 

polymerization. A layer of 99% ethanol was pipetted on top of the running gel in order to 

have an even gel. After polymerization for 30min, a 5% stacking gel was added on top of the 

running gel, after removal of the ethanol: 
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5 % stacking gel for 1 gel: 5 ml 
H2O 3.613 ml 
40 % Acrylamide/Bisacrylamide (29:1) 0.637 ml 
1,5 M Tris/HCl, pH 6.8 625 µl 
10 % SDS 50 µl 
10 % APS (fresh made in H2O) 50 µl 
TEMED 5 µl 

 
APS and TEMED were added immediately before pouring the gel to prevent precocious 

polymerization. A 0.75 mm comb was placed in the stacking gel, which was removed after 

polimerization. Wells were washed with running buffer, before protein samples were loaded. 

Gel run at 100V, 10mA around 16 hrs. 

2.5.4.2 Purchased gels 

For western blotting and Blue native PAGE analyzis the following customized gels were 

used: 

Gel Company 

CriterionTM XT Bis-Tris Precast Gels 4-12% Biorad 

CriterionTM XT Bis-Tris Precast Gels 15% Biorad 

NuPAGE® Bis-Tris Precast Gels 4-12% Invitrogen 

NativePAGE™ Novex® 4-16% Bis-Tris Gels Invitrogen 

 

 

Gels run at 120V, 2 hrs (Biorad), 200V, 50 min (NuPAGE, Invitrogen) and 150V, 60min 

respectively. As a size marker prestained Spectra Multicolor Broad Range Protein Ladder 

(Generon) or Precision Plus Protein Dual Color Standards (Biorad) were used. 

 

2.5.5 Gel drying 

2.5.5.1 Gel drying using Hoefer Slab Gel Dryer 

Polyacrylamide gels laying on filter paper were covered with clingfilm and placed in a Hoefer 

Slab Gel Dryer (Amersham Biosciences). A constantly active vacuum pump dehumidified the 

gel, whereas it was heated at 80°C for 1.5 hrs. Finally the clingfilm was removed from the gel 

and, if radioactive exposed to a phosphoimager screen.  
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2.5.5.2 Manual gel drying  

Polyacrylamide gels were equilibrated in water for a minimum of 5 minutes to minimize gel 

cracking during drying. Next, the gel was placed between two sheets of cellophane that were 

pre-incubated in water using the GelAir Drying system from Biorad. All bubbles and wrinkles 

were removed and the gel was clamped between two frames and placed in one shelf of the 

GelAir dryer overnight to dry. 

 

2.5.6 Western Blot  
Isolated mitochondria, 20 µg, from heart, liver, kidney, brain and muscle were pelleted and 

resuspended in SDS Lämmli-Buffer. Samples were run on polyacrylamide gels (see section 

5.5.4.2). and subsequently transferred to amersham nitrocellulose ECL membranes (GE 

Healthcare) using either the wet transfer system from Biorad or the semi-dry transfer system 

from Peqlab. For the wet transfer the criterionTM blotter system from Biorad was used. In a 

“sandwich-like” manner pre-wet sponges, four filter papers, the polyacrylamide gel and a 

nitrocellulose membrane were assembled in a gel holder cassette (Biorad) and blotted 

following the manufactorers instructions at 80mA and 4°C, overnight. Using the semi-dry 

transfer, the same sandwich but without the sponges was made, everything pre-wet in transfer 

buffer and assembled in a peqlab semi dry blot following the manufactorers 

recommendations. Next, the membrane was stained in Ponceau S, destained with TBS/T and 

blocked in 5% milk/TBS/T for 30 min at RT. Incubation with the primary antibody was 

performed either for two hours at RT or overnight at 4°C, depending on the quality of the 

antibody. Afterwards, the membrane was washed in TBS/T three times for 10 min and 

incubated with an appropriate secondary HRP-conjugated antibody for 1 hr at RT. After 

another washing series in TBS/T, three times for 10 min, the membrane was covered with a 

1:1 ratio of the Immun-StarTM chemiluminescent substrate and enhancer (Biorad) for 2-3 min, 

followed by exposure to Amersham Hyperfilms (GE Healthcare).  

 

SDS-Lämmli buffer  (10 ml) Ponceau S 

 

Transfer 
buffer 

10 x 
running buffer 

0.5M Tris pH 6.8    1.6 ml 0.3 M acetic acid Tris        12.1g Tris base   30.3 g 

10% SDS        4 ml  0.033 g Ponceau S Glycine  72.3g Glycine    144.1g 

100% Glycerol       2 ml 40 ml dH2O 

 

fill up to 1L 
with dH2O 

SDS              10g 

2-mercapto-ethanol     1 ml   fill up to 1L with 

dH2O 
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bromphenol blue   2.5 mg    

H2O     1.4 ml    

 
 

20x TBS  

50mM Tris 121g 

150mM NaCl 175g 

dH2O up to 1L 

 

2.5.7 Blue Native PAGE 
To study the assembly of respiratory chain complexes Blue Native gel analyses was 

performed. Twenty µg of isolated mitochondria were pelleted and solubilized in cold 1 x 

NativePAGE Sample buffer (Invitrogen) containing 1% DDM. Proteins were incubated at 

4°C for 15 min and pelleted at 20.000 x g for 30 min, 4°C. The supernatant was loaded on 

NativePAGETMNovex®Bis-Tris gel and run at 150V for 60 min using NativePAGETM 

Running buffer and NativePAGETM Cathode buffer as described in the manufactorers 

instructions. Later voltage was increased to 250 V for the remainder of the run. For blotting 

procedure see western blot section. 

 

2.5.8 Immunoprecipitation 
To analyze protein-protein interactions, 1mg human or mouse mitochondria with a 

concentration of 5µg/µl were incubated in lysis buffer B supplied with 1X complete protease 

inhibitor cocktail for 20 min on ice, followed by centrifugation at 13.000 x g for 45 min at 

4°C. Next, the supernatant was incubated in 50µl ANTI-FLAG M2 affinity gel (Sigma) for 

2hrs, at 4°C and protein partners were purified according to recommendations from the 

manufacturer (Sigma).  

 

Lysis buffer B 

50mM TrisHCl pH 7.4 

1mM EDTA 

150mM NaCl 

5% glycerol 

0,5 % TritonX 

 



                                                                                                                 Material and Methods 

 46 

2.5.9 Size exclusion chromatography 
Human mitochondria were isolated from HeLa cells by differential centrifugation in mito 

isolation buffer (see section 2.5.3) containing 1 x complete protease inhibitor cocktail 

(Roche). Mitochondria were lysed at a concentration of 5 mg/ml in lysis buffer B (see section 

2.5.8) and 1X complete protease inhibitor cocktail for 20 min on ice followed by 

centrifugation at 13000xg for 45 min at 4°C. Next, 1 mg of the precleared lysate was 

subjected to size exclusion chromatography through Superose 6 column (GE Healthcare) in 

an ÄKTA chromatography system (GE Healthcare) which had been pre-equilibrated with 

lysis buffer B containing 0.05% TritonX. Fractions of 1 ml were collected, precipitated with 

TCA and analyzed by SDS-PAGE and immunoblotting. 

 

2.5.10 Absolute quantification of recombinant proteins 
Absolut quantification of mouse recombinant POLRMT, TFAM, TFB2M and LRPPRC 

without mitochondrial targeting sequence was performed by Xing Ping Li from the mass 

spectrometry facility of the Max Planck Institute for Biology of Ageing, Cologne. Standard 

curves with known protein concentrations were made for each of the recombinant proteins. 

Mitochondrial extracts from mouse liver were loaded each with one of the standards on a 4-

15% CriterionTM precast gel (Biorad) and western Blots were performed as described before 

(see section 5.5.6) using antibodies against each recombinant protein. Molarity was calculated 

according to the molecular weight of the recombinant protein and its obtained concentration 

after comparison with the protein standard curve.
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2.6 Methods handling radionucleotides 

2.6.1 Radioactive probe labeling 

2.6.1.1  Probe labelling with [α−32P] dCTP using Prime-It® II Random Primer 

Labeling Kit (Agilent) 

50 – 80 ng template DNA (1µl) were mixed with 10µl Random Primer Mix (Agilent) and 

23µl dH2O. reaction was heated for 5 min at 100°C, before addition of 10µl of  5 × dCTP 

primer buffer, 1µl Exo(–) Klenow enzyme (5 U/µl) and 5µl [α−32P]dCTP at 3000 Ci/mmol 

(Perkin Elmer). Next, the reaction was incubated at 37°C for 30 min, to allow radioactive 

labelling of the oligonucleotides. Purification of the radiolabeled probe was performed in an 

illustra MicroSpin G-50 column (GE Healthcare) at 3000rpm for 2min. In the final step the 

radioactive oligonucleotides were cooked at 100°C for 5min, to melt the double strands. If not 

used immediately, probes were stored at -20°C. 

 

2.6.1.2 Oligonucleotide labelling with [γ−32P] ATP using T4-polynucleotide 

kinase 

50 – 80 ng template DNA (1µl) were mixed with 12µl dH2O, 2µl of 10 x polynucleotide 

kinase buffer (NEB), 1µl T4 polynucleotide kinase and 4µl [γ−32P] ATP at 3000 Ci/mmol 

(Perkin Elmer). The reaction was heated at 37°C for 45 min, and subsequently purified in an 

illustra MicroSpin G-25 column (GE Healthcare) at 3000rpm for 2min. If not used 

immediately, probes were stored at -20°C. 

 

2.6.1.3 RNA labeling using Riboprobe System T7 Kit (Promega) 

20µg pCR–Blunt-II -nd6 plasmid was digested with Spe I at 37°C, o/n. In the following, 

proteinase K treatment was performed in proteinase k buffer at 42°C for 1 hr. DNA was 

extracted by addition of 700µl phenol/chloroform and centrifuged at max. speed for 20 min. 

The upper, aqueous phase was transferred into a new eppendorf tube and mixed with an equal 

amount of chloroform. Phase separation was performed by centrifugation at max. speed for 

15 min. Again the aqueous phase was taken and supplied with 40µl 3M NaAc pH5.2 and 1ml 

99.5% EtOH. Sample was incubated at -80°C for 1-2 hrs. DNA was precipitated by 

centrifugation at max. speed for 20 min. Next. The pellet was washed with 70% EtOH for 

10min, air-dried and resuspended in 40µl dH2O. Subsequently, the DNA was used as template 
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for the Riboprobe in vitro transcription system (Promega). A transcription reaction containing 

of rNTPs, DTT, transcription buffer, RNasin ribonuclease inhibitor, linearized DNA template,  

[α-32P] rCTP (50µCi at 10µCi/µl) and T7 polymerase was pipetted following the 

manufactorers instructions and incubated at 37°C for 2hrs. After addition of DNase I and 

another incubation at 37°C for 15min, the probe was purified using a illustra MicroSpin G-50 

column (GE Healthcare). If not used immediately, probes were stored at -20°C. 
 

Proteinase k buffer 

 100 mM Tris 

 50mM EDTA 

 500mM NaCl 

 10% SDS 

 100µg/ml Proteinase K 

 490µl dH2O 

  

2.6.2 Measurement of radiation 
For precise detection of ionizing radiation 1µl of the sample of interest was mixed with 10ml 

UltimaGoldTM (Perkin Elmer) in small plastic containers and analysed in a Tri-Carb 2810 TR 

scintillation counter (Perkin Elmer) according to the manufactorers instructions. For wipe 

test, the head of a cotton bud, that was wiped on 100cm2 surface before was dropped into 

10ml UltimaGoldTM solution and handled as described above. 

 

2.6.3  Northern blot analysis 
2µg RNA from mouse brain, heart, liver, kidney or muscle were supplied with DEPC-water 

to a volume of 10µl. An equal volume of Glyoxal Sample Loading Dye (Ambion) was added 

and samples were heated at 55°C for 20 min. Next, RNA samples were loaded on an 1.4 % 

agarose gel containing formaldehyde and separated at 120V for appr. 2 hrs, until the blue 

front reached ¾ of the gel. Formaldehyde was removed from the gel by washing it in dH2O 

three times for 15 min. Another 15 min incubation in 20 x SSC equilibrated the gel to the 

transfer buffer. Afterwards, RNA was transferred to a nylon membrane (Amersham 

HybondTM-N+) overnight, using 20 x SSC as transfer buffer. The membrane was activated in 

dH2O for 15 min and equilibrated in 20 x SSC for 15 min before. Before hybridization with 

radiolabeled probes, the membrane was UV-crosslinked twice in an UVC 500 crosslinker, 

(Amersham Biosciences) at 200 mJ/cm2. Pre-hybridization was performed by rotation of the 
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membrane in glass tubes in Amersham Rapid-Hyb Buffer (GE Healthcare) at 55 -65°C for 20 

min. In the next step, a radiolabeled [α−32P] dCTP probe was added to the hybridization 

buffer and incubated with the membrane for at least 2 hrs., rotating. To remove unbound 

radioactivity, the membrane was washed twice in 2 x SSC + 0.1% SDS, first at RT for 15 

min, later at 55°C for 15 min. In the following, the membrane was welded and exposed to a 

phosphoimager screen for an appropriate time period depending on the radiation of the 

membrane. Finally the screen was analyzed and quantified in a phosphoimager (FujiFilm 

FLA-7000).  

Agarose/Formaldehyde gel (100ml)    20 x SSC 

dH2O                        72 ml 

 

 
 

NaCl                   175.3g 
 

LE-Agarose (Ambion)                       1,4 g       Sodium citrate     88.2 g 

10 x NorthernMax MOPS (Ambion)  10 ml 

 

 
 

dH2O                up to 1L 
 

37% formaldehyde (Sigma)         18 ml 

 

 
 

 
 

 

 

2.6.3.1 Membrane stripping 

To remove old radiolabeled oligonucleotides from the membrane, it was incubated for three 

times 15min, in boiling stripping solution. Afterwards the membrane was immediately used 

for another labelling or welded and stored at RT. 

 

Stripping solution       400 ml 

20 x SSC                         1ml  

0.5M EDTA                    8ml 

10% SDS                        4ml 

dH2O                          387ml 

 

2.6.4 Southern blot analysis 
Genomic DNA from mouse heart, brain, liver, kidney and muscle was extracted and 10µg, 

DNA from mouse tissue were digested with SacI at 37°C overnight to linearize mtDNA. The 

next day an additional microliter SacI was added to the reaction and incubated 37°C for 2-3 

hrs. DNA precipitation was performed by addition of 8µl 5M NaCl and 400µl 99.5% EtOH. 

Samples were mixed and incubated at -80°C for 2-3 hours, followed by a centrifugation for 

30 min, RT at max. speed. The DNA pellet was washed with 70% EtOH for 20 min, RT, max. 

speed and afterwards air-dried. DNA was finally resuspended in 20µl TE-Buffer for 20 min at 
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65°C. Subsequently, 6 x Loading dye (Thermo Scientific) was added to the DNA samples 

which were finally loaded on a 0.6% agarose gel. Migration was performed o/n at 40V. The 

gel was shaking 5min in 250ml dH2O plus 4ml HCl, followed by a series of washings in 

denaturation and neutralization buffer three times for 20 min each. Finally the gel was 

incubated in 20 x SSC for 20 min and blotted via wet transfer on a nylon membrane 

(Amersham HybondTM-N+) overnight using 20 x SSC as transfer buffer. In the following, 

the membrane was UV-crosslinked twice (UVC 500 crosslinker, Amersham Biosciences) at 

200 mJ/cm2 and pre-hybridized with 10ml Amersham Rapid-Hyb buffer (GE Healthcare) in 

rotation at 55°C. A radiolabeled plasmid (pAM1) containing cloned mouse mtDNA was used 

to detect mtDNA. A radiolabeled plasmid containing the nuclear encoded 18S rRNA gene 

was used to detect cytoplasmic 18S rRNA as a loading control. Probes were added to the 

hybridization buffer and incubated with the membrane for at least 2 hrs., rotating at 55°C. 

Membrane was stripped after each probe. In order to remove excess radioactivity, the 

membrane was washed twice in 2 x SSC + 0.1 % SDS after hybridization, first 15 min at RT, 

later 15 min at 55°C. To detect labeled mtDNA, the membrane was welded and exposed to a 

phosphoimager screen for an appropriate time period depending on the radiation of the 

membrane. Finally the screen was analyzed and quantified in a phosphoimager (FujiFilm 

FLA-7000).  

 

 

  TE Buffer    

 

20 x SSC  

 10 mM Tris, pH 8.0  

 

3M sodium chloride 

 1 mM EDTA  0.3M sodium citrate 

 

 

2.6.5 De novo transcription assay 
Freshly isolated mitochondria, 2mg, from heart, brain, liver, kidney and muscle tissue were 

pelleted and resuspended in 500µl transcription buffer. The mitochondrial suspension 

containing 50 µCi of [α-32P] UTP (Amersham Biosciences) was incubated by rotating the 

mixture for 1 hour at 37°C. After the incubation, the mitochondria were pelleted and washed 

twice with resuspension buffer. Mitochondrial RNA was isolated from the final pellet by 

using the ToTALLY RNA Kit (Ambion) and resuspended in 30-50 µl glyoxal loading buffer 

with dye (Ambion). Samples were separated in a 1,2% agarose gel containing formaldehyde 

at 120V for 2hrs. Further procedures were as described in the northern blot section above. 
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Transcription buffer 
 

Resuspension buffer 

25mM sucrose 

 
 

10% glycerol 

75 mM sorbitol 

 
 

10mM Tris-HCl pH 6.8 

100mM KCl 

 
 

0.15mM MgCl2 

10mM K2HPO4 

 
 
50mM EDTA 

 
 
5mM MgCl2 

 
 
1mM ADP 

 
 
10mM glutamate 

 
 
2.5mM malate 

 
 
10mM Tris-HCl, pH 7.4 

 1mg/ml BSA 

  

 

 

2.6.6 In organello translation 
To analyse de novo synthesis of mitochondrial encoded proteins we performed in organello 

translation assays. They were performed with 1mg mitochondria isolated by differential 

centrifugation in isolation buffer A and washed twice with translation buffer. In the 

following, mitochondria were pelleted and incubated in 2ml translation buffer at 37°C with 

gentle rotation for 5 min. Mitochondria were washed one more time in translation buffer 

before 30µCi Easy Tag Express35S Protein labeling mix [35S]-methionine (> 1000Ci/mmol) 

(Perkin Elmer) were added, followed by incubation in rotation at 37°C for 1 hr. Next, proteins 

were were washed with isolation buffer A and resuspended in a conventional SDS-PAGE 

loading buffer. 10µl of each sample were loaded on a 17% acrylamide gel and separated at 

100V, 10mA for 16 hrs, 4°C. The gel was incubated in fixing solution, stained in coomassie 

blue, destained with destainer and finally incubated in Amersham Amplify Fluorographic 

Solution (GE Healthcare) for 30 min at RT. Subsequently, the gel was dried using Hoefer 

Slab Gel Dryer (Amersham Biosciences) (see section 2.5.5.1) at 80°C for 1.5 hrs. and finally 

exposed to a phosphoimager screen 1-3 days. 
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Translation buffer      Translation Mix 2x 2x gel loading 
buffer 

2 x translation mix                     5 ml 200 mM mannitol  100 mM Tris-HCl, 
pH 6.8 

Amino acids  
(6 mg/ml each)                       100 µl 

20 mM sodium succinate 20% glycerol 

200 mM ATP                         250 µl 160 mM KCl 4% SDS 

50 mM GTP                        40 µl 10 mM MgCl2 0.5 mg/ml 
bromphenol blue 

1 M creatine phosphate            60 µl  2 mM KPi pH 7,4 100mM DTT 
(fresh!!) 

10 mg/ml creatine kinase         60 µl 50 mM HEPES pH 7,4  

Cysteine (6 mg/ml)                 100µl  adjusted to pH7  

Tyrosine (3 mg/ml)                200 µl   

dd H2O                                 4,595ml   

              10ml 

Fixing solution  Coomassie Blue Destainer 
50% methanol  0.1% Coomassie Brilliant 

Blue R-250 
40% methanol 

10% glacial acid  50% methanol 10% glacial acetic acid 

  10% glacial acid  

 

Amino acids (100x stock with 6 mg/ml each): 

Ala, Arg, Asp, Asn, Glu, Gln, Gly, His, Ile, Leu, Lys, Phe, Pro, Ser, Thr, Trp, Val 

 

2.6.7 S1 protection assay 
To quantify the amount of transcripts upstream of the MTERF1 binding site, S1 protection 

assay was performed with 20µg mitochondrial RNA from mouse liver. Two samples of an 

oligonucleotide covering the MTERF1 binding site and a short region upstream as well as two 

control samples (oligonucleotides from another region) and a RNA ladder were labelled with 

[γ−32P] ATP. Samples were combined and distributed among all RNA samples plus an 

additional control tube. After addition of 1/10 volume 5M NH4OAc and 2.5 volumes ethanol, 

RNA was precipitated at -20°C for at least 15min or overnight. Next, RNA was pelleted at 

max. speed, 15 min, 4°C, washed with 70% RNase-free EtOH and resuspended in 10µl 

Hybridization Buffer III (Life technologies). In the follwing, RNA was heated at 90-95°C for 

3-4 min for RNA denaturation and subsequently incubated at 42°C o/n. In each sample a 
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reaction containing 133.5 µl dH2O, 15µl 10 x S1 buffer and 1.5 µl S1 enzyme was added, for 

the control sample, the S1 enzyme was missing. Samples were incubated at 37°C for 30 min, 

until the reaction was stopped by addition of RNase Inactivation solution III (RPA III kit, life 

technologies) and incubation at -20°C for 15 min. or overnight. RNA was pelleted at max. 

speed for 15 min at 4°C, washed with 70% RNase-free EtOH, resuspended in 30µl Loading 

buffer II (Ambion) and finally boiled at 90-95°C for 3 min. Samples were loaded on a 6% 

polyacrylamide 7M Urea gel. The gel was pre-runned in 1x TBE at 10mA for 30 min. After 

samples were loaded, gel was running at 10mA for 2-3 hrs. Finally, the gel was dried in a 

Hoefer Slab Gel Dryer (Amersham Biosciences) (see section 2.5.5.1) and exposed to a 

phosphoimager screen for 2 days. 

	
  

6% polyacrylamide 7M Urea gel 

Urea                                              105.1 g 

19:1 40% acrylamide                    37.5ml 

10x TBE                                           25ml    

dH2O                                            82.4ml 

 

For 50ml gel 200µl 25% APS and 60µl TEMED were used. 

 

2.6.8 In vitro transcription 
DNA fragments corresponding to bp 1–741 (LSP and HSP), 1–477 (LSP) or 499–741 (HSP) 

of human mtDNA14 were cloned into pUC18. After linearization, the plasmid constructs 

were used to measure promoter-specific transcription in a run-off assay. In vitro transcription 

reactions contained 100 fmol of indicated template, 20 mM Tris-HCl (pH 8.0), 10 mM 

MgCl2, 1 mM DTT, 100 µg/ml bovine serum albumin, 400 µM ATP, 150 µM CTP and GTP, 

10 µM UTP, 0.2 µM α-32P UTP (3,000 Ci/mmol), 4 U of RNasin (APBiotech), 400 fmol 

POLRMT, 400 fmol TFB2M, and 5 pmol TFAM (15 pmol TFAM was added when the 

LSP/HSP template was used). The reaction volume was 25 µl and the final concentration of 

NaCl was adjusted to exactly 80 mM NaCl in all reactions. The concentrations of LRPPRC 

were the following: 0, 0.4, 0.8, 1.6 and 3.2 pmol. Reactions were stopped after 30 min at 32 

°C by adding 200 µl of stop buffer (10 mM Tris-HCl [pH 8.0], 0.2 M NaCl, 1 mM EDTA and 

0.1 mg/ml glycogen). The samples were treated with 0.5% SDS and 100 µg/ml proteinase K 

for 45 min at 42 °C, and precipitated by adding 0.6 ml of ice-cold ethanol. The pellets were 

dissolved in 10 µl of gel loading buffer (98% formamide, 10 mM EDTA [pH 8.0], 0.025% 
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xylene cyanol FF, 0.025% bromophenol blue) and heated at 95 °C for 5 min. Transcription 

reaction products were analyzed in a 6% denaturing polyacrylamide gel in 1 × TBE buffer. 

 

2.6.9 Electrophoresis mobility shift assay 
The RNA binding activity of LRPPRC was assayed by EMSA using the HSP (499−741) run-

off transcript as a template. A ten times in vitro transcription reaction (250 µl) was performed 

as described in the in vitro transcription section. After 30 minutes, 2µl of DNase I (1U/µl) 

was added to the reaction and placed on the benchtop at room temperature for 10 minutes 

before the radioactive labeled RNA was purified using RNeasy Mini kit (Qiagen). The RNA 

was eluted in 50 µl RNAse-free water. The RNA binding reactions were performed in a 

volume of 20 µl containing 5 µl of the purified RNA, 25 mM Tris-HCl [pH 7.8], 1 mM DTT, 

10 mM MgCl2, 0.1 mg/ml BSA, 10% glycerol, and different concentrations of LRPPRC (0, 

0.4, 0.8, 1.6, 3.2 pmol). The reactions were incubated for 20 min on ice before separation on a 

4% polyacrylamide gel in 0.5 × TBE buffer, 2 hrs at 100 V. 

 

2.6.10 ChIP-Sequencing 
HeLa-S3 cells were cultured in DMEM (Invitrogen) with 10% fetal bovine serum in a 

perfusion culture using a three liter Biobundle bioreactor (Applikon) equipped with a 10mm 

spin filter and a bubble-free aeration system. The temperature was set to 37°C, the pH was 7.2 

adjusted with CO2 and 0.3M NaOH, the stirring rate was 200 rpm and dO2 was 40% of air 

saturation. Mitochondria were purified and cross-linked in 1% formaldehyde in PBS for 10 

min at room temperature. 125 mM glycine was added to the reaction, which was incubated 

for another 5 min. After two washes in cold PBS the mitochondrial pellet was frozen in liquid 

nitrogen. The mitochondria were lysed in lysis buffer (25 mM HEPES-KOH (pH 7.6), 10% 

glycerol, 5 mM MgCl2, 0.5 mM EDTA, 0.5% Tween-20, 150 mM KCl, 1 mM 

phenylmethylsulfonyl fluoride, 2 mM pepstatin A, 0.6 mM leupeptin and 2 mM 

benzamidine), homogenized with a Dounce homogenizer, sonicated in a Bioruptor UCD-200 

(Diagenode) to an mtDNA size of ~250 bp and centrifuged at 14.000 x g for 5 min. The 

extract was pooled and divided into aliquots of 400 µl (~5.8 ·108 cells). For 

immunoprecipitation of MTERF1, 24 µl of a rabbit polyclonal antibody was added to one 

aliquot and incubated over night at 4 ̊C in a rotary shaker. As a control, a rabbit antiserum was 

added to another aliquot and incubated in the same way. Next, 50 µl of 50% (v/v) suspension 

of Protein A beads (GE Healthcare) in lysis buffer was added to the samples and incubated 

for 1 hr at 4 ̊C. The samples were then transferred to 0.45 mm Ultrafree-MC filter units 
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(Millipore) and the beads were washed once in wash buffer (0.1% SDS, 50 mM HEPES-KOH 

(pH 7.5), 1% Triton-X, 0.1% sodium deoxycholate, 1 mM EDTA, 150 mM NaCl) at 4 ̊C, 

twice at room temperature followed by two washes with deoxycholate buffer (10 mM Tris-

HCl (pH 8), 1 mM. EDTA, 0.5% sodium deoxycholate, 0.5% NP-40, 0.25 M LiCl). The 

beads were then rinsed with 10 mM Tris and 1 mM EDTA (pH 8) and incubated with 0.2 µg 

of RNase A for 30 min at 37 ̊C. Next, the DNA/protein was eluted by incubating the beads in 

50 mM Tris, 10 mM EDTA and 1.5% SDS at 65 ̊C for 2 hr. To reverse the cross- linking, the 

samples were incubated over night at 65 ̊C and proteins were removed by treating the samples 

with 20 µg of proteinase K at 56 ̊C for 2 hr. The DNA was extracted using phenol-chloroform 

followed by ethanol precipitation. The DNA was further prepared using standard protocols 

provided by Illumina and deep-sequenced by using Illumina's Solexa sequencer [Beijing 

Genomics Institute]. Quality control statistics were generated with FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). An alternate mitochondrial genome 

was generated for alignment of our sequencing data since the mtDNA of the HeLa cells was 

found to have some SNPs and Indels. Read alignments to the alternate mitochondrial genome 

were performed using BWA (0.5.9 - r16) with default parameters.



                                                                                                                 Material and Methods 

56 

 

 

2.7 Mass spectrometry 

2.7.1 Protein identification with LC-MS/MS after 

immunoprecipitation 
50ul of 25mM ammonium bicarbonate was added to each pellet and vortexed to dissolve the 

protein pellet completely. 3ul of 1% RapiGest (Waters Corporation, Milford, USA) was 

added for denaturing the proteins. The protein solution was incubated at 80°C for 10 min on a 

Thermomixer. After addition of 2.5µl aliquot of 50mM DTT (Sigma–Aldrich) the solution 

was heated at 60°C for 15 min. The protein solution was then cooled down to room 

temperature and centrifuged. After the addition of 2.5µl aliquot of 150mM iodoacetamide 

(Sigma–Aldrich), the solution was stored in the dark at room temperature for 30 min. The 

tryptic digestion was performed by adding Trypsin Gold mass spectrometry grade (Promega, 

Madison, MI, USA) at a 1:50 (w/w) ratio and incubated at 37°C overnight. 1µl of 37% HCL 

was added to adjust the pH below 2. After being vortexed and centrifuged at 13000xg for 30 

min, the supernatant was collected and transferred to a clean microcentrifuge tube. The 

protein digest was dried in Speed-Vac and resuspended with 10ul of 0.1% of formic acid. 

Samples were analyzed by LC-ESI-MS/MS with an Amazon ion trap ETD (Bruker, Bremen, 

Germany) coupled to an Aquity nanoUPLC with sample manager (Waters, Manchester, UK) 

using a 40 min gradient (3% to 55% ACN) at 300 nL/min flow, 15 min washing step (95% 

ACN) followed by re-equilibration for 20 min (3% ACN). The ion trap was operated in 

positive MS mode at enhanced resolution speed of 8100 m/z/s. ICC target was set to 400000 

and the maximum accumulation time to 50 ms. 

 

Scan range was m/z 300-1300. The source capillary was operated at -4500 V and the end 

plate offset was -500 V. The nebulizer pressure was 15 PSI, dry gas flow 4.0 L/min and the 

dry gas temperature 200°C. MS/MS parameters: number of precursors were 10, threshold 

absolute 25000, MS/MS fragmentation amplitude was 0.8 V, isolation width 2.5 m/z, scan 

speed 32500 m/z/s, scan range m/z 100-2400, ICC target 100000, maximum accumulation 

time 100 ms, precursor was excluded after one spectra and released after 0.17 min. The raw 

data were processed with DataAnalysis (Version 4.0 SP 2, Bruker, Bremen Germany). The 

processed data were imported into ProteinScape 2.1.0577 (Bruker, Bremen, Germany) and 

the extracted MS/MS data were submitted to an in-house MASCOT server (version 2.3, 

Matrix Science, London, UK). Proteins were identified by searching in the peptide lists for 

Knowledgebase 2012_11 (538585 sequences and 191240774 residues). The following 
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parameters were used: taxonomy Mus musculus (16580 sequences); Enzyme: trypsin; Max 

Missed Cleavages: 1; Fixed modifications: carbamidomethyl (C); Variable modifications : 

oxidation (M); Peptide Mass Tolerance : ±0.8 Da: Fragment Mass Tolerance: ± 0.8 Da. ((1)) 

 

2.7.2 Protein identification and quantification with LC-

MS/MS 
Samples were diluted with 100mM ammonium bicarbonate to gain a concentration of about 

200ng/µl according to Bradford method. Tryptic digestion was performed by adding Trypsin 

Gold mass spectrometry grade (Promega, Madison, MI, USA) at a 1:50 (w/w) ratio and 

incubation at 37°C overnight. Protein identification and quantification were performed with a 

Xevo Q-Tof (Waters Corporation, Milford, USA) coupled with a nanoACQUITY UPLCTM 

(Waters Corporation, Milford USA). The digest was 10 fold diluted with 0.1% of formic acid. 

1µl of standard Alcohol dehydrogenase 1 (ADH) tryptic digest (50fmol/µl) (Waters 

Corporation, Milford, USA) was added to 0.5µl of the sample digest. 1.5µl of the digest mixer 

was loaded into a C18 trap column of 180 µm X 20 mm with 10µl/min of 3% of solvent A 

(0.1% Formic Acid) for 2 min. The digest was then separated and eluted with an analytical 

column of 75 µm x 150mm C18 BEH 1.7 µm (Waters Corporation, Milford USA). The 

gradient was 3% to 35% of acetonitrile in 0.1% formic acid over 10min at a flow rate of 

400nl/min. The Xevo Q-Tof was operated in LC/MSE mode over the m/z range of 50-1800 in 

nano electrospray mode. The capillary, sample cone, extraction cone and collision energy 

were 3.3kV, 25.0V, 2.0V, and 6.0V respectively. During elevated energy scan, the collision 

energy was ramped from 15V to 35V. Glufibrinopeptide B of m/z 785.84 was used as Lock 

Mass for mass correction. At least 3 replicates of one sample were analyzed. Data was 

collected using MassLynxTM 4.1 and processed and searched using ProteinLynxTM Global 

Server 2.5.2. (Waters Corporation, Milford USA). Following parameters were used for 

database search: enzyme “trypsin”, minimal fragments ion per peptide matched ‘’2’’, minimal 

fragments ion per protein matched ‘’7’’, missed cleavages ‘’1’’, variable modification 

‘’oxidation Methionine’’, peptide tolerance ‘’automatic’’, fragment tolerance‘’ automatic’’, 

false positive rate ‘’4%’’. Calibration protein P00330 (ADH1_YEAST), calibration protein 

concentration 50fmol. The mouse database was from Uniprot release 

knowledgebase_2012_11.    
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2.8 Cell culture 

2.8.1 Maintenance of cultured HeLa cells 
HeLa cells were grown at 37°C, 5% CO2 and 95% humidity in 10cm dishes supplied with 

10ml Dulbecco's Modified Eagle Medium (DMEM; Gibco) containing 10% Fetal Bovine 

Serum and penicilline (100µg/ml /streptomycine (100µg/ml). If cells were 100% confluent, 

media was removed and cells were washed with Phosphate Buffered Saline (Gibco) and 

subsequently incubated with 0.5% Trypsin/EDTA (Gibco) at 37°C for 2-3min. The cells 

disattached from the dish could be collected in 10ml DMEM media with 10% FBS and 

100µg/ml penicillin / streptomycine. If not distributed to other dishes, cells were pelleted at 

800 rpm, 5min, washed with PBS and used for experimental analysis. 
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3 Results 
 

3.1 Analysis of mitochondrial gene regulation at the transcriptional 

level in Mterf1 knockout mice 

3.1.1 Generation of Mterf1 knockout mice 

Extensive studies have been done regarding the role of MTERF1, however all available data 

in the literature regarding this protein are based exclusively on in vitro studies. In order to 

obtain new insights about the in vivo function of MTERF1, a whole body knockout mouse 

model was created. MTERF1 is encoded by two homologous genes (Mterf1a and Mterf1b), 

which are both actively transcribed from mouse chromosome 5. Since the expression rate of 

both genes is similar in various tissues, Mterf1a and Mterf1b had to be disrupted in order to 

create a Mterf1 knockout (Mterf1-/-) mouse (Figure 3.1 B). Due to the immediate proximity of 

Mterf1a and Mterf1b it was not possible to disrupt both genes with two independent 

homologous recombination events at the same time. Therefore, Mterf1a and Mterf1b had to 

be disrupted individually by two separate targeting vectors in the same mouse embryonic 

stem cell clone to obtain a double knockout of both Mterf1 genes, named Mterf1 knockout 

mouse. First, a targeting vector A with loxP sites flanking exon1 of Mterf1a was 

electroporated into embryonic stem cells. In the next step exon 2 of the Mterf1b gene was 

replaced by a hygromycin cassette (targeting vector B) in stem cell clones already positive for 

targeting vector A (Figure 3.1 A). Clones electroprated with both targeting vectors were 

screened by using Southern Blot analysis with specific probes for the Mterf1a or Mterf1b 

gene regions (Figure 3.1 C). The clones carrying both targeting vectors were expanded and 

used for blastocyst injection as further step in the creation of mice heterozygous for both 

copies of the Mterf1 gene. Obtained Mterf1+/loxP mice were finally mated with mice 

expressing Flp and cre recombinases, respectively to remove the PGK-neo cassette and 

disrupt exon2 of the Mterf1a gene (Figure 3.1 A). In order to minimize genetic background 

effects heterozygous Mterf1 knockout mice were backcrossed to wild type C57Bl6/N mice for 

six generations and intercrossed to produce homozygous knockout animals. Northern blot 

experiments with RNA from heart tissue demonstrated the absence of the Mterf1 gene in 

Mterf1 knockout mice (Figure 3.1 D). The lack of Mterf1 gene copies were confirmed by 

qPCR and western blot analyses, where both could not reveal a signal of Mterf1 gene and 

protein product in the knockout mice, respectively (Figure 3.1 E and F). 
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Figure 3.1: Disruption of Mterf1a and Mterf1b in the germline. A. Targeting strategy for disruption 
of the Mterf1 gene. Probes and restriction sites used for the ES cell screening are indicated. B. Map of 
Mterf1a and Mterf1b with indication of restriction sites for SspI. Arrows indicate primers used for RT-
PCR (upper panel). Relative expression of Mterf1a and Mterf1b mRNAs determined by restriction 
enzyme digestion of cDNA from different tissues (lower panel). C. Southern blot analysis in embryonic 
stem cell to screen for homologous recombination events. D. Northern Blot analysis of Mterf1 
knockout and control mice to analyze Mterf1 mRNA expression RNA isolated from heart tissue. ß-
actin was used as loading control. E. Quantitative PCR analysis of Mterf1 mRNA expression in wild 
type and Mterf1 knockout mice. ß-actin was used as loading control. F. Western Blot analysis to detect 
MTERF1 protein steady state levels in liver protein extract from Mterf1 wild type and control animals. 
VDAC was used as loading control. 
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3.1.2 Mterf1 knockout mice are fertile and viable with normal respiratory 

chain activity 

Mice lacking the Mterf1 gene were apparently healthy with no obvious phenotype. The 

animals were fertile with a normal lifespan and weight gain like their wild type littermates 

(Figure 3.2). Regarding the extensive in vitro data of previous MTERF1 knockdown studies, 

the normal appearance of Mterf1 knockout mice was quite surprising. For that reason we 

continued studying this model very carefully to not overlook minor molecular differences in 

Mterf1 knockout mice compared to the wild type. We measured respiratory chain enzyme 

activity as well as mitochondrial ATP production on isolated mitochondria from heart of 

Mterf1 knockout and wild type mice. There was no difference detected in the activities of 

NADH-coenzyme Q reductase (complex I), NADH-cytochrome c reductase (complex I and 

III), succinate dehydrogenase (complex II), succinate-cytochrome c reductase (Complex II 

and III) and  

 
Figure 3.2: Body weight curves. Determination of body weight in wild type and Mterf1 knockout 
mice. N=5 (males) and n= 5 (females). Error bars indicate s.e.m.. 

 
cytochrome c oxidase (complex IV) between wild type and Mterf1 knockout animals and also 

measurements of the ATP production rate applying different substrates was unaffected in the 

knockout mice (Figure 3.3 A,B). Furthermore, total oxygen consumption in isolated 

splenocytes, a highly proliferative cell type, was investigated by studying respiration activity 

of different complexes dependent on the substrate (Figure 3.3 C,D) but again, Mterf1 

knockout mice were not affected. 

Aside from the bioenergetic approach we also assessed the assembly and functionality of 

respiratory chain complexes in Mterf1 wild type and knockout mice by performing Blue 

Native PAGE experiments in isolated mitochondria from brain and skeletal muscle. 

Coomassie staining of the Blue Native gels revealed normal steady state and assembly levels 

of all respiratory chain complexes (Figure 3.3 E). These data strongly support, that loss of 

MTERF1 does not influence oxidative phosphorylation capacity. 
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3.1.3 MTERF1 binds mtDNA but is not involved in maintenance and 

transcription initiation of mitochondrial DNA 

MTERF1 is known to strongly bind DNA (Yakubovskaya et al., 2010), we therefore 

continued the characterization by evaluating its role in mtDNA maintenance. DNA from heart 

was used for Southern blot experiments but no difference between Mterf1 knockout mice and 

their wild type controls was found (Figure 3.4 A,B). Numerous in vitro studies concerning the 

function of MTERF1 suggest a role in mtDNA transcription regulation, in particular HSP1 

transcription of the ribosomal RNAs by enabling loop formation (Martin et al., 2005). 

However, steady state transcript levels of all mitochondrial encoded mRNAs and rRNAs in 

heart mitochondria appeared to be unchanged in Mterf1 knockout mice compared to wild type 

controls. (Figure 3.4 C,D). 

 
Figure 3.3: Bioenergetic measurements and Blue Native PAGE analysis in Mterf1 knockout mice. 
A. Measurement of respiratory chain enzyme activities in wild type (n=5) and Mterf1 knockout (n=5) 
mice. The relative enzyme activities for NADH-coenzyme Q reductase (complex I), NADH-
cytochrome c reductase (complexes I and III), succinate dehydrogenase (complex II), succinate-
cytochrome c reductase (complexes II and III) and cytochrome c oxidase (complex IV) are shown. 
Error bars indicate s.e.m.B. Measurement of mitochondrial ATP production rate in wild type (n=5) and 
Mterf1 knockout (n=5) mice with glutamate and succinate (G+S), glutamate and malate (G+M), 
tetramethyl-p-phenylenediamine (TMPD) and ascorbate (T+A), pyruvate and malate (P+M), palmitoyl-
L-carnitine and malate (PC+M), succinate and rotenone (S+R) and succinate (S). Error bars indicate 
s.e.m. C. Oxygen consumption in whole splenocytes isolated from wild type and Mterf1 knockout 
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mice. Cells were incubated in pyruvate, glutamate and malate (PGM) to deliver electrons to complex I. 
Permeabilized cell respiration was analysed in the phosphorylating (state 3; PGM3), non-
phosphorylating (state 4; PGM4) and uncoupled (PGMc) states. Error bars indicate s.e.m. D. Oxygen 
consumptionin whole splenocytes isolated from wild type and Mterf1 knockout mice. Cells were 
incubated in succinate and rotenone to deliver electrons to complex II. Permeabilized cell respiration 
was analysed in the phosphorylating (state3; S3) non-phosphorylating (state 4; S4) and uncoupled (Sc) 
states. Error bars indicate s.e.m. E. BN-PAGE analysis of levels of assembled respiratory chain 
complexes from wild type (n=3) and Mterf1 knockout (n=3) mice. 

 
 
Furthermore tRNA steady state levels, which are good indicators for de novo transcription 

activity, were normal in mice lacking MTERF1, as shown in a northern blot with isolated 

RNA from heart tissue of control and Mterf1 knockout mice (Figure 3.4 G,H). 

Consequentially, in organello transcription assays in isolated heart mitochondria from wild 

type and knockout animals did also not reveal any difference (Figure 3.4 E,F). These findings 

were rather unexpected and questioned the tenability of a loop formation.  

The absence of any molecular effect in the Mterf1 knockout mouse disposed us to re-examine 

the intracellular localization of MTERF1 and its mtDNA binding site. 

Immunofluorescence microscopy studies found MTERF1 situated in mitochondria, co-

localizing with mitochondrial nucleoids (Figure 3.4 I) consistent with previous studies 

claiming MTERF1 being a DNA-binding protein (Jiménez-Menéndez et al., 2010; 

Yakubovskaya et al., 2010). To define the exact mtDNA-binding site, chromatin 

immunoprecipitation, followed by next-generation sequencing (ChIP-seq) was performed. We 

found a strong interaction within the tRNALeu gene, confirming previous studies about the 

MTERF1 binding site (Asin-Cayuela et al., 2005; Fernandez-Silva et al., 2007) (Figure 3.4 L). 

However, besides the previous mentioned interaction no binding site in the HSP promoter 

region could be found. This is in contrast to a previous report, claiming that MTERF1 

simultaneously interacts with the HSP1 promoter region and the tRNALeu(UUR) gene region to 

promote mtDNA loop formation, as already mentioned before (Martin et al., 2005). 

In the following, we were engaged with the question if there is another protein able to occupy 

the MTERF1 binding site and competing against the protein. To address this issue we 

performed footprinting analysis in Mterf1 knockout cells by using mouse embryonic 

fibroblasts from Mterf1 knockout and control mice. The cells were transfected with a 

mitochondrially targeted cytosine DNA methyltransferase, which methylates unprotected 

cytosines at the mtDNA. Next, isolated mtDNA was treated with bisulfite to convert non-

methylated cytosines into uracil. After PCR amplification and sequencing of the DNA 

samples we found the MTERF1 binding site unprotected in Mterf1 knockout MEFs meaning 

that no other protein is occupying this area in the absence of MTERF1 (Figure 3.4 J,K). 

Taken together, these data do not support the idea of MTERF1 being involved into the 

regulation of ribosomal biogenesis in vivo. 
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Figure 3.4 :Analysis of MTERF1 DNA-binding sites and mtDNA expression. A Southern Blot 
analysis in heart tissue of wild type (n=5) and Mterf1 knockout (n=5) mice. Nuclear encoded 18S was 
used as loading control. B Quantification of A. Error bars indicate s.e.m. C. Northern Blot analysis of 
mitochondrial mRNAs and rRNAs with RNA isolated from heart tissue of control (n=5) and Mterf1 
knockout (n=6) mice. D. Quantification of C. Error bars indicate s.e.m. E. In organello transcription 
assay in heart tissue of wild type (n=3) and Mterf1 knockout (n=3) mice. COXI was used as loading 
control. F. Quantification of E. Error bars indicate s.e.m. G. Northern Blot analysis of mitochondrial 
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tRNAs in RNA isolated from heart tissue of control (n=6) and Mterf1 knockout (n=6) mice. H. 
Quantification of G. Error bars indicate s.e.m. I. Subcellular localization of DsRed2-tagged MTERF1 
fusion protein in HeLa cells. Mitochondria are stained with MitoTracker Green FM. The scale bar 
corresponds to 10 µm. J. Methylation assay to assess cytosine methylation protection at the binding site 
for MTERF1 in cell lines from wild type mice. K. Methylation assay to assess cytosine methylation 
protection at the binding site for MTERF1 in cell lines from Mterf1 knockout mice. L. Chip-Seq profile 
of MTERF1 binding to mDNA. MTERF1 reads were normalized against no-antibody control. Peak 
detection was performed using CisGenome (reads per million [RPM]). 

 
 

3.1.4 MTERF1 prevents light strand transcription from interfering with the 

light strand promoter 

Due to a missing effect in heavy strand transcription in Mterf1 knockout mice, we continued 

our experiments by focusing on the light strand. S1 protection experiments using heart 

mitochondrial RNA isolated from Mterf1 wild type and knockout animals were performed 

with probes covering a region immediately downstream of the LSP. Surprisingly, we found a 

serious decrease of transcripts in this area in Mterf1 knockout mice compared to controls 

(Figure 3.5 A). We confirmed these findings with northern blots, which revealed decreased 7S 

RNA levels in the absence of MTERF1 but not in the controls (Figure 3.5 B). These findings 

indicated reduced transcription initiation events at LSP, since varying 7S RNA levels were 

reported to be good indicators for de novo transcription activity (Cámara et al., 2011; Park et 

al., 2007; Ruzzenente et al., 2012; Wredenberg et al., 2013). In order to get more profound 

information concerning the regulation of LSP transcription, we carried out northern blot 

analysis with probes binding different rRNA antisense transcripts, downstream and in close 

proximity to the MTERF1 binding site. Antisense transcription was clearly increased in 

animals lacking MTERF1, suggesting that MTERF1 prevents the RNA polymerase from 

continuing transcription on the light strand in order to avoid promoter interference at the LSP 

(Figure 3.5 C,D). 
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Figure 3.5: Analysis of transcription initiation at the LSP. A. S1 protection assay (left panel) and 
quantification of this analysis (right panel) in heart of control (n=3) and Mterf1 knockout (n=3) animals 
to determine relative levels of the LSP-proximal 7S RNA transcript. Error bars indicate s.e.m., **P < 
0.01 student’s t-test. B. Northern Blot analysis (left panel) and quantification of this analysis (right 
panel) to determine relative levels of the LSP-proximal 7S RNA transcript of control (n=3) and Mterf1 
knockout (n=3) animals. Error bars indicate s.e.m. **P < 0.01 student’s t-test. C. Northern Blot 
analysis in kidney tissue of wild type (n=3) and Mterf1 knockout (n=3) animals to assess levels of L-
strand transcripts downstream of the MTERF1 binding site. COXI was used as loading control. D. 
Quantification of C. Error bars indicate s.e.m ***P < 0.001, **P < 0.01 student’s t-test. 

 
 

3.1.5 A ketogenic diet does not impair the physiological conditions of Mterf1 

knockout mice. 

We wanted to investigate if the physiological importance of MTERF1 is more critical when 

the need for oxidative phosphorylation is high. For that reason Mterf1 knockout mice were 

fed with a ketogenic diet for 9 months. This diet consists of high fat and low carbohydrate 

portions and shifts metabolism from glycolysis to oxidative phosphorylation (Kennedy et al., 

2007). A previous study has shown the effectiveness of such a diet to provoke phenotypes in 

apparently healthy animals lacking MTERF2 expression (Wenz et al., 2009). 

We performed basic molecular characterization on Mterf1 knockout and control mice, which 

were treated with ketogenic diet and found normal mtDNA level by doing southern blot 

analysis with isolated DNA from liver and skeletal muscle in both mouse models (Figure 3.6 

C). Steady state levels of mitochondrial transcripts were checked with northern blot 

experiments of RNA isolated from heart of Mterf1 knockout and control animals. No 

difference was found in mice lacking MTERF1 compared to wild type controls and also the 

assembly of respiratory chain complexes was unaffected as demonstrated in Blue native 
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PAGE analysis of mitochondrial protein extracts from brain and skeletal muscle (Figure 3.6 

D,E) In addition, glucose tolerance tests and check-up of standard clinical chemistry blood 

parameters could not trace any phenotype in Mterf1 knockout mice (Figure 3.6 A,B). Even 

though we were unable to find any difference in Mterf1 knockout mice treated with ketogenic 

diet compared to controls, one cannot exclude the possibility, that there are slight shifts 

regarding the oxidative phosphorylation capacity, which are not detectable with the available 

methods. 

 

 
Figure 3.6: Phenotyping of Mterf1 knockout mice after treatment with ketogenic diet. A Glucose 
tolerance test of Mterf1 knockout (n=3) and wild-type (n=4) mice after treatment with ketogenic diet. 
The left panel shows the data for each animal. The right panel shows the mean values in Mterf1 
knockout and wild-type mice. B. Analysis of standard clinical chemistry blood parameters in Mterf1 
knockout (n=12) and wild-type (n=10) mice after treatment with ketogenic diet. C. Southern blot 
analysis in Liver and Skeletal muscle from control (n=4 for Liver, n=5 for Skeletal Muscle) and Mterf1 
knockout (n=4 for Liver, n=5 for Skeletal Muscle) mice (left panel) and quantification (right panel) of 
steady-state levels of mtDNA in heart from Mterf1 knockout (n=4) and wild-type (n=4) mice after 
treatment with ketogenic diet. D. Northern blot analysis (left panel) and quantification (right panel) of 
steady-state levels of mtDNA-encoded transcripts in heart from Mterf1 knockout (n=4) and wild-type  
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(n=4) mice after treatment with ketogenic diet. Error bars indicate SEM; Student’s t test was used to 
assess statistical significance: * = p<0.05, ** = p<0.01, *** = p<0.001 E. BN-PAGE analysis of 
steady-state levels of respiratory chain complexes in Brain and Skeletal Muscle of Mterf1 knockout 
(n=3) and wild-type (n=3) mice after treatment with ketogenic diet. 

 

The text of section 3.1 was modified according to Terzioglu et al., MTERF1 binds mtDNA to 

prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA 

gene transcription regulation, Cell metabolism 17, 618-626. 
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3.2 Analysis of mitochondrial gene regulation at the transcriptional 

level in Mterf2 knockout mice 

3.2.1 Creation of Mterf2 knockout mice 

Mterf2 is located on mouse chromosome 10 and spans a region about 8.5 kilobases. The gene 

contains three exons from which only exon 3 is coding and produces a 1565 bp long 

immature transcript. This transcript then gives rise to a 385 amino acid residue mature protein 

with a predicted size of 39 kDa. Edman degradation revealed a 35 residue long targeting 

peptide (amino acids 1-35) present in the precursor protein and absent in the mature MTERF2 

(Pellegrini et al., 2009). At the time, while designing a targeting strategy for the Mterf2 gene 

publicly available sequencing data proposed another possible coding region on the antisense 

strand. In fact, exon 4 of the proposed mCG13745 gene was found to be embedded in the 

exon 3 of Mterf2 (Figure 3.7 A). In this particular case, floxing and deletion of Mterf2-exon 3 

would also cause the deletion of mCG13745-exon 4 and the resulting phenotype would not 

represent exclusively Mterf2. Therefore, deletion of only the target gene had to take place 

without disrupting the antisense region. As an alternative way to inactivate the Mterf2-exon 3 

through homologous recombination, site directed mutagenesis at two different positions was 

introduced; one causing an artificial STOP codon and the other a frame shift in the Mterf2-

exon 3 coding sequence (Figure 3.7 A). In addition, a neomycin cassette flanked by two frt 

(flippase recognition target) sites was introduced upstream of exon 3 in order to have a 

screening marker for the targeted ES cell clones carrying the targeting vector. Electroporated 

ES cells were screened for the targeting vector by DNA isolation from each clone and 

digestion with NheI before used for southern blot analysis. Detection of the targeted allele 

with southern blot was confirmed by using a probe covering the exon 4 of mCG13745 region 

(Figure 3.7 B). After confirmation of positively tested ES cell clones via southern blot (Figure 

3.7 C), they were expanded and used for blastocyst injection to produce Mterf2 knockout 

mice. Contribution of the targeted ESC clones was monitored with the produced chimeras and 

further matings of these provided germ line transmission of the targeted allele at heterozygote 

state. The removal of the neomycin cassette in these mice was ensured by crossing them with 

mice expressing the Flp recombinase. As a result of the heterozygote matings Mterf2 

knockout mice were finally achieved by a STOP codon and frameshift mutations created in 

exon 3 of the Mterf2 gene without interfering with the expression of the mCG13745 gene. 

The absence of MTERF2 protein in Mterf2 knockout mice was proven by western Blot 

analysis using an antibody against MTERF2 (Figure 3.7 D). 
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Figure 3.7: Targeting and screening of the Mterf2 knockout mouse. A. Targeting strategy for 
disruption of the Mterf2 gene (red boxes). Another overlapping gene candidate (mCG13745) on the 
antisense region is shown in black boxes. Probes and restriction enzyme sites used for the ES cell 
screening are indicated B. Southern Blot analysis to screen for targeted ES cells. Wild type band 
migrates at 17.9 kb, knockout band migrates at 7.4 kb. C. Southern Blot analysis to confirm targeted 
ES cell clones. D. Western Blot in heart tissue of wild type (n=4) and Mterf2 knockout (n=4) animals 
to check MTERF2 protein levels. Porin was used as loading control. 

 

3.2.2 Mterf2 knockout mice are fertile and viable under normal and stress 

conditions 

Mice lacking MTERF2 are apparently healthy, fertile and have a normal life span. Previous 

studies analyzing the absence of MTERF2 in knockout mice created by a gene trap strategy 

did not report any obvious difference in lifespan and general body conditions as well (Wenz 

et al., 2009). We followed up the body weight gain in a group of animals containing male and 

female wild type and Mterf2 knockout mice backcrossed in the sixth generation between four 

weeks and 13 weeks of age (Figure 3.8 A). There was no statistically significant difference in 

weight between wild-type and MTERF2 knockout mice, although we observed a tendency to 

weight reduction when both sexes of the different genotypes were grouped together (Figure 

3.8 A). In order to check physiological differences in control and Mterf2 knockout mice, 

glucose tolerance tests (GTT) were performed. Defective glucose clearance from the blood 

after glucose injection can be an indicator for mitochondrial malfunction, since reduced levels 

of mtDNA have been shown to affect the expression of nuclear-encoded glucose transporter 
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(Rolo and Palmeira, 2006) and mitochondrial dysfunction has been reported in prediabetic 

patients (Lee et al., 1998; Rolo and Palmeira, 2006). For this reason, we injected 2g/kg 

glucose in 25 weeks old male and female animals and found a normal recovery of glucose 

levels in mice lacking MTERF2 compared to wild type supporting the idea of a normal 

mitochondrial biogenesis (Figure 3.8 B). 

 

 
Figure 3.8: Body weight curves and glucose tolerance tests in Mterf2 knockout and control mice. 
A. Body weight curves of female (left panel), male (middle panel) and all animals (right panel) of wild 
type (n=10) and Mterf2 knockout (n=10) from 4 to 13 weeks of age. B. Glucose tolerance test in wild 
type (n=3) and Mterf2 knockout (n=3) mice. 2g/kg glucose was injected per animal. The left panel 
shows individual data of all tested animals, the right panel indicates average values for wild type and 
Mterf2 knockout animals, respectively. 

 
 
Concerning their Mterf2 knockout mouse model Wenz and co-workers found a muscle 

specific phenotype when animals were subjected to a ketogenic diet (Wenz et al., 2009). This 

high-fat, low-carbohydrate diet forces a metabolic shift from glycolysis towards oxidative 

phosphorylation in the cell. The metabolic shift provides a sensitive environment to uncover 

slight deficiencies in mitochondria, which are easily compensated under normal conditions. 

Mterf2 knockout animals fed with this diet for about 6 months were shown to develop muscle 

weakness and orientation problems (Wenz et al., 2009), but also defects in oxidative 
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phosphorylation activity, since these mice had decreased expression levels of mitochondrial 

encoded genes (Wenz et al., 2009). 

Another way of stressing mice to reveal slight phenotypic differences in mitochondrial 

physiology is to expose them at low temperatures. Under cage conditions with standard diet 

and temperature our Mterf2 knockout mice did not show any apparent phenotype. We 

therefore decided to expose these animals to metabolic stress by keeping them at 4°C for six 

months. Cold temperatures lead to physiological changes including increased oxidative 

phosphorylation activity with increased oxygen consumption (Mollica et al., 2005). Mterf2 

knockout and control mice were individually placed in metabolic cages and subjected to 

normal (30°C) and cold (4°C) temperatures. Oxygen consumption was measured over three 

hours but there was no difference between control and Merf2 knockout animals for both 

temperatures (Figure 3.9 A,B). Another approach to study was the treatment with 

norepinephrine (NE), a hormone related to adrenaline causing shock-like symptoms when 

given in a certain amount, but again there was no change in oxygen consumption in wild type 

and Mterf2 knockout mice at 30°C and 4°C (Figure 3.9 C,D). Furthermore, muscle weight as 

well as absolute fat content in cold exposed animals at 15 weeks age was not changed in 

comparison with controls under stress conditions (Figure 3.9 E,F). In summary, lack of 

MTERF2 does not impair metabolic standard values under normal and stress conditions. 

 

 
Figure 3.9: Metabolic phenotyping of control and Mterf2 knockout mice. A. Oxygen consumption 
of wild type (n=6) and Mterf2 knockout (n=6) mice at physiological temperature (30°C). Mice were 
measured individually about three hours. B. Oxygen consumption of wild type (n=6) and Mterf2 
knockout (n=6) mice at 4°C. Mice were measured individually about three hours. C Oxygen 
consumption of wild type (n=6) and Mterf2 knockout (n=5) mice treated with norepinephrine at 30°C. 
D. Oxygen consumption of wild type (n=6) and Mterf2 knockout (n=5) mice treated with 
norepinephrine at 4°C. E. Muscle weight (lean) of wild type (n=6) and Mterf2 knockout (n=6) mice. 
Error bars indicated s.e.m. F. Measurement of fat content at 4°C in 10 weeks old wild type (n=6) and 
Mterf2 knockout (n=6) mice. Error bars indicate s.e.m.. 
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3.2.3 MTERF2 is dispensable for maintenance and expression of mtDNA  

The existence of two different Mterf2 knockout mouse models showing different phenotypes 

was a surprising fact, which tempted us to figure out the reason for this discrepancy. One 

obvious distinction between the two knockout mouse models is the gene trap strategy used for 

disruption of the Mterf2 gene in one of the mouse models. A gene coding for cryptochrome 1 

(CRY1), functioning in regulation of circadian rhythms, is situated in close proximity to 

Mterf2. In order to study a potential impact of the gene trap on the CRY1 promoter we 

decided to directly compare control animals with both Mterf2 knockout mice models (named 

T2N (created by homologous recombination) and T2M (created by gene trap)) and mice 

lacking CRY1. At the same time, the in vivo function of MTERF2 was still in the main focus 

of our studies. 

We performed Southern Blot analyses with DNA isolated from heart tissue to assess mtDNA 

levels in wild type and all three knockout mouse models by using a COXI probe to detect 

mtDNA and 18S as nuclear encoded loading control. MtDNA levels were not affected by lack 

of MTERF2 in both Mterf2 knockout mouse models, but seem to increase in Cry1 knockout 

 mice (Figure 3.10). 

 
Figure 3.10: MtDNA levels in controls, Mterf2 knockout mice (T2N and T2M) and Cry1 knockout 
mice. A. Southern Blot analysis in heart tissue of wild type (n=4), Mterf2 N (n=4), Mterf2 M (n=4) and 
mCry1 knockout (n=4) mice. 18S was used as nuclear encoded loading control. B. Quantification of A. 
Error bars indicate s.e.m. 

 
A previous report claims MTERF2 has a role in mitochondrial transcription causing 

decreased steady state transcript levels and therefore defects in oxidative phosphorylation 

activity in the absence of this protein (Wenz et al., 2009). However, we could not confirm 

these data in our mouse models, since northern blot analysis with RNA isolated from heart, 

kidney, liver, skeletal muscle and brain revealed normal transcript levels of mitochondrial 

encoded genes in all tissues tested from Mterf2 N knockout, Mterf2 M knockout and Cry1 

knockout mice (Figure 3.11).  
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Figure 3.11: Steady state mitochondrial transcript levels in heart, kidney, liver, skeletal muscle 
and brain are unchanged in wild type, Mterf2 N knockout, Mterf2 M knockout and Cry1 
knockout mice. Northern Blot analysis with RNA from heart, kidney, liver, skeletal muscle and brain 
in control (n=4), Mterf2 N (n=4), Mterf2 M (n=4) and Cry1 (n=4) knockout mice. 18S was used as 
loading control. Membranes were stripped after each probe. 

 
 
We also checked rRNA as well as tRNA levels in mutant animals and controls, revealing 

unaffected steady state levels in heart, kidney, liver, skeletal muscle and brain in all knockout 

mouse models (Figure 3.11). These data suggest normal ribosomal biogenesis as well as 

unchanged de novo synthesis of mitochondrial transcripts in Mterf2 N, Mterf2 M and Cry1 

knockout mouse models as already discussed above in section 3.1.3. In order to confirm these 

data, we performed additional qPCR experiments in cDNAs of brain, liver and skeletal 

muscle from control, Mterf2 N, Mterf2 M and Cry1 knockout mice. Probes detecting Cytb, 

COXI, COXII, ND6, 12S and 16S were used, but no difference in the transcript levels 

between knockout mice and controls were found confirming the data from northern blot 

analyses (Figure 3.12 A). We also assessed expression levels of nuclear encoded 

mitochondrial transcription factors, with cDNAs from liver and skeletal muscle of Mterf2 N, 

Mterf2 M and Cry1 knockout mice (Figure 3.12 B). Probes for studying steady state mRNA 

levels of the core transcription machinery were used, but we found no differences in 

expression of POLRMT, TFB2M and TFAM (Figure 3.12 B). This contradicts previous 

reports showing a compensational, muscle-specific increase in expression of mitochondrial 
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transcription factors during the absence of MTERF2 (Wenz et al., 2009). Regarding 

mitochondrial biogenesis, the nuclear transcriptional co-activator PGC 1-alpha and also 

TFAM, an important factor for mtDNA packing and maintenance, was found normally 

expressed in mice lacking MTERF2 or CRY1, respectively (Figure 3.12 B). Finally, a probe 

detecting pol gamma mRNA revealed unchanged expression levels in control, Mterf2 N, 

Mterf2 M and Cry1 knockout mouse models, making it unlikely that MTERF2 has a role in 

mitochondrial replication (Figure 3.12 B). It was surprising to notice, that even the Mterf2 

knockout mice created by gene trap were not affected in the mitochondrial transcription levels 

as shown before. In addition, lack of CRY1 does not affect these steady state transcript levels 

defeating our idea the reported defects in Mterf2 knockout mice could be caused by the 

influence of the gene trap promoter on the Cry1 gene. 

Taken together, these data suggest that MTERF2 is dispensable for expression and 

maintenance of mtDNA. 

 

 
Figure 3.12: Steady state mRNA levels or mitochondrial encoded genes and mitochondrial 
transcription factors. A. QPCR analysis to study expression levels of mitochondrial encoded genes 
with cDNA isolated from brain, liver and skeletal muscle of control, Mterf2 N, Mterf2 M and Cry1 
knockout mice. Error bars indicate s.e.m. B. QPCR analysis to study expression levels of mitochondrial 
transcription factors with cDNA isolated from liver and skeletal muscle of control, Mterf2 N, Mterf2 M 
and Cry1 knockout mice. Error bars indicate s.e.m.. 
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3.2.4 Lack of MTERF2 is not compensated by other members of the MTERF-

family 

The healthy appearance of Mterf2 knockout mice could be the result of functional 

compensation by another protein. Previous reports revealed upregulated levels of MTERF3 in 

Mterf2 knockout mice (Wenz et al., 2009) suggesting a compensational transcription 

activation. We therefore decided to study steady state mRNA levels of all four MTERF 

family members to determine whether loss of MTERF2 in our mouse models reveals similar 

results. QPCR experiments were performed using cDNA from liver and skeletal muscle of 

control, Mterf2 N, Mterf2 M and Cry1 knockout mice. We used probes detecting Mterf1, 

Mterf2, Mterf3 and Mterf4 and found normal expression of these genes in all knockout mouse 

models compared to wild type controls (Figure 3.13). MTERF2 expression levels were normal 

as expected in Cry1 knockout mice, whereas no expression could be detected in Mterf2 M 

knockout mice due to disruption of the Mterf2 gene by the use of a gene trap. Mterf2 N 

knockout mice however, carry a STOP codon in the coding sequence allowing normal 

transcription of MTERF2. However, the MTERF2 transcript cannot be translated to MTERF2 

protein. In summary, lack of MTERF2 does not cause any compensational response regarding 

other MTERF family proteins (Figure 3.13). 

 

 
Figure 3.13: Expression levels of MTERF family proteins. QPCR analysis to study expression levels 
of MTERF family proteins with cDNA isolated from liver and skeletal muscle of control, Mterf2 N, 
Mterf2 M and Cry1 knockout mice. Error bars indicate s.e.m.. 
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Western Blot analysis was performed in order to check MTERF2 protein levels in different 
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interacting with the mitochondrial ribosome, since mice lacking MTERF3 or MTERF4 suffer 

from deficient mitochondrial ribosomal assembly and decreased translational activity (Figure 

3.14.). Furthermore, LRPPRC is a good indicator for mitochondrial RNA levels since its 

protein levels always follow the RNA amount in mammalian mitochondria. Unaffected 

MTERF2 protein levels in this mouse indicate, that this protein rather does not directly 

interact with mitochondrial RNAs. Tfam knockout mice lack mtDNA and as a consequence 

mitochondrial transcription. Normal MTERF2 protein levels in these mice confirm our data 

shown above indicating that MTERF2 does not have a role in mtDNA expression. Further 

analysis concerning RNA binding capabilities or de novo translation analyses are necessary to 

define a function of MTERF2 in mitochondrial RNA metabolism. 

 

 

 
Figure 3.14: MTERF2 protein levels in different knockout mouse models. Western Blot analysis in 
mitochondrial extracts from heart of Lrpprc, Mterf3, Mterf4 and Tfam knockout mice (L/L,cre) and 
controls (L/L) in order to check MTERF2 protein levels. VDAC was used as loading control. 

 
 

3.2.5  MTERF2 does not affect oxidative phosphorylation activity 

Loss of MTERF2 is shown to cause decreased steady state levels of subunits of the 

respiratory chain complexes (Wenz et al., 2009), a consequence of the reduced expression 

levels of mitochondrial encoded genes. In order to examine whether we can reproduce these 

data at least in Mterf2 M and/or the Cry1 knockout mouse model, we performed western blot 

experiments in mitochondrial extracts from brain, heart, kidney, liver and skeletal muscle. An 

antibody cocktail was used, containing antibodies against respiratory chain subunits of all 

complexes. We found normal levels of NDUFB8 (complex I), SDHA (complex II), UQCRC2 

(complex III), COX1 (complex IV) and ATP5A1 (complex V) in al tissues of Mterf2 N, 

Mterf2 M and Cry1 knockout mice (Figure 3.15). 

 

VDAC

MTERF2

LRPPRC MTERF3 MTERF4 TFAM

L/L L/L L/L L/L L/L L/L L/LL/L
,cr
e

L/L
,cr
e

L/L
,cr
e

L/L
,cr
e

L/L
,cr
e

L/L
,cr
e

L/L
,cr
e



                                                                                                                       Results                                                                                                                                   

 78 

 
Figure 3.15: Steady state protein levels of respiratory chain subunits in wild type Mterf2 N, 
Mterf2 M and Cry1 knockout mice. Western Blot experiments in total mitochondrial extracts of brain, 
heart, kidney and liver of Control (n=4), Mterf2 N (n=4), Mterf2 M (n=4) and Cry1 (n=4) knockout 
mice. Antibody cocktail detecting NDUFB8 (complex I), SDHA (complex II), UQCRC2 (complex III), 
COX1 (complex IV) and ATP5A1 (complex V) was used. Nuclear encoded complex II was used as 
loading control. 

 

In addition, Blue native PAGE analysis was performed in mitochondrial extracts from brain, 

heart, kidney and skeletal muscle to study the assembly of supercomplexes, but again we 

found unaffected patterns of assembled respiratory chain complexes and supercomplexes in 

Mterf2 N, Mterf2 M and Cry1 knockout mice (Figure 3.16). In summary, these data together 

with the other results shown above do not support previous reports claiming that MTERF2 is 

a mitochondrial transcription factor. Our data suggest that MTERF2 is not involved in 

mitochondrial transcription or mtDNA maintenance, because mtDNA expression levels as 

well as steady state protein levels of the mitochondrial transcription machinery, and 

mitochondrial encoded genes appeared unaffected. Further experiments focusing on in vivo 

translation, RNA binding and binding partner experiments are planned to reveal the in vivo 

function of MTERF2. 
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Figure 3.16: Super complex assembly is not affected by loss of MTERF2 and CRY1. Blue Native 
PAGE analysis with total mitochondrial extracts from brain, heart, skeletal muscle and kidney of wild 
type (n=4), Mterf2 N (n=4), Mterf2 M (n=4) and Cry1 (n=4) knockout mice. 

 

3.2.6 Cry1 expression levels are downregulated in Mterf2 knockout mice 

Contrary to our expectations we noticed that Cry1 knockout mice do not show any apparent 

phenotype resembling the results reported for Mterf2 M knockout mice. Due to the close 

proximity of Cry1 to the Mterf2 gene, it was prone to be influenced by strong neighbouring 

promoters as for example a gene trap. In order to study Cry1 levels in Mterf2 N and Mterf2 M 

knockout mouse models qPCR experiments were performed, using a probe detecting mRNAs 

of the gene of interest. Surprisingly, we found a fourty to sixty percent decrease of Cry1 

expression levels in liver, heart, brain and skeletal muscle in both Mterf2 N and Mterf2 M 

knockout models meaning that reduced steady state mRNA levels in these animals are 

independent from the knockout strategy (Figure 3.17). It is rather likely, that loss of MTERF2 

protein is responsible for the reduced CRY1 levels. Further studies have to be done 

uncovering the role of MTERF2 on Cry1 expression. 
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Figure 3.17: Steady state expression levels of Cry1 in different tissues. QPCR analysis to study 
Cry1 levels in cDNA of liver, skeletal muscle, heart and brain from control (n=4), Mterf2 N (n=4), 
Mterf2 M (n=4) and Cry1 (n=4) knockout mice. Error bars indicate s.e.m.. 
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3.3 Analysis of mitochondrial gene regulation at the 

posttranscriptional level in Lrpprc +/- and Lrpprc +/T mice 

3.3.1 Lrpprc heterozygous knockout mice and Lrpprc overexpressor mice are 

fertile and viable 

In order to gain more profound insights into the process of posttranscriptional regulation	
  we 

decided to analyze mice with moderately decreased or increased LRPPRC expression. 

Therefore, Lrpprc
+/loxP 

mice were mated to mice expressing cre recombinase under the control 

of the β-actin promoter to generate heterozygous Lrpprc	
   knockout (Lrpprc
+/-

) mice 

(Ruzzenente et al., 2012). 

 

 
Figure 3.18: Heart to body weight ratio is not affected by moderately altered levels of LRPPRC. 
A. Western blot analysis of LRPPRC levels in mitochondrial extracts of heart, liver and kidney from 
control, heterozygous Lrpprc knockout (+/-) and Lrpprc overexpressing (+/T) mice at age 10 weeks. 
Porin was used as loading control. The relative levels of LRPPRC are indicated above the lanes. B. 
Heart weight to body weight ratios in control, heterozygous Lrpprc knockout (+/-) and Lrpprc 
overexpressing (+/T) mice at age 10 weeks. Number of studied animals: n= 6 (control), n= 6 (+/-), n=6 
(+/T). Error bars indicate SD. 
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expected (Figure 3.18 A). Increased heart to body weight ratio often gives evidence for a 

H
e

a
rt

 w
e

ig
h

t 
/ 

 

b
o

d
y
 w

e
ig

h
t 

ra
ti
o

 (
%

)

0

20

40

60

80

100

120

c +/T c +/-

A

B

Heart Liver

c
o
n
tr
o
l

+
/T

+
/T

c
o
n
tr
o
l

c
o
n
tr
o
l

 +
/-

 +
/-

c
o
n
tr
o
l

LRPPRC

Porin

Heart Liver

 +
/-

c
o
n
tr
o
l

Kidney

+
/T

c
o
n
tr
o
l

Kidney

100% 145% 100% 100%100% 100% 100% 221% 141%48% 58% 21%

Harmel et al., JBC, 2013



                                                                                                                       Results                                                                                                                                   

 82 

cardiomyopathy, a good indicator for mitochondrial dysfunction that was also found in mice 

lacking LRPPRC in the heart (Ruzzenente et al., 2012). However, Lrpprc +/- mice were not 

affected as shown in Figure 3.18 B. Heart to body weight ratio was normal, the animals were 

fertile, apparently healthy and showed a normal life span. 

We also generated a second transgenic mouse model moderately overexpressing LRPPRC 

(LRPPRC +/T), mediated by introduction of a Bacterial Artificial Chromosome (BAC) in the 

oocyte to study in vivo effects of slightly increased LRPPRC protein levels. As documented 

in Figure 3.18 A, these animals showed a two-fold up regulation of LRPPRC in heart, liver 

and kidney, but no effect on their heart to body weight ratio (Figure 3.18 B). Moderately 

decreased or increased levels of LRPPRC did not create any obvious phenotype. Both mouse 

models were viable, fertile and apparently healthy with a normal lifespan. 

 

 

3.3.2 LRPPRC does not regulate the amount of respiratory chain complexes 

We continued the analysis by investigating a regulatory function of LRPPRC regarding 

mtDNA levels and complexes of the respiratory chain in Lrpprc+/- and Lrpprc+/T mice. 

Southern Blot experiments in liver extracts from wild type and mutant animals revealed 

normal mtDNA levels (Figure 3.19 A,B). These results were also confirmed by qPCR analysis 

(Figure 3.19 C) and are in good agreement with previous studies showing that LRPPRC has 

no essential role in maintaining DNA levels in mammalian mitochondria ((Liu et al., 2011; 

Ruzzenente et al., 2012) even though it was found being part of the mitochondrial nucleoid 

(Bogenhagen et al. 2008). 

Mice lacking LRPPRC in the heart develop a severe complex IV deficiency and in addition 

decreased levels of complex I and V (Ruzzenente et al., 2012). We performed western blot 

analysis in protein extracts of heart, liver, kidney and muscle in Lrpprc +/- and Lrpprc +/T mice 

to study potential effects of moderately changed LRPPRC protein levels on respiratory chain 

complexes in these mice. Antibodies against subunits of all complexes of the oxidative 

phosphorylation system showed normal levels of NDUFB8 (complex I), SDHA (complex II), 

UQCRC2 (complex III), COXI (complex IV) and ATP5A1 (complex V) in Lrpprc
+/-

and 

Lrpprc
+/T 

mice (Figure 3.19 D). In addition, Blue Native PAGE experiments (Figure 3.19 E) 

followed by western blot (Figure 3.19 F) were performed to study the assembly of super 

complexes of the respiratory chain. Moderately altered LRPPRC protein level did neither 

influence proper assembly of subunits nor super complexes of the respiratory chain in both 

mice models.  
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Figure 3.19: LRPPRC does not affect oxidative phosphorylation capacity. A. Southern Blot 
analysis of mtDNA levels in liver from control, heterozygous Lrpprc	
   knockout (+/-) and Lrpprc	
  
overexpressing (+/T) mice at age 10 weeks. Number of studied animals: n=3 (control), n=3 (+/-), n=3 
(+/T). The nucleus-encoded 18S rRNA gene was used as loading control. B. Quantification of mtDNA 
levels as determined by Southern blot analysis in panel A. Relative mtDNA levels in control, 
heterozygous Lrpprc	
  knockout (+/-) and Lrpprc	
  overexpressing (+/T) mice at age 10 weeks are shown. 
Number of studied animals: n=3 (control), n=3 (+/T), n=3 (+/-). Error bars indicate SD. C. Quantitative 
PCR analysis of mtDNA levels in control, heterozygous Lrpprc knockout (+/-) and Lrpprc 
overexpressing (+/T) mice at age 10 weeks. Number of studied animals: n=5 (control), n=5 (+/-), n=5 
(+/T). Error bars indicate s.e.m. D. Western blot analysis of subunits of the respiratory chain complexes 
in mitochondrial extracts of heart, liver, kidney and muscle from control, heterozygous Lrpprc 
knockout (+/-) and Lrpprc overexpressing (+/T) mice at age 10 weeks. Nuclear encoded Complex II 
was used as loading control. *crossreacting band. E. Coomassie staining of blue native polyacrylamide 
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gel of mitochondrial extracts from liver of control, heterozygous Lrpprc knockout (+/-) and Lrpprc 
overexpressing (+/T) mice at age 10 weeks. F. Western blot analysis of levels of respiratory chain 
complexes in mitochondrial extracts of liver after separation in blue native polyacrylamide gels. Levels 
in control, heterozygous Lrpprc knockout (+/-) and Lrpprc overexpressing (+/T) mice are shown. The 
exclusively nuclear encoded complex II was used as loading control. 

	
  
 

3.3.3 LRPPRC strongly influences levels of the ND5-Cytb precursor transcript 

It has been shown previously, that reduced levels of LRPPRC lead to a severe decrease of all 

mitochondrial mRNAs encoded on the heavy strand (Ruzzenente et al., 2012; Sasarman et al., 

2010), whereas overexpression of this protein has been reported to upregulate transcription of 

the same mRNAs (Liu et al., 2011; Ruzzenente et al., 2012). We therefore performed 

northern blot analysis in heart and liver from Lrpprc+/- and Lrpprc+/T to field the question of a 

regulatory role of LRPPRC in mtDNA transcription. All transcript levels of mitochondrial 

mRNAs, rRNAs and tRNAs appeared unaffected comparing the transgenic with the wild type 

mouse models (Figure 3.20 A-D). Previous studies in our group demonstrated that tRNA 

levels often go hand in hand with the transcription activity in mitochondria (Cámara et al., 

2011; Metodiev et al., 2009; Park et al., 2007). Thus, normal tRNA levels in Lrpprc+/- and 

Lrpprc+/T indicates LRPPRC likely being not involved in mtDNA transcription regulation. 

Interestingly, the ND5/Cytb precursor transcript, an unprocessed fusion transcript of ND5 and 

Cytb, showed massively decreased levels in Lrpprc+/- mice (Figure 3.20 A,C), whereas it 

appeared to be strongly upregulated in Lrpprc+/T animals (Figure 3.20 B,D). The apparent 

correlation between LRPPRC protein levels and the amount of the precursor allows 

speculations about a putative function of LRPPRC being involved in mitochondrial precursor 

maturation. Knockdown of the bicoid stability factor (BSF), the homologue of LRPPRC in 

the fruit fly Drosophila melanogaster, revealed similar results as loss of this protein also 

leads to RNA processing defects (Bratic et al., 2011). In summary, LRPPRC does not affect 

transcription of mitochondrial mRNAs, rRNAs and tRNAs, but could play a role in the 

maturation of mitochondrial ND5/Cytb precursor. 
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Figure 3.20: Steady state levels of mitochondrial transcripts. A. Northern blot analysis of RNA 
isolated from heart and liver of control and heterozygous Lrpprc knockout (+/-) mice at 10 weeks of 
age. A separate autoradiograph is shown for every analyzed transcript. Nucleus-encoded 18S ribosomal 
RNA (18S) was used as a loading control. B. Northern blot analysis of RNA isolated from heart and 
liver of control and LRPPRC overexpressing (+/T) mice at 10 weeks of age. A separate autoradiograph 
is shown for every analyzed transcript. The nucleus-encoded 18S ribosomal RNA (18S) was used as a 
loading control. C. Quantification of steady-state levels of the transcripts from control (+/+; n=5) and 
heterozygous Lrpprc knockout (+/-; n=5) mice at 10 weeks of age. Error bars indicate s.e.m. 
***P=0.001, Student’s t-test. D. Quantification of steady-state levels of mitochondrial mRNAs, tRNAs 
and rRNAs from control (n=6) and Lrpprc overexpressing (+/T: n=6) mice at 10 weeks of age. Error 
bars indicate s.e.m. ***P=0.001, Student’s t-test. 
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3.3.4 LRPPRC does not activate mitochondrial transcription 

 

The in vivo function of LRPPRC is still highly debated in literature, despite strong evidence 

evolved from in vivo mouse models and patient cells supporting LRPRRC being necessary for 

mRNA stability, coordination of mitochondrial translation and polyadenylation of 

mitochondrial transcripts (Chujo et al., 2012; Ruzzenente et al., 2012; Sasarman et al., 2010). 

Cooper et al. recently reported LRPPRC being a part of the mitochondrial transcription 

machinery acting as transcriptional activator through direct interaction with the RNA 

polymerase (Liu et al., 2011). With two transgenic mouse models at hand, we performed in 

organello transcription experiments in heart and liver of Lrpprc +/- and Lrpprc +/T animals in 

order to study a role of LRPPRC in mitochondrial transcription. Active mitochondria from 

heart and liver tissue were incubated in rotation for 1 hr with [α−32P] UTP, to allow 

incorporation of the radiolabeled base pair in de novo synthesized RNAs. Levels of newly 

synthesized transcripts were unaffected by moderately increased or decreased LRPPRC 

protein levels, respectively as shown in de novo transcription experiments in Figure 3.21 A, B. 

However, we detected differences in the abundance of some high molecular weight 

transcripts, which were decreased in Lrpprc +/- mice and increased in Lrpprc +/T mice (Figure 

3.21 A). These findings are in agreement with the previously observed varying amounts of the 

ND5/Cytb precursor transcript and the putative role of LRPPRC in precursor maturation.  

 
Figure 3.21: In organello transcription analysis in Lrpprc +/- and Lrpprc+/T mice. A. In	
  organello	
  
transcription in heart and liver mitochondria from control, heterozygous Lrpprc	
  knockout (+/-) and 
Lrpprc	
  overexpressing (+/T) mice. The 12S rRNA was used as loading control. B. Quantification of 
areas a – d of panel A. 

 

A

co
n
tr
o
l

+
/-

co
n
tr
o
l

+
/-

co
n
tr
o
l

+
/-

co
n
tr
o
l

+
/-

co
n
tr
o
l

+
/T

co
n
tr
o
l

+
/T

co
n
tr
o
l

+
/T

co
n
tr
o
l

+
/T

Heart Liver Heart Liver

12S

]
]

]

a

b

c

]

d

2.4

2.2

1.2

1

0.8

0.6

0.4

0.2

0

h
e
a
rt

liv
e
r

h
e
a
rt

liv
e
r

a b c

h
e
a
rt

liv
e
r

h
e
a
rt

liv
e
r

h
e
a
rt

liv
e
r

h
e
a
rt

liv
e
r

+/- 

control

+/T

h
e
a
rt

liv
e
r

h
e
a
rt

liv
e
r

d

re
la

ti
v
e
 b

a
n
d
 i
n
te

n
s
it
y

B

Harmel et al., JBC, 2013



                                                                                                                       Results                                                                                                                                   

 87 

We also performed western blot analysis studying protein steady state levels of the 

components of the transcriptional core machinery. No difference in the steady state levels of 

TFAM and TFB2M were found in heart and liver mitochondria from Lrpprc +/- and Lrpprc +/T 

mice confirming the normal transcription activity observed in the in organello transcription 

assay (Figure 3.22A). 

Next, in vitro transcription experiments were performed to further analyze the effect of 

LRPPRC on mitochondrial transcription. Addition of recombinant LRPPRC protein to an in 

vitro transcription system was previously shown to activate transcription (Liu et al., 2011). 

However, we recently reported that such recombinant systems are very sensitive to even small 

changes of salt concentrations, which can cause misleading results concerning the activation 

or deactivation of the in vitro transcription system, respectively (Shi et al., 2012). 

For that reason, we carefully controlled the conditions of the recombinant system by using 

physiologically relevant salt concentrations and keeping concentrations and buffer conditions 

of all recombinant components constant. Implementing these requirements TFAM, TFB2M 

and POLRMT were mixed with templates containing the heavy strand promoter 1 and 2 

(HSP1 and 2) and light strand promoter (LSP), respectively in order to perform in vitro 

transcription analysis. 

 

 
Figure 3.22: LRPPRC does not activate mitochondrial transcription. A.Western blot analysis of 
the steady-state levels of proteins involved in regulation of mitochondrial transcription (TFAM and 
TFB2M) in mitochondrial extracts from heart and liver from control, heterozygous Lrpprc	
  knockout 
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(+/-) and Lrpprc	
  overexpressing (+/T) mice at 10-12 weeks of age. Porin was used as loading control. 
B. In	
  vitro	
  transcription was performed with purified recombinant POLRMT, TFB2M, TFAM, and the 
indicated mtDNA template, as described in experimental procedures. Increasing amounts of LRPPRC 
(0, 0.4, 0.8, 1.6, and 3.2 pmol) were added when indicated. LSP transcription generated a run-off (RO) 
product as well as a prematurely terminated (PT) product. A gel shift assay was used to assess whether 
recombinant LRPPRC had biological activity and can bind RNA. C. Quantification of HSP and LSP 
run-off transcripts from n=4 in vitro transcription experiments. For LSP the values for run-off (RO) 
and pre-terminated transcript at CSBII (PT) were used. The relative amount 1 indicates transcript levels 
in the absence of LRPPRC. Error bars indicate SD. 

 

Finally, increasing amounts of LRPPRC were added to the reaction but no transcriptional 

stimulation could be detected (Figure 3.22 B). An electro mobility shift assay demonstrated 

active binding of the recombinant LRPPRC to RNA, proofing that the protein is biologically 

active (Figure 3.22 B bottom panel). 

As mentioned before, LRPPRC has been reported to form a complex together with POLRMT, 

hence stimulating mitochondrial transcription. In order to investigate this hypothesis we 

performed immunoprecipitation experiments using HeLa cells with doxycycline-inducible 

expression of human LRPPRC-Flag. Mass spectrometric analysis of the eluate revealed 

interaction of LRPPRC-Flag with SLIRP, but no other binding partner was found. In addition, 

Western Blot analyses of the eluate using antibodies against SLIRP and POLRMT confirmed 

the previous results, since only SLIRP, but not POLRMT could be detected in the elution 

fraction (Figure 3.23 A). 
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Figure 3.23: LRPPRC does not interact with mitochondrial RNA polymerase. A. Co-
immunoprecipitation was performed using anti-Flag antibodies and mitochondrial extracts from HeLa 
cells expressing LRPPRC-Flag. The input, unbound fraction and the elution fraction obtained by Flag 
peptide were analyzed with western blotting to detect the LRPPRC-Flag, SLIRP and POLRMT. B. 
Size exclusion chromatography of mitochondrial extracts from wild-type HeLa cells. Western blot 
analysis was used to detect LRPPRC, SLIRP, POLRMT and TFAM in the different fractions. 
 

 
 
However, proteins overexpressed in HeLa cells can create false positive protein protein 

interactions. To exclude this possibility, we used BAC-transgenic mice overexpressing 

LRPPRC-Flag in a physiological in vivo model. The BAC transgene was shown to fully 

rescue a germ line knockout of LRPPRC, proofing the biological functionality of the 

construct. The moderate expression of LRPPRC-Flag is similar to the endogenous LRPPRC 

expression. Immunoprecipitation experiments in protein extracts from heart, liver and kidney 

from LRPPRC-Flag BAC transgenic mice were performed followed by mass spectrometry 

analysis and again only SLIRP, but not POLRMT was identified to directly interact with 

LRPPRC (Table 1). 

Another approach to find evidence for a potential interaction between LRPPRC and 

POLRMT was the performance of a size exclusion chromatography using human 

mitochondrial extracts from HeLa cells. Antibodies detecting LRPPRC, SLIRP, TFAM and 

POLRMT were used showing LRPPRC and SLIRP migrating in the same elution fraction 
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(Figure 3.23 B). These data confirmed the previously shown direct interaction of these two 

proteins (Sasarman et al., 2010). POLRMT however, was detected in a high molecular 

fraction together with TFAM and a small portion of SLIRP (Figure 3.23 B). These findings 

support the hypothesis that SLIRP binds newly synthesized mitochondrial transcripts in close 

proximity to the nucleoid to bind and protect mRNAs from degradation (Ruzzenente et al., 

2012). Summarizing these data, LRPPRC does not form a stable complex with POLRMT.  

 

 
Table 1: LRPPRC Immunoprecipitation- Mass spectrometry results. Eluates after 
immunoprecipitation from heart, liver, kidney and HeLa cells were analysed by mass spectrometry in 
order to identify LRPPRC binding partners. SC= Sequence Score, emPAI= Exponentially Modified 
Protein Abundance Index. 

 

 

3.3.5 LRPPRC	
  is	
  abundant	
  in	
  mammalian	
  mitochondria	
  
 

LRPPRC having a role in mitochondrial transcription would suggest a similar concentration 

of this protein as other mitochondrial transcription factors. In order to determine absolute 

levels of LRPPRC, POLRMT, TFB2M and TFAM western blot analyses were performed in 

mouse liver mitochondria using recombinant protein standards (Figure 3.24). Calculations 
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defining the intracellular concentration of LRPPRC revealed, that this protein is rather 

abundant, present at a concentration of 7fmol/µg of total mitochondrial protein. These data 

are in agreement with other reports that LRPPRC is abundant in human cells (Chujo et al., 

2012). The levels of LRPPRC are lower than the levels of TFAM, which is acting as an 

mtDNA packaging factor in addition to its function as a transcription factor. Interestingly, the 

other two components of the basal mitochondrial transcription initiation machinery, 

POLRMT and TFB2M, were less abundant (0.15 fmol/µg and 0,47 fmol/µg) (Figure 3.24). 

The ~50-fold higher abundance of LRPPRC in comparison with POLRMT and ~14-fold 

higher abundance in comparison with TFB2M provide another argument against a role for 

LRPPRC in regulation of transcription 

 

 
Figure 3.24: LRPPRC is an abundant protein. The endogenous levels of LRPPRC, POLRMT, 
TFAM and TFB2M in mouse liver mitochondrial lysates were determined by western blot analyses 
using purified standards of the corresponding mouse proteins. * = unspecific crossreacting band. 

	
  
 

 

Section 3.3 was modified from Harmel et al., The Leucine –rich pentatricopeptide repeat-

containing protein (LRPPRC) does not activate transcription in mammalian mitochondria, 

Journal of Biological Chemistry , 2013, Vol. 288, pp. 15510-15519 
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4 Discussion 
The data presented in this work revealed surprising and unexpected insights in the regulation 

of mitochondrial gene expression and emphasized the importance of the usage of suitable in 

vivo models as a tool for the investigation of unknown protein functions. For several decades, 

results from in vitro studies inferred that MTERF1 terminates H-strand transcription at the 3’ 

end of the 16s rRNA, and was believed to regulate mitochondrial ribosomal biogenesis (Daga 

and Attardi, 1993; Kruse et al., 1989). The 50-fold higher steady-state levels of ribosomal 

RNA relative to the mRNAs in mammalian mitochondria (Gelfand and Attardi, 1981) was, 

among other things, attributed to an independent regulation including a second H-strand 

promoter only responsible for transcription of ribosomal RNAs (Montoya et al., 1983). In this 

work, we describe the role of MTERF1 in vivo. Molecular characterization of MTERF1 in a 

knockout mouse model now contradicts the ideas based on previously obtained data from in 

vitro systems, since expression levels of ribosomal RNAs are not affected in the mouse model 

lacking MTERF1. We could show that this protein predominantly co-localizes with 

mitochondrial nucleoids, strengthening the concept, that MTERF1 is a DNA binding protein 

(Terzioglu et al., 2013). In addition, Chromatin Immunoprecipitation-Next Generation 

Sequencing (ChIP-NGS) and DNA-footprint analyses after targeting a methyltransferase into 

mitochondria clearly showed that MTERF1 binds a specific region in tRNALeu(UUR) gene, 

which is not occupied by any other protein in the absence of MTERF1. The lack of MTERF1 

does not influence H-strand transcription. Instead, northern blot analysis and S1 protection 

assay analysis in Mterf1 knockout mice revealed decreased 7S RNA transcripts in the LSP 

promoter proximal region (Figure 3.5). Previous studies in our lab demonstrated a strong 

correlation between the amount of 7S RNA and de novo transcription activity (Cámara et al., 

2011; Park et al., 2007; Ruzzenente et al., 2012), therefore anticipating reduced transcription 

initiation events at the LSP promoter. However, expression of L-strand encoded proteins and 

tRNAs were unaffected in the Mterf1 knockout mouse. MtDNA levels, which are known to 

be dependent on LSP initiated RNA primer formation, appeared to be normal. These findings, 

together with decreased L-strand transcript levels downstream of the MTERF1 binding site, 

could suggest a mechanism to terminate L-strand transcription in order to avoid promoter 

interference at the LSP. We propose a mechanism, whereby the transcription machinery 

encounters the light strand promoter leading to decreased activity of the LSP. In the phase of 

transcription initiation, stalling of the leading transcription machinery at the promoter region 

can cause unstable template interactions generated by the trailing enzyme (Zhou and Martin, 

2006). Additionally, studies on T7 phage RNA polymerases have shown when multiple 
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polymerases are operating on the same strand, the trailing RNA polymerase can displace the 

leading one, causing abortive transcription (Zhou and Martin, 2006). Therefore, MTERF1 

could provide an important block on the L-strand, preventing promoter collision on the LSP. 

Notably, heavy strand transcription also seems to be terminated before the regulatory region 

in the D-loop. Previous studies have revealed premature H-strand transcription termination 

past the termination associated sequence (TAS) region (Freyer et al., 2010) strengthening the 

hypothesis of a protein having a similar function on the L-strand. On the other hand it has 

previously been shown, that phage RNA polymerases moving in opposing directions can 

bypass each other without losing their transcription efficiency, which is suggested to be 

mediated by a temporary disconnection from the non-template strand during the collision (Ma 

and McAllister, 2009). These results could explain the unaffected H-strand transcription of 

Mterf1 knockout mice, since converging RNA polymerases on the H-strand or L-strand can 

easily bypass each other without affecting the gene expression of the other strand. 

 

 
Figure 4.1: Proposed model for the mode of action of MTERF1 (upper panel) and the 
transcriptional consequences of loss of MTERF (lower panel). During wild type conditions 
MTERF1 blocks L-strand transcription at its binding site. Lack of MTERF1 allows POLRMT to 
proceed transcription to the LSP causing decreased transcription initiation events. 

The first hints regarding the polarity of MTERF1 in in vitro analysis were published 20 years 

ago, when Clayton and co-workers detected a preferential termination activity of MTERF1 

for transcripts originating at the LSP (Shang and Clayton, 1994). However, the idea that 

MTERF1 could have a regulatory function regarding the transcription of mitochondrial 

ribosomal RNAs by promoting a loop formation in the rDNA region of mtDNA has eclipsed 
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this knowledge for many years (Kruse and Attardi, 1989; Martin et al., 2005). X-ray 

crystallography analysis of MTERF1 by crystallization of this protein with the target 

sequence, revealed much more interactions and therefore stronger affinity of MTERF1 to the 

L-strand than the H-strand (Yakubovskaya et al., 2010). MTERF1 is reported to be a half-

doughnut shaped protein, wrapping around the DNA, which partially unwinds the double 

helix and causes a phenomenon called “base flipping” (Yakubovskaya et al., 2010). Three 

nucleotides corresponding to A3243 of the light strand and T3243 and C3242 of the heavy 

strand are everted from the double helix and interact with the protein. Among the other 

members of the MTERF family this feature is unique to MTERF1, enabling this protein for an 

exceptionally strong interaction with its mtDNA binding site in order to ensure transcriptional 

blockage at the L-strand. In accordance with our data, no other specific binding site especially 

in the mtDNA promoter region could be identified as suggested in previous studies (Wenz et 

al., 2009). The structural properties of MTERF1 allow this protein to also unspecifically bind 

mtDNA, however, these interactions with random DNA sequences appear to be much less 

frequent compared to the ones with the binding site (Yakubovskaya et al., 2010). The detailed 

crystal structure findings together with the extensive DNA-protein interactions described 

above make it very unlikely that MTERF1 can simultaneously bind two dsDNA regions as 

previously suggested by Attardi and co-workers. Regarding our knowledge of the MTERF 

family members to date, MTERF1 is the only family member, which is living up to its name 

as transcription termination factor, since MTERF3, another MTERF-family member long 

time known as negative regulator of mitochondrial transcription (Park et al., 2007), was 

recently shown to have an additional role in ribosomal biogenesis (Wredenberg et al., 2013). 

Previous studies, concerning the human mitochondrial transcriptome have impressively 

demonstrated a massive decrease of transcription levels on the L-strand right after the 

MTERF1 binding site. Although there are several other non-coding areas on the L-strand, 

there is no region being less transcribed than the antisense of the mitochondrial ribosomal 

RNAs (Mercer et al., 2011). Together with foot printing analyses revealing MTERF1 binding 

in the tRNALeu(UUR) gene, these data support our findings of MTERF1 terminating L-strand 

transcription (Mercer et al., 2011). 

Lack of MTERF1 does not seem to have a strong effect on knockout mouse models at the 

metabolic level. The mice are phenotypically healthy, with a normal lifespan and even a 

ketogenic diet stress does not provoke any pathological effects at mitochondrial level. In 

MELAS syndrome, a severe neuromuscular mitochondrial disorder, it is known that 

mutations in the tRNALeu(UUR) gene prevent the binding of MTERF1 to its binding site, in 

addition to the translational deficiencies caused by the mutation in the tRNALeu(UUR) gene 

product. Furthermore, it has been discovered that amino acid substitutions at two guanosines, 

which interfere with MTERF1 protein-DNA interactions lead to mitochondrial disorders due 
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to the elimination of sequence recognition of MTERF1, which consequently causes loss of its 

transcriptional termination activity (Yakubovskaya et al., 2010). It is puzzling having healthy 

mice completely lacking MTERF1 on the one hand, and patients developing severe 

mitochondrial disorders by carrying the protein but without the capability to fulfill its 

function, on the other hand. Regarding the situation in MELAS patients, impaired expression 

of tRNALeu(UUR) or a defective charging specificity of the tRNALeu synthetase could be the 

reason for the clinical phenotype (Chomyn et al., 1992) since the mutation preventing the 

specific binding of MTERF1 is located in the coding region of the tRNALeu gene. Mutations 

located in the MTERF1 protein itself, lowering its binding or termination capabilities 

however, are not known. In addition, in vitro studies on fibroblasts of patients suffering from 

MELAS develop global mitochondrial translational deficiencies, which cannot be explained 

by defective transcription termination or misprocessing of the total H-strand polycistronic 

transcripts at the level of the tRNALeu(UUR) sequence.  

Besides its closest relative MTERF1, MTERF2 is the only remaining MTERF family member 

exclusively being implicated in mitochondrial transcription. Recently published in vivo 

studies in Mterf2 knockout mice revealed healthy animals not suffering from any phenotype 

(Wenz et al., 2009). Therefore, the mice were challenged with a high-fat, low carbohydrate 

diet, which activates mitochondrial biogenesis by diminishing glycolytic activity and shifting 

mitochondrial metabolism to oxidative phosphorylation. In a situation, when oxidative 

phosphorylation is the only available energy source in the cell, a lacking protein involved in 

mitochondrial metabolism could be more prone to provoke defects, which can be 

compensated under normal conditions. For many years, the ketogenic diet has successfully 

been implemented in the treatment of epileptic patients and patients suffering from 

neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease (Stafstrom and Rho, 

2012). Even though the exact mode of action is still unclear, there are several factors which 

may be responsible for the beneficial impact, including carbohydrate reduction, activation of 

ATP-sensitive potassium channels by mitochondrial metabolism, inhibition of the mammalian 

target of rapamycin (TOR) pathway and inhibition of glutamatergic excitatory synaptic 

transmission (Danial et al., 2013). The most common side effects of patients treated with a 

ketogenic diet, are tiredness and muscle weakness. The latter was also observed in Mterf2 

knockout mice fed with such a diet for several months (Wenz et al., 2009). These mice have 

been reported to develop memory deficits and muscle weakness. Notably none of these 

symptoms were detected in the control group, which could be expected from the experience 

in human patients. Previously performed molecular analysis of Mterf2 knockout mice 

revealed decreased steady state mRNA levels resulting in reduced steady state protein levels 

of the respiratory chain complex and impaired oxidative phosphorylation activity (Wenz et 

al., 2009).  
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Figure 4.2: Common gene trap vs. viral trap. A. After electroporation in the cell the gene trap vector 
inserts randomly into a genomic locus. Transcription of the target gene form its endogenous promoter 
results in a truncated mRNA fused to the reporter protein, due to the interruption of endogenous 
splicing by a polyA signal in the vector. B. Viral traps contain their own promoter, transcribing the 
reporter gene as well as a truncated 3’ end of the target gene. The strong viral promoter can also 
influence promoter activity of neighbouring genes. Figure and legend modified from 
www.genetrap.org. 
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models for different levels of regulation in mitochondrial gene expression, revealed 

unchanged MTERF2 protein levels and also protein steady state levels of subunits of the 

respiratory chain complexes as well as OXPHOS complex assembly appear normal in the 

absence of MTERF2. Therefore, diminished RNA stability, defective ribosome assembly and 

abolished transcription in mitochondria do not seem to influence MTERF2 steady state levels.  

An obvious difference between the Mterf2 knockout mouse model created in our lab and the 

one developed in the group of Carlos Moraes is the knockout strategy used to disrupt the 

Mterf2 gene. In our lab we used homologous recombination to introduce a STOP codon in 

exon 3 of the Mterf2 gene, whereas Wenz et al. decided to interrupt Mterf2 gene expression 

through introduction of a viral trap. Viral traps belong to the group of gene traps, a common 

tool to randomly generate embryonic stem cells with insertional mutations in either the 

intronic or the coding region of a target gene. The most common kind of a gene trap makes 

use of the endogenous promoter of the target gene. The target gene is expressed until it 

reaches a poly A signal at the 3’ end of the gene trap, which inhibits splicing downstream of 

the construct and terminates translation causing a truncated protein (Rojas-Pierce and 

Springer, 2003; Yamaguchi et al., 2012). To target genes, which are not normally expressed 

or expressed at very low levels, so-called viral traps are used containing an own promoter and 

a transcription start site. The disadvantage of using strong viral promoters is their ability to 

negatively influence promoters of other genes located in close proximity to the target gene 

(Floss and Schnütgen, 2008). Just 1,6 kb upstream of the Mterf2 gene another gene is situated 

encoding for cryptochrome 1 (CRY1). This protein belongs to the photolyase family, 

including plant blue-light receptors, which are essential components of the circadian clock. 

CRY1 is conserved in bacteria and animals but is quite widespread in plants, as these 

organisms are light-dependent regarding development and flowering. CRY1 also has a 

homologue CRY2, which is mostly located in the nucleus. Deletion of each gene alters 

behavioural rhythmicity, while deletion of both genes abolishes it completely (van der Horst 

et al., 1999). Besides the disturbed circadian rhythm, Cry1 knockout mice have been reported 

to have a normal appearance, are fertile and do not develop any deleterious phenotypes, 

which are observed in the cry1/cry2 double knockout mice (van der Horst et al., 1999). 

Simultaneous disruption of cry1 in a Mterf2 knockout mouse may therefore match with the 

phenotype of mice lacking MTERF2, since both mouse models are apparently healthy. 

Analysis of cry1 knockout mice regarding mitochondrial metabolism did not reveal any 

involvement of this protein in mitochondrial transcription or OXPHOS activity. Surprisingly, 

we found cry1 expression levels massively downregulated in both Mterf2 knockout mouse 

models, indicating that this gene is in fact affected in the Mterf2 knockout mice created by 

gene trap, but also in our Mterf2 knockout mouse, which excludes this gene from being 

responsible for the different phenotypes in two knockout mouse models. The reason why the 
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insertion of a STOP codon should influence promoter activity of a neighbouring gene is 

unclear and the lack of antibodies prevented further analyses of CRY1 protein steady state 

levels. A direct interaction of CRY1 and MTERF2 is unlikely but not impossible,.  

In vitro studies in HeLa cells revealed unspecific DNA binding capability of MTERF2 and 

co-localization of this protein with mitochondrial nucleoids (Pellegrini et al., 2009). This, 

combined with a relatively high abundance of MTERF2 corresponding to 1 protein per 265 

bp DNA, suggested that it could, similar to TFAM, cover mtDNA as well as having a role in 

mtDNA expression. However, one should also consider potential RNA binding capabilities. 

The fact, that MTERF2 was found in the nucleoid does not exclude RNA binding, since for 

example SLIRP, an exclusively RNA binding protein was found in the nucleoid fraction in 

size exclusion chromatographies (Figure 3.23 B) where it acts as a co-factor in post-

transcriptional regulation. The structure of MTERF2 has not been solved yet, but is believed 

to be similar to the half-doughnut shape characterizing the other MTERF-family members. 

This particular 3-D structure has been shown to allow the protein to wrap around its nucleic 

acid substrate through interactions of its positively charged surface at the concave site of the 

protein, which provides a path for the negatively charges nucleic acid (Spåhr et al., 2010; 

2012; Yakubovskaya et al., 2010). Since this feature is conserved in all other MTERF family 

members, it is very likely that also MTERF2 has similar attributes, which also includes a 

putative RNA binding capability. Regarding the in vivo functions of the other MTERF family 

members, recent studies in our lab surprisingly revealed MTERF3 and MTERF4 being RNA 

binding proteins with a role in mitochondrial ribosome assembly and translation (Cámara et 

al., 2011; Wredenberg et al., 2013). Therefore a non-transcriptional role for MTERF2 in 

mitochondrial RNA metabolism is not ruled out. On the other hand, ribosome assembly is not 

affected in mice lacking MTERF2 and due to the healthy appearance of our Mterf2 knockout 

mouse model we cannot expect an indispensable role of MTERF2 in the mitochondrial RNA 

metabolism. Furthermore, evolutionary appearance of the MTERF family members attests 

MTERF3 and MTERF4 being more closely related to each other than to MTERF1 and 

MTERF2, which is also mirrored in their similar function. Considering this, MTERF2 might 

rather be a DNA binding protein with a function similar to MTERF1. The mild phenotype of 

Mterf1 as well as Mterf2 knockout mice, could also imply mutual functional compensation. 

However, regarding MTERF1 we could show, that no other protein is binding at the Mterf1 

binding site in the absence of this protein (Figure 3.4 L) and Mterf1/Mterf2 double knockout 

mice in our lab are viable, fertile and show a normal life span (data not shown).  

The function of MTERF1 and its homologs in other organisms is highly conserved, since 

mammalian MTERF1, Drosophila melanogaster dmTTF and sea urchin Paracentrotus 

lividus mtDBP all share the capacity to arrest progression of the mitochondrial RNA 

polymerase (Polosa et al., 2005; Roberti et al., 2006a; 2006b). However, their binding sites as 
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well as the roles of these proteins seems to be specific for each species (Roberti et al., 2006a). 

MTERF2 homologs, on the other hand, have not been investigated so far. Its function is, like 

in mammals, still awaiting identification. 

Besides studying the regulation of mtDNA expression at the level of mitochondrial 

transcription we also covered this issue at the post-transcriptional level. The in vivo function 

of LRPPRC is still highly discussed in literature, and suggests a multiplicity of putative 

functions in the mitochondria as well as in the cytoplasm and the nucleus. In contrast to the 

existence of several striking evidences implicating that LRPPRC is an important factor in 

RNA stability and polyadenylation, recent reports has been claiming this protein to have a 

role in mitochondrial transcription (Liu et al., 2011). This brought us to further characterize a 

putative role for LRPPRC in mitochondrial transcription via manipulation of the in vivo 

expression of LRPPRC in two different mouse models. Lrpprc heterozygous mice and mice 

overexpressing LRPPRC mediated by BAC induction only show moderately increased or 

decreased LRPPRC protein levels and are therefore good models to investigate the in vivo 

function of this protein in a normal environment. The data observed in our study do not 

support the hypothesis that LRPPRC stimulates mitochondrial transcription. Concerted 

analysis regarding mtDNA transcription revealed unaffected expression levels of 

mitochondrial encoded genes and tRNAs as well as normal OXPHOS protein steady state 

levels of subunits and super complexes of the respiratory chain complex. In addition, 

transcription assays, de novo and in vitro, did not provide evidence of LRPPRC being a 

mitochondrial transcription factor. Differences between our data and previously published 

studies regarding the outcome and overall interpretation of identical experiments, illustrates 

the importance of careful handled experiments. Liu et al has recently shown recombinant 

LRPPRC stimulating transcription of mtDNA in an in vitro system (Liu et al., 2011). 

However, the conditions used in this experiment did not correspond to physiological 

conditions and may have lead to misleading results. It was recently reported, that in vitro 

transcription systems are very sensitive to even small variations in salt concentrations (Shi et 

al., 2012). Addition of a recombinant factor could therefore lead to the wrong assumption that 

this factor is stimulating or inhibiting transcription. For this reason, we thoroughly checked 

the exact salt concentrations and took care of a careful purification of recombinant LRPPRC 

before it was added to the transcription reaction. Using affinity and ion exchange 

chromatography, LRPPRC was finally dialyzed and diluted in a buffer containing 0.2M NaCl. 

The final reaction was performed in 80mM NaCl and could not detect a stimulating effect of 

LRPPRC on in vitro transcription. Furthermore, we used TFAM at a concentration of 200- 

600 nM for the in vitro assays, which corresponds to a similar TFAM/mtDNA ratio observed 

in vivo (Ekstrand et al., 2004; Pellegrini et al., 2009). TFAM concentrations used by the other 

group were much lower and in addition purification of recombinant LRPPRC was achieved 
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via His-Tag, making it susceptible for contaminations by other mitochondrial proteins (Liu et 

al., 2011). The low TFAM concentration allows even low concentrations of contaminating 

factors to significantly influence the stimulatory effect of LRPPRC on an in vitro 

transcription assay. Notably, recapitulation of this experiment with the same conditions as 

recently reported, revealed the same results as it has been claimed by this group (data not 

shown), demonstrating the need for precise performance of scientific experiments to avoid 

misleading contaminations. Together with our other data obtained from size exclusion 

chromatography and immunoprecipitation experiments we strongly support the idea of 

LRPPRC not interacting with POLRMT.  

The only molecular phenotype detected in our mouse models with moderately increased and 

moderately decreased LRPPRC protein levels, is the expression level of the precursor 

transcript of ND5/Cytb, which always corresponds to LRPPRC protein levels in both mouse 

models. This is suggesting a potential additional role of LRPPRC in precursor processing. 

LRPPRC has been recently reported to directly bind mitochondrial precursors such as ATP6-

COX3, tRNAMet - ND2, tRNAL1 - ND1, tRNAVal - 16S rRNA and tRNAPhe - 12 S rRNA 

(Chujo et al., 2012). Since other RNA transcripts are not affected by varying amounts of 

LRPPRC, degradation caused by decreased transcript stability is unlikely the reason for this 

phenotype. Considering the fact, that reduced amount of LRPPRC causes decreased precursor 

levels and vice versa rather suggests an inhibitory role on precursor maturation, since its 

absence increases processing, which reveals reduced steady-state levels (Figure 3.20 A). 

Further analysis regarding a putative interaction of LRPPRC with other precursor transcripts 

is needed to evaluate a potential additional role in precursor maturation. 

We found LRPPRC to be a relatively abundant protein in the mitochondria, with a 

concentration half as much as TFAM, but 14- and 50-fold more than TFB2M and POLRMT. 

This, again, argues against a role for LRPPRC in mitochondrial transcription.  

Additional evidence regarding the in vivo function of LRPPRC is given in a LRPPRC heart 

and skeletal muscle specific knockout mouse model. Recent characterization of this mouse 

model in our lab revealed severe cytochrome c deficiency and decreased mRNA expression 

levels causing massively impaired complex IV activity (Ruzzenente et al., 2012). Furthermore 

we found a misregulated translation phenotype with some peptides being excessively 

translated or not translated at all and abolished polyadenylation for most of the mitochondrial 

mRNAs. However, de novo transcription appeared normal, which was also detected in both 

mouse models analysed in this work. The source for the phenotype in mice lacking LRPPRC 

in heart and skeletal muscle must therefore be a post-transcriptional event since defective 

transcription cannot be the reason for decreased transcript levels. Sucrose gradient 

sedimentation of mitochondrial extracts with subsequent qPCR analysis of single fractions 

revealed a mitochondrial mRNA distribution showing that LRPPRC is important for mRNA 
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stability, maintaining a pool of currently untranslated mRNAs in mammalian mitochondria 

(Ruzzenente et al., 2012).  

 

 
Figure 4.3: Proposed model for the post-transcriptional role of the LRPPRC/SLIRP complex. 
Transcription at mtDNA creates polycistronic precursor transcripts, which are processed and modified 
into the single RNA species. If not translated by mitochondrial ribosomes, currently untranslated 
mRNAs are stabilized by the LRPPRC/SLIRP complex and protected from degradation. 

Considering that LRPPRC is a member of the PPR protein family, this finding is not very 

surprising, since PPR domain containing proteins are capable to bind RNA and known to 

have roles in RNA metabolism in mitochondria and chloroplasts including RNA editing, 

transcript processing, RNA stability and initiation of translation (Schmitz-Linneweber and 

Small, 2008; Zehrmann et al., 2011) 

Patients suffering from an A354V amino acid substitution in the Lrpprc gene develop Leigh 

Syndrome, French Canadian Type, a disease with a similar mitochondrial biochemical profile 

as the conditional knockout mouse model. Analysis of patient fibroblasts revealed decreased 

LRPPRC protein levels, resulting in cytochrome c deficiency, downregulated transcription 

and defective complex assembly. De novo translation, however, seems to be generally 

decreased in patient fibroblasts, which is in contrast to the translational misregulation found 

in the mouse model. The LSFC patients display typical symptoms of a mitochondrial disease 

including poor muscle coordination (ataxia) or neurological symptoms including stroke-like 

episodes and seizures. These observations in patient samples, together with our observations 

in the mouse again argue against a role for LRPPRC in mitochondrial transcription 

(Ruzzenente et al., 2012). 

LRPPRC is a conserved protein in metazoan organisms. The yeast protein PET309 is 

proposed to be a homologue of LRPPRC with 37% similarity over 300 amino acids. It is 
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essential for respiratory growth and important for stability and translation of mitochondrial 

COX1 mRNA in yeast (Tavares-Carreón et al., 2008). Mutational analysis of its PPR domains 

revealed an important function in translation, where none of the seven PPR motifs is 

dispensable. Interestingly, mRNA stability of COX1 in yeast does not seem to mediated by 

PPR domains, and so far Pet309 is the only translational activator that has been found to 

contain PPR motifs (Tavares-Carreón et al., 2008). The bicoid stability factor (BSF) in 

Drosophila melanogaster, another homologue of LRPPRC is also shown to be a RNA 

binding protein involved in stability of mitochondrial mRNAs (Bratic et al., 2011). BSF was 

initially thought to bind the 3’ untranslated region (UTR) of cytoplasmic mRNAs and has 

been linked to a role in regulating zygotic genes by binding their 5’ UTR (Mancebo et al., 

2001). However, recent localization studies agree that BSF being mainly situated in 

mitochondria in larvae and adult flies, where it was reported to have a function highly similar 

to its mammalian LRPRC, including stabilization of mitochondrial mRNAs, promotion of 

polyadenylation and coordination of translation (Bratic et al., 2011). In summary, these 

studies clearly support and continue the line of evidence for a role of LRPPRC in 

mitochondrial RNA regulation. In several of the studies in which LRPPRC has been reported 

to have extramitochondrial roles, the data were based on the finding of biochemical activities 

in cytoplasmic or nuclear extracts and it cannot be excluded that these extracts have been 

contaminated with proteins from broken mitochondria. Therefore, these experiments should 

be repeated under more careful conditions by using nuclear or cytoplasmic extracts free from 

any contaminating factors. 

 

4.1 Future perspectives 
The characterization of a Mterf1 knockout mouse model revealed surprising new insights in 

the in vivo function of MTERF1. However, there are ongoing studies investigating additional 

roles of MTERF1 as for example in replication. Notably, these analyses take place in vitro in 

cell lines and await further confirmation in an in vivo model. In our hands mtDNA levels in 

the Mterf1 knockout mouse model appear normal, which rather argues against this function. 

Functional characterization of MTERF2, on the other hand, is far away from being complete. 

In our hands, mice lacking this protein are phenotypically healthy and fertile and so far we 

could not find any molecular phenotype even under stress conditions, which is in contrast to 

the Mterf2 knockout mouse model from the Moraes Lab. It remains unclear, why we could 

not confirm the previously described phenotype, even not in the same the phenotype initially 

was detected. Data from our Mterf2 knockout mouse model fed with a ketogenic diet have not 

been analyzed so far. They might give more ideas regarding the intramitochondrial role of 

MTERF2. Furthermore it might be interesting to elucidate why Cry1 gene expression is 
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downregulated in the Mterf2 knockout mouse model from our lab as well as from the Moraes 

lab. It is not clear if CRY1 can directly interact with MTERF2 or if events at the Cry1 

promoter region are responsible for this phenomenon. In addition, more detailed analysis 

regarding its interaction partners and nucleic acid binding capabilities could give more 

profound information about the in vivo function of MTERF2.  

Taken together the results from this work with our previous data concerning the location and 

function of LRPPRC, we strongly agree on a posttranscriptional role of LRPPRC in 

mammalian mitochondria. However, there are still open-ended questions as for example its 

involvement in precursor maturation. Studies disclosing the influence of varying LRPPRC 

protein levels on other precursor transcripts could be performed. Furthermore the exact role in 

mitochondrial polyadenylation is still unknown. More experiments defining the influence of 

alterating LRPPRC protein levels to the length of polyA tails and their contribution on 

transcript stability in an in vivo model can shed light on this. 
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