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Zusammenfassung  
 

Die altersbedingte Makuladegeneration (AMD) ist eine der häufigsten degenerativen 

Erkrankungen in der Netzhaut in der westlichen Welt. Es handelt sich hierbei um eine 

komplexe genetische und multifaktorielle degenerative Erkrankung, die bei einem schweren 

Verlauf zur Erblindung führen kann. Eine fehlerhafte Funktion des angeborenen 

Immunsystems führt zu einer chronischen Aktivierung von speziellen Gewebsmakrophagen, 

den Mikrogliazellen, in der Netzhaut. Diese Zellen sind in ihrer ursprünglichen Form für die 

Aufrechterhaltung der Homöostase essentiell. Eine chronische Aktivierung dieser Zellen 

führt jedoch durch ihre proinflammatorischen und neurotoxischen Eigenschaften zu einem 

schnellen Fortschreiten der degenerativen Erkrankung. Ziel vieler Studien ist es daher eine 

Therapie zu entwickeln, die neurotoxische Eigenschaften der Mikroglia hemmt, jedoch die 

Fähigkeit die Homöostase aufrechtzuerhalten erhält. Solche immunmodulatorischen 

Zielstrukturen stellen nicht nur für die AMD eine therapeutische Möglichkeit dar. Eine 

mögliche Zielstruktur hierfür ist die Modulation des Proteins, Galektin-3, welches ein ß -

Galaktose bindendes Protein ist, das in Mikrogliazellen nach Reaktivierung hochreguliert 

wird.  Auch in anderen Krankheiten, wie Alzheimer, Huntington und Parkinson, könnte eine 

Modulation von Galectin-3 zielführend sein, da dort eine erhöhte Mikrogliaaktivität und 

zugleich eine verstärkte Galektin-3 Expression festgestellt werden konnte.  

Die Ergebnisse dieser Arbeit zeigen, dass Mikroglia bei AMD Patienten ein hohes Maß an 

Galektin-3 exprimieren, welches in gesunden Menschen nur wenig detektiert werden kann. 

Mit Hilfe von molekular biologischen Expressionsanalysen konnte festgestellt werden, dass 

die Galektin-3 Expression mit der für Mikroglia spezifischen Allograft inflammatory factor-

1, (AIF-1) Expression kolokalisiert ist. Im Licht-induzierten Degenerationsmodell der 

Netzhaut, welches ein etabliertes Mausmodell der trockenen AMD darstellt, zeigen die 

Ergebnisse, das sowohl der Verlust des funktionierenden Genes für Galektin-3 (Lgals3-KO 

Mäuse) sowie auch die Inhibition mittels eines kleinen chemischen Moleküls, TD139, eine 

hemmende Wirkung auf residente Mikrogliazellen haben. Analysen zum 

Migrationsverhalten der Mikrogliazellen deuten darauf hin, dass Galectin-3 die Migration 

von Mikrogliazellen begünstigt, welches durch eine Inhibition oder einem genetischen 

Verlust reduziert werden konnte. Zudem wurden die Level proinflammatorischer Zytokine 

in der Netzhaut und dem retinalen Pigmentepithel, sowie die Degeneration der Netzhaut, 

inklusive der Photorezeptorzellschicht reduziert. 
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Zusammenfassend zeigt diese Arbeit einen Zusammenhang der Mikrogliaaktivität und der 

erhöhten Galectin-3 Expression im Gewebe bei Mäusen im Licht-induzierten 

Degenerationsmodell, sowie auch in AMD Patienten. Eine Immunmodulation von Galektin-

3 mit einem Inhibitor, TD139, stellt somit eine mögliche Zielstruktur für die Therapie 

neurodegenerativer Erkrankungen, wie AMD, dar.
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Summary 
 

Age-related macular degeneration (AMD) is one of the most common degenerative diseases 

of the retina in the western world. It is a complex genetic and multifactorial degenerative 

disease, which can lead to blindness. A dysfunction of the innate immune system leads to a 

chronic activation of tissue macrophages, microglia, in the retina. These cells are responsible 

for maintaining homeostasis in healthy tissue. However, chronic activation of these cells 

leads to rapid progression of degenerative diseases due to their pro- inflammatory and 

neurotoxic properties. The goal of many studies is to develop a therapy that inhibits the 

neurotoxic properties of microglia while maintaining their ability for homeostasis. Such 

immunomodulatory targets represent a therapeutic possibility not only for AMD. One 

possible target is the modulation of the protein, galectin-3, which is a ß-galactose binding 

protein that is upregulated in microglia after reactivation. In other diseases, such as 

Alzheimer's disease, Huntington’s disease and Parkinson's disease, modulation of galectin-

3 may also be beneficial, in these diseases increased microglia activity and galectin-3 

expression have been observed.  

The results of this work demonstrate that microglia in AMD patients express a high level of 

galectin-3, which is not the case in healthy individuals. Using molecular biological 

expression analysis, galectin-3 expression was found to be co- localized with Allograft 

inflammatory factor-1, AIF-1, expression specific for microglia. In the light induced 

degeneration model of the retina, which is an established mouse model of dry AMD, the 

results show that the deficiency of galectin-3 (Lgals3-KO) and the inhibition by a small 

chemical molecule, TD139, have an inhibitory effect on resident microglia cells. Analyses 

of the migration of microglia suggest that galectin-3 promotes microglia migration, which 

could be reduced by inhibition or genetic loss of galectin-3. In addition, the level of pro- 

inflammatory cytokines in the retina and retinal pigment epithelium was reduced, as well as 

the degeneration of the retina, including the photoreceptor cell layer. 

In conclusion, this study shows a correlation of microglia activity and increased galectin-3 

expression in tissues of mice in the light-induced degeneration model, as well as in AMD 

patients. Thus, immunomodulation of galectin-3 with an inhibitor, TD139, represents a 

potential target for the therapy of neurodegenerative diseases, such as AMD. 
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1.  Introduction 
 

1.1 The retina: structure and function 
 

One of the five sensory organs in the human body is the eye, which enables the perception 

of the environment. The eye consists of many different components that perform their own 

tasks (Giblin et al., 2016). Besides the sclera, pupil and iris, which are familiar to most 

people because they can be seen immediately, there are other parts that are very important 

for the visual ability. Most of the eye is inconspicuous, but the inner parts of the eye, such 

as the cornea, lens, aqueous humor, ciliary muscle, rectus medialis muscle, rectus lateralis 

muscle, vitreous humor, choroid, optic nerve, retinal pigment epithelium, retina and 

medullary sheath, all have specific functions and are essential for vision (Malhotra et al., 

2011). The vitreous fills the center of the eye, and its clear structure allows light to pass 

unobstructed through the transparent cornea and pupil onto the retina (Fig. 1a). The lens 

focuses the light that has entered the eye through the pupil and controls the amount of light 

transmitting to the retina.  

 

Figure 1: Anatomy of the human eye and the retina. a Schematic representation of a human 

healthy eye. Illustration from Chader et al., 2013 (Chader et al., 2013). b Schematic overview of all 

cells of the retina in homeostasis state. The mammalian retina is distributed in three cellular layers 

and two synaptic (plexiform) layers.  1: RPE; 2: outer segment; 3: inner segment; 4: outer nuclear 

layer; 5: outer plexiform layer; 6: inner nuclear layer; 7: inner plexiform layer; 8: ganglion cell layer. 

Modified from Karlstetter, Marcus et al., 2010. 
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The retina plays an important role in the perception of our environment and enables us to 

see our counterpart. It has a multilayered structure with about 55 different cell types in the 

retina, and each cell type has a different function (Masland, 2001). The retina lines, the inside 

of the eye, is covered by the sclera and the choroid (Bhutto et al., 2012; Borrelli et al., 2018). 

In order for the environment to be perceived, the cornea and lens collect light and focus it to 

the macula, the center of the retina. In the macula lies the fovea, the point of the sharpest 

vision (Chader et al., 2013). The retina, which is adjacent to the retinal pigment epithelium 

in the back of the eye, is a very light-sensitive tissue that creates an image, converts that 

image into electrical signals, and transmits those signals to the brain via the optic nerve 

(Bhutto et al., 2012; Delgado-Bonal et al., 2016). The retina is part of the central nervous 

system since it originates from the embryonic diencephalon and has an immune- privilege, 

because of the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCB) and 

blood-retinal barrier (BRB) (Galea et al., 2007; Wraith et al., 2012). The arrangement of the 

retina is structured in such a way that light must first pass through the various complex layers 

of the retina in order to transport the signal from the light-sensitive photoreceptors to the 

optic nerve (Lamb, 2016). The mammalian retina is composed of different highly specific 

cells distributed in three cellular layers and two synaptic (plexiform) layers (Godinho et al., 

2005; Hoon et al., 2014). The outermost layer of the retina is the photoreceptor layer. There 

are 5 classes of neurons in the retina: Photoreceptors, horizontal cells, bipolar cells, amacrine 

cells and retinal ganglion cells (Fig. 1b). There are two different types of photoreceptors in 

the eye, rods and cones, where the encoding of visual information begins (Ingram et al., 

2016). The perception of light energy in photoreceptors leads to changes in membrane 

potential, which alters the release of neurotransmitters. Both cell types are connected to the 

outer segment by the connecting cilium and differ in their perception of light (Fain et al., 

1973; Horst et al., 1990). Rods are very light-sensitive cells that can detect single photons 

(Fain et al., 1973). Therefore, these cells enable vision in dim light and at night. Cones 

handle the perception of bright and colored light. In the human retina, there are about 20 

times more rods than cones. However, it is striking that in the center of the sharpest vision, 

the fovea centralis, an enrichment of cones is characteristic, whereas rods are little 

represented there. At the point of the sharpest vision, there is one cone per bipolar cell and 

one ganglion cell, which is crucial for the visual function of this central point of the retina 

(Provis et al., 2013). 

Important for the visual cycle are the so-called opsins, which are enriched in the 

photoreceptor outer segments (OS). Opsins belong to the family of heptahelical 
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transmembrane proteins (G-protein coupled receptors) and are considered light-sensitive 

proteins (Fredriksson et al., 2005; Hur et al., 2002). There are two different groups of opsins; 

in cones there are mainly opsins of the photopsin group, leading to the capability of color 

vision. In rods, there are scotopsins, which enable vision in darkness (Ebrey et al., 2001). 

Absorption of a photon of an opsin pigment in rods leads to a conformational change of 

chromophore 11-cis-retinal (Chen, P. et al., 2001). The conformational change of opsins in 

turn leads to subsequent binding of intracellular G protein. Opsins, together with 

chromophores, form light-sensitive pigment molecules such as rhodopsin, which trigger 

visual signal transduction (Nickle et al., 2007; Radu et al., 2008). This signal from the outer 

plexiform layer (OPL) is transduced through the dendrites of bipolar cells and horizontal 

cells in the inner nuclear layer (IPL) (Wässle, 2004). Horizontal cells are neurons that control 

lateral interactions within the retina (Schubert et al., 2010). The bipolar cells then transmit 

the signal via their dendrites to another type of neuron, the amacrine cells; they belong to 

the interneurons, in the inner plexiform layer to the ganglion cell layer (Purves et al., 2001). 

Whereby the ganglion cells transmit the signal via their axons to the optic nerve though the 

signal reaches the brain (Dhande et al., 2014; Tian, N. et al., 2003).  

In addition to the five major groups of neurons that structure the different layers of the retina, 

the retina has other essential cells that maintain and function the retina (Masland, 2001). In 

the mammalian retina there are among others the glial cells, which include Müller glia cells, 

astroglia cells and microglia cells (Vecino et al., 2016). Müller glia cells, along with neurons, 

are the most abundant cell types in the retina. They are elongated, slightly branched cells 

that extend from the inner to the outer retina and contribute to the boundary of the retina. In 

addition to providing stability to the retina, Müller cells are also responsible for supplying 

the ganglion cells and removing excess metabolites. Müller cells are thought to have light-

conducting functions as well, allowing light to pass through unobstructed (Bringmann et al., 

2006; Newman, E. et al., 1996; Vecino et al., 2016). Microglia are probably the most 

abundant glial cells in the mammalian retina. Mainly, these cells are located in the nerve 

fiber layers and are involved in supplying neurons via blood vessels (De Hoz et al., 2016; 

Vecino et al., 2016). Mostly, microglia are directly connected to neurons, assume the fluid 

regulation of the brain and are significantly involved in the development of the blood-retinal 

barrier (Nickle et al., 2007; Vecino et al., 2016). Microglia are the smallest group of glial 

cells, accounting for approximately 20% of all glial cells. As cells of the central nervous 

system, microglia undertake phagocytosis, antigen presentation and have an impact on 
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embryonic development. They possess highly branches with which they scan their 

environment (Langmann, 2007; Silverman et al., 2018). 

 

 1.2 Age-related macular degeneration 
 

Age-related macular degeneration (AMD), the most common chronic eye disease in the 

western world, predominantly affects people over 55 years and impairs vision (Congdon et 

al., 2004). Around 50% of age-related blindness is due to AMD. Worldwide, it affects about 

170 million people (Pennington et al., 2016). First signs of the disease can be detected by 

optical coherence tomography (OCT) even before there are limitations in vision (Cicinelli et 

al., 2018). However, if both eyes are affected, there are often severe limitations in central 

vision (Coleman et al., 2008). As the name implies, this eye disease affects the macula, 

which is the point of the sharpest vision in the retina (Fig. 2). The cells in the macula affects 

the central vision, that enables face recognition and the ability to read books (Mitchell et al., 

2018). In AMD, faces are perceived more and more distorted and the ability to see colors 

and contrasts are impaired, until finally the impairment is significant that only a black spot 

can be perceived in the central field of vision (Komatsu, 2006).  

 

 

Figure 2: Perception of the different stages in AMD patients. At the beginning of AMD, early 

AMD, images/faces are often perceived distorted. In the further course, intermediate AMD, blind 

spots appear and colors are no longer recognized. The late AMD is characterized by loss of vision in 

the central area. 

There are two different forms of AMD, wet and dry AMD, but even within the forms are 

distinguished among different levels. Characteristic for dry AMD, which occurs most 
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frequently, are deposits of metabolic products also called drusen, locating directly under the 

macula. Drusen contain proteins, lipids and other cellular components (Johnson et al., 2001; 

Mullins et al., 2001). The presence of drusen alone rarely affects vision initially, is 

asymptomatic, and is common in the population (Cohen et al., 2007; Fritsche et al., 2014; 

Klein et al., 1992). In the case of AMD, these drusen become more frequent and increase in 

size during the course of the disease, leading to an undersupply of the retinal center by this 

the cells of the retina can no longer be adequately supplied (Green et al., 1985). 

Progressively, dry AMD leads to a loss of function in the macula and slowly destroys vision 

in the central visual field. This is a result of degeneration of photoreceptor cells and 

choriocapillaris, as well as loss of RPE cells (Mcleod et al., 2009). The advanced form of 

dry AMD is also known as geographic atrophy (GA), progresses very slowly, and affects 

approximately 90% of all AMD patients (Danis et al., 2015; Mcleod et al., 2009). Wet AMD 

is less common than dry AMD, but it progresses more rapidly. This form is characterized by 

choroidal neovascularization (CNV). There is pathological ingrowth of blood vessels from 

the choriocapillaris through Bruch's membrane into the subretinal space of the retina. Leaky 

blood vessels lead to accumulation of vascular fluids or hemorrhage, causing swelling and 

scarring in the retinal area, which can quickly lead to distorted vision and blind spots in the 

visual field (Colijn et al., 2017; Mcleod et al., 2009). Although both forms of AMD have a 

very different clinical presentation, it can not be ruled out that they occur bilaterally (Joachim 

et al., 2017). 

 

 

Figure 3: Fundus images of AMD patients in different stages. a Fundus image of a healthy 

macula. Fovea is marked with an arrowhead. b Fundus image of a patient in the intermediate stage 

of dry AMD. Arrowhead points to druse, arrow to RPE hyperpigmentation. c Fundus image of 

geographic atrophy (GA). Arrowheads point to GA. d Outline of neovascular AMD. Arrowheads 

indicate choroidal neovascularization. Images from Handa et al., 2019. 

 

A therapy exists so far only for the advanced stage of the wet AMD. With a timely diagnosis 

and the right therapy, the progression of the disease can be slowed or even stopped. Therapy 

options such as intravascular administration of anti-vascular endothelial growth factor A 
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(anti- VEGF-A) slow down the pathological ingrowth of blood vessels in many patients 

(Freund et al., 2015; Kozhevnikova et al., 2018). In contrast, there are no approved treatment 

options for dry AMD to date, which is why early detection to avoid risk factors is particularly 

important. Risk factors include smoking, sun exposure, UV light and diet (Armstrong et al., 

2015). These factors can be positively influenced and reduce the risk of developing AMD or 

living with a progressive form. Smoking is one of the biggest risk factors to be influenced. 

Depending on the frequency and intensity of smoking, smokers additionally increase their 

risk, as increased smoking increases oxidative stress and decreases the antioxidant response 

of immune cells. This results in smokers being up to two to three times more likely to be 

affected by AMD than non-smokers (Armstrong et al., 2015; Espinosa-Heidmann et al., 

2006; Khan et al., 2006). Excessive exposure of UV light should also be avoided, as this can 

damage not only the skin but also the retina, including the macula. A balanced healthy diet 

is also essential as well as a healthy weight, also taking supplements can affect the 

progression of AMD if micronutrients are deficient (Andriessen et al., 2016; Parekh et al., 

2009; Schmidl et al., 2015; Singh et al., 2017). Diseases such as hypertension and diabetes 

mellitus are often associated with eye diseases, including AMD. For this reason, it is 

necessary to minimize the effects of the diseases. Well-controlled patients significantly 

reduce their risk of developing eye disease (Chakravarthy et al., 2010; Chen, X. et al., 2014; 

Joslin et al., 2017). It is important to minimize these factors, as there are also some risk 

factors that cannot be controlled. These include genetic makeup, age, gender, skin and eye 

color. The genetic makeup plays a key role in the susceptibility to AMD. It is known that 

changes on the long (q) arm of chromosome 10, in the region 10q26, where the genes 

ARMS2 and HTRA1 are encoded, result in an increased risk of AMD. It is unclear whether 

both genes are related to the onset of the disease or only one of the two genes, as they are so 

close to each other that this has not yet been clearly established. These two genes are only a 

small part of the 52 known gene variations that have been linked to AMD. Most known 

genes that are related to retinal homeostasis, are involved in the formation of complement 

components, or are involved in inflammatory processes (Deangelis et al., 2017; Francis et 

al., 2009; Fritsche et al., 2016; Fritsche et al., 2008; Thakkinstian et al., 2008). Crucially, 

the regulation of the innate immune response is also controlled by the complement system. 

The innate immune response, in addition to the adaptive immune response, is designed to 

respond to organisms and substances classified as foreign antigen. This can be achieved by 

a rapid and efficient engagement of a range of soluble factors and cell types against the 

foreign bodies. Dysregulation/overreaction of this immune response leads to an excessive 



 Introduction 

 

7 
 

response of immune cells, such as microglial cells, and the complement system (Fritsche et 

al., 2014; Gupta, N. et al., 2003). With aging, the risk of developing AMD increases, 

approximately 20% of all 65- to 74- years- olds suffer from an early form of AMD. By the 

age of 75 to 84 years, 84% of these are also affected by more severe forms of AMD 

(Armstrong et al., 2015; Klein et al., 1992). This can be explained by increasing age, 

oxidative stress is increased and the function of photoreceptors and RPE cells disturbed, 

making the retina more susceptible to injury and often degeneration (Beatty et al., 2000; 

Winkler et al., 1999). Women are more likely to develop AMD than men; they have a 1.3-

fold increased risk of developing AMD. Likewise, ethnic origin plays a decisive role, as 

light-skinned people and people with blue eyes are more susceptible than dark-skinned 

people with dark eyes (Beatty et al., 2000; Winkler et al., 1999).  

 

1.3 Microglia-immune cells of the brain and retina 
 

1.3.1 Microglia in the central nervous system 
 

Microglia cells are resident immune cells of the central nervous system (CNS) and represent 

the endogenous distribution network and immune system of the brain and retina. In addition 

to their role in the immune defense of the brain, they are also essential for various 

homeostatic functions, such as the development and maintenance of functional neural 

networks. In prenatal development, microglia control development of neural progenitor cells 

in the cerebral cortex and their degradation during neurogenesis, as well as for the 

connectivity of the forebrain. Postnatal, they are responsible for the formation and 

elimination of synaptic contacts and dendritic projections (Wake et al., 2013; Wu et al., 

2015). 

The BBB normally prevents immune system cells from entering the central nervous system. 

It precisely regulates the exchange of ions, molecules and cells between the blood and brain, 

protecting the CNS from toxins and pathogens (Daneman et al., 2015). However, in case of 

blood vessel injuries and severe diseases, immune cells reach the CNS (brain and spinal 

cord). The brain and spinal cord are nevertheless protected from pathogens all the time, by 

a certain type of glial cell, the microglia, which take over the role of immune cells in the 

central nervous system (Ginhoux et al., 2010; Streit et al., 2005). These cells perform the 

same function as macrophages, which belong to the leukocytes and are also called 



 Introduction 

 

8 
 

phagocytes, in the immune system. Their task is to recognize and absorb pathogens and dead 

cells (Ajami et al., 2007; Persidsky et al., 1999).  

Initially, they were associated with phagocytes in the blood, but it has been found that they 

differ in origin and development (Kierdorf et al., 2013). Microglia develop very early in 

embryonic development from embryonic stem cells, whereas phagocytes (white blood cells) 

develop from bone marrow stem cells (Nayak et al., 2014). These cells are therefore referred 

to as a separate cell class (Kierdorf et al., 2013) and are derived from primitive yolk sac 

macrophages migrating into the brain (Ginhoux et al., 2016; Hoeffel et al., 2012). The 

precursor cells from the yolk sac pass the blood-brain barrier on embryonic day (E) 8.5- 9.5 

before the BBB is fully developed, and from E 11.5 microglia are found in the retina. (Fig. 

4) (Ginhoux et al., 2010; Li et al., 2019). After immigration, the microglia remain in the 

tissue for the rest of their lives, where they maintain the population by means of self-control 

(Hashimoto et al., 2013). However, not all microglia have the ability of self-control in the 

brain, as new microglia are produced from non-microglia precursor cells. In the retina, there 

are also only a few microglia that have the ability of expansion and renewal. Although, 

microglia from the postnatal (P) 0 time point migrate from the optic nerve into the retina and 

take over the function of previously duplicated microglia (Fig. 4) (Elmore et al., 2014; 

Huang, Y. et al., 2018). Furthermore, the development of microglia is dependent on several 

factors such as the key transcription factor of the erythroblast transformation specific (Ets) 

family, PU-Box-Binding -1 (PU.1) (Rosenbauer et al., 2007), the interferon-regulator 8 

(Irf8) (Kierdorf et al., 2013; Minten et al., 2012) and transcription factor Runt-related 

transcription factor 1 (Runx1) (Zusso et al., 2012), which influences the differentiation of 

microglia. In addition, CSF1R seems to be important for the architecture of the brain, as 

embryos from knockout (KO) mice show deficits in brain development. (Erblich et al., 

2011).  
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Figure 4: Microglia development in the mouse retina. Microglia develop in the yolk sac from 

primary yolk sac precursor cells and enter the CNS via the blood circulation and thus the brain and 

retina. First microglia are already found from E11.5 in the retina, where they organize themselves 

within the different layers of the retina. From P0 onwards, microglia migrate exclusively via the optic 

nerve. Image from Li et al., 2019. 

 

1.3.2 Resting microglia and homeostatic function  
 

In the healthy brain, there are hundreds of thousands of microglia in the retina, 5-20% of all 

glial cells are microglia and stay in a ramified form under physiological conditions 

(Langmann, 2007; Pelvig et al., 2008; Rathnasamy et al., 2019). This form is characterized 

by a small cell body and numerous small flexible branches extending in different directions. 

The cell bodies remain largely in one place, with only the branching extensions of the 

microglia moving and continuously scanning the surrounding tissue (Huang, T. et al., 2012; 

Langmann, 2007). These are flexible, and the branches move forward unless they hit a 

synapse where they linger for a while before moving on. A microglia cell controls a large 

area (Marinelli et al., 2019). Therefore, this cell type forms an effective distribution network, 

which recognizes small changes within the shortest time and tries to eliminate them. 
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During development, in the still-maturing retina, microglia are responsible for phagocytosis 

of cell debris, control developmental apoptosis, and formation of neuronal connections 

(Marín-Teva et al., 2004; Sierra et al., 2010). Moreover, microglia are not only essential in 

neuronal development and population of the retina, but also in the formation of new neuronal 

circuits (Bialas et al., 2013; Schafer et al., 2012). This is already being studied by Paolicelli 

and colleagues, showing that the development of new synapses is underdeveloped in mice 

that do not express C-X3-C Motif Chemokine Receptor 1 (fractalkine receptor) (CX3CR1) 

(Paolicelli et al., 2011). Microglia eliminates unnecessary synaptic connections. But this 

function is dependent on several factors. Furthermore, complement regulators such as 

complement component 1q (C1q) secreted by retinal ganglion cells activate the classical 

complement cascade, causing complement factor 3 (C3) to bind with complement receptor 

3 (C3aR) and trigger phagocytosis (Bialas et al., 2013; Schafer et al., 2012). It is thought to 

be associated with the orientation of primary retinal vessel growth (Provis, 2001; Schafer et 

al., 2012).  Microglia colonize the retina before vessel formation begins and are associated 

with endothelial cells at the vessel front, resulting in interactions between these cells and 

promoting vessel growth (Checchin et al., 2006; Rymo et al., 2011). Moreover, studies have 

shown that the absence of microglia has a negative effect on CNS vascularity, but can be 

remedied by replenishing microglia through intravitreal injections (Arnold et al., 2013; 

Checchin et al., 2006).  

 

Figure 5: Spatial distribution of microglia in mouse retina. a Representative cross-sections of 

mouse retina in CX3CR1GFP/+ mice. Microglia are labeled with GFP so that staining is no longer 

necessary. Microglia are located here in the IPL, OPL and in the GCL. Scale bar 50 µm. b Microglia 

morphology in retinal flat mount preparations of CX3CR1GFP/+ mice. Scale bar 50 µm. c 

Representation of a single microglia reconstructions from whole mount. Scale bar: 10 µm. Image 

from Li et al., 2019. 
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In the healthy adult retina, microglia are located in the plexiform layers (Fig. 5a) from where 

they monitor the retina. The cells are evenly distributed and do not overlap (Hume et al., 

1983; Karlstetter, M. et al., 2015). Under homeostatic conditions, microglia remain in these 

layers, display a ramified morphology (Fig. 5b, c) and exclusively move their extensions to 

scan the environment (Damani et al., 2011; Hume et al., 1983; Langmann, 2007). This 

dynamic movement serves to maintain various processes, including homeostatic regulation 

of neuronal activity, removal of cellular debris and metabolic waste products (Nimmerjahn 

et al., 2005; Wang et al., 2016). Microglia regulate cytokines, chemokines, complement 

regulators, antibodies and detect cell changes by means of their surface proteins (Karlstetter, 

M. et al., 2015; Kierdorf et al., 2013). Since there are many factors that reactivate microglia, 

it is important that mechanisms exist that regulate microglia activation. One essential 

inhibitory receptor is the microglia-specific receptor cluster of differentiation-200 receptor 

(CD200R), which retains microglia in the resting state by binding to the transmembrane 

glycoprotein cluster of differentiation-200 (CD200) (Broderick et al., 2002; Deckert et al., 

2006; Nathan et al., 2001). In addition, binding causes an inhibitory intracellular signaling 

cascade to be triggered, preventing a conformational change in microglia and the associated 

pro- inflammatory immune response (Hoek et al., 2000). Another inhibitory regulator is 

fractalkine (CX3CL1) which is released from neurons and endothelial cells and thereby 

inhibits neurotoxicity of microglia (Cardona et al., 2006). As well as binding of translocator 

protein 18 kDa (TSPO) with its endogenous ligand diazepam binding inhibitor (DBI) also 

limits microglia activity (Karlstetter, M. et al., 2014; Scholz et al., 2015a). 

 

1.3.3 Microglia in retinal damage 
 

The immune system of the retina is strictly regulated and largely isolated from the rest of the 

body. The immune privilege of the eye, created by the existing blood-retinal barrier, makes 

it difficult for pathogens and other immune cells to invade (Carson et al., 2006). If the 

surrounding tissue is injured or another type of damage is present, the innate immune system, 

microglia and complement system, of the retina responds (Chen, M. et al., 2019; Xu et al., 

2009). Importantly, microglia activation is tightly regulated and highly complex with many 

receptors mediating the signals. 

In general, these signals are divided into "Off" and "On" signals (Biber et al., 2007). "Off" 

signals favor the activation of the cell by absent substances. Here, a substance that is actually 
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present in the tissue is either reduced in concentration or no longer present. If the substrate 

is present, this conveys a signal to the microglia that it can remain inactive (Deckert et al., 

2006; Hoek et al., 2000; Karlstetter, M. et al., 2015). "On" signals are signals that were not 

there before or are suddenly present in a greatly increased concentration. Using various 

pattern recognition receptors (PRR), which includes toll-like receptors (TLR), microglia 

recognize pathogen-associated molecular patterns (PAMPs) or damage-associated 

molecular patterns (DAMPs). This leads to microglia activation and trigger an immune 

response (Hickman et al., 2013) which include cell wall components of bacteria such as 

lipopolysaccharides (Arioz et al., 2019; Orihuela et al., 2016). As well as other molecules 

that trigger chemotactic movement including adenosine triphosphate (ATP), chemokines, 

cannabinoids, and bradykinin (Badimon et al., 2020; Inoue, 2006). In addition, microglia 

possess purinergic receptors that respond to nucleotides released by neurons (Burnstock et 

al., 2011; Calovi et al., 2019; Illes et al., 2020). 

Once microglia perceive damage, they leave their site of origin and change their shape from 

ramified to amoeboid. The cells almost completely retract their extensions, become round 

cells, and begin to secrete a series of molecules (Fig. 6) (Jurgens et al., 2012). Amoeboid 

cells are flexible and can easily move around in the tissue. Microglia migrate to an injured 

site, germs or pathogens. In the case of photoreceptor damage, microglia travel to the ONL 

and subretinal space (Karlstetter, M. et al., 2015; Lew et al., 2020). At the lesion side, these 

cells can either activate and attract other cells through signaling or phagocytose dead cells, 

cellular debris, pathological protein aggregates, and bacterial and viral pathogens (Jurgens 

et al., 2012; Karlstetter, M. et al., 2015). In addition, these cells can even destroy bacteria 

and other invaders through the release of immune mediations, such as oxygen and nitrogen 

radicals and cytokines (Jurgens et al., 2012). Reactivated amoeboid microglia secrete pro-

inflammatory cytokines in large quantities. These cytokines include tumor necrosis factor 

alpha (TNF-a), interleukin 1 beta (Il-1ß), and chemokine (C-C motif) ligand 2 (Ccl2) 

(Balzano et al., 2020; Cherry et al., 2020; Scholz et al., 2015a; Swaroop et al., 2018). Ccl2 

is a chemokine that not only promotes the release of other molecules, but also activates 

microglia and attracts them to the site of damage (Ferreira et al., 2012; Hinojosa et al., 2011). 

The release of oxygen radicals from microglia leads to neuronal damage and death (Park et 

al., 2015; Simpson et al., 2020).  
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Figure 6: Microglia react to different molecules in their environment, e.g., molecules released 

by neurons. Anti-inflammatory molecules are CX3CL1, CD200, glutamate, ATP and TGF-β, which 

signal to the microglia that everything is fine and let them stay in homeostasis. In this state, microglia 

secrete TNF-α, IL-1β, IFN and BDNF, among others. In a damaged state, there is a release of ATP, 

glutamate, threat-associated molecular patterns (DAMPs), pathogen-associated molecular patterns 

(PAMPs), and amyloid-beta proteins that cause microglia to reactivate and release pro-inflammatory 

cytokines, such as IL-1β, TNF-α, IFN-γ, IL-4, ROS, NO, IL-8, and MMP. If this state persists for a 

prolonged period, it promotes toxicity, neuroinflammation and neurodegeneration. (Augusto-

Oliveira et al., 2019) 

 

In addition to their activity in maintaining retinal homeostasis, microglia are particularly 

important in aging. During aging, changes in the immune system occurs, leading to increased 

tissue stress and damage. Aging or degenerative diseases may lead to a dysregulation and 
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chronical activation of microglia. Compared to naïve microglia, aged microglia eventually 

transition from a balanced activation state to a hyperreactive state, which may persist for an 

extended period of time and cause damage (Buchanan et al., 2008; Chen, M. et al., 2019; 

Sierra et al., 2007; Xu et al., 2009). If this state persists, greater amounts of pro- 

inflammatory mediators are released, exacerbating diseases (Karlstetter, M. et al., 2015). In 

the case of AMD, activated microglia have been associated with the formation of drusen in 

the early AMD stage (Killingsworth et al., 1990). Interestingly, the drusen components 

provide a chemotactic stimulus, causing microglia to become increasingly activated and 

migrate to the site of the drusen accumulation. Therefore, in patients with geographic 

atrophy, many amoeboid microglia are also found in the granular layers and subretinal space 

(Fig. 7) (Gupta, N. et al., 2003; Penfold et al., 2001). Microglia in the ONL usually 

phagocytose apoptotic photoreceptors, but dysfunction and chronical activation also kills 

surrounding healthy but stressed photoreceptors (Zhao et al., 2015). However, 

transcriptional analysis has shown that AMD patients have elevated chemokine levels and 

an excess of complement regulators and inflammatory genes (Newman, A. M. et al., 2012).  

 

 

Figure 7: Schematic representation of microglial activity in the retina. a Under homeostatic 

conditions in retina, resident microglia mainly occupy the plexiform layers (IPL and OPL). With 
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their extensions, they scan the surrounding tissue, pick up cell debris, and secrete a variety of 

supporting mediators, including neurotrophins. b Stimuli in the other cell layers, here RPE, OS, and 

GCL, lead to activation of resident microglia. c Retinal microglia and recruited progenitor cells 

migrate to the damage site and develop into amoeboid phagocytes. RPE: retinal pigment epithelium; 

OS: outer segment; IS: inner segment; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: 

inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Image from Karlstetter et 

al., 2010 (Karlstetter, Marcus et al., 2010). 

 

1.3.4 Microglia as a therapeutic target 
 

Excessive reactivity of microglia and associated immune activation is a common 

phenomenon in neurodegenerative diseases. Few retinal diseases have an exclusively genetic 

trigger, so modulation of microglia activity could be a targeted therapy option for retinal 

diseases (Amor et al., 2014; Karlstetter, M. et al., 2015; Langmann, 2007; Scholz et al., 

2015b). Early targeted therapy that inhibits microglia activity could decrease the progression 

of some degenerative diseases. Several studies are known to deplete microglia via CSF1R 

inhibition, thereby reducing neuroinflammation in numerous retinal diseases. When 

microglia are eliminated using CSF1R inhibitor, PLX5622, fewer plaques can be detected 

in Alzheimer's disease mouse models (Spangenberg et al., 2019). Increased proliferation of 

microglia and the associated increase in pro-inflammatory cytokines were also detected in 

Parkinson's disease patients and mouse models. Inhibition of CSF1R, with GW2580, also 

shows a decrease in pro-inflammatory cytokines in mouse models (Neal et al., 2020). 

However, CSF1R inhibition is mostly specific to microglia and also affects other 

macrophages. Depletion from these cells has a major impact on homeostasis (Lei et al., 

2020) and, when inhibited during embryonic development, affects the behavior of female 

adult mice (Rosin et al., 2018). Furthermore, depletion of microglia can lead to transient 

immune deficiency and degeneration of synapses (Parkhurst et al., 2013; Wang et al., 2016). 

According to these reasons, immunomodulation of existing microglia is often targeted rather 

than microglia depletion. Microglia are attempted to be modulated in such a way that the 

immune response is reduced, but their homeostatic properties remain present. More and 

more therapeutic options are being explored, with injected molecules designed to inhibit 

activating signaling pathways or in case that signal cells return to their resting initial position 

(Akhtar-Schäfer et al., 2018; Rashid et al., 2018). Minocycline, which blocks the TLR-2 and 

TLR-4 signaling pathways, has been shown an immune inhibitory effect on microglia (Hu 
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et al., 2014; Teng et al., 2004). This drug is already used as an antibiotic in acne and arthritis 

(Garrido-Mesa et al., 2013), with the ability to cross both the BBB and the BRB (Domercq 

et al., 2004). Additionally, it has been shown to inhibit the release of pro- inflammatory 

cytokines to microglia proliferation and migration (Teng et al., 2004). While 

docosahexaenoic acid (DHA), a plasma membrane phospholipid, decreases microglia 

activity, it has been shown to significantly reduce retinal degeneration in a mouse model of 

X-linked retinoschisis (Bazan et al., 2010; Ebert et al., 2009; Karlstetter, M. et al., 2015). 

Furthermore, the administration of TSPO-ligands serves as a potential therapeutic option. 

The binding of TSPO to its ligand signals the cell that activation is not necessary and 

prevents an immune response (Karlstetter, M. et al., 2014; Wolf et al., 2020). Moreover, the 

application of exogenous Il-1β results in a reduction of microglia activation, whereby 

blocking the signaling pathway reduces the release of pro-inflammatory cytokines (François 

et al., 2013; Shi et al., 2012).  

 

1.4 Galectin-3  
 

1.4.1 Structure and localization of galectin-3  
 

Galectin-3 belongs to the group of galectins. This group is part of the protein family animal 

lectins, which are equipped by means of a highly conserved carbohydrate recognition 

domain (CRD). This CRD is specific for ß-galactose containing oligosaccharides (Barondes 

et al., 1994; Cooper, Douglas N.W. et al., 1999; Rabinovich, Gabriel A. et al., 2002). The 

CRDs usually contain 130 amino acids, which are responsible for carbohydrate bonds 

(Cooper, Douglas N. W., 2002). So far, 15 galectins are known in mammals, possessing a 

CRD. Some galectins, galectin-4, -6, -8, -9 and -12, have a second homologous CRD. There, 

both domains are separated in a single polypeptide chain only by a linker consisting of 70 

amino acids. Among the galectins that have only one CRD (galectin-1, -2, -3, -5, -7, -10, -

11, -13, -14 and -15), galectin-3 is unique in having a 120 amino acid sequence long N-

terminal region (Brinchmann et al., 2018). The N-terminal domain of galectin-3 is associated 

with the CRD, thus the only chimera is considered to be galectin in vertebrates (Fig. 8) 

(Barondes et al., 1994; Di Lella et al., 2011). Although it is usually present as a monomer, 

it can form a pentamer (oligomer) with other galectin-3 proteins in association with the N-
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terminal domain (Kasai et al., 1996). But even as a monomer, it has multivalent binding 

properties (Knibbs et al., 1993). 

 

Galectin-3 is a 29-35 kDa protein that is also known as Mac-2, εBP, RL-29, HL-29, L-34, 

LBP, or CBP-35 (De Boer et al., 2009). Human galectin-3, (LGALS3) is localized on 

chromosome 14 locus 21-22 (Raimond et al., 1997). The mouse gene (Lgals3) has the same 

structure and is 6.4 kb long (Fig. 9). The gene has six exons and five introns, of which exon 

1 and 2 encode for the 5'untranslated region (UTR) of the mRNA. Exon 3 is responsible for 

encoding the N-terminal domain and exon 4 for the CRD. (Kadrofske et al., 1998). LGALS3 

gene in humans contains several regulatory elements: five putative Sp1 binding sites (GC 

Figure 8: Schematic representation of the structure of galectins. Galectins are classified into 

three structural types: Members of the galectin family are divided into three types: 1. The prototype, 

which includes galectin-1, -2, -7, -10, -11, -11, -13 and -14. This type has a single carbohydrate 

recognition domain (CRD). 2. The tandem repeat type, to which galectin-4, -6, -8, -9 and -12 belong, 

is characterized by 2 CRDs connected by a linker. 3. The chimeric type, exhibited by only one 

galectin, galectin-3, with one CRD and one N-terminal domain. Some galectins have the ability to 

assemble into dimers or oligomers. Illustration from Sciacchitano et al. 2018 (Sciacchitano et al., 

2018) 
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boxes), five cAMP-dependent response element (CRE-motifs), four AP-1 and one AP-4-like 

site, two NF-κB-like sites, one sis-inducible (SIE)  element, and one consensus basic helix-

loop-helix  (bHLH) core sequence (Dumic et al., 2006; Kadrofske et al., 1998). It has two 

antiparallel ß-sheets consisting of five or six ß-strands. With a sequence similarity of 20-

25%, galectin-3 resembles the homodimer galectin-1 and -2 (Seetharaman et al., 1998). 

 

 

Figure 9: Gene structure of galectin-3. The mouse gene, Lgals3, is about 6.4 kb long, is 

characterized by five introns and six exons (black boxes). UTR: 5'untranslated region; WT: wild 

type. 

The ability to bind carbohydrate is also present in galectin-3. The preferred ligand of 

galectin-3 is N-acetyllactosamine (LacNAc, Galβ1,4(3)GlcNAc) (Dumic et al., 2006). 

Furthermore, galectin-3 has the ability to incorporate oligosaccharides as well as 

polylactosaminoglycans through an extended binding site (Seetharaman et al., 1998; 

Vlassara et al., 1995).  In addition, galectin-3 binds to TLR4, triggering receptor expressed 

on myeloid cells 2 (TREM2), desialylated neurons, which it opsonizes via Mer tyrosine 

kinase for phagocytosis (Puigdellívol et al., 2020). It is formed by reactivated microglia and 

it also activates microglia (feedback loop) (Puigdellívol et al., 2020; Stapleton et al., 2012). 

In adult tissues, galectin-3 expression was detected predominantly in epithelial cells and 

myeloid cells. In numerous epithelial cells, such as in numerous epithelial cells, such as:  

epithelial cells of the small and large intestine, cornea and conjunctiva, kidney, lung, thymus, 

breast and prostate (Castronovo et al., 1996; Dumic et al., 2006; Flotte et al., 1983; Gupta, 

S. K. et al., 1997; Kasper et al., 1996; Lotz et al., 1993). Moreover, galectin-3 has been 

associated with immune cells. Neutrophils, eosinophils, basophils, mast cells, Langerhans 

cells, dendritic cells, monocytes and macrophages in various tissues express galectin-3 

(Dietz et al., 2000; Flotte et al., 1983; Frigeri et al., 1993; Kasper et al., 1996; Liu et al., 

1995; Maeda et al., 2003; Saada et al., 1996; Smetana et al., 1999; Truong et al., 1993a; 
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Truong et al., 1993b; Wollenberg et al., 1993). Disease-related expression can also be 

initiated in lymphocytes, as well as in tumor cells (Danguy et al., 2002; Van Den Brûle, F. 

et al., 2002). During mouse embryogenesis, tissue and time-dependent expression was 

detected. The expression already starts at the E 4 (Poirier et al., 1993). Notochord, galectin-

3 is expressed at day E 8.5 to E 11.5 (Fowlis et al., 1995) and later in the vertebrae, ribs and 

facial bones, epidermis, endodermis, and esophagus. In addition, punctate expressions were 

detected in liver and lung, which could be associated with macrophages (Dumic et al., 2006; 

Van Den Brûle, F. A. et al., 1997). 

LGALS3 is synthesized at free ribosomes in the cytoplasm and is found in many different 

areas of the cell. It has been detected in the nucleus as well as on cell surfaces and in the 

extracellular space (Dumic et al., 2006; Krześlak et al., 2004). The exact transport away 

from the intracellular to the extracellular space has not yet been clarified, but it is known 

that this does not occur via the endoplasmic reticulum and the golgi apparatus. Since the 

protein lacks signal sequences for transfer via the golgi apparatus and the endoplasmic 

reticulum as well as for entry into the classical signaling pathway, it is not possible to 

determine the exact pathway (Menon et al., 1999). Lactose-dependent endocytosis is thought 

to facilitate transport from the extracellular space to the intracellular space (Furtak et al., 

2001). However, the transport away from the cell nucleus has also not yet been clarified. 

 

1.4.2 Galectin-3 in neurodegenerative diseases 
 

When neurons lose function or structure, this is called neurodegeneration, which is a 

pathological condition of the nervous system. This condition favors the development of 

diseases such as Alzheimer's disease, AMD, Parkinson's disease, Huntington's disease and 

amyotrophic lateral sclerosis (Chen, W. W. et al., 2016; Dorothée, 2018). The exact causes 

of neurodegeneration are not understood. Among the factors that promote neurodegenerative 

diseases are prolonged inflammatory reactions, genetic factors, mitochondrial stress and 

oxidative stress (Amor et al., 2010). Inflammatory responses are caused by noxious stimuli 

that cause activation of glial cells (astrocytes and microglia). These cells try to eliminate and 

reduce structural damage and loss of function of neurons (Amor et al., 2010). Regulation 

functions until acute inflammation becomes chronic and dysregulation and overreaction of 

glial cells leads to the development of neurodegenerative diseases (Glass et al., 2010; 

Ramírez Hernández et al., 2020). It was found that during neurodegeneration, glycan 
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expression in neurons is altered, which is why protein-glycan interactions are thought to be 

involved in the pathological condition (Espinosa et al., 2001; Ramos-Martinez et al., 2018). 

Therefore, proteins that interact with glycans are thought to have effects on 

neurodegenerative diseases. Proteins such as lectins, to which galectins also belong, interact 

with glycans (Cerliani et al., 2017; Liu et al., 2012; Rabinovich, G. A. et al., 2009). The 15 

galectins of the galectin family show different immunomodulatory functions in various 

neurodegenerative disorders, in which they act as regulators and enable the remodeling of 

damaged tissues (Burguillos et al., 2015; Starossom et al., 2012). The proteins differ in their 

affinity to bind carbohydrate and also the structure influences the ability to bind ligands (Di 

Lella et al., 2011; Rabinovich, G. A. et al., 2012). Due to the unique chimeric structure of 

galectin-3, it is known to modulate microglia and astrocytes through its lectin-glycan 

interaction, thus contributing to the maintenance of homeostasis under normal conditions 

(Dhirapong et al., 2009; Liu et al., 2010). 

The regulation of galectin-3 expression, in immune cells such as astrocytes, macrophages, 

microglia, dendritic cells, eosinophils, mast cells, Natural killer cell (NK cells), and activated 

T and B cells is not yet known. However, because the gene has five CRE motifs and two 

NF-kB-like sites, regulation is thought to be related to cAMP response element-binding 

protein (CREB) or the transcription factor NF-κB (Dumic et al., 2006; Kadrofske et al., 

1998). In chronic neurodegeneration, the release of interferon (IFN) γ promotes microglia 

activation and thus secretion of pro- inflammatory cytokines and chemokines. The strength 

of the response depends on the JAK/STAT signaling pathway and the expression of MHC 

II, CD86, and iNOS (Jeon et al., 2010; Shin, 2013). The increase in galectin-3 expression 

mediated by IFN-γ, suggests that galectin-3 is an important component of the inflammatory 

response cascade. In brain injury models in mice, ionized calcium-binding adapter molecule 

1 (Iba-1) positive cells, microglia, and glial fibrillary acidic protein (GFAP)-positive cells, 

astrocytes, could be co-stained with galectin-3. This co-expression indicates that galectin-3 

influences the development of the inflammatory response, proliferation and apoptosis 

(Burguillos et al., 2015; Sirko et al., 2015; Yan et al., 2009). Expression levels of galectin-

3 increase in glial cells with aggravated inflammatory response (Dhirapong et al., 2009). In 

Alzheimer's disease, depleting galectin-3 in the mouse model for Alzheimer's disease 

(5xFAD mice) was shown to result in a weaker microglia response. This reduced the 

amyloid-beta (Aß) load and improved the cognitive behavior of the mice. Depletion of 

galectin-3 was associated with TLR and TREM2/DAP12 signaling pathway in these models 

(Boza-Serrano et al., 2019). Detection of galectin-3 in blood serum could be associated with 



 Introduction 

 

21 
 

Parkinson's disease (Cengiz et al., 2019). In cell cultures, the absence of galectin-3 was 

shown to attenuate peripheral inflammation in Parkinson's disease (Espinosa-Oliva et al., 

2021). A proteomic study in AMD patients also shows upregulation of galectin-3 in most 

forms of AMD. Galectin-3 is most elevated in patients with advanced dry AMD (Yuan et 

al., 2010). Also, in Huntington patients and in mouse models of this disease, the level of 

galectin-3 in plasma correlates with the severity of the disease. Mice with elevated galectin-

3 shown motor impairments (Siew et al., 2019).  

 

1.4.3 Galectin-3 as a target for immunomodulation 
 

Increased expression of galectin-3 has been frequently associated with the acute course of 

neurodegenerative diseases. Therefore, galectin-3 may be important as a target for 

immunomodulation as a therapeutic target. Several studies have demonstrated that loss of 

galectin-3 reduces disease progression in neurodegenerative diseases. Furthermore, the 

study of Boza-Serrano, who investigated galectin-3 in a mouse model of Alzheimer’s 

disease, has shown that the loss of galectin-3 slows down the development of the disease 

(Boza-Serrano et al., 2019). Also, other studies showed a lower deposition of Aβ- plaques 

in this disease, the increased galectin-3 expression was associated with microglia. Galectin-

3 and Iba-1 protein staining co- localization could be detected, these signals partially 

overlapped with those of amyloid-β- plaques (Tao et al., 2020). In galectin-3 KO mice, in 

addition to the reduction of amyloid-β- plaques, an increased neprilysin concentration was 

detected (Tao et al., 2020). Neprilysin is a zinc-dependent endopeptidase that is involved in 

the degradation of amyloid-β-peptide together with other peptidases (Bayes-Genis et al., 

2016; Malfroy et al., 1978).  

Unfortunately, knockout is not a viable therapeutic option, so many studies are already using 

inhibitors that prevent the binding of free galectin-3 to its ligands. This would be a choice 

for example in diseases with desialylation of neurons. Indirectly, galectin-3 has an effect on 

the desialylation of neurons because activated microglia have sialidases activity. Galectin-3 

is not only produced by microglia but also activates them by binding to Toll-like receptor 4 

(TLR4), TREM2, desialylated neurons and opsonizing them via Mer tyrosine kinase for 

phagocytosis (Boza-Serrano et al., 2019; Burguillos et al., 2015; Caberoy et al., 2012; 

Nomura et al., 2017; Tao et al., 2020). Therefore, this means that if more galectin-3 is 

secreted, more microglia will be reactivated and initiate desialylation (Chen, H. L. et al., 
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2014; Puigdellívol et al., 2020; Shin, 2013). Desialylation can be inhibited in microglia with 

binding of activating sialic acid receptors (Siglecs) to their ligands. In wet AMD models, a 

polysialic acid ligand has been shown to inhibit microglial reactivity in the retina 

(Karlstetter, M. et al., 2017). In section 1.3.5 it was described how microglia react in AMD 

and that dysfunction of microglia can be expected to play an important role in the progression 

of AMD. Since it is possible that galectin-3 is an antagonist of the Siglec ligands, it is 

possible that a therapy with galectin-3 inhibitors can stop the desialylation and positively 

influence the course of AMD. 

Known inhibitors include belapectin (GR-MD-02), GB1107, TD139 (33DFTG), and G3-

C12 (TFA). The effect of galectin-3 inhibition has been demonstrated in several disease 

models. Moreover, the inhibitor belapectin (GR-MD-02) reduces liver fibrosis and 

hypertension in rats and has already been tested in clinical studies in non-alcoholic 

steatohepatitis (NASH) patients and patients with hypertension. (Chalasani et al., 2020). 

Unfortunately, an improvement could not be observed in NASH patients (Harrison et al., 

2016). Other studies with belapectin in combination with pembrolizumab, a PD-L1 inhibitor, 

however, yielded promising results in tumor cell apoptosis (Curti et al., 2021). Another 

promising inhibitor is TD139, a thio- digalactoside galectin-3 inhibitor that has also been 

tested in clinical trials for idiopathic pulmonary fibrosis (St-Gelais et al., 2020). This 

inhibitor also shows in mouse models that activation by galectin-3 in liver progenitor cells 

is reduced after administration of the inhibitor (Yang, F. et al., 2020). Therefore, TD139 is 

not only known for its high affinity to human galectin-3, but also for its affinity to rat and 

mouse galectin-3 (Kumar et al., 2021). In T cells, administration of TD139 reduces NK cells 

dependent-hepatitis as well as the expression of pro-inflammatory cytokines (Volarevic et 

al., 2015). Comparing the two inhibitors, GB-1107 and TD139, both show an inhibitory 

effect on cell coherence and decrease both migration and phosphorylation. Evidence is 

accumulating that galectin-3 is a histological marker for thyroid cancer. However, the lectin-

based pharmacological approach has not been well studied. In the present study, we aimed 

to investigate the therapeutic potential of novel galectin-3 inhibitors by treating thyroid 

cancer cells with different concentrations of GB1107 or TD139. However, TD139 also 

initiates apoptosis of thyroid cancer cells, which GB1107 did not show (Lee et al., 2021). 

G3-C12 is also binds specifically to the CRD of galectin-3 and showed anti-tumor-

promoting effect in nude mice (Yang, Y. et al., 2012).  
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Taken together, the results show that knockout of galectin-3, as well as modulation of the 

protein, can reduce or slow neurodegenerative diseases and thus represent a good 

immunomodulatory target. 

 

1.5  Aim of the study 

 

Microglia are immune cells of the CNS, and key factors in tissues such as the retina and 

regulate homeostasis. When microglia are reactivated, these cells promote apoptosis of 

damaged cells, such as neurons, and phagocytose cell debris so that inflammation cannot 

occur. In neurodegenerative diseases, there is often a dysregulation/overreaction of 

microglia, which accelerates disease progression and worsens disease symptoms. 

Furthermore, chronic activation of microglia in the retina favors the development of age-

related macular degeneration. Therefore, immunomodulatory targets are being investigated 

and the impact of the loss of such a target on neurodegenerative diseases is being explored.  

One promising target structure is the protein, galectin-3, which plays an important role in 

the activation of microglia. Loss or inhibition of galectin-3 has been shown to inhibit the 

microglial response and reduce the release of pro-inflammatory cytokines. Modulation or 

loss of this protein has not been adequately studied in the retina, and the mechanism behind 

it remains largely unexplained. In the present study, we investigated the effect of galectin-3 

expression on retinal degeneration in a light-induced degeneration model. This mouse model 

is an established model for the study of dry AMD, for which there is currently no potential 

treatment option. The study allows to investigate the immunomodulatory properties and the 

protective effect of galectin-3 inhibition.
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2.  Material and methods   

 

2.1  Material 

 

2.1.1 Mouse lines and husbandry 

 

Table 1: List of mouse lines used in this study 

Line Original name Genotype Background 

Lgals3-

KO 

B6.Cg-Lgals3tm1Poi/J 

Jackson laboratory 

Homozygous knockout of galectin-

3 

BALB/cJ x 

C57BL/6J 

Lgals3 

WT 

WT littermates of 

Lgals3-KO  

WT gene for galectin-3 BALB/cJ x 

C57BL/6J 

BALB/cJ BALB/cJ 

Charles River 

WT gene for galectin-3 BALB/cJ 

 

Table 2: Equipment for mouse husbandry 

Equipment Manufacturer 

Individually ventilated cages Tecniplast Greenline® 

Litter, spruce granules Rettenmaier und Söhne® FS14 

wooden sticks for gnawing Labodia 

cardboard house  Plexx®  

Chow (11 % fat, 24 % protein and 65 % 

carbohydrates) 

Lage, GER #1324 

 

 

2.1.2 Devices 

 

Table 3: List of devices 

Device Manufacturer 

Adventurer Pro balance Ohaus® 

BlueMarineTM 200 Electrophoresis unit SERVA Electrophoresis GmbH 
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Centrifuge 5415 R Eppendorf  

Centrifuge Mini Star VWR International  

Cryostat CM3050 Leica  

Explorer R Ex 124 balance Ohaus® 

HB-1000 Hybridizer UVP 

Heraeus Megafuge 40R Centrifuge Thermo Scientific 

HybEZ™ II Oven ACD bio-techne® 

Intas Gel iX20 Imager Intas  

LightCycler® 480 Instrument II Roche Applied Science 

MatrixTM Multichannel Pipette Thermo Scientific  

NanoDrop 2000 Spectrophotometer Thermo Scientific  

PeqSTAR 2x cycler Peqlab 

See-saw rocker SSL4 Stuart®  

SpectralisTM HRA+OCT Heidelberg Engineering  

Thermomixer compact Eppendorf  

Vibracell 75115 Sonicator Fisher Bioblock Scientific  

Vortex-GenieTM Scientific IndustriesTM 

Zeiss Stemi 508 Stereo microscope Zeiss 

 

2.1.3 Chemicals and reagents 

 

2.1.3.1 General Buffers and reagents 

 

Table 4: List of general buffers and reagents 

Buffer / reagents Manufacturer, Cat. No.  

DPBS (1x) Gibco, 14190 

Ethanol  Applichem, #A3678 

PBS (10x) Lonza, #51226 

RNase away Molecular Biopro., #70003 
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2.1.3.2 Chemicals and reagents for molecular biological analysis 

 

Table 5: List of chemicals and reagents for genotyping 

Chemical/ reagent  Manufacturer, Cat. No.  

Agarose Biozym, #84004 

Boric acid Sigma-Albrich, #B6768 

Ethidium bromide   

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, E9884 

GeneRuler 100 bp plus Thermo Scienttific, #SM0332 

Sodium hydroxide (NaOH) Merck, #1.06462 

Tris Roth, #4855.3 

 

Table 6: List of chemicals and reagents for in situ hybridization 

Chemical/ reagent  Manufacturer, Cat. No.  

ImmEdge® Hydrophobic Barrier Pen  ACD bio-techne®, # 310018 

Opal 520 Akoya Biosciences, PN FP1487001KT 

Opal 570 Akoya Biosciences, PN FP1488001KT 

Opal 690  Akoya Biosciences, PN FP1497001KT 

RNAscope 3-plex negative control probes ACD bio-techne®, #320871 

RNAscope 3-plex positive control probes ACD bio-techne®, #320871 

RNAscope H202 and Protease Reagents  ACD bio-techne®, #PN 322381 

RNAscope Multiplex Fluorescent 

Detection  

ACD bio-techne®, #PN 323110 

RNAscope Target Retrieval reagents  ACD bio-techne®, #322000 

TSA buffer  ACD bio-techne®, #PN 322809 

RNAscope Wash Buffer  ACD bio-techne®, #PN 310091 

 

Table 7: List of chemicals and reagents for RNA isolation 

Chemical/ reagent  Manufacturer, Cat. No.  

ß-Mercaptoethanol Sigma-Aldrich, #M-7154 

Ethanol 70% Applichem, #A2192 
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Ethidium bromide   

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, E9884 

Sodium hydroxide (NaOH) Merck, #1.06462 

Tris Roth, #4855.3 

 

2.1.3.3 Chemicals and reagents for immunhistochemical analysis 

 

Table 8 : List of chemicals and reagents for immunhistological stainings 

Chemical/ reagent  Manufacturer, Cat. No.  

Bovine Serum Albumin (BSA) Sigma-Aldrich, #A9418 

Normal donkey serum (NDS)  Linaris, #ADI-NDKS-10  

Fluorescence Mounting Medium Dako, #S3023 

Fluoromount- GTM, with Dapi Invitrogen, Thermo Fisher Scientific,  

#00-4959-52 

Milk powder  Roth, #T145.3 

Roti Histofix 4 %  Roth, #P087.4 

Sucrose  Roth, #4621.1  

Tissue- Tek Sakura, #1913602823 

Triton X-100  Sigma-Aldrich, #X100 

Tween 20 Sigma-Aldrich, #P1379 

Vectashield® HardSetTM  Mounting Medium Vectashield®, H1400 

  

2.1.3.4 Chemicals and reagents for mouse experiments 

 

Table 9: List of chemicals and reagents for anesthesia and optical coherence tomography 

Chemical/ reagent Manufacturer, Cat. No. 

Ketaset 100 mg/ml  Zoetis, PZN #12467832 

Phenylephrine 2.5 % / Tropicamide 0.5 % University Hospital Cologne 

Rompun 2 % (Xylazine)  Bayer, PZN #1320422 

Sodium Chloride 0.9 %, injection  Fresenius Kabi, PZN #06605514 
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Table 10: List of chemicals and reagents for pharmacological inhibition 

Chemical/ reagent Manufacturer, Cat. No. 

33DFTG AOBIOUS, #AOB 37408 

Dimethylsulfoxid (DMSO) Sigma-Aldrich, #D5879  

TD139  MedChem Express, #HY- 19940 

 

2.1.4 Buffers and solutions  

 

2.1.4.1 Buffers and solutions for molecular biological analysis 

 

Table 11: Recipes for buffers and solutions used for genotyping 

Buffer/solution  Chemical composition  

Agarose gel 1% 1% Agarose 

0.5 µl/ml Ethidium bromide in TBE 

Alkaline lysis buffer  25 mM NaOH 200 mM  

EDTA pH 12 in ddH2O 

Neutralization buffer  40 mM TRIS-HCl pH 5 in ddH2O  

 

Table 12: Recipes for buffers and solutions used for in situ hybridization 

Buffer/solution  Chemical composition  

RNAscope Target retrieval reagents (1x) 10x Target retrieval reagents in ddH2O 

Saline- sodium citrate (SSC) buffer 20x SSD: NaCl (M:58.4 g/mol) 175.3g- 

3M 

Sodium Citrate (M: 258g/mol) 77.4g-0.3M 

In 1 liter dH2O – pH=7 

Wash buffer (1) 20x Wash buffer in ddH2O 
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2.1.4.2 Buffers and solutions for immunohistochemically analysis 

 

Table 13: Recipes for buffers and solutions used in whole mount staining 

Buffer /solution  Chemical composition  

PBS (1x) 10x PBS in ddH2O 

PBST-X  0.3 % Triton X-100 in PBS 

Perm/ Block buffer 5 % NDS  

0.2 % BSA  

0.3 % Triton X-100 in 1x PBS 

 

Table 14: Recipes for buffers and solutions used for cryostaining 

Buffer /solution  Chemical composition  

Antibody solution 2 % BSA 

0.1 % Triton X-100 

Blotto 1 % Milk powder 

0.03 % Triton X-100 in PBS 

PBS (1x) 10x PBS in ddH2O 

 

2.1.5 Enzymes  

 

Table 15: List of enzymes for genotyping 

Enzyme  Manufacturer, Cat. No.  

Taq Polymerase  Genoxxon, #M3001 

10x Reaction buffer Genaxxon, #M3454 

 

Table 16: List of enzymes for cDNA synthesis 

Enzyme Manufacturer, Cat. No.  

RevertAit H minus Reverse Transcriptase ThermoFischer Scientific Kit # K1622 

10x Reaction buffer ThermoFischer Scientific Kit # K1622 
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2.1.6 Primer und probes 

 

Genotyping and quantitative real-time Primer were purchased from IDT (table 16 and 17). 

The probes for all the experiments were designed and produced by ACD Bio-techne®. 

 

Table 17: Genotyping primer 

Target Primer Sequence (5´-3´) Orientation 

 Lgals3_WT/Mut_f GAC TGG AAT TGC CCA TGA AC forward 

Lgals3 Lgals3_WT_r GAG GAG GGT CAA AGG GAA AG reverse 

 Lgals3_Mut_r TCG CCT TCT TGA CGA GTT CT reverse 

    

Table 18: Primer quantitative real-time PCR 

Gene Forward primer (5´-3´) Reverse primer (5´-3´) UPL 

Probe 

Atp5b GGCACAATGCAGGAAAGG TCAGCAGGCACATAGATAGCC 77 

Ccl2 CATCCACGTTGGCTCA GATCATCTTGCTGGTGAATGAGT 62 

Casp-

3 

GAGGCTGACTTCCTGTATGCTT AACCACGACCCGTCCTT 80 

Lgals3 GCCTACCCCAGTGCTCCT GGTCATAGGGCACCGTCA 18 

Il-6 GCTACCAAACTGGATATAATCAGGA CCAGGTAGCTATGGTACTCCAGAA 6 

iNos CTTTGCCACGGACGAGAC TCATTGTACTCGAGGGCTGA 13 

 

Table 19: List of probes used for in situ hybridization 

Gene Species Accession No. Target region Cat. No. 

HS-LGALS3-C1 Human NM_002306.3 53 - 995 #477839 

HS-AIF1-C3 Human NM_032955.1 8 - 468 #433128-C3 

mm-Lgals3-C1 Mouse NM_001145953.1 55 - 1045 #461471 

mm-Aif1-C3 Mouse NM_019467.2 31 - 866 # 422741-C3 

 

 

 

http://www.ncbi.nlm.nih.gov/nuccore/NM_002306.3
http://www.ncbi.nlm.nih.gov/nuccore/NM_032955.1
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2.1.7 Antibodies 

 

Table 20: List of primary and secondary antibodies used in this study 

Antibodies 

/Stains 

Species Dilution Manufacturer, Cat. No. 

Anti-Iba-1 Rabbit, Polyclonal 1:500 Wako, #019-19741 

Alexa Fluor® 488 Donkey anti-rabbit 

IgG 

1:1000 Invitrogen, #A21206 

Alexa Fluor® 647 Donkey anti-rabbit 

IgG 

1:1000 Invitrogen, #A-31573 

 

2.1.8 Kits and software 

 

Table 21: List of kits 

Kit Manufacturer, Cat. No.  

LightCycler ® 480 Probes Master Roche Applied Science, #04707494001 

RevertAid RT Kit Thermo Scientific, #K1691  

RNeasy® Micro Kit Qiagen, #74004 

RNAscope Multiplex Fluorescent Reagent 

Kit v2 

ACD  bio-techne®, #323100 

TakyonTM No ROX Probe MasterMix blue 

dTTP 

Eurogentec, #UF-NPMT-B0701 

 

Taq-S PCR Kit Genaxxon Bioscience, #M3313 

 

 

Table 22: List of software used in this study 

Software Manufacturer 

Adobe creative suite Adobe system 

EndNote 20 EndNote 

FIJI/ Image J (V2.10/1.53c) Wayne Rasband, NIH  
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GraphPad Prism 7 (V7.05) Graphpad Software, Inc. 

Heidelberg Eye Explorer (HEYEX) Heidelberg Engineering 

Intas Gel Documentation Software (V3.39) Intas Science Imaging 

LightCycler® 480 Software (V1.5.1) Roche Applied Science 

Microsoft Office 365 pro plus Microsoft Corporation 

Nanodrop 2000/2000c Software Thermo Scientific 

Zen blue 2012 (V3.1.0.00002) Zeiss 

 

2.2 Methods 

 

2.2.1  Mouse experiments 

 

2.2.1.1 Mouse husbandry 

 

Mice were housed in individually ventilated cages under specific pathogen-free (SPF) 

conditions. Maximum five adult mice were kept in one cage, equipped with litter, cotton 

wool, wooden sticks for gnawing and cardboard house. The mice are kept in a 12 h/ 12 h 

light/ dark rhythm; the temperature is 22 ± 2 °C and 45- 65 % air humidity (air exchange 

rate 8/ h). Mice were fed with animal flour and low in nitrosamine-free standard diet (1324: 

11 % fat, 24 % protein and 65 % carbohydrates) and acidified water ad libitum.  

 

2.2.1.2 Experimental mouse line 

 

B6.Cg-Lgals3tm1Poi/J mice and BALB/cJ mice, acquired at the Jackson Laboratory (Bar 

Harbor, ME, US) were crossed to B6.Cg-Lgals3tm1Poi/ BALB/cJ mice (Lgals3-KO). For the 

experiments 8-10 weeks old Lgals3tm1Poi/ BALB/cJ mice with light sensitive RPE, inactive 

tyrosine and homozygote galectin- 3 knockout and corresponding wild type mice with intact 

galectin- 3 were used. BALB/cJ WT mice were also used for inhibition studies. All tests and 

protocols were carried out according to the German animal protection agency (Landesamt 

für Natur, Umwelt und Verbraucherschutz Nordrhein- Westfalen: approval no. §81-

02.04.2018.A303).  
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2.2.1.3 Galectin-3 inhibition 

 

The pharmacological inhibitor TD139 (HY- 19940), was obtained by MedChem Express 

(NJ, US) and later von AOBIOUS (33DFTG; AOB 37408). It was dissolved in DMSO and 

stored -20°C (solved and powder). 8-10 weeks old BALB/cJ mice received daily 

intraperitoneal injections of 15 mg/kg body weight dissolved TD139. The vehicle control 

group received injections of DMSO. Injections started one day before light exposure. The 

inhibitor was incubated 10 min under shaking at 37 °C before use.  

 

2.2.1.4 Experimental design 

 

The light- induced degeneration model is a well-established mouse model (Scholz et al., 

2015b). To induce retinal degeneration in 8-10 weeks old BALB/cJ and Lgals3-KO mice, 

mice were dark adapted for 16 h before light exposure. Afterwards their pupils were dilated 

with eye drops (0.5 % tropicamide and 2.5 % phenylephrine) under dim red light and mice 

were exposed to bright white light with an intensity of 15,000 lux for 1 h respectively. The 

remaining experimental period the animals were housed under normal light conditions. 

 

2.2.1.5 Optical coherence tomography (OCT) 

 

 For image acquisition mice were anesthetized by intraperitoneal injection of Rompun (5 

mg/ kg body weight, 2 % Rompun) and Ketamine HCl (100 mg/ kg body weight) diluted in 

0.9 % NaCl. The pupils were dilated by 0.5 % tropicamide and 2.5 % phenylephrine 5- 10 

minutes before imaging with SpectralisTM HRA/OCT (Heidelberg Engineering). At day one, 

three and four post light exposure spectral-domain OCT (SD-OCT) was performed to 

analyze post light-induced the retinal thickness. To measure the retinal thickness, two 

circular rings cantered 3 and 6mm around the optic nerve were scanned. The thickness (µm) 

was calculated by the mean of four fields in each circular ring using the Heidelberg Eye 

Explorer Software. 
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2.2.2 Human donor samples 

 

Retinal donor samples were collected from volunteer registered donors and obtained from 

the Eye Bank of the center of Ophthalmology at the University of Cologne. The study was 

performed in accordance with the tenets of the Declaration of Helsinki and Medical Research 

Involving Human Subjects Act (WHO) and was approved by the local ethics committee of 

the University. 

2.2.3 Molecular biological analysis 

 

2.2.3.1 Isolation of genomic DNA for genotyping 

 

Ear biopsies, 1 to 2 mm sample, from 21-day-old mice were used for the isolation of genomic 

DNA. The isolation was performed using the HotSHOT method. Samples were incubated 

with 75 µl alkaline lysis buffer (table 11.) in thermocycler at 95°C for 15-20 min, until the 

fragments are completely submerged. Followed by 5 min on ice before 75 µl of 

neutralization buffer (table 1.) was added to stop the reaction. The container vortexed and 

centrifuged.  

 

2.2.3.2 Genotyping of Lgals3-KO 

 

The genotype of the mice was examined by PCR, primers were generated covering the 

coding region of the protein (table 17). The reverse primer for the WT variant of the gene 

binds directly upstream of the exon 2 and the translated region then corresponds to a size of 

224 bp (Fig.10). The primer designed for the knockout binds to the neomycin caste of the 

mutant. The neomycin caste replaces the region important for the gene and shortens the gene. 

Thus, the band of the mutant is only 150 bp in size and can be easily distinguished from the 

WT band on an agarose gel. The PCR is performed using the Genaxxon kit and a 

thermocycler PCR instrument. The PCR kit has a reaction volume of 25 µl and contains 50 

ng DNA. The mix is composed of 1x reaction buffer, 0.2 µM dNTPs, 1.25 U/ µl Taq S, 0.2 

µM primer each and the remaining volume ddH2O (table 22.). The PCR program starts with 

initial denaturation at 94°C for 3 min, followed by 35 cycles consisting of 30 sec 
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denaturation again at 94°C, 30 sec annealing at 50 °C and an elongation step of 30 sec at 

72°C follow. Finally, a final elongation step follows for 2 min at 72°C (table 23.). After 

cooling of the PCR product, it is applied to a 1 % agarose gel and separated by gel 

electrophoresis at 120 mV and analyzed after approximately 20- 30 min. 

 

Figure 10: Genetic background of the Lgals3-knockout mouse. Mice with C57BL/6J 

background have a neomycin cassette inserted in the gene coding for galectin-3 in the region of 

chromosome 14, whereby exons 2, 3 and 4 can no longer be transcribed and the expression of 

galectin-3 is no longer possible. 

Table 23: Recipe of galectin-3 genotyping PCR 

Reaction component Amount Concentration 

10x Reaction buffer S (15mM MgCl2) 2.5 µl 1x 

Lgals3_WT/Mut_f 0.5 µl  0.2 µM 

Lgals3_WT_r 0.5 µl 0.2 µM 

Lgals3_Mut_r 0.5 µl 0.2 µM 

dNTPs 0.5 µl 0.2 µM 

Taq S (5 U/µl) 0.25 µl 1.25 U/µl 

Genomic DNA 2 µl 50 ng 

ddH2O 18.25 µl  
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Table 24: Galectin-3 PCR temperature profile 

Step  Temperature Time 

Initial denaturation  94°C 3 min 

 Denaturation 94°C 30 sec 

35 cycles Annealing 50°C 30 sec 

 Elongation 72°C 30 sec 

Final extension  72°C 2 min 

Hold  8°C ∞ 

 

2.2.3.3 RNA isolation and reverse transcription.  

 

Total RNA was isolated from murine retina and RPE tissue using the RNeasy Micro Kit 

(Qiagen) according to the manufacturer´s instruction. RNA was quantified 

spectrophotometrically with a NanoDrop 2000. First-strand cDNA was synthesized from 

total mRNA using RevertAidTM H Minus First-strand cDNA Synthesis kit (Thermo 

Scientific). 

 

2.2.3.4 Quantitative real-time PCR 

 

Transcript levels from different genes were analyzed by quantitative real- time PCR 

performed in LightCycler® 480 II from Roche with probe based (LightCycler 480 Probe 

Master Roche) detection, according to the manufacturer’s instructions. To measure the gene 

transcription levels Atp5b, were used as housekeeping gene. Measurements were performed 

in technical duplicates, Atp5b expression was used as reference gene, and results were 

analyzed with the LightCycler 480 Software using delta delta CT threshold calculation for 

quantification.  
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2.2.3.5 In situ hybridization: RNA Scope®   

 

In situ hypridization by ACD Biotechne is a method that allows to visualize mRNA 

transcripts under the light of a microscope. This imaging technique can be used for molecular 

biology purposes. RNA Scope® ISH was performed with the RNAScope® Multiplex 

Fluorescent Reagent Kit v2, according to the information’s of the manufactures, with some 

modifications. In brief, fresh frozen ten micrometer sections were baked for 1 h at 60°C. 

After hybridization and washing according to the manufacture instructions, the mouse slides 

stays 5 min and human slides 10 min in 1x Target retrieval reagents heated on 95°C. All 

washing steps following the probe application are 5 min at room temperature (RT). The 

following probes were used for these studies: HS-LGALS3 C1, ACD 477839; HS-AIF1 C3, 

ACD 433128; Mm-Aif C3, ACD 319141; Mm-Lgals3 C1, ACD 461471. The probes were 

labeled with TSA® Plus Fluorophore cyanine 3 and Fluorescein. The sections were mounted 

in mounting medium (Dako, Fluorescence Mounting Medium). For localization of the 

galectin- 3 expression, we performed a co-immunohistochemical staining with Iba-1 

polyclonal antibody 1: 500, secondary antibody AF 647 (A-31573 invitrogen). The same 

immunohistochemistry protocol was used for this, except that all steps are carried out 

protected from light. For analysis images were taken with a Zeiss Imager.M2 equipped with 

an ApoTome.2 and quantification were performed with ImageJ. 

 

2.2.4 Immunohistological analysis 

 

2.2.4.1 Immunohistochemistry analysis of retinal and RPE flat mounts 

The analysis was done at day one, three and four days post light exposure. The mice were 

euthanized by cervical dislocation and the eyes enucleated. After fixation with 4 % Roti 

Histo fix (paraformaldehyde) for 3h at RT, retinal and RPE flat mounts were dissected from 

each other and incubated in Perm/Block buffer (table 13.) for permeabilization and blocking, 

overnight at 4°C. The flat mounts were incubated with primary antibodies diluted in 

Perm/Block buffer (table 20) for 48 h at 4°C. Subsequently, three washing steps with PBST-

X are followed by the incubation with the secondary antibody diluted in PBST-X for one 

hour (table 20). After three washing steps with PBST-X for 15 minutes follows a washing 

step overnight before the retina and RPE were mounted on a microscope slide and embedded 
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with fluorescence mounting medium (Vectorshied HardSet). Images were taken with a Zeiss 

Imager.M2 equipped with an ApoTome.2. 

 

2.2.4.2 Immunohistochemistry analysis of cryotome sections 

 

The staining of the cryostat sections was also performed on eyes that have been fixed for 3h. 

For this purpose, the fixed eyes were dehydrated in 30 % sucrose until the eyes sunk to the 

ground and afterwards embedded in Tissue-Tek. After freezing on dry ice, the eyes were cut 

in ten micrometer sections. The sections were rehydrated with 1x PBS and blocked with 

dried milk solution for 30 min (table 13). Subsequently, followed by the incubation of the 

primary antibody, diluted in antibody solution, overnight at 4°C. After three washing steps 

with 1x PBS, the secondary antibody diluted in 1x PBS was added for 1h, which is followed 

by four more washing steps for 10 min. Further, the sections were mounted in mounting 

medium plus Dapi (Fluoromount- GTM). Images were also taken with a Zeiss Imager.M2 

equipped with an ApoTome.2. 
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3  Results 

 

3.1  Microglia regulates LGALS3 expression in AMD patients 

 

It is known that the protein, galectin-3, is being secreted by microglia. Further, studies 

showed an upregulation of galectin-3 in stimulated microglia cell line (Nomura et al., 2017). 

A recent review indicated the involvement of galectin-3 in the development and 

pathogenesis of different eye diseases (Caridi et al., 2021). Under demanding conditions, the 

protein production is increased by microglia and other cells. In the research paper of Yuan 

and colleagues using proteomic data, it was shown that patients with AMD had an 

upregulated expression of galectin-3 (Yuan et al., 2010). Since it is known that other cells 

also express galectin-3, we sought to prove that this expression originated from microglial 

cells in the retina. Using in situ hybridization, the expression of mRNA transcripts in healthy 

retinas and in retinas of AMD patients can be detected and visualized. Probes labeling human 

LGALS3 and human Allograft inflammatory factor (AIF-1) were used. The LGALS3 probe 

encoded the expression of galectin-3, whereas AIF-1 is encoded the expression of the protein 

IBA-1 produced by microglia. We were able to confirm the results of the proteomic analysis. 

In healthy human retinas, only a very small amount of LGALS3 is expressed (Fig. 11a). In 

contrast, this expression was strongly upregulated in AMD patients (Fig. 11b). The co-

expression of AIF-1 and LGALS3 confirmed that in AMD microglia also take over the 

expression of LGALS3 in the retinal tissue. 
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Figure 11: LGALS3 expression in human cryotome sections from healthy donor and AMD 

patient. a An in situ hybridization shows a very low expression of LGALS3 (red) and rather a defused 

localization of AIF-1 (white) in the healthy human control. b the donor of the AMD patient, on the 

other hand, shows an upregulated expression of AIF in the nuclei and a distinct upregulation of 

LGALS3. ONL: Outer nuclear layer; INL: inner nuclear layer. Scale bar: 50 µm. 

 

3.2 Immunological effect of genetic knockout of galectin-3 in light-

induced degeneration model 
 

3.2.1  The deficiency of galectin-3 in Lgals3-KO mice reduced microglia 

migration in the ONL 
 

The mechanism of upregulation of galectin-3 and the associated reactivity in microglial cells 

is largely unexplained. To explore whether the inhibition of galectin-3 represents a 

promising treatment option for dry AMD, a light-induced model for retinal degeneration was 

performed. This light damage model mimics several features of dry AMD, including 

immune activation and apoptosis of photoreceptor cells (Grimm et al., 2000). However, light 

damage occurs when dark-adapted enriched rhodopsin is bleached by bright white light. As 

a result, neurotransmitters are secreted from damaged cells and surrounding cells are alerted. 
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Within a few days, damaged photoreceptors are phagocytosed by microglial cells and the 

retina begins to degenerate (Scholz et al., 2015b). First, the immune-related effect of the loss 

of galectin-3 in light induced degeneration model was investigated. In these mice, a 3.7 kb 

sequence was replaced by a neomycin cassette. The replaced region contains important 

coding features, including exon two, three and four (https://www.jax.org/strain/006338). 

The mice used in the first experiments were crossed with BALB/cJ mice to render this mouse 

strain sensitive to light damage. Mice on C57BL/6J background typically have methionine 

at position 450 in the RPE 65 protein, which makes these animals relatively insensitive to 

acute light damage. BALB/cJ mice have leucine-variants at this position of the RPE 65 

protein. Furthermore, BALB/cJ mice have an inactive tyrosine gene and are therefore not 

pigmented. These two genes were decisive for our backcrossing. The experiments were also 

performed with wild type (WT) littermates for comparability. Therefore, the experiments 

were performed with 8- 10 weeks old Lgals3-KO mice, which were dark adapted for 16h 

and exposed to bright white light with an intensity of 15,000 lux for 1 hour (Fig. 12a). To 

test the effect of galectin-3 deficiency on microglia migration, the microglia population was 

examined in sections of healthy naϊve Lgals3-KO and WT mice and compared with the 

microglia population one, three, and four days after light exposure. Under healthy 

conditions, without light exposure, microglia were found in the plexiform layers (OPL - 

outer plexiform layer and IPL - inner plexiform layer) and ganglion cell layer (GCL) (Fig 

12b). 

When microglia perceive a stimulus, such as a light induction, they migrate to the site of the 

lesion and change their morphology. This migration can easily be identified in cryostat 

sections labeled with the microglia and macrophages marker Iba-1 after light exposure (Fig. 

12b). Microglia in WT mice formed more branches in the nuclear layers and moved toward 

photoreceptors as early as one day after light exposure. The movement was more strongly 

induced in a time-dependent manner from one to four days after light exposure. Further, 

nuclear layers (INL- inner nuclear layer and ONL- outer nuclear layer) have been colonized 

by many Iba-1+ cells three days after light exposure and these cells appear to have changed 

their morphology. They exhibit a more rounded (amoeboid) morphology and hardly any 

filopodia were visible. In contrast, migration of Iba-1+ cells in the ONL appears to be reduced 

in Lgals3-KO mice. Quantification of the number of Iba-1+ cells in the ONL showed a 

significantly increased number of microglia in the ONL already on the first day post light 

exposure in WT mice and somewhat delayed from the third day post light exposure in 

Lgals3-KO mice. However, the number of Iba-1+ cells was significantly reduced in Lgals3-
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KO mice compared with WT mice (Fig. 12c). Next, the expression of Lgals3 in the retina 

and RPE was measured by qRT-PCR.  The expression of Lgals3 increases in a time-

dependent manner from one to four days post light exposure (Fig. 12d, e). Since the 

expression of Lgals3 was increased in the light induced degeneration model, Lgals3 could 

be a potential marker for the reactivity of microglia. 

 

Figure 12: The deficiency of galectin-3 in Lgals3-KO mice reduced migration of Iba-1+ 

microglia. a Experimental strategy of light induced degeneration model in Lgals3-KO mice and 

complementary WT littermates. b Representative images of Iba-1+ phagocyte migration into the 

ONL in light exposed Lgals3 and WT mice one, three and four days post light damage. Scale bar: 50 

µm. c Quantification of Iba-1+ cells in the ONL in time dependent fashion from one to four days post 

light exposure (WT/ Lgals3-KO n= 15 eyes) d Relative mRNA expression of Lgals3 in retina and e 

RPE analyzed by qRT-PCR. ONL: Outer nuclear layer; INL: inner nuclear layer; GCL: Ganglion 

cell layer. Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; 

* P< 0.05, ** P<0.01, *** P≤0.001. 
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3.2.2 The deficiency of galectin-3 in Lgals3-KO mice reduces retinal 

microglia reactivity 

 

The number of microglia in subretinal space and RPE correlates with the reduction of 

photoreceptor cells. Microglia in these layers are mostly amoeboid and reactivated. To 

analyze the morphology and migration of microglia in subretinal space, flat mounts were 

stained with anti- Iba-1 antibody. Here, images of retinal flat mounts from WT mice revealed 

a strong accumulation of reactive amoeboid Iba-1+ cells in the subretinal space three days 

post light exposure. In light-exposed Lgals3-KO mice, the number of Iba-1+ cells also 

increased in the subretinal space, but the number was less than the number of cells in WT 

retinas and these cells mainly exhibited a more branched morphology (Fig. 13a). 

Quantification described a significantly higher amount of Iba-1+ area in WT mice three and 

four days after light exposure, whereas the area was only very slightly increased in Lgals3-

KO mice (Fig. 13b). The area at one day post light exposure was not significantly increased 

in any mouse model. In addition, the number of Iba-1+ cells were significantly increased in 

both mouse strains, which were significantly impaired by the absence of galectin-3 (Fig. 

13c). 

Subsequently, mRNA expression of pro- inflammatory microglia markers were analyzed by 

qRT-PCR. Markers such as inducible nitric oxide synthase (iNos), interleukin (Il)- 6, caspase 

3 (Casp3) and CC- chemokine- ligand- 2 (Ccl2) were examined at all three analysis time 

points. RNA levels were normalized to Atp5b (ATP synthase), and induction was calculated 

compared with untreated healthy naïve WT mice. Normalized quantification of mRNA 

levels of iNos, Il-6 and Ccl2 showed a strong increase on the first day post light expression 

in WT mice. This expression decreased after the first day but remained significant until day 

three (Fig. 13d). The mRNA expression of iNos remained elevated on the fourth day post 

light exposure in WT mice compared to the naïve mice four days post light exposure. In 

contrast, the expression of iNos was reduced in Lgals3 mice, despite a slight increase 

compared to naϊve mice, there was no significantly increased expression. The strong increase 

of iNos in WT mice on the first day post light exposure is significantly reduced by the 

absence of galectin-3 in the Lgals3-KO mice.  

Furthermore, the expression levels of Il-6 were significantly reduced in Lgals3-KO 

compared to light exposed WT mice four and three days post light exposure. The expression 

level of Ccl2 could be attenuated significantly at day one post light damage by the lack of 
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Lgals3 in mice. In contrast, the expression level of Casp3 remained unchanged compared to 

naïve mice, regardless of the time point or mouse genotype (Fig. 13d).  

 

Figure 13: Microglia localization and morphology in retinas of Lgals3-KO and WT mice. a 

Immunofluorescence analysis of Iba-1 + cells in subretinal space of retinal flat mounts from light 

exposed Lgals3-KO and WT without light exposure, one, three and four days post light exposure. 

Scale bar: 50 µm. b Quantification of Iba1+ area in 0.045 mm² of the retina. (WT/ Lgals3-KO n= 15). 

c Number of microglia in the subretinal space. (WT/ Lgals3-KO n= 15). d Quantification of relative 

mRNA expression. iNos, Il-6, Casp3 and Ccl2 (WT/ Lgals3-KO n= 6, retinas from individual mice). 

Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, 

** P<0.01, *** P≤0.001. 

 

3.2.3 The deficiency of galectin-3 in Lgals3-KO mice reduces microglia 

reactivity in RPE 

 

We further performed an immunohistochemical staining with microglia marker Iba-1 in the 

outermost layer, the retinal pigment epithelium (RPE), flat mounts from WT and Lgals3-KO 

mice one, three and four days post light exposure (Fig. 14a). The Iba-1+ microglia 

demonstrated a more amoeboid shape in the RPE of WT mice one day post light damage but 

the Iba-1+ area did not change at this time point, in contrast the number of Iba-1+ cells was 
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slightly higher compared to naïve mice (Fig. 14b, c). The Iba-1+ area and the number of 

microglia cells were significantly increased three and four days post light exposure in WT 

mice compared to control. The number of microglia in Lgals3-KO mice is also significantly 

advanced compared to naϊve mice at day three and four post light exposure, as well as the 

Iba-1+ area four days post light exposure. Nevertheless, the reactivation of microglia could 

be attenuated by the deficiency of galectin-3 in Lgals3-KO mice (Fig. 14b, c). The 

quantification of normalized iNos, Il-6, Casp 3 and Ccl2 expression levels in the RPE 

implied a similar pattern to the levels in the retina. The highest expression of iNos, Il-6 and 

Ccl2 take place on day one post light exposure, whereas the expression of Casp3 did not 

change in our model of light- induced degeneration (Fig 14d). In the RPE, it is noticeable 

that the expression levels of all genes were reduced compared to the expression levels in the 

retina (Fig. 13d/ Fig. 14d). However, the expression of iNos, Il-6 and Ccl2 was reduced with 

deficiency of galectin-3 in Lgals3-KO mice. 

 

Figure 14: Microglia localization and morphology in RPE of Lgals3-KO mice. a Representative 

images of Iba-1+ cells in RPE from light exposed Lgals3-KO and WT mice. Scale bar: 50 µm. b 

Quantification of Iba1+ area in 0.045 mm² in the RPE. (WT/ Lgals3-KO n= 15). c Number of Iba-1+ 

cells in the RPE (WT/ Lgals3-KO n= 15). c Iba-1+ area in 0.045 mm² of the RPE. d Quantification 

of relative mRNA expression of iNos, IL-6, Casp3 and CCL2 (WT/ Lgals3-KO n= 6, RPEs from 

individual mice). Data are presented as mean ± SEM. Linear mixed model was used for statistical 

analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 
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3.2.4 Retinal degeneration is reduced in Lgals3-KO mice 

 

This light damage model mimics several features of dry AMD, including the degeneration 

of the photoreceptor cells. Thus, we performed in vivo optical coherence tomography (OCT) 

of mice to detect structural changes of the retina after light exposure in WT and Lgals3-KO 

mice (Fig. 15a). The OCT images showed clear changes in ONL reflectance in retinas of 

light- exposed animals, indicating a strong degeneration of the photoreceptor layer in 

animals with an intact galectin-3 gene (WT). The represented heat maps of WT and Lgals3-

KO mice showed degeneration of the retina (Fig. 15a). Quantification of the retinal thickness 

in all analyzed animals demonstrated a significant reduction in the outer nuclear lay was 

after light exposure on day one, three and four in WT mice, which could be rescued by the 

knockout of galectin-3 (Fig 15b). The thinning of the retina was also significant in the central 

area and there the thickness is generally a little less. Moreover, the attenuated retinal 

thickness in WT mice post light exposure was significantly reduced in Lgals3 mice at all 

measured time points. 
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Figure 15: TD139 prevents light- induced retinal degeneration. a SD-OCT was performed in 

naïve mice, one, three and four days post light-exposure to analyze changes in retinal structure. 

Represented heat maps show the average retinal thickness light exposed vehicle and TD139 treated 

mice one, three and four days post light exposure. b Quantification of the averaged thickness of the 

outer (6 mm) retina and c inner (3 mm) retina. (WT/ Lgals3-KO; naïve n= 20; 1d n= 15/19; 3d n= 

18/20; 4d n= 19/20.) Data are presented as mean ± SEM. Linear mixed model was used for statistical 

analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 
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3.3 Immunomodulatory effect by galectin-3 inhibition, via TD139, in 

light-induced degeneration model 

 

3.3.1 TD139 inhibition as a potential treatment option for dry AMD 

 

In the model of light induced degeneration, we were able to determine that the absence of 

galectin-3 reduces the degeneration. Since a knockout is out of question as a treatment 

method in human, we were looking for a suitable inhibitor of galectin-3. TD139 has already 

been tested in several studies and is therefore a potential galectin-3 inhibitor (Hirani et al., 

2021). However, to see whether TD139 has no influence on other regulatory proteins in the 

eye, we first analyzed the effect of TD139 inhibition in Lgals3-KO mice in our light- induced 

degeneration model. We performed a small study with Lgals3-KO mice that received daily 

injections of TD139 (Figure 16a). This data demonstrates that the TD139 treatment has no 

influence on the veneration of the retina in Lgals3-KO mice post light exposure (Fig. 16). 

Thus, the retinal degeneration was unaffected in TD139-treated Lgals3-KO mice, suggesting 

that TD139 binds specifically to galectin-3 in the eye and therefore TD139 is a good potential 

option to inhibit galectin-3 in further studies.  
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Figure 16: Galectin-3 inhibition via TD139 in Lgals3-KO mice. a Experimental strategy of light 

induced degeneration model in Lgals3-KO mice treated with TD139. b Quantification of the 

averaged thickness of the outer (6 mm) retina and c inner (3 mm) retina of Lgals3-KO mice with 

vehicle and TD139 treatment. (Vehicle/ TD139 naïve n= 5; 1d n= 4; 3d n= 4; 4d n=5). Data are 

presented as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, ** 

P<0.01, *** P≤0.001. 

 

3.3.2 Galectin-3 is upregulated in light induced degeneration model 

 

To investigate the expression of galectin-3 in the model of light induced degeneration, we 

performed in situ hybridization of Lgals3 (gene that is responsible for the protein gal-3) and 

Allograft inflammatory factor (Aif)-1. Iba-1 is expressed by microglia and is encoded by Aif-

1. The specificity of the Aif-1- probe was demonstrated by an in situ hybridization and 

immunohistochemical co-staining (Fig. 17). In animal models of healthy, untreated mice, 

the expression of galectin-3 was very low (Fig. 18a). To validate the results of the genetic 

loss of galectin-3 and find a potential treatment option for dry AMD, we used the chemical 

inhibitor TD139 in light- induced BALB/cJ mice. Therefore, 8- 10 weeks old BALB/cJ mice 

were dark adapted and analyzed according to the same experimental strategy as the other 
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mice before, the mice were treated with daily intraperitoneal (i.p.) injections of TD139 or 

vehicle (Fig. 18b). 

 

Figure 17: Aif-1 expression in BALB/cJ. a In situ hybridization of Aif-1 with Immunofluorescence 

staining of Iba-1 four days post light exposure. ONL: Outer nuclear layer; INL: inner nuclear layer. 

Scale bar: 50 µm. 

 

Representative images of cryotome sections from vehicle- treated mice revealed an increased 

expression of Lgals3 and Aif-1 in the sections, compared to TD139-treated mice (Fig. 18c, 

d). The pixel intensity of Lgals3, Aif-1 and the merge of both are increased in a time-

dependent fashion from one to four days post light exposure, whereas sections from TD139- 

treated mice had less Lgals3 and Aif-1, expression (Fig. 18e, f). The expression of Lgals3 

was significantly higher in vehicle group, three and four days post light exposure, compared 

to TD139-treated group. The ratio of Aif-1 and co-expression was also significantly reduced 

after inhibition of the binding potential of galectin-3. To validate the effect of the expression 

level of Lgals3 after pharmacological inhibition via TD139, the mRNA expression of Lgals3 

in the retina and RPE were quantified (Figure 19). Indeed, Lgals3 transcription levels were 

reduced in TD139-treated mice. However, the low expression of Lgals3 in control mice was 

upregulated post light exposure and could be reduced by inhibiting the binding potential of 

galectin-3 with TD 139.  
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Figure 18: Lgals3 expression in murine light-induced degeneration model. a In situ hybridization 

of Aif-1(white)  and Lgals3 (red)  in sections of naϊve mice. Scale bar: 50 µm. b Experimental design 

for light induced degeneration model and treatment strategy in BALB/cJ mice. c Expression of Aif-

1 and Lgals3 in light exposed mice one, three and four days post light damage with vehicle and d 

TD139 treatment. Scale bar: 50 µm. e Quantification of Aif-1 and Lgals3 expression in light-exposed 

BALB/cJ mice one, three and four days post light damage. f Quantification of Aif-1 and Lgals3 co-

expression using pixel intensity (Vehicle/ TD139 naïve n= 6; 1d n=5/6; 3d n= 6/5; 4d n= 7 sections). 

ONL: Outer nuclear layer; INL: inner nuclear layer; GCL: Ganglion cell layer. Data are presented as 

mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, ** P<0.01, *** 

P≤0.001. 
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Figure 19: Gene expression of galectin-3 in the a retina and b RPE in naïve mice and one, three 

and four days post light exposure. (Vehicle/ TD139 n=9; naïve n= 8 eyes) Data are presented as mean 

± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 

 

3.3.3 The inhibition of galectin-3 via TD139 prevents microglia 

migration in the retina  

 

To test the effect of the inhibition of galectin-3 by TD139 on microglia migration in the 

damaged retina, we further analyzed the localization of microglia in cryotome sections of 

naïve BALB/cJ mice and mice with light exposure and vehicle or TD139- treatment one, 

three and four days post light exposure (Fig. 20a, b). The ONL of light- exposed mice from 

vehicle- group was much thinner and demonstrate an accumulation of amoeboid shaped 

microglia. Retinal immunolabeling with the microglia marker Iba-1 demonstrate microglia 

in the nuclear layers three and four days post light exposure. BALB/cJ mice of vehicle- group 

showed Iba-1+ cells in the degenerating photoreceptor layer and subretinal space. This 

degeneration of the photoreceptor layer and migration of microglia in the ONL was much 

less detectable in retinas of TD139-treated mice. The microglia migration was comparable 

to the microglia migration in naϊve mice. The quantification of microglia in retinal cryotome 

sections displayed a reduced number of microglia in the ONL in TD139 treated mice, 

compared to vehicle-group (Fig. 20c). Thus, the treatment with TD139 prevented the 

migration of microglia to the ONL and subretinal space. 
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Figure 20: TD139 treatment dampens microglia migration in light induced degeneration. 

Representative images of Iba-1+ cells migration into the ONL in a naïve mice and b in light exposed 

mice one, three and four days post light damage with vehicle and TD139 treatment. Scale bar: 50 

µm. c Quantification of Iba-1+ cells in the ONL in time-dependent fashion from one to four days post 

light exposure (Vehicle/TD139 n= 15 sections). ONL: Outer nuclear layer; INL: inner nuclear layer; 

GCL: Ganglion cell layer. Data are presented as mean ± SEM. Linear mixed model was used for 

statistical analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 

 

3.3.4 The inhibition of galectin-3 via TD139 reduces retinal microglia 

reactivity  

 

We already showed that the lack of galectin-3 reduced the number of microglia in the 

subretinal space and the RPE. Retina and RPE flat mounts were also stained with Iba-1 in 

treated BALB/cJ mice. Images of retinal flat mounts from vehicle- treated mice revealed an 

increased number of Iba-1+ reactivated cells in the subretinal space three days post light 

exposure. The induction was more strongly after four days, whereas the amount of Iba-1+ 

cells in the retinas from TD139- treated mice was lower and these cells appeared mainly 

more ramified (Fig. 21 a- d). Moreover, TD139 treatment significantly reduced the induction 

of reactivated microglia in the subretinal space post light exposure. We next studied the 
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mRNA expression of pro- inflammatory microglia marker. Inducible iNos, Il-6, Casp3 and 

Ccl2 on three different time points. RNA levels were normalized to Atp5b (ATP synthase) 

and the induction was calculated by comparison to naïve controls. The expression levels of 

iNos, Il-6 and Ccl2 were increased in retinal tissue of light exposed mice, whereas levels of 

Casp3 did not change (Fig. 21e). One day post light exposure, the expression of iNos, Il- 6 

and Ccl2 has reached the highest level. Three days post light exposure, the expression of 

iNos is still significantly higher compared to naϊve control, but the expression is rapidly 

decreasing. From the beginning, the expression of iNos much higher in the vehicle group 

compared to TD139-treated group, so that the increase in the treated group was no longer 

significant on day four. The ratio of iNos expression between vehicle and TD139-treated 

group was only significant on day one. In addition, the Il-6 and Ccl2 expression three and 

four days post light exposure were also not increased in the same amount, TD139-injected 

mice had strongly attenuated expression levels comparable to vehicle group (Fig. 21e). 

 

 

 

Figure 21: Microglia localization and morphology in murine retinas of light exposed BALB/cJ 

mice. Immunofluorescence analysis of Iba-1 + cells in subretinal space of retinal flat mounts from a 

naïve and b light exposed BALB/cJ mice with TD139- or vehicle treatment without light exposure, 

one, three and four days post light exposure. Scale bar: 50 µm. c Quantification of Iba1+ area in 0.045 

mm² of the Retina. (Vehicle/ TD139 n= 15). d Number of Iba-1+ cells in the subretinal space. 
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(Vehicle/ TD139 n= 15). e Quantification of relative mRNA expression. iNos, Il-6, Casp3 and Ccl2 

(Vehicle/ TD139 n= 6, retinas from individual mice). Data are presented as mean ± SEM. Linear 

mixed model was used for statistical analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 

 

3.3.5 Microglia in the OPL remains uninfected by inhibition via TD139  

 

To investigate the function of the inhibitor in more detail and its influence on the structural 

changes of the microglia, the morphological changes of the OPL cells were also analyzed 

using MotiQ. Immunohistochemical staining in the OPL showed large changes after light 

damage in both the TD139-treated group and the vehicle control. The images clearly showed 

already one day after the light damage the microglia branches retract and the cells become 

rounder, similar to the subretinal space. However, there is no difference between the TD139 

and the vehicle group. During the morphological examinations with MotiQ analysis, the 

impression of the representative images was confirmed. Although the area on the first day 

post light exposure differs significantly between TD139- and vehicle-treated animals. 

However, the area remains significantly lower all the time in TD139-treated mice and 

vehicle group compared with naϊve animals. Also in the spanning outline, a small difference 

is seen one day post light exposure, but this is cancelled on day 3 post light exposure. All 

other OPL examinations are consistently significantly reduced compared to naïve mice. Not 

only the area, and the spanning outlines, but also the spanned area and the outlines. The total 

tree length and the ramification index are also lower compared to the naïve control, and 

increase again equally in both groups. This suggests that TD139 has no effect on the 

microglial cells in the OPL. 
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Figure 22: Morphological changes in OPL of BALB/cJ mice post light exposure. a 

Representative images of the OPL from naïve mice and b TD139 and vehicle treated mice. c 

Morphological analysis by MotiQ, including area (µm²), spanned area (µm²), spanned outline (µm), 

ramification index (µm), outline (µm) and total tree length (µm), in the OPL of mice post light 

exposure. (Vehicle/ TD139 naïve n= 145; 1d n=212/151; 3d n= 224/205; 4d n= 189/225 Iba-1+ cells). 

Data are presented as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, 

** P<0.01, *** P≤0.001. 

 

3.3.6 The inhibition of galectin-3 via TD139 reduces microglia reactivity 

in RPE 

 

In addition, immunohistochemical staining of Iba-1 in RPE in naïve and light damaged mice 

were performed. It could be demonstrated Iba1+ cells in an amoeboid shape from day three 
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post light damage, in vehicle and TD139-treated mice (Fig. 23a, b). The inhibition of 

galectin-3 via TD139 resulted significantly the reactivity and migration of Iba-1+ cells in 

RPE compared to vehicle group. Nevertheless, there is a significant induction of reactivated 

microglia in the RPE in TD139-treated mice three and four day post light exposure compared 

to naïve mice (Fig. 23c, d). We next analyzed the expression level of iNos, Il-6, Casp3 and 

Ccl2 in RPE. Similarly, as in the retina, expression levels of iNos, Il-6 and Casp3 increased 

in the RPE in a time- dependent fashion from one to four days post light exposure and the 

TD139 treatment reduced this expression (Fig. 23e). It is noticeable that the expression of 

iNos and Ccl2 reduced compared to the expression in the retina. Collectively, these data 

indicate that an inhibition via TD139 reduced migration of Iba-1+ microglia in the subretinal 

space and RPE and attenuated the expression of pro- inflammatory marker iNos, Il-6 and 

Ccl2. The expression level of Casp3 did not change in retina and RPE. 

 

 

 

Figure 23: Localization and morphology of microglia in the RPE of BALB/c mice.  

Representative images of Iba-1+ cells in RPE from a naïve and b light-exposed BALB/cJ mice with 

Vehicle and TD139 treatment. Scale bar: 50 µm. c Quantification of Iba1+ area in 0.045 mm² in the 

RPE (Vehicle/ TD139 n= 15). d Number of microglia in the RPE. (Vehicle/ TD139 n= 15). e 

Quantification of relative mRNA expression. iNos, Il-6, Casp3 and Ccl2 (Vehicle/TD139 n= 6, RPEs 

from individual mice). Data are presented as mean ± SEM. Linear mixed model was used for 

statistical analyses; * P< 0.05, ** P<0.01, *** P≤0.001. 
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3.3.7 TD139-treatment rescued reduction of retinal thickness post light 

exposure 

 

Subsequently, we performed in vivo optical coherence tomography (OCT) with vehicle and 

TD139- treated mice to detect structural changes of the retina post light exposure (1h, 15000 

lux) (Fig. 24a, b). Already one day post light exposure, there was a significant thinning of 

the retina in the vehicle group compared to naïve mice detectable, indicating a strong 

degeneration of the photoreceptor layer in these mice. The thinning of the retina increased 

clearly from day one to day four post light exposure. In contrast, TD139-treated mice 

displayed a normal hyperreflective photoreceptor layer similar to that of non-light-exposed 

naïve mice, one day post light exposure. But TD139- treated mice also implied an attenuated 

thickness of the retina three and four days post light exposure compared to naïve mice. In 

the outer and central area around the optic nerve (Fig. 24c, d). However, volume scans 

revealed a severe thinning of the retina, especially in the central area around the optic nerve 

head (Fig. 24d) post light exposure in vehicle-group, which was significantly reduced in the 

TD139-treated groups (Fig. 24a-d). These indicate a strong neuroprotective effect of 

galectin- 3 inhibition via TD139 in conditions of acute light damage. 
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Figure 24: TD139 prevents light- induced retinal degeneration. a Representative heat maps of 

naïve mice. Scale bar: 200 µm. b SD-OCT was performed one, three and four days post light 

exposure to analyze changes in retinal structure. Represented heat maps show the average retinal 

thickness light exposed vehicle and TD139 treated mice one, three and four days post light exposure. 

Scale bar: 200 µm. c Quantification of the averaged thickness of the inner (3 mm) retina and d outer 

(6 mm) retina. (Vehicle/ TD139 naïve n= 20; 1d n= 19/20; 3d n= 20; 4d n= 19/20.) Data are presented 

as mean ± SEM. Linear mixed model was used for statistical analyses; * P< 0.05, ** P<0.01, *** 

P≤0.001. 
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3.4 Model of galectin-3 inhibition via TD139  

 

Based on the data presented in this thesis, we described that the migration of microglia is 

initiated by galectin-3. As well as the expression of pro-inflammatory cytokines and 

degeneration of the retina. Targeting galectin-3 by gene knockout or using a specific 

galectin-3 inhibitor the reactivation of microglia is reduced. In response to a light-induced 

damage, resident microglia starts to change their morphology and migrate to the lesion site 

of the damage. The reactivated microglia cells phagocytose death photoreceptor cells and 

the degeneration of the photoreceptor layer begins. The dysregulation and chronical 

activation of microglia is responsible for phagocytoses of healthy photoreceptor cells. The 

deficiency and inhibition of galectin-3 with TD139 decreased the reactivation of microglia 

and reduced the expression of pro-inflammatory cytokines, thereby limits it the 

photoreceptor cell death (Fig. 25). 

 

 

Figure 25: Schematic representation of the retina under healthy, damaged, and inhibited 

conditions. a Schematic overview of microglia in homeostasis state, b in damaged retina and c in 

retina treated with TD139. d Represents an activated microglia cell with galectin-3 (dark blue) 

expression extra- and intracellular e demonstrate a typical microglia in light-induced degeneration 

model treated with TD139 (light blue) which bind galctin-3 and inhibits the immunoreaction caused 

by galectin-3. The mammalian retina is distributed in three cellular layers and two synaptic 

(plexiform) layers. 1: RPE; 2: outer segment; 3: inner segment; 4: outer nuclear layer; 5: outer 

plexiform layer; 6: inner nuclear layer; 7: inner plexiform layer; 8: ganglion cell layer. Modified 

from Karlstetter, Marcus et al., 2010 and Wolf et al., 2020.
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4. Discussion 

 

4.1 Galectin-3 expression in AMD 

 

The innate immune system is one of the relevant mechanisms in the development and 

progression of neurodegenerative diseases, such as age-related macular degeneration 

(AMD). Chronically activated microglia and their dysfunctional regulatory system 

contribute to neurodegenerative retinal diseases (Gupta, N. et al., 2003). Therefore, the 

regulation of the immune system, including reactivated microglia, represents promising 

target structures for new therapeutic options of AMD (Karlstetter, Marcus et al., 2010). 

Neurodegenerative diseases were often associated with increased expression of galectin-3 

(Ashraf et al., 2018; Caridi et al., 2021; Trompet et al., 2012; Yazar et al., 2021; Yip et al., 

2017). Its expression is increased in glial cells during an inflammatory response and 

regulates migration by promoting extracellular matrix adhesion and cell survival (Dhirapong 

et al., 2009; Dumic et al., 2006; Sirko et al., 2015). The exact mechanism of galectin-3 

regulation has not yet been explored and is not elucidated in this study. Since there is no 

treatment option for dry AMD available, it is essential to do research on this field. In the 

present study, we have shown that galectin-3 is increasingly expressed in the retina from 

AMD patients. In the healthy retina, galectin-3 is also expressed, but only in small amounts. 

This is in line with proteomics analyses from 2012, where it was shown that galectin-3 is 

expressed in AMD patients dependently of the developed form the patients are affected. 

However, the expression is highest in patients with geographic atrophy, which is the worst 

form of dry AMD (Fleckenstein et al., 2018; Yuan et al., 2010). Considering, AMD patients 

with choroidal neovascularization (NCV) also shown two to three times higher galectin-3 

expression in the RPE compared to donors of the same age (An et al., 2006). Another study 

investigating human and mouse brain samples of Alzheimer's disease displayed galectin-3 

expression in Iba-1+ cells around Aß- plaques (Boza-Serrano et al., 2019). Consistent with 

this, we demonstrated that the expression of galectin-3 is produced by microglia, using in 

situ hybridization of cryotome sections from an AMD patient. Remarkably, although 

galectin-3 is expressed by microglia, some neurons, particularly in the ganglion cell layer, 

also express galectin-3 (Yoo et al., 2017).  
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4.2 Immunological effect of galectin-3 deficiency and pharmacological 

inhibition on light-induced degeneration 
 

In this study, the function of galectin-3 was investigated in the light-induced degeneration 

model of the retina. This model is an established animal model for dry AMD because it 

reflects different points of AMD (Grimm et al., 2000; Wenzel et al., 2005). In the light-

induced degeneration model in mice, as in human AMD, a reactivity of microglia in the ONL 

and subretinal space can be observed as well as the death of photoreceptors. (Grimm et al., 

2000).  In many studies this model has already been applied and the comparability is given 

(Scholz et al., 2015b; Wenzel et al., 2005). Nevertheless, there are clear differences to the 

disease in humans, which differ in the formation of a macula and drusen in comparison to 

mice. In the present study, the effects of genetic deficiency of galectin-3 and the 

pharmacologic inhibition of this protein were investigated. The microglia reactivation is 

dependent on various factors (Biber et al., 2007; Chen, M. et al., 2019; Hickman et al., 2013; 

Xu et al., 2009). Photoreceptor cell degeneration is promoted by dysregulated and chronical 

activated microglia. Photoreceptors are often stressed by dying cells in their immediate 

environment and microglia phagocytose the stressed but healthy photoreceptors (Zhao et al., 

2015). It has been reported that microglia increase galectin-3 expression, particularly under 

stressful conditions (Lalancette-Hébert et al., 2012). Therefore, microglia were stimulated 

in cell culture and shown strong gene expression and secretion of galectin-3 (Cockram et al., 

2019). This could also be demonstrated in mouse models (Siew et al., 2019; Yip et al., 2017). 

Using the mouse model of light-induced retinal degeneration, we also found an increase in 

gene expression of galectin-3 in WT mice after light exposure.  

Here, two mouse lines were used, the first experiments were performed with galectin-3 

knockout (Lgals3-KO) mice. Using this mouse line, we were able to determine the influence 

of a loss of galectin-3 in mice in our model of dry AMD. Furthermore, it is investigated that 

galectin-3 deficiency in the whole body of the animals shows some differences between 

Lgals3-KO and WT mice. On the one hand, there is the assumption that galectin-3 deficient 

animals be obese (Pang et al., 2013; Pejnovic et al., 2013). This could cause an increased 

light damage in our light induced degeneration model, because obesity is a risk for a more 

severe progression of AMD (Fritsche et al., 2014; Parekh et al., 2009). On the other hand, 

studies show that weight gain is reduced in galectin-3 deficient animals compared to WT 

mice (Pejnovic et al., 2013). However, galectin-3 is also secreted more in mouse models 

with a high fat diet (Yilmaz et al., 2015). Another important point is that galectin-3 plays an 
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essential role of the immune system and controls many functions of immune cells. It is 

essential for cell-cell and cell-matrix interaction (Delacour et al., 2008; Jiang et al., 2014). 

Furthermore, it is involved in cell growth, proliferation, differentiation and inflammatory 

processes (Nakahara et al., 2005; Panjwani, 2014; Ruvolo, 2016; Sciacchitano et al., 2018). 

In the second part of the experiment, we were able to investigate a promising inhibitor 

targeting galectin-3, which could be administered directly in case of disease. Galectin-3 is 

defined as a target molecule for various diseases (Burguillos et al., 2015; Dhirapong et al., 

2009) and new immunomodulatory molecules against galectin-3 were constantly being 

developed. Other studies are crucial to the development of such immunomodulatory 

inhibitors against galectin-3. The inhibition of galectin-3 is already described to reduced 

fibrosis in the lung and decreases cardiac function in the doxorubicin (DOX)-induced cardiac 

function model in rats (Hirani et al., 2021; Mackinnon et al., 2012; Tian, Y. et al., 2020). 

There are a several galectin-3 inhibitors identified. Some of these inhibitors are already in 

clinical trials (Chalasani et al., 2020; Curti et al., 2021; Harrison et al., 2016; St-Gelais et 

al., 2020). TD139, which binds to the CRD of the galectin-3 protein and is in clinical trial 

for the treatment of idiopathic pulmonary fibrosis, is one of these promising candidates 

(Chan et al., 2018). Additionally, it is described that TD139 binds mouse galectin-3 (Kumar 

et al., 2021), which leads to the decision to perform our experiments with this inhibitor. 

In this study, galectin-3-deficient (Lgals3-KO) mice and those with pharmacological 

inhibition of the protein were exposed to a bright white light with an intensity of 15,000 lux. 

This allowed us to trigger an immune response very similar to dry AMD (Grimm et al., 

2000; Scholz et al., 2015b). In response to this light, microglia migrate to the nucleolar layers 

of the retina and the RPE (Karlstetter, M. et al., 2015; Langmann, 2007; Nowak, 2006; 

Scholz et al., 2015b). The effect of the loss of galectin-3 in Lgals3-KO mice already led to 

a reduction of the immune response of the microglia in previous studies (Yin et al., 2020). 

The deficiency of galectin-3 may reduce the number of proliferating microglia cells in the 

ischemic brain (Lalancette-Hébert et al., 2012) and reduces the Alzheimer’s disease 

phenotype by making galectin-3 responsible for the reactivity of microglia in Aß plaques 

(Boza-Serrano et al., 2019). By the absence or inhibition of galectin-3, we demonstrated that 

microglia reactivity and migration in the lesion area of the retina and RPE was significantly 

decreased post light exposure compared to WT and vehicle treated mice. Nevertheless, 

microglia continue to migrate in the subretinal space and RPE, and the migration is not 

completely stopped. Microglia not only respond to galectin-3 secreted by themselves, the 

activation of microglia is very complex and is influenced by many different components.  
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Membrane associated and cytosolic receptors interacts with classes of PAMPs or DAMPs in 

the environment of microglia and promote the reactivation (Colton, 2009; Lively et al., 2013; 

Luo et al., 2012). One of the prominent pathways to induce a microglia response is probably 

the signal pathway of TLR-4 and Nf-κB. In cell culture experiments, BV-2 microglia cells 

were stimulated with PBS and microglia directly starts with inflammatory response (Meng 

et al., 2020). This stimulation leads to activate the Nf-κB- pathway (Bao et al., 2019). It is 

known that galectin-3 as a ligand of TLR-4 influences the activation of the cells via the Nf-

κB-pathway (Zhou et al., 2018). However, galectin-3 is not the only ligand of TLR-4 and 

reactivation of microglia still occurs (Eisenstein, 2019; Zusso et al., 2019). Interestingly, a 

study with primary microglia showed that knockdown of galectin-3 led to an almost 

complete transformation of microglia morphology from an amoeboid to a branched state 

(Reichert et al., 2019). 

Surprisingly, in our mouse model, even a daily intraperitoneal injection of this inhibitor leads 

to reduced migration of microglia. Previously, it was only shown that systemic inhibition 

affects galectin-3 binding in the liver region (Yu et al., 2021). In human tissue studies, the 

application is via the medium directly to the tissue (Shochet et al., 2020). An injection 

straight into the eye would possibly result in an even better effect. Due to the solubility of 

the inhibitor TD139, dissolved in DMSO, it is not possible. However, one possibility would 

be to try another inhibitor (GR-MD-02) which is soluble in water (Chalasani et al., 2020) 

and has so far only been tested in other diseases, such as NASH (Harrison et al., 2016), to 

investigate a local effect. 

Reactivation of microglia not only leads to migration and morphological change of these 

cells. The production of pro-inflammatory cytokines and chemokines begins with 

reactivation more strongly (Scholz et al., 2015a; Yoshimura et al., 2009). According to 

previous studies, we have shown that the production of pro-inflammatory cytokines was 

reduced in galectin-3 deficient mice (Lgals3-KO). Studies have shown that galectin-3 

increases oxidative stress and pro-inflammatory cytokine production in cell culture 

experiments (Yin et al., 2020). This also confirms treatments with galectin-3 resulting in 

increased cytokine secretion of Tnf-α, Il- 1ß, Il-6, and Inf-γ (Jeon et al., 2010; Lalancette-

Hébert et al., 2012). Consistent with this, other studies reported that epithelial cell-associated 

galectin-3 activates dendritic cells to produce Tnf-α and Il-6, resulting in the increase of the 

expression of activation markers (Schroeder et al., 2020) and induces the expression of 

JAK/STAT1 and other (Nita-Lazar et al., 2015). In AMD, increased microglia activity is 
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associated with faster disease progression (Wolf et al., 2020). Cytokine expression of the 

pro inflammatory markers iNos, Il-6, and Ccl2 is reduced in galectin-3 deficient mice 

compared with WT mice. This is also be observed in other studies, showing that have shown 

that iNos is increased in stressed and reactivated microglia cells (Alliot et al., 1999; Santos 

et al., 2008). Experimental data show a correlation of IL-6 in AMD patients and the severity 

of AMD. Thus, patients in the early AMD stage show only a slightly increased production 

of IL-6, but patients with GA show a strong induction of IL-6 (Nahavandipour et al., 2020). 

However, we could observe the highest Il-6 expression on day 1 post light damage, which 

may cause due to the design of the model. AMD does not usually develop from one day to 

the next. In our mouse model, we induce light damage within a very short time, so the 

response is much faster. Other studies show that the Ccl2 level may be directly related to 

AMD (Ambati et al., 2003; Combadière et al., 2007; Fujimura et al., 2012). Thus, reduction 

of Ccl2 levels by loss of galectin-3 may lead to a reduction of damage in AMD patients. We 

could also confirm the reduced expression of pro-inflammatory cytokines with our second 

study in Balb/cJ mice receiving the inhibitor.  

Besides the positive effect on microglia reactivation, reduced migration and decreased 

expression of pro-inflammatory cytokines, the deficiency of galectin-3 and the 

pharmacological inhibition also affects retinal degeneration. Therefore, we demonstrated 

that retinal degeneration measured by OCT appears more slowly in galectin-3 knockout mice 

and TD139-treated BALB/cJ mice. This could have a positive impact on vision. 

Degeneration of photoreceptors is a hallmark of AMD disease (Curcio, 2001; Curcio et al., 

1996). Consistent with previous studies, a lower immune response of microglia affects the 

development of retinal degeneration (Scholz et al., 2015b). This is confirmed with other 

ocular studies show that inhibition of galectin-3 by a small chemical inhibitor reduces 

pathologic corneal neovascularization and fibrosis (Blanda et al., 2020; Chen, W. S. et al., 

2017). 

Thus, our data demonstrated that galectin-3 is a potential starting point for therapy in AMD 

patients because whole-body knockout of galectin-3 significantly reduced the retinal innate 

immune response, number of reactivated microglia in the subretinal space and RPE of light-

exposed mice, and inhibited photoreceptor degeneration. The same could be determined in 

the second part of our mouse studies. Our study also revealed that inhibition of galectin-3 

reduced the microglia-reactivation, pro-inflammatory cytokine expression and retinal 

degeneration in the model of light-induced degeneration. 
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4.3 Conclusion 
 

In this study, we investigated the effects of genetic knockout of galectin-3 and 

immunomodulation by pharmacological inhibition on microglia-induced retinal 

degeneration in the light-induced degeneration model of dry AMD. There we could 

determine that microglia in AMD patients represent the major part of galectin-3 production, 

which occur in a lower level in a healthy retina. Furthermore, using our mouse models, we 

could observe that galectin-3 is a key factor in the reactivation of microglia. Loss or 

inhibition of this protein leads to reduced migration of microglia and lower production of 

pro- inflammatory cytokines due to attenuated activation compared to control animals. At 

the same time, light-induced retinal degeneration was attenuated. Overall, this work reflects 

that galectin-3 plays an important role in retinal microglial activity and confirms that 

inhibition of this protein is a potential immunomodulatory target for therapy against AMD. 
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