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Zusammenfassung 

Die Heilung chronischer Wunden, wie z.B. diabetischer Ulzera oder großflächiger 

Verbrennungswunden, stellt ein nicht unerhebliches medizinisches Problem dar. 

Der Heilungsprozess kann sehr langwierig und schmerzvoll sein und schränkt 

dadurch die Lebensqualität der Patienten massiv ein. Mit den traditionellen 

Vorgehensweisen und Maßnahmen zur Behandlung akuter Erkrankungen allein 

kann auf Grund der Vielzahl negativer Einflussmöglichkeiten kein optimales 

Ergebnis erzielt werden. Daher ist die Einführung neuer, innovativer, 

therapeutischer Strategien von Nöten, wie zum Beispiel die Verwendung von 

primären humanen Keratinozyten für die Herstellung autologer Hauttransplantate. 

Gentherapeutische Vektorsysteme könnten das Anwachsen von 

Hauttransplantaten durch z.B. gezielte, aber transiente Bereitstellung von 

Wachstumsfaktoren mittels Gentransfer verbessern. Rekombinante adeno-

assoziierte Virus Vektoren (rAAV) wären hierfür ein potentiell geeignetes System. 

Sie sind wenig immunogen und stabil, lassen sich mit hohen Titern herstellen und 

sind als nicht-integrierende Vektoren in proliferierenden Zellen nur transient 

vorhanden. Allerdings scheint die Haut ein schlechtes Zielorgan für AAV Vektoren 

des Serotypes 2, sowie pseudotypisierte AAV Vektoren mit Kapsiden anderer AAV 

Serotypen zu sein, da sich primäre humane Keratinozyten nur unzureichend von 

AAV transduzieren lassen. Ein Grund hierfür wurde im Rahmen dieser Arbeit 

gefunden. Es konnte gezeigt werden, dass primäre humane Keratinozyten den 

AAV2-Primärrezeptor Heparansulfat-Proteoglykan (HSPG) nur unzureichend oder 

gar nicht exprimieren. 

Kürzlich wurde demonstriert, dass die genetische Modifizierung des AAV-Kapsids 

durch Insertion rezeptorspezifischer Liganden („AAV targeting“) die Transduktion 

von Zellen unabhängig vom Vorhandensein der natürlichen AAV-Rezeptoren 

ermöglicht. Die „AAV-targeting“-Technologie bietet einen möglichen 

Lösungsansatz um spezifische rAAV2-Targeting-Vektoren für primäre humane 

Keratinozyten zu generieren.  

Im Rahmen dieser Arbeit wurden neue, vielversprechende rAAV Vektoren für die 

Modifikation primärer humaner Keratinozyten generiert. Mit Hilfe einer „AAV 
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peptide display“ Bibliothek wurden drei rAAV Peptidinsertionsmutanten (Kera1, 

Kera2 und Kera3), die sich in der inserierten Sequenz unterscheiden, selektioniert. 

Die AAV2-Bibliothek besteht aus Mutanten, die 7-mer Peptide mit zufälliger 

Sequenz im Kapsid in der Position 587 präsentieren. Um „targeting“-Vektoren mit 

einem veränderten Tropismus zu generieren, wurde die AAV-Bibliothek optimiert, 

indem Mutanten die an HSPG binden können vor der Selektion durch 

Heparinaffinitätschromatographie abgereichert wurden. Eine weitere Optimierung 

des Selektionsschemas wurde durch die Verwendung von verschiedenen 

Keratinozyten-Spendern in jeder Selektionsrunde erzielt. Das erhöhte die 

Wahrscheinlichkeit Mutanten mit Spezifität für einen allgemeingültigen Rezeptor 

für primäre humane Keratinozyten zu selektionieren. Die auf diese Weise 

selektionierten Mutanten Kera1 (RGDTATL), Kera2 (PRGDLAP) und Kera3 

(RGDQQSL) weisen eine außergewöhnliche Änderung des Tropismus auf. Sie 

transduzieren primäre humane Keratinozyten mit einer hohen Effizienz und 

Spezifität, was selbst in Mischkultur-Experimenten mit Nicht-Ziel-Zellen zu einer 

präferentiellen Transduktion von Keratinozyten führte. In dieser Arbeit wurde 

zudem erstmalig die neue bioinformatische Methode der komparativen 

Genanalyse (CGA) zur Identifizierung des Ziel-Rezeptors eines rAAV-targeting 

Vektors angewandt. In Kooperation mit Giovanni Di Pasquale (NCI/NIH, Bethesda, 

USA) wurde zu diesem Zweck ein Zellscreening auf der NIH Zellliniensammlung 

durchgeführt. Für die Mutante Kera2 konnte mit Hilfe dieses Verfahren eine hohe 

Affinität zu dem Integrin-Rezeptor beta8 festgestellt werden. Die Integrin beta8 

Untereinheit bildet mit der Integrin alpha V Untereinheit ein Heterodimer. Das 

Intergin αVβ8 wird tatsächlich auf der Oberfläche von primären Keratinozyten 

expressioniert. Durch Experimente mit blockierenden αV- oder αVβ8-Antikörpern 

konnte nachgewiesen werden, dass das Integrin αVβ8 als Rezeptor für Kera2 

fungiert. 

Außerdem war es möglich differenzierte Keratinozyten einer 3D Kultur nach 

topischer Anwendung der „targeting“-Vektoren Kera1, Kera2 und Kera3 zu 

transduzieren. Zusammenfassend lässt sich sagen, dass die drei in dieser Arbeit 

entwickelten und charakterisierten „targeting“-Vektoren Kera1, Kera2 und Kera3 

Schlüsselfunktionen für die klinische Anwendung erfüllen. 



Abstract  

3 
 

Abstract 

Chronic non-healing wounds such as diabetic ulcers or burns represent a 

devastating health problem with significant clinical, physical and social 

implications. The healing can be frustrating and painful for patients. The difficult 

healing process requires advanced therapeutic strategies such as the use of 

primary human keratinocytes (HK) as autologous transplants, which may be 

considered for clinical use. To improve engraftment or to introduce therapeutic 

genes into primary HK, efficient and safe vectors are required. One of the most 

promising vector systems today is based on the adeno-associated virus (AAV), a 

member of the parvovirus family. Recombinant AAV (rAAV) vectors possess a 

number of attractive properties including low immunogenicity, high stability and the 

potential to integrate site-specifically without known side-effects. Unfortunately, 

cell entry into primary HK of rAAV2 is barely detectable and consequentially, HK 

are poor targets of rAAV2-mediated transductions. As demonstrated in this thesis, 

primary HK do not express AAV2´s primary receptor heparan sulphate 

proteoglycan (HSPG), the presence of which, however, is required for binding to 

AAV2´s internalization receptors. Cell surface targeting allows re-directing the viral 

vector tropism towards a novel receptor mediating thereby transduction of cells in 

absence of AAV’s natural receptors. These AAV capsid mutants have displayed 

improved transduction efficiency in wild-type-AAV non-permissive cells and have 

provided the opportunity of rAAV-mediated, cell-type-specific gene transfer.  

As documented in this study, new rAAV vectors were developed as promising 

tools for modifying primary HK. Using an AAV peptide display library that displayed 

7mer peptides of random sequence at capsid position 587; three AAV peptide 

insertion mutants differing in sequence of inserted ligand (Kera1, Kera2 and 

Kera3) were selected and subsequently analyzed. To select rAAV targeting 

vectors with a re-directed tropism, the library was optimized by depleting mutants 

capable of binding to HSPG prior to selection by heparin affinity chromatography. 

Furthermore, the selection was performed on primary HK obtained from different 

donors to target a common receptor and the selection pressure was continuously 

increased by decreasing the vector genomes per cell ratio to select for the fittest 

variant. The thereby developed rAAV targeting vectors Kera1 (RGDTATL), Kera2 
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(PRGDLAP) and Kera3 (RGDQQSL) showed a remarkable change in tropism, 

transducing primary HK with high efficiency and specificity even in mixed cultures 

of target and non-target cells. In this study, a novel microarray based bioinformatic 

approach (comparative gene analysis (CGA)), was used for the identification of the 

receptor that targeted the mutant that showed the most striking change in tropism, 

Kera2. Briefly, in cooperation with Giovanni Di Pasquale (NCI/NIH, Bethesda, 

USA), a screening of the NIH cell line panel was performed, pointing towards the 

involvement of beta8 integrin subunit for cell transduction by Kera2. Beta8 is 

unique as it is solely described as heterodimer with alpha V and the integrin αVβ8 

could be detected on cell surface of primary human keratinocytes. By blocking 

experiments with blocking αV- or αVβ8-antibodies experimental evidence was 

provided that the integrin αVβ8 serves as receptor for Kera2. Finally, this study has 

shown that the targeting vectors Kera1, Kera2 and Kera3 transduced airlifted 

differentiated keratinocytes in organotypic 3D cultures. In summary, the three 

rAAV targeting vectors Kera1, Kera2 and Kera3, selected from an optimized library 

and using a novel selection strategy, are excellent candidates for successful 

application in clinical use. 
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1 Introduction 

1.1 Adeno Associated Virus (AAV) 

Adeno-Associated Viruses (AAVs) belong to the genera of Dependovirus and the 

subfamily Parvovirinae that infects vertebrates. Parvovirinae together with the 

insect-infecting Densovirinae form the family of Parvoviridae. These include 

viruses with a linear, single-stranded DNA genome of about 4.7 kb and a non-

enveloped icosahedric capsid of 18-30 nm in diameter [1]. 

 
 

 

 

 

 

 

 

 

 

Figure 1: Atomic structure of AAV serotype 2. Figure was kindly provided by J. Boucas. 

 

AAV were first described in 1965 as DNA-containing particles in preparations of a 

simian adenovirus [2]. Later, AAV was defined as a unique virus family. For 

replication and initiation of a productive infection cycle, AAV is, as the name 

implicates, dependent on co-infection by a helper virus. Known helper viruses are 

Adenoviruses, Herpes Simplex Viruses, human Cytomegaloviruses (CMV) and 

Papillomaviruses [3], [4]. In absence of co-infection with a helper virus, AAV 

establishes a latent infection where the viral DNA is either maintained as episomes 

or integrated into the host genome. Integration occurs in 70% of cases, site-

specific into the human chromosome 19 at position 13.4-qter (AAVS1) [5], [6], [7]. 

After super-infection with a helper virus, the provirus enters the lytic cycle, leading 

to viral gene expression, rescue and replication of the AAV genome with 

subsequent production of viral progeny (see 1.1.2), [8]. Thus far, 12 different 

serotypes (AAV1-12) and over 100 variants of AAV have been isolated from 
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adenoviral isolates and tissue samples [4]. They differ in the amino acid (aa) 

composition of their capsids, but show similar capsid morphology, genome length 

and genome organization. AAV serotype 2 (AAV2), the best-characterized 

serotype, is frequently applied in human gene therapy [9].  

1.1.1 Viral genome and AAV proteins 

The single stranded DNA genome of AAV2 contains four functional units, the open 

reading frame (ORF) for the Rep proteins (rep), the cap ORF (ORF1), the 

alternative cap ORF (ORF2) and the inverted terminal repeats (ITR) flanking these 

ORFs (Figure 2). The alternative cap ORF was just recently discovered and 

encodes a 23 kDa protein, which was named assembly-activating protein (AAP), 

required for initiation of capsid formation [34]. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Genome organization of AAV2  
The AAV2 genome is flanked by the ITRs, spans 4680 nt divided into 100 map units. Shown are 
the three promoters p5, p19 and p40 at map position 5, 19 and 40 and the polyadenylation signal 
(polyA) at position 96. The open reading frames are indicated by rectangles, translated regions in 
red, blue or grey, untranslated regions by thin solid lines, while introns are marked as nicks. The p5 
promoter controls expression of the large Rep proteins (Rep78, Rep68), while the p19 promoter is 
responsible for expression of the small Rep proteins (Rep52, Rep40). Rep68 and Rep40 are splice 
variants of Rep78 and Rep52, respectively. The expression of capsid proteins VP1, VP2, VP3 and 
AAP is controlled by the p40 promoter. Figure was kindly provided by N. Huttner [10] and modified 
according to F. Sonntag [11]. 

 

The genome contains three promoters (p5, p19 and p40) and a single 

polyadenylation signal (poly A). The 5´-ORF rep encodes four Rep proteins. These 

are multifunctional, non-structural proteins that are termed by their molecular 
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weights (Rep78, Rep68, Rep52, and Rep40). Transcription of the larger Rep 

proteins (Rep78, Rep68) is controlled by the p5 promotor, while the smaller ones 

(Rep52, Rep40) are transcribed by the p19 promotor [12]. Rep68 is a splice 

variant of Rep78 and Rep40 is a splice variant of Rep52. The larger Rep proteins 

are necessary for site-specific integration into AAV2, thus they possess site- and 

strand-specific endonuclease activity. In addition, they are required for 

transcription of the viral ORFs, control of viral replication (see below) and 

packaging of the viral genome. Specifically, Rep78 and 68 possess DNA binding, 

ATPase, DNA helicase, and endonuclease activities [13], [14], [15], [16], [17], 

while the Rep proteins are involved in accumulation and packaging of the single-

stranded DNA genome into the preformed capsid [18], [19]. Furthermore, all Rep 

proteins contain in the common C-terminal part a nuclear localization signal (NLS) 

[15], [20]. The smaller Rep proteins seem to be involved in accumulation and 

packaging of single-stranded DNA into the preformed capsid [18], [19].  

The 3´-located ORFs encode the capsid proteins, VP1, VP2, VP3 and AAP, the 

latter of which is required for viral capsid assembly. The VP proteins are 

expressed from ORF1, while ORF2 encodes for AAP [11]. Expression of the AAV2 

capsid proteins is controlled by the p40 promoter. The three VP proteins assemble 

the viral capsid in a 1:1:10 ratio [21]. The capsid proteins VP1 and VP2 share 

identical sequences at the C-terminus but differ in their N-terminal sequences. The 

translation of VP1 is regulated by alternative splicing of the p40 -transcripts [22].  

Translation of VP2 is initiated from an alternative start codon (ACG) [23]. All three 

VP proteins use the same stop codon. The molecular weights of the capsid 

proteins are 90 kDa (VP1), 72 kDa (VP2) and 60 kDa (VP3). All capsid proteins 

are required for the formation of infectious particles, while intact non-infectious 

capsids assemble in absence of VP1 or in absence of VP1 and VP2, when AAP is 

present to mediate nuclear transport of VP3 [11]. VP2 seems to be dispensable for 

the formation of infectious particles, at least in an in vitro application [24], [25]. The 

capsid formation takes place in the cell nucleus [26], [27].  

The 5´- and the 3´-end of the viral genome are formed by the ITRs consisting of 

145 nt. Due to their palindromic sequence, a hairpin structure is formed by the first 

125 bp [28], [29]. The ITRs serve as signal sequence – recognized by the viral 

Rep proteins - for packaging of the viral genomes into the capsid. In addition, the 

ITRs serve as origin of replication (ori). For this function, a Rep binding site (RBS), 



1 Introduction  

8 
 

a specific cleavage site for Rep proteins (terminal resolution site, TRS) and a 

certain distance between the former two sites are required [14], [30], [31]. The 

ITRs play a key role in the site-specific integration into AAVS1, as well as in the 

subsequent rescue of viral DNA from the integrated state in the presence of helper 

viruses [32], [33], [34], [35]. 

1.1.2 AAV infectious biology 

A successful infection of cells by AAV is a multistep process including attachment, 

uptake, intracellular trafficking, nuclear translocation and replication of the virus 

(Figure 3). Many steps of the AAV-cell interaction are still unknown. As single virus 

tracing studies have revealed, AAV2 contacts the cell membrane several times 

before entering the cell. On average, AAV contacts the cell 4.4 times [36]. For 

AAV2, the widely expressed cell surface receptor heparan sulfate proteoglycan 

(HSPG) has been identified as primary receptor [37]. This contact is mediated by 

binding motives present on the AAV capsid, that are formed by residues R484, 

R487, K532, R585 and R588 in the common VP3 region [38]. Binding to HSPG is 

believed to induce a conformational change in the capsid, which is required for 

internalization into the cell [39]. For efficient internalization, co-receptors are 

required. So far, five co-receptors have been described for AAV2. Human 

fibroblast growth factor receptor 1 (FGFR-1), hepatocyte growth factor receptor 

(HGFR) and laminin receptor seem to support virus-cell interaction, facilitating the 

HSPG-induced structural rearrangement of the capsid [40], [41], [42]. The integrins 

αVβ5 and α5β1 are thought to mediate endocytosis of AAV2 [39], [43]. In addition, 

integrin binding subsequently leads to the activation of the small GTPase Rac1 

and phosphatidylinositol-3 kinase (PI3K), resulting in cytoskeletal rearrangements 

that promote clathrin-dependent internalization of AAV2 as well as trafficking of 

AAV2 from the cell periphery towards the nucleus [43], [44], [45], [46]. 
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Figure 3: Infectious pathway of AAV2 in HeLa cells 
Following multiple contacts with the cell, AAV binds to HSPG on the cell membrane. The 
attachment is likely enhanced by co-receptors such as FGFR1 and/or HGFR. Subsequent binding 
to integrins lead to endocytosis via clathrin-coated pits. Integrin binding activates the small GTP 
binding protein Rac1, which stimulates the PI3K pathway. The resulting rearrangement of the 
cytoskeleton allows for trafficking of AAV2-containing endosomes. Acidification of the endosome 
may lead to conformational changes in the AAV2 capsid and its release. Once inside the nucleus 
the AAV genome is replicated (lytic phase; requires the presence of helper virus), stays episomally 
or is integrated into the host genome (latent phase) [47]. NPC: nuclear pore complex. Picture was 
kindly provided by H. Büning © 2008 

 

Once internalized, AAV is trafficked mainly inside endosomes [36], [44], [45], [48], 

[49], [50]. The transport of the endosomal vesicle takes place via motor proteins 

along microtubules and microfilaments [43], [44], [45]. AAV particles remain in the 

endosomal compartment until late stages. When and how AAV escapes from the 

endosome is still subject of debate and may be cell type specific [45], [50]. 

Acidification inside the endosomes appears to be essential for priming AAV for 

nuclear entry. This assumption is based on the observation that microinjection of 

AAV2 particles directly into the cytoplasm (instead of natural infection) did not 
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result in gene expression [51]. The same effect can be reached by the addition of 

inhibitors of acidification like bafilomycin A1 or ammonium chloride [45]. The 

acidification of endosomes during maturation may lead to a conformational change 

of the viral capsid, leading to exposure of a phospholipase A2 (PLA2) homology 

domain, present within the N-terminus of VP1 [52], [53]. The PLA2 domain is 

conserved among parvoviruses [54] and AAV2 requires this domain for endosomal 

escape through lipolytic pore formation [53], [55]. When AAV2 is released from the 

endosome the capsids are target for ubiquitination, which is a general signal for 

proteasomal degradation [56]. Several groups have shown that the addition of 

proteasome inhibitors results in an enhancement of transgene expression at least 

in some cell lines [44], [57] [58], [59], [60]. Though, the mechanism remains 

unclear, studies suggested that, conceptually proteasome inhibitors block capsid 

degradation, facilitate vector uncoating and lead to an increased perinuclear 

accumulation or translocation into the nucleus [57], [56].  

It is still unknown how the virus enters the nucleus and where viral uncoating 

occurs. Viral particles start to accumulate in the perinuclear area between 15 and 

30 min post infection (p.i.) [45], [36]. The majority of these virions still have intact 

viral capsids containing viral genomes [25]. Several studies have reported of intact 

AAV particles in the nucleus. But there are controversial reports concerning the 

mechanism and efficiency of capsid import as well as their role in viral infection 

[25], [43], [45], [50], [61]. Lux et al. showed that when using a low number of 

virions for infection, viral genomes, but no intact capsids, are found within the 

nucleus, whereas intact full and empty capsids were still evident in the perinuclear 

area [25]. This study suggested that viral genomes rather than intact capsids are 

transported into the nucleus. In contrast, Sonntag and colleagues blocked AAV 

infection completely by injection of capsid specific antibodies into the nucleus. 

These results suggest that viral genomes are transferred into the nucleus by intact 

viral capsids and that the uncoating event takes place there [55]. Moreover, 

whether AAV and/or AAV genomes enter the nucleus through the nuclear pore 

complex (NPC) or in a NPC-independent way is still discussed [62]. 
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Figure 4: Schematic representation of latent and lytic life cycle of AAV2 
Infection of cells with AAV, in the absence of a helper virus results in the establishment of a latent 
infection that is characterized by the persistence of viral DNA - frequently integrated within the host 
genome - and by absence of viral gene expression. In the presence of a helper virus, wild type 
AAV2 enters a productive cycle leading to the replication of viral DNA, expression of viral genes 
and packaging of viral DNA into pre-assembled capsids. AD = adenovirus, HSV herpes simplex 
virus, HPV = human papillomavirus 

 

Inside the nucleus, the presence or absence of a helper virus determines whether 

AAV enters a lytic or latent life cycle. In the absence of helper viral functions 

second-strand synthesis of the single-stranded virus genome and the basal 

expression of the Rep proteins are activated [63], [64]. First, second-strand 

synthesis of the single-stranded virus genome and a basal expression of the Rep 

proteins are activated [63]. In presence of the large Rep proteins (Rep78, Rep68) 

and intact ITRs, integration occurs, although not exclusively, at the so-called 

AAVS1 site on the human chromosome 19 (19q13.3-qter) [65], [66]. The AAVS1 

locus resides a Rep binding element (RBS) and a terminal resolution site (TRS) 

equivalent to the AAV genome [67], [68], [69]. Usually, proviral sequences are 

integrated as viral concatemers in a head-to-tail conformation [67]. Helper viral 

superinfection can rescue the integrated provirus initiating a lytic, productive life 

cycle (Figure 4), [8]. Alternatively, AAV genomes can form episomes, which at 

least in non-dividing cells, also results in a latent life cycle. 

In the presence of a helper virus, AAV can undergo a productive infection. During 

viral replication, the 3’-OH end of the ITR serve as the primer for second-strand 

Latency Replication

co-infection with helper 

virus (AD, HSV, HPV)

AAV

+

helper virus (AD, HSV, HPV)

co-infection 



1 Introduction  

12 
 

synthesis [3]. The large Rep proteins unwind the ITR by their helicase activity, 

leading to exposure of the TRS, which is nicked by the Rep endonuclease 

enabling complete synthesis of the second-strand by switching templates [13], 

[63]. The single-stranded DNA is then converted into a parental duplex replicative 

form where production of viral progeny can proceed. 

1.1.3 Adenovirus-free AAV production and recombinant AAV 
vectors (rAAV) 

The structural properties of the AAV capsid allow for the production of recombinant 

viral particles that package a DNA genome of approximately 5 kb [70]. For the 

generation of rAAV vectors, all ORFs are deleted leaving only the ITR sequences 

of the parental virus. The ITRs are the solely required cis elements necessary for 

the production of viral particles (replication and packaging). The deleted ORF 

sequences are replaced by an exogenous DNA sequence (transgene expression 

cassette). 

A successful approach to produce rAAV vectors at high titers for laboratory scale 

uses triple transfection of AAV vector, AAV helper and adenoviral helper plasmids 

(Figure 5A). The vector plasmid contains the transgene flanked by the ITRs. The 

AAV-specific ORF required in trans, rep and cap/AAP, are cloned onto the helper 

plasmid, which lacks the ITR sequences [34], [71]. These plasmids are co-

transfected with the third plasmid carrying the essential adenoviral genes VA, E2A 

and E4, necessary for AAV replication (Figure 5B) [71], [72], [73]. For viral particle 

production, HEK293 cells, which are transgenic for the adenoviral genes E1a and 

E1b (also required for AAV progeny production), are commonly used. After 

transcription and translation of rep and cap/AAP proteins and replication of the 

vector genome, the vector genome is shuttled into preformed AAV capsids. 

Finally, vector particles are harvested and purified by density gradient 

centrifugation (CsCl or Iodixonal) and/or column chromatography [74], [75].  
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Figure 5: Packaging of recombinant AAV (rAAV) vectors  
(A) Plasmid constructs used for packaging of rAAV vectors. The vector plasmid is devoid of all viral 
genes, only the ITRs are left, which flank the transgene expression cassette (“transgene”) and 
serve as packaging signal. The helper plasmid encodes for the non-structural, multifunctional Rep 
proteins (rep) and proteins required for capsid production (cap/AAP). These proteins are necessary 
for replication of the vector genome, production and assembly of the capsid and the subsequent 
packaging of the vector genome into preformed capsids. The adenoviral plasmid carries the 
essential adenoviral genes for rAAV production (VA, E2A and E4). 
(B) Packaging of rAAV vectors. AAV vector plasmids, AAV helper plasmids, and adenoviral helper 
plasmids are transfected into HEK293 cells. After replication and assembly of viral vector particles, 
cells are lysed and vector particles are harvested and purified by e.g. iodixanol gradient 
centrifugation [47]. Figure A was kindly provided by N. Huttner and Figure B by H. Büning. 
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1.2 AAV in Gene Therapy 

Gene therapy is based on the idea of introducing genetic material into an organism 

in order to cure or improve the status of a disease [76]. A key factor for the 

success of gene therapy is the development of gene delivery systems that 

combine efficiency and safety. Currently, viral as well as non-viral vectors have 

been developed for this purpose. Whereas the viral systems include adeno-, 

retro-, vaccinia-, pox-, herpes simplex- and adeno-associated-viral vectors, the 

non-viral vector strategy uses naked DNA within lipoplexe or polyplexe [77], [78]. 

However, each vector has its own advantages and disadvantages. The simplest 

way of gene delivery is injecting naked DNA encoding the transgene expression 

cassette. But this strategy lacks efficiency [79]. Viral vector systems are very 

efficient at transferring DNA into host cells but are in general more immunogenic, 

more sophisticated to produce and are limited in the size of foreign DNA that can 

be delivered. AAV has many features that make it attractive for use as a gene 

therapy vector. Briefly, rAAV vectors are based on a non-pathogenic virus [80], 

[81] and transduce dividing as well as post-mitotic or quiescent cells [82], [83]. 

Furthermore, they show a broad tissue tropism infecting diverse organs such as 

brain, liver, muscle, lung, retina and heart [84], [85], [86], [87], [88]. Moreover, in 

non-dividing cells or tissues AAV mediates long-term expression without the need 

for integration. Examples of such tissues are muscle or liver where e.g. in a 

muscle-directed trial transgene expression was sustained for at least four years in 

a canine hemophilia B model [85]. Another important aspect that – as already 

mentioned – AAV in contrast to lenti- or retroviral vectors stays as episomes [89], 

[90], [91], reducing thereby the risk for insertional mutagenesis. Moreover, if 

integration is required, expression of Rep proteins can be exploited to direct AAV 

towards integration at AAVS1 [5], [10]. The immunological reactions to AAV are 

low comparing to adenovirus [92], [93]. As such, AAV have only a minimal 

inflammatory potential. Nevertheless, in a clinical trial of liver-directed gene 

transfer, re-direction of memory T cells caused failure of long-term gene 

expression [94]. Recently, our group demonstrated that primary human liver cells, 

like Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) are capable of 

sensing AAV. The AAV capsid represents pathogen-associated molecular patterns 

(PAMPs) that are detected by the pattern recognition receptors (PPR) Toll-like 
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receptor-2 (TLR-2) [95] known to activate innate immune response. Minimizing this 

recognition will be a key to improving rAAV-mediated gene transfer and reducing 

side effects in clinical trials due to immune responses against rAAV [95].  

Disadvantages of the AAV vector system include the small genome size limiting 

the coding capacity for transgenes including ITRs to approximately 5 kb [96] and 

the broad tissue tropism interfering with a cell-specific in in vivo gene transfer. To 

date, AAV vectors have been applied in over 80 clinical trials (Table 1). 

Table 1: Examples of clinical trials using AAV gene transfer [97] 

Disease Transgene 
product 

Serotype Route 
administration 

Clinical 
trial 

Clinical Trials. 
gov identifier 

Refs 

AAV clinical trials for inherited disease 

α1antitrypsin 
deficiency 

α1 antitrypsin  AAV2  
Intramuscular  
 

 
Phase 
I/II 

NCT00377416 [98], 
[99] 

AAV1 NCT00430768 

Batten’s disease CLN2 AAV2 Direct intracranial 
administration 

 
Phase 
I/II 

NCT00151216  
[100] 

AAVrh10 NCT01161576 

Canavan’s 
disease 

Aspartoacylase AAV2 Direct intracranial 
administration 

Phase I NA [101] 

Cystic fibrosis CFTR  
 
AAV2 

Direct instillation 
to maxillary 
sinus, 
bronchoscopy to 
right lower lobe, 
aerosol to whole 
lung 

 
 
Phase 
I/II 

 
 
NCT00004533 

 
[102], 
[103], 
[104], 
[105] 

Haemophilia B FactorIX AAV2 
 

Intramuscular  
Phase 
I/II 

NCT00076557  
[106], 
[107] Hepatic NCT00515710 

AAV8 Intravenous Phase 
I/II 

NCT00979238 

Muscular 
dystrophy: 
Duchenne 

Microdystrophin AAV1-
AAV2 
hybrid 

 
Intramuscular 

 
Phase I 

 
NCT00428935 

 
[108] 

AAV clinical trials for acquired diseases 

Severe heart failure SERCA2a AAV1 Antegrade 
epicardial 
coronary artery 
infusion 

 
Phase 
I/II 

NCT00454818  
[109] 

AAV6 NCT00534703 

Parkinson’sdisease AADC  
 
 
AAV2 

 
 
 
Intracranial 

 
 
 
Phase 
I/II 

NCT00229736 [110], 
[111] 

 
GAD 

NCT00643890, 
NCT00195143, 
NCT01301573 

[112], 
[113] 

Neutrophin NCT00252850, 
NCT00985517, 
NCT00400634 

 
[114] 

AADC, aromatic-L‑amino-acid decarboxylase; AAV, adeno-associated virus; CFTR, cystic fibrosis 

transmembrane regulator; CLN2, also known as tripeptidyl peptidase 1 (TPP1); GAD, glutamic acid 
decarboxylase; SERCA2a, sarcoplasmic reticulum calcium ATPase 2a  
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Early published data dealt with the monogenic diseases cystic fibrosis and 

hemophilia B in gene therapy trials. Administration of the cystic fibrosis 

transmembrane conductance regulator (CFTR) as a transgene on the nasal sinus 

and bronchial epithelium resulted in an improvement of pulmonary function and 

partial correction of hyperinflammatory responses and electrophysiological defects 

[104], [105], [103]. AAV was approved for safe usage in these clinical settings as 

well as in the treatment of hemophilia B by intramuscular, intrahepatic or 

intravenous vector administration [115], [107], [106], [116]. Evidences for 

transduction were found in all patients of the muscle-directed study as well as the 

intravenous study and long-term expression of the therapeutic gene, coagulation 

factor IX (FIX), could be detected albeit at low levels.  

Further success was achieved by Bainbridge et al., Cideciyan et al. and Hauswirth 

et al.. They used AAV2-based RPE65 gene replacement therapy to treat patients, 

afflicted with RPE65 Leber congenital amaurosis. All three groups observed an 

increase in visual sensitivity [32], [117], [118].  

In November 2012, the first AAV based gene therapy drug (Glybera®) was 

approved by regulatory authorities in Europe. This drug was developed by uniQure 

(former Amsterdam Medical Therapeutics) for treating patients suffering from 

lipoprotein lipase deficiency (LPLD). In 2004, Rip and colleagues reported on the 

rAAV1-lipoprotein lipase (LPL)S447X vector, which aims to introduce episomal 

copies of a functional LPL gene variant into muscle tissue of patients with LPLD 

[119], [120], [121]. After several interventional clinical studies, conducted in the 

Netherlands and in Canada, the therapy was judged to be successful, based on 

tolerance, safety and efficiency, and Glybera® was authorized for patients 

suffering from LPLD. 

Despite these successes, AAV´s broad host range remains a challenge as higher 

vector doses have to be applied and only those transgenes that do not harm the 

patient when expresses off-target are applied. In case of cancer therapy with 

suicide genes e.g., unspecific transduction of neighboring tissue would cause 

severe damage [122]. The specificity is not only important because of safety 

aspects but also helpful in reducing the number of particles required to be 

delivered [122], [123].  
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1.2.1 Improvements of naturally occurring AAVs 

Increasing the efficiency of vectors is possible by modifying the viral tropism 

through capsid engineering, improving thereby gene delivery properties. There are 

different methods for modification of the viral capsid (Figure 6).  

 

 

Figure 6: Overview for modifications of viral capsids 
Rational design methods include (a) the use of a bispecific adaptor, (b) pseudotyping with an 
alternate serotype capsid (c, d) the generation of mosaic or chimeric particles, and (e) genetic 
engineering of the capsid sequence by peptide insertion or point mutations. Adapted by permission 
of Annual Reviews, Inc: Annual review of biomedical engineering [124] © 1999. 

1.2.1.1 Mosaic rAAV vectors 

A possible method to change the feature and to expand the tropism of rAAV 

vectors is the combination of capsid proteins from different serotypes resulting in 

viral capsids that accumulates the attributes of the respective serotypes [47], 

[125]. For example, an AAV1/AAV2 mosaic vector achieved gene expression 

levels similar to those of AAV1 in muscle and AAV2 in liver and could be purified 

by Heparin affinity chromatography like wild-type AAV2 [126]. However, since 

these vectors are produced by transfection of plasmids encoding the capsid 

proteins of the different serotypes, such viral preparations consist of virions with 

non-uniform capsid compositions, which in turn make standardization of this 

technology difficult [47], [125]. 
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1.2.1.2 Chimeric rAAV vectors 

Chimeric rAAV vectors contain capsid proteins that have been modified by domain 

or aa swapping between different serotypes [125]. Bowels and colleagues 

generated isolated virions, co-transfected by a non-functional, HSPG-deficient 

AAV2 capsid mutant and an AAV3 capsid sequence in AAV replication supporting 

cells. This allowed for the rescue of chimeric functional viruses from these cells, 

which showed HSPG binding ability (the parental AAV variant was deficient in 

HSPG binding) and transduced the target cells [127]. 

1.2.1.3 Pseudotyped rAAV vectors 

Pseudotyping is the process of producing viral particles that incorporate foreign 

viral proteins. A pseudotyped AAV vector containing the ITRs of serotype X 

encapsulated with the proteins of serotype Y and will be designated as AAVX/Y. 

For example, a vector plasmid carrying a transgene flanked by AAV2 ITRs is co-

transfected with an AAV helper plasmid coding simultaneously for Rep proteins 

derived from AAV2 and for capsid proteins and AAP from the serotype of choice 

[47]. Initial studies testing these vectors for gene delivery demonstrated far 

superior transduction efficiency for retina with AAV4 and AAV5 in comparison to 

AAV2 [128], [129], [130]. This method leads to broadening the viral tropism and 

may circumvent pre-existing immunity to one serotype by using a different capsid 

[131] 

1.2.2 Generation of rAAV targeting vectors with increased 
transduction efficiencies 

The possibility to engineer viral particles displaying selective binding domains that 

enable stringent interaction with target cell specific receptors (vector targeting) is 

desirable. Vector targeting allows the transduction of cell types that are refractory 

to infection with natural occurring AAVs [47]. Two main strategies have been used 

to achieve an altered tropism of AAV in the past; non-genetic (indirect) targeting 

and genetic (direct) targeting (Figure 7). 
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Figure 7: Principle of cell surface targeting using the example of AAV2  
By natural tropism AAV2 binds to the cell surface molecules HSPG for cell attachment and 

integrins αVβ5 or α5β1 for internalization. These receptors are very common and hence AAV2 shows 

a broad tropism, which may result in off-target transduction. It is possible to redirect the natural 
tropism of AAV to a more specific receptor. Furthermore, certain cell types do not express AAV 
receptors and therefore it would be beneficial to expand tropism to a receptor present on these 
cells. This constraint can be circumvented by modulating the tropism using adaptor molecules 
(indirect targeting) or by the insertion of peptide ligands (direct targeting) into the capsid. Figure 
was kindly provided by H. Büning. 

 

1.2.2.1 Non-genetic vector targeting using adaptors 

The non-genetic (indirect) targeting approach uses an adaptor molecule, which 

acts as a bridge between the viral capsid surface and a specific cell surface 

molecule (Figure 7), [47]. This technique is applicable even with limited knowledge 

of the viral structure [132]. This method allows for high flexibility as different 

adaptors can readily be coupled to the same vector and do not induce changes in 

capsid structure that may negatively effects vector gene transfer efficiency and 

packaging efficiency. Most adaptors can achieve the two main goals of targeted 

delivery: ablating native tropism and conferring novel tropism towards the desired 

target [132]. 

indirect targeting 

direct targeting 
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Barlett et al. used a bi-specific F(ab´Y)2 antibody that was subsequently linked to 

the capsid of AAV2. The capsid-antibody linked rAAV vectors were retargeted 

successfully to αIIbβ3-expressing cell lines. Results showed an increased 

transduction by up to 70-fold in receptor-positive cell lines [122]. Another approach 

used avidin-linked epidermal growth factor (EGF) or fibroblast growth factor (FGF) 

fusion proteins conjugated to biotinylated AAV capsids to transduce human 

ovarian cancer and megakaryocytic cell lines [133]. Despite the promising and 

successful studies of diverse adaptor systems in vitro, their usability in an in vivo 

setting remains to be demonstrated. Obstacles in this regard are maybe the 

stability of the vector-adaptor complex, in particular when host factors compete 

with adaptor binding [132].  

1.2.2.2 Genetic vector targeting 

By using the genetic vector targeting approach, cell specific targeting of the vector 

is mediated by genetically incorporating ligands into viral capsid proteins by 

simultaneously shielding the natural binding receptor (Figure 7), [134].  

A first attempt to use this strategy was reported by Yang et al. [135] who fused a 

single-chain antibody to the N-terminus of VP2 to target CD34+ cells. Although the 

study showed the incorporation of the targeting ligand, vector titer was extremely 

low. Several groups were able to show the incorporation of small peptides to the 

N-terminus of VP1 or peptides within VP1 and simultaneously to the N’-terminus of 

VP2, which resulted in functional virions with an expanded tropism of AAV [24], 

[136], [137]. More recent approaches demonstrated that the N-terminus of VP2 

also accepts large insertions. Lux and colleagues genetically incorporated 

enhanced green fluorescent protein (GFP) into AAV capsid by replacement of 

wild-type VP2 by GFP-VP2 fusion proteins to visualize viral trafficking [25]. 

Furthermore, Münch and colleagues used the N-terminus of VP2 for insertion of 

Designed Ankyrin Repeat Protein (DARPin) into an AAV2 vector with ablated 

HSPG binding. The DARPin insertion confers the AAV vector with a high cell type 

specificity of vector genome delivery thereby enabling the safe delivery of suicide 

genes following systematic application into tumor bearing mice [138]. 

The first successful modification of AAV´s capsid by direct targeting was achieved 

by Girod et al.. They demonstrated that the insertion of peptides into the common 

regions of all three AAV capsid proteins (aa position 587) retargeted AAV2´s 
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natural tropism to mouse melanoma cells (B16F10). Later, the results of Girod et 

al. were confirmed by Grifman et al [139], who inserted the tumor-targeting 

NGRAHA sequence at the same position, 587, leading to up to 20-fold increased 

transduction efficiencies on several tumor cell lines expressing CD13 (a receptor 

expressed in angiogenic vasculature and in many tumor cell lines). Further, Shi 

and Bartlett demonstrated that the aa position 588 is also suitable for peptide 

insertion. They introduced a 4c-RGD peptide, CDCRGDCFC, which is known to 

bind with high affinities to the integrins αVβ5 and αVβ3, into the AAV capsid resulting 

in vectors that transduce cells HSPG independent, but through the above 

mentioned integrin [140]. Later Boucas et al. identified also aa position 453, 

located at the highest peaks on AAV2´s capsid, as possible site for peptide 

insertion [141].  

To generate targeting vectors with a novel and restricted tropism, natural receptor 

binding elimination is necessary [47]. Notably in this context, insertions at the 

positions 587 interfere with the binding of two (R585 and R588) of the five 

positively charged aa of the AAV2 HSPG-binding motif [38], [142], explaining the 

ablation of HSPG binding of some re-targeted vectors [123], [143], [139], [144], 

[145]. In some cases, binding was only partially affected or even restored, when 

ligands were inserted at amino acid position 587 [139], [144], [146], [147]. This 

loss or maintenance of HSPG binding exemplified a dependence on the nature of 

the inserted ligand sequence as follows: insertion of bulky or negatively charged 

peptides resulted in AAV2 capsid mutants unable to bind to HSPG due to sterical 

or charge interference, while insertion of positively charged peptides can lead to 

an HSPG-binding phenotype by reconstituting a binding motif with one of the 

original arginines (R585 or R588) or independently of them [148].  

1.3 AAV peptide display 

Although rational design has generated viral vectors with novel gene delivery 

properties, the successful application of rational approaches often requires 

detailed mechanistic knowledge of AAV’s infection process and on suitable 

receptor-binding peptides (ligands) capable of mediating efficient and cell-type 

specific vector entry [124]. As an answer to these challenges, the AAV display 

technology has been developed. This technology based on a high-throughput 
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screening technique consisting of a library of AAV capsid mutants carrying 

insertion of peptides with random sequences. Briefly, the AAV display library is 

used to infect desired target cells. The pool of de novo produced AAV variants is 

harvested from the cells and is used for further rounds of selection until an 

enrichment of viral particles, possessing the ability to successfully transduce the 

target cells has taken place. Thus, several AAV peptide libraries have been 

developed. Two very promising libraries are based on AAV2, consisting of mutants 

carrying 7-mer peptides with a random sequence at aa position 587 [112] or 588 

[113] (Figure 8).  

 

Figure 8: AAV peptide display  
Schematic representation of the construction of the library of AAV2 capsid modified particles and 
selection protocol for the isolation of retargeted mutants is depicted. A pool of oligonucleotides with 
random sequence is cloned into an AAV2 genome encoding plasmid at the site corresponding to 
aa position 587 of the viral capsid proteins. Following a standard AAV production protocol, a library 
of approximately 4x10

6
 different capsid modified AAV2 clones can be generated. For the selection 

of retargeted mutants, target cells are co-infected with the pool of AAV2 mutants and with 
adenovirus. The viral progeny collected 48 h p.i. is used for the next infection round.  

 
Perabo and colleagues performed five selection rounds with an AAV peptide 

display library on megakaryocytic cells (MO7e) and B-cell derived chronic 

lymphocytic leukemia cells (Mec1) [144], which both are non-permissive for wild 

type AAV2. In two separate selections, they were able to isolate RGD-containing 

peptides (RGDAVGV and RGDTPTS) from the selection on MO7e cells. In 

transduction experiments performed with rAAV vectors displaying the selected 

peptides on the capsid surface, an up to 100-fold increased efficiency in M-07e 

cells was observed [144]. The rAAV vectors displaying the selected peptides on 
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the capsid surface were successful in transducing the target cells. Totally different 

peptide motives were selected on Mec1 cells (GENQARS and RSNAVVP).  

A similar approach was applied by Müller et al.. Their library contained a 7-mer 

peptide of random sequence inserted into the AAV2 capsid at amino acid position 

588. They selected peptides able to mediate the transduction of human coronary 

artery endothelial cells [149]. Most of the selected peptides fitted into the 

consensus sequence NSVRDLG/S and NSVSSXS/A displaying remarkably higher 

transduction levels than AAV2 with unmodified capsid on the target cells. 

Recently, Varadi et al. successfully generated an AAV9 peptide library with a 

randomized insertion of heptapeptides in aa position 589. They were able to show 

up to 40-fold improved transduction efficiencies on coronary artery endothelial 

cells in vitro by using AAV9 library selected mutants in comparison to wild-type 

AAV9 vectors [150].  

The above-mentioned and several other studies concerning the AAV peptide 

display library technology [148], [151], [152], [153] demonstrate the successful 

identification of capsid mutants with increased transduction efficiencies on the 

concerning target cells. These mutants own the characteristics of receptor-specific 

cell entry and successful intracellular processing, which both are essential for an 

efficient AAV targeting vector.  

1.4 Skin 

The skin is the largest organ of the body. In a 70 kg individual the skin weights 

over 5 kg covering a surface of 2 m2. Human skin consists of a stratified epidermis 

and an underlying dermis of connective tissue, which is organized into basal 

(stratum basale), spinous (stratum spinosum), granular (stratum granulosum) and 

cornified layers (stratum corneum), each layer consisting of keratinocytes of a 

specific morphology and state of differentiation (Figure 9), [154], [155], [156], 

[157], [158].  
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Figure 9: Structure of the human skin (www.physioweb.org) 

 

The keratinocytes account for more than 80% of the cells of the epidermis. They 

function as a barrier and contribute to skin repair and regeneration [159]. Important 

structural proteins of the vertebrate epidermis are keratins constituting up to 85% 

of differentiated keratinocytes [160]. 20 different keratins are described for the 

human skin [161], [162], [163]. Typical keratins expressed in the mitotically active 

cells of the basal layer are keratins K5 and K14, which are considered to be 

biochemical markers of the epidermis [164]. K5 and K14 form intermediate 

filaments that assemble into strong networks, and anchor the epidermis to 

underlying layers of the skin. The network of keratin intermediate filaments 

provides strength and resiliency to the skin and provides protection from being 

damaged by friction and other everyday physical stresses [164], [165], [166]. Other 

important keratins are K1 and K10, which are the most abundant proteins in the 

upper epidermis where they polymerize to form intermediate filaments. In addition 

to their well-established function in providing epidermal stability, K1/K10 

intermediate filaments are supposed to be important for terminal epidermal 

differentiation and barrier formation [167]. Point mutations of keratin genes can 

lead to severe diseases, many of which manifest as blistering skin diseases [166]. 

The most prominent of these inherited skin fragility disorders is epidermolysis 

bullosa simplex (EBS), of which the various variants are caused by a spectrum of 

point mutations of K5 or K14 [168], [169], [170].  
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Also, present in the basal layer of the epidermis are integrins, which are essential 

for cell-cell and cell-matrix interactions. The major types in the epidermis are α2β1, 

α3β1 and α6β4 integrins [171], [172], [173]. Integrins are heterodimeric 

transmembrane receptors consisting of an α and a β subunit that links the 

extracellular matrix (ECM) to the cytoskeleton, and “integrates” the extra-cellular 

environment with the cell interior [174].  

A characteristic feature of the epidermis is the formation of the cornified cell 

envelope [175], which is crucial for barrier function of the epidermis [176]. The 

cornified cell envelope is a highly insoluble structure and contains a complex 

mixture of specific proteins such as involucrin, loricrin, small proline-rich proteins, 

XP-5 family members, cystatin A, elafin, S100 family members, and lipids that are 

covalently cross-linked by transglutaminases [177], [178], [179], [180], [181].  

Other important cells found in the epidermis are Langerhans cells, melanocytes 

and Merkel cells. Langerhans cells provide immunological protection, while 

melanocytes absorb UV light, and the Merkel cells are sensors for mechanical 

events at the skin´s surface and within the epidermal compartment. 

1.4.1 Organotypic skin co cultures 

The epidermis is a surface epithelium with its upper cell sheet exposed to the 

outer environment. In vivo, formation and maintenance of the mature epidermis 

consists of four layers that rely on a continuous process of keratinocyte 

proliferation and terminal differentiation (see 1.4). The epidermal organization and 

tissue homeostasis are regulated by mesenchymal influences [182] and the 

proliferation of basal cell attachment to the basement membrane. Culturing 

primary human keratinocytes (HK) in 2D completely alternates the system since in 

conventional 2D culture, cells grow either as mono-layers on solid, impermeable 

surfaces or as uniform suspensions. The cells are nourished from above and lack 

the basement membrane, depriving the cells of mesenchymal support. To 

generate more natural growth conditions for primary HK, in vitro culturing skin 

explants were explored. While this allowed the keratinocytes to migrate from the 

explants, the differentiation program was only rudimentary, and the cells 

eventually became senescent or detached. Pioneering work was done by 

Rheinwald and Green 1975, demonstrating that single cell suspensions of 

keratinocytes could be grown on feeder layers of irradiated fibroblasts [183]. 
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Although, keratinocytes could be further propagated in such cultures, neither cell 

polarization or structural organization, nor the expression of the differentiation 

markers filaggrin, keratin K1/10 and loricrin were improved [184], [185], [186], 

[187]. Henceforward, multiple versions were developed to mimic the in vivo 

situation of normal skin using a current method of cultivating the air-exposed 

keratinocytes on various substrates that serve as dermal equivalents (organotypic 

skin 3D culture, Figure 10). The dermal equivalents were composed of porous 

membranes, which were either coated with a cell-free extracellular matrix or with 

fibroblasts at the lower side of the filter [188], [189]. Similar to an in vivo situation, 

organotypic skin co-cultures have been generated with air-exposed primary 

cultured keratinocytes grown on top of a type I collagen gels containing fibroblast, 

which mimic an appropriate substratum for the development of the polarized and 

stratified epithelium (Figure 10), [190], [191], [192]. Here, the fibroblasts nourish 

the keratinocytes by diffusion from the medium which is restricted to the base of 

the collagen gel. The keratinocytes growing in the organotypic culture can develop 

into a stratified epidermis-like epithelium, consisting of several nucleated cells as 

well as fully keratinized layers, closely resembling the epidermal strata. In this 

system, function of diffusible factors mediating epithelial-mesenchymal interactions 

has been demonstrated by Smola et al. [193] and Maas-Szabowski et al. [194]. 

 

 

 

 

 

 

 

Figure 10: Schematic drawing of an organotypic skin co-culture 

culture medium 

filter insert 

collagen gel with fibroblasts 

primary human keratinocytes 
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1.4.2 Wounds and wound healing therapies 

Once the protective barrier of the skin is damaged, the physiologic process of 

wound healing is immediately set in motion. Generally, the human adult wound 

healing process can be divided into 3 distinct phases: the inflammatory phase, the 

proliferative phase, and the remodeling phase [195], [196]. Upon injury, a series of 

biochemical events takes place. Minutes post-injury, platelets (thrombocytes) 

aggregate at the injury site to form a fibrin clot. During the inflammatory phase, 

ichor (including chemokines and cytokines) is released to attract cells that 

phagocytose debris, bacteria, and damaged tissue, in addition to releasing 

signaling molecules that initiate the proliferative phase of wound healing. During 

blood clotting (2–7 days after injury), fibrin and fibronectin cross-link together to 

form a plug that traps proteins and particles, preventing further blood loss [197]. In 

the third phase, wound remodeling, fibroblasts are transformed into myofibroblasts 

that mediate wound contraction and collagen is deposited in abundance. The 

keratinocytes close the wound surface with a neoepidermis. This third phase of 

wound healing shows a transition from granulation tissue to scar tissue, a 

continued spreading of collagen and constant remodeling of the scar that lasts for 

months [195], [196]. The important molecules responsible for mediating wound 

healing are proteins known as growth factors (EGF family, EGF, TGF-α, TGF-β, 

PDGF, VEGF etc.) [198]. They interact as mediators and receptors and play an 

essential role in linking each step of wound healing [198]. These growth factors 

are synthesized and secreted by many types of cells, involved in tissue repair, like 

platelets, inflammatory cells, fibroblasts, epithelial cells and vascular epithelial 

cells [199], [200].  

The wound repairing process fails in conditions of large cutaneous burns and 

chronic wounds. For example, a decreased production and/or secretion of growth 

factors in addition to local inflammation impairs wound healing in the case of 

diabetic ulcers [201]. Furthermore a loss of growth factors leads to 

macromolecular leakage of fibrogen, α-macroglobin, and albumin, which could 

cause venous stasis ulcers or diabetic ulcers [200], [202], [203].  

On the cellular level, the process of wound healing can be supported and 

promoted by gene delivery. The skin is easily accessible for both in vivo and ex 

vivo gene transfer and for monitoring of the treatment site. The epidermis is a self-
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renewing tissue containing stem cells in the basal layer, which proliferate 

throughout the whole life span, replace themselves upon division and give rise to 

keratinocytes committed to terminal differentiation. Some promising strategies 

have been reported for the treatment of severe skin diseases by genetic 

manipulations. Freiberg and colleagues developed a retroviral expression vector 

for human steroid sulfatase arylsulfatase (STS) to provide corrective gene delivery 

to human keratinocytes for patients suffering from X-linked ichthyosis (XLI). 

Afterwards, they utilized these corrected cells for the regeneration of fully 

functional normal human epidermis in vivo on immunodeficient mice [204].  

Another group, Mavilio and colleagues published a study on the treatment of 

patients suffering from epidermolysis bullosa (EBS) through ex vivo retroviral 

vector transduction of autologous epidermal stem cells with a normal copy of the 

defective gene, followed by reconstitution of the patient’s skin with epithelial 

sheets that are grown from these genetically corrected cells [205]. A disadvantage 

of retroviral gene transfer is related to the potential mutagenicity of retroviral 

vectors due to their random integration into the host’s genome, which may cause 

insertional mutagenesis if it disrupts a tumor suppressor gene or activates an 

oncogene [76]. 

An alternative vector thought to offer some additional advantages might be the 

rAAV vector. However, the use of AAV vectors for the treatment of inherited skin 

diseases or in wound healing has been hindered by the lack of suitable AAV 

variants that allow efficient transgene delivery [206], [207], [208]. So far, AAV2 as 

well as vectors pseudotyped with capsids of alternate serotypes such as AAV5, -7 

or 8 had to be used at multiplicities of infection (MOI) of > 100,000, which is not 

feasible in a clinical setting [208], [209]. A possible strategy to overcome this 

limitation is to re-direct the viral tropism towards a novel receptor by genetic 

modification of the viral capsid (targeting) (Figure 8). 

1.5 Objective 

Skin-directed gene transfer is believed to be a promising strategy to treat a 

multiplicity of skin diseases [210], [211], [212] including cancer, burns or chronic 

non-healing wounds [213], [214] or inherited diseases such as epidermolysis 

bullosa, ichthyosis and xerderma pigmentosum [215], [216], [217], [218]. 
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Therefore, the generation of vectors providing high transduction efficiency and 

sustaining gene expression for a period of time by applying low vector doses and a 

general lack of toxicity would be an important tool for gene therapy. A very 

promising vector system is based on AAV2 [219]. However, cell entry of rAAV2 

occurs inefficient [209] and as a consequence very high numbers of vector 

particles have to be applied, which is not feasible in a clinical setting [208]. 

In this context, the main objective was the selection and characterization of rAAV 

targeting vectors with improved gene transfer efficiencies for primary HK. In the 

absence of knowledge of an appropriate receptor to target, a high-throughput 

selection screen of AAV capsid mutants on primary HK with an AAV peptide 

display library had to be performed. Previous results of our group proved that 

selection with the AAV2 display library, depleted for HSPG-binding ligands, 

resulted in neutral charged, highly efficient and cell-type-specific rAAV2 targeting 

vectors transducing target cells via an HSPG independent and clathrin-dependent 

mechanism [144], [220]. Therefore, pre-selection, the library had to be depleted for 

HSPG-binding ligands by heparin chromatography. Furthermore, it should be 

tested if the randomly inserted peptide ligand mediates the cell entry of the 

appropriate rAAV2 targeting vector since the specificity of ligand defines the 

tropism of the targeting vectors. The selected rAAV2 targeting vectors should be 

highly specific in order to restrict gene transfer into primary HK as they are 

frequently co-cultured with feeder cells. To elucidate receptor candidates of the 

selected rAAV targeting vectors, the comparative gene analysis (CGA) [221] was 

to be applied in cooperation with the NIH (USA). In summary, this work´s main 

objective is the development of new tools for tissue engineering and a strategy to 

map the targeting receptor. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals, solutions and enzymes 

Product Company 

Agar-Agar Roth, Karlsruhe, Germany 

Agarose Invitrogen, Karlsruhe, Germany 

Anti-Anti, Antibiotic-Antimitotic Solution Life Technologies GmbH, Darmstadt, 

Germany 

Aqua bidest. (Ampuwa)  Fresenius Kabi, Homburg, Germany 

Bovine Serum Albumin  AppliChem, Darmstadt, Germany 

Calcium Chloride  Sigma-Aldrich, Taufkirchen, Germany 

Chlorpromazine Sigma-Aldrich, Taufkirchen, Germany 

Dimethylsulfoxide (DMSO) Roth, Karlsruhe, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Dispase II Sigma-Aldrich, Taufkirchen, Germany 

EDTA Roth, Karlsruhe, Germany 

Eosin Y solution, alcoholic Sigma-Aldrich, Taufkirchen, Germany 

Ethanol Roth, Karlsruhe, Germany 

Ethidium Bromide Roth, Karlsruhe, Germany 

37% Formaldehyde-solution Merck, Darmstadt, Germany 

Genistein Sigma-Aldrich, Taufkirchen, Germany 

Glycerol  Roth, Karlsruhe, Germany 

Hematoxylin solution, Meyer`s Sigma-Aldrich, Taufkirchen, Germany 

Heparin ROTEXMEDICA GmbH, Trittau, 

Germany  

Hepes Roth, Karlsruhe, Germany 
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Instamed 9.55 g/l PBS Dulbecco Biochrom AG, Berlin, Germany 

Iodixanol Sigma-Aldrich, Taufkirchen, Germany 

IS Mounting Medium DAPI Dianova GmbH, Hamburg, Germany 

Isopropanol Roth, Karlsruhe, Germany 

Magnesium Chloride Roth, Karlsruhe, Germany 

MassRuler DNA Ladder Mix MBI Fermentas, St. Leon-Rot, Germany 

Peptone/Tryptone Roth, Karlsruhe, Germany 

PhusionTM DNA Polymerase Finnzymes, Keilaranta, Finland 

Proteinase K  Sigma-Aldrich, Taufkirchen, Germany 

Rat-tail Collagen, high concentration Cellsystems, Troisdorf, Germany 

Saccharose  Merck, Darmstadt, Germany 

Sodium Hydroxide Roth, Karlsruhe, Germany 

Sodium Phosphate Roth, Karlsruhe, Germany 

T4 DNA Ligase  MBI Fermentas, St. Leon-Rot, Germany 

TRIS Hydrochloride Roth, Karlsruhe, Germany 

Tissue-Tek® Sakura Finetek, Zoeterwoude, 

Netherlands 

Yeast Extract Roth, Karlsruhe, Germany 

 

All other chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany), 

Merck (Darmstadt, Germany) or Carl Roth GmbH & Co. (Karlsruhe, Germany). 
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2.1.2 Standard kits 

Product Company 

BigDye® Terminator v 3.1 Cycle Sequencing 

Kit 

Applied Biosystems, Foster City, USA 

DNeasy® Blood & Tissue Kit Qiagen, Hilden, Germany 

EndoFree® Plasmid Kits Qiagen, Hilden, Germany 

AAV2 Titration ELISA Progen, Heidelberg, Germany 

Gel extraction Kit Qiagen, Hilden, Germany 

LightCycler® 480 SYBERGreen Master Roche, Mannheim, Germany 

LightCycler ® Fast Start DNA Master SYBER 

Green I 

Roche, Mannheim, Germany 

PCR Purification Kit  Qiagen, Hilden, Germany 

2.1.3 Plasmids 

pGFP self-complementary: 

AAV vector plasmid that encodes the GFP gene is controlled by the human CMV 

promoter. The transgene cassette is flanked by the AAV2 ITRs. The plasmid 

contains an Ampicillin-resistance gene (beta-lactamase). A deletion in one of the 

terminal resolution sites interferes with strand displacement resulting in a self-

complementary genome conformation, which is packaged into the viral capsid [58]. 

 

pRC: 

pRC is an AAV based helper plasmid containing the AAV2 Rep and Cap ORFs but 

lacks the viral ITRs. pRC contains an Ampicillin-resistance gene [143]. 

 

pRC “Kotin”: 

The AAV based helper plasmid contains the AAV2 Rep and Cap ORFs but lacks 

the viral ITRs. The plasmid contains a SnaBI and a BsiWI cloning site within the 

CAP ORF. pRC “Kotin” possesses an Ampicillin-resistance gene and was kindly 

provided by Anne Girod. 
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pRC “Kotin”-Kera1-587, pRC ”Kotin”-Kera2-587, pRC ”Kotin”-Kera3-587: 

The AAV based helper plasmid contains the AAV2 Rep and Cap ORFs but lacks 

the viral ITRs. This plasmid carries an insertion at the position that corresponds to 

aa 587. Three different plasmids were cloned during this work: pRC-Kera1 with the 

insertion (-AARGDTATLAA-), pRC-Kera2 with (-AAPRGDLAPAA-) and pRC-

Kera3 with (-AARGDQQSLAA-). The plasmids possess an Ampicillin-resistance 

gene.  

pRGD-4C-587: 

AAV based helper plasmid containing the AAV2 Rep and Cap ORFs but lacks the 

viral ITRs, the RGD4C peptide -ACDCRGDCFCA- is inserted at a site that 

corresponds to aa 587. The plasmid contains an Ampicillin-resistance gene [141]. 

 

pXX6-80: 

Adenoviral helper plasmid encoding for VA, E2A and E4 and Ampicillin resistance; 

pXX6 was kindly provided by J. Samulski (University of North Carolina, Chapel 

Hill, USA). The plasmid contains an Ampicillin-resistance gene [73]. 

2.1.4 Enzymes 

Benzonase  Merck, Darmstadt, Germany 

Restriction enzyme  
 

MBI Fermentas, St. Leon-Rot, Germany; 
New England Biolabs, Frankfurt am Main, 
Germany 

2.1.5 Primers 

All primers were synthesized by Invitrogen (Karlsruhe, Germany). 

 

Sequencing primer 

wt_4066_rev   5’ – ATG TCC GTC CGT GTG TGG – 3’ 

 

 

Primers for qPCR 

GFP_fw    5’ – GCTACCCCGACCACATGAAG – 3’ 

GFP_rev    5’ – GCTCATGCCGAGAGTGATCC – 3’ 
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Plat_fw    5’ – ACCTAGACTGGATTCGTG – 3’ 

Plat_rev    5’ – AGAGGCTAGTGTGCAT – 3’ 

 

Primers for amplification of selected clones:  

BsiWI_fw    5’ – TAC CAG CTC CCG TAC GTC CTC GGC – 3’  

NewSnaBI_rev   5’ – CGC CAT GCT ACT TAT CTA CG – 3’ 

2.1.6 Antibodies 

2.1.6.1 Direct labeled antibodies 

Anti-Feeder  monoclonal, APC conjugated 
mouse anti-human 

Miltenyi, Bergisch 
Gladbach, Germany 
 

2.1.6.2 Primary antibodies 

Anti-αvβ5 (MAB1961) monoclonal, mouse anti-human Millipore, Schwalbach/Ts., 
Germany 

Anti-α5β1 (MAB1999) monoclonal, mouse anti-human Millipore, Schwalbach/Ts., 
Germany 

Anti-α-V (MAB1953) monoclonal, mouse anti-human Millipore, Schwalbach/Ts., 
Germany 

Anti- αVβ8, 37E5 monoclonal, IgG2a, mouse anti-
human 

kindly provided by S. 
Nishimura, UCSF, USA 

Anti-human heparan 
sulfate delta 

monoclonal, IgG2b, mouse anti-
human 

USBiological, 
Massachusetts, USA 

Anti-Collagen Type IV monoclonal, IgG2b, mouse anti-
human 

Progen, Heidelberg, 
Germany 

2.1.6.3 Secondary antibodies 

IgG (ab7002-500) monoclonal, PE-conjugated goat 
anti-mouse 

abcam, Cambridge, UK 

IgG (1030-09s) polyclonal, PE-conjugated goat 
anti-mouse 

SouthernBiotech, Eching, 
Germany 

2.1.7 Peptides 

H-Gly-Arg-Gly-Glu-Ser-OH Bachem Distribution Service, Weil am 
Rhein, Germany 

H-Gly-Arg-Gly-Asp-Ser-OH Bachem Distribution Service, Weil am 
Rhein, Germany 
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2.1.8 Bacteria strain 

E.coliDH5α: 

F-, lac1-, recA1, endA1, hsdR17, _(lacZYA-argF), U169,F80dlacZ_M15, supE44, 

thi-1, gyrA96, relA1; [222] 

2.1.9 Eukaryotic cells 

For culturing and media conditions, please refer to 2.2. 

2.1.9.1 Immortalized cell lines 

A375 

Human malignant melanoma cells; American Type Culture Collection (ATCC) 

number: CRL1619™; [223] 

BLM 

Human melanoma cells; were kindly provided by C. Mauch (Department of 

Dermatology and Venereology, Cologne).  

DU145 

Human prostate cancer cells; ATCC number: HTB-81; [224] 

HEK293 

Human embryonic kidney cells, transformed with Ad5 DNA and containing the 

adenoviral genes E1a and E1b; ATCC number: CRL-1573; [225] 

HeLa 

Human epithelial cervix adenocarcinoma cells; ATCC number: CCL-2™; [226] 

HepG2 

Human hepatocellular carcinoma cells; ATCC number: HB-8065; [227] 

NIH3T3 

Mouse embryonic fibroblast cells; ATCC number: CRL-1658TM; [228] 

SW480 

Human colon adenocarcinoma cells, were kindly provided by S. Nishimura, San 

Francisco; [229] 

SW480-αVβ8 

Human colon adenocarcinoma cells expressing αVβ8 integrin, were kindly provided 

by S. Nishimura, San Francisco; [229] 
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2.1.9.2 Primary human keratinocytes 

Primary human keratinocytes isolated from human foreskin (see 2.2.4.6). 

2.1.9.3 Primary murine keratinocytes  

Primary murine keratinocytes were kindly provided by the group of Carien Niessen 

(Department of Dermatology, CECAD and CMMC Cologne, Germany). 

2.1.10 Culture Media and Supplements 

Product  Company 

Accutase Invitrogen, Karlsruhe, Germany 

Ampicillin Sigma-Aldrich, Taufkirchen, Germany 

Chelex100 Resin Biorad, Munich, Germany 

CnT Basal Medium 1 CELLnTEC Advanced Cell Systems AG, 

Bern, Switzerland 

DMEM Medium + GlutaMAXTM-I Invitrogen, Karlsruhe, Germany 

Epidermal Growth Factor (EGF) Sigma-Aldrich, Taufkirchen, Germany 

FCS Invitrogen, Karlsruhe, Germany 

HBSS-Hank´s Balanced Salt Solution Sigma-Aldrich, Taufkirchen, Germany 

MEM Non-Essential Amino Acid Life Technologies GmbH, Darmstadt, 

Germany 

PBS Invitrogen, Karlsruhe, Germany 

Penicillin/Streptomycin Invitrogen, Karlsruhe, Germany 

Puromycin-Dihydrochlorid Roth, Karlsruhe, Germany 

RPMI-1640 medium + GlutaMAXTM-I Invitrogen, Karlsruhe, Germany 

Sodium L-ascorbate Sigma-Aldrich, Taufkirchen, Germany 

Sodium Pyruvate Invitrogen, Karlsruhe, Germany 

TGF-α (Transforming Growth Factor-α) Sigma-Aldrich, Taufkirchen, Germany 

Trypsin/EDTA Invitrogen, Karlsruhe, Germany 
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Media compositions for cell types are listed below: 

A375, HeLa, HEK293, NIH3T3 and SW480 cells: 

• DMEM Medium + GlutaMAXTM-I 

• 10% FCS 

• 100 U/ml penicillin and 100 µg/ml streptomycin 

 

DU-145 cells 

• DMEM Medium + GlutaMAXTM-I 

• 10% FCS 

• 100 U/ml penicillin and 100 µg/ml streptomycin 

 

HepG2 cells: 

• DMEM Medium + GlutaMAXTM-I 

• 10% FCS 

• 100 U/ml penicillin and 100 µg/ml streptomycin 

• 2 mM L-Glutamine 

• 1 mM Sodium Pyruvate 

• 1x MEM Non-Essential Amino Acid 

 

BLM cells: 

• RPMI-1640 medium + GlutaMAXTM-I  

• 10% FCS 

• 100 U/ml penicillin, 100 µg/ml streptomycin 

 

SW480-αVβ8 

• DMEM Medium + GlutaMAXTM-I 

• 10% FCS 

• 100 U/ml penicillin and 100 µg/ml streptomycin 

• 4 µg/ml Puromycin-Dihydrochlorid 
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Primary human keratinocytes: 

• CnT Basal Medium 1 

• 100 U/ml penicillin, 100 µg/ml streptomycin 

 

Organotypic human skin co-cultures: 

• DMEM Medium + GlutaMAXTM-I 

• 10% FCS 

• 100 U/ml penicillin, 100 µ/ml streptomycin 

• 10 µg/ml TGF-α 

• 10 µg/ml Epidermal Growth Factor (EGF)  

• 50 µg/ml Sodium L-ascorbate 

2.1.11 Laboratory equipment and disposables 

Product  Company 

Balance Adventurer Pro Ohaus, NJ, USA 

Beckman Coulter Rotor Type E70Ti Beckman Coulter GmbH, Krefeld, 

Germany 

Beckman Coulter Optima™ L-80 XP 

Ultracentrifuge 

Beckman Coulter GmbH, Krefeld, 

Germany 

BiodocAnalyze live Ultracentrifuge tubes Kendro/Thermo Fisher Scientific, 

Germany 

Captairbioflow Cologne, Germany 

Cell Culture Plastic Ware  TPP AG, Trasadingen, Switzerland 

Centrifuge Z 216 MK Hermle, Wehingen, Germany 

Centrifuge Z 233 M-2 Hermle, Wehingen, Germany 

Centrifuge Z 383 K Hermle, Wehingen, Germany  

Centrifuge 5415 D  Eppendorf, Hamburg, Germany 

Centrifuge Avanti J-E Beckmann Coulter, Krefeld, Germany 

Cell scrapers Corning Incorporated, New York, USA 

Cell strainer BD FalconTM BD Biosciences, 
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Erembodegem, Belgium 

CO2 Incubator MCO-20AIC  Sanyo, Munich, Germany 

Companion 6 well plates for cell culture  

filter application 

BD Falcon™, BD Biosciences, 

Erembodegem, Belgium 

Cover slips 10 mm  Roth, Karlsruhe, Germany 

Cryostat LEICA CM1850 Leica, Nussloch, Germany 

FACS Calibur Becton Dickinson, Heidelberg, Germany 

FACS tubes Becton Dickinson, Heidelberg, Germany 

Filter tips Sarstedt, Nümbrecht, Germany 

General laboratory ware VWR, Darmstadt, Germany 

Glass rings, 20+/-0.25 mm x wall thickness  

1.8 mm,10 mm size 

Custom product by Brennstein 

Laborbedarf, Markt Schwaben, Germany  

Heater/Magnetic stirrer Heidolph MR 3001 Heidolph Instruments, 

Schwabach, Germany 

Hera -80ºC freezer   Heraeus/Thermo Fisher Scientific, 

Germany 

HiTrap Heparin Affinity Columns (1 ml)  

 

Amersham /GE Healthcare, Freiburg, 

Germany 

HiTrap ProteinA HP Columns (1 ml) Amersham /GE Healthcare, Freiburg, 

Germany 

Incubator Shaker  Multitron Standard Infors HAT, 

Bottmingen-Basel, Switzerland 

Laminar Air Flow  BioWizard Golden Line Kojair, Vilppula, 

Finland 

Laminar Air Flow  BioWizard Xtra Kojair, Vilppula, Finland 

LightCycler 480 II  Roche, Mannheim, Germany 

Light Cycler plates and foils  Roche, Mannheim, Germany 

LightCycler Capillaries  Roche, Mannheim, Germany 

LightCycler carousel centrifuge Roche, Mannheim, Germany 
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Membrane application for 6 well plates, 3 µm, 

8x105 pores/cm2 

BD Falcon™, BD Biosciences, 

Erembodegem, Belgium 

Microcentrifuge  Roth, Karlsruhe, Germany 

Microscope Olympus CKX41 Olympus, Hamburg, Germany 

Microscope Olympus IX81 Olympus, Hamburg, Germany 

Microscope slides Superfrost®Plus Thermo Fisher Scientific Inc., 

Braunschweig, Germany 

Microtome Blades Leica, Nussloch, Germany 

NanoDropTM 1000  Thermo Fisher Scientific Inc., 

Braunschweig, Germany 

Parafilm Pechinery Plastic Packaging, Chicago, 

USA 

pH Meter Seven Easy Mettler-Toledo, Schwerzenbach, 

Switzerland 

Pipettes Eppendorf, Hamburg, Germany 

Power Supply  Renner, Dannstadt, Germany 

Pump P-1 Amersham/GE Healthcare, Freiburg, 

Germany 

Reaction tubes (1.5 ml, 2 ml) Eppendorf, Hamburg, Germany 

Reaction tubes (15 ml, 50 ml)  

 

Sarstedt, Nümbrecht, Germany;  

Becton Dickinson, Heidelberg, Germany 

Rotary Microtome Leica RM2255 Leica, Nussloch, Germany 

Scalpels Feather Safety  Razor Co. Ltd., Japan 

Syringes and cannulas B. Braun Melsungen, Melsungen, 

Germany 

Thermocycler, T3000 Biometra, Göttingen, Germany 

Thermomixer Comfort Eppendorf, Hamburg, Germany 

Tissue Processor Leica ASP 300S Leica, Nussloch, Germany 

Vortex Genie 2 Scientific Industries, NY, USA  

Waterbath Medingen W6 Medingen, Freital, Germany 
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2.1.12 Data treating Software 

Clone Manager, Picasa, Roche LightCycler480 SW1.5, Roche LightCycler3.5 

Microsoft Excel, Microsoft Word, RelQuant, WinMDI, FACS DIVA, specific 

software for the respective instruments. 
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2.2 Methods 

2.2.1 Bacteria culture 

2.2.1.1 Cultivation of bacteria 

Bacteria were grown in LB medium at 37°C under vigorous shaking overnight. For 

generating single clones, bacteria were plated on plates containing LB agar and 

100 µg/ml Ampicillin. 

LB medium:   10 g tryptone 

  5 g yeast 

  5 g NaCl 

15 g agar (for plates) 

add 1 l distilled H2O 

2.2.1.2 Preparation of chemically competent bacteria 

All solutions were autoclaved before use. Equipment and solutions were pre-

cooled. 3 ml LB medium without antibiotics were inoculated with DH5alpha E. coli 

and incubated overnight at 37°C in a shaker at 220 rpm. The overnight culture was 

added to 400 ml LB medium and incubated at 25-30°C until the absorbance at 600 

nm was approximately 0.5. The culture was chilled on ice for 10 min. For a gentle 

handling of the bacteria, all the following steps were done on ice. The bacteria 

suspension was centrifuged for 7 min at 1600 rcf at 4°C. After removal of the 

supernatant the pellet was resuspended in 10 ml ice-cold CaCl2-solution and the 

bacteria suspension, was further centrifuged for 5 min at 1100 rcf and 4°C. Then, 

the pellet was gently resuspended in 20 ml ice-cold CaCl2-solution and the cell 

suspension was chilled on ice again for 30 min. After an additional centrifugation 

step for 5 min at 1100 rcf, aliquots of 100 µl were produced, and the cell 

suspension was shock frozen in liquid nitrogen. Aliquots were stored at -80°C. 

 

CaCl2-solution:  60 mM CaCl2 x 2H2O 

10 mM PIPES, pH 7 

10% Glycerin 
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2.2.1.3 Transformation of bacteria 

Transformation of bacteria was done by using the heat shock method. 50 µl 

competent bacteria were thawed on ice for 15 min. DNA (approx. 50-100 ng) was 

added to the bacteria and mixed very gently. After 30 min incubation on ice, 

bacteria were exposed to a heat shock of 42°C for 1 min followed by a two-min-

incubation. 400 µl LB medium without antibiotics was added. Bacteria were placed 

in a shaker (37°C at 250 rpm, 30 min). The suspension was plated on a LB agar 

plate containing antibiotics. Plates were incubated overnight by 37°C. 

2.2.2 Working with nucleic acid 

2.2.2.1 Plasmid amplification and extraction 

To isolate plasmid DNA from bacteria, anion exchange columns were used. The 

preparation was done in “Mini”, “Maxi” and “Mega” measuring units according to 

the standard protocols and EndoFree system kits 50, 500 and 2500 of Qiagen. 

2.2.2.2 DNA quantification 

DNA concentration was measured at a wavelength of 260 nm (DNA) and 280 nm 

(protein impurities) by making use of NanoDropTM 1000. Purity of the nucleic acid 

preparation is defined by the ratio Abs 260 nm /Abs 280 nm. DNA of high purity 

has a ratio of 1.8, lower values point to contaminations with proteins and aromatic 

substances, whereas higher ratios indicate possible contaminations with RNA. 

2.2.2.3 Restriction Digest of DNA 

Digestion with restriction enzymes was performed according to the manufacturer’s 

instructions in a final volume of 20 µl containing 1 µg of DNA, 1-10 units of 

restriction enzyme per 1 µg DNA and 1x buffer. 

2.2.2.4 Gel Electrophoresis 

Analytic or preparative agarose gel electrophoreses were performed in 1xTAE 

buffer. Depending on the fragment size, the concentration of the agarose gel 

varied between 0.8 and 1.2%. The agarose was solved in 1xTAE buffer and mixed 

with the DNA intercalating substance ethidium bromide (0.1 µg per 1 ml gel 

volume) and poured onto a gel casting tray. To analyze the DNA fragments, from a 
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restriction digest approximately 200 ng DNA was mixed with 1x loading dye to 

reach an end volume of 10 µl. DNA ladders were used as reference.  

 

TAE Buffer (50x):  242 g Tris base (2 mol/L)  

57.1 ml Glacial acetic acid (1 mol/L)  

18.6 g EDTA pH 8.0 (0.05 mol/L)  

add 1 l H2O 

 

Extraction of DNA fragments or PCR products from agarose gels was performed 

using the Qiagen Gel Extraction Kit according to the manufacturer’s instructions. 

2.2.2.5 DNA extraction from eukaryotic cells 

DNA was extracted from eukaryotic cells using the QIAGEN DNeasy Blood & 

Tissue Kit according to the protocol for “Purification of Total DNA from Animal 

Blood or Cell”. Column-bound DNA was eluted in 200 µl 10 mM Tris/HCl pH 8.5. 

2.2.2.6 Polymerase chain reaction 

After the fifth round of selection (see 2.2.2.9), DNA isolated from viral progeny was 

amplified by PCR using the primer BsiWI_fw and New SnaBI_rev. The 1.2 kb 

fragment containing the insertion at aa position 587 (nt 5311 to nt 6532 of CAP 

ORF) were subsequently cloned into pRC-Kotin. The PCR reaction conditions are 

described below. 

Pipetting scheme for PCR reaction mix: 

5 µl template DNA 

10 µl 5x Phusion reaction buffer 

0.5 µl PhusionTM DNA Polymerase 

2 µl dNTPs (10 mM) 

2 µl BsiWI_fw (10 µM) 

2 µl New SnaBI_rev (10 µM) 

ad 50 µl H2O 
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PCR cycling program: 

PCR step Time Temperature Number of 

cycles 

Denaturation 30 sec 98°C 1 

Denaturation 10 sec 98°C 35 

Annealing 30 sec 56°C 35 

Elongation 40 sec 72°C 35 

Final elongation 10 min 72°C 1 

Final hold    ∞ 4°C  

2.2.2.7 Quantitative real-time PCR (qPCR) 

QPCR was used to determine the vector copy number following transduction 

experiments (relative quantification of target versus reference gene) or the 

genomic titer of rAAV vector stocks or wtAAV (absolute quantification). 

Measurements were done at the Light Cycler System LightCycler® 480 II or 

Capillary LightCycler (Roche) by making use of the LightCycler® 480 SYBR Green 

Master for LightCycler® 480 II or, LightCycler® FastStart DNA Master SYBR 

Green I for Capillary LightCycler kits. For absolute quantification, a standard was 

generated containing 1x105, 1x106, 1x107 and 1x108 plasmid molecules per µl. For 

normalization the RelQuant software for Capillary LightCycler or the LightCycler® 

480 Software 1.5 for LightCycler® 480II was used for relative quantification. 

 

Pipetting scheme:  

2 µl template DNA 

1 µl Primer fw (20 µM) 

1 µl Primer rev (20 µM) 

4 µl Mix (including FastStart Taq DNA Polymerase, reaction buffer, 

dNTP mix, SYBRGreen I dye and MgCl2) ad 20 µl H2O 
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qPCR cycling program: 

 

 

Program 

 

 

Cycles 

 

 

Analysis 

Mode 

 

Target 

(°C) 

 

Acquisition 

Mode 

 

Hold 

(hh:mm:ss) 

Ramp 

Rate 

(°C/s) 

 

Acquisitions 

(per°C) 

Denaturation 1 None 95 None 00:05:00 4.4  

Amplification 40 Quantification 95 None 00:00:15 4.4  

   60 None 00:00:10 2.2  

   72 Single 00:00:15 4.4  

Melting 1 Melting Curve 95 None 00:00:01 4.4  

   68 None 00:00:15 2.2  

   95 Continuous   5 

Cooling 1  40 None 00:00:30 2.2  

 

Genomic titers of the AAV peptide display library and of viral progeny were 

determined using the wild-type AAV (wtAAV) qPCR cycling program. 

 

wtAAV qPCR cycling program: 

 

 

Program 

 

 

Cycles 

 

 

Analysis 

Mode 

 

Target 

(°C) 

 

Acquisition 

Mode 

 

Hold 

(hh:mm:ss) 

Ramp 

Rate 

(°C/s) 

 

Acquisitions 

(per°C) 

Denaturation 1 None 95 None 00:15:00 4.4  

Amplification 40 Quantification 95 None 00:00:10 4.4  

   60 None 00:00:03 2.2  

   72 Single 00:00:35 4.4  

Melting 1 Melting Curve 95 None 00:00:01 4.4  

   68 None 00:00:10 2.2  

   95 Continuous   5 

Cooling 1  40 None 00:00:30 2.2  

2.2.2.8 Sequencing 

Sequencing of single DNA clones was carried out in an ABI 3730 Sequencer at 

the Cologne Center for Genomics, University of Cologne, Germany. For the 
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sequencing reaction, the BigDye® Terminator V3.1 Cycle Sequencing Kit (Applied 

Biosystems) was used. 

 

Sequencing reaction mix: 200 ng template DNA 

0.5 µl 10x Buffer 

0.5 µl Primer 4066 (10 pmol/µl) 

1 µl BigDye v3.1 

ad 5 µl H2O 

PCR cycling program:  

PCR step Time Temperature Number of 

cycles 

Denaturation 2 min 94°C 1 

Denaturation 20 sec 94°C 25 

Annealing 30 sec 50°C 25 

Elongation 4 min 60°C 25 

Final elongation 4 min 60°C 1 

Final hold    ∞ 4°C  

2.2.2.9 Molecular cloning 

2.2.2.9.1 Cloning of CAP fragment 

pRC “Kotin” plasmid, used as helper plasmid backbone, was digested with SnaBI 

and BsiWI enzymes, purified and dephosphorylated. For ligation, 80 ng of vector 

backbone was mixed with 5-fold excess of the purified PCR product, which had 

been digested with SnaBI and BsiWI (2.2.2.6). The reaction mixture was incubated 

at 16°C overnight and transformed into chemically competent bacteria (2.2.2.8). 

Sequencing (Qiagen Sequencing Services, Hilden, Germany) of bacterial clones 

was performed using Primer 4066 after picking single colonies of the plated 

cultures. 

2.2.3 Capsid ELISA 

The capsid titers of rAAV vector preparations were determined by ELISA, using 

the AAV 2 Titration ELISA kit (Progen, Heidelberg) according to the manual.  
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2.2.4 Eukaryotic cell culture 

2.2.4.1 Cultivation of cells 

Cells were cultured at 37°C in humid atmosphere containing 5% CO2. For culture 

media, please refer to chapter 2.1.10. 

2.2.4.2 Counting 

10 µl of the cell suspension was transferred into a “Neubauer” chamber. Four 

squares were counted and an average was calculated. The number of cells (n) in 

one square equals n x 104 per ml. 

2.2.4.3 Seeding and culturing 

Cells were transferred into a new culture dish in a suitable dilution of pre-warmed, 

fresh medium. Agitation of the culture plates and flasks was used to ensure 

homogenous distribution of the cells. For culturing primary HK and primary murine 

keratinocytes, the culture plates were pre-coated with 1:100 diluted collagen G in 

PBS (either 1 h at 37°C or 24 h at 4°C). 

2.2.4.4 Seeding of primary human keratinocytes as mixed culture with 
mouse embryonic fibroblast cells (NIH3T3) 

Primary HK and NIH3T3 cells were seeded in a ratio of 1:1. Briefly, NIH3T3 cells 

were seeded in DMEM Medium + GlutaMAXTM-I (10% FCS, 100 U/ml penicillin 

and 100 µg/ml streptomycin) in a collagen pre-coated 24-well-plate and shifted to 

37 ° for 5 h. Following this step, the medium was carefully aspirated and the same 

number of primary HK in CnT Basal Medium 1 (100 U/ml penicillin, 100 µg/ml 

streptomycin) was added to NIH3T3 cells.  

2.2.4.5 Freezing and thawing of cells 

Cells were trypsinized and pelleted before resuspending them in 1 ml freezing 

solution containing 90% FCS and 10% DMSO. Immediately, the suspension was 

put on ice and then stored in liquid nitrogen. For thawing, the freezing vial was 

taken out of the liquid nitrogen tank and transported on ice. The suspension was 

thawed in a water bath at 37°C until only some rests of ice were left. Then, the 

cells were transferred into a 15 ml plastic tube containing the pre-warmed medium 
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before pelleting the cells at 1000 x rpm for 5 min at room temperature. After 

resuspension in fresh medium, the cells were plated in culture dishes. 

2.2.4.6 Isolation of primary human keratinocytes (monolayer) 

The cells were isolated from human foreskin, gained from the children’s medical 

surgery of Dr. med. Hikmet Ulus, Cologne (Z-Project, SFB 829 Ethikvotum 12-

163). Human foreskin samples were stored in serum free keratinocytes medium 

(CnT Basal Medium 1) at 4°C (not longer than 10 days). Skin was intensely 

cleaned using PBS and treated with Antibiotic-Antimitotic Solution (1:50 dilution in 

PBS) for 20 min. The foreskin was separated into dermis and connective tissue by 

using scalpel and forceps. Subsequently, the dermis was milled into small pieces 

of 1x1 cm2, transferred into Dispase II solution (10 mg/ml in DMEM Medium + 

GlutaMAXTM-I pure) and incubated for 24 h at 4°C. Using two forceps, the 

epidermis was detached from the dermis. To lyse the epidermis into single cells, 

pieces of epidermis were incubated with 5 ml Trypsin/EDTA for 5 min at 37°C 

under constant stirring. The reaction was stopped by addition of 5 ml DMEM 

Medium containing 10% FCS. The suspension was filtered through a 70 µm cell 

strainer and centrifuged at 1000 rpm for 5 min. The cell pellet was resuspended in 

5 ml CnT Basal Medium1, and for further application either 5x105 cells were 

seeded on a 10 cm culture dish or the cells were frozen and stored in liquid 

nitrogen. 

2.2.4.7 Preparation of organotypic human skin co-cultures 

A collagen type I gel with integrated fibroblasts was prepared by mixing the 4 

mg/ml rat tail collagen solution with 10x Hank`s balanced salt solution. After 

neutralization with NaOH, FCS containing mouse dermal fibroblasts in suspension 

(1.5-2x105 cells/ml) was added. All solutions added to the collagen were chilled 

and the mixture was kept on ice during manipulation. 2.5 ml of this mixture was 

poured onto filter inserts placed in BioCoat six-well plates. After 1 h incubation at 

37°C, glass rings (20 mm diameter) were gently pressed onto the gels to press out 

excess liquid and to provide a defined area of epithelial growth. After 1 h 

incubation at 37°C, the liquid was removed and the gels were allowed to 

equilibrate, submerged overnight in humid atmosphere.  
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Collagen gel mixture: 

rat tail collagen (4 mg/ml)   80% 

Hank`s solution (10x)   10% 

FCS      10% 

NaOH (5 M)     several drops; until the gel changes color from  

yellow to light pink 

 

Primary human keratinocytes in 1 ml medium were seeded on to the gels (1x106 

cells/insert). After another 24 h, the glass rings were removed and the cultures 

were lifted to the air-liquid interface by removing all medium from the surface and 

incubate the cultures in only 10 ml medium in each well. From this point onward 

the cultures were only nourished through the collagen gel (Figure 10), [230]. 

Medium was changed 3x a week. 

2.2.5 Vector production and purification 

2.2.5.1 AAV library and vector packaging 

AAV particles were produced in HEK293 cells by the adenovirus-free production 

method using pXX6-80 to supplement the adenoviral helper functions [73]. Briefly, 

7.5x106 HEK293 cells were seeded in 15 cm2 cell culture plates. 24 h later (at an 

approximate confluence of 80%), the medium was exchanged and 2 h later, co-

transfection of the three packaging plasmids was performed by the calcium 

phosphate method with a total of 37.5 µg plasmid DNA per 15 cm2 cell culture 

dish. 

For rAAV2 vector and rAAV peptide insertion variants: 

7.5 µg AAV helper plasmid  

(pRC/ pRC-Kera1/ pRC-Kera2/ pRC-Kera3) 

7.5 µg scGFP 

22.5 µg pXX6-80  

For each plate a solution of 1 ml CaCl2 (250 mM) was mixed with the plasmid 

DNA, and 1 ml of the HBS buffer (50 mM HEPES, 280 mM NaCl, 1.5 mM NaP, pH 

6.8) was dropped onto the solution that was subsequently incubated for 2 min and 

then pipetted onto the plate. After 24 h incubation at 37°C and 5% CO2, medium 

was exchanged with DMEM containing 2% FCS to reduce proliferation rate. The 
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transfected cells were harvested by scraping (48 h post transfection) and pelleted 

by low-speed centrifugation. The pellet was resuspended in lysis buffer (150 mM 

NaCl, 50 mM Tris-HCl (pH 8.5)) and subjected to repeated freeze and thaw cycles. 

Cell lysate was treated with 50 U/ml Benzonase for 30 min at 37°C and cleared by 

centrifugation (30 min at 4°C and 3.220x g). The supernatant was transferred to a 

new tube and again centrifuged.  

2.2.5.2 Iodixanol gradient purification 

Discontinuous iodixanol gradient centrifugation was used to concentrate the vector 

preparation and to remove cellular debris. Vector suspension was filled into an 

ultracentrifugation tube. The different phases of the iodixanol gradient, beginning 

with 15%, were sub-layered by using a syringe connected to an Amersham 

Biosciences Pump P-1. 8, 6, 5 and 6 ml of the respective solutions were applied. 

The tube was filled up with PBS/MgCl2 (1 mM)/KCl (2.5 mM), closed and 

centrifuged at 63,000 rpm at 4°C for 2 h (Beckman Coulter Ultracentrifuge). 

Subsequently, the 40% iodixanol phase, containing the vector particles, was 

harvested. 

 15% 25% 40% 60% 

10x PBS 5 ml 5 ml 5 ml / 

1M MgCl2 50 µl 50 µl 50 µl 50 µl 

2.5M KCl 50 µl 50 µl 50 µl 50 µl 

5 M NaCl 10 ml / / / 

Optiprep 12.5 ml 20 ml 33.3 ml 50 ml 

0.5 Phenolred 150 µl 75 µl / 25 µl 

H2O ad 50 ml ad 50 ml ad 50 ml ad 50 ml 

2.2.5.3 Vector titration 

For extraction of the vector genome from the viral particles, the Qiagen DNeasy 

Blood & Tissue Kit was used according to the protocol for Isolation of “Purification 

of total DNA from Animal Blood or Cell“. The genomic titer was then determined by 

qPCR as described in 2.2.2.7.  
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2.2.5.4 Coupling of pheno- and geno-type of mutants 

The cells were seeded 24 h prior to infection in a 15 cm culture dish. First, the 

AAV library (GOI 1000) was used to infect the cells in 12.5 ml medium. 2 h p.i. the 

medium was removed; cells were washed with PBS and infected with 10 µl 

adenovirus in 25 ml medium. After 2 h, the medium was removed, cells were 

washed with PBS and fresh medium was added. 48 h later the cells were 

harvested by scraping, followed by a low speed centrifugation. The supernatant 

was removed and stored at -80°C. The pellet was lysed by the thaw/freeze method 

and treated with Benzonase. The amount of progeny was determinate by qPCR 

(see 2.2.2.7). 

2.2.5.5 Transducing titer of viral vectors encoding for GFP 

48 h after transfection of primary HK with serial dilution of purified AAV vector 

preparations, cells were harvested and washed with PBS. The total number of 

cells per well was determined by counting. The number of GFP-expressing cells 

was measured by flow cytometry. Based on the amount of cells per well, the 

amount of transgene expressing cells from each dilution and the respective 

dilution factor, the transducing titer was determined using 10% positive cells (10% 

equals MOI = 0.1; each transgene expressing cell is a result of a single vector 

transduction) as reference.  

2.2.5.6 Heparin affinity chromatography 

To separate the AAV capsid mutants according to their HSPG binding ability, 

affinity chromatography using HiTrap Heparin Affinity Columns (1 ml) from 

Amersham Pharmacia Biotec was performed. First, the column was equilibrated 

with PBS/MgCl2 (1 mM)/ KCl (2.5 mM) (abbrev. PBS M/K), while the library 

solution was diluted 1:10 in the same buffer and applied to the column. After a 

washing step with 20 ml PBS M/K, vector was eluted with PBS M/K plus 1 M NaCl 

in 500 µl steps. 

2.2.5.7 AAV peptide display on primary HK 

The AAV peptide display technology was previously developed in our lab [144]. 

Here, 5x105 primary HK per well were seeded in a 6-well-plate. 3 wells were 

transduced with 1x103 g.p. of the HSPG-non-binder library. 2 h p.i. at 37°C the 
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library was removed, cells were washed twice with PBS and fresh keratinocyte 

medium was added. Subsequently, the cells were superinfected with 1 µl 1:100 

diluted wild-type adenovirus type 5 (wtAd5). Two hours post super-infection, 

wtAd5 containing medium was removed and the cells were washed again with 

PBS. After leaving the cells in keratinocyte medium for 48 h at 37°C, cells were 

harvested by using a cell scraper, pelleted and resuspended in 200 µl lysis buffer 

(150 mM NaCl, 50 mM Tris-HCl (pH 8)). To disrupt the cell membrane and collect 

the viral progeny, three cycles of freezing and thawing were performed. 

Adenovirus was inactivated by heat (56°C for 30 min). The viral progeny was used 

for further selection rounds. To raise the selection pressure, the initial amount of 

viral particles given to the cells were reduced from 1000 g.p. per cell in the first two 

selection rounds, 100 g.p. in third-, 10 in the fourth- and finally 1 genomic particle 

per cell in the last selection round. After each selection round, the genomic titer 

was determined by qPCR using the wtAAV protocol (see 2.2.2.7). 

2.2.6 Cell transduction by rAAV vectors 

2.2.6.1 Quantification of vector entry efficiency 

24 h prior to transduction, cells were seeded sub-confluent in collagen pre-coated 

24-well-plates. Cells in one well were counted to determine the cell number. Then 

cells were incubated with 500 g.p./cell in 500 µl of medium. To allow vector 

binding, 30 min incubation on ice was performed before cells were shifted to 37°C 

and 5% CO2. One hour later, supernatant was removed and cells were washed 

twice with PBS. To ensure removal of membrane-bound vector particles and to 

detach the cells, cells were harvested by trypsin treatment [46], [231]. After 

pelleting of cells at 500x g for 5 min, they were washed twice with 1x PBS. Total 

DNA was isolated as described before (see 2.2.5.3). Relative quantification of 

vector genomes (GFP) and reference gene (Plat) was performed by qPCR.  

2.2.6.2 Drug treatment 

Chlorpromazine (16 µg/ml final concentration) or Genistein (175 µg/ml final 

concentration) was used to inhibit clathrin- or caveolin-mediated endocytosis. All 

drugs were added to cells 30 min prior to transduction and remained present until 

transduction was stopped by washing and trypsin treatment.  
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2.2.6.3 Cell transduction assays 

24 h prior to transduction, cells were seeded sub-confluent in collagen pre-coated 

24-well-plates. The cells of one well were counted and incubated with vectors at 

indicated vector per cell ratios as described before (see 2.2.6.1). To stop the 

treatment with Chlorpromazine and Genistein after 2 h, cells were washed twice 

with 1x PBS and harvested by trypsin treatment. Cells were re-seeded in fresh 

medium for 48 h at 37°C and 5% CO2. Percentage of transduced cells was 

determined by flow cytometry using a BD FACS Calibur system. A minimum of 

10000 cells were measured in the FITC channel and the background fluorescence 

was set to 1%. 

2.2.6.4 Heparin competition assay 

24 h prior to transduction, cells were seeded sub-confluently in collagen pre-

coated 24-well-plates. After determination of the cell number per well, vectors 

were incubated with 470 U/ml of soluble Heparin in 500 µl medium for 5 min and 

subsequently applied to the cells. 48 h post transduction cells were harvested and 

the percentage of GFP-expressing cells was determined by flow cytometry (see 

2.2.6.3). 

2.2.6.5 Peptide and ααααV blocking-antibody competition assay 

24 h prior to transduction, cells were seeded sub-confluently in collagen pre-

coated 24-well-plates. After determining the cell number per well, 300 µM of 

peptides (competing and non-competing) or 2 µg/ml αV blocking-antibody were 

combined with 200 µl fresh medium and incubated with the cells for 15 min at 

37°C [141]. Then for the peptide competition assay 5x103 g.p./cell of rAAV2 and 

7.5x102 g.p./cell of the rAAV peptide insertion variants and for the αV blocking-

antibody competition assay 6x102 g.p./cell of rAAV2 and targeting vectors were 

incubated for 4 h at 37°C. Cells were washed twice with 1x PBS and re-seeded 

[46], [231]. 48 h post transduction percentage of GFP-expressing cells was 

defined by flow cytometry (see 2.2.6.3). 

2.2.6.6 αVβ8 antibody competition assay 

24 h prior to transduction, cells were seeded sub-confluently in 24-well-plates. 

Cells were washed with ice cold PBS, followed by incubation with 200 µg/ml of 
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αVβ8 antibody for 30 min. 7.5x102 g.p per cell of rAAV2 and rAAV variants, 

respectively, were incubated 60 min on ice. Subsequently the medium was 

removed. Cells were washed with PBS/10% FCS and supplied with fresh, pre-

warmed medium. 48 h post transduction GFP-expressing cells were determined 

by flow cytometry (see 2.2.6.3). 

2.2.6.7 Transduction of mixed cultures 

24 h prior to transduction, primary HK and NIH3T3 cells were seeded sub-

confluent in collagen pre-coated 24-well-plates (see 2.2.4.6). Cells were incubated 

with 5x103 g.p. per cell of vectors (number of particles were calculated according 

to the number of HK cells). 48 h p.t. cells were stained with the anti-feeder 

antibody to discriminate between primary HK and NIH3T3 cells, and analyzed by 

flow cytometry for percentage of GFP expressing cells (see 2.2.6.3). 

2.2.6.8 Transduction of organotypic human skin co-cultures 

A sterile glass ring was placed by forceps onto the keratinocyte top layer and filled 

with 200 µl DMEM with 10% FCS (see 2.1.9) containing 1.5*1010 g.p.of rAAV2 or 

selected variants (see 2.2.6.7), respectively. The culture was allowed to incubate 

for 2 h at 37°C and 5% CO2. Vector containing medium was removed by pipetting. 

Culture was incubated for further 72 h at 37°C and 5% CO2. For fixation, the filter 

including the fibroblast gel and the stratified keratinocytes were detached by 

scalpels. The samples were fixed in 2% PFA in 3.5% Sucrose/ PBS for 30 min at 

room temperature, then embedded in Tissue-Tek® and stored at -80°C. For 

preparing cryosections Cryostat LEICA CM1850 was used.  

2.2.7 Immunohistochemistry 

2.2.7.1 Immunofluorescence staining of cryosections of organotypic human 
skin co-cultures 

Cryo-sections were mounted by IS Mounting Medium DAPI. This mounting 

medium is fortified with DAPI which is a counter-stain for DNA and is used for 

nuclear staining. Since the vectors used for transduction carried GFP as a 

transgene, GFP-expressing cells in cryo-sections, were analyzed by fluorescence 

microscopy. 
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3 Results 

Considering the options to cure chronic wounds, inherited skin diseases or skin 

cancer, there is a need for new therapeutic strategies. Gene therapy has the 

potential to play an important role in wound healing. The purpose of gene therapy 

in this setting might be either to promote wound healing by gene delivery of growth 

factors or to improve engraftment of autologous skin transplants by 

overexpression of anti-inflammatory or pro-angiogenic factors through genetic 

engineering of keratinocytes [232]. A key factor in the success of these 

approaches is the development of gene delivery systems that are capable of 

efficient and safe gene transfer [233]. Viruses are natural vehicles for gene 

delivery [234]. Thus, they are a promising basis for the development of gene 

delivery tools in gene therapy. Here, the focus was on Adeno-associated viral 

vectors, which showed so far an excellent safety profile and an increasing number 

of reports on clinical benefit [47].  

3.1 Characterization of cell surface receptors of 
primary human keratinocytes  

Gene delivery vectors are required to be efficient in cell transduction [208], but 

previous studies revealed that primary human keratinocytes (HK) are resistant to 

transduction by AAV vectors [206], [207], [208]. In line, transduction of primary HK, 

isolated and cultivated in our laboratory were incubated with, 5x103 vector 

particles of rAAV2 per cell but did not exceed 5% (Figure 11). 
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Figure 11: Transduction efficiencies of rAAV2 with wild-type capsid on primary HK of different 
donors.  
A: Cells were incubated with rAAV2 (5x10

3
 g.p./cell) encoding for GFP in a self-complementary 

genome conformation. Percentage of transduced cells was determined by flow cytometry 48h p.t. 
Values represent the mean of three independent experiments, and error bars show SD. 

B: Primary HKs were seeded sub-confluently on collagen pre-coated cover slips and incubated 
with 5x10

4
 g.p./cell of rAAV. Cells were analyzed 24 h p.t. by immune fluorescence (x40 

magnification). The microscopic images were kindly provided by the group of Fernando Laguzzi 
Larcher, Ciemat, Madrid. 

 

Aiming to gain insight on the cause of the refractoriness towards AAV2, a 

characterization of cell surface receptors on primary HK was performed. 

Specifically, the presence of heparan sulfate proteoglycan (HSPG), [37] was 

determined and AAV2s’ internalization receptors αVβ5 and α5β1 integrin [39], [235], 

was tested by flow through cytometry using the corresponding antibodies. As a 
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control, the human cervix carcinoma cell line, HeLa, was used because it is highly 

permissive for rAAV2 (Figure 12). 

 

 
Figure 12: Characterization of cell surface receptors on primary HK and HeLa cells 
The primary antibodies against HSPG and the integrins (αVβ5, α5β1) were separately incubated with 
the cells, followed by a PE-labeled IgG secondary antibody. Cells were measured by flow 
cytometry. The experiment was performed three times independently, error bars show SD. 

 
In contrast to HeLa cells HSPG is barely detectable on primary HK (Figure 12), 

while the integrins are expressed on HeLa and the target cells. According to the 

current model of AAV2 infection, binding of the capsid to HSPG induces a 

conformational change required for binding to αVβ5 or α5β1 integrins and ultimately 

for inducing virus/vector internalization [39]. The lack of HSPG expression on 

primary HK likely hinders efficient rAAV2 transduction. A possible solution to 

overcome the lack of receptor expression is cell surface targeting, i.e. directing the 

viral vectors towards a novel receptor. Recently in our group, a high-throughput 

method, AAV peptide display, was developed to identify suitable ligands [144]. In 

this thesis, this technology was used to develop AAV variants with improved 

transduction efficiency compared to rAAV2 on primary HK. 
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3.1.1 Selection of rAAV targeting vectors from a library enriched 
for non-HSPG binding mutants 

To select AAV capsids variants with high transduction efficiency on primary HK, 

the AAV peptide display library was used. The AAV peptide display library was 

packaged in HEK293 cells followed by coupling of geno- and phenotype 

(PCT/EP2008/004366), [144]. The latter is required to ensure that the genome 

encodes the peptide that is displayed on the capsid. The AAV2 display library was 

then depleted for mutants displaying HSPG-binding peptides by affinity 

chromatography (see 2.2.5.6). The genomic titer of the HSPG-non-binder library 

(NB) was 5.8x1010 g.p/ml as determined by qPCR (2.2.2.7). Next, primary HK, 

isolated from foreskin of different healthy donors were subjected to five rounds of 

AAV peptide display selection.  

Briefly, in the first selection round, primary HK were incubated with 1x103 genomic 

particles (g.p.) per cell of the library for two hours. The viral particles, which failed 

to enter the cells, were removed by exchanging the medium followed by 

superinfection with adenovirus to provide helper virus function. Viral progeny was 

harvested from the cells 48 h p.i. and the genomic titer was determined by qPCR. 

The viral progeny was used for next selection round. To raise the selection 

pressure, the amount of viral particles given to the cells were subsequently 

reduced from initially 1000 g.p./cell to 1 g.p./cell (Figure 13). Isolated from progeny 

of the final selection round, viral genomes were sequenced in order to determine 

the sequence of the peptide inserts. Specifically, viral genomes were amplified by 

PCR using primers that flank the insertion site and cloned into pRC Kotin (see 

2.2.2.9) for bacterial transformation. Single colonies were picked and sequenced 

(see 2.2.2.8). 
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Figure 13: Schematic representation of AAV peptide display selection on primary HK 

 

A total of 35 single viral clones were analyzed (Table 2). With the exceptions of 

two motifs, PRGDLRP and RGDQHSL, all sequences show an overall neutral net 

charge. 89% of the sequences resemble classical integrin binding ligands with 

RGD tripartite motif or contained a RSD motif, described to be functionally 

equivalent to RGD [236], [237].  
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Table 2: Sequences identified after the fifth selection round 
Sequences are given in one letter code. Bold letters represent charged aa.  

frequency sequence net charge 

17 RGDTATL neutral 

2 PRGDLAP neutral 

4 RGDQQSL neutral 

3 RSDLASL neutral 

1 PRGELAP neutral 

2 GRGDLAP neutral 

1 RGDTASL neutral 

4 PRGDLRP positive 

1 RGDQHSL positive 
 

In four out of nine sequences, the RGD/RSD binding ligand is followed by either 

an LA or LR. Out of the nine selected targeting variants, three motifs with a neutral 

charge were chosen for further analysis. The AAV clones with the sequences 

RGDTATL (Kera1) and RGDQQSL (Kera3) were chosen because of the 

prevalence of their occurrence. In addition, the peptide sequence PRGDLAP 

(Kera2) was included. Kera2 was of interest because it contains the prominent LA 

motif adjacent to the potential integrin-binding motif flanked and a proline residue 

at position 1 and 7 of the insert. The three mutants and the parental serotype 

rAAV2 were packaged as recombinant vectors encoded for enhanced green 

fluorescent protein (GFP) in a self-complementary vector genome conformation 

(see 2.2.5.1). Genomic titers were determined by qPCR (see 2.2.2.7) and capsid 

titers were measured by A20 ELISA (see 2.2.3). The values were used to calculate 

the total-to-full particle ratio to judge whether the peptide insertion impacts on 

efficiency with which the viral vector genome is packaged into the pre-formed 

capsids (“packaging efficiency”). Although the ratios for the targeting vectors were 

found to be increased in comparison to rAAV2, the ratios were still in the range 

defined as “wild-type” phenotype [38]. 
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Table 3: Characterization of selected rAAV peptide insertion variants  
Genomic titers were determined by qPCR. Capsid titers were determined by A20 ELISA. The 
packaging efficiency is specified by calculated the capsid-to-genome ratio. 

vector sequence 
in 587 

net 
charge 

genomic 
titer [/µl] 

capsid 
titer [/µl] 

capsid/genome 
ratio 

Kera1 RGDTATL neutral 2.40x108 2.40x109 8.25 

Kera2 PRGDLAP neutral 2.56x108 2.12x109 8.28 

Kera3 RGDQQSL neutral 1.34x108 1.39x109 10.37 

rAAV2 ---------- ---------- 6.41x108 9.19x108 1.42 

 

3.2 Characterization of rAAV peptide insertion variants 
regarding cell entry and transduction efficiency on 
primary HK 

The cell entry efficiency of the selected targeting variants was studied on the 

target cells in comparison with rAAV2. Therefore, primary HK, isolated from 

healthy donors, was incubated with equal numbers/cells of rAAV2, Kera1, Kera2 

and Kera3. Cells were harvested by trypsin treatment 90 min p.t. and total DNA 

was isolated (see 2.2.6.1), [220]. To determine intracellular vector genomes, 

qPCR was performed for vector DNA (GFP) and the single-copy gene 

plasminogen activator (PLAT). Melting peak analysis was accomplished to proof 

specificity of PCR products. The target gene (GFP) was normalized to the 

reference gene (PLAT) and values obtained for rAAV2 were set to 1 (see 2.2.2.7). 

Kera2 was the most efficient variant with a 2500-fold increase in cell entry 

efficiency in comparison to rAAV2, followed by Kera3 (1700-fold increase) and 

Kera1 (1600-fold increase), (Figure 14).  
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Figure 14: Cell entry efficiencies of indicated vectors 
Primary HK were transduced with the rAAV peptide insertion variants and rAAV2, respectively. 90 
min p.t. total DNA was isolated from the cells and the number of intracellular vector genomes were 
determined by qPCR. Normalization of target (GFP) to reference gene (PLAT) was done and the 
normalized target-reference ratio for rAAV2 was set to 1. Values represent the mean of three 
independent experiments; error bars show SD. To define statistical significance between entry 
efficiencies of rAAV2 and the selected peptide capsid variants, Student’s t-test was performed. 
**p<0.01; *** p<0.001, n=3 

 

The transduction efficiency of the rAAV peptide insertion variants was determined 

by microscopy and by FACS analysis (see 2.2.6.3). For imaging, primary HK were 

seeded on collagen pre-coated cover slips and transduced with 5x104/cell. 24h p.t. 

cells were fixed and analyzed by fluorescent microscopy for GFP expression with 

a magnification of 40x. These experiments were kindly performed by the group of 

Fernando Laguzzi Larcher, Ciemat, Madrid.  
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Figure 15: Microscopic images of primary HK transduced with rAAV2, Kera1, Kera2 and Kera3  
24 h p.t. primary HK were fixed and analyzed by fluorescence microscope with 40x magnification. 
The pictures were kindly provided by the group of Fernando Laguzzi Larcher, Ciemat, Madrid.  

 

As indicated in (Figure 15), transduction efficiencies of the selected targeting 

variants Kera1, Kera2 and Kera3 significantly exceeded those of rAAV2. This 

result was supported by flow cytometric measurements. Briefly, equal numbers of 

g.p./cell of the rAAV peptide insertion variants and rAAV2, respectively, were 

incubated with primary HK. Determination of the percentage of transgene 

expressing cells was performed 48 h p.i. (Figure 16). 
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Figure 16: FACS analysis of rAAV2 and rAAV peptide insertion variants on primary HK.  
Primary HK were transduced with 5x10

3
 g.p./cell of rAAV2, Kera1, Kera2 and Kera3 and incubated 

at 37°C in a humidified CO2 incubator. 48 h p.t. the number of GFP-expressing cells was 
determined by flow cytometry. Values represent the mean of three independent experiment; error 
bars show SD. To define statistical significance between transduction rAAV2 and the selected 
peptide capsid variants, Student’s t-test was performed. ** p<0.01, n=3 

 

Kera1 showed the highest transduction efficiency (54% +/- 11.6%) followed by 

Kera2 (47% +/- 16.8%) and Kera3 (47% +/- 10.8%), while the transduction 

efficiency of rAAV2 is only 1.2% +/-0.5%. Thus, Kera1, Kera2 and Kera3 showed a 

significant enhanced entry efficiency and transduction efficiency (Figure 14, Figure 

15 and Figure 16).  
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3.2.1 Infectivity of rAAV2 and rAAV2 selected peptide insertion 
variants on primary human keratinocytes 

To compare the different vectors with regard to infectivity independent of the 

volume of the preparation [38], transducing titers on the target cells and capsid 

titers were used to determine the infectivity for all four vector preparations. 

Infectivity is determined as ratio of transducing-to-capsid titer (Table 4). 

Table 4: Transducing titer and infectivity of rAAV2 and rAAV peptide insertion variants determined 
on primary HK 
The infectivity was calculated as the ratio of capsid (Table 3) to transducing titer. According to Kern 
and colleagues the wild-type phenotype on HeLa cells corresponds to a ratio of ≤10

4
; reduced 

infectivity corresponds to ratios >10
4
 to <10

6
; and low infectivity corresponds to ratios of ≥10

6
. 

  

 transducing titer infectivity  

vector  [infectious 
particles/ml] 

no. of capsid/no. of 
infectious particles 

Kera1 4.70x107 5.11x103 

Kera2 3.16x107 8.10x103 

Kera3 3.10x107 1.24x103 

rAAV2 1.32x106 4.90x105 
 

As depicted in Table 4, Kera1, Kera2 and Kera3 showed comparable transducing 

titers on target cells, which are up to 37x higher than the value obtained for rAAV2. 

The highest infectivity was determined for Kera1 and Kera2, followed by Kera3.  

In summary, the selected rAAV peptide insertion variants display a much higher 

infectivity on the target cells than rAAV2.  

3.3 Transduction efficiencies of rAAV2 and rAAV2 
peptide insertion variants in presence or absence 
of Heparin 

As mentioned previously (see 1.1.2), HSPG serves as primary receptor for AAV2. 

Heparin resembles the heparan sulphate residues on HSPG and is therefore used 

as its soluble analogue. Heparin binds to the capsid of AAV2, impairing the binding 

to HSPG on the cell surface in a competitive way [37]. Although, it was shown that 

primary HK did not express HSPG (see 3.1), it was determined whether the 

presence of Heparin impacts on cell transduction of rAAV peptide insertion 

variants Kera1, Kera2 and Kera3. Therefore they were incubated with Heparin and 
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then added to primary HK. As depicted in Figure 17 Heparin did not interfere with 

cell transduction of Kera1, Kera2 and Kera3 on primary HK.  

 

 
Figure 17: Heparin competition assay on primary HK  
Transduction rate of peptide insertion variants and rAAV2 were assessed by flow cytometry after 
pre-incubation of viral preparation without (dark grey) or with (light grey) 470 u/ml soluble Heparin. 
Values represent the mean of three independent experiments; error bars show SD. To define 
statistical significance between cells treated with and without Heparin, Student’s t-test was 
performed. ns = non-significant. 

3.4 Peptide competition of selected rAAV2 peptide 
insertion variants on human primary keratino-
cytes 

In order to assay whether the peptides displayed at position 587 mediates cell 

transduction of the corresponding AAV peptide insertion variant, a peptide 

competition assay on HK was performed. Specifically, primary HK were 

transduced with Kera1, Kera2, Kera3 and rAAV2 in presence or absence of 300 

µM GRGDS or GRGES peptides, respectively. Additionally, the capsid variant 

rAAV-RGD4C587 displaying the CDCRGDCFC motif in position 587 and 

transducing cells through αVβ5 and αVβ3 integrins [141] was used as positive 

control. Notably, in order to increase the likelihood of measuring cell transduction 

by rAAV2 and RGD4C587 on HK, seven times higher particle per cell numbers 

compared to the selected rAAV peptide insertion variants were used. 
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Figure 18: Peptide competition on primary HK  
Transduction efficiencies of the rAAV peptide insertion variants, rAAV2 and rAAV-RGD4C587 were 
determined after incubation of primary HK in the presence or absence of 300 µM of GRGDS 
(competing peptide) or GRGES (non-competing peptide) peptide, respectively, by flow cytometry. 
Values represent the mean of a technical triplicate. Error bars show SD. To define statistical 
significance between cells treated with and without peptides, Student’s t-test was performed. * 
p<0.05; ** p<0.01 

 

Due to the low transduction efficiency of rAAV2, a judgment was impossible. The 

transduction efficiency of rAAV-RGD4C587 was significantly reduced in presence 

of the RGD-containing peptide while transduction efficiency was not affected in 

presence of RGE-containing peptides (Figure 18). However, to gain transduction 

efficiency on primary HK with RGD4C587 comparable to Kera1, Kera2 and Kera3 

it was necessary to apply a substantially higher number of g.p./cell although the 

cells expressing αVβ5 integrin.  

The three selected rAAV peptide insertion variants showed a significant reduced 

efficiency in the presence of the GRGDS but not GRGES peptides. The most 

dramatic effect was observed for Kera2. In summary and in line with previous 

studies, the selected rAAV2 peptide insertion variants transduced the target cells 

peptide-dependent.  
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3.5 Selected rAAV2 peptide insertion variants enter 
via clathrin-mediated endocytosis 

RGD motifs are frequently found as part of ligands that bind to an integrin [238]. 

Integrins are transmembrane proteins that can be endocytosed either through the 

clathrin- or the caveolin-pathways [239]. To determine the pathway involved in the 

uptake of the AAV capsid variants, inhibition studies using Genistein or 

Chlorpromazine (CPZ) were conducted. Genistein blocks caveolae-mediated 

internalization through inhibition of protein tyrosine kinases [240]. Primary HK were 

incubated with 175 µg/ml Genistein for 30 min at 37°C, followed by addition of 

5x103 g.p./cell of rAAV2 and the selected rAAV peptide insertion variants, 

respectively. As control, cells were incubated with the vectors in the absence of 

Genistein. Cell transductions were stopped 2 h p.i. by re-seeded the cells into a 

new, freshly collagen pre-coated culture plate. The GFP-expression of the cells 

was determined by flow cytometry 48 h p.i. (Figure 19).  

 

 

Figure 19: Cell transduction in presence and absence of Genistein  
Flow cytometric analysis of primary HK incubated with indicated vectors without (dark grey) or with 
(light grey) Genistein. Values represent the mean of three independent experiment; error bars 
show SD. To define statistical significance between cells treated with and without Genistein, 
Student’s t-test was performed. ns = non-significant, * p<0.05 

 

No impairment in transduction efficiency was observed for the capsid insertion 

variants in the presence Genistein. Of note, the low transduction efficiency of 

rAAV2 on HK did not allow for a conclusive judgment (Figure 19). Next, the effect 
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of CPZ on cell transduction was determined. CPZ is known to inhibit clathrin-

mediated endocytosis by leading to a miss-assembly of clathrin lattices [241]. 

Primary HK were incubated with a final concentration of 16 µg/ml CPZ for 30 min 

at 37°C, followed by addition of 5x103 g.p./cell of rAAV2 and 3x103 g.p./cell of 

Kera1, Kera2 or Kera3, respectively. As a control, cells were incubated with the 

indicated vector preparations in the absence of CPZ. To stop the infection 

process, cells were re-seeded 2 h p.i. on a pre-coated collagen plate. After 48 h at 

37°C, the number of GFP-expressing cells was determined by flow cytometry. 

 

 

Figure 20: Cell transduction in presence and absence of CPZ  
Primary HK were incubated with indicated vectors without (dark grey) or with (light grey) CPZ as 
described. Number of transgene expressing cells was determined by flow cytometry. Values 
represent the mean of three independent experiments; error bars show SD. To define statistical 
significance between cells treated with and without CPZ Student’s t-test was performed. ** p<0.01 

 

The presence of CPZ significantly reduced the transduction efficiency of Kera1, 

Kera2 and Kera3 (Figure 20). Thus, these data pointed towards a clathrin-, rather 

than caveolin-dependent transduction of primary HK by Kera1, Kera2 and Kera3. 
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3.6 rAAV2 peptide insertion variants show altered 
tropism 

To characterize the specificity of the rAAV2 peptide insertion variants, cell lines 

representing potential non-target cell types were transduced. Specifically, the cell 

lines BLM and A375 were chosen as example of human melanoma cells. The 

human prostate cancer cell line DU-145 was selected as an example of human 

epithelial cells. The human hepatoma cell line HepG2 was chosen since AAV2 

vectors tend to accumulate in liver tissue after systemically as well as local 

application [141]. NIH3T3 cells were chosen as an example for fibroblasts. 

Moreover, fibroblasts are frequently found in the skin and are often used as feeder 

layer for ex vivo keratinocyte cultures during tissue engineering. BML cells, HepG2 

cells and NIH3T3 cells were transduced with increasing numbers of g.p./cell by the 

rAAV2 peptide insertion variants and rAAV2, respectively (Figure 21). To 

transduce A375 and DU-145 cells 5x103 g.p./cell of the rAAV2 peptide insertion 

variants and rAAV2 were applied, respectively (Figure 22). 48 h p.t. the cells were 

analyzed by flow cytometry (see 2.2.6.1).  
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Figure 21: Transduction experiments of indicated vectors on non-target cells  
Different non-target cells (A: the human melanoma cell line BLM, B: the hepatoma cell line HepG2 
and C: the mouse fibroblast cell line NIH3T3) were transduced with 10, 100, 1000, 2500 and 5000 
g.p/cell and percentage of GFP-expressing cells was determined by flow cytometry 48 h p.t. All 
experiments were performed three times independently; error bars show SD. 

 

0

10

20

30

40

50

60

70

80

90

10 100 1000 2500 5000

[%
] 

o
f 

G
F

P
-e

x
p

re
s
s
in

g
 c

e
ll
s

[vg/cell]

A: BML cells 

0

10

20

30

40

50

60

70

80

90

10 100 1000 2500 5000

[%
] 

o
f 

G
F

P
-e

x
p

re
s
s
in

g
 c

e
ll
s

[vg/cell]

AAV2 Kera1 Kera2 Kera3

C: NIH3T3 cells 

0

10

20

30

40

50

60

70

80

90

10 100 1000 2500 5000

[%
] 

o
f 

G
F

P
-e

x
p

re
s
s
in

g
 c

e
ll
s

[vg/cell]

B: HepG2 cells 



3 Results  

73 
 

rAAV2 show the highest transduction efficiency for HepG2 cells with up to 77.3% 

+/- 3.1% of GFP-expressing cells, followed by BLM cells (27.2% +/- 5.1%). The 

lowest transduction efficiency for rAAV2 was measured in NIH3T3 cells (24.3% +/- 

3.6%). In contrast, none of the three cell lines were transduced by Kera1, Kera2 or 

Kera3 above the background level even when applying 5x103 g.p./cell (Figure 21).  

 

Figure 22: Transduction efficiencies of indicated vectors on DU-145 cells (dark grey) and A375 
cells (light grey) 
The number of GFP-expressing cells was determined by flow cytometry 48 h p.t.. The experiments 
were performed three times independently error bars show SD 

 

While rAAV2 achieved transduction efficiencies higher than 90% on A375, 

transduction efficiencies of Kera1, Kera2 and Kera3 were below 16% (+/- 3.3%). 

The target vector, Kera2, in particular, did not transduce these cells. Also, DU-145 

cells were efficiently transduced by rAAV2 (72.0% +/- 2.4%). Kera1, Kera2 and 

Kera3 again, showed transduction efficiencies below 5% (Figure 22).  

3.6.1 Cell transduction of rAAV2 peptide insertion variants on 
feeder cultivated primary human keratinocytes 

Primary HK are frequently cultured in the presence of fibroblasts, which function 

as feeder cells [183]. Therefore, primary HK and NIH3T3 cells were co-cultured 

and transduced with the rAAV2 peptide insertion variants with 5x103 g.p./cell. Cells 

were harvested 48 h p.t. and stained with anti-Feeder antibody to discriminate 

between NIH3T3 feeder cells and primary HK, followed by flow cytometry 
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measurement (see 2.1.6.1). Kera1, Kera2, Kera3 show remarkable preference for 

the target cells (Figure 23). For Kera1 and Kera3 transduction efficiencies of 65% 

and, 69% for primary HK and of 20% and 11% for fibroblasts were measured, 

respectively. The most considerable results were obtained for Kera2, which 

transduced about 83% of primary HKs, while only 7.1% the NIH3T3 feeder cells 

were positive for GFP. 

 
Figure 23: Target cell specificity of indicated vectors in mixed cultures 
Primary HK were co-cultured with NIH3T3 feeder cells in a 1:1 ratio and then transduced with the 
rAAV2 peptide insertion variants. Cells were stained with an anti-feeder antibody and analyzed by 
flow cytometry. The anti-Feeder antibody was used to discriminate between HK (A) and feeder 
cells (B). The primary HK were gated out from A to determine the GFP-expressing HK. To 
determine the transgene expressing NIH3T3 cells the cells from B were gated out. Here one 
representative experiment out of three is shown. 

 

Target-to-noise ratios are calculated as indicator of vector specificity. Briefly, 

transduction efficiency on target and non-target cells obtained with the same 
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g.p./cell ratio is determined and divided by each other. A value of 1 represents 

equal tropism for target and non-target cells. Here, primary HK were chosen as 

target, NIH3T3 cells as non-target cells. Cells were transduced with equal 

numbers of Kera1, Kera2 and Kera3, respectively, followed by flow cytometric 

analyses 48 h p.t. The best score was determined for Kera2, which transduced 

primary HK 15x better than the feeder cells followed by Kera3 (9x) and Kera1 (3x). 

 
Figure 24: Target to-noise ratio of indicated vectors  
NIH3T3 cells and primary HK were cultured as monolayer and incubated with the indicated vectors, 
respectively Here “target” stands for the transduction rate obtained on primary HK and “noise” 
stands for the transduction rate of NIH3T3 cells. The target-to-noise ratio was calculated by 
dividing the values obtained for primary HK by the values obtained for NIH3T3 cells. 
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3.7 Efficient and specific transduction of differen-
tiated keratinocytes in human organotypic skin 
cultures 

All previous experiments were performed on primary HK growing as monolayer in 

two dimensional (2D) cell cultures. 2D cultures do not reflect the situation in 

normal epidermis and therefore organotypic skin cultures were developed [242], 

[243], [244], [245], [246], [247], [248], [249]. In cooperation with the group of 

Carien Niessen (CECAD, Cologne, Germany), the transduction efficiencies of 

Kera1, Kera2 and Kera3, selected on 2D cultures, were investigated on human 

organotypic skin cultures in comparison with rAAV2.  

As outlined in the introduction, organotypic skin cultures, keratinocytes grow air- 

air lifted on collagen matrix containing dermal fibroblasts (Figure 10). Here 16-day-

old human organotypic skin co-cultures were used. A sterile glass ring was placed 

by forceps onto the air-exposed side of the 3D cultures and filled with PBS as 

control or 3.5x108 g.p. of rAAV2 or AAV2 peptide insertion variants (see 2.2.6.7), 

respectively. 72 h post transduction the samples were fixed and processed for 

cryosections. The sections were embedded by mounting medium containing DAPI 

for nuclear staining and analyzed for GFP expression by microscopy (Figure 25). 

DAPI GFP overlay 
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Figure 25: Histological examination of cryosections of human organotypic skin co-cultures 
After 3D cultures were incubated with indicated vectors or PBS as control, 5 µm thick cryosections 
were mounted with mounting medium containing DAPI. The samples were analyzed by 
microscopy. A: x20 magnification, B: x40 magnification, w/o = PBS treated control 

 

The PBS-treated and the rAAV2-treated samples appeared completely negative 

for GFP expression (Figure 25A). GFP-positive cells were detected in the most 

upper layer of these 3D cultures transduced with Kera1, Kera2 and Kera3. Only 

weak GFP signals were detected in the Kera1-treated culture, suggesting that 

Kera1 was less efficient in transducing differentiated keratinocytes. Strong positive 

GFP signals were seen in the most upper layers of Kera2- Kera3-treated cultures, 

Kera2 also showed strong staining in lower keratinocytes layers (Figure 25B). In 
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summary, these findings indicate that the AAV peptide insertion variants gained 

the ability to transduce differentiated keratinocytes. 

3.7.1 Efficient transduction of primary murine keratinocytes 

Mice have routinely been used as experimental models for skin biology and skin 

diseases [250], [251]; therefore, the transduction efficiencies of the rAAV2 peptide 

insertion variants on primary murine keratinocytes were investigated.  

 

 

Figure 26: Flow cytometric measurements of primary murine keratinocytes incubated with indicated 
vector preparations 
Values represent the mean of a technical duplicate; error bars show SD. To define statistical 
significance between transduction rAAV2 and the rAAV peptide insertion variants Student’s t-test 
was performed. ns =.non-significant, *p<0.05; ** p<0.01, n=3 

 

Primary murine keratinocytes (kindly provided by the group of Carien Niessen 

CECAD, Cologne, Germany) were transduced with 5x103 g.p./cell of the rAAV2 

targeting peptide insertion variants and rAAV2 respectively. 72 h p.t. GFP-

expressing cells were analyzed by flow cytometry. As indicated in Figure 26, 

primary murine keratinocytes can be transduced by Kera2 and Kera3 with 

efficiencies of 30.9% +/- 1.4% and 20.2% +/- 2.5%, respectively. Kera1 reaches a 

transduction efficiency of 15.9% +/- 2.3%. Notably, in contrast to primary HK 

where transduction by rAAV2 was barely detectable, rAAV2 achieved a 

transduction efficacy of 12.3% +/- 0.8%. 
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3.8 Identification of candidate receptor for Kera2 

Of the three variants, Kera2 showed the most prominent change in tropism.  

Based on these results, this mutant was used to establish, in collaboration with 

Giovanni Di Pasquale (NCI/NIH, Bethesda, USA), a method for the identification of 

receptors targeted by AAV peptide variants. The method has previously been 

applied by Di Pasquale and colleagues to identify PDGRF-α as receptor of AAV5. 

This method based on the NIH cell collection, which contains 60 well-annotated 

cell lines of different origin. Specifically, for each cell line of this collection, the 

gene expression profile is known and stored in a microarray database [201]. Di 

Pasquale transduced this panel with Kera2 and, for comparison, with rAAV2, 

respectively. In Figure 27 the pattern obtained for the two vectors is shown. Of 

note, for performing bioinformatics (COMPARE algorithm), only the relative but not 

the absolute transduction efficiencies of the different cell lines were of interest. 

 

 

 

 

 

 

 

 

 

 

Figure 27: Transduction profiles of rAAV2 and Kera2 on NCI60 cell panel  
A: The transduction efficiency of rAAV2 was determined by transducing 52 cell lines out of the 
NCI60 panel with 1µl of rAAV2 in triplicates in a 96 well plate in serial dilution. 48 h p.t. cells were 
harvested and GFP-expression was measured by flow cytometry. The same approach was done 
for Kera2 (B).Each bar on the graphs represents a different cell line of the panel. The order of the 
cell lines is the same in each graph. The experiment was kindly performed by Giovanni Di 
Pasquale (NCI/NIH, Bethesda, USA). 
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The COMPARE algorithm determines the similarities of patterns between the 

given query and others within a database by creating a scalar index of similarity 

expressed quantitatively as the Pearson correlation coefficient [221]. The Pearson 

correlation explains the correlation between two variables reflecting the degree to 

which the variables are related. The range is from +1 to -1. A result of -1 means 

that there is a perfect negative correlation between the two values at all, while a 

result of +1 means that there is a perfect positive correlation between the two 

variables. A result of zero means that there is no linear relationship between the 

two variables [252], [253]. The scores received by COMPARE program are 

displayed as a rank-ordered list where the most highly correlated patterns from the 

databases are listed (Table 5). 

Table 5: The output of the COMPARE analysis. 
Shown are the first six cell membrane genes that were associated with the Kera2 transduction 
profile of the NCI60 cell panel. The frequency of occurrence and the range of scores as Pearson 
correlation coefficient are also listed. 

gene frequency Pearson correlation 
coefficient 

Integrin, beta8 11 0.72 to 0.5 

Glypican 4 3 0.67 to 0.65 

Enabled homolog (Drosophila) 3 0.63 to 0.53 

Transmembrane and coiled-coil 

domain family 1 

4 0.6 to 0.51 

Prostaglandin-endoperoxide 

synthase 1 

3 0.59 to 0.51 

Kinesin family member 3A 2 0.56 to 0.52 

 

The highest score (0.72) for Kera2 was observed for ITGB8, the β8 integrin 

subunit. In contrast, no significant correlation for the β8 integrin subunit was 

detectable for rAAV2. According to literature, the β8 integrin is expressed by 

keratinocytes as αVβ8 integrin and is expressed on keratinocytes of the suprabasal 

layers [171], [254], [255].  
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3.8.1 αVβ8 integrin inhibition blocks Kera2 transduction 

First, the expression of αVβ8 integrin on primary HK was confirmed by flow 

cytometry (Figure 28A). Subsequently, the expression of αVβ8 integrin on different 

non-target cells (BLM, HepG2 and NIH3T3 cells) was also examined by flow 

cytometry. As control SW480 cells that had been transfected with beta8 integrin to 

stably express αVβ8 integrin [229], [256], [257] were exploited. As depicted in 

Figure 28B, none of the non-target cells (NIH3T3, HepG2 and BLM) expressed the 

integrin αVβ8 in utmost contrast to the control cell line. This result is in line with the 

previously observed refractoriness of these cell lines for Kera2-mediated 

transductions (Figure 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: αVβ8 integrin expression on primary HK (A) and non-target cells (B) 
Primary HK, NIH3T3 cells, HepG2 cells, BLM cells and as control SW480 αVβ8 cells were incubated 
with αVβ8-antibody followed by an IgG polyclonal goat anti-mouse secondary antibody. The cells 
were analyzed by flow cytometry. Values represent the mean of three independent experiment, 
error bars show SD  
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In line with a report by Jackson and colleagues, parental SW480 cells express the 

RGD-binding integrins αVβ5 and α5β1, but not αVβ8 integrin, while SW480 αVβ8 cells 

express the same set of integrins as well as αVβ8 integrin [229]. Therefore, SW480 

αVβ8 cells and parental SW480 cells are ideal model cell lines to prove whether 

αVβ8 integrin plays a crucial role for Kera2 in cell transduction, by antibody-

blocking experiments. 

 

 
Figure 29: Characterization of RGD-binding integrins expressed on SW480 αVβ8 cells and parental 
SW480 cells 

The cells were incubated with the indicated integrin antibody, respectively, followed by an IgG 
polyclonal goat anti-mouse secondary antibody. The cells were analyzed by flow cytometry. Values 
represent the mean of three independent experiments; error bars show SD. 

 

 

 

Initially, SW480 αVβ8 cells and parental SW480 cells were incubated with a 

blocking antibody for the αV integrin subunit, followed by incubation with Kera2 or 

rAAV2, respectively. As a control, cells were transduced in the absence of the 

blocking antibody. 4 h p.t. cells were treated with trypsin to remove membrane-

bound vector particles. The number of transgene expressing cells was determined 

48 h p.t. by flow cytometry.  
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Figure 30: Blocking experiment using MAB specific for the αV chain  
Flow cytometric analysis of cells incubated with indicated vectors in absence (dark grey) or 
presence (light grey) of αV blocking antibody. A: SW480 cells. B: SW480 αVβ8 cells. Values 
obtained for cells incubated with vectors in absence of antibody were set to 1. Values represent the 
mean of three independent experiments; error bars show SD. To define statistical significance 
between cells treated with and without αV blocking-antibody, Student’s t-test was performed. ns = 
non-significant, ** p<0.001. 

 

The addition of the αV-blocking antibody did not affect cell transduction by rAAV2 

in neither SW480 nor SW480 αVβ8 cells. Conversely, transductions by Kera2 were 

significantly inhibited in SW480 αVβ8 cells by 64.3% (Figure 30B), which points 

towards a dependency on the αV integrin subunit for transducing SW480 αVβ8 

cells. Next, an experiment was performed using a blocking αVβ8 integrin antibody.  
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Figure 31: Blocking experiment using an αVβ8 integrin antibody 
Transduction efficiencies of Kera2 and rAAV2 were determined after pre-incubation of the cells 
without (dark grey) or with (light grey) anti-αVβ8-antibody by flow cytometry. A: SW480 cells. B: 
SW480 αVβ8 cells. Values for cell transduction in the absence of blocking antibody were set to 1 
and represent the mean of three independent experiments; error bars show SD. To define 
statistical significance between cells treated with and without αVβ8 blocking-antibody, Student’s t-
test was performed. ns= non-significant, *** p<0.001. 

 

Briefly, SW480 αVβ8 cells and, as control, parental SW480 cells were incubated for 

30 min on ice in presence or absence of 200 µg/ml of αVβ8-antibody. Thereafter, 

cells were incubated with Kera2 (3x103 g.p./cell) and rAAV2 (7.5x102 g.p./cell) for 

1 hour followed by a washing step. Cells were analyzed 48 h p.t. by flow 
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cytometry. As indicated in Figure 31 αVβ8 antibody did not affect transduction of 

SW480 cell (A) and SW480 αVβ8 cells (B) by rAAV2. While the blocking antibody 

had no effect of Kera2 transduction on SW480 cells, it significantly inhibited 

transduction of SW480 αVβ8 by 44% (Figure 31B).  
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4 Discussion 

Cutaneous gene therapy is becoming a promising strategy to treat inherited or 

acquired skin diseases. Skin, however, is a poor target for viral vector gene 

transfer [206], [207], [208]. Therefore, the objective of the research described in 

this thesis has been to develop vectors based on the adeno-associated virus 

serotype 2 (AAV2), as novel tools for genetic modification of primary human 

keratinocytes (HK). This chapter briefly recapitulates the results and discusses the 

potential of AAV vectors for gene delivery to the skin.  

To develop novel AAV vectors that overcome the resistance of keratinocytes 

towards transduction with natural AAV serotypes, the AAV2 peptide display library 

was used. Sequencing of isolates obtained by this screening revealed that with 

exception of one variant, all variants selected displayed peptides that contained 

RGD/RSD motifs resembling thereby integrin-binding ligands. Three of them, 

Kera1, Kera2 and Kera3, were chosen for further analysis. All three variants, when 

produced as recombinant vectors, transduced human primary keratinocytes with 

significant improved efficiency compared with the parental serotype (Kera1 = 

54.1% +/- 11.6%, Kera2 = 46.7% +/- 16.8%, Kera3 = 47.0% +/- 16.8% and rAAV2 

= 1.2% +/- 0.5; (Figure 18). Furthermore, the three AAV variants transduced the 

target cells by the inserted peptide (Figure 18) through the clathrin entry pathway 

(Figure 20). Even differentiated keratinocytes in air-lifted organotypic 3D co-

cultures were transduced following topical vector application (Figure 25). For the 

variant with the most prominent change in tropism, Kera2, the targeted receptor 

could be identified as integrin αVβ8 by comparative gene analysis (CGA), (Figure 

27, Figure 30 and Figure 31). 

4.1 Selection of AAV capsid variants  

Chronic wounds caused by pressure, venous stasis or diabetes mellitus, as well 

as burns or inherited skin diseases still represent a major clinical problem 

worldwide with significant morbidity and no effective therapies available. Gene 

therapy is a promising strategy for treatment of both inherited and acquired 

disorders. As mentioned previously, the skin is an ideal candidate for gene transfer 
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not only due to its excellent accessibility but also due to the ease with which the 

keratinocytes are biopsied and expanded in culture. Frequently, engraftment as 

well as wound closure is enhanced if the transplant secrets anti-inflammatory 

cytokines and/or growth factors including angiogenic mediators [206], [258], [259], 

[260], [261]. For successful gene delivery, the selection of an appropriate vector is 

of paramount importance [262]. Over the years, a number of viral vector systems 

have been developed as tools for gene therapy [263], [264], [265]. Vectors based 

on adeno-associated viruses serotype 2 (AAV2) have been studied intensively. 

Deodato and colleagues [266] and Galeano and colleagues [267] developed a 

model for external gene delivery of vascular endothelial growth factor A by rAAV2 

into wound bed. Wound healing in the rat showed significant acceleration and a 

well-structured granulation and vascularization [266]. However, the authors 

attributed the increased vascularization to the excellent tropism of the vector to the 

skeletal muscle layer underlying the skin in rodents. This thin muscle layer is not 

available in humans and generally caused wounds in rats to heal faster, indicating 

that this vector might not be as potent when used in humans [198], [266], [267]. 

This is in line with observations of Gagneoux and colleagues [206] and other 

groups [207], [208] who reported that primary human keratinocytes (HK) are not 

permissive to rAAV2. Also, findings of this thesis have shown that primary HK 

were insufficiently transduced by rAAV2 (Figure 11). Receptor analysis revealed 

that primary HK do not express HSPG (Figure 12). HSPG serves as primary 

receptor for AAV2 [37] and is required for binding of AAV2 to its internalization 

receptors αVβ5 or α5β1 integrin [39], [235]. Thus, it is hypothesized that the lack of 

expression of AAV2´s primary receptor is a pre-entry-barrier towards AAV2-

mediated gene transfer into HK. Furthermore, Braun-Falco and colleagues 

reported two post-entry barriers. They noted that rAAV2 mediated gene transfer 

into HK is influenced by ubiquitin/proteasome pathway and the epidermal growth 

factor receptor tyrosine kinase (EGF-R TK) [182]. This barrier could be attenuated 

by the addition of the proteasome inhibitor MG132, or the epidermal growth factor 

receptor tyrosine kinase inhibitor AG1478 [207]. If a target cell does not express 

receptors that are naturally used by AAV for cell infection, the AAV peptide display 

technology can offer an elegant solution to identify a ligand-receptor interaction for 

cell transduction [47]. Specifically, AAV peptide display leads to the identification 

of ligands enabling rAAV2 mutants displaying the respective ligand to enter target 
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cells. Moreover, AAV peptide display selections tackle the problem of post-entry 

barriers. This is because viral mutants are only selected when fulfilling the whole 

viral life cycle. To identify capsid variants displaying peptide insertions able to bind 

to a suited receptor for primary HK transduction, the AAV2 display library, initially 

described by Perabo and colleagues, [144] was used.  

As mentioned before, parental rAAV2 vectors are internalized via HSPG. HSPG 

binding to rAAV2 leads to a strong vector-cell attachment [38], [142]. This confers 

rAAV2 vectors with a broad tropism, which is an undesired feature in cell targeting. 

Capsid mutants, engineered to bind to HSPG share the same features as rAAV2 

vectors [220]. Therefore, an assumption is that re-direction of AAV´s tropism 

requires depletion of the HSPG binding ability. As previously described the AAV2 

display library consist of mutants displaying 7-mer random peptides at amino acid 

position 587. Using this position for peptide insertion results in mutants receptor 

blinded for natural receptor as the two main residues of HSPG binding motif, R585 

and R588, become separated [37], [142]. The hypothesis that depleting the AAV 

display library of HSPG binding ability resulted in ligands that confer rAAV2 

vectors with the ability to enter target cells HSPG-independent and to select for 

mutants able to overcome post-entry barriers was validated. The here selected 

mutants (Kera1, Kera2 and Kera3) showed an impressively higher entry and 

transduction efficiency compared with rAAV2 (Figure 14 - Figure 16). As 

characterization of primary HK revealed the lack of AAV2´s primary receptor 

HSPG, a HSPG independent cell entry of Kera1, Kera2 and Kera3 is 

hypothesized. 

4.2 Kera1, Kera2 and Kera3 transducing target cells 

peptide-dependent through the clathrin entry route 

An unexpected finding of the AAV peptide display selection on primary HK using 

the NB library (library depleted for HSPG binding mutants) was the nearly 

exclusive selection of clones displaying a RGD/RSD containing peptide sequence 

(Table 2). Indeed, peptide competition experiments proved that Kera1, Kera2 and 

Kera3 transduced primary HK through the RGD-containing ligands (Figure 18). 

RGD motifs are classical integrin binding ligands [268] and reports have shown 

that RGD serves as cell attachment site for different viruses e.g. Foot and Mouth 
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Disease virus (FMDV), [269] and Coxsackie virus [270]. As noted, previous 

selections of our group resulted in ligands resembling integrin binding motifs and 

the packaged rAAV2 vectors displaying the selected peptide on the capsid 

efficiently transduce cells in a peptide dependent manner [144], [148]. 

Furthermore, the insertion of a known RGD-integrin binding ligand at position 587 

of AAV2´s capsid resulted in targeting vectors transducing their respective target 

cells with high efficiencies [143]. In Table 7, integrins of the epidermis are depicted 

in relationship to their major ligands, expression in epidermis and RGD recognition 

sequence. 

Table 6: Keratinocyte integrins [174], RGD recognition sequence [238]  

Integrin Major ligand Expression RGD recognition 
sequence 

α2β1 Collagen Constitutive - 

α3β1 Laminin Constitutive - 

α6β4 Laminin Constitutive - 

α5β1 Vitronectin Weak + 

αVβ5 Fibronectin Induces in culture, 
on wounding, under 
pathological 
conditions 

+ 

αVβ6 Fibronectin; 
tenascin 

As αVβ5 + 

α9β1 Tenascin Upregulated during 
wound healing 

- 

αVβ8 Vitronectin Suprabasal + 

 

Integrins appear to be important receptors for different viruses and also for rAAV2 

based targeting vectors. One reason for this relationship might be specific 

intracellular conditions induced upon integrin binding of AAV2 for successful 

intracellular trafficking. Specifically, AAV2 binds to its integrin receptors, which 

induces cytoskeleton rearrangements and uptake into clathrin-coated pits [43]. 

AAV is transported with the endosome along the cytoskeleton towards the nuclear 

area [44], [56]. The N terminus of VP1 carries a phospholipase activity and 

facilitates escape of viral particles by breaking down the endosomal membrane 

[55] followed by nuclear delivery of the vector genomes, which is believed to be 

achieved by nuclear localization signals [271]. Clathrin-mediated endocytosis 

seems to be a successful entry route also for other viruses for example Kaposi's 
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sarcoma-associated herpesvirus (KSHV) [272], Human cytolomegalovirus (HCMV) 

[273] and the related autonomous parvovirus Canine parvovirus [274]. Of note, our 

group recently reported that cell transduction through clathrin-mediated 

endocytosis is associated with an efficient intracellular processing of rAAV 

targeting vectors [220]. Therefore, cell transduction on primary HK were performed 

in the presence of Chlorpromazine that inhibits assembly of clathrin lattices [220]. 

As control, Genistein was used, which inhibits caveolin-mediated uptake. While 

Genistein treatment had no effect on transduction, presence of Chlorpromazine 

significantly reduced the transduction rate of Kera1, Kera2 and Kera3 indicating a 

clathrin-dependent internalization pathway (Figure 20). 

4.3 Kera2 possesses the highest receptor specificity 

Cell type-specific gene delivery in a clinically setting is of utmost importance to 

avoid off-target transduction and to improve the safety and efficiency of gene 

therapy [275]. Therefore, the tropism of the three rAAV2 peptide insertion variants 

was characterized on different cell types representing off-target cells in cutaneous 

gene therapeutic approaches. Transduction experiments on 2 different melanoma 

cell lines (BLM and A375), the human hepatoma cell line HepG2 and the fibroblast 

cell line NIH3T3 revealed an altered tropism for Kera1, Kera2 and Kera3. Despite 

applying a high number of viral particles to the cells the transduction efficiency 

remained at background level, while rAAV2 transduced all cell types (Figure 21 

and Figure 22). Potentially, this data suggest that Kera1, Kera2 and Kera3 are 

specific for a receptor, which is not as prevalent as the naturally occurring 

receptors for rAAV2. Similarly, high target cell specificity was demonstrated by 

transduction experiments with the rAAV peptide insertion variants on primary HK 

co-cultured with NIH3T3 feeder cells. Feeder cells are often used to support the 

growth of primary HK in the culture. The experiment revealed that the rAAV 

peptide insertion variants transduced primary HK with high efficiency in contrast to 

the feeder cells (Figure 23). This result further supported the hypothesis that 

receptors with a relative restricted expression pattern are targeted by Kera1, 

Kera2 and Kera3, respectively. 
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4.4 Kera1, Kera2 and Kera3 are capable of transducing 
differentiated keratinocytes in human organotypic 
skin co-cultures 

Vectors developed in this thesis transduce differentiated keratinocytes in 

organotypic human skin co-cultures, a feature not described for AAV vectors 

before. Especially Kera2 and Kera3 showed impressive transduction efficiencies 

(Figure 25). The ability to transduce differentiated keratinocytes is an important 

prerequisite for potential clinical use across the skin barrier. This feature opens the 

door for research areas including regenerative medicine and basic life science 

research. Especially these vectors might be applicable for topic in vivo applications 

for transient overexpression of growth-factors to enhance wound healing [214], 

[276], [277] or for vaccination [278].  

4.5 αVβ8 integrin serves as receptor for Kera2 

Identification of cellular receptors engaged by the ligand displayed by AAV 

targeting vectors facilitates transition from “bench to bedside”. This task was 

difficult to accomplish, despite the obvious importance. This is due to the selection 

process, in which the library is screened for capsid variants with tropism for a 

certain cell type. In most of the cases, knowledge on potential suitable receptors or 

the receptor profile is lacking. Furthermore, each cell type possesses more than 

one receptor that in principle could mediate cell entry and processing intracellular 

signal cascades. This impedes selection of mutants with specificity for a 

beforehand chosen receptor. The NCI/NIH department (USA) has developed a 

microarray based bioinformatic approach, which has been successfully applied to 

identify viral receptors [221], [279]. In this thesis, this approach (named 

comparative gene analysis (CGA)) was used for the first time for the identification 

of a receptor engaged by a rAAV targeting vector. The on- and off-target 

transduction analysis, pointed towards a high target receptor specificity of Kera2, 

which was therefore chosen for exploiting the usability of this method for target 

receptor identification. As outlined in detail in the results, CGA pointed to ITGB8, 

the β8 subunit of an integrin, as candidate (Figure 27). The β8 cytoplasmic domain 

is 65 aa long sharing no apparent homology with the highly conserved cytoplasmic 
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domains of other β subunits or any other known protein [255]. β8 is unique as it is 

solely described as heterodimer with αV [280], [281]. Cambier and colleagues 

found that the αVβ8 integrin is expressed in airway epithelial cells in vivo and in 

vitro [256]. Later they were able to show that αVβ8 integrin is also expressed in 

perivascular cells process surrounding developing human cerebral blood vessels 

as well as in primary cultures of astrocytes or freshly dissociated immature 

neuroglial cells [282]. Further, Stepp reported that αVβ8 integrin is also found in 

suprabasal layer of the epidermis [254]. The integrin belongs to a group of 

integrins present in human skin (Table 6), [229], [238]. The only high-affinity ligand 

of this integrin is the latency associated peptide (LAP) of the transforming growth 

factor β (TGF-β) complex [257]. By comparing the ligand sequence of LAP 

(RGDLATI) [229], a striking homology to the Kera2 peptide sequence (PRGDLAP) 

is noticeable. Further evidence that αVβ8 integrin plays a critical role in vector-cell 

binding is provided by the efficient transduction of cells expressing αVβ8 integrin 

with Kera2, while receptor-negative cells were refractory. Furthermore, receptor-

blocking experiments revealed a significant reduction in cell transduction when 

αVβ8 integrin is blocked (Figure 30 and Figure 31).  

4.6 Summary and outlook 

The here-developed AAV-based vectors Kera1, Kera2 and Kera3 are potential 

tools for genetic manipulation of human skin. Specifically, these three rAAV2 

peptide insertion variants were highly efficient in transducing primary human 

keratinocytes (HK). Of the three vectors, Kera2 demonstrated the most striking 

change in tropism, i.e. targeting of HK and detargeting from potential off-target cell 

types such as hepatocytes or fibroblasts. Furthermore, the here reported study is 

the first describing a strategy to identify candidate receptors engaged by capsid-

modified rAAV vectors. Exploiting CGA revealed αVβ8 integrin as candidate 

receptor for Kera2, which was confirmed in subsequent experiments. Of particular 

interest for basic and translational research, the changed tropism conferred by the 

inserted peptide ligands enabled the three rAAV2 peptide insertion variants, 

Kera1, Kera2 and Kera3, to efficiently transduce differentiated keratinocytes in 

organotypic 3D cultures. Thus, the three selected rAAV2 peptide insertion variants 

(Kera1, Kera2 and Kera3) appear to be a potent tool in cutaneous gene therapy.  
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Another prospective candidate, identified by the AAV peptide display selection on 

primary HK, might be the AAV clone with the sequence RSDLASL. According to 

Hamidpour and colleagues, the motif RSD possesses the potential to act as a 

mimic of the RGD motif [236]. Assuming that RSD and RGD are indeed identical, 

this variant is likely similar efficient as Kera2 in binding αVβ8 integrin as its 

sequence (RSDLASL) is strikingly similar to Kera2 (PRGDLAP) and the sequence 

of the former mentioned LAP peptide (RGDLATI) of the TGF-β complex (known to 

bind αVβ8 integrin). Hence, this motive could be an alternative rAAV vector binding 

to the αVβ8 integrin. Further, the selection screen with the AAV2 display library 

performed during this thesis resulted in ligands including various motifs that are 

potentially able to bind to integrins (Table 2). It would be of interest to package and 

characterize the remaining mutants maybe resulting in targeting vectors binding to 

different integrin receptors facilitating cutaneous gene transfer.  

For Kera2, as mentioned above, the αVβ8 integrin was identified as receptor. αVβ8 

integrin is not only expressed in skin but also in different other tissues or organs 

like dendritic cells [283], airway epithelial cells in vivo and in vitro [256], astrocytes 

[284] as well as in epithelial cells of kidney [285], [286]. In principle, Kera2 may be 

able to mediate gene transfer in every tissue/cells expressing αVβ8 integrin. Thus, 

Kera2 potentially, could function as targeting vector not only for skin diseases. 

Further work must be done to prove this hypothesis by verifying expression of αVβ8 

integrin on these tissues/cells, followed by transduction experiments to test 

efficiencies of Kera2 in these tissues. 

Chapter 3.7.1 demonstrated that Kera1, Kera2 and Kera3 were able to transduce 

primary murine Keratinocytes (Figure 26). After rAAV2 showed relative high 

transduction efficiency, further research could proof the presence of HSPG 

(AAV2´s primary receptor) on primary murine keratinocytes. Nevertheless, Kera2 

clearly outperformed rAAV2, which indicates higher transduction efficiency of 

murine keratinocytes. Therefore, of further interest, might be the characterization 

of RGD-binding integrins expressed on murine keratinocytes, particularly αVβ8 

integrin.  

Experiments with human organotypic skin cultures revealed that Kera1, Kera2 and 

Kera3 were able to transduce differentiated human keratinocytes (Figure 25). 

Another consideration may be transduction experiments on murine organotypic 

skin cultures since the three selected rAAV peptide insertion variants were able to 
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transduce primary murine keratinocytes in 2D culture. This experiment might open 

the door for in vivo applications on mouse models. 

As mentioned before, the human epidermis is a self-renewing tissue and therefore 

any persistent genetic defect is present in the stem cells, with expression passed 

to daughter cells at each division [287]. Epidermal stem cells play a central role in 

homeostasis and wound repair [258]. They possess the ability to self-renew and 

are responsible for long-term maintenance of the tissue [259]. Thus, for prolonged 

gene expression in epidermis, integration into the genome of stem cells is 

required. Kera2 is probably not suitable for transduction of epidermal stem cells 

due to the lack of αVβ8 integrin receptor expression. Kera1 and Kera3 possessing 

a more unspecific tropism for primary HK seen in the mixed culture experiment 

(see 3.6.1) and in the transduction experiment of human organotypic skin cultures 

(see 3.7). It can thus not be excluded that one of them or both might successfully 

transduce epidermal stem cell for gene delivery. Further, it might be possible that 

one of the not yet characterized mutants selected during this thesis, when 

packaged as rAAV vector, would be able to transduce epidermal stem cells 

successfully due to target a different integrin receptor. A further possibility for 

successful gene delivery into epidermal stem cells would be to exploit the here 

optimized AAV2 display library on the stem cell for selection of new mutants. 

Identification of genes that are responsible for genetic diseases opens the 

possibility for treatment of gene therapeutic approaches. Attempts to correct 

genetic defects using gene therapy include different forms of epidermolysis bullosa 

or lamellar ichthyosis [232]. Petek and colleagues demonstrated efficient targeting 

of KRT14 in normal and epidermolysis bullosa- (EB) affected human keratinocytes 

[189]. EB simplex is caused by point mutations in KRT14 gene [257]. They used 

an AAV gene targeting vector of serotype 6 with promoter trap design to disrupt 

the mutated allele resulting to a success rate of 50%. They observed that cells 

with disruption of transcription from the mutant allele dominate targeted cell 

populations after a short growth period in culture and they reported histologically 

normal skin grafts after transplantation to athymic mice [208]. Since Kera2 

demonstrated significant higher entry efficiency into primary HK than the former 

mentioned rAAV6 mutant, Kera2 might be an alternative for correction of KRT14 

genes in EB.  
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List of Abbreviations 

aa amino acid 

AAP assembly-activating protein 

Ad  adenovirus 

bp base pair 

BSA bovine serum albumin 

Cap Open reading frame for capsid proteins 

CPZ Chlorpromazine 

d day 

DAPI 4´,6-diamidino-2-phenylindol 

DMEM Dulbecco´s Modified Eagle Medium 

DMSO dimethyl sulfoxide 

dNTP deoxynucleotide trisphosphate 

DNase deoxyribonuclease 

(ds)DNA (double stranded) deoxyribonucleic acid 

(ss)DNA (single stranded) deoxyribonucleic acid 

DTT dithiothreitol 

EDTA ethylene-di-amine-tetra-acetic acid 

(e)GFP (enhanced) green fluorescent protein 

EGF(R) epidermal growth factor (receptor) 

ELISA enzyme-linked immunosorbent assay 

EtBr ethidium bromide 

FACS fluorescence activated cell sorting 

FCS  fetal calf serum 

FGF(R) fibroblast growth factor receptor 

FITC fluorescein-5-isocyanate 

g.p. genomic particles 

GOI genomic particles per cell 

h hour 

HBS  HEPES buffered solution 

HCMV human cytomegalo virus 

HEPES 4-3-hydroxyethyl-1-
piperazineethanesufonic acid 

HK human keratinocytes 

HSPG heparan-sulphate proteoclycan 

HSV Herpes Simplex Virus 

IL interleukin 
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ITR inverted terminal repeat 

kb kilo bases 

LB Luria-Bertani 

min minute 

NB HSPG-non-binder 

NDS normal donkey serum 

nt nucleotide 

ns non-significant 

OD  optical density 

ORF open reading frame 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDGFR platelet derived growth factor receptor 

PFA paraformaldehyde 

p.i. post infection 

PIPES piperazine-N,N`-bis(2-ethanesulfonic 
acid) 

Plat plasminogen activator 

qPCR quantitative PCR 

rAAV recombinant adeno-associated viral 
vector 

REP REP protein 

rep open reading frame for REP proteins 

rpm rounds per minute 

RT room temperature 

TAE tris-acetate EDTA 

TBS tris-buffered saline 

Tris tris-(hydroxymethyl)-amino-methane 

trs terminal resolution site 

(V)EGF(R) (vascular) endothelial growth factor 
(receptor) 

vg vector genomes 

VP viral protein 
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