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1. General Introduction 

1.1 Dryland Ecosystems of the World 

1.1.1 Definition and Botanical Ecology 

Dryland ecosystems – as indicated by their name – are defined and characterized by water deficiency 

during prolonged periods throughout the year (UNEP, 1997). Based on the UNEP aridity index, drylands 

are subdivided in four subtypes, in order of decreasing aridity: hyper-arid (desert), arid, semi-arid and 

dry sub-humid (Figure 1.1; UNEP, 1997). 

All dryland-subtypes together cover roughly 41% of terrestrial earth surface spreading across all 

continents (except Antarctica; Figure 1.1) and are home to circa 35-40 % of Earth’s human population 

(approximately 2.5 billion in 2005; MEA, 2005). Besides the shortage of water availability in these 

regions – either due to low rainfall and/or high evapotranspiration – they are also characterized by a 

pronounced spatiotemporal variability in rainfall (Davidowitz, 2002). The combination of a relatively 

strong water limitation, a high inter- and intra-annual variability of precipitation, and a high spatial 

heterogeneity in other vegetation-relevant factors (e.g. edaphic parameters), largely limit vegetation 

growth. This is translated into a pronounced variability in seasonal and annual vegetation dynamics. 

Drylands ecosystems comprise four broad biome-types – desert, grassland, shrubland and savanna – 

which, in this order, represent a gradual increase in architectural complexity of the vegetation, and 

also in average primary production (see Box 1.1; Hassan et al., 2005). 

 

Figure 1.1: Overview on worlds’ broad climate regimes as defined by the United Nations Environment Programme (UNEP) 
aridity index. Aridity Index (AI) = MAP / MAE where MAP = mean annual precipitation and MEA = mean annual potential 
evapotranspiration. Drylands, given in grey and yellowish colors, comprise hyper arid (AI < 0.03), arid (0.03 - 0.2), semi-arid 
(0.2 - 0.5) and dry sub-humid (0.5 - 0.65) climates. Map is based on data provided in Trabucco and Zomer (2009). 
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Box 1.1 – Biome Classification 

Throughout this dissertation, and publications presented herein, an adapted version of the WWF biome classification (Olson 

et al., 2001) was used, following Hassan et al. (2005). This adaption was applied to account for the differing spatial scales 

(field vs. landscape). In total, four broad »dryland biomes« are distinguished as compared to the original eight (for drylands). 

In detail, these biomes are 

(A)  Desert: extremely sparse vegetation, mostly woody shrubs or well-adapted herbs, grasses and succulents; 

(B)  Grassland: herbaceous layer with relatively dense cover, dominated by annual or perennial grasses; little to no tree and 

shrub occurrence; 

(C)  Shrubland (also called »Mediterranean« or »scrub«): vegetation dominated by relatively dense stands of small or 

medium-sized shrubs, either with or without an interspersed herbaceous layer; 

(D)  Savanna (also called »woodland«): dense and continuous herbaceous layer, co-dominated by intermingled trees or large 

shrubs but without a closed canopy. 

 

 

Figure 1.2: Examples of the four dryland biomes. (A) Gobi Desert in Mongolia, (B) Themeda triandra grassland in South 
Africa, (C) Creosote shrubland in New Mexico, USA, and (D) Acacia savanna in the Kalahari, South Africa. 
Sources: (A) www.worldtopjourneys.com, (C) www.lternet.edu/sites/jrn/. Sources are only given for photographs or 
graphics that were not produced by me. 
 

Even though these dryland biomes tend to follow a gradient of decreasing aridity (deserts > grassland 

> shrubland > savanna), their actual distribution can be largely independent from climate and might 

be more affected by other abiotic and biotic factors (e.g. edaphic factors, topography, current and past 

land use; Hassan et al., 2005). For example, the hyper-arid dryland subtype nearly exclusively inhabits 

deserts while the semi-arid subtype shows a mixture of all dryland biomes-types. 

 

The dynamic and unreliable intra- and inter-annual fluctuations in dryland vegetation characteristics 

described above (e.g. cover, composition and primary production), mostly leave no option for 
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resource-based human activities other than livestock production and (self-sufficient) crop-farming. In 

fact, circa one third of drylands’ human population directly depends on agriculture for their livelihood. 

Only 25% of drylands are used as croplands (rain-fed or, in the wealthy dryland regions of North 

America and Europe, irrigated), while roughly 65% are predominantly used as rain-fed rangelands 

(MEA, 2005). Thus, livelihood security in these regions mainly relies on provision of basic ecosystem 

services such as forage and crop yield for animal production and/or self-sufficiency (Gillson and 

Hoffman, 2007). 

 

1.1.2 Drylands under Threat – Global Change Impacts 

Unsurprisingly drylands have been recognized as highly vulnerable and degradation-prone regions, 

especially in the light of global change (IPCC, 2007, MEA, 2005, Zhao and Running, 2010). 

Even though projections in the climate regime of dryland environments exhibit considerable variability 

and uncertainty across scenarios and regions (Figure 1.3), there is a general trend that most dryland 

regions are facing unbeneficial changes. 

 

 

 

Figure 1.3: Maps of projected late 21st century annual mean surface temperature change (A) and annual mean 
precipitation change (B). This image is an excerpt from the SPM.8 figure and a courtesy of the IPCC (2013). 
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Global models for the period of 2081-2100 project a temperature increase in drylands between 1 °C 

and 5 °C as compared to 1986-2005 across scenarios and regions (Figure 1.3A). For the same period, 

changes in precipitation are more diverse across scenarios (Figure 1.3B) as projections vary between 

roughly constant conditions (±10% in annual precipitation) and large-scale decreases across drylands 

of up to -20% (but also local increases, e.g. in Tropical and East Africa; IPCC, 2013). 

In sum, drylands are facing increased temperatures, while precipitation amounts stagnate or decrease, 

thus leading to increased evapotranspiration and less plant-available water. Simultaneously, 

precipitation is becoming more variable and extreme events such as heavy rains and dry spells will 

occur more frequently (IPCC, 2013), making the overall climate system less reliable. 

At the same time large proportions of dryland areas are subject to significant population growth and 

urbanization (MEA, 2005), both inevitably leading to expansion of agricultural land and intensification 

of livestock production (i.e. higher stocking rates and densities; Foley et al., 2005). 

Please note, that potential effects of elevated CO2-concentrations are not regarded throughout this 

thesis. Most importantly, this is due to a paucity of related monitoring and experimental data. 

Furthermore, the effects of elevated atmospheric CO2 on drylands, as well as the role of dryland 

ecosystems in the global carbon cycle are far from being fully understood (Maestre et al., 2013). 

However, recent findings suggest that bush encroachment – a common and highly undesirable 

phenomenon in drylands (Andela et al., 2013) – is partially triggered by elevated CO2-concentrations 

(i.e. »CO2-fertilization«; Buitenwerf et al., 2012, Higgins and Scheiter, 2012). 

 

Altogether, projected changes of the climatic system will – for all we know about drylands – hamper 

ecosystem functioning and decrease provision with ecosystems services, while land use change will 

increase the pressure on the systems and act as additional stressor (Zhao and Running, 2010, Zhao et 

al., 2007). Threats of co-occurrence of these unbeneficial conditions could already be observed during 

the last decades: severe droughts in densely populated drylands worldwide were responsible for 

massive reductions in livestock and crop productivity (Zhao and Running, 2010), leading to poverty and 

famine (UN, 2008). Furthermore, predicted changes in vegetation state and functioning may have the 

potential to cause rapid ecosystem transitions and/or lead to switches to stable states with undesirable 

low vegetation cover and biomass: degradation up to desertification (Golodets et al., 2013). In this 

context, the concept of ecological stability is of major interest and relevance. 

  

1.1.3 Aspects of Ecosystem Stability 

In today’s ecological research, discerning the mechanisms behind, and the quantification of ecosystem 

responses to global environmental change is a central theme (Reed et al., 2012) and often related to 

the concept of ecosystem stability (or resilience; Pimm, 1984, Holling, 1973).  
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Box 1.2 – Stability and Resilience 

Stability and resilience – even though commonly used in ecological literature – both lack a definition that is widely shared 

among scientists. While some scientists understand resilience as a sub-aspect of stability (Donohue et al., 2013), others 

understand them as largely unrelated capacities of ecosystems (Holling, 1973). Furthermore, resilience itself has been defined 

in various ways, emphasizing different aspects of ecosystem behavior, and even leading to competing paradigms of 

ecosystems understanding (e.g. engineering vs. ecological resilience; Holling, 1996). To avoid confusion or misinterpretation, 

I follow the approach of Donohue et al. (2013) and use the term »ecosystem stability« in the sense of a »multifaceted and 

complex concept«, including distinct aspects such as »resilience (recovery), resistance, robustness, persistence and variability« 

that can be generically defined and estimated. 

 

Throughout this dissertation, I use the term stability in favor over resilience (see Box 1.2). 

Unfortunately, little efforts have been made to contribute to a functional understanding of dryland 

stability. So far results on dryland stability are merely anecdotic as they arrived from single sites or 

regions and focused on differing estimates of stability (e.g. variability, resistance or recovery; Knapp 

and Smith, 2001, Bai et al., 2004) that are often based on largely differing ecosystem properties (e.g. 

species composition, biodiversity or primary production; Peterson et al., 1998, Tilman and Downing, 

1994). Due to their vastly varying methodology and their spatiotemporal constraints, these findings 

lack the potential to be representative across larger scales, nor can they be easily up-scaled. Hence, 

there is a general demand for an increased functional understanding of dryland ecosystem responses 

to global change (Reynolds et al., 2007), but no obvious or easy to achieve strategy to satisfy this 

demand (see Chapter 1.3). 

 

1.2 Primary Production in Drylands 

1.2.1 Aboveground Net Primary Production 

As stated above, the predominant land use types in drylands are pasture-based livestock production 

and to a lesser extent crop production. Thus, livelihood and income security in drylands strongly rely 

on revenues from forage production and crop yield (Gillson and Hoffman, 2007). 

Both of these ecosystem services are commonly estimated by aboveground net primary production 

(ANPP), the sum of produced aboveground plant tissue within one year, usually expressed in g m-2 or 

kg ha-1 (Scurlock et al., 2002). ANPP is very versatile as it can be estimated relatively fast and cheap in 

all terrestrial ecosystems. More importantly, it is directly connected to essentially all aspects of matter 

and energy fluxes in terrestrial ecosystems, not only in drylands (Lauenroth et al., 2006). 

Unsurprisingly, it is one of the best-documented quantitative estimates for several ecosystem services 

(such as the above mentioned) and a core ecological currency. Hence, ANPP (and derivates thereof, 

e.g. rain-use efficiency; Le Houérou, 1984, Yan et al., 2013) are used to assess and represent annual 

dryland productivity and other key ecosystem characteristics throughout this dissertation. 
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1.2.2 Drivers of Primary Production in Drylands 

As per definition, dryland ecosystems are water-deficient throughout prolonged periods within a year 

(Figure 1.1). Hence, it is not surprising that water, usually provided by precipitation only, acts as the 

main limiting factor for primary production in these systems (Lauenroth and Sala, 1992, Linstädter and 

Baumann, 2013); and is also highly important in other terrestrial ecosystems (Huxman et al., 2004). 

Therefore, ANPP is often interpreted as function of precipitation (Sala et al., 1988) and plotted along 

precipitation gradients. Even though the generality of water limitation in drylands is widely accepted, 

there is lack of consensus about the response-pattern of ANPP along these precipitation gradients on 

different temporal and spatial scales. Most studies report a linear relationship with precipitation 

(O'Connor et al., 2001, McCulley, 2005, Muldavin et al., 2008, Bai et al., 2008) but differ in intercept 

and slope. Other studies report a saturation curve, where ANPP increases with precipitation, but levels- 

off under more humid conditions (Hein, 2006, Yang et al., 2008,  and partially Miehe et al., 2010, and 

Huxman et al., 2004). 

Given these concurring results in literature, neither of the regression models seems appropriate per 

se. Hence, continued theoretical and empirical considerations are needed to assess this issue, as the 

elucidation of general mechanisms in ANPP-precipitation relationships are a useful desideratum not 

only for functional ecologists but also for ecosystem modelers (see Chapter 2.1). 

 

Not only current but also previous precipitation conditions influence ANPP (i.e. those of the last 

season or year). This aspect of the ANPP-precipitation relationship has been described as the 

»memory«- or legacy effect of grasslands (Wiegand et al., 2004). The relevance of previous 

precipitation for ANPP can be explained by a carry-over effect of vegetation density (Yahdjian and Sala, 

2006, Linstädter and Baumann, 2013), the amount of reserve biomass in perennial species at the 

beginning of the growth period (Müller et al., 2007, Zimmermann et al., 2010) and by increased seed 

production and quality in annual plant communities (Harel et al., 2011). This carry-over effect may 

explain the majority of unexplained variance in grassland production, especially in perennial systems 

(Wiegand et al., 2004). 

 

Edaphic factors also play a crucial role for biomass production in the context of water limitation. Soil 

characteristics such as texture, bulk density and depth influence how water infiltrates and penetrates 

the soil, as well soil’s water-holding capacity, thus, these characteristics determine how much 

intercepted precipitation is available for plants (Archer and Smith, 1972). Furthermore, soil moisture 

affects nutrient availability and cycles, another prerequisite for plant growth, hence also for primary 

production (Hooper and Johnson, 1999, Delgado-Baquerizo et al., 2013). 
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Unlike to humid regions (e.g. central or northern Europe), coarse-texture soils have been recognized 

as beneficial for plant growth and primary production in drylands as compared to fine-textured soils 

(Sala et al., 1988). This observation is described as the »inverse-texture hypothesis« (Noy-Meir, 1973): 

in dryland regions, less water evaporates from coarse-textured soils (with a high sand content), as 

water infiltrates more quickly and deeper in the ground than on fine-textured soils. Furthermore, the 

top-layer of fine-textured soils dries out more quickly under dryland conditions, hardens and builds a 

barrier against rise and evaporation from deeper soil levels as well as against infiltration of later 

precipitation events (Alizai and Hulbert, 1970). This phenomenon leads to the paradox situation that 

those soils which are described as poor in Middle European contexts (European Soil Bureau, 2005), i.e. 

deep sands, carry the densest vegetation cover and are often most productive in drylands (Schulte, 

2002, Sala et al., 1988, Le Houérou, 1984). 

 

As for all vegetation, also deficient provision of nutrients (mainly carbon, nitrogen and phosphorus) 

acts limiting on ANPP in drylands (Hooper and Johnson, 1999, Delgado-Baquerizo et al., 2013). In the 

context of drylands, this is particularly interesting for two reasons. First, drylands’ intense livestock 

production may deplete soil nutrient pools (Hassan et al., 2005) and second, increased aridity – as 

projected for most drylands (Figure 1.3) – may decouple soil nutrient cycles (Delgado-Baquerizo et al., 

2013). Intense livestock production in drylands leads to a partial decoupling of nutrient in- and output 

as compared to more natural conditions what may successively deplete soil nutrients pools (Hassan et 

al., 2005). For once, herbivore density is much higher under livestock production schemes and, given 

the high metabolic needs of herbivores, leads to a higher proportion of respirational loss of carbon. 

Furthermore, grazing-/browsing- and roaming-behavior of livestock largely centralizes their excreta 

and thus nutrients near attraction-loci (boreholes, licks or shade trees) while depleting other parts of 

the range (Andrew, 1988, Moreno García et al., 2014). Finally, livestock products (e.g. meat, milk, fur) 

are extracted from the systems as well, thus preventing in-situ nutrient return. 

A recent global assessment of C, N and P cycling in drylands reports that increasing aridity reduces C 

and N, but increases (inorganic) P concentrations (Delgado-Baquerizo et al., 2013). The study argues 

that under increased aridity these responses might lead to a progressive decoupling of the mentioned 

nutrient cycles, with detrimental effects on key ecosystems services such as primary production. The 

authors assume that lowered plant cover due to increased aridity, which favors physical over biological 

nutrient cycling processes, is the main mechanism behind this decoupling. 

 

Parallel to the above-mentioned biotic and abiotic factors, also management-related aspects affect 

primary production. In the context of this dissertation, I will mainly highlight the effects of grazing and, 

however briefly, fire. Even though both aspects are also natural processes in drylands, the 
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preponderant use of drylands as rangelands and the related anthropogenic management modifies 

their dynamics in specific ways, which are also highly important in the context of ecosystem functioning 

and dynamics (Belsky, 1992, Holdo et al., 2007). Hence, both aspects need to be assessed under the 

premises of (varying) management. 

 

The effect of grazing on (herbaceous) primary production has been described as a first-order effect of 

reduced vegetation cover due to defoliation (Wiegand et al., 2004): mechanic defoliation reduces 

plants’ cover and photosynthetic active tissue, thus the overall carbon-fixation and rate of tissue 

production. Furthermore, the relative and absolute cover of bare soil might trigger other detrimental 

effects such as water or wind erosion, run-off and nutrient loss by volatilization which feedback on 

primary production as well (Figure 1.4; O'Connor et al., 2001, Milchunas and Lauenroth, 1993, Yan et 

al., 2013). Obviously these effects are directly connected to the intensity, timing and frequency of 

grazing (Linstädter, 2008), with more extreme regimes (i.e. high stocking densities, cf. Figure 1.4) being 

more harmful (Milchunas and Lauenroth, 1993, Palmer and Ainslie, 2005). Nevertheless, the actual 

effect of grazing across different (dryland) environments might fluctuate, which has frequently been 

related to the evolutionary history of grazing at the given sites (Milchunas et al., 1988, Linstädter, 

2008). This explanation stresses the idea that regions, which have been subject to grazing for 

prolonged evolutionary time scales, will exhibit vegetation that is well adapted to grazing disturbances 

(e.g. African savanna systems). In fact, prolonged grazing exclusion may lead to completely altered 

species assemblages in such systems, with the consequence of reduced primary production – however, 

in other cases the exact opposite might apply (Angassa et al., 2012, Schulte, 2002), underlining 

variability of dryland ecosystems (Milchunas et al., 1988). Furthermore, the actual impact of grazing is 

also moderated by the general condition of the rangeland (health or degradation status), with 

degraded rangelands suffering more strongly (O'Connor et al., 2001). 

 

Figure 1.4: Effects of (over-) grazing in drylands. (A) »Piosphere« (i.e. the degraded area around an attraction loci for 
animals; Andrew, 1988) in a communal grazing land. Clear signs of overutilization are visible: reduced plant cover and a 
high density of excreta. (B) Marked fence line between two camps of differing land use: the left camp was stocked with 
game for recreational purposes in low stocking densities. The right camp was used for cattle with a recommended stocking 
density of ca. 12 ha cow-1. Both photographs derive from the Kalahari, near Hotazel, South Africa, in 2010. 

B A 
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Another aspect related to grazing is compensatory growth – regrowth after tissue loss – that might 

even lead to »overcompensation« (McNaughton, 1983). Compensatory growth is a common and rather 

fast response of most plants, especially in non-woody tissues. Grasses are particularly well adapted to 

losses in vegetative organs, as their relatively low-laying and abundant meristems can compensate 

tissue losses rather rapidly. In grazing-adapted ecosystems, such as most drylands, (perennial) plant 

mortality after defoliation is virtually non-existent if it is not coincident with unfavorable climate 

conditions such as severe drought (Zimmermann et al., 2010). Furthermore, under low levels of grazing 

– or other sources of injuries – regrowth might even exceed the preceding tissue loss, that is 

»overcompensation« (McNaughton, 1983, Belsky et al., 1993; Note: Belsky et al. do not support the 

term »overcompensation« as it is historically connect to grazing, but acknowledge the general 

phenomenon). Furthermore, severe grazing has also shown to increase seed production and survival 

in herbs, thus plant fitness, which can be seen as another pathway of overcompensation (Paige and 

Whitham, 1987). 

 

Altogether, grazing is a complex driver of ecosystem dynamics in drylands and on primary production, 

as it triggers not only effects on plant individuals but also on communities and their habitats, which 

again might feedback on primary production (Linstädter and Baumann, 2013). Overall, the most 

general statement for the influence of grazing on dryland ANPP in this context might be »Dosis sola 

facit venenum« (Paracelsus, 1538 in 1922). 

 

Besides precipitation, edaphic factors, nutrients and grazing, fire is one of the most influential effectors 

of aboveground net primary production in dryland ecosystems and even more on structural aspects of 

dryland biomes. However, as fire is of less interest for the studies within this dissertation, I will only 

throw a short spotlight on the most important aspects. 

 

Figure 1.5: Wildfires in drylands. (A) Wildfire at Kamanjab, Namibia, in 2006. (B) Resprouting of a burned bunchgrass 
community in Bloemfontein, South Africa, in 2010. Photograph (A) is a courtesy of A. Linstädter. 

A B 
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(Wild-) fires are often triggered by lightning, or accidentally by campfires or other anthropogenic 

sources (Figure 1.5), but might as well be part of land management (»prescribed burning«, H.A. Snyman 

pers. comm.). As fires need a minimum fuel-load to persist and spread (Linstädter and Zielhofer, 2010), 

they are more frequent and widespread in the semi-arid and dry sub-humid than in the arid or hyper 

arid dryland-subtypes, as these systems have the tendency to be more productive and thus have the 

potential to accumulate more flammable dead biomass (Oesterheld et al., 1999, Linstädter and 

Zielhofer, 2010). Effects of fire on current year’s primary production are rather obvious, but highly 

dependent on the timing of the fire event during the vegetative state of the plant community. For 

instance fire events at the end of the vegetative cycle might consume all biomass and leave only little 

opportunity for regrowth in the same season, thus they hardly have an effect on (current year’s) ANPP. 

On the other hand, fire before or in the beginning of a growing season might increase ANPP in various 

ways. For once, burning of standing (dead) biomass releases nutrients in form of highly fertile ash to 

the soil, thus boosting nutrient-pools (Buis et al., 2009). Furthermore, fire opens a window of 

opportunity for increased recruitment and primary production (Zimmermann et al., 2008), as 

detrimental effects of competition for light and spaces are eased by the re-opening of the woody- 

and/or grass-canopy (Blair, 1997, Oesterheld et al., 1999, Zimmermann et al., 2010). On the other 

hand, fires during sensitive vegetative phases (such as shoot growth) might also reduce ANPP, as 

relative fitness of plant individuals is reduced after the fire, and the soil-fertility boost might not 

compensate for these losses. Hence, it is not surprising that effects of fire on ANPP have been reported 

to vary remarkably, reaching from ANPP decreases of -80% up to increases of 300%, depending on 

frequency and timing of the fire event (Oesterheld et al., 1999). 

Despite these first-order effects of fire on ANPP, there are also second-order effects, as fire is also 

believed to largely affect ecosystems structure. For example, large scale fire-exclusion in grassland and 

savanna biomes is believed to be one of the driving forces of bush encroachment (cf. Chapter 1.1; 

Scholes and Archer, 1997, Angassa et al., 2012) what may change ecosystem structure and functioning 

due to higher bush intensity (Eldridge et al., 2011). 

 

Concisely, aboveground net primary production is one of the most important ecological currencies in 

dryland ecosystems, reflecting the provision of forage production in these regions. Even though there 

is a general consensus that ANPP is mainly shaped by precipitation, soil characteristics, nutrient supply 

as well as grazing and fire (management; Scholes and Archer, 1997), it is unclear if response to these 

drivers is rectified or even identical across large scales and if there are interactive effects between 

these factors. Information and data we have thus far are mainly sites-based case studies. This 

anecdotal data cannot easily be up-scaled. Furthermore, ANPP estimation methods and algorithms 

vary vastly across studies and sites, what further hampers comparability. 
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1.2.3 Estimating Aboveground Net Primary Production 

Today, ANPP is one of the best-documented estimates for dryland ecosystem services (Scurlock and 

Olson, 2002). However, representing a concept rather than a precise physical size, ANPP cannot be 

measured directly, but only be estimated based on surrogate measurements (Lauenroth et al., 2006). 

Generally, ANPP estimation is a two-step process: first, biomass is estimated or measured (e.g. by 

volumetric equations or clipping, Figure 1.6); second, the gathered biomass values are translated or 

recalculated to ANPP estimates depending on the respective method (see Box 1.3). As biomass can be 

measured and estimated with relatively little error (e.g. clipping or calibrated volumetric equations; 

Schulte, 2002), I will focus on the second step here. 

Given the generality and importance of ANPP as ecosystem variable in terrestrial ecosystems, it is not 

surprising that many different estimation procedures and methods have been developed, which is 

particularly true for grass- or herb-dominated ecosystems (Scurlock et al., 2002, Singh et al., 1975, see 

Box 1.3). However, despite partial consensus about »best practice methods« (Scurlock et al., 2002), 

discussion on various methodological issues is still ongoing, and leads to coexistence of numerous 

ANPP estimation methods until today (see Box 1.3). Unfortunately, these different ANPP methods 

differ not only in their general accuracy, or in their tendency to over- or underestimate ANPP, but also 

with respect to magnitude, variability and uncertainty of ANPP estimates (Scurlock et al., 2002, 

Lauenroth et al., 2006). For instance, Scurlock et al. (2002) have shown that ANPP estimates at one site 

and date may vary up to more than 6-fold depending on the used method. 

Hence, comparability of ANPP data across studies can be rather poor. Paradoxically, despite the large 

number of studies presenting ANPP data on field scale, this incomparability of methods de facto leads 

to a scarcity of ANPP data for data-integration studies. It is an urgent need to overcome these problems 

of incomparability and to harness the full potential of the globally available ANPP data in future studies. 

 

Figure 1.6: Biomass sampling via cutting for ANPP estimation in a grassland near Bloemfontein, South Africa, in 2010.  



General Introduction 

15 
 

Box 1.3 – Common ANPP Estimation Methods 

According to Scurlock et al. (2002) as well my as own literature review (Ruppert and Linstädter, 2014), the vast majority of 

studies presenting ANPP uses a pool of seven common methods. Roughly, these can be classified in (less-elaborated) peak- 

and (elaborated) incremental methods. As indicated by name, peak-methods use single biomass estimates during peak-

season of biomass to estimate ANPP, while incremental-methods use several biomass estimates and (summed) increments 

thereof. Generally, there is a consensus that incremental-methods are best practice (i.e. Method 5), however, this is in sharp 

contrast to the actual utilization in literature: only 21% of studies used these elaborated methods (Ruppert and Linstädter, 

2014). For illustration, Figure 1.7 visualizes what four selected ANPP methods quantify with respect to in-field biomass. 

Table 1.1: The seven most common ANPP estimation methods in terrestrial (mostly herbaceous) ecosystems. 

 

Figure 1.7: Illustrative scheme on four selected ANPP estimation methods, two peak- as well as two incremental methods. 
The uppermost row represents in-field biomass situation and allocation of biomass age. Green: living plant material; 
yellow: senescent, recently dead, material; dark-grey: moribund, last year’s dead material; and light-grey: plant biomass 
that is invisible for the respective method.  

Method for ANPP 

estimationa 

Description 

Method 1 Peak live biomass 

Method 2ab Peak standing crop (live plus recent dead) 

Method 2bb Peak standing crop (live plus recent and old dead) 

Method 3 Maximum minus minimum live biomass 

Method 4 Sum of positive increments in live biomass 

Method 5 Sum of positive increments in live and recent dead (Smalley’s Method) 

Method 6 Sum of positive increments in live and total dead (recent plus old dead) 

Method 7 Sum of positive increments in live and dead biomass with an adjustment for 

decomposition 
a Nomenclature follows Scurlock et al. (2002). 
b Differing from Scurlock et al. (2002) the »peak standing crop« method was split into two subgroups,    
  to account for actual observed (mis-) use in literature (cf. Chapter 2.2). 
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1.3 General Methodological Approach and Database 

As described above, data on primary production (and related topics, e.g. dryland stability; see 

Chapter 1.1) in drylands, as well as insights in ecosystems functioning derived thereof, suffer from two 

general issues: (1) given the high spatiotemporal variability of dryland ecosystems, results from dryland 

studies are mostly anecdotal and cannot be easily up-scaled, what is hampering synthesis and 

functional insights. Furthermore, (2) the application of largely varying ANPP estimation methods leads 

to incomparability of results across studies. 

Hence, even though there is an urgent need for an increased functional understanding of dryland 

ecosystems, especially in the light of global change (Reynolds et al., 2007), there is yet no obvious or 

easy to achieve strategy to satisfy it.  

 

On a theoretical basis, there are at least two options to tackle the first issue: first, repeated mid- to 

large-scale long-term experiments, and second, synthesis of available knowledge and data. The first 

option is increasingly adapted in ecology via coordinated distributed experiments (CDE; Fraser et al., 

2013). CDEs usually provide an experimental core protocol that is meant to be applied and repeated 

by as many scientist and sites as possible. The shared experimental layout assures comparability of 

results and eases joint analysis as well as spatial and temporal up-scaling of the results. NutNet 

(http://www.nutnet.umn.edu/) and FLUXNET (http://fluxnet.ornl.gov/) are among the best-known 

and most proliferate CDEs of the last decades. However, even though there are currently considerable 

efforts made in setting up dryland-related CDEs (e.g. Drought-Net; Smith et al., 2014, Smith pers. 

comm.), it will take at least 5 to 10 years to obtain first reliable results. The second option – to 

synthesize available knowledge and data – can be performed in various ways. The most prominent and 

common approach are literature reviews (Baker, 2000). These have repeatedly given proof to be 

versatile tools for summarization of knowledge or as opportunities to achieve functional insights as 

well as impetus for new research directions or even research fields. However, at the same time they 

have the disadvantage of rendering merely qualitative and not quantitative results. During the last 

decades, a new type of data-synthesis has emerged across natural sciences: meta-analyses (Glass, 

1976) or, more broadly speaking, data-fusion or -integration studies (Lenzerini, 2002). 

Throughout this dissertation, I will follow the latter option and present results from a meta-analysis 

(Chapter 2.1: Ruppert et al., 2012), as well as from data-integration studies (Chapter 2.2: Ruppert and 

Linstädter, 2014, and Chapter 2.3: Ruppert et al., submitted) based on assembled large to global scale 

data sets of dryland ANPP. 

 

The second issue – the incomparability of ANPP data across estimation methods – is particularly 

assessed in the second paper underlying this dissertation (see Chapter 2.2). Here, the convertibility 

http://www.nutnet.umn.edu/
http://fluxnet.ornl.gov/
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between ANPP estimates derived from differing estimation methods was studied with the ultimate 

goal to establish reliable conversion models between the most common estimation methods. 

The remaining sections of this introduction are meant to give a brief overview on the master database 

underlying the studies of this dissertation, as well as on data acquisition, handling and processing. 

 

1.3.1 Data Acquisition, Handling and Processing 

All studies underlying this dissertation (see Chapter 2) are based on different versions of a global ANPP 

database assembled between 2008 and late 2013, mostly in 2012. Most data sets derived from dryland 

ecosystems and only few from humid climate, the latter were added in the context of the second study 

(see Chapter 2.2) and were only used therein. 

Data acquisition followed an exhaustive literature search using a comprehensive set of keywords (see 

Box 1.4) in Google Scholar, as this source gives more complete results compared to other systems (e.g. 

Web of Science; Beckmann and von Wehrden, 2012). Furthermore, especially at a later stage, studies 

that were received via personnel communication were added. During all stages of data assemblage, 

the goal was to obtain an as large and unbiased database as possible. For this reason, also data from 

unpublished studies was added to avoid »publication bias« (Rothstein et al., 2006). However, other – 

ecologically motivated – criteria were used to select upon all potentially available studies. Most 

importantly, only studies with combined ANPP and precipitation data (or where precipitation data was 

available from other sources) and which at least presented five years of consecutive observations were 

further surveyed. The latter aspect was chosen to increase the probability to observe temporal 

variability in ANPP and precipitation data, which is typical for drylands. This criterion was only set aside 

for the second study (see Box 1.4). 

Studies that were regarded as potential candidates were further screened to assess whether data 

presented in published sources was sufficient to be incorporated in the database, or if further 

information was needed. Most often, additional data on soil or management characteristics of the 

study site, or the biomass sampling technique, and/or used ANPP estimation method were required. 

Roughly 10% of studies presented sufficient information. Hence, for the vast majority of studies, the 

original authors were contacted at least once, and were presented with a detailed and mostly study-

specific questionnaire. Furthermore, whenever original authors were contacted, original biomass data 

was requested rather than processed ANPP estimates as well as precipitation data for the longest 

period available at the respective site. As this effort was surprisingly successful, meta-data for most 

studies incorporated in the database are more detailed and comprehensive than related published 

sources. 
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Box 1.4 – Data Search and Workflow 

All data search was performed in Google Scholar. Specifically it was searched for the keywords biomass, standing crop, 

primary production, ANPP, dryland, hyper-arid, arid, semi-arid, dry sub-humid, monitoring and long-term in various 

combinations and spelling alterations. Furthermore, studies where biomass or ANPP derived from modeling or remote 

sensing were excluded to minimize measurement error, which is intrinsically associated with these techniques. 

In those cases, where unpublished data was obtained via personnel communication, the original authors where granted co-

authorship in the first publication using their data, if they were willing to contribute to the manuscript as well (see Chapter 

2.1 and 2.3). This is common practice in meta-analytical studies (Helmut Hillebrand, pers. comm.). 

 

Figure 1.8: Workflow for general data search, filtering and processing. Please note, that the literature search was repeated 
occasionally between 2008 and late 2013, but mostly in 2012. This is also evident in the varying database sizes throughout 
the three studies. 
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Once a data set was incorporated into the database, a series of data processing and handling steps 

followed. If original biomass data was available, ANPP was calculated using as many of the seven 

common ANPP estimation methods as possible (see Table 1.1; this was a prerequisite for Chapter 2.2). 

Furthermore, wherever at least daily, weekly or monthly precipitation data was available three 

common precipitation sums were calculated: annual precipitation, precipitation of the hydrological 

year, and precipitation of the growing season for the respective site. Based on this data, the 

standardized precipitation index (SPI, McKee et al., 1993) was calculated. The SPI is an ecological sound 

and commonly used precipitation index for dryland environments (Vicente-Serrano et al., 2012). All 

mentioned calculations as well as the data storage was realized in a relational database 

(MySQL 5.0.95). Besides the mentioned calculations, data processing incorporated classification of all 

studies, or more precisely: the sites therein, with respect to climate- and vegetation-related systems 

(see Chapter 1.1). For example, the climate regime of the respective sites was classified using the 

aridity index based on the CGIAR/UNEP global-aridity map (Trabucco and Zomer, 2009). Furthermore, 

biome and ecoregions for all sites were classified using the WWF biome classification (Olson et al., 

2001). Both classification-steps were realized in GIS (ArcMap 10). 

 

Furthermore, various other meta-variables were obtained from related sources or original authors, 

such as dominant species in all strata (herb-, bush-, and tree-layer), dominant carbon-metabolism of 

the community (C3, C4), soil texture (together with sand-, silt-, clay-content), nutrient-status of the soil 

(C-, P-, N-content, C/N ratio), experimental and management treatment (ungrazed, grazed, prescribed 

burning, fertilized; if present) and intensity thereof (duration and frequency of treatment; e.g. stocking 

density or fire-return frequency). The following overview on the database, as well as the excerpts from 

it, given in Chapter 7, might convey a better impression of the actual database than all description that 

could have been added. 

 

1.3.2 Database 

In March 2014 the assembled database comprised 322 distinct data sets (Figure 1.9) originating from 

60 studies or institutions (e.g. experimental farms, see Table 1.2). In total, >4450 years of combined 

ANPP/precipitation observations were assembled, data on annual precipitation exceed 8550 years. 

The average data set length was 14.3 years (max. 77 years). Studies came from arid (n = 54), semi-arid 

(n = 239), dry sub-humid (n = 27) and humid (n = 2) regions and represented all broad dryland biomes 

as defined in this thesis (see Box 1.1). Data for grasslands (n = 120) and savannas (n = 109) was more 

abundant than that for shrublands (n = 53), roughly reflecting area-proportions of the respective 

biomes (MEA, 2005).  
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Figure 1.9: Global map of assembled dryland database used in this dissertation. In total, 322 data sets derived from roughly 
50 studies were assembled. Points indicate locations, numbers refer to data sets at certain locations if >1. 
 

Some sites (n = 40) could not be classified to either of the broad biome classes, as they were subject 

to massive experimental impact (i.e. clear-cutting, plowing and/or sowing). If only architectural aspects 

of vegetation are considered, these sites appeared grassland-like, as they only comprised herbaceous 

vegetation. 

 

1.4 Aims of this Dissertation 

Generally, the aims of this thesis were twofold. One main aim was to improve our understanding of 

ecological functioning of drylands; the second was to overcome intrinsic difficulties in data-integration 

approaches. 

Assembling a global dryland ANPP database was originally motivated by the necessity to have a basis 

for a functional and quantitative assessment of the relationships between primary production and its 

drivers – particularly above the level of case studies. This strategy promised to render more general 

insights than case studies, as temporal and spatial constrains are eased. Furthermore, sufficient 

amounts of data, specifically long-term data sets, should allow studying impacts of rare extreme 

events, such as drought, on ecosystems functioning. In this respect, the functional responses of dryland 

primary production to climatic shocks (i.e. drought) or changes in land use (i.e. grazing) are of particular 

interest given the above described global change projections for drylands. 

The second aim emerged during an early stage of data assemblage, when it became evident that 

different studies used largely varying ANPP estimation methods and were thus incomparable: How 

should one cope with partial incomparability between estimates of primary production? 
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In Chapter 2.1 an early version of the global ANPP dataset is used to assess global validity of the above-

mentioned biotic and abiotic divers of ANPP and rain-use efficiency. Furthermore, it is tested whether 

the concurring results on the shape of ANPP-precipitation relationship in literature can be reconciled. 

Chapter 2.2 studies the recent use of the most common ANPP estimation methods and tries to make 

a way out of the »comparability dilemma« between ANPP estimates derived by different estimation 

methods. Finally, Chapter 2.3 tests drylands’ response to the most common realizations of global 

change in these regions: i.e. altered drought and grazing regimes. Responses in two aspects connected 

to ecosystem stability (i.e. ANPP-based resistance and recovery) should allow deduction of general 

recommendations for land managers as well as insights for ecosystem modelers.  
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2. Publications of the Dissertation 

 

2.1 Meta-Analysis of ANPP and Rain-Use Efficiency confirms indicative value for 

Degradation and Supports non-linear Response along Precipitation Gradients in 

Drylands 

 

2.2 Convergence between ANPP Estimation Methods in Grasslands – A practical 

Solution to the Comparability Dilemma 

 

2.3 Quantifying Dryland Resistance and Resilience to Drought: The Importance of 

Drought Intensity, Grazing Regime and Vegetation Structure
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2.1  Meta-Analysis of ANPP and Rain-Use Efficiency confirms indicative 

value for Degradation and Supports non-linear Response along 

Precipitation Gradients in Drylands 

 

Jan C. Ruppert,  Alexander Holm, Sabine Miehe, Esteban Muldavin, Hennie A. 

Snyman, Karsten Wesche  & Anja Linstädter (2012), Journal of Vegetation Science 

23: 1035-1050, DOI: 10.1111/j.1654-1103.2012.01420.x
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Appendix S1: Established conversions for different livestock indices to tropical 

livestock unit (TLU) 

 

Bodyweight based assignment of tropical livestock units. Reference for 1 TLU is a ruminant with  

a bodyweight of 250 kg (e.g. cattle).  

 

Bodyweight [kg] TLU 
30   0.20 
35   0.23 
40   0.25 
45   0.28 
50   0.30 
60   0.34 
75   0.41 
100   0.50 
125   0.59 
150   0.68 
200   0.85 
250   1.00 
300   1.15 
350   1.29 
400   1.42 
450   1.55 
500   1.68 
 

Conversion of large stock units (LSU) into tropical livestock units (TLU) 

LSU is the equivalent of the TLU for moderately tempered climatic zones. Since larger animals can be 

found in these climatic zones, the units differ only in the weight of the reference animal. While 1 LSU 

equals one adult cattle with a weight of 500 kg, 1 TLU equals one adult cattle with the weight of 250 

kg. Therefore the conversion followed the formula: 1 LSU = 2 TLU. 

Applied for O’Connor et al. 2001. 

  

Conversion of dry sheep equivalent (DSE) into tropical livestock units (TLU) 

1 DSE accords to the feed consumed by a two year old 45 to 50 kg sheep or the (consumed) energy of 

7600 kilojoule per day. Following the allocation of TLU values by body weight (see Table above) one 

adult sheep with a weight 45 to 50 kg equals a TLU value of 0,28 to 0,30. For the conversion the mean 

of both values was chosen. Therefore the conversion followed the formula: 1 DSE = 0,29 TLU. Applied 

for Holm et al. 2003. 
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Conversion of Mongolian sheep unit (MSU) into tropical livestock units (TLU) 

1 MSU accords to the feed consumed by one sheep per day and should therefore be about 1 kg dry 

matter per day and year [1 kg DM * d-1 * y-1]. Ruminants consume about 3% of their own body-weight 

per day (Ulgiit & Stewart 2006), therefore 7.5 MSU equal 1 TLU, since 7.5 kg are 3% of 250 kg.  

Applied for Wesche & Retzer 2005. The calculated TLU values were checked and accepted by the 

authors. 
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Appendix S2: Why efficiencies should not be analyzed by linear regressions 

 

Verón et al. (2005) point out that utilization efficiencies (UE, e.g. the rain-use efficiency) express the 

amount of output (y, for RUE: the RUE values) for a given input (x, for RUE: the annual precipitation) 

and in mathematical terms are of the type y/x or UE = a/x + b. Therefore theory predicts non-linear 

response of RUE along short precipitation gradients. With increasing gradient length, this relationship 

approaches linearity, as has been found in many studies (e.g. Lauenroth & Sala 1992, Huxman et al. 

2005). 
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2.2  Convergence between ANPP Estimation Methods in Grasslands – A 

practical Solution to the Comparability Dilemma 
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Abstract 

Aboveground net primary production (ANPP) is a key ecosystem characteristic and of fundamental 

importance for essentially all aspects of matter and energy fluxes in terrestrial ecosystems. Various 

methods for estimating ANPP are available and despite partial consensus on ‘best practice methods’ 

important methodological issues remain unresolved: ANPP data obtained with different methods 

differ in their magnitude, variability and their tendency to over- or underestimate primary production. 

Paradoxically, despite the large number of published ANPP data, the limited comparability of ANPP 

estimates across studies leads de facto to a scarcity of ANPP data for assembled large-scale studies. 

We aimed to overcome these problems by establishing conversion rates between the most commonly 

used ANPP methods, thus making the large body of published ANPP data more comparable and thus 

useful for assembled large-scale studies. 

Using seasonal biomass dynamics from 89 sites representing various biomes and climata, we 

established linear conversions for all 21 combinations between the seven most common ANPP 

estimation algorithms in grass-dominated vegetation. We also checked for confounding effects of 

environmental factors such as biome, management and climatic aridity. Aridity was the only factor 

with a clear influence on ANPP conversions, and in six cases we thus calculated separate relationships 

for dry and humid conditions. In these cases, dryland ANPP was systematically underestimated by the 

respective methods. As these methods are insensitive to turn-over processes from live to senescent 

biomass, we assume this underestimation is related to climate-induced differences in biomass turn-

over rates, with more arid sites having higher rates. 

The majority of the resulting 27 conversions had high (pseudo) R2 values (≥ 0.65; full range: 0.31 - 0.92), 

indicating clear linear relationships between most ANPP estimation methods. Given the large size of 

the dataset and the accuracy of statistical models, we assume that most conversion formulae are 

generally valid. We classified conversions with respect to their R2 values and their methodological 

comparability, and concluded that 16 conversions can be fully recommended. For those cases where 

a recalculation of ANPP on basis of original biomass data is not possible, our conversion formulae offer 

an easy and practical approach to synchronize ANPP estimates from divergent algorithms and sources. 

 

1. Introduction 

Aboveground net primary production (ANPP) is a key ecosystem characteristic and of fundamental 

importance for essentially all aspects of matter and energy fluxes in terrestrial ecosystems. It is a 

prominent core ecological currency and one of the best documented quantitative estimate for several 

ecosystem services such as forage or lumber (Scurlock et al., 2002). However, as it represents a concept 
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rather than a precise physical quantity or attribute, ANPP can only be estimated by surrogate 

measurements and not measured directly (Lauenroth et al., 2006). 

Many different procedures and methods for estimating ANPP have been developed. Particularly in 

grass-dominated ecosystems, a wide variety of different estimation protocols have been developed 

within recent decades. The most common methods to estimate ANPP (hereafter simply ‘ANPP 

methods’) have been thoroughly evaluated and compared in literature (Lauenroth et al., 2006; 

McNaughton et al., 1996; Milner and Hughes, 1968; Sala and Austin, 2000; Scurlock et al., 2002; Singh 

et al., 1975). However, despite a partial consensus on ‘best practice methods’, discussion regarding 

various methodological issues is still ongoing, and as a result, numerous ANPP estimation methods are 

in use and compete up until today. Generally, ANPP methods can be sub-divided into complex 

elaborated methods and simple, less elaborated ones. Elaborated methods, which account for 

dynamics in live, senescent, and moribund tissue simultaneously throughout the growing season, have 

often been recommended (Singh et al., 1975; Scurlock et al., 2002). However, these methods are far 

more labor-intense and costly than other ‘simple’ estimations (e.g. Peak standing crop, or Peak live 

biomass) which have a tendency to underestimate production. Unsurprisingly, less elaborate methods 

are far more often applied, as they are faster and cheaper. Unfortunately, different ANPP methods 

differ not only in their general accuracy (i.e. their tendency to over- or underestimate ANPP), but also 

with respect to magnitude, variability and uncertainty (Scurlock et al., 2002; Lauenroth et al., 2006). 

These differences render estimates based on different methods more or less incomparable. Scurlock 

et al. (2002) have shown that ANPP estimates at one site and date may vary up to more than 6-fold 

depending on the computational method used. Examples from our own dataset show even more 

extreme differences of up to 10- to 15-fold in certain cases (data not shown). 

In the past, simple methods like Peak standing crop were sufficient for common questions in 

vegetation and rangeland ecology. They give robust estimates which are sufficient for determining 

carrying capacity, assessing the influence of climatic characteristics, or comparing the effects of 

contrasting management strategies at local scale (e.g. Blaisdell, 1958; Dye and Spear, 1982; Smoliak, 

1986). However, in recent years there is a growing demand for both more accurate and better 

comparable ANPP data across larger scales. In fact the lack of large-scale ANPP data has been stated 

as one of the most crucial data gaps in ecology in recent times (Ni, 2004; Scurlock et al., 2002; Scurlock 

and Olson, 2002). Paradoxically, despite the large number of studies presenting ANPP data on field and 

site scale, the limited comparability of ANPP data across sites, regions and studies de facto leads to a 

scarcity of ANPP data for supra-regional or large-scale studies.  

In the light of the climate and land-use change debate, the need for reliable and adequately scaled 

large-scale and global ANPP datasets is urgent, as each of cross-system analyses, meta-analyses, as 

well as land-use, climate and vegetation models imminently require them. Since adequate biomass 
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and ANPP monitoring is not only time consuming but also costly, numerous scientists rely on 

assembling ANPP datasets from published data (Hsu et al., 2012; Lauenroth and Sala, 1992; Ni, 2004; 

Ruppert et al., 2012). However, due to differences between ANPP estimation methods, this pragmatic 

solution is not without its pitfalls. Surprisingly, only a small proportion of studies discuss the issue of 

comparability of ANPP data assembled from various sources, and based on different estimation and/or 

computation methods (see 3.1 Results). To date, authors of large-scale studies and meta-analyses 

either had to neglect major proportions of published data for the sake of comparability or accept the 

limited and unknown comparability, a true ‘comparability dilemma’. 

Still, little is known about the incidence and frequency of ANPP comparability issues in assembled 

datasets. 

 

Being confronted with this comparability dilemma ourselves (Ruppert et al., 2012; Ruppert et al. in 

prep.), we aimed to overcome these problems by searching for conversions rates between common 

ANPP methods. We found that Singh et al. (1975) presented conversions for a set of different ANPP 

method combinations, developed on the basis of ten short-term datasets form North American 

grasslands. Surprisingly, practically no use was made of these conversions thereafter. A review (see 2.1 

Materials and methods) of all 165 studies citing Singh et al. (source: Google Scholar) revealed that only 

two studies used the conversions, both by authors of the original paper (Lauenroth and Whitman, 

1977; Singh et al., 1983). This poor adoption may be explained by various reasons including: (1) the 

paper was largely a detailed review, and the conversions were not mentioned in the abstract limiting 

their visibility; (2) the strong interest in large and global scale ANPP datasets was not as virulent in the 

1970s as it is today; and (3) perhaps most critically, the study was based on a restricted dataset and 

did not test whether conversions were applicable to data from other regions or ecosystems. 

 

We believe that the attempt by Singh et al. (1975) was simply ahead of its time and that it offers a 

starting point to assess the comparability for future assembled studies. However, the problems and 

shortcomings of Singh’s study, as mentioned under point (3) above, can be overcome by using a large 

global dataset allowing a more systematic assessment of the comparability of the most common ANPP 

methods. This is the scope of the present study. 

We aim to establish simple conversion formulae between the most common ANPP estimation methods 

for grass-dominated vegetation. Our study is based on data from 89 sites with more than 850 years of 

biomass data. 
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2. Materials and methods 

2.1 Literature reviews 

Two literature reviews were carried out for this study: (1) A review of the 165 studies citing Singh et 

al. (1975) to determine whether or not they made use of the presented ANPP conversions (see 1. 

Introduction). (2) We reviewed the 150 most recent studies presenting field measured ANPP data, and 

noted the ANPP estimation method(s) employed. We only selected papers from peer-reviewed 

journals, and excluded ANPP data which was derived from modeling or remote sensing indices. In 

detail, we searched the term ‘ANPP’ in the years 2012 and 2011 and selected the 150 most recent 

papers (written in English, French, German or Spanish). ANPP estimation methods were classified into 

twelve groups (see Table 1), generally based on the nomenclature of Scurlock et al. (2002) but slightly 

extended (see Table 1 and below). All literature reviews were carried out using Google Scholar in 

December 2012, as this source gives more complete results compared to other platforms (Beckmann 

and von Wehrden, 2012). 
 

Table 1. Overview on the most common ANPP estimation algorithms in grass-dominated vegetation and their respective 
use-frequency in recent literature. 

Group / Method for 
ANPP estimationa 

Description %     

       

Method 1 Peak live biomass 12.7   
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%

 

  

Method 2ab Peak standing crop (live plus recent dead) 18.7     

Method 2bb Peak standing crop (live plus recent and old 
dead) 

18.7     

    
 

  

Method 3 Maximum minus minimum live biomass 1.3   
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Method 4 Sum of positive increments in live biomass 12.0    

Method 5 Sum of positive increments in live and recent 
dead (Smalley’s Method) 

1.3    

Method 6 Sum of positive increments in live and total dead 
(recent plus old dead) 

0.0    

Method 7c Sum of positive increments in live and dead 
biomass with an adjustment for decomposition 

0.7    

Other ANPP 
methods 

ANPP methods which could not be sorted into 
the above. 

12.6     

 Other – incremental methods (5.3)    

 Other – sum methods (4.0)     

 Other – unspecified (3.3)     

Assembled ANPP 
studies 

Studies which assembled ANPP datasets from 
more than one source of ANPP data 
(supposedly) comprising more than one 
estimation method for ANPP.  

5.3      

Misleading (or 
wrong) 

Abbreviation ANPP was used in a misleading (or 
wrong) way. In most cases daily productivity 
data was presented. 

4.0  
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n
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6

.7
%

   

No information No information on ANPP estimation 
methodology was given. 

12.7     

       

a Nomenclature follows Scurlock et al., 2002. 
b Differing from Scurlock et al. (2002) the ‘peak standing crop’ method was split into two subgroups. 
c Note that we had to skip Method 7 from analyses due to insufficient data. 
 

 

2.2 Dataset 
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Our ANPP dataset combines established datasets with data obtained from complementary literature 

reviews. It only comprises datasets which allow the calculation of at least two common ANPP 

estimation methods. All methods considered in this study are given and described in Table 1, their 

selection and nomenclature follows Scurlock et al. (2002). 

One of the two main sources for ANPP data is the Net Primary Production Dataset distributed by the 

Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC, http://daac.ornl.gov). 

The second major source is a self-assembled ANPP dataset comprising long-term monitoring data from 

arid and semi-arid ecosystems. The principal data search and acquisition methods are described in 

Ruppert et al. (2012), but the current dataset has been considerably updated and extended compared 

to that presented therein. Furthermore, suitable ANPP datasets which were found during the above 

described literature reviews (see 2.1) were added. Table S1 in the supplementary material presents a 

complete overview on sources and references for all 89 datasets included in analyses. 

 

2.3 Data analysis 

2.3.1 ANPP estimation methods 

Estimating ANPP is a two-step procedure, starting with the measurement (or estimation) of biomass, 

followed by the computational processing of these measurements. Here we will focus on the latter 

aspect of calculation algorithms only, and will concentrate on those algorithms most commonly used 

in recent studies. Generally two groups of estimation methods can be distinguished: (1) ‘Peak 

methods’, using single biomass measurements at peak biomass conditions to estimate ANPP and (2) 

‘Incremental methods’, which sum the incremental accumulation of biomass on a seasonal or annual 

basis. 

The seven (to eight) most common methods – their calculation, inherent assumptions and possible 

pitfalls – have been comprehensively described by Scurlock et al. (2002). We generally followed their 

nomenclature but split Method 2 ‘Peak standing crop’ into two sub-methods (Table 1). Method 2a is 

the original Peak standing crop method (as described in Scurlock et al., 2002), which uses the maximum 

amount of live plus recent (current year’s) dead material as estimate of ANPP. We found several 

studies which also included previous year’s dead material (and sometimes even non-standing, de-

attached litter), and labeled this approach as Method 2b. We chose to distinguish between these sub-

methods for two reasons: Firstly, Method 2b is of limited applicability only, since it can be biased by 

the previous year’s production. Secondly, lumping both methods together would have introduced 

considerable variability into ‘Peak standing crop’ data. 

Since only one site reported sufficient data to calculate ANPP via Method 7 (Sum of positive increments 

in live and dead biomass with an adjustment for decomposition), we excluded this method from our 

analyses. 
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2.3.2 Statistical analyses – Regressions and conversion formulae 

Data exploration to avoid common statistical problems (e.g. with respect to outliers, normal 

distribution and homogeneity of variances) was performed visually as proposed by Zuur et al. (2010). 

Due to several cases of a violation of the homoscedasticity assumption in least squares regression, we 

used generalized least squares regression (GLS). By implementing flexible variance structures of the 

covariate, GLS allows to correct for heteroscedasticity (Zuur, 2009). For each conversion model we 

tested, five (generalized) least squares models were derived, reflecting different common variance 

structures of the covariate for ecological data (no variance structure, fixed variance structure, power 

of the covariate variance structure, exponential variance structure, and constant plus power of the 

variance structure, see Zuur, 2009). We used Akaike’s information criterion (AIC) to select the best-

fitting model and checked again for homoscedasticity. 

For some method combinations we had indications that systematic differences between data from 

drylands (arid and semi-arid) and humid areas existed, based on either methodological issues or visual 

observation of the regressions. We thus used ANCOVAs to test the influence of climate regime on the 

respective regression models. For six method combinations we found a significant influence of the 

climate regime and therefore split the data accordingly to establish climate-specific conversion 

formula (see Table 2 and Figure 1). 

 

Established conversion formulae were classified on the basis of their pseudo R2 values into three 

groups (highly reliable, reliable, and unreliable), representing their reliability and usability as 

conversion models. Class borders were set at pseudo R2 ≤ 0.5 for unreliable, > 0.5 and < 0.7 for reliable, 

and ≥ 0.7 for highly reliable, respectively. Pseudo R2 calculation was based on the generic definition of 

the coefficient of determination and was calculated as: 1 – residual sum of squares / total sum of 

squares. If the final selected model was based on standard least squares regression, pseudo R2 values 

were thus equivalent to standard R2 values. 

We also assessed the comparability of each method combination. Comparability between Peak 

methods (Method 1, 2a & 2b) was assumed to be moderate (labeled as “+ -“ in Table 2): While all 

methods are based on single observations during peak biomass conditions, they refer to different 

estimates of biomass. Comparability between Peak methods and Incremental methods ranged from 

poor (- -) to moderate (+ -), depending on the type of biomass used for the estimation. If both methods 

were based on the same type of biomass (live biomass, live plus recent dead, etc.; e.g. Method 1 : 

Method 3) their comparability was rated as moderate; if not, comparability was rated as poor (e.g. 

Method 1 : Method 6). The comparability between Incremental methods ranged from moderate (+ -) 

to good (+ +). Comparability was rated as good if both methods were based on the same type of 
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biomass (e.g. Method 3 : Method 4) and as moderate if not (e.g. Method 3 : Method 5). This 

assessment of the methodological and ecological comparability adds some information about the 

applicability of conversions, in addition to the statistical classification based on pseudo R2 values. 

All statistical calculations were performed in R, version 2.15.2 (R Development Core Team, 2012). The 

rms package (version 3.6-3) and the nlme package (version 3.1-105) were used to calculate and 

visualize GLS models. 

 

Table 2. Overview on the established conversion formulae. 

 Statistical 
reliability class 
& comparability 

 Conversion formulae    Std. Err. 
slope 

n Pseudo 
R2 

R
e

c
o

m
m

e
n

d
e

d
 

Highly + + Method 3 = 0.89 x Method 4 + 6  0.02 255      0.91 

reliable + + Method 5 = 0.9 x Method 6    0.04 38      0.78 

 + - Method 1 = 0.69 x Method 2a    0.02 227      0.82 

 + - Method 1 = 1.05 x Method 3 + 29  0.02 384      0.92 

 + - Method 1 = 0.97 x Method 4 + 32  0.02 679      0.89 

 + - Method 2a = 0.56 x Method 2b + 57  0.06 29      0.71 

 + - Method 2a = 0.73 x Method 6 + 92  0.06 30      0.71 

 + - Method 2b = 0.81 x Method 6 + 176  0.10 18      0.80* 

 + - Method 3arid = 0.34 x Method 6arid    0.03 29      0.73 

 + - Method 4arid = 0.39 x Method 6arid + 11  0.03 29      0.71 

  - - Method 1arid = 0.35 x Method 6arid + 50  0.03 29      0.81* 

Reliable + - Method 3humid = 0.49 x Method 5humid + 85  0.06 47      0.60 

 + - Method 3humid = 0.44 x Method 6humid + 103  0.09 24      0.51* 

 + - Method 4arid = 0.53 x Method 5arid + 19  0.05 39      0.65 

 + - Method 4humid = 0.64 x Method 5humid    0.05 44      0.66 
 + - Method 4humid = 0.72 x Method 6humid    0.07 24      0.62 

N
o

t re
c

o
m

m
e

n
d

e
d

 

 + - Method 2a = 0.83 x Method 5 + 96  0.06 70      0.60 

 + - Method 2b = 0.81 x Method 5 + 188  0.13 39      0.52* 

 - - Method 2a = 1.23 x Method 3 + 87  0.08 79      0.67 

  - - Method 2a = 1.13 x Method 4 + 96  0.08 79      0.63 

Unreliable + - Method 1 = 0.24 x Method 2b + 96  0.05 52      0.33* 

 + - Method 3arid = 0.41 x Method 5arid + 28  0.05 39      0.50 

 - - Method 1arid = 0.35 x Method 5arid + 82  0.06 39      0.50* 

 - - Method 1humid = 0.58 x Method 5humid + 94  0.06 47      0.50 

 - - Method 1humid = 0.69 x Method 6humid + 43  0.04 24      0.31 

 - - Method 2b = 1.27 x Method 3 + 264  0.28 47      0.31* 

  - - Method 2b = 1.25 x Method 4 + 245  0.27 46      0.33* 

All regression parameters were significant on p ≤0.001 (slopes) or on p ≤0.05 (intercepts). Pseudo R2 values 
marked with an asterisk are standard R2 values. Here model selection selected non-GLS models (= least 
squares regression). Statistical reliability class borders were set according to (pseudo) R2 values: ≤ 0.5 poor, 
> 0.5 and < 0.7 moderate, ≥ 0.7 good. Classification of comparability classes (+ +, + -, and - -) is described 
in 2.3.2 Materials and Methods. For full model descriptions please refer to Table S3. 
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3. Results 

3.1 Literature reviews 

The most recent 150 publications presenting ANPP data showed that Peak biomass estimates 

(Methods 1, 2a & 2b) dominated with 50 % of all studies using them. Incremental methods (Methods 

3-7) followed with 15.3 %. A smaller proportion of 12.7 % of studies used very specific ANPP estimation 

methods, which could not be assigned to one of the common methods, and therefore were allotted in 

‘Other ANPP methods’. Within this group, the largest share (representing 5.3% of all studies) were 

other, ‘non-canonical’, incremental methods, followed by methods calculating ANPP as the sum of 

several cuts throughout a season or year (4% of studies). Combining the canonical ANPP methods 

(Methods 3-7, 15.3 %) and these specific non-canonical methods (5.3 %), increased the total share of 

incremental methods to 20.7% over all studies. 

In total 5.3% of all studies (8 studies of 150) presented Assembled ANPP datasets with more than one 

source of ANPP data. These studies often combined several methods in one dataset. Another 4% of all 

studies used the term ANPP in a misleading way. In most cases, authors presented aboveground net 

primary productivity, which is production per time (e.g. g m-2 d-1). The remaining 12.7 % gave no 

information, on how ANPP was estimated. 

 

The group of Peak biomass estimates was dominated by the two varieties of Peak standing crop, 

Method 2a and Method 2b, with 18.7 % each, as compared to Peak live biomass (Method 1) with 

12.7 %. Incremental methods are dominated by Method 4 (Sum of positive increments in live biomass) 

with 12.0 %. All other methods were rarely used. Method 3 (Maximum minus minimum in live biomass) 

and Method 5 (Sum of positive increments in live and recent dead, aka Smalley’s Method) have been 

used in 1.3 % of all cases each (2 in 150 each), Method 7 (Sum of positive increments in live and dead 

biomass with an adjustment for decomposition) were used in 0.7 % of all cases (1 in 150), and Method 

6 (Sum of positive increments in live and total dead) was not used in recent publications. 

 

In the group of Assembled ANPP studies only three out of eight studies gave information on the 

respective ANPP estimation method for all datasets and addressed issues of comparability (Adler et 

al., 2011; Robinson et al., 2012; Ruppert et al., 2012). The other studies either mentioned the most 

commonly used methodologies only (Hsu et al., 2012; Yahdjian et al., 2011), simply stated that datasets 

were comparable (Hector et al., 2011), or did not comment on the nature of ANPP data at all (Eldridge 

et al., 2011; Evans et al., 2011). It should be mentioned that Eldridge et al. (2011) and Yahdjian et al. 

(2011) only presented ANPP response ratios (treated vs. non-treated), therefore differences in ANPP 

estimation algorithms should be of minor concern. 
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Figure 1. Selection of conversion models (GLS regressions) between common ANPP estimation methods together with 
corresponding number of observations (n) and (pseudo) R2. Linear regressions are given as solid black lines. Where 
regressions were calculated separately for humid and dry sites (see 2.3.2 Material and Methods), black line represent the 
humid model. Solid grey lines represent the arid model, where applicable. Broken lines indicate the .95 confidence interval. 
Note: Selection of models comprises recommended and not recommended conversions models (see 2.3.2 Materials and 
Methods). Models in A, B, D, and I are recommended. See also Figure S1 for a complete graphical overview on all 
conversions models. 

 

3.2 Established conversions between ANPP estimations methods 

Using the statistical protocol described above (see 2.3.2 Materials and Methods), we analyzed all 21 

possible (one-way) combinations between the seven considered ANPP estimation methods (Method 

1, 2a, 2b, 3, 4, 5, and 6). Since six of these combinations exhibited systematic influences of climate 

(dryland vs. humid), we established a total of 27 conversion formulae (Table 2). Based on their 

coefficients of determination, eleven models were classified as rendering highly reliable conversions, 

nine as reliable and seven as unreliable. The assessment of method comparability generally mirrored 
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the statistical classification. The class of highly reliable models included the only two method 

combinations which were rated as highly comparable (Method 3 : Method 4, and Method 5 : Method 

6). Furthermore, this class only includes one method combination which has been rated as poorly 

comparable (Method 1arid : Method 6arid), the remaining eight combinations were rated as moderately 

comparable. The class of reliable models mostly contains combinations which were rated as 

moderately comparable, and only two poorly comparable combinations. The majority of poorly 

comparable method combinations are found in the unreliable class, which apart from these 

combinations only includes two moderately comparable combinations. 

Table 2 presents all established conversions formulae in a standardized linear model format 

(y = mx + b). Furthermore, the standard error of the slope, the number of observations for the 

respective model, and the pseudo R2 is given. Figure 1 gives a graphical representation of selected 

conversions. It presents nine method combinations and their eleven respective conversion models 

together with their confidence intervals. These method combinations represent the most frequently 

used ANPP methods according to our literature review (Methods 1, 2a, 2b and 4; see Table 1). In 

addition, we have included Method 5 as an example for an often recommended elaborate method 

(Singh et al., 1975, Scurlock et al., 2002). The selection in Figure 1 also gives examples for all statistical 

reliability classes: highly reliable (Figure 1A, B, D), reliable (Figure 1E, F, H, I), and unreliable (Figure 1C, 

G). An overview of all other established conversion formulae can be found in Figure S1 in the 

supplementary material. 

 

 

4. Discussion 

The aim of this study was to establish conversions between the most common ANPP estimation 

methods, to improve comparability between ANPP estimates derived from different methods, and 

thus provide better access to the large body of published ANPP data. This was mainly motivated by the 

growing demand for large- or global-scale ANPP datasets which has evolved as a direct consequence 

of the climate and land-use change debate. 

We were able to establish linear conversion formulae between the seven most commonly used ANPP 

estimation methods for grass-dominated biomes, and to assess their reliability and usability with 

statistical and methodological means. 

 

4.1 Faster, simple methods are more often used than elaborate but labor-intense methods 

The review on the use of ANPP in recent literature revealed that the simple and fast methods of the 

Peak biomass group were most frequently applied. Every second publication in our review used one of 

these methods. The frequency of use of the three sub-methods in this group was nearly identical. The 
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more elaborate, but also more time- and labor-intense, Incremental methods were used less often. 

Only one in five publications used one of these methods; when only the canonical methods are 

considered, this frequency further drops to one in six to seven. While this general trend is not surprising 

and consistent with the dataset structure in Scurlock et al. (2002), it is surprising that 

recommendations to use the more elaborate algorithms, accounting for dynamics of live and dead 

plant matter (Method 5, 6 and 7), have not been adopted by the scientific community. Indeed, only 3 

of 150 publications used one of these methods (Table 1). However, far more concerning is that 12.7 % 

of the studies did not provide information on which ANPP method was used. 

 

Given this use frequency of common ANPP estimation algorithms, scientists who seek to compile large-

scale ANPP datasets from various sources face the ‘comparability dilemma’ described above (see 1. 

Introduction). To make matters worse, the rare data derived from elaborate and supposedly more 

accurate algorithms would be the first to be dropped for the sake of comparability. 

 

4.2 Using recommended conversion formulae to overcome the ‘comparability dilemma’ 

Our main impetus for the study was to overcome the above described ‘comparability dilemma’ by 

mitigating the trade-off between the demand for large datasets and data comparability. Motivated by 

the compilation of a global ANPP dataset for drylands (Ruppert et al., 2012, Ruppert et al., in prep), 

and inspired by Singh et al. (1975), we found linear conversion formulae to be a simple, versatile, and 

straight-forward approach to convert between different ANPP estimation algorithms. 

Based on seasonal biomass dynamics from 89 sites from various grass-dominated biomes and climate 

regimes, we deduced conversion formulae for all method combinations representing the most 

commonly used ANPP estimation algorithms (Scurlock et al., 2002). Six out of all 21 method 

combinations showed a significant influence of climate regime (dry vs. humid), thus leading to a total 

of 27 conversions formulae (see 4.3 Influence of climate regime on conversions formulae and ANPP 

methods). Even though we were able to deduce statistically sound and significant regressions for all 

model combinations, not all conversions can be fully recommended.  

Generally, all models which were rated as highly reliable in terms of statistical criteria can be 

recommended for use without exceptions. In contrast, formulae classified as unreliable cannot be 

recommended and should be avoided. Even though conversion models in the latter group are highly 

significant, the underlying data exhibit considerable variance, which is also reflected in the pseudo R2 

values. Therefore, products derived from these models would involve considerable uncertainty. The 

line separating recommendable and non-recommendable conversions runs through the group of 

statistically reliable models. Our decision to classify the conversions between Method 2a and Method 

3, 4 and 5, as well as conversions between Method 2b and Method 5 as not recommended is based on 
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the visual assessment of the respective scatterplots (Figure S1-4, and Figure 1E, F, H respectively). For 

all combinations, a high spread of relatively equally spaced datapoints can be observed. For most 

cases, the spread also shows a tendency to increase with higher ANPP values, indicating 

heteroscedasticity. Therefore, derived conversion products would largely suffer from uncertainty. 

However, these conversion formulae might still be applicable for ANPP data from less productive sites 

(e.g. from drylands) with respective input estimates up to circa 200 g m-2. For this range in ANPP data, 

the spread in the data is rather small, particularly for the conversions between Method 2a and Method 

3, 4 and 5. 

 

4.3 Influence of climate regime on conversions formulae and ANPP methods 

The six possible combinations between Methods 1, 3 and 4 on the one hand and Methods 5 and 6 on 

the other (and only these six) showed a significant influence of climate regime (arid vs. humid) and 

were split into climate-specific conversion formula (see Figure 1, S1 and Table 2). 

Notably, in all six cases, the slope of the dry climate model is less steep as compared to the humid 

model. If we assume Methods 5 and 6 to be the best proxy to ‘real’ ANPP (as they are ‘best practice’ 

methods), Methods 1, 3 and 4 underestimate ANPP in drylands more strongly than in humid 

ecosystems. 

We assume that this systematic error could be ecologically explained by the higher turn-over rate from 

live to senescent biomass in drylands due to increased tissue senescence rate in response to water 

stress (Coughenour and Chen, 1997). While Methods 5 and 6 are sensitive to changes in live, senescent 

and moribund material and thus account for all biomass turn-over processes, Methods 1, 3 and 4 only 

assess live biomass. Thus, the latter three methods have specific ways of neglecting turn-over 

processes. Method 1 registers only live biomass at peak conditions, neglecting all produced live 

biomass which already turned senescent before peak. Methods 3 and 4 miss all live biomass which has 

turned over between minimum and maximum live biomass, or between sampling intervals, 

respectively. Thus these methods are inherently prone to differences in turn-over rates between 

different climates or ecoregions. 

 

4.4 Applicability and generality of the conversion formulae 

Given the clear patterns in the conversion models (Fig. 1 & S1) and considering the large underlying 

dataset, we expect the conversion formulae to be generally valid. Furthermore, despite the importance 

of climate regime for some conversions, we found no evidence for systematic influences of other 

factors (e.g. biome or long-term management). The generality of conversions is also supported by a 

comparison to those presented in Singh et al. (1975). Although the selection of ANPP estimation 
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methods differs between the two studies, a subset of six conversions can be compared. The 

conversions between Method 1 and Method 4 are discussed as an example. 

Based on our data we established the conversion formula:  

Method 1 = 0.97 x Method 4 + 32  (n = 679) 

Singh and colleagues (1975) found a very similar conversion formula (the formula has been converted 

to fit our format, see fourth formula in Table IV, Singh et al., 1975): 

Method 1 = 1.06 x Method 4   (n = 33) 

The slightly higher slope in Singh’s formula can be explained by the fact that all linear conversions were 

forced through the origin. An overview of the remarkable consistency between our results and those 

of Singh et al. (1975) and other published data (Linthurst and Reimold, 1978) is presented in the 

Supplementary Material (Table S2 and Figure S2). 

Some authors have assumed that differences between ANPP methods might be site-specific (Linthurst 

and Reimold, 1978; Long et al., 1989; Scurlock et al., 2002). They based this assumption on their 

observation that ranking sites according to their production, using several ANPP estimation methods, 

yielded varying outcomes. Interpreted towards the use of the conversion models this means that the 

respective proportion of under- or overestimating ANPP by applying a respective conversion is site-

specific. However, this source of uncertainty is a general feature of predictions based on regression 

models. 

Our analysis clearly shows that there are strong systematic relationships between several ANPP 

estimation algorithms. This underlines the usability of our conversion models, especially those which 

have been labeled as recommended on the basis of statistical and methodological criteria. 

 

4.5 Uncertainties in estimating ANPP 

Lauenroth et al. (2006) raised the issue of uncertainty in estimating (A)NPP and hypothesized that 

estimation algorithms differ not only with respect to magnitude and accuracy (over- or 

underestimation) but also with respect to uncertainty. They analyzed the amount of uncertainty which 

is mathematically introduced in ANPP estimates based on different estimation algorithms, as 

compared to the uncertainty in the input data (biomass estimates). Considering their findings we can 

assume that all estimation methods which we used for conversions should exhibit very low levels of 

uncertainty (i.e. corresponding to the level found in the biomass input data or even less). Peak methods 

simply transmit the uncertainty of the single biomass measurements on which they are based to the 

ANPP estimate. Since biomass can be measured or estimated with low uncertainty, these ANPP 

algorithms will exhibit the same low uncertainty. Incremental methods (Methods 3 to 6) are based on 

sums or differences over sequential biomass data. For these methods, the amount of uncertainty is 

even lower as compared to the average uncertainty of the input data. Only algorithms which contain 
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product terms (i.e. Method 7) might increase (or also decrease) uncertainty as compared to the input 

data (biomass), but these methods have not been used in this study (see 2.3.1 Material and Methods). 

Hence, we assume that possible interference, caused by divergent uncertainty in the ANPP methods 

when converting between different methods, can be neglected for the conversion formulae presented 

here. 

 

4.6 Conclusions and recommendations 

The conversions formulae established within this study offer an easy and practical approach to 

recalculate and compare between ANPP estimates derived by divergent estimation algorithms. 

Authors who assemble large-scale ANPP datasets, or generally wish to combine ANPP data from 

various sources, can surely benefit from our approach, since it allows generating comparably scaled 

ANPP estimates based on published data. 

Though we found statistically significant models for all combinations of the most common ANPP 

estimates in grass-dominated biomes, not all conversions can be recommended. The combined 

classification via statistical (pseudo R2) and methodological attributes (comparability of ANPP 

estimation algorithms) offered a sound basis for recommendations (Table 2). Based on these statistical 

and methodological criteria, we rated 16 out of 27 conversions formulae as recommendable. The 

remaining 11 conversions are afflicted with high statistical or methodological uncertainty and should 

only be used with care, if at all. 

In this context another important outcome was that we found an ecological explanation for the 

phenomenon that certain ANPP methods differ in their tendency to underestimate ANPP across 

ecoregions (Singh et al., 1975; Scurlock et al., 2002). We assume that this tendency is related to 

differences in plants’ turn-over rates from live to senescent biomass as a function of climatic aridity. 

We conclude that those methods which are highly sensitive to this turn-over (Methods 1, 3, and 4) 

should not be used in warm xeric environments where biomass turn-over rates appear to be 

particularly high. 

Note that this study does not advocate relying on conversion options only. Even the best conversion 

formula is still second best to a recalculation of ANPP which can be done by applying the desired 

algorithm to the original biomass data. Our approach offers a practical solution for those cases where 

this option is not possible or feasible, and is superior to previous attempts to solve the comparability 

dilemma (i.e. combining incomparably scaled ANPP data or skip available published data). 

 

We are confident that a prudent use of conversion formulae, will promote the compilation of 

assembled ANPP datasets, and that our conversions will greatly facilitate the usability of published 

ANPP data in assembled regional or global studies. 
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Consistency of conversions with other 

published data 

We compared our conversion formulae with similar 

conversions or ratios from literature and generally 

found them to be highly consistent. Singh et al. 

(1975) and Linthurst & Reimold (1978) present a set 

of comparable method combinations. Albeit the 

selection of ANPP estimation methods differs 

between the studies, there is a subset of six 

conversions from Singh et al. 1975 and two ratios 

from Linthurst & Reimold 1978 which can be 

compared to a certain extent. Singh and colleagues 

chose to force their linear regression models through 

the origin, and in some cases also applied slightly 

different computational algorithms (i.e. increments 

between biomass measurements in Method 4 and 5 

had to be statistical significant on p<0.1 level, in order 

to be considered in the calculation). Linthurst & 

Reimold (1978) calculated simple ratios between 

ANPP estimates derived from five different ANPP 

estimation methods, of which two combinations can 

be compared to ours (see Table S2). 

It should not be concealed, that there is an overlap in 

data between our and Singh’s study. The datasets 

have five geographical sites in common: Bridger, 

Dickson, Hays, Osage and Jornada (‘Pawnee’ in 

Singh’s paper). We share the same data for the first 

four sites. For the Jornada, we have data from a later 

(and longer) period. All together, the shared data 

accumulate to 14 years out of 851 in our dataset. We 

therefore assume our dataset to be largely 

independent from the one of Singh and colleagues. 

Furthermore, our dataset is completely independent 

from that of Linthurst and Reimold (1978), who 

worked on data from estuarine systems (three salt 

marsh sites across the US east coast). 

Figure S2: Comparison between derived conversion formulae and published ratios. Figure is based on Fig. 1 
- only those conversions are shown, where comparable formulae could be obtained from literature (D, G and 
H are hidden). Solid black lines: established conversions; overall or humid-model. Solid grey lines: arid 
model. Dashed red lines: conversion models from Singh et al. 1975. Dashed green lines: ratios from Linthurst 
& Reimold 1978. 
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Abstract 

Climate extremes such as drought can reshape services from dryland ecosystems, including forage 

production. Still, combined effects of drought and grazing on plant production are poorly understood. 

We used a large, global dataset on long-term studies from drylands (>3100 observation years) to 

quantify ecosystem responses to drought and grazing. Resistance to drought, post-drought recovery, 

and correlations among these key aspects of ecosystem stability were evaluated based on 

standardized and normalized aboveground net primary production (ANPP) data. Drought events and 

intensities were classified via the standardized precipitation index (SPI). We tested effects of drought 

intensity (SPI class), grazing regime (grazed, ungrazed), biome (grassland, shrubland, savanna) or 

dominant life history of the herbaceous layer (annual, perennial) to assess the relative importance of 

these factors for ecosystem stability, and to identify predictable relationships between drought 

severity and ecosystem resistance. 

We found that ecosystem stability was better explained by dominant life history of the herbaceous 

layer than by biome. Increasing drought severity (quasi-)linearly reduced ecosystem resistance; 

perennial systems lost ~10% of their ‘normal’ ANPP for each level of drought intensity. For annual 

systems, slightly dry conditions increased production by 28%, but intense droughts reduced production 

more strongly than in perennial systems. 

Combined effects of drought and grazing were not merely additive. While perennial systems tended 

to be more resistant to drought, they failed to fully recover in post-drought years. Annual systems 

showed a contrary response and even increased ANPP in post-drought years. Recovery and resistance 

were negatively correlated in annual systems, while no correlation was observed in perennial systems. 

Our study establishes predictable relationships between drought severity and drought-related losses 

of ANPP and suggests independence of resistance and recovery for perennial systems. This has 

important implications for dryland management during and after droughts and sheds new light on 

drought vulnerability across dryland ecosystems. 
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Introduction 

In today’s ecological research, discerning the mechanisms behind, and the quantification of ecosystem 

responses to global environmental change is a central theme (Reed et al., 2012). Nevertheless, 

although roughly 40% of Earth’s terrestrial landmass is covered by drylands (MEA, 2005), our 

understanding of how the structure and functioning of these ecosystems will respond to changing 

climate and land use is still surprisingly poor (Maestre et al., 2012, Reynolds et al., 2007). 

Drylands are characterized by water-deficiency during prolonged periods throughout the year and 

comprise arid, semi-arid and dry-subhumid ecosystems (Asner & Heidebrecht, 2005). Here, plant 

growth is mainly limited by low and highly variable precipitation (Ruppert et al., 2012, Zhao & Running, 

2010), which constrains human activities in these regions mainly to livestock production. As a result, 

only 25% of drylands are used for crop production (rain-fed or more often irrigated), while roughly 

65% are used as rain-fed rangelands (MEA, 2005). Thus, livelihood security in drylands relies heavily 

on the provision of ecosystems services from vegetation (Gillson & Hoffman, 2007). These ecosystem 

services are often estimated by aboveground net primary production (ANPP) which is a core ecological 

currency and one of the best documented quantitative estimates for forage provision (Scurlock et al., 

2002). 

Projected changes for dryland environments predict most of these regions to face an even increased 

variability in precipitation as well as an increased frequency of extreme events, such as floods or 

drought (IPCC, 2007). Simultaneously, large dryland areas are facing significant population growth 

(MEA, 2005), leading to an increased demand for basic ecosystem services from vegetation, which 

might negatively feedback on vegetation state, and lead to undesirable low plant biomass and 

production (i.e. degradation; Reynolds et al., 2007). Conceptual and simulation models predict that 

synergistic interactions between drought and grazing may even accelerate these processes (Lohmann 

et al., 2012) and reduce the ability of dryland social-ecological systems to buffer climatic variability 

(Martin et al., 2014). This became particularly evident in past decades, when severe meteorological 

droughts in densely populated drylands were responsible for massive reductions in livestock and crop 

productivity (Zhao & Running, 2010), leading to poverty and famine (UN, 2008). 

Although, there is ample evidence that terrestrial ecosystems can vary dramatically in their responses 

to drought (Cherwin & Knapp, 2012, Knapp et al., 2008) and grazing (Díaz et al., 2007), their combined 

effects on ecosystems’ structure and functioning are still poorly understood, as very few studies have 

considered both effects simultaneously (Zwicke et al., 2013). In this context, an ecosystems’ ability to 

retain a healthy and productive state is of major interest for all agents engaged in the assessment of 

global change (land owners, decision makers, ecologists, and modelers). This ability is usually called 

ecosystem stability (Donohue et al., 2013, Pimm, 1984).  
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Various approaches exist to define and estimate ecosystem stability (Donohue et al., 2013) or its 

constituents. Here we focus on two aspects of stability: resistance, that is a system’s ability to 

withstand disturbance (Pimm, 1984), and recovery (also: resilience), that is a system’s potential to (or 

rate of) return to a previous state after a disturbance. 

For temperate grasslands, results from two experimental studies (Vogel et al., 2012, Zwicke et al., 

2013) suggest that the recovery and resistance of these ecosystems to combined drought and 

management disturbances is non-additive, and apparently idiosyncratic. Drought severity and duration 

play a crucial role here (Zwicke et al., 2013). Underlying mechanisms of vegetation resistance and 

recovery seem to be closely related to functional diversity on the one hand (Craine et al., 2013, Vogel 

et al., 2012), and to species’ life history and resource allocation on the other (MacGillivray et al., 1995). 

 

Apart from temperate grassland, information on ecosystems’ response to joint effects of drought and 

grazing is merely anecdotal. For drylands, data are mostly observations from single sites or regions, 

and were obtained with varying estimates of stability based on various ecosystem properties (e.g. 

biodiversity, primary production, or indices thereof). To date, these studies have – to the best of our 

knowledge – never been systematically reviewed, compiled or analyzed in a standardized way. Those 

scattered results we have for drylands generally support the crucial role of plant diversity and 

dominant plants’ life history (Bai et al., 2004, Frank & McNaughton, 1991, Miehe et al., 2010) and also 

suggest that combined effects of drought and grazing disturbances on ecosystem performance are 

complex, and (as for temperate grasslands) not merely additive (Carlyle et al., 2014). For example, 

perennial grasses – which dominate the grass layer of two major dryland biomes, grasslands and 

savannas – tend to be rather resistant and resilient to drought under conditions of moderate grazing 

(Boschma et al., 2003, Milton & Dean, 2000), but less resistant if overgrazed (Danckwerts & Stuart‐Hill, 

1988). With respect to shrubs, which is the dominant life form in the third major dryland biome, 

shrublands, grazing decreases plants’ resistance to drought, but not their recovery (DeMalach et al., 

2014). 

These results are also in line with general predictions that ecosystems dominated by relatively long-

lived, slow-growing plants, such as perennial grasses, would be more resistant but less resilient to 

disturbances than short-lived but fast-growing plants, such as annual grasses and forbs (Grime, 2001). 

However, for dryland ecosystems, findings were mostly obtained for populations or individual plants, 

and we do not know if they also hold for higher levels of aggregation. More importantly, due to vastly 

varying methodology and spatiotemporal constraints, past findings lack the potential to be easily 

upscaled and/or to be quantitatively compared across ecosystems or biomes (Reyer et al., 2012). 

Generally, there are two options to tackle these problems with the first being ‘coordinated distributed 

experiments’ (CDE; Fraser et al., 2013). CDE initiatives define standardized core protocols using 
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common metrics, thus making results from all collaborators highly comparable across large 

spatiotemporal scales. However, while considerable efforts are made in setting up drought-related 

CDEs (M. Smith pers. comm.) and to combine them with grazing manipulations, it will take some 5-10 

years to obtain first reliable results – especially for highly variable dryland ecosystems. The alternative 

to CDEs are data-fusion or meta-analytical studies, which process and analyze available data.  

 

We will follow the latter approach and quantify how drought and grazing affects ecosystem stability 

(i.e. resistance and recovery) across dryland sites and biomes while also utilizing fundamental ideas of 

CDEs (namely the definition of a core protocol, and of common metrics). As we worked with available 

data, a core protocol and common metrics could not be defined in advance. However, we did not 

merely compile results qualitatively as done in many meta-analyses (Hillebrand & Cardinale, 2010), but 

established common metrics for quantifying ecosystem responses to drought and grazing.  

With respect to these quantitative comparisons and analyses, our approach is innovative in several 

aspects. First, we compiled a large, global dataset on long-term studies from drylands to harness the 

potential of these scattered datasets to understand and quantify ecosystem responses to drought. We 

only selected long-term datasets as they have the highest probability to enable assessment of 

ecosystem resistance (in-drought vs. normal situation) and recovery (pre- vs. post-drought condition). 

Given the importance of ANPP as an estimate for ecosystem functioning and services, we focused on 

this parameter. Due to several competing estimation methods for ANPP (Scurlock et al., 2002), 

standardization and normalization was a crucial second step to avoid methodological interference 

(Ruppert & Linstädter, 2014). Thirdly, we used a common and ecologically sound definition of drought 

and drought severity across all sites and regional climates. Finally, to assess drought response, we 

selected two key aspects of ecosystem stability (resistance and recovery) and operationalized them 

with respect to drought severity. To address recent concerns, that stability components may not be 

independent (Donohue et al., 2013), we analyzed the two components separately and also evaluated 

potential correlations among them. 

With this approach, we aimed to advance the understanding of dryland ecosystem responses to 

drought and grazing above the level of anecdotal field studies by synthesizing and standardizing 

available data. Particularly, we addressed the following questions: 

(1) What is the relative importance of drought severity, grazing and vegetation characteristics 

(biome, life history) for ecosystem resistance and recovery?  

(2) What are response patterns to drought across major dryland biomes (savannas, grasslands, 

shrublands) or across ecosystems dominated by plants with a different life history (annuals, 

perennials)?  

(3) Are combined effects of drought and grazing disturbance in drylands additive or interactive?  
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(4) Can we identify predictable relationships between the severity of drought events and 

ecosystem resistance and recovery, including dependencies/correlations between the two 

stability components? 

 

Materials & Methods 

Database 

The large spatial extent and the high demand for livelihood security in drylands have led to numerous 

studies addressing the effects of various abiotic and biotic drivers on primary production. Taking 

advantage of this large body of literature and databases, we assembled a global dataset of long-term 

studies (> 5 years consecutive observations), comprising more than 320 datasets derived from about 

50 studies and totaling over 4400 years of observations. General methods of data acquisition are 

described in Ruppert et al. (2012; see also Supporting Information 1). 

For this study, we restricted our selection to near-natural and semi-natural vegetation, and excluded 

sown, fertilized, and annually burned sites, as well as data from years under the influence of unplanned 

fires. The latter steps were necessary, as fire confounds primary production (Snyman, 2006) in specific 

ways that can not easily be parted from influences of climate, the main focus of this study. Also sites 

where precipitation data were not available for all observation years, or inadequate (weather stations 

located further than 10 km from sites) were rejected. In sum, 174 distinct data sets were included that 

represent about 35 dryland regions (Figure 1), which yielded >3100 years of observation representing 

all major dryland biomes: savannas (n = 81), shrublands (n = 22), and grasslands (n = 71) (see Ruppert 

et al., 2012 for the definition of these major dryland biomes). Mean dataset length was 17.9 years, and 

mean annual precipitation (MAP) ranged from 183 to 838 mm a-1 across sites (see Supporting 

Information 1). 

Figure 1: Global distribution of the dryland sites used in the study. In total, 174 datasets derived from 35 studies were 
available for this study. Points indicate locations, numbers refer to datasets at a certain locations if >1. 
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To assess relationships between ecosystem properties, drought severity, and ecosystem stability, we 

assembled data on (i) ANPP, (ii) precipitation of the hydrological year, (iii) dominant life history of the 

grass layer (annual or perennial), and (iv) grazing regime (ungrazed or grazed). Sites where grazing was 

excluded or deferred for certain periods of a year were considered as ‘grazed’. Consequently, 

‘ungrazed’ refers to prolonged grazing exclusions. 

 

Data standardization procedures 

Primary production. We standardized ANPP as ‘peak standing crop’. If ANPP data were not available in 

this form, we recalculated ANPP either from original biomass data or via conversion rates (Ruppert & 

Linstädter, 2014). For the savanna biome, all data sets only provided data on the grass layer. Thus total 

ANPP for this biome is underestimated by ca. 30% (Le Houérou, 1989). For grass- and shrublands, all 

forage and browse biomass is included in ANPP estimates. 

Drought severity. To compare drought responses across dryland sites, we quantified drought severity 

via the standardized precipitation index (SPI; McKee et al., 1993), which is a well-supported 

precipitation index in ecology (Vicente-Serrano et al., 2012). We calculated SPI values for the sites’ 

hydrological years, and assigned drought severity classes (‘SPI classes’) according to the classification 

of the US National Drought Mitigation Center (http://droughtmonitor.unl.edu/), adding the class of 

‘normal precipitation’ (SPI class 0, with SPI values ≤|0.5|). Above-average rainfall years were excluded 

from further analyses, reducing the number of observation years to ca. 2000. For further details on 

SPI, please refer to Supporting Information 1. 

Table 1: Classification scheme of drought severity used in this study, adapted from the classification used by the National 
Drought Mitigation Center of the USA (http://droughtmonitor.unl.edu). In our study, SPI (Standardized Precipitation Index) 
of hydrological years was calculated to estimate annual drought severity of all observation years. Percentile ranges for 
drought severity levels refer to general, short- and long-term drought indicator blends given by the Drought Mitigation 
Center, and to threshold derived from SPI calculations in this study. For illustrative purposes, average deviation from MAP 
(mean annual precipitation) are also given for our dataset (n = 1991).  

SPI class Description Impacts on rangeland production SPI range 

0 Normal - +0.5 ≤ SPI ≥ -0.5 

-1 Abnormally Dry Slowing growth of vegetation -0.5 < SPI > -0.8 

-2 Moderate Drought Some damage to vegetation -0.8 ≤ SPI > -1.3 

-3 Severe Drought Production losses likely -1.3 ≤ SPI > -1.6 

-4 Extreme Drought Major production losses -1.6 ≤ SPI > -2.0 

-5 Exceptional Drought Exceptional and widespread production losses -2.0 ≤ SPI 

 

Resistance and recovery. To quantitatively compare ecosystem stability across sites and with respect 

to drought intensity, a main challenge was to operationalize the generic definitions of resistance and 

recovery. For recovery, we adopted definitions from field studies (Bai et al., 2004, Tilman & Downing, 

1994) and experiments (Vogel et al., 2012), and defined it as the quotient between pre- and post-

drought ANPP for a given site and drought event, expressed as percentage. Values above 100% 

http://droughtmonitor.unl.edu/
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represent increases in post-drought years as compared to pre-drought; values below 100% represent 

decreases. To avoid potentially confounding effects of variable pre- and post-drought conditions, we 

only selected drought events where pre- and post-drought years received normal (=average) 

precipitation (SPI class 0). 

Resistance definitions from the same sources were not suitable for a quantitative comparison, as they 

usually related in-drought ANPP to pre-drought ANPP, irrespective of the precipitation in pre-drought 

years. We thus defined resistance as the percentage deviation in ANPP of a certain year from a site’s 

‘normal’ (benchmark) ANPP, which is the mean ANPP in the second year of two consecutive years with 

‘normal’ precipitation (SPI class 0). This was done to avoid potentially confounding effects of previous 

year’s rainfall on ANPP (Ruppert et al., 2012, Wiegand et al., 2004). Negative percentages represent 

reductions in ANPP; positive values represent increases. More extreme values represent relatively low 

or high resistance respectively. 

These definitions lead to selection of the final usable datasets. For resistance, 167 datasets out of 320 

allowed the estimation of a benchmark-ANPP leading to roughly 2000 single years of observation. 

Naturally, in the case of recovery, the strict criteria for the selection of triplets or multiplets of years 

greatly reduced the dataset for further analyses: recovery estimates could be calculated for 118 

drought events (24 two-year, and 94 single-year droughts). 

 

Data analysis 

Resistance and recovery were analyzed via Type II ANOVAs. For resistance, we tested the effects of the 

predictor variables ‘drought intensity’ (SPI class; 0 to -5; Table 1), ‘grazing regime’ (grazed, ungrazed), 

‘biome’ (grassland, shrubland, savanna) or ‘dominant life history’ of the herbaceous layer (annual, 

perennial). For recovery, we tested the same predictors except drought intensity. Including this 

variable would have reduced the number of cases in ANOVA subgroups to n <5. Instead, recovery 

values were lumped across observations for real-drought conditions (SPI class ≤-2). Note that biome 

and dominant life history (of the herbaceous layer) were not assessed simultaneously due to their 

collinearity. Thus, for both analyses, we initially established two competing models with biome or 

dominant life history included besides other predictors. We used an AIC-based model selection 

procedure on both models (Johnson & Omland, 2004) and evaluated the competitive final models with 

respect to explained variance (η2) and AIC/BIC (critical values: Δη2 >+2%; ΔAIC >2; ΔBIC >2). Finally, 

following the principle of parsimony (Crawley, 2002), we selected the most parsimonious model as 

final model and used it for further analyses. In this way, we were able to quantify the relative 

importance of biome and dominant life history for resistance and recovery. 

Interactions in the multifactorial ANOVAs were analyzed by splitting the dataset according to the levels 

of the interacting variables, and subsequent one-way (split) ANOVAs with adapted p-values to avoid 
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Type-I-error inflation. Significant effects in split-ANOVAs were analyzed using Tukey’s HSD (p <0.05). 

Additional to η2, partial-η2 and ω2 were calculated as effect sizes. 

Data exploration to avoid common statistical problems (e.g. outliers) and testing of methodological 

assumptions (such as normal distribution and homogeneity of variances) was performed visually as 

proposed by Zuur et al. (2010). Where necessary, data was transformed (i.e. log(x +c)-type) to satisfy 

ANOVA assumptions. All statistical analyses were performed in R 3.0.2 (R Core Team, 2013). Due to 

the unbalanced design, ANOVAs were calculated using the car-package in version 2.0-19 which allows 

for Type II sums of squares. 

 

Results 

Importance of biome and life history for drought effects on ecosystem stability 

To quantify the relative importance of biome and dominant life history for ecosystem stability in face 

of drought, we established contrasting models, together with the same set of other predictor variables. 

Model selection procedures and effect sizes showed that for both resistance and recovery, dominant 

life history was a better predictor for ecosystem responses than biome. For resistance, competing final 

models explained a similar proportion of variance in the dataset (Δη2 +1% for dominant life history), 

and the final model including dominant life history showed consistently lower AIC and BIC values 

(ΔAICbiome = 27; ΔBICbiome = 171). For recovery, the life history model explained a higher proportion of 

variance (Δη2 +29%) in the dataset, and was also selected as the better model via AIC and BIC values 

(ΔAICbiome = 46; ΔBICbiome = 43). 

 

Resistance is dependent on drought intensity and varies with dominant life history and grazing 

ANOVA results for resistance revealed clear connections of this stability mechanism to drought 

intensity (SPI class), dominant life history, and grazing regime. In total, the model explains 25% (η2) of 

variance in ecosystem resistance. Drought intensity, its interaction with dominant life history, as well 

as the interaction of dominant life history and grazing regime, significantly influenced resistance (Table 

2). Nevertheless, corresponding effect sizes illustrate that some of these effects were only marginal 

(with ω2 = 0.03 for SPI class x dominant life history and ω2 = 0.01 for grazing regime x dominant life 

history). Drought intensity was the most important predictor for ecosystem resistance (ω2 = 0.21). 

Figure 2 illustrates how ecosystem resistance was modulated by the interacting effects of drought 

intensity and dominant life history. It is apparent that drought intensity itself had a strong negative 

influence on resistance. Moreover, differences in the response across life histories only occurred under 

certain drought intensities (Figure 2), specifically in abnormally dry years (SPI class -1) and under more 

intense drought conditions (SPI classes -4 and -5). 
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Effects of drought intensity on ecosystem resistance were comparable across life histories. Both annual 

and perennial plants showed a general trend of decreasing resistance with increasing drought 

intensity, but resistance was reduced more strongly when annuals dominated the herbaceous layer 

(Figure 2). This trend was particularly strong under true drought conditions (SPI class ≤-2). In cases of 

extreme and exceptional drought (SPI class -4 and -5), perennial systems showed a consistently higher 

resistance (-43% and -48% respectively) than those dominated by annuals (-67% and -73%; Figure 2). 

However, this general trend of a higher resistance of ecosystems dominated by perennials did not hold 

true for abnormally dry years (SPI class -1). Surprisingly, ecosystems dominated by annuals even 

showed a positive response of primary production in these years: ANPP was 28% higher than under 

average rainfall conditions. 

Table 2: Results of final ANOVA for ecosystem resistance in drylands, as affected by drought intensity, dominant life history 
and grazing regime. Effects of main factors and significant interactions are shown. Significance of estimates is given with 
* = p <0.05, ** = p <0.01, *** = p <0.001. Results of post-hoc test for interactions are given in Supporting Information 2 and 
are presented in Figures 2 and 3. 

 Predictor Sum Sq Df F value P value η2 Partial η2 ω2 

Drought intensity 5.694 5 111.34 *** 0.21 0.22 0.21 

Dominant life history 0.001 1 0.06 n.s. - - - 

Grazing regime 0.001 1 0.06 n.s. - - - 

Drought intensity x Dominant life history 0.893 5 17.45 *** 0.03 0.04 0.03 

Dominant life history x Grazing regime 0.152 1 14.82 *** 0.01 0.01 0.01 

Residuals 20.219 1977      

        Total (%) 0.25 0.27 0.25 

Figure 2: Interacting effects of drought intensity (SPI class) and dominant life history (annual vs. perennial) on ecosystem 
resistance to drought. Dashed lines in boxplots represent mean values, and solid lines represent medians. Negative 
percentages represent reductions in ANPP; positive values represent increases. More extreme values represent relatively 
low or high resistance respectively. Asterisks indicate significant differences between dominant life forms in the respective 
SPI class (at p <0.05), letter-codes give significant differences (p <0.05) across SPI classes for annual and perennial systems, 
respectively. 
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ANOVA results for ecosystem resistance also revealed interacting effects of dominant life history and 

grazing regime (ω2 = 0.01). Figure 3 illustrates that this interaction only manifested itself under 

ungrazed conditions, where annual systems were significantly less resistant (-19%) than perennial 

systems (-7%). 

Figure 3: Interactive effect of dominant life history (annual vs. perennial) and grazing regime (ungrazed vs. grazed) on 
ecosystem resistance to drought. Dashed lines in boxplots represent mean values, and solid lines represent medians. 
Asterisks indicate significant differences within a panel (at p <0.05). Negative percentages represent reductions in ANPP; 
positive values represent increases. More extreme values represent relatively low or high resistance respectively. 

 

Recovery depends on dominant life history and its interaction with grazing regime 

ANOVA results for ecosystem recovery after drought revealed that this process was significantly 

influenced by dominant life history, and its interaction with grazing regime (Table 3). These two factors 

explained about 40% (η2) of variance in the dataset, with dominant herbaceous life history being more 

important than the interaction (36% vs. 4%). This finding was also supported by more conservative 

effect size metrics (see Table 3). 

Table 3: Results of final ANOVA for ecosystem recovery in drylands, as affected by dominant life history and grazing regime. 
Effects of main factors and significant interactions are shown. Significance of estimates is given with * = p <0.05, ** = p 
<0.01, *** = p <0.001. Results of post-hoc test for the interactions are given in Supporting Information 2 and are presented 
in Figures 4. 

Predictor Sum Sq Df F value P η2 Partial η2 ω2 

Dominant life history 1.316 1 68.97 *** 0.36 0.38 0.35 

Grazing regime 0.003 1 0.15 n.s. - - - 

Dominant life history x Grazing regime 0.156 1 8.19 ** 0.04 0.07 0.04 

Residuals  2.176 114      

        Total (%) 0.40 0.44 0.39 

 

Effects of dominant life history on recovery were partially mediated by grazing regime or vice versa 

(Figure 4). Somewhat surprisingly, a drought event could even considerably improve the productivity 

of the grass layer (increase in ANPP on 189% of pre-drought ANPP), but only for grazed systems 
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dominated by annual plants. In contrast, grazed systems dominated by perennials only displayed a 

partial recovery (decrease in ANPP on 81% of pre-drought ANPP; Figure 4B). These differences 

diminished under ungrazed conditions, where systems dominated by annuals or perennial systems 

were not significantly different anymore, and annuals systems only scored slightly higher average 

recovery (post-drought ANPP being 117% of pre-drought ANPP; Figure 4A). Difference in recovery of 

annual-dominated systems under grazed versus ungrazed conditions was significant (p <0.05), while 

no differences in recovery of perennial-dominated systems across grazing regimes were present (see 

Supporting Information 2). 

The paucity observations for recovery (n = 118) forbade assessing the potential influence of drought 

severity on recovery due to narrow cell-sizes in ANOVA (n <5; see Supporting Information 4). However, 

additional analyses suggest, that recovery – especially for sites where perennials dominate the 

herbaceous layer – is rather constant across drought intensities (see Supporting Information 4). 

Figure 4: Interactive effect of dominant life history (annual vs. perennial) and grazing regime (ungrazed vs. grazed) on 
ecosystem recovery from drought. Dashed lines in boxplots represent mean values, and solid lines represent medians. 
Asterisks indicate significant differences within a panel (at p <0.001). Values above 100% represent increases in post-
drought years as compared to pre-drought; values below 100% represent decreases. 

 

Resistance and recovery are not generally related 

Correlation analysis of resistance and recovery estimates from the same sites revealed no clear 

dependencies between these two stability aspects. However, if analyzed separately, annual systems 

showed a negative correlation between recovery and resistance (Resistance = - 3.76 x recovery - 68; 

R2=0.32), while no significant correlation was observed for perennial systems (see Supporting 

Information 4). 
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Discussion 

What is the relative importance of drought severity, grazing and vegetation characteristics for 

ecosystem resistance and recovery?  

To assess the importance of drought severity, grazing and vegetation characteristics (biome, life 

history) for ecosystem resistance and recovery, results from model selection and comparison as well 

as effect size metrics for the respective ANOVAs (Table 2, Table 3, and Supporting Information 3) were 

used. Comparisons of ecosystem resistance and recovery using either biome or dominant life history 

as predictors showed that the latter was a slightly better predictor for both aspects of ecosystem 

stability. Given that life history is closely related to principal plant strategies of resource acquisition 

and conservation (Grime, 2001), it is of little surprise that it was – as in other studies (MacGillivray et 

al., 1995) – a good predictor for ecosystem stability in the face of drought. In contrast, differences 

between biomes are mainly based on structural properties of vegetation (Olson et al., 2001) and not 

necessarily coupled to functional processes, such as resource acquisition. 

Resistance was strongly dependent on drought intensity and dominant life history, followed by their 

interaction and the interaction between grazing regime and dominant life history (Table 2). For 

recovery, dominant life history of the herbaceous layer was the best predictor while grazing only 

slightly moderated its effect (Table 3). 

Generally, drought severity was a strong predictor of resistance (but not recovery) across all dryland 

sites but this relationship was also driven by distinct differences in life histories. Dominant life history 

of the herbaceous layer was a good predictor for both stability components, while grazing only had a 

moderating effect. Surprisingly, biome type was of minor importance for both resistance and recovery. 

Our results are in line with a recent study on ecosystem responses to extreme weather events, which 

combined satellite-derived ANPP data and climatic records from 11 long-term experimental sites 

(Zhang et al., 2013). For an increased intra-annual variability in rainfall (including prolonged periods of 

drought), the study found convergence in overall pattern and control across biomes (including non-

dryland biomes). We discuss the underlying ecological mechanisms for these striking differences in 

ecosystem responses in the following sections.  

 

What are response patterns to drought across ecosystems dominated by plants with a different 

life history or across dryland biomes? 

Resistance. Under true drought conditions we observed that – regardless of life history – resistance 

decreases linearly with increasing drought intensity (Figure 2). Annual-dominated systems showed a 

consistently lower resistance under drought conditions than perennial-dominated systems (Figure 2), 

i.e. the relative loss in aboveground production was more pronounced. We assume that – especially 
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under high drought intensities – perennial plants benefit from their comparatively better ability to 

cope with a high intra-seasonal variability of rainfall. For example, the already developed root-systems 

allow for early and relatively quick emergence after rainfall events and persistence between larger 

rainfall gaps, which are typical for severe drought years (Zhang et al., 2013). In support of this, Jentsch 

et al. (2011) found no significant influence of extreme in-season drought events on ANPP of a perennial 

grassland in a greenhouse experiment simulating centennial and millennial extreme drought-events. 

This advantage of perennials may result in higher ANPP compared to annual plants, which are more 

prone to intra-seasonal dry spells, especially after the first rainfalls as they might germinate and die 

off again (Hamilton et al., 1999). Also, during later phenological stages, short-term dry spells, or more 

general water-deficits, lead to reduced productivity by hampering stem elongation and leaf growth 

(Shao et al., 2008). Annual plants are particularly prone to these impacts, as they mostly lack 

morphological traits to counter or sustain short- or long-term in-season water-deficits (i.e. thinner 

leaves and tillers, less cell-wall components). 

 

However, under only slightly dry conditions (abnormally dry years; SPI class -1), the general trend of 

less resistance in systems with annuals dominating the herbaceous layers does not hold true. Contrary 

to those findings from true drought conditions, even beneficial effects (positive resistance values = 

increase in ANPP) can be observed, while systems with a perennial-dominated herbaceous layer 

already show significantly reduced ANPP (Figure 2). 

This seemingly odd observation can be attributed to a common phenomenon in dryland savannas: 

savannas with an annual-dominated herbaceous layer show a boost in greening and (herbaceous) 

production under slightly arid conditions, e.g. in the Sahel region (Le Houérou, 1989, Penning de Vries 

& Djitèye, 1982). This is commonly attributed to a highly specialized species composition with a high 

proportion of small annuals, which are well adapted to dry conditions and high inter-annual variability 

in rainfall (CVMAP >30%). These plants reach their optimum production already under slightly below-

average rainfall, but are outcompeted by other species during normal or above-average conditions. In 

slightly below average rainfall years, they are released from competition (e.g. shading) and can 

perform better leading to an overall boost in their productivity. On the community-level, the increased 

productivity of specialized species leads to a relative increase in total production under low levels of 

aridity. As a major proportion of data in the abnormally dry year-class originated from such savannas 

(Miehe et al. 2010; see Supporting Information 1), we assume that the above-described effect explains 

this observation. If resistance is assessed without data from this site (data not shown) or across biomes 

instead of life history (Supporting Information 3), this effect is diminished or largely centralized, 

respectively, to the savanna biome. 
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Our results on the higher resistance of perennial-dominated vegetation to severe drought events seem 

to contradict numerous observations that perennial plants are prone to considerable drought-induced 

mortality and loss in production (DeMalach et al., 2014, McAuliffe & Hamerlynck, 2010). However, 

most of these studies refer to multiple-year droughts, and emphasize the importance of the cumulative 

effect of successive drought years on perennials’ survival and performance. Moreover, the differences 

in drought resistance across life histories do not preclude the possibility that drought effects on the 

productivity of perennial-dominated ecosystems are not dramatic; perennial ANPP drops to 52% of 

average ANPP (Figure 2) in exceptional drought years. 

 

Recovery. We found clear evidence that for the extent of post-drought recovery, vegetation 

characteristics (i.e. whether the grass layer was dominated by annuals or perennials) were most 

important. Annual-dominated systems did not only display a full recovery, but post-drought ANPP was 

increased considerably (173%) as compared to pre-drought ANPP. In contrast, perennial-dominated 

systems only reached 83% of pre-drought ANPP. As precipitation in pre- and post-drought years was 

‘normal’ in all cases, confounding effects of pre- and post-drought rainfall conditions did not play a 

role. Results are in line with general predictions from the CSR model: ecosystems dominated by 

relatively long-lived, slow-growing plants, such as perennial grasses, should be less resilient (here: 

reduced recovery) to disturbances than short-lived, fast-growing plants, such as annual grasses and 

forbs (Grime, 2001). Differences in recovery across these groups can thus be attributed to general 

physiological traits which are functionally related to competitive abilities and stress tolerance (Moreno 

García et al., 2014). This explanation is also in line with the recent ‘fast-slow’ plant economics spectrum 

concept (Reich, 2014), which suggest that traits of all three main plant organs (roots, stem, leaves) can 

be related to fast or slow strategies of nutrient, light or water acquisition and are largely rectified 

across organs. 

Annual plant communities, as compared to perennial communities, are relatively independent from 

previous abiotic conditions (as long as the soil seed-bank is not negatively influenced) and thus can 

respond relatively fast to current beneficial abiotic conditions. Perennials invest more energy and 

matter in structural elements and storage tissue and are comparably slow-growing and more 

dependent on their fitness as influenced not only by current but also by previous years’ abiotic 

conditions.  

Here, annuals were apparently able to respond more quickly to post-drought favorable conditions and 

were partially released from competition with perennials due to the reduced fitness and increased 

mortality of the latter (McAuliffe & Hamerlynck, 2010). These differences in recovery patterns have 

also been found in species-based field studies (DeMalach et al., 2014, O'Connor, 1995). Despite this 
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obvious advantage in terms of drought recovery of annuals, there were signs of a moderating effect of 

grazing regime (Figure 4 and below). 

 

Are combined effects of drought and grazing disturbance additive or interactive? 

Grazing moderated the divergent patters of drought resistance and recovery across dominant life 

histories in specific ways (Table 2 and 3). Thus simultaneous effects of drought and grazing were not 

merely additive but highly interactive and closely connected to vegetation characteristics. 

Specifically, drought resistance did not differ across ecosystems dominated by different life histories 

when the systems were grazed, but when ungrazed (Figure 3A), under these conditions perennial 

systems were more resistant. This effect can be attributed to differences in competitive abilities 

(Grime, 2001) and to difference in responses to grazing. Here, the long evolutionary history of grazing 

in dryland systems, especially in African and North American biomes (Sankaran & Anderson, 2009) and 

its importance for plant productivity have to be considered. Being ungrazed (and unburned, see 

Materials and Methods - Database) for prolonged periods is a highly artificial state for most dryland 

systems, under which overall productivity decreases due to increased competition in the herbaceous 

layer and between strata, e.g. via self-shading (Blair, 1997, Valone & Sauter, 2005). The combination 

of these effects is the likely reasons for the observed lower resistance of systems with an annual-

dominated herbaceous layer, as these species are less competitive in plant-plant-interactions and 

suffer more from the above-mentioned mechanisms (Fuhlendorf et al., 2001). 

However, the interaction between dominant life history and grazing regime was weak and only 

significant in one out of four cases (Figure 3). The general finding that grazing regime is relatively 

unimportant for drought resistance in drylands (Table 2) and that drought resistance of dominant 

herbaceous life histories only slightly differs across grazing regimes (Figure 3), supports the 

convergence model of aridity and grazing resistance (Milchunas et al., 1988, Quiroga et al., 2010). This 

hypothesis suggest that aridity (or drought) and grazing act as convergent selective forces upon plants 

and plant communities, as both lead to partial or total tissue loss and thus select similar plant traits. 

Thus, finding no general negative effect of grazing on drought resistance in dryland ecosystems, but 

only a slight impact mediated via the distinct performance of life histories under different grazing 

regimes, supports this hypothesis. The effect of grazing on dryland ANPP appears to be overridden by 

the regular impact of drought or aridity that is common and defining for these ecosystems. 

A similar but inverse pattern was found for drought-recovery. Under grazed conditions (Figure 4B), the 

systems with an herbaceous layer dominated by annuals showed roughly twice the rate of recovery as 

compared to perennial systems (189% vs. 81%). However, under ungrazed conditions, this large 

difference diminished, and life histories did not significantly differ anymore (117% vs. 87%; Figure 4A). 

Given the fact, that despite being labeled as annual or perennial systems, life histories coexist and 
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compete at nearly all sites, this effect can be explained by basic assumptions and hypotheses of the 

CSR model (Grime, 2001). Under conditions of grazing following a precedent drought, annuals (R or S) 

are able to outcompete perennials (C) since these cannot make use of their intrinsic advantageous 

capabilities (i.e. more efficient resource acquisition) as their relative fitness (or vigor) is strongly 

reduced from the precedent drought, and constantly weakened by ongoing disturbance via grazing 

(Kirkman, 2002). Under ungrazed conditions however, perennials are not penalized by grazing and can 

reduce the gap in recovery-potential. However, this finding might as well be an artefact due to the 

small number of observations (the cell-size of ungrazed annuals was very small, n = 6). The relative 

marginality of this interaction is also underlined by its small effect size (Table 3). 

 

Are there predictable relationships between the severity of drought events and ecosystem 

response? 

Resistance. We found that increasing drought severity (quasi-) linearly reduced ecosystem resistance, 

and that the strength of response partially differed with dominant life history of the herbaceous layer. 

As a rule of thumb, perennial systems lost ca. 10% of their ‘normal’ ANPP for each drought severity 

level (SPI class). For annual systems, the situation was more complex. Under slightly dry conditions (SPI 

class -1), we found that production was increased by 28% on average, however, under moderate 

drought conditions (SPI class -2), production was already reduced by ca. 30% of ‘normal’ ANPP. From 

here resistance decreased by ca. 14% for each drought severity level. 

 

Recovery. Based on our findings, perennial-dominated systems were unable to fully restore pre-

drought ANPP, but reached only 81% to 87% of pre-drought ANPP for grazed and ungrazed conditions, 

respectively. Annual-dominated systems had a recovery rate roughly twice as high when grazed (189%) 

as compared to perennial systems, meaning that they were more productive after the drought than 

before the drought. When ungrazed, annual systems still produce slightly more biomass (on average) 

than pre-drought conditions but considerably less (117%) than when grazed. 

As the influence of drought severity on recovery could not be assessed systematically, predictions for 

recovery are rather general. Nevertheless, additive results suggest that drought recovery was 

remarkably constant across different levels of drought severity. This is particularly true for perennial 

systems, for which we had more data available. Here we found that average recovery varied only 

between 79% and 92% across drought intensities (Supporting Information 4). For annual systems, 

bearing in mind the paucity of data, we saw that – for extreme and exceptional drought conditions (SPI 

class -4 and -5) – recovery varies between 167% and 243% respectively.  

For recovery, drought duration would have been another interesting factor, as theoretical 

considerations would suggest that annual systems would lose their recovery-potential gradually with 



Publication: Quantifying Dryland Resistance and Resilience to Drought 

96 
 

prolonged drought conditions as the soil seed bank depletes. However, we could not assess this 

response with the currently available data. 

 

Our generalized resistance and recovery estimates for drylands are very similar to those reported in 

case studies from Cedar Creek (Minnesota, USA; Tilman & Downing, 1994) and the Inner Mongolia 

Grassland Ecosystem Research Station (IMGERS, Inner Mongolia, China; Bai et al., 2004). Both studies 

present data from ungrazed perennial grasslands. 

In order to compare their findings with our system, we obtained precipitation data for those sites and 

classified the respective years with our scheme of drought severity (Table 1). The Cedar Creek study 

presents resistance and recovery data for a severe drought (SPI class -3). For the IMGERS site, 

resistance and recovery estimates present average values over five distinct drought years (within a 21 

year frame) that varied in their respective drought intensities. On average, years can also be classified 

as ‘severe drought’ (SPI class -3). 

The Cedar Creek grassland showed an overall resistance of -29% and recovery of 112% under severe 

drought conditions for undisturbed, species-rich plots (≥10 species) while on disturbed species-poor 

plots resistance and recovery dropped to -51% and 104%, respectively. At the IMGERS sites, similar 

and only slightly higher, resistance and recovery values were reported for two perennial grasslands, 

scoring a mean resistance of -27% and -22%, respectively, as well as a mean recovery of 119% and 

122%. 

In comparison, we found an average resistance (for SPI class -3) and recovery in perennial-dominated 

systems of -23% and 83%, respectively. For grasslands, resistance and recovery estimates were -25% 

and 80%, respectively. Thus, resistance estimates are similar with respect to total magnitude, while 

recovery values are somewhat higher than our average values but score well within the variability of 

the respective resilience estimates (Figure 2 & 4A; Figure S3-2A). 

 

Donohue et al. (2013) suggested that resistance and recovery may correlate either positively or 

negatively depending on the natural growth rates and the sensitivity of the respective environment. 

We found no general correlation between these two stability components within our dataset. Only if 

dominant life histories were analyzed separately, annual systems showed a negative correlation 

between recovery and resistance, while no correlation was observed for perennial systems. This might 

suggest a higher sensitivity of annual-dominated systems as compared to perennial systems. 

 

Strengths and weaknesses of our data-fusion approach 

Generally, our data-fusion approach was well-suited for ascertaining the relative importance of 

drought intensity and ecosystem properties in explaining variation in dryland systems’ stability to 
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drought. It synthesized and standardized available data in order to identify general patterns of 

ecosystem stability to drought, and is the first large-scale assessment of ecosystem stability across a 

large number of ecosystems. As for all studies focusing on ecological stability, our approach highlights 

specific components while neglecting others. Here, the large number of drought events in our dataset 

allowed us to quantify two key aspects of ecosystem stability (resistance and recovery), and to evaluate 

potential correlations among them. This approach followed recent recommendations with respect to 

the multidimensionality of ecosystem stability (Donohue et al., 2013). 

However, our data-fusion approach also had some limitations with respect to the selection of 

variables. The focus on ANPP was mostly motivated by data availability, and obviously imposes 

restrictions with respect to interpretability. Most importantly, we could not complement ANPP 

dynamics with related changes in species composition or diversity, which have been shown to be 

functionally connected to ecosystem stability (Bai et al., 2004, Pfisterer & Schmid, 2002, Tilman & 

Downing, 1994, Vogel et al., 2012). Nevertheless, our approach of standardizing and normalizing ANPP 

data across assembled studies (Ruppert & Linstädter, 2014) should ensure the comparability of ANPP 

data and related stability estimates. Furthermore, using dominant life history as a proxy for vegetation 

characteristics might represent an adequate level of aggregation of plant communities, as it has been 

suggested that a sites’ dominance hierarchies, rather than biodiversity, may drive ecosystem 

functioning (Sasaki & Lauenroth, 2011).  

Similar to the selection of ANPP, the selection of explanatory variables was also partly restricted by 

data availability. Despite having already >4400 years of observational data from >320 separate 

datasets at hand, data were still insufficient to analyze and/or detect the effects of some potentially 

interfering parameters. For example, although previous studies and preliminary analyses (Supporting 

Information 4) suggested that rainfall legacy may affect dryland ANPP (Ruppert et al., 2012, Wiegand 

et al., 2004), we were not able to quantify these effects with respect to ecosystem stability. 

Furthermore, data on soil conditions (e.g. soil texture, depth or nutrient availability) had a low 

frequency in the dataset, and existing data were often inadequate with respect to their quality or 

spatiotemporal resolution and thus could not be considered in our analyses. 

Another crucial step in our data analysis was the selection of a drought index and classification 

applicable to all sites. Here, we chose the SPI, which can be calculated solely from precipitation data 

(McKee et al., 1993). Although other drought indices exist (e.g. SPIE; Vicente-Serrano et al., 2012), 

these are based on additional variables, such as temperature, which were not consistently available in 

our dataset. Nevertheless, we are confident that the SPI-based classification of drought intensity is 

straightforward, ecologically sound (Guttman, 1998), and superior to approaches used in other studies, 

such as the percentage deviation from mean annual precipitation. It overcomes the spatiotemporal 

limits of site-based studies and allows regional and global assessments of ecosystem functioning. 
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Our methodological toolbox – a combination of a large global dataset, normalization of ANPP and 

precipitation data, and selection of two key estimates for ecosystem stability – enabled us to assess 

timely questions on global change-related ecosystem functioning in drylands, which thus far could only 

be answered on a theoretical or anecdotal basis, if at all. Ideally our study should in future be combined 

with experimental and modeling studies to overcome caveats of the respective individual approaches 

(Reyer et al., 2012). For experimental approaches, coordinated distributed experiments (Fraser et al., 

2013) are promising. In this context, a coincidence of drought and other environmental stressors such 

as fire might also be of interest. 

 

Implications for rangeland management 

Generally, our results showed that the relative importance of resistance to, and recovery from, drought 

in dryland systems is largely dependent on the dominant life history of the herbaceous layer. This has 

major implications for dryland management during and after drought events and sheds new light on 

why dryland biomes differ in their drought vulnerability. We conclude that systems with a dominant 

annual herbaceous layer (e.g. arid shrubland and savannas) are more prone to the combined effects 

of drought and human (mis-)management for two reasons: (1) they suffer more during drought events; 

(2) their fast post-drought recovery might encourage overutilization, which may lead to long-term 

degradation under conditions of increased drought intensities and frequencies. Vice versa, perennial 

systems have shown to be more resistant during drought-situations, what might prevent managers 

from destocking herds and thus promote in-drought overutilization, what might detrimentally affect 

already low post-drought recovery and increase risk of degradation under multiyear drought-regimes. 

In conclusion, our results promote an improved understanding of ecosystem functioning in drylands 

that could enhance dryland vegetation models and improve decision-making. 

 

Acknowledgements 

We thank Roelof Oomen and Kristijan Canak for fruitful discussions during the development of this 

study. Furthermore, we thank Andreas Tewes for his assistance and help in GIS. The research of Jan C. 

Ruppert was funded by the Foundation of German Business (Stiftung der Deutschen Wirtschaft, sdw) 

and by the German Federal Ministry of Education and Research (BMBF) through a grant to the SPACES 

initiative (Science Partnerships for the Assessment of Complex Earth System Processes; grant number 

01LL1304D). Research of Anja Linstädter was supported by the German Federal Ministry of Education 

and Research (BMBF) via the WASCAL (West African Science Service Center on Climate Change and 

Adapted Land Use) and SPACES initiatives. John McIvor generously provided data from Cardigan, 

Australia. Data from Jornada Basin, Konza Prairie, Sevilleta, and Short Grass Steppe was provided by 



Publication: Quantifying Dryland Resistance and Resilience to Drought 

99 
 

the Long Term Ecological Research Program (LTER) which is significantly funded by the U.S. National 

Science Foundation Long Term Ecological Research program (NSF grant numbers BSR-8811906, DEB-

0080529, DEB-0217774, DEB-0236154, DEB-0618210, DEB-0823341, DEB-0823405, DEB-0832652, 

DEB-0936498, DEB-9411976, DEB-9634135). The manuscript-review by Alan Short (Short Ecological 

Consulting) prior to submission is very much appreciated, as well as his provision of data from Kokstad, 

South Africa. His work there as well as data were funded and managed by the KwaZulu-Natal 

Department of Agriculture and Environmental Affairs. Finally, we thank the many, often anonymous, 

researchers and research assistants who gathered the biomass data underlying our database. 

 

References 

Asner GP, Heidebrecht KB (2005) Desertification alters regional ecosystem–climate interactions. 
Global Change Biology, 11, 182-194. 

Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner 
Mongolia grassland. Nature, 431, 181-184. 

Blair JM (1997) Fire, N availability, and plant response in grasslands: a test of the transient maxima 
hypothesis. Ecology, 78, 2359-2368. 

Boschma SP, Hill MJ, Scott JM, Rapp GG (2003) The response to moisture and defoliation stresses, 
and traits for resilience of perennial grasses on the Northern Tablelands of New South Wales, 
Australia. Australian Journal of Agricultural Research, 54, 903-916. 

Carlyle C, Fraser L, Turkington R (2014) Response of grassland biomass production to simulated 
climate change and clipping along an elevation gradient. Oecologia, 174, 1065-1073. 

Cherwin K, Knapp A (2012) Unexpected patterns of sensitivity to drought in three semi-arid 
grasslands. Oecologia, 169, 845-852. 

Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE (2013) Global 
diversity of drought tolerance and grassland climate-change resilience. Nature Climate 
Change, 3, 63-67. 

Crawley MJ (2002) Statistical computing, an introduction to data analysis using S-Plus, New York, 
John Wiley and Sons. 

Danckwerts JE, Stuart‐Hill GC (1988) The effect of severe drought and management after drought on 
the mortality and recovery of semi-arid grassveld. Journal of the Grassland Society of 
Southern Africa, 5, 218-222. 

DeMalach N, Kigel J, Voet H, Ungar ED (2014) Are semiarid shrubs resilient to drought and grazing? 
Differences and similarities among species and habitats in a long-term study. Journal of Arid 
Environments, 102, 1-8. 

Díaz S, Lavorel S, McIntyre S et al. (2007) Plant trait responses to grazing - a global synthesis. Global 
Change Biology, 13, 313-341. 

Donohue I, Petchey OL, Montoya JM et al. (2013) On the dimensionality of ecological stability. 
Ecology Letters, 16, 421-429. 

Frank DA, McNaughton SJ (1991) Stability increases with diversity in plant communities: empirical 
evidence from the 1988 Yellowstone drought. Oikos, 62, 360-362. 

Fraser LH, Henry HAL, Carlyle CN et al. (2013) Coordinated distributed experiments: an emerging tool 
for testing global hypotheses in ecology and environmental science. Frontiers in Ecology and 
the Environment, 11, 147-155. 

Fuhlendorf SD, Briske DD, Smeins FE (2001) Herbaceous vegetation change in variable rangeland 
environments: the relative contribution of grazing and climatic variability. Applied Vegetation 
Science, 4, 177-188. 

Gillson L, Hoffman MT (2007) Rangeland ecology in a changing world. Science, 315, 53-54. 



Publication: Quantifying Dryland Resistance and Resilience to Drought 

100 
 

Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, Chichester, UK, 
John Wiley and Sons. 

Guttman NB (1998) Comparing the Palmer drought index and the standardized precipitation index. 
Journal of the American Water Resources Association, 34, 113-121. 

Hamilton JG, Claus H, Bruce EM (1999) Coexistence and interference between a native perennial 
grass and non-native annual grasses in California. Oecologia, V121, 518-526. 

Hillebrand H, Cardinale BJ (2010) A critique for meta-analyses and the productivity-diversity 
relationship. Ecology, 91, 2545-2549. 

IPCC (2007) Climate Change 2007: Synthesis Report. Summary for Policymakers. In: Climate Change 
2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth 
Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry ML, 
Canziani OF, Palutikof JP, Van der Linden PJ, CE H) pp 81-82, Cambridge, Cambridge 
University Press. 

Jentsch A, Kreyling J, Elmer M et al. (2011) Climate extremes initiate ecosystem-regulating functions 
while maintaining productivity. Journal of Ecology, 99, 689-702. 

Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends in Ecology & 
Evolution, 19, 101-108. 

Kirkman K (2002) The influence of various types and frequencies of rest on the production and 
condition of sourveld grazed by sheep or cattle. 2. Vigour. African Journal of Range and 
Forage Science, 19, 93-105. 

Knapp AK, Beier C, Briske DD et al. (2008) Consequences of more extreme precipitation regimes for 
terrestrial ecosystems. BioScience, 58, 811-821. 

Le Houérou HN (1989) The grazing land ecosystems of the African Sahel. Berlin, Springer. 
Lohmann D, Tietjen B, Blaum N, Joubert DF, Jeltsch F (2012) Shifting thresholds and changing 

degradation patterns: climate change effects on the simulated long-term response of a semi-
arid savanna to grazing. Journal of Applied Ecology, 49, 814-823. 

MacGillivray CW, Grime JP, Team TISP (1995) Testing predictions of the resistance and resilience of 
vegetation subjected to extreme events. Functional Ecology, 9, 640-649. 

Maestre FT, Salguero-Gómez R, Quero JL (2012) It is getting hotter in here: determining and 
projecting the impacts of global environmental change on drylands. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 367, 3062-3075. 

Martin R, Müller B, Linstädter A, Frank K (2014) How much climate change can pastoral livelihoods 
tolerate? Modelling rangeland use and evaluating risk. Global Environmental Change, 24, 
183-192. 

McAuliffe JR, Hamerlynck EP (2010) Perennial plant mortality in the Sonoran and Mojave deserts in 
response to severe, multi-year drought. Journal of Arid Environments, 74, 885-896. 

McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time 
scales. In: 8th Conference on Applied Climatology, January 17-22, 1993. pp 179-184, 
Anaheim, California. 

MEA (2005) Ecosystems and human well-being: Desertification synthesis, Washington, D.C., USA, 
World Resources Institute. 

Miehe S, Kluge J, von Wehrden H, Retzer V (2010) Long-term degradation of Sahelian rangeland 
detected by 27 years of field study in Senegal. Journal of Applied Ecology, 47, 692-700. 

Milchunas DG, Sala OE, Lauenroth WK (1988) A generalized model of the effects of grazing by large 
herbivores on grassland community structure. American Naturalist, 132, 87. 

Milton SJ, Dean WRJ (2000) Disturbance, drought and dynamics of desert dune grassland, South 
Africa. Plant Ecology, 150, 37-51. 

Moreno García CA, Schellberg J, Ewert F et al. (2014) Response of community-aggregated plant 
functional traits along grazing gradients: insights from African semi-arid grasslands. Applied 
Vegetation Science. 

O'Connor TG (1995) Transformation of a savanna grassland by drought and grazing. African Journal of 
Range & Forage Science, 12, 53-60. 



Publication: Quantifying Dryland Resistance and Resilience to Drought 

101 
 

Olson DM, Dinerstein E, Wikramanayake ED et al. (2001) Terrestrial ecoregions of the world: a new 
map of life on Earth. BioScience, 51, 933-938. 

Penning de Vries FWT, Djitèye MA (1982) La productivité des pâturages sahéliens. In: Une étude des 
sols, des végétations et de l'exploitation de cette ressource naturelle. (eds Penning de Vries 
FWT, Djitèye MA) pp 525f. Wageningen, The Netherlands, Centre for Agricultural Publishing 
and Documentation. 

Pfisterer AB, Schmid B (2002) Diversity-dependent production can decrease the stability of 
ecosystem functioning. Nature, 416, 84-86. 

Pimm SL (1984) The complexity and stability of ecosystems. Nature, 307. 
Quiroga RE, Golluscio RA, Blanco LJ, Fernández RJ (2010) Aridity and grazing as convergent selective 

forces: an experiment with an arid Chaco bunchgrass. Ecological Applications, 20, 1876-1889. 
R Core Team (2013) R: A language and environment for statistical computing. Vienna, R Foundation 

for Statistical Computing. 
Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall 

result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2, 752-755. 
Reich PB (2014) The world-wide 'fast-slow' plant economics spectrum: a traits manifesto. Journal of 

Ecology, 102, 275-301. 
Reyer C, Leuzinger S, Rammig A et al. (2012) A plant's perspective of extremes: terrestrial plant 

responses to changing climatic variability. Global Change Biology, 19, 75-89. 
Reynolds JF, Smith DMS, Lambin EF et al. (2007) Global desertification: building a science for dryland 

development. Science, 316, 847-851. 
Ruppert JC, Holm AM, Miehe S, Muldavin E, Snyman HA, Wesche K, Linstädter A (2012) Meta-analysis 

of rain-use efficiency confirms indicative value for degradation and supports non-linear 
response along precipitation gradients in drylands. Journal of Vegetation Science, 23, 1035-
1050. 

Ruppert JC, Linstädter A (2014) Convergence between ANPP estimation methods in grasslands — A 
practical solution to the comparability dilemma. Ecological Indicators, 36, 524-531. 

Sankaran M, Anderson TM (2009) Management and restoration in African savannas: interactions and 
feedbacks. In: New models for ecosystem dynamics and restoration. (eds Hobbs RJ, Suding 
KN) pp 136-155. Washington, Island Press. 

Sasaki T, Lauenroth W (2011) Dominant species, rather than diversity, regulates temporal stability of 
plant communities. Oecologia, 166, 761-768. 

Scurlock JMO, Johnson K, Olson RJ (2002) Estimating net primary productivity from grassland 
biomass dynamics measurements. Global Change Biology, 8, 736-753. 

Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher 
plants. Comptes Rendus Biologies, 331, 215-225. 

Snyman H (2006) Short-term response of burnt grassland to defoliation in a semi-arid climate of 
South Africa. African Journal of Range and Forage Science, 23, 1-11. 

Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365. 
UN (2008) Trends in sustainable development. Agriculture, rural development, land, desertification 

and drought, New York, United Nations, Department of Economic and Social Affairs. 
Valone TJ, Sauter P (2005) Effects of long-term cattle exclosure on vegetation and rodents at a 

desertified arid grassland site. Journal of Arid Environments, 61, 161-170. 
Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J et al. (2012) Performance of drought indices for 

ecological, agricultural, and hydrological applications. Earth Interactions, 16, 1-27. 
Vogel A, Scherer-Lorenzen M, Weigelt A (2012) Grassland resistance and resilience after drought 

depends on management intensity and species richness. Plos One, 7, e36992. 
Wiegand T, Snyman HA, Kellner K, Paruelo JM (2004) Do grasslands have a memory: modeling 

phytomass production of a semiarid South African grassland. Ecosystems, 7, 243-258. 
Zhang Y, Susan Moran M, Nearing MA et al. (2013) Extreme precipitation patterns and reductions of 

terrestrial ecosystem production across biomes. Journal of Geophysical Research: 
Biogeosciences, 118, 148-157. 



Publication: Quantifying Dryland Resistance and Resilience to Drought 

102 
 

Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production 
from 2000 through 2009. Science, 329, 940-943. 

Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical 
problems. Methods in Ecology and Evolution, 1, 3-14. 

Zwicke M, Alessio GA, Thiery L et al. (2013) Lasting effects of climate disturbance on perennial 
grassland above-ground biomass production under two cutting frequencies. Global Change 
Biology, 19, 3435-3448. 



Publication: Quantifying Dryland Resistance and Resilience to Drought - Supporting Information 1 

103 
 

S1-1: Overview on datasets 

 

Data research, acquisition, and processing 

In detail, we searched the literature using the keywords ‘biomass’, ‘standing crop’, ‘primary 

production’, ‘ANPP’, ‘dryland’, ‘(semi-)arid’ in various combinations and spelling alterations. All 

literature research was carried out using Google Scholar, as this source gives more complete results 

compared to other platforms (Beckmann and von Wehrden, 2012). Furthermore, especially during a 

later stage of the data-collection, we obtained additional (mostly historic) datasets via personal 

communication. 

 

Wherever possible, we tried to obtain raw biomass and precipitation data at the highest spatial and 

temporal resolution available. Precipitation data were aggregated to monthly as well as 12-month 

sums representing the hydrological year at the respective site. Where raw biomass data were available, 

these raw biomass data were translated to ANPP using the peak standing crop method (Scurlock et al., 

2002). Where only readily estimated ANPP estimates were available and not of the peak standing crop-

type, we used established conversions to recalculate between these ANPP-methods (Ruppert and 

Linstädter, 2014). Furthermore, ANPP data were aggregated at a level representative for the respective 

(sub-) site and – where applicable – treatment (e.g. grazing), i.e. we averaged estimates across 

replicates as indicated by the original authors. All data storage, handling, and processing was done in 

MySQL and R. 
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S1-2: Methodological background 

 

Formal description of stability estimates 

Formally, resistance was calculated as: 

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  (𝐴𝑁𝑃𝑃𝑑𝑟𝑜𝑢𝑔ℎ𝑡 − ØANPP) ØANPP⁄  

where ANPPdrought is the ANPP at a certain site and year (SPI class 0 to -5), and ØANPP is the average 

ANPP of that specific site under non-drought conditions. Non-drought conditions are defined as the 

mean ANPP in the second year of two consecutive years with normal, average rainfall (SPI class 0). 

Negative deviations represent reductions in ANPP; positive values represent increases. More extreme 

values represent relatively low or high resistance respectively. Similar to the calculation of resistance, 

we defined recovery as: 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝐴𝑁𝑃𝑃𝑝𝑜𝑠𝑡−𝑑𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑁𝑃𝑃𝑝𝑟𝑒−𝑑𝑟𝑜𝑢𝑔ℎ𝑡⁄  

with ANPPpre-drought being ANPP in the year previous to a specific drought year at a certain site and 

ANPPpost-drought being the ANPP in the year after this drought. Here drought is defined as a one-year or 

multi-year period of moderate drought conditions or worse (SPI class ≤-2). Values above 100% 

represent increases in post-drought years as compared to pre-drought; values below 100% represent 

decreases. Pre- and post-drought years had to receive normal or average precipitation (SPI class 0). 

 

Some background on the standardized precipitation index 

To compare drought responses across dryland sites, regions and biomes, we quantified drought 

severity via the standardized precipitation index (SPI; McKee et al., 1993), which is a common and well-

supported precipitation index in ecology (Vicente-Serrano et al., 2012, Guttman, 1998). The SPI is a 

standardized and normalized index, based on the conversion of precipitation data to probabilities. 

Based on (long-term) precipitation data at a given site, a gamma-distribution for the observed 

probabilities is estimated, and then projected to a standardized distribution with a mean of zero and 

a standard deviation of unity. Thus, SPI values near zero represent ‘normal’ and average rainfall 

conditions at the respective site, while positive and negative values represent rectified anomalies, 

where stronger deviations indicating stronger anomalies. Theoretically, the SPI can be calculated for 

precipitation sums on various time scales (3 to 48 month sums are recommended). We calculated SPI 

values for sites’ hydrological years (or ‘crop years’), and assigned drought severity classes (‘SPI classes’) 

according to the classification of the US National Drought Mitigation Center 

(http://droughtmonitor.unl.edu/), adding the class of ‘normal precipitation’ (SPI class 0, with SPI values 

≤|0.5|). 

 

 

http://droughtmonitor.unl.edu/
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S2: Post-hoc analyses for ANOVAs on resistance and recovery 

Resistance ANOVA 

The resistance ANOVA showed two significant interaction terms (Dominant life history x SPI class & 

Grazing regime x Dominant life history). In order to assess those interactions, we used the split ANOVA 

approach: given an interaction between variable A and B this means splitting the data within each level 

of A and testing for the effect of B and vice versa. In order to avoid type-I-error inflation, the 

significance levels for the ANOVAs were adapted. 

Table S2-1: Results for split-ANOVAs of the resistance analyses. All split ANOVAs for the two interactions are given together 
with adapted probability levels to avoid type I error inflation. Significant results highlight details of the interactions and 
are subject to subsequent Tukey HSD analyses where variables have more than two levels. 

Interaction Subset   Sum Sq Df 
F 

value p 

Dominant life history : SPI class SPI class = 0 Dominant life history 5E-05 1 0,005 n.s. 

  Residuals 11.46 1214   

 SPI class = -1 Dominant life history 0.413 1 29.67 *** 

  Residuals 3.761 270   

 SPI class = -2 Dominant life history 0.022 1 2.085 n.s. 

  Residuals 2.106 200   

 SPI class = -3 Dominant life history 0.078 1 7.129 n.s. 

  Residuals 1.118 102   

 SPI class = -4 Dominant life history 0.228 1 19.74 *** 

  Residuals 1.371 119   

 SPI class = -5 Dominant life history 0.137 1 18.39 *** 

   Residuals 0.552 74     

 Dominant life history = Annuals SPI class 4.689 5 65.7 *** 

  Residuals 8.535 598   

 Dominant life history = Perennials SPI class  1.873 5 43.72 *** 

    Residuals 11.84 1381     

Dominant life history : Grazing regime Grazing regime = Ungrazed Dominant life history 0.154 1 15.44 *** 

  Residuals 7.151 716   

 Grazing regime = Grazed Dominant life history 6E-04 1 0.041 n.s. 

   Residuals 19.65 1271     

 Dominant life history = Annuals Grazing regime 0.086 1 3.919 n.s. 

  Residuals 13.14 602   

 Dominant life history = Perennials Grazing regime 0.043 1 4.344 n.s. 

    Residuals 16.37 1385     

Significant results for Dominant life history x SPI class interaction are subject to subsequent Tukey HSD test. 
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Table S2-2: Results for Tukey HSD on significant split ANOVAs. These results are shown as letter-code in the respective 
figures (Fig. 2, 3) of the main paper. 

Interaction Subset Assumption         Estimate Std Err t value p 

Dominant life 
history : SPI class Annual -2: moderately dry - -1: abnormally dry == 0 -0.14880 0.03040 -4.895 *** 

  -3: severely dry - -1: abnormally dry == 0 -0.19455 0.03506 -5.550 *** 

  -4: extremely dry - -1: abnormally dry == 0 -0.25855 0.01807 -14.310 *** 

  -5: exceptionally  dry - -1: abnormally dry == 0 -0.27412 0.02463 -11.129 *** 

  ±0: near normal - -1: abnormally dry == 0 -0.05169 0.01306 -3.959 ** 

  -3: severely dry - -2: moderately dry == 0 -0.04576 0.04348 -1.052  

  -4: extremely dry - -2: moderately dry == 0 -0.10975 0.03144 -3.491 ** 

  -5: exceptionally  dry - -2: moderately dry == 0 -0.12532 0.03562 -3.518 ** 

  ±0: near normal - -2: moderately dry == 0 0.09711 0.02885 3.366 ** 

  -4: extremely dry - -3: severely dry == 0 -0.06400 0.03596 -1.779  

  -5: exceptionally  dry - -3: severely dry == 0 -0.07956 0.03967 -2.006  

  ±0: near normal - -3: severely dry == 0 0.14286 0.03373 4.236 *** 

  -5: exceptionally  dry - -4: extremely dry == 0 -0.01557 0.02591 -0.601  

  ±0: near normal - -4: extremely dry == 0 0.20686 0.01533 13.493 *** 

  ±0: near normal - -5: exceptionally  dry == 0 0.22243 0.02270 9.798 *** 

 Perennial -2: moderately dry - -1: abnormally dry == 0 -0.0326662 0.0099577 -3.281 * 

  -3: severely dry - -1: abnormally dry == 0 -0.0321435 0.0121143 -2.653 . 

  -4: extremely dry - -1: abnormally dry == 0 -0.0903752 0.0152028 -5.945 *** 

  -5: exceptionally  dry - -1: abnormally dry == 0 -0.1076392 0.0154560 -6.964 *** 

  ±0: near normal - -1: abnormally dry == 0 0.0282749 0.0079121 3.574 ** 

  -3: severely dry - -2: moderately dry == 0 0.0005228 0.0118641 0.044  

  -4: extremely dry - -2: moderately dry == 0 -0.0577089 0.0150041 -3.846 ** 

  -5: exceptionally  dry - -2: moderately dry == 0 -0.0749730 0.0152606 -4.913 *** 

  ±0: near normal - -2: moderately dry == 0 0.0609412 0.0075234 8.100 *** 

  -4: extremely dry - -3: severely dry == 0 -0.0582317 0.0165144 -3.526 ** 

  -5: exceptionally  dry - -3: severely dry == 0 -0.0754958 0.0167478 -4.508 *** 

  ±0: near normal - -3: severely dry == 0 0.0604184 0.0102079 5.919 *** 

  -5: exceptionally  dry - -4: extremely dry == 0 -0.0172641 0.0191012 -0.904  

  ±0: near normal - -4: extremely dry == 0 0.1186501 0.0137321 8.640 *** 

    ±0: near normal - -5: exceptionally  dry == 0 0.1359142 0.0140119 9.700 *** 
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Recovery ANOVA 

The Recovery ANOVA showed one significant interaction term (Dominant life history x Grazing regime). 

In order to assess this interaction, we used the split ANOVA approach (see above). 

Table S2-3: Results for split-ANOVAs of the resistance analyses. All split ANOVAs for the two interactions are given together 
with adapted probability levels to avoid type I error inflation. Significant results highlight details of the interactions. Here 
no subsequent Tukey HSD analyses where necessary, since both variables had only two levels. Results are partially shown 
as letter-code in the respective figure (Fig.4) of the main paper. 

Interaction Subset   Sum Sq Df F value p 

Dominant life history : Grazing regime Dominant life history = Annual Grazing regime 0.1451 1 8.444 * 

  Residuals 0.4297 25   

 Dominant life history = Perennial Grazing regime 0.01398 1 0.4008 n.s. 

   Residuals 1.746 89     

 Grazing regime = Ungrazed Dominant life history 0.05422 1 2.924 n.s. 

   Residuals 0.7233 39     
 Grazing regime = Grazed Dominant life history 1.418 1 73.24 *** 

  Residuals 1.452 75   
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S3-1: Resistance model using biome, including post-hoc analyses 

Table S3-1: ANOVA on resistance. ANOVA model on the influence of SPI class and Biome on drought resistance in drylands. 
The ANOVA found two significant main effects (SPI class, Biome) and two significant interactions (SPI class x Biome & 
Biome x Grazing regime). Based on η2 estimates, the main effect of SPI class (= drought intensity) and its interaction with 
biome explain relatively large proportions of variance in resistance, 21% and 2% respectively. The other significant terms, 
biome and its interaction with grazing regime, only explain <1% each. The other effect size estimates (Partial η2 and ω2) 
support these findings. Significance of estimates is given with * = p <0.05. ** = p <0.01. *** = p <0.001. Results of the post-
hoc test for the interactions are given below (Tables S3-2. S3-3) and are presented in Figures S3-1, S3-2 and S3-3. 

Response: Resistance             

  Sum Sq Df F value p η2 Partial η2 ω2 

SPI class 5.6135 5 108.6798 *** 0.21 0.22 0.21 

Biome 0.0674 2 3.2610 * 0.00 0.00 0.00 

Grazing regime 0.0014 1 0.1369  - - - 

SPI class x Biome 0.6105 10 5.9095 *** 0.02 0.03 0.02 

Biome x Grazing regime 0.2379 2 11.5158 *** 0.01 0.01 0.01 

Residuals 20.3507 1970      

        Total (%) 0.24 0.26 0.24 

 

 

Figure S3-1: Graphical representation of the interaction between SPI class x Biome on resistance. The boxplots illustrate 
the resistance of grassland (white), savanna (light grey), and shrubland (dark grey) across the SPI classes as estimate for 
drought intensity. Dashed lines in boxplots represent mean values, and solid lines represent medians. Letter-codes give the 
significant differences between biomes within a specific SPI class (p <0.05). 
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Figure S3-2: Graphical representation of the interaction between SPI class x Biome on resistance. The boxplots illustrate 
the distinct resistance of the three biomes (grassland, savanna, and shrubland) across SPI classes as estimates for drought 
intensity. Dashed lines in boxplots represent mean values, and solid lines represent medians. Letter-codes give the 
significant differences across SPI class within a specific biome (p <0.05). 

 
Figure S3-3: Graphical representation of the interaction between Biome x Grazing regime. The boxplots illustrate A) the 
resistance of grassland (white), savanna (light grey), and shrubland (dark grey) across ungrazed vs. grazed conditions and 
B) the resistance of vegetation under ungrazed (green) or grazed (brown) conditions within biomes. Dashed lines in 
boxplots represent mean values, and solid lines represent medians. Letter-codes give the significant differences between 
biomes in a respective grazing regime (p <0.05). 
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Table S3-2: Results for split-ANOVAs of the resistance analyses. All split ANOVAs for the two interactions are given together 
with adapted probability levels to avoid type I error inflation. Significant results highlight details of the interactions and 
are subject to subsequent Tukey HSD analyses where variables have more than two levels. 

Interaction Subset   Sum Sq Df F value p 

Biome : SPI class SPI class = 0 Biome 0.0281 2 1.488 n.s. 

  Residuals 11.4300 1213   

 SPI class = -1 Biome 0.1903 2 6.425 * 

  Residuals 3.9840 269   

 SPI class = -2 Biome 0.0593 2 2.851 n.s. 

  Residuals 2.0680 199   

 SPI class = -3 Biome 0.0091 2 0.387 n.s. 

  Residuals 1.1870 101   

 SPI class = -4 Biome 0.2239 2 9.608 *** 

  Residuals 1.3750 118   

 SPI class = -5 Biome 0.1482 2 9.993 *** 

   Residuals 0.5414 73     

 Biome = Grassland SPI class 1.1220 5 26.300 *** 

  Residuals 6.9430 814   

 Biome = Savanna SPI class 4.757 5 70.33 *** 

  Residuals 12.35    

 Biome = Shrubland SPI class 0.3617 5 13.73 *** 

    Residuals 1.296 246     

Biome : Grazing regime Grazing regime = Ungrazed Biome 0.3158 2 16.150 *** 

  Residuals 6.9890 715   

 Grazing regime = Grazed Biome 0.0690 2 2.238 n.s. 

   Residuals 19.5900 1270     

 Biome = Grassland Grazing regime 0.0616 1 6.299 * 

  Residuals 8.0030 818   

 Biome = Savanna Grazing regime 0.1887 1 10.230 ** 

  Residuals 16.9200 917   

 Biome = Shrubland Grazing regime 0.0055 1 0.839 n.s. 

    Residuals 1.6520 250     

Significant results for Biome x SPI class interaction are subject to subsequent Tukey HSD test.  
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Table S3-3: Results for Tukey HSD on significant split ANOVAs. These results are show as letter-code in the respective figures 
(Fig. S3-1, S3-2 and S3-3). 

Interaction Subset Assumption Estimate Std Err t value p 

Biome x SPI 
class SPI class = -1 savanna - grassland == 0 0.05802 0.01619 3.585 ** 
  shrubland - grassland == 0 0.03694 0.02566 1.440  
  shrubland - savanna == 0 -0.02108 0.02431 -0.867  
 SPI class = -4 savanna - grassland == 0 -0.09569 0.02250 -4.252 *** 
  shrubland - grassland == 0 -0.03175 0.03639 -0.872  
  shrubland - savanna == 0 0.06394 0.03353 1.907  
 SPI class = -5 savanna - grassland == 0 -0.08248 0.02044 -4.035 *** 
  shrubland - grassland == 0 0.03605 0.04110 0.877  
   shrubland - savanna == 0 0.11853 0.04117 2.879 * 

 Biome  = Grassland -2: moderately dry - -1: abnormally  dry == 0 -0.02381 0.01307 -1.821  
  -3: severely dry - -1: abnormally  dry == 0 -0.03360 0.01532 -2.194  
  -4: extremely dry - -1: abnormally  dry == 0 -0.07598 0.01880 -4.042 *** 
  -5: exceptionally  dry - -1: abnormally  dry == 0 -0.10172 0.01821 -5.585 *** 
  ±0: near normal - -1: abnormally  dry == 0 0.03018 0.01060 2.848 * 
  -3: severely dry - -2: moderately dry == 0 -0.00979 0.01470 -0.666  
  -4: extremely dry - -2: moderately dry == 0 -0.05217 0.01829 -2.852 * 
  -5: exceptionally  dry - -2: moderately dry == 0 -0.07791 0.01769 -4.403 *** 
  ±0: near normal - -2: moderately dry == 0 0.05399 0.00968 5.579 *** 
  -4: extremely dry - -3: severely dry == 0 -0.04238 0.01996 -2.123  
  -5: exceptionally  dry - -3: severely dry == 0 -0.06812 0.01941 -3.510 ** 
  ±0: near normal - -3: severely dry == 0 0.06378 0.01254 5.085 *** 
  -5: exceptionally  dry - -4: extremely dry == 0 -0.02575 0.02226 -1.157  
  ±0: near normal - -4: extremely dry == 0 0.10615 0.01661 6.390 *** 
  ±0: near normal - -5: exceptionally  dry == 0 0.13190 0.01595 8.269 *** 
 Biome  = Savanna -2: moderately dry - -1: abnormally  dry == 0 -0.10985 0.01664 -6.602 *** 
  -3: severely dry - -1: abnormally  dry == 0 -0.11000 0.02324 -4.734 *** 
  -4: extremely dry - -1: abnormally  dry == 0 -0.22969 0.01634 -14.057 *** 
  -5: exceptionally  dry - -1: abnormally  dry == 0 -0.24222 0.02181 -11.108 *** 
  ±0: near normal - -1: abnormally dry == 0 -0.02663 0.01065 -2.500  

  -3: severely dry - -2: moderately dry == 0 -0.00015 0.02527 -0.006  
  -4: extremely dry - -2: moderately dry == 0 -0.11984 0.01913 -6.265 *** 
  -5: exceptionally  dry - -2: moderately dry == 0 -0.13238 0.02397 -5.523 *** 
  ±0: near normal - -2: moderately dry == 0 0.08322 0.01457 5.711 *** 
  -4: extremely dry - -3: severely dry == 0 -0.11969 0.02508 -4.773 *** 
  -5: exceptionally  dry - -3: severely dry == 0 -0.13222 0.02894 -4.569 *** 
  ±0: near normal - -3: severely dry == 0 0.08337 0.02180 3.824 ** 
  -5: exceptionally  dry - -4: extremely dry == 0 -0.01254 0.02376 -0.528  

  ±0: near normal - -4: extremely dry == 0 0.20306 0.01423 14.273 *** 
  ±0: near normal - -5: exceptionally dry == 0 0.21559 0.02027 10.636 *** 

 
Biome  = 
Shrubland -2: moderately dry - -1: abnormally  dry == 0 -0.03278 0.02164 -1.515  

  -3: severely dry - -1: abnormally  dry == 0 -0.06236 0.02410 -2.587  
  -4: extremely dry - -1: abnormally  dry == 0 -0.14467 0.02480 -5.835 *** 
  -5: exceptionally  dry - -1: abnormally  dry == 0 -0.10262 0.03507 -2.926 * 
  ±0: near normal - -1: abnormally  dry == 0 0.00750 0.01435 0.523  
  -3: severely dry - -2: moderately dry == 0 -0.02958 0.02642 -1.119  
  -4: extremely dry - -2: moderately dry == 0 -0.11189 0.02705 -4.136 *** 
  -5: exceptionally  dry - -2: moderately dry == 0 -0.06984 0.03670 -1.903  
  ±0: near normal - -2: moderately dry == 0 0.04028 0.01797 2.241  
  -4: extremely dry - -3: severely dry == 0 -0.08231 0.02906 -2.832 * 
  -5: exceptionally  dry - -3: severely dry == 0 -0.04026 0.03820 -1.054  
  ±0: near normal - -3: severely dry == 0 0.06986 0.02087 3.347 * 
  -5: exceptionally  dry - -4: extremely dry == 0 0.04205 0.03864 1.088  
  ±0: near normal - -4: extremely dry == 0 0.15217 0.02167 7.023 *** 
    ±0: near normal - -5: exceptionally  dry == 0 0.11012 0.03293 3.344 * 

Grazing regime 
x Biome 

Grazing regime = 
Ungrazed savanna - grassland == 0 -0.05103 0.01077 -4.740 *** 

  shrubland - grassland == 0 0.01930 0.00931 2.074  
    shrubland - savanna == 0 0.07024 0.01267 5.551 *** 
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S3-2: Recovery model using biome, including post-hoc analyses 

Table S3-4: ANOVA on recovery index. ANOVA model on the influence of biome on post-drought ANPP-recovery in drylands. 
The ANOVA found one significant main effect (biome). Based on η2 estimates, biome explains 12% of variance in post-
drought recovery. ω2 generally supports this finding (Partial η2 is mathematically identical to η2 in single-term models). 
Significance of estimates is given with * = p <0.05, ** = p <0.01, *** = p <0.001. Results of the post-hoc test for the main 
effect are given below and in Figure S3-4. 

Response: Recovery               

 Sum Sq Df F value p η2 Partial η2 ω2 

Biome 0.4306 2 7.5825 *** 0.12 0.12 0.10 

Residuals  3.2657 115      
        Total (%) 0.12 0.12 0.10 

 

Table S3-5: Results for Tukey HSD on Biome. These results are shown as letter-code in Figure S3-4. 
Term Assumption         Estimate Std Err t value p 

Biome savanna - grassland == 0 -0.08707 0.03491 2.494 * 
 shrubland - grassland == 0 -0.16660 0.04390 3.795 *** 
 shrubland - savanna == 0 -0.07953 0.04196 1.895 n.s. 

 

 
Figure S3-4: ANPP-based recovery as influenced by biome. The boxplots illustrate the distinct recovery values in grassland, 
savanna and shrubland. Dashed lines in boxplots represent mean values, and solid lines represent medians. Letter-codes 
give the significant differences across dominant life histories (p <0.05). 
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S4-1: Alternative resistance analyses illustrating the effect(-size) of rainfall 
legacy 
 

Table S4-1: ANOVA on resistance including previous SPI class (negative, normal, positive) as explanatory variable. Please 
note that as for the model in Table S4-1, the explained variance increased by ca. 11%. Significance of estimates is given 
with * = p <0.05, ** = p <0.01, *** = p <0.001. 

Response: Resistance               

  Sum Sq Df F value p η2 Partial η2 ω2 

SPI class 5.2926 5 124.5650 *** 0.23 0.26 0.23 

Dominant life form 0.0255 1 3.0044 n.s.    
Grazing regime 0.0024 1 0.2781 n.s.    
Previous SPI class 0.4578 2 26.9357 *** 0.02 0.03 0.02 
SPI class x Dominant life form 0.5782 5 13.6085 *** 0.02 0.04 0.02 
SPI class x Grazing regime 0.1308 5 3.0773 ** 0.01 0.01 0.00 
Dominant life form x Grazing regime 0.1155 1 13.5897 *** 0.00 0.01 0.00 
SPI class x Previous SPI class 0.5314 10 6.2535 *** 0.02 0.03 0.02 
Previous SPI class x Dominant life form 0.5543 2 32.6153 *** 0.02 0.04 0.02 

Previous SPI class x Grazing regime 0.0080 2 0.4717 n.s.    
SPI class x Dominant life form x Previous SPI class 0.5669 7 9.5306 *** 0.02 0.04 0.02 
Dominant life form x Grazing regime x Previous SPI class 0.0645 2 3.7955 * 0.00 0.00 0.00 

Residuals 14.8879 1752      
        Total (%) 0.36 0.46 0.34 

 

Table S4-2: ANOVA on resistance based on filtered data. Only resistance values of drought years following a normal 
precipitation year (SPI class 0) are included in analysis. Results resemble those of the original model (Table 2 in Ruppert et 
al. 2014). The only differences are the significant effect of dominant life form and the insignificance of the last interaction 
(Dominant life form x Grazing regime) due to missing data. Please note that the explained variance of the filtered model 
increased by ca. 13% as compared to the original model without data filtering. Significance of estimates is given with * = 
p <0.05, ** = p <0.01, *** = p <0.001. 

Response: Resistance               

  Sum Sq Df F value p η2 Partial η2 ω2 

SPI class 2.6821 5 85.2144 *** 0.35 0.36 0.34 
Dominant life form 0.0895 1 14.2192 *** 0.01 0.02 0.01 
Grazing regime 0.0053 1 0.8497 n.s. - - - 
SPI class x Dominant life form 0.1873 5 5.9517 *** 0.02 0.04 0.02 
Dominant life form x Grazing regime 0 1 0.0039 n.s. - - - 

Residuals 4.7841 760      
        Total (%) 0.38 0.42 0.37 
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Figure S4-1: Interaction between resistance and dominant life form of the herbaceous layer as effected by previous 
precipitation conditions. Points connected by a dashed-line represent mean resistance from sites with a dominating annual 
herb-layer, triangles connected by a solid-line represent those of perennials. As can be seen, perennials on average have 
higher resistance under conditions of preceding normal rainfall or positive rainfall anomalies. Under conditions of 
preceding negative rainfall anomalies (i.e. drought), annuals have higher resistance. 

 

The final model (Table 2 in main document) explained 25% of variance in ANPP resistance to drought. 

Here, the proportion of explained variance could be increased to ca. 36-38% by either including the 

effect of previous year’s precipitation in the model (Table S4-1), or by filtering out resistance estimates 

from drought years not following an average precipitation year (Table S4-2). However, since both 

options led to loss of considerable amounts of data and/or to untraceable interactions (due to empty 

cells), we opted for the simpler, yet more parsimonious, model. 

 

The most important effect was an interaction of previous year’s precipitation status (below, average, 

or above) and dominant herbaceous life history (see Figure S4-1). While resistance for perennial-

dominated systems was higher in years following average or above-average precipitation years, 

annual-dominated systems outperformed those in years following below-average precipitation years. 

This can be explained by a legacy effect (also ‘memory-effect’) of previous rainfalls on vegetation 

(Wiegand et al. 2004, Ruppert et al. 2012, Linstädter and Baumann 2013). Below-average precipitation 

years reduce the relative fitness of perennial vegetation in subsequent years, as root-stocks and -

system are less developed, as well as competitive ability. Annual vegetation is not influenced as much 

by previous year’s precipitation, as species grow de novo every year. However, the latter is only true 

as long as the seed bank is not depleted by prolonged drought conditions (several years). 
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S4-2: Effect of drought severity on recovery 

 

Figure S4-2: Recovery split by dominant life history across drought intensity. Recovery of systems where the herbaceous 
layer is dominated by perennials is largely unaffected by drought intensity; recovery varies around ca. 89% irrespective of 
increasing drought intensity. For annuals, few data were available, concentrated in severe drought years. These data 
suggest that recovery drops with drought intensity, however, this is highly speculative. 

 

S4-3: Relationship between resistance and recovery 
Table S4-3: ANCOVA on the relationship between resistance and recovery. Results from ANCOVA (type II) suggest that there 
is no overall linear relationship between resistance and recovery, but only within each dominant life form. This significant 
interaction is analyzed in Figure S4-3. 

Response: Recovery               

  Sum Sq Df F value p η2 Partial η2 ω2 

Resistance 1 1 0.0005 n.s. - - - 
Dominant life form 76610 1 55.1277 *** 0.37 0.40 0.36 
Resistance x Dominant life form 18508 1 13.3184 *** 0.09 0.14 0.08 

Residuals 113955 82      
        Total (%) 0.45 0.54 0.44 
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Figure S4-3: Relationship between resistance and recovery across dominant life histories. For systems with a perennial 
herbaceous layer, no signs for a connection between resistance and recovery could be observed (dashed grey line, linear 
model not significant). In contrast, recovery and resistance are reciprocally connected in annual systems – high recovery 
seems to be correlated with low resistance and vice versa (Recovery = - 3.76 x resistance - 68; R2=0.32). 
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3. Additional Publications (Appendix) 

 

3.1 Response of community-aggregated Plant Functional Traits along Grazing 

Gradients: Insights from African semi-arid Grasslands 

 

3.2 Discrimination and Characterization of Management Systems in semi-arid 

Rangelands of South Africa using RapidEye Time Series 

 

3.3 Effect of Tenure System on Biomass and Vegetation Cover in Two Biomes in South 

Africa 

 

3.4 Are there consistent Grazing Indicators in Drylands? Testing Plant Functional 

Types of various Complexity in South Africa’s Grassland and Savanna Biome 

 

Note to the referees: Publications in this Chapter are not a formal part of the dissertation, as I am only 

co-author and not first- or corresponding-author. 
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4. Discussion 

4.1 Drivers of Primary Production Revisited 

In my thesis, I could demonstrate that drivers of dryland ANPP are not only important on a local scale, 

but are of general (global) importance (Ruppert et al., 2012, Chapter 2.1). Using quantitative meta-

analysis as data-integration method, I found that dryland ANPP was influenced by recent and past 

precipitation, as well as by land use (i.e. grazing) intensity. Throughout drylands, the relative 

importance of these drivers varied across biomes and soils. Furthermore, as quantitative effects size 

metrics were used, effect magnitudes could be compared and an average impact ranking was deduced. 

ANPP was most strongly influenced by precipitation, followed by land use (i.e. grazing) intensity and 

last year’s precipitation. Hence, these results support the significance of water limitation in dryland 

ecosystems. Furthermore, this ranking also supports an hypothesis of Le Houérou (1984), who claimed 

that the two most important drivers of dryland productivity (i.e. grazing and rainfall) may mask each 

other’s effect. For instance, detrimental effects of high grazing pressure may completely mask the 

positive effects of previous year’s precipitation, or partially those of recent precipitation. 

Given the relatively small sample size of the study (50 data sets derived from 8 studies), reviewers 

questioned the reliability and generality of meta-analysis results at the time the study was submitted. 

During the peer-review process, these doubts were dispelled by fail-safe calculations (see Supporting 

Information, Table S4 in Chapter 2.1). At the end of 2012, validity of results could also be ensured in a 

repeated meta-analysis based on a much larger database (150 data sets, Figure 4.1). 

 
Figure 4.1: Total effect sizes quantifying the two most important drivers of dryland ANPP (precipitation and grazing). Bars 
represent magnitude of the respective effects. Comparison to Ruppert et al. (2012, Figure 3) shows virtually identical 
results. Effect sizes (ɛ++): annual (0.47 ±0.05), hydrological year (0.53 ±0.06), growing season (0.55 ±0.06), previous year’s 
precipitation (0.09 ±0.05), stocking density (-0.24 ±0.07) and land use intensity (-0.30 ±0.05). 
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Comparison of results given in Figure 4.1 and those from Ruppert et al. (2012, Chapter 2.1, Figure 3) 

shows that these are virtually identical. Effect sizes of differing precipitation sums (ɛ++ 0.47 to 0.55, 

Figure 4.1) fall well within the range reported in Chapter 2.1 (ɛ++ 0.55 ±0.08), the same is true for all 

other factors (previous precipitation: ɛ++ 0.07 ±0.05 vs. 0.09 ±0.05; stocking density: ɛ++ -0.21 ±0.14 vs. 

-0.24 ±0.07; land use intensity: ɛ++ -0.30 ±0.17 vs. -0.30 ±0.05 for original and repeated meta-analysis, 

respectively). Hence, drivers of primary production in drylands appear to be valid across large spatial 

scales. This also implies that studies reporting dryland biomass or primary production, as well as other 

related variables, should measure or estimate the strength of the described drivers in order to make 

their findings interpretable and comparable. 

 

4.2 Primary Production and Rain-Use Efficiency as Functions of Precipitation 

The universal importance of precipitation for dryland ANPP underlines the necessity to understand the 

shape and dynamics of this relationship. As described above (see Chapter 1 and 2.1), there is no 

consensus about the shape of ANPP development across precipitation gradients. Convenient, yet 

potentially oversimplified, linear models (e.g. O'Connor et al., 2001) are challenged by more complex 

unimodal or saturation curves (e.g. Yang et al., 2008). 

Generally, there is no reason why ANPP, within certain boundaries, should not be linearly coupled to 

precipitation. However, the idea of general positive linearity is misleading. Production of individual 

plants and plant communities is subject to physiological and ecological constraints, which limit their 

growth. For each plant species, or vegetation type, a specific optimal range of water for plant growth 

can be assumed (Tilman, 1982, Ellenberg et al., 1991). Below that, production is limited by water 

availability; above that range, other factors are increasingly limiting (e.g. nutrients, light and/or space). 

Hence, the relationship between ANPP and precipitation will certainly change at low and high 

precipitation values, dividing the response along the precipitation gradient in a number of sequential 

relationships (cf. Figure 1, Chapter 2.1). Therefore, linear relationships between ANPP and 

precipitation can only be assumed for clearly defined relatively narrow sections of moisture gradients 

and are thus scale dependent (i.e. gradient length and type). 

Especially differences between temporal and spatial gradients have been reported and 

comprehensively assessed by Lauenroth and Sala (1992), who found the relationship between ANPP 

and precipitation to be steeper in spatial than in temporal models (see Box 4.1).  
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Box 4.1 – Temporal vs. Spatial Models of ANPP-Precipitation Relationships 

Figure 4.2 illustrates the scale dependency of ANPP-precipitation relationships, comparing temporal (A; several sequential 

observations at a single location) and spatial gradients (B; several sequential observations, or averages thereof, from various 

sites). Generally, extreme values on the precipitation axis are of fundamentally different quality for the two distinct scales. 

For the temporal gradient, the dry and wet end represent anomalies in (annual or seasonal) precipitation, which would be 

considered extreme events (i.e. drought or heavy rains, respectively). Values in the mid-part of the gradient correspond to 

‘normal’ (average) precipitation amounts, near to the mean annual precipitation (MAP) of the respective site. For the spatial 

gradient, extremes of the precipitation axis do not correspond to precipitation anomalies, but also to relatively ‘normal’ 

(average) precipitation amounts for sites found at that part of the gradient, e.g. hyper-arid sites at the drier end and dry sub-

humid sites at the wetter end for precipitation gradients across drylands. 

  
Figure 4.2: Schematic difference between temporal (A) and (spatio-) temporal (B) precipitation gradients. Note that the 
slope of ANPP across precipitation is steeper for spatiotemporal gradients than for temporal gradients. 
 

At the dry end of a temporal gradient (Figure 4.2A), negative rainfall anomalies (drought) will largely limit ANPP. At the wetter 

end production could increase slowly (a), stagnate (b) or even drop again (c). A drop in ANPP may be due to the fact that high 

annual or seasonal precipitation is usually coupled to extreme events like heavy rain, hail- or thunderstorms, which negatively 

influence plant production (Rosenzweig et al., 2002, Ludwig et al., 2005). These response patterns will result in a relatively 

shallow slope in linear regression analysis. This does not apply for spatial gradients (Figure 4.2B): as peripheral values along 

the spatial gradient do not reflect anomalies but ‘normal’ (average) precipitation values for relatively dry, intermediate or 

humid sites, production should consistently increase along the gradient, resulting in a relatively steep slope in linear 

regressions. 

These theoretical considerations on the different outcome of linear regressions of ANPP along spatial and temporal 

precipitation gradients are consistent with empirical findings (cf. Chapter 2.1, Ruppert et al. 2012). For instance, Lauenroth 

and Sala (1992) found that a spatial model developed by Sala et al. (1988) for the Central Grasslands of the U.S. predicts a 

much steeper slope between ANPP and precipitation than a temporal model (52 years) for data from the Central Plains 

Experimental Range. 

 

Given these theoretical considerations and concurring results in literature, the use of linear regression 

for ANPP as function of precipitation, although frequently applied (see Chapter 1.2), is problematic, as 

it may oversimplify ecological complexity. If the precipitation gradient (or more general: gradient of 

plant-available moisture) is narrow, e.g. if only data from one site is considered, chances are high that 

linear regression is adequate. This is also evident in the meta-analysis results, which are based on 

correlation coefficients from linear regressions (see Chapter 2.1). The high total effect size for the 
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impact of precipitation on ANPP shows that correlation coefficients across sites are high on average, 

what in turn shows that site-specific ANPP-precipitation relationships can be well described by linear 

models. However, with increasing gradient length, e.g. if data from various sites along a precipitation 

gradient are combined, other regression models should be considered. This became evident in the 

results of linear piece-wise quantile regression (LPQR; see Chapter 2.1, Figure 1). Irrespective whether 

results from high values (99th percentile) or average values (median) were considered, the ANPP-

precipitation curve progressively leveled-off with increasing humidity. 

Unfortunately, only few scientists (including modelers) consider these assumptions when formulating 

general ANPP-precipitation relationships. Often, they merely rely on statistical convenience and/or 

significance while neglecting ecological adequateness. However, first signs of adaptions are observable 

(e.g. Jakoby et al., 2014, Yan et al., 2013). For instance, Jakoby et al. (2014) adapted findings from 

Ruppert et al. (2012) for a rangeland model and defined that accumulation of annual green biomass 

with increased precipitation was only valid within predefined boundaries. Precisely, their model 

defined a frame for »plausible biomass accumulation« and assumed an upper limit of production. Thus, 

they considered production to level-off with high precipitation (cf. Figure 3 in Jakoby et al., 2014). 

 

Compared to the mentioned debate around the ANPP-precipitation relationships, the shape of the 

rain-use efficiency (RUE) response to precipitation is even more disputed: some studies found that 

rain-use efficiency is a constant rate across temporal and spatial precipitation gradients (e.g. Paruelo, 

2000), others report a linear increase with precipitation (Bai et al., 2008) or a hump-shaped, unimodal 

response (e.g. O'Connor et al., 2001, Hein and de Ridder, 2006, Miehe et al., 2010). However, due to 

the inherent autocorrelation between RUE and precipitation, there is doubt whether it is even 

reasonable to present this relationship at all (Prince et al., 2007). 

Since RUE is the quotient of ANPP and rainfall, a regression of RUE against precipitation violates the 

assumption of independence. As it is a y/x over x relationship, it represents an autocorrelation. 

Nevertheless, I argue that this relationship can be analyzed if an adapted null hypothesis is considered 

for this regression. This assumes that the ANPP included in RUE (rather than RUE itself) is unrelated to 

precipitation. Hence, it corresponds to the null hypothesis of the regression of ANPP against 

precipitation gradients and results not in a linear constant, but in a hyperbolic function (Figure 4.3, cf. 

considerations on »nutrient use-efficiency« in Pastor and Bridgham, 1999, and Vitousek, 1982). This 

adapted null hypothesis implies that linear regression is inadequate for analyzing the response of RUE 

as function of precipitation: linear regressions cannot be fitted adequately to hypothetical patterns 

emerging from that null hypothesis. Instead, regression methods that do not anticipate a fixed shape 

should be used (e.g. linear piece-wise quantile regression, LPQR). Furthermore, established regressions 

should be thoroughly checked, whether they correspond to the adapted null hypothesis or not. 
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Figure 4.3: Graphical representation of original and adapted null hypothesis (H0) for analysis of rain-use efficiency along 
precipitation gradients. (A) Original H0 for linear regressions that assumes that y (e.g. ANPP) is independent from x (e.g. 
precipitation) and thus constant. (B) Adapted H0 for use-efficiencies (UE) which assumes that the y-term in the UE is 
constant, rather than the UE itself. Hence, it predicts a hyperbolic relationship (cf. considerations on »nutrient use-
efficiency« in Pastor and Bridgham, 1999, and Vitousek, 1982). 
 

Results on the RUE-precipitation relationship reported in Chapter 2.1 (based on LPQR) suggest an 

unimodel, hump-shaped RUE development across dryland precipitation gradients, peaking around 

200 mm of annual precipitation. It is obvious, that the found response of RUE across the precipitation 

gradient is different from the adapted null hypothesis (Figure 4.3). Furthermore, these findings are in 

line with other reports from literature, even though position of peak in RUE may differ (Hein and de 

Ridder, 2006, Miehe et al., 2010, Yan et al., 2013). Generally, a hump-shaped response of RUE across 

precipitation gradients is support for non-linearity of ANPP-precipitation relationships (cf. Verón et al., 

2005). 

 

4.3 Overcoming the »Comparability Dilemma« 

As reported in Ruppert and Linstädter (2014, Chapter 2.2), ANPP estimates drawn from different 

estimation methods can be largely incomparable. Despite the large amount of published ANPP data 

this de facto leads to a scarcity of ANPP data for data-integration studies: a »comparability dilemma«. 

Thus far, authors of data-fusion studies and meta-analyses based on ANPP had only limited options. 

For once, incomparable data could be omitted; consequently, major proportions of published data 

would be neglected. Another option was to accept the limited comparability or even incomparability 

between input data with unpredictable outcome for results – a common issue in meta-analyses 

(»comparing apples and oranges«; Rosenberg et al., 2000, Borenstein, 2009). Somewhat surprising, 

the latter option has frequently been chosen (e.g. Evans et al., 2011) – if authors were aware of these 

problems at all. 

Confronted with this issue, I followed the first option during the data analysis for my first paper 

(Ruppert et al., 2012, see Chapter 2.1) and only included ANPP data that was derived by comparable 

methods (see Box 4.2). However, as data acquisition for the database proceeded a third option was 

studied: Are ANPP estimates deriving from the most common estimation algorithms convertible?  
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Box 4.2 – Conversion formulae and meta-analysis 

The fact that ANPP conversion formulae were not used for the meta-analysis presented in Chapter 2.1 (Ruppert et al., 2012) 

is unproblematic. As effect sizes in the conducted meta-analysis were based on correlation coefficients, linear conversions of 

ANPP data would not have changed the results in any way: correlation coefficients of linear regressions are not influenced by 

any linear recalculation of one of the variables. Similar applies if study- or site-specific ratios of ANPP (e.g. treated vs. non-

treated) are compared across varying ANPP estimation methods (cf. comment in Ruppert and Linstädter, 2014, concerning 

Eldridge et al., 2011, Yahdjian et al., 2011). Here, linear recalculations will only have an effect if the intercept is not zero. 

 

As previously shown in Ruppert and Linstädter (2014, Chapter 2.2), I was able to derive conversion 

formulae between the seven most common ANPP estimation methods. As some conversions were 

sensitive for climate regime (due to differing turnover rates from live to senescent biomass as a 

function of aridity), altogether 27 conversions for the 21 method combinations were established. 

Based on statistical and methodological aspects 16 of those could be fully recommended. 

Nevertheless, the study was not meant to advocate an imprudent use of the established conversions, 

as even the best conversion formula is still second best to de-novo calculations of ANPP using the 

desired estimation method. However, the presented approach offers a practical solution in those cases 

where de-novo calculation is no option, and it is certainly superior to previous attempts to cope with 

the »comparability dilemma«, i.e. combining incomparably ANPP data or skip available published data. 

 

The master database was updated with recalculated ANPP data prior to the third study (Ruppert et al., 

submitted, Chapter 2.3). First, ANPP was calculated using as many estimation methods as possible for 

each data set. The set of possible methods was determined by the type and temporal resolution of 

biomass data available. Only thereafter, conversion formulae were used to recalculate ANPP, to 

further increase the amount of available data. Here, peak standing crop (Method 2a) was chosen as 

main ANPP estimate, as (1) it has given proof to be an ecologically meaningful estimate of ANPP across 

various ecosystems (Ruppert and Linstädter, 2014, Chapter 2.2), and as (2) it was the most abundant 

estimate available in the database, thus minimizing the proportion of recalculated estimates. To this 

end, two recommended conversion formulae were used to increase ANPP data for subsequent 

analyses. Namely, the conversions from the second peak standing crop method (Method 2b, Table 1.1) 

as well as that from peak live biomass (Method 1) were used; both of these conversions are 

recommended in Ruppert and Linstädter (2014, Chapter 2.2). 

 

4.4 Drylands in Times of Global Change – Impacts of Drought and Grazing 

Chapter 2.3 (Ruppert et al., submitted) studied dryland ecosystems’ response to combined effects of 

drought and grazing regime (grazed vs. ungrazed). In particular, responses in ANPP-based estimates 

for resistance, i.e. a system’s ability to withstand disturbance, and recovery, i.e. a system’s potential 
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to (or rate of) return to a previous state after a disturbance, have been studied (Tilman and Downing, 

1994, Bai et al., 2004). Both parameters represent constitutional aspects of ecosystem stability (Pimm, 

1984, Holling, 1973, Donohue et al., 2013). Studying these responses is of high relevance, as altered 

rainfall (e.g. more extreme events) and land use regimes (e.g. increased grazing intensity) are the most 

likely projections for global change in drylands(see Chapter 1.1, cf. Hartmann, 2011). The importance 

of understanding plants’ response to drought is further underlined by an ongoing debate about the 

actual physiological response of plants to drought (Reyer et al., 2012). The opposing positions in the 

debate can be summarized metaphorically as plants either starving to death (stomata closed with 

chance of CO2-starvation) or dying from thirst (stomata open with chances of hydraulic failure; cf. 

Reyer et al., 2012). Even though my approach cannot add to the closure of this debate, it can describe 

quantitative responses of dryland ecosystems to drought and grazing, and assess whether differences 

exist across biomes or systems whose life histories of dominant plants differ. 

One of the general results was that ecosystem stability was better explained by dominant life history 

of the herbaceous layer than by biome. This is particularly interesting, as many ecological studies and 

models use biome-definitions as main classification tool (e.g. Hely et al., 2006, Heubes et al., 2011, 

Huxman et al., 2004, Knapp and Smith, 2001), including myself (Chapter 2.1, Ruppert et al., 2012). Even 

though biome classifications have given proof to explain differences across spatial scales (see above), 

my recent results suggest that classifications connected to plant strategies (e.g. life history) are 

particularly good in explaining process-based responses. Hence, they should be considered more 

frequently, especially in modelling approaches (as concluded by Martin et al., 2014, Lohmann et al., 

2012), and will certainly be given further consideration in my work (e.g. in repeated meta-analyses). 

Considering the main results of the study, I found that increasing drought severity (quasi-)linearly 

reduced ecosystem resistance. Resistance of perennial systems was less strongly affected by drought, 

especially for higher intensities, as compared to that of annual systems. Besides a production increase 

in slightly dry years, the latter were less resistant, i.e. ANPP in drought years was reduced more 

strongly. For recovery, an opposing trend was found. While perennial systems failed to fully recover to 

pre-drought conditions in the first year after a drought, annual systems had the potential to even 

exceed pre-drought ANPP – but only when being grazed. Even though this opposing trend in annual 

and perennial systems looks like a textbook trade-off, resistance and recovery were only inversely 

correlated in annual systems (and sample size for this analysis was very low, n = 8). 

 

Altogether and for the first time, this study established predictable relationships between drought 

severity and related losses in dryland primary production. This is particularly valuable for impact 

projections of global change and dryland modelling-approaches. Furthermore, it has important 

implications for dryland management during and after droughts. In particular, results show that 
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systems with a dominant annual herbaceous layer (e.g. arid savannas) are more prone to the combined 

effects of drought and human (mis-)management for two reasons: (1) they suffer more during drought 

events; (2) their fast post-drought recovery might encourage overutilization, which may lead to long-

term degradation under conditions of increased drought intensities and frequencies. 

 

4.5 Major Findings and Future Prospects 

Within my dissertation, I could show that dryland primary production is driven by precipitation and 

grazing, not only locally but also on a global scale (Chapter 2.1). Another important outcome of my 

dissertation was that effects of grazing and rainfall are not merely additive, but can mask each other 

(Chapter 2.1) or interact in complex ways (Chapter 2.3). Similarly, drought severity may influence 

primary production either linearly or non-linearly, depending on vegetation characteristics (Chapter 

2.3). These findings underline the complex dynamics of dryland ecosystems. 

My quantitative projections for the influence of drought severity on primary production also showed 

that ecosystems whose herbaceous layer is dominated by perennial plants are more resistant to 

drought than annual systems. On the other hand, annual systems have displayed a higher post-drought 

recovery potential.  

Progress could also be made concerning the highly disputed relationships between ANPP and rain-use 

efficiency (RUE) along precipitation gradients (Chapter 2.1). In particular, I could show – on empirical 

and theoretical basis – that ANPP levels-off with high precipitation amounts (along large precipitation 

gradients). In line with this, RUE exhibits a unimodal, hump-shaped development across precipitation 

gradients. Nevertheless, if precipitation gradients are narrow (e.g. if only data from one site is 

assessed), linear models appear adequate to formulate ANPP-precipitation relationships. These 

findings already drew some attention (e.g. Fensholt et al., 2013, Yan et al., 2013, Jakoby et al., 2014). 

I will conclude my thesis with suggestions for future research. Although I could further advance 

scientific understanding on the relative importance of grazing as a driver of ANPP dynamics (as 

compared to other drivers), effects of grazing intensity on primary production are still not well 

understood, specifically in interaction with precipitation (e.g. drought, cf. Chapter 2.3). 

Also edaphic effects should be analyzed in more detail, as they moderate the translation of 

precipitation into plant-available water, and also play an important role with respect to other limiting 

factors for plant growth. Hence, soil texture and potential influences of co-limitation by nutrients 

should be assessed in subsequent studies. Considering the effects of climatic extreme events (i.e. 

drought and heavy rains), only effects of negative anomalies have been studied and quantified thus 

far (see Chapter 2.3), even though effects of positive anomalies are of similar relevance and may be 

even more diverse. For instance, not only response magnitude, but also direction might change with 
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increasing positive rainfall anomalies (e.g. positive effects of good rainfall years vs. detrimental effects 

of heavy rains). 

Altogether and besides the gained findings, my novel methodological toolbox as well as the assembled 

global database of dryland primary production are among the main merits of this dissertation. The 

combination of a large global database, the normalization of ANPP and precipitation data (cf. 

Chapter 2.2), and the collection of additional site- or study-based information (cf. Chapter 1.3) enabled 

me to assess aspects of ecosystem functioning and stability on a global scale, which thus far could only 

be answered on a theoretical or anecdotal basis.  

 

4.6 Personal Outlook 

The completion of my PhD thesis will be an important milestone in my scientific career. In the next 

years I will take part – under the lead of Anja Linstädter – in a BMBF-funded research project in the 

Limpopo Province, South Africa, in which we will study coincidental effects of drought and grazing with 

the aid of a field experiment. Furthermore, as this project participates in a newly formed coordinated 

distributed experiment, namely the International Drought Experiment (IDE, Melinda Smith, pers. 

comm.), it has the potential to harness joint research efforts across large geographical scales. Hence, 

in future I will be a bit more on the experimental part of dryland ecology. This also offers me the 

opportunity to engage in some questions that could not have been answered by my data-integration 

approaches. In particular, the experiment in South Africa is meant to give insights in effects of 

management interventions (such as grazing exclusion) within and after severe drought events, and to 

better understand the role of drought duration for ecosystem resistance and recovery – two questions 

that I could not answer satisfactorily on the basis of existing data (see Chapter 2.3). 

I will also continue searching for long-term observation studies on ANPP. Here, I will particularly 

concentrate on dryland regions (such as South America) and biomes (such as shrublands, or annual 

dominated grasslands) which are up to now under-represented in my database, and also include non-

dryland sites. I will successively combine these data-integration approaches with my own experimental 

data, with data from coordinated distributed experiments, and with modelling approaches to 

overcome caveats of the respective individual approaches (Reyer et al., 2012).
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6. Summary / Zusammenfassung 

Summary 

Dryland ecosystems are highly vulnerable and degradation-prone regions, especially under the 

premises of global change. Since drylands are preponderantly used as rangelands for livestock 

production, reliable provision of natural resources and basic ecosystem services, such as forage, are 

indispensable for local livelihoods. Even though climate projections for drylands still exhibit 

considerable variation and uncertainty across scenarios and regions, there is a general trend that most 

dryland regions are facing unbeneficial changes. In particular, climatic aridity and variability are 

projected to increase even above the already high level of today. Simultaneously, population growth 

will further increase the demand for ecosystem services from drylands, with negative feedbacks on 

ecosystem functioning. 

Given the high natural variability in drylands, as well as future projections, the assessment of drylands’ 

current and future provision of ecosystem services is challenging, yet essential. The most common 

estimate for a major ecosystem service of dryland ecosystems (i.e. forage) is aboveground net primary 

production (ANPP). 

This cumulative dissertation aimed at advancing our understanding of dryland ecosystems’ functioning 

and ecosystem service provision, taking a global perspective. Particularly, data integration and 

standardization techniques were used to derive new insights from available data on drylands’ primary 

production. With this innovative approach, it could be shown that dryland primary production is mainly 

driven by precipitation and grazing, not only locally but also on a global scale (Chapter 2.1). Another 

important outcome was that effects of grazing and rainfall are not merely additive, but could mask 

each other (Chapter 2.1) or interact in complex ways (Chapter 2.3). Similarly, drought severity may 

influence primary production either linearly or non-linearly, depending on vegetation characteristics 

(Chapter 2.3). These findings underline the complex dynamics of dryland ecosystems. 

Besides these general findings, the established methodological toolbox as well as the assembled global 

database of dryland primary production are among the main merits of this dissertation. The 

combination of a large global database, the normalization of ANPP and precipitation data 

(Chapter 2.2), and the collection of additional site- or study-based information allowed the assessment 

of ecosystem functioning and stability on a global scale, which thus far could only be done on a 

theoretical or anecdotal basis. 
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Zusammenfassung 

Trockengebiete gelten als hochgradig variabel und Degradations-anfällig, vor allem unter den 

Vorzeichen Globalen Wandels. Da Trockengebiete überwiegend als Weideland für Viehproduktion 

genutzt werden, ist die ausreichende Versorgung mit natürlichen Ressourcen und 

Ökosystemdienstleistungen, wie z.B. Futterpflanzen, unverzichtbar für die Existenzgrundlage der 

örtlichen Bevölkerung. 

Obgleich die verfügbaren Vorhersagen bezüglich des Klimawandels in Trockengebieten noch mit 

nennenswerter Variabilität und Unsicherheit behaftet sind, kann ein genereller Trend von nachteiligen 

Veränderungen festgemacht werden. Insbesondere werden in den meisten Regionen die Aridität 

sowie Variabilität des Klimas zunehmen, obgleich diese bereits als hoch angesehen werden müssen. 

Zudem wird der prognostizierte und bereits heute beobachtbare Bevölkerungszuwachs negativ auf das 

natürliche System in Trockengebieten rückkoppeln. Die erhöhte Nachfrage und die damit 

einhergehende Intensivierung der Landnutzung werden sich negativ auf die Funktionalität der 

betroffenen Ökosysteme auswirken. Berücksichtigt man die hohe natürliche Variabilität in 

Trockengebieten, sowie die Prognosen im Rahmen des Globalen Wandels, dann ist die adäquate 

Abschätzung von Ökosystemdienstleistungen schwierig, jedoch zugleich unabdingbar. Das geläufigste 

und am besten dokumentierte Schätzmaß für die wichtigste Ökosystemdienstleistung in 

weidewirtschaftlich genutzten Trockengebieten (Menge an verfügbaren Futterpflanzen) ist 

oberirdische Nettoprimärproduktion (engl. »aboveground net primary production«, ANPP). 

Ziel dieser kumulativen Dissertation war es, das funktionelle Verständnis von Trockengebieten auf 

globaler Skala zu verbessern und zu bereichern. Hierzu wurden Methoden eingesetzt, welche Daten-

und Wissens-Integration ermöglichen, vor allem mit dem Zweck, verfügbare Daten zu neuem Wissen 

zu integrieren. Hierbei wurden insbesondere verfügbare Datensätze zu Primärproduktion in 

Trockengebieten und deren Einflussgrößen zusammengetragen. 

Mit diesem innovativen Ansatz, konnte im Rahmen meiner Dissertation gezeigt werden, dass ANPP in 

Trockengebieten (lokal wie global) vor allem von Niederschlag und Beweidung gesteuert wird. Zudem 

konnte gezeigt werden, dass Effekte der beiden Einflussgrößen nicht additiv wirken, sondern sich 

gegenseitig maskieren können (s. Kapitel 2.1) oder komplex interagieren (s. Kapitel 2.3). Darüber 

hinaus konnte beobachtet werden, dass Dürre-Intensität in linearer als auch nicht-linearer Weise auf 

ANPP wirken kann, dies ist jeweils abhängig von wesentlichen Merkmalen der Vegetationsgesellschaft 

(s. Kapitel 2.3). Insgesamt unterstreichen meine Befunde die vorherrschende Meinung, dass 

Trockengebiete von hoher natürlicher Variabilität und komplexer Dynamik gekennzeichnet sind. 

Neben den beschriebenen Ergebnissen, stellen auch die etablierte Toolbox sowie die 

zusammengetragene globale Datenbank von ANPP-Daten aus Trockengebieten einen wesentlichen 

Mehrwert der Arbeit dar. Die Kombination einer großes globalen Datenbank, die Normalisierung und 
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Standardisierung von ANPP und Niederschlagsdaten (s. Kapitel 2.2), sowie das Zusammentragen von 

weiteren standortbezogenen Daten hat es ermöglicht, funktionelle Zusammenhänge in 

Trockengebieten und deren Stabilität besser zu verstehen, als dies auf rein theoretischer oder auf Basis 

von Fallbeispielen möglich gewesen wäre. 



Appendix 

146 
 

7. Appendix 

Table 7.1: Excerpt from header data of the master database. 

Table 7.2: Excerpt from ANPP-precipitation master database. 
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