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der Universität zu Köln zur Dissertation angenommen.

1. Berichterstatterin: Prof. Dr. Sibylle Schroll

2. Berichterstatter: Prof. Dr. Peter Littelmann

3. Berichterstatter: Prof. Dr. Hugh Thomas

Tag der mündlichen Prüfung: 22.03.2022
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Nichts kommt mir weniger
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(In sofern sind meine Warnungen

wie die Plakate an den

Kartenschaltern der englishen

Bahnhöfe “Is your journey really

necessary?” Als ob Einer, der das

liest sich sagen würde “On second

thoughts, no”.)

Ludwig Wittgenstein





Abstract

The main result of this thesis is that the two higher Stasheff–Tamari orders are

equal, as was originally conjectured by Edelman and Reiner in 1996. These are

two orders on the set of triangulations of a cyclic polytope—the first introduced

by Kapranov and Voevodsky, and the second introduced by Edelman and Reiner.

Our first step in proving the conjecture is to give new combinatorial interpreta-

tions of the higher Stasheff–Tamari orders which make them easier to compare. As

a necessary prequel to these combinatorial interpretations, we characterise trian-

gulations of (2d+1)-dimensional cyclic polytopes in terms of their d-simplices. The

proof itself is then by induction on the number of vertices of the cyclic polytope.

As a technical tool for this proof, we develop a theory for expanding triangulations

of cyclic polytopes at any vertex, which is of independent interest.

We apply our results in representation theory of algebras, building on the work

of Oppermann and Thomas, who show how triangulations of even-dimensional

cyclic polytopes arise in the representation theory of the higher Auslander alge-

bras of type A. Indeed, triangulations of even-dimensional cyclic polytopes are in

bijection with both tilting modules and cluster-tilting objects. We choose to work

in the slightly different framework of d-silting complexes, which we show are also

in bijection with triangulations of even-dimensional cyclic polytopes. We show

that the higher Stasheff–Tamari orders in even dimensions correspond to natural

orders on d-silting complexes, which originally arose in the work of Riedtmann and
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Schofield concerning partial orders on tilting modules.

This algebraic interpretation of the even-dimensional orders allows us to

show that odd-dimensional triangulations correspond to equivalence classes of d-

maximal green sequences, which we introduce as the higher-dimensional versions

of classical maximal green sequences. We are then able to interpret the higher

Stasheff–Tamari orders on equivalence classes of d-maximal green sequences. The

orders obtained are very natural, but have not been studied before. The equiva-

lence of the higher Stasheff–Tamari orders shows that these algebraic orders are

equal for the higher Auslander algebras of type A.

We prove a pair of results on mutation, one on mutating cluster-tilting objects

in higher cluster categories and the other on mutating triangulations of even-

dimensional cyclic polytopes. The criterion for mutating triangulations works by

associating quivers to the triangulations. These quivers originate from the cluster-

tilting objects which correspond to the triangulations. We further use these quivers

to characterise 2d-dimensional triangulations which do not possess any interior

(d+ 1)-simplices.

Finally, another open question we resolve comes from Dimakis and Müller-

Hoissen. These authors introduce orders known as ‘the higher Tamari orders’ in the

context of studying KP solitons. We show that, as conjectured, these are indeed the

same posets as the higher Stasheff–Tamari orders. Since the higher Tamari orders

are explicitly defined as a quotient of the higher Bruhat orders, this provides a

quotient map from the higher Bruhat orders to the higher Stasheff–Tamari orders.

Indeed to make this precise, we develop some new theory concerning quotient

posets.
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Chapter 1

Introduction

This thesis solves an open problem in combinatorics and shows how this problem

may be applied in the representation theory of algebras. Namely, the principal

result of this thesis is that the two higher Stasheff–Tamari orders on triangulations

of cyclic polytopes are equal. We then show how the higher Stasheff–Tamari orders

may be interpreted naturally in the representation theory of the higher Auslander

algebras of type A. Consequently, the equality of the higher Stasheff–Tamari orders

provides new results about the representation theory of these algebras. Other

results we prove include criteria for mutating triangulations of cyclic polytopes

and cluster-tilting objects, and that the higher Stasheff–Tamari orders are equal

to the higher Tamari orders.

1.1 Cyclic polytopes and their triangulations

We begin the thesis by proving results on cyclic polytopes and their triangulations

in Chapter 2. Cyclic polytopes are a family of convex polytopes. A convex poly-

tope is a bounded region of Rδ cut out by linear inequalities. Thus, convex poly-

topes arise naturally in applied mathematics, namely when studying constrained
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20 Chapter 1. Introduction

optimisation [Sch86]. The key information captured by convex polytopes consists

in their facial structure: which subsets of vertices span faces. In two dimensions

convex polytopes are all alike. Their vertices may be labelled by numbers such

that vertices labelled by cyclically consecutive numbers span an edge. But, in di-

mensions higher than two, the facial structure of a polytope may be more complex.

Given the possible complexity of high-dimensional polytopes, it is natural to

seek well-behaved families of polytopes. Cyclic polytopes form one such family.

Indeed, cyclic polytopes satisfy the Upper Bound Theorem of McMullen: they

have the largest number of k-dimensional faces possible for every value of k, given

their dimension and number of vertices [McM70; BB80; Sta75; AK85]. The facial

structure of a cyclic polytope can in fact be described by a simple combinatorial

criterion known as ‘Gale’s Evenness Criterion’ [Gal63; Grü03; ER96]. A curve

in Rδ is called a δ-order curve if every affine hyperplane intersects it in at most

δ points. It is known that the convex hull of any finite set of points lying on

a δ-order curve is a cyclic polytope [MS71; CD00] and, conversely, that for every

cyclic polytope there exists an order δ curve passing through its vertices [Stu87]. In

fact, every sufficiently large collection of points in general position in Rδ contains

the vertices of a cyclic polytope [CD00]; and cyclic polytopes are precisely the

polytopes which have this property [Bjö+99].

Being natural combinatorial objects, cyclic polytopes appear in many different

areas of mathematics. Their duals have been used in game theory to construct

games whose Nash equilibria are difficult to compute [Ste97; SS06; SS16]. Sturm-

fels has shown that cyclic polytopes are equivalent to totally positive matrices

[Stu88b], which are of significant interest in both pure mathematics and applica-

tions [And87; Lus98; Pos06]. In theoretical physics, cyclic polytopes arise as exam-

ples of amplituhedra—celebrated objects introduced by Arkani-Hamed and Trnka

to facilitate the computation of scattering amplitudes [AT14]. Cyclic polytopes
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were at the forefront of the development of Stanley–Reisner theory in Stanley’s

generalisation of the Upper Bound Theorem [Sta75], and have subsequently been

studied in this context [TH96].

In this thesis, we shall be particularly interested in triangulations of cyclic

polytopes. Triangulations of cyclic polytopes are often used to define higher-

dimensional analogues of structures that exist for lower-dimensional triangula-

tions. The example of this par excellence is the application of triangulations of

cyclic polytopes to define higher Segal spaces [DK19]—see also [Pog17; DJW19].

The definition of the original Segal spaces can be seen as involving line dissec-

tions, which are triangulations of one-dimensional cyclic polytopes [Seg74; Rez01].

Another appearance of cyclic polytopes in algebraic K-theory occurs in [HM97].

Repeatedly applying the BCFW recursion [Bri+05] to compute scattering am-

plitudes produces a triangulation of the cyclic polytope in the case where the

amplituhedron is a cyclic polytope [BT18]. In integrable systems, regular triangu-

lations of cyclic polytopes describe the evolution of a class of solitary waves mod-

elled by the Kadomtsev–Petviashvili equation [DM12; Wil21c]—see also [Hua15;

KK21; GPW19]. Triangulations of cyclic polytopes have also been shown to be

in bijection with other combinatorial objects, such as snug partitions [Tho02] and

persistent graphs [FR21]. In general, finding a formula for the number of triangu-

lations of a cyclic polytope is an open problem [KV91, 5.2], although specific cases

have been solved [AS02].

The first result we prove about triangulations of cyclic polytopes in Chap-

ter 2 comprises a description of (2d + 1)-dimensional triangulations in terms of

their d-simplices. This gives the other half of the picture from [OT12], where

triangulations of 2d-dimensional cyclic polytopes were described in terms of their

d-simplices. Namely, a triangulation of a 2d-dimensional cyclic polytope can be

described as a maximal-size set of non-intersecting d-simplices [OT12], just as a
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triangulation of a convex polygon is a maximal set of non-intersecting arcs. To

describe odd-dimensional triangulations we define two new properties for collec-

tions of d-simplices which we call being ‘supporting’ (Definition 2.2.11) and being

‘bridging’ (Definition 2.2.13). We show that if a collection of d-simplices is sup-

porting and bridging, then one can build a triangulation of a (2d+1)-dimensional

cyclic polytope out of them. This gives the following theorem [Wil21a].

Theorem 1.1.1 (Theorem 2.2.3). Triangulations of the (2d+1)-dimensional cyclic

polytope are given by sets of d-simplices which are supporting and bridging.

In Chapter 2 we also prove a technical result concerning expanding and con-

tracting triangulations of cyclic polytopes. This will be a key tool in the proof of

our main result in Chapter 3.

1.2 The higher Stasheff–Tamari orders

We first meet the higher Stasheff–Tamari orders in Chapter 3. These are two a

priori different partial orders on the set of triangulations of a cyclic polytope. In

two dimensions, where cyclic polytopes are simply convex polygons, both partial

orders coincide with the Tamari lattice, a widely occurring partial order in math-

ematics. The Tamari lattice arises when considering weak associativity conditions

[Tam62], which are often of mathematical interest. Here triangulations of convex

polygons correspond to the different possibilities for performing a binary operation

on a string. Homotopy associativity of H-spaces in algebraic topology was stud-

ied by Stasheff [Sta63] using the associahedron, a polytope whose 1-skeleton is the

Tamari lattice and which was also originally considered by Tamari [Tam51; Sta12].

In mathematical physics, weak associativity conditions occur in open string field

theory [Moo55; KK74; Hat+86], and in the Biedenharn–Elliott identities [Bie53;

Ell53]. The Tamari lattice can be realised in algebra as a partial order on tilting
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modules [BK04] or torsion classes [Tho12] for the type A path algebra; this is

related to the fact that triangulations of convex polygons correspond to clusters in

the type A cluster algebra [FZ02a; FZ03a] or cluster-tilting objects in the type A

cluster category. In this thesis, we look at a higher-dimensional version of this

correspondence.

The sequence counting the number of objects of the Tamari lattice is the Cata-

lan numbers, which is known to enumerate over two hundred different sequences

of combinatorial objects [Sta15]. Many of these combinatorial objects also pro-

vide nice interpretations of the Tamari lattice. The extensive reach of the Tamari

lattice into different areas of mathematics is exhibited in the Tamari memorial

festschrift [MPS12].

The first higher Stasheff–Tamari order was introduced by Kapranov and Vo-

evodsky in 1991 [KV91] as a natural example of a strictly ordered n-category pro-

duced by a certain iterative construction. In 1996, Edelman and Reiner built upon

this work by introducing the a priori different second higher Stasheff–Tamari order.

One especially beautiful facet of the higher-dimensional orders is that triangula-

tions of (δ+1)-dimensional cyclic polytopes are assembled from maximal chains of

triangulations of δ-dimensional cyclic polytopes in the first higher Stasheff–Tamari

order [Ram97]. In particular, the objects of the three-dimensional first higher

Stasheff–Tamari order correspond to equivalence classes of maximal chains in the

Tamari lattice, and the objects of the four-dimensional first higher Stasheff–Tamari

order correspond to equivalence classes of maximal chains in the three-dimensional

order, and so on.

Generalisations of, and variations on, the Tamari lattice is a large subject in

itself, and includes Tamari lattices in other Dynkin types [Tho06], Cambrian lat-

tices [Rea06], lattices of torsion classes of cluster-tilted algebras [GM19], m-Tamari

lattices [BP12; BFP11], ν-Tamari lattices [PV17], Dyck lattices [Knu11; Dis+12],
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generalised Tamari orders [Ron12], and Grassmann–Tamari orders [SSW17].

However, the higher Stasheff–Tamari orders hold a particularly special posi-

tion amongst these because, as we have seen, they encode higher-dimensional

information hidden in the Tamari lattice itself, rather than being only varia-

tions on the Tamari lattice. This furthermore shows the virtues of viewing the

Tamari lattice in terms of triangulations of convex polygons: it brings out these

latent higher-dimensional structures which are obscured by other combinatorial

interpretations.

Edelman and Reiner further conjectured the two higher Stasheff–Tamari orders

to coincide with each other, a problem that has remained open despite several

papers on the orders [ERR00; Tho02; Tho03; Ram97; RS00; RR12]. The main

result of this thesis is that the Edelman–Reiner conjecture is true. The first higher

Stasheff–Tamari order (⩽1) is equal to the second higher Stasheff–Tamari order

(⩽2) [Wil21e].

Theorem 1.2.1 (Theorem 3.3.9 and Theorem 3.3.14). Let T and T ′ be triangu-

lations of the cyclic polytope. Then T ⩽1 T ′ if and only if T ⩽2 T ′.

The two higher Stasheff–Tamari orders are quite different in nature and each

has its own advantages. The first order is more combinatorial and is defined by

means of its covering relations, which are given by “increasing bistellar flips”. A

bistellar flip is an operation generalising the two-dimensional operation of flipping

a diagonal inside a quadrilateral; these operations can be oriented, so that some

bistellar flips are “increasing” and some are “decreasing”. The second order is

more geometric and was originally defined by comparing the heights of sections

induced by triangulations. The second order allows direct comparison between

triangulations, whereas comparing triangulations in the first order requires one to

find a sequence of increasing bistellar flips. On the other hand, the local structure

of the second poset is not clear, because the covering relations are not immediate
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from the definition. It is also easier to compute the entire first poset than to

compute the entire second poset. Computing either poset requires computing

all the triangulations of a given cyclic polytope. The most efficient algorithm

for doing this is to start at the minimal triangulation and iteratively compute

increasing bistellar flips, which is tantamount to computing the first order [JK18].

To construct the second order then requires additional computations on top of

this.

It is clear that whenever the first higher Stasheff–Tamari order holds between

a pair of triangulations, then the second order must hold too, as was noted in

[ER96]. This is because if a triangulation T ′ is an increasing bistellar flip of

another triangulation T , then the section of T ′ certainly lies above the section of

T . But it is not clear whether the first order should hold whenever the second

one does. Indeed, an analogous statement for the higher Bruhat orders has been

known to be false since 1993 [Zie93]. A priori it might be possible for there to

exist a pair of pathological triangulations T and T ′ where the section of T lay

below the section of T ′ whilst T ′ could not be reached by a sequence of increasing

bistellar flips from T . However, Theorem 1.2.1 rules this possibility out.

The key step in proving the equivalence of the orders is to give new combi-

natorial interpretations of them. These new interpretations are laid out in Theo-

rem 3.2.13. These new combinatorial interpretations of the orders allow them to

be compared more easily, and this is essential in the proof of Theorem 1.2.1. The

new combinatorial interpretations of the orders also enable the connection with

representation theory to be forged, as we now discuss.



26 Chapter 1. Introduction

1.3 Representation theory

In Chapter 4, we show that the higher Stasheff–Tamari orders arise naturally in the

representation theory of algebras. The connection between triangulations of cyclic

polytopes and representation theory was first discovered in [OT12]. Oppermann

and Thomas show in this paper that triangulations of even-dimensional cyclic

polytopes are in bijection with tilting modules and cluster-tilting objects for Ad
n,

the higher Auslander algebras of type A. For the definition of the algebras Ad
n,

the higher Auslander algebra of type A, see Section 4.1. These algebras were

introduced by Iyama within the programme of higher Auslander–Reiten theory

[Iya07a; Iya07b; Iya11]—a new and active area of research within representation

theory which has found connections with non-commutative algebraic geometry

[Her+20] and homological mirror symmetry [DJL21]. The relation between tri-

angulations of even-dimensional cyclic polytopes and the representation theory of

Ad
n is a higher-dimensional version of the relation between triangulations of con-

vex polygons and cluster categories of type A which was mentioned in Section 1.2.

Cluster categories were introduced in [Bua+06] as a categorification of the cluster

algebras of Fomin and Zelevinsky [FZ02a] and are powerful tools that have been

used to solve open problems in mathematical physics [Kel13].

Our work reveals that the connection between triangulations of cyclic polytopes

and higher Auslander–Reiten theory is richer than previously known. Not only

do triangulations of odd-dimensional cyclic polytopes play a role, but the higher

Stasheff–Tamari orders arise naturally on the algebraic side. This provides new

insights into the combinatorial structure of higher Auslander–Reiten theory.

In [OT12], it was shown that triangulations of the 2d-dimensional cyclic poly-

tope with n+2d+1 vertices correspond to tilting Ad
n−1-modules or cluster-tilting

objects for Ad
n. For reasons we explain in Section 4.2.2, we find it most convenient
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to work with a slightly different bijection, which we show holds between triangu-

lations of the 2d-dimensional cyclic polytope with n+2d+1 vertices and d-silting

objects for Ad
n.

In even dimensions, we show that the higher Stasheff–Tamari orders induce

classical orders on d-silting objects [Wil21a; Wil] introduced in [AI12], following

the introduction of similar orders on tilting modules by [RS91]. This result was

already known for the special case of the Tamari lattice [BK04; Tho12], which

corresponds to d = 1. For the definition of left mutation and of ⊥T see Section 4.1.

Theorem 1.3.1 (Theorem 4.3.1 and Theorem 4.3.4). Let T and T ′ be triangula-

tions of a 2d-dimensional cyclic polytope corresponding to d-silting objects T and

T ′ over Ad
n. We then have that

(1) T ⋖1 T ′ if and only if T ′ is a left mutation of T ; and

(2) T ⩽2 T ′ if and only if ⊥T ⊆ ⊥T ′.

It is this theorem that allows us to show how triangulations of odd-dimensional

cyclic polytopes appear in the representation theory of Ad
n. It is known that odd-

dimensional triangulations can be given by maximal chains of even-dimensional

triangulations in the first higher Stasheff–Tamari order, modulo an equivalence re-

lation [Ram97]. Hence, in Section 4.4.1 we define higher-dimensional “d-maximal

green sequences” as sequences of mutations of d-silting complexes from the pro-

jectives to the shifted projectives. This is because this is what Theorem 1.3.1

shows maximal chains in the first higher Stasheff–Tamari order correspond to al-

gebraically. Maximal green sequences were originally introduced in the context

of Donaldson–Thomas invariants in mathematical physics [Kel11]. We thus ob-

tain the following theorem. For the exact nature of the equivalence relation on

d-maximal green sequences, see Section 4.4.1.
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Theorem 1.3.2 (Theorem 4.4.2). There is a bijection between triangulations of

the (2d + 1)-dimensional cyclic polytope with n + 2d + 1 vertices and equivalence

classes of d-maximal green sequences of Ad
n.

It is natural then to ask whether this theorem can be used to give an algebraic

description of the higher Stasheff–Tamari orders in odd dimensions. Indeed, one

can obtain such a description, which is as follows [Wil21a; Wil]. For the definition

of an increasing elementary polygonal deformation, see Section 4.4.2. This theorem

originates in the combinatorial interpretations of the higher Stasheff–Tamari orders

we give in Chapter 3.

Theorem 1.3.3 (Theorem 4.4.4 and Theorem 4.4.6). Let T and T ′ be triangula-

tions of a (2d+1)-dimensional cyclic polytope corresponding to equivalence classes

of d-maximal green sequences [G] and [G′] of Ad
n. We then have that

(1) T ⋖1T ′ if and only if [G′] is an increasing elementary polygonal deformation

of [G]; and

(2) T ⩽2 T ′ if and only if the set of summands of [G] contains the set of sum-

mands of [G′].

These orders induced on d-maximal green sequences by the higher Stasheff–

Tamari orders are very natural, but have not previously been considered. The

Edelman–Reiner conjecture here corresponds to a stronger form of the “no-gap”

conjecture made in [BDP14], cases of which were proven in [GM19; HI19].

An application of Theorem 1.2.1 is that the algebraic orders from Theorem 1.3.1

and Theorem 1.3.3 are equal for the higher Auslander algebras of type A. We also

obtain a corollary from Theorem 1.3.3, namely that the set of equivalence classes

of maximal green sequences of linearly oriented An is a lattice (Corollary 4.4.11).

This is because in dimension 3 the two orders are known to be equivalent and

known to be lattices [ER96].
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A final result we prove in Chapter 4 is a criterion for mutating cluster-tilting

objects in higher cluster categories. Indeed, if OΛ is the higher cluster category

of an algebra Λ containing a cluster-tilting object T , then it is shown in [OT12]

that Γ := EndOΛ
T has a d-cluster-tilting subcategoryM in its module category.

In the case where Λ = Ad
n, we show that a summand of T is mutable if and only

if the corresponding simple Γ-module lies inM.

1.4 Quiver combinatorics for higher-dimensional

triangulations

In Chapter 5, we go on to prove further combinatorial results concerning tri-

angulations of cyclic polytopes. In particular, we investigate the combinatorics

of quivers associated to triangulations of even-dimensional cyclic polytopes. As

shown by Oppermann and Thomas [OT12], such quivers provide the prototype for

higher-dimensional cluster theory.

A cluster algebra can be given by choosing a quiver with a variable assigned

to each vertex, and subsequently generating new quivers by a process of muta-

tion, with new variables given from old variables via “exchange relations”. A re-

markable result is that the cluster algebras of finite cluster type are precisely

those coming from Dynkin diagrams, which parallels the Cartan–Killing classi-

fication [FZ03c]. Since their introduction [FZ02a], cluster algebras have gener-

ated substantial amounts of fruitful research touching many areas of mathematics,

including dynamical systems [FZ02b; CS04; Spe07], Poisson geometry [GSV03;

GSV05], and Teichmüller theory [FG06; FG09]. Two particular topics which are

connected with cluster algebras are surfaces [FST08] and representation theory

of algebras [CCS06; Bua+06]. Surfaces can be used to produce cluster algebras

via triangulations, whilst in representation theory cluster algebras are categorified
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via cluster categories. As remarked in [OT12], both these phenomena possess a

two-dimensional quality, namely, the two-dimensionality of the surface and the

2-Calabi–Yau property of the cluster category.

A particularly simple example of a cluster algebra coming from a surface is the

cluster algebra of type An, where the clusters are in bijection with triangulations of

a convex (n+3)-gon [FZ02a]. Mutation of clusters corresponds to flipping a diag-

onal inside a quadrilateral. The quiver of a cluster can be easily constructed from

the triangulation by drawing arrows between neighbouring arcs. In the type A

cluster category, these quivers are the Gabriel quivers of the endomorphism alge-

bras of the corresponding cluster-tilting objects.

The work of Oppermann and Thomas relating cluster-tilting objects in higher-

dimensional cluster categories to triangulations of even-dimensional cyclic poly-

topes can be seen as discovering higher-dimensional cluster phenomena [OT12].

These cluster phenomena occur in all even dimensions, rather than only two di-

mensions. Higher-dimensional cluster theory remains poorly understood. A higher

cluster algebra has yet to be defined—if such a definition is indeed possible. It

would be remarkable if cluster algebras were the two-dimensional instance of a

more general phenomenon. The necessary ingredients for a higher cluster algebra

would be a rule for quiver mutation and an exchange relation to produce new

cluster variables after mutation. Whilst higher tropical exchange relations were

exhibited in [OT12], it is known that näıvely detropicalising these relations does

not work.

Triangulations of even-dimensional cyclic polytopes present themselves as the

guide for how the higher-dimensional quiver combinatorics ought to work. Just

as in the classical type A case, the quiver of a cluster arises both from the en-

domorphism algebra of the corresponding cluster-tilting object, and may also be

constructed from the corresponding triangulation: the vertices of the quiver corre-
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spond to the internal d-simplices of the triangulation, which we refer to as ‘d-arcs’,

with arrows between the d-arcs that are closest to each other.

We investigate the information encoded by the quiver associated to a triangu-

lation of a 2d-dimensional cyclic polytope. The best-understood quivers are those

known as ‘cut quivers’, which were introduced in [IO11]. These quivers have a rule

for mutation at sinks and sources [IO11]. For d = 1, these cut quivers are precisely

orientations of the An Dynkin diagram. Our first result shows that cut quivers

correspond precisely to triangulations with no interior (d + 1)-simplices and that

these are also exactly the triangulations whose quivers are acyclic. Hence, this

is a higher-dimensional generalisation of the fact that a triangulation of a convex

polygon has no internal triangles if and only if its quiver is acyclic, and in this

case the quiver is an orientation of the An Dynkin diagram [Wil21b].

Theorem 1.4.1 (Theorem 5.2.12 and Proposition 5.2.10). A triangulation of a

2d-dimensional cyclic polytope has no interior (d + 1)-simplices if and only if its

quiver is acyclic, in which case its quiver is a cut quiver of type A.

An application of Theorem 1.4.1 is that the set of triangulations of a 2d-

dimensional cyclic polytope without internal (d + 1)-simplices is connected via

bistellar flips. The analogous fact for cluster algebras—that the acyclic seeds form

a connected subgraph of the mutation graph—also holds, but no elementary proof

is known.

Unlike for the two-dimensional case, for d > 1 it is not possible to perform

a bistellar flip at every internal d-simplex of a 2d-dimensional triangulation, or,

equivalently, at every vertex of its quiver. This is an important difference with

classical cluster theory, where a key property is that one can mutate a given

cluster at every vertex of its quiver. This feature makes higher-dimensional cluster

theory much more difficult to work with. Our second result uses the quiver of a

triangulation to give a combinatorial criterion for identifying which d-simplices are
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mutable—that is, admit a bistellar flip. We show how the arrows in the quiver can

be partitioned into paths which we call ‘maximal retrograde paths’, and prove the

following theorem [Wil21b].

Theorem 1.4.2 (Theorem 5.3.9). Let T be a triangulation of a 2d-dimensional

cyclic polytope. An internal d-simplex of T is mutable if and only if it is not in

the middle of a maximal retrograde path.

This theorem gives a quiver-theoretic criterion for mutability, and hence points

towards what a theory of higher-dimensional quiver mutation [FZ03c] could look

like. Other extensions of quiver mutation have been of interest in the literature,

such as to ice quivers [Pre20]. Moreover, this theorem provides a visual way

of understanding mutability for higher-dimensional triangulations, and makes it

easier to compute bistellar flips of higher-dimensional triangulations by hand. In

the case of polygon triangulations, all retrograde paths are of length one, so that

the criterion imposes no restriction and all arcs are mutable. As an application

of this theorem, we give a rule for mutating cut quivers at vertices which are not

necessarily sinks or sources.

1.5 The higher Bruhat orders

In the final chapter, we resolve another question concerning the higher Stasheff–

Tamari orders. In work analysing the combinatorics of a class of KP solitons,

Dimakis and Müller-Hoissen define a family of partial orders which they call ‘the

higher Tamari orders’ [DM12]. KP solitons are solutions to a differential equation

called the Kadomtsev–Petviashvili equation, which describes solitary waves [KP70;

Kod10]. The authors conjectured the higher Tamari orders to coincide with the

higher Stasheff–Tamari orders; we prove their conjecture.
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Dimakis and Müller-Hoissen construct the higher Tamari orders from the higher

Bruhat orders. These are a family of partial orders introduced by Manin and

Schechtman [MS89] which generalise the weak Bruhat order on the symmetric

group to higher dimensions just as the higher Stasheff–Tamari orders generalise

the Tamari lattice to higher dimensions. The higher Bruhat orders were originally

introduced to study hyperplane arrangements [MS89] and have found application

in the theories of Soergel bimodules [Eli16], quasi-commuting Plücker coordinates

[LZ98], and social choice [GR08]. They are also tightly connected with the quan-

tum Yang–Baxter equation and its generalisations [DM15, and references therein].

We show how the construction in [DM12] amounts to defining the higher Tamari

orders as the image of a certain order-preserving map from the higher Bruhat orders

to the higher Stasheff–Tamari orders. We provide a new proof that this map is

surjective, which was originally shown in [RS00] using a different framework. We

furthermore show that the map is full [Wil21c; Wil21d]. This implies that the

image of the map is in fact the entire higher Stasheff–Tamari orders themselves,

and so we obtain the following theorem.

Theorem 1.5.1 (Corollary 6.4.4). The higher Tamari orders are equal to the

higher Stasheff–Tamari orders.

Our treatment of this problem also involves a new approach to the subject of

quotients of posets which is more general than those that have previously been

considered. Namely, we explain why maps which are surjective and full should be

considered as quotient maps of posets. We have been unable to find this treatment

of quotients of posets elsewhere in the literature.
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1.6 Notation and conventions

Unless clearly stated otherwise, these conventions will apply throughout the thesis.

We use [m] to denote the set {1, 2, . . . ,m}. By
(
[m]
k

)
we mean the set of subsets

of [m] of size k. When we display the elements of a subset of [m], we shall always

display the elements in order. Hence, if we write S = {a, b, c, . . . , x, y, z}, we

always mean that a < b < c < · · · < x < y < z. Furthermore, if A ∈
(
[m]
k+1

)
, then,

unless indicated otherwise, we shall find it convenient to denote the elements of

A by A = {a0, a1, . . . , ak}. The same applies to other letters of the alphabet: the

upper-case letter denotes the subset; the lower-case letter is used for the elements,

which are ordered according to their index starting from 0. In an effort to make

the notation lighter, we often omit braces around sets, writing A ∪ x for A ∪ {x}

and A \ x for A \ {x}.

We use the convention that the symbol ‘⊆’ denotes inclusion of subsets, whereas

‘⊂’ denotes strict inclusion. Hence, for any set A, we have A ⊆ A but A ̸⊂ A. Of

course, if we have B ⊂ A, then we also have B ⊆ A.

For l ∈ [m], using the notation of [OPS15], we use <l to denote the cyclically

shifted order on [m] given by

l <l l + 1 <l · · · <l m− 1 <l m <l 1 <l · · · <l l − 1.

For r ⩾ 3, a1 < · · · < ar is a cyclic ordering if there is an l ∈ [m] such that

a1 <l · · · <l ar. In this thesis, it is convenient for us to consider both the linear

and cyclic orderings of [m]. Unless stated otherwise, it should be assumed that we

refer to the linear ordering on this set.

We denote by (a, b), [a, b] ⊆ [m] respectively the open and closed cyclic inter-
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vals. That is,

(a, b) := { i ∈ [m] : a < i < b is a cyclic ordering },

[a, b] := (a, b) ∪ {a, b}.

The one exception to this is that we will find it convenient to set [a, a− 1] := ∅.

When we have a < b in the linear ordering on [m], we say that [a, b] and (a, b) are

intervals. We call I ⊆ [m] an l-ple interval if it can be written as a union of l

intervals, but cannot be written as a union of fewer than l intervals. We similarly

define cyclic l-ple intervals.

When we refer to the elements ai of a subset A ⊆ [m] with #A = d + 1, we

will sometimes write i ∈ Z/(d+ 1)Z to indicate that one should interpret ad+1 as

meaning a0. That is, if A = {1, 3, 5}, then a0 = 1, a1 = 3, a2 = 5, a3 = 1.



Chapter 2

Cyclic polytopes and their

triangulations

In this chapter, we lay out our framework for convex polytopes and their trian-

gulations, focusing on the specific case of cyclic polytopes. We explain various

operations on triangulations of cyclic polytopes that we will need to consider. We

detail the combinatorial characterisations of triangulations that we will use. In

even dimensions this characterisation is due to [OT12], but the odd-dimensional

characterisation is new [Wil21a]. The largest portion of the chapter is concerned

with proving a technical result describing the possible triangulations that can con-

tract to a particular triangulation. This is the subject of Section 2.3. We shall

need this result to prove the main result of Chapter 3.

2.1 Background

Our framework for cyclic polytopes and their triangulations maintains a sharp

distinction between the combinatorial and the geometric.

36
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2.1.1 Convex polytopes

A subset X ⊂ Rδ is convex if for any x,x′ ∈ X, the line segment xx′ connecting x

and x′ is contained in X. The convex hull conv(X) of X is the smallest convex set

containing X or, equivalently, the intersection of all convex sets containing X.

Let V ⊆ Z>0 be a finite set and | − | : V → Rδ be an injective function, which

we call the geometric realisation. For subsets A ⊆ V we also write |A| = conv{ |a| :

a ∈ A }. We let P = |V | and suppose that the affine span of P is Rδ. A subset

P ⊆ Rδ of this form is called a (geometric) convex polytope.

A face of a polytopeP is a subset on which some linear functional is maximised.

That is, F ⊆ P is a face of P if there is a vector a ∈ Rδ such that

F = {x ∈ P : ⟨a,x⟩ ⩾ ⟨a,y⟩, ∀y ∈ P },

where ‘⟨−,−⟩’ denotes the standard inner product. A (geometric) facet of P is

a face of codimension one. A (combinatorial) facet of P is a subset F ⊆ V such

that |F | is a geometric facet of P.

Let v ∈ V be such that |v| is the face of P given by maximising a functional

⟨a,−⟩. Further, let ε > 0 be sufficiently small that, for all w ∈ V \ v, we have that

⟨a, |w|⟩ < ⟨a, |v|⟩ − ε. The vertex figure of P at v is then the intersection

P\v := P ∩ {x ∈ Rδ : ⟨a,x⟩ = ⟨a, |v|⟩ − ε },

that is, the intersection of P with the hyperplane ⟨a,x⟩ = ⟨a, |v|⟩ − ε.

A circuit of a polytope P realised geometrically via | − | : V → Rδ is a pair,

(Z+, Z−), of disjoint subsets of V which are inclusion-minimal with the property

that |Z+| ∩ |Z−| ≠ ∅. In this case, |Z+| and |Z−| intersect in a unique point.

We are interested in the combinatorial properties of the polytope, as comprised

by the facets and circuits given by its geometric realisation | − | : V → Rδ. If we

let FP and ZP be respectively the set of combinatorial facets of P and the set
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of combinatorial circuits of P, then we say that the triple P = (V,FP,ZP) is a

combinatorial polytope. We often refer to the collection of facets of a combinatorial

polytope as the boundary of the polytope.

Remark 2.1.1. Note that there might exist v ∈ V such that |v| is not a face of

P, since we may have |v| ∈ |V \ v|. Allowing such elements of V is necessary for

considering one-dimensional cyclic polytopes. Hence, strictly, the data we consider

comprise a point configuration rather than a polytope.

2.1.2 Cyclic polytopes

Cyclic polytopes are the higher-dimensional analogues of convex polygons. Gen-

eral introductions to this class of polytopes can be found in [Zie95, Lecture 0] and

[Grü03, Section 4.7]. Grünbaum writes that the construction of cyclic polytopes

in current use is due to Gale [Gal63] and Klee [Kle63], and that they were intro-

duced and studied in the 1950s by Gale [Gal55] and Motzkin [Mot57]. The earlier

work of Carathéodory [Car07; Car11] is related, but the convex bodies studied

in these papers are not cyclic polytopes: they are the continuous analogues of

even-dimensional cyclic polytopes.

The (geometric) cyclic polytope C(V, δ) is the polytope with geometric realisa-

tion

| − |δ : V → Rδ

v 7→ |v|δ = pδ(tv) := (tv, t
2
v, . . . , t

δ
v),

where {tv0 , tv1 , . . . , tvk} ⊆ R and k + 1 = #V . (Recall our convention that V =

{v0, v1, . . . , vk} and that by writing {tv0 , tv1 , . . . , tvk}, we indicate that tv0 < tv1 <

· · · < tvk .) When the dimension of the geometric realisation is clear from the

context, we will drop the subscript and write | − | instead of | − |δ. In the case
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where V = [m], we write C(m, δ) := C([m], δ). The curve defined by pδ(t) :=

(t, t2, . . . , tδ) ⊆ Rδ is called the moment curve.

The facets of C(m, δ) come in two different types. A facet F of C(m, δ) is an

upper facet if, for any a ∈ Rδ such that ⟨a,−⟩ is maximised on F, we have that

aδ > 0, where aδ is the δ-th coordinate of a. Dually, a facet F of C(m, δ,) is a lower

facet if aδ is negative for any a such that F maximises ⟨a,−⟩. Equivalently, a facet

F of C(m, δ) is an upper (lower) facet if any normal vector to F which points out

of the polytope has a positive (negative) δ-coordinate. Or, more informally, F is

an upper (lower) facet if it can be seen from a very large positive (negative) δ-th

coordinate.

The upper and lower facets of a cyclic polytope can be described combinatori-

ally. Given a subset F ⊂ V , we say that an element v ∈ V \F is an even gap in F

if #{x ∈ F : x > v } is even. Otherwise, it is an odd gap. A subset F ⊂ V is even

if every v ∈ V \F is an even gap. A subset F ⊂ V is odd if every v ∈ [m] \F is an

odd gap. Gale’s Evenness Criterion [Gal63, Theorem 3][ER96, Lemma 2.3] states

that, given a δ-subset F ⊂ V , we have that |F | is an upper facet of C(V, δ) if and

only if F is an odd subset, and that |F | is a lower facet of C(V, δ) if and only if F

is an even subset. We write

F l(V, δ) := {F ⊆ V : |F |δ is a lower facet of |V |δ }, and

Fu(V, δ) := {F ⊆ V : |F |δ is an upper facet of |V |δ }.

The circuits of a cyclic polytope can also be described combinatorially. Fol-

lowing [OT12, Definition 2.2], if A,B ⊆ V are d-simplices, then we say that A

intertwines B, and write A ≀B, if

a0 < b0 < a1 < b1 < · · · < ad < bd.

If either A ≀B or B ≀A, then we say that A and B are intertwining and write A]B.

(That is, we use ‘are intertwining’ and ‘]’ to refer to the symmetric closure of the
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Figure 2.1: Cyclic polytopes [ER96, Figure 2]
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relation ‘intertwines’.) A collection of d-simplices is called non-intertwining if no

pair of the elements are intertwining. Following [Wil21a], if A is a (d− 1)-simplex

and B is a d-simplex, then we also say that A intertwines B, and write A ≀B, if

b0 < a0 < b1 < · · · < ad−1 < bd.

The circuits of C(V, δ) are then the pairs (A,B) and (B,A) such that A is a (⌊ δ
2
⌋)-

simplex, B is a (⌈ δ
2
⌉)-simplex, and A intertwines B. This result is originally due

to Breen [Bre73], but it is well-known from the description of the oriented matroid

given by a cyclic polytope [BL78; Stu88a; CD00].

These combinatorial characterisations of facets and circuits show that these no-

tions are independent of the particular geometric realisation of C(V, δ). Hence, we

will write F(V, δ) for the combinatorial facets of C(V, δ), Z(V, δ) for the combinato-

rial circuits of C(V, δ), and C(V, δ) for the combinatorial cyclic polytope consisting

of the triple (V,F(V, δ),Z(V, δ)). Facets of C(V, δ) will also be designated as ei-

ther upper facets or lower facets, as dictated by Gale’s Evenness Criterion. As for

geometric cyclic polytopes, we write C(m, δ) := C([m], δ). If #V = m, then we

say that C(V, δ) and C(m, δ) are congruent—they only differ by the labels of the

vertices.

2.1.3 Triangulations

We now explain our framework for triangulations. We maintain our set-up, where

V ⊆ Z>0 is a finite subset, with | − | : V → Rδ a geometric realisation giving

a geometric polytope P = |V |, with corresponding combinatorial polytope P =

(V,FP,ZP).

A combinatorial δ-simplex in V is a (δ + 1)-subset S ⊆ V . The k-faces of S

are the subsets of S of size k + 1. An abstract simplicial complex is a set A of

combinatorial simplices in V such that if S, S ′ ∈ A, then S ̸⊆ S ′. The k-simplices
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of A are the k-faces of elements of A. An abstract simplicial complex A′ is an

abstract simplicial subcomplex of A if every simplex of A′ is a face of a simplex

of A. Hence, we are considering abstract simplicial complexes in terms of their

maximal simplices, which is contrary to the more usual approach as having an

abstract simplicial complex as the set of all its simplices.

Given a combinatorial δ-simplex S ⊆ V , if { |s| : s ∈ S } is an affinely indepen-

dent set, then |S| is a geometric δ-simplex. A collection G of geometric simplices

is a geometric simplicial complex if

|S ∩R| = |S| ∩ |R|

for all |S|, |R| ∈ G, and if there exist no |S|, |R| ∈ G such that |S| is a face of |R|.

Geometric simplicial subcomplexes are defined analogously to abstract simplicial

subcomplexes. If |S ∩ R| is a proper subset of |S| ∩ |R|, then we say that |S| and

|R| intersect transversely. Note that it follows from the definition of a circuit that

if (Z+, Z−) is a circuit then |Z+| and |Z−| intersect transversely, since we have

that Z+ ∩ Z− = ∅. Conversely, every pair of sets which intersect transversely

must contain a circuit. We also remark that our notion of transverse intersection

is distinct from the one found in differential topology.

A (geometric) triangulation of the geometric polytope P is a geometric simpli-

cial complex G such that P =
⋃

|S|∈G |S|. A (combinatorial) triangulation of the

combinatorial polytope P is an abstract simplicial complex T such that

� for all S ∈ T and all facets F of S, we either have that F is contained in a

facet of P , or there exists R ∈ T \ {S} such that F ⊂ R,

� there is no circuit (Z+, Z−) of P such that Z+ ⊆ S and Z− ⊆ R for some

S,R ∈ T .

We use |T | to refer to the geometric simplicial complex corresponding to T . We
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have that T is a combinatorial triangulation of P if and only if |T | is a geometric

triangulation of P. A proof of this can be found in [Ram97, Proposition 2.2].

Remark 2.1.2. In this framework is it possible for two different combinatorial trian-

gulations to correspond to the same geometric triangulation. Namely, this happens

when there exist v, v′ ∈ V such that |v| = |v′|. When this is the case, there exist

different combinatorial simplices which correspond to the geometric simplex. In

Chapter 6, we shall take a different approach to geometric triangulations, which

allows them to be as fine-grained as combinatorial triangulations. But, until then,

the framework we have laid out above is more suited to our purposes.

Triangulations of cyclic polytopes

In this thesis we are usually concerned with combinatorial triangulations of cyclic

polytopes, but sometimes we shall need to consider geometric triangulations of

cyclic polytopes. When we do so we shall implicitly pick a geometric realisation

of C(m, δ) given by an arbitrary tuple of points on the moment curve, since the

properties we will be considering will be independent of the precise choice.

One can use the descriptions of the facets and circuits of C(m, δ) to determine

whether an abstract simplicial complex T gives a triangulation of C(m, δ). We

denote the set of triangulations of the cyclic polytope C(m, δ) by S(m, δ). There

are two triangulations of C(m, δ) which are of particular note. Namely, the lower

facets F l([m], δ+1) of C(m, δ+1) give a triangulation of C(m, δ), which is known as

the lower triangulation. Similarly, Fu([m], δ + 1) gives a triangulation of C(m, δ),

which is known as the upper triangulation. Indeed, every triangulation |T | of

C(m, δ) determines a unique piecewise-linear section

σ|T | : C(m, δ)→ C(m, δ + 1)

of C(m, δ + 1) by sending each δ-simplex |S|δ of |T | to |S|δ+1 in C(m, δ + 1), in
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the natural way. Similarly, a δ-simplex |S| in C(m, δ) defines a map σ|A| : |A|δ →

C(m, δ + 1).

Bistellar flips

Given a triangulation T of C(m, δ) and H ⊆ [m], we say that C(H, δ) is a subpoly-

tope of T if the facets F(H, δ) of C(H, δ) are a simplicial subcomplex of T . Equiv-

alently, we have that C(H, δ) is a subpolytope of T if and only if {S ∈ T : S ⊆ H }

is a triangulation of C(H, δ). We refer to this triangulation as the induced trian-

gulation of C(H, δ).

Consider the cyclic polytope C(δ + 2, δ). Any triangulation T of C(δ + 2, δ)

determines a section σ|T | : C(δ + 2, δ) → C(δ + 2, δ + 1). But C(δ + 2, δ + 1) is

a simplex. It therefore has only one triangulation and only two sections: one

corresponding to its upper facets and one corresponding to its lower facets. Hence

the only two triangulations of C(δ+2, δ) are the upper triangulation and the lower

triangulation. For example, when δ = 2 the polytope C(δ+2, δ) is a quadrilateral.

This has two triangulations, corresponding to the two possible diagonals.

This observation can be used to define an important operation on triangula-

tions. Let T ∈ S(m, δ). Suppose that there exists a (δ + 2)-subset H ⊆ [m] such

that the induced triangulation of C(H, δ) is the lower triangulation. Let T ′ be the

triangulation obtained by replacing the portion of T inside C(H, δ) with the upper

triangulation of C(H, δ). We then say that T ′ is an increasing bistellar flip of T

and that T is a decreasing bistellar flip of T ′. We also talk about the increasing

bistellar flip being induced by the (δ + 1)-simplex H: the increasing bistellar flip

replaces the lower facets of H with the upper facets of H. Here when we refer to

the upper and lower facets of the (δ+1)-simplex H, we mean the upper and lower

facets of C(H, δ + 1). We shall often talk about the upper and lower facets of a

simplex in this way.
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Remark 2.1.3. The simplices of a triangulation T of C(m, δ) possess a partial

order. Following [Ram97, Definition 5.7], for δ-simplices R, S of a triangulation

T ∈ S(m, δ) with δ vertices in common, we write that R ≺· S if and only if R ∩ S

lies in the upper facets of R and the lower facets of S. The relation ≺ is defined

as the transitive closure of ≺·, so that R ≺· S implies that R ≺ S. This is a partial

order by [Ram97, Corollary 5.9].

2.1.4 Operations on triangulations

We consider the following operations on triangulations, which were introduced in

[Ram97] based on the corresponding operations on oriented matroids from [BL78].

However, note that our notation and terminology is swapped from [BL78; Ram97],

following [OT12], since this fits better with how the operations behave on cyclic

polytopes.

Operations at the first or last vertex

If S ⊆ [m] is a k-simplex, we define the contraction S[m− 1← m] of S by

S[m− 1← m] :=

 S if m /∈ S,

(S \m) ∪m− 1 otherwise.

Note that S[m − 1 ← m] is a (k − 1)-simplex if S ⊇ {m − 1,m}. Given a

triangulation T of C(m, δ), we define the contraction T [m − 1 ← m] to be the

triangulation of C(m− 1, δ) given by

T [m− 1← m] :=
{
S ∈

(
[m−1]
δ+1

)
: S = R[m− 1← m] for R ∈ T

}
.

This is indeed a triangulation of C(m − 1, δ) by [Ram97, Theorem 4.2(iii)]. This

corresponds to the triangulation obtained from |T | by moving vertex |m| along the

moment curve until it coincides with vertex |m − 1|, as illustrated in Figure 2.2.
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Figure 2.2: The contraction operation [4← 5]
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Figure 2.3: The deletion operation −\5
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Note that some simplices degenerate in this process. There is an analogous oper-

ation −[1→ 2].

Given a triangulation T of C(m, δ), we define the deletion T \m to be the

triangulation of C(m− 1, δ − 1) given by

T \m := {S \m : S ∈ T , m ∈ S }.

This is indeed a triangulation of C(m − 1, δ − 1) by [Ram97, Theorem 4.2(ii)].

This is the triangulation induced by |T | on the vertex figure of C(m, δ) at |m|, as

illustrated in Figure 2.3. There is an analogous operation −\1.

We will also use the extension operation from [Ram97]. Given a triangulation
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T of C(m, δ), we define T̂ to be the triangulation of C(m+ 1, δ + 1) given by

T̂ := T ∗ (m+ 1) ∪ { (S \ sδ) ∪ {l, l + 1} : S ∈ T , sδ−1 < l < sδ },

where

T ∗ (m+ 1) := {S ∪ {m+ 1} : S ∈ T }.

More generally, given a set of simplices U in V and a set N ⊆ [m] \ V , then

U ∗N := {S ∪N : S ∈ U }. One can verify easily that T̂ \(m+ 1) = T .

Operations at middle vertices

In this thesis we also consider contractions of triangulations at other pairs of

vertices besides [1 → 2] and [m − 1 ← m]. For this purpose we let [m − 1]v+ :=

{1, 2, . . . , v − 1, x, y, v + 1, v + 2, . . . ,m− 1} for v ∈ [m− 1]. We also extend this

notation in a natural way to subsets H ⊆ [m− 1], so that Hv+ = (H \ v) ∪ {x, y}

if v ∈ H, and H = H otherwise.

Given a k-simplex S ⊆ [m− 1]v+, we define

S[x→ v ← y] :=

 S if {x, y} ∩ S = ∅,

(S \ {x, y}) ∪ v otherwise.

Given a triangulation T of C([m − 1]v+, δ), we then define T [x → v ← y] to be

the triangulation of C(m− 1, δ) given by

T [x→ v ← y] :=
{
S ∈

(
[m−1]
δ+1

)
: S = R[x→ v ← y] for R ∈ T

}
.

This is indeed a triangulation of C(m − 1, δ) by [RS00, Theorem 3.3]. Geometri-

cally, it is obtained from |T | by moving |x| and |y| along the moment curve towards

each other until they coincide with each other at a new vertex, which we label |v|.

We choose to relabel [m] as [m− 1]v+ here so that there does not appear to be a

missing vertex after contraction. It is also useful to distinguish between the two

vertices before contraction and the vertex after contraction.
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In order to understand how the contractions [x → v ← y] behave, we will

consider the deletion operation at other vertices too. Indeed, given C(m, δ) and

v ∈ [m], define the combinatorial vertex figure at v to be the combinatorial polytope

C(m, δ)\v = ([m] \ v,Fv([m] \ v, δ),Zv([m] \ v, δ)), where

Fv([m] \ v, δ) = {F ⊆ [m] \ v : F ∪ v ∈ F([m], δ) },

and

Zv([m]\v, δ) = { (Z−, Z+) : (Z−∪v, Z+) ∈ Z([m], δ) or (Z−, Z+∪v) ∈ Z([m], δ) }.

Given a triangulation T of C(m, δ), we define the deletion T \v to be the triangu-

lation

T \v := {S \ v : S ∈ T , v ∈ S }.

It follows straightforwardly from the definition of C(m, δ)\v and the definition of

a combinatorial triangulation that T \v is a triangulation of C(m, δ)\v. Note also

that |T \v| may be realised geometrically as the triangulation induced by |T | on

the vertex figure of C(m, δ) at |v|.

Finally, we shall also consider triangulations given by deleting multiple vertices.

Given a triangulation T of C(m, δ) and V ⊆ [m], we define the simplicial complex

T \V := {S \ V : S ∈ T , V ⊆ S }.

In the examples we consider here, V will always be a pair of consecutive vertices,

such as {1, 2} or {m− 1,m} in [m], or {x, y} in [m]v+.

2.1.5 Describing expansion at the first or last vertex

One can understand the different triangulations T̃ which may contract to a given

triangulation T under the operation [m− 1← m] by considering the vertex figure

T \m − 1. The result [RS00, Lemma 4.7(i)] states that, given a triangulation
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T ∈ S(m− 1, δ), triangulations T̃ of C(m, δ) such that T̃ [m− 1← m] = T are in

bijection with sections of the vertex figure T \(m−1). Here a section of T \(m−1)

is a triangulation W of C(m − 2, δ − 2) which is contained in T \(m − 1) as a

simplicial subcomplex. The bijection operates as follows.

{
T̃ ∈ S(m, δ),

T̃ [m− 1← m] = T

}
←→ { Sections W of T \(m−1) }

T̃ 7−→ T̃ \{m− 1,m}

T ◦ ∪ W ∗ {m− 1,m}

∪T \(m−1)+∗(m−1)

∪T \(m− 1)− ∗m

7−→ W

Here

� T ◦ is the set of δ-simplices of T which contain neither m − 1 nor m as a

vertex;

� T \(m− 1)+ is the set of (δ − 1)-simplices S of T \(m− 1) such that |S|δ−1

is above |W|δ−1 with respect to the (δ − 1)-th coordinate;

� T \(m− 1)− is the set of (δ − 1)-simplices S of T \(m− 1) such that |S|δ−1

is below |W|δ−1 with respect to the (δ − 1)-th coordinate.

It is this result that we will generalise in Section 2.3. We will show that an

analogous statement is true for the expansions at middle vertices [x→ v ← y].

Note that the sets T \(m− 1)+ and T \(m− 1)− are defined with respect to a

geometric realisation. Recall that T \(m− 1) is a triangulation of C(m− 2, δ− 1),

so our geometric realisation is | − |δ−1. The sets T \(m− 1)+ and T \(m− 1)−, of
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course, do not depend upon the particular geometric realisation of C(m− 2, δ− 1)

given by the choice of points on the moment curve.

We often adopt the opposite perspective to contraction, where we think of

the triangulation T as expanding to T̃ . Under this perspective, we are trying

to understand the triangulations T̃ of C(m, δ) to which T can expand when one

expands the cyclic polytope C(m− 1, δ) at a particular vertex.

We now demonstrate how the result [RS00, Lemma 4.7(i)] works, using an

example.

Example 2.1.4. We consider the triangulation T of C(5, 3) with 3-simplices

{1234, 1245, 2345}. Here we abbreviate by writing the simplices as strings, so

that 1234 = {1, 2, 3, 4}. The triangulations T̃ of C(6, 3) such that T̃ [5 ← 6] = T

are in bijection with the sections of the triangulation T \5. We have that T \5 is a

triangulation of C(4, 2) which can be realised geometrically as the triangulation of

the vertex figure of C(5, 3) at |5|. The triangulations |T | and |T \5| are illustrated

in Figure 2.4.

The triangulation T \5 has three sections W1,W2,W3, which are illustrated in

Figure 2.5. By [RS00, Lemma 4.7(i)], these sections correspond to triangulations

T̃1, T̃2, T̃3 of C(6, 3) such that T̃i[5← 6] = T , and

T̃i = T ◦ ∪ (Wi ∗ {5, 6}) ∪ (T \5+ ∗ 5) ∪ (T \5− ∗ 6).

Hence one may compute that

T̃1 = {1234} ∪ {1256, 2356, 3456} ∪ {1245, 2345} ∪∅,

T̃2 = {1234} ∪ {1256, 2456} ∪ {1245} ∪ {2346},

T̃3 = {1234} ∪ {1456} ∪∅ ∪ {1246, 2346}.
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Figure 2.4: The triangulation |T | of C(5, 3) and the triangulation |T \5|
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Figure 2.5: Sections of |T \5|
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2.2 Combinatorial description of triangulations

The description of a triangulation of C(m, δ) as a set of δ-simplices contains redun-

dant information. For instance, to describe a triangulation of a polygon, it suffices

to specify the arcs of the triangulation, rather than the triangles. Likewise, one can

determine higher-dimensional triangulations by only specifying lower-dimensional

simplices. Indeed, it follows from [Dey93] that a triangulation of C(m, δ) is de-

termined by its internal ⌊δ/2⌋-simplices, where a simplex A ⊆ [m] is an internal

simplex of C(m, δ) if A does not lie within any facet of C(m, δ). Internal geometric

simplices are defined analogously. For a triangulation T of C(m, δ), we write e̊(T )

for its set of internal ⌊δ/2⌋-simplices. In Section 2.2.1, we give the description of

triangulations of 2d-dimensional cyclic polytopes in terms of their d-simplices from

[OT12]. We then show in Section 2.2.2 how (2d + 1)-dimensional triangulations

may be described in terms of their d-simplices, giving the other half of the picture.

2.2.1 Even dimensions

In even dimensions, A is an internal d-simplex of C(m, 2d) if and only if

A ∈ ⟲
Idm := {B ∈

(
[m]
d+1

)
: bi ⩽ bi+1 − 2 ∀i ∈ [d], and bd ⩽ b0 +m− 2 },

by [OT12, Lemma 2.1]. This can also be seen by applying Gale’s Evenness Crite-

rion.

In even dimensions, given X ⊆ ⟲
Idm, we have that X = e̊(T ) for some triangula-

tion T of C(m, 2d) if and only if #X =
(
m−d−2

d

)
and X is non-intertwining [OT12,

Theorem 2.3 and Theorem 2.4]. Moreover, e̊(T ) is a maximal non-intertwining

collection with respect to inclusion, and
(
m−d−2

d

)
is the maximal size of a non-

intertwining collection.
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The contraction operation can be interpreted in this framework, namely

e̊(T [m− 1← m]) = {A ∈ ⟲
Idm−1 : A = B[m− 1← m] for B ∈ e̊(T ) }

by [OT12, Lemma 2.23]. An analogous statement holds for the contraction [1→ 2].

Remark 2.2.1. Note that our sets e̊(T ) are different from the sets e(T ) from [OT12],

since the latter contain d-simplices which do not lie in any lower facets of C(m, 2d),

but may contain d-simplices lying in upper facets of C(m, 2d). Given a triangula-

tion T of C(m, 2d), we have that e(T ) \ e̊(T ) consists of all the d-simplices lying

in the upper facets of C(m, 2d) which do not lie in any lower facets of C(m, 2d).

One can verify using [OT12, Lemma 2.1] or Gale’s Evenness Criterion that this

set has cardinality
(
m−d−2
d−1

)
, and hence #e(T ) =

(
m−d−2

d

)
+
(
m−d−2
d−1

)
=
(
m−d−1

d

)
, as

stated in [OT12, Theorem 2.3 and Theorem 2.4].

The following lemma describing the intersections of the lower and upper facets

of a (2d+ 1)-simplex will be useful later.

Lemma 2.2.2. Let A,B ∈
(
[m]
d+1

)
. Then A ≀B if and only if we have that A∪B is a

(2d+1)-simplex with A the intersection of its lower facets, and B the intersection

of its upper facets.

Proof. Let A ∪ B =: S. If #S < 2d + 2, then A and B cannot be intertwining.

Hence suppose that #S = 2d + 2, so that A ∪ B is a (2d + 1)-simplex. We then

apply Gale’s Evenness Criterion. The vertices of a lower facet of S have an even

gap. The intersection of these subsets is {s0, s2, . . . , s2d}. The vertices of an upper

facet of S have an odd gap. Their intersection is {s1, s3, . . . , s2d+1}. Therefore

A ≀ B if and only if A is the intersection of the lower facets of S and B is the

intersection of its upper facets.
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2.2.2 Odd dimensions

Having detailed how even-dimensional triangulations may be defined combinato-

rially, it is far from obvious what the counterpart description for odd dimensions

should look like. In a (2d + 1)-dimensional cyclic polytope, d-simplices do not

intersect each other, and numbers of simplices vary between triangulations.

One appealing way of solving these problems might be to describe triangula-

tions of (2d + 1)-dimensional cyclic polytopes as inclusion-maximal sets of non-

intersecting d-simplices and (d + 1)-simplices. This approach attempts to mimic

the even-dimensional description. However, there are two issues here. The first

issue is that a non-intersecting collection of simplices which is maximal with re-

spect to adding more simplices does not necessarily give a triangulation of a cyclic

polytope, as first shown in [Ram97, Example 4.5]. This is why maximality of

size is required in even dimensions, rather than simply maximality with respect

to inclusion. But, as discussed above, numbers of simplices vary between triangu-

lations in odd dimensions. The second issue is that, by [Dey93], a triangulation

of a (2d+ 1)-dimensional cyclic polytope is determined by its d-simplices, so that

including the (d+ 1)-simplices in a description is redundant.

We solve these problems by taking an approach which is distinctive to odd

dimensions, rather than trying to simulate the even-dimensional description. We

describe triangulations of (2d + 1)-dimensional cyclic polytopes in terms of their

d-simplices by defining two new properties (supporting and bridging) which imply

that a given set of d-simplices arises from a triangulation. See Definition 2.2.11 for

the definition of being supporting, and Definition 2.2.13 for the definition of being

bridging. Indeed, we prove the following theorem, which we build up to using a

series of lemmas. We define the set

Jd
m := { {a0, a1, . . . , ad} ∈

⟲
Idm : a0 ̸= 1, ad ̸= m }.
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Theorem 2.2.3. There is a bijection via T 7→ e̊(T ) between triangulations of

C(m, 2d+ 1) and subcollections of Jd
m which are supporting and bridging.

This result is new and completes the characterisation of triangulations of δ-

dimensional cyclic polytopes in terms of their ⌊δ/2⌋-simplices.

Preliminary lemmas

We begin by characterising the internal d-simplices of C(m, 2d+ 1).

Lemma 2.2.4. A simplex A ∈
(
[m]
d+1

)
is an internal d-simplex of C(m, 2d + 1) if

and only if A ∈ Jd
m.

Proof. One way to see this is to note that A is an internal d-simplex if and only if

there is a (d + 1)-simplex B in C(m, 2d + 1) such that A ≀ B, so that |A| and |B|

intersect transversely. But such a B exists if and only if A ∈ Jd
m.

Alternatively, one can apply Gale’s Eveness Criterion, which entails that the

vertices of an upper facet of C(m, 2d + 1) consist of m together with d disjoint

pairs of consecutive integers, and the vertices of a lower facet consist of 1 together

with d disjoint pairs of consecutive integers. Hence A is not contained in a facet

if and only if A ∈ Jd
m.

We can describe the effect of a bistellar flip on internal d-simplices.

Lemma 2.2.5. Let A ∈
(
[m]
d+1

)
and B ∈

(
[m]
d+2

)
. Then A ≀ B if and only if we have

that A∪B is a (2d+ 2)-simplex with A the intersection of its lower facets, and B

the intersection of its upper facets.

Proof. Let A ∪ B =: S. If #S < 2d + 3, then A and B cannot be intertwining.

Hence suppose that #S = 2d + 3, so that A ∪ B is a (2d + 2)-simplex. We

then apply Gale’s Evenness Criterion. The vertices of a lower facet of S miss out

an even entry of S. The intersection of these subsets is {s1, s3, . . . , s2d+1}. The
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vertices of an upper facet of S miss out an odd entry of S. Their intersection is

{s0, s2, . . . , s2d+2}. Therefore A ≀B if and only if A is the intersection of the lower

facets of S and B is the intersection of its upper facets.

Corollary 2.2.6. Let A ∈
(
[m]
d+1

)
and B ∈

(
[m]
d+2

)
such that A ≀ B. Then the only

internal d-simplex of the lower triangulation of C(A ∪ B, 2d + 1) is A, and the

upper triangulation of C(A ∪B, 2d+ 1) has no internal d-simplices.

Proof. This follows from Lemma 2.2.4 and Lemma 2.2.5.

Hence we think of bistellar flips in odd dimensions as replacing a d-simplex with

a (d+ 1)-simplex which it intertwines. Note that these simplices form two halves

of a circuit. This perspective is, of course, a simplification, since removing the

d-simplex also involves removing simplices of higher dimension. Likewise, adding

the (d+ 1)-simplex involves adding simplices of higher dimension too.

Remark 2.2.7. Lemma 2.2.2 and Lemma 2.2.5 allow us to think of one half of a

circuit as being on top and the other half of the circuit being on bottom.

The even-dimensional counterpart of the following result was shown in [OT12,

Proposition 2.13]. This lemma describes the (2d+ 1)-simplex which lies below an

internal d-simplex in a (2d+ 1)-dimensional triangulation.

Lemma 2.2.8. Let T ∈ S(m, 2d+1). Let A be an internal d-simplex of T . Then

there is a unique (2d+1)-simplex A∪B of T such that B is a d-simplex with B ≀A.

Proof. We argue in terms of the geometric realisation. Since |A| is an internal

d-simplex of |T |, the points immediately below |A| must lie in a unique (2d+ 1)-

simplex |S|. Then |A| is a d-face of |S|, and hence is the intersection of d + 1

facets of |S|. The simplex |S| has d + 1 upper facets and d + 1 lower facets, by

Gale’s Evenness Criterion. Then |A| must be the intersection of the upper facets

of |S|, otherwise |A| lies in a lower facet of |S|, and so |S| cannot contain the points
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immediately below |A|. But then, by Lemma 2.2.2, we must have that S = A∪B,

where B ≀ A.

By [Dey93], we know that it is possible to reconstruct a triangulation of a

point configuration in Rδ on the basis of knowing only its ⌊ δ
2
⌋-faces. Hence we can

reconstruct a triangulation of C(m, 2d+1) from its d-simplices alone—in particular,

its internal d-simplices. However, in the manner of [OT12, Lemma 2.15], we affirm

this result by showing what the reconstructed triangulation looks like.

Lemma 2.2.9. Let T ∈ S(m, 2d+ 1). Then T is determined by e̊(T ). In partic-

ular,

(1) the (d+ 1)-simplices of T are those

(a) whose d-faces A are either such that A ∈ e̊(T ) or such that A /∈ Jd
m,

and

(b) which are such that there is no d-simplex of e̊(T ) which forms a circuit

with them;

(2) the k-simplices of T for k > d+ 1 are those whose (d+ 1)-faces satisfy (1).

Proof. It follows from Gale’s Evenness Criterion that for k < d, every k-simplex

lies on the boundary of C(m, 2d+ 1), and hence can be ignored.

Let A be a (d + 1)-simplex of T . Then clearly A cannot form a circuit with

any d-simplices of T . Moreover, every d-face B of A is either internal, so that

B ∈ e̊(T ), or not internal, so that B /∈ Jd
m. If A is a k-simplex of T for k > d+ 1,

then all of the (d+ 1)-faces of A must satisfy (1) for these reasons.

Conversely, if A is not a k-simplex of T for some k ⩾ d + 1, then |A| must

intersect a (2d+1)-simplex of |T | transversely. By the description of the circuits of

C(m, 2d+1), either A has a d-face Ad which forms a circuit with a (d+1)-simplex

Bd+1 of T , or A has a (d+1)-face Ad+1 which forms a circuit with a d-simplex Bd
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of T . In the first case, Ad cannot be in e̊(T ), so any (d + 1)-face of A containing

Ad does not satisfy (1). In the second case, Ad+1 does not satisfy (1).

The supporting and bridging conditions

We now derive the properties which characterise triangulations of odd-dimensional

cyclic polytopes. The following lemma is shown for d = 1 in [ER96, Lemma 4.3].

Lemma 2.2.10. Let T ∈ S(m, 2d + 1). Suppose that A is an internal d-simplex

of T . Then there is a (d − 1)-simplex E such that E ≀ A and for every d-simplex

B ⊂ A ∪ E we have that B is a d-simplex of T .

Proof. By Lemma 2.2.8, there is a d-simplex J of T such that J ≀ A. If we let

E = {j1, j2, . . . , jd}, then we have that E ≀ A. Moreover A ∪ E is a face of A ∪ J ,

which is a 2d-simplex of T . Hence every d-simplex B such that B ⊂ A ∪ E is a

d-simplex of T .

Hence, we define the following property.

Definition 2.2.11. Let X ⊆ Jd
m. Given A ∈ X and E ∈

(
[m]
d

)
with E ≀ A, we say

that E is a support for A in X if for every internal d-simplex B ⊂ A∪E, we have

that B ∈ X. We then say that X is supporting if every A ∈ X has a support.

The inspiration for the following lemma comes from [ER96, Proposition 3.3,

D3, and Proposition 4.2, T3], which concern simpler versions of the property for

dimensions 2 and 3.

Lemma 2.2.12. Let T ∈ S(m, 2d+ 1). Let

A := {q0, q1, . . . , qi−1, ai, ai+1, . . . , aj, qj+1, qj+2, . . . , qd},

B := {q0, q1, . . . , qi−1, bi, bi+1 . . . , bj, qj+1, qj+2, . . . , qd}
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be internal d-simplices of T , where possibly i = 0 or j = d, or both. Suppose these

are such that {ai, ai+1, . . . , aj} ≀ {bi, bi+1, . . . , bj}. Then

Sk := {q0, q1, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj, qj+1, qj+2, . . . , qd}

is an internal d-simplex of T for all i < k < j + 1.

Proof. First, note that if A,B ∈ Jd
m, then Sk ∈ Jd

m.

We use induction on increasing bistellar flips of the triangulation: all trian-

gulations of C(m, 2d + 1) can be reached via increasing bistellar flips from the

lower triangulation by [Ram97, Theorem 1.1]. In the base case, which is the lower

triangulation of C(m, 2d+ 1), all d-simplices are simplices of the triangulation T .

Hence the result holds trivially in this case.

We use contradiction to show the inductive step. Suppose that we perform an

increasing bistellar flip on T by removing the d-simplex

Sk = {q0, q1, . . . , qi−1, ai, ai+1 . . . , ak−1, bk, bk+1 . . . , bj, qj+1, qj+2, . . . , qd}

for k such that i < k < j+1, so that we replace it with a (d+1)-simplex F such that

Sk ≀ F . Then F cannot form a circuit with Sk′ for k
′ ̸= k, since, by the induction

hypothesis, these are d-simplices of T . Thus we must have ak ⩽ fk and fk ⩽ bk−1,

otherwise Sk+1 ≀ F or Sk−1 ≀ F , respectively. But this is a contradiction, since

bk−1 < ak. Hence we can never perform an increasing bistellar flip by removing

Sk, which means that the above property must be preserved by increasing bistellar

flips.

Hence, we define the following property.

Definition 2.2.13. Let X ⊆ Jd
m. We say that X is bridging if whenever

{q0, q1, . . . , qi−1, ai, ai+1 . . . , aj, qj+1, qj+2, . . . , qd} ∈ X, and

{q0, q1, . . . , qi−1, bi, bi+1, . . . , bj, qj+1, qj+2, . . . , qd} ∈ X,
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where possibly i = 0 or j = d, or both, such that {ai, ai+1, . . . , aj}≀{bi, bi+1, . . . , bj},

we have that

Sk := {q0, q1, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj, qj+1, qj+2, . . . , qd} ∈ X

for all i < k < j + 1.

Supporting and bridging under contraction and deletion

Our strategy is now to interpret the operations from Section 2.1.4 in terms of inter-

nal d-simplices, and then to use this to show that the properties of being supporting

and bridging are preserved by the operations. This will allow us to inductively

construct a triangulation from a collection of simplices which is supporting and

bridging. This is the same as the strategy used in [OT12, Section 2].

Definition 2.2.14. Let X ⊆ Jd
m. We define

X[1→ 2] := { {a0, a1, . . . , ad} ∈ X : a0 ̸= 2 },

X\{1, 2} := { {a1, a2, . . . , ad} : {2, a1, a2, . . . , ad} ∈ X }.

Note here that our notationX\{1, 2} is the same as [OT12, Definition 2.17], but

our operation is different. This is because we want these operations on collections

of simplices to accord with the corresponding operations on triangulations. We

now show that this is indeed the case.

Lemma 2.2.15. Let T ∈ S(m, 2d+ 1). Then e̊(T [1→ 2]) = e̊(T )[1→ 2].

Proof. Let A ∈ e̊(T [1 → 2]). Then we cannot have a0 = 2, otherwise A is a

boundary d-simplex. Hence a0 > 2. But then the pre-image of A under the

contraction [1 → 2] must be A. Therefore A ∈ e̊(T ), and so A ∈ e̊(T )[1 → 2],

since a0 ̸= 2.

Conversely, let A be a d-simplex in e̊(T )[1 → 2]. Then A ∈ e̊(T ) and a0 > 2.

Hence A is unaffected by the contraction [1→ 2], and so A ∈ e̊(T [1→ 2]).
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Lemma 2.2.16. Let T ∈ S(m, 2d+ 1). Then e̊(T \{1, 2}) = e̊(T )\{1, 2}.

Proof. Let A be a (d − 1)-simplex in e̊(T \{1, 2}). Then 1 ∪ 2 ∪ A must be a

(d+1)-simplex of T . We must have a0 > 3, since A is internal in C([3,m], 2d+1).

Therefore 2 ∪ A ∈ e̊(T ), and so A ∈ e̊(T )\{1, 2}.

Conversely, let A ∈ e̊(T )\{1, 2}, so that 2 ∪ A ∈ e̊(T ). Therefore T contains

every d-face of the (d+ 1)-simplex 1 ∪ 2 ∪ A, since all the other d-faces lie on the

boundary of C(m, 2d + 1). Moreover, since there cannot be a d-simplex B of T

such that B ≀ 1 ∪ 2 ∪ A, we must have that 1 ∪ 2 ∪ A is a (d+ 1)-simplex of T by

Lemma 2.2.9. Hence, A is a d-simplex of T \{1, 2}. Furthermore, a0 > 3 because

2 ∪ A ∈ e̊(T ). Hence A ∈ e̊(T \{1, 2}).

Having described the effects of contraction and deletion on the sets e̊(T ), we

now show that these operations preserve the supporting and bridging conditions.

Lemma 2.2.17. Suppose that X ⊆ Jd
m is supporting and bridging. Then X[1→ 2]

is also supporting and bridging.

Proof. We first show that X[1→ 2] must be supporting. Let A ∈ X[1→ 2]. Then

A ∈ X. Since X is supporting, there must be B such that B ≀A and every internal

d-simplex contained in A∪B is in X. But these d-simplices will also be contained

in X[1→ 2], which is therefore also supporting.

Now we show that X[1→ 2] must be bridging. Let

A := {q0, q1, . . . , qi−1, ai, ai+1 . . . , aj, qj+1, qj+2, . . . , qd},

B := {q0, q1, . . . , qi−1, bi, bi+1, . . . , bj, qj+1, qj+2, . . . , qd}

∈ X[1 → 2], where possibly i = 0 or j = d, or both. Suppose these are such that

{ai, ai+1, . . . , aj} ≀ {bi, bi+1, . . . , bj}. Then A,B ∈ X. Since X is bridging, we must

have

Sk := {q0, q1, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj, qj+1, qj+2, . . . , qd} ∈ X
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for all i ⩽ k ⩽ j + 1. But then Sk ∈ X[1 → 2] for all i ⩽ k ⩽ j + 1 since q0 ̸= 2

by assumption.

Lemma 2.2.18. Suppose that X ⊆ Jd
m is supporting and bridging. Then X\{1, 2}

is also supporting and bridging.

Proof. We first show that X\{1, 2} must be supporting. Let A ∈ X\{1, 2}. Then

A′ := 2 ∪ A ∈ X. Thus, since X is supporting, there is a (d − 1)-simplex B′

such that B′ ≀ A′ and every internal d-simplex contained in A′ ∪ B′ is in X. Then

B = {b′1, b′2, . . . , b′d−1} is such that B ≀ A. Let C be a an internal (d − 1)-simplex

contained in A ∪ B. Then 2 ∪ C is contained in A′ ∪ B′, and so is in X, since

c0 ⩾ a0 > 3. This implies that C ∈ X\{1, 2}, which gives that X is supporting.

We now show that X\{1, 2} must be bridging. Let

A := {q1, q2, . . . , qi−1, ai, ai+1, . . . , aj, qj+1, qj+2, . . . , qd},

B := {q1, q2, . . . , qi−1, bi, bi+1, . . . , bj, qj+1, qj+2, . . . , qd}

∈ X\{1, 2}, where possibly i = 0 or j = d, or both. Suppose that these are such

that {ai, ai+1, . . . , aj} ≀ {bi, bi+1, . . . , bj}. Then A′ := 2∪A, B′ := 2∪B ∈ X. Since

X is bridging, we must have

S ′
k := {2, q1, q2, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj, qj+1, qj+2, . . . , qd} ∈ X

for all i ⩽ k ⩽ j + 1. But then

Sk := {q1, . . . , qi−1, ai, ai+1, . . . , ak−1, bk, bk+1, . . . , bj, qj+1, . . . , qd} ∈ X\{1, 2}

for all i ⩽ k ⩽ j + 1.

Characterising odd-dimensional triangulations

The following technical proposition is key to proving our characterisation of trian-

gulations of odd-dimensional cyclic polytopes. We shall use it in the subsequent
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proposition to construct a triangulation whose internal d-simplices are given by a

particular supporting and bridging collection of simplices. This is the most difficult

step in the proof comprised by this section.

Proposition 2.2.19. Let X ⊆ Jd
m be supporting and bridging for C(m, 2d + 1).

We suppose that X is such that there are triangulations U ∈ S([2,m], 2d+ 1) and

W ∈ S([3,m], 2d− 1) such that e̊(U) = X[1→ 2] and e̊(W) = X\{1, 2}. Then W

is a section of U\2.

Proof. For this it suffices to show that any d-simplex of W is a d-simplex of U\2.

This is because U\2 is a triangulation of a 2d-dimensional cyclic polytope, and

hence is determined by its d-simplices by [OT12, Lemma 2.15]. For k > d, a k-

simplex A is a k-simplex of W if and only if all its d-faces are d-simplices of W ,

by Lemma 2.2.9. Moreover, A is a k-simplex of U\2 if and only if all its d-faces

are d-simplices of U\2, by [OT12, Lemma 2.15]. Hence if U\2 contains all the

d-simplices of W , it must contain all the higher-dimensional simplices of W as

well.

Note that d-simplices of U\2 result from (d + 1)-simplices of U with 2 as a

vertex. Hence one can show that every d-simplex of W is a d-simplex of U\2 by

showing that every (d + 1)-simplex of 2 ∗ W is a (d + 1)-simplex of U . In turn,

by Lemma 2.2.9, one can show this by showing that every d-simplex of 2 ∗W is a

d-simplex of U and that no d-simplex of U forms a circuit with a (d + 1)-simplex

of 2 ∗W .

We first show that no d-simplex of U forms a circuit with a (d+ 1)-simplex of

2 ∗W . Suppose that A is a d-simplex of U such that A ≀B, where B is a (d+ 1)-

simplex of 2∗W . We then have that {b1, b2, . . . , bd} ∈ e̊(W), since 2 ⩽ b0 < a0 < b1,

so that b1 > 3, and bd < bd+1 ⩽ m. This means that {2, b1, b2, . . . , bd} ∈ X. Since

A ∈ e̊(U) ⊆ X, we have that {2, a1, a2, . . . , ad} ∈ X by applying the bridging

condition to {2, b1, b2, . . . , bd} and A. This implies that {a1, a2, . . . , ad} ∈ e̊(W).
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But {a1, a2, . . . , ad} ≀ {b1, b2, . . . , bd+1}, which is a d-simplex of W , a contradiction.

Hence, we now show that every d-simplex of 2 ∗ W is a d-simplex of U . It is

clear that if 2∪E is a d-simplex of 2 ∗W , then 2∪E is a d-simplex of U . Indeed,

2 ∪ E is on the boundary of C([2,m], 2d+ 1).

Therefore, let J be a d-simplex of W , and hence of 2 ∗W . We must show that

J is a d-simplex of U . If J is not a d-simplex of U , then there must be a (d + 1)-

simplex K of U such that J ≀K. Hence Ki := {k0, k1, . . . , ki−1, ki+1, ki+2 . . . , kd+1}

is a d-simplex of U for all i ∈ {0, 1, . . . , d+ 1}.

Suppose first that k0 ̸= 2. Then we must have that Kd+1 ∈ e̊(U) ⊆ X,

since this is an internal d-simplex with k0 > 2 and kd < kd+1 ⩽ m. We know that

{2, j0, j1, . . . , jd−1} ∈ X, since {j0, j1, . . . , jd−1} must be an internal (d−1)-simplex

of W . This is because jd−1 < jd ⩽ m and j0 > k0 ⩾ 3. Then, since X is bridging,

we must have that {2, k1, k2, . . . , kd} ∈ X by applying the bridging condition to

Kd+1 and {2, j0, j1, . . . , jd−1}. But then {k1, k2, . . . , kd} is a (d− 1)-simplex of W

which is intertwining with J , a contradiction.

If k0 = 2, then consider the following. We know that {2, j1, j2, . . . , jd} ∈

X, since {j1, j2, . . . , jd} is an internal (d − 1)-simplex of W . This is because

j1 > j0 ⩾ 3 > 2 = k0 and jd < kd+1 ⩽ m. Since X is supporting, there must

exist a (d− 1)-simplex E ≀ {2, j1, j2, . . . , jd}, such that every internal d-simplex in

E ∪ {2, j1, j2, . . . , jd} is an element of X. If e0 > j0, then note that 2 ∪E must be

an element of X, so that E is a (d− 1)-simplex of W with E ≀ J , a contradiction.

If e0 ⩽ j0, then note that {e0, j1, j2, . . . , jd} must be an element of X. We then

have that {e0, j1, j2, . . . , jd} is a d-simplex of U which intertwines K, since e0 > 2

and k0 = 2, with e0 ⩽ j0 < k1 as well. This is another contradiction.

Therefore, every d-simplex of 2∗W is a d-simplex of U . Combined with the fact

that no d-simplex of U is intertwining with a (d+1)-simplex of 2∗W , and applying

Lemma 2.2.9, we obtain that every (d + 1)-simplex of 2 ∗ W is a (d + 1)-simplex
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of U . Hence, every d-simplex of W is a d-simplex of U\2, which gives us that W

is indeed a section of U\2, as desired.

We can now inductively construct triangulations from supporting and bridging

collections.

Proposition 2.2.20. Let X ⊆ Jd
m be supporting and bridging. Then there is a

triangulation T ∈ S(m, 2d+ 1) such that X = e̊(T ).

Proof. We show this by induction on m and d. The base cases consist of the

case where d = 0 and the case where m = 2d + 2. For d = 0, triangulations of

C(m, 2d + 1) are given by subsets of vertices from {2, 3, . . . ,m − 1}. Since the

properties of being supporting or bridging are trivial for d = 0, the result holds for

this case. For m = 2d+ 2, C(m, 2d+ 1) is a simplex and so uniquely triangulates

itself. In this case, Jd
m is empty, and so the unique triangulation is given by the

empty set. Therefore the result holds for both the base cases.

For the inductive step, we consider triangulations of C(m, 2d + 1) and sup-

pose that the claim holds for C(m′, 2d′ + 1) whenever m′ < m or d′ < d. By

Lemma 2.2.17, X[1 → 2] is both supporting and bridging. Hence, by the induc-

tion hypothesis, there is a triangulation U ∈ S([2,m], 2d + 1) such that e̊(U) =

X[1→ 2]. By Lemma 2.2.18, X\{1, 2} is also supporting and bridging. Hence, by

the induction hypothesis, there is a triangulation W ∈ S([3,m], 2d− 1) such that

e̊(W) = X\{1, 2}.

By Proposition 2.2.19, we have that W is a section of U\2. By [RS00,

Lemma 4.7(i)] as illustrated in Section 2.1.5, we therefore have a triangula-

tion T ∈ S(m, 2d + 1) such that T [1 → 2] = U and T \{1, 2} = W . Hence

X[1 → 2] = e̊(U) = e̊(T [1 → 2]) = e̊(T )[1 → 2], by Lemma 2.2.15, and

X\{1, 2} = e̊(W) = e̊(T \{1, 2}) = e̊(T )\{1, 2}, by Lemma 2.2.16. It is straight-

forward to see that this means that X = e̊(T ), as desired.
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Proof of Theorem 2.2.3. Lemma 2.2.12 and Lemma 2.2.10 give us that e̊(T ) is

supporting and bridging for every triangulation T . Lemma 2.2.9 tells us that the

assignment T 7→ e̊(T ) is injective. Finally Proposition 2.2.20 tells us that this

map is a surjection.

Remark 2.2.21. Theorem 2.2.3 generalises the bijection obtained in [FR21] between

triangulations of three-dimensional cyclic polytopes and persistent graphs. Here

the supporting and bridging properties correspond to the defining properties of

persistent graphs, known in [FR21] as the bar property and the X-property respec-

tively. The problem of characterising the d-skeleton of triangulations of (2d + 1)-

dimensional cyclic polytopes was raised as an open problem in the conclusion of

[FR21]. Theorem 2.2.3 solves this problem.

Example 2.2.22. Consider the cyclic polytope C(6, 3). This has six triangula-

tions, Tl, T1, T2, T ′
1 , T ′

2 , Tu, where e̊(Tl) = {24, 25, 35}, e̊(T1) = {24, 25}, e̊(T ′
1 ) =

{35, 25}, e̊(T2) = {24}, e̊(T ′
2 ) = {35}, e̊(Tu) = ∅. The set {24, 35} is not obtained

because it is not bridging, for which it would need to contain 25. The set {25} is

not obtained because it is not supporting. The options for the support are 3 and

4, which would require 35 and 24 respectively.

2.3 Expanding triangulations

We now change focus and work on describing the pre-images of a triangulation un-

der an arbitrary contraction [x→ v ← y]. The pre-images of triangulations under

the contraction [m − 1 ← m] are well-understood due to [RS00, Lemma 4.7(i)],

which states that such triangulations T̃ are in bijection with sections of the vertex

figure T \(m− 1), as we illustrated in Section 2.1.5. By symmetry, one can apply

the same theory for contractions [1→ 2].
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In this section we show how one can extend the theory to all contractions, that

is, for any contraction [x → v ← y] of C([m − 1]v+, δ). This is a technical result

which will be used to prove key lemmas in the following chapter. This general case

is more challenging, because the vertex figures of C(m−1, δ) are less well-behaved

at vertices which are not 1 or m − 1. Indeed, these vertex figures are not cyclic

polytopes.

We consider the following example, which suggests that a version of [RS00,

Lemma 4.7(i)] ought to hold at vertices besides the first and last vertex. We

spend the remainder of this chapter proving this more general version of [RS00,

Lemma 4.7(i)].

Example 2.3.1. We proceed in the opposite direction to Example 2.1.4. That

is, we consider the same triangulation T of C(5, 3), but now directly compute the

triangulations T̃ of C([5]2+, 3) such that T̃ [x→ 2← y] = T . We then analyse the

triangulated vertex figure T \2 to see if there is a correspondence.

By direct computation, there are four triangulations T̃ of C([5]2+, 3) such that

T̃ [x→ 2← y] = T , namely

T̃1 = ∅ ∪ {1xy3, xy35} ∪ {1x34, 1x45, x345} ∪∅,

T̃2 = ∅ ∪ {1xy3, xy34, xy45} ∪ {1x34, 1x45} ∪ {y345},

T̃3 = ∅ ∪ {1xy4, xy45} ∪ {1x45} ∪ {1y34, y345},

T̃4 = ∅ ∪ {1xy5} ∪∅ ∪ {1y34, 1y45, y345}.

Here we have split up the simplices into sets according to whether they contain

neither x nor y, both x and y, x but not y, or y but not x. Now let

Wi = {A : A ∪ {x, y} ∈ T̃i },
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Figure 2.6: The triangulation |T | of C(5, 3) and the triangulation |T \2|
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so that

W1 = {13, 35},

W2 = {13, 34, 45},

W3 = {14, 45},

W4 = {15}.

Consider these sets of simplices as subcomplexes of T \2. We obtain the results

shown in Figure 2.7 using geometric realisations. Note further that the simplices

of the triangulation |T̃i| which have |x| as a vertex correspond to the simplices of

|T \2| which are above the section, and the simplices of the triangulation |T̃i| which

possess |y| as a vertex correspond to the simplices of |T \2| which are below the

section.

This suggests that there ought to be a version of [RS00, Lemma 4.7(i)] for ex-

pansion at vertices v such that 1 < v < m. However, there are several outstanding

issues.

(1) The vertex figures C(m, δ)\v are not generally cyclic polytopes for 1 < v <

m, as can be seen from Figure 2.6 and Figure 2.7.
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Figure 2.7: Sections of |T \2|
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(2) It is not clear how to define the orientation on the vertex figure C(m, δ)\v,

that is, how to divide the facets of C(m, δ)\v into upper and lower facets.

The orientation of C(5, 3)\2 from Figure 2.7 may look very natural, with |13|

and |35| as lower facets and |15| as the sole upper facet. But it is not clear

where this comes from, because |123| is a lower facet of C(5, 3), whereas |125|

and |235| are upper facets.

(3) Likewise, it is not clear how to orient the simplices in the triangulation.

From Figure 2.7, it seems that |345| has lower facet |35| and upper facets

|34|, |45|, whereas |134| has lower facets |13|, |34| and upper facet |14|. But

is not immediately obvious what the basis for this is.

(4) Finally, it is not obvious how to define sections of a triangulation of the

vertex figure C(m, δ)\v. Moreover, if one can define the right notion of a

section, it is not clear whether such sections will be triangulations of lower-

dimensional cyclic polytopes, given that the vertex figures themselves are

not cyclic polytopes.

Over the course of this section we shall show how to resolve all these issues and

prove the analogue of [RS00, Lemma 4.7(i)] at vertices which are not 1 or m. We

first show how one can orient the vertex figures C(m, δ)\v, that is, decide which

the upper and lower facets of C(m, δ)\v are. This explains the natural orientation

we arrived at in Figure 2.7, and solves issue (2). Next we apply the same logic to

the simplices of the triangulation, thereby answering (3).

This gives us a partial order on the simplices of T \v. Using this, we derive

the relevant notion of a section within the triangulation T \v. We show that, in

fact, our sections are triangulations of C([m] \ v, δ − 2), solving issue (4). This

culminates in our proving the following proposition, which is the analogue of [RS00,

Lemma 4.7(i)], showing that point (1) is not a problem.
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Proposition 2.3.2. Let T be a triangulation of C(m, δ). There is a bijection

between triangulations T̃ of C([m]v+, δ) such that T̃ [x→ v ← y] = T and sections

of T \v, given by

{
T̃ ∈ S([m]v+, δ),

T̃ [x→ v ← y] = T

}
←→ { Sections W of T \v }

T̃ 7−→ T̃ \{x, y}

T ◦ ∪ (W ∗ {x, y})

∪(T \v+ ∗x)∪ (T \v− ∗ y)
7−→ W .

Remark 2.3.3. It suffices to prove Proposition 2.3.2 for δ odd. For δ even it

already follows from [RS00, Lemma 4.7(i)], since in this case the cyclic permutation

i 7→ i+(m−v) defines an automorphism of C(m, δ) which sends vertex v to vertex

m—see [KW03]. Hence one may apply [RS00, Lemma 4.7(i)] to the vertex v as

if it were vertex m, which gives Proposition 2.3.2 in this case. But for δ odd

this permutation does not define an automorphism, and so more work needs to be

done. Indeed, the fact that, for δ odd and v ∈ [2,m− 1], C(m, δ)\v is not a cyclic

polytope precludes this permutation from giving an automorphism.

The methods of this section may still be applied to even-dimensional cyclic

polytopes. One can check that this is equivalent to considering C(m, 2d) subject

to the given automorphism. However, restricting our attention to δ odd allows us

to simplify some proofs.

Proving Proposition 2.3.2 requires theory for working with triangulated vertex

figures and their sections. Developing this theory is the task of Sections 2.3.1–2.3.4.

Remark 2.3.4. Proposition 2.3.2 and [RS00, Lemma 4.7(i)] are reminiscent of the

single-element extension theorem of Las Vergnas for oriented matroids [Las78]
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[Bjö+99, Section 7.1] [RZ94, Theorem 4.1.(1)]. However, it does not seem that

they follow from this result in any obvious way.

2.3.1 Facets of vertex figures

Our first task is to find the correct orientation of the vertex figure C(m, 2d+1)\v:

the correct division of its facets into upper and lower facets. It is important to

note that, as in Example 2.3.1, this will not generally match the orientation of

C(m, 2d+ 1). That is to say, if F is a lower facet of C(m, 2d+ 1)\v according to

our orientation, then F ∪ v will not generally be a lower facet of C(m, 2d+ 1).

Recall from Gale’s Evenness Criterion that a facet F of C(m, 2d + 1) can be

expressed uniquely as a union of disjoint pairs of consecutive numbers along with

either 1 or m. Hence, given v ∈ [2,m − 1], and a facet F of C(m, δ) such that

v ∈ F , we can talk about the pair of consecutive entries that v lies in, which must

either be {v − 1, v} or {v, v + 1}. We then define the upper and lower facets of

C(m, 2d+ 1)\v as follows.

Definition 2.3.5. Let v ∈ [2,m − 1] and let F be a facet of C(m, 2d + 1) such

that v ∈ F . Then F \ v is a facet of C(m, 2d+ 1)\v.

� If the other element in the pair with v in F is v + 1, then we say that F \ v

is a lower facet of C(m, 2d+ 1)\v.

� If the other element in the pair with v in F is v − 1, then we say that F \ v

is an upper facet of C(m, 2d+ 1)\v.

The following lemma indicates why our orientation of the vertex figure

C(m, 2d + 1)\v is the correct one when it comes to considering expansion. A

lower facet F of C(m, 2d + 1)\v should always lie below a section, and hence

should always become a facet F ∪ y of C([m]v+, 2d+1) under the expansion given

by the section.
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Lemma 2.3.6. We have that F is a lower facet of C(m, 2d + 1)\v if and only if

F ∪ y is a facet of C([m]v+, 2d + 1). Dually, we have that F is an upper facet of

C(m, 2d+ 1)\v if and only if F ∪ x is a facet of C([m]v+, 2d+ 1).

Proof. If F ∪ v is either an even or an odd subset of [m] and v is in a pair with

v + 1, then F ∪ y will respectively be either an even or an odd subset of [m]v+.

Conversely, if F ∪ y is either an even or an odd subset of [m]v+ where F ⊆ [m] \ v,

then y must be in a pair with v + 1, since x /∈ F . Consequently F ∪ v is either an

even or an odd subset of [m] with v in a pair with v + 1. The analogous claim for

upper facets follows by a similar argument.

One can also describe the upper and lower facets of C(m, 2d + 1)\v using the

following, which can be seen as a generalisation of Gale’s Evenness Criterion.

Lemma 2.3.7. Let F ⊆ [m] \ v. Then

� F is a lower facet of C(m, 2d + 1)\v if and only if #{ i ∈ F : j < i < v }

is even for all j ∈ [v − 1] \ F and #{ i ∈ F : v < i < j } is odd for all

j ∈ [v + 1,m] \ F ; and

� F is an upper facet of C(m, 2d + 1)\v if and only if #{ i ∈ F : j < i < v }

is odd for all j ∈ [v − 1] \ F and #{ i ∈ F : v < i < j } is even for all

j ∈ [v + 1,m] \ F .

Proof. We only show the first claim, since the second claim is similar. Suppose

that F is a lower facet of C(m, 2d+1)\v. Then F ∪v is a facet of C(m, 2d+1) and

v occurs in a pair with v + 1. Let j ∈ [v − 1] \ F . There are then a whole number

of pairs of consecutive numbers between j and v, so #{ i ∈ [m] : j < i < v } is

even. Let j ∈ [v + 1,m] \ F . Then the elements of F between j and v consist of

v + 1 and a set of pairs of consecutive numbers, so #{ i ∈ [m] : v < i < j } is odd.
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Suppose now that F is such that #{ i ∈ [m] : j < i < v } is even for all

j ∈ [v − 1] \ F and #{ i ∈ [m] : v < i < j } is odd for all j ∈ [v + 1,m] \ F .

Then we must have v + 1 ∈ F , since otherwise we can choose j = v + 1, and

#{ i ∈ [m] : v < i < v + 1 } = 0. The remaining elements of F must consist of

disjoint pairs of consecutive numbers and possibly 1 or m, otherwise we can find

gaps in F which contradict our assumption. Moreover, F cannot contain both 1

and m, since F must have 2d + 1 elements. This gives that F ∪ v is a facet of

C(m, 2d + 1) where v occurs in a pair with v + 1. Hence F is a lower facet of

C(m, 2d+ 1)\v.

The following lemma describes the significance of the intersections of upper and

lower facets of the vertex figure C(m, 2d+1)\v. It is analogous to the easily-verified

fact that the facets of C(m, δ) correspond precisely to the (δ − 1)-simplices which

are intersections of a lower facet of C(m, δ+1) and an upper facet of C(m, δ+1).

Lemma 2.3.8. If G ∈
(
[m]\v
2d−1

)
and G = F ∩ F ′, where F is an upper facet of

C(m, 2d + 1)\v and F ′ is a lower facet of C(m, 2d + 1)\v, then G is a facet of

C([m] \ v, 2d− 1).

Proof. Let

j = max{ i ∈ [m] \ F : i < v },

j′ = max{ i ∈ [m] \ F ′ : i < v },

k = min{ i ∈ [m] \ F : v < i },

k′ = min{ i ∈ [m] \ F ′ : v < i }.

We cannot have j = j′, since, by Lemma 2.3.7, #{ i ∈ F : j < i < v } is odd,

whereas #{ i ∈ F ′ : j′ < i < v } is even. Therefore, suppose that j < j′. This

implies that j′ ∈ F , so that F = G ∪ j′. Hence, k′ /∈ F , so that k < k′ and

F ′ = G ∪ k′.
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Then #{ i ∈ G : j′ < i < v } = #{ i ∈ F ′ : j′ < i < v }, which is even,

and #{ i ∈ G : v < i < k } = #{ i ∈ F : v < i < k }, which is also even.

Furthermore, #{ i ∈ G : j < i < j′ } is even, since #{ i ∈ F : j < i < v } is odd

and #{ i ∈ F ′ : j′ < i < v } is even. Similarly, #{ i ∈ G : k < i < k′ } is even.

Thus, G∩[1, j] consists of a set of disjoint pairs along with possibly 1, since this

is true of F and F ′; G∩[j, j′] is an interval of even length; G∩[j′, k] is an interval in

[m]\v of even length; G∩[k, k′] is an interval of even length; and G∩[k′,m] consists

of a disjoint union of pairs, along with possiblym. Consequently, G satisfies Gale’s

Evenness Criterion, and so is a facet of C([m] \ v, 2d+ 1). The case where j′ < j

is similar.

Corollary 2.3.9. If G = F ∩F ′, where F is an upper facet of C(m, 2d+1)\v and

F ′ is a lower facet of C(m, 2d+1)\v, then G∪{x, y} is a facet of C([m]v+, 2d+1).

Proof. This follows from Gale’s Eveness Criterion and Lemma 2.3.8. If G is an

even (respectively, odd) subset of [m] \ v, then G∪ {x, y} is an even (respectively,

odd) subset of [m]v+. Adding a pair of consecutive entries cannot change the

parities of any gaps.

2.3.2 Orienting the simplices

We now show how one can orient the simplices of the triangulation T \v in a similar

way to how we have oriented the vertex figure C(m, 2d + 1)\v. This allows us to

introduce a partial order on these simplices.

We first explain the logic of our orientation of the simplices of T \v. Given a

triangulation T of C(m− 1, 2d+ 1), we wish to understand the different triangu-

lations T̃ of C([m− 1]v+, 2d+1) such that T̃ [x→ v ← y] = T . We approach this

by considering the triangulated vertex figure T \v. It is clear that T \v contains

T̃ \{x, y} as a simplicial subcomplex. We would like to think of these simplicial



76 Chapter 2. Cyclic polytopes

subcomplexes as sections which divide T \v into a part where x← v under expan-

sion and a part where v → y under expansion.

However, it is not clear how to do this geometrically. That is, it is not clear

how to choose a direction to define a part of |T \v| lying “above” |T̃ \{x, y}| and a

part lying “below”. Hence, we look to characterise these combinatorially instead.

Note that, for every 2d-simplex S of T \v, we must have that S ∪ v is a simplex of

T , so that S ∪x is a (2d+1)-simplex of T̃ or that S ∪ y is a (2d+1)-simplex of T̃ .

But we cannot have both, since S ∪ {x, y} can be decomposed into two halves of

a circuit, one of which is contained in S ∪ x, and the other of which is contained

in S ∪ y. We therefore orient the simplices of the triangulated vertex figure T \v

as follows.

Definition 2.3.10. Let S be a 2d-simplex of T \v. Then S∪{x, y} consists of 2d+3

distinct vertices, and so uniquely gives two halves of a circuit of C([m]v+, 2d+ 1),

which we denote (S− ∪ x, S+ ∪ y). Then we say that S \ s is a lower facet of S if

s ∈ S+, and an upper facet of S if s ∈ S−.

Remark 2.3.11. Recall from Remark 2.2.7 that for cyclic polytopes we can dis-

tinguish which halves of circuits are on top and which halves are on bottom. In

Definition 2.3.10, we do this for circuits of the vertex figure by seeing which cor-

responding circuit halves contain x and y in C([m]v+, δ). This then allows us to

determine upper and lower facets of simplices.

One can also translate this definition of the upper and lower facets of simplices

of T \v into an evenness criterion, which can be deduced straightforwardly from

the definition.

Lemma 2.3.12. Let S be a 2d-simplex of T \v and let s ∈ S. Then

(1) if s < v, then S \ s is
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(a) a lower facet of S if #{ i ∈ S : s < i < v } is even, and

(b) an upper facet of S if #{ i ∈ S : s < i < v } is odd;

(2) if v < s, then S \ s is

(a) a lower facet of S if #{ i ∈ S : v < i < s } is odd, and

(b) an upper facet of S if #{ i ∈ S : v < i < s } is even.

By comparing with Lemma 2.3.7, we see that our notion of the upper and lower

facets of a simplex of T \v matches our notion of the upper and lower facets of

C(m, 2d+ 1)\v.

Lemma 2.3.13. Let T be a triangulation of C(m, 2d+1). Let S,R be 2d-simplices

of T \v. Then S ∩ R cannot be both a lower facet of S and a lower facet of R.

Similarly, S ∩R cannot be both an upper facet of S and an upper facet of R.

Proof. We only show the first claim, since the second claim is similar. Suppose

that F is both a lower facet of S = F ∪ s and a lower facet of R = F ∪ r. Without

loss of generality, assume that s < r. If s < r < v or v < s < r, then are are

an even number of elements f ∈ F such that s < f < r, by Lemma 2.3.12. If

s < v < r, then there are an odd number of elements f ∈ F such that s < f < r,

by Lemma 2.3.12.

We have #F ∪{s, r, v} = 2d+3, and so there is a circuit (Z,Z ′) of C(m, 2d+1)

such that Z∪Z ′ = F∪{s, r, v}. Suppose, without loss of generality, that s ∈ Z. By

the previous paragraph, we must then have r ∈ Z ′. Hence the simplices F ∪{s, v}

and F ∪{r, v} each contain one half of a circuit, which contradicts their both being

simplices of T .

In the manner of [Ram97, Definition 5.7], we may now define a relation on the

set of 2d-simplices of T \v. Given two 2d-simplices S,R, we write that S
v
⋖ R if
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and only if S ∩R is an upper facet of S and a lower facet of R. Hence, this is the

same relation as Remark 2.1.3, only applied to the simplices of the triangulated

vertex figure. We show that
v

⩽ is a partial order using the method of [Ram97,

Corollary 5.8]: we define a total order on the simplices of T \v and show that
v

⩽ is

a sub-order of it. This means that every triangulation of C(m, 2d+1)\v induced by

a triangulation of C(m, 2d+1) is stackable, in the sense of [RS00, Definition 2.13].

To each S ∈
(
[m]\v
2d+1

)
, we assign a unique string by

Γ:

(
[m] \ v
2d+ 1

)
→ {o, ∗, e}m−1

Γ(S) := (γv+1(S), γv+2(S), . . . , γm(S), γ1(S), γ2(S), . . . , γv−1(S)),

where

γj(S) =



∗ if j ∈ S

if j /∈ S



if j < v

e if #{ b ∈ S : j < b < v } is even,

o if #{ b ∈ S : j < b < v } is odd,

if v < j

e if #{ b ∈ S : v < b < j } is even,

o if #{ b ∈ S : v < b < j } is odd.

We then denote by ⪯ the lexicographic order on
(
[m]\v
2d+1

)
induced by Γ and the

ordering of the letters o ≺ ∗ ≺ e.

Lemma 2.3.14. Let T be a triangulation of C(m, 2d+1) and consider the trian-

gulated vertex figure T \v. Let S and R be 2d-simplices of T \v such that S
v
⋖ R,

with S \ {s} = R \ {r}.

(1) If we have v < s < r in the cyclic ordering, then γr(S) = e and γs(R) = e.

(2) If we have v < r < s in the cyclic ordering, then γr(S) = o and γs(R) = o.



2.3. Expanding triangulations 79

(3) For j /∈ S ∪ R, we have that γj(S) ̸= γj(R) if and only if j lies between s

and r in the cyclically shifted order v+ 1 <v v+ 2 <v · · · <v n <v 1 <v 2 <v

· · · <v v − 1.

Proof. By Lemma 2.3.12, the fact that S
v
⋖R implies that

if s < v, then #{ i ∈ S : s < i < v } is odd, and

if v < s, then #{ i ∈ S : v < i < s } is even,

and

if r < v, then #{ i ∈ R : r < i < v } is even, and

if v < r, then #{ i ∈ R : v < i < r } is odd.

We consider the case where v < s < r is a cyclic ordering.

(1) Within this set of cases, we first suppose that v < s < r. Then

#{ i ∈ R : v < i < s } = #{ i ∈ S : v < i < s },

which is even, and

#{ i ∈ S : v < i < r } = #{ i ∈ R : v < i < r }+ 1,

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) ̸= γj(R) if and only if s <v j <v r in the cyclically shifted order.

(2) If r < v < s, then

#{ i ∈ R : v < i < s } = #{ i ∈ S : v < i < s },

which is even, and

#{ i ∈ S : r < i < v } = #{ i ∈ R : r < i < v },

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) ̸= γj(R) if and only if s <v j <v r in the cyclically shifted order.
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(3) If s < r < v, then

#{ i ∈ R : s < i < v } = #{ i ∈ S : s < i < v } − 1,

which is even, and

#{ i ∈ S : r < i < v } = #{ i ∈ R : r < i < v },

which is even. Therefore γs(R) = e and γr(S) = e. Moreover, if j /∈ S ∪ R, then

γj(S) ̸= γj(R) if and only if s <v j <v r in the cyclically shifted order.

The cases where v < r < s is a cyclic ordering are similar.

Corollary 2.3.15. The relation
v

⩽ is a partial order.

Proof. We show that S
v

⩽ R implies that S ⪯ R. For this it suffices to show

that S
v
⋖ R implies that S ⪯ R. If v < s < r in the cyclic ordering, then, by

Lemma 2.3.14(3), it suffices to consider γs(S) and γs(R) in order to compare Γ(S)

and Γ(R) in the lexicographic order, since this is the first entry that differs. Then

we have γs(S) = ∗ and γs(R) = e by Lemma 2.3.14(1) so that S ⪯ R. Similarly,

if v < r < s in the cyclic ordering, then we consider γr(S) = o and γr(R) = ∗, so

that S ⪯ R likewise. We conclude that S
v

⩽ R implies that S ⪯ R. This entails

that
v

⩽ is a partial order, since ⪯ is a total order.

Recall that L is a lower set for a partial order ⩽ on a set P if L is a subset of

P such that whenever p ∈ L and p′ ⩽ p, we also have p′ ∈ L. The notion of an

upper set of a partial order is defined dually. These concepts, together with our

partial order
v

⩽, allow us to characterise the set of simplices in T \v where x← v

under expansion and the set of simplices where v → y under expansion.

Lemma 2.3.16. Let T be a triangulation of C(m, 2d+ 1) with T̃ a triangulation

of C([m]v+, 2d+ 1) such that T̃ [x→ v ← y] = T . Let L be the set of 2d-simplices
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S of T \v such that S ∪ y is a (2d + 1)-simplex of T̃ and let U be the set of 2d-

simplices R of T \v such that R∪ x is a (2d+ 1)-simplex of T̃ . Then L is a lower

set for
v

⩽ and U is an upper set for
v

⩽. Moreoever, L ∪ U = T \v and L ∩ U = ∅.

Proof. It is clear that L∪U must comprise all of the 2d-simplices of T \v. This is

because if S is a 2d-simplex of T \v, then S ∪ v is a (2d+ 1)-simplex of T , and so

either S ∪ x or S ∪ y is a (2d + 1)-simplex of T̃ . Then, as we also argued earlier,

we cannot have L∩U ≠ ∅, since then both S ∪ x and S ∪ y are (2d+1)-simplices

of T̃ . But this is prevented by the circuit (S− ∪ x, S+ ∪ y) of Definition 2.3.10, as

S ∪ x ⊇ S− ∪ x and S ∪ y ⊇ S+ ∪ y.

We now show that L is a lower set for
v

⩽. To show this, it suffices to consider

R ∈ L and S ∈ T \v such that S
v
⋖ R, and to show that S ∈ L. Let F = S ∩ R,

which is an upper facet of S and a lower facet of R. Suppose for contradiction

that S ∪ x is a (2d + 1)-simplex of T̃ . Then F ∪ x is a 2d-simplex of T̃ . Since

F is a lower facet of R, we have that F ∪ x ⊇ R− ∪ x, where (R− ∪ x,R+ ∪ y)

is the circuit from Definition 2.3.10. Since R ∈ L, we have that R ∪ y ∈ T̃ . But

then, R ∪ y ⊇ R+ ∪ y, so that both halves of (R− ∪ x,R+ ∪ y) are contained in

simplices of T̃ , which is a contradiction. Therefore, we must have that S ∪ y is a

(2d + 1)-simplex of T̃ , which means that S ∈ L. Consequently, L is a lower set

for
v

⩽. Since U is the complement of L, it is an upper set for
v

⩽.

2.3.3 Sections of vertex figures

We now show how the partial order on the 2d-simplices of T \v allows us to define

the notion of a section of T \v. We then prove fundamental properties of sections

of T \v which will enable us to prove that they are in bijection with triangulations

T̃ of C([m]v+, 2d+ 1) such that T̃ [x→ v ← y] = T .

Definition 2.3.17. Given a lower set L of (T \v,
v

⩽), we let U = (T \v) \L be the
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upper set which is its complement, and define the associated section W(L) to be

the abstract simplicial complex given by the set of (2d − 1)-simplices W of T \v

such that either

� W = A ∩B where A ∈ L and B ∈ U , or

� W is an upper facet of C(m, 2d+ 1)\v and an upper facet of A ∈ L, or

� W is a lower facet of C(m, 2d+ 1)\v and a lower facet of B ∈ U .

The following lemma shows that sections of T \v are triangulations of C([m] \

v, 2d− 1), just as sections of T \m are triangulations of C(m− 1, δ − 2) for trian-

gulations T of C(m, δ).

Lemma 2.3.18. For a triangulation T of C(m, 2d + 1), sections of T \v are tri-

angulations of C([m] \ v, 2d− 1).

Proof. We prove the claim by induction on #L. In the base case, we have that

L = ∅, so that W(L) = F l
v([m] \ v, 2d + 1). Hence, we must show that F l

v([m] \

v, 2d + 1) is a triangulation of C([m] \ v, 2d − 1). We must first show that there

is no circuit (A,B) of C([m] \ v, 2d− 1) such that A and B are both simplices in

F l
v([m]\v, 2d+1). If this were the case, then one of (A∪x,B∪y) or (A∪y,B∪x)

would be a circuit of C([m]v+, 2d + 1). But this contradicts Lemma 2.3.6, which

gives that A ∪ y and B ∪ y must be contained in lower facets of C([m]v+, 2d+ 1),

which cannot contain halves of circuits, since halves of circuits must be internal

simplices.

We now show that the facets of the (2d − 1)-simplices in F l
v([m] \ v, 2d + 1)

are either shared with other (2d− 1)-simplices of F l
v([m] \ v, 2d+ 1), or are facets

of C([m] \ v, 2d − 1). Let S ∈ F l
v([m] \ v, 2d + 1) and let s ∈ S, so that S \ s

is a facet of S. We have that S ∪ v is a facet of C(m, 2d + 1), so we must have

that (S \ s) ∪ v = (S ∪ v) ∩ (R ∪ v) for a facet R ∪ v of C(m, 2d + 1). Hence
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S \ s = S ∩R for a facet R ∈ Fv([m] \ v, 2d+ 1). If R ∈ F l
v([m] \ v, 2d+ 1), then

we are done. Otherwise, R ∈ Fu
v ([m] \ v, 2d + 1), and so S \ s = S ∩ R is a facet

of C([m] \ v, 2d− 1) by Lemma 2.3.8. This establishes that F l
v([m] \ v, 2d + 1) is

a triangulation of C([m] \ v, 2d− 1), which is the base case of our induction.

Now, to show the inductive step, we suppose that we have a sectionW(L) such

that #L ≠ ∅. Choose a simplex S ∈ L which is maximal in L with respect to
v

⩽.

Then L′ := L \ S is a lower set of
v

⩽ and, by the induction hypothesis, W(L′) is a

triangulation of C([m] \ v, 2d − 1). It follows from Definition 2.3.17 and the fact

that S is maximal in L that W(L) = (W(L′) \ F l
v(S, 2d+ 1)) ∪ Fu

v (S, 2d+ 1).

It can be seen thatW(L) andW(L′) are bistellar flips of each other. Indeed, if

we let Se = {s0, s2, . . . , s2d} and So = {s1, s3, . . . , s2d−1}, then either (Se∪x, So∪y)

is a circuit of C([m]v+, 2d + 1) or (So ∪ x, Se ∪ y) is a circuit of C([m]v+, 2d + 1).

Hence, either F l
v(S, 2d+1) = {S \ s : s ∈ So } = Fu(S, 2d− 1), or F l

v(S, 2d+1) =

{S \ s : s ∈ Se } = F l(S, 2d− 1). Using this to compare W(L) and W(L′), then,

respectively, we obtain that eitherW(L) = (W(L′)\Fu(S, 2d−1))∪F l(S, 2d−1))

or W(L) = (W(L′) \ F l(S, 2d − 1)) ∪ Fu(S, 2d − 1)). In the former case, W(L)

is an increasing bistellar flip of W(L′) as a triangulation of C([m] \ v, 2d − 1); in

the latter case, W(L) is a decreasing bistellar flip of W(L) as a triangulation of

C([m] \ v, 2d − 1). Since bistellar flips send triangulations of C([m] \ v, 2d − 1)

to triangulations of C([m] \ v, 2d − 1), we have in either case that W(L) is a

triangulation of C([m] \ v, 2d− 1). The result then follows by induction.

We obtain the following result, which will be useful in showing how sections of

T \v correspond to expanded triangulations.

Corollary 2.3.19. Let T be a triangulation of C(m, 2d+1) with W(L) a section

of T \v. Then there exists no circuit (A ∪ x,B ∪ y) of C([m]v+, 2d + 1) such that

A and B are both simplices in W(L).
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Proof. If there were simplices A and B of W(L), such that (A ∪ x,B ∪ y) was a

circuit of C([m]v+, 2d + 1), then (A,B) would be a circuit of C([m] \ v, 2d − 1),

which would contradict Lemma 2.3.18.

The implication of this corollary for Proposition 2.3.2 is that we may infer

that the simplices W(L) ∗ {x, y} do not contain any circuits of C([m]v+, 2d + 1).

However, we also need to show that there can be no circuits betweenW(L)∗{x, y}

and T \v− ∗ y, and W(L) ∗ {x, y} and T \v+ ∗ x, for which we need the following

definition and lemma, which uses Corollary 2.3.19 in its proof. Of course, we also

need that there can be no circuits between T \v− ∗ y and T \v+ ∗ x, which we

subsequently deduce.

Definition 2.3.20. Let T be a triangulation of C(m, 2d+1) withW(L) a section

of T \v and A a simplex of T \v. Then we say that A is submerged by W(L) if A

is contained in a simplex of L or a simplex of W(L). Similarly, we say that A is

supermerged by W(L) if A is contained in a simplex of U or a simplex of W(L).

These are analogues for vertex figures of C(m, 2d + 1) of the usual notions

of submersion and supermersion from [ER96; Wil21a] respectively, which we will

cover in Chapter 3. These usual notions are defined for C(m, δ) by comparing

heights with respect to the (δ+1)-th coordinate. As discussed earlier, for C(m, δ)\v

it is not clear what direction one should use to compare heights, so we recreate

the notions combinatorially using the partial order
v

⩽. We now prove the following

lemma concerning submersion.

Lemma 2.3.21. Let T be a triangulation of C(m, 2d+1) with W(L) a section of

T \v. Then there exists no circuit (A ∪ x,B ∪ y) of C([m]v+, 2d + 1) such that A

is a simplex of W(L) and B is submerged by W(L).

Proof. Suppose for contradiction that we are in the situation described and that
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there exists a circuit (A∪ x,B ∪ y) of C([m]v+, 2d+1) such that A is a simplex of

W(L) and B is submerged by W(L).

We show the result by induction on #L. In the base case we have L = ∅, and

so both A and B must be simplices ofW(L). But this contradicts Corollary 2.3.19.

For the inductive step, we may assume that L ≠ ∅, and so choose S ∈ L which

is maximal, so that L′ := L \ S is a lower set with associated section W(L′). By

the induction hypothesis, the claim holds for W(L′), which is equal to (W(L) \

Fu
v (S, 2d+ 1)) ∪ F l

v(S, 2d+ 1).

We have that A is a simplex ofW(L) and B is submerged byW(L). However,

by the induction hypothesis, we cannot have both that A is a simplex of W(L′)

and that B is submerged by W(L′). Hence we must either have that A is not a

simplex of W(L′) or that B is not submerged by W(L′). In the latter case, we

must have that A is contained in upper facets of S but no lower facets, and in the

former case we must have that B is contained in upper facets of S but no lower

facets. In the first case A must contain the intersection of the upper facets of S,

whereas in the second case B must contain the intersection of the upper facets

of S. At most one of these cases can hold, then, since A and B are disjoint. We

consider each of these cases in turn.

Suppose first that B is contained in upper facets of S but no lower facets. This

means that B is a simplex of ofW(L). But A is also a simplex ofW(L), so that we

have a circuit (A∪x,B ∪ y) of C([m]v+, 2d+1) where A and B are both simplices

of W(L). This contradicts Corollary 2.3.19.

Suppose now that A is only contained in upper facets of S. We must have that

either A is the intersection of the upper facets of S, or that S has d + 1 upper

facets and A is a d-simplex contained in all but one of these facets. Note that this

latter case is not possible for triangulations of cyclic polytopes, where 2d-simplices

always have d upper facets, but it is possible for triangulations of vertex figures of
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cyclic polytopes: see the simplex |345| in Figure 2.7. Simplices of the triangulated

vertex figure are sometimes upside-down, as it were.

If A is the intersection of the upper facets of S, then we have that S = J ∪ A

where (J ∪ x,A ∪ y) is a circuit of C([m]v+, 2d + 1). If a, b, j are the smallest

elements of the respective sets which are greater than v (or simply the smallest if

no elements are greater than v), then we have that j < a < b is a cyclic ordering

by considering the circuits (J ∪ x,A ∪ y) and (A ∪ x,B ∪ y). We then obtain

that ((A \ a) ∪ {j, x}, B ∪ y) is a circuit of C([m]v+, 2d+ 1). This contradicts the

induction hypothesis, since B is submerged by W(L′) and (A \ a)∪ j is a simplex

of W(L′), because it lies in the lower facet S \ a of S.

We now must consider the case where S has d + 1 upper facets and A is a

d-simplex contained in all but one of these facets. Hence, let S = J ∪A = S−∪S+,

where (S− ∪ x, S+ ∪ y) is a circuit and J ∩ A = ∅. By assumption, we have that

A ⊇ S+, and

#S+ = d, #S− = d+ 1,

#A = d+ 1, #J = d.

This also implies that #B = d. We must have that at least one of s−0 and s−d

is not an element of A, since #A ∩ S− = 1. Suppose that s−0 /∈ A; the other

case behaves similarly. Here we have s−0 < s+0 = a0 < b0. We then have that

((A\a0)∪{s−0 , x}, B∪y) is a circuit of C([m]v+, 2d+1) with the lower facet S \a0
of S containing (A \ a0) ∪ s−0 . Thus (A \ a0) ∪ s−0 a simplex of W(L′), giving a

contradiction, because B is submerged by W(L′). This concludes the proof.

We now apply Lemma 2.3.21 to prove the following lemma. The intuition here

is that if we have that (A ∪ x,B ∪ y) is a circuit of C([m]v+, 2d + 1), then B is

“above” A in the triangulated vertex figure T \v, and so there can be no section

W(L) of T \v where B is submerged by W(L) and A is supermerged by W(L).
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Lemma 2.3.22. Let T be a triangulation of C(m, 2d+1) with W(L) a section of

T \v. Then there exists no circuit (A ∪ x,B ∪ y) of C([m]v+, 2d + 1) such that A

is supermerged by W(L) and B is submerged by W(L).

Proof. Suppose for contradiction that we are in the situation described and that

there exists a circuit (A∪x,B∪ y) of C([m]v+, 2d+1) such that A is supermerged

byW(L) and B is submerged byW(L). Suppose that A is not a face of a simplex

ofW(L). Then there is a simplex S ∈ U := (T \v)\L such that the lower facets of

S are all (2d− 1)-simplices of S and none of them contain A as a face. We obtain

that L′ = L ∪ S is also a lower set, with A is still supermerged by W(L′) and B

is still submerged by W(L′). By repeating this process, we may assume that A is

a face of a simplex of W(L). But this contradicts Lemma 2.3.21.

2.3.4 Describing expansion at other vertices

We can now derive the main result of this section, Proposition 2.3.2, which says

that the different triangulations which may result from expansion at vertex v are in

bijection with the sections of T \v. We prove our bijection in two halves, showing

first that every expanded triangulation gives us a section.

Lemma 2.3.23. Let T be a triangulation of C(m, 2d+ 1) with T̃ a triangulation

of C([m]v+, 2d+ 1) such that T̃ [x→ v ← y] = T . Let L be the set of 2d-simplices

S of T \v such that S ∪ y is a (2d+ 1)-simplex of T̃ . Then W(L) = T̃ \{x, y}.

Proof. To start, note that by Lemma 2.3.16, the complement U of L in T \v consists

of the 2d-simplices S such that S ∪ x is a (2d+ 1)-simplex of T̃ .

We first prove that T̃ \{x, y} ⊆ W(L). LetW be a (2d−1)-simplex of T̃ \{x, y}.

Then W ∪ {x, y} is a (2d+ 1)-simplex of T̃ . We have that W ∪ x is either a facet

of C([m]v+, 2d+ 1) or a facet of R ∪ x for some R ∈ U . Likewise, either W ∪ y is

a facet of C([m]v+, 2d+ 1) or a facet of S ∪ y for some S ∈ L.
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Note that we cannot both have that W ∪ x is a facet of C([m]v+, 2d + 1) and

that W ∪ y is a facet of C([m]v+, 2d + 1). To see this, suppose that W ∪ x is

an upper facet, so that it is an odd subset. This means that x is an even gap in

W ∪y, since, by assumption, y is an odd gap inW ∪x. Hence, ifW ∪y is a facet of

C([m]v+, 2d+1), then x must be the only gap inW ∪y, otherwiseW ∪y would have

both odd and even gaps. This means that C([m]v+, 2d+ 1) is a (2d+ 1)-simplex,

and so C(m, 2d+1) is degenerate. The case whereW ∪x is a lower facet is similar.

Hence, we either have that

� W ∪ x is facet of R ∪ x for some R ∈ U and W ∪ y is a facet of S ∪ y for

some S ∈ L, or

� W∪x is a facet of R∪x for some R ∈ U andW∪y is a facet of C([m]v+, 2d+1),

giving that W is a lower facet of C(m, 2d+ 1)\v by Lemma 2.3.6, or

� W ∪ x is a facet of C([m]v+, 2d + 1), giving that W is an upper facet of

C(m, 2d + 1)\v by Lemma 2.3.6, and W ∪ y is a facet of S ∪ y for some

S ∈ L.

Hence, in all cases W ∈ W(L), by comparing with Definition 2.3.17.

We now prove that W(L) ⊆ T̃ \{x, y}. Suppose that W is a (2d − 1)-simplex

of W(L). We claim that W ∪ {x, y} is a (2d + 1)-simplex of T̃ . By the following

reasoning, we have that both W ∪ x and W ∪ y are 2d-simplices of T̃ .

� If W = R ∩ S where R ∈ L and S ∈ U , then we have that R ∪ y and S ∪ x

are (2d+ 1)-simplices of T̃ by definition of L and U .

� If W is an upper facet of C(m, 2d+1)\v and an upper facet of R for R ∈ L,

thenW∪x is a 2d-simplex of T̃ by Lemma 2.3.6 and R∪y is a (2d+1)-simplex

of T̃ by definition of L.
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� IfW is a lower facet of C(m, 2d+1)\v and a lower facet of S for S ∈ U , then

W ∪ y is a 2d-simplex of T̃ by Lemma 2.3.6 and R ∪ x is a (2d+ 1)-simplex

of T̃ by definition of U .

We now show that W ∪ {x, y} is a (2d + 1)-simplex of T̃ by applying

Lemma 2.2.9, which states that it suffices to check that d- and (d + 1)-faces

of W ∪{x, y} are in T̃ . Let A ⊆ W ∪{x, y} be such that #A = d+1. If x, y ∈ A,

then A lies on the boundary of C([m]v+, 2d+ 1) by Gale’s Evenness Criterion, so

A is a d-simplex of T̃ . If x /∈ A (alternatively, y /∈ A), then A is a d-face of W ∪ y

(alternatively, W ∪ x), which we already know is a (2d− 1)-simplex of T̃ .

Now let B ⊆ W ∪ {x, y} such that #B = d + 2. Every d-face of B is a d-

simplex of T̃ , by what we have just argued. If x, y ∈ B, then B cannot be half

of a circuit of C([m]v+, 2d + 1), since x and y are consecutive in [m]v+. Applying

Lemma 2.2.9 then gives that B is a (d + 1)-simplex of T̃ . If, on the other hand,

x /∈ B (alternatively, y /∈ B), then B is a (d+1)-face ofW∪y (alternatively,W∪x),

which we know is a 2d-simplex of T̃ . Therefore, by Lemma 2.2.9, W ∪ {x, y} is a

(2d+ 1)-simplex of T̃ , and so W is a (2d− 1)-simplex of T̃ \{x, y}.

Remark 2.3.24. Lemma 2.3.23 gives us another way of seeing Lemma 2.3.18, which

tells us thatW(L) is a triangulation of C([m]\ v, 2d−1). Namely, T̃ \{x, y} is the

triangulation of the “line figure” of C([m]v+, 2d+ 1) at the line given by x and y.

This line figure is precisely the cyclic polytope C([m] \ v, 2d− 1).

We now show the other half of the bijection, namely, that one can construct

an expanded triangulation from every section.

Lemma 2.3.25. Let T be a triangulation of C(m, 2d+1) with W(L) a section of

T \v. Then there is a triangulation T̃ of C([m]v+, 2d + 1) such that T̃ [x → v ←

y] = T and T̃ \{x, y} =W(L).
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Proof. Suppose that we are in the situation described and let U be the complement

of L in T \v. We define T̃ to consist of the (2d+ 1)-simplices

T̃ = T ◦ ∪ (W(L) ∗ {x, y}) ∪ (U ∗ x) ∪ (L ∗ y),

where T ◦ = {Q : Q ∈ T , v /∈ Q }. It is evident from the definition of T̃ that T̃ [x→

v ← y] = T and T̃ \{x, y} = W(L). We now show that T̃ is a triangulation of

C([m]v+, 2d+1) by explicitly verifying that it satisfies the combinatorial definition

of a triangulation.

We first verify that, for any simplex Q of T̃ and any facet F of Q, either F is

a facet of C([m]v+, 2d+ 1) or a facet of another (2d+ 1)-simplex of T̃ .

(1) Suppose first that Q ∈ T ◦. Then if F is a facet of C(m, 2d + 1) in T , F

will be a facet of C([m]v+, 2d + 1) in T̃ . Suppose instead that F is a facet of Q′

for some simplex Q′ in T . Then, if v /∈ Q′, then Q′ ∈ T ◦ ⊆ T̃ . On the other hand,

if v ∈ Q′, then either (Q′ \ v) ∪ x or (Q′ \ v) ∪ y is a (2d+ 1)-simplex of T̃ , and F

is a facet of either of these.

(2) Suppose now that Q ∈ U ∗ x.

If x /∈ F , then Q = F ∪ x. Then F ∪ v is a (2d + 1)-simplex of T , where F is

either a facet of C(m, 2d+1), or a facet of a (2d+1)-simplex Q′, where v /∈ Q′. If

F is a facet of C(m, 2d+ 1), then F is a facet of C([m]v+, 2d+ 1). If F is a facet

of a (2d + 1)-simplex Q′ in T , then Q′ ∈ T ◦, since F ∪ y cannot be a simplex of

T̃ , and F is a facet of Q′ in T̃ .

If x ∈ F , then in T \v, F \ x is either a facet of C(m, 2d + 1)\v, or a facet of

some 2d-simplex S distinct from Q \ x. We consider these two cases in turn.

If F \ x is a facet of C(m, 2d+ 1)\v, then it is either a lower facet or an upper

facet. In the latter case, by Lemma 2.3.6, F is a facet of C([m]v+, 2d+ 1). In the

former case, since F \ x is a facet of Q \ x and Q \ x ∈ U , we have that F \ x is
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in the section W(L). This then means that F is a facet of the (2d + 1)-simplex

(F \ x) ∪ {x, y} in T̃ .

If F \ x = (Q \ x) ∩ S for some 2d-simplex S, then either S ∈ U , or S ∈ L. If

S ∈ U , then S ∪ x is a (2d+ 1)-simplex of T distinct from Q with F as a facet. If

S ∈ L, then F \ x ∈ W(L). In this case (F \ x) ∪ {x, y} is a (2d + 1)-simplex of

T̃ and it has F as a facet.

(3) The case where Q ∈ L ∗ y is similar to the previous case.

(4) Finally, suppose that Q ∈ W(L) ∗ {x, y}.

If x /∈ F , then Q = F ∪ x. We have that F \ y is a (2d − 1)-simplex of T \v,

and is therefore either both a facet of C(m, 2d+ 1)\v and a facet of a 2d-simplex

S of T \v, or a shared facet of two 2d-simplices R and S of T \v. Note also that

F \ y ∈ W(L), since Q ∈ W(L) ∗ {x, y}.

If F \ y is both a facet of C(m, 2d + 1)\v and a facet of a 2d-simplex S, then

either F \ y is a lower facet of C(m, 2d + 1)\v or it is an upper facet. If it is a

lower facet, then F is a facet of C([m]v+, 2d+1) by Lemma 2.3.6. If it is an upper

facet, then we must have S ∈ L, since F \ y ∈ W(L). Consequently, S ∪ y is a

(2d+ 1)-simplex of T̃ , and F is a facet of it.

If F \ y is a shared facet of two 2d-simplices S and R in T , then we may

suppose without loss of generality that S ∈ L and R ∈ U , since we know that

F \ y ∈ W(L). We then have that F is a shared facet of Q and S ∪ y in T̃ .

The case when y /∈ F is similar to the case where x /∈ F .

If x, y ∈ F , then letW = Q\{x, y}, so thatW ∈ W(L). Then G = F \{x, y} is

a facet ofW . Since, by Lemma 2.3.18,W(L) is a triangulation of C([m]\v, 2d−1),

then there either exists W ′ ∈ W(L) such that W ∩W ′ = G, or that G is a facet

of C([m] \ v, 2d + 1). In the second case, we are done immediately by applying
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Corollary 2.3.9, which gives us that F = G ∪ {x, y} is a facet of C([m]v+, 2d+ 1).

In the first case, we have that W ′ ∪ {x, y} ∈ W(L) ∗ {x, y} and that F is a shared

facet between Q and W ′ ∪ {x, y}.

We must now show that there can be no pair of (2d + 1)-simplices S,R in T̃

such that S ⊇ Z− and R ⊇ Z+, where (Z−, Z+) is a circuit of C([m]v+, 2d + 1).

Suppose for contradiction that there does exist such a pair of (2d+1)-simplices S

and R.

We use the fact that T̃ [x → v ← y] = T . This implies that any such circuit

(Z−, Z+) must degenerate under the contraction [x→ v ← y], since otherwise we

would obtain a circuit in T . This means that we have x ∈ Z± and y ∈ Z∓. Hence

we only need to consider the cases where

(1) S ∈ U ∗ x and R ∈ L ∗ y;

(2) S ∈ U ∗ x and R ∈ W(L) ∗ {x, y};

(3) S ∈ W(L) ∗ {x, y} and R ∈ L ∗ y; and

(4) S,R ∈ W(L) ∗ {x, y}.

But each case gives a contradiction to Lemma 2.3.22, or the more specific instances

of Lemma 2.3.21 and Corollary 2.3.19. Hence, we obtain that T̃ is indeed a

triangulation of C([m]v+, 2d+ 1).

Putting Lemma 2.3.23, Lemma 2.3.25 and Remark 2.3.3 together finally yields

Proposition 2.3.2. The main application of Proposition 2.3.2 is the following

lemma, which allows us to understand how expansions affect subpolytopes. This

will be a key ingredient in the proof of the main result of Chapter 3.

Lemma 2.3.26. Let T be a triangulation of C(m−1, δ). Suppose that T contains

a cyclic subpolytope C(H, δ). Let T̃ be a triangulation of C([m− 1]v+, δ) such that

T̃ [x→ v ← y] = T . Then either
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(1) C(H, δ) is a subpolytope of T̃ and v /∈ H,

(2) C((H \ v) ∪ x, δ) is a subpolytope of T̃ , where v ∈ H,

(3) C((H \ v) ∪ y, δ) is a subpolytope of T̃ , where v ∈ H, or

(4) C(Hv+, δ) is a subpolytope of T̃ , where v ∈ H.

Proof. By Proposition 2.3.2, triangulations T̃ of C([m]v+, δ) such that T̃ [x →

v ← y] = T are in bijection with sectionsW(L) of T \v. Moreover, given a section

W(L) of T \v, the corresponding triangulation T̃ has the set of δ-simplices

T ◦ ∪ (W(L) ∗ {x, y}) ∪ (L ∗ x) ∪ (U ∗ y),

where T ◦ denotes the δ-simplices of T which do not contain v and U is the com-

plement of L in T \v.

The set-up of Lemma 2.3.26 gives us that T contains a cyclic subpolytope

C(H, δ). We let TH be the induced triangulation of this subpolytope in T . If

v /∈ H, then TH ⊆ T ◦, so C(H, δ) is a subpolytope of T̃ , giving case (1). Hence,

we assume that v ∈ H. There are then three options:

(2) TH\v ⊆ L.

(3) TH\v ⊆ U .

(4) TH\v has non-empty intersection with both L and U .

In case (2) we have that C((H \ v) ∪ y, δ) is a subpolytope of T̃ . In case (3), we

have that C((H \ v) ∪ x, δ) is a subpolytope of T̃ .

In case (4), let LH = L ∩ TH and UH = U ∩ TH . Then LH is a lower set of

the restriction of
v

⩽ to TH\v. We then obtain a section W(LH) of TH\v, and it

is straightforward to see that W(LH) consists of the (2d − 1)-simplices of W(L)

which are also (2d− 1)-simplices of TH\v. By Proposition 2.3.2, we have that the
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section W(LH) of TH\v gives us a triangulation T̃H of C(Hv+, δ). Moreover, the

triangulation T̃H of C(Hv+, δ) has simplices

T ◦
H ∪ (W(LH) ∗ {x, y}) ∪ (UH ∗ x) ∪ (LH ∗ y).

It is then clear that T ◦
H ⊆ T ◦, W(LH) ⊆ W(L), UH ⊆ U , and LH ⊆ L. Hence

T̃H is a subtriangulation of T̃ , which gives us that C(Hv+, δ) is a subpolytope

of T̃ .



Chapter 3

The higher Stasheff–Tamari

orders

Recall from the introduction in Chapter 1 that the two higher Stasheff–Tamari

orders are two a priori different orders on the set of triangulations of a cyclic

polytope. The first of these orders was introduced in 1991 by Kapranov and

Voevodsky, with the second order introduced in 1996 by Edelman and Reiner, who

conjectured the two orders to coincide [ER96, Conjecture 2.6]. In this chapter, we

prove this conjecture. The first step in the proof is to give new combinatorial

interpretations of the orders which make them more comparable. This is our task

in Section 3.2. We then use these new combinatorial interpretations in Section 3.3

to give an inductive argument that the two orders are equal.

3.1 Definition of the orders

The first higher Stasheff–Tamari order is defined by its covering relations, which

are such that T ⋖1 T ′ if and only if T ′ is an increasing bistellar flip of T . We write

S1(m, δ) for the poset on S(m, δ) this gives and ⩽1 for the partial order itself.

95
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The first higher Stasheff–Tamari order was originally introduced by Kapranov

and Voevodsky in [KV91, Definition 3.3] as the “higher Stasheff order” using a

slightly different definition. Thomas showed in [Tho03, Proposition 3.3] that the

higher Stasheff order of Kapranov and Voevodsky was the same as the first higher

Stasheff–Tamari order of Edelman and Reiner.

Remark 3.1.1. The result [Ram97, Theorem 1.1(ii)] states that the linear exten-

sions of the partial order ≺ from Remark 2.1.3 give maximal chains in S1(m, δ−1)

and that the sequences of simplices obtained are the sequences of simplices induc-

ing the sequences of bistellar flips in the maximal chains.

Recall from the discussion of triangulations in Section 2.1 that every triangu-

lation |T | of C(m, δ) determines a unique piecewise-linear section σ|T | : C(m, δ)→

C(m, δ + 1) by sending each δ-simplex |S|δ of |T | to |S|δ+1 in C(m, δ + 1) in the

natural way. The second higher Stasheff–Tamari order on S(m, δ) is defined as

T ⩽2 T ′ ⇐⇒ σ|T |(x)δ+1 ⩽ σ|T ′|(x)δ+1 ∀x ∈ C(m, δ),

where σ|T |(x)δ+1 denotes the (δ + 1)-th coordinate of the point σ|T |(x). We write

S2(m, δ) for the poset on S(m, δ) this gives.

We also use the following different interpretation of the second higher Stasheff–

Tamari order. A k-simplex A in C(m, δ) is submerged by the triangulation T ∈

S(m, δ) if the restriction of the piecewise linear section σ|T | to the simplex |A| has

the property that

σ|A|(x)δ+1 ⩽ σ|T |(x)δ+1

for all points x ∈ |A|. Our notion of submersion from Definition 2.3.20 is a

combinatorial version of this notion for vertex figures of cyclic polytopes. For a

triangulation T of C(m, δ), the k-submersion set, subk(T ), is the set of k-simplices

A which are submerged by T . Given two triangulations T , T ′ ∈ S(m, δ), we have

that T ⩽2 T ′ if and only if sub⌈ δ
2
⌉(T ) ⊆ sub⌈ δ

2
⌉(T ′) [ER96, Proposition 2.15].
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Submersion sets are independent of the choice of geometric realisation, but this is

not immediately obvious from the definition.

General introductions to the higher Stasheff–Tamari orders can be found in

[RR12] and [DRS10, Section 6.1].

Operations

The deletion and contraction operations behave well with respect to the higher

Stasheff–Tamari orders. By [Ram97, Proposition 5.14], the operation [m − 1 ←

m] is order-preserving with respect to the first order, whilst the operation −\m

is order-reversing. By [Tho02, Theorem 4.1] and [ER96, Proposition 2.11], the

operation −[m − 1 ← m] is order-preserving with respect to the second order,

whilst the operation −\m is order-reversing. The operations −[1 → 2] and −\1

are order-preserving for both orders.

3.2 Combinatorial characterisation of the orders

One can see the need for new combinatorial characterisations of the higher

Stasheff–Tamari orders. In particular, the second higher Stasheff–Tamari or-

der is defined with respect to the geometric realisation when in fact the order is

independent of the chosen geometric realisation. Hence, it ought to be possible

to give a combinatorial definition of the second higher Stasheff–Tamari order.

Indeed, such a definition was given in [Tho02] using the different combinatorial

framework of snug partitions. We will continue to work in the framework of

triangulations. Just as we did in Section 2.2, it is appealing to interpret the higher

Stasheff–Tamari orders on the set of triangulations of C(m, δ) in terms of the

⌊δ/2⌋-simplices of the triangulation. This is indeed how we will proceed.

Furthermore, the higher Stasheff–Tamari orders behave differently in even and
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odd dimensions. In even dimensions, both posets are self-dual, whereas neither

is self-dual in odd dimensions; likewise, in odd dimensions both posets possess

an order-preserving involution which does not exist in even dimensions [ER96,

Proposition 2.11]. The first order is a ranked poset in odd dimensions, but nei-

ther order is ranked in even dimensions [Ram97, Corollary 1.2]. These properties

indicate that the orders are suited to different combinatorial interpretations in

odd and even dimensions. This parallels how the combinatorial descriptions of

triangulations from Section 2.2 differed between odd and even dimensions.

3.2.1 Even dimensions

First order

We start by showing our combinatorial interpretation of the first higher Stasheff–

Tamari order. By [OT12, Theorem 4.1], triangulations T , T ′ ∈ S(m, 2d) are bis-

tellar flips of each other if and only if e̊(T ) and e̊(T ′) have all but one d-simplex

in common. This can then be strengthened to the following.

Theorem 3.2.1. For T , T ′ ∈ S(m, 2d), we have that T ⋖1 T ′ if and only if

e̊(T ) = U ∪ {A} and e̊(T ′) = U ∪ {B} and A ≀B.

Proof. Consider a bistellar flip between T and T ′ inside a subpolytope C(H, 2d),

where H ∈
(

[m]
2d+2

)
. By Lemma 2.2.2, the only d-simplex contained in upper facets

of the (2d + 1)-simplex H but not any lower facets is {h1, h3, . . . , h2d+1}. Sim-

ilarly the only d-simplex contained in lower facets but not any upper facets is

{h0, h2, . . . , h2d}. Moreover, these are both internal d-simplices in C(m, 2d), since

{h1, h3, . . . , h2d+1}, {h0, h2, . . . , h2d} ∈
⟲
Idm. Hence an increasing bistellar flip in-

side C(H, 2d) involves exchanging {h0, h2, . . . , h2d} for {h1, h3, . . . , h2d+1}. There-

fore, if T ′ is an increasing bistellar flip of T , we have that e̊(T ) = U ∪ {A} and

e̊(T ′) = U ∪ {B} and A ≀B.
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Conversely, suppose that we have e̊(T ) = U ∪ {A} and e̊(T ′) = U ∪ {B} and

A ≀ B. By [OT12, Theorem 4.1] and its proof, we have that T ′ is the result of a

bistellar flip of T which takes place inside C(A ∪ B, 2d). Then, by Lemma 2.2.2,

this must be an increasing bistellar flip.

Second order

In this section we prove our combinatorial interpretation of the second order in

even dimensions, which is as follows.

Theorem 3.2.2. Let T , T ′ ∈ S(m, 2d). Then T ⩽2 T ′ if and only if for every

A ∈ e̊(T ), there is no B ∈ e̊(T ′) such that B ≀ A.

To prove this theorem we use the following combinatorial characterisation of

submersion in even dimensions. This was shown for d = 1 in [ER96, Proposi-

tion 3.2]. Lemma 2.3.21 is also analogous to this proposition.

Proposition 3.2.3. Let T ∈ S(m, 2d) and let A be an internal d-simplex in

C(m, 2d). Then A is submerged by T if and only if there is no B ∈ e̊(T ) such that

B ≀ A.

Proof. We prove the backwards direction first. Suppose that A is not submerged

by T , so that there is a point y in |A| such that s|A|(y)2d+1 > σ|T |(y)2d+1. We split

into two cases, depending on whether s|A|(x)2d+1 > σ|T |(x)2d+1 for all x ∈ ˚|A|, or

whether there are also some x ∈ ˚|A| such that sA(x)2d+1 ⩽ σ|T |(x)2d+1. By ˚|A|,

we of course mean the interior of the geometric d-simplex |A|.

In the first case, there must exist B ∈ e̊(T ) such that A and B are intertwining,

since A /∈ e̊(T ). By Lemma 2.2.2, |A|2d+1 must the intersection of either the lower

facets or the upper facets of the (2d + 1)-simplex |A ∪ B|2d+1. We have that ˚|A|

and ˚|B| intersect in a unique point y ∈ C(m, 2d), since (A,B) is a circuit. By
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assumption, s|A|(y)2d+1 > σ|T |(y)2d+1 = s|B|(y)2d+1. This means that |A|2d+1 must

be the intersection of the upper facets of |A∪B|2d+1. Hence B ≀A by Lemma 2.2.2.

In the second case, by continuity, we must have a point z in ˚|A| such that

s|A|(z)2d+1 = σ|T |(z)2d+1. Hence, z is a point of intersection between |A|2d+1 and

the image of |T | under σ|T |. The point z must be contained in a 2d-simplex |S|2d+1

of |T |. Then, by the description of the circuits in C(m, 2d + 1), there must exist

s′i ∈ {s0, s1, . . . , s2d} such that

s′0 < a0 < s′1 < a1 < · · · < s′d < ad < s′d+1.

Then B = {s′0, s′1, . . . , s′d} is a d-simplex of e̊(T ) such that B ≀ A.

Now we prove the forwards direction by contraposition. If there is a B ∈

e̊(T ) such that B ≀ A, then |A|2d+1 is the intersection of the upper facets of the

(2d+ 1)-simplex |A∪B|2d+1 and |B|2d+1 is the intersection of the lower facets, by

Lemma 2.2.2. We have that ˚|A|2d and ˚|B|2d intersect in a unique point z. Then

s|B|(z)2d+1 = σ|T |(z)2d+1 < s|A|(z)2d+1. But this means that A is not submerged

by T .

The following lemma shows that, in order to have T ⩽2 T ′, it is sufficient for

T ′ to submerge the d-simplices of T .

Lemma 3.2.4. Let T , T ′ ∈ S(m, 2d). Then T ⩽2 T ′ if and only if every d-simplex

of T is submerged by T ′.

Proof. The forwards direction is clear. Conversely, suppose that every d-simplex

of T is submerged by T ′. Since every point in C(m, 2d) lies in a 2d-simplex of

|T |, it suffices to show that every 2d-simplex of T is submerged by T ′. Suppose

that there is a 2d-simplex S of T such that S is not submerged by T ′. We can

assume that the 2d-simplex S has at least one face which is an internal d-simplex

not belonging to T ′. Otherwise, S is a 2d-simplex of T ′ by [OT12, Lemma 2.15].
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Hence let A be a d-face of S which is an internal d-simplex not belonging to T ′.

We must then have that A is intertwining with some d-simplex B of T ′. This means

that |A| and |B| intersect in a unique point x. Then, since A is submerged by T ′,

we must have that σ|A|(x)2d+1 = σ|S|(x)2d+1 < σ|T ′|(x). Since S is not submerged

by T ′, there must also be y ∈ |S| such that σ|S|(y)2d+1 > σ|T ′|(y). Therefore

|S|2d+1 intersects σ|T ′|(C(m, 2d)) by continuity. By the description of the circuits

of C(m, 2d+1), there must either be a d-face J of S and a (d+1)-simplex K of T ′

such that J ≀K, or a (d+1)-face J of S and a d-simplex K of T ′ such that K ≀J . In

the first case, K \ kd+1 ≀ J , so that J is not submerged by T ′ by Proposition 3.2.3,

a contradiction. In the second case, J \ j0 is a d-face of S such that K ≀J \ j0. This

gives us that J \ j0 is not submerged by T ′ by Proposition 3.2.3, which is also a

contradiction.

Proposition 3.2.3 and Lemma 3.2.4 together prove Theorem 3.2.12, since

boundary d-simplices are in, and hence submerged by, every triangulation.

3.2.2 Odd dimensions

First order

In order to prove our combinatorial characterisation of the first higher Stasheff–

Tamari order in odd dimensions we use the following fact about triangulations of

polytopes.

Lemma 3.2.5. Let T be a triangulation of a δ-dimensional polytope P , with A an

internal k-simplex of T . Then A is the intersection of at least δ − k + 1 different

δ-simplices of T .

Proof. We prove the result by downwards induction on k. Our base case is k =

δ− 1. Here (δ− 1)-simplices are facets of δ-simplices. A facet of a given δ-simplex
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must either be a shared facet with another δ-simplex, or lie within a boundary

facet of P . Hence an internal (δ − 1)-simplex must be the intersection of at least

two δ-simplices.

For the inductive step, we assume that the result holds for k + 1. Let A be

a k-simplex of T for k < δ − 1. Then A is a face of a δ-simplex, and so must

be the intersection of an least two (k + 1)-simplices. Moreover, A cannot lie in

any boundary (k+1)-simplices, otherwise it is a boundary k-simplex. Thus, let A

be the intersection of two internal (k + 1)-simplices A1 and A2. By the induction

hypothesis, both A1 and A2 are the intersection of δ-simplices {A1
1, A

1
2, . . . , A

1
l1
}

and {A2
1, A

2
2, . . . , A

2
l2
} respectively, where l1, l2 ⩾ δ − k. Since A1 and A2 are

distinct, we must have that

{A1
1, A

1
2, . . . , A

1
l1
} ≠ {A2

1, A
2
2, . . . , A

2
l2
}.

Thus #{A1
1, A

1
2, . . . , A

1
l1
, A2

1, A
2
2, . . . , A

2
l2
} ⩾ δ − k + 1, and so A is the intersection

of at least δ − k + 1 different δ-simplices of T .

We now give a combinatorial characterisation of the first higher Stasheff–

Tamari order in terms of sets internal d-simplices.

Theorem 3.2.6. Let T , T ′ ∈ S(m, 2d+ 1). Then we have T ⋖1 T ′ if and only if

e̊(T ) = e̊(T ′) ∪ {A} for some A ∈ Jd
m \ e̊(T ′).

Proof. Suppose first that T ′ is an increasing bistellar flip of T . Then T and T ′

coincide everywhere but inside a copy of C(2d + 3, 2d + 1). This direction then

follows from applying Corollary 2.2.6 to this copy of C(2d+3, 2d+1). That is, let

the vertices of the copy of C(2d+3, 2d+1) be given by A∪B, where A ≀B. Then,

since T ′ is an increasing bistellar flip of T , by Corollary 2.2.6 we have that in T ,

the triangulation of C(A∪B, 2d+1) is given by the internal d-simplex A, whereas

in T ′, there are no d-simplices which are internal in C(A ∪B, 2d+ 1). Therefore,

we have that e̊(T ) = e̊(T ′) ∪ {A} where A ∈ Jd
m \ e̊(T ′).
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We now suppose that e̊(T ) = e̊(T ′) ∪ {A} for some A ∈ Jd
m \ e̊(T ′). Since A

is not a d-simplex of T ′, there must be a (d+ 1)-simplex B of T ′ such that A ≀B.

Suppose that S is a (2d+1)-simplex of T which has A as a d-face. Suppose further

that S possesses a vertex q /∈ A ∪ B. If bi−1 < q < bi for some i ∈ [d + 1], then

(A\{ai−1})∪{q} =: A′ ≀B, which is a contradiction, since A′ ∈ e̊(T )\{A} = e̊(T ′).

Similarly, if q > bd+1, then {b1, b2, . . . , bd+1} ≀ A ∪ {q}, which contradicts the fact

that {b1, b2, . . . , bd+1} ∈ e̊(T ′) ⊂ e̊(T ). The case q < b0 can be treated in the same

way.

Thus every (2d + 1)-simplex S of T with A as a d-face has vertices in A ∪ B.

There are d+2 such (2d+1)-simplices, given by Si := (A∪B)\{bi} for each bi ∈ B.

The triangulation T must contain all of these Si, since A must be the intersection

of at least d+2 different (2d+1)-simplices, by Lemma 3.2.5. The set {Si}d+1
i=0 gives

the lower triangulation of C(A ∪ B, 2d+ 1). None of these (2d+ 1)-simplices can

be contained in T ′, but every other (2d+1)-simplex of T must be contained in T ′

by Lemma 2.2.9. It then follows that T ′ must be obtained by replacing the lower

triangulation of C(A∪B, 2d+1) with the upper triangulation, since these are the

only two possible triangulations of C(A ∪ B, 2d + 1). Hence T ′ is an increasing

bistellar flip of T .

Second order

To obtain our combinatorial interpretation of the second higher Stasheff–Tamari

order in odd dimensions we first give an alternative to the interpretation of Edel-

man and Reiner in terms of submersion sets.

Definition 3.2.7. Let A be a k-simplex in C(m, δ). Given a triangulation T ∈

S(m, δ), we say that T supermerges A if for all x ∈ |A|,

σ|A|(x)δ+1 ⩾ σ|T |(x)δ+1.
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We then define the k-supermersion set of T to be

supkT :=
{
A ∈

(
[m]
k+1

)
: T supermerges A

}
.

This is, of course, the geometric analogue of the combinatorial supermersion we

considered in Definition 2.3.20. In this section, we will be particularly interested in

the d-supermersion sets of triangulations of C(m, 2d+1), which have the following

significance.

Lemma 3.2.8. If T is a triangulation of C(m, 2d+1), then the supermersion set

supdT is precisely the set of d-simplices of T .

Proof. Consider a d-simplex A. Every d-simplex in C(m, 2d + 2) lies in a lower

facet by Gale’s Evenness Criterion. This is because the vertex set of a lower facet

of C(m, 2d+ 2) is a disjoint union of d+ 1 pairs of consecutive numbers from [m];

any subset of [m] of size d+ 1 is therefore a subset of a lower facet. Therefore no

points in a d-simplex |A|2d+2 can lie strictly above the section σ|T |(C(m, 2d + 1)).

Hence, if A ∈ supdT , we must have that A is a d-simplex of T .

We now prove the following theorem, which, in particular, gives us an inter-

pretation of the second higher Stasheff–Tamari order on triangulations of (2d+1)-

dimensional cyclic polytopes in terms of d-simplices.

Theorem 3.2.9. Let T , T ′ ∈ S(m, δ). Then T ⩽2 T ′ if and only if

sup⌊ δ
2
⌋T ⊇ sup⌊ δ

2
⌋T

′.

Proof. We know from [ER96] that T ⩽2 T ′ if and only if

sub⌈ δ
2
⌉T ⊆ sub⌈ δ

2
⌉T

′.

In the case where δ is even, ⌊δ
2

⌋
=
⌈δ
2

⌉
,
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so the result simply follows from the symmetry that exists in the even case via the

permutation

α :=

 1 2 . . . m− 1 m

m m− 1 . . . 2 1

 .

By [ER96, Proposition 2.11] this gives an order-reversing bijection on S2(m, 2d).

We write αT and αT ′ for the images of the respective triangulations under the

permutation α. By Proposition 3.2.3 and its dual, subdαT = αsupdT . Hence

supdT ⊇ supdT ′ ⇐⇒ αsubdαT ⊇ αsubdαT ′

⇐⇒ subdαT ⊇ subdαT ′

⇐⇒ αT ⩾2 αT ′

⇐⇒ T ⩽2 T ′.

We now consider the case where δ is odd. We first suppose for contradiction

that supdT ⊇ supdT ′ and T ̸⩽2 T ′. Hence there exists y ∈ C(m, 2d+1) such that

σ|T |(y) > σ|T ′|(y). We split into two cases, depending upon whether σ|T |(x) ⩾

σ|T ′|(x) for all x ∈ C(m, 2d + 1), or whether there also exist some x for which

σ|T |(x) < σ|T ′|(x), in which case σ|T |(C(m, 2d+1)) and σ|T ′|(C(m, 2d+1)) intersect

each other.

Suppose we are in the case where σ|T |(x) ⩾ σ|T ′|(x) for all x ∈ C(m, 2d+1). We

have that T and T ′ must be distinct triangulations, since T ̸⩽2 T ′. Hence there

must be a d-simplex A and a (d+1)-simplex B with A ≀B such that one of A and B

lies in T and the other lies in T ′. Since |A| is the intersection of the lower facets of

the (2d+2)-simplex |A∪B| and |B| is the intersection of its upper facets, we must

have that A is a d-simplex of T ′ and B is a (d+1)-simplex of T , as σ|T |(C(m, 2d+1))

lies entirely above σ|T ′|(C(m, 2d + 1)). But then A ∈ supdT ′ ⊆ supdT , so that T

contains the circuit (A,B), which is a contradiction.

Alternatively, suppose that we are in the case where σ|T |(C(m, 2d + 1)) and
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σ|T ′|(C(m, 2d+1)) intersect each other. Hence, by the description of the circuits of

C(m, 2d+2), we have that there must be a pair of (d+1)-simplices A and B such

that A ≀ B, with one simplex in T and the other in T ′. We suppose that A is a

(d+1)-simplex of T and that B is a (d+1)-simplex of T ′; the other case is similar.

If we let B′ := {b0, b1, . . . , bd}, we then have that B′ ≀A. But B′ ∈ supdT ′ ⊆ supdT ,

which implies that T contains the circuit (A,B′)—a contradiction as above. This

establishes that if supdT ⊇ supdT ′, then T ⩽2 T ′.

Now we suppose that T ⩽2 T ′. Let A ∈ supdT ′. Then |A|2d+2 cannot intersect

σ|T |(C(m, 2d + 1)) transversely, since it is too small: a circuit in C(m, 2d + 2)

consists of a pair of (d+1)-simplices. Therefore, we suppose for contradiction that

|A| ∈ subdT \ supdT . This means that there is an x ∈ ˚|A| such that

σ|A|(x)2d+2 < σ|T |(x)2d+2 ⩽ σT ′(x)2d+2 = σ|A|(x)2d+2,

which is a contradiction. Hence supdT ′ ⊆ supdT .

Remark 3.2.10. One could, of course, consider complements of supermersion sets

instead of supermersion sets. Since d-simplices in C(m, 2d + 2) all lie on the

lower facets, these would comprise the d-simplices which are strictly submerged

by a triangulation T , that is: submerged by T without being a d-simplex of T .

The inclusion of these sets would be in the same direction as the second higher

Stasheff–Tamari order, so some may have an aesthetic preference for this approach.

However, d-supermersion sets of triangulations T of C(m, 2d + 1) are more

natural objects to consider. As proven in Lemma 3.2.8, these are simply the d-

simplices of T . They also fit more naturally into our algebraic description of the

higher Stasheff–Tamari orders in odd dimensions in Chapter 4.

Remark 3.2.11. Edelman and Reiner describe S2(m, δ) in terms of ⌈ δ
2
⌉-submersion

sets. But [Dey93] tells us that a triangulation of C(m, δ) is determined by its

⌊ δ
2
⌋-simplices. Logically, then, the second higher Stasheff–Tamari order ought also
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to be controlled by ⌊ δ
2
⌋-simplices. Theorem 3.2.9 shows us that this is indeed the

case.

Theorem 3.2.12. Let T , T ′ ∈ S(m, 2d+1). Then T ⩽2 T ′ if and only if e̊(T ) ⊇

e̊(T ′).

Proof. The set e̊(T ) consists of the internal d-simplices of T , while supdT consists

of all d-simplices of T . It is then clear that supdT ⊇ supdT ′ if and only if e̊(T ) ⊇

e̊(T ′), since boundary d-simplices are contained in every triangulation.

To summarise, we obtain the following combinatorial characterisations of the

higher Stasheff–Tamari orders in odd and even dimensions. Note how these results

make the problem of comparing the two orders more tractable.

Theorem 3.2.13 (Theorems 3.2.1, 3.2.2, 3.2.6, and 3.2.12). Given T , T ′ ∈

S(m, 2d), we have that

(1) T ⋖1 T ′ if and only if e̊(T ) = R∪ {A} and e̊(T ′) = R∪ {B}, where A ≀B;

(2) T ⩽2 T ′ if and only if for every A ∈ e̊(T ), there is no B ∈ e̊(T ′) such that

B ≀ A.

Given T , T ′ ∈ S(m, 2d+ 1), we have that

(1) T ⋖1 T ′ if and only if e̊(T ) = e̊(T ′) ∪ {A} for some A ∈ Jd
m \ e̊(T ′);

(2) T ⩽2 T ′ if and only if e̊(T ) ⊇ e̊(T ′).

3.3 Equality of the two orders

Having given combinatorial interpretations of the higher Stasheff–Tamari orders

which make them more comparable, we can now prove that the higher Stasheff–

Tamari orders are equal. What we need to establish is that for T , T ′ ∈ S(m, δ)
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with T <2 T ′, then we can find a triangulation T ′′ either such that T ⋖1T ′′ ⩽2 T ′,

or such that T ⩽2 T ′′ ⋖1 T ′. Lemma 3.3.3 explains the detail of why this is what

we need to prove. As in the previous section, we treat the odd-dimensional cases

separately from the even-dimensional cases. The details of the proof are different

for these two cases, but the broad outlines are similar. We explain these outlines

now.

The proof is by induction on the number of vertices of the cyclic polytope

C(m, δ), noting that the orders are known to be equal when m ⩽ δ + 3 [RR12].

We start with triangulations T , T ′ of C(m, δ) such that T <2 T ′. We perform

contractions to obtain triangulations T [m − 1 ← m] and T ′[m − 1 ← m] of

C(m − 1, δ). In the case that T [m − 1 ← m] ̸= T ′[m − 1 ← m], we apply

the induction hypothesis to these triangulations. This provides an increasing flip

U of T [m − 1 ← m] such that U ⩽2 T ′[m − 1 ← m], and hence provides a

subpolytope of T [m−1← m] congruent to C(δ+2, δ). We consider the pre-image

of this subpolytope in T . If the pre-image of this subpolytope is congruent to

C(δ + 2, δ), then we choose the increasing flip inside this subpolytope to obtain

our triangulation T ′. As we showed in Lemma 2.3.26, the only other option is

that the preimage of the C(δ + 2, δ) subpolytope is a subpolytope congruent to

C(δ + 3, δ). This polytope is still relatively small and the triangulations of it are

well-understood, as we record in Lemma 3.3.1. We can find an increasing bistellar

flip T ′′ of T which occurs within the induced triangulation of this C(δ + 3, δ)

subpolytope. We then show that if we do not have T ′′ ⩽2 T ′, then there is a

contradiction to the existence of the increasing bistellar flip we chose using the

induction hypothesis. Deriving this contradiction requires a series of lemmas, and

the details differ between even and odd dimensions.

If T [m− 1← m] = T ′[m− 1← m], then we instead consider the contractions

T [1→ 2] and T ′[1→ 2]. If T [1→ 2] ̸= T ′[1→ 2], then we can apply symmetries
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of the cyclic polytope to convert to the case where T [m−1← m] ̸= T ′[m−1← m],

which we can deal with.

If we have that both T [1→ 2] = T ′[1→ 2] and T [m− 1← m] = T ′[m− 1←

m], then one can apply the results of Section 3.2 to show that, since we have

T <2 T ′, there must be a v ∈ [2,m − 2] such that if we relabel the vertices of

C(m, δ) such that T , T ′ are triangulations of C([m − 1]v+ , δ), then we have that

T [x→ v ← y] ̸= T ′[x→ v ← y]. Then one can proceed similarly to before.

Our proofs in odd and even dimensions are therefore both explicit. However,

in Section 3.3.4, we note that it in fact suffices only to give an explicit proof for

one parity, since the result for the other parity can be deduced from this.

3.3.1 Preliminary lemmas

We begin by proving some preliminary lemmas and recording some known results

which we shall need. The following lemma records the possible triangulations of

C(δ+3, δ) and their properties. These triangulations are already well understood;

for instance, see [Tho03, Proof of Proposition 9.1]. This lemma can be verified

using the results of Section 3.2.

Lemma 3.3.1. The triangulations of C(δ + 3, δ) may be described as follows.

(1) If δ = 2d, then

(a) C(2d+ 3, 2d) has 2d+ 3 triangulations T1, T2, . . . , T2d+3;

(b) the triangulation Ti is the fan triangulation at the vertex i, that is

e̊(Ti) = {A ∈
⟲
Id2d+3 : i ∈ A };

(c) the posets S1(2d+3, 2d) and S2(2d+3, 2d) are equal and have the struc-

ture depicted in Figure 3.1.
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(d) the bistellar flips of the triangulations are as follows:

� T1 possesses two increasing bistellar flips: one which replaces

{1, 3, . . . , 2d + 1} with {2, 4, . . . , 2d + 2} and one which replaces

{1, 4, . . . , 2d+ 2} with {3, 5, . . . , 2d+ 3};

� for i even, Ti admits an increasing flip replacing {1, 3, . . . , i−3, i, i+

2, . . . , 2d+ 2} with {2, 4, . . . , i− 2, i+ 1, i+ 3, . . . , 2d+ 3};

� for i odd with i /∈ {1, 2d + 3}, Ti admits an increasing flip which

replaces {1, 3, . . . , i, i+3, . . . , 2d+2} with {2, 4, . . . , i− 1, i+2, i+

4, . . . , 2d+ 3}.

(2) If δ = 2d+ 1, then

(a) C(2d+ 4, 2d+ 1) has 2d+ 4 triangulations T1, T2, . . . , T2d+4;

(b) the triangulations Ti have the following sets of internal d-simplices:

e̊(T1) = Jd
2d+4,

e̊(T2d+4) = ∅,

for even i ̸= 2d+ 4

e̊(Ti) =
{
{2, 4, . . . , 2d+ 2},{2, . . . , 2d, 2d+ 3},

. . . , {2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3}
}
,

and for odd i ̸= 1

e̊(Ti) =
{
{2, 4, . . . , i− 3, i, i+ 2, . . . , 2d+ 3},

. . . , {2, 5, . . . , 2d+ 3}, {3, 5, . . . , 2d+ 3}
}
;

(c) the posets S1(2d+ 4, 2d+ 1) and S2(2d+ 4, 2d+ 1) are equal and have

the structure depicted in Figure 3.2.
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Figure 3.1: S1(2d+ 3, 2d) = S2(2d+ 3, 2d)

T1

T2d+2 T3

T2 T2d+1

T2d+3

(d) the bistellar flips of the triangulations are as follows:

i. T1 admits two increasing bistellar flips: one removes {2, 4, . . . , 2d+

2} and the other removes {3, 5, . . . , 2d+ 3};

ii. for even i ̸= 2d + 4, Ti admits an increasing bistellar flip from

removing {2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3};

iii. for odd i ̸= 1, Ti admits an increasing bistellar flip from removing

{2, 4, . . . , i− 3, i, i+ 2, . . . , 2d+ 3}.

Example 3.3.2. We give examples of the triangulations described in Lemma 3.3.1.

We denote each triangulation Ti by its set of internal d-simplices e̊(T ). The poset

S1(7, 4) = S2(7, 4) is shown in Figure 3.3. The poset S1(8, 5) = S2(8, 5) is shown

in Figure 3.4.

The following lemma is straightforward, but serves to clarify what needs to be
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Figure 3.2: S1(2d+ 4, 2d+ 1) = S2(2d+ 4, 2d+ 1)

T1

T2 T2d+3

T2d+2 T3

T2d+4

Figure 3.3: Triangulations of C(7, 4)

{135, 136, 146}

{357, 135, 136}

{257, 357, 135}

{247, 257, 357}

{136, 146, 246}

{146, 246, 247}

{246, 247, 257}
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Figure 3.4: Triangulations of C(8, 5)

{246, 247, 257, 357}

{246, 247, 257}

{246, 247}

{246}

{247, 257, 357}

{257, 357}

{357}

∅

proven in order to show that the orders are equivalent.

Lemma 3.3.3. The following are equivalent.

(1) For any pair of triangulations T , T ′ ∈ S(m, δ), we have that T ⩽1 T ′ if and

only if T ⩽2 T ′.

(2) For any pair of triangulations T , T ′ ∈ S(m, δ) such that T <2 T ′, there

exists a triangulation T ′′ ∈ S(m, δ) such that T ⋖1 T ′′ ⩽2 T ′.

(3) For any pair of triangulations T , T ′ ∈ S(m, δ) such that T <2 T ′, there

exists a triangulation T ′′ ∈ S(m, δ) such that T ⩽2 T ′′ ⋖1 T ′.

Proof. First note that it is already known from [ER96, Proposition 2.5] that if

T ⩽1 T ′, then T ⩽2 T ′. To show that (1) implies (2) and (3), suppose that we

have T , T ′ ∈ S(m, δ) such that T <2 T ′. Then, from (1), it follows that T <1 T ′,
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so that we have

T = T0 ⋖1 T1 ⋖1 · · ·⋖1 Tr = T ′.

Hence we have T ⋖1 T1 ⩽1 T ′, and so T ⋖1 T1 ⩽2 T ′ and (2) holds. Similarly

T ⩽2 Tr−1 ⋖1 T ′, and so (3) holds as well.

We now show that (2) implies (1). We can assume that T <2 T ′, since if

T = T ′, then it is trivial that T ⩽1 T ′. Then, by applying (2), we obtain that

there is a triangulation T1 ∈ S(m, δ) such that

T ⋖1 T1 ⩽2 T ′.

By applying (2) repeatedly, we obtain a chain

T = T0 ⋖1 T1 ⋖1 · · ·⋖1 Tr = T ′.

This then establishes that T <1 T ′, as desired. The proof that (3) implies (1) is

similar.

We now describe the contraction operation [x → v ← y] in terms of the sets

e̊(T ), which will allow us to show that this operation is order-preserving with

respect to the second order.

Lemma 3.3.4. Let T̃ be a triangulation of C([m]v+, δ) with v ∈ [2,m− 1] and let

T = T̃ [x→ v ← y]. Then

e̊(T ) = {A ∈ ⟲
I⌊δ/2⌋m : A = Ã[x→ v ← y] for some Ã ∈ e̊(T̃ ) }.

Note that this lemma applies to both δ even and δ odd. If δ is odd and A ∈
⟲
I
⌊δ/2⌋
m is such that A = Ã[x→ v ← y] for some Ã ∈ e̊(T̃ ), then we automatically

have that A ∈ J
⌊δ/2⌋
m , since Ã ∈ J

⌊δ/2⌋
[m]v+

.

Proof. It is immediate that

e̊(T ) ⊇ {A ∈ ⟲
I⌊δ/2⌋m : A = Ã[x→ v ← y] for some Ã ∈ e̊(T̃ ) }
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from the definitions of e̊(T ) and T̃ [x→ v ← y].

We now show that

e̊(T ) ⊆ {A ∈ ⟲
I⌊δ/2⌋m : A = Ã[x→ v ← y] for some Ã ∈ e̊(T̃ ) }.

If A ∈ e̊(T ), then there must exist a simplex Ã of T̃ such that Ã[x→ v ← y] = A.

Without loss of generality, we may assume that {x, y} ̸⊆ Ã, since in this case we

may remove either x or y from Ã and still have Ã[x→ v ← y] = A. But then we

must have that Ã is an internal ⌊δ/2⌋-simplex, since A is an internal ⌊δ/2⌋-simplex.

Hence, Ã ∈ e̊(T̃ ), as desired.

We can now show that [x → v ← y] is order-preserving with respect to the

second order.

Lemma 3.3.5. If T̃ and T̃ ′ are triangulations of C([m− 1]v+, δ), with T̃ ⩽2 T̃ ′,

then T ⩽2 T ′, where T = T̃ [x→ v ← y] and T ′ = T̃ ′[x→ v ← y].

Proof. We split into two cases depending on whether δ is odd or even so that we

can use the combinatorial interpretations of the second higher Stasheff–Tamari

order.

We first let δ = 2d. We show that if T ⩽̸2 T ′, then T̃ ⩽̸2 T̃ ′. Suppose that

there exists B ∈ e̊(T ′) and A ∈ e̊(T ) such that B ≀A. Then we have that B̃ ∈ e̊(T̃ ′)

and Ã ∈ e̊(T̃ ), with A = Ã[x→ v ← y] and B = B̃[x→ v ← y], by Lemma 3.3.4.

Then we also must have have B̃ ≀ Ã, since at most one of A and B can contain v.

This implies that T̃ ̸⩽2 T̃ ′, as desired.

We now let δ = 2d+1. We shall show that if T̃ ⩽2 T̃ ′, then e̊(T ) ⊇ e̊(T ′). Let

A ∈ e̊(T ′). Then A = Ã[x → v ← y] for some Ã ∈ e̊(T̃ ′) by Lemma 3.3.4. Since

e̊(T̃ ) ⊇ e̊(T̃ ′), we then have that Ã ∈ e̊(T̃ ), which implies that Ã[x → v ← y] =

A ∈ e̊(T ), as desired.
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3.3.2 Odd dimensions

We now prove the equivalence of the orders for odd dimensions. Our characterisa-

tion of odd-dimensional triangulations from Chapter 2 is essential to the proof. We

begin by showing some preliminary lemmas which are specific to odd dimensions.

Lemma 3.3.6. Let T ∈ S(m, 2d+ 1) be a triangulation with a mutable d-simplex

A ∈ e̊(T ) which is replaced by the (d + 1)-simplex B in the increasing flip. Then

B′ = {b1, b2, . . . , bd} is the unique support of A.

Proof. First note that B′ is a support of A. This follows from the fact that every

d-simplex contained in A∪B′, excluding A, contains consecutive entries in A∪B,

and is therefore a d-simplex of T , since it lies on the boundary of C(A∪B, 2d+1),

which is a subpolytope of T .

We now suppose that A possesses a support E = {e1, e2, . . . , ed}. We show

that if ei ̸= bi for any i, then T contains a d-simplex which forms a circuit with

a (d + 1)-simplex in the boundary of C(A ∪ B, 2d + 1). This is a contradiction,

since C(A ∪ B, 2d + 1) is a subpolytope of T . The internal (d + 1)-simplices of

C(A ∪B, 2d+ 1) consist of B along with the (d+ 1)-simplices which have A as a

face, by Gale’s Evenness Criterion. All other (d+1)-simplices in C(A∪B, 2d+1)

lie on the boundary.

Suppose that ei < bi for some i. Then, since E is a support of A,

e̊(T ) ∋ {a0, a1, . . . , ai−2, ei, ai, ai+1 . . . , ad} ≀ {b0, b1, . . . , bi−2, ai−1, bi, bi+1, . . . , bd+1},

which is a boundary (d + 1)-simplex of C(A ∪ B, 2d + 1). Suppose instead that

ei > bi for some i. Then, since E is a support of A,

e̊(T ) ∋ {a0, a1, . . . , ai−1, ei, ai+1, ai+2, . . . , ad}≀{b0, b1, . . . , bi, ai, bi+2, bi+3, . . . , bd+1},

which is a boundary (d+1)-simplex of C(A∪B, 2d+1). Therefore, we must have

E = B′, which entails that B′ is the unique support of A.
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The following lemma helps us to understand what supports look like in trian-

gulations of C(2d+4, 2d+1). This is useful when we expand from C(2d+3, 2d+1)

subpolytopes to C(2d+ 4, 2d+ 1) subpolytopes.

Lemma 3.3.7. Let T be a triangulation of C(2d + 4, 2d + 1) which is neither

the upper triangulation nor the lower triangulation. Let A be the unique mutable

d-simplex of T with E the unique support of A. Then every internal d-simplex A′

of T has A′ ⊆ A ∪ E.

Proof. Note first that T has a unique mutable d-simplex by Lemma 3.3.1. One

can then proceed by direct verification. Suppose that we have the triangulation

Ti of C(2d+ 4, 2d+ 1), where i is even and i ̸= 2d+ 4. Hence, as in Lemma 3.3.1,

we have e̊(Ti) is{
{2, 4, . . . , 2d+ 2}, {2, 4 . . . , 2d, 2d+ 3}, . . . , {2, 4, . . . , i, i+ 3, i+ 5, . . . , 2d+ 3}

}
.

The mutable (d + 1)-simplex here is A = {2, 4, . . . , i, i + 3, i + 5, . . . , 2d + 3} by

Lemma 3.3.1. One can verify that this has support E = {3, 5, . . . , i− 1, i + 2, i +

4, . . . , 2d + 2}. Indeed, the internal d-simplices contained in {2, 4, . . . , i, i + 3, i +

5, . . . , 2d + 3} ∪ {3, 5, . . . , i − 1, i + 2, i + 4, . . . , 2d + 2} are precisely e̊(T ). This

establishes the claim when i is even, and the case where i is odd is the mirror

image of this.

The next lemma is the inductive step of the proof of the equivalence of the or-

ders for odd dimensions. Giving it as a separate lemma simplifies the presentation

of the proof.

Lemma 3.3.8. Let T , T ′ ∈ S([m−1]v+, 2d+1) be triangulations such that T <2 T ′

and T [x → v ← y] <2 T ′[x → v ← y]. Suppose that T [x → v ← y] possesses

an increasing flip U such that T [x → v ← y] ⋖1 U ⩽2 T ′[x → v ← y]. Then T

possesses an increasing flip T ′′ such that T ⋖1 T ′′ ⩽2 T ′.
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Proof. Let the increasing flip from T [x→ v ← y] to U consist of replacing the d-

simplex A with the (d+1)-simplex B inside the cyclic subpolytope C(A∪B, 2d+1).

We must then have that A /∈ e̊(T ′[x→ v ← y]) since U ⩽2 T ′[x→ v ← y] implies

that e̊(T [x→ v ← y]) \ {A} = e̊(U) ⊇ e̊(T ′[x→ v ← y]).

By Lemma 2.3.26, we have that either

(1) C(A ∪B, 2d+ 1) is a subpolytope of T , where v /∈ A ∪B,

(2) C((A ∪B ∪ x) \ v, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B,

(3) C((A ∪B ∪ y) \ v, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B, or

(4) C((A ∪B)v+, 2d+ 1) is a subpolytope of T , where v ∈ A ∪B.

We deal with each of these cases in turn.

(1) Suppose that C(A ∪ B, 2d + 1) is a subpolytope of T . Then the induced

triangulation of this subpolytope must contain A, since A ∈ e̊(T [x → v ← y])

and the contraction does not affect the subpolytope C(A ∪ B, 2d + 1). Since A

is contained in the subpolytope C(A ∪ B, 2d + 1) of T , we have that T admits

an increasing flip T ′′ where e̊(T ′′) = e̊(T ) \ A. Furthermore, A /∈ e̊(T ′), since

A /∈ e̊(T ′[x→ v ← y]). Thus, we have T ⋖1 T ′′ ⩽2 T ′.

(2) Suppose now that C((A ∪B ∪ x) \ v, 2d+ 1) is a subpolytope of T , where

v ∈ A ∪ B. If v ∈ A, then let Ã = (A ∪ x) \ v. Otherwise, let Ã = A. Then the

induced triangulation of the subpolytope C((A ∪B ∪ x) \ v, 2d+ 1) must contain

Ã, since A ∈ e̊(T [x → v ← y]). Moreover, Ã is contained in the subpolytope

C((A ∪ B ∪ x) \ v, 2d + 1) of T , so that T admits an increasing flip T ′′ where

e̊(T ′′) = e̊(T ) \ Ã. We also have that Ã /∈ e̊(T ′), because A /∈ e̊(T ′[x → v ← y]).

Hence T ⋖1 T ′′ ⩽2 T ′, as desired.

(3) The case where C((A ∪ B ∪ y) \ v, 2d + 1) is a subpolytope of T with

v ∈ A ∪B behaves similarly to the previous case.
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(4) Consider now the case where C((A∪B∪{x, y})\v, 2d+1) is a subpolytope

of T . Then the triangulation of this subpolytope induced by T must contain a

d-simplex Ã such that Ã[x → v ← y] = A. This d-simplex Ã must be internal

in C((A ∪ B ∪ {x, y}) \ v, 2d + 1), since A is internal in C(A ∪ B, 2d + 1). Hence

the induced triangulation of C((A ∪ B ∪ {x, y}) \ v, 2d + 1) cannot be the upper

triangulation. Moreover, we cannot have Ã ∈ e̊(T ′), since this implies that A ∈

e̊(T ′[x→ v ← y]).

Suppose first that the induced triangulation is the lower triangulation Tb0 of

C((A ∪ B ∪ {x, y}) \ v, 2d + 1). Then, by Lemma 3.3.1, the lower triangulation

Tb0 contains two mutable d-simplices, which we call J and K. Suppose that we

have both J,K ∈ e̊(T ′). Then, by the bridging property from Lemma 2.2.12, T ′

must contain every internal d-simplex in Tb0 , noting again the description of this

triangulation from Lemma 3.3.1. But this means that Ã ∈ e̊(T ′). Thus, at least

one of J and K is not a d-simplex of T ′. Hence, let T ′′ be the increasing flip of T

defined by removing whichever of J and K is not a d-simplex of T ′. We therefore

have T ⋖1 T ′′ ⩽2 T ′, as desired.

Now suppose that the induced triangulation of C((A∪B,∪{x, y})\v, 2d+1) is

neither the lower triangulation nor the upper triangulation. Then, by Lemma 3.3.1,

the induced triangulation has a unique mutable d-simplex L. By Lemma 3.3.6, L

has a unique support E in e̊(T ). We have that Ã ⊆ L ∪ E, by Lemma 3.3.7.

Suppose that L ∈ e̊(T ′). Let E ′ be the support of L in e̊(T ′), which we know

must exist by Lemma 2.2.10. Then, since e̊(T ) ⊇ e̊(T ′), we have that E ′ is a

support of L in e̊(T ). This implies that E ′ = E, Ã ⊆ L ∪ E, by Lemma 3.3.6. In

turn, this implies that Ã ∈ e̊(T ′), which is a contradiction. Therefore, if T ′′ is the

triangulation of C(m, 2d + 1) such that e̊(T ′′) = e̊(T ) \ {L}, then we must have

that T ⋖1 T ′′ ⩽2 T ′, as desired.
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We now have enough lemmas in place to prove the equivalence of the orders in

odd dimensions.

Theorem 3.3.9. Let T , T ′ be triangulations of C(m, 2d + 1). Then T ⩽1 T ′ if

and only if T ⩽2 T ′.

Proof. We prove the result by induction on the number of vertices of the cyclic

polytope. We may use the cases where m − (2d + 1) ⩽ 3 as base cases, since the

result is already known for these cases, as noted in [RR12]. Indeed, for m = 2d+2,

the cyclic polytope C(m, 2d+1) is a (2d+1)-simplex, so the result is trivial. The

result is also clear for m = 2d+3, since here the cyclic polytope C(m, 2d+1) only

has two triangulations. Finally, the case wherem = 2d+4 is given by Lemma 3.3.1.

Hence, from now on, we assume that m > 2d+ 4.

As in Lemma 3.3.3, we seek a triangulation T ′′ such that T ⋖1 T ′′ ⩽2 T ′. The

existence of such a triangulation will establish our claim. We now split into three

cases.

(1) Suppose that T [m − 1 ← m] ̸= T ′[m − 1 ← m]. Then, by the induction

hypothesis, T [m − 1 ← m] admits an increasing flip U such that T [m − 1 ←

m] ⋖1 U ⩽2 T ′[m − 1 ← m]. By applying Lemma 3.3.8 with m − 1 and m

relabelled as x and y, we obtain that T possesses an increasing flip T ′′ such that

T ⋖1 T ′′ ⩽2 T ′.

(2) We now suppose that we have T [1→ 2] ̸= T ′[1→ 2], so that T [1→ 2] <2

T ′[1→ 2]. By [ER96, Proposition 2.11], the permutation

α =

 1 2 . . . m− 1 m

m m− 1 . . . 2 1


on the vertices of the cyclic polytope induces an order-preserving bijection α on

both S1(m, 2d+1) and S2(m, 2d+1). We then have that α(T [1→ 2]) = α(T )[m−
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1 ← m] <2 α(T ′)[m − 1 ← m] = α(T ′[1 → 2]). Hence, by applying the previous

case, we obtain a triangulation T ′′ such that α(T ′) ⋖1 T ′′ ⩽2 α(T ). By applying

α again, we obtain that T ⋖1 α(T ′′) ⩽2 T ′, which resolves this case.

(3) We may now suppose that we are in neither of the previous cases, so that

T [1 → 2] = T ′[1 → 2] and T [m − 1 ← m] = T ′[m − 1 ← m]. Hence, by the

combinatorial interpretation of contraction from Lemma 2.2.15 and its dual, we

must have that

{A ∈ e̊(T ) : 2 /∈ A } = {A ∈ e̊(T ′) : 2 /∈ A },

{A ∈ e̊(T ) : m− 1 /∈ A } = {A ∈ e̊(T ′) : m− 1 /∈ A },

and so e̊(T ) and e̊(T ′) only differ in simplices containing both 2 and m − 1. Let

A be a simplex such that A ∈ e̊(T ) \ e̊(T ′). Then {2,m − 1} ⊆ A. There must

be some i ∈ [d] such that ai − ai−1 > 2, otherwise m − 1 = 2d + 2, and we are

supposing that this is not the case because m = 2d+ 3 is a base case.

Relabel [m] as [m− 1]v+, and relabel A correspondingly, such that ai−1 < x <

y < ai and then perform the contraction [x → v ← y]. Lemma 3.3.5 tells us that

T [x → v ← y] ⩽2 T ′[x → v ← y]. Moreover, T [x → v ← y] <2 T ′[x → v ← y],

since A ∈ e̊(T [x→ v ← y])\e̊(T ′[x→ v ← y]). By the induction hypothesis, there

is a increasing flip U of T [x → v ← y] such that T [x → v ← y] ⋖1 U ⩽2 T ′[x →

v ← y]. We then apply Lemma 3.3.8 to obtain that there exists an increasing flip

T ′′ of T such that T ⋖1 T ′′ ⩽2 T ′.

3.3.3 Even dimensions

We now prove the equivalence of the orders for even dimensions, beginning by

proving preliminary lemmas specific to this parity.
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Lemma 3.3.10. Let T , T ′ ∈ S(m, 2d) such that T <2 T ′. Suppose that T admits

an increasing flip T ′′ which is the result of replacing the d-simplex A by the d-

simplex B. Then, we have that T ′′ ̸⩽2 T ′ if and only if {ao0, a1, . . . , ad} ∈ e̊(T ′) for

some ao0 such that a0 ⩽ ao0 < b0.

Proof. If T ′′ ̸⩽2 T ′, then there must exist some J ∈ e̊(T ′) such that J ≀ B, since

T <2 T ′. Because we flip from A to B in T , every internal d-simplex in A ∪ B,

excluding B, must be in e̊(T ) since they all lie in the boundary of the subpolytope

C(A ∪ B, 2d)—see [OT12, Proposition 4.6]. Indeed, they all lie in the facets of

the subpolytope C(A ∪ B, 2d). Hence, if there is a d-simplex K ⊂ A ∪ B such

that J ≀ K, then this contradicts T ⩽2 T ′. If we have ji < ai for some i, then

J ≀(B\{bi})∪{ai}. Similarly, if, for i ̸= 0, we have ji > ai, then J ≀(B\{bi−1})∪{ai}.

Thus, we must have J = {ao0, a1, . . . , ad}, where ao0 ⩾ a0. That ao0 < b0 follows

from the fact that J ≀B.

Conversely, it is clear that if J = {ao0, a1, . . . , ad} ∈ e̊(T ′) such that a0 ⩽ ao0 <

b0, then J ≀B, so that we have T ′′ ̸⩽2 T ′.

We call such a simplex {ao0, a1, . . . , ad} ∈ e̊(T ′) where a0 ⩽ ao0 < b0 an obstruc-

tion to the increasing flip of T which replaces A with B. By Lemma 3.3.3, in

order to prove the equivalence of the orders in even dimensions, we must find an

increasing flip of T which is not obstructed by T ′. The following lemma allows us

to describe the 2d-simplex lying below the obstructing d-simplex.

Lemma 3.3.11. Let T , T ′ ∈ S(m, 2d) such that T <2 T ′. Suppose that T admits

an increasing flip via replacing the d-simplex A with the d-simplex B, and that

{ao0, a1, . . . , ad} ∈ T ′, where a0 ⩽ ao0 < b0. Then T ′ contains the 2d-simplex

{ao0, b0, a1, b1, . . . , bd−1, ad}.

Proof. By [OT12, Proposition 2.13], there exists a 2d-simplex S = {ao0, q0, a1, q1,

. . . , qd−1, ad} in T ′. We will show that we must have qi = bi for all i by ruling out
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the other cases.

Suppose that qi < bi for some i. Then {a1, a2, . . . , ai, bi, bi+1, . . . , bd} ∈ e̊(T ),

since it is in the boundary of C(A∪B, 2d), and {q0, q1, . . . , qi, ai+1, ai+2, . . . , ad} ∈

e̊(T ′), since it is contained in S. But this contradicts T <2 T ′, since {q0, q1, . . . , qi,

ai+1, ai+1, . . . , ad} ≀ {a1, a2, . . . , ai, bi, bi+1, . . . , bd}.

Now suppose that qi > bi for some i. Then {b0, b1, . . . , bi, ai+1, ai+2, . . . , ad} ∈

e̊(T ), since it is in the boundary of C(A∪B, 2d), and {ao0, a1, . . . , ai, qi, . . . , qd−1} ∈

e̊(T ′), since it is contained in S. But this contradicts T <2 T ′, since {ao0, a1, . . . , ai,

qi, . . . , qd−1} ≀ {b0, b1, . . . , bi, ai+1, ai+2, . . . , ad}, noting that ao0 < b0. Thus qi = bi

for all i, as desired, which completes the proof.

We will use the following lemma and its corollary to find the right pair of

middle vertices to contract at in the final case of our proof of the equivalence of

the orders in even dimensions.

Lemma 3.3.12. Let T , T ′ ∈ S(m, 2d) be triangulations such that T <2 T ′. Sup-

pose further that both T [1→ 2] = T ′[1→ 2] and T [m−1← m] = T ′[m−1← m].

Then, there exists A ∈ e̊(T ) \ e̊(T ′) and, for every such A, we have a0 = 1 and

ad = m− 1. Dually, there exists B ∈ e̊(T ′) \ e̊(T ) and, for every such B, we have

b0 = 2, bd = m.

Proof. Since we know that T ̸= T ′, there must exist A ∈ e̊(T ) such that A /∈ e̊(T ′).

We then have that Amust be intertwining with some B ∈ e̊(T ′). Since T <2 T ′, we

must in fact have that A ≀B. One may also arrive at this situation by first choosing

B ∈ e̊(T ′) such that B /∈ e̊(T ). If a0 > 1, then A ∈ T [1→ 2] and B ∈ T ′[1→ 2],

which contradicts the fact that T [1 → 2] = T ′[1 → 2]. Hence a0 = 1, and we

similarly argue that bd = m. We can continue with similar deductions. If b0 > 2,

then T [1→ 2] ∋ {2, a1, a2, . . . , ad} ≀ B ∈ T ′[1→ 2]. Therefore b0 = 2, and we can

likewise reason that ad = m− 1.
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Corollary 3.3.13. Let T , T ′ ∈ S(m, 2d), with m > 2d+3, be triangulations such

that T <2 T ′, and both T [1→ 2] = T ′[1→ 2] and T [m−1← m] = T ′[m−1← m].

Then there exists v ∈ [3,m− 2] such that if one relabels [m] as [m− 1]v+, then we

have T [x→ v ← y] <2 T ′[x→ v ← y].

Proof. Since T <2 T ′, there must exist A ∈ e̊(T ) and B ∈ e̊(T ′) such that A ≀ B.

By Lemma 3.3.12, we have that a0 = 1, b0 = 2, ad = m− 1, bd = m. Because m >

2d+3, we must have [m]\ (A∪B) ̸= ∅. We may therefore choose {v, v+1} ⊂ [m]

such that #{v, v + 1} ∩ (A ∪ B) ⩽ 1 and {v, v + 1} ∩ {1, 2,m − 1,m} = ∅. We

then relabel [m] as [m−1]v+ so that {v, v+1} becomes {x, y}. We likewise relabel

T , T ′, A, and B. If we let A,B be the respective images of A and B under the

contraction [x → v ← y], then, by our choice of v, we obtain that A ≀ B. By

Lemma 3.3.5, we obtain that T [x→ v ← y] <2 T ′[x→ v ← y].

We now prove that the orders are equivalent in even dimensions. The structure

of the proof is similar to odd dimensions, but we are not able to extract the

inductive step of the proof as a separate lemma, since the details differ between

the contractions [m− 1← m] and [x→ v ← y].

Theorem 3.3.14. Let T , T ′ be triangulations of C(m, 2d). Then T ⩽1 T ′ if and

only if T ⩽2 T ′.

Proof. As in the odd-dimensional case, we prove the result by induction on the

number of vertices of the cyclic polytope. As noted in [RR12], the result is already

known for m ⩽ 2d + 3, so we use these as the base cases of our induction. One

may also easily verify the result in these cases in the same way as explained in the

proof of Theorem 3.3.9.

Hence, we suppose for induction that we have triangulations T , T ′ ∈ S(m, 2d),

where m > 2d + 3, such that T <2 T ′. We split into three cases, seeking a

triangulation T ′′ such that T ⋖1 T ′′ ⩽2 T ′.
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(1) Suppose that T [m − 1 ← m] ̸= T ′[m − 1 ← m], so that T [m − 1 ←

m] <2 T ′[m − 1 ← m]. By the induction hypothesis, there exists a triangulation

U such that T [m − 1 ← m] ⋖1 U ⩽2 T ′[m − 1 ← m]. Let this increasing flip of

T [m−1← m] be given by exchanging a d-simplex A for a d-simplex B. Therefore,

we have that C(A ∪B, 2d) is a subpolytope of T [m− 1← m]. By Lemma 2.3.26,

we have that either

(a) C(A ∪B, 2d) is a subpolytope of T ,

(b) C(A ∪ B′, 2d) is a subpolytope of T , where B′ = {b0, b1, . . . , bd−1,m} and

bd = m− 1, or

(c) C(A ∪B ∪m, 2d) is a subpolytope of T , in which case bd = m− 1.

We deal with each of these cases in turn.

(a) Suppose first that C(A ∪ B, 2d) is a subpolytope of T . This subpolytope

therefore contains the d-simplex A, since it contains the d-simplex A in T [m −

1 ← m]. Thus T also admits an increasing flip by exchanging A for B to give

a triangulation T ′′. If T ′′ ̸⩽2 T ′, then Ao = {ao0, a1, . . . , ad} ∈ e̊(T ′) where a0 ⩽

ao0 < b0, by Lemma 3.3.10. But then Ao ∈ e̊(T ′[m− 1← m]), since m /∈ Ao, which

contradicts U ⩽2 T ′[m−1← m]. Hence, in this case we have that T ⋖1 T ′′ ⩽2 T ′,

as desired.

(b) If C(A∪B′, 2d) is a subpolytope of T , then we may exchange A for B′. If

there is an obstruction to this, then we get a contradiction in a similar way to the

previous case.

(c) Finally, suppose that C(A ∪ B ∪ m, 2d) is a subpolytope of T , in which

case bd = m − 1. The triangulation of this subpolytope induced by T must

contain the d-simplex A, since m − 1 /∈ A but A ∈ e̊(T [m − 1 ← m]). Since

C(A ∪ B ∪ m, 2d) is a cyclic polytope congruent to C(2d + 3, 2d), all the tri-

angulations of C(A ∪ B ∪ m, 2d) are fan triangulations, by Lemma 3.3.1. The
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possible triangulations of C(A ∪ B ∪m, 2d) then consist of the fan triangulations

determined by the elements ai ∈ A, since we must have that A is a d-simplex

of the induced triangulation of the subpolytope. By Lemma 3.3.1, the fan trian-

gulation of C(A ∪ B ∪ m, 2d) at ai possesses an increasing flip at the d-simplex

J = {a0, a1, . . . , ai, bi+1, bi+2, . . . , bd}, which is then exchanged for the d-simplex

K = {b0, b1, . . . , bi−1, ai+1, ai+2, . . . , ad,m}.

Let T ′′ be the triangulation resulting from performing this increasing flip on T .

If T ′′ ̸⩽2 T ′, then we have an obstruction Jo = {ao0, a1, . . . , ai, bi+1, bi+2, . . . , bd} ∈

e̊(T ′) where a0 ⩽ ao0 < b0, by Lemma 3.3.10. By Lemma 3.3.11, we conclude

that {ao0, b0, a1, b1, . . . , ai, ai+1, bi+1, . . . , ad, bd} is a 2d-simplex of T ′. Consequently,

Ao = {ao0, a1, . . . , ad} ∈ e̊(T ′), since it is a face of this 2d-simplex. This implies

that Ao ∈ e̊(T ′[m − 1 ← m]), which obstructs the flip from T [m − 1 ← m] to U .

But we assumed that U ⩽2 T ′[m − 1 ← m] using the induction hypothesis. We

therefore conclude that we cannot have Jo ∈ e̊(T ′). This means that we have

T ⋖1 T ′′ ⩽2 T ′, as desired.

(2) We now suppose that T [1→ 2] ̸= T ′[1→ 2]. By [ER96, Proposition 2.11],

the permutation

α =

 1 2 . . . m− 1 m

m m− 1 . . . 2 1


on the vertices of the cyclic polytope induces an order-reversing bijection α on

both S1(m, 2d) and S2(m, 2d). We then have that α(T [1 → 2]) = α(T )[m− 1 ←

m] >2 α(T ′)[m − 1 ← m] = α(T ′[1 → 2]). Hence, by applying the previous case,

we obtain a triangulation T ′′ such that α(T ′)⋖1T ′′ ⩽2 α(T ). By applying α again,

we obtain that T ⩽2 α(T ′′)⋖1 T ′, which resolves this case, noting Lemma 3.3.3.

(3) We may now suppose that we have both T [m− 1← m] = T ′[m− 1← m]

and T [1→ 2] = T ′[1→ 2]. Since we are assuming that m > 2d+ 3, we can apply

Corollary 3.3.13 and relabel [m] as [m− 1]v+ such that T [x→ v ← y] <2 T ′[x→
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v ← y]. By applying the induction hypothesis, we obtain that there exists an

increasing flip U of T [x→ v ← y] such that T [x→ v ← y]⋖1U ⩽2 T ′[x→ v ← y].

Suppose that this increasing bistellar flip replaces the d-simplex A with the d-

simplex B. Hence we have that C(A∪B, 2d) is a subpolytope of the triangulation

T [x→ v ← y].

Note then that

(T [x→ v ← y])[1→ 2] = (T [1→ 2])[x→ v ← y]

= (T ′[1→ 2])[x→ v ← y]

= (T ′[x→ v ← y])[1→ 2].

This follows from [RS00, Theorem 3.4], but can also be seen directly. We similarly

reason that

(T [x→ v ← y])[m− 2← m− 1] = (T ′[x→ v ← y])[m− 2← m− 1].

Using these observations, we can deduce the values of the first and last elements

of A and B. We know that A /∈ e̊(T ′[x → v ← y]), since U is obtained from

T [x → v ← y] by replacing A with B, and U ⩽2 T ′[x → v ← y]. By applying

Lemma 3.3.12 to A, we obtain that a0 = 1 and ad = m − 2. This implies that

bd = m − 1. Since A /∈ e̊(T ′[x → v ← y]), but (T [x → v ← y])[1 → 2] =

(T ′[x → v ← y])[1 → 2], we must have {2, a1, a2, . . . , ad} ∈ e̊(T ′[x → v ← y]).

But {2, a1, a2, . . . , ad} is an obstruction to the flip from T [x→ v ← y] to U unless

b0 = 2. We thus conclude that b0 = 2.

By Lemma 2.3.26, we have that either

(a) C(A ∪B, 2d) is a subpolytope of T and v /∈ A ∪B,

(b) C((A ∪B ∪ x) \ v, 2d) is a subpolytope of T , where v ∈ A ∪B,

(c) C((A ∪B ∪ y) \ v, 2d) is a subpolytope of T , where v ∈ A ∪B, or
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(d) C((A ∪B)v+, 2d) is a subpolytope of T , where v ∈ A ∪B.

We deal with each of these cases in turn.

(a) We suppose that C(A ∪B, 2d) is a subpolytope of T and v /∈ A ∪B. The

induced triangulation of this subpolytope must contain the d-simplex A, since it

contains the d-simplex A in T [x → v ← y]. We hence perform an increasing flip

on T by replacing A with B inside this subpolytope, obtaining a triangulation T ′′.

We claim that T ′′ ⩽2 T ′. If not, then, by Lemma 3.3.10, there exists an

obstruction Ao = {ao0, a1, . . . , ad} ∈ e̊(T ′), where a0 ⩽ ao0 < b0. But, since a0 = 1,

b0 = 2, we must have that ao0 = a0. This means that A = Ao ∈ e̊(T ′), which implies

that A ∈ e̊(T ′[x→ v ← y]), which contradicts the fact that U ⩽2 T ′[x→ v ← y].

(b) The case where C((A∪B∪x)\ v, 2d) is a subpolytope of T and v ∈ A∪B

is largely analogous to the previous case, although there are additional details.

We let Ã and B̃ be such that Ã ∪ B̃ = (A ∪ B ∪ x) \ v, where Ã ≀ B̃. Hence,

we have Ã[x → v ← y] = A and B̃[x → v ← y] = B. We must have that the

induced triangulation of the subpolytope C(Ã ∪ B̃, 2d) contains the d-simplex Ã,

since the induced triangulation of the subpolytope C(A∪B, 2d) of T [x→ v ← y]

contains A. We hence perform an increasing flip on T by replacing Ã with B̃

inside this subpolytope, obtaining a triangulation T ′′.

We claim that T ′′ ⩽2 T . If not, then, by Lemma 3.3.10, there exists an

obstruction Ao = {ao0, ã1, . . . , ãd}, where ã0 ⩽ ao0 < b̃0. Since 1 < 2 < x < y in the

ordering on [m − 1]v+, by our choice of x and y from Corollary 3.3.13, we must

have that ã0 = a0 = 1 and b̃0 = b0 = 2, and so ao0 = a0 = 1 and Ao = Ã. This

means that Ã ∈ e̊(T ′), and so A ∈ e̊(T ′[x → v ← y]). This contradicts the fact

that U ⩽2 T ′[x→ v ← y].

(c) The case where C((A∪B∪y)\v, 2d+1) is a subpolytope of T and v ∈ A∪B

is analogous to the previous case.
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(d) We finally suppose that C((A ∪ B)v+, 2d) is a subpolytope of T , where

v ∈ A ∪ B. We label the vertices of this subpolytope by H = {h1, h2, . . . , h2d+3}.

From what we deduced about the first and last values of A and B, we know that

h1 = 1, h2 = 2, h2d+2 = m− 2, h2d+3 = m− 1. We know that the triangulation of

this subpolytope contains an internal d-simplex Ã such that Ã[x → v ← y] = A.

Since 1 < 2 < x < y in the order on [m − 1]v+, we must have that ã0 = a0 = 1.

Moreover, we must have that Ã ⊆ {h1, h2, . . . , h2d+2}, since ad < bd.

Using the notation of Lemma 3.3.1, there are two cases to consider, depending

upon whether the triangulation of C(H, 2d) is Th2i
for i such that 2 ⩽ i ⩽ d+1, or

Th2i−1
for i such that 1 ⩽ i ⩽ d+1. The triangulations Th2 and Th2d+3

are excluded

because they do not contain any internal simplices with 1 as a vertex, while we

know that ã0 = 1.

If the triangulation of C(H, 2d) is Th2i
for i > 1, then, by Lemma 3.3.1, there

exists an increasing flip given by replacing J = {h1, h3, . . . , h2i−3, h2i, h2i+2, . . . ,

h2d+2} with K = {h2, h4, . . . , h2i−2, h2i+1, h2i+3, . . . , h2d+3}. Since h1 = 1 and

h2 = 2, if this flip is obstructed, it must be because J ∈ e̊(T ′). If this is the case,

then by Lemma 3.3.11, we have that J ∪K \ h2d+3 = H \ {h2i−1, h2d+3} is a 2d-

simplex of T ′. But we must have Ã ⊆ H \ {h2i−1, h2d+3}, since Ã ∈ e̊(Th2i
), and so

h2i−1 /∈ Ã. This means that Ã ∈ e̊(T ′), which implies that A ∈ e̊(T ′[x→ v ← y]).

This contradicts the fact that U ⩽2 T ′[x → v ← y], and so we conclude that

the increasing flip given by replacing J with K cannot be obstructed. Hence if

T ′′ is the triangulation resulting from this flip, then we have T ⋖1 T ′′ ⩽2 T ′.

The case where the triangulation of C(H, 2d) is Th2i−1
for 1 ⩽ i ⩽ d + 1 behaves

similarly. Thus, in all cases we are able to construct a triangulation T ′′ such that

T ⋖1 T ′′ ⩽2 T ′, as desired.
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3.3.4 One parity suffices

We conclude this section by noting that it suffices to show explicitly that the two

orders are equal for one of either odd dimensions or even dimensions. The other

parity can then be deduced for the parity that has been shown explicitly. This

provides a shorter proof than giving an explicit proof for both parities. We submit

that it is nevertheless worthwhile to have explicit proofs for both parities, as given

in Section 3.3.2 and Section 3.3.3.

In particular, one can use the the extension operation from [Ram97], which

was explained in Section 2.1.4. This operation produces a triangulation T̂ of

C(m + 1, δ + 1) from a triangulation T of C(m, δ). This can be used to deduce

that S1(m, δ) = S2(m, δ) from S1(m+ 1, δ + 1) = S2(m+ 1, δ + 1). Our first task

is to show that the extension operation ˆ(−) is order-reversing with respect to the

second order. It is already known that this extension operation is order-reversing

with respect to the first order [Ram97]. Of course, if one has already shown that

the two orders are equal, then it is immediate from this that extension is order-

reversing with respect to the second order. But we are supposing that one has

not shown this, since we are demonstrating how to deduce the equivalence of the

orders for one parity from the equivalence of the orders for the other parity. To

show that extension is order-reversing for even dimensions, we explicitly describe

e̊(T̂ ) in terms of e̊(T ).

Lemma 3.3.15. Let T ∈ S(m, 2d). Then

e̊(T̂ ) = ̂̊e(T ) := {A ∈ Jd
m+1 : {a0, a1, . . . , ad−1, a

′
d} ∈ e̊(T ) for ad ⩽ a′d }.

Note that, while T is a triangulation of C(m, 2d), T̂ is a triangulation of

C(m+ 1, 2d+ 1), so its internal d-simplices lie in Jd
m+1.

Proof. We show that the inclusion holds both ways. Let A ∈ e̊(T̂ ). Then A ∈ Jd
m+1

and there exists a (2d + 1)-simplex S of T̂ which possesses A as a face. If S =
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S ′∪{m+1} for S ′ a 2d-simplex of T , then we must have A ⊆ S ′, since ad ̸= m+1,

as A ∈ Jd
m+1. Then it is immediate that A ∈ ̂̊e(T ). Alternatively, we could have

that S = S ′′ ∪ {l, l+ 1}, where S ′′ = {s0, s1, . . . , s2d−1}, with S ′ = {s0, s1, . . . , s2d}

a 2d-simplex of T for some s2d such that s2d−1 < l < s2d. If ad /∈ {l, l + 1},

then A is a face of S ′ and so is straightforwardly in ̂̊e(T ). If ad ∈ {l, l + 1}, then

{a0, a1, . . . , ad−1, s2d} is a face of S ′ and so {a0, a1, . . . , ad−1, s2d} ∈ e̊(T ), noting

that a0 ⩾ 2, which means that {a0, a1, . . . , ad−1, s2d} is an internal d-simplex even

if s2d = m. Then A ∈ ̂̊e(T ), since ad ∈ {l, l + 1} and l + 1 ⩽ s2d.

Conversely, suppose that A ∈ ̂̊e(T ). If A ∈ e̊(T ), then it is straightforwardly

the case that A ∈ e̊(T̂ ), since every d-simplex of T is a d-simplex of T̂ . Hence,

suppose that {a0, a1, . . . , ad−1, a
′
d} ∈ e̊(T ), where ad < a′d. Then there exists a 2d-

simplex S = {a0, q0, a1, q1, a2, . . . , ad−1, qd−1, a
′
d} of T by [OT12, Proposition 2.13].

We can assume that qd−1 < ad, since otherwise we can replace {a0, a1, . . . , ad−1, a
′
d}

with {a0, a1, . . . , ad−1, qd−1} and repeat the argument. Then, by definition of T̂ ,

we have that

{a0, q0, a1, q1, a2, . . . , ad−1, qd−1, ad, ad + 1}

is a (2d + 1)-simplex of T̂ , since qd−1 < ad < a′d. We then obtain that A ∈ e̊(T̂ ),

since it is a face of this (2d+ 1)-simplex.

This explicit description of e̊(T̂ ) for an even-dimensional triangulation T allows

us to show that the extension operation ˆ(−) is order-reversing with respect to the

second order for even dimensions.

Lemma 3.3.16. Let T , T ′ ∈ S(m, 2d) with T ⩽2 T ′. Then T̂ ′ ⩽2 T̂ .

Proof. We prove the contrapositive. Let T , T ′ ∈ S(m, 2d) and suppose that

T̂ ′ ̸⩽2 T̂ . Then there exists A ∈ e̊(T̂ ) \ e̊(T̂ ′) by Theorem 3.2.12. Since A /∈ e̊(T̂ ′),

there exists a (d + 1)-simplex B of T̂ ′ such that A ≀ B. We claim that B′ :=

{b0, b1, . . . , bd} ∈ e̊(T ′). Indeed, B must be a face of some (2d + 1)-simplex S. If
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S = S ′ ∪ {m + 1} for a 2d-simplex S of T , then the claim is clear since B′ ⊆ S.

The other option is that S = S ′′ ∪ {l, l + 1} for S ′′ = {s0, s1, . . . , s2d−1} with

S ′ = {s0, s1, . . . , s2d} a 2d-simplex of T and s2d−1 < l < s2d. But here we cannot

have that bd = l and bd+1 = l + 1, since bd < ad < bd+1. Hence B′ ⊆ S ′′ ⊆ S ′,

and so we again have that B′ ∈ e̊(T ′). Then, by Lemma 3.3.15, we have that

A′ = {a0, a1, . . . , ad−1, a
′
d} ∈ e̊(T ) for some a′d ⩾ ad. Hence we have that B′ ≀ A′,

which implies that T ̸⩽2 T ′ by Theorem 3.2.2.

For odd dimensions we do not explicitly describe e̊(T̂ ) in terms of e̊(T ), but

instead prove that the extension operation ˆ(−) is order-reversing with respect to

the second order without this intermediate step.

Lemma 3.3.17. Let T , T ′ ∈ S(m, 2d+ 1) with T ⩽2 T ′. Then T̂ ′ ⩽2 T̂ .

Proof. We again prove the contrapositive. Suppose that T̂ ′ ̸⩽2 T̂ . Then there

exists B ∈ e̊(T̂ ) and A ∈ e̊(T̂ ′) such that B ≀ A by Theorem 3.2.2. We consider

how A and B relate to T ′ and T . We have that B is a face of some (2d+2)-simplex

S of T̂ . If S = S ′ ∪ m + 1 for S ′ a (2d + 1)-simplex of T , then B ⊆ S ′, since

bd+1 ̸= m+1, as B ≀A. Hence, in this case B is a (d+1)-simplex of T . In the other

case, we have that S = S ′′∪{l, l+1} with {s0, s1, . . . , s2d, s′2d+1} a (2d+1)-simplex

of T where s2d < l < s′2d+1 and S ′′ = {s0, s1, . . . , s2d}. Here, we must have that

{b0, b1, . . . , bd} ⊆ S ′′, since bd+1 ̸= bd + 1, as bd < ad < bd+1. If bd+1 ∈ {l, l + 1},

then we let b′d+1 = s′2d+1, noting that this means b′d+1 ⩾ bd+1. Hence, in either case,

we have that {b0, b1, . . . , bd, b′d+1} is a (d+ 1)-simplex of T for some b′d+1 ⩾ bd+1.

Similarly, we have that {a0, a1, . . . , ad+1} is a face of some (2d + 2)-simplex U

of T̂ ′. It can be seen that we must have {a0, a1, . . . , ad} ∈ e̊(T ′), whatever form the

simplex U takes, since ad can neither be the final vertex of U nor the penultimate

vertex, as ad < bd+1 < ad+1. But then {a0, a1, . . . , ad} /∈ e̊(T ), since we have

{a0, a1, . . . , ad} ≀ {b0, b1, . . . , bd, b′d+1}. Hence T ̸⩽2 T ′ by Theorem 3.2.12.
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Thus, we obtain that the extension operation from T to T̂ is order-reversing

with respect to the second order for both odd dimensions and even dimensions.

Corollary 3.3.18. If T , T ′ ∈ S(m, δ) with T ⩽2 T ′, then T̂ ′ ⩽2 T̂ .

This allows us to show that the equality of the orders for δ can be deduced

from the equality of the orders for δ + 1.

Proposition 3.3.19. If S1(m, δ + 1) = S2(m, δ + 1) for all m, then S1(m, δ) =

S2(m, δ) for all m.

Proof. Let T , T ′ ∈ S(m, δ) such that T <2 T ′. We consider the extended tri-

angulations T̂ , T̂ ′ of C(m + 1, δ + 1). These are such that T̂ \(m + 1) = T and

T̂ ′\(m + 1) = T ′. We have that T̂ ′ <2 T̂ by Corollary 3.3.18. By assumption,

S1(m, δ+ 1) = S2(m, δ+ 1), so we know that there exists a sequence of increasing

flips

T̂ ′ = U0 ⋖1 U1 ⋖1 · · ·⋖1 Uk = T̂ .

We claim that, for any given i, we either have Ui+1\(m + 1) = Ui\(m + 1) or

Ui+1\(m+1)⋖1Ui\(m+1). We know that there exists a subpolytope C(H, δ+1) of

Ui such that the increasing flip from Ui to Ui+1 replaces the lower triangulation of

this subpolytope with its upper triangulation. If m+1 /∈ H, then Ui+1\(m+1) =

Ui\(m + 1), since no (δ + 1)-simplices of Ui with m + 1 as a vertex are affected

by the increasing flip. If m + 1 ∈ H, then C(H \ (m + 1), δ) is a subpolytope

of Ui\(m + 1) with the induced triangulation given by its upper triangulation,

since the operation \(m+1) is order-reversing. Then Ui+1\(m+1) is the result of

replacing the upper triangulation of C(H \ (m + 1), δ) by its lower triangulation,

and so we have that Ui+1\(m+ 1)⋖1 Ui\(m+ 1).

Hence, we obtain a sequence of increasing flips

T = Tl ⋖1 Tl−1 ⋖1 · · ·⋖1 T0 = T ′,
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where T0, . . . , Tl consist of U0\(m+1), . . . ,Uk\(m+1) with the duplicates removed.

This shows that T ⩽1 T ′, and so that S1(m, δ) = S2(m, δ).

This proposition allows one to deduce the equality of the higher Stasheff–

Tamari orders for even dimensions from the equality for odd dimensions, and vice

versa.

3.4 Applications

In this section we give two applications of the equivalence of the orders, before

giving the main application to representation theory of algebras in Chapter 4. We

may now refer to simply the higher Stasheff–Tamari order, rather than the first

higher Stasheff–Tamari order and the second higher Stasheff–Tamari order. We

denote the higher Stasheff–Tamari poset on the set of triangulations of C(m, δ) by

S(m, δ).

3.4.1 Minimal embeddings

As a consequence of Corollary 3.2.12, we obtain embeddings of the higher Stasheff–

Tamari posets into Boolean lattices of minimal rank. The fact that the ranks we

give are minimal is proven in [Tho02, Theorem 6.1]. In [Tho02] these are obtained

for the second higher Stasheff–Tamari posets, but the equality of the orders gives

that these are minimal embeddings for the first poset as well. Moreover, we use

the results of Section 3.2 to obtain non-recursive realisations of these embeddings.

Corollary 3.4.1. There is an embedding

ι : S(m, 2d+ 1) ↪→ 2(
m−d−2

d+1 ),

where the usual order on the Boolean lattice 2(
m−d−2

d+1 ) is reversed.
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Proof. Define ι : S(m, 2d+ 1) ↪→ 2J
d
m by

ι(T ) := e̊(T ).

This is an embedding by Lemma 2.2.9, and is full and order-preserving by Theo-

rem 3.2.12. Then #Jd
m =

(
m−d−2
d+1

)
, so the result follows.

One can use a similar technique to embed S(m, 2d) into the smallest possible

Boolean lattice. Such an embedding is realised if one restricts submersion sets to

internal d-simplices which do not lie on the lower facets of C(m, 2d+ 1).

Proposition 3.4.2. There is an embedding

ι : S(m, 2d) ↪→ 2(
m−d−1

d+1 ),

where the order on the Boolean lattice 2(
m−d−1

d+1 ) is as usual.

Proof. If a d-simplex A lies in the lower facets of C(m, 2d+1), then A is submerged

by every triangulation of C(m, 2d). Such d-simplices can therefore be ignored. The

internal d-simplices of C(m, 2d) which do not lie on the lower facets of C(m, 2d+1)

are precisely those whose first vertex is not 1. Hence define

ι(T ) := {A ∈ ⟲
Idm : A ∈ subdT , a0 ̸= 1 } = {A ∈ Jd

m+1 : A ∈ subdT }

for a triangulation T of C(m, 2d). Then since #Jd
m+1 =

(
m−d−1
d+1

)
, this gives our

desired embedding. That this is a full, order-preserving injection follows, of course,

from the characterisation of the second higher Stasheff–Tamari order in terms of

submersion sets from [ER96, Proposition 2.15].

3.4.2 Lattice property

For δ = 2, the higher Stasheff–Tamari order S(m, δ) is the Tamari lattice, which, of

course, is a lattice. It was originally conjectured that both higher Stasheff–Tamari
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Figure 3.5: Lattice property for S(c+ δ, δ)

c\δ 4 5 6 7 8 9 10 11 12 13 14 15 16

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✗ ✗ ✗ ✗ ✗

6 ✗

posets were also lattices [ER96, Conjecture 2.3], and this is also known to be true

for δ ∈ {1, 3}. The authors of [ERR00] used computer calculations to show that

S2(9, 4) is not a lattice, which still left open the question of whether or not the

first higher Stasheff–Tamari order was a lattice. But, by the equality of the two

orders, we obtain that S2(9, 4) = S1(9, 4), which is therefore also not a lattice.

We used the description of the higher Stasheff–Tamari orders in Theorem 3.2.13

to construct the posets in Sage. We tested the lattice property of the orders in

several other cases, as shown in Figure 3.5.
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Higher Auslander–Reiten theory

In this chapter, we show how the higher Stasheff–Tamari orders arise in the higher

Auslander–Reiten theory of Iyama [Iya07b; Iya07a; Iya11]. This theory stud-

ies particular subcategories of module categories of finite-dimensional algebras,

which are called d-cluster-tilting subcategories. These d-cluster-tilting subcate-

gories behave like higher-dimensional versions of abelian categories [Jas16]. If an

algebra possesses a d-cluster-tilting subcategory which has finitely many indecom-

posable objects, then it is called ‘d-representation-finite’. The canonical examples

of d-representation-finite algebras are the higher Auslander algebras of type A,

denoted Ad
n, which were introduced by Iyama in [Iya11]. These algebras were

first shown to have a connection with triangulations of even-dimensional cyclic

polytopes in [OT12]. In particular, in [OT12] it was shown that triangulations

of C(n + 2d + 1, 2d) were in bijection with cluster-tilting objects for Ad
n, or with

tilting modules for Ad
n+1. We opt to introduce the slightly different framework of

d-silting, showing that, under this bijection, the higher Stasheff–Tamari orders cor-

respond to natural orders on d-silting complexes which arise from orders on tilting

modules introduced by Riedtmann and Schofield [RS91]—see also [AI12; AIR14].

Furthermore, this fact allows us to show how odd-dimensional triangulations enter

137
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the picture, namely, as equivalence classes of “d-maximal green sequences”. We

introduce d-maximal green sequences as the higher-dimensional generalisations of

maximal green sequences, which were introduced by Keller [Kel11]. Finally, we

interpret the higher Stasheff–Tamari orders in terms of equivalence classes of d-

maximal green sequences. These orders are very natural but have not much been

studied, although there is some related work from [Gor14a; Gor14b; Gor]. These

orders are related to the “no-gap” conjecture of Brüstle, Dupont, and Perotin

[BDP14], as we discuss. By the results of Chapter 3, we deduce that these orders

on d-silting complexes and equivalence classes of d-maximal green sequences are

equal for the higher Auslander algebras of type A, which invites the question of

whether this holds more generally in higher Auslander–Reiten theory.

This chapter is structured as follows. We begin in Section 4.1 by outlining the

basic notions of higher Auslander–Reiten theory, defining the higher Auslander

algebras of type A in particular. We explain how one may describe the repre-

sentation theory of these algebras using the results of [OT12]. We then see how

this leads to connections with triangulations of cyclic polytopes, which we explain

using cluster-tilting and d-silting. The d-silting framework is new, and so we lay

the requisite groundwork. We illustrate the results with examples. In Section 4.3,

we show how the even-dimensional higher Stasheff–Tamari orders arise in the rep-

resentation theory of Ad
n, using the results of Section 3.2. We then apply these

results in Section 4.4 in order to describe how triangulations of odd-dimensional

cyclic polytopes arise in the representation theory of Ad
n. Using the results of Sec-

tion 3.2 once more, we see how the odd-dimensional higher Stasheff–Tamari orders

may be interpreted algebraically. Finally, in Section 4.5, the focus changes, and

we show a criterion for mutating cluster-tilting objects in higher cluster categories.

This translates into an algebraic criterion for performing a bistellar flip at a given

internal d-simplex in a triangulation of a 2d-dimensional cyclic polytope.
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4.1 Higher Auslander–Reiten theory

In this section let Λ be a finite-dimensional algebra over a field K. We denote

by modΛ the category of finite-dimensional right Λ-modules. We assume that all

subcategories are full and replete, recalling that a subcategory is replete if it is

closed under isomorphisms. Given a module M ∈ modΛ, we write addM for the

subcategory consisting of summands of direct sums of copies of M . We denote

the standard duality by D = HomK(−, K) : modΛop → modΛ. We do not give

general background on the representation theory of finite-dimensional algebras,

and refer instead to the text [ASS06], and to [Hap88] for material on triangulated

categories.

Given a subcategory X ⊂ modΛ and a map f : X → M , where X ∈ X and

M ∈ modΛ, we say that f is a right X -approximation if for any X ′ ∈ X , the

sequence

HomΛ(X
′, X)→ HomΛ(X

′,M)→ 0

is exact, following [AS80]. Left X -approximations are defined dually. The subcat-

egory X is said to be contravariantly finite if every M ∈ modΛ admits a right

X -approximation, and covariantly finite if every M ∈ modΛ admits a left X -

approximation. If X is both contravariantly finite and covariantly finite, then X

is functorially finite.

Higher Auslander–Reiten theory was introduced by Iyama in [Iya07a; Iya07b;

Iya11] as a higher-dimensional generalisation of classical Auslander–Reiten theory.

For more detailed background to the theory, see the papers [JK19b; Jas16; GKO13;

IO11; Iya08; Jør17].

The following subcategories provide the setting for the higher theory. LetM
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be a functorially finite subcategory of modΛ. Then we callM d-cluster-tilting if

M = {X ∈ modΛ : ∀i ∈ [d− 1],∀M ∈M,ExtiΛ(X,M) = 0}

= {X ∈ modΛ : ∀i ∈ [d− 1],∀M ∈M,ExtiΛ(M,X) = 0}.

In the case d = 1, the conditions should be interpreted as being trivial, so

that modΛ is the unique 1-cluster-tilting subcategory of modΛ. If addM is a

d-cluster-tilting subcategory, for M ∈ modΛ, then we say that M is a d-cluster-

tilting module.

We say that Λ is weakly d-representation-finite if there exists a d-cluster-tilting

module in modΛ, following [IO11, Definition 2.2]. If, additionally, gl.dimΛ ⩽ d, we

say that Λ is d-representation-finite d-hereditary, following [JK19a, Definition 1.25]

and [HIO14]. In [IO11], d-representation-finite d-hereditary algebras simply called

‘d-representation-finite’.

4.1.1 The higher Auslander algebras of type A

The canonical examples of d-representation-finite d-hereditary algebras are the

higher Auslander algebras of linearly oriented An, introduced by Iyama in [Iya11].

The construction we give here is based on [OT12, Construction 3.4] and [IO11,

Definition 5.1].

Following [OT12], we denote

Idm := {A ∈
(
[m]
d+1

)
: ai ⩽ ai+1 − 2 ∀i ∈ [d] }.

The difference between Idm and
⟲
Idm is that Idm permits subsets A such that both

a0 = 1 and ad = m.

Let Q(d,n) be the quiver with vertices

Q
(d,n)
0 := Id−1

n+2d−2
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Figure 4.1: Examples of the quivers Q(d,n)

1

2

3

Q(1,3)

13

14

15

24

25

35

Q(2,3)

135

136

137

146

147 157

246

247 257

357

Q(3,3)

and arrows

Q
(d,n)
1 := {A→ σi(A) : A, σi(A) ∈ Q(d,n)

0 },

where

σi(A) := {a0, a1, . . . , ai−1, ai + 1, ai+1, . . . , ad}.

We multiply arrows as if we were composing functions, so that
α−→ β−→= βα. This is

the opposite convention to [ASS06].

Let Ad
n be the quotient of the path algebra KQ(d,n) by the relations:

A→ σi(A)→ σj(σi(A)) =

 A→ σj(A)→ σj(σi(A)) if σj(A) ∈ Q(d,n)
0

0 otherwise.

The d-cluster-tilting subcategory of modAd
n

It is shown in [Iya11] that the algebra Ad
n is d-representation-finite d-hereditary

with unique basic d-cluster-tilting module M (d,n) and that

Ad+1
n
∼= EndAd

n
M (d,n).

By this result, the Auslander–Reiten quiver of addM (d,n) is the same as the

quiver of Ad+1
n . Hence, the indecomposable modules of addM (d,n) are in bijec-

tion with Idn+2d. Given A ∈ Idn+2d, let MA be the Ad
n-module in addM (d,n) which
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occupies the same position in the Auslander–Reiten quiver of addM (d,n) as A does

in Q(d+1,n). The simple Ad
n-modules are in bijection with Id−1

n+2d−2 via the labelling of

the vertices of Q(d,n). Hence, given B ∈ Id−1
n+2d−2, let SB be the corresponding sim-

ple Ad
n-module. Given A ∈ Idn+2d, the corresponding module MA ∈ addM (d,n) has

composition factors SB such that B ≀A−1, where A−1 = {a0−1, a1−1, . . . , ad−1}.

This is due to [OT12, Theorem/Construction 3.4]. We illustrate this fact with two

examples.

Example 4.1.1. (1) We first consider the algebra A1
3, which we usually simply

denote by A3. The Auslander–Reiten quiver of addM (1,3) = modA3 is shown in

Figure 4.2. It can be seen that this is the same quiver as Q(2,3). The module

1
2
3

corresponds to the subset 15. One can see that for every B ∈ {1, 2, 3}, we have

that B ≀ 15− 1 = 04.

(2) We next consider the algebra A2
3. In order to make the notation easier, we

relabel the quiver of this algebra as shown.

1 4 6

2 5

3

The Auslander–Reiten quiver of addM (2,3) is shown in Figure 4.3. It can be seen

that this is the same quiver as Q(3,3). The module

2
4 3
5

corresponds to the set 147. One can see that for any B ∈ {14, 24, 15, 25}, we have

B ≀ 147 − 1 = 036. By our relabelling of the quiver, we have that {14, 24, 15, 25}
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Figure 4.2: The Auslander–Reiten quiver of addM (1,3) = modA3

1 2 3

1
2

2
3

1
2
3

Figure 4.3: The Auslander–Reiten quiver of addM (2,3)

1

1
2

1
2
3

2
4

2
4 3
5

3
5
6

4

4
5

5
6

6

corresponds to the set of vertices {2, 3, 4, 5}, which give the composition factors of

the module.

Oppermann and Thomas further show that the labelling of the indecomposables

of addM (d,n) by Idn+2d further encodes the homomorphisms and extensions in the

category [OT12, Theorem 3.6]:

� HomAd
n
(MA,MB) ̸= 0 if and only if (A−1)≀B, and in this case the Hom-space

is one-dimensional;

� ExtdAd
n
(MA,MB) ̸= 0 if and only if B ≀ A, and in this case the Ext-space is

one-dimensional.

Moreover, MA is projective if and only if a0 = 1.
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Example 4.1.2. (1) In the case of addM (1,3) = modA3, we have that

0 ̸= HomA3

(
1,

1
2
3
)

= HomA3(M13,M15),

which is accounted for by the fact that 13− 1 = 02 ≀ 15. Furthermore,

0 ̸= Ext1A3
(2, 1) = Ext1A3

(M24,M13),

which is accounted for by the fact that 13 ≀ 24.

(2) In the case of addM (2,3), we have that

0 ̸= HomA2
3

(
1
2,

2
4 3
5
)

= HomA2
3
(M136,M147),

which is accounted for by the fact that 136− 1 = 025 ≀ 147. Furthermore

0 ̸= Ext2A2
3

(
4
5, 1

)
= Ext2A2

3
(M247,M135),

which is accounted for by the fact that 135 ≀ 247.

The d-cluster-tilting subcategory of Db(modAd
n)

Given a triangulated category D, a functorially finite subcategory C of D is called

d-cluster-tilting if

C = {X ∈ D : ∀i ∈ [d− 1],∀Y ∈ C,HomD(X, Y [i]) = 0 }

= {X ∈ D : ∀i ∈ [d− 1],∀Y ∈ C,HomD(Y,X[i]) = 0 }.

Geiß, Keller, and Oppermann introduce (d + 2)-angulated categories as the ana-

logues of triangulated categories in higher Auslander–Reiten theory and show that

a d-cluster-tilting subcategory of a triangulated category which is closed under

[d] is a (d + 2)-angulated category [GKO13, Theorem 1]. We refer to [GKO13]
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for background on (d + 2)-angulated categories. We will often consider (d + 2)-

angles, which are to (d+2)-angulated categories what triangles are to triangulated

categories.

Let Λ be a d-representation-finite d-hereditary algebra with d-cluster-tilting

module M . Let DΛ := Db(modΛ) be the bounded derived category of finitely

generated Λ-modules. We denote the shift functor in the derived category by [1]

and its d-th power by [d] := [1]d. The subcategory

UΛ := add{M [id] ∈ DΛ : i ∈ Z }

is a d-cluster-tilting subcategory of DΛ [Iya11, Theorem 1.21], and hence is (d+2)-

angulated.

We denote by

ν := DΛ⊗L
Λ − ∼= DRHomΛ : DΛ → DΛ,

the derived Nakayama functor. By [IO13, Theorem 3.1], ν restricts to a functor

UΛ → UΛ.

Just as the indecomposable objects of addM (d,n) may be labelled by subsets in

a way that concords with homomorphisms and extensions, the indecomposables of

UAd
n
may also be labelled in this way. We denote

Ĩdm =

{
A ∈

(
Z

d+ 1

)
:

∀i ∈ {0, 1, . . . , d− 1},

ai+1 ⩾ ai + 2 and ad + 2 ⩽ a0 +m

}
.

By [OT12, Lemma 6.6(1)], the indecomposable objects of UAd
n
are in bijection

with Ĩdn+2d+1. Given A ∈ Ĩdn+2d+1, we write UA for the corresponding indecom-

posable object of UAd
n
, such that if A ∈ Idn+2d, then UA = MA and, for general

A ∈ Ĩdn+2d+1, UA is defined such that UA[d] = U(a1−1,a2−1,...,ad−1,a0+n+2d). Further-

more,
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� HomD
Ad
n
(UB, UA) ̸= 0 if and only if

b0 − 1 < a0 < b1 − 1 < a1 < · · · < bd − 1 < ad < b0 + n+ 2d.

and in this case the Hom-space is one-dimensional by the proof of [OT12,

Proposition 6.1];

� we have νdUA = UA−1 by [OT12, Lemma 6.6(2)].

We therefore have

� HomD
Ad
n
(UB, UA[d]) ̸= 0 if and only if

a0 < b0 < a1 < b1 < · · · < ad < bd < a0 + n+ 2d+ 1,

with this space one-dimensional. This is also shown in the proof of [OT12,

Proposition 6.1].

Example 4.1.3. We illustrate how the combinatorial labelling of the category

UAd
n
works.

(1) Figure 4.4 gives the category UA3 = DA3 and Figure 4.5 gives its labelling

by Ĩ16. The properties described above may be checked, for instance:

� HomDA3
(U14, U25) = HomDA3

(
1
2, 2

3
)
̸= 0, since 1−1 < 2 < 4−1 < 5 < 1+5;

� U13[1] = 1[1] = U26 = U(3−1,1+5);

� νdU35 = νd3 = 2 = U24 = U(3−1,5−1);

� HomDA3
(U35, U14[1]) = HomDA3

(
3, 1

2[1]

)
̸= 0, since 1 < 3 < 4 < 5 < 1 + 6.

(2) We further illustrate the case of A2
3. Figure 4.6 gives the 2-cluster-tilting

subcategory UA2
3
of DA2

3
, whilst Figure 4.7 gives its combinatorial labelling by Ĩ28.

Again, we may check that the above properties hold.
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Figure 4.4: The category UA3 = DA3

. . .

. . .

2
3[−1]

3[−1]
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1[1]
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1
2
3
[1]
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3[1]
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Figure 4.5: The combinatorial labelling of UA3 = DA3

. . .

. . .

U03

U04

U13

U14

U15

U24

U25

U26

U35

U36

U37

U46

U47

U57

U48

. . .

� HomDA3
(U136, U147) = HomDA3

(
1
2,

2
4 3
5
)
̸= 0, since 1 − 1 < 1 < 3 − 1 < 4 <

6− 1 < 7 < 1 + 7;

� U135[2] = 1[2] = U248 = U(3−1,5−1,1+7);

� νdU257 = νd5
6 = 2

4 = U146 = U(2−1,5−1,7−1);

� HomDA3
(U257, U136[2]) = HomDA3

(
5
6, 1

2[2]

)
̸= 0, since 1 < 2 < 3 < 5 < 6 <

7 < 1 + 8.
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Figure 4.6: The category UA2
3

1 2
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5
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1
2

2
4 3
5
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4 5
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4 3
5
[2] 1[4]

2
4[2] 4
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. . . . . . . . .

. . . . . . . . .
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Figure 4.7: The combinatorial labelling of the category UA2
3

U135 U146 U157

U136 U147

U137

U246 U257 U268

U247 U258

U248

U357 U368 U379

U358 U369

U359

. . . . . . . . .

. . . . . . . . .



150 Chapter 4. Higher Auslander–Reiten theory

4.2 Relation with triangulations of cyclic poly-

topes

Oppermann and Thomas give two different bijections between algebraic objects

and triangulations of even-dimensional cyclic polytopes [OT12]. One uses tilting

modules [OT12, Section 3, Section 4] and the other uses cluster-tilting objects

[OT12, Section 5, Section 6]. We carry out our work in a yet different algebraic

framework, which uses d-silting. This is in some ways akin to the cluster-tilting

framework from [OT12], but, as we explain, it allows us to consider orders on the

objects, whereas the cluster-tilting framework does not. The tilting framework

also allows us to consider orders on objects, but we prefer not to use this frame-

work since here the projective-injective modules do not correspond to internal

d-simplices. All the results we prove will have analogues in the tilting framework;

indeed, the paper [Wil21a] uses this framework.

4.2.1 Cluster-tilting

We first explain the cluster-tilting framework of [OT12] so that we can explain

how our framework of d-silting relates to it. We shall also prove results concerning

the cluster-tilting framework in Section 4.5.

Oppermann and Thomas [OT12, Definition 5.22] define the (d + 2)-angulated

cluster category of Λ to be the orbit category

OΛ =
UΛ

νd[−d]
.

As the name suggests, this is a (d+2)-angulated category. By [OT12, Theorem 1.2],

we have bijections between

� indecomposable objects in OAd
n
,
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� elements of
⟲
Idn+2d+1,

� internal d-simplices of C(n+ 2d+ 1, 2d).

These bijections may be explained as follows. Namely, we know from Section 2.2.1

that A is an internal d-simplex in C(n + 2d + 1, 2d) if and only if A ∈ ⟲
Idn+2d+1,

which gives a bijection between
⟲
Idn+2d+1 and the internal d-simplices of C(n+2d+

1, 2d). Furthermore, we know that νd[−d]UA = U{ad−(n+2d+1),a0,...,ad−1}. Hence, if

we quotient UAd
n
by νd[−d], then we can find equivalence class representatives UA

such that ai ∈ [n+ 2d+ 1] for all i. Since

Ĩdn+2d+1 ∩
(
[n+ 2d+ 1]

d+ 1

)
=

⟲
Idn+2d+1,

we conclude that the indecomposables of OAd
n
are in bijection with

⟲
Idn+2d+1. Given

A ∈ ⟲
Idn+2d+1, we write OA for the object of OAd

n
which is the image of UA under

the quotient UAd
n
→ OAd

n
. Recalling the notation A]B from Section 2.1.2, we have

that

� HomO
Ad
n
(OA, OB[d]) = HomU

Ad
n
(UA, UB[d]) ⊕ DHomU

Ad
n
(UB, UA[d]) ̸= 0 if

and only if A]B [OT12, Theorem 5.2(3) and Proposition 6.1];

� UA[d] = UA−1, by taking the description of [d] in UAd
n
modulo n+ 2d+ 1;

� hence, HomO
Ad
n
(OA, OB) ̸= 0 if and only if (A− 1)]B.

An object T ∈ OΛ is defined to be cluster-tilting if

(1) HomOΛ
(T, T [d]) = 0, and

(2) any X ∈ OΛ occurs in a (d+ 2)-angle

X[−d]→ Td → Td−1 → · · · → T1 → T0 → X

with Ti ∈ addT .
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Remark 4.2.1. Readers are warned that ‘cluster-tilting’ and ‘d-cluster-tilting’ are

distinct terms in this thesis and are cautioned against getting confused between

the two of them.

Remark 4.2.2. By [OT12, Theorem 6.4], an object T ∈ OAd
n
is cluster-tilting

if and only if HomO
Ad
n
(T, T [d]) = 0 and T has as many isomorphism classes of

indecomposable summands as Ad
n. For d = 1, this is known to hold for general

Λ, by [ZZ11]. That is, for d = 1, an object T ∈ OΛ is cluster-tilting if and only

if HomOΛ
(T, T [1]) = 0 and T has as many isomorphism classes of indecomposable

summands as Λ. For d > 1, it is unknown whether this always holds. The

analogous problem for tilting modules is also open in general, although it is known

to hold for representation-finite algebras [RS89].

By [OT12, Theorem 1.2], the bijections between
⟲
Idn+2d+1, indecomposable ob-

jects of OAd
n
, and the internal d-simplices in C(n + 2d + 1, 2d) induce bijections

between:

� non-intertwining collections of
(
n+d−1

d

)
(d+ 1)-subsets in

⟲
Idn+2d+1,

� triangulations of C(n+ 2d+ 1, 2d), and

� basic cluster-tilting objects in OAd
n
.

These bijections are consequences of two facts. Firstly, we have that
(
n+d−1

d

)
is both the necessary number of internal d-simplices in C(n + 2d + 1, 2d) and

the necessary number of isomorphism classes of indecomposable summands of a

cluster-tilting object in OAd
n
. Secondly, we have that A and B being intertwining

corresponds to their forming a circuit in C(n + 2d + 1, 2d) and also to having

HomO
Ad
n
(OA⊕OB, OA⊕OB[d]) ̸= 0. Hence, if X is a collection of non-intertwining

elements of
⟲
Idn+2d+1, then X = e̊(T ) for some triangulation T , and

⊕
A∈e̊(T )OA

is a cluster-tilting object by Remark 4.2.2.
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Figure 4.8: The Auslander–Reiten quiver of OA2 and
⟲
I15

. . .

1
2[1]

1

1
2

2

1[1]

1
2[1]

1

. . .

. . .

O35

O13

O14

O24

O25

O35

O13

. . .

Example 4.2.3. (1) We first consider the example where d = 1 and n = 2.

The bijection between
⟲
I15 and the indecomposables in OA2 is shown in Figure 4.8.

This bijection induces a bijection between triangulations of C(5, 2) and basic

cluster-tilting objects in OA2 , as shown in Figure 4.9.

(2) Now consider the example where d = 2 and n = 2. The algebra A2
2 has the

Auslander–Reiten quiver of A2 as its quiver. To make the modules of this algebra

easier to denote, we relabel the quiver

1

2

3.

Figure 4.10 then shows the bijection between
⟲
I27 and the indecomposables of

OA2
2
. There are seven cluster-tilting objects in OA2

2
, which correspond to the

seven triangulations of C(7, 4). This bijection is given in Table 4.1, where the

triangulations are described by their set of internal d-simplices.

We finally consider a relation between cluster-tilting objects known as ‘muta-

tion’. Let T = E⊕X be a cluster-tilting object in OΛ where X is indecomposable.

Then [OT12, Theorem 5.7] states that there is an indecomposable object Y in OΛ
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Figure 4.9: Cluster-tilting objects in OA2 and their corresponding triangulations
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Figure 4.10: The Auslander–Reiten quiver of OA2
2
and

⟲
I27
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2
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1 . . .
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O357

O135
. . .
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Table 4.1: Cluster-tilting objects in OA2
2
and their corresponding triangulations

Cluster-tilting object Triangulation

1⊕ 1
2⊕ 2

3 {135, 136, 146}

3⊕ 1
2⊕ 2

3 {246, 136, 146}

3⊕ 1[2]⊕ 2
3 {246, 247, 146}

3⊕ 1[2]⊕ 1
2[2] {246, 247, 257}

1⊕ 1
2⊕ 2

3[2] {135, 136, 357}

1⊕ 1
2[2]⊕ 2

3[2] {135, 257, 357}

1[2]⊕ 1
2[2]⊕ 2

3[2] {357, 247, 257}
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with Y ≇ X and E ⊕ Y cluster-tilting if and only if there exist (d+ 2)-angles

X → E1 → · · · → Ed → Y → X[d]

and

Y → E1 → · · · → Ed → X → Y [d],

where Ei, Ei ∈ addE, the maps X → E1, Y → E1 are minimal left addE-

approximations, and the maps Ed → X, Ed → Y are minimal right addE-

approximations. In this case we say that T is mutable at X and we call E ⊕ Y is

the mutation of T at X.

By Theorem 3.2.1 or [OT12, Theorem 4.1], we have that two triangulations

are related by a bistellar flip if and only if they differ by exactly one internal

d-simplex. Since the internal d-simplices of a triangulation correspond to the

indecomposable summands of the corresponding cluster-tilting object, we have

that two cluster-tilting objects are mutations of each other if and only if the

corresponding triangulations are bistellar flips of each other.

4.2.2 d-silting

We now introduce and motivate our framework of d-silting, which is the predomi-

nant framework we use in this chapter. The cluster category OΛ is 2d-Calabi–Yau,

meaning that, for objects X, Y of OΛ, we have

HomOΛ
(X, Y [d]) ∼= DHomOΛ

(Y,X[d]).

Hence HomOΛ
(X, Y [d]) and HomOΛ

(Y,X[d]) are either both zero or both non-zero.

This symmetry between HomOΛ
(X, Y [d]) and HomOΛ

(Y,X[d]) prevents us from in-

troducing partial orders on the cluster-tilting objects of OΛ. Hence, we choose a

different algebraic framework. We desire a framework which does not have this
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2d-Calabi–Yau symmetry, but which otherwise has all of the properties which con-

nect the cluster-tilting framework with triangulations of even-dimensional cyclic

polytopes.

An object T of DΛ is pre-silting if HomDΛ
(T, T [i]) = 0 for all i > 0. A pre-

silting complex T is silting if, additionally, thickT = DΛ. Here thickT denotes

the smallest full subcategory of DΛ which contains T and is closed under cones,

[±1], direct summands, and isomorphisms.

Recall that we are considering a d-representation-finite d-hereditary algebra

with unique basic d-cluster-tilting module M and UΛ the corresponding d-cluster-

tilting subcategory of DΛ. We consider the subcategory U{−d,0}
Λ := add(M ⊕Λ[d])

of UΛ and call a silting complex T of DΛ d-silting if, additionally, it lies in U{−d,0}
Λ .

Note that for objects T, T ′ of U{−d,0}
Λ we have HomDΛ

(T, T ′[i]) = 0 if i /∈ {−d, 0, d},

since U{−d,0}
Λ is a d-cluster-tilting subcategory of DΛ and gl. dimΛ ⩽ d. Hence, for

an object T of U{−d,0}
Λ to be d-silting, it suffices that HomDΛ

(T, T [d]) = 0 and

thickT = DΛ.

Remark 4.2.4. For d = 1, the category U{−d,0}
Λ is the category of two-term com-

plexes of projectives : complexes of projectives concentrated in degrees −1 and 0.

This category has been widely studied, for instance, in [Aih13; AIR14; DIJ19].

However, it is important to note that for d > 1, the category U{−d,0}
Λ is not simply

the category of (d + 1)-term complexes of projectives: complexes of projectives

concentrated in degrees −d to 0. Additionally, we must have that the cohomology

of the complex is concentrated in degrees −d and 0, and that the cohomology must

always lie in the d-cluster-tilting subcategory addM . In general there are objects

with projective resolutions of length d which do not lie in addM , and so do not

lie in U{−d,0}
Λ .



158 Chapter 4. Higher Auslander–Reiten theory

Given a d-silting complex T of U{−d,0}
Λ with T = E ⊕X and a (d+ 2)-angle

X

E1

E2 Ed−1

Ed

Y

Z1

Z2 Zd−2

Zd−1

1

1 1

1

d

such that Y ∈ U{−d,0}
Λ , Ei ∈ addE for all i, with X → E1 a left (addE)-

approximation, then we say that E ⊕ Y is a left mutation of E ⊕ X. Such a

(d+ 2)-angle will not necessarily exist for all indecomposable summands X of E.

Right mutation is defined dually. Here the notation Y i→ X means a morphism

Y → X[i].

Lemma 4.2.5. The left mutation, and, dually, right mutation, of a d-silting com-

plex is a d-silting complex.

Proof. This follows similarly to [AI12, Theorem 2.3]. Note that it is clear that

thickE ⊕ X ⊆ thickE ⊕ Z1 from the first triangle. Repeating this argument,

we obtain that DΛ ⊆ thickE ⊕ X ⊆ thickE ⊕ Z1 ⊆ · · · ⊆ thickE ⊕ Y , so

thickE ⊕ Y = DΛ, as desired.

We now show that HomDΛ
(E ⊕ Y, (E ⊕ Y )[d]) = 0. It is immediate that

HomDΛ
(E,E[d]) = 0. We then apply the Hom long exact sequence several times.

Note that this is the Hom long exact sequence for (d+2)-angulated categories from

[GKO13, Proposition 1.5(a)] rather than the classical Hom long exact sequence.

First, we have that

Hom(E,Ed[d])→ Hom(E, Y [d])→ Hom(E,X[2d])

is exact, so Hom(E, Y [d]) = 0, since the two outer terms vanish. Next, we have
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that

Hom(E1, E)→ Hom(X,E)→ Hom(Y,E[d])→ Hom(Ed, E[d])

is exact. Since the map X → E1 is a right (addE)-approximation, we have that

the left-hand map in the sequence is a surjection. Hence, HomDΛ
(Y,E[d]) = 0,

since HomDΛ
(Ed, E[d]) = 0. Finally, we have the exact sequence

Hom(Y,Ed[d])→ Hom(Y, Y [d])→ Hom(Y,X[2d]).

We know that HomDΛ
(Y,Ed[d]) = 0, since HomDΛ

(Y,E[d]) = 0. Then, we have

that HomDΛ
(Y,X[2d]) = 0, since X, Y ∈ U{−d,0}

Λ . Hence, HomDΛ
(Y, Y [d]) = 0. We

conclude that E ⊕ Y is a d-silting complex.

We have that bistellar flips of triangulations correspond to mutations of d-

silting complexes. This adapts to the d-silting framework [OT12, Theorem 4.4]

and [OT12, Theorem 6.4], which are the analogous results for tilting and cluster-

tilting respectively.

Proposition 4.2.6. There is a bijection between internal d-simplices in C(n +

2d+1, 2d) and indecomposable objects of U{−d,0}
Ad

n
which induces a bijection between

triangulations of C(n + 2d + 1, 2d) and basic d-silting complexes in U{−d,0}
Ad

n
. Two

triangulations are related by a bistellar flip if and only if the two corresponding

d-silting complexes are related by a mutation.

Proof. We know from Section 2.2.1 that internal d-simplices in C(n + 2d + 1, 2d)

are in bijection with
⟲
Idn+2d+1. It then follows from Section 4.1.1 that the inde-

composables of U{−d,0}
Ad

n
are also in bijection with

⟲
Idn+2d+1, which gives the first

statement of the proposition.

It furthermore follows from Section 2.2.1 and Section 4.1.1 that basic pre-

silting complexes with
(
n+d−1

d

)
indecomposable summands are in bijection with

triangulations of C(n + 2d + 1, 2d). This is because
(
n+d−1

d

)
is the number of
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internal d-simplices of a triangulation of C(n + 2d + 1, 2d), along with the fact

that A and B are non-intertwining if and only if both HomU{−d,0}
Ad
n

(UA, UB[d]) = 0

and HomU{−d,0}
Ad
n

(UB, UA) = 0. We must show that these objects are precisely the

d-silting complexes.

Note that Ad
n has

(
n+d−1

d

)
indecomposable summands. Hence, by [AI12, Corol-

lary 2.28], all d-silting complexes have
(
n+d−1

d

)
indecomposable summands—and,

by definition, they are all pre-silting.

We now show that bistellar flips between triangulations give exchange (d+2)-

angles between basic pre-silting complexes with
(
n+d−1

d

)
summands. We will use

this to show that these objects are in fact d-silting. Suppose that T and T ′

are bistellar flips of each other. Then, by [OT12, Theorem 4.1], e̊(T ) and e̊(T ′)

have all but one element in common. Consequently, the corresponding pre-silting

complexes T and T ′ have all but one indecomposable summand in common, so

we write T = E ⊕ X and T ′ = E ⊕ Y . The simplices corresponding to X and

Y must be intertwining, so that we either have a non-zero morphism X → Y [d]

or Y → X[d]. We assume the former is the case. It can then be shown, in an

analogous way to [OT12, Proposition 3.19], that there is a (d+ 2)-angle

X

E1

E2 Ed−1

Ed

Y ,

Z1

Z2 Zd−2

Zd−1

1

1 1

1

d

where Ei ∈ addE for all i. Moreover, since T and T ′ are both pre-silting, we have

exact sequences

Hom(E,Ed)→ Hom(E, Y )→ Hom(E,X[d]) = 0
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and

Hom(E1, E)→ Hom(X,E)→ Hom(Y,E[d]) = 0.

Hence X → E1 is a left (addE)-approximation and Ed → Y is a right (addE)-

approximation. Therefore, if T is silting, then T ′ is a left mutation of T and so T ′

is silting. Conversely, if T ′ is silting, then T is a right mutation of T ′, and so T is

silting.

Hence, we know that Ad
n is d-silting and that mutations of d-silting complexes

are d-silting. We further know that Ad
n corresponds to a triangulation of C(n+2d+

1, 2d) and all triangulations are connected by bistellar flips [Ram97, Theorem 1.1].

Since bistellar flips of triangulations correspond to mutations, we conclude that

every complex in U{−d,0}
Ad

n
corresponding to a triangulation is in fact d-silting, rather

than only being pre-silting with
(
n+d−1

d

)
summands.

The relation between cluster-tilting objects and d-silting complexes is as fol-

lows. It follows from [OT12, Theorem 5.2] that the isomorphism classes of inde-

composable objects of OΛ are in bijection with the isomorphism classes of inde-

composable objects of U{−d,0}
Λ . Indeed, the (d+ 2)-angulated projection

(̃−) : UΛ → OΛ

induces this bijection, since U{−d,0}
Λ is a fundamental domain for νd[−d]. The

following lemma is similar to [JJ20, Theorem 3.5(i)], which uses a more general

framework and is given in terms of τd-rigid pairs.

Lemma 4.2.7. Given X ∈ U{−d,0}
Λ , we have that HomUΛ

(X,X[d]) = 0 if and only

if HomOΛ
(X̃, X̃[d]) = 0.

Proof. This is immediate from [OT12, Theorem 5.2(3)].

For Λ = Ad
n we have that d-silting complexes in U{−d,0}

Ad
n

are in bijection with

cluster-tilting objects in OAd
n
. This should also hold more generally.
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Figure 4.11: The Auslander–Reiten quiver of U{−d,0}
A2

and
⟲
I15

1

1
2

2

1[1]

1
2[1] U13

U14

U24

U25

U35

Corollary 4.2.8. Given T ∈ U{−d,0}
Ad

n
, we have that T is d-silting if and only if T̃

is cluster-tilting.

Proof. By [OT12, Theorem 6.4], we have that T̃ is cluster-tilting if and only

if HomO
Ad
n
(T̃ , T̃ [d]) = 0 and T̃ has as many non-isomorphic indecomposable

summands as Ad
n. Hence, it suffices to show that T is d-silting if and only if

HomU
Ad
n
(T, T [d]) = 0 and T has as many non-isomorphic indecomposable sum-

mands as Ad
n. This follows from Proposition 4.2.6.

Example 4.2.9. We illustrate the framework with d-silting complexes in U{−d,0}
Ad

n
.

Note the similarities with the framework with cluster-tilting objects in OAd
n
. The

difference is that the category U{−d,0}
Ad

n
has fewer morphisms than OAd

n
.

(1) For d = 1 and n = 2, we have the bijection between
⟲
I15 and the inde-

composables in U{−d,0}
A2

, as shown in Figure 4.11. This bijection induces a bijection

between triangulations of C(5, 2) and basic 1-silting complexes in U{−d,0}
A2

, as shown

in Figure 4.12.

(2) For d = 2 and n = 2, Figure 4.13 shows the bijection between
⟲
I27 and the

indecomposables of U{−d,0}
A2

2
. The seven 2-silting complexes in U{−d,0}

A2
2

correspond

to the seven triangulations of C(7, 4), as given in Table 4.2.
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Figure 4.12: 1-silting complexes in U{−d,0}
A2

and their corresponding triangulations
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Figure 4.13: The Auslander–Reiten quiver of U{−d,0}
A2

2
and

⟲
I27

1

1
2

2
3

3

1[2] 1
2[2]

2
3[2]

U135

U136 U146

U246

U247 U257

U357
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Table 4.2: 2-silting complexes in U{−d,0}
A2

2
and their corresponding triangulations

2-silting complex Triangulation

1⊕ 1
2⊕ 2

3 {135, 136, 146}

3⊕ 1
2⊕ 2

3 {246, 136, 146}

3⊕ 1[2]⊕ 2
3 {246, 247, 146}

3⊕ 1[2]⊕ 1
2[2] {246, 247, 257}

1⊕ 1
2⊕ 2

3[2] {135, 136, 357}

1⊕ 1
2[2]⊕ 2

3[2] {135, 257, 357}

1[2]⊕ 1
2[2]⊕ 2

3[2] {357, 247, 257}

4.3 Interpreting the higher Stasheff–Tamari or-

ders algebraically in even dimensions

Having introduced the necessary background on the representation theory of Ad
n,

we now show how the combinatorial characterisations of the orders we proved in

Section 3.2 allow us to naturally interpret the higher Stasheff–Tamari orders in

even dimensions in the representation theory of the higher Auslander algebras of

type A.

4.3.1 First higher Stasheff–Tamari order

The first higher Stasheff–Tamari order has the following interpretation in terms of

d-silting objects.
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Theorem 4.3.1. Let T , T ′ ∈ S(n+2d+1, 2d) be triangulations with corresponding

d-silting complexes T and T ′ in U{−d,0}
Ad

n
. Then T ⋖1 T ′ if and only if T ′ is a left

mutation of T .

Proof. It follows from the material on the derived category in Section 4.1.1 that

HomU
Ad
n
(UB, UA[d]) ̸= 0 if and only if A ≀ B. Hence, as in the proof of Proposi-

tion 4.2.6, T ′ is a left mutation of T if and only if T = E ⊕ UA, T
′ = E ⊕ UB

and A ≀ B. Therefore, T ′ is a left mutation of T if and only if e̊(T ) = R ∪ {A}

and e̊(T ′) = R ∪ {B} and A ≀ B. By Theorem 3.2.1, this is true if and only if

T ⋖1 T ′.

Example 4.3.2. We illustrate this theorem with some examples, following on

from Example 4.2.9.

(1) We start with the example where n = 3 and d = 1. If we take the triangula-

tions given by e̊(T ) = {13, 14} and e̊(T ′) = {24, 14}, then T ′ is an increasing

bistellar flip of T via the 3-simplex 1234. The intersection of the lower facets

of this simplex is 13 and the intersection of its upper facets is 24. Consulting

Figure 4.11, the corresponding d-silting complexes are

T = 1⊕ 1
2 and T ′ = 2⊕ 1

2,

which are related by the exchange triangle

1→ 1
2→ 2→ 1[1],

so that T ′ is a left mutation of T , as given by Theorem 4.3.1.

(2) Now consider the example where n = 3 and d = 2. Take the triangulations

given by e̊(T ) = {135, 136, 146} and e̊(T ′) = {246, 136, 146}. Here T ′ is an

increasing bistellar flip of T via the 5-simplex 123456. The intersection of
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the lower facets of this simplex is 135 and the intersection of its upper facets

is 246. Consulting Figure 4.13, the corresponding d-silting complexes are

then

T = 1⊕ 1
2⊕ 2

4 and T ′ = 4⊕ 1
2⊕ 2

4,

which are related by the exchange 4-angle

1→ 1
2→ 2

4→ 4→ 1[2],

so that T ′ is again a left mutation of T , as Theorem 4.3.1 dictates.

4.3.2 Second higher Stasheff–Tamari order

We now interpret the second higher Stasheff–Tamari order algebraically in even

dimensions. We first show what submersion corresponds to algebraically. Given

an object T of U{−d,0}
Λ , we denote

⊥T = {X ∈ U{−d,0}
Λ : HomDΛ

(X,T [i]) = 0 ∀i > 0 }

= {X ∈ U{−d,0}
Λ : HomDΛ

(X,T [d]) = 0 }.

Proposition 4.3.3. Let T ∈ S(n+2d+1, 2d) with corresponding d-silting complex

T ∈ U{−d,0}
Ad

n
. Let A be an internal d-simplex in C(n+2d+1, 2d) with corresponding

indecomposable object UA ∈ U{−d,0}
Ad

n
. Then A is submerged by T if and only if

UA ∈ ⊥T .

Proof. By Proposition 3.2.3, we have that A is submerged by T if and only if there

is no B ∈ e̊(T ) such that B ≀A. We know that this is the case if and only if there is

no indecomposable summand B of T such that HomU
Ad
n
(UA, UB[d]) ̸= 0. In turn,

this is the case if and only if UA ∈ ⊥T .

We then obtain the following theorem by applying this proposition and using

the interpretation of S2(n+ 2d+ 1, 2d) in terms of d-submersion sets.
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Theorem 4.3.4. Let T , T ′ ∈ S(n+2d+1, 2d) be triangulations with corresponding

d-silting complexes T, T ′ ∈ U{−d,0}
Ad

n
. Then T ⩽2 T ′ if and only if ⊥T ⊆ ⊥T ′.

Proof. Since d-simplices which are on the boundary of C(n+2d+1, 2d) are in, and

hence submerged by, every triangulation, we can restrict our attention to internal

d-simplices when we consider submersion sets. Proposition 4.3.3 gives us that the

complexes in ⊥T correspond to internal d-simplices in subdT . Therefore ⊥T ⊆ ⊥T ′

if and only if subdT ⊆ subdT ′ if and only if T ⩽2 T ′.

Example 4.3.5. We illustrate Theorem 4.3.4 with examples, following on from

Example 4.3.2.

(1) We first consider the case where n = 2 and d = 1. Consider the triangulations

given by e̊(T ) = {13, 14} and e̊(T ′) = {24, 25}. Consulting Figure 4.11, the

corresponding d-silting complexes are

T = 1⊕ 1
2 and T ′ = 2⊕ 1[1],

whose orthogonal categories are

⊥T = add

{
1,

1
2
}

⊥
T ′ = add

{
1,

1
2
, 2, 1[1]

}
.

Since ⊥T ⊆ ⊥T ′, we have that T ⩽2 T ′ by Theorem 4.3.4.

(2) Now consider the example where n = 3 and d = 2. Take the triangulations

given by e̊(T ) = {135, 136, 146} and e̊(T ′) = {135, 257, 357}. Consulting

Figure 4.13, the corresponding d-silting complexes are then

T = 1⊕ 1
2⊕ 2

3 and T ′ = 1⊕ 1
2[2]⊕ 2

3[2],
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whose orthogonal categories are

⊥T = add

{
1,

1
2
,
2
3
}
,

⊥
T ′ = add

{
1,

1
2
,
2
3
,
1
2
[2],

2
3
[2]

}
.

Since ⊥T ⊆ ⊥T ′, we have that T ⩽2 T ′ by Theorem 4.3.4.

We then obtain the following by applying the result that the higher Stasheff–

Tamari orders are equal (Theorem 3.3.14) to our algebraic interpretation of the

higher Stasheff–Tamari orders in even dimensions (Theorem 4.3.1 and Theo-

rem 4.3.4).

Corollary 4.3.6. Let T, T ′ be d-silting complexes in U{−d,0}
Ad

n
. Then there is a

sequence of left mutations from T to T ′ if and only if ⊥T ⊆ ⊥T ′.

Remark 4.3.7. Orders on algebraic objects given by mutation and by inclusion

of orthogonal categories occur often in the literature. Two such orders were first

studied for tilting modules in [RS91]. It was shown in [HU05] that these orders

had the same Hasse diagram, which implies that they are the same when there

are finitely many tilting modules. Analogous orders were considered for silting

complexes [AI12] and support τ -tilting modules [AIR14], and these orders were

likewise shown to have the same Hasse diagram.

In Theorems 4.3.1 and 4.3.4 we see higher-dimensional analogues of these alge-

braic orders. Corollary 4.3.6 gives us that these two orders are equal for the higher

Auslander algebras of type A. The natural question is, of course, whether the

analogue of Corollary 4.3.6 holds for general d-representation-finite d-hereditary

algebras. Such a result would give an algebraic proof of the equivalence of the

higher Stasheff–Tamari orders.
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4.4 Interpreting the higher Stasheff–Tamari or-

ders algebraically in odd dimensions

We now give combinatorial and algebraic interpretations of the higher Stasheff–

Tamari orders on triangulations of odd-dimensional cyclic polytopes. To obtain

the algebraic interpretations, we first show how triangulations of odd-dimensional

cyclic polytopes arise in the representation theory of Ad
n. This gives the other half

of the picture from [OT12], which shows how triangulations of even-dimensional

cyclic polytopes arise in the representation theory of Ad
n. As we shall see, it

is precisely the interpretation of the first higher Stasheff–Tamari order in even

dimensions that allows us to interpret odd-dimensional triangulations in this way.

4.4.1 Algebraic interpretation of odd-dimensional triangu-

lations

We now explain how odd-dimensional triangulations arise in the representation

theory of Ad
n, namely, as equivalence classes of d-maximal green sequences. Let Λ

be a d-representation-finite d-hereditary algebra over a field K, where K is a field.

We define a d-maximal green sequence for Λ to be a sequence (T0, T1, . . . , Tr) of

d-silting complexes in U{−d,0}
Λ such that T0 = Λ, Tr = Λ[d], and, for i ∈ [r], Ti is a

left mutation of Ti−1. Let MGd(Λ) denote the set of d-maximal green sequences

of Λ.

Given a d-maximal green sequence G, we denote the set of indecomposable

summands of d-silting complexes occurring in G by Σ(G). We write G ∼ G′ if and

only if Σ(G) = Σ(G′). We use M̃Gd(Λ) to denote the set of equivalence classes of

MGd(Λ) under the relation ∼.

To relate triangulations of odd-dimensional cyclic polytopes and d-maximal
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green sequences, we first observe the following lemma.

Lemma 4.4.1. Let A ∈ ⟲
Idn+2d+1. Then the complex UA is neither a projective nor

shifted projective if and only if A is an internal d-simplex in C(n+2d+1, 2d+1).

Proof. As we explain in Section 4.1.1, we have that UA is a projective if and only

if a0 = 1. Then, by the combinatorial interpretation of [d], we have that UA is

a shifted projective if and only if ad = n + 2d + 1. The result then follows from

Lemma 2.2.4, since A ∈ ⟲
Idn+2d+1 is an internal d-simplex in C(n+ 2d+ 1, 2d+ 1)

if and only if a0 ̸= 1 and ad ̸= n+ 2d+ 1.

Triangulations of odd-dimensional cyclic polytopes correspond to equivalence

classes of d-maximal green sequences, as follows.

Theorem 4.4.2. There is a bijection between S(n+2d+1, 2d+1) and M̃Gd(Ad
n).

Moreover, if a triangulation T ∈ S(n+2d+1, 2d+1) corresponds to an equivalence

class of d-maximal green sequences [G] ∈ M̃Gd(Ad
n), then

(1) there is a bijection between mutations in G and (2d+1)-simplices of T ; and

(2) there is a bijection between the internal d-simplices of T and elements of

Σ(G) which are neither projectives nor shifted projectives.

Proof. The key result which establishes this theorem is [Ram97, Theorem 1.1(ii)],

which states that triangulations of C(n + 2d + 1, 2d + 1) are in bijection with

maximal chains in S1(n+2d+1, 2d) under an equivalence relation of differing by a

permutation of bistellar flip operations. By Theorem 4.3.1, elements ofMGd(Ad
n)

correspond to maximal chains in S1(n + 2d + 1, 2d), since, as can be checked

straightforwardly, the lower triangulation of C(n + 2d + 1, 2d) corresponds to Ad
n

and the upper triangulation of C(n+2d+1, 2d) corresponds toAd
n[d]. Hence letG =

(T0, T1, . . . , Tr) ∈MGd(Ad
n) correspond to a maximal chain C = (T0, T1, . . . , Tr) of

S1(n+ 2d+ 1, 2d) which gives a triangulation T of C(n+ 2d+ 1, 2d+ 1).
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We first establish the claims (1) and (2) for T and G. The claim (1) is straight-

forward, because the (2d+1)-simplices of T correspond to increasing bistellar flips

in C by [Ram97, Theorem 1.1(ii)]. Then these correspond to mutations by Theo-

rem 4.3.1.

For claim (2), let UA ∈ Σ(G) be neither a projective nor a shifted projective,

so that UA is an indecomposable summand of Ti for some i. Then implies that A

is a d-simplex of Ti, which implies that A is a d-simplex of T . By Lemma 4.4.1, A

is an internal d-simplex of T . Conversely, if A is an internal d-simplex of T , then

by Rambau’s theorem, there is a triangulation Ti in C such that A is an internal

d-simplex of Ti. This implies that UA is an indecomposable summand of Ti, and

by Lemma 4.4.1, it is neither a projective nor a shifted projective. This establishes

claim (2).

Now we must show that d-maximal green sequences for Ad
n are equivalent if

and only if they give the same triangulation of C(n + 2d + 1, 2d + 1). Let G′ ∈

MGd(Ad
n) correspond to a triangulation T ′ of C(n + 2d + 1, 2d + 1) and suppose

that G ∼ G′. By claim (2), since Σ(G) = Σ(G′), we have that e̊(T ) = e̊(T ′).

Hence, by Lemma 2.2.9 we have that T = T ′ as required.

Conversely, it is clear that if G and G′ correspond to the same triangulation,

then we must have G ∼ G′. This is because if G and G′ correspond to the

same triangulation, then they must have in common all indecomposable summands

which are neither projective nor shifted projective, by claim (2). But, since all

indecomposable projectives and shifted projectives must also be summands of both

G and G′, we have that Σ(G) = Σ(G′).

Remark 4.4.3. Theorem 2.2.3 therefore also classifies d-maximal green sequences

for Ad
n up to equivalence. Namely, a set {UA : A ∈ X } of complexes in U{−d,0}

Ad
n

,

where X ⊆ ⟲
Idn+2d+1, is the set of summands of a d-maximal green sequence if

and only if X is supporting and bridging. Note that X will contain all the subsets
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corresponding to the projectives and shifted projectives, which are excluded from

the sets e̊(T ) in Section 4.1.1. However, including these subsets does not affect

whether the supporting and bridging conditions are satisfied, as can be checked.

4.4.2 First higher Stasheff–Tamari order

We now give an algebraic characterisation of the first higher Stasheff–Tamari order

in terms of d-maximal green sequences. Our terminology is based on [HI19]. An

oriented polygon is a sub-poset of S1(m, 2d) formed of the union of a chain of

covering relations of length d+2 with a chain of covering relations of length d+1,

such that these chains intersect only at the top and bottom. (For an illustration

see Figure 4.14.) Here the length of a chain is the number of covering relations in

it. We think of an oriented polygon as being oriented from the longer side to the

shorter side. If two maximal chains G,G′ differ only in that G contains the longer

side of an oriented polygon and G′ contains the shorter side, then we say that G′

is an increasing elementary polygonal deformation of G. Note that an increasing

elementary polygonal deformation decreases the length of the chain.

Theorem 4.4.4. Let T , T ′ ∈ S(n+2d+1, 2d+1) correspond to equivalence classes

of d-maximal green sequences [G], [G′] ∈ M̃Gd(Ad
n). Then T ⋖1 T ′ if and only if

there are equivalence class representatives Ĝ ∈ [G] and Ĝ′ ∈ [G′] such that Ĝ′ is

an increasing elementary polygonal deformation of Ĝ.

In the proof of this theorem we shall require the partial order ≺ on the simplices

of a triangulation from Remark 2.1.3. Recall that the covering relations of this

order are denoted by ≺·.

Proof. Let T , T ′ be triangulations of C(n+2d+1, 2d+1) corresponding respectively

to [G], [G′] ∈ M̃Gd(Ad
n). Suppose that T ′ is an increasing bistellar flip of T .

Let S ∈
(
[n+2d+1]

2d+3

)
be the (2d + 3)-subset of vertices giving the bistellar flip. Let
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Si := S\si. The lower triangulation of C(S, 2d+1) consists of the (2d+1)-simplices

Si for i even and the upper triangulation consists of the (2d+1)-simplices Si for i

odd. Then S2j ≺· S2i for i < j, since S2i ∩ S2j is an upper facet of S2j and a lower

facet of S2i. Thus one can extend ≺ to the total order ≺t on the simplices of the

lower triangulation of C(S, 2d+ 1) by

S2d+2 ≺t S2d ≺t · · · ≺t S0.

This can be consistently extended to a total order on the (2d + 1)-simplices of T

which contains this chain as an interval. This would only be impossible if there

were a (2d + 1)-simplex R of T such that S2j ≺ R ≺ S2i, where i < j. But, since

S2j ≺ S2i is a covering relation for ≺, this cannot happen.

Therefore, by [Ram97, Corollary 5.12], there is a maximal chain Ĉ of S1(n +

2d+ 1, 2d) corresponding to T such that the sequence of bistellar flips in Ĉ is

(R1, R2, . . . , Rr−1, S2d+2, S2d, . . . , S0, R
′
1, R

′
2, . . . , R

′
s−1).

A similar argument shows that there exists a maximal chain Ĉ ′ of S1(n+2d+1, 2d)

corresponding to T ′ such that the sequence of bistellar flips is

(R1, R2, . . . , Rr−1, S1, S3, . . . , S2d+1, R
′
1, R

′
2, . . . , R

′
s−1).

Since the (2d + 1)-simplices of T ′ outside C(S, 2d + 1) are the same as those of

T , namely {R1, R2, . . . , Rr−1, R
′
1, R

′
2, . . . , R

′
s−1}, we may choose the same order

on them in both maximal chains Ĉ and Ĉ ′. It follows from the description of

triangulations of C(2d+3, 2d) in Lemma 3.3.1 that the chains in S1(n+2d+1, 2d)

given here by (S2d+2, S2d, . . . , S0) and (S1, S3, . . . , S2d+1) intersect only at their top

and bottom. Hence these chains form an oriented polygon.

Then, by Theorem 4.4.2, these correspond to Ĝ ∈MGd(Ad
n), where

Ĝ = (U1, U2, . . . , Ur, T1, T2, . . . , Td+1, V1, V2, . . . , Vs),
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and Ĝ′ ∈MGd(Ad
n), where

Ĝ′ = (U1, U2, . . . , Ur, T
′
1, T

′
2, . . . , T

′
d, V1, V2, . . . , Vs).

Thus Ĝ′ is an increasing elementary polygonal deformation of Ĝ, as required.

Note that the (2d+1)-simplices in the sequences of bistellar flips of Ĉ and Ĉ ′ come

in between the respective d-silting complexes of Ĝ and Ĝ′, which correspond to

triangulations.

Conversely, suppose that we have equivalence class representatives

Ĝ = (U1, U2, . . . , Ur, T1, T2, . . . , Td+1, V1, V2, . . . , Vs)

and

Ĝ′ = (U1, U2, . . . , Ur, T
′
1, T

′
2, . . . , T

′
d, V1, V2, . . . , Vs)

in MGd(Ad
n). Here, as before, let Ĝ give the triangulation T and Ĝ′ give the

triangulation T ′. We claim that this implies that T ′ is an increasing bistellar

flip of T . By Theorem 4.4.2, by transforming Ĝ into Ĝ′, we have removed d + 2

different (2d+1)-simplices {S0, S2, . . . , S2d+2} from T and replaced them by d+1

different (2d + 1)-simplices {S1, S3, . . . , S2d+1}. We can suppose that S1 is not in

the triangulation T , since at least one of these simplices must not be. Hence |S1|

must intersect a (2d + 1)-simplex of the triangulation |T | transversely, and so it

must intersect |S2l| for some l.

Hence, there is a circuit (A,B) with A ⊂ S2l, B ⊂ S1. By the description of

the circuits of a cyclic polytope, one of A,B is an internal d-simplex and the other

is an internal (d+1)-simplex. Internal d-simplices are intersections of at least d+2

different (2d + 1)-simplices and internal (d + 1)-simplices are intersections of at

least d+ 1 different (2d+ 1)-simplices, by Lemma 3.2.5. Therefore, to remove an

internal d-simplex, one must remove the d + 2 different (2d + 1)-simplices whose

intersection it is. Hence, since A and B form a circuit and so cannot be in the
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Figure 4.14: An increasing elementary polygonal deformation of d-maximal green

sequences

• • • •

d+ 1

d+ 2

same triangulation, we must have A =
⋂d+1

i=0 S2i and B =
⋂d

j=0 S2j+1. Moreover,

the only internal d-simplex we can have removed from T is the intersection of these

d+2 different (2d+1)-simplices, which is A, and so e̊(T ′) = e̊(T ) \ {A}. Thus T ′

is an increasing bistellar flip of T by Theorem 3.2.6.

Remark 4.4.5. An n-category is a category enriched in (n − 1)-categories, where

an ordinary category is a 1-category. By [OT12], we have that d-silting complexes

for Ad
n correspond bijectively to triangulations of C(n+ 2d+ 1, 2d). By Theorem

[KV91, Theorem 3.4], triangulations of C(n+2d+1, 2d) form an n-category. Hence

the set of d-silting complexes for Ad
n forms an n-category. Indeed, the irreducible

1-morphisms of this category are left mutations, and the irreducible 2-morphisms

are the increasing elementary polygonal deformations of equivalence classes of

maximal chains from Theorem 4.4.6.

4.4.3 Second higher Stasheff–Tamari order

The second order has the following interpretation on maximal green sequences.
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Theorem 4.4.6. Given two triangulations T , T ′ ∈ S(n + 2d + 1, 2d + 1) corre-

sponding to equivalence classes of d-maximal green sequences [G], [G′] ∈MGd(Ad
n),

then T ⩽2 T ′ if and only if Σ(G) ⊇ Σ(G′).

Proof. Let T be a triangulation of C(n+2d+1, 2d) corresponding to an equivalence

class [G] of d-maximal green sequences of Ad
n. By Theorem 4.4.2, we have that

UA ∈ Σ(G) if and only if either A ∈ e̊(T ), or UA is a projective or shifted projective.

Since the projectives and the shifted projectives are contained in every d-maximal

green sequence, the result follows from Corollary 3.2.12.

Example 4.4.7. We illustrate Theorem 4.4.2, Theorem 4.4.4, and Theorem 4.4.6

with the example n = 2, d = 1. The Auslander–Reiten quiver of the category UA2 is

shown in Figure 4.8. There exist five d-silting complexes in UA2 , which correspond

to triangulations of C(5, 2), as shown in Figure 4.9. By Theorem 4.4.2, the two

maximal green sequences formed from these d-silting complexes correspond to the

two possible triangulations of C(5, 3), as shown in Figure 4.15. Let the longer

maximal green sequence here be G and the shorter maximal green sequence be G′,

with T and T ′ the corresponding triangulations. Then it can be seen from the

figure that G′ is an increasing elementary polygonal deformation of G, which, by

Theorem 4.4.4, corresponds to the fact that T ′ is an increasing bistellar flip of T .

Moreover,

Σ(G) =

{
1,

1
2
, 2, 1[1],

1
2
[1]

}
,

Σ(G′) =

{
1,

1
2
, 1[1],

1
2
[1]

}
,

so that Σ(G) ⊇ Σ(G′). Hence, by Theorem 4.4.6, we have that T ⩽2 T ′.

By applying Theorem 3.3.9 to Theorem 4.4.4 and Theorem 4.4.6, we obtain

the following result.
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Figure 4.15: Maximal green sequences of A2
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Corollary 4.4.8. Let [G], [G′] be two equivalence classes of d-maximal green se-

quences for Ad
n. Then there is a sequence of increasing elementary polygonal de-

formations from [G] to [G′] if and only if Σ(G) ⊇ Σ(G′).

Remark 4.4.9. In independent work, [Gor14a; Gor14b; Gor] Gorsky defines two

orders on the set of equivalence classes of maximal green sequences of a Dynkin

quiver, using combinatorics of the associated Coxeter group, and proves that they

are the same. For type A quivers, these coincide with the two higher Stasheff–

Tamari orders considered here in three dimensions. The general relationship is not

altogether clear.

Remark 4.4.10. In general, there exist two orders on the set of equivalence classes

of maximal green sequences, corresponding to the two different higher Stasheff–

Tamari order. The general conjecture that the two orders on equivalence classes

of maximal green sequences are equal can be seen as an oriented version of the

“no-gap” conjecture of Brüstle, Dupont, and Perotin [BDP14]. This conjecture

states that the set of lengths of maximal green sequences of an algebra contains

no gaps. If the two orders on equivalence classes of maximal green sequences are

equal, then if Σ(G) ⊇ Σ(G′), then there is no gap in the lengths of maximal green

sequences between G and G′. This is because there will be a sequence of increasing

elementary polygonal deformations from G to G′, and each deformation will only

change the length by one.

Since it is known for dimension 3 that the higher Stasheff–Tamari orders are

lattices [ER96, Theorem 4.9 and Theorem 4.10], we have the following corollary.

Corollary 4.4.11. The set M̃G1(An) forms a lattice under the order given by

reverse inclusion of summands, or, equivalently, the order whose covering relations

are given by increasing elementary polygonal deformations.
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Remark 4.4.12. It is not in general true that the set of equivalence classes of

maximal green sequences of a finite-dimensional algebra is a lattice. For example,

the preprojective algebra of A2 only has two maximal green sequences. These are

not equivalent to each other, and nor are they related by either of the relations

described above. Hence in this case the set of maximal green sequences modulo

equivalence is not a lattice.

One might wonder whether the set of equivalence classes of maximal green

sequences is a lattice for other hereditary algebras. However, computer calculations

reveal that the set of equivalence classes of maximal green sequences of the path

algebra of Dynkin type D4 is not a lattice.

Remark 4.4.13. A common way of considering a maximal green sequence for d = 1

is as a chain of torsion classes [Nag13]. A natural question to ask, therefore, is

whether there exists an analogous description for d > 1.

For a d-silting complex T for Ad
n, the associated d-torsion class ought to be

T⊥ ∩ addM (d,n). Indeed, this class corresponds to the internal d-simplices of the

supermersion set of the associated triangulation of C(n + 2d + 1, 2d), excluding

internal d-simplices belonging to the upper triangulation, which are in every su-

permersion set.

However, the d-torsion classes that are generated in this way do not satisfy

any definitions of higher torsion classes that have appeared so far in the literature,

such as [Jør16; McM18; McM21].

Note also that maximal chains of torsion classes are really chains in the second

order, whereas d-maximal green sequences should be chains in the first order. We

know that the two orders are the same for Ad
n, but for general d-representation-

finite algebras the question remains open.
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4.5 An algebraic criterion for mutation

In the final section of this chapter, we return to the cluster category OΛ, where Λ

is a d-representation-finite d-hereditary algebra and consider mutation of cluster-

tilting objects. Recall that, given a cluster-tilting object T ∈ OΛ with T = E⊕X

for X indecomposable, we have that the summand X is mutable if and only if there

is a cluster-tilting object T ′ = E ⊕ Y with Y ≇ X. For d = 1, every summand

of a basic cluster-tilting object is mutable, but for d > 1 cluster-tilting objects

generally also possess summands which are not mutable. This corresponds to the

fact in terms of triangulations that one cannot perform an increasing bistellar flip at

every internal d-simplex of a triangulation. In this section we provide an algebraic

criterion for identifying the mutable summands of a cluster-tilting object in OΛ.

In Chapter 5 we shall give a combinatorial criterion for identifying the mutable

internal d-simplices of a triangulation.

We recall the theorem [OT12, Theorem 5.6]. Let T be a cluster-tilting object

in OΛ and set Γ := EndOΛ
T . Then the functor

HomOΛ
(T,−) : OΛ → modΓ

induces a fully faithful embedding

OΛ/(T [d]) ↪→ modΓ,

where (T [d]) denotes the ideal of all morphisms factoring through addT [d]. The

image of this functor is a d-cluster-tilting subcategoryM of modΓ. In particular,

Γ is weakly d-representation-finite.

Since [d] is an automorphism of OΛ, we may restate this theorem as follows.

We instead obtain that the functor

HomOΛ
(T,−[d]) : OΛ → modΓ
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induces a fully faithful embedding

OΛ/(T ) ↪→ modΓ,

with the image of this functor giving a d-cluster-tilting subcategoryM of modΓ.

The restatement of the theorem presents an interesting picture. Here we have

that the indecomposables L of the d-cluster-tilting subcategory M of modΓ are

in bijection with the indecomposables of OΛ/(T ). Namely, for an indecomposable

Y of OΛ/(T ), we have a Γ-module HomOΛ
(T, Y [d]). A complete set of orthogonal

primitive idempotents for Γ is given by the projections of T onto its indecomposable

factors. The idempotents of Γ which HomOΛ
(T, Y [d]) is supported on correspond

to indecomposable summands X of T such that HomOΛ
(X, Y [d]) ̸= 0. Hence the

Γ-modules inM give information about the mutation theory of T . We crystallise

this in the following theorem.

Theorem 4.5.1. Let T be a basic cluster-tilting object in OΛ with indecomposable

summand X. Then T is mutable at X if and only if the d-cluster-tilting subcategory

M of modΓ contains a non-zero module M whose composition factors are all

isomorphic to the simple Γ-module corresponding to X.

Proof. Suppose that T = E ⊕X is mutable at X. Hence, there is a cluster-tilting

object T ′ = E ⊕ Y . Then M = HomOΛ
(T, Y [d]) ∼= HomOΛ

(X, Y [d]) is in the

d-cluster-tilting subcategoryM of modΓ and only has composition factors given

by the simple Γ-module corresponding to X.

Conversely, suppose that there is a moduleM inM whose composition factors

are all isomorphic to the simple Γ-module at X. We may assume that M is inde-

composable. Then there exists an object Y in OΛ such thatM ∼= HomOΛ
(T, Y [d]).

If we let T = E ⊕ X, then we conclude from the composition factors of M that

HomOΛ
(E, Y [d]) = 0, which means that, since M ̸= 0, we have HomOΛ

(X, Y [d]) ̸=
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0. Therefore, T ′ = E ⊕ Y is a cluster-tilting object by [OT12, Theorem 5.7], and

so T is mutable at X.

For the higher Auslander algebras of type A, we can state a slightly stronger

result. To make the notation lighter, we write O := OAd
n
.

Theorem 4.5.2. Let T be a basic cluster-tilting object in O with indecomposable

summand X. Then T is mutable at X if and only if the d-cluster-tilting subcategory

M of modΓ contains the simple Γ-module corresponding to X.

Proof. Suppose that T = E ⊕X is mutable at X. Hence, there is a cluster-tilting

object T ′ = E ⊕ Y . Then M = HomO(T, Y [d]) ∼= HomO(X, Y [d]) is a Γ-module

in M. By [OT12, Proposition 6.1], this Hom-space is a 1-dimensional K-vector

space, and hence is isomorphic to the simple Γ-module at X.

Conversely, suppose that S, the simple Γ-module at X, is in M. Then there

exists an object Y in OAd
n
such that S ∼= HomO(T, Y [d]). If we let T = E ⊕ X,

then, since S is the simple Γ-module at X, we conclude that HomO(E, Y [d]) = 0

and HomO(X, Y [d]) ̸= 0. Therefore, T ′ = E ⊕ Y is a cluster-tilting object by

[OT12, Theorem 5.7], and so T is mutable at X.

The following higher-dimensional version of [BMR07, Theorem 4.2] (“gener-

alised APR tilting”) also holds.

Theorem 4.5.3. Let T = E⊕X and T ′ = E⊕Y be basic cluster-tilting objects in

O with X ̸∼= Y . Let further Γ = EndO T and Γ′ = EndO T
′ have respective cluster-

tilting subcategoriesM andM′, containing SX and SY , the simples corresponding

to X and Y . Then there is an equivalenceM/ addSX
∼=M′/ addSY .

Proof. This follows from noting thatM/ addSX is equivalent to O/(E ⊕X ⊕ Y )

via HomO(T,−[d]) and that M′/ addSY is equivalent to O/(E ⊕ X ⊕ Y ) via

HomO(T
′,−[d]). This is because, as explained above, HomO(T, Y [d]) ∼= SX and

HomO(T
′, X[d]) ∼= SY .
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Remark 4.5.4. Theorem 4.5.2 ought to hold for a general d-representation-finite

algebra Λ. This would require a higher-dimensional generalisation of [Bua+06,

Theorem 7.5], which would ensure that, in the situation of Theorem 4.5.1,

HomOΛ
(X, Y [d]) was always a simple Γ-module.

Remark 4.5.5. Some may find it unsatisfying and artificial that, in order to con-

duct higher Auslander–Reiten theory, we have to restrict to a subcategory of the

module category. Theorem 4.5.1 indicates why one ought not to take this perspec-

tive. In higher dimensions, it ought not to be possible to mutate cluster-tilting

objects at every summand, just as it is not possible to mutate triangulations at

every d-simplex. However, the presence of a given module in the d-cluster-tilting

subcategory of the algebra will imply that certain mutations of the corresponding

cluster-tilting object are possible. Hence, in order to reflect the fact that mutation

is not everywhere possible in higher dimensions, we must restrict our attention to

a proper subcategory.

Remark 4.5.6. The picture we extract from the restatement of [OT12, Theorem 5.6]

above in terms of triangulations is as follows. Given a triangulation T correspond-

ing to a cluster-tilting object T , we have an associated algebra Γ := EndO T . The

indecomposables of the d-cluster-tilting subcategory M of modΓ correspond to

the internal d-simplices which are not in T . Given an internal d-simplex A which

is not in T , the corresponding indecomposable module has composition factors

according to the internal d-simplices of T which A intertwines with. In particular,

if the indecomposable corresponding to A is simple, then one can perform a bis-

tellar flip on T by exchanging some internal d-simplex B of T for A. Hence, the

d-cluster-tilting subcategory gives information about how the d-simplices outside

the triangulation interact with the triangulation.

Example 4.5.7. We illustrate how the mutation theory in this section works.

We start with the cluster-tilting object T in O = OA2
3
shown in Figure 4.16. Let



184 Chapter 4. Higher Auslander–Reiten theory

the endomorphism algebra endomorphism algebra of this cluster-tilting object be

Γ = EndO T . The Gabriel quiver of Γ is also illustrated in Figure 4.16. Using

the description of homomorphisms in O from Section 4.2, it can be seen that the

relations for this algebra are given by the paths

1→ 2→ 3→ 4,

2→ 3→ 4→ 5,

4→ 5→ 6,

5→ 6→ 1,

6→ 1→ 2.

We can compute the 2-cluster-tilting subcategory of modΓ using the restatement

of [OT12, Theorem 5.6]. The result is illustrated in Figure 4.17. We take the

indecomposable objects in O which do not lie in addT and then compute the

composition factors of the corresponding module by seeing summands of T they

have extensions with. For example, the object O247 has extensions with O135 and

O136 and so corresponds to the module 1
2. As explained in Theorem 4.5.2 the sim-

ple modules in the 2-cluster-tilting subcategory correspond to mutable summands

of the corresponding cluster-tilting object. For example, the simple module 2 cor-

responds to the indecomposable object O257, which only has extensions with O136

amongst the summands of T . Hence the summand O136 is mutable, since it can

be exchanged for O257 to give a new cluster-tilting object.
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Figure 4.16: A cluster-tilting object in OA2
3
and the labelling of the corresponding

quiver
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Figure 4.17: The indecomposables of O/ addT and the 2-cluster-tilting subcate-
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Chapter 5

Quiver combinatorics for

higher-dimensional triangulations

In this chapter, we return to study triangulations of cyclic polytopes themselves—

in particular, triangulations of even-dimensional cyclic polytopes. We use tools

that arise from Chapter 4, where we looked at the relation between triangulations

of cyclic polytopes and the representation theory of algebras. Indeed, we associate

quivers to even-dimensional cyclic polytopes via the endomorphism algebras of

the corresponding cluster-tilting objects. We consider the information that these

quivers encode about the triangulation. In Section 5.2, we show how one may

describe the triangulations of even-dimensional cyclic polytopes which have no

interior (d+1)-simplices. The upshot is that these triangulations correspond to the

iterated d-APR tilts of [IO11], and an application is that the set of triangulations

with no interior (d+1)-simplices is connected via bistellar flips. We define what an

interior (d+ 1)-simplex is in Section 5.2. In Section 5.3, we explain how one may

use the quivers associated to triangulations to identify the mutable d-arcs. This

points towards what a theory of higher-dimensional quiver mutation could look

like. Just as the quivers associated to polygon triangulations provide a prototype

186
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for classical cluster combinatorics, so the quivers associated to triangulations of

even-dimensional cyclic polytopes ought to provide a prototype for higher cluster

combinatorics.

5.1 The quiver of a triangulation

We first define the quiver of a triangulation, which is the higher-dimensional version

of the quiver of a polygon triangulation—see, for instance, [FZ03b, Section 3] and

[Wil14, Definition 2.12]. In this chapter we like to refer to internal d-simplices

as d-arcs, since in 2d dimensions we think of internal d-simplices as the higher-

dimensional analogues of the arcs of a triangulation.

Definition 5.1.1. Let T be a triangulation of C(n + 2d + 1, 2d). We define the

quiver Q(T ) of T to be the directed graph with vertices

Q0(T ) = e̊(T )

and arrows

Q1(T ) =
{
A→ B :

A ̸= B, (A−1)]B, and ∄A′ ∈ e̊(T )\{A,B}

with (A− 1)]A′ and (A′ − 1)]B

}
.

We define the quiver in this way so that the arrows mirror the description of

the homomorphisms in the cluster category OAd
n
, as discussed in Section 4.2.1.

Hence the quiver coincides with the Gabriel quiver of the endmorphism algebra

of the cluster-tilting object corresponding to the triangulation. However, in due

course, we obtain a simpler description of the quiver, given in Corollary 5.1.4. In

order to prove this, we first make some observations about cyclic polytopes.

Recalling the cyclically shifted order <l from Section 1.6, one may re-orientate

the cyclic polytope C(n + 2d + 1, 2d) by changing the ordering on [n + 2d + 1]
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from <1 to <l for some l [KW03], recalling these cyclically shifted orders from

Section 1.6. Generalising [OT12], given a 2d-simplex S of C(n + 2d + 1, 2d) and

an ordering <l of [n + 2d + 1] under which S is ordered S = {s0, s1, . . . , s2d}, we

write el(S) = {s0, s2, . . . , s2d−2, s2d}. If the ordering is determined by the context,

we simply write e(S).

Lemma 5.1.2. Given an ordering <l of [n+2d+1] and a d-arc A of a triangulation

T of C(n+ 2d+ 1, 2d), there is a 2d-simplex S of T such that el(S) = A.

Proof. This follows from applying [OT12, Proposition 2.13] in the orientation given

by <l.

Proposition 5.1.3. Suppose A→ B is an arrow in Q(T ). Then A and B share

all but one entry, and there is a (d + 1)-simplex J of T such that A and B are

both faces of J .

Proof. We have that (A − 1)]B. It must be the case that A = {a0, a1, . . . , ad}

and B = {b0, b1, . . . , bd} have at least one common vertex, otherwise A]B.

Hence, by re-ordering, we may assume that a0 = b0 and ad−1 < ad < bd.

There must be a 2d-simplex S of T such that e(S) = B by Lemma 5.1.2.

Let S = {b0, q1, b1, q2, . . . , bd−1, qd, bd}.

We cannot have that bi−1 < qi ≤ ai − 1 for all i ∈ [d], otherwise we have

A]{q1, q2, . . . , qd, bd}, which is impossible since they are both d-arcs of T .

Hence there is an i ∈ [d] such that bi−1 < ai − 1 < qi. Then we have that

{b0, b1, . . . , bi−1, qi, bi+1, bi+2, . . . , bd} is a d-arc of T , since bi−1 < ai − 1 < qi and

qi < bi < bi+1. Moreover,

(A− 1)]{b0, b1, . . . , bi−1, qi, bi+1, bi+2, . . . , bd}

and

{b0, b1, . . . , bi−1, qi, bi+1, bi+2, . . . , bd} − 1]B.
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Since A → B is an arrow in Q(T ), we must have that A = {b0, b1, . . . , bi−1, qi,

bi+1, . . . , bd}. (In fact, by the ordering we have chosen, we must have i = d.) There-

fore A and B are both faces of the (d+ 1)-simplex J = {b0, b1, . . . , bi−1, qi, bi, bi+1,

. . . , bd}, which is a (d+1)-face of S, and they share all but one entry, as desired.

Recall the notation σi(A) from Section 4.1.1. Note that this notation implicitly

assumes an ordering <l of [n+ 2d+ 1].

Corollary 5.1.4. The arrows of Q(T ) are

Q1(T ) =

{
A→ σr

i (A) :
A, σr

i (A) ∈
⟲
Idn+2d+1,

∄r′ ∈ [r − 1] such that σr′
i (A) ∈ Q0(T )

}
.

For an arrow α, we denote the head h(α) and the tail t(α) such that t(α)
α−→

h(α). We say that α is incident at t(α) and h(α). Given a quiver Q with vertices

A,B ∈ Q0, by a path in Q from A to B we mean a finite sequence of arrows

α1α2 . . . αr such that t(α1) = A, h(αr) = B and h(αi−1) = t(αi) for all i ∈

{2, 3, . . . , s}. If there is a path from A to B, then we write A; B. The following

property will also be useful later.

Lemma 5.1.5. Given a triangulation T of C(n + 2d + 1, 2d) and A,B ∈ Q0(T )

with (A− 1)]B, there is a path from A to B in Q(T ).

Proof. This is clear from Definition 5.1.1, using induction.

The following property will be useful in Section 5.3.

Lemma 5.1.6. Let T be a triangulation of C(n + 2d + 1, 2d) with A ∈ e̊(T ). If

ai + 2 < ai+1 for some i, then there is either an arrow

{a0, a1, . . . , ai, a−i+1, ai+2, ai+3, . . . , ad} → A
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or an arrow

A→ {a0, a1, . . . , ai−1, a
+
i , ai+1, ai+2, . . . , ad},

where a−i+1 and a+i are some undetermined entries.

Proof. We use the fact that, by Lemma 5.1.2, there is a 2d-simplex S of T such

that e(S) = A. If we let S = {a0, q1, a1, q2, . . . , ad−1, qd, ad}, then we must have

either qi+1 > ai + 1 or qi+1 < ai+1 − 1. In the former case, we must have a

path {a0, a1, . . . , ai, qi+1, ai+2, ai+3, . . . , ad} ; A comprised of arrows which in-

crease the element in the position of qi+1; in the latter case, we must have a path

A; {a0, a1, . . . , ai−1, qi, ai+1, ai+2, . . . , ad} comprised of arrows which increase the

element in the position of qi. This establishes the claim.

5.2 Description of triangulations without inte-

rior (d + 1)-simplices

In this section we prove our combinatorial description of triangulations of C(n +

2d+1, 2d) without interior (d+1)-simplices and use this description to show that

this class of triangulations is connected by bistellar flips. We call a (d+1)-simplex

of a triangulation T of C(n + 2d + 1, 2d) interior if all of its facets are internal

d-simplices.

5.2.1 Cuts and slices

We now define the quivers which are higher analogues of orientations of the An

Dynkin diagram, following [IO11]. Let Q
(d,n)

be the quiver with vertices

Q
(d,n)

0 := { (a0, a1, . . . , ad) ∈ Zd+1
⩾0 :

d∑
i=0

ai = n− 1 }
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Figure 5.1: Examples of the quivers Q
(d,n)

30 21 12 03

Q
(1,4)

200

110

020

011

002101

Q
(2,3)

and arrows

Q
(d,n)

1 := {A→ A+ fi : A,A+ fi ∈ Q
(d,n)

0 },

where

fi = (. . . , 0,
i

−1,
i+1

1 , 0, . . . ),

with

fd = (1, 0, . . . , 0,−1).

See Figure 5.1 for illustrations of these quivers. A subset C ⊆ Q
(d,n)

1 is called a

cut if it contains exactly one arrow from each (d + 1)-cycle. Given a cut C, we

write Q
(d,n)

C for the quiver with arrows Q
(d,n)

1 \C and refer to this as the cut quiver.

Examples of cut quivers can be seen in Figure 5.2. Note that the cut quivers of

Q
(1,n)

are precisely the orientations of the An Dynkin diagram. Hence, for d > 1,

we think of cut quivers of Q
(d,n)

as higher analogues of orientations of the An

Dynkin diagram. Note also that the arrows given by fi give a cut Ci of Q
(d,n)

and

the cut quivers Q
(d,n)

Ci
are isomorphic to the quivers Q(d,n) from Section 4.1.1.

Iyama and Oppermann show that cut quivers of Q
(d,n)

are precisely the quivers

than can be realised as “slices” of another family of quivers, denoted Q̃(d,n), which
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Figure 5.2: Cuts of the quivers Q
(d,n)

30 21 12 30

Q
(1,4)

C

200

110

020

011

002101

Q
(2,3)

C

we now define. Let Q̃(d,n) be the quiver with vertices

Q̃
(d,n)
0 := Ĩdn+2d+1

and arrows

Q̃
(d,n)
1 := {A→ σi(A) : A, σi(A) ∈ Q̃(d,n)

0 }.

Given two (d + 1)-tuples A,B ∈ Zd+1, we write A ⩽ B if ai ⩽ bi for all i ∈

{0, 1, . . . , d}. Note that, given A,B ∈ Q̃(d,n)
0 , there is a path A ; B in Q̃(d,n) if

and only if A ⩽ B.

We denote by νd the automorphism of Q̃(d,n) given by A 7→ A− 1. We denote

by π : Q̃
(d,n)
0 → ⟲

Idn+2d+1 the map given by

Ã 7→ {π(ã0), π(ã1), . . . , π(ãd)},

where π(ãi) := ãi mod n+ 2d+ 1.

Remark 5.2.1. It can be seen from Section 4.1.1 that Q̃(d,n) corresponds to the

Auslander–Reiten quiver of the d-cluster-tilting subcategory UAd
n
of the derived

category DAd
n
. Moreover, the automorphism νd of Q̃

(d,n) corresponds to the derived

Nakayama functor νd of UAd
n
. The projection π corresponds to the projection to

the cluster category OAd
n
, as explained in Section 4.2.1.
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Figure 5.3: Q̃(1,3)
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Figure 5.4: Q̃(2,3)

135 146 157

136 147

137

246 257 268

247 258

248

357 368 379

358 369

359

. . . . . . . . .

. . . . . . . . .
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Following [IO11, Definition 5.20], we define a slice of Q̃(d,n) to be a full subquiver

L of Q̃(d,n) such that:

(1) Any νd-orbit in Q̃
(d,n) contains precisely one vertex which belongs to L.

(2) L is convex, i.e., for any path p in Q̃(d,n) connecting two vertices in L, all

vertices appearing in p belong to L.

Slices are show in red in Figure 5.3 and Figure 5.4.

The νd-orbits of Q̃
(d,n) are in bijection with the vertices of Q

(d,n)
. Given a slice

L of Q̃(d,n), one can find a cut CL of Q
(d,n)

such that Q
(d,n)
CL

is isomorphic to L with

the arrows fi of Q
(d,n)
CL

corresponding to arrows A → σi(A) in L [IO11, Proposi-

tion 5.22]. For example, the cut quiver on the right of Figure 5.2 corresponds to

the slice in Figure 5.4.

Slices correspond to iterated d-APR tilts [IO11, Theorem 4.15], which implies

that projecting to the cluster category will give a triangulation [OT12, Theo-

rem 6.4]. However, one can also give a direct combinatorial proof of this fact.

Proposition 5.2.2. If L is a slice of Q̃(d,n), then the vertices π(L0) give a trian-

gulation of C(n+ 2d+ 1, 2d).

Proof. There are as many νd-orbits as there are elements of
⟲
Idn+2d+1 contain-

ing 1, namely
(
n+d−1

d

)
. Suppose that there exist π(A) and π(B) in π(L0) with

π(A)]π(B). We assume without loss of generality that a0 < b0, noting that

π(A)]π(B) implies that ai ̸= bi for all i. We claim that A < B. Suppose for

contradiction that bi < ai for some i. We can choose the minimal i such that this

is the case. Then ai−1 < bi−1 < bi < ai. Since we must have the cyclic ordering

π(ai−1) < π(bi−1) < π(ai) < π(bi),

we must have ai− ai−1 > n+2d+1, and hence ad− a0 > n+2d+1 > n+2d− 1,

which contradicts A ∈ Ĩdn+2d+1.
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Hence there is either a path A ; B in Q̃(d,n) or a path B ; A. Without

loss of generality, we suppose that the path is A ; B. Due to the intertwining,

there is then a path A ; A + 1 ; B, so A + 1 ∈ π(L0) by convexity. But this

contradicts the fact that L contains one vertex from every νd-orbit. Hence π(L0) is

a non-intertwining subset of
⟲
Idn+2d+1 of size

(
n+d−1

d

)
, and so gives a triangulation

of C(n+ 2d+ 1, 2d).

A similar argument also shows the following lemma, which will be useful later.

Lemma 5.2.3. If L is a convex subquiver of Q̃(d,n) such that π(L0) = e̊(T ) for a

triangulation T of C(n+ 2d+ 1, 2d), then L is a slice.

Proof. Suppose that L is a convex subquiver such that π(L0) is a triangulation

of C(n + 2d + 1, 2d). Suppose for contradiction that L possesses two vertices A

and B which are in the same νd-orbit. There is then either a path A ; B or a

path B ; A. Without loss of generality, we suppose the former. But then there

is a path A ; A + 1 ; B, so we must have A + 1 ∈ L0 by convexity. This is a

contradiction, since π(A) and π(A + 1) are intertwining. Note finally that since

there are as many d-arcs of T as there are νd-orbits of Q̃
(d,n), there must be exactly

one vertex of L per orbit, as required.

Mutation of cuts and slices

Cuts and slices can be mutated, as was defined in [IO11].

� Let C be a cut of Q
(d,n)

and let x be a source of Q
(d,n)

C . Define a subset µ+
x (C)

of Q
(d,n)

1 by removing all arrows in C which end at x and adding all arrows

in Q
(d,n)

1 which begin at x. Dually, if x is a sink of Q
(d,n)

C , define µ−
x (C) by

removing all arrows in C which begin at x and adding all arrows in Q
(d,n)

1

which end at x. By [IO11, Proposition 5.14], we have that µ+
x (C) and µ

−
x (C)

are also cuts of Q
(d,n)

.
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� Let L be a slice of Q̃(d,n). If x is a source of L, then define a full sub-

quiver µ+
x (S) of Q̃(d,n) by removing x from L and adding ν−1

d x [IO11, Def-

inition 5.25]. Dually, if x is a sink of L, define a full subquiver µ−
x (S) by

removing x and adding νdx.

If CL is the cut corresponding to a slice L then Cµ+
x L = µ+

x (CL) and Cµ−
x L =

µ−
x (CL), provided x is a source or sink, respectively. Here we abuse notation by

using x to refer both to the relevant vertex of L and to the relevant vertex of Q
(d,n)

CL
.

Remark 5.2.4. Mutation of cut quivers is the higher-dimensional analogue of the

quiver mutation from [FZ03c], but is here only defined at sinks and sources. How-

ever, it should also be possible to mutate these quivers at some vertices which are

not sinks and sources. Mutation ought not to be possible at every single vertex

though, just as mutation is not possible at every summand of a cluster-tilting

object in a higher cluster category, as we saw in Section 4.5.

5.2.2 Quiver description

The first main result of this chapter is that a triangulation T of C(n+2d+1, 2d)

has no interior (d + 1)-simplices if and only if its quiver Q(T ) is a cut of Q
(d,n)

,

and this is the case if and only if its quiver Q(T ) has no cycle. We prove several

properties of the quivers of triangulations without interior (d + 1)-simplices. The

eventual aim is to show that we can realise such a quiver as a slice of Q̃(d,n).

Lemma 5.2.5. If T is a triangulation of C(n+2d+1, 2d) with no interior (d+1)-

simplices, then the arrows in Q(T ) are all of the form A→ σi(A).

Proof. By Proposition 5.1.3, every arrow is of the form A→ σr
i (A) for some r > 0

and for each such arrow, we have that {a0, a1, . . . , ai, ai + r, ai+1, ai+2, . . . , ad} is a

face of a 2d-simplex of T . If r > 1, then this is an interior (d+ 1)-simplex.
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Lemma 5.2.6. Suppose that T is a triangulation of C(n + 2d + 1, 2d) with no

interior (d + 1)-simplices. If A → σi(A) → σj(σi(A)) is a sequence of arrows in

Q(T ), then, if σj(A) ∈
⟲
Idn+2d+1, the sequence A → σj(A) → σj(σi(A)) is also in

Q(T ).

Proof. We assume σj(A) ∈
⟲
Idn+2d+1. By re-ordering, we may assume that i = d.

Then there is a 2d-simplex S of T such that e(S) = σd(σj(A)) by Lemma 5.1.2.

Let S = {a0, q1, a1, . . . , qj, aj + 1, qj+1, aj+1, . . . , qd, ad + 1}. If qd = ad, then

σj(A) is a d-face of S and hence a d-arc of T . Hence, suppose for contradiction

that ad ̸= qd, so that ad−1 < qd ⩽ ad − 1. Note that if qj = aj−1 + 1, then

{a0, a1, . . . , ad}]{q1, q2, . . . , qd, ad + 1}, which is a d-face of S. Hence aj−1 + 2 ⩽

qj < aj +1. Then {a0, a1, . . . , aj−1, qj, qj+1 . . . , qd, ad+1} is a (d+1)-face of S and

an interior (d+ 1)-simplex of T , a contradiction.

We now prove some properties of the quivers Q̃(d,n), which will be useful in

proving the main theorem of this section. We say that a full subquiver P of Q̃(d,n)

is switching-closed if whenever A→ σi(A)→ σj(σi(A)) is a sequence of arrows in

P and σj(A) ∈ Q̃(d,n)
0 , then the sequence of arrows A→ σj(A)→ σj(σi(A)) is also

in P .

Lemma 5.2.7. Let P be a switching-closed full subquiver of Q̃(d,n). If there is a

path A; B in P , all other paths A; B in Q̃(d,n) must also lie in P .

Proof. Suppose that we have a path A; B in P . The length of all such paths is∑d
i=0(bi − ai). We prove the claim by induction on this quantity. The base case,

where the length is 1, follows from the fact that P is a full subquiver of Q̃(d,n).

For the inductive step, we assume that the claim holds for all F and G with∑d
i=0(gi − fi) <

∑d
i=0(bi − ai). We have that B is the head of up to d+ 1 arrows,

namely the ones with tails σ−1
0 (B), σ−1

1 (B), . . . , σ−1
d (B), provided these are vertices

of Q̃(d,n). Suppose that σ−1
i (B) is the penultimate vertex of our path A; B.
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Choose one of the vertices σ−1
j (B) ∈ Q̃(d,n)

0 , where i ̸= j. If A ̸⩽ σ−1
j (B), then

we may ignore this vertex, since there can be no paths from A to B through it.

Hence we assume that A ⩽ σ−1
j (B). This implies that A ⩽ σ−1

j (σ−1
i (B)) ⩽ σ−1

i (B),

so that σ−1
j (σ−1

i (B)) ∈ P0 by the induction hypothesis applied to A and σ−1
i (B).

By the condition on P , we have that σ−1
j (B) ∈ P0, since σ

−1
j (σ−1

i (B)), σ−1
i (B),

B ∈ P0. By the induction hypothesis, all paths A ; σ−1
j (B) lie in P , and hence

all paths A; B passing through σ−1
j (B) lie in P . The result follows.

By a walk in P from A to B we mean a finite sequence of arrows β1β2 . . . βs

such that β1 is incident at A, βs is incident at B, and βi−1 and βi are incident at a

common vertex for all i ∈ {2, 3, . . . , s}. In this case, we write A 99K B. That is, a

path only consists of forwards arrows, but a walk may contain backwards arrows

as well.

Lemma 5.2.8. Let P be a connected switching-closed full subquiver of Q̃(d,n). If

A,B ∈ P0 are such that there is a path A ; B in Q̃(d,n), then there is a path

A; B in P .

Proof. Let A,B ∈ P0. Suppose that there is a path A ; B in Q̃(d,n). There is

certainly a walk W : A 99K B in P , since P is connected. We prove that there is

also a path by induction on the number of backwards arrows in this walk. The

base case, in which there are zero backwards arrows in the walk, is immediate.

Hence we suppose for induction that the claim holds for walks with fewer

backwards arrows than W . We may assume that the final arrow in W is a back-

wards one, otherwise we may remove the final arrow and consider instead the walk

A 99K B′, where A 99K B′ → B is the original walk W . If there exists a path

A; B′, then this gives a path A; B.

Therefore we can assume that our walk is of the form A 99K C ← B, where

C ∈ P . By the induction hypothesis, we can replace this with a walk of the form
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A ; C ← B in P . Since we have a path A ; B in Q̃(d,n), we have A ⩽ B and,

moreover, A ⩽ B ⩽ C. There is therefore a path A ; B ; C in Q̃(d,n). By

Lemma 5.2.7, this path is in P , since every path A ; C is in P , which gives the

desired path A; B in P .

These two lemmas imply the following corollary.

Corollary 5.2.9. Let P be a connected switching-closed full subquiver of Q̃(d,n).

Then P is convex in Q̃(d,n).

Proof. Suppose that P is a connected switching-closed full subquiver of Q̃(d,n). Let

A,B ∈ P0 be such that there is a path A ; B in Q̃(d,n). By Lemma 5.2.8, there

is a path A ; B in P . Then, by Lemma 5.2.7, we have that all paths A ; B lie

in P , and so P is convex.

This corollary is useful because it is easier to check the property of being

connected and switching-closed than the property of being convex. Given a full

subquiver P of Q̃(d,n), we write P for the smallest switching-closed subquiver

containing P . The subquiver P is well-defined since the intersection of a set of

switching-closed full subquivers is switching-closed, so P may be constructed as

the intersection of all switching-closed subquivers containing P .

Proposition 5.2.10. A triangulation T contains an interior (d + 1)-simplex if

and only if Q(T ) contains a cycle.

Proof. We first suppose for contradiction that T contains no interior (d + 1)-

simplices and that Q(T ) does contain a cycle. We can realise this cycle as a path

P : A ; B in Q̃(d,n), where A is some vertex in the cycle in Q(T ) and π(B) = A

with A ̸= B. That is, we choose a vertex A in the cycle, and construct the path

P by choosing A in Q̃(d,n) and traversing the arrows in Q̃(d,n) which correspond to
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the arrows of the cycle. Note that we know that the arrows of Q(T ) all correspond

to arrows of Q(T ) by Lemma 5.2.5.

We consider this path P as a subquiver of Q̃(d,n). By Lemma 5.2.7, every path

A; B in Q̃(d,n) must lie in P . There is a path A; A+ 1 ; B in Q̃(d,n), since a

cycle which starts and ends of A must end up increasing every entry of A. Hence

A+1 is a vertex of P . By Lemma 5.2.6, if C is a vertex of P , then π(C) is a vertex

of Q(T ). Therefore π(A+1) is a vertex of Q(T ), but this is a contradiction, since

π(A+ 1) and A are intertwining.

We now suppose that T is a triangulation with {a0, a1, . . . , ad+1} an interior

(d + 1)-simplex of T . Then Q(T ) has a cycle given by concatenating the paths

{a0, a1, . . . , ad−1, ad} ; {a0, a1, . . . , ad−1, ad+1} ; {a0, a1, . . . , ad−2, ad, ad+1} ;

· · ·; {a1, a2, . . . , ad, ad+1}; {a0, a1, . . . , ad}, noting Lemma 5.1.5.

Remark 5.2.11. For d = 1, an interior triangle gives a 3-cycle in the quiver where

all the vertices of the cycle are edges of the triangle. For d > 1, the cycle obtained

in Proposition 5.2.10 may not exclusively have facets of the interior (d+1)-simplex

as its vertices. An example of this can be seen in Figure 5.6, where the interior

3-simplex is 1357, but the cycle is 135→ 136→ 137→ 147→ 157→ 357→ 135.

Here 136 and 147 are not faces of the interior 3-simplex 1357.

We are now ready to prove the main result of this section.

Theorem 5.2.12. A triangulation T of C(n+2d+1, 2d) has no interior (d+1)-

simplices if and only if its quiver is a cut of Q
(d,n)

.

Proof. First suppose that T has no interior (d+1)-simplices. We consider the full

subquiver R of Q̃(d,n) with vertices

R0 = {B ∈ Q̃(d,n) : π(B) ∈ Q0(T ) }.

We claim that this is disconnected and that each connected component gives Q(T )

by applying π. Let A ∈ Q0(T ). If R is connected then it contains a walkW : A 99K
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{a1, a2, . . . , ad, a0+n+2d+1}. We considerW as a subquiver of Q̃(d,n) and consider

W . By Lemma 5.2.8, W contains a path P : A; {a1, a2, . . . , ad, a0 + n+2d+1}.

By Lemma 5.2.6, if B is a vertex of W , then π(B) is a vertex of Q(T ). Hence all

vertices of π(P ) are vertices of Q(T ), which therefore contains a cycle. But this

contradicts Proposition 5.2.10.

By this argument, R is disconnected and, moreover, each connected component

contains exactly one vertex which projects to each vertex of Q(T ) via π, since

Q(T ) is connected. Moreover, the arrows in each connected component of R are

the same as the arrows in Q(T ), by Lemma 5.2.5. Hence, by choosing one of the

connected components, we obtain a full subquiver L of Q̃(d,n) such that π(L) =

Q(T ). We then have that L is a switching-closed connected subquiver of Q̃(d,n)

by Lemma 5.2.6, so L is convex by Lemma 5.2.9. Since π(L) is a triangulation, it

then follows from Lemma 5.2.3 that L is a slice. Hence Q(T ) is a cut of Q
(d,n)

by

[IO11, Theorem 5.24].

Now suppose that Q(T ) is a cut of Q
(d,n)

. Then Q(T ) cannot contain any

cycles. This can be seen from [IO11, Theorem 5.24], which gives that cut quivers

can be realised as slices. Since slices are full subquivers of Q̃(d,n), which does

not contain any cycles, Q(T ) cannot contain any cycles. Then we obtain that T

contains no interior (d+ 1)-simplices by Proposition 5.2.10.

Theorem 5.2.12 implies that the set of triangulations of C(n+2d+1, 2d) without

interior (d+ 1)-simplices is connected by bistellar flips.

Corollary 5.2.13. The set of triangulations of C(n+2d+1, 2d) without interior

(d+ 1)-simplices is connected by bistellar flips.

Proof. Slice mutation involves replacing one vertex of a slice L with another to

obtain a new slice L′. Hence, if one considers the triangulations π(L0) and π(L
′
0),

these have all but one d-arc in common. Since two triangulations are related by a
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bistellar flip if and only if they have all but one d-arc in common by [OT12, Theo-

rem 4.1] or Theorem 3.2.1, it follows that triangulations related by slice mutation

are related by a bistellar flip. Iyama and Oppermann then show that all slices are

connected by slice mutation [IO11, Theorem 5.27]. Hence, by Theorem 5.2.12, this

implies that the set of triangulations without interior (d+1)-simplices is connected

by bistellar flips.

5.3 A combinatorial criterion for mutation

Given a triangulation T of C(n+2d+1, 2d), we say that a d-arc A of T is mutable

if there is a bistellar flip of T which replaces A with another d-arc A′. It is clear

that here A and A′ must intertwine, since the fact that A′ is not in T means

that it must form a circuit with a d-simplex of T ; but A′ cannot intertwine any

d-simplex of T apart from A, since it lies in a triangulation with them. For d = 1,

where triangulations of C(n+ 2d+ 1, 2d) are triangulations of convex m-gons, all

d-arcs are mutable. But this is not true for d > 1. In this section, we prove a

criterion for identifying the mutable d-arcs of a triangulation T from its quiver

Q(T ). Just as mutating two-dimensional triangulations of polygons corresponds

to Fomin–Zelevinsky quiver mutation [FZ03c], this ought to be related to a higher-

dimensional version of quiver mutation.

5.3.1 Cuts and mutation

We begin with some motivating observations concerning cuts. We explain how a

cut quiver may be decomposed into distinguished cut cycles, and observe that an

arc of the triangulation is mutable if and only if it does not occur in the middle of

a distinguished cut cycle. This will follow from the main result of the subsequent

section.
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Figure 5.5: Mutability via distinguished cut (d+ 1)-cycles
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It is clear that the arrows of each (d + 1)-cycle in Q
(d,n)

must be labelled

exactly once by each element of {f0, f1, . . . , fd}. We call a (d + 1)-cycle of Q
(d,n)

distinguished if the arrows are labelled in the cyclic order fd < fd−1 < · · · < f0.

Given a cut C, the distinguished cut (d + 1)-cycles of QC are the paths that

result from removing the arrows of C from the distinguished cycles of Q
(d,n)

. Our

observation is that, given a triangulation T whose quiver Q(T ) is a cut of Q
(d,n)

,

the mutable d-arcs of T are precisely the d-arcs which do not lie in the middle of

a distinguished cut (d+ 1)-cycle.

Example 5.3.1. The reader can check that in the left-hand triangulation in Fig-

ure 5.5 the mutable 2-arcs are 135, 146, and 157, whilst in the right-hand trian-

gulation the mutable 2-arcs are 246, 136, and 157. In these figures we draw each

distinguished cut 3-cycle in a different colour.

5.3.2 General triangulations

Cut quivers have a very particular form and it is this that allows us to determine

the distinguished cut (d+1)-cycles of the quiver, and then to use these to determine

the mutable d-arcs of the triangulation. In general, quivers may be much more

complicated than cut quivers. Nevertheless, we may generalise our observation in
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the preceding section to arbitrary triangulations of even-dimensional cyclic poly-

topes using the following notion. We let T be a triangulation of C(n+2d+1, 2d).

Definition 5.3.2. Let A be a d-arc of T . We call a path of the form

A→ σr
i (A)→ σs

i−1(σ
r
i (A))

retrograde at σr
i (A) if ai−1 < ai−1 + s < ai cyclically.

A path

A0 → A1 → · · · → Al → Al+1

is retrograde if Ai−1 → Ai → Ai+1 is retrograde at i for all i ∈ [l]. We say that Ai

is in the middle of this retrograde path for i ∈ [l]. We consider paths consisting of

a single arrow to be trivially retrograde. We say that a retrograde path is maximal

if it is not contained in any longer retrograde paths.

Remark 5.3.3. It is hence clear that the distinguished cut (d + 1)-cycles from

Section 5.3.1 are maximal retrograde paths. Arrows in this cut cycle are labelled

fl+1, fl+2, . . . , fd, f0, f1, . . . , fl−1 for some l. Since arrows in Q(T ) labelled by fi are

of the form A → σi(A), we obtain that these paths are retrograde. These paths

are, futhermore, maximally retrograde, since the next arrow in the path at either

end would have to be labelled by fl, but this is precisely the arrow that has been

cut out.

Lemma 5.3.4. Every arrow in Q(T ) is contained in a unique maximal retrograde

path.

Proof. If an arrow follows A → σr
i (A), then it must be of the form σr

i (A) →

σs
j (σ

r
i (A)) with j ≡ i− 1 mod n+2d+1 and if an arrow precedes it, then it must

be of the form σ−s
j (A) → A with j ≡ i + 1 mod n + 2d + 1. Both such arrows

must be unique, by Corollary 5.1.4. Hence, there is only one way to extend an

arrow to a maximal retrograde path.
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Proposition 5.3.5. The maximal length of a retrograde path in Q(T ) is d.

Proof. Suppose for contradiction that we have a retrograde path in Q(T ) of length

d+ 1. By re-ordering, we can represent this in the form

A→ {a0, a1, . . . , ad−1, bd} → · · · → {a0, b1, b2, . . . , bd} → B.

Then we clearly have ai < bi for all i. Furthermore, since this path is retrograde, we

also have bi−1 < ai for all i ∈ [d]. But this implies that A and B are intertwining.

A d-arc A is mutable precisely if there exists a d-arc B which intertwines with

it but which does not intertwine with any other d-arc in the triangulation. If

such a d-arc B does not exist, then A is not mutable. Hence, we consider the

collection of d-arcs of a triangulation which intertwine with a given d-arc outside

the triangulation.

Lemma 5.3.6. Let B ∈ ⟲
Idn+2d+1 \ e̊(T ). Let QB(T ) be the full subquiver of Q(T )

with vertex set

QB(T )0 = {A ∈ e̊(T ) : A]B }.

Then QB(T ) is connected.

Proof. Let TB be the collection of 2d-simplices of T which have a d-face intertwin-

ing with the d-arc B. Let S ∈ TB. We first show that the set of d-faces of S

contained in QB(T ) is connected in QB(T ). Hence, let A and A′ be two d-faces

of S which intertwine with B. Then A and A′ must have a common vertex, since

they are both faces of the same 2d-simplex, so without loss of generality we can

assume that a0 = a′0. We know that A and B must be intertwining, so we may

also assume that

a0 < b0 < a1 < b1 < · · · < bd−1 < ad < bd.
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Since a0 = a′0 and A′ also intersects B, we also have that

a′0 < b0 < a′1 < b1 < · · · < bd−1 < a′d < bd.

Let ci, c
′
i ∈ {a′i, ai} be such that bi−1 < ci < c′i < bi. Then C,C ′ ∈ e̊(T ) since

they are both d-faces of S. Moreover, they are both in QB(T ). There is a path

C ; A in Q(T ) by Lemma 5.1.5 since, by construction, (C − 1)]A. Moreover,

this path must lie in QB(T ), since every d-arc between C and A must also be

intertwining with B. There is likewise a path C ; A′ in QB(T ). Therefore, A

and A′ are connected to each other in QB(T ). Hence, any two d-arcs lying in a

common 2d-simplex are connected by a walk in QB(T ).

We now show that the d-arcs in QB(T ) which lie in different 2d-simplices are

connected to each other. Let S, S ′ ∈ TB. If one chooses points x ∈ |S| ∩ |B| and

x′ ∈ |S ′| ∩ |B|, then the line segment xx′ connecting x and x′ must lie entirely

within |B|, since |B| is convex. If one travels from |S| to |S ′| along xx′, then one

runs through a series of 2d-simplices |S| = |S0|, |S1|, . . . , |Sr| = |S ′| where each pair

of 2d-simplices |Sl−1| and |Sl| shares a common face |Ul| which must also intersect

|B|. Then, by the description of the circuits of C(n + 2d + 1, 2d), there must be

a d-arc Jl within Ul such that B]Jl. Therefore, the vertices of QB(T ) which are

d-faces of Sl−1 and the vertices of QB(T ) which are d-faces of Sl share the d-arc Jl.

Since we know that the set of d-faces of a given 2d-simplex is connected in QB(T ),

we therefore obtain that QB(T ) itself is connected.

Remark 5.3.7. Lemma 5.3.6 may also be seen quickly using an algebraic argu-

ment. The result [OT12, Theorem 5.6], which we discussed in Section 4.5, implies

that QB(T ) must be the support of an indecomposable module, and so must be

connected.

This gives the following useful corollary, which implies that in order to check

whether a d-arc A is mutable to a d-arc B, it suffices only to check whether the
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d-arcs adjacent to A in the quiver intertwine with B, rather than checking all

d-arcs for whether they intertwine with B.

Corollary 5.3.8. Let A ∈ T and B ∈ ⟲
Idn+2d+1 with A]B. If there is an A′ ∈

e̊(T ) with A′ ̸= A and A′]B, then there is an A′′ ∈ e̊(T ) with A ̸= A′′ and A′′]B,

such that A and A′′ are adjacent in Q(T ).

Proof. Suppose that we are in the situation described. We know from Lemma 5.3.6

that QB(T ) is connected, and the set-up gives us that it contains at least two

vertices, one of which is A. Hence there is a vertex of QB(T ) which is adjacent

to A.

We may now prove the main theorem of this section.

Theorem 5.3.9. Let T be a triangulation of C(n+ 2d+ 1, 2d). Then, a d-arc of

T is mutable if and only if it is not in the middle of a maximal retrograde path in

Q(T ).

Proof. For each entry ai in A, let Zi = {a0, a1, . . . , ai−1, zi, ai+1, ai+2, . . . , ad} be

the d-arc of T such that there is an arrow Zi → A, if it exists. Similarly, let

Bi = {a0, a1, . . . , ai−2, bi−1, ai, ai+1, . . . , ad} be the d-arc of T such that there is an

arrow A→ Bi, if it exists.

A is mutable if and only if there exists C ∈ ⟲
Idn+2d+1 such that A]C but such

that there is no A′ ∈ T with A′ ̸= A with A′]C. By Corollary 5.3.8, it is necessary

and sufficient that we do not have Zi]C or Bi]C for any i ∈ {0, 1, . . . , d}. If A]C,

then, since

a0 < c0 < a1 < c1 < · · · < ad < cd,

we have that if Zi and C do not intertwine, then zi ⩽ ci−1 < ai. Similarly, since

Bi and C do not intertwine, we must have ai−1 < ci−1 ⩽ bi−1.
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Let zi ≡ ai−1 + 1 mod n + 2d + 1 if Zi does not exist and let bi−1 ≡ ai − 1

mod n+ 2d+ 1 if Bi does not exist. Then, by the above reasoning, A is mutable

if and only if ai−1 < zi ⩽ bi−1 < ai for all i, which is precisely the condition that

none of the Zi → A→ Bi are retrograde paths.

Corollary 5.3.10. Let T be a triangulation of C(n + 2d + 1, 2d) and A ∈ e̊(T )

such that A is not in the middle of any maximal retrograde paths. Let Zi and Bi

be as in the proof of Theorem 5.3.9. Then zi+1 = bi for all i and {b0, b1, . . . , bd}

replaces A in the bistellar flip at A.

Proof. We know from the proof of Theorem 5.3.9 that any element of

[z1, b0]× [z2, b1]× · · · × [zd, bd−1]× [z0, bd]

may replace A in a bistellar flip. But, we have that the d-arc which can replace

A in a bistellar flip must be unique, since it is determined by the subpolytope

C(2d + 2, 2d) which A lies in. Hence zi+1 = bi for all i and the unique element of

the product must replace A in the bistellar flip.

Example 5.3.11. We provide examples of how one may use this criterion to

identify the mutable d-arcs of a triangulation. We represent maximal retrograde

paths using consecutive arrows of the same colour.

Considering the triangulation of C(8, 4) given in Figure 5.6, the mutable 2-arcs

are 136, 147, and 357. Compare Example 4.5.7.

Note that maximal retrograde paths are not always of length d. This is shown

by the triangulation of C(10, 6) given in Figure 5.7. (We use ‘A’ to denote 10.)

The mutable d-arcs of this triangulation are 357A, 1368, and 1479.

One can also illustrate Corollary 5.3.10. Consider the d-arc 1368 in Fig-

ure 5.7. This is mutable by Theorem 5.3.9, so we can compute what d-arc it

is exchanged for. Between 1 and 3 we must have 2 and between 6 and 8 we must
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Figure 5.6: Triangulation of C(8, 4)
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Figure 5.7: Triangulation of C(10, 6)
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Figure 5.8: Triangulation of C(10, 6)
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357A 2579 1479
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have 7. Then, between 3 and 6 we must have 5 since 1368 is adjacent to 1358.

Similarly, between 8 and 1 we must have 9, because 1368 is adjacent to 1369.

Hence performing a bistellar flip at 1368 exchanges this d-arc for 2579. Observe

that the retrograde-path analysis makes it easier to compute the bistellar flips of

the triangulation. In the resulting triangulation, shown in Figure 5.8, none of the

retrograde paths are of length d; they are all of length d− 1.

5.3.3 Mutating cut quivers

There is a rule for mutating cut quivers at sinks and sources [IO11], as described

in Section 5.2.1. In this section, we extend this rule to allow mutation at vertices

which are not in the middle of retrograde paths, but which are not necessarily

sinks or sources. The motivation here is to work towards a fully-fledged notion of

higher-dimensional quiver mutation. In the case where the cut quiver is Q(T ) for a

triangulation T , we also describe the effect of the mutation on the triangulation T .

For the following lemmas, we let C be a cut of Q
(d,n)

. The purpose of these

lemmas is to describe the local structure of a cut quiver around a vertex which is

not in the middle of a distinguished cut (d+1)-cycle. We then use our knowledge

of this local structure to describe the effect of mutation at that vertex.
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Convention 5.3.12. Given some fixed cyclically shifted ordering given by the con-

text, we refer to arrows {a0, a1, . . . , ai−1, ai, ai+1, . . . , ad} → {a0, a1, . . . , ai−1, ai +

1, ai+1, . . . , ad} of some quiver Q(T ) and arrows of Q
(d,n)

given by fi as arrows of

type i.

Lemma 5.3.13. If a vertex x of Q
(d,n)

C is the source of one distinguished cut (d+1)-

cycle and the sink of another distinguished cut (d + 1)-cycle, then the arrows cut

out of the two cycles are of the same type i.

Proof. If the arrows cut out are of different types, then they form two consecutive

arrows of a (d+1)-cycle, which therefore has two arrows cut out of it. But this is a

contradiction, since a cut removes precisely one arrow from each (d+1)-cycle.

Lemma 5.3.14. If a vertex x of Q
(d,n)

C is neither a source nor a sink, nor in the

middle of a distinguished cut (d + 1)-cycle, then it is the head of precisely one

arrow and the tail of precisely one arrow.

Proof. Suppose that x is neither a source nor a sink, nor in the middle of a dis-

tinguished cut (d + 1)-cycle. Then x is the head of at least one arrow α and the

tail of at least one arrow β. Since x is not in the middle of a distinguished cut

(d + 1)-cycle, the arrows α′ and β′ succeeding α and preceding β in their distin-

guished cut (d+1)-cycles must respectively be cut out. By Lemma 5.3.13, α′ and

β′ have the same type.

Suppose that we have another arrow γ such that x is the head of γ. Then

the arrow γ′ which succeeds it in the distinguished cut (d + 1)-cycle must be cut

out, since x is not in the middle of a distinguished cut (d+ 1)-cycle. But then by

Lemma 5.3.13, γ′, α′, and β′ all have the same type, so γ = α. A similar argument

can be made for an arrow δ with tail x.

Lemma 5.3.15. Let T be a triangulation of C(n + 2d + 1, 2d). If a vertex A of

Q(T ) is the head of precisely one arrow αd and the tail of precisely one arrow β1,
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and not in the middle of a distinguished cut (d+1)-cycle, then there is an ai such

that for j /∈ {i, i− 1}, aj + 2 = aj+1.

Proof. The arrow αd must be the final arrow in a distinguished cut (d + 1)-cycle

α1α2 . . . αd. The arrow β1 must the first arrow in a distinguished cut (d+1)-cycle

β1β2 . . . βd. Let α0 and β0 be the respective arrows cut out of these (d+ 1)-cycles.

We know from Lemma 5.3.13 that α0 and β0 are of the same type. We let this

type be i. Then β1 has type i − 1. The result then follows from Lemma 5.1.6,

which implies that there would be more arrows incident to A if we didn’t have

aj + 2 = aj+1 for j /∈ {i, i− 1}.

With these lemmas in place, we can now describe the effect of mutation on a

cut quiver at a vertex which is not in the middle of a distinguished cut (d + 1)-

cycle, but is not a sink or a source. Since the description of mutation at sinks

and sources is covered in [IO11], as described in Section 5.2.1, and we know that

mutation at vertices in the middle of distinguished cut (d+1)-cycles is not possible

by Theorem 5.3.9, this completes the description of mutation of cut quivers.

Proposition 5.3.16. Let T be a triangulation of C(n+2d+1, 2d) such that Q(T )

is isomorphic to Q
(d,n)

C for a cut C. Let A be a vertex of Q(T ) which is neither a

sink nor a source, but is still not in the middle of any retrograde paths. Let T ′ be

the result of performing a bistellar flip at A in T . Then we have the following.

(1) In the bistellar flip A is replaced by {a0+1, a1+1, . . . , ai−1+1, ai+1−1, ai+1+

1, . . . , ad + 1}, where i is the type of the arrow cut out of the distinguished

cut (d+ 1)-cycles at A.

(2) Q(T ′) is obtained from T by removing from C the arrows beginning or ending

at A and adding the arrows of Q1(T ) \ C which begin or end at A.
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Proof. By Lemma 5.3.14 we have that A is the source of precisely one arrow and

the sink of precisely one arrow. Moreover, by Lemma 5.3.15, the d-arc A is such

that there is an ai such that for j /∈ {i, i − 1}, we have aj + 2 = aj+1, where i

is the type of the arrows cut out of the distinguished cut (d + 1)-cycles incident

at A. We assume, by re-ordering, that i = 0. Furthermore, the distinguished cut

(d+ 1)-cycle beginning at A must look like

{a0, a1, . . . , ad} → {a0, a1, . . . , ad−1, ad+1} → · · · → {a0, a1+1, a2+1, . . . , ad+1}.

and the distinguished cut (d+ 1)-cycle ending at A must look like

{a0, a1−1, a2−1, . . . , ad−1} → · · · → {a0, a1−1, a2, a3, . . . , ad} → {a0, a1, . . . , ad}.

It follows from Corollary 5.3.10 that A mutates to

{a1 − 1, a2 − 1, . . . , ad − 1, ad + 1} = {a1 − 1, a1 + 1, . . . , ad−1 + 1, ad + 1},

settling (1).

Then we have arrows in Q(T ′) given by

{a1 − 1, a1 + 1, a2 + 1, . . . , ad + 1} ← {a0, a1 + 1, a2 + 1, . . . , ad + 1},

and

{a0, a1 − 1, a2 − 1, . . . , ad − 1} ← {ad + 1, a1 − 1, a2 − 1, . . . , ad − 1},

since, by assumption, there are no arrows of type 0 ending at {a0, a1 + 1, a2 +

1, . . . , ad + 1} or {ad + 1, a1 − 1, a2 − 1, . . . , ad − 1}. Indeed, these new arrows are

precisely the arrows of C which begin or end at A. On the other hand, the arrows

in Q1(T )\C beginning or ending at A are absent from Q1(T ′). Since aj+2 = aj+1

for j /∈ {i, i−1}, there can be no other new arrows in Q(T ′), thus settling (2).

Example 5.3.17. Proposition 5.3.16 can be verified by mutating the left-hand

triangulation in Figure 5.5 to obtain the triangulation in Figure 5.6.



Chapter 6

The higher Bruhat orders

In this chapter, we consider the relation between the higher Stasheff–Tamari orders

and the higher Bruhat orders of Manin and Schechtman [MS89]. Just as the higher

Stasheff–Tamari orders are higher-dimensional versions of the Tamari lattice, the

higher Bruhat orders are higher-dimensional versions of the weak Bruhat order

on the symmetric group. In the paper [DM12], a poset was constructed as a

quotient of the higher Bruhat orders, which the authors called the “higher Tamari

orders”. The authors conjectured that this poset coincided with the first higher

Stasheff–Tamari orders. In this chapter, we prove this conjecture, showing how

it can be understood in terms of a map g from the higher Bruhat orders to the

higher Stasheff–Tamari orders. We explain how the conjecture that the higher

Tamari orders are the same as the first higher Stasheff–Tamari orders is equivalent

to the statement that this map g is surjective and full. The surjectivity of the

map g is already known from [RS00, Theorem 3.5], but we give a new proof of this

fact. We furthermore show that g is full, which proves the conjecture. These two

facts about the map g mean that it is a quotient map of posets, as we explain in

Section 6.6.

214
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6.1 Another definition of the higher Stasheff–

Tamari orders

It is easiest to describe the results of this chapter if we give a different conception of

geometric triangulation to that of Section 2.1.3. As we discussed in Remark 2.1.2,

under the conception of geometric triangulation used there, two different combina-

torial triangulations may correspond to the same geometric triangulation. In this

chapter, we give a conception of geometric triangulation which is as fine-grained as

combinatorial triangulations. We need this since the relation between the higher

Stasheff–Tamari orders and higher Bruhat orders we are concerned with is best ex-

pressed geometrically. We do not introduce this notion of geometric triangulation

earlier since it is not the intuitive definition.

Recall that the cyclic polytope C(m, δ) is the convex hull of m points

p(t1), p(t2), . . . , p(tm) on the moment curve p(t) = (t, t2, . . . , tδ) in Rδ, where

{t1, t2, . . . , tm} ⊆ R. We fix the geometric realisation of the cyclic polytope

C(m, δ) on the moment curve given by ti = i. For k ⩾ l, we have a canonical

projection map

πk,l : Rk → Rl

(x1, x2, . . . , xk) 7→ (x1, x2, . . . , xl)

which maps C(m, k) to C(m, l). In this chapter, a (geometric) triangulation of the

cyclic polytope C(m, δ) is a union T of a set of faces of C(m,m − 1) such that

πm−1,δ : T→ C(m, δ) is a bijection.

These triangulations of C(m, δ) are in bijection with the combinatorial triangu-

lations of C(m, δ) from Chapter 2. Namely, if T is a combinatorial triangulation of

C(m, δ) with |T |m−1 the corresponding geometric simplicial complex in dimension
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m− 1, then ⋃
|T |m−1 =

⋃
|S|m−1∈|T |m−1

|S|m−1

is a geometric triangulation in the sense of this chapter. Conversely, given a

triangulation T of C(m, δ) in the sense of this chapter, we can let T be the set of

combinatorial δ-faces F of C(m,m−1) such that |F |m−1 ⊆ T. We extend notation

and terminology to our new conception of triangulation in an intuitive way. For

instance, if T =
⋃
|T |m−1 is a triangulation of C(m, δ), then

e̊(T) = {A ∈ ( [m]
⌊δ/2⌋) : A is an internal ⌊δ/2⌋-simplex of T }

and

T̂ =
⋃
|T̂ |m.

When we refer to simplices of T, we mean faces of C(m,m− 1) contained in T.

Given two triangulations T and T′ of C(m, δ), we say that T′ is an increasing

bistellar flip of T if there is a (δ + 1)-face |S| of C(m,m − 1) such that T \ |S| =

T′ \ |S| and πm−1,δ+1(T) contains the lower facets of |S|δ+1, whereas πm−1,δ+1(T
′)

contains the upper facets of |S|δ+1. One can then, similar to before, define the

higher Stasheff–Tamari poset S(m, δ) as having elements geometric triangulations

of C(m, δ) with covering relations T⋖T′ whenever T′ is an increasing bistellar flip

of T. This is how the higher Stasheff–Tamari orders are treated in [KV91; Tho03].

6.2 Three definitions of the higher Bruhat orders

We now give the definition of the higher Bruhat orders. The fundamental definition

of the higher Bruhat orders for our purposes is the description in terms of cubillages

of cyclic zonotopes given in [KV91] and formalised in [Tho03]. After giving this

definition, we give the characterisation of cubillages of cyclic zonotopes established

in [GP21] and studied in [DKK18a], and show how the higher Bruhat orders may
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be defined in these terms. Finally, we explain the original definition of the higher

Bruhat orders from [MS89], which we will also need.

6.2.1 Cubillages

We first give the geometric description of the higher Bruhat orders due to [KV91;

Tho03]. Consider the Veronese curve ξδ : R → Rδ+1, given by ξδt = (1, t, . . . , tδ).

When δ is given by the context, we will write ξ instead of ξδ. Let {t1, t2, . . . , tm} ⊂

R with t1 < t2 < · · · < tm and m ⩾ δ + 1. The cyclic zonotope Z(m, δ + 1) is

defined to be the Minkowski sum of the line segments

0ξt1 + 0ξt2 + · · ·+ 0ξtm ,

where 0 is the origin. Recall that for X,Y ⊆ Rδ, the Minkowski sum of X and Y

is defined to be

X+Y = {x+ y : x ∈ X, y ∈ Y }.

The properties of the zonotope do not depend on the exact choice of the points

{t1, t2, . . . , tm} ⊂ R. Hence, for ease we set ti = i, just as with our geometric

realisation of the cyclic polytope in this chapter. As also with cyclic polytopes, we

have that πk,l maps Z(m, k) to Z(m, l).

A cubillage Q of Z(m, δ+1) is a union of faces of Z(m,m) such that πm,δ+1 : Q→

Z(m, δ + 1) is a bijection. Note that Q therefore contains faces of Z(m,m) of

dimension at most δ+1. We call these (δ+1)-dimensional faces of Q the cubes of

the cubillage. In the literature, cubillages are often called fine zonotopal tilings—

for example, in [GP21].

After [KV91, Theorem 4.4] and [Tho03, Theorem 2.1, Proposition 2.1] one may

define the higher Bruhat poset B(m, δ+1) as follows. The elements of B(m, δ+1)

consist of cubillages of Z(m, δ + 1). The covering relations of B(m, δ + 1) are

given by pairs of cubillages Q ⋖ Q′ where there is a (δ + 2)-face F of Z(m,m)
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such that Q \ F = Q′ \ F and πm,δ+2(Q) contains the lower facets of πm,δ+2(F),

whereas πm,δ+2(Q
′) contains the upper facets of πm,δ+2(F). Here we say that Q′ is

an increasing flip of Q.

The cyclic zonotope Z(m, δ + 1) possesses two canonical cubillages, one given

by the union of faces Ql of Z(m,m) such that πm,δ+2(Ql) consists of the lower

facets of Z(m, δ+2), which we call the lower cubillage, and the other given by the

union of faces Qu of Z(m,m) such that πm,δ+2(Qu) consists of the upper facets of

Z(m, δ + 2), which we call the upper cubillage. The lower cubillage of Z(m, δ + 1)

gives the unique minimum of the poset B(m, δ + 1), and the upper cubillage gives

the unique maximum. Upper and lower facets here are, of course, determined by

the (δ + 2)-th coordinate, in an analogous way to Section 2.1.2.

6.2.2 Separated collections

We now explain how one may characterise cubillages as separated collections of

subsets, as shown in [GP21].

The subsets E ⊆ [m] are naturally identified with the corresponding points

ξE :=
∑

e∈E ξe in Z(m,m), where ξ∅ := 0. This represents each vertex of a

cubillage Q as a subset of [m]. For a cubillage Q of Z(m, δ + 1), the collection of

subsets corresponding to its vertices is called the spectrum of Q and is denoted by

Sp(Q). Each cube in Q is viewed as the Minkowski sum of line segments

ξE +
δ∑

i=0

ξ∅ξai

for some set A with #A = δ + 1 and E ⊆ [m] \ A. Here we call ξE the initial

vertex of the cube, ξE∪A the final vertex, and A the set of generating vectors.

We say that, given two sets A,B ⊆ [m], A δ-interweaves B if there exist

J ⊆ A\B and K ⊆ B \A such that J ≀K. Here we say that J and K witness that

A δ-interweaves B. If either A δ-interweaves B or B δ-interweaves A, then we say
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that A and B are δ-interweaving. If A δ-interweaves B as above and A \ B = J

and B \ A = K, then we say that A tightly δ-interweaves B, in the manner of

[BBG20]. If A and B are not δ-interweaving then we say that A and B are δ-

separated, following [GP21; DKK18a]. We call a collection C ⊆ 2[m] δ-separated

if it is pairwise δ-separated. If δ = 2d, then being δ-interweaving is the same as

being (d + 1)-interlacing in the terminology of [BBG20] and (d + 1)-intertwining

in the terminology of [MW21].

It follows from [GP21, Theorem 2.7] that the correspondence Q 7→ Sp(Q)

gives a bijection between the set of cubillages on Z(m, δ + 1) and the set of δ-

separated collections of maximal size in 2[m]. In particular, for any cubillage Q

of Z(m, δ + 1), we have that #Sp(Q) = Σδ+1
i=0

(
m
i

)
, which is the maximal size of a

δ-separated collection in 2[m].

Boundary vertices and internal vertices

For A ⊆ [m], if ξδ+1
A is a boundary vertex of the zonotope Z(m, δ + 1), then ξmA

is a vertex of every cubillage of Z(m, δ + 1), and hence A is in every δ-separated

collection in 2[m] of maximal size. Moreover, the subsets A ⊆ [m] such that ξδ+1
A is

a boundary vertex of the zonotope Z(m, δ + 1) are precisely those subsets which

are δ-separated from every other subset of [m]. Hence the subsets of interest are

those which project to the interior of the zonotope Z(m, δ+1), since these are the

subsets that may be present in some cubillages but not others.

Lemma 6.2.1. The number internal vertices in a cubillage of Z(m, δ+1) is
(
m−1
δ+1

)
if m > δ + 1, and 0 otherwise.

Proof. The vertices of the zonotope Z(m, δ + 1) are known to be in bijection with

the number of regions of the arrangement of (δ − 1)-spheres associated with the

set of points X = {ξ1, ξ2, . . . , ξm} on the Veronese curve—see [Bjö+99, Proposi-

tion 2.2.2]. Since no set of δ points of X lie in a linear hyperplane, the number of
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regions of this arrangement of (δ − 1)-spheres is the maximal number of(
m− 1

δ

)
+

δ∑
i=0

(
m

i

)
.

(For instance, see [Com74, Problem 4, p.73].) Hence a cubillage Q of Z(m, δ + 1)

has
δ+1∑
i=0

(
m

i

)
−

((
m− 1

δ

)
+

δ∑
i=0

(
m

i

))
=

(
m− 1

δ + 1

)
vertices which project to the interior of Z(m, δ+1) ifm > δ+1, and 0 otherwise.

We call a point ξδ+1
A ∈ Rδ+1 an internal point in Z(m, δ + 1) if ξδ+1

A lies in the

interior of Z(m, δ+1). We call a vertex ξmA of a cubillage Q of Z(m, δ+1) internal

if ξδ+1
A is an internal point in Z(m, δ + 1). Given a cubillage Q of Z(m, δ + 1),

we define its internal spectrum ISp(Q) to consist of the elements of Sp(Q) which

correspond to internal vertices of Q.

By [DKK18a, (2.7)], ξδ+1
A is an internal point in Z(m, δ + 1) if and only if

� δ = 2d and A is a cyclic l-ple interval for l ⩾ d+ 1, or

� δ = 2d + 1 and A is an l-ple interval for l ⩾ d + 2, or a (d + 1)-ple interval

containing neither 1 nor m.

Lemma 6.2.2. Given A ∈
(

[m]
⌊δ/2⌋+1

)
, we have that |A| is an internal ⌊δ/2⌋-simplex

in C(m, δ) if and only if ξA is an internal point in Z(m, δ + 1).

Proof. By Section 2.2.1 and Lemma 2.2.4, given A ∈
(

[m]
⌊δ/2⌋+1

)
, we have that A is

an internal ⌊δ/2⌋-simplex in C(m, δ) if

� δ = 2d and A is a cyclic (d+ 1)-ple interval, or

� δ = 2d+ 1 and A is a (d+ 1)-ple interval containing neither 1 nor m.

Recall that (d + 1)-ple intervals and cyclic (d + 1)-ple intervals were defined in

Section 1.6. The result then follows from comparing this with the criterion for ξA

being an internal point.
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The higher Bruhat orders in terms of separated collections

We now show how to interpret the covering relations of the higher Bruhat orders

in this framework of separated collections.

Theorem 6.2.3. Given cubillages Q,Q′ of Z(m, δ + 1) we have that Q ⋖ Q′ if

and only if Sp(Q′) = (Sp(Q) \ {A}) ∪ {B}, where A δ-interweaves B. Moreover,

in this case A tightly δ-interweaves B.

Proof. The forwards direction follows from [DKK19a, Proposition 8.1]. Namely,

if the increasing flip from Q to Q′ is induced by the face F of Z(m,m), then F

has a vertex ξA and a vertex ξB such that A tightly δ-interweaves B, the vertex

ξδ+2
A is only contained in the lower facets of πm,δ+2(F), the vertex ξδ+2

B is only

contained in the upper facets of πm,δ+2(F), and every other vertex of πm,δ+2(F)

is contained in at least one lower facet and at least one upper facet. Hence,

Sp(Q′) = (Sp(Q) \ {A}) ∪ {B}, where A tightly δ-interweaves B.

We now prove the backwards direction, supposing that Sp(Q′) = (Sp(Q) \

{A}) ∪ {B}, where A δ-interweaves B. Let A′ ⊆ A \ B and B′ ⊆ B \ A witness

the fact that A δ-interweaves B.

We consider first the case where δ = 2d. We begin by proving that A′ = A \B

and B′ = B \ A, so that A tightly 2d-interweaves B. The vertex ξA must be an

internal vertex in the cubillageQ, since subsets corresponding to boundary vertices

are contained in every 2d-separated collection. Therefore, ξA must be a vertex of

at least two cubes in Q, and so must have at least 2d + 2 edges emanating from

it. The subsets at the other end of each of these edges must be 2d-separated from

B, so the edges must either add elements of B′ or remove elements of A′. Since

#A′ ∪B′ = 2d+2, the edges emanating from ξA in Q must be precisely the edges

which remove elements of A′ and add elements of B′. Now suppose that there

exists a ∈ A \ (A′ ∪ B). Then b′i−1 < a < b′i for some i ∈ Z/(d + 1)Z. But this
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implies that A \ {a′i} δ-interweaves B, which contradicts the fact that the edge

from ξA to ξA\{a′i} is in the cubillage Q. Hence A′ = A \ B. The argument that

B′ = B \ A is similar.

Therefore ξA is incident to 2d + 2 edges in the cubillage, where d + 1 of the

edges add elements of B′ and d+1 of the edges remove elements of A′. The cubes

with ξA as a vertex are generated by a choice of 2d + 1 of these edges. Hence,

if P is the set of cubes in Q with ξA as a vertex, then P is a set consisting of

facets of a (2d + 2)-face F of Z(m,m) which has initial vertex ξA∩B and which is

generated by A′ ∪ B′. By [DKK19a, Proposition 8.1], πm,δ+2(P) gives the lower

facets of πm,δ+2(F), since πm,δ+2(P) consists of all the facets of πm,δ+2(F) which

contain ξδ+2
A . If we let Q′′ be the cubillage obtained by taking the increasing flip of

Q across F, then we obtain that Sp(Q′′) = (Sp(Q)\{A})∪{B}, since, likewise, the

upper facets of πm,δ+2(F) are precisely those containing ξδ+2
B . Since a cubillage is

uniquely determined by its spectrum, we obtain that Q′′ = Q′, and so we conclude

that Q′ is an increasing flip of Q.

For δ = 2d + 1, the argument is similar. We deduce that ξA has 2d + 3 edges

emanating from it in Q, d+ 1 of which remove elements of A′ and d+ 2 of which

add elements of B′. To show that A′ = A\B and B′ = B \A, the only extra thing

to consider is the possibility that we have a ∈ A \ (A′ ∪ B) such that a < b′0 or

a > b′d+1. But in the first instance here, we have that B δ-interweaves A∪ {b′d+1},

since

a < b′0 < a′0 < b′1 < · · · < b′d < a′d.

But this is a contradiction, since we know that the edge from ξA to ξA∪{b′d+1} is

in Q. In the second instance, we have that B δ-interweaves A ∪ {b′0}, when we

know that the edge from ξA to ξA∪{b′0} is in Q. The remainder of the case where

δ = 2d− 1 is similar.

In the setting of the above theorem, we say that (A,B) is the exchange pair of
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the flip and that we exchange A for B.

Operations on cubillages

We will also need the following concepts from [DKK18b]. Given a cubillage Q

of Z(m, δ + 1) and a subset M of Q, we say that M is a section of Q if M is a

cubillage of Z(m, δ). We say that an edge in a cubillage Q from ξE to ξE∪{i} is an

edge of colour i, where E ⊆ [m] is any subset. For a cubillage Q of Z(m, δ + 1)

and i ∈ [m], we define the i-pie Πi(Q) to be the subset of Q given by all the cubes

which have an edge of colour i.

By [DKK18a; GP21], we can obtain a cubillage Q/i from Q by contracting

the edges of colour i until they have length zero. The cubillage Q/i is known as

the i-contraction of Q. The image of the m-pie Πm(Q) is a section of Q/m, but

this is not in general true for 1 < i < m, by [DKK18a, (4.4)]. An example of

4-contraction is shown in Figure 6.1. Here the 4-pie is shown in red on the left-

hand cubillage, and this is contracted to zero in the right-hand cubillage, where

its image is a section. Note that here we are illustrating cubillages of Z(4, 2) and

Z(3, 2) by their images under the projection maps π4,2 and π3,2 respectively. We

will always illustrate cubillages in this way.

6.2.3 Admissible orders

The original definition of the higher Bruhat orders from [MS89] is as follows. Given

A ∈
(
[m]
δ+2

)
, the set

P (A) =

{
B : B ∈

(
[m]

δ + 1

)
, B ⊂ A

}
is called the packet of A. The set P (A) is naturally ordered by the lexicographic

order, where A \ ai < A \ aj if and only if j < i.
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Figure 6.1: 4-contraction
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An ordering α of
(
[m]
δ+1

)
is admissible if the elements of any packet appear in

either lexicographic or reverse-lexicographic order under α. Two orderings α and

α′ of
(
[m]
δ+1

)
are equivalent if they differ by a sequence of interchanges of pairs of

adjacent elements that do not lie in a common packet. Note that these interchanges

preserve admissibility. We use [α] to denote the equivalence class of α.

The inversion set inv(α) of an admissible order α is the set of all elements of(
[m]
δ+2

)
whose packets appear in reverse-lexicographic order in α. Note that inversion

sets are well-defined on equivalence classes of admissible orders.

The higher Bruhat poset B(m, δ+1) is the partial order on equivalence classes

of admissible orders of
(
[m]
δ+1

)
with covering relations given by [α]⋖[α′] for inv(α′) =

inv(α) ∪ {A}, where A ∈
(
[m]
δ+2

)
\ inv(α).

Relation between admissible orders and cubillages

One can explain the bijection between cubillages of Z(m, δ + 1) and admissible

orders on
(
[m]
δ+1

)
as follows. Let Q be a cubillage of Z(m, δ + 1) corresponding to
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an equivalence class [α] of admissible orders on
(
[m]
δ+1

)
. It follows from [Tho03] that

the cubes of Q are in bijection with the elements of
(
[m]
δ+1

)
via sending a cube to

its set of generating vectors. A packet which can be inverted corresponds to a set

of lower facets of πm,δ+2(F), where F is a (δ + 2)-face F of Z(m,m). Inverting the

packet corresponds to an increasing flip: exchanging the lower facets of πm,δ+2(F)

for its upper facets.

Hence, a cubillage Q of Z(m, δ + 1) is determined once, for every element of(
[m]
δ+1

)
, one knows the initial vertex of the cube with that set of generating vectors.

Let α be an admissible order of
(
[m]
δ+1

)
corresponding to a cubillage Q of Z(m, δ+1)

and let U be the cube of Q with set of generating vectors I and initial vertex ξE.

Then, given e ∈ [m] \ I, we have that e ∈ E if and only if either

� I ∪ {e} /∈ inv(α) and e is an odd gap in I, or

� I ∪ {e} ∈ inv(α) and e is an even gap in I.

This follows from [Tho03, Theorem 2.1]. However, for δ + 1 odd, we use the

opposite sign convention to the one used there. This makes the statement simpler

and reveals connections with the paper [DM12], as we explain in Section 6.3.3.

Conversely, given a cubillageQ of Z(m, δ+1), one can determine an equivalence

class of admissible orders of
(
[m]
δ+1

)
. Define a partial order on the cubes of the

cubillage Q by U⋖U′ if πm,δ+1(U)∩πm,δ+1(U
′) is an upper facet of πm,δ+1(U) and a

lower facet of πm,δ+1(U
′). The linear extensions of this partial order then comprise

the admissible orders in the equivalence class [α] corresponding to Q, by [Tho03;

MS89]. Compare this with the partial order on the simplices of a triangulation

from Remark 2.1.3.
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6.3 Interpretations of the map

In this section we define the map

g : B(m, δ + 1)→ S(m, δ)

and study it. We give three different definitions of this map, corresponding to the

three different ways of defining the higher Bruhat orders.

6.3.1 Cubillages

Here we give our principal definition of the map g. This definition is geomet-

ric and uses the interpretation of B(m, δ + 1) in terms of cubillages. This was

how the map was considered in [DKK19a, Appendix B], where Lemma 6.3.1 and

Proposition 6.3.3 were both noted.

Lemma 6.3.1. If Q is a cubillage of Z(m, δ + 1), then the vertex figure of Q at

ξ∅ gives a triangulation of C(m, δ).

Proof. Let Hk denote the affine hyperplane

Hk := { (x1, x2, . . . , xk) ∈ Rk : x1 = 1 }.

The vertex figure of the zonotope Z(m, δ+1) at the vertex ξ∅ can be given by the

intersection Z(m, δ + 1) ∩ Hδ+1. It is clear from the definitions of Z(m, δ + 1) and

C(m, δ) that this intersection is the cyclic polytope C(m, δ). The vertex figure of

the cubillage Q of Z(m, δ + 1) at ξ∅ then induces a union of faces T = Q ∩ Hm

of C(m,m− 1). This subset T is a triangulation of C(m, δ) because we have that

πm,δ+1 : Q → Z(m, δ + 1) is a bijection, which then restricts to a bijection from

Q ∩ Hm = T to Z(m, δ + 1) ∩ Hδ+1 = C(m, δ).
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Hence we define the map

g : B(m, δ + 1)→ S(m, δ)

Q 7→ Q ∩ Hm.

For the purposes of this chapter, this is the definition of the map g, and the char-

acterisations in Section 6.3.2 and Section 6.3.3 are simply other interpretations.

Remark 6.3.2. The intersections of cubillages with the hyperplanes given by x1 = l

for l ∈ [m−1] have been the objects of significant study in the literature. For three-

dimensional zonotopes, such cross-sections are dual to plabic graphs [Gal18], which

arise in the combinatorics associated to Grassmannians [Pos06; Pos18]. When the

cubillage is regular, such graphs arise in the study of KP solitons [Hua15; KK21;

GPW19], and it is this connection that lies behind the definition of the higher

Tamari orders in [DM12]. The paper [OS19] studies hypersimplicial subdivisions

and shows that, in general, only a subset of these come from cross-sections of

subdivisions of zonotopes. This means that the analogues of the map g for cross-

sections of cubillages given by x1 = l for l ∈ {2, 3, . . . ,m − 2} are not generally

surjective. In [DKK18b; DKK19b; DKK20], rather than studying the intersection

of a cubillage with these hyperplanes, the fragmentation of a cubillage into different

pieces cut by these hyperplanes is studied.

We identify the hyperplane Hm with the space Rm−1, so that we can consider

C(m,m− 1) sitting inside it as usual.

Proposition 6.3.3. If Q,Q′ are cubillages of Z(m, δ + 1) such that Q⋖Q′, then

either g(Q) = g(Q′) or g(Q)⋖ g(Q′).

Proof. Let Q and Q′ be two cubillages such that Q⋖Q′. Let F be the (δ+2)-face

of Z(m,m) which induces the increasing flip, and let the initial vertex of F be

ξE = (y1, y2, . . . , ym). Then Q and Q′ differ only in that πm,δ+2(Q) contains the

lower facets of πm,δ+2(F) and πm,δ+2(Q
′) contains the upper facets of πm,δ+2(F).
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The intersection F ∩ Hm consists of more than a single point if and only if

E = ∅. This is because, given (x1, x2, . . . , xm) ∈ F, we have x1 ⩾ y1 = #E.

Hence if #E > 1, then F ∩ Hm = ∅; and if #E = 1, then F ∩ Hm = ξE. Thus if

E ̸= ∅, then Q and Q′ both have the same intersection with the hyperplane Hm,

so that g(Q) = g(Q′).

If E = ∅, then πm,δ+2(F) ∩ Hδ+2 is the (δ + 1)-simplex |A|δ+1, where A is the

generating set of F. We then have that g(Q) = T and g(Q′) = T′ differ only in

that πm−1,δ+1(T) contains the lower facets of |A|δ+1, whereas πm−1,δ+1(T
′) contains

the upper facets of |A|δ+1. Hence g(Q)⋖ g(Q′).

Corollary 6.3.4. The map g : B(m, δ + 1)→ S(m, δ) is order-preserving.

Example 6.3.5. We now give two examples of taking the vertex figure of a cu-

billage of Z(m, δ + 1) at ξ∅.

(1) First, consider the cubillage Q1 of Z(4, 2) shown in Figure 6.2. As we did

above, we can find the vertex figure ofQ1 at ξ∅ by intersecting with the hyperplane

H4, as shown. We thus obtain the triangulation g(Q1) = T1 of C(4, 1) shown in

Figure 6.3.

(2) Secondly, consider the cubillage Q2 of Z(4, 3) illustrated in Figure 6.4. This

cubillage possesses four cubes, two of which share the face highlighted in blue.

The hyperplane H4 is shown here in red. The intersection gives the triangulation

g(Q2) = T2 of C(4, 2) shown in Figure 6.5.

Remark 6.3.6. There is a dual version of the map g, given by

g : B(m, δ + 1)→ S(m, δ)

Q 7→ Q ∩ Hm,
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Figure 6.2: The cubillage Q1 of Z(4, 2) intersected with H4

∅
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1234

234

34

4

3

13
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Figure 6.3: The triangulation g(Q1) = T1 of C(4, 1)
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Figure 6.4: The cubillage Q2 of Z(4, 3)
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Figure 6.5: The triangulation g(Q2) = T2 of C(4, 2)
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where Hm = { (x1, x2, . . . , xm) ∈ Rm : x1 = m − 1 }. Given a cubillage Q of

Z(m, δ+1), the triangulation g(Q) is induced by taking the vertex figure of Z(m,m)

at the vertex ξ[m]. This map was considered in [Tho03, Proposition 7.1]. The dual

of Proposition 6.3.8 gives that if Q⋖Q′, then either g(Q) = g(Q′) or g(Q)⋗g(Q′).

Hence g is order-reversing. That is, if Q ⩽ Q′, then g(Q) ⩾ g(Q′).

6.3.2 Separated collections

Our second definition of the map uses the characterisation of cubillages in terms of

separated collections and the combinatorial framework for triangulations of cyclic

polytopes from Section 2.2. This is the framework we use to prove that g is a

quotient map of posets in Section 6.5 and Section 6.6.

Given a triangulation T of C(m, δ), let

Simp(T) := {A ⊆ [m] : |A| is a simplex of T }.

The following lemma tells us how the value of g(Q) is determined by Sp(Q).

Lemma 6.3.7. Let Q be a cubillage of Z(m, δ + 1) and T be a triangulation of

C(m, δ). Then g(Q) = T if and only if Sp(Q) ⊇ Simp(T).

Proof. Suppose that g(Q) = T. Let |A| be a δ-simplex of T. Then there is a cube

U of Q such that |A| = U ∩ Hm. We must have that the initial vertex of U is ξ∅

and that the set of generating vectors is A. Thus if |B| is a face of |A|, then ξB is

a vertex of U, and hence B ∈ Sp(Q). Since every simplex of the triangulation T is

a face of a δ-simplex, we have that Sp(Q) ⊇ Simp(T).

Conversely, suppose that Sp(Q) ⊇ Simp(T). Let |A| be a δ-simplex of T. Then

2A ⊆ Simp(T) ⊆ Sp(Q). By [DKK18a, (2.5)], the cube U with initial vertex ∅ and

generating vectors A is therefore a cube of Q. This means that |A| is a δ-simplex

of g(Q), since |A| = U ∩ Hm. Since this is true for any δ-simplex of T, we must

have g(Q) = T.
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In fact, as the following proposition shows, we need only consider ISp(Q) ∩(
[m]

⌊δ/2⌋+1

)
to know the value of g(Q).

Proposition 6.3.8. Given a cubillage Q ∈ B(m, δ + 1), we have that e̊(g(Q)) =

ISp(Q) ∩
(

[m]
⌊δ/2⌋+1

)
.

Proof. It follows immediately from Lemma 6.3.7 that e̊(g(Q)) ⊆ ISp(Q)∩
(

[m]
⌊δ/2⌋+1

)
,

since if #A = ⌊δ/2⌋ + 1, then |A| is an internal ⌊δ/2⌋-simplex in C(m, δ) if and

only if ξA is an internal point in Z(m, δ + 1), by Lemma 6.2.2.

To show that e̊(g(Q)) ⊇ ISp(Q) ∩
(

[m]
⌊δ/2⌋+1

)
, suppose that we have A ∈(

ISp(Q) ∩
(

[m]
⌊δ/2⌋+1

))
\ e̊(g(Q)). Then note that |A| must be an internal ⌊δ/2⌋-

simplex in C(m, δ), since ξA is an internal point in Z(m, δ + 1). However, |A| is

not a ⌊δ/2⌋-simplex of T = g(Q), so there must be a simplex |B| of T such that

(A,B) forms a circuit. This gives that A and B are δ-interweaving, which is a

contradiction, since B ∈ Sp(Q) by Lemma 6.3.7.

Proposition 6.3.8 gives an interpretation of the map g in terms of separated

collections. We know that a cubillage Q of Z(m, δ + 1) is determined by ISp(Q),

and likewise a triangulation T of C(m, δ) is determined by e̊(T). Hence one could

also define g(Q) to be the triangulation T such that e̊(T) = ISp(Q) ∩
(

[m]
⌊δ/2⌋+1

)
.

Example 6.3.9. We illustrate how to apply the interpretation of g from Propo-

sition 6.3.8 to the cubillages from Example 6.3.5.

(1) Consider the internal spectrum of Q1, as shown in Figure 6.2. We have

ISp(Q1) = {3, 13, 23}, so ISp(Q1)∩
(
[4]
1

)
= {3}. This implies that {3} = e̊(g(Q1)) =

e̊(T1), which is indeed the case. Note that having e̊(T1) = {3} defines T1.

(2) Next, consider the internal spectrum of Q2, as shown in Figure 6.4. We

have ISp(Q2) = {13}, so ISp(Q2) ∩
(
[4]
2

)
= {13}. This implies that {13} =
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e̊(g(Q2)) = e̊(T2), which is indeed the case. Note that having e̊(T2) = {13}

defines T2.

Remark 6.3.10. The interpretation of g for separated collections is as follows. We

have that g(Q) is the triangulation T such that

e̊(T) =
{
[m] \ A : A ∈ ISp(Q) ∩

(
[m]

m−⌊δ/2⌋−1

) }
.

6.3.3 Admissible orders

In this section we give a way of defining the map g while interpreting the elements

of the higher Bruhat orders as equivalence classes of admissible orders. We use the

following notions, which were used in [DM12] to define the higher Tamari orders.

Let α be an admissible order of
(
[m]
δ+1

)
and I ∈

(
[m]
δ+1

)
. Given e ∈ [m] \ I, we say

that I is invisible in P (I ∪ {e}) if either

� I ∪ {e} /∈ inv(α) and e is an odd gap in I, or

� I ∪ {e} ∈ inv(α) and e is an even gap in I.

Otherwise, we say that I is coinvisible in P (I ∪ {e}). (We note that I being

invisible in P (I ∪ {e}) is equivalent to e being externally semi-active with respect

to I, in the terminology of [GPW19], which applies to more general matroids.)

Then:

� We say that I is invisible in α if there is a e ∈ [m] \ I such that I is invisible

in P (I ∪ {e}).

� We say that I is coinvisible in α if there is a e ∈ [m] \ I such that I is

coinvisible in P (I ∪ {e}).
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� We say that I is visible in α if there is no e ∈ [m]\I such that I is invisible in

P (I∪{e}). (Note that this is not the same notion of visibility as in [DKK19a,

Section 9].)

� We say that I is covisible in α if there is no e ∈ [m] \ I such that I is

coinvisible in P (I ∪ {e}).

Given an admissible order α of
(
[m]
δ+1

)
, we use V(α) to denote the elements of(

[m]
δ+1

)
which are visible in α and V(α) to denote the elements of

(
[m]
δ+1

)
which are

covisible in α. (In [DM15], visible elements are labelled in blue; covisible elements

are labelled in red; and elements which are neither visible nor covisible are labelled

in green.)

Given an admissible order α of
(
[m]
δ+1

)
, we write Qα for the corresponding cubil-

lage of Z(m, δ + 1).

Proposition 6.3.11. Let α be an admissible order of
(
[m]
δ+1

)
and I ∈

(
[m]
δ+1

)
. Then

the cube in Qα with generating set I has initial vertex ξE, where

E = { e ∈ [m] \ I : I is invisible in P (I ∪ {e}) }.

Proof. This follows immediately from the correspondence between admissible or-

ders and cubillages in [Tho03], as described in Section 6.2.3.

The following result was noted in [DKK19a, Appendix B].

Corollary 6.3.12. Let α be an admissible order of
(
[m]
δ+1

)
and I ∈

(
[m]
δ+1

)
. Then

I ∈ V(α) if and only if the cube in Qα with generating set I has initial vertex ξ∅.

This gives us yet another interpretation of the map g.

Corollary 6.3.13. Given [α] ∈ B(m, δ+1), we have that g(Qα) is the triangulation

with

{ |A| : A ∈ V(α) }
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Figure 6.6: Q1 with its cubes labelled

∅
13

34

23

12

24

14

as its set of δ-simplices.

Example 6.3.14. We continue from Example 6.3.5 and Example 6.3.9 and illus-

trate how the map g can also be characterised using visibility.

(1) We consider Q1 first. By labelling the cubes of Q1 with the elements of(
[4]
2

)
, as shown in Figure 6.6, it can be seen that the admissible order corresponding

to Q1 is

α1 = {23 < 13 < 12 < 14 < 24 < 34}.

We compute that inv(α1) = {123}.

We can then analyse which elements of
(
[4]
2

)
are visible in α1:

� 23: invisible because 123 ∈ inv(α1) and 1 is an even gap in 23;

� 13: visible;

� 12: invisible because 123 ∈ inv(α1) and 3 is an even gap in 12;
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� 14: invisible because 124 /∈ inv(α1) and 2 is an odd gap in 14;

� 24: invisible because 234 /∈ inv(α1) and 3 is an odd gap in 24;

� 34: visible.

Note that, as Corollary 6.3.12 shows, 13 and 34 are precisely the cubes with ξ∅

as their initial vertex. Furthermore, as Corollary 6.3.13 shows, g(Q1) = T1 is the

triangulation with 1-simplices |13| and |34|.

(2) We now conduct the same analysis of Q2. The admissible order corre-

sponding to Q2 is

α2 = {123 < 124 < 134 < 234}.

It is easy to see that inv(α2) = ∅. Hence the visible elements of
(
[4]
3

)
in α2 are as

follows:

� 123: visible;

� 124: invisible because 1234 /∈ inv(α2) and 3 is an odd gap in 124;

� 134: visible;

� 234: invisible because 1234 /∈ inv(α2) and 1 is an odd gap in 234.

Again, it can be seen in Figure 6.4 that 123 and 134 are precisely the cubes with ξ∅

as their initial vertex, as shown by Corollary 6.3.12. Moreover, as Corollary 6.3.13

shows, g(Q2) = T2 is the triangulation with 2-simplices |123| and |134|.

The dual statements to Proposition 6.3.11, Corollary 6.3.12, and Corol-

lay 6.3.13 are as follows.

Proposition 6.3.15. Let α be an admissible order of
(
[m]
δ+1

)
and I ∈

(
[m]
δ+1

)
. Then

the cube in Qα with generating set I has final vertex ξF where

F = [m] \ { e ∈ [m] \ I : I is coinvisible in P (I ∪ {e}) }.
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Corollary 6.3.16. Let α be an admissible order of
(
[m]
δ+1

)
and I ∈

(
[m]
δ+1

)
. Then

I ∈ V(α) if and only if the cube in Qα with generating set I has final vertex ξ[m].

Corollary 6.3.17. Given [α] ∈ B(m, δ+1), we have that g(Qα) is the triangulation

with

{ |A| : A ∈ V(α) }

as its set of δ-simplices.

6.4 Quotient maps of posets

Dimakis and Müller-Hoissen use the definition of the map g from Section 6.3.3 to

define the higher Tamari orders. We restate their definition in the framework of

quotient posets. In this section, we explain our approach to this notion.

Given a poset (X,⩽) subject to an equivalence relation ∼, the quotient

(X/∼, R) is defined to be the set of ∼-equivalence classes [x] of X, with the

binary relation R defined by [x]R[y] if and only if there exist x′ ∈ [x] and y′ ∈ [y]

such that x′ ⩽ y′. The quotient of a poset is in general only a reflexive binary

relation, not necessarily a partial order, since the relation R may not be transitive

or anti-symmetric.

Previous authors have considered various different conditions on the equiva-

lence relation ∼ which are sufficient to guarantee that the quotient X/∼ is a poset.

Stanley considers the case where ∼ is given by the orbits of a group of automor-

phisms [Sta84; Sta91]. Two similar notions of congruence which also preserve

lattice-theoretic properties are considered by Chajda and Snášel, and Reading

[CS98; Rea02]. Most recently, Hallam and Sagan [HS15; Hal17] consider another

notion of quotient in order to study the characteristic polynomials of lattices.

Whilst these conditions are sufficient to guarantee that the quotient poset is

well-defined, none of them are necessary. In this chapter we are interested only in
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the minimal conditions which provide that the quotient poset is well-defined, and

not in whether the quotient also preserves other properties. These necessary and

sufficient conditions are as follows.

Proposition 6.4.1. The quotient X/∼ is a poset if and only if

(1) if there exist x1 ∼ x and y1 ∼ y such that x1 ⩽ y1, and x2 ∼ x and y2 ∼ y

such that x2 ⩾ y2, then x ∼ y, and

(2) given x, y, z ∈ X such that there exist x1 ∼ x and y1 ∼ y such that x1 ⩽ y1,

and y2 ∼ y and z2 ∼ z such that y2 ⩽ z2, then there exist x3 ∼ x and z3 ∼ z

such that x3 ⩽ z3.

Proof. Condition (1) is equivalent to the relation R being anti-symmetric. Condi-

tion (2) is equivalent to the relation R being transitive.

If both condition (1) and condition (2) hold, then we write ⩽ instead of R, to

acknowledge that the relation gives us a partial order. In this case, we say that ∼ is

a weak order congruence on the poset X. Note that, in particular, the congruences

considered in [Rea02; CS98; HS15; Hal17] are weak order congruences.

If ∼ is a weak order congruence, so that X/∼ is a poset, then we have a

canonical order-preserving map

X → X/∼

x 7→ [x].

Indeed, for any order-preserving map of posets f : X → Y , one can consider the

equivalence relation on X defined by x ∼ x′ if and only if f(x) = f(x′). We

then define the image of f to be the quotient f(X) = X/∼. We identify the

∼-equivalence class [x] of X with the element f(x) ∈ Y , so that f(X) ⊆ Y and

the quotient relation on f(X) is a subrelation of the partial order on Y . If the
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equivalence relation ∼ on X is a weak order congruence, so that the image f(X)

is a well-defined poset, then we say that the map f is photogenic.

We say that a map f : X → Y is full if whenever f(x1) ⩽ f(x2) in Y , there

exist x′1, x
′
2 ∈ X such that x′1 ⩽ x′2, with f(x′1) = f(x1) and f(x′2) = f(x2). (In

[CS98], maps which are full and order-preserving are called strong.)

Proposition 6.4.2. Let X and Y be posets with f : X → Y an order-preserving

map. Then the relation on f(X) is anti-symmetric. Furthermore, if f is full, then

the relation on f(X) is transitive, and so f is photogenic. Finally, f(X) = Y as

posets if and only if f is surjective and full.

Proof. Suppose that x1, x2 ∈ X are such that [x1]R[x2] and [x2]R[x1], where,

as before, we use R to denote the relation on the quotient poset. Since f is

order-preserving, this implies that f(x1) ⩽ f(x2) and f(x2) ⩽ f(x1). Hence

f(x1) = f(x2) and so x1 ∼ x2. Thus R is anti-symmetric.

Now suppose that f is full. Let x1, x2, x3 ∈ X be such that [x1]R[x2] and

[x2]R[x3]. This implies that f(x1) ⩽ f(x2) and f(x2) ⩽ f(x3), since f is order-

preserving. Hence f(x1) ⩽ f(x3). Since f is full, there exist x′1, x
′
3 ∈ X such that

x′1 ⩽ x′3, with f(x′1) = f(x1) and f(x′3) = f(x3). Hence [x1]R[x3], and so R is

transitive.

Finally, it is clear that f(X) = Y as sets if and only if f is surjective. Then f

being full and order-preserving is equivalent to having [x1] ⩽ [x2] in f(X) if and

only if f(x1) ⩽ f(x2) in Y . We conclude that f(X) = Y as posets if and only if f

is surjective and full.

Therefore, every quotient of a poset by a weak order congruence gives an order-

preserving map which is surjective and full, and, conversely, every order-preserving

map which is surjective and full gives a quotient by a weak order congruence.

Hence, if an order-preserving map f is surjective and full, then we say that f is a
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quotient map of posets.

With this framework in mind, the higher Tamari order T (m, δ + 1) [DM12]

is defined to be the image of the map g : B(m, δ + 1) → S(m, δ), or, explicitly,

the quotient of B(m, δ + 1) by the relation defined by Q ∼ Q′ if and only if

g(Q) = g(Q′). That this is equivalent to [DM12, Definition 4.7] follows from

Corollary 6.3.13. Note that it is not evident that T (m, δ + 1) is a well-defined

poset, since it is not clear that the map g is photogenic. However, in Section 6.6

we shall prove that g is full, which implies that g is photogenic by Proposition 6.4.2,

since we already know that g is order-preserving by Corollary 6.3.4. In Section 6.5,

we give a new proof of the fact that g is surjective, originally known from [RS00,

Theorem 3.5]. Therefore, the results of the two subsequent sections entail the

following theorem.

Theorem 6.4.3. The map g : B(m, δ + 1)→ S(m, δ) is a quotient map of posets.

Hence, we obtain by Proposition 6.4.2 that the higher Tamari orders are indeed

the same posets as the first higher Stasheff–Tamari orders.

Corollary 6.4.4. T (m, δ + 1) ∼= S(m, δ).

6.5 Surjectivity

We now give a new construction showing that the map g is a surjection. Our

strategy is to explicitly show that g is a surjection when δ is even, and then to use

this to deduce the case where δ is odd. This parallels the strategy in Section 3.3.4.

Given a triangulation T of C(m, 2d), we will construct a cubillageQT of Z(m, 2d+1)

such that g(QT) = T. We will define QT by specifying its internal spectrum.

Convention 6.5.1. In this section and in Section 6.6, we will frequently be using

arithmetic modulo m. In particular, given a set S ∈
(

[m]
2d+2

)
, we have s0 − s2d+1 ≡
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s0− s2d+1 +m mod m, which is an element of [m]. For instance, if d = 1, m = 6,

and {s0, s1, s2, s3} = {1, 2, 4, 5}, then we write s0 − s3 = 2.

For I ⊆ [m], we write I = J ⊔ J ′ if I = J ∪ J ′ and there are no j ∈ J, j′ ∈ J ′

such that j, j′ are cyclically consecutive. Given a cyclic l-ple interval I = [i0, i
′
0] ⊔

[i1, i
′
1] ⊔ · · · ⊔ [il−1, i

′
l−1], we use the notation Î := {i0, i1, . . . , il−1} from [MW21].

We claim that the collection of subsets

U(T) =
{
I ⊆ [m] : |Î| is a d′-simplex of T for d′ ⩾ d

}
defines the internal spectrum of a cubillage on Z(m, 2d + 1). This is similar to

the construction in [MW21, Theorem 3.8]. In order to show that U(T) is the

internal spectrum of a cubillage, we must show that it is 2d-separated and that

#U(T) =
(
m−1
2d+1

)
. We begin by showing that U(T) is 2d-separated, for which we

need the following lemma. This generalises one direction of [MW21, Lemma 3.7],

although the proof in op. cit. requires only minor changes.

Lemma 6.5.2. Let I, J ⊆ [m]. Then I δ-interweaves J only if there exist subsets

X ⊆ Î and Y ⊆ Ĵ such that #X = ⌊δ/2⌋ and #Y = ⌈δ/2⌉, and X intertwines Y .

Proof. We let δ = 2d, since the case δ = 2d+ 1 behaves similarly.

Let I = [i0, i
′
0] ⊔ [i1, i

′
1] ⊔ · · · ⊔ [ir, i

′
r] and J = [j0, j

′
0] ⊔ [j1, j

′
1] ⊔ · · · ⊔ [js, j

′
s].

Suppose that I 2d-interweaves J , and let A ⊆ I \ J and B ⊆ J \ I witness this.

For any 0 ⩽ p < q ⩽ d we cannot have both ap ∈ [it, i
′
t] and aq ∈ [it, i

′
t], since

this implies that bp, bp+1, . . . , bq−1 ∈ [it, i
′
t] ⊆ I, which contradicts B ∩ I = ∅.

Hence, for all 0 ⩽ k ⩽ d, let tk be such that ak ∈ [itk , i
′
tk
] and let uk be such that

bk ∈ [juk
, j′uk

]. Moreover, since B ∩ I = ∅, we have bk ∈ (i′tk , itk+1
), and similarly

ak ∈ (j′uk−1
, juk

) for k ∈ Z/(d+ 1)Z. Then

it0 ⩽ a0 < ju0 ⩽ b0 < it1 ⩽ a1 < · · · < itd ⩽ ad < jud
⩽ bd,
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and so

it0 < ju0 < it1 < · · · < itd < jud
.

Letting X = {it0 , it1 , . . . , itd} and Y = {ju0 , ju1 , . . . , jud
} gives us the desired result.

Lemma 6.5.3. The collection U(T) is 2d-separated.

Proof. Suppose that there exist I, J ∈ U(T) such that I and J are 2d-interweaving.

By Lemma 6.5.2, we have X ⊆ Î and Y ⊆ Ĵ such that X and Y are intertwin-

ing. But this implies that Î and Ĵ each contain one half of a circuit (X, Y ) for

C(m, 2d). This is a contradiction, since, by construction of U(T), |Î| and |Ĵ | are

both simplices of the triangulation T of C(m, 2d).

We must now show that #U(T) =
(
m−1
2d+1

)
. We use induction for this, showing

that the size of U(T) is preserved by increasing flips of T, which requires the

following lemma.

Lemma 6.5.4. Let |S| be a (2d + 1)-simplex inducing an increasing flip of

a triangulation T of C(m, 2d) and denote Sl = {s0, s2, . . . , s2d} and Su =

{s1, s3, . . . , s2d+1}. Then the following two sets have the same cardinality:

Il(S,m) =
{
I ⊆ [m] : Sl ⊆ Î ⊂ S

}
,

Iu(S,m) =
{
I ⊆ [m] : Su ⊆ Î ⊂ S

}
.

Recall from Section 1.6 that we use the symbol ‘⊂’ to denote proper subsets.

Proof. Note that we may instead consider

I ′l(S,m) :=
{
I ⊆ [m] : Sl ⊆ Î ⊆ S

}
,

I ′u(S,m) :=
{
I ⊆ [m] : Su ⊆ Î ⊆ S

}
.
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This is because

I ′l(S,m) \ Il(S,m) = I ′u(S,m) \ Iu(S,m) =
{
I ⊆ [m] : Î = S

}
.

Hence if #I ′l(S,m) = #I ′u(S,m), then #Il(S,m) = #Iu(S,m).

We prove the claim by explicit enumeration. Let

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ [s2, s

′
2] ∪ · · · ∪ [s2d, s

′
2d] ∪ [s2d+1, s

′
2d+1].

Then I ∈ I ′l(S,m) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i, s2i+1 − 1] and s′2i+1 ∈ [s2i+1 − 1, s2i+2 − 2].

Recall that our convention here is that if s′j = sj − 1, then [sj, s
′
j] = ∅. Similarly,

I ∈ I ′u(S,m) if and only if, for all i ∈ Z/(d+ 1)Z,

s′2i ∈ [s2i − 1, s2i+1 − 2] and s′2i+1 ∈ [s2i+1, s2i+2 − 1].

Therefore,

#I ′l(S,m) = #I ′u(S,m) =
∏

i∈Z/(d+1)Z

(s2i+1 − s2i)(s2i+2 − s2i+2)

=
∏

j∈Z/(2d+2)Z

(sj+1 − sj).

This allows us to prove that our 2d-separated collection U(T) is the right size

to be the internal spectrum of a cubillage.

Lemma 6.5.5. For a triangulation T of C(m, 2d), we have that #U(T) =
(
m−1
2d+1

)
.

Proof. We prove the claim by induction on increasing flips of the triangulation.

This is valid since every triangulation of a cyclic polytope can be reached via a se-

quence of increasing flips from the lower triangulation by [Ram97, Theorem 1.1(i)].
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For the base case, let Tl be the lower triangulation of C(m, 2d). By Gale’s

Evenness Criterion, the vertex sets of the 2d-simplices of Tl are given by 1 together

with d disjoint pairs of consecutive numbers. Therefore, the only d′-simplices of

Tl with d′ ⩾ d which have no cyclically consecutive vertices are the internal d-

simplices. Hence if I ∈ U(Tl), then |Î| is an internal d-simplex of Tl. Moreover,

the internal d-simplices of Tl are given by (d+1)-subsets which are cyclic (d+1)-ple

intervals and contain 1.

By [DKK18a, (4.2)(ii)], the internal spectrum of the lower cubillage of the

zonotope Z(m, 2d + 1) consists of all cyclic (d + 1)-ple intervals which contain 1.

It is then straightforward to see that U(T) is indeed the internal spectrum of the

lower cubillage of Z(m, 2d + 1) when T is the lower triangulation of C(m, 2d).

Therefore, we have in this case that #U(T) =
(
m−1
2d+1

)
.

For the inductive step, we suppose that we have a triangulation T′ obtained by

performing an increasing flip induced by a (2d+ 1)-simplex |S| on a triangulation

T for which the induction hypothesis holds. Then Il(S,m) contains precisely the

subsets I such that |Î|2d+1 is contained in a lower facet of |S|2d+1 but not any

upper facets, by Gale’s Evenness Criterion. Similarly, Iu(S,m) contains precisely

the subsets I such that |Î|2d+1 is contained in an upper facet of |S|2d+1 but not

any lower facets. Hence

U(T′) = (U(T) \ Il(S,m)) ∪ Iu(S,m),

and so #U(T) = #U(T′) by Lemma 6.5.4. The result then follows by induction.

Hence we obtain that g is a surjection in even dimensions.

Theorem 6.5.6. The map g : B(m, δ + 1)→ S(m, δ) is a surjection for even δ.

Proof. Let δ = 2d and let T be a triangulation of C(m, 2d). By Lemma 6.5.3,

Lemma 6.5.5, and the correspondence between cubillages and separated collec-
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tions from [GP21], we have that the collection U(T) is the internal spectrum of a

cubillage QT of Z(m, 2d + 1). Moreover, g(QT) = T by Proposition 6.3.8, since if

#A = d+ 1, then A ∈ U(T) if and only if |A| is an internal d-simplex of T.

Example 6.5.7. We give an example of the construction used to prove Theo-

rem 6.5.6. Consider the triangulation T of the hexagon C(6, 2) which has arcs

e̊(T) = {13, 15, 35}.

Then we have

U(T) = {13, 15, 35,

134, 125, 356, 135,

1345, 1235, 1356}.

Note the presence of 135 ∈ U(T), since |135| is a 2-simplex of T. One can check

that U(T) is 2-separated. Furthermore, #U(T) = 10 =
(
5
3

)
=
(
6−1
2+1

)
, as desired.

We thus obtain the cubillage QT which is defined by ISp(QT) = U(T). It then

follows from Proposition 6.3.8 that g(QT) = T; compare Example 6.3.9. Hence T

has a pre-image under g.

We now deduce from Theorem 6.5.6 that the map g must be a surjection for

odd δ.

Theorem 6.5.8. The map g : B(m, δ + 1)→ S(m, δ) is a surjection for odd δ.

Proof. Let δ = 2d+ 1 and let T be a triangulation of C(m, 2d+ 1). We show that

there exists a cubillage QT of Z(m, 2d+2) such that Sp(QT) ⊇ Simp(T). Consider

the triangulation T̂ of C(m+1, 2d+2) defined in Section 2.1.4. By Theorem 6.5.6,

there is a cubillage Q′ of Z(m + 1, 2d + 3) such that g(Q′) = T̂. By definition of

T̂, we have that Simp(T)∪Simp(T) ∗ (m+1) ⊆ Simp(T̂) ⊆ Sp(Q′). By [DKK18a,

Lemma 5.2], if we take the (m + 1)-contraction of Q′ then we get a section M of

Q′/(m+ 1) as the image of the (m+ 1)-pie, and we have that Sp(M) ⊇ Simp(T).
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We therefore define QT = M, recalling that M is a cubillage of Z(m, 2d + 2). By

Lemma 6.3.7, we must have that g(QT) = T.

Hence, we recover the result [RS00, Theorem 3.5].

Corollary 6.5.9. The map g : B(m, δ + 1)→ S(m, δ) is a surjection.

Remark 6.5.10. In [KV91, Theorem 4.10], Kapranov and Voevodsky gave a map

f : B(m, δ)→ S(m+ 2, δ + 1) which they stated was a surjection. A proof of this

statement remains unfound. It was shown in [Tho03, Proposition 7.1] that there

is a factorisation

B(m, δ) S(m, δ − 1),

S(m+ 2, δ + 1)

f

g

where g is the dual map to g from Remark 6.3.6 and the dotted map is a surjection

by [Ram97, Corollary 4.3].

The map f should not only be a surjection, but also a quotient map of posets,

as we show is true of the map g in this chapter. This was shown for δ = 1 by

Reading [Rea06], drawing upon [BW97]. However, note that f cannot in general

realise S(m+2, δ+1) as a quotient of B(m, δ) by an order congruence in the sense

of [Rea02; Rea06]. This is because the equivalence classes of an order congruence

must be intervals, but [Tho03, Section 6] shows that the fibres of the map f are

not always intervals. Hence, f can only be a quotient map of posets in a more

general sense, such as that considered in this chapter.

6.6 Fullness

We now show that the map g is full, and hence is a quotient map of posets. To

do this, we must show that if T ⩽ T′ for triangulations T,T′ of C(m, δ), then
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there are cubillages Q,Q′ of Z(m, δ + 1) such that g(Q) = T, g(Q′) = T′, and

Q ⩽ Q′. We follow the approach of Sections 3.3.4 and 6.5, whereby we work

explicitly for even-dimensional triangulations, and then use this to show the result

for odd dimensions. Indeed, we show that for triangulations T,T′ of C(m, 2d) with

T ⩽ T′, we have QT ⩽ QT′ . For this, it suffices to show that if T ⋖ T′, then

QT < QT′ . To do this, we find a sequence of increasing flips from QT to QT′ .

Using the characterisation of increasing flips in terms of separated collections

from Theorem 6.2.3, it can be seen that, in order to show that QT ⩽ QT′ , we

must show that we can gradually exchange the elements of Sp(QT) \ Sp(QT′) for

the elements of Sp(QT′) \Sp(QT). If |S| is the simplex inducing the increasing flip

from T to T′, then Sp(QT)\Sp(QT′) = Il(S,m) and Sp(QT′)\Sp(QT) = Iu(S,m),

as in Lemma 6.5.5. Hence, we will define a sequence of exchanges which replaces

Il(S,m) with Iu(S,m). To show that our sequence of exchanges works, we will

need the following lemma.

Lemma 6.6.1. Let

I = [s0, s
i
0] ∪ [s1, s

i
1] ∪ · · · ∪ [s2d, s

i
2d] ∪ [s2d+1, s

i
2d+1]

and

J = [s0, s
j
0] ∪ [s1, s

j
1] ∪ · · · ∪ [s2d, s

j
2d] ∪ [s2d+1, s

j
2d+1].

Then I 2d-interweaves J if and only if, for all r,

sj2r < si2r and sj2r+1 > si2r+1.

Proof. If we have that, for all r, sj2r < si2r and sj2r+1 > si2r+1, then we have that

{si0, si2, . . . , si2d} ⊆ I \ J and {sj1, s
j
3, . . . , s

j
2d+1} ⊆ J \ I with

si0 < sj1 < si2 < sj3 < · · · < si2d < sj2d+1.

Hence I 2d-interweaves J .
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Conversely, suppose that I 2d-interweaves J , and let X ⊆ I \ J and Y ⊆ J \ I

witness this. We cannot have both xp, xq ∈ [st, s
i
t] for p ̸= q, since this implies

that yr ∈ [st, s
i
t] for p ⩽ r < q. Furthermore, we cannot have both xp ∈ [st, s

i
t] and

yp ∈ [st, s
j
t ], since we must have either [st, s

i
t] ⊆ [st, s

j
t ] or [st, s

j
t ] ⊆ [st, s

i
t]. By the

pigeonhole principle and the fact that x0 < y0, we deduce that xr ∈ [s2r, s
i
2r] and

yr ∈ [s2r+1, s
j
2r+1] for all r. But this implies that sj2r < si2r and si2r+1 < sj2r+1 for

all r.

It is now useful for us to obtain an explicit map for the bijection from

Lemma 6.5.4. This allows us to construct the sequence of exchanges which

replaces Il(S,m) with Iu(S,m).

Construction 6.6.2. Given S ∈
(

[m]
2d+2

)
, we define

I(S,m) = Il(S,m) ∪ Iu(S,m),

I ′(S,m) = I ′l(S,m) ∪ I ′u(S,m).

In order to get a convenient parametrisation of these sets, we define a map

ϕ :
∏

i∈Z/(2d+2)Z

[0, si+1 − si]→ 2[m]

(n0, n1, . . . , n2d+1) 7→
⋃

i∈Z/(2d+2)Z

[si, si + ni − 1].

We abbreviate n = (n0, n1, . . . , n2d+1). Then

� ϕ(n) ∈ I ′l(S,m) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all i ∈

Z/(d+ 1)Z;

� ϕ(n) ∈ I ′u(S,m) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all i ∈

Z/(d+ 1)Z;

� ϕ(n) ∈ Il(S,m) if and only if n2i−1 < s2i − s2i−1 and n2i > 0 for all i ∈

Z/(d+ 1)Z, and there exists a j ∈ Z/(d+ 1)Z such that either n2j+1 = 0 or

n2j = s2j+1 − s2j;
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� ϕ(n) ∈ Iu(S,m) if and only if n2i < s2i+1 − s2i and n2i+1 > 0 for all i ∈

Z/(d + 1)Z, and there exists a j ∈ Z/(d + 1)Z such that either n2j = 0, or

n2j−1 = s2j − s2j−1.

We then obtain an explicit bijection by defining a map

ψ : Il(S,m)→ Iu(S,m)

as follows. Let I ∈ Il(S,m) such that I = ϕ(n) and let t = (−1, 1,−1, 1, . . . ,

−1, 1). Further, define

λI = max

{
λ ∈ Z>0 : n+ λt ∈

∏
i∈Z/(2d+2)Z

[0, si+1 − si]
}
.

By construction,

ϕ(n+ λIt) ∈ Iu(S,m),

since we must either have some j ∈ Z/(d + 1)Z such that s2j − λI = 0, or some

j ∈ Z/(d + 1)Z such that s2j−1 + λI = s2j − s2j−1, otherwise λI would not be

maximal. Therefore define

ψ(I) = ϕ(n+ λIt).

It can be seen that the map ψ is a bijection because one may define its inverse

as follows. Let J ∈ Iu(S,m) such that J = ϕ(n). Then let

µJ = max

{
µ ∈ Z>0 : n− µt ∈

∏
i∈Z/(2d+2)Z

[0, si+1 − si]
}
.

By construction,

ϕ(n− µJt) ∈ Il(S,m),

since we must either have some j ∈ Z/(d+ 1)Z such that n2j+1 − µJ = 0, or some

j ∈ Z/(d+ 1)Z such that n2j + µJ = s2j+1 − s2j. It is then clear that

ψ−1(J) = ϕ(n− µJt).
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Theorem 6.6.3. Given triangulations T,T′ of C(m, 2d) such that T ⋖ T′, there

exist cubillages Q0,Q1, . . . ,Qr of Z(m, 2d+ 1) such that Q0 = QT, Qr = QT′ and

Q0 ⋖Q1 ⋖ · · ·⋖Qr,

so that QT ⩽ QT′.

Proof. Suppose that the increasing flip of T which gives T′ is induced by the

(2d+1)-face |S| of C(m,m−1). Then ISp(QT)\ISp(QT′) = Il(S,m) and ISp(QT′)\

ISp(QT) = Iu(S,m). Let R = ISp(QT) \ Il(S,m) = ISp(QT′) \ Iu(S,m). Hence

we must find a sequence of flips starting at QT which gradually replaces Il(S,m)

with Iu(S,m).

The flips of cubillages we wish to perform are as follows. Given ϕ(n) ∈ Il(S,m),

we make the sequence of exchanges given by the pairs

(ϕ(n), ϕ(n+ t)), (ϕ(n+ t), ϕ(n+ 2t)), . . . , (ϕ(n+ (λϕ(n) − 1)t), ϕ(n+ λϕ(n)t)).

We must show that there is an order in which we can make these exchanges such

that after each exchange we still have a 2d-separated collection. Here each ex-

change gives an increasing flip by Theorem 6.2.3. Note further that ϕ(n+ rt) and

ϕ(n + (r + 1)t) are tightly 2d-interweaving, as we know must be the case from

Theorem 6.2.3.

Our exchanges give a bijection

I ′(S,m) \ Iu(S,m)→ I ′(S,m) \ Il(S,m)

ϕ(n) 7→ ϕ(n+ t).

Hence, we have one exchange per element of I ′(S,m) \ Iu(S,m). By Construc-

tion 6.6.2, we have that ϕ is a bijection between [1, s1− s0]× [0, s2− s1−1]×· · ·×

[1, s2d+1 − s2d]× [0, s0 − s2d+1 − 1] and I ′(S,m) \ Iu(S,m). The set [1, s1 − s0]×
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[0, s2− s1− 1]×· · ·× [1, s2d+1− s2d]× [0, s0− s2d+1− 1] is a lattice under the order

given by

(n0, n1, . . . , n2d+1) ⩽ (n′
0, n

′
1, . . . , n

′
2d+1)

if and only if for all j

n2j ⩾ n′
2j and n2j+1 ⩽ n′

2j+1,

since this is just the usual product order, but reversed on coordinates with even

index.

We claim that any linear extension n1 < n2 < · · · < nr of this lattice gives

an order on I ′(S,m) \ Iu(S,m) such that if C0 := Sp(QT) and Ci := (Ci−1 \

{ϕ(ni)}) ∪ {ϕ(ni + t)}, then Ci is 2d-separated for all i. Note first that we always

must have ϕ(ni) ∈ Ci−1. This is because either ϕ(ni) ∈ Il(S,m) or ϕ(ni − t) ∈

I ′(S,m) \ Iu(S,m). Hence, either ϕ(ni) ∈ C0, or ϕ(ni) is the result of an earlier

exchange, since ni − t < ni in our order.

Now suppose that Ci is not 2d-separated for some i. We may choose the minimal

i for which this is the case. We first show that no element of I ′(S,m) is 2d-

interweaving with any element ofR. Suppose, on the contrary, that there exist I ∈

I ′(S,m) and J ∈ R such that I and J are 2d-interweaving. Then, by Lemma 6.5.2,

we have X ⊆ Î and Y ⊆ Ĵ such that #X = #Y = d + 1 and X and Y are

intertwining. We have that X ⊆ Î ⊆ S, and since #X = d + 1, we must have

either X ̸⊇ Su := {s1, s3, . . . , s2d+1}, or X ̸⊇ Sl := {s0, s2, . . . , s2d}. If X ̸⊇ Su,

then X ⊆ R for a 2d-simplex |R| of T, by Gale’s Evenness Criterion. This gives

a contradiction, since |R| and |Ĵ | are both simplices of T and (X, Y ) is a circuit.

One can derive a similar contradiction using T′ when X ̸⊇ Sl.

Therefore, if Ci is not 2d-separated, it must be because

ϕ(ni + t) = [s0, s
′
0 + (ni

0 − 1)− 1] ∪ [s1, s
′
1 + (ni

1 + 1)− 1] ∪ . . .

∪ [s2d+1, s
′
2d+1 + (ni

2d+1 + 1)− 1]
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is 2d-interweaving with an element I ∈ I(S,m) ∩ Ci. By Lemma 6.6.1, we must

have

I = [s0, s
′
0] ∪ [s1, s

′
1] ∪ · · · ∪ [s2d+1, s

′
2d+1] ∈ Ci \ {ϕ(ni + t)} = Ci−1 \ {ϕ(ni)}

such that either s2j +(ni
2j − 1)− 1 < s′2j and s

′
2j+1 < s2j+1 +(ni

2j+1 +1)− 1 for all

j, or s′2j < s2j + (ni
2j − 1)− 1 and s2j+1 + (ni

2j+1 + 1)− 1 < s′2j+1 for all j. In the

latter case, we also have that s′2j < s2j + ni
2j − 1 and s2j+1 + ni

2j+1 − 1 < s′2j+1, so

that ϕ(ni) also 2d-interweaves I, which means that Ci−1 is not 2d-separated. This

contradicts i being the minimal index such that this was the case. In the former

case, we have that I precedes ϕ(ni) in our chosen order on I ′(S,m)\Iu(S,m). This

means that I must have already been exchanged, which is also a contradiction.

Therefore, we have cubillages Q0,Q1, . . . ,Qr such that Ci = Sp(Qi) for each i.

By Theorem 6.2.3, we have

Q0 ⋖Q1 ⋖ · · ·⋖Qr.

By construction, we have that Q0 = QT and Qr = QT′ .

Example 6.6.4. We give examples of the construction used to prove Theo-

rem 6.6.3.

(1) Consider the triangulation T of the heptagon C(7, 2) given by e̊(T) =

{13, 16, 35, 36}. We perform the increasing flip on this triangulation induced

by the simplex |1236|, thereby obtaining the triangulation T′ of C(7, 2) with

e̊(T′) = {16, 26, 35, 36}.

We have

ISp(QT) = {13, 16, 35, 36,

126, 134, 136, 346, 356, 367,

1236, 1345, 1346, 1367, 3467, 3567,

12346, 13456, 13467, 13567}
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and

ISp(QT′) = {16, 26, 35, 36

126, 236, 267, 346, 356, 367,

1236, 1367, 2346, 2367, 3467, 3567,

12346, 13467, 13567, 23467}.

Moreover,

ISp(QT) \ ISp(QT′) = Il(1236, 7) = {13, 134, 136, 1345, 1346, 13456}

and

ISp(QT′) \ ISp(QT) = Iu(1236, 7) = {26, 236, 267, 2346, 2367, 23467}.

We illustrate how we can gradually replace elements of Il(1236, 7) in ISp(QT) with

the elements of Iu(1236, 7), whilst ensuring that the collection remains 2-separated.

The coordinate parameterisation of I ′(1236, 7) by ϕ gives

ϕ(1, 0, 1, 0) = 13,

ϕ(1, 0, 2, 0) = 134,

ϕ(1, 0, 1, 1) = 136,

ϕ(1, 0, 3, 0) = 1345,

ϕ(1, 0, 2, 1) = 1346,

ϕ(1, 0, 3, 1) = 13456,
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ϕ(0, 1, 0, 1) = 26,

ϕ(0, 1, 1, 1) = 236,

ϕ(0, 1, 0, 2) = 267,

ϕ(0, 1, 2, 1) = 2346,

ϕ(0, 1, 1, 2) = 2367,

ϕ(0, 1, 2, 2) = 23467.

The bijection ψ : Il(1236, 7)→ Iu(1236, 7) in this case gives

13 = ϕ(1, 0, 1, 0) 7→ ϕ(0, 1, 0, 1) = 26,

134 = ϕ(1, 0, 2, 0) 7→ ϕ(0, 1, 1, 1) = 236,

136 = ϕ(1, 0, 1, 1) 7→ ϕ(0, 1, 0, 2) = 267,

1345 = ϕ(1, 0, 3, 0) 7→ ϕ(0, 1, 2, 1) = 2346,

1346 = ϕ(1, 0, 2, 1) 7→ ϕ(0, 1, 1, 2) = 2367,

13456 = ϕ(1, 0, 3, 1) 7→ ϕ(0, 1, 2, 2) = 23467.

Note that in this example, we have that I ′l(1236, 7) = Il(1236, 7) and I ′u(1236, 7) =

Iu(1236, 7), since we cannot have Î = 1236 for any subset I. Thus we consider the

lattice on I ′(1237, 6) \ Iu(1237, 6) = Il(1236, 7) given by

(1, 0, 3, 0),

(1, 0, 2, 0) (1, 0, 3, 1)

(1, 0, 1, 0) (1, 0, 2, 1)

(1, 0, 1, 1)
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which is

1345.

134 13456

13 1346

136

Note that we place minimal element of the lattice at the bottom. Therefore, by

Theorem 6.6.3, we may perform the exchanges replacing ϕ(n) by ϕ(n + t) in an

order given by any linear extension of

(1345, 2346).

(134, 236) (13456, 23467)

(13, 26) (1346, 2367)

(136, 267)

We first make the exchange at the bottom of the lattice, and then move up.

(2) We now give an example where we do not have I(S,m) = I ′(S,m). This

example is somewhat larger than the previous example, so we do not go through

it in the same level of detail.

Indeed, we do not consider full triangulations, but only the set Il(1357, 8),

which we wish to replace with the set Iu(1357, 8). Here we have I ′l(1357, 8) =

Il(1357, 8) ∪ {1357} and I ′u(1357, 8) = Iu(1357, 8) ∪ {1357}. The sequence of
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exchanges from Il(1357, 8) to Iu(1357, 8) is given by the bijection ϕ(n) 7→ ϕ(n+t)

from I ′(1357, 8) \ Iu(1357, 8) to I ′(1357, 8) \ Il(1357, 8).

Any sequence of exchanges done in the order of any linear extension of the

following lattice will preserve 2-separatedness. One can check that this is the

lattice from the proof of Theorem 6.6.3.

(1256, 1357)

(156, 357) (12356, 13457) (125, 137) (12567, 13578)

(15, 37) (1356, 3457) (1567, 3578) (1235, 1347) (1257, 1378) (123567, 134578)

(135, 347) (157, 378) (13567, 34578) (12357, 13478)

(1357, 3478)

Note that here, since 1357 ∈ I ′(1357, 8) \ Il(1357, 8), but 1357 /∈ Iu(1357, 8), we

have two exchange pairs containing 1357, namely (1256, 1357) and (1357, 3478).

That is, 1357 is only an intermediate subset in the sequence of exchanges from

Il(1357, 8) to Iu(1357, 8).

We now show the result for odd dimensions. The structure of the proof here is

similar to that of Proposition 3.3.19.

Theorem 6.6.5. Given triangulations T,T′ of C(m, 2d+1) such that T⋖T′, there

exist cubillages Q0,Q1, . . . ,Qr of Z(m, 2d+ 2) such that Q0 = QT, Qr = QT′ and

Q0 ⋖Q1 ⋖ · · ·⋖Qr,
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so that QT ⩽ QT′.

Proof. We start, as in the proof of Theorem 6.5.8, by considering the triangulations

T̂, T̂′ of C(m+1, 2d+2). We know that the extension operation is order-reversing,

so T̂′ < T̂. By Theorem 6.6.3, there exist cubillages Q′
s ⋖ Q′

s−1 ⋖ · · · ⋖ Q′
0 of

Z(m+ 1, 2d+ 3) such that Q′
s = QT̂′ and Q′

0 = QT̂.

As in the proof of [DKK18a, Lemma 5.2], we have that the (m+1)-contraction

of Q′
i gives a section Mi which is a cubillage of Z(m, 2d + 2). As in the proof of

Theorem 6.5.8, we have that Ms = QT′ and M0 = QT. We claim that for each i

we either have Mi = Mi+1 or Mi ⋖Mi+1.

Consider the increasing flip which takes Q′
i+1 to Q′

i. Suppose this increasing

flip is induced by a (2d + 4)-face F of Z(m + 1,m + 1) which has A as its set

of generating vectors. If m + 1 /∈ A, then the increasing flip does not affect the

(m + 1)-pie, so that Mi = Mi+1. Hence, suppose instead that m + 1 ∈ A. Let

the lower facets of πm+1,2d+4(F) consist of the cubes πm+1,2d+4(Uj), where Uj is

generated by A \ {aj}, noting that we must have a2d+3 = m + 1. Similarly, let

the upper facets of πm+1,2d+4(F) consist of the cubes πm+1,2d+4(U
′
j), where U′

j is

generated by A \ {aj}.

It is well-known that for j < k the cubes πm+1,2d+4(Uj) and πm+1,2d+4(Uk)

intersect in an upper facet of πm+1,2d+4(Uk) and a lower facet of πm+1,2d+4(Uj),

while the cubes πm+1,2d+4(U
′
j) and πm+1,2d+4(U

′
k) intersect in an upper facet of

πm+1,2d+4(U
′
j) and a lower facet of πm+1,2d+4(U

′
k). This is because the increasing

flip corresponds to inverting the packet of A: the cubes Uj and U′
j correspond

to the sets A \ {aj}; these must be ordered lexicographically for Uj and reverse-

lexicographically for U′
j.

Contracting the (m+ 1)-pie of Q′
i+1 sends the cubes Uj for j < 2d+ 3 to their

facet generated by A\{aj,m+1}, which is precisely the intersection Uj∩U2d+3. By

the above paragraph, this projects to an upper facet of πm+1,2d+4(U2d+3). Hence
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the part of Mi+1 which lies within F/(m + 1) consists of the upper facets of

πm+1,2d+4(U2d+3/(m+1)). Here we use F/(m+1) to denote the image of F/(m+1)

under the (m+1)-contraction, and so forth. Similarly, we have that the part of Mi

which lies within F/(m + 1) consists of the lower facets of πm+1,2d+4(U
′
2d+3/(m +

1)). We then have that F/(m + 1) = U2d+3/(m + 1) = U′
2d+3/(m + 1), and so

Mi ⋖ Mi+1. This is since Mi and Mi+1 only differ within F/(m + 1), because

Q′
i+1 and Q′

i only differ within F. Moreover, πm,2d+3(Mi+1) contains the upper

facets of πm,2d+3(F/(m + 1)), whereas πm,2d+3(Mi) contains the lower facets of

πm,2d+3(F/(m+1)). This argument is illustrated in Figure 6.7; compare [DKK19a,

Figure 7].

This gives a chain of cubillages QT = M0 = Q0 ⋖Q1 ⋖ · · ·⋖Qr = Ms = QT′

by applying the result of the above paragraph to the chain Q′
s ⋖Q′

s−1 ⋖ · · ·⋖Q′
0.

Here the cubillages Q0,Q1, . . . ,Qr are the cubillages M0,M1, . . . ,Ms with the

duplicates removed, corresponding to the cases above where Mi = Mi+1.

By putting together Theorem 6.5.6, Theorem 6.5.8, Theorem 6.6.3, and Theo-

rem 6.6.5, this finally establishes Theorem 6.4.3, and hence also Corollary 6.4.4.
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Figure 6.7: An illustration of the argument of Theorem 6.6.5
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