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Zusammenfassung 

Bei dem Actinobacterium C. glutamicum handelt es sich um ein Bodenbakterium, das 

stark in der Biotechnologie genutzt wird, vor allem für die Produktion von L-Glutamat 

und L-Lysin. Ein wichtiger Aspekt bei der industriellen Fermentation mit hohen 

Zelldichten ist die Bildung großer Mengen CO2. Da in C. glutamicum CO2 die Versorgung 

mit anorganischem Kohlenstoff ebenso beeinflusst wie den internen pH-Wert, wurden 

beide Aspekte in dieser Arbeit untersucht. Für die ausreichende Versorgung mit 

anorganischem Kohlenstoff ist die ß-Carboanhydrase Bca vor allem bei niedrigem 

externen pH essentiell, denn die Umwandlung von CO2 zu Hydrogencarbonat (HCO3-) ist 

entscheidend, damit es als Substrat für die Carboxylierung von PEP und Pyruvat zur 

Verfügung steht. Obwohl Bca-Aktivität auch zu einer beschleunigten Protonenbildung 

führt, scheint die pH-Homöostase durch das Enzym nicht beeinflusst zu sein. Auch 

erhöhte CO2-Konzentrationen in der Zuluft haben keinen wachstumshemmenden Effekt 

und führten nur zu kurzen Effekten in Bezug auf pH-Homöostase. Ein Fehlen von Bca 

führt zu einem Wachstumsdefizit der Deletionsmutante C. glutamicum Δbca. Dieses kann 

durch die heterologe Expression von Genen ausgeglichen werden, die für ein 

cyanobakterielles Hydrogencarbonat-Aufnahmesystem kodieren, genannt SbtAB. 

Obwohl diese Komponente des Kohlenstoff-konzentrierenden Systems aus 

Synechocystis sp. PCC 6803 anorganischen Kohlenstoff in C. glutamicum bereitstellen 

kann, sind die positiven Auswirkungen auf den Wildtyp gering und beinhalten erhöhte 

Wachstumsraten auf Glukose und zum Teil auf Pyruvat. Die Aktivität von SbtAB konnte 

mit radiochemisch markiertem Hydrogencarbonat bestimmt werden. Zur Untersuchung 

der pH-Homöostase in C. glutamicum wurde ein Fluoreszenz-basiertes System zur 

online-Detektion entwickelt, das das ratiometrische GFP-Derivat pHluorin nutzt. Die 

Dynamik des Homöostaseprozesses konnte bestimmt werden, und die Ergebnisse 

zeigen die Fähigkeit von C. glutamicum, zwischen pH 6 und 8,5 effektiv pH-Homöostase 

zu betreiben. Verschiedene Komponenten, die an der pH-Homöostase beteiligt sind, 

wurden mit den entsprechenden Deletionsmutanten untersucht. Das Fehlen beider 

Endoxidasen der Atmungskette führt zum Kollaps der pH-Homöostase, während das 

Fehlen nur einer Komponente die Homöostasefähigkeit nicht beeinflusst. Das Fehlen der 

F(1)F(O)ATPase hat keine Auswirkung auf die pH-Homöostase in C. glutamicum. 



 

 
 

Abstract 

The actinobacterium C. glutamicum is a soil bacterium which is extensively used in 

biotechnology, especially in the production of L-glutamate and L-lysine. An important 

aspect of industrial scale fermentation processes with high cell densities is the 

formation of large amounts of CO2. Since CO2 is assumed to influence inorganic carbon 

provision as well as the internal pH of C. glutamicum, both aspects were investigated in 

this study. For a sufficient supply with inorganic carbon, the ß-type carbonic anhydrase 

Bca is essential, especially at low external pH values, since conversion of CO2 to 

bicarbonate (HCO3-) is crucial before it can serve as a substrate for PEP and pyruvate 

carboxylation reactions. Although Bca activity also leads to an accelerated proton 

formation, the pH homeostasis seems not to be affected by this enzyme. Also, elevated 

CO2 in the supply air did not lead to impaired growth and showed only short term effects 

on pH homeostasis. A lack of Bca leads to a growth deficit of the deletion mutant 

C. glutamicum Δbca. This can be compensated by the heterologous expression of genes 

encoding a cyanobacterial system for bicarbonate import, called SbtAB. Although this 

component of the carbon concentrating mechanism of Synechocystis sp. PCC 6803 is able 

to provide inorganic carbon in C. glutamicum, there were only slight benefits observed in 

C. glutamicum wild type, including elevated growth rates on glucose and partly on 

pyruvate. The activity of SbtAB could be determined in uptake measurements using 

radio-labelled bicarbonate. The impact of SbtAB on pH homeostasis is negligible. To 

investigate the pH homeostasis of C. glutamicum, a fluorescence based assay for online 

detection of the intracellular pH was established using the ratiometric GFP variant 

pHluorin. The dynamic of the homeostasis process was determined and the results show 

the ability of C. glutamicum to perform effective pH homeostasis at external pH values 

from 6 to 8.5. Various possible components of the pH homeostasis machinery were 

observed by determination of the pH homeostasis capacity of the according deletion 

mutants. A complete lack of both branches of terminal oxidases of the respiratory chain 

leads to collapse of the pH homeostasis, while the absence of only one branch does not 

affect the ability to perform pH homeostasis. Also the absence of the F(1)F(O)ATPase has 

no effect on the of pH homeostasis in C. glutamicum. 

 



 

 
 

Abbreviations 

ATP Adenosine triphosphate 
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1. Introduction 

1.1 The model organism Corynebacterium glutamicum 

The first description of the Gram-positive soil bacterium Corynebacterium glutamicum 

dates back to 1957 (Kinoshita, 1957). The GC-rich bacterium belongs to the family of 

Mycobacteriaceae which is part of the order of Actinomycetales. It is immobile, rod-

shaped and its name refers to its typical club-like form (coryne [greek]: club). As 

C. glutamicum is non-pathogenic, it serves as a model organism for closely related 

pathogenic mycobacteria like Mycobacterium leprae, Mycobacterium tuberculosis and 

Corynebacterium diphteriae (Minnikin, 1982; Stackenbrandt, 1997). It was discovered 

during the search for amino acid producing bacteria. Since then, C. glutamicum has been 

used extensively in industrial amino acid production. 

Due to large efforts in metabolic engineering, C. glutamicum has become the most 

relevant organism for industrial L-lysine production with about 1.5 Mt/a. The L-

glutamate production with C. glutamicum nowadays reaches a market size of almost 

2.5 Mt/a (Becker & Wittmann, 2012). For example, a completely rationed lysine 

producer derived from a non-producing wild type strain was successfully designed in 

2011 (Becker et al., 2011). While L-lysine plays an important role in animal nutrition in 

industrial farming processes, L-glutamate is a popular flavour enhancer in convenience 

food. Further amino acids that are produced using C. glutamicum include L-methionine 

(Bolten et al., 2010) and L-tryptophan (Ikeda, 2006). Production of the diamine 

cadaverine is also possible using C. glutamicum (Mimitsuka et al., 2007). Above, biofuels 

(Blombach et al., 2011; Inui et al., 2004; Smith et al., 2010), organic acids (Litsanov et al., 

2012) and vitamins (Vertes et al., 2012) can be produced by C. glutamicum. Another 

biotechnological application of C. glutamicum which is of great economical importance is 

the production of various nucleotides, which serve for example as flavour enhancers and 

whose fermentative production has already been described in 1966 (Demain et al., 

1966). 

Despite this huge impact of C. glutamicum in the field of biotechnology, many aspects of 

its physiology are still to be explored. Hence, not only strain improvement but also 

fundamental research in this field is still of interest. The study in hand contributes to 
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this task by investigating physiological aspects of central importance. These are 

inorganic carbon supply and intracellular pH as well as basic mechanisms of proton 

homeostasis of C. glutamicum in general. All of them are basic physiological parameters 

that interfere with numerous cellular processes. 

1.2 CO2 and the role of inorganic carbon in bacteria 

1.2.1 The hydration of CO2 and its impact on proton homeostasis 

Industrial scale fermentations in bioreactors using C. glutamicum are performed at 

extraordinary high cell densities (Knoll et al., 2007). Under aerobic growth conditions, 

this leads to strongly elevated CO2 concentrations of > 20 % due to the metabolic activity 

of the cells. This phenomenon shows up in particular at the bottom of large scale 

fermenters with volumes up to 750 m3, where elevated hydrostatic pressure leads to an 

increased solubility of CO2 in the medium (Hermann, 2003). Also, local pH shifts of the 

medium occur during fermentation processes due to insufficient stirring (Kelle, 2005). 

Earlier experiments in C. glutamicum indicate a failure of pH homeostasis at an external 

pH of 6 and high CO2 levels in the supply air (Follmann, 2008). Additionally, it has been 

reported that elevated CO2 concentrations lead to an enhanced transcription of acid 

stress genes (Baez et al., 2009). The underlying relation might be the proton formation 

during hydration of CO2 in aqueous solution (Figure 1.1). It has to be noted that the first 

step which leads to the formation of carbonic acid (H2CO3) is not energetically 

favourable. 

CO2 + H2O           (H2CO3)           HCO3- + H+ 

Figure 1.1: Hydration of CO2. If CO2 is dissolved in aqueous solution, carbonic acid (H2CO3) is generated as a highly 
unstable intermediate. The weak acid dissociates to bicarbonate (HCO3-) and a proton (H+)(Mostafa & Gu, 2003). 

Gaseous CO2 is able to enter the cell passively by diffusion via the cell membrane. As a 

consequence, the inner and outer concentrations are in equilibrium. The solubility of 

CO2 changes dependent on temperature, hydrostatic pressure and above all the pH of 

the solution (Onken & Liefke, 1989). In an acidic surrounding, CO2 is the major form 
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while at an alkaline pH most of the emerging CO2 is available as bicarbonate (HCO3-). 

Two aspects of CO2 are likely to cause negative effects on the pH homeostasis in 

C. glutamicum. On the one hand, the emerging protons from the hydration reaction 

intensify acidic stress at low external pH values. On the other hand, CO2 is known to 

cause an elevated permeability of cell membranes, called the “anaesthetic effect”. This 

phenomenon might affect the proton gradient of the membrane and thereby interfere 

with pH homeostasis (Baez et al., 2009; Sears & Eisenberg, 1961). Especially at low 

external pH values and high cell densities causing elevated CO2 concentrations, these 

factors may lead to a collapse of pH homeostasis in C. glutamicum. 

1.2.2 The role of CO2 in inorganic carbon provision 

Under neutral pH conditions, C. glutamicum is able to tolerate high CO2 concentrations 

that occur during large scale fermentations (Bäumchen et al., 2007). This is remarkable, 

since usually CO2 has a noxious effect on microorganisms on various levels (Ballestra P., 

1996; Garcia-Gonzalez et al., 2007; Spilimbergo & Bertucco, 2003) and has been used in 

food preservation long-since (Dixon & Kell, 1989). In contrast, C. glutamicum profits 

from elevated CO2 levels especially at the beginning of fermentation processes. Inorganic 

carbon in its hydrated form of carbonate is added to the medium (personal note, Evonik 

Industries AG). The underlying reason for this observation may be the fact that inorganic 

carbon is required in carboxylation reactions like phosphoenol-pyruvate (PEP) and 

pyruvate carboxylation to perform gluconeogenesis, replenish TCA cycle intermediates 

and synthesise amino acids (Kronberg, 1966; Peters-Wendisch et al., 1997; Peters-

Wendisch et al., 2001). The central significance of these reactions is represented by the 

PEP-pyruvate-oxaloacetate node pictured in Figure 1.2. Emanating from the 

oxaloacetate generated in the carboxylation reactions, the amino acid aspartate is 

formed which is the precursor molecule for the synthesis of asparagine, threonine, 

methionine, isoleucine and lysine. Although carboxylation and decarboxylation reactions 

seem to be in equilibrium during growth on glucose in wild type cells (Marx et al., 1996; 

Petersen et al., 2000), there are possible scenarios that enhance the need for external 

supply with inorganic carbon. Such conditions may be growth at low cell densities when 

the metabolic activity is still low, growth on gluconeogenic carbon sources such as 

pyruvate, lactate, acetate and glutamate (Gerstmeir et al., 2003; Kramer et al., 1990; 

Netzer et al., 2004)or also in lysine producing strains. 
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Figure 1.2: Pyruvate, PEP, oxaloacetate and malate conversions in C. glutamicum (modified, (Netzer et al., 
2004)). Solid arrows are marking reactions of the pyruvate kinase (PK), dashed arrows represent glycolysis, acetate 
activation and tricarboxylic acid cycle reactions. PTS, phosphotransferase system; PEPCk, PEP carboxy kinase; PEPCx, 
PEPcarboxylase; PCx, pyruvate carboxylase; OAADc, oxaloacetate decarboxylase; MDH, malate dehydrogenase; MQO, 
malate:quinine oxidoreductase; ME, malic enzyme. The coloured blocks highlight the carboxylation reactions of PEP 
and pyruvate catalysed by PEPCx and PCx, which lead to the formation of oxaloacetate. 

In this context, it has to be noted that the actual substrate for the involved enzymes 

seems to be bicarbonate (Giordano et al., 2003; Mitsuhashi et al., 2004; Norici et al., 

2002; Okino et al., 2008), which points out the importance of an efficient hydration of 

CO2 as displayed in the equation  in Figure1.1. The reversible conversion from CO2 to 

HCO3- includes the formation of H2CO3 as an unstable intermediate, a reaction that 

proceeds fairly slowly. In fact, this step is catalysed in vivo by a well described 

ubiquitous class of zinc metalloenzymes called carbonic anhydrases (CA, E.C.4.2.1.1), 

(Meldrum & Roughton, 1933; Stadie, 1933).  

  



1. Introduction 

5 
 

1.3 Carbonic anhydrases 

1.3.1 The catalytic reaction mechanism 

The central role of carbonic anhydrases (CAs) is represented by their appearance in all 

domains of life. They are divided into three major classes called α-, β-, and γ-CAs. All 

classes evolved divergently and vary in sequence and structure (Hewett-Emmett & 

Tashian, 1996). Nevertheless, they all share a common active site containing a zinc ion 

involved in catalysis (Lindskog, 1997). The enzymatic conversion of CO2 is a two-step 

mechanism that is based on a nucleophilic attack on CO2 by a zinc-bound hydroxy-group 

(OH-) leading to bicarbonate formation, followed by regeneration of the active centre 

through ionisation of the now zinc-bound water (Lindskog, 1997).  Figure 1.3 (a) 

displays the enzymatic conversion as well as the regeneration reaction. A crucial step is 

the replacement of bicarbonate by a water molecule, while the following proton transfer 

is the rate limiting step. Most CAs possess a kcat> 104/s. Hence, this step requires a 

proton shuttle residue (PSR) to transfer protons to the final buffer in the solution. 

Usually, this is the His-64 residue of the active centre (Northrop & Simpson, 1998). This 

reaction step is shown in Figure 1.3 (b). 

 

a  

b  

Figure1.3: Conversion of CO2 at the active site zinc ion of CAs. The first step includes a nucleophilic attack by the 
zinc-bound hydroxide on CO2. In a second step, the active site is regenerated by ionization of the zinc-bound water 
and the release of an H+ion (a). To perform regeneration of the active centre via water ionisation, transfer of H+ to the 
proton shuttle residue (PSR) is necessary, before protons can be translocated to the actual buffer substance 
(B)(b)(Tripp et al., 2001). 

Although this reaction mechanism is common to all classes of carbonic anhydrases, the 

variations in their molecular structures are remarkable and many functions are 

described so far. 
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1.3.2 Classification and functions of carbonic anhydrases 

While mammalian α-CAs representing the best described group, β-, γ-CAs are mostly 

found in algae, bacteria and archaea. Especially the β-class has been detected in plants, 

algae and bacteria, showing various structures. A classification including a fourth δ-class 

has been discussed years ago (Tripp et al., 2001). Examples of the different structures 

are displayed in Figure 1.4. 

 

Figure 1.4: Ribbon diagrams of the varying structures of the three different CA-classes (modified, (Tripp et al., 
2001)). Each colour represents one monomer in the respective molecule. The active site zinc ions are displayed as red 
spheres. A, α- class human isozyme II; B, β-class CA from the red algae Porphyridium purpureum; C, β-class CA from 
the pea plant Pisum sativum; D, β-class CA from the archeon Methanobacterium thermoautotrophium; E, β-class CA 
from the bacterium Escherichia coli; F, γ-class CA from the archeon Methanosarcina thermophilia. 

The physiological functions of CAs are diverse (Henry, 1996; Rowlett et al., 2002; Smith 

& Ferry, 2000) and their activity is known to be pH dependent (Cronk et al., 2001). For 

example, an involvement in lipid biosynthesis has been described as well as a role in 

photosynthesis related processes (Hoang & Chapman, 2002; Igamberdiev & Roussel, 

2012; Lynch et al., 1995). In one case, a function in oxidative stress response was 

postulated for a β-class CA in Saccaromyces cerevisiae (Götz et al., 1999). The oxygen-

sensitive phenotype of a ∆nce103 mutant was rescued by MscaI, a β-class CA from 

Medicago sativa. Unlike Mscal, the Bca-like NCE103 shows no CA activity in the CO2-

based standard assay (Wilbur & Anderson, 1948). However, this observation was 

refuted later on (Clark et al., 2004). CAs are of great medicinal interest as a suitable 

target for common groups of antibiotics (Lopez et al., 2011; Nishimori et al., 2010; 
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Supuran, 2011). Above, they have been shown to enhance the activity of a bicarbonate 

importer in Xenopus oocytes (Schueler et al., 2011) and serve anaplerotic functions in 

Chlamydomonas reinhardtii mitochondria (Giordano et al., 2003). These examples 

underline the central importance of this group of enzymes in carbon metabolism.  

1.3.3 The Carbonic anhydrases of C. glutamicum 

Sequence analysis of the wild type strain C. glutamicum ATCC 13032 (Abe, 1967) 

revealed the existence of two carbonic anhydrase encoding genes called bca (cg2954) 

and gca (cg0155), belonging to the β- and γ-class, respectively (Mitsuhashi et al., 2004). 

While transcription of the gca gene was not detectable and the deletion mutant did not 

behave different from the wild type, the bca gene is mainly expressed during 

exponential growth as well as during lysine production and a ∆bca deletion mutant 

possesses a distinct phenotype. C. glutamicum ∆bca shows a severe growth deficit at 

atmospheric CO2 concentrations. Growth can be restored by cultivation at 5 % CO2 in the 

supply air and by heterologous expression of the CA encoding pca gene from 

Porphyridium purpureum (Mitsuhashi et al., 2004). These findings point towards the role 

of CAs in inorganic carbon supply.  Dependency on the accelerated hydration of CO2 

catalysed by carbonic anhydrases to provide sufficient amounts of inorganic carbon 

appears likely. Since the influence of the gca gene seems negligible, the bca gene product 

Bca (Beta-typecarbonic anhydrase) is assumed to be the relevant carbonic anhydrase for 

C. glutamicum. Since its activity leads also to an accelerated proton formation, the 

deletion mutant C. glutamicum ∆bca was expected to show better pH homeostasis at 

elevated CO2 concentrations compared to the wild type. However, such an effect could 

not be observed (Follmann, 2008, unpublished). Nevertheless, elucidation of this 

connection needs further investigations. Also, the impact of the provided bicarbonate is 

of great interest in this context. Since this essential substrate cannot permeate the 

membrane like CO2, the necessity of Bca activity for its provision seems obvious. 

Creating an alternative way for its provision is a possible strategy to examine this aspect. 

The heterologous expression of a bicarbonate importer derived from an autotrophic 

organism is a possible strategy. 
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1.4 Cyanobacterial bicarbonate importers 

The growth of many photosynthetic organisms depends on carbon concentrating 

mechanisms (CCMs) since the central enzyme for carbon fixation, the Ribulose-1,5-

bisphosphatcarboxylase/oxygenase (RuBisCO), shows a very low substrate affinity for 

CO2 (Kaplan & Reinhold, 1999). If the external pH is high, CO2 mainly occurs in its 

hydrated form of HCO3-, which can be converted back into CO2 in the carboxysomes by 

carbonic anhydrases (Price et al., 1992). Hence, bicarbonate importers are important for 

carbon supply in these organisms (Price et al., 2008; Price, 2011). In the extensively 

studied cyanobacterial model organism Synechocystis sp. PCC 6803 (Grigorieva & 

Sestakov, 1982), two HCO3- importers are encoded of which one has been identified as a 

Na+/HCO3--symporter. According to this function, it has been named SbtA (Sodium-

bicarbonate-transport A)(Shibata et al., 2002). SbtA is encoded by the slr1512 gene. 

Transcriptional analyses revealed an elevated expression during alkaline stress 

(Summerfield & Sherman, 2008). This up-regulation of bicarbonate import makes sense 

at elevated pH values, since under these conditions bicarbonate is the most prominent 

form of inorganic carbon available. Also, the topology of SbtA has recently been 

described (Price et al., 2011). Located next to slr1512 is slr1513, the gene encoding SbtB, 

a periplasmic protein of unknown function. Both genes show similar expression patterns 

(Summerfield & Sherman, 2008). Hence, SbtB might be a crucial part of the functional 

transport system. 

1.5 Bacterial pH homeostasis 

1.5.1 The importance of pH regulation 

In bacteria, an efficient pH homeostasis is essential to survive changing proton 

concentrations of their environment, since energy driven processes depend on a stable 

electrochemical proton gradient along the membrane for ATP generation. In aerobic 

organisms like C. glutamicum, this proton motive force is about 200 mV (Kashket, 1985; 

Mitchell, 1973). The fact that the external pH of the medium alters the bacterial 

metabolism has been known long-since (Gale & Epps, 1942), but the many ways of pH 

regulation in acidophilic, neutrophilic and alkalophilic bacteria are still not fully 
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understood. However, basic mechanisms have been described in detail earlier (Booth, 

1985).  

1.5.2 Mechanisms of pH homeostasis 

A passive mechanism of pH regulation is the buffering capacity of the cytoplasm which 

has been determined for a number of bacteria (Booth, 1985). A regulation of the 

intracellular pH via proton consuming decarboxylation of amino acids is described as 

part of acidic stress response (Gale, 1946) and many examples for this function can be 

found (Castanie-Cornet et al., 1999; Iyer et al., 2003; Kashiwagi et al., 1991; Senouci-

Rezkallah et al., 2011). Above, urease activity to produce alkalising ammonium, as well 

as membrane alterations and DNA repair mechanisms contribute to pH regulation 

(Cotter & Hill, 2003). However, no such mechanism has been described in C. glutamicum 

yet (Follmann, 2008). 

Another aspect of pH regulation is the influence of cation/proton-antiporters. An 

involvement of sodium and potassium in alkaline and acidic stress response has long 

been discussed, since both play a role in maintenance of the proton motive force (Booth, 

1985). In recent years, many examples for the involvement of both cations and 

Na+(K+)/H+-antiporters in pH homeostasis have been described (Casey & Condon, 2002; 

Chapman et al., 2006; Epstein, 2003; Kitko et al., 2010; Krulwich et al., 2009; Quinn et al., 

2012). In C. glutamicum, the potassium channel CglK is known to be essential at acidic 

pH (Follmann et al., 2009a). Also, two Mrp-type K+(Na+)/H+-antiporters can be found in 

C. glutamicum and a role in alkaline pH homeostasis is discussed (Follmann, 2008). 

The most likely players of pH regulation are proton pumps that can actively transfer H+ 

via the membrane. Of central importance in this context is the F(1)F(O)ATPase, which 

generates ATP using the electrochemical proton gradient. If the external pH is high, 

proton influx via ATPase activity is crucial to maintain a neutral intracellular pH 

(Barriuso-Iglesias et al., 2006; Barriuso-Iglesias et al., 2013; Bender et al., 1986; Maurer 

et al., 2005; Padan et al., 2005; Sturr & Marquis, 1992). Also, a reverse function to export 

protons at acidic stress is possible and induction of the F(1)F(O) ATPase-operon by acidic 

pH has been reported in Streptococcus, Lactococcus and Lactobacillus (Koebmann et al., 

2000; Kuhnert et al., 2004; Kullen & Klaenhammer, 1999; Martin-Galiano et al., 2001). In 
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C. glutamicum, an involvement in alkaline stress response has been described (Barriuso-

Iglesias et al., 2006), while a reverse function in acidic stress response seems unlikely 

(Koch-Koerfges et al., 2012). Proton export via the respiratory chain as part of pH 

homeostasis at acidic conditions is another possible scenario, which has not been taken 

into account yet. In C. glutamicum, two branches of proton exporting terminal oxidases 

exist (Bott & Niebisch, 2003). Especially the bc1-aa3-supercomplex with its ability to 

transfer 6 H+/2 e- bears great potential to be involved in pH regulation. Figure 1.5 gives 

an overview of the postulated mechanisms for pH homeostasis in C. glutamicum with 

emphasis on the involvement of CO2. 

 

Figure 1.5: Components involved in pH homeostasis in C. glutamicum. Potassium import via CglK was shown to 
be essential at acidic pH (Follmann et al., 2009a). It is not clear to what extend Bca activity contributes to proton 
formation and pH homeostasis. While the respiratory chain (RC) might be used for proton export under acidic stress, 
the F(1)F(O)-ATPase (displayed in grey colour) is part of alkaline stress response and may be involved in proton export 
at acidic pH. Also, the role of the cation/proton-antiporters (Mrp) postulated in C. glutamicum is not clear yet. 
Abbreviations: CglK, C. glutamicum K+ channel; RC, Respiratory chain. 

The above figure illustrates the many aspects of pH regulation that are still unclear in 

C. glutamicum. Hence, investigation on the various candidates responsible for proton 

homeostasis is important. Understanding pH homeostasis is also basic to estimate the 

influence of CO2 in this context, since it is not clear to which extend its hydration 

interferes with proton homeostasis of the cell. 
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1.6 Thesis objectives 

This work aims to give a better understanding of inorganic carbon metabolism and pH 

homeostasis in C. glutamicum. First of all, the examination of the carbonic anhydrase Bca 

and its influence on cellular processes is central to this. A second approach examines the 

possible benefits of bicarbonate import.  An ideal scenario includes an optimised supply 

with inorganic carbon on the one hand and a better pH homeostasis at high CO2 

concentrations on the other hand. If import of bicarbonate shifts the balance of the CO2 

hydration reaction towards the educts, the negative influence of CO2 on pH homeostasis 

is believed to be less severe since proton formation is attenuated at the same time. 

Hence, the potential of bicarbonate import for strain improvement by elevating the 

lysine yield is also of interest. A third topic is the profound investigation of pH 

homeostasis in C. glutamicum. 

The experiments will include a deeper physiological characterisation of the 

C. glutamicum ∆bca mutant, a strain which lacks the active ß-type carbonic anhydrase 

Bca. Also, a test for possible benefits in carbon supply via overexpression of the bca gene 

in the wild type as well as a precise examination of the influence of Bca on pH 

homeostasis will be performed. To investigate benefits of elevated bicarbonate levels in 

C. glutamicum, heterologous expression of a bicarbonate importer is necessary. For this 

purpose, the SbtA transporter from Synechocystis sp. PCC 6803 will be tested in 

C. glutamicum. Since SbtA mediated bicarbonate uptake might also elevate the lysine 

yield in production strains, this will be measured as well. To investigate pH homeostasis, 

one aim is the establishment of a tool for online detection of the intracellular pH (pHi). 

Once such a system based on pH sensitive fluorescence proteins can be established, 

investigations towards the dynamics of pH homeostasis in general can be performed. 

Online pHi monitoring might be used to shed light on the influence of CO2 on proton 

homeostasis and to characterise various components of pH homeostasis in 

C. glutamicum. 
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2. Materials and Methods 

2.1. Bacterial strains and culture conditions 

2.1.1. Bacterial strains and plasmids 

For cloning procedures, the E. coli strain DH5α (Grant et al., 1990) was used.  All 

C. glutamicum strains in this work are based on the wild type strain ATCC 13032 (Abe, 

1967), with the exception of the C. glutamicum ∆bca strain which was provided by 

Kyowa Hakko Bio Co., LTD. and the production strain DM1933, which was provided by 

Evonik Industries AG. Table 2.1 gives an overview of all used bacterial strains. 

Table 2.1: List of bacterial strains, used in this study. Explanations towards the features of the strains 

are given in the “Genotype” row. 

Strain Genotype Origin 

E. coli   

DH5 α mcr 

endA1 subE44 thi-1 λ- recA1 gyrA96 relA1 

deoR ∆(lacZYA-argF) U196 φ80DlacZ 

∆m15mcrA ∆(mmr hsdRMS mcrBC) 

(Grant et al., 1990) 

C. glutamicum   

ATCC 13032 ATCC 13032 wild type (Abe, 1967) 

∆F1FO 

ATCC 13032 with a deletion of the 

atpBEFHAGDC genes encoding F(1)F(O)-ATP 

synthase 

(Koch-Koerfges et al., 

2012) 

∆qcr 

ATCC 13032 with a deletion of the qcrCAB 

genes encoding the cytochrome bc1-aa3 

branch of the respiratory chain 

(Koch-Koerfges et al., 

2013) 

∆cydAB 

ATCC 13032 with a deletion of the cydAB 

genes encoding the cytochrome bd branch of 

the respiratory chain 

(Koch-Koerfges et al., 

2013) 

DOOR 
ATCC 13032 with a deletion of the cydAB and 

qcrCAB genes (Devoid Of Oxygen Respiration) 

(Koch-Koerfges et al., 

2013) 

DM 1933 DM 1730 (lysCT3111-pycP4585-homV59A-∆pck), Evonik Industries AG 
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2x(lysCT3111-asd-dapA-dapB-ddh-lysA-lysE) 

∆bca 

Kyowa Hakko strain with a deletion of the 

bca gene encoding the carbonic anhydrase 

Bca 

Kyowa Hakko Bio Co., 

LTD. 

∆gca 

Kyowa Hakko strain with a deletion of the 

gca gene encoding the carbonic anhydrase 

Gca 

Kyowa Hakko Bio Co., 

LTD.  

 

All strains were stored as glycerol cultures at -80°C using Roti®-Store tubes (Carl Roth 

GmbH & Co. KG, Karlsruhe). The C. glutamicum strains mentioned in this work were 

always equipped with the according pEKEx2-based plasmids. An overview of all 

constructs is given in Table 2.2.  

  



2. Materials and Methods 

14 
 

Table 2.2: List of plasmids, used in this study. All plasmids were amplified in E. coli and used for 

expression in C. glutamicum. 

Plasmid name Properties Origin 

pEKEx2 
KmR, lac promoter, oriVE.c., oriVC.g., 

Expression vector 

(Eikmanns et 

al., 1991) 

pGM1 

Plasmid encoding the sequence for 

the fluorescence dye pHluorin 

(ratiometric) 

(Miesenböck 

et al., 1998) 

pEKEx2_EYFP 
pEKEx2 with the sequence encoding 

the fluorescence protein EYFP 
(Faust, 2011) 

pEKEx2_pHluorin 

pEKEx2 with the sequence encoding 

the fluorescence protein pHluorin 

derived from the  pGM1 plasmid 

This work 

pEKEx2_EYFP_Bca_Strep 

pEKEx2_EYFP with the sequence 

encoding the carbonic anhydrase Bca 

from C. glutamicum and a Strep-tag 

This work 

pEKEx2_EYFP_SbtAB_Strep 

pEKEx2_EYFP with the sequence 

encoding the SbtAB construct from 

Synechocystis sp. PCC 6803 and a 

Strep-tag 

This work 

pEKEx2_pHluorin_Bca_Strep 

pEKEx2_pHluorin with the sequence 

encoding the carbonic anhydrase Bca 

from C. glutamicum and a Strep-tag 

This work 

pEKEx2_pHluorin_SbtAB_Strep 

pEKEx2_pHluorin with the sequence 

encoding the SbtAB construct from 

Synechocystis sp. PCC 6803 and a 

Strep-tag 

This work 

pEKEx2_SbtA 

pEKEx2_pHluorin with the sequence 

encoding the bicarbonate importer 

SbtA from Synechocystis sp. PCC 6803 

Ines 

Ochrombel 
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2.1.2. Culture conditions 

E. coli cells were cultivated on solid LB complex medium (Sambrook, 1989) plates 

containing 1.5 % agar. For liquid cultures, 5 ml LB-medium was used. The cultivation 

was performed at 37 °C. Liquid cultures were shaken on an agitator at 125 rpm. 

C. glutamicum pre-cultures were grown on BHI complex medium (Brain-Heart-Infusion, 

Oxoid Thermo Scientific, Hampshire, UK) either on solid plates containing 1.5 % agar or 

in liquid cultures of 10 ml. Pre-cultures of the C. glutamicum DOOR mutant were 

cultivated on BHI complex medium containing 0.2 M MOPS and 22 mM glucose. Cells 

were cultivated at 30 °C. Liquid cultures were shaken at 125 rpm with the exception of 

cultures treated with elevated CO2 concentrations in the supply air. In this case, no 

agitation was possible due to technical reasons. 

2.1.3. Culture media and buffers 

Main cultures that were used in the described experiments were grown in CgXII minimal 

medium with modifications depending on the experimental setup. The basic 

composition was as follows: 

CgXII minimal medium 

 

 
 

 

 
(NH4)2SO4 20 g/l 
Urea 5 g/l 
K2HPO4 1,6  g/l 
KH2PO4 1 g/l 
MOPS 42 g/l 
MgSO4 0.25 g/l 
CaCl2 0.01 g/l 
Protocatechuic acid 0.03 g/l 
Biotin 0.2 mg/l 
Trace elements solution 1 ml/l 
  
Trace elements solution 
 
 

 
  
FeSO4x7H2O 10 g/l 
MnSO4xH2O 10 g/l 
ZnSO4 1 g/l 
CuSO4x5H2O 0.2 g/l 
NiCl2x6H2O 20 mg/l 
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 As organic carbon sources, either 5.5 mM (corresponding to 1 % w/v) glucose or 50 mM 

pyruvate were used.  

If a pH below 7 or above 7.5 was required, 0.2 M MES or 0.2 M HEPPS instead of 0.2 M 

MOPS were used, respectively. During media preparation the pH was set using 10 M 

NaOH and 5 M HCl. 

2.1.4 Growth experiments 

All growth experiments were performed in 500 ml Erlenmeyer shaking flasks containing 

50 ml liquid culture. For the selection of cells carrying the desired pEKEx2 plasmids, 

kanamycin was added to a final concentration of 50 mg/l. To induce gene expression via 

the lac promoter, 0.1 mM IPTG were used in the experiments. Cultures were incubated 

at 125 rpm and 30 °C. If cultures were treated with additional CO2 in the supply air, they 

were grown in custom made glass tubes (Figure 2.1) in a culture volume of 25 ml at 

30 °C. 

 

Figure 2.1: Glass vessels for CO2 supplementation. The sterile filtered air/CO2-mixture was lead into 
the culture via thin glass tubes. The culture volume for optimal mixing was 25 ml. 

As a growth parameter, the cell density was determined photometrically at a wavelength 

of 600 nm. Derived from the monitored growth curves, the growth rate µ [1/h] for 

exponential growth stages was determined using Microsoft Excel (Microsoft 

Corporation, Redmond, WA, USA). 
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2.2. Molecular biology techniques 

2.2.1 Polymerase Chain Reaction (PCR) and product purification 

To amplify the pHluorin encoding DNA sequence, the pGM1 plasmid (Miesenböck et al., 

1998) was used as DNA template. In case of the bca sequence encoding the carbonic 

anhydrase Bca, genomic DNA from C. glutamicum was used. The DNA template for 

amplification of the slr1512-slr1513 region encoding the SbtAB construct was genomic 

DNA from Synechocystis sp. PCC 6803. The PCR reaction was performed using the 

Phusion® High-Fidelity-PCR system (Thermo Scientific, Fisher Scientific Germany GmbH, 

Schwerte, Germany) with HF-buffer as recommended by the supplier. A typical reaction 

mix consisted of the following components: 

H2O 

 

ad 50 µl 
Template-DNA 

 

0,5-3 µl 
5x HF-buffer 10 µl 
dNTP mix 10 mM 1 µl 
Forward primer 10 µM 2.5 µl 
Reverse primer 10 µM 2.5 µl 
DMSO 1.5 µl 
Phusion®  Polymerase 0.5 µl 
 

A typical program for amplification included the following steps: 

98 °C, 2 min 

 

Initial denaturation 
98 °C, 15 s 

 

Denaturation 
50 °C, 15 s Oligonucleotide binding 
72 °C, 1-2.5 min Elongation 
72 °C, 5 min Final elongation 
Repetition of steps 2-4 30-35 x 
8 °C, ∞ Short term storage 
 

The oligonucleotides that were used as primer molecules in the PCRs were synthesised 

by Eurofins MWG Operon (Eurofins MWG Operon AG, Ebersberg, Germany) and are 

listed in Table 2.3. 
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Table 2.3: List of oligonucleotides, used for PCR and control sequencing in this study. All samples 

were stored as a 100 µM aqueous solution at -20 °C. 

Oligonucleotide 

name 
Properties Sequence 

pHluoforBam 

(5’superecBam) 

pHluorin encoding, 

forward  

5’GGGATCCAGGAGGAATTAACCATGAGTAA

AGGAGAAGAACTTTTC 

pHluorevBam 

(3’superecBam) 

pHluorin encoding, 

reverse 
5’GGGATCCTTATTTGTATAGTTCATCCATGC 

bcaASfKpnIYFP 

bca encoding, first of 

two possible 

transcription starts, 

forward 

5’TATGGTACCCATGACCTAAATGATTGTACT

GACTGGC 

bcaSTREPrKpnIYF 

bca encoding with Strep-

tag sequence, reverse 

5’TATGGTACCTTATTTTTCGAACTGCGGGTG

GCTCCAACCCACGTTCTTGCTAATTACAGGT

TCAGTACGACC 

slrRBSforKpnIYFP 

sbtA encoding with 

ribosome binding site, 

forward 

5’TATGGTACCAGGAGACAATTTACATTATG

GA 

slrSTREPrSacIYFP 

sbtB encoding with 

Strep-tag sequence, 

reverse 

5’TATGAGCTCTTATTTTTCGAACTGCGGGTG

GCTCCAACAGCCCTCAGGGCCACA 

pEKEx2for 
Sequencening primer 

pEKEx2-mcs forward 
5’ATCGGCTCGTATAATGTG 

pEKEx22for2 
Sequencening primer 

pEKEx2-mcs forward 
5’GGCATACTCTGCGACATCG 

pHluo.end.for 

Sequencening primer, 

binds at the end of the 

pHluorin encoding 

sequence 

5’TACCTGTCCTACCAATCTGCCCTTTCG 

pEKEx2rev 
Sequencening primer 

pEKEx2-mcs reverse 
5’CCGCTTCTGCGTTCTGATTT 

 

The integrity of plasmid DNA in E. coli or C. glutamicum was confirmed via PCR using the 

EconoTaq®Plus Green 2x Master Mix (Lucigen Corporation, Middleton, WI, USA) 
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according to manufacturer’s instructions. 1 µl per 10 µM oligonucleotide primer was 

added. With a sterile pipette tip, small amounts of colony material were transferred 

directly from the agar plate into the PCR mix. A typical example of the PCR program 

chosen for this so called “Colony-PCR” was as follows: 

 

95 °C, 10-15 min 

 

Cell lysis and Initial denaturation 
95 °C, 30 s 

 

Denaturation 
50 °C, 30 s Oligonucleotide binding 
72 °C, 1-3 min Elongation 
72 °C, 7 min Final elongation 
Repetition of steps 2-4 30-35 x 
8 °C, ∞ Short term storage 
 

After completion of the PCR, the samples were analysed by agarose-gel electrophoresis 

using 1 % agarose in TAE buffer pH 8. For sizing of the DNA fragments, the GeneRulerTM 

1 kb DNA ladder (Thermo Scientific, Fisher Scientific Germany GmbH, Schwerte, 

Germany) was used. DNA fragments that were to be used in cloning procedures were 

sliced out and purified using the “Nucleo Spin®Gel and PCR Clean-up” kit (Macherey-

Nagel GmbH und Co. KG, Düren, Germany) or the “High Pure PCR Product Purification 

Kit” (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) according to 

manufacturers’ instructions. 

2.2.2 Cloning of PCR fragments 

To introduce purified PCR fragments into the pEKEx2 plasmid, both gene fragment and 

vector DNA were incubated with the according restriction enzymes. In case of the 

pHluorin encoding fragment, this was BamHI, KpnI was chosen for the bca fragment, 

while the SbtAB encoding fragment was flanked by KpnI and SacI restriction sites. All 

enzymes were purchased from Thermo Scientific (Fisher Scientific Germany GmbH, 

Schwerte, Germany) in the FastDigest® version. Samples containing the plasmid were 

additionally treated with the thermo-sensitive alkaline phosphatase FastAP (Fisher 

Scientific Germany GmbH, Schwerte, Germany) to prevent recirculation of the vector 

molecules. Reactions were performed at 37 °C for 30 min, followed by a purification step 

via agarose gel electrophoresis. 
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After purification, ligation was performed using T4 DNA ligase (Fisher Scientific 

Germany GmbH, Schwerte, Germany) in a total volume of 15 µl as recommended by the 

supplier. After inactivation for 10 min at 65 °C, the ligation mix was used for E. coli 

transformation.  

2.2.3 Transformation of E.coli cells 

Chemical-competent E. coli cells were prepared as described by Inoue et al (Inoue et al., 

1990). 100 µl cell suspension were transformed with approximately 5 µl ligation mix or 

100 ng plasmid-DNA by incubation on ice for 30 min, followed by a heat shock at 42 °C 

for 45 s. Afterwards, cells were again incubated on ice for 2 min. 500 µl LB medium was 

added and the cell suspension was incubated for 30-60 min at 37 °C in 1.5 ml tubes at 

500 rpm. Cells were then spread on LB-agar plates and incubated at 37 °C for about 16 h.  

2.2.4 Isolation of plasmid DNA and sequence analysis 

Plasmid-DNA was isolated from E. coli cells with the “Nucleo Spin® Plasmid” (Macherey-

Nagel GmbH und Co. KG, Düren, Germany) or the “High Pure Plasmid Isolation Kit” 

(Roche Diagnostics Deutschland GmbH, Mannheim, Germany) according to 

manufacturers’ instructions. 

Control sequencing of the isolated plasmids was performed by GATC Biotech AG 

(Konstanz, Germany). 

2.2.5 Transformation of C. glutamicum cells 

C. glutamicum cells were made electro-competent as described earlier (Liebl et al., 

1989). For transformation, approximately 300-500 ng plasmid-DNA were added to 50 µl 

cell suspension on ice. The transformation was performed with an electrical pulse of 

2.5 kV, followed by immediate addition of 1 ml BHIS medium. After incubation for 1 h at 

125 rpm and 30°C in a 15 ml tube, cells were spread on BHI-agar plates and further 

incubated at 30 °C. After about two days, the occurring colonies were isolated and the 

integrity of the inserted plasmids was checked via Colony-PCR. 
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2.3. Uptake measurements 

2.3.1 Cultivation prior to uptake measurements 

Wild type cells of C. glutamicum equipped with a pEKEx2 plasmid with and without 

SbtAB were cultivated overnight in BHI complex medium with 50 mg/l kanamycin and 

0.1 mM IPTG. If the C. glutamicum ∆bca+SbtAB strain was used, the overnight cultures 

were additionally supplied with 10 % CO2. Prior to conduction of a measurement cells 

were transferred into 25 ml CgXII minimal medium with 5.5 mM glucose, pH 8.5 at a 

starting OD of 1. Both C. glutamicum wild type and ∆bca+SbtAB cultures were grown at 

atmospheric CO2. Uptake measurements were started when the cultures had reached an 

OD of about 5 in case of the wild type and 2 in case of the C. glutamicum ∆bca+SbtAB 

strain. 

2.3.2 Radiochemical detection of bicarbonate uptake 

Uptake measurements with wild type cells were performed at 30 °C in a water bath 

using glass tubes and a magnetic stirrer, while C. glutamicum ∆bca+SbtAB cells were 

incubated in 25 ml Erlenmeyer flasks on an agitator at 125 rpm and 30 °C. In the latter 

case, uptake was monitored during further growth. This growth of 

C. glutamicum ∆bca+SbtAB at atmospheric CO2 concentrations was used as an indicator 

for the functionality of SbtAB. Each 25 ml pre-culture was separated in two and one 

sample was treated with 50 µM CCCP to uncouple any membrane potential and thereby 

serve as a negative control for bicarbonate uptake. All cultures were spiked with 100 µM 

14C labelled bicarbonate (NaH14CO3). At defined time points, 500 µl of the culture were 

filtered via a glass fibre filter (Merck Millipore, Billerica, MA, USA) followed by an 

immediate washing step using 2 x 2.5 ml CgXII medium pH 8.5. The filter was placed in a 

tube containing 3.8 ml scintillation cocktail which had been alkalised by addition of 

50 µl/3.8 ml 10 M NaOH. The use of alkaline pH values throughout the experiment was 

essential to prevent bicarbonate loss by CO2 formation. After incubation for at least 

three hours to avoid quenching effects by un-dissolved filter residues, the samples were 

analysed in the scintillation counter LS 6500 (Beckman Coulter Inc., Brea, CA, USA). The 

bicarbonate uptake at each defined time point was calculated using the following 

equation: 



2. Materials and Methods 

22 
 

 

uptake [nmol HCO3-/mgDW] =(cpm(cell(tx))*n HCO3- [nmol])/(cpm(TC(t0))*OD*Vsample[ml]*0,36mg/ml) 

 
DW: dry weight, Cpm: counts per minute, TC: total counts in the sample, OD: optical density, t: time 

 

The uptake rate v was determined by extrapolation of the resulting graph. 

 

2.4. Determination of the intracellular pH 

In order to measure the intracellular pH of C. glutamicum, the pH sensitive GFP derivate 

pHluorin (Miesenböck et al., 1998) was used. Prior to each measurement, 10 ml pre-

culture were washed and transferred into 50 ml CgXII minimal medium supplemented 

with 5.5 mM glucose at pH 7.4 without MOPS buffer.  Selection of plasmid carrying cells 

was ensured with 50 mg/l kanamycin. Expression of the pHluorin-containing pEKEx2 

plasmids was performed using 0.1 mM IPTG. After cultivation for about three hours, the 

cells had reached an OD between 5 and 7. This value was chosen since it corresponds to 

sufficient amounts of pHluorin in the culture to ensure precise detection. In case of the 

DOOR mutant, 50 ml pre-cultures were washed and transferred into 50 ml CgXII 

minimal medium three hours prior to the experiment, since growth of the mutant on 

minimal medium was rather poor. 

The intracellular pH of the whole culture was determined with the Aminco 

Bowmann®Series 2 Luminescence Spectrometer (SLM Instruments, Urbana, IL, USA) by 

monitoring excitation scans from 350 nm to 480 nm with a scan rate of 8 nm/s. This rate 

corresponds to a time of 17 s per spectrum. pHluorin possesses two excitation maxima 

at 396 nm and 468 nm and the ratio 396 nm/468 nm is pH dependent. The chosen 

emission wavelength was 505 nm and the intracellular pH was calculated based on a 

calibration curve.  This curve was determined using cultures of pHluorin expressing 

C. glutamicum cells that were treated with 0.25 % CTAB to equalise the inner and outer 

pH by uncoupling of the membrane potential. The signal strength is represented in the 

measuring voltage applied for signal amplification. Since this parameter interferes with 
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the accuracy of the calculated pH values, an additional correction factor was implicated 

as well. Usually, a voltage below 800 V was ensured to gain reproducible raw data. 

Prior to measurement, the 50 ml cultures were transferred into a 100 ml custom made 

small bioreactor. The vessel was equipped with inlets for acid and base as well as 

aeration, and a pH electrode. The temperature was kept at 30 °C with a water jacket. 

Cells were lead through a sample loop including a half-micro flow-through quartz glass 

cuvette (Starna GmbH, Pfungstadt, Germany), which was placed in the spectrometer for 

fluorescence detection. The remaining time in the loop was 21 s, corresponding to a flow 

rate of 18 ml/min. 

To shift and regulate the external pH, 1 M KH2PO4 and 1 M K2HPO4 were used. 

Controlling and monitoring of the external pH was performed using a regulation 

program written by Arthur Reuter from the in-house electronics department. The 

aeration unit was equipped with a two-way mixing system for ambient air and CO2, so 

various CO2 concentrations could be applied. Optimal mixing and aeration were ensured 

by a magnet stirrer and a glass frit at the end of the air pipe. Figure 2.2 shows a sketch of 

the experimental setup. 

 

Figure 2.2: Setup for pHi measurements. The culture is kept in a small bioreactor equipped with aeration, pH 

control, mixing unit and a water jacket. It enables a constant flow through the sample loop for pHluorin fluorescence 

detection. 
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The duration of a pH homeostasis measurement was usually 30-40 min. For the first 10 

minutes, a stable pH of 7.4 was adjusted before a rapid shift towards an acidic or 

alkaline pH was performed. After the pH shift, the culture was further monitored for 15-

20 min. The raw data gained from these measurements consist of a number of excitation 

spectra monitored over time. From each spectrum, the 396 nm and 468 nm intensity 

values were used to calculate the ratio which then was used to derive the according pH 

from the calibration curve. Hence, one pH value was monitored every 17 s. 

2.5. Protein biochemistry techniques 

2.5.1. Gene expression for protein synthesis and cell disruption 

To induce overproduction of proteins in C. glutamicum, cells were grown in 50 ml BHI 

complex medium spiked with 50 mg/l kanamycin and 0.1 mM IPTG for about 16 hours. 

After centrifugation, the cell pellet was resuspended in 2 ml buffer containing 

50 mMTris*HCl pH 7.4 and 100 mM NaCl. Also, the protease inhibitor “Roche cOmplete 

Mini, EDTA-free” (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) was 

added according to manufacturer’s instructions. 

Cell disruption was performed with 600 µl of the sample in 1.5 ml screw cap vials with 

400 µl glass beads using the homogeniser FastPrep™ (Thermo Scientific, Fisher Scientific 

Germany GmbH, Schwerte, Germany) at maximum speed for 3 x 45 s. In between the 

homogenisation steps, cells were chilled on ice for 5 min. To gain crude extracts of the 

cytoplasm, the samples were centrifuged at 14,000 rpm and 4 °C for 30 min. Further 

centrifugation of the crude extract in the Optima™ TLX Ultracentrifuge (Beckman 

Coulter Inc., Brea, CA, USA) at 4 °C and 80,000 rpm in the TLA 120.2 rotor for 20 min 

was performed to isolate the membrane fraction if desired. 

2.5.2 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

Prior to gel electrophoresis, the protein concentration of the samples was determined. 

For crude extracts, the Bradford method (Bradford, 1976) was applied using the “Roti 

NanoQuant®” reagent (Carl Roth GmbH & Co. KG, Karlsruhe). For samples containing the 

isolated membrane fraction, the amino-black-staining (Schaffner & Weissmann, 1973) 
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was used. In both cases, calibration curves were determined using dilutions of Bovine 

Serum Albumine (BSA). 

The denaturing gel electrophoresis was performed based on the protocol described 

earlier (Laemmli, 1970)  with a separation gel matrix containing 12 % acrylamide. The 

protein amount per sample was about 20-30 µg. Prior to the analysis, samples were 

mixed with 4x loading buffer (20 % glycerol, 8 % SDS, 400 mM Tris*HCl pH 6.8, 10 mM 

EDTA, 100 µM ß-mercapto-ethanol, bromo-phenol-blue) and incubated for 5 min at 

95 °C. Each gel was prepared in two replicates. After electrophoresis at 175 V, one gel 

was stained with Coomassie brilliant blue dye for protein visualisation (Sambrook, 

1989), while the second one was used for immuno-blotting (Towbin et al., 1979) via 

Western Blot analysis. 

2.5.3 Western blot analysis 

Transfer of proteins from the gel matrix to a PVDF membrane (Immobilon P 0.45 µm, 

Merck Millipore, Billerica, MA, USA) was conducted using the semi-dry blot method 

(Kyhse-Andersen, 1984) at 12 V (~ 70 mA) for 45 minutes. Afterwards, for blocking of 

free binding sites, the membrane was incubated in 3 % milk powder diluted in TBS 

buffer (50 mM Tris*HCl pH 7.4, 0.9 % NaCl). The same milk powder-buffer was used for 

incubation with the mouse-anti-streptag® antibody (StrepMAB-Classic, Iba GmbH, 

Göttingen, Germany; dilution of the antibody 1:10,000) for the detection of the Strep-

tagged proteins. After three washing steps with TBS buffer, incubation with the 

secondary antibody (1:10,000 goat-anti-mouse with alkaline phosphatase conjugation, 

Sigma-Aldrich, St. Louis, MO, USA) was performed. Both antibodies were incubated for 

1 h at room temperature. Visualisation of tagged proteins was based on the reaction of 

BCIP with NBT, catalysed by the alkaline phosphatase which results in staining of the 

according bands (McGadey, 1970). 
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2.6 Analytical methods 

2.6.1 Lysine detection via HPLC analysis 

The lysine concentration in the medium supernatant was analysed with the 

EliteLaChrom System from VWR/Hitachi in combination with the pump system L-2130, 

the column thermostat 2300 and the fluorescence detector L-2485. 

Samples were derivatised using OPA reagent (o-phtaldialdehyde/borate/2-mercapto-

ethanol, Thermo Scientific, Fisher Scientific Germany GmbH, Schwerte, Germany) and 

the resulting fluorescence was detected using an excitation wavelength of 230 nm and 

an emission wavelength of 450 nm. As reversed-phase pre-column, the Multospher 

4x40 mm (CS Chromatographie-Service GmbH, Langerwehe, Germany) was used. The 

reversed-phase main column was the NucleoDur® RP18 125x4 mm model (Macherey-

Nagel GmbH & Co. KG, Düren, Germany). Elution was performed using a gradient of 

buffers A (40 mM sodium acetate, 0.06 % sodium azide, 5 % (v/v) methanol/acetonitrile 

1:1) and B (50 % acetonitrile, 50 % methanol). Lysine concentrations used for 

calibration were 10 µM, 50 µM, 100 µM and 250 µM. The peak areas representing the 

amount of lysine were calculated with the applied HPLC-software. 

2.6.2 Determination of osmolality 

The osmolality of aqueous solutions was measured with the osmometer “Osmomat 030” 

(Gonotec GmbH, Berlin, Germany).  Calibration solutions of 0.1-1.2 osmol/kg were used 

and samples were analysed as recommended by the manufacturer. 
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3. Results 

3.1. The carbonic anhydrase Bca is essential in C. glutamicum 

3.1.1 C. glutamicum ∆bca is not able to grow at atmospheric CO2 

Basic to the investigations towards the influence of the ß-type carbonic anhydrase Bca 

was confirmation of the C. glutamicum ∆bca growth phenotype (Mitsuhashi et al., 2004) 

also in the C. glutamicum ∆bca Kyowa Hakko strain. For this purpose, the deletion 

mutant was compared to the C. glutamicum ATCC 13032 wild type strain at various CO2 

concentrations on solid BHI medium. The results displayed in Figure 3.1 confirm the 

growth phenotype. At atmospheric 0.04 % CO2, the C. glutamicum ∆bca strain is not able 

to grow. As displayed in Figure 3.1, this growth deficit can be overcome by elevated CO2 

levels in the supply air. 

 

Figure 3.1: Growth of C. glutamicum wild type and ∆bca on solid BHI complex medium. Since both strains were 
equipped with a pEKEx2_EYFP plasmid, 50 µg/ml kanamycin were added to the medium for selection. Displayed is 
the growth at 30 °C after 16 h incubation at 10 % CO2 (left) and 0.04 % CO2 (right). (a), (b), (c): three replicates of the 
C. glutamicum ∆bca strain, (d): C. glutamicum wild type. 

Based on these findings, a possible pH dependency of the growth deficit was 

investigated. This experiment was performed on solid medium, too. In this case, CgXII 

minimal medium of pH values from 5.5 up to 8 was used and cells were treated with CO2 

concentrations of 5, 10 and 20 % in the supply air. 2 µl of cells of various densities in 

0.9 % NaCl were applied. The chosen ODs were 10-1, 10-2, 10-3 and 10-4 for each strain 

and condition. Here, the C. glutamicum ∆gca strain  was examined as well to confirm the 

wild type-like growth behaviour that has been described earlier (Mitsuhashi et al., 

2004). The results are displayed in Figure 3.2. Indeed, C. glutamicum wild type and ∆gca 

grew equally well at all conditions tested. However, the C. glutamicum ∆bca strain 
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showed pH dependent growth behaviour at 5 % CO2. At pH 5.5 and 6, no growth was 

observed and also growth at pH 7 was not as efficient as it was at pH 8. This observation 

was not made at 10 or 20 % CO2 in the supply air. Here, the C. glutamicum ∆bca strain 

grew at every pH value.  

 

Figure 3.2: Growth of C. glutamicum wild type, ∆bca and ∆gca at various CO2 concentrations and pH values. 
Each row of cell dots consists of 2 µl cell suspensions with an OD of 10-1 to 10-4 from left to right. As solid medium, 
CgXII with 1 % glucose and 50 µg/ml kanamycin was used, since all strains were harbouring the pEKEx2_EYFP 
plasmid. Cells were incubated for 16 h at 30 °C. The relevant phenotype of C. glutamicum ∆bca is highlighted with an 
orange frame. 

This result not only confirms the C. glutamicum ∆bca and ∆gca phenotypes described 

earlier (Mitsuhashi et al., 2004). It also shows a pH dependency for complementation of 

the C. glutamicum ∆bca mutant with elevated CO2 concentrations. This is a hint towards 

the close connection between inorganic carbon provision and the pH of the medium. 

3.1.2 The C. glutamicum ∆bca phenotype is caused by the lack of Bca 

To ensure that the phenotypical characteristics of C. glutamicum ∆bca are actually 

caused by deletion of the bca gene, a complementation mutant was constructed. 

C. glutamicum ∆bca pEKEx2_EYFP_Bca was expected to show plasmid mediated bca 

expression. Western Blot analysis actually revealed the presence of Strep-tagged Bca 

protein (Figure 3.3). The construct of the Bca protein with a C-terminal Strep-tag is 

supposed to have a size of 26.55 kDa, which could be confirmed in the Western Blot 

analysis. 
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Figure 3.3: Coomassie stained SDS-PAGE-gel (a) and Western Blot analysis (b) of Bca in C. glutamicum ∆bca. 
∆bca+Bca: C. glutamicum ∆bca harbouring the pEKEx2_EYFP_Bca plasmid, ∆bca: C. glutamicum ∆bca harbouring the 
pEKEx2-EYFP plasmid as a negative control. About 12 µg of protein were used in each analysis. Detection was 
performed using a mouse-anti-streptag® antibody. 

Growth experiments on solid and liquid CgXII minimal medium were conducted to 

display a successful complementation on a physiological scale. The test on solid medium 

was performed at various pH values. Plasmid mediated expression of the bca gene can 

restore growth of the C. glutamicum ∆bca strain at atmospheric CO2 concentrations over 

a pH range from 5.5 to 8 (Figure 3.4). This is a clear hint that the C. glutamicum ∆bca 

growth phenotype is due to the absence of Bca activity. 

 

Figure 3.4: Complementation of the C. glutamicum ∆bca mutant via bca expression. 2 µl of cell suspension with 
dilutions from OD 10-1 to OD 10-4 were applied on solid CgXII medium with 1 % glucose, 50 µg/ml kanamycin and 
0.1 mM IPTG with pH values from 5.5 to 8. C. glutamicum wild type and ∆bca were equipped with a pEKEx2_EYFP 
plasmid. The complementation strain (∆bca+Bca) was equipped with the pEKEx2_EYFP_Bca plasmid. Cells were 
incubated at atmospheric CO2 concentrations and 30 °C for 16 hours. 

The successful complementation of C. glutamicum ∆bca could also be shown in liquid 

cultures. Figure 3.5 displays the kinetics of growth (Figure 3.5.a) and the resulting 

growth rates (Figure 3.5.b) at atmospheric CO2 in CgXII liquid medium with 1 % glucose 

at a pH of 7.4. Clearly, C. glutamicum depends on inorganic carbon supply via Bca activity 

to be able to grow at atmospheric CO2 levels. 
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Figure 3.5: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type, Δbca and Δbca+Bca at 
atmospheric CO2. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 mM 
IPTG at pH 7.4. wt: C. glutamicum wild type with the pEKEx2_pHluorin plasmid, Δbca: C. glutamicum Δbca with the 
pEKEx2_pHluorin plasmid,  Δbca+Bca: C. glutamicum Δbca+Bca with the pEKEx2_pHluorin_Bca plasmid. The black 
error bars displayed in (b) represent the standard deviations of growth rates and are based on three independent 
replicates. 

The results gained from the characterisation of the C. glutamicum ∆bca strain underline 

the central role of the carbonic anhydrase in C. glutamicum and point out the importance 

of inorganic carbon provision even in this heterotrophic organism. Based on these 

findings, investigations towards possible growth benefits from overexpression of the 

bca gene came into focus. 

3.1.3 The impact of bca overexpression in wild type cells is negligible 

To investigate possible benefits of bca overexpression in the C. glutamicum wild type 

strain, various stress conditions were chosen to examine the growth behaviour. First of 

all, various pH values of the medium were compared. The results are shown in Figure 

3.6. It has to be noted that the differences observed between the two strains were not 

significant. Generally, growth kinetics at pH 7.4 strongly differed from those at pH 6 and 

8.5, although the same final OD was reached (Figure 3.6.a). Also, the growth rates rather 

depend on the chosen pH value. While at a neutral pH the growth rate is about 0.3/h, it 

is only 0.2/h at pH 6 and hardly more than 0.1/h at pH 8.5 (Figure 3.6.b).  
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Figure 3.6: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with and without bca 
overexpression at various pH values. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml 
kanamycin and 0.1 mM IPTG at 30 °C. wt: C. glutamicum wild type with the pEKEx2_pHluorin plasmid, wt+Bca: 
C. glutamicum wild type with the pEKEx2_pHluorin_Bca plasmid. The black error bars displayed in (b) represent the 
standard deviations of growth rates and are based on three independent replicates. 

The results from the pH stress scenario led to the assumption that bca overexpression 

does not support a better pH homeostasis, since growth rates hardly differed at the 

same pH value.  To further investigate the underlying physiological situation, crude 

extracts were compared towards their reaction upon acidification via CO2 treatment. 

The results revealed a slight difference of the internal pH between the wild type and the 

overexpression mutant (Figure 3.7). If bca expression is elevated, the pH of the crude 

extract is about 6.9, while the wild type cytoplasm displays a pH of 7.1. When the crude 

extracts were treated with 100 % CO2 at 30 °C, their pH values decreased to the same 

extent until a value of about 5.8 was reached. An acceleration of CO2 derived 

acidification in the overexpression mutant caused by a more efficient CO2 conversion 

was not observed.  
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Figure 3.7: pH of crude extracts from C. glutamicum with and without bca overexpression upon CO2 mediated 
acidification. Crude extracts were treated with 100 % CO2 at 30 °C 60 s after start of the experiment, while the pH 
was monitored with a pH electrode. Wt: C. glutamicum wild type with a pEKEx2_pHluorin plasmid; wt+Bca: C. 
glutamicum wild type with a pEKEx2_pHluorin_Bca plasmid for bca overexpression. The buffer for crude extract 
preparation consisted of 100 mM NaCl, 50 mM Tris pH 7.4. 

This correlates with the insignificant differences between wild type and overexpression 

mutant illustrated in Figure 3.6. Apart from a possible influence on proton homeostasis, 

an elevated level of Bca in the cytoplasm caused by plasmid-mediated bca 

overexpression might also affect the availability of inorganic carbon. To test this 

hypothesis, two scenarios that possibly imply a strong need for inorganic carbon were 

investigated. First, growth at a relatively low cell density at the beginning of cultivation 

was determined. This setup was based on the assumption that in this case, CO2 levels in 

the medium are rather low due to the fact that only few cells provide CO2 by their 

metabolic activity. A higher level of Bca in the cell might compensate for this lack and 

thereby lead to a shorter lag-phase. As displayed in Figure 3.8, the bca overexpression 

mutant did not show different growth behaviour than the wild type of C. glutamicum. In 

both cases, a one hour lag-phase was observed. Growth at the beginning was generally 

slow, probably caused by low cell densities. 
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Figure 3.8: Growth of C. glutamicum wild type with and without bca overexpression at a low starting OD. Cells 
were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 mM IPTG at pH 7.4. wt: 
C. glutamicum wild type harbouring the pEKEx2_pHluorin plasmid; wt+Bca: C. glutamicum wild type harbouring the 
pEKEx2_pHluorin_Bca plasmid. The black error bars represent the standard deviations based on three independent 
replicates. 

The second setup that was supposed to represent conditions of suboptimal inorganic 

carbon provision was growth on pyruvate as sole carbon source. Under such conditions, 

additional inorganic carbon is necessary for gluconeogenetic processes. Hence, 

overexpression of bca was believed to ensure higher growth rates in the cultivation. As 

displayed in Figure 3.9, neither the final cell density (Figure 3.9.a) nor the growth rate 

(Figure 3.9.b) of the overexpression mutant differed from the C. glutamicum wild type. 

 

Figure 3.9: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with and without bca 
overexpression on pyruvate as sole carbon source. Cells were cultivated in CgXII minmal medium with 50 mM 
pyruvate, 50 µg/ml kanamycin and 0.1 mM IPTG at pH 7.4. wt: C. glutamicum wild type harbouring the 
pEKEx2_pHluorin plasmid; wt+Bca: C. glutamicum wild type harbouring the pEKEx2_pHluorin_Bca plasmid. The black 
error bars displayed in (b) represent the standard deviations of growth rates and are based on three independent 
replicates. 
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It has to be noted that the initial decrease in cell density at the beginning of cultivation 

on pyruvate (Figure 3.9.a) has been observed repeatedly and seems to be a 

characteristic of the examined C. glutamicum strains on this substrate. Taken together, 

overexpression of the bca gene in C. glutamicum wild type cells does not seem to have 

influence on their growth behavior under various stress conditions like pH stress or a 

limitation of inorganic carbon supply. 

3.2 Heterologous expression of a cyanobacterial bicarbonate 

importer in C. glutamicum 

3.2.1 SbtAB can restore growth of the C. glutamicum ∆bca strain 

To ensure the functionality of the sodium/bicarbonate-symporter SbtA from 

Synechocystis sp. PCC 6803 in C. glutamicum, the predicted periplasmic protein SbtB was 

included in the cloning strategy for plasmid construction. This resulted in a construct 

consisting of the slr1512-slr1513 gene region (encoding SbtA and SbtB, respectively) and 

a C-terminal Strep-tag encoding gene attached to slr1513. Hence, the transport system 

was named SbtAB. The resulting fusion protein of SbtB and the Strep-tag has a size of 

13.2 kDa. Western Blot analysis based on detection of the Strep-tag revealed the 

presence of SbtB+Strep-tag in crude extracts of C. glutamicum Δbca harbouring the 

pEKEx2_pHluorin_SbtAB plasmid (Figure 3.10). However, it was difficult to actually 

show the presence of SbtB in the membrane fraction, so it is still not clear, whether SbtB 

is actually bound or attached to the membrane protein SbtA or not. 
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Figure 3.10: Western Blot analysis to show synthesis of the cyanobacterial SbtB protein in C. glutamicum Δbca.  
Part of the crude extract was separated into membrane fraction and supernatant. Displayed are (a) the Coomassie-
stained PAGE-gel and (b) Western Blot analysis via Strep-tag antibody. CE: crude extract, S: supernatant from the 
membrane preparation procedure, M: membrane fraction; left lane Δbca: C. glutamicum Δbca equipped with the 
pEKEx2_pHluorin plasmid; right lane Δbca+SbtB: C. glutamicum Δbca equipped with the pEKEx2_pHluorin_SbtAB 
plasmid, which allows immunochemical detection of the SbtB+Strep-tag fusion protein. 

Another strong hint towards the successful heterologous expression of the 

cyanobacterial bicarbonate importer genes in C. glutamicum was given by the growth 

phenotype of C. glutamicum Δbca equipped with the pEKEx2_pHluorin_SbtAB plasmid. 

As displayed in Figure 3.11, expression of the SbtAB encoding genes restores growth of 

the mutant at atmospheric CO2 in minimal medium. In CgXII medium with 1 % glucose 

and a pH of 7.4, C. glutamicum Δbca equipped with SbtAB grows to a final OD600nm of 

about 11 and shows a growth rate of 0.26/h similar to C. glutamicum wild type cells, 

which show a growth rate of 0.3/h under the same conditions (see Figure 3.6). This 

result is a strong hint towards the possibility that the cyanobacterial bicarbonate 

importer provides sufficient amounts of inorganic carbon, since even the lack of the 

essential Bca activity can be overcome by its presence in the C. glutamicum Δbca strain. 
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Figure 3.11: Growth kinetics (a) and growth rates (b) of C. glutamicum Δbca with and without SbtAB at 
atmospheric CO2. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 mM 
IPTG at pH 7.4 and 0.04 % CO2. Δbca: C. glutamicum Δbca with the pEKEx2_pHluorin plasmid, Δbca+SbtAB: 
C. glutamicum Δbca with the pEKEx2_pHluorin_SbtAB plasmid. The black error bars displayed in (b) represent the 
standard deviations of growth rates and are based on three independent replicates. 

Based on these findings, pyruvate was tested as sole carbon source since it is believed to 

create a stronger need for inorganic carbon in anaplerotic reactions. C. glutamicum wild 

type, Δbca and Δbca+SbtAB were compared on solid minimal medium with either 

pyruvate or glucose as sole organic carbon sources at atmospheric (0.04 %) and 

elevated (10 %) CO2. To provide an additional inorganic carbon source, 0.5 mM 

bicarbonate (HCO3-) was added. As illustrated in Figure 3.12, 10 % CO2 in the supply air 

are not sufficient to ensure growth of C. glutamicum Δbca on pyruvate. This points 

towards an actual lack of inorganic carbon on this substrate, since growth at 10 % CO2 

was observed on glucose. While elevated CO2 did not ensure growth of C. glutamicum 

Δbca on pyruvate, the SbtAB transport system actually did. In fact, growth of 

C. glutamicum Δbca+SbtAB was similar to the wild type. C. glutamicum wild type as well 

as C. glutamicum Δbca+SbtAB grew better on pyruvate if additional CO2 was provided. 

Generally, better growth on glucose was observed. Here again, cells grew slightly better 

at elevated CO2. As expected, growth of C. glutamicum Δbca was not possible at 

atmospheric CO2, but could be restored on glucose by 10 % CO2. Taken together, 

C. glutamicum Δbca+SbtAB was able to grow on both substrates and at both CO2 

concentrations. On pyruvate, SbtAB activity was the only way to restore growth of the 

C. glutamicum Δbca mutant. These results underline the potential of SbtAB for inorganic 

carbon provision in C. glutamicum.  
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Figure 3.12: Growth of C. glutamicum wild type, Δbca and Δbca+SbtAB on glucose and pyruvate at various CO2 
concentrations. 2 µl of cell suspensions of OD600 nm 1, 10-1, 10-2, 10-3, 10-4 and 10-5 from left to right were applied on 
solid CgXII minimal medium with 0.5 mM HCO3- and either 50 mM pyruvate or 5.5 mM glucose at pH 8.5. 50 µg/ml 
kanamycin and 0.2 mM IPTG were added. Growth was observed at 30 °C for 40 hours. Wt: C. glutamicum wild type 
with pEKEx2_EYFP; Δbca: C. glutamicum Δbca with pEKEx2_EYFP; Δbca+SbtAB: C. glutamicum Δbca with 
pEKEx2_EYFP_SbtAB. 

The next step to investigate the potential of SbtAB for carbon provision in C. glutamicum 

was to confirm the results displayed in Figure 3.12 in liquid culture.  Figure 3.13 shows 

growth of C. glutamicum Δbca+SbtAB on pyruvate as sole carbon source at various CO2 

concentrations and a pH of 7.4. Similar to growth on solid medium, cells grew almost 

equal to a final OD600nm 3 and 4.2 at 0.04 % CO2 and 10 % CO2, respectively (Figure 

3.13.a). Also, the growth rate was about 0.09/h in both cases (Figure 3.13.b). Although 

this growth rate is lower than observed for the wild type on pyruvate (see Figure 3.9), it 

has to be noted that pyruvate as sole carbon source is sufficient to ensure SbtAB 

mediated growth of C. glutamicum Δbca+SbtAB in liquid culture.  

 

Figure 3.13: Growth kinetics (a) and growth rates (b) of C. glutamicum Δbca+SbtAB on pyruvate at various CO2 
concentrations. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 
mM IPTG at pH 7.4. Δbca+SbtAB: C. glutamicum Δbca with pEKEx2_pHluorin_SbtAB. The black error bars displayed in 
(b) represent the standard deviations of growth rates and are based on three independent replicates. 
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A completely different picture emerged when the same conditions were tested on the 

C. glutamicum Δbca strain without SbtAB. Figure 3.14 illustrates the results of growth 

experiments with the mutant on glucose and pyruvate both at atmospheric and elevated 

CO2 concentrations. Surprisingly, growth on pyruvate was observed after 24 hours 

whether additional CO2 was provided or not (Figure 3.14.a). Also, restoration of growth 

on glucose and 10 % CO2 was rather poor and cells reached only an average growth rate 

of 0.025/h compared to 0.003/h at atmospheric CO2. The growth rate on pyruvate was 

0.006/h at atmospheric CO2 and 0.149/h at 10 % CO2 (Figure 3.14.b). 

 

Figure 3.14: Growth kinetics (a) and growth rates (b) of C. glutamicum Δbca on pyruvate and glucose at 
various CO2 concentrations. Cells were cultivated in CgXII minimal medium with 50 µg/ml kanamycin, 0.1 mM IPTG 
and either 5.5 mM (1 %) glucose or 50 mM pyruvate at pH 7.4. The values displayed represent the mean values of two 
independent measurements.  Δbca: C. glutamicum Δbca with pEKEx2_pHluorin; G: glucose, P: pyruvate. 

These findings for C. glutamicum Δbca are in strong contradiction to the assumption that 

pyruvate as sole carbon source creates a stronger need for inorganic carbon in the cells. 

However, this growth pattern emerged repeatedly and it cannot be ruled out that there 

is an alteration in glucose uptake in the C. glutamicum Δbca strain, although this 

observation was not confirmed on solid medium (see Figure 3.12). To check whether the 

growth deficit of C. glutamicum Δbca at elevated CO2 in minimal medium is specific to 

the substrate glucose, maltose was tested as an alternative substrate. As displayed in 

Figure 3.15, cells grew neither on glucose nor on maltose, while the C. glutamicum wild 

type control grew on both substrates. Hence, pyruvate is actually the only carbon source 

that ensures growth of C. glutamicum Δbca in liquid culture with 10 % CO2. 
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Figure 3.15: Growth kinetics (a) and growth rates (b) of C. glutamicum Δbca and wild type on glucose and 
maltose at 10 % CO2. Cells were cultivated in CgXII minimal medium with 50 µg/ml kanamycin, 0.1 mM IPTG and 
either 1 % glucose or 1 % maltose at pH 7.4. The black error bars displayed in (b) represent the standard deviations of 
growth rates  and are based on three independent replicates. Δbca: C. glutamicum Δbca with pEKEx2_pHluorin; wt: 
C. glutamicum wild type with pEKEx2_pHluorin G: glucose, M: maltose. 

Despite the inconclusive results displayed in Figures 3.14 and 3.15, investigations 

towards the influence of SbtAB on C. glutamicum Δbca showed the positive impact of the 

cyanobacterial bicarbonate importer on inorganic carbon provision. Based on these 

promising observations, possible benefits by SbtAB were explored for the C. glutamicum 

wild type strain. 

 

3.2.2 SbtAB has only slight impact on C. glutamicum wild type cells 

The close connection between the extracellular pH and the supply with inorganic carbon 

became obvious during the experiments towards Bca activity in C. glutamicum (see 

Figures 3.2 and 3.6). Hence, the import of bicarbonate could also be influenced by the 

external pH value. Also, additionally imported bicarbonate might have an impact not 

only on carbon provision but also on the intracellular pH value. Therefore, impact of the 

bicarbonate import system SbtAB on growth of C. glutamicum wild type cells was 

examined at various pH values (Figure 3.16). Even in wild type cells, the influence of 

SbtAB led to enhanced growth rates (Figure 3.16.b). This effect was observed 

independent from the external pH value. However, final OD values were not influenced 

by SbtAB activity. Also, growth behaviour at pH 8 was slightly different from those at pH 

6 and 7 (Figure 3.16.a).  
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Figure 3.16: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with and without SbtAB at 
various pH values. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.2mM 
IPTG at various pH values. Wt: C. glutamicum wild type harbouring the pEKEx2_EYFP plasmid, wt+SbtAB: 
C. glutamicum wild type harbouring the pEKEx2_EYFP_SbtAB plasmid. The black error bars displayed in (b) represent 
the standard deviations based on three independent replicates. 

To check whether the expression level might be a limiting factor to display the influence 

of SbtAB, two different concentrations of the inducer IPTG were compared. As 

illustrated in Figure 3.17, an elevated IPTG concentration of 1mM has no relevant effects 

on growth of C. glutamicum wild type+SbtAB.  

 

Figure 3.17: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with SbtAB at various IPTG 
concentrations. Cells were cultivated in CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and either 
0.1 mM or 1 mM IPTG at pH 7.4. The C. glutamicum wild type cells were equipped with the pEKEx2_pHluorin_SbtAB 
plasmid. The black error bars displayed in (b) represent the standard deviations based on three independent 
replicates. 

Based on the results illustrated in Figure 3.12, the influence of SbtAB on growth with 

pyruvate as organic carbon source was also tested for C. glutamicum wild type cells. As 
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displayed in Figure 3.18, a remarkable growth advantage by SbtAB was observed on 

solid CgXII minimal medium at atmospheric CO2. 

 

Figure 3.18: Growth of C. glutamicum wild type with and without SbtAB on pyruvate. 2 µl of cell suspensions 
with ODs from 10-1 to 10-4 were applied on solid CgXII minimal medium with 50 mM pyruvate, 0.5 mM bicarbonate, 
50 µg/ml kanamycin and 0.2 mM IPTG at pH 8.5. The plates were incubated at 30 °C and atmospheric CO2 for 54 
hours. Wild type: C. glutamicum wild type with the pEKEx2_ pHluorin plasmid; Wild type+SbtAB: C. glutamicum wild 
type with the pEKEx2_ pHluorin_SbtAB plasmid. 

Although Figure 3.18 displays growth after 54 hours, it has to be noted that the positive 

effect of SbtAB on growth was observed right from the beginning of the experiment. This 

observation was made repeatedly, so confirmation in liquid culture was the next step. In 

a first experiment, growth on pyruvate as sole carbon source was performed at pH 7.4. 

Also no bicarbonate was added, since the inorganic carbon provided by the naturally 

occurring 0.04 % CO2 in the supply air seems to serve as a sufficient substrate for SbtAB 

in liquid culture during growth of C. glutamicum Δbca on glucose (see Figure 3.11). 

However, this was not the case for C. glutamicum wild type+SbtAB. In contrast, cells 

equipped with the bicarbonate importer grew even worse under the chosen conditions 

(Figure 3.19). While the wild type reached a mean final OD600nm of 4.3, the wild type with 

SbtAB reached merely 3.8 (Figure 3.19.a).  The mean growth rates differed even more 

with 0.44/h for C. glutamicum wild type and 0.26/h for C. glutamicum wild type with 

SbtAB. 
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Figure 3.19: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with and without SbtAB on 
pyruvate. Cells were cultivated in CgXII minimal medium with 50 mM pyruvate, 50 µg/ml kanamycin and 0.2 mM 
IPTG at pH 7.4 and atmospheric CO2. wt: C. glutamicum wild type with the pEKEx2_EYFP plasmid, wt+SbtAB: 
C. glutamicum wild type with the pEKEx2_EYFP_SbtAB plasmid. The black error bars displayed in (b) represent the 
standard deviations of growth rates and are based on three independent replicates. 

To have a more direct comparison to the conditions chosen for the cultivation on solid 

medium (Figure 3.18), cultivation in liquid culture was also performed with various 

bicarbonate concentrations to provide an additional substrate for SbtAB. Unlike 

cultivation on solid medium, a neutral pH of 7.4 was again chosen, since growth 

behaviour of C. glutamicum wild type at alkaline pH differs from that at acid or neutral 

pH (see Figure 3.16). The results for growth on pyruvate with additional 0.5 mM and 

5 mM bicarbonate are shown in Figure 3.20. At least in the second case, growth was 

slightly decreased if SbtAB was present. There are hardly any differences in the final ODs 

with 1.63 for C. glutamicum wild type+SbtAB and 1.71 for C. glutamicum wild type at 

0.5 mM bicarbonate (Figure 3.20.a). At 5 mM bicarbonate, the final ODs were higher 

with 2.08 and 2.22 with and without SbtAB, respectively (Figure 3.20.c). Although the 

final ODs are generally low, the growth rates reached normal levels of 0.21/h and 0.27/h 

with and without SbtAB at 0.5 mM bicarbonate, respectively (Figure 3.20.b). Growth 

rates at 5 mM bicarbonate were also higher with 0.28/h and 0.37/h with and without 

SbtAB, respectively (Figure 3.20.d). 
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Figure 3.20: Growth kinetics (a, c) and growth rates (b, d) of C. glutamicum wild type with and without SbtAB 
on pyruvate and various HCO3- concentrations. Cells were cultivated in CgXII minimal medium with 50 mM 
pyruvate, 50 µg/ml kanamycin, 0.1 mM IPTG and either 0.5 mM or 5 mM bicarbonate at pH 7.4. wt: C. glutamicum wild 
type harbouring the pEKEx2_pHluorin plasmid, wt+SbtAB: C. glutamicum wild type harbouring the 
pEKEx2_pHluorin_SbtAB plasmid. The black error bars displayed in (b) and (d) represent the standard deviations of 
growth rates and are based on three independent replicates. 

The same experimental setup was tested with 10 % CO2 in the supply air as additional 

inorganic carbon source. Also, control measurements with 1 % (5.5 mM) glucose were 

performed in parallel. As illustrated in Figure 3.21, SbtAB led to better growth on 

glucose wich is in agreement with the observations at atmospheric CO2 (see Figure 

3.16). For growth on pyruvate, no difference was observed. Generally, it has to be noted 

that the low growth rates and the high standard deviations are based on the 

experimental setup. Growth in the special vessels for CO2 application is constricted by 

the suboptimal aeration. During growth on glucose, both C. glutamicum wild type with 

and without SbtAB reached a mean final OD of 10.6, whereas on pyruvate, mean final 

ODs of 2 and 4.1 were measured for the wild type with and without SbtAB, respectively 

(Figure 3.21.a). The growth rates for growth on glucose were 0.18/h and 0.16/h for 

C. glutamicum wild type with and without SbtAB, respectively. For growth on pyruvate, 
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the mean growth rates were also very similar with 0.143/h and 0.14/h with and without 

SbtAB, respectively (Figure 3.21.b). 

 

Figure 3.21: Growth of C. glutamicum wild type with and without SbtAB on glucose and pyruvate with 10 % 
CO2 in the supply air. Cells were cultivated in CgXII minimal medium with either 5.5 mM (1 %) glucose or 50 mM 
pyruvate, 50 µg/ml kanamycin and 0.1 mM IPTG at pH 7.4. wt: C. glutamicum wild type harbouring the 
pEKEx2_pHluorin plasmid, wt+SbtAB: C. glutamicum wild type harbouring the pEKEx2_pHluorin_SbtAB plasmid. The 
black error bars displayed in (b) represent the standard deviations based on three independent replicates. 

Although the results describing the influence of the bicarbonate importer SbtAB gained 

from C. glutamicum Δbca clearly point towards the successful heterologous expression 

leading to functional proteins, the observations in C. glutamicum wild type remain 

inconclusive apart from the growth benefit displayed in Figure 3.16. Therefore, 

examinations towards the activity of SbtAB in C. glutamicum on a biochemical level are 

indispensable. In this study, radiochemical uptake measurements with 14C labelled 

bicarboante were performed to adress this question.  

3.2.3 The activity of SbtAB in C. glutamicum is difficult to display 

To measure the activity of the bicarbonate importer SbtAB in C. glutamicum, the amount 

of radio-labelled sodium bicarbonate (NaH14CO3) taken up by the cells was determined. 

During establishment of a suitable experimental setup, bicarbonate uptake by 

C. glutamicum wild type cells without SbtAB was observed repeatedly and it cannot be 

ruled out that unspecific uptake via anion importers takes place in C. glutamicum. A 

more promising test system was based on C. glutamicum Δbca+SbtAB growing at 

atmospheric CO2. The advantage lies in the fact that growth at atmospheric CO2 is a 

direct hint towards an active SbtAB transport system, so uptake during growth should 
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be detectable. Indeed, a higher uptake of bicarbonate was observed compared to 

C. glutamicum wild type without SbtAB (Figure 3.22). As an additional negative control 

using the same strain, C. glutamicum Δbca+SbtAB cells were treated with CCCP to 

abolish any membrane potential so no transport processes were possible any longer. 

Similar to the wild type without SbtAB, those cells did hardly show any bicarbonate 

uptake as well.  

 

Figure 3.22: Radioactively labelled intracellular bicarbonate (a) and the derived uptake rates of SbtAB (b). 
Uptake was monitored during growth on CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 mM 
IPTG at pH 8.5. 14C labelled bicarbonate was added to a concentration of 100 µM. To abolish the membrane potential 
in the negative control, 50 µM CCCP were added. wt: C. glutamicum wild type with the pEKEx2_pHluorin plasmid, 
Δbca+SbtAB: C. glutamicum Δbca harbouring the pEKEx2_pHluorin_SbtAB plasmid. The black error bars displayed in 
(b) represent the standard deviations based on three independent replicates. 

It is obvious that the uptake rates displayed in Figure 3.22 show high standard 

deviations. The reason for this lies in the experimental setup. An alkaline pH value was 

ensured during the whole process to avoid a loss of labelled bicarbonate by CO2 

formation. However, another problem emerged that possibly made the results difficult 

to reproduce. The urea in the CgXII medium is converted to CO2 in the cells via urease 

activity. This CO2 serves as an additional source of inorganic carbon, which interferes 

with precise measurements towards the inorganic carbon supply in C. glutamicum, 

which is why the use of urea-free CgXII is mandatory in such experiments. Hence, 

growth of C. glutamicum wild type and Δbca with and without SbtAB in urea-free 

medium was examined first. The results for C. glutamicum wild type are illustrated in 

Figure 3.23. No difference between cells with and without SbtAB was observed. 

Compared to growth with urea (see Figure 3.16), growth at pH 6 was constricted in 

urea-free medium, probably because of the buffer function of urea. While the growth 
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rates at pH 6 with urea were 0.35/h and 0.3/h, they were only 0.2/h and 0.19/h on 

minimal medium without urea for C. glutamicum wild type with and without SbtAB, 

respectively (Figures 3.16b and 3.23.b). 

 

Figure 3.23: Growth kinetics (a) and growth rates (b) of C. glutamicum wild type with and without SbtAB on 
urea-free medium. Cells were cultivated in urea-free CgXII medium with 1 % glucose, 50 µg/ml kanamycin and 
0.1 mM IPTG at various pH values. wt: C. glutamicum wild type harbouring the pEKEx2_pHluorin plasmid, wt+SbtAB: 
C. glutamicum wild type harbouring the pEKEx2_pHluorin_SbtAB plasmid. The black error bars displayed in (b) 
represent the standard deviations of growth rates and are based on three independent replicates. 

In a next step, growth behaviour in urea-free medium was tested for C. glutamicum 

Δbca+SbtAB. The results show that growth of C. glutamicum Δbca+SbtAB at atmospheric 

CO2 is no longer possible in the absence of urea, even if 5 mM bicarbonate are provided 

as a substrate for SbtAB (Figure 3.24.a and b). Growth can only be restored by bca 

expression in the complementation mutant C. glutamicum Δbca+Bca. The growth rates 

were 0.04/h for C. glutamicum Δbca, 0.07/h for C. glutamicum Δbca+SbtAB and 0.29/h 

for C. glutamicum Δbca+Bca with final ODs of 0.99, 0.67 and 3.58, respectively. This 

effect is less severe, if 10 % CO2 in the supply air are provided (Figure 3.24.c and d). 

Here, the growth rates for C. glutamicum Δbca, C. glutamicum Δbca+SbtAB and 

C. glutamicum Δbca+Bca were 0.034/h, 0.089/h and 0.143/h, respectively. The 

according  final ODs were 3.74, 8.34 and 15.32. Hence, only Bca and elevated CO2 are 

able to compensate for the lack of inorganic carbon that emerges during cultivation in 

urea-free medium. 
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Figure 3.24: Growth kinetics (a, c) and growth rates (b, d) of various C. glutamicum Δbca mutants in urea-free 
medium. Cells were cultivated in urea-free CgXII minimal medium with 1 % glucose, 50 µg/ml kanamycin, 0.1 mM 
IPTG and either 5 mM bicarbonate (a, b) or 10 % CO2 (c, d) at pH 8.5. Δbca: C. glutamicum Δbca with the 
pEKEx2_pHluorin plasmid, Δbca+SbtAB: C. glutamicum Δbca with the pEKEx2_pHluorin_SbtAB plasmid, Δbca+Bca: 
C. glutamicum Δbca with the pEKEx2_pHluorin_Bca plasmid. The experiments were performed in duplicates of which 
the mean values are displayed. 

The results illustrated in Figure 3.24 show the impossibility to perform uptake 

measurements with C. glutamicum Δbca+SbtAB in urea-free medium, especially since 

the use of C. glutamicum Δbca as a correct negative control is also indispensable. The 

wild type also represents no suitable test system because of the background activity in 

SbtAB free cells. Hence, the results shown in Figure 3.22 can only serve as a hint to 

estimate the activity of SbtAB in C. glutamicum. A more precise setup could not be 

established, mostly because of the need for urea in C. glutamicum Δbca. 

3.2.4 SbtAB has no influence on the lysine yield in production strains 

Independent from the results gained in the growth experiments described in chapter 

3.2.2, which show only a slight influence of SbtAB on C. glutamicum wild type cells, an 

impact on lysine production was still a possible scenario. Hence, lysine yields in the 
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production strain C. glutamicum DM1933 with and without SbtAB were determined. 

Cultivation was performed in 500 ml Erlenmeyer flasks and the lysine concentration of 

the medium was determined after 32 hours via HPLC analysis. As displayed in Figure 

3.25, no difference between cells with and without SbtAB activity was observed.  

 

Figure 3.25: Lysine concentration in the cultivation supernatant after 32 hours. Cells were cultivated in CgXII 
minimal medium with 1 % glucose, 50 µg/ml kanamycin and 0.1 mM IPTG in 500 ml Erlenmeyer flasks. Samples were 
analysed via HPLC. DM 1933: C. glutamicum DM 1933 with the pEKEx2_pHluorin plasmid, DM 1933+SbtAB: 
C. glutamicum DM 1933 with the pEKEx2_pHluorin_SbtAB plasmid. The black error bars represent the standard 
deviations based on three independent replicates. 

Taken together, there is a clear impact of the cyanobacterial bicarbonate importer SbtAB 

on the inorganic carbon provision in C. glutamicum. The results for C. glutamicum Δbca 

shown in chapter 3.2.1 clearly point this out, since SbtAB can replace the carbonic 

anhydrase Bca in terms of inorganic carbon provision at atmospheric CO2. Nevertheless, 

benefits for the C. glutamicum wild type strain are hardly detectable (chapter 3.2.2). 

Also, the activity of SbtAB is difficult to measure in C. glutamicum and no influence on 

the lysine yield in DM 1933 was observed. The supply with inorganic carbon is closely 

connected to the availability of CO2 and bicarbonate and thereby also to the internal pH 

of the cells. The latter factor has so far only been addressed in growth experiments but 

not in direct measurements of the internal pH. To close this gap, a tool for online pH- 

measurement was developed to gain insights into the dynamics of pH homeostasis and 

inorganic carbon supply in C. glutamicum. 
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3.3 The pH homeostasis capacity of C. glutamicum 

3.3.1 A method for online pHi measurement was established 

First experiments regarding the use of pH sensitive fluorescence dyes for online 

detection of the intracellular pH (pHi) in C. glutamicum had been performed by Simone 

Faust (Faust, 2011). The established system was based on the Enhanced Yellow 

Fluorescence Protein (EYFP), which shows a decrease in intensity upon acidification of 

the cytoplasm. Although its functionality was shown in C. glutamicum, two great 

disadvantages emerged. First, the intensity maximum occurs at pH 8, which bears the 

necessity to set this pH in each culture at the beginning of the experiment to determine 

the reference value which corresponds to 100 % fluorescence intensity. Since this step 

already interferes with the physiology of the cell, it is not the procedure of choice for 

online measurements. Second, basic experiments in this study revealed aberrations in 

the intensity at the same pH value, probably caused by varying expression strengths. 

Since fluorescence intensity is the pH sensitive parameter of EYFP, this method based on 

absolute fluorescence amounts is not suitable for C. glutamicum. As an alternative, the 

pH sensitive fluorescence dye pHluorin (Miesenböck et al., 1998) was tested in 

C. glutamicum. pHluorin is a derivate of the Green Fluorescence Protein (GFP) (Tsien, 

1998), that possesses two pH dependent excitation maxima. The dye could be 

functionally expressed in C. glutamicum and its physical properties were determined by 

Simon Mayr (Mayr, 2011). Figure 3.26.a shows the excitation spectra at various pH 

values. Each pH leads to a different ratio of the two excitation maxima, from which a 

calibration curve was determined (Figure 3.26.b). Based on the function of this curve, 

the pH can be directly calculated from the ratio values derived from the 396 nm and 

468 nm fluorescence values. 
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Figure 3.26: Physical properties of pHluorin. (a): Excitation spectra at various pH values in crude extracts of 
C. glutamicum (Mayr, 2011); (b): pKs curve of pHluorin. The pH values were set with KPi buffer and the ratios were 
determined in vivo after treatment with 0.25 % CTAB. The values were confirmed in crude extracts as well.   

Once the functionality of pHluorin had been shown in C. glutamicum, a setup for online 

determination was developed. The aim was determination of the intracellular pH via 

fluorescence detection during cultivation. This approach was believed to minimise the 

influence on the cells’ physiology. Also, cultivation conditions should be optimal even on 

a small scale level. These requirements could be fulfilled by the setup based on a small 

bioreactor (see Figure 2.2). As a suitable buffer system to regulate the external pH, 1 M 

K2HPO4 and 1 M KH2PO4 were chosen. An important factor here is the osmolality of the 

medium, since this parameter might interfere with the pH homeostasis capacity. Table 

3.1 gives an overview of the osmolalities of the buffers that are used to regulate the 

external pH and the osmolalities of the cultivation medium before and after acidification. 

If the pH was shifted from pH 7.4 to pH 6, the osmolality only changed from 

0.556 osmol/kg to 0.725 osmol/kg, making a possible negative influence on 

C. glutamicum unlikely.  

Table 3.1: Osmolalities of media and buffers used for online pH measurements. CgXII medium without MOPS 

represents the cultivation medium at the beginning of the experiment. 0.2 M KH2PO4 equals the average situation after 

acidification to pH 6. 

Medium/buffer Osmolality [osmol/kg] 

CgXII, 1% glucose, without MOPS 0.556 

1 M KH2PO4 1.427 

1 M K2HPO4 2.016 

CgXII, 1% glucose, 0.2 M KH2PO4 
0.725 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

4.5 5.5 6.5 7.5 8.5 9.5

R
a

ti
o

 3
9

6
 n

m
/

4
6

8
 n

m

pH
a b 



3. Results 

51 
 

Control measurements without a shift of the external pH but with the addition of KPi 

buffer of the according pH 7.4 also ensured that occurring shifts in extracellular 

osmolality did not affect the internal pH value.  

First online measurements revealed a fast shift of the internal pH upon extracellular pH 

shifts. These fast changes of the proton concentration are quickly overcome by pH 

homeostasis mechanisms, so a physiological pH is restored after about five minutes 

(Figure 3.27). 

 

Figure 3.27: pH homeostasis pattern of C. glutamicum wild type after acidification (a) and alkalisation (b) of 
the outer medium. C. glutamicum wild type cells harbouring the pEKEx2_pHluorin plasmid were incubated in CgXII 
medium without MOPS, pH 7.4 and 1 % glucose for 10 minutes before the external pH was shifted towards pH 6 (a) 
and 8 (b) using 1 M KPi buffers; pHi: intracellular pH, pHex: extracellular pH. 

Taken together, pHluorin is functionally expressed in C. glutamicum and possesses two 

excitation maxima at 396 nm and 468 nm that can be measured with an emission 

wavelength of 505 nm. The ratio 396 nm/468 nm is pH dependent and allows 

calculation of pH values from pH 5.8 to 8.5 independent from absolute fluorescence 

intensities (see Figure 3.26). The intracellular pH of C. glutamicum in 50 ml-cultures can 

be monitored online so the process of pH homeostasis can be followed over time. 

Usually C. glutamicum shows an internal pH of 7.0 to 7.2 at an external pH of 7.4. Two 

parameters to describe the homeostasis capacity were chosen. The first one is the 

strongest shift the intracellular pH undergoes after a rapid change of the external pH 

and it is called “maximum shift pHi”. The second parameter is the mean pH value of the 

last ten minutes of a measurement and represents the final pH that can be achieved by 
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developed tool for online pHi monitoring, the actual influence of CO2 on pH homeostasis 

in C. glutamicum was investigated. 

3.3.2 The pH homeostasis in C. glutamicum is hardly affected by CO2 

A negative influence of high CO2 concentrations on intracellular pH at acidic external pH 

values has been observed in C. glutamicum earlier (Follmann, 2008). However, the 

dynamics of this influence are not clear since the results were based on samples taken at 

discrete time points which did not allow the monitoring of pHi over time. The advantage 

of pHluorin based online measurements without sample preparation was hence applied 

to close this gap. For this purpose, C. glutamicum wild type cells were exposed to a shift 

of the external pH towards pH 6 at atmospheric CO2 and to pH 6.2 at 10 % CO2. The 

latter shift was less severe to ensure values within the detection range of pHluorin. The 

results illustrated in Figure 3.28 show a deeper drop of the internal pH in cells treated 

with CO2 although the external shift was even less severe. To this point, earlier results 

(Follmann, 2008) could be confirmed. However, during the further course of the 

measurements, a different picture emerged. Although the pHi was lower at 10 % CO2, the 

steady state pHi was similar to the steady state pHi at atmospheric CO2.  

 

Figure 3.28: The influence of CO2 on pH homeostasis after acidification. C. glutamicum wild type cells harbouring 
the pEKEx2_pHluorin plasmid were incubated in CgXII medium with 1 % glucose at atmospheric and elevated CO2 for 
10 minutes before the external pH was shifted towards pH 6 and 6.2, respectively. Displayed is an example of an 
online pattern (a) and the average values for the maximum shift pHi and the steady state pHi (b). The black error bars 
displayed in (b) represent the standard deviations based on three independent replicates. Cells were grown in 50 ml 
CgXII minimal medium pH 7.5 without MOPS. Acidification was performed using 1M KH2PO4. pHex: external pH, max. 
pHi shift: lowest pHi after acidification, pHi steady state: highest pHi achieved by homeostasis, mean value from the 
last 10 minutes of measuring.  
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These results show that C. glutamicum is indeed hardly affected by elevated CO2 levels at 

an acidic pH, giving a strong hint towards a remarkable resistance of C. glutamicum 

against CO2 derived pH stress. There actually is an influence of CO2 on the intracellular 

proton concentration, represented in the deeper shift of the internal pH at the beginning, 

but the steady state pHi values show the ability of the cells to compensate this additional 

stress. To gain a better understanding of the underlying processes during pH 

homeostasis, the influence of the carbonic anhydrase Bca and the cyanobacterial 

bicarbonate importer SbtAB were investigated. 

3.3.3 Bca and SbtAB do not interfere with pH homeostasis 

Based on the fact that Bca activity accelerates proton formation in C. glutamicum, an 

involvement in proton homeostasis seems likely. First investigations using the 

C. glutamicum Δbca mutant showed a lower buffer capacity of the cytoplasm and a less 

efficient pH homeostasis upon acidification to pH 6.2, regardless whether CO2 is elevated 

or not (Figure 3.29). While the maximum shift is pH 6.2 in C. glutamicum wild type at 

elevated CO2 and pH 6.57 at atmospheric CO2 (see Figure 3.28.b), shift below the cut-off 

value of pH 5.8 occurred in C. glutamicum Δbca. The steady state values with and 

without additional CO2 were 6.43 and 6.47 in C. glutamicum Δbca, while the according 

values in the wild type were 6.94 and 6.9. 

 

Figure 3.29: pH homeostasis parameter of C. glutamicum Δbca upon acidification at various CO2 
concentrations. Cells were equipped with the pEKEx2_pHluorin plasmid. The maximum shift values were below the 
cut-off of 5.8, which is the limit of pHluorin. The black error bars represent the standard deviations based on three 
independent replicates. Cells were incubated in CgXII with 1 % glucose at atmospheric (0.04 %) and elevated (10 %) 
CO2 for 10 minutes before acidification to pH 6.2 of the outer medium was performed using 1 M KH2PO4.  
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This stands in contradiction to the fact that Bca activity increases the amount of protons 

in the cell. However, control measurements using the C. glutamicum Δbca+Bca strain 

lead to inconclusive results, since the stability of pHluorin could not be ensured in this 

strain. Thus, it cannot be excluded that the results shown in Figure 3.29 are caused by a 

strain-specific property of C. glutamicum Δbca. Hence, the impact of bca overexpression 

was tested in C. glutamicum wild type. Since a higher amount of Bca might be beneficial 

at elevated pH values, the maximum shift and steady state values upon alkalisation were 

determined as well. The results are shown in Figure 3.30, where the maximum shift 

(Figure 3.30.a) and the steady state values (Figure 3.30.b) are each compared at external 

pH values of 6 and 8. Apart from a slight and insignificant drop of the internal pH in the 

overexpression strain upon acidification, no differences between the wild type with and 

without bca overexpression were observed. 

 

Figure 3.30: Maximum shift (a) and steady state values (b) of C. glutamicum wild type with and without bca 
overexpression upon acidification and alkalisation. Cells were cultivated in CgXII medium without MOPS, pH 7.4,  
1% glucose at atmospheric CO2. Acidification and alkalisation were performed via addition of 1 M KH2PO4 and 1 M 
K2HPO4, respectively. Wt: C. glutamicum wild type with the pEKEx2_pHluorin plasmid, wt+Bca: C. glutamicum wild 
type with the pEKEx2_pHluorin_Bca plasmid. The black error bars represent the standard deviations based on three 
independent replicates. 

In a next step, the influence of the bicarbonate import system SbtAB was tested at acidic 

pH stress. The imported bicarbonate was assumed to serve as a buffer and thereby 

enhance the pH homeostasis capacity of C. glutamicum at an acidic external pH value. To 

test this hypothesis, C. glutamicum wild type with and without SbtAB was exposed to an 

external shift to pH 6 at atmospheric CO2 and the two homeostasis parameters 

“maximum shift pHi” and “steady state pHi” were determined. The results are illustrated 

in Figure 3.31. Indeed, cells equipped with SbtAB seem to possess a higher buffer 

capacity of the cytoplasm since the maximum shift is less severe (pH 6.5 instead of pH 

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0

pH 6 max.shift pH 8 max.shift

p
H

i

wt

wt+Bca

5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0

pH 6 steady state pH 8 steady state

p
H

i

wt

wt+Bca

b a 



3. Results 

55 
 

6.3). However, pH homeostasis after acidification is similar to cells without SbtAB, since 

achieved steady state pHi values are almost equal and lie around pH 6.7. 

 

Figure 3.31: pH homeostasis parameter of C. glutamicum wild type with and without SbtAB upon acidification 
of the medium. Cultures were cultivated in CgXII medium with 1 % glucose at atmospheric CO2. Shift of the external 
pH from 7.4 to 6 was performed with 1 M KH2PO4. Wt: C. glutamicum wild type with the pEKEx2_pHluorin plasmid, 
wt+SbtAB: C. glutamicum wild type with the pEKEx2_pHluorin_SbtAB plasmid. The black error bars represent the 
standard deviations based on three independent replicates. 

Similar to CO2, Bca and SbtAB have only a slight effect on the maximum shift of the 

internal pH of C. glutamicum but not on the pH homeostasis capacity of the organism. 

These observations point towards a very efficient and robust pH resistance of 

C. glutamicum. Hence, a more detailed description of the homeostasis capacity in 

C. glutamicum wild type cells was the next step.  

3.3.4 Wild type cells perform pH homeostasis over a wide pH range 
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shifts range from pH 6.2 to 7.6, while the steady state pH is kept constant at values 

between 6.7 and 7.35. 

 

Figure 3.32: pH homeostasis pattern of C. glutamicum wild type cells. Cultivation and measurements were 
performed in CgXII minimal medium without MOPS, pH 7.4 and 1 % glucose. External pH shifts were generated using 
1 M KPi buffer. Wt: C. glutamicum wild type cells harbouring the pEKEx2_pHluorin plasmid, pHi: intracellular pH, pHex: 
external pH. The error bars represent the standard deviations based on at least three independent replicates. 

The results show that shortly after a rapid shift of the outer pH, the intracellular pH 

shifts to a certain degree as well. However, the steady state values were always within a 

physiological range. The fact that pH homeostasis takes only about five minutes after an 

external shift to pH 6 to reach these values (see Figure 3.27) underlines the remarkable 

efficiency of proton homeostasis in C. glutamicum. Hence, the underlying mechanisms 

were studied in greater detail. In a first attempt, proton transporting components of the 

respiratory chain were investigated towards their role in pH homeostasis. 

3.3.5 The process of pH homeostasis relies on the function of the 

respiratory chain 

As mentioned in chapter 1.5, the two branches of terminal oxidases of C. glutamicum 

might be involved in pH homeostasis, since the cytochrome bd1 oxidase branch exports 

two protons per electron pair, while the cytochrome bc1-aa3-supercomplex branch 

exports even six protons per electron pair. To investigate their role in pH homeostasis, 

three deletion mutants were provided by the group of Prof. Michael Bott at the FZ Jülich 
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branches of terminal oxidases. The strain cannot use oxygen as electron acceptor, hence 

its name based on the acronym DOOR for “Devoid Of Oxygen Respiration”. It was 

assumed that, based on the number of protons transported by the various oxidases, 

C. glutamicum ΔcydAB would possibly behave like the wild type, while C. glutamicum 

Δqcr and DOOR should be significantly constrained in their proton homeostasis capacity. 

The same pH homeostasis patterns like the one illustrated for C. glutamicum wild type in 

Figure 3.32 were determined for each strain. Figure 3.33 displays one example of a 

homeostasis run of each strain after acidification of the outer medium to pH 6. For 

C. glutamicum ΔcydAB and Δqcr, a wild type-like pattern was observed (Figure 3.33.a, b). 

The maximum shift and the steady state pHi hardly differed from those of the wild type 

displayed in Figure 3.33.d. Neither did the speed of the homeostasis process. A different 

picture emerged for C. glutamicum DOOR. As shown in Figure 3.33.c, the internal pH is 

unusually low at the beginning and even drops below the external pH upon acidification. 

After the shift, no homeostasis process could be observed. 

 

Figure 3.33: Intracellular pH of the three respiratory chain mutants of C. glutamicum compared to the wild 
type after acidification to pH 6. Cultivation and measurements were performed in CgXII minimal medium without 
MOPS pH 7.4, 1 % glucose. After 10 minutes, the external pH was shifted towards pH 6 using 1 M KH2PO4. (a): internal 
pH (pHi) of C. glutamicum ΔcydAB, (b): internal pH (pHi) of C. glutamicum Δqcr, (c): internal pH (pHi) of C. glutamicum 
DOOR, (d): internal pH (pHi) of C. glutamicum wild type (wt), each strain harbouring the pEKEx2_pHluorin plasmid. 
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The observation that C. glutamicum ΔcydAB and Δqcr possess a pH homeostasis capacity 

similar to that of C. glutamicum wild type was made at each pH value of the homeostasis 

patterns (Figures 3.34.a and b). Also, the fact that C. glutamicum DOOR is hardly able to 

perform any pH homeostasis was confirmed over a wide range of external pH values 

from 6 to 8 (Figure 3.34.c). 

 

Figure 3.34: pH homeostasis patterns of C. glutamicum ΔcydAB, Δqcr and DOOR compared to C. glutamicum 
wild type. Cultivation and measurements were performed in CgXII minimal medium without MOPS pH 7.4, 1 % 
glucose. After 10 minutes, the external pH was shifted using KPi buffers. (a): homeostasis pattern of C. glutamicum 
ΔcydAB, (b): homeostasis pattern of C. glutamicum Δqcr, (c): homeostasis pattern of C. glutamicum DOOR, (d): 
homeostasis pattern of C. glutamicum wild type (wt); pHi: intracellular pH, pHex: external pH, wt: wild type. The error 
bars represent the standard deviations based on at least three independent replicates. All strains were equipped with 
the pEKEx2_pHluorin plasmid. 

The pH homeostasis patterns in Figure 3.34 clearly show the differences between 
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hand. As long as at least one branch of the respiratory chain is still present, pH 
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determined steady state pH values hardly differ from the maximum shift pH values. 

Figure 3.35 displays a direct comparison of the three respiratory chain mutants and the 

wild type of C. glutamicum. 

 

Figure 3.35: Maximum shift (a) and steady state (b) pH values of the respiratory chain mutants and the wild 
type of C. glutamicum at various external pH values. The red line represents the situation of equal values of 
internal and external pH, a situation of no cytoplasmic buffer capacity and no active pH homeostasis. pHi: intracellular 
pH, pHex: extracellular pH, wt: C. glutamicum wild type, ΔcydAB: C. glutamicum ΔcydAB, Δqcr: C. glutamicum Δqcr, 
DOOR: C. glutamicum DOOR; all strains were equipped with the pEKEx2_pHluorin plasmid. 

Although pH homeostasis is hardly affected by the absence of one of the two branches of 

terminal oxidases, the results from the C. glutamicum DOOR strain strongly suggest an 

involvement of the respiratory chain in the pH homeostasis of C. glutamicum. In this 
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import, but is also assumed to possess a reverse function to conduct proton export from 
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was investigated as well via determination of a homeostasis pattern of the C. glutamicum 

ΔF1FO mutant. 

3.3.6 The F(1)F(O)ATPase is not involved in pH homeostasis 

To gain insight into the impact of the F(1)F(O)ATPase on the pH homeostasis of 

C. glutamicum, the same homeostasis pattern as illustrated before (Figures 3.32 and 

3.34) was determined for the deletion mutant C. glutamicum ΔF1FO. Figure 3.36.a shows 

an example of a pH homeostasis curve after acidification to pH 6 after 10 minutes. 

Although the maximum shift and the steady state values are slightly lower compared to 

a typical wild type pattern (see Figure 3.33.d), homeostasis proceeds just as fast as in 

C. glutamicum wild type. Also, it has to be noted that it is difficult to directly compare 

single measurements, since there were always aberrations due to slight variations in 

fitness of the cells. As displayed in Figure 3.36.b, at each pH value regarded in the 

homeostasis pattern, the situation is similar to C. glutamicum wild type. While the 

maximum shift pH values ranged from 6.2 to 7.6 in the wild type, they ranged from 6.14 

to 7.34 in the C. glutamicum ΔF1FO strain. The steady state pH values achieved by pH 

homeostasis ranged from pH 6.7 to 7.35 in C. glutamicum wild type and from pH 6.52 to 

7.25 in the C. glutamicum ΔF1FO mutant.  

 

Figure 3.36: Intracellular pH upon acidification of the medium to pH 6 (a) and pH homeostasis pattern (b) of 
C. glutamicum ΔF1FO. Cultivation and measurements were performed in CgXII minimal medium without MOPS 
pH 7.4, 1 % glucose. External pH shifts were generated using 1 M KPi buffer. ΔF1FO: C. glutamicum ΔF1FO cells 
harbouring the pEKEx2_pHluorin plasmid, pHex: external pH. The error bars represent the standard deviations based 
on at least three independent replicates. 

The wild type-like pH homeostasis pattern of C. glutamicum ΔF1FO points towards a 

negligible impact of the F(1)F(O)ATPase on the pH homeostasis capacity of C. glutamicum. 
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Neither is the pH homeostasis constrained at alkaline pH values, nor are there any hints 

towards a reverse function of the proton pump at acidic pH values.  

Taken together, only C. glutamicum DOOR, which has no functional respiratory chain, 

shows a phenotype with significantly altered pH homeostasis. It was not possible to 

display statistically relevant differences between C. glutamicum wild type, ΔcydAB, Δqcr 

or ΔF1FO. Table 3.2 sums up the homeostasis parameters determined for C. glutamicum 

wild type and the respiratory chain mutants as well as for C. glutamicum ΔF1FO as 

displayed in Figures 3.34 and 3.36.b, respectively. 

Table 3.2: Overview of the pH homeostasis capacity of all C. glutamicum strains tested. Displayed is the 

maximum shift the cells showed upon rapid external pH shifts (“max. shift acidic/alkaline”) and the steady state 

values that were achieved upon active homeostasis after external shifts from pH 6 to pH 8 (“steady state range”). All 

C. glutamicum strains were equipped with the pEKEx2_pHluorin plasmid. 

C. glutamicum strain max. shift acidic/alkaline steady state range 

Wild type 6.2/7.6 6.7-7.35 

ΔF1FO 6.14/7.33 6.52-7.25 

∆cydAB 6.2/7.5 6.5-7.3 

∆qcr 6.1/7.45 6.65-7.25 

DOOR 5.8/7.85 5.9-7.6 

 

The results in chapter 3 display the remarkable ability of C. glutamicum for efficient pH 

homeostasis. This enables the cells to cope for example with unusually high CO2 

concentrations. However, no further detailed information towards possible components 

involved in pH homeostasis at elevated and atmospheric CO2 concentrations was 

gathered. An exception is represented in the C. glutamicum DOOR strain which 

illustrated the importance of the respiratory chain for pH homeostasis in C. glutamicum. 
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4. Discussion 

4.1 Inorganic carbon supply in C. glutamicum 

4.1.1 The impact of CO2 on the physiology of C. glutamicum 

The negative influence of CO2 on microorganisms is based on two effects that cannot be 

regarded completely separate from each other. First, pH homeostasis is less effective at 

high CO2 concentrations, since the amount of protons becomes elevated by the hydration 

of CO2 in aqueous solution (Garcia-Gonzalez et al., 2007). Second, CO2 causes alterations 

in lipid structure of the cell membrane, which is probably based on dehydration and 

reduced water miscibility of the membrane known as the anaesthetic effect (Ballestra P., 

1996; Sears & Eisenberg, 1961). These changes of the membrane topology might 

influence the stability of the proton gradient, since permeability of the membrane 

becomes increased in the presence of CO2. This effect is expected to have consequences 

on the pH homeostasis capacity at acidic pH values. It has to be noted that those negative 

effects of high CO2 concentrations are severe enough to cause cell death, which is why 

application of high CO2 pressures is used as a non-thermal food preservation method 

(Dixon & Kell, 1989; Garcia-Gonzalez et al., 2007).  

In this context, the results for C. glutamicum shown in this work are surprising since 

growth of C. glutamicum is not negatively affected by 10 % CO2. In contrast, such high 

CO2 levels seemed to be even slightly beneficial in some cases (see Figure 3.12, growth 

on glucose). Although a similar observation was made for succinate production in E. coli 

fermentations (Lu et al., 2009) and for growth of C. glutamicum on lactate (Bäumchen et 

al., 2007), the result stands in contradiction to studies that revealed inhibited growth of 

C. glutamicum on glucose at elevated CO2 (Bäumchen et al., 2007). A  noxious effect of 

elevated CO2 levels in the supply air on the intracellular pH was observed in 

C. glutamicum before (Follmann, 2008). Additionally, increased expression levels of 

genes involved in acidic stress response were observed in E. coli at elevated CO2 

concentrations even if the pH was kept neutral (Baez et al., 2009). Above, various 

examples of the inhibitory effect on biomass and product formation in industrial 

fermentations have already been reviewed in 1989 (Dixon & Kell, 1989). Physiological 
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investigations in yeast point towards a higher sensitivity towards elevated CO2 at 

aerobic growth compared to fermentative metabolism (Aguilera et al., 2005).  

The online measurements of the intracellular pH in C. glutamicum established in this 

study only partly confirmed these observations. Cells treated with 10 % CO2 for ten 

minutes shifted their internal pH to a deeper value after acidification of the outer 

medium than cells incubated at atmospheric CO2 (see Figure 3.28). However, the cells 

were able to restore the same internal pH in the presence of high CO2 as they did at 

atmospheric CO2. This is a further indication of a high resistance of C. glutamicum 

against elevated CO2 concentrations. Prior to this study, it was assumed that especially 

the combination of elevated CO2 and an acidic pH had a noxious effect on C. glutamicum. 

This assumption was supported by earlier results (Follmann, 2008). In the experiments 

of Martin Follmann, cells were cultivated at an acidic pH and elevated CO2 was applied. 

In the present study, the cultivation conditions were different since the experiments 

were performed on a small scale level instead of using a 1.5 l bioreactor and the cells 

were pre-incubated at a neutral pH instead of an acidic pH value. Hence, it cannot be 

excluded that the cells in the experiment of Martin Follmann were in a different 

physiological state. On the one hand, fermentation ensures optimal growth conditions. 

On the other hand, cells were exposed to an acidic pH for a longer period of time before 

CO2 stress was applied. These alterations in the experimental setup make the results less 

comparable, since the two stress parameters were applied in reverse order. However, a 

selection towards acid resistant cells might have been taken place in the fermenter 

based setup and those cells should be even more resistant against high CO2 

concentrations. This is the reason why a neutral pH during cultivation was chosen in the 

pHluorin based measurements. Observations towards a different pH homeostasis 

behaviour of pre-adapted cells were for example made in E. coli and 

Salmonella typhimurium (Foster, 1999). A pre-cultivation in acidic medium prior to 

online pHi measurements might help answering this open question.  

Nevertheless, the results presented in this study strongly argue for a remarkable 

resistance of C. glutamicum against elevated CO2 concentrations even at an acidic 

external pH value. The effective pH homeostasis after a rapid acidification was not 

constrained in the presence of 10 % CO2 (see Figure 3.28). The ambivalent effect of CO2 

on bacterial cells characterised by beneficial effects at low concentrations and a growth 
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inhibiting effect at high concentrations (Onken & Liefke, 1989) was only partly 

confirmed in C. glutamicum, since no growth inhibition by elevated CO2 concentrations 

was observed in this study. The low growth rates at elevated CO2 concentrations 

measured in growth experiments (see Figures 3.13, 3.14, 3.15 and 3.21) are most likely 

caused by the suboptimal mixing conditions in the glass vessels used for CO2-aeration. 

More detailed investigations in fermenters applying at least 30 % CO2 might reveal 

possible negative effects of CO2 on C. glutamicum. 

4.1.2 Inorganic carbon supply in C. glutamicum Δbca and the role of 

Bca in pH homeostasis 

The growth deficit of C. glutamicum Δbca shows the need for inorganic carbon and the 

essential role the carbonic anhydrase Bca plays in providing it (Mitsuhashi et al., 2004). 

The fact that elevated CO2 in the supply air is able to rescue the C. glutamicum Δbca 

mutant points out that the growth deficit is actually based on a lack of inorganic carbon. 

The results shown in this work also point towards a stronger need for Bca activity at 

lower pH values of the outer medium (see Figure 3.2). At an acidic external pH, 5 % CO2 

were no longer sufficient to restore growth. It has to be noted that at pH values lower 

than 7.4, the balance of the hydration reaction of CO2 shifts on the educt side, so 

bicarbonate is scarcely present if the pH is below 6 (Onken & Liefke, 1989) and its 

formation proceeds slowly even under neutral conditions. Hence, it seems obvious that 

bicarbonate is the actual substrate in carboxylation reactions as stated before 

(Mitsuhashi et al., 2004; Norici et al., 2002). This also explains the essentiality of Bca, 

since the enzyme strongly accelerates the hydration of CO2. As lipid membranes are 

1000-fold more permeable for CO2 compared to the negatively charged HCO3- (Price, 

2011), CO2 is the basic external source of inorganic carbon and its fast conversion to 

bicarbonate is essential to prevent a depletion of inorganic carbon via passive CO2 efflux. 

Hence, at atmospheric CO2 concentrations, Bca activity is vital to ensure sufficient 

amounts of bicarbonate, although elevation of CO2 concentration in the supply air may 

compensate for a lack of Bca to a certain extent. It was shown that bca expression is 

induced during phases of high bicarbonate demand such as exponential growth and 

lysine overproduction (Mitsuhashi et al., 2004). Above, the need for Bca activity is 

stronger at lower external pH values, which is also in agreement with the fact that 
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bicarbonate as a product of the Bca catalysed reaction is the actual substrate in 

carboxylation processes. 

However, the results regarding growth of C. glutamicum Δbca on various carbon sources 

in liquid culture are highly inconclusive. On alkaline solid medium with additional 

bicarbonate, C. glutamicum Δbca grew only with glucose and 10 % CO2 and not pyruvate 

(see Figure 3.12). Even over a wide pH range and without added bicarbonate, growth on 

glucose was observed on solid minimal medium at 10 % CO2 (see Figure 3.2). In liquid 

culture, a completely different picture emerged, since these cells only grew on pyruvate 

and 10 % CO2, while neither glucose nor maltose ensured growth although 10 % CO2 

were supplied as well (see Figures 3.14 and 3.15). This observation was unexpected for 

two reasons. First of all, growth on glucose should be possible at elevated CO2 

concentrations, since the reason for the growth deficit of C. glutamicum Δbca is actually a 

lack of inorganic carbon. Also, growth in liquid pre-cultures with BHI complex medium 

was always possible at 10 % CO2. Second, pyruvate was expected to be a less optimal 

substrate which generates a stronger need for inorganic carbon (Netzer et al., 2004). A 

constrained glucose uptake by C. glutamicum Δbca can be ruled out as a reason since the 

growth deficit occurred on maltose as well (see Figure 3.15). Glucose uptake is mediated 

by the phosphotransferase system (PTS) subunit EII exclusively (Parche et al., 2001). 

This glucose uptake system is not involved in maltose uptake (Moon et al., 2005), which 

is realised via the ABC-transporter MusEFGK2I (Henrich et al., 2013). Hence, the absence 

of glycolysis during growth on pyruvate as sole carbon source seems to be the decisive 

aspect which ensures growth on minimal medium. However, no clear explanation for 

this phenomenon can be given at this point. Since the observations were made in the 

C. glutamicum Δbca strain provided by Kyowa Hakko, further investigations using a self-

constructed C. glutamicum Δbca ATCC 13032 strain are indispensable to close this gap. 

4.1.3 Inorganic carbon supply in C. glutamicum wild type 

Since the carbonic anhydrase Bca plays a decisive role for inorganic carbon provision in 

C. glutamicum, it was assumed that overexpression of bca in C. glutamicum wild type 

might be beneficial for growth under certain circumstances. Hence, two scenarios were 

tested that were believed to represent a stronger need for inorganic carbon, since this 

condition has already been shown to induce bca expression (Mitsuhashi et al., 2004). 
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The first one was growth with a low cell density at the beginning of cultivation since the 

low metabolic activity leads to the necessity to avoid CO2 efflux and Bca mediated 

conversion to bicarbonate is crucial in this context. As shown in Figure 3.8, cells with 

and without bca overexpression showed similar growth behaviour. The observed lag-

phase was not shortened by bca overexpression. Possibly the assumption that low cell 

densities represent a low level of CO2 caused by low metabolic activity is not correct, 

which means that in fact the substrate CO2 is not a limiting factor causing the lag-phase. 

However, it has been shown that the ß-type carbonic anhydrase Can in E. coli is 

expressed especially at low growth rates and low cell densities (Merlin et al., 2003). 

Hence, inorganic carbon provision does seem to be critical under the chosen conditions, 

so the experimental setup was suitable. Another option is that Bca levels are so high in 

C. glutamicum wild type that elevated amounts of the enzyme do not lead to more 

bicarbonate in the cell. This second scenario seems more likely, since it also means that 

the availability of CO2 as a substrate is limiting and not the amount of enzyme. It has to 

be noted that an enzymatic characterisation of Bca was not possible, since the only 

described activity assay (Wilbur & Anderson, 1948) could not be applied due to 

technical limitations. Expression levels of the E. coli carbonic anhydrase Can were not 

affected by elevated CO2 levels (Merlin et al., 2003). Thus it might be possible to display 

benefits of bca overexpression at elevated CO2 concentrations in the supply air during 

cultivation at low cell densities. Nevertheless, the higher amount of CO2 might mimic 

elevated amounts of Bca, so effects of bca overexpression in C. glutamicum wild type 

remain difficult to display. 

The second approach in this context involved the use of pyruvate as sole carbon source, 

since it is assumed to be a substrate which generates a higher need for inorganic carbon 

in anaplerotic reactions (Netzer et al., 2004). Furthermore, a decisive role for a carbonic 

anhydrase in anaplerosis has been described in Chlamydomonas reinhardtii (Giordano et 

al., 2003). Hence, growth of C. glutamicum wild type with and without bca 

overexpression on pyruvate as sole carbon source was monitored. Once more, no 

differences in growth behaviour were observed (see Figure 3.9). Here again, it appears 

likely that the amount of Bca in the wild type is not limiting, so no growth benefits 

emerge from overexpression of the encoding gene. Another possibility lies in the fact 

that the potential of pyruvate to create a stronger need for inorganic carbon is 

overestimated. Although the absence of glucose creates an elevated necessity for 
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gluconeogenesis, pyruvate as sole carbon source leads to similar amounts of emerging 

CO2 compared to the substrate glucose, since CO2 from the TCA cycle is equally 

generated. The only additional CO2 generating step derived from glucose is the pentose-

phosphate cycle (Yang et al., 2005). Maybe the use of glutamate or acetate instead of a 

glycolysis product could lead to more distinct results, since both substrates are known 

to serve as sole carbon sources and are gluconeogenetic substrates (Gerstmeir et al., 

2003; Kramer et al., 1990; Netzer et al., 2004). 

Also in terms of pH homeostasis, the influence of Bca remains difficult to display. The 

results towards pH homeostasis in C. glutamicum Δbca upon acidification are 

inconclusive since both maximum shift pHi and steady state pHi are lower as in 

C. glutamicum wild type, although a lack of Bca should lead to a decelerated proton 

formation (see Figure 3.29). Since no measurements were possible with the 

complementation mutant, it cannot be excluded that the observation is specific for the 

strain provided by Kyowa Hakko and is possibly based on energetic problems of the 

mutant. Although bca overexpression seems to lead to a higher amount of protons in the 

cytoplasm of C. glutamicum wild type, causing a slightly decreased pH of the crucial 

extract (see Figure 3.7), no alterations in pH homeostasis were detected in the online 

pHi measurements (see Figure 3.30). The latter method can be regarded as more reliable 

as it displays the situation in vivo. Hence the influence of bca overexpression seems 

negligible in C. glutamicum wild type.  

Taken together, Bca activity does not seem to influence pH homeostasis in C. glutamicum 

and no optimisation of growth through bca overexpression could be displayed in this 

study. This is most likely due to the generally high amount of Bca in C. glutamicum wild 

type. While the scenario involving low cell densities seems suitable to investigate 

consequences of varying bca expression levels, it is unclear if this is true for the use of 

pyruvate as a possible anaplerotic substrate.  
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4.2 The impact of bicarbonate import via SbtAB 

4.2.1 Consequences of additional bicarbonate in C. glutamicum 

Heterologous expression of the cyanobacterial bicarbonate import system SbtAB 

restores growth of C. glutamicum Δbca at atmospheric CO2 (see Figure 3.11). Hence, the 

transporter seems to be functional in C. glutamicum and the additionally provided 

bicarbonate is sufficient to compensate the lack of Bca activity. This is also another hint 

that bicarbonate is the actual substrate for carboxylation reactions. If grown on solid 

CgXII minimal medium with additional bicarbonate and an alkaline pH, SbtAB restores 

growth of C. glutamicum Δbca not only on glucose but also on pyruvate (see Figure 3.12). 

This illustrates the high potential of SbtAB to provide inorganic carbon even on 

anaplerotic substrates such as pyruvate. However, as discussed in chapter 4.1.3, the 

elevated need for inorganic carbon during growth on pyruvate is debatable and the 

results from the solid medium could not be confirmed in liquid culture. Growth of 

C. glutamicum Δbca+SbtAB in liquid CgXII minimal medium with pyruvate as sole 

organic carbon source was rather poor (see Figure 3.13), even if additional CO2 was 

provided in the supply air. While growth rates of C. glutamicum Δbca+SbtAB at 

atmospheric CO2 and a neutral pH were about 0.25/h on glucose (see Figure 3.11), they 

only reached about 0.08/h on pyruvate under the same conditions. Interpretation of the 

results is even more difficult since C. glutamicum Δbca grew with pyruvate in liquid 

culture as discussed in chapter 4.1.2. Nevertheless, the results illustrated in Figure 3.11 

strongly argue for the potential of SbtAB to provide decisive amounts of inorganic 

carbon in C. glutamicum. Hence, the impact and possible benefits of this additionally 

provided bicarbonate were of great interest. 

The detection of the SbtB compound in Western Blot analysis (see Figure 3.10) is a proof 

for the presence of the protein, but not for a functional SbtAB complex. Thus, 

biochemical characterisation of the transport activity of SbtAB was indispensable. 

Precise activity measurements were difficult to perform in C. glutamicum, which is 

mainly caused by the fact that there was always background activity in C. glutamicum 

wild type, which made the use of C. glutamicum Δbca necessary. Based on the fact that 

the absence of urea is crucial for precise bicarbonate quantification (see chapter 3.2.3), 

cultivation in urea-free CgXII is indispensable. Since neither the negative control strain 
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C. glutamicum Δbca nor the test strain C. glutamicum Δbca+SbtAB grew without urea at 

atmospheric CO2 (see Figures 3.24.a and b), urea free measurements were impossible. 

The data gained from uptake measurements with 14C labelled bicarbonate in urea 

containing medium showed great aberrations in standard deviations (see Figure 3.22). 

Nevertheless, they show the activity of SbtAB in C. glutamicum Δbca+SbtAB leading to 

the observed restoration of growth at atmospheric CO2. 

In C. glutamicum wild type, the influence of SbtAB was more difficult to display. A 

distinct growth benefit emerged during cultivation on solid minimal medium with 

pyruvate as sole carbon source (see Figure 3.18), but this observation was not 

confirmed in liquid culture (see Figures 3.19 and 3.20) and the behaviour of 

C. glutamicum on pyruvate as sole carbon source remains difficult to interpret. In 

contrast, a slight growth benefit in liquid culture with glucose was observed at various 

pH values (see Figure 3.16). However, it has to be noted that the chosen pH was more 

decisive for growth than the presence of SbtAB. Also, the pH homeostasis capacity upon 

acidification is hardly affected by the presence of SbtAB in C. glutamicum wild type (see 

Figure 3.31). Although the buffer capacity of the cytoplasm seems to be elevated due to a 

SbtAB-derived elevation of the intracellular bicarbonate level, the steady state pHi is 

similar to that of cells without SbtAB. Thus, no long term influence of SbtAB on the 

intracellular pH is assumed. The fact that SbtAB has also no influence on the lysine yield 

in C. glutamicum DM 1933 (see Figure 3.25) is another hint towards the low impact of 

SbtAB on the physiology of C. glutamicum strains that possess the carbonic anhydrase 

Bca. Nevertheless, cultivation in a fermenter system might lead to different results here.   

To sum up, SbtAB is able to provide bicarbonate in C. glutamicum to such an extent that 

it can replace the essential carbonic anhydrase Bca if urea is provided in the cultivation 

medium. However if Bca is present, the impact of SbtAB on carbon provision, pH and 

lysine production appears to be only small. It is possible that inorganic carbon provision 

is not an aspect of the physiology of C. glutamicum that bears great potential for 

optimisation. Hence, the ability of SbtAB for strain improvement in a biotechnological 

context did not fulfil initial expectations. Nevertheless, this study presents for the first 

time the successful expression of a cyanobacterial bicarbonate importer in 

C. glutamicum. Based on these results, other import systems for inorganic carbon from 
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autotrophic organisms can be tested for their potential to improve inorganic carbon 

provision in C. glutamicum.  

4.2.2 Possible alternatives to SbtAB 

Freshwater ß-cyanobacteria like Synechocystis sp. are exposed to stronger shifts of 

inorganic carbon in their environment than marine genera like Prochlorococcus sp. 

Hence, they possess a greater variety of uptake systems for inorganic carbon (Badger et 

al., 2006). Nevertheless, they harbour bicarbonate uptake systems as well. Generally, 

five types of inorganic carbon transporters can be distinguished in cyanobacteria, 

whereas three of them are bicarbonate importers and two are CO2 uptake systems 

(Price, 2011). 

SbtA, which has been used in this study, is described as an inducible, Na+-dependent, 

high affinity bicarbonate transporter with a possible Na+/HCO3--symport function in 

Synechocystis sp. PCC 6803, which requires 1 mM Na+ for half maximal activity (Shibata 

et al., 2002). In Synechococcus PCC7942, the sbtA gene is collocated with the sbtB gene as 

well and sbtB inactivation did not inhibit SbtA activity (B. Forster and GD Price, 

unpublished). Hence, further investigations towards the function of SbtA alone might 

lead to promising results in C. glutamicum. First experiments showed growth of 

C. glutamicum Δbca equipped with a pEKEx2_SbtA plasmid on solid BHI complex 

medium. As possible alternatives, strong SbtA homologues from other ß-cyanobacteria 

(Badger & Price, 2003) could be tested in C. glutamicum as well, but this may lead to 

similar results based on similar structures and transport characteristics. 

Another possible Na+/HCO3--symporter that is not related to SbtA and might therefore 

represent a more interesting candidate is BicA. It belongs to the large ubiquitous family 

of annotated sulphate transporters and was first described in Synechococcus PCC 7002, 

but homologues can be found in most cyanobacteria (Price et al., 2004). Unlike SbtA, 

BicA is considered a low-affinity transporter. Another high-affinity bicarbonate 

transporter that serves as candidate to be tested in C. glutamicum is BCT1, an ATP 

binding cassette (ABC) transporter encoded by the cmpABCD operon, which is expressed 

under inorganic carbon limitation in Synechococcus PCC 7942 (Omata et al., 1999). 

Strong homologues are described in a variety of other species (Price et al., 2008). Based 
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on their structural and physiological differences from SbtA, BicA and BCT1 might be 

promising candidates to test their function in C. glutamicum. Nevertheless, their 

properties are difficult to predict in a heterologous system. However, they might have 

stronger impact on the physiology of C. glutamicum and may therefore provide suitable 

tools for strain improvement. 

4.2.3 A model of inorganic carbon provision 

Based on the results discussed in the previous chapters, new insights into the provision 

with inorganic carbon in C. glutamicum were gained. The initial source of inorganic 

carbon is CO2, which is present in the atmosphere (0.04 %) and is also generated by 

metabolic activity of the cells. It is able to permeate the membrane passively, so inner 

and outer concentrations are in equilibrium. At atmospheric CO2 concentrations, 

however, the carbonic anhydrase Bca is essential, since the fast enzymatic conversion of 

CO2 to HCO3- is indispensable to provide sufficient amounts of inorganic carbon for 

carboxylation reactions. This essentiality of Bca can be partly compensated by adding 

5 % CO2 to the supply air, but only at neutral or alkaline pH values. Although Bca activity 

also leads to accelerated proton formation, no influence on the pH homeostasis capacity 

could be observed. Also a persistently noxious effect of elevated CO2 concentrations in 

combination with an acidic external pH can be ruled out, since only short term 

influences on the internal pH were measured. The cyanobacterial bicarbonate uptake 

system SbtAB can be functionally expressed in C. glutamicum and is able to compensate 

for the lack of Bca activity in C. glutamicum Δbca by import of bicarbonate (HCO3-), 

which is usually provided via Bca activity. However, this only applies in the presence of 

urea in minimal medium, so CO2 derived from urease activity (Nolden et al., 2000; 

Puskas et al., 2000) is crucial in the absence of Bca as well. In C. glutamicum wild type 

and DM 1933, the impact of SbtAB on growth, pH homeostasis and lysine production is 

rather low, most probably because those strains still possess Bca activity. Figure 4.1 

displays the components involved in inorganic carbon provision in C. glutamicum. 
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Figure 4.1: Model of inorganic carbon provision in C. glutamicum. Red arrows mark the fluxes of CO2, blue arrows 
display bicarbonate (HCO3-) fluxes. SbtA: Sodium bicarbonate transporter A from Synechocystis sp. PCC 6803; SbtB: 
periplasmic localised protein SbtB, probably associated to SbtA; Bca: ß-type carbonic anhydrase; PEP: Phosphoenol-
pyruvate; Pyr: Pyruvate; TCAC: Tricarbonic acid cycle; OAA: Oxaloacetate; AA: Amino acids. 

The model illustrated in Figure 4.1 underlines the central role of the carbonic anhydrase 

Bca in carbon provision based on the importance to provide bicarbonate as a substrate 

for PEP and pyruvate carboxylations. It has to be noted that the hydration of CO2 takes 

place also without Bca activity, but proceeds much slower in this case. Nevertheless, a 

certain amount of spontaneous bicarbonate formation is necessary if SbtAB mediated 

bicarbonate import is the only source of inorganic carbon as it is the case in 

C. glutamicum Δbca+SbtAB, since the mutant shows hardly any growth in the absence of 

urea as a source of CO2. Hence, at atmospheric CO2 concentrations C. glutamicum needs 

either the carbonic anhydrase Bca or SbtAB and urea to ensure sufficient amounts of 

inorganic carbon in the cell. 
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4.3 The pH homeostasis machinery of C. glutamicum 

4.3.1 The potential and possible limitations of the established pHi 

detection method 

The Green Fluorescence Protein (GFP) (Tsien, 1998) and many of its mutant forms show 

certain fluorescence sensitivity to changing pH values and they have been widely used 

as pH indicators since their discovery (Kneen et al., 1998; Robey et al., 1998; 

Siegumfeldt et al., 1999). These pH sensitive fluorescence dyes can be separated into 

two groups. While ecliptic dyes change their intensity depending on the pH values, 

ratiometric dyes shift their excitation pattern. As described in chapter 3.3.1, ratiometric 

pHluorin (Miesenböck et al., 1998) was assumed to be a better choice than the ecliptic 

EYFP for fluorescence based pH measurements because of the unstable EYFP expression 

levels in C. glutamicum. The use of pHluorin to display the intracellular pH and dynamics 

of pH homeostasis has already been described in eukaryotes like 

Saccharomyces cerevisiae and Schizosaccharomyces pombe (Karagiannis & Young, 2001; 

Pineda Rodo et al., 2012), but also in prokaryotes like Escherichia coli, Bacillus subtilis 

and Lactococcus lactis (Martinez et al., 2012; Olsen et al., 2002). Above, a more potent 

variant showing enhanced fluorescence called pHluorin2 has been described recently 

(Mahon, 2011).  

The results in this study present for the first time the successful application of pHluorin 

in C. glutamicum. The protein can be stable and functionally expressed and the physical 

properties are comparable to those in other organisms, allowing a determination of the 

intracellular pH between pH 5.8 and 8.5, which is within a physiological range. The 

results described in chapter 3.3 show the potential of pHluorin for online pH 

measurements in C. glutamicum. Thus, pHluorin bears great potential to determine the 

intracellular pH of C. glutamicum in many other contexts and applications.  

Also the setup based on the small bioreactor system combined with the pump unit to 

apply rapid shifts of the external pH was suitable to investigate the questions in this 

study. Nevertheless it has to be noted that the culture volume of 50 ml was rather small 

and so far, no long term applications were tested. It is possible to connect the sample 

loop also to a larger fermenter unit to monitor the intracellular pH during fermentation 
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processes. This enables a wide range of applications. However, the use of longer tubes 

for the sample loop is indispensable in this case, which extends the time cells remain in 

the sample loop under anaerobic conditions. This is critical in pHi measurements, since 

there are hints towards a debased pH homeostasis under anaerobic conditions (Andrea 

Michel, unpublished). Apart from the established setup to measure the pH of 

C. glutamicum cell cultures, single cell measurements using pHluorin should be possible 

in C. glutamicum as well. 

4.3.2 The role of the respiratory chain 

The results regarding pH homeostasis of C. glutamicum wild type cells under normal 

growth conditions (see Figure 3.32) and at elevated CO2 concentrations in an acidic 

surrounding (see Figure 3.28) illustrate the effectiveness of the pH homeostasis 

machinery. The typical pattern after rapid changes of the external pH including a fast 

shift of the internal pH followed by a recovery after a few minutes has also been 

observed in pHluorin based measurements in E. coli (Martinez et al., 2012). For 

C. glutamicum, it was assumed that the two branches of terminal oxidases of the 

respiratory chain are of central importance in this context. Especially the absence of the 

more efficient bc1-aa3-supercomplex was expected to have negative effects on pH 

homeostasis. Not only should the lack of this potent proton exporter lead to a reduced 

acid tolerance, but general effects due to a disturbed energy metabolism were expected. 

Above, the C. glutamicum Δqcr mutant has been shown to exhibit severe defects in 

growth rate, biomass yield, respiration and proton-motive-force (Koch-Koerfges et al., 

2013). Hence, the results for the pH homeostasis pattern of this mutant were surprising, 

since they were hardly different from C. glutamicum wild type (see Figures 3.34.b, 3.35 

and Table 3.2). Generally, in C. glutamicum Δqcr all parameters were about 0.1 pH units 

below those of the wild type, but this is probably caused by an altered metabolism of the 

mutant leading to a slightly more acidic pH of the cytoplasm which was indeed observed 

regularly at the beginning of the measurements (see Figure 3.33). 

The wild type-like results for the C. glutamicum ΔcydAB mutant fulfilled the 

expectations, since here only the less efficient cytochrome bd1-oxidase is absent. The 

minor impact of the bd-branch has been described earlier (Bott & Niebisch, 2003). Also, 

the determined physiological parameters of this strain hardly differed from 
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C. glutamicum wild type (Koch-Koerfges et al., 2013). The assumption that C. glutamicum 

ΔcydAB may show even a better pH homeostasis than C. glutamicum wild type was based 

on the fact that this strain exports protons exclusively via the more efficient 

supercomplex. However, such an effect was not observed. 

The importance of the respiratory chain for pH homeostasis became obvious in 

measurements conducted with the DOOR strain. If no terminal oxidases are present in 

C. glutamicum, which results in an aerobic fermentative metabolism as described for the 

C. glutamicum DOOR strain (Koch-Koerfges et al., 2013), almost no pH homeostasis was 

observed (see Figures 3.33.c, 3.34.c and 3.35). Also, the intracellular pH was generally 

lower, an effect that has been observed in C. glutamicum Δqcr as well, but was even 

stronger in C. glutamicum DOOR. It is likely that the formation of organic acids like 

acetate, succinate and above all lactate (Koch-Koerfges et al., 2013) is the reason for this 

phenomenon. It has to be noted that C. glutamicum DOOR is strongly constrained in its 

growth and other physiological parameters. Hence, it cannot be ruled out that the 

severely inhibited pH homeostasis under acidic and alkaline conditions is caused by a 

generally impaired energy metabolism. A fully functional energy metabolism providing 

sufficient amounts of ATP has been shown to be crucial for efficient pH homeostasis 

(Follmann et al., 2009b; Sun et al., 2011). The respiratory chain is of such central 

importance that a constrained pH homeostasis in the C. glutamicum DOOR strain cannot 

be interpreted as proof of a direct involvement of the terminal oxidases in pH 

homeostasis. A more promising approach to shed light on this question might be 

investigation of a possible pH dependent expression of genes encoding the two branches 

of terminal oxidases. For example, upregulation of proton pumping components of the 

respiratory chain as part of acidic stress response has been described in E. coli before 

(Slonczewski et al., 2009).  

4.3.3 A possible involvement of the F(1)F(O)ATPase 

Measurements regarding the pH homeostasis capacity of the C. glutamicum ΔF1FO 

mutant (Koch-Koerfges et al., 2012) conducted in this study revealed that there are no 

differences to the pH homeostasis pattern of C. glutamicum wild type. This is in 

agreement with the fact that the process of oxidative phosphorylation via F(1)F(O)ATPase 

activity is not essential for growth of C. glutamicum, although alterations in gene 
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expression were observed (Koch-Koerfges et al., 2012). However, an involvement of 

ATPases in pH homeostasis seemed likely based on the fact that there are numerous 

hints towards pH dependent expression of ATPase encoding genes. The most obvious 

scenario is upregulation of the ATPase gene expression at alkaline conditions to increase 

the import rate of protons. Such an effect has actually been described in E. coli (Maurer 

et al., 2005) and C. glutamicum (Barriuso-Iglesias et al., 2006). This stands in 

contradiction to more recent findings arguing for a repressed ATPase gene expression 

under alkaline conditions in C. glutamicum (Follmann et al., 2009b). In the cited study, 

upregulation at an acidic pH was observed instead. This is a hint towards a possible 

“reverse” function of the F(1)F(O)ATPase of C. glutamicum under acidic conditions. Such a 

hydrolytic function of the F(1)F(O)ATPase together with upregulation of the according 

genes has been described in Streptococcus mutans, Streptococcus faecalis, Lactococcus 

lactis and Lactobacillus acidophilus (Kobayashi et al., 1986; Koebmann et al., 2000; 

Kuhnert et al., 2004; Kullen & Klaenhammer, 1999). Nevertheless, it has to be noted that 

pH homeostasis generally depends on energy consuming transport processes (Krulwich 

et al., 2011) and the need for ATP in pH homeostasis has been described (Sun et al., 

2011). Hence, any upregulation of ATPase encoding genes under acidic conditions might 

be caused by an elevated need for ATP instead of a direct involvement of the ATPase in 

proton export. The question whether the F(1)F(O)ATPase of C. glutamicum works in 

reverse under acidic conditions could not be answered in this study. Instead, the 

determined homeostasis pattern of the C. glutamicum ΔF1FO deletion mutant revealed a 

generally low impact of the F(1)F(O)ATPase on pH homeostasis in C. glutamicum. 

4.3.4 Other putative components of the pH homeostasis machinery of 

C. glutamicum 

An important aspect of pH homeostasis that needs to be explored in C. glutamicum is the 

involvement of cation/proton-antiporters. Cations are assumed to play a crucial role in 

pH stress response since they regulate proton fluxes by changing the electrochemical 

gradient. The K+(Na+)/H+-antiporter NhaP1 is essential for growth and pH homeostasis 

at acidic pH values  in Vibrio cholerae (Quinn et al., 2012). In C. glutamicum, the 

potassium channel CglK has been shown to be essential at acidic pH values (Follmann et 

al., 2009a). The involvement of Na+/H+-antiporters in alkaline stress response is widely 

spread as reviewed earlier (Padan et al., 2005), but no data are available for 
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C. glutamicum so far. Mrp-type Na+/H+-antiporters, which are typically involved in 

response to alkaline stress, were found in C. glutamicum (Follmann, 2008). Nevertheless, 

their role in pH homeostasis still needs to be explored. The setup for online pHi 

detection developed in this study provides a suitable tool to characterise pH 

homeostasis patterns of the according deletion and overexpression mutants once these 

strains are available. A model determined for Saccharomyces cerevisiae postulates an 

involvement of carbonic ahydrases in K+ homeostasis. The protons derived from its 

activity may be exported in exchange for potassium ions (Kahm et al., 2012). This 

scenario implies an indirect contribution of carbonic anhydrases to pH homeostasis, 

which could be examined by measuring the pH homeostasis capacity of C. glutamicum 

Δbca under potassium starvation. Not only K+ and Na+, but other osmolytes like proline 

and sucrose are assumed to play a role in the pH homeostasis of E. coli cells (Kitko et al., 

2010). Thus, this is another interesting aspect of pH homeostasis to be determined in 

C. glutamicum in future experiments. 
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