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Kurzzusammenfassung

Fitnesslandschaften stellen eine Abbildung zwischen Genotypen und ihrer Fitness dar, die
in der Regel ihren Fortpflanzungserfolg widerspiegelt. Mit diesem Ansatz kann Evolution
als ein Prozess betrachtet werden, bei dem sich Populationen auf einer Fitnesslandschaft
bewegen. Welche Wege in diesem Prozess eingeschlagen werden, hängt dabei entscheidend
von deren Struktur ab. Obwohl die Idee schon recht alt ist, hat sie in den letzten Jahren an
Bedeutung gewonnen, da es durch Fortschritte in der genetischen Sequenzierung möglich
geworden ist, die Struktur von Fitnesslandschaften genauer zu erfassen. Dies wiederum
ermöglicht ein umfassenderes und quantitatives Verständnis der Evolution. Es ist jedoch
immer noch unklar, wie diese Landschaften in großem Maßstab aussehen. In dieser Dis-
sertation werden daher theoretische sowie empirische Fitnesslandschaften betrachtet und
dabei untersucht, wie sich Populationen über diese verteilen. Es wird gezeigt, dass hier-
bei nicht nur die Struktur der Fitnesslandschaft entscheidend ist, sondern auch, welche
evolutionären Kräfte am Werk sind und wie stark. Insbesondere wird auf den Effekt der
Rekombination genetischen Materials eingegangen und ein möglicher Vorteil von Rekom-
bination beschrieben, der bisher vergleichsweise wenig Beachtung gefunden hat. Dies ist
die Robustheit gegenüber dem Effekt von zufälligen Mutationen, welche in rekombinieren-
den Populationen größer ist.

Abstract

Fitness landscapes represent a mapping between genotypes and their fitness, which usually
reflects their reproductive success. With this approach, evolution can be considered as a
process in which populations move on a fitness landscape. The paths taken in this process
depend crucially on their structure. Although the idea is quite old, it has gained renewed
attention in recent years as advances in genetic sequencing have made it possible to
capture the structure of fitness landscapes in greater detail. This in turn facilitates a more
comprehensive and quantitative understanding of evolution. However, it is still unclear
how these landscapes are structured on a large scale. This dissertation therefore considers
theoretical as well as empirical fitness landscapes and investigates how populations are
distributed across them. It is shown that not only the structure of the fitness landscape
is crucial, but also which evolutionary forces are at work and how strong they are. In
particular, the effect of recombination of genetic material is addressed and a possible
advantage of recombination is described that has received comparatively little attention
so far. This is the robustness against the effect of random mutations, which is greater in
recombining populations.
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1 INTRODUCTION

1 Introduction

Whereas early physics was focused on breaking things down to understand the world at
its core, in recent decades the field of complex systems emerged. In complex systems
interactions between particles or agents are abundant and if these are neglected, features
of the system are lost, also known by the saying: ’the whole is more than the sum of
its parts.’ The topics of this field range from magnetization as a collective property of
many particles to traffic jams as a property of many cars. Because complex systems
resist simplification and are multi-layered, they remain a challenge. One can recognize
the difficulty of understanding complex systems by the discrepancy that there is a good
understanding of individual subatomic particles, but it is still unclear how to properly
treat many diseases of complex organisms.
During my physics studies I got especially interested in the dynamics of such complex
systems and in their emergent properties. In my opinion, the most intriguing complex
systems are currently within the complexity of life. Therefore, in this dissertation certain
aspects of evolution are studied.
In evolution, genotypes compete with each other for reproduction. Their carriers are in-
dividuals that generate offspring, and at the same time they are their blueprint. These
individuals can take on any form, from viruses to bacteria to eukaryotes. Different geno-
types can confer different traits to their individuals. These traits in turn can have a
positive or negative effect on the reproductive ability, so that certain genotypes gain in
frequency and others lose, which is called natural selection. No process is perfect and
so the diversity of genotypes is maintained by copying errors during reproduction. Mu-
tation and selection are therefore two evolutionary forces that should emerge in some
natural way. However, in addition to these two forces, there is another abundant force
that shapes evolution, which is the recombination of genetic material between individuals.
For some reason, the blueprints of individuals have favored this additional force, so that
it is widespread in nature. This dissertation therefore examines the dynamics of evolving
populations and highlights the benefits of recombination.
The following introduction chapter aims to give a brief overview of the main features of
this dissertation. For this purpose, a brief overview of the history of evolutionary mod-
elling is presented, followed by an explanation of the evolutionary model used in this work,
including its limitations. Afterward, the effect of recombination is discussed and historical
arguments for its benefit are outlined. The introduction ends with an explanation of the
further structure of the thesis.
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1.1 History of modelling evolution in a nutshell 1 INTRODUCTION

1.1 History of modelling evolution in a nutshell

Already Aristotle (4th century BC/1991) philosophized about the diversity of species
and brought his ideas to papyrus. However, he thought that all species were static and
came into being by spontaneous generation (Capelle, 1955). This static view also did fit
well with Christianity later on and was therefore not challenged for a long time. The
crucial idea that species could in some form evolve was first formulated as part of a co-
herent theory by Jean-Baptiste de Lamarck (1809), who coined the term transmutation of
species (Gould, 2002). This insight was accompanied by paleontology findings that con-
tradicted the image of a static nature and showed that extinction events occurred in the
past (Cuvier, 1796). Still, the forces that drive evolution were subject of various theories,
e.g. Lamarckism, until Charles Darwin’s theory of natural selection became well excepted
(Darwin, 1859). This led to the notion of a tree of life with a common origin.
One of the first evolutionary experiments that could be statistically evaluated was per-
formed by Gregor Mendel (1865). Through hybridization experiments with different pea
plants, he discovered certain rules of heredity, which are today known as laws of Mendelian
inheritance. The results showed the existence of discrete traits, which led to the notion
of genes. Based on Gregor Mendel’s result, Wilhelm Weinberg and G.H. Hardy later sep-
arately derived one of the first mathematical descriptions of evolution, known today as
Hardy–Weinberg principle (Hardy, 1908; Weinberg, 1908). In an influential next step that
linked the concept of natural selection with the notion of genes, Ronald Fisher and J.B.S.
Haldane laid the foundation for today’s population genetics with a quantitative descrip-
tion of evolution. They both developed mathematical models of evolution to understand
how selection shapes the frequency distribution of genes (Fisher, 1919; Haldane, 1924).
Their insights also led Haldane to make one of the first predictions about evolutionary
dynamics in relation to the color of moths in Manchester, which later proved to be correct
(Kettlewell, 1958; Cook & Turner, 2020). Another important figure at that time was Se-
wall Wright, who was interested in the interaction of genes, called epistasis in this context.
He therefore introduced the concept of fitness landscapes, which is essential for this work
(Wright, 1932), c.f. Fig. 1. While the number of studies in the field of population genetics
exploded in the following years, the notion of fitness landscapes was for a long time not
further developed since little was known about their structure. Nowadays, due to the
technological advances in genetic sequencing, it becomes feasible to gather more pieces of
information about the structure of these landscapes. First empirical fitness landscapes,
which consider a small set of mutations and all their combinations, show that genetic
interactions are indeed abundant (Weinreich et al., 2013; Szendro et al., 2013). In fitness
landscapes, they manifest themselves as deviations from the assumption of independent
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1.1 History of modelling evolution in a nutshell 1 INTRODUCTION

Figure 1: Illustration of a fitness landscape by Sewall Wright (1932)

Fitness landscapes map genotypes to their corresponding fitness, which usually represents
their reproductive success. Sewall Wright correctly assumed that there could be many
fitness peaks in the vast genotype space due to interacting genes and wondered how the
population could move from a lower to a higher fitness peak.

fitness effects of mutations. Their presence makes fitness landscapes interesting in the first
place, as they would be otherwise just completely smooth objects containing no significant
information. These deviations from independence can take various forms. In the simplest
case, only pairs of mutations interact with each other, which is called pairwise epistasis.
A distinction can then be made between magnitude and sign epistasis (Weinreich et al.,
2005). The former implies that two mutations strengthen or weaken each other in their
effect. Sign epistasis, on the other hand, states that there is a change in the sign of the
fitness effect of one of the two mutations in the presence of the other mutation. Reciprocal
sign epistasis refers to a situation where each of the two mutations changes the sign of
the respective other. This last type of interaction is necessary to make fitness landscapes
mountainous in the sense that multiple fitness peaks exist (Poelwijk et al., 2011). Besides
pairwise epistasis, results on empirical landscape show that also higher-order interactions
between several sites are frequent, which can for example be characterized by a Fourier
decomposition (Weinberger, 1991; Neidhart et al., 2013; Weinreich et al., 2013; Domingo
et al., 2018). Ultimately, all interactions are encoded in the fitness landscape. Its struc-
ture determines which paths are likely to be taken by a population and which targets can
be reached given a certain initial starting position (De Visser & Krug, 2014). Therefore,
fitness landscapes are of great interest for the overarching idea to understand the dynam-
ics of evolution and to make evolution predictable to some degree. In this work, evolution
is always studied from the perspective of fitness landscapes.

3



1.2 Wright-Fisher type models 1 INTRODUCTION

1.2 Wright-Fisher type models

Besides fitness landscapes, another important ingredient of this thesis are Wright-Fisher
type models. These describe variants of the model originally designed by Wright and
Fisher to quantitatively describe genotype frequencies in evolving populations (Wright,
1931; Fisher, 1930). The basis of all variants is that populations evolve in discrete gener-
ations and that the population size N is kept constant. This means that all individuals
in a population reproduce and die at the same time. Furthermore, each individual i with
i = 1, 2, ..., N carries a genotype �i, which is inherited by its offspring. The genotype de-
termines the reproductive success of an individual, called (Wrightian) fitness w(�i) = wi

in this context. In the Wright-Fisher type models, the fitness wi of an individual i de-
scribes its average offspring number wi = ni. If a Poisson distribution is assumed for the
offspring number,

pi(ni) =
1

ni!
w

ni
i e

�wi (1)

a new generation is created by multinomial sampling

p(n1, n2, ..., nN |N 0 = N) =
N !

n1!n2!...nN !

NY

i=1

⇣
wi

Nw

⌘ni

(2)

with

N
0 =

NX

i=1

ni and w =
1

N

NX

i=1

wi. (3)

Eq. 2 demonstrates that the dynamics are invariant to a multiplication of all fitness values
wi by a common factor. Therefore, if fitness values are considered to be in range 0  wi 
1, as in this thesis, there is no loss of generality. Furthermore, Eq. 2 demonstrates why
the process is often interpreted backwards in time, since then individuals simply select
their ancestor i at random with a probability according to wi/Nw.
In the most basic Wright-Fisher model, it is assumed that there are only two genotypes
and that all fitness values are equal. Then the multinomial sampling simplifies to a
binomial sampling

p(x0|x) =
✓
N

x

◆ ⇣
x

N

⌘x0 ✓
N � x

N

◆N�x0

, (4)

where x represents the number of one of the two genotypes in the population and x
0 its

number in the subsequent generations. p(x0|x) also represents the entries of the transition
matrix for the change in genotype numbers of this Markov process. Even though Wright-
Fisher type models are generally Markov processes, an analytical analysis for more general
cases is often very difficult.
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1.2 Wright-Fisher type models 1 INTRODUCTION

While the dynamics can be considered individual-based as described above, for large pop-
ulations it is more convenient and numerically efficient to consider the dynamics genotype
frequency-based (Zanini & Neher, 2012). With genotype frequencies f�, the next genera-
tion is then computed through

f
0
� =

w(�)

w
f� with w =

X

�

f�w(�) (5)

where the sum is taken over all genotypes. However, in this form, the equation describes
deterministic dynamics, referring to the limit N ! 1. To retrieve the stochasticity of
finite populations, multinomial sampling needs to be performed in each generation:

(n�, n, ...) ⇠ Multi(N, (f 0
�, f

0
, ...)) (6)

Here, n�, n... denote the integer numbers of individuals carrying a certain genotype.
Now, the effect of the individual fitness on the dynamics (Eq. 5) is decoupled from the
effect of the population’s finiteness (Eq. 6). The latter is referred to as genetic drift in
this context. It is another important force that shapes evolution and also plays a central
role in some arguments for the benefits of recombination (de Visser & Elena, 2007). The
influence of the population’s finiteness on the dynamics is demonstrated in chapter 3.
In the Wright-Fisher type model of this dissertation, it is assumed that the fitness values
can differ between genotypes. It also takes into account that individuals can acquire mu-
tations each generation and that recombination can take place between individuals. Since
the integration of these evolutionary forces will be discussed in more detail in chapters 2
& 3, this will not be explained here.
Instead, the general assumptions of the model are discussed in the following:
On the one hand, the question arises to what extent the assumption of discrete gener-
ations is justified. Regarding this issue it can be noted that there are similar models,
such as the Moran model, which almost resembles a continuous description. Nevertheless,
a comparison of the models shows that the dynamics do not differ except for rescaling
(Blythe & McKane, 2007; Wakeley, 2009). Especially in steady states, which we mostly
consider in this work, no differences are to be expected. Nevertheless, Wright-Fisher type
models have the advantage that numerical simulations run much faster than their contin-
uous counterparts, such that steady states are reached more quickly (Park et al., 2010).
Another strong assumption is certainly that there is no spatial structure between the
individuals. In this sense, it is a mean-field theory. However, this assumption can be
appropriate if, for example, well-mixed populations in a small volumes are considered.
Especially for experiments in test tubes, this assumption should therefore be justifiable,
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e.g. microbes in liquid culture.
Another assumption is that the population size is kept constant. Whether this is appro-
priate certainly depends on the circumstance. Especially if the population size fluctuates
strongly and could reach a very small size, bottleneck effects cannot be ignored (Wein
& Dagan, 2019). However, in biological experiments the population can also be kept
constant by means of special set-ups, e.g. chemostats (Wick et al., 2002).

1.3 Nonlinear dynamics of recombination

One further key aspect of this work is the evolutionary mechanism of recombination.
While in the deterministic system that describes infinite populations, the consideration of
selection and mutation keeps the dynamics linear, the inclusion of recombination turns it
nonlinear. The former two evolutionary forces are linear, since selection is simply deter-
mined by the number of offspring of an individual and mutations also arise independently
in individuals. Even if the population size in the selection step is kept constant and hence
the number of offspring is correlated, this constrain imposes only a normalization that
does not change the dynamics with respect to the average genotype frequencies. Con-
trary, recombination describes a horizontal gene transfer between pairs of individuals and
therefore depends quadratically on the population’s genotype frequencies. Although cer-
tain dynamical systems with recombination can be linearized through a procedure called
Haldane linearization, it is generally not the case and the procedure itself can be cumber-
some (McHale & Ringwood, 1983; Dawson, 2002; Baake & Baake, 2003). The dynamics
of nonlinear systems are typically not only less mathematically tractable but also less
intuitive. This might be the reason why many different explanations have been proposed
for the prevalence of recombination in nature. The most popular explanations that are
relevant for this thesis are in the following shortly discussed, along with their limitations.

Weismann effect: The Weismann effect simply states that recombination is beneficial
because it increases genetic variation within populations (Weismann, 1889). Although the
benefit in this sense remains somewhat vague, it could be understood according to the
proverb "don’t put all your eggs in one basket", attributed to the author of Don Quixote,
Miguel de Cervantes, in the early 16th century. However, it is questionable whether this
is always beneficial, and there is also the saying "put all your eggs in one basket, and then
watch that basket", which was coined by the US business magnate Andrew Carnegie in
the 19th century.
Since proof by proverb is not well accepted in science, the Weismann effect is also in-
terpreted more specifically in terms of an increased fitness variance as a result of the
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increased genetic variation (Burt, 2000). In this context, Fisher’s fundamental theorem
specifies that the mean increase in fitness through natural selection is proportional to the
fitness variance of the population (Fisher, 1930). However, more recent results have shown
that the change of fitness variance through recombination depends on the underlying fit-
ness landscape. For example, on a simple permutation-invariant fitness landscape, where
epistasis can be easily defined, results show that recombination reduces fitness variance if
epistasis is positive (de Visser & Elena, 2007; Kouyos et al., 2007).
Chapter 4 of this thesis goes on to show that recombination does not always increase
genetic variation either.

Fisher-Muller effect: The hypothesis of the Fisher-Muller effect is that recombination
brings together beneficial mutations that have occurred in different individuals (Fisher,
1930; Muller, 1932). This in turn should lead to a more rapid fitness increase of the pop-
ulation, as there is no need to wait for the beneficial mutations to occur sequentially. In
other words, it is argued that beneficial mutations that have occurred in different individ-
uals are not in competition with each other. This is also called clonal interference, which
in turn can be lifted by recombination (Gerrish & Lenski, 1998). Numerical results show
that this hypothesis holds on non-epistatic fitness landscapes where sexual populations
can adapt twice as fast as their asexual counterparts (Park & Krug, 2013). However,
on rugged landscape, where sign epistasis is prevalent, numerical results show that the
benefit of recombination due to increased fitness gain is only transitory (Nowak et al.,
2014). While recombination initially combines beneficial mutations, it can eventually
trap the population at suboptimal fitness peaks (Park & Krug, 2011). Still, biological
experiments could show signals of the the Fisher-Muller effect taking place, leading to
faster adaptation e.g. in Escherichia coli (Cooper, 2007).

Muller’s ratchet: Muller’s ratchet describes the inevitable accumulation of deleterious
mutations in finite populations without recombination under certain conditions (Muller,
1964; Felsenstein, 1974). In the simplest scenario, such a condition is given if all mutations
have a fitness disadvantage, are non-interacting and back mutations can be neglected.
Without recombination, each individual inherits all the mutations of its ancestor and
potentially acquires more, so that after a parameter-dependent number of generations all
individuals will likely have at least one mutation. Since back mutations are neglected
this process is irreversible referring to a "click" in a ratchet. With time, the minimal
number of mutations in individuals constantly increases and the so-called mutational
meltdown occurs, which describes the downward spiral that eventually leads to extinction
(Gabriel et al., 1993). Such a process could indeed be demonstrated in an evolutionary
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experiment with bacteria (Zeyl et al., 2001). Recombination would be beneficial under
these conditions because it could stop the ratchet, since descendants have the chance to
inherit fewer mutations than their parents if the parental genotypes have mutations at
different loci (Bell, 1988).
However, theory predicts that even without recombination, several deviations from the
above mentioned strict conditions could either greatly slow down or even stop the ratchet
mechanism, e.g. compensatory mutations (Wagner & Gabriel, 1990), beneficial mutations
(Rouzine et al., 2008) or synergistic epistasis (Kondrashov, 1994; Jain, 2008). On the other
hand, recent results have shown that the effect remains important under a broader range
of conditions in spatially structured populations (Park et al., 2018).

Hill-Robertson effect: The Fisher-Muller effect and Muller’s ratchet are conceptually
similar in their argument. While the former only consider beneficial mutations, the latter
only takes deleterious ones into account. In these scenarios recombination either speeds
up the rate of adaptation or slows down the rate of maladaptation. Joe Felsenstein (1974)
pointed this out in his work, and argued that they follow essentially the same mechanism.
He is also the source of the term Muller’s ratchet and the term Hill-Robertson effect.
With the latter he refers to a paper by Hill and Robertson (1966), who studied the fixation
probabilities of beneficial mutations in an additive two-locus model. They demonstrated
that in asexual populations both beneficial mutations are interfering with each other,
thereby increasing their time to fixation. Recombination lifts such interference and allows
the mutations to fix more quickly. Joe Felsenstein describes as the Hill-Robertson effect all
situations in finite populations in which selection for one segregating mutation interferes
with that for another. The Hill-Robertson effect can arise under various conditions, as in
the Fisher-Muller effect, in Muller’s ratchet, or in the case of background selection, which
is described next. In infinite populations, on the other hand, the effect cannot occur
because all genotypes exist instantaneously, so segregating mutations do not compete
with each other and only genotypes do.

Background selection: Deleterious mutations are ideally purged by selection quickly.
However, when they occur against a background of beneficial mutations, they can hinder
the fixation of beneficial mutations on the one hand and the selection against delete-
rious mutations on the other (Johnson & Barton, 2002). In this case, recombination
could be useful, as it creates the possibility that deleterious and beneficial mutations are
separated and subsequently selected against/for individually (Peck, 1994; Rice & Chip-
pindale, 2001). Still, recombination could simultaneously break up beneficial mutations
or even combine beneficial and deleterious mutations (Moradigaravand & Engelstädter,
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2013). Which effect dominates is therefore again situation dependent and not clearly un-
derstood. The term hitchhiking is related to background selection and refers to a case in
which a neutral or slightly deleterious mutation reaches high frequency in the population
in the background of a beneficial mutation (Smith & Haigh, 1974).

Deterministic mutation hypothesis: While the former arguments consider the rate
of fitness change as a potential driver for recombination, the deterministic mutation hy-
pothesis considers this to be the mutation load at selection-mutation(-recombination)
balance. Equal to Muller’s ratchet it is assumed that all mutations are deleterious but
with the addition that they act synergistically. Under such conditions, the mutation load
would be smaller in recombining populations, even for an infinitely large population which
could create a benefit (Kondrashov, 1988, 1994).

There are many more hypotheses for the potential benefit of sex but which are less rele-
vant for this thesis. All mentioned arguments have in common, that they impose certain
conditions. Yet, recombination is widespread across many lifeforms in nature and the
conditions in nature can be very different. A pluralist view could be, that nevertheless
one of the conditions is met more often than not, which could generate a net benefit for
recombination (West et al., 1999). Another explanation could be, that a simply certain
condition is just very abundant in nature. However, this is still an open question.
In this thesis a different potential benefit is explored, which has received much less atten-
tion in the literature up to now. While the above arguments all do not take into account
the largely neutral nature of many mutations, this is a central point of the potential ben-
efit presented. More specifically, when neutral mutations are abundant, another property
of evolving populations is affected by recombination, namely the population’s mutational
robustness. In this thesis it is shown that mutational robustness strongly increases in
the presence of recombination and that this mechanism is quite robust. Furthermore is
demonstrated that the effect already occurs at small recombination rates, which could
have driven the observed abundance of recombination.

1.4 Structure of the thesis

In chapter 2, mutational robustness is first introduced in more detail and related results
in the literature are discussed. The relationship between the population’s mutational
robustness and the recombination rate is then studied in the context of quasispecies,
i.e., infinitely large populations. In this limit, the dynamics are deterministic, which
allows the analysis not only to be based on numerical simulations, but also on analytical

9
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results. For a simple two-locus system an explicit relationship between the population’s
mutational robustness and the recombination rate is derived in certain limits. In addition,
the recombination weight is introduced to explain the mechanism. In order to demonstrate
that the effect is quite robust, numerical simulations are performed on different multi-locus
model landscapes and recombination schemes. In certain limits analytical results are also
presented for multi-locus models. Finally, the effect is studied for an empirical landscape.
Chapter 3 deals with other aspects of recombination that arise in the context of finite
populations which additionally experience genetic drift. This chapter is prefaced with
a more detailed justification for the assumption of neutral model landscapes. In the
result section, properties related to evolvability and genetic diversity that emerge for
finite populations are highlighted. Mutational robustness is also revisited. Results are
presented for finite and infinite large landscapes. In addition, different implementations
for recombination in the Wright-Fisher model are discussed.
In chapter 4, the results of an experiment that compares asexual to sexual populations are
examined. Since the experiment has not been published yet, the design is explained first.
This is followed by a statistical analysis of the results. Since the previous chapters make
clear that the structure of the fitness landscape determines the dynamics, an attempt
is made to infer this from the data. This in turn leads to a better understanding of
the results and furthermore shows a signal for increased mutational robustness in the
recombining populations.
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Abstract

Mutational robustness quantifies the effect of random mutations on fitness. When muta-

tional robustness is high, most mutations do not change fitness or have only a minor effect

on it. From the point of view of fitness landscapes, robust genotypes form neutral networks

of almost equal fitness. Using deterministic population models it has been shown that selec-

tion favors genotypes inside such networks, which results in increased mutational robust-

ness. Here we demonstrate that this effect is massively enhanced by recombination. Our

results are based on a detailed analysis of mesa-shaped fitness landscapes, where we

derive precise expressions for the dependence of the robustness on the landscape parame-

ters for recombining and non-recombining populations. In addition, we carry out numerical

simulations on different types of random holey landscapes as well as on an empirical fitness

landscape. We show that the mutational robustness of a genotype generally correlates with

its recombination weight, a new measure that quantifies the likelihood for the genotype to

arise from recombination. We argue that the favorable effect of recombination on mutational

robustness is a highly universal feature that may have played an important role in the emer-

gence and maintenance of mechanisms of genetic exchange.

Author summary

Two long-standing and seemingly unrelated puzzles in evolutionary biology concern the
ubiquity of sexual reproduction and the robustness of organisms against genetic perturba-
tions. Using a theoretical approach based on the concept of a fitness landscape, in this arti-
cle we argue that the two phenomena may in fact be closely related. In our setting the
hereditary information of an organism is encoded in its genotype, which determines it to
be either viable or non-viable, and robustness is defined as the fraction of mutations that
maintain viability. Previous work has demonstrated that the purging of non-viable geno-
types from the population by natural selection leads to a moderate increase in robustness.
Here we show that genetic recombination acting in combination with selection massively
enhances this effect, an observation that is largely independent of how genotypes are con-
nected by mutations. This suggests that the increase of robustness may be a major driver
underlying the evolution of sexual recombination and other forms of genetic exchange
throughout the living world.
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Introduction

The reshuffling of genetic material by recombination is a ubiquitous part of the evolutionary
process across the entire range of organismal complexity. Starting with viruses as the simplest
evolving entities, recombination occurs largely at random during the coinfection of a cell by
more than one virus strain [1]. For bacteria the mechanisms involved in recombination are
already more elaborate and present themselves in the form of transformation, transduction
and conjugation [2, 3]. In eukaryotic organisms, sexual reproduction is a nearly universal fea-
ture, and recombination is often a necessary condition for the creation of offspring. Although
its prevalence in nature is undeniable, the evolution and maintenance of sex is surprising since
compared to an asexual population, only half of a sexual population is able to bear offspring
and additionally a suitable partner needs to be found [4, 5]. Whereas the resulting two-fold
cost of sex applies only to organisms with differentiated sexes [6], the fact that genetic reshuffl-
ing may break up favorable genetic combinations or introduce harmful variants into the
genome poses a problem also to recombining microbes that reproduce asexually [7, 8]. Since
this dilemma was noticed early on in the development of evolutionary theory, many attempts
have been undertaken to identify evolutionary benefits of sex and recombination based on
general population genetic principles [9–19].

In this article we approach the evolutionary role of recombination from the perspective of
fitness landscapes. The fitness landscape is a mapping from genotype to fitness, which encodes
the epistatic interactions between mutations and provides a succinct representation of the pos-
sible evolutionary trajectories [20]. Previous computational studies addressing the effect of
recombination on populations evolving in epistatic fitness landscapes have revealed a rather
complex picture, where evolutionary adaptation can be impeded or facilitated depending on,
e.g., the structure of the landscape, the rate of recombination or the time frame of observation
[21–26].

Here we focus specifically on the possible benefit of recombination that derives from its
ability to enhance the mutational robustness of the population. A living system is said to be
robust if it is able to maintain its function in the presence of perturbations [27–31]. In the case
of mutational robustness these perturbations are genetic, and the robustness of a genotype is
quantified by the number of mutations that it can tolerate without an appreciable change in fit-
ness. Robust genotypes that are connected by mutations therefore form plateaux in the fitness
landscape that are commonly referred to as neutral networks [32–35]. Mutational robustness
is known to be abundant at various levels of biological organization, but its origins are not well
understood. In particular, it is not clear if mutational robustness should be viewed as an evolu-
tionary adaptation, or rather reflects the intrinsic structural constraints of living systems.

Arguments in favor of an adaptive origin of robustness were presented by van Nimwegen
et al. [32] and by Bornberg-Bauer and Chan [33], who showed that selection tends to concen-
trate populations in regions of a neutral network where robustness is higher than average.
Whereas this result is widely appreciated, the role of recombination for the evolution of
robustness has received much less attention. An early contribution that can be mentioned in
this context is due to Boerlijst et al. [36], who discuss the error threshold in a viral quasi-spe-
cies model with recombination and point out in a side note that “in sequence space recombina-
tion is always inwards pointing.” This observation was picked up by Wilke and Adami [37] in a
review on the evolution of mutational robustness, where they conjecture that the enhancement
of robustness by selection should be further amplified by recombination, because “recombina-
tion alone always creates sequences that are within the boundaries of the current mutant cloud.”
At about the same time, de Visser et al. discussed a mechanism based on the spreading of
robustness modifier alleles in recombining populations [27] (see also [38]).
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In fact indications of a positive effect of recombination on robustness had been reported
earlier in computational studies of the evolution of RNA secondary structure [39] and 2D lat-
tice proteins [40] in the presence and absence of recombination. In these systems the native
folding structure of a given sequence is determined by its global free energy minimum. Due to
the restricted number of attainable folds, most structures are degenerate in the sense that
many sequences fold into the same structure. These sequences form neutral networks in
sequence space. Xia and Levitt [40] consider two scenarios, in which the evolution of the
lattice proteins is dominated by mutation and by recombination, respectively. The results
show that in the latter case the concentration of thermodynamically stable protein sequences is
enhanced, which is qualitatively explained by the fact that recombination tends to focus the
sequences near the center of their respective neutral network. Therefore most often a single
mutation does not change the folding structure.

More recently, Azevedo et al. [41] used a model of gene regulatory networks to investigate
the origin of negative epistasis, which is a requirement for the advantage of recombination
according to the mutational deterministic hypothesis [13]. In this study a gene network is
encoded by a matrix of interaction coefficients. It is defined to be viable if its dynamics con-
verges to a stable expression pattern and non-viable otherwise. Thus the underlying fitness
landscape is again neutral. Based on their simulation results the authors argue that recombina-
tion of interaction matrices reduces the recombinational load, which in turn leads to an
increase of mutational robustness and induces negative epistasis as a byproduct. In effect,
then, recombination selects for conditions that favor its own maintenance. Other studies along
similar lines have been reviewed in [42]. Taken together they suggest that the positive effect
of recombination on robustness may be largely independent of the precise structure of the
space of genotypes or the genotype-phenotype map. Indeed, a related scenario has also been
described in the context of computational evolution of linear genetic programs [43].

Finally, in a numerical study that is similar to ours in spirit, Szöllősi and Derényi considered
the effect of recombination on the mutational robustness of populations evolving on different
types of neutral fitness landscapes [44]. Using neutral networks that were either generated at
random or based on RNA secondary structure, they found that recombination generally
enhances mutational robustness by a significant amount. Moreover, they showed that this
observation holds not only for infinite populations but also for finite populations, as long as
these are sufficiently polymorphic.

The goal of this article is to explain these scattered observations in a systematic and quanti-
tative way. For this purpose we begin by a detailed examination of the simplest conceivable set-
ting consisting of a haploid two-locus model with three viable and one lethal genotype [35].
We derive explicit expressions for the robustness as a function of the rates of mutation and
recombination that demonstrate the basic phenomenon and guide the exploration of more
complex situations. The two-locus results are then generalized to mesa landscapes with L dia-
llelic loci, where genotypes carrying up to k mutations are viable and of equal fitness [45–48].
Using a communal recombination scheme and previous results for multilocus mutation-selec-
tion models, we arrive at precise asymptotic results for the mutational robustness for large L
and small mutation rates. Subsequently two types of random holey landscape models are con-
sidered, including a novel class of sea-cliff landscapes in which the fraction of viable genotypes
depends on the distance to a reference sequence. For the isotropic percolation landscape ana-
lytic upper and lower bounds on the robustness are derived.

As a first step towards a unified explanation for the effect of recombination on mutational
robustness we introduce the concept of the recombination weight, which is a measure for the
likelihood of a genotype to arise from a recombination event. In analogy to the classic fitness
landscape concept in the context of selection [20], the recombination weight allows one to
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identify genotypes that are favored by recombination without referring to any specific evolu-
tionary dynamics. We show that recombination weight correlates with mutational robustness
for the landscape structures used in this work, thus providing a mechanistic basis for the
enhancement of robustness by recombination. Finally, using an empirical fitness landscape as
an example, we quantify the competition between selection and recombination as a function
of recombination rate. Throughout we describe the evolutionary dynamics by a deterministic,
discrete time model that will be introduced in the next section.

Models and methods

Genotype space

We consider a haploid genome with L loci and the corresponding genotype is represented by a
sequence σ = (σ1, σ2, . . ., σL) of length L. The index i labels genetic loci and each locus carries
an allele specified by σi. Here we rely on binary sequences, which means that there are only
two different alleles σi 2 {0, 1}. This can be either seen as a simplification in the sense that only
two alleles are assumed to exist, or in the sense that the genome consisting of all zeros describes
the wild type, and the 1’s in the sequence display mutations for which no further distinctions
are made.

The resulting genotype space is a hypercube of dimension L, where the 2L genotypes repre-
sent vertices, and two genotypes that differ at a single locus and are mutually reachable by a
point mutation are connected by an edge. A metric is introduced by the Hamming distance

dÖs; kÜ à
X

i

Ö1� dsikiÜ; Ö1Ü

which measures the number of point mutations that separate two genotypes σ and Ĕ. Here and
in the following the Kronecker symbol is defined as Ďxy = 1 if x = y and Ďxy = 0 otherwise. The
genotype s at maximal distance dÖs;sÜ à L from a given genotype σ is called its antipodal,
and can be defined by si à 1� si. Finally, in order to generate a fitness landscape, a (Wrigh-
tian) fitness value wσ is assigned to each genotype.

Dynamics

The forces that drive evolution are selection, mutation and recombination. To model the
dynamics we use a deterministic, discrete-time model with non-overlapping generations,
which can be viewed as an infinite population limit of the Wright-Fisher model. Demographic
stochasticity or genetic drift is thus neglected. Numerical simulations of evolution on neutral
networks have shown that the infinite population dynamics is already observable for moderate
population sizes, which justifies this approximation [32, 44]. We will return to this point in the
Discussion.

Once the frequency fσ(t) of a genotype σ at generation t is given, the frequency at the next
generation is determined in three steps representing selection, mutation, and recombination.
After the selection step, the frequency qσ(t) is given as

qsÖtÜ à
ws

wÖtÜ fsÖtÜ; Ö2Ü

where w ⌘
P

swsfsÖtÜ is the mean population fitness at generation t. After the mutation step,

the frequency pσ(t) is given as

psÖtÜ à
X

k

UskqkÖtÜ; Ö3Ü
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where UσĔ is the probability that an individual with genotype Ĕmutates to genotype σ in one
generation. Here, we assume that alleles at each locus mutate independently, and the mutation
probability μ is the same in both directions (0! 1 and 1! 0) and across loci. This leads to
the symmetric mutation matrix

Usk à Ö1� mÜL�dÖs;kÜmdÖs;kÜ: Ö4Ü

In order to incorporate recombination we have to consider the probability that two parents
with respective genotypes Ĕ and τ beget a progeny with genotype σ by recombination. This is
represented by the following equation:

fsÖt á 1Ü à
X

kt

RsjktpkÖtÜptÖtÜ: Ö5Ü

Descriptively speaking, two genotypes (Ĕ and τ) are taken to recombine with a probability that
is equal to their frequency in the population (after selection and mutation). The probability for
the offspring genotype σ is then given by Rσ|Ĕτ. These probabilities depend of course on the
parent genotypes Ĕ and τ but also on the recombination scheme. Here we consider a uniform
and a one-point crossover scheme; see Fig 1 for a graphical representation. These two repre-
sent extremes in a spectrum of possible recombination schemes. Nevertheless we will show
that both lead to qualitatively similar results in the regimes of interest. In the case of uniform
crossover the recombination probabilities are given by

Rsjkt à
r
2L

YL

i

Ödsiki á dsitiÜ
 !

á 1� r
2

dsk á dstÖ Ü Ö6Ü

and in the case of one point crossover the probabilities can be written as

Rsjkt à
r

2ÖL� 1Ü
XL�1

nà1

Yn

mà1

dsmkm

 !
YL

màná1

dsmtm

 !"

á
Yn

mà1

dsmtm

 !
YL

màná1

dsmkm

 !#

á 1� r
2

dsk á dstÖ Ü:

Ö7Ü

In both equations a variable r 2 [0, 1] appears which describes the recombination rate. For
r = 0 no recombination occurs and fσ(t + 1) is the same as pσ(t). For r = 1 recombination is a
necessary condition for the creation of offspring (obligate recombination). But also intermedi-
ate values of r can be chosen as they occur in nature, e.g., for bacteria and viruses.

In the following we are mostly interested in the equilibrium frequency distribution f ⇤s of a
population, which is determined by the stationarity condition

fsÖt á 1Ü à fsÖtÜ à f ⇤s Ö8Ü

for all genotypes σ.

Mutational robustness

From the point of view of fitness landscapes the occurrence of mutational robustness implies
that fitness values of neighboring genotypes are degenerate, giving rise to neutral networks in
genotype space [29, 32–35]. In order to model this situation we use two-level landscapes that
only differentiate between genotypes that are viable (wσ = 1) or lethal (wσ = 0). Any selective
advantage between viable genotypes is assumed to be negligible. The mutational robustness of
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a population can then be measured by the average fraction of viable point mutations in an
individual, which depends on the population distribution in genotype space [32–34]. It
increases if the population mainly adapts to genotypes for which most point mutations are via-
ble. Therefore we define mutational robustness m as the average fraction of viable point muta-
tions of a population,

m ⌘
X

s2V

msf ⇤s with ms ⌘
ns

L
: Ö9Ü

Here the sum is over the set V of all viable genotypes and nσ is the number of viable point
mutations of genotype σ. We will refer to mσ as the mutational robustness of the genotype. The
expression is normalized by the total number of loci L, since in an optimal setting the entire
population has L viable genotypic neighbors and mσ = 1 for all σ 2 V. The value of m is thus
constrained to be in the range [0, 1]. We weight the genotypes by their stationary frequencies
f ⇤s , since we want to determine the mutational robustness of populations that are in equilib-

rium with their environment.

Recombination weight

In order to elucidate the interplay of recombination and mutational robustness it will prove
helpful to introduce a representation of how recombination can transfer genotypes into each
other. The number of distinct genotypes that two recombining genotypes are able to create
depends on their Hamming distance. In particular, the recombination of two identical geno-
types does not create any novelty, whereas a genotype and its antipodal are able to generate all
possible genotypes through uniform crossover.

Here we introduce a measure which expresses how many pairs of viable genotypes are able
to recombine to a specific genotype. It is complementary to the mutational robustness, in the
sense that instead of counting the viable mutation neighbors of a genotype, the size of its
recombinational neighborhood of viable recombination pairs is determined. The recombina-
tional neighborhood depends on the recombination scheme and the distribution of viable
genotypes in the genotype space. For a given recombination scheme the probability for a geno-
type σ to be the outcome of recombination of two genotypes Ĕ, τ is given by the recombination

Fig 1. Recombination schemes. In the one-point crossover scheme, the parent genotypes are cut once between two
randomly chosen loci and recombined to form the offspring. In the uniform crossover scheme, at each locus of the
offspring, an allele present in one of the parents is chosen at random.

https://doi.org/10.1371/journal.pcbi.1006884.g001
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tensor Rσ|Ĕτ. The recombination weight ĕσ is therefore obtained by summing the recombination
tensor over all ordered pairs of viable genotypes,

ls à
1

2L

X

k2V;t2V

Rsjkt: Ö10Ü

It can be seen from (5) that ĕσ = 1 when all genotypes are viable, and hence the normalization
by 2L ensures that the recombination weight lies in the range [0, 1]. Under this normalization,
the recombination weights sum to ∑σ ĕσ = |V|2/2L, where |V| stands for the number of viable
genotypes. In the following the genotype maximizing ĕσ will be referred to as the recombina-
tion center of the landscape.

Since neutral landscapes only differentiate between viable (unit fitness) and lethal (zero
fitness) genotypes, the recombination weight (10) can alternatively be written as a sum over
all ordered pairs of genotypes whereby the recombination tensor is multiplied by the pair’s
respective fitness,

ls à
1

2L

X

k;t

Rsjktwkwt: Ö11Ü

In this way the concept naturally generalizes to arbitrary fitness landscapes. In the absence of
recombination (r = 0) the recombination weight (11) of a genotype is simply proportional to

its fitness, ls à ~wws, where ~w à 2�L
P

sws is the unweighted average fitness. Within our
recombination schemes, the recombination tensor depends linearly on r and, by definition, so
does the recombination weight. Accordingly, for general r the recombination weight interpo-
lates linearly between the limiting values at r = 0 and r = 1. Since ĕσ for r = 0 is known, the
remaining task will be to find ĕσ for r = 1.

Results

In the following sections we investigate how mutational robustness depends on the mutation
and recombination rates. In order to test the generality of our results, we use, besides contrast-
ing recombination schemes, also different neutral landscape models such as the mesa [45–48]
and the percolation models [35, 49]. Additionally we introduce a more general landscape
named sea-cliff model, which combines elements of both the landscape models and contains
them as limiting cases. In the end, we discuss mutational robustness and its relation with
recombination weight for an empirical landscape.

Two-locus models are commonly used in population genetics to gain a foothold in under-
standing evolutionary scenarios involving multiple recombining loci [35, 38, 50–57]. Follow-
ing this tradition, we first discuss a two-locus model and then extend our results to multi-locus
models.

Two-locus model

The simplest fitness landscape to study the mutational robustness of a population would be the
haploid two-locus model in which all but one genotype are viable [35]; see Fig 2 for a graphical
representation of the model. In this setting the population gains mutational robustness if the
frequency of the genotype (0,0) for which both point mutations are viable increases relative to
the genotypes (0,1) and (1,0). This model has been analyzed previously using a unidirectional
mutation scheme where reversions 1! 0 are suppressed [58, 59]. As a consequence, selection
cannot contribute to mutational robustness because the genotype (0,0) goes extinct in the
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absence of recombination. Here we consider the case of bidirectional, symmetric mutations in
which both selection and recombination contribute to robustness. A comparison of the two
mutation schemes is provided in S1 Appendix.

We proceed to solve the equilibrium condition Eq (8). Since the equilibrium genotype fre-
quencies f ⇤01 and f ⇤10 are the same due to the symmetry of the landscape and the mutation

scheme, the recombination step at stationarity reads

f ⇤00 à p00 � rÖp00p11 � p10p01Ü , f0 à p0 � rD;

f ⇤10=01 à p10=01 á rÖp00p11 � p10p01Ü , f1 à p1 á 2rD;

f ⇤11 à p11 � rÖp00p11 � p10p01Ü , f2 à p2 � rD;

Ö12Ü

where pσ is the (equilibrium) frequency of genotype σ after the mutation step, fi and pi are the
corresponding lumped frequencies [60] of all genotypes with i 1’s, and D ⌘ p00p11 � p10p01 à
p0p2 � p2

1=4 is the linkage disequilibrium after the mutation step. Notice that the one-point
and uniform crossover schemes give the same equation form except that the parameter ρ is
given by ρ = r in the case of one-point crossover and ρ = r/2 for uniform crossover. However,
we would like to emphasize that this is a mere coincidence of the two-locus model which dis-
appears as soon as L is larger than 2.

The lumped frequencies qi of all genotypes with i 1’s after the selection step are given by

q0 à
f0

1� f2
; q1 à

f1
1� f2

; q2 à 0: Ö13Ü

Fig 2. Two-locus model. Genotype (1,1) is lethal while the other three genotypes are viable with the same fitness.
Here, genotype (0,0) is most robust since both its single mutants are viable.

https://doi.org/10.1371/journal.pcbi.1006884.g002
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Applying the mutation step we obtain

p0 à q0Ö1� mÜ2 á mÖ1� mÜq1 à mÖ1� mÜ á Ö1� mÜÖ1� 2mÜq0;

p1 à q1âÖ1� mÜ2 á m2ä á 2mÖ1� mÜq0 à 1� 2má 2m2 � Ö1� 2mÜ2q0;

p2 à mÖ1� mÜq1 á m2q0 à mÖ1� mÜ � mÖ1� 2mÜq0;

D à p0p2 � p2
1=4 à � 1

4
Ö1� 2mÜ2Ö1� q0Ü

2;

Ö14Ü

where we have used the normalization q0 + q1 = 1 to express the right hand sides in terms of
q0. Putting everything together, the problem is reduced to solving the following third order
polynomial equation for q0,

0 à q0Ö1� f2Ü � f0 à q0Ö1� p2 á rDÜ � p0 á rD

à r
4
Ö1� 2mÜ2Ö1� q0Ü

2Ö1á q0Ü á m 1� 2q0 � q2
0 � mÖ1� 2q0ÜÖ1á q0Ü

⇥ ⇤
;

Ö15Ü

from which we can in principle find exact analytic expressions for f ⇤s . However, it is difficult to
extract useful information from the exact solution. In the following we will therefore provide
approximate solutions.

If we neglect recombination (ρ = 0), we obtain the following equilibrium genotype fre-
quency distribution:

f ⇤00Ör à 0Ü à 1� m
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8� 16má 9m2

p
� 1

2
2� 5má 3m2Ö Ü

⇡
ÅÅÅ
2
p
� 1

� �
á 5

2
� 2

ÅÅÅ
2
p✓ ◆

má O m2Ö Ü;

f ⇤01=10Ör à 0Ü à 1

4
4� 9má 6m2Ö Ü � 1� 2m

4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8� 16má 9m2

p

⇡ 1� 1ÅÅÅ
2
p

✓ ◆
á 3ÅÅÅ

2
p � 9

4

✓ ◆
má O m2Ö Ü;

f ⇤11Ör à 0Ü à m
2

4� 3m�
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8� 16má 9m2

p⇣ ⌘
⇡ 2�

ÅÅÅ
2
p⇣ ⌘

má O m2Ö Ü:

Ö16Ü

When ρ = 1, which corresponds to the one-point crossover scheme with r = 1, linkage equi-
librium (f00 f11 = f10 f01) is restored after one generation [55]. Accordingly, we can treat each
locus independently and get rather simple expressions for f ⇤s as

f ⇤00Ör à 1Ü à 1

4
Ö2á m�
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p
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m
p � 3m

2
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� �
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4
Ö
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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p
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� �
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We depict the equilibrium solutions for the above two cases in Fig 3.
Now, the mutational robustness

m à 1

2
Ö2f ⇤00 á f ⇤10 á f ⇤01Ü à f ⇤00 á f ⇤10 à f0 á

1

2
f1 Ö18Ü
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for the above two cases is obtained as

mÖm; r à 0Ü à 1

4
Ömá

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
8� 16má 9m2

p
Ü ⇡ 1ÅÅÅ

2
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2
p � 1
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✓ ◆
má OÖm2Ü; Ö19Ü

mÖm; r à 1Ü à 1

2
Ö2á m�

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m2 á 4m

p
Ü ⇡ 1� ÅÅÅ

m
p á m

2
á OÖm3=2Ü; Ö20Ü

which is depicted in Fig 4. These results encapsulate in a simple form the main topic of this
paper. Selection alone (ρ = 0) leads to a moderate increase of robustness from the baseline
value m à 1

2
corresponding to a random distribution over genotypes, which is attained at

Fig 3. Equilibrium genotype frequencies in the two locus model. Genotype frequencies in the stationary state are shown as a function of mutation rate for (A)
strong recombination (ρ = 1) and (B) no recombination (ρ = 0).

https://doi.org/10.1371/journal.pcbi.1006884.g003

Fig 4. Mutational robustness as a function of mutation rate. The figure shows the robustness in the two-locus model
at ρ = 0 and ρ = 1. Recombination leads to a massive enhancement of robustness for small mutation rates.

https://doi.org/10.1371/journal.pcbi.1006884.g004

Recombination and mutational robustness in neutral fitness landscapes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006884 August 15, 2019 10 / 31



m à 1
2
, to m à 1ÅÅ

2
p for μ! 0. In contrast, for recombining populations (ρ = 1) robustness is

massively enhanced at small mutation rates due to the strong frequency increase of the most
robust genotype (0,0) and reaches the maximal value m = 1 at μ = 0. The underlying mecha-
nism is analogous to Kondrashov’s deterministic mutation hypothesis, which posits that
recombination makes selection against deleterious mutations more effective when these
interact synergistically [13]. In the present case recombination increases the frequency of
the double mutant genotype (1, 1), which is subsequently purged by selection, and thereby
effectively drives the frequency of the allele 1 at both loci to zero. The enhancement of the
frequency of the genotype (0,0) by recombination is also reflected in the recombination
weights, which take on the values

l00 à
3

4
á r

4
; l01 à l10 à

3

4
� r

4
; l11 à

r
4
: Ö21Ü

Thus the genotype (0,0) is the recombination center of the two-locus landscape.
Next we investigate how mutational robustness varies with μ for intermediate recombina-

tion rates, assuming that μ is small. As can be seen from Eq (15), the asymptotic behavior of
the solution for small ρ and μ depends on which of the two parameters is smaller. We first con-
sider the case ρ⌧ μ⌧ 1. Defining l = ρ/(4μ)⌧ 1, Eq (15) is approximated by

0 à lÖ1� q0Ü
2Ö1á q0Ü á 1� 2q0 � q2

0 � mÖ1� 2q0ÜÖ1á q0Ü; Ö22Ü

where we kept terms up to O(μ), since we have not determined whether l is smaller than μ or

not. Since q0 à
ÅÅÅ
2
p
� 1 is the solution of Eq (22) for l = μ = 0, we set q0 à

ÅÅÅ
2
p
� 1á alá bm

and solve the equation to leading order, which gives
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2
p
� 1á 3� 2
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ÅÅÅ
2
p✓ ◆
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The mutational robustness then follows as

m à f0 á
f1
2
à 1

2
á p0 � p2

2
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á Ö1� 2mÜ q0

2
⇡ 1ÅÅÅ

2
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2
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2
p � 1

4

✓ ◆
m; Ö24Ü

which is consistent with our previous result for ρ = 0; see Eq (19). We note that in this regime
it is sufficient for the recombination rate to be of order O(μ2) to compensate the negative effect
of mutations on mutational robustness, as the two effects cancel when ρ = ρc with

rc à 2Ö5á 4
ÅÅÅ
2
p
Üm2 ⇡ 21:3⇥ m2: Ö25Ü

In the regime ρ� μ, Eq (15) is approximated as

Ö1� 4mÜÖ1� q0Ü
2Ö1á q0Ü á sÖ1� 2q0 � q2

0Ü à 0; Ö26Ü

with s = 4μ/ρ. Again we have kept terms up to O(μ) because μ and s are of the same order if ρ =
O(1). Since the solution of Eq (26) for μ = s = 0 is q0 = 1, we set q0 = 1 − ċ with ċ⌧ 1. Inserting

this into Eq (26), we get a ⇡
ÅÅ
s
p

. Since ċ� μ, q0 à 1�
ÅÅ
s
p

is the approximate solution to lead-
ing order. Hence

m à 1

2
á Ö1� 2mÜ q0

2
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ÅÅÅ
s
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r
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ÅÅÅ
m
r

r
; Ö27Ü

which is again consistent with our previous result for ρ = 1 in Eq (20). The square root
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dependence on μ/ρ derives from the corresponding behavior of the genotype frequency f ⇤00 and

has been noticed previously in the model with unidirectional mutations [58, 59].
For arbitrary ρ and μ, we have to use the full Eq (15). Fig 5 illustrates the behaviour of muta-

tional robustness as a function of the recombination rate for different mutation rates and both
recombination schemes. For small μ, a low rate of recombination suffices to bring the robust-
ness close to its maximal value m = 1. More precisely, according to Eq (27), a robustness m> 1
− ✏ is reached for recombination rates ρ> μ/✏2.

To summarize, we have seen that analytic results for the two-locus model are easily attain-
able. For multi-locus models it is much more challenging to derive analytical results, particu-
larly in the presence of recombination. By way of contrast the dynamics induced only by
mutation and selection are easier to understand: While mutations increase the genotype diver-
sity in the population, fitter ones grow in frequency through selection, which reduces diversity.
Although one might expect that recombination would increase diversity, a number of studies
have shown that recombination is more likely to impede the divergence of populations.
Recombining populations tend to cluster on single genotypes or in a limited region of a geno-
type space and furthermore the waiting times for peak shifts in multipeaked fitness landscapes
diverge at a critical recombination rate [22, 26, 54–56, 61]. The results for the two-locus model
presented above are consistent with this behaviour, as the genotype heterogeneity of the popu-
lation decreases with increasing recombination rate (S1 Fig).

In the following we will investigate how the focusing effect of recombination enhances the
mutational robustness of the population in three different multi-locus models.

Mesa landscape

In the mesa landscape it is assumed that up to a certain number k of mutations all genotypes
are functional and have unit fitness, whereas genotypes with more than k mutations are lethal

Fig 5. Mutational robustness as a function of recombination rate. The figure shows the mutational robustness for one-point crossover (mopc) and
uniform crossover (muc) and three different values of the mutation rate μ. When mutations are rare, a small amount of recombination is sufficient to
significantly increase mutational robustness.

https://doi.org/10.1371/journal.pcbi.1006884.g005
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and have fitness zero [48]. Hence the fitness landscape is defined as

ws à
(

1; if ds  k;

0; otherwise;
Ö28Ü

where dσ is the Hamming distance to the wild-type sequence (0, 0, . . ., 0) or, equivalently, the
number of loci with allele 1. We will refer to k as the mesa width or as the critical Hamming
distance.

Such a scenario can for example be observed in the evolution of regulatory motifs, where
the fitness depends on the binding affinity of the regulatory proteins and dσ corresponds to the
number of mismatches compared to the original binding motif [45, 47]. The two-locus model
discussed in the preceding section corresponds to the mesa landscape with critical Hamming
distance k = 1 and sequence length L = 2. Here we ask to what extent the behavior observed for
the two-locus model generalizes to longer sequences and variable k. Numerical simulations
suggest that the strong increase of mutational robustness with recombination rate indeed per-
sists in the general setting, and the particular recombination scheme seems to have only a
minor influence; see Fig 6.

Whereas an analytical treatment for general L, k and intermediate recombination rates
appears to be out of reach, accurate approximations are available in the limiting case of strong
recombination or of no recombination, assuming mutation rate is small. The full derivations
for both cases can be found in S1 Appendix. In the following we summarize the main results.

Strong recombination. In the limit of strong recombination we demand linkage equilib-
rium after each recombination step. This is satisfied if we use the so-called communal recom-
bination scheme [62]. In this scheme an individual is not the offspring of a pair of parents.
Rather, its genotype is aggregated by choosing the allele at each locus from a randomly selected
parent. Hence the probability of occurrence of an allele at each locus in the offspring genotype
after recombination is given by the corresponding allele frequency of the whole population,

Fig 6. Mutational robustness in a mesa landscape as a function of recombination rate. Data points are obtained by
numerically iterating the selection-mutation-recombination dynamics until the equilibrium state is reached. The
parameters of the mesa landscape are L = 6, k = 2 and the mutation rate is μ = 0.001.

https://doi.org/10.1371/journal.pcbi.1006884.g006
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which is precisely the definition of linkage equilibrium. In order to obtain an approximation
for the mutational robustness we further assume that the mutation rate μ is small, which in
turn implies a low frequency of mutant alleles. Following the derivation in S1 Appendix this
leads us to the expression

mcr ⇡ 1� L� 1

k

✓ ◆1=Öká1Ü

mk=Öká1Ü á k
ká 1

m; Ö29Ü

which can be approximated as

mcr ⇡ 1� Uk=Öká1ÜÖk!Ü�1=Öká1Ü á k
ká 1

m Ö30Ü

for L� k, where U = Lμ is the genome-wide mutation rate and the subscript signifies the com-
munal recombination scheme. Using Eq (29) and setting L = 2 and k = 1 we retrieve the result
(20) for the two-locus model. Furthermore comparing Eqs (29) and (30) to numerical simula-
tions of communal recombination illustrates their validity for large L (S2 Fig). If we use uni-
form crossover and one-point crossover instead of communal recombination, the numerical
simulations suggest that the leading behaviour of 1 −m is still a function of U = Lμ with the
same exponent k/(k + 1), which supports the universality of our findings with respect to the
recombination scheme; see S3 Fig.

No recombination. In order to obtain analytical results in the absence of recombination
we assume that the mutation rate is small enough that only a single point mutation occurs in
one generation. This condition is fulfilled if U = Lμ⌧ 1. Interestingly, we observe that in this
regime the equilibrium frequencies after selection are independent of U. Therefore also the
mutational robustness after selection, denoted by Mnr, is independent of U. The relation
between mutational robustness after selection (Mnr) and after mutation (mnr) is given by

mnr à MnrÖ1� UÜ áM2
nrU; Ö31Ü

which makes it suffice to find Mnr.
Assuming k/L⌧ 1 it is possible to link the set of stationarity conditions to the Hermite

polynomials Hn(x). This yields an approximation for the mutational robustness after selection
as

Mnr à
ÅÅÅÅ
yk
L

r
á oÖL�1=2Ü; Ö32Ü

where
ÅÅÅÅÅÅÅÅÅ
yk=2

p
is the largest zero of Hk+1(x). Correspondingly, the mutational robustness after

mutation is

mnr à
ÅÅÅÅ
yk
L

r
Ö1� UÜ á yk

L
U: Ö33Ü

A comparison to the exact solutions for Mnr, which have been obtained up to k = 4, confirms
this approximation. If we further assume that 1⌧ k⌧ L, we find yk⇠ 4k, which leads to

mnr à 2

ÅÅÅ
k
L

r
Ö1� UÜ á 4

k
L
U: Ö34Ü
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Results for the joint limit k, L!1 at fixed ratio x = k/L can be obtained from the analysis
of Ref. [48], which yields

Mnr à
(

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xÖ1� xÜ

p
; if x < 1=2;

1; if x � 1=2
Ö35Ü

and therefore

mnr à
(

2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xÖ1� xÜ

p
Ö1� UÜ á 4xÖ1� xÜU; if x < 1=2;

1; if x � 1=2:
Ö36Ü

The leading behaviour for small x coincides with Eq (34). A comparison of the approximations
to numerical solutions is given in S4 Fig.

Comparison of the two cases. It is instructive to compare the results obtained above to
the mutational robustness m0 of a uniform population distribution. For the latter we assume
that all viable genotypes have the same frequency and all lethal genotypes have frequency zero.
For the mesa model this yields

m0ÖL; kÜ à
1

Pk
ià0

L
i

� �
L
k

✓ ◆
k
L
á
Xk�1

ià0

L
i

✓ ◆" #

⇡ min â2k=L; 1ä; Ö37Ü

where the last approximation is valid for L!1. In S5 Fig the behavior of m0, mnr and mcr is
depicted as a function of various model parameters. Similar to the results obtained for the two-
locus model, we see that selection gives rise to a moderate increase of robustness (from 2k/L
to 2

ÅÅÅÅÅÅÅÅ
k=L

p
for 1⌧ k⌧ L), but recombination has a much stronger effect and leads to values

close to the maximal robustness m = 1 for a broad range of conditions.
To elucidate the underlying mechanism, it is helpful to consider the shape of the equilib-

rium frequency distributions in genotype space (Fig 7). The combinatorial increase of the
number of genotypes with increasing dσ generates a strong entropic force that selection alone
cannot efficiently counteract. As a consequence, the non-recombining population distribution
is localized near the brink of the mesa at dσ = k [48]. In contrast, the contracting property of
recombination [44] allows it to localize the population in the interior of the fitness plateau
where most genotypes are surrounded by viable mutants.

S6 Fig shows the corresponding recombination weight profile. Similar to the genotype fre-
quencies in Fig 7(B) the recombination weight decays rapidly with increasing Hamming dis-
tance for r> 0, but the decay appears to be faster than exponential. Interestingly, at d = k the
recombination weight decreases with increasing r [see also Eq (21)]. The method used to com-
pute ĕσ for large mesa landscapes is explained in S1 Appendix.

Percolation landscapes

In the percolation landscape genotypes are randomly chosen to be viable (wσ = 1) with proba-
bility p and lethal (wσ = 0) with probability 1 − p. An interesting property of the percolation
model is the emergence of two different landscape regimes [49, 63–65]. Above the percolation
threshold pc, viable genotypes connected by single mutational steps form a cluster that extends
over the whole landscape, whereas below pc only isolated small clusters appear. Since the per-
colation threshold depends inversely on the sequence length, pc ⇡ 1

L, for large L a small fraction

of viable genotypes suffices to create large neutral networks. This allows a population to evolve
to distant genotypes without going through lethal regions, and correspondingly the percola-
tion model is often used to study speciation [35, 49]. A network representation of the
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percolation model is shown in Fig 8. The algorithm used to generate this visual representation
is explained in S1 Appendix.

Fig 9 shows three exemplary stationary genotype frequency distributions on the landscape
depicted in Fig 8. In the absence of recombination the equilibrium frequency distribution is
unique, but in the presence of recombination the non-linearity of the dynamics implies that
multiple stationary states may exist [54, 55, 61]. Fig 9 displays two stationary distributions for
r = 1 which are accessed from different initial conditions. It is visually apparent that the recom-
bining populations are concentrated on a small number of highly connected genotypes, lead-
ing to a significant increase of mutational robustness.

To quantify this effect, the average mutational robustness m is calculated as a function of
the recombination rate according to the following numerical protocol:

• A percolation landscape for given L and p is generated and the initial population is distrib-
uted uniformly among all genotypes.

• The population is evolved in the absence of recombination (r = 0) until the unique equilib-
rium frequency distribution is reached, for which the mutational robustness m is calculated.

• Next the recombination rate is increased by predefined increments. After increasing r, the
population is again evolved using the stationary state obtained before the increment of r as
the initial condition, until it reaches a new stationary state for which the mutational robust-
ness is measured.

• When the recombination rate has reached r = 1, a new percolation landscape is generated
and the process starts all over again. This is done for an adjustable number of runs over
which the average is taken.

Fig 7. Equilibrium genotype distributions in a mesa landscape for strongly and non-recombining populations. Stationary states for populations with communal
recombination and no recombination have been computed by assuming that only single point mutations occur with U = 0.01. Landscape parameters are L = 1000 and
k = 100. The resulting mutational robustness is mnr⇡ 0.572 for the non-recombining population and mcr⇡ 1.000 for communal recombination. (A) Lumped
mutation class frequencies on linear scales. In the absence of recombination the majority of the population is located at the critical Hamming distance d = k, whereas
in the case of strong recombination the distribution is broader and shifted away from the brink of the mesa. (B) Genotype frequencies on semi-logarithmic scales. In
both cases the genotype frequencies decrease exponentially with the Hamming distance to the wild type, but the distribution has much more weight at small distances
in the case of recombination.

https://doi.org/10.1371/journal.pcbi.1006884.g007
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The results of such a computation are shown in Fig 10. Similar to the mesa landscapes, a
strong increase of mutational robustness is observed already for small rates of recombination,
and the effect is largely independent of the recombination scheme. However, in contrast to the
mesa landscape the robustness does not reach its maximal value m = 1 for r = 1 and small μ.
This reflects the fact that maximally connected genotypes with mσ = 1 are very rare at this par-
ticular value of p.

Fig 8. Network representation of a percolation landscape. The figure shows a percolation landscape with L = 8 loci
and a fraction p = 0.2 of viable genotypes. Viable genotypes at Hamming distance d = 1 are connected by edges, and
the node area of a genotype σ is proportional to l6

s, where the recombination weight ĕσ is defined in Eq (10). The
recombination center is the genotype with the largest recombination weight.

https://doi.org/10.1371/journal.pcbi.1006884.g008

Fig 9. Stationary states in a percolation landscape. The figure shows three different stationary population distributions in the percolation landscape
depicted in Fig 8. Node areas are proportional to the stationary frequency of the respective genotype in the population, and the edge width eσ,τ between
neighboring genotypes is proportional to the frequency of the more populated one, es;t /maxâf ⇤s ; f ⇤t ä. (A) Unique stationary state of a non-recombining
population. (B,C) Stationary states for recombining populations undergoing uniform crossover with r = 1. The recombination center (purple) is the most
populated genotype in (A,B), but not in (C). In all cases the mutation rate is μ = 0.01.

https://doi.org/10.1371/journal.pcbi.1006884.g009
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For the purpose of comparison we also determined the average mutational robustness m0

of a uniform population distribution for the percolation model. Conditioned on the number
v = |V| of viable genotypes and assuming that v� 1, we have m0(v, L) = n(v, L)/L, where n(v, L)
is the average number of viable neighbors of a viable genotype. The latter is given by the
expression

nÖL; vÜ à Öv� 1ÜL
2L � 1

; Ö38Ü

since for a given viable genotype there are v − 1 remaining genotypes, each of which has the
probability L/(2L − 1) to be a neighboring one. Taking into account that the number of viable
genotypes is binomially distributed with parameter p and that the empty hypercube (v = 0)
should yield m0 = 0 we obtain

m0 à
X2L

và1

Öv� 1Ü
2L � 1

2L

v

✓ ◆
pvÖ1� pÜ2

L�v à 2Lp� 1á Ö1� pÜ2
L

2L � 1
; Ö39Ü

which simplifies to m0 à p when 2Lp� 1. Note that the condition 2Lp� 1 is naturally satis-
fied beyond the percolation threshold.

Fig 11 illustrates that the dynamics induced by mutation and selection already increase
mutational robustness compared to m0 and that the addition of recombination even further
increases mutational robustness for all values of p. The figure also displays the expected maxi-
mum number of viable neighbors of any genotype in the landscape, mmax, which provides an
upper bound on the robustness. The fact that the numerically determined robustness remains
below this bound for all p shows that the ability of recombination to locate the most connected
genotype is limited. In S1 Appendix it is shown that limL!1mmax à 1 for p > 1

2
.

Fig 10. Average mutational robustness in the percolation landscape as a function of recombination rate.
Mutational robustness is computed for 250 randomly generated percolation landscapes with L = 6 and p = 0.4, and the
results are averaged to obtain mÖrÜ. The mutation rate is μ = 0.001.

https://doi.org/10.1371/journal.pcbi.1006884.g010
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As outlined above, the algorithm used to generate Figs 10 and 11 computes the mutational
robustness of a particular stationary frequency distribution of the recombining population
which is smoothly connected to the unique non-recombining stationary state. Although one
expects this state to be representative in the sense of being reachable from many initial condi-
tions, for large enough r there can be multiple stationary states that will generally display dif-
ferent robustness (see Fig 9). To illustrate this point, S7 Fig shows the results of a simulation of
the percolation model where all stationary states were identified using localized initial condi-
tions, and the mutational robustness was computed separately for each state. Whereas on aver-
age the mutational robustness is always enhanced by recombination, there are rare instances
when recombination reduces the robustness compared to the non-recombining case. This
may happen, for example, if recombination traps the population on a small island of viable
genotypes [22, 26, 55, 56].

Sea-cliff landscapes

In this section we introduce a novel class of fitness-landscape models (to be called sea-cliff
landscapes) that interpolates between the mesa and percolation landscapes. Similar to the
mesa landscape, the fitness values of the sea-cliff model are determined by the distance to a ref-
erence genotype Ĕ⇤. The model differs from the mesa landscape in that it is not assumed that
all genotypes have zero fitness beyond a certain number of mutations. Instead, the likelihood
for a mutation to be lethal (to “fall off the cliff”) is taken to increase with the Hamming dis-
tance from the reference genotype. This is mathematically realized by a Heaviside step
function θ(x) that contains an uncorrelated random contribution đσ and the distance measure

Fig 11. Mutational robustness in the percolation landscape as a function of the fraction of viable genotypes. The
robustness for recombining (mÖr à 1Ü) and non-recombining (mÖr à 0Ü) populations is obtained by averaging over
6800 randomly generated landscapes with L = 6 and μ = 0.001. In the same way the average maximal robustness mmax
is estimated. The full line shows the analytic expression (39) for the robustness of a uniformly distributed population.

https://doi.org/10.1371/journal.pcbi.1006884.g011
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d(σ, Ĕ⇤),
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1; if Zs > dÖs;k⇤Ü;

0; if Zs < dÖs;k⇤Ü:
Ö40Ü

This construction is similar in spirit to the definition of the Rough-Mount-Fuji model [66, 67].
The average shape of the landscape can be tuned by the mean c and the standard deviation s

of the distribution of the random variables đσ, which we assume to be Gaussian in the follow-
ing. The average fitness at distance d from the reference sequence is then given by

wÖdÜ à ProbÖws à 1Ü à 1

2
1� erf

d � c
s
ÅÅÅ
2
p

✓ ◆ �
; Ö41Ü

where erf(x) is the error function. Note that the mesa landscape is reproduced if we take the
limit s! 0 for fixed c in the range k< c< k + 1 and the percolation landscape is reproduced if
we take a joint limit s, |c|!1 with c/s fixed.

To fix c and s we introduce two distances d< and and d> such that wÖd<Ü à 0:99 and
wÖd>Ü à 0:01, which leads to the relations

c à 1

2
Öd< á d>Ü and s ⇡ 0:215Öd> � d<Ü: Ö42Ü

The model can be generalized to include several predefined reference sequences,

wÖsÜ à y
X

k⇤
yâZs;k⇤ � dÖs;k⇤Üä

( )

; Ö43Ü

which allows to create a genotype space with several highly connected clusters. Depending on
the Hamming distance between the reference sequences and the variables c and s, clusters can
be isolated or connected by viable mutations.

Fig 12 shows stationary states in the absence and presence of recombination for two differ-
ent sea-cliff landscapes with one and two reference genotypes, respectively. Similar to the
other landscape models, mutational robustness increases strongly with recombination, due to
a population concentration within a neutral cluster. In the presence of two reference genotypes
the recombining population should be concentrated within a single cluster. Otherwise lethal
genotypes would be predominantly created through recombination of genotypes on different
clusters. This observation can also be interpreted in the context of speciation due to genetic
incompatibilities [49, 61]. Without recombination genotypes on both clusters have a nonvan-
ishing frequency, but still the larger cluster is more populated. In contrast to the percolation
landscape, robustness reaches a value close to unity for large r, because highly connected geno-
types are abundant close to the reference sequence (S8 Fig).

Mutational robustness and recombination weight

Comparing Figs 6 and 10 and S8 Fig, the dependence of mutational robustness on the recom-
bination rate is seen to be strikingly similar. Despite the very different landscape topographies,
in all cases a small amount of recombination gives rise to a massive increase in robustness
compared to the non-recombining baseline. For the mesa landscape this effect can be plausibly
attributed to the focusing property of recombination, which counteracts the entropic spread-
ing towards the fitness brink and localizes the population inside the plateau of viable geno-
types. In the case of the holey landscapes, however, it is not evident that focusing the
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population towards the center of its genotypic range will on average increase robustness, since
viable and lethal genotypes are randomly interspersed.

To establish the relation between recombination and mutational robustness on the level of
individual genotypes, in Fig 13 we plot the recombination weight of each genotype against its
robustness mσ. A clear positive correlation between the two quantities is observed both for per-
colation and sea-cliff landscapes. Additionally we differentiate between viable and lethal geno-
types. In the percolation landscape viable genotypes are uniformly distributed in the genotype
space, which implies that lethal and viable genotypes have on average the same number of via-
ble point-mutations. Nevertheless the recombination weight of viable genotypes is larger. The
fitness of a genotype influences its own recombination weight, because the genotype itself is a
possible parental genotype in the recombination event.

In non-neutral fitness landscapes the redistribution of the population through recombina-
tion competes with selection responding to fitness differences, and the generalized definition
(11) of the recombination weight captures this interplay. To exemplify the relation between
recombination weight and mutational robustness in this broader context, we use an empirical
fitness landscape for the filamentary fungus Aspergillus niger originally obtained in [68]. In a
nutshell, two strains of A. niger (N411 and N890) were fused to a diploid which is unstable and
creates two haploids by random chromosome arrangement. Both strains are isogenic to each

Fig 12. Stationary states in two different sea-cliff landscapes with and without recombination. (A,B) A single reference
genotype with landscape parameters L = 8, d< = 1 and d> = 6. (C,D) Two reference genotypes which are antipodal to each
other with landscape parameters L = 8, d< = 2 and d> = 4.2. (A,C) Stationary frequency distribution in the absence of
recombination. (B,D) Stationary frequency distribution with uniform crossover and r = 1. In all cases node areas are
proportional to genotype frequencies, and the recombination center is marked in blue. The edge width between neighboring
genotypes is proportional to the frequency of the more populated one. The mutation rate is μ = 0.01.

https://doi.org/10.1371/journal.pcbi.1006884.g012
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other, except that N890 has 8 marker mutations on different chromosomes, which were
induced by low UV-radiation. Through this process 28 = 256 haploid segregants can theoreti-
cally be created of which 186 were isolated in the experiment. As a result of a statistical analysis
it was concluded that the missing 70 haploids have zero fitness [69].

In order to illustrate the fitness landscape, a network representation is employed where
genotypes are arranged in a plane according to their fitness and their Hamming distance to the
wild type, which in this case is the genotype of maximal fitness. In Fig 14A and 14B node sizes
are adjusted to the recombination weights and mutational robustness of genotypes, respec-
tively, in order to display the distribution of these quantities. In accordance with the analyses
for neutral fitness landscapes, a clear correlation between the recombination weights and
mutational robustness is shown in Fig 14C. Since fitness values are not binary we further con-
sider the correlation between the recombination weights and fitness values (Fig 14D). The
recombination center is one of the maximally robust genotypes with mσ = 1, but it is not the
fittest within this group. The wild type has maximal fitness but, by comparison, lower robust-
ness (mσ = 7/8).

Fig 15 highlights how the recombination weights change as a function of the recombination
rate and how this affects the stationary state of a population. For small recombination rates the
recombination weight of each genotype mainly depends on its own fitness, and therefore the
wild type coincides with the recombination center. With increasing recombination rate the
connectivity of the surrounding genotype network becomes more important and the recombi-
nation center switches to a genotype at Hamming distance d = 2. In contrast to the numerical
protocol described previously, in the simulations used to generate Fig 15D–15F the population
is reset to a uniform distribution before the recombination rate is increased. Otherwise the
population would continue to adapt to the wild type, which has the highest fitness and from

Fig 13. Mutational robustness correlates with recombination weight. The recombination weight of genotypes is plotted against their mutational robustness for (A)
a percolation landscape with parameters L = 8, p = 0.4 and (B) a sea-cliff landscape with parameters L = 8, d< = 2, d> = 6. For the evaluation of the recombination
weight (10), uniform crossover at rate r = 1 is assumed.

https://doi.org/10.1371/journal.pcbi.1006884.g013
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which it cannot escape because of peak trapping [22, 26]. Starting from an initially uniform
distribution the population will adapt to one of three possible final genotypes which depend
on the recombination rate. For small and large recombination rates the most abundant geno-
type coincides with the recombination center (Fig 15D and 15F), whereas for intermediate
recombination rates the population chooses another genotype that is also located at Hamming
distance d = 2 but has higher fitness (Fig 15E). The recombination center ultimately dominates
the population, not only because it is maximally connected (mσ = 1), but also because the geno-
types that it is connected to have high fitness. In this sense the sequence of transitions in the
most abundant genotype that occur with increasing recombination rate is akin to the scenario
described previously in non-recombining populations as the “survival of the flattest” [48, 70].
Along this sequence mutational robustness increases monotonically whereas the average fit-
ness of the population actually declines (S9 Fig).

Fig 14. The empirical A. niger fitness landscape. (A,B) Two-dimensional network representation of the fitness landscape with node sizes determined by the
mutational robustness mσ and the recombination weight ĕσ, respectively. In order to make the differences between genotypes more conspicuous, the node area is
chosen proportional to the sixth power of these quantities. The recombination weight is evaluated for uniform crossover with r = 1, and the recombination center is
highlighted in purple. (C,D) Recombination weight plotted against mutational robustness and genotype fitness, respectively. Lethal genotypes with wσ = 0 appear only
in panel D.

https://doi.org/10.1371/journal.pcbi.1006884.g014
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Discussion

Despite a century of research into the evolutionary bases of recombination, a general mecha-
nism explaining the ubiquity of genetic exchange throughout the domains of life has not been
found [17, 18]. Even within the idealized scenario of a population evolving in a fixed environ-
ment, whether or not recombination speeds up adaptation and leads to higher fitness levels
depends in a complicated way on the structure of the fitness landscape and the parameters of
the evolutionary dynamics [21–26].

The most important finding of the present work is that, by comparison, the effect of recom-
bination on mutational robustness is much simpler and highly universal. Irrespective of the
number of loci, the structure of the fitness landscape or the recombination scheme, recombi-
nation leads to a significant increase of robustness that is usually much stronger than the previ-
ously identified effect of selection [32–34]. This suggests that the evolution of recombination
may be closely linked to the evolution of robustness, and that similar selective benefits are
involved in the two cases. Although the relation of robustness to evolutionary fitness is subtle
and not fully understood [27], it has been convincingly argued that robustness enhances evol-
vability and hence becomes adaptive in changing environments [29, 31, 71, 72]. A common
perspective on recombination, robustness and evolvability can help to develop novel hypothe-
ses about the evolutionary origins of these phenomena that can be tested in future computa-
tional or empirical studies.

Fig 15. Recombination weights and stationary states at different recombination rates. (A-C) Two-dimensional network representation of the A. niger fitness
landscape with node areas proportional to the sixth power of the recombination weight for recombination rates r = 0, r = 0.4 and r = 1, respectively. (D-F) Two-
dimensional network representation of the A. niger fitness landscape with node areas proportional to the stationary genotype frequency at the same recombination
rates and mutation rate μ = 0.005. The edge width between neighboring genotypes is proportional to the frequency of the more populated one.

https://doi.org/10.1371/journal.pcbi.1006884.g015
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On a quantitative level, we have shown that robustness generally depends on the ratio of
recombination to mutation rates, and that the robustness-enhancing effect saturates when r�
μ. This observation highlights the importance of r/μ as an evolutionary parameter. Interest-
ingly, even in bacteria and archaea, which have traditionally been regarded as essentially
non-recombining, the majority of species displays values of r/μ that are significantly larger
than one [73–75]. Similarly, a recent study of the evolution of Siphoviridae phages revealed a
ratio of recombination events to mutational substitutions of about 24 [76]. In eukaryotes this
ratio is expected to be considerably higher [40]. This indicates that most organisms maintain a
rate of recombination that is sufficient to reap its evolutionary benefits in terms of increased
robustness.

In order to clarify the mechanism through which recombination enhances robustness, we
have introduced the concept of the recombination weight, which is a measure for the likeli-
hood of a genotype to arise from the recombination of two viable parental genotypes. The
recombination weight defines a “recombination landscape” over the space of genotypes which
is similar in spirit to, but distinct from, previous mathematical approaches to conceptualizing
the way in which recombining populations navigate a fitness landscape [77]. It is complemen-
tary to the more commonly used notion of a recombination load, which refers to the likelihood
for a viable genotype to recombine to a lethal one [41, 42]. In many cases the maximum of the
recombination weight correctly predicts the most populated genotype in a recombining popu-
lation at low mutation rate. Moreover, the concept generalizes to non-neutral landscapes and
thus permits to address situations where selection and recombination compete.

Provided recombination weight is correlated with mutational robustness for the individual
genotypes, this explains the positive effect of recombination on the population-level robust-
ness. Whether or not such a correlation exists will generally depend on the structure of the fit-
ness landscapes. For simple neutral landscapes such as the mesa landscape it is an immediate
consequence of the focusing property of recombination, but for more complex neutral net-
works the relationship between the two quantities is nontrivial and needs to be studied on
a case-by-case basis. Although a positive correlation was observed numerically both for the
holey landscapes and the empirical landscape considered in this work, it is not difficult to con-
struct landscapes where the genotypes with high recombination weight are not highly robust.
As a simple but instructive example, in S10 Fig we show results for an ‘atoll’ landscape where a
ring of viable genotypes surrounds a central hole of lethals.

Throughout this work the effects of genetic drift have been neglected. We expect that our
results will be applicable to finite populations as long as the population is sufficiently diverse
rather than being monomorphic. This requires the population-wide mutation rate NμL to be
much larger than unity [32, 44]. If NμL⌧ 1 the population is almost always monomorphic
and recombination has no effect. In this regime the population explores the fitness landscape
as a random walker and the observed mutational robustness is the uniform robustness m0. In
S11 Fig we present the results of finite population simulations on a mesa landscape, which
show a sharp transition from the random walk regime to the behavior predicted by the deter-
ministic theory when NμL⇠ 1.

Future work should be directed towards extending the present investigation to more real-
istic genotype-phenotype maps arising, for example, from the secondary structures of bio-
polymers such as RNA or proteins [39, 40, 44], or from simple genetic, metabolic or logical
networks [29, 41, 43, 78]. There is ample evidence from numerical studies that a favorable
effect of recombination on mutational robustness is present also in these more complex sys-
tems, but a detailed analysis of the underlying mechanism has not been carried out. This
would entail, in particular, the generalization to genotype spaces composed of sequences
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carrying more than two alleles per site. We expect that at least part of the analysis for the
mesa landscapes carries over to this setting, and in fact some results for the non-recombin-
ing case have already been obtained [48]. More importantly, the role of the topology of
the corresponding neutral networks in shaping the correlation between recombination
weight and robustness needs to be explored systematically. Research along these lines will
help to corroborate the relationship between recombination and robustness that we have
sketched, and to further elucidate the origins of these two pervasive features of biological
evolution.

Supporting information

S1 Appendix. This appendix contains detailed derivations of analytic results presented in
the main text.
(PDF)

S1 Fig. Population heterogeneity decreases with increasing recombination rate. The figure
shows the entropy of the genotype frequency distribution in the two-locus model defined as
S à �

P
s f ⇤s ln Öf ⇤s Ü. For small mutation rates the strongly recombining population primarily

consists of a single genotype, which implies that S! 0.
(PDF)

S2 Fig. Mutational robustness for the mesa landscape with communal recombination. The
figure compares the analytic approximations in Eqs (29) and (30) to the numerical solution of
the stationary genotype frequency distribution for the communal recombination scheme. The
two panels show the mutational robustness as a function of the genome-wide mutation rate in
linear (A) and double-logarithmic (B) scales, respectively. The parameters of the mesa land-
scape are L = 30 and k = 3.
(PDF)

S3 Fig. Mutational robustness in a mesa landscape with different recombination schemes.
The figure compares the analytic results for communal recombination (mcr) with numerical
data obtained using uniform crossover (muc) and one-point crossover (mopc) at r = 1. The
landscape parameters are L = 5, k = 2 and robustness is plotted as a function of the genome-
wide mutation rate Lμ. (A) Mutational robustness on linear scales. (B) Double-logarithmic
plot of 1 −m vs. Lμ, illustrating the power-law behavior 1 −m⇠ (Lμ)b with the exponent b =
k/(k + 1) = 2/3 predicted by the analysis of the communal recombination model.
(PDF)

S4 Fig. Mutational robustness for the mesa landscape in the absence of recombination. The
figure compares the analytic predictions in Eqs (35) and (36) to the numerical solution for the
genotype frequency distribution in the absence of recombination. The two panels show the
mutational robustness (A) after selection and (B) after mutation as a function of the scaled
mesa width x0 = k/L for L = 1000 and U = 0.01.
(PDF)

S5 Fig. Mutational robustness in mesa landscapes with and without recombination.
Numerical results for communal recombination (mcr) and no recombination (mnr) are shown
as dots. The mutational robustness m0 of a uniformly distributed population, given by Eq (37),
as well as the analytic expressions Eqs (30) and (36) are depicted as lines. (A) Robustness as a
function of mutation rate U = Lμ for a landscape with L = 1000 and k = 10. (B) Robustness as a
function of mesa width k at fixed L = 1000 and U = Lμ = 0.01. (C) Robustness as a function of
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genome length L at fixed k = 10 and U = 0.01. (D) Robustness as a function of genome length L
at fixed k = 10 and μ = 0.001.
(PDF)

S6 Fig. Recombination weight in a mesa landscape. The parameters of the mesa landscape
are L = 100 and k = 10. For r = 0 the recombination weight is directly proportional to the fit-
ness and hence equal for all viable genotypes. Already small rates of recombination are suffi-
cient to redistribute the recombination weight such that the weight of genotypes with small
Hamming distance is strongly enhanced. Beyond d = 20 the recombination weight is identi-
cally zero, since the recombinant of two viable genotypes cannot carry more than 2k muta-
tions.
(PDF)

S7 Fig. Mutational robustness for different stationary states within a percolation land-
scape. The figure compares the mutational robustness of non-recombining (r = 0) and recom-
bining (r = 1) populations on individual realizations of the percolation model with L = 6 and
three values of p. In order to obtain different stationary states we used localized initial popula-
tion distributions of the form fτ(0) = Ďτσ for all genotypes with mutational robustness mσ 6à 0
and propagated them until stationarity. Since the stationary populations are usually highly
concentrated for large r and small μ, this is a natural choice in order to access all stationary
states. Each data point represents the robustness of the recombining population m(r = 1) for a
particular stationary state. Data points within the same landscape are plotted above the corre-
sponding unique robustness of the non-recombining population m(r = 0) and connected by a
vertical line. The orange crosses show the average over all initial conditions.
(PDF)

S8 Fig. Average mutational robustness in the sea-cliff landscape as a function of recombi-
nation rate. Mutational robustness is computed for 200 randomly generated sea-cliff land-
scapes with parameters L = 6, d< = 1 and d> = 5, and the results are averaged to obtain mÖrÜ.
The mutation rate is μ = 0.001.
(PDF)

S9 Fig. Mutational robustness and average fitness in the empirical A. niger fitness land-
scape. The mutational robustness and the population-averaged fitness in the stationary state
are computed as a function of recombination rate by evolving the population from a uniform
initial genotype distribution at mutation rate μ = 0.005. Jumps mark changes in the most popu-
lated genotype.
(PDF)

S10 Fig. Recombination on an atoll landscape. This landscape is similar to the mesa land-
scape but includes an inner critical radius within which genotypes are lethal. In this example
the inner radius is chosen to be 1 such that only the wild type is lethal. The outer radius is 2
and the sequence length is L = 7. The recombination rate is r = 1 and the mutation rate is μ =
0.001. The frequencies fn of the stationary state at the same Hamming distance n are lumped
together. The population is concentrated at distance 1 which is most robust since only one
point mutation is lethal, but the recombination center coincides with the lethal wild type. This
example shows that the correlation between recombination weight and mutational robustness
depends on the topology of the neutral network.
(PDF)

S11 Fig. Finite population size effects. The figure shows the mutational robustness in a mesa
landscape with parameter L = 6, k = 2 as a function of mutation rate. The finite population
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results were obtained using Wright-Fisher dynamics for N = 1000 individuals. For small muta-
tion rates such that NμL⌧ 1 the monomorphic population performs a random walk among
viable genotypes, which leads to the uniform mutational robustness m0 given by Eq (37)
(green dashed line). In this regime recombination cannot have any effect. For NμL> 1 the
robustness rises sharply to the value predicted by the infinite population approach. At the max-
imal mutation rate μ = 0.5 the population is uniformly distributed among all (lethal or viable)
genotypes after the mutation step and recombination has again no effect.
(PDF)
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I. VISUALIZATION OF FITNESS LANDSCAPES AS NETWORKS

In order to visualize random neutral fitness landscapes with more than two loci we make use of a network repre-
sentation, where genotypes that di�er by a single mutation are connected by an edge. Nodes of the network then
represent genotypes, which are arranged according to a spring layout that is based on a Fruchterman-Reingold force-
directed algorithm [1]. To describe this algorithm briefly, nodes are made to repel each other, which is counteracted
by edges that function as springs. This leads to a process of spring-force relaxation that arrives at an equilibrium state
which in turn is used for the node positions. The equilibrium state is characterized by clustering of highly connected
regions of nodes. Therefore this algorithm is only useful if not all nodes have the same number of edges. Hence edges
attached to lethal genotypes are deleted. This leads to a network in which only viable genotypes that di�er by a
single mutation are connected. Lethal genotypes are o� the grid and create a ring of repelled nodes.

II. TWO-LOCUS MODEL WITH UNIDIRECTIONAL MUTATION

Following Nowak et al. [2], we consider the two-locus model with unidirectional mutations from allele 0 to allele 1
at rate µ and one-point crossover at rate r. Based on the relation

q0 =
r

4µ̃
q2
1 , µ̃ =

µ

1 � µ
(A1)

between the lumped genotype frequencies after selection, the expression

M = q0 +
1

2
q1 = 1 � µ̃

r

✓�
1 +

r

µ̃
� 1

◆
(A2)

can be derived for the mutational robustness after selection. For r ! 0 this reduces to M = 1
2 independent of µ, which

is smaller than the value M = 2
3 expected for a random distribution over the viable genotypes (q0 = 1

3 , q1 = 2
3 ). In

the absence of recombination, the unidirectional mutations drive the entire population into the least robust genotypes
(0,1) and (1,0), such that q0 = 0 and q1 = 1. On the other hand, for r = 1 Eq (A2) becomes M = (1 +

p
µ)�1, which

can be compared to the corresponding expression

M =
m

1 � f2
=

2

2 � µ +
�

µ2 + 4µ
(A3)

obtained from Eq (17) of the main text. The two expressions coincide for µ ! 0, but for larger µ the bidirectional
model has higher robustness, because both selection and recombination contribute to focusing the population onto
the robust genotype (0,0) (Fig A1).

III. MUTATIONAL ROBUSTNESS ON THE MESA LANDSCAPE WITH COMMUNAL
RECOMBINATION

In this section, we calculate the mutational robustness in equilibrium for the mesa landscape, using the communal
recombination scheme [3]. Since fitness depends only on the Hamming distance from the wild type, the equilibrium
allele-frequency distribution at each locus is the same after mutation. In the following we denote the (equilibrium)
frequency of allele 0 (1) after the mutation step by �0 (�1 = 1��0). Then the equilibrium frequency f�

� of a genotype
� after recombination becomes

f�
� = �L�n

0 �n
1 , (A4)
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Fig A1. Mutational robustness in the two-locus model with unidirectional mutations. The figure shows the
mutational robustness after selection obtained for the unidirectional mutation scheme, Eq (A2), as function of µ for di�erent
r. For comparison the corresponding result Eq (A3) for the bidirectional mutation scheme with r = 1 is also depicted.

where n is the Hamming distance from the wild type. The lumped frequency of all genotypes in the class with n
mutations is then given by

fn =

✓
L

n

◆
�L�n

0 �n
1 . (A5)

Denoting the corresponding lumped frequency after selection by qn and using the mesa landscape defined in Eq (28)
of the main text, we get

qn =

(
fnw̄�1, n  k,

0, n > k,
(A6)

where w̄ =
�k

n=0 fn is the mean fitness. The lumped frequency pn after mutation then satisfies

pd =
LX

n=0

µ(d|n)qn, (A7)

where µ(d|n)gd is the probability that a mutation changes the Hamming distance from n to d. The pd in turn
determine the allele frequency after mutation through

�1 =
1

L

LX

d=0

dpd =
1

L

X

d

d
X

n

µ(d|n)qn =
1

L

X

n

h(n)qn, (A8)

where h(n) =
�

d µ(d|n)d is the average Hamming distance of a mutant generated from a genotype with Hamming
distance n. One can easily calculate h(n) for the mutation scheme Eq (4) of the main text, which yields

h(n) = n(1 � µ) + (L � n)µ = Lµ + (1 � 2µ)n. (A9)

This expression has a simple interpretation: On average a fraction 1 � µ of the n mutated sites is not mutated, and a
fraction µ of the L � n non-mutated sites aquires a new mutation. Inserting Eq (A9) into Eq (A8), we finally obtain

�1 =
1

L

kX

n=0

[Lµ + (1 � 2µ)n] qn = µ +
1

L
(1 � 2µ)

kX

n=0

nqn = µ +
1

Lw̄
(1 � 2µ)

�
L�1 �

LX

n=k+1

nfn

�

= µ +
�1

w̄
(1 � 2µ) � 1

Lw̄
(1 � 2µ)

LX

n=k+1

nfn, (A10)
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where we have used that

LX

n=0

nfn =
LX

n=0

npn = L�1, (A11)

because the allele frequency is not changed by recombination.
Up to now, everything is exact. It is a formidable, if not impossible, task to find an exact solution of Eq (A10), so

we will solve the problem approximately for small µ. Since µ is small, it is plausible to assume that �1 ⌧ 1 as well.
Under this assumption, we can find an approximate expression for w̄ as follows:

w̄ =
kX

n=0

fn = 1 �
LX

n=k+1

fn ⇡ 1 �
✓

L

k + 1

◆
�k+1

1 (1 � �1)
L�k�1 �

✓
L

k + 2

◆
�k+2

1 (1 � �1)
L�k�2

⇡ 1 �
✓

L

k + 1

◆
�k+1

1 + (L � k � 1)

✓
L

k + 1

◆
�k+2

1 �
✓

L

k + 2

◆
�k+2

1

= 1 �
✓

L

k + 1

◆
�k+1

1 + (k + 1)

✓
L

k + 2

◆
�k+2

1 � 1 � C1�
k+1
1 + (k + 1)C2�

k+2
1 , (A12)

where we have kept terms up to order �k+2
1 , Ci =

� L
k+i

�
(i = 1, 2), and 1/j! should be interpreted as 0 if j is a negative

integer. Note that the above formula is actually exact for k � L � 2.
Now we approximate Eq (A10) term by term. First, we get

�1

w̄
(1 � 2µ) ⇡ �1

�
1 + C1�

k+1
1 � (k + 1)C2�

k+2
1

�
(1 � 2µ) ⇡ �1 � 2µ�1 + C1�

k+2
1 , (A13)

where we have kept terms up to �k+2
1 and µ�1. Second, we get

1 � 2µ

w̄

LX

n=k+1

nfn ⇡
�
1 + C1�

k+1
1 � (k + 1)C2�

k+2
1

�
(1 � 2µ)

�
(k + 1)C1�

k+1
1 (1 � (L � k � 1)�1) + (k + 2)C2�

k+2
1

�

⇡(k + 1)C1�
k+1
1 � k

L!

(k + 1)!(L � k � 2)!
�k+2

1 . (A14)

Accordingly, we arrive at

�1 ⇡ µ + �1 � 2µ�1 + C1�
k+2
1 � k + 1

L
C1�

k+1
1 + k

(L � 1)!

(k + 1)!(L � k � 2)!
�k+2

1

= �1 + µ � 2µ�1 �
✓

L � 1

k

◆
�k+1

1 + (L � k)

✓
L � 1

k

◆
�k+2

1 , (A15)

that is,

µ ⇡ B�(k+1)�k+1
1 + 2µ�1 � (L � k)B�(k+1)�k+2

1 , (A16)

where B = [k!(L � k � 1)!/(L � 1)!]1/(k+1). Since the leading behavior of �1 is Bµ1/(k+1), we set

�1 = Bµ1/(k+1)(1 + g), (A17)

where g = o(1). Inserting Eq (A17) into Eq (A16) and expanding up to the leading order in g, we obtain

µ ⇡ µ(1 + g)k+1 + 2Bµ(k+2)/(k+1) � (L � k)Bµ(k+2)/(k+1)

⇡ µ + µ(k + 1)g + (2 + k � L)Bµµ1/(k+1), (A18)

which yields

g ⇡ L � k � 2

k + 1
Bµ1/(k+1). (A19)
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Therefore the mutational robustness becomes

m =
k�1X

n=0

fn +
k

L
fk = 1 �

LX

n=k+2

fn � L � k

L
fk � fk+1 ⇡ 1 � L � k

L

✓
L

k

◆ �
�k

1 � (L � k)�k+1
1

�
�

✓
L

k + 1

◆
�k+1

1

= 1 � (L � 1)!

k!(L � k � 1)!
�k

1 +
(L � 1)!

(k + 1)!(L � k � 1)!
(kL � k2 � k)�k+1

1

= 1 � B�(k+1)�k
1 + B�(k+1)�k+1

1

kL � k2 � k

k + 1
⇡ 1 + µ

kL � k2 � k

k + 1
� B�(k+1)�k+1

1 ��1
1

⇡ 1 + µ
kL � k2 � k

k + 1
� µ[1 + (k + 1)g](1 � g)µ�1/(k+1)B�1 ⇡ 1 + µ

kL � k2 � k

k + 1
� µk/(1+k)(1 + kg)B�1

= 1 + µ
kL � k2 � k

k + 1
� µk/(1+k)B�1 � µk/(1+k)kgB�1 ⇡ 1 � µk/(1+k)B�1 + µ

kL � k2 � k

k + 1
� µ

k(L � k � 2)

k + 1

= 1 �
✓

L � 1

k

◆1/(k+1)

µk/(k+1) + µ
k

k + 1
. (A20)

If L � k, m can be approximated as

m ⇡ 1 � (Lµ)k/(k+1)(k!)�1/(k+1) + µ
k

k + 1
. (A21)

IV. MUTATIONAL ROBUSTNESS ON THE MESA LANDSCAPE IN THE ABSENCE OF
RECOMBINATION

Here we calculate the mutational robustness for the mesa landscape in the absence of recombination and under
the assumption that the mutation rate is small. Here this is taken to imply that the genome-wide mutation rate
U � Lµ ⌧ 1, which implies that multiple mutations are negligible in the mutation step. Using the same notation as
before, the lumped equilibrium frequencies after mutation fn and after selection qn then satisfy the relations

w̄ =
kX

n=0

fn, qn =
fn

w̄
, fn = (1 � U)qn + U

L � n + 1

L
qn�1 + U

n + 1

L
qn+1, (A22)

where qn = 0 for n > k and q�1 = 0. Since fn = 0 for n > k + 1, we have

w̄ = 1 � fk+1 = 1 � U
L � k

L
qk. (A23)

This yields a closed set of equations for the qn, which reads

qn


1 � U

✓
1 � k

L

◆
qk

�
= (1 � U)qn + U

L � n + 1

L
qn�1 + U

n + 1

L
qn+1 (A24)

or

n + 1

L
qn+1 = Mkqn � L � n + 1

L
qn�1, (A25)

with

Mk = 1 � L � k

L
qk =

k�1X

n=0

qn +
k

L
qk = 1 �

✓
1 � k

L

◆
qk. (A26)

Note that Mk can be interpreted as mutational robustness measured before mutation and after selection. Interestingly,
qn’s do not depend on U if no multiple mutations are allowed. Since mutational robustness after mutation is given by

m =
k�1X

n=0

fn +
k

L
fk = 1 � fk+1 � L � k

L
fk = w̄

✓
1 � L � k

K
qk

◆
= Mkw̄

=Mk � UMk(1 � Mk) = Mk(1 � U) + UM2
k , (A27)
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it is su�cient to find Mk.

Defining �n � (2L)n/2
�L

n

��1
qn/q0 and y � Mk

�
L/2, we obtain from (A25)

⇣
1 � n

L

⌘
�n+1 = 2y�n � 2n�n�1. (A28)

We write down the first few terms for later purposes,

�0 = 1, �1 = 2y, �2 = (4y2 � 2)
L

L � 1
. (A29)

If n/L ⌧ 1, Eq (A28) is approximated as

�n+1 = 2y�n � 2n�n�1, (A30)

which is the recursion relation of the Hermite polynomials Hn(y). Since �0 = H0 and �1 = H1 for any L, we find
the approximate solution for �n as �n = Hn(y) for n ⌧ L. If k/L ⌧ 1, the Hermite polynomial becomes an accurate
solution for all n. Since �k+1 = 0 by definition and �n > 0 for n  k, y should be the largest solution of the equation

Hk+1(y) = 0. (A31)

If we denote the largest zero of Eq (A31) by
�

yk/2, we thus conclude

Mk =

�
yk

L
+ o(L�1/2). (A32)

The first few zeros are given by

y1 = 1, y2 = 3, y3 = 3 +
p

6, y4 = 5 +
p

10. (A33)

The approximation can be compared to the exact solutions for Mk which have been obtained up to k = 4 by solving
Eq (A22),

M1 =
1p
L

, M2 =

p
3L � 2

L
=

�
3

L
+ O(L�3/2),

M3 =

�
3L � 4 +

p
6L2 � 3L + 16

L
=

�
3 +

p
6

L

�1/2

+ O(L�3/2),

M4 =

�
5L � 10 +

p
10L2 � 5L + 76

L
=

�
5 +

p
10

L

�1/2

+ O(L�3/2),

which are indeed consistent with Eq (A32) and the first four yk’s in Eq (A33). Using Eq (A27) the robustness after
mutation is then given by

m ⇡
�

yk

L
(1 � U) + U

yk

L
. (A34)

Now we consider the case of large k. If we still assume 1 ⌧ k ⌧ L, the above approximation is valid. Since the
asymptotic behavior of the largest zero of Hn(x) is ⇠

p
2n + 1 [4, p. 132], we find yk ⇠ 4k, which gives

m ⇡ 2

�
k

L
(1 � U). (A35)

The approximation leading to Eq (A32) is however not valid if k/L remains finite as L ! 1. To treat this problem,
we may refer to previous work on the mesa landscape [5] that makes use of a maximum principle for permutation-
invariant fitness landscapes [6]. This principle states that the stationary population mean fitness w̄ is given by

w̄ = max
x�[0,1]

�
�(x) � U

h
1 � 2

�
x(1 � x)

i�
, (A36)
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where �(x) = limL�� wxL is the limiting value of the fitness of a genotype with n = xL mutations. To account for
the fact that genotypes with more than k mutation are lethal, the fitness function has to be taken to be �(x) = 1
if x  x0 � k/L and �(x) = �1 if x > x0, which is slighlty di�erent from the setting of Ref. [5]. Nevertheless the
result for the stationary fitness is the same,

w̄ =

(
1 � U

h
1 � 2

�
x0(1 � x0)

i
, if x0 < 1/2,

1, if x0 � 1/2.
(A37)

Combining Eqs (A23) and (A26) we see that Mk = 1 � U�1(1 � w̄), and therefore

Mk =

(
2
�

x0(1 � x0), if x0 < 1/2,

1, if x0 � 1/2.
(A38)

Note that the leading behavior of Mk for small x0 is the same as the Hermite polynomial solution Eq (A35).

V. RECOMBINATION WEIGHT ON THE MESA LANDSCAPE WITH UNIFORM CROSSOVER

In order to e�ciently compute the recombination weight for uniform crossover on the mesa landscape, one has
to exploit the permutation invariance of the landscape. In the following we denote the recombination weight �� of
genotype � as �(L, a, k, r), since it is fully defined by the sequence length L, the mesa width k, the Hamming distance
a � d� to the wild type and the recombination rate r. To start with we first note that the Hamming distances between
an o�spring genotype � and its parent genotypes �, � also determine the Hamming distance between both parent
genotypes through the relation [7]

d(�, �) + d(�, �) = d(�, �). (A39)

For the following it is convenient to introduce the variables i and j which represent the Hamming distance d(�, �) and
d(�, �), respectively. Eq (A39) is useful since the Hamming distance i + j between the parent genotypes determines
their number of possible distinct o�spring genotypes through recombination. Hence the probability that the o�spring
genotype � is generated by two genotypes at distance i and j is given by

1

2i+j
r +

1 � r

2
(�i0 + �j0) , (A40)

where the second term includes the possibility of no recombination for which at least one of the parent genotypes
needs to be the same as the o�spring genotype, see also Eq (6) of the main text. Next we consider the number of
genotypes at Hamming distance i and j as well as their respective fitness. The number of potential parent genotypes
at Hamming distance i is given by

�L
i

�
which can be rewritten as

✓
L

i

◆
=

iX

x=0

✓
a

x

◆✓
L � a

i � x

◆
=

min(i,a)X

x=max(0,i+a�L)

✓
a

x

◆✓
L � a

i � x

◆
. (A41)

We make use of the fact that in order to create a genotype at distance i, we can mutate x out of a 1-alleles and i�x out
of L�a 0-alleles from the o�spring genotype for which the number of arrangements is given by a binomial coe�cient.
Since the sum might contain zero terms we can restrict the summation range further. Through this expression it is
possible to relate to each genotype its fitness which is given by

w(k, (a � x) + (i � x)) = �(k � (a � x) � (i � x)), (A42)

where (a � x) + (i � x) denotes the number of 1-alleles in the parent genotype and � is the Heaviside step function
with �(0) = 1. After choosing a parent genotype at distance i the remaining number of suitable parent genotypes at
Hamming distance j is thus given by

jX

y=0

✓
a � x

y

◆✓
L � a � (i � x)

j � y

◆
=

min(j,a�x)X

y=max(0,j+a�L+i�x)

✓
a � x

y

◆✓
L � a � (i � x)

j � y

◆
, (A43)
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Fig A2. Maximal degree of the viable network in the percolation landscape. The figure shows numerical results for
the expected maximal degree of a viable genotype in percolation landscapes of di�erent size L. For L � � the results converge
to the solution z� of the equation sp(z�) = ln 2, where sp(z) is given in Eq (A47).

with fitness

w(k, (a � y) + (j � y)) = �(k � (a � y) � (j � y)). (A44)

Since the allele of at least one parent genotype needs to coincide with the allele of the o�spring genotype, the number
of 1-alleles that one can mutate is reduced by x. The same logic applies to the number of 0-alleles one can mutate,
which is reduced by i � x. Finally in order to compute the recombination weight we have to sum over all possible
combinations of distances (i, j) which are restricted due to Eq (A39) to be in the range 0  i + j  L. For e�cient
computation one should avoid double counting of ordered pairs (i, j) and (j, i) which yield the same contribution to
the recombination weight. Combining these considerations leads to a more e�cient expression for the recombination
weight on the mesa landscape,

�(L, k, a, r) =
1

2L

�L/2�X

i=0

L�iX

j=i

min(i,a)X

x=max(0,i+a�L)

✓
a

x

◆✓
L � x

i � x

◆
�(k + 2x � a � i)�

min(j,a�x)X

y=max(0,j+a�L+i�x)

✓
a � x

y

◆✓
L + x � a � i

j � y

◆
�(k + 2y � a � j)

h r

2i+j
(2 � �ij) + (1 � r)�i0

i
,

(A45)

where �z� stands for the greatest integer that is less than or equal to z. As explained in the main text �(L, k, a, r)
depends linearly on the recombination rate r. We use Eq (A45) for numerical calculations.

VI. MAXIMAL ROBUSTNESS IN THE PERCOLATION LANDSCAPE

To estimate the number of viable neighbors of a genotype in the percolation landscape in the limit of large L, we
start from the observation that the expected number of genotypes with k viable neighbors is

E(nk) = 2L

✓
L

k

◆
pk(1 � p)L�k ⇠ exp[L(ln 2 � sp(k/L))], (A46)

where

sp(z) = �z ln(p) � (1 � z) ln(1 � p) + z ln(z) + (1 � z) ln(1 � z) (A47)

is the large deviation function of the binomial distribution [8]. For a given p, there is thus a value z�(p) defined by
sp(z�) = ln 2 such that, for L ! 1, E(nk) ! 1 if k < z�L and E(nk) ! 0 if k > z�L. Using standard probabilistic
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arguments this can be shown to imply that genotypes with k neighbors are present (absent) with probability 1 if
k < z�L (k > z�L), respectively. Thus the expected maximal robustness is mmax = z�. Since sp(1) = ln(1/p), z� = 1
for p � 1

2 . Fig A2 compares the asymptotic behavior of mmax for L ! 1 to simulation results at finite L.
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[5] A. Wol� and J. Krug, Phys. Biol. 6, 036007 (2009).
[6] J. Hermisson, O. Redner, H. Wagner, and E. Baake, Theor. Pop. Biol. 62, 9 (2002).
[7] M. C. Boerlijst, S. Bonhoe�er, and M. A. Nowak, Proc. Biol. Sci. 263, 1577 (1996).
[8] D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2000).
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FIG. S1. Population heterogeneity decreases with increasing recombination rate. The figure shows the entropy
of the genotype frequency distribution in the two-locus model defined as S = �

�
� f�

� ln(f�
�). For small mutation rates the

strongly recombining population primarily consists of a single genotype, which implies that S � 0.

FIG. S2. Mutational robustness for the mesa landscape with communal recombination. The figure compares the
analytic approximations in Eqs (29) and (30) to the numerical solution of the stationary genotype frequency distribution for the
communal recombination scheme. The two panels show the mutational robustness as a function of the genome-wide mutation
rate in linear (A) and double-logarithmic (B) scales, respectively. The parameters of the mesa landscape are L = 30 and k = 3.
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FIG. S3. Mutational robustness in a mesa landscape with di�erent recombination schemes. The figure compares
the analytic results for communal recombination (mcr) with numerical data obtained using uniform crossover (muc) and one-
point crossover (mopc) at r = 1. The landscape parameters are L = 5, k = 2 and robustness is plotted as a function of the
genome-wide mutation rate Lµ. (A) Mutational robustness on linear scales. (B) Double-logarithmic plot of 1 � m vs. Lµ,
illustrating the power-law behavior 1 � m � (Lµ)b with the exponent b = k/(k + 1) = 2/3 predicted by the analysis of the
communal recombination model.

FIG. S4. Mutational robustness for the mesa landscape in the absence of recombination. The figure compares the
analytic predictions in Eqs (35) and (36) to the numerical solution for the genotype frequency distribution in the absence of
recombination. The two panels show the mutational robustness (A) after selection and (B) after mutation as a function of the
scaled mesa width x0 = k/L for L = 1000 and U = 0.01.
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FIG. S5. Mutational robustness in mesa landscapes with and without recombination. Numerical results for com-
munal recombination (mcr) and no recombination (mnr) are shown as dots. The mutational robustness m0 of a uniformly
distributed population, given by Eq (37), as well as the analytic expressions Eqs (30) and (36) are depicted as lines. (A)
Robustness as a function of mutation rate U = Lµ for a landscape with L = 1000 and k = 10. (B) Robustness as a function
of mesa width k at fixed L = 1000 and U = Lµ = 0.01. (C) Robustness as a function of genome length L at fixed k = 10 and
U = 0.01. (D) Robustness as a function of genome length L at fixed k = 10 and µ = 0.001.
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FIG. S6. Recombination weight in a mesa landscape. The parameters of the mesa landscape are L = 100 and k = 10.
For r = 0 the recombination weight is directly proportional to the fitness and hence equal for all viable genotypes. Already
small rates of recombination are su�cient to redistribute the recombination weight such that the weight of genotypes with small
Hamming distance is strongly enhanced. Beyond d = 20 the recombination weight is identically zero, since the recombinant of
two viable genotypes cannot carry more than 2k mutations.

FIG. S7. Mutational robustness for di�erent stationary states within a percolation landscape. The figure compares
the mutational robustness of non-recombining (r = 0) and recombining (r = 1) populations on individual realizations of the
percolation model with L = 6 and three values of p. In order to obtain di�erent stationary states we used localized initial
population distributions of the form f� (0) = ��� for all genotypes with mutational robustness m� �= 0 and propagated them
until stationarity. Since the stationary populations are usually highly concentrated for large r and small µ, this is a natural
choice in order to access all stationary states. Each data point represents the robustness of the recombining population m(r = 1)
for a particular stationary state. Data points within the same landscape are plotted above the corresponding unique robustness
of the non-recombining population m(r = 0) and connected by a vertical line. The orange crosses show the average over all
initial conditions.



5

FIG. S8. Average mutational robustness in the sea-cli� landscape as a function of recombination rate. Mutational
robustness is computed for 200 randomly generated sea-cli� landscapes with parameters L = 6, d< = 1 and d> = 5, and the
results are averaged to obtain m(r). The mutation rate is µ = 0.001.

FIG. S9. Mutational robustness and average fitness in the empirical A. niger fitness landscape.. The mutational
robustness and the population-averaged fitness in the stationary state were computed as a function of recombination rate by
evolving the population from a uniform initial genotype distribution at mutation rate µ = 0.005. Jumps mark changes in the
most populated genotype.
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FIG. S10. Recombination on an atoll landscape. This landscape is similar to the mesa landscape but includes an inner
critical radius within which genotypes are lethal. In this example the inner radius is chosen to be 1 such that only the wild
type is lethal. The outer radius is 2 and the sequence length is L = 7. The recombination rate is r = 1 and the mutation rate is
µ = 0.001. The frequencies fn of the stationary state at the same Hamming distance n are lumped together. The population is
concentrated at distance 1 which is most robust since only one point mutation is lethal, but the recombination center coincides
with the lethal wild type. This example shows that the correlation between recombination weight and mutational robustness
depends on the topology of the neutral network.

FIG. S11. Finite population size e�ects. The figure shows the mutational robustness in a mesa landscape with parameter
L = 6, k = 2 as a function of mutation rate. The finite population results were obtained using Wright-Fisher dynamics for
N = 1000 individuals. For small mutation rates such that NµL � 1 the monomorphic population performs a random walk
among viable genotypes, which leads to the uniform mutational robustness m0 given by Eq (37) (green dashed line). In this
regime recombination cannot have any e�ect. For NµL > 1 the robustness rises sharply to the value predicted by the infinite
population approach. At the maximal mutation rate µ = 0.5 the population is uniformly distributed among all (lethal or
viable) genotypes after the mutation step and recombination has again no e�ect.
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Effects of recombination on the evolvability,
genetic diversity and mutational robustness

of neutrally evolving populations
Alexander Klug and Joachim Krug1

Institute for Biological Physics, University of Cologne, Cologne, Germany

ABSTRACT
Many effects attributed to recombination have been invoked to explain the advantage of sex. The most prominent arguments
focus on either evolvability, genetic diversity, or mutational robustness to justify why the benefit of recombination overcomes
its costs, with partially contradicting results. As a consequence, understanding which aspects of recombination are most
important in a given situation remains an open problem for theoretical and experimental research. In this study, we focus
on finite populations evolving on neutral networks, which already display remarkably complex behavior. We aim to provide a
comprehensive overview of the effects of recombination by jointly considering different measures of evolvability, genetic diversity,
and mutational robustness over a broad parameter range, such that many evolutionary regimes are covered. We find that
several of these measures vary non-monotonically with the rates of mutation and recombination. Moreover, the presence of
lethal genotypes that introduce inhomogeneities in the network of viable states qualitatively alters the effects of recombination.
We conclude that conflicting trends induced by recombination can be explained by an emerging trade-off between evolvability
and genetic diversity on the one hand, and mutational robustness and fitness on the other. Finally, we discuss how different
implementations of the recombination scheme in theoretical models can affect the observed dependence on recombination rate
through a coupling between recombination and genetic drift.

The neutral theory of evolution assumes that mutations have
either no selective effect or are highly deleterious. This approx-
imation of the distribution of fitness effects was suggested by
Kimura based on observations of surprisingly high substitution
rates in the amino acid sequence of certain proteins, although
their function remained essentially unchanged (Kimura 1968,
1983). Today it is understood that the abundant neutrality in
molecular evolution can arise through a wide range of mecha-
nisms. Large portions of the genome are non-coding, allowing
mutations to accumulate freely (Nobrega et al. 2004). How-
ever, also in the coding regions, neutrality is prevalent due to
degeneracies in the genotype–phenotype mapping at multiple
levels between the blueprint, the DNA, and the final functional
structure, which can be a protein, a cell, or an entire organism
(Manrubia et al. 2021). For example, on the scale of proteins, the
1Corresponding author: Institute for Biological Physics, University of Cologne,
Zülpicher Str. 77, D-50937 Köln, Germany. E-mail: jkrug@uni-koeln.de

degeneracies arise through synonymous mutations and through
many different amino acid chains that fold to the same structure
(Guo et al. 2004; Bloom et al. 2005). On the scale of cells, neutral-
ity is observed in regulatory gene networks (Azevedo et al. 2006;
Ciliberti et al. 2007) and metabolic reaction networks (Rodrigues
and Wagner 2009). Moreover, recent microbial evolution experi-
ments (Johnson et al. 2019) and theory (Reddy and Desai 2021)
indicate that populations consistently adapt to regions of the
genotype space where diminishing-returns and increasing-costs
epistasis are common, which implies that the beneficial effects
of mutations are almost neutral, whereas deleterious mutations
typically have large negative selection coefficients. Apart from
truly neutral mutations, small effect mutations can be effectively
neutral if the absolute magnitude of the selection coefficient is
smaller than the reciprocal of the population size (Ohta 2002).
Therefore neutrality is particularly important for small popula-
tions.
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The assumption of a binary distribution of fitness effects,
where mutations are either selectively neutral or highly dele-
terious, can be conceptualized as a flat fitness landscape with
holes (Gavrilets 1997, 2004) or as a neutral network with vary-
ing node degrees (van Nimwegen et al. 1999; Wilke 2001). With
potentially many loci at which mutations can occur, of which at
least a few are selectively neutral, large clusters of viable geno-
types connected by point mutations form. These clusters may
span the entire sequence space and thus populations can evolve
continuously without being trapped at a fitness peak (Gavrilets
2004). In this way large neutral networks are argued to increase
evolvability, since populations are able to explore large parts of
genotype space leading to ever fitter genotypes (Wagner 2005).

However, for a complete description of evolution on neu-
tral fitness landscapes, also the population dynamics has to be
specified. A commonly used simplification is to consider the
population as a point on the fitness landscape, implying that
only a single genotype is present at a time. Neutral evolution
then proceeds as a simple random walk on the neutral network
through a sequence of fixation events (Maynard Smith 1970;
Gavrilets 1997). This scenario applies in the weak mutation
regime where the mutation supply is low (de Visser and Krug
2014). At the opposite end of the spectrum of evolutionary
dynamics, quasispecies theory considers populations as contin-
uously distributed clouds of genotypes in sequence space (Jain
and Krug 2007; Domingo and Schuster 2016). An important
difference compared to the weak mutation regime is that while
in a simple random walk, all viable connected genotypes have
the same probability of being currently occupied by the popu-
lation (Hughes 1996), in the quasispecies regime mutationally
robust genotypes, i.e. genotypes with an above-average num-
ber of viable point mutations, are preferentially occupied (van
Nimwegen et al. 1999; Bornberg-Bauer and Chan 1999). This
effect is strongly enhanced in recombining populations (Szöllősi
and Derényi 2008; Klug et al. 2019; Singhal et al. 2019).

Quasispecies theory is deterministic and, strictly speaking,
only applies to infinitely large populations (Wilke 2005). There-
fore genetic drift is absent, and all genotypes have a frequency
greater than zero by definition. Moreover, in this limit, the
population reaches a stationary state determined by a selection-
mutation(-recombination) balance, where the frequencies of all
genotypes become constant in time. Since the number of geno-
types grows exponentially with the number of loci, a shortcom-
ing of this approximation is that it quickly becomes unrealistic
for large but finite populations and is only applicable for short
sequences, where the population can cover all genotypes. In
this case quasispecies theory can approximate finite populations
quite well (van Nimwegen et al. 1999; Szöllősi and Derényi 2008).

The purpose of this article is to describe and understand
neutrally evolving finite populations in large sequence spaces
for which the deterministic quasispecies limit does not apply.
Within this setting, we explore a broad parameter range, such
that all possible evolutionary regimes are covered. In particu-
lar, we include recombination and study its effect across a wide
range of recombination rates. We believe that such a compre-
hensive study, which to the best of our knowledge has not been
performed previously, is essential for elucidating the conditions
under which recombination carries a selective advantage (Weis-
mann 1891; Muller 1932, 1964; Felsenstein 1974; Kondrashov
1988; Feldman et al. 1996; Burt 2000; de Visser and Elena 2007;
Otto 2009). In previous work we argued that the universal
and somewhat underappreciated effect of recombination on

mutational robustness may play an important role in this con-
text (Klug et al. 2019). Working in the deterministic limit of
an infinitely large populations, we showed that mutational ro-
bustness increases monotonically with the recombination rate r,
independent of model details, and that for low mutation rate µ
and small r, mutational robustness grows linearly with r/µ. The
deterministic limit allowed us to find precise analytical results,
but many relevant questions cannot be addressed in this frame-
work. Here we consider finite populations in large sequence
spaces. We are interested in the evolvability of the population
and ask how quickly new genotypes are discovered, and how
many generations it takes to discover all viable genotypes. The
discovery rate of new genotypes can be crucial, e.g., if through
environmental perturbations like an immune response certain
genotypes become fitter over time or if the majority of the neu-
tral network loses fitness and an escape mutation needs to be
found. While the discovery of new genotypes is therefore essen-
tial for long-term survival, the accumulation of lethal mutations
entails the risk of extinction. This induces an evolutionary trend
towards increasing mutational robustness, another measure we
investigate.

In order explain how the discovery rate and the mutational
robustness of the population change with the parameters, we
consider different measures of genotype diversity, such as the
mean Hamming distance, the number of segregating mutations
and the number of distinct genotypes. Certain properties like
the number of segregating mutations and mean Hamming dis-
tance are independent of recombination if all genotypes are
viable, but become recombination dependent when some geno-
types are lethal. Other properties like the number of distinct
genotypes and the discovery rate grow monotonically with r

if all genotypes are viable, while in the presence lethal geno-
types, the dependence becomes non-monotonic. We also find
that with recombination, the discovery rate can become non-
monotonic in the mutation rate, such that higher mutation rates
may lead to reduced evolvability. Furthermore, we discuss dif-
ferent implementations of recombination in the Wright-Fisher
model. Depending on the model details, recombination can act
as an additional source of genetic drift which matters in small
populations or large sequence spaces.

Outline. In the first section Models and methods, we define the
structure of the genotype space and the fitness landscape. We
consider both finite and infinite-sites settings. We further define
the population dynamics and the implementation of recombi-
nation. Next we introduce the relevant measures of diversity,
robustness and evolvability and describe the visualization of our
results. In the second section Results and analysis, we first give
an overview of the evolutionary regimes on neutral networks.
We then explain our results in the limit of infinite sequence
spaces (infinite-sites model) and continue with the results for
finite sequence spaces. At the end of this section we discuss
aspects of the results that show a non-robust dependence on the
implementation of recombination. The results are summarized
and conclusions are presented in the last section Discussion. Due
to the complexity of the problem, our work relies primarily on
extensive numerical simulations, but analytic results are also
presented when available.
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Models and methods

Genotype space
We consider haploid genomes with L diallelic loci, which can be
expressed as sequences

s = (s1, s2, ..., sL) (1)

of symbols drawn from a binary alphabet si = {�1, 1}. This
translates to a genotype space that has the properties of a hy-
percube H

L

2 = {�1, 1}L of dimension L, where each of the 2L

vertices represents a genotype. Genotypes of vertices connected
by an edge differ at a single locus and are therefore mutually
reachable by a point mutation. The natural metric in this geno-
type space is the Hamming distance

d(si, sj) =
L

Â
k=1

(1 � d
si

k
,sj

k

), (2)

which quantifies the number of point mutations that separate
two genotypes si and sj. For our analyses we consider both the
so-called infinite-sites model (ism) corresponding to the limit
L ! •, and the finite-sites model (fsm) with finite L. The ism

originally introduced by Kimura (1969) is easier to handle ana-
lytically, since back mutations do not occur and all mutations
are novel. However, certain quantities of interest such as the
mutational robustness, for which the number of viable point mu-
tations needs to be computed, and the time until full discovery
of all viable genotypes cannot be defined within the ism. We
therefore consider both models and compare results.

Fitness landscape
In our simulations, we either assume that all genotypes are vi-
able, or that a fraction 1 � p of genotypes is lethal. We show
that the addition of lethal genotypes strongly alters the structure
of the genotype cloud and in particular the effect of recombina-
tion. To be maximally agnostic about the distribution of lethal
genotypes in sequence space, we assume that each genotype
is viable with probability p and otherwise lethal. This kind of
fitness landscape is known as a percolation landscape (Gavrilets
and Gravner 1997).

In the case of the fsm we add the constraint that the resulting
network of viable genotypes on the hypercube is connected, i.e.
that between any two viable genotypes there is a path of viable
point mutations. In our simulations this is achieved by discard-
ing all percolation landscape realizations that do not satisfy this
condition; Fig. S1 shows how the fraction of connected land-
scapes varies with p. The constraint is added in order to avoid
situations in which the initial population is trapped in a discon-
nected cluster of viable genotypes. In the case of the ism there is
no additional constraint and the fitness of a novel genotype is
generated once it has been discovered by the population.

Besides containing only minimal assumptions, we also chose
this landscape model because its random nature makes it rich in
possible structures, in the sense that it can contain regions with
many viable point mutations and regions where genotypes are
more often lethal and populations must evolve along a narrow
fitness ridge. Furthermore, the choice of this landscape has the
benefit of only adding one more parameter p to our analysis.
From the point of view of the neutral network, the parameter p

determines the degree distribution.

Dynamics
To model the evolutionary forces of selection, mutation and
recombination, we use individual-based Wright-Fisher mod-
els with discrete, non-overlapping generations and a constant
population size N. For the implementation of selection and re-
combination, we found different computational schemes in the
literature. Initial simulations showed that, whereas for large
populations in the fsm the models become indistinguishable, the
model details become apparent for small populations in the fsm

and at arbitrary population sizes in the ism. In the following, the
different schemes are explained. For the main part of the article,
we show results for only one of the models, but mention impor-
tant differences when they exist, and discuss the differences in
detail in the subsection Recombination-induced genetic drift.

Figure 1 illustrates the course of one generation for three
different selection-recombination schemes. In the main text,
we use the model that we refer to as concurrent recombination.
In this model, selection and recombination occur in a single
step, whereas in the other two models referred to as successive

recombination schemes these processes require two separate steps.
Despite these differences, the models also share similarities,
which we explain first. All models have in common that an
individual j has two ancestors in the previous generation with a
probability equal to the recombination rate r. If recombination
occurs we employ a uniform crossover scheme, which means
that at each locus, the allele from one of the two ancestors k,l is
chosen with equal probability,

R : s
j

i
7!

(
sk

i
with prob. 1/2,

sl

i
with prob. 1/2,

8 i. (3)

Furthermore, the mutation step always occurs last, separate from
the two other processes. During the mutation step, each locus
of each individual mutates with probability µ to the opposite
allele,

M : s
j

i
7!

(
s

j

i
with prob. 1 � µ

�s
j

i
with prob. µ,

8 i, j. (4)

In the ism we take the joint limits L ! • and µ ! 0 at finite
genome-wide mutation rate U = Lµ. In this limit the number of
mutations per individual and generation is Poisson distributed
with mean U. Importantly, each mutation is then novel and
back mutations cannot occur. This can be expressed by charac-
terising each individual’s genotype by the set of acquired novel
mutations, e.g.

M : sj = {t, z} !

8
>>><

>>>:

{t, z}
{t, z, l}
{t, z, l, g}
...

8 j, (5)

denoted by Greek letters. It is necessary to track the mutations
carried by each invididual also in the ism in order to be able
to implement recombination, which combines mutations and
breaks them apart. However, once a mutation is fixed in the
population, i.e., it is present in all individuals, it can be omitted
due to the lack of back mutations, thereby keeping the list of
stored mutation finite. Also, the stored list of fitness values of
discovered genotypes can be purged of those genotypes whose
mutation set does not contain newly fixed mutations, as they
cannot be reached anymore.

While the features discussed so far are the same in all models,
the differences are the following.
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Concurrent recombination: In this case all individuals that are
not the product of a recombination event select one ancestor
with a probability proportional to the ancestor’s fitness. For our
neutral landscapes, this implies that viable ancestors are drawn
uniformly with replacement. Simultaneously those individuals
that are the product of a recombination event select two different
ancestors with a probability proportional to their fitness. For
a neutral landscape, this implies that each descendant takes a
random sample of size two without replacement from the pool
of viable ancestors.

Successive recombination: In both successive recombination
models, selection occurs first, where all individuals choose one
ancestor, again in our case uniformly with replacement among
the viable ones. Next, recombination takes place independent
of fitness. In the case of the simple successive recombination
model, individuals that are a product of recombination choose
two different ancestors that survived selection. In the case of suc-
cessive recombination with mating pairs, all individuals that sur-
vived selection and happen to recombine are pooled in groups
of two, which then create two offspring individuals. These two
offspring individuals are complementary in their recombined
material, that is, if one offspring has the allele of the first parent,
the other offspring will have the allele of the second parent at
the corresponding locus.

Importantly, the three recombination schemes differ in the way
in which recombination couples to genetic drift. In the con-
current recombination and the successive recombination with
mating pairs model, genetic drift is independent of the recombi-
nation rate r, but this is not the case for the simple successive re-
combination model (see Appendix). Recombination-dependent
drift is a confounding factor that needs to be taken into account
in the interpretation of the results of the latter model. Since
the concurrent and the successive recombination with mating
pairs models are implemented in two commonly used open soft-
ware packages (Haller and Messer 2016; Zanini and Neher 2012),
we stick to a non-recombination dependent genetic drift model
in the main text and only occasionally refer to differences that
would otherwise appear. The recombination-dependent genetic
drift model has been used by Nowak et al. (2014). Being aware
about these differences might be important for the design of
experiments, e.g., in the context of in vitro recombination (Pesce
et al. 2016). Of the two non-recombination dependent genetic
drift models, we choose the concurrent recombination model
because it is somewhat simpler. In particular, in this model the
number of recombining individuals does not have to be an even
number.

Measures of evolvability, diversity and robustness
To quantify evolvability in the ism we consider the discovery rate
rdis of novel genotypes and the fixation rate r f ix of mutations.
The discovery rate rdis is the average number of novel viable
genotypes that are discovered in each generation, either through
mutation or recombination. The fixation rate r f ix of mutations
measures the average number of segregating mutations that
become fixed in each generation.

In the fsm we monitor evolvability through the time t f dis and
the number of mutation events Nmut until full discovery. Starting
from a monomorphic population carrying a single randomly
selected viable genotype, we say that full discovery is reached
when all viable genotypes have been present in at least one
individual in at least one generation. The time is measured

Figure 1 One generation of evolution in the three selection-
recombination-mutation schemes discussed in the text. Nodes
represent individuals and colors genotypes, with green and
blue nodes being fit and red nodes unfit. The arrows show the
lineages from the ancestors to the descendants. Individuals
with two incoming arrows are the product of uniform recom-
bination. In successive recombination with mating pairs the
recombining individuals are grouped in pairs and each pair
creates two descendants, which is indicated by the dashed box.
Mutations are indicated by red crosses.

in generations and a mutation event occurs if an individual
acquires one or multiple mutations during reproduction.

Genetic diversity is characterized through several well-
known measures of population genetics, for which the time
average is descriptive for the randomly drifting genotype cloud
(note that in the regimes of interest here, the population cannot
attain an equilibrium state, because the genotype space is larger
than the population). Such measures are the pairwise mean
Hamming distance between two individuals in the population

dpw =
1

N(N � 1) Â
i,j

i 6=j

d(si, sj), (6)

the number of viable distinct genotypes

Y = |{si|i 2 1, 2, ..., N ^ siis viable}|, (7)

and the number of segregating mutations

S =
L

Â
i

⇣
|{s

j

i
}j21,2,..,N | � 1

⌘
, (8)

i.e., the number of loci at which both alleles are present in the
population. These measures are used for the ism as well as for
the fsm.

Additionally, for the fsm we consider the mutational robust-
ness m of the population. The robustness msi of an individual i

is equal to the fraction of viable point mutations of its genotype
si if it is itself viable, and equal to 0 otherwise. The mutational
robustness of the population is the average robustness of all
individuals,

m =
1
N

N

Â
i

msi . (9)

This quantity depends on the population distribution in geno-
type space, and increases if the population moves to genotypes
for which most point mutations are viable. Apart from these
measures for evolvability, genetic diversity and mutational ro-
bustness we also measure the mean fitness defined by

w =
1
N

N

Â
i

wi, (10)
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as well as the average viable recombination fraction, which
represents the fraction of recombination events per generation
that generate a viable genotype. The latter can be considered a
measure of recombination robustness.

Except for the measures for evolvability in the fsm, our nu-
merical results always show the averages in steady state. For the
ism, we evolve and evaluate the population for t =

p
1010/U

generations for each data point. For the fsm, we evolve the popu-
lation until all genotypes have been discovered once and, except
for the measures of evolvability, more than 105 mutation events
have occurred. This is done for 104 landscape realizations and
for each data point. We measure all quantities at the end of a
generation, i.e., after the mutation step, and denote the averages
of measured quantities by overbars.

Illustration of results
3D wireframe plots. In order to represent the numerical results
comprehensively, we mostly use 3D wireframe plots. In these
plots, the wireframe lines run along either constant recombina-
tion rate or constant mutation rate to guide the eye. The color
of the wireframe lines depends on their height. Additionally a
contour plot is shown below the wireframe. The viewing angles
vary and are selected such that the results can be seen in the best
possible way.

Graph representation. To visualize the population distribution
in sequence space, we use a graph representation. In this graph
each genotype in the population is represented as a node, and
nodes whose genotypes differ by a single point mutation are con-
nected by an edge. Therefore, the resulting graph only contains
information about nearest neighbor relationships. However, as
long as the genotype cloud is not distributed too broadly in
sequence space, we expect most nodes to have at least one edge,
thereby forming clusters of connected components in the high
dimensional sequence space. To arrange the nodes in two di-
mensions we use a forced-based algorithm called ForceAtlas2

(Jacomy et al. 2014). This leads to a configuration in which nodes
that share many edges form visual clusters. The frequencies of
the genotypes are represented by the node sizes.

Data availability
The authors state that all data necessary for confirming the con-
clusions presented in the article are represented fully within
the article. All numerical calculations including simulations de-
scribed in this work were implemented in Python. All relevant
source codes are available upon request.

Results and analysis

Evolutionary regimes
To organize the discussion of the results, we recall here the
distinct evolutionary regimes that can be realized on neutral
networks. In the monomorphic or weak mutation regime NU ⌧ 1,
mutations are rare and either fix with probability 1/N or go
extinct through genetic drift before another mutation originates.
In this regime, the population consists of a single genotype
most of the time and can be described by a “blind ant” random
walker (Hughes 1996; van Nimwegen et al. 1999). Without lethal
genotypes, a step to one of the current genotype’s mutational
neighbors is taken with equal probability at rate U independent
of N. With lethal genotypes, a step is discarded when the ran-
domly chosen point mutation is lethal. On a connected network

this implies that the population occupies on average each geno-
type, irrespective of its degree, with equal probability (Hughes
1996). In this regime, the effect of recombination is minimal
since recombination is fueled by combining segregating mu-
tations, which do not exist most of the time. Furthermore, as
long as there are not more than two genotypes in the population
within one generation, the population is by definition in linkage
equilibrium. Nonetheless, in subsection Recombination-induced
genetic drift we show that recombination can have an effect in
this regime if it couples to the genetic drift.

In the polymorphic regime (NU � 1), where the population is
a cloud of competing genotypes, two subregimes can be distin-
guished. If the population size is large compared to the number
of genotypes (N � 2L), all viable genotypes can become occu-
pied and an equilibrium state is reached. In this case genetic
drift is irrelevant and the equilibrium distribution can be de-
scribed by assuming deterministic dynamics of quasispecies
type. In the absence of lethal genotypes, all genotypes then have
the same frequency in the population, similar to the monomor-
phic regime. Importantly, though, with lethal genotypes, the
population distribution becomes non-uniform, in that robust
viable genotypes that have less lethal point mutations exhibit
higher frequency (van Nimwegen et al. 1999). This imbalance
increases dramatically with increasing recombination rate (Klug
et al. 2019).

Of particular interest in the context of the present work is the
second polymorphic subregime, where the population size is
smaller than the number of genotypes (N ⌧ 2L) or even smaller
than the number of loci (N ⌧ L), and the population clearly
cannot attain an equilibrium state. Instead, it will diffuse as
a cloud of genotypes on the neutral network. This subregime
has, to the best of our knowledge, not been fully covered in the
literature, in particular in the presence of recombination. In the
following sections, we first study the population structure in the
ism, where N ⌧ L is guaranteed by definition. Subsequently we
consider a finite number of sites and study the fsm for N ⌧ 2L.

Infinite-sites model
In this section, we present numerical results that show the impact
of recombination and lethal genotypes on the population struc-
ture in the ism. We keep the population size fixed at N = 100
and discuss the dependence on the recombination rate r, the
mutation rate U and the fraction of viable genotypes p.

Discovery rate. Figure 2 displays the discovery rate of formerly
unexplored viable genotypes for p = 1 and p = 0.5. Without
recombination, the discovery rate is given by

rdis = pN(1 � e
�U)

U⌧1⇡ pNU (11)

since each mutation generates a new genotype which is viable
with probability p. The numerical results show that the effect of
recombination on the discovery rate depends on the mutation
rate U, the product NU and the fraction of viable genotypes p. If
NU ⌧ 1, the effect of recombination is minimal, since there are
very few segregating mutations that can be recombined. How-
ever, for NU � 1 we notice a rather complex dependence. In the
absence of lethal genotypes (p = 1), recombination increases the
discovery rate monotonically. The relative increase is maximal
if U ⌧ 1 but NU � 1. If U is of order 1, the effect of recom-
bination becomes smaller since the maximum discovery rate is
capped by the population size N and almost exhausted through
mutations.
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Figure 2 Discovery rate in the ism for population size N = 100
and p = 1.0 (left panel) vs. p = 0.5 (right panel). The green
line at U = 0.1 highlights the different effects of recombination
in the absence (p = 1) and presence (p = 0.5) of lethal geno-
types. The blue lines in both panels show Eq. 11.

In the presence of lethals (p = 0.5) the behavior is more sur-
prising. For small U, recombination has almost no effect, even
if NU � 1. As U increases, an intermediate recombination rate
becomes optimal for the discovery rate. This intermediate peak
shifts to larger r with increasing U and the drop-off becomes
sharper until U is of order 1, where the intermediate peak van-
ishes and the behavior is again similar to p = 1. These results
indicate three regimes for the effect of recombination in the ism:
(i) NU ⌧ 1, (ii) NU � 1 and U ⌧ 1, and (iii) U ⇡ 1.

Fixation rate. Next, we consider the fixation rate of segregating
mutations. In the absence of recombination mutations are ex-
pected to fix at rate U, since in each generation NU mutations
occur, a fraction 1/N of which goes to fixation. The results in
Fig. 3 for p = 1 confirm this expectation and show that con-
current recombination has no effect if all genotypes are viable.
However, for p = 0.5 the fixation rate is seen to dramatically
decline at large recombination rates when NU � 1 and U ⌧ 1.
This disruption of fixation is released only when the mutation
rate becomes of order 1. We further notice, that at very large
mutation rates, the fixation rate exceeds U.

Figure 3 Fixation rate of segregating mutations in the ism with
N = 100 and p = 1.0 (left panel) vs. p = 0.5 (right panel). The
green line is drawn at U = 0.1.

Number of distinct genotypes. To understand the results for
evolvability, we next consider measures of genetic diversity. The
number of distinct genotypes Y is naturally closely related to
the discovery rate, since with more novelty discovered in each
generation, more distinct genotypes should accumulate, cf. Fig.
4. An analytical expression for the case of no recombination and

Figure 4 Number of distinct genotypes in the ism with N =
100 and p = 1.0 (left panel) vs. p = 0.5 (right panel). The blue
lines shows Eq. 12, where q is replaced by q⇤ for p < 1. The
green line is drawn at U = 0.1.

no lethal genotypes was derived in Ewens (2012):

Y(r = 0) =
N�1

Â
i=0

q

q + i
with q = 2NU. (12)

Our numerical results fit this expression and furthermore show
that in the absence of recombination, the formula can be ex-
tended to include lethal genotypes by replacing q with

q⇤ = 2pNU. (13)

The reasoning behind this replacement is that the parent popula-
tion size is effectively reduced by a factor p in each generation.
In general, the effect of recombination on the number of distinct
genotypes is similar to that on the discovery rate. A noticeable
difference in the case of p = 0.5 is that Y is not maximal at U ⇡ 1
but at a slightly smaller value. The reason is that at such high
mutation rates a significant fraction (1 � p)U of individuals does
not survive each generation, such that the population repeatedly
goes through a bottleneck, in which distinct genotypes are lost.
This leads to the observed increased fixation rate at U ⇡ 1 in Fig.
3.

Number of segregating mutations. Next we consider the num-
ber of segregating mutations S (Fig. 5). These span an effective
sequence space of size 2S in which recombination can create
novel genotypes. An analytical expression for the number of
segregating mutations in the ism was developed by Watterson
(1975), again assuming no recombination and no lethal geno-
types. It can be derived from the expectation of the length of the
genealogical tree to the most recent common ancestor, which is
given by (Wakeley 2009)

TMRCA = 2N

N�1

Â
i=1

1
i

(14)

for the Wright-Fisher model. The total tree length is equal to
the total time, and multiplying by the mutation rate U and
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Figure 5 Number of segregating mutations in the ism with
N = 100 and p = 1.0 (left panel) vs. p = 0.5 (right panel). The
blue lines shows Eq. 15. The green line is drawn at U = 0.1.

the fraction of viable genotypes yields the average number of
segregating mutations

S = q⇤
N�1

Â
i=1

1
i

. (15)

The results also show that for p = 1 and the concurrent recombi-
nation model used here, the number of segregating mutations is
independent of r. This is not generally true but depends on the
implementation of recombination (see Recombination-induced
genetic drift). For p = 0.5 and NU � 1, U ⌧ 1, recombination
generally decreases the number of segregating mutations. For
example, at U = 0.1 the number decreases from around 50 to
about 20, which still yields an enormous effective sequence space
compared to the population size. This alone cannot explain the
decrease in evolvability seen in Figs. 2, 4.

Mean Hamming distance. Since recombination occurs between
pairs of individuals we now consider the pairwise mean Ham-
ming distance dpw (Fig. 6). From Eq. 14 we conclude that the

Figure 6 Mean Hamming distance in the ism with N = 100
and p = 1.0 (left panel) vs. p = 0.5 (right panel). The blue lines
shows Eq. 16. The green line is drawn at U = 0.1.

mean length of the genealogical tree to the most recent com-
mon ancestor for two random individuals is given by 2N, which
directly leads to the expression

dpw = q⇤ (16)

for the mean Hamming distance in non-recombining popula-
tions. The results for p = 0.5 show that recombination contracts
the population cloud in sequence space in the presence of lethal
genotypes. The functional relationship is similar to the num-
ber of segregating mutations but the relative change is more
dramatic, e.g., for U = 0.1 the distance drops from 10 to about 1.

Cross section of the population cloud. To further understand
the contraction in sequence space, we took a cross section of the
population cloud by measuring the Hamming distance of each
individual to the ancestral genotype that contains only fixed mu-
tations, averaged over many generations (Fig. 7). This quantity
is equal to the number of segregating mutations in an individual.
For r = 0 the Hamming distance distribution is seen to follow
a hypoexponential distribution, which converts to a Poisson
distribution for large r. The hypoexponential distribution fol-
lows from the correspondence between the Hamming distance
and the time to the most-recent-common-ancestor TMRCA, the
distribution of which is well known (Wakeley 2009). With a
mutation rate U and a fraction p of viable genotypes, this yields
the distribution

fhMRCA
(d) =

2
q⇤

N

Â
i=2

✓
i

2

◆
e
�( i

2)
2d

q⇤
N

’
j=2,j 6=i

( j

2)

( j

2) � ( i

2)
, (17)

with mean q⇤. At high recombination rates, segregating muta-
tions become well mixed among all individuals, and the number
of segregating mutations acquired by an individual follows a
Poisson distribution. For p = 1 the mean is independent of r

and equal to q⇤, but for p = 0.5 we observe a strong contraction
of the distance distribution at r = 1. This shows that the focal
genotype, around which the contraction occurs, is the ancestral
genotype that contains only fixed mutations.

Mean fitness and recombination load. The contraction of the
genotype distribution described in the preceding paragraphs
must be beneficial for the population in the sense that the mean
fitness increases. For our binary fitness distribution, the mean
fitness is determined by the mutation and recombination load,
i.e. the fraction of mutation and recombination events per gen-
eration that are lethal. The rate of lethal mutations is always
U(1 � p) and cannot be optimized in the ism. Contrary to that,
the outcome of recombination events depends on the genotype
composition of the population. If the population is contracted
around a focal genotype and most individuals are closely related
to each other, the effective sequence space for recombination is
much smaller than 2S. Therefore it becomes likely that a recom-
bination event will not create a novel genotype but a genotype
that already exists in the current genotype cloud and that, more
importantly, is viable, which benefits the mean fitness.

This connection is shown in Fig. 8. If the population is
sparsely distributed which happens at high mutation rates, most
recombination events create novel genotypes, which leads to
a viable recombination fraction equal to p. Contrary to that
in a monomorphic population (NU ⌧ 1) no novelty results
from recombination. In the regime NU � 1, U ⌧ 1, e.g. at
U = 0.1, we see that with increasing r the viable fraction initially
decreases, as the population becomes more diverse, leading to
a decrease in fitness. At large recombination rates this trend
reverses as the population becomes concentrated around a focal
genotype, which then also leads to a fitness increase. Thus the
contraction of the population is an adaptive response to the
fitness decline caused by an increased recombination load.
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Figure 7 Cross section of the population cloud in the ism with N = 100, U = 0.1 and p = 1.0 (left panel) vs. p = 0.5 (right panel).
The figures show the distribution of the Hamming distance to the genotype containing only fixed mutations. The hypoexponential
distribution fhMRCA

is given by Eq. 17 and fP is a Poisson distributions with mean q⇤. The data were accumulated over 106 genera-
tions.

Figure 8 Viable recombination fraction and mean fitness in the
ism for N = 100, p = 0.5. The green line is drawn at U = 0.1.

Dependence on the fraction of viable genotypes. The results
presented so far were obtained for the two values p = 1 and
p = 0.5 of the fraction of viable genotypes. Figure 9 shows
cross sections of the previously shown 3D plots at either fixed
recombination rate r = 1 (left column) or fixed mutation rate
U = 0.1 (right column) and four different values of p. For
fixed r = 1, the lethal genotypes strongly reduce evolvability by
contracting the genotype cloud when the mutation rate is low,
but the contraction is released once the mutation rate is strong
enough. At this point the population evolves independent of
fitness and therefore the measures coincide with the results for
p = 1. However, the mean fitness is strongly reduced and equal
to p. With smaller p this transition happens at larger U and
strikingly at small enough p the numerical results display a
discontinuity as a function of U.

The dependence on mutation rate resembles the error thresh-
old phenomenon of quasispecies theory, in which the population
delocalizes from a fitness peak in a finite-dimensional sequence
space when the mutation rate is increased above a critical value
(Jain and Krug 2007; Domingo and Schuster 2016). In the qua-
sispecies context it has been shown that error thresholds do not

occur in neutral landscapes with lethal genotypes, at least not
in the absence of recombination (Wilke 2005; Wagner and Krall
1993). Moreover, for non-recombining populations the mean
population fitness is generally continuous at the error thresh-
old, whereas recombination can induce discontinuous fitness
changes and bistability (Boerlijst et al. 1996). Although the trans-
fer of results from the infinite population quasispecies model
with finite sequence length L to the finite population ism is not
straightforward, our results are generally consistent with pre-
vious work in that there is no discontinuity in the absence of
recombination, while at sufficiently large recombination rates
we find evidence for a discontinuous error threshold in the per-
colation landscape with lethal genotypes. From the perspective
of quasispecies theory, the shift of the transition to larger U

for decreasing p may tentatively be explained as an effect of
increased selection pressure in landscapes with a larger fraction
of lethal genotypes.

The results for fixed mutation rate U = 0.1 displayed in the
right column of Fig. 9 show that the contraction of the popula-
tion only occurs if the recombination rate is sufficiently large,
whereas otherwise recombination increases genetic diversity
and evolvability. Importantly, with increasing fraction of lethal
genotypes the contraction occurs at smaller recombination rates.

Large populations. For large population sizes the number of
segregating mutations grows rapidly, such that storing the part
of the fitness landscape that could be revisited through recom-
bination becomes computationally challenging. This limits the
range of population sizes that can be explored. Nevertheless, the
results for the discovery rate for N = 1000 displayed in Fig. S2
suggest that, for large populations, the interesting regime with a
non-monotonous behavior in r appears in an even larger range
of mutation rates than expected from the conditions U ⌧ 1 and
NU � 1.

Summary of ism results. As expected, for NU ⌧ 1 or U ⇡ 1,
recombination has almost no effect since the population is ei-
ther monomorphic or dominated by mutations. In contrast, for
NU � 1 and U ⌧ 1 the behavior is rather complex. While
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Figure 9 Cross sections of 3D plots of various measures char-
acterizing the ism for four different values of the fraction p of
viable genotypes. The left column shows the dependence on
the mutation rate U for fixed r = 1.0, and the right column
shows the dependence on the recombination rate r at fixed
U = 0.1. The last row shows the fraction v of viable geno-
types created by recombination events. The population size is
N = 100.

low recombination rates generally diversify the population and
increase evolvability, the population can dramatically change
its genotype composition at high recombination rates, such that
most genotypes are tightly clustered around a focal genotype.
In the percolation landscape, the onset of this structural change
depends on the fraction of lethal genotypes, whereas for gen-
eral fitness landscapes we expect it to be determined by the
degree distribution of the neutral network. The focal genotype
of a tightly clustered population contains no segregating muta-
tions. As a consequence the clustering decreases the discovery
rates as well as the fixation rate, but the mean fitness increases.
We conclude that recombination does not generally lead to in-
creased evolvability, but may instead reduce diversity in order
to increase fitness.

Finite-sites model
In this section, we study the effect of recombination in the finite-
sites model. In contrast to the ism back mutations are possible,
and the number of viable point mutations varies between geno-
types. Therefore the population can optimize its mutational
robustness to increase fitness. We keep the population size and
sequence length fixed at N = 100 and L = 10, respectively, and
investigate the interplay between the mutation rate per site µ

and the recombination rate r.

Figure 10 Mutational robustness in the fsm for N = 100, L =
10, p = 0.5. The two panels show the same data from two
different viewing angles. The green line is drawn at Lµ = 0.1.

Mutational robustness. The results for the mutational robust-
ness displayed in Fig. 10 show a complex dependence on r and
µ, which reflects the different evolutionary regimes described
above. Similar to the ism, for NLµ ⌧ 1 the population is es-
sentially monomorphic. In this regime it behaves like a ran-
dom walker and all genotypes have equal occupation proba-
bility, such that the mutational robustness is equal to the av-
erage network degree p = 0.5. For a monomorphic popula-
tion, recombination has no effect. With increasing mutation rate
(NLµ � 1, µ ⌧ 0.5), the population becomes polymorphic but
also more mutationally robust. Strikingly, with recombination,
this effect is strongly amplified, as was observed previously in
the quasispecies regime (Klug et al. 2019; Szöllősi and Derényi
2008). Similar to the results presented for the ism (Fig. 8), the
increase in mutational robustness is accompanied by an increase
in mean fitness (Fig. S3). In Klug et al. (2019) we showed that
mutationally robust genotypes are more likely to be the out-
come of recombination events, because they have a larger share
of potentially viable parents. Therefore increased mutational
robustness is a universal feature of recombining populations.

However, even higher mutation rates (µ ⇡ 0.5) are detri-
mental to robustness, and recombination then also has a slightly
negative effect. In this regime, the population is not concentrated
anymore on a focal genotype but becomes highly delocalized
and almost independent of the previous generation. Because
of this, recombination events will produce random genotypes;
note that for µ = 0.5, all genotypes have the same probability
after mutation, independent of viability. Thus, similar to the ism

we can define three regimes with qualitatively different effects
of recombination: (i) NLµ ⌧ 1, (ii) NLµ � 1 and µ ⌧ 0.5, and
(iii) µ ⇡ 0.5.

Time to full discovery. We quantify evolvability in the fsm

in terms of the time until all genotypes have been discovered,
which can be interpreted as the inverse of the average discovery
rate. For ease of comparison with the results for the ism shown
in Fig. 2, in Fig. 11 we display the inverse of the time to full
discovery in the fsm for p = 1 and p = 0.5. For p = 1, the overall
behavior is similar to the ism, but the dependence on the recombi-
nation rate is significantly weaker. For p = 0.5, we see a decrease
in the discovery rate for large r that is much more pronounced
than in the ism. Whereas in the ism the discovery rate never

9



Figure 11 Reciprocal of the time to full discovery in the fsm

with N = 100, L = 10 and p = 1 (left panel) vs. p = 0.5 (right
panel). The green line is drawn at Lµ = 0.1.

drops below its value in the absence of recombination (r = 0),
here the time to full discovery diverges at large recombination
rates when NLµ � 0 and µ ⌧ 1. Furthermore, the dependence
on mutation rate becomes non-monotonic at large r, which does
not happen in the ism. The increase in the time to full discovery
coincides with increased mutational robustness (Fig. 10) and
a large viable recombination fraction (Fig. S3). Therefore this
divergence occurs because the population is focused and en-
trenched in the highly robust regions of the fitness landscape.
In this way a fitness ridge surrounded by many lethal geno-
types can become almost impassable for strongly recombining
populations.

In Figure 12 this phenomenon is explored over a wider range
of parameters. When the fraction of viable genotypes is closer to
p = 1, the rate of discovery displays an intermediate maximum
as a function of r (panel A), and this behavior becomes more
pronounced for longer sequences (panel B). Figure 12 C shows
that strongly recombining populations are consistently slower
in discovering the remaining undiscovered genotypes, which
are presumably those that exhibit low mutational robustness.

Number of mutation events until full discovery. As a second
measure of evolvability we consider the total number of muta-
tion events Nmut until all viable genotypes have been discovered
(Fig. S4). In the random walk regime NLµ ⌧ 1, Nmut is in-
dependent of µ and r, since each mutation has the probability
1/N to go to fixation. As the mutation rate increases and the
population spreads over the genotype space, fewer mutation
events are necessary for full discovery. Similar to the time to
full discovery t f dis, depending on the fraction of viable geno-
types, recombination can be either beneficial or detrimental for
evolvability. In fact the two measures are related by

Nmut = t f dis NLµ (18)

as long double mutations, which we count as a single mutation
event, are sufficiently rare (Lµ ⌧ 1).

Genetic diversity. Figure S5 summarizes results for the genetic
diversity in the fsm. Overall the impact of recombination on the
genetic diversity is similar to, but less pronounced than the re-
sults for the ism. In particular, no discontinuities are observed in
the variation of diversity measures with mutation rate (compare
to Fig. 9). Because the number of segregating mutations and the
mean Hamming distance are bounded in the fsm, the capacity

Figure 12 A: Reciprocal of the time to full discovery is shown
as a function of recombination rate for different values of the
fraction p of viable genotypes. B: Relative change in the recip-
rocal of the time to full discovery in obligately recombining
(r = 1) vs. non-recombining (r = 0) populations for different
values of the sequence length L and fixed genome-wide muta-
tion rate U = Lµ = 0.1. C: Reciprocal of the time to discover
a given fraction of all viable genotypes for a non-recombining
and recombining population. In panel C the parameters are
the same as in Fig. 11.
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of recombination for creating diversity is limited. For example,
while in the ism there are around 100 segregating mutations for
U = 0.1, in the fsm with Lµ = 0.1 this number is limited by
the sequence length L = 10 (middle row of S5). This suggests
that the non-monotonic effect of recombination on evolvability
in the fsm for p  1 is mostly caused by an increase in muta-
tional robustness. For p = 1 an analytical expression for the
mean Hamming distance is derived in the Appendix. For the
concurrent recombination scheme the result given in Eq. 34 is in-
dependent of the recombination rate, but this property is model
dependent (see Recombination-induced genetic drift for further
discussion).

Graph representation. To further illustrate the genotype com-
position of the population, a graph representation is employed
in Fig. 13. These graphs show snapshots of genotype clouds
that have evolved for sufficiently many generations to be in-
dependent of the initial condition. The population parameters
are chosen to be in the regime NLµ � 1, µ ⌧ 0.5. The graphs
of the recombining populations consist of significantly more
edges representing mutational neighbors, which implies that
they form a densely connected component in sequence space.
By comparison, the graphs of the non-recombining populations
have fewer edges, which implies that the populations are more
dispersed. This is consistent with the results for the cross sec-
tion of the genotype cloud in the ism in Fig. 7, which show a
narrower distribution for recombining populations.

Figure S6 shows genotype clouds for larger values of L and
N, but within the same evolutionary regime. The increased
population size allows us to study the frequency distribution of
genotypes in the population sorted by their rank. Remarkably,
in non-recombining populations (r = 0) the distribution is ex-
ponential whereas for r = 1 we observe a heavy-tailed power
law distribution, a feature that appears to be independent of p.
The histograms in Fig. S6 also highlight the fact that, depending
on the fraction p of viable genotypes, recombination can either
increase or decrease the genetic diversity. In terms of mutational
robustness, the graph representation shows that genotypes with
high frequency exhibit an above-average robustness, thereby
increasing the mutational robustness of the population.

Time evolution. So far we have studied the impact of recombi-
nation on stationary populations, where the effects of mutation,
selection and drift balance on average. However, such a station-
ary state is generally not reached within a few generations, and
in particular in the context of evolution experiments it is also im-
portant to understand the transient behavior. Since experiments
usually consider a predefined small set of loci and track their
evolution, we consider the temporal evolution in the fsm.

As an example, Fig. 14 shows the time evolution of mu-
tational robustness m for obligately recombining and non-
recombining populations at different mutation rates. The popu-
lation is initially monomorphic and starts on a random viable
genotype. To account for the variability between the trajectories
observed in different realizations of the evolutionary process,
the shading around the lines showing the average robustness
represents the standard deviation of m. Analogous results for
measures of evolvability and diversity are shown in Figs. S7, S8,
S9 and S10.

As expected, the time scale for the establishment of the sta-
tionary regime is determined primarily by the mutation rate,
since mutations create the diversity on which selection and re-
combination can act. At the lowest mutation rate recombin-

p
=0

.5
p

=1
.0

r = 1.0r = 0.0

m � 0.52 m � 0.65

Figure 13 Graph representation of genotype clouds in the
fsm with N = 100, L = 10, µ = 0.01 after 106 generations
of evolution starting from a random viable genotype. Links
connect genotypes that differ by a single mutation, and node
sizes represent the frequency of the corresponding genotype
in the population; see Illustration of results for details. The
networks on the left show non-recombining populations (r =
0) and on the right obligately recombining populations (r = 1).
In the top panels all genotypes are viable (p = 1), whereas in
the bottom panels half of the genotypes are lethal (p = 0.5).
In the bottom row the mutational robustness of genotypes
is shown by color coding with dark green representing high
robustness and pale green low robustness, and the average
robustness m is also indicated.
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ing and non-recombining populations behave in the same way,
and with increasing mutation rate the evolutionary regimes de-
scribed above are traversed. This implies in particular that the
ordering between the lines representing r = 1 and r = 0 may
change as a function of µ (Figs. 14, S7 and S10). The distinction
between recombining and non-recombining populations is often
most pronounced at intermediate values of the mutation rate
(Figs. S9 and S10).

Figure 14 Time evolution of mutational robustness in the fsm

with N = 100, L = 10, p = 0.5 for different values of the
mutation rate µ. Each panel compares obligately recombining
(r = 1) and non-recombining (r = 0) populations. Thick lines
represent the mean over 5000 landscape realizations and the
shaded areas the corresponding standard deviation.

Recombination-induced genetic drift
If recombination does not occur concurrently with selection but
successively, it can act as an additional source of genetic drift.
This recombination-induced drift is a confounding factor that
needs to be accounted for when interpreting the results obtained
with successive recombination models. As an example, Fig. 15
shows results for the numbers of distinct genotypes and seg-
regating mutations for the ism with p = 1 using the simple
successive recombination scheme. While in the concurrent re-
combination model the number of distinct genotypes is strictly
increasing with r at p = 1 (Fig. 4), the effect of recombination
in the simple successive model is mutation rate dependent and
can be non-monotonic even at p = 1. This is due to a decrease in
the number of segregating mutations and the mean Hamming
distance with increasing r which occurs through the additional
genetic drift (see Appendix). In the fsm the effect is similar and
can result in an intermediate peak in the mutational robustness
as a function of r when NLµ ⇡ 1 (Fig. S11). While the effect
in the ism occurs at all population sizes, in the fsm it is only
significant for relatively small populations, because the number
of segregating mutations is capped at L.

If the design of a simulation model or an in vitro experiment
requires that recombination and selection occur independently,
but recombination should not be an additional source of genetic
drift, then successive recombination with mating pairs, as il-
lustrated in Fig. 1, might be an option. Alternatively, one can
mitigate the additional genetic drift in the simple successive
recombination model by performing the selection and recombi-
nation step in each generation within a large population from
which a small sample of size N is subsequently drawn.

Figure 15 Number of distinct genotypes and segregating muta-
tions in the simple successive recombination model for p = 1
in the ism. Compare to Figs. 4, 5. Green lines show constant
U = 0.1, U = 0.01 and U = 0.001.

Discussion

The most apparent effect of recombination is to shuffle alle-
les among individuals. Therefore, one might think that recom-
bination always increases genetic diversity and, through that,
evolvability, as formulated in Weismann’s hypothesis (Weis-
mann 1891). In this study, we have shown that while this is
true on a neutral network in the absence of lethal genotypes,
the effect of recombination in the presence of lethal or highly
deleterious mutations is much more complex.

More precisely, if the fraction of lethal genotypes in the fit-
ness landscape is large enough, we find the emergence of two
different regimes for the effect of recombination. While small
recombination rates increase diversity in accordance with Weis-
mann’s hypothesis, at sufficiently high recombination rates we
observe a strong contraction of the genotype cloud and reduced
evolvability. This contraction regime is characterized by a clus-
tering of the population in sequence space around a focal geno-
type, which we have shown to be the most recent common
ancestor. Therefore most genotypes have only a few segregating
mutations as well as a small pairwise mean Hamming distance,
which leads to a reduced number of distinct genotypes. This
benefits mean fitness, as recombination events more often lead
to viable genotypes. Results for the finite-sites model further re-
veal, that polymorphic genotype clouds are most dense around
mutationally robust genotypes and that a contraction through
recombination therefore greatly increases mutational robustness.
The trade-off is a reduced evolvability. In the infinite-sites model
this is manifested through a reduced discovery rate. Further-
more, the lower frequency of segregating mutations leads to a
reduced fixation rate of segregating mutations.

Therefore, even in an infinite-sites setting, recombination
can, in some sense, entrench the population. However, as the
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number of potential mutation sites is unbounded, the discov-
ery rate never falls below the discovery rate in the absence of
recombination. In contrast, in the finite-sites model strongly
recombining populations can become trapped in mutationally
robust regions, such that the time to full discovery diverges.
The recombination-induced trapping of the population at fit-
ness peaks is well known from studies on non-neutral fitness
landscapes (Eshel and Feldman 1970; Weinreich and Chao 2005;
de Visser et al. 2009; Jain 2010; Park and Krug 2011; Altland et al.

2011), but our results show that a similar phenomenon occurs in
neutral landscapes with fitness plateaus and ridges. In terms of
genetic diversity the results in the finite and infinite-sites settings
are similar but more gradual in the latter case, as the number
of segregating mutations and the mean Hamming distance are
capped.

Overall, our numerical simulations show a very consistent
increase in mutational robustness with recombination rate in
polymorphic populations. Related to this is the observation that
recombination leads to a heavy-tailed frequency distribution of
genotype abundance, and that the most frequent genotypes have
an above-average robustness, thereby increasing the robustness
of the whole population. As discussed in previous work, the
most frequent genotypes are more likely those that have an
above-average fraction of possible viable parent combinations
(Klug et al. 2019).

The broad scope of our investigation demonstrates that the
effects of recombination vary widely across parameter combi-
nations and evolutionary regimes, and this has to be accounted
for when interpreting apparent contradictions between differ-
ent experiments. Furthermore, it is important to distinguish
long-term effects of recombination from short-term effects. In
this study, we mainly considered long-term effects in stationary
populations. Short-term effects can be different, in particular
when evolution proceeds in a changing environment (Becks and
Agrawal 2012; Nowak et al. 2014).
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Appendix

In the following, analytical expressions for the mean Hamming
distance dpw are derived for all three recombination models
illustrated in Fig. 1. Throughout this appendix these models
are abbreviated as cr (concurrent recombination), ssr (simple
successive recombination) and srmp (successive recombination
with mating pairs), respectively. The derivation is based on
the approach of Serva and Peliti (1991), which is generalized to
take into account recombination. It is assumed that there are no
lethal genotypes (p = 1). The results apply to the fsm and the
ism and show that the recombination rate influences dpw only
in the ssr model. The r-dependence decreases with N in the fsm

but remains independent of N in the ism.
To start, in the selection step each individual a picks a parent

a0 at random from the previous generation. During the muta-
tion step, a mutation occurs at each locus i with probability µ,
changing its state from �1 to 1 or vice versa,

sa
i
(t + 1) =

(
sa0

i
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�sa0

i
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This can also be written as
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(t)sa0

i
(t) (20)
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During the recombination step, individuals recombine at rate r.
Altogether this leads to
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where a0, a00 are the parental genotypes in case of recombination
and a000 is the parent in case of no recombination. The random
variable ka determines whether a recombination event occurs
and is given by

ka(t) =

(
1 with prob. r,
0 with prob. 1 � r.

(23)

The random variable xa
i

determines from which parent the allele
is taken in case of a recombination event:

xa
i
(t) =

(
1 with prob. 1/2,
0 with prob. 1/2.

(24)

Next the relatedness Q of the population is computed, which is
defined by

Q =
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where the sum runs over all different pairs of individuals (a, b).
We are interested in the average relatedness Q in the stationary
state, and therefore make use of Eq. 22 by evaluating
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To simplify notation, the t-dependence is suppressed on the
right hand side. Equation 26 holds for all three models, but
differences emerge in the probability that the individuals a, b
share a parent as well as in the term marked by (⇤).

The probability that two non-recombining individuals have
the same parent a000 = b000 through selection is given by 1/N in
all models. This leads to

s
b000

i
(t)sa000

i
(t) =

1
N
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1 � 1

N

◆
Q(t). (27)

With cr and srwm, a recombining and non-recombining indi-
vidual share parents a0 = b000 with probability 1/N, leading
again to the right hand side of Eq. 27. However, for ssr,
the probability that they share a common parent a0 = b000 is
1/N + (1 � 1/N)1/N ⇡ 2/N, as this can occur either during
the recombination or selection step. This yields
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We next turn to the evaluation of the term in Eq. 26 marked
by (⇤). In the cr and ssr model the random variables xi are not
correlated between individuals. Therefore in both models (⇤)
simplifies to

(⇤) = sa0
i

(t)s
b0

i
(t). (29)

For cr this leads to the right hand side of Eq. 27, while for ssr

we get Eq. 28 using the same argument as before. Similar to
ssr, for srwm, recombining individuals have an increased chance
of sharing a parent a0 = b0 since they either can belong to the
same mating pair with probability 2/(rN) or share a parent
during selection with probability 1/N. However, this is exactly
balanced by the constraint that mating pairs are complementary
in their recombined material, which is reflected in a correlation
of the random variables xi. Simply put, the increased chance that
two individuals share the same parent is offset by the constraint
that they always inherit the allele of the respective other parental
genotype. Therefore (⇤) again leads to Eq. 27 for srwm.

Summarizing, we have
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Note that the r dependence has vanished with cr & srmp. Next
we compute the stationary relatedness by setting Q(t + 1) =
Q(t). For cr & srmp this yields

Q =
(1 � 2µ)2

4(1 � µ)µ(N � 1) + 1
, (31)

while for ssr we get

Q =
(1 � 2µ)2[1 + r(2 � r)]

4(1 � µ)µ(N � 1) � (1 � 2µ)2r2 + 2(1 � 2µ)2r + 1
. (32)

The relatedness is connected to the mean Hamming distance
through

dpw =
L(1 � Q)

2
, (33)

which leads in the cases of cr & srmp to

dpw =
2(1 � µ)µLN

4(1 � µ)µ(N � 1) + 1
(34)

and in the case of ssr to

dpw =
2(1 � µ)µLN

4(1 � µ)µ(N � 1) � (1 � 2µ)2r2 + 2(1 � 2µ)2r + 1
.

(35)
In Figures S5 and S12 we compare the expressions in Eqs. 26 and
35 to numerical simulations and find excellent agreement.

In the deterministic limit N ! • with finite L the mean
Hamming distance is the same for all recombination models:

dpw =
L

2
. (36)

However, in the ism limit (L ! •, µ ! 0, Lµ = U) the result for
cr & srmp leads to

dpw = 2NU = q (37)

while the result for ssr reads

dpw =
q

1 + r(2 � r)
. (38)

Hence in this limit the dependence on the recombination rate
persists independent of the population size.

To obtain an analytical expression for S in the ism under ssr

we adopt a relation between the mean Hamming distance and
the number of segregating sites S that has been derived for the
non-recombining case (Wakeley 2009). This leads us to

S ⇡ dpw
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Figure S12 shows that, at least for the parameter regime of in-
terest here, Eq. 39 provides an accurate approximation of the
simulation results.
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Supplementary figures

Figure S1 Probability that the network of viable genotypes is
connected in a percolation landscape, where genotypes are vi-
able or lethal independently with probability p. The sequence
length is L = 10.

Figure S2 Discovery rate in the ism for viable fraction p = 0.5
and population size N = 1000 (left panel) vs. N = 100 (right
panel). The green line is drawn at U = 0.1 and the blue lines in
both panels show Eq. 11. The right panel is identical to that in
Fig. 2.

Figure S3 Mean fitness and viable recombination fraction
in the fsm with concurrent recombination. The green line is
drawn at µ = 0.01 in both panels. Similar to the results for
the ism (Fig. 8), the fitness displays an intermediate minimum
at the point where the population structure changes. This is
best visible at µ = 0.03 (blue line). Compared to the ism the
variation in mean fitness and viable recombination fraction is
less pronounced.

Figure S4 Reciprocal of the total number of mutation events
until full discovery in the fsm with N = 100, L = 10 and
p = 1.0 (left panel) vs. p = 0.5 (right panel). The green line is
drawn at Lµ = 0.1.
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Figure S5 Genetic diversity in the fsm with N = 100, L = 10
and p = 1.0 (left column) vs. p = 0.5 (right column). The green
line is drawn at Lµ = 0.1. The blue line in the bottom left
panel shows the expression in Eq. 34 for the mean Hamming
distance at p = 1.
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Figure S6 Same as Fig. 13 but with N = 10000, L = 14, µ = 0.0001 after 107 generations. Inset histograms show the frequency
distribution sorted by rank. The histograms are in semi-log scale for r = 0 and in log-log scale for r � 1. Through the number of
ranks, the histograms also display the number of existing distinct genotypes. Note that for both values of p recombination makes
the frequency distribution heavy-tailed, but it may either increase or decrease the number of distinct genotypes.
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Figure S7 Time evolution of of the number of distinct geno-
types in the fsm with N = 100, L = 10, p = 0.5 for different
values of the mutation rate µ. Each panel compares obligately
recombining (r = 1) and non-recombining (r = 0) popu-
lations. Thick lines represent the mean over 5000 landscape
realizations and the shaded areas the corresponding standard
deviation.

Figure S8 Time evolution of the number of segregating muta-
tions in the fsm with N = 100, L = 10, p = 0.5 for different
values of the mutation rate µ. Each panel compares obligately
recombining (r = 1) and non-recombining (r = 0) popu-
lations. Thick lines represent the mean over 5000 landscape
realizations and the shaded areas the corresponding standard
deviation.

Figure S9 Time evolution of the pairwise mean Hamming dis-
tance in the fsm with N = 100, L = 10, p = 0.5 for different
values of the mutation rate µ. Each panel compares obligately
recombining (r = 1) and non-recombining (r = 0) popu-
lations. Thick lines represent the mean over 5000 landscape
realizations and the shaded areas the corresponding standard
deviation.

Figure S10 Time evolution of the fraction of explored viable
genotypes in the fsm with N = 100, L = 10, p = 0.5 for
different values of the mutation rate µ. Each panel compares
obligately recombining (r = 1) and non-recombining (r = 0)
populations. Thick lines represent the mean over 5000 land-
scape realizations and the shaded areas the corresponding
standard deviation.
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Figure S11 Mutational robustness in the fsm with N = 100,
L = 10, p = 0.5 and simple successive recombination dy-
namics. The green line at µ = 0.001 (NLµ = 1) shows a non-
monotonic variation with recombination rate, which is caused
by recombination-dependent genetic drift.

Figure S12 Comparison of numerical results (represented
by dots) for the mean Hamming distance dpw and the mean
number of segregating sites S to the analytical expressions in
Eqs. 35 and 39 (represented by lines), for the simple successive
recombination model. Simulations were carried out using the
ism with population size N = 100 and three different mutation
rates. While for dpw the fit is perfect, for S some deviations are
discernible at large r.
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4 RECOMBINATION IN A DIRECTED EVOLUTION EXPERIMENT

4 Recombination in a directed evolution experiment

This section discusses the results of a directed evolution experiment on the effects of re-
combination, conducted by Diego Pesce in the laboratory of Arjan de Visser, which I have
analyzed further. The experimental results are currently unpublished and in the following
cited as Pesce and de Visser (n.d.). Therefore, the motivation and the experimental design
are explained first. Their general motivation for conducting experimental evolution with
recombination is also described in Pesce et al. (2016).

4.1 Motivation

Antibiotic resistance is of great interest, especially in clinical research. �-lactamase alleles,
present in Escherichia coli and several other bacteria play a vital role for such resistance
by creating enzymes that can break down the antibiotic’s structure (Cooksey et al., 1990).
These enzymes are highly adaptable and can increase their resistance-conferring ability by
a factor of several magnitudes through mutations (Salverda et al., 2010). To date, more
than 100 variants with different levels of resistance have already been described in the
literature (Jacoby & Munoz-Price, 2005; Salverda et al., 2010). One of the most common
variant is the �-lactamase allele TEM-1 (Cooksey et al., 1990), which is efficient against
several �-lactam antibiotics. However, it only shows low resistance against the antibiotic
cefotaxime (Schenk et al., 2012). Interestingly, a specific set of five mutations can increase
its resistance ⇠ 100.000 fold against cefotaxime (Stemmer, 1994; Hall, 2002). In one of
the hallmark papers of evolutionary biology that motivated the field in recent times, it has
been shown that the evolutionary path from TEM-1 to the highly resistant allele is tightly
constrained (Weinreich et al., 2006). It is constrained in that if evolution is viewed as an
adaptive walk in which only beneficial mutations are sequentially fixed, most pathways
are inaccessible (108 out of 5! = 120 pathways are inaccessible). This could imply that
evolution is much more predictable than previously thought. While adaptive walks only
consider selection and mutation, the motivation of this experiment was to investigate
whether recombination is beneficial in the search for a highly cefotaxime resistant variant
and if so, how. Furthermore, the question of whether the mutation rate and the starting
position in sequence space have an influence was investigated. However, the experiment
did not attempt to mimic long-term evolution, in which a balance between selection,
recombination, and mutation occurs, but was rather a directed evolutionary experiment
in which the fittest genotypes were amplified.
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Figure 2: Illustration of the experimental design.

Source: Diego Pesce.

4.2 Experimental design

The experimental design consists of several steps which are sequentially performed (Fig.
2). These steps are explained in the following.

Initial genotype: Each experimental line starts with one of two variants, referred to
as TEM-1 and TEM-15. From the point of view of a fitness landscape these are two
different initial positions in sequence space that could potentially open different pathways.
In the following, we regard TEM-1 as the wild type, having no mutations. From that
point of view, the TEM-15 variant has two mutations which are G238S and E104K.
These two mutations already increase the resistance ⇡64-fold to cefotaxime. Their impact
on the structure of TEM-1 is explained in more detail in Salverda et al. (2010). In
former experiments, TEM-15 often evolved in populations that have been exposed to
antibiotic concentrations (Salverda et al., 2011; Schenk et al., 2015). Therefore using
these two different initial genotypes can also be interpreted as a comparison of the effect
of recombination in early vs. late adaptation.

Mutation: After the initial variant is picked, the evolutionary process starts with a
mutation step in which random mutations are introduced in the TEM-1 and TEM-15
variant, respectively, by using error-prone PCR. The mutation rate can be adjusted and
is chosen to be either Ulow = 0.4mut/gene or Uhigh = 3mut/gene for each line. In total,
there are four possible configurations, which are also abbreviated as TEM-1-Low, TEM-1-
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High, TEM-15-Low, TEM-15-High in the following. This mutation step results in a large
library of unknown variants.

Preselection: The mutation step is followed by a preselection step. For this purpose the
variants are amplified and introduced to E. Coli through a plasmid on which the variant
is living on. These plasmids are taken up by E. Coli, which allows the bacteria to create
TEM variant enzymes. For preselection, the E. Coli bacteria are put on a Petri dish with
a small cefotaxime concentration in order to select for functional TEM variants (c1 = 0.02

ug/ml for initial TEM-1 variant, and c2 = 0.8 ug/ml for initial TEM-15 variant).

Treatment: The experiment then branches off into two different arms. In one of them
a recombination step follows and in the other one it does not for comparison. Therefore
each line leads to two paired variants, which are the result of the same mutant library,
but with two different subsequent treatments (asex/sex). In the case of recombination,
the TEM variants which survived preselection are pool-wise recombined. Recombination
is introduced in vitro by first extracting the plasmid from the surviving E. Coli. The
TEM allele is then fragmented by enzymatic digestion. To induce in vitro recombination,
incidental template switching during PCR is exploited. The probability for incidental
template switching can be increased by abbreviating the polymerase-catalyzed extension.
This leads to not fully extended fragments which might bind to other templates during
the next annealing phase. After several PCR cycles, the fragments form a full sequence
that can have taken up mutations from different TEM variants. This method is called
Staggered Extension Process (StEP) (Zhao et al., 1998) and a modified version is used for
this experiment. Through this protocol, three to five cross-overs per gene are introduced
(Pesce & de Visser, n.d.). After the alleles are reassembled to full length, they are again
introduced to E. Coli through a plasmid.

Greedy selection: In the final step, the fittest variant is selected. For this purpose,
in both branches, the bacteria are placed on a series of plates with increasing cefotaxime
concentrations to select the fittest variant. The initial density of bacteria on the Petri
dishes is small enough, such that we can assume that each visible forming colony belongs
to one variant. The variant of the largest visible colony on the plate with the highest
cefotaxime concentration is then picked as the final variant of the respective experimental
line. It is then sequenced and its MIC is measured through microtitre plates with a
square-root-two-fold increase in cefotaxime. In addition to the MIC, the growth rate
in the absence of cefotaxime was also evaluated compared to TEM-1 and TEM-15 with
TEM-15 as initial genotype and only to TEM-1 with TEM-1 as initial genotype.
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In total 196 final variants have been measured, as each combination of initial genotype
(TEM-1/TEM-15), mutation rate (low/high) and treatment (asex/sex) is performed in
24 experimental lines.

4.3 Results

In the following, the results are analyzed from different angles. In the preliminary note
the expectation from simulations for the effect of recombination in the experimental setup
is discussed. Afterward, the results are first looked at statistically and then from the point
of view of a fitness landscape.

4.3.1 Preliminary note

The experiment employs one iteration of mutation, preselection, and recombination with
a final greedy selection step. Therefore, the results for the effect of recombination of the
previous chapter cannot be directly transferred since these considered mostly populations
in their stationary state. However, the insights from the previous chapters are helpful in
interpreting the dynamics of recombination in this setting. Some aspects of the experiment
are nevertheless simulated to verify whether the overall behavior is consistent with the
expectations and the experimental results.

Simulation model: For this purpose, the Wright-Fisher model is employed including
mutation, preselection and recombination with L diallelic loci and N individuals (c.f.
chapter 3). The order of the evolutionary forces and the initial condition is adjusted to
the experiment. This entails that the population is initially monomorphic, which changes
after the mutation step. For the mutation step, each locus mutates with probability µ,
such that U = µL total mutations per gene occur on average. Subsequently, a preselection
step is performed, distinguishing only between functional or non-functional genotypes. In
this sense, the population evolves for one generation on an underlying holey neutral land-
scape. After mutation and preselection, the resulting population is duplicated to create
two lines. Only in one of the two lines recombination with a uniform crossover scheme
takes place. In the following final greedy selection step, the fittest/most resistant geno-
type that exists within the population is selected. Both selected genotypes are considered
to be the result of one paired line.
This model is quite robust with respect to the exact fitness values because fitness differ-
ences between functional genotypes are irrelevant during preselection. Only the structure
of the underlying neutral network is essential for the effect of recombination, which is also
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discussed in the next paragraph. Moreover, during greedy selection, the only information
that matters is which genotype in the population has the highest fitness.

Hamming distance distribution: Even though the experiment illuminates parts of
the fitness landscape, most of it remains hidden. Still, certain assumptions or hypotheses
can be tested using the described simulation model above. To get a better sense of the
impact of recombination under the experimental design, Fig. 3 compares how asexual
and sexual populations are distributed around the initial genotype after one generation
but before greedy selection takes place. For this purpose, the Hamming distance of all
individuals to the wild type is measured in different scenarios, which are described in the
figure caption. The scenarios are rather artificial and should only give a general insight.
In the first scenario preselection is left out. In this case recombination would have no ef-
fect at all. This is due to the fact that neither genetic drift nor epistasis through selection
is at work, so that linkage disequilibrium (LD) cannot arise. Without LD there are no
non-random associations and recombination has no effect.
With preselection, but in a scenario in which all genotypes are functional, recombination
would not change the mean values of the Hamming distance distribution. However, it
would decrease the frequency variability, illustrated by the error bars.
Furthermore, two different scenarios with lethal genotypes are illustrated. In these, recom-
bination changes the shape of the Hamming distance distribution by filling the "frequency
holes" torn open by preselection. For "d > 1 lethal" genotypes at distance two are cre-
ated at the cost of genotypes at distance one. Contrary, for "d = 1 lethal" genotypes at
distance one are created at the cost of of the wild type and larger Hamming distances.
The latter two scenarios demonstrate, that recombination can not only increase the most
distant genotypes but can also reduce their frequency. In general, which genotypes gain
or lose in frequency through recombination is therefore a question of the underlying neu-
tral network. In this sense, recombination might be favorable or not to create resistant
genotypes, e.g. if they are at large Hamming distances. Important to note is that in all
cases the population’s average Hamming distance to the initial genotype is the same be-
tween the sexual and asexual lines, since recombination is only able to reshuffle mutations
among individuals.
As a common pattern, recombination does increase the genetic diversity in all scenarios
in terms of distinct genotypes within the population, which is shown in the figure legends.
This in turn should always be beneficial in the search of the most resistant genotype.
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Figure 3: Simulation results for the Hamming distance distribution of the

population in different scenarios.

Two different mutation rates, U = 0.4 (top row) & U = 3 (bottom row) and four different
configurations (columns) are considered. The population size is N = 100 and the sequence
length is L = 250. Dots represent the mean of 1000 experiments and bars represent the
2.5% to the 97.5% quantile. In the first column preselection is left out. In the second
column all genotypes are functional. In the third column all genotypes above Hamming
distance one are lethal. In that sense it is a mesa landscape with critical distance one.
In the last column only genotypes at distance one are lethal, which could be illustrated
as a ring of lethal genotypes around the wild type. The legends contain as additional
information the average number of distinct genotypes for each treatment.

4.3.2 Statistical analysis

The experimental data paints a complex picture for the effect of recombination. Results
for the MIC of the selected variants and their number of acquired mutations are discussed
in the following.

MIC: In the case of TEM-1, recombination consistently produces a greater increase in
final MIC resistance (Tab. 1, Fig. 4). A Wilcoxon signed-rank test further shows that
the paired results between asexual and sexual lines significantly differ (Pesce & de Visser,
n.d.). Contrary, in the background of TEM-15, the effect of recombination is ambiguous in
terms of MIC increase and whether there is a general statistical difference in the samples
according to the Wilcoxon signed-rank test. At first glance, this might suggest that the
pool of beneficial mutations is already exhausted. If this is the case, recombination would
only rarely be able to combine beneficial mutations, such that the difference between both
treatments becomes marginal. But other metrics argue against this conclusion.
First, choosing a higher mutation rate for TEM-15 leads to significantly higher MIC values,
indicating that many combinations of mutations exist which further increase resistance
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(Tab. 1). Second, comparing the MIC fold increases of TEM-15 to those of TEM-
1 reveals that evolution does not slow down, c.f. Fig. 4. It is therefore surprising
that recombination does not further increase resistance in TEM-15 as it does in TEM-1.
However, this contradiction might be resolved if epistatic interactions exist for which the
underlying fitness landscape must be considered. This aspect is further investigated in
section 4.3.3.

Initial Mutation MIC [µg /mL] Same
genotype rate Asex Sex distribution?
TEM-1 Low 0.36 ± 0.20 0.89 ± 0.38 p<0.05
TEM-1 High 0.58 ± 0.32 2.27 ± 1.56. p<0.05
TEM-15 Low 28.64 ± 17.93 25.62 ± 11.64 p⇡0.30
TEM-15 High 101.42 ± 99.53 130.66 ± 118.40 p⇡0.22

Table 1: Summary for average MIC values.

Shown are the arithmetic mean MIC values with standard deviation for each configuration.
The p-value is determined using Wilcoxon signed-rank test.

Figure 4: Swarm plots of MIC fold increase.

The illustration shows all data points for each configuration. Besides the arithmetic mean,
also the geometric mean is included for each configuration since the MIC has been mea-
sured with a multiplicative increase. Depending on the choice of mean, the recombination
effect is either marginally positive or negative for TEM-15-Low. To compare the depen-
dency to the initial genotype, the dashed lines represent the mean across both mutation
rates and treatments for TEM-1 and TEM-15, respectively.
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Number of mutations: Studying the number of acquired mutations of the selected
variants, the results show that high mutation rates indeed translate into an increased
number of mutations (Tab. 2, Fig. 5). This is to be expected as a higher mutation rate
pushes the population further out in sequence space. Still, it demonstrates that resistant
variants composed of multiple mutations truly exist around both initial genotypes which
not necessarily might be given.
The difference between the asexual and sexual lines is small with a tendency for more
mutations in sexual lines. This tendency is stronger for TEM-1 and at high mutation
rates. An interesting aspect is that for both treatments fewer mutations occur for TEM-
15. Especially at low mutation rates, the small number of mutations in asexual and sexual
lines is striking. Possible reasons are discussed in 4.3.3.

Initial Mutation Mutations Same
genotype rate Asex Sex distribution?
TEM-1 Low 1.92±0.91 2.13±0.33 p⇡0.23
TEM-1 High 2.79±1.19 3.33±1.21 p⇡0.17
TEM-15 Low 1.58±0.64 1.58±0.64 p⇡0.97
TEM-15 High 2.96±0.84 3.29±1.24 p⇡0.34

Table 2: Summary for the number of acquired mutations.
Shown are the arithmetic mean number with standard deviation of the final variants. The
p-value is determined using Wilcoxon signed-rank test.

Figure 5: Swarm plots for the number of mutations.

The illustration shows besides all data points the arithmetic mean for each configuration.
The dashed lines illustrate the arithmetic mean for TEM-1 and TEM-15, respectively,
across both mutation rates and treatments.
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Classical recombination effects: Since sexual and asexual lines are paired, it is also
possible to evaluate these pairs individually for the effect of recombination (Pesce & de
Visser, n.d.). By relating the difference in the MIC between the sexual and asexual line
of each pair to the difference of their acquired mutations, one can distinguish between
different classical arguments for the effect of recombination. It is then counted how often
each effect has occurred among all pairs.
For this purpose, the Fisher-Muller effect, background selection and recombination load
are considered. Fisher-Muller effect and background selection occur if the sexual line
has a higher MIC. In the former, the number of mutations is larger in the sexual line,
indicating that recombination combined beneficial mutations. Contrary, in the latter,
the number of mutations is smaller in sexual lines, indicating that recombination broke
beneficial and deleterious mutations apart. If the asexual line reached higher MIC, the
pair is counted as recombination load. Besides these effects, coupled lines are counted as
neutral if both treatments reached the same MIC. If the sexual lines reached higher MIC,
but the number of mutations is equal, these are counted as mixed. Results indicate that
for TEM-1, the Fisher-Muller effect was most important (Tab. 3). However, for TEM-15
no recombination effect played a dominant role.

Initial Mutation � MIC>0 � MIC=0 � MIC<0
genotype rate FM BS Mixed Neutral RL
TEM-1 Low 10 3 9 1 1
TEM-1 High 11 6 6 0 1
TEM-15 Low 1 1 6 7 9
TEM-15 High 9 2 2 4 7

Table 3: Counts for the observed classical recombination effects.

Compared are the Fisher-Muller effect (FM), background selection (BS), mixed, neutral
and recombination load (RL) for each configuration.

Growth rate: Besides the MIC also the growth rates relative to the initial genotype
have been measured. Results are shown in Fig. 6. Unlike the MIC results, the growth
rates do not show any significant increase to the initial genotype. At high mutation rates,
they rather show a slight decrease. Between asexual and sexual lines, the results indicate
a minor trend for smaller growth rates in sexual lines. Peculiar is that for TEM-15-Low,
the growth rates are mostly positive, independent of treatment. This will be discussed in
section 4.3.3 in more detail.
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Figure 6: Swarm plots for the growth rate increase relative to the initial

genotype.

Besides all data points, the arithmetic mean for each configuration is shown. The dashed
lines illustrate the arithmetic mean for TEM-1 and TEM-15, respectively, across both
mutation rates and treatments.

Genotypic diversity/Repeatability: High repeatability implies low genetic diversity
and vice versa. Therefore, these two measures are linked. Since each final variant is
sequenced, the distribution of all variants in sequence space can be analyzed. For this
purpose, different measures are considered. These are the number of distinct genotypes,
the number of distinct mutations, the entropy and mean Hamming distance. The entropy
H is based on the frequencies f� of genotypes in the population for a given configuration.

H = �
X

�

f� log(f�) (7)

Results are shown in Table 4. All measures draw a similar picture that evolution is
generally more repeatable
1. at low mutation rates as expected,
2. in TEM-1,
3. in sexual lines at low mutation rates.
The second point is a signal that certain pathways have a particularly high probability in
TEM-1. Already former experiments have shown that the TEM-15 variant often appears
in antibiotic concentrations starting at TEM-1 (Salverda et al., 2011; Schenk et al., 2015).
This experiment is no exception, as will also be illustrated in section 4.3.3. The third point
is interesting, as it fits the results of chapter 3 on neutral evolution with lethal genotypes:
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While at low mutation rates, the mean Hamming distance decreases with recombination,
this effect is not observable at high mutation rates.

Initial Mutation Entropy #dist. geno. #dist. mut. dpw

genotype rate Asex Sex Asex Sex Asex Sex Asex Sex
TEM-1 Low 2.24 1.79 14 8 22 9 1.99 1.75
TEM-1 High 2.89 3.04 20 22 34 33 3.75 3.54
TEM-15 Low 2.60 2.29 16 15 20 17 2.74 2.10
TEM-15 High 3.17 3.17 24 24 41 50 5.29 5.99

Table 4: Different measures for the distribution of the final variants in se-

quence space.

In total 127 distinct genotypes have been the final variant (including TEM-15) and 140
distinct mutations have been sequenced across all variants. The entropy is based on the
frequency distribution of genotypes.

Combined consideration of MIC fold increase in relation to Hamming distance:

Certain conclusions about the underlying fitness landscape can be drawn from the data.
For this purpose, in Fig. 7 the MIC fold increase of all distinct genotypes is plotted as a
function of their Hamming distance to the initial genotype to obtain a one-dimensional
description of the observed fitness landscape. The representation reveals that particularly
fit genotypes only exist at larger Hamming distances. Moreover, based on the mean values,
there is hardly any reduction in the MIC increase with increasing Hamming distance for
both initial genotypes, showing the potential for adaptation. Interestingly, the figure also
indicates why the average number of mutations at low mutation rates is higher in the
TEM-1 background than in TEM-15 (Fig. 5). This might be due to the fact that in
the TEM-1 background only one genotype has been selected for at distance one and it
cannot outcompete any other genotype. Contrary, for TEM-15 several mutations have
been selected for at distance one of which the most resistant is at least as resistant as a
significant fraction (31/72) of distinct genotypes at greater Hamming distances.

Combined consideration of growth rate in relation to Hamming distance: In
Fig. 8 the growth rate of distinct genotypes is shown as a function of the Hamming
distance to both initial genotypes. In contrast to the results for the MIC (Fig. 7), there is
no clear relationship to the number of mutations. However, it is striking that in the case
of TEM-15, almost all single mutations increase the growth rate. This is likely due to the
fact that TEM-15 shows a significantly below-average growth rate. This in turn explains,
why for the configuration TEM-15-Low the growth rate is peculiar above average (Fig. 6).
Still, several mutations combined decrease the growth rate again. The kind of mutations
that restore growth are discussed in the next section 4.3.3.
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Figure 7: Swarm plots for the MIC fold increase among all distinct genotypes

as a function of the Hamming distance.

The Hamming distance is measured relative to the corresponding initial genotype. For
TEM-1, 55 distinct genotypes have been measured and 72 for TEM-15.

Figure 8: Swarm plots for the growth rate increase among all distinct geno-

types as a function of the Hamming distance.

The Hamming distance is measured relative to the corresponding initial genotype. No-
tably, TEM-15, marked by an arrow, has one of the lowest growth rates compared to
TEM-1.
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4.3.3 Fitness landscape of �-lactamese

As discussed in the previous sections, details of the underlying fitness landscape are cru-
cial to understand the particular observed effect of recombination. To get a grasp of the
high-dimensional structure, in the following a graph representation is employed to create
a two-dimensional visual impression of the observed fitness landscape. For this purpose,
the measured MIC values and growth rates of all distinct genotypes are used. It should
be noted that only the most resistant genotypes are measured, such that there are po-
tentially many more genotypes that are functional but which have not been measured.
Nevertheless, it serves a better understanding, as will be shown. In the following, the
graph is explained first and subsequently different findings are discussed.

Graph representation: In the graph, each node represents a genotype that has been
discovered at least once across all configurations. The node’s color represents either the
genotype’s MIC value or growth rate. The frequency of a genotype for a certain con-
figuration or across all configurations is encoded through the node size. Furthermore, a
pie chart around each genotype illustrates the ratio between its frequency in asexual to
sexual lines.
Edges connect nodes that differ by a point mutation. The arrow of each edge points to the
genotype containing the mutation indicated on the edge label. The genotype marked with
the arrow also contains all other mutations of the genotype from which the arrow origi-
nates. Therefore, in order to know all mutations of a particular genotype, it is necessary
to follow the arrows starting from TEM-1. This also implies that arrows generally point
to the genotypes that have a greater Hamming distance to TEM-1. Dashed edges are
between genotypes that only differ at the same locus. Thus they have the same Hamming
distance to TEM-1 and no arrow is shown. Edges of mutations that lead to a 10 fold or
stronger MIC increase or to a at least 0.2 change in growth rate are drawn in orange to
illustrate high impact mutations. Important to note is that the arrows should not signal
any time information in terms of mutations being sequentially selected.
The nodes are first arranged according to a force-based algorithm as a starting point.
This leads to a representation in which genotypes with many edges form visual clusters.
Genotypes without edges drift to the periphery and are randomly distributed there. Sub-
sequently, the nodes’ positions have been manually adjusted for better visibility of the
edge labels. After that, visible clusters are highlighted with a background color. The
color is determined by the central genotype of the cluster, which is defined to be the one
with the most edges. For each cluster the mean Log[MIC] and its standard deviation
are determined. Finally, genotypes that do not have any edges but are at least at Ham-
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ming distance two to a central genotype of these clusters are placed manually around
the plateaus. Next to them are written the two mutations in which they differ from the
central genotype.
The frequency of genotypes across all configurations with either the MIC values or growth
rates are shown in Figs. 9, 10. The frequency of genotypes for the individual configura-
tions are shown in Figs. 11, 12, 13, 14. The network structure is kept the same across all
figures and only the node sizes change according to the illustrated configuration. Edges
are drawn in all cases to provide orientation. Since TEM-1 never occurs, it is illustrated
by a star.

Connectivity: Through the procedure described above, most genotypes can be ar-
ranged in a meaningful way with respect to each other (103 of 128 distinct genotypes).
The remaining genotypes (25) are randomly distributed on the periphery. Of those mean-
ingful arranged nodes, the majority form one large connected component (73 out of 103).
The remaining nodes (30) are at Hamming distance two from the central node of one of
the clusters. The large connectivity of the resulting graph is a property arising through
the high-dimensional sequence space. With a different alleles per loci, the number of
genotypes grows with a

L with sequence length L, while the number of edges between
genotypes at Hamming distance one grows faster with (a � 1)LaL�1. Therefore, as long
as the observed genotypes are not distributed too broadly in the sequence space or their
number is too small, it is to be expected that large components will form.

Cluster: While most genotypes appear only once, there are a few genotypes that occur
comparatively often and in this sense seem to have a large basin of attraction. These
coincide with the central nodes of the highlighted clusters. Since the nodes within most
highlighted clusters have similar MIC, this is a strong indication that the high-frequency
nodes really contain the mutations that drive evolution. The high frequency genotypes are
G238S, G238S-E104K, and G238S-E104K-X, where X stands for a signal peptide muta-
tion. One exception with regard to MIC similarity is the cluster consisting of the mutations
G238S-E104K-A11*, which shows increased variability. Besides the small G238S-E104K-
L12* cluster, it is the only signal peptide cluster with a synonymous mutation (Fig. 9).
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TEM-1

Log[MIC]=-1.19±0.27
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Figure 9: Frequencies of genotypes across all configurations.

The colors represent absolute MIC values.
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Figure 10: Frequencies of genotypes across all configurations.

The colors represent growth rates relative to TEM-1. Three outliers are off the scale and
marked with a blue arrow.
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Figure 11: Frequencies of genotypes for the configuration TEM-1-Low.
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Figure 12: Frequencies of genotypes for the configuration TEM-1-High.
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Figure 13: Frequencies of genotypes for the configuration TEM-15-Low.

(A18T-E104K-G238S-L49M-S4N-S81*)

(E104K-G238S-I47V-V10L)

P183*-T139K

H153R-L51*

(A42G-E104K-G238S-S124N-T140R-V10I)

A18T-L199*

L12*-M182T 

(A11*-E104K-G238S-L40M-L91H-M182T-V184L)

(E104K-G238S-M182T-N154I-V10*)

(A11*-E104K-G238S-I47*-L75*-T265M)

(A11*-E104K-E171*-G238S-L190*-R120G-T128*)

(A11*-E104K-G238S-K55E-N175D-S268G)

M182T-V10*

L198V-L51I 

I84V-S98T

A42G-L198V

(A18T-E104K-G238S-I84V-L49M-N52S)

I173T-R120G

(E104K-G238S-I84V-K32*-S124N-V10*)

(E104K-G238S-H158*-L221*-S235*-T160*-T265M-V10I)

(A17S-E104K-G238S-L162*-L286*-T265M)

(E104K-G238S-K32*-Q39K-T265M)

T200S-T271S

(A18T-A232*-E104K-F60Y-G238S-L152*-R9*-T160*) 
A18S-L49M

A172T-T200*

(E104K-G238S-M182T-R241H-T195*-V10I)

(E104K-G238S-K34E-L286*-M182T-V10F) A125*-F19Y

TEM-1

Log[MIC]=-1.19±0.27

Log[MIC]=3.24±0.28

Log[MIC]=3.48±0.55

Log[MIC]=4.14±0.35

Log[MIC]=3.65±0.72

Log[MIC]=-0.05±0.17

Log[MIC]=-0.40±0.17

Log[MIC]=-0.40±0.17

Log[MIC]=3.06±1.78

TEM-15

Log[MIC]=0.33±0.48

Log[MIC]=-0.56±0

Figure 14: Frequencies of genotypes for the configuration TEM-15-High.
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Signal peptide mutations: The graph illustrates that signal peptide mutations are of
high significance. Especially the mutations A18T, V10I, L12* have a particularly strong
effect on MIC as indicated by the orange arrows (Fig. 9). Interestingly, their effect seems
to be enhanced in the presence of the E104K-G238S mutations, which can be noticed
by comparing arrows of those signal peptide mutations outgoing from TEM-15 to those
outgoing from the G238S variant. Furthermore, the graph shows that in the background of
TEM-15, all single point mutations except for R120G, K192*, and P167* are signal peptide
mutations. Moreover, all genotypes at distance two around the TEM-15 cluster also have
a signal peptide mutation. This indicates that they are essential for further adaptation
in the background of TEM-15. Results on the growth rate indicate why this might be
(Fig. 10). While TEM-15 has a significantly below-average growth rate, all signal peptide
mutations are able to restore the growth rate to around average levels. This indicates that
selection for growth may also have taken place in the background of TEM-15. It might
also explain why the mutation A11*, which has one of the strongest effects on the growth
rate, occurs several times in the background of TEM-15, although the MIC increase is
rather small compared to e.g., A18T, V10I, L12* (Fig. 9, 10). Moreover, it might explain
why the A18T mutation is the most common mutation in the TEM-15 background, as it
combines one of the largest increases in MIC with one of the strongest increases in growth
rate. However, it does not rank first in either measure. More observations concerning
signal peptide mutations are listed in the following, indicating that they are especially
important for further adaptation in the background of TEM-15.

• Signal peptide mutations occur in 146/192=0.76 lines.

• 52/96=0.54 variants in the TEM-1 background acquire a signal peptide mutation.

• 16/19=0.84 variants in the TEM-1 background that have acquired the E104K-G238S
mutations plus other mutations have a signal peptide mutation amongst them. Ex-
ceptions are E104K-G238S-P167* & E104K-G238S-K192* & E104K-G238S-A42*.

• 94/96=0.98 variants in TEM-15 background acquire a signal peptide mutation.

• The V10I mutation exhibits the strongest increase in MIC as a single point mutation
in the TEM-15 background. It is also present in the most resistant variant E104K-
G238S-V10I-A42G-S124N-T140R.

• In descending order, the following signal peptide mutations have the greatest positive
influence on the MIC in the background of TEM-15:
1.V10I 2.A18T & L12* 3.V10*.
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• In descending order, the following signal peptide mutations have the greatest positive
influence on the growth rate in the background of TEM-15.:
1.L12* 2.A11* 3.A18T.

Dark Matter around TEM-15-A18T?: While a combined consideration of growth
rate and MIC provides an idea of why the mutation A18T is most frequently selected in
the background of TEM-15, the question remains open as to why it is disproportionately
selected in the sexual lines at low mutation rates (Fig. 13). This is surprising because
it is a single point mutation and recombination thus does not produce a benefit in the
sense that mutations are combined. One explanation we would like to point out for this is
that genotypes consisting of the TEM-15-A18T mutations among potentially other mu-
tations could be more often functional than, for example, genotypes consisting of the
TEM-15-V10I mutations, which is more resistant but could therefore have a disadvan-
tage if recombination occurs. This difference in robustness might not be observed, since
genotypes with TEM-15-A18T plus additional mutations might be functional, but could
have a smaller MIC compared to TEM-15-A18T. In that sense, it would be dark mat-
ter, which cannot be observed within the experimental design. Translated onto a neutral
landscape, this would imply that the TEM-15-A18T genotype has significantly more func-
tional point mutation neighbors than the TEM-15-V10I genotype and is thus more robust
to mutations. If this were the case, double mutations containing A18T could survive the
preselection step and then recombine with TEM-15, resulting in a higher probability of
observing the A18T single point mutation genotype. With respect to the recombination
weight explained in chapter 1, it can also be argued that due to the higher robustness of
TEM-15-A18T, its recombination weight increases and, importantly, is greater than that
of TEM-15-V10I. This in turn increases its frequency in the sexual lines.
A reduced model landscape for this hypothesis is shown and explained in Fig. 15 along
with the results of the simulation. For the simulation the protocol explained in 4.3.1 is
used. The results show that such an observation could indeed be made. However, only
with a relatively small population, since with a sufficiently large population, the fittest
genotype would be discovered every time. Moreover, the frequency of the fittest genotype
would in any case exceed that of the more robust genotype. A possible explanation why
this is not the case in the experiment could be that the growth rate of TEM-15-A18T
is higher. This is not taken into account in this simplified model. However, within the
experimental design the growth rate could have an effect on the distribution for example
during preselection. This could be addressed by accepting a deviation from the neutral
landscape assumption during preselection, but this has not yet been verified.
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Fisher-Muller effect in the case of TEM-1: The results for TEM-1 as initial geno-
type are shown in Figs. 11, 12. They illustrate why the number of observed mutations
and the MIC is greater in the sexual lines, leading to a strong signal for the Fisher-Muller
effect. Because whereas asexual lines mostly carry only the G238S mutation and spo-
radically another mutation that does not have a major effect, in sexual lines, the G238S
mutation are often combined with E104K. These two mutations together have the largest
fitness effect of all genotypes found at Hamming distance two. The effect is particularly
visible at low mutation rates. At high mutation rates, G238S-E104K is also observed in
some asexual lines. Therefore, the Fisher-Muller effect really seems to be at work in this
case. Moreover, in our simulations, we can reproduce a similar effect. For this, we assume
the simplified model landscape shown in Fig. 16.

4.4 Discussion

The results demonstrate that the effect of recombination clearly depends on the initial
TEM variant. In general, as discussed, the particular effect of recombination hinges on the
underlying fitness landscape. Therefore, an attempt was made to characterize the fitness
landscape using the observed sequenced genotypes. The results strongly indicate that
the local landscape structure around both initial variants differs, which could explain the
different recombination effects. While for TEM-1, only the G238S mutation at distance
one seems to offer a clear fitness advantage, for TEM-15, there are numerous mutations
at distance one that are selected. The results also suggest that for TEM-15 not only the
MIC but also the growth rate plays a role. In a future work the performed simulation
might be improved if these are also taken into account. However, further complications
could arise at this point since the growth rates are only measured in the absence of
cefotaxime, while these usually are concentration-dependent (Ruelens & de Visser, 2021).
In terms of evolvability, the results suggest that evolutionary pathways tend to be narrow
in early evolution (TEM-1), but become broader once the TEM-15 mutations and a signal
peptide mutation are acquired. Especially for TEM-15-High there seems to be no basin
of attraction anymore (Fig. 14).

97



4.4 Discussion 4 RECOMBINATION IN A DIRECTED EVOLUTION EXPERIMENT

Figure 15: TEM-15 model landscape and simulation results.

The left figure is a sketch of the model fitness landscape for L = 8. In the model land-
scape, it is assumed that all L point mutations of TEM-15 are functional. Two point
mutations are special. One of these is A18T, whose own point mutation neighbors are
also all functional. The other special mutation is V10I, which has no additional functional
neighbors but has the highest fitness. This is crucial for the greedy selection step. Thus,
V10I is selected in the experiment if this genotype is present in the population after one
generation. The second highest fitness belongs to A18T, followed by its point mutation
neighbors. If these genotypes are also not present, TEM-15 is drawn. MIC is the proxy for
fitness in this case and growth rate was not included. The results of numerical simulations
are shown in the figure on the right for different population sizes N and sequence lengths
L. "WT" stands for TEM-15 and "A18T n" for any point mutation neighbor of A18T
that is not TEM-15. The mutation rate is U = 0.4 (low mutation rate) in all cases. The
results reveal that the observed frequency of A18T is higher in recombining populations
and that the results depend only on the ratio between N and L in this scenario.

98



4.4 Discussion 4 RECOMBINATION IN A DIRECTED EVOLUTION EXPERIMENT

Figure 16: TEM-1 model landscape and results.

The left figure is a sketch of the model fitness landscape for L = 10. Only two point
mutations of TEM-1 are functional, namely E104K and G238S. The latter has higher
fitness than TEM-1 and E104K. Moreover, all L point mutations of G238S are functional.
The combination E104K and G238S leads to another functional genotype which is also
the fittest one. Results are illustrated on the right for different population sizes N and
sequence length L. The mutation rate is U = 0.4 (low mutation rate). "Else" represents
either a E104K or TEM-1 observation.
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5 Summary and outlook

In this thesis, evolution on fitness landscapes was studied under selection, mutation, and
recombination dynamics.
In chapter 2, quasispecies were used to address in particular the effect of recombination on
mutational robustness. The results demonstrate that recombination increases mutational
robustness in a broad parameter range. Explicit equations were derived for a two-locus
model. These show that in this model, mutational robustness depends on the r/µ ratio in
certain limits. This can be interpreted to reflect that higher mutation rates µ distribute
the population more evenly in sequence space while increased recombination rates r return
the population to particularly robust genotypes. Additionally, three different multi-locus
models were employed: the percolation, mesa, and sea-cliff model. While the former
two already exist in the literature, the latter one was introduced as an intermediate
model containing the former two models as limiting cases. For all multi-locus models,
robustness was shown to increase with r in a fashion similar to the two-locus model.
Even the choice of recombination scheme does not fundamentally change this behavior,
as demonstrated. Moreover, additional analytical results could be derived for the mesa
model in limiting cases, displaying good agreement with the numerical simulations. These
illustrate that selection alone moderately increases robustness, but that recombination has
a much greater effect, leading to values near the maximum robustness for a wide range of
conditions. For the percolation model, we discussed that several distinct stationary states
can exist in the presence of recombination. These are usually characterized by a highly
concentrated population in a well-connected region in sequence space, leading to increased
mutational robustness. If there are several such well-connected regions, the recombining
population moves into one of them. In which one depends on the initial placement of
the population in the sequence space. Furthermore, the recombination mechanism is
explained under the notion of fitness landscapes by introducing the recombination weight
as a new measure. It is shown that this measure predicts well which genotypes might reach
high frequency at stationarity and that there is a positive correlation with the robustness
of genotypes. Finally, we consider an empirical landscape in which increased selection
for mutational robustness by recombination is likewise observed, but at the cost of the
population’s average fitness.
In chapter 3, finite population sizes N were considered in a percolation model and in
addition to mutational robustness, the population’s evolvability and genetic diversity were
taken into account. While the quasispecies approximation of chapter 2 is appropriate if
NµL � 1 and N � 2L, here we deliberately chose not to meet these criteria. We therefore
considered, on the one hand, the limit of infinitely long sequences (L ! 1) with finite
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U = µL and, on the other hand, finite genotype spaces which are larger than the chosen
population size (N ⌧ 2L). At first, different evolutionary regimes that arise due to the
finiteness of the population were discussed. Depending on the product NU , the population
can be either considered as a random walker (NU ⌧ 1) or as a diffusive genotype cloud
(NU � 1). Subsequently, the effect of recombination was studied in a wide parameter
range, such that all evolutionary regimes are covered. In general, the results show that
recombination is particularly significant for the parameter range NU � 1 and U ⌧ 1, as
the population is otherwise either too monomorphic or dominated by the entropic force
of mutation. Results for the infinite-sites model demonstrate that in the absence of lethal
genotypes, evolvability in terms of the discovery rate and genetic diversity in terms of the
number of distinct genotypes only increases with the recombination rate. Other metrics
like the fixation rate, the number of segregating mutations, and mean Hamming distance
remain independent of recombination. However, it was shown that this changes once
lethal genotypes are present. Then several non-monotonicites arise. Most remarkably are
those that are a function of the recombination rate. While for small recombination rates,
the discovery rate and the number of distinct genotypes increase as in the absence of lethal
genotype, they quickly drop again at large recombination rates. A more detailed analysis
shows, that at large recombination rates, the genotype composition of the population
changes, such that recombination events more often generate viable genotypes. This is
achieved if the genotype cloud is highly concentrated on a focal genotype, from which
mean fitness benefits. But evolvability and genetic diversity decline across all metrics,
showing a clear trade-off. Results for the finite-sites model draw a similar picture. Here,
we could also study mutational robustness, which shows very similar behavior to the
quasispecies regime for NU � 1 and U ⌧ 1. This demonstrates once again that the
increase of mutational robustness due to recombination exists under many conditions.
In the end, the difference between three model implementations of recombination was
discussed. While the model details would not matter for quasispecies with finite sequence
length, the choice can become important otherwise. Depending on the implementation,
recombination could act as an additional source of genetic drift besides selection, which
gives rise to further non-monotonicities.
In chapter 4, the results of an experiment on the evolution of the antibiotic resistance
enzyme TEM-1 �-lactamase in E. Coli was studied. The experiment is interesting in the
context of this thesis, as it compares evolution with and without in-vitro recombination. A
statistical analysis of the measured MICs, growth rates, and number of mutations initially
leaves open questions about the particular effect of recombination. While for TEM-1 as
a starting point the Fisher-Muller effect seems to play a significant role, the effect for
TEM-15 is unclear. Therefore, the sequenced mutations were utilized to reconstruct the
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observed underlying fitness landscape, which was then illustrated as a directed graph. In
this graph, genotypes are represented as nodes, and although many intermediate nodes
are missing, the majority of the measured ones could be arranged relative to each other in
a meaningful way. Further information such as the frequency of each measured genotype
and the ratio between asexual and sexual lines were encoded in the graph, such that almost
all experimental results can be read from it. On the basis of this graph, we recognized
certain patterns, which were subsequently discussed in more detail. Simulations were also
employed, showing that for TEM-1 the Fisher-Muller effect was dominant because of the
underlying fitness landscape structure. Contrary, for TEM-15, the results indicate that
recombination selects for mutational robustness. However, simulations could not clearly
confirm this. We suspect that the growth rate must also have played a role at this point,
but we did not include it in the simulation.
For further studies, it would be interesting to investigate whether stronger signals for mu-
tational robustness can be detected in evolutionary experiments. At the moment, in vitro
recombination is still a complex task, and therefore most evolutionary experiments only
consider mutation and selection. However, this might change, and there are already a
few limited studies on the effect of recombination in evolutionary experiments that probe
theoretical hypotheses (Cooper, 2007; McDonald et al., 2016). Still, the recombination
rate was not modified in these experiments and only the fitness increase was considered.
On the theoretical side, it would be interesting to incorporate deviations from the as-
sumption that fitness is equal among all viable genotypes. Depending on the origin of
the neutrality, one could consider, on the one hand, fitness landscapes with rugged fitness
plateaus or, on the other hand, several flat fitness plateaus of different heights that are
distributed in sequence space. The former could, for example, represent the fact that even
synonymous mutations show fitness differences, while the latter scenario could represent
the degeneracy of different phenotypes in sequence space (Zwart et al., 2018; Manrubia
et al., 2021). These scenarios could then also be combined. Since environmental condi-
tions change frequently, it would also be interesting to study the population dynamics
with plateaus that have time-dependent heights. In this context, one could consider the
effect of recombination on the mutational robustness and average fitness increase simul-
taneously. Furthermore, in this thesis, constant populations were assumed. It would
therefore be interesting to investigate what effects bottleneck situations could have on
neutral landscapes with recombination. Moreover, only haploid populations with diallelic
loci were considered. A generalization would be interesting to verify whether the effect of
recombination on mutational robustness persists.
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