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ABSTRACT 

Timely monitoring of crop growth status at different scales is crucial for improving 

regional crop management decisions. The main objective of the recent study is a 

model development to predict and estimate crop parameters, here biomass, plant N 

concentration and plant height, based on different earth observation systems that 

provide complementary information. Among these are the hyperspectral sensor 

Hyperion and the multi-spectral sensor ALI based on EO-1 satellite, ASAR on Envisat 

and TerraSAR-X. Based on the characteristics of the different systems, methods are 

analysed regarding crop parameter estimation and crop growth status monitoring on a 

regional level. Factors which are taken into account for optical data are bandwidth and 

centre of the wavebands, spectral reflectance response from visible and near infrared 

and the performance of vegetation indices based on the two sensors for semi-

empirical parameter estimation. Concerning the SAR sensors Envisat ASAR and 

TerraSAR-X, parameters such as wavelength, incidence angle and polarization were 

analysed in terms of crop parameter retrieval and crop status determination. For this, 

two test areas, one for winter wheat in Northern China Plain (Huimin County) and one 

for rice in the Northeast of China (Jiansanjiang) were selected. At both sites, intensive 

ground data collection during the vegetation periods in 2006, 2007 for Huimin and 

2009 and 2011 for Jiansanjiang were performed.  

Concerning the winter wheat crop monitoring based on hyperspectral, multi-spectral 

and C-band SAR data, the study was conducted in Huimin County, Shandong Province 

of China in the growing season of 2005/2006 involving three large winter wheat fields 

each year managed by different farmers. Winter wheat growth parameters including 

aboveground biomass, plant N concentration, LAI, and plant height were collected at 

different growth stages. Three different prediction models were investigated: 

traditional vegetation indices calculated from broad and narrow bands, and 

Normalized Ratio Indices (NRI) calculated from all possible two-band combinations of 

Hyperion between 400 and 2500 nm. The results indicated that TVI performed best 

among the tested vegetation indices using either broad bands (R2 = 0.69, 0.32 and 0.64 

for biomass, N concentration and plant height, respectively) or narrow bands (R2 = 
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0.71, 0.33 and 0.65 for biomass, N concentration and plant height, respectively). The 

best performing Normalized Ratio Index (NRI) selected through band combination 

analysis were significantly better than TVI, achieving R2 of 0.83, 0.81 and 0.79 for 

biomass, plant N concentration and plant height, respectively. The different NRI 

models use wavebands from the NIR (centred at 874, 732, and 763 nm) and the SWIR 

(centred at 1225 and 1305 nm) spectrum with varying bandwidth between 10 and 190 

nm. The result of this part proved that vegetation indices derived from NIR- and SWIR-

Hyperion spectrum are better predictors of plant aboveground biomass, nitrogen 

concentration and plant height than indices derived from only visible spectrum. In 

addition, Envisat ASAR VV polarization data were related to winter wheat crop 

parameters. Bivariate correlation results from this study indicate that both multi-

temporal EO-1 Hyperion as well as Envisat ASAR data provides notable relationships 

with crop conditions. As expected, linear correlation of hyperspectral data performed 

slightly better for biomass estimation (R2 = 0.83) than microwave data (R2 = 0.75) for 

the 2006 field survey. Based on the results, hyperspectral Hyperion data seem to be 

more sensitive to crop conditions. Improvements for crop parameter estimation were 

achieved by combining hyperspectral indices and microwave backscatter into a 

multiple regression analysis as a function of crop parameter. Combined analysis was 

performed for biomass estimation (R2 = 0.90) with notable improvements in prediction 

power.  

For the rice monitoring in the Sanjiang Plain, Northeast China, the main objective was 

the understanding of the coherent co-polarised X-band backscattering signature of rice 

at different phenological stages in order to retrieve growth status. For this, multi-

temporal dual polarimetric TerraSAR-X High Resolution SpotLight data (HH/VV) as well 

as single polarised StripMap (VV) data were acquired from the test site. In conjunction 

with the satellite data acquisition, a ground truth field campaign was carried out. 

The backscattering coefficients at HH and VV of the observed fields were extracted on 

the different dates and analysed as a function of rice phenology to provide a physical 

interpretation for the co-polarised backscatter response in a temporal and spatial 

manner. Then, a correlation analysis was carried out between TerraSAR-X 
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backscattering signal and rice biomass of stem, leaf and head to evaluate the 

relationship with different vertical layers within the rice vegetation.  

HH and VV signatures show two phases of backscatter increase, one at the beginning 

up to 46 days after transplanting and a second one from 80 days after transplanting 

onwards. The first increase is related to increasing double bounce reflection from the 

surface-stem interaction. Then, a decreasing trend of both polarizations can be 

observed due to signal attenuation by increasing leaf density. A second slight increase 

is observed during senescence. Correlation analysis showed a significant relationship 

with different vertical layers at different phenological stages which prove the physical 

interpretation of X-band backscatter of rice. The seasonal backscatter coefficient 

showed that X-band is highly sensitive to changes in size, orientation and density of the 

dominant elements in the upper canopy.  

Overall, the study demonstrated successfully the estimation of crop status by multi-

sensoral remote sensing data. The use of different sensor systems to acquire timely 

information is especially important for agricultural decision support systems. Thus, as 

many different systems are available in the future, the combination of different 

satellite sources is gaining more importance. 
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KURZZUSAMMENFASSUNG 

Methoden und Techniken der Fernerkundung fungieren als wichtige Hilfsmittel im 

regionalen Umweltmanagement. Um diese zu optimieren, untersucht die folgende 

Arbeit sowohl die Verwendung als auch Synergien verschiedener Sensoren aus 

unterschiedlichen Wellenlängenbereichen.  

Der Fokus liegt auf der Modellentwicklung zur Ableitung von Pflanzenparametern aus 

fernerkundlichen Bestandsmessungen sowie auf deren Bewertung. Zu den 

verwendeten komplementären Fernerkundungssystemen zählen die Sensoren EO-1 

Hyperion und ALI, Envisat ASAR sowie TerraSAR-X. Für die optischen Hyper- und 

Multispektralsysteme werden die Reflexion verschiedener Spektralbereiche sowie die 

Performanz der daraus abgeleiteten Vegetationsindizes untersucht und bewertet. Im 

Hinblick auf die verwendeten Radarsysteme konzentriert sich die Untersuchung auf 

Parameter wie Wellenlänge, Einfallswinkel, Radarrückstreuung und Polarisation. Die 

Eigenschaften verschiedener Parameterkombinationen werden hierbei dargestellt und 

der komplementäre Beitrag der Radarfernerkundung zur Wachstumsüberwachung 

bewertet. Hierzu wurden zwei Testgebiete, eines für Winterweizen in der 

Nordchinesischen Tiefebene und eines für Reis im Nordosten Chinas ausgewählt. In 

beiden Gebieten wurden während der Wachstumsperioden umfangreiche 

Feldmessungen von Bestandsparametern während der Satellitenüberflüge oder 

zeitnah dazu durchgeführt.   

Mit Hilfe von linearen Regressionsmodellen zwischen Satellitendaten und Biomasse 

wird die Sensitivität hyperspektraler Reflexion und Radarrückstreuung im Hinblick auf 

das Wachstum des Winterweizens untersucht. Für die optischen Daten werden drei 

verschiedene Modelvarianten untersucht: traditionelle Vegetationsindices berechnet 

aus Multispektraldaten, traditionelle Vegetationsindices berechnet aus 

Hyperspektraldaten sowie die Berechnung von Normalised Ratio Indices (NRI) 

basierend auf allen möglichen 2-Band Kombinationen im Spektralbereich zwischen 400 

und 2500 nm. Weiterhin wird die gemessene Biomasse mit der gleichpolarisierten (VV) 

C-Band Rückstreuung des Envisat ASAR Sensors linear in Beziehung gesetzt. Um den 
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komplementären Informationsgehalt von Hyperspektral und Radardaten zu nutzen, 

werden optische und Radardaten für die Parameterableitung kombiniert eingesetzt.  

Das Hauptziel für das Reisanbaugebiet im Nordosten Chinas ist das Verständnis über 

die kohärente Dualpolarimetrische X-Band Rückstreuung zu verschiedenen 

phänologischen Wachstumsstadien. Hierfür werden die gleichpolarisierte TerraSAR-X 

Rückstreuung (HH und VV) sowie abgeleitete polarimetrische Parameter untersucht 

und mit verschiedenen Ebenen im Bestand in Beziehung gesetzt. Weiterhin wird der 

Einfluss der Variation von Einfallswinkel und Auflösung auf die 

Bestandsparameterableitung quantifiziert. Neben der Signatur von HH und VV 

ermöglichen vor allem die polarimetrischen Parameter Phasendifferenz, Ratio, 

Koherenz und Entropy-Alpha die Bestimmung bestimmter Wachstumsstadien.  

Die Ergebnisse der Arbeit zeigen, dass die komplementären Fernerkundungssysteme 

Optik und Radar die Ableitung von Pflanzenparametern und die Bestimmung von 

Heterogenitäten in den Beständen ermöglichen. Die Synergien diesbezüglich müssen 

auch in Zukunft weiter untersucht werden, da neue und immer variablere 

Fernerkundungssysteme zur Verfügung stehen werden und das Umweltmanagement 

weiter verbessern können.  



Acknowledgement 

 

VI 

 

ACKNOWLEDGEMENT 

The thesis was embedded in The International Center For Agro-Informatics and 

Sustainable Development (ICASD). The research of this project was supported by 

different institutions and companies: the Natural Science Foundation of China (Project 

number: 30571080), International Bureau of the BMBF, the GIS&RS Group of the 

University of Cologne, the Sino-German Cooperative Nitrogen Management Project 

(MOST 2007DFA30850), the Qixing Research and Development Center in Heilongjiang 

and Astrium GEO-Information Services.  

The thesis was supervised by Prof. Dr. Georg Bareth, which is also the person to whom 

I owe most for many reasons. First, he was giving me the chance to come to the 

University of Cologne to participate in his pleasant working group and to start working 

on the thesis. Furthermore, his enthusiastic and motivating way of supervising was like 

a “fountain” of ideas and always refreshing which enabled me to continue and 

accomplish the thesis, even in difficult times. After leaving the University and the 

interesting city of Cologne, Prof. Bareth provided always support and continued taking 

care for me – Vielen Dank! 

I also thank to Prof. Dr. Karl Schneider, for his willing to act as the second examiner for 

the thesis and for providing software licences and support during my time in Cologne.  

Furthermore, my sincerely thanks to 

• Jürgen Janoth, for fully supporting my PhD activities at Infoterra. 

• Simon Hennig and Martin Gnyp and many more students for working hard in 

the field. 

• All colleagues of the “Bareth working group”, for the always fruitful 

collaboration and for not getting tired to weaken my dislike of Cologne and for 

making it a nice place for living. 

And finally special thanks to my parents, who always supported the long and rocky way 
with warm words and Thüringer Klöße! 

 



Table of Content 

 

VII 

 

TABLE OF CONTENT 

ABSTRACT ...............................................................................................................................................I 

KURZZUSAMMENFASSUNG .................................................................................................................. IV 

ACKNOWLEDGEMENT .......................................................................................................................... VI 

TABLE OF CONTENT ............................................................................................................................. VII 

LIST OF FIGURES ................................................................................................................................... IX 

LIST OF TABLES ..................................................................................................................................... XI 

LIST OF ABBREVIATIONS...................................................................................................................... XII 

1 INTRODUCTION ................................................................................................................................. 1 

1.1 Motivation ....................................................................................................................................... 1 
1.2 Thesis Outline .................................................................................................................................. 3 
1.3 Remote Sensing for Supporting Crop Monitoring ........................................................................... 4 
1.4 Objective and Hypotheses ............................................................................................................ 10 

2 LITERATURE REVIEW ........................................................................................................................ 12 

2.1 Multispectral and Hyperspectral Imaging ..................................................................................... 12 
2.1.1 Reflectance Properties ....................................................................................................... 12 

2.1.1.1 Atmospheric Effects ............................................................................................ 15 
2.1.1.2 Radiance and Reflectance ................................................................................... 16 

2.1.2 Hyperspectral Crop Monitoring* ....................................................................................... 17 
2.2 Synthetic Aperture Radar .............................................................................................................. 19 

2.2.1 SAR System Parameters ..................................................................................................... 20 
2.2.1.1 Frequency ............................................................................................................ 20 
2.2.1.2 Radar Equation .................................................................................................... 21 
2.2.1.3 Range and Azimuth Resolution ........................................................................... 22 

2.2.2 Properties of Imaging Radar .............................................................................................. 23 
2.2.2.1 Speckle ................................................................................................................ 23 
2.2.2.2 Image Geometry and Geometric Distortions ...................................................... 24 
2.2.2.3 SAR Interaction with the Target .......................................................................... 25 
2.2.2.4 Scattering Mechanism ......................................................................................... 27 
2.2.2.5 Polarization ......................................................................................................... 30 
2.2.2.6 Compact Polarimetric Data ................................................................................. 32 

2.2.3 State of the Art SAR Crop Monitoring ................................................................................ 32 
2.2.3.1 Rice Crop Monitoring .......................................................................................... 33 
2.2.3.2 Winter Wheat Crop Monitoring .......................................................................... 36 

2.3 Synergism of Optical and SAR ....................................................................................................... 37 

3 METHODS AND USED DATA ............................................................................................................. 40 

3.1 Ground Truth ................................................................................................................................ 42 
3.1.1 Huimin County Test Site* ................................................................................................... 42 

3.1.1.1 Experimental Design ........................................................................................... 43 
3.1.1.2 Field Measurements ............................................................................................ 44 

3.1.2 Jiansanjiang Test Site* ....................................................................................................... 49 
3.1.2.1 Experimental Design ........................................................................................... 50 
3.1.2.2 Field Measurements ............................................................................................ 52 

3.2 Satellite Data Acquisitions, Processing and Analysis ..................................................................... 53 
3.2.1 EO-1 Hyperion and ALI* ..................................................................................................... 55 

3.2.1.1 EO-1 Hyperion and ALI Processing ...................................................................... 56 
3.2.1.2 Analysis of Hyperspectral EO-1 Hyperion Data ................................................... 58 



Table of Content 

 

VIII 

 

3.2.2 Envisat ASAR Processing* .................................................................................................. 60 
3.2.3 TerraSAR-X Processing ....................................................................................................... 63 

3.2.3.1 Speckle Suppression ............................................................................................ 65 
3.2.3.2 Power .................................................................................................................. 68 
3.2.3.3 Correlation .......................................................................................................... 69 
3.2.3.4 Compact Polarimetric Decomposition ................................................................ 71 

3.2.4 Statistical Analysis* ............................................................................................................ 72 

4 RESULTS ........................................................................................................................................... 75 

4.1 Crop Phenological Development ................................................................................................... 75 
4.1.1 Winter Wheat Growth* ..................................................................................................... 75 
4.1.2 Rice Growth ....................................................................................................................... 78 

4.2 Hyperspectral Imaging of Winter Wheat ...................................................................................... 83 
4.2.1 Spectral Reflectance as a Function of Crop Parameters* .................................................. 83 
4.2.2 Spectral Vegetation Indices and the Relationship with Crop Parameters* ....................... 86 

4.2.2.1 Single Band Relationship with Crop Parameters ................................................. 86 
4.2.2.2 Standard Broad Band and Narrow Band Vegetation Indices .............................. 87 
4.2.2.3 Relationship of Narrow Band Normalized Ratio Indices (NRI) with Crop 

Parameters .......................................................................................................... 88 
4.2.2.4 Validation of NRI model ...................................................................................... 89 

4.2.3 Discussion of Multispectral and Hyperspectral Data for Winter Wheat Monitoring* ...... 91 
4.2.3.1 Processing of EO-1 Data ...................................................................................... 91 
4.2.3.2 Single Band and Standard Vegetation Indices ..................................................... 92 
4.2.3.3 Narrow Band Normalized Difference Indices ...................................................... 93 

4.3 Winter Wheat Monitoring with C-band ........................................................................................ 96 
4.3.1 Temporal Backscatter Behaviour of Winter Wheat ........................................................... 96 
4.3.2 Relating Crop Condition to Envisat ASAR ........................................................................... 98 
4.3.3 Discussion of C-band SAR Data for Wheat Monitoring ...................................................... 99 

4.4 Synergy of Hyperspectral and C-band SAR Data for Crop Parameter Estimation* ..................... 100 
4.5 Polarimetric Rice Monitoring with X-band .................................................................................. 102 

4.5.1 Power: Backscattering Signature and Ratio ..................................................................... 102 
4.5.1.1 Incidence Angle Differences .............................................................................. 103 
4.5.1.2 Typical Backscattering Signature ....................................................................... 104 
4.5.1.3 Co-pol Ratio (HH/VV) ........................................................................................ 105 

4.5.2 Correlation: Polarimetric Coherence and Phase Difference ............................................ 106 
4.5.3 Polarimetric Decomposition: Alpha and Entropy ............................................................ 107 
4.5.4 Correlation Analysis between Backscattering Coefficients and Plant Variables* ............ 108 
4.5.5 Polarimetric Growth Stage Monitoring............................................................................ 111 
4.5.6 Discussion of Polarimetric Rice Monitoring* ................................................................... 113 

4.5.6.1 Incidence Angle ................................................................................................. 119 
4.5.6.2 Polarimetric Parameters ................................................................................... 119 

5 SYNERGISTIC SUMMARY AND CONCLUSION .................................................................................. 122 

5.1 Hyperspectral Imaging ................................................................................................................ 123 
5.2 SAR C-band Imaging and Synergism of Optic and SAR ................................................................ 124 
5.3 SAR X-band Imaging .................................................................................................................... 125 
5.4 Validation of Hypothesis and Objectives .................................................................................... 126 

5.4.1 Huimin Test Site ............................................................................................................... 126 
5.4.2 Jiansanjiang Test Site ....................................................................................................... 128 

6 REFERENCES ................................................................................................................................... 129 

APPENDIX .......................................................................................................................................... 141 

A.1: Selection of Standard Vegetation Indices ..................................................................................... 141 
A.2: TerraSAR-X HH and VV Imagery of Rice ........................................................................................ 142 
A.3: Separability of Rice against other Crops ....................................................................................... 145 
A.4: Polarimetric parameters for rice and non-rice. ............................................................................ 148 



List of Figures 

 

IX 

 

LIST OF FIGURES 

Figure 1-1:  Recent and future earth observation optical satellite missions. .............................................. 7 

Figure 1-2:  Recent and future earth observation SAR satellite missions. ................................................... 8 

Figure 2-1:  Hyperspectral image cube of EO-1 Hyperion extracted over the study site in Huimin          
County. ................................................................................................................................... 14 

Figure 2-2:  Typical reflectance curves (soil and vegetation) extracted from EO-1 Hyperion of Huimin 
County (April 19, 2006). ......................................................................................................... 15 

Figure 2-3:  Inter-relationship between wavelength and frequency for the most common SAR systems 
on a log scale (modified after Henderson & Lewis 1998). ...................................................... 21 

Figure 2-4:  Imaging geometry of side looking SAR (modified after Woodhouse 2006). θl is the look angle, 
θd is the depression angle and θi the incidence angle. ........................................................... 24 

Figure 2-5:  Backscatter as a function of surface roughness (after Woodhouse 2006). ............................ 27 

Figure 3-1:  Overview of processing steps applied in the thesis. ............................................................... 41 

Figure 3-2:  Test sites in Huimin County (Gnyp et al. 2013). ...................................................................... 43 

Figure 3-3:  Farming fields in Huimin County. ............................................................................................ 44 

Figure 3-4:  Farming fields in Huimin County with measurement points. ................................................. 45 

Figure 3-5:  Arrangement of canopy spectral reflectance measurements with ASD Handheld and 
QualitySpec (modified after Laudien 2007). ........................................................................... 47 

Figure 3-6:  Canopy spectral reflectance measurements at April 7, 2006 (Photo Martin Gnyp). .............. 48 

Figure 3-7:  Test sites in Jiansanjiang (Gnyp et al. 2013). .......................................................................... 49 

Figure 3-8:  Experimental design of the Jiansanjiang test site. .................................................................. 51 

Figure 3-9:  Small plots within larger rice fields (Photo Martin Gnyp 2009). ............................................. 52 

Figure 3-10:  Pre-processing steps of EO-1 Hyperion data. ......................................................................... 56 

Figure 3-11:  Comparison of single pixel spectra before (a) and after (b) atmospheric correction. Spectra 
were acquired on April 19, 2006. ........................................................................................... 57 

Figure 3-12:  Processing chain of Envisat ASAR. .......................................................................................... 61 

Figure 3-13:  Processing chain of TerraSAR-X. ............................................................................................. 65 

Figure 3-14:  SAR filter results (based on HS, August 8, 2009). Left: Unfiltered. Middle: Level Bell. Right: 
Anisotropic, 8 iterations. ........................................................................................................ 68 

Figure 4-1:  Biomass development of winter wheat in 2006 and dates of image and ground truth 
acquisition. ............................................................................................................................. 76 

Figure 4-2:  Spatial-temporal distribution of dry matter of two fields in 2006. ......................................... 77 

Figure 4-3:  Rice growth stages, growth phases as well as plant height and total biomass graphs of the 
growing season of 2009 and 2011. Time is represented in days after transplantation 
(modified after Koppe et al. 2013). ........................................................................................ 81 

Figure 4-4:  Total dry matter and yield measured at the farmers’ fields. Fields with biomass 
measurements and plots with detailed sampling. ................................................................. 82 

Figure 4-5:  Reflection behavior of winter wheat (Xili). Left: recorded by ASD Fieldspec (blue) and EO-1 
Hyperion (red) in 2006. Right: recorded by QualitySpec (blue) and EO-1 Hyperion (red) in 
2007. ....................................................................................................................................... 84 



List of Figures 

 

X 

 

Figure 4-6:  Correlation coefficient (r) between Hyperion single band reflection and biomass in the 
growing season of 2006. ........................................................................................................ 87 

Figure 4-7:  Coefficient of determination (R
2
) between Hyperion narrow band vegetation indices 

calculated from all possible two-band combinations and biomass (a) and total nitrogen 
content (b) (Koppe et al. 2010a). ........................................................................................... 89 

Figure 4-8:  Measured versus predicted aboveground biomass using the regression model described in 
equation 4.2 (Koppe et al. 2012). ........................................................................................... 91 

Figure 4-9:  Scatterplot of (a) aboveground biomass against standard narrow band NDVI and (b) best 
waveband combination from NRI, 874 nm and 1225 nm (Koppe et al. 2010a). .................... 95 

Figure 4-10:  Temporal evolution for bare soil (green) and winter wheat (blue) of C-VV backscatter 
(Koppe et al. 2012). ................................................................................................................ 96 

Figure 4-11:  C-VV backscatter related to aboveground biomass (Koppe et al. 2012). ............................... 99 

Figure 4-12: Mean temporal backscattering coefficient (sigma nought) for different incidence angles of 
VV and HH of rice during the vegetation periods in 2009 and 2011. (a) SL, 26°. (b) HS, 39° 
and SM, 36°. (c) SL, 46°. ........................................................................................................ 103 

Figure 4-13: TerraSAR-X Spotlight images at HH (top), VV (down) at three acquisition dates in 2009 
(modified after Koppe et al. 2013). ...................................................................................... 104 

Figure 4-14: HH/VV ratio of six rice parcels as a function of time at 26° incidence angle. ...................... 106 

Figure 4-15:  Co-polar phase difference and coherence of six rice parcels as a function of time at 26° 
incidence. ............................................................................................................................. 107 

Figure 4-16: Co-polar eigenvector decomposition (alpha and entropy) of six rice parcels at 26°               
incidence. ............................................................................................................................. 108 

Figure 4-17: Relating phenological stage of rice to polarimetric parameters. ......................................... 112 

Figure 4-18: Correlation coefficients of TerraSAR-X HS backscatter (VV and HH) with stem, leaf, head and 
total biomass at DAT 35, 46 and 79. ..................................................................................... 115 

Figure 4-19: Backscatter behavior of rice at different growth stages. (a) Flooded rice field, DAT 0. (b) 
Early vegetative stage, DAT 35. (c) Late vegetative stage, DAT 46. (d) Reproductive stage, 
DAT 79. ................................................................................................................................. 116 

Figure 4-20: Left: Comparison of σ
0
 signature between problematic fields (blue dashed line) and average 

of the normal growing fields (red solid line) based on SM VV backscatter. Upper right: Photo 
of a problematic field. Lower right: Photo of a normally growing field. .............................. 117 

Figure 4-21: Left: Comparison of coherence signatures of different land cover classes. Right: Coherence 
image (July 7, 2011). ............................................................................................................. 121 

Figure A-1:  Landcover classification (TerraSAR-X HS 2009, July 5 and July 27) (modified after Hütt, 2012), 
overlaid by experimental plots. ............................................................................................ 142 

Figure A-2:  TerraSAR-X HH and VV images (incidence angle 26°) of growing season of 2011). ............. 144 

Figure A-3:  X-band backscatter (inc. angle 39°) of HH and VV of rice crop 2009. ................................... 145 

Figure A-4:  TerraSAR-X color composite of DAT 46 and DAT 68 (2009). ................................................. 145 

Figure A-5:  Separability analyses of land cover classes based on HH and VV difference (modified after 
Hütt 2012). ........................................................................................................................... 146 

Figure A-6:  Separability analyses of land cover classes based on alpha angle (modified after                
Hütt 2012). ........................................................................................................................... 146 

Figure A-7:  Land cover classifications (modified after Hütt 2012). ......................................................... 147 

Figure A-8:  Polarimetric parameters for rice and non-rice for incidence angle of 26° and 46°. ............. 149 



List of Tables 

 

XI 

 

LIST OF TABLES 

Table 2-1: Crop characteristics which influence remote sensing in the VIS – NIR and in the microwave 
domain (Kühbauch & Hawlitschka 2003). .............................................................................. 38 

Table 3-1: Soil chemical properties of the farming fields in 2006 (Li et al. 2008). ..................................... 44 

Table 3-2: Sensor specifications of ASD Field Spec and Quality Spec (Analytical Spectral Devices 1999).. 47 

Table 3-3: Acquired satellite data for the test sites Huimin and Jiansanjiang (modified after Koppe et al. 
2012 and Koppe et al. 2013). ................................................................................................. 54 

Table 3-4: Technical specification of EO-1 Hyperion and ALI. .................................................................... 55 

Table 3-5: Standard vegetation indices evaluated in this study (Koppe et al. 2010a). ............................... 59 

Table 3-6: Technical specification of Envisat ASAR. .................................................................................... 61 

Table 3-7: Technical specification of TerraSAR-X and TanDEM-X. .............................................................. 64 

Table 3-8: Quantitative measurement of noise for standard adaptive and experimental filters. ............. 67 

Table 4-1: Crop growth variables measured at different dates in 2006 and 2007 (Koppe et al. 2012). .... 77 

Table 4-2: Statistics of measured agronomic parameters during the field campaign 2009 (modified after 
Koppe et al. 2013). ................................................................................................................. 79 

Table 4-3: Information about field experiments in 2009 and 2011. ........................................................... 80 

Table 4-4: Coefficient of determination (R
2
) between ALI broad band, Hyperion narrow band vegetation 

indices and measured agronomic parameters (Koppe et al. 2010a)...................................... 86 

Table 4-5: Coefficient of determination (R
2
) between biomass and NRI for the validation model based on 

multi-temporal and mono-temporal data (modified after Koppe et al. 2012). ..................... 90 

Table 4-6: Coefficient of determination (R
2
) between biomass and Envisat ASAR backscatter (Koppe et al. 

2012). ..................................................................................................................................... 99 

Table 4-7: Coefficient of determination (R
2
) between biomass and Envisat ASAR backscatter (Koppe et al. 

2012). ................................................................................................................................... 101 

Table 4-8: Correlation coefficients (R
2
) between backscatter (HH and VV) and plant variables, including 

total biomass of the whole plant and the components stem, leaf and head for HS and SM 
(modified after Koppe et al. 2013). ...................................................................................... 110 

Table 5-1: Validation of objective and hypothesis for Huimin test site. ................................................... 127 

Table 5-2: Validation of objective and hypothesis for Jiansanjiang test site. ........................................... 128 

Table A-1: Standard vegetation indices. ................................................................................................... 141 



List of Abbreviations 

 

XII 

 

LIST OF ABBREVIATIONS 

  

ALI Advanced Land Imager 

ASAR Advanced Synthetic Aperture Radar 

ASD Analytical Spectral Device 

BBCH 
Biologische Bundesanstalt, Bundessortenamt und 
Chemische Industrie 

BIOM Biomass 

DAT Day After Transplanting 

dB Decibel 

DN Digital Number 

ENL Effective Number of Looks 

EO-1 Earth Observing 1 mission 

FAO  Food Agricultural Organization 

GCP Ground Control Point 

GHz Gigahertz 

GIS Geographical Information System 

GMES Global Monitoring for Environment and Security 

HH Horizontal-Horizontal (polarization) 

HR  High Resolution 

HS High-Resolution SpotLight 

IEEE Institute of Electrical and Electronics Engineers 

ICASD  
International Center for Agro-Informatics and 
Sustainable Development 

IR Infrared 

LAI  Leaf Area Index 

MARS Monitoring Agricultural ResourceS 

NDVI Normalized Differenced Vegetation Index 

NIR  Near Infrared 

NRI Normalised Ratio Index 

OSAVI Optimised Soil-Adjusted Vegetation Index 

PAZ Identical satellite to TerraSAR-X, Spanish for peace 



List of Abbreviations 

 

XIII 

 

POLInSAR Polarimetric Interferometric SAR 

PPD Polarimetric Phase Difference 

PRF Pulse Repetition Frequency 

PWC Plant Water Content 

RADAR  Radio Detection and Ranging 

RAR   Real Aperture Radar 

REP Red Edge Position 

RE Relative Error 

RMSE Root Mean Square Error 

SAR Synthetic Aperture Radar 

SEAMLESS 
System for Environmental and Agricultural Modelling; 
Linking European Science and Society 

SLAR Side Looking Radar Systems 

SL SpotLight 

SM StripMap 

SR Simple Ratio 

SWIR Short Wave Infrared 

TCI Triangle Chlorophyll Vegetation Index 

STD Standard Deviation 

TIROS Television and InfraRed Observation Satellite 

TanDEM-X TerraSAR-X-Add-on for Digital Elevation Measurements 

TVI Triangular Vegetation Index 

UAV Unmanned Aerial Vehicle 

VHR  Very High Resolution 

VIS Visible 

VV Vertical-Vertical (polarization) 

WB World Bank 

WFP  World Food Program 

WRS World Reference System 



Introduction 

 

1 

 

1 INTRODUCTION 

The recent study with its elaborate design would not have been possible without and is 

closely interwoven with the research of The International Center For Agro-Informatics 

and Sustainable Development (ICASD). The ICASD is a cooperation between the 

Institute of Geography, University of Cologne and the College of Resources and 

Environmental Sciences, China Agricultural University. The overall mission of the 

Center is to promote the sustainable development of intensive agriculture, an efficient 

management of natural resources as well as the application of information technology 

in agriculture.   

Within the framework of this cooperation, the focus of this thesis lies on the 

integration of active and passive remote sensing technologies into modern agricultural 

management.  

1.1 Motivation 

As cereal grains, rice (Oryza) and wheat (Triticum) are the most important agricultural 

crops covering together 369 million ha of earth’s surface in 2010, accounting for 53% 

of total harvested area of cereal crops in 2010 (FAOSTATS 2013). The productions 

quantity amounts to 672 million tons rice and 650 million tons wheat in 2010, 

representing over 54% of the total production amount of cereal crops. Over the last 40 

years, the cereal production quantity increased by 20% in average per decade, 

whereas the harvested area remains constant in a certain range (FAOSTATS 2013). As a 

consequence, most of the increase must be attributed to a more efficient agricultural 

production due to increase of fertilizer, pesticides and water supply as well as the 

usage of new cropping technologies. Beside to positive effects concerning productivity, 

along with the intensification of agricultural production also environmental problems 

may arise. The use of pesticides and over-fertilization contaminates surface and 

ground water unintendedly (Miller 2004); irrigation of crops in dry areas can lead to 

depletion of underground aquifers, subsidence and salinization (ILRI 1989). As a 

consequence, the intensive agriculture may aggravate temporal and permanent land 
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degradation or land use change. In 2012, global agriculture had to feed around seven 

billion people, and although the population growth rate is expected to decrease, in 

2050 the global population will be more than nine billion (UN Database 2012). Based 

on these figures, improvement in production efficiency must further accelerate to 

guarantee food security for the next decades. According to FAO (2013), the definition 

of food security is as follows: “Food security is a situation that exists when all people, 

at all times, have physical, social and economic access to sufficient, safe and nutritious 

food that meets their dietary needs and food preferences for an active and healthy 

life”. To meet the goals and requirements for food security, different programs were 

established. From an European perspective, the most important program is the Global 

Monitoring for Environment and Security (GMES, from 2013 Copernicus), whereas one 

of the ‘Land Applications’ aims at global food security. For this, a global crop 

monitoring service shall be established with the objective of near real-time crop 

condition assessment and yield forecast (GMES 2012). Another European program, 

already established in 1988, is the Monitoring Agricultural ResourceS (MARS), 

providing scientific support in terms of agro-meteorological crop modelling, yield 

forecast and crop inventories in- and outside Europe (MARS 2012). There are further 

initiatives for improving food security on continental and global level, e.g. the Food 

and Agricultural Organization (FAO), the World Bank (WB), the World Food Programme 

(WFP) or the System for Environmental and Agricultural Modelling – Linking European 

Science and Society (SEAMLESS 2012). Beside these initiatives for food security, there 

is parallel also a commercial market emerging in the field of agricultural services for 

insurance and finance. Especially the crop insurance market is interested in timely 

information on productivity and an end-to-end service solution on crop status and 

yield forecast. In conclusion, the identified stakeholders of timely agricultural 

information are numerous, but primarily include: policy makers, organizations 

responsible for food security and environment, land use planers, crop insurances as 

well as the financial market controlling prices and trade volumes.  

In the mentioned initiatives and programs, remote sensing based technologies are 

important tools for information extraction and decision support. In this context, 

remote sensing is used for gathering spatial-temporal crop information to calibrate 
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crop growth models, provide spatial variability information of crop status and final 

yield forecast. In particular, to cope with the imbalance between food supply and 

demand today and in the future, there is strong need to further investigate and 

develop agricultural monitoring systems that assure a sustainable use of land 

resources (Justice & Becker-Restef 2007). 

1.2 Thesis Outline 

The present thesis uses different data acquisition methods such as space-borne active 

and passive remote sensing, in-situ ground truth measurements and interviews to 

allow a quantitative analysis of the data.  

Chapter 1 addresses the benefit of using remote sensing data for spatial-temporal 

agricultural monitoring. An overview of actual and future sensor systems for earth 

observation is given. Furthermore, the motivation, hypothesis and objectives and the 

significance of the thesis are highlighted. Chapter 2 reviews the physical properties of 

remote sensing, the properties of imaging spectroscopy as well as the properties of 

radar imagery. One focus in this chapter is put on the physics of radar imaging. Beside 

the physics, a literature review of agricultural monitoring based on hyperspectral and 

radar sensor systems is provided. In the methods part (Chapter 3) an introduction into 

the two different test areas, which were explored in the framework of this study, is 

given. Additionally to this, the used satellite imagery and the processing methods are 

presented. This includes the image pre-processing, the core processing of the satellite 

data, the collection and analysis of the ground truth data. The results of the study are 

presented in chapter 4. At first, winter wheat and rice phenological development are 

described. Subsequently the results of hyperspectral and radar crop monitoring of 

winter wheat are presented, followed by the polarimetric analysis of X-band rice 

monitoring. In each of the three sections, the results are discussed in relation to state 

of the art research. In chapter 5, the results and discussions from chapter 4 are 

summarised in relation to the objectives and hypothesis of the thesis.  

The thesis is based on three published papers, which form the core of the study. The 

topics addressed in the three papers are summarized in Figure 3-1. Additionally to the 
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papers, a literature review addressing the theoretical fundamentals of optical and 

radar remote sensing as well as a polarimetric analysis of the X-band data was carried 

out. The published papers are: 

KOPPE, W., GNYP, M. L., LAUDIEN, R., JIA, L., LI, F., CHEN, X., ZHANG, F., & BARETH, G., 2006: 
Deriving of winter wheat characteristics from combined radar and hyperspectral 
data analysis. – SPIE Proceedings, Geoinformatics'2006, Wuhan, China. 

KOPPE, W., LI, F., GNYP, M. L., MIAO, Y., JIA, L., CHEN, X., ZHANG, F., & BARETH, G., 2010: 
Evaluating Multispectral and Hyperspectral Satellite Remote Sensing Data for 
Estimating Winter Wheat Growth Parameters at Regional Scale in the North 
China Plain. – Photogrammetrie, Fernerkundung, Geoinformation, 3: 167-178. 

KOPPE, W., GNYP, M. L., YAO, Y., MIAO, Y., & BARETH, G., 2011: Agricultural Monitoring with 
Spaceborne X-band SAR Data. – Proceedings on the Workshop of Remote 
Sensing Methods for Change Detection and Process Modelling, 18-19 November 
2010, University of Cologne, Germany, Kölner Geographische Arbeiten, 92: 55-
61. 

KOPPE, W., HENNIG, S. D., LI, F., GNYP, M. L., MIAO, Y., JIA, L., CHEN, X., & BARETH, G., 2012: 
Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter 
Wheat Biomass in the North China Plain. – Photogrammetrie, Fernerkundung, 
Geoinformation, 3: 281-298. 

KOPPE, W., LI, F., GNYP, M. L., HÜTT, C., MIAO, Y., YAO, Y., CHEN, X., & BARETH, G., 2013: Rice 
monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. – 
International Journal of Applied Earth Observation and Geoinformation, 21: 568-
576. 

1.3 Remote Sensing for Supporting Crop Monitoring 

To meet the requirements for sustainable resource management, a continuous 

monitoring and evaluation of resources is essential. Important information for decision 

support on local, regional and global level are:  

• information about cropped areas and crop type 

• timely information on production estimate 

• yield forecast 

This information needs to be updated on a regular basis, as it is fundamental in terms 

of agricultural production assessment and change of land use on different spatial 

levels. To account frequently for agricultural production, land cover and land use, yield 

forecast and environmental problems, diverse methods are used that serve different 

scales. Among others, these methods surveys regarding land use and interview of 
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farmers (De Groote & Traoré 2005), collection of statistical data (FAOSTAT 2013), crop 

growth modelling such as ORYZA for rice (Bouman et al. 2001) as well as airborne and 

spaceborne remote sensing data acquisition (Moran et al. 1997). As this thesis 

addresses low scale spatial monitoring, the following chapters focus on space-borne 

remote sensing for agricultural applications.  

Remote sensing is a data acquisition method that acquires information about objects 

on earth’s surface without any physical contact. For data retrieval the electromagnetic 

radiation in different wavelength is used. In general, the sensor systems are mounted 

on UAV (Unmanned Aerial Vehicle), plane or satellite (Albertz 2009).  

Space-borne satellite earth observation allows for frequent monitoring of agricultural 

areas in different wavelength and spatial resolutions. The use of satellite remote 

sensing for earth observation has a long history. Already in the early 1960s, the first 

low-resolution television camera mounted on a satellite (TIROS mission – Television 

and InfraRed Observation Satellite) was brought into space for monitoring purpose. 

Since the early 1960s, many earth observations satellites with different characteristics 

have been launched in order to image earth surface. Today there is a wide variety of 

sensor systems available, whereas the main distinguishing factors in terms of 

monitoring applications are: 

• Orbit (sun synchronous, geosynchronous) and revisit time 

• Operating frequency range 

• Footprint size / swath width 

• Sensor resolution and radiometric performance 

• Number of spectral bands or polarizations 

The listed parameters characterize the different sensor systems and qualify them for 

dedicated monitoring applications such as agricultural monitoring. In Figure 1-1 and 

Figure 1-2 recent and future commercial and scientific earth observation missions are 

shown. The earth observations missions with optical sensors are separated into High 

Resolution missions (HR) with up to 1 m resolution and Very High Resolution missions 

(VHR) with a resolution higher than 1 m. As apparent from the Figure 1-1 and Figure 



Introduction 

 

6 

 

1-2, a lot of space-borne optical imaging systems from medium to very high resolution 

are currently available that can contribute to agricultural monitoring at different 

spatial and temporal scales. In the field of radar sensors there are many different 

systems currently in orbit. In Figure 1-2 the SAR missions are distinguished in X-, C-, S-, 

and L-band. In the future there will be a large number of X-band systems, the four 

satellites from the Cosmo-Skymed 2nd generation mission or TerraSAR-X2 as well. 

There is also a large number of missions in longer wavelength, enabling a 

complementary use of the different frequencies. In terms of SAR, the trend is towards 

higher resolution, larger swath width, shorter revisit time by constellation missions and 

full polarization.  

The wide variety of missions in the optical and SAR domain allow for using 

complementary information with short time intervals to improve agricultural 

monitoring tasks. In the recent thesis, data from hyperspectral optical mission EO-1 

Hyperion and from the SAR missions Envisat ASAR (C-band) and TerraSAR-X (X-band) 

are used to extract information for crop status monitoring.  
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Vegetation development during the growing period is based on physical and 

biochemical processes which interact with environmental conditions such as 

atmosphere or soil (Kumar et al. 2003). The material-specific characteristics of objects 

(e.g. vegetation) determine the interaction of incoming radiation and the object. Based 

on these characteristics, the incoming radiation is either reflected or absorbed, or 

penetrates the object. The illumination source can be the solar radiation or in case of 

an active system the sensor itself (Albertz 2009). As remote sensing sensors measure 

the electromagnetic radiation reflected by an object, one can infer the physical 

properties of the object. In vegetation science, spectral algorithms such as vegetation 

indices were developed to extract biophysical parameters based on differential 

absorption, reflectance and transmittance of energy (Lyon et al. 1998).  

In terms of agriculture, satellite remote sensing enables the acquisition of information 

that is essential for modern crop monitoring since large areas can be monitored with 

different sensor systems at regular intervals. The contribution of remote sensing to 

crop monitoring can be as follows: 

 

• Land cover mapping. Land cover and land use mapping are among of the most 

important contributions of remote sensing to agricultural monitoring. Inventory 

map are used for assessing the dynamic change in an agricultural environment 

(Ran et al. 2010).  

• Crop status monitoring. As reflected or backscattered energy from vegetation 

changes with changing plant phenological stage, remote sensing can be used to 

monitor plant development during the growing season (Albertz 2009).   

• Crop growth modelling. Spatial remote sensing data can be linked to crop 

growth models to calibrate or re-initialize crop models on the one hand, or to 

upscale local simulations to a regional level (Dente et al. 2007). 
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1.4 Objective and Hypotheses 

Although there are manifold recent and future earth observation missions, area-wide 

remote sensing based crop monitoring is still not implemented. To support crop 

monitoring systems by remote sensing, it is essential to acquire data at specific 

phenological stages to extract information that is relevant for agricultural monitoring. 

Furthermore, multi-temporal remote sensing acquisitions improve monitoring during 

the growing season in terms of land cover mapping, crop status monitoring and the 

calibration of crop growth models. Beside the cost component, factors that could 

prevent a timely monitoring are: availability of acquisition capacity, cloud cover 

problems or lack of appropriate methodologies for a synergistic use of different sensor 

systems. Thus, it is necessary to develop methodologies to retrieve biophysical 

information from different sources (multispectral, hyperspectral, microwave) which 

can be used to supply agricultural monitoring systems. Within this thesis, optical and 

SAR sensors for monitoring were under investigation to validate the advantages and 

synergies of the different systems. Especially the new generation of X-band SAR 

sensors offer new capabilities for crop monitoring, but up to now only a few number of 

research papers on rice crop monitoring based on space-borne X-band data has been 

published. Based on this, specific research objectives were identified that are 

subdivided into four parts:  

 

Multispectral and Hyperspectral Remote Sensing  

• to quantitatively describe hyperspectral reflectance signature of winter wheat 

canopy during the vegetation period 

• to analyse, compare and evaluate satellite based multispectral and 

hyperspectral images in terms of broad band and narrow band vegetation 

indices for the estimation of winter wheat aboveground biomass, plant N 

concentration and plant height. It is assumed, that advanced narrow band 

vegetation indices perform better than standard vegetation indices based on 

multi-spectral data. Three different types of vegetation indices will be 

evaluated.  
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o standard broad band vegetation indices derived from multispectral 

sensor ALI 

o standard narrow band vegetation indices derived from hyperspectral 

sensor Hyperion 

o systematic identification of best waveband combinations in the 

Hyperion reflectance spectrum from 400 to 2500 nm 

• to investigate the ability to predict crop standing biomass by different 

vegetation indices 

 

C-band microwave remote sensing  

• to quantitatively describe C-VV SAR backscattering of winter wheat canopy 

during the vegetation period 

• to investigate the ability to predict crop standing biomass by Envisat ASAR  

 

Synergy of Hyperspectral and C-band microwave remote sensing  

• to explore the potential of complementary use of SAR and hyperspectral data 

for mapping crop and field conditions at a regional level 

 

X-band microwave remote sensing  

• to assess the potential of high-resolution and multi-polarization X-band SAR 

data in agricultural monitoring 

• to study the sensitivity of X-band co-polar backscatter as a function of rice 

phenology stages based on multi-temporal acquisitions and different incidence 

angles 

o to evaluate the relationship between X-band co-polar backscatter and 

biomass of the different scattering layers (stem, leaf, and head) 

o to analyse to benefit of dual polarimetric X-band data for crop growth 

status monitoring 
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2 LITERATURE REVIEW 

This chapter introduces the essential basics of multispectral and hyperspectral 

imaging, SAR systems, and agricultural vegetation. The section 2.1 serves as an 

introduction to the field of multispectral and hyperspectral data properties and its 

applicability to crop monitoring. The second section (2.2) deals with the description of 

the SAR system parameters, with the properties of imaging radar such as radiometry, 

geometry, and the monitoring of crop by microwave radiation.  

As multispectral and hyperspectral remote sensing has been known well for decades 

and described in many review papers and textbooks such as Thenkabail et al. (2011), 

Kumar et al. (2003), Mulla (2012) and Schowengerdt (2007), the introduction to this 

topic is rather short and will only address elements that are of main importance for the 

recent study. Due to this, the focus of the literature review is put on radar and 

especially on polarimetric radar remote sensing. 

2.1 Multispectral and Hyperspectral Imaging 

Optical remote sensing records image data in different wavelength ranges across the 

visual and infrared part of the electromagnetic spectrum. If image data is captured 

simultaneously at several frequencies, it is called multispectral imaging. Usually the 

electromagnetic spectrum is sampled in dedicated wavelength bands, whereas each of 

these bands covers a wide frequency range. Compared to this broad-band sampling of 

dedicated wavelength ranges with low spectral resolution, multispectral imaging offers 

the opportunity to acquire high spectral resolution and narrow-band image data 

continuously across the electromagnetic spectrum (Albertz 2009).  

2.1.1 Reflectance Properties  

For biochemical processes of plants the main source of energy is the incoming solar 

radiation. Solar radiation is the driver of photosynthetic processes, where energy is 

converted to organic compounds. The interaction of the incident electromagnetic 
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radiation with objects of the surface can be divided into the main processes: 

absorption, transmission and reflectance (Kumar et al. 2003). Absorption describes a 

process in which energy of the incident radiation is taken by the pigments of the 

plants. The process of transmission, in turn, illustrates the passing of electromagnetic 

radiation through the vegetation without reflection or absorption. Furthermore, there 

is the surface reflection, whereas the incident illumination is reflected from the surface 

of the object. The reflectance spectrum is a function of absorption and scattering 

processes, determined by the biochemical composition, water content, incidence 

angle and geometrical characteristics of the canopy (Borengasser et al. 2007). The 

optical properties of the stand are therefore a complex combination of these 

parameters. They provide compositional information about the vegetation in the 

visible (VIS), near-infrared (NIR) and short wave infrared (SWIR). The reflectance curve 

of green vegetation has a characteristic shape from the VIS to the SWIR and is 

determined by vegetation attributes (Thenkabail et al. 2011).  

The VIS range (400 to 700 nm) of vegetation reflectance spectrum is determined by 

strong absorption of foliar pigments, whereas reflectance and transmittance of energy 

is very low. Most of the energy is absorbed by chlorophyll a and chlorophyll b in the 

blue and red light of the spectrum; lower amounts of energy of the blue light are also 

absorbed by carotenoids (Lillesand et al. 2008). The slightly lower absorption in the 

green light induces a small reflection peak in the visible portion of the spectrum. The 

absorbed light of the VIS is used for electron transitions. The liberated energy of this 

transition is then used for photochemical reactions. With the senescence of the plants 

the reflectance behaviour changes due to chlorophyll degradation which results in an 

increase of red light reflectance (Kumar et al. 2003). The transition zone between the 

VIS and NIR is called the red edge zone (between 680 and 750 nm) and is characterized 

by a steep reflectance slope from the low chlorophyll reflectance to the high 

reflectance of the red edge shoulder. Especially the red edge inflection point, where 

the slope is at its maximum, is an important indicator for chlorophyll content (Mulla 

2012). Due to the lower energy level of the NIR light compared to the visible range, 

most of the light is reflected or transmitted and not absorbed by the pigments. The 

reflectance curve is mainly determined by the internal structure and anatomy of the 
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leaves and the water content. In the NIR, part of the incoming light is transmitted by 

the first leaf layers and reaches a subsequent layer. This layer also reflects and 

transmits the light. As a result of the multilayer structure of a vegetation canopy, the 

total reflectance is an addition of multiple leaf layers (Kumar et al. 2003). Within the 

NIR range, there are two weak water absorption bands around 970 and 1200 nm. The 

SWIR is dominated by water absorption bands that are centred at 1200, 1450, 1940 

and 2400 nm. Compared to this, the absorption of foliar pigments is insignificant, 

especially in fresh leaves (Schowengerdt 2007).  

 

 

Figure 2-1: Hyperspectral image cube of EO-1 Hyperion extracted over the study site 

in Huimin County.  

Hyperspectral imaging provides the opportunity to image the surface in a high number 

of narrow spectral bands to provide a continuous spectral curve. Figure 2-1 shows a 3D 

image cube of one test site of the study (Huimin County). The hyperspectral image 

cube is a three dimensional representation of the area; it emphasizes the high spectral 

resolution. The short wavelengths are displayed close to the border of the image 

plane, whereas to the back of the cube the wavelengths are increasing.  
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Figure 2-2 shows two average reflectance curves extracted from the test area. The first 

curve represents typical soil, the second a typical vegetation reflectance curve.  

 

 

Figure 2-2: Typical reflectance curves (soil and vegetation) extracted from EO-1 

Hyperion of Huimin County (April 19, 2006). 

2.1.1.1 Atmospheric Effects 

Hyperspectral imaging spectrometers acquire data in contiguous bands over a wide 

range of the electromagnetic spectrum in a passive way. The sun is the illumination 

source and the solar irradiance curve shows a decreasing trend with increasing 

wavelength. The recorded at-sensor-radiance curve in general follows the solar 

irradiance curve. Additionally, the measured at-sensor-radiance is affected by 

interactions of the atmosphere with the incident and reflected solar radiation (Gao et 

al. 2009). The illuminated and reflected energy is scattered and absorbed by 

atmospheric gases and particles which influences the measured energy that is 

reflected by the object and received by the instrument (Thenkabail et al. 2011). Major 

absorption features, approximately centred around 1400 nm and 1900 nm. They are 

caused by water vapour and carbon dioxide and diminish incoming and reflected solar 

radiation almost completely. Minor absorption bands that reduce the at-sensor-

radiance are centred at 700 nm (O2), 940 nm and 1140 nm (H2O) and 2000 nm due to 
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the occurrence of carbon dioxide (CO2) (Borengasser et al. 2007). Absorption elements 

causes distortions on the recorded radiance includes also ozone (O3), carbon monoxide 

(CO), and methane (CH4). All these absorption features affect the transmittance 

through the atmosphere in a range between 400 nm and 2500 nm. In contrast to 

absorption features reducing the amount of recorded energy, scattered light (path 

radiance) is added to the radiance measurement. Scattering processes that occur 

within the atmosphere are Rayleigh scattering in the case of smaller particles 

compared to the wavelength, Mie scattering of particles in size of the wavelength and 

not specified scattering on droplets (Gao et al. 2009). The total radiance measured at 

the sensor (Ltot) consists of direct reflection from the object and diffuse atmospheric 

scattering and can be expressed as follows (Lillesand et al. 2008):  

 

���� = ���
� + ��         (2.1) 

 

where p is the reflectance of an object, E the irradiance of an object, T the 

transmission of the atmosphere, λ the wavelength and Lp the path radiance.  

2.1.1.2 Radiance and Reflectance 

For hyperspectral imaging, radiance is an important parameter since it is measured by 

the optical instrument. Radiance is the total reflection or emission from a diffuse area 

and its unit is Watts per steradian per square meter (W*sr
-1

*m
-2) when measured per 

unit wavelength (Borengasser et al. 2007). In the case of an optical instrument carried 

by a satellite, the electromagnetic energy has to pass the atmosphere. Within the 

atmosphere, the emitted or reflected light from the observed target is scattered or 

absorbed which will influence the measured radiance (Gao et al. 2009). The radiance 

values are therefore dependent on illumination intensity and direction. Compared to 

this, reflectance spectra are defined as the ratio of amount of light reflected from a 

target to the amount of incident light. This explains why the reflectance is independent 

from illumination. Spectral reflectance is unitless and ranges between 0 and 1.0 

(Lillesand et al. 2008).  
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2.1.2 Hyperspectral Crop Monitoring* 

Timely monitoring of crop growth status is important for dynamic in-season site 

specific crop management, detection of plant vitality, assessment of seasonal 

production as well as environmental pollution control and yield prediction (Miao et al. 

2009, Laudien & Bareth 2006, Zhao et al. 2004, Hansen & Schjoerring 2003). 

Traditional techniques for the measurement of accurate crop parameters such as plant 

aboveground biomass and nitrogen concentration are destructive, extremely cost and 

labour intensive, and not able to provide spatial distributed data on regional level (Lu 

2006). The estimation of these parameters can be done more efficiently by non-

destructive spectral reflectance observations (Daughtry et al. 2000), obtained from 

field-, airborne- or satellite based sensors. For the linkage of crop parameters with 

spectral reflectance measurements, a lot of different vegetation indices were 

developed (Zhao et al. 2004, Haboundane et al. 2004, Broge & Mortensen 2002) that 

are based on the understanding of reflectance behaviour. Vegetation indices obtained 

from spectral reflectance measurements are designed to enhance the vegetation cover 

signal while minimizing the response of various background materials (Schowengerdt 

2007). They are mainly based on the difference between low reflection due to strong 

absorptions by foliar pigments in the red spectrum and high reflection of structural 

components (cell walls) in the near infrared spectrum (Kumar et al. 2003, Lillesand et 

al. 2008). In the past decades, many attempts have been made to estimate crop 

parameters at regional level, either directly from remote sensing data or by 

assimilating remote sensing data into crop models (Schneider 2003). A lot of earth 

observation satellites carrying multispectral imaging sensors (Wooster 2007), which 

provide data that can be used for the calculation of broad band vegetation indices (Liu 

2006). Vegetation indices calculated from the visible and near infrared bands of 

multispectral scanners have been used to estimate crop parameters such as standing 

biomass and grain yield (Tucker 1979, Thenkabail et al. 2000, and Doralswamy et al. 

2003), leaf area index (LAI) (Cloutis et al. 1999) and plant nitrogen content (Reyniers & 

Vrindts 2004). At higher vegetation densities, standard broadband vegetation indices, 

                                                      

* This section is an extended version of the article: Koppe et al. (2010a). 



Literature Review 

 

18 

 

such as Simple Ratio (SR) or Normalized Difference Vegetation Index (NDVI) are 

generally less accurate (Jongschaap & Schouten 2005) and tend to saturate 

(Haboudane et al. 2004, Mutanga & Skidmore 2004), which results in a limited 

prediction value of crop parameters when LAI exceeds two (Haboudane et al. 2004). 

Improvements could be achieved by using hyperspectral radiometers, which can 

acquire a continuous electromagnetic spectrum for each pixel between 350 and 2500 

nm (Hansen & Schjoerring 2003). The sensitivity of hyperspectral vegetation indices for 

estimation of crop parameters has already been demonstrated with significant 

improvements compared to broad bands by several authors during the past several 

decades (Fillela et al. 1995, Strachan et al. 2002). A selection of standard vegetation 

indices used for analysing and monitoring of spatial and temporal variations of 

vegetation stands are summarized in Appendix A.1. Beyond narrow band standard 

vegetation indices, imaging spectroscopy provides the opportunity of using more 

adequate wavebands or waveband combinations to estimate biophysical parameters 

(Ceccato et al. 2002). According to this, different approaches for index calculation 

based on all waveband combinations were developed and successfully used for 

estimation of wheat grain yield (Xavier et al. 2006), wheat biomass and Nitrogen 

content (Hansen & Schjoerring 2003, Thenkabail et al. 2000) as well as land cover 

classification (Thenkabail et al. 2004). Also, Ferwerda et al. (2005) used waveband 

selection method successfully for the estimation of leaf nitrogen content across 

different species. Mutanga & Skidmore (2004) reported, that waveband combinations 

different from the standard NDVI could overcome saturation effects of biomass 

estimation at full canopy cover. Narrow band vegetation indices other than standard 

NDVI were successfully used for biomass and nitrogen estimation of winter wheat in 

the Northern China Plain (Koppe et al. 2010a); whereby the saturation effect at full 

canopy cover was reduced. Improvements concerning plant parameter estimation with 

different waveband combinations were also reported by Thenkabail et al. (2000). 

However, Darvishzadeh et al. (2008) and Jamer et al. (2003) demonstrated that 

biophysical parameters could be better estimated by multivariate methods such as 

partial least square regression because 2-channel vegetation indices make only use of 

a small subset of the available spectral information. Beside the advantages and 
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robustness of vegetation indices for biomass estimation, a drawback is the necessity of 

reference data for model calibration. Alternative and more complex quantification 

approaches are physically based radiative transfer models (Cho et al. 2008). These 

models simulate the hyperspectral signature and remotely sensed data can be used for 

model recalibration (Richter et al. 2009).  

A lot of studies have been conducted on improving the performance of hyperspectral 

vegetation indices both on excised leafs and in situ measurements, but there are only a 

few studies dealing with hyperspectral imaging on regional level (e.g. Smith et al. 2003, 

Galvaõ et al. 2005, Datt et al. 2003). By using high spectral resolution space born 

radiometers (e.g. Hyperion sensor on Earth Observation-1 satellite), detailed variation 

in the electromagnetic spectrum between 400 and 2500 nm can be measured over a 

wide area (Broge & Leblanc 2000), making this approach more efficient for large scale 

precision crop management. 

2.2 Synthetic Aperture Radar 

Microwave systems can be distinguished on a general level into active and passive 

instruments. Because this thesis focuses on active imaging RADAR (Radio Detection 

and Ranging) systems, properties of passive systems will be neglected.  

Active radar systems illuminate a target area with electromagnetic energy by sending 

microwave pulses at a certain rate. This rate is named the pulse repetition frequency 

(PRF). The transmitted signals are scattered at the surface by the different targets and 

their echoes are recorded with the antenna (Woodhouse 2006). The returning echoes 

provide information about magnitude, phase, polarization and Doppler frequency of 

the target. The time delay of the received microwave pulses provide the two-way 

travel time and hence the distance from the antenna to the target. In general, the 

earth surface is illuminated by the transmitted pulses perpendicular to the flight 

direction (range) while the satellite is moving along its orbit path (azimuth). The 

resulting image is composed by the motion of satellite passing by the area being 

covered (Massonnet & Souyris 2008). Space-borne imaging radar systems are so called 

“side-looking systems” in contrast to radar altimeters which have a nadir look 
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direction. The side-looking geometry allows the spatial separability of backscattered 

signals which is essential for a two-dimensional representation of the target area 

(Bamler & Schättler 1993). The resolution of the side looking system in range and 

azimuth is defined by the bandwidth of the transmitted pulse and the antenna length, 

respectively. Since the azimuth resolution strongly depends on the distance to the 

target for systems with a real aperture, real aperture radar (RAR) systems are not 

appropriate for high altitudes. To overcome low azimuth resolution, a synthetic 

aperture radar (SAR) can be formed by using the satellite’s motion along the orbit 

path. As the moving platform passes by the area being covered pulses are reflected 

from a given target. These distinctive coherent signal-variations (Doppler spectrum 

variations) can be processed to obtain a higher azimuth resolution (Klausing & Holpp 

2000). The imaging geometry of a SAR system is generalized in Figure 2-4.  

2.2.1 SAR System Parameters 

2.2.1.1 Frequency 

Conventional radar remote sensing systems utilize frequencies between 0.3 GHz and 

30 GHz, which corresponds to a wavelength between 1 and 70 cm. Frequency and 

wavelength are related to each other as follows (Henderson & Lewis 1998):  


 = �
�           (2.2) 

where λ is the wavelength, c the speed of light and f the frequency (Woodhouse 2006). 

The inter-relationship between frequency and wavelength is provided in Figure 2-3. 

The radar systems are classified into different wavelength-frequencies bands with a 

letter code according to IEEE-Std-521-1976 (Henderson & Lewis 1998). Typically used 

wavebands of space-borne SAR systems are X-, C- and L-band.  

 



Literature Review 

 

21 

 

 

Figure 2-3: Inter-relationship between wavelength and frequency for the most 

common SAR systems on a log scale (modified after Henderson & Lewis 1998).  

2.2.1.2 Radar Equation 

The radar equation describes the fundamental physical relationship between radar 

system parameters, transmitted and received power from the target, and propagation 

properties of the electromagnetic wave (van Zyl 2011). The power density Pr 

represents the energy per unit area of an active radar system backscattered from a 

target at ground. The radar equation is a general equation since it does not consider 

polarization characteristics. Furthermore it is limited to surface scattering and radar 

cross section is not confined to a particular target type (point or distributed target) 

(Ulaby et al. 1986).  


� = 
������ � ��
�
��������         (2.3) 

where Pt is the power transmitted, G the gain of the antenna, λ the wavelength of the 

radar system, A the target’s receiving area, R the range distance from the antenna to 

the target and σ0 is defined as the radar cross section per unit area. The term 1/4πR
2 

involved in the denominator is the spreading loss, which is defined as the power 

density reduction around the antenna over a sphere with the radius R (Ulaby 1989).  
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2.2.1.3 Range and Azimuth Resolution 

For interpretation of microwave imaging data, an understanding of parameters 

determining the resolution is fundamental since it is quite different compared to 

optical systems. The resolution of side looking radar systems (SLAR) can be 

distinguished into the directions parallel (azimuth or along track) and perpendicular 

(range or across track) to the flight path. The resolution in a SAR image is defined by 

the separability of adjacent objects in either azimuth or range direction (van Zyl 2011). 

The range resolution can be divided into slant range and ground range resolution and 

is in directly linked to the transmitted pulse length. The resolution for slant range Rsl is 

as follows (Klausing & Holpp 2000): 

��� = �∗�
�           (2.4) 

where τ is the duration of transmission and c is the speed of light and the denominator 

accounts for two-way travel time of the wave. According to equation 2.4, a shorter 

pulse length, which is a product of c and τ, implies a finer resolution in range. But 

coinciding with the reduction of the pulse length the total energy illuminating earth’s 

surface is diminishing, too.  

This requires a trade-off between resolution and strength of the signal. Compared to 

the constant slant range resolution Rsl from near to far range, the ground range 

resolution Rgr is variable across the range direction. To calculate ground range 

resolution Rgr, the denominator of equation 2.4 is amended by the sine of the look 

angle θ; i.e. ground range resolution improves with increasing slant range distance 

(Maitre 2013).  

� � = �∗�
�	�"#$          (2.5) 

As already stated earlier in this chapter, the limited azimuth resolution of RAR systems 

can be overcome by the synthetic lengthening of the real antenna. With the motion of 

the satellite along the orbit path, several echoes of a target are received at different 

positions of the synthetic aperture (Massonnet & Souyris 2008). During SAR 

processing, the different signals of a dedicated target are composed by using the 
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recorded Doppler frequency of each signal. The azimuth resolution A of a SAR system 

is defined as (Klausing & Holpp 2000):  

� = �
�           (2.6) 

where L is the antenna length. This means, that the azimuth resolution is constant and 

independent from sensor height and slant range distance. The shorter the real 

antenna, the longer the synthetic antenna and hence the better the azimuth resolution 

(Henderson & Lewis 1998).  

2.2.2 Properties of Imaging Radar 

2.2.2.1 Speckle 

Speckle is an unwanted and dominating noise that degrades SAR images interpretation 

capabilities. SAR is a coherent imaging technology, recording both the amplitude and 

the phase of the back-scattered radiation. Because of this, it suffers from a noise-like 

phenomenon known as speckle. Each resolution cell of the system contains many 

scatterers; the phases of the returned signals from these scatterers are randomly 

distributed and speckle is caused by the resulting interference. Based on this, the 

image has a grainy appearance. This imposes a significant limitation on the accuracy of 

the measurements that can be made: the brightness of a pixel is determined not only 

by properties of the scatterers in the resolution cell, but also by the phase 

relationships between the returns from those scatterers. In single-look images, the 

uncertainty is equal to the expected value (Klausing & Holpp 2000).  

To reduce this noise for automatic image processing and interpretation a lot of speckle 

filters were designed to enhance scene texture elements. Regarded physically, the 

speckle is based on constructive and destructive interference due to multiple 

scattering within a resolution cell. The pattern of the speckle appearance in the image 

is chaotic and not predictable. The total backscatter of each resolution cell of a 

distributed target is the coherent sum of these many individually reflected signals 

(Woodhouse 2006).  
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2.2.2.2 Image Geometry and Geometric Distortions 

As a basis for discussion of imaging geometry and distortion effects, the most 

important names and parameters characterizing a side looking SAR system are shown 

in Figure 2-4.  

 

Figure 2-4: Imaging geometry of side looking SAR (modified after Woodhouse 2006). 

θl is the look angle, θd is the depression angle and θi the incidence angle.  

Due to the side-looking geometry of spaceborne SAR systems, radar images show 

geometric distortions depending on the terrain such as foreshortening, layover and 

shadow. For flat areas these distortions are irrelevant and the link between slant and 

ground range can be described by equation 2.5. 

With the appearance of mountainous terrain within the illuminated area, the imaging 

geometry becomes more complex and results in the mentioned local distortions 

(Massonnet & Souyris 2008).  
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As the slant range distance between sensor and target is measured as a function of 

time, all targets with equal travel times are located on the same range circle around 

the satellite. Depending on the relief, different targets with varying ground range 

distances could have the same slant range distance. The effect of foreshortening 

means the shortening of distances of terrain slopes facing the sensor in the radar 

imagery. It can be observed in all cases if the local incidence angle is lower than 90°. 

Only if the local incidence angle is 90°, the imaged slope length is the same as the 

length of the real terrain, taking image scaling factor into account. The effect of 

foreshortening can be corrected by means of orthorectification which uses elevation 

information (Oliver & Quegan 2004).  

Layover in SAR images occur as an extreme case of foreshortening if the incidence 

angle is lower than the terrain slope facing the satellite. In this constellation, the top of 

a mountain has a shorter slant range distance than the bottom and is consequently 

recorded earlier which results in an inverse terrain geometry. As a third geometric 

ambiguity shadow areas can occur as a consequence of missing radar illumination of 

back-slopes due to occlusion by the terrain features. The relationship between 

incidence angle (θ), angle of the backslope (α) and occurrence of radar shadow (Sr) in 

the image can be described as follows:  

 

%�:	"�	�'� − $� < 	*        (2.7) 

 

In the case of steep terrain or dense urban areas with high buildings, all three types of 

distortions are related to each other and may mask one another (Oliver & Quegan 

2004).  

2.2.2.3 SAR Interaction with the Target 

The interaction of a SAR signal with a target on earth surface is affected by several 

factors. As the study is about agricultural monitoring, the main focus is set on the 

interaction with a vegetation canopy. In the following only the impact on target 

interaction is pronounced, due to the system parameters already described. Firstly, the 

system parameters affecting the surface interaction are addressed; subsequently the 
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scattering mechanisms that are influenced by the target characteristics are discussed 

in section 2.2.2.4.  

Important SAR system parameters which are determining target interaction are 

frequency, polarization and incidence angle (Oliver & Quegan 2004). Frequency is an 

important parameter, since interaction of wave and plant parts (leaves, branches, 

stems, etc.) is dependent on wavelength and size of the plant parts. With increasing 

wavelength, plant scatterers like branches and leaves become smaller in relation to 

wavelength, which reduces interaction with these targets (Soria-Ruiz et al. 2009) and 

the target becomes “smoother”. If scatterers are in the size of the wavelength, their 

contribution to total backscatter of a resolution cell could become significantly 

dependent on shape and orientation of the plant parts. In general, lower frequencies 

like L- and P-band are more suitable for subsurface monitoring since they penetrate 

deep through the vegetation and the soil component is emphasized in total 

backscatter. Higher frequencies like X-band are attenuated within the vegetation 

volume and the signal is mainly backscattered from the canopy. Penetration 

characteristics also depend on the dielectric properties, which in turn is a function of 

water content. Moisture content determines the dielectric constant of the vegetation. 

Assuming the same vegetation moisture content, the reflected energy from the target 

varies with different frequencies (van Zyl 2013).  

Also an important factor when discussion target interaction is the transmitted and 

received polarization, which determines the orientation of the electric field. The 

combination of transmit and receive polarization affect the target interaction and 

hence the energy scattered back to the sensor (Mott 2006). The orientation of the 

vegetation is important as vertically oriented plants attenuate vertically polarised 

waves to a higher degree than horizontally oriented waves do. Multi-polarization 

(dual-polarimetric, quad-polarimetric) provides additional information about the 

vegetation and can improve interpretation and analysis (Mott 2006).  

A third system parameter which is subject of the study is the incidence angle of the 

incoming illumination. Especially for the interaction of microwaves with an agricultural 

environment the relationship between geometry of crop features and SAR geometry is 

important. Depending on the viewing geometry of the SAR system different vegetation 
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layers or soil components are pronounced since the path length through the 

vegetation volume is varying. Steep incidence angles minimize the path length within 

the vegetation whereas also the attenuation is minimized. Attenuation is based on the 

extinction coefficient κe, which is a function of multiple scattering κs and absorption κa 

(Henderson & Lewis 1998): 

 

+, = +- + +�          (2.8) 

 

With increasing incidence angle, the path length within the vegetation increases and 

hence the multiple scattering diminishes. Such a viewing geometry pronounces canopy 

backscatter.  

2.2.2.4 Scattering Mechanism 

The understanding of the signal-target interaction (scattering mechanism) is essential 

for interpretation of environmental information extracted from the backscattering. In 

general, the scattering of the target can be divided into surface, double bounce and 

volume scattering (Henderson & Lewis 1998). In the case of surface scattering the 

radar wave is reflected from the surface.  

 

Figure 2-5: Backscatter as a function of surface roughness (after Woodhouse 2006).  
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One of the most important target characteristics affecting the backscattering 

coefficient is the surface roughness (Richards 2009).  

The magnitude of radar backscatter of a rough surface is strongly dependent on the 

degree of roughness, wavelength and partially on the look angle of the SAR system. To 

neglect system parameters, the influence of roughness on radar backscatter is shown 

in Figure 2-5. In case of a smooth surface (Figure 2-5a), the energy is reflected away 

from the illumination source in a specular reflection manner. The reflection angle is 

similar to the incidence angle of the incoming wave and the reflection can be labelled 

as coherent. An increase in roughness of the surface (Figure 2-5b) increases also the 

diffusivity of the backscattered energy and the behaviour is less predictable 

(Massonnet & Souyris 2008). The backscattered energy has a coherent and a scattered 

(diffuse) component. In the case of an isotropic or Lambertian surface, the influence of 

the incidence angle approaches zero and the energy is reflected more or less equal in 

all directions. As mentioned previously, the consideration of a surface roughness 

depends on wavelength and incidence angle. The approximations whether a surface is 

considered as rough are manifold. The “rule of thumb” defines the roughness by λ/10 

(λ is the wavelength). According to the rule of thumb, systems with higher frequencies 

are more sensitive to surface roughness. The Rayleigh criterion approximates the 

surface as a diffuse scatterer and relates wavelength and the local incidence angle for 

modelling the average height variations (Henderson & Lewis 1998). The surface is 

considered as rough if  

 

.�/� >
λ

1∗���$         (2.9) 

 

where hrms is the root mean square of the height variation, λ is the wavelength and θ is 

the local incidence angle (Woodhouse 2006). For the TerraSAR-X acquisitions in 2009 

(λ = 3.14 cm, θ = 39°, see chapter 3.2) of the Jiansanjiang test site (chapter 3.1.2) the 

surface appears rough in the SAR image if the average height variation of the surface is 

greater than 0.5 cm. Two smooth orthogonal surfaces act as a dihedral corner reflector 

if the surfaces are parallel to the flight direction and aligned to the illumination source. 
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This dihedral reflector permits a double bounce scattering with a strong backscatter 

return to the sensor. In the context of vegetation science and this study, a natural 

corner reflector is the water surface in combination with the vertical stems of the rice 

plants (Lopez-Sanchez et al. 2011).  

Surface scattering described above occurs only at the boundary surface of two media. 

If the underlying medium is inhomogeneous such as a vegetation canopy, i.e. consists 

of different materials and different dielectric properties, the transmitted wave may 

penetrate into the lower medium (van Zyl 2011). Inside this medium volume scattering 

occurs as the transmitted radar wave is reflected with multiple bounces by multiple 

components; i.e. it is a scattering in a three-dimensional space compared to a two 

dimensional space of the surface scattering. The multiple scattering inside the volume 

causes a loss or attenuation in energy of the transmitted wave, which is referred to as 

extinction. The extinction consists of scattering losses and conduction losses. 

Depending on system parameters such as frequency, polarization and incidence angle, 

as well as target parameters such as density and moisture content, the depth of 

penetration of the transmitted wave can vary greatly. The amount of energy crossing 

the border to the upper medium and scattered back to the sensor determines the 

increase or decrease of backscatter coefficient and hence image brightness (Oliver & 

Quegan 2004).  

Such as the surface roughness, the dielectric properties of the target influence 

brightness of the pixel in the SAR image. The dielectric properties affect the interaction 

of the electromagnetic wave with the target by influencing the absorption and 

propagation of the wave. The dielectric constant ε is highly dependent on the 

frequency of the SAR system and the moisture content of the illuminated target. The 

complex number ε can be subdivided into the real ε’ and imaginary part ε’’, whereas 

the real part is related to the permittivity of the medium and the imaginary part is 

related to the energy loss within the medium (Klausing & Holpp 2000). Metals and 

water have a very high dielectric constant compared to other natural dry materials. 

With increasing moisture content, the penetration depth of the electromagnetic wave 

into the medium (e.g. vegetation canopy) is reduced and hence the reflectivity is high. 
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But for a discontinuous vegetation canopy increasing permittivity also increases the 

volume scattering (Richards 2009).  

2.2.2.5 Polarization 

As polarization analysis is an important part of the study, polarimetric properties and 

analysis are discussed in more detail.  

Electromagnetic waves can be considered as transversal waves with three vector fields 

that are mutually orthogonal. The three vectors are the direction, the electric and the 

magnetic field. Electric and magnetic field oscillate perpendicular to the direction of 

the wave. The polarised component of the radiation is defined by the electric field, 

which can be linear, circular or elliptical. In the linear case, the oscillation is a straight 

line (Mott 2006). Since most common polarization schemes of space-borne SAR 

systems are linear, circular and elliptical polarization are not treated here. Linear 

polarised radar pulses are transmitted and received having either displacement in x-

direction or in y-direction perpendicular to the direction of propagation in z-direction. 

X- and y-direction are usually known as horizontally and vertically with reference to 

earth’s positional relationships. As SAR systems are active systems, microwave 

radiation is transmitted and received. The radar pulses are transmitted either 

horizontally (H) or vertically (V) polarised and received in the same manner in one of 

the both polarizations (van Zyl 2011). This allows the mixing of the linear polarizations 

to provide a quad polarization scheme (HH, HV, VH and VV). There are two like-

polarizations (HH and VV) where transmit and receive are filtered in the same plane 

and two cross-polarization (HV and VH) where transmit and receive are filtered 

perpendicular to each other. The linear polarization can be effectively represented in a 

scattering matrix (S), since the echoes are measured orthogonal (Richards 2009):  

% = 2%33 %34%43 %445         (2.10) 

Each of the elements in this matrix is a complex number which describes amplitude 

and phase of the transmitted and received signal. The scattering matrix describes the 

fully polarimetric case; a subset of this matrix would be partially polarimetric, such as 
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the dual polarimetric case of TerraSAR-X. For the cross polarization terms the radar 

principle of reciprocity can be invoked (SVH = SHV) (Maitre 2013).  

Based on the scattering matrix S of full the polarimetric data given in equation 2.10, a 

3x3 covariance matrix C can be derived which represents the scattering properties in 

the power domain. The covariance matrix is a vectorised version of the scattering 

matrix (Richards 2009):  

 

 

           (2.11) 

 

Where * denotes the conjugate of the matrix.  

The covariance matrix represents the correlation of the elements of the scattering 

matrix, i.e. they describe the degree of correlation of the co-polarised (HH and VV), like 

polarised (HH or VV) and cross-polarised (HV or VH) channels (Mott 2006). Based on 

the covariance matrix, the scattering mechanism of surfaces can be extracted with the 

help of polarimetric decomposition methods. Beside the covariance matrix, the 

elements of the scattering matrix S can be vectorized in a different way resulting in the 

coherency matrix (Richards 2009):  

 

 

 

 

           (2.12) 

where * denotes the conjugate of the matrix.  

The coherency matrix is closely related to the covariance matrix as it contains similar 

information but in a different expression. Same as in the covariance matrix, its 

eigenvalues are used in polarimetric decomposition and classification (Mott 2006).  

In the context of crop monitoring the characteristics of the horizontally and vertically 

polarised waves can be used for the retrieval of crop parameters. Depending on the 
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main orientation of the plants the HH and VV polarization interact in a different way; 

i.e. the coupling of the waves with the plant elements is more effective if they are 

aligned in the same direction. For a vertically oriented crop the interaction is much 

stronger at VV polarization, resulting in a stronger attenuation of the signal and a 

decreased backscatter (Mattia et al. 2003).  

2.2.2.6 Compact Polarimetric Data 

Compact polarimetric systems transmit a single polarization and receive two 

orthogonal polarizations. Compact polarimetric systems do not acquire the full 

polarimetric state of a target; however, such systems are attractive because of 

reduced pulse repetition frequency and data rate compared to fully polarimetric SAR 

systems (Reigber et al. 2008).  

Compared to full polarimetric data, in compact polarimetry only one channel (H or V) is 

transmitted and the two orthogonal polarizations (H and V) are coherently received 

preserving their relative phase. This relative phase is very important for the further 

processing of the compact polarimetric data, as the 2x2 covariance matrix can be 

extracted. The coherent co-polarised 2x2 covariance matrix can be written as:  

 

           (2.13) 

 

 

It can be seen, that the compact polarimetric case of the covariance matrix is a subset 

of the covariance matrix of the full polarimetric case (equation 2.11) and is therefore a 

subject to certain restrictions. However, it is a great advantage to conventional dual-

polarised radars such as Envisat, which do not contain the relative phase between the 

two receiving channels (Raney & Hopkins 2011).  

2.2.3 State of the Art SAR Crop Monitoring 

Retrieval of crop parameters by microwave remote sensing in a conventional manner 

is done by using one-dimensional data sets. Referring to the work of Lopez-Sanchez & 

Ballester-Berman (2009) it is evident that higher dimensionality SAR data is needed to 












= 2*

*2

2
VVVVHH

VVHHHH

SSS

SSS
C



Literature Review 

 

33 

 

describe the complex nature. For this purpose higher dimensionality can be achieved 

by acquiring multi-frequency, multi-polarization, multi-angle or multi-temporal data. 

Multi-dimensionality increases the number of data layers that can be used for relation 

to crop parameters (McNairn & Brisco 2004). 

2.2.3.1 Rice Crop Monitoring* 

As a cereal grain, rice is the most important staple food for a large part of the world. 

For this reason, monitoring its biophysical variables is valuable for agricultural 

management and yield prediction. In 2009, about 1.61 million km2 of the earth’s 

surface was used for rice cultivation with a global production estimated at 679 million 

tons (FAOSTAT 2013). Beside its function as source of food, it is also important as a 

source of income. As population increases in most of the Asian countries, there is a 

great demand for effective rice monitoring with high reliability (IRRI 2011).  

Information extracted from remotely sensed data can assist in estimating key plant 

growth parameters such as biomass, crop height and leaf area index (LAI). In                                                                                                                             

the past, optical satellite data have been successfully used for rice plant parameter 

estimation (Tennakoon et al. 1992). For mapping rice cultivation in Asia, time series of 

vegetation indices (e.g., NDVI) derived from different sensors such as MODIS (Peng et 

al. 2011) were applied. However, operational crop monitoring and yield prediction 

based on optical remote sensing is hindered by unfavourable atmospheric conditions, 

which can lead to data gaps especially during critical growth stages.  

As compared to optical sensors, spaceborne Synthetic Aperture Radar (SAR) 

instruments can overcome inherent limitations of optical systems owing to its all-

weather, day and night acquisition capabilities. This allows a more reliable and 

consistent rice monitoring during the growing season. Especially short wavelength SAR 

(X- and C-band) interacts with the upper part of the crop canopy, thus offering the 

potential to retrieve crop biophysical parameters (Ulaby et al. 1984). Compared to this, 

longer wavelength (L-band) provides a deeper penetration into the vegetation and 

hence a higher sensitivity to overall plant biomass (Brisco & Brown 1998). To benefit 

                                                      

* This section is an extended version of the article: Koppe et al. (2013). 
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from both optical and SAR data, there are investigations that use complementary 

information from both systems, e.g., for crop type mapping (Blaes et al. 2005) or crop 

condition estimation (Koppe et al. 2010a).  

A considerable number of research projects have been set up to investigate the 

capability of microwave data for agricultural monitoring since the first SAR satellites 

have been available for scientific and commercial use. Across all frequencies and crop 

types, the following aspects have been addressed:  

• soil moisture retrieval (Gherboudj et al. 2011, Koyama et al. 2010) 

• SAR backscatter analysis as a function of crop biophysical parameters and their 

temporal change (Bouvet et al. 2009, Shao et al. 2001) 

• theoretical modelling of backscatter to support interpretation of the 

observations (Chen et al. 2005) 

• development of methods for crop type mapping (Ribbes & Le Toan 1999a, 

Zhang et al. 2009) 

• crop parameter estimation (Karjalainen et al. 2008, Jinsong et al. 2007) 

• integration of SAR data in crop growth model for yield estimation (Shen et al. 

2009, Ribbes & Le Toan 1999b) 

Results of the mentioned studies confirm that microwave backscatter is highly 

sensitive to different crop types and to changes in the crop canopy due to increasing 

biomass during the growing cycle. The degree of sensitivity is strongly dependent on 

the applied polarizations, as identified by quadpol analysis (Wu et al. 2011). Despite 

good results in crop monitoring, it has to be considered that the recorded SAR 

backscatter from a vegetated surface is a function of several physical properties. These 

are crop type, surface roughness, soil moisture, vegetation structure and plant 

moisture content as well as sensor configuration (e.g., frequency, polarization and 

incidence angle). Furthermore, the different cultivation practices are important for rice 

monitoring. Lam-Dao et al. (2009) reported various backscatter behaviours for direct 

sowing of rice into wet soil in comparison to traditional transplanting techniques. 

Besides parameter estimation based on direct inversion from the recorded signal or 
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integrating SAR into growth modelling, there also have been promising results by using 

repeat-pass SAR interferometric coherence with one day offset for vegetation biomass 

estimation (Blaes & Defourny 2003). Reasonable results have been already achieved 

using Polarimetric SAR Interferometry (POLInSAR) for rice biophysical parameter 

retrieval with indoor wide-band polarimetric measurements (Ballester-Berman et al. 

2005). In the near future, Polarimetric SAR Interferometry for crop monitoring with 

single pass will be demonstrated by the TanDEM-X mission (Hajnsek et al. 2010).  

The scattering process and penetration depth into the canopy is highly dependent on 

the wavelength and the incidence angle (Lim et al. 2007). Inoue et al. (2002) identified 

typical multi-temporal backscatter signatures of rice for frequencies at around 35, 15, 

10, 5 and 1 GHz and at different incidence angles. In terms of electromagnetic 

interaction between microwaves and canopy, the received radar backscatter is a sum 

of three main components, including volume scattering, the double bounce scattering 

from the vegetation–surface interaction and the contribution from the surface itself. 

At the X-band, experiments conducted by Kim et al. (2000) using ground-mounted 

scatterometer data have demonstrated that the co-polarised backscatter from a paddy 

rice field at the beginning of the growing season is dominated by double bounce 

scattering from the stem–surface (water) interaction. With increasing plant density, 

the double bounce scattering is replaced by a random scattering from the upper 

canopy. Inoue et al. (2002) mentioned a typical dual-peak trend for higher frequencies; 

the first peak at the maximum of double bounce scattering and the second peak with 

appearance of the top leaf and the heads in top layer of the canopy.  

For rice crops, the temporal backscattering behaviour has been extensively reported 

and understood in a number of studies based on spaceborne C-band data mentioned 

above. Comparatively to C-band data, much less effort has been put on the use of 

spaceborne X-band data in rice application. This is mainly due to lack of spaceborne X-

band systems in the last decades. With the launch of TerraSAR-X and Cosmo Skymed in 

2007, X-band data gained interest for rice monitoring. Lopez-Sanchez et al. (2010) 

adapted an electromagnetic model to simulate X-band backscatter from rice field. It 

was used for interpretation of dual-polarised TerraSAR-X images over rice fields in 
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Spain. Suga & Konoshi (2008) investigated the temporal change of SAR backscatter 

during the rice growing cycle.  

2.2.3.2 Winter Wheat Crop Monitoring* 

China cereal acreage and production is one of the most important in the world, with a 

crop area of about 88 million ha and production estimated at 483 million tonnes in 

2009, accounting for ca. 22% of total global production (Fao 2013). The North China 

Plain is one of the most important cereal production regions in China, accounting for 

almost 50% of China's winter wheat cultivation (National Bureau of Statistics of China, 

2010). In agricultural issues, timely monitoring of crop growth status at an early stage 

is important for in-season site specific crop management, detection of plant vitality as 

well as assessment of seasonal production at local and regional level (Miao et al. 2009, 

Laudien & Bareth 2006).  

Since the amount of energy backscattered towards the sensor strongly depends on 

dielectric properties and surface roughness, it is reasonable that SAR can be used for 

crop type classification, growth stage mapping and crop condition monitoring 

(McNairn & Brisco 2004). For different applications, knowledge of the interaction of 

the surface characteristics with sensor configurations such as resolution, frequency, 

incidence angle and polarization is of importance (Inoue et al. 2002). For C-Band SAR 

measurements, many studies dealt successfully with prediction of crop and soil 

parameters such as biomass, crop height and soil moisture (Brisco & Brown 1998), but 

the interpretation of the SAR backscatter has proven to be complicated.  

In the past, quite a few experiments have been performed on wheat fields, either 

based on spaceborne SAR sensors or on ground-based scatterometers. Satalino et al. 

(2009) and Brown et al. (2003) acquired C-band spaceborne and scatterometer data 

over wheat fields and found that wheat biomass is strongly related to HH/VV 

backscatter during the whole growing season. The good performance of the HH/VV 

ratio is due to the differently attenuated vertically and horizontally polarised waves 

that propagate through a mainly vertical medium of wheat (Picard et al. 2003). 

                                                      

* This section is a modified version of the article: Koppe et al. (2012). 
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McNairn et al. (2004) differentiated zones of productivity of wheat fields also using 

scatterometer data. They reasoned that zones of higher productivity had higher 

backscatter for linear polarizations, with the greatest contrast for HV.  

There are also many investigations on wheat’s crop parameter retrieval and crop 

classification based on spaceborne C-band sensors (Baghdadi et al. 2010, Mattia et al. 

2003). The results from these studies showed that the backscattering of crops is a 

complex combination of acquisition parameters (polarization, incidence angle) as well 

as crop and cultivation characteristics (crop geometry, density, canopy and soil 

moisture). The combination of these parameters controls the interaction of the 

incoming electromagnetic wave with the crop canopy and the underlying soil layer.  

Because the backscatter is a function of SAR and crop related physical properties, the 

crop parameter estimation is an inversion of the recorded signal with many unknown 

parameters. Under consideration of these specifics of interaction, crop parameters 

related to crop growth could be reproduced by SAR backscatter, such as crop height 

(Chakraborty 2005), standing biomass (Liu et al. 2006) and LAI (Lin et al. 2009).  

2.3 Synergism of Optical and SAR* 

Optical remote sensing systems detect solar radiation from the visible and infrared 

part of the electromagnetic spectrum, which is reflected from different targets on the 

earth surface. Earth surface elements such as natural and manmade objects have 

variable reflections and absorptions properties. These object properties generate 

various spectral signatures captured by the optical instrument, which can be used for 

object differentiation or surface parameter retrieval. The spectral resolution is 

depending on the bandwidth and the number of spectral bands used. In contrast to 

optical systems, SAR is an active system that operates beyond the infrared part of the 

electromagnetic spectrum in the microwave region. Active illumination of earth 

surface allows data acquisition at day and night time and the longer wavelength 

permits data acquisition independently from cloud cover. The longer wavelength of 

                                                      

* This section is an extended version of the article: Koppe et al. (2012). 
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SAR systems also permits the penetration of the waves into the target such as 

vegetation canopy or soil (McNairn et al. 2009).  

Optical remote sensing is widely used for operational crop type identification and 

estimation of growth conditions. In contrast to this, microwave remote sensing is 

sensitive to dielectric properties and structure. SAR can provide complementary 

information since its wave interaction occurs with different elements, characteristics 

and layers of the vegetation stand compared to VIS and IR waves. As a summary of 

hyperspectral and microwave crop monitoring, Table 2-1 reviews characteristics of 

vegetation influencing spectral reflectance in the VIS – NIR and backscatter in the 

microwave domain.  

 

Table 2-1: Crop characteristics which influence remote sensing in the VIS – NIR and in 

the microwave domain (Kühbauch & Hawlitschka 2003). 

VIS / IR 

(ʎ, ɵ, ɸ) 

SAR 

(ʎ, ɵ, ɸ, ρ) 

Pigment composition Volume (height) 

Pigment concentration Vertical and horizontal elements  

Turgidity Size, form and orientation 

Cell structure  

Senescence Distribution of fresh and dry biomass 

Phenology Phenology 

Leaf areas index Row direction 

Soil pigmentation Soil roughness 

Soil moisture Soil moisture 

 

To move towards an operational crop monitoring approach, it is necessary to mitigate 

the risk associated with reliance on a single source. To meet these requirements and to 

improve crop parameter estimation and discrimination, methodologies that integrate 

optical as well as SAR data were developed (Brisco & Brown 1995). McNairn et al. 2009 

performed crop inventories based on multitemporal and multisensoral satellite data 

with classification improvements of 3 to 18% when adding SAR data to single optical 

data. Also for classification purposes, Blaes et al. (2005) reported an improvement of 

crop discrimination of at least 5% when combining C-band SAR images (ERS, Radarsat) 

with optical images (Spot). Using Envisat ASAR and Landsat TM multispectral images, 



Literature Review 

 

39 

 

Liu et al. (2006) achieved a significant improvement for yield estimation by combining 

both sources in the prediction model. Compared to the purely regression approach, 

Prévot et al. (2003) used microwave and optical data for simultaneous assimilation into 

crop growth models. The conclusion of this approach was that there was no significant 

improvement by using multi-source data compared to using only optical data.  

The synergistic use of different sources was also successfully performed for the 

integration of hyperspectral optical data with SAR data, mainly for the enhancement of 

land cover classification based on an image fusion approach at the pixel level (Chen et 

al. 2003, Chang et al. 2004) and at the feature level (Held et al. 2003).  
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3 METHODS AND USED DATA 

The following chapter describes the test sites, the ground truth data, the acquired 

satellite imagery and the data processing. In the first section, the preconditions of the 

study areas Huimin County and Jiansanjiang will be introduced and the sampling 

design as well as the ground truth data will be described in detail. In the subsequent 

section the acquired remote sensing data and their processing steps are described.  

As a generic overview, Figure 3-1 shows the used remote sensing data and the 

processing steps carried out. The flow chart can be divided into the processing chains 

for monitoring winter wheat (Huimin test site) and the one for rice monitoring 

(Jiansanjiang test site). The used satellite data for Huimin test site are EO-1 Hyperion / 

ALI and Envisat ASAR. Additionally to satellite data, fieldspectrometer were acquired 

simultaneously with satellite overflight for calibration of Hyperion spectra. All remotely 

sensed data were pre-processed, which includes sensor specific calibration and 

georeferencing. For satellite optical data, standard broad-band vegetation indices were 

calculated and compared to narrow-band hyperspectral vegetation indices. Envisat 

ASAR and vegetation indices derived from Hyperion and ALI (2006) were bivariate 

related to ground truth measurement to establish prediction models for crop 

parameter estimation. Furthermore, Envisat ASAR and Hyperion (2006) were 

combined for multivariate regression analysis. For validation purpose, Hyperion 

bivariate regression model established in 2006 was applied to Hyperion acquisitions of 

2007. Compared to the winter wheat monitoring, the rice monitoring is only based on 

X-band SAR data. The TerraSAR-X dual polarimetric data were pre-processed and the 

backscatter signatures plus polarimetric parameters were derived. The parameters 

derived from dual polarimetric X-band data were used for interpretation of physical 

backscatter of paddy rice fields. All data processing is aimed to improve the 

understanding of crop reflection behaviour in different parts of the electromagnetic 

spectrum and to support crop monitoring on a regional scale.  

Major parts of the processing and results are published in three different papers: 

Koppe et al. (2010a), Koppe et al. (2012), and Koppe et al. (2013). 
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3.1 Ground Truth 

In the following section, the two test sites and the collected ground truth information 

will be described in detail. The Huimin test site, located in the North China Plain, is a 

large wheat cultivation area and well suited for monitoring of winter wheat on a 

regional scale. The second test site, Jiansanjiang in the Northeast of China, is widely 

covered by paddy rice fields and was therefore ideal for monitoring rice by spaceborne 

remote sensing. In both test areas, experimental stations are operated and supervised 

by the China Agricultural University. The Huimin test site is chosen for hyperspectral 

and SAR observation, in the Jiansanjiang the focus is on high resolution SAR data.  

3.1.1 Huimin County Test Site* 

The research was conducted in the North China Plain during the winter wheat growing 

season of 2005/2006 and 2006/2007. The test fields were located in Huimin County 

(37.3° North, 117.4° East), Shandong Province. Figure 3-2 shows the test site of Huimin 

County in the Shandong province. In the lower left of the figure, the study fields of 

different levels (L1 to L4) are overlaid over EO-1 Hyperion, acquired in 2007.  

This area is characterized by a continental climate with precipitation maxima between 

June and September, typical for the warm-temperature sub-humid continental 

monsoon climate. The average temperature is 12.3 °C and annual average 

precipitation sums up to 580 mm, whereas more than 60% of the yearly precipitation 

occurs in June, July and August (Ju et al. 2006) out of the winter wheat growing season. 

Due to the less rain fall in the growing season, farmers have to irrigate their fields. The 

dominant crop rotation, up to 66% of the cultivated area, is winter wheat followed by 

maize enabling two harvests per year (Li et al. 2008). Huimin County was chosen 

because of the existence of long term field experiments managed by the Department 

of Plant Nutrition (CAU) and the opportunity of collecting ground truth data from 

selected fields.  

 

                                                      

* This section and sub-sections are an extended version of the articles: Koppe et al. (2010a); Koppe et al. 
(2012). 
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Figure 3-2: Test sites in Huimin County (Gnyp et al. 2013). 

3.1.1.1 Experimental Design  

The experimental design in Huimin included fields of different size, small experimental 

fields (level 1), large experimental fields (level 2), small farming fields (level 3) and 

large farming fields (level 4). The design is aimed to model biomass based on crop 

canopy reflectance with a multi-scale approach (Gnyp et al. 2013). For relating crop 

parameters with satellite based hyperspectral remote sensing on a regional scale, 

fields with a size between 2.5 to 4 ha were selected in the four different villages (level 

4). The fields are located in the villages of Xili, Xujia, Dongjie and Shizhang in Huimin 

County (see Figure 3-3). All fields were managed by the farmers according to their 

common practices in terms of the varieties of winter wheat and the amount of 

N-fertilization. Each field consisted of various plots; being on average 10 m wide and 

100-250 m long. A summary of the soil chemical properties and soil conditions of the 

farming fields in 2006 is given in Table 3-1. For the selected fields, the cultivated types 

of winter wheat were Jimai20, Jimai21, Weimai8, Lumai23 and Zimai12 which were 

sown from September to October in each growing season (2005/2006 and 2006/2007) 

and were harvested between early June and mid of June in the following year.  
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Figure 3-3: Farming fields in Huimin County.  

 

Table 3-1: Soil chemical properties of the farming fields in 2006 (Li et al. 2008). 

Village Chemical property Mean Min Max STD 

Shizhang Total N (g/kg) 0.74 0.6 0.86 0.09 
Olsen-P (mg/kg) 27.7 14.8 48.1 13.1 

Exchangeable-K (mg/kg) 96.0 78.6 110.4 9.5 
Organic matter (g/kg) 11.8 9.5 14.4 1.7 

      
Xili Total N (g/kg) 0.89 0.72 1.03 0.08 

Olsen-P (mg/kg) 22.2 11.3 45.6 11.1 
Exchangeable-K (mg/kg) 123.4 86.6 166.1 23.3 

Organic matter (g/kg) 13.7 11.2 15.9 1.4 
      

Xujia Total N (g/kg) 1.0 0.79 1.32 0.11 
Olsen-P (mg/kg) 31.0 11.9 53.9 13.8 

Exchangeable-K (mg/kg) 146.6 86.2 222.0 29.4 
Organic matter (g/kg) 14.7 10.2 18.5 1.5 

      
Dongjie Total N (g/kg) 1.01 0.83 1.18 0.11 

Olsen-P (mg/kg) 45.4 32.9 56.6 8.0 
Exchangeable-K (mg/kg) 116.2 65.6 172.6 42.2 

Organic matter (g/kg) 15.1 11.5 17.9 2.1 

3.1.1.2 Field Measurements 

Spectral reflectance and agronomic parameter measurements were taken throughout 

the growing period of winter wheat from March to June in 2006 and 2007. The 
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measurements were carried out on a regular basis and were synchronized with the 

satellite overpass of EO-1 and Envisat.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4: Farming fields in Huimin County with measurement points.  

Five of the six measured fields are shown in Figure 3-4. In average 63 selected sample 

points were sampled at the fields (around 20 per field) at the different ground truth 

acquisition days (Table 4-1) to account for spatial variability. At these points, spectral 

reflectance, plant height and destructive biomass measurements were performed. To 

transfer point measurements to surface data, a continuous surface from the set of 

points was created by inverse distance weighting method. Taking the different image 

characteristics of EO-1 Hyperion and Envisat ASAR into account, the fields were 

prepared in a different way. For EO-1 Hyperion, regression analysis was performed on 

a pixel basis. After excluding mixed pixel on the field borders, 57 pixel in 2006 and 54 

pixel in 2007 remained for further analysis. For Envisat ASAR data, the farming fields 

were separated into homogenous parcels to overcome speckle effect. 

The canopy spectral reflectance measurements were obtained using high resolution 

spectrometers from Analytical Spectral Devices Inc. (ASD 1999). In 2006, a Handheld 

Fieldspec (range 325 nm to 1075 nm) was used and in 2007, a QualitySpec (range 

350 nm to 1800 nm). The HandHeld Fieldspec device measures the visible (VIS) and 

near infrared (NIR) spectrum with 512 channels in the 325–1075 nm wavelength 
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domain. The Quality Spec measures reflectance values in 1451 channels with silicon 

photo diodes in the range between 350 to 1000 nm and with TE-cooled photo-diodes 

in the range between 1000 to 1800 nm. Reflectance values of both instruments are 

calculated by calibration with a barium sulphate (BaSO4) white reference panel and a 

dark current measure (ASD 1999). These calibration measurements were repeated in 

regular intervals during the field measurement to respond to changes in solar 

illumination. To maintain consistent solar illumination conditions, measurements were 

taken between 10 am and 2 pm under mostly cloudless weather conditions. For 

measurement at the field scale, the ASD Handheld sensors were mounted on a tripod 

boom permitting a nadir acquisition 1 m above the canopy (see Figure 3-5). Based on 

this geometric constellation the acquisition radius r and the acquisition area A can be 

calculated as follows:  

 

� = . ∗ 678 �*��         (3.1) 

 

� = � ∗ ��          (3.2) 

 

where h is the height above the canopy and α the field of view. For a default fore optic 

with a field of view of 25° and height above the canopy of 1 m, the acquisition radius is 

around 22 cm and the acquisition area around 0.15 m2. Spectral measurements were 

repeated three times on different locations per each plot and averaged as one 

representative spectrum of this plot. This random sampling strategy within one plot 

takes account for varying conditions concerning plant density and plant orientation. 

During the post-processing of the acquired reflectance spectra, the values were 

interpolated to intervals of 1 nm by using the RS3 spectral processing software 

(Analytical Spectral Devices). Due to water absorption noise within the 

electromagnetic spectrum (leaf water absorption), the data ranges between 1346 nm 

to 1436 nm and 1800 nm to 1981 nm were excluded from further processing (this 

applies to ASD QualitySpec and EO-1 Hyperion). In the context of this research, the in-

situ spectral measurements were used for calibrating satellite reflectance data. 
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Table 3-2: Sensor specifications of ASD Field Spec and Quality Spec (Analytical 

Spectral Devices 1999). 

Parameter ASD Field Spec® ASD Quality Spec® 

sensor type passive passive 

spectral range 325 – 1075 nm 350 – 1800 nm 

spectral bands 512 1450 

spectral sampling interval 1.4 nm 1.4 nm (VNIR), 2.4 (SWIR) 

FOV 8°, 18°, 25° 8°, 18°, 25° 

detectors Silicon (VNIR)  
Silicon (VNIR)  

TE cooled (SWIR) 

 

 

Figure 3-5: Arrangement of canopy spectral reflectance measurements with ASD 

Handheld and QualitySpec (modified after Laudien 2007).  

After field canopy spectral data collection, crop samples were collected for 

aboveground biomass and plant nitrogen concentration determination on four dates in 

2006: April 19, April 28, May 12, and May 30, with the corresponding growth stages 

from shooting to ripening stage. The measurements on April 19 and May 30 matched 

EO-1 satellite image collection very well; however, no ground measurements could 

match the EO-1 data acquisition on May 6. Therefore, agronomic measurements on 

April 28 and May 12 had to be interpolated to coincide with EO-1 acquisition on May 6. 
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Figure 3-6: Canopy spectral reflectance measurements at April 7, 2006 (Photo Martin 

Gnyp 2006). 

In 2007, ground truth information was collected on three dates: April 11, April 21 and 

May 6. Aboveground biomass was destructively collected by cutting the vegetation on 

ground level within an area of 100 cm by 30 cm at the first date, 50 cm by 50 cm at 

second, and 30 cm by 30 cm on the last. The reduction of sample area was necessary 

to account for increasing biomass during the growing season. Contemporaneously with 

biomass collection, the plant height was measured non-destructively with a yardstick. 

The samples were weighed in order to obtain the plant water content (PWC) and the 

fresh biomass. Then the samples were dried at 70°C to constant weight to get the dry 

biomass. The measured biomass values were scaled to kilogram per square meter to 

achieve comparability with other measurements. The measured biomass values were 

averages over one plot and the standard deviation was calculated in order to make a 

statement about the homogeneity of the plot. Plant nitrogen concentration was 

determined for the 2006 samples by the Kjeldahl digestion method (Bremner 1960). 

Around 39 to 45 measurements per field were sampled. 

Parameters such as seed date, harvest date, plant density, crop rotation, row direction 

and spacing, plant species and others were obtained from the local farmers or 

collected in the field during the vegetation period.  
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3.1.2 Jiansanjiang Test Site* 

The study area is the Qixing farm, which is located in the Sanjiang Plain in North-

Eastern China (47.2 N°, 132.8° E), at the downstream area of the Songhua River 

(Songhua Jiang). The area is approximately 60 km south of the Amur River 

(Heilongjiang) and 450 km west of the Pacific Ocean in the Northeast of Heilongjiang 

Province. The climate of this area is temperate sub-humid, with a mean annual 

precipitation of 500-650 mm; rainfall mainly occurs from July to September during the 

growing season of rice. Its topography is rather flat with an average elevation of 

around 60 m and is characterized by broad alluvial plains and low terraces formed by 

the three rivers (Heilong, Songhua, and Wusuli). The Sanjiang Plain is a major 

agricultural area of Heilongjiang Province. Cultivated land covers more than 50% of the 

area, where the most important crops are soybean, rice, and corn (Ganzey 2005).  

 

Figure 3-7: Test sites in Jiansanjiang (Gnyp et al. 2013).  

The total agricultural area of Qixing farm is 51000 ha whereas 46000 ha are paddy rice. 

In Figure 3-7, the location of the Qixing farm and area around is shown. The dark 

                                                      

* This section and sub-section are an extended version of the article: Koppe et al. (2013). 
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patches are mainly rice cultivation; the brighter ones belong to other types of land use 

classes (Figure 3-7 bottom left). 

3.1.2.1 Experimental Design  

At Qixing farm, small rice fields (plots) of sizes between 100 to 6000 m² are grouped to 

larger fields. Every plot was bordered by 30-50 cm narrow and 30-50 cm high field 

banks which kept the water. The experimental design of the field experiments included 

553 plots distributed over farmers' fields. Four of the fields (367 plots) are located 

within the HS footprint, whereas two fields were used for biomass measurements (see 

Figure 3-8). For 60 plots of the 367 plots, biomass was measured in regular intervals. 

For 24 other plots among the 367 plots (small experimental plots, approximately 0.02 

ha), biomass was sampled in more detail. 
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Figure 3-8: Experimental design of the Jiansanjiang test site. 

The biomass samples of the 24 experimental plots were separated into stems, leaves 

and heads. 20 of these experimental plots are located within the High Resolution 

SpotLight images; four more fields are within the footprint of the SM scenes. To 

generate greater heterogeneity in growth rate and standing biomass, the plots were 

treated with three to four replications of different N rates: N0 with 0, N0.8 with 54-94, 

N1.2 with 81-141 kg/ha, and chemical control with 67-118 kg/ha. The dynamic N rates 
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were dependent on the different farmers and the management strategy of China 

Agricultural University. This experimental design induces a higher inter-field variability 

(see dynamic range of total biomass in Table 4-2). For this contribution, the field 

campaign of 2009 lasted for about five months, starting at the tillering stage, and 

ending with the harvest of the rice crop about DAT 135 (day after transplanting). As 

normal for rice cultivation in the Sanjiang Plain, the paddy fields were flooded before 

transplantation of the seedlings mid to end of May. Sets of three to five seedlings were 

planted to one hill, with a hill spacing of about 12 cm and a row distance about 35 cm, 

resulting in a planting density of 120 to 150 seedlings per m².  

 

Figure 3-9: Small plots within larger rice fields (Photo Martin Gnyp 2009). 

 

During the vegetation period, the rice total biomass increased steadily at vegetative 

and reproductive stages and reached the maximum value of about 15 t/ha before 

harvest. The heading date, when 50% of the heads were totally emerged, was around 

DAT 70.  

 

3.1.2.2 Field Measurements  

Agronomic and biophysical data of the crop such as plant height, tiller density and 

biomass were measured at regular intervals during the field campaign by destructive 
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and non-destructive sampling methods. Plant height was measured with a yardstick 

close to rice plants from water surface (later in the growing season from the soil 

surface) to the top of the canopy. More parameters such as leaf age and tiller number 

were also measured non-destructively. To achieve a representative height for every 

plot, several measurements were taken and averaged for every plot. For this, at each 

plot 20 hills in a row were selected and marked to be sure to measure the same plants. 

Aboveground biomass was collected by clipping three to five hills of representative 

vegetation at tillering, panicle elongation, booting, before heading and at heading 

stage. Five hills were used at early stages (tillering to panicle elongation) and three hills 

at later stages (from booting to heading) due to high biomass amount. The cut plants 

were separated into stems, leaves and heads, oven dried at 105°C for half an hour to 

stop the biophysical processes, then oven dried at 70° to constant mass and weighed.  

As for the Huimin test site, the measured biomass values were scaled to kilogram per 

square meter to achieve comparability with other measurements. The measured 

biomass values were averages over one plot and the standard deviation was calculated 

in order to analyse the homogeneity of the plot.  

Leaf area index (LAI) is an important canopy parameter which is defined by “one half 

the total green leaf area per unit ground surface area” (Watson 1947). It is expressed 

in area of leaf (m²) per area of ground surface (m²). LAI was estimated from 

destructively sampled leaves. For this, 3 cm were cut from 20 randomly selected leaves 

for each plot. 

Parameters such as seed date, harvest date, plant density, row direction and spacing, 

plant species and others were obtained from the local farmers or collected once in the 

field during the vegetation period.  

3.2 Satellite Data Acquisitions, Processing and Analysis 

Remote sensing at different frequencies is a powerful method for gathering 

information about the vegetation. Satellite data were acquired for the test sites 

Huimin County in the years 2006 and 2007 and for the Jiansanjiang test area in 2009 

and 2011. For Huimin County multispectral (EO-1 ALI) and hyperspectral (EO-1 

Hyperion) satellite imagery as well as SAR data (Envisat ASAR) were gathered. For the 
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Jiansanjiang test site dual polarimetric TerraSAR-X in High Resolution SpotLight, 

SpotLight and, StripMap mode were acquired. In Table 3-3 acquired satellite data and 

specification are listed for the two areas.  

 

Table 3-3: Acquired satellite data for the test sites Huimin and Jiansanjiang (modified 

after Koppe et al. 2012 and Koppe et al. 2013). 

Test 

site 
Satellite Year Mode Date DAT Growth stage 

Path    

direction 
Pol. 

Local inc. 

angle (°) 

H
u

im
in

 

Envisat 

ASAR 
2006 

IS5 March 25  tillering ASC 

VV 

39 

IS6 April 13  jointing ASC 42 

IS6 April 29  booting ASC 39 

IS6 May 10  heading DSC 40 

IS6 June 3  ripening ASC 39 

EO-1     

Hyperion 

2006 

 April 19  jointing 
 

 
 

 May 6  heading 
 

 
 

 May 31  ripening 
 

 
 

2007 

 April 11  jointing 
 

 
 

 April 21  booting 
 

 
 

 May 6  heading 
 

 
 

Ji
a

n
sa

n
ji

a
n

g
 

TerraSAR-X 

2009 

HS 

June 24 35 tillering 

ASC HH/VV 39 

July 5 46 stem elong. 

July 16 57 booting 

July 27 68 heading 

Aug 7 79 flowering 

Aug 29 101 ripening 

SM 

June 26 37 tillering 

DESC VV 36 

July 7 48 stem elong. 

July 18 59 booting 

July 29 70 heading 

Aug 9 81 flowering 

2011 SL 

June 15 29 tillering 

ASC HH/VV 26 

June 26 40 stem elong. 

July 7 51 booting 

July 18 62 heading 

Aug 9 84 flowering 

Aug 31 106 ripening 

June 17 31 tillering 

DESC HH/VV 46 
June 28 42 stem elong. 

July 9 53 booting 

July 20 64 heading 
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3.2.1 EO-1 Hyperion and ALI* 

During the 2006 field campaign, three Hyperion and ALI images were acquired: on April 

19, May 6 and May 31. In the subsequent vegetation period 2007, again three 

acquisitions of Hyperion and ALI were taken on April 11, April 21, and May 6. The 

optical sensors Hyperion and ALI are mounted on the Earth Observing One (EO-1) 

Satellite that follows the World Reference System-2 (WRS-2) with a 16 day repeat cycle 

for nadir mode. Both sensors are push broom imaging spectrometers that are capable 

of cross-track pointing (Earth Observation-1, 2003). The multispectral Advanced Land 

Imager (ALI) acquires information in nine discrete bands with a spatial resolution of 30 

m. An additional panchromatic channel has a resolution of 10 m. The Hyperion 

hyperspectral sensor collects continuous data with a VNIR and a SWIR spectrometer in 

the 400-2400 nm wavelength domain. Each frame taken captures images in a 7.7 km 

wide and 42 km (resp. 185 km) long area. Similar to the multispectral ALI, Hyperion 

provides also a spatial resolution of 30 m. EO-1 Hyperion images are radiometric 

calibrated (Level 1R) and delivered in 16-bit radiance data (Pearlman et al. 2003).  

 

Table 3-4: Technical specification of EO-1 Hyperion and ALI.  

 Hyperion ALI 

Start November 21, 2000 

Orbit Sun-synchronous, 705 km 

Inclination 98.2° 

Spectral range 
242 spectral bands  

(400-2500 nm) 

1 Pan, 9 Multi-spectral bands 

(400-2500 nm) 

Spectral resolution 10 nm variable 

Spectral coverage  continuous discrete 

Spatial resolution 30 m Pan: 10 m, Multi-spectral: 30 m 

Repetition rate 16 days 

footprint 7.6 x 100 km 36 x 185 km 

 

                                                      

* This section and sub-sections are an extended version of the articles: Koppe et al. (2010a); Koppe et al. 
(2012). 
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The processing of EO-1 Hyperion consists of a pre-processing chain to prepare the raw 

hyperspectral data and a subsequent calculation of vegetation indices. Figure 3-10 

depicts the main processing steps of the EO-1 Hyperion processing chain. The 

components are explained in detail hereinafter. 

3.2.1.1 EO-1 Hyperion and ALI Processing 

Satellite image pre-processing of Hyperion and ALI data included (a) a correction for 

sensor artifacts, (b) an atmospheric correction as well as (c) a geometric correction. 

The performed pre-processing steps (Lillesand et al. 2008, Khurshid et al. 2006) were 

aimed to improve the quality of the images for multi-temporal data analysis.  

 

Figure 3-10: Pre-processing steps of EO-1 Hyperion data. 

For correction of sensor artifacts, uncalibrated and corrupted Hyperion bands were 

eliminated by applying the Flag-Mask that was delivered with the data product. A Flag-

Mask indicates detectors which are unresponsive and unreliable (USGS 2007). 158 of 

the original 242 bands had remained for subsequent destriping (described in Datt et al. 

2003). During the destriping process, periodic along track stripes in image data caused 

by detector errors, were removed. Since some of the bands were not repairable, 

another 17 bands had to be excluded. The destriping and exclusion of image channels 

was performed with ENVI software (ITT 2011). For some application using single 

satellite observations, it is of no importance to atmospherically correct image data 

(Schowengerdt 2007). However, in the present work, the focus was set on multi-

temporal analysis as well as on matching image data to canopy spectral reflectance 

that was measured using a portable spectroradiometer (Fieldspec® Pro by ASD). The 

measured at-sensor radiance L of Hyperion and ALI data consists of reflectance from 
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the surface and scattering from the atmosphere. Major sources of distortions of 

remotely sensed imagery are water vapor and aerosols (Cairns 2003). 

 

Figure 3-11: Comparison of single pixel spectra before (a) and after (b) atmospheric 

correction. Spectra were acquired on April 19, 2006 (modified after Koppe et al. 

2010a).  

To convert the Hyperion and ALI at-sensor radiance data to surface reflectance data, 

the MODTRAN-based radiative transfer algorithm implemented in the FLAASH module 

of ENVI software was used. The radiative transfer algorithm that applies for 

Lambertian materials, converts the at-sensor radiance L to surface reflectance ρ on a 

pixel-by-pixel basis as (Berk et al. 2000): 

 

           (3.3) 

where La is the radiance caused by atmospheric scattering; T2 is the two-way 

transmittance; S is the albedo of the atmosphere; θS is the solar zenith angle and ES is 
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the exoatmospheric solar irradiance. The radiative transfer algorithm is described in 

Berk et al. (2000). Atmospheric scattering effects were compensated and a surface 

reflectance spectrum for each pixel was retrieved. The comparison of single pixel at 

sensor radiance and surface reflectance from fully developed winter wheat is shown in 

Figure 3-11. As standard atmosphere used in the radiative transfer algorithm does not 

exactly reflect conditions at the time of acquisition, it was necessary to calibrate initial 

reflectance with in-situ spectrometer measurements. In Figure 3-11 a comparison of 

EO-1 Hyperion calibrated reflectance spectrum and ASD field measurements is shown. 

Additionally, the 158 spectral bands of Hyperion are overlaid.  

The last step of the Hyperion and ALI pre-processing chain is the geometric correction, 

which was undertaken to rectify geometric distortions using ground control points 

(GPCs), sensor parameters and a digital elevation model. For orthorectification process 

of each scene, 25 GCPs distributed across the area of interest were selected and the 

image rectification was carried out by bilinear resampling method using ENVI. For 

evaluation purpose, other 20 independent check points were used, which resulted in 

overall RMSE of around 0.5 pixels (15 m) for each image.  

3.2.1.2 Analysis of Hyperspectral EO-1 Hyperion Data 

Hyperspectral imaging allows data acquisition of a target with a large number of 

information layers, which implies the collection of a high amount of useful but also 

redundant data. The analysis of hyperspectral data is primarily the reduction of 

information depth and extraction of required information. For the analysis of 

hyperspectral data different approaches can be applied. The reflectance spectra of 

contiguous wavebands allows for distinguishing targets, phenological stages of 

vegetation or anomalies through the calculation of spectra differences, vegetation 

indices or derivations (Kumar et al. 2003). 

Spectral vegetation indices can be used to identify plant development at different 

phenological stages during the growing season. For calculation of vegetation indices 

and subsequent regression analysis with ground truth data, the spectral profile for 

each pixel of the test fields of 2006 and 2007 was extracted. After excluding mixed 

pixel on the borders, 57 pixel in 2006 and 54 pixel in 2007 (ca. 14 per field) remained 

for further analysis. 



Methods and Used Data 

59 

 

Table 3-5: Standard vegetation indices evaluated in this study (Koppe et al. 2010a). 

Index Name Formula References 

SR Simple Ratio  (Baret & Guyot 1991) 

NDVI 
Normalized Difference 

Vegetation Index 
 (Rouse et al. 1974) 

OSAVI 
Optimized Soil-adjusted               

Vegetation Index 
 (Huete 1988) 

TVI 
Triangular                   

Vegetation Index 
 (Broge & 

Leblanc 2000) 

 

Pixel based reflectance spectra were then used for the calculation of (1) standard 

broad band vegetation indices, (2) standard hyperspectral vegetation indices, and (3) 

narrow band Normalized Ratio Indices (Schmidt & Skidmore 2003, Sims & Gamon 

2002). Within this study, broad band vegetation indices are based on multi-spectral 

bands, whereas the bands cover wide spectral range. In the case of the EO-1 ALI 

Sensor, the spectral span of one band is around 80 nm. In comparison, the narrow 

bands of EO-1 Hyperion cover a spectral range of around 10 nm. To compare the 

prediction power of broad band and narrow band crop parameter estimations, the 

following vegetation indices were calculated: Simple Ratio (SR), Normalized Difference 

Vegetation Index (NDVI), Optimized Soil Adjusted Vegetation Index (OSAVI) and 

Triangular Vegetation Index (TVI). The SR, NDVI and OSAVI vegetation indices are 

based on the difference between strong absorption of solar radiation in the red, 

caused by chlorophyll pigments and the high leaf cellular reflection in the near 

infrared. Unlike the Simple Ratio Index, the NDVI is normalized which reduces the 

effects of variable illuminations and limits the NDVI to values from -1 to 1 (Baret & 

Guyot 1991). The OSAVI is intended to minimize influences due to soil optical 

properties. The included background factor L depends on vegetation density and 

requires information about the relationship between soil background and vegetation 

(Huete 1988). The TVI was developed by Broge & Leblanc (2000) and is defined 

additional to red and near infrared reflectance by the magnitude in the green region. 

The detailed expressions and the notable references of the mentioned vegetation 

indices are provided in Table 3-5. A full list of vegetation indices under consideration is 

provided in Annex A.1. 
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In addition to standard vegetation indices, a specific waveband selection method 

suggested by Thenkabail et al. (2000) and Sims & Gamon (2002) was used to determine 

best band combinations suitable for crop parameter estimation (see also Schmidt & 

Skidmore 2003). The two-band Normalized Ration Index (NRI) is defined as (Sims & 

Gamon 2002):  

 

           (3.4) 

 

where ρband1 and ρband2 are reflectance of Hyperion narrow bands in the wavelength 

range between 400 and 2500 nm. The hyperspectral Hyperion Sensor allows the 

calculation of a total number of 9870 (141*140/2) possible two-band combinations for 

each agronomic parameter. A linear regression between each vegetation index and 

crop parameter was performed.  

3.2.2 Envisat ASAR Processing* 

During the first field campaign in 2006, Envisat ASAR (Advanced Synthetic Aperture 

Radar) data were acquired for the test area. Envisat ASAR operating at C-band has an 

active phased array antenna which is equipped with transmit and receive modules 

allowing data acquisition in StripMap and ScanSAR mode. For this study, Envisat ASAR 

IMP VV intensity precision images with a pixel spacing of 12.5 m and a nominal spatial 

resolution of 30 m were selected. The imaging modes of the ASAR data were acquired 

in IS5 and IS6 mode with an incidence angle range between 39° to 42°. To get a larger 

area covered and to shorten time between acquisitions, different relative orbits were 

chosen. The four test fields for the recent study are located in the overlapping area of 

all acquisitions. The processing of Envisat ASAR consists of a pre-processing chain to 

prepare the raw SAR data and a subsequent extraction of backscatter values. Figure 

3-12 depicts the main processing steps of the Envisat ASAR processing chain. The 

components are explained in detail hereinafter. 

 

                                                      

* This section is an extended version of the article: Koppe et al. (2012). 
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Table 3-6: Technical specification of Envisat ASAR. 

 Envisat ASAR 

Start, site March 1, 2002, Kourou 

Launch mass 8200 kg 

Orbit altitude 790 km 

Inclination 98.5°, Polar orbit 

Frequency 5.3 GHz 

Height 26 m 

Diameter 10 x 5 m 

Polarization Single pol, dual pol 

Resolution 
30 m x 30 m, 150 m x 150 m, 1000 m x 1000 m (depending on 

mode) 

Repetition rate 25 days 

Life time 5 years (plus extension) 

Modi Image, altern. polarisation, Wave, Wide Swath, Global Monitoring 

 

 

Figure 3-12: Processing chain of Envisat ASAR. 
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Prior to data analysis, Envisat ASAR images were pre-processed in a four step 

approach. At first, the image DN were converted to averaged backscattering intensity 

(dB, squared amplitude) expressed in sigma nought. The normalization of the ASAR 

images facilitated the multi-temporal backscatter analysis of the winter wheat. Based 

on the header file information and an ellipsoid model, the ASAR images can be 

converted to sigma nought as follows (Rosich & Meadows 2004): 

  

           (3.5) 

 

where DN is the pixel intensity of the i, j pixel, K the absolute calibration constant and 

θ the incidence angle of the i, j pixel. Finally, sigma nought values were transformed to 

logarithmic scale. Since the test area in Huimin is rather flat, an elevation model to 

account for topographic distortions is not necessary.  

After normalization, the images acquired with the same geometry (same orbit and 

incidence angle) were co-registered to each other. For this, the first acquisition was 

defined as the master and subsequent images were treated as slaves and were co-

registered to the master image. For the co-registration, the orbit parameters were 

used as an initial rough localisation, followed by cross-correlation in order to register 

the images in a coarse way. A fine registration was performed as a final step by 

maximizing the coherence between master and slave images.  

Next, speckle noise caused by interference of different elementary scatterers was 

filtered by a 5x5 Gamma adaptive filter which showed acceptable results for the trade-

off between edge preservation and speckle reduction. The reduction of the noise level 

was evaluated by visual inspection and statistical measurement of effective number of 

looks (ENL) as suggested by Oliver & Quegan (2004): 

 

           (3.6)

  

where μ is mean value (noise mean value) and σ the standard deviation of the 

measured area (noise variance). ENL is obtained by calculating the mean and variance 
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intensity over a homogenous area. The higher the value of the quotient, the lower the 

speckle noise in the area. The Gamma Map filter with a 5x5 kernel yielded an ENL of 29 

compared to around 15 of the noisy images. Co-registration of the slave images to one 

master image of the same relative orbit with the same imaging geometry was 

performed with the ESA toolbox NEST. The co-registration process is based on orbit 

parameters for an initial registration and a subsequent cross correlation of master and 

slave images.  

In a last step of pre-processing, the co-registered and calibrated image stack was geo-

referenced using well distributed GCPs. The residual error was 0.6 pixel in range and 

0.9 pixel in azimuth direction. The test parcels, for which ground truth measurement 

was performed, were buffered by a one-pixel zone in order to exclude pixels near the 

boundaries since they could contain information from neighbouring fields.  

3.2.3 TerraSAR-X Processing 

Time series of TerraSAR-X data were acquired during the year 2009. The satellite was 

launched in June 2007 and operates in a sun-synchronous near polar orbit in 514 km 

height above earth surface. In June 2010, an identical satellite (TanDEM-X) was 

launched, operating within the TerraSAR-X mission as single satellite and in 

constellation with the first satellite within the TanDEM-X mission for interferometric 

3D generation. TerraSAR-X and Tandem-X satellites operate at a frequency of 9.6 GHz 

(X-band) and provide high resolution SAR images in SpotLight, StripMap and ScanSAR 

modes with varying spatial resolution between 0.25 (slant range) and 35 m. Six High 

Resolution SpotLight (HS) images were acquired with an incidence angle of about 39° 

in ascending orbit direction. In addition to the HS data, StripMap (SM) data with an 

incidence angle of about 36° in descending orbit direction were acquired to cover the 

complete test area. The HS images have a ground range resolution of around 1.2 m for 

the incidence angle of 39° whereas the SM images have a coarser resolution of 3.5 m. 

The HS and SM data were acquired in repeat pass with 11 day intervals in order to 

obtain a multi-temporal data stack with constant acquisition parameters. 
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Table 3-7: Technical specification of TerraSAR-X and TanDEM-X.  

 TerraSAR-X TanDEM-X 

Start, site June 15, 2007, Baikonur June 21, 2010, Baikonur 

Launch mass 1230 kg 1350 kg 

Orbit altitude 514 km 

Inclination 97.4° (sun synchronous) 

Frequency 9.65 GHz 

Length 4.88 m 

Diameter 2.4 m 

Polarization Single pol, dual pol, (quad pol, scientific) 

Resolution 0.8, m1.1 m, 3.3 m, 18 m, 35 m (depending on mode) 

Repetition rate 11 days 

Life time 5 years (3 years parallel operation of both satellites) 

Modi 
Staring SpotLight, High Resolution SpotLight, SpotLight, StripMap, 

ScanSAR, Wide ScanSAR 

 

The processing of TerraSAR-X consists of a pre-processing chain to prepare the raw 

SAR data, a subsequent extraction of backscatter values and a calculation of 

polarimetric parameters. The derived parameters can be generalized into groups 

which analyse the power, the correlation and the compact polarimetric 

decomposition. The class power contains the backscatter extraction and the 

calculation of the co-polarimetric ratio. Both parameters are based on the amplitude 

data. The second group contains correlation of the magnitude and correlation of the 

phase (PPD – Polarimetric Phase Difference) of the coherent co-pol channels. The 

correlation parameters are calculated on the complex data. The last class contains the 

compact polarimetric decomposition, based on the partial coherency matrix (T). Figure 

3-13 depicts the main processing steps of the three classes of the TerraSAR-X 

processing chain. The components are explained in detail hereinafter. 
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Figure 3-13: Processing chain of TerraSAR-X. 

 

3.2.3.1 Speckle Suppression 

Especially the high resolution TerraSAR-X data are affected by speckle, which affect the 

qualitative image information extraction. To overcome the unwanted noise, different 

standard and experimental speckle filters were tested for the TerraSAR-X HS data. The 

main idea of a speckle filter is to reduce the noise while maintaining the edges and line 

features. Standard adaptive filters such as Lee, Gamma-MAP and Frost are based on 

the assumption that the mean and variance of the pixel of interest are equal to the 

local mean and variance of all pixels within the user-selected moving window. They are 

well described in textbooks (Massonnet & Souyris 2008, Henderson & Lewis 1998). 

Furthermore, three different experimental filters were implemented: Anisotropic 

Diffusion (Perona & Malik 1990), Modified Normal Distribution, and Level Bell for 

evaluation purpose. The first filter is implemented in the Orfeo-toolbox (OTB 
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Software); the latter two were advanced and adapted in cooperation with the 

Terrapid3D project (Koppe & Kiefl 2010).  

Anisotropic Diffusion (also called non-uniform or variable conductance diffusion) 

provides a high level of regularization in homogenous areas and preserves edges. The 

filtering is based on a nonlinear diffusion process (Perona & Malik 1990): 

 

           (3.7) 

 

where g(x,y,t) = f (x,y) is the input image, g(x,y, t) = G(√2t)  f (x,y), G(s) is a Gaussian 

with standard deviation σ.  

The Modified Normal Distribution filter is a simple, light-weight smoothing filter that 

uses a moving window to get average values weighted according to the normal 

distribution. Weighting is applied according to the differences in intensities; higher 

contrast features are less smoothed (Koppe & Kiefl 2010).  
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where σ2 is the standard deviation, for p moving window of radius r.  

The aim of the Level Bell filter is to try to remove noise by estimating the intensity of 

each pixel without noise, thus improving the contrast between higher and lower 

intensity areas of an image. If the pixel is in an area containing many dark pixels, the 

following algorithm is used (darkening factor at po): 

 

           (3.9) 

 

for blocks at p1, p2 in moving window 

The window of neighbouring pixels is scanned for 3x3 blocks containing more than a 

threshold number of dark pixels. The vectors between the central pixel and each pair 

of blocks are then compared using a scalar product, to determine if a pixel is between 

dark areas (Koppe & Kiefl 2010): 
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• If the pixel is in an area containing many bright pixels, the same algorithm is 

used but looking for bright pixels. In the case that the area contains many of 

both dark and light pixels, only the higher factor is used. 

• If the pixel is in an area that doesn't contain many dark or bright pixels, the 

intensity is averaged with the closest out of the local and global mean 

intensities. 

 

The unfiltered SpotLight image has a lot of noise, which is clearly visible in the image 

(Figure 3-14 left). The homogenous area is very noisy, represented by low and high 

backscatter values. All filters resulted in an overall smoothing of the image. The 

smoothing intensity depends either on the kernel size (standard filters) or on the 

iteration (Anisotropic). Smoothing is very strong in the level bell result, but loosing a 

lot of detail and structure. To describe the smoothness of the images in a quantitative 

manner, the ENL for the selected homogenous areas was calculated (see Table 3-8). 

The original image has an ENL of 16; all filtered images have an ENL above 16. The 

values mirror the visual analysis. Level bell and Anisotropic with 20 iterations are very 

smooth, but very blurry. The best compromise is the Frost 5x5 filter with focus on edge 

preservation and the anisotropic 8 iterations, which shows a satisfactory smoothing 

with a slightly better edge preservation than the frost filter. 

 

Table 3-8: Quantitative measurement of noise for standard adaptive and 

experimental filters.  

Filter typ ENL 

unfiltered 16 

Lee 5x5  29 

Frost 5x5 27 

Gamma Map 25 

Level bell 146 

Modified Normal Distribution 87 

Anisotropic, 20 iterations 105 

Anisotropic, 12 iterations 74 

Anisotropic, 8 iterations 52 
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Figure 3-14: SAR filter results (based on HS, August 8, 2009). Left: Unfiltered. Middle: 

Level Bell. Right: Anisotropic, 8 iterations.  

3.2.3.2 Power* 

Level 1b complex data were converted to intensity (squared amplitude) since multi-

temporal backscatter analysis and regression analysis with crop parameters were 

based on intensity values. In order to extract plot-level specific crop information, the 

images were registered to each other and to the additional existing vector data. 

Because SAR side-looking geometry causes geometric distortions when projecting slant 

range geometry on earth, a Digital Elevation Model (DEM) together with satellite orbit 

information were used for ortho-rectification of the images. The applied DEM was 

created with radargrammetric techniques based on stereo TerraSAR-X images. Due to 

high inherent slant range location accuracy of up to 0.5 m (Eineder et al. 2011), no 

ground control points are needed for orthorectification. After orthorectification, 18 

ground control points were used for assessing the geo-location accuracy. The resulting 

errors were 1.5 pixels in azimuth and 1.8 pixels in range direction, which is in 

accordance with investigations by Koppe et al. (2010b) for medium accurate DEM in 

flat to rolling terrain. With orthorectification, a radiometric calibration to sigma nought 

was also carried out using the following equation (Fritz & Eineder 2010):  

 

           (3.10) 

                                                      

* This section is an extended version of the article: Koppe et al. (2013). 

)(sin  * DN*(K log * 10 = [dB] ijij
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where DN is the pixel amplitude of the i, j pixel, K the calibration factor, and θ the local 

incidence angle of the i, j pixel. The equation was used to transform the amplitude of 

the backscattered signal (DN) into the backscattering coefficient (θ0ij) in decibel. The 

calibration factor for TerraSAR-X images varies between 10-6 and 10-4 depending on 

the incidence angle and polarization. The radiometric calibration is a requirement for 

multi-temporal analysis of different images.  

 

In order to investigate the temporal backscatter behaviour of crop as well as for 

empirical modelling of biophysical parameters, sample plots of each test site were 

selected on the multi-temporal SAR data defining polygons around the plots. To avoid 

mixed pixel a buffer of two pixels to the plot border was maintained. The pixel values 

of each polygon were averaged and the multi-temporal SAR signature was extracted 

from the single polarization TerraSAR-X SM and dual polarization TerraSAR-X HS and SL 

data. Based on the backscatter values and the corresponding measured biomass (dry 

matter) values, a linear regression equation was derived for the multi-temporal data 

and for each polarization at each date (TerraSAR-X). For regression analysis, the closest 

acquisition date to the respective field measurements was chosen (see Section 4.5.4). 

If multi-channel data are acquired, it is valuable to contemplate rationing of the 

polarimetric bands (polarimetric ratio). Based on the HH and VV channel powers the 

ratio between both channels is calculated according to Woodhouse (2006):  

 

           (3.11) 

 

By calculating the ratio, the relative properties of both polarizations are accented. 

Rationing can be treated as an indicator of geometric properties. As vegetation, 

especially rice vegetation, acts as a depolarizing scatterer, the ratio could be used for 

indication the vegetation cover and phenological stage.  

3.2.3.3 Correlation 

The polarimetric channels of the dual polarimetric TerraSAR-X data are acquired 

coherently which preserves their relative phase. This allows the calculation of new 
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channels like polarimetric phase difference (PPD) or inter-channel coherence as well as 

the computation of polarimetric decomposition.  

From the complex data (imaginary and real) amplitude and phase information can be 

extracted from the backscattered signal, whereas the availability of phase information 

enables the calculation of the polarimetric phase difference (PPD). The polarimetric 

phase difference Δɸ is calculated according to Ulaby et al. (1987):  

 

           (3.12) 

 

As the measurement on a single pixel is quite noisy, the measurement is based on a 

window where amplitude pixel values are coherently averaged. Then the phase angle 

between the coherently averaged amplitudes pixels of HH and VV channels is 

computed according to equation 3.12. A phase difference other than zero could be 

caused by time delay due to various scatterers dominating HH and VV backscattering 

or time delay due to different extinction coefficient of HH and VV in the vegetation 

canopy (Ulaby et al. 1987). Based on this, the PPD points to the different scattering 

centre locations in HH and VV polarization. Also, the PPD is an indicator for the number 

of bounces an electromagnetic wave practiced during its way through the media. A 

phase difference of zero degree indicates an ideal odd-bounce (single bounce) 

reflection whereas an ideal even-bounce reflection has a phase difference of 180°. In 

the case of an agricultural environment the variation in co-polarimetric phase 

difference will be quite high, depending on size, density and orientation of the canopy 

(Woodhouse 2006).  

The co-polarimetric coherence γ  describes the degree of correlation between the co-

pol channels (HH and VV). It is calculated between the complex amplitude of HH and 

the conjugate of the complex amplitude of VV. The value of the coherence is between 

0 (incoherent) and 1 (fully coherent) and describes the polarization of the wave. If co-

polarimetric coherence is unity (for instance from an ideal trihedral corner reflector), 

HH and VV are linear related, i.e. the backscatter of one polarization can be derived 

from the other (Woodhouse 2006). The co-polarimetric coherence can be formed by:  

 

           (3.13) 
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3.2.3.4 Compact Polarimetric Decomposition 

Dual polarimetric data can be exploited more efficiently by compact polarimetric 

decompositions, such as Alpha-Entropy (H2α) decomposition of the HH-VV polarization 

mode. The coherent dual-pol H2α decomposition was proposed by Cloude (2007) and 

is a modified form of the alpha-entropy decomposition developed by Cloude & Pottier 

(1997) for full polarimetric data. Instead of the reconstruction of the complete 

scattering matrix for full polarimetric data, with the dual polarimetric case one column 

of the scattering matrix can be reconstructed. Based on this partial scattering matrix, a 

2x2 coherency matrix can be reconstructed. The decomposition is based on the 

eigenvector analysis of the coherence matrix [T]. The compact polarimetric eigenvalue 

decomposition is shown in the following equations (Shan et al. 2011): 

 

           (3.14) 

 

where 

 

           (3.15) 

 

where ʎi are the real eigenvector, u the corresponding complex eigenvectors, H is the 

conjugate transpose, and * denotes the conjugate. Entropy and alpha are defined as 

(Shan et al. 2011):  

 

           (3.16) 
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The entropy is a function of the eigenvalues with a value range between 0 and 1. It is 

calculated by the sum of the Pi*log2*Pi (equation 3.16), whereas Pi is defined as the 

eigenvalue λi divided by the sum of the eigenvalues (equation 3.18). It defines the 

randomness of scatterers of averaged pixel. Scattering can be considered as pure 

(single scattering mechanism, e.g. single bounce) if entropy is zero. Entropy values 

close to 1 indicate that scatterers are basically random (e.g. volume scattering); there 

is no dominant scattering mechanism. If entropy is high, it is believed that there are at 

least two scattering mechanism present. 

The alpha angle ranges between 0 and 90° and is an indication about the dominant 

scattering mechanism present in averaged pixel. According to Touzi et al. (2004), the 

alpha angle value range can be divided into three main scattering mechanisms. An 

alpha angle close to zero represents an ideal odd-bounce (single bounce) scattering, 

alpha round 45° denote dipole scattering and alpha close to 90° represent even-

bounce scattering (dihedral). In a natural environment the alpha angle remains vague 

as the transition between these distinct categories is smooth. According to the theory 

surface scattering from a smooth surface has an alpha angle close to zero, volume 

scattering can be between 30° to 70° and double bounce scattering is higher than 50°.  

3.2.4 Statistical Analysis* 

Beside the understanding of hyperspectral reflectance and microwave backscatter 

behaviour of crop during the vegetation period, a major objective of this study is the 

derivation of biophysical crop parameters by remote sensing data. For this, the 

recorded signal either by the hyperspectral instrument or by the SAR antenna is 

related to biophysical parameters by a linear regression of the form (Schoenwiese 

2006):  

 

           (3.19) 

with y the random variable to predict, x the random variable y is predicted from, a is a 

coefficients corresponding to x and b a constant value. The linear regression function 

calculates the best fit of a straight line by using the least square method.  

                                                      

* This section is an extended version of the article: Koppe et al. (2013). 

baxy +=
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In this bivariate regression equation y is the biophysical parameter to be estimated 

(depended variable) and x the independent variable provided by the remote sensing 

data (e.g. backscatter value or vegetation index). To relate several independent 

variables with one dependent variable, a multiple regression equation can be formed:  

 

           (3.20) 

 

with y the random variable to predict, x the random variable y is predicted from, a is a 

coefficients corresponding to x and b a constant value.  

The performance of the derived models; i.e. the strength of the relationship between 

the independent variables and dependent variable can be measured by the coefficient 

of determination (R²). For R² the variability of the samples of the data set is measured 

by the sum of the squares and the range of values is between 0 and 1 (with 1 as the 

best fit).  

 

           (3.21) 

 

where SSR defines the regression sum of squares and SST defines the total sum of the 

squares. In addition, this performance was quantified by root mean square error 

(RMSE) and relative error (RE in %). The evaluation of the accuracy estimation was 

carried out using leave-one-out cross validation (Allen 1974). For this purpose, each 

plot was left out once from the reference data set and the crop variable estimates 

were calculated using the remaining plots. The higher the R² coefficient of the 

regression approach is, the higher the level of significance, resulting in a higher 

accuracy of the model. A RMSE of zero means that the model estimator ŷi predicts the 

observed parameter biomass yi with best accuracy. The RMSE and RE are calculated 

using the following equations: 

           (3.22)

       

           (3.23) 
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where yi, ŷi and ȳi, are measured, predicted values, and the mean of the measured 

values, respectively.  

 



Results 

75 

 

4 RESULTS 

4.1 Crop Phenological Development  

4.1.1 Winter Wheat Growth* 

As already mentioned, the dominant cropping system in the Huimin County is the 

summer maize – winter wheat rotation system. Following this system, the winter 

wheat is sown in October and harvested in June of the subsequent year. The growing 

period is between March and May, where the fields are irrigated by the farmers.  

To describe and compare the phenological stages of the winter wheat, the growth 

status can be generalized to a standard winter wheat growth cycle. In the recent study, 

the phenological stages of winter wheat in the test area Huimin are assigned to the 

stages of the BBCH-scale (Biologische Bundesanstalt, Bundessortenamt and Chemische 

Industrie), which is uniform coding of phenological stages (Meier 2001). This 

standardized scale separates the development stages by a decimal code, which 

consists of a principle and a secondary growth stage.  

The sowing time of the winter wheat for the vegetation period of 2006 and 2007 was 

in each case in September to October of the previous year. During the seedling 

development and early tillering the first plant leaves appear and the tillers start to 

emerge. Ground truth campaigns in 2006 and 2007 started at the end of the tillering 

when the wheat plants change from vegetative to reproductive stage. With the 

beginning of the jointing stage the internode region starts to elongate; later the flag 

leaf appears. Inside the hull of the flag leaf, the head develops and emerges at the 

booting stage. During the subsequent heading stage, the head emerges fully and 

development of the head is completed. Within the anthesis stage, the plants are 

flowering and pollination occurs. After this, the kernel forms, grows and accumulates a 

large part of the total weight of the plant. During the last stage, the ripening stage, 

which can be subdivided into milky and dough stage, the plant loses most of its 

moisture. The winter wheat is harvested at the beginning of June. 

                                                      

* This section is an extended version of the articles: Koppe et al. (2010a); Koppe et al. (2012). 
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Due to different farmers’ management practices, the investigated fields were different 

in terms of seeding time, plant density, and nitrogen application rates. As expected, 

the differences in management practices resulted in a wide range of variation in crop 

parameters (aboveground biomass, plant nitrogen concentration, and plant height). In 

2006, the within-field variation of plant height and aboveground biomass at the 

jointing stage (heading stage) ranged from 31.3 to 51 cm (70.3 to 90 cm), and from 

0.19 to 0,79 kg/m2 (0.72 to 1.55 kg/m2), respectively (see Table 4-1). Plant nitrogen 

concentration varied from 17.1 to 37.42 g/kg at the jointing stage and from 13.1 to 

19.5 g/kg at the heading stage. The decrease of plant nitrogen concentration during 

the vegetation period is due to dilution effect.  

 

Figure 4-1: Biomass development of winter wheat in 2006 and dates of image and 

ground truth acquisition.  

The average biomass development of winter wheat in the season 2006 from March to 

June is depicted in Figure 4-1. Additionally to the increase in dry matter, the satellite 

acquisition dates of Envisat ASAR and EO-1 Hyperion / ALI and the terrestrial spectral 

reflectance acquisition dates are shown.  
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Table 4-1: Crop growth variables measured at different dates in 2006 and 2007 

(Koppe et al. 2012). 

Date BB

CH 

Growth 

stage 

Biomass dry 

[kg/m
2
] 

Plant height 

[cm] 

PWC* 

Mean STD Mean STD Mean STD 

March 25, 2006 29 tillering 0.06 0.03 11.4 1.9 73.2 1.5 
April 13, 2006 31 jointing 0.21 0.05 36.8 2.8 82.3 0.6 
April 19, 2006 35 jointing 0.48 0.05 45.0 4.8 83.9 1.4 
April 29, 2006 41 booting 0.74 0.09 54.9 5.6 83.5 1.2 
May 12, 2006 51 heading 0.96 0.07 74.5 5.5 76.3 1.7 
May 30, 2006 75 ripening 1.51 0.12 76.2 6.1 66.7 1.8 
April 11, 2007 31 jointing 0.43 0.04 41.4 4.8   
April 21, 2007 35 jointing 0.62 0.07 64.6 6.0   
May 6, 2007 41 booting 1.05 0.08 93.4 5.8   

* Plant water content 

As remote sensing is the focus in the recent study, the spatial temporal distribution of 

crop growth within the fields is an essential parameter. Figure 4-2 shows the winter 

wheat development at six different stages from March 2006 to May 2006.  

 

 

Figure 4-2: Spatial-temporal distribution of dry matter of two fields in 2006.  
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4.1.2 Rice Growth 

The main management steps in rice cropping system of the Jiansanjiang test site are 

the planting, the transplantation and the harvesting (see Figure 4-3). The ground truth 

campaign at the Qixing farm lasted from the end of June to the end of August.  

To interpret radar response from the rice at different growing stages, the 

understanding of phenology of rice plants is essential. In general, the complete life 

cycle of rice in the Sanjiang Plain region is passed through the germination in rice 

nurseries and growth in the greenhouse until leaf development within 25-30 days and 

the main growth in flooded paddies within 110 to 130 days. The growing period of rice 

is divided into three main sequences of growing (Yoshida 1981): 

 

• the vegetative period, which includes the stages from germination and 

emergence, transplantation, tillering and stem elongation to panicle initiation 

• reproductive period, which includes the stages booting, heading and flowering 

• ripening period, which includes the stages milky, dough and maturity 

 

The vegetative period starts with the sowing and continues until the beginning of the 

panicle initiation. Before transplantation, the plants are sown in rice nurseries and the 

fields are flooded with varying water depth between 5 to 20 cm. Around 25 to 30 days 

after germination, the seedlings are transplanted in clusters of 4 to 5 seedlings into the 

flooded rice fields. The vegetative period is characterized by the leaf development, the 

tillering and the panicle initiation. In this period a strong increase in height and density 

of the plants occurs and they stay mainly erectophile. The vegetative stage lasts until 

around DAT 50. The subsequent reproductive stage starting with the panicle initiation 

is characterized by a further strong increase in stem height by culm elongation until 

the heading stage. Also the flag leaf appears and the stem is slightly thickened. After 

heading stage when panicle emerged completely, increase in plant height is strongly 

reduced and flowering begins. The last sequence of rice growing period is the ripening 

stage, which is dominated by a decrease in moisture content, senescence of leaves and 

an increase in heads weight. In this period the orientation of the leaves is more 
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randomly than erectophile as in the previous sequences. The ripening stage ends with 

the harvest.  

 

Table 4-2: Statistics of measured agronomic parameters during the field campaign 

2009 (modified after Koppe et al. 2013).  

  Date Jun 27 July 9 July 25 Aug 5 Aug 25 Sep 24 

  DAT 38 50 66 77 97 126 

2
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 d
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Total 

biomass 

[t/ha] 

Mean 1.8 3.0 6.1 7.9 12.4 14.8 

Min 0.7 2.2 2.3 6.1 9.9 10.6 

Max 2.4 4.4 7.6 10.6 15.7 20.3 

STD 0.47 0.64 1.1 1.2 1.4 2.0 

Stem [t/ha] Mean 0.93 1.74 - 4.92 - 4.8 

Leaf [t/ha] Mean 0.86 1.29 - 1.6 - 1.41 

Head [t/ha] Mean - - - 1.32 - 8.04 

A
ll

 o
th

e
r 

p
lo

ts
 

 

Total 

biomass 

[t/ha] 

Mean 1.2 2.5 - 5.3 10.5 14.7 

Min 0.4 1.0 - 2.0 4.6 9.4 

Max 3.0 5.9 - 12.1 18.0 20.3 

STD 0.6 0.9 - 2.5 3.0 2.6 

Plant height 

[cm] 

Mean 43 55 76 87 97 95 

Min 31 43 61 75 82 80 

Max 52 69 83 97 105 101 

STD 4.0 6.6 5.8 6.4 6.1 6.0 

LAI 

Mean 2.18 2.82 3.85 - 3.5 - 

Min 0.63 1.6 1.8 - 1.8 - 

Max 3.5 5.8 6.6 - 5.3 - 

STD 0.7 0.9 1.32 - 0.94 - 

Yield  

[t/kg] 

Mean - - - - - 7.9 

Min - - - - - 4.5 

Max - - - - - 13.2 

STD - - - - - 1.5 

 

Table 4-2 shows a summary of the measured crop parameters in 2009 of all 80 plots 

and separately the 24 plots which were sampled in more detail. Total biomass was 

acquired at six different dates, at four dates the plants were separated into sub plant 

organs. For DAT 38 and 50 the plants were separated into stems and leaves, after 

heading also the heads were treated separately at DAT 77 and 126. Additionally to 

biomass measurements, the plant height at all dates and LAI at four dates were 

measured. According to the measured values of the different parameters, the within-

field and field-to-field variability of the plots is very high. From tillering to harvest the 



Results 

80 

 

total dry biomass increased from 1.2 t/ha to 14.7 t/ha whereas the standard deviation 

also increased.  

 

Table 4-3: Information about field experiments in 2009 and 2011. 

Year Cultivar 
Density 

(hills/m
2
) 

Plant date 
Transplantation 

date 
Harvest date 

2009 8 different  April 4 May 20 September 26 

2011 Kendao6 28 April 15 May 16 September 21 

 

Also plant height is increasing from tillering (43 cm) to ripening (97 cm), whereas at 

harvest the plant height slightly decreased due to drying and hanging down of the 

panicle. The course of plant height and total biomass at the different phenological 

stages is also depicted in Figure 4-3. The growth of rice can be divided into three main 

phenological phases – the vegetative phase, the reproductive phase, and the ripening. 

The vegetative phase lasts from sowing to booting with further subdivision into 

transplantation, tillering, and stem elongation. With the heading the reproductive 

phase starts and continues until flowering around DAT 100. Thereafter the ripening 

completes the rice growth cycle. Spatial distribution and variation of total biomass at 

different dates and final yield in 2009 are shown in Figure 4-4.  
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Figure 4-3: Rice growth stages, growth phases as well as plant height and total 

biomass graphs of the growing season of 2009 and 2011. Time is represented in days 

after transplantation (modified after Koppe et al. 2013).  
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Figure 4-4: Total dry matter and yield measured at the farmers’ fields. Fields with 

biomass measurements and plots with detailed sampling. 
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4.2 Hyperspectral Imaging of Winter Wheat 

4.2.1 Spectral Reflectance as a Function of Crop Parameters*1 

The phenological development of winter wheat can be retraced by the multi-temporal 

reflectance profile. By using the results from regular in-situ spectral reflectance 

measurements with Fieldspec (ASD) in 2006 and QualitySpec (ASD) in 2007, the 

reflectance characteristic of winter wheat during the growing seasons was determined 

and is illustrated in Figure 4-5 (blue lines). Additionally, the reflectance signatures of 

EO-1 Hyperion acquisitions are drawn in the diagrams (red lines). Due to different 

satellite acquisition and field measurement dates in 2006 and 2007, the dates of the 

diagrams in the figure do not fit together properly. Because the QualitySpec 

measurements in 2007 cover almost the same spectral range as EO-1 Hyperion, the 

spectral reflectance of winter wheat is explained exemplarily by the 2007 data. The 

data of 2006 is for completeness.  

The energy reflected by plants is influenced by crop conditions such as growth stage 

(biomass, plant density, plant height) and nutrient supply but also by leaf geometry, 

angle and shadowing. These parameters are varying during the growing season which 

has an impact on the reflected energy at different parts of the electromagnetic 

spectrum. At the beginning of the vegetation period in March, the soil is covered by 

small plants, whereas the percentage vegetation coverage is very low. The reflectance 

spectrum is a mixture of soil and vegetation reflectance.  

 

 

 

 

 

 

 

 

 

                                                      

* This section is an extended version of the article: Koppe et al. (2012). 
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Figure 4-5: Reflection behavior of winter wheat (Xili). Left: recorded by ASD Fieldspec 

(blue) and EO-1 Hyperion (red) in 2006. Right: recorded by QualitySpec (blue) and 

EO-1 Hyperion (red) in 2007 (extended after Koppe et al. 2012). 
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Throughout the measurements from jointing (mid of April) to ripening stage (end of 

May), the reflectance behaviour alters due to structural changes as well as changes in 

foliar pigments (Kumar et al. 2003). Up to heading stage (beginning of May) the 

reflectance in the red spectrum (650 to 700 nm) decreases, which is due to increasing 

absorption by foliar pigments in the red spectrum. While reflected energy in the red 

spectrum reduces, reflectance in the near infrared (NIR) increases caused by the fast 

development of structural components of the plants (Thenkabail et al. 2000). The 

maximum reflectance difference between red and NIR is reached at the end of April 

(booting). With the beginning of May, the divergence of red and NIR reflectance 

decreases again. A slightly different behaviour of spectral reflectance is recorded 

between NIR (875 nm) and SWIR (1225 nm). The divergent trend between the two 

wavelengths continues up to the heading stage (beginning of May) which delays the 

saturation effect of crop parameter estimation at full canopy cover (Mutanga & 

Skidmore 2004). At the end of May, the reflection in NIR is strongly decreasing due to 

senescence (see Figure 4-5, lower right). The linear relationship of NRI with biomass is 

lost at this time.  

The 2006 EO-1 Hyperion data is in good consistence with in-situ field spectrometer 

measurements (Koppe et al. 2010a) due to good atmospheric conditions during the 

satellite overpass. Also, the 2007 spectral reflectance from Hyperion and in-situ 

measurement matches well; the courses of both reflectance curves at a given date are 

similar in a certain range. Differences can be observed on April 11 and April 21 in the 

visible and near infrared parts of the spectrum. For these dates hazy conditions with 

different spatial intensities affected the acquisitions. As a consequence the high 

absorption (VIS) and maximum reflection (NIR) parts of the spectra are more damped. 

Especially in the VIS the spectra differ significantly. This part of the electromagnetic 

spectrum is particularly affected by hazy atmospheric conditions (Kumar et al. 2003), 

and atmospheric correction of the scenes phased problems. For the last satellite 

acquisition at the beginning of May, the measured spectra fit to the in-situ 

measurements. 
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4.2.2 Spectral Vegetation Indices and the Relationship with Crop 

Parameters* 

In the following section the relationships between crop variables and different types of 

reflectance indices are presented. Among them are single band reflectance, standard 

vegetation indices with broad and narrow bands and narrow band Normalized Ratio 

Index (NRI), involving all possible two-band combinations. However, the focus is set on 

the NRI and its validation.  

 

Table 4-4: Coefficient of determination (R
2
) between ALI broad band, Hyperion 

narrow band vegetation indices and measured agronomic parameters (Koppe et al. 

2010a). 

Sensor 

Index ALI band / Hyperion wavelength R
2
 

 Λ1 Λ2 Λ3 Biomass 
Plant 

N 

Plant 

height 

Hyperion 

single band 

 732   0.51   

 732    0.40  

 732     0.52 

ALI broad 

band 

SR Red (4) NIR (5)  0.35 0.25 0.41 

NDVI Red (4) NIR (5)  0.4 0.28 0.43 

OSAVI Red (4) NIR (5)  0.55 0.21 0.49 

TVI Red (4) NIR (5) GREEN (3) 0.69 0.32 0.64 

Hyperion 

narrow band 

SR 671 803  0.41 0.3 0.41 

NDVI 671 803  0.41 0.29 0.4 

OSAVI 671 803  0.58 0.22 0.56 

TVI 671 803 549 0.71 0.33 0.65 

Hyperion best 

waveband 

combinations 

NRI1 874 1225  0.83   

NRI2 732 1305   0.81  

NRI3 763 1225    0.79 

4.2.2.1 Single Band Relationship with Crop Parameters 

As a first analysis, spectral reflectance of the 158 Hyperion individual bands was 

correlated with biophysical parameters. Figure 4-6 shows the correlation (r) between 

narrow Hyperion bands and standing biomass. High negative correlation values occur 

                                                      

* This section and sub-sections are an extended version of the articles: Koppe et al. (2010a); Koppe et al. 
(2012). 
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in the blue and in the red bands, but also between 2000 and 2400 nm. The blue and 

red part of the spectrum is characterized by high energy absorption due to the 

presence of chlorophyll. The absorption increases with increasing amount of 

chlorophyll (increasing LAI). In the red edge portion the reflection of green vegetation 

increases dramatically from red to the near infrared as chlorophyll absorption is not 

present. Related to this increase in reflection, correlation values change from negative 

to positive reaching highest r at the red edge inflection point (732 nm) as well. At the 

near infrared shoulder the correlation stays nearly constant. A minor decrease in r 

occurs near the moisture trough at 950 to 1040 nm. Beyond 1100 nm the correlation 

between single band reflectance and biomass decreases since also the amount of 

energy reflected off the crop canopy decreases.  

 

 

 

Figure 4-6: Correlation coefficient (r) between Hyperion single band reflection and 

biomass in the growing season of 2006. 

4.2.2.2 Standard Broad Band and Narrow Band Vegetation Indices 

Relationship of standard vegetation indices with crop parameters is well described in 

the literature. EO-1 ALI broad band indices serve as benchmark indices for comparison 

with narrow band standard vegetation indices and NRI, with the last two categories of 

vegetation indices based on EO-1 Hyperion data.  
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The relationships of the different vegetation index types (broad band and narrow 

band) with the three crop parameters showed different results. Best individual R2 

values for broad band and narrow band standard vegetation indices were achieved for 

TVI (Table 4-4). The narrow band TVI has high coefficient of determination values for 

aboveground biomass (R2 = 0.71) and plant height (R2 = 0.65), but low values for plant 

nitrogen concentration (R2 = 0.33). NDVI generally has lower R2 values than TVI. 

Narrow band vegetation indices did not improve the relationships significantly 

compared with broad band vegetation indices. None of the evaluated broad or narrow 

band vegetation indices performed well for plant nitrogen concentration, with R2 being 

less than 0.35 (Table 4-4).  

4.2.2.3 Relationship of Narrow Band Normalized Ratio Indices (NRI) with Crop 

Parameters 

A total number of 9870 narrow band NRIs according to equation 3.4 were calculated 

from multi-temporal Hyperion data acquired in 2006. Correlation matrices between 

each agronomic parameter and two-band vegetation indices were constructed. In each 

correlation matrix, the wavelengths of the two bands were plotted on the x- and y-

axes and the classified coefficients of determination (R2) between crop parameters and 

all possible two-band vegetation indices were plotted on a colour scale (Figure 4-7). 

The correlation matrices are only displayed below the diagonal because R2 values are 

symmetrical. The R2 values for aboveground biomass and plant nitrogen concentration 

ranged from 0.08 to 0.83, and several clusters of high R2 values could be recognized in 

the two matrix plots (Figure 4-7). Wavebands used for broadband NDVI calculation 

from the red and near infrared spectrum (which match red and near infrared ALI 

bands), are labelled in the matrix plot. This area shows very low correlation 

coefficients R2 compared to waveband pairs forming the clusters with high correlation 

coefficients. Best center wavelengths of band 1 and band 2 for these patches for 

aboveground biomass estimation were extracted from the matrices and listed in Table 

4-4. Following the same approach, best waveband pairs and bandwidth were 

determined for the estimation of plant nitrogen concentration (Figure 4-7b; Table 4-4). 

Similar to aboveground biomass, best waveband centers were not located in the R and 

NIR spectrum. The best values of NRIs for aboveground biomass, plant N concentration 

and plant height were 0.83, 0.81 and 0.79, respectively. The selected wavebands were 
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centred at 874, 732 and 763 nm for band 1, and 1225 and 1305 nm for band 2 with 

bandwidth between 10 to 30 nm (Table 4-4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Coefficient of determination (R
2
) between Hyperion narrow band 

vegetation indices calculated from all possible two-band combinations and biomass 

(a) and total nitrogen content (b) (Koppe et al. 2010a). 

Similar approaches for different types of vegetation cover showed that band 

combinations of the red edge (Zhao et al. 2007) as well as NIR or SWIR (Mutanga & 

Skidmore 2004, Xavier et al. 2006) provided a close relationship with LAI and 

aboveground biomass. These approaches performed much better than spectral bands 

used in standard vegetation indices. Based on the best waveband combination, a 

model for biomass estimation was established according to equation 3.19 which 

resulted in a coefficient of determination (R2) of 0.83: 

 

           (4.1) 

 

The scatterplots of narrow band NDVI and NRI is depicted in Figure 4-9.  

4.2.2.4 Validation of NRI model 

In order to prove the stability of the established hyperspectral model for EO-1 

Hyperion data during the 2006 growing season (see equation 4.1) a validation analysis 

using EO-Hyperion data for the 2007 growing season was performed. For this, NRI was 

calculated based on the same waveband combination (875 nm and 1225 nm) that 

01.0)(25.0 20062006 −= NRIBIOM

Standard NDVI 

(a) (b) 
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were used in 2006. The resulting NRI values of acquired hyperspectral images in 2007 

(April 11, April 21 and May 6) were used to predict biomass at the acquisition dates. 

The applied equation is the model developed in 2006 (equation 4.1): 

 

           (4.2)

      

The validation results of the model are divided into mono-temporal and multi-

temporal approach (see Table 4-5). For the model based on a single date, the 

correlation coefficients R2 vary between 0.19 and 0.58 with relative errors between 

45% and 18%.  

The multi-temporal validation result of the model is shown in the 1:1 plot in Figure 4-8. 

The model developed for 2006 is able to predict also accumulated biomass in 2007, 

which is confirmed by a high coefficient of regression of the 1:1 plot (R2 = 0.84). 

Furthermore, the result is clustered into three separate point clouds that correspond 

to the different acquisitions of Hyperion data. The acquisitions from April 11 and April 

21 show a slight underestimation of the biomass in comparison to the last acquisition 

of May 6.  

 

Table 4-5: Coefficient of determination (R
2
) between biomass and NRI for the 

validation model based on multi-temporal and mono-temporal data (modified after 

Koppe et al. 2012). 

Year Input data 

typ 
Input acquisitions 

(date) 
n*  R

2 RMSE 

(kg/m
2
) 

RE 

(%) 

2007 hyperspectral 

Apr 11, Apr 21, May 6 113 0.84  0.12 17.2 
Apr 11 41 0.19 0.18 45.5 
Apr 21 33 0.58 0.18 29.8 
May 6 39 0.42 0.22 18.2 

*n – number of used samples  

 

This could be due to atmospheric distortions (haze) that affect the reflection from the 

surface. The difference between the used Hyperion wavebands (875 nm and 1225 nm) 

for the April scenes is lower than for field measurements (Figure 4-5). This lower 

waveband difference results in a lesser NRI that leads to an underestimation of the 

standing biomass in equation 4.2.  

01.0)(25.0 2007)(2007 −= NRIBIOM pred
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In spite of haze influence during the acquisition of EO-1 Hyperion data in April, the 

stability of the model established for 2006 and applied to 2007 can be regarded as 

applicable for winter wheat on regional scales in the North China Plain. Changing the 

scale from regional to local scale, a successful inter-year validation of the developed 

regression model using field spectrometer data from two years and different cultural 

conditions was performed by Li et al. (2008). These observations suggest an across 

scale validity of hyperspectral crop parameter estimation models in the North China 

Plain. 

 

Figure 4-8: Measured versus predicted aboveground biomass using the regression 

model described in equation 4.2 (Koppe et al. 2012). 

4.2.3 Discussion of Multispectral and Hyperspectral Data for Winter 

Wheat Monitoring* 

4.2.3.1 Processing of EO-1 Data 

For the presented study Hyperion and ALI Level 1R data were used which are 

radiometrically corrected with no geometric correction applied (USGS 2007). This low 

level of correction assures no resampling and gives the possibility to bear a complete 

pre-processing chain to retrieve surface reflectance from at-sensor radiance measured 

with ALI multispectral and Hyperion hyperspectral sensor. Several authors (Biggar et al. 

2003, Datt et al. 2003, Coops et al. 2003) pointed out the importance of correction of 

                                                      

* This section and sub-section are an extended version of the article: Koppe et al. (2010a). 
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artefacts or atmospheric effects. A full processing chain for EO-1 Hyperion data was 

described by Khurshid et al. (2006). In comparison to Khurshid et al. (2006), the 

misregistration of VNIR and SWIR wavebands, which include spatial and angular shift, 

has been solved by a co-registration of the wavebands from the two VNIR and SWIR 

detectors. Due to the lack of detailed atmospheric information, the atmospheric 

correction was performed with a standard atmosphere implemented in FLAASH (ENVI). 

The applied atmospheric correction resulted in a good agreement with ASD field data 

that were taken close to satellite overpass. Similar correction method and observed 

results were presented by Datt et al. (2003) as well as by Chen & Tian (2006). 

4.2.3.2 Single Band and Standard Vegetation Indices 

In the first step, a correlogram of single EO-1 Hyperion bands against crop variable was 

constructed. The correlogram shows the individual performance of narrow bands by 

relating to crop variables. This is not a normalized index that can contribute to crop 

parameter estimation; however, it is an indication about sensitivity of individual bands 

and can be used for the reduction of the number of input bands for band combination 

calculation (Hansen & Schjoerring 2003). 

Subsequent to this, three different two-band indices (SR, NDVI, OSAVI) and one three-

band index (TVI) were compared in order to evaluate the capability of broad band and 

narrow band standard vegetation indices for crop parameter estimation. The narrow 

bands of Hyperion Sensor for these indices were centered at green (559 nm), red (681 

nm) and near infrared (803 nm) with a bandwidth of 10 nm. The corresponding ALI 

broadband channels were 4, 5 and 6 with a bandwidth between 40 and 80 nm.  

Comparing vegetation indices based on different sources (ALI and Hyperion), only a 

slight improvement of hyperspectral narrow bands was observed for the three 

measured crop variables compared to broad band indices. Similar results were found 

by Zhao et al. (2007) and Lee et al. (2004), who tested the ability of different 

multispectral airborne and orbital sensor data for LAI prediction in an agricultural 

environment. Also Hansen & Schjoerring (2003) found a slightly improved performance 

of narrow bands for biomass and nitrogen status of wheat crops. On the contrary, 

Broge & Mortensen (2002) and Broge & Leblanc (2000) showed that hyperspectral 

vegetation indices did not perform better than their simulated multispectral 
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counterparts. Whether broad or narrow bands were used, the standard vegetation 

indices had limited capability for crop parameter estimation due to canopy closure at 

high plant densities, which was also observed in the recent study. This saturation 

effect of standard vegetation indices at high canopy cover is evident for multispectral 

space based imaging (Tucker 1979), airborne hyperspectral imaging (Oppelt & Mauser 

2004), and ground-based measurements. Due to this asymptotic saturation of spectral 

reflectance in the course of the vegetation period, standard vegetation indices become 

less effective measurements (Mutanga & Skidmore 2004). The small increase of the 

slope in Figure 4-9a for standard NDVI indicates the asymptotic saturation effect for 

biomass estimation. To overcome the saturation effect, narrow band vegetation 

indices based on different parts of the electromagnetic spectrum can be used in 

biomass modelling.  

4.2.3.3 Narrow Band Normalized Difference Indices 

The performance of calculated band ratios that are widely used and readily adaptable 

in vegetation studies (Schowengerdt 2007, Gong et al. 2003, Thenkabail et al. 2000) 

were evaluated. The results in Figure 4-7 show, that the two-band combinations 

respond in a wide range to variations in biomass. High coefficients of determination 

(R2) between narrow band indices and aboveground biomass are mainly clustered in 

the red edge, NIR and the SWIR spectra domain. These wavebands are centered in the 

red edge (720 nm), the NIR peak (874 nm) as well as in the SWIR (1225 nm and 1750 

nm) with varying spectral range between 10 and 180 nm. Similar findings for biomass 

estimation are summarized in Thenkabail et al. (2004) and Mutanga & Skidmore 

(2004). These spectral regions of the NIR peak and the SWIR in the electromagnetic 

spectrum are among others sensitive to plant water content (Kumar et al. 2003), and 

consequently they have a close relationship to biomass. The best waveband 

combination for estimating aboveground biomass was obtained using wavebands 

centered at 874 nm and 1225 nm. Similar approaches in different types of vegetation 

cover showed, that band combinations from the red edge (Zhao et al. 2007, Mutanga 

& Skidmore 2004) as well as NIR and SWIR (Mutanga & Skidmore 2004,  Xavier et al. 

2006) had a close relationship to LAI and aboveground biomass and performed much 

better than spectral bands used in standard vegetation indices. This could be 
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confirmed by the much stronger positive increase in slope of the scatter plot for NRI 

than for the standard NDVI (Figure 4-9b).  

Analogue to biomass, the regression analysis between NRI and plant nitrogen 

concentration resulted in a wide range of R2 values. The best correlation was achieved 

by combining bands from the red edge region (702 to 732 nm) with wavebands 

centred between 1138 and 1332 nm, which is in accordance to findings of (Smith et al. 

2003). In addition to this, several authors showed that the VIS region had a close 

relationship to plant nitrogen concentration (Daughtry et al. 2000, Nguyen & Lee 

2006). It is well known that canopy spectral reflectance of the VIS (400 to 700 nm) is 

mainly governed by foliar pigments such as chlorophyll which is induced by plant 

nitrogen concentration (Kumar et al. 2003, Oppelt & Mauser 2004). In addition to the 

VIS region some authors proved a sensitivity of red edge (Strachan et al. 2002) as well 

as NIR (Hansen & Schjoerring 2003) for nitrogen status detection, which is coincident 

with the best wavebands used for NRI index calculation in our study. Furthermore, the 

study of Ferwerda et al. (2005) indicated significant differences in the estimation 

potential of indices for nitrogen concentration across different species.  

The inter-year validity of the Hyperion model was proven by applying the model 

established in 2008 to the acquisitions of 2009 (see Figure 4-8). In addition to the 

temporal validity on regional scale, Gnyp et al. (submitted) applied the NRI model to 

different scales. Experimental set-up included small experimental fields (ca. 4.5 m by 

7.5 m), large experimental fields (ca. 10 m by 15 m), small farming fields (ca. 1500 m2) 

and large farming fields of around 1 to 4 ha. Results indicated, that NRI can explain 

about 73% to 89% of the biomass variability of winter wheat on different levels using 

hyperspectral spectroradiometer data. Compared to this, the best performing broad 

band indices (REP, OSAVI, TCI and NDVI) were able to explain only 37% to 52% of the 

biomass variability by using spectroradiometer data. Both experiments, which belong 

to the same project, demonstrate the advantage of hyperspectral narrow band indices 

(NRI) in terms of spatial and temporal validity.  
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Figure 4-9: Scatterplot of (a) aboveground biomass against standard narrow band 

NDVI and (b) best waveband combination from NRI, 874 nm and 1225 nm (Koppe et 

al. 2010a). 

 

 

(a) 

(b) 
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4.3 Winter Wheat Monitoring with C-band* 

4.3.1 Temporal Backscatter Behaviour of Winter Wheat 

Averaged backscatter values of Envisat ASAR VV were extracted over crop fields in the 

test area. Figure 4-10 shows the temporal variation of winter wheat and the bare field 

backscattering coefficient σ0 of ASAR VV expressed in decibel. In the box plot, the 

center horizontal line marks the median of the sample and the length of each box 

shows the range of the central 50% of the sample. In general, as the crop grows the 

number of leaves and the stem height increases, resulting in a corresponding increase 

in ground cover. This causes an increase in volume backscattering due to the increase 

of canopy constituents of wheat. 

 
Figure 4-10: Temporal evolution for bare soil (green) and winter wheat (blue) of C-VV 

backscatter (Koppe et al. 2012). 

 

                                                      

* This section and sub-sections are an extended version of the article: Koppe et al. (2012). 
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At the beginning of the growing season in March, when stem height of wheat is about 

9 to 13 cm, the VV backscatter of wheat fields is close to the backscatter from bare 

soil. The backscatter from ploughed fields is still higher, since soil surface roughness is 

higher than for the cultivated fields. Similar observations were described by McNairn 

et al. (2009) during the beginning of the growing season. At this growing stage, the 

backscatter is mainly driven by soil moisture and roughness parameters. When the 

crop is in the jointing stage on April 13 (stem height between 30 and 40 cm), the 

backscatter is significantly lower than at the tillering stage (decrease of about 4.5 dB), 

indicating a strong attenuation of the soil’s backscatter by the wheat plants. As the 

wheat continued to grow through the stages jointing to ripening, the observed 

backscatter gradually increased by about 3 dB. This suggests a change in the dominant 

scattering mechanism from soil and roughness backscattering to canopy volume 

scattering, which is in coincidence with the findings of Mattia et al. (2003), who 

mentioned a change in scattering mechanism from soil to volume scattering for 

incidence angles greater than 40° of fully developed wheat. Also an Integral Equation 

Method (IEM) simulation carried out by Stiles et al. (2000) verified a lower sensitivity 

of higher incidence angles of VV polarization to soil properties. 

In comparison to our observation of an increase in backscatter that begins at a stem 

height of 35 cm for VV polarization, Karjalainen et al. (2008) reported a gradual 

increase in backscatter for cross-polarization images that does not begin until a stem 

height of 50 cm is reached.  

At the end of the growing season, the moisture content of plants decreases, while the 

contribution of soil and surface roughness upon the SAR backscatter increases. As the 

last Envisat data was acquired during the ripening stage of the plants, the increase in 

backscatter from mid of May (heading) to beginning of June (ripening) is also 

influenced by the soil component. Looking at the backscatter curve of bare fields, a 

similar increase as for the crop canopy is visible.  

The results of field data and backscatter analysis show that the peak of volumetric 

moisture within the canopy (jointing stage) did not necessarily coincide with the peak 

in backscatter (see Table 4-1 and Figure 4-10). Besides volume scattering, the 

interactions between ground and stem for fully developed wheat seem to have an 
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important contribution to the cumulative backscatter value, as also mentioned by 

Picard et al. (2003). 

Considering the whole vegetation period, the range of backscatter of about 3 dB is 

lower than measured by Karjalainen et al. (2008), but comprehensible if findings by 

McNairn et al. (2004) are taken into account. They detected a higher sensitivity of HV 

polarization to crop condition than for VV polarization.  

During the growing season, the volumetric soil moisture was relatively constant 

(between 15% and 30%), thus the change in backscatter of about 3 dB on average of 

the test parcels was most likely caused by the accumulation of aboveground biomass. 

Despite the usage of different orbits with slightly different local incidence angles, a 

dependence of the backscattered signal on incidence angle could not be observed. A 

strong impact on radar backscatter based on incidence angle differences of about 5-6° 

was reported by Ban & Howarth (1998).  

4.3.2 Relating Crop Condition to Envisat ASAR 

The use of microwave data for crop monitoring is particularly attractive because of its 

weather and daylight independence on the one hand and its interaction with canopy 

structure as well as dielectric properties on the other hand. The sensitivity of Envisat 

ASAR signals was analysed as a function of wheat field characteristics. Based on the 

averaged backscatter values per parcel and the corresponding measured biomass (dry 

matter) values, a linear regression equation was derived. The bivariate correlation 

based on linear regression between SAR backscatter and standing biomass resulted in 

R2 = 0.75 (Figure 4-11). The equation of the regression is:  

 

           (4.3) 

The coefficient of determination suggests that Envisat ASAR multi-temporal imagery is 

sensitive to crop condition during the growing season of winter wheat. The statistical 

values are given in Table 4-6.  

 

 

3.16)(36.1 20062006 −= VVBIOM
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Table 4-6: Coefficient of determination (R
2
) between biomass and Envisat ASAR 

backscatter (Koppe et al. 2012). 

Year 
Input data 

typ 
Input acquisitions 

(date) 
n* 

Correlation 

coefficients 

(R
2
) 

RMSE 

(kg/m
2
) 

RE  

(%) 

2006 SAR 
Apr 13, Apr 29, May 

10, June 3 
23 0.75 0.24 25.5 

* number of samples 

 

Figure 4-11: C-VV backscatter related to aboveground biomass (Koppe et al. 2012). 

4.3.3 Discussion of C-band SAR Data for Wheat Monitoring 

In an agricultural environment, the monitoring and prediction of biomass and grain 

yield is one of the most important objectives. Multi-temporal Envisat ASAR VV data at 

an incidence angle range from 39° to 42° were analysed as a function of wheat 

phenological stage. The results show a significant sensitivity to canopy developing 

stage and a general increasing trend in backscattering with winter wheat growth. 

During the vegetation period, soil moisture remained relatively constant (at least from 

one acquisition to another), consequently changes in backscatter are due to crop 

growth and less influenced by varying soil moisture. Figure 4-11 show that biomass is 

significantly positively correlated with C-VV backscatter over the growing season with a 

dynamic range of around 3 dB. For the relationship of C-VV backscatter to biomass, 

Mattia et al. (2003) also found an increase in backscatter following the increase in 

biomass, but only until the heading stage. After the heading stage, backscatter again 
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decreases which was explained by a change in canopy geometry during heading and 

booting stage (McNairn et al. 2004). At the same phonological stages, Liu et al. (2006) 

reported a negative correlation of backscatter with biomass and explained this 

phenomenon also with changes in crop canopy. However, observations of Karjalainen 

et al. (2008) also show a congenerous increase of backscatter with an accumulation of 

wheat biomass until the heading stage as was observed in this study. Beside the 

positive multi-temporal relationship between biomass and VV backscatter, it is also 

obviously that in this case microwave is not suitable for prediction of biomass at a 

given date (mono-temporal). This may be due to fewer sub-plots which reduce the 

random sample and dynamic biomass range. 

Furthermore, it is worth mentioning, that there are unsolved problems limiting the 

value of the results achieved by Envisat ASAR data. First, the resolution of Envisat ASAR 

is very low compared to the field size, thus only large fields can be included in the 

analysis. Secondly, the analysis was performed with a small number of fields in a 

relatively homogenous agricultural environment. Within-field and inter-field variation 

of crop parameters at a specific acquisition date was too low.  

4.4 Synergy of Hyperspectral and C-band SAR Data for Crop 

Parameter Estimation* 

For a combined approach, the acquired hyperspectral and microwave data were used 

for modelling of biomass. This was done by considering only image pairs from EO-1 

Hyperion and Envisat ASAR that were acquired within one week to ensure similar 

biophysical parameters of the fields in both images of the pairs. The correlation is 

based on a linear regression of wheat crop parameters against ASAR VV backscatter 

and NRI calculated from satellite data in 2006. For NRI, the best combination of 

wavebands (874 nm and 1225 nm) determined in chapter 4.2.2.3 and for ASAR 

backscatter, the calibrated values to sigma nought were used. The combined modelling 

of NRI and SAR backscatter was according to the following linear regression:  

           (4.4) 

                                                      

* This section is an extended version of the article: Koppe et al. (2012) 
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where BIOM(Hyp/ASAR) is the combined biomass estimate from optical and SAR image 

analyses, NRI is the normalized ratio index derived from equation 3.4, VV is the ASAR 

C-VV backscatter and a, b and c are constant parameters of the model.  

 

In terms of bivariate analysis, best results for regression were achieved with narrow 

band vegetation indices derived from EO-Hyperion data (R2 = 0.83). Lower coefficients 

of determination were achieved by using Envisat ASAR backscatter for relating with 

crop parameters for the 2006 SAR campaign (R2 = 0.75). If the models derived from 

combined SAR and hyperspectral data based on multiplication, the biomass prediction 

could be improved to R2 = 0.90 (RMSE 0.81 kg/m2). The applied equation is:  

 

           (4.5) 

 

The statistical results for biomass retrieval of the combined model are listed in Table 

4-7. The results show that crop parameters can be predicted by remotely sensed data 

from the different acquisition systems. Similar close relationships between crop 

parameters and satellite data has already been established by Thenkabail et al. (2004) 

and Xavier et al. (2006) for hyperspectral data and furthermore by Baghdadi et al. 

(2010) and McNairn et al. (2004) for SAR data. 

 

Table 4-7: Coefficient of determination (R
2
) between biomass and Envisat ASAR 

backscatter (Koppe et al. 2012). 

Year Input data typ 
Input acquisitions 

(date) 
n* 

Correlation 

coefficients 

(R
2
) 

RMSE 

(kg/m
2
) 

RE 

(%) 

2006 
hyperspectral /  

 SAR 
April 19, May 6/  
April 13, May 10 

25 0.9 0.81 12.2 

* number of samples 

 

Beside the multivariate analysis based on multiplication, there are other types of 

combination that were not addressed. In this study, the multivariate analysis should 

only demonstrate the improvement of prediction power based on multiple data 

sources. Similar improvements for yield prediction were achieved by combining time 

series from SAR and optical data (Liu et al. 2006).  

68.2)(16.0)(73.2)/( ++= VVNRIBIOM ASARHyp
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To achieve high prediction accuracy of wheat’s crop parameters based on a single 

source (ASAR or Hyperion) and combined analysis of SAR and optical data, it is 

important to select suitable dates for satellite data acquisition. Based on the satellite 

multi-temporal and multisource data analysis as well as on analysis of field 

spectrometer data (Li et al. 2008), certain acquisition periods of SAR and hyperspectral 

data for winter wheat in the North China Plain seem to be convenient. For the 

acquisition of Hyperion data, the optimized acquisition window is from the beginning 

of April after tillering to the heading stage before saturation effect of reflectance 

occurs and flowering begins. In comparison to multispectral imagery, hyperspectral 

data can improve the performance early and late in the season (Xavier et al. 2006), 

which enlarges the acquisition window (Strachan et al. 2002). The use of hyperspectral 

narrow band vegetation indices can reduce saturation effects at the end of the 

growing season, which was confirmed for winter wheat by Koppe et al. (2010a). For 

SAR data, observations suggest that a relationship between backscatter and crop 

parameters can be established between jointing and heading/flowering. Almost similar 

optimal temporal range from tillering to heading stage for crop parameter estimation 

is reported by Mattia et al. (2003) and Picard et al. (2003).  

4.5 Polarimetric Rice Monitoring with X-band 

The polarimetric parameters for rice crop monitoring are described and discussed 

based on the image series of 26°. For completeness, in Appendix A.4 polarimetric 

parameters for 26° and 46° for rice and non-rice areas are comparatively depicted. 

4.5.1 Power: Backscattering Signature and Ratio 

The acquisition period of TerraSAR-X starts one month after transplanting, 

contemporaneously with the field campaign. Because of this, no acquisition at the 

early stages after transplanting the seedlings is available. The backscatter signatures of 

HH and VV co-polarization have a unique pattern that depends on the growth stage of 

the plants. Figure 4-12 and Figure 4-13 illustrate the temporal evolution of the 

backscattering coefficient sigma nought (σ0) of the rice fields at the X-band as a 

function of number of days after transplanting at HH and VV polarization. For each 
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acquisition, the backscatter values of TerraSAR-X were extracted over paddy rice fields 

and averaged at plot level.  

4.5.1.1 Incidence Angle Differences 

For comparison, the backscatter signatures of the different incidence angles are shown 

in Figure 4-12. The figure (a) shows a steep incidence angle of 26° acquired in 

ascending mode, figure (b) depicts a medium incidence angle of 36° (descending) for 

SM and 39° (ascending) for HS and figure (c) shallow incidence angle of 46° 

(ascending).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-12: Mean temporal backscattering coefficient (sigma nought) for different 

incidence angles of VV and HH of rice during the vegetation periods in 2009 and 

2011. (a) SL, 26°. (b) HS, 39° and SM, 36°. (c) SL, 46°.  
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Figure 4-13: TerraSAR-X Spotlight images at HH (top), VV (down) at three acquisition 

dates in 2009 (modified after Koppe et al. 2013).  

The steep incidence angle shows a high dynamic range for both polarization (7.5 dB for 

HH and 5 dB for VV) compared to 3 dB for HH and 4 dB for VV at shallow incidence 

angle. A higher dynamic range enables a better differentiation of growth status or 

growth problems of different parcels.  

4.5.1.2 Typical Backscattering Signature*  

To ease subsequent general description of backscattering signature of rice, detailed 

characterization is based on the 2009 acquisitions (39°). In general, the backscattering 

from the paddy rice field before transplantation is close to the noise level (between 18 

and 21 dB) for both polarizations. Due to the flooded fields, the incident waves are 

scattered specularly away from the sensor. After transplantation, the backscattering 

coefficient of HH and VV increases up to DAT 46 with a successive decrease until DAT 

80 (heading stage). From DAT 80 (heading stage) to the last acquisition, a second 

increase in σ0 can be observed. For all acquisitions, the backscattering coefficient of HH 

is higher than for VV. Through the whole vegetation period, the HH polarization 

provides a higher backscatter than the VV channel. From the first to the second 

acquisition, a significant increase in σ0 for both polarizations can be observed. The age 

of the rice plants at the maximum backscattering coefficient is between DAT 40 to 50 

and the height is around 55 cm. Although height and the biomass of the plants 

increases further after DAT 50 (Table 4-2), the backscatter of both polarizations 

decreases until DAT 80, whereas the slope of both polarizations is almost the same. 

                                                      

* This section is an extended version of the articles: Koppe et al. (2011); Koppe et al. (2013). 
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The backscatter from the fields is lowest at around DAT 70 to 80 for VV and HH. The 

paddy fields are very dark and the dams separating the parcels are clearly visible due 

to double bounce scattering from the water – dam interaction (see the two central 

TerraSAR-X images in Figure 4-13 compared to the left ones). With the beginning of 

the ripening stage (later than DAT 80), the increase in biomass of stems and leaves 

stopped and the plants get drier. Also the orientation of the leaves changed from 

mostly vertical to a random distribution. Coinciding with these changes in the canopy 

of the rice fields, the decrease in backscatter of both polarizations stopped. At the last 

acquisition, a slight increase in backscatter can be observed. This increase is more 

obvious at VV polarization than at HH.  

4.5.1.3 Co-pol Ratio (HH/VV) 

Additionally to the investigation of the backscattering power of HH and VV, also the 

ratio of the power (HH/VV) was analysed as a function of days after transplantation. 

Figure 4-14 shows the evolution of co-polar ratio from tillering to ripening stage at 26° 

incidence angle. The ratio increases from the first acquisition at tillering to booting 

stage to more than 5 dB, whereas the largest difference between minimum and 

maximum is around 4 dB. The increase of the ratio is coincident with increasing 

backscatter of HH and VV, whereas the maximum of the ratio is reached later at the 

booting stage. The strong increase of the ratio is attributable to the presence of double 

bounce reflection and the greater VV extinction due to the vertical orientation of the 

rice plants. After this, the ratio decreases down to a value range between 2 to 3 dB at 

the beginning of the ripening stage. At the last acquisition the value range stays 

constant and there are no significant changes.  
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Figure 4-14: HH/VV ratio of six rice parcels as a function of time at 26° incidence 

angle.  

4.5.2 Correlation: Polarimetric Coherence and Phase Difference 

Correlation between the co-polar channels HH and VV is shown in Figure 4-15. 

Unfortunately, there is no acquisition at the flooded stage and the early beginning of 

the vegetative stage. During the flooded stage surface scattering is the dominant 

scattering mechanism of rice fields. This specular reflection, which occurs also at open 

water surfaces in the study area at any time, is characterized by a high polarimetric 

coherence between HH and VV. Coherence values of water surfaces are above 0.7, 

depending on the roughness of the water surface. From the flooded stage the 

coherence drops down and remains constant within the value range between 0.3 and 

0.5 with no significant variation due to changing phonological stage. Low coherence 

between the co-polar channels is caused by the strong attenuation of the VV 

backscatter compared to HH backscatter (differential extinction) (Lopez-Sanchez et al. 

2011).  

The co-polar phase difference of HH and VV is also shown in Figure 4-15. For a flooded 

surface, the phase difference is close to zero due to dominating specular reflection 

which is associated with no time delay between the HH and VV phase (evaluated on 

open water surfaces in the study area). From tillering on, the phase difference drops 
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continuously to its minimum of around -30 degrees. Differential extinction causes a 

phase delay and hence a phase difference other than zero. Interpreting this behaviour, 

it can be stated that double bounce scattering is dominating and the contribution of 

surface scattering is reduced. After booting stage the phase difference values increase 

and approach zero value finally. Increasing trend in phase difference is coincident with 

decreasing backscatter; both can be attributed to random volume scattering that 

dominates over double bounce because of the increasing leaf coverage.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-15: Co-polar phase difference and coherence of six rice parcels as a function 

of time at 26° incidence.  

4.5.3 Polarimetric Decomposition: Alpha and Entropy 

Based on the eigenvector decomposition, alpha and entropy are calculated according 

to chapter 3.2.3.4. Evolution of alpha and entropy is shown in Figure 4-16 as a function 

of time. The signatures of entropy and alpha show a similar behaviour during the 

vegetation period. They decrease from tillering to booting stage. After the depth point 

at booting stage, entropy and alpha value increase to ripening. Entropy values for open 

water surfaces (flooded stage, not covered by an acquisition) are generally low, since 

there is only one scattering mechanism from the water surface (surface scattering). 

Also alpha angle is very low (close to zero), which is typical for surface scattering.  

With emerge of the plants, entropy jumps above 0.8 and decreases subsequently with 

further plant development. The high entropy at tillering indicates that more than one 
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scattering mechanism contributes to total backscatter. The identified scattering 

mechanisms are surface and double bounce scattering from the surface-stem 

interaction. The alpha angle of around 45° indicates a dipole-like scattering at tillering, 

whereas with the presence of strong double bounce scattering one could expect a 

higher alpha value. Minimum values of entropy (0.55) and alpha (20°) are reached at 

booting stage. With the beginning of the reproductive stage the Entropy increases 

again until flowering as a consequence of random volume scattering. From flowering it 

remains constant to ripening.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16: Co-polar eigenvector decomposition (alpha and entropy) of six rice 

parcels at 26° incidence.  

4.5.4 Correlation Analysis between Backscattering Coefficients and Plant 

Variables* 

To better understand backscattering of X-band microwaves, we conducted a 

correlation analysis between TerraSAR-X derived σ0 (2009 data) and accumulated 

biomass. As already mentioned, microwave backscatter is not only dependent on one 

parameter, but rather a function of various parameters from soil and vegetation. In the 

case of paddy rice fields, we can simply assume that backscatter from the background 

(flooded surface) is constant. To investigate the different scattering layers inside the 

vegetation canopy, the plants were separated into the main parts (stem, leaf, and 

head), which is important for interaction with microwave radiation. Since backscatter 

                                                      

* This section is an extended version of the article: Koppe et al. (2011); Koppe et al. (2013). 
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return is related to the physical parameters of the plant such as its orientation, 

dielectric constant and the number of scattering elements, a correlation should be 

meaningful between the backscatter and different plant elements (biomass of stem, 

leaf, and head). The regression analysis is established for single dates to observe the 

trend in degree of correlation from date to date for the different scattering layers, 

instead of a pooled data set with all dates. For this study, the degree of correlation 

between backscatter and the different vegetation layers (stem, leaf and head) at a 

certain growth stage is important to understand the interaction between microwave 

backscatter and rice phenology. Table 4-8 shows the correlation coefficients for 

biomass of the whole plant as well as for the separated layers stem, leaf, and head. 

The correlation coefficients were calculated for VV and HH backscatter of HS data and 

for the single polarization VV backscatter of SM data. 

For the first date, a significant correlation was found between HS data and the stem, 

whereas the correlation with the leaves is only slightly lower (for VV). For SM data, the 

correlation coefficients for all crop parameters are significantly lower. The lower 

correlation coefficients of SM data as compared to HS data could also have been 

influenced by heavy rain events before and during the SM acquisition. For the second 

acquisition, the correlation between backscatter and stem reduced for VV (HS) and 

remained relatively constant for HH polarization while correlation coefficients of both 

polarisations increased significantly for leaves. At 79 DAT, the stem contribution to 

total backscatter reached its minimum. The correlation coefficients of both 

polarizations are around 0.2 for HS data and 0.05 for SM data respectively. In 

comparison, the leaves show considerable correlation with backscatter values. At this 

stage, the crop heads are already fully emerged and show a correlation coefficient 

similar to the leaves. During the growing season, total biomass was most highly 

correlated with VV and HH backscatter DAT 46 (see Table 4-8). 

 



R
esu

lts 

1
1

0 

 

T
a

b
le

 4
-8

: C
o

rre
la

tio
n

 co
e

fficie
n

ts (R
2) b

e
tw

e
e

n
 b

a
ck

sca
tte

r (H
H

 a
n

d
 V

V
) a

n
d

 p
la

n
t 

v
a

ria
b

le
s, in

clu
d

in
g

 to
ta

l b
io

m
a

ss o
f th

e
 w

h
o

le
 p

la
n

t a
n

d
 th

e
 co

m
p

o
n

e
n

ts ste
m

, le
a

f 

a
n

d
 h

e
a

d
 fo

r H
S

 a
n

d
 S

M
 (m

o
d

ifie
d

 a
fte

r K
o

p
p

e
 e

t a
l. 2

0
1

3
).  

                                                    

  
DAT 35 (37) 

 
DAT 46 (48) 

 
DAT 79 (81) 

  
HS SM 

 
HS SM 

 
HS SM 

  
VV HH VV 

 
VV HH VV 

 
VV HH VV 

Stem R2 0.69 0.61 0.27 
 

0.51 0.60 0.41 
 

0.19 0.24 0.05 

 
RMSE (t/ha) 0.16 0.19 0.28 

 
0.37 0.28 0.42 

 
2.7 1.88 3.1 

 
RE [%] 18.9 20.7 38.5 

 
21.7 16.6 25.7 

 
55.6 38.9 85.5 

             
Leaf R2 0.67 0.56 0.25 

 
0.72 0.83 0.59 

 
0.68 0.74 0.60 

 
RMSE (t/ha) 0.16 0.20 0.30 

 
0.20 0.17 0.32 

 
0.33 0.28 0.37 

 
RE [%] 19.5 24.5 34.5 

 
16.5 12.5 22.8 

 
21.2 17.8 26.3 

             
Head R2 - - - 

 
- - - 

 
0.64 0.51 0.60 

 
RMSE (t/ha) - - - 

 
- - - 

 
0.22 0.26 0.23 

 
RE [%] - - - 

 
- - - 

 
17.8 20.5 19.8 

             
Total biomass R2 0.61 0.58 0.27 

 
0.64 0.80 0.51 

 
0.37 0.35 0.31 

 
RMSE (t/ha) 0.42 0.49 0.60 

 
0.44 0.32 0.56 

 
2.44 2.56 2.95 

 
RE [%] 24.6 27.5 37.5 

 
16.6 10.0 24.3 

 
31.5 32.2 37.3 
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4.5.5 Polarimetric Growth Stage Monitoring  

Based on the polarimetric analysis presented in this chapter, the polarimetric 

parameters are now evaluated for crop status monitoring. To cover most parts of the 

vegetation period at the vegetative phase but also at ripening, the time series of 26° of 

incidence is chosen for demonstration. For interpretation purpose, each acquisition is 

assigned to a dedicated phenological stage. The temporal distance between two 

acquisitions is at least 11 days (satellite repeat pass); this is why an acquisition date 

may not fit best to a certain phenological stage. Hence the acquisition of image data 

could have taken place in the transition zone between two phenological stages which 

has an influence on the values of the measured parameters.  

For prediction of crop growth stage from remotely sensed data, the ideal operational 

case would be based on a single acquisition. To rely on a single acquisition there 

should be a parameter defining crop status univocal. Looking at the different 

polarimetric parameters, most of them are equivocal in relation to phenological stage 

and not suitable for crop status prediction based on a single parameter. For example, a 

co-polar ratio of 3 dB could be assigned to tillering but also to heading. To overcome 

ambivalence of a single parameter, Lopez-Sanchez et al. (2011) suggested to combine 

parameters since the parameter combination provides an univocal definition of 

phenological stage. For the recent study, the parameters ratio, polarimetric coherence, 

polarimetric phase difference, entropy and alpha are combined to define a unique 

signature of phenological stage. Polarimetric coherence based on the magnitude of HH 

and VV is high (> 0.8) for open water surfaces. This is why it could be used as an 

indicator of flooded fields at the beginning of the vegetation period. For the remaining 

vegetation period, polarimetric coherence shows no significant variation and is 

therefore not suitable as classification parameter in this case. Backscatter of HH and 

VV is summarized as Power since HH and VV signatures run parallel. Power values have 

informative character. For classification only the mentioned parameters are 

recommended since they can be put into distinct intervals for classification. As a 

simplification for the recent study, all parameters are classified into three classes: low, 

medium and high. The assigned growth stages are: flooded (as no acquisition was done 

at flooding, the information was extracted from water surfaces at the first acquisition), 
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tillering, stem elongation, heading and ripening. For explanation, there is certain 

statistical variability in the different parameters due to the heterogeneity of the 

studied parcels and the processing of the satellite data. To generalize classification 

scheme, 20 parcels were averaged for each parameter at each growth stage. Figure 

4-17 shows the combination of the different parameters for the five defined growth 

stages. The respective parameters are relatively classified in low, medium and high 

values. 

 

Figure 4-17: Relating phenological stage of rice to polarimetric parameters. 

The flooded stage can be described with low power, alpha, entropy, ratio and high PPD 

since surface scattering induces a clear response of the mentioned parameters. Also 

the power of HH and VV is close to the noise level, whereas power at this stage can be 

very variable depending on the roughness of the water surface. Especially for steep 

incidence angles, the return can be very high from a rough water surface. Tillering 

identification is mainly based on eigenvector decomposition parameters, namely alpha 

and entropy. Both of them are very high, due to the presence of more than one 

scattering mechanism and double bounce return from the water-stem interaction. 

Additionally to these parameters, ratio is increasing with increasing differential 

extinction of co-polar channels and PPD is decreasing. Both of them were classified to 

medium value range. With the transition to the next growth stage, power increased to 



Results 

113 

 

maximum value and also ratio is close to its maximum. In relation to this, eigenvector 

decomposition parameters decreased to medium level and PPD reached its low mark. 

In the heading or reproductive stage, alpha and entropy drift to low values whereas 

PPD is increasing to medium level as a result of dominating random volume scattering. 

Last growth stage covered by an acquisition is characterized by high PPD, which 

increased from medium to its maximum from heading to ripening. Ratio is decreased 

to low mark since backscatter of HH and VV approach each other. The knowledge 

about the phenological development of rice and its expression in polarimetric 

parameters is valuable in terms of land cover classification (Appendix A.3) and growth 

stage monitoring.  

4.5.6 Discussion of Polarimetric Rice Monitoring* 

The backscattering behaviour of spaceborne X-band data as described above shows 

similarities with ground-mounted scatterometer data observed by Inoue et al. (2002) 

and Kim et al. (2000). Both studies mention a notably higher backscatter of HH 

compared to VV polarization during the growing season. This phenomenon can be 

explained by stronger attenuation of the vertical cylinders (stem and leaves) of the VV 

polarization case (Le Toan et al. 1989). The observed trend lines for HH and VV 

backscatter can be separated into three main parts: increasing trend up to 46 DAT, 

decreasing trend up to DAT 80 and an increasing trend again to the last acquisition. 

This dual-peak trend is incidence angle dependent; Kim et al. (2008) reported a clearer 

development of the two peaks for shallow incidence angles. The three main stages of 

the trend line are discussed consecutively.  

Before transplantation, the paddy rice fields are flooded and the backscatter in either 

HH or VV is very low close to the noise (noise level -19dB for TerraSAR-X and TanDEM-

X). Backscattered energy is depending on roughness of the surface, for a calm surface 

backscatter is lower than for a rough one. In the case of a calm surface, the water 

surface acts as a reflector for the incident radar wave (see Figure 4-19a). The increase 

in backscatter up to DAT 46 can be attributed to the fact that the main backscattering 

is contributed by the interaction between the stem and the underlying water surface 

                                                      

* This section is an extended version of the article: Koppe et al. (2011); Koppe et al. (2013). 
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(double bounce). Based on recorded power and calculated entropy values at the early 

vegetative stage, there are at least two types of backscattering namely the double 

bounce and the specular reflection from the water surface. A generalized ray tracing is 

depicted in Figure 4-19b. During the first growth stages, the plant structure remains 

mostly erectophile, i.e. the stems remain predominantly vertical and the leaves of the 

plant show a small insertion angle of around 5 to 25°. At this stage, the backscattering 

coefficient can be related to the amount and to the density (biomass) of the stems and 

leaves (see Table 4-8). The relationship is stronger at VV than at HH polarization. 

Considering backscattering behaviour and regression analysis, it can be stated that the 

higher the density of the vertical elements, the higher the double bounce return from 

the stem-surface interaction. Due to this double bounce scattering, σ0 increases with 

increasing plant density and with plant growth as mentioned before. The first peak in 

backscattering coefficient is reached at a plant height of around 50 cm (DAT 46) and a 

total biomass of around 2.7 t/ha. Compared to the final height of up to 100 cm and a 

final biomass of 14 t/ha at harvest, the multi-temporal relationship with biomass gets 

lost in the early growing season. Using the same frequency, the increasing trend and 

hence the multi-temporal relationship can be maintained up to DAT 70 (plant height 

ca. 70 cm) (Inoue et al. 2002) by using a steep incidence angle of 25° or up to DAT 55 

(60 cm) (Kim et al. 2000) by using an incidence angle of 10°. For steeper incidence 

angles, the peak in backscatter is reached later due to a shorter propagation path and 

lesser attenuation through the foliage (Woodhouse 2006). However, both studies are 

based on ground-mounted scatterometer measurements; an incidence angle of 10° is 

not feasible for spaceborne systems. Comparing the incidence angle differences in the 

present study, the previous statement by Woodhouse (2006) can be partially 

confirmed. For the steep incidence angle the increasing trend lasts not necessarily 

longer than for 46°, but for 26° there is at least a plateau (for HH a minor increase) at 

the peak backscatter. Compared to this, the shallow incidence angle is decreasing 

rapidly after reaching the peak (see Figure 4-12).  

A longer-lasting increase in backscatter with crop age was reported for C-band data by 

Choudhury et al. (2007) and Chakroborty et al. (2005). In each case the maximum 

backscatter was reached at DAT 80 with a plant height of around 80 cm. L-band data 
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investigated by Ishitsuka et al. (2004) showed a later saturation level, but along with 

that also a very low sensitivity to changes in rice crop lower than 50 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-18: Correlation coefficients of TerraSAR-X HS backscatter (VV and HH) with 

stem, leaf, head and total biomass at DAT 35, 46 and 79 (Koppe et al. 2013). 

After the peak in backscatter (DAT 46), the relationship with the stems (R2
VV = 0.51 and 

R2
HH = 0.61) in the recent study is lower than at the first acquisition. On the contrary, 

the correlation coefficients for leaves are higher than before (R2
VV = 0.72 and R2

HH = 

0.83). This could indicate a combined contribution from the surface-stem double 

bounce scattering volume scattering from the upper part of the canopy (see Figure 

4-18 and Figure 4-19c).  

Although increases in height and biomass of the plants go on after the maximum 

backscatter is reached at DAT 46, a decreasing trend of both polarizations can be 

observed until DAT 80. This decrease in backscatter is due to increasing leaf density, 

which reduces the contribution from the surface-stem double bounce scattering by 

attenuation and random volume scattering as already indicated by correlation 

coefficients of DAT 46. This phenomenon agrees well with the backscattering signature 

for X-band reported by Kim et al. (2008) for paddy rice fields measured with a ground 

mounted polarimetric scatterometer. The decrease in backscatter stops at DAT 79 with 

a backscattering coefficient of around -10 dB for HH and -14 dB for VV. At this time, 

the contribution from the stems is almost blocked, the stems are poorly correlated 

with VV (R2 = 0.19) and HH (R2 = 0.24) whereas the upper canopy (leaves) is still 
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correlated with microwave backscatter (R2
VV = 0.68 and R2

HH = 0.74). After 70 DAT, the 

rice heads emerge as a new scattering element in the upper part of the canopy and 

show a dominant contribution to the backscatter signal (see Figure 4-19d). The 

relationship between microwave backscatter and rice heads results in a significant 

correlation (R2
VV = 0.64 and R2

HH = 0.51); this relationship was also reported by Inoue et 

al. (2002). It is rational to infer this as a function of X-band wavelength size, which is 

almost similar to the size of rice heads.  

 

 

Figure 4-19: Backscatter behavior of rice at different growth stages. (a) Flooded rice 

field, DAT 0. (b) Early vegetative stage, DAT 35. (c) Late vegetative stage, DAT 46. (d) 

Reproductive stage, DAT 79. 

After the decreasing trend, the backscattering increases slightly for HH polarization 

and around 2.5 dB for VV polarisation. Kim et al. (2000) explained the second increase 

in backscatter by the desiccation of the plants. At this growth stage, stems become 

drier and the reduced water content causes less vertical extinction, especially for VV 

polarization. In contrary, Inoue et al. (2002) reported a causal relationship between the 

previous emergences of the heads in the upper canopy and an increase in the 

backscatter. Both explanations could be also applicable for the observations in the 
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recent study. This increasing trend in backscatter is more obvious at larger incidence 

angles, because the penetration depth is lower than for steep incidence angles and the 

heads are thought to be the major scattering elements. Another reason for the 

increase in backscatter could be orientation of the elements. While they are mainly 

vertically orientated until the beginning of August, the orientation becomes random 

during the ripening period and induces more scattering in the upper canopy. Evidence 

for this could be that at the last acquisition (DAT 101), both polarizations approach 

each other (see Figure 4-12). The attenuation of the VV polarization by the vertical 

orientation of the cylinders is reduced. The backscatter coefficient of the rice 

cultivation is not polarization dependent as before.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20: Left: Comparison of σ
0
 signature between problematic fields (blue 

dashed line) and average of the normal growing fields (red solid line) based on SM 

VV backscatter. Upper right: Photo of a problematic field. Lower right: Photo of a 

normally growing field (Koppe et al. 2013). 

During the vegetation period, growth problems due to cultivation practices were 

observed on two plots. These plots are outside the footprint of the HS data, so there is 

only a VV signature from SM available. In Figure 4-20, the blue line shows the course of 

signature of the problematic fields in comparison to mean signature of the other fields 

(red solid line). The backscatter signature of the affected plots is somehow shifted; the 

increase and decrease of backscatter are delayed of around 11 days due to the 

reduced plant growth rate. Also the maximum in backscatter is around 2 dB higher 

than the average of the other fields, which can be explained by a lower density of the 
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leaf layer. Both facts result in a longer validity of double bounce scattering and hence a 

later decrease in backscatter. Based on the multi-temporal backscatter analysis and 

the mono-temporal correlation analysis, it can be stated that the X-band backscatter is 

highly sensitive to changes in the canopy and the size of the dominant elements. This is 

confirmed by the course of correlation coefficients of VV and HH polarization with 

stem, leaf and head during the growing season (see Figure 4-18). At the first 

acquisition, the relationship is valid for stems and leaves; double bounce from the 

surface and vertical elements is the main scattering behaviour. 

But with the development of the plants and hence with increasing leaf density, the 

correlation coefficients are lower for stems and increase for the leaf layer. At the last 

acquisition date, correlation with stems is poor, whereas there is still a correlation with 

the leaf layer and also with the recently emerged heads (at least for VV polarization). 

Both elements are located in the upper part. Consequently, the X-band microwave 

backscatter for medium incidence angles of about 39° shows a strong sensitivity to 

changes in the upper canopy. This also confirms reports by Brisco & Brown (1998) for 

multi-frequency crop monitoring. They stated that compared to the lower frequencies 

(C- and L-band), X-band has a significant higher contribution from the upper canopy. 

Unfortunately, in our study there are no acquisitions before DAT 35. Especially at the 

early growing stages until the first peak, X-band appears to be more effective for crop 

parameter estimation such as plant height and biomass, since the temporal variation 

of backscatter is much higher than for C-band data, as reported by Kim et al. (2000). 

For L-band data, no temporal backscatter variation before DAT 40 was found, except 

for incidence angles greater than 50° (Inoue et al. 2002). All frequencies have in 

common that shallow incidence angles are better suited for monitoring of early growth 

stages and steep incidence angles show a later saturation level of σ0. Due to the 

different interactions with the canopy, multi-frequency space-borne data should be 

investigated more intensively concerning their complementary information content for 

rice monitoring as already done for sugarcane by Baghdadi et al. (2010).  

Comparing correlation coefficients for VV polarization of HS and SM, significant lower 

values for SM can be observed. Due to the small experimental test parcels of 150 m2 

that are further reduced by a buffer at the border to exclude mixed pixels, only around 

50 to 60 SM pixel per acquisition date can be used for analysis (pixel spacing: 1.25m). 
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For HS data, around 400 pixels per acquisition date can be used to analyse polarimetric 

backscatter (pixel spacing: 0.5 m). For this experimental configuration, the geometric 

accuracy with a residue of 1.6 m (RMSE), speckle and remaining mixed pixels can 

reduce the prediction accuracy of crop canopy parameters by SM images compared to 

high resolution HS data.  

4.5.6.1 Incidence Angle 

Incidence angle of SAR imaging is an important system parameter as the recorded 

signal gets sensitive to different properties of crop and soil.  

To evaluate the potential of different incidence angles for rice monitoring, the multi-

temporal time series were acquired between 26° and 46°. Comparing at first VV 

polarizations of HS and SM (see upper diagram in Figure 4-12) with a little incidence 

angle difference of 3°, it can be mentioned that the trend lines are very similar. Despite 

of the differences in look directions to the fields (ascending orbit for HS and 

descending for SM) and resolution the mutual deviation of the trend lines is lower than 

0.4 dB for each date. A much higher variation can be observed by comparing the 

signatures of 26°, 39° and 46°. The maximum backscatter values of the VV trend lines 

vary between -12.2 dB for 46° and -8.8 dB for 26°, respectively between -10 dB (46°) 

and -3.5 dB (26°) for HH polarization. The minimum backscatter values of the VV trend 

lines vary between -16.3 dB (46°) and -11.3 dB (26°), respectively between -13.3 dB 

(46°) and -8.5 dB (26°) for HH polarization (see Figure 4-12). Unfortunately, there is no 

acquisition before DAT 35 in 2009, so the very early rice growth cannot be described. 

In 2011, acquisition starts at DAT 29 and both time series have a time offset of only 

two days. The amplitude difference between first and second acquisition is around 6 

dB (VV) and around 8 dB (HH) at 26° and 1.5 dB (VV) and 3 dB (HH) at 46°. Expressed 

differently, the dynamic of the steep incidence angle within these 11 days is around 

three times higher than for the shallow one at both polarizations.  

4.5.6.2 Polarimetric Parameters 

In the recent study, the benefit of polarimetric parameters based on dual-polarimetric 

SAR data (co-pol phase difference, co-pol coherence, co-pol ratio and entropy-alpha 

decomposition) was investigated.  
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Polarimetric decompositions are originally designed for full polarimetric SAR data, 

whereas the target scattering coherency matrix is separated into basic scattering 

mechanism (Cloude 2010). This decomposition is based on the assumption, that 

scattering mechanism can be represented by means of the entropy-alpha space. As full 

polarimetric data is not always available, the polarimetric exploitation has to be 

reduced to dual polarimetric data, described in Cloude (2007). For the dual 

polarimetric case, only half of the scattering matrix elements can be used for 

decomposition. In fact, this reduction of dimensionality does not provide the same 

comprehensive information content as quad polarimetric data (Ainsworth et al. 2008). 

However, in the recent study the entropy and alpha values show a physical response to 

different phenological stages of rice. Similar meaningful entropy-alpha decompositions 

based on dual-polarimetric data were demonstrated by Lopez-Sanchez et al. (2010) 

and Shan et al. (2011). The latter one revealed a slight degradation in information 

content by using dual-polarimetric images, but classification based on entropy and 

alpha was still applicable with satisfactory results. Comparing the entropy and alpha 

response of rice to other land cover classes, it could be mentioned, that especially the 

alpha signature is well suited for separating rice from other land cover (see Appendix 

A.3). Based on the strong differential extinction of rice, the alpha value decreases 

(from DAT 35 to DAT 65) although double bounce scattering is still valid. Lopez-

Sanchez et al. (2011) observed similar characteristic and attributes this to vertically 

oriented volume that behaves like a polarization filter.  

The correlation parameters co-polar phase difference and inter-channel coherence 

were analysed. As already mentioned, the inter-channel coherence at incidence angle 

of 25° is below 0.5 at all acquisitions, which is caused by strong attenuation of VV 

backscatter with respect to HH backscatter. This differential extinction enables the 

separation between phenological stages of rice and from other land cover classes. The 

coherence is not suited to differentiate between growth stages of rice, as it stays more 

or less constant over the growing period. But the coherence is well suited, to separate 

rice to other land cover classes (see Figure 4-21). The coherence of rice is very low at 

around 0.4, all other classes are between 0.7 and 0.9. Compared to coherence, the 

phase difference shows a distinct signature depending on the growth stage. To acquire 

data at a certain phenological stage is of high importance to ensure an accurate 
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growth stage monitoring. As repeat passes of satellites (TerraSAR-X 11 days) could 

prevent a timely monitoring, the concept of a constellation mission to reduce repeat 

cycle is also beneficial for agricultural applications. To fly in constellation with a “twin” 

satellite, the repeat pass could be reduced to 5 days by operating in same orbit with a 

32.7° phasing. This constellation is foreseen for the two satellites TerraSAR-X and the 

identical PAZ (Koppe et al., submitted).  

 

Figure 4-21: Left: Comparison of coherence signatures of different land cover classes. 

Right: Coherence image (July 7, 2011). 
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5 SYNERGISTIC SUMMARY AND CONCLUSION* 

Food security in the light of population growth and global climate change becomes 

more and more important as the natural resources are limited. Sustainable 

management and regular monitoring of agricultural resources are important key 

factors of food safety for the next decades (Grunert 2005). In this context, remote 

sensing is a good tool for monitoring the agricultural environment on different scales 

to provide planning and decision support. In crop monitoring, remote sensing 

technologies have become indispensable in terms of acreage estimation, production 

control, yield estimation and damage assessment (Liaghat & Balasundram 2010). Major 

organizations and initiatives such as WB, WFP, FAO, GMES or MARS are using remotely 

sensed data to support continental and global crop monitoring services. Based on the 

wide range of satellite systems currently available, multi-sensoral data are of special 

interest to meet temporal and spatial requirements of monitoring services.  

In the present thesis, the main emphasis was on investigating the potential of multi-

sensoral and multi-temporal data for crop monitoring on a regional scale. More 

precisely, multi-spectral, hyperspectral and microwave data were acquired in order to 

derive crop parameters at different growth stages. The focal points of the study were: 

• Making hyperspectral band math a useful tool for improving crop parameter 

prediction  

• Exploring the capabilities of microwave data for crop stage monitoring. Special 

attention in this case is put on X-band polarimetric data analysis.  

 

This chapter will summarise and synthesise the main findings of this study. It will 

further indicate the practical relevance of the research in conjunction with their 

limitations and recommendation with respect to future research.  

 

                                                      

* This section and sub-sections are an extended version of the articles: Koppe et al. (2010a); Koppe et al. 
(2012); Koppe et al. (2013). 



Synergistic Summary and Conclusion 

123 

 

5.1 Hyperspectral Imaging  

This study compared vegetation indices calculated from multispectral and 

hyperspectral satellite remote sensing data for estimating winter wheat aboveground 

biomass, plant nitrogen concentration and plant height in North China Plain, and 

identified better vegetation indices by systematically evaluating all possible two band 

combinations using Hyperion satellite hyperspectral remote sensing data from 400 to 

2500 nm. The results indicated that TVI showed the best performance among the 

analysed vegetation indices using either broad (R2 = 0.69, 0.32 and 0.64 for biomass, N 

concentration and plant height, respectively) or narrow bands (R2 = 0.71, 0.33 and 0.65 

for biomass, N concentration and plant height, respectively). For the evaluated 

standard vegetation indices, narrow band indices only had slight improvements over 

corresponding broad band indices. The best performing Normalized Ratio Indices (NRI) 

selected through band combination analysis were significantly better than TVI, 

achieving R2 of 0.83, 0.81 and 0.79 for biomass, plant N concentration and plant 

height, respectively. They all used wavebands from the near infrared (NIR) (centred at 

874, 732, and 763 nm) and short wave infrared (SWIR) (centred at 1225 and 1305 nm) 

spectrum with varying bandwidth between 10 and 190 nm. The results of this study 

suggest that it is important to include SWIR bands in multispectral satellite sensors for 

agricultural crop growth status monitoring. More studies are needed to further 

evaluate the results using data from more diverse conditions.  

We can conclude that narrow band vegetation indices calculated from all possible 

waveband combination from Hyperion data perform much better for winter wheat 

parameters estimation on a regional level than standard vegetation indices calculated 

from red and NIR wavebands. Comparing all three index calculations, it was observed 

that two-band indices calculated according to equation 3.4 performed much better for 

estimation of aboveground biomass and total nitrogen content with at least 12% 

improvement for aboveground biomass and 48% for plant nitrogen content for winter 

wheat in the North China Plain. Because satellite image data were acquired at shooting 

and heading stage with a canopy closure of almost 100%, the saturation effect was 

obvious. This saturation effect is pointed out in a flat slope for regression between 

standard NDVI and aboveground biomass in Figure 4-9. Compared to this, the slope of 
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the regression line is much steeper using bands from the NIR and SWIR for index 

calculation. The results of band combination showed, that the saturation problem 

occurring for standard vegetation indices can be overcome by using different 

combinations for narrow band indices.  

5.2 SAR C-band Imaging and Synergism of Optic and SAR 

Envisat ASAR C-VV data show certain sensitivity to aboveground biomass. Bivariate 

regression analysis resulted in a coefficient of determination of about 0.75 for 

biomass. The simplified relationship between backscatter and crop condition is valid 

from jointing to heading stage. Before jointing and after heading stage, sophisticated 

models are necessary to separate backscatter contributions to retrieve canopy 

parameters.  

In general, optical and SAR data provide complementary information from a vegetated 

surface. Hyperspectral sensors record surface reflectance in a wide range of the 

electromagnetic spectrum which provides the opportunity to extract information 

about crop canopy parameters and processes at pixel level. SAR microwave penetrate 

the vegetation and backscatter provide information from inside the canopy. Because 

of inherent speckle, backscatter values must be spatially averaged for regression 

analysis. Both kinds of information could be analysed separately or combined on a 

feature level. In a final investigation, crop parameters were related to combined C-VV 

backscatter and hyperspectral indices by means of a multiple regression model. For the 

relationship with biomass and plant height, regression models with coefficients of 

determination of 0.90 for biomass were established. This is an improvement of around 

9% for aboveground biomass in comparison to single source hyperspectral regression 

model. While performance improvement is not that much of a combined model, the 

synergism of using complementary systems in monitoring winter wheat is obvious.  

Improvements are more likely to be found in terms of filling acquisition gaps of optical 

data due to cloud cover and providing additional information by SAR. 
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5.3 SAR X-band Imaging 

Rice crop growth was investigated using multi-temporal co-polar TerraSAR-X data. The 

results from the recent study are expected to improve the understanding of 

spaceborne X-band backscattering behaviour of rice crops. Concerning the 

experimental fields, it was important to apply different N rates to get different growth 

rates on the plots and hence a greater heterogeneity in biomass. Results obtained in 

this study demonstrated the potential of TerraSAR-X imagery for rice monitoring. The 

study had two objectives; one was to understand the X-band microwave backscatter 

behaviour during the growing season. The other was to investigate the relationship of 

backscatter coefficients with scattering elements of rice at a certain growth stage. The 

growth stages of rice generate a distinctive backscattering signature that can be 

separated from other land use classes. The signatures of both polarisation show two 

phases of backscatter increase, one at the beginning up to DAT 46 and a second one 

from DAT 80 onwards. Between these two phases, the backscatter strongly decreases. 

An interpretation of this unique signature was provided in this contribution. The 

results obtained from the correlation analysis show a strong sensitivity of X-band 

backscatter to changes within the upper canopy during the growth of rice. This 

includes a significant relationship between VV backscatter and heads after heading 

around DAT 70. In contrast to the sensitivity to changes in the upper canopy, 

microwave X-band data are not well suited for total biomass monitoring during the 

whole growing season due to an early saturation level compared to longer wavelength. 

To improve the relation of backscatter with the total biomass, a steeper incidence 

angle is required. Concerning this angular dependence of backscatter, further 

investigation is needed.  

However, based on literature and the recent study, higher frequencies such as X-band 

are more suitable for change monitoring in the early vegetative stage because of the 

high dynamic range in a short time. Also the monitoring of changes in the upper 

canopy can be monitored. For relating biomass increase to microwave backscatter 

over a longer time, lower frequencies should be preferred.  

Based on the results of the investigations, the proposed applications are the total 

biomass monitoring from transplanting to backscatter maximum as well as the rice 
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field identification based on the SAR data signature. Furthermore, X-band data are also 

suitable for monitoring changes in the upper canopy during the growing season. 

Changes can occur due to development of the plants, cultivation problems (e.g., 

diseases, water deficiency), and also the emergence of the panicle.  

5.4 Validation of Hypothesis and Objectives 

In chapter 1.4 the hypothesis and the objectives of the four sub-topics are formulated. 

In the following, the objectives are addressed in terms of validity.  

5.4.1 Huimin Test Site 

Concerning the multi-spectral and hyperspectral winter wheat monitoring, the 

objectives were successfully treated. Different kinds of vegetation indices (broad and 

narrow band standard vegetation indices) were compared and validated. Furthermore, 

a model for combining different wavebands to find most sensitive combinations was 

developed. Overall, it was possible to derive biophysical crop parameters by all of the 

vegetation indices in a statistically valid manner. But it was also clearly shown, that 

application of narrow band waveband combination performed best for biomass 

modelling.  

For the relationship of hyperspectral data to crop conditions, narrow band Normalized 

Ratio Indices based on NIR (875 nm) and SWIR (1225 nm) were calculated for the 2006 

growing cycle. As expected, hyperspectral indices show a much higher sensitivity to 

winter wheat conditions than C-VV radar data. Coefficient of determination was 0.83 

for aboveground biomass for multi-temporal approach. In this case, the C-VV data are 

suggested to provide complementary information or to fill gaps if the hyperspectral 

information is not available.  

To test the validity of the hyperspectral bivariate model, the established model of 2006 

was applied to 2007 data to predict aboveground biomass. The predicted vs. measured 

1:1 plot resulted in a high coefficient of determination (R2 = 0.84), which proves inter-

year validity of hyperspectral prediction power. Compared to multi-temporal 

approach, single date biomass prediction is less accurate as coefficient of 
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determination is only between 0.19 and 0.58 and RMSE is high (see Table 4-5). This is 

caused by lower variability of aboveground biomass across all fields at a given date.  

Combining models from multi-sensoral data, the results outperform the single source 

estimations.  

 

Table 5-1: Validation of objective and hypothesis for Huimin test site. 

Objective Chapter 

Multispectral and hyperspectral remote sensing  

to quantitatively describe hyperspectral reflectance signature of winter 

wheat canopy during the vegetation period 
4.2.1 

to analyse, compare and evaluate satellite based multispectral and 

hyperspectral images in terms of broad band and narrow band vegetation 

indices for the estimation of winter wheat aboveground biomass, plant N 

concentration and plant height.  

4.2.2 

standard broad band and narrow band vegetation indices derived from 

multispectral sensor ALI 
4.2.2.2 

systematic identification of best waveband combinations in the Hyperion 

reflectance spectrum from 400 to 2500 nm 

4.2.2.3 

4.2.2.4 

to investigate the ability to predict crop standing biomass by the different 

vegetation indices 
4.2.2 

C-band microwave remote sensing  

to quantitatively describe C-VV SAR backscattering of winter wheat canopy 

during the vegetation period 
4.3.1 

to investigate the ability to predict crop standing biomass by Envisat ASAR  4.3.2 

Synergy of hyperspectral and C-band microwave remote sensing  

to explore the potential of complementary use of SAR and hyperspectral 

data for mapping crop and field conditions at a regional level 
4.4 
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5.4.2 Jiansanjiang Test Site 

For the test site Jiansanjiang, the identified objectives were all covered successfully. 

The polarimetric X-band backscatter signature was analysed in dependence on 

different incidence angles and phenological stages. A clear and unique signature was 

identified, that is well suited for crop growth stage monitoring. The backscatter 

intensities at different phenological stages were then related to standing biomass of 

rice. It was shown, that especially at the beginning of the growing season, there is a 

significant relationship with total biomass, but because of the low penetration depth, 

the relationship is rapidly decreasing. So it is suggested, that at the very early growing 

season, the X-band can be used for total biomass modelling. Apart from this, the lower 

penetration depth is well suited for monitoring changes in the upper part of the 

canopy. Based on the dual-polarimetric scattering behaviour and derived polarimetric 

parameters, a classification scheme for different growth stages was presented. The 

idea behind it is the determination of the growth stage based on a mono-temporal 

acquisition.  

 

Table 5-2: Validation of objective and hypothesis for Jiansanjiang test site. 

Objective Chapter 

X-band microwave remote sensing  

to assess the potential of high-resolution and multi-polarization X-band 

SAR data in agricultural monitoring 
4.5 

to study the sensitivity of X-band co-polar backscatter as a function of rice 

phenology stages based on multi-temporal acquisitions and different 

incidence angles 

4.5.1 

to evaluate the relationship between X-band co-polar backscatter and 

biomass of the different scattering layers (stem, leaf, and head) 
4.5.4 

to analyse to benefit of dual polarimetric X-band data for crop growth 

status monitoring 
4.5.5 
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APPENDIX  

A.1: Selection of Standard Vegetation Indices 

Table A-1: Standard vegetation indices. 

Index Name Description Reference 

NDVI 
Normalized Difference 

Vegetation Index REDNIR

REDNIR

RR

RR

+
−

 Rouse et al. 
(1974) 

RVI 
Ratio Vegetation Index REDNIR RR /  Pearson & Miller 

(1972) 

SAVI 
Soil Adjusted 

Vegetation Index 
)/()(*)1( 670800)670800 LRRRRL +−−+  

Haboudane et al. 
(2004) 

OSAVI 

Optimized Soil-
Adjusted Vegetation 

Index 

(1+0.16) 
16.0670800

670800

++
−

RR

RR
 

Rondeaux et al. 
(1996) 

 

HVI 
Hyperspectral 

Vegetation Index 
700750 RR −  Gitelson et al. 

(1996) 

HNDVI 

Hyperspectral 
Normalized Difference 

Vegetation Index 
668827

668827

RR

RR

+
−  Oppelt & Mauser 

(2004) 

GI Greennees Index 677554 / RR  Zarco-Tejada et 
al. (2007) 

TVI 
Triangular Vegetation 

Index 
)](200)(120[5.0 550670550750 RRRR −∗−−∗∗  Broge & Leblanc 

(2000) 

MCARI2 
Modified Chlorophyll 

Absorption Ratio Index 5.0)56()12(

)](3.1)(5.2[5,1

670800800

550800670800

−∗−∗−+∗

−∗−∗−∗∗

RRR

RRRR  Haboudane et al. 
(2004) 

TCI 
Triangle Chlorophyll 

Vegetation Index 700800

675550800 )5,1(

RR

RRR

−
−∗+

 Gao (2006) 

RRE Reflexion Red Edge 2/)( )780670 RR +  
Baret & Guyot 

(1991) 

REP Red Edge Position 
700740

700)700740(700
RR

RRre

−
−

∗−+  Baret & Guyot 
(1991) 
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A.2: TerraSAR-X HH and VV Imagery of Rice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1: Landcover classification (TerraSAR-X HS 2009, July 5 and July 27) 

(modified after Hütt, 2012), overlaid by experimental plots.  

Appendix A.2 gives an overview about the used field plots for biomass correlation 

analysis in 2009 and polarimetric backscatter analysis in 2011 (Figure A-1). Below in 

Figure A-2 the TerraSAR-X imagery of HH and VV (26°) of the area of interest are 

shown. The backscatter of VV is always lower than of HH, at the end of the growing 

season HH and VV approach each other.  
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Figure A-2: TerraSAR-X HH and VV images (incidence angle 26°) of growing season of 

2011).
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A.3: Separability of Rice against other Crops 

 

Figure A-3: X-band backscatter (inc. angle 39°) of HH and VV of rice crop 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-4: TerraSAR-X color composite of DAT 46 and DAT 68 (2009). 

Backscatter analysis of polarimetric amplitude is important for land cover 

classification. Based on the unique backscatter signature of HH and VV compared to 

other land cover classes of this area, rice can be identified especially on the difference 

between HH and VV (purple areas in Figure A-4). Considering single polarizations, the 

separability is limited, especially around DAT 30 to DAT 50 (see Figure A-3). The 

R: HH / G: VV / B: HH-VV  

DAT 46, HH, 39° 

DAT 46, VV, 39° 

R: HH / G: VV / B: HH-VV  
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dynamic range for all classes for HH is within 3.5 dB. But by combining both 

polarizations, the difference between rice and non-rice becomes obvious (see Figure 

A-4 and Figure A-5). 

 

Figure A-5: Separability analyses of land cover classes based on HH and VV difference 

(modified after Hütt 2012). 

As an outlook, the separability based on alpha angle at beginning of august 2009 

(alpha-entropy decomposition) is shown in Figure A-7. The alpha angle of rice strongly 

differs from the other land cover classes.  

 

Figure A-6: Separability analyses of land cover classes based on alpha angle 

(modified after Hütt 2012). 

Below are two land cover object based classifications, classified on amplitude and HH-

VV difference from July 5 and from July 27. Considering only the separability of rice 

areas, results confirm the theoretical analysis of Figure A-4 and Figure A-5. Based on 

visual evaluation, the rice areas are significantly better classified at July 27, also if the 

user and producer accuracy of rice are similar in both classifications (Hütt 2012). 
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Figure A-7: Land cover classifications (modified after Hütt 2012).
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A.4: Polarimetric parameters for rice and non-rice. 
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Figure A-8: Polarimetric parameters for rice and non-rice for incidence angle of 26° and 46°
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