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Abstract

The first part of this thesis is called “Skyrmions and Monopoles in Chiral
Magnets” and concerned with topological spin textures in chiral magnets.
The second part, “Correlated Heterostructures”, studies layered, strongly
correlated devices within the framework of dynamical mean-field theory.

In magnets without inversion symmetry, so called chiral magnets, weak
spin-orbit coupling leads to the formation of smooth twisted magnetic struc-
tures with a long period. Recently, a new magnetic phase of a lattice of topo-
logically stable whirl-lines was discovered. In the first chapter we introduce
the concept of a such a whirling texture and briefly mention its occurrence
in other areas of physics. In chapters 2 we review the Ginzburg-Landau
theory for chiral magnetic structures describing their equilibrium properties
followed by a description of a numerical minimisation technique to explore
the mean-field configuration of the free energy functional. In chapter 3 we
review the Langevin description for a system at finite temperature and con-
centrate on especially on the description of magnetic systems. The describe
how a numerical integration of the equations of motion, a stochastically dif-
ferential equation, can be achieved to compute ensemble-averaged quantities.
Chapter 4 we present the discovery of emergent magnetic monopoles as the
driving mechanism behind topological phase transitions from the Skyrmion
lattice into topologically trivial phases. We describe how a Skyrmion lattice
unwinds due to the motion of magnetic monopoles in the system as seen both
in experiment and numerical simulations. We investigate how the energetics
of and forces between monopoles and antimonopoles influence their creation
rate and dynamics. In chapter 5 we turn to the dynamical properties of single
Skyrmions in ferromagnetic backgrounds. In a first approach we study ana-
lytically the fluctuations around the mean-field configuration and determine
the spectrum of the bound states, the scattering solutions and their phase
shifts and coupling mechanism to the collective Skyrmion coordinate. By
integrating out the fluctuations we discover a strongly frequency-dependent
e↵ective mass for the collective Skyrmion coordinate. We approach the same
question from a di↵erent angle in the second part of the chapter. Here we



start from numerical simulations of the stochastic Landau-Lifshitz-Gilbert
equation and determine the coe�cients of the e↵ective equations of motion
from a statistical analysis of the collective coordinate fluctuations. We find
a strongly frequency-dependent e↵ective mass and a new peculiar damping
mechanism proportional to the acceleration of the Skyrmion that we call
‘gyro-damping’.

The second part of this thesis explores the interface e↵ects in strongly
correlated heterostructures. Multilayered heterostructures in the nano sized
realm (also known as multilayered nanostructures) are the most common
electronic devices. A classic multilayered nanostructure is a tunnel junction
consisting of two metallic leads connected by a “weak link”, often a conven-
tional band insulator. The connection between the two leads is thus governed
by inherently quantum mechanical e↵ects. We begin with an introduction to
model Hamiltonians, in particular the Hubbard and the single impurity An-
derson model. The second chapter describes the static mean-field treatment
of anti-ferromagnetic order in the Hubbard model. Chapter 3 introduces the
reader to the dynamical mean-field theory (DMFT) and describes extensions
of the DMFT to system with antiferromagnetic order. The DMFT maps the
lattice problem onto an e↵ective impurity problem. In chapter 4 we review
how the single impurity Anderson model can be solved using the numerical
renormalisation group (NRG). The generalisation of DMFT to inhomoge-
nous, layered systems is given in chapter 5 including the e↵ects of long-range
Coulomb interactions on the Hartree level. Here we also outline our generali-
sation of the inhomogenous DMFT to systems with antiferromagnetic order.
In chapter 6 we derive expressions for the layer-resolved optical conductivity
and the Hall conductivity. We apply the former to the Mott-Band-Mott het-
erostructure where we study the transport properties of the two-dimensional
metallic state at the interface where we find a rich temperature dependence.
In chapter 7 we turn to the question how the transmission amplitude through
a Mott insulator in a linear potential depends on temperature.



Kurzzusammenfassung

Der erste Teil dieser Arbeit “Skyrmionen und Monopole in chiralen Mag-
neten” beschäftigt sich mit topologischen Magnetisierungs-Texturen in chi-
ralen Magneten. Der zweite Teil, “Korrelierte Heterostrukturen”, untersucht
Korrelations-E↵ekte an Grenzschichten zwischen verschiedenen Materialien
in Heterostrukturen.

In chiralen Magneten bilden sich auf Grund schwacher Spin-Bahn- Wech-
selwirkung verdrillte, magnetische Konfigurationen aus, wie beispielsweise
Helizes mit einer langen Periodenlänge. Kürzlich wurde eine neue magnetis-
che Texture bestehend aus topologisch stabilen “Wirbel-Linien”, sogenan-
nten Skyrmionen, entdeckt. In dieser Arbeit untersuchen wir den topol-
ogischen Mechanismus, der zu einer Zerstörung des Skyrmionen-Gitters in
Phasenübergangen führt. Wir untersuchen darüber hinaus die dynamischen
Eigenschaften von getriebenen Skyrmionen eingebettet in einen ferromag-
netischen Hintergrund.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Heterostrukturen
in Rahmen der dynamischen Molekularfeld Theorie. Speziell untersuchen
wir Grenzschichte↵ekte von stark-korrelierten, geschichteten Systemen. Wir
berechnen schicht-aufgelöste Transportkoe�zienten und Tunnelwahrschein-
lichkeiten durch Mott-Barrieren.
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Introduction

Nowadays, topology has firmly established itself as a vital tool in every physicists’
mathematical arsenal and all modern theories contain topological ideas of some sort
or another. The applications range from the gauge theories in particle physics, where
monopoles, instantons and solitons describe non-perturbative excitations, to the space
time topology of general relativity. Also in condensed matter physics topology has
proven itself indispensable. Noteworthy occurrences include topological insulators,
the quantum Hall e↵ect and defects in ordered media. The unique role topology
plays in physics established its status as a universal and ubiquitous paradigm.

The links between the very old subject of physics and the much younger1 mathe-
matical discipline of topology date back to the 19th century. The earliest connection
occurs in the work of Kirchho↵, 1847, who uses graph-theoretical methods to solve the
equations for a general electric network [51]. But also mathematicians have found in-
teresting applications of topological ideas to physical problems. For instance, Gauss
noted that Ampere’s law may be understood as the linking number between two
curves and iterated his confidence that this is only one of many topological ideas
to be eventually discovered in the field of physics [37]. One of the most common
applications of topology in present-day condensed matter physics may be homotopy
theory which is vital for the description of topological solitons.

Topological solitons are classical solutions of the Lagrangian equations of motion
homotopically distinct from the vacuum solution. Often this occurs when the surface
on which the boundary condition is specified has a non-trivial homotopy group. Such
solutions can be interpreted as particles of the theory which owe their stability against
(quantum-) fluctuations to their non-trivial topology. Historically, the first example
of a topological soliton model for an elementary particle was the Skyrmion. The
Skyrmion emerged from the Yukawa model, a field theory for the three types of
spinless pions. Skyrme believed that the particles in a nucleus were moving in a non-
linear, classical pion medium [93]. Symmetry arguments lead to a particular form
of the Lagrangian which allowed topologically stable soliton solutions of the classical
field equations, distinct from the vacuum. These solutions could then be understood
as baryons.

As mathematical objects Skyrmions have also gained importance in solid state
physics. Here a noteworthy example is a two-dimensional electron gas exhibiting the
integer quantum Hall e↵ect. The low energy theory of such as system has the structure
of a quantum ferromagnet with elementary excitations given by dressed particles

1Listing was the first to use the term ‘Topologie’ in 1836 [61].
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whose local magnetisation wraps the Bloch sphere once when exploring the two-
dimensional plane. In analogy to the mathematical structure of Skyrme’s solutions
these excitations are referred to as Skyrmions. Another occurrence of Skyrmions
in solid state physics was discovered in 2009 when a Skyrmion lattice was shown
to exist in the chiral magnet MnSi as the stable phase in a region of the magnetic
phase diagram [72]. Here similar to a vortex lattice in type-II superconductors, the
magnetic phase is characterised by a hexagonal lattice of magnetic whirls arranged
in a plane perpendicular to an applied magnetic field and translationally invariant
along the direction of the field. The magnetisation throughout the unit cell remains
finite, wraps the unit sphere once and can thus be described by an integer-valued
topological index, i.e. a winding number. The discovery of the Skyrmion lattice has
spurred great interest in these whirling spin textures and raised hopes that they might
find application in spintronic devices and future information storage technologies.

In this part of the thesis, we study the dynamical properties of Skyrmions in
chiral magnets. We begin with a general introduction to Skyrmions and a brief sum-
mary of their discovery in chiral magnets in chapter 1. In the following we outline
the Ginzburg-Landau theory for magnetic systems in chapter 2 and the Langevin
approach to magnetic systems at finite temperature in chapter 3. The non-trivial
topology of Skrymions has important implications for the destruction of the Skyrmion
lattice. For instance, due to the conservation of topological charge phase transitions
from the Skyrmion lattice into a topologically trivial phase necessarily lead to the ap-
pearance of magnetic point defects in the system since the destruction of Skyrmions
changes the winding number of the system. In accordance with topological con-
straints these defects exhibit properties characteristic of magnetic monopoles and we
thus refer to them as “emergent magnetic monopoles”. Chapter 4 describes the exper-
imental discovery and analyses their energetics and dynamics through micro-magnetic
simulations and numerical minimisation of the free energy functional.

The study of the e↵ective dynamics of single Skyrmion excitations in the fer-
romagnetic background is important both from the point of view of fundamental
research and possible applications in spintronic devices. In chapter 5 we analyse
the fluctuation spectrum around the classical solution of the Lagrangian equations
of motion in the single Skyrmion sector by explicitly calculating both the scattering
wave functions and internal modes of the Skyrmion. A perturbative expansion in the
fluctuations yields a fluctuation-induced inertia term. In section 5.2 we extract the
e↵ective equations of motion for a Skyrmion from the statistical analysis of its di↵u-
sive motion and study its dynamics when driven by time-dependent electric currents
and magnetic field gradients.
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Chapter 1

Skyrmions

In the original sense of the word, a ‘Skyrmion’ is a topological soliton solution known
to occur in a non-linear field theory for interacting pions originally conceived by the
nuclear physicist Tony Skyrme [93]. In a more permissive interpretation of the word
Skyrmions, as mathematical objects, have found versatile application in a variety
of di↵erent areas in physics. In this chapter we briefly review the historic origin of
the Skyrmion and define the generalised concept that is nowadays understood as a
‘Skyrmion’. We outline previous applications in di↵erent fields of physics and then
forward to 2009 to give a concise account of the discovery of the Skyrmion lattice
phase in the chiral magnet MnSi.

1.1 What is a Skyrmion?

In 1961 before the advent of quantum chromodynamics (QCD) the nuclear physicist
T.H.R. Skyrme conjectured that the interior of a nucleus is dominated by a medium
formed from three pion fields [93]. He introduced the Skyrme model, a non-linear
sigma model, with the intention to describe baryons as the quantised soliton solu-
tions of a field theory which involves only bosonic degrees of freedom. The model is
understood as an intermediate between the traditional models which represent the
nucleons as point particles interacting through a potential, and a complete description
based on quarks and gluons [4]. The pion fields ⇡ = (⇡1, ⇡2, ⇡3) are combined into a
SU(2)-valued field

U(x) =
p

1� ⇡(x) · ⇡(x) 1 + i⇡(x) · � , (1.1)

where � is the vector of Pauli matrices and we have suppressed a possible time
dependence of the fields. For static fields the energy in the Skyrme model is given by

E =

Z
d3r

✓
�1

2
Tr(RiRi)�

1

16
Tr([Ri, Rj][Ri, Rj])

◆
, (1.2)

where we have introduced an associated current Ri = (@iU)U † and [·, ·] denotes the
commutator. The vacuum is represented by U(x) = 1. For the energy to be finite, U
must approach a constant at infinity [65]. The energy is invariant under translations
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and rotations in R3 and also under the transformation U ! AUA† with A 2 SU(2),
one may thus choose U(r ! 1) = 1. E↵ectively, due to this boundary condition
space is then topologically (but not metrically) compactified to S3, and since the
group manifold of SU(2) is also S3, U defines a map from S3 to S3. The structure of
the homotopically distinct maps U is given by the third homotopy group ⇡3(S3) which
happens to be isomorphic to Z. The space of all maps U : S3 ! S3 decomposes into
distinct subsets characterised by an integer-valued topological charge B =

R
d3r B

with the topological charge density B given by

B = � 1

24⇡2
✏ijkTr(RiRjRk) . (1.3)

The minimal energy solutions for each B are called Skyrmions and their energy is
identified with their mass and B with the Baryon number of the nucleus. The B = 1
Skyrmion has the spherically symmetric hedgehog form [65]

U(x) = exp(if(r)r̂ · �) , (1.4)

where f(r) is a radial profile function obeying an ordinary di↵erential equation with
the boundary conditions f(0) = ⇡ and f(r ! 1) = 0.

Skyrmions in their original sense are therefore smooth, topologically stable ex-
tremal field configurations which are trivial at spatial infinity and have a finite en-
ergy. They are defined by surjective mappings into the order parameter space S3 and
characterised by a non-trivial topological charge B. Since the nth homotopy group
of Sn is isomorphic to Z for any n � 1, a more permissive definition of “Skyrmion” is
given by

A skyrmion is a smooth field configuration defined by a topologically
non-trivial, surjective mapping from a base manifold M into the order
parameter space T ' Sn, trivial on the surface of M and characterised
by a finite integer-valued topological charge.

Fig. 1.1 shows the construction recipe for M = R2 and T = S2. We start with
the identity map, ⌦̂(x̂) = x̂, with x̂ 2 S2 which can be visualised as a hedgehog
configuration (c.f. Fig. 1.1, top left). The stereographic projection P maps the
sphere onto the two-dimensional plane, P(x̂) 2 R2 and thus a Skyrmion configuration
is given by the mapping M̂ : R2 ! S2, M̂ : r 7! ⌦̂ � P�1(r). The corresponding
topological charge W is given by

R
d2r W where we have defined the topological

charge density W as

W =
1

8⇡
M̂ · (@xM̂ ⇥ @yM̂) . (1.5)

W counts the number of times the mapping M̂ sweeps out the target manifold S2.
From the construction recipe above it is obvious that for the Skyrmion (Fig. 1.1 lower
left) W = �1. The color code has been chose such that arrows pointing to the north
pole are plotted in red and those to the south pole as blue and the equator in green.

A chiral, non-inversion symmetric Skyrmion can be constructed if the hedgehog
is additionally ‘combed’ by performing a ⇡/2 rotation R about the ẑ-axis in order
parameter space (Fig. 1.1 top right), N̂ : r 7! R� ⌦̂�P�1(r). R is a linear map on S2
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Figure 1.1: Construction recipes for the non-chiral and chiral skyrmion from the
hedgehog configuration. R denotes a rotation about the ẑ-axis acting in order pa-
rameter space and P the stereographic projection.

and therefore W = �1 for this configuration as well. These later, chiral Skyrmions
(Fig. 1.1 lower right) will be the main focus of this thesis. In contrast to a Skyrmion,
a vortex does not sweep out the whole sphere. For example a vortex configuration is
given by the map V : R2 ! S2, V : r 7! ê�(r), where ê� = (� sin(�), cos(�), 0)T in
polar coordinates (r,�). The vortex only sweeps out the equator, is singular at r = 0
and has a non-trivial winding for r ! 1.

1.2 Skyrmions in other areas of physics

Within this generalised understanding Skyrmions have found versatile application in
many di↵erent fields of physics. Here we only mention a few.

In 1985 Klebanov proposed the possibility of a Skyrmion crystal [52]. A phe-
nomenological application of this kind of a solution could be a neutron crystal, which
may exist under high pressure inside neutron stars [108]. The theory might resolve
puzzles concerning discrepancies about the maximum mass of stable neutron stars be-
tween observations and predictions by more traditional equation of state descriptions
[47].

Liquid crystals are states of matter which show characteristics of those of a con-
ventional liquid and those of a solid crystal. Many interesting ordering phenomena
have been reported in these systems where the local order parameter is describe by
a director field ( a field of headless vectors) rather than a vector field [110]. Among
these the blue phases which have a regular three-dimensional cubic structure of de-
fects with lattice periods of several hundred nanometers are particularly interesting.
Here so-called 2⇡ disclinations are singular line defects where the 2⇡ indicates that
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the director rotates a full 360� as the singular line is encircled. These singular defect
configurations are unstable towards a non-singular configuration that di↵ers from its
original one only in the immediate neighborhood of the formerly singular line. For
the 2⇡ disclinations these non-singular configurations are given by Skyrmion config-
urations of directors in n = 2. Recently it was shown theoretically [34], with the aid
of numerical methods, that a highly chiral nematic liquid crystal can accommodate
a quasi-two-dimensional Skyrmion lattice as a thermodynamically stable state, when
it is confined to a thin film between two parallel surfaces.

Skyrmions were predicted to occur in quantum Hall systems close to the Landau
level filling fraction ⌫ = 1 for su�ciently small Zeeman splitting gµBB (compared
to the the cyclotron gap !c = eB/mc) [97]. The incompressible ground state of a
two-dimensional electron gas at this filling fraction is ferromagnetic. For su�ciently
small g < gc the charged excitations of the system were argued to be Skyrmions where
their winding number is related to the charge ⌫e of the Skyrmion. The equivalence of
physical charge and topological charge in the system is a consquence of the quantum
Hall e↵ect and is responsible for the dominating role of Skyrmions in determining
many physical properties [28]. Brey and collaborators proposed that ground state
close to ⌫ = 1 is a crystal of charged Skyrmions [11]. Nuclear magnetic resonance
measurements in GaAs provided only indirect evidence [3, 92].

Topologically, skyrmions are equivalent to certain magnetic bubbles (cylindrical
domains) in ferromagnetic thin films, which were extensively explored in the 1970s for
data storage applications [64]. In ferromagnets where long-range order is frustrated
due to long-range dipole-dipole interactions a wealth of di↵erent magnetic patterns
can be seen, such as domain walls, vortices and periodic stripes. In Ref. [112] Lorentz
transmission electron microscopy (LTEM) was used to show that a magnetic field
applied perpendicular to a thin film of hexaferrite turns the periodic stripe domain
state into a periodic, hexagonal lattice of chiral Skyrmion bubbles (c.f. Fig 1.1 lower
right). In contrast to other materials however where the inversion symmetry of the
atomic unit cell is broken, in hexaferrite the helicity of the Skyrmion is not fixed by
crystal structure, but represent a Z2 degree of freedom and a random distribution of
di↵erent helicities in the lattice can be observed. Here even helicity reversals within a
single Skyrmion where observed. Note that the helicity is independent of the winding
number which can be seen from the fact that one may smoothly deform helicities into
one another.

Bogdanov and collaborators studied the mean-field theory of easy-axis ferromag-
nets with chiral spin-orbit interactions. They argued that in certain parameter
regimes a mixed state with a finite density of Skyrmions much like the vortex lattice
in type II superconductors becomes the thermodynamically stable phase [10]. Al-
though the stability analysis was carried out in the circular unit cell approximation
the Skyrmion lattice was predicted to be hexagonal [10]. Here the presence of easy-
axis anisotropy turned out to be a necessary ingredient for the stabilisation of the
mixed phase within the mean-field treatment. Also they assumed the magnetization
vector to be homogeneous along the z-axis [9].
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1.3 Discovery of the Skyrmion lattice in MnSi

In 2009 Mühlbauer et al. reported the discovery of a Skyrmion lattice phase in the
chiral magnet MnSi by a small angle neutron scattering study (SANS). Although in
this section we concentrate on MnSi as the first chiral magnet the spontaneous for-
mation of this phase of whirling magnetisation has been observed in, the Skyrmion
lattice phase has since then been discovered in many other compounds as well. In
2010 the same group discovered a Skyrmion lattice phase in the doped semiconductor
Fe1�xCoxSi [73, 114]. The Skyrmion lattice phase in this material was also later con-
firmed by real-space images using Lorentz transmission electron microscopy (Lorentz
TEM) [114]. Since then the Skyrmion lattice has been observed in a variety of di↵er-
ent materials both as a bulk phase as well as in thin films. Appendix A gives a more
elaborate description of the material properties and the magnetic phase diagram of
various materials the phase has been observed in. Here we only want to mention that
the electronic properties of this set of compounds is very diverse: Among these are
metals, insulators, semi-conductors and also a multi-ferroic material. This show that
the Skyrmion lattice is not a peculiarity of MnSi but rather a general phenomenon
in this class of materials.

The unifying property for all of these materials is that they crystallise in the
so-called B20 structure. The symmetry transformations are described by the space
group P213 with a cubic Bravais lattice [38]. With only 12 symmetry operations this
space group is among the smallest compatible with the cubic lattice crystal system.
The point symmetry at the component sites is C3, the cyclic group of 3-fold 2⇡/3
rotations about an appropriate [111] axis. The nonsymmorphic group P213 contains
in addition 3 screw rotations which involve 2-fold rotations about one of the three
[100] axis followed by an appropriate non-primitive translation (0, 1

2
, 1
2
). Most notably

the list of symmetry transformations does not include the inversion. The lack of
inversion symmetry has profound consequences for the Ginzburg-Landau free energy
description of these materials and for the symmetry constraints on the magnetic
configuration that the materials can show. Materials with non-inversion symmetric
atomic unit-cells can support non-inversion symmetric magnetic structures. There are
other mechanisms by which Skyrmion lattice phase can be stabilised. We will return
to this point at the end of this chapter. Although we concentrate prodominantly on
MnSi in this chapter, the magnetic phases of MnSi are generic for chiral magnets.
Particularly the phase diagram Fig. 1.2b can be seen as a generic phase diagram for
B20 compounds that order helimagnetically.

The primitive cell of manganese silicide (MnSi) contains four pairs of the 2 com-
ponent formula units Mn and Si located at (u, u, u), (1

2
+u, 1

2
�u, ū), (1

2
�u, ū, 1

2
+u),

and (ū, 1
2
+u, 1

2
�u) with uMn = 0.138 and uSi = 0.845. MnSi is an itinerant ferromag-

net with a fluctuating magnetic moment of 0.4 µB and a saturated moment of 2.2 µB

per manganese atom. Before the discovery of the skyrmion lattice phase, it already
attracted attention due to a high pressure anomaly: Although described very well
by Fermi-liquid theory at ambient pressure, MnSi shows a non-Fermi liquid phase
above a critical pressure of pc ⇠ 14.6 kbar with the temperature dependence of the
resistivity given by T 3/2 [81, 79]. In addition in the pressure region 12 kbar� 20 kbar
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Si

T

a

c

b

(a) The atomic unit cell
comprising four formula
units of TSi with T = Mn.
The atoms are located at
(u, u, u), (12 + u, 12 � u, ū),
(12�u, ū, 12+u), and (ū, 12+
u, 12 � u) with uMn = 0.138
and uSi = 0.845.

(b) Magnetic phase diagram of MnSi. For
B = 0, helimagnetic order develops be-
low Tc = 29.5 k. Above Bc2 the mate-
rial field polarises. For intermediate field
values the conical phase develops with
the Skyrmion lattice phase (A-phase) as
a small phase pocket inset in a specific
temperature and field range. Taken from
Ref. [72].

Figure 1.2

a state of partial magnetic order was encountered in neutron scattering experiments
[80].

At ambient pressure and zero applied magnetic field, MnSi develops magnetic or-
der below a transition temperature Tc = 29.5K that is the result of three hierarchical
energy scales. The strongest scale is the ferromagnetic exchange favoring a uniform
spin polarisation (spin alignment). The lack of inversion symmetry of the cubic B20
crystal structure results in chiral spin-orbit interactions, which may be described by
the rotationally invariant Dzyaloshinsky Moriya (DM) interaction favoring canted
spin configurations [22, 69]. The DM interaction originates from relativistic e↵ects,
i.e. spin orbit coupling �SO ⇠ 10�2, and is the lowest order chiral spin-orbit interac-
tion [2, 74, 83]. In addition there are very weak crystalline field interactions which
break the rotational symmetry and align the ordering wave vector of the magnetic
structures along the [111] axes [83].

Magnetic phases of MnSi

The magnetic phase diagram of MnSi, Fig. 1.2b, shows four distinct magnetic phases:
a helical phase, a conical phase, a field-polarized phase and the previously mentioned
skyrmion lattice phase (for historical reasons referred to as the “A-phase” in the
diagram). In the following we briefly describe the magnetic order in each of these.
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Figure 1.3: In the helical phase the magnetisation winds around the propagation
vector q. The magnetization vectors stand perpendicular on q. Red arrows point
into the paper, blue arrows out of it while green arrows lie in the plane of the paper.

Figure 1.4: In the conical phase the spiral propagation vector q aligns parallel to
the applied magnetic field B. The magnetization winds around the q similar to the
helical phase, however here the magentic moments also tilt towards the propagation
vector giving the configuration a uniform magnetisation component along B. Red
arrows point into the paper, blue arrows out of it while green arrows lie in the plane
of the paper.

Helical phase

Cooling the system at zero or only small applied magnetic field below the critical
temperature Tc ⇠ 29 K a phase transition to the helical phase is encountered. In
this phase the magnetization winds around an axis parallel to the spiral propagation
vector q as shown in Fig. 1.3 with the local magnetic moment M perpendicular to
q. The period of the helix, �h = 2⇡/|q| is controlled by the competition of the
ferromagnetic exchange with the chiral spin-orbit coupling. The weakness of the
spin-orbit interaction leads to a wavelength �h ⇠ 190Å which is large as compared
with the lattice constant, a ⇠ 4.56Å. This large separation of length scales results
in an e�cient decoupling of the magnetic and atomic structures. The direction of
propagation q̂ = q/|q| is determined by tiny crystal field anisotropies. Therefore, the
alignment of the helical spin spiral along the cubic space diagonal [111] is weak and
is only fourth power in the small spin-orbit coupling, �4SO. The decoupling from the
underlying atomic structure results in an extremely coherent helical phase with a huge
correlation length of 104 Å as reported in this neutron scattering study [59]. While the
paramagnetic to helical transition is expected to be second order on a mean-field level,
interactions between the helimagnetic fluctuations were theoretically predicted to give
rise to important corrections. Indeed it was recently shown that a Brazovskii-type
scenario is realized where an abundance of strongly interacting fluctuation distributed
uniformly over a sphere in momentum space drives the transition first order [48].

Conical phase

Setting out in the helical phase one finds a phase change upon increasing the applied
magnetic field above Bc1 ⇠ 0.1 T. The stronger magnetic field allows for a net
reduction in free energy by building up a uniform magnetic moment in the direction
of the applied field. While for high magnetic fields above Bc2 ⇠ 0.6 T the DM
interaction can be completely neglected and the magnetic configuration completely

13



(a) In the skyrmion lattice phase the magnetic stucture
forms a hexagonal lattice of anti-skyrmions in the plane
perpendicular to the applied magnetic field. The lattice
constant is given by 2�h/

p
3. The state posses a trans-

lational invariance along the field magnetic field direction
and should therefore be visualised as an ordered arrange-
ment of whirling tubes. Here we show only one layer.

(b) Typical SANS intensities for
the SkX phase. Red (blue) cor-
responds to high (low) intensity.
The color scale is logarithmic
to enhance small features. See
main text for details.

polarizes, there is an intermediate field range where the magnetization winds both
around a spiral propagation vector q parallel to B and in addition possesses a uniform
magnetization in the direction of B as the the magnetisation vectors tilt towards
q̂ = B̂. The phase is referred to as the concial phase and is despicted in Fig. 1.4.
On general grounds a crossover between the helical and the conical phase is expected
where the ordering wave vector q rotates continously from the helical [111] direction
towards the direction of the applied field. If applied along special high symmetry
axis one may encounter a second order phase transition however. The angle between
the propagation vector q and the local magnetization M is smooth function of the
applied magnetic field B and decreases to zero for B > Bc2 .

Skyrmion lattice phase

A first order phase transition separates a tiny pocket in the magnetic phase diagram
close to Tc at finite magnetic field from the surrounding conical phase. This region,
termed for historical reasons “A-phase”, has a hexagonal lattice of anti-skyrmions
perpendicular to the applied magnetic field as its ground state. An illustration of the
skyrmion lattice is despicted in Fig. 1.5a. The configuration possesses a translational
invariance along the direction of the applied magnetic field. The magnetisation con-
figuration should therefore be imagined as an ordered arrangement of whirling tubes
similar to the flux lattice in a type II superconductor. Fig. 1.5a shows only a single
layer. The magnetic configuration can be approximated by a superposition of three
helices with their propagation vectors lying in a plane perpendicular to the applied
magnetic field and relative angles of 120� plus a uniform magnetic moment antiparal-
lel to the applied field. The relative phases are aligned such that the magnetization in
the center of the skyrmion points antiparallel to B. The lattice constant is therefore
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given by 2�h/
p
3. The large lattice constant ensures an e�cient decoupling of the

magnetic structure from the underlying atomic lattice and allows for the orientation
towards the applied field. The orientation of the hexagonal lattice within the plane
however is determined by crystal field anisotropies. For a magnetic field in the [001]
direction, for instance, one of the three q vectors pins weakly in the [110] direction of
the atomic crystal. The building blocks of the lattice are referred to as anti -skyrmions
as their their winding number per magnetic unit cell

W =
1

4⇡

Z

UC

M̂
⇣
@xM̂ ⇥ @yM̂

⌘
(1.6)

is quantized to -1. Here M̂ = M/|M| and the integration is taken over the two-
dimensional magnetic unit cell, which contains exactly one “knot”.

The experimental technique used by Mühlbauer et al. was small angle neutron
scattering (SANS). Neutron scattering is an ideal tool for the study of magnetic order
in bulk phases as neutrons predominantly scatter from the magnetic structure in a
solid-state system due to their magnetic moment. The lack of an electric charge
allows them to penetrate deep into the system under investigation. The neutrons
scatter elastically due to the interaction of their spin with the nuclei and unpaired
electrons of the magnetic atoms in the sample and the scattered neutrons are recorded
by detectors placed behind the sample. The Fourier modes in the magnetic order are
recorded as Bragg peaks in reciprocal space. A more detailed description of SANS
can be found in Appendix B. The Skyrmion lattice can be approximated by three
helices with their ordering wavevectors in a plane normal to the applied magnetic field
and relative angles of 120�. In a typical neutron scattering experiment the incoming
neutron beam is perpendicular to the applied magnetic field. In such a setup not all
of the 6 reflection spots (two per helix at +q and �q) can be seen simultaneously.
The setup chosen by Mühlbauer et al. aligned the incoming beam parallel to the
applied field. This setup is much more advantageous and allows to record all 6 spots
at the same time, c.f. Fig. 1.5b.

Other experimental techniques were also able to prove the existence of the Skyrmion
lattice. In recent years powerful real-space imaging techniques have been modified
and applied to chiral magnetic systems which allow for a direct visualization of the
spatial magnetization configuration. The advantage of such methods is that not only
a single spin texture, but also the crystallization and melting process during phase
conversions can be observed. Fig. 1.6a shows images of the Skyrmion lattice phase
in a thin film of Fe0.5Co0.5Si recorded by Lorentz transmission elctron microscopy
(LTEM). LTEM is a modification of traditional electron microscopy in which the
Lorentz forces between the electrons in a beam and the sample are utilised to gen-
erate images which allow for the real-space observation of the magnetic structure of
materials. The drawback of LTEM is that samples have to be electron transparent
and therefore the technique can only be applied to thin films. Also LTEM images
only the in-plane component of the magnetisation.

Real-space images of the surface of bulk materials can be recorded using the mag-
netic field microscopy (MFM). MFM images forces between the surface of a sample
and the magnetic stray field of a cantilever tip coated with a ferromagnetic film. The
total force acting on the cantilever is inferred from small changes in its resonance
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(a) Lorentz TEM images of the Skyrmion
lattice in Fe0.5Co0.5Si. Taken from
Ref. [113].

(b) MFM images of Skyrmions from the surface
of bulk Fe0.5Co0.5Si. Taken from Ref. [67].

Figure 1.6

frequency. It is complementary to LTEM in the sense that it is only sensitive to
the out-of-plane component of the magnetisation. Fig. 1.6b shows MFM images of
Skyrmions from the surface of bulk Fe0.5Co0.5Si. Red (blue) color indicates an out-
of-plane component of the magnetisation that is anti-parallel (parallel) to the line of
sight. For more information about real-space imaging techniques, see Appendix B.

Other physical quantities also show signatures in the Skyrmion lattice phase. For
instance the magnetic AC suscpetibility � shows a sudden drop to a lower when
entering the Skyrmion phase from the conical phase by increasing the applied field.
It then rises exceeding the value in the conical phase before entering the conical phase
once again for higher magnetic fields [101]. A more dramatic e↵ect can be seen in
measurements of the Hall e↵ect in MnSi. Here due to the unique topology of the
Skyrmion lattice an additional top hat contribution to the Hall signal can be seen in
the Skyrmion lattice phase [85]. Chapter 4 contains an elaborate discussion of the
physical e↵ect and the experimental measurements.

Ever since the original discovery of Skyrmions in chiral magnets in 2009, many
exciting developments have deepened our unstanding of these fascinating structures.
Here we mention only a few. Neubauer et al. showed that the topological properties
of the Skyrmion lattice lead to additional contribution to the Hall signal, called the
topological Hall e↵ect[75]. Everschor et al. analyzed the spin-transfer e↵ects result-
ing from an electric current driven through a Skyrmion lattice, and, in particular,
focussed on the current-induced rotation of the magnetic texture by an angle in such
a setup [26]. Schulz and collaborators have shown that the forces acting on conduction
electrons moving through a Skyrmion lattice can be accounted for by the introduction
of emergent (fictious) electromagnetic fields. This o↵ered fundamental insights into
the connection between the emergent and real electrodynamics of skyrmions in chiral
magnets [88]. Iwasaki et al. showed in a numerical study that a single skyrmion
can be created by an electric current in a simple constricted geometry comprising a
plate-shaped specimen of suitable size and geometry [45]. In experimental realisation
of Skyrmion creation however with a di↵erent mechanism was reported by Romming
and collaborators in 2013. They showed that on an ultrathin magnetic film in which
individual skyrmions can be written and deleted in a controlled fashion with local
spin-polarized currents from a scanning tunneling microscope [86]. There have been
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many more interesting and noteworthy publications which we cannot mention here
and without question there will be many more.
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Chapter 2

Ginzburg-Landau theory for
Helimagnets

In the vicinity of a second order phase transition, the correlation length of a system
diverges. This indicates that the properties near the critical point are independent of
the microscopic details. Many universal system properties can therefore be described
by phenomenological theories which reduce the redundancy in the system description
greatly. A phenomenological theory for contiuum phase transitions is given by the
so called Ginzburg-Landau theory. Based on Landau’s theory of second-order phase
transitions [57], Ginzburg and Landau expanded the free energy of a superconductor
in terms of an order parameter  , which is nonzero in the ordered phase and vanishes
above the transition temperature Tc thus laying the foundation for what became one
of the most successfull and widely used theories in condensed matter physics.

In this chapter we will give an introduction to Ginzburg-Landau theory for the
description of magnetic systems. In section 2.1 we will start with a very general
description of the structure of this theory and then apply it to the special case of
helimagnets in section 2.2.1.

2.1 Theory of continuum phase transitions

The microscopic origin of magnetism in metals involves the quantum mechanical
treatment of spinful, itinerant electrons and is highly complicated and material de-
pendent. The full theory allows to answer the question which materials will exhibit
ferromagnetism. However assuming that a given system shows such behaviour, a
microscopic theory is neither necessary nor desirable to describe for instance the dis-
appearance of magnetic order due to thermal fluctuations. The degrees of freedom
which describe the transition are long wave-length collective spin excitations with
typical length scales much in excess of the lattice constant. Therefore an e↵ective de-
scribtion can be achieved by coarse-graining the system and modelling the magnetic
order by the average magnetization of a large number of spins. The average magne-
tization is then a smooth function on the the length scale of the lattice constant and
one arrives at a continuum theory.
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Figure 2.1: The order parameter depends on temperature and other external param-
eters. In second-order phase transitions the order parameter is a continous function
of the system temperature T and vanishes above a crititical temperature Tc.

The state of many condensed matter systems can be described by the appearance
of a certain order in the system or the absence of the same. The order parameter
is a concept which seeks to quantify the “amount of order” present in the system.
Examples of order parameters are, for instance: magnetization M (ferromagnets),
polarization P (ferroelectrics), distortions (structural transitions) and the complex
order parameter field  in superconducting systems.

Typically at high temperatures the system is disordered as the state is chosen by
minimization of the corresponding thermodynamic potential, i.e. Gibbs free energy.
For large T the deciding factor is the entropy of the system, which it seeks to maximize
hence favouring disordered system. Lowering the temperature the importance of the
entropy is diminished and the systems seeks to optimize its internal energy arranging
its degrees of freedom in an ordered fashion.

Therefore the order parameter ⌘ of the system depends on temperature and other
external parameters. For now we will assume that the state of the system can be
described by a spatially homogenous order parameter. It is non-zero in the ordered
phase of the system and vanishes upon increasing the system temperature above
the critical temperature Tc. For second order phase transitions this happens in a
continous fashion, Fig. 2.1. The state of the system and in particular the value of the
order parameter ⌘ is determined by the condition that the (Gibbs) free energy G is
minimized. The free energy is related to the systems partition function Z

Z = e�G =

Z
D⌘e�F [⌘], (2.1)

where F [⌘] is the free energy functional.
Due to the smallness of ⌘ close to the critical point Tc the free energy functional

F [⌘] can be expanded in a power series

F [⌘] = F0 + ↵⌘ + �⌘2 + �⌘3 + �⌘4 + . . . (2.2)

It should be noted that this expansion can only involve terms, which are compatible
with the symmetries of the microscopic Hamiltonian. The coe�cients are functions of
the external system parameters. In the mean-fied approximation one simply looks at
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Figure 2.2: Sketched dependence of the free energy F [⌘] on the parameters ↵ and
�. For ↵ = 0 (no external field) the order parameter vanishes above the transition
temperature, i.e. �(T > Tc) � 0.

the stationary points of the free energy functional, neglecting any fluctuations around
this point,

G ⇠ min
⌘

F [⌘] = F [⌘0]. (2.3)

For a vanishing linear term ⇠ ↵ the free energy functional develops a minimum at
⌘ = 0 for T > Tc; the order parameter vanishes above the critical temperature. The
quadratic term must obey the conditions

�(T ) < 0, for T > Tc

�(T ) > 0, for T < Tc (2.4)

If the expansion of the free energy is truncated at 4th order the thermodynamic
stability of the system is ensured, i.e. a diverging order parameter ⌘ is prevented,
only if the prefactor of the quartic term is positive, � > 0. The dependence of F [⌘] is
sketched in Fig. 2.2.

The Gaussian fluctuations around the mean field ⌘0 are the leading order correc-
tion to the mean field result

G ⇠ F [⌘0] +
1

2
ln det

✓
�2F

�⌘�⌘

◆ ����
⌘0

(2.5)

As we will see later these fluctuations can play a decisive role as to what phase the
system will actually realize.

2.2 Ginzburg-Landau theory for magnetic systems

For a ferromagnetic system, such as iron, the order parameter is given by the mag-
netization M. Below the critical temperature Tc, the Curie temperature, the system
spontaneously orders characterized by a finite magnetization M, the thermal average
of the microscopic magnetic moments. The magnetization is the conjugate, thermo-
dynamic variable to the applied magnetic field H. Fixing the direction of H = Hêz
one finds that for temperatures T < Tc the regime H > 0 and H < 0 is separated by
a line of phase transitions, which ends at T = Tc at the critical point C, see Fig. 2.3.
The system may be brought from the one regime to the other either by choosing
a discontinous path which crosses the phase boundary (path A) or continously by
driving it around the critical point, T > Tc (path B).
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Figure 2.3: Phase diagram for a ferromagnet. Here the surface of the equation of
state is shown in the space of the conjugate variables, magnetization M and external
magnetic field H, and temperature T . For any two states in the state space a con-
necting, continous path may be found that avoids the line of phase transition, H = 0
and 0  T < Tc, by going around the critical point C.

2.2.1 Inversion-symmetric magnetic systems

In the absence of an applied magnetic field the Hamiltonian of typical ferromagnetic
system is invariant under

1. spatial inversion, r ! r0 = �r

2. time-reversal, t ! t0 = �t

In addition in the presence of a magnetic field H it possesses the symmetry M ! �M
ifH ! �H. As can be seen in Fig. 2.3 the magnetizationM is small in the immediate
vicinity of the Curie point C and the correlation length ⇣ diverges. Therefore it is
possible to expand the free energy functional F [M] in terms of M and rM. The
above list of transformations poses a minimal symmetry requirement that each term
in the expansion has to fulfil. Assuming the validity of these claims the expansion of
the free energy functional F [M] assumes the form

F [M] =

Z
d3r
⇥
�HjMj + r0M

2
j + UM4

j + J (@iMj)
2 + . . .

⇤
. (2.6)

Appropriate phenomenological parameters r0, U and J must be chosen for the par-
ticular microscopic system. J parametrizes the ferromagnetic exchange: a positive J
describes the tendency of neighbouring magnetic moments to align parallel to each
other by penalizing spatially modulated order parameter configurations. As already
mentioned in section 2.1 the stability of the system requires U > 0. Condition 2.4
constraints the temperature dependence of r0. In order to have a finite (vanishing)
magnetization for T < Tc (T > Tc) r0 should be negative (positive) below (above)
the Curie temperature Tc. Linearizing the temperature the dependence of r0 around
Tc one finds

r0(T ) = ↵(T � Tc) + . . . (2.7)

with a positive constant, ↵ > 0.
For T < Tc, H the free energy functional F [M] is minimised by spatially homoge-

nous configuration M(r) = M0. The ferromagnetic exchange term proportional to J
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vanishes. The functional Eq. 2.6 is rotationally invariant in this case and the direction
of M0 is spontaneously chosen. The magnitude of M0 is fixed by minimising the free
energy functional

|M0| =
r

�r0
2U

. (2.8)

As for T > Tc r0 changes sign and assumes positive values, the square root becomes
imaginary and signals a vanishing of the magnetisation, M0 = 0. For T < Tc |M0|
assumes finite, positive values.

2.2.2 Non-inversion-symmetric magnetic systems

In certain materials so-called chiral magnets the atomic unit cell lacks inversion sym-
metry. Appendix A describe 4 exemplary materials which belong to this class. The
absence of this symmetry transformation relaxes the symmetry requirements imposed
on the free energy functional F [M] and allows for additional terms to appear in the
expansion: terms with an odd number of spatial derivatives transform odd under
inversion symmetry. Of these previously forbidden terms that may now appear in
Eq. 2.6 the Dzyaloshinskii-Moriya (DM) interaction with only a single spatial deriva-
tive is the most important contribution.

Z
d3r 2D M · (r⇥M) (2.9)

Originally derived on phenomenological grounds by Dzyaloshinskii [22] to explain the
appearance of weak antiferromagnetism in materials such as Fe2O3 and the carbonates
of Mn and Co, Moryia went on to explain the origin of this term as a combination
of superexchange interaction and spin-orbit interaction [69]. Thereby the coupling
constant D scales linearly in the spin-orbit coupling, D ⇠ �SO.

Canted magnetization configurations minimize the DM interaction term. The
competition with the ferromagnetic exchange interaction leads to the appearance of
helical order in the system characterized by an ordering wave vector q = q q̂, where
the magnetization winds around an axis q̂. The pitch q of this helix is determined by
the relative strength of the coupling constants D and J .

q =
D

J
(2.10)

The spin-orbit coupling for the materials we are interested (Appendix A) is small,
�SO ⇠ 10�2. This leads to a small DM interaction and a very large periodicity of the
magnetic structures, often making the magnetic unit cell orders of magnitude larger
than the atomic unit cell. One finds for the periodicity ⇠mag of the magnetic structure

⇠mag ⇠ q�1 ⇠ D�1 ⇠ ��1
SO (2.11)

As spatial derivatives are inversely proportional to the typical length scale over which
the magnetization rotates r ⇠ ⇠SO, terms with higher orders of spatial derivatives
are suppressed by the weakness of the spin-orbit coupling �SO.
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Nevertheless the appearance of terms O(�3SO) has important consequences. The
presence of higher order terms in the spin-orbit coupling due to crystal field anisotropies
breaks the rotational symmetry of the free energy functional F [M] and allows the or-
dering wave vector q to choose a preferred orientation (h111i in the case of MnSi, see
Appendix A).

2.3 Numerical minimisation of the Ginzburg-Landau

functional

The mean-field configurations of the magnetisation can be studied by numerical min-
imisation of an appropriately discretised Ginzburg-Landau functional. For the study
of phases with a translational invariance a discretisation in momentum space is advan-
tageous. For helimagnets a characteristic length scale is defined by the ratio between
the ferromagnetic exchange J and the DM interaction D which in term defines a
characterisitc momentum, Eq. 2.10. A discretisation of the Functional in terms of q
and higher-order moments gives even for a small number of minimisation parameters
accurate results. However we will be predominantly interested in mean-field configu-
rations which lack translational invariance. In this case better results are achieved if
one discretises in real-space. The free-energy functional for a helimagnet up to order
�2SO is given by

F [M] =

Z
d3r
⇥
r0M

2 + J (rM)2 + 2D M · (r⇥M) + UM4 �H ·M
⇤
. (2.12)

It turns out that the number of parameters in the above functional can be reduced
by an appropriate rescaling of the length, magnetisation, magnetic field and energy
units. By the rescaling

r ! D

J
r

H !

s

U

✓
J

D

◆3

H

M !
r

UJ

D2
M (2.13)

the free energy functional F [M], Eq. 2.12, can be brought to the form [72]

F [M] = �

Z
d3r
⇥
r̃0M

2 + (rM)2 +M · (r⇥M) +M4 �H ·M
⇤
, (2.14)

with the rescaled r̃0 = J
D2 r0 and the new energy unit � = JD

U . From the above
expression we see that the only parameters determining the physics in the Ginzburg-
Landau regime are r0 and H. A discretisation in real-space of the above expression
can be achieved when the continous variable r 2 R3 is replaced with a grid rijk =
iaêx+jaêy+kaêz with i, j, k 2 N and a the discretisation constant. The magnetisation
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density M will be replaced by the average magnetisation mijk in a single cell with
volume a3, mijk. In order to keep the energy of the discretised system finite in the
limit a ! 0 one has to rescale the magnetisation according to

Z
d3r M(r)4 !

X

ijk

a3M4
ijk

!
=
X

ijk

m4
ijk . (2.15)

where Mijk = M(rijk). From the above consideration follows that mijk = a�3/4Mijk.
With the same reasoning one finds for the magnetic field hijk = a9/4H(rijk) and
for r̄0 = a3/2r̃0. Finding the mean-field configuration of a system parametrised by
(r0, U, J,D,B) therefore involves two steps. First one rescales the system according
to Eq. 2.14 and finds r̃0. Then a discretisation parameter a is chosen small enough
so that the discretised model approximates the continuum model accurately enough
and the parameters b and r̄0 of the discretised system are calculated. A numerical
minimisation yields a discretised magnetisation configuration which can be translated
back to the original model with the above relations.

The discretisation of the model involves the discretisation of the di↵erential oper-
ators in the expression for the free energy. After partial integration the ferromagnetic
exchange term and its discrete approximation are given by
Z

d3r
�
�Mr2M

�
⇡ a�1/2

X

ijk

� (mi+1jk +mi�1jk) ·mijk � (mij+1k +mij�1k) ·mijk

� (mijk+1 +mijk�1) ·mijk + 6m2
ijk . (2.16)

Similarly the approximation for the DM interaction term assumes the form
Z

d3r M · (r⇥M) ⇡ � a1/2
X

ijk

mijk ⇥mi+1jk · êx +mijk ⇥mij+1k · êy +mijk ⇥mijk+1 · êz.

(2.17)

In summary the discretised model is given by

f [m] = �
X

ijk

⇥
(r̄0 + 6/a1/2)m2

ijk +m4
ijk � hijk ·mijk � a�1/2(mi+1jk +mi�1jk) ·mijk

� a�1/2(mij+1k +mij�1k) ·mijk � a�1/2(mijk+1 +mijk�1) ·mijk

� a1/2mijk ⇥mi+1jk · êx � a1/2mijk ⇥mij+1k · êy � a1/2mijk ⇥mijk+1 · êz
⇤

(2.18)

For a continuum model discretised on a N ⇥ N ⇥ N grid the above expression is
a function of 3N3 optimisation parameters. An mean-field magnetisation configu-
ration can be calculated on a computer using numerical minimisation algorithms.
The conjugate gradient method (CG) is a standard algorithm for the minimisation
of quadratic functions of the form ||A · x� b||2 with the dimensionality of x so large
that a direct calculation is too time-consuming. At the minimum x⇤ the gradient
vanishes, rf(x) = 2AT (A · x � b) = 0. CG therefore calculates an approximate
solution of the equation Ã · x = b̃ with Ã = ATA and b̃ = ATb. The conjugate
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Figure 2.4

gradient method has been generalised (non-linear conjugate gradient method) to non-
linear optimisation problems. The generalisation may work if the non-linear function
is approximately quadratic near the mininum, which is always the case if the function
is twice di↵erentiable at the minimum. Over the years a number of di↵erent optimi-
sation strategies for non-linear functions have been developed - all based on the CG
[31]. For the numerical optimisation of the free energy functional above we use the
Fletcher-Reeves variant of the non-linear CG algorithm as implemented in the GSL
(GNU Scientific Library). A more detailed account of the algorithm can be found in
Appendix C. It should be noted though that the CG method finds local minima - it
is not guaranteed to find the global minimum of the functional.

The lattice discretisation a can be used to control how accurately the discretised
model approximates the continuum model. As an example we calculate the mean-
field configuration of a system with r̄0 = 2 and small magnetic field h. For these
parameters the system is in the helical phase and we therefore initialise the system
by writing a single period of a helix with the ordering vector q pointing along the x-
direction into a system of size 10�⇥1⇥1 with periodic boundary conditions in the x-,
y- and z-direction. Note that due to the translational invariance of the configuration
in the y- and z-direction it su�ces to choose 1 for Ny and Nz. For the discretised
system on a lattice the pitch of the helix is given by tan(q) = D

J = a with a the
lattice discretisation. The parameter � is therefore related to a via a = tan(2⇡/10�).
Fig. 2.4a shows the energy density E after convergence of the minimisation algorithm
as a function of Bz for various discretisations �. The solutions are seen to quickly
converge towards an asymptotic solution for larger �s. Fig. 2.4a shows the energy
density of the approximation for Bz = 0 as a function of the parameter �. The
solutions converge quadratically in � against the energy of the exact solution for the
continuum model (red dashed line).
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Figure 2.5: Mean-field phase diagram of a 2D helimagnet at T = 0.

2.4 First applications

Magnetic phase diagram of 2D helimagnet

We calculate the magnetic phase diagram (in mean-field approximation) of the two-
dimensional helimagnet (in the x-y plane) for r̄0 = 1 and the magnetic field h applied
perpendicular to the system, i.e. h = hêz. We discretise the system on a 100 ⇥
100 ⇥ 1-grid with periodic boundary conditions in the x- and y- direction. The
local minimum the minimisation algorithm converges to is determined by the initial
position in the parameter space, i.e. the initial magnetisation configuration. The
only way to determine reliably the actual phase the system will exhibit is to start the
algorithm in all possible choices, let it converge and then compare the final free energy
densities. The phase with the lowest free energy density is the stable phase of the
system. For a two-dimensional helimagnet there are three competing ordered phases:
a helical phase, the Skyrmion lattice phase and the field-polarised phase. Fig. 2.5
shows the free energy density of the converged solutions for the three phases as a
function of the applied magnetic field Bz. For fields in the range 0  Bz < 0.12 ⌘ Bc1

the helical phase has the lowest energy. At Bz ⇡ 0.12 the free energy density of
the helical and the SkX phase become degenerate and for 0.12  Bz < 0.4 ⌘ Bc2

the SkX phase has the minimal free energy. Above Bz > 0.4 the system is field-
polarised. These results are in qualitative agreement with Monte Carlo results for
two-dimensional helimagnetic systems [19].

Defected phases

Up until now we have considered only phases with a translational symmetry. In
such situations it is much more e�cient to express the free energy function, Eq. 2.14,
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Figure 2.6: Energetic cost for the introduction of a single defect in the helical (black
line) and Skyrmion lattice phase (green line: 2 skyrmions merged, red line: vacancy).
The removal of a single Skyrmion from the lattice always costs a positive energy.

first in Fourier space and then discretize the momenta. The strength of the real-
space discretisation however lies in the possibility to study the energetics of defected
configurations. Here we compare the energetic costs of two types of defects. The
addition of a single skyrmionic defect to an otherwise helical changes its total winding
number from 0 to 1, c.f. Fig. 2.7 (left). The removal of a single Skyrmion from
the SkX reduces the total winding number by 1, c.f. Fig. 2.7 (middle and right).
There are two ways to remove a single from the Skyrmion lattice, corresponding to
two di↵erent local minima that the minimisation algorithm may converge to: one
can remove a single Skyrmion by overwriting it with a field polarised configuration,
thus creating a vacancy in the lattice (right) or one may merge two neighbouring
skyrmions (middle). In these visualisations the magnetic field vector points towards
the observer, blue color signifies magnetic momtents pointint towards the observer
as well while red region marks areas where the moments point away. We compare
the energy of these three defects as a function of the applied magnetic field Bz. The
expectation is that for small applied fields the addition of a single skyrmionic defect
to the helical phase is energetically costly since the helical phase is the ground state.
For larger fields however the SkX becomes the ground state, c.f. Fig. 2.5, an the
addition of a single Skyrmion could even lower the total system energy as it brings
the system closer to its ground state configuration. For vacancies in the SkX and
the merging of two Skyrmions the situation us just opposite we expect high energetic
costs at hight Bz fields and a reduction of the cost as the applied field is lowered.
Close to the critical field Bc1 a situation could arise where the energetic cost for both
types of defects is negative. In such a situation an additional phase is stabilised which
is characterised by a finite density of defects. Fig. 2.6 shows the energy of the two
types of defects as a function of the applied field. Indeed the addition of a single
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Figure 2.7: Left: Defected helical phase. Middle: defected Skyrmion lattice phase,
vacancy. Right: defected Skyrmion lattice phase, 2 skyrmions merged.

Skyrmion to the helical phase costs a large positive amount of free energy �EH for
small applied fields. Slightly above the critical field strength the cost function �EH

changes sign and the addition of defects become energetically favourable. Although
the curve for the removal of a Skyrmion from the SkX by creating a vacancy (red
curve) shows the expected slope, a vacancy costs for all field strengths a finite amount

of energy �E(1)
SkX. This is in contrast to the merging of two Skyrmions which costs

a positive energy �E(2)
SkX for large fields and becomes favourable for field strengths

below Bz . 0.9. There is however no value of Bz for which both the merging of
two skyrmions in the skyrmion lattice phase and the introduction of single skyrmion
defect in the helical phase are both energetically favourable. We therefore find no
indication for an additional phase with a finite defect concentration. Since have only
studied the cost of a single defect we can however not exclude this idea either.
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Chapter 3

Langevin dynamics of magnetic
systems

For deterministic, macroscopically known systems the e↵ect of fluctuations can be
studied using the Langevin approach. Fluctuations are introduced into the equations
of motion by adding random force terms, so called “noise generators”. This approach
gives a more concrete picture than the Fokker-Planck equation. In this chapter we
briefly review the introduction of the Langevin approach to Brownian motion in
section 3.1. We then discuss the generalisation of the approach to magnetic systems in
section 3.2 followed by a description of the necessary steps to calculate an approximate
time evolution numerically in section 3.2.4.

3.1 The Langevin equation

In 1827 botanist Robert Brown gave a detailed account of what later became known
as “Brownian motion” while studying the plant life of the South Seas. He examined
suspensions of pollen in water under a microscope when he noticed that in all cases
the pollen is in rapid oscillatory motion. Initially many speculations surrounded the
observed phenomenon ranging from Brown’s original assertion that the motion was
peculiar to the male sexual cells of plants to the early attempt by Nägeli [17] to
explain the observation by considering the the conservation of momentum. But it
was left to Einstein in 1905 [23] to explain the Brownian motion on the basis of a
consistent stochastic theory.

Einstein’s reasoning can be summarised as this: If a Brownian particle immersed
in a fluid collides with a fluid particle, its velocity changes. However in the limit
of a very viscous fluid the velocity is quickly dissipated away and the e↵ect of the
collision is merely a displacement of the Brownian particle. Therefore in Einstein’s
view the process consisted of random jumps performed by the particle; that is, the
particle performs a random walk. With the assumptions that the increments are
small he derived a di↵erential equation for the probability density distribution, a
Fokker-Planck equation, of the particle’s displacements. After obtaining its solution
he derived that the mean-square displacement grows linearly in time. Using the fact
that at equilibrium the Maxwellian distribution should hold for the velocities it was

33



Figure 3.1: Exemplary trajectory of a Brownian particle.

possible to express the Avogadro constant in terms of the viscosity of the fluid and
the system temperature. Subsequent experimental measurements by Perrin in 1908
found agreement in the extracted Avogadro constant to within 19% with the accepted
value [78].

3.1.1 The Langevin approach to Brownian motion

The theory by Einstein and Smoluchowski [95] is expressed entirely in terms of the
underlying probability distribution of the Brownian particles and the Fokker-Planck
equation. Although in agreement with experiments the description strongly abstracts
from the underlying Newtonian physics. In 1908 Langevin introduced the concept of
a equation of motion for a random variable and in doing so invented the subject of
stochastic di↵erential equations. Langevin simply wrote down the Newtonian equation
of motion of the Brownian particle under the assumptions that it experiences two
forces: (a) a deterministic frictional force ↵ẋ which models the dynamical friction
experienced by the particle as it brushes against the surrounding fluid and (b) rapidly
fluctuating forces F(t) which are also due to an interaction with the surrounding fluid:
impacts by fluid atoms.

The equation of motion therefore assumes the form

mẍ(t) = �↵ẋ(t) + F (t) (3.1)

wherem is the mass of the Brownian particle and ↵ > 0 the strength of the dissipative
mechanism which can be thought of as Stokes’ law. The equations of motion are
extended here with the Langevin noise term F (t) by a mere addition. In this case
the noise term is said to be additive. Three assumptions about the statistical nature
of the force underly the mathematical treatment of the above equation:

1. The force F (t) does not depend on the current particle position x.

2. The time scale on which the force F (t) varies is extremely short as compared
to the timescale of observation.
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3. The statistical average of F (t) taken over an ensemble of particles vanishes, i.e.
F (t) = 0.

From assumption 2 one can deduce that the particle collision are basically instan-
taneous. This can be expressed by making the autocorrelation time of the random
variable F (t) arbitrarly small

F (t)F (t0) = 2↵kBT �(t� t0) (3.2)

where � is the Dirac delta distribution. Eq. (3.2) is a mathematical idealisation of
assumption 2 and as such certainly open to criticism. In reality the autocorrelation
function starting from 2↵kBT quickly drops to zero [17]. The white noise becomes
coloured.

Eq. (3.2) relates the autocorrelations of the fluctuations to the strength of the
dissipative mechanism ↵ and as such it is a fluctuation-dissipation theorem [55, 68].
The physical picture is this: the random kicks of the noise term F (t) have a tendency
to spread out ẋ while the damping term tries to bring ẋ back to zero. The balance
between these two opposing tendencies is the equilibrium distribution.

To make a connection with Einstein’s theory it is easy to derive from Eq. (3.1) the
formula for the mean square-displacement of the Brownian particle. Upon multiplying
Eq. (3.1) with x and noting that

ẋx =
1

2

d

dt
x2 and ẍx =

1

2

d2

dt2
x2 � ẋ2 (3.3)

we find after taking the thermal average

m

2

d2

dt2
x2 �mẋ2 = �↵

2

d

dt
x2 + F x (3.4)

Due to assumption 1 in the above list the force F and the particle position x are
completely uncorrelated, therefore the last term in Eq. (3.4) will vanish, i.e. F x = 0.

Statistical mechanics tells us that in the presence of the dissipative mechanism ↵
the system will approach thermal equilibrium in the long time limit thus connecting
our above considerations to the notion of temperature: the Maxwellian distribution
can be assumed to hold for the velocity of the Brownian particle so that the mean
velocity becomes

1

2
mẋ2 =

1

2
kBT (3.5)

Defining u ⌘ d/dt x2 Eq. (3.4) becomes

m

2

du

dt
+
↵

2
u = kBT (3.6)

which is solved by u = Ce�↵t/m + 2kBT/↵ where C is a constant of integration. For
large t the exponential will play no role owing to the fact that the system will forget
its initial conditions and one finds a linear growth of the mean-square displacement,
i.e. a di↵usive motion,

�x2 =
D�

x(t)� x(0)
�2E

= 2
kBT

↵
t (3.7)

which is just the result derived by Einstein.
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3.1.2 The Itô and Stratonovich dilemma

The Langevin approach has been used by many authors to treat non-linear systems
[116]. For non-linear systems additional problems arise concerning the interpretation
of the Langevin equation. This is important for the treatment of magnetic system as
their equations of motion are inherently non-linear.

Let us suppose we have a physical system with a non-linear equation of motion,
ẏ = A(y) and following the Langevin approach we add a noise term to model the
fluctuations in the system. In the following we will suppose that the system is “fully
non-linear” which means that the noise term is not merely added (additive noise) to
the equations of motion but is multiplied by a function B(y) of the dynamical variable
y (multiplicative noise)

ẏ = A(y) + B(y)F (t) (3.8)

In case the spectrum of the noise term F (t) is truly white, the above equation (without
further information) bears no meaning. The problem lies in the Langevin noise term.
If the autocorrelation function of F (t) is truly proportional to a Dirac delta function
(white noise), F (t) can be visualised as a sequence of delta peaks occuring at random
times [105]. Since according to Eq. (3.9) each delta function causes a jump in the
dynamical variable y, the value of y is not defined at that time and hence also the
value of B(y) is not defined. Eq. (3.9) does not specify whether B(y) should be
evaluated before or after the jump or maybe the mean of both. This is not only
a question of mathematical rigour but rather these various choices lead to di↵erent
Fokker-Planck equations and hence to di↵erent probability density distributions.

Physicists typically prefer the Stratonovich interpretation who opted for the mean
value. After integrating Eq. (3.9) it assumes the following form in the Stratonovich
interpretation

y(t+�t)� y(t) = A (y(t))�t+B

✓
y(t) + y(t+�t)

2

◆Z t+�t

t

F (t0)dt0 (3.9)

Another way to arrive at this equation is to follow the treatment of Doob [20] who
removes the non-linearity in the noise term of the equations of motion by defining the
transformation

z =

Z
dt0

ẏ

B(y)
, and A(z) =

A(y)

B(y)
(3.10)

and proves that this choice leads to Eq. (3.9). This shows that the naive use of our
usual rules of calculus lead to the Stratonovich interpretation.

Itô opted for the value of y before the arrival of the delta peak. The corresponding
integrated equation assumes the form

y(t+�t)� y(t) = A (y(t))�t+B (y(t))

Z t+�t

t

F (t0)dt0 (3.11)

This interpretation requires new transformation laws incompatible with the usual
rules. They require a new form of calculus: Itô calculus. The Itô interpretation can
be made equivalent to the Stratonovich result if an additional “drift” term is added
to the stochastic di↵erential equation [36].
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These di�culties have to be kept in mind, especially if numerical solutions of
stochastic di↵erential equations are to be obtained. Di↵erent numerical integration
schemes converge to di↵erent stochastical interpretations. Sometimes it is di�cult to
tell from the integration rule when exactly B(y) is being evaluated. Care must be
taken that a form of the stochastic equation is chosen that is compatible with the
choice of stochastic quadrature rule.

3.2 Equations of motion for magnetic systems

3.2.1 Landau-Lifschitz-Gilbert equation

Mechanics tells us that the time rate of change of angular momentum is given by the
applied torque.

d

dt
L = T (3.12)

Considering a lattice of magnetic moments m in a magnetic field He↵ the angular
momentum is given by m/� where � is the gyromagnetic ratio and the torque acting
on the magnetic moment by �m⇥He↵ ; thus

d

dt
m = ��m⇥He↵ (3.13)

This describes the precession of the magnetic moment m in the e↵ective magnetic
field. Upon scalar multiplication of Eq. (3.13) with the magnetisation m the right
hand side vanishes. Therefore the above equation describes the dynamics of magnetic
moments with a fixed amplitude m = |m|. The field He↵ contains both contributions
from an applied field and also from exchange and demagnetisation fields. The e↵ective
magnetic field He↵ can be obtained from the Ginzburg-Landau free energy functional
F [m]

He↵ = ��F [m]

m
(3.14)

For F [m] = �m ·H0 with H0 a constant magnetic field one finds indeed He↵ = H0.
In a more general situation He↵ will also include e↵ects such as magnetic anisotropy,
interacting with other spins, etc.

There are several processes in a solid which give rise to a damping of the magnetic
motion (magnons, phonons, etc.). Starting from the Dirac equation for electrons in
magnetic and electric potentials it has been shown that magnetic damping can arise
from spin-orbit coupling as relativistic corrections to the spin Hamiltonian [43]. Typ-
ically however, fundamental analysis of damping mechanisms is di�cult and therefore
damping terms are usually added on phenomenological grounds. The simplest relax-
ation term which can be written down is the so called Gilbert damping

↵

m
m⇥ d

dt
m (3.15)

It is important to appreciate the extent to which the coupling to these subsystems
is included in this expression: here �↵ d/dt m is only the dissipative e↵ective field
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(a) ↵ = 0 (b) ↵ = 0.1

Figure 3.2: Solutions of the equations of motion

and describes only the (ensemble) average of rapidly fluctuating random forces. For
an individual moment this expression should be augmented by a term hfl(t) whose
statistical average is zero. More on that later.

The full Landau-Lifschitz-Gilbert equation takes the form

d

dt
m = ��m⇥He↵ + �

↵

m
m⇥ (m⇥He↵) (3.16)

As an example we show in Fig. 3.2 the time evolution for a single spin of length
|m| = 1 with the initial condition m(0) = (1, 0, 0)T in an applied magnetic field
H(ext) = (0, 0, 0.01)T with Gilbert damping ↵ = 0 (Fig. 3.2a) and ↵ = 0.1 (Fig. 3.2b).
For ↵ = 0 the energy of the system is conserved as the only dissipative mechanism
is switched o↵. The spin precesses at a constant polar angle ✓ = ⇡/2 around the

applied magnetic field H(ext) with angular velocity ! = H(ext)
z (we set � = 1). For the

↵ = 0.1 the spin simply relaxes in a spiral towards the applied magnetic field H(ext)

on a timescale of the order 1/↵.

3.2.2 Spin-Transfer Torques

The field of spintronics seeks to manipulate magnetic configurations by electric ef-
fects. The short switching times for electric currents and the possibility to apply
them locally using appropriately designed circuity promises, especially in the context
of applications for future information technology devices, tremendous advantageous
over the control through magnetic fields. The giant magnetoresistance (GMR) e↵ect,
discovered in 1988 indepedently by Grünberg [8] and Fert [1], is an example of a
successful knowledge transfer from the solid state community to technology compa-
nies. Here a very e�cient control of electric currents is achieved by altering magnetic
structures. The e↵ect is observed in thin-film structures composed of alternating fer-
romagnetic and non-magnetic conductive layers leads to a significant change in the
electrical resistance depending on whether the magnetization of adjacent ferromag-
netic layers are in a parallel or an antiparallel alignment. The main application of
GMR is magnetic field sensors, which are used to read data in hard disk drives.
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In the middle of 1980s Berger [6, 33] proposed the possibility to drive domain walls
by the application of electric currents. However it was not until the discovery of the
spin-transfer torques in the 1990s due to Berger [7] and Slonczewski [94] that research
on current-driven magnetisation dynamics made serious progress. A demonstration of
how these physical ideas might be used for the creation of new information technology
devices was given by Parkin and his group [76] who developed a prototypical race-
track memory device in which spin-transfer torques were used to move ⇠ 100 bits
encoded in a domain wall pattern along spatially fixed read and write heads by
applying electric currents. The great disadvantage of domain walls in this respect
are the large current-densities (⇠ 1011 A/m2) necessary to depin them. This leads
to substantial ohmic heating and a destruction of the magnetic state. Jonietz et al.
[49] showed in 2010 that a Skyrmion lattice, on the other hand, exhibits an ultra-
low electrical threshold current density of ⇠ 106 A/m2 about five order of magnitude
smaller compared to domain walls. Here the application of a thermal gradient and
an ultra-low electrical current lead to a rotation of the Skyrmion lattice which could
be consistently explained by spin-transfer torque e↵ects. In their numerical study
Iwasaki et al. [46] demonstrated that the order of magnitude for this threshold current
is robust even in the presence of easy-axis anisotropies.

The e↵ects of spin transfer torques on the magnetisation dynamics can be ac-
counted for on the level of description provided by the LLG when additional terms
are included. In Ref. [62] Lucassen et al. give an intuive picture of the origin of these
terms: The conduction electrons traversing the smoothly varying magnetisation tex-
ture adiabatically adjust their spin orientation parallel to the local magnetisation
direction. By conservation of spin, there is an opposite torque on the magnetisation
texture, which leads to a net displacement of the texture in the same direction as the
electric current j.

Zhang and Li [115] account for the coupling between the itinerant electrons of
transport and the localized electrons of magnetisation by an s-d Hamiltonian. They
derive a linear response function for the conduction electrons in the presence of a time
and spatially varying local moment, and the by using the same s-d model calculate the
spin torque on the magnetisation dynamics. Duine et al. [21] present a microscopic
treatment of current-induced torques based on a functional formulation of the Keldysh
formalism. They find in agreement with Ref. [115] that the LLG in the presence of a
partially spin-polarised current is given by

✓
d

dt
+ vs ·r

◆
m = ��m⇥He↵ + �

↵

m
m⇥

✓
d

dt
+
�

↵
vs ·r

◆
m , (3.17)

with � a dimensionless constant which describes the dissipative, non-adiabatic e↵ects
of the spin-transfer torques. It is immediately clear that for ↵ = � the above equation
is found when the time derivatives in equation Eq. 3.17 are replaced by the “comoving”
derivative D/Dt = d/dt+ vs ·r. For this special the system is Galilei invariant and
a solution of the above equation in terms of a solution for vs = 0, m0, is achieved
by m(t) = m0(r �

R t

0
vs(t)dt). Usually, in realistic systems no Galilei invariance is

found. Microscopically the �-term has contributions from all processes that violate
spin conservation and therefore correspond to terms in the microscopic Hamiltonian
that are not invariant under spin rotations [21].
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3.2.3 Stochastic Landau-Lifschitz-Gilbert equation

The stochastic Landau-Lifschitz-Gilbert equation is the basic Langevin equation for
classical spins. Originally introduced by Brown [12] to treat the dynamics of small
ferromagnetic particles and explain phenomena such as superparamagnetism and the
magnetic aftere↵ect. Subsequent work by Kubo and Hashitsume [56] who studied
general classical spins showed how a Fokker-Planck equation for the stochastic motion
of the spin moment can be derived. Both, although presented separately in literature,
are essentially equivalent.

So far we have only discussed how systems without thermal fluctuations can be
simulated. Following the Langevin approach the e↵ective magnetic field He↵ has to
be augmented by a fluctuating or stochastic field hfl(t) to describe a system at fi-
nite temperature. Similar to the case of Brownian motion this field accounts for the
e↵ects of the interaction of m with other microscopic degrees of freedom (phonons,
conduction-electrons, nuclear spins, etc.), which cause fluctuations of the magnetic
moment’s orientation. It should be noted that the same microscopic degrees of free-
dom are also responsible for the magnetic relaxation (Gilbert damping) described by
the ↵-term. Therefore the fluctuation-dissipation theorem is able to link the statistics
of these fluctuations to the strength of the dissipative mechanism.

The starting equation in the Brown-Kubo-Hashitsume model of classical (inter-
acting) spins at finite temperature is the stochastic Gilbert equation written here in
the Landau-Lifschitz form

d

dt
m = �� m⇥ (He↵ + hfl(t)) + �

↵

m
m⇥ [m⇥ (He↵ + hfl(t))] (3.18)

where � is the gyromagnetic ratio and ↵ is the previously introduced dimensionless
damping constant for the Gilbert damping. We will refer to the above equation as
the stochastic Landau-Lifschitz-Gilbert equation. The deterministic e↵ective field
He↵ is given by Eq. (3.14). With the inclusion of the Gilbert damping term the
e↵ective field describes the e↵ects of interactions with microscopic degrees of freedom
(phonons, conduction electrons, nuclear spins, etc.) on the level of averages. It has
to be augmented by a stochastic, fluctuating field hfl(t) to properly treat the e↵ects
of flucuations.

The typical assumptions about the field hfl(t) are that it is a Gaussian stochastic
process with the following statistical properties

hhfl,i(r, t)i = 0

hhfl,i(r, s)hfl,j(r
0, t)i = 2↵

kBT

�m
�ij�(r� r0)�(s� t) (3.19)

where i and j are cartesian components and h. . . i denotes an average taken over
di↵erent realizations of the fluctuating field hfl(t). The Gaussian property of the
process stems from the interaction of with a large number of microscopic degrees
of freedom with identical statistical properties (central limit theorem). The delta-
correlation in time in the second equation (3.19) expresses that for the temperature we
are interested in the autocorrelation time of hfl(t) is much shorter than the rotational-
response time of the system. The Kronecker � shows that di↵erent components of are
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uncorrelated. Finally the fluctuating fields acting on di↵erent magnetic moments are
independent.

Equations (3.18) and (3.19) seem to fully determine the dynamical problem under
consideration. However one quickly sees that the equation of motion Eq. (3.18) is
subject to the Itô and Stratonovich dilemma, c.f. section 3.1.2. The added noise
term is multiplicative and not additive. Therefore the problem specification is only
complete once the stochastic interpretation to be used for the stochastic di↵erential
equation, Eq. (3.18), is fixed. Interpreting the equation according to Stratonovich
calculus renders the correct physical results. The Itô interpretation would require a
modification of Eq. (3.18) where an additional “noise-induced”drift term is added.
From a physical point of view the Stratonovich interpretation makes sense: if one
sees the delta correlation of the fluctuations as mathematical idealization for physical
noise with a short auto-correlation time, it is the Stratonovich interpretation one
arrives at if one takes the formal zero-autocorrelation time limit of fluctuations with
a finite autocorrelation time [36].

Fluctuation-dissipation theorem

As already mentioned in the introduction a flucuation dissipation theorem links the
strength of the dissipative mechanism to the variation of the fluctuations. The original
derivation of this expression as according to Brown [12] is complicated and uses
advanced stochastic methods. We will present here the more direct and simpler
derivation presented by Garanin [35].

For the purpose of this derivation we assume that the variance of the fluctuations
is parametrized by the unknown constant D

hhfl,i(r, s)hfl,j(r
0, t)i = 2D�ij�(r� r0)�(s� t) (3.20)

We first derive the Fokker-Planck equation corresponding to Eq. (3.18) and then
determine the constant D by demanding that the Maxwellian equilibrium distribution
is a static solution of the same.

We start by introducing the distribution function of spins n

n(M, t) ⌘ h⇡t[hfl]i
hfl

where ⇡t[hfl] = �(M�m(t)) (3.21)

the time derivative of n can be calculated using

d

dt
⇡ = � @⇡

@M

d

dt
m (3.22)

and the equation of motion for the magnetic moments m, Eq. (3.18). One finds (for
a more detailed account please see Ref. [35])
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In order to ensure that the stationary properties of the system described by Eq. (3.18)
have the correct equilibrium properties, the above Fokker-Planck equation has to have
the Maxwellian equilibrium distribution

n0(M) / e��F [M] (3.24)

as a stationary solution. This demand will fix the constant D. Using

@n0

@M
= ��@F [M]

@M
n0 = �He↵n0 (3.25)

one proves that the expression M⇥He↵n0 is divergence-free

@

@M
(M⇥He↵n0) = n0

@

@M
(M⇥He↵) + (M⇥He↵) ·

@

@M
n0

= 0 + �n0 (M⇥He↵) ·He↵ = 0 (3.26)

For n = n0 the first term of the Flokker-Planck equation therefore vanishes and one
finds that one has to choose

��2D = �
↵

M
(3.27)

to make n0 a solution of Eq. (3.23) in agreement with Eq. (3.19).

3.2.4 Numerical integration of the stochastic Landau-Lifschitz-
Gilbert equation

In our presentation of the numerical integration scheme we follow Ref. [36]. We
consider a general system of Langevin equations

dyi
dt

= Ai(y, t) +
X

k

Bik(y, t)Lk(t) (3.28)

where y = (y1, . . . , yn)T are the dynamical variables of the system and Lk are Langevin
sources of noise. The Lk(t) obey the following stochastic properties

hLk(t)i = 0 and hLi(s)Lj(t)i = 2D�ij�(t� s) (3.29)

When the functions Bik(y, t) depend on y, the noise is said to be “multiplicative”
else it is “additive” (Itô = Stratonovich).

The next step is to find an appropriate iterative method which can be used for the
temporal discretization and approximative solution of Eq. (3.28). In case the noise
terms are “mutliplicative” care must be taken in the choice of numerical integration
scheme. First, there is a problem at the level of definition: di↵erent integration
schemes converge to either Itô or Stratonovich calculus. A scheme must be chosen
which actually converges to the stochastic interpretation of one’s choosing. But even
apart from these problems serious di�culties arise in the construction of higher-order
integration schemes. The naive adaption of schemes used for deterministic systems
of equations may not converge for the stochastic problem at all and even if so usually
with lower order [53].
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The simplest integration scheme is given by Euler’s approximation. For a given
time discretisation t(0) < t(1) < · · · < t(N) the Euler approximation fulfils the following
recurrence relation

y(n+1)
i = y(n)i +Ai(t

(n),y(n))
�
t(n+1) � t(n)

�
+
X

k

Bik(y
(n), t(n))

⇣
Lt(n+1)

k � Lt(n)

k

⌘
(3.30)

The random increments �Ln
k ⌘ Lt(n+1)

k � Lt(n)

k are generated from pseudorandom
numbers with the properties

h�Ln
ki = 0

⌦
(�Ln

k)
2↵ = 2D�t(n) (3.31)

where �t(n) ⌘ t(n+1) � t(n). With the initial condition

y(0)i = yiniti (3.32)

the above equations can be implemented on a computer to calculate an approximate
solution of the system of stochastic di↵erential equations. Typically the error is
defined as

✏ =
⌦��y(N) �Y(t(N))

��↵ (3.33)

here h. . . i denotes an ensemble average and Y(t(N)) the (typically unknown) ex-
act solution of the stochastic equations of motion. It can be shown that for “well-
behaved” stochastic equations the systematic error of the Euler approximation fol-
lows ✏(�t) ⇡

p
�t (Ref. [53], Theorem 10.2.2). It should be noted that this estimate

involves only the systematic error of the approximation. On any computing architec-
ture with a finite floating-point accuracy additional rounding errors accumulate. This
causes the “sweet-spot” to lie at a finite �t and consequently one cannot drive the
error to 0 by simply making �t smaller and smaller (not at constant floating-point
accuracy). Another important point is that the Euler approximation converges in
the form written above to the Itô interpretation. Therefore modifications are neces-
sary to the equations of motion prior to application if they were constructed in the
Stratonovich language. The necessary modification is the addition of a noise-induced
drift term [53]
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k

⌘
(3.34)

The construction of higher-order integration schemes for stochastic di↵erential
equations is di�cult [36], however one can do better than the Euler approximation.
For the Euler method we simply froze the right hand side of the stochastic equa-
tion at (t(0),y(n)) at the beginning of each discretisation subinterval. An obvious
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(a) ↵ = 0.1, T = 0 (b) ↵ = 0.1, T = 0.001

Figure 3.3: Exemplary, numerical solutions of the equation of motion, Eq. (3.18).

improvement is to include additional information from elsewhere in the subinterval.
For instance, we could use the average of both endpoints
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(3.35)

This is an implicit scheme as the unknown quantity y(n+1)) appears on both sides of
the equation. This prevents us from an algebraic evaluation of the above equation.
However we can replace the occurrences of y(n+1)) on the right hand side by Euler
approximations of the same.
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The above integration rule is called Heun’s scheme. The quantity ỹ(n+1) is referred
to as the predictor. Heun’s scheme converges in quadratic mean to the solution of
the stochastic di↵erential equation if interpreted in the sense of Stratonovich [53].

Application to the stochastic Landau-Lifschitz-Gilbert equation

For the treatment of the stochastic Landau-Lifschitz-Gilbert equation, Eq. (3.18),
we will use Heun’s scheme. This is done because it converges naturally without
modification to the Stratonovich interpretation. Since the deterministic part of the
di↵erential equations is treated with a higher order integration rule, Heun’s scheme is
more stable than Euler-type approaches [36]. The Landau-Lifschitz-Gilbert equation
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can be written in the language introduced in the last section by identifying

Ai = ��
h
m⇥He↵ � ↵

m
m⇥ (m⇥He↵)

i

Bik = ��
"
X

j

✏ijkmj +
↵

m

�
m2�ik �mimk

�
#

(3.37)

As a test of the above scheme we integrate the equations of motion for a single
spin of length |m| = 1 with the initial condition m(0) = (1, 0, 0)T in an applied
magnetic field H(ext) = (0, 0, 0.01)T with Gilbert damping ↵ = 0.1 for temperature
T = 0 (Fig. 3.3a) and T = 0.001 (Fig. 3.3b). For the T = 0 the spin simply relaxes
in a spiral towards the applied magnetic field H(ext) on a timescale of the order 1/↵.
For finite T the spiral can still be seen, but the path is noisy due to the thermal
fluctuations.
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Chapter 4

Emergent magnetic monopoles

Experimentally one observes that the electric charge always appears as an integer
multiple qe = ne of an elementary charge e. Why this is the case is unknown as
charge quantisation is still an unresolved physical problem. The situation changes
however if there were magnetic charges. Dirac (1931, [18]) postulated the existence
of magnetic monopoles and showed that quantum mechanics is only then consistent
if the product of any pair of magnetic charge qm and electric charge qe is an integer
multiple of 2⇡~.

The idea of magnetic monopoles dates back to the earliest days of magnetism as
magnets appear to have two magnetic poles of opposite strength. In the middle of the
nineteenth century the electric currents were recognised as a source of magnetism and
later the magnetism found in materials was explained by magnetic dipole moments
associated with fundamental particles such as the electron. To this day despite in-
tensive search throughout the observable universe the elementary magnetic monopole
remains a hypothetical particle.

The absence of magnetic charges is built into Maxll’s equations. The equation
r · B = 0 for the magnetic field B implies by the Gauss’ law that the magnetic
flux through any closed surface vanishes and that hence there is no source of the
magnetic flux. However it is possible to include magnetic charges into Maxwell’s
theory bringing the equations of electrodynamics to a symmetric form

r⇥H = Ė+ je, r ·D = ⇢e, D = ✏0E

�r⇥ E = Ḃ+ jm, r ·B = ⇢m, B = µ0H (4.1)

where we have introduced the magnetic charge density ⇢m and the magnetic current
density jm. As a consequence of the above equation the magnetic charge obeys the
continuity equation ⇢̇m +r · jm = 0 and is hence conserved like the electric charges.
There is however a di↵erence in the transformation properties of magnetic and electric
charges. To conserve parity invariance of the electromagnetic theory ⇢m has to trans-
form like a pseudo-scalar and jm like an axial vector. Therefore as electric charges
have a sign, magnetic charges have a handedness, c.f. Fig 4.1.

Section 4.1 outlines the original idea of Dirac. We then mention occurrences of
magnetic monopoles in solid state systems in 4.2 especially emphasising on the case
of spin ice. The main part of this chapter is devoted to the discussion of emergent
magnetic monopoles in chiral magnets in section 4.3.
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Figure 4.1: Magnetic fields of right- and left-handed monopoles.

4.1 The Dirac monopole

Dirac begins his seminal paper about “Quantised Singularities in the Electromagnetic
Field” with a rather long introduction to the growing propinquity of mathematics
and physics trying to set the mood for what follows as an essentially mathematical
argument.

A magnetic point charge of strength qm at rest at the origin creates a magnetic
field

B =
qm
4⇡r2

r̂, r ·B = qm�(r) . (4.2)

Away from the origin the vacuum equations are fulfilled, however at the origin there is
a delta charge. Dirac insists that a vector potential for the above magnetic field con-
figuration exists. Due to the singular charge distribution such a vector potential will
have a singularity which poses no significant problem. The more serious mathemati-
cal obstacle is the fact that even with the origin excluded no smooth vector potential
can be globally defined on R3 \ {o}. Dirac tackles the problem by a generalisation
of the wave function concept: fixing an origin o 2 R3 a wave function  (x) not only
depends on the point x but on a particular path �

x

connecting o and x thus becoming
a functional  : �

x

!  [�
x

]. A necessary condition to remove redundancy is that a
single reference path �

x

joining o and x already determines the wave function of all
other paths �0

x

ending at x. This means that for any two paths  and  0 connecting
o with the same point x the wave functions have to be related to each other by a
known phase factor

 [�0
x

] = e2⇡i�(S) [�
x

], with �(S) = e/h

Z

S

B · d2n (4.3)

where S is an oriented surface with @S = �0
x

� �
x

and �(S) is the magnetic flux
through the surface S, Fig. 4.4. He continues to point out that if the magnetic field
is finite, the functional  [�

x

] is smooth and therefore small changes in the path �
x

will lead to small changes in the wave function only. For the phase factor however
this is only true if the wave function does not vanish

arg [�
x

] =
1

2i
log ( [�

x

]/ ⇤[�
x

]) . (4.4)
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Figure 4.2

Since in 3 dimensions for a vanishing of the wave function two conditions have to
satisfied, Re  = 0 and Im  = 0, typically lines of vanishing  are found, that
Dirac refers as nodal lines. Due to condition Eq. (4.4) the change of phase around
a nodal line need not be small. All that can be said is that the phase picked up
on a closed path around such a nodal line must be an integer multiple of 2⇡ for
the phase to be a continuous function. Since traversing a chosen path around a line
backwards accumulates the negative phase, the winding of the phase around a a nodal
line endows it with a sense of circulation. The connection of this sense of circulation
with phase factor is given by equation (4.3). If the direction of circulation around
the nodal lines agrees with the internal orientation of the surface S the phase counts
positive.

Dirac now suggests the possibility for nodal lines to have points of origin and
termination, nodal singularities. In order for the phase factor �(S) to be well defined
one has to augment the theory with another constraint. Since for a given pair of
paths � and �0 one may choose any surface S or S 0 as long as their boundaries agree,
@S = @S 0 = �0 � �, one has to demand �(S) = �(S 0). With the possibilities of nodal
lines to start and terminate this poses a problem as one can construct the situation
where S intersects with the nodal line while S 0 does not leading to a discrepancy of
±2⇡n. Therefore Eq. (4.3) has to be adjusted

�(S) = e/h

Z

S

B · d2n+
X

i

±ni (4.5)

where the sums extends over all nodal lines intersecting with the surface S and the
correct sign is chose by comparison of orientations as mentioned above.

Since
R
S B·d2n computes the magnetic flux through S, Dirac concluded by consid-

ering the case of a closed surface S = @U with U a volume that �(@U) = 0 and thus
the ith nodal singularity can be considered as magnetic monopole with charge 2⇡~

e ni

with ni 2 Z. Thus receives the Dirac’s condition for the quantisation of magnetic and
electric charges

eqm 2 2⇡~Z (4.6)

4.2 Magnetic Monopoles in Spin Ice

Although magnetic monopoles have so far not been observed as elementary particles
there are condensed matter systems where collective behaviour leads to emergent
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phenomena that resemble certain aspects of magnetic monopoles. To understand the
relation between the magnetic monopole as an elementary particle and its occurrence
in condensed matter system one has to appreciate the di↵erence between the mi-
croscopic and macroscopic Maxwell equations. The microscopic Maxwell equations
describe the electromagnetic fields due to the charge and current densities on a atomic
scale. Although this has universal applicability for a complicated condensed matter
system this is typically not feasible to calculate. Instead one retracts to the descrip-
tion of electromagnetic phenomena on larger length scales by essentially subsuming
microscopic behaviour. This is achieved by the introduction of two auxiliary fields,
the displacement field D and the magnetising field H. Phenomenological constituent
equations relate the additional fields to the electric field E and the magnetic field B
[14].

The observation of even a single magnetic monopole would contradict the Maxwell
equation r · B = 0. No such contradiction has been observed to this day and one
must assume that the constraint posed by the above equation is in place. However
for condensed matter systems and the magnetising field H no such constraint applies.
Indeed a number of systems exists where sources of the magnetising field have been
observed. Here we only present the most prominent example of spin ice and later
contrast monopoles in spin ice to those found in chiral magnets.

The first materials identified as spin ices were the pyrochlores Dy2Ti2O7 (dys-
prosium titanate), Ho2Ti2O7 (holmium titanate) and Ho2Sn2O7 (holmium stannate).
The magnetic properties of these materials can be understood if one considers a three-
dimensional lattice of magnetic moments organised at the edges of corner sharing
tetrahedra. Spin ice can be realised on this lattice when spins placed on the ver-
tices are constrained to point radially into the or out of the tetrahedra and coupled
ferromagnetically.

The word ice in the name stems from a similarity to an entropic e↵ect in water
ice. In 1935 Linus Pauling[77] noted that the structure of ice contains oxygen atoms
with four neighbouring hydrogen atoms. The distance between oxygen and hydrogen
atoms is not the same however as two hydrogen atoms are near forming the traditional
H2O molecule and two are further away being the hydrogen atoms of neighbouring
water molecules. This gives rise to the ice rules : Two atoms have to be near, two
have to be further away. He concluded that this leads to a residual entropy even
upon cooling to zero temperature. Ice therefore exhibits degrees of freedom which
remain disordered even at absolute zero. The number of configurations conforming
to these ice rules grows exponentially with the system size, and therefore that the
zero-temperature entropy of ice was expected to be extensive. Pauling’s findings were
later confirmed by specific heat measurements.

In the above mentioned pyrochlores the spin rules apply to the configuration of the
spins at the vertices of the tetrahedra. Here geometric frustration causes the lowest
energy spin configuration to obey the rule that two spins have to point in and two
out of each tetrahedron. Indeed the Pauling ice entropy, S ⇡ R/2 ln(3/2) per spin
with R the gas constant, found in these materials reflects a huge low-energy density
of states in zero magnetic field [84].

Excitations above this ground state manifold are given by local violations of these
ice rules. A single spin flip violates the rules on two neighbouring tetrahedra, at a

52



(a) The dumbbell picture is obtained by
replacing each spin with a pair of oppo-
site magnetic charges placed on the ad-
jacent sites of the diamond lattice. In-
verting the shared spin creates a pair of
magnetic monopoles on adjacent sites.

(b) A pair of separated magnetic
monopoles. The chain of inverted dipoles
(Dirac string or nodal line) between them
is highlighted in white and magnetic field
lines are sketched.

Figure 4.3: Picture taken from Ref. [14].

cost of ⇡ 2 K in Dy2Ti2O7. The characteristics of these excitations were studied by
Castelnovo et al. [14] by replacing the interaction energy of the magnetic dipoles
by the interaction energy of magnetic dumbbells, see Fig. 4.3a. Demanding that the
dipole moment of the original spin is reproduced fixes the magnetic charges to ±µ/ad
with the diamond lattice bond length ad =

p
3/2 a and µ the magnetic permeability

of the material.
Inverting a spin on a vertex between two tetrahedra creates in the dumbbell

picture a pair of magnetic monopoles on adjacent sites. The interaction energy is now
computed by the pairwise interaction of magnetic charges as given by the Coulomb
law

V (r↵�) =

⇢ µ0

4⇡
Q↵

Q�
r↵� ↵ 6= �

1
2
⌫0Q2

↵ ↵ = �
(4.7)

with Q↵ the net magnetic charge on site ↵ and r↵� the distance between two sites.
Monopoles may be separated from one another without further violations of the ice
rules by flipping a chain of adjacent dumbbells as shown in Fig. 4.3b. This string
may be directly compared to the Dirac string or nodal line introduced earlier [70]. It
takes only a finite amount of energy to separate the two monopoles to infinity so they
are the true elementary excitations of the system. Therefore the monopoles are truly
deconfined as the the cost of creating the Dirac string remains finite as its length
grows. In a typical spin ice state at finite temperature one finds a “soup” of Dirac
strings of di↵erent length.

With respect to the Dirac quantisation condition, Eq. (4.6), one should remember
that the charge quantisation condition stems from the fact that the Dirac string has
to be unobservable for quantum mechanics to be consistent. The string soup charac-
teristic of spin ice at low T makes the Dirac string energetically unimportant albeit
not unobservable. Therefore monopoles in spin ice have no quantised charge. Their
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charge is determined by the characteristics of the concrete material under considera-
tion and can even be tuned continuously by applying pressure [70].

4.3 Emergent Magnetic Monopoles in Chiral Mag-

nets

In this section we introduce the concept of emergent magnetic monopoles in chiral
magnets. In 2012 Schulz and collaborators [88] showed that a particularly illumi-
native way to describe the forces that act on both an electron traversing a smooth
magnetic structure and the structure itself can be accounted for by the introduction
of a fictitious, emergent electrodynamic potential. It is in this sense that an unwind-
ing of a Skyrmion lattice is accompanied by the appearance of quantised emergent
magnetic charges. In subsection 4.3.1 we give a short introduction to emergent elec-
trodynamics and emphasise especially on the emergent magnetic field. We briefly
discuss the experimental observation of this field as a topological contribution to the
Hall e↵ect. Then we turn in subsection 4.3.2 to the discovery of the emergent mag-
netic monopoles and the roles the play in phase transitions. Most of the results in
this subsection have been published in Ref. [67].

4.3.1 Emergent Electrodynamics of Skyrmions

Non-collinear magnetic structures induce forces in moving conduction electrons. For
smooth structures the dominant coupling mechanism is due to Berry phases picked
up by the electron as its spin aligns adiabatically to the background magnetisation
direction. These force may be accounted for in an elegant way by the introduction
of emergent electrodynamic potentials. As we will see the topology of the magnetic
configuration also induces topological constraints in the geometry of the emergent
vector potential.

The importance of Berry phases has been known for a long time. Volovik addressed
the problem of linear momentum in ferromagnets using a technique which we also
proves useful for the study of skyrmion lattices [107]. In ferromagnets Haldane[41]
pointed out that the canonical momentum of the coherent magnetisation motion is
not invariant under spin rotations and in general not conserved. The reason is that
a separation of the fermionic, incoherent subsystem from the coherent motion of
the local magnetisation makes the respective momenta ill defined. Both linear and
angular momenta of coherent motion transfer to the incoherent degrees of freedom in
the subsystem of fermionic excitations. He described the dynamics of the soft variable
m, the local magnetisation, by the introduction of fictitious emergent electrodynamic
fields. Here we present an analogous treatment for chiral magnets.

Due to the smoothness of the magnetic structure the wavelength of the conduction
electrons is small compared to the typical scale on which the magnetisation varies. As
mentioned in chapter A the typical lattice constant of the skyrmion lattice in MnSi
is ⇡ 200 Å. Therefore one can assume to a good approximation that the electron’s
spin aligns adiabatically with the direction of the local background magnetisation.
We will later discuss the assumption of adiabaticity further and also mention the
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Figure 4.4: With the magnetic moment of the electron adjusting adiabatically to
the direction of the local background magnetisation, the electron picks a geometrical
phase called the Berry phase. Picture taken from [82]

most important mechanisms which may lead to violations of this assumption (see
also [88] and [111]).

During their motion through space time the adjustment of the spin causes the elec-
trons to pick up a geometrical, quantum-mechanical phase known as the Berry phase,
see Fig. 4.4. The accumulated phase really depends on the background magnetisa-
tion changes encountered on the concrete choice of path in space time. Therefore the
phase depends on the details of the magnetic configuration which can be conveniently
accounted for by the introduction of a fictitious emergent electrodynamic potential.
In the following derivation we borrow from both [24] and [111].

We consider a simple model Hamiltonian for free spin-1
2
electrons moving through

a smoothly varying magnetic structure M(r, t). Here the free electron Stoner model
provides a first approximation to the electronic structure of an itinerant magnet

H = � ~
2m

r21 � J � · M̂(r, t) (4.8)

where � is the vector of Pauli matrices and M̂ the direction of the local magnetisation
M̂ = M/|M|. The coupling constant J parametrizes the strength of the exchange
coupling in the sense that it is chosen such that the Zeeman splitting between the
two spin bands in the above equation reproduces the quantum mechanical exchange
energy and therefore also contains the magnitude of the magnetisation.

The dynamics is then given by the Schrödinger equation

i~ @t (r, t) =

� ~
2m

r21 � J � · M̂(r, t)

�
 (r, t) (4.9)

One can now trivialise the last term by the introduction of a local unitary transforma-
tion which rotates the local spin quantisation axis to lie parallel to M̂ . This however
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comes at the cost of additional (partial) derivatives of the transformation matrix on
the right-hand and the first term of the left-hand side. We introduce the local 2 ⇥ 2
unitary matrix U(r, t) by

U(r, t) = exp

✓
�i
✓(r, t)

2
� · n̂(r, t)

◆
(4.10)

here n̂(r, t) is the axis of rotation given by n̂(r, t) = êz ⇥ M̂/|êz ⇥ M̂ | orthogonal to
both M̂ and the original axis of spin quantisation (we choose the z-axis here) and
✓(r, t) the angle of rotation. With the substitution  (r, t) = U(r, t)�(r, t) and after
multiplication with U †(r, t) from the right, Eq. (4.9) becomes

i~@t�(r, t)� qeV e�(r, t) =


(p1 �Ae)2

2m
� J �z

�
�(r, t), with

⇢
V e = �i~/qeU †@tU
Ae = �i~/qeU †rU

(4.11)

Note that V e and Ae are still both 2⇥ 2 matrices although they were already given
names which suggest otherwise. qe is an arbitrary constant which (currently) drops
out of the equation and will be given meaning in a moment.

The two components of the Schrödinger equation describe the electrons in the
majority and minority spin band respectively. For slowly varying magnetic struc-
tures the ground state of the fermionic system may be considered as two unequally
populated Fermi spheres of electrons with spins (anti-)parallel to the local magnetisa-
tion. The di↵erence in population determines the size of the local magnetic moment
n+ � ni = 2|M|/�~. O↵-diagonal terms in both V e and Ae describe scattering be-
tween these bands. To estimate the strength of these processes one has to take the 3
length scales inherent to our problem into account: (i) the Fermi wavelength of the
electrons ⇠F , (ii) the typical length scale on which the magnetic structure varies ⇠M
and (iii) the typical mean free path ⇠MFP .

We consider the limit in which the Fermi wavelength is short compared to the mean
free path. This limit allows the description of the states of the system in terms of the
eigenstates of the system in the absence of scattering. When the mean free path is
much longer than the characteristic size of the structure, the distribution function f�
of electrons with spin parallel/anti-parallel to the background magnetisation describes
the occupancy of the eigenstates of the entire system. This distribution function f�
is independent of the spatial coordinate and we refer to this approach as global. In
the opposite limit, the distribution function is spatially varying and describes the
occupancy of eigenstates of the local Hamiltonian, which includes the exchange field
and the gradient field. We refer to this approach as local, as the distribution function
can vary spatially.

Due to the smoothness of the skyrmion structure and the large distance of skyrmions
of the order of ⇠ 200 Å, violation of adiabaticity and such bandstructure e↵ects are
probably small suggesting that the most important corrections may arise from spin-
flip scattering processes which scatter electrons, e.g., from a majority to a minority
band. These spin-flip processes, which can be interaction- or disorder-induced, arise
due to weak spin-orbit scattering and the modulation of the magnetisation M. While
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the non-spin-flip scattering length is estimated to be between 10 and 100 Å, the spin-
flip scattering length is much larger and therefore probably also much larger than the
distance between the skyrmions ⇡ 200 Å [88].

Consequently we assume that the distribution function describes the occupancy
of the eigenstates of the entire system and that the length of the magnetic moment
is a constant |M(r, t)| = M0. The o↵-diagonal terms in V e and Ae are suppressed
and can be discarded rendering both V e and Ae proportional to �z. This means that
an electron in the (upper) majority band collects the opposite Berry phase than an
electron in the (lower) minority band. We can therefore regard V e and the components
of Ae

i as scalar potentials if we agree to define an “emergent charge” qe which takes
a value of 1

2
for electrons in the upper band �1

2
in the lower band. The similarity

to electrodynamics becomes now apparent. We therefore refer to the potential Ae as
the “emergent vector potential” and V e as the “emergent scalar potential”.

The vector potential induces an emergent magnetic field which is felt by the con-
duction electron and for time dependent magnetic structures also an emergent electric
field

Be
i = ✏ijk@jA

e
k =

~
2
✏ijk M̂ ·

⇣
@jM̂ ⇥ @kM̂

⌘

Ee
i = �@iV e � @tA

e
i = ~ M̂ ·

⇣
@tM̂ ⇥ @iM̂

⌘
(4.12)

The emergent magnetic field can be understood as an emergent (fictitious) Aharonov-
Bohm field, which accounts for the topology of the adiabatic changes of the spins
orientation as the electron traverses the magnetic structure. Corrections due to non-
adiabatic processes are discussed in Refs. [111, 88]. Furthermore dissipative drag
forces acting on the electrons are not taken into account. A detailed discussion of
these and the conditions under which their neglect is can be found in Ref. [24].

Emergent magnetic field

The reader might recognize the expression for the emergent magnetic field above,
Eq. 4.12, as 4⇡~ times the winding number density of the magnetic configuration,
Eq. 1.6. For a lattice of antiskyrmions one finds that the winding number density
integrates to -1 for each magnetic unit cell as the magnetization wraps S2 once in spin
space for each skyrmion in the lattice. The flux generated by the emergent magnetic
field is therefore quantized to minus one emergent flux quantum �0 = h/qe = 4⇡~ per
magnetic unit cell. Hall measurements are sensitive to both the real and the emer-
gent magnetic field and therefore allow a direct measurement of the winding number
density. In chiral magnets no other but the A-phase displays a finite winding number
density and therefore a non-vanishing emergent magnetic field. In the following we
discuss the experimental detection of an additional contribution to the Hall signal
due to the finite skyrmion density, i.e. the topological Hall e↵ect (THE).

When a current flows through a conductor with a magnetic field applied perpen-
dicular to the direction of electric charge carrier motion, they experience a Lorentz
force perpendicular to both the direction of motion and the applied magnetic field.
The paths of the charge carriers between collisions become curved so that moving
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Figure 4.5: Hall E↵ect measurement setup for electrons. Initially, the electrons follow
the curved arrow, due to the magnetic force. At some distance from the current-
introducing contacts, electrons pile up on the left side and deplete from the right
side, which creates an electric field. In steady-state, the electric field will be strong
enough to exactly cancel out the magnetic force, so that the electrons follow the
straight arrow (dashed).

charges accumulate on one face of the material. Fig. 4.5 shows a typical Hall mea-
surement setup. Here a finite voltage drop across the sample along the y-direction
creates a current. The external magnetic field is applied in the z-direction. For
negatively charged carriers moving along the y-direction the Lorentz force causes a
deflection along the negative x-direction, c.f. Fig. 4.5, and an accumulation of charge
on one face of the material. A potential di↵erence builds up across the x-direction
of the sample which is recorded by the applied contacts as the Hall voltage Vxy. In
steady-state, the electric field will be strong enough to exactly cancel out the mag-
netic force. The Hall resistivity ⇢xy is defined as the ratio of the Hall voltage Vxy and
the applied current I, ⇢xy = Vxy/I and the transverse resistivity as the ratio between
the transverse voltage Vxx and the applied current I, ⇢xx as Vxx/I. In non-magnetic
materials and for small fields the Hall resistivity increases linearly with the strength
of the applied magnetic field Bz. The so called Hall conductivity is then given by
�xy = �⇢xy/(⇢2xy + ⇢2xx).

In chiral magnets one finds several contributing mechanisms to the total Hall ef-
fect. The mechanism outlined above is referred to as the normal Hall e↵ect ⇢nxy = R0B
which is proportional to the strength of the applied magnetic field B. The precise
value of the coupling constant R0 depends in multi band systems like MnSi on de-
tails of the band structure and the relative size of the scattering rates. A second
contribution arises form the so called intrinsic anomalous Hall e↵ect (IAHE), ⇢anxy.
Here spin-orbit coupling and local electric fields on the length scale of the atomic
unit cell may lead to a dependence of the spin orientation on momentum. The re-
sulting Berry phases may be described by an emergent magnetic field which acts in
momentum space and leads to an additional contribution to the Hall signal. The
IAHE typically scales with the total sample magnetisation M and the Hall conduc-
tivity �xy is independent of impurity scattering. The third contribution might arise
from the topological Hall e↵ect which can be seen as a complementary mechanism
to the IAHE. Also Berry phases collected by the electrons lead to a deflection of the
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charge carriers but here the phases are collected in real- instead of in momentum
space. As already mentioned, spin textures where the orientation of the background
magnetisation changes on length scales much larger than the Fermi wavelength of
the electron give rise to Berry phases in real space which may be accounted for by
an emergent magnetic field which acts in real space similar to a real magnetic field.
As in the normal Hall e↵ect ⇢topxy is roughly independent of the total scattering rate,
but depends in multi band systems on the relative strength of scattering rates from
various bands.

An important motivation for the study of the THE was to prove the existence
of the skyrmion lattice in the first place. Evidence of the skyrmion lattice phase in
MnSi was given by an small angle neutron scattering study which found a sixfold
Bragg peak pattern in a place perpendicular to the applied magnetic field [72]. How-
ever whether this pattern is indeed due to a skyrmion lattice depends crucially on
the phase relationship between the helices that are superimposed. This information
is not available from the neutron scattering data. The THE as a direct probe of
the winding number density would provide the most convincing evidence. Another
motivation is due to the hope to find utility for skyrmions in spintronic applications.
The current-driven dynamics of skyrmions are crucial for the fast manipulation of
skyrmion configurations. Recent experiments have identified the e↵ects of spin trans-
fer torques in the skyrmion lattice of MnSi at tiny electric currents [49, 88, 46]. The
size of the THE signal reflects the strength of the coupling between the electric cur-
rents and the spin structure [85] and may prove crucial to the understanding of the
origin of spin-transfer torques.

A rough estimate for the size of the THE signal is given by ⇢topxy = PR0Bz
e↵

and can be inferred from the following reasoning [75]. As the relative strength of
scattering rates in di↵erent bands enters into the coupling constant in the THE in
a similar way to the normal Hall e↵ect, one can simply try to approximate it by
R0 ⇡ 1.7 ⇥ 10�10 ⌦ mT�1 in MnSi. Majority- and minority electrons have opposite
emergent charges and therefore collect Berry phases of opposite sign. The constant
P is the charge carrier spin polarisation and depends on a complicated Fermi surface
average. However it may be approximated as the ratio of the ordered magnetic
moment µspo to the saturated moment µsat ⇡ 2.2 ± 0.2µB in MnSi. In the skyrmion
lattice phase the ordered magnetic moment µspo ⇡ 0.2 ± 0.05µB which gives the
estimate P ⇡ 0.1±0.02. To estimate the strength of the emergent magnetic field Bz

e↵

one has to take the geometry of the skyrmion lattice into account. With its hexagonal
shape the real-space lattice vectors of the skyrmion lattice have length �S/ sin(2⇡/3)
where �S corresponds approximately to the wavelength of the helical state near Tc,
�S ⇡ �h ⇡ 165Å in MnSi. Therefore the size of the unit cell is approximately
�2h/ sin(2⇡/3) and the strength of the e↵ective magnetic field

Bz
e↵ = �h

e

 p
3

2�2S

!
⇡ �13.15 T (4.13)

where the minus sign reflects the fact the emergent magnetic field is antiparallel to
the applied magnetic field. With these numbers one can estimate the absolute size of
the THE contribution ⇢topxy ⇡ �20 n⌦ cm.
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An important information is the expected temperature dependence of the topo-
logical Hall e↵ect. Since the THE depends on the di↵erence in density of minority
and majority electrons which decrease as the temperature rises, the THE signal is
expected to decrease with increasing temperature. The temperature dependence may
even be enhanced due to spin-flip scattering. Since spin-flip scattering typically in-
creases with increasing temperature, the THE may therefore decrease even faster with
temperature.

The topological Hall e↵ect has been studied before in materials other than chi-
ral magnets. For instance a topological Hall signal has been reported for three-
dimensional pyrochlore lattices [98, 63]. However here the spin structure is due to
frustration on short length scales. Therefore the spin structure can not be described
as a continuous field for which topological properties are well defined. Moreover the
topological Hall e↵ect in these materials is related to a non-zero winding number.

The first experimental study which focused on the topological Hall e↵ect in chiral
magnets and consistently explained it in terms of real space Berry phases was per-
formed in 2009 by Neubauer et al.[75]. Here however we present the results of a study
of the same group with improved accuracy which also obtained information about the
pressure dependence of the THE [85]. In this study single crystals of MnSi grown
by optical float-zoning under ultrahigh vacuum compatible conditions with typical
dimensions of 2.8 mm long, 1 mm wide and less than 0.2 mm thick were studied.
They were oriented such that the magnetic field was applied perpendicular to the
platelet and parallel to the crystal h110i. This axis was chosen since h110i is neither
a magnetically hard nor soft axis for the pressure range studied, i.e. the crystallo-
graphic direction is not distinct in any way. Electrical currents were applied either
in the h100i or h110i direction. The resistivity and the Hall e↵ect were measured
simultaneously in a standard six terminal configuration, c.f. Fig. 4.5. An improved
accuracy compared to an earlier study of the Hall e↵ect in MnSi allowed to identify
the THE contribution. For additional details see [75] and [85].

To observe the additional THE signal in the skyrmion lattice phase, magnetic
field sweeps at di↵erent pressures and temperatures were performed. Fig. 4.6 shows
the recorded magnetoresistance ⇢xx, Hall resistivity ⇢xy and Hall conductivity �xy =
�⇢xy/(⇢2xx + ⇢2xy) as a function of the applied magnetic field up to 1 T for various
temperature T at a pressure of 7 kbar. The temperatures in the legend are both
stated as absolute and reduced values Tref = (T � Tc)/Tc.

At high temperatures, the transverse magnetoresistance ⇢xx, shown in Fig. 4.6a,
decreases with increasing magnetic field. The Hall resistivity ⇢xy, shown in Fig. 4.6b,
displays a gradual field dependence with a pronounced top-hat-shaped enhancement
in a small field and temperature range BA1 and BA2, somewhat larger than the
skyrmion lattice phase at ambient pressure. In other words, with increasing field the
enhancement appears abruptly at a field BA1, and vanishes again equally abruptly at
a field BA2. The magnitude of the top-hat-shaped signal contribution is substantially
larger than a similar signal contribution in the skyrmion lattice phase at ambient
pressure.

To distinguish if the signal contribution represents an anomalous or a topological
Hall e↵ect, we the temperature dependence of the magnetisation was measured. No
change in the magnetisation was found which would allow to explain the additional
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Figure 4.6: Typical magnetotransport data in single- crystal MnSi at a pressure of
7 kbar under applied magnetic fields up to 1 T for various temperatures. These figures
were taken from Ref. [85].

top-hat contribution to the Hall signal due to the intrinsic anomalous Hall e↵ect. To
elucidate the origin of the large magnitude of the top-hat-shaped signal contribution
further, in Fig. 4.6c the Hall conductivity �xy = �⇢xy/(⇢2xx+⇢2xy) ⇡ �⇢xy/⇢2xx is shown.
The top-hat-shaped contribution in �xy grows much stronger for lower temperatures
(and therefore lower ⇢xx ) than the signal in ⇢xy. As discussed earlier, for the intrinsic
anomalous Hall e↵ect, one expects a universal Hall signal in �xy independent of the
scattering time ⌧ , while for the topological Hall e↵ect ⇢xy is independent of ⌧ (such
that �xy increases proportional to 1/⇢2xx). Therefore, these data suggest that the top-
hat signal can be identified with the topological Hall signal which is switched on and
switched o↵ when the system enters and leaves the skyrmion phase, respectively.

Concerning the quantitative size of the THE as compared to the naive theoretical
estimate made above a discrepancy between theory and experiment of an order of
magnitude was found. In Ref. [85] several possible mechanisms which could lead to
such a strong reduction of the topological Hall signal are listed. We refer the reader
to the reference for a detailed discussion of the various e↵ects.

In conclusion the study allowed to observe experimentally the emergent magnetic
field due to the topologically non-trivial magnetisation configuration in the skyrmion
lattice phase as felt by the conduction electrons

4.3.2 Unwinding of a Skyrmion Lattice

The detailed, microscopic study of B20 compounds has revealed a great variabil-
ity in their electronic properties while small angle neutron scattering (SANS) and
Lorentz transmission electron microscopy (Lorentz TEM) has shown that the mag-
netic phase diagram of those ordering helimagnetically is rather generic and always
contains a Skyrmion lattice phase. These properties render chiral magnets ideal can-
didates for the study of topological phase transitions. In the following we study how
the Skyrmion lattice unwinds by means of hedgehog point defects which can be inter-
preted as emergent magnetic monopoles in the language of emergent electrodynamics.
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Figure 4.7: (a) Phase diagram observed under zero-field cooling (zfc). The Skyrmion
lattice is confined to a small phase pocket (red) just below Tc. (b) Phase diagram
observed under field cooling (fc). For field values in the range of the Skyrmion lattice
as observed under zfc, the Skyrmion lattice phase persists under field cooling as a
metastable state down to the lowest T (red shading).

Most of the results in this section have been published in Ref. [67]. Also note the
extensive supplementary material which contains the real-time dynamics, results of
SANS measurements and additional MFM data.

In section 4.3.1 we emphasised that Skyrmion lines have a one-to-one correspon-
dence with a quantised (emergent) magnetic flux. Namely, if one integrates the
emergent magnetic flux over a surface which intersects a single Skyrmion line once,
one finds depending on the relative orientation of the surface normal and the core
magnetisation of the Skyrmion plus or minus one emergent flux quantum. Conse-
quently the removal of a Skyrmion from a system is associated with the change of
the total magnetic flux through a surface intersecting the system by one emergent
magnetic flux quantum. Changes in the Skyrmion number are therefore naturally tied
to the appearance of sources and sinks of the emergent magnetic field. To observe
the unwinding of the Skyrmion lattice in experiment both magnetic field microscopy
(MFM) and SANS studies were performed on a bulk sample of the chiral magnet
Fe1�xCoxSi. For more detailed description of SANS and MFM see appendix B. An
extensive discussion of the magnetic phase diagram of Fe1�xCoxSi can be found in
appendix A, however here we briefly repeat the relevant points in order to give a
coherent description of our study.

Iron-cobalt silicide (Fe1�xCoxSi) is a reasonable choice for MFM measurements as
the length scale of the magnetic modulation is ⇠ ⇡ 90 nm which is large compared
to the spatial resolution of the MFM of �x ⇡ 20 nm. Under field cooling (fc),
i.e. cooling while keeping the applied field constant, several important di↵erences
arise as compared to the zero field cooling (zfc) phase diagram (compare Fig. 4.7a
and Fig. 4.7b). First for magnetic field values outside the range of the Skyrmion
lattice one finds a paramagnetic to conical phase transition only. The helical phase
is completely missing from the phase diagram. Secondly cooling the system at field
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Figure 4.8: Typical magnetic force microscopy data for Fe1�xCoxSi (x = 0.5) at
various magnetic field strengths B. Red (blue) colours correspond to a magnetisation
parallel (antiparallel) to the line of sight into (out of) the surface. Panels (A1)
through (A5): Data recorded as a function of magnetic field after fc at 20 mT down
to T = 10 K. Panel (A1) displays data immediately after fc. After the initial cool-
down, the field was reduced at a fixed temperature of 10 K (A2 to A5). During
this process, the Skyrmions, visible as blue spots, merge and form elongated, linelike
structures. The left inset shows a Fourier transformation of the real-space signal.
Panels (B1) to (B5) enlarge the region marked by the black rectangle in panels (A1)
to (A5). Picture taken from Ref. [67].

value inside the Skyrmion lattice phase one finds an metastable extension of the
Skyrmion lattice phase down to T = 0 with the same reversible phase boundaries
near TC as for zfc but irreversible phase boundaries below TC . The irreversible phase
boundaries of this extension reflect the metastability of the phase. As a result, the
ability to study the destruction of the Skyrmion lattice at a temperature T well below
Tc is helpful for two reasons. First, as the magnetic moment decreases considerably
towards Tc it is important to choose a temperature low enough to achieve a su�cient
contrast in the MFM measurement for unambiguous information about the state of
the Skyrmion lattice. Apart from this technical reason, conceptually, the topological
protection mechanism of the Skyrmion lattice relies on the fact that the magnetic
moments are non-vanishing everywhere. Close to Tc strong thermal fluctuations may
weaken the topological protection. A measurement at low T therefore exposes the
generic unwinding mechanism respecting the topological constraints posed by the
phase.

Fig. 4.8 summarises typical MFM data after sample preparation by field cool-
ing at +20 mT to 10 K. For each B field value a real-space image is shown (mid-
dle), an enlarged section (right) and a fast Fourier transform (left). Subfigure A1
shows a hexagonal pattern with one of the reciprocal lattice vectors aligned along the
h100i direction. The blue dots mark regions of the surface where the z-component
of the magnetisation points in to the sample, the red surrounding an area where it
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Figure 4.9: Comparison of the Fast Fourier Transforms (FFTs) (left column) of the
MFM data of Fe1�xCoxSi (x = 0.5) as shown in Fig. 4.8, with small angle neu-
tron scattering (SANS) (right column) as recorded for the same sample. Data were
recorded following the same temperature versus field protocol. Picture taken from
Ref. [67].

points out of the sample. The hexagonal pattern of blue dots is clearly identified as
Skyrmions arranged in a Skyrmion lattice forming its characteristic 6-fold symmetry
pattern. Upon reducing the applied magnetic field to +10 mT, subfigure A2 and
B2, Skyrmions start to merge at the surface forming elongated structures. Upon fur-
ther reducing the applied field and actually reversing it, the length of the elongated
structures increases and the number of Skyrmions decreases until a strongly defected,
stripy phase is reached (subfigure A5). The stripy phase is oriented with its q-vector
in the h100i direction. The MFM requires a recording time of approximately 17 min-
utes per image. In comparison, the time scales of the metastable states depicted in
the figures are large as compared to measurement time as we confirmed by waiting for
15 hours at an unchanged B field (B = 0 T) and recording an essentially unchanged
image.

The MFM is a surface measurement and reveals no information about the bulk
state of the system. Our collaborators performed SANS measurements to identify the
bulk behaviour of the system during the B field reduction and to clarify whether the
surface- reflects bulk behaviour. For comparison with the MFM data our collaborators
recorded the SANS di↵raction pattern following precisely the same temperature and
field protocol. Data were recorded at the same decreasing field values for which MFM
data were collected. The time between scans was approximately 50 minutes. Fig. 4.9
shows a comparison of the FFTs calculated from the MFM data (left column) with
the SANS data recorded from the same sample (right column). Overall the qualitative
agreement for the di↵erent field values is remarkable. In a closer comparison, however,
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the SANS data show a ring of intensity absent in the FFTs of MFM data which we
attribute to presence of disorder and the fact the SANS probes the entire sample
while the MFM data show only a tiny region. The data suggests that indeed the
surface- reflects bulk-behaviour and the same process that is visible on the surface
reduces the total Skyrmion count: neighbouring Skyrmions start to merge forming
more and more extended elongated structure modulated parallel to the h100i axis.

To investigate the conversion process in the bulk of the sample we turn to nu-
merical simulations. Due to the topological winding number of the Skyrmion and its
implications for the e↵ective magnetic field, outlined in the last section, we are espe-
cially interested in the topological aspects of the Skyrmion merging. We performed
both a Monte Carlo (MC) simulation and also calculated the real-time dynamics by
numerically integrating the LLG equation. The discretised Hamiltonian used com-
monly for chiral magnets is

H =� J
X

r

M̂
r

·
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M̂
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r+ẑ · ẑ

⌘
(4.14)

where the M̂
r

is the normalised, local magnetisation vector arranged on a cubic lattice,
J the ferromagnetic (FM) exchange, B the magnetic field which we choose to lie along
h100i direction and D the Dzyaloshinskii-Moriya (DM) interaction. As the ratio of
the FM exchange and the DM interaction determine the pitch of the helix, we fix the
wavelength of helical modulation to 10 lattice sites by choosingD/J = arctan(2⇡/10).
We perform our simulation on a simple cubic lattice consisting of 2·303 spins with open
boundary conditions in [110] direction and periodic boundary condition in the other
directions. The magnetic field is applied parallel to [110] and thus perpendicular to
the surfaces with the open boundary condition. Eq. 4.14 should be understood as the
discretised version of a continuum model. The discretisation of the continuum model
creates however lattice anisotropies for the otherwise rotationally-invariant continuum
model [13, 67]. This can be seen as follows: On the lattice, the FM exchange term in
Eq. 4.14 after Fourier transform reads

HFM = J
X

k

↵
k

M̂(k) · M̂(k), (4.15)

where we defined
↵
k

= � (cos(kxa) + cos(kya) + cos(kza)) (4.16)

Expanding the cosines in the momentum generates all kinds of higher momentum
terms; however if we contrast this with the Fourier transform of the FM exchange
term in the continuum model, we see that there only the quadratic terms are present.
This discrepancy is indeed worrisome as the ordering wave vector Q for our choice of
parameters D and J is not small, |Q|a . 1, since we use relatively small lattice sizes.
Consequently, the contribution of the higher order terms is not negligible and changes
the physics of the model quantitatively. In order to compensate for these induced
anisotropies next-nearest neighbour interactions are added to the Hamiltonian. For
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a more detailed analysis of the finite size e↵ects see Ref. [13]. With these additional
terms one reproduces the phase diagram of chiral magnets.

In order track the motion of the emergent magnetic monopoles we periodically
took snapshots of the magnetic texture during its temporal evolution and searched
for hedgehog point defects by calculating the winding number of the 8 magnetic
moments around each cube of size 1 in our lattice. A simple triangulation splits each
of the 6 faces into 2 triangles. For every one of the 12 oriented triangles we compute
the solid angle spanned by the three magnetic moments at its vertices, M̂i, i = 1, 2, 3
using the Oosterom and Strackee algorithm [106]

tan

✓
⌦

2

◆
=

M̂1 ·
⇣
M̂2 ⇥ M̂3

⌘

1 + M̂1 · M̂2 + M̂2 · M̂3 + M̂3 · M̂1

(4.17)

Summing the contributions from the 12 triangles and diving by 4⇡ gives the winding
number of the cube

n =
1

4⇡

12X

i=1

⌦i (4.18)

which by construction can only take the value +1, 0, �1. Here n = 1 (n = �1) de-
scribes a singular spin configurations where the magnetisation winds one time (minus
one times) around the sphere when surrounding the cube. This construction is the
lattice analogue of calculating the total emergent flux in units of the flux quantum
through a closed surface. Therefore configurations with n = 1 and n = �1 describe
“emergent” quantised magnetic monopoles and antimonopoles, respectively. Using
the same method, one can also calculate the winding number on the surface of the
sample which gives the number of Skyrmions threading the surface. We start by out-
lining the general setup and results of the MC study and then turn to the real time
dynamics.

Monte Carlo study

The MC calculation reproduces the equilibrium phase diagram [13] and captures
the metastable behaviour, consistent with the micro magnetic simulations and our
experiments. For the MC study we track the metastable state of the system by
a Metropolis algorithm based on local updates (random reorientations of randomly
chosen spins). For more detailed, including technical information about the MC study
see Refs. [13, 67]. We have found that the maximal lattice size tractable in reasonable
CPU time is given by N = 2·303 spins, which already hosts up to nine skyrmion tubes
in total. Therefore we model the system by 42 x 42 x 30 spins coupled to their nearest
neighbours by ferromagnetic exchange and Dzyaloshinsky-Moriya interactions.

The experiments explore the metastability of the skyrmion lattice using a protocol
where the system is cooled at finite magnetic field to a specific temperature and in a
second step the applied field is gradually reduced at fixed temperature. In the MC
study we follow the same protocol and cool the system slowly at |B| = 0.16J down
to various temperatures ranging from 0.4J to 0.7J . The skyrmion lattice phase stays
intact although the conical phase has a lower free energy here. The Monte-Carlo
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(a) (b)

Figure 4.10: (a) Total winding number W (or equivalently number of Skyrmions) per
area in units of the helical wavelength �2h for the front and back surface as demermined
by MC while reducing B averaged over 15 cooling cycles.. (b) Number of monopoles
(MP) and antimonopoles (AMP) per volume in units of �3h averaged over 15 cooling
cycles. Picture taken from Ref. [67].

time dynamics of the phase conversion can be calculated by gradually reducing the
strength of the applied field B in steps of �B. A fixed number local updates are
performed for each step. Upon the gradual reduction of the applied field we observe a
gradual conversion from the skyrmion phase into the helical phase. Fig. 4.10a shows
the winding number W of the system as a function of the applied magnetic field B
for T = 0.6J ⇡ 0.65TC . The red and blue curve correspond to the winding number
of the front and back of the system respectively (with the understanding that [001]
is the axis pointing towards the viewer). Starting from an intact Skyrmion lattice
(W/A = 1) the winding number reduces upon reduction of B until at B = 0 only
a small density of Skyrmions survives. This small density is associated with a finite
density of defects in the helical phase, c.f. Fig 4.11c (although the data was recorded
in the real-time study). A comparison of Fig. 4.10b shows the recorded a number
of monopoles (MP) and antimonopoles (AMP) per volume in units of �3h averaged
over 15 cooling cycles. A comparison of Fig. 4.10b and Fig. 4.10a reveals that the
destruction of the Skyrmion lattice and the subsequent reduction in the total winding
number of the system is indeed accompanied by a proliferation of emergent magnetic
monopoles.

Real time dynamics

The phase conversion observed in the experiment is a non-equilibrium process and
therefore the time scales on which the transition takes place is an interesting observ-
able. Unfortunately the artificial Monte-Carlo dynamics is impossible to relate to real
time scales. Several authors have questioned the rigour of the method and in certain
cases has even been shown to give qualitatively incorrect results [29]. It is therefore
important to ensure that a proper real-time dynamics method gives the same qualita-
tive result. We calculated the real-time dynamics taking into account the precession
dynamics of the spins, their damping and the thermal fluctuations which drive the
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(a) t=30 (b) t=610 (c) t=7500

Figure 4.11: Typical magnetic configurations shown by contour surfaces for equal
magnetisation component in the [001] direction as computed from the sLLG at three
di↵erent times with B = 0 and T = 0.58.

phase conversion (see below). This can be achieved by the numerical integration of
th stochastic Landau-Lifshitz-Gilbert (sLLG) equation with the methods outlined in
chapter 3.

For the sLLG study we applied the magnetic field along the [001] direction with
open boundary conditions on planes normal to [001] using the same parameter set
(system size 42 ⇥ 42 ⇥ 30) as in the MC simulations described above. The Gilbert
damping ↵ that describes the magnetic relaxation we set to ↵ = 0.04. To prepare
our initial state we first initialize the equations with a Skyrmion lattice with a lattice
constant compatible with K/J = arctan(2⇡/10) and relax it for for the time 1000/J
at T = 0.5J in a constant field B = (0, 0, 0.16)J using our sLLG code. To investigate
how the dynamics of monopoles and antimonopoles is driving the destruction of the
skyrmion lattice, we suddenly switch o↵ the external magnetic field after relaxation
at t = 0 to observe the evolution of the skyrmions, monopoles and antimonopoles.
To suppress spurious monopole-antimonopole pairs on neighboring sides arising from
single spin-flip event, we average the magnetic configurations over a short time interval
(�t = 10/J). Then we determine the total number of skyrmions in each layer parallel
to the surface and the position of all emergent magnetic monopoles and antimonopoles
using Eq. 4.17.

Fig. 4.11 shows typical magnetic configurations at three di↵erent times after the
quench as contour surfaces for equal magnetisation component in the [001] direction
computed from the sLLG with B = 0 and T = 0.58. For the earliest displayed time
(t = 30) an intact Skyrmion lattice is visible with the Skymion lines pointing towards
the observer. At t = 610 the first Skyrmion has started to merge. A point defect
has entered the system through the front surface (open boundary condition) and is
moving away from the observer along the negative z-axis merging two Skyrmions in
the process. Fig. 4.11c shows the system at t = 7500. A defected helical phase with
the wave vector pointing approximately in the [111] direction can be seen.
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Figure 4.12: Schematic illustration of a magnetic configuration describing the merging
of two Skyrmions. At the merging point the magnetisation vanishes in a singular
point (black arrow). The magnetisation configuration around this point (right) can
be interpreted as an emergent magnetic monopole, which acts like the slider of a
zipper.

Topological considerations

To appreciate the physics of the merging of skyrmions observed both experimentally
and numerically both in the MC study and in the real-time dynamics, we employ the
language of emergent electrodynamics introduced in section 4.3.1. The topological
nature of Skyrmions and their interaction with the electrons is best described in this
language. The emergent electric and magnetic fields are given by Eq. 4.12. The
integral of Be/~ over a surface measures the magnetic flux passing through it. For a
surface intersected once by a Skyrmion line, the magnetic flux is exactly given by one
(negative) flux quantum,

R
Bed� = �2⇡/|qe| = ��0. Fig. 4.12 shows two Skyrmions

in the process of merging. The color code is chosen such that red color indicates a
z-component of the magnetisation pointing along the positive z-axis and blue color
along the negative z-axis. The green surface is a contour plot for equal magnetisation
component in the z-direction (here M̂z = 0). If we calculate the flux through the top
surface (with the normal pointing along the positive z-axis) the value of the integral
will be �2�0 while it is ��0 for the surface on the bottom. Sliding the top surface
down the negative z-axis, the value of the integral jumps from �2�0 to ��0 as the
merging point is traversed. Due to the topological nature of the Skyrmion a change in
the winding number is always accompanied by a singular field configuration for which
the local magnetisation vanishes at a point in space. To determine the properties of
this point one can imagine calculating the magnetic flux through a closed surface @⌦
containing the singular point and bordering the volume ⌦

I
Bed� =

Z

⌦

rBedr = ��0(N
S
out �NS

in) = ��0 (4.19)

where NS
out (N

S
IN) is the number of outgoing (ingoing) Skyrmions lines (with the un-

derstanding that the observer is looking along the direction of the applied magnetic
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Figure 4.13: Dynamics of monopoles, antimonopoles and skyrmions after a sudden
quench based on sLLG simulations. At t = 0 the external magnetic field ( B =
(0, 0, 0.16)TJ ) is suddenly set to 0, thus destabilizing an initially prepared skyrmion
lattice. As a function of time (in units of 1/J) the distance to the lower surface
(z coordinate) of magnetic monopoles (red) and antimonopoles (blue) is shown as a
function of time. The numbers in the figure denote the number of skyrmions, i.e., the
winding number in each z-layer. The plot shows that the phase conversion is driven
by the creation and motion of monopoles and antimonopoles. The black arrow marks
an event where a monopole and an antimonopole annihilate.

field). Hence, when two ingoing Skyrmions merge there must be a singular configura-
tion at the merging point with a winding number of +1, which creates one emergent
magnetic flux quantum. In this sense the merging point carries a quantised emergent
magnetic charge, i.e. it is an emergent magnetic monopole. Monopoles and anti-
monopoles are related to each other by the transformation M ! �M followed by a
rotation by ⇡ around an axis perpendicular to the magnetic field. Note these trans-
formations applied to the situation depicted in Fig. 4.12 would exchange incoming
and outgoing Skyrmions in consistency with Eq 4.19. The merging of two Skyrmions
at the surface of the Fe0.5Co0.5Si bulk sample as observed in the experimental data,
Fig. 4.8, implies that one of two processes has taken place: Either a monopole has
entered into the bulk from the surface of the sample or an anti-monopole from the
bulk has excited the observed surface.

Figure 4.13 shows as a function of time the z coordinate (distance from the lower
surface) of monopoles (red) and antimonopoles (blue). Monopoles are created at the
top of the sample and move down while antimonopoles come from the bottom and
move up. Their motion triggers a change of the number of skyrmions. The numbers
in the figure 4.13 directly give the number of monopoles in the system. In the initial
state there are 15 skyrmions in each layer. This number is reduced one-by-one by the
creation and motion of monopoles and antimonopoles. This perfect correspondence
of skyrmion destruction and monopole motion is enforced by topology and has been
seen in all of our simulations. The black arrow marks an event where a monopole
moving down meets an antimonopole moving up. In this case, the monopole and
antimonopoles were zipping together the same pair of skyrmions. Therefore they

70



annihilate at their meeting point. Our simulations of the real-time dynamics show
clearly that the magnetic monopoles are the driving mechanism of phase conversion.

Experiment, numerics and topological considerations suggest that the movement
of emergent magnetic (anti-)monopoles underlies the phase conversion to the helical
phase. The rate of phase should therefore be controlled by two important scales: the
velocity with which these singular defects can move through the sample and the rate
at which they are created, either as pairs in the bulk or single monopoles / anti-
monopoles at the surface. An interesting question is therefore how these quantities
depend on the system parameters. We turn to this question in section 4.3.3 below.
A model of the creation process for the monopoles and for the forces acting on the
them would allow to make predictions about the rate of phase conversion which
could be compared to experiment. In Ref. [99] Takashima and Fujimoto investigate
the e↵ect the merging of two Skyrmions has on conduction electrons by calculating
induced electric currents. They obtain an adiabatic current which is dissipationless,
and dissipative currents driven by the e↵ective electromagnetic fields including the
e↵ect of spin-orbit couplings. They find that a moving monopole at the merging
point turns out to have both electric charge and magnetic charge, which is likely have
observable consequences in experiment, too.

It is instructive to compare the emergent magnetic monopoles discussed here with
the magnetic monopoles considered in spin ice mentioned above. Monopoles in spin
ice are sources of the “real” magnetic H-field, but their magnetic charge is not quan-
tised and depends on microscopic details. By contrast, the emergent monopoles
that we identify here are sources of the emergent magnetic field that follows Dirac’s
quantisation condition for monopoles; i.e., they carry one quantum of emergent flux.
Furthermore, in spin-ice at zero magnetic field, the monopoles are “deconfined”; i.e.,
it requires only a finite amount of energy to separate monopole and antimonopole. In
the skyrmion phase, the situation is di↵erent (similar arguments apply to the helical
phase): Deep in the skyrmion phase, it requires a finite amount of energy per length
to zip two skyrmions together. Consequently, there is a linear potential (i.e., a finite
string tension) holding monopole and antimonopole together. Only during the con-
version from one phase to the other, the string tension vanishes or becomes negative.
In disordered materials, the string tension may be a random function that competes
with potentials pinning the monopoles.

Author contributions

Milde, Kögler, Eng and Seidel performed the magnetic force microscopy study of
Fe0.5Co0.5Si while Bauer, Chacon, Kindervater, Mühlbauer and Pfleiderer performed
the small angle neutron scattering experiment. Rosch and Buhrandt carried out the
Monte-Carlo study. Rosch and the author of this thesis developed, performed and
analysed the simulation of the real-time dynamics.

4.3.3 Dynamics and energetics of emergent magnetic monopoles

In this section we study the energetics of and forces between emergent magnetic
monopoles. An understanding of these properties is vital for any theory which aims
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Figure 4.14: (a) Initial magnetic configuration in which a Skyrmion along a [1̄1̄2]
direction is embedded into a helical phase. (b)-(d) The Skyrmion unwinds by a
monopole-antimonopole (MP-AMP) pair created in the bulk which is pulled apart.

to describe phase conversions from Skyrmion lattices to other phases. Motivated
by our study in Ref. [67], outlined in the previous chapter, we investigate here how
Skyrmions are destroyed and replaced by the helical phase. For a quantitative analysis
of the process it is beneficial to simplify the setup and consider only how a single
Skyrmion embedded into a helical phase unwinds instead of a dense Skyrmion lattice
as in Ref. [67]. This helps to reduce finite-size e↵ects in the numerics: The energy
di↵erence between N and N � 1 Skyrmions is due to boundary e↵ects in conjunction
with the Skyrmion-Skyrmion interaction a function of N . Such problems are absent
when N = 1 as considered in the following. We use two numerical methods to
address these questions. First, we perform micro magnetic simulations based on the
stochastic Landau-Lifshitz-Gilbert equations (c.f. chapter 3). Second, based on the
Ginzburg-Landau description for chiral magnets (c.f. chapter 2) we use a numerical
minimisation algorithm to determine the mean-field configuration and free-energy of
a monopole in a helical phase.

For the micro magnetic simulations we use the discretised Hamiltonian, Eq. 4.14,
to calculate the e↵ective magnetic field Be↵

r

= ��H/�M
r

. D is the coupling con-
stant which parametrizes the strength of the Dzyaloshinskii-Moriya interaction and
we choose D/J = arctan(2⇡/10) in our simulations. For the Gilbert damping in the
LLG we set ↵ = 0.04. The creation of a monopole in the system requires an amount
of energy roughly given by the core energy of the monopole, thus it is essential to
include the e↵ects of thermal fluctuations to allow the system to provide this en-
ergy. We therefore include random, normally distributed, fluctuating magnetic fields
consistent with the fluctuation-dissipation theorem as outlined in chapter 3. The
numerical integration of the system discretised on a lattice of 35 ⇥ 35 ⇥ 35 spins is
performed by Heun’s method. The boundary conditions in the x and y direction are
periodic, those in the z direction are open. The magnetic field B is applied in the
[1̄1̄2] direction and this is also the direction the single Skyrmion line embedded into
a surrounding helical phase is pointing in. The helical phase has its wave vector q
pointing in the [111] direction, normal to the magnetic field. This setup was chosen
since the anisotropies due to the discretisation (c.f. section 4.3.2) lead to a preferred
wave vector orientation in the [111] direction for the helical phase. If the helical
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Figure 4.15: Typical trajectories of MPs (black) and AMPs (red) after a quench to
B = 0 (T = 0.7) obtained from the sLLG simulations. The vertical axis shows the
coordinate parallel to the Skyrmion orientation s, the horizontal axis the time in
units of ~/J . The numbers inside the plots indicate winding numbers of the magnetic
texture.

phase is oriented any other way, the thermal fluctuations will cause it to turn slowly
throughout the simulation into its preferred direction. The initial configuration at
t = 0 is depicted in Fig. 4.14a. For the definition of the Skyrmion centre coordinate
we use the topological charge density defined as

⇢top(r) =
1

4⇡
n̂(r) · (@xn̂(r)⇥ @yn̂(r)) (4.20)

with n̂(r) = M(r)/|M| which integrates over a surface to the total number of
Skyrmion intersecting the surface. For the system we are considering here ⇢top(r)
is normalised when integrated over the xy plane which allows us to define the centre
of the Skyrmion as the centre of the topological charge

R(z) ⌘
Z

dx

Z
dy ⇢top(r)r (4.21)

The red line in Fig. 4.14a tracks this centre of topological charge. The three figures
Fig. 4.14b-d shows an event recorded as temporal snapshots of the numerical data,
where the Skyrmion string is cut into two by the creation of a monopole-antimonopole
(MP-AMP) pair in the bulk of the system with the (anti-)monopole denoted by a +
(-) sign in the figure. The movement of these monopoles towards the edges of the
system is accompanied by a change in the winding number and a shortening of the
two Skyrmion lines.

For B = 0 the generic magnetic phase of chiral magnets is given by the helical
phase. The instability of the single Skyrmion state causes monopoles spontaneously
created by thermal fluctuations to unwind the configuration to the helical state. We
initialised our system with the configuration depicted in Fig. 4.14a and calculated
the time evolution using numerical integration for an ensemble of thermal noise re-
alisations. Snapshots of the magnetic configuration (averaged over short times to
reduce noise) were analysed and the position of all monopoles were determined using
Eq. 4.17. Especially for high system temperatures most of the MP-AMP pairs are
created by a single, thermal spin flip event, do not separate and are short-lived. We
developed a tracking algorithm which uses a proximity search to join the monopole
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Figure 4.16: (a) Average pair creation rate �mm̄ and MP velocity V as a function of
system temperature T for B = 0. The error bars indicate the standard deviation of
the mean. (b) Average pair creation rate �mm̄ and MP velocity V as a function of B
for two di↵erent temperatures T = 0.7 and T = 0.8.

positions found in subsequent snapshots into (A)MP trajectories. We filtered these
trajectories removing short trails consisting of only a few events. Fig. 4.15 shows
typical monopole trajectories extracted from time evolutions determined by numer-
ical integration of the sLLG for a vanishing magnetic field. The monopoles move
predominantly parallel to the Skyrmion orientation, so we show on the vertical axis
of these plots the projection of the monopole position onto a [1̄1̄2]-axis. Due to topo-
logical constraints monopole creation in the bulk is only allowed as MP-AMP pair
creation, c.f. Fig 4.15a. AMPs move ‘up’, MPs move ‘down’ to reduce the winding
number in the system. Single MPs or AMPs can only be create at the surfaces with
open boundary conditions (top and bottom in Fig. 4.14), c.f. Fig 4.15b. The reverse
process where a MP and an AMP come close together and annihilate can be seen in
Fig 4.15c and d.

For the dynamics of the monopoles two quantities are of central importance: The
rate �mm̄ at which MP-AMP pairs are created in the bulk and the typical velocity v
with which they move through the system. The rate �Sm/m̄ at which single monopoles
are created at the surface is of minor importance in the limit of large system sizes
as the number of monopoles created in the bulk scales with the third power of the
linear system dimension L, while the surface creation scales with L2. The monopole
trajectories extracted from the ensemble of simulated systems allows to calculate
averages for these quantities. Fig. 4.16a shows the average bulk creation rate �mm̄

(black symbols) and the average velocity of the MPs (green symbols) as a function
of system temperature T for B = 0. The error bars indicate the standard deviation
from the mean. Turning to the creation rate first, the data points can be consistently
fitted within the error boundaries with a simple thermally activated behaviour of the
form

�mm̄ ⇠ �0e
� E0

kBT (4.22)

with E0 ⇡ 5.8J for the chosen parameters. The average velocity of the MPs depends
only weakly on temperature: With increasing thermal disorder there is a slight reduc-
tion in the velocities. Fig. 4.16b shows these two quantities as functions of the applied
magnetic field B for two di↵erent temperatures T = 0.7 and T = 0.8. The creation
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rate of MP-AMP pairs is strongly B dependent and can be consistently explained
(within the error bars) by an exponential dependence of the form, �mm̄ / e�B/B0 .
The exponential dependence could arise from a linear dependence of the monopole
core energy E0 on the applied field B, E0(B) = E(0)

0 + cB. We determined the
constant c and the prefactor �0 exp(E0

0 from the T = 0.7 data and compared the
prediction of this model with the observed data for T = 0.8. While a model based
on this assumption gives an explanation of the observed data, more numerical data
is needed to exclude the possibility of an additional, explicit B-dependence of the
prefactor �0 = �0(B). At this point we must therefore assume that the exponential
dependence arises from a combination of the B dependence of the activation energy
E0 and that of the prefactor �0. The average MP velocity also has a strong depen-
dence on the applied field and is suppressed by a factor of 3 in the considered B range.
We expect that for larger values of the magnetic field the velocity reduces further.
The monopole creation rate however decreases exponentially so that an exponentially
increasing simulation time is necessary to gather the needed data. This limits the
possible range of B-values.

A simple, physical picture emerges for the removal of the Skyrmion line defect from
the helical phase. A free energy EC is needed locally to create a MP. The thermal
noise can cause a local energy fluctuation which is large enough for a MP-AMP pair
to be created in the bulk of the system. Once the pair is created a constant force
F = TS, given by the so called line tension, pulls the pair apart. This line tension has
its origin in the free energy per length of the Skyrmion line defect. The system gains
the energy TS �x when the pair separates a distance �x, thus shortening the length
of the Skyrmion string. Alternatively the line tension TS can also be understood as a
result of a linear interaction potential between MPs and AMPs. The E0 we extracted
from the sLLG data gives approximately twice the core energy of the MP. As we will
see in the following E0/2 is essentially given by EC with a small correction included
due to a short-ranged, attractive potential between MPs and AMPs.

We explore the parameter dependence of the core energy EC and the line tension
TS near the critical field strength Bc using an alternative theoretical approach. The
energetics of Skyrmions and MP-AMP pairs can be determined using the Ginzburg-
Landau (GL) description of the free energy. The standard GL functional for chiral
magnet [2], Eq. 2.14,

F [M] = �

Z
d3r
⇥
(1 + t0) M

2 + (rM)2 +M · (r⇥M) +M4 �B ·M
⇤

(4.23)

with t0 the distance to the B = 0 mean-field critical temperature, t0 = r0J/D2 � 1 /
T � TC . For our calculations we discretice the above continuum model as describe
in chapter 2 on a cubic lattice of size 50 ⇥ 50 ⇥ 50 and determine the mean-field
configuration by numerical minimisation using a conjugate gradient method (for de-
tails see appendix C). Our main goal is to determine the free energy of a MP-AMP
pair as a function of their distance d. For an initial configuration with a MP and an
AMP a distance d apart, the minimal energy configuration depends on the sign of
the line tension. For negative TS the pair moves infinitely far apart, thus removing
the Skyrmion line defect from the system altogether. For positive TS the pair will
move closer and closer together, eventually annihilating and leaving the system with
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Figure 4.17: Results obtained from minimisation of the GL free energy (t0 = �1.6)
for Bz = 0.15 to 0.22 (bottom to top).

a single Skyrmion line defect which extends through the whole system. In order to
study the free energy dependence of the system as a function of the separation, one
needs to fix the positions of the MP and the AMP. This can be achieved by noting
that in the continuum the magnetisation at the core of each MP and AMP vanishes.
We therefore fix their positions by demanding that the magnetisation vanishes at two
lattice sites a distance d apart. This procedure works only as long as the forces on
the MPs and AMPs are not stronger than the pinning energy due to the site with
the vanishing magnetisation. This limits the range of the GL study to no too large
values of t0, not too small distances d and magnetic field values close to BC where
the line tension TS vanishes.

Fig. 4.17a shows the results of the numerical minimisation for t0 = �1.6 and for
Bz = 0.15 to Bz = 0.22 (bottom to top). For large distances the energy is linear
in the separation d. The slope is - by definition - the string tension TS, also shown
in Fig. 4.17b as the red line (axis to the right). As expected TS is exactly given
by the energy per length of the Skyrmion line defect. The sign of TS reflects the
stability of the line defect and can be seen to change at a critical Bc ⇡ 0.2. For
B < BC the Skyrmion is not stable, TS > 0 and MP and AMP repel each other
at large distances. For B > BC a helical phase with a single Skyrmion line defect
embedded has a lower free energy than a purely helical phase, hence TS < 0 and the
MP and AMP attract each other. We checked that in the sLLG simulation this leads
to spontaneous creation of Skyrmions in this regime. It should be noted that the
bulk phase transition is not given by Bc. Due to Skyrmion-Skyrmion interactions in
a dense Skyrmion lattice here the critical B is lower. In Fig. 4.18 the temperature
depedence of TS and EC is plotted. With the increasing |t0|, t0 < 0, one goes deeper
into the ordered phase and the core energy of the MP increases. The line tension TS

can be seen to vanish at a critical temperature tc.

76



1 1.25 1.5 1.75 2 2.25 2.5

tc

-t0

-0.1
0
0.1
0.2
0.3
0.4
0.5

T

line tension T

-1

0

1

2

3

4

E c

E - extrapol.c

S

S

colderwarmer

Figure 4.18: Core energy, EC (left axis), and line tension TS (right axis) as a function
of the distance to TC , t0, for Bz = 0.2. At the dashed line the TS changes sign.

For TS > 0 the system can always reduce its free energy by creating a MP-AMP
pair and separating it them by su�ciently large distance d. The creation rate is
however strongly suppressed by the fact that for small d the large energy needed
to create a MP-AMP pair not compensated by a su�cient gain in the MP-AMP
interaction energy. The main contribution to this energy is the core energy, Ec,
of a single MP or AMP which can be obtained by a linear extrapolation of �E in
Fig. 4.17a to d = 0 and taking half of that value. The figure reveals however that once
the MP and AMP come su�ciently close together, they feel a short-ranged attractive
potential. We therefore expect that instead of 2EC , the maximum E0 = maxD�E
controls the MP-AMP pair creation rate.

A surprising observation during the analysis of the sLLG data let us to the re-
alisation that the energetics governing the creation of single MPs at the edges of
the system is more subtle. We found that the creation rate of a single monopole
at the surface of the simulated sample (we used open boundary condition in the z-
direction) is of a similar order of magnitude as the creation rate for MP-AMP pairs
in the bulk. Naively one would expect that the energy needed to create a MP-AMP
pair in the bulk is twice as large as the energy needed to create a single (A)MP at
a system edge. There is of course the argument that the first process scales with
the size of the system surface while the latter scales with the volume. For systems
of su�ciently large linear dimension L, bulk creation will always prevail. However
for the small systems we were considering in our simulations this seemed an un-
likely explanation. Indeed the above argument misses an important contribution to
the energy: the surface energy of the Skyrmion. Creating a monopole at the edge
means that the Skyrmion configuration is replaced by a helical configuration at the
surface of the sample which is of higher energy. Fig. 4.19b shows the schematics of
the two magnetisation configurations whose energy di↵erence �E leads to the curves
in Fig. 4.17a. The first diagram shows a MP-AMP pair (red dots) separated by a
distance d and the Skyrmion line defect (blue line) that they cut into two pieces. The
wiggly lines signify open boundary condition at the two edges of a system of length
L. From this we subtract a system with a full-length Skyrmion line defect. Indeed
extrapolation of the �E(d) to d = 0 gives 2EC . The creation of a single monopole
on the other hand at an edge of the system is depicted in Fig. 4.19c. Here a MP at
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Figure 4.19: (a) Energy of a MP as a function of its distance to an edge of the system
with an open boundary condition. For large distances the force is linear and therefore
described by a string tension. (b),(c) and (d) Schematic representations of calculation
we performed, see main text. The red dots signify (A)MPs, the blue line a Skyrmion
line defect and the wiggly lines open boundary conditions.

a distance d from the edge of the sample is shown in the first diagram and again a
full-length Skyrmion is subtracted. The d ! 0-limit does not give EC . Instead the
asymptotic energy costs also include a contribution from the surface energy of the
Skyrmion which turns out to be negative, thus increasing the total energy cost for
MP creation at the surface. One way to determine this energy cost is to calculate
for a cube of size L with open boundary conditions the energy di↵erence between a
single Skyrmion (Fig. 4.19c, first diagram) and the helical phase (Fig. 4.19c, second
diagram), �ES(L). �ES(L) grows linearly with L and the extrapolated value for
L ! 0 is twice (two surfaces) the surface energy of the Skyrmion, �S. For t0 = �1.6,
for example, and Bz = 0.16, we find �S ⇡ 0.5. Indeed Fig. 4.19a shows the free en-
ergy of a single MP at a distance d from the edge of the sample (c.f. Fig. 4.19c, first
diagram). For the same parameters (green curve) the extrapolated value for d ! 0 is
⇡ 2.0 which the sum of EC ⇡ 1.5 and �S ⇡ 0.5. The surface e↵ect thus turns out to
be of quantitatively equal importance as the reduction of the MP-AMP pair energy
due to the short-ranged attractive potential, c.f. Fig. 4.17a. For the same parameter
the di↵erence between 2EC and E0 is also 2EC �E0 ⇡ 0.5 (Fig. 4.17a). The cost for
pair creation in the bulk (E0 ⇡ 2.2) is of similar magnitude as the single MP creation
on the edge of the sample (�S + EC ⇡ 2.0), thus explaining the observation in the
sLLG data.

A quantitative comparison between the sLLG simulation and the GL calculation
was not possible as the former is restricted to a range of magnetic fields su�ciently
small compared Bc to ensure tractable simulation times and the latter to small line
tensions TS and thus B fields close to Bc. A qualitative comparison is however
possible. The velocity V of the monopoles is expected to be given by the product of
the line tension TS and a e↵ective friction constant. We assume a friction constant
which is approximately independent of temperature and applied field. Based on the
temperature dependence of the line tension in Fig. 4.18 and the Bz dependence in
Fig. 4.17b the expectation is that the velocity drops with increasing Bz for Bz < Bc
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and increases upon lowering the temperature. The sLLG data reflect indeed both of
these trends. More dramatically an approximately linear increase of the core energy
EC with the applied magnetic field B should result in an exponential decrease in the
MP-AMP creation rate as is indeed observed in the sLLG data, c.f. Fig. 4.16.

To extent predictions about the parameter dependence of the line tension and
the core energy of monopoles beyond the regimes available from the numerics, one
can perform a scaling analysis of the discretised continuum model. We start with a
discussion of the relevant length scales. Three length scales are of primary important:
(i) the lattice discretisation parameter a, (ii) the typical length scale on which the
direction of the magnetisation changes due to spin-orbit coupling, which is given
by the pitch of the helix, �, and (iii) the length scale of which the modulus of the
magnetisation vector changes, which determines the radius of the monopole, RC . For
a Skyrmion embedded in a ferromagnetic phase (see the following chapter) the size
depends strongly on the strength of the applied magnetic field. In the present case
where the surrounding phase is helical this is not the case and we always work in
a regime where the Skyrmion radius is given by the helical pitch �. Due to the
weakness of the spin-orbit interaction, the Dzyaloshinskii-Moriya interaction D is
weak compared to the exchange coupling J , and the resulting helical pitch � is large
when compared to the lattice spacing a, a ⌧ �. Close the mean-field transition,
|t0| ⌧ 1 (t0 < 0), the length of the magnetisation modulates on increasingly large
length scales and RC ⇠ �. In real systems however a fluctuation-induced first order
transition (Ref. [48]) preempts the mean-field transition and we therefore do not
discuss this regime. Instead we focus on the cases where RC ⌧ � and |t0| � 1.
One reexpress the rescaled free energy, Eq. 2.14, in its original, physical variables,
c.f. Eq. 2.12, to translate the condition |t0| � 1 into a more physical constraint. It
assumes the form a2D2/J ⇡ Tca2D2/J2 = Tc�2SO ⌧ T � Tc with �SO a dimensionless
constant describing the strength of the spin-orbit coupling and TC the mean-field
transition temperature. In this regime, the length scales on which the direction of the
magnetisation changes decouples from the scale on which the amplitude fluctuates.
For the description of the magnetisation configuration up to a distance of the order
of RC from the monopole center, it is valid to make the ansatz M(r) = M(r)⌦̂(✓,�)
where ⌦̂(✓,�) describes a spin-configuration winding once around the unit sphere and
M(r) the variations of the magnetisation amplitude on the length scale RC . In this
limit, the energetics of the MP core is thus not a↵ected by spin-orbit coupling but
reflects the energy needed to suppress the amplitude of the magnetisation at the core.
With two remaining length scales RC and a in the problem, two regimes have to be
distinguished

1. �2SOTc ⌧ Tc � T ⌧ Tc: In this regime the radius of the monopole core
is determined by balancing the term proportional to t0 and quadratic in M
and the exchange coupling term. With M(r) = M(r)⌦̂(✓,�) this suggests
t0M(r)2 = t0M(r)2 ⇠ (rM(r))2 ⇠ R2

CM(r)2 and therefore Rc ⇠ 1/
p

|t0| ⇠
a
p

Tc/(Tc � T ). The core energy of the monopole therefore scales as R3
ct0M

2 ⇠
Tc

p
(Tc � T )/Tc with M ⇠

p
Tc � T . The string tension TS is the energy per

length of the Skyrmion, which is determined by the ferromagnetic exchange, the
DM interaction and the strength of the applied field. For not so strong magnetic
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fields the dominant terms are the ferromagnetic and DM interaction, which are
both quadratic in M . The energy density within the Skyrmion is proportional
to 1/�2SO and the radius to �SO. The total energy per length, TS, is therefore
independent of the spin-orbit coupling and given by TS ⇠ cB(TC � T )/a with
a prefactor cB of the order 1, which depends strongly on the ratio B/M and
is negative for small B as the Skyrmion costs energy when embedded into the
helical phase at low B.

Rc

a
⇠
✓

Tc

Tc � T

◆1/2

,
Ec

Tc
⇠
✓
Tc � T

Tc

◆1/2

,
TS

Tc/a
⇠ cB

Tc � T

Tc
(4.24)

2. T ⌧ Tc: For very low T the magnetisation amplitude M saturates and the
core radius Rc locks in at the microscopic length scale a. For simple models
without frustration the crossovers occur simultaneously at a temperature of the
order Tc/2. For temperatures small compared to this, where Rc ⇠ a and M is
saturated, also the core energy saturates at a value determined by microscopic
details. It is dominated to have the magnetisation on neighbouring sites in a
hedgehog configuration instead of a parallel alignment. Generically this costs
the energy scale J ⇡ Tc. Therefore we find in full consistency with the above
equations

Rc

a
⇠ 1,

Ec

Tc
⇠ 1,

TS

Tc/a
⇠ cB (4.25)

It is important to note that in the first regime, the creation rate of MPs and
antimonopoles (AMPs) / e�Ec/T is not exponentially suppressed. As our analysis of
creation rates and the motion of MPs relied on the existence of only a small number of
MPs, it is therefore not surprising that the analysis of the stochastic LLG equations
was restricted to regime 2. Indeed, for the highest temperature studied (T = 0.8) the
time-averaged local magnetization far away from the MP core is of the order of 0.7,
still close to the saturation value of 1 and in the distance of one lattice spacing from
a MP core we find a magnetization of the order of 0.35.

4.4 Conclusion

In this section we have shown that both experiment and numerical calculations sug-
gest that the merging of Skyrmions underlies the conversion from the Skyrmion lattice
to the helical phase. We have found that the change of topology, i.e. the unwinding
of Skyrmions, is governed by the creation and motion of topological point defects,
which we identify as emergent magnetic monopoles and antimonopoles. The destruc-
tion of the Skyrmions is therefore directly associated with the proliferation of mag-
netic monopoles. Two factors dominate the creation rate and the dynamics of these
defects: the core energy of monopoles and the string tension. We found that these
quantities are key to understand the time scales for the creation and destruction of
Skyrmions in three-dimensional bulk materials. An open question is how Skyrmions
can be created and destroyed in quasi two-dimensional thin films. Here one could
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expect that replacing the z axis with the time axis would result in an instant on pic-
ture for the monopoles. Another interesting question is whether phases of deconfined
monopoles exist, where monopoles and antimonopoles proliferate as independent en-
tities. A candidate might be the metallic state of MnSi under high pressure, where
highly unconventional “partial” magnetic order on intermediate length scales has been
observed [80].
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Chapter 5

E↵ective Mass of the Skyrmion

Systems with solitonic solutions are often characterised by a degeneracy of classical
vacua. The soliton solutions are then described by field configurations which in-
terpolate between di↵erent vacua. They are classified by an associated topological
charge, i.e. a winding number, which decomposes as a superselection rule the physical
state space into disjoined topological sectors. Restricting the physical system to a
specific (non-trivial) sector by an appropriate choice of boundary conditions for the
fields, not only in time but also in space, often leads to a ground state, which breaks
translational symmetry. The spontaneous breaking of this symmetry leads to the
appearance of zero modes in the system associated with translations of the solitonic
solution. These zero modes have to be distinguished from the massive excitations
in the system. Mathematically they lead to divergencies in perturbative expansions
around the classical soliton solution. However the introduction of a “collective co-
ordinate” not only solves these mathematical troubles, but also makes sense from a
physical point of view: these zero modes represent infinitesimal, translations which
leads to a spread of the wave function and eventually a reemergence of translational
symmetry [96].

In this chapter we restrict ourselves to the topological sector of a single chiral
skyrmion in the ferromagnetic background. The introduction of a collective coordi-
nate will provide the mathematical foundation for the particle interpretation of the
skyrmion. In the first part of this chapter, section 5.1, we study how massive fluc-
tuations lead to additional terms in the e↵ective equations of motion for the particle
coordinate. The fluctuation eigenstates will fall into two categories: (a) scattering
states (“soliton + meson”) and (b) intrinsic, localised excitations (“excited soliton”).
This generates an e↵ective mass for the skyrmion even at T = 0, a quantum mass.
This project is a joint e↵ort in collaboration with Markus Garst.

In section 5.2 we study the temperature induced fluctuation statistics of the col-
lective coordinate numerically. These fluctuations are responsible for the di↵usion of
the soliton’s position. The analysis of the velocity-velocity correlation function allows
to reconstruct the full frequency dependence of the e↵ective equations of motion for
the skyrmion at finite temperature T and finite Gilbert damping ↵.
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5.1 Quantum Mass of the Skyrmion

Before we outline the theory for the skyrmion it is instructive to remember how the
collective coordinate approach and the emergence of an inertia term shows up in a
simplified case. For this we will start with a �4 field theory in (1+1) dimensions
possessing a soliton like solution. Subsequently we will turn to the case of a skyrmion
in a chiral magnet.

5.1.1 E↵ective mass in the �4 field theory

Here we follow Ref. [96] and consider a �4 theory in (1+1) dimensions. The Lan-
grangian of the system is given by

L[�] = 1

2
@µ� @

µ�� 1

2
m2�2

�
g2�2 � 1

�
, (5.1)

where �(x, t) is a real scalar field, m is “mass” term for the field � and g parametrizes
the strength of the interaction. Although the �2 term is also referred to as a mass
term it is not what we are after. This term determines (conjunction with �4 term) the
modulus of �. We are looking for the e↵ective dynamical mass of solitonic solutions.
After rescaling � ! �/g it becomes apparent that g2 plays the same role as ~ and
the latter can be absorbed therein,

Z =

Z
D[�] exp

✓
i

g2

Z
dx dtL[�]

◆

L =
1

2
@µ�@

µ�� 1

2
m2�2(�2 � 1). (5.2)

Here the degenerate vacua are simply given by �0 = ±1. Solitonic solutions therefore
exists which interpolate between these two vacua at spatial infinity, i.e. x = �1 to
x = 1 and a winding number classifies them. The simplest topologically non-trivial,
classical configuration �0 is given by a static solution of the Euler-Lagrange equations
of Eq. (5.2),

�@2x�0(x)�m2�0(2�
2
0 � 1) = 0. (5.3)

These solutions break the translational symmetry hence necessitating the introduction
of a collective coordinate. As already mentioned a zero mode appears corresponding to
infinitesimal, collective translations ⇠0(x) ⇠ @x�0(x) of the classical field configuration
�0(x).

A collective coordinate R(t) for the fields � is introduced through

�(x, t) = �(x�R(t), t) (5.4)

In addition one considers the massive fluctuations ⇠(x, t) around this classical config-
uration which can be expanded in a basis of eigenfunctions ⇠n(x),

⇠(x, t) =
NX

n=1

an(t)⇠n(x). (5.5)
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The eigenfunctions ⇠n(x) and corresponding eigenvalues ✏n are defined by

�@2x⇠n(x) +m2�(2�2 � 1) = ✏2n⇠n(x) . (5.6)

which can be retrieved from an expansion of the action, Eq. (5.2), up to second order
in the fluctuations. With this ansatz the Lagrangian of the system becomes

L0 =
1

2
�̇2 � Ṙ�̇�0 � 1

2
(1� Ṙ2)�02 � 1

2
m2�2(�2 � 1). (5.7)

This equation only depends on R due to the arguments of the �0s, namely, x - R(t).
This dependence can be removed by a suitable reparametrisation of the spatial in-
tegration. Eq. (5.7) is then independent of R but not of its first derivate Ṙ. From
the third term in Eq. (5.7) we can see that in case of this particular field theory an
inertia term for the collective coordinate R(t) is already generated in 0th order in the
fluctuations, i.e. �(x, t) = �0(x�R(t)),

1

2
M0Ṙ

2 (5.8)

with the rest mass given by

M0 =

Z
dy�02

0(y). (5.9)

The overall philosophy carries over to the case of chiral magnets and skyrmionic
solitons therein. However an important di↵erence should be mentioned from the
outset: In what follows no inertia term will appear at 0th order in the fluctuations;
instead we have to carry out the analysis up to second order. This stems from a
structural di↵erence in the dynamical terms of the action. While in the above case
the dynamical term is second order in the time derivative, for spin systems, like chiral
magnets, it is given by a Berry phase term with a single time derivative instead.

5.1.2 Model and skyrmion solution

To study the e↵ective dynamics of a single skyrmion in a ferromagnetic background
we consider a two-dimensional magnetic system described by the Euclidean action

S =

Z �

0

d⌧

Z
d2r (Ldyn + Lstat) (5.10)

where ��1 = kBT . The Langrangian comprises two parts, a dynamical term Ldyn and
a static contribution

Lstat =
"0
2

h
(@↵n̂i)

2 + 2Q✏i↵jn̂i@↵n̂j � 22(n̂iĤi � 1)
i
. (5.11)

Here and in the following we use greek indices for two dimensional vectors, ↵ = 1, 2,
and latin indices for three dimensional vectors, i, j = 1, 2, 3. As chiral magnets
are characterized by a hierarchy of energy scales we use the strongest one, the spin
sti↵ness, to set the typical energy scale "0. The strength of the spin-orbit induced
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Figure 5.1: The geometric meaning of the Berry phase:
R �

0
d⌧
h
1� cos ✓(⌧) �̇(⌧)

i

simply measures the solid angle enclosed on S2 by the closed path n̂(⌧).

Dzyaloshinskii-Moriya interaction is parametrized by Q > 0 which we choose here to
be positive.  > 0 measures the strength of the magnetic field H = µ0✏02

m Ĥ with
m the length of the magnetization m = mn̂ and µ0 the vacuum permeability. The
energy of the Zeeman term is measured relative to a static, field polarized magne-
tization configuration n̂(r) = Ĥ. In the following we will assume that the applied
magnetic field is a static field, orthogonal to the two-dimensional system, Ĥ = ẑ. The
dynamical part of the Lagrangian is given by the Berry phase term,

Ldyn = � i

a2
~A(n̂)

d

d⌧
n̂ (5.12)

where a is the typical distance between the magnetic moments. The geometric mean-
ing of the Berry phase is despicted in Fig. 5.1. Here ~A(n̂) is a gauge potential of a
magnetic monopole charge located at the center of S2,

✏ijk@ ~Aj/@n̂i = n̂k . (5.13)

Since the bosonic fields n̂(⌧) fulfill the boundary conditions n̂(0) = n̂(�) they describe
closed paths on S2. The Berry phase term is proportional to the solid angle subtended
by the surface whose boundary is given by the loop n̂(⌧).

The dynamics of a classical magnet are described by the Landau-Lifschitz-Gilbert
equation which may be derived from the action Eq. (5.10) by taking the Euler-
Lagrange equations and subsequent analytic continuation

@tn̂(t) = n̂(t)⇥ �H[n̂]

�n̂
(5.14)

where the HamiltonianH[n̂] is given by the static part of the Lagrangian
R
d2r Lstat[n̂].

In the following we will consider the limit of small spin-orbit coupling, i.e. Qa ⌧ 1
is a small parameter. For large enough  the Zeeman energy is the dominant term
in the Hamiltonian and the fully polarized, static state n̂ = ẑ minimizes the action,
Eq. (5.10). As already noted in the introduction to this chapter, topological charges
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can be used in the sense of superselection rules to divide the state space into disjoined
subsets. The corresponding winding number is given by

W =
1

4⇡

Z
d2r n̂ · (@xn̂⇥ @yn̂) (5.15)

The ground state lies in the topologically trivial sector, W = 0. We can consider the
classical skyrmion solution n̂s as a large amplitude excitation in the ferromagnetic
background. This solution will be uniquely determined upon supplementing the nec-
essary condition of an extremized action with suitably chosen boundary conditions
for the field configuration, which restrict the system to the correct topological sector,
i.e. W = �1. With the parametrization

n̂s(r) =

0

@
sin ✓(r) cos'(r)
sin ✓(r) sin'(r)

cos ✓(r)

1

A (5.16)

and polar coordinates r = (⇢ cos�, ⇢ sin�)T , a single skyrmion located at r = 0 has

'(⇢,�) = '(�) = �+
⇡

2
. (5.17)

Additionally the polar angle ✓ is a nodeless function of the radius ⇢ only, ✓(⇢,�) =
✓(⇢), with the boundary conditions

lim
⇢!0

✓(⇢) = ⇡, lim
⇢!1

✓(⇢) = 0 . (5.18)

Substituting this ansatz into the Euler-Lagrange equations of the static part of the
action, Eq. (5.11), we find a second order ordinary di↵erential equation [9], which
determines the shape of the function ✓(⇢)

✓00 +
✓0

⇢
� sin ✓ cos ✓

⇢2
+

2Q sin2 ✓

⇢
� 2 sin ✓ = 0 (5.19)

For ⇢� 1 the boundary condition forces ✓ ⌧ 1 and one can expand the trigonometric
functions to find the asymptotic form of the solution. With a similar argument for
⇢⌧ 1 one finds

✓(⇢) ⇡
⇢
⇡ � c1⇢ for ⇢! 0
c2p
⇢e

�⇢ for ⇢! 1 (5.20)

where c1 and c2 are positive constants. The exponential behaviour of ✓(⇢) for large ⇢
identifies R ⌘ 1/ as the skyrmion radius.

The initial value problem posed by Eq. (5.19) and the small ⇢ asymptotics (✓(⇢0) =
⇡ � c1⇢0 and ✓0(⇢0) = �c1 with ⇢0 ⌧ 1) results for arbitrary c1 in solutions with a
superposition of an exponentially increasing and an exponentially decreasing function
as their large ⇢ asymptotics. By a suitable choice of the constant c1 one has to ensure
that the coe�cient in front of the exponentially increasing function vanishes in order
to have a proper skyrmion solution (lim⇢!1 ✓(⇢) = 0). This numerical method for
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Figure 5.2

solving boundary value problems is called the shooting method as one shoots the
parameter c1 such that the boundary conditions are satisfied1. Later in this chapter
we explain at length the details of this method. Substituting the solution into the
static part of the Lagrangian density, Eq. (5.11), and integrating over space, one finds

the saddle-point action S(0)
s = �Es = �"0E(2/Q2) with Es the energy of the skyrmion

solution. The dimensionless function E determines the energy dependence of the
skyrmion solution on the dimensionless parameter combination 2/Q2 = 1/(R2Q2)
and is shown in Fig. 5.2a. For 2/Q2 & 0.8 the energy is positive indicating that the
skyrmion should be understood as an excitation in the ferromagnetic background.
For smaller  a negative energy indicates an instability of the system towards a
proliferation of skyrmions. As  = 1/R there is a maximum radius that the skyrmion
can have without violating this excitation picture. In this chapter we restrict the
discussion to the case 2/Q2 & 0.8.

For the parametrization of small amplitude fluctuations around the static skyrmion
solution we introduce a local coordinate system

ê1 = � sin' êx + cos' êy

ê2 = � cos ✓ cos' êx � cos ✓ sin' êy + sin ✓ êz

ê3 = sin ✓ cos' êx + sin ✓ sin' êy + cos ✓ êz (5.21)

The vectors ên, n = 1, 2, 3, form a dreibein with ê1⇥ ê2 = ê3 and ê3(r) locally pointing
in the direction of the static skyrmion solution n̂s(r) = ê3(r), see Fig. 5.2b. Trans-
lational invariance is spontaneously broken by the skyrmion: the system is invariant
with respect to the choice of its position and therefore the fluctuation spectrum con-
tains two zero modes associated with translations of the skyrmion along the x- and
y-axis. These modes will be accounted for by the introduction of a two-dimensional
collective coordinate R. The remaining massive modes are represented by the two-
dimensional, real-valued vector field ~� = (�1,�2). Explicitly the fluctuations are

1In this metaphorical picture the solution of IVP would correspond to projectile’s trajectory.
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parametrised as (summations over repeated indices implied)

n̂(r, ⌧) = ê3(r�R(⌧))
q

1� ~�2(r�R(⌧), ⌧) + ê↵(r�R(⌧))�↵(r�R(⌧), ⌧) .

(5.22)

In the following we want to study the influence of massive fluctuations on the e↵ective
dynamics of the collective coordinate R(⌧), which defines the skyrmion position in a
particle-interpretation. The program is to expand the Euclidian action, Eq. (5.10),
up to second order in the massive fluctuation field ~�(r, ⌧). Expressing the fluctuation
field in a suitable eigenbasis allows to perform the resulting Gaussian integral, which
generates new terms for the e↵ective action of the collective coordinate R(⌧).

5.1.3 Fluctuation spectrum and scattering phase shifts

We now expand the action, Eq. (5.10), up to second order in terms of the fluctuation
fields �↵. The resulting eigenvalue problem (EVP) yields the excitation spectrum.

Zeroth order in massive fluctuations �↵

Ignoring the presence of fluctuations and hence assuming a rigid skyrmion leads to
equations of motion for the centre coordinate R known as the Thiele equations [102].
The Lagrangian assumes the form L(0) =

R
d2r L(0) with

L(0) = "0E(2/Q2)� 1

a2
A(R)i

d

d⌧
R . (5.23)

We already encountered the first term as the energy cost of the static skyrmion
solution, Fig. 5.2a. This term is independent of R and hence does not contribute to
the equations of motion. The second contribution originates from the expansion of
the Berry phase term, Eq. (5.12), and describes the coupling of the skyrmion located
at R to an emergent gauge field A↵(R). The gauge field is given by

A↵(R) = �
Z

d2r ~A(ê3(r�R))@↵ê3(r�R). (5.24)

Since A↵(R) is a static gauge field the associated electric field @⌧A(R) vanishes. The
emergent magnetic field however is finite and given by

✏z↵�
@

@R↵
A�(R) =

Z
d2r n̂s(@xn̂s ⇥ @yn̂s)

= 4⇡W (5.25)

where we recognized the expression for the winding number of the magnetization W .
For the single skyrmion solution W = �1. Taking the Euler-Lagrange equations of
the Lagrangian, Eq. (5.23), we arrive at the classical equations of motion

G⇥ dtR = 0 (5.26)

with the gyro-coupling vector G = �4⇡êz and thus reproduce the Thiele equations.
Eq. (5.26) describes the motion of a massless, charged particle with a Lorentz force
acting on it due to an e↵ective, quantized magnetic field G.
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First order in the massive fluctuations �↵

There are two kinds of terms first order in the fluctuation field �↵: those linear in
both the fluctuation fields �↵ and the collective coordinate Ṙ and those that do
not contain any Ṙ. The latter ones vanish by construction as the single skyrmion
is the classical field configuration that extremizes the static action, i.e. Ṙ = 0. By
calculation one can also confirm, that the coupling term between massive fluctuations
and the collective coordinate R linear in the fluctuations vanishes.

Second order in the massive fluctuations �↵

Expanding the Lagrangian density in second order in the fluctuation field � one finds
after some algebra

L(2) =
1

2a2
�↵⌧

y
↵�@⌧�� +

1

2a2
�↵H̃↵��� + L(2)

int (5.27)

where ⌧ y is the second Pauli matrix and the expression for H̃↵� is given in the appendix
D. The first term originates from the expansion of the Berry phase term Eq. (5.12).
Due to translational invariance the Lagrangian L(2) only depends on the collective
coordinate R through the combination r �R and its velocity Ṙ. One can therefore
eliminate the explicit R dependence2 by a change of integration variables r�R ! r,
e↵ectively assuming a comoving frame of reference.

The Euler-Lagrange equations of Eq. (5.27) have the form of a two-component
Schrödinger equation. The two components in this equation correspond to the two
fluctuation directions: The upper component describes fluctuations along a direction
towards or away from the skyrmion centre and the lower component along a direc-
tion orthogonal to both the aforementioned and the local magnetisation direction
of the static skyrmion solution, c.f. Fig. 5.2b. The last term in Eq. (5.27), L(2)

int ,
describes the coupling between the massive fluctuations �↵ and the collective coor-
dinate R(t). This term will generate additional contributions in the e↵ective action
of the collective coordinate once the Gaussian integral over the massive fluctuations
is performed. One can simplify the interaction term L(2)

int further with the help of the
unitary transformation

~ = U †~�, U =
1p
2

✓
1 1
i �i

◆
(5.28)

with U�1 = U †. Here we introduce a new complex, two-component field ~ . Since ~�
is a real-valued field the new fields ~ possess the symmetry

~ ⇤ = UT ~� = ⌧xU †� = ⌧x ~ (5.29)

2The velocity dependence Ṙ remains! Note also that in the first term @⌧ is only a partial
derivative. There is an additional time dependence of �� through its argument r � R(t) which

generates a term proportional to Ṙ, however that term is contained in L(2)
int .
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The Lagrangian now assumes the simplified form

L(2) =
1

2a2
~ †⌧ z@⌧ ~ +

1

2a2
~ †H ~ + L(2)

int (5.30)

with the transformed Hamiltonian H = U †H̃U given by

H↵� = "0a
2
h
� �↵�r2 + 2⌧ z↵�

✓
cos ✓

⇢2
�Q

sin ✓

⇢

◆
i@� + 2 + �↵�v0 + ⌧x↵�vx

i
. (5.31)

with r2 = @2⇢ + (1/⇢)@⇢ + @2�/⇢
2 and ✓ in the above equation is ✓ = ✓(⇢) the polar

profile function of the static skyrmion solution.
The scattering potentials v0 and vx are exponentially localized at the skyrmion

location (c.f. Fig. 5.3a) and given by

v0 =
3(cos(2✓)� 1)

4⇢2
� 3Q sin(2✓)

2⇢
+ 2(cos ✓ � 1)�Q✓0 � ✓02

2

vx =
sin2(✓)

2⇢2
+

Q sin(2✓)

2⇢
�Q✓0 � ✓02

2
. (5.32)

They only depend on the radial component ⇢. The potential vx stems from the expan-
sion of the DM interaction term and is the only one that couples the two components
of the Schrödinger equation. The interaction between the collective coordinate R and
the massive modes  ↵ is given by

L(2)
int = � 1

2a2
~ †�� ~ id⌧R�. (5.33)

where interaction vertex assumes the simple form

��
↵� = �⌧ z↵�i@� � �↵�

cos ✓

⇢
�̂�. (5.34)

and we have defined the di↵erential operator @� = ⇢̂�@⇢ + �̂�(1/⇢)@� where ⇢̂T =
(cos�, sin�) and �̂T = (� sin�, cos�). In summary we the expansion we found has
the following structure

L =

Z
d2r L(0)

| {z }
reproduces
Thiele’s
equations

+

Z
d2r L(1)

↵  ↵

| {z }
vanishes

+

Z
d2r  †

↵G
�1
↵� �

| {z }
yields fluctuation

spectrum

� 1

2a2

Z
d2 †

↵�
�
↵� �

d

d⌧
R�

| {z }
coupling between fluctuations and

collective coordinate R

+O( 3)

Normal modes of the fluctuation matrix

In the following we want to study the excitation spectrum of the massive fluctuations.
This will provide us with a suitable eigenbasis to expand the fluctuating fields into.
We therefore want to find the eigenfunction spectrum of the third term in the above
expansion summary (ignoring the presence of the fourth term which is also quadratic
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in the fluctuation fields however couples them to the collective coordinate). A Fourier-
Laplace ansatz for the complex time dependence of the fields ~ (⌧) =

P
n" e

�i!n⌧ ~ "an,"
allows us to obtain the fluctuation modes as the eigenstates of the equation

H ~ = "⌧ z ~ . (5.35)

The Hamiltonian possesses the following particle-hole symmetry which has important
consequences for the eigenspectrum

⌧xKH⌧xK = H , (5.36)

where K means complex conjugation. In particular if ~ is an eigenvector with eigen-
value " then ⌧x ~ ⇤ is an eigenvector with eigenvalue �✏. Eigenvalues therefore appear
always in pairs ±".

The HamiltonianH↵� depends on the polar angle � only through a partial derivate
@�. Therefore the angular momentum is a good quantum number and we can use it

to label the eigenstates. For this we set ~ = eim�⌘m(⇢). With this ansatz we find
H(�i@�) ! H(m) and the eigenvalue equation becomes

H(m)~⌘m = "⌧ z~⌘m (5.37)

In the following we limit ourselves to positive energies " > 0 in the following. The
eigenvectors with negative eigenenergies are simply given by ⌧xKeim�~⌘m = e�im�~⇣�m

where ~⇣�m = ⌧x~⌘⇤m and
H(�m)~⇣�m = �"⌧ z~⇣�m. (5.38)

It is noteworthy that the fluctuation theory presented here bears structural resem-
blance to the Bardeen-Cooper-Schrie↵er theory (BCS theory) of superconductivity.
If one writes out the transformation Eq. (5.28) explicitly one finds

~ =
1p
2

✓
�1 � i�2

�1 + i�2

◆
. (5.39)

We see that the two components are complex conjugates of each other. One can
introduce now a Nambu spinor (for spinless particles) with a complex field  to
represent the  ↵

~ =

✓
 
 ⇤

◆
(5.40)

The presence of the skyrmion creates the coupling potential vx⌧x, introduced above,
between the two components of the Schrödinger equation leading to scattering terms
of the form  ⇤

1 2 and  ⇤
2 1, which are in the Nambu language local, superconducting

terms of the form   and  ⇤ ⇤. We will see later that it is only due to these induced
superconducting correlations that we get a finite mass in the zero temperature limit.

For a localized object such as the skyrmion it is helpful to reformulate the above
eigenvalue problem in terms of a scattering problem. For this we separate the Hamil-
tonian H(m) into two contributions, H(m) = H0m + Vm. Here we choose the field
polarized state (W = 0) as a reference state: H0m describes magnon waves on top
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Figure 5.3: (a) The potentials v0, vx and vz in units of "0 plotted as functions of the
dimensionless parameter ⇢. All three potentials vanish exponentially for ⇢ � 1.
(b) Exemplary solution of the eigenvalue problem, Eq. (5.35), for  = Q and m = 0
in the regime 0 < " < "0a22 using the shooting method [71]. The numerical solution
of the two-dimensional root-finding problem gives " = 0.839012 and c1 = �0.331808.
For large ⇢ both components of the eigenfunction vanish exponentially and therefore
the wavefunction describes an internal excitation of the skyrmion.

of a collinear (field-polarised) state scattered by an exponentially localized scattering
potential Vm. Therefore H0m describes the system in the absence of a skyrmion and
is given by

H0m = "0a
2
h
1
✓
�@2⇢ �

@⇢
⇢

+
m2 + 1

⇢2
+ 2

◆
� ⌧ z

2m

⇢2

i
(5.41)

This expression looks so unfamiliar due to the twist in the coordinate system, see
Eq. 5.17. The skyrmion’s scattering potential Vm is given by

Vm = "0a
2
h
v01 + vx⌧

x + vz⌧
z
i

(5.42)

with

vz = �2m

✓
cos ✓ � 1

⇢2
� Q sin ✓

⇢

◆
(5.43)

and v0 and vx as given in Eq. (5.32). Fig. 5.3a shows the three components of the
scattering potential Vm. They vanish exponentially as ⇢ � 1. The potential vx
couples the two components of the wave function ~⌘ and vanishes quadratically for
⇢! 0 and exponentially for ⇢! 1.

Solutions of the free problem H0m~⌘
(0)
m = "⌧ z~⌘(0)m only exist for energies " =

"0a2(2 +K2) with K � 0. They are given by

~⌘(0)m," =

✓
1
0

◆
1p
2"0a2

Jm�1(K⇢) (5.44)

where J⌫ are Bessel functions of the first kind. The solutions ~⌘(0)m," simply describe
magnons with a gapped, quadratic dispersion relation in polar coordinates. They are
normalized such that Z 1

0

d⇢⇢~⌘(0)†m," ⌧
z~⌘(0)m,"0 = �("� "0) (5.45)
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where we used the completeness relation of the Bessel functions

�(K �K 0) = K

Z 1

0

d⇢⇢J⌫(K⇢)J⌫(K
0⇢). (5.46)

We now turn to the solution of the full scattering problem. Depending on the eigenen-
ergy of the excitation ", the eigenmodes are either (1) spin-wave scattering states or
(2) bound states which appear as internal excitations of the skyrmion. For energies
" > "0a22 one finds scattering states with a continuum of eigenenergies and oscillat-
ing behaviour in the large ⇢-limit, for " < "0a22 internal excitation modes of the
skyrmion are found which are exponentially localised.

The full scattering problem can only be solved numerically. We employ the shoot-
ing method [71] to find the solutions. We start by analysing the asymptotics of the
eigenfunctions. For small distances ⇢⌧ 1, the Hamiltonian reduces to

H(m) ⇡ "0a
2
h
1
✓
�@2⇢ �

@⇢
⇢

+
m2 + 1

⇢2

◆
+ 2⌧ z

m

⇢2

i
(5.47)

where we have omitted all terms with O(�1⇢�1) and above. Notice that the skyrmion
essentially inverts the sign in the linear m term compared to the free Hamiltonian
H0m. From Eq. (5.47) follows the asymptotics of the eigenfunction for small distances

~⌘m ⇡
✓

N (⇢)|m+1|

N c1(⇢)|m�1|

◆
for ⇢⌧ 1, (5.48)

with coe�cients N and c1. While the coe�cient N is fixed by the normalisation
condition, Eq. (5.45), c1 parametrizes the di↵erent initial value problems (IVPs). c1
has to be chosen such that the solution of the IVP has the correct asymptotics for
⇢� 1.

For 0 < " < "0a22 the energy spectrum is discrete and all eigenmodes are localised
near the skyrmion centre with exponentially decaying asymptotics for large distances.
However for arbitrary c1 one finds that solutions of the resulting IVP have asymptotics
of the form

~⌘m ⇡
✓

A Km�1(
p
"0a22 � ✏⇢) + B Im�1(

p
"0a22 � ✏⇢)

C Km�1(
p
"0a22 + ✏⇢) +D Im�1(

p
"0a22 + ✏⇢)

◆
for ⇢� 1 (5.49)

where I⌫ are modified Bessel functions of the first and K⌫ of the second kind. For
⇢� 1, I⌫ shows exponentially increasing asymptotics. Therefore one has to choose
the eigenenergy ✏ and the parameter c1 such that the coe�cients B and D vanish

B(✏, c1)
!
= 0

D(✏, c1)
!
= 0 (5.50)

E↵ectively one needs to solve a two-dimensional root-finding problem which can be
easily done on any computer.
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In the energy range " � "0a22 the spectrum is a continuum of spin-wave scattering
states with oscillating large ⇢ asymptotics. Here the root-finding problem simplifies
as the large distance asymptotics of the IVP is given by

~⌘m ⇡
✓

A Jm�1(
p
✏� "0a22⇢) + B Ym�1(

p
✏� "0a22⇢)

C Km�1(
p
"0a22 + ✏⇢) +D Im�1(

p
"0a22 + ✏⇢)

◆
(5.51)

where J⌫ is the Bessel functions of the first and Y⌫ of the second kind. In order to have
normalizable eigenfunctions we have to “kill” the exponentially increasing behaviour
of Im�1 by choosing c1 such that

D(✏, c1)
!
= 0 (5.52)

For any " � "0a22 such a c1 can be found numerically.
It is an important crosscheck that the translational modes of the skyrmion are

indeed zero modes of the Hamiltonian H. The generator of translations along the
�-direction is given by r� ê3. With the help of Eq. (5.21) we find

r� ê3 = �✓0⇢̂� ê2 +
sin ✓

⇢
�̂� ê1. (5.53)

which allows to identify the zero modes in terms of the �’s by comparing coe�cents

�1
zm,� =

sin ✓

⇢
�̂�

�2
zm,� = �✓0⇢̂� (5.54)

Using the unitary transformation Eq. (5.28) we find a zero mode with angular mo-
mentum m = 1,

~⌘ zm
1 /

⇣ sin ✓
⇢ + ✓0

sin ✓
⇢ � ✓0

⌘
. (5.55)

The second mode with m = �1 is then obtained via the relation ~⇣ zm
�1 = ⌧x(~⌘ zm

1 )⇤.

One can then check explicitly, that H(1)~⌘ zm
1 = H(�1)~⇣ zm

�1 = 0 using the di↵erential
equation obeyed by ✓(⇢), Eq. (5.19).

Fluctuation spectrum

The energy spectrum for the regime 0 < " < "0a22 (local modes) is shown in
Fig. 5.4a. In the regime of a stable field-polarized state 2 & 0.8Q2, see Fig. 5.2a, we
find two bound states in addition to the zero modes (which are not shown). There
exists a bound state with m = 0 for all  and an additional bound state with m = 2
below 2 . 0.95Q2. Interestingly, the energy of the m = 2 mode decreases to zero at
around 2/Q2 ⇡ 0.57 below which it reappears as a m = �2 mode.

The point where the excitation energy of the m = 2-mode vanishes is notewor-
thy. The presence of the skyrmion breaks translational symmetry which leads to
the appearance of zero modes (translational modes in x and y direction) which we
treat by introducing the collective coordinate R. The spin-orbit interaction (in the
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(a) Energy spectrum of spin-waves in the
presence of a skyrmion on top of the field-
polarized state. The latter becomes unsta-
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(b) Phase shifts of the scattering states, nu-
merically exact (solid lines) and in WKB ap-
proximation (dashed lines) for various angu-
lar momentum channels. For large angular
momenta or high energies the WKB approx-
imation renders satisfying results.

form of the DM interaction in our Hamiltonian) which allows for the skyrmion as a
metastable solution breaks the separate rotational symmetries in spin and real space.
However even in the presence of a finite magnetic field a symmetry operation is al-
lowed which rotates spin and real space simultaneously around an axis parallel to
the applied field through the skyrmion core. The vanishing of the eigenenergy of the
quadrupolar mode, m = �2, at 2 ⇡ 0.58Q2 probably indicates an instability of the
single skyrmion for all 2 . 0.58Q2 towards deformation into a bimeron as previously
pointed out by Ezawa [27]. Fig. 5.5b illustrates the space-time dependence of the
relevant bound magnon modes. The bimeron breaks rotational symmetry by picking
out a certain direction, c.f. Fig. 5.5b. One would treat this point by introducing
an additional collective variable (nematic director) which describes the chosen direc-
tion. Additional modes are seen to appear within the unstable regime, for example,
a |m| = 4 bound state and also states with larger |m| for even smaller values of 
which we don’t show here. However the spectrum in this region is not reliable due to
the rotationally invariant skyrmion being the wrong ground state. All bound state
we found do not have any nodes, i.e., the corresponding ~⌘m do not have zeros at a
finite distance ⇢. There is nothing in principle that forbids local modes with a node
however their energies were simply so high that they lie in the magnon continuum in
the investigated -regime.

In Ref. [60], Lin and corworkers use the Lanczos method for a finite system dis-
cretised on a two-dimensional, simple cubic lattice to determine the spectrum of the
internal modes. The results from this numerical study agree with our results with the
noteworthy exception of the zero-mode. In the Lanczos treatment the translational
mode has a nonzero frequency because of the intrinsic pinning caused by the discrete
lattice. The frequency depends on the ratio of the skyrmion size to the lattice con-
stant and it becomes bigger for higher fields because the skyrmion becomes smaller
[60].
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Turning to the regime " � "0a22 now, we find that the scattering states obey the
following asymptotics in the limit ⇢� 1

~⌘m ⇡
✓

1
0

◆
1p
2"0a2

(cos(�m)Jm�1(K⇢)� sin(�m)Ym�1(K⇢)) . (5.56)

where we introduced the phase shift �m. The second component is exponentially small
(c.f. Eq. (5.51)) and has been set to zero. The above equation allows to extract the
scattering phase shifts for the numerically determined wave functions as a function of
the energy ✏. The resulting phase shifts are shown in Fig. 5.4b. While the dependence
of the phase shifts on the angular momentum quantum number m and energy ✏ is
quite rich for small ✏, the structure of the phase shifts at high ✏ significantly simplifies.

For high energies, approximate phase shifts can be obtained from the Wentzel-
Kramers-Brillouin (WKB) approximation. The details of this procedure are outlined
in appendix D. The resulting phase shifts are plotted in Fig. 5.4b as dashed lines
with a matching color code to compare to the numerically exact phase shifts. For
high energies the agreement is excellent.

5.1.4 Fluctuation-induced inertia terms

In the following we study the terms generated by the massive fluctuations for the
e↵ective action of the collective coordinate R. We start by expanding the fields ~ in
terms of normal modes of the fluctuation Hamiltonian H↵�. We can regard the ex-
pansion coe�cients as creation / annihilation fields for the corresponding excitations.
Substituting this expression into the quadratic action S(2) gives the interaction with
the collective coordinate in terms of creation / annihilation fields for which Wick’s

theorem holds. Finally we perform perturbation theory in the interaction S(2)
int to find

the terms for the action of collective coordinate.

Expansion in terms of normal modes

As already mentioned the original fluctuation fields � are real-valued and therefore
after transformation Eq. (5.28) the fields  obey the symmetry

~ ⇤ = ⌧x ~ . (5.57)

This is reflected in the expansion of the ~ ’s in terms of the normal modes, i.e. the
eigenfunctions of the fluctuation matrix. The expansion takes the form

~ (r, ⌧) =
1

2⇡

X

m

eim�
hX

n

⇣
am,n(⌧)~⌘m,n(⇢) + a†�m,n(⌧)~⇣m,n(⇢)

⌘

+

Z 1

�

d"
⇣
am,"(⌧)~⌘m,"(⇢) + a†�m,"(⌧)~⇣m,"(⇢)

⌘i
(5.58)

where � = "0a22 is the lower bound for the energy of the magnon continuum and
K a†m,n = am,n andK a†m," = am," withK complex conjugation. The first contribution
in the expansion expands in terms of the localised, internal excitation modes. Here

97



(a) Visualization of the m = 0 excitation mode as a sequence of 4 snap-
shots throughout one period of oscillation. The skyrmion shows a defor-
mation where it grows and shrinks periodically which is why this mode
is referred to as the “breathing mode”. This mode does not break the
symmetry of simultaneous rotations of spin- and real-space.

(b) Visualization of the m = 2 excitation mode as a sequence of 4 snap-
shots throughout one period of oscillation. The skyrmion is deformed
into an elongated shape which rotates slowly about its center.

Figure 5.5

m labels the angular momentum quantum number and n is an additional quantum
number which labels the number of nodes in the solution. However we only found
internal modes with n = 0 in the investigated  regime. The second contribution
expands in terms of the extended scattering states. Here the continuous variable
" with the lower bound � parametrizes the energy of the scattering solution. For
✏ < � the large ⇢ asymptotics of the solutions change from oscillating to exponentially
decaying.

As a short hand notation we omit the second term in the above expression and
agree that the index of the sum

P
n is either discrete or continuos for the bound and

scattering states respectively. Indeed we find for the complex conjugate of the fields
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~ ⇤(r, ⌧) =
1

2⇡

X

m,n

e�im�
⇣
a†m,n(⌧)~⌘

⇤
m,n(⇢) + a�m,n(⌧)~⇣

⇤
m,n(⇢)

⌘

= ⌧x
1

2⇡

X

m,n

eim�
⇣
a†�m,n(⌧)⌧

x~⌘⇤�m,n(⇢) + am,n(⌧)⌧
x~⇣⇤�m,n(⇢)

⌘

= ⌧x
1

2⇡

X

m,n

eim�
⇣
a†�m,n(⌧)~⇣m,n(⇢) + am,n(⌧)~⌘m,n(⇢)

⌘

= ⌧x ~ (r, ⌧) (5.59)

where in the second equality we set m ! �m and in the third we used ~⇣�m = ⌧x~⌘⇤m
and ~⌘�m = ⌧x~⇣⇤m. One can now substitute the above expansion into the quadratic
part of the action S(2) =

R
drL(2) with L(2) given by Eq. (5.30). For the calculation

matrix elements between di↵erent wave functions are needed
Z 1

0

d⇢⇢~⌘†m,j⌧
z~⌘m,j0 = �j,j0

Z 1

0

d⇢⇢~⇣†m,j⌧
z~⌘m,j0 = 0

Z 1

0

d⇢⇢~⇣†m,j⌧
z~⇣m,j0 = ��j,j0 (5.60)

where in the last line we used ⌧x⌧ z⌧x = �⌧ z. One finds for the quadratic part of the
action

S(2) =
1

2⇡a2
d⌧
X

m,n

a†m,n(@⌧ + "m,n)am,n + S(2)
int (5.61)

Since we expand in terms of normal modes the first part of the action assumes a
simple form by construction, where "m,n is the eigenenergy of the normal mode with
quantum numbers (m,n).

The expansion of the part interacting with collective coordinate S(2)
int is a little more

tricky. In the angular momentum representation the interaction vertex ��(�i@�),
Eq. (5.34), assumes the form

��(m) = ⌧ z
✓
�⇢̂�i@⇢ +

m

⇢
�̂�

◆
� 1

cos ✓

⇢
�̂� (5.62)

Throughout the calculation one needs to calculate integrals of the following form
which can be conveniently expressed using the vectors ê±

Z 2⇡

0

d�ei(m�m0)���(m) = 2⇡
X

�=±1

��,m�m�m0+�ê
��
� , with ê± =

1p
2

✓
1
±i

◆
(5.63)

where we introduced the new vertex operator matrix on the right-hand-side

��,m =
ip
2


�⌧ z@⇢ � �

✓
�⌧ zm

⇢
+

cos ✓

⇢

◆�
. (5.64)

99



(a) (b)

Figure 5.6: Diagrammatic representation of the contributions to Sint. (a) Diagrams
linear in A�,m

j0j couple the particle-particle (hole-hole) channel to the collective coordi-
nate R. (b) Diagrams linear in B�,m

j0j couple the particle-hole channel to the collective
coordinate R.

With this one finds the expansion of the interaction in the normal modes

S(2)
int =

1

2a2
1

2⇡

Z �

0

X

m�

X

jj0

h
A�,m

j0j

i

2

⇣
a�m,j0am+�,j ê

�
� � a†�m,j0a

†
m+�,j ê

��
�

⌘

+ B�,m
j0j i a†m,j0am+�,j ê

�
�

i
id⌧R� (5.65)

with the amplitudes

A�,m
j0j =

�p
2
h~⌘Tm+�,j(⌧

z 2m+ �

⇢
� 1

2 cos ✓

⇢
)~⇣m,j0i

B�,m
j0j =

�p
2
h~⌘Tm+�,j(⌧

z 2m+ �

⇢
� 1

2 cos ✓

⇢
)~⌘m,j0i (5.66)

By now we have collected quite a number of indices. It is helpful to introduce
a diagrammatic language at this point for a clearer presentation of the perturbation
theory. The action due to the interaction term S(2)

int , Eq. (5.65) has three contributions:
two linear in A�,m

j0j , complex conjugates of each other, and one linear in B�,m
j0j . We agree

on the following code:

1. Time derivates of the collective coordinate Ṙ are represented by dashed lines.

2. Directed, solid lines mark creation / annihilation fields, where an arrow pointing
away from the vertex signifies a creation field, a†m,j, and towards the vertex a

annihilation field, a†m,j.

3. The matrix element A�,m
j0j is represented by a circle and the matrix element B�,m

j0j
by a triangle.

Fig. 5.6 shows two of three contributions where the remaining diagram is easily con-
structed from Fig. 5.6a by reversing the solid line directions.
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(a) (b)

Figure 5.7: (a) The contribution quadratic in A�,m
j0j is also finite at T = 0. (b) The

particle-hole bubble quadratic in B�,m
j0j vanishes at T = 0.

Second-order perturbation theory in Sint

In order to study how the massive fluctuations am,n modify the e↵ective action of the
collective coordinate R we expand the action up to second order in the interaction
Sint

e�S ⇡ e
�
⇣
S(0)+S(2)

0 +S(2)
int

⌘

⇡ e�S(0)
h
1�

D
S(2)
int

E

0| {z }
vanishes

+
1

2

D
S(2)
intS

(2)
int

E

0

i

⇡ e�S(0)
e

1
2

D
S(2)
int S

(2)
int

E

0 (5.67)

where S(0) is the quadratic part of the action without the interactions Sint and

h. . . i0 =
1

Z0

Z
D(a, a†) . . . e�S(0)

(5.68)

with Z0 =
R
D(a, a†) e�

R
d⌧ S(0)

. The trace over S(2)
int vanishes as the terms propor-

tional to A�,m
j0j are not particle number conserving and those proportional to B�,m

j0j only
give a finite contribution if there is a di↵erence of � = ±1 in the angular momentum
of the states right and left.

The expectation value of the square of the interaction Sint takes the form of an
inertia term for the collective coordinate R�(⌧)

1

2

⌧⇣
S(2)
int

⌘2�

0

=

Z
d⌧

Z
d⌧ 0

1

2
id⌧R�(⌧)M�,�0(⌧ � ⌧ 0)id⌧R�0(⌧ 0) (5.69)

with the mass tensor M�,�0 . The expression for M�,�0 is rather complicated however
it simplifies in the zero temperature limit, T ! 0.

Quantum mass of the skyrmion

Considering the structure of Eq. (5.65) we expect to see three types of contributions
to M�,�0 : (a) those quadratic in A�,m

j0j , (b) those quadratic in B�,m
j0j and (c) those

linear in both. Contributions of the last type vanish as they are not particle number
conserving. They consist of either three annihilation fields am,n and one creation field
a†m,n or vice-versa. In the diagrammatic language this is expressed by the inability to
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connect the diagram in Fig. 5.6a to the one in Fig. 5.6b. The diagrams of the first
two contributions are given in Fig. 5.7. In the zero temperature limit contributions
quadratic in B�,m

j0j also vanish as the corresponding diagram, Fig. 5.7b, is a particle-
hole bubble and one takes the expectation value with respect to the ground state
which is defined by the absence of all internal and magnon modes. However the hole-
hole version of the diagram in Fig. 5.7a is finite even at T = 0. It is only due to the
local, “superconducting” correlations that his diagram has a finite expectation value.

Subsequently the expression for M�,�0 considerably simplifies and one finds

MT!0
��0 (i⌦) =

1

2⇡

X

m,�,j,j0

1

8
|A�,m

j,j0 |2
i⌦�⌧ y��0 + ("m+�,j0 + "�m,j)1��0

("m+�,j0 + "�m,j)2 � (i⌦)2
. (5.70)

The evaluation of the above expression involves matrix elements A�,m
j,j0 of scatter-

scatter, bound-scatter and bound-bound wave function combinations with relative
angular momentum di↵erence of ±1. If one chooses  & 0.95 Q (here  = Q) only
the m = 0 bound state exists below the magnon continuum, c.f. Fig. 5.4a. Therefore
no bound-bound wave function combinations exists with�m = ±1 and for the bound-
scatter combinations only the scattering states with m = ±1 have to be considered.
In Fig. 5.8 the frequency dependence of the analytical continuation of Eq. 5.70 is
shown (blue line). We also separated the contributions from the overlaps for two
scattering solutions (green line) from those of a scattering solution with the bound
state m = 0 (red line). The scatter-scatter contributions peak at a characteristic
frequency 2� with � the size of the magnon gap, which is the minimum energy
required to emit two magnons. For  = Q the energy of the m = 0 bound state is
given by ⇡ 0.84 �. Therefore magnon-bound state contributions are seen to peak at
a slightly smaller frequency than 2� approximately given by ! ⇡ 1.84 � which is
the minimum energy required to excite the m = 0 mode and emit a single magnon.
It should be noted that the contributions from overlaps with the single bound state
m = 0 are treated without any truncation. Scattering modes with |m| 6= 1, do note
have any overlap with the m = 0 bound state. The contributions for the overlap of
two scattering wave functions on the other have been truncated. Here only the lowest
angular momentum states are considered with m 2 [�2, . . . , 2]. It turns out that
solving the boundary value problem and calculating the matrix elements A�,m

j,j0 for
higher angular momentum states is numerically more di�cult. Unfortunately due to
time constraints we were not able to sort the problems out before writing this thesis.
We expect that the weight of higher angular momentum states is numerically quickly
seen to diminish, however a more refined quantitative investigation is necessary to
properly justify this truncation and left for the future.

A scaling analysis of Eq. 5.70 allows to determine how the quantum mass scales
with the radius of the Skyrmion. The scattering wave functions scale due to the nor-
malisation condition, Eq. 5.45, like ~⌘m� ⇠ 1

⇢
p
✏ . The matrix elements |A�,m

j,j0 | therefore
scale (with the two powers of ⇢ from the integration) according to |A�,m

j,j0 | ⇠ 1
⇢2✏

1
⇢⇢

2 ⇠
1
✏⇢ . In the ⌦ ! 0-limit the above expression for the mass is thus independent of

the Skymion radius MT!0
��0 (i⌦ ! 0) ⇠ 1

⇢2✏ ⇠ Q2

✏ ⇠ 1. Thus, the expectation is to
find a number for the mass of order 1. It is therefore surprising that the numerical
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Figure 5.8: Real part of the diagonal entries of the mass tensor MT!0
�� (!) as a func-

tion of the real frequency ! in the T ! 0 limit evaluated from the lowest angular
momentum eigenstates m 2 [�4, . . . , 3]. The green line indicates the contribution
from overlaps of two scattering solution, the red line from overlaps of a bound and a
scattering solution and the blue line the sum of the two.

value is so small, especially as there does not appear to be a small parameter in the
theory which could explain this. Several points should be mentioned here: First of
all, it small numbers of order 1 do exist; there is nothing illegal about ReMT!0

�� (!)
being small. Secondly, as already mentioned, the angular momentum number has
been truncated (due to numerical problems) and only magnon states with m values,
m 2 [�2, . . . , 2], have been considered. While it can expected that higher angular
momentum states give smaller contribution, there is strictly speaking currently no
justification for this truncation. One possible scenario is that there is really a conser-
vation law which enforces a vanishing of the mass for T = 0 and the small number
seen here is really a 0. The clarification of these points is left for future work.

An interesting question now is: what are the observable physical consequences of
the presence of the mass term? Massive particles in an applied magnetic field are
known to give rise to gyro modes oscillating with the cyclotron frequency. Here the
numerical value of the mass is extremely small. With the cyclotron frequency given
by !c ⇠ 2

Re M��(!c)
, one finds that due to the strong suppression of the mass term

at higher frequencies no solution of the equation exists and therefore no observable
cyclotron mode arises below the magnon gap.

5.2 E↵ective Equations of Motion from Micromag-

netic Simulations

Compared to the previous section, here we approach the problem of finding the e↵ec-
tive equations of motion for a single Skyrmion in the ferromagnetic background from
a complementary perspective. The approach presented in the last section could be
characterised as a bottom-up approach: Starting from a microscopic description of
the system we determine the eigenfunctions of the system and by integrating these
out we extract the e↵ective system description for the macroscopic degree of freedom,
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i.e. the Skyrmion position. This allows for instance to determine which microscopic
modes are especially important for the characterisation of the macroscopics. Although
the above approach yields a wealth of information, it is limited by the di�culty to
solve the microscopic problem.

The approach presented in this section can be compared to the Langevin treat-
ment of the Brownian motion. There the central degree of freedom is the position
of the Brownian particle. One does not try to understand and model the microsopic
degrees of freedom (the particles that make up the fluid that the Brownian particle
is immersed in) but rather retreats to modelling the statistical properties of the sur-
rounding particle ensemble to the extend that it leads to fluctuations of the Brownian
particle’s position. A statistical analysis of these fluctuations then allows to extract
macroscopically observable properties, e.g. the mean-squared displacement. Our
approach for the e↵ective dynamics of a single Skyrmion in the ferromagnetic back-
ground will be very similar. Based on a symmetry analysis we propose a prototypical
form for the equations of motion. Numerical simulations provide the necessary data
for a statistical analysis of collective coordinate fluctuations and velocity-velocity cor-
relations allow to fix the full frequency dependence of the parameters in the equations
of motion. In a second step we consider the response of a Skyrmion to time-dependent
driving forces and find interesting screening and anti-screening e↵ects.

5.2.1 E↵ective equations of motion for a single skyrmion

Following Kubo [55] in his seminal work about the fluctuation-dissipation theorem we
start with the deterministic part of the equations of motions for Skyrmion position R
and add the e↵ects of temperature and fluctuations later. The Skyrmion position in
the two dimensional-plane is determined by an x- and a y-coordinate and therefore
the equations of motion in the presence of a weak, time-dependent force F(t) will be
of the form Z 1

�1
G�1(t� t0) ·V(t0) dt0 = F(t) (5.71)

where @tR(t) = V(t) and G�1(t) is the inverse of the real-valued 2 ⇥ 2 Green’s
function matrix. Any real-valued matrix can be expressed as superposition of the
matrices 1, �x, i�y and �z. We may therefore expand G�1(t) = D1(t)1 + Dx(t)�x +
Dy(t)�y +Dz(t)�z. The dynamics are invariant under rotations about the z-axis and
particularly for ⇡/2-rotations. Note that rigorously speaking this symmetry is not
supported by the microscopic unit cell in the B20 compounds. However, since the
magnetisation changes only on length scales much larger than the atomic unit cell,
the magnetisation dynamics decouples very e�ciently from the lattice and the ⇡/2-
rotations emerge as an approximate symmetry. Under such a rotation �x and �z go
to ��x and ��z and therefore Dx(t) = Dz(t) = 0. We choose to parametrize D(t� t0)
with

D1(t� t0) = ↵D(t� t0) +m(t� t0)@t0

Dy(t� t0) = ↵G(t� t0) + ↵�(t� t0)@t0 . (5.72)
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The ansatz for the symmetry adjusted equations of motion assumes the form
Z 1

�1
dt0G(t� t0)⇥ Ṙ(t0)+↵D(t� t0)Ṙ(t0)+m(t� t0)R̈(t0)+↵�(t� t0)⇥ R̈(t0) = F(t)

(5.73)
where �(t) = �(t)ê? and G(t) = G(t)ê?. Here the ‘gyro-coupling’ G acts as an
e↵ective magnetic field oriented perpendicular to the plane, ↵ is the (dimensionless)
Gilbert damping and has been pulled out of G and � for later convenience. ↵D
describes the friction of the Skyrmion and m its mass. � parametrizes a peculiar
type of damping proportional to the acceleration of the particle. We refer to this
term as ‘gyro-damping’ since it describes the damping of a particle on a cyclotron
orbit, which can be either stronger (� parallel to G) or weaker (� parallel to G) than
for linear motion.

Thiele [102] found analytic expressions for G and ↵D under the assumption of a
rigid spin texture M(r, t) = M0(r�R(T )) driven by a static force F [26, 88, 25, 46].
One finds

G = ~ 1

M2
0

Z
drM0 · (@xM0 ⇥ @yM0)

D = ~ 1

M2
0

Z
dr (@xM0 · @xM0 + @yM0 · @yM0)/2 (5.74)

with M0 the amplitude of the magnetisation. From the standpoint of applications
in spintronics one is interested in the fast manipulation of Skyrmions. However for
weak but rapidly changing forces the above approximations are too crude and one
needs to include the retardation e↵ects contained in the time dependence of the
parameters in Eq. 5.73. We will regard 3 possible contributions to the time-dependent
force F(t). For a system at finite temperature the Langevin approach models the
impact of temperature fluctuations on the system by the appearance of random,
delta-correlated forces Fth(t) acting on the collective coordinate R(t) resulting in a
di↵usive motion of the Skyrmion. A second contribution comes from the application
of a time-dependent current which leads due to spin-transfer torques to an e↵ective
time-dependent, deterministic force Fc(t) =

R t

�1 Sc(t � t0) · vs(t0)dt0 with vs(t) the
time-dependent (spin-) drift velocity of the conduction electrons. The matrix Sc(t�t0)
describes possible screening-e↵ects of the forces due to retardation e↵ects. The last
contribution we will investigate is due to the application of a time-dependent magnetic
field gradient. The Skyrmion has a finite magnetisation and therefore a magnetic field
gradient will exert a force Fg(t) =

R t

�1 Sg(t� t0) ·rBz(t0)dt0 on the Skyrmion parallel
to the gradient direction. Here possible screening e↵ects are also taken into account
by the matrix Sg(t).

In the following it will be advantageous to describe the dynamics in frequency
space. The Fourier transform of the equations of motion for the driven Skyrmion can
be written as

G�1(!)V(!) = Sc(!)vs(!) + Sg(!)rBz(!) + Fth(!) (5.75)

where the small ! expansion of the 2⇥ 2 matrix G�1(!) defines the terms on the lhs
of Eq. 5.73. For the resulting dynamics of the driven Skyrmion also the frequency
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dependence of the rhs will be very important: the application of external forces excites
internal modes of the Skyrmion which change the dynamics significantly.

In order to determine the matrix G�1(!), we turn o↵ the magnetic gradient rBz

and the conduction electron current and analyse the di↵usive motion of the Skyrmion
due to the stochastic, thermal forces Fth(!). Kubo’s fluctuation-dissipation theorem
[55] for generalised systems of Langevin equations links the strength of these fluctu-
ations to the strength of the dissipative mechanisms in G�1(!). Kubo defines the
Green’s function in the system by

G↵�(!) =
1

kBT

Z 1

0

⇥(t� t0)hv↵(t)v�(t0)iei!(t�t0)d(t� t0) (5.76)

The Fourier transform of the velocity-velocity correlation function is then expressed
in terms of the Green’s function as

hv↵(!)v�(�!)i =

Z 1

�1
dt hv↵(t)v�(0)i ei!t

=

Z 1

0

dt hv↵(t)v�(0)i ei!t +
Z 0

�1
dt hv↵(t)v�(0)i ei!t

= kBT

✓
G↵�(!) +

Z 0

1
(�dt0) hv↵(�t0)v�(0)i e�i!t

◆

= kBT

✓
G↵�(!) +

Z 1

0

dt0 hv↵(0)v�(t0)i e�i!t

◆

= kBT (G↵�(!) +G�↵(�!)) (5.77)

The lhs can be linked to the force-force correlation function using the equations of
motion, Eq. 5.73

hF↵(!)F�(�!)i = G�1
↵↵0(!)G�1

��0(�!) hv↵0(!)v�0(�!)i
= kBT G�1

↵↵0(!)G�1
��0(�!) [G↵0�0(!) +G�0↵0(�!)]

= kBT
⇥
G�1

�↵(�!) +G�1
↵�(!)

⇤
, (5.78)

In terms of the low-! parametrisation of G�1, Eq. 5.72, one finds hFx
th(!)F

x
th(!

0)i =
kBT ↵D(!) �(!+!0) and hFx

th(!)F
y
th(!

0)i = kBT ↵�(!) �(!+!0). Indeed the strength
of the mechanism for dissipation is parametrized by the dissipative tensor D(!) and
the gyro-damping �(!). This is why we pulled the Gilbert damping ↵ out of these
quantities.

By virtue of Eq. 5.76 it is now possible to reconstruct the full frequency depen-
dence of the Green’s function by tracking the Skyrmion motionR(t) and analysing the
correlation function of the velocity [55]. The trajectories R(t) can be obtained from
numerical simulations of the stochastic Landau-Liftshitz-Gilbert equation as outlined
in chapter 3. We therefore perform micro-magnetic simulations for a single Skyrmion
in the ferromagnetic background at finite temperature for an ensemble of thermal
noise realisations. For all of our simulations we chose a Dzyaloshinskii-Moriya inter-
action of � = 0.18J and Bz = 0.0278J . Initially a single Skyrmion is embedded into
the ferromagnetic background, then the time evolution in the presence of the thermal
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fluctuations is calculated. For the chosen parameters the ground state is ferromag-
netic, thus a single Skyrmion is a topologically protected, meta-stable excitation. For
the extraction of the Skyrmion centre coordinate we tried two tracking algorithms: (i)
tracking of the topological charge density and (ii) tracking the core of the Skyrmion.
The topological charge density is defined as

⇢top(r) =
1

4⇡
n̂(r) · (@xn̂(r)⇥ @yn̂(r)) (5.79)

with n̂(r) = M(r)/|M| and integrates to the total number of Skyrmions in the system.
For the system we are considering ⇢top(r) is therefore normalised which allows us to
define the centre of the Skyrmion as the centre of the topological charge

R ⌘
Z

d2r⇢top(r)r (5.80)

For the case of finite temperature this method can, however, not be used directly.
Thermal fluctuations in the ferromagnetic background far away from the skyrmion
lead to a large noise to this quantity which diverges in the thermodynamic limit.
A similar problem arises when tracking the center using the magnetization of the
skyrmion.

One therefore needs a method which focuses only on the region close to the
skyrmion center. To locate the skyrmion, we use the z-component of the magne-
tization but take into account only points where Mz(r) < �0.7 (the magnetization of
the ferromagnetic background at T = 0 is +1). We therefore use

⇢(r) = (1�Mz(r))⇥[�Mz(r)� 0.7] (5.81)

where ⇥[x] is the theta function. A first estimate, Rest = RV , for the radius is
obtained from

RA =

R
A r⇢(r) d2rR
A ⇢(r) d

2r
(5.82)

by integrating over the full sample volume V . Rest is noisy due to the problems
mentioned above but for the system sizes simulated one nevertheless obtains a good
first estimate for the Skyrmion position. This estimate is refined by using in a second
step for the integration area only D = {r 2 R2 | |r�Rest| < r} where r is choosen to
be larger than the radius of the Skyrmion core (we use r = 1.3

p
N</⇡, where N< is

the number of spins with Mz < �0.7). Thus we obtain a reliable estimate, R = RD,
not a↵ected by spin fluctuations far away from the Skyrmion.

From the resulting R(t), one can directly determine the di↵usion constant of
the Skyrmion. Fig. 5.9b plots the mean-squared displacement h(�R)2it = h(R(t0 +
t) � R(t0))2it as a function of time t. As expected the motion of the Skyrmion
is di↵usive: for large times the mean-square displacement grows linearly in time
h(�R)2it = 2Dt with D the di↵usion constant. It is however surprising that the
di↵usion constant decreases with decreasing damping ↵. Usually one expects rate
of di↵usion to increase when the friction of the Skyrmion is reduced. This puzzling
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Figure 5.9

behaviour has its origin in the gyro-coupling G which acts similar to a magnetic field.
In the limit of system without friction the Skyrmion is completely localised on a
cyclotron orbit. The di↵usion constant D can be expressed as the low-! limit of the
Green’s function. Upon noting that 2D = @th(�R)2it = hV · Vit. We find with
Eq. 5.77 and the low-! parametrisation of G, Eq. 5.72

D = lim
!!0

kBT
↵D(!)

G(!)2 + ↵2D(!)2
(5.83)

The gyro-coupling G surpresses the di↵usive motion. For most materials the dissi-
pative tensor D is of the same order of magnitude as the gryo-coupling G and the
Skyrmion motion is characterised by both small friction and a small di↵usion con-
stant.

The trajectories R(t) extracted from the simulation data can be used to calculate
the velocity-velocity correlation function hVi(t0 + t)Vj(t0)i. An example is shown
in Fig. 5.9a which is obtained after averaging over t0 with 1000 < t0 < 20000 and
50 di↵erent noise realisations for T = 0.1 and ↵ = 0.1. This allows to analyse the
dynamics on shorter time scales. Explicitly the low-! parametrisation of the inverse
Green’s function in frequency space is given by

G�1(!) =

✓
↵D(!)� i!m(!) �G(!) + i↵!�(!)
G(!)� i!↵�(!) ↵D(!)� i!m(!)

◆

By virtue of Eq. 5.77 the frequency dependent mass m(!), gyro-coupling G(!), gyro-
damping ↵�(!) and dissipation tensor ↵D(!) can be determined from the velocity
correlation function. Fig. 5.10a (black, solid line) shows these four quantities as
functions of the frequency ! for T = 0.05 but the dependence on both temperature.
G andm are approximately independent of ↵, while the friction coe�cients ↵D and ↵�
are linear in ↵. The gyro-coupling G approaches in the limit G(! ! 0) = �4⇡ for T !
0 as it should due to the topology of the Skyrmion. The dynamics of the Skyrmion can
be seen to have a strong frequency dependence. A characterisitic frequency seems to
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Figure 5.10: (a) Dissipative tensor ↵D, mass m, gyrocoupling G and gyrodamping
↵� as functions of the frequency ! for the di↵usive motion at T = 0.05 (solid black).
The red and green curve show the ‘apparent’ coe�cient for current- and force-driven
motion. The error bars reflect estimates of systematic errors arising mainly from
discretisation e↵ects. (b) Dissipative strength ↵D, mass m, gyrocoupling G and
gyrodamping ↵� as functions of the Gilbert damping ↵ for di↵erent temperatures T .

be !c ⇡ 0.1 where the gyro-coupling G abruptly drops by a factor of approximately a
half and the mass m practically vanishes. A strong frequency dependence arises when
internal modes of the Skyrmion are excited however this does not seem to be the case
here. The upper edges of the spin wave gap lies at !p = B = 0.0278 and therefore
! = 0.1 lies about 3 times higher in energy than any possible internal mode. However
we have seen in the last section that processes involving the emission of multiple
magnons are of great importance for the mass generation. We therefore conjecture
that such a process is responsible for the appearance of the characteristic frequency.

Both the gyro-damping � and the e↵ective mass m have large numerical values.
A simple scaling analysis of the Landau-Lifshitz-Gilbert equation reveals the origin.
We investigate a scaling transformation, where the radius of the skyrmion is enlarged
by a factor ⌘, M(r) ! M̃(r) = M(r/⌘). The Landau-Lifshitz-Gilbert equation is
given by

H[M] =

Z
d2r


J

2
(rM)2 + �M ·r⇥M�B ·M

�
.

The three terms scale with ⌘0, ⌘ and ⌘2, respectively. To obtain a larger skyrmion, we
therefore have to rescale �! �/⌘ and B ! B/⌘2. This implies that the Be↵ term in
the sLLG equation scales with 1/⌘2 and therefore also the time axis has to be rescaled,
t ! ⌘2t, implying that all time scales are are a factor of ⌘2 longer and all frequencies
a factor 1/⌘2 smaller. The temperature remains unscaled. This implies that when
M(r, t) is a solution for a given value of �, andB andG(!) the corresponding velocity-
correlation function of the skyrmion, then M(r/⌘, t/⌘2) is a solution for �/⌘, B/⌘2

with correlation function G(!⌘2). Accordingly, the ! ! 0 limit and therefore the
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gyrocoupling G, the friction constant ↵D and the di↵usion constant of the skyrmion
are independent of ⌘, consistent with the analytical formulas, Eq. (5.74). In contrast,
the mass of the skyrmion, m, and the gyrodamping ↵� scale with ⌘2. They are
therefore proportional to the number of spins constituting the skyrmion consistent
with our numerical findings. For the chosen parameters we find m ⇡ 0.3Nflipm0 and
↵� ⇡ ↵0.7Nflipm0, where m0 =

~2
Ja2 is the mass of a single spin-flip in a ferromagnet

which is 1 in our units. For realistic system parameters of J = 1 meV, a = 5Å and a
Skyrmion radius of 200Å, one finds a typical mass scale of 10�25 kg. The observation
that the dissipative tensor ↵D is independent of the size of the Skyrmion is counter-
intuitive, but can be understood by recalling that a larger Skyrmion has a smoother
magnetic configuration, which leads to less e�cient damping.

In order to understand how lattice discretisation e↵ects a↵ect the numerical simu-
lations, we have tested numerically the scaling properties for di↵erent skyrmion sizes
and find that all features are quantitatively reproduced. Small variations on the level
of a few percent do, however, occur reflecting the typical size of features arising from
the discretisation of the continuum theory. A conservative estimate of such system-
atic discretisation e↵ects for the di↵usive motion is given by the error bars in Fig.
5.10a (all statistical errors are smaller than the thickness of the line).

Fig. 5.10a reveals that the sign of the gyro-damping constant ↵� is always opposite
to that of the gyro-coupling G. This shows that ↵� describes anti-damping: there is
less friction for cyclotronic motion than for linear motion. If the frequency dependence
in Eq. 5.84 is ignored. one finds that the poles of the Green’s function are given by

! =
1

m2 + �2

h
± (D�� Gm)⌥ i(Dm+ G�)

i
(5.84)

In the small-! limit, the numerical value for � is so large that indeed Dm+ �G < 0.
This signifies that it is invalid to ignore the !-dependence as this would wrongly
predict that some oscillations of the Skrymion are not damped, but grow exponentially
in time due to the strong antidamping. The correct way to test the stability of the
system is to calculate the extractable power from the system for di↵erent driving
frequencies. One finds that that no driving frequency exists at which power can be
extracted from the system.

5.2.2 Dynamics of a driven Skyrmion

For possible applications of Skyrmions in spintronics fast manipulations of the mag-
netic texture are key to responsive devices. First we study the e↵ects of an oscillating
magnetic field gradientrBz(t) in the absence of thermal fluctuations. The Skyrmion’s
large magnetic moment M z

tot relative to the ferromagnetic background couples to the
field gradient and leads to a force acting on the Skyrmion. In the static limit the
force is exactly given by

lim
!!0

Fg(!) = M z
totrBz (5.85)

Using G�1(!) from the analysis of the di↵usive motion, the left hand side of Eq. 5.75
is known and we can determine the frequency dependence of the e↵ective force
Sg(!)rBz(!). For this we add to the constant magnetic field B(0)

z = 0.0278J a
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time dependent component of the form bg(x � x0) sin(!t) with x0 the x component
of the initial Skymrion position and determine the resulting Skyrmion trajectory by
numerical integration of the LLG. For our simulations we choose a weak gradient
with bg = 2.5⇥ 10�4J/a. Fig. 5.11a shows the real and imaginary parts of the sym-
metric coupling matrix Sg as a function of the driving frequency !. For ! ! 0
one obtains the expected result lim!!0 Sij

g (!) = �ijM z
tot. Above the magnon gap

(! > !p ⇡ B(0)
z , the precession frequency of spins in the external field) a strong

frequency dependence sets in. For the velocity response of the Skyrmion both the
internal dynamics, G(!), and the screening of the force, Sg(!), are equally important,
V(!) = G(!)Sg(!)rBz(!). This means that the determination of the coe�cients
describing the internal dynamics such as the mass of the Skyrmion cannot be ex-
tracted from a measurement of the response to a driving field alone. For a more
intuitive understanding of the motion caused by the application of the field gradient
it is instructive to calculate the ‘apparent’ dynamics. Here the frequency dependence
of both the internal dynamics and the screening of the forces is described by a single
matrix G�1

g (!) by Gg(!)Sg(! = 0) = G(!)Sg(!). The matrix elements of G�1
g (!)

are shown in Fig. 5.10a as red, dashed lines. The apparent mass of the Skyrmion in
the small-! limit, for example, turns out to be more than three times smaller than
the value obtained from the di↵usive motion. The importance of screening e↵ects is
even more impressive when Skyrmions are driven by electric currents.

For the field-driven motion spatial discretisation e↵ects lead to a di↵erent source
of errors. For very small field gradients and high frequencies the displacement of the
skyrmion is much smaller than the lattice spacing and the response is a↵ected by a
tiny pinning of the skyrmion to the discreet lattice. For larger gradients, however,
nonlinear e↵ects set in and for small frequencies the skyrmion starts to approach
the edge of the simulated area. In Fig. 5.11a, we therefore used for the force-driven
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Figure 5.12: Massm(!) and gyrodamping ↵�(!) as functions of the driving frequency
! for the current-driven motion. Notice that both M and � vanish for ↵ = �.

motion rB = 0.0005 for ! < 2!P and rB = 0.0015 for ! > 2!P . Error bars have
been estimated from variations of the numerical values when rB was varied from
0.0001 to 0.0015.

Currents couple to the magnetic configuration both via adiabatic and non-adiabatic
spin torques (c.f. Ref. [100]). Even in the static limit two types of forces on the spin
texture are obtained. From the Thiele approach one finds

Fc(! ! 0) = G ⇥ vs + �Dvs, (5.86)

where the first terms due to adiabatic transfer torques and the dimensionless term
� parametrises the dissipative spin-transfer torque. As shown in section 3.2.2 the
case of a Galilei-invariant system is special and here one obtains ↵ = �. In this
limit a solution of the LLG is obtained in the presence of a time-dependent current
vs(t) by M0(r�

R t

�1 vs(t0)dt0 where M0(r) is a solution of the LLG for vs = 0. The
Skrymion follows exactly the external current V(t) = vs(t). The coupling matrix
Sc(!) in Eq. 5.75 is therefore simply given by the inverse of the Green’s function,
Sc(!) = G�1(!). The apparent dynamics, Gc(!)Sc(! = 0) = G(!)Sc(!), therefore
become frequency-independent G�1

c (!) = Sc(! = 0) = �D1 � i�yG with the mass
and the gyro-damping exactly zero. For the current-driven motion errors determined
by a scaling analysis are so tiny that they are not shown in Fig. 5.11b.

Even for ↵ 6= � the above statements hold (approximately) true. The dot-dashed,
green line in Fig. 5.10a shows both a very small apparent mass mc and gyrodamping
�c. The gyro-coupling G and dissipative tensor D are to a good approximation given
by their static values. Fig. 5.11b compares the inverse of the Green’s function G�1

to the coupling matrix Sc(!). The only sizeable deviation is observed for Re S11
c (!)

for which the Thiele equation predicts Re S11
c (! ! 0) ! �D and Re G�1

11 (! !
0) ! ↵D in agreement with our numerical result. As the the apparent mass mc

and the gyrodamping �c vanish in the case ↵ = �, one can expect that they are
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proportional to ↵ � �, at least for small di↵erences. Indeed this is the case as can
be seen from Fig. 5.12. Here the frequency-dependence of mc and �c are shown for
di↵erent combinations of ↵ and �. For � > ↵ even negative values of the mass can be
obtained (without violation of causality3). Compared to the force-driven motion or
the intrinsic dynamics the numerical values are comparatively small. This shows that
retardation e↵ects remain tiny when Skyrmions are controlled by electric currents.

5.3 Conclusion

Here we have shown that single Skyrmions embedded into ferromagnetic backgrounds
in chiral magnets are characterised by a number of unique dynamical properties which
are not easily found in other systems. Due to the smoothness of their texture their
damping is small despite the fact that they are large composite objects. Despite
the small damping their topological nature ensures an e�cient suppression of the
thermal di↵usion by the cyclotron motion and their di↵usion constant remains small.
This indicates that the skyrmion position is stable, an important property for pos-
sible future applications in information storage devices. We also determined the re-
sponse of Skyrmions to time-dependent external fields. We found that the frequency
dependence of the e↵ective dynamical parameters (gyro-coupling, di↵usion tensor,
gyro-damping and mass) is just as important as that of the screening mechanisms
which determine the coupling to the driving field. Here we found that the Skyrmion’s
motion responds to the time-dependent current without delay or retardation even if
the frequency is high. These findings demonstrate the advantages of skyrmions as
information carriers.

It is interesting to compare the findings from the analytical treatment outlined in
section 5.1 with those found using the numerical integration of the LLG as outlined
in section 5.2. First of all it should be noted that both approaches predict a strong
frequency dependence of the e↵ective skyrmion mass with a pronounced threshold be-
haviour around a frequency about two times the magnon gap: for larger frequencies
the mass strongly collapses. At the magnon gap neither quantities in the analytical
nor the numerical treatment show any signature which highlights the fact that sin-
gle magnon emission/absorption is not an important process in strong contrast to
pair emission/absorption. A quantitative comparison of the two approaches however
shows large di↵erences. Not only is the numerical value completely di↵erent but also
the predicted scaling behaviour with the skyrmion radius is di↵erent (the numerical
treatment suggested a linear scaling with the area of the skyrmion, while section 5.1
suggests a mass that is independent of the skyrmion radius). First, the results of
the analytical study are, at best, preliminary as the truncation of the m quantum
number (due to numerical problems) is an approximation which cannot be justified.
It should also be noted here that the parameter regimes of these two studies are very
di↵erent from one another. While section 5.1 studied the quantum mass at T = 0, the
temperature in section 5.2 is much larger than the magnon gap T � �, which leads

3The important question when judging whether causality is violated or not is whether modes
exists which allow to extract a positive amount of energy from the system. We have explicitly
checked this and found that for no driving frequency the system becomes unstable in this sense.
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to a situation where the skyrmion is surrounded by a bath of thermally activated
magnons. The di↵erent suggested scaling behaviour of the mass with the skyrmion
radius may therefore be attributed to a temperature e↵ect, but further studies are
necessary in order to clarify the situation.
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[73] WMünzer, A Neubauer, S Mühlbauer, C Franz, T Adams, F Jonietz, R Georgii,
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Appendix A

Materials

The symmetry transformations for materials that crystallize in the B20 structure are
described by the space group P213 with a cubic Bravais lattice [38]. With only 12
symmetry operations this space group is among the smallest compatible with the cubic
lattice crystal system. The point symmetry at the component sites is C3, the cyclic
group of 3-fold 2⇡/3 rotations about an appropriate [111] axis. The nonsymmorphic
group P213 contains in addition 3 screw rotations which involve 2-fold rotations
about one of the three [100] axis followed by an appropriate non-primitive translation
(0, 1

2
, 1
2
).

Among these MnSi became the first chiral magnet in 2009 where a lattice of chiral
skyrmions was observed by neutron scattering [72]. The series of isostructural B20
transition metal silicides TSi shows great variability in their electronic properties and
was therefore ideally suited to study whether skyrmion lattices appear generically
in magnets without inversion symmetry. Indeed in 2010 the same group discovered
a Skyrmion lattice phase in the doped semiconductor Fe1�xCoxSi [73, 114]. The
Skyrmion lattice phase in this material was also later confirmed by real-space images
using Lorentz transmission electron microscopy (Lorentz TEM) [114]. Since then the
Skyrmion lattice has been observed in a variety of di↵erent materials both as a bulk
phase as well as in thin films. In this chapter we give an overview of the variability
among the materials exhibiting the Skyrmion phase and give brief descriptions of four
exemplary materials: MnSi (2009, Ref. [72]), Fe1�xCoxSi (2010, Refs. [73, 114]), FeGe
(2010, Ref. [113]) and Cu2OSeO3 (2012, Ref. [90]).

A.1 Iron-Cobalt-Silicide - Fe1�xCoxSi

In 2010 Müenzer et al. [73] investigated the magnetic phase diagram of the series
Fe1�xCoxSi using small angle neutron scattering. The question at hand was whether
the appearance of a Skyrmion lattice in the metal MnSi was just a peculiarity of this
particular material or whether one example of more general phenomenon was found as
suggested by the theoretical treatment in Ref. [72]. The electronic properties of FeSi
and CoSi are very di↵erent from those of MnSi. FeSi is a nonmagnetic insulator while
CoSi is a diamagnetic metal. The Fe1�xCoxSi series displays an insulator to metal
transition upon the increase of the copper concentration above a critical x = 0.02.
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Previously it had been confirmed [5] to display helimagnetic order in the interval
0.05  x  0.07. The copper concentration also tunes the helical modulation length
from about 200 Å to 2000 Å [5]. In contrast to MnSi where the crystal structure and
the DM interaction have the same chirality, they are opposite in Fe1�xCoxSi.

Similar to MnSi the magnetic phase diagram exhibits three prominent phases:
A state with helimagnetic modulation is found up to a critical B-field of Bc1 with
propagation vector parallel to the [100] for all x. For magnetic fields in the range
Bc1 < B < Bc2 the helical modulation points parallel to the applied field and the
system shows a uniform magnetization component in the direction of B, i.e. conical
order. Third, there is a small phase pocket close to TC where the modulation direction
points parallel to the applied field and the system orders in a hexagonal lattice of
skyrmions. As opposed to MnSi, the magnetic phase diagram yields strong hysteric
features. Depending on the cooling protocol used a (metastable) skyrmion lattice
phase may be observed over a large temperature range.

Fig. A.1 shows the magnetic phase diagram for x = 0.2 as measured by small
angle neutron scattering. Panels (A)-(C) show the magnetic phase diagram after
zero field cooling (ZFC). Helimagnetic order appears below the critical temperature,
Tc ⇠ 30 K, with a modulation vector parallel to [100]. All three phases are found
and the skyrmion lattice exists only in a small pocket below Tc. Well below Tc,
the helimagnetic order undergoes a spin-flop transition to conical order. Panels (D)-
(F) were recorded under field cooling (FC). For field values outside the range of the
skyrmion lattice, there is only a paramagnetic to conical transition. The skyrmion
lattice phase (in panels (E) and (F)) can be observed as a metastable state down to the
smallest observed temperature. The reversible phase boundaries near Tc are found to
be same as those under ZFC. For temperatures well below Tc they become irreversible.
It is exactly this feature which makes it possible to observe the destruction of the
skyrmion lattice using magnetic force microscopy (MFM) as we will see in chapter 4.

In Ref. [114] it was shown that in thin plates of Fe1�xCoxSi (thickness less than the
helical period) with the magnetic field applied perpendicular the competing conical
phase is forbidden an hence the skyrmion lattice stabilizes over a wider range of the
magnetic phase diagram.

A.2 Iron-Germanium - FeGe

Already in 1980 Bak and Jensen [2] noted that the helimagnetic order in non-inversion
symmetric FeGe is the result of an instability in the ferromagnetic state due to the
presence of DM interactions. As well as MnSi, FeGe is a helimagnet which crystallizes
in the tetraheddral P213 structure. What sets it apart from MnSi is its extremly high
helical transition temperature of 280K. Small angle neutron scattering revealed that
the direction of helical q-vector depends on the temperature T: below 280 K it points
along the [001] direction and changes to [111] as the temperature is lowered [58]. The
flexibility of the q-vector was interpreted as a small magnetic anisotropy and therefore
conjectured to be a possible candidate for magnetic phases with interesting topologies.
Indeed first Lorentz electron transmission microscopy studies [103] on thin plates of
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Figure A.1: Magnetic phase diagram for Fe1�xCoxSi for x = 0.2. Panels (A)-(C)
show the phase diagram under ZFC. Helimagnetic order appears below the critical
temperature, Tc ⇠ 30 K. Panels (D)-(F) were recorded under field cooling (FC). For
field values outside the range of the skyrmion lattice, there is only a paramagnetic
to conical transition. The skyrmion lattice phase (in panels (E) and (F)) can be
observed as a metastable state down to the smallest observed temperature. Image
taken from Ref. [73].

FeGe revealed magentic twin domains in a single crystallographic domain, curved
spin stripe and a swiss-role like stripe vertex stabilised by Berry phases. In 2010 Yu
et al. [113] confirmed by Lorentz TEM of thin films of FeGe that also a skyrmion
lattice phase with a lattice parameter of a ⇠ 70 nm exists at a temperature of around
250 � 270 K. For very low temperatures (⇠ 60 K) skyrmions start to emerge at the
edges of the sample. As the temperature is increased to 180 K the magnetic structures
becomes a mixture of skyrmions and stripy domains, c.f. Fig. A.2a. Around 260 K the
structure changes to a hexagonal skyrmion lattic, c.f. Fig. A.2b. FeGe is therefore
the first material which shows this magnetic vortex phase near room-temperature.
For three dimensional samples the conical spin phase with the q-vector along the field
direction is generally favoured in magnetic field and similar to MnSi and Fe1�xCoxSi
thermal fluctuations are necessary to stabilise skyrmions and the skyrmion lattice
phase a confined to rather small region in the magnetic phase diagram[109]. However
unlike MnSi and Fe1�xCoxSi for which large large single crystals exist, only mm-
size FeGe crystals can be fabricated, which impedes the study of FeGe despite its
favourable attributes. Recently the successful realisation of epitaxial thin films of
FeGe has been reported [44].

A.3 Multiferroic Cu2OSeO3

Helical spin textures have been found to a↵ect the symmetry of the charge distribution
and magnetically induce electric polarization in compounds such as TbMnO3 [50, 16].
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However Cu2OSeO3 is the first multiferroic material which has been demonstrated to
posses a skyrmion lattice which induces electric polarization. Such coupling between
ferroelectricity and magnetic structure enables versatile magnetoelectric responses,
e.g. electric field control of spin chirality. From the perspective of applications in
spintronic devices the electric field control of Skyrmions is particularly desirable as
the energy disspation due to the application of an electric field E to an insulating
material is negligible and promises more energy e�cient manipulation without the
side e↵ects of Joule heating found in the current-driven dynamics.

The space group of Cu2OSeO3 is P213 - the same as the the other B20 alloys -
however the atom coordination di↵ers significantly, c.f. Fig. A.3a. The copper sites
(spin S=1

2
) are surrounded by either a square pyramid of oxygen atoms (green) or a

trigonal bipyramid (blue) with a ratio of 3:1 rendering the two sites inequivalent. The
spins on the two inequivalent copper sites align antiparallel in the magnetic ground
state below Tc ⇠ 57 K. Ref. [90] reports a Lorentz transmission electron microscopy
study of thin films of about 100 nm thickness. Similar to the other materials, in
the absence of a magnetic field the compound orders below 57 K helimagnetically
in a stripy pattern with helical modulation period of ⇠ 50 nm. The bulk form of
Cu2OSeO3 shows a Skyrmion lattice phase in a small phase pocket near Tc. In the
thin-film form this phase is found in a large region of the phase diagram for finite
magnetic fields down to T = 0.

The dielectric properties of bulk Cu2OSeO3 were investigated in Ref. [89] and it
was found that it hosts magnetically induced polarisation in ferrimagnetic, helimag-
netic and Skyrmion lattice phase. Fig. A.3 indicates the local electric polarisation
(top row) and charge distribution (bottom row) for various magnetic field directions.
For H k [001] the Skyrmion can be seen to carry an electric quadrupole moment,
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(a) (b)

Figure A.3: (a) Crystal structure of Cu2OSeO3. The two inequivalent Cu2+ are
characterised by di↵erent oxygen configurations. Taken from Ref. [90]. (b) Local
electric polarisation vector p (top row) and local electric charge distribution ⇢ (bottom
row) for the indicated directions of the applied magnetic fieldH. Taken from Ref. [89].

while for H[110] one finds an in-plane and for H[111] an out of plane electric dipole
moment.
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Appendix B

Experimental Techniques

B.1 Small Angle Neutron Scattering

The first experimental technique used to prove the existence of a skyrmion lattice as
a bulk phase in chiral magnet MnSi [72] was small angle neutron scattering (SANS)
which uses elastic neutron scattering at small scattering angles to investigate magnetic
order. Neutron scattering is an ideal tool for the study of magnetic order in bulk
phases as neutrons predominantly scatter from the magnetic structure in a solid-state
system due to their magnetic moment. The lack of an electric charge allows them
to penetrate deep into the system under investigation. During a neutron scattering
experiment a beam of neutrons of a specific wave-length is directed at the sample,
typically a powder or a crystal. The neutrons scatter elastically due to the interaction
of their spin with the nuclei and unpaired electrons of the magnetic atoms in the
sample and the scattered neutrons are recorded by detectors placed behind the sample.
The Fourier modes in the magnetic order are recorded as Bragg peaks in reciprocal
space.

A typical neutron scattering set-up is despicted in Fig. B.1a. The incident beam is
prepared by collimators, which define the direction of the beam and monochromators,
which define the energy of the incident neutrons. Together these optical elements
select an incident wave vector ki. These neutron optical elements are never perfect
and a certain distribution of incident wave vectors around an average ki is selected.
The sample immersed in a magnetic field B scatters the incoming particles into a
certain direction which is recorded by the detector as a scattered neutron beam.
The scattering vector Q is defined as the momentum transfer between the magnetic
structure and the incoming and final momentum of the neutrons, Q = kf �ki. SANS
is employed whenever structures on length scales of about 10Å to 10, 000Å are of
interest. This range of real space lengths corresponds to a scattering vector Q of
magnitude 10�1Å�1 to 10�4Å�1. For elastic neutron scattering the energy of the in-
and outgoing neutrons is identical and the magnitude of scattering vector can be
easily related to the wavelength of neutrons � and the scattering angle ⇥

Q =
4⇡

�
sin(⇥) (B.1)
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Figure B.1: Typical neutron scattering set-up where the cylindrically shaped sample
is immersed in a magentic field B applied perpendicular / parallel to the direction of
the incoming beam of neutrons.

For the observation of larger structures one chooses therefore a longer neutron wave-
length in order to expand the di↵ractogram. Unforntunately there is little neutron
flux at wavelength above 20Å and typical neutrons of wavelength 10Å to 15Å are
employed in SANS experiments.

For a given periodic structure M(r) we can decompose the magnetisation field
into Fourier components M

Q

M(r) =
X

Q

M
Q

eiQ·r (B.2)

An incoming neutron scattering o↵ of Fourier component M
Q

of the magnetic struc-
ture creates an event on the dectector in the direction Q̂ = Q/|Q|. In the following
we briefly discuss the various magnetic phases found in chiral magnets and elaborate
the neutron scattering setup and Bragg peak structure. The magnetic phase diagram
of chiral magents is rather generic and although we show neutron scattering data
for MnSi as an example here other materials will show very similar scattering peak
distributions. We start with a MnSi sample at vanishing magnetic field B as discuss
the evolution of the peak distribution as we turn on a magnetic field along the z
direction.

Taking MnSi as a concrete example for a helimagnetic material, here the helical
wavevector Q pins weakly in the [111] due to crystal field anisotropies and equivalent
directions. There are four equivalent 3-fold axis piercing the unit cell and therefore
eight equivalent ordering directions exist. Typically the magnetic order is not made
up of a single domain but various parts of the probe order in another of the eight
directions. The difractogram shows an integrated scattering intensity and therefore
eight Bragg peaks are in principle visible for a sample in the helical phase. Due to
the limited size of the detector (a typical detector has an area of ⇠ 200⇥ 200 mm2)
not all of these peaks are visible. It depends on the relative orientiation of the sample
to the incoming beam of neutron how many of the eight reflection peaks are visible
in the di↵ratogram. Fig. B.2D shows a result of a neutron scattering experiment on
MnSi in the helical phase at B = 0 and T = 15 K. The reflection peaks are visibly
aligned along the [111] or equivalent directions.

132



Figure B.2: Neutron scattering data for MnSi in the helical (D), conical (A) and SkX
phase in the measurement setup Fig. B.1a (F) and Fig. B.1b (B,C,E). Adapted from
Ref. [72].

Turning on a magnetic field along the z-direction with a magnitude in excess of a
critical Bc1 , the magnetic structure changes from the helical to a conical phase. Here
the ordering wave vector Q aligns with the applied magnetic field B and for a neutron
scattering setup with the incident beam perpendicular to the applied field B Bragg
reflection peaks are visible in the scattering plane at ±Q. Fig. B.2A shows the neutron
scattering of bulk MnSi with an applied magnetic field of strength 0.19 T along the
[110] direction at T = 26 K. Indeed two reflection spots of high intensity are seen
along the direction of the applied field. Since the q-vector in the conical phase aligns
with the applied magnetic field the field direction is usually chosen perpendicular to
the incident neutron beam.

For the Skyrmion phase this proves highly disadvantageous. The SkX is a multi-
Q phase consisting of 3 helices at an angle of 120� with mutual phase reltionships
such that the magnetic moment at the center of the Skyrmion is antiparallel to the
applied B field. So the six Q vectors lie in place perpendicular to the magnetic field.
In the conventional measurement setup at most two of these can be brought to lie
within the scattering place, c.f. Fig. B.2F. If one applies the magnetic field however
parallel to the beam direction as depicted in Fig. B.1b all six Bragg peaks are visible,
c.f. Fig. B.2B,C & E. For more information about neutron scattering consult, for
instance, Ref. [15].

B.2 Real-Space Imaging Techniques

In recent years powerful real-space imaging techniques have been modified and ap-
plied to chiral magnetic systems which allow for a direct visualization of the spatial
magnetization configuration. The advantage of such methods is that not only a single
spin texture, but also the crystallization and melting process during phase conver-
sions can be observed. In chapter 4 we study the topological implications of a phase
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conversion using such a real-space technique. Also magnetic-lattice defects such as
edge dislocations were studied using real-space imaging techniques [104].

B.2.1 Magnetic Force Microscopy

In 1987 a new method for imaging magnetic surface configurations was pioneered [66]
commonly referred to as magnetic force microscopy (MFM). Historically, the MFM
has been derived from the Atomic Force Microscope (AFM) one year after its invention
in 1986. MFM images forces between the surface of a sample and the magnetic stray
field of a cantilever tip coated with a ferromagnetic film. The total force acting on
the cantilever is inferred from small changes in its resonance frequency. For a reliable
force determination the tip must be kept at constant distance from the sample while
the surface is rastered. Therefore the MFM measurements typically proceed in two
steps.

In a first step the topography of the sample is determined. Here the tip is scanned
over the surface in close proximity and then retracted by a predefined amount. In a
second scan, the tip follows the recorded surface topography at constant separation
and the phase/frequency shift due to magnetic interaction forces is recorded. Since
the atomic forces are short-ranged as compared to the magnetic forces, the collected
force information is dominated by the magnetic interaction. The spatial resolution of
the scanning probe can be increased by moving the top closer to the sample which in
turn increases the e↵ects of the atomic forces. In typical MFM measurements the tip
is held at distance of 100� 100Å above the sample and spatial resolutions of 50 nm
are regularly achieved. In dipole-point approximation the frequency shift �f of the
resonance frequency f0 of the cantilever due to magnetic forces with the surface of a
magentic sample parallel to the x-y plane is given by (see supplementary information
for Ref. [67])

�f ⇡ �f0
1

2k
µ0µtip,z

@2HS,z

@z2
(B.3)

where k is the spring constant of the cantilever, µ0 the vacuum permeability, µtip,z

the magnetic dipole moment of the tip in the z direction and HS,z the magnetic field
of the sample in the z direction. The MFM is therefore only sensitive to the out-of-
plane component of the magnetisation. For more information about magnetic force
microscopy consult, for instance, Refs. [66, 42, 87].

Fig. B.3 shows MFM imaging data from the surface of a bulk Fe0.5Co0.5Si sample
(top view) with a magnetic field of 20 mT applied perpendicular to the surface at T =
10 K. Blue (red) colors correspond to a magnetisation pointing parallel (antiparallel)
to the line of sight. A skyrmion lattice phase can be seen with the Skyrmions, visible
as blue spots, arranged in a regular hexagonal pattern.

B.2.2 Lorentz Transmission Electron Microscopy

Lorentz transmission electron microscopy (LTEM) is a modification of traditional
electron microscopy in which the Lorentz forces between the electrons in a beam and
the sample are utilised to generate images which allow for the real-space observation
of the magnetic structure of materials.
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Figure B.3: MFM data collected from the surface of a bulk Fe0.5Co0.5Si sample with
a magnetic field of 20 mT applied perpendicular to the surface. The measurement
was recorded after field-cooling to T = 10 K. A skyrmion lattice can be seen with
the skyrmions (blue) arranged in the characteristic hexagonal pattern. Image taken
from Ref. [67].

(a) (b)

Figure B.4: Schematics of ray diagram for TEM (a) and Lorentz TEM (b). Image
taken from Ref. [113].

An electron moving at a velocity ~v through a magnetic field B experiences a
Lorentz force

~F =
e

c
~v ⇥ ~B (B.4)

where c is the speed of light and e the electronic charge. LTEM uses this interaction
to study the spatial configuration of the magnetization. Electrons accelerated to an
energy of around 100 keV by an electron gun mounted perpendicular to the sample
are deflected by the in-place component of the magnetisation due to the Lorentz
force they experience. The sample must be transparent for the electron beam and
therefore in the form of an thin film not more than about 3000Å thick. Magnetic
lenses focus the scattered electron beam onto an image plane where the incident
beam is analysed, c.f. Fig. B.4a. A quantitative evaluation is achieved by combining
the observed intensities with a magnetic transport-of-intensity equation calculation.
The method achieves high spatial resolution and large magnification. These features
bring with them not only the ability to examine the magnetic configuration in greater
detail but also have the advantage that the sample under examination does not have
to be more than a few microns across [40]. A drawback of this method is apart from
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Figure B.5: Experimentally observed real-space images of the lateral magnetization
configuration in Fe0.5Co0.5Si at a weak magnetic field (50 mT) obtained by Lorentz
TEM data. The right panel shows a magnified view a single Skyrmion. Image taken
from Ref. [114].

the need for thin, electron-transparent materials the inability to specify the direction
of the magnetisation normal to the plane (It is in this sense complementary to MFM).

In the conventional high-resolution TEM the deflection due to the magnetic field
B ⇠ 2 T generated by the lens is large enough to shorten the focal length f0 to a few
millimetres. This achieves large magnification at the image plane. However under
such a strong magnetic field, the specimen of the chiral magnet placed inside the
objective lens typically field polarises along the z-direction and no in-plane magnetic
field exists which could deflect the electrons. The interesting region of the mag-
netic phase diagram at small applied fields is unobservable. The observation of the
Skyrmion phase therefore necessitates the reduction of the magnetic field strength in
the lens which leads to a larger focal length (gray cones in Fig. B.4a). The deflection
of the electrons due to the alteration of the in-plane component of the magnetisation
leads to areas of enhanced and reduced intensity as depicted in Fig. B.4b. The out-of
plane component of the magnetisation on the other hand cannot a↵ect the eletron
trajectory and is therefore unobservable.

In the context of skyrmions thin films have the advantage that the competing
conical phase is energetically suppressed and therefore not stabilised when the mag-
netic field is applied perpendicular to the plane and the film thickness is less than the
helical wavelength. The skyrmion lattice phase is stabilised in a much larger portion
of the phase diagram in these systems. In Ref. [113] the phase diagram of FeGe is
studied using Lorentz TEM for di↵erent film thicknesses. For ever thicker samples the
phase diagram smoothly approaches the bulk phase diagram indicating that the same
skyrmion lattice phase is realized. Fig. B.5 shows a real space image of skyrmions in
Fe0.5Co0.5Si at a weak magnetic field (50 mT) obtained by Lorentz TEM data.
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Appendix C

Conjugate Gradient Algorithm

The conjugate gradient method (CG) is probably the most popular iterative method
for the solution of sparse linear equations of the form

A · x = b (C.1)

where A is a square, spase, positive-definite matrix. In this appendix we briefly
explain how this algorithm works and how it may be extended to find local minima
of general functials. In section C.1 we introduce the general method of conjugate
directions (CD) and in section C.2 the specialisation that is known as the CG. In
section C.3 we describe how the CG may be modified to calculate local minima of
high dimensional functionals. There are a number of good reviews including Refs. [31,
91, 54]. This summary is mainly based on Ref. [91].

C.1 Conjugate directions

Let us assume that the solution to Eq. (C.1) is given by x⇤, i.e. A · x⇤ = b. An
iterative algorithm A attacks a problem such as Eq. (C.1) by starting from an initial
guess x0 and updating it in subsequent iterations, xi+1 = A(xi). The solution of the
equation is a fixed point of the algorithm, x⇤ = A(x⇤). We define the residual at step
n as rn = b � A · xn and the error at step n as en = x⇤ � xn. The problem posed
in Eq. C.1 can be rewritten as a minimisation problem for a bilinear functional. We
define the quadratic form f(x)

f(x) =
1

2
xT ·A · x� bT · x . (C.2)

If A is positive-definite a minimum of the above functional corresponds to a solution
of Eq. C.1

f(x⇤) minimal , A · x⇤ = b (C.3)

The idea of the conjuagte directions method is that on finds a set of orthogonal
directions d0, . . . ,dn�1 and from the initial position x0 one takes exactly one step in
each of these directions of exactly the right length to line up with x⇤

xi+1 = xi + ↵idi . (C.4)
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The step length ↵i is defined by the fact that after the step the remaining error ei+1

should be orthogonal to di so that one never has to step in direction di again

dT
i · ei+1 = 0

dT
i · (ei + ↵idi) = 0

↵i = �dT
i · ei

dT
i · di

(C.5)

The right hand side is unfortunately unknown. Knowledge of the error ei would
immediately imply that one already knows the solution of the problem. However
one can relax the above condition by demanding that the search direction should be
A-orthogonal instead of orthogonal

dT
i ·A · dj = 0, 8i 6= j (C.6)

In turn one also demands thatA-orthogonality of di and ei+1. Indeed this corresponds
to finding the minimum along the line xi+1 = xi + ↵idi,

d

d↵i
f(xi+1(↵i))

!
= 0

f 0(xi+1) ·
d

d↵i
xi+1(↵i)

!
= 0

�rTi+1 · di
!
= 0

dT
i ·A · ei+1

!
= 0 (C.7)

where we used that f 0(xi+1) = b�A · xi = �ri. For the step length ↵i in step i one
finds

↵i =
dT
i · ri

dT
i ·A · di

(C.8)

which is perfectly computable from the known quantities in step i. If one were to
replace the search directions with the residuals in the above expression one would
simply find that the equations describe the method of steepest descent.

For the construction of the n A-orthongonal directions a possible route would be
to start with the n linearly independent vectors u0, . . . ,un�1 (e.g. the coordinate
axis) and then use a variation of the Gram-Schmidt algorithm to make them A-
orthogonal. We refer to this process as conjugation. Following this procedure would
however defeat the purpose of the iterative procedure as the assumptions is that the
linear system too large to invert directly. For the Gram-Schmidt algorithm one has
to keep all the old search directions in memory and in constrast to the matric A
these need not be sparce. Consequently considerable memory requirements arise.
But also the computational cost in no less than that needed for a direct inversion as
the complexity of Gram-Schmidt is O(n3) with n the linear dimension of A.

As a result the method of Conjugate Directions enjoyed little use until the discov-
ery of the Conjugate Gradients [91]. The resolution to the mentioned troubles lies in
a good choice of the search directions d0, . . . ,dn�1.
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C.2 Conjugate gradients

The method of Conjugate Gradients is simply the method of Conjugate Directions
for the special case where the search directions are obtained by conjugation of the
residuals (ui = ri). It turns out that this choice implies that the residual ri+1 in step
i + 1 is A-orthogonal to all previous search directions dj, j < i, except for di. It is
therefore not necessary to store all the previous search directions in memory and the
complexity of the Gram-Schmidt algorithm drops to O(m) where m is the number of
non-zero entries in A. In summary the conjugate gradients algorithm is given by

Algorithm 1.

1. d0 = r0 = b�A · x0

2. ↵i =
r

T
i ·ri

d

T
i ·A·di

3. xi+1 = xi + ↵idi

4. ri+1 = ri � ↵iA · di

5. If the modulus of ri+1 has dropped below a threshold value, |ri+1| < ✏, exit and
return xi+1 as an approximation for x⇤.

6. �i+1 =
r

T
i+1·ri+1

r

T
i ·ri

7. di+1 = ri+1 + �i+1di and goto 2.

C.3 Minimisation of general functions

The generalisation of the CG for the minimisation of a general functional f(x) whose
derivative f 0(x) is known involves three modifications of the above algoritm: (i) the
recursive formula for the residuals (step 4 in the above algorithm) cannot be used,
(ii) the computation of the step size ↵i becomes more complicated and (iii) several
choices for �i exist.

In non-linear CG the residual is always given by the gradient, ri = �f 0(xi). The
search directions are computed by conjugation with Gram-Schmidt algorithm as in
the linear case. Then a line search is performed to find the minimum of f(xi+1) in
along the given search direction, xi+1 = xi + ↵idi. One possibility is to determine ↵i

by an algorithm which determines zeros of f 0(xi + ↵idi)T · di.
There are several choice for the �’s which are equivalent for linear CG. In the case

of non-linear CG these are no longer equivalent and it is still debated in the literature
which one is the best choice in what situation [91]. Usage of the same formulas as
in the linear case (step 6 in the above algorithm) is known as the Fletcher-Reeves
method [32]. The so-called Polak-Ribiere [39] is given by

�i+1 =
rTi+1 · (ri+1 � ri)

rTi · ri
(C.9)

In all of our calculation we used the Fletcher-Reeves method.
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Appendix D

Appendix Quantum Mass

D.1 Expression for H̃↵�

In the comoving, twisted reference frame the Hamilton operator assumes the form

H̃↵� = "0a
2


��↵�r2 + 2⌧ y↵�

✓
cos ✓

⇢2
�Q

sin ✓

⇢

◆
i@� + Ṽ↵�

�
(D.1)

with r2 = @2⇢+(1/⇢)@⇢+@2�/⇢
2. The potential depends only on the radial component

⇢ and is given by Ṽ12 = Ṽ21 = 0 and

Ṽ11 =
1 + cos(2✓)

2⇢2
� Q sin(2✓)

⇢
+ 2 cos ✓ � 2Q✓0 � ✓02

Ṽ22 =
cos(2✓)

⇢2
� 2Q sin(2✓)

⇢
+ 2 cos ✓. (D.2)

D.2 WKB

With the ansatz ~⌘m(⇢) = ⇠m(⇢)/
p
⇢ and after multiplying Eq. 5.37 with

p
⇢⌧ z from

the left, we find

[�✏0a2@2⇢ +Mm(⇢)] · ~⇠m(⇢) = ✏ ~⇠m(⇢) , (D.3)

with Mm(⇢) = ✏0a
2


� 1

4⇢2
+

m2 + 1

⇢2
+ 2

�
⌧ z + ⌧ zVm � ✏0a

22m

⇢2
1 . (D.4)

To determine the “classical momenta”, we make the usual WKB approach where the
wavefunction ~⇠m(⇢) is devidided into a real-valued function ~um(⇢) and a real-valued
phase factor Sm(⇢),

~⇠m(⇢) = ~um(⇢)e
iSm(⇢) . (D.5)

In the lowest order WKB approximation we neglect spatial derivatives of the ampli-
tude ~um(⇢) and higher order spatial derivatives of the phase factor Sm(⇢) and find
within this approximation

�@2⇢~⇠m(⇢) ⇡ � (S 0
m(⇢))

2 ~⇠m(⇢) (D.6)
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where we identify S 0
m(⇢) ⌘ pm(⇢) as the “classical momentum”. Within this approx-

iamtion, the left-hand-side of Eq. D.3 can be written as a matrix Hm(p(⇢), ⇢) which
depends parmetrically on the classical momentum and the radial coordinate ⇢. From
here on we suppress the su�x of the angular momentum quantum number m. For a
given p and ⇢ one can determine the eigenvalues ✏1/2(p, ⇢) and eigenvector ~⇠1/2(p, ⇢).
For a given eigenenergy ✏ the above relation can be inverted to find the spatially de-
pendent classical momenta p1/2(⇢; ✏) which are inserted into the eigenvector ~⇠1/2(⇢; ✏)
to find the WKB approximation for the wave functions

~⌘WKB
1/2 (⇢) =

1
p
⇢
~⇠1/2(⇢; ✏)e

iS1/2(⇢;✏) (D.7)

Only one of these has the correct asymptotic behaviour, Eq. 5.56, for ⇢� 1, the other
one can be discarded. For this wavefunction the usual formulas for the calculation of
the WKB phase shift can be used [30].
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Introduction

The aim of solid state theory is the successful description and understanding of the
intrinsic properties of rigid matter. The complicated interplay of a large number of
simple, microscopic constituents gives rise to often intricate and surprising macro-
scopic properties. The complexity of these systems renders exact descriptions of such
systems impossible. Even if they were available, physicists would still need to contruct
more abstract descriptions in order to categories the natural phenomena in a unifying
way. Along these lines of thought, free parameters in an approximate model may not
necessarily be understood as a deficiency of the same, but rather they parametrise
the unifying paradigms that allow us identify the mechanism behind a physical phe-
nomenon. In the context of strongly correlated electron systems such descriptions are
often provided by a model Hamiltonians.

Solids consist of positively charged atomic nuclei and negatively charged electrons.
In crystals the much heavier nuclei are arranged in an orderly repeating pattern with
a fraction of the electrons tightly bound to them due to strong Coulomb interactions.
The resulting ions provide a periodic lattice potential for the remaining valence elec-
trons. Often an e↵ective description of this electronic subsystem already determines
to leading order the properties of the solid.

Ignoring the interactions among the valence electrons, the lattice potential splits
their dispersion relation into Bloch energy bands. The eigenfunctions in this periodically-
repeating environment are the Bloch waves and their eigenenergies are commonly
referred to as the kinetic energy of the valence electrons. Due to the Pauli exclusion
principle each state, characterised by a complete set of quantum numbers, can only be
occupied by a single electron. Thus already at the non-interaction level of the descrip-
tion the quantum system has some correlations. However it is the electron-electron
interactions which introduces the true correlations between the valence electrons and
makes the description of many-particle systems so involved. In the limit where the
typical energy scale of the interactions is small compared to the kinetic energy of the
electrons, Landau’s phenomenological Fermi liquid theory successfully describes the
normal state of most metals at su�ently low temperatures. In this e↵ective descrip-
tion interacting electrons are replaced by non-interacting quasiparticles with a finite
lifetime and renormalised properties such as their mass, magnetic moment etc.

The transition metal oxides constitute probably one of the most interesting classes
of solids. Due to partially occupied, well-localised 3d and 4f valence orbitals the
electrons are subject to strong Coulomb interactions. These materials provide pro-
totypical examples of strongly correlated electron system which cannot be described
by e↵ective single-particle theories. In these materials the interaction energy of the
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similar magnitude as the kinetic energy and thus the important paradigm is the com-
petition between itineracy and localisation. Often both regimes occur in the same
material and a metal-insulator transition occurs as a function of temperature or pres-
sure. The successful description of these systems calls for non-perturbative methods
able to treat both limits reliably.

The Dynamical Mean-Field Theory (DMFT) is such a non-perturbative approxi-
mation for strongly correlated electron systems which becomes exact in the limit of
infinite lattice connectivity. It neglects spatial correlations but takes full account of
dynamical quantum fluctuations. In DMFT the lattice problem is simplified by map-
ping it onto a quantum impurity problem embedded in a self-consistenly determined
bath of non-interacting electrons. A variety of powerful numerical methods exist
which allow for numerical exact solutions of such problems. Among these the Numer-
ical Renormalisation Group(NRG) can be considered the state-of-the-art impurity
solver for single-band DMFT at low temperatures.

A new and exciting direction in the material sciences has been the fabrication
of artificial heterostructures and superlattices composed of di↵erent materials. With
recent theoretical and experimental progress in the understanding and control of
strongly correlated materials enormous interest has arisen in multilayered heterostruc-
tures involving materials where the electrons are strongly interacting. The sensitivity
of intrinsic properties in strongly correlated materials to external fields promises in-
teresting applications in electronic devices for information technology.

The main focus of this work is on interface e↵ects occurring in strongly correlated
heterostructures. Chapter 1 introduces the generalised electronic Hamiltonian and
heuristic derivation of the Hubbard model is presented. In section 1.2 the single An-
derson impurity model that the DMFT maps the Hubbard model onto is introduced.
Chapter 2 briefly outlines the mean-field approach to magnetic ordering phenom-
ena in the Hubbard model. Chapter 3 starts with a description of the simplications
in the limit of infinite spatial dimensions and goes on to derive the DMFT equa-
tions and the mapping to the impurity problem. The NRG is outlined in chapter
4 and it is explained how dynamical quantities needed for the DMFT cycle can be
calculated. Chapter 5 gives an introduction to heterostructures and describe the gen-
eralisation of the DMFT algorithm to layered systems including long-range Coulomb
interactions which lead to electronic charge reconstructuion at interfaces. The last
part of the thesis comprises two applications of the framework to strongly correlated
heterostructures. In chapter 6 we investigate the layer-resolved conductivities of het-
erostructure made of Mott insulator sandwhiched between two band-insulators. We
study the temperature dependence of the layer-resolved optical conductivity. Chapter
7 adresses the transmission probability through a Mott insulating barrier. We find
an interesting temperature dependence which has its roots in the strongly correlated
character of the Mott insualtor.
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Chapter 1

Models of strongly interacting
electrons

Although Bloch band theory with its roots dating back to the 1920s is very successful
in describing a number of so-called weakly correlated materials, many interesting elec-
tronic phenomena encountered in systems with strongly correlated signatures cannot
be described within this framework. However the description of such systems on a
similar level of detail as their weakly-correlated counterparts is a formidable problem.
Physicists have retracted to the study of model hamiltonians to trade the overbur-
dening complexity of realistic descriptions for simple models which still retain the
dominant physics. They are aimed at simulating the key physics of notoriously com-
plicated complete Hamiltonians of large-scale interacting systems.

1.1 Hubbard model

In 1963, Hubbard, Gutzwiller and Kanamori introduced the celebrated fermionic Hub-
bard model [43, 60, 53]. The Hubbard model (HM) can be considered as the minimal
model for highly correlated electrons on a lattice as it describes the interplay between
kinetic energy gain and cost of Coulomb interaction. We give an intuitive view on
the main driving forces which govern the dynamics of electrons described by the HM
before we present a heuristic derivation. Due to the Heisenberg uncertainty principle
electrons seek to minimise the kinetic energy through dislocations, i.e. hopping pro-
cesses between di↵erent atoms. However whenever two electrons come close together
a Coulomb energy penalty has to be paid due to the mutual interaction. The overall
movement is hence complicated and highly correlated, but there are two limits where
the dynamics become simple.

In many electron systems screening may lead to an e↵ective Coulomb interaction
which is very short-ranged and the electrons are rather free to optimise their kinetic
energy ignoring their mutual interaction. Strictly speaking such a view is only justi-
fied for the quasi particles in a Landau liquid theory as the screening itself is provided
by the electronic system. On the other hand if screening is absent and the Coulomb
energy dominates the energy balance in lattices with a commensurate filling a sit-
uation may arise where the mutual interaction drives the hopping tendency of the
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electrons to zero thus localising them. The system enters an insulating state known
as the Mott insulator. This state is in sharp contrast to a conventional band insulator
where the interaction between electrons and atoms gives rise to a potential landscape
in which e↵ective single-particle Bloch bands are completely filled. A Mott insulator
on the other hand is driven by the mutual electron interaction with a gap at the Fermi
level which originates from the Coulomb interaction.

1.1.1 Heuristic derivation

The complete Hamiltonian H of a condensed matter system can be split into a part
which describes the nuclei HK, a purely electronic part He and a coupling between the
two subsystems VKe. The Born-Oppenheimer approximation [7] decouples the prob-
lem of the nuclei from the electronic subsystem and derives an e↵ective Hamiltonian
for the electronic part of the form

He = He + VKe({Ri}) (1.1)

where {Ri} denotes a set of lattice points for the positions of the nuclei and is a mere
fixed parameter for the electronic problem. For a particular nuclei configuration
{Ri} the electron-nuclei interaction in Eq. 1.1 gives rise to an external potential for
the electrons Vext = VKe({Ri}). After decoupling the lattice degrees of freedom the
remaining problem of interacting electrons in an external potential is still much to
complicated.

Further progress can be made by removing details of the Hamiltonian which is
not necessary for the basic modelling while still retaining the many-particle structure.
This is best done in the language of second quantisation

He = �
X

i,j
↵,�,�

t↵�
RiRj

c†
Ri↵�

c
Rj��+

1

2

X

i,j,k,l
↵,�,�,�,�,�0

V ↵�����0

ee ({Ri})c†
Ri↵�

c†
Rj��0c

Rk��0c
Rl�� (1.2)

The electron creation (annihilation) operators c
Ri↵� (c†

Ri↵�
) for electrons with spin �

and orbital character ↵ are written in a localised Wannier basis �(r) at lattice site
Ri. The first term describes the kinetic energy as well as the interaction energy with
the nuclei. The second part describes the electron-electron interaction. The matrix
elements are given by

t↵�
RiRj

=

Z

dr �⇤
Ri↵(r)

⇢

~2
2m
�� Vext(r)

�

�
Rj�(r)

V ↵�����0

ee (Ri,Rj,Rk,Rl) =

Z

drdr0�⇤
Ri↵��

⇤
Rj��0

e2

|r� r0|�Rk��0�
Rl�� (1.3)

A reduction in the overburdening complexity of the model now arises from three sim-
plifications. In order to model the competition between itineracy and and localisation
retaining the full orbital character of the model is not necessary. Also it is su�cient
to keep only nearest neighbour terms (NN) for the hopping processes. Furthermore
the Coulomb interaction is strongest if the two electron come closest to the same
Wannier orbital.
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We therefore simplify the model in the following radical way: We assume a model
system with NN hopping between a single Wannier orbital for each lattice site and
model the Coulomb interaction Vee(Ri,Rj,Rk,Rl) only by an appropriately chosen
on-site interaction Vee(Ri,Rj,Rk,Rl) ⇡ U�

RiRj�RiRk
�
RiRl

. Note here that U is not
simply given by the on-site matrix element of Vee but rather a renormalised value
which also includes the e↵ects of screening by other bands. With these simplifications
in place the Hamiltonian may be cast in the form of the famous Hubbard model

Hhub = �t
X

hiji�

c†i�cj� + U
X

i

ni"ni# + ✏0
X

i�

ni� (1.4)

The only parameters left are the hopping amplitude t, the so called Hubbard U and
the on-site energy ✏0. The hopping term has a negative sign to reflect the gain in
the kinetic energy of the system due to the hopping. The bandwidth W is connected
to the size of the matrix element t, obviously a larger value of t results in a more
itinerant behaviour of the electrons and an increase in the bandwidth W . An exact
analytical solution only exists in the one-dimensional case which we will not discuss
here since in 1D many peculiarities arise compared to higher dimensions (Fermi-liquid
theory is replaced by Luttinger liquid theory, including spin-charge separation,...).
For systems in the limit of infinite spatial dimensions a numerically exact solution
exists which is given by the dynamical mean field theory (DMFT). The physically
interesting cases, namely 2D and 3D, are however di�cult to deal with. The di�culty
arises from di↵erences in the summation parts of Eq. 1.4. While the first sum can be
diagonalised in momentum space, the second term is diagonal in real space, however
diagonalising both parts simultaneously seems only possible for tiny systems.

1.1.2 Symmetries of the Hubbard model

SU(2) spin symmetry

Under a rotation of global spin quantisation axis parametrised by the SU(2) matrix
U , the annihilation operators transform according to

c0i� = U��0ci�0 (1.5)

In turn the spin operator ~S transform like

S 0a
i = RabSb

i

=
~
2
c0†i�⌧

a
��0c0i�0

=
~
2
c†i�

�

U�1⌧aU
�

��0 ci�0 (1.6)

with ⌧ the vector of Pauli matrices and Rab a rotation matrix induced by the SU(2)
transformation U�1⌧aU = Rab⌧ b. Although not immediately visible from the Eq. 1.4
the spin quantisation axis can be chosen arbitrarily and the Hubbard model is thus
invariant under global rotations of the spin quantisation axis. Eq. 1.4 can be rewritten
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in a way which makes the SU(2) symmetry obvious. Using the identity
P

i
~S2
i =

P

i�
1
4
ni� �

P

i
3
2
ni"ni# the interaction part can be rewritten as

U
X

i

ni"ni# = �2U

3

X

i

~S2
i +

NeU

6
(1.7)

with Ne the number of electrons. The last term in the above equation is for a particle
number conserving model such as the Hubbard model a constant and can thus be
dropped. The total Hamiltonian assumes a manifestly SU(2) invariant form. For the
first term in the above equation the interaction energy is lowered in case of repulsive
interaction, U > 0, if the total spin at each site is maximised. If each site has one
particle one expects a magnetic ground state where the system breaks the globals
SU(2) symmetry by singling out a specific quantisation axis [31]. In chapter 2 we
further investigate the magnetic properties of the Hubbard model.

U(1) charge symmetry

We are free to choose a global phase change for the one-particle wave functions

c0i� = ei✓ci� (1.8)

Terms with an equal number of creation and annihilation operators are invariant
under such a transformation, hence the U(1) symmetry is nothing but charge conser-
vation. Terms inducing superconducting correlations however would break particle
conservation and the U(1) symmetry.

If we couple the Hubbard system to an electromagnetic gauge field (A0,A) the
global symmetry becomes a local symmetry, i.e. ✓ ! ✓(r). In the tight-binding
Hamiltonian we must modify the kinetic energy term so that it assumes the form

�t
X

hi,ji�

c†i�e
ie
~c

R rj
ri

dr·A(r)cj� (1.9)

The integral cancels phase di↵erence picked up at di↵erent lattice sites. Under the
local change of phase ✓(r) = � e

~c⇤(r) the vector potential A changes by A0(r) =
A(r) +r⇤(r) and thus the integral by

A0(ri, rj) =

Z

rj

ri

dr ·A0(r)

= A(ri, rj) + ⇤(ri)� ⇤(rj) (1.10)

The kinetic energy term is now invariant under local changes of the phase. In addition
we expect an electrostatic coupling between the zero component of the gauge field
and the particle density

He�static =
X

i�

eA0(ri)c
†
i�ci� (1.11)

and a Zeeman coupling which couples the spin ~Si to the local magnetic field B(ri) so
as to align it along the B(r) direction

HZeeman = g
X

i

~Si ·B(ri) (1.12)
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Particle-hole symmetry

In this thesis we will be solely concerned with simple cubic lattice which is bipartite
(a union of two interpenetrating sublattices A and B). For bipartite lattices we find
an additional symmetry for the Hubbard model. Consider the particle-hole transfor-
mation

ci" = di"

ci# =

(

+d†i# ri 2 A

�d†i# ri 2 B
(1.13)

The Hamiltonian H(t, U), Eq. 1.4, changes to H(t,�U) +UN" where N" is the total
number of up spins (which is conserved). The total charge Q and the component Sz

of the total spin trans form as

Q ! Sz + 1, Sz ! Q� 1 (1.14)

Thus the attractive and the repulsive Hubbard model map into each other and at
the same time spin maps into charge and vice versa. This means that the SU(2) spin
symmetry maps onto an SU(2) charge symmetry (for fixed U at half-filling).

1.1.3 Limiting cases

It is a good idea to first examine the limiting regimes when trying to understand
the physics of the Hubbard model. In order to make the presentation as compact as
possible we will limit ourselves to the presentation of the half-filled model.

Strong coupling limit (U > 0)

The simplest situation for the fermionic Hubbard model at half-filling arises when
the on-site interaction U is the largest energy scale in the problem. We follow here
the presentation of Emery[25]. Rewriting the interaction part of the Hamiltonian
as in Eq. 1.7 it becomes apparent that for µ = U/2 (half-filling) in the infinite
U limit the spin ~S is forced to be largest and hence doubly occupied and empty
sites are forbidden. Only | "i and | #i states are kept in this large U limit at half-
filling. Any spin configuration is therefore an eigentstate of the interaction part of the
Hamiltonian. This massive degeneracy is lifted if one considers fluctuations induced
by the kinetic part to leading order in an expansion in t/U .

We denote the kinetic part by H0 and the interaction part by H1 and perform a
(degenerate) perturbation theory in H0 around the eigenstates ofH1. For an arbitrary
eigenstate of the full systemH = H0+H1, H| i = E| i, we can rewrite this equation
as

(E �H1)| i = H0| i (1.15)
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from which we formally get

| i = 1

E �H1

H0| i

=
P̂

E �H1

H0| i+
X

↵

|↵ih↵|H0|↵i
E � E1

(1.16)

where |↵i enumerates the eigenstates of the interaction part and P̂ is a projection
operator onto the perturbing states

H1|↵i = E1|↵i
P̂ = 1�

X

↵

|↵ih↵| (1.17)

P̂ commutes with H1 so that we can define a basis to expand the eigenstate | i =
P

↵ a↵| ↵i into by the equation

| ↵i = |↵i+ P̂

E �H1

H0| i (1.18)

where the expansion coe�cients are given by

a↵ =
h↵|H0|↵i
E � E1

(1.19)

Eq. 1.18 is an iterative equation for the states | ↵i and to first order in P̂ /(E�H1)H0

approximated by

| ↵i ⇡ |↵i+ P̂

E �H1

H0|↵i ⇡ |↵i � 1

U
H0|↵i (1.20)

The last approximate sign follows since for the half-filled lattice H0|↵i is orthogonal
to any eigenstate of the interaction part. Inserting Eq. 1.20 into the expansion | i =
P

↵ a↵| ↵i and that in turn into Eq. 1.19 one finds

(E � E1)a↵ =
1

U

X

�

h↵|H2
0 |�ia� (1.21)

which is the same as the Schrödinger equation for the Hamiltonian HU�1 = H2
0/U

with the eigenenergy E = E � E1. For the case of half-filling the HU�1 can be
rewritten as

HU�1 =
2t2

U

X

hiji

~Si · ~Sj (1.22)

which is the spin-1
2
quantum Heisenberg Antiferromagnet with the exchange coupling

J = 2t2

U . This result is valid for the half-filled system in any dimension and lattice
[31].
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Weak coupling limit

For the weak coupling limit, i.e. U ⌧ t, on the other hand one may think of the
interaction H1 as a weak perturbation of the Hamiltonian H0

1. The expectation is
that the states of a weakly interacting electron gas are similar to a free electron gas.
This picture know as the Fermi liquid[77] relies on the main assumption that there
exists a one-to-one correspondence between the states of a free fermion system and
those of a weakly interacting one.

For a translationally invariant system it is convenient to transform the kinetic
part of the Hamiltonian to Fourier space. For a lattice in d dimensions we find

H0 =
X

�

Z

ddk

(2⇡)d
✏(k)c†�(k)c�(k) (1.23)

with ✏(k) = �2
P

ri�rj
t(ri� rj)e�ik·(ri�rj). For the case of nearest neighbour hopping

the dispersion relation is given by a cosine band

✏(k) = �2t
d
X

j=1

cos(kj) (1.24)

The ground is found by filling up the Fermi sea. Thus if N particles are in the system,
the total number of momentum states with energy smaller than ✏ is determined by
the constant energy curve ✏(k) = ✏, c.f. Figs 1.1a and 1.1b.

1.1.4 The metal-insulator transition and magnetic order

The existence of a metal-insulator transition in the paramagnetic phase of the half-
filled Hubbard model has been known since the early work of Hubbard [53]. This
transition is found in various transition metal oxides of which V2O3 and Cr are just two
examples[9]. The mechanism driving the Mott-Hubbard metal-insulator transition
(MHMIT) is the tendency towards localisation due to the local Coulomb interaction
U between electrons on the same lattice site. The Hubbard model is the minimal
model for the study this transition. Non-perturbative methods fail to describe the
physics near the MHMIT correctly where the U and the bandwidth W are roughly
of the same order of magnitude. The transition can however be studied within the
framework of DMFT, a non-perturbative, controlled approximation, which maps the
correlated lattice problem onto self-consistenly determined single impurity Anderson
model.

Many authors have studied the MHMIT by means of the DMFT[9, 45, 86, 102,
92, 98]. Fig. 1.2 summarises the results for a homogenous Hubbard model in infinite
spatial dimensions at half filling. For T < Tc one finds a first order transition with
a discontinuous redistribution of weight in the spectral function and a pronounced

1Actually for the single band Hubbard model on a simple cubic lattice, the model possesses a
perfect nesting property which causes the system to order antiferromagnetically for arbitrary small
interaction parameter U . Therefore it is only true that H1 can be understood as a weak perturbation
for the eigenstates of H0 if the system is constrained to the paramagnetic phase by, say, frustration.
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(a) Constant energy curves for H0 on a
square lattice (d = 2).

(b) One particle spectrum of H0 in one
spatial dimension (d = 1).

Figure 1.1

hysteresis e↵ect. From the side of the metal at weak interaction the transition sets
in at U > Uc2 while from the side of the Mott insulator one finds a transition to a
metallic solution for U < Uc1 . The first order transition line ends at a critical point
at T = Tc. For T > Tc the transition turns into a crossover and dashed lines in
Fig. 1.2 indicate the width of the crossover region. Filled and open circles and the
solid line labeled IPT indicate results obtained from di↵erent impurity solvers. The
numerical renormalisation group (NRG) results are denoted by open circles while the
quantum Monte Carlo results[58] are shown by solid circles. The agreement of these
two methods is rather good. The iterated perturbation theory (IPT) is in contrast to
the aforementioned methods (as the name suggests) a perturbative method which is
less accurate but computationally less expensive.

The large variety of physical phenomena that the transition metal oxides show
also includes magnetic and orbital ordering phenomena and also superconductivity.
V2O3, LaTiO3 and the cuprates are examples which all show metal-insulator transi-
tions, ferro- and antiferromagnetic order and superconductivity depending on external
control parameters.

In the discussion of the metal-insulator transition above the possibility of long-
range magnetic order has been ignored by confining the Hubbard model to the param-
agnetic regime. As we have seen above in the strong coupling limit the physics of the
half-filled Hubbard model is described by a quantum Heisenberg model with antiferro-
magnetic exchange coupling J = �t2/U . Combining this insight with a more refined
weak-coupling analysis one can infer that the ground state of the Hubbard model with
nearest neighbour hopping at half-filling is always antiferromagnetic. The important
condition is the nearest neighbour hopping which ensures that the HM shows a per-
fect nesting property ✏(k) = ✏(k +Q) with Q = (⇡, . . . , ⇡)T which strongly favours
ordered insulating ground states. Indeed if one allows for antiferromagnetic order in
the DMFT one finds that the Neel transition from a metal to an antiferromagnetic
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Figure 1.2: Results for the phase diagram of the Mott transition obtained from dif-
ferent methods: NRG (open symbols), quantum Monte Carlo (QMC, filled symbols),
and iterated perturbation theory (IPT, solid lines). Taken from [9].

insulator always preempts the MHMIT transition. As can be seen from Fig. 1.3a,
for any strength of the interaction parameter U the transition temperature Tc for
the MHMIT lies below the Neel temperature TN . This is however an artefact of the
restriction to nearest-neighbour hopping. As shown by Zitzler et al.[118] the intro-
duction of magnetic frustration by next-nearest neighbour hopping uncovers a region
of a paramagnetic metal for small U . Fig. 1.3b shows a schematic of the magnetic
phase diagram for the 3 control parameters temperature T , doping � and interac-
tion strength U . As already mentioned at half-filling the physics is dominated by
an antiferromagnetic insulating phase. For finite doping � > 0 the antiferromagnetic
phase persists up to a critical doping �c. Eventually for very large values of U , the
antiferromagnetic phase is replaced by Nagaoka type ferromagnetism[75]2.

1.2 Single impurity Anderson model

Instead of considering an ensemble of fully correlated lattice sites, in this section we
concentrate on impurity models. Here only a few correlated sites exists within a given
host lattice that consists of otherwise rather weakly correlated or free sites. Similarly
to the case of the Hubbard model here we are again interested in the competition
between itineracy and localisation.

When electrons localise they can form objects whose low energy excitations involve
spin degrees of freedom. Such localised “magnetic moments” can be represented

2The conjecture due to Nagaoka is one of the few rigorous statements about itinerant ferromag-
netism in the Hubbard model. Nagaoka considered a special case of the Hubbard model, in which
the on-site interaction is infinite and there is exactly one hole, and showed that the unique ground
state has the maximum total spin.
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Figure 1.3

by a single spin operator ~S. Localised moments usually develop in highly localised
atomic orbitals such as the 4f shells of rare earth compounds[18], but also in the
slightly more delocalised 3d levels of transition metal oxides. They are the origin of
the so-called “Kondo e↵ect” in metals which greatly alters the nature of the metallic
state. A theoretical understanding of the quantum mechanical origin of local moment
formation was not developed until experimentalists started to systematically study
impurities in metals in the 60s. Detailed studies of magnetic iron impurities in copper
showed that the magnetic susceptibility develops a Curie component indicating the
formation of a local moment.

In 1961, motivated by these experiments P.W. Anderson identified interactions
between localised electrons as the driving force behind local moment formation. The
essential physics can be understood from a single spin-1

2
state which we refer to as

the localised “d”-state. The Hamiltonian of the Anderson model comprises three
parts. We will refer to the part describing the isolated “d” state including a Coulomb
interaction term as Hd.

Hd = ✏d
X

�

nd� + Und"nd# (1.25)

Here the first part describes an isolated atomic d-state of energy ✏d and occupancy
nd�. The second term accounts for the inter-atomic interaction due to the Coulomb
repulsion between the up- and down-state. The host metal is modelled as a sea of
free conduction electrons

Hc =
X

k�

✏
k

c†
k�ck� (1.26)
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(a) Wave functions of Ce in local density
functional calculations. The 4f states are
seen to be localised largely within the 5s,
5p core and well within the Wigner-Seitz
radius for ↵- and �-Ce (indicated by ar-
rows.). Taken from [49].

Local
moment

(b) Phase diagram for the Anderson im-
purity model in the atomic limit. Based
on [18].

Figure 1.4

where the dispersions relation ✏
k

of the conduction electrons surrounding the impu-
rity site is determined by the lattice type and c†

k� creates a conduction electron of
momentum k, spin � and energy ✏

k

. When the impurity is embedded into the host
metal the d-state starts to hybridise with conduction electrons which is modelled via
the mixing term

Hmix =
X

k�

⇣

V
k

c†
k�d� + V ⇤

k

d†�ck�
⌘

(1.27)

where d†� creates a electron on the impurity site with spin �. The hybridisation matrix
element V

k

is determined by the overlap of the localised atomic wave function with
the one of the conduction electrons and given by[49]

V
k

=
X

i

eik·rih�d|V0| rii (1.28)

where �d is the atomic d-state wave function, V0 the ionic potential and  
ri the

Wannier function of the conduction electron located at site ri. In summary the
Hamiltonian of the Anderson impurity model (AIM) can be written in the mixed
basis as

HSIAM =
X

k�

✏
k

c†
k�ck� + ✏d

X

�

nd� + Und"nd# +
X

k�

⇣

V
k

c†
k�d� + V ⇤

k

d†�ck�
⌘

(1.29)

In comparison with the Hubbard model, although the Anderson impurity model
describes a physical system which di↵ers in many ways, the two are essentially repre-
sentatives of the same paradigm: the competition between itineracy and localisation.
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In the AIM the itineracy is represented by the delocalised conduction electrons Hc,
while the localising tendencies are found in the isolated d-state Hd. The competition
between the two is introduced into the model via the hybridridisation Hmix through
the coupling V

k

.
The physics described by the AIM is most easily understood by first concentrating

on the atomic part of the Hamiltonian, Hd. The four states of the impurity and their
respective energies are given by

state energy

|d0i 0
|d2i 2✏d + U

|d1"i or |d1#i ✏d

where the superscript indicates the total occupancy of the impurity site. To obtain a
magnetic doublet as the ground state the following inequalities have to be fulfilled

E(|d2i)� E(|d1i) = ✏d + U > 0 ) ✏d + U/2 > �U/2

E(|d0i)� E(|d1i) = �✏d > 0 ) U/2 > ✏d + U/2 (1.30)

so that U/2 > |✏d+U/2|. The phase diagram of the AIM in the atomic limit, Fig. 1.4b,
summarises the inequality graphically. We see that for a su�ciently strong Coulomb
interaction compared to the level spacing, the ground state indeed becomes magnetic.
The excitation spectrum will involve two sharp resonances at ✏d and ✏d + U .

If we now embed this atomic site into a host metal, i.e. turn on the coupling
V
k

, the d-level will hybridise with the conduction electrons broadening the sharp
�-resonances into resonances with a finite width �(✏), where �(✏) is given Fermi’s
golden rule[18]

�(✏) = ⇡
X

k

|V
k

|2�(✏
k

� ✏) (1.31)

When the hybridisation is small one may regard it as a weak perturbation around
the atomic limit as long as we ignore spin fluctuations which lead to the emergence
of the Kondo e↵ect as we will see in the following chapters. The ground state of the
system will be essentially that of the atomic limit. For weak U the hybridisation with
the conduction electron sea will produce a single d-resonance at ✏d of width �(✏d). In
Anderson’s model for moment formation the resonance peak splits up for interaction
strengths U in excess of a critical Uc ⇡ ⇡� into two d resonances centred around ✏d
and ✏d + U .

This is the essence of Anderson’s mean-field theory for local moment formation.
The physics by which the local moment is quenched at low temperatures however
requires a more refined treatment of the model and is termed the “Kondo”-e↵ect
after the japanese physicist Jun Kondo. To make this introductory section as short
as possible we stop here and return to this interesting point in chapter 4.
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Chapter 2

Itinerant electron magnetism in
the Hubbard model

The Hubbard model was invented by John Hubbard (1931 - 1980) with the inten-
tion of explaining itinerant electron magnetism, primarily the ferromagnetism of Fe,
Co and Ni. The initial success lead to the hope that all major correlation phe-
nomena ranging from (anti-)ferromagnetism, incommensurate magnetic structures,
metal-insulator transitions and even high-T superconductivity may be understood
from this simple model [29].

Although the Hubbard model is far from a realistic model for actual materials,
the driving forces of the ordering transition may be understood from it nonethe-
less. Therefore the Hubbard model gives a good basis for understanding the anti-
ferromagnetism, most prominently the anti-ferromagnetism of Mott insulators. The
Hubbard model supports di↵erent phases of magnetic ordering. The normal metallic
phase without magnetic ordering is referred to as paramagnetic (PM) and charac-
terised by up- and down-spins on all sites and no ordering except for local correla-
tions. The spin-spin correlator falls o↵ exponentially with distance. Therefore only
short-ranged order in the spin alignments is found. The ferromagnetic (F) phase is
characterised by a net magnetic moment along a particular direction, while the an-

tiferromagnetic (AF) ordering has an equal number of spin up and down conduction
electrons, however the spin alignments show both short range and long range order.

2.1 Spin susceptibility

A convenient way to test whether the Hubbard model shows an instability towards a
certain magnetic order is to calculate the ~q-dependent spin susceptibility. Instabilities
are signalled by a divergent response to an external magnetic field with a specific
wave-vector ~q. In the following we present a mean-field derivation of the magnetic
susceptibility for the Hubbard model. For a more detailed presentation the interested
reader is referred to Ref. [29].

We consider the following Hamiltonian

H = Hhub +Hfield (2.1)
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where Hhub is the Hamiltonian of the Hubbard model, Eq. 1.4, and Hfield describes
the coupling of the spins to an external magnetic field. Hfield is given by

Hfield = �gµB

Z

dr ~S(r) ·H
q

cos(q · r) (2.2)

= �gµB

2

h

~S(q) + ~S(�q)
i

·H
q

(2.3)

where g is the Landé factor, µB the Bohr magneton and H
q

the q-component of the
external magnetic field when expanded into Fourier components. The spin operator
~S(q) may be expressed by fermion operators as

~S(q) =
1

2

X

p

X

↵,�

c†
p+q,↵~�↵�cp,�. (2.4)

where � is the vector of Pauli matrices. The Hubbard model possesses a SU(2)
spin-rotational symmetry, therefore the spin susceptibility we are interested in must
be isotropic. We may thus choose the magnetic field to point along the x-direction
without loss of generality,

Hfield = �gµB

2
(Sx(q) + Sx(�q))Hx

q

. (2.5)

Now we turn to the interaction part of the Hubbard Hamiltonian Hhub = H0 +HU .
Using the identities

n̂j"n̂j# = n̂j" � S+
j S

�
j

n̂j"n̂j# = n̂j# � S�
j S

+
j (2.6)

we may rewrite HU as

HU =
U

2
N̂ � U

X

j

�

(Sx
j )

2 + (Sy
j )

2
�

. (2.7)

where we used N̂ =
P

j(n̂j" + n̂j#) and S± = Sx ± Sy. Under the assumption that
both the perturbing field H

q

and the interaction strength U is small we may make a
mean-field type decoupling of the form [29]

(Sx
j )

2 ⇡ 2
⌦

Sx
j

↵

Sx
j �

⌦

Sx
j

↵2
(2.8)

It is the external field which causes finite expectation values of these averages. The
only non-vanishing average is due to the spin density wave induced by the external
magnetic field and therefore only

⌦

Sx
j

↵

is finite and of the form
⌦

Sx
j

↵

= S cos(q · j) . (2.9)

We may use this approximation now to replace the interaction term HU by a mean-
field approximation quadratic in the fermion operators and linear in the spin expec-
tation value S. Noticing that

2
X

j

⌦

Sx
j

↵

Sx
j =

X

j

S(eiq·j + e�iq·j)Sx
j

= S(Sx(q) + Sx(�q)) (2.10)
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we may rewrite HU +Hfield as

HU +Hfield = �
✓

gµBHx

2
+ US

◆

(Sx(q) + Sx(�q)) (2.11)

Assuming that the spin density S is small, S ⌧ 1, we may regard H 0 = HU +Hfield

as a weak perturbation to the free fermion system H0. We wish to calculate the
expectation value of hSx(q)i to find a linear dependence on the external magnetic
field Hx and thereby identify the magnetic susceptibility �(q).

The ground state of H0 is given by the filled Fermi sea, |FSi. The energy cor-
rection to first order in H 0 vanishes, since the expectation value of spin-flip-type
operators, i.e. c†"c# etc., with the eigenstates of H0 vanishes. We calculate therefore
the first order correction to the ground state to find the magnetisation along the x-
axis. The formula of first order perturbation theory gives for the perturbed ground
state [29]

| 0i = |FSi �
✓

gµBHx

2
+ US

◆

X

p�

"

c†
p+q�cp��

✏
p

� ✏
p+q

+
c†
p�q�cp��

✏
p

� ✏
p�q

#

|FSi (2.12)

Since this state is the Fermi sea with particle-hole pairs of momentum q and �q
superimposed the only contributions to expectation values of operators of the form
c†
p+q�cp�� comes from states with p below the Fermi surface and p + q above it, or
vice versa. Using the orthogonality of the particle-hole superimposed state to the
original ground state |FSi we find

h 0| c†
p+q�cp�� | 0i =

✓

gµBHx

2
+ US

◆

f
p

� f
p+q

✏
p

� ✏
p+q

(2.13)

where f
p

= ⇥(✏F � ✏
p

). The above results can be applied to the calculation of the
spin expectation value. For the x-component we find

h 0|Sx(q) | 0i =
✓

gµBHx

2
+ US

◆

�(0)(q) (2.14)

where we have defined the magnetic susceptibility function

�(0)(q) =
X

p

f
p

� f
p+q

✏
p+q

� ✏
p

. (2.15)

Although we have performed a T = 0 calculation the above result can be easily
extended to the case of finite T . In this case f

p

becomes the Fermi distribution.
Self-consistency requires h 0|Sx(q) | 0i = S which finally leads to

�(q) = (gµB)
2 �(0)(q)

1� U�(0)(q)
(2.16)

This expression is the RPA susceptibility familiar from the calculation of the polari-
sation. �(q) di↵ers from the non-interacting susceptibility �(0)(q) by an enhancement
factor.
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In order to find wave-vectors which signal an instability of the system towards a
specific magnetic ordering we are looking for divergencies of the generalised suscepti-
bility �(q). The denominator vanishes when

U �(0)(q) = 1 (2.17)

which is the so-called generalised Stoner criterion. In the present case we are in-
terested in the Hubbard model on the simple cubic lattice with nearest neighbour
hopping in d spatial dimensions. The dispersion relation is given by

✏(k) = �2t
d
X

i=1

cos(ki) . (2.18)

For this type of lattice a perfect nesting condition is satisfied by the spanning vector
Q

✏(k+Q) = �✏(k), 8k (2.19)

where Q = (⇡, ⇡, . . . ⇡). At half-filling ✏F = 0 and T = 0 the susceptibility function,
Eq. 2.15, can be written as

�(0)(Q) =
X

p

f
p

� f
p+Q

✏
p+Q

� ✏
p

=
X

p

f
p

�2✏
p

T=0
=

Z D/2

0

⇢(✏)

2✏
(2.20)

�(0)(q) diverges logarithmically unless ⇢(✏) ! 0 as ✏ ! 0. It follow that the critical
interaction strength UQ

c vanishes, UQ

c = 0. Thus for half-filled bands with a perfect
nesting property the mean-field prediction is that arbitrary small interactions U > 0
cause a transition to a two-sublattice antiferromagnetic state.

The above statement assumes that the susceptibility for other q 6= Q remains
finite. If this is not the case we have a case of competing instabilities. Indeed for
d = 2 the simple cubic lattice has a density of states which diverges logarithmically
at ✏ = 0 and causes in turn the generalised susceptibility �(q = 0) to diverge. We
therefore have a competition between ferromagnetic and antiferromagnetic order. It
turns out that the antiferromagnetic order prevails[29].

2.2 Antiferromagnetic order on the mean-field level

The antiferromagnetic order is the most robust kind of ordering for the Hubbard
model. As the asymptotic model of strong coupling for the Hubbard model is the
spin-1

2
quantum Heisenberg model, antiferromagnetic order is certainly expected for

strong Hubbard U . On the d-dimensional simple cubic lattice the situation is special
due to the perfect nesting property mentioned above. In the following we will see
that the result is that for all U > 0 a magnetisation gap of finite size appears and
antiferromagnetic order is present at the mean-field level.
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Figure 2.1: Imaginary part of the Green’s function for di↵erent hybridisation strengths
V : V = 1 (black, solid), V = 0.5 (red, dashed) and V = 2 (blue, dotted). Strong
van Hove-singularities can be seen at the inner band edges. The dispersion relation
is chosen to be ✏(c)

k

= �✏(d)
k

= � cos(k) to give a hybridisation between particle- and
hole-like degrees of freedom; see main text.

2.2.1 Origin of the magnetisation gap

Gaps in electronic spectra are common-place in condensed matter physics and many
di↵erent mechanism exists which can give rise them. A trivial origin is the periodic
arrangement of the ions in a solid, which causes a periodic potential which breaks
translational invariance. However there are also intrinsic properties which may cause
the appearance of a gap. In many of them the gap can be understood from the
hybridisation of electrons with other degrees of freedom. As shown below the anti-
ferromagnetic gap is one of these cases.

We start with a brief reminder on hybridisation gaps. Consider the following
Hamiltonian

H =
X

k

✏(c)
k

c†
k

c
k

+ ✏(d)
k

d†
k

d
k

+ (V
k

c†
k

d
k

+ h.c.) (2.21)

where two di↵erent types of particles c†
k

and d†
k

hybridise with strength V
k

. The
imaginary part of the Green’s function for the c-electrons is easily found

Im[G(k,!)] =
�! + ✏(c)

k

V 2
k

� (! � ✏(c)
k

)(! � ✏(d)
k

)
(2.22)

Two poles appear in the Green’s function located at

w =
✏(c)
k

+ ✏(d)
k

2
±

v

u

u

tV 2
k

+

 

✏(c)
k

+ ✏(d)
k

2

!2

(2.23)

For simplicity let us assume that ✏(c)
k

= �✏(d)
k

with � = ±1 and Vk = V . The positive
sign corresponds to two particle-like degrees of freedom hybridising, the negative sign
to hybridsation between electrons and holes.
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• � = 1: From (2.23) it is immediately clear that the poles appear at ! =
✏
k

± V . Therefore if the bandwidth of the dispersion D is greater than V a
region of width |D�V | exists around the Fermi surface that they do not enter.
Consequently a gap of with 2(D � V ) appears in the local Green’s function
G(!) =

P

k

G(k,!) at the Fermi surface.

• � = �1: Here the poles appear at ! = ±
p

V 2 + ✏2
k

. As soon as V > 0 a region
of with 2V appears that is free of poles. Therefore 8V > 0 a gap opens in the
local lattice Green’s function, c.f. Fig. 2.1.

The logic of the above argument directly carries over to the case of antiferromagnetic
order. We will work on the simple cubic lattice in three spatial dimensions which is a
bipartite lattice so that we have simple AB-sublattice anti-ferromagnetism. Without
loss of generality we assume that the magnetic order arises from spin-" electrons
being the majority spin species on the A-sites and spin-# on the B-sites. Symmetry
considerations tell us that

hn̂A�i = hn̂B�̄i (2.24)

which means the expectation value of the particle number operator can be written as

hn̂i�i =
n

2
+ (�1)�meiQ·ri (2.25)

with n = hn̂i"i+ hn̂i#i and m the sublattice spin polarisation m = 1
2
(ni" � ni#)eiQ·ri .

Performing the usual mean-field decoupling n̂j"n̂j# !
P

� n̂j� hn̂j�̄i � hn̂j"i hn̂j#i
we see that i.e. spin-" electrons see a superposition of the lattice potential plus
an average field U hn̂j#i. The additional field enlarges the periodicity of the potential
landscape from a to 2a. Therefore the e↵ective field has lower translational symmetry
than the underlying lattice which halves the Brillouin zone. The states lying outside
the new, magnetic Brillouin zone (MBZ) can be transported into the new Brillouin
by application of a new reciprocal lattice vector ±⇡

a , e↵ectively splitting the formerly
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single band into two (Fig. 2.2a). Defining new operators d†
k� = c†

k+Q� and d
k� = c

k+Q�

the mean-field Hamiltonian may be written in the familiar form

H =
2

L

MBZ
X

k,�

✓

1

2
Un+ ✏

k

◆

c†
k�ck� +

✓

1

2
Un� ✏

k

◆

d†
k�dk�

� (�1)�Um(c†
k�dk� + h.c.)� U

X

j

hn
j"i hnj#i (2.26)

where we have used the perfect nesting property Eq. 2.19. We choose µ = 1
2
Un

to push the model to the particle-hole symmetric point. Comparing with (2.21) we
realise that this is just the case � = �1 with V = Um. The term linear in the
magnetisation m hybridises the particle-like ✏

k

-band with the hole-like ✏
k+Q

-band.
At half filling the enlarged magnetic unit cell contains two electrons completely filling
the lower band while keeping the upper band unoccupied. From Fig. 2.2a we see
that the appearance of a finite magnetisation pushed down the occupied band, while
pushing up the unoccupied. This already hints at the energetical motivation for the
symmetry breaking.

2.2.2 Gap equation and spectral functions

The Hamiltonian, Eq. (2.26), can be formally solved by diagonalisation. One finds
for the eigenenergies of the state with momentum k

✏±(k) =
Un

2
±
q

✏2
k

+ U2m2 � U
X

j

hn
j"i hnj#i (2.27)

The ground state energy of the system can be obtained by summing over the occupied
states. At T = 0 and half-filling the lower band in Fig. 2.2a is completely occupied,
therefore

E =
MBZ
X

k



Un

2
�
q

✏2
k

+ U2m2

�

� U
X

j

hn
j"i hnj#i

= U

✓

n2

4
+m2

◆

� 2

L

MBZ
X

k

q

✏2
k

+ U2m2 (2.28)

The gap equation is found by considering the above ground state energy as a function
of the unknown parameter m and requiring that E(m) is minimum, @E/@m = 0, with
the non-trivial solution

1 =
1

L

MBZ
X

k

U
p

✏2
k

+ U2m2
(2.29)

The term in the sum depends only through the dispersion ✏
k

on the momentum k
which allows us to trade the sum over momenta for an integral over the non-interacting
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(a) Sublattice spin polarisation m as a
function of the interaction strength U
for two (green line) and three (red line)
spatial dimensions as obtained for static
mean-field theory. The black shows the
weak coupling result, Eq. 2.31, which is
in good agreement with the mean-field
prediction.
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(b) Spectral function for U = W/4 as
obtained by static mean-field theory. At
the Fermi surface a gap of width � =
2Um opens. The red in green line de-
pict the asymptotic at the edge of the gap,
Eq. (2.33).

Figure 2.3

density of states

1 = U

Z W/2

0

d✏
⇢(✏)p

✏2 + U2m2

⇡ U⇢(0)

Z Um

0

d✏
1

Um
+

Z W/2

Um

d✏
⇢(✏)

✏

⇡ U⇢(0) + U⇢(0) ln
W

2Um
(2.30)

where W is the bandwidth and we assumed in the first line that ⇢(✏) = ⇢(�✏).
Approximating the density of states by its value at the Fermi level is only valid if
⇢(0) is finite. This is not the case for d = 2. For U ⌧ W we expect a small
magnetisation m and the above approximation should hold. The small U dependence
of the magnetisation is thus

m ⇡ W

2U
exp



� 1

U⇢(0)

�

(2.31)

Fig. 2.3b shows the magnetisation as a function of the local Coulomb interaction U
as obtained from a self-consistent solution of the mean-field equations. The green line
shows the result for two spatial dimensions. For three spatial dimensions (red line)
the mean-field result is compared to the weak-coupling approximation, Eq. 2.31, and
good agreement is found.

A quantity of great interest is the single-particle spectral function. The structure
of the local Green’s function in mean-field approximation is given by[95]

G"(!) =
⇠#(!)

p

⇠"(!)⇠#(!)

Z 1

�1
d✏

⇢(✏)
p

⇠"(✏)⇠#(✏)� ✏
(2.32)
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where ⇢(✏) denotes the non-interacting density of states and ⇠�(!) = ! + i0+ +
µ � U

2
n + �Um. With !± = U

2
n � µ ± Um both radiants are positive for ! < !�

and ! > !+. For particle-hole symmetric densities of states the imaginary part of
Eq. (2.32) vanishes for !� < ! < !+. Therefore a region of width � = 2Um exists
which holds no spectral weight. For ! close to the gap edges one finds[95]

� 1

⇡
ImGA"(!) =

8

<

:

q

Um
|!�!�|⇢(0) ! % !�

q

|!�!+|
Um ⇢(0) ! & !�

(2.33)

Fig. 2.3b shows a spectral function as obtained from mean-field theory. As expected
a region of width � = 2Um exists which holds no spectral weight. The asymptotic,
Eq. 2.33, are depicted as red and green lines in Fig. 2.3b and fit the mean-field solution
very well.
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Chapter 3

Dynamical Mean-Field Theory

Materials with strongly correlated electrons exhibit some of the most intriguing phe-
nomena encountered in condensed matter physics. The theoretical description of
such systems is among the most challenging of problems in the material sciences.
The Dynamical Mean-Field theory (DMFT) provides an extensive and controlled
framework for the study of such correlation phenomena. In this chapter we review
the justification and construction of the DMFT. Detailed accounts can be found in
Refs. [37, 62, 26, 52].

In materials with open d- and f -shells electrons occupy narrow orbitals and ex-
perience strong Coulomb repulsion due to their spatial confinement. The typical
approach for the description of simple metals where the influence of the surround-
ing particles on a particular electron is modelled through self consistently determined,
static mean-fields fails in these situations where the motion of each electron is strongly
correlated with those of the others. A variety of numerical and analytical techniques
have to been used to treat the physics of strongly correlated electron systems. The
DMFT is one of these methods and, at the same time, stands out as a method which
is both numerically tractable and flexible enough to allow theorists to incorporate
material-specific details into the calculations[26].

The e↵ects of correlations often makes materials extremely sensitive to small
changes in external parameters, such as temperature, pressure and doping. The
variety of phenomena ranges from strong changes in the electrical resistivity in metal-
insulator transitions (vanadium oxide), through substantial volume changes (actinides
and lanthanides) to remarkably high transition temperatures in the superconducting
curates[62]. In materials termed “heavy fermion systems” mobile electrons behave at
low temperatures as if their mass was a thousand times the mass of a free electron in a
simple metal[52]. Other materials show great sensitivity in their electrical resistivity
to changes in an applied magnet field resulting in “colossal magnetoresistance”[97].
Such properties spark the hope for exciting applications of strongly correlated electron
physics. The theoretical description of these e↵ects which often rely on microscopic
details is however especially challenging.

The failure of band theory for strongly correlated materials was first noticed in the
description of nickel- and manganese oxide. Both materials have a relatively low mag-
netic ordering temperature but large insulating gaps[62]. In parameter regimes where
magnetic long-range order is absent band theory erroneously predicts these materials
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Figure 3.1: Tight-binding density of states in d=1,2,3,4,5 as compared with the result
for d = 1. Taken from Ref. [110].

to be metallic. Neville Mott showed that instead of understanding these materials
from the perspective of delocalised electrons as in density functional theory the more
natural perspective is a simple, real-space picture[73]: adding and removing electrons
from the partially filled shells results in excited atomic configurations. Scattering
by the internal degrees of freedoms of the other electrons causes these excitations to
propagate incoherently through the crystal and broaden them to form bands. In the
Hubbard model they appear as the upper and lower Hubbard band. Understanding
and especially modelling the metal-insulator transition in such a set-up where the
character of the electrons changes from itinerant to fully localised as a function of the
Coulomb interaction is however very di�cult.

In a well defined limit the DMFT allows for a numerically exact solution of this
problem. In addition this framework paves the way to a systematic extension of the
method to more intricate and realistic systems. In this chapter we start with a review
of the simplifications which arise in the infinite spatial dimension (or more generally
infinite lattice connectivity) limit in section 3.1. A derivation of the DMFT method
by means of the cavity method is presented in section 3.3. An alternative derivation
due to Pottho↵ and Nolting is detailed in section 3.5.

3.1 Simplification from the d ! 1 limit

The birth of DMFT can be identified with the discovery of simplifications in perturba-
tion theory in the limit of infinite spatial dimensions due to Metzner and Vollhardt[72].
We start with a derivation of the asymptotic density of states for the simple cubic
lattice in the limit of infinite spatial dimensions.

Di↵erent lattices give rise to di↵erent dispersion relations ✏(k). For non-interacting
particles with a Hamiltonian H�µN =

P

k,�(✏k�µ)c†
k�ck� the free Green’s function

and the free density of states are given by

G(0)
k�(!) =

1

! � ✏
k

+ µ
, ⇢(!) =

1

L

X

k

�(! � ✏
k

) (3.1)
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For a simple cubic lattice the dispersion relation is given by ✏(k) =
Pd

j=1 cos(kj).
An elegant way to determine the asymptotic density of states for d ! 1 is to
invoke the central limit theorem (CLT). The argument goes as follows. We con-
sider the random variables Xj =

p
2 cos(kj) where kj is distributed uniformly in

the interval kj 2 [�⇡, . . . , ⇡] for each j 2 {1, . . . , d}. The Xj have zero mean and

unit variance Var(Xj) =
R ⇡

�⇡
dkj
2⇡ X

2
j = 1. The central limit theorem applies to the

random variables Xj and states that the random variable Xd = 1p
d

Pd
j=1 Xj con-

verges in law in the d ! 1-limit to a normally distributed random variable X with
zero mean and unit variance. The distribution function of X is therefore given by
f(X ) = exp(�X 2/2)/

p
2⇡. The density of states can be regarded as the distribution

function of the random variable
p
2dtXd[26]. Consequently a finite density of states

is only obtained in the d ! 1-limit if the hopping scales as d�1/2. The resulting
density of states is given by

⇢(✏) =
1

2⇡t⇤
exp

✓

� ✏2

2t2⇤

◆

, with t =
t⇤p
2d

. (3.2)

Fig. 3.1 summarises the d ! 1 limit graphically. The evolution towards the Gaus-
sian density of states can be clearly observed. Generalising from the case of nearest
neighbour hopping on a simple cubic lattice in d spatial dimensions, each hopping tn
must be scaled proportional to 1/

p
Zn where Zn is the number of sites reachable by

tn.
For the simple cubic lattice the bandwidth diverges in the d ! 1-limit (there are

counterexamples such as the Bethe lattice which converges to a semi-elliptic density
of states with a finite bandwidth in the Z ! 1-limit). One might object that the
infinite band edges are problematic for the application of the infinite-dimensional limit
as an approximation to finite-dimensional lattices (with finite bandwidths). As we will
see in the following the dispersion relation enters only through the density of states
into the simplified expression for the local lattice Green’s function. The practical
solution will be to use the non-interacting density of states for the lattice dimension
of interest in all of these expressions. The d ! 1 limit also has consequences for the
many body theory in particular for the self-energy as pointed out by Metzner and
Vollhard[72]. In the following we study the d dependence of the non-local Green’s
function Gij� and the e↵ects on the self-energy expansion.

3.1.1 Locality of the self-energy

In the previous section we showed how the hopping strength t has to be rescaled in
order to obtain a finite kinetic energy in the d ! 1-limit for the special case of the
simple cubic lattice with nearest neighbour hopping. This result can be generalised
in the following way. For arbitrary, generalised hopping amplitudes tij connecting
lattice sites i and j, tij has to be rescaled according to[72]

tij = t⇤ijd
� 1

2 ||ri�rj || (3.3)

for the kinetic energy to be finite in the d ! 1-limit. Here t⇤ij is d independent and
||ri�rj|| is the shortest number of lattice steps from ri to rj and therefore proportional
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to the number of lattice sites connected by tij. The kinetic energy can be expressed
through the Green’s function

Ekin =
X

i,j

tij
D

c†i�cj�
E

=
X

i,j

tij

Z 1

�1

d!

2⇡
Gij�(!)e

i!0+ !
= O(d0) (3.4)

Since the double sum yields a contribution of order d||ri�rj || consequently the Green’s
function has to scale like

Gij�(!) = O(d�
1
2 ||ri�rj ||), Gii�(!) = O(d0) . (3.5)

The Green’s function decays rapidly with distance. This has important implications
for example for the perturbative, self-consistent skeleton expansion of the Green’s
function.

Here we concentrate on the essential argument which leads to a substantial reduc-
tion in the complexity of the self-energy for the Hubbard model in the limit of infinite
spatial dimensions. For a more detailed account the interested reader is referred to
the original paper by Metzner and Vollhardt[72] and to the review article about the
dynamical mean field theory by Georges et al. [37]. Metzner and Vollhardt’s result
for the Hubbard model was later generalised by E. Müller-Hartmann who showed that
the simplification is not restricted to Gaussian density of states. He found that also
in more general models interactions between particles on di↵erent sites are shown to
simplify to their Hartree substitute in the limit of large lattice coordination [74].

To make the description as transparent as possible we limit ourselves, for the most
part, to the presentation of the perturbative series in its diagrammatic representation.
A more rigorous account can be found in the two referenced sources. Separating the
Hamiltonian for the Hubbard model H = H0+HU into a free (H0) and an interacting
part (HU) one can write down a perturbative series in HU for the Green’s function of
the system. We agree on the following diagrammatic code

G(0)
ij�(!) =

Gij�(!) =

Uc†i�ci�c
†
i�̄ci�̄ =

The perturbation expansion in HU for the non-local Green’s function Gij�(!) from
the lattice site i to j then yields a sequence of diagrams of which the lowest orders in
HU are given by

(3.6)
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(a) one-particle irreducible (b) one-particle irreducible (c) one-particle reducible

Figure 3.2: Exemplary diagrams illustrating the concept of “one-particle irreducibil-
ity”.

Here summation over internal indices is assumed and we have suppressed the spin
quantum number to avoid clutter in the notation. It is fairly obvious that many of
the diagrams involve repeating structures. These can be e�ciently resummed through
the introduction of a “one-particle irreducible” self energy. For this we define the sum
of those diagrams which cannot be cut into two pieces by cutting a single solid line as
the self-energy ⌃. Fig. 3.2 illustrates the concept. Three cuts are needed to separate
Fig. 3.2a into two pieces, two for Fig. 3.2b and one for Fig. 3.2c. Therefore Fig. 3.2a
and Fig. 3.2b are one-particle irreducible while Fig. 3.2c is not. The diagrams building
the self energy are to lowest order in HU given by

(3.7)

The Dyson equation expressed in Feynman diagrams is given by

(3.8)

and indeed substituting Eq. 3.7 into Dyson’s equation Eq. 3.8 yields the expansion
Eq. 3.6

The notation can be further compactified by going to the so-called skeleton expan-
sion. So far we have considered an expansion of the from ⌃[G(0)], where the brackets
signify that the self-energy should be understood as a functional of G(0) since the
whole matrix G(0)(!) including its frequency dependence enters into the Feynman
diagrams due to the summation over the internal vertices (Section 3.5 takes this per-
spective more seriously and derives the DMFT equations in the self-energy functional
approach). These diagrams still contain self-energy insertions. For instance the sec-
ond diagram in Eq. 3.7 has the first diagram as a self-energy insertion. Going to
the skeleton expansion means that we replace free Green’s functions (solid lines) by
full Green’s functions (double lines). In doing this we have to take care not to over-
count diagrams. In particular diagrams including self-energy insertions should not
be included in the expansion. To lowest order in HU the skeleton expansion of the
self-energy is given by

(3.9)
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Note that the second diagram in Eq. 3.7 has been omitted. The skeleton expansion
⌃[G] is a useful expansion to analyse the self-energy in the limit d ! 1.

The diagrams in the skeleton expansion series have the property that any two
interaction vertices are joined by at least three independent paths. If there was only
a single path the diagram would be one-particle reducible in contradiction with the
rules of the expansion. If there were only two independent paths one part of the
diagram could be understood as a self-energy insertion to the other again in violation
of the expansion rules. The power counting in 1/d for these diagrams now allows to
judge which of them survive the d ! 1-limit. Suppose we have a diagram with an
interaction vertex at site i and one at site k. Let us suppose that i is the coordinate
of one of the external legs and k is an internal index to be summed over.

(3.10)

As there are three independent paths joining the two vertices the three associated
Green’s functions scale according to Eq. 3.5 as O(d�

3
2 ||ri�rk||). The sum over the

internal vertex k scales proportional to O(d||ri�rk||) and therefore the whole diagram
is suppressed at least by a factor of O(d�

1
2 ||ri�rk||). If however i = k the Green’s

functions are of order O(d0) and there is no internal sum from k.
We therefore conclude: All diagrams in the skeleton expansion ⌃[G] have the

same lattice site label at all their internal and external vertices. The self-energy is
site-diagonal (“local”)

⌃ij�(!) = �ij⌃�(!) (3.11)

In momentum space the self-energy is momentum k independent

⌃�(k,!) = ⌃�(!) (3.12)

Also the self-energy is a function only of the local component of the Green’s function
as all internal vertices have the same label. The immediate consequence for the
Green’s function is that it can be written as

G�(k,!) =
1

! � ✏(k) + µ� ⌃�(!)
= G(0)

� (k,! � ⌃�(!)) (3.13)

The local Green’s function depends only through the density of states on the disper-
sion relation and hence on the geometry of the lattice

G�(!) =

Z

ddk

(2⇡)d
1

! � ✏(k) + µ� ⌃�(!)

=

Z 1

�1
d✏

⇢(✏)

! � ✏+ µ� ⌃�(!)
(3.14)

where ⇢(✏) is the non-interacting density of states.
In the following we present two derivations for the construction recipe of the

functional ⌃[G], i.e. the DMFT equations. Before we present the derivations however
we give the reader a feeling for the basic philosophy behind the DMFT.
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Figure 3.3: DMFT replaces the full lattice of correlated sites with a single site in an
self-consistently determined, e↵ective medium. The medium serves as a reservoir of
non-interacting electrons. Taken from [62].

3.2 Idea of the DMFT

In 1992 Georges and Kotliar mapped the Hubbard model onto a self-consistent An-
derson impurity model using the simplifications discussed in the previous section [36].
This idea is the basic construction recipe of the DMFT which allowed to solve dif-
ferent model Hamiltonians on the lattice using analytical and numerical techniques
(Numerical Renormalization Group, Quantum Monte Carlo, etc.) originally devel-
oped for quantum impurity models. The DMFT provides a controlled approximation
which becomes exact in the limit of infinite lattice connectivity.

Mean-field theories in general map many-body lattice problem onto single-site
problems with e↵ective parameters. Often DMFT is compared to the theory of clas-
sical magnetism. Here the spin at a specific site is the degree of freedom and the
interaction with the surrounding spins on neighbouring lattice sites is accounted for
(in an approximate fashion) by an e↵ective medium modelled as an e↵ective magnetic
field. For the fermionic case the degrees of freedom are the atomic states of a single
site and the rest of the crystal is described as reservoir of non-interacting electrons
that can be emitted to or absorbed from the atom. Fig. 3.3 depicts the process of
emission and absorption. The bath allows the atomic site to transition between dif-
ferent configurations. In contrast to the classical case where the e↵ective medium
(the e↵ective magnetic field) is represented by a single number, the quantum case
requires a hybridisation function �(!) to describe the ability of an electron to enter
and leave the site on a time scale 1/![62]. When the hybridisation is very small the
electron is almost entirely localised at a single site, instead when it is large it can
move through the whole crystal. The competition between localising and delocalising
tendencies is thus captured in a local approximation which however takes full account
of the quantum fluctuations.
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Figure 3.4: In the cavity derivation of the DMFT equations a cavity is created by
removing a single site from the lattice including its adjacent bonds. An e↵ective
action is calculated by explicitly tracing out the all fermions except for removed site.

3.3 Cavity derivation

The cavity method is used in classical statistical mechanics to derive, for instance,
the mean-field equations for a classical ferromagnet. Here one focuses on a specific
site and explicitly integrates out the degrees of freedom of all other lattice sites in
order to derive the e↵ective dynamics of the singled out site. The general idea can be
straight-forwardly extended to quantum many-body models. We briefly repeat here
the derivation. A more detailed account can be found in the DMFT review article by
Georges et al.[37].

One starts by writing the partition function of the Hubbard model as a functional
integral over Grassman numbers Z =

R

Q

i D(c†i�, ci�)e
�S[c†i� ,ci� ] where

S =

Z �

0

d⌧

0

@c†i�@⌧ci� �
X

hiji�

tijc
†
i�cj� � µ

X

i�

c†i�ci� + U
X

i

ni"ni#

1

A . (3.15)

Now the e↵ective action for site 0 is calculated by explicitly integrating out all
fermions except those on 0

1

Ze↵

e�Se↵ [c
†
0� ,c0� ] =

1

Z

Z

Y

i 6=0�

D(c†i�, ci�)e
�S[c†i� ,ci� ] (3.16)

To obtain an explicit expression for Se↵ the action is split into three parts S =
S(0) + S0 +�S, where S(0) describes the lattice with site 0 removed, S0 is the action
of the isolated site 0 and �S the action due to hopping processes from the lattice
with the cavity to the singled out site. Explicitly S(0) and �S are given by

S(0) =

Z �

0

d⌧

 

X

�

c†0�(@⌧ � µ)c0� + Un0"n0#

!

�S = �
Z �

0

d⌧
X

hi0i�

ti0
⇣

c†i�c0� + c†0�ci�
⌘

(3.17)
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The terms in �S couple the lattice with the cavity to the isolated site. Setting
⌘i = ti0c0� one sees that the ⌘i play the role of source terms and the integration over
the other fermions generates a connected Green’s function G(0) of the cavity lattice.
The e↵ective action assumes the form

Se↵ =
1
X

n=1

X

i1...jn

Z

d⌧i1 . . . d⌧jn⌘
†
i1(⌧i1) . . . ⌘

†
in(⌧in)⌘j1(⌧j1) . . . ⌘jn(⌧jn)G

(0)(⌧i1 , . . . , ⌧in , ⌧j1 , . . . , ⌧jn)

+ S0 + const. (3.18)

Due to the scaling properties Eq. 3.3 and Eq.3.5 the expression simplifies signifi-
cantly in the d ! 1-limit. We analyse now the scaling properties order by order.
For n = 1 the cavity Green’s function is simply a two-point function, which scales

like 1/
p
d
||ri�rj ||

. t0it0j also scales like 1/
p
d
||ri�rj ||

while the double sum yields a
contribution d||ri�rj || and therefore the n = 1 contribution is of order O(1) and

survives the d ! 1-limit. For n = 2 the four-point function G(0)
ijkl scales like

1/
p
d
||ri�rj ||

1/
p
d
||ri�rk||

1/
p
d
||rj�rj ||

. On the simple cubic lattice ||ri � rj||, ||ri � rk||
and ||rj � rk|| are at least 2 if they are not 0. So when i, j, k, l are all di↵erent,
the four summations give d2 and the four factors of t give 1/d2. The second order
contribution scales in this case like 1/d and becomes unimportant for large spatial
dimensions. Terms where i = j contain three sums, which give d3, four factors of t
giving 1/d2 and 1/d2 from G(0) and therefore also scale like 1/d. The e↵ective action
therefore reduces to

Se↵ =
X

ij

Z

d⌧d⌧ 0ti0t0jc
†
i�cj�G

(0)
ij�(⌧ � ⌧ 0) + S0 + const. (3.19)

We now introduce the so-called Weiss e↵ective field G0(i!n) as

G0
�1
� (i!n) = i!n + µ�

X

ij

t0it0jG
(0)
ij�(i!n) . (3.20)

One can identify G0
�1
� (⌧ � ⌧ 0) with the amplitude for a fermion to be created on the

isolated site at time ⌧ and being destroyed at ⌧ 0. Creation and annihilation processes
on the isolated site can be understood as hopping processes moving particles from the
isolated site into the bath which describes the surrounding lattice and vice versa. The
main di↵erence with a classical mean-field theory is that the e↵ective field G0

�1
� (⌧�⌧ 0)

is time dependent to take local quantum fluctuations into account. Indeed, the mean-
field theory presented here freezes spatial fluctuations but takes full account of local
temporal fluctuations. The e↵ective action can be written as

Se↵ = �
Z �

0

d⌧

Z �

0

d⌧ 0
X

�

c†0�(⌧)G0
�1
� (⌧ � ⌧ 0)c0�(⌧

0) + U

Z �

0

d⌧n0"(⌧)n0#(⌧) . (3.21)

In order to obtain a closed set of equations by supplementing the above equation
with an expression relating G0 to local quantities computable from Se↵ itself. Eq. 3.20
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relates G0 to the Green’s function of cavity lattice G(0). It turns out[37] that indeed
G(0) is related to the Green’s function without site 0 removed by

G(0)
ij� = Gij� �Gi0�G

�1
00�G0j� . (3.22)

The above equation states that the cavity Green’s function accounts for all paths
connecting i and j with those paths removed which pass through site 0. In the
d ! 1 limit only those path which go through 0 once have to be counted and hence
G00� is divided in the above equation. Inserting Eq. 3.22 into Eq. 3.20 one finds that
the Weiss mean field is given by

G0
�1
� (i!n) = ⌃�(i!n) +G�1

� (i!n) (3.23)

where G�1
� (i!n) is the local lattice Green’s function G�1

ii�(i!n) with the site indices
suppressed since we consider a homogenous problem and ⌃i�(i!n) is the local self-
energy which is related to the local lattice Green’s function via

G�(i!n) =

Z

d✏
⇢(✏)

i!n � ✏+ µ� ⌃�(i!n)
(3.24)

This provides us with a closed set of equations: Starting from an initial self energy
⌃� the above equation allows to determine the Weiss e↵ective field G0. Inserting
this into the e↵ective action Eq. 3.21 we calculate the local Green’s function G� and
from that the self energy ⌃�. The structure of the DMFT is thus that of a set of
functional equations for the local lattice Green’s function and the Weiss mean field.
The problematic step is of course the calculation of the local Green’s function given the
Weiss e↵ective field. In the next section we show that this problem is equivalent to the
solution of a single impurity Anderson model and therefore the extensive techniques
available for the solution of quantum impurity problems can be used.

3.4 Mapping to a quantum impurity problem

Integrating out the fermions on the other lattice sites i 6= 0 has introduced retar-
dation e↵ects into the e↵ective action Se↵ , Eq. 3.21, in the form of the Weiss mean
field G0�(⌧ � ⌧ 0). One can now return to a Hamiltonian formulation by introducing
auxiliary (non-interacting) degrees of freedom. For this we consider the c0� as an
impurity and introduce the conduction electrons a

k� as auxiliary degrees of freedom.
The Hamiltonian of the single impurity Anderson model describes such a situation.
Indeed starting from the Hamiltonian HSIAM for the single impurity Anderson model,
Eq. 1.29, we can rewrite it as an action. The impurity degrees of freedom are repre-
sented as the Grassmann numbers dn� and the conduction electrons by the Grassmann
numbers c

kn� where � is the spin of the impurity (electron), k is the momentum of
the conduction electron and n is a label for the Matsubara frequency !n. The action
assumes the form

SSIAM[c
†
kn�, ckn�, d

†
n�, dn�] =

X

kn�

(�i!n � ✏
k

)c†
kn�ckn� + (�i!n � ✏d)d

†
n�dn�

+
X

kn�

⇣

V
k

c†
kn�dn� + h.c.

⌘

+ U
X

n

nn"nn# (3.25)
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impurity solver Eq. (3.24)

Eq. (3.23)Eq. (3.29)

iterate

Figure 3.5: Illustration of the DMFT self-consistency loop: Starting from an initial
⌃�(z) use Eq. (3.24) to determine G�(z), then use Eq. (3.23) to find G0

�1
� (z) and

determine �SIAM(z) from that using Eq. (3.29). Solving the impurity problem gives
a new self-energy ⌃�(z) and the loop is thus closed.

where nn� = d†n�dn�. The action is quadratic in the conduction electron degrees
of freedom and therefore we can integrate them out find an e↵ective action for the
impurity degrees of freedom. One finds

S[d†n�, dn�] =
X

n

d†n�G�1
SIAM(i!n)dn� + U

X

n

nn"nn# (3.26)

where we have defined the bath function

G�1
SIAM(i!n) = i!n � ✏d ��SIAM(i!n) (3.27)

with the hybridisation function �SIAM(i!n) defined as

�SIAM(i!n) = �
X

k

Z 1

�1
d!

|V
k

|2
i!n � !

�(! + ✏
k

) (3.28)

The influence of the bath is therefore completely determined by the hybridisation
function �SIAM. The e↵ective action in the DMFT equations, Eq. 3.21, has the same
structure the action of the impurity model, Eq. 3.26 if we identify the bath function
of the impurity model with that of the lattice problem, G�1

SIAM(i!n) = G0
�1
� (i!n). This

relates the hybridisation function �SIAM(i!n) to the Weiss mean field in the DMFT
equations,

�SIAM(z) = z � ✏d � ⌃�(z)� G0
�1(z) (3.29)

It is now possible to solve the DMFT equations self-consistently using the solution of
the SIAM.

The DMFT algorithm is thus:

Algorithm 1.

1. Start with an initial guess for the self-energy of the system. Often ⌃�(z) = 0 is
used.

2. Use Eq. 3.24 to calculate the local lattice Green’s function G�(z) from the
current self-energy ⌃�(z).
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Figure 3.6: The Luttinger-Ward functional.

3. Determine the local Weiss mean field G0
�1
� (z) using Eq. 3.23.

4. Calculate the hybridisation function �SIAM(z) for the impurity problem from
the Weiss mean field G0

�1
� (z) using Eq. 3.29.

5. Solve the impurity problem posed by hybridisation function �SIAM(z) using an
adequate impurity solver and determine the impurity self-energy ⌃SIAM

� .

6. Identify the local lattice self-energy ⌃�(z) with the impurity self-energy ⌃SIAM
� (z)

and goto step 2 if not already converged. Convergence can be tested using any
function metric to measure the change in the self-energy from iteration n to
n+ 1, i.e.

R

d! |⌃(n)
� (!)� ⌃(n+1)

� (!)| < �?

3.5 Self-energy functional approach

Pottho↵ and Nolting provide an alternative derivation of the DMFT equations which
o↵ers an illuminating and slightly more abstract view on the approximative nature
of the theory[87, 88]. Only a rudimentary derivation and description of the most
important properties will be given here. Throughout this section we will consider
Hamiltonians of the form

H(t,U) = H0(t) +H1(U) (3.30)

where H0 describes the ‘free’ dynamics of the system, parametrized by a hopping
matrix t and H1 implements any kind of interaction for the interaction parameters
U.

The Luttinger-Ward functional (LW functional) �̂[G] [68], regards the system’s
full Green’s function G as a variational parameter, whose exact value is a stationary
point of the functional �̂[G]. It can be constructed by summing all connected skeleton
diagrams where free progragators have been replaced by full propagators, c.f. Fig. 3.6.
Generally it cannot be summed up to get a closed form expression [88]. It provides
however a special relationship between static and dynamic system system quantities

• The grand canoncial potential of the system ⌦ may be calculated by evaluating
the LW functional at the exact Green’s function

⌦ = �[G] + Tr lnG� Tr⌃G (3.31)
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• The functional derivative of the LW functional with respect to its variational
parameter

1

T

��̂[G]

�G
= ⌃̂[G] (3.32)

defines a self-energy functional ⌃̂ which gives the exact self-energy of the system
if evaluated at the exact Green’s function G.

• The functional �̂ is ‘universal‘ in the sense, that it only depends on the inter-
action part H1 of the hamiltonian and is independet on the concrete choice of
t.

The LW functional provides a convenient starting point for the construction of
approximative theories. Typically one has the self-energies in a theory as functionals
of Green’s function ⌃ = ⌃[G]. The equations of motion for these Green functions have
to be solved self-consistently and the true self-energy functionals have to be replaced
by approximate ones. However these approximations cannot be made completely
freely by choosing an arbitraty subset of diagrams as violations of conservation laws
(continuity equation, momentum convervation. . . ) might occur as shown by Kadano↵
and Baym [6]. They showed that approximate self-energies derived from approximate
Luttinger-Ward functionals �̂

⌃[G] =
��̂[G]

�G
(3.33)

automatically fulfill the required conservation laws, therefore �̂-derivable approxima-
tions are called conserving approximations.

Similar to the case of the Luttinger-Ward functional, Pottho↵’s theory of the self-
energy functional rests on variational approach which uses the self-energy ⌃ rather
than the Green’s function G as the basic dynamical variable. Consequently the
central building block is the Legendre transform of the Luttinger-Ward functional
rather than the LW functional itself.

F̂ [⌃] = �[G[⌃]]� Tr(⌃G[⌃]) (3.34)

The functional F̂ may be constructed provided that the relation G[⌃] is (locally)
invertible ([87] see appendix A). It can be shown that F̂ shares many of �̂’s valuable
properties, most noteworthy: It is also universal. The functional derivative of F̂
evaluated at the exact self-energy gives the exact Green’s function.

1

T

�F̂ [⌃]

�⌃
= Ĝ[⌃] (3.35)

The first step is to express the system’s grand canonical potential through F̂

⌦̂
t

[⌃] = Tr ln
�

�(G�1
0 �⌃)�1

�

+ F̂ [⌃] (3.36)

The functional ⌦̂
t

depends explicitly on the hopping matrix t through the free Green’s
function G0 and it can be shown that ⌦̂

t

is stationary at the exact Green’s function
G.

@⌦̂
t

@⌃
= 0 , G[⌃] =

�

G�1
0 �⌃

��1
(3.37)
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(a) (b) (c)

Figure 3.7: Schematic representation of the Hubbard model (a), an equivalent ex-
tension of the model (b) and a possible reference system (c). Adaption based on
[87].

Knowledge of the grand potential would allow for the calculation of the exact self
energy through the above relation, but the explicit form of the functional F[⌃] is
in general unknown. The above scheme can however to be used to construct an
approximation for the self-energy by restricting the functional ⌦̂

t

[⌃] onto a subspace
of trial self-energies. ⌦̂

t

[⌃] is then minimised on that subspace to find the best
approximation to the exact self-energy.

To be more explicit we suppose that we have a reference system H 0 = H 0
0(t

0) +
H1(U) with equal interaction part H1(U) but di↵erent free Hamiltonian H 0

0(t
0) that

we can solve exactly. The exact free energy of the reference system is given by ⌃(t0).
The functional F [⌃] for both systems coincide as F [⌃] does not depend on the free
but only only on the interaction part. Thus the grand potential of the reference
system has the form

⌦̂
t

[⌃] = Tr ln



�
⇣

G0�1
0 � ⌃

⌘�1
�

+ F [⌃] (3.38)

F [⌃] can now be eliminated from the grand potential of our target system but solving
the above expression of the reference system for F [⌃] and substituting.

⌦̂
t

[⌃] = ⌦̂
t

0 [⌃] + Tr ln
h

�
�

G�1
0 � ⌃

��1
i

� Tr ln



�
⇣

G0�1
0 � ⌃

⌘�1
�

(3.39)

When restricted to the subspace spanned by the self-energies of the reference system,
the above expression is equal to the exact grand potential of the target system. Noting
that G0�1

0 � ⌃ is the Green’s function of the reference system the above expression
involves apart from the non-interacting Green’s function of the target system G(0)

only quantities from the reference system. If the reference system is chose such that it
can be solved explicitly an approximation for the exact self-energy of the target system
can be found by ext remising the above expression. The condition @⌦̂

t

[⌃(t0)]/@t0 = 0
gives

T
X

!n

X

↵,�

✓

1

G�1
0 � ⌃(t0)

�G0
◆

↵�

@⌃↵�(t0)

@t0
= 0 (3.40)
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The case of the Hubbard model is depicted graphically in Fig. 3.7. The original
Hubbard model is shown in Fig. 3.7a, then a number ns = 4 of non-interacting,
decoupled reference sites are introduced to create an equivalent model, Fig. 3.7b. By
changing the hopping a reference system is obtained, Fig. 3.7c. The ns decoupled
sites can be understood as discretised approximations for the Anderson impurity
model. For ns ! 1 they coincide with an AIM with a local self-energy and hence
@⌃ij(t0)/@t0 = �ij. Eq. 3.40 becomes for this particular case

✓

1

G�1
0 (i!n)� ⌃(i!n)

◆

ii

= G0
ii(i!n) (3.41)

which is nothing but the DMFT self-consistency condition.

3.6 Application: Mott-Hubbard metal-insulator tran-
sition

The dynamical mean-field theory has been successfully employed to study the Mott-
Hubbard metal-insulator transition for a Hubbard model at the particle-hole symmet-
ric point on a simple cubic lattice in the limit of infinite spatial dimensions both at
T = 0 and finite temperature T by Bulla[8], Bulla et al.[9] and other authors. Bulla
used the non-perturbative numerical renormalisation group (NRG, [12]) to solve the
impurity problem. For T = 0 a first-order phase transition at a finite value of the
interaction strength U = Uc2 was found where the metallic solution vanishes and the
system becomes insulating. At zero temperature a suitable criterion to distinguish
the metallic from the insulating phase is the quasi particle weight

Z =
1

1� @Re ⌃(!)
@!

�

�

�

!=0

(3.42)

which is finite in the metallic phase but vanishes with increasing U when the insulating
solution appears. Fig. 3.8a shows the spectral functions from a DMFT calculation
(also using NRG as the impurity solver) for the Hubbard model on the simple cubic
lattice in three spatial dimensions. The only information from the lattice that enters
into the DMFT equations is the non-interacting density of states ⇢(✏), which depends
on the dimensionality of the lattice. However the modification is minor and we can
still discuss the transition along the lines of Refs.[8, 9]. In the metallic phase for large
values of U the spectral function shows a characteristic three-peak structure with a
quasi-particle peak at the Fermi-level and (for the particle-hole symmetric model we
are studying here) symmetric upper and lower Hubbard bands centred about ±U/2.
For interaction values close to the transition the quasi-particle peak stands isolated
in a preformed gap (U = 15, orange curve). The width of the quasi particle peak
is proportional to Z. When the interaction strength is increased further the width
of the peak vanishes and the gap in the spectrum appears discontinuously (U = 18,
cyan curve).

In the concrete calculations one observes that above the critical Uc2 the width
of the peak vanishes exponentially with the DMFT iteration. Still a metallic input

191



-20 -15 -10 -5 0 5 10 15 20
ω

0

0.03

0.06

0.09

0.12

0.15

A
σ
(ω

)

U=0
U=3
U=6
U=9
U=12
U=15
U=18

(a) Spectral functions for di↵erent values of
the interaction strength U . Above a critical
U a gap opens at the Fermi level (! = 0).
The upper and lower Hubbard band are
centered about ±U/2.

-20 -15 -10 -5 0 5 10 15 20
t

-50

-40

-30

-20

-10

0

Im
 S

m
(t

)

U=12
U=18

-100

-50

0

50

100

Re
 S

m
(t

)

(b) Imaginary part of the self-energy for U =
12 (black, solid) and U = 18 (red, solid) - axis
to the left and real part of the self-energy for
U = 12 (black, dashed) and U = 18 (red,
dashed) - axis to the right.

Figure 3.8

solution in the DMFT always produces a metallic solution in the following iteration
independent of the applied U as long as U is finite. This is to be compared to the single
impurity Anderson model the Hubbard model is mapped to in the self-consistency
loop: here also the low-energy scale vanishes only exponentially with U and one has
to go to U ! 1 for it to disappear. It is only the condition of self-consistency in the
solution which shifts the critical U value from 1 to a finite value Uc2 in the Hubbard
model[8].

Fig. 3.8b shows the imaginary and real part of the self-energy for a value of U = 12
(black curves) in the metallic phase and U = 18 (red curves) in the insulating phase.
For the metallic self-energy the imaginary part shows a two-peak structure where the
weight in the peaks is approximately independent of U , but the position and width
vanish as U ! Uc2 . The low-energy behaviour for the self-energy is given by

Re ⌃(! + i0+) =
U

2
+ (1� 1

Z
)! +O(!3)

Im ⌃(! + i0+) = �b(Z)!2 +O(!4) (3.43)

as predicted by Fermi liquid theory. The function b(Z) is model specific. Upon
approaching the transition the two peaks are seen to merge into a single pole located
at the Fermi energy of weight ↵. Note that here in the numerical data the width of the
single peak is not physical and only due to the numerical implementation. The width
is controlled by the broadening parameter of the numerical renormalisation group used
to solve the impurity problem. The structure of the self-energy can be understood
from the shape of the spectral function. For the underlying single Anderson impurity
model one has the relation (Eq. 3.23 into Eq. 3.27)

⌃(z) = z � ✏d ��(z)� 1

G(z)
(3.44)
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which shows that the self-energy develops peaks where the real and imaginary part
of the Green’s function are small. Therefore for any spectral function which shows a
pronounced three-peak structure the self-energy develops two-peaks.

A coexistence region for metallic and insulating solutions is found in a particular
interaction window Uc1 < U < Uc2 . Coming from the metallic side, the quasi-particle
weight vanishes at the critical interaction strength Uc2 . From the insulating side the
insulating solution shows the 1/z pole in the region of coexistence and at U ! Uc1

the weight ↵ of the pole vanishes. Such hysteresis e↵ects are expected for first order
phase transitions. The first order transition ends at finite temperature at a critical
endpoint Tc as shown in Fig. 1.2. For T > Tc we have a crossover and the two peak
structure in the self-energy gradually evolves in to well-pronounced peak at ! = 0.
The critical values U for T > Tc are defined via the value of U where the spectral
function A(! = 0) changes discontinuously.

We briefly discuss the situation for the Hubbard model away from the particle-
hole symmetric point. In the following the chemical potential is measured relative
to the particle-hole symmetric point, i.e. the on-site energy in the Hubbard model
is always ✏d = �U

2
. We first concentrate on the T = 0 case. Starting at hal-filling

(µ = 0) on the insulating side (U > Uc2) due to the existence of the Mott gap around
the Fermi energy no change in the occupation number is observed for a small increase
in the chemical potential, the n(µ)-curve is flat around µ = 0. Once the chemical
potential has been increased enough that the Fermi level start to move into the upper
Hubbard band, the local density of states at the Fermi level A(µ) becomes finite, which
leads to an increase in the hybridisation function of the underlying impurity problem
(c.f. Eq. 3.29) which leads to a finite Kondo temperature TK and the appearance of a
Kondo resonance and an increase in the occupation. The spectral weight in the Kondo
peak increases continously from zero as µ is raised and hence n(µ) is a continous
function for T = 0. At finite T the “gap” in the spectrum at µ = 0 is thermally
activated and the occupation immediately increases as the chemical potential is raised.
n(µ) is not flat around µ = 0. The Kondo temperature of the underlying impurity
model is TK / �(µ) and therefore increases as the chemical potential is increased.
When the chemical potential hits the upper Hubbard band the hybridisation strongly
increases and so does the Kondo temperature. One can imagine having a chemical
potential dependent Kondo temperature TK(µ) and once the chemical potential is
increased so much that the TK lies above the system temperature T the Kondo e↵ect
sets in, a Kondo resonance appears and the occupation jumps. For T > 0 n(µ) is
a discontinous function which jumps at the µc where TK(µc2) = T . The hysteresis
in the disappearance of the metallic in favour of the insulating solution also a↵ects
n(µ). One finds a di↵erenct critical chemical potential µc1) when starting from the
metallic side at finite doping and moves towards half-filling[47].

3.7 Antiferromagnetic order

Although we have derived the mean-field equations in section 3.3 under the assump-
tion that no long-range order is present, it is straightforward to generalise the DMFT
to phases with broken symmetry. Here we consider the case of antiferromagnetic
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order on a bipartite lattice. Bipartite lattices consist of two sublattices A and B such
that the nearest neighbours for a site in the A (B) sublattice are only sites of sub-
lattice B (A). Zitzler et al.[117] studied the phase separation for the doped Hubbard
model using the method presented here. In a later study they determined the mag-
netic phase diagram of the magnetically frustrated Hubbard by including next-nearest
neighbour hopping. Bauer and Hewson[5] analysed the properties of the quasiparticle
excitations of metallic antiferromagnetic states. We start with a Hubbard model in
a staggered magnetic field

H =
X

ij�

(tijc
†
Ai�cBj� + h.c.) + U

X

i↵

n↵i"n↵i# �
X

i�

(µ�nAi� + µ�̄nBi�) (3.45)

where ↵ 2 {A,B} and the spin-dependent chemical potential µ� = µ+�h contains the
e↵ect of the staggered magnetic field h. The non-interacting part of the Hamiltonian
can be diagonalised in terms of Bloch states when going to momentum space

H0 =
MBZ
X

k�

C†
k�Mk�Ck� (3.46)

with C
k� = (cAk�, cBk�)T and M is given by

M
k� =

✓

�µ� ✏
k

✏
k

�µ�̄

◆

(3.47)

The k sum runs over the magnetic Brillouin zone and the energy of the Bloch state is
given by ✏

k

. Here we have adopted a special real-space basis in terms of the sublattices
A and B, {cAk�, cBk�}. The choice of basis in chapter 2 given by {c

k�, ck+Q�}, where
Q = (⇡, . . . , ⇡)T is the reciprocal lattice vector for the commensurate spin density
wave ordering, is related to our choice here by the linear transformation

✓

c
k�

c
k+Q�

◆

=
1p
2

✓

1 �1
1 1

◆✓

cAk�

cBk�

◆

(3.48)

For the derivation of the DMFT equations the formulation in terms of the A � B
sublattice is however more convenient. The non-interacting Green’s function G0 is
given by

G(0)
k� =

1

(! + µ�)(! + µ�̄)� ✏2
k

✓

! + µ�̄ ✏
k

✏
k

! + µ�

◆

(3.49)

The interacting Green’s function is found by generalising the above expression with
the inclusion of a sublattice dependent self-energy ⌃↵�(!) with ↵ 2 {A,B} and
we assumed that the self-energy is local hence k independent and sublattice space
diagonal, so that the Green’s function can be written as [5]

G
k� =

1

⇠A�(!)⇠B�(!)� ✏2
k

✓

⇠B�(!) ✏
k

✏
k

⇠A�(!)

◆

(3.50)

where ⇠↵�(!) = ! + µ� � ⌃↵�(!). Due to the symmetry of the bipartite lattice the
self-energy fulfils ⌃A�(!) = ⌃B�̄(!) ⌘ ⌃�(!) and thus ⇠A�(!) = ⇠B�̄(!) ⌘ ⇠�(!). It is
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(a) Single-particle spectral function for the
A sublattice of a Hubbard model with U =
W/4. The solid black line is the DMFT re-
sult, the solid red line indicates the SMT
result. It can be seen that for small interac-
tions the agreement is good.

-12 -9 -6 -3 0 3 6 9 120

0.2

0.4

0.6

0.8

1

(b) Same as (a) with U = 5W/6. The solid
black line is the DMFT result, the solid red
line indicates the SMT result. For large in-
teraction strength it becomes obvious that
the interaction induced increase in the e↵ec-
tive bandwidth is greatly underestimated by
the SMT.

Figure 3.9

therefore su�cient to focus on one sublattice alone, say A. The local lattice Green’s
function for sublattice A can be found by carrying out the k-sum in Eq. (3.50) which
can be written as an energy integral due to the k independence of the self-energy
⌃�(!)

GA�(!) = ⇠�̄(!)

Z 1

�1
d✏

⇢(✏)

⇠�(!)⇠�̄(!)� ✏2
(3.51)

where ⇢(✏) is the non-interacting density of states. Similarly to the paramagnetic
case the Weiss mean field is determined from the equation

G0
�1
� (!) = ⌃�(!) +G�1

� (!) (3.52)

where however all quantities have acquired a non-trivial spin dependence. The single
Anderson impurity model the problem is mapped to has a spin-dependent on-site
energy for the impurity given by ✏d� = ✏d��h. The hybridisation function �SIAM�(!)
also acquires a spin-dependence and is determined in the usual way from the Weiss
mean field G0�(!)

�SIAM�(!) = z � ✏d� � ⌃�(!)� G0
�1
� (!) (3.53)

For the solution of the actual impurity problem one needs to employ an impurity
solver which can cope with the broken symmetry. In section 4.7 we describe how
this can be achieved with the numerical renormalisation group (NRG). To find an-
tiferromagnetic solutions once can calculate self-consistent solutions for a decreasing
sequence of staggered magnetic field strengths to see if broken symmetry solutions
exist as the staggered field is reduced to zero.
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(a) Sublattice polarisation m as a func-
tion of the interaction strength U for T =
10�8. The tendency towards magnetic or-
der is overestimated by the SMT (solid
black line) since it ignores quantum fluc-
tuations on the correlated site which the
DMFT (red dots) takes full account of.
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(b) Sublattice polarisation m as a function
of the temperature T for U = 10. The
DMFT (red dots) shows that a finite m is
only found for T < TN with TN ⇡ 0.0044.
The solid black line is a fit of m(T ) =
�
p
TN � T with � ⇡ 10.16.

Figure 3.10

3.7.1 Application: Antiferromagnetic order in the Hubbard
model

In the following we present results for the half-filled Hubbard model on a simple
cubic lattice with nearest-neighbour hopping in 3 spatial dimensions. As expected we
find that for all U > 0 the symmetry broken, antiferromagnetic phase is energetically
stable. Fig. 3.9 shows the single particle spectra for two di↵erent interaction strengths
U = W/4 and U = 5W/6, both of which are below the MHMIT if the system
is confined to the paramagnetic phase. The solid black line is the DMFT result,
the solid, red line shows the result of static mean-field theory (SMT). For small
interaction strengths (Fig. 3.9a) compared to the bandwidth of the non-interacting
model, U ⌧ W , the agreement is rather well. The SMT reproduces the essential
features of the DMFT which are slightly more smoothed out. For larger interaction
strengths however (Fig. 3.9b) the insu�ciencies of the SMT become apparent. Most
notably the increase in the bandwidth is notoriously underestimated in comparison
with the DMFT result. Fig. 3.10a shows the sublattice polarisation m as a function
of the interaction strength U . The solid black line is the SMT result, the red dots
indicate DMFT calculations. The tendency towards magnetic order is overestimated
by the SMT. The reason is that it ignores quantum fluctuations on the correlated site
which the DMFT takes full account of. These fluctuations have a tendency to disorder
the state of the system and hence reduce the magnitude of the order parameter m.
For finite temperatures close to the critical point T = TN where m ⇡ one expects
a square root behaviour from mean-field arguments, m(T ) ⇡ �

p
TN � T . Fig. 3.10b

shows DMFT results (red dots) for m as a function of the temperature T . Above
the Neel temperature TN ⇡ 0.0044 the sublattice polarisation m vanishes. The solid
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Figure 3.11: Pictorial depiction of the antiferromagnetic order for a bipartite lattice.
Red sites are predominantly occupied by one spin species, green sites by the other.

black line is fit of a function prototype �
p
TN � T to the DMFT data where we

found � ⇡ 10.16. Indeed the DMFT results fulfil the static mean-field prediction; the
deviation for temperatures much smaller than TN is expected.
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Chapter 4

Solution of the impurity model

4.1 Introduction to the Kondo e↵ect

In 1934 Wander Johannes de Haas [23] discovered a resistance minimum in a gold
probe at low temperatures, c.f. Fig. 4.1a. This behaviour was utterly unexpected
because at the time, the resistivity was thought to be determined by two e↵ects: (a)
the potential scattering by (non-magnetic) impurities and (b) scattering due to lattice
excitations, e.g. phonons. The expected behaviour was therefore that the resistivity
monotonically decreases as a function of T as T ! 0. At higher temperatures Curie-
Weiss behaviour was observed in the magnetic susceptibility, c.f. Fig. 4.1b, and so it
was conjectured that magnetic Fe impurities in the gold probe might be responsible
for the unexpected behaviour. In 1961 Anderson introduced the single impurity
Anderson model (SIAM) as a minimal model for the description of the e↵ect. The
Hamiltonian of the SIAM is given by

HSIAM =
X

k�

✏
k

a†
k�ak� + ✏d

X

�

nd� + Und"nd# +
X

k�

⇣

V
k

a†
k�cd� + V ⇤

k

c†d�ak�

⌘

. (4.1)

where nd� = c†d�cd� is the number operator for spin � =" / # electrons on the im-
purity d-level. The SIAM can be understood as a paradigmatic model for local mo-
ment physics. The delocalised conduction electrons in the gold probe have extended
wave functions which subject them to Coulomb screening rendering their interac-
tions short-ranged. In the SIAM these electrons are modelled as non-interacting
quasi-particles with a dispersion relation ✏

k

. The d-electrons of the impurity on the
other hand are strongly localised and the inclusion of Coulomb interaction U is cru-
cial for their faithful description. The hybridisation strength V

k

tunnel-couples the
impurity to the conduction electrons and allows for charge fluctuations on the im-
purity. If the impurity is empty or double occupied it has no net magnetic moment
and thus only acts as a potential scatterer. It turns out that potential scattering
alone cannot explain the appearance of the resistance minimum. The non-trivial be-
haviour is associated with the spin-sector. One can restrict the model to exact half
filling by choosing ✏d ⌧ ✏F ⌧ 2✏d + U , where there is a particle-hole symmetry.
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a b

Figure 4.1: a) Resistivity for a gold probe with unexpected minimum as a function
of temperature; measured by de Haas[23] b) Curie-Weiss behaviour for iron alloyed
copper as measured by Hurd[54]. The number next to the curves measure the con-
centration in ppm.
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Figure 4.2: The particle
and hole states which are
removed from the con-
duction band when re-
ducing the band width D
by �D.

In this parameter regime, changes of the charge state
of the impurity only occur virtually. It is there-
fore permissible to project the Hamiltonian onto the
singly occupied subspace by a perturbative, approximate
canonical transformation known as the Schrie↵er-Wol↵
transformation[106]. The e↵ective low-energy Hamilto-
nian then assumes the form

HKondo =
X

k�

✏
k

c†
k�ck� + J S · s (4.2)

where J = V 2/U is the antiferromagnetic coupling be-
tween the spin-1

2
local moment on the impurity, repre-

sented by the operator S, and the spin density of the con-

duction electrons s = 1
2

P

kk

0��0
VkV ⇤

k0
V 2 c†

k�~���0c
k

0�0 , where ~�
is a vector of Pauli matrices and V 2 =

P

k

|V
k

|2. This is
the Kondo model, valid for T ⌧ U .

Jun Kondo performed a third order perturbative cal-
culation in the coupling constant J of the Kondo model,
which describes scattering of conduction electrons by a
local moment. By including second-order spin-flip pro-
cesses to the elements of the T-matrix he found a ln(T/D)
(D the bandwidth of the conduction electrons) correction
term to the resitivity which gave rise to a minimum in the
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resistivity. Furthermore, the position of the predicted minimum,

Tmin / c1/5imp (4.3)

with cimp the impurity concentration was in agreement with experimental data. The
ln(T ) term however has an unphysical divergence as T ! 0 which became known as
the “Kondo problem”.

In 1965 Abrikosov summed the perturbative series to infinite order in an attempt
to remove the ln-divergence and discovered that the perturbative treatment always
breaks down leading to a divergence of the resistivity (for antiferromagnetic coupling
J) at a finite temperature TK , which would later become known as the Kondo tem-
perature. The main obstacle turned out to be that the structure of the problem is
such that information from all energy scales contribute to the solution. Hence it is not
amendable to solution by perturbative approaches. Theoretically, the objective then
was to find a non-perturbative technique, which allows for the calculation of trans-
port properties as T ! 0 in the Kondo- and Anderson models. Experimentally the
aim was to understand the behaviour of these quantities for T < TK . The terms re-
sponsible for the break-down of perturbation theory were the log terms, ln(kBT/D),
implying that coupling to high energy excitations could not be ignored. The idea
known as poor man’s scaling, put forward by Anderson in 1964, sought to incorporate
the e↵ect of high energy excitations into a renormalization of the coupling constants.
The technique is similar to the derivation of the Kondo model from the Anderson
impurity model, where one perturbatively accounts for the influence of the empty
and doubly-occupied states on the singly occupied states. However, here virtual ex-
citations occur to excited states located at the edges of the band (see fig. 4.2 ). As
one repeatedly integrates out states within an energy window �D of the band edges,
the coupling constants for the antiferromagnetic isotropic model (J± = Jz = J) flow
according to

dJ

d lnD
= �2⇢0J

2 (4.4)

It was found that the scaling trajectories are characterized by a ‘scaling invariant’,
the Kondo temperature TK ⇠ � exp(�1/⇢J). Nevertheless the divergence problem
was still not solved because the coupling constants diverge as one reduces the e↵ective
band width below TK . The Kondo temperature TK thus marks the entry into a regime
of ‘strong coupling’ between the impurity and the conduction band electrons, which
is not accessible from any technique based on a perturbative series.

This is where the success story of the numerical perturbation group, a non-
perturbative numerical method for the solution of the Kondo model put forward
by Wilson in 1975, begins. The method was initially designed to compute thermody-
namic properties of the Kondo model but later was extended to dynamic quantities
and the single impurity Anderson model (SIAM).

4.2 Numerical Renormalization Group

In the early 1970s, Wilson developed a fully non-perturbative renormalisation group
transformation for the Kondo problem. The application of this Numerical Renormal-
ization Group (NRG) to the Kondo problem gave for the first time the full crossover
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from the high-temperature regime of a free impurity spin, to the low-temperature
regime where the impurity is completely screened. For a review, see Ref. [12]. It has
become one of the standard tools to study correlation e↵ects in quantum impurity
models. One of its main advantages is that it is non-perturbative with respect to all
system parameters (as opposed to many other renormalization group methods) and
thus can treat interacting quantum many-body systems with a continuum of excita-
tions spread over a broad range of energies. The fermionic NRG can be applied to
systems of a quantum mechanical impurity with a small number of interacting degrees
of freedom, coupled to a bath of non-interacting fermions, usually with a continuous
spectrum. No restriction exists as to the structure of the impurity subsystem and
arbitrary large Coulomb interactions are permissible. The bath however must consist
of non-interacting fermions.

In the following we present a summary of the NRG derivation. We highlight
the approximations and also describe the computational steps for the solution of the
impurity problem on a computer. A more detailed presentation is given in the review
by Bulla et al.[12], and Refs. [63, 64]. To make the derivation as transparent as
possible we present, at first, a slightly more restrictive theory, which relies on a the
following assumptions: we ignore the energy dependence of the conduction electron
density of states ⇢ and the k-dependence of the hybridisation V and replace them
with their Fermi level value. This is not a crucial approximation: Bulla et al.[12]
show in their generalised derivation of the NRG how the full energy dependence of
the density of states and the hybridisation function can be retained as required for
application within DMFT. We return to this point in section 4.5.

Transforming the Hamiltonian Eq. 4.1 to an energy representation with the above
assumptions one finds

H/D =

Z 1

�1

d✏

"

✏a†✏�a✏� +

r

�

⇡D
(a†✏�cd� + c†d�a✏�)

#

+
1

D
(✏d+

1

2
U)c†d�cd�+

1

2

U

D
(c†d�cd��1)2

(4.5)
where � = ⇡⇢V 2 and the Hamiltonian depends only on the dimensionless parameters
✏d/D, U/D and �/D. The temperature-dependent properties will be functions of
kBT/D only.

4.2.1 Logarithmic discretization

Dealing with this simplified model numerically is a challenging task due to the infinite
number of eigenstates of the system and the interactions. As already mentioned one
of the key characteristics of the Kondo problem is the importance of high energy
excitations for low energy properties. Therefore at the heart of the NRG lies a
logarithmic discretisation of the conduction energy band, ⇢(✏). By introducing a
discretisation parameter ⇤ Wilson divided the normalised energy range [�1, 1] into
2n intervals where the nth interval (for positive ✏) extends from ⇤�(n+1) to ⇤n, c.f.
Fig. 4.3. One then approximates the continuum density of states ⇢(✏) between �D
and D by a discrete set of poles. The logarithmic discretisation separates the electron
energies into di↵erent orders of magnitude where energies close to the Fermi level
kBT ⌧ D, which determine the low temperature properties, are well sampled. One
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Figure 4.3: The continuous spectrum is approximated by a series of delta peaks (red)
on the logarithmic grid, {�1,�⇤�1, . . . ,⇤�1, 1}.

expects the low-energy eigenstates of the conduction band to be important for the
description of the physics, which becomes non-perturbative at low energies [3].

To accomplish the logarithmic discretisation, Wilson introduced a Fourier series
in each interval

 ±
np(✏) =

(

⇤n/2
p
1�⇤�1 exp

±i!npk for ⇤�(n+1) < ±k < ⇤�n

0 for k outside interval
(4.6)

where !n ⌘ [2⇡⇤n]/[1 � ⇤�1] and n 2 N�0, p 2 N the Fourier harmonic index and
+(�) denotes the basis for positive (negative) ✏. The conduction electron operators
a✏� can be expanded in this basis

a✏� =
X

np

⇥

anp� 
+
np(✏) + bnp� 

�
np(✏)

⇤

(4.7)

where the new operators anp� obey the standard anti-commutation relations and allow
one to rewrite the hybridization term in (4.5) as

Z 1

�1

d✏
⇣

c†d�a✏� + h.c.
⌘

=
p
1� ⇤�1

X

n

⇤�n/2
⇣

c†d�(an0� + bn0�) + h.c.
⌘

(4.8)

Notice that only the operators an0� and bn0� couple directly to the impurity operators
cd�. States with finite p only couple indirectly: The term

R 1

�1
✏a†✏�a✏� couples operators

of di↵erent p. This is a direct consequence of the impurity coupling locally in real-
space, c.f. Ref. [12].

The wavefunctions created by the operators anp� and bnp� are wave-packet states.
They have energy ⇤�n, spread ⇤�n(1 � ⇤�1); they are peaked at a distance of
⇤np/(1 � ⇤�1) from the impurity and have a radial extent of ⇤�n/(1 � ⇤�1), c.f.
Fig. 4.4. The approximation (everything up until this point has been exact - ignoring
the non-essential approximations introduced at the beginning for pedagogical reasons,
c.f. Bulla[12]) of the NRG is to neglect terms containing anp� and bnp� with p 6= 0.
This approximation turns out to be good for two reasons:
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Figure 4.4: Spherical shells in r space despicting the extent of the wave functions of
fn.

1. the coupling of the impurity to operators with p 6= 0 is only indirect and

2. those term have a factor of (1� ⇤�1) which becomes small as |1� ⇤| ⌧ 1.

As first shown by Wilson[113], it is safe to neglect all terms with p 6= 0 even for
discretisation parameters as large as ⇤ = 2.5. Dropping the index p the Hamiltonian
is given by

H/D =
1

2
(1 + ⇤�1)

1
X

n=0

⇤�n(a†n�an� � b†n�bn�) +

r

2�

⇡D
(f †

0�cd� + c†d�f0�)

+
1

D
(✏D +

1

2
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 (4.9)

where we have defined the new operator

f0� =

r

1

2
(1� ⇤�1)

1
X

n=0

⇤�n/2(an0� + bn0�) (4.10)

which describes the eigenstate maximally localized around the impurity. Observe
that the eigenstates created by f †

0� are not orthogonal to the eigenstates defined by
the conduction band operators a†n� and b†n�.

4.2.2 Mapping onto a chain

In order to solve this Hamiltonian iteratively one introduces a set of operators fn�
with n > 0 in such a way that they exhibit only nearest neighbour coupling. The
exact details of this procedure are explained in Ref. [12]. The resulting expression for
the hamiltonian assumes the form

H/D =
1

2
(1 + ⇤�1)

1
X

n=0

⇤�n/2tn
⇥

f †
n�fn+1� + h.c.

⇤

+

r

2�

⇡D
(f †

0�cd� + h.c.)

+
1

D
(✏D +

1

D
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 (4.11)
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Figure 4.5: Position density of wilson operators anp� with n = 0 and p = 0 (black,
solid), p = 1 (red, dashed) and p = 2 (blue, dotted) for the special case of a tight
binding chain with constant hopping strength t and an impurity which couples only to
site 0 with strength V . Notice how the position density at near the impuriy vanishes
for all p 6= 0

with tn = (1 � ⇤�(n+1))/
p

(1� ⇤�2n�1)(1� ⇤�2n�3) which quickly approaches 1 for
large n and the new operators fn� again obeying the standard anti-commutation
relations. For a more complicated form of the hybridisation function, as for instance
needed when the NRG is used as an impurity solver in the DMFT, the coe�cients
have to be calculated iteratively using a arbitrary precision routine. The Hamiltonian
in Eq. (4.11) now has the desired structure of a hopping Hamiltonian on a semi-infinite
chain, which is often referred to as the Wilson chain.

The structure of the above Hamiltonian becomes more apparent, when one thinks
of the one-particle wavefunctions created by the various operators that we have de-
fined throughout the sequence of transformations. The wavefunctions |aki that corre-
spond to the operators in (4.5) describe delocalised, s-wave conduction band electron
states which extend through out the metallic lead. In contrast the wave functions
|anp�i and |bnp�i form wave packet states with an extent limited to their respective
phase-space shells. |anp�i has a mean energy ⇤�n, while |bnp�i has a mean energy
�⇤�n, a spread in energy of ⇤�n�⇤�(n+1) = ⇤�n(1�⇤�1) and is peaked at a distance
of ⇤np/(1�⇤�1) from the impurity and a radial extent of ⇤n/(1�⇤�1). We see that
as n gets large these states become more and more delocalised and resemble more
and more the original s-wave conduction electron states. All of this may be easily
confirmed by transforming these operators back into real-space. Now the nature of
the previous approximation becomes clear: throwing away states with p 6= 0 corre-
sponds to throwing away those states which are peaked away from the impurity. Fig.
4.5 shows the position density of the Wilson operators for the special case, where
the density of states of the conduction electrons is given by a one-dimensional, tight-
binding change of constant hopping amplitude t, !(k) = �2t cos(k), and an impurity
which couples only to the x = 0 site with hybrisiation strength V . In general, the
states |fn�i have a mean energy of 0. Their energy spread also decreases dramatically

205



with n. Therefore f0� the only operator, which directly couples to the impurity has
the biggest energy spread and is therefore the most localised of these operators.

4.2.3 Iterative diagonalisation

The transformations performed so far have rendered a form of the Hamiltonian which
is amendable to an iterative diagonalisation procedure. It will be in this iterative
diagonalisation procedure that the RG character of the method finally surfaces. In
order to solve the problem iteratively, one defines a sequence of Hamiltonians as
follows:

HN = ⇤(N�1)/2

"

Himp + �̃
1/2(f †

0�cd� + h.c) +
N�1
X

n=0

⇤�n/2tn(f
†
n�fn+1� + h.c.)

#

(4.12)

where we have defined the impurity Hamiltonian Himp containing the terms acting
only at the impurity, and the renormalised couplings are given by,

�̃d =

✓

2

1 + ⇤�1

◆

1

D
(✏d +

1

2
U)

Ũ =

✓

2

1 + ⇤�1

◆

U

2D

�̃ =

✓

2

1 + ⇤�1

◆2 2⇢|Vd|2
D

Himp = �̃dc
†
d�cd� + Ũ(c†d�cd� � 1)2 (4.13)

Note that the strength of the coupling between neighbouring chain elements decreases
exponentially due to the factor ⇤�n/2 in front of tn. This behaviour is due to the
logarithmic discretisation of the energy band which leads to a separation of energy
scales, between high- and low energy states. It is only due to this property that
a truncation of the high energy states is justified. The full discrete Hamiltonian,
Eq.4.11, is recovered in the limit N ! 1 as

H = lim
N!1

1

2
(1 + ⇤�1)D⇤�(N�1)/2HN (4.14)

The scale factor ⇤(N�1)/2 makes the lowest energy scale in HN of order 1. Informa-
tion about the many-electron energy-level structure of H at energies / ⇤�(N�1)/2D is
contained in the energy-level structure of HN at energy / 1. Two successive Hamil-
tonians in the series are connected by the recursion relation

HN+1 = ⇤
1/2HN + tN(f

†
N�fN+1� + f †

N+1�fN�) (4.15)

with the initial Hamiltonian in the series containing the impurity itself given by

H0 = ⇤
� 1

2

h

�̃dc
†
d�cd� + �̃

1/2(f †
0�cd� + h.c.) + Ũ(c†d�cd� � 1)2

i

(4.16)
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Figure 4.6: Illustration of the truncation procedure. The iterative diagonalisation
splits each energy level into 4 levels upon the addition of another chain element. In
this schematic picture however each energy level is split into only two levels in order
not to make the illustration to cluttered. Due to the exponential decrease in the
couplings it is save to truncate the high energy states without altering the spectrum
of the low energy states. The truncated states are marked red. Here NL = 4.

In this form the single impurity Anderson model can be e�ciently solved on a com-
puter by taking advantage of the renormalisation group character of the above de-
scription. One starts with a diagonalisation of H0 which can be easily accomplished
numerically. From here on one continues iteratively using Eq. 4.15. Assuming that
we have diagonalised a Wilson chain of length m and that the eigenstates are given
by |r;mi we construct a product basis for the Wilson chain of length m+ 1 by

|(r,↵m+1);m+ 1i = |r;mi ⌦ |↵m+1i (4.17)

where |↵m+1i are the eigenstates of the decoupled site |↵m+1i = {|i , |"i , |#i , |"#i}.
The matrix elements of the Hamiltonian for the Wilson chain of length m+1 for this
product basis are given by
⌦

(r0,↵0
m+1);m+ 1

�

�Hm+1 |(r,↵m+1);m+ 1i = ⇤1/2E
r,m�rr0�↵↵0

+
⇣

hr0;m| f †
m� |r;mi h↵0| fm+1↵ |↵i+ hr0;m| fm� |r;mi h↵0| f †

m+1↵ |↵i
⌘

(4.18)

The eigenvalue problem for the chain of length m+1 can therefore be solved numer-
ically using only a knowledge of the eigenspectrum of the chain of length m and the
matrix elements of the operators f †

m�. Diagonalising the Hamiltonian Hm+1, set up
in the above product basis, can be described by a unitary transformation

|r0;m+ 1i =
X

↵m+1,r

U↵m+1

r

0,r |r;mi ⌦ |↵m+1i (4.19)

where |r0;m+ 1i denotes the new eigenbasis of the Hamiltonian Hm+1. For the single
impurity Anderson model the size of the Hilbert space grows exponentially with the
length of the Wilson chain, / 4N . Truncation becomes inevitable after a few iterations
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as the computational complexity of the diagionalisation problem scales like the matrix
dimension cubed. We thus only use the NL lowest eigenstates in each iteration for the
construction of the next Hamiltonian matrix. This truncation of high energy states
marks the second approximation in the NRG and is well justified due to the separation
of energy scales: High-lying states at one iteration cannot cross over and become low-
lying states at a future iteration due to energy scale separation. Thus it is safe to
discard them if we only wish to focus on the low-energy physics at each step. Ths
closesly related to the renormalisation group structure of the problem - one studies
the physics on progressively lower energy scales, discarding irrelevant high-energy
degrees of freedom - as with Anderson’s poor man’s scaling. Fig. 4.6 illustrates the
changes in the many-particle spectrum. In this schematic picture each energy level is
split into only two levels in order not to make the illustration to cluttered.

4.2.4 Renormalisation group transformations

It is instructive to compare the NRG with a standard renormalisation group treatment
such as the “poor man’s scaling” introduced by Anderson. Here one defines a trans-
formation R which maps a Hamiltonian H() parametrized by a set of parameters 
to a new Hamiltonian with a renormalised parameter set 0,

R⇤ [H()] = H(0) (4.20)

where ⇤ parametrizes the step length. For the “poor man’s scaling” the mapping
is performed by perturbatively integrating out the high-energy degrees of freedom
at the band edges [�D,�D⇤�1] and [D⇤�1, D] which leads to a renormalisation of
the coupling between the impurity and the conduction electrons. Important physical
limits are often marked by fixed points, i.e. points in the parameter space ⇤, such
that

R⇤ [H(⇤)] = H(⇤) (4.21)

The fixed point ⇤ can be categorised by examining the flow properties in its vicinity.
Three di↵erent types of fixed points have to be distinguished:

1. Stable Fixed points, where any perturbation of the parameters ⇤ leads to a
flow back to ⇤, are referred to as stable fixed points.

2. Unstable For fixed points where all flows are directed away from ⇤, tiny
perturbations in the parameters ⇤ lead to flows away from the fixed point.

3. Marginal For marginal fixed points there exist some couplings which flow to-
wards and some which flow away from the fixed point.

The fixed points of the SIAM can be obtained by choosing specific values for the
renormalised interaction strength Ũ and the hybridisation �̃ in Eq. (4.12). Fig. 4.7
shows a schematic of the renormalisation group flow in the SIAM. The three fixed
points at the vertices of the coloured triangle are the free orbital fixed point (H⇤

FO), the
local moment fixed point (H⇤

LM) and the strong coupling fixed point (H⇤
SC). The free

orbital fixed point H⇤
FO is obtained when both couplings �̃ and Ũ are set to zero. The
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Figure 4.7: Schematic of the renormalisation group flow. Trajectories depict the flow
of parameters Ue↵ and �e↵ of the Hamiltonian HN as function of the iteration N .
Based on visualisation in [63].

resulting Hamiltonian is just the free-electron Hamiltonian of the conduction electrons
plus a free-impurity orbital of zero energy. For each eigenstate of the conduction
electron system one can construct four degenerate states by combining it with each of
the four degenerate impurity states |i, |"i, |#i and |"#i. Since the free Wilson chain
is itself a fixed point of the RG transformation, H⇤

FO must also be a fixed point. The
impurity entropy is therefore S = ln(4). If for fixed hybridisation �̃ the interaction
Ũ becomes the largest energy scale in the problem, only impurity states with |"i
and |#i have to be considered for kBT ⌧ Ũ . The impurity is therefore occupied
by a single electron and can be understood as a local moment. This realises the
situation described in the Kondo model. If in addition �̃ = 0 the coupling between the
conduction electrons and the impurity is switched o↵ and the local moment becomes
free. This is the local moment fixed point H⇤

LM. The impurity has two degenerate
states and thus the impurity entropy is given by S = ln(2). Finally we consider
the case when �̃/Ũ ! 1. This is the strong coupling fixed point H⇤

SC where the
impurity is so strongly coupled to conduction electron state at the impurity site that
both degrees of freedom are frozen out. A many-body Kondo singlet is formed such
that the local moment of the impurity is dynamically screened by the surrounding
conduction electrons. The impurity entropy is thus zero. As can be seen from Fig. 4.7
in the case of a flat conduction electron density of states all flows lead eventually to
the strong coupling fixed point H⇤

SC.
In the NRG the recursion expression, Eq. (4.15), can be viewed as a renormali-

sation group transformation Hm+1 = R[Hm]. For the SIAM one finds a flow of the
eigenenergies of Hm as a function of the chain length. Fig. 4.8 shows the flow of
the lowest eigenenergies for a SIAM calculation. For Fig. 4.8a the parameters are
V = 0.004, U = 0.001 and ⇤ = 2. Three regimes can be distinguished: For iterations
N < 25 the system is near the free orbital H⇤

FO, then the energies cross over to the
intermediate local moment fixed point H⇤

LM in iterations 25 < N < 110 before the
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Figure 4.8: Flow of the lowest eigenenergies for an single Anderson impurity model
with a) V = 0.004, U = 0.001 and ⇤ = 2; b) V = 0.008, U = 0.0001 and ⇤ = 2. Only
odd iterations are shown here. We use D = 1.

system reaches the strong coupling fixed point for N � 125. For the second calcu-
lation depicted in Fig. 4.7b the hybridisation strength was increased to V = 0.008
and the interaction strength reduced to U = 0.0001. This moves the system away
from the local moment H⇤

LM towards the strong coupling fixed point H⇤
SC as can be

seen from Fig. 4.7. Indeed as the flow of the eigenenergies in Fig. 4.8b indicates the
system stays near the free orbital fixed point H⇤

FO for iterations N < 50 and then the
system directly crosses over to the strong coupling fixed point H⇤

SC without flowing
close to the local moment fixed point H⇤

LM. Importantly, the lowest energy physics
(reached as N ! 1) is always the characterised by the strong coupling fixed point
in the metallic single impurity Anderson model.

4.3 Calculation of dynamical quantities

The first calculation of dynamical quantities using the NRG were realized by Frota and
Oliviera[33], who calculated photoemission spectra for the single impurity Anderson
model. Other calculations by Sakai et al. [100] and others followed. In the early
90s, the calculation of di↵erent transport coe�cients also became possible[22, 49]. In
the following we will describe techniques to calculate the single-particle spectra. One
of the motivations to calculate this quantity was given by Meir and Wingreen[71]
who showed that the knowledge of the single-particle spectra alone allows for the
calculation of the zero-bias conductance through a quantum dot.

Lehmann resolving the impurity spectral function one obtains

A�(!) =
X

a,b

hb| cd� |ai
exp [��Ea]

Z
ha| c†d� |bi �(! + Ea � Eb) (4.22)

where Z is the total partition function Z =
P

a exp [��Ea], |ai and |bi are a complete
set of states and Ea is the eigenenergy of state |ai. We see that the Lehmann represen-
tation gathers the necessary information to construct the spectrum from knowledge
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Figure 4.9: Comparison of single particle spectral functions for the symmetric SIAM
(� = 0.01, U = 0.1, ✏f = �0.05) obtained by the traditional method (“NRG”) and
the density matrix procedure (“DM-NRG”). From [51].

of certain matrix elements encoding hopping processes between the impurity and the
conduction electron band. In the zero temperature limit these matrix elements only
connect the ground state with excited states, while at finite temperature, excitations
to and from all states must be considered. Certain matrix elements may be calculated
in each step of the NRG using the states generated at a particular iteration. Approxi-
mate spectral reconstruction was performed using NRG in Refs. [22, 9] yielding useful
results in certain ranges. It should be noted that also a full basis set of approximate
eigenstates can be constructed from the iterative diagonalisation (see next pages).

However a number of complications arise from the logarithmic discretisation of the
conduction band, which is at the heart of the NRG: the logarithmic energy discreti-
sation ties the collection of spectral information for a certain energy ! to a specific
iteration n. The characteristic energy scale of iteration n is given by ⇤�n/2. Therefore
all spectral information for an energy window of width ⇤�(n+1)/2 would have to be
reconstructed from states of iteration n. This is problemtic in two ways: the states
kept throughout the NRG iterations do not form a complete basis set, indeed they are
not even orthonormal. Therefore double-counting ambiguities[21] arise when patch-
ing together the spectrum from peaks collected at di↵erent iterations[2]. Secondly
spectral information concerning high energy features (such as the charge fluctuation
“Hubbard satellites”) is collected at early iterations. However the correct ground
state of the system is only found after many NRG iterations.1 As pointed out by
Hofstetter [51] this problem becomes particularly acute in the presence of a small,
symmetry-breaking magnetic field h. The static magnetisation calculated directly
from the appropriate expectation values during the NRG iterations does not agree
with magnetisation obtained by integrating spectral functions for both spins up to
the fermi level. The reason is simply that most of the spectral weight is tied to high

1How many iterations are necessary exactly is actually an intriguing question. The most general
answer to this question is a tautologic one: The NRG resolves energies of the order of ⇤�n/2 in
the nth iteration. The recipe is that one should keep iterating until this resolution is smaller than
the smallest physical energy scale in the problem. However how does one find the smallest physical
energy scale? By solving the problem.
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iteration: 1 2 3 4 5

D1 D1 D1 D1 D1

K1
D2 D2 D2 D2

K2
D2 D2 D2

K3
D3 D3

K4
D4

Figure 4.10: Labelling the states of each NRG iteration as either kept (K) or discarded
(D), the discarded states of each iteration form a complete set of states (all the states
from the last iteration are labeled discarded).

energy charge fluctuation peaks calculated from early NRG iterations that do not
yet “know” of the small symmetry-breaking field. The problems arising from these
circumstances may be easily understood by considering the following: As the itera-
tive diagonalisation progresses down the Wilson chain, the quantum numbers for the
ground state typically show an even-odd e↵ect. For even iterations it might lie in the
Sz = 0-sector while for odd iterations it resides in Sz = 1

2
. As the small symmetry

breaking field is not influential yet in these early iterations (here only high energy
processes contribute) the Sz = 1

2
states show erroneously a degeneracy which leads

to an overestimation of the ground state manifold. For T = 0 the spectral function
measures excitations from the ground state manifold and therefore high energy ex-
citation peaks enter the spectrum which stem from the spurious ground state. This
does not a↵ect the paramagnetic case as these states are always degenerate here.

When using the NRG as an impurity solver for the DMFT to study symmtery
broken phases it is especially important to fix these shortcomings. As all quantities in
the DMFT have to be calculated self-consistenly it is important get accurate single-
particle spectra. Although here no external magnetic field is present an intrinsic,

molecular, symmetry-breaking field may be generated due to di↵erent e↵ective media
for the "- and #-spins.

The first ingredient for the remedy was discovered by Anders and Schiller[2] who
showed that a complete set of states can indeed be defined, based upon the states
found throughout the NRG iterations. The key idea is to reconceptualise the Wilson
chain from growing in each step of the iterative diagonalisation by one site to being of
constant length N (where N is the total number of iteration that will be performed).
Then, at each iteration, the hopping terms of the last (environment-) orbitals are it-
eratively switched on. Anders and Schiller (AS) therefore divided the system into two
parts: a “system” block consisting of the first n coupled sites and an “environment”
block of length N � n. The state of the environment is described by a product state
of the individual uncoupled chain sites and provides a 4N�n degeneracy, while the
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system block is described by the NRG states of iteration n. Following Anders and
Schiller we will denote the states of a Wilson chain of length N coming from iteration
n  N , |r; eiNn where r labels the diagonalized NRG states and e denote the N � n
environmental degrees of freedom. Denoting the Hamiltonian for the chain of length
n with Hn we find

Hn |r; eiNn = Er
n |r; ei

N
n (4.23)

As the states of the NRG iteration n + 1 are constructed from the kept states of
iteration n they cannot be orthogonal to each other. However the discarded states of
iteration n are necessarily orthogonal to the kept states of that same iteration and
consequently to all states of iteration n+1. Iterating this thought one quickly realises
that the discarded states of all iterations are necessarily orthogonal to each other and
form a complete albeit approximate set of states. The construction of the AS basis
is illustrated in figure 4.10. The central approximation (always at the heart of the
NRG calculations) is thus that Er

n from Eq. 4.23 at iteration n closely approximates
the true Er

n as N ! 1.
Having found a complete basis set one could now try to calculate the spectral

functions using the Lehmann representation (4.22). However one is faced with another
problem: matrix elements of local impurity operators hb| cd� |ai can be calculated in
each iteration of the NRG, but this means that only matrix elements involving AS
states of the same iteration are known, ignoring spectral contributions arising from
excitations connecting states of di↵erent NRG iterations. The solution proposed
by Weichselbaum and van Delft[112] reformulates the Lehmann sum in terms of the
density matrix instead of the states. This exploits the relation for the thermal average
D

⌦̂
E

= Tr[⇢̂⌦̂], where ⇢̂ is the full density matrix. The density matrix in the AS basis

for iteration n is defined as,

⇥

⇢̂AS
n

⇤

rr0
= �r,r0 exp (��Er

n)/Z
n (4.24)

where Ztot =
P

n Z
n and Zn =

P

r exp (��Er
n). The total density matrix of the

system can now be written as

⇢̂tot =
N
X

n

wn⇢̂
AS
n (4.25)

wn = dN�n Zn

Ztot
(4.26)

The weighting factor wn stems from the dN�n-fold degeneracy of the AS states of
iteration n due to the environmental degrees of freedom.2 The utilisation of the matrix
elements calculated from the NRG iterations is complicated by a basis issue: the

2The innocent looking factor wn actually allows for a deep look into the information gathering
strategy of the full density matrix approach: wn contains two competing factors, the Boltzmann
factors in the partition function of the nth iteration, Zn, and the degeneracy factor dN�n. For
low system temperatures and early iterations (high energy) the Boltzmann factor will be strongly
suppressed, however the degeneracy factor will be huge. In general for a given temperature the
function wn is seen to peak around the appropriate NRG iteration n (T ⇡ ⇤�n/2) collecting the
bulk of the spectral information from a limited number of appropriately chosen NRG iterations.

213



matrix elements are given in the NRG basis which includes both kept and discarded
states, while the density matrix however has been constructed using the AS basis
(only discarded states). In order to evaluate (4.22) we wish to obtain the density
matrix in the same basis. Referring the reader to Ref. [85] for technical details we
introduce the “reduced density matrix” through

⇢̂tot =
N
X

n

⇢̂red (4.27)

The part connecting discarded to discarded states of NRG iteration n in ⇢̂red is simply
wn⇢̂AS

n . Therefore for the last iteration ⇢̂redN = ⇢̂AS
N . The kept part of ⇢̂red may be

calculated by remembering that it is the kept states of iteration n which are used to
construct the NRG states of iteration n+ 1. Therefore performing the inverse of the
unitary transformation used to diagonalize in iteration n+ 1 on ⇢̂redn+1 yields the kept
part of ⇢̂redn . Note that this is equivalent to tracing out the environmental degrees
of freedom for orbital (n + 1), hence the name reduced. This way all ⇢̂redn can be
constructed iteratively by starting from ⇢̂redN and working backwards.

As a last step the Lehmann sum (4.22) needs to be expressed through the reduced
density matrix. In [112] the appropriate expression is given

A�(!) =
N
X

n

X

r,r0

⇥

[cd�]
n · [⇢̂redn ]

⇤

rr0
· [c†d�]nr0r · �(! � Er

n + Er0

n ) (4.28)

where [c†d�]
n
r0r = n hr0| c†d� |rin are the local impurity elements which connect both

kept and discarded states.
We have succeeded in determining the spectral function as a sum of discrete delta

peaks. The discreteness of the data is due to the discretisation of the conduction
band. In order to obtain a continuous spectrum one typically broadens these delta
peaks by replacing them with logarithmic gaussians of the same weight. Details of
this process are explained in the next section.

4.4 Broadening of discrete spectra

We have discussed already that the NRG yields spectral functions in the form of
a Lehmann sum over discrete �-functions. These will have to be broadened in a
suitable manner to obtain a continuos function, which should ideally produce uniquely
determined spectra independent of the discretisation of conduction electron band. In
practice this is rather di�cult due to the inescapable arbitrariness of the broadening
scheme. However the procedure discussed here has been found to produce rather
accurate results. Indeed, NRG has reliably reproduced exact results in the special
cases where these are known [9, 112].

The smoothed spectral function A�(!) is calculated by folding the discrete numer-
ical data A�disc(!) =

P

wn�(! � !n) against a certain broadening kernel K(!,!0).

A�(!) =

Z

d!0K(!,!0)A�disc(!
0) (4.29)
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There are a number of desirable properties (due to physical implicitness) thatK(!,!0)
should respect[112]:

• Frequency-dependent width: Due to the logarithmic discretization of the con-
duction band, peaks are logarithmically distributed around ! = 0, i.e. data is
more coarse-grained at large frequencies. Choosing a Gaussian on a logarithmic
scale is a natural choice, as a variable transformation of the data to a linear
scale would simply mean replacing delta functions by Gaussians. Gaussians on
a logarithmic scale show a frequency dependent width.

• Conservation of peak weight : The broadening kernel should be chosen in such a
way, that the weight of individual peaks is faithfully represented. This amounts
to the property,

R

d! K(!,!0) = 1 8!0. Of course this also trivially ensures
that

R

d! A�(!) =
P

n wn.

• Conservation of peak height : It can be shown[112] that demanding that a con-
stant function wn = w should be mapped onto a constant continuos function
also restricts the integral

R

d!0 K(!,!0) = 1 8!.

The first two properties may be fulfilled by the following broadening kernel

K(!,!0) = L(!,!0)h(!0) +G(!,!0)(1� h(!0))

L(!,!0) =
⇥(!!0)p
⇡↵|!| exp



log |!/!0|
↵

� �

�2

G(!,!0) =
1p
⇡!0

exp
⇥

�(! � !0)2/!2
0

⇤

h(!0) =

(

1 |!0| � !0

exp�
h

log |!0/!0|
↵

i2

|!0| < !0

(4.30)

The choice � = ↵/4 also fulfills the third property.

4.5 NRG as an impurity solver for the DMFT

The NRG can only be applied to impurity systems, where the impurity couples to
a non-interacting bath of electrons. Therefore a direct application to systems of
coupled interacting lattice sites is not possible. Early attempts at an application have
led to the development of the density-renormalisation group (DMRG) [104, 44]. As
already mentioned in the last chapter, the DMFT is an approximation for correlated
lattice models (which becomes exact in the limit large lattice connectivity) where
the interacting lattice problem is mapped onto a quantum impurity which needs to
be solved self-consistently. In the process the local self-energy is identified with the
impurity self-energy. From the perspective of the NRG, the DMFT equations provide
a closed set of equations which determine a new hybridisation function �(!) for a
given impurity self-energy ⌃(!). The hybridisation function is manifestly energy-
dependent and depends on model under consideration, its parameters, and even the
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history of the previous DMFT iterations. It contains deeply non-trivial information
on the structure of the lattice dynamics in the large coordination limit, and cannot be
neglected. The approximation of a constant hybridisation function � and a constant
density of states for the conduction electrons ⇢ is therefore not permissible. The full
energy-dependence of the hybridisation function �(!) has to be taken into account in
the logarithmic discretisation and the subsequent construction of the Wilson chain.
Refs. [13] and [12] give a detailed account on how this may be achieved. In the
following, we briefly summarise the key points.

4.5.1 Energy-dependent hybridisation functions

In order to incorporate the e↵ects of an energy-dependent hybridisation function
�(!) the Hamiltonian in its one-dimensional energy representation, Eq. (4.5), has to
be generalised to

H/D =

Z 1

�1

d✏
h

g(✏)a†✏�a✏� + h(✏)(a†✏�cd� + c†d�a✏�)
i

+
1

D
(✏D+

1

2
U)c†d�cd�+

1

2

U

D
(c†d�cd��1)2

(4.31)
where g(✏) is the dispersion of the conduction electron band and h(✏) parametrizes
the hybridisation strength. Bulla et al.[11] showed that the two functions g(✏) and
h(✏) are related to the hybridisation function by

�(✏) = ⇡
dg�1(✏)

d!
h(g�1(✏)) (4.32)

with g(g�1(✏)) = ✏. Ambiguity exists how the energy-dependence may be divided
between g(✏) and h(✏) for a given �(✏). Note that the constant hybridisation of
strength �/D is recovered by the choice h(✏) =

p

�/(⇡D) and g(✏) = ✏.

With ⇠0 =
R 1

�1
d✏ �(✏) the hybridisation term between the impurity and the first

site assumes the form
r

⇠0
⇡
(f †

0�cd� + c†d�f0�) . (4.33)

The hopping elements of the chain have not the simple form as given below Eq. (4.11)
anymore but acquire a complicated n dependence. In addition, on-site energies for
the Wilson sites emerge when the bath is not particle-hole symmetric. Using a stan-
dard triangulation procedure (Lanczos method) the hopping elements tn and onsite
energies ✏n can be calculated from the hybridisation function �(✏). The details of this
procedure are given in Refs. [13, 12]. It should be noted that the recursion relations
for the calculation of these coe�cients are numerically very unstable. In order to find
the true Wilson chain representation of the hybridisation function, high precision
numbers must be used for the algorithm.

For the case of the flat band Campo and Olivera[16] showed that the spectral
density of the coupling between the impurity and the conduction band is systemat-
ically underestimated. A discretisation parameter dependent renormalisation of the
hybridisation function fixes this issue

�fixed(✏) =
1

2

⇤+ 1

⇤� 1
ln(⇤)�(✏) . (4.34)
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No exact expression is known for the general energy-dependent case - although it can
be estimated - see Ref. [96].

4.5.2 Calculation of the self-energy within NRG

For the DMFT loop one of the quantities of interest is the impurity self-energy, ⌃(!).
Bulla et al.[10] first showed that it is possible to write the self-energy as the ratio of
two correlation functions, both of which can be calculated directly within the NRG.
An equation of motion technique is used to show that the self-energy is given by,

⌃�(!) = U
F�(!)

G�(!)
(4.35)

where G�(!) is the impurity Green’s function defined as

G�(!) = �i

Z 1

�1
dt ei!t⇥(t)

⌦�

f�(t), f
†
�

 ↵

(4.36)

and F�(!) is an auxiliary correlation function given by

F�(!) = �i

Z 1

�1
dtei!t⇥(t)

Dn⇣

f †
�̄f�̄f�

⌘

(t), f †
�

oE

(4.37)

The imaginary parts of F�(!) and G�(!) are calculated from NRG data using the
Lehman sum within the full density matrix approach, with the poles of the spectrum
broadened as above. The real parts are then obtained by Kramers-Kronig transform.
Discretisation artifacts cancel to some extent by dividing the two quantities. This
produces a rather smooth self-energy, which in term can be used to calculate an
improved spectrum for the impurity. Z-averaging [83] can also be used to furher
increase accuracy and resolution.

4.6 Other impurity solvers

It should be mentioned that a variety of di↵erent impurity solvers[37] exists each
with its own merits and drawbacks. Quantum Monte Carlo (QMC) [50] has be-
come a popular choice especially in the ab-initio community where realistic material-
specific calculations are combined with the treatment of strong correlation physics
by the DMFT. Naturally an impurity solver which can cope with a many orbital
situation is desirable and QMC can do just that. The quantum Monte Carlo (QMC)
method considers the single-impurity problem in discretized imaginary time. The ef-
fective bath only enters through G0,and there is no need to discretize the conduction
band. The first numerical solutions of the LISA equations using this QMC method
were obtained independently by Jarrell[56], Rozenberg et al.[116], and Georges and
Krauth[38]. QMC is however a rather expensive method [37] and thus not well suited
for our purposes, since we need to solve the Anderson impurity problems many times
per iteration, see above. Furthermore, one cannot access the low temperature regime
and one is limited by the “sign problem” if one desires to study magnetic solutions.
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Another solver which should be mentioned here is the exact diagonalisation (ED)
[99, 15]. In this method, the single-impurity problem is approximated by a few or-
bitals only and solved exactly. The finite number of orbitals provide a parametrisation
of the e↵ective bath. With an appropriate choice of the geometry of their hopping
interconnections the parameters are modelled by the site energies and hopping am-
plitudes. It is the physical insight on a particular problem that indicates the most
appropriate choice, which allows one to determine an appropriate parametrization.
The number of orbitals that one can e↵ectively treat is severely limited by the size of
an exponentially growing Hilbert space.

The third choice we want to mention here is the so-called iterated perturbation
theory (IPT) [114, 120]. Here the self-energy of the Anderson impurity model is
calculated to second order in the on-site interaction U . Only two diagrams contribute
to this order and the self-energy assumes the form

⌃�(i!n) = U hn�̄i+ U2

Z �

0

d⌧ ei!n⌧G0�(⌧)
3 +O(U3) (4.38)

For the case of the half-filled Hubbard model at the particle-hole symmetric point the
IPT has proven to be a good, computationally inexpensive method for the solution of
the impurity problems. Not only the physics of the Kondo resonance but also inco-
herent features of the upper and lower Hubbard band are captured by this approach.
Away from particle-hole the strong coupling limit is not correctly captured but there
have been modifications to the method in an attempt to fix this[59, 93].

The continuos-time Monte Carlo method [41] is another powerful choice for an
impurity solver and nowadays one of the most important and widely used methods.
Here the basic idea to split the Hamiltonian into two parts H = Ha +Hb and write
the partition function Z = e��H in the interaction representation with respect to Ha.
Expanding in power of Hb one finds

Z = Tr T⌧e
��Haexp



�
Z �

0

Hb(⌧)

�

=
X

k

(�1)k
Z �

0

d⌧1 . . .

Z �

0

d⌧kTr
⇥

e��HaHb(⌧k)Hb(⌧k�1) . . . Hb(⌧1)
⇤

(4.39)

The trace evaluates to a number and diagrammatic Monte Carlo methods enable a
sampling over all orders k, all topologies of the paths and diagrams, and all times
⌧1, . . . , ⌧k in the same calculation. Because the method is formulated in continuous
time from the beginning, time-discretisation errors do not have to be controlled.

4.7 Spin-dependent hybridisation functions

The NRG can be generalised to treat arbitrary spin-dependent hybridisation func-
tions. A description of this generalisation can be found in Sindel et al.[107] where
the interplay between the Kondo correlations on a quantum dot and itinerant ferro-
magnetism in the leads is studied. Ferromagnetic order in the conduction electron
system leads to a suppression of the Kondo e↵ect. This can be seen by considering the
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Figure 4.11: a) Total occupation n(P ) and spin species resolved occupations n�(!)
as functions of the spin polarisation P . b) Total spectral function A(!) =

P

� A�(!)
for di↵erent values of the spin polarisation P . An increase in P results in a splitting
and suppression of the Kondo resonance. The parameters for this calculation were
U = 0.12, � = U/6, ✏d = �U/3 and T = 10�20.

extreme limit, where the lead is fully polarised, i.e. only spin species exists: the e↵ec-
tive screening of the impurity simply cannot develop because the spin-flip processes
central to the Kondo e↵ect are suppressed. The simplest way to model the competi-
tion between these two e↵ects is to consider normalised flat bands with a finite spin
polarisation. A consequence of the conduction electron ferromagnetism is that the
spin-dependent bands are shifted relative to each other, which is the so-called Stoner
splitting. On the simplest level of description this e↵ect can be ignored. In this par-
ticular case the spin-dependent hybridisation can be parametrized as �� = 1

2
�(1±P ).

Since �� = ⇡⇢�V 2 the spin dependence can be shifted from the conduction electron
density of states to a spin-dependent hopping V� between the impurity and the first
site of the Wilson chain. The advantage is that in this case the Wilson chain for the
"- and #-electrons is identical and only the coupling V� between the impurity and the
first site of the Wilson chain di↵ers. The intermediate regime of the spin polarisation,
0 < P < 1, can be investigated with the NRG now.

Fig. 4.11a shows the total occupation of the impurity n and the spin-resolved
occupations n� as function of the spin polarisation P in the leads. For ✏d = �U/2
the system is at the particle-hole symmetric point and therefore the system remains
at half-filling even for a finite spin polarisation P (not shown). However, with an
applied gate voltage of ✏d = �U/3 between lead and dot the total occupation n
decreases for finite spin polarisation P . For P = 0 the spin symmetry is unbroken
and n" = n#. For finite P > 0 the occupation of the "-electrons is enhanced while n#
is suppressed, c.f. Fig. 4.11a. The total single particle spectral function is shown in
Fig. 4.11b for di↵erent spins polarisations P . For P 6= 0 the charge fluctuations on
the dot become spin-dependent as the di↵erent spin species see di↵erent leads. This
causes the dot levels to split and the dot magnetisation n" � n# becomes finite. As
a result, the Kondo resonance is split and ultimately suppressed. This means that
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Kondo correlations are reduced or even completely suppressed. Note that the data
shown in Fig. 4.11 agree with the data of the original publication by Sindel et al.[107].

In order to treat arbitrary spin-dependent hybridisation functions the mapping
to the Wilson chain outlined in section 4.2.2 needs to be generalised. Essentially
the Lanczos tridiagonalisation procedure which brings which brings the conduction
electron Hamiltonian to the form of the Wilson chain is applied separately to the hy-
bridisation function for the spin-" and spin-# electrons. This leads to a Wilson chain
with spin-dependent on-site energies ✏n� and hopping integrals tn�. The coupling be-
tween the impurity and the first site of the Wilson chain also becomes spin-dependent,

⇠0� =

Z 1

�1

d✏ ��(✏) (4.40)

and so the fully discretised Hamiltonian assumes the form

H/D =
1

D
(✏D +
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2
U)c†d�cd� +
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1
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✏n�f
†
n�fn� + tn�(f

†
n+1�fn� + f †

n�fn+1�)
i

(4.41)

The spin-dependent on-site energies ✏n� and hopping integrals tn� can be calculated
from the spin-dependent hybridisation function ��(✏) using the algorithm outlined
in Ref. [107], Appendix B.

220



Chapter 5

DMFT for Heterostructures

5.1 Introduction to Heterostructures

The interface that occurs between two layers or regions of dissimilar solid-state ma-
terials is commonly referred to as a heterojunction. The combination of several such
heterojunctions in a electronic device is called a heterostructure. Multilayered het-
erostructures in the nano sized realm (also known as multilayered nanostructures)
are the most common electronic devices. Originally these devices were based on
pn-junctions, interfaces between p- and n-type semiconducting materials, but also
interfaces between superconducting materials were manufactured more recently.

The driving principle behind the functionality of these devices is often a non-
linearity of one sort or the other. For instance in pn-junction devices it is the non-
linearity of the current-voltage relation which ensures that current essentially flows
only in one direction[76]. A classic multilayered nanostructure is a tunnel junction
consisting of two metallic leads connected by a “weak link”, often a conventional
band insulator. The connection between the two leads is thus governed by inherently
quantum mechanical e↵ects. Delocalised electrons in the metal can leak through
the insulating region by tunnelling into the other lead. The characteristics of the
connection can be understood by studying the overlap of the quantum mechanical
wave functions. In the metallic region the wave function will oscillate while in the
insulating region it will decay exponentially. This ultimately leads to the highly
non-linear characteristics of the electronic device.

With recent theoretical and experimental progress in the understanding and con-
trol of strongly correlated materials enormous interest has arisen in multilayered
nanostructures involving materials where the electrons are strongly interacting. One
of the prospects which fuels this interest is the controllability of electronic devices.
For example, many heterostructures made from semi-conducting materials have a
voltage gate which can be used to tune the characteristics of the device. As already
mentioned in the introduction of chapter 3 strongly correlated materials are often
extremely sensitive to small changes in external parameters such as external B- and
E fields, pressure and chemical doping and therefore are appealing alternative to
conventional metals, semiconductors and insulators. Particularly interesting is the
influence of magnetism in this respect. Inherently quantum mechanical in nature,
the magnetic properties of strongly correlated electron systems might pave the way
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towards devices which control the transport of the spin of the electron (spin-tronics).
However due to the strong correlation e↵ects such materials are less well understood
and fewer devices have been made from them.

A range of multilayered nano structures involving strongly-correlated materials
has been studied both experimentally and theoretically. Lee and MacDonald[67] ar-
gued that interesting strongly-correlated two-dimensional electron systems with weak
disorder and controllable densities can be created at the interface between two dif-
ferent, modulation doped Mott insulators. They showed that the magnetic phase
diagram can be altered by the dopant density. Kancharla and Dagotto[61] studied
the interface between a Mott insulator and a conventional band insulator taking both
the local and long-range Coulomb interaction into account and found by computing
the layer-dependent local density of states also a quasi two-dimensional metallic state
at the interface. They also took the antiferromagnetic correlations in the Mott insu-
lator into account and found that it persists into the metallic region. Such a set-up
had been previously studied by Okamoto and Millis[81, 82] who were the first to
use the dynamical mean-field theory to investigate the electronic properties of such
a heterostructure. They also demonstrated that there is a competition between the
ferromagnetic metallic phase at the junction and the insulating anti-ferromagnetic
phase in the bulk.

In this chapter we describe how the DMFT as outlined in the last chapter can be
extended to treat systems with inhomogeneities. Special emphasis will be placed on
the mathematical aspects of the Green’s function matrix inversion problem and it will
be shown how the mathematical structure can be exploited to arrive at an e�cient
algorithm (“Quantum zipper algorithm”[17]).

5.2 Inhomogenous DMFT

The foundations for the inhomogenous DMFT were laid by Pottho↵ and Nolting in
1999 [92]. Their focus was not so much on layered systems but they studied the
Mott metal-insulator transition in the Hubbard model at a solid surface for a semi-
infinite lattice by means of the dynamical mean-field theory. Their interest was the
enhancement of correlation e↵ects as the surface is approached [90, 91] and later on
the metal-insulator transition in thin films [89].

The Pottho↵ and Nolting approach to multilayered nanostructures is designed to
solve systems of translationally invariant x� y planes stacked along the longitudinal
z direction, see Fig. 5.1. All parameters that describe the system (hopping integrals,
interaction strengths, chemical potentials. . . ) must be constant within a given layer
but may change between layers.

In introducing a mixed basis set by Fourier transforming the x- and y-direction
into momentum vectors k

x

and k
y

but leaving the z-direction in real space Pottho↵
and Nolting exploited the special structure of the set-up. In order to map this problem
onto e↵ective impurity problems, one is interested in the local layer Green’s functions.
We will consider the equations for the non-interacting Green’s function first. The
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Figure 5.1: Layered system.

non-interacting real space Green’s function G(0)
ij (z) satisfies

X

k

[(z + µ)�ik + tik]G
(0)
ij (z) = �ij (5.1)

with �tik the hopping integral between sites i and k. Following Pottho↵ and Nolting
in Fourier transforming the x- and y-axis we find

X

�

[(z + µ� ✏↵kk)�↵� + t↵+1�↵+1� + t↵�↵�1�]G
(0)
↵�(k

k, z) (5.2)

where kk = (kx, ky)T is a 2-vector comprising the x- and y-component of the momen-

tum, ✏↵kk = �2tk↵[cos kx+cos ky] is the two-dimensional, non-interacting tight-binding
density of states for the simple cubic lattice and the greek letters ↵, � and � are layer
indices.

Writing Dyson’s equation G = G(0) + G(0)⌃G in real space and investing the
DMFT assumption, that the self-energy ⌃ contains only local contributions we find

G↵�(k
k, z) = G(0)

↵�(k
k, z) +

X

�

G(0)
↵� (k

k, z)⌃��(z)G��(k
k, z) (5.3)

The above expression can be used to write an equation similar to Eq. (5.2) for the
full lattice Green’s function, namely

[z + µ� ⌃↵↵(z)� ✏↵kk ]G↵�(k
k, z) + t↵+1G↵+1�(k

k, z) + t↵G↵�1�(k
k, z) = �↵� (5.4)

We can see that for a fixed value of kk the problem of computing the element
G↵↵(kk, z) reduces to the inversion of a tridiagonal matrix. This may seem compu-
tationally demanding at first sight. As we are interested in the local lattice Green’s
function it seems that the matrix has to be inverted for every value of ! and ✏

k

k .
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5.3 The mathematics of the inversion problem

Helmes and Rosch[46] pointed out that the inversion problem may be simplified by
diagonalising G↵↵(0, z) using an orthogonal matrix O(!) which may be reused for all
✏
k

k in the calculation of G↵↵(kk, z). The drawback of this method is however that it
can only cope with finite system sizes. However further simplifications arise when one
exploits the special tridiagonal structure of the matrix and an e�cient computational
scheme free of finite-size e↵ects can be constructed. The e↵ect of the metallic leads
in this approach is modelled by semi-infinite tridiagonal matrices attached to the
finite dimensional matrix describing the barrier region by nearest neighbour hopping
integrals. In the following we first discuss how the tridiagonal matrices can be inverted
in linear time. Then we discuss how the attachment of the semi-infinite leads can be
accounted for.

5.3.1 Inversion of finite dimensional tridiagonal symmetric
matrices

In general a symmetric tridiagonal matrix T of order n has the following form

M =

0

B

B

B

B

B

@

a1 �t2
�t2 a2 �t3

. . . . . . . . .
�tn�1 an�1 �tn

�tn an

1

C

C

C

C

C

A

(5.5)

A natural assumption is that all ti are non-zero. If not, the problem may be decom-
posed into 2 smaller sub-problems, which may be solved seperatedly [4]. It can be
shown [27] that for any tridiagonal matrix a sequence of vi and ui with i = 1 . . . n
exists so that

M�1 =

0

B

B

B

B

B

@

u1v1 u1v2 u1v3 . . . u1vn
u2v1 u2v2 u2v3 . . . u2vn
u3v1 u3v2 u3v3 . . . u3vn
...

...
...

. . .
...

unv1 unv2 unv3 . . . unvn

1

C

C

C

C

C

A

(5.6)

Consequently the problem of finding the inverse of M has been reduced to finding the
2n quantities {ui}, {ui} or equivalently: it is su�cient to compute its first and last
columns. Actually it turns out that freedom exists in the choice of these coe�cients
and we will use the convention here that u1 = 1. Other algorithms than the one
presented here have been constructed[19], but the equations proved to be numerically
unstable in certain situations [20].

We will first outline the calculation of v = (v1, v2, . . . , vn)T . Having chosen u1 = 1
the first column of M�1 is given by v since Mv = e1. Any invertible matrix permits
a UL decomposition. As M is tridiagonal the UL decomposition assumes a special
form

M = UD�1UT (5.7)
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where

U =
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(5.8)

Since
P

i �niUniD
�1
ii UT

in = rn one can devise a recurrence relation for the di

rn = an, ri = ai �
b2i+1

ri+1

, i = n� 1, . . . , 1 (5.9)

Any upper-diagonal matrix U with only non-zero elements along its diagonal is in-
vertible and U�1e1 = 1

U11
. Therefore the solution of the linear equation Mv = e1 is

equivalent to solving

D�1UTv =
1

r1
e1. (5.10)

Plugging in the concrete form of D and U we find

v1 =
1

r1
, vi =

t2 . . . ti
r1 . . . ri�1ri

, i = 2, . . . , n. (5.11)

Repeating this procedure for the last column of M�1 and therefore solving vnTu = en
where the UL decomposition is replaced by a LU decomposition we find

l1 = a1, li = ai �
t2i
li�1

, i = 2, . . . , n (5.12)

un =
1

lnvn
, un�i =

tn�i+1 . . . tn
ln�i . . . lnvn

, i = 1, . . . , n� 1. (5.13)

We insert this into (5.6) to find

(M�1)i,j = ti+1 . . . tj
rj+1 . . . rn
li . . . ln

(5.14)

(M�1)i,i =
ri+1 . . . rn
li . . . ln

(5.15)

and the problem is solved. Using (5.14) and (5.15) we may prove two identities which
will be handy later on

(M�1)i,i�1

(M�1)i,i
=

ri
ti

(5.16)

(M�1)i+1,i

(M�1)i,i
=

li
ti+1

(5.17)

5.3.2 Inversion of coupled tridiagonal symmetric matrices
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Figure 5.2: Layout of the
coupled tridiagonal matri-
ces.

In order to solve the problem outlined in section 5.2 e�-
ciently it will be beneficial to understand how the inver-
sion problem may be divided into coupled subproblems.
Consider the situation depicted in Fig. 5.2, tAB = tBA

and tBC = tCB. A, B and C are matrices of the general
form 5.5 and dimension nA, nB and nC . An interesting
question is how the presence of the matrices A and C in-
fluence the inversion problem for the diagonal elements
of matrix B. In order to avoid confusing among the
various quantities defined in section 5.3.1 a matrix su-
perscript (A), (B) or (C) will be added to these. When
we refer to, i.e. ‘the inverse of B‘ what is meant is the
part of the inverse of matrix Fig. 5.2 that lies within the
part occupied by B.

Due to the nature of the recursion relations (5.9) and (5.12) it is immediately clear
that the {lBi } only depend through lAnA

on A while the {rBi } only depend through rC1
on C. However (5.15) suggests, that one needs to know all the {lCi } to compute the
diagonal elements of the inverse of B. The question now is: Is that really so? The
answer is that if A and C are semi-infinite matrices, then by virtue of the relations
(5.16) and (5.17) one can express the ith diagonal entry in the section of the inverse
occupied by B only though knowledge of rBi and lBi . This can be seen from considering

X

k

Mik(M
�1)kj = (�ika

M
i � �i+1,kt

M
i+1 � tMi �i,k+1)(M

�1)kj

= aMi (M�1)ij � tMi+1(M
�1)i+1j � tMi (M�1)i�1j

= �ij (5.18)

Solving for (M�1)ii yields

(M�1)ii =
1

aMi � tMi+1
(M�1)i+1i

(M�1)ii
� tMi

(M�1)i�1i

(M�1)ii

=
1

aMi � rMi � lMi
(5.19)

where we used (5.16) and (5.17). Hence it has been proven, that to learn the diagonal
elements of the inverse in the part occupied by B, it is su�cient to know lAnA

of A
and rC1 of C.

5.4 The quantum zipper algorithm

Freericks[17] used this insight to construct an e�cient algorithm for the solution of the
inversion problem, Eq. 5.4, that he termed the “quantum zipper algorithm” (QZA).
In the following we describe the algorithm as it is outlined in his book[32].
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The equation of motion for the Green’s function, Eq. (5.4), in case � = ↵�n with
n > 0 can be brought to the form

�G↵,↵�n+1(z,kk) t↵�n+1,↵�n

G↵,↵�n(z,kk)
= z+µ�⌃↵�n(z)�✏k↵�nkk+

G↵,↵�n�1(z,kk) t↵�n�1,↵�n

G↵,↵�n(z,kk)
.

(5.20)
In direct analogy to Eq. (5.17) we define a left function by

L↵�n(k
k, z) = �G↵,↵�n+1(kk, z)

G↵,↵�n(kk, z)
(5.21)

which we will slide through the heterostructure left to right (similar to the slider of
zipper) by the following recurrence relation (c.f. Eq. (5.12)) directly derived from
Eq. (5.20)

L↵�n(k
k, z) = z + µ� ⌃↵�n(z)� ✏↵�n,kk � t↵�n,↵�n�1 t↵�n�1,↵�n

L↵�n�1

(5.22)

The starting point of this recurrence relation is the left lead in Fig. 5.1. Assuming
that deep insight the lead the correction to the local layer self-energy due to the
inhomogeneity of the far away barrier is negligible we substitute L�1 into both sides
of Eq. 5.22 and using for the self-energy the result of a bulk calculation for the material
the lead is made out of. This gives a quadratic equation for L�1 which is solved by

L�1(kk, z) =
z + µ� ⌃�1(z)� ✏k�1k

k

2
± 1

2

r

⇣

z + µ� ⌃�1(z)� ✏k�1k

k

⌘2

� 4t2�1 .

(5.23)

Here t�1 is the hopping integral inside the lead, ✏k�1k

k the dispersion relation and
⌃�1(z) the result of a bulk calculation. The sign in the above equation is chosen
to yield an imaginary part less than zero for z lying in the upper half plane. The
function L�1(kk, z) is not subject to the self-consistency loop, Fig. 3.5, but it is fixed
throughout the calculation. One has to take care that the approximation of using a
bulk solution for L�1 is justified. It can be ensured that this is the case by adding a
su�cient amount of healing layers (with the material parameters of the lead) before
attaching the lead itself. Usually 30 healing layers is su�cient. These 30 layers are
self-consistently determined with L↵ converging to L�1 before attaching the left lead
solution. For the right lead one should proceed accordingly. This approach is justified
if the systems heals to its bulk value before entering the lead. If that is not the case
one simply needs to include more healing layers.

Similarly one defines a right function

R↵�n(k
k, z) = �G↵,↵+n�1(kk, z)

G↵,↵+n(kk, z)
(5.24)

and a recurrence relation to the right

R↵+n(k
k, z) = z + µ� ⌃↵+n(z)� ✏↵+n,kk � t↵+n,↵+n+1 t↵+n+1,↵�n

R↵+n+1

. (5.25)
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impurity solver QZA

Eq. (3.23)Eq. (3.29)

iterate

Figure 5.3: Illustration of the DMFT self-consistency loop for a heterostructure:
Starting from an initial ⌃�(z) use the quantum zipper algorithm (QZA) to determine
G�(z), then use Eq. (3.23) to find G0

�1
� (z) and determine �SIAM(z) from that using

Eq. (3.29). Solving the impurity problem gives a new self-energy ⌃�(z) and the loop
is thus closed.

Similarly to the left function we solve the the recurrence relation for the right lead
R1 and then iterate Eq. 5.25 up to n = 0. R1 is determined by substituting into
both sides of Eq. 5.25 and solving the resulting quadratic equation. We find

R1(kk, z) =
z + µ� ⌃1(z)� ✏k1k

k

2
± 1

2

r

⇣

z + µ� ⌃1(z)� ✏k1k

k

⌘2

� 4t21 . (5.26)

The sign is chose the same way as in Eq. 5.23. Using the right and left function we
can obtain the Green’s function by, c.f. (Eq. 5.19)

G↵↵(k
k, z) =

⇣

L↵(k
k, z) +R↵(k

k, z)�
h

z + µ� ⌃↵(z)� ✏k
↵kk

i⌘�1

(5.27)

The local Green’s function can be found by summing the above equation over the
two-dimensional momenta kk, which can be replaced by an integral over the two-
dimensional tight-binding density of states

G↵↵(z) =

Z

d✏k⇢2D↵ (✏k)G↵↵(✏
k, z) . (5.28)

For the calculation of certain transport coe�cients knowledge of the o↵-diagonal
entries of the Green’s function G↵�(z) is necessary. The recursion relations Eq. 5.22
and Eq. 5.25 can be used to shift the individual layer indices of the Green’s functions.
For instance, the o↵-diagonal Green’s function G↵�(z) for ↵ < � is is given by

G↵�(z) = G↵↵(z)
��1
Y

�=↵

⇥

� L�(z)
⇤

(5.29)

This concludes our summary of the QZA. The algorithm for the solution of the inho-
mogenous DMFT equations is thus similar to that of the homogenous DMFT:

Algorithm 2.
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1. We start with initial guesses for the self-energies ⌃↵(z) of the layers ↵ 2
{1, . . . , N↵} and determine ⌃�1 (⌃1) by a bulk DMFT calculation for the
left (right) lead.

2. We use the the QZA to determine the local layer Green’s functions G↵↵(z).

3. The local, layer-dependent Weiss mean field is extracted by virtue of Eq. (3.23)
applied to each layer individually, G�1

↵ (z) = G�1
↵ (z) + ⌃↵(z).

4. We calculate the layer-dependent hybridisation functions �SIAM
↵ (z) for the im-

purity problem from the Weiss mean field G�1
↵ (z) using Eq. 3.29.

5. The N↵ resulting impurity problems are solved using an adequate impurity
solver giving the impurity self energies for each layer, ⌃SIAM

↵ .

6. We identify the local lattice self-energy ⌃↵(z) with the impurity self-energy
⌃SIAM

↵ (z) and goto step 2 if any of the layers is not converged.

5.4.1 Numerical implementation

At this point some remarks concerning the numerical implementation and computa-
tional complexity are in order. For a typical nanostructure calculation the number of
layers in the barrier region is around 50. With an additional 20-30 healing layers on
either side the typical number of self-consistently determined layers is of the order of
100. The DMFT algorithm has to be performed on each plane and thus 100 impurity
problems have to be solved for each DMFT iteration and around ⇡ 100 iterations have
to be performed for the structure to converge (without long-range Coulomb interac-
tions included that is; see below). This is a substantial computational complexity
and one necessarily has to think about paralellisation. Fortunately certain steps in
self-consistency loop allow for a natural division into subproblems.

Suppose we have NC computational nodes at our disposal for the solution of the
DMFT algorithm. Starting with an initial set of self-energies for the planes the QZA
has to be performed to find the local Green’s function on each layer for all frequencies.
As the number of frequencies is typically much higher than the number of layers the
more fine-grained division among processors is achieved if one divides in frequency
rather than in layer space. The frequency space is divided into NC ranges and each
processor calculates the local Greens function on layers 1 to N↵ for that frequency
range. In a distribution step the function parts are exchanged among the nodes and
complete local Green’s functions are assembled. In order to find the local Green’s
functions for a specific frequency the energy integral in Eq. 5.28 has to be evaluated.
There are two possible approaches for this. One can work on a fixed ✏-grid which has
to be su�ciently fine to resolve any sharp features on the energy axis. This approach
has the advantage that the recursive relations for the left- and right functions allow
a caching of the result for the calculations of quantities on other layers. Close to
the MHMIT transition however the features in the self-energy become increasingly
sharper and more refined energy grid is needed. This slows down the computation
and at some point it becomes advantageous to abandon the fixed grid and to use

229



a quadrature routine which automatically decides where to evaluate the integrand
and does so in a refined way around the sharp features. However caching is now not
possible anymore, because the routine usually does not evaluate the integrand for
di↵erent layers at the same energies.

The other step which is amenable for parallelisation is the solution of the impu-
rity problems. After the hybridisation functions have been calculated on each layer
the impurity problems can be solved independent of each other. Parallelisation is
therefore trivial and one simply assign the N↵ impurity problem in a round robin
fashion among the NC computing nodes. When all impurity problems are solved the
impurity self-energies are exchanged among the nodes in a distribution step.

5.5 Electronic charge reconstruction

Nanostructures fabricated from di↵erent materials often show interesting e↵ects at
the interfaces. A fundamental issue here has been atomic reconstruction which is
driven by the di↵erence in the surface lattice symmetry from that in the bulk. More
recently Okamoto and Millis[81] showed that some of the observations obtained from
an experiment by Ohtomo et al.[78], where an atomically precise digital heterostruc-
ture was fabricated by inserting a controllable number of Mott-insulating LaTiO3

into a controllable number of planes of SrTiO3 a conventional band-insulator, can be
understood from what they refer to as “electronic charge reconstruction” (ECR). In
the heterostructure a mismatch of the chemical potentials at the interface between
the two materials causes charges to leak across the interface e�ciently doping the
Mott- and the band-insulator. This leads to a quasi two-dimensional metallic state at
the interface of these otherwise insulating materials. The theoretical results obtained
from DMFT calculations with a Hartree treatment of long-range Coulomb interac-
tions are in qualitative agreement to the experimental study. Chen and Freericks[17]
also used DMFT to calculate the electronic charge reconstruction of multilayered
inhomogeneous devices composed of semi-infinite metallic lead layers sandwiching
barrier planes of a strongly correlated material. They studied how electronic charge
reconstruction can create well-defined Mott insulating barriers.

In the following we describe how the DMFT can be modified to include the elec-
tronic charge reconstruction that takes place at the interfaces of di↵erent materials. A
more detailed account can be found in Freerick’s book[32]. A mismatch in the chemi-
cal potentials of two di↵erent materials causes charge to reorder in a such way at the
interface that the electric potential created by the displaced charge compensates the
di↵erence in the chemical potentials. Long-range Coulomb interaction is necessary
for this e↵ect to take place and we treat it in a mean-field sense, consistent with the
local approximation for the self-energy in the DMFT[32]. The basis for the iterative
algorithm remains the quantum zipper algorithm, algorithm 3 above, however an ad-
ditional contribution to the layer-dependent self-energy has to be calculated which
accounts for electric field due to the charge displacement.

For a given set of excess charge densities ⇢↵ � ⇢bulk↵ on the layers where ↵ is the
layer index, ⇢↵ the electrical charge density and ⇢bulk↵ the charge due to the ionic
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background in layer ↵, the electric field E↵ due to layer ↵ when treated as a plane of
uniform charge is given by

E↵ = �e(⇢↵ � ⇢bulk↵ )

2✏0✏r↵
e? (5.30)

where e > 0 is the electric charge, ✏0 the permittivity in the vacuum, ✏r↵ the relativity
of plane ↵ and e? is a unit vector perpendicular to plane pointing away from it. In
the following we will assume that ✏r↵ = ✏r. The electric potential of a system with
translation invariance in the x- and y-direction is related to the electric field via
E(r) = � d

dzV (z)ez. The contribution to the electric potential at plane ↵ due to the
excess charge at plane � is thus given by

V�(↵) = �e(⇢↵ � ⇢bulk↵ )

2✏0✏r
|↵� �| (5.31)

The additional potential energy for an electron on plane ↵ due to the charge reordering
in the system is thus given by eV↵ ⌘ e

P

� V�(↵) or alternatively we can pretend the
chemical potential on layer ↵ has been shifted by minus this number. The additional
term in the Hamiltonian is therefore given by

HCoulomb = e
X

↵kk�

V↵c
†
↵kk�

c↵kk� (5.32)

Since the leads are not treated self-consistently we have to require that the electric
potential has become su�ciently small enough before entering the lead. For the
system to have a finite energy the leads have to be charge neutral - an assumption
which would be inconsistent with a finite electric potential extending into the leads.
Hence the self-consistently calculated part of the system has to be overall charge
conserving. No charge may thus leak out of this part of the device into the leads.
Electronic charge reconstruction only occurs if the chemical potentials between two
layers do not match. The mismatch is termed contact potential and we introduce
layer dependent chemical potentials µ↵ to model it.

The modified DMFT algorithm including charge reconstruction is thus given by

Algorithm 3.

1. We start with initial guesses for the self-energies ⌃↵(z) and charge densities
⇢↵ on the layers ↵ 2 {1, . . . , N↵} and determine ⌃�1 (⌃1) by a bulk DMFT
calculation for the left (right) lead. The charge density in the lead has to match
its bulk value at all times ⇢�1 = ⇢bulk�1 (⇢1 = ⇢bulk1 ).

2. Determine the layer-dependent, electric potentials V↵ using Eq. (5.31).

3. With the layer-dependent chemical potentials µ↵ shifted by minus the electrical
potential, µ↵ ! µ↵�V↵,we use the the QZA to determine the local layer Green’s
functions G↵↵(z).

4. The local, layer-dependent Weiss mean field is extracted by virtue of Eq. (3.23)
applied to each layer individually, G�1

↵ (z) = G�1
↵ (z) + ⌃↵(z).
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impurity
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Eq. (5.31)

QZA

Eq. (3.23)Eq. (3.29)

iterate

Figure 5.4: Illustration of the DMFT self-consistency loop for a heterostructure in-
cluding electronic charge reconstruction (ECR): Starting from an initial set of ⌃↵�(z)
and ⇢↵ use the QZA to determine G�(z), then use Eq. (3.23) to find G0

�1
� (z) and

determine �SIAM(z) from that using Eq. (3.29). Solving the impurity problem gives
a new self-energy ⌃�(z) and new occupations ⇢↵ and the loop is thus closed.

5. We calculate the layer-dependent hybridisation functions �SIAM
↵ (z) for the im-

purity problem from the Weiss mean field G�1
↵ (z) using Eq. 3.29 (again with the

chemical potentials shifted by minus the electric potential).

6. The N↵ resulting, independent impurity problems are solved using an adequate
impurity solver giving the impurity self energies for each layer, ⌃SIAM

↵ .

7. For each impurity problem the impurity solver is used to determine the charge
on the impurity which is then assigned to the layer charge ⇢↵ = ⇢impurity.

8. We identify the local lattice self-energy ⌃↵(z) with the impurity self-energy
⌃SIAM

↵ (z) and goto step 2 if any of the layers are not converged.

5.5.1 Numerical implementation

The addition of charge reconstruction makes it much more di�cult to reach the correct
physical fixed point in the iterative scheme described above. First the update of the
electric potentials have to be strongly damped to slow the updating of the Green’s
function due to charge reordering. If that is not done the structure does not converge
at all. We found the following strategy which is also used by Freericks[32] renders
satisfactory results

V (n+1)
↵ = ↵V V

(n)
↵ + (1� ↵V )V

update
↵ (5.33)

where V update
↵ is electric potential calculated from the current charge distribution in

iteration n+1. Good values for ↵V are 0.99  ↵V  0.999. The number of iterations
needed to converge the structure is about 2000� 5000. A way to reduce this number
is to start from a charge distribution which is reasonably close to the converged
result. This can be achieved by recording the site occupation as function of chemical
potential, n(µ), in bulk calculations for all materials that the nanostructure is made
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out of. Knowledge of these functions then allows to solve the non-interacting Poisson
problem to find an adequate initial charge distribution.

As already mentioned the semi-infinite leads add a constraint of overall charge con-
servation to the self-consistently determined layers. An explicit implementation of this
constraint also helps the calculation to converge. We define ⇢̄ = 1/N↵

P

↵(⇢↵ � ⇢bulk↵ )
which measures the average excess electron density per layer. The charge conserva-
tion constraint can be enforced when the excess charge ⇢̄ is uniformly distributed in
the system. The expression for the calculation of the electric potential, Eq. 5.31, thus
assumes the form

V�(↵) = �e(⇢↵ � ⇢bulk↵ � ⇢̄)

2✏0✏r
|↵� �| (5.34)

After convergence the parameter ⇢̄ will be close to zero. This has to be checked in
every calculation.

5.5.2 Application: A strongly-correlated nanostructure

The e↵ect of electronic charge reconstruction is illustrated in Fig. 5.5. Here we use the
algorithm described above to find the layer-resolved spectral functions and occupa-
tions for a multilayered nanostructure. The structure consists out of 3 regions (I-III)
where regions I and III are made from a weakly-correlated metal with U = 1 and the
chemical potential tuned to the particle-hole symmetric point (µI = µIII = 0) and
semi-infinite leads made from the same metal are attached right and left. The barrier
region II is made from a strongly-correlated metal with U = 10 and µII = �3. The
background charges for all 3 regions are set to half-filling, ⇢bulk = 1. The mismatch
in the chemical potentials between regions I and II and II and III creates a contact
potential which causes charge to leak from the barrier into the attached leads, thus
hole-doping the barrier region while particle-doping the leads, c.f. Fig. 5.5a (black
line). In response to the charge displacement an electric potentials builds up over
the interfaces which seeks to compensate the change in the chemical potential, c.f.
Fig. 5.5b (black line). The red line in Fig. 5.5 shows the layer-resolved occupation ⇢↵
and electric potential V↵ for a structure with the same geometry and local chemical
potentials µ↵ but with all layers uncorrelated, U↵ = 0. For the chosen barrier thick-
ness of 12 layers the uncorrelated system reorders the charge such that the generated
electric potential (almost) compensates the drop in chemical potential from region I
to region II, �µ = µII � µI = �3 as can be seen from the minimum at V16 ⇡ �2.9
in Fig. 5.5b. For strong correlations however the length scale on which the charge
reorders becomes larger and consequently the system cannot compensate the drop
in chemical potential by reordering the charge within 6 layers, i.e. the minimum of
electric potential in Fig. 5.5b (black line) is V16 ⇡ �1.5. When the thickness of the
barrier is increased the minimum of the electric potential for the correlated system
also approaches V ! �3 (not shown).

Fig. 5.6a shows selected spectral functions for various layers of the correlated
heterostructure. The spectral function for layer 1 (black line) resembles that of a
non-interacting three-dimensional bulk system. The upper and lower band edges
(! = 6 and ! = �6) and the van-Hoove singularities (! = 2 and ! = �2) are slightly
smeared out due to the interactions. The wiggles at the top result from the broken
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Figure 5.5: ECR for a multilayered nanostructure with 3 regions (I-III). Region I and
III: 10 layers of U = 1 material, with µI = µII = 0 (PH symmetric point); left and
right, semi-infinite lead same material. barrier region: 12 layers of U = 10 material,
hole-doped due to µII = �3. Black lines: with correlations as specified above, red
lines: U = 0 for all layers.

translational symmetry due to the presence of the barrier. The spectral function for
the last layer on the weakly-correlated side before the interface (layer 10, red line)
shows a noticeable alteration from the bulk solution. Due to the strong particle-
doping the function has been shifted to the left. Van-Hoove singularities have been
almost completely washed out due to the hybridisation induced correlations. The
first layer made of the strongly-correlated material after the interface (layer 11, green
line) shows the characteristic three peak structure. The upper and lower Hubbard
bands however show a pronounced asymmetry due to the hole-doping from the ECR,
which decreases when going deeper into the barrier (layer 16, blue curve).

Fig. 5.6b shows a density plot of the spectral functions over the energy range
! 2 [�12, 12] for layers ↵ 2 {1, . . . , 32}. Weakly-correlated regions I and III show a
broad range (red) of energies with large spectral weight around the fermi level ! = 0
with a width of approximately 10t. For the strongly correlated layers in region II this
range is substantially narrower and shows only a width of approximately 3t to 4t.
This is expected as the quasi-particle weight decreases as a function of the interaction
strength as more and more spectral weight is shifted into the incoherent background.
Interestingly one can see bending in the bands on either side of the interface as one
approaches it. Coming from the weakly correlated side, one starts with a particle-
hole symmetric band. As the interface is approached the negative electric potential
(Fig. 5.5b) shifts the band downwards. If the barrier were thick enough one would
start with particle-hole symmetric spectral function coming from the middle of the
barrier where V = �µ. Upon approaching the interface the strength of the electric
potential weakens hence V↵�µ↵ becomes positive and the spectral functions is shifted
upwards.
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Figure 5.6: ECR for a multilayered nanostructure with 3 regions (I-III). Region I and
III: 10 layers of U = 1 material, with µI = µII = 0 (PH symmetric point); left and
right, semi-infinite lead same material. barrier region: 12 layers of U = 10 material,
hole-doped due to µII = �3.

5.6 Antiferromagnetic order

The question how the presence of long-range order a↵ects the transport proper-
ties of electronic devices based on multilayered nanostructures made from strongly-
correlated materials is natural. Strongly correlated matter shows an abundance of
interesting ordering phenomena and in many cases restricting the system to a para-
magnetic phase only in a DMFT calculation is an approximation which is di�cult
to justify on general grounds. In this chapter we describe how the quantum zipper
algorithm can be extended to allow for AB-sublattice antiferromagnetic order on bi-
partite lattices (AFQZA). The general outline of the derivation follows that of the
paramagnetic case, section 5.4, however now the Green’s functions and self-energies
aquire a 2⇥ 2-matrix structure similarly to the generalisation from the homogenous
paramagnetic DMFT to the homogenous DMFT that allows for antiferromagnetic
order, section 3.7.

The system should be thought as a stack of two dimensional subsystem connected
to each other via spin-diagonal nearest-neighbour hopping terms similarly to the
system considered in the original QZA. Here however the translational symmetry
within the two dimensional system only holds for an enlarged unit cell which contains
one site of type A and one of type B. In order to remove repetitive clutter from the
matrices during the derivation we introduce the following functions

Z↵(!) = ! + i0+ + µ� ✏̄↵ � ⌃̄↵(!)

�↵(!) = ��⌃↵(!) (5.35)

where ✏̄↵ = ✏A↵ = ✏B↵, ⌃̄↵(!) = (⌃A↵(!) + ⌃B↵(!))/2 and �⌃↵(!) = (⌃A↵(!) �
⌃B↵(!))/2. ✏A↵ is the on-site energy of a site in layer ↵ on sublattice A and ✏B↵

on sublattice B. We will assume that these are equal. Similarly ⌃A↵(!) is the local
self-energy of a site in layer ↵ on sublattice A and ⌃B↵(!) on sublattice B.
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In the derivation for the homogenous case we worked in the (cAk�, cBk�)T basis,
here however we start in the AB basis and then switch to the (c

k�, ck+Q�)T basis,
where Q = (⇡, ⇡)T is the ordering vector. This will be especially advantageous when
we derive the left- and right functions for the leads. The basis are related by the
unitary transformation

✓

cAk�

cBk�

◆

=
1p
2

✓

1 �1
1 1

◆✓

c
k�

c
k+Q�

◆

(5.36)

Starting from Eq. 5.4 one can easily write down the generalisation for the AB basis by
replacing the self-energy ⌃↵↵(z) and the Green’s function G↵�(z) with 2⇥2-matrices.

The self-energy ⌃(AB)
↵↵ (z) is diagonal in the AB basis and so are the hoppings, the

chemical potential and the on-site energies. In exact analogy to the paramagnetic
case one introduces the 2⇥ 2-matrix valued function L(AB)

↵ (kk, z) in the AB basis by

L(AB)
↵�n (k

k, z) = �t↵�n+1↵�nG
(AB)
↵↵�n+1(k

k, z)
⇣

G(AB)
↵↵�n+1(k

k, z)
⌘�1

(5.37)

and derives the recursion relation

L(AB)
↵�n (k

k, z) = (z � ✏̄+ µ� ✏k
↵kk)1�⌃(AB)

↵↵ (z)� t↵�n↵�n�1t↵�n�1↵�n

⇣

L(AB)
↵�n (k

k, z)
⌘�1

(5.38)
We now switch to the (k,Q) basis by applying transformation Eq. 5.36 to the recursion
relation above to find the relation in the (k,Q) basis

L↵(!, ✏
k

k) = M↵(!, ✏
k

k)� t↵↵�1t↵�1↵

detL↵�1(!, ✏
k

k)

 

L(22)
↵�1(!, ✏kk) L(12)

↵�1(!, ✏kk)

L(21)
↵�1(!, ✏kk) L(11)

↵�1(!, ✏kk)

!

(5.39)

where we have defined the matrix

M↵(!, ✏
k

k) =

✓

Z↵(!)� ✏
k

k �↵(!)
�↵(!) Z↵(!)� ✏

k

k

◆

. (5.40)

Similarly for the right function R↵(!, ✏
k

k) one finds

R↵(!, ✏
k

k) = M↵(!, ✏
k

k)� t↵↵+1t↵+1↵

detR↵+1(!, ✏
k

k)

 

R(22)
↵+1(!, ✏kk) R(12)

↵+1(!, ✏kk)

R(21)
↵+1(!, ✏kk) R(11)

↵+1(!, ✏kk)

!

(5.41)

The relationship between the Green’s function and the right and left function in the
(k,Q) basis takes the same form as it does in the AB basis

G↵(!, ✏
k

k) = [R↵(!, ✏
k

k) + L↵(!, ✏
k

k)�M↵(!, ✏
k

k)]�1 (5.42)

The local Green’s function on sublattice A and B can be found by transforming
the above equation back to the AB basis and summing over the two-dimensional
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momenta kk, which can be replaced by an integral over the two-dimensional tight-
binding density of states

GA↵↵(z) =
1

2

Z

d✏k⇢2D↵ (✏k)
�

G(11)
↵↵ (✏k, z) +G(22)

↵↵ (✏k, z) +G(12)
↵↵ (✏k, z) +G(21)

↵↵ (✏k, z)
�

GB↵↵(z) =
1

2

Z

d✏k⇢2D↵ (✏k)
�

G(11)
↵↵ (✏k, z) +G(22)

↵↵ (✏k, z)�G(12)
↵↵ (✏k, z)�G(21)

↵↵ (✏k, z)
�

(5.43)

With these relations in place the only remaining di�culty is to find the right and left
function of the semi-infinite leads by solving the quadratic equation that is obtained
if the same 2 ⇥ 2-matrix valued function L�1(!, ✏

k

k) is substituted in both sides
of the recursion relation Eq. 5.39. This however is problematic. In general there
are no closed form expressions for the solution of a quadratic equation of 2 ⇥ 2-
matrices. Worse still both existence and uniqueness can fail spectacularly. The
special structure of the problem at hand however still allows for a solution and even
an explicit expression.

Deep inside the semi-infinite lead the left and right functions coincide due to
translational invariance, L�1(!, ✏

k

k) = R�1(!, ✏
k

k). By virtue of Eq. 5.42 the left
function can be expressed as

L�1(!, ✏
k

k) =
1

2

⇥

G�1
�1(!, ✏

k

k) +M�1(!, ✏
k

k)
⇤

(5.44)

The bulk Green’s function G�1(!, ✏
k

k) of the left lead can be written as an integral
over momenta in the direction perpendicular to the planes

G�1(!, ✏
k

k) =
1

2⇡

Z ⇡

�⇡

dk? (5.45)

 

Z�1(!)� ✏k
k

k + 2t�1 cos(k?) ��1(!)

��1(!) Z�1(!) + ✏k
k

k � 2t�1 cos(k?)

!�1

This integral can be solved analytically with a computer algebra program. We used
Wolfram’s Mathematicar Version 8.0. The result is a complicated expression that
we will not present here, but that the interested reader can find in appendix A.
Substituting this expression into Eq. 5.44 gives an expression for the left function
L�1(!, ✏

k

k) inside the left lead. The expression for the right function R1(!, ✏
k

k) can
be found in the same fashion.

This concludes the necessary steps to generalise the quantum zipper algorithm to
allow for antiferromagnetic order in the nanostructure. The individual steps in the
overall iterative scheme are the same as those in the paramagnetic zipper, algorithm
3, above with all quantities replaced by their 2 ⇥ 2-matrix counterparts and we will
not repeat these steps here explicitly.
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Chapter 6

Mott-Band-Insulator
Heterostructures

A new and exciting direction in the material sciences has been the fabrication of
artificial heterostructures and superlattices composed of di↵erent materials. The un-
derstanding of their electronic properties is not merely of scientific interest but also
indispensable for the design and realisation of novel electronic devices based on the
unique electronic e↵ects found at interfaces but absent in the bulk. A variety of
heterostructure have been fabricated and studied including high-Tc superconducting
cuprates[105, 35, 1], Mott- and band-insulator heterostructures[78] and superlattices
of transition metal oxides[55]. Surprisingly heterostructures comprising Mott- and
band-insulators were reported to have metallic behaviour at the interface and even
high mobility. In this chapter we are solely concerned with this type of heterostruc-
tures. A fundamental question is what e↵ects contribute to the change in the elec-
tronic state at and near interfaces and surfaces.

In heterostructures made of Mott insulating LaTiO3 and the more conventional
band-insulating SrTiO3 the transition metal Ti ions on the perovskite B sublattice
are identical and only the charge-controlling A sublattice ions (La, Sr) change across
the interface, c.f. Fig. 6.1. It was found that the electron density in the SrTiO3 region
does not depend significantly on the interaction strength or other strong correlation
aspects of the problem, but is controlled mainly by the (self-consistently screened)
potential arising from the La [81]. At the interface charge neutrality is violated which
leads to a redistribution of charge to maintain an electrostatic stable solution.

In analogy to e↵ects of lattice relaxation at interfaces which are referred to as
“atomic reconstruction” the e↵ect described above has been called “electronic re-
construction”1. This observation has stimulated a considerable amount of theoretical
investigations. Okamoto and Millis[81] used an unrestricted Hartree-Fock approxima-
tion to qualitatively explain the experimental findings of Ohtomo et al.[78] who first
discovered the existence of metallic behaviour in atomically precise digital digital het-
erostructures by inserting a controllable number of LaTiO3 into bulk SrTiO3. Later
the same authors[82] improved their treatment of the electronic correlation e↵ects

1Originally this term was coined by Hesper et al.[48] to describe the compensation of polar charge
at the surface of bulk K3C60 but Okamoto and Millis have suggested to apply the term more generally
to electronic surface and interface behaviour that is di↵erent from the bulk.

241



Figure 6.1: Illustration of the cubic perovskite structure (white spheres denote oxy-
gen). An LaO layer lies in the center, bordered by two TiO2 layers, with a SrO layer
at top and bottom. Taken from Ref. [84].

when they employed DMFT calculations with the two-site approximation of Pottho↵
and Nolting for the solution of the impurity problem. In these studies the existence
of strong charge reordering in an approximately three unit-cell-wide crossover region
was found to give rise to metallic behaviour in otherwise bulk-insulating materials.
Pentcheva and Pickett[84] performed density-functional theory calculations including
a Hubbard-type on-site Coulomb repulsion (LDA/GGA + U). In contrast to earlier
works that focussed on model Hamiltonians they tried to account for material spe-
cific aspects. They found that the charge mismatch at the interface is compensated
by checkerboard charge order of Ti3+ and Ti4+ sites within the interface layer. For
the ideal structure they found the interface state to be a narrow gap insulator, but
atomic relaxation at the interface shifted the Ti3+ lower Hubbard upward leading to
conducting behaviour.

Common to all these studies is the technical challenge to account for strong local,
electronic correlation e↵ects in a spatially non-uniform system. The DMFT gener-
alised to inhomogenous systems with the addition of long-range Coulomb interactions
on the Hartree level provides an excellent tool to study such systems. In addition it
allows for the calculation of layer-resolved transport properties as we will see below.
This is important as the study of the transport properties of the two-dimensional
electron gas at the interface has been left unexplored for the most part. Although
previous studies have taken such an approach[82] here the rather crude two-site ap-
proximation has been used for the solution of the impurity problem. The NRG is
the state-of-the-art impurity for the single-band DMFT at low temperatures. In the
following we derive expression for the layer-resolved in-plane conductivity and the
Hall conductivity.

6.1 Conductivity calculations in the DMFT

Before we start with the actual derivation of the layer-resolved conductivities let us
briefly review the role of vertex corrections in the calculation of conductivities and
the special situation encountered in the DMFT approximation[37].
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The measured current in a system in response to a perturbation of the Hamiltonian
H by an electric field E is given by the sum of two terms

J �(r, t) = hja(r, t)i+ i
e2

!

⌧

@2✏

@k2
c†
k

c
k

�

E�(r, t), (6.1)

with ✏(k) the dispersion relation. The first term is commonly referred to as the param-
agnetic contribution while the second one is the diamagnetic term. The paramagnetic
term has a contribution linear in the applied electric field E. The proportionality con-
stant which relates the linearised current response J �(r, t) to the applied field E�(r, t)
is given by the Kubo formula for the electrical conductivity
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E⌫e
iq·r�i!t (6.2)

where in the second line we assumed that the electric field E(r, t) has only a single
frequency and the system possesses a translational symmetry. ⇧�⌫(q,!) in the third
line is the retarded current-current correlation function which is defined as

⇧�⌫(q, t� t0) = �i⇥(t� t0)
Dh

j†�(q, t), j⌫(q, t
0)
iE

. (6.3)

For the actual calculation of the correlator ⇧ it is usually most convenient to work in
the Matsubara formalism where it assumes the form

⇧�⌫(q, i⌦n) = �
Z �

0

d⌧ei⌦n⌧
D
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(6.4)

where the current operator is defined by j(q) =
P

k� vkc
†
k�ck+q� with v

k

the gradient
of the dispersion ✏

k

. The correlator ⇧ can be written in a series expansion in the
usual way by expanding the S-matrix. The first terms in this expansion are given by
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Similar to the one-particle irreducible self-energy ⌃
k

(!) = ⌃(!) also here sim-
plifications arise in the d ! 1 limit. The two-particle irreducible vertex func-
tion � becomes purely local hence momentum independent, ���0

kk

0
q

(i!m, i!0
m, i⌦n) =

���0
(i!m, i!0

m, i⌦n)[119]. This can be easily seen in real-space. In the derivation of
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(a) Two particle irreducible
vertex function �.

⇧�⌫(q, i⌦n) = +
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k + q
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k + q

k0

k0 + q

. . .

(b) Ladder decomposition of the response function
⇧(q, i⌦n) with 4-momenta in the digrams k = (k, i!m).

Figure 6.2

the DMFT we saw that the scaling rules are such that whenever two sites are con-
nected by at least three independet paths, the corresponding diagram vanishes in the
d ! 1-limit. For � in the real-space representation this is certainly the case. If it
were not so, � could be cut into two pieces by cutting only two propagators in con-
tradiction to the assumption that it is two-particle irreducible. The momentum sums
in the second term Fig. 6.2b can therefore be performed independently in the left and
right particle-hole bubble, ignoring momentum conservation at the vertex function.
For a dispersion relation ✏

k

that is even under k ! �k the velocity v
k

is odd. Since
the Green’s function G(k, i!m) depends only through the dispersion relation on the
momentum k in the DMFT approximation it is an even function of k. The terms
under the momentum sums are therefore overall odd functions of the momentum and
the sum vanishes. That means in the DMFT the current-current correlation function
is given solely by the first particle-hole bubble and knowledge of the local self-energy
and one-particle Green’s function su�ces to calculate it.

6.2 Layer-resolved conductivities

In this section we derive the layer-resolved in-plane component of the conductivity for
a multi-layered heterostructure and Hall conductivity for a magnetic field B applied
perpendicular to the planes. In the following we orient the structure such that the
magnetic field points along the z-direction with planes of the heterostructure parallel
to the x-y plane. The system is assumed to posses a translational invariance along the
x and y direction. Voruganti et al.[111] used a path integral formulation to study the
linear response of a two-dimensional Hubbard model to electromagnetic perturbations
at finite temperatures T . Here however the focus lay on non-trivial magnetic order-
ing phenomena and the local on-site Coulomb interaction U in the Hubbard model
was either ignored completely or accounted for a crude way by the introduction of
phenomenological damping rates in the Green’s function through finite quasiparticle
lifetimes ⌧ . Here we extend their original derivation not only to multi-layered het-
erostructures but also consistently implement the description of interaction-induced
correlation e↵ects on the DMFT level.

We start from the non-interacting Hubbard model on a simple cubic lattice with
nearest-neighbour hopping in three spatial dimensions

H0 =
X

hi,ji,↵

tij,↵c
†
i↵cj↵ +

X

h↵,�i,i

t↵�,ic
†
i↵ci� (6.6)
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where we have separated inter- from intra-layer hopping processes. We choose to label
the sites in the three-dimensional structure such that the indices i and j label sites
within a given layer perpendicular to the z-direction while ↵ and � are layer indices,
i.e. the z-coordinate of the site. The hopping amplitude tij,↵ describes intra-layer
hopping of electrons from site i to site j both located in layer ↵ while t↵�,i describes
inter-layer hopping. Due to the translational invariance along the x and y direction
we can drop the index i in the latter hopping amplitude, t↵�,i ! t↵�. In the following
we are not interested in magnetic symmetry-breaking and restrict the system to the
paramagnetic regime. To remove clutter from the notation we omit the spin-index
in the following. The spin degree of freedom can be accounted for by multiplying
the transport coe�cients by a factor of two. The e↵ect of electromagnetic fields
on the dynamics of the electrons can be implemented in a gauge-invariant way via
Peierl’s substitution. Here the hopping integral is modified by a phase-factor which
is determined as the line integral of the vector potential A(r, t) along the hopping
path,

ti↵,j�(A) = ti↵,j� exp

✓

ie

h

Z

rj�

ri↵

A(r, t) · dr
◆

. (6.7)

where A(r, t) is related to the applied fields E(r, t) = �@A/@t and B(r, t) = r ⇥
A(r, t). We approximate the continuum phase factor above by the value of the vector
potential at the midpoint between lattice site i↵ and j�

Z j�

i↵

A(r, t) · dr ⇠ A(Ri↵,j�, t) · ri↵,j� ⌘ Ai↵,j�(t) · ri↵,j� (6.8)

where ri↵,j� ⌘ rj� � ri↵ and Ri↵,j� ⌘ (ri↵ + rj�)/2. In the following we are interested
in situations where a weak, uniform, layer-independent electric field E is applied per-
pendicular to the stacking axis (z), i.e. in x direction, and the applied magnetic field
is a weak and both layer- and time-independent field which points along the z direc-
tion. The vector potential Aq↵ therefore consists of a spatially uniform component
aE
n↵ (subscript n indicates bosonic frequency ⌦n) modelling the electric field E and a

static contribution aB
q↵ modelling the constant magnetic field B along the z-direction,

A
q,⌦n = aE

n �q,0 + aB
q

�⌦n,0 . (6.9)

We will mainly work in momentum space for the derivation and it will prove advanta-
geous to introduce the relativistic notation for the momentum and frequency indices,
e.g. p ⌘ (p,!m) for the fermions with !m = ⇡(2m + 1)/� a fermionic Matsubara
frequency and q ⌘ (q,⌦n) for the bosonic gauge-field with ⌦n = 2⇡m/� a bosonic
Matsubara frequency.

For the geometry we consider here it is always possible to choose a gauge where
the corresponding vector potential A has a vanishing z-component. We can already
see that since ri↵ � ri� points along the z direction for inter-layer hopping events the
phase factor Ai↵,j� · ri↵,j� vanishes. Nontrivial phases are only picked up in intra-
layer hopping events. For the derivation of the linear response to an electromagnetic
perturbation A at finite temperature T we start from the grand-canonical partition
function of the system

Z[A] = Tr [exp [�� (H[A]� µN )]] (6.10)
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where µ denotes the chemical potential, � the inverse temperature andN =
P

i↵ c
†
i↵ci↵

is the total particle number operator. The partition function may be conveniently
expressed as a path integral over Grassmannian fields ci↵(⌧) and c†i↵(⌧),

Z[A] ⌘ exp��⌦[A] =

Z

D[c†, c] exp



�
Z �

0

d⌧ (L0[c
⇤, c,A] + Lint[c

⇤, c,A])

�

. (6.11)

Here ⌦[A] is the so-called grand-canonical potential which will be useful for the deriva-
tion of the conserved currents later. L0[c⇤, c,A] is the non-interacting Lagrangian
density and Lint[c⇤, c,A] describes the local Coulomb interactions U↵. L0[c⇤, c,A]
given by the following expression

L0[c
⇤, c,A] = c†i↵(⌧) [(@/@⌧ � µ) �↵��ij + tij,↵(A)�↵� + t↵��ij] cj�(⌧) . (6.12)

The e↵ects of local Coulomb interactions U↵ can be included on the level of the DMFT
description by adding layer-dependent, purely local self-energies ⌃↵(i!n) to the above
Lagrangian density. This produces the correct DMFT single-particle Green’s function.
We will employ the DMFT for heterostructures as outlined in chapter 5 to determine
the self-energies ⌃↵(i!n) for the concrete system. The Lagrangian density for an
interacting system in this approximation thus assumes the form

L[c⇤, c,A] = c†i↵(⌧) [(@/@⌧ � µ+ ⌃↵(i!n)) �↵��ij + tij,↵(A)�↵� + t↵��ij] cj�(⌧) (6.13)

Note that this form of the Lagrangian can only be used to calculate the Green’s
function Gij in the DMFT approximation and the conductivity � only in the absence
of vertex corrections. Since the current J couples in the grand canonical potential to
the vector potential A, the component � of a current response in layer ↵ with Fourier
component q in terms of a spatially uniform electric field component aE

n and a static
magnetic component aB

q

can be expressed as the functional derivative

J �
q↵ = �(1/V )�⌦[A]/�A�

�q↵ (6.14)

where V is the normalisation volume. Note that the exact current response is given
when equation Eq. 3.36 is used. For the calculation of the conductivity we are in-
terested in the current response linear in the applied field E while for the Hall con-
ductivity is must be linear in both E and B. Following Voruganti et al.[111] we thus

expand the action S =
R �

0
L in powers of the vector potential A. Expanding the

exponential function in Peierl’s substitution we find that the term of order n � 1 in
A is given by
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(ie)n
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where the last term vanishes due to r↵� k êz ? A↵�,i. We now Fourier transform
in the x and y direction and leave the layer index in real space. The Grassmannian
fields and the gauge potential can be written as

ci↵(⌧) =
1p
�L

X

p

exp(ip · ri↵ � i!m⌧)cp↵

Ai↵,j�(⌧) =
X

q

exp(iq ·Ri↵,j� � i⌦n⌧)Aq,↵� (6.16)

where p = (p,!m), q = (q,⌦n), L is needed for proper normalisation and is given by
the number of sites per layer and bosonic Matsubara frequencies ⌦n and fermionic
frequencies !m. For each of the two-dimensional layers in the heterostructure the
electronic dispersion relation is defined as

✏
p↵ =

X

hiji

t↵ exp(ip · rij) = �2t↵(cos px + cos py) , (6.17)

where t↵ is the nearest-neighbour hopping strength in layer ↵. We now substitute the
expansions Eq. 6.16 into the the action Eq. 6.15 and after a lengthy calculation[111]
one finds for the n � 1 order term of the action

S(n) =
en
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Here we introduced the short-hand notation ✏↵
p

where the subscripts signifies partial
di↵erentiation with respect to the indicated component, i.e. ✏↵

p

= @✏
p

/@p↵. Due to
momentum and energy conservation in the system the four-momenta are constrained
by

P

a=1,...,n qn = p � q. Note that due to the vanishing z component of the vector
potential A only partial derivatives of the dispersion relation with respect to the x
and y components appear. From Eq. 6.18 we find that to third order in the vector
potential A the action of the system is given by
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The notation �Ai signifies that we are expanding up to ith order in A. In the dia-
grammatic analysis that follows we will refer to the contribution of order n in Aq↵ as
the “V n vertex”. Since the action is quadratic in the fermionic degrees of freedom we
can integrate them out by virtue of the relation

R

D †D exp[ †(K + T + V ) ] =
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�
q = 0
⌦n = 0

↵ p,m
↵ ↵

Figure 6.3: The diagram of order 0 in the vector potential A. The contribution from
this diagram vanishes for all even dispersion relations, ✏

p↵ = ✏�p↵.

det[K+T +V ]. The Green’s function of the system in the absence of electromagnetic
fields is with the help of the above expression easily found to be

Gp↵� = �pq (Tpp,↵� +Kpp,↵�)
�1 (6.20)

and the e↵ective action can be written as

��⌦[A] = Tr lnG�1 + Tr ln
⇥

1 +G · V [A]
⇤

. (6.21)

Only the second term on the rhs of the above equation has a dependence on the vector
potential and can be expanded using the following identity

Tr ln(1 +G · V [A]) = �
1
X
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1
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n=1

Tr(G · V [A])n/n (6.22)

The component � of the current density �A0 J �
q↵ in layer ↵ to zeroth order in the

external fields is found by expanding the action up to first order in the vector potential
A using the above relations and application of the definition of the current density
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where subscript on the Green’s function indicates the fermionic frequency m ⌘ !m.
The DMFT self-energy is momentum independent and hence the layer Green’s func-
tion p↵↵ for layer ↵ depends only through the dispersion relation ✏

p↵ on p. For
dispersions with an inversion symmetry ✏

p↵ = ✏�p↵ the term under the sum above is
an odd function of p and therefore the right hand side vanishes as it should. Fig. 6.3
depicts a diagrammatic representation of the above expression. The small, black cir-
cles signify dispersion relation on the layer written next to it (here ↵) and with as
many partial derivatives as wiggly lines are attached (here 1 only). The wiggly lines
themselves are bosonic modes of the vector potential with the component written
next to it (here �) and the Fourier component bosonic frequency below (q, ⌦n). Due
to energy and momentum conservation q = 0 and ⌦n = 0. The solid black line with
the arrow indicates a Green’s function between the layers, Fourier component and
fermionic frequency next to it.
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Figure 6.4: Diagrammatic representation of the first and second term in Eq. 6.24.

6.2.1 Longitudinal conductivity

For the calculation of the longitudinal, in-plane conductivity ��⌫
�↵(⌦n) we are interested

in the prefactor in front of the contribution to the response kernel linear in the electric
part of vector potential �

q0aE
n which describes a uniform electric field E. The sub- and

superscripts indicate that ��⌫
�↵(⌦n) measures the �-component of the current response

in layer ↵ due to the application of the ⌫-component of an electric field in layer �.
Contributions to J �

r� linear in aE
n arise from loops with either one V 2 vertex or two

V 1 vertices and they are given by
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(6.24)

where subscript n indicates bosonic Matsubara frequency n ⌘ ⌦n. In real time
we have E⌦ = i⌦aE

⌦ . One finds that the ⌦n = 0 contribution of the paramagnetic
term (first one) cancels the diamagnetic contribution (second term). Fig. 6.4 shows
a diagrammatic representation for the two contributions above (in that order). The
imaginary-time response functions can be used to calculate the real-time response
at any given temperature T by performing the analytic continuation, i.e. i⌦n ! ⌦.
Writing the response to the electric field as �E1 J �

⌦� =
P

↵ �
�⌫
�↵(⌦)E

⌫
↵(⌦) we find the

conductivity by comparison with Eq. 6.24 to be given by

��⌫
�↵(⌦) = �(e2/V )

X

p

✏⌫
p

✏�
p

(1/i⌦)⇧↵�(p,⌦) (6.25)

where ⇧↵�(p,⌦) is the analytic continuation of the bubble function

⇧↵�(p, i⌦n) =
1

�

X

m

G
pm�↵Gpm+n↵� . (6.26)

For the real part of the conductivity we need to find the imaginary part of the bub-
ble function ⇧↵�(p,⌦). We express the Matsubara Green’s functions as the energy
integral over the spectral function times a free Matsubara Green’s function G0(✏, i!m)

Gp↵� = �i

Z

d✏
A↵�(p, ✏)

i!m � ✏

= �i

Z

d✏ G0(✏, i!m)A↵�(p✏) (6.27)
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Using standard relations[69] for the analytic continuation one finds (Appendix D)

Im⇧↵�(p,⌦)/⌦ = � 1

⇡

Z

d✏A↵�(p, ✏)A�↵(p, ✏+ ⌦)
nF (✏+ ⌦)� nF (✏)

⌦
(6.28)

In the limit ⌦! 0 for static driving fields E the expression simplifies and we find

lim
⌦!0

��⌫
�↵(⌦) = (e2/V )
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2 @nF (✏)
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(6.29)

For an actual calculation performing the above momentum sum is computationally
quite expensive. One usually prefers to trade momentum sums for one-dimensional
energy integrals with a suitably chosen density of states like we did in the calculation
of the local Green’s function. This is also possible here although due to the factors ✏�

p

✏⌫
p

in the sum it is not simply given by the non-interacting density of states. For a system
on a simple cubic lattice with � = ⌫ such an expression is derived in Appendix F.
The expression for the xx-component of the dc conductivity then assumes the form

�xx
�↵ = (e2/V )

Z

d✏

Z

d✏
p

⇢xx(✏
p

) [A↵�(p, ✏)]
2 @nF (✏)

@✏
(6.30)

with ⇢xx(✏
p

) the transport density of states. In the T = 0 limit the Fermi function
nF (✏) becomes a step function and the derivative a sharp peak located at the ✏ = ✏F .
Then the conductivity depends only on the density of states at the Fermi level. Our
dispersion relation is an even function of p and thus ✏↵

p

is odd and the above expression
is finite only if � = ⌫. ��⌫

�↵(⌦) describes the current response in layer � due to an
applied electric field in layer ↵. For a layer-independent electric field applied along
the x-direction the total current in layer � only has a non-vanishing x-component and
is found by summing over all layers in the heterostructure

�E1 J x
⌦� = Ex

X

↵

�xx
�↵(⌦) . (6.31)

The total current through the system is obtained when the sum
P

� is performed.
Note that for a homogenous system the expression Eq. (6.29) after Fourier transform-
ing in the z direction reduces to the known expression[94]
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(6.32)

where p = (px, py, pz). Before we turn to the Hall conductivity in the next section
we briefly discuss the role of vertex corrections for the conductivity. Indeed in lay-
ered systems one has to be careful because not all vertex corrections drop out in all
cases. For instance if we had calculated the longitudinal conductivity in the stacking
direction of the planes we would be in trouble. Here vertex corrections cannot be ar-
gued to drop out and their neglect is indeed a crude approximation. For the in-plane
component of the conductivity however the same arguments as in the homogenous
system can be invoked (one might think about the system as being made up of unit
cells of infinite length in the z direction) and indeed it su�ces to calculate simply the
particle-hole bubble as we did.
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Figure 6.5: Triangle graphs, (a) & (b), with three V 1 vertices and the other diagram
(c) for the calculation of the Hall conductivity.

6.2.2 Hall conductivity

For the calculation of the Hall conductivity we are interested in the current response
�EB
2 J ↵

q� linear in both the electric field E and the magnetic field B. Contributions
may arise from diagrams with three V 1 vertices, or one V 1 and one V 2 vertex or
diagrams with one V 3 vertex. Recalling that Aq↵ = aE

n↵�q,0 + aB
q↵�⌦n,0 each such

diagram gives terms quadratic in either aE
n↵ and aB

q↵ or linear in both. For the Hall
conductivity only the latter kind contributes. In real time we have E⌦ = i⌦aE

⌦ and
B↵

q

= i✏↵��q�aB
q

�
and thus the real part of the Hall conductivity �↵�✏

H ��↵(⌦) requires
us to evaluate the real part of each Matsubara sum to linear order in q and ⌦. As it
turns out only three of the six diagrams linear in aE

n↵ and aB
q↵ contain contributions

linear in both q and ⌦n. Two are given by the triangle graphs depicted in Fig. 6.5
(a) and (b) and one is the diagram with one V 1 and one V 2 vertex in Fig 6.5 (c). We
split the response current �2J �

r� into a contribution from the triangle graphs (1) and
a contribution from the other diagram (2)

�EB
2 J �

q� = �(1)2 J �
q� + �(2)2 J �

q� (6.33)

Under the assumption that the dispersion relation ✏
q

is layer-independent, any layer-
dependence in the response current is entirely due to interaction e↵ects. After a
lengthy calculation (Appendix C) one finds that the contribution due to the triangle
graphs is given by
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where we have defined the vertex function

⇧H
pn��↵ =

X

m

G
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pm�n,��] . (6.35)
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The contribution due to the diagram depicted in Fig. 6.5 (c) takes the form
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Upon summation of the two contributions and comparison with the definition of the
Hall conductivity
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one finds for E-field in y-direction, the B-field along the z-axis and the current re-
sponse in x-direction
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with⇧H
p�(⌦) =

P

↵� ⇧
H
p��↵(⌦) the analytic continuation of the vertex function. Similar

to the case of the conductivity one can use the standard tricks for the analytical
calculation. However here the calculation is slightly more involved and can be found
in Appendix E. After a lengthy calculation one finds
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Note here that this expression does not only probe the properties of the system at
the Fermi level in the dc limit ⌦ ! 0 for T = 0. To find the total Hall current one
performs the remaining sum over all layers, J � =

P

� J �
� . Under the three sums the

terms in Eq. 6.39 can be reordered and one sees that the first terms cancels the second
one. Partial integration of the last term allows one to combine it with the second to
last one to find
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which only propes low energy properties for T ! 0. After Fourier transformation
in the z direction the above expression agrees with the one found by Pruschke et
al.[94] for a homogenous system. We believe that vertex corrections drop out of this
expression in the d ! 1 limit for similar arguments as in the case of the conductivity,
but we haven’t proven this formerly.
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Figure 6.6

6.3 Results

The DMFT generalised for long-range Coulomb interactions as outlined in section 5.5
allows to study a variety of strongly-correlated heterostructures including charge re-
ordering phenomena at the interfaces. Electronic charge reconstruction has profound
influence - especially when strong interactions are involved - on the electronic state of
the system near the interface. Transport measurements provide an e�cient probe for
the low-energy degrees of freedom in complex system. Therefore the study how charge
leakage across the interface a↵ects transport coe�cients such as the conductivity and
the Hall coe�cient is key to the successfull understanding of any strongly-correlated
inhomogenous device. The temperature in these systems is an important parameter
in this regard. We know from DMFT bulk studies that the first order Mott-Hubbard
metal insulator transition has a critical endpoint at a finite temperature Tc. The
phase transition line is shaped such that in certain parameter regimes of the inter-
action strength U an increase in the system temperature leads to the disappearance
of the metallic solution and the system becomes insulating. This is surprising as
one usually expects thermal activation of band gaps and therefore an increase in the
conductivity when the temperature is raised. From these considerations one can al-
ready expect interesting behaviour from the interplay between interface doping and
quenching of the Kondo e↵ect by temperature fluctuations.

We concentrate here on Mott-Band insulator heterostructures modelled as single
band Hubbard models on a simple cubic lattice with nearest-neighbour hopping. The
restriction to such a simplified model neglects important orbital degrees of freedom
and also any possible atomic reconstruction which might appear at the interface[84].
This is justified as our motivation is not the quantitative explanation of experiments
but rather to work out the fundamental e↵ects which are key to the understanding
of charge transport for these types of systems. We are also currently not interested
in magnetic ordering phenomena, so we restrict the DMFT equations to the param-
agnetic regime and do not allow for symmetry breaking by the introduction of the
AB-unit cell2.

2Note that the combination of the DMFT generalisations for electronic charge reconstruction and
AB-sublattice anti-ferromagnetic order can be readily combined in a straightforward manner.
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Figure 6.7: The system is composed of 30 band-insulating layers with U = 1 attached
to semi-infinite, band-insulating lead with the same parameters to the left. The
barrier region comprises 20 Mott-insulating layers with U = 16 > Uc followed by 20
band-insulating layers with U = 1 and capped o↵ with a semi-infinite, band-insulating
lead to the right. The numbers in the round brackets are bulk occupation numbers.

Fig. 6.7 shows the layout of the system we are considering. The first 30 layers have
very weak on-site interaction, U = 1, and their background charge ⇢(0) is set to 0 so
as to model a band-insulator with its single band completely emptied (region I). The
central region consists of 20 layers with a Hubbard interaction of U = 16 which is in
excess of the critical U for Mott-insulating behaviour in bulk calculations at half-filling
(region II). The background charge ⇢(0) for these layers is indeed set to ⇢(0) = 1. The
system ends on the right side with another 30 weakly-correlated layers, U = 1, with
their background filling set to ⇢(0) = 2 to model a band-insulator with its conduction
band completely filled (region III). To remove finite size e↵ects we attach semi-inifite
leads right and left to the system with the same parameters as the adjacent layers.
To complete the system description we have to specify the local chemical potential in
each of the three regions and the two leads. The potential mismatch at the interface
will be the energetic motivation for charges to accumulate on one side of the interface
while avoiding the other. Of course this process does not continue indefinitely. As
more and more charges pile up on one side and more and more holes on the other the
background charges will no longer be compensated and an electric field builds up in
response. Charge will continue to cross the interface and the electric potential will
grow in size until it compensates the jump in the chemical potential. The exact shape
of the electric interface potential will however depend on microscopic details such as
the band-structure. In our calculation we choose a µI = 2 for region I, µII = 0 for
region II and µIII = �2 for region III. The leads are infinite in size and therefore have
to be electrostatically neutral as any deviation from this state would cost an infinite
amount of energy. Since the background charge in the left (right) lead has been set
to 0 (2), the chemical potential therefore has to be smaller µL . �6 (µR & +6) so as
to push all of the spectral weight above (below) the Fermi level. For our calculation
we chose µL = �6 and µR = +6. The potential mismatch at the interface between
region I and II is therefore �µI�II = µI �µbulk

I �µII +µbulk
II = (�6�2�0+0) = �8.

Charge will therefore rearrange at the interface until an electric potential has built

254



I II III
I II III

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70  80

 0  10  20  30  40  50  60  70  80

Region I - BI(0)
Region II - MI(1)
Region III- BI(2)

Region I - BI(0)
Region II - MI(1)
Region III- BI(2)

-10

-5

 0

 5

 10

layer _

(a) Layer-resolved occupation ⇢↵ (top
panel) and electric potential V↵ (bottom
panel). The electronic charge reconstruc-
tion can be seen to create linear potential
across part of the system with U > Uc (re-
gion II).

II
-16 -12 -8 -4 0 4 8 12 16 20

t
0

0.05

0.1

0.15

0.2

A
m
(t
)

_=31
_=32
_=33
_=34
_=35

(b) Spectral functions for layers 31-35 in
the Mott-insulating region II close to the I-
II interface. The width of the quasiparticle
peak rapidly diminishes when the center of
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up which takes a value of +8 inside region I. For the right interface we find likewise
�µII�III = (6� (�2)� 0 + 0) = 8.

The setup we have chosen here posseses a special symmetry which helps the conver-
gence of the calculation. The system is invariant under the transformation ↵ ! N↵�↵
plus a particle-hole transformation, where N↵ is the total number of layers not includ-
ing the leads. Note that above all chemical potentials change sign under ↵ ! N↵�↵.
This symmetry ensures that the overall system is always charge neutral and one does
not have to take special precautions in the calculation to make ensure convergence to
the charge neutral point.

Fig. 6.8a shows the layer-resolved occupation ⇢↵ and the electric potential V↵ after
convergence for a system temperature of T = 10�8. Far away from the I-II interface
inside region I the occupation assumes the background value ⇢↵ = ⇢(0)I = 0 and the
electronic configuration for layers 1 to ⇡ 20 is that of a band-insulator with an empty
band. Closer to the interface charge accumulates thus particle-doping the band-
insulator. The last layer before the interface (↵ = 30) has an occupation of ⇢30 ⇡ 0.2.
The adjacent Mott-insulating layer on the other side of the interface is hole-doped with
⇢31 ⇡ 0.89. The Mott-insulating layers however quickly return to their bulk charge of
⇢(0)II = 1 within 3� 4 layers and so Layers 34� 47 are locally charge neutral. Due to
the symmetry discussed above we have ⇢↵ = 2�⇢N↵�↵ and V↵ = �VN↵�↵: the electric
potential vanishes at the center of the system. Region II sees an approximately linear
electric potential from about V31 ⇡ 5.6 to V50 ⇡ �5.6 and connects with a potential
which starts deep in region I at a bulk value of V1 ⇡ 8 and drops within about 10
layers to the interface slightly. The asymptotic values of the electric potential are
expected from our considerations above. It is however noteworthy that the Mott
insulator deviates only slightly from its bulk charge although the electric potential
causes substantial deviations of the local Fermi level compared to their bulk value.
For example for layer 31 in region II the shift of the local Fermi level from the bulk
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Figure 6.9

value is ⇡ 5.6 while for layer 30 in region I it is only ⇡ �1.8, but the deviation in the
background charge is only �⇢31 ⇡ �0.12 while for layer 30 it is larger, �⇢30 ⇡ 0.2.

The explanation for this behaviour is linked to the strong correlations within region
II. Initially the Fermi level lies in a wide Mott gap and substantial potential strength
is needed to push it into either the upper or lower Hubbard band. These bands
are centered around ±U/2 = 8. Once the Fermi level starts to move into, say, the
upper band, the local density of states becomes finite which leads to an increase in the
hybridisation function of the underlying impurity model and the appearance of a finite
Kondo temperature TK . If T < TK a Kondo resonance appears and the occupation
deviates from half-filling. The width of the resonance is controlled by the Kondo
temperature. Fig. 6.8b shows the spectral functions for layers 31 � 35. A narrow
Kondo resonance can indeed be seen at the Fermi level with a width which decreases
rapidly as one goes towards the region center. For EF ⇡ 5.6 < 8 this resonance will be
narrow and therefore the change in occupation in the Mott insulator is much smaller
than the one in the band-insulators on the other side of the interface. As one walks
goes deeper into region the lower Hubbard band moves away from the Fermi level
resulting in ever narrower resonance peaks and in turn ever lower Konto temperature
TK . Once the local Kondo temperature falls below the system temperature T = 10�8

the resonance is cut o↵ by temperature and the corresponding layer falls out of its
Fermi liquid states. In principle not only doping due to the electric potential can
create a Kondo resonance. Helmes et al. [46] showed that a metallic layer imposes
due to the tunnel-coupling an e↵ective lower bound on the hybridisation function of
an adjacent Mott-insulating layer. This induces, even at half-filling, a finite TK in the
Mott insulator and a resonance may appear if T < TK . This e↵ect is however much
weaker than the e↵ect of the electric potential in our set-up.

Fig. 6.9 summarises the electronic state of the system. In subfigure (a) spectral
functions of four di↵erent layers are shown. As already deduced from the charge dis-
tribution weakly-correlated layer 1 (black) indeed resemblels a non-interacting three-
dimensional density of states which has been shifted due to the electric potential such
that no spectral weight resides below the Fermi level. The last weakly correlated
layer 31 (red) before the I-II interface is indeed heavily particle doped as some of the
spectral weight has been transferred below the Fermi level due to band bending. For
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Figure 6.10

the strongly correlated region II, layer 40 (blue) at the center of region II bears clear
signatures of a Mott-insulating state. The particle-hole symmetric spectrum shows
well pronouned Hubbard bands and a large gap about the Fermi level. Right before
the interface the spectrum of layer 31 (green) has been shifted due to the electric po-
tential by �! ⇡ 5.6 relative to layer 40 partly moving the Fermi level into the lower
Hubbard band. This has indeed created a narrow Kondo resonance peak at the Fermi
level resulting in metallic behaviour. The peak reaches up to the non-interacting value
due to the Friedel sum rule. Fig. 6.9b shows a density plot of the spectral weight
distribution in the system. The black arrows mark the upper and lower edge of a
non-interacting, particle-hole symmetric density of states (upper and lower arrow)
and the Fermi level (middle arrow). Regions of high spectral weight are colored red
and those with low weight blue. Starting from the right one can see the conduction
band (red) of the band-insulator completely above the Fermi level. Approaching the
interface the electric potential bends the band downward pushing it partly into the
Fermi level, resulting in metallic behaviour at the interface. Strongly-correlated re-
gion II shows the linearly deformed upper and lower Hubbard bands (yellow). Close
to the interface metallic states can be seen as as sharp red lines which end 3-4 layers
into the region from either side.

Closer inspection of the weakly-interacting band in region I, reveals an interesting
pattern of interference fringes superimposed onto the area colored red as yellowish
lines. Appendix B lists spectral functions for all layers in the heterostructure. One
can indeed see the change in the number of peaks appearing in the flat part of the
density of states as one moves away from the interface. Due to the mismatch in the
band structure delocalised particle states in the weakly-correlated region are reflected
at the interface and interfer. The number of interference peaks at a distance L from
the interface is therefore determined by the number of standing wave states in a box
of length L. Closer inspection of the spectra indeed reveals that the number of peaks
grows linearly with the distance.

Fig. 6.10 shows the spectral weight distribution for a higher system temperature of
T = 0.004. The band-insulating region of the heterostructure is only mildly a↵ected.
The sharper features - especially the interference peaks at the top of the density of
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Figure 6.11

states - are slightly washed out from the thermal fluctuations. However the temper-
ature has had a really dramatic e↵ect on strongly-correlated region II. The metallic
states at the interface have almost completely disappeared. We understand this from
the perspective of the layer-dependent Kondo temperatures. With Kondo tempera-
tures decreasing for layers further away from the interface the system temperature
is currently so high that even the layer closest to the interface has its Kondo e↵ect
quenched by temperature. Indeed the corresponding spectral function in Fig. 6.10a
(green) shows the on-set of a tiny peak at the Fermi level which shows that the sys-
tem temperature is on the brink of the particular TK . In the following we analyse the
layer-resolved conductivity �xx

↵ in this interesting temperature regime.
Fig. 6.11 and Fig. 6.12 present spatially resolved conductivity data calculated

from the one-particle Green’s functions according to Eq. 6.30. As expected for tem-
peratures T = 0.004 and above Fig. 6.11a shows that the strongly-correlated part
of the system is essentially non-conducting and all charge transport is performed
by the doped band-insulator close to the interface. In general electrical resistivity
⇢xx = 1/�xx in metals increases with temperature and this behaviour is found here
as well. With higher temperatures the number of layers near the interface which
contribute to the transport reduces. For T = 0.009 only the 5 layers closest to the
interface take an appreciably part in the charge transport. One finds that the imagi-
nary parts of the self-energies ⌃↵(!) show an increase - especially around the Fermi
level - upon raising the temperature. This leads to a reduction in the quasiparticle
lifetime and explains the increase in resistivity. Fig. 6.11b shows the conductivity
for the 5 strongly-correlated layers closest to the I-II interface for a variety of di↵er-
ent temperatures. For a given temperature the conductivity shows an approximately
exponential drop with the distance to the interface. The temperature dependence is
very rich. For layers 31-34 the conductivity increases with the reduction of the system
temperature. However the enhancement starts at di↵erent threshold temperatures.
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Figure 6.12

One clearly sees that layers further away from the interface have a lower threshold
temperature which is explained by the suppression of the Kondo temperature away
from the interface. Once the threshold temperature TK for a particular layer has
been exceeded the layer turns into a strongly correlated metal and the conductivity
increases strongly, i.e. Fig. 6.11b shows an increase in �xx by a factor of more than
3 for layer 31. For layer 35 one can see a reversal of the temperature-conductivity
relationship. Here, 5 layers from the interface the conductivity has dropped to such
low values that an increase in the conductivity can actually be seen due to thermal
activation of the Mott gap. This is however a tiny e↵ect due to the strong Coulomb
interaction U and the large gap. Fig. 6.13 shows layer-resolved conductivities for the
very low temperature regime where the Kondo e↵ect on the strongly-correlated lay-
ers close to the interface has almost fully developed. Unfortunately the temperature
regime below T = 10�5 is numerically di�cult to access. One has to add a tiny imag-
inary part to the real-frequency (!+ i�) to broaden the delta peaks to a finite width.
For low temperatures the Fermi distribution becomes a step function which means
that the conductivity formula, Eq. 6.30, essentially probes only the spectral function
at the Fermi energy. Below T = 10�5 the imaginary parts of the self-energies at the
Fermi level reach the order of magnitude of �. Reducing � is however di�cult since
this leads to problems with the adaptive integration routine in the Hilbert transforms
due to ever sharper and sharper peaks encountered in the integration interval.

We regret that due to time restrictions we were not able to finish our calculations
with regard to the Hall coe�cient which is why no data of the same are presented in
this thesis. We believe however that the presented layer-resolved formula is correct
and the implementation should be straight forward (with the appropriate transport
density of states given in Appendix F).
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Chapter 7

Transmission through a Mott
Barrier

The response of a system to external fields provides an e�cient probe of its correlation
e↵ects. An extreme form of such a probe is the study of the dielectric breakdown. Here
a strong electrical field is applied to a material in an insulating state and the parameter
dependence of the breakdown of the insulating to a metallic state is studied. Exper-
imental studies of both conventional band- and strongly correlated Mott-insulators
supply the theorist with su�cient information to check hypothesis extracted from ap-
proximate theories for this extremely di�cult non-equilibrium problem against actual
data.

The breakdown of semiconductors with weak correlations can be well understood
from Zener’s theory of electrical breakdown [115] where so called Zener-tunnelling
across the valence and conduction bands, triggers an electron avalanche which causes
the dielectric breakdown. However for strongly interacting materials the situation is
much more involved as one is faced with a many-body non-equilibrium problem. A
simple argument already hints at the di↵erence between the two types of systems:
electron-hole excitations produced by the presence of the field may move freely in
the band-insulator while they interact and eventually become dissipated in the Mott
insulator. The study of such problems has proven very di�cult as instead of a single
energy gap between the valence and conduction band, many di↵erent energy gaps
among the many-body levels become important.

Motivations to study this problem especially for strongly-correlated (Mott-) insu-
lators are numerous. As non-equilibrium phase transitions and non-linear transport
have become central issues in the study of strongly correlated systems, the dielectric
breakdown as one of the most basic of such phenomena acquires a special role. As the
motion of electrons in Mott insulators at half-filling is frozen due to strong repulsive
interactions and doping of such materials leads to interesting quantum states such as
high-Tc superconductivity a question that is not far to seek is how non-equilibrium
carriers behave in response to a strong electric field. Systematic study of electron
systems in the Mott insulating phase is believed to provide important information
to understand such unconventional states of matter. Observing the breakdown of
the Mott insulator may therefore provide a paradigm for strongly correlated electron
systems in non-equilibrium.
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Also recent progress in the cold-atom community, where realisations of both
bosonic[40, 57, 28] and fermionic[103] Mott insulators have been constructed, have
sparked renewed interest into the dielectric breakdown. Di↵erent experiments on
oxides as well as organic materials have given valuable insight into non-equilibrium
transport.

In this chapter we will use the inhomogenous DMFT to answer the following
equilibrium question: How does temperature T and barrier length L a↵ect the trans-
mission probability through a Mott insulating region under a linear electric potential
connected to non-interacting leads? The motivation is two-fold. We have seen in
the last chapter that such a situation indeed arises when a Mott insulator is sand-
wiched between two band-insulators with a chemical potential mismatch and elec-
tronic charge reconstruction is taken into account: the charge redistribution creates
on the one hand a linear electric potential in the Mott insulating region and on the
other shifts the spectral function of the band insulators close to the interface into the
Fermi level such that they can be seen as almost non-interacting leads. The other
motivation stems from the hope that such a calculation might provide important in-
sights into the dielectric breakdown of a Mott insulator. One might wonder how an
equilibrium calculation can ever reveal information about the dielectric breakdown,
after all, the non-equilibrium problem par excellence. Here one should remember
Zener’s theory for band insulators where an electron avalanche e↵ect causes the de-
struction of the insulating state. For the earliest moments of the breakdown it can
be argued that one is in a situation where the typical time between tunneling events
is large as compared to the equilibration time in the system. In such a situation
an equilibrium theory is justified and one might be able to understand how di↵erent
system parameters a↵ect the earliest moments of the dielectric breakdown.

This chapter starts with a short introduction to past works on the topic. Sec-
tion 7.2 reviews the Landauer-Büttiker theory of conductance. In 7.3 we show how
the transmission probability T may be calculated from quantities readily available
in the DMFT for heterostructures. We conclude with a summary of our numerical
findings.

7.1 History of the problem

We begin our retrospective of works concerned with the problem of the dielectric
breakdown with a review of Zener’s seminal paper about the breakdown of band-
insulators before we sketch the more recent approaches for Mott insulators.

Zener’s theory of dielectric breakdown for band-insulators

In 1934 Zener[115] studied the problem of the dielectric breakdown in one-dimensional
band insulators. Starting from conventional band theory he sought to find an expla-
nation for the strong non-linearities found in the I-V characteristic of the dielectric
breakdown phenomenon. Realising that carriers thermally activated across the band
gap are not able to account for the ‘sudden rise‘ in current, he deemed a mechanism
analogous to the auto-ionisation of free atoms by large electric fields. Applied to
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Figure 7.1: Band-structure diagram. The shaded regions represent zones of forbidden
energies in the presence of an electric field. Spatial tunnelling allows for transitions
to energetically higher lying bands. Taken from Ref. [115].

solids the basic realisation is that in a constant electric field, energy bands have sig-
nificance only with respect to particular spatial positions as the presence of a linear
potential makes each energy band degenerate with each other, c.f. Fig 7.1. Therefore
in the presence of an electric field an electron may spatially tunnel from one band
into another band that would otherwise lie energetically higher if it were not for the
presence of the electric field.

Starting from Bloch’s theorem Zener argued that the crystal momentum of the
electrons linearly increases in time with the field E, k ! k � 2⇡eE

h t which causes the
electrons to move in the direction of the field until they are reflected by the lattice
and move back and forth (Bloch oscillations). Each time the electron is reflected
by the lattice a small fraction of the wave packet will pass through the energetically
forbidden zone into another band. The total tunnelling probability per unit time �
is given by the tunnelling probability per lattice reflection p times the period of the
oscillatory motion ⌫ = h

eEa .
� = ⌫p (7.1)

The calculation of p where performed using a semi-classical WKB approximation with
the assumption that the linear electrical potential can be locally approximated on the
scale of a single lattice constant. Using this ansatz he found the tunnelling probability
to depend exponentially on the strength of the electrical field

� =
eEa

h
exp



�⇡
2

h2

ma✏2

|eE|

�

(7.2)

here a denotes the lattice constant and ✏ the size of the energy gap between conduction
and valence band. The result received from such a simple treatment of the problem
is actually quite remarkable in a number of ways: For typical values of ✏ = 2eV and
a = 3 · 10�8cm equation (7.2) becomes � = 107E10�2·107/E. One can see here that
both the magnitude of the critical field strength (⇡ 106V/cm) and the suddenness of
the transition are reflected by the formula.
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Figure 7.2: Temperature dependence of the threshold electric-field Eth measured with
the use of 200-msec voltage pulses for Sr2CuO3 and SrCuO2. The solid line is a fit of
the form of equation (7.3). From [108].

Modern approaches for Mott insulators

A number of authors have employed a variety of di↵erent methods to attack the prob-
lem of dielectric break-down in Mott insulators. The earliest work on the dielectric
breakdown of a Mott insulator is by Fukui and Kawakami[34]. To be precise they stud-
ied a variation of the original problem: they considered a one-dimensional Hubbard
ring at finite U and investigated the e↵ect the introduction of an asymmetric hopping
term on a single site had on the Mottness of the system. The asymmetric hopping
term was supposed to model dissipative tunnelling into the environment, however
rendering the Hamiltonian non-hermitian: the appearance of a asymmetric hopping
term can be understood as the presence of an imaginary gauge potential. These kinds
of problem had been previously studied using the Bethe ansatz and exact solutions
were available. Calculating the phase diagram as a function of interaction strength U
and hopping asymmetry, they were able to confirm that the Mott gap closes mono-
tonically with the strength of asymmetry in the system due to the e↵ect of dissipative
tunnelling driving the system metallic. However as pointed out by Taguchi et al.[108]
who experimentally studied the breakdown of the one-dimensional Mott insulating
crystals Sr2CuO3 and SrCuO2 a quantitative comparison with the mentioned work
cannot be made due to the lack of direct correspondence between the asymmetric
hopping strength in the theory and the applied electric field. Nevertheless their work
gave important stimuli to the further development of the theory.

Taguchi et al.[108] found in their measurements an exponential dependence of the
critical field strength Eth on the temperature of the form

Eth(T )/Eth(0) = exp [�T/T0] (7.3)

This kind of T dependence has often been found in the depinning physics of charge
density wave systems. Here the depinning potential V is weakened due to thermal
fluctuations of the CDW phase � in such a manner as V (T )/V (0) = exp [�h�2i /2],
where h�2i /2 = T/T0 [70]. Here the conclusion may be drawn that the exponential
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dependence of Eth suggests that the collective motion of carriers is responsible for the
strong non-linearities. The critical field strengths were found to be larger than the
depinning field for conventional CDW states pinned by impurities, however weaker
than the typical critical field strength found in band insulators. Also the current
switching was accompanied by a characteristic delay time.

In 2003 Oka, Arita and Aoki[80] sought to explain the phenomenon by properly
taking the presence of the electric field into account. They considered a small (N ⇡
10) periodic Hubbard model, where the e↵ect of the electrical field E was accounted
for by a time-dependent flux �(t) = eLEt with L the system size piercing the Hubbard
ring and inducing a current due to Faraday’s law. Using a Lanczos method they
determined the ground state of the system and calculated the zero temperature time-
evolution using a numerical integration of the time-dependent Schrödinger equation.
They explained their numerical findings by non-adiabatic Landau-Zener tunnelling:
If a parameter of the Hamiltonian is slowly (adiabatically) varied the energy levels
plotted against this parameter contain anti-crossings as they repel each other and a
system initially prepared in the ground state of the system will stick to this state.
However when the parameter is varied with a finite velocity the state will make a
transition across the anti-crossing with a finite probability p 6= 0. The transition
probability depends exponentially on the LZS parameter which is proportional to the
velocity that the anti-crossing is approached with. They suspected that these kind of
tunnelling events between the ground state and the first excited many-body state are
the relevant process for the break-down and indeed found that the expectation value
of the current operator collapses onto a single universal curve when plotted against
the LZS parameter. However this picture is not free of problems. While the theory
as described above works fine for finite systems the derived expression for the critical
field strength Eth contains a factor which depends on the system size and diverges in
the thermodynamic limit. Therefore for an infinite system the theory predicts that
no breakdown will take place. Ignoring this issues for the moment, at least for finite
systems a finite threshold field was found and upon increasing E beyond Eth a linear
dependence of the current upon E. The conclusion here was that the non-adiabatic
tunnelling was a quantum version of dissipation mixing di↵erent states and driving
the system after many level crossings into steady state.

Oka and Aoki[79] revisited the topic and resolved some of the open questions
and puzzle their last paper had left behind. Most importantly using Dykhne-Davis-
Pechukas (DDP) formalism they were able to consider tunnelling events beyond the
Landau-Zener picture, resolving the asymptotic issues found in the thermodynamic
limit. Another virtue of their paper was that it finally reconciled the the Landau-
Zener-Schwinger theories for the breakdown with the model which incorporated the
e↵ect of the electric field via non-hermitian Hamiltonians: they showed how within
their approach the Hubbard model in an electric field is mapped onto a non-hermitian
hamiltonian.

The first DMFT study of the dielectric breakdown phenomenon was performed by
Eckstein, Oka and Werner [24]. Here a single-band Hubbard with nearest-neighbour
hopping was studied and the time-dependent electric field F was incorporated into
the Hamiltonian in a pure vector potential gauge via Peierl’s substitution. They
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Figure 7.3: Taken from [24].

solved the problem in d ! 1-limit using nonequilibirium DMFT and solved the im-
purity problem using the self-consistent hybridisation expansion. For weak fields F
they found that a time-independent current sets in after the decay of the transient
behaviour. Although the system was not coupled to a heat bath and the e↵ective
temperature Te↵ rose by a factor 1.5 during the simulation time j(t) remained con-
stant. Fig. 7.3a shows the time-averaged current as a function of the driving field F .
The current due to the linear response conductivity at small F which vanishes in the
T ! 0 limit can be clearly distinguished from a temperature-independent contribu-
tion at large F . They refer to the latter contribution as the tunneling current which
has a non-zero temperature limit. The data could be fitted with the same law (black
line) that determines the ground state decay rate[79, 80]

jtun(F ) = F�1
tun exp(�Fth/F ), (7.4)

with a threshold field Fth. The values for the threshold field as extracted from their
numerical data is displayed in Fig. 7.3b.

7.2 Landauer-Bütticker definition of the transmis-
sion

Landauer[66] considered a general barrier problem in a 1D conductor realised for
instance by a quantum wire in the extreme quantum limit where only one conduction
channel exists. Ideal conduction leads free of scattering connect right and left to the
barrier region. Due to an applied bias voltage these two leads have di↵erent carrier
densities parametrised by di↵erent chemical potentials µL and µR for the left and right
lead respectively. We assume that the di↵erence is such that current flows from the
left to the right lead. Landauer thought of these contacts to have a phase randomising
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e↵ect1 for the injected and absorbed electrons through inelastic processes such that
no phase relationship exists between di↵erent particles. The total current through
such an idealised one-dimensional system may be written as the di↵erence between
the flux of the right- and left-moving particles

I =
e

⇡



Z 1

0

dk v(k)fL(k)T (k)�
Z 1

0

dk0 v(k0)fR(k
0)T (k0)

�

(7.5)

where T (k) is the probability that a particle of momentum k is transmitted through
the barrier. The overall prefactor stems from the one-dimensional density of states
@n/@k = 1/⇡ and integrations are over positive k relative to the direction of injection.
For low temperatures the Fermi distributions fL and fR can be approximated by step
functions. Then particles up to an energy µL (µR) are injected into the left (right)
lead. Converting to integrals over energy one finds

I =
e

⇡



Z µL

0

dE

✓

dk

dE

◆

v(k)T (E)�
Z µR

0

dE

✓

dk0

dE

◆

v(k0)T (E)

�

=
e

⇡~

Z µL

µR

dE T (E)

(7.6)
For small applied voltages the di↵erence in the chemical potentials is small, we can
neglect the energy dependence of the transmission probability T (E) and the integral
is approximated by T (µL � µR). It has been debated in the literature[101, 39, 30]
how the di↵erence in the chemical potentials should be related to the potential drop
across the device. The answer depends on the geometry of the experiment and more
specifically on how the drop in the potential is actually measured. A result of the
transmission and reflection about the barrier and the flow of current is a reduction in
the carrier density on the right side while charge piles up on the left side. This charge
rearrangement leads to screening e↵ects and can be accounted for by shifted chemical
potentials for the left (µ0

L) and right lead (µ0
R). The actual voltage drop across

the device is therefore given by e(µ0
L � µ0

R) which is less than e(µL � µR). From self-
consistency considerations one can relate the two by µ0

L�µ0
R = (1�T )(µL�µR) [14]. If

the current is applied through a pair of contacts and the voltage drop across the barrier
measured non-invasively by a separate pair of contacts (4-terminal measurement)
one measures the reduced drop. For standard 2-terminal measurement where the
same leads are used for the current supply and the voltage measurement one finds
V = e(µL � µR) and so

G =
I

V
=

✓

2e2

h

◆

T . (7.7)

This is the celebrated Landauer formula for the single-channel case[65, 66] with the
fundamental unit of conductance given by 2e2/h = 7.748 ⇥ 10�5 S. This quantum-
mechanical result expresses a transport coe�cient in terms of static scattering proper-
ties, rather than in the usual temporal correlation functions of linear response theory.

1In his own words he referred to these contacts as “independent black-body reservoirs”[66]
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Multi-channel case

The generalisation to the multi-channel case is now straight-forward. Such a multi-
channel device can be realised when one departs from the one-dimensional idealisation
of the wire and enlarges for instance one of the two transverse dimensions such that
the system is not only restricted to the lowest mode in the transverse box potential
but other low-energy modes are accessible for transport. A lateral quantum structure
develops where the wave functions in the leads might be given by (in a simple case)

hx, y, z |n kzi =
1p
L
�n(x, y)e

ikzz . (7.8)

Here x and y are the coordinates in the transversal direction and particles move along
the z direction through the device. n is a quantum number that labels the di↵erent
conduction channels and �n(x, y) is the confinement wavefunction in the transversal

direction. The eigenenergies in this example would be given by ✏n(kz) = En+
~k2z
2m with

En the confinement energy for channel n 2 {1, . . . , N}. For simplicity we consider
the case where the number of channels in the right and left lead are equal. Then an
incoming wave in channel i with total energy E has a finite probability, Tij(E) = |tij|2,
to be transmitted to channel j in the right lead and probability Rij = |rij|2 to be
reflected into channel j in the left lead. The transmission and reflection coe�cient
can be organised in the 2N ⇥ 2N scattering matrix

S =

✓

r t
t r

◆

(7.9)

Carriers are fed equally into all channels up to chemical potential µL (µR) in the left
(right) lead. The current injected into channel i on the left side and transmitted to
channel j on the right side is with the same reasoning as in the single-channel case
given by

Iij =
2e

h

Z µR

µL

Tij(E)dE ⇡ 2e

h
Tij(µL � µR) (7.10)

where we have again assumed that the energy dependence of the transmission prob-
ability Tij is small in the energy window E 2 [µL, µR]. The total current transmitted
through the N independent sending and receiving channels is thus given by

I =
2e

h

X

ij

Z µR

µL

Tij(E)dE ⇡ 2e

h

"

X

ij

Tij

#

(µL � µR) (7.11)

=
2e

h
(µL � µR)Tr(t

†t) (7.12)

with t the transmission submatrices. For a two terminal measurement the conduc-
tance is thus given by

G =
2e2

h
Tr(t†t) (7.13)

which is the Landauer-Büttiker formula for the multi-channel case[14].
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Figure 7.4: Schematic illustration of the transmission problem set-up. The scattering
potential has a finite support, x 2 [a, b].

7.3 Transmission through a heterostructure

In order to apply the Landauer-Büttiker theory of conductance to heterostructures,
we need to relate the transmission probability T through the barrier region to a
quantity readily available in the inhomogenous DMFT. A natural candidate is the
o↵-diagonal Green’s function connecting layers on di↵erent sides of the barrier, which
answers a closely related question: What is the amplitude for creating a particle on a
layer left of the barrier with energy E and transversal momentum kk and destroying it
on a layer right of the barrier? Due to the translational invariance in the transversal
directions, x and y, the corresponding momenta kk are conserved and take no active
part in the transmission problem but merely parametrise a family of one-dimensional
scattering problems. We therefore restrict the derivation of the relation between
the o↵-diagonal Green’s function and the transmission amplitude to one-dimensional
problems. The application of the derived formulas to each member of the family gives
the transmission amplitude of the three-dimensional system.

The Landauer-Büttiker theory thinks about transport as essentially a scattering
problem. This paradigm already imposes certain approximations that need to be
mentioned here. Usually in scattering problems one has non-interacting particles
incident on a spatially confined potential. In such a situation the one-particle de-
scription is adequate. The strongly-correlated heterostructure however does not fall
into this category. Here the disturbing e↵ect on the incident particle is not due to a
simple scattering potential but rather to the particle entering a region in space where
strong two-body interactions exist. This makes the transmission problem through a
correlated heterostructure inherently a many-body problem. For instance one might
think about a situation where a particle impinges on the barrier region and gets re-
flected, but leaves the barrier subsystem in an excited state, which does not thermalise
before the arrival of the next particle. Also one could envision a situation where two
incident particles enter into the strongly-correlated region at the same time. Their
mutual interaction will certainly alter their probability to be transmitted or reflected
compared to a situation where they enter one after the other. All of these e↵ects are
not accounted for in the Landauer-Büttiker description of transport. In our set-up
we assume that the time between scattering events is much larger than the typical
time scale in the barrier region. An excited barrier a particle might have left behind
is (on average) long thermalised before another particle arrives. In such a situation
the Landauer-Büttiker approach is a meaningful approximation.
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Typically, the scattering formalism is described in the following way: an inci-
dent particle in state | 0i is scattered by a localised perturbation V resulting in a
scattered state | Si. The incident state | 0i is assumed to be an eigenstate of the
non-interacting hamiltonian H0 with Eigenvalue E

(E �H0) | 0i = 0 (7.14)

For the sake of the argument we will assume H0 to be the Hamiltonian of free particles

H0 =
p̂2

2m
. (7.15)

The incident state in this case will be a plane wave with wavevector k

hr| 0i =  0(r) =
1

N eik·r (7.16)

We will use a momentum normalisation, therefore N =
p
2⇡. The goal of scattering

theory is then to solve the full energy-eigenstate problem

(E �H0 � V ) | i = 0 (7.17)

The scattered state | Si is defined as

| Si = | i � | 0i (7.18)

We will assume that the perturbation V has a compact support, i.e. is non-vanishing
only within some interval [a . . . b].

We can now choose from two possible routes to find a connection between the
Green’s function and physical observables of the scattering problem, i.e. transmission-
and reflection amplitudes. We could try to relate the T-matrix of the scattering
problem to the transmission amplitude by noting that the scattered wavefunction
| Si = G0T | 0i and making the typical assumption that on the far side at a great
distance from the scattering region the full wavefunction | i of the problem is given
by the unperturbed wavefunction | 0i times the transmission amplitude.

hx1| i = ⌧(E) hx1| 0i (7.19)

The remaining task of relating the Green’s function to the T-matrix is easily accom-
plished by a series expansion of the full propagator in the potential V. However for the
situation at hand the exact Green’s function may be derived in terms of the scattered
wave functions and this direct route turns out be more feasible here. The scattering
solutions  ±(x) of an incoming plane wave from the left (+) and the right (�) are
given by

 ±(x) =
1

N

8

>

>

>

>

<

>

>

>

>

:

e±ikx + ⇢(±)e⌥ikx

⇢

x < a for (+)
x > b for (�)

A(±)(k)u±
k (x) + B±(k)s±k (x) a < x < b

⌧(k)e±ikx

⇢

x > b for (+)
x < a for (�)

(7.20)
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where we have used ⌧ (±)(k) = ⌧(k) which follows from reciprocity. u±
k (x) and s±k (x)

are possibly complicated wave functions which describe the particle as it passes
through the barrier region. Explicit expression for the coe�cients A±(k) and B±(k)
as well as for the transmission- ⌧(k) and reflection amplitude ⇢(k) may be derived.
Naturally these expression only depend on the values of the independent solutions of
the Schrödinger equation at the borders of the domains.

Assuming that there are no bound states in the energy window we are interested
in, we may express the exact Green’s function of the system as

G(xf , xi;E) =
X

�=±

Z 1

0

dk

2⇡

 �
k(xf ) �

k
⇤(xi)

E + i✏� ~2k2
2m

(7.21)

Substituting (7.20) into (7.21) we find for xi < a left of the barrier and xf > b right
of the barrier

GLR(xf , xi; k
0) =

2m

~2

Z 1

0

dk
1

k02 + i✏� k2

⇥

⌧(k)eik(xf�xi)

+ ⌧ ⇤(k)e�ik(xf�xi)

+
�

⇢(+)⇤(k)⌧(k) + ⇢(�)(k)⌧ ⇤(k)
�

eik|xf�xi|
⇤

=
2m

~2
1

2⇡

Z 1

�1
dk

1

k02 + i✏� k2
⌧(k)eik|xf�xi| (7.22)

where E = ~2k02
2m and we used ⌧ ⇤(k) = ⌧(�k) and ⇢(±)⇤(k)⌧(k) + ⇢(⌥)(k)⌧ ⇤(k) = 0.

The integral may be easily solved using contour integration. In order to preprare the
denominator we notice that

k02 + i✏� k2 = (k0 +
p
k2 � i✏)(k0 �

p
k2 � i✏)

= (k0 + k � i✏)(k0 � k + i✏) (7.23)

We consider a contour in the upper half of the complex plane, therefore encircling
only one of the poles of first order. We thus find

GLR(xf , xi; k) =
m

i~2k ⌧(k
0)eik|xf�xi| (7.24)

The transmission probability is defined as T (k) = |⌧(k)|2. With the velocity vk =
@E/@k = ~2k/m we can solve for the transmission probability to find

T (E) = v2k|GLR(xf , xi;E)|2 (7.25)

The o↵-diagonal Green’s functions G↵�(kk,!) are readily available from the inho-
mogenous DMFT algorithm by virtue of Eq. 5.29.
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7.3.1 System layout

In order to study the transmission probability through a Mott barrier in in-homogenous
mean-field theory we will consider the setup depicted in Fig. 7.6. The arrangement
reflects typical experimental setups: two leads are connected to a barrier of a Mott
insulating material with a finite width. The leads are modelled as a non-interacting
region2. The barrier region consists of a varying number of N Mott-insulating layers
which with U > UC . In order to account for the e↵ects of a strong electric field E
across the Mott region, we choose a gauge where a linear gradient potential � gives
rise to E. The e↵ect is analogous to a local chemical potential. We have already
seen that doping the Mott insulator away from half-filling drives the Mott insulator
metallic. Therefore we can expect the e↵ective barrier thickness to be considerably
lowered, as the outermost Mott layers will feel a chemical potential in excess of their
charge gap and therefore fall out of their Mott insulating state due to doping.

The barrier region is sandwiched between two segments which are marked as
“healing” layers in fig. 7.6. These layers are actually part of the lead and therefore
non-interacting. The necessity for these self-consistently calculated lead layers arises
from inhomogeneities in the system. The presence of the barrier region causes de-
viations of the adjacent non-interacting layers from their bulk state, which only die
o↵ slowly as one walks away from the interface. These deviations must su�ciently
fall o↵ before the semi-infinite leads begin. As these leads are not self-consistently
determined, they should rather be thought of as boundary conditions for the het-
erostructure. A mismatch between the physics enforced by the boundary conditions
and the physics happening in the first and last layer would cause finite size e↵ects in

2This is especially important when one considers the case of magnetic ordering in the system as
the Hubbard model on a simple cubic lattice at half-filling shows a perfect nesting property and so
our leads would become antiferromagnetic insulators for arbitrary interaction strength.
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the system. For a our calculation We choose 30 healing layers which ensures that the
system has approached the bulk behaviour closely enough so that no visible finite size
e↵ects are apparent in any calculated quantity. In this chapter we are predominantly
interested in the behaviour of the barrier region. We therefore choose to count the
layers starting from the first Mott-insulating layer to the left (↵ = 1).

The lower part of Fig. 7.6 depicts a schematic view of the expected band structure.
Particle-hole symmetric bands in the non-interacting leads connect to the linearly
deformed upper- and lower Hubbard bands of the Mott-insulating barrier region.
The strength of the linear potential is chosen such that it reaches a value of ±U/2 at
the left / right edge of the Mott insulating barrier connecting the deformed Hubbard
bands to the non-interacting bands of the leads. This is not an artificial setup as we
have seen in the last chapter: a mismatch in the bands causes charge reordering which
shifts the bands such that they match up. In the spirit of Zener’s breakdown theory
electrons may tunnel spatially from the energetically lower lying Hubbard band into
the upper Hubbard band. We study here the amplitude of these processes.

The system possesses a translational invariance along the x and y direction. It is
therefore useful to Fourier transform in these directions and introduce the conserved
in-plane momentum kk. In section 7.2 we derived the Landauer-Büttiker formula
for the conductance in the multi-channel case. The channel label n is given here by
the in-plane momentum kk. We saw that the eigenenergies of the states in the non-
interacting leads comprise two parts, ✏n(kz) = En +

~k2z
2m . The confinement potential3

En is given in our case by the two-dimensional in-plane dispersion relation ✏k
k

k =

�2t [cos(kx) + cos(ky)] while the plane wave part ~k2z
2m is replaced by the eigenenergy

of a Bloch wave travelling in z direction, �2t cos(kz). Due to the conservation of the
in-plane momentum there is no inter-channel mixing, i.e. the transmission matrix
is diagonal ⌧(!)

k

k
k

0k = ⌧(!)
k

k �
k

k
k

0k . The square of the velocity in Eq. 7.25 is for
homogenous, isotropic hopping integrals t given by v2kz = 4t2�✏2kz . In a non-interacting
system, the total conductance for particles with energy ! from the right to the left
lead is therefore

G(!) =
2e2

h

X

k

k



4t2 �
⇣

! � ✏k
k

k

⌘2
�

�

�GLR(!,k
k)
�

�

2

=
2e2

h

Z 4t

�4t

d✏
k
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4t2 �
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! � ✏k
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⌘2
�

�

�GLR(!,k
k)
�

�

2
(7.26)

For an interacting system the above formula is not exact, however it can be used in
the tunneling limit when the time between particle transmissions is the largest time
scale in the problem.

7.3.2 DMFT results

To study the transmission through a Mott barrier in a linear electric potential we
calculate the Landauer-Büttiker conductance G from the left to the right lead of

3We are aware that this term is very misleading for the present case, where the confinement wave
functions are completely delocalised Bloch waves.
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Figure 7.7: Local layer spectral functions for (a) T = 10�10 and (b) T = 10�2.

heterostructures with the layout Fig. 7.6 of varying barrier thicknesses N at di↵erent
temperatures T . Here the influence of temperature on the breakdown physics is
especially intricate. One can already guess at the non-trivial role temperature will
play when one recalls that for a strongly-correlated metal an increase in temperature
can actually trigger a transition to an insulating state. On the other hand this
reinforcing role the temperature plays for Mott insulators will not go on indefinitely:
Once the temperature increases so dramatically that thermal excitations across the
Hubbard gap become possible, we will witness a “melting” of the Mott insulator and
the system becomes a ‘bad’ metal.

Fig. 7.7 shows spectral functions for the first 5 layers at the very left of the Mott
insulating region of width N = 10 for (a) T = 10�10 and (b) T = 10�2. For the low
temperature narrow resonance peaks appear for all layers ↵. For the first two layers
the strong electric potential has shifted the Fermi level into the lower Hubbard band
giving rise to a Kondo e↵ect. Closer towards the centre of the region as due to the
weaker potential less and less spectral density from the lower Hubbard band lies in
the Fermi level the width of the resonance peaks quickly decreases and so does the
respective Kondo temperature TK . For the central layer in the region (↵ = 5) the
Fermi level lies within the Mott gap but due to the Kondo proximity (which provides a
lower bound for the hybridisation function of the underlying impurity model) a narrow
resonance peak is induced. Upon increasing the temperature to T = 1e�2 the Kondo
e↵ect in the system is completely switched o↵. Even the spectral functions for the
first two layers do not reach the non-interacting value anymore. The resonances in
the inner layers are gone and the spectral function for the layer in the centre ↵ = 5
shows a Fermi level centred about an charge gap.

Fig. 7.8a shows the temperature dependence of the conductance for the same
system. Starting with the lowest temperature, T = 10�10, one of the most prominent
features is a large conductance peak at ! = 0 reaching up to unity. The origin of
this peak lies in the Kondo e↵ect which causes the spectral function to take the non-
interacting value at the Fermi level and therefore perfect conductance. The outermost
layers of the system are heavily doped due to the presence of the linear potential. As
the total potential di↵erence between the first and last layers of the barrier is given
by U comparing this to the half-bandwidth shows that the outermost 3�4 layers will
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Figure 7.8

be doped so heavily by the linear potential that their upper/lower Hubbard bands
have been pushed into the Fermi energy, hence have become metallic. The Mott-
insulating core, where the e↵ect of the potential has left the Fermi energy within
the Hubbard gap is however a↵ected by the presence of the adjacent metal: The
“Kondo proximity” e↵ect allows for tunnelling from the these layers into the Mott
core, e↵ectively bounding the density of states at the Fermi energy from below. The
availability of a finite density of states at the Fermi level allows for a Kondo e↵ect and
therefore a resonance peak. The induced Kondo temperature TK of the underlying
impurity model, that the DMFT maps the problem onto, becomes quickly diminished
as one walks deeper into the Mott core of the barrier region. However at T = 0 even
the innermost layer will be in a Fermi liquid state, which e↵ectively pins the value of
the spectral functions to the non-interacting value due to the quadratic dependence
of the self-energy on frequency and thereof leads to perfect transmission through the
structure for particles at the Fermi energy. The induced Kondo temperature controls
the width of the conductance peak. For particle energies ! > 0.5 large imaginary parts
in the self-energies give short lifetimes to the quasi-particles and the conductance is
strongly suppressed and drops dramatically by 14 orders of magnitude.

Increasing the temperature from T = 10�10 to 10�8 and even 10�6 leaves the
conductance completely una↵ected. The reason is simply that as long as the tem-
perature stays below the Kondo temperature of the innermost layer, no change will
occur. As the temperature however approaches T = 10�4 thermal fluctuations sup-
press the Kondo e↵ect and the innermost layer starts to fall out of his Fermi liquid
state. This can be seen from deviation of the conductance from its value of unity at
the Fermi level. Temperature drives the innermost layer towards a Mott insulating
state despite the presence of the adjacent metal. At T = 10�2 the Kondo resonance
has completely collapsed. Increasing the temperature further thermally activates par-
ticles of all energies. The conductance for T = 10�1 is a constant of particle energy
!. The Mott insulators have melted as thermal fluctuations have become of the order
of the Hubbard gap.
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Figure 7.9

To confirm this hypothesis we have calculated the layer-resolved expectation values
of the double occupancy. Fig. 7.9a shows this quantity for various system tempera-
tures. Indeed as one increases the system temperature from T = 10�10 to T = 10�2

the double occupancy drops. A further increase in the system temperature starts to
thermally activate particles across the Hubbard gap, doublon-holon pairs are created
as one sees from the increase in double occupancy by several order of magnitudes.
These excitations are indeed mobile and lead to a dramatic increase in the kinetic
energy. The Mott insulator has melted. As the value of the linear potential at the
first and last layer of the barrier is fixed to ±U/2 increasing the thickness of the
barrier can be understood as reduction in the slope of the linear potential and hence
as a decrease in the strength of the applied electric field. Again comparing the size of
the Hubbard gap to the half-bandwidth shows that the number of layers with their
Fermi energy in the Hubbard gap increases linearly. Therefore we expect an exponen-
tial dependence of the di↵erential conductance on the strength of the electric field.
Indeed such a relationship is suggested by Fig. 7.9b for a temperature of T = 10�2.

As expected the leads are really only weakly a↵ected by the presence of the bar-
rier region. The most prominent e↵ect is due to the strong doping of the outermost
barrier layers. As can be seen from Fig. 7.10a first and last layer of the barrier have
been doped by ⇡ 40%. As the leads are at half-filling, there is a tremendous charge
mismatch between lead and barrier. Usually such a great mismatch would lead to
strong charge reconstructions at the interface. E↵ectively doping the lead away from
half-filling. However as we have turned o↵ the e↵ect of long-range Coulomb interac-
tions the only e↵ect is the induction of Friedel charge oscillations in the lead with a
characteristic period of 2kF = ⇡. The temperature dependence of these oscillations
can be seen in Fig. 7.10b. Friedel oscillations are due to the existence of a sharp
Fermi surface, therefore at non-zero temperatures Friedel oscillations will be strongly
suppressed due to the smeared Fermi surface.
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7.3.3 Conclusions

In this chapter we have studied how the thickness of an Mott insulating barrier and the
system tempterature T influence the transmission probability and thus the Landauer
Bütticker conductance G through the barrier. Indeed we found that the interplay
of the strong correlations in the barrier region and the system temperature produce
due to the intricate Kondo physics and interesting temperature dependence. The
important physical mechanism for the possibility to transmit a particle through an
otherwise insulating region is the Kondo proximity e↵ect, which induces (at T=0)
narrow resonance peaks even in the innermost layers of the barrier. The width of
these peaks is given by the Kondo temperature Tk. We found that this is the im-
portant reference temperature to look when one tries to understant the temperature
dependence of the conductance: When the system temperature T starts to exceed
the Kondo temperature of the innermost layers, the conductance starts to drop dra-
matically. Only for very large temperature one has a thermal activation of the Mott
gap and conductance starts to increase again. We have seen that at T = 0 the ! = 0
value of the spectral function is pinned to its non-interacting value which creates
perfect zero-bias transmission independent of the barrier thickness. For finite system
temperatures we found that once the threshold temperature set by the Kondo tem-
perature of the innermost layer has been exceeded by the system temperature, the
conductance drops exponentially with the thickness of the barrier.

In conclusion we can summarize that the dielectric break-down of a Mott insulator
is an intricate problem. The above equilibrium treatment allows to understand some
e↵ects early in the breakdown process (when the tunneling time of electrons is still
small) but is far from su�cient description of this non-equilibrium process. Maybe
future works involving non-equilibrium DMFT will be able to treat this problem
appropriately.
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Appendix A

Antiferromagnetic quantum zipper
algorithm

The determination of the asymptotic left-/right-functions for the leads turns out to be
more di�cult for the antiferromagnetic than for the paramagnetic zipper algorithm,
because closed form expressions for matrix-valued quadratic equations exist only for
special cases. The asymptotic form of the L-/R-functions in the lead is determined
by the assumption that deep inside the lead the system is homogenous. We have
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For homogenous systems (t↵↵+1 = t) the local Greens function can be expressed as
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This integral can indeed be solved by computer-algebra software. We used Mathematicar

Version 8.0. The resulting expression is long and complicated with some repeating
structures. Substitution into Eq. A.2 yields the 2⇥ 2-valued left and right functions
which we call jointly S(ij) here,
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where we have defined W1, W2 and W3 for repeating structures to make the final
expression more compact. The

The recursion relation for right function takes the form
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and for the left function
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The expression for the Green’s function has the same structure as in the paramagnetic
case, however now all quantities are 2⇥ 2 matrices.
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The Green’s functions for the sub lattices A and B are now easily derived by trans-
formation Eq. 5.36,
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Appendix B

Spectral functions for B-M-B
heterostructure
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Figure B.1: Spectral functions for the Band-Mott-Band insulator heterostructure for
a system temperature of T = 10�8. Layers 1-30 depict the spectral function for the
band insulator (red lines), layers 31-50 the Mott-insulating layers (green lines), and
layers 51-80 band-insulating layers.
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Appendix C

Derivation of the Hall conductivity

Triangle graphs

Adding the two diagrams with three V 1 vertices and keeping only terms linear in AE

and AB we find
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Exchanging ↵ and � labels in the second term and shifting the momentum sum by
� r

2
and the second frequency sum by �⌦n we arrive at
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where p± = p ± r

2
, c.f. Fig C.1a and Fig. C.1b. We are interested in contributions

linear in r therefore using
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we may expand
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Now a number of simplifications arises: Expanding the first Green function in the
first term we see that its contribution is exactly cancelled by the contribution of
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Figure C.1: Triangle graphs with three V 1 vertices for the calculation of the Hall
conductivity, c.f. Eq. C.2.
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the third Green function in the second term and vice versa. Contributions from
the Green functions in the middle cancel in the limit ⌦ ! 0, which is the limit we
are interested in. Therefore the only contributions stem from the expansion of the
dispersion relations. Adding these contributions we get
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where we have defined the frequency sum
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V 2 graph

The other contribution stems from a one V 1 and one V 2 vertex diagram and reads
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Shifting the momentum sum by � r

2
we arrive at
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To linear order in r we have
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therefore renaming ↵ and � and again assuming that the fields are layer-independent
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Appendix D

Analytic continuation of ⇧pn↵�

In order to calculate the analytic continuation of ⇧↵�(p,⌦n) it is easiest to express
the Matsubara Green functions as energy integrals over the spectral function times a
free Matsubara Greens function, i.e.

G
pm,↵� = �i

Z

d✏
A

p,↵�(✏)

i!m � ✏
(D.1)
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Using standard relations for Matsubara sums [69]
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we arrive at
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where I↵�(p,⌦) = Im⇧↵�(p,⌦)/⌦. Performing lim⌦!0 I↵�(p,⌦) and noting that
A↵�(p, ✏) = A�↵(p, ✏), we finally get
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Appendix E

Analytic continuation of ⇧H
pn�

We wish to find the analytic continuation of
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pm� =
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Using the spectral representation ⇧
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Here
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We will use contour integration to perform the frequency sum
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where R±
i enumerates all the residues of f±(zi) times nF (zi). As I = 0 we find
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Table E.1: Residues

The table E.1 summarizes the residues. For the last residue we used that nF (✏3 ⌥
i!n) = nF (✏3) with !n a bosonic excitation frequency. Consequently S± is given by
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Performing the analytic continuation for S± and taking the real part we find
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We can now plug this into eq. (E.2) to find
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Remembering the Kramers-Kronig relation
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we find
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Shifting the ✏3 integration in the third and fourth term we arrive at
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In the static limit we find
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Partial integration in the first term
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Under sum
P

↵� one may relabel ↵ and � which leads to a “transposition of the
second and third column”. We see that the second and seventh term and the third
and fifth term cancel and finally arrive at
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Appendix F

Approximate expressions for
various densities of states

Rather than using the exact expressions for the densities of states, we will derive here
approximate expressions. The reason is simple: the exact expression are expensive
to evaluate and as DMFT is a threory which is concerned with local quantities, we
have to perform k-sums quite regularly. Here we will use an approach similar to
the one Uhrig [109] used for the three dimensional density of states: Based on our
knowlegde about the asymptotics of the exact expression, we will make an appropriate
ansatz and fix the parameters by demanding that the first non-trivial moments of the
distributions coincide.

The two-dimensional density of states of a tight-binding hamiltonian on a hyper-
cubic lattic is given by

⇢2D(✏) =
1

2⇡2ta2
K

 

s

1� ✏2

(4t)2

!

(F.1)

where a is the lattice constant, t the hopping amplitude and K is related to the
complete elliptic integral of the first kind. Closer examination of the function reveals
a peak at ✏ = 0. Our aim will be to find the nature of this peak. Elliptic integrals
are classically defined as integrals of the form

Z

r(x, y(x))dx (F.2)

where r is a rational function of x and y, and y2 is a cubic or quartic polynomial in x.
If y2 is linear or quadratic in x, then the integral can be evaluated using logarithms
and rational functions of x and y, but if y2 is cubic quartic then the integral is said
to be elliptic and is not in general expressible in terms of elementary functions [42].

Legendre showed that only three non-elementary functions are needed to express
all elliptic integrals. The one we are concerned with in the case above is

RF (x, y, z) =
1

2

Z 1

0

1
p

(x+ t)(y + t)(z + t)
dt (F.3)
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Figure F.1: (a) D(✏), (b) ⇢2D(✏)�D(✏)

The function RF (x, y, z) which is symmetric in x, y and z is called the elliptic integral
of the first kind. The definition of the complete elliptic integral of the first kind is

RK(x, y) =
1

⇡

Z 1
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1
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dt (F.4)

which are related via
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The function K(k) in formula F.1 is related to RK(x, y)
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2
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Gustafson[42] derived assymptotic expressions for the elliptic integrals and we can
make use of his result
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This insight might motivate the following ansatz for the density of states

D(✏) = � 1

4⇡2ta2
log(✏2) +m0 +m2✏

2 +m4✏4 (F.10)

Demanding that the first zeroth, second and fourth moment coincide we arrive at
Table F.1. In order to calculate the various response functions to electromagnetic
fields evaluations of momentum sums are needed. Typically one evaluates such a
sum by noting that the summand depends only through the dispersion relation on
momentum and rewriting the sum as an energy integration weight by a density of
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m0 0.141458
m2 0.000646212
m4 -0.0000115157

Table F.1: Fit parameters

states (DOS). This is the numerically most feasible way to evaluate such sums and
multi-dimensional integration is always costy.

In the calculation of optical conductivities the situation is a little more involved
as one usually finds the summand to be dependent on the dispersion relation as well
as partial derivatives of the dispersion with respect to di↵erent components of the
momenta. Here we will deduce di↵erent “transport DOS” to ease the calculation of
such sums.

Transport density of states for the ordinary conductivity

Let us start with the following type of sum
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) (F.11)

In order to evaluate this sum let define the following DOS
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where i 2 {1 . . . N}. Noting that
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In the last line we have assumed symmetry of the density of states with respect to
the di↵erent components of the momentum vector. We find
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Assuming a hypercubic lattice
PN
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Figure F.2: (a) Dxx(✏), (b) ⇢xx(✏)�Dxx(✏)

We can make use of the approximate DOS D(✏) we found above to derive an approx-
imate expression for ⇢xx(✏)

Dxx(✏) = �✏
2 (3 + 2a2⇡2t(6m0 + 3m2✏2 + 2m4✏4)� 3 log(✏2))

48a2⇡2t
(F.18)

Transport density of states for the Hall conductivity

For the calculation of the Hall conductivity we need to evaluate sums of the form
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with f some arbitrary function. Therefore we will define the following density of
states
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Using eq. F.13 we find
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Again assuming a hypercubic dispersion relation we have

✏2k = 4t2
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We can now plug this into our expression for ⇢xy(✏) and find
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Figure F.3: (a) Dxy(✏), (b) ⇢xy(✏)�Dxy(✏)

Using our approximate expression for ⇢(✏) and ⇢xx(✏) we find
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hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch
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