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Chapter 1

Introduction

In the last two decades mesoscopic physics (”mesoscopics”) has evolved to one
of the leading and most attended fields of research in modern theoretical and
experimental condensed matter physics. Exhibiting a rich phenomenology and
accommodating a lot of new physical effects it is last but not least of large inter-
est for present and future technologies. Essentially governed by the mechanisms
of ordinary quantum mechanics some of its features were theoretically found
and predicted more than 50 years ago. However, the experimental and techno-
logical requirements necessary to prepare suitable samples and to measure the
predicted effects could not be provided until about 20 years ago. Since then
a lot of effort has been invested in theoretical as well as experimental research
transfering mesoscopic physics into a major subfield of condensed matter physics.
Recently, considerable overlaps with other fields of physics, such as superconduc-
tivity, quantum chaos, microwave physics and optics, QCD, and spin physics were
discovered.

Roughly speaking mesoscopic physics deals with phenomena which result from
the interference of non-interacting multiply scattered electron waves in disordered
media (metals or semi conductors). The existence of such quantum interference
effects is intimately related to the phase coherence of the waves in a given sample.
The linear extent of the maximal region within which the electron waves are still
phase coherent is called phase coherence length Ly. While by disorder (impuri-
ties, defects, dislocations etc.) the electron waves are scattered elastically, which
conserves phase coherence, it is destroyed by inelastic scattering (e.g. electron-
phonon interaction). Therefore, electrons are phase coherent within the sample if
its (linear) size L is sufficiently small and if the temperature is low enough. This
is realized in samples of size less than about 100 nm if the temperature is about
1 K or less. Thus, although being of macrosopic size such samples are governed
by microscopic wave mechanical effects. This intermediate state motivates the
notion mesoscopics. Although in the last years one has realized that electron-
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electron interaction can play a crucial role in mesoscopic systems, we imply by
the term "mesoscopics” in the following that electrons are non-interacting. For
a review about mesoscopics we refer the reader to Refs. [1,2] and the references
therein.

Some of the most famous phenomena characteristic for mesoscopic systems are the
electronic Aharonov-Bohm effect [3], persistent currents [4,5], and the universal
conductance fluctuations (UCF) [6]. The latter effect manifests in (e.g.) magnetic
field dependent and reproducible fluctuations of the conductance, which are of the
order of €?/h. While the pattern of the fluctuations is sample specific (”magneto
fingerprint”), their amplitude is universal. This means that it depends only on the
dimensionality and the symmetries of the Hamiltonian and not on the geometry
and microscopic details of the sample. Universality is one of the most remarkable
features of weakly disordered mesoscopic systems, which is intimately related to
quantum interference.

Another example of universality is the phenomenon of weak localization, which
results in the decrease of the conductance of a mesoscopic sample compared to its
classical value. This can be explained by an enhanced backscattering probabil-
ity caused by destructive quantum interference. The corrections to the classical
conductance due to this effect have been calculated by means of diagrammatic
perturbation theory, cf. e.g. Ref. [7]. It turns out that the perturbative contri-
butions depend only on the dimensionality and symmetries, e.g. time-reversal
symmetry, which is broken by a magnetic field. The weak localization effect is
interpreted as a precursor of strong localization. Mapping the quantum disor-
der problem to a lattice model ANDERSON predicted in 1958 that in a system
with strong disorder the electronic wave function can be exponentially localized
due to quantum interference effects [8]. As a consequence the dimensionless con-
ductance ¢ = Gh/e? (G conductance) decreases exponentially with the system
length L, g x e 2L/¢ where a new characteristic length scale occurs, the local-
ization length £. While for L > £ the electron wave function is localized and the
system behaves like an insulator, states are extended in the opposite case, result-
ing in metallic behaviour of the sample. Under the assumption of one-parameter
scaling it has been shown by ABRAHAMS ET AL. in 1979 that due to the effect
of weak localization all disordered systems of dimension d < 2 flow into strong
localization under renormalization of the system size [9]. In other words, there
are good reasons to expect extended states only in dimension larger than two.

Nevertheless, 1D and 2D systems which can exhibit delocalized states are known
for many years. Contradicting the scaling theory of the ”gang of four” such
systems are of special interest and have attracted the attention of a lot of re-
searchers. In the two parts of this work we address two examples of systems with
d < 2, in which delocalization occurs by completely different mechanisms. The
first subject is the disorder averaged density of states (DoS) in a quasi-1D ran-
dom flux system. In the second part we investigate the localization-delocalization
transition in 2D disordered systems with additional scattering in spin space.
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Since the 50’s investigations of 1D systems had shown, that there can exist de-
localized states or related phenomena. The DoS, e.g., which is usually a smooth
function, can exhibit a singularity in the middle of the tight-binding band cor-
responding to a lattice model with purely off-diagonal disorder [10-12]. Later,
in the 90’'s GADE and WEGNER [13-15] found an analogous behaviour within
a non-linear o-model (NLoM) approach to a 2D model with sublattice or chi-
ral symmetry. They further argued (see also [16,17]), that the chiral symmetry
results in three new universality classes, extending the three-fold classification
scheme elaborated earlier by DysoN [18]. Since then a lot of related problems
have been investigated and the existence of delocalization as well as the underly-
ing mechanisms have been discussed controversially. In the last years, new insight
has been gained considering systems with chiral symmetry (cf. e.g. [19,20] and
references therein). In particular, for the random magnetic flux and the random
hopping problem, which correspond to chiral systems with broken and conserved
time-reversal symmetry, respectively, a lot of analytical (see e.g. [21-27] and ref-
erences therein) and numerical (see e.g. [28,29]) work has been done.

Due to the rigorous analytical methods available in one dimension the localization
behaviour in 1D systems is meanwhile well understood. But in 2D this is not the
case. It is much harder to obtain analytical and numerical results and we are far
from having any exhausting picture. Therefore, it is recommendable to consider
the quasi-1D case. On the one hand it allows for both, diffusive transport and
strong localization, as in 2D, on the other hand it can be treated by controllable
analytic methods, similar as in 1D. As mentioned above, the DoS of systems
with chiral symmetry shows non-trivial behaviour. Although being one of the
simplest quantities (a one-point Green function), there exists no comprehensive
picture of this quantity in dimensions higher than strictly 1D. Moreover, in order
to make further progress, in particular in order to investigate the non-perturbative
quantum regime, one needs a suitable tool.

Recently, a supersymmetric NLoM for the random magnetic flux problem has
been derived by ALTLAND and SIMONS [22]. This is an effective long-range —or
low-energy— field theory, which allows for the calculation of arbitrary n-point
Green functions for chiral systems with broken time-reversal symmetry, i.e. sys-
tems of so-called AIIl symmetry. The random flux problem is of interest in
and applicable to various fields of condensed matter physics, e.g. in the Quan-
tum Hall Effect at half filling, in high-7; superconductivity, in non-Hermitean
quantum mechanics. Further, it is related to the low energy sector of a single
anti-ferromagnetic spin-N/2 chain or to the low energy sector of N coupled anti-
ferromagnetic spin-1/2 chains. Beyond condensed matter physics the random
flux model plays an important role in lattice QCD and for Dirac fermions subject
to a random gauge field (see e.g. Ref. [22,24] for references).

In the first part of this work we calculate the DoS for a quasi-1D random flux
system in the ergodic, diffusive and quantum regimes by means of this NLoM.
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Evaluating the action of the field theory in the zero-dimensional limit we find
that the DoS vanishes at ¢ = 0, where € measures the distance from the middle of
the tight-binding band. Furthermore, it turns out that in the ergodic regime one
rediscovers results known from chiral random matrix theory [16,17]. We further
calculate perturbative corrections to the DoS by a diagrammatic perturbation
scheme. We find that all corrections up to three loop order vanish. The non-
perturbative quantum regime is the most difficult and most interesting regime.
We map the problem of the functional integration, involved in the corresponding
expression for the DoS, to the solution of a diffusion type partial differential
equation (heat equation). The occurring second order differential operator plays
the role of a generalized Laplacian on the underlying supergroup and contains
a contribution for each of the terms in the NLoM action. These contributions
are calculated by means of the transfer matrix method. After the solution of
the heat equation the DoS in the localized regime is calculated in the limit of
small energies w = €/A¢, where A is the level spacing corresponding to the
localization volume. The interesting result is that the DoS depends drastically
on the parity of the channel number N.. While for even N, the DoS vanishes
in the middle of the band as {p(w)) x |w|In|w|, it diverges for an odd number
of channels as {p(w)) — po  1/|wln®|w||. The existence of this even-odd effect,
which is intimately related to the chiral symmetry, was first noticed by MILLER
and WANG Ref. [21].

We now turn to the second subject. In recent years a lot of experiments have
shown that there exists a localization-delocalization (LD) transition in 2D sys-
tems, which are non-chiral but time-reversal invariant [30-36]. This led to discus-
sions about the underlying mechanism. In particular, the influence of spin-orbit
and electron-electron interaction has been discussed controversially [37-42]. In
the second part of this work we will focus on the former aspect and elaborate the
universal features of the LD transition in time-reversal invariant systems with
spin-orbit interaction.

From general arguments [43] breaking of spin-rotational symmetry has an im-
pact on the quantum interference effects occurring in disordered systems. Due to
the 4r-periodicity of the spin, backscattering can be suppressed by interference
mechanisms. More precisely, it turns out that the corrections to the conductance
of weakly disordered systems are positive in the case of broken spin-rotational in-
variance [44,45], i.e. the weak localization effect changes its sign and is therefore
called weak anti-localization. Within the scaling theory of ABRAHAMS ET AL. [9]
it can be argued, that due to the weak anti-localization effect there exist delocal-
ized states. This, in particular, implies the existence of a LD transition which is
triggered by the strength of the spin scattering.

We investigate this transition numerically within a scattering theoretical network
model (NWM). In a recent paper [46] it was shown that such models are well
suited to describe disordered electron systems. NWDMs are generic in the sense
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that the disorder of the physical system is directly represented by a network
of unitary scattering matrices, which are merely subject to the symmetry con-
straints of the system. The triggering of disorder and spin scattering strength is
in our case provided by three independent parameters, two for disorder and one
for spin. Having constructed the scattering matrices we determine the transfer
matrices corresponding to a quasi-1D strip geometry of width M. By means
of the transfer matrix method we calculate the renormalized localization length
A = &/M for various values of the system parameters and the system width.
Since A is well-suited as a scaling variable (cf. [2]), we are able to investigate the
localization behaviour of the extended (2D) system using the finite-size scaling
method. It turns out that the system exhibits a LD transition, and we determine
the corresponding phase diagram in the three-dimensional parameter space.

In order to investigate the universal features of the transition we make the crucial
assumption of one-parameter scaling. This assumption is usually justified by the
determination of a scaling function. But often not much effort is invested in the
construction of this function. Transparencies containing data sets are shifted and
the quality of the fit is judged subjectively by eye. We use a more sophisticated
and objective method adopted from [47]. Essentially, this method is based on
a numerical procedure which fits a set of Chebyshev polynomials to the data
points. Furthermore, the credibility of the fit is tested by a y2-test. Under these
conditions we find one-parameter scaling to be fulfilled with a high likelihood.
Consequently, we proceed by calculating the critical value of A and the critical
exponent v of the correlation length. Again we use a numerical fit procedure
and a corresponding test in order to get a reliable result. We obtain the critical
exponent to be v = 2.51 +0.18 which coincides with most of the values published
in the last years. Using a conformal mapping [48] we obtain the scaling exponent
of the typical local density of states to be given by o = 2.174 4+ 0.003.

The transfer matrix method requires a lot of computational effort. At the end
of the second part we shortly introduce the numerical real-space renormalization
method for hierarchical NWM [49-52], which allows us to qualitatively determine
the localization behaviour of a system with very little computational effort. The
basic idea is to put elementary scatterers together in such a way that the resulting
composite scatterer allows to be interpreted as new elementary scatterer for the
iteration step. Thus, the number of incoming and outgoing channels must be
equal before and after such an RG step. Repeating this procedure several times
one very quickly gets very large system sizes. The price which has to be paid
is that the extended system possibly has a fractal dimension smaller than the
spatial dimension, meaning that the extended network does not contain the full
information. But often it still possesses the generic features of the underlying
model. We apply the real-space RG method to the so-called Manhattan model
in order to test whether it can exhibit the quantum Hall critical point.
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This dissertation is organized as follows. After an introduction to mesoscopics
and novel symmetry classes we introduce systems of AIIl symmetry and their
physics. In the fourth chapter the derivation of the corresponding non-linear o-
model in Ref. [22] is sketched and general formulas for the calculation of the DoS
are derived. After that we turn to the derivation of the generalized Laplacian
corresponding to the o-model action, and discuss the heat equation. In Ch. 6 the
DoS is calculated and discussed in the ergodic, diffusive, and quantum regimes.
The second part starts with an introduction to general scattering theoretical net-
work models and the phenomenology of the localization-delocalization transition.
The construction of the scattering matrices is presented in Ch. 8. It follows an
introduction to the finite-size scaling method, where the fit procedure employed is
explained in detail. The results of the calculations are presented and discussed in
Ch. 10. The subsequent chapter presents the real-space renormalization method
applied to the Manhattan model. To conclude, all of the results are summarized.



Chapter 2

Mesoscopics and Symmetries

2.1 Characteristic Length and Energy Scales

In order to facilitate a systematical classification of mesoscopic systems let us first
look at the length and energy scales relevant for electronic transport. Consider
an electron in a d-dimensional system of linear size L as sketched in Fig. 2.1. The
Fermi energy er is the largest relevant energy scale, since transport is governed
by electrons at the Fermi edge, where they propagate with Fermi velocity vg.
Correspondingly, we have the Fermi wave length, A\p x 1/vp, as a microscopic,
i.e. quantum mechanical length scale. As long as no scattering takes place an
electron propagates freely. This characterizes the so-called ballistic regime, where
the electron’s motion is determined solely by kinematics. If we wait long enough
the electron will meet an impurity. The typical distance between two (elastic)
scattering events characterizes the strength of the disorder. More precisely, we
define the elastic mean free path as l. = vpT, where 7 is the momentum relaxation
time, i.e. the typical time after which information over the direction of the
momentum is lost.

The mean free path allows for the definition of what is called a quasi-one-
dimensional (quasi-1D) system. While a (strictly) 1D system of length L (a
"wire”) allows for exactly one transport mode (energy channel) a quasi-1D sys-
tem has a small but finite width M (a ”thick wire”). Due to quantization in the
transverse direction a certain amount of transverse modes exists, each of them
serving as a transport channel. To be more specific, on one hand M should be
much larger than the Fermi wave length but should not exceed the mean free path
on the other hand it, A\p < M < [, in order to miss the characteristics of a 2D
system. Furthermore, by means of the two length scales Ar and [, we are able to
characterize the strength of the disorder. For [, > Ap we speak of weak disorder
(or weak scattering) otherwise of strong disorder. In the former case the wavy
nature of the electron is substantially irrelevant and it can be regarded as a prop-

15
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Figure 2.1: Characteristic length scales in mesoscopic physics.

agating particle. Hence, the weak disorder condition allows for a semi-classical
approximation. In the following we focus only on weakly disordered systems.

For times larger than 7, the type of the electrons’ motion is changed. Instead
of ballistic propagation, the direction of motion is constantly modified due to
scattering processes. Thus, we enter the regime of diffusive dynamics, where (in
the case of weak disorder) the electrons behave as classical diffusing particles.
The diffusive motion is therefore characterized by the classical diffusion constant
D = vir/d = vpl,/d. Within this regime the dynamics depends sensitively on
individual properties of the system, such as disorder configuration, geometry,
and dimensionality. Although we are dealing with the semi-classical approxima-
tion, the quantum mechanical nature of the electrons gives rise to a characteristic
behaviour of spectral properties and small quantum corrections to classical trans-
port quantities as e.g. the diffusion constant and the conductance. An example
for the latter are the weak localization and anti-localization corrections men-
tioned above. We stay as long in the diffusive regime as the electrons propagate
at most once across the system within the time of observation. This motivates
the introduction of the classical diffusion time ¢tp = L?/D which is the typical
time needed to cross the whole system. The related energy scale F. = h/tp is
called Thouless energy.

Exceeding the diffusion time, ¢t > tp, or equivalently falling below the Thouless
energy, € < E., we leave the diffusive regime. In particular, if ¢ < E, the system
is crossed many times, provided that L < £. In a corresponding classical system
the whole phase space would be explored. This motivates us to call this regime
ergodic. The only impact on the dynamics is now given by the symmetries of the
underlying Hamiltonian. In this sense a system behaves universal in the ergodic
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regime. All information about individual scattering events gets lost. Even the
geometry (the boundaries) and the dimensionality do not play a role. Therefore,
this regime is also called zero-dimensional (0D) limit. This denotation is further
motivated by the fact that due to the system length dependence of the Thouless
energy, the condition ¢ < F. can be realized by going to sufficiently small system
sizes. If the energy is further decreased we will meet the mean level spacing
A which sets the smallest characteristic energy scale. For energies ¢ < A or
equivalently times exceeding the Heisenberg time ty = h/A we finally enter the
quantum regime, where the structure of the energy spectrum is resolved.

It has been realized by THOULESS that the ratio of the Thouless energy and the
mean level spacing defines a dimensionless conductance, ¢ = E./A, (g is the
conductance measured in units of €?/h), which can serve as the single parameter
for the classification of the localization behaviour of a system. In the diffusive
regime, where quantum interference effects merely attach small corrections to
the classical diffusion constant, we have & > L. In particular, for quasi-1D sys-
tems it turns out that ¢ = £/L > 1. Hence, diffusive dynamics implies a large
conductance. We also speak of "metallic” behaviour in this case. For E, ~ A
the dimensionless conductance is of the order of unity, which means that the
localization length is of the order of the system size. For even larger values of
L, the multiply scattered electron waves interfere destructively, leading to strong
localization, & < L. The conductance decays exponentially on the localization
length in this localized regime.

2.2 Approaches and Methods

Let us mention at this stage, that for the various energy regimes of mesoscopic
physics different methods of evaluation have been established. Within the dif-
fusive regime, i.e. ¢ > E, and A\p < [, which implies g = E./A > 1 (weak
scattering), the impurity diagram technique (”diagrammatics”) is widely used
(cf. e.g. [53,54]). This perturbative method is based on the systematical expan-
sion in contributions which are related to coherently coupled scattering paths.
Thereby, A/e occurs as small expansion parameter. Hence, the range of validity
of perturbation theory is restricted to energies being much larger than the mean
level spacing and to the conditions mentioned above. If one is interested in an en-
ergy resolution comparable to A perturbation theory breaks down. Consequently,
the low energy ergodic regime and the quantum regime are not accessible by dia-
grammatics. Instead, one has to use non-perturbative methods, e.g. the method
of orthogonal polynomials introduced by MEHTA (cf. e.g. [55]). For quasi-1D sys-
tem all regimes can be explored by the so-called DMPK equation [56,57] which
is a kind of diffusion equation. Then, the problem is reduced to the solution of a
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differential equation. In two dimensions a lot of results can be obtained by using
the renormalization group. With regard to the more or less restricted techniques
the field theoretical approach introduced by WEGNER in 1979 [15,58] is a mile-
stone in the history of modern condensed matter physics. Deriving an effective
long-range field theory, a so-called non-linear o-model (NLoM), he invented a
tool, which in principle allows for the investigation of mesoscopic (and other)
systems in all relevant energy regimes and arbitrary dimensions. Subsequently,
this method has been improved by EFETOV [59], who invented a supersymmetric
formulation of the NLoM as an alternative to the replica trick used by WEG-
NER. Both version are still in use, but there are some formal reasons to prefer
the supersymmetric formulation (cf. [60]).

2.3 Symmetries of Mesoscopic Systems

After the introduction to mesoscopic phenomena and a discussion of central quan-
tities, we will give a survey of the fundamental symmetries in the following. We
therefore focus on the ergodic regime, where the behaviour of a system is solely
characterized by symmetries. As a consequence, the zero-dimensional limit of a
disordered system can be described by random matriz theory (RMT). Originally,
RMT was developed by WIGNER [61] and DYSON [18] in order to investigate the
energy spectrum of complex atomic nuclei. The basic idea is to model a complex
(e.g. disordered) system by a Gaussian ensemble of Hermitean random matrices,
hence only taking the fundamental symmetries of the system into account and
neglecting any individual structure. Each random matrix representing a Hamil-
tonian H is considered to have a large dimension /N >> 1 corresponding to a large
number of eigenenergies. Now the question arises, which symmetries occur in typ-
ical mesoscopic systems and how can they be classified within RMT. For a long
time three symmetry classes have been known, which we refer to as standard or
Wigner-Dyson classes. Disordered systems with broken time-reversal symmetry
are realized by an ensemble of general Hermitean random matrices. Since they
can be diagonalized by unitary matrices the ensemble is called Gaussian unitary
ensemble (GUE). In the presence of time-reversal invariance, TH7 ' = H, where
T denotes the time-reversal operator, we have to distinguish two cases. If the sys-
tem allows for spin scattering we have 7 = —io5’ K, where the Pauli matrix o3’
acts in spin space and K is the operator of complex conjugation. Consequently,
we get H = o5’Ho3, i.e. the Hamiltonian is real quaternion, H = (_4. £)
(A Hermitean, B anti-symmetric), and thus can be diagonalized by symplectic
matrices. Therefore, the corresponding random matrix ensemble is called Gaus-
sian symplectic ensemble (GSE). The highest symmetry is realized if the system
is additionally invariant under spin-rotation, [H, ;"] = 0 for two and therefore
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all of the indices 7+ = 1,2,3. Then, the grading in spin space is redundant and
it turns out that H is symmetric. Hence, it can be diagonalized by orthogonal
matrices yielding the Gaussian orthogonal ensemble (GOE). By means of RMT
a lot of insight could be gained about disordered systems in the ergodic regime.
See Ref. [62] for a comprehensive review. But an open question remained: Is
the Wigner-Dyson classification scheme really exhaustive or do other symmetry
classes possibly exist?

This question could not be answered using the scheme based on diagonalizing
matrices. A first hint on a way out was given by DysoN itself [63] when he
noticed, that the three Gaussian random matrix ensembles are related to three
families of Riemannian symmetric spaces of compact type. These spaces have
been known (in mathematics) for a long time' and have been classified by CAR-
TAN, who has proved that there exist exactly ten of them?. Before addressing the
question whether the other seven symmetric spaces are also realized within RMT
let us reconsider the three Wigner-Dyson ensembles in order to see how the new
classification scheme works.

The basic idea [65] is to regard the random Hamiltonians H (multiplied by i)
as the generators of symmetric spaces. By ”generator” we mean that for each
element S of the symmetric space there exists an H such that S = exp(iH).
Anticipating the result, we start from the symmetric spaces U(N), U(N)/O(N)
and U(2N)/Sp(NV) and consider elements iH of the corresponding tangent spaces
(at the origin). Hamiltonians H with iH € u(N) are just arbitrary Hermitean
random matrices and belong to the GUE, whereas Hamiltonians with iH € u(V)\
o(N) are real symmetric and therefore elements of the GOE. Finally, if iH €
u(2N)\sp(N), H is a real quaternion and, hence, belongs to the GSE. Here, the
capital and small letters denote the standard Lie groups and corresponding Lie
algebras, respectively. Thus, it turns out that random Hamiltonians belonging
to one of the standard ensembles are just tangent vectors of the three symmetric
spaces mentioned above®. In order to explore the physical significance of the
other seven spaces we identify the symmetry of the corresponding tangent space
elements and look for physical systems whose Hamiltonian is just subjected to
such a symmetry. All ten symmetric spaces are listed in Tab. 2.1. The first column
shows the denotations introduced by CARTAN and the second the structure of
the symmetric space. The next four columns specify the realized symmetries.
In the seventh column the corresponding random matrix ensembles are listed.
The meaning of the last two columns is explained later. From now on we will use

!For a definition and mathematical background on symmetric spaces cf. e.g. Ref. [64].

2For completeness we mention that there is one more if the dimension of the random matrix
ensembles is odd.

3Note that so far there exists an obvious relation between both classification schemes. The
symmetric spaces corresponding to the three Wigner-Dyson ensembles are just obtained by
dividing off the diagonalizing groups from the unitary group. But it is not clear how to make
further progress using the Wigner-Dyson scheme.
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class ‘ symmetric space (compact) H T ‘ sp ‘ ch ‘ p-h H RMT H My ‘ My
A U —[+| -] — | GUE | AT | AIII
AL | U(N)/O(N) +|+|-| - | coE | BDI| c1I
ATl | U(2N)/Sp(N) +| -] -] - | GSE | cu |BDI
ANl | U(N + M)/U(N) x U(M) — | £ |+ | — || chGUE A A
BDI | SO(N+ M)/SO(N)xSO(M) ||+ | + | + | — || chGOE || Al | AIl
C11 Sp(N + M)/Sp(N) x Sp(M) +|— 1|+ | — || chGSE || AIl | AI
C | Sp(™) [+ [ + | NN. |Dm| c1
CIl | Sp(N)/U(N) + |+ -] + LOE D C
D | SO(N) —| ==+ | NN || o1 | DII
DIII | SO(2N)/U(N) +|-|-|+|] SE | ¢ | D

Table 2.1: The ten large families of Riemannian symmetric spaces (of compact
type) and the corresponding symmetries (7: time-reversal, sp: spin-rotational,
ch: chiral, p-h: particle-hole) of their tangent spaces. The seventh column refers
to the corresponding random matrix ensembles. The last two columns specify
the structure of the bosonic and fermionic sector of the integration manifold of a
corresponding non-linear o-model. (adopted from Ref. [66])

CARTAN’S names for the symmetric spaces, also for the Wigner-Dyson symmetry
classes.

Let us, as an example, consider the non-standard space AIIl. Its tangent space
is given by u(2)/u(1) x u(1). Using that the Lie algebra elements of the U(2) are
anti-Hermitean 2 x 2 matrices, i (% ;) € u(2) (a,b real, ¢ complex) we obtain the
generators of the symmetric space to have the form i (% §) € u(2)/u(1) x u(1).
The generalization to an arbitrary 2/NV-dimensional matrix reads

iH =i (}?T g) € u(2N)/u(N) x u(N), (2.1)
where h is Hermitean. The block off-diagonal structure of H is equivalent to
[H7 J3AB]+ = Oa (22)

where o4 denotes the Pauli matrix w.r.t. the (so far not further specified) block
structure of H. The symmetry Eq. (2.2) is well-known in QCD* and denoted
as chiral symmetry. Indeed, it also plays a role in the framework of mesoscopic
systems, e.g. in the so-called random flur model, where time-reversal and spin
rotational invariance is broken. Thus, it belongs to the class AIIL. In a disordered
system subjected to a imaginary vector potential the system is time-reversal and

Tt turns out that in the eigenbasis of 5 the Dirac operator describing a Dirac fermion
subjected to a random gauge field exhibits this symmetry in the massless limit.
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spin-rotational invariant, additionally to the chiral symmetry. Hence such a sys-
tem is a physical realization of the class BD1. Altogether, we get, as for the
standard universality classes three classes with additional chiral symmetry. The
corresponding random matrix ensembles are called chiral GUE (chGUE), chiral
GOE (chGOE), and chiral GSE (chGSE) and have been discovered and investi-
gated in the context of QCD [67,16]. The four remaining symmetry classes have
been found to be relevant in the framework of normal conductor-superconductor
systems (so-called NS-junctions) [68,69]. Instead of the chiral symmetry, Eq.
(2.2), here a particle-hole symmetry occurs, H = —o5"HTo}", where H is the
Gor’kov Hamiltonian and the Pauli matrix ag’h acts in the particle-hole space.
Considering the zero-dimensional limit one obtains four more related random
matrix ensembles. Two of them have the specific denotation, LOE and LSE,
where the ”L” stands for Laguerre and the remaining two are nameless. The
class C' is realized in SN-junctions in the presence of a magnetic field, whereas
the class of highest symmetry (among these four), C1, plays a role in dirty d-wave
superconductors.

To summarize, we have seen that according to a new classification scheme the
standard Wigner-Dyson random matrix ensembles have to be supplemented by
seven non-standard classes. The new scheme is based on interpreting the en-
sembles over the tangent spaces of the large families of Riemannian symmetric
spaces. As proven by CARTAN there are exactly ten (eleven, cf. footnote above)
of these spaces. Comparing the symmetry of the corresponding random matri-
ces to the symmetry of Hamiltonians of certain disordered systems realized in
mesoscopic physics one finds that all ten universality classes are realized in the
zero-dimensional limit. Furthermore, no other symmetry classes are known until
now. Thus, if we believe the physics to conform to mathematics we should as-
sume that all physical universality classes are discovered. This believe is far from
being a proof and actually is not motivated very well. The reason is that the
symmetric spaces on which the classification is based are mathematical objects
which have no direct physical significance. Fortunately, this lack of motivation
could be eliminated. In 1996 ZIRNBAUER proved that there exists a mapping from
the ten random matrix ensembles (corresponding to the ten symmetric spaces)
onto the ten families of Riemannian symmetric superspaces [66,68]. The latter
ones turn out to be the integration manifolds of the low-energy sectors of su-
persymmetric effective field theories for disordered systems. These are just the
supersymmetric NLoMs mentioned above, which EFETOV has derived for the
standard symmetry classes A, Al, and AIl. By the mapping onto the symmetric
superspaces the relation between the original symmetric spaces and the physical
universality classes becomes much closer, since the geometry of the integration
manifolds is manifestly governed by the symmetry of the underlying Hamiltoni-
ans. It turns out that the manifolds consist of a non-compact bosonic sector My
and a compact fermionic sector, Mr. These sectors have the same dimension
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for all symmetry classes. In Tab. 2.1 the domains of integration are listed. In
conclusion, we have given an overview about the symmetries of random matrix
ensembles, which are able to describe the ergodic limit of disordered phase coher-
ent electronic quantum systems. By mapping these systems onto a NLoM their
symmetry can be shown to be closely related to the ten Riemannian symmetric
spaces, the random matrix ensembles are related to. It is believed that a complete
classification of possible physical universality classes is given by the symmetric
spaces. As already mentioned, once a non-linear o-model is derived, it is possi-
ble to explore the behaviour of mesoscopic systems in arbitrary dimensions and
all interesting regimes, at least in principle. Therefore, it is desirable to have
also the NLoMs for the non-standard symmetry classes at hand. The motiva-
tion for the investigation of the corresponding physical systems is the existence
of unusual and new physical behaviour as compared to the classes A, Al, and AII.



Part 1

Density of States in quasi-1D
Systems of AIIl Symmetry
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Chapter 3

Systems of AIII Symmetry

In Ch. 2 we have got to know the symmetry class AIII as one of seven novel, non-
standard symmetry classes [66,69] realized in mesoscopic systems. Non-standard
means that the symmetry classes differ from the three Wigner-Dyson universality
classes of RMT, A (GUE), AI (GOE), and AIIl (GSE). This part of the thesis is
dedicated to the investigation of the DoS for systems of AIIl symmetry. In the
present chapter we point out why it is worth while to do this. Therefore, we show
how off-diagonal disorder is related to chiral symmetry and why this symmetry
implies a special role of the energy in the middle of the tight-binding band. We
further introduce the generalized random flux model as an important example of
systems with AIIl symmetry. In the second section we present some qualitative
arguments for the non-trivial behaviour of the DoS in terms of Green functions.

3.1 Peculiarities of Chiral Symmetry

The early theory of localization in disordered electron system was substantially
influenced by the introduction of the Anderson tight-binding model [8]. This
model allows for nearest neighbour hopping, characterized by a fixed parame-
ter £, and interaction with some random on-site potential, described by random
energies ¢;. In the language of second quantization the Anderson tight-binding
Hamiltonian writes

HAM — Ztc!cj + Zsic;'ci, (3.1)
(2,4) i

where ¢; is an electron field operator at site 4 and the notation (i,j) restricts
the summation to all nearest neighbour sites. In a suited real-space basis the
Anderson Hamiltonian can be represented by a tri-diagonal matrix, the fixed
hopping matrix elements sitting on the left and right secondary diagonal and the
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random energies being placed on the diagonal. This Hamiltonian as it stands
models disordered systems of symmetry A. Demanding HA" to be symmetric
we get a model for the class Al corresponding to time-reversal invariant disor-
dered systems. If additionally scattering in the spin degrees of freedom is allowed
one gets the Ando Hamiltonian [70], a tight-binding Hamiltonian which governs
systems of AIl symmetry. Thus, within the Anderson tight binding model meso-
scopic systems corresponding to the three Wigner-Dyson universality classes can
be investigated. According to the scaling theory of ABRAHAMS ET AL., in one
or two dimensions, systems of A and Al symmetry show always localized be-
haviour, whereas for the class AIl a localization-delocalization transition occurs.
The latter is the subject of the second part of this thesis.

Later, the Anderson model was generalized to the case of off-diagonal disorder,
thus providing additionally or exclusively the hopping matrix elements with some
site dependent randomness keeping the on-site potential fixed in the second case.
But no new behaviour was recovered, until one considered the random hopping
without any on-site potential (cf. e.g. [11,12,71,72]). In this case one found in 1D
in the middle of the tight-binding band singular behaviour of the DoS and anoma-
lous behaviour of the conductance distribution. GADE and WEGNER [13-15]
found analogous results in a 2D sublattice model. New insight was gained, when
one realized that systems with purely off-diagonal disorder are intimately related
to sublattices (or bipartite lattices) with a special symmetry [73-76]. Denoting
the two species of a two-sublattice decomposition by 7 A” and ”B”, an off-diagonal
Hamiltonian contains elements corresponding either to an A-B or to a B-A cou-
pling. Consequently, in the sublattice, or AB representation the Hamiltonian
turns out to be block-off-diagonal,

[ 0  Hpg
ne (8 ) "

where Hgy = Hl,. In Ch. 2 we had already seen that the off-diagonal form of
the Hamiltonian is equivalent to chiral symmetry,

[H,04B8], = 0. (3.3)

Therefore, systems with purely off-diagonal disorder are typical systems of chiral
symmetry. If no other symmetries as time-reversal or spin-rotational symmetry
are present, the Hamiltonian falls into the symmetry class AIIL. A famous example
for such a Hamiltonian is given by the so-called random flux model,

HRF = cl el%ii Ccj, 3.4
] J
(i,3)

describing electrons on a lattice subject to a strong perpendicular random mag-
netic flux. Here, the hopping matrix elements have an amplitude of unity. The
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disorder is governed by the random phases, ¢ € [0, 27[. Note, that the denotation
”random flux model” actually is not correct. One should rather speak of a ”ran-
dom vector potential model”. Indeed, there is a subtle difference, since a short
range correlated magnetic field can imply long range correlations in the vector
potential [77,78]. Nevertheless, we will use the more common term random flux
model for the Hamiltonian Eq. (3.4). A related model is the so-called random
hopping model, where randomness is implemented via real hopping matrix ele-
ments. This model, conserving time-reversal invariance, falls into the symmetry
class BDI. Both, the random flux and the random hopping model have reveilled
renewed interest recently [21-29].

There exists a natural generalization of the random flux model. Note that due to
the unity amplitude the hopping matrix elements can be considered to stem from
the one-dimensional unitary group, U(1). Grading the quantum mechanical states

w.r.t. some inner degrees of freedom of dimension N, ¢; = ¢!, o =1,..., N, the
generalization of Eq. (3.4) reads
H=- Z C;[UijCj, (35)
(4,3)

where the matrices U € U(N) are homogeneously taken from the unitary group
in N dimensions. This corresponds to a maximum of randomness and therefore
to strong disorder. We will perform the analysis of the DoS for systems of AIII
symmetry within the generalized random flux model Eq. (3.5). Recently, for this
model a non-linear o-model has been derived [22]. The derivation is outlined in
Ch. 4. The investigations of the DoS will be based on this NLoM.

Let us have a first look at the consequences of the chiral symmetry Eq. (3.3). Con-
sider the Schrédinger equation corresponding to the chiral Hamiltonian Eq.(3.5),
Hvy, = e, where 1, is an eigenstate corresponding to the eigenenergy e. Multi-
plying the equation by o5'B we obtain from Eq. (3.3)

(05" Hog®) (03 ve) = eo5 ™o (3.6)
— HyrB = —epAB (3.7)

e
where 2B denotes the ”chiral transform” of 1, which is an eigenstate corre-
sponding to the eigenenergy —e. In the sublattice representation the transformed
state is given by

AP =03 e = (_’@@ . (3.8)

Thus, the eigenvalues of chiral Hamiltonians appear in pairs of opposite sign and
therefore the spectrum is symmetric. This singles out the band center ¢ = 0,
and the question arises, whether this has an impact on the behaviour of physical
quantities. The question is further motivated by the observation that in the
standard symmetry classes the (averaged) spectrum is uniform. This uniformity
is broken in the vicinity of € = 0.
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3.2 Physics of the Random Flux Model

In this section we will argue that the DoS, having few structure in systems of
standard symmetry, has the complexity of coupled Green functions in systems
of chiral symmetry. We therefore give a short introduction to the role of Green
function in mesoscopic physics.

The spectral and transport quantities relevant in mesoscopic systems can be
expressed in terms of disorder averaged n-point Green functions. By this notion
we mean expressions of the structure

(o)

where G*(€) = (¢* — H)™! is the resolvent operator of the Hamiltonian H w.r.t.
complex energy e = ¢ £ iy (v € R*). The brackets denote the average over all
possible configurations of the disorder. Note that G~ (¢) = [G*(¢)] .

Let us introduce the real space representation of the Green function,
G* (21, 295 €) = (21| GE(€) |22)

and its Fourier transform G*(x1,z,;t). The relevance of Green functions for
transport (or other) quantities in mesoscopic physics can be seen by recalling that
G (x4, z2; t) is nothing else than the propagator describing the motion from point
Zo to point 1 within time ¢. This quantity contains a quantum mechanical phase
factor, which depends very sensitively on the disorder configuration if |ze —x1| >
le. As a consequence, after averaging over the disorder the propagator decays
exponentially on the length scale I' ,

(G* (@1, m95)) o e 1727 m1I/2le

Using similar arguments we conclude that all n-point Green functions containing
either G (€) or G~ (¢) only drop down on the same length scale. Thus, we should
not be surprised, that transport quantities or expressions they can be extracted
from, consist of combinations of G*(¢) and G~ (€) that survive the disorder aver-
age on macroscopic length scales.

! This result can be obtained by re-transforming the averaged momentum depending Green
function (G*(k;€)) = [e — ex +1i/(27)]"" into real space (e = k?/2m). For the sake of com-
pleteness we mention here that this result is obtained by the approximation (e7)~! < 1 and
therefore valid only for weak disordered systems.
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Let us consider the following examples:

e diffusion modes In the following expression the phase factors of the Green
functions cancel each other by construction:

Gt (21,12, t)G™ (w1, 223 1) = |G (21, 205 1) |°.

Hence, this quantity survives the disorder average and corresponds to long-
range modes, whose first perturbative contribution is called a diffuson.

e density of states
In terms of Green functions the DoS, v(e) = §(e — H), can equivalently be
expressed by

ple) = %mtr (G (e) - G+(e)) = —l Imtr G (e)
_ l mtr d px (T (3.9)
Tmtr G ( /d Ze—w—ek

In the last line we have performed an expansion in energy eigenfunctions
or(z) with corresponding eigenvalues €, = k?/2m. Due to the combina-
tion ¢y (2)¢x(z) there is again no phase dependence by construction. The
only effect caused by disorder is a broadening of the d-peaks in the energy
spectrum. After the disorder average we end up with the bulk DoS

| (a B
/dd Ze—l/ 27) —ek_pO'

e two-level correlation function The two-level correlation function is defined
by

Ry(w) =A% (p(E+3) p (B =),

where w is an energy shift in units of the mean level spacing A = 1/py.
This quantity measures the probability to find two levels with distance w.
Since levels become uncorrelated for large energy differences, Ry(w) should
approach unity for w — oo. In the diffusive regime, it turns out that the
two-level correlation function for system of the symmetry class A is given

by (cf. Ref. [79])
Ry(w) =1+ —Re (3.10)
2 2 B M)
whereas in the ergodic regime one obtains (cf. e.g. Refs. [55,62])

s1n2( w)

R2 (UJ) =1- (7‘(‘(,0)

(3.11)



30 CHAPTER 3. SYSTEMS OF AIIl SYMMETRY

Fig. 3.1 shows a plot of this function. Note that both expressions match
together, which can be seen by calculating the zero-mode approximation of
Eq. (3.10), i.e. considering only p = 0, and the high energy asymptotics of
Eq. (3.11), i.e. substituting the sin?(7w) term by its period average 1/2.
In both cases we obtain

RY*“>N ) ~ 1 — —w

Turning back to the DoS, we have seen that the lack of sensitivity to disorder as
compared to the propagator, and the lack of energy level coupling as compared to
the level-level correlation function makes the DoS of A, AI and AII system a less
interesting quantity. It has no remarkable structure on energy scales below the
Fermi energy. But as we have seen in the foregoing section a lot of hints have been
given, that the DoS of systems with AIIl symmetry shows non-trivial behaviour
at least in the middle of the tight-binding band. Therefore, the question arises,
where the difference in the qualitative behaviour of the DoS stems from. It seems
that there are quantum interference mechanisms involved in the expression for
the AIII DoS. Let us search for evidence for such a mechanism in terms of Green
functions. We write the Green function in the sublattice representation according

0.51

-3 2 1 0 1 2 3

Figure 3.1: Two-level correlation function in the ergodic regime for the symmetry
class A (GUE).
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to Eq. (3.2). Then the chiral symmetry of the Hamiltonian Eq. translates to the
relation

GE(e) = —05BGTF(—€)osB.

Obviously, this symmetry is broken by a finite €, which singles out the middle of
the band. Particularly, we now have an argument for possible unusual behaviour
of physical quantities at ¢ = 0. Furthermore, by decomposing the sublattice
Hamiltonians in Eq. (3.2), Hag = H; — iHs and Hpa = H};B, with Hermitean
operators H; and Hy, we get

cro=vt (T8 )

where U = (1 +ioy)/v/2 and we have introduced the stochastic Green functions
gt(e)=(e" — H))" ' and g7 (—¢) = (—e~ — Hy)~'. In order to calculate the DoS
we invert the center matrix. The result is given by

2riv(e) = tr (G~ () — G*(e))
= trg” () +tr [(Hz97(¢)*(=g™ (=¢) T Hyg™ (€)Ha) ™| (3.12)
+tr[—g" (=€) — Hag™ () Hs]
—lg" e g,

where the notation [g* <+ ¢~| means the exchange of g™ and ¢~ in the terms in the
second and third line. It turns out that the expression for the DoS of systems with
AIIIl symmetry is much more complicated than that for the symmetry classes A,
Al and AIIL In order to become more concrete, we perform a geometric expansion
for the term in the third line of Eq. (3.12) yielding

tr[—g*(—e) " = Hag () H] " = —tr |g* (=€) Y (=1)" (g7 (=€) Hag ™ (e) Ho)"

Thus, we realize that in addition to the usual tr g% expressions we get terms
that describe the coupling between the two auxiliary Green functions g*(—¢) and
g~ (¢) (and [gT > ¢g7]) by means of Hy. We therefore have an indication that
the DoS of systems with AIIl symmetry has much higher complexity than that
of systems belonging to the standard symmetry classes. Finally, we notice that
the energy arguments of the coupled Green functions differ in sign resulting in
expressions similar to the two-level correlation function.

In conclusion, we have given some qualitative arguments for the non-trivial be-
haviour of the AIIT DoS. Due to the chiral symmetry and the resulting sublattice
structure the expression for this quantity contains coupled Green functions with
different energy arguments. In the next chapter we prepare the investigation of
the AIIl DoS by the presentation of a corresponding non-linear o-model.
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Chapter 4

Non-linear c-Model for Systems
of AIIl Symmetry

In the last chapter we have seen that m-point Green functions play a central
role in the calculation of quantities relevant in condensed matter physics. Now,
we will address the question how to obtain Green functions. One of the most
powerful ways to do that is the use of field theoretical methods, namely the
non-linear o-model (NLoM). Invented in the context of high energy physics its
application to disordered systems has been fundamentally developed by SCHAFER
and WEGNER in 1980 [58] and later by EFETOV [59,80,81]. The former authors
used the so-called replica trick whereas the latter one invented the supersym-
metric version of the NLoM. Both alternatives are able to describe the long-
range physics of disordered systems with symmetry A, Al or AIl. The originator
is a Hamiltonian, whose matrix elements are drawn from a Gaussian random
distribution (A, AI and AII just correspond to the Gaussian ensembles GUE,
GOE and GSE, cf. Ch. 2). The derivation of a corresponding NLoM involves
a Hubbard-Stratonovich transformation, which can be applied only to systems
with Hermitean disorder. But as we have pointed out in Ch. 3.1, in the random
flux problem we have to deal with unitary disorder. It took more than ten years
from the first formulation of the NLoM until a Hubbard-Stratonovich decoupling
scheme was found by ZIRNBAUER [65] in order to handle unitary disorder. This
transformation applied to a related NLoM in QCD effectively couples flavor de-
grees of freedom in favor of the decoupling of color degrees of freedom. Therefore,
it has been christened the color-flavor transformation.

In the present chapter we outline the derivation of the supersymmetric NLoM of
the random flux problem given by ALTLAND and SIMONS in Ref. [22]. Origina-
tor is a supersymmetric generating functional for the n-point Green functions.
Then, the average over the unitary disorder is performed by means of a color-flavor
transformation. This transformation introduces an integral over supermatrices,
which are coupled such a way that the theory remains sensitive to long-range
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correlations. We calculate the saddle point and identify the saddle point mani-
fold. Performing a gradient expansion and the continuum limit we finally end up
with an effective long-range field theory, which will be our starting point for the
calculation of the DoS.

4.1 Supersymmetric Generating Functional

The general idea of calculating n-point Green functions by means of field theory
can be sketched in a few lines. Let us start with the real space representation of
a Hamiltonian H = {H,;} on a d-dimensional lattice consisting of K sites. Let
further ¢t = diag(e],...,€') be a diagonal matrix consisting of n independent
complex energies (€ = € + 1), and {¢;i )}, {Yim} (=1,....,K, m=1,...,n)
arbitrary fields. For reasons we will point out later, we refer to the index m as
flavor degree of freedom. Consider now the following Gaussian integral

2] = [ dfp, glevetss ey, (a.)

where J = diag(Ji, ..., J,), and each Jp,, (m = 1,...,n), is a arbitrary matrix on
the lattice. The measure is given by d[¢, 1] = Hfil [T d¥; mde; 1. Evaluating
the integral yields the normalization factor

[1h_, det " (et 1 — H) for bosonic fields,

4.2
[1}_, det(ef1x — H) for fermionic fields. (4.2)

N:zm:{

Bosonic fields take values in the complex numbers, whereas fermionic fields take
values in the (anti-commuting) Grassmann variables (cf. [81,82]). Taking the
derivative w.r.t. the source element J,;; we get

521J]
0Jm,ij

= [l By 5T
J=0

_ N — +
- <5?Ln Qg — H)ji _Nsz'(em);

or in general

5mZ[J]
0J1ijy 0 Iningn

=N ][ G} (€m)-
m=1

J=0

The determinants occurring in Eq. (4.3) make the outlined procedure quite use-
less, because they prohibit the applicability of the usual approximation schemes.
Therefore we have to think about how to get rid of them. There are two ways
to proceed. The first one is the so-called replica trick which will be explained
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in Sec. 6.2.5. The second one is to use supersymmetry, which we will do in the
following. The idea is quite simple. We combine bosonic and fermionic fields
to superfields, v — 1, with a € {b,f}, and also grade the matrices w.r.t. the
boson-fermion space, A — A ® 1, where 1% is the unity matrix in this super-
space. Consequently, the normalization factors Eq. (4.2) that we get by Gaussian
integration over the bosonic and fermionic sector cancel each other. Thus, each
Gaussian superintegral with matrices which are block diagonal in superspace is
automatically normalized to one (apart from a numerical constant in the integra-
tion measure).

We now turn to the non-Abelian generalization of the random flux problem.
Since we are going to calculate the density of states we only need a one-point
Green function. Thus, we consider from now on the special case n = 1 and
suppress the flavor index. On the other hand, we have to grade the fields w.r.t.
the dimension N of the general non-Abelian unitary disorder matrix, U(N). We
therefore introduce an upper index o € {1,..., N}, which we refer to as color
degree of freedom, so that 1; — @ (and similar for ). Furthermore, we grade
the vectors in superspace. Hence the fields at any lattice site ¢ are given by a
supervector

o {Sq}a=1 N) T ({Sg}azl N)
N a= — iy 3ty d i fa= — _31 PR , 44
{wz’a}a:?’f..,N <{XZ Ya=1,.,N and - {y7 }a:]i,f..,N {X?}a=1,..N (44)

respectively, where {S¢}, € CV, {52}, is its complex conjugate and {x?}, and
{x%}o are independent N-dimensional vectors of Grassmann variables. With
the Hamiltonian given by Eq. (3.5) we can now formulate the disorder averaged
supersymmetric generating functional,

@ = { [ awge ), (45
where the action is given by

Sl, 9] = —i Z (GiU; ® 175 + ;U @ 17¢)
<i€AjeB>

) (4.6)
—1) k(e iy @ 17 + July ® 05y,
¥

and the measure by

N
dly, 9] = [] [ dSedSedxedxe.

i a=l1

The outer brackets in Eq. (4.5) denote the average over the unitary disorder,

.o=1] /dUij(...), (4.7)

<’L,]>U(N)
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where dU;; denotes the Haar measure on U(N). Note that for any pair of next
neighbour lattice sites (i,7), ¢ € A, j € B the disorder terms in Eq. (4.6) imply
the following summations

il = Y > 02U,

a,B a=b,f

Finally, from

=i [ alg, gl

- 2
= isdet [(H—6+]1N)®Ilbf} IW = _Z(G—i_ﬂN—}I)_1
- N

0z
0J

J=0

= —2G" (¢
we obtain the supersymmetric version of Eq. (4.3),

i =3 5"

J=0

4.2 Color-Flavor Transformation

The next step is to perform the average over the unitary disorder. This task
can be handled by an identity which is called color-flavor transformation. It was
introduced and proved by M.R. Zirnbauer [65]. Applied to a link (i5) this identity

reads

N

/ dU exp Z (Z llJzaaUgﬁ ot Z ¢7°‘bUﬁ°‘ )
a=b,f b=b,f

) @f=1 \a=b, (4.9)

:/d/j,N Z], eXp Z (sza z],abw +Z¢]b tj,ba )’

a,b=b,f

where Z;;, Z;; € GL(1|1) are 2 x 2 supermatrices which in boson-fermion decom-

position can be written as

- (Zijpb Zijpr 5 Zijoo  Zijbi
4= (Zz'j,fb Zijn wd %=\ Zin Ziig)

i,
The measure of integration is given by

dMN(ZZJaZ ) = sdet(1 _ZijZ )Nd[ ij> ij]a
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where D(Z;;, Z;;) is the flat Berezin measure (cf. [81,82])
d[Zij, Zij] = H dZija4Zijab.
a,b=b,f

It turns out that the domain of integration on the right hand side of Eq. (4.9) is
not the full supergroup GL(1|1). It is rather restricted by some constraints. First
of all, the eigenvalues of the Hermitean product matrix Zgbeb must be smaller
than unity. Further, the bb-blocks of Z;; and Zij are related by

Zizob = 2 s (4.10)
where the non-standard f-adjunction is for Z;;, € GL(1) defined by*
(e¥ ) = (e Te).
For the ff-blocks we have the more common anti-Hermitecity relation
Zija = —Z5 4 (4.11)

The bf and fb components consist of independent Grassmann variables. For more
details the reader is referred to the original references [65,22]. Applying now the
color-flavor transformation to the generating functional Eq. (4.5) we obtain

(@ = [ 12,2) [ a5, ] N Trcrsemsn-202) g st
% el 2iea TZ’i(6+]1N®Jlbf+EjeNi IN®Zi; )i
x ¢ 2ieB Vi (FLver s Sien, 1n0%s)v; (4.12)

where we have already re-exponentiated the integration density?. The set N;
(N;) contains all nearest neighbour lattice sites of the site ¢ (j). We should
mention that the convergency of the Gaussian integral is not obvious, because
the expression )., v, (eﬂlN ® 1bf 4 ZjENi Iy ® Zij) ); and its analogue may
have negative imaginary parts. But as is shown in Ref. [22] this problem can be
solved by providing the complex energy with a finite instead of an infinitesimal
imaginary part, i.e. we shift the energy deeply into the complex plane. Having
integrated over the fields this shift can be redone. Keeping this subtle point in
mind we now perform the integration and get

<Z[J]> = /d[Z, Z]X[J] eN Zieajen) strin(1—Zi; Zi;)

SN e astrin(et IS 0 Zi) N S p (€+]1bf+2ieNj Zy;) (4.13)

X e )

!Note that GL(1) = U(1) x [GL(1)/U(1)] = U(1) x R*. Hence, the bb component of the
supermatrices can be decomposed, Z;;p, = €' e® with € RT and y € [0, 27].
2Recall that for each supermatrix A we have sdet A = exp(Insdet A) = exp(strin A4).
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where we have already re-exponentiated the occuring superdeterminants. The
factor X[J] results from an expansion of the source term in Eq. (4.12) up to
some order in J.

At the end of this quite formal section let us extract the physical meaning of the
color-flavor transformation. As can be seen from Eq. (4.9) this transformation
does not only reduce the coupling between N? ’color’ degrees of freedom to the
coupling of two "flavor’ degrees of freedom, which is convenient if NV > 1. Rather,
to each link (ij) a pair of matrices (Z;;, Z;;) is assigned, where the former one
couples the flavor degrees of freedom at site ¢ and the latter one those at site j.
Thus, there is no coupling of fields at different sites. Since pairs of the type ;v
are not affected by mechanisms of quantum interference, the theory becomes able

to describe long-range correlations, i.e. diffusion modes.

Until now we have performed exact calculations and transformations. But with
regard to the strln expressions in the action we now have to think about approx-
imations.

4.3 Saddle Point Approximation

The standard method being applied at this stage is a saddle point approximation,
i.e. the functional integral is subjected to the following manipulations. First, we
determine the minimum of the action, the saddle point, which provides the main
contribution to the functional integral, and identify the saddle point manifold.
The knowledge of the latter enables us to divide the domain of integration into
Goldstone (massless) modes and massive modes. Having performed a gradient
expansion, i.e. expansion of the action around the saddle point up to quadratic
order, and having integrated over the massive modes we perform a continuum
limit. We end up with an effective long-range field theory describing the low-
energy sector of the system. In the following we present only the main results of
the program outlined above. For details cf. Ref. [22].

We start by determining the saddle point (Zy, ZO), which can be found as solution
of the saddle point equations

35(2, 2] o0 aad 38272 —0. (4.14)

(5ZZ] Z:Zo,Z:ZO 5Z’L j Z:Zo,Z:ZO
It turns out that the (spatially constant) saddle point is given by
ZO = Z() >~ igﬂ_bf,

where ¢ = (2d— 1)_1/ 2. Since the symmetry of the action is spontaneously broken
by the saddle point, there is a whole manifold of configurations, which solve the
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Eqgs. (4.14). For z = 0 the chiral symmetry implies the invariance of the functional
integrals Eqgs. (4.5) and (4.12) under the action of corresponding transformation
groups on the fields (1,¢) and (Z, Z), respectively. The saddle point manifold
is now obtained as the action of these transformation groups on the saddle point
(Zy, Zy). A detailed analysis of the symmetries yields (cf. Ref. [22])

Zsp =i(g and Zsp = iCg7Y,

where g € GL(1|1). The domain of integration in the functional integral Eq. (4.13)
is given by the following parameterization

Zz'j = iCP,'jgij and Zz-j — iggiglPij,

where g;; € GL(1]1) and P,; € GL(1|1) represent the massless modes (Goldstone
modes) and massive modes, respectively. Taking into account the geometry of
the integration manifold, Eqs. (4.10) and (4.11), the corresponding restrictions
for the Goldstone and massive modes are given by

gijwp € GL(1)/U(1) = R™, gijx € U(1),
Pij,bb € U(l), Pz'j7ﬁ‘ € GL(l)/U(l) =R".

Since the Goldstone modes describe the low-energy content of the theory whereas
the massive modes govern the short-range physics, we now proceed by approx-
imating the generating functional Eq. (4.13) in favor of an effective long-range
field theory. There are three contributions to the effective action. The fluctuation
action, Sy, comes from an expansion of the action for z = 0 and P = 1 up to
quadratic order and hence describes the quadratic fluctuations of the Goldstone
modes around the spatially constant saddle point manifold. The energy action,
S, represents the presence of finite energy arguments. The third contribution
is unusual in the sense, that it does not exist in the analogous field theories for
the symmetry classes A, AI and AIIL It is a speciality of systems with chiral
symmetry which we call Gade term, Sgade, Since it was first derived by GADE
in Ref. [13]. This term describes the interaction between Goldstone modes and
massive modes. After the quadratic approximation this part is integrated over
the massive modes. There is another peculiarity of chiral systems. It turns out
that for finite systems a boundary term exists, which has the relevance of a topo-
logical term, Siop, and therefore has to be taken into account at all length scales.
We will see that the existence of this term is responsible for the even-odd effect
of the DoS. Having derived these different parts of the low-energy action we per-
form a continuum limit and finally end up with the following effective long-range
generating functional

Z[J] = /Dge_s[g"]] (4.15)
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with the effective action

Set[g, J] = Salg] + Selg, J] + Scade[g] + Stoplg],

where the contributions are given by

N
Salg] = — /ddr@cﬂ_d str[@gdg ], (4.16a)
N((2d =1 1/2 ,2—d
Selg, J] = —i/ddr ( 4da)2 ¢ str[(g+ g7 ") ("1 + Jo3h)],  (4.16D)
SGadelg] = —/ddricfd str’(g'9g), (4.16¢)
16d
N d
Swld] =55 > [ICD™* D strlng(siLy,,..., sala). (4.16d)

81,.4-,8¢=0,1 i=1

Here a is the lattice spacing and C' a numerical constant of the order of unity.
L; denotes the length of the (hypercubic) system in the i-th direction and N;
the number of lattice sites in that direction. The measure is given by Dg =
limg o0 Hfi 1 dgi, where dyg; is the invariant measure on the supergroup GL(1|1)
we will calculate in Sec. 4.4.2.

4.4 Non-linear c-Model for a Wire of AIIl sym-
metry

4.4.1 Natural Formulation

Since we want to calculate the DoS of a (thick) wire, we focus on a quasi-1D
system of length L from now on. Recall that by definition the channels play the
role of inner degrees of freedom which are homogeneously coupled. Therefore,
we can now identify the color degrees of freedom, introduced as arbitrary inner
degrees of freedom in Eq. (4.4) with the N, channels of the quasi-1D system.
Thus we have N = N.. Averaging over the whole unitary group U(NV) in the
generating functional (cf. Eq. (4.7)) reflects the equality of all channels. We get
for the effective action

L

Setlg, J] = — / dA(Falg] + Felg] + Filg] + Faadelg]) + Sioplg], (4.17)
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with
Falg] = castr (099g7"), (4.18a)
Flg] =ice str(g+97"), (4.18b)
Fylg] = icestr[(g +¢7)Jo3")], (4.18¢)
FGade [g] = CGade StrQ(g_lag)a (418d)

where the coupling constants will be identified below. From Eq. (4.16d) we
obtain

strin g(0) — strln g(L/€) for N even,

4.19
strln g(0) + strln g(L/&) for N5 odd, (4.19)

Stop[g] = Ctop {

where Ng denotes the number of sites in the longitudinal direction. Assuming
open boundary conditions, i.e. coupling the wire to metallic leads, we can rewrite
this term as an integral over a total derivative:

L

Sunls) == [ AFunlg)] (4.20)
0
with
Fioplg] = ciopstr(g™'9g) = ciopdstring. (4.21)
We then obtain from Eq. (4.17)
L
Serlg, J] = — / d\Foglg, J] (4.22)
0
with the ”effective Lagrangian”
Felg, J] = Falg] + Felg] + Filg] + Faade[g] + Fiop[g]- (4.23)

We finally turn to the identification of the coupling constants in Egs. (4.16).
Since the coupling constant of the energy term has to be proportional to the
bulk DoS (per volume), vy = py/L, we get from Eq. (4.16b) vy = N./(27a) and
therefore

= (4.24)

2
The coupling constant of the fluctuation term is then given by N.a/8 = vyma®/4.
Note that E, oc vple/L? oc a?/L?, which can be seen as follows. Averaging over
the whole unitary group in Eq. (4.7) corresponds to strong disorder. The mean
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free path is minimal, i.e. of the order of the lattice spacing, [, o< a. Further, we
have vp o @ which results from the fact that all energies are measured in terms
of the hopping matrix elements. Consequently, we have (cf. Sec. 2.1)

4
—cq ~ vyD = yE.L* = gL ~ NI, ~ (4.25)
T

For the remaining two coupling constants we read off:

C N,
CGade = 7, and Ctop = 7

T (4.26)

4.4.2 Coordinates and Invariant Measure on GL(1|1)

In this section we calculate the invariant measure dg (Haar measure) of the
supergroup GL(1|1) occuring in the generating functional Eq. (4.15). For future
calculations it turns out to be convenient to introduce the polar decomposition®
on G = GL(1|1). Let G = gl(1]1) be the super Lie algebra of G. Let further H
be an element of the Cartan subalgebra® 7 of G, H € T C G, and K an element
of the complement of G w.rt. H, K € G\ 7. Then, a = exp H € T, where
T is the Cartan subgroup of G and k = exp K is an element of the coset space
G/T. With these settings we can represent an element g of G in the following
way (cf. Ref. [82]):

g=kak ' =efefe X (4.27)

H= (x iy) and K = (772 771), (4.28)

where the radial coordinates are z € R, y € [0,27] and the angular coordinates
n1 and 7, are Grassmann variables®.

with

In order to calculate the invariant measure within the polar decomposition we cal-
culate the invariant 2-form — str[dgdg™!] on GL(1|1) and identify the components
of the metric tensor g,

Z gi;dv; ® dv; = —str[dgdg™"] = str [(dgg™")?]

1]

3 As usual, the introduction of special coordinates is motivated by symmetries, which result
in invariance properties w.r.t. transformations within certain coordinate submanifolds. Here,
we will have to deal with quantities which are rotationally invariant in superspace.

4The Cartan subalgebra of an algebra G is the maximal abelian subalgebra of G.

5Actually, with these restrictions of  and y we represent elements of the maximally Rie-
mannian super space, which is contained in G.
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where {vy,...,v,} stands for the coordinates {z,iy,n1,m2}. We start with the

calculation of the expression dgg™*,

dgg ' =dkk ' + kdaa 'kt — kak 'dka 'k ! =dK +daa ! —adKa ™t
=dK 4+ de®) e —e?dKe™ =dK +dH — " dK

_ Odn1+dx0
S \dnp, O 0 idy

— cosh o(H) (d% dgl>—sinha(H)< ((1)77 d(’)h).
2 - 2

The complex functions a(H) = (z — iy) are the (positive) roots of G, i.e. the
eigenvalues of the adjoint action of 7 on G (cf. App. A). Taking the square yields

~1\2 dz 0 _ . d?’hd’l]g 0
(dgg ")* = (0 i dy + (2 — 2 cosh(z — iy)) 0 —dnydny )

and we obtain

str [(dgg™")?] = dzdz — dydy — 2(1 — cosh(z — y))(dnedn; — dnrdme)

= dzdz — dydy + 4 sinh (w2;y> (dnedmy — dmdns).

Thus, the metric tensor is given by

10 0 0
_]o 1 0 0o
€= 10 0 0 —dsinh®(%) [
0 0 4sinh?*(%Y) 0
which yields for the density
. .
J(@,y) = /sdetg = ; sinh~> (x > ly> . (4.29)

Thus, up to an arbitrary constant the integration measure for the polar decom-
position on the supergroup manifold is given by

dg = J(z,iy)dzdydn dn, = sinh™2 (ac _2 1y> dzdydndns,. (4.30)

4.4.3 Formulation in Terms of EFETOV’S ()-Matrices

It turns out that for perturbation theoretical calculations the representation of
the long-range modes by elements g € GL(1]|1) is not very convenient. The
supermatrices () used in the formulation of the A, AI, and AIl NLoM by EFETOV
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[81] are more qualified for that task, although they are of a higher dimension®.
The relation between the supergroup elements g and the coset space elements
Q@ is pointed out in App. D. Furthermore, this appendix contains the detailed
calculations for the translation of the terms in the action. Changing only the
argument in the notation the result is

FealQ, J] = F3[Q] + F[Q] + Fs[Q] + Fgade[Q] + Fiop|Q]

with
ﬂmm:%Qﬁumem, (4.31a)
F[Q] = iccet str(QosB), (4.31Db)
Fy[Q] = icstr(QosBJodh, (4.31c)
FuplQ) = — 50 s12(Q0Q03), (4314)
FoaaelQ] = icGade str%(QOQ0P). (4.31¢)

4.5 From the NLoM to the DoS

In this section we present the general expressions for the disorder averaged DoS
in terms of the quasi-1D NLoM. From Egs. (3.9), (4.8), and (4.22) we get

(o)) =~ Tt (G(6)) = —%Im/d)\ (G A €)

(4.32)

T or 5T\, \)

J=0

—im/ﬁﬁﬁﬂ

L
]_ L 3y1 ’
= o_Im / d\ / Dy Fy_1[g(\)] efo X Feld']
™
0

where the pre-exponential factor is given by Eq. (4.18¢c). The functional integral
in the last line of Eq. (4.32) can be interpreted as the propagation from one
end of the wire to the other with a break at A, where the integration over the
source term is performed. Thus, it is quite natural to split the functional integral
into a right propagator Yg, an integration over the source term at A, and a left

6More specific, the Q-matrices for the unitary class (AI) introduced by EFETOV are graded
w.r.t. the advanced-retarded space. There is no such grading in our case.
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propagator Y,

L

{p(e")) = %Im / dA / dg¥i(a; N Fy_1[g(\)]Ye(a; L — \) (4.33)

0
where
A
Ya(a; A) = Ya(a;0,)) = / Dyl b )
9'N=g
and
L-x L
Yi(a;L— X)) =Y(a;0,L —\) = / Dy’ e of W Fenls) = / Dy’ eAdeFeﬂ(gl) '
9'(0)=g 7 (\)=g

(4.34)

The integration has to be performed over all ¢'(\') except g = ¢'(X' = A), and in
the last line we have made use of the translational invariance of the propagation
along the disordered wire. From that fact one could also conclude that the
differentiation between right and left propagation is only artificial. That this is
not true can be seen by considering the topological term, Eq. (4.21). Integration
over the length yields

A
N, . X
/d)\ICtopa strlng = > [z — iy + 27in(0)] (4.35a)
0
and
i N,
/d/\'CtOpa strlng = —7C [ — iy + 27in(L)] (4.35b)
A

where x = z()\), y = y(A\), and we have used that z(0) = z(L) = 0 for
open boundary conditions and y(L) = 27n(L) as well as y(0) = 27n(0) with
n(L),n(0) € Z. As a consequence, the topological term influences the period-
icity properties of Yg 1 (a;\) w.r.t. the compact sector of the group manifold:
While for an even number of channels the periodicity of Yg 1, remains unaffected
the propagator becomes anti-periodic in y if N, is odd. Hence, it is just the
topological term which is responsible for the even-odd effect mentioned in the
introduction. Furthermore, we have anticipated by the notation that the right
and left propagator have the property Yz (g; \) = Yrpn(kak™; ) = Yr1(a; N),
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i.e. they are rotationally invariant in superspace and therefore depend only on
elements a of the radial sector T of GL(1[1).

In this section we have derived expressions for the DoS in terms of the NLoM.
Introducing certain propagators the functional integration has been reduced to
a single integration over the supergroup manifold. In the next chapter we will
address the question how to calculate these propagators.



Chapter 5

Derivation of the Heat Equation

In chapter 4 we have derived a formula for the DoS of systems with AIIl sym-
metry in terms of a supersymmetric effective long-range generating functional.
Further, we have introduced a pair of propagators which allows us to reduce the
functional integration to a single integration over the corresponding supergroup
manifold. The question arises to what extent calculation is simplified, because
the problem of the complicated functional integration is only shifted to the de-
termination of the propagators. At this point, we take advantage of the fact that
we are dealing with a quasi-1D system. In contrast to higher dimensional sys-
tems, here we have a powerful tool, namely the so-called transfer matriz method,
which is introduced in the first section. Using this method we can reduce the
determination of the propagators to the solution of a partial differential equation
involving some generalized Laplacian. The terms of this differential operator cor-
respond to the various contributions to the action and are explicitely calculated
in the second section. In the last section the complete generalized heat equation
is presented and discussed qualitatively.

5.1 Transfer Matrix Method

In this section we outline the general concept of the transfer matrix method.
Following the strategy of Ref. [83] we go back to the discrete version of the
functional integral and divide a (sub-)system of length ) into N pieces of length
e = A\/N, cf. Fig. 5.1. Then with

/ !
9iv1— Y;
)

g(\N)—g;=4g'(ie) and Oyg — .

47
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i N
I
0 A=N¢ L

Figure 5.1: Discretization of the model

we have
Ate A Ate
/ AN Fglg] = / AN Fuglg'] + / AN Fogld']
0 0 A
N-1
— €Y Falg), gi415€] + eFenlgy, g€,
=0

where Feg(g;, 9i, ;€] denotes the discretized form of the effective ” Lagrangian”,
Eq. (4.23). Focusing on the right heat kernel for this chapter the change of
Y(a; \) = Yr(a; A) w.r.t. A is given by

Y(g,A+¢) —Y(g,\) = /dg' efFeald gl y (¢! X) — Y (g, \). (5.1)

Here, we have relabeled gy — ¢' and gy, — g. Further, we have used the
definition of Y(a; A) in Eq. (4.34). Introducing the polar decomposition (cf. Sec.
4.4.2) we get

g =kidkt=elee® and g=a=e", (5.2)

where we have used that Sp is invariant w.r.t. rotations of ¢g. This can be seen as
follows. With the above settings the discretized version of the fluctuation term
Eq. (4.18a) is given by

Fy = castr (9g0g ') = castr [(g -9 - g’_l)] = —cqstr [gg'_1 +9'97"|.
Considering e.g. the term str(g’'g~") and making the full ansatz ¢’ = o'k and
g =k~ tak we get

str[(Fa'k ) (E~'a= k)] = strfka’k'a"'] = str[g’a™"],

where we have set k = kk'. Since large differences g — ¢’ are suppressed expo-
nentially, we consider only small deviations ¢ from the maximum at ¢/, = g.
Thus, H' = H + §H or in terms of the coordinates, 2’ = z + 60, and ' =y + 6,
dz' = df, and dy’ = df,. The invariant measure is given by

1
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with J (x) being the density, Eq. (4.29), ¢ = (z,1y) and 6 = (6,,i6,). Expanding
the right hand side of Eq. (5.1) up to linear order in £ we get a second order
differential operator £ which plays the role of a generalized Laplacian,

Y(z; A +¢) — Y(x;\) =LY (25 0) + O(e?).

Because of the rotational invariance of the heat kernel the Laplacian only de-
pends on the radial coordinates and the derivatives w.r.t. them. Performing the
continuum limit, ¢ — 0, we obtain the partial differential equation

(Or— L)Y (x;s) =0.

This differential equation has the formal structure of a diffusion or heat equa-
tion. Therefore, we will use this notion in the following. The propagator Y (a; \)
determined by the heat equation acts as integral kernel in the theory of heat trans-
port, which motivates the name heat kernel. Note that the procedure described
above is quite similar to the derivation of the Schroedinger equation starting
from Feynman’s path integral formulation of quantum mechanics. The length
of the quasi-1D wire plays the role of (imaginary) time, the heat kernel that of
the quantum mechanical wave function and the heat equation corresponds to the
Schroedinger equation.

5.2 Calculation of the Contributions

Now, we calculate the contributions to the Laplacian £, where we start with the
term corresponding to Fy[g]. Containing a quadratic derivative this term yields
expressions which are quadratic in the variables 6, and 6,. Thus, Eq. (5.1)
becomes a Gaussian integral. The other term are considered in combination with

Falgl.
5.2.1 Laplacian corresponding to Fjy

Let us consider Fy = cq str (9gdg~"). With the notation introduced in the previ-
ous section and in Sec. 4.4.2 we get

str [(g -9 " - g’*l)} = —str [99'71 +g'g7"
=— str{ [2 cosh(0H) — e 0 emadH [¢ _ o0H gadH ¢ | cosh(éH)KQ] eK}.

Expanding the exponential of the adjoint action according to Eq. (A.3)

e—(FH e—adHK+e(5H eadHK

= 2[cosh(6H) cosh(z — iy) K + sinh(6H) sinh(z — iy) o3 K]
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we obtain

{ (cosh 8, — cos 6,)

0, . .0 0, + i
) — cosh (:c+ 5 "= 15‘")] cosh(#)mm}-

(5.3)

str [(g q) }
+ [cosh (0 i6y

We now perform the integration over the Grassmann variables in Eq. (5.1). This
yields a pre-exponential factor which equals J !(x + 0/2) to quadratic order.
Due to the normalization of the superintegral we can write

Y(z; A\ +¢) = Y(x; \)

2cq (54)
— =1 (cosh 8 —cos ) Y 0:)\) —Y(x:\
e T T :

-a [BIE [¥ (@ +6; 1) ~ ¥ (a: V)]
In the next step we expand both, the function in the exponent and the pre-
exponential term to quadratic order in @ yielding a Gaussian integral. The 6,
integration can then be extended over the whole real axis. Since ¢ is the width
of the Gaussian integral the error we make within this approximation vanishes in
the limit ¢ — 0. With

J(xz+6) 1 (

=) (0 — i)
and
Y(z+0) = Y(x) + 8Y (2)0 + L0THY (z)0 + O(6),
where HY () denotes the Hesse matrix of Y (x), we obtain
Y(z; A +¢) = Y(x;\)

o 21 . g
= o= [ d0[0202, + 6203, — coth (25) (620, —i630,) | ¢ FF V(@5 ) (5.5)
=LY (x; N).

In the second line we have used that the integrals over mixed pre-exponential
terms vanish. Performing the continuum limit we get

(8)\ - Sﬂ) Y(il!; )\) =

where the radial part of the Laplacian corresponding to the fluctuation action is
given by

%) (0, -10)] = 1D (9)

2 2
— coth
Lq = — |02, + 0, — coth (%5 ics

4Cﬁ
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and D = (D,, D,) is the vector of the covariant derivatives
1 z—i 1 z—i
D, =0, — 3 coth (25%) and D, =0,+ 3 coth (55%). (5.7)

We would like to mention, that the Laplacian corresponding to the quadratic
derivative term Fjy[g| is just the radial part, i.e. the projection onto 7, of the
Laplace-Beltrami operator on GL(1|1),

L =28"=> T ()T (x)d;. (5.8)

1=,y

5.2.2 Laplacian corresponding to Fg + F,

We additionally consider the energy term F.[¢] = icce™ str[¢g’+¢'~']. Since ¢’ — g
for e — 0 we get

str(g’ + 9'71) =str(a+a") =str(e” + ) = 2strcosh H

= 2 (coshz — cosy).

This expression does not depend on the integration variable. Expanding the
exponential of this term up to linear order in € we obtain from Eq. (5.5)

Y(z;\+¢) = 5—; [1 + 2¢ec e’ (cosh z — cos y)] dO%

= [eLa + 1 + 2ecde’ (coshz — cosy)| YV (z).

Y(xz+0) e T

Hence, we have Y(x; A +¢) — Y(x;\) = eLqy Y (2; \) where the Laplacian cor-
responding to Fy and F; is given by

1
Lore = 4—D2 + 2¢iet (cosh z — cosy) . (5.9)
(&1

5.2.3 Laplacian corresponding to Fg + Fiop

In order to implement the topological term Fio,[g] = ciop str(g'0g) into Eq. (5.4)
we first note that

str [9'71(9 - 9')] = str [a'il(a - a')] = str [e”#7H (e — eH10H)]

5 1 (5.10)
=str(e™®”) = (e7% —e7%) = -0, +i0,.
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Expanding again up to linear order in € we obtain

Y(z; A\ +¢) =Y (x;\)
J(@+0) _cage . 0.0,
= Ctop\VUz —10y Y . _Y .)\
-2 a0 oo Y (@ +6; )~ ¥ (a: V)]
=Y (x; ) — 5_ dfe<" cmp(em —i6,)(0,0; + 6,0,)Y (x; \)
m

= €£ﬁ+t0pY($; )\)
where the Laplacian corresponding to Fy and Fi,p, is given by

1 1 , 1
= " D> - —i9,) = (D — cippA)? 5.11
4cﬂ 2Cﬁ( ly) 4Cﬁ( Ctp )7 ( )

'Sﬂ-l-top

with

5.2.4 Laplacian corresponding to Fg + Fgade

Finally, we consider the fluctuation term together with the Gade term Fgage[g] =
CGade StT2(9710g). From Sec. 5.2.3 we obtain

str? [g'il(g - g')} = str? [a'il(a — a')] = (0, — i0,)>. (5.12)
From Eq. (5.4) we get the following expression for the heat kernel
0
Y(e,A+¢) = c—i /dO e 70" A0 %[Y(w +0) —Y(x)], (5.13)
™
where the matrix A is given by
2
A= g(cﬂAl + CGadeAQ)

with A; = 1 and Ay = (io; — 03). The determinant and the inverse are given
by det A = 4cf/e? and A™! = £ (caA1 — CgadeA2), Tespectively. Expanding the
fl
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pre-exponential terms we obtain, using summation convention,

Y(z,\+e) = % / doeée”eé [02Y (x)0,0; + (dIn T - 6) (3Y () - )]

_
2me

— Qﬂzw det A2 [T 10, (A™1) ;T 0, Y ()

e
[T 10i(caAr — CaaaeP2)ij T0;] Y ()

d@e20"A° [T 10T 0;Y (x))6:9;]

" 4d
=LY (z) + scjzﬁde 8:0; + T~ 1(8:.7)9;] (03 — i01)3Y ()
= ££a1GadeY (T)
Since 0yJ = —i0,;J, the terms linear in 0; cancel each other and we end up with
Chrcate = — | D7+ S (5 _ig || (5.14)
4cq ca

5.3 Discussion of the Generalized Heat Equa-
tion
After we have calculated the various contributions explicitly, we now combine

all terms and obtain one of the main results, the generalized heat equation for
systems of AIIl symmetry,

(O — £)Yr(z; \) =0, (5.15)
where the generalized Laplacian is given by

1 ade . .
L= i (D — ciopA)* + CGad (0 —i0,)?| + 2ice™ (coshx — cosy).  (5.16)
cq &i]

The heat equation Eq. (5.15) is subjected to the following constraints. As a
partial differential equation the it has to fulfill an initial condition. Let us con-
sider the case where the wire is coupled to ideal leads. This corresponds to
ideal sources/drains at its ends. According to Ref. [83] we get from Eqgs. (4.34)
and (5.3)!

A—=0

I'Note that

im e 2str[(9=g) (g7 =g'™") i o— L str(cosh z—cos y)
lim e — lime .
e—0 e—0
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Further, the heat kernel has to be single-valued and therefore periodic w.r.t. the
variable of the compact sector,

Yer(z,iy; A) = Yen(z,i(y + 27); A). (5.18)

As already mentioned at the beginning of this chapter the heat equation has the
structure of an imaginary time Schroedinger equation. Since we know the explicit
form of the Laplacian we can specify the formal analogies. The covariant deriva-
tive D plays the role of the momentum and is responsible for the propagation in
superspace. As we have seen in Eq. (5.8) the non-Euclidean structure of this term
is directly related to the geometry of the integration manifold of the Goldstone
fields, Eq. (4.30). However, it turns out that the non-Euclidean part of £4 can
be removed by applying a similarity transformation. Therefore, it is convenient
to introduce new coordinates,

z=x+1y and Z=x—1iy.
Using that 0, = (0, — i0,)/2 and 0; = (0, +10,)/2 the Laplacian reads

1 th(z/2 1
P P CO?(Z/)@Z — S uop: + 0.2 4 dcde* sinh(z/2) sinh(2/2).
ca ca

Consider the transformation
£ = 8= J2(2)eT712(7), (5.19)
where the "E” means Euclidean. With J(2) = sinh™?(2/2) we obtain

1 1
E 2 2
_ 2
£4 0z Tor (02 + 0yy), (5.20)

i.e. the transformed Laplacian is indeed flat. In the complex coordinates it is
to show that the other terms of £ remain unchanged by the similarity transfor-
mation. Let us note that the procedure outlined above is not a special feature
of our Laplacian. Rather, from the general theory of superanalysis (cf. [82]) it
can be concluded that the similarity transformation Eq. (5.19) removes the terms
of the (radial part of the) Laplace-Beltrami operator, which contain first order
derivatives. Instead of this an effective potential occurs which is constant in
the case of Lie supergroups. Furthermore, if the even and the odd sector of the
supergroup have the same dimension, as is the case of GL(1|1), this potential
vanishes. The general form of the effective potential is calculated in App. B.
Applying the similarity transformation Eq. (5.19) to the heat equation we get for
the corresponding transformation of the heat kernel

Yar — Upp = J?Yar,
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where we have omitted the arguments for notational transparency. It is important
to note, that the periodicity of Yg 1 w.r.t. y has changed to anti-periodicity of
\IIR,L-

Let us now discuss the influence of the topological term. As already suggested
by the notation, Fi,, results in a term A analogous to a vector potential in the
Schroedinger equation. Since A is constant in superspace we can remove it by a
gauge transformation of the heat kernel,

®¢  for N, even,

(5.21)
®°  for N, odd.

N, .
Ty o> FEE g {

Note that this relation is compatible with our previous findings, Eq. (4.35b).
Particularly, it follows that there is no difference between a right and a left heat
kernel any more. This is clear, since the absence of the vector potential corre-
sponds to the absence of the topological term which just caused this difference.
The crucial point is that the gauge transformation affects the periodicity proper-
ties depending on N being even (e) or odd (o). For an even number of channels
the transformed function ®° fulfills the same anti-periodicity requirement as Vg 1,,
whereas in the case of odd NV, the gauge transformed function sustains a repeated
change and becomes a periodic function of y. While this discrimination was au-
tomatically included in Yx 1, and Wy by the existence of the =5 @) term we
now have to tag it explicitly by the superscripts ”e” and ”0”. The transformed
functions ®*°(x; \) fulfill the heat equation

(0 — £28)3%° (a5 \) = 0,

where the similarity and gauge transformed Laplacian is given by

1 ade . .
QBg o (3952 + 0, + CC; 5, — 18y)2) + 2iccet(coshz — cosy).  (5.22)
fl

The differential equation Eq. (5.22) as it stands can not be solved analytically.
The next step one could try is a solution of the problem in Fourier space. Thus, we
expand the heat kernel in terms of eigenfunctions of the Laplacian. Let us for the
time being neglect the impact of the topological term and the Gade term on the
Laplacian. Let us further set € = 0, i.e. consider the heat equation corresponding
to the Laplacian £4 = éDQ. Introducing the dimensionless length variable
s = L/ for convenience and using that cq o< £ we get

0sYe=o(x; 5) = LnYezo(T; 5) (5.23)
and the corresponding eigenvalue problem

Sﬂ(bn(w) = Bn¢n(m)a (524)
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where 3, are the eigenvalues and x stands for the variables in Fourier space. The
eigenfunction decomposition of the initial condition is then given by

5(x) = / 5 (), (5.25)

K

where fn is a shorthand for the Fourier integration or summation. For the Fourier
representation of the heat kernel we get

Va(ess) = [ dubnl@)e . (5.26)

Although this approach is standard it turns out that we can not proceed. The
reason is that Fourier transforming the delta function defined by Eq. (5.17) we get
zero. This unusual behaviour results from the fact that §(x) projects onto the ori-
gin of the supergroup if integrated with the measure dg, [ dgd(z)f(z) = f(0). As
a consequence of the perfect supersymmetry (equal number of commuting and
Grassmann variables) the delta function Eq. (5.17) contains no normalization
factor?. Thus, the corresponding space is effectively zero-dimensional. Trying
to Fourier transform this function on the two-dimensional radial sector of the
supergroup results in an integral over an function of zero support, just yield-
ing zero. We can find a remedy by the following modification [84]. Consider
Ya(x;s) = Ya(x;s) — 1 instead of Ya(e;s). The heat kernel Yy also fulfills the
heat equation, Eq. (5.23), but obeys the modified initial condition

£1_1>r(1) Ya(z;s) = —1. (5.27)
The Fourier decomposition of the modified heat kernel is given by
Ya(x;s) = — / 1. () e~ (5.28)
where
1, = / dzJ ()b (). (5.29)

For the calculation of the eigenfunctions it is convenient to perform the similarity
transformation Eq. (5.19) to Eq. (5.24). Then, evaluating 1, we can solve the
heat equation Eq. (5.23) in a small distance expansion, i.e. for s < 1. With H
given by Eq. (4.28) and recalling that the dimensionless conductance is given by
g =¢/L =1/s it turns out that Y (a;s) ~ 1+ L str H> = 1 + gstr H2. This is
(apart from a sign) in agreement with a quite general calculation of the expansion
of the heat kernel in powers of H [83].

2Recall that the cancellation of normalization factors is one of the most important properties
of Gaussian superintegrals.



Chapter 6

Calculation of the DoS and
Discussions

After the preparations we have made in the last chapters we are now able to start
the investigations of the AIIl DoS. In particular, with the heat equation derived
in Ch. 5 we now have a tool at hand, which allows us to study the DoS of quasi-
1D chiral systems on all relevant energy scales (cf. Sec. 2.1). Nevertheless, we
will perform our calculations in the ergodic in diffusive regime without the aid of
the heat kernel, the reason being that in these regimes the solution of the partial
differential equation is not easier than starting directly from the NLoM action.
More concrete, the calculation in the ergodic regime is simplified by the fact that
the fields can assumed to be spatially constant. As a result it turns out that in
this zero-dimensional limit the DoS reproduces results known from chiral RMT.
Turning to the diffusive regime, the generic field of application of diagrammatic
perturbation theory, actually no field theory is needed. But as we will see, the
NLoM allows for an elegant calculation of the loop contributions. Finally, in
the last section we enter the localized regime L >> &, which is manifestly non-
perturbative. At this stage, where all other methods fail, the heat equation comes
into operation. We will solve the heat equation and derive analytical expressions
for the DoS on energy scales € < A¢. As one of the main results we obtain the
DoS to depend drastically on the parity of the channel number.

6.1 FErgodic Regime

Let us start our investigation of the DoS within the ergodic regime. Assuming
that the localization length £ is much larger than the length of the wire L the
electrons cross the system very often. Thus, the ergodic regime is characterized
by A <« E. and € < F, or, equivalently, times exceeding the diffusion time very
much. We can imagine this case to be realized by very small systems (cf. Sec. 2.1).

57
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As a consequence, the supermatrix fields g(\) of the o-model action fluctuate
only very slowly over the system length and hence can be treated as constant.
Expressed in terms of Fourier modes in momentum space the ergodic regime
corresponds to the zero-mode approximation.

6.1.1 Exact Calculation

Consider the general expression for the DoS given by Eq. (4.32). Within the
zero-mode approximation the terms of the action containing derivatives, i.e. Sy
and Sgade, can be neglected. Note, that this is not true for the topological term.
Since we are dealing with very small systems we have to consider the global form
Stoplg] given by Eq. (4.19). Further, the fields are assumed to be independent of
the length variable A. We then obtain

L —
<,00D(€+)> = % Im/dg Fle[g] e (Sf[g]+st0p[g])
(6.1)

L .
_ % Im/dg szl[g] elﬂ'poe"‘(coshwfcos Y) ftop(ma y)’

where from Eq. (4.19) we get

b (@) 1 for Ng even
o :E’ = .
top Y e*Nc(iz*ly) for Ns odd.

Alternatively, we could have started from the heat equation Eq. (5.15). Since
cqg x E./A and ¢, «x €/A, the first term of Eq. (5.16) can be neglected. Hence,
we end up with a simple ordinary differential equation for the heat kernel

0,Y (z; \) = imppe (cosh  — cos y).

As can be seen easily, the product Y (x; \)Y (x; L — ), which enters the formula
for the DoS, Eq. (4.33), just reproduces the exponential function in Eq. (6.1).

In the next step we calculate the pre-exponential term Fj_;[g] using the polar
decomposition Eq. (4.27),

Fi_i[g] = iccstr[(g + g ")obl] = iccstr[(a + a ')k o'k

B 1 0 0 m mnz 0
klobk = 2 2
7% (0 —1> * (—772 0) + ( 0 mn/)’

str[(g + ¢g7")o] = 2 [cosh = + cos y] + 4 [cosh  — cos y] M-

With

we obtain
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Substituting this expression into Eq. (6.1) yields

{pop(eh)) = % Imi/dg [(coshfv +cosy) + 2 (cosh x — cosy) mme

% eiwpoe"‘(coshwfcosy) ftop(xa y)

The integral over the first contribution contains no Grassmann variables but
diverges at the origin o of the supergroup caused by the integration density. By
a theorem of superanalysis (cf. Ref. [81]) the integral is given by the value of the
integrand at g = o,

% Re / dg(cosh z + cos ) emPoe" (cosha—cosy) — (6.2)

Integrating the second contribution over the Grassmann variables we get for the
total expression

00 2

1 coshz — cos Y irwt(cosh z—cos
(un() = o | 1+ g e [ [ay® S SR o e gy |

—o0 0 2

(6.3)

where we have introduced w* = €t /A = €' py and the limit y — 0 is implicitly
taken on the left hand side. The detailed calculation is presented in App. C for
w > 0. Making use of the fact, that the energy spectrum is symmetric w.r.t.
w = 0, the 0D DoS for an even number of sites is given by

2

{pon (@) = Tpoleo| [5 (mw) + TP (mw)] (6.4)

whereas for an odd number of sites and N, = 1 we obtain

2

{pop(w)) = 7r3p0|w| [JE(7w) = Jo(mw) Ja(7w)] . (6.5)

A plot of both functions is shown in Fig. 6.1. The result is exact in the sense that
it holds for all energy scales provided that e < E.. Particularly, we notice that
the zero-mode DoS resolves fluctuations on the scale of the mean level spacing A.
Furthermore, for w — 0 it drops down to zero, where an expansion of the Bessel

functions yields for an even number of sites {pi5" (w)) = pow whereas for odd Ny

we get (pi5! (w)) = pow?®. It is remarkable that the DoS looks quite similar to
the level-level correlation function for the symmetry class A plotted in Fig. 3.1.
This results from the fact that the AIII DoS has the complexity of coupled Green

functions (cf. Eq. (3.12)).

Egs. (6.4) and (6.5) reproduce calculations of the density of states within chiral
RMT [16,17,67,85]. Cf. Ref. [86] for an overview. This is not surprising, since the
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<p>

1.5+

1 0.5 |

-3 2 1 0 1 2 3

Figure 6.1: Plot of the average DoS in the ergodic regime for an even number of
sites (solid curve) and an odd number of sites (dotted curve) (po = 1).

zero-dimensional limit contains no information about microscopic details or the
geometry of the system but is merely influenced by global symmetries. Note that
this not absolutely correct. In contrast to systems of standard symmetry here
one microscopic detail, viz the number of sites, has an impact on the structure of
the DoS. This fact is related to the topological character of the boundary term
Stop Occurring in the field theory.

6.1.2 Large Energy Asymptotics

We now turn to the large energy approximation of the exact zero-mode result,
i.e. A € e € E.. We are interested in this limit for future checks of consistency.
Using the large argument asymptotics of the Bessel functions we get

" 1 9
(Pop (W) = pu (1 T gv ? - 12871Y 4) : (6.6)

As can be seen in Fig. 6.2 the fluctuation on scales of the mean level spacing are
smeared out. Instead, for ¢ — 0, i.e. leaving the range of validity of the present
approximation, we get an algebraic divergency.
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<p>

05 |

-3 -2 -1 ol 1 2 3

Figure 6.2: Plot of the average DoS in the ergodic regime for an even number of
sites. The solid curve shows the exact RMT result, whereas the dashed curves
are the first and second order approximation for e > A.

6.2 Diffusive Regime

In this section we leave the universal zero-dimensional limit case and enter the
regime of diffusive dynamics. Hence, we consider energies exceeding the Thouless
energy, A < E. < ¢e. Therefore, in quasi-1D, we have A/\/eF, < 1 as small
expansion parameter. Actually, we are entering the typical field of application
of diagrammatic perturbation theory. Nevertheless, the NLoM provides us a
straightforward method for the perturbative expansion of the DoS, yielding con-
tributions which correspond to certain diagrams. It turns out that it is much
more convenient to switch to the o-model formulation in terms of EFETOV’S
(Q-matrices.

6.2.1 General Formulae

According to Ref. [81] we use the rational parameterization for the Q-matrices,
which is with the settings in App. D given by

Q=(1-Weos®) 'o;®(1 - W ®oy")

6.7
= (- W) 1+ W e o), o7
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where the Pauli matrices 0*8 act in sublattice space. With the Taylor expansion

Q=

1+ 2(-1)"(We o?B)”] a3®
=t (6.8)
= 03AB + QU?B Z(W ® 02AB)"
n=1

we get for the energy term F.[Q)], Eq. (4.31b), and the pre-exponential source
term F;_;[Q], Eq. (4.31c), up to quartic order in W

4

1 ‘

str[Qo3P] =~ 2str [5 148 + E W UQAB)Z]
i=1

= 2str [W? @ 1*® + W* @ 1*®] = 4str [W? + W]
and

1
str[QoyBol] ~ 4str [50? + W2 + W40§’f} , (6.10)

respectively. A similar calculation for the fluctuation term Fy[Q], Eq. (4.31a),
yields

str[0Q0OQ)] ~ 4str { [azﬁ:‘Ba(W ® oB) + J?Ba(W ® 02B)? + 03AB8(W ® afB)?’]Q}
= 4str[(OW)? @ (—1*P) + 2(2(0W)*W? + (IWW)?) ® (—1*P)
+ (2(0WW)? + 2(0W)*W?) @ 14P]

= —8str [(W)* + 2(0W)*W?], 611
6.11

whereas it turns out that the topological term does not contribute. Concerning
the Gade term, we note that its coupling constant is of the order of unity and
hence much smaller than the coupling constants cqg > 1 and ¢, > 1. Therefore,
this term is neglected. From Eq. (4.32) we obtain the DoS

L
14

(p(e)) = 40Re / dA / DQstr [Q(N)ob oy P] e Senl@], (6.12)

0

Substituting the expansions, Egs. (6.9) - (6.11), into Eq. (6.12), performing a
Fourier transformation and expanding the exponential containing quartic powers
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in W, we get

L
1
(pairi(€)) = o Re / d\ / DW str {(5 +W?+ W4> o‘gf]
0

% @m0 Jo dxstr[—2D(0W)2W2+2ieW ] Q0 J dxstr[- D(@W)2+2ieW?]

(1
= Po Re<str (5 + zk: Wkak + Z VVIJ/Vlzl/Vl:sWhlzls) U}i)f]

l1,l2,l3

Dqiqo + i€
X [1+m Z 2 A str [W‘I1W(I2WQ3W—111—(I2—Q3]] >7

L 41,492,493

(6.13)

where

()= / DW(...) e SpersulWoW 5] (6.14)

Cp = W% and DW denotes the flat functional measure, so that (1) = 1. We
now have to perform the Gaussian integral over all combinations in Eq. (6.13),
i.e. certain contractions have to be calculated. Once having appropriate contrac-
tion rules derived this can be done quite easily. The derivation of the contraction
rules and the calculation of the contributions to the DoS is presented in App. E.
The terms can be classified according to the language of diagrammatic pertur-
bation theory. Expressions containing n free momentum summations are called
n-loop diagrams.

Representing the source o5 by a bullet and each momentum by a leg Eq. (6.13)
can be visualized as follows:

X B

Each contraction then corresponds to the junction of two legs. Considering only
diagrams up to 2-loop order we get the following five contributions

e Unperturbed part

(str(3o37)) = (1) = 1. (6.15)
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e 1-loop diagram

Z (str [WkW,kaé’fD = 0. (6.16)

e 2-loop diagram A

X — QO

1
Z <StI‘ [W/rl1w/vl2m3W*llflz*l3U}i)f]> = 5 Z(cll)il(cb)_l (617)

llal2’l3 ll,lQ

e 2-loop diagram B
X — + OO

Dqiqs + i€
Z 1A2 <Str(%0§f) str [Wth WQ2WQ3W—¢11—112—<13]> =0 (6'18)

q1,42,93

e 2-loop diagram C

D + ie
3 DI s Rl o)

:igw [(€q0) 2 (c0s) ™ + (ca) Heg) 2] (6.19)

q1,92
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Thus, there is no 1-loop contribution and only two of the 2-loop diagrams yield
a non-vanishing result. Finally, we obtain the DoS in the diffusive regime,

(pan) = pote{ 1+ 3 3 () )

l1,l2

o 3 [(en) o)™ + e )]

q1,q92

A? 1
= pod 1+ — 6.20
P 0{ ToERe) (Dp? — 2ie)(Dq? — 2ie) (6.20)

Y2

n 4ie
(Dp? — 2i€)?(Dg? — 2ie)

A? Dp? + 2ie
= 1+ —R .
P 0{ o Red (Dp? — 2i€)2(Dg? — 2ie) }

pq

6.2.2 Zero-Mode Approximation

Before summing up all momenta let us consider the zero-dimensional limit of
Eq. (6.20), i.e. the case of slowly varying fields, or ¢ < E.. Then, we can restrict
the momentum sum to the zero-mode p = ¢ = 0 and get

A? 2ie 1
0D — 1 R | = 14+ —w™? 6.21
<pd1ﬂ'(w)> Po + 271'2 € —(216)2216 Po + 87_‘_2(“) ’ ( )

which reproduces the high energy limit of the exact zero-mode result in Eq. (6.6).

6.2.3 Large System Approximation

In the next step we consider the regime & > L > (D/w)?, which corresponds
to energies w > FE.. This is the regime of weak localization, where the diffusion
constant in the common systems of A, Al, and AIl symmetry is renormalized
by mechanisms of quantum interference. Consequently, we should expect to get
algebraic corrections in the small parameter w!. Since for L — oo the discrete
momenta pass over to a continuum we can approximate the sums by integrals:

>, — & [dp. With

1 T 1 T
dp = and /7d = 6.22
/ ap? + b P vab (ap? + b)? P 2V ab? ( )

we obtain from Eq. (6.20)

2 21 -1 21e
i(€)) = —5Re=—- —pp. (6.2
(pain(e)) = p 0{1 T om ey [QiDe - D(—2i6)3/2(—216)1/2] } po- (6:23)
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Thus, there are no perturbative corrections to the DoS in the diffusive regime
up to three loop order. Before discussing this result let us consider the exact
summation and show how to recover the results obtained in this and the previous
subsection.

6.2.4 Exact Momentum Summation

Indeed, it is possible to perform the momentum summation in Eq. (6.20) exactly,
i.e. to calculate the DoS for € > A on all length scales assumed that ¢ > E. and
€ > L. Let us first outline the general recipe how to perform asum » >° _ f(g,),
where f(g,) is some function depending on a discrete set of arguments {g; };.

e Introduce a auxiliary function g(z) with simple poles at g,, for all n, such
that f(z)g(z) — 0 for |z| — oc.

o Consider the contour integral [, dzf(z)g(z) over a contour C, that encloses
all poles of the integrand (e.g. a circle of infinite radius).

e Since the integral vanishes we get an representation of the sum of the fol-
lowing form:

3" F(ga) = 3 Res(f9)(2)

=~ Res(f9)(2)

Poles of f

(6.24)

Poles of g

Now, we apply this recipe to the sum
1
2 bz =2 (VDan) (6.25)
q n

with

_ 1 1
f(z) = 22 _ % (z+\/ﬂ) (z—\/2_1e) (6.26)

As auxiliary function we choose

g(2) = eaf‘_l, with o = iL/V/D. (6.27)

The (simple) poles of g(z) are located at z, = n¥+v/D = v/Dg, as demanded,
whereas f(z) has poles at +v/2iw (cf. Fig. 6.3). After a careful verification of
lim,| 00 f(2)g(2) = 0 we conclude

0= /dzf(z)g(z) = 2mi

c

Y Res(f9)(2)|,_y5, + D Res(F9)(2)],_, o

s=1,—1

(6.28)
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/ Poles of f(z) \\\
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Poles of g(z)

Figure 6.3: Poles of f and ¢

The first residuum turns out to be given by

Res(fg)(2)],_,, = flen) = ﬁ’

and we obtain
E na o — —Res(/ 9)(Z)|z /e Res(/ 9)(Z)|z, Vo
Dqg? — 2ie ie ie

q
= —2 @ coth (g\/216) .

2ie 2

We turn now to the second sum in Eq. (6.20)
1
S (vEw),
; (Dg? — 2ie)? ; VDq

where

1 1 1
h(z) = - 5

(=2 (o vmie) (o - vaRe)
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(6.29)

(6.30)

(6.31)

(6.32)
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With the second order residua of hg at ++/2ie given by

d —\ 2
Res(hg)(z)|Z:jm/2Te =3 (z +V 216) .
z=1%V2ie
92 a 1 012 e:i:a\/ZTe (633)

3 ie - 2 T 2
(2\/216) eton2ic ] (2\/216) (eFav2ic —1)

=7F

we derive

1 o o a? 1
— = - coth (—\/ 216) + — )
; (Dg? — 2i€)>  4(2i¢)3/? 2 16i€ g2 (% /—216) (6.34)

Finally, the "exact” DoS in the diffusive regime, denoted by a superscript 3, is
given by

(pgiale)) = po |1 —Re

(6.35)

A2 cosh (% 2ie/Ec)

1672/ 2i€E¢ ginh? (% \/ 2ie/Ec>

= Po 1+Rel

As expected this expression contains no (purely) algebraic contributions, which
is in agreement with our previous results. In conclusion, we consider the limits
€ < E. corresponding to the zero-mode regime and € > F. corresponding to the
thermodynamic limit. Starting with the former case we obtain

A? 1
%,0D ;
<pdi7ﬂ (€)> = po |1+ Rei 2. /9cE3 3
_ 1672, /2ieE3 i ( 2ie/Ec) (6.36)
-
= Po I 8m2w? |’

which reproduces Eq. (6.6) whereas in the latter case we get

2 A?
<P§i’§>>EC(€)> = Po [1 V2 e~ Vel Ee sin(v/€/E. + %) ) (6.37)

B 1672 A /eEg

which in the limit L — oo, i.e. E, — 0, yields our former result, {(pqir(€)) = po
from Eq. (6.23).
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6.2.5 Perturbation Theory with the Replica c-model

At the end of this section we now point out an alternative to the supersymmet-
ric version of the NLoM. As already mentioned the so-called replica trick also
provides a method, which allows to circumvent inconvenient determinants. Par-
ticularly, it turns out that starting from a replica NLoM it is even easier to
estimate whether a perturbative contribution vanishes or not. Thus, although
yielding no new results this subsection is motivated by a methodical point of
view. Recall that

p(et) = _% Imtr (G* () . (6.38)

Considering the J = 0 generating functional in Eq. (4.1) with fermionic fields we
obtain for the Green function

<tr o i H> = (trdcIn(e* — H)) = 9. (Indet(et — H)) =0, (In Z).  (6.39)

Thus, in order to get the DoS we have to calculate the disorder average of the
logarithm of the original generating functional. At first view, this task seems to
be even more complicated but it is managed by the replica trick. We consider
the partition sum of an n-fold replicated system, (Z"). This is related to the
logarithm of the single generating functional by the following identity

Lo (2Zm -1
(InZ) = rlg% — (6.40)
Consequently, the DoS is given by the expression
1 ) (Z2m -1
)y = = N A—
p(e™) = - Im 0, rlzli% ( p ) . (6.41)

Applying a similar procedure as in Ch. 4 one can derive a NLoM. Formulated in
terms of (Q-matrices (elements of the corresponding coset space) this has nearly
the same form as in the supersymmetric case. The only difference is that the
matrices W (cf. Eq. (6.7)) are now Hermitean n X n-matrices and the supertrace
is substituted by the common trace:

(2 = / DQ e Serld (6.42)

with the effective action

Set|Q] = _ /—t [0Q0Q)] + ie tr [Qo } ) (6.43)
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Expanding the @Q-matrices according to Eq. (6.8) we obtain
tr[Qo5 "] = 2n + 4 tr[W? + W] (6.44)
and
tr[0Q0Q] = —8 tr[(OW)? + 2(OW )*W?]. (6.45)

After a Fourier transformation and an expansion of the exponential function
containing the quartic terms we end up with the following expression for the
generating functional of the replicated system:

ny Q1QQ + ie
(2") = <1 + 27 Z tr [We, Wq2Wq3W—q1—q2—q3]> (6.46)
41,492,493 %%
where
(... )y = eimrocn / DW(. p e Ve Wos], (6.47)
e = W(%), and the measure is given in App. E.3. Before we start to calculate

the contributions let us note that all odd loop diagrams vanish by a general
reason. Focusing on the zero mode regime each power of W? yields a factor ¢ !
after integration. Hence, € ((W?)¥) ox e ¥ (k € N) and differentiation w.r.t. e
yields (—k + 1)e7*, i.e. each odd loop order contribution is of odd order in e.
But since the DoS is an even function of €, all diagrams with an odd number of
loops must vanish.

Substituting Eq. (6.46) into Eq. (6.41) for the DoS we get the following contri-
butions. From
(1) = e (6.48)
which corresponds to the unperturbed part we get
ei7rp06+n -1

1 1
—Im 9, lim ———— = —Im 9, (irpoe™) = po. (6.49)
m

T n—0 n
By means of the contraction rules derived in cf. App. E.3 we find

(Dpgq + ie) (tr W, tr W—q>w>

(pain(€)) = po [ 1 +2Im, lim

P 261
D ie) tr 1,
= Py 1+21m8€limz( pq +ic) tr )
\ n—0 depeqn
Py (6.50)

A? ie
= 1+ —Imo, - .
P\t or2 ; (Dp? — 2ie)(Dq? — 216))

A? L 1
~p(1l-=—Im=9— )=
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where in the last line we have again performed the thermodynamic limit. Thus,
we have again verified the result that all perturbative corrections to the DoS of
quasi-1d system with AIIl symmetry vanish at least up to three loop order.

6.2.6 Discussion

In conclusion we have calculated the perturbative corrections to the AIIl DoS
using a diagrammatic perturbation scheme generated by the NLoM. Both within
the supersymmetric and the replica version of the quasi-1D NLoM we do not find
perturbative contributions up to three loop order. The question arises, whether
all perturbative corrections vanish or whether there exists a loop order which
yields a non-vanishing contribution. The four-loop corrections are the next which
come into question but their calculation is quite involved and out of the scope
of this work. Since we do not find a simple argument for the absence of all
contributions, the four-loop contributions may exist. A definitive answer to this
problem is still lacking.

6.3 Quantum Regime

We now turn to the most interesting case, the localized quantum regime. Here,
the system length is much larger than the localization length, g = £/L < 1. The
relevant energy scale in this regime is the mean level spacing corresponding to
a localization volume, A, = %A, not the mean level spacing itself. The limit
of small energies is then characterized by, € < A¢ or w < 1, where w = €/A,.
This corresponds to such large times that the electron wave function decays ex-
ponentially around some center due to strong localization, i.e. due to destructive
quantum interference. Since the quantum regime corresponds to extended sys-
tems sizes and since it is manifestly non-perturbative (formally A? > F.e), the
methods of the previous sections can not be applied. Instead, the heat equation
comes into operation. With the preparations made in the last section of Ch. 5
we solve the heat equation in the limit of small energies and calculate the DoS
in this limit by means of Eq. (4.33).

6.3.1 Calculation without Gade Term
Let us for the time being neglect the influence of the Gade term, thus setting
cs = 0. The originator for our calculations is the similarity and gauge transformed

heat equation, Eq. (5.22), which after multiplication with the factor 4cy reads

0,0 (@; 5) = [8,° + 9, — n(coshz — cosy)] 8*°(a;5).  (6.51)
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Here we have introduced the small parameter n = —ie*8cico = —iet/A¢. The
next step is to apply the Fourier expansion scheme outlined in Sec. 5.3. Since we
are interested in the DoS for large s = L/¢, i.e. in the bulk of the wire, far away
from the boundaries, it is sufficient to consider the zero-mode eigenfunction. That
this is justified can be seen by looking at the general expansion, Eq. (5.28). For
large s the main contribution to the Fourier integral comes from the zero-mode
Bo = 0. Denoting the zero-mode eigenfunction by ¢%°(«x) the problem is reduced
to the solution of the differential equation

[(%2 + 8,% — n(cosh z — cos y)} ¢*°(x) =0, (6.52)

Let us start with the case n = 0. Note that Eq. (6.52) is solved by each function
f = f(z —iy). But the solutions must obey the initial condition, Eq. (5.17), and
the periodic boundary condition Eq. (5.18). Consider the following solutions® of
Eq. (6.52),

n—o(x) = — sinh <ac _2 1y> and n—o(T) = —coth <x _2 1y> . (6.53)

They fulfill both, anti-periodicity/periodicity and the initial condition

lim [— sinh (” > 1y) oFNe(@—i) /2 ¢e’°(m)n:0} -1 (6.54)

z,y—0

Note that the large x asymptotics are given by

e 2L o o —x(a—iy)/2

n:O(w) — —2e ) (
6.55)

MIN ) T2 1 gexe—iy) M2 —1,

where Y = sgnz. In the next step we turn to the solution for 0 < n < 1
(cf. App. F for more details). It turns out that due to n < 1 the solution for
x = O(1) does not contribute. Thus, we can restrict our calculations to large
values of the non-compact variable, |z| > 1. The differential equation Eq. (6.52)
decouples and can be solved by the separation ansatz

¢*°(x) = ¢1°(x) 5" (), (6.56)

where for large |z| the factors on the right hand side satisfy the differential equa-
tions

0,2 — gelwl —0%°| ¢°(z) = 0 (6.57)

'We anticipated here, that other solutions, especially those which decrease faster than the
expressions in Eq. (6.53), lead to contributions to the DoS, which vanish in the limit  — 0.
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and

[8y2 +ncosy + C’e’o} #5°(y) =0 (6.58)

with C® =1/4 and C° = 0. We first solve the y-equation perturbatively in 7. It
appears that already the zero order term yields the leading contributions to the
DoS (cf. App. F). Thus, we have

Brmo(y) =€X2  and @3, () = 1. (6.59)
In order to solve the z equation we substitute
u=(2n)/2e®/? (6.60)
into Eq. (6.57) and get
(0?02 + udu — (v* + u?)] $7°(u) =0, (6.61)

with v = 0 for odd N, and v = 1 for even N.. This equation is solved by
Bessel functions of the second kind. Hence, the general solution is given by a
superposition of K, (u) and I,(u). But the functions I,(u) grow exponentially
and hence are not integrable. Thus, we keep only the Bessel functions K, (u).
Determining the normalization factors by the n — 0 asymptotics we finally get
for the heat kernel in the limit of small n

. 2
#(@) = =220 K ) e and (@)= Kow).  (662)
nn
Calculating the pre-exponential factor analogously to Eq. (6.3) we obtain from
Eq. (4.33)
[e's) 27
e,0 ]. ]_
(Pauans (€7)) " =po [ 1 +Re4— / dx/dy§(coshx—cosy)qbe"’z(w) . (6.63)
T
—00 0
Since K, (u) decays exponentially for large arguments and u ~ 1 for z ~ —Inn
we introduce FInn as an upper/lower cut-off for the z-integration. Then the
argument of the Bessel function is smaller than 1 and we can use the expansion
for small arguments. After an analytic continuation n — —i(w + iy/A¢) with

w = €/A¢ and performing the limit v — 0 we finally get for the DoS in the
quantum regime

{Pquant (w))© o< —po|w| In|w| for N, even (6.64)
and

o P
<,0quant(w)> — Po X m for NC odd. (665)
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Thus, the DoS in the small energy limit, € < A, of the deep quantum regime
dramatically depends on the parity of the number of channels in the quasi-1D
AIII system, cf. Fig. 6.4. For an even number of channels the DoS vanishes for
€ — 0. Being unusual in system of standard symmetry, this behaviour is a direct
consequence of the underlying chiral symmetry. As we have seen in Sec. 3.1
by formal arguments, eigenvalues of a chiral Hamiltonian appear pairwise with
opposite sign. The corresponding modes influence each other resulting in level
repulsion, which is the stronger the closer the levels are. As a consequence,
there is no state at the exceptional point ¢ = 0. For an odd number of channels
the situation changes drastically. There is one mode left which does not have a
partner. Hence, this state is able to become extended mode.

<> (N even)

0.2
0.1
‘ ‘ : — W
-0.1 -0.05 0. 05 0.1
<0O> (N; odd)
100007
5000
: : w
-0.1 -0.05 0. 05 0.1

Figure 6.4: Average DoS in the quantum regime (w = ¢/A; < 1 and L > ¢).
For even N, (top) the DoS exhibits a gap at the band center, whereas for odd N,
(bottom) it diverges.
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6.3.2 Influence of the Gade Term
Finally, adding the Gade term to Eq. (6.52) and get
[0, + 0,% + ¢ (0, — 19,)* — n(coshz — cosy)] ¢*°(x) = 0, (6.66)

where ¢ = c3/c¢;. Note that for n = 0 each solution of Eq. (6.52) also solves
Eq. (6.66), which can easily be seen by rewriting Eq. (6.66) using complex vari-
ables. Unfortunately, for finite n Eq. (6.66) does not decouple in = and y. Hence,
we can not follow the same procedure as in the previous section. Instead of this,
we make a series ansatz in both, e*/? and e¥/2. Recall that the = depending part
of the ( = 0 heat equation is solved by Bessel functions. Hence, we use the
following generalization of the series representation of K, (u) as an ansatz for the
solution of Eq. (6.66),

o o0
(u,v) =u"" Zblvl + Z aputot Inu.
1=0 k,l=0
Here we have introduced
u = (2n)? e/ and v=e¥?,

Substituting the ansatz into Eq. (6.66) yields

[(1 +¢) (u?02 + udy) + 2¢uvd,d, — (1 — ¢) (v*02 4 vov)
—u? + 2n(u® + 1)72)] é(u,v) =0

and therefore

ut Z {[1 =1+ —10)*]by + 2n(b 2 + biy2) } o' + Z[Qk + 2¢(k + D] agu**
1 kl

+Ilnu Z{[k2 — P+ C(k+D?ay — ak—21 + 2n(ak,i—2 + ak,lw)}ukvl
kl
—u Z bv' = 0.
1

Comparing the coefficients we obtain the following relations

[1— 1%+ ¢(1—D2by + 2n(bi—g + biy2) = 0,
2k +2¢(k+ D]a —b=0  (k=1), (6.67)
2k +2¢(k+ D]a =0  (k#1),
[k? —1® + C(k + 1)?)ar, — ag_24 + 2n(agi—o + agi2) = 0.
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Anticipating that for odd N, the Gade term has no impact on the result we con-
centrate on the case of even N.. Reflecting that for = 0 the solution of Eq. (6.52)
also solves Eq. (6.66) we conclude from the n — 0 asymptotics (cf. Eq. (6.55))
that lim, o ¢(u, v) = —24/2nu~"v. Therefore, we have

b = —2/21,
and Eq. (6.67) yields

by

ap = m

Up to second order in 7 the heat kernel is given by
1
*(u,v) = —24/2n [u ' + ————ulnu+ O Inu)| v.
¢*(u,v) V21 201 20) ( )

Finally, we obtain for the DoS in the case of an even channel number

Gade e Po
<pquant(w)> (&8 1+2<—|w1n|w|‘7 (668)

whereas for odd N, the DoS in the quantum regime is unaffected by the Gade
term, (pgies: (@) = (Pquant(w))”-
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Chapter 7

Systems of AIl Symmetry

In the second part of this work we investigate the localization-delocalization tran-
sition in two-dimensional systems belonging to the symmetry class AIl. The
present chapter gives and introduction into the peculiarities of AIl symmetry.
Further, we present the basic concepts of the scattering theoretical network
model, within which we perform our investigations. In the second section an
survey of the scaling theory of localization is given.

7.1 Introduction and Motivation

Recently, localization-delocalization (LD) transitions in 2D disordered electron
systems in the absence of a magnetic field were observed by several groups [30-36].
These results are in contrast with the scaling theory for non-interacting electrons
of ABRAHAMS ET AL. [9], which predicts that all states are localized in 2D and
in the absence of spin-orbit interaction. Now, a new discussion has started on
this topic with the emphasis on the effects of electron-electron interaction and
spin-orbit interaction [37-42].

It is known that both types of interactions could be responsible for the existence
of an LD transition. In the case of spin-orbit interaction, general arguments
[43] and perturbation theoretical calculations in the weakly disordered regime
[44,45] yield a positive correction to the conductance. This quantum interference
effect requiring time reversal invariance is known as weak anti-localization. In
the present work we focus on the detailed examination of a 2D non-interacting
electron system with spin-orbit interaction. We perform the investigations within
a scattering theoretical network model approach.

In a recent paper [46] is was shown that scattering theoretical network models
(NWMs) are well suited to describe mesoscopic disordered electron system. In
general such a NWM can represent any system of coherent waves propagating

79
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Figure 7.1: Topology of a general network model. Squares are scatterers and
lines are bonds.

through disordered media. It consists of a network of unitary scatterers connected
by bonds. The arrangement of scatterers and bonds defines the topology of the
NWM, which can be described by a connectivity matrix. In this work we choose
a simple case, where the scatterers are located on the sites of a quadratic grid,
so each of them has four nearest neighbors, as is sketched in Fig. 7.1. Each bond
consists of 2n links, n for each direction, where n = 1 for waves without and n > 1
for waves with internal degrees of freedom, e.g. spin. In the case of electron waves
a complex number is attached to each link representing the probability amplitude
at this position. The set of all amplitudes defines the quantum mechanical state
U(t) at time ¢. One step of time evolution is then given by a unitary operator U,

U(t+1) = UT(2).

This time evolution operator is determined by all the scatterers in the NWM.
Each scatterer maps 4n incoming channels to 4n outgoing channels conserving
the current and is therefore represented by a unitary 4n x 4n-matrix. The disorder
is in general simulated in two ways: first by multiplying the amplitude on each
link with a complex random phase factor e!® with ¢ randomly chosen from [0, 27|
simulating the random distances between the scatterers and secondly by taking
random values for the parameters that parameterize the matrix representation
of the scatterers simulating the random strengths of the scatterers. Of course,
both random choices have to be compatible with the symmetry properties of the
system. NWMs for systems with (AI) and without (A) time-reversal symmetry
have been examined in [87]. There a reflection, a transmission and a deflection
coefficient were introduced, which parameterize the scattering matrices. Further-
more an elastic mean free path could be defined in terms of these coefficients. It
was concluded that in both cases all states are localized, in correspondence to
the scaling theory of localization.

In this part of the work we focus on a NWM with conserved time-reversal but bro-
ken spin-rotational invariance, in order to investigate the localization behaviour
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of systems with AIl symmetry. We therefore implement additionally spin scat-
terers in the NWM defined in Ref. [87]. This introduces a further parameter
governing the spin scattering strength. By means of the transfer matrix method
we calculate the renormalized localization length A for a strip geometry. This
quantity serves as scaling variable. We determine a phase diagram in the three-
dimensional parameter space. Towards a characterization of the LD transition
we first construct a scaling function in order to verify the assumption of one-
parameter scaling. Then we calculate the critical exponent v of the correlation
length and the critical value of the scaling variable, A*. In the literature the
critical value of the scaling variable is simply read-off from plots in most cases.
As we will see, v depends drastically on small variations of A*. Therefore, the
determination of both, the scaling function and the critical values, is performed
by means of a numerical fit procedure adopted from Ref. [47], in order to get
reliable results. Additionally, the confidence of the fits is estimated by a y2-test.

7.2 Localization-Delocalization Transition

The central subject of the present part is the LD transition in 2D systems of
AIl symmetry. In this section we describe the general phenomenology of this
critical phenomenon and show how the existence of such a transition for the AII
symmetry class can be concluded from simple scaling arguments.

As a second order transition (cf. [88]) the LD transition is characterized by scaling
invariance and algebraical decay of correlations at the critical point. Recalling
that the correlation function of a local order parameter field, ¢(r), has the general
form x () = (@(r1)@(rs)) o< e /& r~7 where r = |r1—r;|, we see that algebraical
decay at the critical point comes along with the divergence of the correlation
length,

&(s) o< |s — |77 (7.1)

Here s is some system parameter, s* its critical value and v the critical exponent
of the correlation length. From rescaling r — 7 = br then follows x(r) oc 777 =
(7/b)~", which means that there is no preferred length scale. Furthermore, the
mean order parameter, (¢(r)), should vanish at the critical point (and in one
of the two phases). In [48] it was shown that the typical local density of states
(LDOS) is an appropriate choice for the order parameter of the LD transition,

Pryp i= eMPET) o |5 — 5*|P (7.2)
where p(e, ) = [1(e, 7)[* /A(e), energy € and level spacing A(e). S, is the critical

exponent of the order parameter. Moreover, piy,, shows power law scaling at the
critical point,

Pryp o< LI700, (7.3)
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where L? is the volume of a d-dimensional cube and ayq is a scaling exponent,
which is known from multifractal analysis of critical wave functions.

In 2D, i.e. for a square system, this scaling exponent is linked to the critical value
of the quasi-1D RLL by a conformal mapping argument [48],

. 1
A= (7.4)

With the knowledge of v and «q the critical exponent of the LDOS is given by
Bp = V(Oéo - 2)- (75)

Extending our interest from the critical region to the whole phase space we can
ask for the existence of a global scaling variable. At first glance, the dimen-
sionless conductance g = (h/e?)G seems to be the only suitable candidate for
a scaling variable. Based on this one-parameter scaling hypothesis ABRAHAMS
ET AL. developed in a celebrated paper [9] a complete qualitative picture of the
LD transition only by scaling arguments. More precisely, they constructed the
qualitative form of the S-function, which in the case of one-parameter scaling
depends only on g (not explicitely on L or other parameters),

_dng(L)

B(lng(L)) = T (7.6)

For smooth § this is a one-parameter flow equation, also called renormalization
group equation. Due to Ohm’s law, G = o L% 2 with conductivity o, the limiting
value of [ for large g is d — 2, whereas in the regime of strong localization, g < 1,
we have B(Ing) = Ing < —1. As a consequence we find the S-function always
to be negative for 1D, which means that the system flows towards the attractive
localization fized point under renormalization. This corresponds to g(d =1) =0
in the thermodynamic limit. Fig. 7.2 shows a qualitative picture of the S-function
for d = 1,2,3. For 3D there exists (at least) one point with § = 0, where the
conductance becomes independent of the system length. This critical point is
a repulsive fixed point. It separates the localized regime from the delocalized
regime, where in the thermodynamic limit g tends to the delocalization fized
point g = co. At the critical point we have g = g* = O(1). Thus, the 3D system
exhibits an LD transition. The two-dimensional case finally is more delicious.
Here it depends strongly on the sign of the leading weak localization correction
to the conductance, whether an LD transition is possible or not. As mentioned
in the introduction the perturbative corrections to the conductance are negative
for the symmetry classes A and Al yielding always localization. Whereas there
is evidence for the existence of a delocalized phase in systems of AIl symmetry,
where the weak anti-localization correction yields a positive conductance for large
system sizes. Thus, similar as in 3D we should expect an LD transition. We now
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Figure 7.2: Qualitative picture of the S-function for d = 1,2, 3. In the 2D case
there can be a transition due to weak anti-localization.

ask, how to make progress towards a more quantitative characterization of this
critical phenomenon. At this stage we make use of the important fact, that the
derivative of the S-function at the critical point is universal, i.e. depending only
on the symmetry and dimensionality of the system, and is just given by the
inverse of the critical exponent v of the correlation length

1
B'(In g) = . (7.7)
9=g* v
In Ch. 9 we will see, how v can be calculated by means of a numerical method
taking advantage of the scaling behaviour.

For completeness let us mention that later it was questioned whether the di-
mensionless conductance g is a good choice for a scaling variable, because of
the universal conductance fluctuations mentioned in the introduction. As a con-
sequence of UCF, the corresponding conductance distribution is far away from
being Gaussian and the mean value (g) is not necessary a typical value for the
conductance of the system. There can be a large influence of far tails of the distri-
bution. Therefore, it was proposed® to consider the geometric mean gy, = ellng)
instead of (g) (cf. Ref. [2]), and indeed it turns out that formulated in terms of
giyp the scaling theory remains valid.

! This proposition is based on the observation, that due to general results from the theory
of random numbers the logarithm of g turns out to be Gaussian distributed. This distribution
is also called a log-normal distribution.
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Chapter 8

Network Model

In this chapter we introduce the scattering theoretical NWM for systems of Al
symmetry. After the description of its topology we explicitely present the pa-
rameterization of the involved scattering matrices appropriate to the underlay-
ing symmetry. Finally, we discuss the structure of the corresponding parameter
space.

8.1 Topology

The basic idea is to describe a 2D disordered mesoscopic system by a regular
quadratic grid of unitary scattering matrices, which model the disorder poten-
tial of a real sample (cf. Fig. 7.1). These potential scatteres (PSs) map four
incoming to four outgoing complex amplitudes, which symbolize electron waves.
This allows a parameter dependent change of their direction, where the unitarity
of the scatterers ensures conservation of the probability current. Between two
scatteres electrons propagate freely, but a random phase factor is attached to
the corresponding amplitudes modelling the random distances. So far, we have a
NWM at hand, which allows us to describe mesoscopic systems of symmetry Al
or A depending on the system being time-reversal invariant or not. This NWM
has been investigated in Refs. [87,46]. In order to get a network model for AII
symmetry we have to introduce spin degrees of freedom and to provide it with an
additional mechanism of spin scattering. This can be realized by doubling each
channel corresponding to spin-up and spin-down, and inserting spin scatterers
(SSs) between each pair of PSs (cf. Fig. 8.1). The spin scatterers act only in
spin space and are not able to change the direction of the propagating electrons.
Of course, the most general case had been to implement spin scattering in the
PSs. But it turns out that the simpler version of separated scatterers, which is
easier to handle, is sufficient to explore the phenomenology of system with AII
symmetry.
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Figure 8.1: Topology of the network. The potential scatterers (white) change the
direction, the spin scatterers (grey) the spin of the electrons.

8.2 Potential Scatterers

After doubling of the channels the PSs in the AII-NWM are now specified as
follows: Each scatterer maps eight incoming amplitudes I7 to eight outgoing
amplitudes OF, where 0 € {+,—} and 7 € {1,2,3,4}. Consequently, they can

be represented by a 8 x 8-matrix Syo;. With the labeling of the channels defined
according to Fig. 8.2 the mapping is specified by

Iy of
Iy o
O =5,1 with I =] : and O=] : (8.1)
If of
Iy Oy

Due to the constraint of current conservation,
2 2
P =>"1077, (8.2)
1,0 1,0

each scattering matrix has to be unitary, Sy - S;fm = 1g, where 1g denotes the
8 x 8 identity matrix. Additionally, the scatterers are time reversal invariant.

Both properties yield the matrix to be symmetric,

Spot = SpotT- (83)
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Figure 8.2: Potential scatterer: The eight incoming channels I are mapped to
the eight outgoing channels OY.

For convenience we choose the potential scatterers to be isotropic, i.e. they are in-
variant under rotations by multiple angles of /2. This reduces the number of in-
dependent parameters by a factor four, without restricting the phenomenological
content. With these constraints each scattering matrix S, can be parameterized
in the following way [87]:

Spot = PS,00®, (8.4)
where
reiér d d teldt
I A S 5
tel%t  d d el
and
el®1 00 0
o=, . i g |t (8.6)
0 0 el

Here 1, denotes the 2 x 2 identity matrix (in spin space). The real parameters
r,t,d denote the reflection, transmission, and deflection coefficient (or strength,
respectively. In Fig. 8.3 the meaning of the three parameters is visualized. For an
incoming wave (bold line) the reflection and transmission coefficient are defined
as usual. Additionally, our scatterers allow for left and right deflection, which are
controlled by the same parameter d. We should note that the equality of left and
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right scattering is not for convenience but specifies the present NWM to belong

to a class of models without handedness. This is a crucial symmetry property
which is e.g. not fulfilled in the Chalker-Coddington NWM.

It turns out that the constraints for S, allow for the choice of only two indepen-
dent strengths and four phases. Let us chose r and ¢ as independent, then the
phases ¢,, ¢; and the deflection coefficient d are related to them due to unitarity
and time reversal symmetry by

r’+2d® + 17 =1,
rd cos ¢, = —td cos ¢y, (8.7)
rt cos(¢, — ¢y) = —d->.

The four phases ¢1,..., ¢4 which are randomly chosen from the interval [0, 27|
model the spatial disorder. They can be interpreted as the phase factors el®
picked up during the propagation from one scatterer to the next one. Conse-
quently, Altogether, we have siz independent parameters for the PSs, from which
only r and t govern the macroscopic properties, as localization behavior. For
convenience we choose them to be equal for all PSs in the network, whereas the
phases ¢1,..., ¢, are randomly taken for each scatterer. We should expect that
this is still enough randomness and that all crucial quantum interference effects
are modelled. Hence, the partition in Eq. (8.4) can be interpreted by a constant
center matrix taking into account the symmetries of the system and outer phase
factors providing the interference effects.

Figure 8.3: Definition of the reflection coefficient r, the transmission coefficient ¢
and the deflection coefficient d.
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8.3 Spin Scatterers

As already mentioned, each SS is located between a pair of PSs (cf. 8.1). Con-
sequently, it has two incoming and two outgoing channels on the left and on the
right, as is shown in Fig. 8.4. Hence, the SSs can be represented by 4 x 4-matrices

Sep

It ot
- _

O=S,I with I= P+ and O = g+ (8.8)
I O

Conservation of probabilty current and time reversal symmetry result in (cf. [89])
Sep =DTSLD (8.9)

and
Sep = D"KS,'KD = D" (S,,') D, (8.10)

respectively. Here the asterisk denotes complex conjugation and KD is the time-
reversal operator with complex conjugation operator K and

D= (_072 _OTQ> : (8.11)

where 75 is one of the basis quaternions (7, 7) = (79, 71, T2, T3) given by
To=1, and 7T = —io, (8.12)

and o = (01,09,03) is the vector of the Pauli matrices. The symmetries (8.9)
and (8.10) suggest the following parameterization of the spin scattering matrix,

0 e¥g
Ssp == (ei(pq 0 ) ) (813)
| ——=— 0"
l— g =9
O—<— sp <1
O —< il

Figure 8.4: Spin scatterer: The four incoming channels 7, I° are mapped to the
eight outgoing channels O%, O°.
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where

3 . .
go — 13 —q2 —1qi
= E T, = . . € SU(2), 8.14
e o kT <Q2 —1q1  qo t+1g3 > ( ) ( )

is a general quaternion real matrix and the bar denotes the quaternion conjuga-
tion,

3
q = qoTo — ZQka- (8.15)
k=1

Due to conservation of current the real coefficients ¢; must fulfill the constraint
22:0 g2 = 1. It is now convenient to introduce a spin scattering strength by

s=+/1—-q=1/¢+a¢+q €[0,1]. (8.16)

While s is fixed for the whole network, the vector (g1, ¢2,q3) is homogeneously
taken from a 2-sphere of radius s. For s = 0 we then have ¢ = ¢ = 15 and there is
no spin scattering at all, whereas for the maximum value, s = 1, we have gy = 0,
and in each scattering event the spin is changed. In average this corresponds to a
complete randomization of the spin after only one scattering process. The phase
¢ is randomly taken from [0, 27].

8.4 Parameter space

In conclusion there are three independent strength (r,,s) € [0,1] x [0,1] x [0, 1]
building up the three dimensional parameter space (or phase space) of the AlIl-
NWM. While s can take all values in the interval [0,1] the (r,¢) subspace is
restricted by further constraints. Fig. 8.5 shows a cross-section of the phase
space at some arbitrary value of s. From Eqs. (8.7) follows that

rP+t?<1 and r+t>1. (8.17)

The first inequation resulting from the unitarity of the PSs restricts the possible
values to a quarter of a cirle of radius 1, the second one corresponding to time-
reversal invariance allows only values on the right of the secondary diagonal. As
a consequence only values in the grey region are admitted. This area is just the
accessible parameter space of a NWM for systems of symmetry class Al. Thus,
setting s = 0, which means switching off the spin scattering, we leave the AII
symmetry class and cross-over to Al. Note further, that abandoning the second
constraint in Eq. (8.17) we get the parameter space of an A-NWM. But note that
in the case of A symmetry, the PSs have less symmetry, which must be taken
into account in order to realize an A-NWM.
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Figure 8.5: Cross-section of the parameter space at some fixed s. Only the grey
area is accessible in the AII-NWM.

There are three exceptional points in the phase spacem, marked by bullets in Fig.
8.5: The point (r,t) = (0,1) is the delocalization fized point, where is no disorder,
and the electron waves propagate freely. At the opposite side of the phase space,
(r,t) = (1,0), we have the localization fized point, where all incoming waves are
strictly reflected, prohibiting any transport. The point r = ¢t = 0 is the the
Chalker-Coddington fized point [90], which corresponds to the critical point of a
quantum Hall system. Here all waves are scattered with equal probability either
to the right or to the left. Note further, that on the line 72 +¢? = 1 the deflection
coefficient vanishes due to Eq. (8.7). Thus, the system splits into two uncoupled
1D subsystems, which without fail yields strong localization.
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Chapter 9
Finite-Size Scaling

In the introduction to this part we have seen that the flow of the dimensionless
conductance g under renormalization of the system size characterizes the system
to be localized or not. In order to investigate the LD transition in (quadratic) 2D
systems of AIl symmetry we now could try to calculate g and study its system
size dependence. But as likewise pointed out in the introduction the conductance
fluctuates very strongly due to the effect of UCF and is therefore not very suited
for this task. Instead, let us now consider a quasi-1D system of finite! width M
and length L and calculate the so-called quasi-1D localization length & = £(M)
which turns out to be a self-averaging quantity?. Particularly, £ can be calculated
with high precision by means of the transfermatrix method [91,92] based on the
NWM. This method yields a sequence of Lyapunov exponents in decreasing or-
der, where the inverse of the smallest positive Lyapunov exponent determines the
quasi-1D LL. It is always finite due to the finite width of the system. Further-
more, it turns out that the ratio £(M)/M provides us with a well-suited scaling
variable, whose M dependence allows us to explore the localization behaviour of
the system. The finite size scaling method is one of the most powerful tools for
the numerical investigation of scaling behaviour (cf. Ref. [93]). In the context of
NWM it has already been applied to the symmetry classes A and AI (cf. Ref.
[94,46,87]) and the Chalker-Coddington-NWM (cf. Ref. [90,95]).

In the first section we show how the quasi-1D LL can be calculated by means of a
numerical transfer matrix method. Then the definition and parameterization of
the transfer matrices in the AII-NWM are given. In the last section we explicitely
present the fit methods used for the elaboration of the LD transition. Further,
we show how these fits can be veryfied by confidence tests.

LOf course, for numerics we always have to consider finite systems. But finite here means
that in contrast to a 2D system the width M is much smaller than the (even finite but considered
as infinite) length L.

2This means that fluctuations around the mean value die out for I — oco.
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In Ref. [87] an elastic mean free path is defined by the expression

124+

= Nl
¢ 2712 4 d? (9-1)

The factor 1/2 is a consequence of the diagonal arrangement, which is shown in
Fig. 9.2. [, is measured in units of a lattice constant.

9.1 Transfer Matrix Method

In this section we sketch how to get the quasi-1D LL by means of the (numerical)
transfer matrix method. In analogy to the derivation of the heat equation in the
first part of this thesis, we therefore devide the whole quasi-1D strip into N small
vertical slices of length e = L/N. To each of these slices a 2P x 2P-dimensional
strip transfer matriz Tj, is assigned®, which in contrast to the scattering matrices
defined in the foregoing chapter maps amplitudes on the left to amplitudes on
the right. Thus, composition of two such matrices results in the transfer operator
for a system of doubled slice length, i.e. the transfer matrices are multiplicative.
This allows us to formulate the transfer matrix of the total quasi-1D system by
the product

nm=ﬁn. (9.2)

Note that the Landauer-Biittiker formula for the conductance (cf. e.g. Ref. [2]),

2
T(N)THN) + (T(N)THN)) ' + 2

g =tr (9.3)

basically depends on the product TT!. By a theorem of the theory of random

matrices (cf. Ref. [91]) the limit matrix limy_, (T(N)TT(N)) 2 exists and can
be diagonalized yielding P pairs* of eigenvalues (e*i,e™), where the P positive
numbers A\p > ... > A; are called Lyapunov exponents. In the case of time-
reversal invariance and spin-orbit scattering, each eigenvalue appears twice as a
consequence of Kramers degeneracy (cf. Ref. [89]). Entering the eigenvalues into
Eq. (9.3) it turns out that the dimensionless conductance decreases exponentially
on a length scale £ oc 1/ justifying the name localization length for &.

Numerically, the calculation of the p largest Lyapunov exponents can be realized
as follows: Interpret the index k as discrete time and generate at £ = 1 a system

3The value of P depends on the number of channels per width unit and will be specified for
the AII-NWM in the next section
4This is a consequence of the conservation of probabilty current.
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of p vectors z1(1),...,2,(1) € C?F. Then z;(k + 1) = Tx2;(k), and the sum of
the p largest Lyapunov exponents is given by (cf. [96,91])
1. Vol[T(N)zi(1),...,T(N)z,(1)]

Pt Appp = M o7 in Vol [z1(1), ..., zp(1)]

where Vol|[zy,...,2,] denotes the volume of the spar spanned by the vectors
Z1,...,%p. Starting with p = 1 this method should yield the Lyapunov exponents
in descending order. But we are faced with a problem. The length of the vectors
grows very rapidly in the direction of the eigenvector corresponding to the largest
Lyapunov exponent, which causes a memory overflow and strongly decreasing
accuracy after only a few transfer steps. These problemes can be surmounted
by the following trick. One decomposes the total system into n subsystems with
transfer matrices T(j), j = 1,...,n, where each subsystem consists of m slices
with transfer matrices T(j), K = 1,...,m (cf. Fig. (9.1)). Consequently, the

(9.4)

(1) Ti) 40 Py

\ /\ / \ / -

T(1) 1(2) T(j) T(n)

Figure 9.1: Decomposition of the quasi-1D system.

transfer matrix of the total system is given by
TN =[TG),  where T() = [T Tu(). (9-5)
7j=1 k=1

In order to prohibit the problems mentioned above after each m steps correspond-
ing to a subsystem we peform a Gram-Schmidt orthonormalization to the vectors
{z1(5), - - -, 2,(j)}, yielding a new system {27(j),...,2,(j)}. Here m has to be
small enough, so that we stay within the computational accuracy. Before each
renewed orthonormalization we store the growing factors of each of the p vectors
obtained by the foregoing orthonormalization. These factors are given by

, i=1,...,p, (9.6)

with expansion coefficients «,(j) = 2}(j) - z:(j). We finally end up with the
following expression for the i-th Lyapunov exponent

. 1 G Inb(j)
A\ = lim — . 9.7
Jim =% — (9.7)
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This expression is exact. For real calculations we of course have to introduce a
cut-off for n, which will depend on the desired accuracy of the result. With the
available computational power we can demand A\ < 1%, where the mean error
of the average is given by

L A IO~ R me)] o8
= - . .

9.2 Transfer Matrices of the AII Network Model

With the labels defined in Fig. 8.2 and Fig. 8.4 the transfer matrices of the
AII-NWM corresponding to S, and S, are defined by

05 I
I o
o | =T | 1 (9.9)
0; Iy
If Oy
I \O;
and
o+ I+
% =T || (9.10)
I O

respectively. From this definition a diagonal arrangement of the network results
as is shown in Fig. 9.2. The natural width unit in this arrangement is given by a
pair of diagonally neighboured transfer matrices. This corresponds to a channel
number® of N, = 4. Therefore the bold printed part of the picture represents
a strip transfer matriz of width M = 2, i.e. channel number N, = 8, and unit
length L = 1. The arrows at the top and the bottom of the figure symbolize
periodic boundary conditions. In terms of the transfer matrices the conservation
of current density becomes a pseudo-unitarity relation

Toor X5 Thoy = X3 (9.11)
and

TS5 Tl = 34 (9.12)

5Note that one incoming wave and its outgoing partner count as one channel.
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Figure 9.2: Definition of the strip transfer matrix for M = 2. The arrows indicate
the periodic boundary conditions.

for PSs and SSs, respectively, where 35 = 1,®o03 and ¥} = 1,®03. Furthermore,
time reversal invariance yields

T
0 D . 0 D
Tpot = (D 0) Tpot (D 0) (913)

and
Ty =D'T;D, (9.14)

where D is given by Eq. (8.11). A parameterization of S, compatible with these
constraints is given by (cf. Ref. [87])

oy B
_ |7 @ =6 f§
Tpot - B* 5 of o b2 ]12’ (915)
-0 B —v «
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where
d telft
o= A’ p= NE
Y- (rei?r — tel?t)d 5= d? — relfrteidt (9.16)
A ’ A ’

For Ty, we find
ip~
Tsp = ( eoq v ) (917)

It turns out that the four outer phase factors ¢1,..., ¢4 of Syt can be absorbed
in a single phase ¢ on the links, which we have included in Sy,. Note that due to
time-reversal symmetry the phase factors of an incoming and the corresponding
outgoing amplitude are related by complex conjugation (cf. Fig. 9.2).

9.3 LD Transition in the ATI-NWM

In the following we point out how finite-size scaling method can be applied to the
AII-NWM. We have seen in Sec. 9.1 that the inverse of the smallest Lyapunov
exponent plays the role of the quasi-1d LL,
1

€M) = 1
Within the NWM this quantity generally depends on all free parameters (r,t, s)
of the transfer matrices, but in what follows we will fix two of these parameters.
Let us denote the free parameter by 7 € r,t,s. Then we £(M) = &(M; 1), where
we suppress the 7 in the notation, if specification is not necessary for the context.
In the thermodynamic limit we have limp; o £(M;7) = £(00; 7) if we start in
the localized and limps ,o &(M;7) = oo if we start in the delocalized phase.
At the critical point, where the system is scale independent, we should expect

&(M;T) o< M. This motivates the introduction of the renormalized localization
length (RLL) (cf. Ref. [92])

(9.18)

§(M;7)

7
Let M; and M, be system widths with M; < M,. Then the LD transition can
be characterized by the behaviour of A(M;7) under renormalization:

AM;T) =

(9.19)

A(My) < A(My) in the localized phase
A(My) = A* = A(M,) p, if the system is at the critical point
A(My) > A(M) in the delocalized phase

(9.20)
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In the thermodynamic limit we obtain

0 at the localization fixed point
lim A(M)= ¢ A* at the critical point . (9.21)

M—o0 . .
oo at the delocalization phase

Thus, we obtain exactly the same behaviour as for the conductance (cf. Sec. 7.2)
and can therefore use the RLL as a scaling variable.

Now the question arises whether A(M; 1) is the only scaling variable, i.e. whether
one-parameter scaling is valid. If this is the case the [-function for the RLL
should depend only on A itself. It turns out that equivalently we can ask for the
existence of a scaling function, which depends only on the ratio of the correlation
length &. and the system width M,

A(M;7) = f(g‘}\(/_,—ﬂ) (9.22)

or logarithmically
InA(M;T) = f(lnM — lnfc(T)>. (9.23)

Within our transfer matrix approach the correlation length &. is now defined as
the fictious system width up to which the system is in the critical regime, where
critical regime means the range of validity for the linearization of the S-function.
Thus, for the localized regime we just have £ = &(oo;7), whereas at the critical
point the correlation length diverges as demanded. Eq. (9.23) tells us that a
whole set of data A(M;7), which can be obtained by the transfer matrix method
described in Sec. 9.1, has to fall onto one curve, if one-parameter scaling is valid.
Note that one can also predict the qualitative form of the scaling function. Since
in the localized regime the RLL decreases with increasing system width, whereas
it increases in the delocalized regime this function has two independent branches.
These branches tend to the same value In A* at one side and diverge in opposite
directions on the other side.

The existence of a one-parameter scaling function is an inevitable condition for
the applicability of the methods we use later for the calculation of v. Hence, we
should spend some effort for a preferably reliable answer to the question whether
one-parameter scaling is valid or not. Therefore, we do not use the method of
shifting data on transparencies, reading off the shift and calculating &.(7) from
these values. Rather, we use a numerical fit procedure and apply a confidence
test to the fit in order to obtain an optimal result. The same idea is used for the
subsequent calculation of the critical exponent. The next section is dedicated to
a detailed presentation of the numerical fit and test methods.
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9.4 Methods of evaluation

The methods presented in the following are based on Ref. [47], where the scaling
function for a quantum Hall system was fitted and tested by a x? test.

9.4.1 Fit Procedure for the Scaling Function

According to Eq. (9.23) we want to fit the scaling function f to the logarithms

of the RLLs, which we assume to depend on n,; system widths {Mi, ..., M,,, }
and n, system parameters {ri,...,7,.}. Thus, we have ny = ny - n, data
points {Ay,...,A,,}. The parameters are the reflection strength in the transfer

matrices of the NWM. Let us introduce the following vectors,

In A4 In M7 — In&.(r1)
Y = : , X = : (9.24)
InA,, In M,,, — In&.(ry,)
and
Aln A1
E:= : , (9.25)
AlnA,,

the latter being the vector containing the errors of the average according to
Eq. (9.8). Assuming the data to be statistically independent the corresponding
correlation matrix Cp given by

(Ca)yj == (Ei - Ej) (9.26)

is diagonal. Here (...) denotes the mean value.

We now make an ansatz for the scaling function by a linear combination of Cheby-
shev polynomials,

which gives a polynomial of degree N. Omitting the tilde over the X; indicates
the argument to be rescaled to the interval [—1, 1. In this interval the Chebyshev
polynomials are orthogonal and have simple behavior at the edges.

The smallest of the parameters In&, is fixed by requiring In¢.(r;) = 0 for the
delocalized branch and In ¢ (r,,,) = 0 for the localized branch, respectively. Thus,
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we have ng = n, + N parameters

( Iné&.(rq) \

@ = | m&lrn) (9.28)
Co

Lo

for the localized and

( Iné&.(r9)

@:= | M&lm) | (9.29)
Co

Lo

for the delocalized branch, respectively. These parameters have to be fitted with
respect to the data Y. Hence, the ny values of the fit function can be written as

F(X;0)
F(X;0):= : (9.30)

F(X: xc)

na»

Using the method of the least-squares fit we have to minimize the sum Sg of the
weighted quadratic deviations, which means solving the equation

956
o =0 (9.31)
with

Se = (Y ~ F(X; e))Tc;1 (Y _ F(X; @)). (9.32)

Since F' is non-linear in the parameters ©® this procedure yields a system of ng
coupled non-linear equations. Therefore Sg is minimized directly by a numerical
method. Starting with some estimated initial values for the logarithms of the
correlation lengths we successively optimize the ¢; and the In&.(r;). If the data
are compatible we will have convergence, and thus we can stop when a chosen
accuracy is reached. The result then is a set of coefficients ¢; which defines the
fit function and a set of optimized values for the correlation lengths.

According to Ref. [97] the correlation matrix of the parameters is given by

Co = (F5CiiFe) (9.33)
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where Fg is the Jacobian of F' with respect to ©,

oF

Fo = —.
NPT

(9.34)
Usually, as errors of the parameters one takes the diagonal elements of the error
matrix E, which is defined by

Ee = Siec@. (9.35)
nA — nNe

9.4.2 Testing the Fit of the Scaling Function

A converging fit procedure does not guarantee that the errors of the numerical
data are actually compatible with the obtained fit function. Therefore, in addition
to this fit procedure we apply a x? test to estimate the confidence of the fit. We
make the essential assumption that the data y; are normally distributed about
f(x;; ©) with variances e;2. Consequently, the quantity Sg has to be distributed
as x? with ny —ng degrees of freedom. This distribution has the estimated value
na — ne and the variance 2(ny — ng). A suitable measure for the confidence of
the fit then is the normalized deviation of S from the estimated value

Ao = So—(na—no) (9.36)

2(ny —ne)

If |Ag| <1 it is safe to assume that the fit is trustworthy. But if |Ag| takes
values much larger than 1 it is very unlikely that the data Y; are normally dis-
tributed about F'(X;; ©) which indicates systematic errors. In this case the fit has
failed, we have to give up the assumption of one-parameter scaling and further
calculations, e.g. of the critical exponent, do not make much sense.

It should be noticed that rescaling of the variance matrix S by a factor b, S =
b- S, results in the reciprocal rescaling of Sg, So = b™'Se. Since Ag depends
sensitively on Sg, especially if n, is small, one should carefully consider, how to
determine the errors of the raw data.

9.4.3 Fit for the Critical Exponent v

In order to determine the critical exponent of the correlation length we apply the
same idea as before with respect to Eq. (7.1). Particularly, we simultaneously
deal with both branches of the scaling function, i.e. we assume the critical value
r* and the critical exponent v to be the same in the localized and the delocalized
regime. Only the prefactor can take different values, which will be denoted as
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£%1oc and £%4¢loc for the localized and the delocalized regime, respectively. Taking
the logarithm Eq. (7.1) writes as

In&.(r;) = In €X' — vln |r; — r*| (9.37a)
and
In & (r;) = In £%99°¢ — pn |r; — r*| (9.37b)

for r; in the localized and delocalized regime, respectively. The n, values In&.(r;)
are the results of the foregoing optimization, the arguments are the values
In |r; — 7*| and the four parameters that have to be optimized are £>lo¢, ¢0-deloc,
v and r*. Introducing the vectors

Iné&.(rq1) In|ry — ¥
Y= : , = : (9.38)

In gc (Tn,«) In ‘rnr - T*|

0,loc

lilné“%.?deloc ~ In é-g loc

0 : ° and @ := | Ingddeloc (9.39)
v
7,.*

and comparing them with Eq. (9.37) the fit function can be written as

f(x;0) = W(x)0, (9.40)
with
(1 0 —1In|ry —r*| \
we| L0 il - (9.41)

0 1 —In ‘T‘nr’loc+1 — T’*|

\0 1 —ln|r,;T—T*| /

Here n; o is the number of values r; which belong to the localized regime. The
correlation matrix Cg, of the data y; is the upper left n, x n, submatrix of Cg
in Eq. (9.33) obtained by the fit of the scaling function. Thus, the sum of the
quadratic deviations is

So = (y — f(=; 0))Tng (y — f(=; 9))- (9.42)
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Since the fit function is a linear function in the argument x, we can analytically
solve the minimization problem

95 _, (9.43)
06
which yields
= (W'cg'w) ' WTC 'y (9.44)

In contrast to that the parameter r* has to be optimized numerically since it
appears non-linearly in Eq. (9.37). Giving some starting value for 7* one iteration
step consists of successively optimizing @ and r*. The 4 x 4 correlation matrix of
the four parameters is given by

Co= (FFC'Fy) (9.45)
where
of
Fo= > :
"= 90 (9-46)

Finally we get the error matrix

Ey =

Co. (9.47)

As in Eq. (9.36) we use the quantity
. S@ — (nr — 4)
V2(n, —4)

to test the confidence of the fit. |Ay| should take values of about 1 or smaller to
verify the assumption that the values y; are normally distributed about the fit
function, which is a straight line in this case. Note that it is important to take
the correlations between the & (r;) introduced by the previous fit procedure into
account in the present analysis. Thus, a simple linear regression will not give the
correct results.

Ay (9.48)

9.4.4 Determination of A*

The fit procedures introduced in Secs. 9.4.1 and 9.4.3 are not the most direct
way to determine v from the raw data. Instead, one can fit the RLLs as functions
of |r — r*| with a width dependent scaling factor M/»

A(M;r)=h (MY |r —17)), (9.49)
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which is a consequence of Eqgs. (9.22) and (7.1). This procedure leads to a con-
tinuous curve, because there is no splitting in two branches as in the logarithmic
case. Fitting the scaling function in this manner allows a direct evaluation of A*.
Since at r = r* the argument of h is zero, one only has to calculate this value,

A* = h(0). (9.50)
Following the law of propagation of errors we get for the error of the critical RLL
AN = AA| = MY AN (0)r", (9.51)

where h' denotes the first derivative of A with respect to the argument.
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Chapter 10

Results and Discussions

In this chapter the results of our investigations of the AII-NWM are presented.
In the first section RLLs depending on the system width and several choices for
the parameters are shown. Furthermore, we determine a phase diagramm for
the total three-dimensioanl phase space. The second section presents the scaling
function, which we have obtained by the fit procedure described in the foregoing
chapter. In the last section finally, the values for the critical exponent and the
critical RLL are given.

10.1 Localization Lengths and Phase Diagram

We calculated quasi-1D LLs for system widths from M = 2 up to M = 32, which
corresponds to channel numbers from N, = 16 to N, = 256. The corresponding
errors AA are the errors of the mean value given by Eq. (9.8), which vanish
for L — oo. We have chosen system lengths from 2 - 10* (M = 32) to 2 - 10°
(M = 2), so that the relative errors AA/A take values of about 0.1 % (M = 2)
to 1 %(M = 32). Let us now consider some selected cases.

The first example, cf. Fig. 10.1, shows the RLLs for » = 0.8 and ¢t = 0.4. The
values decrease with increasing M for all possible values of the spin scattering
strength, indicating that the system is in the localized regime for these values of
the parameters. This matches with the fact that the mean free path, Eq. (9.1),
takes a value of [, ~ 0.35 in units of the lattice constant. Thus, reflection is too
strong to allow for the existence of extended states.

In contrast to this, the next example corresponding to r = 0.55 and ¢ = 0.6,
ie. [lo ~ 1.1, exhibits a LD transition as can be seen in Fig. 10.2. While
for s < s* ~ 0.3 the system turns out to be localized, we find that the RLLs
grow up with increasing M for larger spin scattering strength. Obviously, the
effect of weak anti-localization causes the existence of extended states, if s is

107
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Figure 10.1: RLL for strong disorder, »r = 0.8, ¢ = 0.4 which corresponds to
le >~ 0.35, depending on the spin scattering strength s and the the system width
M.

strong enough. The intersection of the curves clearly indicates the LD transition.
However, their slope is rather small compared to the error bars preventing an
accurate scaling analysis close to the critical point. Let us now consider a really
bad example.

Fig. 10.3 shows RLLs corresponding to t = 0.8 and s = 0.4, where now r varies
in a small interval from r = 0.48 to » = 0.56. Although curves for different
system widths M intersect, the points of intersection do not match. Rather, they
systematically depend on the width. The larger M is the closer are the points of
intersection for curves of neighboring values of M. It is obvious that there exists
a limiting point, which would be the true critical point. The observed deviations
are the consequence of so-called finite-size effects, which have the typical form

(cf. Ref. [89])
() (BT

This formula describes the deviations of the RLL at the critical value of the
parameter and for finite system size, A(M;7*), from the true critical value of the
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 10.2: RLL for » = 0.55, £ = 0.6 which corresponds to [, ~ 1.1, depending
on the spin scattering strength s and the the system width M.

RLL in the thermodynamic limit, A*(M = oco; 7). &\ denotes some length scale,
which is called irrelevant, because the finite-size correction vanishes algebraically
with the critical exponent y;, in the thermodynamic limit. Obviously, for regions
in phase space corresponding to more delocalized systems such finite-size effects
are more important than for regions which correspond to more localized systems.
For a reliable analysis of the critical region we have to find a more suited area in
the phase space, i.e. a region where the finite-size effects are very small and the
RLL depends stronger on the selected parameter as compared to the foregoing
example. Actually, there is only a small area in parameter space that is suitable
for a quantitative analysis of the LD transition. We will come back to this in Sec.
10.2.

Now we turn to the phase diagram for the LD transition, which we determined
using the scaling behavior of the RLL. More precisely, we calculated A(M; = 4)
and A(M, = 8) for a lot of pairs (r,t) with s = 0.01, 0.02, 0.05, 0.1, 0.4 and 1.
In order to get the critical line in the (r,t)-subspace with fixed s we decided the
point (r,t,s) to be in the localized and delocalized regime, if

A(My) — AA(My) > A(My) + AA(My) (10.2)
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N G—oM=2
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™o N *— —% M=8

L 1 L L L
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Figure 10.3: RLL in the vicinity of the localization-delocalization transition,
t = 0.8, s = 0.6 which corresponds to [, ~ 2, depending on the reflection coef-
ficient r and the the system width M. The arrows mark the section of curves
corresponding to neighbored values of M.

and
A(Ms) — AA(My) > A(My) + AA (M), (10.3)

respectively. In the case that both conditions failed, we considered the point in
the parameter space to be critical. By that procedure we got a critical region, i.e.
the separating line had some finite width. Fig. 10.4 shows the resulting phase
diagrams for some intersections of the parameter space at the above declared
fixed values of s. The white area marks the localized the grey one the delocalized
phase. The drawn critical line is the interpolated center line of the critical region.

The region of the metallic phase shrinks with decreasing spin scattering strength.
This is due to the fact that weak anti-localization then becomes less effective
in preventing Anderson localization. At s = 0 the system changes universality
class from AII to Al, a fact that could be verified by comparing the values of the
localization lengths with those in Ref. [87]. On the other hand even a very small
value of s gives rise to a certain delocalized phase, if r is small and ¢ is large
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Figure 10.4: Phase diagrams for the localization-delocalization transition for
cross-sections at s = 1, 0.4, 0.1, 0.05, 0.02, 0.01.
delocalized, the white the localized regime. The dotted line corresponds to r = t.

The grey area shows the

enough. Of course, the larger [, i.e. the larger ¢t and smaller r, the more easily
extended states occur. But even in the presence of full spin scattering only about
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the half of the area of the parameter space belongs to the metallic phase. This
is due to the fact that parameter values (r,¢) belonging to the localized phase
correspond to too strong disorder resulting in too strong localization to be broken
by weak anti-localization.

It should be noticed, that for ¢ 2 0.6 the shape of the phase boundary is influenced
by finite-size effects. So the phase diagram can only serve as a qualitative picture
of the LD transition. In order to improve on the phase diagram, one has to
consider much larger systems, which is very computer time consuming taking
such a large number of data points into account. Nevertheless, the lower part of
the boundary, i.e. the region close to the line r = ¢ (dotted line in the figure), is
suitable for quantitative investigations, as will be shown in the following.

3.0

Frefe

H

1.0 o
0.52 0.54 0.56

Figure 10.5: Renormalized localization length for ¢ = 0.6, s = 0.4 which corre-
sponds to [, ~ 1, depending on the reflection coefficient r and the the system
width M.

10.2 Scaling Function

We determined the scaling function by the fitting procedure described in Sec.
9.4.1 for t = 0.6, s = 0.4 and r € [0.52,0.62]. In this small region of the phase
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space the corresponding curves A(M;r) (cf. Fig. 10.5) are very well suitable for
a quantitative analysis, because of their strong r dependence and the absence of
noticeable finite-size effects (lo ~ 1). Fig. 10.6 shows the scaling function with
the upper branch belonging to the metallic and the lower branch belonging to the
localized regime. The curves represent the fitted Chebyshev polynomials. The
data points are the raw data shifted by the fitted values of (7). We omitted the
data with M = 2 in the localized and M = 2 and M = 4 in the delocalized regime,
because these values showed systematic deviations due to finite-size effects. Also
data that are too close to the critical point were omitted. For the remaining data
the confidence test of the fit gives

Ag = —0.30 for the localized branch and (10.4)
Ag =0.27 for the delocalized branch (10.5)

Thus, the assumption of one-parameter scaling is very well confirmed. Fixing
the fit parameters In&. by setting In&.(r = 0.52) = 0 for the delocalized and
In&.(r = 0.62) = 0 for the localized branch (circles in Fig. 10.6) the procedure has
converged with an accuracy of 0.1% after about 50 iterations. The starting values
have a radius of convergence of about 5. Hence, a rough estimate is sufficient
for convergence. The Chebyshev polynomials we have used are of fourth order.

L ] — fit function (deloc.)
1.0 a Or=0.52

[ 1 Or=0.53

i +r=0.535

f Ar=0.54

1 xr =0.545

| &r=0.55

- *r =0.555

1 — fit function (loc.)
| *r=0.59

e &r=0.595

1 xr=0.60

0.6 |

INA(M;r)

04 |

] Ar =0.605
7 +r=0.61
] Or=0.615
Or=0.62

OO I L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L
-2.0 -1.0 0.0 1.0 2.0 3.0 4.0

InM - .In &N

Figure 10.6: Scaling function for the localization-delocalization transition. The
upper branch corresponds to the delocalized and the lower to the localized phase.
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With a lower order it is impossible to fit the curves (as indicated by the figure of
merit Ag), whereas with an order higher than 6 the fitted curves start to follow
the fluctuations of the data points, which results in a non-physical behavior of
the scaling function. With an order between four and six there is no significant
difference in the results.

10.3 Critical Exponent v and Critical RLL A*

In order to determine the critical exponent v of the correlation length we used
the fit procedure presented in Sec. 9.4.3. With a starting value * € [0.53, 0.59]
the procedure converges. After about 10 iterations the corrections are smaller
than 1%. The results of the fit are

v=251+0.18 and 7r*=0.571+0.002. (10.6)
The prefactors take the values
In £%°¢ = —7.55 +0.42 (10.7a)
and
In £24¢loc — 7 50 — +0.43. (10.7b)

The confidence test of the fit gives Ay = —0.47, showing its high quality. It is very
important to stress, that the given errors (cf. Eq. (9.47)) are not independent.
They have to be interpreted considering the correlation matrix

0.0310 —0.0737 —0.0739 —0.0004
—0.0737 0.1782  0.1766 0.0009
—0.0739 0.1766  0.1853 0.0009 ’
—0.0004 0.0009  0.0009 5.5-107°

Co = (10.8)

which shows that the different values are highly correlated.

Several reference values for v have been published in the last years [98,99,70,100].
The most recent calculations yield v = 2.75 + 0.1 [101], » = 2.5 £+ 0.3 [102] and
v = 2.32 £ 0.14 [103]. Within the errors our value agrees with these. We note
that v is very sensitive to slight variations of r*. This is seen by fitting v for fixed
values of 7*. As is shown in Fig. 10.7 v changes by 30% if r* changes by about
3%. The difficulties in obtaining a credible value for v were a further reasons to
employ an numerical fit procedure.

In order to determine the critical RLL we used Eqgs. (9.49) and (9.50). The result
1s

A* =1.83 £ 0.03. (10.9)
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Figure 10.7: Dependence of v on the assumed value of 7*. The best estimate is
found for r* = 0.571

Finally, Eq. (7.4) yields the value for the scaling exponent of the typical LDOS
ap = 2.174 + 0.003. (10.10)

This value agrees well with the result of Schweitzer [104], oy = 2.19 £ 0.03
obtained for a Hamiltonian model.
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Chapter 11

Real-Space RG for the
Manhattan Model

11.1 Introduction

In the foregoing chapters we have investigated the scaling behaviour of the RLL
in the AII-NWM by means of the finite-size scaling approach and the transfer
matrix method. In principle, this method is able to yield a qualitative as well
as quantitative correct characterization of the LD transition in terms of critical
exponents. But it makes great demands on the computational resources. Thus,
one may be forced to reduce the system size without having reached the desired
accuracy. In this sense the finite-size scaling method can be denoted as large
scale numerics.

In the present chapter we shortly want to present another numerical approach
to the LD transition by means of a scattering theoretical NWM, which is called
real-space renormalization group (real-space RG) (cf. Ref. [49]). It allows us to
obtain a qualitative overview about the localization behaviour with very little
computational effort. Considering the scattering matrix corresponding to a 2D
system of size L? one may ask, how this matrix renormalizes under rescaling of the
(linear) system length, L — bL. Repeated rescaling generates a RG flow of the
reflection and transmission coefficient, r and ¢, which parameterize the scattering
matrix (cf. Sec. 8.2). The scaling behaviour of these coefficients directly answers
the question, whether the delocalization fixed point is repulsive (localized phase)
or attractive (deocalized phase).

Since the calculation of the scattering matrix elements corresponding to an arbi-
trary large system still involves large computational effort, we neglect some of the
informations about the exact topology of the network and consider a so-called
hierarchical NWM. The idea is to connect a few elementary scatterers of an orig-
inal NWM in such a way, that the resulting system globally looks as any of the

117
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elementary scatteres. Cf. Fig. 11.1 for an example. Interpreting the composed
scatterer on its part as new building block this process can be called an RG
step. We then can build up a system of a certain size by repeating this RG step
sufficently often. A composed scatterer consisting of b? sites and V' non-trivial

Figure 11.1: Defining building block of the A[2/4]-NWM.

elementary scatterers' defines a hierarchical NWM, which we denote as [b/V]-
NWM. The example in Fig. 11.1 shows a composed scatterer for a hierarchical
NWM of A symmetry (cf. Sec. 8). Since all of the b*> = 4 sites are occupied
it is the A[2/4] NWM. In general, if V = b? there is no difference in the num-
ber of scatterers between the hierarchical NWM after some RG steps and the
original model of the corresponding size. But note that the topology represented
by the connectivity matrix is still different (cf. the short cuts in Fig. 11.1). If
V' < b? the hierarchical model is additionally sparser equipped with scatterers
than the original one. To be more specific it is a fractal with fractal dimension
DP/Vl = InV/Inb. For the example the fractal dimension coincides with the
spatial dimension, D!*/4 = d = 2.

If there are not too many elementary matrices involved in the defining RG step,
the relation between the reflection and transmission coefficients of the composed
matrix and those of the building blocks can be calculated analytically. Once this
relation is known, we can iteratively perform the RG step until the desired system
size is reached.

The model we use for our investigations is a derivative of the CC-NWM and is

IWe denote a scatterer as trivial if all transmission coefficients are 1.
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expected to show always localized behaviour. We want to verify this statement
by a real-space RG analysis. After the calculation for the change of parameters in
one RG step, in the third section we explicitely point out the employed algorithm
for the calculation of the RG flow of the transmission coefficient and show the
results.

11.2 Manhattan Model

Noticing that the CC-NWM does not fall in the class of vertex models which are
treatable and solvable by the quantum Yang-Baxter equation, M.R. ZIRNBAUER
introduced in Ref. [105] a slightly modified NWM which fulfils this requirement.
Fig. 11.2 shows a picture of both models, where each node represents a scatterer.
In contrast to the CC-NWM the new model allows at each node transmission
and deflection to only one side as is specified in the figure. As a consequence the
direction in each line does not change, which motivates us to call it Manhattan
model (MM). The MM can not be interpreted by microsopic mechanisms as in
the case of the CC-NWM. But while we are ininterested only in the critical
behaviour of the system which is basically determined by the equality of left and
right deflections we should expect the MM to be adequate. However, as is argued
in Ref. [105] the MM is not able to describe the critical point of a quantum Hall
system. Instead it shows always localization. It is the aim of the present section
to verify this statement by numerical calculations.

In order to investigate the MM by means of the real-space RG we have to define an
RG step, i.e. we have to determine how many elementary scatteres are connected
in the composed scatterer and in which manner. The smallest composed scatterer
with the same arrangement of incoming and outgoing channels as the building
blocks is of size 3 X 3 and contains five non-trivial scatteres, cf. Fig. 11.3. Thus,

Figure 11.2: left: Chalker-Coddington NWM, right: Manhattan model.
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the fractal dimension of this MM[3/5] is given by DI/ ~ 1.46. The black and
grey bullet indicate the corresponding links to be connected. In the following
we outline how to get the algebraical expression for the transmission coefficient
of the composed scatterer in terms of the five building blocks. Each elementary
scatterer is represented by a 2 X 2 matrix mapping incoming amplitudes 7, and
i}, to outgoing amplitudes of and o}, (cf. also Fig. 11.3)

oL\ [Tk t;c ik
(o@)‘(tk ) () (L)

O <«

Figure 11.3: Definition of the hierarchical MM[3/5]. Here two renormalization
steps a drawn.



11.2. MANHATTAN MODEL 121

where £ = 1,...,5. Writing the complex entries in polar representation the
unitarity of the scattering matrix results in

[t ]? + |rel* = 1,
k] = [ti], o
el = I (11.2)
ei(cptk+cpt;c) _ ei(wk-l-%;c) )
For the composed scatterer we have
. I .
0= <8,> =S <I’> =1, (11.3)

where the 2 x 2 scattering matrix is given by

S = (; f,) . (11.4)

With the numbering of the elementary scatterers defined in Fig. 11.3 we read off
the outer amplitudes to be I =iy, I' =i}, O = 0y, and O’ = 0}. Let further

) o)

(2]
i 0h
o y o
13 03
I=1. and O=| (11.5)
24 O3
iy 04

i5 05
0y, \o%
be the vectors containing all inner amplitudes. Then in the inner-outer decom-
position all scattering processes are implicitely described by

<O> = (S“ Sl?) = (I) , (11.6)
O So1 Sa I

where the 2 x 2 matrix S;; = 0, the 8 x 8 matrix Sy represents the coupling
of all inner amplitudes and the matrices S5 and Sy; describe the mixing of
inner and outer amplitudes. Further, corresponding to the chosen numbering the
arrangement of the building blocks is encoded in the 8 x 8 connectivity matrix C.

It defines which pairs of (inner) incoming and outgoing amplitudes of neighboured
scatterers have to be identified:

I=00. (11.7)
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With this setup we now obtain the scattering matrix S corresponding to the
composed scatterer to be given as

S =81+ 515C (1 — Sp2C) " 1. (11.8)

This matrix equation can be solved by computer algebra. The expression for the
transmission coefficient ¢ in terms of the building block elements turns out to be

t5(ty — t3€9%)(t; — to ')
t= ; 1.0 1.l nigs? (11'9)
af + a(rsrarl) + B(rsriry) — rararir eles

where o = tpt; — 1 and 8 =t3t) — 1 and ¢ = ¢y, + @y .

11.3 Real-Space RG Algorithm and Results

Having derived the analytical expression for one RG step in the last section we
now turn to the question how to obtain the flow of the transmission probability
T = |t|?> under real-space renormalization. Before explaining the algorithm note
that from Eq. (11.9) we conclude |tx| =0 = [t/ =0 and |tx| = 1 = |t| = 1. Thus,
T =0 and T =1 are fixed points. This validates the composed scatterer to be
suited for an RG analysis. The RG algorithm consists of the following steps:

1. Consider a system of (linear) size b represented by a composed scatterer.
Take the strengths |tx| of its building block matrix elements from an initial
distribution Py(7") and the phases homogeneously from the interval [0, 27]
respecting the constraints Egs. (11.2). Calculate T'(b) = |¢t|* by means of
Eq. (11.9).

2. Repeat this procedure many times (~ 10%) to get a new distribution func-
tion Py(T).

3. Repeat steps 1. and 2. n times (n ~ 10') but now drawing the scattering
strength |t| from the distribution Py» (T") which yields the new distribution
Pyn1(T) (m=1,...,n).

4. Repeat steps 1.-3. for several initial conditions Py(7T") in order to explore
the phase space.

Note that for n = 10 we end up with a system size of 3'! ~ 1.7-105! The algorithm
described above takes only some seconds on computers of the current generation.
Thus, we are able to investigate large systems with small computational effort.
This makes the real-space renormalization method quite powerful.
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Figure 11.4: Flow of the transmission probability under real-space renormaliza-
tion for the MM][3/5]. The shown distributions correspond to (linear) system
sizes of 3, 9, 27 and 81 sites. The initial distribution was Py(7) = 0.9. The
system flows to strong localization.

We have applied this algorithm to the MM[3/5]. The result is shown in Fig. 11.4.
We started with the constant initial distribution Py(7") = 0.9, i.e. nearby the de-
localization fixed point, and performed only n = 4 RG steps. Hence, the (linear)
system sizes are 3, 9, 27, and 81 sites. The transmission probability definitely
flows towards the localization fixed point 7" = 0. The same behaviour was ob-
served for other initial distributions. Thus, we conclude that the Manhattan
model shows always strong localization, which verifies the primary statement.
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Chapter 12

Summary and Outlook

In this thesis we have considered non-standard behaviour of the density of states
and the problem of delocalization in low-dimensional disordered electron systems.
In both cases the unusual physical behaviour is due to the special symmetry of
the system under consideration.

In the first part we have investigated the density of states in quasi-1D system
of the non-standard AIIl symmetry (chGUE). This was motivated by the ob-
servation in previous works of an unusual behaviour of spectral and transport
quantities at the middle of the tight-binding band. In particular, the singularity
of the DoS in the middle of the band is a feature which is in contrast to the
uniformity of the spectrum in the standard symmetry classes. Furthermore, at
least in 1D, it is known that a divergence of the DoS is related to the divergence
of the localization length [106]. Thus, there are indications of delocalized states
in two dimensions or less, a feature unexpected from scaling theory [9]. While in
1D a lot of insight could be gained by means of the available rigorous analytical
methods, in higher dimensions no consensus has been reached. Recently, a super-
symmetric non-linear o-model for the generalized random magnetic flux model
has been derived [22], which allows for the investigation of spectral and transport
quantities in both, the perturbative and non-perturbative regime of AIII systems.

We have performed our investigations within this field theoretical approach.
Starting from an expression in terms of the quasi-1D non-linear o-model we have
calculated the DoS in the ergodic, diffusive, and quantum regimes. In the er-
godic regime we found oscillations on the scale of the mean level spacing. Such
a structure is usually known from two-point Green functions, as e.g. the level-
level correlation function. Indeed, using the sublattice representation we could
show that in the expression for the DoS of chiral systems several coupled Green
functions are involved. With our findings for the DoS in the ergodic regime we re-
covered results known from chiral random matrix theory [16,17,67,85]. This shows
that the zero-dimensional limit of the random flux model is adequately described
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by an ensemble of block-off-diagonal Hermitean random matrices. Moreover, it
turned out that the topological term in the action causes a dependence on the
parity of the number of sites.

For the investigation of the perturbative regime we have expressed the NLoM ac-
tion in terms of EFETOV’S ()-matrices. We found no contributions up to three
loop order. It is still an open question whether there exist perturbative correc-
tions in quasi-1D at all. For consistency, we have compared the high energy
limit of the ergodic result with the zero-mode approximation of the perturbative
calculation and found agreement.

The main part of the analysis was dedicated to the quantum regime, where per-
turbation theory breaks down. Based on the transfer matrix method we have
derived a generalized Laplacian on the underlying supergroup. The correspond-
ing partial differential equation is a kind of diffusion equation (heat equation)
and its solution (heat kernel) describes the propagation along the wire. Each
contribution to the generalized Laplacian corresponds to one of the terms in
the NLoM action. The topological term basically influences the boundary con-
ditions the heat kernel is subject to. We have solved the heat equation and
calculated the DoS in the limit of large system size, L > £, and small energies,
w = €/A¢ < 1. It turned out that the behaviour of the DoS strongly depends on
the parity of the number of channels (even-odd effect). Neglecting the Gade term
we got for IV, even (p(w)) o po|w|In|w|, whereas for N, odd the result is given by
{p(w)) — po o po/|wIn®lw||. The latter formula coincides with result found earlier
for strictly 1D, i.e. N, = 1 [11,12]. The result for even N, agrees with a very
recent quasi-1D calculation obtained by a Fokker-Planck equation approach [20].
Taking the Gade term into account has only a very slight impact on the result for
an even number of channels, whereas for an odd number of channels the result
remains completely unaffected.

Let us finally have a look at the very recent development in that field. In Ref. [24]
the first and second moment of the conductance have been calculated. They
authors find localization away from the band center and an even-odd effect at € =
0. For an even number of channels the average conductance decays exponentially,
whereas they find an algebraic decay for an odd channel number. The divergence
of the DoS in the middle of the band has been found by numerical calculations
in [28]. In [29] the localization-delocalization transition was studied within a
transfer matrix approach, similar to the one used in the second part of this work.
Again at the band center delocalization was found in quasi-1D for an odd number
of channels.

In the second part of this work we addressed the localization behaviour of a two-
dimensional time-reversal invariant disordered electron system with spin-orbit
coupling, thus of a system of AIl (GSE) symmetry. In this case the effect of
weak anti-localization causes positive perturbative corrections to the conductance
turning the otherwise repulsive delocalization fixed point into an attractive one.
Thus, there are arguments for the existence of delocalized states.
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We performed our investigations within the framework of a recently developed
scattering theoretical network model [46]. First, we constructed the scatter-
ing and transfer matrices. By means of the numerical transfer matrix method
we calculated quasi-1D renormalized localization lengths, dependent on the sys-
tem width and the three parameters reflection, transmission, and spin scattering
strength. We were able to obtain a detailed localization-delocalization phase dia-
gram by means of the finite-size scaling method. In particular, we could confirm
the assumption that extended states exist in 2D systems, provided that the spin-
rotational invariance is broken. More precisely, if the disorder is weak enough the
system exhibits a localization-delocalization transition when the spin scattering
strength is increased. But also for maximal spin scattering about half of the
parameter space, viz the region corresponding to sufficiently strong scattering,
remains in the localized phase.

In order to explore the universal, i.e. critical properties of the localization-delocali-
zation transition, we first determined a scaling function for the renormalized
localization length. Using a numerical fit procedure in combination with a y2-test
we got a highly reliable confirmation of the one-parameter scaling assumption.
Based on this assumption we were able to calculate the critical exponent of the
correlation length. As we have shown, its value depends sensitively on the critical
value of the scaling variable. To this end, we again used a numerical fit procedure
and tested the confidence of this fit. The result is v = 2.51 & 0.18 which within
the errors agrees with the values given in the most recent literature [101-103]. By
an argument based on a conformal mapping the critical value of the renormalized
localization length is related to the scaling exponent oy of the typical local density
of states [48], which plays the role of the order parameter for the transition. By
means of the fit procedure we could determine the scaling exponent up to a high
accuracy, o = 2.174 4+ 0.003, which agrees with the only reference value, which
is known to us, [104].

At the end of the second part we addressed the question whether the quan-
tum Hall critical point is realized within the Manhattan model. In contrast to
the large scale numerics we have done before we used the numerical real-space
renormalization group method [49]. It allows for a qualitative overview of the lo-
calization behaviour of a system with only little computational effort. We defined
a composite scatterer compatible with the channel arrangement of its building
blocks and found an analytical expression for its parameters. Starting with a
sharply peaked initial distribution of the transmission coefficients we found the
distribution to flow into the localized regime after only a few numerical itera-
tions. This scenario holds for initial values arbitrary close to unity. Thus, we
conclude that the Manhattan model always shows localized behaviour and not
the behaviour of a critical quantum Hall system, a result which agrees with the
theoretical prediction made in Ref. [105].
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To conclude, we take a look at the still open questions. As for the density of
states in quasi-1D systems of AIIl symmetry we do not know whether there exist
perturbative contributions in four-loop order or higher. It is possible that there
are no contributions at all. But then one should be able to conclude this by
general arguments. Furthermore, solving the heat equation analytically in the
quantum regime turns out to be very hard if one is interested in arbitrary (not
only very large) system sizes. Therefore, one could try a numerical solution of
this partial differential equation in order to get a more exhausting picture of this
quantity. In dimensions higher than strictly 1D a rigorous analytical relation
between the divergence of the density of states and delocalization is still missing.

Turning to the second subject it is not yet clear whether the delocalization due to
spin-orbit scattering is related to the metal-insulator transition observed in ex-
periments on 2D systems. It is argued, that electron-electron interaction plays an
important role. Therefore, it is desirable to implement electron-electron interac-
tion in the scattering theoretical network model. Finally, a promising approach,
which is in a certain sense a symbiosis of both parts of this thesis, is the inves-
tigation of systems with chiral symmetry within the network model. One could
use the transfer matrix method as well as the real-space renormalization method
in order to gain more insight about the behaviour of 2D chiral systems. In any
case, further investigations of these model are worth while.



Appendix A

Power Series of the Adjoint
Action

Consider H = (§J) € T, where T is the Cartan subalgebra of G = Lie(G). Let
B = {e1, e} be the basis of the vector space V = span(ey, e;) with e; = (')
and e; = (5, 0).

Sometimes expressions of the form e K e~ appear (K some matrix), which
equals el] K. This expression is just e2d# K by definition of the adjoint action.
Hence, our objective is to calculate this expression.

Let us start with the adjoint action of H itself. We have

H

ad(H)e; = [H, e1] = (z — y)ey,

ad(H)ey = [H, es] = —(z — y)e. (A1)

Thus, the representation matrix of the adjoint action with respect to B is given

by

Mg(ad H) = (x 0 4 _(xo_ y)) = (z — y)os. (A.2)

Obviously, B is just the eigenbasis and +(z — y) are the roots of G.

We now proceed with calculating the expression exp(ad H)(e; + e2). Expanding
the exponential and separating even and odd powers we obtain

pad 7 (7?2 78) = [cosh(z — y)15 + sinh(z — y)os] <7?2 78)

— cosh(z — y) (7;)2 %1) + sinh(z — y) (_0 73) .

2

(A.3)
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For the square of this expression we obtain

QO )



Appendix B

Similarity Transformation of the
Laplacian

The radial part of a general Laplace-Beltrami operator on a superspace contains
first order derivatives, which appear due to the non-Euclidean geometry of the
even sector. Introducing j := J'/? for convenience, the radial part of the Lapla-
cian is given by

£ =]720,°0; = ' ou) - 16 i
=70 + (8;Inj)] - [0; — (0;In}j)]j

B.1
=707 — 9;(8; In]) + (9;Inj)d; — (9;1nj)?]] o
~§0? — (@ nj) - (@)
where in all expression implicate summation over ;. With 8?Inj = —j2(9;j)* +

J771(8?)) and (9;1nj)? = j72(0;j)® we obtain the similarity transformed Laplacian,
& =07 = j7(875) = 0 + Ver(l)- (B.2)

By a theorem of BEREZIN (cf. [82]) the effective poential is constant for all su-
pergroups, Veg(j) = Veg, i.€. j is an eigenvector of the operator 7 with eigenvalue

— Veff:
0% = —Veaj. (B.3)

In particular, if the dimensions of the bosonic and fermionic sector are equal,
which is the case for GL(1|1), or different at most by one, the effective potential
vanishes.
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Appendix C

Zero-Mode Regime

In order to calculate the zero-mode integral, Eq. (6.3), for an even number of
sites we first note that the integrand of Eq. (6.3) is an even function of y, and
hence the integration density can be rewritten in the following way

sinh 2 (ac _2 1y) = % [sinh2 (ac _2 1y> + sinh 2 (m—;w)]
(C.1)

Resinh 2 (x—iy) coshzcosy — 1
= Resin =

(coshz — cosy)?’

Taking the derivative of the DoS w.r.t. w* we obtain

00 2w
+ .
2mpl)) %Re 1 / dx/dy[COthcosy — 1] it (eoshamcosy) - (C.2)
—00 0

owt
Introducing k = —irw™ and p = —7ww™ the different integrals are given by
/ dx ei7rw+cosh:c — 2/d$ e—ncoshw — QK()(K,) (C3a)
—00 0
/ dz cosh z ™" hz — 9 / dz cosh x e ™% = 2|, (k) (C.3Db)
—00 0
27 ™
/ dy e T sy — 9 / dy €Y = 27 Jo (1) (C.3c¢)
0 0
2m s
/dy cosye T eosy — 9 / dy cosy e Y = 27iJ, (), (C.3d)
0 0
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where J,(z) and K, (z) are Bessel functions. The validity of the first two lines is
restricted to Re x > 0, which is satisfied. Using the relations

Ko(k) = g(iJo(u) — No(—p)), (C4a)
Ki(w) = 5 (1) ~ N () (C.4b)
we obtain
o) _ T Rl (s () — 5Ny () ) + 1 (To(42) + 1N (1)) o)
Owt o 0 1 1 1 0 0 0
= T [T ) — ()]
=T R+ ).

(C.5)

With Jo(—2) = Jo(2), Ji(—2) = —J1(2) and performing the limit iy — 0 the
zero-mode DoS for an even number of lattice sites is given by

2

(pon (@) = T-pow [J3 () + 7 (mw)] (C.6)

where the integration constant is zero due to the requirement lim,,_,q (pop (w)) =
0. Using

2
J3(2) + JE(2) ~ — for z > 1, (C.7)
we have
lim p(w) = po- (C.8)
w—r0o0

Thus, the result is normalized correctly.

For the case of an odd number of sites we first consider the difference in the
pre-exponential factor w.r.t. the even case and obtain

e~(@-iy) _q A 1 A ety 1
: 2 —i == x—i z—i z—i == —1i i
sinh” (*3%) e (e—22 —e——2“> e — e W — e?Hy 4] ©9)
—x _ iy
_, ef—e?
cosh x — cosy
for positive z > 0 and, analogously,
e® —1 e —e W
=2 . (C.10)

sinh? (25%) coshz — cosy
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for z < 0. The sum of both terms is given by

1 —x _ Aly T _ ,—iy
S-S TS 4o ©° —2. (C.11)
2 \ coshx — cosy coshx — cosy

Thus, for N odd, the DoS is given by that for an even number of sites plus an
additional term

o on
% Re / dz / dy(cosh z — cos y) e™" (coshz—cosy) (C.12)
0 0
- % Re (27K (k) Jo (1) — 2miKo(%)J1 (1)) (C.13)
= —72poJo(Tw) Ji (Tw). (C.14)

Using the identity J;(2) = %(J2(2) + Jo(2)) we end up with Eq. (6.5).

For the large energy limit of this expression we use the asymptotic formulae for
the Bessel functions and obtain

_ ]2 1 TG 1 TG 6
J()(Z)— E{C[ —gr(_%)z +@F(—%)Z +O(Z )
1 T(3) 1 T(3) -
-8 {— 2yl — 2 1 Oz 5)] (C.15)
2T(=3) 48T (—3)
2 9 3675 1 75
~ ]2 1_ 2 -2, 900 4 L1 O 3
T2 {C[ 128° T 32768" ] o [sz 1024~ ]}
with C' = cos(z — §) and S = sin(z — §). In the next step we calculate Jg.

Since the trigonometric functions are strongly fluctuating (as functions of w), we
average over one period. This removes all term containing the product C'S. Up
to forth order we obtain

2 9 3675 + 81 1 75
2 ~ 2 Y 2 gyl e 4 2( -~ -2 _ '¥ _-4
N =2 [C (1 64° T 16382 * )+S <64Z 2096° )}
(C.16)
Analogous calculations for J;(z) yield
2 1 I(Y) 1 T
]2l 228 e L AS) a6
Ji(2) 7TZ{C[ 81“(—%)2 +384F(—g)z +O(z )]
5 [1T(3) 1 T()
—s{— 20,7 o 2 L O —5)} (C.17)
20(1) 48T (—3)

2 [ 15 4725 I3 105
~ “ 1 Y -2 ey 4 < -1 _ ~-~Y -3
2 {C [ T8 T 3R’ ] o [82 1024° ]}
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with C' = cos(z —

s
4
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)=Sand S =sin(z — % — ) = —C, and

—929 1
Jf(z) ~ 3 [52 (1 + 15 -2 _ Mz—‘l) +02 <gz_2 315 _4):| ‘
Tz

64" 16384 64° T 2006”

Combining both results we end up with Eq. (6.6).



Appendix D

Efetov’s ()-Matrices

In supersymmetric non-linear o-models for the orthogonal and unitary symme-
try class derived by EFETOV [59] the elements of the saddle point manifold are
identified as supermatrices @ given by Q = gAG !, where A = 0B is the sad-
dle point and § € G/K are elements of the coset space G/K. Here, G is the
group of transformations on A which let the saddle point equations invariant
and the index ”AB” denotes grading in the sublattice space. The coset struc-
ture is obtained by dividing off all these transforms KK which commute with A,
K = {exp K|[K, A] = 0} ¢ G. This decomposition automatically satisfies the
non-linear constraint Q? = 1.

Let W € GL(1]1) be two-dimensional supermatrices ” generating” the coset in the
following way, § = exp(W ® 04'8). This structure is enforced by the chiral sym-

metry which requires [W ® 048, 048B| = 0. Obviously, there exists a bijective
mapping
G/K =G

G g:=exp(W), (1)

where G = GL(1|1) and W = 2W. However, a further constraint given by the
symmetry of the system is ¢ € U(1) and ¢*® € GL(1)/U(1) = R, where the
superscripts ff and bb denotes the Fermi-Fermi block and Bose-Bose block of the
supermatrix, respectively.

In terms of the generators we have
Q = V8 e WEr (D.2)
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Using
W = W®0 Weo W ® 0y)2t!
e = Z 2 —"3Z< (zn)2) = (2n +2)1)' )
n=0 n! ) )
0 W W 2n+1
Z ® 0'2 + ( ® 0'2) o
(2n+1)!
W®0‘2
(D.3)
we get
Q = e2W®02 O3 = eW®02 03 = COSh(W) X o3 + s1nh(W) X 0903 (D 4)

= cosh(W) ® o3 + sinh(W) ® (io1)

from Eq. (D.2). In the following we calculate the four parts of the Lagrangian in
Eq. (4.22) in terms of Q. (We start with the result and show that it yields the
corresponding term in (4.22).)

fluctuation term

— str[aQaQ] = str [(6 coshW)(@coshW) ® 1 — (0sinh W)(dsinh W) ® 1

+ (9 cosh W) (@sinh W) @ (o(i0) + (ial)ag)j

=0

= str [(8 cosh W) (0 cosh W) — (0 sinh W)(0 sinh W)

— (@ sinh W)(d cosh W) + (sinh W)(dsinh W)}

= str [(6 cosh W + 0sinh W) (0 cosh W — J'sinh W)}
= str [0 e o e’W}
= str[0gdg~"].

energy term

str[Qos] = str[e”®72] = str[cosh(W) ® 1] + str[sinh(W) ® o]
=0

= str[cosh W + sinh W + cosh W — sinh W]
= strlg +g7].

(D.6)
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topological term

% str[Q0Qos| = % str [(cosh(W) ® 03 + sinh(W) ® 0203)
x (8 cosh(W) ® 0302 + dsinh(W) ® 020302)]
% = st (sinh (W) cosh(1V") — cosh(W)sinh(W)) © 1]

+ str [(cosh(W)@ cosh(W) — sinh(W)dsinh(W)) ® 02}

- 7

=0
= st [sinh (W) cosh(W) — cosh(WW)sinh(W)
+ %8(cosh2(W) - sinhQ(W))}
= str [sinh(W)a cosh W — cosh(W)0 sinh W
+ cosh(W)0 cosh W — sinh(W)0 sinh W]

= str [(cosh W 4+ sinh W) (6 cosh W — Osinh W)}

= str [eW 0 e_W]
= str[gdg~!] = — str[g~ g,
(D.7)

where in the last step we have used str[gdg ] = str[—gg 'dgg '] = — str[g—1dy¢].
Gade term
From Eq. (D.7) we immediately conclude

istrQ[QaQoz] = str’[g '0g]. (D.8)
Consequently, the o-model action in terms of () is given by

S = — / d)\{él str(0QOQ) + Eyistr(eQui®) + & str(QOQu,®)

(D.9)
+é str(QaQag‘B)}

with 61 = C1/2, 52 = C, 63 = 03/4 and 54 = C4/2.
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Appendix E

Contraction Rules

In the context of perturbation theory one often has to evaluate gaussian integrals.
This is in the presence of higher powers of the pre-exponential factors a quite
awkward task, which can be considerably simplified by the use of Wick’s theorem.
This notion comprises some algorithms also called contraction rules, which allow
to reduce n-point correlations to products of pair correlations. In this chapter we
will elaborate the contraction rules for gaussian integrals over GL(1|1). In the
first section we concretely calculate the pair correlations for the group GL(1|1), in
the second and third sections we elaborate the contraction rules for the integrals
over the supergroup GL(n|n) and hermitian n x n-matrices, respectively. In the
last section we calculate the perturbative corrections to the DoS in Eq. (6.13).

E.1 Pair Correlations for GL(1|1)

Let W be the generators of GL(1|1) parameterized in cartesian coordinates.

Hence,
W11 W12 v §
W = = . E.1
(W21 WQQ) <X 1UJ> ( )

with v € R, w € [0,27] and £ and x are arbitrary Grassmann variables. Denoting
the corresponding manifold as gl*(1|1) let us consider the Gaussian integral

00 2
2 1 2,2
/ dW e 5" = P / dv/dw/dgdxec(” Hwi+Ex—xE)
71-—oo 0 (EQ)

gl*(11)
1 /7
= (Z9 ) —1,
27 (C ¢
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where we have chosen the constant in the integration density to be . Then we

2
get for the second moments

o0 27
1 (v tw? B 1
(v*) = py / dv/dw/d&dxv% (W +w+Ex—x8) — %0 = (w?) (E.3)
—00 0
and
00 27
1 2 2 1
== — —C(’U tw +2§X) = —_-— = — . E4
€0 ==5- [ do [ dw [ dgaxexe =0 (B
—00 0

Consequently, we have (str(W?)) = 0.

E.2 Wick’s Theorem for Correlations in GL(n|n)

First, we will calculate a general moment of second order. Let W, A and B be
2n-dimensional supermatrices, which in boson-fermion decomposition are given

by

Wbb be
W= <Wfb Wﬂ) ) (E5)

and analogous for A and B. The n X N-matrices (Wo‘f};’)a’ﬂ,(Wfﬁ)aﬁ and

(W(%)a PE (Wé%)a 5 consist of even and odd elements of a Grassmann algebra,
respectively. We introduce a parity function for a matrix index a and a pair of
matrix indices (a, ) in the following way

0, ifl<a<n,
a={" (5.6)
, ifn+1<a<2n
and
0, if (o, B) belongs to the bb- or the ff-block,
@py={" 1)
1, if («, B) belongs to the bf- or the fb-block.
Thus, |(a, 5)| = 0 for W,z being even and 1 for W,s being odd. Note that
(@ 8)] = (8, )], (E.8a)
(_1)|(a,/3)| - (_1)|a\+|ﬂ\7 (E.8hb)

(1) @AH@B) — (_1)l@B)]. (E.8c)



E.2. WICK’S THEOREM FOR CORRELATIONS IN GL(N|N) 143

The supertrace can be expressed in terms of the usual trace

str A = tr AP® — tr AT = tr(o54) = (05 apAsa

(E.9)
= (Ugf)aaAaa = (_1)|a|Aaa;
where here and in the following we use the summation convention.
Now consider the Gaussian superintegral
/ d[W]eeseW” = 1, (E.10)

where d[W] = Hfﬁl dWii x I ],< ; AW dW. A general moment of second order is
then given by

<WaﬂW75) = /d[W]WaBW'75 oot = /d[W]WaﬂW~yJ e e=D I Wau W
(2¢)7Y(—1) el if Wos even,
= 0as0py .
—(2¢)7L(=1)l, if Wy odd
= (20)*15a55ﬂ7(_1)|a\(_1)|(a,ﬁ)\
= (2¢) 1 6,505,(—1)P! (no summation over 3 !).

(E.11)

It is advantageous to calculate the expressions (str(AWBW)) and
(str(AW) str(BW)) which enable us to find arbitrary contractions (of second
order). From Eq. (E.11) we conclude

str(AWBW) = (—1)1* A,3Wg, B.,sWia

_ (E.12)
- (_1)|a\(_1)|(ﬂ,7)| |(%6)‘AaﬁB76WB7W6a
and hence
(AW BW)) = (—1)/*l(—1) B0 01 4y B 5 (26) L65085(—1)
= (20)—1(_1)|a\(_1)\(aﬂ)|-|(%7)|(_1)|7|Aaan (E.13)
= (26)_1(_1)|Q‘Aaa(_1)h|B’W
= (2¢) 'str Astr B,
where we have used |(7,7)| = 0, independent of v. Similarly, we obtain
str(AW) str(BW) = (=1)!* AqsWpa (~1)"'B,sWs, (E.14)

= (_1)|a|+|7| (—1)Kﬂ’a)"'(%‘s)‘AaﬂB,y(ngaWM
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and therefore

(Str(AW) str(BW)) = (~1) H0(— 1)/ G0~ 1)el 4,5 By, (2¢) 755,605
Iﬁl(_1)\(6,a)|-|(ﬂ,a)\AaﬁBﬁa
Iﬁl(_l)\aIHﬁIAaﬁBﬁa

(E.15)

E.3 Contraction Rules for Gaussian Integrals
over Hermitean Matrices

We now consider the much easier case of integrals over Hermitean matrices H.
Noting that

trH? = HyHup =Y HyH;, =Y |Hyl> =Y (Re? Hy, +Im? H,,),
Au Al Au

Au

(E.16)

we can calculate a general moment of second order,

(HopHog) = / A[H|HosH, s o

— / d[H]Ha,BH76 e_CEA Re? H)\A_QCE)\<H(R92 Hy,+Im? Hy ) (E17)

1

2_05a65ﬁ’ya

where d[H]| = % [[;dH; HK]. d Re H;;d Im H;;, and the normalization constant
is given by

n? /2

N =)= (%) g-n(n-1)/2, (E.18)

Hence, the contraction rules are given by (A, B arbitrary n X n matrices)
(tr(AHBH)) = (2¢) ' tr Atr B, (E.19)

and

(tr(AH) tr(BH)) = (2¢)" tr(AB). (E.20)
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E.4 Perturbative Corrections to the DoS

Using the contraction rules Eqgs. (E.13) and (E.15) we are able to calculate the
different terms contributing to the DoS in Eq. (6.13).

e 1-loop diagram

Z (str [WkW_kag’fD oc str(off) str(1) = 0. (E.21)

e 2-loop diagram A

S (str Wi, Wi, Wi, Wty i, 1,08

l11l2;l3

= Z <(26[1)71 St’r[VVle,W*h*lz*lso'?]?f]éb,*h>

Il 1l2 I3

+ <(2cl1)_1 str VVl2 Str[W—h—lz—l3ail’,)f]5ls,—l1>

+ <(20—l1—l2—ls)_1 str Uili)f Str[VVb VVls]é—ll—b—l:&,—h > }

1 _
= 5 (Cll) 1(Cl2) '
l1,l2
(E.22)
e 2-loop diagram B
Dqyqp + i€
Z T <Str(%0§f) str [Wlh WQ2Wq3W—Q1—q2—Q3]>
41,492,493
Dq1q; + i€ _
= Z T(chl) t{str W, str W_y,) (E.23)
q1,42,43
D .
= Z %4_16(20,11)_1 strlstrl =0

41,492,943
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e 2-loop diagram C

Dqqs + i€
Z —=2 <Str[W—kUngk] str [W(h WQ2 WCI3 W—Q1—42—Q3]>

A
k,q1,92,93
Dqqy + i€ _
= Z T (20(11) 1<St1‘ [O-?E)fWkW%WQSW—ql—qz—QS} 5/6,Q1>
k’q11q27q3

+ (26(12)71 <St1‘ [U?l,)fWkWQ:sW*mfwf%WqJ 6k,q2>
+ (26(13)71 <Str [U?l:fWkaqrqranm qu} 5k,q3>
+ (

20*41*(12*(13)71 <St1‘ [o-ngkaW@Wlls} 6/6,(11(12(13>}

1 Dq1qo + i€ B B B B
=5 2 —a ) ()T (o) T (g) T

q1,42,93

X <str |:0-§)qu1 W, WesW_g, —qz—qs] >

1 Dqiqs + i€ 1 1 1 1
= 5 Z T [(qu) + (CQ2) } (Cth) (CQ2)

=3 [(en) 2(ew) () o)

q1,92

(E.24)



Appendix F

Solution of the Heat Equation in
the Quantum Regime

In order to solve Eq. (6.58) perturbatively in n we first consider the solution for
n = 0, which is given by

1+ d°y Ce =0
€,0 1 ) e,0 je,0 je,0
. = . : dy”,dy”, ds” € R
Z,U—O(y) {d;’o el /Ce.0y +d§,o e /Ce,oy, o # 0 1 2 3

Comparing with Eq. (6.55) we conclude C° = 0, d} = 0 and C® = 1/4. Further-
more, we see d5 = 1, d5 = 0 for z > 0 and d5 = 0, d§ = 1 for z < 0. Therefore,
we have

P m=0(y) = oX3 and bon—0(y) =1,

where x = sgnz. For finite n we write the solution of Eq. (6.58) as a power series
in the small parameter 7,

°(y) = 855-0(y) + 18351 (y) + O(n?),
where (9,” + C®°)¢35_(y) = 0, and

(0 + C)633(0) = —mcosydsso(y) (1)

is the differential equation for the first order correction. The solutions of Eq. (F.1)
for N even and N odd are given by

1 s 1.
51 (y) = x 1 oXF —5xye x5 +h°(y)

and

2.1(y) = cosy + h°(y),
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respectively, where h®°(y) are solutions of the homogeneous equation. Omitting
these terms the solutions of Eq. (6.58) up to first order in 5 are given by

$5(y) =1+ ncos(y) (F.2)
and
$5(y) = X [eix% +g eX2 (% e —iyy ei’“’)] : (F.3)

Turning to the x equation, Eq. (6.57), we introduce u = (21)'/2 el*//2 and conclude
that the only integrable solution of Eq. (6.61) is given by ¢®*K;(u) for even N and
®Ky(u) for odd N. The constants ¢® and ¢ are determined by the n — 0
asymptotics Eq. (6.55) as follows. Using the expansion of the Bessel functions
for small arguments,

Ko(u) ~ —Inu and Ki(u) ~u™,

we find by comparison with Eq. (6.55)
e T I
J}l_r)%(b (z,y) = %1_r>r(1) 5 (Inn+ |z| +In2) (1 + ncosy) = —1
and

. . c —|z it Mo (1 . —i
}’g%¢e($,y) = —il_ff(l)XWe 272 [ex2+§exz (§exy—1xye Xy)]

L _9ex@—iy)/2

Consequently, the normalization factors are given by ¢© = 2In"'n and ¢¢ =
2x(21)/? and we obtain Eq. (6.62). Keeping only the lowest relevant powers in
71 the square of the heat kernel simplifies to

: . . 2
¢°*(,y) = 8nK7 (u) e [1 + g(elxy /2 — iyy e’”‘y)}
~ 80K 2 (u) [6X +n(e® /2 — ixy)]

and

4 4
¢°2(x,y) = lTK&(u)(l + 2ncosy + n°cos’ y) ~ ——Kg (u).
n°n In" 7
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We insert this result into Eq. (4.33) for the DoS. Starting with N even we get

oo 2w
e 1 1
(Pquans (€7))" = po + po Re o / dz / dyé(cosh T — Ccosy)
—0o0 0

X [qse?(x, y) + (=1 + 1) sinh 2 (z > iy)}

-1
A
7~ Y

oo 2w .
1 sinh (Z£%) 1
=,00+,00Re—/dx/dy #—f——(COShJ)—COS’y)
4w sinh (25%) 2
—00 0

X [</5e2(:v,y) — sinh ™ (w _2 iy)} }

) 2
1 .
= po Re P / dx / dy(cosh z — cosy) [qﬁe?(x, y) — 4 e~ (z—1y)
s
0 0

S

8 ) — 4]

2w

1 o0
= —po Re oy /dx / dy [Qan(u) — e~ +4min® cosh 2 K2 (u) (y — y)] :
0 0

where in the third line we have used that the integrand is dominated by its
large |x| asymptotics. Recalling that the Bessel functions decay exponentially for
large arguments we can introduce —Inn as an upper cut-off. For the remaining
integration interval we use the series representation of the Bessel functions which
is given by K?(u) ~u~2 +In% + O(u?In” u) and obtain

—Inn

{ pquant (e“L)>e = —po Re / dz2n [(27))’1 e ” +% In(2ne*) —In2 —e™*
0
~Inp
= —poRen / dz(lnnp —1n2 + x)
0
~ poRenln®7.

Performing an analytic continuation, n — —i(w + iy/A¢), we end up with Eq.
(6.64). Now, we turn to the analogous calculation for N odd. From Eq. (4.33)
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we get

2w

o
1 4
<pquant > —po=pR 2— / dx/ —(coshz — cos y)l 5
0

z ((277)1/2 ez/2)

n-n
o0

dz cosh K (277)1/2 ew/2) .

—poR
0

Using the series representation of the Bessel function, K2(u) ~ In® u, we obtain

—Inn
1
want (€)Y = po = po Re ——— dze*(z +1nn —1n2)?
</’q o(€ )> Po = Po 41n277/ ( n )
0
Re .
> po nln®n

Performing an analytic continuation again, we get Eq. (6.65).
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Zusammenfassung

Mesoskopische Physik ist seit etwa 20 Jahren eines der wichtigsten und meist-
beachteten Forschungsgebiete der modernen theoretischen und experimentellen
Festkorperphysik. Sie behandelt Phinomene in makroskopischen Systemen, die
von der Interferenz vielfach gestreuter nicht-wechselwirkender phasenkohérenter
Elektronen herriihren.

Eines der bedeutendsten dieser Phénomene ist die starke Lokalisierung [8], bei
der die elektronische Wellenfunktion in stark ungeordneten Systemen aufgrund
von destruktiver Quanteninterferenz exponentiell um ein Zentrum herum abfallt.
Damit einher geht der exponentielle Abfall des Leitwerts iiber einer charak-
teristischen Langenskala &, der Lokalisierungslange. Verwandt mit dem Effekt
der starken Lokalisierung ist die schwache Lokalisierung. In schwach ungeord-
neten Systemen beobachtet man ein leichtes Absinken des Leitwerts gegeniiber
seinem klassischen Wert. Dieses Phanomen ist auf eine Erhéhung der Riickstreu-
wahrscheinlichkeit infolge Quanteninterferenz zuriickzufiihren und ergibt sich sto-
rungstheoretisch als kleine negative Korrektur zum Leitwert. In einer berithmten
Arbeit haben ABRAHAMS ET AL. 1979 mit Hilfe von Skalenargumenten gefolgert,
daf in zwei und weniger Dimensionen alle ungeordneten Systeme (im thermody-
namischen Limes) starke Lokalisierung zeigen.

Von besonderem Interesse sind daher Systeme, die ein Verhalten zeigen, das mit
der Skalentheorie nicht konform ist. Seit einigen Jahrzehnten sind solche Ausnah-
men bekannt. So fand man etwa bei eindimensionalen (1D) Gittermodellen mit
ausschliefflich auBerdiagonaler Unordnung eine in der Bandmitte divergierende
Zustandsdichte (DoS). Dies geht geméf einer Arbeit von THOULESS [106] mit der
Existenz eines delokalisierten Zustands einher. Auch in 2D fand man eine Singu-
laritét in der Zustandsdichte im Rahmen eines nicht-linearen o-Modells (NLoM)
fiir ein Untergittermodell [13,14]. Lange Zeit war der Mechanismus, der zur De-
lokalisierung fiihrt, unverstanden. Man gewann tiefere Einsicht, als man erkann-
te, dafl auBlerdiagonale Unordnung und die betrachteten Untergittermodelle ihre
Gemeinsamkeit in der chiralen Symmetrie des zugrunde liegenden Hamiltonians
haben: In geeigneter Darstellung ist der Hamiltonian block-auflerdiagonal. Als
Konsequenz ergibt sich, dafl alle Eigenwerte in Paaren mit entgegengesetztem
Vorzeichen auftreten. Bei einer geraden Zahl an Zustanden fiihrt dies aufgrund
von Level-Abstoflung zu einer symmetrischen Liicke in der Zustandsdichte. Ist
die Zahl der Zustinde ungerade, bleibt ein Zustand ”ungepaart” und kann in der
Bandmitte eine evaneszente Mode ausbilden. Chirale Systeme unterscheiden sich
von Gittermodellen mit diagonaler Unordnung beziiglich der Ungleichférmigkeit
des Energiespektrums.



Symmetrien haben auf das Verhalten mesoskopischer Systeme einen grofien Ein-
fluB. Neben der chiralen Symmetrie, sind Zeitumkehr- und die Spinrotationssym-
metrie von grofer Bedeutung. Erstere wird durch Anwesenheit eines Magnet-
felds, letztere beispielsweise durch Spin-Bahn-Wechselwirkung gebrochen. Sto-
rungstheoretische Berechnungen fiir diesen Fall haben gezeigt, dal die oben er-
wahnte Korrektur zum Leitwert infolge schwacher Lokalisierung positiv wird.
Daher spricht man auch von schwacher anti-Lokalisierung. Mit Hilfe der Ska-
lentheorie ergibt sich in diesem Fall die Moglichkeit fiir Delokalisierung in zwei
Dimensionen. Da im Fall geniigend starker Unordnung aber jedes System (auch
in mehr als zwei Dimensionen) unter Renormierung in den Lokalisierungsfixpunkt
flieflt, sollten 2D Systeme in Anwesenheit von Spin-Bahn-Wechselwirkung einen
Lokalisierungs-Delokalisierungs- (LD-) Ubergang aufweisen, der durch die Stéirke
der Unordnung gesteuert wird.

In der vorliegenden Arbeit wurden mesoskopische Systeme behandelt, die, ob-
wohl hochstens zweidimensional, Delokalisierung zeigen konnen. Der erste Teil
beschiftigt sich mit der (unordnungsgemittelten) Zustandsdichte fiir quasi-1D
chirale Systeme mit gebrochener Zeitumkehrinvarianz. Die DoS nicht chiraler
Systeme besitzt auf Skalen, die kleiner sind als die Fermi-Energie, keine aus-
geprigte Struktur. Qualitative Uberlegungen zeigen, daf die Zustandsdichte chi-
raler Systeme eine hohere Komplexitit besitzt, da sie eine komplizierte Kopplung
von Greenfunktionen, die zu den beiden Spezies eines Untergittersystems gehoren,
beinhaltet.

Ein Beispiel fiir ein nicht zeitumkehrinvariantes chirales System ist das random
flux model (RFM), ein Gittermodell mit ausschlielich auerdiagonaler unitérer
Unordnung. Kiirzlich wurde von ALTLAND und SiMONS fiir das RFM ein su-
persymmetrisches NLoM abgeleitet [22], das die eingehende Untersuchung von
Spektral- und Transportgrofien auf allen relevanten Langenskalen und in allen rel-
evanten Energieregimen erlaubt. Als Besonderheit treten bei diesem NLoM ein
topologischer Term und der sogenannte Gade-Term auf, der schon von GADE
in [13] identifiziert worden war. Ausgehend von der effektiven Wirkung dieses
NLoM wurde die DoS im ergodischen, im perturbativen und im Quantenregime
berechnet.

Im ergodischen Regime, wo die Felder als raumlich konstant angesehen wer-
den konnen, zeigt die Zustandsdichte Fluktuationen auf der Skala des mittleren
Niveauabstands. Solche Fluktuationen sind sonst nur von Zwei-Punkt-Green-
funktionen, wie der Zwei-Level-Korrelationsfunktion, bekannt. Hier kommt die
oben angesprochene charakteristische Komplexitat der chiralen Zustandsdichte
zum Ausdruck. Interessanterweise zeigte sich eine Abhangigkeit der Ergebnisse
von der Paritat der Zahl der Gitterplatze, wofiir der topologische Term verant-
wortlich ist. Ferner bildet die DoS eine symmetrische um die Bandmitte zen-
trierte Liicke aus. Die erhaltenen Resultate reproduzieren Ergebnisse, die schon
aus der Theorie chiraler Zufallsmatrizen bekannt sind [16,17,67,85]. Dies liegt



darin begriindet, dafl das System im ergodischen Limes universell wird, d.h. nur
von den Symmetrien und der Raumdimension abhidngt, und daher durch ein
statistisches Ensemble von geeigneten Matrizen vollstandig charakterisiert wird.

Zur Berechnung der DoS im perturbativen Regime wurde das NLoM in einer
Formulierung analog zu Ref. [81] verwendet. Dies erlaubte eine iibersichtliche
Auflistung der einzelnen Beitrige gemafl diagrammatischer Storungstheorie. Bis
einschliefllich 3-Loop-Ordnung wurden keine perturbativen Korrekturen gefun-
den. Ob ab einer bestimmten Loop-Ordnung Beitrage auftauchen oder nicht, ist
momentan noch offen.

Das Quantenregime ist der interessanteste und gleichzeitig schwierigste Fall. Hier
versagen storungstheoretische Methoden. Daher wurde das Problem der Funk-
tionalintegration im Ausdruck fiir die DoS mittels der in quasi-1D anwendbaren
Transfermatrixmethode auf die Lésung einer Warmeleitungsgleichung (HEQ) zu-
riickgefiihrt. Jeder Term des dabei auftretenden verallgemeinerten Laplaceope-
rators entspricht einem der Beitrage in der Wirkung des NLoM. Erwahnenswert
ist der Einflul des topologischen Terms auf die Randbedingungen der Differen-
tialgleichung. Die HEQ konnte im Grenzfall kleiner Energien, w = ¢/A¢ < 1 und
grofler Systemlangen, L > £ gelost werden. Das Ergebnis hangt sensibel von der
Paritat der Kanalzahl N, des quasi-1D Systems ab. Fiir eine gerade Anzahl an
Kanilen ergab sich fiir die DoS (p(w)) o po|w|In|w|, fiir eine ungerade Anzahl
{p(w)) — po o po/|wIn®|w||. Im letzteren Fall zeigt die DoS eine Divergenz, wie
sie auch schon bei der Untersuchung von 1D Systeme mit auflerdiagonaler Un-
ordnung aufgetreten war [11,12]. Das Ergebnis fiir den Fall gerader Kanalzahl,
stimmt mit einer vor kurzem gefundenen Beziehung iiberein [20].

Die Motivation fiir den zweiten Teil dieser Arbeit lag in einer Reiher von kiirzlich
durchgefiihrten Experimenten, die in 2D Systemen delokalisiertes Verhalten ge-
zeigt haben [30-36]. Es wird zur Zeit diskutiert, ob der beobachtete LD-Ubergang
durch Elektron-Elektron-Wechselwirkung oder Spin-Bahn-Kopplung induziert
wird [37-42]. Im Rahmen dieser Arbeit sollte der durch Spin-Bahn-Wechselwir-
kung induzierte Ubergang eingehend untersucht und charakterisiert werden.
Durchgefiihrt wurden die Untersuchungen an einem streutheoretischen Netzwerk-
modell [46]. Hierzu mufiten zunichst die Streumatrizen konstruiert werden,
welche durch drei unabhangige Parameter charakterisiert sind, zwei fiir die Orts-
raumstreuung einer fiir die Starke der Streuung im Spinraum.

Nach einer Abbildung der Streumatrizen auf Transfermatrizen wurden mittels der
(numerischen) Transfermatrixmethode quasi-1D renormierte Lokalisierungslén-
gen A in Abhéngigkeit von der Systembreite und den drei Parametern berechnet.
Da A die Rolle einer Skalenvariable spielt, konnte mittels der Breitenabhéngigkeit
(finite-size scaling) das Lokalisierungsverhalten des Modells bestimmt werden. In
diesem Zusammenhang wurde ein Phasendiagramm im dreidimensionalen Param-
eterraum erstellt. Es zeigte sich, dal das System fiir hinreichend starke Unord-



nung unabhingig von der Spin-Streustirke lokalisiert ist. Ist die Unordnung aber
schwach genug, kann eine metallische Phase auftreten, die um so grofier ist, je
starker der Spin gestreut wird. Das Modell weist also bei geeigneter Parameter-
wahl einen Phaseniibergang auf.

Um diesen im Sinne der Theorie kritischer Phénomene charakterisieren zu konnen,
ist es von grofler Bedeutung, dafi Ein-Parameter-Skalieren erfiillt ist. Um dies zu
testen, wurde iiberpriift, ob es fiir die Skalenvariable A eine Skalenfunktion gibt.
Die Konstruktion der Skalenfunktion wurde mittels einer Fitprozedur vorgenom-
men (vgl. Ref. [47]), um ein mdoglichst optimales Ergebnis zu erzielen. Weiterhin
wurde der Fit mittels eines y2-Tests auf seine Glaubwiirdigkeit hin iiberpriift.
Das Ergebnis zeigte, dal Ein-Parameter-Skalieren mit hoher Wahrscheinlichkeit
erfiillt ist. Dies legitimierte die weitere Auswertung, im Rahmen derer der kri-
tische Exponent v der Lokalisierungslange bestimmt wurde. Nachdem gezeigt
worden war, dafl diese charakteristische Grofie stark mit kleinen Variationen des
kritischen Wertes der Skalenvariable schwankt, wurde auch fiir die Bestimmung
von v eine Fitprozedur mit anschlieBendem Konfidenztest verwendet. Das Ergeb-
nisist ¥ = 2.51£0.18, was im Rahmen der Fehler gut mit den Literaturwerten der
letzten Jahre iibereinstimmt [101-103]. Dariiber hinaus wurde der Skalenexpo-
nenten ¢ der typischen lokalen Zustandsdichte mittels einer Konformrelation [48]
aus dem kritischen Wert von A bestimmt. Das Ergebnis, ap = 2.174 4+ 0.003
stimmt gut mit dem einzigen uns bekannten Literaturwert [104] iiberein.

Am Ende des zweiten Teils der Arbeit wurde eine Alternative zur Transferma-
trixmethode vorgestellt, die nach bedeutend weniger Rechenleistung verlangt.
Die numerische Ortsraumrenormierungs-Methode [49] ermdglicht es, das Lokali-
sierungsverhalten eines Modells schon nach wenigen Rechenschritten zu ken-
nen. Das Verfahren wurde benutzt, um einen Anhaltspunkt dafiir zu bekom-
men, ob das sogenannte Manhattan-Modell in der Lage ist, den kritischen Punkt
eines Quanten-Hall-Systems zu modellieren. Es zeigte sich, dal die Verteilungs-
funktion fiir den Transmissionskoeffizienten schon nach wenigen Iterationsschrit-
ten in den Lokalisierungsfixpunkt flieit, selbst wenn man mit einer J-formigen
Anfangsverteilung nahe am Delokalisierungsfixpunkt startet. Als Resultat ergab
sich somit, da} das Manhattanmodell den Quanten-Hall-Fixpunkt nicht enthélt,
was eine zuvor theoretisch gemachte Aussage [105] bestétigte.

Zusammenfassend wurden in dieser Arbeit ein- und zweidimensionale ungeord-
nete Elektronensysteme mit besonderer Symmetrie analytisch und numerisch un-
tersucht. Es stellte sich heraus, daf} es in quasi-1D Systemen mit chiraler Sym-
metrie eine Divergenz der Zustandsdichte in der Bandmitte gibt, was zumindest
in strikt einer Dimension in direkter Verbindung mit der Existenz delokalisierter
Zustande steht. In 2D Systemen mit hinreichend schwacher Unordnung und hin-
reichend starker Spin-Bahn-Streuung treten ebenfalls delokalisierte Zustinde auf.
Beide Arten von Systemen stellen somit Ausnahmen beziiglich der Skalentheorie
der Lokalisierung dar.
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