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Abstract

Obesity is a condition that is associated with excessive weight gain and fat mass storage

whose prevalence is increasing within western populations. A variety of co-morbidities

are linked to obesity such as type 2 diabetes mellitus, cardiovascular diseases and neu-

rodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. To-

gether, this contributes to substantial costs of healthcare programs. In non-obese indi-

viduals, energy intake and energy expenditure is precisely matched over a long time

period in order to maintain energy resources and fat mass. This mechanism, termed

energy homeostasis is accomplished by regulatory neuronal networks in the central ner-

vous system (CNS).

To better understand and counteract obesity and its co-morbidities, increasing efforts

are being made to define the control mechanisms in the CNS, that regulate body weight

and energy homeostasis. The focus of this study is the noradrenergic (noradrenaline;

NA) modulation of energy homeostasis. Anti-obesity drugs, for example amphetamines,

can exert strong anorexigenic effects on eating behaviour in humans. However, these

drugs generally affect multiple transmitter and neuromodulator pathways, such as the

dopaminergic and serotonergic system, leading to undesired side effects. Pharmacolog-

ical studies indicate that the anorexigenic effect of amphetamine and related drugs are

caused in part by modulation of the NA system. In order to devise strategies and de-

velop specific drugs with minimized side effects in support of weight loss programs, it

is critical to understand in detail the mechanisms in the CNS by which NA contributes

to energy homeostasis.

Besides the well established role of the paraventricular nucleus of the hypothalamus

in NA-mediated modulation of food intake, studies indicate that NA input on the home-

ostatic system in the arcuate nucleus of the hypothalamus (ARC) might also modulate

eating behaviour. In the ARC, two key neuronal populations, pro-opiomelanocortin

(POMC) and agouti-related peptide (AgRP) expressing neurons sense and integrate pe-

ripheral and nutritional signals. Once activated, POMC neurons promote satiety and
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activation of AgRP neurons leads to food intake and decreased energy expenditure.

Mechanisms that mediate the possible NA action in the ARC are unknown. In this

study, the effect of NA on POMC and AgRP expressing neurons has been investigated.

Application of NA inhibits POMC neurons, while AgRP neurons are excited. Pharmaco-

logical experiments revealed that these effects are mediated by α2A- and α1A-adrenergic

receptors (AR). This suggests a potent NA modulation of food intake. With respect to

these effects, afferent projections from NA nuclei and the conditions under which NA

is released into the ARC are of greatest interest.

As a potential NA source, the locus coeruleus (LC) in the brainstem contains 50%

of the NA neurons in CNS. Efferent projections from the LC to the ARC have been

identified. Besides the contribution to autonomic functions in general, studies indicate

that the LC is also involved in glucose metabolism and the control of brown adipose

tissue (BAT). Moreover, BAT thermogenesis is dependent on NA and plasma glucose.

Therefore, the effects of changes in extracellular glucose concentrations have been inves-

tigated. Around 40% of neurons in the LC responded with increasing spike frequency

due to elevated glucose levels, identifying these neurons as glucose-excited. A small

subpopulation responded with a moderate inhibition and is considered as glucose-

inhibited. Expression of a mutant variant of the ATP dependent potassium channel

in mice silenced a large number of LC neurons and abolished responses to glucose.

Moreover, sympathetic nerve activity was reduced and led to a white-adipose-tissue-like

morphology of BAT, alongside with impairment of thermogenesis. As a consequence of

decreased energy expenditure, these mice developed obesity.

The modulation of POMC and AgRP neurons by NA indicates a critical role of

the catecholamine in the control of energy homeostasis. Moreover, this study reveals

that the LC contains glucose-sensing neurons and contributes to the control of glucose

metabolism and the activity of BAT. Its projection patterns in the CNS identify the LC as

a potential source for NA release into the ARC. These results lead to new insights and

the expansion of the current role of NA in the control of energy homeostasis. Impor-

tantly, this may help to develop new strategies and drugs with minimized side effects

in the treatment of obesity.
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Zusammenfassung

Adipositas stellt ein stark zunehmendes Gesundheitsproblem in Industrieländern dar.

Eine Reihe an Begleiterkrankungen, wie Typ 2 Diabetes Mellitus , Herzkreislaufkrank-

heiten und neurodegenerative Störungen, wie z.B. Alzheimer und Parkinson verur-

sachen hohe Zusatzkosten für Gesundheitssysteme. Bei nicht-adipösen Individuen sind

Energieaufnahme und Verbrauch sehr präzise aufeinander abgestimmt, um über längere

Zeit Stabilität von Energiereserven und Fettgewebe herzustellen. Dies ist

definiert als Energiehomöostase und wird vom zentralen Nervensystem (ZNS) kontrol-

liert.

Um Adipositas-assoziierte Erkrankungen zu vermeiden, werden große Anstrengun-

gen unternommen, die Regulation der Energiehomöostase im ZNS besser zu verstehen

und zu beeinflussen. Die vorliegende Arbeit beschäftigt sich mit der noradrenergen

(Noradrenalin; NA) Modulation der Energiehomöostase. Amphetamine und verwandte

Wirkstoffe können Hunger-unterdrückende Wirkung haben. Dabei werden in der Regel

mehrere Transmitter- bzw. Neuromodulatorsysteme beeinflusst, welches unerwünschte

Nebenwirkungen zur Folge haben kann. Pharmakologische Studien

deuten darauf hin, dass Amphetamine und verwandte Substanzen in der Behandlung

von Adipositas zum Teil auf das NA System wirken. Detailliertes Wissen, wie NA auf

die Energiehomöostase wirkt, ist daher unabdingbar in der Entwicklung von Medika-

menten, die Adipositas-Patienten bei ihrer Therapierung unterstützend begleiten sollen.

Neben der bekannten NA Modulation der Nahrungsaufnahme im paraventrikulären

Hypothalamus, sprechen Untersuchungen zusätzlich dafür, dass NA auch direkt im

Arcuate Nucleus des Hypothalamus (ARC) wirkt. Dieser gilt als Schlüsselregion in

der Kontrolle von Nahrungsaufnahme und Energieverbrauch. Er enthält unter an-

derem zwei Neuronenpopulationen, proopio-melanocortin (POMC) exprimierende und

Agouti-related peptide (AgRP) exprimierende Neurone, die Signale aus der Peripherie

im Zusammenhang mit dem Nahrungsstatus eines Körpers aufnehmen und weiterver-

arbeiten können. Die Erregung von POMC Neuronen hat Sattheit zur Folge, während
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die Erregung von AgRP Neuronen in Nahrungsaufnahme und gesteigertem Energie-

verbrauch resultiert. Die Wirkmechanismen von NA im ARC sind bisher nicht geklärt.

Daher wurde der Effekt von NA auf POMC und AgRP Neurone untersucht. NA in-

hibiert konzentrationsabhängig POMC Neurone, während es AgRP Neurone anregt.

Diese Effekte werden durch die Aktvierung von α2A - und α1A-adrenergen Rezeptoren

vermittelt. Aufgrund dieser Effekte sind die NA Projektionen in den ARC und die

Umstände in denen NA dort ausgeschüttet wird von größtem Interesse.

Als eine mögliche Quelle beherbergt der Locus Coeruleus (LC) etwa 50% aller NA

Neurone im ZNS. Die Innervation des ARC mit Efferenzen aus dem LC ist bekannt.

Neben der Rolle des LC im autonomen Nervensystem, deuten Studien an, dass dieser

sowohl an der Glukosehomöostase, als auch an der glukose- und NA-abhänigen Kon-

trolle des braunen Fettgewebes (BAT) beteiligt ist. In Anbetracht dieser Daten wurde

untersuch, ob Neurone im LC auf Änderungen in der extrazellulären Glukosekonzen-

tration reagieren. Etwa 40% der untersuchten Neurone erhöhten ihre Aktivität auf-

grund einer höheren Glukosekonzentration und konnten daher als glukose-angeregt

identifiziert werden. Ein kleiner Teil der Neurone reagierte mit einer Inhibition und

wurde daher als glukose-inhibiert identifiziert. Die Expression eines mutierten ATP-

abhängigen Kaliumkanals führte zur verminderter elektrischer Aktivität von LC Neuro-

nen und verhinderte die Anregung aufgrund erhöhter extrazellulärer Glukosekonzen-

trationen. Weiterhin sank die Aktivität im Nervus Sympathikus und beeinflusste die

Thermogenese im BAT negativ. Als Folge reduzierten Energieverbauchs entwickelten,

die Mäuse Adipositas.

Effekte auf POMC und AgRP Neurone im ARC deuten auf eine Rolle NAs in der

Energiehomöostase hin. Der LC beherbergt Neurone, die auf unterschiedliche Glukose-

konzentrationen reagieren und zur Regulation des Glukosestoffwechsels und der Ak-

tivität von BAT beitragen. In diesem Zusammenhang, identifizieren die Projektionen in

den ARC, den LC als eine mögliche Quelle der NA-Ausschüttung. Die Ergebnisse dieser

Arbeit beschreiben neue Erkenntnisse in der NA Modulation der Energiehomöostase.

Dies könnte helfen neue Strategien und Medikamente zu entwickeln, die weniger Neben-

wirkungen in der Behandlung von Adipositas zur Folge haben.
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1 Introduction

Obesity, defined as an abnormal or excessive accumulation of body fat mass that impairs

health, has become a worldwide epidemic with humans categorized as overweight or

obese nearly doubled in number since the 1980s (World Health Organization, WHO;

Fact sheet N◦
311). The increasing prevalence for obesity in both developed and non-

developed countries is a major health threat in near future. Obesity and overweight

are defined by the body-mass-index (BMI), a simple weight-for-height measure where

a value greater than or equal to 25 is classified as overweight and a value greater than

or equal to 30 is considered as obese (WHO, 2007). In 2008, 1.4 billion people, with

the age of 20 or older were classified as overweight, of which 200 million men and

300 million women were listed as obese. This alarming trend can also be observed in

children. By the end of 2010, 40 million children aged under five years were categorized

as overweight, worldwide (WHO, Fact sheet N◦
311).

Certain co-morbidities associated with obesity are a major health problem. For in-

stance, type 2 diabetes mellitus (T2DM) is diagnosed in a growing number of people

throughout all ages (Must et al. , 1999). Besides, the risk for cardiovascular diseases like

hypertension, stroke and heart attack, musculosceletal disorders and even certain forms

of cancer, is increasing with higher BMIs (Guffey et al. , 2013; Lehrer et al. , 2013; Osmond

et al. , 2009). Obesity also affects the function of the central nervous system (CNS). Al-

terations in brain morphology and decrease in brain volume have been associated with

overweight or obesity in young adults (Bruce-Keller et al. , 2009). In part, these effects

are also observed during aging and obesity increases the risk of neurodegenerative dis-

orders including Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Luchsinger,

2010; O’Rahilly, 2009). In 2012, the WHOs Regional Office for Europe reports that obe-

sity is already responsible for 2-8 percent of overall health costs and 10-13 percent of

deaths. Also in the United States, the increasing prevalence of obesity is responsible for

substantial costs of health care programs. In 2009, a study by Finkelstein et al. (2009)

evaluated the expected costs to be $85.7 billion. This has recently been extended to an
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1 Introduction

overall cost for obesity and obesity-related diseases of $209.7 billion (Cawley & Mey-

erhoefer, 2012). Due to this "economic burdon generated by obesity, its treatment has

become one of the most urgent issues in medicine today" (Li & Cheung, 2009). It is crit-

ical to devise specific pharmacological strategies to assist obese patients in starting and

maintaining a program of weight loss with no or minimized side effects. For example,

amphetamine and its variants can be strong modulators of eating behaviour in humans,

however strong side effects are a common problem of such anti-obesity strategies (Adan,

2013; Derosa & Maffioli, 2012; Fantasia, 2013). Therefore, neuronal mechanisms which

underlie the control of body weight are of greatest interest in order to develop specific

therapies in the treatment of overweight or obese patients.

In order to gain further knowledge about the neurotransmitter systems which regu-

late energy homeostasis, this thesis focusses on the specific role of noradrenaline (nora-

drenergic; NA) in this mechanism. In the following sections, a short introduction into

the CNS in the general control of energy homeostasis with the focus on the melanocortin

system of the hypothalamus is presented. As an example of a nutrient signal, glucose

sensing is described as this mechanism is apparent in nuclei in the hypothalamus as well

as in NA nuclei in the brainstem. The main focus of this study is the NA modulation of

eating behaviour and its effect on the arcuate nucleus of the hypothalamus (ARC), a key

region in the control of energy homeostasis. The locus coeruelus (LC) is introduced as a

potential source for hypothalamic NA release and finally its role in glucose metabolism

and control of brown adipose tissue (BAT) is described.

1.1 The central nervous system in control of energy homeostasis

Several heritable factors such as genetic predispositions and environmental influences

like untimely food habits, reduced physical activity and increased food consumption

along with unlimited access to food promote the development of overweight and obe-

sity (Power, 2012). It is not massive periodic overconsumption that leads to obesity

rather than a small mismatch in intake and expenditure over a long time period. A

caloric consumption of 0.3 percent over energy expenditure is already sufficient for

weight gain (Rosenbaum et al. , 1997). Energy homeostasis can be defined as the phys-

2



1 Introduction

iological process whereby energy intake is matched to energy expenditure over time to

promote the stability of energy resources stored as adipose tissue (Hagan & Niswender,

2012). This regulation is an exceedingly complex biological mechanism, which involves

a variety of different biological behaviors and substrates. The question concerning how

this regulation of food intake and energy expenditure is achieved has been thoroughly

investigated. Initially regarded as a mechanism which is controlled by the body’s pe-

riphery, it became increasingly clear that several parts of the CNS are critically involved

in the regulation of energy homeostasis (Brobeck, 1946; Brobeck et al. , 1943).

1.1.1 The melanocortin system of the hypothalamus

A number of landmark studies highlighted the hypothalamus in the control of food

intake (Anand & Brobeck, 1951; Kennedy, 1950; Mayer & Thomas, 1967). These stud-

ies led to the proposal of a "dual center model" with the ventromedial hypothalamus

(VMH) being the "satiety center" and the lateral hypothalamus (LH) the "hunger center",

as lesioning of one of these either decreases or increases food intake. Soon, the ques-

tion arose of how these areas gather information to precisely determine levels of energy

intake and expenditure. Parabiosis studies on lesioned rats led to the conclusion of a

peripheral signal in relation to animals’ lipostatics (Hervey, 1959). A rat with a lesion in

the VMH was surgically connected with a normal rat, which allowed humoral factors

to pass from one animal to the other. The lesioned rat developed obesity whereas its

partner became hypohagic and lost weight, suggesting that a signal in proportion to the

amount of fat mass is highly potent to inhibit food intake. Additional parabiosis studies

on genetically obese mice, ob/ob and db/db, led to the assumption that the first lack the

signal, while the latter are insensitive to it (Coleman, 1973, 1978). The later identification

of the ob and db gene, which encode the hormone leptin and the respective receptor con-

firmed these experiments (Zhang et al. , 1994). These key studies led then to the further

identification of various genes involved in the process of energy homeostasis, encoding

peptides, receptors and transcription factors and most importantly the identification of

the "melanocortin system" (Gao & Horvath, 2008).

3



1 Introduction

The arcuate nucleus of the hypothalamus

The "melanocortin system" represents the key neuronal system in the control of energy

homeostasis targeted by a large number of metabolic signals such as leptin, insulin,

ghrelin as well as nutritional signals like glucose and free fatty acids (FFA; Brüning et al.

2000; He et al. 2006; Ibrahim et al. 2003; Parton et al. 2007; Spanswick et al. 1997, 2000).

It is located in the ARC, which has an anatomically unique position because of its close

proximity to fenestrated capillaries at the very medialbasal part of the hypothalamus

(Burdakov et al. , 2005a; Ganong, 2000). Here, the blood brain barrier is highly permeable

and thus provides access to peripheral signals for neurons (Benoit et al. , 2000; Cone et al.

, 2001).

Two neuronal populations have been identified leading to opposing effects on food

intake (Cone et al. , 2001). The first population expresses pro-opiomelanocortin (POMC)

and cocaine- and amphetamine regulated transcript (CART). Activation of POMC neu-

rons mediates satiety (anorexigenic). POMC is further cleaved into α- and β-melanocyte

stimulating hormone (α- and β-MSH), which upon activity-dependent release stimulate

the melanocortin receptor types 3 and 4 (MC3R, MC4R) in target areas and leading to

reduced food intake and satiety (Boston et al. , 1997; Cone, 2005; Ellacott & Cone, 2004).

In contrast, neuropeptide Y (NPY) containing neurons in the ARC, expressing the

agouti-related peptide (AgRP) mediate orexigenic signals (Aponte et al. , 2011). Con-

sequently, NPY release increases food intake with a concomitant decrease in energy

expenditure (Ollmann et al. , 1997; Stanley & Leibowitz, 1984). AgRP is a potent inverse

agonist on MC3R and MC4R, thus preventing activation by their ligand α-MSH (Smith

et al. , 2007). Additionally, AgRP expressing neurons co-express the inhibitory transmit-

ter γ-aminobutyric acid (GABA) and form unidirectional synapses on POMC neurons,

thus simultaneously inhibiting these anorexigenic neurons (Cowley et al. , 2001). This

interaction may be seen as a important evolutionary blue-print that favors hunger over

satiety by tonic inhibition of anorexigenic signals and thus can also lead to overcon-

sumption in times of higher food availability (Atasoy et al. , 2012; Bates & Myers, 2003).

The identification of this network in the ARC led to the question of how signals are

further transferred and integrated to elicit adaptive behavior.
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Insulin

Figure 1.1: Melanocortin system in the ARC. Two opposing cell types in the ARC sense and
process peripheral signals to second order neurons, which express MC4Rs. Insulin and leptin
inhibit appetite signaling NPY/AgRP neurons and excite satiety signaling POMC neurons, lead-
ing to α-MSH release and the activation of second order neurons via MC4Rs. In contrast, ghrelin
excites NPY/AgRP neurons, which form GABAergic synapses on POMC and second order neu-
rons, leading to inhibition of satiety signals. NPY inhibits second-order neurons and AgRP
potently antagonizes MC4Rs and activation by α-MSH. ARC, arcuate nucleus of the hypotha-
lamus; α-MSH, α-melanocyte-stimulating hormone; AgRP, agouti-related peptide; POMC, pro-
opiomelanocortin; MC4R, melanocyte receptor type 4; NPY, neuropeptide Y; GABA, γ-amino
butoric acid. Modified from (Gao & Horvath, 2007).

Downstream targets of POMC and NPY/AgRP neurons

Various nuclei of the CNS exhibit dense innervation by POMC and NPY/AgRP projec-

tions, for example the paraventricular nucleus of the hypothalamus (PVH), the VMH, the

dorsal medial hypothalamus (DMH) and the LH. MCR and/or NPY-receptor expression

could be observed in all of the mentioned hypothalamic nuclei, thus identifying them

as strong candidates for melanocortin signaling (Kishi et al. , 2003; Mountjoy et al. , 1994;

Sahm et al. , 1994). An elegant study highlighted the PVH neurons as direct downstream

targets for ARC POMC neurons and are therefore called second-order neurons in the

melanocortin system (Balthasar et al. , 2005). The PVH has been studied extensively in

the control of food intake and satiety. A study with lesioned PVH in rats, revealed that

NPY and POMC signaling is still sufficient to regulate food intake (Dube et al. , 2006).

However, Atasoy et al. (2012) provide data, in which a PVH subpopulation is necessary

in processing the signals that are generated in first place in the ARC to other nuclei in
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the CNS. Furthermore, a large body of literature suggests a role of the PVH in the NA

control of energy homeostasis (Leibowitz, 1988; Wellman, 2000, 2005). Injections of NA

and specific agonists and antagonists of adrenergic receptors (adrenoceptors; AR) into

the PVH led to marked effects on feeding behaviour in rats.

In general, signals in relation to eating behaviour from hypothalamic nuclei are pro-

cessed to nuclei in the brainstem, the Nucleus Tractus Solitarius (NTS) and the dorsal

motor nucleus of the vagus (DMV) and are integrated with mechanosensory signals

from the periphery (Suzuki et al. , 2010). One important signal is glucose, which mod-

ulates electrical activity of POMC and AgRP neurons in the ARC and brainstem nuclei

(Diggs-Andrews et al. , 2010; Fioramonti et al. , 2007; Ibrahim et al. , 2003; Mizuno &

Oomura, 1984; Parton et al. , 2007; Ritter et al. , 2011; Thorens, 2011; Wang et al. , 2008).

A prerequisite to elicit adaptive behaviours in response to changes in glucose concen-

tration is the perception of extracellular glucose levels, a mechanism termed "glucose

sensing" (Levin et al. , 1999; Routh, 2002).
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PVH
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VMH
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LH
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insulin, leptin, ghrelin,
FFA, glucose

DMV

PVH

Figure 1.2: The melanocortin system and its downstream targets in the integration of peripheral
signals. Upper scheme The peripheral signals ghrelin, insulin and leptin, FFA and glucose act on
neurons in the brainstem and the hypothalamus. In the brainstem the NTS and DMV receive
sensory information from vagal afferents and process signals to the hypothalamus. Here the
respective information is integrated with the peripheral signals and processed back to the brain-
stem to elicit adequate behavior, i.e. food intake, satiety or energy expenditure. Lower scheme
Coronal sections illustrated by dashed lines above show the positions of the relevant nuclei in
the hypothalamus, which are involved in energy homeostasis. FFA, free fatty acids; NTS, nu-
cleus tractus solitarius; DMV, dorsal motor nucleus of the vagus; PVH, paraventricular nucleus
of the hypothalamus; LH, lateral hypothalamus; ARC, arcuate nucleus of the hypothalamus; 3V,
3rd ventricle; ME, median eminence; VMH, ventromedial hypothalamus; DMH, dorsomedial
hypothalamus. Modified from (Morton et al. , 2006; Schwartz et al. , 2000).
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1.1.2 Glucose sensing

Glucose represents an important nutrient also mediating modulatory effects on neurons

within the CNS (Marty et al. , 2007). In either high or low concentrations, glucose is

able to elicit adaptive behaviours via afferent fibers from the periphery (Berthoud, 2008;

Yuan & Yang, 2002). In the brainstem, this information is processed and integrated with

signals from the CNS in terms of energy homeostasis (Watts & Donovan, 2010). Well

studied examples include the cephalic phase of insulin secretion, initially elicited by

activation of taste receptors in the oral cavity (Berthoud & Mogenson, 1977; Berthoud &

Powley, 1990; Berthoud et al. , 1981) to control carbohydrate metabolism.

The CNS constitutes an organ with an specifically high demand in glucose, as it rep-

resents the sole energy store of the brain (Levin et al. , 2002). Thus, concentrations of

CNS glucose must not fall under certain levels (∼ 5 mM) and at critical times of lower

concentrations, hepatic glucose production and adaptive behaviors, such as food intake

or reduced energy expenditure are triggered (Marty et al. , 2007). These mechanisms

postulate sites in the CNS that control food intake and energy expenditure in response

to extracellular glucose concentrations and thus have the ability to sense extracellu-

lar glucose (Routh, 2002). First evidence that the CNS inherits sites of glucodetection

was revealed in the 1950s (Mayer, 1953). Pioneering electrophysiological experiments in

the 1960s suggested the existence of certain neuronal populations, which could change

their firing in response to changes in extracellular glucose concentrations (Anand et al. ,

1964). Further experiments could reveal two distinctly different populations of glucose-

sensitive neurons, which either increase or decrease firing frequencies in response to el-

evation in extracellular glucose concentrations. Accordingly, they were termed "glucose-

excited" (GE) and "glucose-inhibited" (GI) neurons (Belgardt et al. , 2009; Burdakov et al.

, 2005b; Thorens, 2011). Until today, this classification has been expanded by the elec-

trophysiological identification of neurons, responding to either excessively high or low

concentrations of glucose high glucose-excited (HGE) and high glucose-inhibited (HGI;

Fioramonti et al. 2007).

In favor of the identified CNS nuclei containing glucose-responsive neurons, great

efforts have been made to unravel the mechanisms that couple extracellular glucose con-
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centrations to certain intracellular membrane properties, that increase or decrease action

potential (AP) frequencies. Mechanisms involving the adenosine-triphosphate (ATP)-

dependent potassium channel (KATP) along with the expression of glucose-transporters

(GLUTs) and glucokinase (GK) have been first identified in pancreatic β-cells and are

also expressed in the CNS (Ashcroft et al. , 1984; Levin et al. , 1999). Briefly, extracellular

glucose enters the cell via low affinity GLUTs. Subsequently, glucose is phosphorylated

by GK and enters glucolysis leading to increased ATP concentrations. As a result, ATP

closes KATP channels resulting in membrane potential depolarization and concomitant

increase in firing frequencies (Ashford et al. , 1990; Dallaporta et al. , 2000; Lee et al. ,

1999; Miki et al. , 2001; van den Top et al. , 2007). In contrast, glucose-inhibited neu-

rons control their firing by activating an ATP driven Na+/K+- exchanger in response to

elevated intracellular ATP concentrations. However, a second mechanism suggests the

involvement of adenosine monophosphate-activated protein kinase (AMPK) pathways,

which results in the opening of Cl- channels and subsequent hyperpolarization of the

neuron (Oomura et al. , 1974; Silver & Erecińska, 1998; Song & Routh, 2005; Song et al.

, 2001). An overview of the proposed underlying mechansims is given in Figure 2 and

reviewed by Jordan et al. (2010).

Various sites containing glucose-sensing populations have been identified including

all key regulatory nuclei of energy homeostasis, such as the ARC, the PVH, VMH and

LH (Burdakov et al. , 2005a). Further glucose sensing sites have been detected in the

brainstem including, the NTS, the area postrema (ArP), the DMV and NA neurons in

the basolateral medulla (Adachi et al. , 1995; Burdakov et al. , 2005a; Ritter et al. , 2011;

Routh, 2002). A large body of work focused on NA neurons in the brainstem projecting

to hypothalamic sites, which are involved in glucoprivic feeding responses (Ritter et al.

, 2011). Further studies mark the main NA nucleus in the CNS, the LC, as a potential

source for the NA modulation of energy homeostasis (Wellman, 2000). Therefore, NA

and its role in the control of energy homeostasis is described in the following sections.
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A B

Figure 1.3: Neuronal glucose-sensing mechanisms. (A) In GE neurons, extracellular glucose en-
ters the cell and is phosphorylated to Pyruvate by the kinase glucokinase (GK). Increasing intra-
cellular ATP concentrations lead to the closure of KATP channels, thus increasing excitability and
transmitter release. (A) In the proposed model for GI neurons, ATP activates a Na+/K+-ATPase
decreasing membrane potential and transmitter release. Other models implicate AMPK medi-
ated opening of Cl− channels, other mechanisms involve KATP channel opening and decrease in
Ca2+ conductance. GE, glucose-excited; GI, glucose-inhibited, KATP, ATP-dependent potassium
channel; AMPK, adenosine monophosphate activated protein kinase; GK, glucokinase. Adopted
and modified from Jordan et al. (2010).

1.2 The catecholamine noradrenaline in the control of energy

homeostasis and food intake

Several drugs in the treatment of obesity target catecholaminergic (catecholamine; CA)

neurotransmitter systems, among them the NA system (Hainer et al. , 2006a; Rosmond,

2004). Strong side effects of these drugs are a general problem. Amphetamines, which

also target the NA system have anorexigenic effects but exhibit strong addictive poten-

tials (Di Dalmazi et al. , 2013). In order to develop specific drugs with no or minimized

side effects, a detailed understanding of these neurotransmitter systems in the modula-

tion of eating behaviour is necessary. The present study focuses on the NA system in

the control of energy homeostasis.
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1.2.1 Noradrenaline

NA, adrenaline (adrenergic; A) and dopamine (dopaminergic; DA) belong to the CA

class of monoamines with NA and DA representing the two primary CAs in the mam-

malian brain (Bloom, 2010). Almost five decades ago, these substances were identi-

fied by formaldehyde histofluorescence and soon matched to distinct neuronal popula-

tions(Carlsson et al. , 1962; Dahlström & Fuxe, 1964; Vogt, 1954).

NA can act either as a circulating hormone or neurotransmitter dependent on the site

of biosynthesis and release. In the periphery, the medullae of the adrenal glands release

NA and A into the blood, a process which is mainly associated with an adaptive behav-

ior to stress, often referred to as "fight or flight" response (Jansen et al. , 1995). However,

the classical view of NA release in the CNS underlies the postganglionic sympathetic

neurons controlling cardiovascular responses to maintain blood pressure and a variety

of other responses with the interplay of A (Esler et al. , 1985).

It became clear that NA as well as A are also released by various neurons serving as

a classical synaptic neurotransmitter in the CNS (Fuxe, 1965). Various studies indicate,

that projections of NA neurons can also be non-synaptic, thus releasing it nonspecifi-

cally within areas of brain-tissues where it rather acts in a hormone-like manner (Smeets

& González, 2000). Release of NA in general is known to contribute to a variety of func-

tions such as long-term synaptic plasticity, pain modulation, motor control, local blood

flow, sleep wake cycles, arousal, task performance optimization and energy homeostasis

(Aston-Jones & Cohen, 2005; Benarroch, 2009; Samuels & Szabadi, 2008a,b).

All CAs are synthesized by an specific enzymatic machinery. The neurotransmit-

ter NA is synthesized in three steps starting with the amino acid tyrosine, which in

a first step is converted to L-3,4-dihydroxyphenylalanine (L-DOPA) by the enzyme

tyrosine-hydroxylase (TH). L-DOPA represents the direct precursor for DA and DA

is converted into NA by the enzyme dopamine-β-hydroxylase (DBH). Methylation by

phenylethanolamine-N-methyltransferase (PNMT) finally converts NA to A, a process

which is predominantly taking place in the medullae of the adrenal glands as A neuron

groups are rather small compared to NA neuron groups (see figure 1.4 A; Smeets &

González 2000).
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A

Figure 1.4: Catecholaminergic biosynthesis. (A)Pathway for catecholamine biosynthesis and its
enzymatic steps. The steps of conversion from L-tyrosine to L-noradrenaline are typical for
sympathetic and some brain neurons, and the conversion of L-noradrenaline to L-adrenaline is
typical for the adrenal medullary cells and some peripheral and central neurons. Modified from
Kvetnansky et al. (2009).

The functional organization of the NA system consists of a peripheral (sympathetic

ganglia) and a central part. Both share the common feature that their cell bodies are

clustered in a small number of nuclei in the lower brainstem (Moore & Bloom, 1979).

First described in rats, seven NA nuclei have been identified in the brainstem and

most of them have also been identified in primates and humans. Subdivided into

three groups, the caudal (or medullary), central (medullo-pontine) and rostral (pontine)

group, NA nuclei have been labeled from A1 to A7. However, 50% of all noradrenergic

neurons are located in the A6 cell group, the LC.

Projections of the NA system are divided into two major groups: the caudal group

(A1,A2,A5,A7) forms the ventral noradrenergic bundle (VNB) and central group (LC)

gives rise to the dorsal noradrenergic bundle (DNB). Together, both bundles innervate

almost the entire CNS. These wide projection pattern of the NA system reflects the
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diverse functional role of NA neurons. The anatomy of the NA system is reviewed in

Szabadi (2013).

The Locus Coeruleus - noradrenergic (LC-NA) system, is the main source of NA in

the CNS. By innervating most structures, NA release from the LC modulates a large

variety of systems (Berridge & Waterhouse, 2003). The control of sleep-wake cycles,

promoting wakefulness, arousal and modulating task performance, are regarded as the

major functions of the LC in the CNS. These contributions have been studied extensively

in vitro and in vivo. The activation patterns of neurons in the LC have been matched to

different states of wakefulness and arousal. During rapid eye movement (REM) sleep,

neurons in the LC remain silent. They become tonically active during times of waking

and increase firing with increasing arousal (Berridge et al. , 2012). In times of very high

arousal (even stress and fear related) demanding optimal task performance, LC neurons

are rhythmically active. An elegant study, using optogenetics, revealed the necessity of

LC firing in maintaining wakefulness and also shows that LC activity is finely tuned

in the control of attentional behavior (Carter et al. , 2010). Besides these roles, it is

also known, that the LC contributes to autonomic function via the sympathetic nervous

system (SNS). By innervating preganglionic sympathetic neurons in the spinal cord, the

LC controls blood pressure and sweat glands and may also be involved in mediating iris

reflexes in response to light stimuli (Samuels & Szabadi, 2008b). Additionally, retrograde

labeling using pseudorabies viruses injected into brown adipose tissue (BAT) of different

species has allowed the identification of the LC, implicated in the regulation of BAT

sympathetic nerve activity (SNA) (Bamshad et al. , 1999; Cano et al. , 2003; Oldfield et al.

, 2002). Upon cold exposure it was observed that LC neurons show increased spike

activity, concomitant with higher thermogenesis in BAT (Kiyohara et al. , 1995; Miyata

et al. , 1995). This clearly points towards a role of the LC in the control BAT activity.

NA exerts multiple potent effects on target neurons including the modulation of

membrane potential, neuronal excitability, intracellular cascades and synaptic plasticity.

In vitro studies indicate that these effects are rather complex and may critically rely

on synaptic concentration as well as on the availability and affinity of certain receptor

subtypes in any specific region (Hein, 2006; Philipp & Hein, 2004).
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1.2.2 Noradrenergic receptors

The effect of NA and A is mediated via signaling of three major classes of receptors, α1-,

α2- and β-adrenergic receptors (Adrenoceptors; ARs). These receptors are widely dis-

tributed in the body and the CNS (Young & Kuhar, 1980). Each of the three major types

are further divided into three different subtypes (Docherty, 1998). Based on pharmaco-

logical characteristics, adrenoceptors were originally divided into α- and β-adrenergic re-

ceptors (Ruffolo, 1985; Ruffolo & Hieble, 1994). α-ARs were initially subdivided into α1-

and α2-ARs based on the assumption that the first is expressed postsynaptically whereas

the latter is expressed only presynaptically to inhibit transmitter release (Langer, 1974).

However, this classification soon became obsolete. It was shown that α2-ARs can be

expressed pre - as well as postsynaptically (Rogawski & Aghajanian, 1982; Wellman

et al. , 1993). Thus, pharmacological characterizations were used and led to the present

classification scheme. An overview of the current nomenclature is given in figure 1.5.

  

    

Figure 1.5: Current nomenclature of adrenoceptors based on pharamcological properties. ARs
are divided in two major classes α-ARs and β-ARs. Modified from Woodcock (2007).

Several studies have revealed multiple actions of NA on intrinsic ionic currents and

cellular properties (Hein, 2006). All of the three described major classes of AR belong

to the class of G-protein coupled receptors (GPCRs) (Bloom, 1979; Insel, 1989; Ramos &

Arnsten, 2007).
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α1-adrenergic receptors

In general, the class of α1-ARs exerts its excitatory effect via coupling to Gq proteins,

thereby activating phospholipase C (PLC) and phosphotidyl-inositol (PI) intracellular

signaling (Macrez-Leprêtre et al. , 1997). This leads to activation of protein kinase C

(PKC) and the release of intracellular Ca2+ via inositol-1,4,5-triphosphate (IP3) (Benar-

roch, 2009; Birnbaum et al. , 2004). Further mechanisms have been implicated which also

lead to excitatory effects on neurons. An elegant study by Pan et al. (1994) demonstrated

the contribution of decreased K+ conductances as well as increased voltage gated Ca2+

conductances (VGCC) to neuronal excitation. Dodt et al. (1991) could show that NA in-

hibits Ca2+-activated K+-currents via activation of α1-ARs and thus leading to increased

firing in response to excitatory stimuli. Mice carrying deletions for each of the α1-AR

subtype could reveal different systems they contribute to in the CNS. Various pheno-

types were reported as most of the α1-ARs are abundantly expressed (Tanoue et al. ,

2002). The analyzed mice suggest that the subtypes of α1-ARs are involved in the con-

trol of locomotion, cognition, control of motor activity as well as contribute to memory

consolidation and fear-motivated exploratory activity. Consequently, patophysiology

in relation to α1-ARs exhibit various impairments and neurodegenerative phenotypes

(Zuscik et al. , 2000). However, the detailed mechanisms by which α1-ARs contribute to

the different CNS functions remain largely unknown.

α2-adrenergic receptors

The α2-ARs, which exhibit the highest affinity to NA, are coupled to Gi proteins thus

having inhibitory effects on target neurons. Activation of the Gi protein reduced the ac-

tivity of the enzyme adenylcyclase (AC), which decreases the intracellular concentration

of the second messenger cyclic adenosine monophosphate (cAMP; Bünemann et al. 2001;

Hein 2006). Protein kinase A (PKA), a kinase regulating the activity of several cellular

proteins including L-type Ca2+ channels can be activated by cAMP (Rosenbaum et al. ,

2009). Additionally, activation of G protein coupled inwardly rectifying potassium chan-

nels (GIRKs) is a primary response to activation of Gi coupled receptors, which leads to

potent inhibition of target neurons (Limbird, 1988; Lüscher & Slesinger, 2010). α2-ARs
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can be expressed either pre - or postsynaptically, where they serve different functions

while sharing the same intracellular mechanism. Presynaptically expressed α2-ARs are

commonly autoreceptors (Callado & Stamford, 2000). Here, the synaptic availability of

NA is controlled by auto-inhibition via the α2-AR itself. In addition to their function as

inhibitory autoreceptors, α2-ARs can also regulate a number of other neurotransmitters

in the central and peripheral nervous system (Richter et al. , 2012). In the brain, α2A- and

α2C-ARs inhibit DA release in basal ganglia and serotonin (5-HT) secretion in mouse

hippocampus and brain cortex (Bücheler et al. , 2002; Scheibner et al. , 2001). In the

LC, postsynaptically expressed α2-ARs have been shown to inhibit baseline activity and

increase responsiveness to novel stimuli (Sara, 2009).

Further functional contributions of α2-ARs are shown for pain perception, procession

of sensory information, control of blood pressure and body temperature and also neu-

roprotectional effects are described (reviewed in Hein (2006); Rommelfanger & Wein-

shenker (2007); Weinshenker (2008). To mention a few, sensorimotor gating deficits,

such as schizophrenia, attention deficit disorder and post-traumatic stress disorder are

consequences of α2-AR impairment (Brede et al. , 2004).

β-adrenergic receptors

β-ARs activate Gs proteins, which opposingly to α2-ARs lead to an increase in cytosolic

cAMP concentration, thus leading to excitatory effects (Benovic et al. , 1988). β-ARs are

mostly known for their role in the regulation of cardiovascular, airway, uterine, and pe-

ripheral metabolic functions. Presynaptically expressed β-ARs on some peripheral and

central nerve endings have been show to facilitate stimulation evoked neurotransmitter

release. However, their major physiological significance is not known. Despite the wide

expression of β1- and β2-ARs within the CNS, specific knockouts did not lead to any

significant deficits in CNS function (Nicholas et al. , 1996).

The present study aims to gain further knowledge about the NA modulation of en-

ergy homeostasis. Therefore, general effects of NA and underlying receptor subtypes

have been described. The following section provides an overview of NA modulation of
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energy homeostasis at two sites, the ARC and the LC, both of which are in focus of this

thesis.

1.2.3 The hypothalamus in the noradrenergic control of energy homeostasis

In the 1960s, first evidence appeared that NA directly affects food intake. Exogenous

NA and A injected into various sites of the rat’s forebrain was able to elicit feeding

and drinking responses dependent on the injection site (Booth, 1967; Grossman, 1960).

An important mapping study by Leibowitz (1978b) showed that infusions of NA into

the medial hypothalamus, specifically into the PVH elicits remarkable bouts of food

intake and that these responses were diminished by injecting NA anteriorly, laterally

and dorsally to the PVH. Further studies revealed the presence of α1- and α2-ARs in

the hypothalamus (Leibowitz et al. , 1982; Young & Kuhar, 1980). Pharmacological ex-

periments showed that these receptors mediate the effect of exogenous NA. Clonidine,

a specific agonist of α2-ARs reliably mimicked the effect of NA injection. Consistently,

this effect could be abolished by the administration of the specific α2-AR antagonists

Rauwolscine and Yohimbine (Goldman et al. , 1985; Leibowitz, 1988). In contrast, a vari-

ety of agonists of α1-ARs led to reductions in food intake (for review see Wellman et al.

1993). The specific α1-AR agonist SKF-89748 was able to reduce food intake in rats

dose dependently (Morien et al. , 1993). Administration of benoxathian, a specific α2-AR

antagonist, prevented the reduction of food intake after the systemic administration of

the α2-AR agonist phenylpropanolamine (Wellman & Davies, 1991). In order to confirm

these results, electrophysiological studies revealed a subpopulation of neurons in the

PVH, which were either inhibited or excited by bath application of NA and/or specific

agonists and antagonists (Inenaga et al. , 1986; Kow & Pfaff, 1989). Importantly, block-

ing synaptic transmission could demonstrate that these effects are due to cell intrinsic

expression of ARs. Taken together, neurons in the PVH are differentially regulated by

α1- and α2-AR subtypes, with the first leading to the suppression and the latter to the

stimulation of food intake.

Anatomical studies aimed to reveal the specific sources in the brainstem which re-

lease NA in terms of energy homeostasis (Ritter et al. , 2000; Wellman, 2000, 2005).
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Various NA nuclei show dense innervation of hypothalamic sites (Calaresu & Ciriello,

1980; Kataoka et al. , 1975; Loughlin et al. , 1986). As described earlier, the NA system

innervates most parts of the CNS via the DNB, which carries the efferent projections of

the LC, and the VNB. The identification of these fiber systems led to further pioneer-

ing experiments investigating the specific functions of the NA system with respect to

feeding behavior. Almost 40 years ago, Ahlskog & Hoebel (1973) showed that chem-

ical and electrolytic lesions of the VNB results in overeating and obesity. In contrast

the interruption of the DNB, originating from the LC resulted in lowered body weight

(Hoebel et al. , 1989). Genetic knockout (KO) of NA can be accomplished by the deletion

of DBH. Consistently with the contribution of NA to feeding behavior, mice exhibited

a smaller phenotype concomitant with reduced food intake. However, these mice could

still increase feeding in response to overnight fasting (Cannon & Palmiter, 2003). Prior

to this, a similar outcome has been noted by Rossi et al. (1982), where inhibition of DBH

by the drug FLA-63 led to reduced eating behavior.

The discovery of the melanocortin system in the hypothalamus also led to experi-

ments focusing on the effect of NA in the ARC or the medial hypothalamus in general.

In this context, the ARC is regarded as the first order relay, containing neurons which

adapt their activity to peripheral signals such as insulin, leptin, ghrelin, glucose and

FFA and innervate downstream targets, especially the PVH, to either suppress or in-

duce food intake (Gao & Horvath, 2007). A large body of literature suggests a role of

NA in modulation of the action of these peripheral signals or vice versa (Brunetti et al.

, 1999; Date et al. , 2006; Francis et al. , 2004; Levin et al. , 1998). While leptin inhibits

NA release into the hypothalamus, insulin selectively downregulates the expression of

α2-AR specifically in the ARC (Brunetti et al. , 1999; Kawakami et al. , 2008; Levin et al.

, 1998). Additionally, NA might also affect neurons that are located presynaptically to

the PVH thereby changing excitatory and inhibitory synaptic input on neurons in the

PVH (Han et al. , 2002). The ARC is a strong candidate in exerting these effects on PVH

neurons and NA has been shown to activate ARs in the ARC (Kang et al. , 2000). How-

ever, these experiments lacked the identification of the respective neurons expressing

the ARs.
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Taken together, the role of NA signaling in the PVH with respect to food intake has

been thoroughly investigated. Various studies also indicate direct or indirect modu-

latory effects of NA in the ARC and NA dependent postsynaptic currents have been

measured in PVH neurons. POMC and AgRP neurons are located presynaptically to

the PVH and are thus potent targets for NA in the regulation of energy homeostasis.

The present study aims to analyze the effect of NA on these neurons. Moreover, this

leads to the question which NA nuclei project and release NA into the ARC. The LC

contains 50% of the NA neurons and therefore is regarded as a potential source for NA

release into the ARC. Therefore the putative role of the LC in energy metabolism is a

further subject of this thesis.

1.2.4 The Locus Coeruleus in the control of energy homeostasis and glucose

metabolism

The LC NA system innervates BAT via the SNS and thus may contribute to the con-

trol of BAT activity. Besides its prominent role in thermoregulation, recent work has

revealed that BAT is also involved in the control of glucose and lipid metabolism in

rodents and may thus contribute to energy homeostasis (Bartelt et al. , 2011; Nedergaard

et al. , 2011; Waldén et al. , 2012). BAT is a tissue with excessively high glucose uptake,

a feature which accidentally led to its identification in humans while screening for tu-

mors (Hany et al. , 2002). Importantly, NA release into BAT stimulates the expression of

GLUT genes resulting in the uptake of glucose from blood vessels. Subsequently, glu-

cose is pyruvated and finally oxidized in the mitochondria (Bartelt et al. , 2011). Given

the sympathetic efferents of the LC into BAT and the effect of NA on glucose uptake,

it is important to mention that studies support the hypothesis that the LC may also

contribute to glucose metabolism (REF).

In order to maintain glucose homeostasis, the brainstem integrates information of

the hypothalamus and visceral afferents arising in the periphery. A large body of evi-

dence suggests that NA is the neurotransmitter which triggers food intake as response

to glucoprivation (Emanuel & Ritter, 2010; Fraley & Ritter, 2003; Hudson & Ritter, 2004;

Levin et al. , 1999; Ritter et al. , 2000, 2001, 2006). In this context, NA is suggested to
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be mostly released by the A1 and A2 NA cell groups (Li et al. , 2009; Rinaman, 2011).

However, about 50% of NA somata are located in the LC, which gives rise to the DNB.

As aforementioned, lesioning of DNB fibers leads to phenotypes, which suggest a role

in energy homeostasis. Identification of the melanocortin system and glucose-sensing

neurons led to studies trying to uncover certain areas, that may sense extracellular glu-

cose and may be involved in energy homeostasis. In order to find these areas, in-situ

hybridizations for mRNA encoding proteins involved in the glucose-sensing machin-

ery have been conducted. The expression of KATP channels and glucokinase has been

anatomically matched with the LC, suggesting the existence of glucose-responsive neu-

rons (Dunn-Meynell et al. , 1998; Finta et al. , 1993; Lynch et al. , 2000). Importantly, two

studies in the 1990s by Murai et al. (1997a) and Illes et al. (1994) provides evidence of

glucose-sensing behavior of LC neurons in the rat. In both studies, glucose free medium

induced outward currents in a subset of LC neurons, which in the latter study could be

blocked by application of the KATP channel blocker tolbutamide. The same authors could

also show that metabolic inhibition due to hypoxia/anoxia induces outward currents,

also sensitive to tolbutamide. In this context, hypoxia is thought to exert this effect via

depletion of intracellular ATP, thus opening KATP channels (Grigg & Anderson, 1989).

These results indicate the existence of GE neurons in the LC. In contrast, injection of

2-desoxy-glucose (2-DG) , a glucose variant which can’t enter glycolysis mimicking con-

ditions of glucoprivation, induced c-fos expression in the LC, suggesting the existence

of GI neurons (Ritter et al. , 1998). However, this is not contradictory as c-fos expression

due to 2-DG fails to label GE neurons, which should decrease electrical activity.

Taken together, a large body of literature provides evidence for a role of the NA

system in the control of energy homeostasis. The NA modulation of neurons in the

PVH has been well established. In the hypothalamus, the main center in the control of

energy homeostasis is the ARC and a series of studies supports evidence for an action

of NA in the ARC. However, a detailed analysis of the effect of NA, especially on POMC

and NPY/AgRP neurons remains elusive.

The brainstem contains the majority of NA neurons in the CNS. Various nuclei ex-

hibit dense efferent innervation of hypothalamic sites. The LC contains 50% of NA
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somata and efferent projections to the ARC have been identified. This points towards a

potential source for NA release into the ARC and a contribution to the control of energy

homeostasis. A role of the LC in glucose metabolism via autonomic function has been

proposed and LC neurons express a number of proteins, which identify these neurons

as putative glucose-sensors. However, detailed electrophysiological data has not been

described in this context.

1.3 Thesis objectives

The present study aims to expand the knowledge of NA modulation of energy home-

ostasis. Because various drugs in the treatment of obesity, at least in part, target the

NA system, it is important to understand in detail the targets in the CNS and the

mechanisms, by which NA modulates eating behaviour and energy expenditure. The

presented experiments help to define the model of NA control of energy homeostasis,

which is critical to develop specific drugs in the treatment of obesity with minimized

side effects. Two systems are in the focus of this study:

1st: The Arcuate nucleus of the hypothalamus

1. Basic electrophysiological characteristics of POMC and AgRP neurons in the ARC

have been analyzed

2. The effect of different concentrations of NA on POMC and NPY/AgRP neurons

in the ARC has been investigated

3. The specific underlying receptors, expressed by POMC and NPY/AgRP neurons

have been identified by pharmacological tools

4. Age- and diet-dependent effects on NA signaling in the ARC have been investi-

gated for POMC neurons

2nd: The Locus Coeruleus

1. Basic electrophysiological characterization aimed to create a baseline for future

experiments in our labaratory
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2. Responses to changes in extracellular glucose have been investigated in LC neu-

rons, as a potential source for NA release into the ARC
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2 Materials and Methods

2.1 Animal care

Care of all animals was within institutional animal care committee guidelines. All ani-

mal procedures were approved by local government authorities (Bezirksregierung Köln,

Cologne, Germany) and were in accordance with NIH guidelines. Mice were housed in

groups of 3 – 5 animals at a temperature of 22 – 24
◦C with a 12 h light/12 h dark cy-

cle. After weaning (P21), mice were either fed regular chow food (NCD; Teklad Global

Rodent 2918; Harlan) containing 53.5 % carbohydrates, 18.5 % protein, and 5.5 % fat

(12 % of calories from fat) or a high-fat diet (HFD; C1057; Altromin) containing 32.7 %

carbohydrates, 20 % protein, and 35.5 % fat (55.2 % of calories from fat). All animals

had access to water and chow ad libitum. The different mouse strains used for this study

were kindly provided by Tim Klöckener, Sulay Tovar and Linda Verhagen of the Brüning

group.

2.2 Brain slice preparation

The animals were anesthetized with halothane (B4388; Sigma-Aldrich, Taufkirchen, Ger-

many) and subsequently decapitated. The brain was rapidly removed and a block of

tissue containing the hypothalamus or brainstem was immediately cut out. Coronal

slices (250 – 300 µm) were cut with a vibration microtome (HM-650 V; Thermo Sci-

entific, Walldorf, Germany) under cold (4 ◦C), carbogenated (95% O2 and 5% CO2),

glycerol-based modified artificial cerebrospinal fluid (GaCSF; Ye et al. 2006) to enhance

the viability of neurons. GaCSF contained (in mM): 250 Glycerol, 2.5 KCl, 2 MgCl2,

2 CaCl2, 1.2 NaH2PO4, 10 HEPES, 21 NaHCO3, 5 Glucose and was adjusted to pH 7.2

with NaOH resulting in an osmolarity of ∼310 mOsm. Brain slices were transferred into

carbogenated artificial cerebrospinal fluid (aCSF). First, they were kept for 20 min. in a

35
◦C ’recovery bath’ and then stored at room temperature (24

◦C) for at least 30 min
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prior to recording. For the recordings, slices were transferred to a Sylgard-coated (Dow

Corning Corp., Midland, MI, USA) recording chamber (∼3 ml volume) and, if not men-

tioned otherwise, continuously perfused with carbogenated aCSF at a flow rate of ∼2

ml ·min−1. aCSF contained (in mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4,

21 NaHCO3, 10 HEPES, and 5 Glucose and was adjusted to pH 7.2 with NaOH resulting

in an osmolarity of ∼310 mOsm.

2.3 Patch-clamp recordings

Current-clamp recordings in neurons of the hypothalamus and the brainstem were per-

formed in the perforated patch-clamp configuration. In the hypothalamus, neurons

which express POMC or NPY/AgRP were investigated. In the brainstem, NA neurons

in the LC were investigated.

Neurons were visualized with a fixed stage upright microscope (BX51WI, Olympus,

Hamburg, Germany) using 40× and 60× water-immersion objectives (LUMplan FL/N

40×, 0.8 numerical aperture, 2 mm working distance; LUMplan FL/N 60×, 1.0 numer-

ical aperture, 2 mm working distance, Olympus) with infrared differential interference

contrast optics (Dodt & Zieglgänsberger, 1990) and fluorescence optics.

POMC and NPY/AgRP neurons were identified by their anatomical location in the

ARC and by their GFP fluorescence that was visualized with an X-Cite 120 illumination

system (EXFO Photonic Solutions, Ontario, Canada) in combination with a Chroma

41001 filter set (EX: HQ480/40×, BS: Q505LP, EM: HQ535/50m, Chroma, Rockingham,

VT, USA). Putative NA neurons were identified by their location ventrolateral to the 4th

ventricle and/or by their GFP expression. Electrophysiological properties were analyzed

to confirm the identity (i.e. slow and regular firing).

Electrodes with tip resistances between 4 and 6 MΩ were fashioned from borosilicate

glass (0.86 mm inner diameter; 1.5 mm outer diameter; GB150-8P; Science Products)

with a vertical pipette puller (PP-830; Narishige, London, UK).

Recordings in the ARC were made at room temperature. Recordings of LC NA

neurons were made at ∼30-32
◦C using an inline solution heater (SH27B; Warner In-

struments, Hamden, CT, USA) operated by a temperature controller (TC-324B; Warner
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Instruments). All recordings were performed with an EPC10 patch-clamp amplifier

(HEKA, Lambrecht, Germany) controlled by the program PatchMaster (version 2.32;

HEKA) running under Windows. Data were sampled at intervals of 100 µs (10 kHz) and

low-pass filtered at 2 kHz with a four-pole Bessel filter. Cell capacitance was determined

by using the capacitance compensation (C-slow) of the EPC10. Cell input resistances

(RM) were calculated from voltage responses to hyperpolarizing current pulses. The

calculated liquid junction potential of 14.6 mV between intracellular and extracellular

solution was compensated or subtracted offline (calculated with Patcher’s Power Tools

plug-in from http://www.mpibpc.mpg.de/groups/neher/index.php?page=software for

IGOR Pro 6 [Wavemetrics, Lake Oswego, OR, USA]).

2.3.1 Perforated-patch clamp recordings

Perforated-patch experiments were conducted using protocols modified from Horn &

Marty (1988) and Akaike & Harata (1994). Recordings were performed with ATP and

GTP free pipette solution containing (in mM): 128 K-gluconate, 10 KCl, 10 HEPES, 0.1

EGTA, 2 MgCl2 adjusted to pH 7.3 with KOH resulting in an osmolarity of ∼300 mOsm.

ATP and GTP were omitted from the intracellular solution to prevent uncontrolled per-

meabilization of the cell membrane (Lindau & Fernandez, 1986). The patch pipette was

tip filled with internal solution and back filled with 0.02% tetraethylrhodamine-dextran

(D3308, Invitrogen, Eugene, OR, USA) added to the internal solution containing the

ionophore to achieve perforated patch recordings.

Amphotericin B (A4888; Sigma) and Gramicidin (G5002; Sigma) were dissolved in

dimethyl sulfoxide (DMSO; D8418, Sigma) following the protocols of Rae et al. (1991)and

Kyrozis & Reichling (1995). The used DMSO concentration (0.1 – 0.3 %) had no obvious

effect on the investigated neurons. All ionophores were added to the modified pipette

solution shortly before use. The final concentration of nystatin and amphotericin B was

∼200 µg ·ml−1, the final concentration of gramicidin was ∼10 – 75 µg ·ml−1.
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2.3.2 Single cell labeling

To label single cells, 1% biocytin (B4261; Sigma-Aldrich) was added to the pipette solu-

tion. Upon completion of the electrophysiological experiments, perforated-patch record-

ings were converted to the whole cell configuration and biocytin was allowed to diffuse

into the cell for at least 5 min. The brain slices were fixed in Roti-Histofix (P0873; Carl

Roth, Karlsruhe, Germany) overnight at 4
◦C and rinsed in 0.1 M Tris-HCl-buffered so-

lution (pH 7.2; three times for 20 min each time; RT; TBS). Afterwards, the slices were

incubated in TBS containing 1% Triton X-100 (39795.01, Serva, Heidelberg, Germany)

and 10% normal goat serum (30 min; RT; S-1000; Vector Labs, Burlingame, CA, USA).

Brain slices were washed in TBS (three times for 10 min each time) and subsequently

incubated in Alexa Fluor 633 (Alexa 633)-conjugated streptavidin (1:600; 2 hours; RT;

S21375; Invitrogen, Karlsruhe, Germany) that was dissolved in TBS containing 10% nor-

mal goat serum. Brain slices were rinsed in TBS (five times for 10 min each time),

dehydrated, and then cleared and mounted in Permount (SP15B-500; Fisher Scientific,

Nepean, Ontario, Canada).

2.3.3 Immunohistochemistry

Fixed slices containing single-cell labeled neurons (see section: 2.3.2; Single cell label-

ing) were incubated in TBS containing 2% Triton X-100 (39795.01, Serva, Heidelberg,

Germany) and 10% normal goat serum (30 min; room temperature; S-1000; Vector Labs,

Burlingame, CA, USA). Subsequently, slices were incubated in TBS containing 1% Tri-

ton x-100, 10% normal goat serum and the respective primary antibodies overight at

RT (1:500; chicken anti-GFP polyclonal; ab13970; Abcam, Cambridge, UK; 1:250 rab-

bit anti-dopamine-β-hydroxylase polycolonal; ab43868; Abcam, Cambrige, UK). After-

wards, slices were rinsed in TBS (three times for 10 min each time) and incubated with

secondary ABs (1:200 goat anti-chicken Alexa Fluor 488; ab150173; Abcam, Cambrige,

UK; 1:100; goat anti-rabbit Alexa Fluor 488; ab96887; Abcam, Cambridge, UK). Finally

slices were washed 5 times for 10 min each time, dehydrated and then cleared and

mounted in Permount (SP15B-500; Fisher Scientific, Nepean, Ontario, Canada).
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2.3.4 Image processing

Overview images of the preparations were taken with an LSM 510 Meta confocal laser

scanning system (Carl Zeiss MicroImaging GmbH, Göttingen, Germany) mounted on a

fixed stage inverse microscope (Zeiss Axiovert 100M equipped with 10x Plan-Apochromat

0.45 NA, 20x Plan-Apochromat 0.75 NA, 40x oil-immersion Plan-Neofluar 1.30 NA, 63x

oil-immersion DIC Plan-Apochromat 1.4 NA and 100x oil-immersion Plan-Neofluar 1.3

NA objectives).

Confocal images were captured using the multi track mode of the LSM 510 software.

Alexa 633 and Alexa 488 were imaged with 633 nm and 488 nm excitation, respectively.

Emission of Alexa 633 and Alexa 488 was collected through a 650 nm long pass and 505-

530 nm band pass filter respectively. Confocal images were adjusted for contrast and

brightness and overlaid in ImageJ (version 1.42q). For overview pictures overlapping

imaging stacks (10x) were merged in Photoshop CS5 (Adobe Systems Incorporated, San

Jose, CA).

2.3.5 Drugs

Noradrenaline-bitartrate(10nM-200 µM; I9278, Sigma), the specific α2A-AR antagonist

BRL 44408 (10 µM, C5776, Sigma), the specific α2B-AR antagonist ARC 239, the specific

α1A-AR antagonist WB 4101 and the specific α1C, D-AR antagonist CEC (1 – 1000 nM,

Q102, Sigma) were added to the normal aCSF. The KATP channel blocker tolbutamide

(200 µM, T0891, Sigma) was dissolved in dimethyl-sulfoxide (DMSO, D8418, Sigma) and

added to the normal aCSF with a final DMSO concentration of 0.1 – 0.25%. TTX (1µM,

)and Cd2+ (500 µM,) to analyze pacemaking in LC neurons were also added to normal

aCSF.

To isolate neurons from intact networks in acute brain slices, D-AP5 (50 µM), CNQX

(10 µM) and PTX (100 µM) were dissolved in DMSO and added to the normal aCSF

with a final DMSO concentration of 0.04%. All drugs were bath-applied in the given

concentrations at a flow rate of ∼2-3 ml ·min−1.
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The DMSO concentrations used to dissolve aforementioned compounds had no ob-

vious effect on the investigated neurons.

2.3.6 Noradrenalin experiments

Concentrations of 10 nM to 100 µM were bath applied and perfused either for ∼5 min-

utes after NA reached the recording dish or until steady-state effects were visible. For

analysis of membrane potentials and AP frequencies at least 30s at the end of each con-

centration have been used to calculate mean values. For conductance densities, three

sets of hyperpolarizing current injections were delivered and mean input resistances

were calculated, converted into conductance densities and normalized to respective cell

capacitances, which were determined at the end of each experiment. The obtained

values were plot as concentration-response expressed as normalization to the maximal

response.

y = bottom +
(top − bottom)

1 + 10(LogEC50−X)∗Hillslope

Values versus agonist concentration data were then entered into Prism 5 (GraphPad

Software, San Diego, CA) and concentration-response curves were constructed using

a nonlinear least-squares curve fitting method. Each curve was fit with a standard

variable slope between bottom (=0) and top (=1). The calculated EC50 value was used

as a measurement of agonist potency.

2.3.7 Glucose sensing experiments

To study glucose sensing we used modified protocols from (Parton et al. , 2007) and

varied bath glucose concentrations between 3 and 8 mM. in normal aCSF or aCSF con-

taining 10
-4 M PTX, 5 x 10

-5 M D-AP5, and 10
-5 M CNQX to reduce synaptic input. Since

we found no difference in relative effects of external glucose changes by blocking synap-

tic input, the recorded cells were pooled for both saline. At the end of each experiment

tolbutamide (200 µM) was applied to probe for KATP channels. We found that the basic
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firing properties of TH positive LC neurons and their sensitivity to glucose were not

homogenous. Therefore we used the ‘3 times standard deviation’ criterion (Dhillon et al.

, 2006; Kloppenburg et al. , 2007) and considered a neuron glucose responsive when the

change in firing frequency between different glucose concentrations was 3 times larger

than the standard deviation. The neurons were exposed to each glucose concentration

for at least 10-15 min. For each neuron, the firing rate averaged from 30s intervals was

taken as one data point. To determine the mean firing rate and standard deviation 10

data points at stable firing rates were averaged. The means for glucose responses were

calculated from periods of peak hyperpolarizations or depolarizations, respectively

2.3.8 Data analysis

Data analysis was performed with Spike2 (version 6; Cambridge Electronic Design Ltd.,

Cambridge, UK), Igor Pro 6 (Wavemetrics, Portland, OR, USA) and Graphpad Prism

(version 5.0b; Graphpad Software Inc., La Jolla, CA, USA). Coefficients of variation

(CVs) were obtained according to (Wolfart et al. , 2001).

Spike frequency adaptation (SFA)

SFA ratios were calculated with modified protocols according to Vandecasteele et al.

(2011) for each cell using the formula:

SFAratio =
Finitial

Ff inal

where Finit is the initial instantaneous spike frequency (1/first interspike interval

(ISI)) and Ffinal is the instantaneous frequency calculated from the last ISI. A neuron

exhibiting no SFA (Finit/Ffinal) and one showing adaptation would have an SFA ratio of

∼1 and >1, respectively (Venance & Glowinski, 2003). Weak adaptation was categorized

with values from 1-6 and strong adaptation was considered >6. For each neuron, the

adaptation ratio was estimated for a depolarizing stimulation of which certain initial in-

stantaneous frequencies to avoid differences due to large variation in input resistances.
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Weak adaptation was categorized with values from 1-6 and strong adaptation was con-

sidered >6.

Pacemaking of LC neurons

in order to analyze pacemaking, 450 ISI have been plotted as frequency distribution.

Bin size was automatically determined by Graphpad Prism. Distributions were fit to

Gaussian model:

y = Amplitude ∗ exp(−0.5 ∗ ((X − Mean)/SD)2)

Corresponding means and SDs have been used to calculate coefficients of variance:

coe f f = 100 ∗ SD
mean

Statistics

To determine differences in means of basic electrophysiological properties between the

two different genotypes, unpaired t tests were used. To determine differences between

treated and untreated states paired t tests or one-way ANOVA was performed; post hoc

pairwise comparisons were performed using t tests with the Newman-Keuls method for

p value adjustment.

A significance level of 0.05 was accepted for all tests. The ‘+’ signs in the box plots

show the mean, the horizontal line the median of the data. The whiskers were calculated

according to the ‘Tukey’ method.
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CAs like DA and NA have been shown to modulate pathways that are involved in

maintaining energy homeostasis (Könner et al. , 2011; Wellman, 2005). Various studies

indicate effects of NA on the melanocortin signaling pathways in the hypothalamus and

specifically the ARC (Brunetti et al. , 1999, 2004; Leibowitz et al. , 1988; Levin et al. , 1998).

However, the detailed action of NA in the ARC remains elusive.

In order to investigate the specific role of NA in the ARC, different concentrations

of NA have been bath applied combined with single cell patch-clamp recordings of

POMC and NPY/AgRP neurons. To rule out unspecific cross-talk between CA systems,

concentration-response curves were generated for both neuron types (Guiard et al. ,

2008b). Synaptic isolation of neurons in acute brain slices was used to confirm that

effects of NA on POMC and NPY/AgRP neurons are cell intrinsic. The effects of NA

are mediated by certain subtypes of ARs. Specific agonists and antagonists are used

to define the underlying AR subtypes. In this context, it is further of greatest interest

where NA projections to the ARC arise and under which conditions NA is released.

The LC contains ∼50% of NA neurons (Szabadi, 2013) in the CNS. Efferent projec-

tions arising in the LC innervate almost the entire brain representing the main source of

NA (Berridge, 2008; Sara, 1988; Szabadi, 2013). Besides the prominent role of the LC in

sleep-wake cycles, arousal and attention a large body literature provides evidence of a

function in energy metabolism in rats and monkeys (Ahlskog & Hoebel, 1973; Ammar

et al. , 2001; Redmond et al. , 1977). The LC is also involved in the control of autonomic

function and innervates BAT, thus serves a role in thermogenesis and energy expendi-

ture (Samuels & Szabadi, 2008a,b). These mechanisms are known to be modulated by

NA and glucose (Madden, 2012; Nedergaard et al. , 2011) and the expression of proteins,

which are associated with glucose sensing has been matched with neurons in the LC

(Dunn-Meynell et al. , 1998, 2002; Lynch et al. , 2000). In order to define the role of LC

neurons in glucose metabolism and energy homeostasis, neurons are investigated for

their ability to respond to changes in extracellular glucose concentrations. This aims
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to further expand the knowledge of functions of the LC NA system and unravel NA

modulation of energy homeostasis.

In detail, the experiments in the first part of this study aim to:

1. characterize basic electrophysiological properties of POMC neurons in the ARC by

perforated patch-clamp recordings and if possible identify subpopulations

2. analyze the effect of NA on POMC neurons in the ARC and specify underlying

receptor subtypes

3. characterize basic electrophysiological properties of NPY/AgRP neurons in the

ARC by perforated patch-clamp recordings and if possible identify subpopulations

The LC exhibits wide efferent projections in the CNS and also innervates the hy-

pothalamus including the ARC. It is thus a potential source for NA release on POMC

and NPY/AgRP neurons.

In the second part, experiments in the LC aim to:

1. create an electrophysiological characterization of LC neurons in the perforated

patch configuration, which serves as a baseline for future experiments in our

labaratory

2. test for responses of LC neurons to changes in extracellular glucose concentrations

as a fuel related signal

The identification of NA effects on the melanocortin system in the ARC and its ef-

fect on eating behavior in general aims to expand the model of NA’s role in energy

homeostasis. The LC represents a potential source for NA release into the ARC. It is im-

portant to identify conditions under which NA is released because anorexigenic drugs

in the treatment of obesity often target CA neurotransmitter systems (Di Dalmazi et al. ,

2013). In order to to develop specific pharmacological tools with minimized side effects

in treatment of obesity, it is critical to understand in detail the mechanisms of the CA

modulation of energy homeostasis.
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3.1 Properties of POMC and NPY/AgRP neurons in the arcuate

nucleus

In order to define specific subpopulations of the POMC and NPY/AgRP neurons, their

basic electrophysiological properties were analyzed. Since previous descriptions are

conducted in the whole cell patch-clamp configuration, these experiments aim to create

a baseline for perforated patch-clamp experiments (Ernst et al. , 2009; Roepke et al. ,

2012; Sohn et al. , 2011; van den Top et al. , 2007, 2004; Williams et al. , 2010; Yang et al. ,

2012; Zhan et al. , 2013). All perforated patch-clamp recordings have been conducted in

acute mouse brain slices containing the ARC and POMC or NPY/AgRP neurons were

identified by their specific GFP expression.

3.1.1 Properties of POMC neurons

Basic membrane properties

POMC neurons in the ARC have been shown to comprise a heterogenous neuron cluster.

Peripheral signals such as insulin and leptin are targeting a rather small amount of

POMC neurons (Sohn & Williams, 2012; Williams et al. , 2010). In an elegant study, the

same has been shown for the modulation by 5-HT (Sohn et al. , 2011). Consistently,

electrophysiological properties of POMC neurons reflect this heterogeneity (see figure

3.1 A). Analysis of spontaneous activity of POMC neurons revealed large variability of

frequencies resulting in a mean of 0.9 ± 0.4 Hz (see figure 3.1 B; n=15). Almost 50 %

of POMC neurons did not exhibit any generation of spontaneous action potentials (AP).

POMC membrane potentials resulted in a mean of -67.3 ± 2.1 mV (see figure 3.1 B;

n=15). Input resistances also varied strongly covering a range from 1 to 4 GΩ(n=15).

Measurement of cell capacitances at the end of each experiment resulted in a mean of

14.1 ± 2.1 pF (see figure 3.1 B; n=15).

SFA

Analysis of POMC neuron responses to long lasting depolarizing current injections of

10 seconds revealed three different types of SFA. This mechanism is closely related to
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Figure 3.1: Properties of POMC neurons in the ARC. (A) upper graphic Localization of recorded
neuron by post-hoc immunohistochemistry. (A1-3) left anti-GFP stain against POMC neurons.
mid biocytin backfill of recorded neuron labeled by streptavidin-Alexa633 Fluor conjugate. right
Overlay confirms doublelabelling of recorded neuron (yellow) and thus identifies the recorded
cell as POMC neuron. (B) Basic electrophysiological properties of POMC neurons recorded in
the arcuate nucleus and the respective means. Data are given as mean ± SEM and SD, scalebars
in A: 100 µm; A1-3): 20 µm. For details on boxplots see section Statistics in Materials and
Methods.

the opening of voltage gated Ca2+ channels (VGCC) and subsequent activation of Ca2+

activated K+ channels, thereby lowering instantaneous spike frequencies in response to

a sustained stimulus. A tool to describe SFA is the "SFA ratio". It is defined as the frac-

tion of the initial instantaneous frequency and the final instantaneous frequency (see

section Materials and Methods on 29). POMC neurons exhibited strong (SFA ratio >6;

n=1), weak (SFA Ratio 2-6; n=4) and no SFA (SFA ratio ∼1; n=1). The majority of POMC

neurons was categorized as weak adapting and showing SFA ratios of approximately 4-

5 (n=4; for single data points see figure 3.2 A (mid trace), B (blue), C (blue)). One neuron

revealing strong SFA reduced AP frequency over time almost 13 fold (see figure 3.2 A

(upper trace), B (black), C (black), D). In contrast, the third type of SFA only resulted in a

ratio of ∼ 1 (see figure 3.2 A (lower trace), B (red), C (red), D). Instantaneous frequencies

over time were fit to a mono-exponential decaying equation to analyze the time depen-
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dent kinetics of SFA . Time constants varied from 159 ms to 1420 ms, again reflecting

large variability (see figure 3.2 D; n=6). To summarize, the analysis of basic properties

of POMC neurons revealed a heterogenous population covering a wide range of values.

The analysis of SFA revealed three subtypes, regarding the SFA ratios. This is the first

subclassification of POMC neurons, based on electrophysiological properties. None of

the three investigated types could be assigned to other properties of POMC neurons,

clearly pointing towards a large variety of POMC of neurons.

20 mV

1 s

A
0 mV

0 mV

0 mV

0

10

20

30

in
st

an
ta

ne
ou

s 
A

P 
fre

qu
en

cy
initial final

st
ro

ng
 S

FA
w

ea
k 

S
FA

no
 S

FA

0.0

0.5

1.0

1.5

0

5

10

15

B

S
FA

 ra
tio

tim
e 

co
ns

ta
nt

 o
f S

FA
 (s

) 

0 5 10
0

10

20

30

40

in
st

an
ta

ne
ou

s 
A

P 
fre

qu
en

cy

time (s)

C D

(n=6)

(n=6) (n=6)

Figure 3.2: SFA properties of POMC neurons in the ARC. (A) Three different responses to long
lasting current injections of 10 s reveal three types of SFA in POMC neurons; strong SFA upper
trace (black), weak SFA mid trace (blue), and no SFA lower trace (red). (B) Initial and final in-
stantaneous frequencies of all single experiments, clearly showing the three distinct SFA types
(colorcode given in (A)). (C) Development of instantaneous frequencies of single experiment rep-
resenting each type of SFA and the respective monoexponential fits to obtain time constants of
inactivation.(D) Time constants of inactivation obtained by monoexponential fits as illustrated in
(C)) and SFA ratios as calculated by the instantaneous frequencies seen in (B)).

35



3 Results

3.1.2 Properties of NPY neurons

Basic membrane properties

NPY/AgRP expressing neurons in the ARC have been reported to be a rather ho-

mogenous neuronal population compared to the large variation in electrophysiological

properties of POMC neurons. However, there is no detailed description of GFP labeled

NPY/AgRP neurons in the literature. Therefore, basic electrophysiological properties

have been analyzed in a subset of mice that were used within this study. This aims to

create a baseline, specifically for GFP expressing NPY/AgRP neurons for further experi-

ments in our laboratory. A subset of neurons has been anterogradly labeled via with

biocytin to analyze wether electrophysiological properties correlate with distinct locali-

zation of somata and morphology of NPY/AgRP neurons. In contrast to variability in

morphology regarding dendritic projections, electrophysiological properties were ho-

mogenous. Almost all NPY/AgRP neurons exhibited generation of spontaneous action

potentials ranging from 0.5 to 7 Hz (see figure 3.3 B; n=15). Respective membrane poten-

tials showed a mean value of -54.4 ± 1.2 mV (see figure 3.3 B; n=15) . Cell capacitances

of 9.7 ± 0.5 were slightly lower compared to POMC neurons (see figure 3.3 B; n=15).

Control input resistances showed a larger variation and resulted in a mean of 2.3 ± 0.3

GΩ, slightly higher than input resistances of POMC neurons (see figure 3.3 B; n=14).

Spike frequency adaptation

Consistent with homogenous distribution of basic electrophysiological properties,

analysis of responses to depolarizing current injections only revealed a single type of

SFA (see figure 3.4). According to Ohm’s law, large variations of input resistances led to

large variations in voltage reflections upon current injection of 5 pA increments. There-

fore, to compare SFA properties, current injections have been used which resulted in an

initial instantaneous spike frequency of 30-40 Hz. Initial frequencies and final frequen-

cies were used to obtain SFA ratios (see section Materials and Methods on page 29).

Instantaneous frequencies over time were fit to a mono-exponential decaying equation

to analyze the time dependent kinetics of SFA (see figure 3.4 B; n=15). In NPY/AgRP
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neurons, SFA led to a 6-fold decrease in instantaneous spike frequency from a mean of

35.2 to 7.3 Hz resulting in an SFA ratio of 5.6 ± 2.3 (see figure 3.4 A, C, D; n=15).
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Figure 3.3: Properties of NPY/AgRP neurons of the ARC. (A) upper graphic Localization of
recorded neuron by post-hoc immunohistochemistry. (A1−3) left anti-GFP staining of NPY/AgRP
neurons. mid biocytin backfill of recorded neuron labeled by streptavidin-Alexa633-conjugate.
right Overlay confirms co-labelling of recorded neuron (yellow) and thus identifies the recorded
cell as NPY/AgRP neuron. (B) Basic electrophysiological properties of NPY/AgRP neurons
recorded in the arcuate nucleus and the respective means. Data are given as mean ± SEM and
SD, scalebars in A: 100 µm; A1-3: 20 µm. For details on boxplots see section Statistics in Materials
and Methods.

Taken together, basic properties of NPY/AgRP neurons resulted in a wide range of

values, but did not lead to a subclassification. However, the properties of SFA were very

uniform showing comparable values among all tested neurons, regardless of differences

in other basic properties.
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Figure 3.4: SFA properties of NPY/AgRP neurons in ARC. (A) Extract of a single experiment
showing instantaneous spike frequency over time and the respective fit to a monoexponential
equation. inset Respective voltage response to the depolarizing current injection. (B) Time con-
stant of SFA as obtained by the monoexponential fits. (C) Initial and final instantaneous spike
frequencies. Red circles and black dotted lines mark the single experiments and their respective
reduction of frequency during SFA.(D) SFA ratios as calculated by the frequencies seen in (C).
For details on boxplots see section Statistics in Materials and Methods.
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3.2 The effect of noradrenaline on POMC neurons of the

melanocortin system in the arcuate nucleus

A substantial body of literature suggest NA effects in the ARC, mediated by the presence

of ARs and NA synaptic endings (Brunetti et al. , 1999, 2002; Kang et al. , 2000; Levin et al.

, 1999). These studies provide evidence, that leptin and insulin modulate NA effects in

the hypothalamus and the ARC. Extracellular recordings revealed neurons in the ARC

responding to application of NA, however these recordings lacked the identification of

the respective neurons (Kang et al. , 2000). In order to analyze potential effects of NA on

POMC neurons, different concentrations of NA have been bath applied and responses

were tested for their dependence on the applied concentrations. Further experiments

aimed to test wether the effect of NA is cell intrinsic and which are the underlying AR

subtypes. These experiments aim to identify further contributions of the NA system

to energy homeostasis and expand the present model. A detailed description of NA

function in energy homeostasis is necessary to develop strategies and drugs that support

the treatment of obesity with no or minimized side effects.

3.2.1 Noradrenaline inhibits POMC neurons dependent on concentration

NA was bath applied in concentrations ranging from 100 nM to 100 µM to elucidate

wether the CA changes membrane properties of POMC GFP neurons in the ARC. NA

inhibited all recorded POMC neurons and decreased AP frequency in neurons which

showed spontaneous activity (see figure 3.5 A). Not all tested POMC neurons exhibited

the generation of spontaneous AP. Thus, the membrane potential was used to quantify

the effect on POMC neurons. At a concentration of 10 and 100 nM, NA slightly hyper-

polarized the membrane potential of POMC neurons of about -0.6 ± 0.4 mV for 10 nM

and -0.5 ± 0.4 mV for 100 nM, respectively (see figure 3.5 A, B; n=8; n.s. p≥ 0.05).

Increasing concentrations of NA led to significant hyperpolarizations of the mem-

brane potential reaching a peak effect at 10 µM with -18.6 ± 3.2 mV (see figure 3.5

A, B; n=8; ***p < 0.001). Further increasing the concentration to 100 µM was not able

to increase the effect, rather leading to a slow desensitization. This was reflected by a

weaker hyperpolarization of -15.8 ± 2.8 mV compared to the peak hyperpolarization

39



3 Results

at 10 µM (see figure 3.5 B; n=8; n.s. p ≥ 0.05). All effects were reversible at the tested

concentrations (see figure 3.5 B for means and respective SEM of each applied concen-

tration). After changing to control solutions the slow inhibition was followed by a slow

and relatively long lasting (10 minutes) rebound excitation (see figure 3.5 A). The hyper-

polarization clearly increased upon higher concentrations of NA. By fitting the values

to a Hill equation, parameters for receptor activation were obtained and resulted in an

EC50 of 975 nM and a respective slope of 1.74 (n=8).

Figure 3.5 (following page): The effect of increasing concentrations of NA on the membrane
potential of POMC neurons. (A) upper panel Rate histogram and overview of a representative
recording (mid panel) of a POMC neuron and responses to increasing concentrations of NA rang-
ing from 10 nM to 100 µM. The effect is clearly reversible at the end. lower panel Magnifications
of the respective responses to each concentration of NA of the recording shown above for each
concentration. The responses show a clear concentration dependency. Note the slow rebound
excitation following the washout of NA. (B) Hyperpolarization of the membrane potential of
POMC neurons after subtraction of the control membrane potential. Peak hyperpolarization
was obtained at a concentration of 10 µM and resulted in a mean of -18.6 ± 3.2 mV. Applica-
tion of higher concentrations led to slow desensitization of the response. (C) Mean normalized
hyperpolarization is fit to a Hill equation to visualize concentration dependency and obtain ki-
netics for the responses to NA. Grey circles mark the single values. The fit results in a EC50 of
975.0 nM with a respective Hill slope of 1.74. Data are given as mean ± SEM., * p < 0.05,** p <
0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials and Methods.
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Hyperpolarization of membrane potential in POMC neurons was accompanied by

decreases in input resistances (see figure 3.6 A; n=8), which were calculated to conduc-

tance densities (see figure 3.6 C) by normalizing to the cell capacitances of 12.7 ± 1.6

pF. Capacitances were measured at the end of each experiment (see figure 3.6 B; n=8).

All changes in response to the application of NA were significant compared to mea-

surements in control conditions. The response reached peak levels upon the application

of 10 µM see figure 3.6). The NA induced mean peak conductance density resulted in

68.9 ± 10.1 S/F (n=8; ***p < 0.001; see figure 3.6 A, B, C for means and respective SEM

of each applied concentration). The induced conductance densities were concentration

dependent (see figure 3.5 B,C; ; n=8 3.6 C,D; n=8). By normalizing to the peak responses

of each conductance density the effects of NA could be fit to a Hill equation to obtain

parameters of receptor activation. The concentration of half maximal activation of the

receptor (EC50) was 1309 nM with a respective Hill slope of 2.1(see figure 3.6 D; n=8) .

Taken together, the effect of NA was concentration dependent with a maximal re-

sponse at 10 µM, suggesting the expression of an inhibitory AR subtype. Increasing

the applied concentration led to a desensitizing effect on the membrane properties. At

the application of high concentrations, the wash out of NA resulted in a slow and long

lasting (10 min) rebound excitation. The effective concentrations and receptor activation

properties revealed by the fits to Hill equations point to a specific activation of the re-

ceptor by NA, rather than crosstalk mediated by high concentrations of the CA. These

findings reveal the first evidence for noradrenergic modulation of the melanocortin sys-

tem at the site of POMC neurons. This identifies the ARC as a target for NA release

from brainstem nuclei and expands the established role of NA in the regulation of en-

ergy homeostasis and metabolism.
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Figure 3.6: The effect of increasing concentrations of NA on the input resistance and conductance
density of POMC neurons. (A) Increasing concentrations of NA from 10 nM to 100 µM lead to
decreasing input resistances as measured by hyperpolarizing current injections. (B) Respective
cell capacitance measured at the end of each experiment to obtain conductance densities. (C) In-
duced net conductance densities upon application of increasing concentrations of NA. (D) Mean
normalized conductance density is fit to a Hill equation to visualize concentration dependency
and obtain kinetics for the responses to NA. Grey circles mark the single values. The fit results
in a EC50 of 1309 nM with a respective Hill slope of 2.1. Data are given as mean ± SEM, * p
< 0.05,** p < 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials and
Methods.
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3.2.2 The effect of noradrenaline on POMC neurons is cell intrinsic

To analyze wether the effect of the different concentrations of NA on the membrane

properties of POMC neurons is pre - or postsynaptic, the response to a single concen-

tration of NA has been tested in the presence of synaptic blockers (D-AP5 (50 µM),

CNQX (10 µM) and PTX (100 µM)). First it was tested if the respective neurons respond

to 10 µM NA in control solution, in which cells are not isolated from synaptic input.

NA consistently inhibited POMC neurons (see figure 3.7 A upper panel) and increased

conductance density to 118.2 ± 3.8 S/F compared to control levels of 52.8 ± 12.1 S/F

(see figure 3.7 B; n=4; ***p<0.001). Application of the synaptic blockers did not lead to

significant changes of conductance density, indicating low synaptic input to POMC neu-

rons under control conditions (see figure 3.7 B; n=4; n.s. p≥ 0.05). After 15 minutes of

perfusion with synaptic blockers, the response to 10 µM Noradrenalin was tested again.

In the presence of synaptic blockers all tested neurons responded to NA and membrane

potentials (see figure 3.7 A lower panel) as well as input resistances were significantly

reduced resulting in an induced conductance density of 99.0 ± 5.8 S/F (see figure 3.7

B; n=4; ***p<0.001). The responses in the presence of the synaptic blockers were slightly

decreased compared to those in the absence of synaptic blockers suggesting a small

presynaptic contribution by NA responsive neurons, which project on POMC neurons

(see figure 3.7 B; n=4; **p < 0.01).

Taken together, the effects of NA on membrane properties of POMC neurons were

reversible and present in all tested neurons. These findings show the expression of an

inhibitory AR subtype intrinsically in POMC neurons. A small presynaptic contribution

could be observed, indicating the modulation of neurons that form synapses on POMC

neurons in the ARC. The hyperpolarization due to NA leads to the question which AR

subtype mediates these effects.

3.2.3 Noradrenaline inhibits POMC neurons via the activation of

α2A-adrenergic receptors

The robust hyperpolarization of POMC neurons by NA raises the question which type

of AR mediates the inhibitory responses upon the application of NA. A vast number of
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subtypes have been classified by the help of pharmacological tools (Ruffolo & Hieble,

1994). Since α2-ARs mediate inhibition and are expressed throughout the CNS, spe-

cific pharmacological tools were used to identify these receptors on POMC neurons

(Hein, 2006). Experiments described in the previous chapter resulted in a weak contri-

bution of presynaptic effects to the inhibition of POMC neurons by NA (see figure 3.7

B; n=4). Therefore all of the following experiments have been conducted in the presence

of synaptic blockers.

The specific α2A-AR antagonist BRL 44408 was bath applied and responses of 5 µM

NA were compared to those in the presence of 10 µM BRL 44408. In control conditions,

NA induced an increase in conductance density of 48.7 ± 9.1 S/F (see figure 3.8 A, B;

n=5; ***p < 0.001). Upon application of 10 µM BRL 44408 alone, no significant increase in

conductance density could be observed, suggesting no baseline activity of α2A-ARs (see
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Figure 3.7: Response of synaptically isolated POMC neurons to NA application. (A) upper panel
Representative response of a POMC neuron to 10 µM NA. Membrane potential is strongly hyper-
polarized. Note the presence of small EPSPs. lower panel The response to 10 µM NA of the same
neuron in the presence of the synaptic blockers CNQX, D-AP5 and PTX. Again NA strongly hy-
perpolarizes the membrane potential suggesting a postsynaptic effect on POMC neurons. Note
the absence of EPSPs. (B) NA (10 µM) induces a strong increase in conductance density com-
pared to control levels either in the presence or absence of synaptic blockers. Note the slightly
reduced conductance density in presence of the synaptic blockers, suggesting a small presynap-
tic contribution to the conductance density induced by NA. Data are given as mean ± SEM, *
p < 0.05,** p < 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials and
Methods.
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figure 3.8 B; n=5; n.s. p≥ 0.05). The effect of 5 µM NA was almost completely abolished

in the presence of BRL 44408 leading to a small increase of 5.5 ± 4.3 S/F (see figure 3.8

A, B; n=5; n.s. p≥ 0.05).

The compound BRL 44408 has been shown to specifically act on α2A-ARs (Hopwood

& Stamford, 2001; Owesson et al. , 2003; Pauwels & Colpaert, 2000). The almost complete

blockade of the NA inhibition by BRL 44408 suggests that this effect is mediated by the

activation of the α2A-AR subtype. In order to further confirm this results a specific α2B-

AR antagonist was tested. In the presence of 1 µM ARC 239 the effect of NA on the

membrane properties of POMC neurons remained unaltered (see figure 3.8 C, D; n=5;

n.s. p≥ 0.05), suggesting that the α2B-AR subtype does not contribute to the observed

inhibition of NA on POMC neurons (see figure 3.8 B, D for means and respective SEM

for each of the applied antagonists; n=5; ***p<0.001).

In line with the results obtained by Kang et al. (2000), NA exhibited effects on neurons

in the ARC. Importantly, this could be demonstrated on POMC neurons, identified by

the specific expression of GFP. This effect is the first described modulation of identified

neurons in the ARC on a single cell level. POMC neurons regulate feeding behaviour

in a network with AgRP neurons in the ARC. Therefore, it is critical to also test for NA

modulation of AgRP neurons.

Figure 3.8 (following page): NA inhibits POMC neurons via the activation of α2A-ARs. (A) upper
panel NA strongly hyperpolarizes POMC membrane potential in the presence of synaptic block-
ers. lower panel In the same neuron, the specific α2A-AR antagonist BRL 44408 almost completely
blocks the effect of NA. (B) Induced increase of conductance density by NA is significantly
reduced by the application 10 µM BRL 44408. Upon application of BRL 44408 no significant
increase in conductance density could be observed. (C) upper panel; NA strongly hyperpolarizes
POMC membrane potential in the presence of synaptic blockers. lower panel; The response to
NA in the same neuron remains unaltered in the presence of the α2B-AR specific antagonist ARC
239. Data are given as mean ± SEM, * p < 0.05,** p < 0.01, ***p < 0.001. For details on boxplots
see section Statistics in Materials and Methods.
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3.3 The effect of noradrenaline on NPY/AgRP neurons

The consistent and concentration-dependent inhibition of POMC neurons by NA leads

to the question if and how the membrane properties of NPY/AgRP neurons are modula-

ted upon application of increasing concentrations of NA. In order to verify this hypothe-

sis, the effect of different concentrations of NA on NPY/AgRP neurons has been tested.

3.3.1 Noradrenaline excites NPY/AgRP neurons dependent on concentration

NPY/AgRP neurons were identified by their specific expression of GFP. Concentrations

ranging from 10 nM to 100 µM were bath applied and responses were monitored in

current clamp mode (see figure 3.9 A). At a concentration of 10 µM, NA excited AgRP

neurons by depolarizing the membrane potential about 4.7 ± 0.8 mV (n=10; ***p<0.001)

and thus increasing firing rates from 1.9 ± 0.7 Hz in control conditions to 4.2 ± 0.8

Hz (see figure 3.9 B, D for means and respective SEM; n=9; ***p<0.001). Membrane

potential as well as firing frequencies could be fit to a Hill equation when normalized

to their maximum effects of each concentration. The fit to Hill equations resulted in an

EC50 of 1995 nM (n=9) for the AP frequency and 2046 nM (n=10) for the membrane

potential (see figure 3.9 C, E). Respective Hill slopes resulted in values of 1.3 and 1.3.

Opposite to POMC neurons, a concomitant increase in input resistance could be

measured. This increase in input resistance and thus decrease in conductance density

did not clearly follow a Hill relationship and thus was not fit to a Hill equation (data not

shown). Together, this data suggests that NPY/AgRP neurons express ARs leading to

an excitation of these neurons. Previous work on the melanocortin system has revealed

differential regulation of POMC and NPY/AgRP neurons by various stimuli (Blouet

& Schwartz, 2010). The present results show, that NA differentially regulates POMC

and NPY/AgRP electrical activity by inhibition of POMC and excitation of NPY/AgRP

neurons.
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3.3.2 High concentrations of noradrenaline elicit bursting in NPY/AgRP

neurons

The application of 10 µM NA or higher elicited bursting firing patterns in six of sixteen

recorded NPY/AgRP neurons (see figure 3.10). In the beginning, instantaneous fre-

quencies were higher (see figure 3.10A-2, B-2) and with ongoing application decreased

(see figure 3.10A). In contrast, burst duration increased and interburst intervals (IBI)

decreased, leading to higher mean spike frequencies (see figure 3.10B).

Figure 3.9 (following page): NA excites NPY/AgRP neurons dependent on concentration. (A)
lower panel Rate histogram and respective recording (mid panel) of an NPY/AgRP neuron to ap-
plication of NA from 10 nM to 30µM. NA strongly excites NPY/AgRP dependent on the applied
concentration. lower panel Magnifications for each of the applied concentrations of NA. (B) In-
creasing concentrations lead to higher AP frequencies with a peak response at 10 - 30 µM. (C)
The normalized peak AP frequencies can be fit to a Hill equation obtaining parameters of recep-
tor activation. (D) In line with increasing AP frequencies, NA depolarizes membrane potentials
of NPY/AgRP neurons upon application of increasing concentrations. (E) The normalized peak
depolarization can be fit to a Hill equation obtaining parameters of receptor activation. In (B-E)
additional numbers in brackets over boxes indicate numbers of experiments for respective con-
centrations. Data are given as mean ± SEM, * p < 0.05,** p < 0.01, ***p < 0.001. For details on
boxplots see section Statistics in Materials and Methods.
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Figure 3.10: High concentrations of NA elicit bursting in NPY/AgRP neurons. (A) The applica-
tion of 10 µM NA elicits bursting in a subset of NPY/AgRP expressing neurons (6 of 16 neurons).
upper panel Rate histogram of illustrating the overall increase in frequency due to the applica-
tion of NA. mid panel Instantaneous spike frequency illustrates the oscillatory bursting behavior
of NPY/AgRP neurons in response to NA. lower panel Respective recording corresponding to
the rate histogram and instantaneous frequencies. Numbers indicate the relative time points of
respective magnifications given in B. (B) Magnifications of the raw trace in A, lower panel at three
different time points, control (1), early bursting (2) and late bursting (3). 10 µM NA elicits regular
bursting of an NPY/AgRP neuron. Burst duration increases and IBIs decrease, thus increasing
the overall mean frequency as seen in the rate histogram development in A, upper panel.
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3.3.3 The effect of noradrenaline on NPY/AgRP neurons is cell intrinsic

The effect of NA on NPY/AgRP neurons was further investigated by applying NA in

the presence of synaptic blockers. In line with previous results for POMC neurons in

the ARC, synaptically isolated NPY neurons responded to the application of NA. De-

polarized membrane potentials and increased firing frequencies of NPY/AgRP neurons

were observed in all tested neurons (see figure 3.11; n=4; ***p<0.001). A concentration

of 10 µM NA increased the AP frequency almost three times to 6.4 ± 1.7 Hz in the

absence synaptic blockers (see figure 3.11 B; n=4; ***p<0.001). In the presence of synap-

tic blockers AP frequency was increased to 6.5 ± 1.7 Hz (see figure 3.11 B for means

and respective S.E.M.; n=4; ***p<0.001). These experiments suggest that the excitation

by NA is due to the cell intrinsic expression of ARs. In contrast to POMC neurons, no

presynaptic contribution to the effect of NA could be observed (see figure 3.11 B; n=4;

n.s. p≥ 0.05).
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Figure 3.11: Response of synaptically isolated NPY/AgRP neurons to NA. (A) upper trace Rep-
resentative response of a NPY/AgRP neuron to 10 µM NA. Membrane potential is strongly
depolarized and increases AP frequency. lower trace The response to 10 µM NA of the same
neuron in the presence of the synaptic blockers CNQX, D-AP5 and PTX. Again NA strongly de-
polarizes membrane potential suggesting a postsynaptic effect of NA on NPY/AgRP neurons.
(B) Application of 10 µM NA induces a strong increase in AP frequency compared to control
levels either in or without the presence of synaptic blockers. Synaptic isolation alone has no
significant effect on NPY/AgRP neurons. Data are given as mean ± SEM, * p < 0.05,** p < 0.01,
***p < 0.001. For details on boxplots see section Statistics in Materials and Methods.
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3.3.4 Noradrenaline excites NPY/AgRP neurons via the activation of

α1A-adrenergic receptors

The fact that NPY/AgRP neurons are consistently excited upon the application of NA

leads to question which receptor subtype mediates the excitatory effect on these neu-

rons. It is reasonable to analyze wether the excitation of NPY/AgRP neurons is medi-

ated by α1-ARs, which have been shown to increase Ca2+ and decrease K+ conductances

and thus lead to excitation of neurons expressing these receptors. A variety of pharma-

cological tools is available to identify specific receptor subtypes of the α1-ARs. Accord-

ingly to the pharmacological experiments on POMC neurons, specific antagonists have

been bath applied in the presence of synaptic blockers.

The effect of NA on all recorded NPY/AgRP neurons in control conditions showed an

excitation of membrane properties that were significantly different to properties in the

absence of NA (see figure 3.12 A, upper trace). At a concentration of 5 µM NA increased

the firing frequency from 2.1 ± 0.6 Hz to 5.2 ± 0.9 Hz (see figure 3.12 B; n=4; ***p<0.001).

The application of 100 nM WB 4101 alone did not change any properties to significant

levels, suggesting no baseline activation of α1A-ARs (see figure 3.12 B; n=4; n.s. p≥ 0.05).

A second application of NA on the same neuron did not lead to any effects comparable

to the control response of 5 µM NA (see figure 3.12 A, lower trace). AP frequency in

the presence of WB 4101 stayed at values of 2.0 ± 0.6 Hz and thus did not reach any

significance compared to control frequencies (see figure 3.12 B; for means and respective

S.E.M.; n=4; n.s. p≥ 0.05). These experiments suggest the activation of α1A-ARs by NA

mediating the excitatory effect on NPY/AgRP neurons. To rule out further contribution

of other subtypes of α1-ARs, a second antagonist was tested specifically antagonizing

the effect of α1B- and α1C-ARs. The application of 100 nM chloro-ethyl-clonidine (CEC)

did not alter the responses to 5 µM NA (see figure 3.12 C;D n=4; n.s. p≥ 0.05). Under

control conditions NA increased the AP frequency to 3.6 ± 0.2 Hz (n=4; ***p<0.001),

which was not significantly different from the frequency of 3.5 ± 0.4 Hz in the presence

of CEC (see figure 3.12 D; for means and respective SEM; n=4; n.s. p≥ 0.05). Taken

together, these experiments demonstrate, that NA excites NPY/AgRP neurons by the

activation of α1A-ARs.
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Figure 3.12: NA excites NPY/AgRP neurons via the activation of α1A-ARs. (A) upper trace NA
strongly depolarizes NPY/AgRP membrane potential and increases AP frequency in the pres-
ence of synaptic blockers. lower trace In the same neuron, the specific α1A-AR antagonist WB
4101 blocks the effect of NA. (B) Increase of AP frequency by NA is almost completely blocked
by WB 4104. Upon application of WB 4101 no significant effects could be observed. (C) upper
trace NA strongly depolarizes NPY/AgRP membrane potential and increases AP frequency in
the presence of synaptic blockers. lower trace The response to NA in the same neuron remains
unaltered in the presence of the α1B,C-AR specific antagonist CEC. Data are given as mean ±
SEM, * p < 0.05,** p < 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials
and Methods.
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3.4 Effects of dietary changes and aging on responses of POMC

neurons to noradrenaline

Aging as well as dietary changes have been shown to affect the melanocortin system

in the ARC (Kim & Horvath, 2012; Newton et al. , 2013; Yang et al. , 2012). In order to

investigate putative changes of aging and dietary changes, responses of POMC neurons

to application of 10 µM NA have been recorded. Responses in mice aged 8 to 12 weeks

were compared to respective responses in mice from 20 to 25 weeks. Induced conduc-

tance densities upon NA application decreased in mice at the age of 20 to 25 weeks (n=9)

compared to younger mice (see figure 3.13; n=7; **p < 0.01). In contrast, mice which had

access to ad libitum HFD showed significantly increased conductance densities at the

age of 20 to 25 weeks and older (see figure 3.13; n=12; *p < 0.05). Taken together, these

results indicate a significant age- and diet-dependent effect on NA modulation of POMC

neurons in the ARC.
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Figure 3.13: Aging and diet dependent changes on NA induced conductance density of POMC
neurons in the ARC (A) Aging reduces induced conductance density upon NA application in
mice at the age of 20 to 25 weeks compared to mice at the age of 8 to 12 weeks. Mice with ad
libitum access to HFD from 3 weeks of age show increased conductance densities compared to
NCD control animals at the age of 20 to 25 weeks. * p < 0.05,** p < 0.01, ***p < 0.001. For details
on boxplots see section Statistics in Materials and Methods.
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3.5 The effect of noradrenaline on POMC and NPY/AgRP

neurons unifies both heterogenous populations

Within the last decades, the effect of several compounds has been tested for responses

of anorexigenic POMC and orexigenic AgRP neurons in the ARC. The variety of stimuli

included periphery-born hormones such as insulin, leptin and ghrelin, all of which have

been shown to effectively modulate food intake when applied either intracerebroventri-

cular (i.c.v.) or intraperitoenal (IP) (Brüning et al. , 2000; Cowley et al. , 2001; Ghamari-

Langroudi, 2012; Spanswick et al. , 2000; Williams et al. , 2010). Other studies included

extracellular glucose concentrations as well as neurotransmitters and biogenic amines,

like Acteylcholine (ACh) and 5-HT (Fioramonti et al. , 2004; Mineur et al. , 2011; Parton

et al. , 2007; Sohn et al. , 2011). However, the common feature of almost all tested stimuli

was that it never affected the whole population of either POMC or NPY/AgRP neurons

rather than effecting a subset of these populations (see figure 3.14). In line with the

large variety of electrophysiological properties as well as different morphologies, these

studies clearly show the heterogeneity of ARC neuronal populations. Strikingly, NA as

well as A, was able to effect all tested POMC and NPY/AgRP neurons emphasizing the

importance of NA modulation in the ARC.

The effects of NA on neurons in the ARC raises the question under which conditions

it is released. The identification of distinct NA nuclei, which provide the NA release into

the ARC could contribute to answer this question. NA nuclei reside in the brainstem.

The LC represents the largest NA nucleus and innervates the whole CNS, including the

ARC. As a potential source for NA, the next part of this thesis focusses on the LC and

its putative contribution to energy homeostasis.
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3.6 The role of the locus coeruleus in the control of energy

homeostasis

The LC represents the main source of NA within the CNS. Specific efferent innervation

from the LC to the ARC has been identified. This suggests that the LC is a potential

source for NA release into the ARC and may thus exert modulatory effects on POMC

and NPY/AgRP neurons.

Further widespread afferent and efferent projections reflects the contribution to a

variety of different functions, such as attention, memory formation, sleep-wake-cycle,

arousal as well as homeostatic mechanisms such as blood flow, chemosensitivity and

energy homeostasis. Consequently, impairment of the LC has been shown to be involved

of a vast number of diseases and syndroms like AD, PD, attention-deficity syndrome,

hyperactivity, anxiety, disturbance in sleep wake cycle, tourett and depression. Various

studies also indicate a role of the LC in mechanisms related to energy homeostasis,

such as thermogenisis, the control of BAT and glucose metabolism. Since the LC has

been shown to express KATP channels and GK, both of which have been shown to be

expressed in glucose-sensitive neurons, the role of the LC in energy homeostasis and

glucose metabolism was investigated by expressing a mutant variant of the KATP channel

specifically in TH positive neurons. Expression of the mutant Kir6.2 variant resulted in

silencing of the majority of neurons in the LC compared to their control littermates.

In order to identify and analyze LC neurons in C57BL/6-mice, an electrophysiologi-

cal profile of LC neurons was first established. A small number of studies investigated

the basic properties of LC neurons in acute slice preparations on a single cell level.

However, these studies have been conducted by patch-clamp recordings in whole-cell

configuration and various ages of mice, both of which may change properties of neu-

rons (Cui et al. , 2011; de Oliveira et al. , 2010, 2011, 2012; Jin et al. , 2013; van den Pol

et al. , 2002). LC neurons have been investigated in mice at the age of 10-15 weeks. This

may serve as a baseline characterization for further experiments on modulation of LC

neurons. Importantly, properties were identified that enable the specific identification

of LC neurons by electrophysiological protocols.
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3.6.1 Properties of noradrenergic neurons in the locus coeruleus

In the following, basic properties of LC neurons from C57BL/6-mice are described at the

age of 10-15 weeks. Further characteristics, which are unique to LC neurons in this part

of the brainstem are described. This aims to create a baseline for future experiments in

our laboratory and to identify LC neurons by specific electrophysiological protocols.

Basic membrane properties

Consistent with previous work, basic properties of LC neurons resulted in a homoge-

nous neuronal population. Streptavidin-stainings of biocytin-backfills of most of the

recorded neurons revealed localization within the cluster of the LC and co-labeling with

DBH-immunostaining (see figure 3.15 A). LC neurons generated spontaneous action

potentials ranging from 1.5 Hz to almost 5.7 Hz corresponding to membrane potentials

from ∼ -62 mV to -50 mV (see figure 3.15 B, C). The mean input resistance resulted in

716.2 ± 50.3 MΩ(see figure 3.15 C). Respective cell capacitances, measured at the end

of each experiment were 32.0 ± 2.2 pF (see figure 3.15 C for details of basic proper-

ties including SD and SEM). The analyzed properties followed a gaussian distribution

suggesting the homogeneity of this neuronal population.

Pacemaking in LC neurons

In vivo electrophysiological recordings of the LC in behaving rats and mice elaborated

different activity patterns of these neurons including rhythmic bursting activity as well

as continuous pacemaking or silent states (Berridge & Waterhouse, 2003). Consistent

with work on dopaminergic neurons on the midbrain, however, in in vitro brain slice

preparations the vast majority of LC neurons exhibited spontaneous generation of APs

in a pacemaking fashion (see figure 3.16 A). A marker of pacemaking neurons is a

gaussian distribution of ISIs when plotted as a histogram. Plotting 450 ISIs of each

LC neuron revealed a gaussian distribution in each plotted histogram, suggesting a

precise intrinsic pacemaking activity (see figure 3.16 B). With the parameters obtained

by the gaussian fits coefficients of variances were calculated resulting in only ∼ 10

percent variation among ISIs of these neurons (see figure 3.16 C). To further investigate
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Figure 3.15: Basic properties of DBH-positive neurons of the LC (A) anti-DBH-immunostaining
reveals a typical banana shaped population lying ventrolateral to the 4th ventricle comprising the
Locus Coeruleus. (A1 − 3) co-labeling of the recorded neuron by biocytin-backfill and subsequent
staining with a streptavidin conjugated dye shows localization in the LC. (B) Basic membrane
properties of LC neurons. For details see table underneath. Scalebars in A: 100 µm; A1-3: 25

µm. For details on boxplots see section Statistics in Materials and Methods. DBH, dopamine-β-
hydroxylase.

underlying mechanisms generating pacemaking, TTX was applied to abolish Na+ driven

action potentials. TTX decreased the amplitude of APs and decreased AP frequency but

was not able to abolish pacemaking in LC neurons (see figure 3.16 D, E (mid trace)).

Small spikes still appeared in a precise timing and ISIs could still be fit to a Gaussian

equation, even if the distribution of ISIs was widened (see figure 3.16 F). The application

of Cd2+ abolished any potentials, suggesting that in LC neurons, precise pacemaking is

driven by Ca2+ conductances (see figure 3.16 D, E (lower trace)).
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Figure 3.16: Pacemaking of LC neurons (A) Representative 5 minute section of a recording in the
LC showing precise pacemaking activity upper trace and magnification emphasizing precesion of
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(C) Coefficients of variance obtained by fits to gaussian equation. (D) Overview of a recording
with application of 1 µM TTX and subsequent application of 500 µM of Cd2+ to further inves-
tigate mechanisms underlying the pacemaker activity in LC neurons. (E) Detailed extracts of
the recording seen in D. upper trace Control shows characteristic pacemaking. mid trace Spike
amplitude is drastically decreased by the application of TTX, however pacemaking activity is
still present. lower trace Application of Cd2+ abolishes any potentials, thus showing pacemaking
to be Ca2+-dependent. (F) ISI histograms of traces seen in E in the presence of TTX white bars and
TTX and Cd2+ blue bars. For details on boxplots see section Statistics in Materials and Methods.
TTX, tetrodotoxin.
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Excitation delay

In line with the aforementioned studies on electrophysiological properties of LC neu-

rons, all recorded cells responded with a delay of excitation upon hyperpolarizing cur-

rent injections (see figure 3.17 A). Plotting the time to the peak of the first spike following

the offset of negative current injections to the respective hyperpolarized membrane po-

tential revealed a voltage dependent mechanism (see figure 3.17 B). Delays increased

with increasing current injections leading to more hyperpolarized membrane potentials

(see figure 3.17 A). Normalized peak delays followed a Boltzmann equation suggesting

this mechanism to underly the voltage dependency of voltage gated ion channels (see

figure 3.17 B). The fit resulted in a halfmaximal delay at -78.6 mV and a slope of -5.1.

Interestingly, co-labeling of an DBH-immunostaining and an biocytin-backfill re-

vealed a neuron without excitation delay lying outside of the LC, suggesting the delay

to be a specific electrophysiological marker for neurons of the LC in this distinct area of

the brainstem (see figure 3.17 C, D).

Figure 3.17 (following page): Excitation delay in neurons of the LC (A) Examples of responses to
hyperpolarizing current injections of -10 pA and -100 pA, respectively. Note the prolonged delay
to the peak of the first AP when the membrane potential is hyperpolarized to -110 mV compared
to a hyperpolarization to -60 mV. Capped lines with asterisks indicate time from offset of current
injection to the peak of the first AP, indicated by the red arrows. (B) Peaks of first APs were
normalized to the maximal delay and fit to a single-exponential Boltzmann equation, obtaining
parameters of voltage-dependency. (C) Neuron exhibiting no excitation delay in response to
hyperpolarizing current injections of -50 pA, -100 pA and -150 pA. (D) Immunostaining of DBH
and streptavidin-staining of biocytin-backfill reveals localization next to the LC for the respective
neuron with the responses shown in C. For details on boxplots see section Statistics in Materials
and Methods.
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Spike frequency adaptation

The LC neurons showed weak spike frequency adaptation in responses to long lasting

(3s) depolarizing stimuli (see figure 3.18 A). Current injections from 10 to 100 pA barely

exhibited SFA ratio with values larger than 2 (see figure 3.18 A). With increasing current

injections SFA ratios usually decreased to weaker SFA. Only a single of 15 analyzed

neurons resulted in a SFA adaptation with SFA ratios consistently larger than two over

the whole current injection increments to 100 pA (see figure 3.18 B). In line with the

aforementioned properties, SFA also revealed a homogenous neuronal population in

the LC.
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Figure 3.18: SFA in neurons of the LC (A) Examples of responses to depolarizing current in-
jections of 50 (upper trace) and 100 pA (lower trace), respectively. (B) SFA ratios plotted over
respective depolarizing current injections (red trace marks single experiment with consistent
SFA larger than 2).

Taken together, all analyzed basic properties of LC neurons lead to the assumption

that the LC comprises a homogenous neuronal population. Pacemaking activity is sug-

gested to underlie Ca2+ - and Ca2+- dependent conductances, presumably. In line with

previous work in mice, all LC neurons exhibited a delay of excitation upon increasing

hyperpolarizing current injections which serves as a specific tool to identify LC neurons

in the brainstem (Zhang et al. , 2010). The characterization of the aforementioned prop-

erties serves as a viable baseline for further investigation of the LC and its contribution

to a vast number of mechanisms and functions.
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3.6.2 The locus coeruleus: role in energy homeostasis, control of brown

adipose tissue and glucose responsiveness

CA like DA and NA have been shown to be involved in the mechanism of energy

homeostasis. The LC as the main source for NA in the CNS has been implicated in a

vast number of homeostatic functions (Ammar et al. , 2001; AnselmoFranci et al. , 1997;

Berridge & Waterhouse, 2003; Berridge et al. , 2012; Samuels & Szabadi, 2008a,b; Sara,

2009). In the brainstem, NA cell groups have been shown to be involved in adaptive

responses to states of glucoprivation. In their review, Levin et al. cite the LC as a glucose

sensing site referring to the expression of KATP, as well as GK in rats, both of which have

been shown to be expressed in glucose-sensing neuronal populations and thus regarded

as specific markers of gluco-responsive neurons (Dunn-Meynell et al. , 1998, 2002; Levin,

2001; Lynch et al. , 2000). To investigate the role of the LC in energy homeostasis, a

mutant variant of the KATP channel Kir6.2 was expressed specifically under the control

of the TH-promotor to target cells in the LC. Mice were phenotyped and compared to

their wildtype littermates. To test for the ability of adapting electrical activity to changes

in external glucose concentrations in LC neurons, perforated patch-clamp recordings

were performed in acute mouse brain slices perfused with extracellular saline containing

different concentrations of glucose.

3.6.3 Expression of the mutant variant Kir6.2 in catecholaminergic cells leads

to obesity and altered brown adipose tissue morphology

*Data and textpassages described in this section is obtained and kindly provided by

Sulay Tovar and Donald A. Morgan (Tovar et al. , 2013).

From 3 weeks of age, body weight of control and Kir6.2THCre-mice was monitored

both under NCD and after exposure to a HFD. This analysis revealed a slight increase

in body weight of the Kir6.2THCre-mice compared to controls upon exposure to NCD

(see figure 3.19 A). Importantly, it was previously demonstrated that THCre-mice on the

same C57BL/6 genetic background did not exhibit alterations in body weight or energy

homeostasis (Konner et al., 2011). Interestingly, the difference in body weight was more

apparent when the animals were exposed to HFD (see figure 3.19 B). In fact, by the age
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of 20 weeks, Kir6.2THCre-mice on HFD gained 30% more weight than littermate controls

on the same diet (see figure 3.19 B). Obesity in Kir6.2THCre-mice was further confirmed

by the relative increase in fat mass both under NCD and HFD conditions (see figure

3.19 C). Moreover, direct assessment of epididymal fat pad weight revealed a significant

increase in Kir6.2THCre-mice both on NCD and HFD (see figure 3.19 D). Obesity de-

velopment in these animals was further reflected by the significant hyperleptinemia in

Kir6.2THCre-mice on HFD (see figure 3.19 E). and hyperglycemia. Finally, morphological

analysis of white adipose tissue revealed significant hyperplasia of adipocytes in the

Kir6.2THCre-mice (see figure 3.19 F).
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Figure 3.19: Kir6.2THCre-mice develop obesity (A) Development of body weight in mice fed NCD
over the timeframe of 20 weeks. Mice expressing the mutant Kir6.2 variant show elevated weight
gain compared to their control littermates (B) Mice fed an ad libitum HFD exhibit exaggerated
body weight gain and earlier onset of significantly higher weight gain. Data are given as mean
± SEM, * p < 0.05,** p < 0.01, ***p < 0.001. Data and graphs were kindly provided by Sulay
Tovar (Tovar et al. , 2013).
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Further analysis revealed no significant change in food intake of Kir6.2THCre-mice on

HFD compared to controls receiving the same diet, but significantly reduced energy

expenditure. On the other hand, energy content in feces and food efficiency remained

unaltered.

In the presence of reduced energy expenditure, the morphology of BAT was assessed.

While BAT of control mice exhibited the normal appearance of multi-vacuolar brown

adipocytes, the histomorphological characteristics of brown adipocytes in Kir6.2THCre-

mice had a rather macro-vacuolar, white-adipocyte-like phenotype (see figure 3.20 A).

Moreover, BAT of Kir6.2THCre-mice exhibited slightly reduced mRNA-expression of the

brown adipocyte differentiation marker CIDEA, PGC-1 and UCP-1 as key regulators

of mitochondrial biogenesis and uncoupling. Protein expression of UCP-1 in BAT of

Kir6.2THCre-mice compared to controls was similarly reduced (see figure 3.20 B). Since

BAT function is tightly regulated by the SNS and since sympathetic denervation of

BAT has been shown to result in similar histomorphological changes as observed in

Kir6.2THCre-mice BAT SNA was directly recorded in control and Kir6.2THCre-mice(see

figure 3.20 C; Minokoshi et al. 1986). This analysis revealed a significant reduction in

BAT SNA in Kir6.2THCre-mice compared to controls. In line, increase of SNA in response

to systemic glucose injections was only observed in control animals (see figure 3.20 D).

Impaired BAT-SNA led to reduced rectal temperature of animals exposed to cold (4C;

see figure 3.20 E).

Collectively, these experiments indicate that decreased energy expenditure rather

than increased food intake may account for the exacerbated obesity in Kir6.2THCre-mice.

Moreover, analysis of BAT revealed a WAT-like morphology and gene expression and

reduced SNA into BAT alongside impaired glucose responsiveness and thermogenesis

upon cold exposure.
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Figure 3.20: Impaired morphology and activity of BAT in Kir6.2THCre-mice. (A) Representative
HE staining of brown BAT of a 20-week-old male control (upper panel) and Kir6.2THCre-mice (up-
per panel) on HFD (10x magnification in small square). (B) Relative expression of PPAR-γ, Pgc-1,
Ucp1, β3-AR and Cidea in BAT extracts from 20-week-old control (n=6) and Kir6.2THCre-mice
(n=6) on a HFD. Expression of indicated mRNAs was normalized to that of HPRT and the resul-
tant value for each group was normalized to expression of the target gene in control mice. (C)
Quantification of BAT SNA of 15-week-old control (n=5) and Kir6.2THCre-mice (n=5) on a HFD.
(D) Comparison of BAT SNA responses induced by icv glucose (average of last hour of record-
ing) between control and Kir6.2THCre-mice. (E) Rectal temperature of 15-week-old control (n=6)
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were kindly provided by Sulay Tovar and Donald A. Morgan. Modified from (Tovar et al. ,
2013)
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3.6.4 A subpopulation of neurons in the locus coeruleus adapt their firing to

changes in extracellular glucose in glucose-excited manner

The effect of changes in extracellular glucose concentrations has been investigated in

acute mouse brain slices of Kir6.2THCre-mice, their WT littermates and C57BL/6 mice.

GFP expression and/or the shape of the 4th ventricle as a landmark has been used to

identify LC neurons. In a first set of experiments, no differences could be observed

between C57BL/6 mice and Kir6.2-/--mice , thus mice were pooled and in the following

referred to as control or WT mice. (see figure 3.21 A; n=23, n=32; n.s. p≥ 0.05). How-

ever, as it was previously shown, the expression of the mutant Kir6.2 variant drastically

reduces AP frequency. Almost 70 % of LC neurons did not generate any APs, which

has neither been observed in C57BL/6 mice, nor in THCre control mice (see figure 3.21

A; n=24; ***p<0.001). This data demonstrates the successful expression of the mutant

KATP channel under the control of the TH promotor and that this leads to silencing of

the majority of LC neurons.
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Figure 3.21: AP frequency is reduced in Kir6.2THCre-mice (A) left panel, AP frequencies of
C57BL/6 mice, THCre control mice and Kir6.2THCre-mice. While AP frequency remains unal-
tered in THCre control mice compared to C57BL/6 mice, AP frequency is reduced in Kir6.2THCre-
mice. * p < 0.05,** p < 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials
and Methods.

In ∼ 43.8 % (7 of 16) of LC neurons in WT mice, decreasing extracellular glucose

concentration from 5 mM to 3 mM significantly reduced spontaneous AP frequency

(see figure 3.22 and figure 3.23 D; n=7; ; **p < 0.01). A response that could be reversed

via blocking KATP channels through application of 200 µM tolbutamide (see figure 3.22;
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n=7; ; **p < 0.01). In the remaining neurons, changes in frequency did not reach signif-

icance. All together, a reduction from 5 to 3 mM of extracellular glucose reduced the

firing in responding neurons from 3.4 ± 0.5 Hz to 2.8 ± 0.5 Hz, which corresponds to

a reduction of 19.1 ± 6 % and the specific KATP channel blocker reversed the effect to

∼ 104%, suggesting a very small but present baseline conductance through KATP chan-

nels (see figure 3.22 C, D; n=7; *p < 0.05).

Consistently with the role of KATP channels in glucose-mediated regulation of LC

neurons, glucose responsiveness of these cells was abolished in Kir6.2THCre-mice (see

figure 3.23). Due to the expression of the mutant Kir6.2 variant, tested neurons did not

exhibit any or very low spontaneous AP frequency (see figure 3.23). However, applica-

tion of tolbutamide lead to robust depolarizations along with the appearance of spon-

taneous firing significantly different to control levels (see figure 3.23; n=10; ***p<0.001).

Taken together, 43.8 % of LC neurons in control mice responded in a glucose-excited

fashion, while in 100 % of Kir6.2THCre-mice glucose responsiveness is abolished.
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Figure 3.22: LC neurons adapt AP frequency in response to reductions of extracellular glucose
concentration (A) Rate histogram and original corresponding raw data showing the effect of
reducing extracellular glucose from 5 to 3 mM and following application of 200 µM tolbutamide.
(B) Extract of APs normalized to the peak of the first AP visualizing the moderate decrease in AP
frequency upon reduction of extracellular glucose to 3 mM (red trace) compared to control (black
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change in frequency in response to glucose reduction and tolbutamide application. right panel
Courses of single experiments. (D) left panel Relative change in frequency in response to glucose
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< 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials and Methods.
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Figure 3.23: Responses to decreased extracellular glucose concentration are abolished in
Kir6.2THCre-mice. (A) Rate histogram and original corresponding raw data showing the effect of
reducing extracellular glucose from 5 to 3 mM and following application of 200 µM tolbutamide.
While the response to changes in glucose concentrations is absent, application of tolbutamide
leads to depolarization and concomitant spontaneous firing (B) Membrane potential and fir-
ing (B) remains unaltered upon reduction of extracellular glucose concentration. Application
of tolbutamide significantly depolarizes membrane potential and leads to generation of sponta-
neous APs. (D) 43.8 % of control mice were glucose responsive, while glucose responsiveness
in Kir6.2THCre-mice was completely abolished. * p < 0.05,** p < 0.01, ***p < 0.001. For details on
boxplots see section Statistics in Materials and Methods.
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Conversely, increasing glucose concentrations from 5 mM to 8 mM increased firing

of a subset (6 of 14; 42,9 %) of LC neurons in control mice (see figure 3.24 A, B, C; n=6;

*p < 0.05); an effect that was absent in LC neurons of Kir6.2THCre-mice (see figure 3.25

A, B, C; n=8).
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Figure 3.24: Kir6.2THCre-mice develop obesity (A) Rate histogram and original corresponding
raw data showing the effect of increasing extracellular glucose from 5 to 8 mM. Frequency
is significantly increased. (B) left panel, Absolut change in frequency in response to glucose
increase. right panel, Courses of single experiments. (C) left panel, Relative change in frequency
in response to glucose increase. right panel, Courses of single experiments. * p < 0.05,** p < 0.01,
***p < 0.001. For details on boxplots see section Statistics in Materials and Methods.

Consistent with the aforementioned experiments, application of tolbutamide in

Kir6.2THCre-mice led to depolarization and concomitant appearance of firing

(see figure 3.25A, B, C, n=8; ***p<0.001). These experiments reveal that a subpopula-

tion of TH-positive neurons in the LC responds to alterations in extracellular glucose

concentrations with concomitant changes in firing properties. The effects exhibit a KATP

channel dependent manner and thus these cells can be considered as GE neurons.
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Figure 3.25: Glucose responsiveness to 8 mM is abolished in Kir6.2THCre-mice (A) Rate histogram
and original corresponding raw data showing the effect of increasing extracellular glucose from 5

to 8 mM and following application of 200 µM tolbutamide. While the response to changes in glu-
cose concentration is absent, application of tolbutamide leads to depolarization and concomitant
spontaneous firing (B) Membrane potential and firing (C) remains unaltered upon reduction of
extracellular glucose concentration. Application of tolbutamide significantly depolarizes mem-
brane potential and leads to generation of spontaneous APs. (D) 42.9 % of control mice were
glucose responsive, while glucose responsiveness in Kir6.2THCre-mice was completely abolished.
* p < 0.05,** p < 0.01, ***p < 0.001. For details on boxplots see section Statistics in Materials and
Methods.

Taken together, the aforementioned data indicate a role of LC NA neurons in en-

ergy homeostasis. Around 43 % of LC neurons showed characterizations compared to

GE excited neurons. The application of the specific KATP channel blocker tolbutamide

reversed the inhibiting effect of reducing extracellular glucose concentrations from 5

to 3 mM, suggesting a contribution of these channels in mediating the responses. A

slightly increased firing compared to control levels points towards a weak baseline con-

ductance through KATP channels. Conversely, increasing glucose concentrations to 8

mM resulted in an increase in firing. Around 57 % of the recorded neurons did not

respond to alterations in glucose concentrations and thus can be considered as non glu-
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cose responsive. 70% of LC neurons in Kir6.2THCre-mice do not generate spontaneous

APs and responses to either alteration of extracellular glucose concentration in all tested

neurons is abolished. This data demonstrates that the LC is contributing to the analyzed

obese phenotype in Kir6.2THCre-mice and that this phenotype is at least in part due to

silencing the majority of LC NA neurons.

3.6.5 A small subpopulation of neurons in the locus coeruelus adapt their

firing to changes in extracellular glucose in glucose-inhibited manner

Interestingly, a small subset of LC neurons responded in the opposite manner to re-

duction of extracellular glucose (see figure 3.26 A, B). Two neurons increased their AP

frequency of ∼ 8% and ∼ 15%, respectively (see figure 3.26 C). Therefore, these neurons

are considered GI neurons and represent a third subpopulation in the LC with regard

to glucose sensing.

The obtained data in the course of this study on LC neurons suggests that the LC

is involved in the control of energy homeostasis. Glucose-dependent activity of GE

neurons in the LC contributes to the control of thermogenesis in BAT and energy ex-

penditure. This is clearly reflected by the reduced SNA and the impaired increase of

SNA in response to elevated glucose levels in Kir6.2THCre-mice. Due to the reduced

energy expenditure, Kir6.2THCre-mice develop mild obesity, which is exaggerated under

HFD conditions. Exposure to cold of Kir6.2THCre-mice reveals impaired thermogenesis

in BAT. In control animals elevated glucose levels increase BAT-SNA activity. Impaired

glucose-sensing in LC neurons reduces this response and contributes to the obese phe-

notype. A small proportion of LC neurons were identified to be GI. The aforementioned

phenotype suggests that these neurons serve a different function. However, the exact

contribution of these neurons to energy homeostasis remains unknown. Putative contri-

butions will be discussed in the next sections.
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Figure 3.26: GI neurons in the LC (A) An LC neuron increases AP frequency in response to
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This study provides evidence for a role of NA in the regulation of energy homeosta-

sis by modulating intrinsic membrane properties of POMC and NPY/AgRP neurons.

Furthermore, experiments suggest a role of the LC in the control of glucose and energy

metabolism. In the first part of this study, POMC and NPY/AgRP neurons have been

analyzed with respect to NA modulation of their activity. The key results of the first

part are:

1. POMC neurons of the ARC exhibit a large heterogeneity and show three different

patterns of SFA

2. NA inhibits POMC neurons by the activation of α2A-ARs

3. NPY/AgRP exhibit a large variation in their electrophysiological properties but do

not reveal further subtypes

4. NA excites NPY/AgRP neurons by the activation of α1A-ARs

5. High concentrations of NA elicit rhythmic bursting in NPY/AgRP neurons

6. Aging and chronic HFD feeding alter responses to NA in POMC neurons

In the second part, the LC has been investigated as a potential source for the release of

NA into the ARC. Here, the key results are:

1. The LC comprises a homogenous neuronal population with specific electrophysi-

ological properties, which help to identify LC-NA neurons in C57BL/6 mice.

2. Intrinsic pacemaking in acute mouse brain slices underlies Ca2+-dependent mech-

anisms.

3. The LC contributes to the control of BAT activity via the SNS (Results and text

passages obtained and kindly provided by Tovar et al. (2013))
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4. A subpopulation of LC neurons was identified as glucose-sensing. LC neurons re-

sponded either as GE or GI neurons or did not respond to changes in extracellular

glucose levels.

In the following sections, the described results are discussed and models of NA action

on energy homeostasis are proposed (see figure 4.1 and 4.3).

4.1 Properties of POMC neurons

POMC neurons in the ARC have been of substantial interest, as these neurons are critical

in mediating satiety by integrating signals, which are directly related to the energy

state of the body such as insulin, leptin, ghrelin, glucose and FFAs (Gao & Horvath,

2007). In this context, a large amount of work has also focused on electrophysiological

responses to these stimuli (Ghamari-Langroudi, 2012). However, a detailed description

of intrinsic electrophysiological properties of these neurons is still lacking. Nonetheless,

in a few studies values for basic properties of POMC neurons are given, which were

determined as control values in experiments dealing with either responses to various

neurotransmitters, hormones and fuel-sensing signals or unraveling the effect of dietary

changes and aging (Kim & Horvath, 2012; Newton et al. , 2013; Roepke et al. , 2012; Yang

et al. , 2012; Zhan et al. , 2013).

Basic properties

POMC neurons have been shown to exhibit spontaneous action potential generation

in brain slices (Belgardt et al. , 2008; Claret et al. , 2007; Cowley et al. , 2001; Diano &

Horvath, 2012; Ernst et al. , 2009; Klöckener et al. , 2011; Mineur et al. , 2011; Parton et al.

, 2007; Plum et al. , 2006). However, recent studies also revealed POMC neurons, which

exhibit hyperpolarized membrane potentials and lack spontaneous firing (Roepke et al.

, 2012; Yang et al. , 2012; Zhan et al. , 2013). Results obtained from mice at different ages

may change basic properties of POMC neurons (Kim & Horvath 2012; Newton et al.

2013; Yang et al. 2012, Pippow et. al, in preparation). A study pubslihed by Roepke

et al. (2012) revealed properties of POMC neurons in adult mice at the age of 10-12

weeks. This overlaps with the age of mice used in this thesis. Values for membrane
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potentials are well in line with their published data. Further publications revealed a

large variability in spontaneous AP frequencies (Claret et al. , 2007; Cowley et al. , 2001;

Diano et al. , 2011; Parton et al. , 2007; Plum et al. , 2007; Sohn et al. , 2011). Interestingly,

input resistances revealed in the present thesis are slightly higher than reported for

POMC neurons (Dicken et al. , 2012). Comparing the perforated patch-clamp to the

conventional whole-cell patch-clamp method, shows that rupturing of the membrane

leads to the dilution of intracellular molecules, in some cases leading to changes in

intrinsic membrane properties also reflected in decreased input resistances (Oleson et al.

1993; Ueno et al. 1992; Simon Hess, PhD thesis, 2011).

Spike frequency adaptation

The issue of POMC heterogeneity has recently been in the focus of an elegant study by

Williams et al. (2010) and reviewed by Sohn & Williams (2012). Electrophysiological

experiments revealed three different types of POMC neurons concerning their ability to

respond to the peripheral hormones insulin and leptin. Responses were clearly segre-

gated in neurons only responding to leptin, to insulin or not responding to any of the

applied stimuli. The authors mapped the different responding neurons to certain areas

within the medial basal hypothalamus. Depending on characterization of SFA in the

present thesis, experiments revealed three different types of POMC neurons. SFA was

either weak, strong or was not apparent. Here, the question arises if any electrophysio-

logical properties can be assigned to POMC neurons that respond to the different afore-

mentioned stimuli, thus identifying cells as either leptin - / insulin - or non-responsive.

The identification of different types of SFA points towards the expression of different

types of ion channels, which has been shown for invertebrates and vertebrates (Lewis

et al. , 1986; Powers et al. , 1999)(Stocker, 2004). SFA has been observed in POMC neurons

before but no further analysis to subdivide the population has been carried out (Acuna-

Goycolea & van den Pol, 2005). First identified in motoneurons, the underlying ionic

mechanisms of SFA has been investigated in detail (Sah & Davies, 2000; Wilanowski &

Piotrkiewicz, 2012). In general, it is considered as a mechanism that reduces excitability

to sustained stimuli (Peron & Gabbiani, 2009). For example, it contributes to various
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functions within the CNS including long-term plasticity by optimized spike timing de-

pendency and "forward masking", where first stimuli trigger full responses whereas

later stimuli are masked by decreased excitability (Liu & Wang, 2001). Depending on

the neuronal localization of the respective ion channels, SFA also contributes to trans-

mitter release by changing the neuron’s intrinsic excitability (Miles et al. , 2005).

Synaptic plasticity in the melanocortin system has been in focus of a recent review

by Zeltser et al. (2012). An elegant study by Pinto et al. (2004) could reveal a first evi-

dence for stimuli-dependent synaptic plasticity in the ARC. Leptin-deficient (ob/ob) mice

exhibited differences in synaptic connections on POMC neurons, which was rapidly re-

versed by the administration of exogenous leptin. In this context, it also has to be taken

into account that learning and experience might also exhibit substantial effects on the

plasticity of the melanocortin system as "it would be beneficial, from an evolutionary

standpoint, for animals in a nutrient-poor environment or those with intermittent access

to food to respond more vigorously to food than animals with easy or abundant access

to food" (Zeltser et al. , 2012). It has been argued if long-term synaptic plasticity changes

SFA properties in neurons (Cohen-Matsliah et al. , 2010; Sun, 2009). Regarding the need

for plasticity in the melanocortin system the question arises wether different types of

SFA reflect different subpopulations of POMC neurons or different states of plasticity.

4.2 Properties of NPY/AgRP neurons

NPY/AgRP expressing neurons in the ARC have been identified as the opponent neu-

ronal population to POMC neurons and have been in focus of a vast number of stud-

ies (Varela & Horvath, 2012). Numerous peripheral hormonal and fuel-sensing signals

have been investigated for their modulatory effect on NPY/AgRP neurons (Belgardt

et al. , 2009). In this thesis, electrophysiological properties of NPY/AgRP neurons have

been investigated in acute mouse brain slices containing the ARC from 10-12 week old

adult mice. In order to identify NPY expressing neurons a NPYGFP mouseline was used

(van den Pol et al. , 2009). It has been shown that 94 to 99% of NPY expressing neurons

in the ARC also express AgRP mRNA. Hence, recordings of NPYGFP can be considered

as NPY/AgRP neurons (Hahn et al. , 1998).
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Basic properties

Electrophysiological data revealed a more homogenous distribution of properties com-

pared to POMC neurons. In spite of the variation of properties in NPY/AgRP neurons,

no differences leading to further classification could be observed. This clearly points

towards a rather homogenous neuronal population within the ARC. Accordingly, no

segregation concerning their responses to peripheral stimuli has been observed until to-

day but differences in electrophysiological properties like input resistances and baseline

firing may influence the extent to which these neurons respond to different stimuli and

consequently might lead to versatile outputs (Niimi et al. , 2012).

From an evolutionary point of view it is conceivable that hunger usually is favored

over satiety, which serves to survive times of food deprivation by overeating at times of

excessive food availability. A strong unilateral input on POMC neurons, that potently

inhibits satiety signals is a prerequisite for the respective behavior (Bates & Myers, 2003;

Horvath et al. , 1992, 2009). Here, the rather homogenous NPY/AgRP population with

less variation in responses to peripheral signals could provide adequate input to the

heterogenous POMC population. The effectiveness of NPY/AgRP neurons is further

supported by in vivo experiments by Aponte et al. (2011) who show that activation of

AgRP neurons leads to subsequent food intake, even if POMC neurons are stimulated

simultaneously. Additionally, Atasoy et al. (2012) could show that activation of AgRP

neurons lead to an direct onset of food intake, whereas POMC activation led to satiety

and offset of food intake in a larger time frame, indicating the potency of the NPY/AgRP

population.

4.3 Noradrenaline differentially modulates POMC and

NPY/AgRP neurons

The effect of NA has been studied by the bath application of different concentrations

after establishing perforated patch-clamp recordings. Neurons were identified by the

expression of GFP under the control of either the POMC or the NPY promotor (Cow-

ley et al. , 2001; van den Pol et al. , 2009). These experiments provide the first data
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of NA modulation of the melanocortin system in the ARC on identified POMC and

NPY/AgRP neurons and expand the model of the NA system in the control of en-

ergy homeostasis. The detailed understanding of NA modulation may help to develop

strategies that specifically target certain transmitter systems in the treatment of obesity.

These systems may interfere with each other and serve a variety of functions, which,

upon modulation, can lead to undesired side effects (Guiard et al. , 2008a). Therefore

it is critical to understand under which conditions and at which sites in the CNS these

transmitter systems affect eating behavior and energy expenditure.

Concentration dependent effects of noradrenaline on POMC and NPY/AgRP

neurons

NA exerts strong differential effects in POMC and NPY neurons. NA was able to inhibit

POMC neurons, while NPY/AgRP were excited. In context of the melanocortin system

in the ARC, comparable differential modulation has been shown for insulin, leptin and

glucose (Ghamari-Langroudi, 2012). In the present study, concentrations from 10 nM to

100 µM hyperpolarized POMC neurons and depolarized NPY/AgRP neurons depen-

dent on the applied concentration. The revealed EC50 for α2-ARs, which mediate the

inhibition of POMC neurons, are in line with values obtained from brain slices of rats

(Jurgens et al. , 2007). In other studies on α2-ARs in mouse and rat brain slices, EC50

values were 5 - to 15 fold higher (Alberto et al. , 2011; Li & van den Pol, 2005). However,

the range of effective and tested concentrations is consistent with studies and differences

in EC50 values can be due to differences in slice thickness, perfusion speed, application

type and rely on receptor density as well as on the expression of different AR subtypes.

Absence or presence of synaptic blockers may also shift concentration-response curves.

Since ARs do not discriminate between NA and A, it is important that A also in-

hibited POMC neurons dependent on concentration (Stephan Bremser, batchelor thesis,

2011). In line with the literature, the affinity of the receptor for A was 10 fold higher

compared to the affinity for NA (Stephan Bremser, batchelor thesis, 2011; Jurgens et al.

2007). The strong decrease in input resistance upon NA application suggests, that the
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inhibition is mediated by GIRKs, which are the targets of the Gi protein (Chen et al. ,

2011).

The depolarization of NPY/AgRP neurons upon application of NA exhibits an EC50

slightly shifted to higher concentrations. This reflects the lower sensitivity of α1-ARs

to its endogenous ligand NA (Ruffolo et al. , 1991). Moreover, high concentrations (>10

µM) of NA induced rhythmic bursting activity in ∼40% of NPY/AgRP neurons. This

effect has been also observed in sympathetic preganglionic neurons in rats and guinea

pigs and here it underlies VGCCs (Carette, 1999; Yoshimura et al. , 1987). Neuropeptide

expressing neurons need high spike frequencies to release their respective peptides.

Bursting activity has been shown to potently lead to neuropeptide release (Tallent, 2008;

van den Pol, 2012). An increase in VGCC has been shown as a target for α1-ARs and also

intracellular release of Ca2+ via IP3 is also possible, both of which could contribute to

this bursting firing pattern (García-Sáinz et al. , 1999, 2000; Macrez-Leprêtre et al. , 1997).

Moreover, the concomitant increase in input resistance suggest the closure of GIRKs,

which has been shown for α1-ARs via activation of the Gq protein.

It was further investigated if the effects of NA on POMC and NPY/AgRP neurons are

post - or presynaptic. Therefore, a set of synaptic blockers have been added to the extra-

cellular aCSF. The results in this thesis clearly demonstrate, that the recorded effects are

postsynaptic and due to cell intrinsic expression of ARs. In contrast to the NPY/AgRP

neurons, a small contribution of presynaptic modulation could be observed in POMC

neurons, suggesting the innervation by neurons expressing ARs. It has been shown

that NPY/AgRP neurons form unidirectional GABAergic synapses on POMC neurons.

In slice preparations without synaptic blockade, the excitation of NPY/AgRP neurons

leads to inhibitory postsynaptic currents (IPSCs) in POMC neurons due to GABA re-

lease. Moreover, NPY inhibits POMC neurons through the NPY receptor type 1(Y1R)-

mediated activation of GIRK channels (Roseberry et al. , 2004). Excitation of NPY/AgRP

neurons in the ARC by NA most likely mimics these effects. Further support is provided

by the fact that the application of synaptic blockers alone has no effect on membrane

properties of POMC neurons. However, the possibility of further synaptic endings of

NA responsive cells cannot be excluded but baseline activity of these synapses could not
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be observed. Neurons in the VMH for example have been shown to innervate POMC

neurons and NA has been shown to exert effects on food intake when injected into the

VMH (Klöckener et al. , 2011; Wellman, 2000). Albeit, there is no data which matches

NA responses in the VMH with projections to POMC neurons, it cannot be ruled out

that this contributes to the presynaptic effect observed in POMC neurons.

Identification of adrenergic receptors on POMC and NPY neurons

In support of the present results, expression of α1- and α2-ARs has been detected in

the ARC (Acosta-Martinez et al. , 1999; Kang et al. , 2000; Young & Kuhar, 1979, 1980).

In order to reveal the specific subtypes of ARs mediating the effects on POMC and

NPY/AgRP neurons, specific pharmacological antagonists were used. Despite discrep-

ancies concerning effective concentrations, BRL 44408 has been shown to specifically

block the action of α2A-ARs (Callado & Stamford, 2000; Gyires et al. , 2009; Hopwood &

Stamford, 2001; Owesson et al. , 2003; Ruffolo, 1985). In contrast to the α2B-AR specific

antagonist ARC 239, BRL 44408 abolished ∼ 95% of NAs effect on POMC neurons. In

this context, it is important to mention that BRL 44408 has also been shown to mod-

ify serotonergic 5-HT1A-receptors. Although, serotonergic responses in POMC neurons

have been characterized, these effects are suggested to underlie the activation of 5-HT2C-

receptors (Sohn et al. , 2011). Thus, there is no supporting evidence of crosstalk with

other receptors on POMC neurons by BRL 44408.

In NPY/AgRP neurons the specific α1A-AR antagonist WB 4101 potently blocks

∼ 95% of NA’s effect. CEC, an selective antagonist for α1B- and α1C-ARs, has no ef-

fect on the NA mediated excitation. Both antagonists have been proven to specifically

act on the mentioned subtypes suggesting that α1A-ARs are responsible for the excita-

tory effect (Pan et al. , 1994; Zimnik et al. , 2012). For the first time on a single cell level,

this study provides strong evidence for the expression of α2A-ARs in POMC neurons

and α1A-ARs in NPY/AgRP neurons, which mediate the either inhibitory or excitatory

effect, respectively.
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Physiology of noradrenaline with relevance to the melanocortin system

Effects of NA on neuronal populations in the ARC have been investigated about a

decade ago. A study by Kang et al. (2000) revealed that NA is able to either excite

or inhibit neurons residing in the ARC. However, the experiments lacked the identifica-

tion of the extracellularly recorded neurons. Studies also have revealed that the ARC is

innervated by NA cell groups of the NTS as well as the main source of NA, the LC (Grill

& Hayes, 2009). Yet, mostly the PVH has been in focus of NAs role in energy homeosta-

sis (Wellman, 2000, 2005). This view has now to be expanded towards the melanocortin

system in the ARC, which lies presynaptically to the PVH (Atasoy et al. , 2012).

In in vivo experiments, exogenous NA delivered by IP and ICV injections has been

shown to potently induce feeding in rodents (Booth, 1967; Leibowitz, 1988; Wellman

et al. , 1993). A proposed model by Wellman et al. (1993) suggests that induced food

intake is due to inhibition of inhibitory neurons in the PVH by α2-ARs. POMC and

AgRP neurons in the ARC exert their potent effects on food intake via activation or

inhibition of second order neurons, for example in the PVH (Gao & Horvath, 2008).

Here, POMC neurons release α-MSH, which in turn excites neurons in the PVH by

the activation of MC4Rs. In contrast, NPY and AgRP both are able to reduce firing of

PVH neurons. These differential effects lead to the onset or offset of feeding (Ghamari-

Langroudi et al. , 2011). The obtained data in this thesis indicates, that NA potently

inhibits the melanocortin signaling at both sites, in the ARC and the PVH. At the level

of the ARC, POMC neurons are inhibited which in turn leads to decreased release of

α-MSH on second-order neurons. Simultaneously, NPY/AgRP neurons are excited, in

turn leading to the GABAergic inhibition of POMC neurons. The release of NPY and

AgRP on second order neurons in the PVH further decreases excitability in these neu-

rons. Together, the orchestrated effect of NA on first and second order neurons suggest

a potent pathway to elicit feeding via the shutdown of melanocortin signaling at both

critical sites, the PVH and most importantly the ARC (see figure 4.1).

A body of evidence also supports the hypothesis on NA’s modulatory effect on the

melanocortin system in the ARC (Guy & Pelletier, 1988; Harfstrand et al. , 1986, 1987;

Wellman, 2000). In this context, correlations between NA and other transmitters and
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modulators have been suggested. Leptin for example, a hormone which is well known

to exert its primary effect on the melanocortin system, has been shown to modulate

NA release of catecholaminergic synapses in the ARC (Brunetti et al. , 1999; Francis

et al. , 2004). In addition, insulin downregulates the expression of α2-ARs specifically

in ARC. Both effects would lead to an decrease in food intake due to the disinhibition

of POMC neurons by the orchestrated effect of less receptor density and decreased

ligand concentration. This suggests that both peripheral hormones exert their effects on

food intake, at least in part, by the modulation of NA signaling in the ARC. Further

experiments revealed an regulatory effect of NPY on NA release. NPY injections into

the preoptic area, localized in the close vicinity of the ARC, increases NA release and

food intake in rats (Myers et al. , 1996). NPY inhibits second order neurons in the PVH

to induce feeding. The accompanying release of NA could lead to hyperpolarization

of POMC neurons and depolarization of AgRP neurons in the ARC, thus augmenting

release of NPY in the PVH.

Potential sources for the noradrenaline release

Given the consistent effects of exogenous NA on the ARC and the PVH the question

remains under which physiological conditions endogenous NA is released and where

exactly NA releasing projections to these sites arise. The first evidence of feeding re-

lated endogenous NA release was presented by (Martin & Myers, 1975). In their study,

they preloaded hypothalamic sites with an radioactive variant of NA and examined the

changes of NA concentrations during feeding. Changes were observed especially from

midline structures of the hypothalamus at the level of the VMH. In contrast, nutrient

infusions into the duodenum suppressed NA release in medial hypothalamic structures

along with an increase in NA release into the lateral hypothalamus (Myers & McCaleb,

1980). In support of NAs action of increasing food intake, extracellular concentrations

and NA release peak during the onset of the dark phase, a period that is critically

related to feeding in rats (Morien et al. , 1995; Stanley et al. , 1989). Until now, most

studies focused on NA’s action on the PVH, which is conceivable as here endogenous

and exogenous NA exhibit strong effects and can well be correlated with concomitant
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behavioral patterns of animals. (Leibowitz, 1988; Wellman, 2000, 2005; Wellman et al. ,

1993; ?).

Mostly, the aforementioned physiological implications of NA release may rely on

specific efferent projections from NA cell groups residing in the brainstem. Here the

A1 (ventrolateral medulla; VLM) and the A2 (NTS) NA cell groups have been shown to

specifically innervate the PVH (Goddard et al. , 2010). Additionally, the LC also inner-

vates various sites of the hypothalamus, including the PVH as well as the ARC (Grzanna

& Molliver, 1980; Samuels & Szabadi, 2008a). Interestingly, NA synapses on NPY neu-

rons in the ARC have been shown, but the authors did not focus on the specific sources

of these synaptic endings (Guy & Pelletier, 1988; Harfstrand, 1986, 1987; Harfstrand et al.

, 1986). Thus, NA release on NPY/AgRP neurons is likely due to specific NA synapses.

However, in the past two decades the development of the "volume transmission con-

cept" expanded the functions of neuromodulators (Fuxe et al. , 2013; Zoli et al. , 1998). In

contrast to the "wiring transmission", representing the classical synapse-mediated effect

of neurotransmitters, the "volume transmission" allows neuromodulators to exert their

effects at sites outside the synaptic cleft by 3-dimensional diffusion. With respect to this

broad spatio-temporal effect, NA has been shown to be released at non-synaptic sites,

thus mediating rather paracrine effects (Beaudet & Descarries, 1978; Callado & Stam-

ford, 2000; Milusheva et al. , 2003; Séguéla et al. , 1990). Although it is likely that distinct

synaptic projections of NA cell groups to specific hypothalamic regions contribute to

the effects of NA on feeding behavior, synaptic connections thus are not a prerequisite.

Previous work in the Horvath group and others has detected large expression of the

uncoupling protein 2 (UCP2) in hypothalamic sites, which leads to heat production in

mitochondria (Horvath et al. , 1999; Richard et al. , 1998). Further work revealed, that

UCP2 and UCP3 are also expressed in a large number of NA and DA neurons and

the concept of volume transmission is generally accepted for CA systems (Agnati et al.

, 2005; Rivera et al. , 2006). Moreover, volume transmission may rely on temperature

gradients (Agnati et al. , 1994). In this context, (Rivera et al. , 2006) argue, that UCP2/3

expression may produce temperature gradients in CA volume transmission, that lead
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to "convective fluid movements" and thus "enhance migration of neurotransmitters".

Together, the hypothesis is raised for a role of NA in the ARC by volume transmission.

In the following a hypothetic model is presented illustrating the NA effect on the

ARC (see figure 4.1).

The effects of aging and chronic HFD feeding on noradrenergic responses in POMC

neurons

Aging has been shown to result in changes in properties of POMC neurons in the ARC

(Kim & Horvath, 2012; Newton et al. , 2013; Yang et al. , 2012). NA neurons in rats have

been unaffected as no change in number could be detected during aging (?). However,

on the level of ARs, numerous studies report a decreased receptor density with ongoing

age (?). Decrease of α2-AR expression has been shown in the prefrontal cortex in the

context of AD (?). The responses recorded in this study on aged mice (20-25w) reveal a

decreased conductance density upon application of 10 µM NA. This raises the possibility

that α2-AR expression is also decreased in POMC neurons during aging. However, the

question if this effect is really due to reduced receptor density remains unanswered in

these experiments.

In POMC neurons of mice fed a HFD from the age of 3 weeks on, this effect was

reversed. Responses were not significantly different to that of POMC neurons in mice

aged 8-12 weeks. In ob/ob mice, elevated NA levels have been detected in hypothalamic

sites, however elevations in the ARC did not reach significance (Oltmans, 1983). Largest

elevations were detected in the PVH. In line with the experiments in mice fed a HFD

in this study, increased responses to injections of NA into hypothalamic structures have

been shown in rodents (Kraszewski & Cincotta, 2000). Interestingly, insulin has been

shown to exert effects on α2-ARs specifically in the ARC (Levin et al. , 1998). In this

thesis, the expression of α2A-ARs has been shown in POMC neurons. Obesity leads to

insulin resistance (Brüning et al. , 2000; Röhl et al. , 2004; Schubert et al. , 2004). Thus the

possibility arises, that insulin resistance leads to impairment of intracellular cascades

triggered by insulin receptor activation and following reduced expression of α2A-ARs.
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Figure 4.1: Modulation of the ARC melanocortin system by NA. (A) Schematic illutration of the
mouse brain. NA cell groups residing in the brainstem project and release NA to hypothalamic
sites controlling food intake, like the PVH and the ARC. (B) Upon release of NA into the ARC,
NPY/AgRP/GABA neurons show increased firing due to the activation of excitatory α1A-ARs.
In contrast, NA inhibits POMC/CART expressing neurons in the ARC nucleus via the activation
of inhibitory α2A-ARs. POMC neurons thus remain silent. Further inhibition is mediated by
unidirectional release of GABA from NPY/AgRP/GABA neurons on POMC/CART neurons.
Consequently, α-MSH release on second order neurons is inhibited and NPY release on second
order neurons antagonizes the effect of MC4R. Thus, satiety signals are depleted and appetite
and feeding is the consequence. Modified from Dietrich & Horvath (2013); Sara (2009).
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4.4 Properties of noradrenergic neurons in the locus coeruleus

Properties of NA neurons in the LC have been investigated using perforated patch-

clamp techniques in acute brain slices of C57BL/6 at the age of 10-15 weeks. Neu-

rons were identified by their anatomical location, ventrolaterally to the fourth ventricle.

In most cases, after completion of electrophysiological protocols, recorded cells were

labeled anterogradely with biocytin and slices were subsequently processed for AB-

stainings. Immunohistochemical protocols against DBH alongside with streptavidin-

biocytin-staining of the recorded cell, confirmed the neurons to be noradrenergic and

located within the LC. Although, the enzyme DBH is less concentrated in NA cells com-

pared to TH, stainings clearly silhouetted from background and typical shapes of the

LC were revealed (see figure 3.15 A). Despite a few number of studies investigated ba-

sic properties of LC neurons in wildtype mice, none of these studies took advantage

of the perforated patch-clamp technique, thus leaving intracellular solutions unchanged

except for monovalent ions. Since the whole-cell patch-clamp technique has been shown

to change properties of neurons, LC-NA neurons were analyzed again in order to create

a sufficient baseline for future experiments in our laboratory (Simon Hess, PhD thesis

2011). For the first time, this study provides a detailed electrophysiological characteri-

zation of LC neurons analyzed by perforated patch-clamp recordings.

In the living rats, neurons of the LC display different types of activity. LC NA neu-

rons are silent during phases of REM sleep. At times of waking, LC neurons increase

tonic discharge and phasic patterns of action potentials can be observed during task

performances and arousal stimuli as well as in states of high performance (Aston-Jones

& Cohen, 2005; Berridge & Waterhouse, 2003; Sara, 2009). However, in acute slice prepa-

rations only tonic firing has been observed (de Oliveira et al. , 2010, 2011; Taneja et al. ,

2009; van den Pol et al. , 2002; Williams et al. , 1985; Zhang et al. , 2010). This phenomenon

is also described for the DA system and is arguably due to loss of afferent projections

that contribute to the different firing patterns (Surmeier et al. , 2011).

LC neurons in slice preparations of C57BL/6 mice fired tonically with frequencies

from 0.5 to 6 Hz, respectively. To further unravel mechanisms that underlie tonic

pacemaking, Na+ dependent spikes have been blocked by TTX. This revealed Cd2+-
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sensitive potentials that showed broader gaussian ISI distribution compared to TTX-

sensitive spikes. These results suggest that pacemaking of LC neurons underlies a

Ca2+-dependent mechanism. However, the specific channels which are involved and

a detailed analysis of underlying currents still remain elusive for the LC-NA neurons.

In part, previous experiments support these findings as TTX application was not suf-

ficient to block pacemaking in a subset of LC neurons. However, a second subset of

neurons did not exhibit any pacemaking by the blockade of voltage gated Na+ currents

(de Oliveira et al. , 2010). Here, differences may originate from different experimental

procedures, as well as using different ages of mice. In a later study, the same authors

investigated pacemaking again in 8-12 week old mice and found a subset of neurons,

that did not show any spontaneous APs at all. Respective brain slices were reported to

have a thickness of 140 µM and thus differ intensively from brain slices of 250 - 300 µM

used in this thesis (de Oliveira et al. , 2011).

Basic electrophysiological properties have been investigated before in a study by

Zhang et al. (2010). The authors prepared mouse brain slices in a comparable fashion

and basic properties revealed values in line with this thesis, except for input resistances,

which resulted in higher values in this study. The perforated patch-clamp technique can

be responsible for the slight differences in input resistances (Falke et al. 1989; Oleson

et al. 1993, Simon Hess, 2011).

Besides the pacemaking activity, the most prominent feature of the LC NA neurons

is the excitation delay. In line with Zhang et al. (2010) the recorded neurons showed

increasing times to the peak of the first AP in response to increasing hyperpolarizing

current injections. This property could not be observed in a neuron which was located

outside the LC (see figure 3.17 B). Thus, the excitation delay in response to hyperpolariz-

ing current injections is unique to LC neurons and can be used as an electrophysiological

tool to identify LC neurons in brain slices from C57BL/6 mice.
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4.5 The locus coeruleus in the control of energy homeostasis

and glucose metabolism

The LC is a potential source for NA release in the ARC (AnselmoFranci et al. , 1997;

Grzanna & Molliver, 1980). Efferent projections have been identified and previous stud-

ies provide evidence for a role of the LC in the CNS-mediated control of energy home-

ostasis (Ammar et al. , 2001; Redmond et al. , 1977). Data provided by a recent collab-

oration reveals evidence for a role of the LC in glucose metabolism and control of BAT

SNA. Glucose elevations lead to increased SNA and activation of BAT. In this context,

the LC has been shown to innervate BAT via the SNS (Cano et al. , 2003). Therefore,

glucose-sensing experiments have been conducted by singe cell perforated patch-clamp

recordings in acute mouse brain slices. For the first time, GE and GI neurons have

been detected in the LC of brain slice preparations and glucose-sensing in the LC was

shown to contribute to BAT SNA. Thermogenesis and energy expenditure was reduced

when LC neurons were silent and glucose-sensing was abolished. This leads to a further

expansion of the NA system in control of energy homeostasis.

4.5.1 Kir6.2THCre-mice develop obesity and impaired brown adipose tissue

morphology and function

In the present section, data obtained and kindly provided by Sulay Tovar and Donald

A. Morgan are discussed. Text passages are also provided by Tovar et al. (2013).

Kir6.2THCre-mice developed obesity when fed NCD, an observation which was largely

exaggerated in mice fed ad libitum HFD. Consistently, the surface of adipocytes in-

creased in WAT and Kir6.2THCre-mice exhibited impaired insulin sensitivity. Obesity

has been further confirmed by elevated plasma leptin levels. Conversely, this obese

phenotype could not be matched with increased food intake or decreased locomotor

activity, pointing towards metabolic impairments at different levels of energy homeosta-

sis. In line with this result, the analysis of BAT revealed severe morphological changes

as well as differences in BAT specific gene expression, both of which yielding to an

"white-adipocyte-like phenotype" of BAT. The specific function of BAT is thermogenesis

by directly converting energy obtained by feeding into heat (Cannon & Nedergaard,
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2004). Exposing animals to cold (4◦C) could clearly show an impairment in maintaining

rectal body temperature. Since this mechanism is controlled by NA fibers via the SNS,

SNA activity was reduced in Kir6.2THCre-mice compared to control mice (Bartness et al.

, 2010).

BAT is further activated upon food intake and at times of high thermogenesis, the

tissue is responsible for an characteristically large uptake of lipids and glucose (Collins

et al. , 2001). When humans are exposed to cold it is reported that glucose uptake in-

creases about 10 -15 fold compared to normal temperatures (Virtanen & Nuutila, 2011).

Centrally applied glucose increases SNA activity in control mice, an effect which is

abolished in Kir6.2THCre-mice. The ability of centrally applied glucose to stimulate BAT

SNA has been intensely studied, revealing that manipulating responses to glucose by

either injecting 2-desoxy glucose in defined neuronal regions or lesioning attenuated the

ability of glucose to activate BAT SNA (Egawa et al. , 1989a,b; Holt & York, 1989a,b; Mad-

den, 2012). The attenuated ability of centrally applied glucose to activate BAT SNA may

stem from direct impairment of glucose sensing in the sympathetic premotor neurons

in the rostral ventrolateral medulla (RVLM), Raphe Pallidus (RPa) or the intermedio-

lateral nucleus (IML). At least Kir6.2-dependent glucose-mediated neuronal activation

in the RVLM appears unlikely, since it has been demonstrated that RVLM-neurons are

activated by glucoprivation and that this in turn activates GABAergic innervation of

the RPa to inhibit BAT SNA (Madden, 2012). Nevertheless, it cannot be ruled out that

abrogation of Kir6.2-mediated control of RPa, IML or other CA neurons may contribute

to the obese phenotype of Kir6.2THCre-mice. Apart from the aforementioned neuronal

populations in control of BAT SNA, the LC has also been identified by retrograde trac-

ing from BAT (Cano et al. , 2003). C-Fos immunoreactivity in the LC is activated within

three to 24 hours of cold-exposure and bilateral lesions of the LC causes obesity in mon-

keys (Miyata et al. , 1995; Redmond et al. , 1977). Additionally, cold exposure leads to an

increase of TH mRNA expression up to 200% in the LC, suggesting increased release of

NA and increased thermogenesis as a response (Richard et al. , 1988). Taken together,

these experiments point towards the possibility that neurons in the LC modulate BAT

SNA.
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4.5.2 Glucose sensing, brown adipose tissue and the locus coeruleus

Since glucose metabolism and BAT thermogenesis are related and the LC innervates and

controls BAT via the SNS, glucose sensing was examined in Kir6.2THCre-mice, their WT

littermates and C57BL/6 mice (Bamshad et al. , 1999; Cano et al. , 2003; Mounien et al.

, 2010; Oldfield et al. , 2002; Tews & Wabitsch, 2011). Comparable to LC NA neurons

of C57BL/6 mice, THCreGFP LC neurons were spontaneously active and exhibited a

tonic pacemaking-like activity between 0.3 and 6 Hz. Importantly, this suggests that

genomic modifications and GFP expression did not significantly alter properties of LC

NA neurons.

To this day, support for several mechanisms of the reception of extracellular glucose

levels exists and neurons are generally categorized as either glucose-excited (GE) or

glucose-inhibited (GI), referring to their response to elevated glucose levels (Thorens,

2011). First discovered in pancreatic β-cells, the most prominent model of glucose-

sensing includes the expression of two keyproteins, glucokinase and KATP (Ashcroft

et al. , 1984; Ashcroft & Rorsman, 2004). Expression of both proteins has been detected

in the LC (Dunn-Meynell et al. , 1998; Koyama et al. , 1999; Lynch et al. , 2000; Nieber et al.

, 1995). In this particular context, the LC has already been cited as a glucose sensing site

in a review by Levin (2001).

The present experiments reveal for the first time glucose-sensing neurons in the LC in

acute mouse brain slices. Three different populations of LC neurons could be identified.

Neurons were either GE, GI or were non-responsive.

Glucose sensing

Concentrations of extracellular glucose were altered from 5 mM to 8 mM and 5 mM

to 3 mM, respectively. These concentrations have been shown to be effective for glu-

cose sensing populations, for example POMC expressing cells in the ARC which have

been subject of various studies concerning their ability of adapting firing to changes

in extracellular glucose concetrations (Burdakov et al. , 2005a; Parton et al. , 2007). The

experiments in this thesis led to the identification of a subpopulation of LC neurons,

that respond in the manner of GE neurons. Here, increasing or decreasing extracellular
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glucose concentration led to moderate excitation or inhibition of these neurons, respec-

tively (see figure 3.22 and 3.24). Around 40% of LC neurons responded with a slight

decrease of AP frequency to a reduction of extracellular glucose, a response that could

be reversed by the KATP channel specific blocker tolbutamide. This suggests, that the

response is mediated by the opening of KATP channels due to the consequent decrease

in ATP/ADP ratio. On the other hand, the same proportion of LC neurons moderately

increased AP frequency upon application of 8 mM extracellular glucose, suggesting the

ATP dependent closure of KATP channels.

In support of these experiments, numerous studies reveal the activation of potassium

currents due to reduction of extracellular glucose and induced hypoxia, which were

sensitive to KATP channel blockers (Koyama et al. , 1999; Kuwahata, 2004; Murai et al. ,

1997b; Nieber et al. , 1995)

The small number of neurons of the LC population responding as GI neurons, sug-

gest a differential regulation of the LC population by changes in extracellular glucose.

Opposing effects of glucose on neuronal populations have been revealed in the VMH,

were neurons are either GE or GI (?). A few studies also suggest that the LC contains GI

neurons (Ritter et al. , 1998; Sara, 1988). C-fos expression in response to 2-DG injections

has been detected in the LC in rats (Ritter et al. , 1998). Importantly, this is not contra-

dictory to the identification of GE neurons, as 2-DG induced c-fos expression only labels

GI neurons. Glucoprivation in these studies led to increase in extracellular LC activity

in rats and in living cats (Sara, 1988). The aforementioned studies support the results

revealed in this thesis and point towards a differential regulation of glucose in the LC

and a complex function of the LC in glucose metabolism and energy homeostasis. Im-

portantly, differential regulation by glucose has been shown in the brainstem before. GI

and GE neurons among a single cell population have been detected in the NTS (Mizuno

& Oomura, 1984).

It is important to mention that used extracellular glucose concentrations largely vary

among studies (Burdakov et al. , 2005b; Mizuno & Oomura, 1984; Parton et al. , 2007).

In the CSF, the physiological range of glucose concentrations is still unclear. Addition-

ally, concentrations may differ dependent on the location of the neuronal population
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(Burdakov et al. , 2005a). It is certain, that increase in plasma glucose also rapidly leads

to higher glucose concentrations in the brain (Silver & Erecińska, 1994). Here, con-

centrations are thought to vary around 10-30% to the corresponding plasma glucose

levels. Given a range of plasma glucose from 5 to 8 mM, concentrations are expected

to vary from 1 to 2.5 mM (Routh, 2002). Neuronal populations that lie in close proxim-

ity to structures known as circumventricular organs (CVO) might be exposed to much

higher concentrations comparable to plasma glucose levels. CVOs are located around

the third and fourth ventricle and are characterized by high permeability of the BBB.

As an example, the median eminence, a prominent CVO thus enables the neighboring

ARC to be exposed to higher glucose concentrations compared to other areas of the CNS

(Fioramonti et al. , 2004; Ganong, 2000). An equivalent structure is also located in the

brainstem. Here, the area postrema (ArP) around the fourth ventricle is highly perme-

able, and structures located in the vicinity may be exposed to glucose levels in the range

of plasma glucose levels. In this context, a number of brainstem NA cell groups such

as the NTS have been shown to respond to 2-DG, a glucose variant (Ritter et al. , 2011).

Injections of 2-DG reliably lead to glucoprivic feeding (Ritter et al. , 2000). Additionally,

electrophysiological data indicate glucose sensing in the DMV and NTS (Balfour et al. ,

2006; Dallaporta et al. , 2000; Mizuno & Oomura, 1984).

Importantly, the effect of extracellular changes of glucose concentration has also been

clarified in mice, which expressed the mutant Kir6.2 variant specifically in the LC (Tovar

et al. , 2013).

Kir6.2THCre-mice, glucose-sensing and physiology

Consistent with the reduced SNA activity, the Cre mediated expression of the mutant

variant Kir6.2, which represents an constitutively open K+ channel, resulted in severe

inhibition of tonic activity in most LC neurons, most of which remained silent. In line

with these results, the Cre mediated expression of the mutant KATP channel in LC neu-

rons depletes electrical responses to changes in extracellular glucose levels by silencing

these neurons. Application of tolbutamide significantly increased membrane potentials

of LC neurons and concomitant appearance of APs was observed in most of the experi-
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ments. This clearly shows that silencing of LC neurons is due to the activation of KATP

channels. The presence of other described mechanisms of glucose sensing cannot be

ruled out in LC neurons (Thorens, 2011). However, no significant changes in membrane

potentials could be detected in Kir6.2THCre-mice.

The obtained data of this study shows that a subpopulation of the LC responds to

extracellular changes in glucose concentrations with moderate adaptation of AP fre-

quency. The additional innervation of BAT by the LC and the well established role of

NA in the control of BAT activity suggests a contribution of the LC to these mecha-

nisms (Bamshad et al. , 1999; Bartness et al. , 2010; Cano et al. , 2003; Oldfield et al. ,

2002). To support the hypothesis that the LC controls BAT SNA, the injection of an

adeno-associated virus (AAV) into the LC led to site specific expression of the mutant

KATP channel, thus minimizing the possibility of other TH expressing cells to influ-

ence glucose responses. Two weeks after the AAV-injections, mice started to develop

obesity and phenotyping resulted in no difference compared to Kir6.2THCre-mice. Con-

sistently, extracellular recordings of sympathetic nerve activity, by which the LC controls

brown adipose tissue, was reduced and revealed the depletion of responses to glucose

injections. After glucose stimulation in control animals, SNA activity only increased in

vehicle-injected mice. These experiments further support the role of the LC in control of

BAT via SNA.

Given the role of NA in control of BAT it is reasonable to hypothesize that under

conditions of lower glucose levels and thus decreased tonic activity of the LC, activity

of BAT SNA is also decreased. This relation is also supported in a recent study by

Shi et al. (2013). Fasting induced NPY signaling from the ARC to the PVH results in

decreased expression of TH mRNA in the PVH and brainstem including the LC. They

also observed a concomitant decrease in BAT activity. NA release is strongly correlated

with the expression of TH mRNA, thus decreased BAT activity may underlie decreased

NA release (Mitchell et al. , 1993). In summary, in times of food deprivation and hunger,

energy expenditure via BAT is decreased due to reduced TH mRNA expression and NA

release in the LC. The same conditions also lead to decreased glucose levels, which in
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turn might amplify this effect via glucose-sensing of GE neurons in the LC innervating

BAT, reflected by decreased SNA.

The identification of a second glucose-responsive subpopulation in the LC raises the

question how these neurons contribute to energy homeostasis. While the data of citetTo-

var:1 along with the data obtained in this thesis clearly suggest, that GE neurons control

SNA BAT, the role of GI neurons remains unknown. There is evidence, that lesions

of DNB, which carries afferent projections of the LC, lead to hypophagia and reduced

bodyweight (Hoebel et al. , 1989) and lesions of the LC attenuate oral intake (Ammar

et al. , 2001). With respect to the obtained effect of NA in the ARC (and the PVH) and the

identified efferent projections of the LC to the ARC (Grzanna & Molliver, 1980), reduced

NA release would lead to decreased food intake and increased energy expenditure. In-

terestingly, a subpopulation of neurons in the LC co-express NPY (Smiałowska, 1988)

in rats and NPY in the ARC leads to inhibition of POMC neurons and increased food

intake when released into the PVH. GI neurons in the LC could release NA and/or NPY

into the ARC and PVH to potently induce food intake. However, innervation of both

regions by NPY-LC neurons has not been identified (Holets et al. , 1988).

Taken together, a substantial body of literature supports the results obtained in this

study. In the LC, evidence for GE and GI neurons have been reported. It is therefore

of great interest how the different subpopulations contribute to the functions of the LC.

Here, GE and GI neurons could exhibit differences in there efferent projections to serve

different roles in the response to changes in extracellular glucose levels. In this context,

differential efferent projections has been shown in the LC before.

4.6 The role of noradrenalin in the pharmacotherapy of obesity

Drugs that aim to reduce food intake primarily act on neurotransmitters in the CNS

(Ioannides-Demos et al. , 2006). In this context, the most frequently targeted transmit-

ters include 5-HT and the CA DA and NA (Adan, 2013). However, how the class of

monoamines is controlling energy homeostasis and food intake is only partly under-

stood and the impact of these transmitters on other systems in the CNS is tremendous

(Bloom, 2010; Guiard et al. , 2008a; Smeets & González, 2000; Wellman, 2005). Thus it is
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not surprising, that in the history of anti-obesity drugs a large number of compounds

that aim to modulate the monoaminergic systems exhibited a variety of side effects

which consequently led to the withdrawal of respective drugs (Ryan & Bray, 2013). The

anorexigenic effect of amphetamine has been of interest since decades but the addictive

action of this drug, presumably due to unspecific effects also on the dopaminergic sys-

tem does not recommend a long term use in the treatment of obesity (Jones & Caul, 1992;

Pandit et al. , 2011; Wellman, 2005; White et al. , 2010). Recently, the drug sibutramine,

which resulted in constant weight loss in patients over a longtime period, was with-

drawn due to the increased risk for nonfatal myocardial infarction and nonfatal stroke

in high-risk cardiac patients (James et al. , 2010). Sibutramine potently led to increased

NA and 5-HT concentrations by blocking the reuptake of both biogenic amines (Powell

et al. , 2011).

When focussing on the treatment of obesity by targeting specifically the NA system it

is mandatory to mention that NA may have opposing effects on food intake and energy

homeostasis (Wellman, 2005). As previously mentioned, NA projections in the CNS

arise in the brainstem and travel by two distinct fiber systems and impairment of either

of these fiber systems led to hyper - or hypophagia, respectively (Wellman, 2000). This

further emphasizes the difficulty of anti-obesity treatment. Developing drugs which

are specific for a particular system reduces the side effects but still it remains difficult

to make the compounds effective at specific sites within the CNS. Additionally, NA,

serotonergic and Dopaminergic systems may influence one another. For example, DA

neurons in the midbrain also express ARs, thus manipulating the NA systems indirectly

may influence the DA systems and hence might lead to side effects (Bonci et al. , 2003).

Within the last years, serotonergic and NA reuptake inhibitors have been more and

more in focus as drugs for the treatment of obesity. Here, several compounds have

been tested. However, some having severe effects on the emotional state of a human

being. The role of 5-HT and NA in depression has been studied for years. Interestingly,

a large community supports the hypothesis that depression and obesity may be linked

diseases (Hainer et al. , 2006b; Rosmond, 2004). Some drugs are only indicated for

short term use in treatment of obesity. Until today, sibutramine, a specific serotonin
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and noradrenalin reuptake inhibitor represents the only indicated drug for a long term

treatment of obesity. However, it also leads to various side effects and is specifically

increasing the risk of nonfatal myocardial infarction and nonfatal stroke in patients with

preexisting cardiovascular diseases (James et al. , 2010)

Together, these examples illustrate the difficulties in the long term treatment of obe-

sity. It seems to be of specific importance in the development of anti-obesity drugs to

unravel the single factors controlling energy homeostasis and food intake and evaluate

the systems these factors interfere with.

"Nonetheless, obesity remains a disease mainly caused by an excess of caloric intake

in relation to energy expenditure and on that basis, its treatment should be a healthy

diet and physical activity. When these options alone are not sufficient, then additional

pharmacotherapy with an acceptable efficacy and safety profile could provide a useful

option" (Gouni-Berthold et al. , 2013).

4.7 Outlook and preliminary data

More experiments should be conducted to further define the impact of the NA system

on the ARC in detail. Proposals for further experiments and respective preliminary

datasets are are given in the following sections.

4.7.1 Energy homeostasis and noradrenergic signaling in the hypothalamus

The potent effects of NA on POMC and NPY/AgRP expressing cells in the ARC raise

the question of how NA modulates behavior in the living animal and how this is phys-

iologically relevant. Initially, intracerebral injections led to the identification of various

sites in the hypothalamus that respond to the injection of NA with food intake and thus

provided first evidence for NAs role in energy homeostasis (Booth, 1967; Booth & Jar-

man, 1976; Leibowitz, 1978a). Later, the same method revealed NA cell groups in the

brainstem responding to the injection of 2-DG (Ritter et al. , 1998).

Since pharmacological experiments revealed that the inhibitory effect of NA on POMC

neurons is mediated by α2-ARs, the specific antagonist SKF 86466 has been used for IC

injections. However, the unilateral injection into the ARC failed to significantly decrease
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refeeding in fasted mice (see figure 4.2). Nevertheless, the obtained data showed a ten-

dency towards decreased food intake. In the context of these experiments, two problems

arise. First, it has been described that for POMC neurons unilateral IC injections fail to

induce significant effects. These were only obtained by bilateral injections (Atasoy et al.

, 2012). Second, the evolutionary advantage for hunger favors the NPY/AgRP drive

and thus leads to more reliable responses on a short term range even when drugs are

unilaterally injected (Aponte et al. , 2011; Atasoy et al. , 2012; Zhan et al. , 2013). Hence,

in the future it is conceivable to rather focus on the NPY/AgRP neurons and since it is

known that the excitatory effect of NA on these neurons is mediated by α1A-ARs, there

is also a large pharmacological toolbox to affect these neurons.
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Figure 4.2: IC injections of the α2-AR antagonist and the effect on refeeding in fasted mice (A)
Unilateral IC injections of 10 µM of the specific α2-AR antagonist SKF 86466 fails to reduce
refeeding in fasted mice. Food intake has been analyzed at 1, 2, 4 and 8 hours after IC injections.
At each timepoint there is s small tendency towards decreased food intake. Experiments were
done and data was kindly provided by Tim Klöckener.

4.7.2 Anatomy of noradrenergic signaling to the hypothalamus

Despite the various anatomical works on the NA system and the known projections

from NA cell groups to the medial basal hypothalamus and specifically the ARC, it is

still unclear, which exact cell groups project on either or both POMC and NPY/AgRP

neurons. TH-immunoreactive synaptic endings have been shown on NPY neurons of
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the ARC in rats, however these findings lack the specific source of these projections.

In this context, in a first step it should be addressed wether NA release into the ARC

is realized only by "wired" or "volume transmission". In order to show direct synaptic

projections from NA cell groups of the brainstem, DBHCre mice have been crossed with

wheatgerm-agglutinin (WGA) expressing mice (Braz et al. , 2002). The use of the antero-

grade tracer WGA in combination with the DBHCre mouse enables to analyze specific

synaptic projections from NA cell groups only. Interestingly, the success of this genetical

tracing experiment has been published recently. However, the authors focused on a dif-

ferent area within the CNS and did not describe if cell bodies in the ARC were stained

(Walling et al. , 2012).

4.7.3 Effect of insulin, leptin and ghrelin on the the noradrenergic

modulation of POMC and NPY/AgRP neurons in the arcuate nucleus

As aforementioned, studies indicate the peripheral hormones insulin, leptin and ghre-

lin to have effects on NA release in the ARC as well as on the expression of α2-ARs.

In context of decreased expression of α2-ARs upon insulin stimulation, recording of

induced conductance densities upon NA application in either normal aCSF and slices

pre-incubated with Insulin containing aCSF could provide first evidence if this is visible

on a single cell level. In the case of leptin, responses should be compared in the pres-

ence and the absence of specific antagonists for either α1A- or α2A-ARs. Given that NA

projections are still working in acute brain slice preparations, the effect of leptin should

be decreased in the presence of the antagonists since leptin has been shown to reduce

the release of NA into the ARC (Brunetti et al. , 1999; Francis et al. , 2004; Kawakami et al.

, 2008). The following figure illustrates a proposed model of insulin and leptin action

on the NA system modulating POMC and NPY/AgRP expressing neurons in the ARC.
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Figure 4.3: Proposed model of insulin and leptins action on the NA system modulation the ARC
(A) Schematic illustration of the CNS with NA cell groups in the brainstem and the melanocortin
system of the hypothalamus with the ARC and PVH. Leptin inhibits NA release into the hy-
pothalamus, presumably by acting on NA neurons residing in the brainstem with efferent pro-
jections to the ARC. (A) Decreased NA concentration due to inhibited NA release by leptin
into the ARC leads to decreased excitation of NPY/AgRP neurons and decreased inhibition of
POMC/CART neurons, respectively. Thus, α-MSH release from POMC neurons on second or-
der neurons is increased and satiety signals prevail. Additionally, GABA and NPY release from
NPY/AgRP synaptic terminals is decreased and targeted neurons are less inhibited. Insulin
leads to decreased α2A-AR expression in the ARC and consequently higher α-MSH on second
order neurons. Also compare to 4.1. Modified from Dietrich & Horvath (2013); Sara (2009).
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4.7.4 Effects of dietary changes and aging

Noradrenalin content in the brain changes during aging as it has been shown for rats

at different ages (Míguez et al. , 1999; Smith et al. , n.d.). Moreover, NA cell groups also

are effected by aging. Expecially the LC is affected with ongoing age and loss of LC

neurons is implicated in age-associated diseases like PD and AD. In the ARC, induced

conductance densities upon NA application decrease in mice at the age of 20 weeks

compared to younger mice. These results suggest less affinity of NA to α2-ARs, however

it is not clear wether this is reflected by decreased receptor expression or alterations in

downstream targets of the receptors.

4.7.5 The role of the locus coeruleus in energy homeostasis

Mentioned before, lesioning of the DNB, which contains fibers arising from the LC

and innervate the hypothalamus including the arcuate nucleus, leads to leanness and

hypophagia in rats, suggesting the contribution of the LC-NA system to energy home-

ostasis and food intake. In this context, DBH KO mice consistently develop hypophagia

and are smaller than their wildtype littermates. However, the effect on metabolism and

the development of obesity in Kir6.2THCre-mice could not be assigned to a change in

food intake or locomotive behavior. Obesity in these mice is more likely to be based on

decreased energy expenditure due to the whitening of the BAT. In this context it is un-

clear to which extent glucose exerts its physiological effects via the LC or which further

physiological effects it underlies.

Various neuronal populations that are involved in energy homeostasis are glucose-

sensitive which leads to the question if and how the LC further contributes to the CNS-

mediated control of energy homeostasis. In this regard, the question arises if the LC also

is able to respond to other fuel sensing signals. Interestingly, leptin receptor expression

has been detected in the rat LC and leptin modulates NA signaling (Grill et al. , 2002a;

Hay-Schmidt et al. , 2001). Additionally, leptin delivery into the fourth ventricle reduces

food intake in rats (Grill et al. , 2002b) but yet exact pathways remain elusive. In an

elegant study Elmquist et al. (1997) evaluated Leptins effect on the CNS including the

by c-fos expression, however this method fails when neurons decrease their electrical
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activity in response to certain stimuli (Elmquist et al. , 1999; Hoffman et al. , 1993; Hyman

et al. , 1993). In very recent experiments in our lab, we have evidence that leptin may

have rather inhibitory effects on neurons in the LC. Consistently, Elmquist et al. (1997)

did not report any activation in the LC but in other nuclei of the brainstem.

To this date, there is no evidence for any effects of Insulin on electrical activity on

LC neurons, however studies revealed effects in gene expression as shown by in-situ

hybridization for NET mRNA and TH mRNA upon Insulin administration of (Figlewicz

et al. , 1993; Rusnák et al. , 1998).

Since the effects of glucose on the LC have been shown in Kir6.2THCre-mice and mice

injection with an AAV, specificity of the effects could be matched with the LC. However,

since this method is time-consuming and invasive it would be of great interest to develop

markers for different NA cell groups in the brainstem. A very recent study by Robertson

et al. (2013) reveal these markers and thus enable to specifically target the LC and other

NA cell groups with the advantage of neurogenetics. In favor of these important study,

new insights of the LC-NA system in contribution to energy homeostasis can be revealed

in the future.
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