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Abstract

Symmetry arguments and representation theoretical methods are widely used in the-
oretical physics. Quantum information theory is no exception to this: Here represen-
tation theory has been used, for example, to guide the development of a variety of
quantum computational protocols. In this thesis, I present a series of contributions of
this sort—representation theory applied to quantum information. These contributions
are divided into two parts.

Part I deals with the representation theory arising from the stabilizer formalism.
Having originated within the context of quantum error correction, the stabilizer for-
malism quickly found more applications and today it is a vital tool in many areas of
quantum information theory. Two important objects that appear in this formalism are
the Clifford group and the oscillator representation of the symplectic group. In par-
ticular, tensor powers of the Clifford group and of the oscillator representation have
recently come to the spotlight due to their applications in, for instance, quantum de-
vice characterization and the simulation of quantum computing. My contributions in
this first part, Chapters 2 and 3, are in the context of these representations.

In Chapter 2, I study these representations through the lens of Howe duality. Here,
I generalize the recently developed theory of the η correspondence to provide a full de-
composition for tensor power representations (TPRs). This theory has been previously
used to understand a certain “maximal rank” sector of oscillator TPRs. In other words,
the η correspondence has been used to partially decompose oscillator tensor powers. I
show that not only can this formalism be used to fully decompose oscillator TPRs, but
that it can be generalized in order to fully decompose Clifford TPRs.

In Chapter 3, I present a new efficient construction of approximate unitary t-

designs. Unitary t-designs are probability distributions on the unitary group that emu-
late the first tmoments of the Haar distribution. The circuits arising in the construction
shown here are dominated by Clifford unitaries, with a number Õ(t4) of non-Clifford
gates that does not depend on the system size (e.g. the number of qubits). The proofs
in this chapter build heavily on recent results which characterize the commutant of
Clifford TPRs.

Part II focuses on algorithms for the numerical decomposition of representations.
My motivation here comes from semi-definite programming, where such algorithms
can be used to significantly reduce the dimension of the optimization problem. The
working principle of the package RepLAB, which tackles this problem, is presented in
Chapter 5. In that chapter, I moreover show that under certain simplifying assumptions,
this algorithm is stable against numerical perturbations.

While the results in Chapter 5 strongly suggest that the output of RepLAB is cor-
rect, they do not rigorously prove this statement. In Chapter 6, I address this issue. I



provide an algorithm that certifies whether a numerical decomposition of a representa-
tion is close to exact. This certifying algorithm has rigorous performance guarantees.
I have coded it into the Python package RepCert, which I present and benchmark in
Chapter 7.

Taken together, RepLAB and RepCert may be used to decompose representations
of compact groups in such a way that the output is guaranteed to be correct. The run-
time of this combination depends on several factors: the complexity of taking products
in the group, the largest dimension d of an irreducible block in the decomposition,
and, most importantly, the dimension n of the representation. In the realistic scenario
where the group product is cheap to compute and d� n, the runtime is dominated by
its dependence on n, scaling as Õ(n3).
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Notation and conventions

• If V is a vector space, the space of linear functions V → V (endomorphisms of
V ) is denoted End(V ).

• Schatten p-norms of operators on a finite dimensional Hilbert space are denoted
‖ · ‖p, so that

‖X‖pp = tr
((√

X†X
)p)

=
∑

i

|xi|p,

where
√
X†X is the unique square root of the positive matrix X†X , and where

xi are the singular values of X . In particular, the operator norm is given by

‖X‖∞ = max
|ψ〉

〈ψ|X |ψ〉
〈ψ|ψ〉 .

The Frobenius norm is the Schatten 2-norm and will be denoted by ‖ · ‖2 and
‖ · ‖F interchangeably.

• Consider two vector spaces A and B, with corresponding norms ‖ · ‖A and
‖ · ‖B. The space of linear operators M : A → B hosts an induced norm

‖ · ‖A→B given by

‖M‖A→B = max
a∈A
‖Ma‖B s.t. ‖a‖A = 1.

Most relevant to this thesis will be the case where A and B are spaces of oper-
ators on a Hilbert space. These operator spaces are endowed with the Schatten 1-
norm (also known as the trace norm). The diamond norm ofM ∈ End(End(Cn))

is given by

‖M‖� = ‖M ⊗ 1n2‖1→1.

• The max norm, known also as the vector `∞ norm, on a vector space Cn or Rn

is given by

‖v‖max = max
i
|vi|.

• The commutant of a subalgebra A ⊆ End(Cn) is

A′ = {X ∈ End(Cn) | Xa− aX = 0 ∀ a ∈ A}.

In the case where A is spanned by a subgroup G ⊆ Gl(n), we denote its com-
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mutant by G′.

• The ring of integers with addition and multiplication computed modulo d is de-
noted Zd := Z/dZ. When d is a prime, this ring is actually a field, which will
sometimes referred to alternatively as Fd.

• If a matrix M acts on a vector space V , then for any subset S ⊆ V I denote
MS = {Ms | s ∈ S}.

• If G is a compact group, a subset {gi} ⊆ G ⊆ Cn×n is said to generate G if the
group 〈{gi}〉 formed by generator words of arbitrary length is dense in G.

• If ρ is a representation of some group G, I will sometimes use ρ to denote the
representation space. Moreover, I denote by Irr G the set of equivalence classes
irreducible complex representations of G. Two representations ρ, ρ′ with repre-
sentation spaces Hρ, Hρ′ are equivalent, denoted ρ ' ρ′, if there is a invertible
linear map M : Hρ → Hρ′ for which Mρ(g)M−1 = ρ′(g) for all g ∈ G. Any
complex representation is assumed to be unitary unless otherwise stated.
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Introduction to this thesis

This thesis is the result of a series of projects with a common thread: the development
of representation theoretical tools for applications in quantum information science.
These projects can be roughly divided into two thematic clusters.

Stabilizer representation theory. The first cluster revolves around the stabilizer

formalism. The stabilizer formalism, arguably the most well understood approach to
quantum error correction, has become a staple mathematical tool in quantum informa-
tion theory. The two central objects in this formalism are the set of stabilizer states in
(Cd)⊗n and their symmetry, the Clifford group Cl ⊂ U(dn). The stabilizer formalism
lies at a useful middle ground in the trade-off between complexity and expressibility.
On the one hand, Clifford unitaries and stabilizer states give rise to a wealth of quantum
phenomena, while on the other hand, they have very convenient algebraic and geomet-
ric properties that allow them to be efficiently described and manipulated. In short,
the stabilizer formalism is simple yet expressive. This intersection allows its use in a
variety of situations—as a toy model for condensed matter [BDCP12] and high energy
systems [DS21], as a foundation for quantum error correction [NC10, Chap. 10] and as
a tool in classical [NRS06] error correction, as a primitive for the simulation of quan-
tum computing [AG04, BBC+19] and quantum device characterization [KR21], and
as a tool in quantum entanglement theory [NW16]. Moreover, the stabilizer formal-
ism is connected to other mathematical topics like automorphic forms [Gel06], lattice
theory [NRS01] and Howe duality [GH20, How10].

Given this context, understanding the structures arising from the stabilizer formal-
ism is, in and of itself, an interesting scientific problem. Part I of this thesis presents a
contribution to this program. My emphasis here is mainly on representation theoretical
aspects associated to the stabilizer formalism.

In Chap. 2, I study tensor power representations of the Clifford group and of the
closely related oscillator representation µ of the finite symplectic group Sp(F2n

d ) (also
known as Weil or Schroedinger representation). The aforementioned chapter contains
two sections, the first is published as [MMG21a], while the second is based on the
draft [MMG21b]. These contributions extend the recently developed theory of the η
correspondence [GH17, GH20].

The formalism of the η correspondence builds on a construction that assigns a
certain “rank” to each irreducible representation (in the following irrep for short) of
Sp(F2n

d ) [How10]. The tensor power representation µ⊗t contains irreps with rank ≤ t

and gives rise to a correspondence, η, between irreps of a finite orthogonal groupO(Ftd)
to irreps of Sp(F2n

d ) with rank t. This allows one to fully decompose the “maximal
rank” subspace, i.e., the subspace spanned by the rank t irreducible subrepresentations
of µ⊗t.
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In the first section, based on Ref. [MMG21a], I provide a characterization of the
rank deficient sectors in µ⊗t, i.e. the orthocomplement to the maximal rank subspace.
Specifically, it is shown that the rank-deficient Sp(F2n

d )-isotypes are labeled by irreps
of O(Fkd) for certain values of k < t. Furthermore, I show that these rank-deficient
representations are spanned by certain types of Calderbank-Shor-Steane (CSS) codes
introduced in [GNW21]. A central insight which enables the proof of its main theorem
is that the code spaces, which are themselves Sp(F2n

d )-subrepresentations, are equiva-
lent to k-th tensor powers of the oscillator representation (again, for certain values of
k < t). This allows us to provide a full decomposition of the t-th tensor power of the
oscillator representation.

The second section, based on Ref. [MMG21b], extends the “η formalism” to set up
a correspondence between the irreps of a certain subgroup of O(Ftd) – the stochastic

orthogonal group studied in [GNW21] – and Cl. Here too, this correspondence is
used to describe a full decomposition of t-th tensor power representations. This work
answers several questions that had been left open hitherto:

1. Can the proof techniques of [GH17, MMG21a] be modified to decompose Clifford—
rather than oscillator—tensor powers? In particular, for the important case of
qubits (d = 2), the oscillator representation does not exist. Can we use a similar
approach to understand tensor powers of the qubit Clifford group?

2. Can the results in [GNW21] be used to simplify the proofs in [MMG21a]?

3. The results in [MMG21a] provide a way to indirectly decompose Clifford t-th
tensor powers as long as t is not a multiple of d. We know, moreover, that
some peculiarities arise when t is a multiple of d: For instance, in this case
the restriction to the subgroup of Pauli matrices is Abelian. Can we provide a
uniform description of the structure of t-th tensor power Clifford representations,
i.e. with a formalism that is independent of the value t? What precisely is the
difference between these two types of representations?

Chap. 3, based on Ref. [HMMH+20], proposes a protocol to efficiently generate
approximate unitary t-designs. Unitary designs are certain probability distributions on
U(dn) that mimick the first t moments of the Haar distribution. Unitary designs have
come into the spotlight in recent years due to their applications in, e.g., a variety of
quantum characterization techniques [Sco08, KdSR+14, KZG16a, MGE12, RKK+18],
in the study of quantum chaos [RY17] and black holes [HP07], and as primitives in
quantum cryptography [KMK21, ABW09, BGGS21].

Finding exact unitary designs for t > 3 is infamously hard [ZKGG16, BNRT20].
On the other hand, it is known that random local circuits converge to approximate uni-
tary t-designs in depth O(n2t10) [BHH16]. This result was an important breakthrough
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at the time—it says that while a typical Haar random unitary requires ∼ exp(n) local
gates to be approximated, some properties of Haar randomness may be approximated
with polynomial quantum circuits. While this construction is efficient, it is out of reach
for near term quantum devices, needing precise implementation of general polynomial
depth circuits.

Chap. 3 leverages recent results on Clifford tensor power representations [GNW21]
to improve on this situation:

It is known that the qubit Clifford group is a 3-design and not a higher t-design [Zhu17,
Web16, ZKGG16]. This said, the Clifford group may be used to efficiently generate
higher-order complex projective t-designs—sets of pure states which mimick the mo-
ments of the flat distribution on the unit sphere in C2n . Ref. [ZKGG16] asks whether
it is possible to construct, similarly, higher-order unitary t-designs based on the Clif-
ford group. Moreover, it is natural to ask whether one can improve on the construction
of [BHH16] by using knowledge about the tensor power representations of the Clifford
group.

Chap. 3 answers these questions positively. The construction presented there con-
siders k-interleaved quantum circuits: circuits of the form U1K · · ·UkK, where Ui ∈
Cl are randomly sampled and K is a fixed single-qubit gate. It is shown that if
k = O(t4 log t), the circuits are sampled from an approximate t-design. In this way,
the circuits require an n-independent number of non-Clifford gates. This makes this
constuction easier to implement in a fault-tolerant way and efficiently simulatable in a
classical computer (using the methods of Ref. [BBC+19]). The proofs in [HMMH+20]
make extensive use of the structure of the commutant of tensor power Clifford repre-
sentations studied in [GNW21]. I believe that more detailed information about these
representations, and in particular the results in Chap. 2, could be used to improve on
this construction.

Beyond these projects, I have also participated in the work leading up to [HMMVG21].
Here, a distance measure to the set of stabilizer states – the stabilizer extent [BBC+19]
– is considered. The extent is a convex relaxation of the stabilizer rank, the pa-
rameter that governs the complexity of simulating a quantum circuit via the meth-
ods in [BBC+19]. The extent is known to be submultiplicative, extent(ψ ⊗ φ) ≤
extent(ψ)extent(φ). Furthermore, if ψ and φ are states on n ≤ 3 qubits it is known
that the extent is actually multiplicative—that is, the inequality presented above is sat-
urated. Since the introduction of the stabilizer extent in 2018, it has remained an open
question whether it is multiplicative for higher n. In this work, we answer this question
negatively. My role in this last project was secondary, making my contribution hard to
single out. Because of this, I have decided not to include it here.

Numerical representation theory. The second cluster of results in this thesis
formulates an algorithm to decompose numerically defined representations. This algo-
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rithm may decompose finite-dimensional representations of compact groups, and has
a rigorous performance guarantee. Moreover its runtime beats state-of-the-art algo-
rithms in certain regimes.

My interest in this problem comes from the solution of semi-definite programs
(SDPs). Semi-definite programs are a class of optimization problems defined over the
cone of positive semidefinite matrices in Cn×n. Their solution is known to be efficient.
However, some applications of SDPs in quantum information require the solution of
high-dimensional SDPs—that is, SDPs whose dimension n is prohibitively large. The
goal is to produce a practical tool for dimensional reduction in SDPs. In this way,
this research program aimed to both produce an efficient algorithm for the claimed
dimensional reduction, and a performant implementation of it.

It is known that one can exploit symmetries of the SDPs to achieve dimensional
reductions [Val09]. Moreover, in recent years several algorithms have been proposed
for this purpose [PP20, MM11, CL20, MKKK10]. These algorithms consider the more
general problem of decomposing matrix ∗-algebras. However, they have large runtimes
as a function of n. Arguably, one could hope that if the symmetry being exploited arises
from a group action, then simpler and faster algorithms could be obtained. In this case,
rather than solving the more general problem of decomposing matrix ∗-algebras, one
is interested in decomposing unitary group representations.

A foundational result in this regard is the variant of Dixon’s algorithm [Dix70]
analyzed in Ref. [BF91]. The decompositions obtained using this algorithm are guar-
anteed to be accurate, but its runtime also increases rather steeply, scaling as O(n5).

In Chap. 5, I present a method for decomposing representations of compact groups.
This algorithm, RepLAB, is presented in [RMMB19] and was coded by my colleagues
in [RB18]. RepLAB shares similarities with Dixon’s algorithm, which are discussed
in that same chapter. These similarities notwithstanding, RepLAB has a considerably
shorter runtime of O(n3). This comes at a price: as opposed the variant of Dixon’s
algorithm studied in [BF91], is not guaranteed to give correct solutions. (However,
RepLAB has been observed to work well in practice.) The proof of such a guarantee
would be hindered by the facts that: 1. It would require knowledge of the eigenvalue
statistics of finite dimensional random matrices (these results are typically only known
asymptotically). 2. Although its working principle is simple, the actual workflow of
RepLAB is rather involved due to runtime optimization.

To provide a fuller picture on the correctness of RepLAB outputs, I have used two
approaches. One, used in Sec. 5.4.2, is to give evidence that RepLAB’s working prin-
ciple provides accurate decompositions. Here, this evidence requires as an assumption
that finite-dimensional random matrices have sufficiently well separated eigenvalues.
This is subsequently checked empirically in Sec. 5.4.4. In this way, Chap. 5 gives rea-
son to believe that RepLAB’s output are close-to-exact representation decompositions.
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However, this chapter falls short of giving a rigorous proof of this.
The second approach, used in Chap. 6, is a response to this lack of a proof. In

that chapter, an efficient certifying algorithm is provided: It takes a decomposition of
RepLAB as an input and certifies whether each block is “approximately invariant” and
“close to irreducible.” Here, a projector is approximately invariant if there exists a sec-
ond projector in its neighborhood which is exactly invariant. Moreover, it is close to
irreducible if that invariant projector in the neighborhood projects onto an irreducible
representation. I coded this certifying algorithm in [MM21] and present the most im-
portant features of this code in Chap. 7. Moreover, I benchmark the runtime of this
algorithm on some representative examples of group representations in Sec. 7.2. These
tests simultaneously benchmark the accuracy of RepLAB decompositions, which, as
expected, are found to have a high quality.
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Part I

Stabilizer representation theory
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1 Intoduction to Part I and summary of its results

The stabilizer formalism was the first framework proposed to implement quantum error
correction—to this day, stabilizer codes remain by far the best understood methods for
this. From these origins, the stabilizer formalism has grown to encompass a myriad of
other applications: classical simulation of quantum computing [BBC+19, RLCK19,
HL19, BK19, HMW20, HL21, GGKS20, Qas21, Gro06], certification of quantum
systems [KLR+08, RKK+18, HWFW19, MGE11, HFGW18, MGJ+12, KdSR+14,
DHW19, HF17, KL17], or matrix reconstruction [KZG16b] are some examples.

In this chapter I will introduce the results derived in Part I of this thesis.
Chapter 2 presents results on tensor power representations of the Clifford group

and the closely-related oscillator representation. The results presented here extend
the Theta correspondence to the Clifford group. In particular, the irreps appearing in
Clifford t-th tensor powers are labeled by the characters of a sequence of orthogo-
nal groups O(Ztid ) of dimensions ti ≤ t. In essence, these results say that the class
of Calderbank-Shor-Steane (CSS) codes introduced in Ref. [GNW21], together with
the η duality formalism of [GH17], may be used to understand Clifford tensor power
representations.

Chapter 3 uses the structure of the commutant of Clifford tensor power represen-
tations, derived recently in Ref. [GNW21], to efficiently construct unitary t-designs.
The circuits realizing these designs are random Clifford circuits with certain inter-
leaved single-qubit non-Clifford gates. The main result is that only ∼ t4 non-Clifford
gates are sufficient for this. Strikingly, this number is independent of the system size
n. Because the number of Clifford gates scales as ∼ n2, this result states that a van-
ishingly small density of non-Clifford gates is sufficient to upgrade random Clifford
circuits from 3-designs to approximate t-designs.

Throughout this introductory chapter I will focus on the simplest scenarios, leaving
the discussion of results in their full generality to later chapters.

1.1 The stabilizer formalism

Here I introduce some basic concepts needed to understand the results of this thesis. A
much more in-depth discussion of the stabilizer formalism is found in [Hei21].

The foundational object in the formalism is the Pauli group (also known as the
finite Heisenberg or Heisenberg-Weyl group, or as the extra special p-group when d =

p is an odd prime). Consider the displacement operators acting on a Hilbert space
H = (Cd)⊗n, for d prime, as

X(a) |x〉 = |x+ a〉 , Z(b) |x〉 = ωb·x |x〉 ,

7



where a, b, x ∈ Znd (thus, x + a is modulo d), and ω = exp(2iπ/d). Then, the Pauli
group is

P :=
{
τaZ(b)X(c) | a ∈ ZD, b, c ∈ Zd

}
,

where τ = (−1)d exp(iπ/d) and D = 4 if d = 2 and D = d otherwise.1 We denote
W (b, c) := Z(b)X(c). Pauli matrices obey the commutation relation W (u)W (v) =

ω[u,v]W (v)W (u), where

[u, v] = uX · vZ − uZ · vX , u, v ∈ Z2n
d .

This implies that P/〈τ1〉 ' Z2n
d . The Clifford group Cl ⊂ U(dn) is a finite group

which, up to phases, is the normalizer of the Pauli group in U(dn). That is,

{eiϕU | U ∈ Cl, ϕ ∈ [0, 2π)} = {U ∈ U(dn) | UPU † = P}.

More precisely, the Clifford group is generated by P , together with the Hadamard gate

H =
1√
dn

∑

a,b∈Znd

ωa·b |a〉〈b| ,

acting on any qudit, the phase gate

Pτ =
∑

a∈Znd

τa·a |a〉〈a| ,

acting on any qudit as well, and the the control-add gate

CADD =
∑

a,b∈Znd

|a, a+ b〉〈a, b|

acting on any pair of qudits.
When d is odd, the Clifford group contains a subgroup isomorphic to the finite

symplectic group Sp(Z2n
d ) := {g ∈ Gl(Z2n

d ) | [g · , g · ] = [ · , · ]} [Gro06]. The
unitaries of this subgroup, denoted µ(S) for S ∈ Sp(Z2n

d ), define a representation of
the symplectic group known as the oscillator representation or the Weil representation.
The oscillator representation acts on Pauli operators as

µ(S)W (v)µ(S)† = W (Sv).

When d = 2, in contrast, this construction fails: there is no subgroup G of Cl isomo-

1This notational convention has been chosen in order to treat the slightly different qubit and odd
qudit cases uniformly.
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prhic to the symplectic group [BRW61, Zhu16] which complements P (ie. which has
a trivial intersection with P and for which Cl = P ·G).

A stabilizer group is an Abelian subgroup of P with no pure phases eiϕ1 other than
the identity (ϕ = 0). The invariant space of a stabilizer group is a stabilizer code. That
is, if S ⊂ P is a stabilizer group, then the projector onto the corresponding code is
given by

PS =
1

|S|
∑

W∈S
W.

If S has k generators, S ' Zkd and the code has dimension trPS = dn−k.
The oscillator representation can be defined analogously as a representation µR of

Sp(R2n). While this thesis does not deal directly with this representation, some of the
results presented have been inspired by this continuous oscillator representation. In
particular, the results of Chap. 2 can be seen as generalizations of the Theta correspon-
dence between Sp(R2n) and O(Rt). I would like to highlight this connection, so let us
shortly introduce µR. For this, Folland’s classic textbook [Fol89] will be followed.

Consider a quantum system with Hilbert space HR = L2(Rn), and define the dis-
placement operators by

WR(v) = exp
(
i(vX · P̂ − vP · X̂)

)
, v = (vX , vP ) ∈ R2n,

where X̂, P̂ are the canonical position and momentum operators,

(X̂ψ)(x) = (x1ψ(x), . . . , xnψ(x)), 2πi(P̂ψ)(x) = ∇ψ(x).

The displacement operators generate a representation of the (continuous) Heisenberg
group. Similar to the discrete case presented above, they obey the commutation rela-
tion

WR(v)WR(u) = exp(2πi[v, u])WR(u)WR(v),

where [v, u] = vX · vP − vP · vX . There exists a map µR : Sp(R2n)→ U(HR), called
the metaplectic representation, satisfying

µR(S)µR(S ′) = ±µR(SS ′), (1)

and,

µR(S)WR(v)µR(S)† = WR(Sv).
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The ± factor in eq. (1) implies that µR is not a representation of Sp(R2n) itself, but
rather of a double cover called the metaplectic group (hence the name). When dealing
over a finite field, in contrast, µ is a representation of Sp(Z2n

d ) itself. Because of
this I will omit this technical detail as it is not important for the present discussion.
Refs. [Fol89, KV78] give a rigorous treatment of this construction.

1.2 Tensor power representations

A considerable amount of the work in my thesis was devoted to studying two interre-
lated objects:

1. tensor power representations of the oscillator representation µ,

µ⊗(r,s) : S 7→ µ(S)⊗r ⊗ µ̄⊗s(S), S ∈ Sp(Z2n
d ),

where µ̄(S) is the complex conjugate of µ(S),

2. tensor power representations of the defining representation of the Clifford group,

∆r,s : U 7→ U⊗(r,s), U ∈ Cl.

This line of work is presented in Chap. 2. Throughout this introduction, I will focus
on the case s = 0 for ease of exposition. Furthermore, let ∆r,0 =: ∆r.

Low tensor powers, with r + s =: t ≤ 4 have been fully understood in the past
few years [ZKGG16, Zhu17, Web16]. These results have lead to several applications,
for example in the simulation of quantum computing [BBC+19], in quantum state dis-
tinction [KZG16a], quantum device characterization [RKK+18], and low-rank matrix
recovery [KZG16b]. The variety of these applications have motivated me to elucidate
the structure of these representations for larger values of t.

1.2.1 The oscillator representation and Theta correspondence

The oscillator representation and its tensor powers have interested representation the-
orists for a long time now. These representations give rise to the Theta correspon-

dence [How89a, How89b, KV78, GH17], also known as Howe duality, whose study
has shed light on e.g. invariant theory [How89a], the structural properties of classical
groups [How10] and on automorphic forms [Gel06].

Infamously, the Theta correspondence fails to hold between the finite symplectic
and orthogonal groups. This has not deterred work on finding some correspondence
that works here [AKP16, AM93, AMR96, How73, Sri79]. Given the rich theory that
arises from the Theta correspondence, one would hope to extend these results to the
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finite cases as well. Recent work on the finite cases has found that a similar duality –
called the η correspondence – holds on certain “maximal rank” representations within
the “stable range” t ≤ n [GH17, GH21]. Further work has considered generalizations
of the η correspondence beyond the stable range [Pan20]. My work [MMG21a] clari-
fied the structure of “rank-deficient” representations, which was left open in the works
cited above. Furthermore, it provides a rigorous connection to the representation the-
ory of Clifford tensor power representations. This work laid the conceptual foundation
on which my second contribution, Ref. [MMG21b], was built.

Tensor powers of µR and the Θ correspondence. To mathematically motivate
the study of µ⊗t, let us briefly recall the duality between Sp(R2n) and O(Rt). Here,
the tensor power representation µ⊗tR , acting on the Hilbert space H⊗tR , is considered.
The classical result from Refs. [KV78, How89a] implies that if t ≤ n the commutant
of the representation µ⊗tR is spanned by the representation RR of O(Rt) defined on
L2(Rt ⊗ Rn) ' H⊗tR by

(RR(O)ψ)(F ) = ψ((O−1 ⊗ 1Rn)F ), F ∈ Rt ⊗ Rn.

As a consequence, there exists an injective function Θ : Irr O(Rt) → Irr Sp(R2n) for
which

H⊗tR '
⊕

τ∈Irr O(Rt)

τ ⊗Θ(τ),

where the decomposition is as a O(Rt) × Sp(R2n) representation. In this equation
τ is a representation space of O(Rt), and similarly Θ(τ) is a representation space of
Sp(R2n). This way, studying tensor powers of µR provides a connection between the
representation theory of the orthogonal and symplectic groups.

Tensor powers of µ. As mentioned before, the Theta correspondence does not
hold between symplectic and orthogonal groups over a finite field. To understand this
statement, it is instructive to look at the contribution to this field from the physics
point of view. Ref. [GNW21] characterizes the commutant of Clifford tensor power
representations. A very mild tweak of their proofs (see [MMG21b, Prop. III.1]) gives
an analogous characterization of the commutant of µ⊗t.

The representation µ⊗t acts on the following Hilbert space:

Hn,t := ((Cd)⊗n)⊗t =

Cd ⊗ . . . ⊗ Cd

⊗ Cd ⊗ . . . ⊗ Cd

... . . . ...
⊗ Cd ⊗ . . . ⊗ Cd,

(2)
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where the grid has t rows and n columns. Each column corresponds to a Hilbert
space (Cd)⊗t. Two types of operators on this column space play a prominent role
in [GNW21]. The first is a representation r of the orthogonal group O(Ztd) given by

r(O) |x〉 = |Ox〉 , x ∈ Ztd.

The second set consists of certain projectors onto CSS codes. A subspace N ⊂ Ztd is
called isotropic if N ⊂ N⊥ := {v ∈ Ztd | v · u = 0 ∀ u ∈ N}. The code projectors
then correspond to

πN =
1

|N |2
∑

u,v∈N
Z(u)X(v).

The relevant restatement of the main result in [GNW21] is the following.

Theorem 1.1. Let t ≤ n. The commutant of the representation µ⊗t is generated as an

algebra by the set

{PN , R(O) | N isotropic, O ∈ O(Ztd)}

where PN := π⊗nN , R := r⊗n. Furthermore, the following set

{PNR(O) | N isotropic, O ∈ O(Ztd)}

is a basis for this commutant.

This result provides an intuition as to how the Theta correspondence fails in this
finite case. Namely, it fails precisely because of the presence of the projectors PN .
Conceptually, it is pleasing that this duality fails precisely because of an object which
has no clear analog in the real case—Rt has no isotropic subspaces. Throughout the
research program developed in Chap. 2, I have built on this intuition, using the codes
PN to understand the detailed structure of tensor power representations.

It is clear that, on the orthocomplement of all code spaces,

H0 := span{CN := range PN | N isotr.}⊥,

the commutant of µ⊗t is spanned by the matrices

ΠH0R(O)ΠH0 ,

where ΠH0 is the orthogonal projector onto H0. Furthermore, because of the relation
R(O)PNR(O)† = PON , H0 is an invariant subspace of R. On this invariant subspace
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it acts as some representation R0,

R0(O) := ΠH0R(O)ΠH0 .

This implies that the commutant of µ⊗t|H0 is spanned by images of the representa-
tion R0. Thus, a similar equation appears here: there exists an injective function
η : Irr O(Ztd)→ Irr Sp(Z2n

d ) such that

H0 '
⊕

τ∈Irr O(Ztd)

τ ⊗ η(τ), (3)

as a O(Ztd)× Sp(Z2n
d ) representation.

This is, in essence, equivalent to the main result of Ref. [GH17]. This reference
argues differently, without mentioning the codes PN explicitly. Instead, the “organiz-
ing principle” it uses is a notion of rank for representations of the symplectic group.
Namely, given a representation ρ of Sp(Z2n

d ), it considers the restriction of ρ to the
subgroup

N :=

{(
1n A

0 1n

) ∣∣∣ A ∈ Symn

}
⊂ Sp(Z2n

d ),

where Symn is the space of n× n symmetric matrices over Zd. That is, it looks at the
representation {ρ(S) | S ∈ N}.

Because N is Abelian and isomorphic to Symn (seen as an additive group), this
restricted representation decomposes into one dimensional blocks,

ρ

(
1 A

0 1

)
'

⊕

B∈Symn

χ⊕mBB (A),

where χB(A) = ωtrAB is an additive character. The rank of ρ is then defined as

rk ρ = max
B

rankB s.t. mB 6= 0.

Ref. [GH17] proves that rk µ⊗t = t and its main result is the following.

Theorem 1.2. Let t ≤ n. Consider the subspace H0 spanned by all irreducible

components in Hn,t which have rank t. Then, there exists an injective function η :

Irr O(Ztd)→ Irr Sp(Z2n
d ) for which

H0 '
⊕

τ∈Irr O(Ztd)

τ ⊗ η(τ), (4)

as a O(Ztd)× Sp(Z2n
d ) representation.
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Ref. [GH17] left open the question of what the structure of lower rank represen-
tations is. A strong indication that this structure can be understood through the codes
PN is the glaring similarity between eqs. (3) and (4). My first contribution [MMG21a]
formalizes this idea. To understand its main result, two technical remarks are neces-
sary.

First, given an isotropic subspace N ⊂ Ztd consider the subgroup

ON := {O ∈ O(Ztd) | ON = N}.

This subgroup acts naturally on the space N⊥/N . Furthermore, the space N⊥/N in-
herits a quadratic form by restricting the dot product (since, for any v ∈ N⊥ and
u ∈ N , it holds that (v + u) · (v + u) = v · v). This inherited quadratic form is pre-
served by ON , so the action of this group on N⊥/N gives a canonical homomorphism
ON → O(N⊥/N). Because of this, we may inject Irr O(N⊥/N) ↪→ Irr ON . Sec-
ond, because of a result commonly known as “Witt’s lemma,” for every pair N,N ′ of
isotropic subspaces of the same dimension, the groups ON and ON ′ are conjugate in
O(Ztd). In particular, O(N⊥/N) ' O(N ′⊥/N ′).

Theorem 1.3. Let t ≤ n. Then, every subrepresentation of µ⊗t with rank k < t is

contained in the span of all codes PN , that is, in span{CN | N isotr.} = H⊥0 . Further-

more, consider any sequence of isotropic subspaces N1, . . . , Nm(t), with dimNl = l

and m(t) being the maximal dimension of an isotropic subspace. That is, the sequence

contains one representative subspace Ni for each possible dimension i.

Then, as a representation of O(Ztd)× Sp(Z2n
d ),

Hn,t =

m(t)⊕

l=1

⊕

τ∈Irr O(N⊥l /Nl)

Ind
O(Ztd)

ONl
(τ)⊗ η(τ), (5)

where η is as in Thm. 1.2. Here, Ind
O(Ztd)

ONl
(τ)⊗ η(τ) is the induced representation of τ

from ONl to O(Ztd).

While I have presented this result here in relation to Thm. 1.1, the proof of Thm. 1.3
is formally independent the former. Its proof, rather, relies on the application of two
ideas. The first, is a structural property of the code spaces CN , namely,

CN ' µ⊗(r′,s′), (6)

where s′ = dimN mod 2 ∈ {0, 1} and r′ = t− 2− s′. The second, is an adaptation
of a result from Fourier analysis—if f ∈ Ck → C is supported on a subspace V , then
its Fourier transform is invariant under V⊥ translations. Intuitively speaking, if f is
sparse, its Fourier transform has a large symmetry group. The idea of the adaptation
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is the following. Consider Hilbert space as a function space, Hn,t ' C[Zn×td ]. A short
calculation shows that subrepresentations ρ with rank k < t are only supported on
matrices M ∈ Zn×td of rank ≤ k. Then, for any vector Ψ ∈ ρ, its Fourier transform,

µ⊗t
(

0 1

−1 0

)
Ψ ∈ ρ,

has a rather restricted support. Therefore, Ψ itself can be expected to be invariant
under a large class of translations. In the final step of the proof, it is shown that these
invariances correspond exactly to lying on the span of the CSS code spaces {CN}N .

This work provides a bridge between the representation theory of oscillator tensor
powers, and tensor powers of the Clifford group (see [MMG21a, Prop. 4.2]). This
was important for my purposes since it connected the widely-studied Theta correspon-
dence, to the less-studied but more physically interesting representation theory of the
Clifford group. This correspondence is explicitly constructed in the proof of the fol-
lowing proposition.

Proposition 1.1. Let t mod d 6= 0, and define st = 0 if t is a square in Zd, and

otherwise st = 1. Recall that the representation ∆t,0 of Cl has the form ∆t,0(U) =

U⊗t. Then, there is a one-to-one correspondence between the isotypes in ∆t,0 and

those in µ⊗(t−2−st,st).

In my later contribution [MMG21b], the insights gained in [MMG21a] were used
to directly study Clifford tensor powers—thus relieving the need for Prop. 1.1. I have
decided to anyway highlight this theorem as it might be mathematically interesting,
connecting, e.g., the research program on Clifford invariants [NRS06, NRS01, BOZ21]
– which has met success in coding theory – to Howe duality.

1.2.2 Clifford tensor powers

The representation theory of oscillator tensor powers is mathematically interesting in
its own right. For quantum information purposes, however, the most relevant object is
the Clifford group and its representation theory. Indeed, the question that started the
work [MMG21a] was how do tensor power representations of the Clifford group de-

compose? With regard to this question, Ref. [MMG21a] left several imporant aspects
unanswered:

1. How do tensor powers of the qubit Clifford group decompose? The qubit case –
arguably the most important in quantum information theory – can not be tackled
using the methods of [MMG21a]. (Recall that the qubit Clifford group does not
define an oscillator representation in this case—this seemingly places a “dead
end” sign in front of any such attempt.)
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2. How do t-th tensor powers of the Clifford group decompose when t is a multiple

of d? Whenever this is the case, Prop. 1.1 can not be used to decompose such
representations.

3. The proof of the main theorem in Ref. [MMG21a] does not use the structure of
the commutant of tensor power representations given in [GNW21] (Thm. 1.1).
How can one use Thm 1.1 to decompose Clifford tensor power representations?

Such an approach would deal directly with Clifford representations, rather than
referring them back to symplectic ones (as in Prop. 1.1). Moreover, it would
have a chance of working on the qubit case, given that [GNW21] holds in that
case as well.

In [MMG21b], I address these questions. In particular, a full decomposition of Clifford
tensor power representations – one that works for the cases highlighted in questions 1.
and 2. – is provided. The proof of the main theorem, furthermore, heavily relies on the
results of [GNW21].

Thm. 1.1 is a mild alteration of the main result of [GNW21], which I have chosen
in order to motivate the η correspondence of [GH17]. In this section, however, it is
convenient to present that result in its original form.

For this, let me first remark three technical details. Let 1t = (1, 1, . . . , 1) ∈ Ztd be
the all-ones vector. First detail: In the following, I will denote by O(Ztd) the group of
matrices O for which

(Ov) · (Ov) = v · v mod D.

Notice that this group is simply the orthogonal group in the case where d is odd, and
if d = 2 it is a strict subgroup of the orthogonal group, ie. the group of matrices
O ∈ Gl(Zt2) for which

(Ov) · (Ov) = v · v mod 2.

Moreover, the orthogonal stochastic group is the subgroup of O(Ztd) which preserves
the all-ones vector,

St(Ztd) := {O ∈ O(Ztd) | O1t = 1t}.

Second, the notion of isotropic subspaces is slightly stronger for the qubit case. Namely,
for any d, a subspace N ⊂ Ztd is isotropic if

v · v = 0 mod D, ∀ v ∈ N.

In particular, isotropic vectors in Zt2 are supported on 4k components, for some k.
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Third, an isotropic subspace N ⊂ Ztd is stochastic if

1t · v = 0 mod d ∀ v ∈ N.

The main result of [GNW21] reads:

Theorem 1.4. Let the operators R(O) and PN be as in Thm 1.1. Then, the commu-

tant of the t-th tensor power representation of the Clifford group is generated, as an

algebra, by

{R(O), PN | O ∈ St(Ztd), N stoch.}.

Moreover, the set

At := {R(O)PN | O ∈ St(Ztd), N stoch.}

forms a basis for this algebra.

To motivate the results in this section, we may argue analogously to the discussion
leading up to eq. (3). LetH0 be given by

H0 := span{CN | N stoch. isotr.}⊥,

notice that we now consider only code spaces corresponding to stochastic isotropic
subspaces N . As before, H0 is an invariant subspace of R(O), and PNH0 = 0 for all
isotropic stochastic N . Furthermore it is an invariant subspace of the Clifford action
(because each code space CN is itself invariant). Therefore, by Thm. 1.4 the commu-
tant of the Clifford action on H0 is spanned by the subrepresentation {R0(O) | O ∈
St(Ztd)}, where R0 := R|H0 . It follows that there exists an injective function η :

Irr St(Ztd)→ Irr Cl such that

H0 '
⊕

τ∈Irr St(Ztd)

τ ⊗ η(τ), (7)

as a St(Ztd)× Cl representation.
This argument tells us that it might be possible to directly decompose Clifford

tensor powers by analysing the action of Cl on the code spaces CN . It also hints at
the possibility that extending the theory of rank to the Clifford group might help in
understanding these tensor powers. These hints lead me to the ideas that are behind
the main results in [MMG21b].

The pièce de la resistánce of this work is Thm. 1.5. There I use the following

17



notation,

Gm : = {N ⊂ Ztd stoch. isotr. | dimN = m, 1t /∈ N},
G0
m : = {N ⊂ Ztd stoch. isotr. | dimN = m, 1t ∈ N}.

Moreover, let N be an stochastic isotropic subspace and v ∈ N⊥. Then, I denote
[v]N := {v + a | a ∈ N} ∈ N⊥/N . The space N⊥/N inherits an inner product
through

[u]N · [v]N := u · v mod D.

This product is well defined: for all a, b ∈ N ,

(u+ a) · (v + b) = u · v mod D.

The group St(N⊥/N) is defined as the subgroup of Gl(N⊥/N) which preserves the
inherited dot product and stabilizes [1t]N , i.e.

St(N⊥/N) := {g ∈ Gl(N⊥/N) | g[1t]N = [1t]N , (g[u]N) · (g[v]N) = [u]N · [v]N ∀ u, v ∈ N⊥}.

for any stochastic isotropic subspaceN ⊂ Ztd, the spaceN⊥/N inherits a quadratic
form qN from qr,s Notice that G0 is empty whenever t is not a multiple of D (in which
case 1t · 1t 6= 0 mod D).

Theorem 1.5. Let t ≤ n. For each m such that Gm is non-empty, let Nm ∈ Gm
be arbitrary. Similarly, let Mm ∈ G0

m whenever G0
m is non-empty. Then, there exist

injective functions η, η0,

η :
⋃

Nm

Irr St(N⊥m/Nm)→ Irr Cl, η0 :
⋃

Mm

Irr St(M⊥
m/Mm)→ Irr Cl,

such that

Hn,t '
(⊕

Nm

⊕

τ∈Irr St(N⊥m/Nm)

Ind
St(Ztd)

StNm
(τ)⊗ η(τ)

)

⊕
(⊕

Mm

⊕

τ∈Irr St(M⊥m/Mm)

Ind
St(Ztd)

StMm
(τ)⊗ η0(τ)

)
.

Furthermore, range η ∩ range η0 = ∅.

The most important ingredient to the proof of Thm. 1.5 is a generalization of the
argument above, which studies the structure of the basis At. This basis forms a semi-
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group, as proven in [GNW21], with the product laws given by

R(O)PNR(O)† = PON , PN1PN2 = R(ON1,N2)PN(N1,N2),

whereN(N1, N2) = 〈N⊥1 ∩N2, N2〉 ⊇ N2, andON1,N2 is given in [GNW21, eq. (4.24)].
We use this product law to prove the following lemma.

Lemma 1.1. LetN be a stochastic isotropic subspace with t−2 dimN ≤ n. Consider

the subgroup StN := {O ∈ St(Ztd) | ON = N}, and the space

HN := CN ∩ span{range PN ′ | N ⊂ N ′}⊥.

In words, HN is the orthocomplement of all proper subcodes range PN ′ ⊂ CN within

CN itself. Then, the action of StN on CN preserves HN and gives rise to the ho-

momorphism StN → St(N⊥/N). Moreover, there exists an injective function ηN :

Irr St(N⊥/N)→ Irr Cl such that, as a StN × Cl representation,

HN '
⊕

τ∈Irr St(N⊥/N)

τ ⊗ ηN(τ).

This lemma tells us that each code gives rise to its own “lower rank” version of
eq. (7). This lemma can be seen as generalizing the spirit of eq. (6). Namely, that
equation together with the formalism of [GH17] gives a similar result: each code CN
gives rise to an eta correspondence ηN of rank t− 2 dimN . Lem. 1.1 translates this to
the Clifford case and works uniformly for all d.

Here it is important to note two things. First, the codes CN form tensor power
representations whenever d is odd or whenever d = 2 and t is not a multiple of 4

(see [MMG21b, Lems. III.4, III.5]). Second, the proof of this statement fails whenever
d = 2, t = 4k and 1t ∈ N (see. [Rem. III.1][MMG21b]). Because of this, this lemma
allows us to analyze code spaces associated to spaces N which contain the all-ones
vector—something that Lems. III.4 and III.5 did not allow for.

To obtain the main theorem from Lem. 1.1, the theory of rank – developed in [GH17,
GH20] – was generalized to the Clifford group. We may thus assign a rank rk ρ

to any Cl representation ρ. The details of this generalization are covered in Sec. IV
of [MMG21b]. Having defined the rank of a Clifford representation, I proceeded to
generalize the proof techniques used in [GH17]. In particular, Ref. [MMG21b] shows
that rk CN = t− 2 dimN and thatHN ⊆ CN is the sum of all irreducible blocks with
maximal rank.

This development is important in two regards. The first aspect is practical: it al-
lows us to leverage the proof of [MMG21a, Lem. 3.3] in order to show the structure
of Cl-isotypes as St(Ztd)-representations. Namely, the isotype corresponding to a Cl
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representation η(τ) with rank t− 2m is

Ind
St(Ztd)

St(N⊥/N)
(τ)⊗ η(τ),

where N is a stochastic isotropic subspace with dimN = m, and 1t ∈ N if and only
if P ⊆ ker η(τ). The second aspect is more conceptual: it suggests that the tools used
to study representations of the finite symplectic groups may be generalized to study
the Clifford group as well. This could be an exciting avenue—using the wide array of
tools that have been developed to study the repesentation theory of Sp(Z2n

d ) in order to
clarify the much-less studied representation theory of the Clifford group.

1.3 Efficient approximate unitary designs

The Clifford group has received attention from the quantum information and the repre-
sentation theoretical communities because its property of being a unitary design [Zhu17,
ZKGG16, Web16, KG15, GAE07], and its relation to the classification of finite group
designs [BNRT20]. A set of unitaries {Ui ∈ U(d)}Mi=1 is said to be a unitary t-design

if it holds that

1

M

∑

i

U
⊗(t,t)
i =

∫

U(d)

dµHaar(U)U⊗(t,t), (8)

where U⊗(t,t) = U⊗t ⊗ Ū⊗t, as before, and where µHaar is the Haar measure on U(d).
If the set {Ui} forms a group then it is called a unitary t-group.

The defining condition, eq. (8), becomes rather restrictive in the case of unitary
t-groups. Indeed, in this case, the equation translates to the representation-theoretical
condition that the representation Ui 7→ U⊗ti has the same decomposition as the same
tensor power representation of the unitary group. Ref. [BNRT20] formalizes this idea,
showing that there are few families of unitary 2- or 3-groups, and only a finite number
of instances of higher order unitary t-groups. Prominently, the Clifford group is among
the few unitary 3-groups.

The fact that the Clifford group is a unitary 3-design has been of interest in the re-
cent years in quantum computing [Zhu17, Web16, KG15]. Recently, the fourth tensor
power representation of the Clifford group was studied in detail in [ZKGG16]. There,
it was shown that while the Clifford group is not a 4-design, it is sufficiently similar to
one to allow many applications such as matrix reconstruction [KZG16b] and quantum
state discrimination [KZG16a]. This work gives the intuition that although the Clifford
group fails to be a higher-order design, it nevertheless may be used as a starting point
from which to arrive at higher-order designs.

Furthermore, by describing the structure of the commutant of the fourth tensor
power representation of the Clifford group (∆4 in the notation of Sec. 1.2.2), this work
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shows how to produce complex projective 4-designs. In particular, it proposes an al-
gorithm that generates a constant number of Clifford orbits {U |ψi〉}i,U , where i labels
the different orbits, which satisfy

Ei,U [(U |ψi〉〈ψi|U †)⊗4] =
1

tr PSym

PSym, (9)

where PSym is the projector onto the totally symmetric vectors (i.e. vectors in (C2n)⊗4)

which are invariant under permutations of the 4 tensor factors). A follow-up work,
[GNW21], studies the commutant of higher tensor power representations of the Clif-
ford group. There, it is proven that there exist certain small families of Clifford orbits –
with a number of orbits only depending on t and not n – that form complex projective
designs. The question of constructing higher order unitary designs based on the Clif-
ford group has, however, been left open in the literature. Chap. 3 provides an answer
to this question, providing an explicit construction of approximate unitary t-designs.

A set {Ui} of unitaries is an ε-approximate unitary t-design, if it satisfies

∥∥Ei[Ad⊗tUi ]− PHaar]
∥∥
� ≤ ε, (10)

where AdU( · ) = U · U † is the quantum channel corresponding to U and

PHaar := EU∼µHaar
[Ad⊗tU ]

is the projector onto the commutant of the t-th tensor power representation of U(2n).
In eq. (10), we used the diamond norm, defined on quantum channels on an n-qubit
system C2n by

‖A‖� = max
ρ
‖(A⊗ 1)(ρ)‖1,

where the maximization is over 2n-qubit states ρ ∈ End(C2n⊗C2n), and where ‖ · ‖1

is the Schatten 1-norm or trace-norm.
Approximate t-designs are arguably easier to construct explicitly. Moreover, ap-

proximate designs are sufficient for most applications in quantum information process-
ing. A fast way to convince oneself that this is true is to notice that any application that
would require implementing an exact design, would be out of reach as soon as even a
small amount of noise is present in the quantum computer.

The seminal paper [BHH16] shows that local random quantum circuits of depth
Õ(n2t9 log(1/ε)) are ε-approximate unitary t-designs. In other words one may sample
from approximate unitary designs effectively. This result is in contrast to the task of
sampling Haar-random unitaries—here, a crude lower bound for the circuit length k is
given by requiring log vol(U(2n)) ≤ log ε+ k log(# local gates), giving k ≥ O(2n/n).
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In a nutshell: while Haar random unitaries put the “exp” on “expensive,” approximate
t-desings can be cheap.

In Chap. 3 this result is improved upon. Rather than starting from local ran-
dom quantum circuits, the basic building blocks here are random Clifford unitaries.
The main result is an explicit construction of random quantum circuits that give ε-
approximate unitary t-designs. These quantum circuits are dominated by Clifford
gates, using a number of single-qubit non-Clifford gates that depends only on t and
ε, but not on n. Translating this into the language of quantum computing with magic
states, the amount of magic required for sampling from an approximate unitary design
is independent of the size n of the quantum computer. Because magic is a valuable and
costly resource in quantum computers, this construction provides an advantage over
the circuits considered in [BHH16], whose∼ n2 gates are non-Clifford with unit prob-
ability. Furthermore, several properties of these circuits may in principle be efficiently
simulated by low stabilizer-rank decomposition methods [BBC+19].

Consider K-interleaved random Clifford circuits of the form U = KkUk · · ·K1U1,
where Ui is a random n-qubit Clifford and Ki is sampled uniformly from {1, K,K†}.
Here k is called the depth of the random circuit. Then the main result of Chap. 3 is the
following.

Theorem 1.6. Let T be a non-Clifford single-qubit gate. Then, there exist constants

C1(K) and C2(K) such that, K-interleaved random Clifford circuits of depth

k ≥ C1(K) log2(t)(t4 + t log(1/ε))

are ε-approximate t-designs for all n ≥ C2(K)t2.

The proof of Thm 1.6 relies heavily on the characterization of the commutant of
∆t given in [GNW21] (cf. Thm. 1.4). Consider the average quantum channel Φk for a
K-interleaved random Clifford circuit of depth k. Denoting,

PCl =
1

|Cl|
∑

U∈Cl

Ad⊗tU , R(K) =
1

3
(Ad⊗tK + Ad⊗t

K† + 11)⊗ 1n−1,

we can see that

Φk = (PClR(K))k.

Notice that PCl projects onto the commutant of the t-th tensor power representa-
tion of the Clifford group. Because the Clifford group together with K generate
U(2n) [NRS01], it is clear that

lim
k→∞

(PClR(K))k = PHaar.
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Indeed, by the same argument, the Hermitian operator PClR(K)PCl has PHaar exactly
as the eigenspace corresponding to the eigenvalue of one, and all of its other eigen-
values are smaller than one. From this point of view, this proof gives a bound on the
speed with which this convergence happens in the diamond norm.

Here I summarize the proof. It first proceeds by finding an alternative formula
for PCl, one that is arguably more workable. The basis At for range PCl found
in [GNW21] (cf. Thm. 1.4) is asymptotically orthogonal for high values of n. Write
the normalized basis elements in At as Ai, where i = 1, . . . , |At|. Then,

trA†iAj ∼ 2−n, i 6= j.

Because of this, one may use Gram-Schmidt to find an orthonormal basis Ei for
range PCl, rather close to the basis Ai. Namely, in [HMMH+20, Lem. 4] a Gram-
Schmidt transformation




G1,1 · · · G1,|At|
. . .

G|At|,1 · · · G|At|,|At|







A1

...
A|At|


 =




E1

...
E|At|




is constructed, whose off-diagonal elements are exponentially small in n.
Using this basis, we may express

Φk =
(∑

i

|Ei〉〈Ei|R(K)
)k
.

The basis At contains as a subset the restricted representation R(St), where St
is the subgroup of permutations in St(Ztd). As shown in Chap. 3, without loss of
generality we may take E1, . . . , Et! to span this same subspace,

span{E1, . . . , Et!} = C[R(St)] = range PHaar,

where the right-hand-side equality follows by Schur-Weyl duality. This way,

‖Φk − PHaar‖� = ‖((PCl − PHaar)R(K))k‖�

=

∥∥∥∥∥∥

(∑

j>t!

|Ej〉〈Ej|R(K)

)k
∥∥∥∥∥∥
�

≤
∑

j1,...,jk>t!

∥∥ |Ej1〉〈Ejk |
∥∥
� ·

k−1∏

r=1

〈Ejr |R(K)
∣∣Ejr+1

〉

where the last inequality follows by using subadditivity of the diamond norm. Our
goal is, then, to bound the right-hand side of this inequality.
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To prove Thm. 1.6, the bound on |Gij| ([HMMH+20, Lem. 4], as mentioned above)
is carefully combined with bounds on

〈Ai|R(K) |Aj〉 , and,
∥∥ |Ai〉〈Aj| ‖�. (11)

The latter bounds follow from Lems. 2 and 3 in [HMMH+20]. The details of these
combinations are outside of the scope of this introductory chapter.
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2 Representations of the Clifford and symplecitc groups

This chapter has two sections. The first was published as [MMG21a]
Montealegre-Mora, F., Gross, D. (2021). Rank-deficient representa-

tions in the Theta correspondence over finite fields arise from quantum

codes. Representation Theory of the American Mathematical Society,
25(8), 193-223.

The second is a manuscript entitled The representation theory of Clifford tensor pow-

ers, written together with David Gross. This manuscript is currently in the final stages
of preparation and will be available at https://arXiv.org shortly after the pub-
lication of this thesis.

These two works belong to a same research program to understand the represen-
tation theory of the Clifford group and, in particular, tensor powers of its defining
representation.

The first work focuses one tensor power representations of the oscillator repre-

sentation of the finite symplectic group over odd characteristic. In particular, we
extend the η correspondence introduced in [GH17] to understand certain “maximal
rank subrepresentations,” to a full decomposition of the representation (cf. Sec. 2.3
of [MMG21a] for the relevant definition of rank). The connection between Clifford
and oscillator tensor powers is made in Sec. 4 of [MMG21a].

The main theorem in this first paper was inspired by the results of [GNW21]. These
results say, in a nutshell, that the commutant of an oscillator tensor-power representa-
tion is generated by two kinds of operators: 1. a representation of a finite orthogonal
group, 2. a set of projectors onto certain CSS quantum codes. Because of the presence
of these CSS projectors, the Theta correspondence between the symplectic and orthog-
onal groups does not hold in this scenario—that is, Howe duality breaks when consid-
ering the finite orthogonal-symplectic dual pair. Our main theorem in [MMG21a] is
a formalization of the idea that these CSS codes, together with the η correspondence
of [GH17], can be used to fully decompose oscillator tensor powers.

While our first paper was based on the intuitions gained in [GNW21], the proof
techniques were significantly different. Because of this, [MMG21a] holds in a slightly
different scenario than [GNW21]. Namely, it holds for symplectic groups over arbi-
trary finite fields of odd charactersitic, whereas [GNW21] holds over arbitrary prime
fields.

Our second work is the manuscript [MMG21b] currently in the final stages of
preparation. It was initially an effort to generalize the results of [MMG21a] to the
important case of characteristic 2 (that is, the case of the qubit Clifford group). In
the course of this work, however, we extended our previous results in several regards.
These are covered in the introduction of the paper. Importantly, the proof strategies
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used in this second work differ substantially from the proof strategies in [MMG21a].
Namely, while the proof of the main theorem in [MMG21a] is self-contained, the proof
of the main theorem in the second work relies heavily on [GNW21, GH17].

These works were the outcome of a collaborative effort between myself and David
Gross, my thesis advisor. I was the lead researcher in both of these projects.
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RANK-DEFICIENT REPRESENTATIONS IN THE THETA

CORRESPONDENCE OVER FINITE FIELDS ARISE

FROM QUANTUM CODES

FELIPE MONTEALEGRE-MORA AND DAVID GROSS

Abstract. Let V be a symplectic vector space and let μ be the oscillator rep-
resentation of Sp(V ). It is natural to ask how the tensor power representation
μ⊗t decomposes. If V is a real vector space, then the theta correspondence
asserts that there is a one-one correspondence between the irreducible sub-
representations of Sp(V ) and the irreps of an orthogonal group O(t). It is
well-known that this duality fails over finite fields. Addressing this situation,
Gurevich and Howe have recently assigned a notion of rank to each Sp(V )
representation. They show that a variant of the Theta correspondence con-
tinues to hold over finite fields, if one restricts attention to subrepresentations
of maximal rank. The nature of the rank-deficient components was left open.
Here, we show that all rank-deficient Sp(V )-subrepresentations arise from em-
beddings of lower-order tensor products of μ and μ̄ into μ⊗t. The embeddings
live on spaces that have been studied in quantum information theory as tensor
powers of self-orthogonal Calderbank-Shor-Steane (CSS) quantum codes. We
then find that the irreducible Sp(V )-subrepresentations of μ⊗t are labelled by

the irreps of orthogonal groups O(r) acting on certain r-dimensional spaces
for r ≤ t. The results hold in odd charachteristic and the “stable range”
t ≤ 1

2
dim V . Our work has implications for the representation theory of the

Clifford group. It can be thought of as a generalization of the known charac-
terization of the invariants of the Clifford group in terms of self-dual codes.

1. Introduction and summary of results

The oscillator representation (also: Schrödinger, Weil, or metaplectic represen-
tation) is a representation μV of the symplectic group Sp(V ) over a symplectic
vector space V . It appears in many contexts, including time-frequency analysis,
coding theory, and quantum mechanics.

The starting point of this work is the natural question of how tensor powers μ⊗t
V

decompose into irreducible representations.
One may reformulate this problem in a more geometric and slightly more gen-

eral way [11]. If U is an orthogonal space, then U ⊗ V is again symplectic. The
tensor power μ⊗t

V is isomorphic to μU⊗V for a suitable t-dimensional space U (Corol-
lary 2.3). The symmetry group O(U) × Sp(V ) associated with the tensor factors
embeds into Sp(U ⊗ V ). Clearly, the restriction of μU⊗V to O(U) commutes with
the restriction to Sp(V ). One can thus decompose the representation into a direct
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194 FELIPE MONTEALEGRE-MORA AND DAVID GROSS

sum

μU⊗V
∼=

⊕

τ∈Irr(O(U))

τ ⊗ Θ(τ ),(1.1)

where τ ranges over irreps of O(U), and Θ(τ ) is a representation of Sp(V ). If U , V
are real spaces and the form on U is definite, the theta correspondence asserts that
Θ(τ ) is again irreducible, and that the correspondence Θ between representations
is injective [14, 15]. Over finite fields, the correspondence fails: Θ(τ ) is in general
no longer irreducible, and equivalent Sp(V ) representations might appear in Θ(τ )
for different τ ’s. Our goal is to understand this situation better.

The main part of this paper is presented in the basis-free notation set out in
[11]. For ease of exposition, we will use more concrete (and slightly less general)
constructions in this introductory section. From now on, we assume that V = F2n

q

is 2n-dimensional over a finite field Fq of odd characteristic, and endowed with a
symplectic form.

Reference [11] introduces a notion of rank for Sp(V ) representations. To describe
it, recall that the oscillator representation of Sp(V ) can be realized over the Hilbert
space H = C[Fn

q ] of complex linear combinations of basis vectors δx labeled by
vectors x ∈ Fn

q (Sec. 2). Given x1, . . . , xt ∈ Fn
q , we may arrange these vectors as

the rows of a t × n matrix F . This way, we obtain an isormorphism

H⊗t = C[Fn
q ]⊗t � C[Ft×n

q ](1.2)

via the identification

δx1
⊗ · · · ⊗ δxt

� δF .

The rank of an element ψ ∈ H⊗t and of a subspace K ⊂ H⊗t are defined as,
respectively,

rank ψ = sup {rank FT F | (δF , ψ) �= 0}, rankK = sup {rank ψ | ψ ∈ K}.

The central result of [11] is this:

Theorem 1.1 ([11]). Assume t ≤ n. Then Θ(τ ) contains a unique irreducible
representation η(τ ) of rank t. The function η defines an injective map from the
irreducible representations of O(U) to the irreducible rank-t subrepresentations of
Sp(V ) in μU⊗V .

The purpose of this work is to understand the rank-deficient Sp(V )-subrepresen-
tations of μU⊗V , i.e. those that have rank r < t. Key to this are self-orthogonal
Calderbank-Shor-Steane (CSS) quantum codes [3, 24, 25], which are studied in the
theory of quantum error correction [22]. For now, we will take U = Ft

q with the

standard orthogonal form β(u, v) =
∑t

i=1 uivi. Let N be an isotropic subspace of

U , i.e. such that N ⊂ N⊥. To each coset [u] = u + N ⊂ U of N , one associates the
coset state

e[u] =
∑

v∈[u]

δv ∈ C[Ft
q].

Analogous to the construction in Eq. (1.2), we identify

C[Ft
q]

⊗n � C[Ft×n
q ], δu1

⊗ · · · ⊗ δun
� δF ,
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RANK-DEFICIENT REPRESENTATIONS 195

· · ·

· · ·

...
...

. . .

t

n

Figure 1. Sketch of the commuting actions of the Weil represen-
tation and tensor-power CSS codes. The each tensor factor in the
representation μ⊗t

V (S) for an arbitrary S acts on a row (highlighted
in blue). The code projector is an n-th tensor power of a projector
supported on a column (red).

where F is now the matrix whose columns are given by the u1, . . . , ut ∈ Fn
q . The

tensor power CSS code CN associated with N is the space with basis
{
e[u1] ⊗ · · · ⊗ e[un]

∣∣ [ui] ∈ N⊥/N
}

,(1.3)

the set of products of coset states corresponding to the elements of the quotient
space N⊥/N .

The codes CN can be shown to be invariant subspaces of μU⊗V |Sp(V ). What is
more, we will show:

Lemma (Lemma 2.7, simplified version). As a representation of Sp(V ), the re-
striction of μU⊗V to a tensor power CSS code CN is isomorphic to μU ′⊗V , where
U ′ = N⊥/N .

Figure 1 displays graphically the commuting actions of the projector PN onto
an arbitrary CSS code CN and μ⊗t

V (S) for an arbitrary S. There, we identify

C[Fq]
⊗nt � C[Ft×n

q ],(1.4)

in an analogous way as above. Each dot in the diagram corresponds to a C[Fq]
factor in the left-hand side of (1.4). The tensor factors in the Weil representation
μ⊗t

V act row-wise, highlighted in blue, whereas the projector PN acts column-wise,
highlighted in red.

(We note that in odd characteristic, there are two inequivalent orthogonal geome-
tries in each dimension. They are distinguished by their discriminant, the square
class of the determinant of the Gram matrix of any basis. So far, we have only
considered the standard orthogonal form on U = Ft

q. It turns out that U ′ = N⊥/N
inherits an orthogonal form from U – however, it need not be equivalent to the
standard one. We will deal with this more general situation in the main part.)

The lemma immediately implies that non-trivial CSS codes carry rank-deficient
representations of the symplectic group. Our main result is that this construction
is exhaustive.
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196 FELIPE MONTEALEGRE-MORA AND DAVID GROSS

Theorem 1.2 (Main theorem). Assume that t ≤ n and let K be an Sp(V )-
subrepresentation of μU⊗V of rank r. Then (t − r) is even and K is contained
in the span of all tensor power CSS codes CN with dim N = (t − r)/2.

The result allows us to give an explicit decomposition of μU⊗V in terms of
irreducible and inequivalent Sp(V ) representation spaces. Indeed, we find (Sec. 3.3)
that as an O(U) × Sp(V ) representation:

μU⊗V �
⊕

r∈R(U)

⊕

τ∈Irr O(Ur)

Ind
O(U)
Or

(τ ) ⊗ η(τ ).(1.5)

We have used the following expressions: R(U) is the set {t − 2k}k, where k ranges
from 0 to the largest dimension of an isotropic subspace in U (its isotropy index ).
For each k, we choose some istropic subspace N ⊂ U of dimension k and set Ur =
N⊥/N . Then Ur is an orthogonal space of dimension r = t − 2k and discriminant
d(Ur) = (−1)kd(U). Let Or := ON ⊂ O(U) be the stabilizer of N . Notice that
because of a lemma proven by Witt, the group Or is independent of the choice of
N , up to isomorphism. This justifies surpressing N in our notation. The group Or

acts on Ur as O(Ur).
Thus any τ ∈ Irr O(Ur) can be interpreted as an Or-representation, and the

induced representation in Eq. (1.5) is hence well-defined. All Sp(V )-irreps η(τ )
appearing in Eq. (1.5) are indeed inequivalent: Those corresponding to different
O(Ur) are distinguished by their rank, whereas the inequivalence of summands of
the same rank is a consequence of Theorem 1.1.

It is natural to ask whether the assumption that t ≤ n is necessary. We show
that some constraints on t, n are indeed required, by explicitly constructing rank-0
(i.e. trivial) subrepresentations for t = 3, n = 1 that do not come from CSS codes
(Section 3.4).

Our work was motivated by recent related observations on tensor powers of the
Clifford group [12,16,19–21,23,26–28], the group generated by the oscillator repre-
sentation of Sp(V ) and the Weyl representation of the Heisenberg group. In [10],
it has been shown that the commutant algebra of the Clifford group is generated
by projections onto tensor power CSS codes whose isotropic spaces are orthogonal
to the all-ones vector 1 = (1, . . . , 1) ∈ Ft

q; together with the elements of O(U) that
preserve 1. While it was not explicitly worked out in [10], their arguments strongly
suggest that the commutant of the oscillator representation alone is generated by
O(U) and tensor power CSS codes, without the constraints involving the 1-vector.
This drew our attention to the action of tensor power representations on CSS code
spaces. While the present paper mostly focuses on the symplectic group alone—
instead of the full Clifford group—one can in some cases relate the theory for the
two groups explicitly (Sec. 4):

Proposition (Proposition 4.2, simplified version). If the characteristic of Fq does
not divide t, there is a one-one correspondence between irreducible components of
t-th tensor powers of the Clifford goup and irreducible components of μU⊗V for a
certain orthogonal space U of dimension t − 1.

An Sp(V )-representation space is trivial if and only if it has rank equal to 0
[11]. The rank-0 case connects our results with prior work on the invariants of the
Clifford group [20, 23]. Indeed, it is well-knwon that the invariants are associated
with self-dual CSS codes, i.e. those arising from subspaces N ⊂ U with N⊥ = N .
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RANK-DEFICIENT REPRESENTATIONS 197

In this sense, our work can be seen as a generalization of these results to higher
ranks.

Our main theorem is based on a careful analysis of the action of certain Fourier
transforms in the oscillator representation. The same techniques can be used to find
auxilliary results, which may be of independent interest. For example, we show that
the “set of ranks” one can associate with an irreducible Sp(V )-subrepresentation of
μU⊗V is a contiguous set of integers (Prop. 2.10).

The rest of the paper is organized as follows: We will introduce the technical
background in Sec. 2. Our original contributions are in Sec. 3, where we prove the
main theorem, and in Sec. 4 laying out the connections to the Clifford group.

This work is written in a basis-free language inspired by [11]. We believe that
the results will be of interest to researchers in quantum information theory, who
may not be familiar with this point of view. A follow-up paper [18] will address
a quantum information audience, both in terms of presentation and in terms of
applications. In particular, it will also treat the Clifford group in characteristic 2.

2. Technical background

In this section, we collect definitions and some technical statements. While we
are not aware of references for every specific result, the material presented here
seems to be known in the general literature.

2.1. General notation. In what follows, q is the power of an odd prime p, and
Fq the finite field of order q. We denote the multiplicative group in Fq by F×

q . For

λ ∈ F×
q , the Legendre symbol is

(
λ
q

)
, which is +1 if λ is a square in F×

q , and −1

otherwise. If q is clear from the context, we also use the short-hand notation �λ for
the Legendre symbol. We write Tr : Fq → Fp for the the trace in Fq over Fp (also
known as the field trace).

The transpose of a linear map A : Y → Z is A∗ : Z∗ → Y ∗ (not to be confused
with AT , which is defined in Eq. (2.12)). A map A : Y → Y ∗ is symmetric if
A = A∗.

2.2. The oscillator representation. Let V = X ⊕ X∗ be the direct sum of two
n-dimensional dual vector spaces over Fq. The space V carries a symplectic form

[x ⊕ y, x′ ⊕ y′] = y′(x) − y(x′).

Every symplectic vector space is (non-canonically) of this form. Indeed, the choice
of a decomposition V = X ⊕ X∗ is equivalent to fixing a polarization of V . From
now on, we will assume that dual X, X∗ ⊂ V have been chosen.

The oscillator representation μV is a representation of Sp(V ) on the Hilbert space
L2(X∗) of complex functions on X∗. The representation depends on a parameter
m ∈ F×

q – sometimes referred to as the mass of the representation in mathematical
physics [7] – which defines a character

ω(m) : Fq → C, λ �→ ei 2π
p Tr(mλ)

of Fq. One can show [11] that the oscillator representations μ
(m)
V , μ

(m′)
V are unitarily

equivalent if and only if m and m′ belong to the same square class. What is more,

μ
(−m)
V = μ̄

(m)
V , i.e. the inverting the sign of the mass corresponds to passing to the

complex conjugate representation. From now on, we will write ω, μV for ω(1) and

μ
(1)
V respectively.
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198 FELIPE MONTEALEGRE-MORA AND DAVID GROSS

Next, we recall [8, 11] the explicit form of the oscillator representation on the
following three subsets, which taken together generate Sp(V ).

J =

{(
0 B

−B−1 0

) ∣∣∣B : X∗ → X, B invertible, symmetric

}
,(2.1)

N =

{( � A
0 �

) ∣∣∣A : X∗ → X, A symmetric

}
,(2.2)

D =

{(
C 0
0 C−∗

) ∣∣∣C ∈ GL(X)

}
,(2.3)

where we used the shorthand C−∗ := (C∗)−1. The sets N and D are subgroups
and generate the Siegel parabolic, with the Abelian N the unipotent radical of the
parabolic group. We write, respectively, NA, JB, DC for the elements of N , J , D
that appear above. Let y ∈ X∗ and let δy ∈ L2(X∗) the indicator function at y.
Then the action of the oscillator representation is

μV (JB) δy = γ(B)−1
∑

y′∈X∗

ω
(
B(y, y′)

)
δy′ ,(2.4)

μV (NA) δy = ω
(
2−1A(y, y)

)
δy,(2.5)

μV (DC) δy = �det C δC−∗y,(2.6)

where B(y, y′) is a less-confusing notation for B(y)(y′), and where

γ(B) =
∑

y∈X∗

ω
(

− 2−1B(y, y)
)

is the Gauss sum corresponding to B.
We will frequently make use of the fact that the oscillator representation of block

matrices factorizes. This factorization property is well-known – see e.g. [8, Corollary
2.5] and [13]. We give a short self-contained proof in Appendix A.1.

Lemma 2.1. Let X = X1 ⊕ X2 be a direct sum of vector spaces. Then we have an
orthogonal decomposition V = V1 ⊕ V2 of V = X ⊕ X∗ into symplectic subspaces
Vi = Xi ⊕ X∗

i . As a representation of the subgroup Sp(V1) × Sp(V2) ⊂ Sp(V ), the
oscillator representation factorizes

μV � μV1
⊗ μV2

.(2.7)

Let πi : X → Xi be the projections onto the i-th direct summand. An isomor-
phism

L2(X∗) → L2(X∗
1 ) ⊗ L2(X∗

2 )

realizing Eq. (2.7) is given by

δy �→ δyπ1
⊗ δyπ2

.(2.8)

2.3. The rank of a representation. We consider the subgroups N , D of Sp(V )
given in Eqs. (2.2), (2.3).

If π is a representation of Sp(V ) on some Hilbert space H, then the restriction
of π to the Abelian group N decomposes H into a direct sum of one-dimensional
representations. Every character of N is of the form

NA �→ ω
(
trAB

)
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for some symmetric B : X → X∗, which we will refer to as an N -weight. With each
irreducible subrepresentation CΦ ⊂ H, we can thus associate an N -weight B such
that

π(NA)Φ = ω(trAB)Φ, ∀ NA ∈ N .

Reference [11] defines the N -spectrum of π as the set of N -weights, counted with
multiplicities, that occur in the decomposition of H.

The set of N -weights decomposes into a union of orbits under the action B �→
CBC∗, C ∈ GL(X). This follows from the fact that D normalizes N :

DCNAD−1
C = NCAC∗ ,

so that if Φ carries the N -weight B, then π(DC)Φ is associated with the N -weight
C∗BC. From the theory of quadratic forms, it is well-known that the orbits are
labelled by the rank and the discriminant of B (c.f. Section 2.5).

The rank of π is the maximum of the rank taken over the N -spectrum. If
all N -weights of maximal rank have the same discriminant d, π is said to have
discriminant or type d.

As an example, we compute the N -spectrum of the oscillator representation. By
Eq. (2.5), the delta functions {δy | y ∈ X∗} diagonalize the restriction of μV to N .
We can re-write

A(y, y) = A(y)(y) = tr A(y ⊗ y).

The map B = 2−1 y ⊗ y is the most general form of a symmetric map X → X∗ of
rank ≤ 1 and of discriminant �2. Since ±y lead to the same B, the N -spectrum
consists of the following GL(X)-orbits: {0} occurs once, and the set of non-zero
rank-1 B’s of discriminant �2 occurs twice.

2.4. Orthogonal spaces and higher-rank representations. We recall some
standard facts about orthogonal spaces over finite fields (see e.g. [4, 5, 17]) and fix
notation.

Let U with be a t-dimensional Fq-vector space with non-degenerate symmetric
form β. Let {fi}t

i=1 be a basis of U . The square class d(U) of the determinant of
the matrix with elements β(fi, fj) does not depend on the basis. It is called the
discriminant of the form β. Quadratic spaces are characterized up to isometries by
their dimension and discriminant. The discrimant is multiplicative: if U1 ⊕ U2 is
an orthogonal sum, then

d(U1 ⊕ U2) = d(U1)d(U2).

One can find an orthogonal basis that diagonalizes the form in that

β(fi, fj) = di δi,j(2.9)

for suitable di ∈ Fq. From the discussion above, it follows that one can choose

di = 1 (i = 1, . . . , t − 1), dt ∈ d(U),(2.10)

and we will usually do so.
An important orthogonal space is the hyperbolic plane H, which has dimension

t = 2 and discriminant d(H) = −1.
For a subspace N ⊂ U , its orthogonal complement is N⊥ = {u | β(u, v) = 0 ∀v ∈

N}. The space N is isotropic if N ⊂ N⊥. From the relation dim N + dim N⊥ = t,
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valid for any non-degenerate form, one finds the dimension bound for isotropic
spaces:

N ⊂ N⊥ ⇒ dim N ≤ t

2
.(2.11)

We will use the symbol β both to refer to the form U × U → Fq and to the
induced isomorphism

β : U → U∗, u �→ β(u) := β(u, ·).
For maps F ∈ Hom(Y → U), we will write

FT := F ∗ ◦ β ∈ Hom(U → Y ∗).(2.12)

With U � Hom(Fq → U) and F∗
q � Fq, this implies in particular

uT = u∗ ◦ β = β(u) = β(u, ·).
If the form β is degenerate, then the quotient space U/ radβ of U by the radical

of β is non-degenerate. The rank and the discriminant of U are then defined to be
the dimension and the discriminant of the quotient space.

A symmetric map B : X → X∗ defines a quadratic form B(x, y) = B(x)(y) on a
linear space X. Below, we will often be concerned with forms defined as B = FT F
for some F : X → U . In this case, B is the pull-back of β to X via F , and so we
have

B(x, y) = (F ∗βF )(x)(y) = β(Fx, Fy),(2.13)

so that the rank and discriminant of such B are the rank and the discriminant of
rangeF as a subspace of U .

Given a space V = X ⊕X∗ and an orthogonal space U , the tensor product U ⊗V
is again a direct sum of dual spaces and thus carries a symplectic form. Indeed,

U ⊗ V � (U ⊗ X) ⊕ (U ⊗ X∗)(2.14)

and the pairing between (factorizing) elements of the two summands is just

〈u ⊗ x, v ⊗ y〉 = β(u, v)y(x).(2.15)

We will usually make the identification

U ⊗ X = Hom(X∗ → U), U ⊗ X∗ = Hom(X → U).

Then the pairing (2.15) between Z ∈ Hom(X∗ → U) and F ∈ Hom(X → U) takes
the form

〈Z, F 〉 = trβZF ∗.(2.16)

It follows that there is an oscillator representation μU⊗V of Sp(U⊗V ) on L2(Hom(X
→ U)).

From Eq. (2.15), one sees that O(U)×Sp(V ) embeds into Sp(U ⊗V ). The main
goal of this work is to understand the restriction of μU⊗V to Sp(V ).

We compute the N -spectrum and rank of μU⊗V as an Sp(V )-representation. To
this end, we must find the eigenspaces of μU⊗V (�U ⊗ NA). Under the identifica-
tion (2.14),

NA =

( � A
0 �

)
∈ Sp(V ) ⇒ �⊗ NA �

( �⊗ � �⊗ A
0 �⊗ �

)
∈ Sp(U ⊗ V ).
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Thus, the embedding �⊗NA of NA ∈ Sp(V ) into Sp(U ⊗V ) is again an element of
the unipotent radical. The action of μU⊗V (�⊗NA) is thus also given by Eq. (2.5),
this time acting on L2(Hom(X → U)). Let F ∈ Hom(X → U)). With Eq. (2.16),
we can express the quadratic form in Eq. (2.5) as

(�⊗ A)(F )(F ) = 〈F, (�⊗ A)F 〉 = 〈F, FA〉 = tr βFAF ∗ = tr FT FA.(2.17)

The N -weight on δF is thus given by

B = 2−1FT F.

Conversely, the representation space
{
Φ ∈ L2(Hom(X → U))

∣∣ μU⊗V (NA)Φ = ω(tr AB)Φ
}

(2.18)

on which N ⊂ Sp(V ) acts with N -weight B is equal to the span 〈{δF | FT F = B}〉
of the δF ’s with FT F = B.

Notice that rank FT F ≤ min(n, t). From now on, we will focus on the case where
t ≤ n (this is referred to as the stable range in [11]), and call a representation of
rank strictly smaller than t rank-deficient.

2.5. Representations associated with direct sums of orthogonal spaces.
The original motivation of this work was to understand tensor power representations
μ⊗t

V . The more geometric language employed e.g. in [11] relates tensor factors to
direct summands of orthogonal spaces. The Corollary 2.2 of Lemma 2.1 makes the
connection precise.

Corollary 2.2. Assume U = U1 ⊕ U2 is an orthogonal direct sum. Then, as a
representation of Sp(V ), the oscillator representation factorizes as

μ(U1⊕U2)⊗V � μU1⊗V ⊗ μU2⊗V .(2.19)

Let πi : U → Ui be the projections onto the direct summands. An isomorphism

L2(Hom(X → U)) → L2(Hom(X → U1)) ⊗ L2(Hom(X → U2))

realizing Eq. (2.19) is defined by

δF �→ δπ1F ⊗ δπ2F .(2.20)

Proof. By assumption, both terms Ui are non-degenerate β-spaces, so we have a
canonical identifications U∗

i
∼= Ui and Hom(X → Ui)

∗ ∼= Hom(X∗ → Ui). The lat-
ter identification satisfies that for any h ∈ Hom(X → U1)

∗ and any f ∈ Hom(X →
U2), it holds that h(f) = 0 (and the same statement holds if we exchange U1 and
U2).

This way, the advertised claim is a consequence of Corollary 2.1 for the decom-
position

Hom(X → U) = Hom(X → U1) ⊕ Hom(X → U2)

Hom(X → U)∗ = Hom(X∗ → U1) ⊕ Hom(X∗ → U2)

which give rise to the following decomposition into symplectic subspaces

U ⊗ V = (U1 ⊗ V ) ⊕ (U2 ⊗ V ).

�
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Iterating this observation over an orthogonal basis gives the connection between
μU⊗V and tensor powers of μV .

Corollary 2.3. As a representation of Sp(V ), we have that

μU⊗V � μV ⊗ · · · ⊗ μV︸ ︷︷ ︸
(t−1) ×

⊗μ
(d(U))
V .(2.21)

Let {fi}t
i=1 be an orthogonal basis of U as in Eq. (2.10). An isomorphism

L2(Hom(X → U)) →
(
L2(X∗)

)⊗t

realizing Eq. (2.21) is defined by

δF �→ δfT
1 F ⊗ · · · ⊗ δfT

t F .(2.22)

Proof. Set Ui = Fqfi, so that d(Ui) = β(fi, fi) = di. The projections πi : U → Ui

are given by

u �→ d−1
i fi fT

i (u).

Iterating Corollary 2.2 thus gives an isomorphism

i1 : L2(Hom(X → U)) →
t⊗

i=1

L2(Hom(X → Ui))

defined by

δF �→ δf1fT
1 F ⊗ · · · ⊗ δft−1fT

t−1F ⊗ δd(U)−1 ftfT
t F .

We may identify Hom(X → Ui) � Ui ⊗ X∗ with X∗ via fi ⊗ y �→ y. This induces
an isomorphism

i2 :

t⊗

i=1

L2(Hom(X → Ui)) →
(
L2(Hom(X∗)

)⊗t
.

Finally, let C = d(U)−1� ∈ GL(X) and, using Eq. (2.6), let i3 be μV (DC) acting
on the t-th tensor factor. Then the advertised isomorphism is i3 i2 i1. �

Note that the standard inner product β(x, y) =
∑t

i=1 xiyi on Ft
q has an or-

thonormal basis, and thus discriminant d(Ft
q) = 1. Therefore,

μFt
p⊗V � μ⊗t

V .(2.23)

We end this section by analyzing μH⊗V , where H is the hyperbolic plane. To
this end, define the permutation representation π of Sp(V ) as the map that acts on
L2(V ) by sending the delta function δv at v ∈ V to

π(S)δv = δSv.(2.24)

Lemma 2.4. Let H be the hyperbolic plane. We then have:

(1) As a representation of Sp(V ), μH⊗V is isomorphic to the permutation rep-
resentation.

(2) If I ⊂ H is a non-zero isotropic space, then Sp(V ) acts trivially on

ψI :=
∑

F∈Hom(X→I)

δF ∈ L2(Hom(X → H)).
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The second part of the lemma makes a connection between rank-deficient sub-
representations and isotropic spaces. Generalizations of this will be the central
theme in the rest of this work.

This lemma is well known, see for example [2, Thm. 3.10] for item (1). For
completeness, we include a self-contained proof based on the Weyl representation
of the Heisenberg group introduced in Sec. 2.2.

Proof. By Eq. (4.2), the adjoint representation AdμV
: A �→μV Aμ†

V on End(L2(X∗))
permutes the Weyl operators {WV (v)}v∈V and is thus isomorphic to the permuta-
tion representation π. But by Corollary 2.3,

μH⊗V � μV ⊗ μ
(d(H))
V = μV ⊗ μ̄V � AdμV

.

This proves the first claim.
Next, note that the adjoint representation acts trivially on WV (0) = �. Our

strategy is to show that for every isotropic space I ⊂ H, one can choose the isomor-
phisms employed in the first part, to map WV (0) to ψI . Indeed, the isomorphism
AdμV

� μV ⊗ μ̄V is implemented by

i1 : End(L2(X∗)) → L2(X∗)⊗2, δy ⊗ δT
y′ �→ δy ⊗ δy′ ,

where δT
y′ is the map acting on ψ ∈ L2(X∗) as ψ �→ ψ(y′). Choose an orthogonal

basis {f1, f2} ⊂ H as in Eq. (2.10) and let i2 be the associated isomorphism defined
in Corollary 2.3. Then

WV (0) = �V =
∑

y∈X∗

δy ⊗ δT
y

i1�→
∑

y∈X∗

δy ⊗ δy
i−1
2�→
∑

y∈X∗

δ(f1−f2)⊗y = ψI− ,

where I− = Fq(f1−f2) is isotropic. Finally, any isotropic I ⊂ U can be written this
way, with a suitable choice of orthogonal basis {f1, f2} and associated isomorphism
i2. �

2.6. Quotient spaces and self-orthogonal Calderbank-Shor-Steane codes.
In this section, we will introduce the type of spaces that will turn out to contain
all rank-deficient representations. In the field of quantum error correction, these
spaces are called (tensor powers of) self-orthogonal Calderbank-Shor-Steane (CSS)
codes [3, 24, 25].

Definition 2.5. Let N ⊂ U be an isotropic space. The self-orthogonal CSS code
associated with N is the space

{Φ ∈ L2(U) | supp Φ ⊂ N⊥, Φ(u) = Φ(u′) ∀ u − u′ ∈ N}
of functions whose support is contained in N⊥ and which are constant on cosets
of N .

We will require an extension of this definition to functions on the tensor product
space U ⊗ X∗ � Hom(X → U).

Definition 2.6. Let N ⊂ U be an isotropic space. The tensor power CSS code
associated with N is the subspace CN ⊂ L2(Hom(X → U)) of all functions Φ
satisfying

{
Φ(F ) = Φ(F ′), if F − F ′ ∈ Hom(X → N),

supp Φ ⊆ Hom(X → N⊥).
(2.25)
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Using Lemma 2.1, one can see that the codes defined above are indeed ten-
sor powers of the self-orthogonal CSS codes of Definition 2.5. We also note that
projectors onto tensor powers of CSS codes have previously been identified in the
commutant of the Clifford group [10, 20, 27].

Tensor power CSS codes carry a representation of Sp(V ) that is associated with
the orthogonal space N⊥/N :

Lemma 2.7. Let N ⊂ U be an isotropic space.
The quotient space U ′ = N⊥/N inherits an orthogonal form with dimension and

discriminant given by, respectively

dim U ′ = U − 2 dim N, d(U ′) = (−1)dim Nd(U).

The stabilizer group ON ⊂ O(U) of N acts on U ′. The maps that arise this way
are exactly O(U ′).

The restriction of μU⊗V to ON × Sp(V ) acts on CN . As a representation of
O(U ′) × Sp(V ), it is equivalent to μU ′⊗V .

In view of this lemma, we will say that a tensor power CSS code CN has rank
r, if it carries a rank-r representation, or, equivalently, if dim N = (t − r)/2.

Proof. Let {u1, . . . , uk} be a basis of N . There exist u′
1, . . . , u

′
k such that

β(ui, u
′
j) = δi,j(2.26)

(because, for each j, Eq. (2.26) is an underdetermined system of linear equations
for u′

j). Then Hi = 〈ui, u
′
i〉 is a hyperbolic plane, and we arrive at an orthogonal

decomposition

U = H1 ⊕ · · · ⊕ Hk ⊕ U ′ =: H ⊕ U ′,(2.27)

where U ′ = H⊥ is the orthogonal complement of the hyperbolic planes. Equa-
tion (2.27) implies: (1) The discriminant of U ′ is d(U ′) = (−1)kd(U), and (2)
the orthogonal complement N⊥ equals N ⊕ U ′, and we thus have N⊥/N � U ′.
Because the form on U ′ is inherited from the one of U , it is clear that ON acts
isometrically on U . Let i : ON → O(U ′) be the homomorphism that maps elements
of ON to their action on O(U ′). Then i is onto: If g ∈ O(U ′), then, using the
decomposition (2.27), we can embed g as id ⊕ g into ON .

By Corollary 2.2,

L2(Hom(X → U)) � L2(Hom(X → H)) ⊗ L2(Hom(X → U ′)),

μU⊗V � μH⊗V ⊗ μU ′⊗V .

By Lemma 2.4, μH⊗V acts trivially on

ψu1
⊗ · · · ⊗ ψuk

=
∑

y1,...,yk∈X∗

δu1⊗y1
⊗ · · · ⊗ δuk⊗yk

�
∑

F∈Hom(X→N)

δF ∈ L2(Hom(X → H)).

Thus

CN �
( ∑

F∈Hom(X→N)

δF

)
⊗ L2(Hom(X → U ′)),

on which μU⊗V acts as μU ′⊗V . �
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In the remainder of this section, we introduce two concepts that will be used in
Section 3 to reconstruct the codes a rank-deficient representation lives on.

A natural orthogonal basis on a tensor power CSS code is given by coset states
(the generalization of Eq. (1.3)). Given an isotropic subspace N ⊂ U , an F ∈
Hom(X → N⊥), and a coset

[F ] ∈ Hom(X → N⊥)/ Hom(X → N) � Hom(X → N⊥/N),

the associated tensor power coset state is

e[F ] =
∑

G∈[F ]

δG ∈ CN .

We will occassionally write [F ]N , if the vector space N is not unambiguously clear
from context. The set

{e[F ] | [F ] ∈ Hom(X → N⊥/N)}(2.28)

is an orthogonal basis for CN . Note that if [F ] = [F ′], then F = F ′ + Δ for some
Δ ∈ Hom(X → N) and thus

(F ′)T F ′ = FT F + FT Δ + ΔT F + ΔT Δ = FT F.(2.29)

In particular, e[F ] carries the N -weight B = FT F .
With each F ∈ Hom(X → U), we associate the isotropic space

NF = range F ∩ (rangeF )⊥,(2.30)

which is the radical of the range of F .

Lemma 2.8. Let F ∈ Hom(X → U) be such that rankFT F = r. Then we have
the dimension bound

dim NF ≤ �(t − r)/2�.(2.31)

Proof. We decompose U as U1⊕U2⊕U3, where U1 = NF , U2 is a complement to NF

in range F , and U3 a complement to range F in U (c.f. Fig. 2). By construction, the
space U2 is non-degenerate and of dimenesion r, which implies that U⊥

2 is (t − r)-
dimensional and non-degenerate. Thus NF = U1 ⊂ U⊥

2 is isotropic and contained
in a (t − r)-dimensional non-degenerate space, which implies by Eq. (2.11) that
dim NF ≤ (t − r)/2. �

2.7. Fourier transforms. Central to the proof of our main result will be the fact
that subrepresentations of the oscillator representation are closed under certain
Fourier transforms. By a Fourier transform, we mean a map of the form μ(JB)
defined in Eq. (2.4), for B : X∗ → X symmetric and invertible.

A standard result from harmonic analysis says that the support of a function is
contained in a vector space if and only if its Fourier transform is supported on a
(suitably defined) orthogonal complement. This statement can be generalized in a
number of ways, the version we will require below reads:

Lemma 2.9. Let B : X∗ → X be symmetric and invertible, let Φ ∈ L2(Hom(X →
U)), and let U ′ ⊂ U be a subspace.

Then the support of Φ is contained in the space Hom(X → U ′) if and only if the

support of the Fourier transform Φ̃ := μU⊗V (JB)Φ is contained in Hom(X → U ′⊥).

What is more, Φ is the indicator function on Hom(X → U ′) if and only if Φ̃ is

the indicator function on Hom(X → U ′⊥).
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a b c d a a
a b c d a a
a b c d a a
a b c d a a
a b c d a a
a b c d a a

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

U3

U2

U1 = NF

rangeF

X1 =
ker F

X2

ker FT F = F−1(NF )

≥ t−r
2

≤ t−r
2

r

Figure 2. Illustration of the various subspaces we will associate
with an F ∈ Hom(X → U). In Lemma 3.1 and in the proof of
the Main Theorem, the domain X will be decomposed as a di-
rect sum of X1 = ker F and some complement X2. In Lemma 2.8
and in the proof of the Main Theorem, we decompose U as a di-
rect sum of U1 = NF = range F ∩ (rangeF )⊥; U2, some comple-
ment of U1 within range F ; and U3, some complement of rangeF .
These choices decompose Hom(X → U) into six different sub-
spaces Hom(Xi → Uj), each of which can be visualized as a block
in the matrix depicted. In Lemma 3.1, the map Δ lives in the
lower left-hand side block, Hom(X1 → U1 = NF ). In Lemma 3.2,
we extend this to elements Δ = F − F ′ of the entire lower block
Hom(X → U1), subject to a rank constraint. In the proof of the
Main Theorem, G lives in the left block Hom(X1 → U). One could
further subdivide X2 into X2 ∩ F−1(NF ) (left side of the dotted
line), and some complement (right side of the dotted line). We do
not make use of this division in our argument. With respect to this
choice, F is non-zero exactly on the two shaded blocks (where, in
fact, it is invertible).

Since the proof follows the standard template for such results in harmonic anal-
ysis, we have deferred it to Appendix A.2.

Inspecting the generators in Sec. 2.2, it is clear that only Fourier transforms
– i.e. generators from J ⊂ Sp(V ) – can possibly affect the rank of an element
Φ ∈ L2(Hom(X → U)). This is the reason such maps figure prominently in our
argument. By analyzing the action of Fourier transforms, one can easily derive
further statements about the “rank spectrum” of representation spaces. Proposi-
tion 2.10 is one such example which to the best of our knowledge is not in the
literature.

Proposition 2.10. Let (K, ρK) be an irreducible Sp(V )-subrepresentation of μU⊗V ,
where K ⊂ L2(Hom(X → U)). Let

R = {rank B | B is a weight that appears in ρK|N }
be the set of values the rank takes on the N -spectrum of the representation. Then
R is a contiguous range of integers.

As the rest of the arugment will not rely on Proposition 2.10, its proof is given
in Appendix A.3.
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f1

f2
I+, Φ = c+

I−, Φ = c−

I+ ∩ I−, Φ = c+ + c−

Figure 3. “Branch and stem” structure of rank-0 subrepresen-
tations of μH⊗V associated with the hyerpbolic plane. The vec-
tors f1, f2 denote an orthogonal basis of H. The red lines I±
are the two isotropic spaces. A rank-deficient subrepresentation
(Eq. (3.2)) of μH,V takes values that are constant on the “branches”
{F | NF = I±}, while the values add up on the “stem” {0} where
the spaces intersect.

3. The classification of rank-deficient subrepresentations

3.1. Informal outline of the main proof. Let K ⊂ L2(Hom(X → U)) be a
representation space of rank r < t. We aim to show that there is some Φ ∈ K that
can be written as a linear combination

Φ =
∑

N isotropic

ΦN ,(3.1)

of components ΦN in suitable tensor power CSS code spaces CN . This, together
with Lemma 2.7, will imply the Main Theorem.

One of the defining properties of elements ΦN of CN is that they are constant
on cosets of Hom(X → N). It is not obvious how one can derive such invariance
properties from rank deficiency.

To achieve this, we rely on the fact that K is closed under certain Fourier trans-
forms. More precisely, if we decompose X as a direct sum X1 ⊕ X2, then any
F : X → U can be written as the sum of two blocks F = F1 +F2 with Fi : Xi → U
(Fig. 3). Now fix some F2 and consider the dependency φ : F1 �→ Φ(F1 + F2) of Φ
on the first block alone. It turns out that rank deficiency imposes linear constraints
on the maps F1 that can appear in the support of φ. But, as we have recalled
in Sec. 2.7, if the support of a function is contained in a linear subspace, then its
Fourier transform is invariant under translations along the orthogonal complement.
Closure of K under Fourier transforms then implies invariances of the type that oc-
cur in CSS codes for any Φ ∈ K. This first step of recovering a CSS code structure
is made precise in Lemma 3.1.

The next challenge we are facing is that Φ is a linear combination of elements
from different codes, so that there is no single space N under which Φ is invariant.
Indeed, the symmetries found in the first step are only “local” in that they depend
on the fixed block F2. To get some feeling for what we can expect, we look at the
simplest non-trivial example: μH⊗V with H the hyperbolic plane.

The plane has a orthogonal basis {f1, f2}, with

β(f1, f1) = 1, β(f2, f2) = d(H) = −1.
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There are two isotropic spaces, I± = Fq (f1±f2) (c.f. Figure 3). It follows that there
are two tensor power CSS codes CI± in Hom(X → H). They are one-dimensional,
proportional to the vectors ψI± defined in Lemma 2.4. Thus, for c± ∈ C, the vector

Φ = c+ψI+
+ c−ψI− ∈ L2(Hom(X → H))(3.2)

carries a rank-0 representation (and we will see that these are the only rank-deficient
subrepresentation of μH⊗V ). Using Lemma 2.4

Φ(F ) =

⎧
⎪⎪⎨
⎪⎪⎩

c+ rankFT F = 0, NF = I+

c− rankFT F = 0, NF = I−
c+ + c− rankFT F = 0, NF = {0}
0 rankFT F = 1

,

a situation sketched in Fig. 3. Embracing a horticultural analogy, Φ is constant on
the two “branches” {F | NF = I±}, while the values add up on the “stem” {0},
where the spaces intersect.

This structure generalizes to higher-dimensional orthogonal spaces U . Define
the “generalized branches” to be

BN := {F ∈ Hom(X → U) | rank FT F = r, NF = N}.

Then Lemma 3.2 states that on each BN , a vector Φ in a rank-deficient representa-
tion exhibits the invariance under Hom(X → N) that is characteristic of elements
of the code CN . More precisely:

F, F ′ ∈ BN , (F − F ′) ∈ Hom(X → N) ⇒ Φ(F ) = Φ(F ′).

Thus Φ is well-defined on sets BN/ Hom(X → N).
After this, we “prune off the branches” by setting

Φ′ := Φ −
∑

N isotropic
dim N=	(t−r)/2


∑

[F ]∈BN / Hom(X→N)

Φ([F ]) e[F ].

The right-hand summand involves the coset states e[F ], which are elements of the
respective code CN . The support of the remainder Φ′ is thus contained in the
“stem”. We conclude the argument by showing that representations with rank < t
do not contain non-zero vectors supported on such a stem, so in fact Φ′ = 0.

This final step again relies on Fourier transforms. Roughly, the “stem” is a
“small” space, so that by the uncertainty principle, Fourier transforms will have
“large” support – so large, in fact, that they are guaranteed to contain higher-rank
elements.

3.2. Proof of the Main theorem.

Lemma 3.1. Let K ⊂ L2(Hom(X → U)) be a subrepresentation of rank r < t. Let
Φ ∈ K and F ∈ supp Φ such that rankFT F = r, and let NF be as in Eq. (2.30). If
Δ ∈ Hom(X → NF ) is such that

range F| ker Δ = range F,(3.3)

then

Φ(F ) = Φ(F + Δ).

We note that in the case r = t one has NF = {0} and so the lemma trivially
holds.
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Proof. Set X1 = kerF . The assumption (3.3) implies that there is a complement
X2 of X1 contained in ker Δ. This choice induces a decomposition Hom(X → U) =
Hom(X1 → U) ⊕ Hom(X2 → U) with Δ ∈ Hom(X1 → U), F ∈ Hom(X2 → U).

Let B : X∗
1 → X1 be invertible, let μU⊗V1

(JB) be the associated Fourier trans-
form, and let i be the isomorphism (2.8). By Section 2.7 and Lemma 2.1, the
vector

Φ̃ :=
(
i−1 (μU⊗V1

(JB) ⊗ μU⊗V2
(�)) i

)
Φ

is an element of K. Thus, by the assumption on the rank of the representation, Φ̃
has support only on maps F ′ ∈ Hom(X → U) with rank(F ′)T F ′ ≤ r.

If F ′ = G + F for some G ∈ Hom(X1 → U), then

range(G + F ) = 〈rangeG ∪ range F 〉.
The condition rank(G+F )T (G+F ) ≤ r is equivalent to demanding that range(G+
F ) has rank at most r as an orthogonal space. This implies

range G ⊂ 〈rangeF ∪ (rangeF )⊥〉 = N⊥
F .(3.4)

Set

φ ∈ L2(X1 → U), φ(G) = Φ(G + F ), φ̃ = μU⊗V1
(JB)φ.

Then

Φ̃(G + F ) = φ̃(G),

so that the preceding discussion implies that supp φ̃ ⊂ Hom(X → N⊥
F ). Thus

Lemma 2.9 implies that φ is constant on cosets of Hom(X1 → NF ), a space which
includes Δ. �

Lemma 3.2 extends the invariances – essentially by using the fact that there is
a some freedom in choosing the complement X2 to kerF that appears in the proof
above.

Lemma 3.2. Let K be a representation of rank r < t, and Φ ∈ K. Let N ⊂ U be
an isotropic space of dimension dim N ≤ (t − r)/2, and set

BN := {F ∈ Hom(X → U) | rank FT F = r, NF = N}.

Then BN is non-empty and, on BN , Φ is invariant under Hom(X → N):

Φ(F ) = Φ(F ′) ∀ F, F ′ ∈ BN , (F − F ′) ∈ Hom(X → N).(3.5)

The proof uses the probabilistic method [1]: The strategy is to ascertain the
(deterministic) exsistence of an object by showing that a randomized construction
yields one with positive probability. Presumably an explicit construction would offer
us more insight into the structure of the problem. We leave such a derandomization
for future work.

Proof. Because t − 2 dim N ≥ r, there exists an r-dimensional non-degenerate sub-
space M of N⊥. Then any F ∈ Hom(X → U) satisfying range F = 〈M, N〉 will be
an element of BN . The existence of such an F is guaranteed by n ≥ t. Hence BN

is not empty.
Now let F, F ′ be as in Eq. (3.5). The aim is to show that there exists a “mid-

point” G such that both F with Δ = (G − F ), as well as F ′ with Δ′ = (F ′ − G)
fulfill the assumptions of Lemma 3.1. It then follows that Φ(F ) = Φ(G) = Φ(F ′).
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We claim that if Δ is chosen uniformly at random from Hom(X → N), then,
with probability strictly larger than 1 − 1

q−1 , it holds that range F| ker Δ = range F ,

i.e. Lemma 3.1 applies to F, Δ.
Before turning to the analysis of the randomized procedure, we state two prepara-

tory facts. First, for each subspace Z ⊂ X, it holds that

range F|Z = range F ⇔ dim Z − dim(Z ∩ kerF ) = rank F.(3.6)

Second, for each Δ ∈ Hom(X → N), Lemma 2.8 gives the dimension bound

dim kerΔ ≥ n − dim N ≥ t − dim N ≥ t − (t − r)/2 = r + (t − r)/2 ≥ rank F.

(3.7)

Now assume Δ is distributed uniformly at random. From the previous equation,
any rank F -dimensional subspace Z will occur within ker Δ with equal probability.
By Eq. (3.6), if dim(Z ∩ ker F ) = 0 for some such Z, then the assumption of
Lemma 3.1 is met.

There are (qk − 1)/(q − 1) one-dimensional spaces in a k-dimensional vector
space. Thus, the probability that any fixed one-dimesional subspace is contained
in a randomly chosen z-dimensional one is (qz − 1)/(qn − 1). By the union bound,
the probability that at least one non-zero element of a fixed (n − z)-dimensional
space is contained in a z-dimensional random one is therefore upper-bounded by

qn−z − 1

q − 1

qz − 1

qn − 1
=

1

q − 1

(qn − qz − qn−z + 1)

qn − 1
<

1

q − 1
(∀ z ≤ t).

This establishes the claim made at the beginning of the proof.
Now set G = F + Δ. The distribution of Δ′ = F ′ − G = (F ′ − F ) − Δ is the

same as the distribution of Δ. Thus Lemma 3.1 applies to F ′, Δ′ with the same
probability.

We conlcude by the union bound that the probability of the construction working
in both cases simultaneously is strictly larger than 1 − 2

q−1 ≥ 0. �

Proof of the Main Theorem. Let Φ ∈ K carry an N -weight B of rank r. By
Lemma 3.1 and Lemma 3.2, Φ is well-defined on cosets BN/ Hom(X → N) for
a suitable N . Set

Φ′ := Φ −
∑

N isotropic
dim N=	(t−r)/2


∑

[F ]∈BN / Hom(X→N)

Φ([F ]) e[F ].(3.8)

We will prove that Φ′ is actually equal to zero, using a Fourier-transform argu-
ment as in Lemma 3.1.

For the sake of reaching a contradiction, assume that Φ′ �= 0 and choose an
F ∈ supp Φ′ such that

rank F = max
F ′∈supp Φ′

rank F ′.(3.9)

For such an F , we next show that dim NF < �(t − r)/2�. For this, we use that

F ∈ supp Φ′ =⇒ F /∈
⋃

N isotrop. s.t.
dim N=	(t−r)/2


BN ,

and so dim NF �= �(t − r)/2�. But since F ∈ supp Φ, and rank K = r, we also know
that NF ≤ �(t − r)/2� and the claim follows.
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Now, as in the proof of Lemma 3.1, set X1 = kerF , choose some complement
X2 to X1, an invertible symmetric B : X∗

1 → X1, set Vi = Xi ⊕ X∗
i , and define

φ′, φ̃′ ∈ L2(X1 → U) as

φ′(G) := Φ′(F + G), φ̃′ := μU⊗V1
(JB)φ′.

Then, with Φ̃′ := (μU⊗V1
(JB) ⊗ μU⊗V2

(�))Φ′ ∈ K, it holds that

Φ̃′(F + G) = φ̃′(G) ∀G ∈ Hom(X1 → U).(3.10)

We decompose U as U1 ⊕U2 ⊕U3, where U1 = NF , U2 is a complement to NF in
rangeF , and U3 a complement to range F in U (c.f. Fig. 2). Let G be an element
of supp φ′. Write G = G1 ⊕ G2 ⊕ G3 for maps Gi ∈ Hom(X1 → Ui). Because
β restricted to U2 is non-degenerate, it follows from (G + F )T (G + F ) = B that
G2 = 0. By Eq. (3.9), G3 = 0. From Lemma 3.1, φ′ is invariant under Hom(X1 →
NF ) = G1. Thus φ′ is proportional to the indicator function on Hom(X1 → NF ).

Hence φ̃′ is proportional to the indicator function on Hom(X1 → N⊥
F ). But N⊥

F

contains the r-dimensional non-degenerate space U2 and has dimension dim N⊥
F >

t − �(t − r)/2� ≥ r + (t − r)/2. Therefore, as an orthogonal space, N⊥
F has rank

strictly larger than r and hence contains a non-isotropic vector u �∈ range F . If
G ∈ Hom(X1 → N⊥

F ) has u in its range, then rank(G + F )T (G + F ) ≥ r + 1. But

by Eq. (3.10), G + F appears in the support of Φ̃′, contradicting the assumption
that K has rank r.

It follows that Φ is in the span of the rank-r tensor power CSS codes Cr. If K is
irreducible, then it is spanned by the orbit Sp(V ) · Φ. But Lemma 2.7 says that Cr

is invariant under the Sp(V ) action, so K ⊆ Cr. By the same lemma, t − r is even.
The Main Theorem therefore holds for irreps, and hence for all representations. �

3.3. The connection to the η correspondence. Here, we will combine the
respective main results of this work and of [11] to arrive at a complete decomposition
of L2(Hom(X → U)) in terms of irreducible Sp(V ) subrepresentations.

One can find Sp(V )-subrepresentations of μU⊗V in the following way. First,
choose an isotropic subspace N ⊂ U and a τ ∈ Irr(O(N⊥/N)). Then, use Lemma
2.7 to find that the code CN is isomorphic to μ(N⊥/N)⊗V as an Sp(V ) represen-
tation. Finally, invoke the η correspondence on this code to find an irreducible
representation η(τ ) ⊂ CN of rank t − 2 dim N .

Lemma 3.3 observes that, while in general different CSS codes may have non-
trivial intersections, the representation spaces arising in the way just described are
linearly independent. This allows us to identify the joint action of U(O) and Sp(V )
on their span as a certain induced representation.

Recall that by Lemma 2.7, there is a homomorphism i : ON → O(N⊥/N) from
the stabilizer group ON ⊂ O(U) of an isotropic subspace onto the orthogonal group
of N⊥/N . Thus, if τ ∈ Irr O(N⊥/N), then τ ◦ i represents ON . In this section,
we will implicitly make this identification and we will not distinguish notationally
between τ and τ ◦ i.

Lemma 3.3. Let N ⊂ U be an isotropic space and let τ ∈ Irr(N⊥/N).
Let K ⊂ L2(Hom(X → U)) be the subspace on which Sp(V ) acts as η(τ ). Then,

as an O(U) × Sp(V )-representation,

K � Ind
O(U)
ON

(τ ) ⊗ η(τ ).(3.11)
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Proof. Set U ′ = N⊥/N . By Lemma 2.7 and Theorem 1.1, there is a unique O(U ′)×
Sp(V )-representation space K0 of type τ ⊗ η(τ ) in CN .

The isotropic Grassmanian

Ir = {N | N isotropic, dim N = (t − r)/2} � O(U)/ON

can be identified with the cosets O(U)/ON . Let {gi}|Ir |
i=1 be a choice of representa-

tives for each coset. Define

K[gi] = μU⊗V (gi)
(
K0

)
.

As Sp(V )-representation spaces, the K[gi] are all equivalent to η(τ ). Conversely,
from Theorem 1.2, every Sp(V )-representation of type η(τ ) is contained in their
span. Therefore,

K = span{K[gi]}
|Ir|
i=1.

We claim that the spaces K[gi] are linearly independent.
Indeed: We need to show that for each i, the space K[gi] intersects the span K′ of

the other spaces only at {0}. Since O(U) acts transitively on the K[gi], it is enough
to treat the case i = 1. As K′ and K[g1] are ON ×Sp(V ) representation spaces, and
because K[g1] is irreducible, we have the alternatives

K[g1] ⊂ K′ or K[g1] ∩ K′ = {0}.

It thus suffices to show that K[g1] contains one vector that is not an element of
K′. Let Φ1 ∈ K[g1] carry an N -weight B of rank r, let F ∈ supp Φ1. There is

some F ′ ∈ [F ]N that is maximal in the sense range F ′ = N⊥ (rather than its
range being a strict subset of N⊥). Since rank FT F = r, there must be some
complement W of N in N⊥ for which W ⊆ range F . From the decomposition
Hom(X → N⊥) = Hom(X → N) ⊕ Hom(X → W ) it is clear that there exists
a Δ ∈ Hom(X → N) for which F + Δ = F ′ is maximal. By the invariance
property of CSS codes, F ′ ∈ supp Φ1, i.e. the inner product (δF ′ , Φ1) �= 0. In
contrast, let Φi ∈ K[g1] for i �= 1. Then Fi ∈ supp Φi ⇒ range Fi ⊂ N⊥

i . But

rangeF ′ = N⊥
1 �⊂ N⊥

i , so that (δF ′ , Φi) = 0. It follows that Φ1 �∈ K′, as claimed.
The space K is therefore a direct sum of the K[gi]. We will now compute the

action of O(U) on this direct sum. It suffices to consider vectors of the form

μU⊗V (gi)(φ ⊗ ψ),

which span K. For each g ∈ O(U), there is a permutation π ∈ S|Ir| and elements
hi ∈ ON such that for each ggi = gπi

hi. Thus

μU⊗V (g)
(
μU⊗V (gi)(φ ⊗ ψ)

)
= μU⊗V (gπi

hi)(φ ⊗ ψ) = μU⊗V (gπi
)
(
τ (hi)φ ⊗ ψ

)
.

(3.12)

But this is the action of the advertised induced representation. �

By Lemma 2.7, the space N⊥/N is an orthogonal space of dimension r = t −
2k and discriminant d(Ur) = (−1)kd(U), with k = dim N . In particular, up to
orthogonal maps, N⊥/N only depends on r. With this in mind, we suppress the
dependency on N in our notation, and define Ur to be N⊥/N for some isotropic
N of dimension (t − r)/2. In the same vein, any two isotropic spaces of the same
dimension have conjugate stabilizer groups, and thus the isomorphism class of the
induced representation in Eq. (3.11) does not depend on N . Again, this justifies
defining Or to be ON for some isotropic N of dimension (t − r)/2.
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Theorem 1.1, Theorem 1.2, and Lemma 3.3 then yield the decomposition

μU⊗V �
⊕

r∈R(U)

⊕

τ∈Irr O(Ur)

Ind
O(U)
Or

(τ ) ⊗ η(τ ),(3.13)

with

R(U) = {t − 2k | there is an isotropic N ⊂ U with dimN = k}.

All Sp(V )-irreps η(τ ) appearing in Eq. (3.13) are indeed inequivalent: Those cor-
responding to different O(Ur) are distinguished by their rank, whereas the inequiv-
alence of summands of the same rank is a consequence of Theorem 1.1.

As an O(Ur)-representation,

Ind
O(U)
Or

(τ ) � τ ⊗ C|O(U)/ON |

is just τ with degeneracy equal to the number of isotropic subspaces of dimension
k.

A comparison with Theorem 1.1 shows that the Sp(V )-representations in Θ(τ )

are exactly those η(τ ′), where τ appears in Ind
O(U)
ON

(τ ′). In terms of character inner
products, and using Frobenius reciprocity:

〈Θ(τ ), η(τ ′)〉Sp(V ) =
∑

r∈R(U)

〈τ, Ind
O(U)
Or

(τ ′)〉O(U) =
∑

r∈R(U)

〈Res
O(U)
Or

(τ ), τ ′〉Or
.

As an example, we consider the case where τ = idO(U) is the trivial representation
of O(U). Then

〈Res
O(U)
Or

(idO(U)), τ
′〉Or

= 〈idOr
, τ ′〉Or

= δidO(Ur),τ ′ .

Therefore,

Θ(idU ) =
⊕

r∈R(U)

η(idO(Ur))

has a number of components equal to the isotropy index of U .

3.4. A non-CSS type rank-deficient subrepresentation. Our main theorem
makes statements only in the regime t ≤ n. Here, we show that it indeed cannot
be extended to all pairs t, n. To this end, we construct a rank-0 subrepresentation
of μF3

p⊗Fp
, i.e. for the case of t = 3 and n = 1. Here, p is an arbitrary odd prime.

This is incompatible with Theorem 1.2, which posits that t−r be even. Thus, more
general subrepresentations can occur for t > n.

Set V = Fp⊕F∗
p and U = F3

p with the standard orthogonal form β. The oscillator

representation μU⊗V thus acts on L2(U ⊗ F∗
p) � L2(U).
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Our construction depends1 on the choice of an isotropic vector x0 ∈ U . Define
ψ ∈ L2(U) by

ψ(z) =

⎧
⎨
⎩

0 β(z, z) �= 0 or z = 0
�β(x0,z) β(z, z) = 0, z �= λx0

�2λ z = λx0.
(3.14)

In particular, ψ is supported on the set of isotropic vectors in U , and restricts to a
Legendre symbol on every ray.

Proposition 3.4. The representation μU⊗V of Sp(V ) acts trivially on ψ.

Proof. From the explicit definitions in Section 2.2, one can easily see that ψ affords
trivial actions by the subgroups N (using isotropy of the support) and D (using
the multiplicativity of the Legendre symbol). All elements JB of the subgroup J
can be written as a product of an element from D with Jid, where id : X∗ → X is
the canonical identification of F∗

p with Fp. It therefore remains to be shown that ψ
is stabilized by μU⊗V (Jid).

We begin by deriving a more convenient expression for ψ. The standard form in
F3

p is isomorphic to H ⊕ 〈−1〉. In other words, there exists a basis with respect to

which the standard form on F3
p is

β(x, y) = x1y2 + x2y1 − x3y3.

In this basis, define

xa = (1, 2−1a2, a), a ∈ Fp

x∞ = (0, 2, 0).

By enumerating all points in projective space F3
p/Fp, one may easily convince oneself

that every isotropic vector in F3
p is a multiple of exactly one xa, for a ∈ F̄p :=

(Fp ∪ ∞). We can choose the basis change such that the vector x0 that appears
in (3.14) is mapped to the vector x0 as defined here.

For a �= b ∈ Fp,

β(xa, xb) = 2−1(a2 + b2) − ab = 2−1(a − b)2,

β(xa, x∞) = 2,

so that the Legendre symbol of the inner products is constant:

�β(xa,xb) = �2 ∀a �= b ∈ F̄3
p.

With these definitions, ψ takes a simple form:

ψ =
∑

a∈F̄p

∑

λ∈F×
p

(
�β(x0,xa) + �2δa,0

)
�λeλxa

= �2
∑

a∈F̄p

∑

λ∈F×
p

�λeλxa
.

1Numerically, it appears that the resulting representation space is actually independent of the
choice of x0. Numerical investigations also indicate that when substituting U = F3

p (which has

discriminant d(U) = 1) by a three-dimensional U ′ with discriminant d(U ′) a non-square, then
μU′⊗V will still act trivially on ψ if p = 3. On the other hand, for p = 5, 7, 11, 13, it holds that

μU′⊗V does not afford any trivial representation space. We will neither use, nor attempt to prove,

these statements.

48



RANK-DEFICIENT REPRESENTATIONS 215

We evaluate the Fourier transform ψ̃ = μU⊗V (Jid)ψ on an isotropic vector, using
Eq. (2.4): For κ ∈ F×

p , b ∈ F̄p, it holds that

ψ̃(κxb) = γ−3�2
∑

a∈F̄p

∑

λ∈F×
p

�λω(β(λxa, κxb))

= γ−3�2
∑

a∈F̄p,a �=b

�κ�β(xa,xb)

∑

λ∈F×
p

�λω(λ)

= γ−3p�κ

∑

λ∈F×
p

�λω(λ)

= γ−2p�κ = �2�κ = ψ(κxb),

where we have used the standard properties of quadratic Gauss sums. Restricted
to the support of ψ, this is the required eigenvalue equation.

In particular, we have found that ψ̃ coincides with ψ on the support of ψ. Because
the oscillator representation acts isometrically, ψ̃ must thus also have the same
support as ψ. �

4. The connection to the Clifford group

The motivation for this work was to understand the appearance of projections
onto CSS codes in the commutant of tensor power representations of the Clifford
group [10]. While we have opted to state our main results for representations of
the symplectic group, the two cases can sometimes be precisely linked. This is the
purpose of Proposition 4.2, which will be developed in this section.

We start by recalling the basic definitions. In addition to the oscillator rep-
resentation, the Hilbert space L2(X∗) also carries a representation W (m) of the
Heisenberg group H(V ) over V = X ⊕ X∗. The Heisenberg group H(V ) is the set
Fq × V with group law

(λ, v) ◦ (λ′, v′) = (λ + λ′ + 2−1[v, v′], v + v′).

For m ∈ F×
q , the Weyl representation of mass m on L2(X∗) is

W
(m)
V (λ, x ⊕ y)δz = ω(m)(−2−1y(x) + z(x) + λ) δz+y.(4.1)

As is true for the oscillator representation (Sec. 2.2), we again have that W
(−m)
V

is the complex conjugate of W
(m)
V , and again we will omit the superscript for the

mass-1 version. Two Weyl representations of different mass are inequivalent [8].
The Weyl and the oscillator representations are compatible in that

μ
(m)
V (S) W

(m)
V (λ, v) μ

(m)
V (S)−1 = W

(m)
V (λ, Sv)(4.2)

for all S ∈ Sp(V ), v ∈ V . The semi-direct product H(V ) � Sp(V ) with automor-
phism

S (λ, v) S−1 = (λ, Sv)

is the Jacobi group J(V ). By Eq. (4.2), the map

Cl
(m)
V : (λ, v, S) �→ W

(m)
V (λ, v)μ

(m)
V (S),

thus defines a representation of the Jacobi group on L2(X∗). The operators realizing
this representation are known in quantum information theory as the Clifford group
(“Clifford representation of the Jacobi group” would be a more consistent term,
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but we have chosen here to keep with the standard use in physics). Because the
maps {WV (v)}v∈V form a basis in L2(X∗), Eq. (4.2) determines μ(S) up to a phase
factor.

As Sp(V ) embeds into Sp(U ⊗V ) (Sec. 2.4), so too can one embed the Heisenberg
group H(V ) into H(U ⊗ V ). However, the embedding we will use is no longer
canonical, but depends on the choice of a vector u ∈ U . Roughly, we use u to lift
y ∈ X∗ to u ⊗ y ∈ U ⊗ X∗. Given u, define

ιu : (λ, v) �→ (β(u, u)λ, u ⊗ v).

This is a homomorphism:

ιu
(
(λ, x ⊕ y) ◦ (λ′, x′ ⊕ y′)

)

=
(
β(u, u)(λ + λ′)2−1β(u, u)

(
y′(x) − y(x′)

)
, u ⊗

(
(x + x′) ⊕ (y + y′)

))

=ιu(λ, x ⊕ y) ◦ ιu(λ′, x′ ⊕ y′),

from which one verifies that we have a representation

Cl
(u)
U⊗V : (λ, v, S) �→ WU⊗V (ιu(λ, v)) μU⊗V (S)

of the Jacobi group over V on L2(Hom(X → U)). Combining this construction
with [13, Prop. 2], one obtains a factorization property generalizing Corollaries 2.2
and 2.3. This is stated precisely (and with a self-contained proof) in Lemma 4.1.

Lemma 4.1. Assume U = U1 ⊕U2 is an orthogonal direct sum and let u = u1 ⊕u2

with ui ∈ Ui. Then, under the same ismorphism as introduced in Corollary 2.2,

Cl
(u)
U⊗V � Cl

(u1)
U1⊗V ⊗ Cl

(u2)
U2⊗V .

If u =
∑t

i=1 fi for an orthogonal basis {fi}t
i=1 as in (2.10), then

Cl
(u)
U⊗V � ClV ⊗ · · · ⊗ ClV︸ ︷︷ ︸

(t−1) ×

⊗Cl
(d(U))
V .

In particular, if U = Ft
q and fi is the standard orthonormal basis, then

Cl
(u)
Ft

q⊗V � Cl⊗t
V .

Proof of Lemma 4.1. The symplectic subgroup of the Clifford group factorizes ac-
cording to Corollary 2.2. It remains to be shown that the same is true for the image
of W (ιu(λ, v)) under the isomorphism (2.20). Using β(u, u) = β(u1, u1)+β(u2, u2):

W (ιu1⊕u2
(λ, x ⊕ y) δF

�
(
ω(−2−1y(x)β(u1, u1) + λβ(u1, u1) + β(u1, π1Fx))δπ1F+u1⊗y

)

⊗
(
ω(−2−1y(x)β(u2, u2) + λβ(u2, u2) + β(u2, π2Fx))δπ2F+u2⊗y

)

= W (ιu1
(λ, x ⊕ y)) ⊗ W (ιu2

(λ, x ⊕ y))δπ1F ⊗ δπ2F .

The second part is proven analogously to Corollary 2.3. �

The lemma gives a correspondence between the tensor powers of the symplectic
group and the tensor powers of the Clifford group. Assume that t is not a multiple
of p. Let fi be the standard orthonormal basis of Fq. Then u =

∑t
i=1 fi is not

isotropic, so we can decompose

Ft
q = 〈u〉 ⊕ u⊥ =: U1 ⊕ U2, d(U1) = d(U2) = t.
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Then Lemma 4.1 gives

(ClV )⊗t � Cl
(u)
Ft

q⊗V = Cl
(t)
V ⊗ μU2⊗V � Cl

(t)
V ⊗ μ

⊗(t−2)
V ⊗ μ

(t)
V ,(4.3)

where we have used that u2 = 0 and that WU2⊗V (ι0(λ, v)) = WU2⊗V (0) = �. In
Eq. (4.3), the action of the Heisenberg group has been compressed to the first tensor
factor, i.e. μV is seen here as a representation of J(V ) with kernel equal to H(V ).

We note the relationship between Eq. (4.3) and the discussion proceeding Prop. 2
in [13]: the latter assures us that because

(ClV )⊗t
|H(V ) � WU⊗V ◦ ιu � W

(t)
V ,

then

(ClV )
⊗t � Cl

(t)
V ⊗ ρ,

where ρ is some representation of J(V ) with H(V ) ⊆ ker ρ. Eq. (4.3) specifies that

in fact ρ � μ
⊗(t−2)
V ⊗ μ

(t)
V .

This observation is closely related to the discussion proceeding Prop. 2 from [13].
A consequence of it is:

Proposition 4.2. Let u ∈ U be anisotropic, let U ′ = u⊥. There is a one-one
correspondence between

(1) representation spaces of the symplectic group acting via μU ′⊗V on L2(Hom(X
→ U ′)), and

(2) representation spaces of the Jacobi group acting via Cl
(u)
U⊗V on L2(Hom(X →

U)).

In particular, if the characteristic of Fq does not divide t, there is a one-one

correspondence between irreducible Sp(V )-subrepresentations of (μV )⊗(t−2) ⊗ μ
(t)
V

and irreducible H(V ) � Sp(V )-subrepresentations of Cl⊗t
V .

Proof. As u is non-isotropic, we have the orthogonal direct sum

U = (Fq u) ⊕ U ′.

As in the proof of Corollary 2.3, the ismorphism

i : L2(Hom(X → U)) → L2(X∗) ⊗ L2(Hom(X → U ′)

defined by

δF �→ δuT F ⊗ δπ2F ,

realizes

ClU⊗V � Cl
(t)
V ⊗ μU ′⊗V(4.4)

as representations of H(V ) � Sp(V ).
In the one direction, let K ⊂ L2(Hom(X → U ′)) be invariant under μU ′⊗V .

Then

K′ := L2(X∗) ⊗ K(4.5)

is invariant under Cl
(t)
V ⊗ μU ′⊗V . In the other direction, let

K′ ⊂ L2(X∗) ⊗ L2(Hom(X → U ′))
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be invariant under Cl
(t)
V ⊗μU ′⊗V . Then, because the Weyl representation acting on

the first tensor factor is irreducible, K′ must factorize as

K′ = L2(X∗) ⊗ K
with a suitable K ⊂ L2(Hom(X → U ′)) invariant under μU ′⊗V . Thus Eq. (4.5)
defines a one-one correspondence K → K′ as advertised.

For the second part, assume that p does not divide t. Let U = Ft
q with stan-

dard basis {fi}i, and set u =
∑t

i=1 fi. Then β(u, u) = t, which is non-zero by
assumption. The claim now follows from the first part and Lemma 4.1. �

If t is a multiple of p, the situation is more complicated. In that case, u =
∑

i fi

is isotropic, which reflects the fact that in this case the representation

(λ, x ⊕ y) �→ W⊗t
V (λ, x ⊕ y)

is Abelian. The smallest non-degenerate subspace U1 ⊂ Ft
q containing u =

∑
i fi

is then a hyperbolic plane. Following the same recipe as above, we can therefore
arrange for the Heisenberg group to act only on the first two copies of L2(X∗).
However, the action of the Clifford group on these two copies is its adjoint action
(as in Lemma 2.4). This action, unlike the case treated in Proposition 4.2, is
reducible. We will analyze this situation elsewhere [18].

We close this section with a sample application of Proposition 4.2. Our goal
is to directly see the equivalence of two well-known facts: (1) The Clifford group
forms a unitary 2-design [6,9], i.e. its second tensor power decomposes into a direct
sum of two irreducible representations, supported on the qn(qn + 1)/2-dimensional
symmetric subspace, and the qn(qn − 1)/2-dimensional anti-symmetric one. Here,
the (anti-)symmetry is w.r.t. to an exchange of tensor factors. (2) The Weil repre-
sentation of the symplectic group decomposes as the direct sum of two irreducible
spaces, namely the (qn +1)/2-dimensional subspace of L2(X∗) of functions that are
symmetric under the reflection y �→ −y, and the (qn −1)/2-dimensional subspace of
anti-symmetric functions. The correspondence in Proposition 4.2 maps these two
decompositions onto each other:

{(anti-)symm. tensors on L2(X∗) ⊗ L2(X∗)}
�

L2(X∗) ⊗ {(anti-)symm. functions on L2(X∗)}.

As a consistency check: the ortho-complement of u = f1 + f2 is spanned by v =
f1 − f2. The interchange of tensor factors acts trivially on u, but changes the sign
of v. Thus, the two notions of (anti-)symmetry are indeed mapped onto each other.

5. Summary and outlook

Reference [11] introduced a notion of rank for Sp(V )-representations, and showed
that there is a one-one correspondence between irreps of O(U) and highest-rank
Sp(V )-irreps in μU⊗V . Here, we have classified the rank-deficient components and
have achieved a decomposition of μU⊗V in terms of irreducible and inequivalent
Sp(V )-representations.

A number of natural directions deserve further attention. Most importantly
from the point of view of quantum information theory, one must treat the case
of characteristic 2. We will pursue this in an upcoming paper, which will also be
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written in a language better-suited for consumption by physicists [18]. While we
have occassionally remarked on connections between this paper and previous works
from quantum information (e.g. [10]) and coding theory (e.g. [20]), the relation
between their respective approaches and the one taken in this paper should be
made more explicit. Lastly, the joint action of O(U)×Sp(V ) should be worked out
more explicitly.

Appendix A. Deferred proofs

A.1. Factorization property of the oscillator representation. It is possible
to prove Lemma 2.1 by directly verifying the claim on a set of generators (as
in Eqs. (2.2), (2.1), and (2.3)) for Sp(V1) × Sp(V2). Our approach is based on
realizing that it suffices to check the factorization property for Weyl operators (as
in Eq. (4.1)), and then use Eq. (4.2) to “lift” it to the oscillator representation.

Proof of Lemma 2.1. Assume that X = X1 ⊕ X2 and that V = V1 ⊕ V2 is the
resulting decomposition of V . By computing the action on basis vectors, it is
immediate that

i WV (v) i−1 = WV1
(v1) ⊗ WV2

(v2),

where

i : L2(X∗) → L2(X∗
1 ) ⊗ L2(X∗

2 ), δy �→ δyπ1
⊗ δyπ2

is the isomoprhism introduced in Eq. (2.8).
Let S ∈ Sp(V1), then, using Eq. (4.2),

(
i μV (S) i−1

) (
i W (v) i−1

) (
i μV (S)† i−1

)

=i W (Sv) i−1

=WV1
(Sv1) ⊗ WV2

(v2)

=
(
μV1

(S1) ⊗ �)(WV1
(v1) ⊗ WV2

(v2)
)(

μV1
(S1) ⊗ �)†

.

Since the Weyl operators WV (v) for a basis for End(L2(X∗)), this implies

i μV (S1) i−1 = κ(S)(μV1
(S) ⊗ �)

for some scalar function κ : Sp(V1) → C×. We now show κ(S) = 1 for all S.
Unitarity implies that |κ(S)| = 1. Because

i μV |Sp(V1) i−1

is a representation, κ must also be a (one dimensional) representation of Sp(V1).
Let N1 � D1 be the Siegel parabolic of Sp(V1) with N1 its unipotent radical.

Since κ is a one dimensional representation, it must contain only one weight
associated to N1. This N1-weight must have a trivial orbit under conjugation by
D1

∼= GL(X1) transformations, and thus κ|N1
= 1. But Sp(V1) is generated by

N1-conjugates, so κ = 1. �
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A.2. Fourier transforms and invariance. Here, we prove Lemma 2.9.
We begin by noting that B turns Hom(X → U) into an orthogonal space with

form βB given by

βB(F, G) = trF ∗βGB.

Let W = Hom(X → U ′). In the following we will show that

(1) for any Φ ∈ L2 Hom(X → U), supp Φ ⊆ W if and only if μU⊗V (JB)Φ is
invariant under W⊥ translations,

(2) W⊥ = Hom(X → U ′⊥).

These two claims imply the first statement of the lemma
For the first claim, start with the “only if” direction. Apply the inverse map

(associated with −B) to a function Φ̃ with the invariance stated. Then

Φ(F ) = γ(B, U)
∑

F ′

ω(−βB(F, F ′))Φ̃(F ′)

= γ(B, U)
∑

C∈Hom(X→U)/W ⊥

Φ̃(C)
∑

G∈W ⊥

ω(−βB(F, C + G))

= γ(B, U)
∑

C∈Hom(X→U)/W ⊥

Φ̃(C)ω(−βB(F, C))
∑

G∈W ⊥

ω(−βB(F, G))

= γ(B, U)|W⊥|δW (F )
∑

C∈Hom(X→U)/W ⊥

Φ̃(C)ω(−βB(F, C)).

Conversely, the set of Φ’s with support in W is a vector space of dimension |W |.
At the same time, the set of solutions we have identified in the direct direction has
dimension

∣∣Hom(X → U)/W⊥∣∣ = | Hom(X → U)|
|W⊥| =

| Hom(X → U)| |W |
| Hom(X → U)| = |W |,

so we have found all solutions.
Now we prove the second claim. Assume F is such that βB(F, F ′) = 0 for all

F ′ ∈ Hom(X → U ′), and choose F ′ = u ⊗ y for y ∈ X∗ and u ∈ U ′. Note that

F ∗βF ′B = F ∗(β(u)
)

⊗ (By),

where we used the fact that B is symmetric. Hence

βB(F, F ′) =
(
F ∗β(u)

)
(By) = β(u, FBy).

Because y ∈ X∗ and u ∈ U ′ are arbitrary, and because B is surjective, it follows
that F ∈ Hom(X → U ′⊥) and with this the claim also follows.

Now on to the second statement of the lemma. Acting explicitly on the indicator
function of W we get

μU⊗V (JB)
∑

F∈W

δF = γ(B)−1
∑

F∈W

∑

F ′∈W ⊥

ωβB(F,F ′)δF ′ ,

where we used the first statement to restrict the sum over F ′. Notice that by the
definition of W⊥, every coefficient in the expression above is 1, so that

μU⊗V (JB)
∑

F∈W

δF = γ(B)−1|W |
∑

F ′∈W ⊥

δF ′ ,

as claimed.
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A.3. Contiguity of ranks. In this section we prove Proposition 2.10. Our strat-
egy will be to find a set of generators for Sp(V ) which consists of elements that
either keep the rank of an N -weight invariant or change it by at morankst one. It
then follows that if the ranks of the N -spectrum has a gap, then the representation
is reducible.

Recall that K is an irreducible representation of rank < t, and

R := { k | there is an N -weight with rank k}.

Let Kr be the subspace of K ⊂ L2(Hom(X → U)) that is spanned by N -weights
of rank r. This space is invariant under the action of the parabolic subgroup N �J .
We will analyze its image under the Fourier transforms J .

Let {ei} be an arbitrary basis of X and {εi} be its dual basis. For any isomor-
phism B : X∗ → X, there is a C ∈ GL(X) satisfying

CBεi = ei, ∀ i.

Using the isomorphism in Eq. (2.8), we find that there exist a set of Bi : span{εi} →
span{ei} for which

i μU⊗V (C)μU⊗V (JB) i−1 = μU⊗V1
(JB1

) ⊗ · · · ⊗ μU⊗Vn
(JBn

),

where Vi := span{εi, ei}. It follows that Sp(V ) is generated by the parabolic
subgroup together with any i−1 (μU⊗V1

(JB1
)⊗�) i (sometimes referred to as single-

system Fourier transform in quantum information theory). Let X1 = span{e1},
X2 = span{e2, ... , en}, and let V = V1 ⊕ V ⊥

1 be the corresponding decomposition
of V , where V ⊥

1 = X2 ⊕ X∗
2 is the symplectic complement of V1. Let π1, π2 be

the projections associated with the decomposition Hom(X → U) = Hom(X1 →
U) ⊕ Hom(X2 → U). We see that
(
i−1 (μU⊗V1

(JB1
) ⊗ �) i

)
δF = γ−1(B1)

∑

F ′∈Hom(X1→U)

ω (βB(F ′, π1F )) δπ2F+F ′ .

Throughout the rest of the argument, let rankFT F = r.
Now, range π2F is either equal to range F or it is a subspace of the latter with co-

dimension 1. Thus rank(π2F )T (π2F ) ∈ {r, r−1}. Furthermore, either range π2F +
F ′ = range π2F or

range π2F ⊂ range π2F + F ′

is a subspace of co-dimension 1. Thus,

rank(π2F + F ′)T (π2F + F ′) ∈ {r − 1, r, r + 1},

for any F ′ ∈ Hom(X1 → U). This implies that

i−1 (μU⊗V1
(JB1

) ⊗ �) i : Kr → Kr−1 + Kr + Kr+1.

If for some r ∈ R it held that Kl = {0} then the spaces
∑

r>l Kr and
∑

r<l Kr

would be invariant under all generators (and thus subrepresentations). Since K is
irreducible by assumptiuon, this cannot happen.
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Tensor power representations of the Clifford group play an increasingly prominent role in the construction of
protocols for quantum system certification, quantum simulation, quantum cryptography, among others. Beyond
physics, Clifford tensor powers have made appearances in areas such as invariant theory, Theta duality and
the construction of unitary designs. Here we fully decompose these tensor power representations. For this,
we generalize the rank theory of symplectic representations to the case of the Clifford group. In this way, we
generalize the “eta correspondence” between the symplectic and orthogonal groups to a correspondence between
the Clifford and orthogonal-stochastic groups. These results go beyond our previous works in two main regards:
1. They work for arbitrary t-th tensor powers with t ≤ n (where n is the number of qudits). 2. They work for
both the qubit and odd qudit cases. As a sample application, we provide a protocol to efficiently implement the
complex conjugate of a black-box Clifford unitary evolution.
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2

I. INTRODUCTION AND SUMMARY OF RESULTS

Tensor power representations of the Clifford group Cl,

Cl 3 U 7→ U⊗t,

have played an increasingly prominent role in quantum information theory in the past years. Studying these has, for example,
lead to efficient protocols for quantum device characterization [1–4], quantum state distinction [5], compressed sensing [6],
stabilizerness testing [7], bounding the stabilizer rank of magic states [8], as well as complex projective [7, 9] and unitary [10]
t-designs.

Tensor power representations with t ≤ 4 are well understood [9, 11–13]. An important characteristic here is that the Clifford
group is a unitary 3-design, ie. the uniform distribution on the Clifford group has the same third order moments as the Haar
distribution on the full unitary group. Moreover, the Clifford group is singled out among unitary designs as the only infinite
family of finite groups forming 3-designs [14]. Generalising these results to larger t, Ref. [7] studied the commutant of general
t-th tensor power representations. While a description of the commutant may in general be used to decompose the representation,
this insight was left for future work in that reference. In our previous work, Ref. [15], we provided a full decomposition of these
representations in the case of odd qudits and where t is not divisible by the local dimension d. The question of generalising these
results to the qubit and t-multiple-of-d cases was left open.

In this paper, solve this open problem. Our contribution goes beyond previous works on various regards.

1. We generalize the main result of Ref. [15] to the case of qubits, and to the case where t is a multiple of d.

2. While the main result of Ref. [15] was inspired by Ref. [7], the proof strategies used in the former were independent of
the results latter. Thus, the question of whether the proofs of Ref. [15] could be simplified by exploiting directly the main
result of Ref. [7] arises. Here we answer this question in the affirmative.

3. Refs. [16, 17] develop a rank theory for representations of the symplectic group. This rank theory is crucial in the
generalization of the Theta correspondence [18, 19] between the real orthogonal and symplectic groups, to the scenario
over finite fields [16, 17]. Here, we extend this theory to a rank theory for Clifford representations. This way, we generalize
the results of [16] to the Clifford group.

4. Refs. [20–23] study the related problem of classifying polynomial invariants of the Clifford group —equivalently, they
study the trivial Cl-subrepresentation of Symt(Cd

n

). There, certain self-dual codes span the space of these invariants.
Here, we show that these invariants correspond to rank-0 subrepresentations of Clifford tensor powers. We furthermore
show that all subrepresentations with rank< t are contained in the span of certain self-orthogonal codes, of which a subset
are the aforementioned self-dual codes. In this sense, our result extends Refs. [20, 21, 23] to non-zero rank representations.

5. In Ref. [9], the code space with stabilizer group {P⊗4 |P n-qubit Pauli } was studied in detail. In particular, it was found
that the real Clifford group acts as a permutation representation on this space. Here we generalize this result to t = 4k,
k ≥ 1, and show that this representation gives rise to a duality between the real Clifford group and a symplectic group.
We conjecture that, in analogy to [16], on a given maximal-rank subspace, this duality gives a correspondence between
irreps of the real Clifford group and the symplectic group.

6. As a sample application of our results, we study the problem of using a Clifford black box U to implement Ū (Clifford
black box conjugation). We provide an optimal parallel inversion protocol for Clifford black boxes and show that the
number of black box uses needed for this is ∼ d. This is in stark contrast to the problem of inverting arbitrary unitaries,
which requires dn − 1 black box uses.

Many of the results found in the works cited above are closely analogous to our results. Here we summarize these interrelations
between the literature and this paper.

Ref. [16] develops a theory of rank for Sp(2n, q) representations. They show that certain “maximal rank” subrepresentations
of tensor powers of the oscillator representation set up a correspondence between Irr Sp(2n, q) and Irr O±(t, q). The rank theory
developed in that reference is analogous to the rank theory in Sec. IV. In fact, Thm. V.1 is a generalization of the main theorem
in [16] and their proofs are conceptually very similar. The analogy between both rank theories is broken in two prominent places.
First, it is broken in a mild way in the qubit case, where having zero rank does not imply triviality (compare Lem. IV.3 to [16,
Lem. 1.3.1]). Instead, rank zero representations of the qubit Clifford group are in general±1 valued. Second, while [16] requires
t ≤ n, we are able to also describe certain low-rank sectors even when t > n (see the relevant condition in Thm. V.1).

Ref. [7] provides a description for the commutant of Clifford tensor powers. This amounts to computing the trivial component
of “balanced” tensor powers U 7→ U⊗t⊗ Ū⊗t. Here we build on this result to find a description of the full representation theory
of arbitrary tensor powers U 7→ U⊗r ⊗ Ū⊗s. In this way, while the methods of [16] (appropriately generalized) describe the
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“maximal rank” component of tensor powers, and the methods of [7] describe the “rank zero” component, this paper describes
all other rank components.

Our main result, Thm. V.2 is closely analogous to [15, Thm. 1.2]. Three points are important in this regard. First, that [15]
holds over finite fields of characteristic not two, while our results hold for finite fields of prime order (in particular, our results
hold for the qubit case). We believe that our results can be straightforwardly generalized to arbitrary finite fields but we will not
attempt to show this. Second, Ref. [15, Prop. 4.2] describes the representation theory of Clifford tensor powers indirectly, heavily
relying on its symplectic counter-part [15, Thm. 1.2]. Here, our proof of Thm. V.2 directly describes the Clifford representation
theory. This allows us to generalize the aforementioned result to the qubit case and the case where t = 0 mod d. Third, even
if the statements Thm. V.2 and [15, Thm. 1.2] are analogous, our proof strategies are considerably different. Importantly, while
in [15] we resorted to probabilistic proof strategies, the proofs presented here are much more constructive.

As mentioned, Sec. VI looks at a subrepresentation which generalizes the one studied in [9, Sec. 3.4 and App. B]. Our
emphasis here is different, however. That reference focuses on singling out the full Clifford action on this space, where they find
that it is equivalent to an analog of the oscillator representation of Sp(2n, 2). Here, we focus on the action of the real Clifford
group on it, which gives rise to a new correspondence between O+(2n, 2) and Sp(2t′, 2), where t = 2t′ is even.

Finally, [24, Thm. 3] provides a list of Clifford tensor powers which lead to an exact correspondence between the Clifford
group and an orthogonal group O(Ztd). In Sec. V D we show that this list is essentially complete.

II. PRELIMINARIES

Here we summarize some relevant results found in the literature.

A. The Pauli and Clifford groups

Consider n qudits, with Hilbert space Hn :=
(
Cd
)⊗n

and computational basis states |x〉 where x ∈ Znd =: X. The main
results of this paper hold only in the case where d is a prime, however the presentation within this subsection holds for arbitrary
d.

Let the shift and clock operators be

X(q) |x〉 = |x+ q〉 Z(p) |x〉 = ωp·x |x〉 , p, q ∈ X,

where ω = exp(2πi/d). Because the construction of the Pauli and Clifford groups differs slightly depending on whether d is
even or odd, it is convenient to introduce τ = (−1)d exp(iπ/d), and let D be the order of τ . Notice that τ2 = ω, that d = D if
and only if d is odd, and otherwise D = 2d if d is even. Then, the Weyl operators (also known as displacement operators) are

Wv := τ−vz·vxZ(vz)X(vx),

where v = (vz, vx) ∈ Z2n
d := V . The n-qudit Pauli group P is generated by the displacement operators and τ1.1 Its defining

representation, known as the Weyl representation, is denoted W .
One may define several inequivalent representations of P acting onHn. For eachm ∈ Z+

d := Zd\{0} define the displacement
operator with mass m to be:

W
(m)
(vz,vx) := W(mvz,vx).

Then, the Weyl representation with mass m is given by

W (m) :

{
τ1 7→ τm1,

Wv 7→W
(m)
v .

The vector space V naturally hosts the symplectic product

[v, u] = vz · ux − vx · uz,

1 In the mathematical literature the Pauli group is also known as the Heisenberg group and as the extra-special p-group.
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arising through the commutation relation

W (m)
v W (m)

u = ωm[v,u]W (m)
u W (m)

v .

One may further verify that

W (m)
v W (m)

u = τm[v,u]W
(m)
v+u.

so that any element of P is equal to some Wv up to a phase.
The Clifford group [7, 25–27], denoted Cl, is the subgroup of U(Hn) generated by the discrete Fourier transform on any given

qudit (also known as Hadamard gate for d = 2)

H =
1√
d

∑

x,y∈Zd

ωxy |x〉 〈y| , (1)

the phase gate acting on any qudit,

P =
∑

x∈Zd

τx
2 |x〉 〈x| (d even), P =

∑

x∈Zd

τx(x−1) |x〉 〈x| (d odd), (2)

and the controlled addition acting on any pair of qudits,

CADD =
∑

x,y

|x, x+ y〉 〈x, y| . (3)

When d = 2 we use, alternatively, the standard notation CNOT := CADD.
The Clifford group contains and normalizes the Pauli group, P/Cl. Furthermore every character-preserving automorphism of

the Pauli group can be realized by conjugating with some Clifford matrix, and in particular Cl/P ' Sp(V ). Each automorphism
corresponds to a coset UZ(Cl) ⊂ Cl, where U ∈ Cl. In the odd d case, Z(Cl) = 〈ω1〉 ' Zp, while in the qubit case
Z(Cl) = 〈ω81〉 ' Z8 whenever n ≥ 2 [20], where ω8 = exp(2πi/8).2 If d is odd it further holds that Cl ' Po Sp(V ) and, up
to a phase, any U ∈ Cl can be expressed [28] as

U = eiϕW (v)µ(S),

where µ is a unitary representation of the symplectic group Sp(V ) known as the oscillator representation or the Weil representa-
tion. The projective Clifford group is PCl := Cl/Z(Cl). If d is odd, one can see that PCl ' V o Sp(V ) is the affine symplectic
group. In the qubit case, d = 2, this separation of Cl and PCl into a semi-direct product ceases to hold [29].

The oscillator representation satisfies

µ(S)W (v)µ(S)† = W (Sv).

One may similarly define the oscillator representation with mass m, denoted by µ(m), as the unique representation of Sp(V )
satisfying

µ(m)(S)W (m)(v)µ(m)(S)† = W (Sv). (4)

It turns out that µ(m) only depends on whether m is a square or not in Zd. In the former case, µ(m) = µ, while if m is a
non-square then µ(m) = µ̄. Finally, by (4), it follows that W (m) and µ(m) generate a representation of Cl which we will denote
by Cl(m).

In previous studies of the oscillator representation [15–17] the following subgroup of Sp(V ) has figured prominently,

N :=
{
NB =

(
1n B
0 1n

)
: B = BT ∈ Zn×nd

}
.

One may verify [16] that

µ(NB) =
∑

x∈X

τ2−1xTBx |x〉〈x| .

2 For n = 1 the center is 〈i1〉 ' Z4. Furthermore, a careful choice of the phase in front of the H generator can make the center be Z4 for larger n as well [9].
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B. Quadratic and bilinear forms

Here we review some results on quadratic and bilinear forms over finite fields. We mainly follow [30], taking a few results
from [31] for the case d = 2.

We partition Z+
d := Zd \ {0} into two square classes: the squares are given by

Z×2
d := {a2 | a ∈ Z+

d },

and the non-squares are their complement. The Legendre symbol of a number a ∈ Zd is,

`(a) =





0, if a = 0,

+1, if a ∈ Z×2
d ,

−1, else.

Let K = Zkd be a vector space. A bilinear form on K is a map β : K × K → Zd which is linear in both arguments. It is
symmetric if β(v, u) = β(u, v) for all u, v ∈ K, and it is alternating if β(v, v) = 0 for all v ∈ K. The spaces of symmetric and
alternating forms over K are denoted, respectively, Sym(K) and Alt(K). The radical of a bilinear form β is given by,

rad (β) = {u ∈ K |β(u, v) = 0∀ v ∈ K},

if rad (β) = 0, we say β is non-degenerate. We denote by β0 the non-degenerate form inherited toK/rad (β) and let rank (β) =
dimK/rad (β).

A quadratic form is a map q : K → Zd such that for every pair u, v ∈ K, the function

β(u, v) := q(u+ v)− q(u)− q(v) (5)

is bilinear, and q(αu) = α2q(u) for α ∈ Zd. The form q is a quadratic refinement of β, and conversely, β is the polarisation of
q. We say q is non-degenerate whenever β is. A generalized quadratic refinement of β is a map q : K → ZD satisfying

q(u+ v)− q(u)− q(v) = 2β(u, v) mod D, (6)

and q(αu) = α2q(u) mod D. The space of quadratic forms over K is denoted Q(K), while the space of generalized quadratic
refinements over K is denoted Q̃(K). In the case where d = D is odd, then these two sets coincide, but if d = 2 they are
different.

When d is odd there’s a one-to-one correspondence beween quadratic forms and symmetric bilinear forms through

2−1β(u, u) = q(u). (7)

This correspondence fails if d = 2. In this case, the function u 7→ β(u, u) is a linear and a quadratic form. This way, there exists
a vector vβ ∈ K/rad (β) for which

β0(u, u) = β0(u, vβ), ∀ u ∈ K/rad (β). (8)

The type of β is even if vβ = 0 and odd otherwise. That is, β is even if and only if it is alternating.

Example II.1. Two examples of generalized quadratic refinements are the following, where d = 2. First, if q ∈ Q(K), then we
may define the form 2q ∈ Q̃(K) by

(2q)(u) = 2δ(q(u)− 1).

If q is a refinement of β, then 2q is a generalized refinement of the same form.
Second, we may define the form qr,s given on some basis {ei} of K by

qr,s(ei) =

{
+1 if i ≤ r,
−1 if i > r,

here s := dimK − r. For any value of r, qr,s is a generalized refinement of the standard dot product, ei · ej = δij .
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A matrix representation of a symmetric form β with respect to a basis {ei} of K is a matrix M with components

Mij = β(ei, ej).

In this way, writing u, v ∈ K as tuples of coordinates with respect to this basis, uTMv = β(u, v). The representation is uniquely
specified by the choice of basis.

Similarly, a matrix representation M of a quadratic form q ∈ Q(K) with respect to a basis {ei} is such that uTMu = q(u).
The representation is no longer uniquely specified by the basis: indeed if A is an alternating matrix then M +A also represents
q. Next we show the converse statement.

Proposition II.1. Let M and M ′ be matrix representations of q ∈ Q(K) with respect to a basis {ei}. Then,

Mij +Mji = M ′ij +M ′ji, Mii = M ′ii, ∀ i < j.

Proof. Let β be such that q refines it, and let Mβ be its matrix representation with respect to {ei}. Then by eq. (5), M +MT =
Mβ = M ′ + (M ′)T . If d is odd, then this finishes the proof, otherwise we still need to show that Mii = M ′ii. But this follows
from eTi Mei = q(ei) = eTi M

′ei.

1. Classification of forms

Two spaces K, K ′ equipped with quadratic or bilinear forms B, B′ are equivalent as formed spaces, denoted K ' K ′, if
there exists an invertible linear map M : K → K ′ for which B′ = B ◦M . In the case K = K ′, we obtain the notion of Gl(K)-
equivalence between forms. Specifically, the spaces Sym(K), Alt(K), Q(K) and Q̃(K) are naturally Gl(K) representations
through

gq( · ) = q(g−1 · ), (9)

gβ( · , · ) = β(g−1 · , g−1 · ). (10)

The equivalence of forms up to Gl(K) is obtained by the following propositions. There we denote the Gl(K) equivalence of
forms by ∼, e.g. q ∼ q′ ∈ Q(K) if there is some g ∈ Gl(K) such that q′ = gq.

Example II.2. When d = 2 there are two equivalence classes of quadratic refinements to the same non-degenerate bilinear
form β. This can be exemplified through the hyperbolic plane, defined for any d as H = Z2

d with basis {e, f}, equipped with a
form βH given by

βH(e, e) = βH(f, f) = 0, βH(e, f) = 1.

In the case d = 2, the following two quadratic forms are compatible with βH,

q0
H(e) = q0

H(f) = 0 q0
H(e+ f) = 1,

q1
H(e) = q1

H(f) = 1 q1
H(e+ f) = 0.

The following results classify symmetric, quadratic, and generalized quadratic forms.

Proposition II.2. Let d be odd, β ∈ Sym(K), and β0 be the restriction of β to K/rad (β). The discriminant of β,

dis(β) := `(detMβ0
),

is independent of the basis used to construct the matrix representation Mβ0
of β0, and so it is Gl(K)-invariant.

Furthermore, if dis(β) = dis(β′) and rank (β) = rank (β′), then β ∼ β′ and for any a ∈ Zd satisfying `(a) = dis(β), one
can choose

Mβ0 = diag(1, . . . , 1, a).

By eq. (7), Prop. II.2 gives a classification of the orbits on Q(K) for odd characteristic as well.

Proposition II.3. Let d = 2 and β ∈ Sym(K). Then exactly one of the following holds:

1. The type of β is odd and there exists an orthonormal basis {ei} of K/rad (β),

β0(ei, ej) = δij .
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2. The type of β is even, dim (K/rad (β)) = 2m and β0 ∼ β⊕mH .

This way, the Gl(K) orbits on Sym(K) are labeled by rank and type.

Proposition II.4. Let d = 2 and q ∈ Q(K) be a quadratic refinement of the non-degenerate form β. Then β is even and
dimK = 2m. Furthermore, consider the Arf invariant of q, Arf : Q(K)→ Z2, defined by

(−1)Arf(q) = sgn
∑

u∈K
(−1)q(u).

Then exactly one of the following holds:

1. Arf(q) = 0 and q ∼ (q0
H)⊕m,

2. Arf(q) = 1 and q ∼ q1
H ⊕ (q0

H)⊕(m−1).

Proposition II.5. Let d = 2 and q ∈ Q̃(K) be a generalized quadratic refinement of the non-degenerate form β. Consider the
generalized Arf invariant of q, Ãrf : Q̃(K)→ Z8 defined through

exp

(
2iπ

8
Ãrf(q)

)
= phase of

∑

u∈K
iq(u).

Then, if β is of even type, dimK = 2m, and exactly one of the following holds,

1. Ãrf(q) = 0 and q ∼ (2q0
H)m,

2. Ãrf(q) = 4 and q ∼ (2q1
H)⊕ (2q0

H)⊕(m−1).

Otherwise, β is of odd type and exactly one of the following holds,

1. Ãrf(q) = k mod 8 and q ∼ qk,0,

2. Ãrf(q) = k − 2 mod 8 and q ∼ qk−1,1,

3. Ãrf(q) = k − 4 mod 8 and q ∼ qk−2,2,

4. Ãrf(q) = k − 6 mod 8 and q ∼ qk−3,3,

where k := dimK.

2. Duality between quadratic and symmetric forms

We now explore the relationship between quadratic forms and symmetric forms in some more detail. To the best of our
knowledge the results in this section are not explicitly proven in the literature.

Evidently all quadratic forms are a refinement of some bilinear form. If d = 2, however, the converse fails: only symmetric
forms of even type admit a quadratic refinement. Indeed, if β and q are as in (5) we see that

β(u, u) = q(u) + q(u) + q(u+ u) = 0.

Let Ξ : Q(K)→ Sym(K) be the linear map sending each q to β such that (5) holds. We call Ξ(q) the polarisation of q. Eq. (7)
tells us that when d is odd, Ξ is invertible. On the other hand, if d = 2 then K∗ ⊂ Q(K) is the kernel of Ξ. The range of Ξ
in this case is no longer Sym(K) but actually range Ξ = Alt(K) as shown in App. A 1. This means that a symmetric bilinear
form over Z2 has a quadratic refinement if and only if it is alternating.

We may similarly define a linear map Ξ̃ : Q̃(K) → Sym(K) which polarizes generalized quadratic forms, ie. for which
β = Ξ̃(q) satisfies eq. (6). It can be seen that

ker Ξ̃ = 2K∗ := {2f | f ∈ K∗}.

In App. A 1 we show that range Ξ̃ = Sym(K), that is, that every symmetric bilinear form has a generalized quadratic refinement.
In the case of odd d, the map Ξ provided a canonical identification between Q(K) and Sym(K). In the following we

proposition we construct a different map, Φ, which provides a similar identification but works for the case d = 2 as well.
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Proposition II.6. Recall that one can canonically embed Sym(K∗) = 〈v ⊗ v〉 ⊆ K ⊗ K. Consider the linear function
Φ : Sym(K∗)→ Q(K)∗ given by

Φ(v ⊗ v)(q) = q(v).

Then, Φ is well defined, bijective, and Gl(K)-covariant ie.,

Φ(gv ⊗ gv)(q) = Φ(v ⊗ v)(g−1q).

Proof. To prove consistency, first consider Φ evaluated on the set of tensor squares v ⊗ v, we can see that

Φ(v ⊗ u+ u⊗ v)(q) = Φ
(
(v + u)⊗ (v + u)− v ⊗ v − u⊗ u

)
(q)

= q(u+ v)− q(u)− q(v) = Ξ(q)(u, v)

is a symmetric bilinear form. Similarly q(av) = Φ(av ⊗ av)(q) = a2Φ(v ⊗ v)(q) = a2q(v). On linear combinations of tensor
squares, moreover, if

B :=
∑

i

aivi ⊗ vi = 0,

then by linearity of Φ

Φ(B)(q) =
∑

i

aiq(vi) =
∑

i

aitr
(
(vi ⊗ vTi )Mq

)
=
∑

i

aitr
(
(vi ⊗ vi)MΓ2

q

)
= 0,

where Mq is any matrix representation of q and Γ2 is a partial transpose acting on the second tensor factor.
The function is injective: consider a B ∈ Sym(K)∗ for which

Φ(B)(q) = 0, ∀ q ∈ Q(K).

Then, if B =
∑
i aivi ⊗ vi,

0 =
∑

i

tr
(
ai(vi ⊗ vi)MΓ2

q

)
, ∀ q ∈ Q(K). (11)

Now, any symmetric matrix M represents some quadratic form qM through qM (v) = vTMv. This way, eq. (11) implies
that B is orthogonal to all symmetric tensors in K∗ ⊗ K∗ and hence equal to zero. The function is also surjective because
dim Q(K)∗ = dim Sym(K∗).

Finally, Φ is Gl(K)-covariant since

Φ(gv ⊗ gv)(q) = q(gv) = (g−1q)(v) = Φ(v ⊗ v)(g−1q).

Example II.3. Consider the symmetric form κh on K∗ given by κx(u, v) = u(x)v(x), where u, v ∈ K∗ and x ∈ K. Then
κx = x⊗ x ∈ K ⊗K and Φ(κx) : q 7→ q(x). Similarly, consider a symmetric form

κ(u, v) =
∑

i

siu(xi)v(xi)

where xi ∈ K and si ∈ Zd. Then,

Φ(κ) : q 7→
∑

i

siq(xi). (12)

3. Model quadratic space

Throughout the remainder of the paper we take T := Zr+sd , with r+ s = t and let βr,s : T × T → Zd be the symmetric form
defined on the standard basis by

βr,s(ei, ej) = siδij ,
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where si = 1 if i ≤ r, and si = −1 if i > r. In the case d = 2, this form is the standard dot product, however we keep the
notation above for uniformity. We will denote the matrix representation of βr,s with respect to the diagonalising basis {ei} by
Mr,s.

Let qr,s : T → ZD be the (generalized) quadratic refinement of βr,s evaluating on the standard basis by

qr,s(ei) =

{
+1 mod D, i ≤ r,
−1 mod D, i > r.

A subspace N ⊂ T is isotropic if qr,s|N = 0. It is stochastic if 1t ∈ N⊥, where

N⊥ := {u ∈ T |β(u, v) = 0, ∀ v ∈ N}

is the orthocomplement of N . Notice that for an isotropic subspace N , it holds that N ⊆ N⊥. We use the following notation,
1t := (1, 1, . . . , 1) ∈ T ,

Gm : = {N ⊂ T |N stoch. isotr. ,1t /∈ N, dimN = m}
G : =

⋃

m

Gm,

G0
m : = {N ⊂ T |N stoch. isotr. ,1t ∈ N, dimN = m}
G0 : =

⋃

m

G0
m,

TN : = N⊥/N,

The maximal m for which Gm is non-empty is denoted m(T ), the largest m for which G0
m is non-empty is m(T )− 1.

Because

rad (qr,s|N⊥) = N,

the form qr,s is well defined on TN . We write qN ∈ Q̃(TN ) for the non-degenerate form inherited.
The orthogonal group, O(T ), is the subgroup of Gl(T ) leaving qr,s invariant,

q(O · ) = q( · ) mod D, O ∈ O(T ).

The orthogonal stochastic group, St(T ), is the subgroup of O(T ) leaving 1t invariant,

O1t = 1t mod d, O ∈ St(T ).

Proposition II.7. Let d = 2. Then O(T ) = St(T ).

Proof. Because qr,s is a generalized refinement of βr,s, the following equation over Z4 holds for any O ∈ O(T ),

2βr,s(Ou,Ov) = qr,s(Ou+Ov)− qr,s(Ou)− qr,s(Ov) = qr,s(u+ v)− qr,s(u)− qr,s(v) = 2βr,s(u, v),

so that βr,s is O(T )-invariant. But, βr,s(u, u) = βr,s(1t, u), and so

βr,s(O
−11t, u) = βr,s(Ou,Ou) = βr,s(u, u) = βr,s(1t, u).

The claim follows from non-degeneracy of βr,s.

Model spaces of the same dimension are sometimes isometric, the following proposition classifies all such isometries.

Proposition II.8. Let r, r′, s,′ ∈ N with r + s = r′ + s′. Then qr,s ∼ qr′,s′ if and only if one of the following conditions holds,

1. d = 1 mod 4,

2. d = 3 mod 4, s = s′ mod 2,

3. d = 2, r − s = r′ − s′ mod 8.
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Proof. Point 2. follows from dis(βr,s) = sq. class of (−1)s. Point 1. uses this identity together with the fact that−1 is a square
over Zd in this case.

For Point 3. we begin by noticing that both quadratic forms are of odd type. Therefore they are equivalent if and only if their
generalized Arf invariant is equal.

exp

(
2iπ

8
Ãrf(qr,s)

)
= phase of

∑

u1∈Zr
d

∑

u2∈Zs
d

iqr,0(u1)−qs,0(u2)

= exp

(
2iπ

8

(
Ãrf(qr,0)− Ãrf(qs,0)

))

= exp

(
2iπ

8
(r − s)

)
, (13)

where the last line follows from Prop. II.5.

It is convenient to define qr,s for possibly negative r, s ∈ Z. Namely, we let qr,s be any generalized quadratic form equivalent
to some qr′,s′ with r′, s′ ≥ 0 such that one of points 1.-3. of Prop. II.8 holds.

Proposition II.9. Let N ∈ Gm, then qN ' qr−m,s−m.

Proposition II.10. Let r − s = 0 mod 4, d = 2, and N ∈ G0
m. Then, t = 0 mod 2, and it holds that

βN ' β⊕(t−2m)/2
H .

Proof. The first statement follows from r = s mod 2. For any u ∈ TN = N⊥/N , let u0 ∈ u ⊂ N⊥ be some point in the
corresponding affine plane. The second claim follows from the fact that, for all u ∈ TN ,

βN (u, u) = βr,s(1t, u0) = 0

because 1t ∈ N . Then, the inherited form has even type.

Prop. II.10 motivates us to define Sp(TN ), the isometry group of βN forN ∈ G0
m. It is clear that Sp(TN ) ' Sp(2, t−2m), and

that St(TN ) ⊆ Sp(TN ) where this inclusion is strict as long as t > 2m. Finally, notice that because 1t ∈ N , St(TN ) = O(TN )
is the isometry group of qN .

C. Representation Theory

A representation of a group G is a matrix-valued function ρ : G→ Fk×k for which

ρ(g1)ρ(g2) = ρ(g1g2),

where F is an arbitrary number field. The space of functions f : Fk → S, where S is a set, is canonically a G-representation
through

gf( · ) := f(ρ(g−1) · ). (14)

Throughout we will assume that any space of functions on a representation space is itself a representation arising in this way.
The representations with which we deal with here are usually complex, F = C, and unitary, range ρ ⊂ U(Ck). The repre-

sentation space of ρ is the space on which it acts, namely Ck. A subspace V ⊆ Ck is called a G-invariant space, or simply
an invariant space, if ρ(G)V = V . A representation with no non-trivial invariant subspaces is irreducible, the set of all such
representations is IrrG. If ρ is reducible, there is a U ∈ U(Ck) for which

Uρ(g)U† = ρ1(g)⊕ · · · ⊕ ρm(g), ∀ g ∈ G,

where ρi are irreducible representations. Equivalently, we may decompose the representation space into invariant subspaces

Ck =
⊕

i

Vi,

where ρ(g)Vi = ρi(g)Vi. We summarize this into the equation ρ ' ⊕iρi, where ' denotes isomorphism between representa-
tions.
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Let H E G and G′ = G/H . Any representation ρ of G′ can be extended to a representation of G which has H in its kernel.
For simplicity, we will also call this representation ρ. It follows that there is a canonical embedding IrrG′ ⊆ IrrG.

The regular representation of G is the space C[G] of formal linear combinations of group elements, with G acting from the
left as

g |g′〉 = |gg′〉 .
The regular representation decomposes as

C[G] '
⊕

τ∈IrrG

τ ⊗ Cdim τ ,

where the right factors are multiplicity spaces. The commutant of the regular representation is spanned by the right-action of G,

g : |g′〉 7→
∣∣g′g−1

〉
.

Proposition II.11. Let G be a finite group acting on a finite set S with |S| = |G|. Furthermore, assume that for some s ∈ S, it
holds that

gs = s =⇒ g = 1.

Then, the space C[S] equipped with the G action

g |s〉 = |gs〉
is isomorphic to the regular representation C[G].

Proof. The isomorphism is given explicitly by |gs〉 7→ |g〉.

III. CLIFFORD TENSOR POWERS

In this paper we study the tensor-power representations of Cl,

∆r,s(U) = U⊗r ⊗ Ūs =: U⊗(r,s), U ∈ Cl.

The representation space corresponding to ∆r,s is Hn,t := H⊗tn where t := r + s. It is useful to think of Hn,t as an n by t
“grid" of qudit Hilbert spaces,

Hn,t =

Cd ⊗ · · · ⊗ Cd
...

. . .
...

Cd ⊗ · · · ⊗ Cd.

We label the computational basis ofHn,t using t× n matrices F over Zd, that is |F 〉. In the grid picture, we use

|F 〉 =

|F11〉 ⊗ · · · ⊗ |Fn1〉
...

. . .
...

|F1t〉 ⊗ · · · ⊗ |Fnt〉
, Fij ∈ Zd.

We furthermore identify columns of F with vectors in T .
Th Hilbert spaceHn,t hosts its own “global” Pauli group Pnt, generated by τ1 and tensor products of displacement operators

acting on any Cd factor. We can see that the phase space associated to this Pauli group is

Pnt/Z(Pnt) ' Z2n×t
d ' T ⊗ V ' Hom(V → T ).

Notice that ∆1,1 is isomorphic to the action of Cl on End(Hn) by conjugation. This space decomposes into two irreducible
subrepresentations: the trivial component spanned by the identity and the space of traceless matrices. The latter irrep will
be referred to as the adjoint representation of Cl, denoted Ad(Cl). It can be seen to be the restriction to Cl of the adjoint
representation of U(Hn).

The following lemma establishes equivalences between different tensor power representations, we prove it in App. A 2.3

3 Compare the condition r − s = r′ − s′ mod d to [15, Lem. 4.2]. In the notation of that reference, consider two orthogonal bases {ei} and {fi} of the
space U , satisfying [β(ei, ej)]ij = 1r ⊕ (−1s), [β(fi, fj)]ij = 1r′ ⊕ (−1s′ ). Then our ∆r,s corresponds to Cl(e)U⊗V from the reference, and ∆r′,s′

to Cl(f)U⊗V , where e =
∑

i ei and f =
∑

i fi. These two representations of the Clifford group are non-equivalent whenever β(e, e) 6= β(f, f). To see
this, one must simply compute the action of the central matrices of these representations, denoted in the proof of [15, Lem. 4.2] as WU⊗V (ιe(λ, 0)) and
WU⊗V (ιf (λ, 0)).
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Lemma III.1 (Equivalent tensor powers). Let d, r, s, r′, s′ ∈ N be such that r + s = r′ + s′, and let ∆r,s be as above.
Furthermore, if d is odd, let r − s = r′ − s′ mod d. Then for all the following cases we have that ∆r,s ' ∆r′,s′ :

1. If d = 1 mod 4

2. If d = 3 mod 4, and s = s′ mod 2,

3. If d = 2, r − s = r′ − s′ mod 8.

As we did with qr,s, we will define ∆r,s to possibly negative values of r, s. Namely, take some r′, s′ ∈ N. Then if d is odd,
for any r, s ∈ Z with

r + s = r′ + s′, r − s = r′ − s′ mod d, s = s′ mod 2,

we let ∆r,s be a representaiton equivalent to ∆r′,s′ . On the other hand, if d = 2, then for any r, s ∈ Z with

r + s = r′ + s′, r − s = r′ − s′ mod 8,

we let ∆r,s be equivalent to ∆r′,s′ .

A. The commutant algebra

In [7] the commutant Ar,s of ∆r,s was studied, ie. the subalgebra of End(Hn,t) which commutes with all images ∆r,s(C),
where C ∈ Cl. Important to this construction where two ingredients.

The first is a class of tensor-power CSS code projectors associated to an isotropic subspace N ⊂ U

PN = d−2ndimN
∑

M∈Hom(V→N)

W (M). (15)

Letting CN := rangePN , these code spaces have the following coset state basis,

|[F ]N 〉 := d−dimN/2
∑

F ′∈Hom(X→N)

|F + F ′〉 , F ∈ Hom(X→ N⊥).

If the columns of F are f1, . . . , fn, we can see that

|[F ]N 〉 = |[f1]N 〉 ⊗ · · · ⊗ |[fn]N 〉 , (16)

where,

|[fi]N 〉 = d−dimN/2
∑

u∈N
|fi + u.〉

Notice that [F ]N ∈ Hom(X→ TN ), so that we can directly identify CN = C[Hom(X→ TN )].
The second is the following representation of Or,s,

R(O) =
∑

F∈Hom(X→T )

|OF 〉〈F | . (17)

We will use the following slight generalization of the main result of [7], which dealt with the representation ∆t,0.

Proposition III.1. Let PN be as in (15), where N is isotropic, and R be as in (17).
Then, if t ≤ n− 1, the commutant Ar,s of ∆r,s has the following basis

Ar,s = {R(O)PN |O ∈ St(T ), N isotropic stochastic}.

Furthermore, if d = odd, the commutant of ResSp(V ) ∆r,s is generated as an algebra by

{R(O), PN |O ∈ O(T ), N isotropic}.
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Proof sketch. One can show (e.g. as in [7, Lem. 4.5]) that the operators R(O) and PN commute with ∆r,s. Following the same
procedure as in [7, Lem. 4.7] one can show that Ar,s is a set of linearly independent operators (because t− 1 ≤ n). Finally, by
the fact that the dimension of the commutant of ∆r,s is the same as the dimension of the commutant of ∆t,0, the proof of [7,
Thm. 4.9] shows our first claim. The second claim follows similarly.

It can be easily checked that

R(O)PNR(O)† = PON . (18)

Conversely, if dimN ′ = dimN , these two subspaces are isometric and so there exists some O ∈ O(T ) for which N ′ = ON .
Further, if N is stochastic and O ∈ St(T ), ON is also stochastic. We now show the converse.

Lemma III.2. Let N , N ′ ⊂ T be stochastic isotropic subspaces of the same dimension. Furthermore, let it be the case that
either 1t ∈ N ∩N ′ or 1t /∈ N ∪N ′. Then, there exists an O ∈ St(T ) for which N ′ = ON .

Proof. Consider the two isometric spaces M = span {N,1t}, M ′ = span {N ′,1t}. Let {ei} be a basis of M and {e′i} be a
basis of M ′ with e1 = e′1 = 1t. Then, due to a lemma by Witt (cf. for example [32, Thm. 3.3]), there is an O ∈ O(T ) for which
Oei = e′i.

Lem. III.2 motivates the definition of the following subsets of Ar,s,

Amr,s := {R(O)PN |O ∈ St(T ), N stoch. isotr., dimN ≥ m},
Am,0r,s := {R(O)PN |O ∈ St(T ), N stoch. isotr., dimN ≥ m, 1t ∈ N},
ANr,s := {R(O)PN ′ |O ∈ St(T ), N ⊆ N ′ stoch. isotr., }.

Each of these subsets is invariant under right and left multiplication with St(TN ). Furthermore, by [7, eq. (4.24)], Ar,s forms a
semigroup and the subalgebras Am

r,s := span {Amr,s} and Am,0
r,s := spanAm,0r,s are ideals of Ar,s. Namely, for any N1, N2, there

exists some ON1,N2
for which

PN1
PN2

= R(ON1,N2
)PN , N := 〈N1 ∩N⊥2 , N2〉. (19)

Here, by [7, eq. (4.25)], dimN ≥ max{dimN1, dimN2}.

Lemma III.3. Let N be an isotropic stochastic subspace of T . Then the code CN is a Cl subrepresentation of ∆r,s and a basis
for the commutant of this action is contained in ANr,s.

Proof. The commutant of Cl in End(CN ) is given by PNAr,sPN . Using (19), for any R(O)PM ∈ Ar,s,

PNR
†(O)PMPN = R†(O)PONPMPN

∝ R†(O)R(OON,M )PN ′PN

∝ R(O−1OON,MON ′,N )PN ′′ ,

where N ′ := 〈ON⊥ ∩M,M〉 and

N ′′ = 〈N ′ ∩N⊥, N〉 ⊃ N.

This implies that there is some A ∈ ANr,s for which A ∝ PNR†(O)PMPN .

B. Code representation spaces

By Prop. III.1, the code spaceCN corresponding to a stochastic isotropicN is a Cl representation. Furthermore, by Lem. III.2,
for any pair N, N ′ ∈ Gm or N, N ′ ∈ G0

m, the corresponding code spaces CN and CN ′ are isomorphic as Cl representations.
The following lemmas specify this representation and can be seen as a generalization of [15, Lem. 2.7]. We prove them in

App. A 2.

Lemma III.4 (Code representations). Let N ∈ Gm and CN ⊂ Hn,t be the associated code. Then, ∆r,s|CN
' ∆r−m,s−m.
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Lemma III.5 (Qudit C1t
representation). Let d be odd and r− s = 0 mod d. As a Cl-subrepresentation of ∆r,s, we have that

ker(C1t
) = P and

C1t '
{
µ⊗(r−1,s−1), s > 0,

µ⊗(r−3,1), s = 0.

Remark III.1. The proof of Lem. III.4 does not hold whenN ∈ G0
m. To see this most easily, notice that in this case P ⊆ ker(CN ),

whereas P 6⊆ ker(∆r−m,s−m). By Lem. III.5, when d is odd this isomorphism nevertheless continues to hold if one restricts
attention to the action of Sp(V ) ⊂ Cl.

While Lems. III.4, III.5 were crucial for the proof of our previous result in [15], they are not needed for the main result in this
paper. Because of this, we have also left open the question of whether there exists some generalization of Lem. III.5 to the qubit
case.

Now we work out the action of stochastic orthogonal matrices on the code spaces.

Lemma III.6. Let St(T )N be the subgroup of St(T ) which preserves the stochastic isotropic subspace N . Then, St(T )N acts
on CN , and St(T )N/ ker(CN ) ' St(TN ).

Proof. It suffices to consider the n = 1 case. Because O ∈ St(T )N acts on N -cosets, there exists some Õ ∈ Gl(TN ) for which

R(O) |[f ]N 〉 = |[Of ]N 〉 =
∣∣∣Õ[f ]N

〉
, f ∈ N⊥.

Moreover, Õ preserves qN and [1t]N , so Õ ∈ St(TN ). Finally, the Cahit-Arf theorem [33] implies that every Õ ∈ St(TN ) can
be extended to an O ∈ St(T )N such that [Of ]N = Õ[f ]N for all f ∈ N⊥.

IV. RANK THEORY OF CLIFFORD REPRESENTATIONS

Recently, several notions of rank have been introduced to study the representation theory of discrete symplectic and orthogonal
groups [16, 17]. Here we extend a part of this formalism to the Clifford group.

Let D ⊂ Cl be the subgroup of diagonal Clifford matrices.

Lemma IV.1. Any U ∈ D is, up to a phase, of the form

U =
∑

x∈X

τ q(x)+2x′·x |x〉〈x| (20)

for some q ∈ Q̃(X) and x′ ∈ X. If d = 2 one can furthermore set x′ = 0.

Proof. Consider the homomorphism ϕ : Cl→ Cl/P ' Sp(V ). Diagonal Cliffords preserve all Z-type Pauli matrices so that

ϕ(D) =

{(
1 S
0 1

) ∣∣∣S ∈ Sym(X)

}
=: N , (21)

where we have used the basis {e1, . . . , en, f1, . . . , fn} for which W (ei) = Zi. We may further specify

ϕ(Pi) = 1 + eie
T
i

ϕ(CPHASEij) = 1 + eie
T
j + eje

T
i ,

where CPHASEij := HiHjCADDijH
†
iH
†
j . Thus, 〈ϕ(Pi), ϕ(CPHASEij)〉ij = N , and by (21),

〈Pi,CPHASEij , Zi〉ij = D. (22)

Since each of these generators is of the form (20), the first claim follows. The second claim follows from the fact that 2X∗ ⊂
Q̃(X) when d = 2.

Consider the subgroup RD ⊂ D of elements U , as in Lem. IV.1, for which x′ = 0 and q ∈ 2Q(X). By the proof of that
lemma, RD ' Q(X) and so we use quadratic forms to label group elements,

RD = {Uq | q ∈ Q(X)}.
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This group will be used to define a notion of rank on representations of the Clifford group, in close analogy to how the subgroup
N ⊂ Sp(V ) was used to define the rank of a symplectic representation in [16, 17].4

Lemma IV.2. Let ρ be a representation of Cl. Then ResRD ρ decomposes into one-dimensional representations |ψB〉 labeled
by B ∈ Sym(X∗) such that

ρ(Uq) |ψB〉 = ωΦ(B)(q) |ψB〉 ,

where Uq ∈ RD and Φ is as in Prop. II.6.

Proof. The first claim follows from the fact that D is Abelian. Thus, an irrep in this decomposition is of the form

Uq 7→ ωp(q), p ∈ Q(X)∗.

Finally by Prop. II.6, we can take p = Φ(B) for some B ∈ Sym(X∗).

The eigenvectors |ψB〉 are called the weight vectors of ρ, and the symmetric matrices B their corresponding weights. The
span of all weight vectors corresponding to the same weight B is called the weight space of B. The rank of a representation ρ
of Cl is

rk(ρ) = max
B wght. of ρ

rank (B). (23)

By Prop. II.6, weight-spaces are permuted by the subgroup Gl(X) ⊂ Cl generated by the CADD gates. Because of this, weights
in the same equivalence class – that is, with the same rank and type – appear with the same multiplicity.

The following lemma is analogous to [16, Lem. 1.3.1.] which states that the only irrep of the symplectic group with rank zero
is the trivial one. We prove it in App. A 3.

Lemma IV.3 (Rank 0 irreps). If d is odd, the unique rank zero Cl irrep is the trivial one. If d = 2 and n ≥ 3, a rank zero
representation is one dimensional, ±1 valued, and uniquely specified by its restriction to Z(Cl). Namely, if ρ, ρ′ are rank zero
repesentations with

ρ(ω81) = ρ′(ω81),

then ρ ' ρ′.

We believe that with a closer consideration one could strengthen this result to show that the irrep is in fact trivial. In particular,
we believe that choosing the phases of the generators of Cl carefully (cf. [9]) is sufficient for this. We leave this for future work.

Using (12) and Lem. IV.1, we can directly read out the weight data of the defining representation of Cl. Namely, the weight
vectors are the computational basis, and the weight of |x〉 has matrix representation xxT . In particular, rk(def. rep of Cl) = 1.

More generally, the following statement holds.

Lemma IV.4. The weight corresponding the the computational basis state |F 〉 ∈ Hn,t is

wF :=

t∑

i=1

sifi ⊗ fi,

where si ∈ Zd satisfies si = +1 if i ≤ r and si = −1 otherwise, and where the rows of F are f1, . . . , ft ∈ X. Thus
rk(wF ) = rankβr,s|range (F ) and if t ≤ n, then rk(∆r,s) = t.

Proof. We may directly compute

U⊗(r,s)
q |F 〉 = ω

∑
i siq(fi) |F 〉 .

The first statement follows from Ex. II.3. The second statement from the fact that wF ( · , · ) = βr,s(F · , F · ) and so rankwF =
rankβr,s|rangeF .

4 In [17] several notions of rank are introduced, the closest analogue to our current definition is that of “U-rank”.
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V. CLASSIFICATION OF SUBREPRESENTATIONS

A. Rank and duality

Here, we use the formalism developed in Sec. IV to obtain a series of dualities. Our proof techniques are an extension of those
introduced in [16].

Consider some, possibly zero, stochastic isotropic subspace N ⊂ T with dimN = m ≥ 0. For notational uniformity, we
define CN=0 = Hn,t. We will show that Howe duality holds on the subset of all maximal-rank irreps in CN . This generalizes
the central result of [16], which covers the case of odd d and m = 0.

Theorem V.1. Let N ⊂ T be a stochastic isotropic subspace of dimension m ≥ 0 with t − 2m ≤ n, and let ∆
(k)
r,s be the

subrepresentation of ∆r,s spanned by all Cl irreps with rank k. Then, there exists some injective function ηN : Irr St(TN ) →
Irr Cl for which, as a St(T )N × Cl representation,

CN ∩∆(t−2m)
r,s '

⊕

τ∈Irr St(TN )

τ ⊗ ηN (τ). (24)

It furthermore holds that dim τ ≤ dim ηN (τ).

To show this, we require three intermediate results, whose proofs we postpone to App. A 4. Throughout this section it
sometimes will be convenient to work with the identification of CN ' C[Hom(X→ TN )]. This is done by identifying the coset
[F ]N ∈ Hom(X → N⊥)/Hom(X → N) with the matrix F0 ∈ Hom(X → TN ) satisfying F0ei = [fi]N , where fi are the
columns of F . Furthermore, we denote by R the representation of St(TN ) on C[Hom(X→ TN )] corresponding to the action of
St(T )N on CN .

Lemma V.1. Let N be a stochastic isotropic subspace of dimension m, F ∈ Hom(X → TN ) be surjective, and consider the
following two subspaces of CN ,

HF : = span {|J〉 | J ∈ Hom(X→ TN ), qN (Jx) = qN (Fx) ∀ x ∈ X, F−1([1t]N ) = J−1([1t]N )},
HF : = span {|OF 〉 |O ∈ St(TN )},

where F−1([1t]N ) is the (n− t+ 2m)-dimensional preimage of 1t under F . ThenHF = HF .

Lemma V.2. Let CN be as in Thm. V.1 andHF as in Lem. V.1. ThenHF is the regular representation of St(TN ), that is,

HF '
⊕

τ∈Irr St(TN )

τ ⊗ Cdim τ ,

where the sum ranges over every irrep of St(TN ), and where right-hand side factors are multiplicity spaces.

For the last intermediate result, we define qF ∈ Q̃(X) by qF (x) = qN (Fx), where range (F ) = TN .

Lemma V.3. Let N and F be as in Lem. V.1. Let GF ⊂ Gl(X) ⊂ Cl be given by

GF =

{{
g | qF (gT · ) = qF ( · ), g−TF−1([1t]N ) = F−1([1t]N )

}
N ∈ Gm,{

g | qF (gT · ) = qF ( · )
}

N ∈ G0
m.

Here, g−TF−1([1t]N ) = F−1([1t]N ) is an equality of sets. Then, the commutant of R(St(TN ))|HF in End(HF ) is spanned by
∆r,s(GF )|HF .

Proof of Thm. V.1. Because t− 2m ≤ n, then a surjective F ∈ Hom(X→ TN ) exists and so do the spacesHF andHF defined
in Lem. V.1.

As a St(TN )× Cl representation, we may decompose

CN '
⊕

τ∈Irr St(TN )

τ ⊗Θ(τ),

where Θ(τ) is a (possibly reducible) representation of Cl. This is because the actions of these two groups commute. The sum in
this decomposition ranges over all of Irr St(TN ) because of Lem. V.2.
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Now consider the subspace CN ∩ HF , where F ∈ Hom(X→ TN ) is surjective. This subspace is a St(TN )×GF represen-
tation, and so it decomposes as

CN ∩HF '
⊕

τ∈Irr St(TN )

τ ⊗ΘF (τ),

where ΘF (τ) is a GF -subrepresentation of Θ(τ). By Lem. V.3, ΘF (τ) is irreducible. Acting with Cl on ΘF (τ) ⊆ Θ(τ) we
obtain some irreducible representation ηN (τ). Because t − 2m ≤ n, for every surjective F ′ ∈ Hom(X → TN ), there exists
some g ∈ Gl(X) ⊂ Cl for which FgT = F ′, so ηN (τ) is independent of the F used to construct ΘF (τ). Because of this, every
surjective F ′ is such that |F ′〉 ∈ ∆r,s(Cl)(CN ∩HF ) and therefore

∆(t−2m)
r,s ∩ CN = ∆r,s(Cl)(CN ∩HF ) '

⊕

τ∈Irr St(TN )

τ ⊗ ηN (τ).

By Lem. V.2, if τ 6' τ ′ then ResGF
ηN (τ) 6' ResGF

ηN (τ ′) and therefore ηN (τ) 6' ηN (τ ′). Finally, the same lemma implies
dim τ ≤ dim ΘF (τ) ≤ dim ηN (τ).

Lemma V.4. Let N and ηN be as in Thm. V.1. Consider some N ′ satisfying dimN ′ = dimN and 1t ∈ N ′ ⇐⇒ 1t ∈ N .
Then, St(T )N ' St(T )N

′
are conjugate in St(T ) and, for any τ ∈ St(TN ), ηN (τ) ' ηN ′(τ).

Proof. Let O be such that ON = N ′. Then a short calculation shows OSt(T )NO−1 = St(T )N
′
. Let PN,τ be the projector

onto the τ ⊗ ηN (τ) component in CN . Then the isomorphism is afforded by R(O). This is because, by the first claim,
R(O)PN,τR

†(O) = PN ′,τ and so,

R(O)PN,τ∆r,s(U)PN,τR
†(O) = PN ′,τ∆r,s(U)PN ′,τ , ∀ U ∈ Cl,

R(O)PN,τR(O′)PN,τR
†(O) = PN ′,τR(OO′O−1)PN ′,τ , ∀ O′ ∈ St(T )N .

B. Proof of the main theorem

In Sec. V A we showed how to classify the maximal rank subrepresentations in an arbitrary CSS code CN . Here we use this
result to classify all subrepresentations ofHn,t.
Theorem V.2. Let t ≤ n. Consider a subset {Ni}i ⊂ G ∪ G0 such that every St(T ) orbit on G ∪ G0 contains exactly one space
Ni. In particular, {St(T )Ni}i = G ∪ G0. Let Ti := N⊥i /Ni. Then, there exists an injective function

η :
⋃

i

Irr St(Ti)→ Irr Cl,

such that

Hn,t '
⊕

i

⊕

τ∈
Irr St(Ti)

Ind
St(T )

St(T )Ni
(τ)⊗ η(τ).

If τ ∈ Irr St(Ti), the corresponding Clifford representation has rank rk η(τ) = dimTi.
Consider the subset of terms associated to Nj ∈ G0. This set is non-empty if and only if r − s = 0 mod D, and in this case,

the terms span C1t
. For any such term, τ ∈ Irr St(Tj), it holds that P ⊂ ker η(τ).

To prove this theorem we will build heavily on the results of the previous subsection, and derive a couple of intermediate
results more. Let

Cm := span {CN |N ∈ Gm},
Dm := span {CN |N ∈ G0

m},

with 0 < m ≤ m(T ), and C0 := Hn,t. The spaces Dm are only non-zero if r− s = 0 mod D and m ≤ m(T )− 1. Notice that
D1 = C1t

. These spaces are nested: if N ⊂ N ′ then CN ′ ⊂ CN , and thus,

Cm+1 ⊂ Cm, Dm+1 ⊂ Cm, Dm+1 ⊂ Dm. (25)
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Lemma V.5. For arbitrary values of r, s,m, d, the algebra Ar,s acts on Cm and Dm. Furthermore:

1. the action of Ar,s on 〈Dm, Cm〉⊥ mods out the ideal Am
r,s,

2. if r − s = 0 mod d the action on D⊥m mods out the ideal Am,0
r,s .

Proof. The first point follows from the fact that for each R(O)PN ∈ Amr,s, the code space CN ⊆ 〈Dm, Cm〉. The second point
follows similarly: if R(O)PN ∈ Am,0r,s , the code space CN ⊆ Dm.

This motivates

Km : = Cm ∩ 〈Cm+1, C1t
〉⊥

Lm : = Dm ∩ D⊥m+1

for m > 0 and K0 := 〈C1, C1t
〉⊥. By Lem. V.5 and Dm ⊂ C1t

,

Am+1
r,s ⊆ kerAr,s

(Km), Am+1,0
r,s ⊆ kerAr,s

(Lm). (26)

Lemma V.6. Let N ∈ Gm with t− 2m ≤ n, then

CN ∩∆(t−2m)
r,s = CN ∩ Km.

On the other hand, let N ∈ G0
m with t− 2m ≤ n, then

CN ∩∆(t−2m)
r,s = CN ∩ Lm.

Proof. Assume that N ∈ Gm, the second case follows similarly. By Lem. III.3, the commutant of Cl in End(CN ∩ Km) is
contained in C[ANr,s]. By eq. (26), any element of Am+1

r,s acts trivially on this space. This way, for any R(O)PN ′ ∈ ANr,s,

R(O)PN ′ |CN∩Km =

{
R(O)|CN∩Km , N ′ = N,

0, N ′ ) N.

This way, the commutant of Cl in End(CN ∩ Km) is generated by the subgroup of St(T ) for which R(O) · (CN ∩ Km) =
CN ∩Km. Because R(O)Km = Km for all O ∈ St(T ), it is sufficient to require R(O)CN = CN , which happens if and only if
O ∈ St(T )N , where

St(T )N := {O ∈ St(T ) |ON = N}.

By Lem. III.6 the action of St(T )N on CN realizes the homomorphism St(T )N → St(TN ).
Then, the commutant of Cl in End(CN ∩ Km) is generated by R(St(T )N )|CN

, and by Schur-Weyl duality there exists some
injective function η̃ : Irr St(TN )→ Irr (Cl) for which

CN ∩ Km '
⊕

τ∈Irr St(TN )

τ ⊗ η̃(τ),

where, by the same argument as in the proof of Thm. V.1, the sum ranges over all Irr St(TN ) ⊆ Irr St(T )N since t− 2m ≤ n.
Now, every F ∈ Hom(X→ N⊥) for which rank qr,s|TN

= t− 2m is orthogonal to all subcodes CN ′ ⊂ CN , and therefore

CN ∩∆(t−2m)
r,s ⊆ CN ∩ Km,

which implies that ηN (τ) ⊆ η̃(τ) for each τ (where ηN is as in Thm. V.1). However, η̃(τ) is irreducible so that η̃(τ) = ηN (τ)
and

CN ∩∆(t−2m)
r,s ' CN ∩ Km,

and so the result follows.

Lemma V.7. The equation

Hn,t =
⊕

m

Km ⊕ Lm, (27)

gives an orthogonal decomposition into St(T )× Cl-subrepresentations.
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Proof. Because St(T ) acts on Gm and G0
m, the spaces Km and Lm are St(T )× Cl representations.

Because P1t
: Cm → Cm,

⊕

m

Km =
⊕

m

(
Cm ∩ C⊥m+1 ∩ C⊥1t

)

=

(⊕

m

Cm ∩ C⊥m+1

)
∩ C⊥1t

= C0 ∩ C⊥1t
= Hn,t ∩ C⊥1t

= C⊥1t
.

Moreover, C1t
= ⊕mLm.

By definition, Km ⊥ Km′ and Lm ⊥ Lm′ for each m 6= m′. Finally, Km ⊥ C1t ⊇ Lm′ for every m,m′.

Lemma V.8. Use the notation above, let 0 < m ≤ m(T ) and t−m ≤ n. Then,

Km =
⊕

N∈Gm
(CN ∩ Km), Lm =

⊕

N∈G0
m

(CN ∩ Lm). (28)

Proof. We prove the statement for Km. The decomposition for Lm can be proven analogously. Throughout the proof, we let

suppCN :=
⋃

ψ∈CN

suppψ.

Consider one of the terms in the right-hand side of (28). By Lem. V.6,

CN ∩ Km = span {∆r,s(U)ΨB |U ∈ Cl, ΨB ∈ CN wght. vec. with rankB = t− 2m}.

We claim that all weight vectors ΨB with rank t− 2m in CN are linear combinations of |[F ]N 〉 where rangeF = N⊥. To see
this, write

ΨB =
∑

F ′∈Hom(X→N⊥)

cF ′ |[F ′]N 〉 .

Then, for any F ′ with cF ′ 6= 0, according to Lem. IV.4,

B = (F ′)TMr,sF
′,

so that the rank of the right-hand side is t − 2m. This implies that 〈rangeF ′, N〉 = N⊥. This way, because t −m ≤ n, there
exists some F ∈ [F ′]N for which rangeF = N⊥. Furthermore, for any two distinct coset vectors |[F ]N 〉 6= |[F ′]N 〉 their
supports are disjoint. This implies that there exists at least one F ∈ supp ΨB for which rangeF = N⊥.

The corresponding computational basis vector |F 〉 is orthogonal to all other codes CN ′ , where N ′ ∈ Gm and N ′ 6= N . To
prove this we argue by contradiction. If F ∈ supp (CN ) ∩ supp (CN ′) then N⊥ = rangeF ⊆ N⊥ ∩ (N ′)⊥. But this can not
hold because N⊥ and (N ′)⊥ are of the same dimension and distinct.

This way,

{ΨB ∈ CN wght. vec. with rankB = t− 2m} ∩ span {CN ′ |N ′ ∈ Gm, N ′ 6= N} = ∅.

Finally, each irrep in Km ∩ CN contains at least one maximal rank weight vector ΨB , and so is linearly independent of

span {CN ′ |N ′ ∈ Gm, N ′ 6= N}.

Then,

Km =
∑

N∈Gm
(Km ∩ CN ) =

⊕

N∈Gm
(Km ∩ CN ), (29)

where the first equality follows from each PN commuting with the projector onto Km, and the second equality follows from
linear independence.
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Notice that combining eq. (29) with Lem. V.6, we obtain that

Km ∩∆(t−2m′)
r,s =

⊕

N∈Gm
Km ∩ CN ∩∆(t−2m′)

r,s

=
⊕

N∈Gm
Km ∩ CN ∩ Km′

=

{
Km, m = m′,

{0}, m 6= m′,

and similarly

Lm ∩∆(t−2m′)
r,s =

{
Lm, m = m′,

{0}, m 6= m′.

This allows us to conclude that

∆(t−2m)
r,s = Km ⊕ Lm. (30)

We now look at the representation spaces on the right-hand side of eq. (30).

Theorem V.3. Assume that m is such that t− 2m < n.
Let N ∈ Gm. Then, there exists an injective map η : Irr St(TN )→ Irr Cl such that, as a representation of St(T )× Cl,

Km '
⊕

τ∈Irr St(TN )

η(τ)⊗ Ind
St(T )
StN

(τ), (31)

where dim η(τ) ≥ dim τ for all τ .
Moreover if r− s = 0 mod D, let N ′ ∈ G0

m. Then, there exists an injective map η0 : Irr St(TN )→ Irr Sp(V ) ⊂ Irr Cl such
that, as a representation of St(T )× Cl,

Lm '
⊕

τ∈Irr St(TN )

η(τ)⊗ Ind
St(T )
StN

(τ), (32)

where dim η(τ) ≥ dim τ for all τ .

Proof. We prove the first case. The second case follows similarly, with the only difference that because P ⊆ ker(Lm), all the
irreps appearing in eq. (32) are actually Sp(V ) irreps.

LetRτN ⊂ CN ∩Km be the subspace isomorphic to τ ⊗ ηN (τ) as in Thm. V.1, where τ ∈ Irr St(TN ). Acting with St(T ) on
RτN , we get some representation Rτ ⊆ Hn,t. Then, there is some representation I(τ) of St(T ) for which Rτ ' I(τ) ⊗ η(τ).
By Lem. V.8,

I(τ)⊗ η(τ) '
⊕

O∈St(T )/St(T )N

RτON =


 ⊕

O∈St(T )/St(T )N

τO


⊗ η(τ),

where in the last equality we used Lem. V.4 to show that ηON (τ) ' ηN (τ) := η(τ) for all O ∈ St(T ), and where τO is a copy
of the τ factor withinRτON . Now, the space

⊕

O∈St(T )/StN

τO

is a St(T ) representation and so it is isomorphic to I(τ). The action of St(T ) on this space is Ind
St(T )
StN

(τ), as claimed: Choose
a complete set of representatives Oi ∈ St(T )/StN . Then, for any O ∈ St(T ) there is a permutation π : i → π(i) and an
O′ ∈ StN such that OOi = Oπ(i). This way, if

ψ =
∑

i

R(Oi)ψi, ψi ∈ τ1,
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then

R(O)ψ =
∑

i

R(Oπ(i)))R(O′)ψi.

Finally,

Km =
⊕

N ′∈Gm,
τ∈Irr St(TN )

RτN ′ =
⊕

Oi∈St(T )/StN ,
τ∈Irr St(TN )

RτOiN '
⊕

τ∈Irr St(TN )

Ind
St(T )
StN

(τ)⊗ η(τ).

Here the first equality follows by Lem. V.8, and the second equality follows by Lem. III.2.

Proof of Thm. V.2. Thm. V.3 and Lem. V.7 show that the claimed equation is a valid decomposition of Hn,t as a St(T ) × Cl
representation. We now show that η is injective. Consider two spaces Ti, Ti′ with τ ∈ Irr St(Ti), τ ′ ∈ Irr St(Ti′). By Thm. V.3,
rk η(τ) = dimTi. In particular, if dimTi 6= dimTi′ then η(τ) 6' η(τ ′). On the other hand, dimTi = dimTi′ = m, assume
without loss of generality that Ni ∈ Gm and Ni′ ∈ G0

m. In this case, by Thm. V.3, the η(τ)-isotype is a subspace of Km and the
η(τ ′)-isotype is a subspace of Lm. In particular P ⊆ ker η(τ ′) and P 6⊆ ker η(τ).

As a corollary, we can rederive a classical result from the invariant theory of the Clifford group [20, 22, 23].

Corollary V.1. If d is odd, ∆r,s contains a Cl-trivial subrepresentation if and only if t = 2t′ is even, s = t′ mod 2 and
r − s = 0 mod d.

If d = 2, ∆r,s contains a Cl-trivial subrepresentation only if

r − s = 0 mod 8. (33)

Moreover if s = 0 (so r = t), eq. (33) is also sufficient for this.
In all cases considered above, whenever the trivial component is non-zero, it is equal to Lt′ .

Proof. Let ρ ⊂ ∆r,s be the trivial component. Because P acts trivially on ρ it is non-trivial only if r− s = 0 mod D, in which
case ρ ⊂ C1t . Furthermore rk(ρ) = 0 so that ρ ⊆ ∆

(0)
r,s . A necessary condition for the latter to be non-empty is for t = 2t′ to be

even, in which case

∆(0)
r,s = Kt′ ⊕ Lt′ = Lt′ .

Here we used eq. (30) together with the fact that a stochastic isotropic N must contain 1t to be maximal.
Now, ∆

(0)
r,s is non-zero if and only if G0

t′ to be non-empty. If d is odd, this happens exactly when T ' H⊕t′ , or equivalently,
when dis(βr,s) = (−1)s = (−1)t

′
. In this case, ∆

(0)
r,s = ρ by Lem. IV.3.

If d = 2, ∆
(0)
r,s may contain non-trivial components according to Lem. IV.3. In particular, (ω81)⊗(r−s) = 1 if and only if (33)

holds. This way, ρ is non-trivial only if the latter equation holds, in which case ρ = ∆
(0)
r,s .

Finally, if d = 2 and s = 0, then it can be shown [23] that stochastic isotropic subspaces of dimension t′ exist if and only if
r − s = t = 0 mod 8.

We finally point out how the spaces corresponding to all representations with a fixed rank, 〈Km,Lm〉, are “singled out” rather
canonically by the action of Ar,s on them.

Lemma V.9. The space 〈Km,Lm〉 is the maximal Ar,s-subrepresentation ofHn,t which has Am+1
r,s in its kernel but not Am

r,s.

Proof. Consider a distinct pair of subspaces Si = 〈Kmi
,Lmi

〉, with i = 1, 2 and m1 6= m2. Each of these spaces is a Cl
representation and, moreover, they share no irrep in common. That is, if χi is the character of Si, then the character inner
product vanishes, 〈χ1, χ2〉Cl = 0. To see this, notice that by eq. (30), every irrep in Si has rank mi.

By Schur’s lemma, each space Km, Lm is preserved by Ar,s. In particular one may block diagonalize any A ∈ Ar,s as

A =
⊕

m

Am,

where Am acts on 〈Km,Lm〉. By Lem. V.5, for any A ∈ Am
r,s it holds that Am′ = 0 for all m′ > m, so that 〈Km,Lm〉 mods

out Am+1
r,s but not Am

r,s. Moreover, any Ar,s-irrep in some 〈Km′ ,Lm′〉 with m′ 6= m either mods out Am
r,s (if m′ < m), or does

not mod out Am+1
r,s (if m < m′).
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C. The space of stabilizer tensor powers

In [7] it was shown that the space spanned by stabilizer tensor powers is the trivial St(T )-subrepresentation ofHn,t:

CSTABSn,t := span
{
|s〉⊗t | |s〉 ∈ STABSn

}
= HSt(T )

n,t .

Independently, [15] decomposes the trivial O(T )-subrepresentation of the same Hilbert space (for d odd) as

HO(T )
n,t '

⊕

r

η(idSt(Tr)). (34)

Here we show, with an analogous calculation, that the space CSTABSn,t decomposes in a similar fashion to eq. (34). For
simplicity, we consider only the case where qr,s(1t) 6= 0.

Consider the decomposition ofHn,t into St(T )-isotypes,

Hn,t '
⊕

τ∈Irr St(T )

τ ⊗Θ(τ), (35)

where Θ(τ) is a (possibly reducible) Cl-representation. We are interested in decomposing Θ(idSt(T )). Consider some τ ∈
Irr St(Tm), where Tm is as in Thm. V.2. Comparing (35) to Thm. V.2, we see that the multiplicity of η(τ) in Θ(idSt(T )) is equal
to the multiplicity of idSt(T ) in Ind

St(T )

St(T )Nm
(τ), ie.

〈Θ(idSt(T )), η(τ)〉Cl = 〈idSt(T ), Ind
St(T )

St(T )Nm
(τ)〉St(T ).

By Frobenius reciprocity,
〈

idSt(T ), Ind
St(T )

St(T )Nm
(τ)
〉

St(T )
=
〈
ResSt(T )Nm (idSt(T )), τ

〉
St(T )Nm

=
〈
idSt(T )Nm , τ

〉
St(T )Nm

= δτ,idSt(Tm)
.

This proves:

CSTABSn,t '
⊕

m

η(idSt(Tm)) (36)

D. Exact dualities for low tensor powers

For some combinations of r, s, d, the resulting representation ∆r,s gives rise to an exact correspondence between St(T ) and
Cl. This happens exactly when there are no isotropic stochastic subspaces of T . For qubits, this is exactly the case if r = t = 3.
Here one obtains a duality between Cl and St(Z3

2) ' S3, and this proves that Cl is a unitary 3-design.
If d > 2, on the other hand, Ref. [24, Thm. 3] provides a list of tensor power representations which give rise to this exact

duality. Here we include a short proof that this list is complete.

Lemma V.10. Let n ≥ 2, d be odd and r + s ≥ 2. Then the commutant of ∆r,s is spanned by R(O) where O ∈ St(T ) if and
only if d, r, s satisfy r + s ≤ 3, rs = 0, and if r + s = 3 then `(3) = −`(−1).

Proof. A necessary and sufficient condition for R to span the commutant of ∆r,s is |Gm| = |G0
m| = 0 for all m. This happens if

and only if both 1t and 1⊥t are anisotropic.

T = 〈1t〉 ⊕ 1⊥t ,

So by the Chevalley-Warning theorem dim1⊥t = t− 1 ≤ 2.
Anisotropicity of 1t is equivalent to r − s 6= 0 mod d. If t = 2, this implies s ∈ {0, 2} and hence rs = 0. Anisotropicity of

1⊥t is equivalent to the following: there exist a, b 6= 0 for which

βr,s|1⊥t ∼
{
aβ1,0, t = 2,

diag(1, b), t = 3,
(37)
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where `(b) 6= `(−1) (which is equivalent to the condition that 1⊥t is not a hyperbolic plane). By multiplicativity of the discrimi-
nant we have that

dis(βr,s) = `((−1)s)

= dis(〈1t〉)dis(1⊥t )

=

{
`(r − s)`(a), t = 2,

`(r − s)`(b), t = 3.

If t = 2, there always exists an a satisfying the conditions above. We conclude that if r + s = 2 and rs = 0, then
|Gm|, |G0

m| = 0 for all m.
If t = 3, in contrast, b is subject to the following two conditions derived above:

`(b) = `(r − s)`((−1)s), `(b) = −`(−1).

A solution to these equations exists if and only if

−1 = `
(
(−1)s+1(r − s)

)
.

If s = 1, 2 this equation implies 1 = −1 and does not hold. If s = 0, 3 it holds if and only if `(3) = −`(−1).

As a direct consequence of this, we have that, for any r, s, d as in Lem V.10,

∆r,s '
⊕

τ∈Irr St(T )

τ ⊗ θ(τ),

for some injective function θ : Irr St(T )→ Irr Cl.

Remark V.1. The statement [24, Thm. 3] deals with the case r = t = 3, where the condition d = 2 mod 3 is obtained.
This condition is equivalent to our condition `(3) = −`(−1). To see this, recall that our condition is equivalent to 1⊥3 being
anisotropic, which is equivalent to the equations

1 + x2
1 + x2

2 = 0 = 1 + x1 + x2,

having no solution over Zd. A short calculation shows that these equations have a solution if and only if there exists an x for
which 1+x+x2 = 0 (in which case, the solution is x1 = x = x−1

2 ). Finally, as pointed out in [24], this polynomial is reducible
(and hence contains a root over Zd) if and only if d 6= 2 mod 3.

VI. REAL CLIFFORD ACTION ON C1t

Consider the action of RCl on C1t
when d = 2 and r − s = 0 mod 4. Since P ∈ ker(C1t

), this action realizes the
homomorphism RCl→ RCl/P where the orthogonal group O(V ) ⊂ Sp(V ) preserves the form κ(v) = vz · vx. For simplicity,
we call this representation ∆.

Recall that the coset basis for C1t
is given by

|[F ]N1
〉 =

1√
|N |

∑

F ′∈Hom(X→N1)

|F + F ′〉

where N1 := 〈1t〉 and F ∈ Hom(X→ 1⊥t ). This basis can be equivalently described using the columns f1, . . . fn ∈ T of F ,

|[F ]N1〉 =
1√
|N |

(
|f1〉+ |f1 + 1t〉

)
⊗ · · · ⊗

(
|fn〉+ |fn + 1t〉

)
.

Now, let T ′ be a subspace of 1⊥t for which 1⊥t = 〈1t〉 ⊕ T ′ so that

T ′ ' 1⊥t /1t,

and let e ∈ (T ′)⊥ be the unique solution to βr,s(e,1t) = 1. Let β′ = β|T ′ , and S̃p(T ′) be the subgroup of Gl(T ) of matrices S
satisfying

Se = e, S1t = 1t, ST ′ = T ′,
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and for every u, v ∈ T ′,

β′(Su, Sv) = β′(u, v).

This subgroup is an embeddig of Sp(T ′) into Gl(T ), since, by Prop. II.10, β′ is symplectic. We may define a representation ∆̃

of S̃p(T ′) on C1t by

∆̃(S) |[F ]N1
〉 = |[SF ]N1

〉 .

Lemma VI.1. The representations ∆ and ∆̃ commute with each other.

Proof. A straightforward but bulky calculation shows that, for any S ∈ S̃p(T ′) and for any basis element
∣∣[F ]〈1t〉

〉
, the following

holds:

∆(Hi)∆̃(S)
∣∣[F ]〈1t〉

〉
= ∆̃(S)∆(Hi)

∣∣[F ]〈1t〉
〉

∆(Xi)∆̃(S)
∣∣[F ]〈1t〉

〉
= ∆̃(S)∆(Xi)

∣∣[F ]〈1t〉
〉

∆(CNOTij)∆̃(S)
∣∣[F ]〈1t〉

〉
= ∆̃(S)∆(CNOTij)

∣∣[F ]〈1t〉
〉
,

where i is arbitrary and j 6= i. This implies the claim since these group elements generate RCl.

We now consider a second basis, dual to this first one, which we call the Weyl basis. The starting point is the identification

Hn,t ' H2n,t/2 ' End(Hn)⊗t/2,

obtained first by grouping factors, and then using the inverse vectorization map. Then, letting |W (a)〉 := 2−n/2vec(()W (a))
with a ∈ V , W (a) a real Wey operator, and t′ := t

2 − 1, the basis is given by

{|ΨA〉 := |W (a1)〉 ⊗ · · · ⊗ |W (at′)〉 ⊗ |W (a1 + · · ·+ at′〉}

where A is a t′ × 2n matrix with rows ai.

Lemma VI.2. The set {ΨA} introduced above is an orthonormal basis for C1t
.

Proof. Orthonormality follows from trWT (a)W (b) = 2nδa,b. Furthermore, this set contains one element for each matix in
Zt
′×2n

2 , which gives

|{ΨA}| = 2n(t−2) = dimC1t
.

It is therefore sufficient to prove that

W⊗(r,s)(v) |ΨA〉 = W⊗t(v) = |ΨA〉 ,

for all v ∈ V , where W (v) is a real Weyl operator (this is because Z(P) is modded out because r − s = 0 mod 4.

W⊗2(v)vec(W (ai)) = vec(W (v)W (ai)W
T (v)) = (−1)[v,ai]+κ(v)vec(W (ai)).

This way

W⊗t(v) |ΨA〉 = (−1)
∑

i[v,ai]+[v,
∑

i ai] |ΨA〉 = |ΨA〉

Following a similar argumentation as in [9, App. B], we can see that any O ∈ O(V ) acts by permuting the Weyl basis,

∆(O) |ΨA〉 = |ΨAOT 〉 .

Lemma VI.3. Let u′, v′ ∈ Zt′2 and

u := (u′,1t′ · u), v := (v′,1t′ · v) ∈ Zt/22 .

Then,

2−t/4
∑

w∈Zt/2
2

(−1)u·wvec(W ((w, v))) =
1√
2

( ∣∣(v, v + u)T
〉

+
∣∣(v, v + u)T + 1t

〉 )

81



25

Let u′1, v
′
2, . . . , u

′
n, v
′
n be the columns of A,

ui := (u′i,1t′ · ui), vi := (v′i,1t′ · vi),

and let AZ (resp. AX ) be the (t/2)× n matrix with columns ui (resp. vi). Then, as a corollary of the result above,

2−tn/4
∑

M∈Z(t/2)×n
2

(−1)tr (MTAZ)
∣∣Ψ(M,AX)

〉
=

∣∣∣∣∣

[(
AX

AX +AZ

)]

N1

〉

We now calculate the dimension of the commutant of ∆, which is equal to the number of orbits of O(V ) on V ×(t′).
Consider some t′-tuple v of V vectors, let the orbit containing this point be O(v). Associated to v are a set of index sets

I ⊂ {1, . . . , t′} for which {vi}i∈I is l.i. Ordering these subsets lexicographically, we let I(v) be the minimal such subset.
Further, let M(v) be the (t′ − |I(v)|)× |I(v)| matrix such that,

vj =
∑

i∈I(v)

M(v)jivi, ∀j /∈ I(v).

Lemma VI.4. A point u is in the orbit O(v) if and only if the following conditions hold:

1. I(u) = I(v),

2. [ui, uj ] = [vi, vj ], for all i < j ∈ I(v),

3. κ(ui) = κ(vi), for all i ∈ I(v),

4. M(v) = M(u).

Proof. The only if direction follows simply from the facts that O ∈ O(V ) preserves [ · , · ] and κ( · ), and that any linear relation
v · a = 0, where a ∈ Zt′2 , implies Ov · a = 0.

Conversely, let O be an element of O(V ) for which Ovi = ui for all i ∈ I := I(v) —such an O exists by the Cahit-Arf
theorem. Let M := M(v). Then, for each j /∈ I , it holds that

uj =
∑

i∈I
Mjiui =

∑

i∈I
MjiOvi = Ovj ,

and thus u = Ov.

In the regime where t′ � n, the vast majority of orbits will contain t′ linearly independent vectors. In each of these orbits
M(v) = 0 and I(v) = {1, . . . , t′}, so this class of orbits is labeled by the numbers [vi, vj ] and κ(vi). Since each of these
numbers may be chosen independently, there are 2t

′2
such orbits. Up to subleading order corrections, this coincides with

|Sp(T ′)|. This leads to the intuition that Sp(T ′) captures most of the structure of the commutant of ∆. In analogy to Lem. V.6,
one would expect that a subspace L ⊆ C1t

gives rise to an exact duality between RCl and Sp(T ′).

Conjecture VI.1. For any fixed t and sufficiently large n the following holds. There exists a subspace L ⊂ C1t with

dimC1t
− dimL

dimC1t

= o(exp(−n)),

and an injective function θ : Irr Sp(T ′)→ Irr O(V ) ⊂ Irr RCl such that, as a Sp(T ′)× RCl representation,

L '
⊕

τ∈Irr Sp(T ′)

τ ⊗ θ(τ).

VII. BLACK BOX CONJUGATES OF CLIFFORD UNITARIES

Suppose one is given t uses of a black box Clifford unitary U . How large does t have to be in order to implement Ū? The
simplest case to analyse here is when the implementation is parallel, which is to say when there exist isometries V1, V2 for
which Ū = V2U

⊗tV1. This question is equivalent to asking what is the minimal t for which ∆0,1 ⊂ ∆t,0, ie. that the conjugate
representation of Cl is a subrepresentation of the t-th tensor power representation.
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Lemma VII.1. The minimal t for which ∆0,1 is a subrepresentation of ∆t,0 is

1. t = 7 if d = 2,

2. t = 2d− 1 if d = 1 mod 4,

3. t = 4d− 1 if d = 3 mod 4.

Proof. It is clear that t > 1 is necessary, and so any subrepresentation ρ of ∆t,0 isomorphic to ∆0,1 will be rank-deficient and
by Thm. V.3 is in the span of all codes CN with t− 2dimN = 1. This can only happen if t is odd. Moreover, P 6⊆ ker ∆0,1 so
that

ρ ⊆ Km, m =
t− 1

2
.

If d is odd and t > 2, then by the Chevalley-Warning theorem Gm is non-empty. If d = 2 and t = 7, then G3 is non-empty by
the following example:

N = 〈(1111000), (0011110), (1010101)〉,

where vectors are written in the orthonormal basis of qt,0.
Now, because for every N,N ′ ∈ Gm, there is an O ∈ St(T ) for which

R(O)PNR
†(O) = PN ′ ,

it follows that these are isomoprhic as Clifford representations and we can assume without loss of generality that ρ ⊆ CN for
some code N . Now, this N is such that dimTN = 1, so that TN = 〈[1t]N 〉 and St(TN ) = {1}. By V.1, CN is irreducible and
so CN ' ∆0,1.

We can use Lem. III.1, to re-express

∆t,0 ' ∆r,s,

for some r and s that are subject to the conditions of that lemma. By Lem. III.4, CN ' ∆r−m,s−m must be isomorphic to ∆0,1,
and thus we must be able to choose r and s such that r −m = 0, s−m = 1. Thus, t must be such that

∆t,0 ' ∆m,m+1.

Here we argue by cases: If d = 1 mod 4 we require t mod d = m− (m+1) = −1, the smallest odd t for which this equation
holds is t = 2d−1. If d = 3 mod 4 we require furthermore that s = t+1

2 is even. The smallest t for which these two conditions
hold is t = 4d− 1. If d = 2, we require instead that t mod 8 = −1, in which case we can take t = 7.

By encoding H 7→ CN , where CN is as in the proof of Lem. VII.1, we obtain an implementation of Ū . Namely, if UN is
the encoding isometry, U†NU

⊗tUN = Ū . Using this result, one may use the teleportation trick from [34] to probabilistically
implement U† in a heralded fashion.

The protocol for conjugating Cliffords above is considerably simpler than the protocols studied in [34, 35] which conjugate
arbitrary unitaries. Two properties contrast these two cases. First, the isometry UN is a Clifford operation, while the corre-
sponding isometry from [34] could require a high T -gate count. Second, in Ref. [34] it is shown that in order to implement Ū , at
least t = dn − 1 black box uses are necessary (even if one is content with a heralded implementation with positive probability).
On the other hand, our protocol requires only on the order of d black box uses to implement Ū deterministically.

Appendix A: Deferred proofs

1. Proofs from Sec. II

Proposition A.1. Let d = 2. Then it holds that

K∗ ⊂ Q(K), ker Ξ = K∗, range Ξ = Alt(K).
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Proof. One may immediately verify thatK∗ ⊂ Q(K) and thatK∗ ⊆ ker Ξ. Furthermore, any q satisfying q(v+u) = q(u)+q(v)
is linear and so part of K∗. Thus ker Ξ = K∗.

We now show the last statement. We claim that, if β ∈ Alt(K), then the following quadratic form refines β:

q(v) =
∑

i<j∈
supp (v)

β(ei, ej),

where {ei | i = 1, . . . , k} is a basis of K. For this, we compute q(u+ v). Let su := supp (u),

I1 := sv \ (sv ∩ su), I2 := sv ∩ su, I3 := su \ (sv ∩ su),

so that sv = I1 ∪ I2, su = I2 ∪ I3 and su+v = I1 ∪ I3. Furthermore, for a < b ∈ {1, 2, 3},

[a; b] : =
∑

i∈Ia
j∈Ib

β(ei, ej)

[a; a] : =
∑

i<j∈Ia
β(ei, ej).

Then,

q(u+ v) = [1; 1] + [1; 3] + [3; 3]

q(u) = [1; 1] + [1; 2] + [2; 2]

q(v) = [2; 2] + [2; 3] + [3; 3],

and so q(u+ v) + q(u) + q(v) = [1; 2] + [1; 3] + [2; 3]. Finally,

β(u, v) = [1; 2] + [1; 3] + [2; 3] +
∑

i,j∈I2
β(ei, ej),

and the last term vanishes because β is symmetric and alternating.

Similarly, we define the generalized polarisation map Ξ̃ : Q̃(K)→ Sym(K) to be the additive map Ξ̃(q) = β where q and β
satisfy (6).

Proposition A.2. Let d = 2. Then

ker Ξ̃ = 2K∗ := {2f | f ∈ K∗}, range Ξ̃ = Sym(K).

Proof. If Ξ̃(q) = 0 for some q ∈ Q̃(K), then for all u, v ∈ K it holds that

q(u+ v) = q(u) + q(v). (A1)

Using v = u we see that q(u) = 2f(u) for some f : K → Z2. But by (A1), f ∈ K∗.
Now we constructively show that every β ∈ Sym(K) has a generalized quadratic refinement q ∈ Q̃(K). Throughout the rest

of the proof we will use {{. . . }} to denote a “Z2 pocket inside of a Z4 environment,” that is if a is a Z2-valued expression, then
{{a}} = 1 ∈ Z4 if a = 1 ∈ Z2 and {{a}} = 0 otherwise. We furthermore use the notation of the proof of A.1.

Pick some basis {ei} of K. Then, we claim that q defined by

q(u) =
∑

i∈su
{{β(ei, ei)}}+

∑

i<j
∈su

2{{β(ei, ej)}},

is a generalized refinement of β. Indeed,

q(u+ v) =
∑

i∈I1,I3
{{β(ei, ei)}}+ 2

{{
[1; 1] + [1; 3] + [3; 3]

}}
,

q(u) =
∑

i∈I1,I2
{{β(ei, ei)}}+ 2

{{
[1; 1] + [1; 2] + [2; 2]

}}
,

q(v) =
∑

i∈I2,I3
{{β(ei, ei)}}+ 2

{{
[2; 2] + [2; 3] + [3; 3]

}}
,
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and so

q(u+ v)− q(u)− q(v) =
∑

i∈I2
2{{β(ei, ei)}}+ 2

{{
[1; 2] + [2; 3] + [1; 3]

}}

= 2
{{∑

i∈I2
β(ei, ei) + [1; 2] + [2; 3] + [1; 3]

}}

= 2{{β(u, v)}},

where the last line follows from the fact that β is symmetric.

Proof of Prop. II.9. If d is odd,

dis(βN ) = (−1)mdis(βr,s) = (−1)s−m.

This way βr−m,s−m ' βN since they have the same rank and discriminant.
Now turn to the case d = 2. It suffices to prove the claim when m = 1. The form βN is of odd type since 1t /∈ N and so, for

at least some u ∈ TN ,

βN (u, u) = βN (1t, u) 6= 0.

This way qN ' qr′,s′ where r′ + s′ = t − 2. Now, we can write the isometry T ' T0 ⊕ T⊥0 , where T0 is the subspace of N⊥

isometric to TN . By (13) and the additivity of the generalized Arf invariant,

Ãrf(qN ) + Ãrf
(
qr,s|T⊥0

)
= r′ − s′ + Ãrf

(
qr,s|T⊥0

)
= Ãrf(qr,s) = r − s mod 8.

We end the proof by showing that Ãrf(qr,s|T⊥0 ) = 0. Let N = 〈a〉, where a /∈ 〈1t〉. It is sufficient to show that there exists a
vector b ∈ T such that

qr,s(b) = 0, βr,s(a, b) = a · b = 1.

Indeed, these equations imply that T⊥0 = 〈a, b〉 and so

qr,s|T⊥0 ∼ 2q0
H.

We prove this in three cases. Let αr be |supp (a) ∩ {1, . . . , r}| and αs = |supp (a)| − αr. Then the cases are: i) either s = 0
or r = 0, ii) r, s ≥ 1 and either αr = 0 or αs = 0, iii) r, s, αr, αs ≥ 1.

Case i) Without loss of generality take s = 0 and write

a = e1 + e2 + · · ·+ eαr−1 + eαr
, (A2)

where 4 ≤ αr < r, and the right-hand inequality follows from a /∈ 〈1t〉. Then b = e1 + e2 + e3 + er.
Case ii) Similarly, take αs = 0 and a as in (A2). Then b = e1 + er+1.
Case iii) Finally, without loss of generality consider

a = e1 + · · ·+ eαr + er+1 + · · · er+αs , (A3)

where at least one of the two inequalities αs < s, αr < r hold. Without loss of generality we can assume the first inequality
holds and take b = e1 + et.

2. Proofs from Sec. III

Lemma III.1 (Equivalent tensor powers). Let d, r, s, r′, s′ ∈ N be such that r + s = r′ + s′, and let ∆r,s be as above.
Furthermore, if d is odd, let r − s = r′ − s′ mod d. Then for all the following cases we have that ∆r,s ' ∆r′,s′ :

1. If d = 1 mod 4

2. If d = 3 mod 4, and s = s′ mod 2,
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3. If d = 2, r − s = r′ − s′ mod 8.

Proof. In all the cases of the lemma, qr,s ∼ qr′,s′ . Let g ∈ Gl(T ) be some transformation for which qr′,s′(g · ) = qr,s( · ). If d is
odd, the condition r′ − s′ = r − s mod d allows us to choose g such that g1t = 1t. If d = 2, on the other hand, βr,s = βr′,s′
and thus g is an isometry of βr,s, that is

βr,s(g · , g · ) = βr,s( · , · )

Because βr,s(u, u) = βr,s(1t, u), the equation above implies that g1t = 1t.
Then, the isomorphism U is can be expressed in the computational basis by U : |F 〉 7→ |gF 〉, where F ∈ Hom(X→ T ). To

verify this claim, we act on generators.
First, we can see that CADD⊗(r,s) = CADD⊗t = CADD⊗(r′,s′) and compute that

UCADD⊗tU† = CADD⊗t.

Since all the other generators are single-qudit, we set n = 1 for the rest of the proof. This way,

UH⊗(r,s)U† =
∑

u,v∈T
(−1)βr,s(g−1u,g−1v) |u〉〈v| = H⊗(r′,s′),

where 12 is the two dimensional identity.
If d = 2,

P⊗(r,s) =
∑

u∈T
τ qr,s(u) |u〉〈u| ,

and so

UP⊗(r,s)U† =
∑

u∈T
τ qr,s(g−1u) |u〉〈u| =

∑

u∈T
τ qr′,s′ (u) |u〉〈u| = P⊗(r′,s′).

This proves point 3.
If d is odd, then using

P⊗(r,s) =
∑

u∈T
ω2−1qr,s(u)+2−1βr,s(1t,u) |u〉〈u| ,

we conclude

UP⊗(r,s)U† =
∑

u∈T
ω2−1qr,s(g−u)+2−1βr,s(g−11t,g

−1u) |u〉〈u| = P⊗(r′,s′).

Finally, in the odd d case we must check the isomorphism on the Pauli Z operator too:

UZ⊗(r,s)U† =
∑

u∈T
ωβr,s(1t,u)U |u〉〈u|U† =

∑

u∈T
ωβr,s(1t,g

−1u) |u〉〈u| =
∑

u∈T
ωβr′,s′ (1t,u) |u〉〈u| = Z⊗(r′,s′),

where we used g−11t = 1t. This concludes the proof of Points 1. and 2.

Lemma III.4 (Code representations). Let N ∈ Gm and CN ⊂ Hn,t be the associated code. Then, ∆r,s|CN
' ∆r−m,s−m.

Proof. We construct an explicit isomorphism. Prop. II.9 implies that qN ∼ qr−m,s−m and hence βN ∼ βr−m,s−m. Let the
corresponding isometry be ν : TN → Zt−2m

d . Now, for each coset [F ]N , where F ∈ Hom(X → N⊥), there corresponds a
F0 ∈ Hom(X→ Zt−2m

d ) such that ν[Fx]N = F0x for all x ∈ X. Furthermore, it is clear that

qN ([1t]N ) = qr,s(1t) = r − s mod D = qr−m,s−m(1t−2m),

and since 1t ∈ N⊥ \N , we can choose ν[1t]N = 1t−2m. Then the isomorphism is given by

ι : |[F ]N 〉 7→ |νF0〉 ∈ Hn,t−2m.

To show this, we evaluate the action of generators.
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For the generators H, P and X we will take n = 1, since the code spaces CN are n-th tensor powers. In this case,

ιH⊗(r,s)|CN
ι† = ι


d−t/2

∑

u,v∈T
ωβr,s(u,v)PN |u〉〈v|PN


 ι†

= d−m−t/2
∑

[u]N ,[v]N∈TN


 ∑

u′∈[u]N

∑

v′∈[v]N

ωβr,s(u′,v′)


 ι |[u]N 〉〈[v]N | ι†

= dm−t/2
∑

[u]N ,[v]N∈TN

ωβN ([u]N ,[v]N )ι |[u]N 〉〈[v]N | ι†

= dm−t/2
∑

a,b∈Zt−2m
d

ωβr−m,s−m(a,b) |a〉〈b|

where the third line follows from βr,s being well defined on TN and the last follows from the identification a := ν[u]N ,
b := ν[v]N .

Similarly,

ιP⊗(r,s)|CN
ι† =

∑

[v]N∈TN

τ qN ([v]N )ι |[v]N 〉〈[v]N | ι† =
∑

a∈Zt−2m
d

τ qr−m,s−m(a) |a〉〈a| .

For the Pauli X case, X⊗(r,s) = X⊗t, and thus for all v ∈ N⊥,

ιX⊗t |[v]N 〉 = ι |[v]N + [1t]N 〉 = |ν[v]N + 1t−2m〉 = X⊗(t−2m) |ν[v]N 〉 = X⊗(t−2m)ι |[v]N 〉 .

Finally, to compute the action of CADD⊗(r,s) = CADD⊗t, take n = 2 and act on |[v1]N 〉 |[v2]N 〉,

CADD⊗t |[v1]N 〉 |[v2]N 〉 = d−m
∑

u1,u2∈N
CADD⊗t |v1 + u1〉 |v2 + u2〉

= d−m
∑

u1,u2∈N
|v1 + u1〉 |v1 + v2 + u1 + u2〉

= |[v1]N 〉 |[v1 + v2]N 〉 .
Then, using ai := ν[vi]N ,

ιCADD⊗t |[v1]N 〉 |[v2]N 〉 = |a1〉 |a1 + a1〉 = CADD⊗(t−2m)ι |[v1]N 〉 |[v2]N 〉 .

Lemma III.5 (Qudit C1t
representation). Let d be odd and r− s = 0 mod d. As a Cl-subrepresentation of ∆r,s, we have that

ker(C1t
) = P and

C1t '
{
µ⊗(r−1,s−1), s > 0,

µ⊗(r−3,1), s = 0.

Proof. Consider ∆r,s|C1t
. Clearly P is contained in the kernel of this representation and so

∆r,s(Wµ(S))|C1t
= µ⊗(r,s)(S)|C1t

.

But then [15, Lem. 2.7, Cor. 2.3] imply that this representation is of the claimed form. Finally, this representation is a faithful
representation of Sp(V ) and we get ker(C1t

) = P.

3. Proofs from Sec. IV

Lemma IV.3 (Rank 0 irreps). If d is odd, the unique rank zero Cl irrep is the trivial one. If d = 2 and n ≥ 3, a rank zero
representation is one dimensional, ±1 valued, and uniquely specified by its restriction to Z(Cl). Namely, if ρ, ρ′ are rank zero
repesentations with

ρ(ω81) = ρ′(ω81),

then ρ ' ρ′.
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Proof. Let ρ have rank zero, and consider the group

G :=

{
ker (ResRCl ρ) , d = 2,

P ker (ρ) , d > 2.

In the qubit case, rk(ρ) = 0 implies RP ⊆ ker(ResRCl ρ), where RP is the subgroup of real multi-qubit Pauli matrices. Notice

G E Cl; G ⊆ RCl, if d = 2.

Then,

G̃ :=

{
G/RP, d = 2,

G/P, d > 2,

satisfies G̃ E O(V ) in the qubit case, and G̃ E Sp(V ) when d > 2. Furthermore, G̃ is non-trivial: in the qubit case it contains
RPRD/RP ' Q(X), whereas in the d > 2 case it contains the subgroup

N :=

{(
1 A
0 1

)
|A ∈ Symn×n

}
⊆ Sp(V ).

If d = 2, G̃ = O(V ) because O(V ) is simple for n ≥ 3 [36, Sec. 1.4], and thus G = RCl. But then RCl ⊆ ker ρ. This
implies that the subgroup H = ker(ρ) satisfies

RCl ⊆ H E Cl.

Consider the group 〈i1, H〉 = {H, iH} ⊆ Cl. Then, O(V ) ⊆ H̃ := 〈i1, H〉/P E Sp(V ), but since Sp(V ) is simple for
n ≥ 3 [36, Sec. 1.3] we have that H̃ = Sp(V ).

Now, we show that in fact i1 ∈ H . Because H̃ = Sp(V ), there is some W ∈ RP and a phase α for which αWP1 ∈ H .
Using RP ⊂ H ,

1 = ρ(X1) = ρ(αWP1X1P†1W
†α∗) = ρ(±iWX1Z1W

†) = ρ(i1)ρ(±X1Z1) = ρ(i1).

This way P ⊂ H , and thus {H,ω8H} = Cl where ω8 is a primitive eigth root of unity. Thus, an arbitarary Clifford has the form
g = ωa8h, where h ∈ H and a ∈ {0, 1}, and ρ(g) = ρ(ωa81). This equation implies two things:

1. ρ is Abelian and thus one-dimensional,

2. if ρ′ has rank zero aswell and ρ′(ωa81) = ρ(ωa81), then ρ′(g) = ρ(g) for all g ∈ Cl.

Moreover ResZ(Cl) ρ has as kernel equal to either Z(Cl) or 〈i1〉. Because of this, ResZ(Cl) ρ is a Z2 representation and thus±1
valued.

If d > 2, on the other hand, G̃ = Sp(V ) because N ⊆ ker ρ and Sp(V ) is generated by N conjugates. This way G = Cl and
Sp(V ) ⊆ ker(ρ). For any S ∈ Sp(V ) let v ∈ V be such that Sv 6= v. Then,

W †(v)µ(S)W (v) = W †(v)W (Sv)µ(S) = W (Sv − v)µ(S) ∈ ker ρ,

so that W (Sv − v) ∈ ker ρ and P ⊂ ker(ρ). This implies, finally, that ker(ρ) = Cl.

4. Proofs from Sec. V

Lemma V.1. Let N be a stochastic isotropic subspace of dimension m, F ∈ Hom(X → TN ) be surjective, and consider the
following two subspaces of CN ,

HF : = span {|J〉 | J ∈ Hom(X→ TN ), qN (Jx) = qN (Fx) ∀ x ∈ X, F−1([1t]N ) = J−1([1t]N )},
HF : = span {|OF 〉 |O ∈ St(TN )},

where F−1([1t]N ) is the (n− t+ 2m)-dimensional preimage of 1t under F . ThenHF = HF .
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Proof. It is clear thatHF ⊆ HF . To prove equality we will construct, for any |J〉 ∈ HF , an O ∈ St(TN ) such that J = OF .
For this, it is useful to first establish kerF = ker J . Consider any x ∈ ker J , then for all y ∈ X,

qN (Fy) = qr,s(Jy) = qN (J(x+ y)) = qN (Fx+ Fy) = qN (Fx) + qN (Fy) + 2βN (Fx, Fy).

Using qN (Fx) = qN (Jx) = 0, we obtain that βN (Fx, Fy) = 0. Since F is surjective onto TN and βN is non-degenerate,
it follows that x ∈ kerF . This way, ker J ⊆ kerF . However, F is surjective, so range J ⊆ rangeF , and dim kerJ ≥
dim kerF . Equality follows.

Let F̃ , J̃ ∈ Hom(X/ ker(F )→ TN ) be such that

F̃ [x]kerF = Fx, J̃ [x]kerF = Jx, ∀ x ∈ X.

Then, J̃ F̃−1F = J . Indeed, for any x ∈ X,

J̃ F̃−1Fx = J̃ F̃−1F̃ [x]kerF = J̃ [x]kerF = Jx.

We conclude the proof by showing that J̃ F̃−1 ∈ St(TN ). For any u ∈ T , let xu ∈ X be such that Fxu = u. Then,

qN (J̃ F̃−1u) = qN
(
J̃ [xu]kerF

)
= qN (Jxu) = qN (Fxu) = qN (u).

This shows that it is an element of O(TN ), the isometry group of qN . Finally, the conditions on J imply that J̃−1[1t]N =

F̃−1[1t]N and so

J̃ F̃−1[1t]N = [1t]N .

Lemma V.2. Let CN be as in Thm. V.1 andHF as in Lem. V.1. ThenHF is the regular representation of St(TN ), that is,

HF '
⊕

τ∈Irr St(TN )

τ ⊗ Cdim τ ,

where the sum ranges over every irrep of St(TN ), and where right-hand side factors are multiplicity spaces.

Proof. Because F : X → TN is surjective, it’s columns contain a basis for TN . Then, any O ∈ St(TN ) that satisfies OF = F
leaves these columns invariant and thus is the identity. This way, the isomorphism is afforded by the map |OF 〉 7→ |O〉 ∈
C[St(TN )].

Lemma V.3. Let N and F be as in Lem. V.1. Let GF ⊂ Gl(X) ⊂ Cl be given by

GF =

{{
g | qF (gT · ) = qF ( · ), g−TF−1([1t]N ) = F−1([1t]N )

}
N ∈ Gm,{

g | qF (gT · ) = qF ( · )
}

N ∈ G0
m.

Here, g−TF−1([1t]N ) = F−1([1t]N ) is an equality of sets. Then, the commutant of R(St(TN ))|HF in End(HF ) is spanned by
∆r,s(GF )|HF .

Proof. For any g ∈ GF , we may directly read out that
∣∣FgT

〉
∈ HF . Therefore, by Lem. V.1, there exists some Og ∈ St(TN )

for which FgT = O−1
g F . We may verify that the the function g 7→ Og is a homomorphism. Because of t − 2m, this function

is surjective: indeed, for any O ∈ St(TN ) we may find some g ∈ Gl(X) for which O−1F = FgT , but by the latter equation it
holds that in fact g ∈ GF .

In this way, we have the following commuting actions onHF ,

∆r,s(g)R(O) |O′F 〉 =
∣∣OO′FgT

〉
=
∣∣OO′O−1

g F
〉
.

Then the map ι : |O′F 〉 7→ |O′〉 ∈ C[St(TN )] from the proof of Lem. V.2 maps the actions of GF and St(TN ). Then, by
surjectivity of g → Og , ι maps the actions of GF and onHF , respectively, to the right and left actions of St(TN ) on C[St(TN )].
These two span each others commutant.
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Appendix B: Table of symbols used

Symbol Meaning/Definition

K+ K vector space, K+ non-zero vectors
T Zt

d with quadratic form qr,s

dis( · ) Discriminant of bilinear form
Arf( · ), Ãrf( · ) Arf invariant, generalized Arf invariant of quadratic form

Ξ( · ), Ξ̃( · ) Polarization and generalized polarization of quadratic form
Gm Set of isotropic stochastic subspaces of T not containing 1t with dimension m

G0m Set of isotropic stochastic subspaces of T containing 1t with dimension m

TN , qN N⊥/N with N ⊂ T isotr. stoch., qr,s|TN

CN , C1t Code spaces rangePN , rangeP〈1t〉
∆

(k)
r,s Rank k component of ∆r,s

∆ Action of RCl on C1t

Ar,s {R(O)PN |N ⊂ T stoch. isotr., O ∈ St(T )}
AN

r,s Subset {R(O)PN′ |N ⊆ N ′ ⊂ T stoch. isotr., O ∈ St(T )} ⊂ Ar,s

Ar,s span {Ar,s} commutant algebra of ∆r,s

Am
r,s span {PNR(O) |dimN ≥ m}

Am
r,s span {PNR(O) |dimN ≥ m, 1t ∈ N}
Cm span {CN |N ∈ Gm}
Dm span {CN |N ∈ G0m}
Km Cm ∩ Cm+1 ∩ C1t

Lm Dm ∩ Dm+1
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3 Approximate unitary t-designs

This chapter is the preprint [HMMH+20]
Haferkamp, J., Montealegre-Mora, F., Heinrich, M., Eisert, J., Gross,
D., Roth, I. (2020). Quantum homeopathy works: Efficient unitary

designs with a system-size independent number of non-Clifford gates.

arXiv preprint arXiv:2002.09524.
It has been submitted to the Journal Communications in Mathematical Physics and is
in the peer review process.

I would like to emphasize that the main researcher in this project was Jonas Hafer-
kamp, the first author. The project was initially phrased as an efficient construction of
unitary 4-designs. In this first phase, the main statement and its proof were worked
out by Haferkamp. The current version of the paper gives an efficient construction
of unitary t-designs, with t ≥ 4 generally. The proof strategy used here is, in spirit,
essentially unchanged with respect to the original document dealing with 4-designs.

That said, some technical tools needed to be developed to cover the more general
t case. My role in this project has been, primarily, of generalizing several technical
lemmas from the t = 4 case to the general t ≥ 4 case. Specifically, Lemmas 3, 4,
and 13 in [HMMH+20] are the outcome of discussions in which I provided crucial
technical insights. These lemmas are important stepping stones in the proof of the
paper’s main theorem.

I have decided to include the full article in this thesis even though I am not the lead
researcher in the project. This is because I believe my contributions are best understood
in relation to the main theorem of [HMMH+20].
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Quantum homeopathy works: Efficient unitary designs with a
system-size independent number of non-Clifford gates

J. Haferkamp,1 F. Montealegre-Mora,2 M. Heinrich,2 J. Eisert,1 D. Gross,2 and I. Roth1

1Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Germany
2Institute for Theoretical Physics, University of Cologne, Germany

Many quantum information protocols require the implementation of random unitaries. Be-
cause it takes exponential resources to produce Haar-random unitaries drawn from the full
n-qubit group, one often resorts to t-designs. Unitary t-designs mimic the Haar-measure up
to t-th moments. It is known that Clifford operations can implement at most 3-designs. In
this work, we quantify the non-Clifford resources required to break this barrier. We find that
it suffices to inject O(t4 log2(t) log(1/ε)) many non-Clifford gates into a polynomial-depth
random Clifford circuit to obtain an ε-approximate t-design. Strikingly, the number of non-
Clifford gates required is independent of the system size – asymptotically, the density of
non-Clifford gates is allowed to tend to zero. We also derive novel bounds on the conver-
gence time of random Clifford circuits to the t-th moment of the uniform distribution on the
Clifford group. Our proofs exploit a recently developed variant of Schur-Weyl duality for
the Clifford group, as well as bounds on restricted spectral gaps of averaging operators.

Random vectors and unitaries are ubiquitous in protocols and arguments of quantum informa-
tion and many-body physics. In quantum information, a paradigmatic example is the randomized
benchmarking protocol [1–3], which aims to characterize the error rate of quantum gates. There,
random unitaries are used to average potentially complex errors into a single, easy to measure
error rate. In many-body physics, random unitaries are used e.g. to model the dynamics that are
thought to describe the mixing process that quantum information undergoes when absorbed into,
and evaporated from, a black hole [4]. In these and related cases, one is faced with the issue
that unitaries drawn uniformly from the full many-body group are unphysical in the sense that,
with overwhelming probability, they cannot be implemented efficiently. The notion of a unitary
t-design captures an efficiently realizable version of uniform randomness [5–7]. More specifically,
a probability measure on the unitary group is a t-design if it matches the uniform Haar measure up
to t-th moments.

Applications abound. The randomness provided by designs is used to foil attackers in quantum
cryptography protocols [8–10]. It guards against worst case behavior in various quantum [10–
16] and classical [17] estimation problems. Designs allow for an efficient implementation of
decoupling procedures, a primitive in quantum Shannon theory [18]. In quantum complexity,
unitary designs are used as models for generic instances of time evolution that display a quantum
computational speed-up [19]. Unitary designs are now standard tools for the quantitative study of
toy models in high energy physics, quantum gravity, and quantum thermodynamics [4, 20–22].

The multitude of applications motivates the search for efficient constructions of unitary t-
designs [23–27]. In particular, Brandao, Harrow and Horodecki [23] show that local random
circuits on n qubits with O(n2t10) many gates give rise to an approximate t-design. In practice, it
is often desirable to find more structured implementations. Designs consisting of Clifford opera-
tions would be particular attractive from various points of view: (i) Because the Clifford unitaries
form a finite group, elements can be represented exactly using a small number (O(n2)) of bits. (ii)
The Gottesman-Knill Theorem ensures that there are efficient classical algorithms for simulating
Clifford circuits. (iii) Most importantly, in fault-tolerant architectures [28, 29], Clifford unitaries
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tend to have comparatively simple realizations, while the robust implementation of general gates
(e.g. via magic-state distillation) carries a significant overhead. The difference is so stark that in
this context, Clifford operations are often considered to be a free resource, and the complexity of
a circuit is measured solely in terms of the number of non-Clifford gates [30, 31].

The Clifford group is known to form a unitary t-design for t = 2 [9] and t = 3 [32–34], but
fails to have this property for t > 3 [32–36]. More generally, Refs. [37, 38] together imply that
any local gate set that realizes 4-designs must necessarily be universal (c.f. Proposition 3).

This leads us to the central question underlying this work: How many non-Clifford gates are
required to generate an approximate unitary t-design? A direct application of the random circuit
model of Ref. [23] yields an estimate of O(n2t10) non-Clifford operations. In this paper we show
that a polynomial-sized random Clifford circuit, together with a system size-independent number
of O(t4 log2(t)) non-Clifford gates – a homeopathic dose – is already sufficient.

CL1

K
CL2

K†
CL3

K†
CL4

K
CL5

K

Figure 1: K-interleaved Clifford circuits: We consider a model where random Clifford operations are
alternated with a non-Clifford gate K or its inverse K†.

We establish this main result for two different circuit models (Fig. 1). In Section I A, we con-
sider alternating unitaries drawn uniformly from the Clifford group with a non-Clifford gate. This
gives rise to an efficient quantum circuit, as there are classical algorithms for sampling uniformly
from the Clifford group, and for producing an efficient gate decomposition of the resulting op-
eration [39]. A somewhat simpler model is analyzed in Section I B. There, we assume that the
Clifford layers are circuits consisting of gates drawn form a local Clifford gate set. These circuits
will only approximate the uniform measure on the Clifford group. Theorem 3, which might be of
independent interest, gives novel bounds on the convergence rate.

The key to this scaling lies in the structure of the commutant of the t-th tensor power of the
Clifford group, described by a variant of Schur-Weyl duality developed in a sequence of recent
works [35, 40–42]. There, it has been shown that the dimension of this commutant – which mea-
sures the failure of the Clifford group to be a t-design from a representation theoretical perspective
– is independent of the system size. Refs. [35, 41] have used this insight to provide a construc-
tion for exact spherical t-designs that consist of a system size-independent number of Clifford
orbits. It has been left as an open problem whether these ideas can be generalized from spherical
designs to the more complex notion of unitary designs, and whether the construction can be made
efficient [41]. The present work resolves this question in the affirmative.

Finally, we note that in Ref. [43], it has been observed numerically that adding a single T gate
to a random Clifford circuit has dramatic effects on the entanglement spectrum. A relation to
t-designs was suspected. Our result provides a rigorous understanding of this observation.
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I. RESULTS

A. Approximate t-designs with few non-Clifford gates

To state our results precisely, we need to formalize the relevant notion of approximation, as
well as the circuit model used. Let ν be a probability measure on the unitary group U(d). The
measure ν gives rise to a quantum channel

∆t(ν)(ρ) :=

∫

U(d)

U⊗tρ
(
U †
)⊗t

dν(U), (1)

which applies U⊗t, with U chosen according to ν. We will refer to ∆t(ν) as the t-th moment
operator associated with ν. Following Ref. [26], we quantify the degree to which a measure
approximates a t-design by the diamond norm distance of its moment operator to the moment
operator of the Haar measure µH on U(d).

Definition 1 (Approximate unitary design). Let ν be a distribution on U(d). Then ν is an (additive)
ε-approximate t-design if

‖∆t(ν)−∆t(µH)‖� ≤ ε. (2)

Denote the uniform measure on the multiqubit Clifford group Cl(2n) by µCl, and letK be some
fixed single-qubit non-Clifford gate. The circuit model we are considering (Figure 1) interleaves
Clifford unitaries drawn from µCl, with random gates from {K,K†,1} acting on an arbitrary
qubit1. Note that the concatenation of two unitaries drawn from measures ν1 and ν2 is described
by the convolution ν1 ∗ ν2 of the respective measures. We thus arrive at this formal definition of
the circuit model:

Definition 2 (K-interleaved Clifford circuits). Let K ∈ U(2). Consider the probability measure
ξK that draws uniformly from the set {K ⊗ 12n−1 , K† ⊗ 12n−1 ,12n}. A K-interleaved Clifford
circuit of depth k is the random circuit acting on n qubits described by the probability distribution

σk := µCl ∗ ξK ∗ · · · ∗ µCl ∗ ξK︸ ︷︷ ︸
k times

. (3)

For convenience, we work with the logarithm of base 2: log(x) := log2(x). We are now
equipped to state the main result of this work in the form of a theorem:

Theorem 1 (Unitary designs with few non-Clifford gates). Let K ∈ U(2) be a non-Clifford uni-
tary. There are constants C1(K), C2(K) such that for any k ≥ C1(K) log2(t)(t4 + t log(1/ε)),
a K-interleaved Clifford circuit with depth k acting on n qubits is an additive ε-approximate
t-design for all n ≥ C2(K)t2.

We give the proofs of this theorem in Section III. In Theorem 1, we consider uniformly drawn
multiqubit Clifford unitaries. This can be achieved with O(n3) classical random bits [39] and then
implemented with O(n2/ log(n)) gates [44]. Combined with these results, Theorem 1 implies an
overall gate count of O(n2/ log(n)t4 log2(t)) improving the scaling compared to Ref. [23] in the

1 We use the set {K,K†,1} instead of just {K} for technical reasons: Making the set closed under the adjoint
causes the moment operator to be Hermitian. The identity is included to ensure that the concatenation of two
random elements has a non-vanishing probability of producing a non-Clifford gate—a property that will slightly
simplify the proof. Of course, in a physical realization, identity gates and the following Clifford operation are
redundant and need not be implemented.
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dependence on both t and n. In this sense, our construction can be seen as a classical-quantum
hybrid construction of unitary designs: The scaling is significantly improved by outsourcing as
many tasks as possible to a classical computer. A construction in which all parts of the random
unitary are local random circuits is considered in Corollary 3.

For designs generated from general random local circuits, numerical results suggest that con-
vergence is much faster in practice than indicated by the proven bounds [45]. We expect that a
similar effect occurs here, and that in fact very shallow K-interleaved Clifford circuits are suffi-
cient to approximate t-designs. This intuition is supported by the numerical results of Ref. [43],
which show that even a single T -gate has dramatic effects on the entanglement spectrum of a
quantum circuit.

It is moreover noteworthy that circuits with few T -gates can be efficiently simulated [46–49].
The scaling of these algorithms is polynomial in the depth of the circuit, but exponential in the
number of T -gates. Combined with our result, this implies that for fixed additive errors ε, there
are families of ε-approximate unitary O(log(n))-designs simulable in quasi-polynomial time. For
the general random quantum circuit model, it is conjectured that a depth of order O(nt) suffices
to approximate t-designs [23, 50]. If such a linear scaling is sufficient in our model, the quasi-
polynomial time estimate for classical simulations would improve to polynomial.

Conversely, our result has implications for the circuit complexity of quantum circuits dominated
by Clifford gates. For this we combine Theorem 1 with a recent connection between unitary
designs and complexity [50]. Consider the following (informal) definition of circuit complexity:

Definition 3 ([50]). The complexity of a quantum circuit U is the minimal circuit size required to
implement an ancilla-assisted measurement that is capable of distinguishing the map ρ 7→ UρU †

from the completely depolarizing channel ρ 7→ 1
d
1.

Then, the following result holds:

Theorem 2 ([50], informal). Consider an approximate unitary t-design. Then, a randomly se-
lected element is very likely to have strong circuit complexity ≈ t.

Combined with Theorem 1, this yields an immediate corollary:

Corollary 1 (Circuit complexity scaling). A K-interleaved Clifford circuit of depth k = O(t4)

contains at least exp(Ω(k)) elements with strong complexity Ω(k
1
4 ), provided that n ≥ C2(K)t2.

In particular, the circuit complexity scales directly with the number of non-Clifford gates inde-
pendent of the system size. The system size only enters in the number of Clifford gates.

For the proof of Theorem 1 we need to analyse the connection between the t-th moment op-
erator of the Haar measure and the commutant of the diagonal action of the Clifford group. The
latter was proven to be spanned by representations of so-called stochastic Lagrangian subspaces
in Ref. [41]. In particular, we prove almost tight bounds on the overlap of the Haar operator with
these basis vectors in Lemma 13 that might be of independent interest. This will allow us to in-
voke a powerful theorem by Varjú [51] on restricted spectral gaps of probability distributions on
compact Lie groups to show that non-Clifford unitaries have a strong impact on representations
of Lagrangian subspaces that are not also permutations. We combine this insight with a careful
combinatorial argument about the Gram-Schmidt orthogonalization of the basis corresponding to
stochastic Lagrangian subspaces to bound the difference to a unitary t-design in diamond norm.

Moreover, the bound for Theorem 1 allows us to prove a corollary about the stronger notion of
relative approximate designs:
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Definition 4 (Relative ε-approximate t-design). We call a probability ν a relative ε-approximate
t-design if

(1− ε)∆t(ν) 4 ∆t(µH) 4 (1 + ε)∆t(ν), (4)

where A 4 B if and only if B − A is completely positive.

Corollary 2 (K-interleaved Clifford circuits as relative ε-approximate t-designs). There are con-
stants C ′1(K), C ′2(K) such that a K-interleaved Clifford circuit is a relative ε-approximate t-
design in depth k ≥ C ′1(K) log2(t)(2nt+ log(1/ε)) for all n ≥ C ′2(K)t2.

Hence, if we drop the system-size independence, we can achieve a scaling of O(nt) at least
until t ∼ √n.

While we believe the setting of K-interleaved Clifford circuits to be the more relevant case,
the same method of proof works for Haar-interleaved Clifford circuits. Here, we draw not from
the gate set {Ki, K

†
i ,1}, but instead Haar-randomly from U(2). The advantage is that we obtain

explicit constants for the depth, while the depth in the K-interleaved setting has to depend on a
constant (as K might be arbitrarily close to the identity).

Proposition 1 (Haar-interleaved Clifford circuits as relative ε-approximate t-designs). For k ≥
36(33t4 + 3t log(1/ε)), Haar-interleaved Clifford circuits with depth k form an additive ε-
approximate t-design for all n ≥ 32t2 + 7.

Similarly, variants of Corollary 2 for Haar-interleaved Clifford circuits can be obtained, here
also without the log2(t) dependence.

B. Local random Clifford circuits for Clifford and unitary designs

The circuits considered in the previous section require one to find the gate decomposition of
a random Clifford operation. In this section, we analyze the case where the Clifford layers are
circuits consisting of gates drawn from a local set of generators.

As a first step, we establish that a 2-local random Clifford circuit on n qubits of depth
O(n2t9 log−2(t) log(1/ε)) constitutes a relative ε-approximate Clifford t-design, i.e., reproduces
the moment operator of the Clifford group up to the t-th order with a relative error of ε. We con-
sider local random Clifford circuits that consist of 2-local quantum gates from a finite setG with is
closed under taking the inverse and generates Cl(4). We refer to such a set as a closed, generating
set. A canonical example for such a closed, generating set is {H ⊗ 1, S ⊗ 1, S3 ⊗ 1,CX} where
H is the Hadamard gate, S is the phase gate and CX is the cNOT-gate [52]. Such a set G induces a
set of multi-qubit Clifford unitaries Ĝ ⊂ Cl(n) by acting on any pair of adjacent qubits, where we
adopt periodic boundary conditions. We then define the corresponding random Clifford circuits.

Definition 5 (Local random Clifford circuit). Let G ⊂ Cl(4) be a closed, generating set. Define
the probability measure σG as the measure having uniform support on Ĝ ⊂ Cl(n) acting on
n qubits. A local random Clifford circuit of depth m is the random circuits described by the
probability measure σ∗mG .

Our result on local random Clifford circuits even holds for a stronger notion for approximations
of designs, namely relative approximate designs. Write A 4 B if B −A is positive semi-definite.

Definition 6 (Relative approximate Clifford t-designs). Let ν be a probability measure on Cl(2n).
Then, ν is a relative ε-approximate Clifford t-design if

(1− ε)∆t(µCl) 4 ∆t(ν) 4 (1 + ε)∆t(µCl). (5)
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With this definition, our result reads as follows.

Theorem 3 (Local random Clifford designs). Let n ≥ 12t, then a local random Clifford circuit of
depth O(n log−2(t)t8(2nt+ log(1/ε))) constitutes a relative ε-approximate Clifford t-design.

The proof of the theorem is given in Section IV. This result is a significant improvement over
the scaling of O(n8), which is implicit in Ref. [9].

We can combine this result with the bounds obtained in Section III. To this end, consider a
random circuit that k-times alternatingly applies a local random Clifford circuit of depth m, and a
unitary drawn from the probability measure ξK . The corresponding probability measure is

σk,m := σ∗mG ∗ ξK ∗ · · · ∗ σ∗mG ∗ ξK︸ ︷︷ ︸
k times

. (6)

For these local random circuits we establish the following result:

Corollary 3 (Local random unitary design). Let K ∈ U(2) be a non-Clifford gate and let G ⊂
Cl(4) be a closed, generating set. There are constants C ′′1 (K,G), C ′′2 (K), C ′′3 (K) such that when-
ever

m ≥ C ′′1 (K,G)n log−2(t)t8 (2nt+ log(1/ε)) and k ≥ C ′′2 (K) log2(t)(t4 + t log(1/ε)),

the local random circuit σk,m, defined in (6), is an ε-approximate unitary t-design for all n ≥
C ′′3 (K)t2.

The complete argument for the corollary is given at the end of Section IV. After introducing
technical preliminaries in Section II, the remainder of the paper, Section III and Section IV, is
devoted to the proofs of Theorem 1, Theorem 3 and the Corollary 3. Finally, in Section V we
elaborate on and formalize as Proposition 3 the observation that there exists no non-universal
family of exact 4-designs for arbitrary system size.

II. TECHNICAL PRELIMINARIES

A. Operators and superoperators

Given a (finite-dimensional) Hilbert space H, we denote with L(H) the space of linear opera-
tors onH with involution † mapping an operator to its adjoint with respect to the inner product on
H. L(H) naturally inherits a Hermitian inner product, the Hilbert-Schmidt inner product

(A|B) := Tr(A†B), ∀A,B ∈ L(H). (7)

As this definition already suggests, we will use “operator kets and bras” whenever we think it
simplifies the notation. Concretely, we write |B ) = B and denote with (A | the linear form on
L(H) given by

(A | : B 7−→ (A|B) . (8)

Following common terminology in quantum information theory, we call linear maps φ : L(H)→
L(H) on operators “superoperators”. We use φ† to denote the adjoint map with respect to the
Hilbert-Schmidt inner product. Note that with the above notation, φ = |A)(B | defines a rank one
superoperator with φ† = |B )(A |. Moreover, we will denote by the superoperator AdA := A ·A−1
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the adjoint action of an invertible operator A ∈ GL(H) on L(H). For notational reasons, we
sometimes write Ad(A) instead of AdA.

We consistently reserve the notation ‖·‖p for the Schatten p-norms

‖A‖p := Tr(|A|p)1/p = ‖σ(A)‖`p , (9)

where σ(A) is the vector of singular values of A. In particular, we use the trace norm p = 1, the
Frobenius or Hilbert-Schmidt norm p = 2 and the spectral norm p = ∞. Clearly, this norms can
be defined for both operators and superoperators and we will use the same symbol in both cases.
For the latter, however, there is also a family of induced operator norms

‖φ‖p→q := sup
‖X‖p≤1

‖φ(X)‖q . (10)

Note that ‖·‖2→2 ≡ ‖·‖∞. Finally, we are interested in “stabilized” versions of these induced
norms, in particular the diamond norm

‖φ‖� := sup
d∈N

∥∥φ⊗ idL(Cd)

∥∥
1→1

=
∥∥φ⊗ idL(H)

∥∥
1→1

. (11)

The following norm inequality will be useful [53]

‖φ‖� ≤ (dimH)2 ‖φ‖∞ , ‖φ‖∞ ≤
√

dimH‖φ‖� . (12)

B. Commutant of the diagonal representation of the Clifford group

In this section, we review some of the machinery developed in Ref. [41]. Recall that the n-qubit
Clifford group Cl(n) is defined as the unitary normalizer of the Pauli group Pn:

Cl(n) =
{
U ∈ U(2n,Q[i])

∣∣ UPnU † ⊂ Pn
}
. (13)

Here, we followed the convention to restrict the matrix entries to rational complex numbers. This
avoids the unnecessary complications from an infinite center U(1) yielding a finite group with
minimal center Z(Cl(n)) = Z(Pn) ' Z4. The Clifford group can equivalently be defined in a
less conceptual but more constructive manner: It is the subgroup of U(2n) generated by CX, the
controlled not gate, the Hadamard gate H and the phase gate S.

For this work, the t-th diagonal representation of the Clifford group, defined as

τ (t) : Cl(n) −→ U(2nt), U 7−→ U⊗t, (14)

will be of major importance. It acts naturally on the Hilbert space ((C2)⊗n)⊗t which can be seen
as t copies of a n-qubit system. However, it will turn out that the operators commuting with this
representation naturally factorize with respect to a different tensor structure on this Hilbert space,
namely ((C2)⊗t)⊗n ' ((C2)⊗n)⊗t. Because of the different exponents, it should be clear from the
context which tensor structure is meant. We will make ubiquitous use of the description of the
commutant of the diagonal representation in terms of stochastic Lagrangian subspaces [41]:

Definition 7 (Stochastic Lagrangian subspaces). Consider the quadratic form q : Z2t
2 → Z4

defined as q(x, y) := x · x − y · y mod 4. The set Σt,t denotes the set of all subspaces T ⊆ Z2t
2

being subject to the following properties:
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1. T is totally q-isotropic: x · x = y · y mod 4 for all (x, y) ∈ T .

2. T has dimension t (the maximum dimension compatible with total isotropicity).

3. T is stochastic: (1, . . . , 1) ∈ T .

We call elements in Σt,t stochastic Lagrangian subspaces. We have

|Σt,t| =
t−2∏

k=0

(2k + 1) ≤ 2
1
2

(t2+5t). (15)

With this notion, we can now state the following key theorem from Ref. [41].

Theorem 4 ([41]). If n ≥ t−1, then the commutant τ (t)(Cl(n))′ of the t-th diagonal representation
of the Clifford group is spanned by the linearly independent operators r(T )⊗n, where T ∈ Σt,t

and
r(T ) :=

∑

(x,y)∈T
|x〉〈y|. (16)

Since the representation in question is fixed throughout this paper, we will simplify the notation
from now on and write Cl(n)′ ≡ τ (t)(Cl(n))′. To make use of a more sophisticated characteriza-
tion of the elements r(T ) developed in Ref. [41, Sec. 4], we need the following definitions.

Definition 8 (Stochastic orthogonal group). Consider the quadratic form q : Zt2 → Z4 defined as
q(x) := x ·x mod 4. The stochastic orthogonal group Ot is defined as the group of t× t matrices
O with entries in Z2 such that

1. q(Ox) = q(x) for all x ∈ Zt2 and

2. O(1, . . . , 1)T = (1, . . . , 1)T mod d.

The subspace TO := {(Ox, x), x ∈ Zt2} is a stochastic Lagrangian subspace. Moreover, the
operator r(O) := r(TO) is unitary. With this notion and the next one, all stochastic Lagrangian
subspaces can be characterized.

Definition 9 (Defect subspaces). A defect subspace is a subspace N ⊆ Zt2 subject to the following
conditions:

1. q(x) = 0 for all x ∈ N .

2. (1, . . . , 1)T ∈ N⊥.

Here, N⊥ = {y ∈ Zt2 |x · y = 0 ∀x ∈ N}.
First, note that N is totally isotropic, i.e. N ⊆ N⊥. Moreover, we have that dimN ≤ t/2 for

all defect subspaces N . Spaces N ⊆ Zt2 that satisfy the first condition define Calderbank-Shor-
Sloane (CSS) codes

CSS(N) := {Z(p)X(q) | q, p ∈ N} , (17)

where the action of the multi-qubit Pauli operators is Z(p) |x〉 := (−1)p·x |x〉 and X(q) |x〉 :=
|x+ q 〉 for x ∈ Zt2. The corresponding projector is given by

PN := PCSS(N) =
1

|N |2
∑

q,p∈N
Z(p)X(q). (18)
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Since the order of the stabilizer group is 22 dimN , PN projects onto a 2t−2 dimN -dimensional sub-
space of (C2)⊗t. For N = {0} we set PCSS(N) := 1. We summarize the findings of [41, Sec. 4] as
follows:

Theorem 5 ([41]). Consider T ∈ Σt,t, then

r(T ) = 2dimNr(O)PCSS(N) = 2dimN ′PCSS(N ′)r(O
′) (19)

for O,O′ ∈ Ot and N,N ′ defect subspaces with dimN = dimN ′.

Lemma 1 (Norms of r(T )). Suppose r(T ) = 2dimNr(O)PN as in Theorem 5. Then it holds:

‖r(T )‖1 = 2t−dimN , ‖r(T )‖2 = 2t/2, ‖r(T )‖∞ = 2dimN . (20)

Proof. Since any Schatten p-norm is unitarily invariant, we have ‖r(T )‖p = 2dimN ‖PN‖p. The
statements follow from rankPN = 2t−2 dimN .

In the following, we will often work with a normalized version of the r(T ) operators which we
define as

QT :=
r(T )

‖r(T )‖2

= 2−t/2r(T ). (21)

III. APPROXIMATE UNITARY t-DESIGNS

In this section, we give a bound on the number of non-Clifford gates needed to leverage the
Clifford group to an approximate unitary t-design. This is made precise by the following two
theorems which rely on two distinct proof strategies and come with different trade-offs.

Theorem 1 (Unitary designs with few non-Clifford gates). Let K ∈ U(2) be a non-Clifford uni-
tary. There are constants C1(K), C2(K) such that for any k ≥ C1(K) log2(t)(t4 + t log(1/ε)),
a K-interleaved Clifford circuit with depth k acting on n qubits is an additive ε-approximate
t-design for all n ≥ C2(K)t2.

Recall from Def. 2 that a K-interleaved Clifford circuit has an associated probability measure
σK := (µCl ∗ ξK)∗k where ξK is the measure which draws uniformly from {K,K†,1} on the first
qubit. Let us introduce the notation

R(K) :=

∫

U(2n)

Ad⊗tU dξk(U) =
1

3

(
Ad⊗tK + Ad⊗t

K† +id
)
⊗ idn−1. (22)

Then, our goal is to bound the deviation of the moment operator

∆t(σk) =

∫

U(2n)

Ad⊗tU dσk(U) = ∆t(µCl)R(K) . . .∆t(µCl)R(K)︸ ︷︷ ︸
k times

, (23)

from the Haar projector PH ≡ ∆t(µH) in diamond norm. Using that PH is invariant under left and
right multiplication with unitaries, we have the identity

Ak − PH = (A− PH)k, (24)

for any mixed unitary channel A. Thus, we can rewrite the difference of moment operators as

∆t(σk)− PH = [PClR(K)]k − PH = [(PCl − PH) R(K)]k , (25)

where we introduced the shorthand notation PCl := ∆t(µCl).
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Remark 1 (Non-vanishing probability of applying the identity). We applyK, K† with equal prob-
ability in Theorem 1 such that R(K) is Hermitian. The non-vanishing probability of applying 1,
i.e., of doing nothing, is necessary in the proof of Lemma 2, because we require the probability
distribution ξ̃K ∗ ξK = ξK ∗ ξK to have non-vanishing support on a non-Clifford gate. If ξK is the
uniform measure on K and K†, then ξK ∗ ξK has support on K2, (K†)2 and 1. We can hence drop
this assumption for gates that do not square to a Clifford gate. This is not the case for e.g. the
T -gate.

Our proof strategy for Theorem 1 makes use of the following two lemmas which are proven
in Sec. VI A and VI B. The first lemma is key to the derivations in this section. It is based on a
bound (Lemma 13) on the overlap of stochastic Lagrangian subspaces with the Haar projector and
Theorem 6, a special case of a theorem about restricted spectral gaps of random walks on compact
Lie groups due to Varjú [51].

Lemma 2 (Overlap bound). Let K be a single qubit gate which is not contained in the Clifford
group. Then, there is a constant c(K) > 0 such that

ηK,t := max
T∈Σt,t−St
T ′∈Σt,t

1

3

∣∣(QT |Ad⊗tK + Ad⊗t
K† +id |QT ′)

∣∣ ≤ 1− c(K) log−2(t). (26)

The second lemma is of a more technical nature.

Lemma 3 (Diamond norm bound). Consider T1, T2 ∈ Σt,t and denote withN1, N2 their respective
defect spaces. Then, it holds that

‖|QT1 )(QT2 |‖� ≤ 2dimN2−dimN1 , (27)

| (QT1|QT2) | ≤ 2−| dimN1−dimN2|. (28)

The difficulty of using these results to bound the difference

∆t(σk)− PH =
[

(PCl − PH) R(K)
]k
, (29)

stems from the following reason: The range of the projector PCl − PH is the ortho-complement of
the space spanned by permutations Q⊗nπ for π ∈ St within the commutant of the Clifford group
spanned by the operators Q⊗nT . Although this is a conveniently factorizing and well-studied basis,
it is non-orthogonal. Thus, the projectors do not possess a natural expansion in this basis and we
can not directly use the above bounds. However, we can write it explicitly in a suitable orthonormal
basis of the commutant obtained by the Gram-Schmidt procedure from the basis {Q⊗nT |T ∈ Σt,t}.
We summarize the properties of this basis in the following lemma:

Lemma 4 (Properties of the constructed basis). Let {Tj}|Σt,t|j=1 be an enumeration of the elements
of Σt,t such that the first t! spaces Tj correspond to the elements of St. Then, the {Ej} constitutes
an orthogonal (but not normalized) basis, where

Ej :=

j∑

i=1

Ai,j Q
⊗n
Ti

:=

j∑

i=1



∑

Π∈Sj
Π(j)=i

sign(Π)

j−1∏

l=1

(
QTl

∣∣∣QTΠ(l)

)n

 Q⊗nTi . (30)
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Denote by Ni the defect space of Ti. For n ≥ 1
2
(t2 + 5t), we have

|Ai,j| ≤ 2t
3+4t2+6t−n| dimNi−dimNj |, ∀i, j, (31)

|Ai,j| ≤ 22t2+10t−n, ∀i 6= j. (32)

Moreover, it holds that
1− 2t

2+7t−n ≤ Aj,j ≤ 1 + 2t
2+7t−n. (33)

We believe that the explicit bounds in Lemma 4 might be of independent interest in applications
of the Schur-Weyl duality of the Clifford group. For the sake of readibility, and as Theorem 1 holds
up to an inexplicit constant, we will bound all polynomials in t by their leading order term in the
following.

Proof of Theorem 1. Notice that from (25), we have the expression

‖[PClR(K)]k − PH‖� (34)

=

∥∥∥∥∥∥∥





|Σt,t|∑

j=t!+1

1

(Ej|Ej)
|Ej )(Ej |


R(K)



k
∥∥∥∥∥∥∥
�

(35)

=

∥∥∥∥∥∥

|Σt,t|∑

j1,...,jm=t!+1

k∏

l=1

1

(Ejl |Ejl)
|Ej1 ) (Ej1 |R(K) |Ej2 ) . . . (Ejk |R(K)

∥∥∥∥∥∥
�

(36)

≤
|Σt,t|∑

j1,...,jk=t!+1

k∏

l=1

1

(Ejl |Ejl)
k−1∏

r=1

| (Ejr |R(K)
∣∣Ejr+1

)
| ·
∥∥∥ |Ej1 )(Ejk |

∥∥∥
�
. (37)

We now bound each of the factors in each term above.
First, we compute the squared norm of |Ej ),

(Ej|Ej) =

j∑

r,l=1

ArjAlj (QTr |QTl)
n = A2

j,j +
∑

k,l<j

ArjAlj (QTk |QTl)
n . (38)

Using eqs. (32) and (33), we thus bound

(Ej|Ej) ≤
(

1 + 2t
2+7t−n

)2

+ (j2 − 1)42t2+10t−n

≤
(

1 + 2t
2+7t−n

)2

+ |Σt,t|242t2+10t−n

≤ 1 + 231t2−2n,

(39)

and in the same way
(Ej|Ej) ≥ 1− 231t2−2n. (40)

Now we use that n ≥ 16t2. Letting x := 231t2−2n ∈ [0, 1
2
], the inequalities 1/(1 − x) ≤ 1 + 2x

and 1− 2x ≤ 1/(1 + x) hold. This leads to

1

(Ej|Ej)
= 1 + aj with |aj| ≤ 232t2−2n. (41)
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We now focus on the second factor,

| (Ei |R(K) |Ej ) | ≤
i∑

r=1

j∑

l=1

|Ar,iAl,j| ·
∣∣(Q⊗nTr

∣∣R(K)
∣∣Q⊗nTl

)∣∣ . (42)

If for (QTr |R(K) |QTl ) one of the stochastic Lagrangian subspaces does not correspond to a
permutation, Lemma 2 introduces a factor of ηK,t. If both correspond to a permutation, for the
sake of beauty we redefine the factors Ar,i and Al,j by multiplying it with 2, and compensate this
by introducing a factor of 1

4
and let

η̄K,t := max

{
1

4
, ηK,t

}
. (43)

In this case r < t! + 1 ≤ i and l < t! + 1 ≤ j, so the factor |Ar,iAl,j| will be exponentially
suppressed according to (32) and so this redefinition will not affect the asymptotic scaling in n.

We provide two bounds for | (Ei |R(K) |Ej ) | that will be used later on. First, using (31), (33)
and (28), we obtain

| (Ei |R(K) |Ej ) | ≤
i∑

r=1

j∑

l=1

|Ar,iAl,j| ·
∣∣(Q⊗nTr

∣∣R(K)
∣∣Q⊗nTl

)∣∣ (44)

≤ η̄K,t(1 + 28t2−n)
i∑

r=1

j∑

l=1

224t3−n| dimNr−dimNi|−n|dimNl−dimNj |−(n−1)| dimNl−dimNr| (45)

≤ η̄K,t(1 + 28t2−n)|Σt,t|2225t3−n| dimNj−dimNi| (46)

≤ η̄K,t(1 + 28t2−n)231t3−n| dimNj−dimNi|, (47)

where we have used 2|dimNl−dimNr| ≤ 2t.
The second bound follows from equations (32) and (33), and we consider two cases. If i 6= j,

then

| (Ei |R(K) |Ej ) | ≤
i∑

r=1

j∑

l=1

|Ar,iAl,j| · |
(
Q⊗nTr

∣∣R(K)
∣∣Q⊗nTl

)
| (48)

≤ η̄K,t(1 + 28t2−n)|Σt,t|2219t2−n (49)

≤ η̄K,t(1 + 28t2−n)225t2−n. (50)

Otherwise,

| (Ei |R(K) |Ei ) | ≤
i∑

r=1

i∑

l=1

|Ar,iAl,i| · |
(
Q⊗nTr

∣∣R(K)
∣∣Q⊗nTl

)
| (51)

≤η̄K,t|Ai,i|2 + (i2 − 1)212t2−n (52)

≤η̄K,t(1 + 28t2−n)2 + η̄K,t(1 + 28t2−n)216t2−n (53)

≤η̄K,t(1 + 216t2−n)3. (54)
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Lastly, we obtain from (31) and (27)

‖ |Ei )(Ej | ‖� ≤
i∑

r=1

j∑

l=1

|Ar,iAl,j| ·
∥∥∣∣Q⊗nTr

)(
Q⊗nTl

∣∣∥∥
� (55)

≤ |Σt,t|2224t3−n| dimNr−dimNi|−n| dimNl−dimNj |+n(dimNl−dimNr) (56)

≤ 230t3+n(dimNj−dimNi). (57)

We now start piecing these expressions together to bound (37). Equations (57) and (41) give

‖[PClR(K)]k − PH‖� ≤
(

1 + 232t2−2n
)k |Σt,t|∑

j1,...,jk=t!+1

230t3+n(dimNjk−dimNj1 )

k−1∏

r=1

| (Ejr |R(K)
∣∣Ejr+1

)
|. (58)

To bound (58), we will bunch together the contribution of all terms whose sequence {j1, . . . , jk}
contains l changes. Moreover, we will treat differently the cases l ≤ bt/2c and l > bt/2c. In the
former case, we use (47) to get

k−1∏

r=1

| (Ejr |R(K)
∣∣Ejr+1

)
| ≤ η̄k−1

K,t (1 + 216t2−n)3(k−1)2l31t3−n| dimNjk−dimNj1 |. (59)

In this case, the factor of 2n(dimNjk−dimNj1 ) coming from (57) is cancelled by the last factor of
2−n|dimNjk−dimNj1 |.

In the latter case, we turn to (50) instead to obtain

k−1∏

r=1

| (Ejr |R(K)
∣∣Ejr+1

)
| ≤ η̄k−1

K,t (1 + 216t2−n)3(k−1)2l25t2−ln.

Here, the exponential factor coming from (57) is cancelled by 2−ln since dimNjk − dimNj1 ≤
bt/2c. Counting the instances of sequences with l changes, we may put these considerations
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together to bound

‖[PClR(K)]k − PH‖� ≤
(

1 + 232t2−2n
)k (

1 + 216t2−n
)3(k−1)

η̄k−1
K,t

[ b t
2
c∑

l=0

(
k

l

)
|Σt,t|l+12l31t3

+
k∑

l=b t
2
c+1

(
k

l

)
|Σt,t|l+12(l−b t

2
c)(25t2−n)2b

t
2
c25t2

]

≤
(

1 + 232t2−2n
)4k

η̄k−1
K,t

[
t

2

(
k

b t
2
c

)
|Σt,t|b

t
2
c+12b

t
2
c31t3

+

k−b t
2
c∑

l=1

(
k

l + b t
2
c

)
|Σt,t|l+1+b t

2
c2l(25t2−n)213t3

]

‡
≤
(

1 + 232t2−2n
)4k

η̄k−1
K,t

[
232t4+t log(k)

+ kb
t
2
c|Σt,t|1+b t

2
c213t3

k∑

l=0

(
k

l

)
|Σt,t|l2l(25t2−n)

]

≤
(

1 + 232t2−2n
)4k

η̄k−1
K,t

[
232t4+t log(k) + 218t3+log(k)t

(
1 + 228t2−n

)k ]
,

where we have used in ‡ that

(
k

l + b t
2
c

)
=

(k)!

(k − l − b t
2
c)!(l + b t

2
c)!

≤ (k − l −
⌊ t

2

⌋
+ 1) . . . (k − l) k!

(k − l)!l!

≤ kb
t
2
c
(
k

l

)
.

Combined we obtain the bound

‖∆t(σk)− PH‖� ≤ 233t4+t log(k)
(

1 + 232t2−n
)5k

η̄k−1
K,t , (60)

where η̄K,t is bounded by Lemma 2. Taking the logarithm and using the inequality log(1 +x) ≤ x
repeatedly, this implies Theorem 1.

With the above bound, we can also prove Corollary 2.

Proof of Corollary 2. Consider the self-adjoint superoperator A := PClR(K)PCl. As PCl is a
projector, we have with Eq. (24)

(A− PH)k = Ak − PH = [PClR(K)]k − PH = ∆t(σk)− PH. (61)
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Using norm inequality between operator and diamond norm Eq. (12) and the previous result
Eq. (60), we find

||A− PH ||k∞ = ||(A− PH)k||∞ ≤ 2nt/2‖∆t(σk)− PH‖�
≤ 233t4+t log(k)+nt/2

(
1 + 232t2−n

)5k

η̄k−1
K,t . (62)

Taking the k-th square root and the limit k →∞ on both sides, this yields

||A− PH ||∞ ≤
(

1 + 232t2−n
)5

η̄K,t. (63)

Combined with Ref. [23, Lem. 4], Eq. (63) implies the result.

The bound in Eq. (60) also suffices to prove Proposition 1:

Proof of Proposition 1. The proof follows exactly as the proof of Theorem 1, but with the factor
7/8 instead of η̄K,t (compare Lemma 13). Using log2(7/8) ≤ −0.19 the result can be checked.

IV. CONVERGENCE TO HIGHER MOMENTS OF THE CLIFFORD GROUP

In this section, we aim to prove:

Theorem 3 (Local random Clifford designs). Let n ≥ 12t, then a local random Clifford circuit of
depth O(n log−2(t)t8(2nt+ log(1/ε))) constitutes a relative ε-approximate Clifford t-design.

The proof of Theorem 3 follows a well-established strategy [23, 54] in a sequence of lemmas.
For the sake of readibility, the proofs of these lemmas have been moved to Sec. VI D. Given a
measure ν on the Clifford group Cl(n), recall that its t-th moment operator was defined as

∆t(ν) :=

∫

Cl(2n)

Ad⊗tU dν(U).

The idea of the proof is that if ∆t(ν) is close to the moment operator ∆t(µCl) ≡ PCl of the uniform
(Haar) measure µCl on the Clifford group, ν is an approximate Clifford design. However, we
have seen that there are different notions of closeness. We define its deviation in (superoperator)
spectral norm as

gCl(ν, t) := ‖∆t(ν)−∆t(µCl)‖∞ .
Then, we prove the following lemma in Sec. VI D:

Lemma 5 (Relative ε22tn-approximate Clifford t-designs). Suppose that 0 ≤ ε < 1 is such that
gCl(ν, t) ≤ ε. Then, ν is a relative ε22tn-approximate Clifford t-design.

Recall that we have defined the measure σG on the Clifford group Cl(n) in Def. 5 by randomly
drawing from a 2-local Clifford gate set G and applying it to a random qubit i, or to a pair of
adjacent qubits (i, i + 1), respectively. For this measure, we show that it fulfills the assumptions
of Lemma 5:

Proposition 2 (Clifford expander bound). Let σG be as in Def. 5 and n ≥ 12t. Then, gCl(σG, t) ≤
1− c(G)n−1 log2(t)t−8 for some constant c(G) > 0.
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We will prove Proposition 2 in the end of this section. From this, Theorem 3 follows as a direct
consequence:

Proof of Theorem 3. First, note that gCl(ν
∗k, t) = gCl(ν, t)

k for all probability measures ν on the
Clifford group. This can be easily verified using the observation

∆t(µCl)∆t(ν) = ∆t(ν)∆t(µCl) = ∆t(µCl). (64)

Hence, combining the bound given by Proposition 2 and Lemma 5, we find that the k-step random
walk σ∗kG is a ε-approximate Clifford t-design, if we choose k = O

(
n log−2(t)t8 (2nt+ log(1/ε))

)
.

For the sake of readibility, let us from now on drop the dependence on G and write σ ≡ σG. In
order to prove Proposition 2, we use a reformulation of g(σ, t) based on the following observation.
Since G is closed under taking inverses, the moment operator ∆t(σ) is self-adjoint with respect
to the Hilbert-Schmidt inner product. Due to σ being a probability measure, its largest eigenvalue
is 1 with eigenspace corresponding to the operator subspace which is fixed by the adjoint action
Ad(g⊗t) of all generators. Equivalently, this is the subspace of operators which commute with
any generator g⊗t. However, any operator commuting with all generators also commutes with
every element in the Clifford group Cl(n) and vice versa. Hence, this subspace is nothing but the
Clifford commutant Cl(n)′ with projector PCl ≡ ∆t(µCl). Thus, the spectral decomposition is

∆t(σ) = PCl +
∑

r≥2

λr(∆t(σ))Πr, (65)

where λr(X) denotes the r-th largest eigenvalue of an operator X . Hence, we find

g(σ, t) = ‖∆t(σ)− PCl‖∞ = λ2 (∆t(σ)) . (66)

Note that since ∆t(σ) is self-adjoint, we can interpret it as an Hamiltonian on the Hilbert space
L((C2)⊗nt). In this light, it will turn out to be useful to recast Eq. (66) as the spectral gap of a
suitable family of local Hamiltonians with vanishing ground state energy:

Hn,t := n (id−∆t(σ)) =
n∑

i=1

hi,i+1, with hi,i+1 :=
1

|G|
∑

g∈G

(
id− Ad(g⊗ti,i+1)

)
. (67)

Let us summarize these findings in the following lemmas.

Lemma 6 (Spectral gap). Let σ be as in Def. 5 and Hn,t the Hamiltonian from Eq. (67). It holds
that

g(σ, t) = 1− ∆(Hn,t)

n
. (68)

Lemma 7 (Ground spaces). The Hamiltonians Hn,t are positive operators with ground state en-
ergy 0. The ground space is given by the Clifford commutant

Cl(n)′ = span
{
r(T )⊗n

∣∣ T ∈ Σt,t

}
, (69)

where Σt,t is the set of stochastic Lagrangian subspaces of Zt2 ⊕ Zt2.
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In the remainder of this section, we will prove the existence of a uniform lower bound on
the spectral gap of Hn,t. In combination with Lemma 6 and Lemma 5 this will imply Theorem 3.
While it is highly non-trivial to show spectral gaps in the thermodynamic limits, we can use the fact
that Hn,t is frustration-free (compare Lemma 7). This allows us to apply the powerful martingale
method pioneered by Nachtergaele [55].

Lemma 8 (Lower bound to spectral gap). Let the Hamiltonian Hn,t be as in Eq. (67) and assume
that n ≥ 12t. Then, Hn,t has a spectral gap satisfying

∆(Hn,t) ≥
∆(H12t,t)

48t
. (70)

Proof of Proposition 2. We can now combine the bound in (70) with any lower bound on the
spectral gap independent of t. Let Tν : L2(Cl(n))→ L2(Cl(n)) be given by

Tνf(g) :=

∫
f(h−1g)dν(h). (71)

Notice that it is the (Hermitian) averaging operator with respect to ν on the group algebra. The
highest eigenvalue of Tν is λ1(Tν) = 1, its eigenspace corresponds to the trivial representation.
By Ref. [56, Cor. 1] we have that

λ2(Tσ) ≤ 1− η

d2
, (72)

where η is the probability of the least probable generator (here 1/|G|n) and d is the diameter of
the associated Cayley graph (given in Ref. [57] as d = O(n3/ log(n)).

According to the Peter-Weyl theorem, the spectrum of Hn,t is contained in the spectrum of Tσ,
in particular it is the same as the spectrum of the restriction of Tσ to the irreducible representations
that appear in the representation U 7→ Ad⊗tU . This representation contains a trivial component, so
Hn,t also has a gap of at least η/d2. Finally, by Lemma 8 it follows that

∆(Hn,t) ≥
∆(H12t,t)

48t
≥ c(G)t−8 log(t)2, (73)

for a constant c(G). We note that the applicability of Ref. [56, Cor. 1] to random walks on the
Clifford group has also been observed in Ref. [9].

We can combine Theorem 3 and Theorem 1 to obtain the following corollary:

Corollary 3 (Local random unitary design). Let K ∈ U(2) be a non-Clifford gate and let G ⊂
Cl(4) be a closed, generating set. There are constants C ′′1 (K,G), C ′′2 (K), C ′′3 (K) such that when-
ever

m ≥ C ′′1 (K,G)n log−2(t)t8 (2nt+ log(1/ε)) and k ≥ C ′′2 (K) log2(t)(t4 + t log(1/ε)),

the local random circuit σk,m, defined in (6), is an ε-approximate unitary t-design for all n ≥
C ′′3 (K)t2.

Proof. Consider the superoperator

∆t(σk,m) =

∫

U(2n)

Ad(U⊗t) dσk,m(U) = ∆t(σ
∗m)R(K) . . .∆t(σ

∗m)R(K)︸ ︷︷ ︸
k times

, (74)
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where σ∗m denotes the probability measure of a depth m local random walk on the Clifford group
(cp. Def. 5). We would like to bound the difference between the Haar random t-th moment operator
∆t(µH) =: PH and ∆t(σk,m). Notice the following standard properties of PH:

PH∆t(ν) = ∆t(ν)PH = PH, and P †H = PH, (75)

for any probability measure ν on U(2n). In particular, we have that PH is an orthogonal projector.
As in the last section, we make use of the spectral decomposition in Eq. (65) to decompose ∆t(σ

∗k)
as follows:

∆t(σk,m)− PH = [∆t(σ
∗m)R(K)]k − PH

=

[(
PCl +

∑

i≥2

λmi Πi

)
R(K)

]k
− PH.

(76)

Recall the shorthand notation PCl := ∆t(µCl). Using the triangle inequality and the inequality
(12), this implies

‖∆t(σk,m)− PH‖� ≤
∥∥[PClR(K)]k − PH

∥∥
� + 22tn

k∑

l=1

(
k

l

)
λlm2

≤
∥∥[PClR(K)]k − PH

∥∥
� + k22tn+1λm2 .

(77)

Note that we bounded the second largest eigenvalue λ2 of ∆t(σ) in Proposition 2. We can now
combine Proposition 2 with (60) to obtain:

‖∆t(σk,m)− PH‖� ≤ k22tn+1λm2 + 233t4+t log(k)
(

1 + 232t2−n
)5k

η̄kK,t. (78)

V. SINGLING OUT THE CLIFFORD GROUP

There are a number of ways to motivate the construction of approximate unitary t-designs
from random Clifford circuits. For example, from a physical point of view, Clifford gates are
often comparatively easy to implement, in particular in fault-tolerant architectures. In this section,
we point out that Refs. [37, 38] together imply that the Clifford groups are also mathematically
distinguished. Proposition 3 is a Corollary of the recently published classification of finite unitary
subgroups which form t-designs, so-called unitary t-groups, by Bannai et al. [37] and a theorem
about universality of finitely generated subgroups by Sawicki and Karnas [38].

For any subgroup G ⊆ U(d), we let

G := {det(U †)U |U ∈ G} ⊆ SU(d).

Notice that G is a unitary t-design if and only if G is.
Proposition 3 refers to t-designs generated by finite gate sets, which we define now. The starting

point is a Hilbert space (Cq)⊗r for some r. A finite gate set is a finite subset

G ⊂ SU
(
(Cq)⊗r

)
.

We will denote by Gn the subgroup of SU
(
(Cq)⊗n

)
generated by elements of G acting on any r

tensor factors (here r ≤ n). The number q is called the local dimension of G.
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Proposition 3 (Singling out the Clifford group [37, 38]). Let t ≥ 2, and let G be a finite gate set
with local dimension q ≥ 2. Assume that (1) either all Gn are finite or they are all infinite, and (2)
there is an n0 such that for all n ≥ n0, Gn is a unitary t-design.

Then, one of the following cases apply:

(i) If t = 2, we have either q prime and Gn is isomorphic to a subgroup of the Clifford group
Cl(qn), or Gn is dense in SU(qn),

(ii) If t = 3, we have either q = 2 and Gn is isomorphic to the full Clifford group Cl(2n) or Gn
is dense in SU(qn),

(iii) If t ≥ 4 then Gn is dense in SU(qn).

Note that a finitely generated infinite subgroup of SU(d) is always dense in some compact Lie
subgroup (cp. [38, Fact 2.6]). In particular, it inherits a Haar measure from this Lie subgroup
which allows for a definition of unitary t-design.

a. Finite case. In the classification in Ref. [37], the non-existence of finite unitary t-groups
was shown for t ≥ 4 (and dimension d > 2). Already the case t = 3 is very restrictive, since the
authors arrive at the following result:

Lemma 9 (Ref. [37, Thm. 4]). Suppose d ≥ 5 and H < SU(d) is a finite unitary 3-group. Then,
H is either one of finitely many exceptional cases or d = 2n and H is isomorphic to the Clifford
group Cl(2n).

This establishes the finite version of (ii), the t = 3 case.
The classification of unitary 2-designs is however more involved, it includes certain irreducible

representations of finite unitary and symplectic groups (compare [37, Thm. 3 Lie-type case]), and
a finite set of exceptions. The exceptions can be ruled out in the same way as above.

The former, the Lie-type cases, happen in dimensions (3n ± 1)/2 and (2n + (−1)n)/3. There
is no q for which there exists an n0 such that for all n ≥ n0 there exists an m ∈ N satisfying either

qn = (3m ± 1)/2 or qn = (2m + (−1)m)/3.

Thus, the assumptions of Prop. 3 rule these out. This establishes the finite version of (i).
b. Infinite case. Define the commutant for a set S ⊂ SU(d) of the adjoint action as

Comm(AdS) :=
{
L ∈ End

(
Cd×d) ∣∣ [Adg, L] = 0 ∀g ∈ S

}
.

We show that the second case can be reduced to Cor. 3.5 from Ref. [38] applied to the simple Lie
group SU(d).

Lemma 10 ([38, Cor. 3.5]). Given a finite set G ⊂ SU(d) such that G = 〈G〉 is infinite. Then, the
group G is dense in SU(d) if and only if

Comm(AdG) ∩ End(su(d)) = {λ idsu(d) |λ ∈ R}. (79)

Recall that a subgroup G ⊆ U(d) is a unitary 2-group if and only if Comm(U ⊗ U |U ∈
G) = Comm(U ⊗ U |U ∈ U(d)) = span(1,F), where F denotes the flip of two tensor copies
(see also App. A ). Let us denote the partial transpose on the second system of a linear operator
A ∈ L(Cd ⊗ Cd) by AΓ. Then, one can easily verify that Γ induces a vector space isomorphism
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between Comm(U ⊗ U |U ∈ G) and Comm(U ⊗ U |U ∈ G). The image of the basis {1,F} is
readily computed as

1
Γ = 1, FΓ = d |Ω〉〈Ω | , (80)

where |Ω〉 = d−1/2
∑d

i=1 |ii〉 is the maximally entangled state vector. Next, we use that U ⊗U =
mat(AdU) is the matrix representation of AdU = U · U † with respect to the basis Ei,j = |i〉〈j |
of L(Cd). Thus, we have Comm(AdG) ' Comm(U ⊗ U |U ∈ G) as algebras. Pulling the above
basis of Comm(U ⊗ U |U ∈ G) back to Comm(AdG), we then find:

mat−1(1) = idL(Cd), mat−1( |Ω〉〈Ω |) = Tr(•)idL(Cd). (81)

Hence, we have shown that any element in Comm(AdG) is a linear combination of these two
maps. However, by restricting to su(d), the second map becomes identically zero, thus we have

Comm(AdG) ∩ End(su(d)) = {λ idsu(d) |λ ∈ R}. (82)

By Lemma 10, this shows that any finitely generated infinite unitary 2-group G ≤ SU(d) is dense
in SU(d). Since any unitary t-group is in particular a 2-group, this is also true for any t > 2.

VI. PROOFS

A. Proof of overlap lemmas

In this section, we prove three technical lemmas which are needed throughout this paper.

Lemma 3 (Diamond norm bound). Consider T1, T2 ∈ Σt,t and denote withN1, N2 their respective
defect spaces. Then, it holds that

‖|QT1 )(QT2 |‖� ≤ 2dimN2−dimN1 , (27)

| (QT1|QT2) | ≤ 2−| dimN1−dimN2|. (28)

Proof. First, recall that QT := 2−t/2r(T )). Then, we make use of the following elementary bound
on the diamond norm of rank one superoperator |A)(B |:

‖|A)(B |‖� = sup
‖X‖1=1

‖A⊗ Tr1 (B ⊗ 1X)‖1

†
≤ ‖A‖1 sup

‖X‖1=1

‖B ⊗ 1X‖1

‡
= ‖A‖1 ‖B ⊗ 1‖∞
= ‖A‖1 ‖B‖∞ .

(83)

Here, we have used in † that the partial trace is a contraction w.r.t. ‖·‖1 and in ‡ a version of the
duality between trace and spectral norm [58]. Given stochastic Lagrangians T1 and T2 with defect
spaces N1 and N2, we thus find using Lem. 1:

‖|QT1 )(QT2 |‖� ≤ 2−t ‖r(T1)‖1 ‖r(T2)‖∞ = 2dimN2−dimN1 . (84)
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To prove 2., we use Ref. [41, Eq. (4.25)] and that the transpose does not change the dimension
of the corresponding defect subspace. Moreover, we assume w.l.o.g. that dimN2 ≥ dimN1. We
have

| (QT1|QT2) | = 2−t|Tr[r(T1)r(T2)T ]| = 2−t+dim(N1∩N2)|Tr[r(T )]| (85)

where r(T ) is described by a stochastic orthogonal and a defect space N⊥1 ∩N2 +N1. Hence, we
obtain (together with Hölder’s inequality):

| (QT1|QT2) | ≤ 2−t+dim(N1∩N2)2t−dim(N⊥1 ∩N2+N1). (86)

Using N ⊆ N⊥ for all defect spaces and the general identity dim(V +W ) = dimV + dimW −
dim(V ∩W ), this yields

| (QT1 |QT2) | ≤ 2dim(N1∩N2)−dimN1 ≤ 2dimN2−dimN1 . (87)

Lemma 11 (Overlap of stochastic Lagrangian subspaces). We have (QT |QT ′) ≥ 0 for all T, T ′ ∈
Σt,t. Moreover, for all T ∈ Σt,t the sum of overlaps is

∑

T ′∈Σt,t

(QT |QT ′)
n = (−2−n; 2)t−1 ≤ 1 + t2t−n, (88)

where (−2−n; 2)t−1 =
∏t−2

r=0(1 + 2r−n) and the last inequality holds for n+ 2 ≥ t+ log2(t).

Proof. Denote by Stab(n) the set of stabilizer states on n qubits. Since the operators r(T ) are
entry-wise non-negative, we have (QT |QT ′) = 2−t Tr(r(T )†r(T ′)) ≥ 0. Note that r(T )† = r(T̃ )
for a suitable T̃ ∈ Σt,t (cp. Thm. 5). We obtain

∑

T ′∈Σt,t

(QT |QT ′)
n =

1

2tn

∑

T ′∈Σt,t

Tr
[
r(T̃ )⊗nr(T ′)⊗n

]

†
=

2n
∏t−2

r=0(2r + 2n)

2tn
Tr
[
r(T̃ )⊗nEs∈Stab(n)( |s〉〈s |⊗t)

]

=
2n
∏t−2

r=0(2r + 2n)

2tn
Es∈Stab(n)

〈
s⊗t
∣∣ r(T̃ )⊗n

∣∣s⊗t
〉

‡
=

2n
∏t−2

r=0(2r + 2n)

2tn

=
t−2∏

r=0

(1 + 2r−n)

≤
(
1 + 2t−2−n)t−1

∗
≤ exp

(
(t− 1)2t−n−2

)
,

(89)

where we have again used [41, Thm. 5.3] in † and in ‡ that 〈s⊗t| r(T )⊗n |s⊗t〉 = 1 for all T ∈ Σt,t

and all s ∈ Stab(n) (compare Ref. [41, Eq. (4.10)]). Finally, in ∗ we have used the “inverse
Bernoulli inequality” (1 + x)r ≤ erx which holds for all x ∈ R and r ≥ 0. By assumption, the
following holds

0 ≥ t+ log2(t)− n− 2 ⇒ 1 ≥ t2t−n−2 ≥ (t− 1)2t−n−2. (90)
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Thus, we can use the inequality ex ≤ 1 + 2x for 0 ≤ x ≤ 1 to obtain
∑

T ′∈Σt,t

(QT |QT ′)
n ≤ 1 + (t− 1)2t−n−1

≤ 1 + t2t−n.

(91)

Definition 10 (Clifford frame operator). We define the Clifford frame operator as

SCl :=
∑

T∈Σt,t

|QT )(QT |⊗n . (92)

Lemma 12. Let SCl be the Clifford frame operator and Γ the corresponding Gram matrix,
i. e. ΓT,T ′ = (QT |Q′T )n. Then the following holds

‖SCl − PCl‖∞ = ‖Γ− 1‖∞ ≤ (−2−n; 2)t−1 − 1 ≤ t2t−n, (93)

where the last inequality holds for n+ 2 ≥ t+ log2 t.

Proof. Define the synthesis operator of the frame as the map

V : C|Σt,t| → Cl(n)′, V =
∑

T∈Σt,t

∣∣Q⊗nT
)
〈eT | , (94)

where eT is the standard basis of the domain. Then, we have clearly Γ = V †V and SCl|Cl(n)′ =

V V †. Since SCl and PCl are both identically zero on (Cl(n)′)⊥, this part does not contribute to the
spectral norm. From this it is clear that

‖SCl − PCl‖∞ = ‖Γ− 1‖∞ . (95)

Moreover, we can compute

‖Γ− 1‖∞ =

∥∥∥∥∥
∑

T

∑

T,T ′

(QT |QT ′)
n |eT 〉〈eT ′ |

∥∥∥∥∥
∞

≤ max
T

∑

T ′ 6=T
(QT |QT ′)

n

= (−2−n; 2)t−1 − 1,

(96)

where we have used that the spectral norm of Hermitian operators is bounded by the max-column
norm and inserted the exact result of Lemma 11 in the last step. Finally, said lemma provides the
desired bound for n+ 2 ≥ t+ log2 t.

B. Proof of Lemmas for Theorem 1

Lemma 2 (Overlap bound). Let K be a single qubit gate which is not contained in the Clifford
group. Then, there is a constant c(K) > 0 such that

ηK,t := max
T∈Σt,t−St
T ′∈Σt,t

1

3

∣∣(QT |Ad⊗tK + Ad⊗t
K† +id |QT ′)

∣∣ ≤ 1− c(K) log−2(t). (26)
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The proof of Lemma 2 is based on two results. The first states that the basis elements r(T )
of the commutant of tensor powers of the Clifford group either belong to the commutant of the
powers of the unitary group, or else are far away from it.

Lemma 13 (Haar symmetrization). For all t and for all T ∈ Σt,t \ St, it holds that

(QT |PH |QT ) = 2−t ‖PH[r(T )]‖2
2 ≤

7

8
, (97)

where QT is as in eq. (21) and PH = ∆t(µH) is the t-th moment operator of the single-qubit
unitary group U(2).

The proof is given in Section VI C. In Appendix C, we show that the constant 7/8 cannot be
improved below 7/10, by exhibiting a T that attains this bound.

The second ingredient to Lemma 2 is a powerful theorem by Varjú [51]. Here, we specialize
this theorem to the unitary group:

Theorem 6 ([51, Thm. 6]). Let ν be a probability measure on U(d). Consider the averaging
operator Tv(ν) on a irreducible representation πv : U(d) → End(Wv) parameterized by highest
weight v ∈ Zd:

Tv(ν) :=

∫

U(d)

πv(U) dν(U). (98)

Then there are numbers C(d) > 0 and r0 > 0 such that

∆r(ν) := 1− max
0<|v|≤r

‖Tv(ν)‖∞ ≥ C(d)∆r0(ν) log−2(r), (99)

where |v|2 =
∑

i v
2
i .

Proof of Lemma 2. Consider the probability measure ξK that draws uniformly from the set
{K,K†,1}. Moreover, define νK on U(2) as the average of the uniform measure on {H,S, S3}
and ξK ∗ ξK . Hence, the according moment operator is

∆t(νK) :=
1

6
(Ad⊗tH + Ad⊗tS +(Ad3

S)⊗t) +
1

2
Mt(ξK ∗ ξK)

=
1

6
(Ad⊗tH + Ad⊗tS +(Ad3

S)⊗t) +
1

2
∆t(ξK)2.

(100)

As the Clifford group augmented with any non-Clifford gate is universal [59, Thm. 6.5], so is the
probability measure νK .

It follows from the representation theory of the unitary group (see App. B) that the represen-
tation U 7→ Ad⊗tU does not contain irreducible representations Wv with highest weight of length
|v| >

√
2t. Thus, we can decompose into these irreducible representations as follows:

‖∆t(νK)− PH‖∞ =

∥∥∥∥∥∥
⊕

|v|≤
√

2t

(Tv(νK)− Tv(µH))⊗ idmv

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
⊕

0<|v|≤
√

2t

Tv(νK)

∥∥∥∥∥∥
∞

= max
0<|v|≤

√
2t
‖Tv(νK)‖∞

= 1−∆√2t(νK).

(101)
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Here, mv denotes the multiplicity of the irreducible representation Wv (possibly zero). In the
second step we have used that PH has only support on the trivial irreducible representation v = 0,
where both PH and ∆t(νK) act as identity and thus cancel. Hence, only non-trivial irreducible
representations are contributing. To bound ∆√2t(νK), we can invoke Theorem 6 combined with
the fact that for any universal probability measure the restricted gap is non-zero: ∆r(νK) > 0 for
all r ≥ 1 (compare e.g. Ref. [26]). Hence, we obtain

∆√2t(νK) ≥ C(2)∆r0(νK) log−2(
√

2t) ≥ 1

4
C(2)∆r0(νK) log−2(t) =: c′(K) log−2(t) > 0,

(102)
where c(K) > 0. Therefore, we have

‖∆t(νK)− PH‖∞ ≤ 1−∆√2t(νK) ≤ 1− c′(K) log−2(t) =: κt,K , (103)

Furthermore, consider the operator

XT :=
(id− PH)QT

‖(id− PH)QT‖2

. (104)

We obtain

‖∆t(νK)− PH‖∞ = max
‖X‖2=1

|(X|∆t(νK)− PH |X)|

≥ |(XT |∆t(νK)− PH |XT )|
‖XT‖2

2

=
|(QT | (id− PH)∆t(νK)(id− PH) |QT )|

(QT | (id− PH)2 |QT )

=
| (QT |∆t(νK) |QT )− (QT |PH |QT ) |

1− (QT |PH |QT )

≥ (QT |∆t(νK) |QT )− (QT |PH |QT )

1− (QT |PH |QT )
.

(105)

In the fourth step, we again used the properties of the Haar projector as in Eq. (75). Combining
this with (103) and Lemma 13 we obtain

(QT |∆t(νK) |QT ) ≤ κt,K + (1− κt,K) (QT |PH |QT ) ≤ 1− 1

8
c′(K) log−2(t). (106)

We can use that (QT |Ad⊗tS |QT ) = (QT |Ad⊗tS3 |QT ) = (QT |Ad⊗tH |QT ) = 1 for all T ∈ Σt,t

because QT = 2−t/2r(T ) commutes with the t-th diagonal action of the single-qubit Clifford
group (compare [41, Lem. 4.5]). We immediately obtain

(QT |∆t(ξK)2 |QT ) ≤ 1− 1

4
c′(K) log−2(t). (107)

From the Cauchy-Schwarz inequality, we now get

|(QT |∆t(ξK) |QT ′)| ≤
√

(QT |∆t(ξK)2 |QT )

≤
√

1− 1

4
c′(K) log−2(t)

≤ 1− 1

8
c′(K) log−2(t)

=: 1− c(K) log−2(t),

(108)
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where we have used that c′(K) log−2(t) ≤ ∆√2t(νK) ≤ 1 such that we can use the inequality√
1− x ≤ 1− x/2 for x ≤ 1. This shows the claimed statement.

Remark 2 (Quantum gates with algebraic entries). If we restrict to gates K that have only alge-
braic entries, we can apply the result from Ref. [60] and save the additional overhead of log2(t) in
the scaling. This applies to the T -gate and for essentially all gates that might be used in practical
implementations. Here, we have chosen the more general approach.

Remark 3 (Implications for quantum information processing). Theorem 6 has miscellaneous im-
plications for quantum information processing. E.g. we can immediately combine this bound with
the local-to-global lemma in Ref. [22, Lem. 16] to extend Ref. [23, Cor. 7] to gate sets with non-
algebraic entries at the cost of an additional overhead of log2(t) in the scaling. The bottleneck to
loosen the invertibility assumption as well is the local-to-global lemma which only works for Her-
mitian moment operators (symmetric distributions). Work to lessen the assumption of invertibility
has been done in Ref. [61]. Extending this would be an interesting application which we, however,
do not pursue in this work.

Lemma 4 (Properties of the constructed basis). Let {Tj}|Σt,t|j=1 be an enumeration of the elements
of Σt,t such that the first t! spaces Tj correspond to the elements of St. Then, the {Ej} constitutes
an orthogonal (but not normalized) basis, where

Ej :=

j∑

i=1

Ai,j Q
⊗n
Ti

:=

j∑

i=1



∑

Π∈Sj
Π(j)=i

sign(Π)

j−1∏

l=1

(
QTl

∣∣∣QTΠ(l)

)n

 Q⊗nTi . (30)

Denote by Ni the defect space of Ti. For n ≥ 1
2
(t2 + 5t), we have

|Ai,j| ≤ 2t
3+4t2+6t−n| dimNi−dimNj |, ∀i, j, (31)

|Ai,j| ≤ 22t2+10t−n, ∀i 6= j. (32)

Moreover, it holds that
1− 2t

2+7t−n ≤ Aj,j ≤ 1 + 2t
2+7t−n. (33)

Proof. The form of (30) is up to a constant the determinant formulation of the Gram-Schmidt
procedure. First, note that the number of permutations of n elements with no fixed points is
known from Ref. [62] to be

D(n) = n!
n∑

r=0

(−1)r

r!
≤ 2

n!

e
(109)

for n ≥ 1. Here, D stands for “derangement” as permutations without fixed points are sometimes
called. Then, the number of permutations having exactly k fixed points is

(
n
k

)
many choices of k

points times the number D(n− k) of deranged permutations on the remaining n− k objects:

p(n, k) :=

(
n

k

)
D(n− k) ≤ 2e−1n!

k!
. (110)
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The following estimate for certain sums involving p(n, k) will shortly become useful. Note that
we have for any M,L ∈ N and m ∈ R such that 2m > M − L and M ≥ L ≥ 1:

M−L∑

k=0

p(M,k)2−m(M−k) ≤ 2

e

M−L∑

k=0

2−mMM !
2mk

k!

≤ 2

e
2−mM(M − L+ 1)M !

2m(M−L)

(M − L)!
≤ML+12−mL. (111)

Here, we have used in the second inequality that 2mk/k! is monotonically increasing for k ≤
M − L < 2m and a standard bound on binomial coefficients in the last step.

We start by bounding the diagonal coefficientsAj,j . The idea is to divide the set of permutations
into sets of permutations with exactly k fixed points. For any such permutation, the product of
overlaps collapses to only j − 1− k non-trivial inner products. By assumption n ≥ 1

2
(t2 + 5t) ≥

t+ log2 t, thus we can be bound any of those using Lemma 11 as

(QT |QT ′)
n ≤ t2t−n, for all T 6= T ′. (112)

Note that the trivial permutation (corresponding to k = j − 1 fixed points) contributes by exactly
1 to the sum. Thus, we find the following bound using Eq. (111) with M = j − 1, L = 1 and
m = n− t− log2 t:

Aj,j = |Aj,j| ≤
∑

π∈Sj−1

j−1∏

l=1

(
Ql

∣∣Qπ(l)

)n

≤ 1 +

j−2∑

k=0

p(j − 1, k)2−(n−t−log2 t)(j−1−k)

≤ 1 + (j − 1)2 2−n+t+log2 t

< 1 + 2t
2+7t−n,

(113)

where we have used Eq. (15) in the last step as j − 1 < j ≤ |Σt,t| ≤ 2
1
2

(t2+5t). Using the reverse
triangle inequality, we get a lower bound in the same way:

Aj,j = |Aj,j| ≥ 1−

∣∣∣∣∣∣
∑

π∈Sj−1\id
sign(π)

j−1∏

l=1

(
Ql

∣∣Qπ(l)

)n
∣∣∣∣∣∣
≥ 1− 2t

2+7t−n. (114)

Next, we will bound the off-diagonal termsAi,j . It is well known that every permutation Π ∈ Sj
can be written as a product of disjoint cycles. Given a Π ∈ Sj with Π(j) = i, consider the cycle
j 7→ i 7→ i1 7→ i2 7→ . . . ir 7→ j in Π. Then, we have the bound

j−1∏

l=1

(
QTl

∣∣∣QTΠ(l)

)n
≤
(
QTi

∣∣QTi1

)n
. . .
(
QTir

∣∣QTj

)n

≤ 2−n(|dimNi−dimNi1 |+...|dimNir−dimNj |)

≤ 2−n| dimNi−dimNj |,

(115)
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where we have used Lemma 3, the triangle inequality and a telescope sum. We set L := | dimNi−
dimNj| and split the sum over permutations into those with more than or equal to j − L many
fixed points and those with less. In the first case, we use Eq. (115) to bound the overlaps, in the
second case we use Eq. (111) as before. This yields the following bound

|Ai,j| ≤
∑

Π∈Sj
Π(j)=i

j−1∏

l=1

(
QTl

∣∣∣QTΠ(l)

)n

≤
j−1∑

k=j−L
p(j, k)2−nL +

j−L−1∑

k=0

p(j, k)2−(n−t−log2 t)(j−1−k)

≤ 2

e

j−1∑

k=j−L

j!

k!
2−nL + 2n−t−log2 tjL+2 2−(n−t−log2 t)(L+1)

≤ L
j!

(j − L)!
2−nL + jL+2 2−(n−t−log2 t)L

≤ LjL2−nL + jL+2 2−(n−t−log2 t)L

≤ L|Σt,t|L+2 2−(n−t−log2 t)L

≤ 2log2 L2
1
2

(t2+5t)(L+2) 2(t+log2 t−n)L

= 2t
2+5t2( 1

2
t2+ 5

2
t+t+log2 t−n)L

≤ 2
1
4
t3+ 11

4
t2+5t+( t

2
+1) log2 t−nL

≤ 2t
3+4t2+6t−n| dimNi−dimNj |,

(116)

where we have used again j ≤ |Σt,t| and L ≤ t/2.
Note that we can alternatively bound Ai,j for i 6= j using that the identity is not an allowed

permutation, i. e. only permutations with less than j − 2 fixed points can appear. With Eq. (111)
and (112), we get the following inequality

|Ai,j| ≤
j−2∑

k=0

p(j, k)2−(n−t−log2 t)(j−1−k)

≤ j32−(n−t−log2 t)

≤ 2
3
2
t2+ 15

2
t+t+log2 t−n

≤ 22t2+10t−n.

(117)

C. Proof of Haar symmetrization Lemma 13

Lemma 13 (Haar symmetrization). For all t and for all T ∈ Σt,t \ St, it holds that

(QT |PH |QT ) = 2−t ‖PH[r(T )]‖2
2 ≤

7

8
, (97)

where QT is as in eq. (21) and PH = ∆t(µH) is the t-th moment operator of the single-qubit
unitary group U(2).
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For an analysis of the tightness of the bound, see Appendix C. Recall that

PH[A] :=

∫

U(2)

U⊗tA(U †)⊗tµH(U). (118)

Let PD be the Haar averaging operator, restricted to the diagonal unitaries. As it averages over a
subgroup, PD is a projection with range a super-set of PH. By applying PD to r(T ), we can turn
the statement (97) from one involving Hilbert space geometry to one about the discrete geometry
of stochastic Lagrangians. Indeed,

2−t ‖PH[r(T )]‖2
2 = 2−t ‖PH[PD[r(T )]]‖2

2

≤ 2−t ‖PD[r(T )]‖2
2

= 2−t
(
r(T ), PD[r(T )]

)

= 2−t
∑

(x,y)∈T

∑

(x′,y′)∈T

(
|x〉〈y | , PD[ |x′ 〉〈y′ |]

)

= 2−t
∑

(x,y)∈T

∑

(x′,y′)∈T

(
|x〉〈y | ,

∫ 2π

0

ei2φ(h(x′)−h(y′)) |x′ 〉〈y′ | dφ
)

= 2−t|{(x, y) ∈ T |h(x) = h(y)}|
= Pr(x,y)[h(x) = h(y)],

i.e. the overlap is upper-bounded by the probability that a uniformly sampled element (x, y) of T
has components of equal Hamming weight.

We will bound the probability in slightly different ways for spaces T with and without defect
spaces.

a. Case I: trivial defect subspaces In this case, T = {(Oy, y) | y ∈ Ft2} for some orthogonal
stochastic matrix O. The next proposition treats a slightly more general situation.

Proposition 4 (Hamming bound). Let O ∈ GL(Ft2). Assume O has a column of Hamming weight
r. Then the probability that O preserves the Hamming weight of a vector y chosen uniformly at
random from Ft2 satisfies the bound

Pry[h(Oy) = h(y)] ≤ 1

2
+

{
2−(r+1)

(
r+1

(r+1)/2

)
r odd

0 r even.
(119)

The bound in Eq. (119) decreases monotonically in r. Orthogonal stochastic matrices O satisfy
r = 1 mod 4, so the smallest non-trivial r that can appear is r = 5, for which the bound gives
.65.

The proof idea is as follows: For each y ∈ Ft2, the two vectors y, y + e1 differ in Hamming
weight by ±1. But, if h(e1) 6= 1, then h(Oy) − h(O(y + e1)) tends not to be ±1. In such cases,
O does not preserve weights for both y and y + e1. Applying this observation to randomly chosen
vectors, we can show the existence of many vectors for which O changes the Hamming weight.

Proof (of Proposition 4). Assume without loss of generality that the first r entries of Oe1 are 1,
and the remaing t− r entries are 0.
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Let y be a uniformly distributed random vector on Ft2, notice that also Oy, and O(y + e1) are
uniformly distributed. Using the union bound, we find that

Pr[h(Oy) = h(y)] = 1− Pr[h(Oy) 6= h(y)]

= 1− 1

2

(
Pr[h(Oy) 6= h(y)] + Pr[h(Oy +Oe1) 6= h(y + e1)]

)

≤ 1− 1

2
Pr[h(Oy) 6= h(y) ∨ h(Oy +Oe1) 6= h(y + e1)]

=
1

2
+

1

2
Pr[h(Oy) = h(y) ∧ h(Oy +Oe1) = h(y + e1)]

≤ 1

2
+

1

2
Pr[h(Oy)− h(Oy +Oe1) = ±1].

We would like to compute Pr[h(Oy)−h(O(y+e1)) = ±1]. The vectorO(y+e1) = O(y)+O(e1)
arises from O(y) by flipping the first r components. This operation changes the Hamming weight
by ±1 if and only if the number of ones in the first r components of O(y) equals (r ± 1)/2. For
even r, this condition cannot be met, and correspondingly Pr[h(Oy)− h(O(y + e1)) = ±1] = 0.

In case of odd r, this probability becomes

Pr[h(Oy)− h(O(y + e1)) = ±1] = 2−r
(

r

(r − 1)/2

)
+ 2−r

(
r

(r + 1)/2

)

= 2−r
(

r + 1

(r + 1)/2

)
.

(120)

b. Case II: non-trivial defect subspaces We now turn to Lagrangians T with a non-trivial
defect subspace.

Proposition 5 (Defect Hamming bound). Let {0} 6= N ⊂ Ft2 be isotropic. There exists an n ∈ N
such that if x is chosen uniformly at random from N⊥, then

Prx∈N⊥ [h(x) = h(x+ n)] ≤ 3

4
.

What is more, let T be a stochastic Lagrangian with non-trivial defect subspaces. Then, for an
element (x, y) drawn uniformly from T , we have

Pr(x,y)∈T [h(x) = h(y)] ≤ 7

8
.

Proof. Let d = dimN . Consider a t×d column-generator matrix Γ forN . Permuting coordinates
of Ft2 and adopting a suitable basis, there is no loss of generality in assuming that Γ is of the form

Γ =

(
G
1d

)
, G ∈ F(t−d)×d

2 .

Note that

γ =
(
1t−d, G

)
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is a row-generator matrix for N⊥. Indeed, the row-span has dimenion t−d and the matrices fulfill

γΓ = G+G = 0,

i.e. the inner product between any column of Γ and any row of γ vanishes. It follows that elements
n ∈ N , x ∈ N⊥ are exactly the vectors of respective form

n = (Gñ︸︷︷︸
t−d

, ñ︸︷︷︸
d

), ñ ∈ Fd2; x = ( x̃︸︷︷︸
t−d

, GT x̃︸︷︷︸
d

), x̃ ∈ Ft−d2 .

In particular, if x is drawn uniformly from N⊥, then the first t − d components are uniformly
distributed in Ft−d2 . For now, we restrict to the case where G has a column, say the first, with r 6= 1
non-zero entries. We then choose n = (Ge1, e1) and argue as in Eq. (120) to obtain

Prx∈N⊥ [h(x) = h(x+ n)] ≤ sup
16=r odd

2−r
(

r + 1

(r + 1)/2

)
=

3

4
(attained for r = 3). (121)

We are left with the case where all columns of G have Hamming weight 1. (If N is a defect
subspace, then Def. 7.1 implies that every column of Γ has Hamming weight at least 4. We treat
the present case merely for completeness). As N is isotropic, the columns of Γ have mutual inner
product equal to 0:

ΓTΓ = 0 ⇔ GTG = −1 = 1 mod 2.

It follows that all columns have to be mutually orthogonal standard basis vectors ei ∈ Ft−d2 . Thus,
by permutating the first t− d coordinates of Ft2, we can assume that G is of the form

G =

(
1d

0

)
, ⇒ N = {(ñ⊕ 0t−2d, ñ) | ñ ∈ Fd2}, N⊥ = {(x̃, x̃|d) | x̃ ∈ Ft−d2 },

where x̃|d denotes the restriction of x̃ to the first d components. Adding n := (e1 ⊕ 0, e1) to
x = (x̃, x̃|d), the Hamming weight of the two parts change both by±1, giving h(x+n) = h(x)±2.
Thus, we have Pr[h(x) = h(x+ n)] = 0.

We have proven the first advertised claim. It implies the second one, as argued next. Let N be
the left defect subspace of T . By Ref. [41, Prop. 4.17], we find the following.

• The restriction {x | (x, y) ∈ T for some y} equals N⊥.

• The stochastic Lagrangian T contains N ⊕ 0.

Assume that (x, y) is distributed uniformly in T . By the first cited fact, x is distributed uniformly
in N⊥. By the second fact, (x + n, y) follows the same distribution as (x, y), for each n ∈ N .
Thus, repeating the argument in the proof of Proposition 4, we find that for any fixed n ∈ N :

Pr[h(x) = h(y)] = 1− Pr[h(x) 6= h(y)]

≤ 1− 1

2
Pr[h(x) 6= h(y) ∨ h(x+ n) 6= h(y)]

≤ 1

2
+

1

2
Pr[h(x) = h(x+ n)] ≤ 7

8
.
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D. Proof of Lemmas for Theorem 3

Lemma 5 (Relative ε22tn-approximate Clifford t-designs). Suppose that 0 ≤ ε < 1 is such that
gCl(ν, t) ≤ ε. Then, ν is a relative ε22tn-approximate Clifford t-design.

Proof. This follows similar to Ref. [23, Lem. 4& Lem. 30]. Denote by |Ω2n〉 the maximally
entangled state vector on C2n ⊗ C2n . The condition in (5) is equivalent to

(1− ε)ρCl ≤ ρν ≤ (1 + ε)ρCl, (122)

as an operator inequality, where

ρν := (∆ν ⊗ 1)(|Ω2n〉〈Ω2n|)⊗t and ρCl := ρµCl
. (123)

We have a decomposition of (C2n)⊗t into irreducible representations of the Clifford group:

(C2n)⊗t ∼=
⊕

γ

Cγ ⊗ Lγ, (124)

where {Cγ} is the set of all equivalence classes of irreducible representations of Cl(n) that appear
in the t-th order diagonal representation, and Lγ are the corresponding multiplicity spaces (which
by the double commutant theorem are irreducible representations of the commutant algebra –we
have chosen L for Lagrangian). This implies that

|Ω2n〉⊗t ∼=
∑

γ

√
dimLγ dimCγ

2nt
|γ, γ〉 ⊗ |ΩCγ〉 ⊗ |ΩLγ〉, (125)

where |ΩLγ〉 and |ΩCγ〉 denote maximally entangling state vectors on two copies of Lγ and Cγ ,
respectively. Indeed, observe that |Ω2n 〉⊗t = 2−nt/2 vec(1) and that the identity restricted to
subspaces is just the identity on these subspaces. The prefactors then follow from normalizing the
vectorized identity operators on the direct summands.

Since Cl(n) acts via multiplication on the spaces Cλ, this implies that

ρCl =

∫

Cl(n)

(U ⊗ 1)⊗t(|Ω2n〉〈Ω2n|)⊗t(U † ⊗ 1)⊗t

∼=
∑

γ

dimLγ dimCγ

2nt
(|γ〉〈γ|)⊗2 ⊗

(
1Cγ

dimCγ

)⊗2

⊗ |ΩLγ〉〈ΩLγ |,
(126)

where the second line follows from Schur’s lemma and the fact that
∫
U⊗t • (U †)⊗t is trace pre-

serving. The support of this operator is on the symmetric subspace ∨t(C2n ⊗C2n) [23, Lem 30.1].
The minimal eigenvalue of this operator restricted to the symmetric subspace is

min
γ

dimLγ
2nt dimCγ

, (127)

which we now lower bound. Let γ∗ denote the optimizer. By Schur-Weyl duality, the diagonal
action of U(2n) on (C2n⊗C2n)⊗t decomposes as⊕λUλ⊗Sλ where as usual Uλ are Weyl modules
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and Sλ are Specht modules. Restricting this action to the Clifford group, the Uλ further decompose
into irreducible representations

Uλ '
⊕

γ∈Iλ
Cγ ⊗ Cdλ,γ ,

where Iλ is the spectrum of Uλ as a Clifford representation. Let Λ0 be the set of all λ such that
γ∗ ∈ Iλ, then as a Clifford representation

(C2n ⊗ C2n)⊗t ' Cγ∗ ⊗
(⊕

λ∈Λ0

Sλ ⊗ Cdλ,γ∗
)
⊕ (other irreducible representations ). (128)

Thus, as a vector space, we have

Lγ∗ =
⊕

λ∈Λ0

Sλ ⊗ Cdλ,γ∗ . (129)

In particular, for any λ ∈ Λ0 we have that dimCγ∗ ≤ dimUλ and dimLγ∗ ≥ dimSλ. Thus we
get the following bound for the minimal eigenvalue:

dimLγ∗

2nt dimCγ∗
≥ min

λ∈Part(t,2n)

dimSλ
2nt dimUλ

≥ 2−2nt. (130)

The rest of the proof follows as in Ref. [23, Lem. 4], mutatis mutandis.

In order to prove Lemma 8 we make use of the following result by Nachtergaele [55] and
Lemma 11 bounding certain sums of overlaps of the operators r(T ).

Lemma 14 (Nachtergaele [55, Thm. 3]). Let H[p,q] for [p, q] ⊂ [n] = {1, . . . , n} be a family of
positive semi-definite Hamiltonians with support on (C2)⊗(q−p+1) ⊂ (C2)⊗n. Assume there is a
constant l ∈ N, such that the following conditions hold:

1. There is a constant dl > 0 for which the Hamiltonians satisfy

0 ≤
n∑

q=l

H[q−l+1,q] ≤ dlH[1,n]. (131)

2. There are Ql ∈ N and γl > 0 such that there is a local spectral gap:

∆
(
H[q−l+1,q]

)
≥ γl, ∀q ≥ Ql. (132)

3. Denote the ground state projector of H[p,q] by G[p,q]. There exist εl < 1/
√
l such that

∥∥G[q−l+2,q+1]

(
G[1,q] −G[1,q+1]

)∥∥
∞ ≤ εl, ∀q ≥ Ql. (133)

Then, it holds that

∆
(
H[1,n]

)
≥ γl
dl

(
1− εl

√
l
)2

. (134)
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While conditions 1) and 2) are merely translation-invariance with finit range of interactions and
frustration-freeness in disguise, the third condition is highly non-trivial and involves knowledge
of the ground-space structure. Usually, finding the ground space in a basis can be just as hard as
computing the spectral gap in the first place. Fortunately, the ground space structure of the Hamil-
toniansHn,t is determined by the representation theory of the Clifford group. With little additional
work, we obtain the following lemma about the ground space structure of our Hamiltonians.

Lemma 8 (Lower bound to spectral gap). Let the Hamiltonian Hn,t be as in Eq. (67) and assume
that n ≥ 12t. Then, Hn,t has a spectral gap satisfying

∆(Hn,t) ≥
∆(H12t,t)

48t
. (70)

Proof. We make use of the Nachtergaele lemma. We have to verify the three conditions of
Lemma 14. As already stated in Ref. [55], the first two conditions hold directly for translation-
invariant local Hamiltonians as in our case.

1. The first condition immediately follows from the fact that we consider a translation-invariant
2-local Hamiltonian. It is fulfilled for any choice of l ≥ 2 and dl = l − 1.

2. The second condition follows again for all l ≥ 2 and the choice Ql = l, since H[q−l+1,q] is a
sum of positive semi-definite operators for all q ≥ l with spectrum that does not depend on
q due to translation-invariance. Thus, we can set

γl := ∆(H[q−l+1,q]) > 0. (135)

3. The third condition requires a calculation and a non-trivial choice of l. We have to bound
the quantity

Rq,l :=
∥∥G[q−l+2,q+1]

(
G[1,q] −G[1,q+1]

)∥∥
∞ , (136)

for all q ≥ Ql = l. Here, G[p,q] denotes the orthogonal projector onto the ground space of
H[p,q]. Note that this ground space is simply a suitable translation of the Clifford commutant
Cl(k)′ for k = q − p+ 1 as shown in Lemma 7. Recall that it comes with a non-orthogonal
basis Q⊗kT , where

QT :=
r(T )

‖r(T )‖2

= 2−t/2r(T ), T ∈ Σt,t. (137)

Moreover, the projector G[p, q] is also simply a translation of the Clifford projector PCl(k)

projecting onto Cl(k)′. From the discussion in Sec. VI A, we know that the Clifford frame
operator

SCl(k) :=
∑

T

|QT )(QT |⊗k , (138)

is a suitable approximation to PCl(k) when k is large enough. Concretely, we have by
Lem. 12: ∥∥SCl(k) − PCl(k)

∥∥
∞ ≤ (−2−k; 2)t−1 − 1. (139)

Defining the shorthand notation st(k) = (−2−k; 2)t−1, we in particular get the bound
∥∥SCl(k)

∥∥
∞ ≤

∥∥SCl(k) − PCl(k)

∥∥
∞ +

∥∥SCl(k)

∥∥
∞ ≤ st(k), (140)

Let us introduce the shorthand notation Gq := G[1,q] ≡ PCl(q), Sq = S[1,q] ≡ SCl(q), and
Gq,l := G[q−l+2,q+1], Sq,l := S[q−l+2,q+1] for translations of the Clifford projector and frame
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operator, respectively. Combining the above inequalities with the fact that Gq −Gq+1 is an
orthogonal projection, we find

Rq,l = ‖Gq,l (Gq −Gq+1)‖∞
≤ ‖(Gq,l − Sq,l)(Gq −Gq+1)‖∞ + ‖Sq,l(Gq −Gq+1)‖∞
≤ st(l)− 1 + ‖Sq,l(Sq − Sq+1)‖∞ + ‖Sq,l(Gq − Sq)‖∞ + ‖Sq,l(Gq+1 − Sq+1)‖∞
≤ ‖Sq,l(Sq − Sq+1)‖∞ + st(l)− 1 + st(l) (st(q) + st(q + 1)− 2)
q≥l
≤ ‖Sq,l(Sq − Sq+1)‖∞ + (st(l)− 1) (2st(l) + 1)

=

∥∥∥∥∥∥
∑

T∈Σt,t

|QT )(QT |⊗(q−l+1) ⊗ YT

∥∥∥∥∥∥
∞

+ (st(l)− 1) (2st(l) + 1) ,

(141)

where the operator YT can be straightforwardly computed as

YT :=
∑

T ′ 6=T

(
(QT ′ |QT )l−1 |QT ′ )(QT |⊗(l−1)

)
⊗
(
|QT ′ )(QT ′ |

(
id− |QT )(QT |

))
. (142)

Invoking the synthesis operators

Vk =
∑

T

∣∣Q⊗kT
)
〈eT | : C|Σt,t| −→ Cl(k)′, (143)

introduced in Lemma 12, one can bound the above norm as
∥∥∥∥∥
∑

T

|QT )(QT |⊗(q−l+1) ⊗ YT
∥∥∥∥∥
∞

=

∥∥∥∥∥
∑

T

Vq−l+1 |eT 〉〈eT |V †q−l+1 ⊗ YT
∥∥∥∥∥
∞

≤
∥∥∥Vq−l+1V

†
q−l+1

∥∥∥
∞

∥∥∥∥∥
∑

T

|eT 〉〈eT | ⊗ YT
∥∥∥∥∥
∞

= ‖Sq−l+1‖∞max
T
‖YT‖∞

≤ st(q − l + 1) (st(l − 1)− 1) .

(144)

Thus, we arrive at

Rq,l ≤ st(q − l + 1) (st(l − 1)− 1) + (st(l)− 1) (2st(l) + 1)

≤ st(1) (st(l − 1)− 1) + (st(l)− 1) (2st(l) + 1) .
(145)

For l + 1 ≥ t+ log2(t), we can use Lemma 11 to get:

Rq,l ≤ t2t−l+1
(
1 + t2t−1

)
+ t2t−l

(
3 + t2t−l

)

= t222t−l
(

5

t
2−t + 2−l + 1

)

≤ 4t222t−l.

(146)

Finally choose any l ≥ 4t+ 4 log2(t) + 6, then we find

l ≤ 4l−2t

64t2
⇒ Rq,l ≤ 4t222t−l ≤ 1

2
√
l
<

1√
l
, ∀q ≥ l. (147)
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In particular, we can choose l = 12t, εl = 1/2
√
l to get the desired bound in Lemma 14

∀q ≥ l.

Hence, for the choices l = 12t, dl = l − 1, Ql = l, γl = ∆(H12t,t) and εl = 1/2
√
l, Lemma 14

gives the claimed bound on the spectral gap:

∆(Hn,t) ≥
γl
dl

(
1− ε2

l

√
l
)
≥ ∆(H12t,t)

48t
. (148)

VII. SUMMARY AND OPEN QUESTIONS

We have found that a number of non-Clifford gates independent of the system size suffices to
generate ε-approximate unitary t-designs.

This is surprising, conceptually interesting and practically relevant: After all, it is the main
objective in quantum gate synthesis to minimize the number of non-Clifford gates in a circuit
implementation of a given unitary. There are multiple open questions and ways to continue this
work:

• Similar to the result in Ref. [23], the scaling in n is near to optimal, the scaling in t can
probably be improved.

• Another natural open question is whether the condition n = O(t2) can be lifted. Notably,
this is reminiscent to the situation discussed in Ref. [63], where the improved scaling can be
proven only in the regime t = o(n

1
2 ).

• Our result holds for additive errors in the diamond norm. Our bounds can be used to obtain
a quadratic advantage in the number of non-Clifford gates in Corollary 2. This still allows
the density of non-Clifford gates to go to zero in the thermodynamic limit. It would be
interesting to investigate whether the independence of the system size in the number of
non-Clifford gates holds for relative errors.

• We strongly expect that the results can be generalized to qudits for arbitrary d.

We hope the present work stimulates such endeavors.
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Appendix A: Unitary t-designs

In the following, we review the concept of a unitary t-design [5–7], giving different but equiv-
alent definitions which prove to be useful in different contexts. They also serve as starting point
to explore connections to other mathematical fields, e. g. representation theory. To this end,
let us introduce some notation. Define µH to be the (normalized) Haar measure on U(d) and
let Hom(t,t)(U(d)) be the space of homogeneous polynomials of degree t in both the entries of
U ∈ U(d) as well as U .

Definition 11 (Unitary t-design). A probability measure ν on U(d) is called a unitary t-design if
the following holds for all p ∈ Hom(t,t)(U(d)):

∫

U(d)

p(U) ν(U) =

∫

U(d)

p(U)µH(U). (A1)

A subset D ⊆ U(d) is called a unitary t-design, if it comes with a probability measure νD which,
continued trivially to U(d), is a unitary t-design. In particular, if D is finite, νD is usually taken to
be the (normalized) counting measure.

It might not come as a surprise that Def. 11 has not to be checked for any polynomial. Since
any homogeneous polynomial p ∈ Hom(t,t)(U(d)) can be linearized as

p(U) = Tr
(
AU⊗t,t

)
, U⊗t,t := U⊗t ⊗ U⊗t, (A2)

the defining Eq. (A1) becomes

Mt(ν) :=

∫

U(d)

U⊗t,t ν(U) =

∫

U(d)

U⊗t,t µH(U) =: Mt(µH). (A3)

Thus ν is a unitary t-design if and only if its moment operator Mt(ν) agrees with the one of the
Haar measure. Note that the operators U⊗t,t are the matrix representation of the t-diagonal adjoint
action Ad(U⊗t) = U⊗t • (U †)⊗t with respect to the standard basis |i〉〈j | of L(Cd). Thus, this can
be equivalently stated as equality of the twirls ∆t(ν) = ∆t(µH) over the two measures.

A particularly fruitful theory of designs is possible in the case where the design (G, ν) itself
constitutes a (locally compact) subgroup G ⊆ U(d) and ν is the normalized Haar measure on G.
Following Ref. [37], we call these unitary t-groups. In this case, we see that Eq. (A3) implies
that the trivial isotype of the representation G 3 g 7→ Ad⊗tg shall agree with the trivial isotype
of U(d) 3 U 7→ Ad⊗tU . Since the trivial isotype exactly corresponds to the commutant of the
respective diagonal representations τt : U 7→ U⊗t, this is equivalent to the statement that the
commutant of the representation τt agrees with the commutant of the restriction τt|G. However,
this is the case if and only if τt|G decomposes into the same irreducible representations as τt.

Appendix B: Representations of the unitary group

The representation theory of the unitary group can be understood using the theory of highest
weight for compact Lie groups, see, for example Refs. [64–66]. We present a short summary of the
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part relevant to us here. Let ρ be an irreducible representation of U(d), and consider the restriction
ρ|D(d) to the diagonal subgroup D(d) ' (S1)×d (which is a so-called maximal torus in U(d)). In
general, this is a reducible representation of D(d). Since D(d) is Abelian, ρ|D(d) decomposes into
one-dimensional irreducible representations , i. e. characters of D(d) ' (S1)×d. Those are of the
form χu(θ) := eiu

T θ for some vector u ∈ Zd, and thus we find

ρ|D(d) '
⊕

u∈Zd
χu ⊗ 1mu , (B1)

where mu ∈ N are multiplicities. The vectors u for which mu 6= 0 are called the weights of ρ.
Introducing a lexicographical ordering of the weights, we call a weight u higher than the weight
v if u > v. The theorem of the highest weight states that any irreducible representation ρ has a
highest weight and that irreducible representations with the same highest weight are isomorphic.
Thus, irreducible representations are unambiguously labeled by their highest weight. Next, let us
consider the tensor product πu ⊗ πv of two irreducible representations labeled by their highest
weights u and v. One can easily check that the weights of irreducible representations in πu ⊗ πv
have to be sums of weights of πu and πv. In particular, the highest weight of all irreducible
representations is at most u+ v.

As a relevant example consider the (irreducible) defining representation ρ : U 7→ U of U(2).
Its restriction to the diagonal subgroup S1 × S1 decomposes as

ρ|S1×S1 ' χe1 ⊕ χe2 ,
with highest weight e1 = (1, 0). Using χ̄u = χ−u, the highest weight of the complex conjugate
representation ρ̄ : U 7→ Ū can be immediately determined as (0,−1). Hence, the weights of ρ⊗ ρ̄
are {(0, 0), (1,−1), (−1, 1)}. Here, (0, 0) is the highest weight of the trivial irreducible represen-
tation and (1,−1) the highest weight of the adjoint irrep. Finally, all irreducible representations
appearing in (ρ⊗ ρ̄)⊗t have weights w satisfying (−t, t) ≤ w ≤ (t,−t) and, in particular,

w =
t∑

i=1

ui

where ui ∈ {(0, 0), (1,−1), (−1, 1)}. It follows that the Euclidean norm of these weights is at
most

√
2t.

Appendix C: Converse bounds for estimates in Section VI C

Here, we collect various tightness results that limit the degree by which the estimates in
Sec. VI C can be improved. The bound in Proposition 4 is tight in many cases. Most interestingly,
the anti-identity [41]

1 =




0 1 · · · 1

1
. . . . . . ...

... . . . . . . 1
1 · · · 1 0


 ∈ Ot , (C1)

meets the bound if both

r = t− 1 and t/2 = (r + 1)/2 are odd. (C2)
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Indeed, the anti-identity flips the components of the input if its parity is odd, and leaves the input
invariant if the parity is even. The flipping step preserves the Hamming weight if and only if
h(a) = t/2. Thus

Pr[h(Oa) = h(a)] = Pr[h(a) even] + Pr[h(a) odd ∧ h(a) = t/2]

= Pr[h(a) even] + Pr[h(a) = t/2] (using (C2))

=
1

2
+ 2−t

(
t

t/2

)

=
1

2
+ 2−(r+1)

(
r + 1

(r + 1)/2

)
.

Likewise, both estimates in Proposition 5 are tight. The first bound is saturated for N =
{0, (1, 1, 1, 1)}. Indeed, N⊥ is the space of all even-weight elements of F4

2. The only non-
trivial element of N is (1, 1, 1, 1) and adding it to an even-weight vector changes its weight if and
only if the vector is in N itself. But |N |/|N⊥| = 1/4. In an exactly analogous way, the second
bound is tight for the stochastic Lagrangian with left and right defect spaces equal to the same
N . As detailed in Example 4.27 of Ref. [41], this stochastic Lagrangian is the one identified in
Ref. [67] as the sole non-trivial one in case of t = 4.

In contrast, we do not know (but suspect) that we pay a price by restricting from the full Haar
symmetrizer to the one over diagonal matrices in Eq. (119). For the two cases that saturate the
bounds in Proposition 4 and Proposition 5, we can compute the full projection explictily and show
that at least there, Eq. (119) indeed fails to be tight.

One can expand the anti-id 1 in terms of Pauli operators [41]

1 =
1

2

(
1
⊗t +X⊗t + Y ⊗t + Z⊗t

)
. (C3)

Then

2−t
(
r(1), PH [r(1)]

)
=2−t

∫
Tr r(1)U⊗tr(1)†(U †)⊗t dU

=2−t−2

3∑

i,j=0

∫
Tr σ⊗ti U

⊗tσ⊗tj (U †)⊗t dU

=2−t−2
∑

i,j

∫ (
Tr σiUσjU

†
)t

dU

=2−2 + 2−t−2
∑

i,j 6=0

∫ (
Tr σiUσjU

†
)t

dU

=2−2 + 2−29
1

4π

∫

S2

xt1dx (C4)

=
1

4
+

9

4

1

4π

4π

1 + t
=

1

4

(
1 +

9

t+ 1

)
,

where in (C4), we have interpreted the Haar integral over inner products of Paulis as an integral
over the Bloch sphere and in the next line, used the formula from [68]. For t = 2, Eq. (C1) is
just the swap operator (i.e. a permutation), and the formula gives 1, as it should. The smallest
non-trivial case is t = 6 [41] , where we get roughly 0.571 < 0.65.
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Next, we consider the CSS code PN for N = (1, 1, 1, 1). We use the results in Section 3 of
Ref. [67]. For a given partition λ, let Wλ be the associated Weyl module and Sλ the Schur module.
As in Ref. [67], let W+

λ ⊂ Wλ be the subspace such that
(
Wλ ⊗ Sλ

)
∩ rangePN = W+

λ ⊗ Sλ.

For the projection operators onto the various spaces, we write Pλ (Schur module), Qλ (Weyl
module), and Q+

λ (the subspace defined above). Then [67]

PN =
∑

λ

Q+
λ ⊗ Pλ.

By Schur’s Lemma,

PH [PN ] =
∑

λ

cλQλ ⊗ Pλ,

for suitable coefficients cλ, which are seen to equal cλ = D+
λ /Dλ by the fact that Haar averaging

preserves the trace. Hence, using Table 1 of Ref. [67] for d = 2,

2−t+2 dimN(PN , PH[PN ]) = 2−2
∑

λ

dλ(D
+
λ )2

Dλ

=
7

10
<

7

8
.
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Numerical representation theory
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4 Intoduction to Part II and summary of its results

Decomposing representations into irreducible blocks is the bread and butter of the
whole field of representation theory. In many cases, as those discussed in Part I of
this thesis, one may obtain full decompositions by the oldest method in the field: the
pen-and-paper approach. For example this is the case when decomposing tensor power
representations—be it of the unitary group, the Clifford group, or the metaplectic rep-
resentation. Here, modifications of the theory of Schur-Weyl duality may be employed
to describe the desired decomposition—sometimes in rather explicitly, as in the case
of the duality between U(d) and St.

Roughly speaking, theoretical methods such as those presented in Part I may be
used to analyse infinite sequences of representations. With regard to this, the results of
Chap. 2 decompose Clifford t-th tensor powers for all numbers of qubits n no smaller
than t. In many cases, however, the pen-and-paper approach might fail to give insight-
ful results. Furthermore, sometimes the generality provided by this approach is not
needed: sometimes decomposing a single representation is all that is required. When
these two situations are encountered, computational methods provide a promising al-
ternative.

The intersection of these two situations is realized in a widespread application—
an application that, in particular, motivated this project: the symmetrization of semi-
definite programs (SDPs). An SDP is an optimization problem of the sort

max
X∈Cn×n

tr(XA0) s.t. X ≥ 0, tr(XAi) = ai, i = 1, . . . , k,

where Ai ∈ Cn×n are Hermitian matrices and where X ≥ 0 means that X is a positive

semi-definite matrix. SDPs may be solved efficiently in principle, however the scaling
of their complexity with n and k yields them impractical in many applications. This has
been noted, in particular, within quantum information theory, where high-dimensional
SDPs are often encountered.

For certain SDPs, the matrices Ai may be simultaneously block-diagonalized with
block sizes which are much smaller than n [Val09]. In such cases, the optimization
can be restricted to matrices X with the same block diagonal structure. In a nutshell,
one large optimization problem is exchanged by many small ones, possibly leading to
a significant improvement in runtime.

This block-diagonalization happens when the algebra generated by {Ai}i is re-

ducible, or equivalently, when this algebra has a non-trivial commutant. Commonly
in quantum information theoretical applications, such reductions are possible due to a
group symmetry of the SDP problem. That is, these SDPs are such that there is a group
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G ⊂ U(n) which commutes with the matrices Ai,

[g, Ai] = 0, ∀ g ∈ G, i = 0, . . . , k.

Assuming that this happens, let UG ∈ U(n) be the change of basis that decomposes G,
ie.

UGgU
†
G =

⊕

ρ

ρ(g)⊗ 1dρ ,

where ρ are irreducible representations of G, dρ are multiplicities, and ⊗ is the Kro-
necker product of matrices. Then, by Schur’s lemma this same change of basis block
diagonalizes the SDP,

UGAiU
†
G =

⊕

ρ

1ρ ⊗ Ai,ρ.

Because of this, algorithms to efficiently decompose group representations offer a
promising approach to solving the high-dimensional SDPs encountered in quantum
problems.

In this second part of the thesis, I address this issue. I present a novel computa-
tional approach that may be used to decompose arbitrary representations of compact
groups. This approach holds rigorous performance guarantees on the accuracy of the
output, and its runtime asymptotically beats other state-of-the-art methods [MM11,
CL20, MKKK10, MM10, dKDP11, CSX15, BFS93, BF91]. The algorithm was coded
in two separate steps: first a heuristic, RepLAB [RB18], that finds a candidate decom-
position, and a second certification step [MM21]. While the former was written by
some of my colleagues, I have authored the certification step.

The results presented here come from two subsequent projects. The first concluded
with the publication of RepLAB in [RMMB19, RB18]. In this project, I provided
stability calculations, that is, calculations that suggest that RepLAB’s output is stable
against perturbations. These perturbations come from two different sources: First, one
may only be able to specify the group elements up to floating point precision. Second,
the algorithm ideally requires access to the group average operator,

Cn×n 3 X 7→ Eg∼G[gXg†],

where the expectation value is with respect to the Haar measure. In practice however,
there are instances where only approximations to this operator are available. These
calculations, presented in Sec. 5.4, suggest that as long as these perturbations are small,
RepLAB’s output will be accurate.
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An important note is that these results are not a rigorous proof of the claim. In-
deed, the algorithm analysed in Sec. 5.4 is a simplification of the actual workflow
in RepLAB. There, the algorithm is siginificantly more involved in order to optimize
runtime and accuracy—this renders any analysis of this fuller version of the algorithm
unwieldy. Furthermore, to prove stability of RepLAB it would be necessary to know
the probability of eigenvalue near-collisions for finite-dimensional random matrices,

Pr(|λ1 − λ2| ≤ δ | λi eigenval. of rand. mat. H ∈ Cn×n). (12)

These distributions are typically only known in the asymptotic limit, n → ∞ (see
e.g. [AB13a]), and obtaining such results for finite n is outside the scope of this thesis.
Because of this, in Sec. 5.4 I assume for simplicity that the difference between (12)
and the asymptotic distribution is negligible. I refer to this assumption as the “near
asymptoticity” of H .

The goal of the second project was to obtain a rigorous proof of correctness for
RepLAB’s output. In this second phase, I take a dual approach to this problem. Rather
than directly analysing RepLAB and proving its correctness, I propose an algorithm
which, given a decomposition of G, certifies that this decomposition is close to the
true decomposition. This project concluded with the draft [MMRBG21] included in
Chap. 6 and the code RepCert (available at [MM21]) presented in Chap. 7.

These two projects fit together by providing an algorithm – namely the concate-
nation of RepLAB and RepCert – which decomposes G and has rigorously proven
performance guarantees.

4.1 RepLAB’s approach and its stability

The eigenspaces of a matrix in the commutant ofG, sayH ∈ G′, are invariant under the
action ofG. RepLAB’s working principle is to sample the matrixH from a sufficiently
well-behaved distribution. In Chap. 5 it is shown that the eigenspaces ofH correspond,
with probability one, to the irreducible blocks of G. In a nutshell, we could wave our
hands and say that sufficiently random samples have no accidental symmetries.

As mentioned above, however, there are many instances where it is not feasible to
exactly sample from the spaceG′. Rather, one typically is only able to sample matrices
H̃ which are close to this space,

‖H − H̃‖F ≤ α, for some H ∈ G′.

This sample is diagonalized by RepLAB. Letting its eigenvalues be λ̃i, these eigenval-
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ues are grouped together whenever they are less than α apart, say

Λi = {λ̃j | |λ̃j − λ̃i| ≤ α}.

Finally, using the definition

HΛi := span{|ψj〉 | H̃ |ψj〉 = λ̃j |ψj〉 , λ̃j ∈ Λi},

the output decomposition is

Cn =
⊕

Λi

HΛi . (13)

The stability of RepLAB’s output can be roughly characterized by how slowly, as
a function of α, do the eigenspaces of H̃ diverge from those of H . Crucial for this is
that the eigenvalues of H need to be well separated—eigenvalue gaps smaller than α
may lead to misidentifying the eigenspaces of H through the diagonalization of H̃ .

Sec. 5.4 gives two bounds: 1. a bound on α for a simple procedure that approxi-
mates the projection onto the commutant G′, 2. an approximate bound on (12) assum-
ing that H is nearly asymptotic.

4.2 Certification of accuracy

At the beginning of the project leading up to [MMRBG21, MM21], the status was the
following. We had produced a heuristic, RepLAB, which in practice could accurately
decompose representations. We furthermore had strong indications (by the computa-
tions shown in Sec. 5.4) that this was to be expected: that, assuming near asymptoticity,
RepLAB’s working principle is stable against numerical perturbations. This notwith-
standing, we did not yet have a rigorous proof of the correctness of RepLAB’s output.

This is the situation which motivated the results in Chap. 6. As mentioned earlier,
this chapter takes a dual formulation of the problem. Namely, given an alleged decom-
position Cn = ⊕iHi of the action of G, certify that it is accurate. The desired accuracy
to be certified is measured by a parameter ε ∈ R+, and a probability pthresh. of falsely
certifying a representation (ie. a false positive rate) is allowed. Both these quantities
are explicitly specified as the input to the algorithm.

Throughout Chap. 6, I only assume that one has access to imperfect projectors
onto Hi and imperfect images g ∈ G. That is, the algorithm assumes access to these
operators only up to machine precision. In this introductory section I will disregard
this technical detail for the sake of clarity.

The certification algorithm involves two steps. The first step computes whether
each subspace Hi ⊂ Cn is approximately invariant, by which I mean that there exists
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an invariant projector Pi such that

‖Pi − PHi‖F ≤ ε, (14)

where PHi is the projector onto Hi and the minimization is over invariant projectors
Pi. To do this, we may estimate the spectral distance between PHi and the G′, ie.
‖PHi − PHaar(PHi)‖∞, by computing

c :=

∥∥∥∥∥
1

r

r∑

j=1

gjPHig
†
j − PHi

∥∥∥∥∥
∞

(15)

for r Haar-random samples gj ∈ G. Here the working principle is that if PHi is far
from the commutant, it is exceedingly unlikely for (15) to be small. Namely, we use
the Hoeffding bound to show that if

‖PHi − PHaar(PHi)‖∞ ≤ ε′, (16)

fails to hold, then

Pr(2c ≤ ε′) ≤ 2n exp

(−r
8

)
.

By choosing r ≥ 8(log(2n) + log
(
p−1

thresh.

)
), we may certify – with a false-positive

probability of at most pthresh. – that (16) holds. Using standard results from eigenvalue
perturbation theory, this result yields an algorithm that certifies whether (14) holds.

The algorithm for this first step, furthermore, has a vanishing probability of false

negatives if eq. (14) is a sufficiently loose bound. Specifically, if

‖Pi − PHi‖F ≤
ε

2
√

2 trPi
,

then the probability that the algorithm fails to certify PHi up to accuracy ε is exactly
zero.

The second step consists of certifying irreducibility. Namely, assuming that eq. (14)
holds, we wish to certify that range Pi is an irreducible representation of G. Here, the
dimension of the commutant of ρi(g) := PigPi, given by

E
[
| tr ρi(g)|2

]
, (17)

is estimated. By Schur’s lemma this is a way to certify irreducibility. In Alg. 4.1,
I show this working principle—a simplification of the full algorithm presented in
Chap. 6. To keep matters simple in this introduction, I assume that the user has access
to the exact invariant projector Pi, rather than its approximation PHi . Furthermore, let
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ni := trPi. Provided that the constants hidden by the O( · ) notation in the algorithm
are chosen correctly, I prove a performance guarantee for this algorithm. In the main
text, these constants are specified explicitly (cf. Alg. IV.1 in Chap. 6).

The performance guarantee may be informally summarized as: The probability that

Alg. 4.1 falsely classifies the reducibility/irreducibility of ρi is at most pthresh.. That is,
if ρi is reducible, the probability of the algorithm yielding irreducible as an output is
at most pthresh.. The same holds, vice-versa, when ρi is irreducible: the rate at which
irreducible representations ρi is not certified is at most pthresh..

Algorithm 4.1 Irreducibility Certificate
Input: Pi, bound on the false positive rate pthresh..
Output: Irreducible/Reducible

1: Sample r = O(log ni + log p−1
thresh.) elements gj ∈ G and set S = {gj} ∪ {g−1

j }.
2: Set t = O(log ni).
3: Sample m = O(n2

i log p−1
thresh.) elements sj from S2t uniformly.

4: Set θm = ni
√

2/m log p−1
thresh..

5: if E[| tr ρi(si)|2] < 2(1− θm) then
6: Return: Irreducible
7: end if
8: Return: Reducible

As mentioned, Chap. 6 deals with a much less ideal case: one where the user only
knows PHi (rather than Pi and thus the subrepresentation ρi), and can only evaluate
approximations g̃ ≈ g. In this case, there is a qualitative difference in the performance
guarantees obtained. Namely, while a rigorous bound on the false positive rate was
obtained, only an approximate bound on the false negative rate is derived. This second
approximate bound, called the confidence parameter δconf. in Chap. 6, depends on ε
and ε0 := ‖g̃ − g‖max. It holds that

lim
ε,ε0→0

δconf.,

bounds the false negative rate of the algorithm in the case ε = ε0 = 0. This way, it
can be expected that for small enough values of ε and ε0, the false negative is not much
larger than δconf..

This difference is consistent with the goal of this research project. If the algorithm
certifies that a decomposition is accurate, one would like this statement to be rigorously
supported. On the other hand, an approximate bound on the false negative rate is used
as a justification for the use of the method. Namely, it strongly suggests that not only
does the method avoid falsely certifying inaccurate decompositions, but that it tends
to recognize accurate ones. This way, while both bounds are useful, only the bound
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on the false positive rate is relevant in terms of quality control: it is the bound on the
probability of falsely certifying a decomposition.
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5 Numerically decomposing representations

Let G ⊆ U(n) be a compact subgroup, seen as a representation of itself. The problem
of decomposing G into irreducible blocks is classical, and several numerical meth-
ods exist for this [Dix70, BF91, MM11, CL20, MKKK10, MM10, dKDP11, AMB04,
CL17, CSX15, CCS19, BFS93].

In this chapter I will explain on a high level the heuristic used by the software suite
RepLAB [RMMB19, RB18] to decompose G. Additionally, I will show calculations
that indicate that this heuristic is stable under perturbations coming from – for example
– floating point precision.

The calculations I perform in this chapter are not a rigorous proof of correctness for
RepLAB. Indeed this task would be unwieldy due to the fact that, while the working
principle of RepLAB is simple, its actual implementation is rather complex due to
runtime optimization. Furthermore, as we will see, these calculations involve rough
estimates for the eigenvalue distributions of finite-dimensional random matrices. While
these distributions are known asymptotically, there are no general guarantees on how
well they approximate their finite-dimensional counterparts.

The calculations in this chapter, rather, give a glimpse of why one generally expects
such a heuristic to work. This has been my main contribution to the project leading
up to [RMMB19]. The problem of certifying the correctness of a RepLAB output is
addressed in Chap. 6, where I provide an explicit algorithm for this.

5.1 Dixon’s method

The commutant G′ of G contains all the information about the decomposition of G:
every projector P onto a G-invariant subspace is in this commutant. More generally,
consider an arbitrary matrix M ∈ G′. Then, each eigenspace

Mλ := {Ψ ∈ Cn |MΨ = λΨ}

is G-invariant, since for any Ψ ∈Mλ and any g ∈ G,

MgΨ = gMΨ = λgΨ,

so that gΨ ∈ Mλ. This gives the intuition that a full decomposition of G may be
obtained by diagonalizing elements in G′.

This intuition forms the groundwork for the approach used by Dixon in his seminal
paper on numerical representation decompositions [Dix70]. The basic tool here is the
Split routine, Alg. 5.1. There, the basic assumption is that one has access to a function
which projects operators onto the commutant G′ of G.
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Algorithm 5.1 Split routine
Input:

• G ⊆ U(n), matrix basis {Ei}n2

i=1 ⊂ Cn×n.

1: For each i compute the average Ēi = Eg[gEig†] =: PHaar(Ei) with respect to the
Haar measure on G

2: if all Ēi are proportional to the identity then
3: Return: “G Irreducible”
4: end if
5: Without loss of generality, let Ē1 be non-trivial. Let its eigenspaces be Hλ with

corresponding projectors Πλ.
6: Return: subrepresentations {Gλ = ΠλGΠλ ⊆ U(Hλ)}λ.

Dixon’s method is simply a recursion of Alg. 5.1: at any level of the recursion,
the Split routine is called on each subrepresentation Gλ of the previous level’s output.
This is repeated until, at some recursion depth, all subrepresentations are irreducible
and the algorithm terminates.

Dixon’s algorithm may be generalized to the imperfect case, analyzed in [BF91]
by Babai and Friedl. In that reference, a slight alteration of Dixon’s method is shown
to be stable under imperfections in the evaluation of group elements g and in the pro-
jection onto G′ (performed in Line 1 of Alg. 5.1). Namely, it is shown that these small
perturbations lead to proportionally small errors in the output decomposition. The rea-
son why this is not obviously the case, is that at each level of Dixon’s recursion, errors
could accumulate. This leads to a possibly exponential increase of the error size with
the recursion depth [BF91].

In this regard, [BF91] bounds the error generated in each run of Alg. 5.1 and bounds
the depth needed by the recursion to recover a full decomposition. Furthermore, they
provide a self-improving algorithm, which takes an imperfect decomposition and re-
duces its errors. Its main drawback, however, is runtime. In the worst case, it must (at
least) diagonalize each of the n2 projected basis elements Ēi, yielding a total runtime
lower bounded by O(n5).

5.2 RepLAB’s approach

The core of RepLAB’s approach to decomposing representations is captured by Alg. 5.2.
This method, presented in [RMMB19], is based on the same primitive as Alg. 5.1.
Instead of recursively using the Split subroutine, however, it uses a single matrix di-
agonalization. The algorithm makes use of the Gaussian unitary ensemble (GUE), the
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probability distribution on the subspace of Hermitian matrices in Cn×n given by

PrGUE(n)(H) = cn exp
(
−n

2
trH2

)
,

where cn = 2−n/2πn
2/2 is a normalization. Equivalently: The strictly-upper triangular

matrix elements ofH ∼ PrGUE(n) are independent identically distributed (iid) complex
Gaussian variables, and the diagonal elements of H are iid real Gaussian variables.
These variables have a mean and variance of

〈Hij〉 = 0, 〈|Hij|2〉 =
1

n
.

The GUE has, as the name suggests, a unitary symmetry

PrGUE(n)(UHU
†) = PrGUE(n)(H), U ∈ U(n).

Algorithm 5.2 RepLABSplit
Input: G ⊆ U(n).

1: Sample H0 ∼ PrGUE(n)

2: Project H0 7→ H ∈ G′ (as in Line 1 of Alg. 5.1)
3: Diagonalize H , finding eigenspaces {Hλ}
4: Return: decomposition Cn ' ⊕λHλ.

Lemma 5.1. With probability one, the output of Alg. 5.2 is a full decomposition of G

into irreducible blocks.

Proof. Suppose that the action of G has the following decomposition,

Cn '
⊕

ρ

ρ⊗ Cdρ ,

where ρ are irreducible representations of G and dρ are multiplicities. By Schur’s
lemma, the sample H may be unitarily block-diagonalized as

H '
⊕

ρ

1ρ ⊗Hρ '
⊕

ρ

H⊕ dim ρ
ρ . (18)

By unitary invariance, the distribution of the matrix elements (H0)ij is independent
of the orthonormal basis with respect to which these elements are computed. In partic-
ular, we may choose an orthonormal basis with respect to which G′ block diagonalizes
with irreducible blocks, as in the right-hand-side of eq. (18). In this basis, PHaar acts
by setting matrix elements of H outside the block diagonal to zero, and setting the ma-
trix elements of different blocks corresponding to the same ρ ∈ Irr G to be equal. In
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particular each block Hρ is proportional to a GUE variable, that is, there is a constant
cρ such that cρHρ ∼ PrGUE(dim ρ).

This way, with probability one:

1. For any ρ, the matrix Hρ has dρ distinct eigenvalues.

2. For any ρ 6' ρ′, the spectra of Hρ and Hρ′ do not intersect.

Remark 5.1. The constant cρ introduced above may be found for each block by requir-

ing the variance of the matrix elements in cρHρ to be 1
dim ρ

:

cρ =

√
n

dim ρ
.

After finding a full decomposition, RepLAB uses a similar routine to group to-
gether equivalent representations: It produces a second sampleH ′ ∈ G′, and computes

ΠλH
′Πλ′ ,

where Πλ is the projector onto the space Hλ in the output decomposition of Alg. 5.2.
By Schur’s lemma, it follows that

ΠλH
′Πλ′ 6= 0 (19)

only if these representations are equivalent. Conversely, if Hλ ' Hλ′ , then with unit
probability eq. (19) holds. This is shown in [RMMB19, Prop. 1].

5.3 Projecting onto the commutant

As mentioned, a primitive used in both Dixon’s and RepLAB’s approach is the pro-
jection onto the commutant G′. Ref. [BF91] approaches this by assuming that one has
access to a sufficiently well-behaved generator set. RepLAB, on the other hand, uses a
variety of heuristics for this—its choice of heuristic depends on the details of G. De-
scribing the path to this decision taken by RepLAB is beyond the scope of this thesis.
In this section, however, I will present a simple method that approximately projects
onto G′ assuming one can sample from the Haar measure on G.

Consider the random linear transformation given by

Σr : X 7→ 1

2r

r∑

i=1

giXg
†
i + g†iXgi,
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where gi are independently sampled from the Haar measure. This transformation is
a Markov estimate of Eg[gXg†]. Then, a simple corollary of the matrix Bernstein
inequality is the following [Gro19]:

Lemma 5.2 ([Gro19]). LetG ⊂ U(n),G′ and Σr be as above, and let PHaar : Cn×n →
Cn×n be the projector onto G′, PHaar(X) = Eg[gXg†]. Then,

Pr
[
‖Σr − PHaar‖∞ > ε

]
< 2n2 exp

(−ε2r
3

)
.

Proof. Let ∆1,1(g) = g · g† and consider the operators

Ai :=
1

2
(∆1,1(gi) + ∆1,1(g†i ))− PHaar.

Then Ai is Hermitian with zero expectation value, and by subadditivity and unitary
invariance,

‖Ai‖∞ ≤
1

n
, ‖Egi [A2

i ]‖∞ ≤
1

n2
.

By [Tro12, Thm. 1.4],

Pr
[
λmax(Σr − PHaar) > ε

]
≤ n2 exp

( −ε2r
2(1 + ε

3
)

)
< n2 exp

(−ε2r
3

)
,

where λmax refers to the largest eigenvalue. Then, repeating this argument for−Σr and
using the union bound, we obtain the claimed result.

It should be noted that the speed of convergence of Σr to PHaar is rather slow,
requiring r ∼ ε−2 terms in order to acheive an error bound of ε. Because of this,
several heuristic methods are used by RepLAB in order to increase its performance in
practice. These alternative methods, however, do not come with guaranteed bounds on
the speed of convergence and lie outside of the scope of this thesis.

5.4 Perturbations in the RepLAB approach

In any implementation of Alg. 5.2, there are two main sources of errors that could
reduce the quality of the output.

First, the evaluation of group elements g ∈ G could be limited by machine pre-
cision (denoted ε0) if, e.g. the group is continuous. For finite groups, in principle
representations can be computed exactly using cyclotomic fields, that is, fields of the
form

〈Q, ωN〉,
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with ωN = exp(2iπ/N). In particular, there is some basis of Cn with respect to
which the matrix elements of any g ∈ G are in the field 〈Q, ω|G|〉 [BR90]. This fact
is used by software packages such as GAP [GAP21] in order to exactly decompose
the representations of finite groups. The problem with this is that computations are
extremely costly for large groups, ruling out a variety of applications where reductions
of representations of large finite groups are necessary. Furthermore, it is plausible that
the group G would only be known in a less convenient basis, in which case one would
first need to address the problem of finding the correct basis. It is fair to say that, in a
wide range of applications, imperfect representations g̃ of group elements g ∈ G are
all but unavoidable.

Second, the step of projecting onto the commutant G′ of the group will likely only
be accessible in an imperfect form (e.g. using Σr instead of PHaar as in Sec. 5.3).
While RepLAB is occasionally able to implement PHaar exactly for large finite groups
(see the discussion surrounding eq. (9) in [RMMB19]), it still relies on approximations
in the general case. In particular, the matrix H̃ := Σr(H0) is not in the commutant, but
rather close to it. This perturbs the eigenspaces and eigenvalues: the algorithm then
needs to use the diagonalization of H̃ to infer as much information as possible about
the eigenspaces of H . For example, RepLAB addresses this by grouping together
eigenvalues of H̃ that are close enough to each other. For each one of these collections,
it returns the span of the corresponding eigenvectors as the outputs. The question
becomes: how close is close enough?

These two preceding paragraphs give the setting for this subsection. Namely, I
want to address how much these two sources of errors are expected to affect the output
of the algorithm. For this, I will first provide a slight rephrasing of Alg. 5.2 in order
to accommodate for these sources of error. Then, I will use a simplifying assumption
on the form of these errors in order to estimate the magnitude of the error in the output
decomposition—i.e. how different it is from the true decomposition of G.

As mentioned in the introduction to this section, these calculations give a sense of
how likely is it for RepLAB to give an accurate decomposition of G. In a second –
more rigorous – step, I provide a certification algorithm which provides a guarantee
that a claimed decomposition of G is close to exact. This second step is covered in
Chap. 6.

5.4.1 Algorithm for approximate representations and projections

The following algorithm is a reformulation of Alg. 5.2, where the errors mentioned
above are summarized by a single parameter δ. Namely, I assume that the user may
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use an oracle Σ ∈ End(Cn×n), which satisfies

‖Σ− PHaar‖∞ ≤ δ. (20)

Algorithm 5.3 Imperfect RepLAB Split
Input: Σ, δ satisfying eq. (20).
Output: Decomposition ofH.

1: Sample a uniform random Gaussian matrix H0

2: Compute H̃ = Σ(H0)

3: Diagonalize H̃ , finding eigenspaces {Hhi}i corresponding to ordered eigenvalues
{hi} (i.e. hi ≤ hi+1 for all i).

4: for each hI =
{
{hi}i∈I s.t. |hi − hi+1| < δ‖H0‖F , ∀ i, i+ 1 ∈ I

}
do

5: SetHI = span{Hhi}i∈I
6: end for
7: Return: decompositionH =

⊕
I HI .

The map Σ can be implemented, for example, if the user can: 1. sample uniformly
fromG, and, 2. for each g ∈ G evaluate an approximate image g̃ satisfying ‖g− g̃‖F ≤
ε0. In this case, we can use Σ = Σ̃r, where

Σ̃r(X) =
1

2r

r∑

i=1

g̃iXg̃
†
i + g̃†iXg̃i.

Vectorising Cn×n, we see that, equivalently

Σ̃r =
1

2r

r∑

i=1

g̃i ⊗ g̃∗i + g̃†i ⊗ g̃Ti .

Then, using subadditivity and Lem. 5.2, we see that if

δ = ε+ 4rnε0 + 2r(nε0)2,

then

Pr
[
‖Σ̃r − PHaar‖∞ > δ

]
< 2n2 exp

(−ε2r
3

)
.

5.4.2 The effect of perturbations

Up to now, I have shown an algorithm, Alg. 5.3, which uses a map Σ subject to con-
dition (20). Furthermore, Sec. 5.3 shows one possible method for implementing, with
high probability, such a Σ. We now turn to the question of quality: just how bad can
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we, roughly speaking, expect the decomposition H '⊕I HI obtained by Alg. 5.3 to
be? In particular, how small must ‖Σ−PHaar‖∞ be for the decompositionH '⊕I HI

to be close to the true decompositionH '⊕ρH
⊕dρ
ρ ?

Consider the error matrix

∆H := Σ(H0)− PHaar(H0),

which by assumption satisfies ‖∆H‖F ≤ δ‖H0‖F . By Weyl’s perturbation theorem
(see e.g. [Bha13, Chap. VI]), every eigenvalue λ̃ of H̃ := Σ(H0) lies in a range
λ± δ‖H0‖F , where λ is an eigenvalue of H := PHaar(H0).

For the moment let us assume that all eigenvalues of H are well separated:

min
λ 6=λ′ eigs. of H

|λ− λ′| := Gap(H)� 2δ‖H0‖F . (21)

We will return to the validity of this assumption in the end of this subsection. Given
eq. (21), each HI found in Alg. 5.3 “corresponds” to an invariant space Hλ found by
Alg. 5.2. Here, this correspondence is given by I = {λ̃ ∈ λ ± δ‖H0‖F}, and the
corresponding spaces satisfy

dimHI = dimHλ.

These spaces, HI and Hλ, are furthermore geometrically close to each other as
long as Gap(H) is large enough. Namely, let UI and Uλ be matrices whose columns
are a basis for the subspaces HI and Hλ respectively. (These matrices are in general
rectangular, since their columns are vectors in Cn.) We may quantify the distance
between these two spaces by the canonical angle matrix [CL06],

Θ(UI , Uλ) = arccos
(
U †IUλU

†
λUI

)1/2

.

Then, [DK70, Sec. 2] (see also [CL06, Thm. 1.1]) implies that

‖ sin Θ(UI , Uλ)‖F ≤
δ‖H0‖F

Gap(H)− δ‖H0‖F
. (22)

The conclusion is that, as claimed, the output of Alg. 5.3 is of high quality as long as
assumption (21) is met.

5.4.3 Approximate bounds on the probability of near collisions

Let me finally turn to whether the assumption (21) is expected to be met or not. Bounds
on the spectral gaps of random matrices are known, typically, only in the asymptotic
regime n → ∞, e.g. [AB+13b, Cor. 1.6]. In finite dimensions, much less seems to be
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known about these bounds.2

This caveat notwithstanding, I wish to give some sort of approximate upper bound
on Pr(Gap(H) ≤ α). For this, I will assume that the error incurred by assuming that
the eigenvalues ofHρ are distributed according to the limiting distribution is negligible.
I refer to this assumption as near asymptoticity.

To complement this approach, I also provide numerical evidence that Pr(Gap(H) ≤
α) is low in Sec. 5.4.4. This numerical evidence does not assume near asymptoticity.

Recall that if

Cn '
⊕

ρ

ρ⊗ Cdρ

is the decomposition as a G representation, we may block-diagonalize

H =
⊕

ρ

1ρ ⊗Hρ =
⊕

ρ

H⊕ dim ρ
ρ ,

where Hρ is dρ× dρ. The matrix H has a small gap if either of the following situations
arise: 1. two eigenvalues λρ and λ′ρ of a single block Hρ are close, or 2. two eigen-
values λρ and λρ′ of distinct blocks Hρ and Hρ′ are close. The approximate bound on
Pr(Gap(H) ≤ α) that I derive here will have contributions from these two possibili-
ties.

Assuming near asymptoticity, by [AB+13b, Cor. 1.6] we find that for each dρ × dρ
block Hρ of H ,

Pr(Gap(Hρ) ≤ α) =

∫ cρα

0

dx(4− x2)2,

where cρ is as in Rem. 5.1. A short calculation shows that

Pr(Gap(Hρ) ≤ α) = 16cρα− 4(cρα)3 +
1

5
(cρα)5 =: f1(α, ρ).

We now bound the probability that for two distinct blocks Hρ, Hρ′ , with ρ 6' ρ′,
there exist respective eigenvalues λρ, λρ′ such that

|λρ − λρ′| ≤ α.

For this—relying on near asymptoticity—, we may use the semi-circle law, which

2See [Ver10, Tei20] for relatively recent accounts of the study of eigenvalue statistics of finite di-
mensional random matrices.
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implies that any single eigenvalue of Hρ has a marginal distribution

cρλρ ∼
1

2π

√
4− (cρλρ)2, |cρλρ| ≤ 2

Because λρ and λρ′ are independent, then using the variable changes λ = cρλρ and
λ′ = cρλρ′—where the cρ appearing on the second definition is not a typo—,

Pr(|λρ − λρ′| ≤ α) =
1

4π2

∫ 2

−2

dλ
√

4− λ2

∫

Iλ,α

dλ′

√
4− dim ρ

dim ρ′
λ′ 2.

Here, I have used the definition

Iλ,α := [λ− cρα, λ+ cρα] ∩
[
−2

√
dim ρ′

dim ρ
, 2

√
dim ρ′

dim ρ

]
.

In the limit where cρα ≤
√
nα � 1, the integrand of the inner integral is approxi-

mately constant as a function of λ′, and evaluates to

≈
√

4− dim ρ

dim ρ′
λ2.

Without loss of generality, we may take b := dim ρ
dim ρ′ ≤ 1, to obtain the bound

Pr(|λρ − λρ′| ≤ α) ≈ |Iα,λ|
4π2

∫ 2

−2

dλ
√

4− λ2
√

4− bλ2 ≤ cρα

2π2

∫ 2

−2

dλ
√

4− λ2
√

4− bλ2,

where I used |Iα,λ| ≤ 2cρα. The expression on the right-hand-side can be symbolically
integrated to

8cρα

3bπ2

(
(b+ 1)E(b) + (b− 1)K(b)

)
,

where K(b) and E(b) are, respectively, the complete elliptic integrals of the first and

second kind with parameter b. This expression varies between approximately 0.64cρα

for b ≈ 0 and approximately 0.54cρα for b = 1. For our purpose here, it is sufficient to
bound

Pr(|λρ − λρ′ | ≤ α) ≤ cρα =: f2(ρ, ρ′, α). (23)

Note that, while this bounding strategy produces a function f2 which does not depend
on ρ′, I keep the notation in eq. (23) for conceptual clarity.
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Using the union bound, and taking only the linear contribution in f1

Pr

(
min
λ,λ′
|λ− λ′| ≤ α | λ, λ′ eigenvals. of H

)
≤
∑

ρ

f1(ρ, α) +
∑

ρ6=ρ′
f2(ρ, ρ′, α)

. α(16 +NG)
∑

ρ

cρ ≤ α
√
n(16 +NG)NG,

where NG is the number of non-equivalent irreducible representations appearing in the
decomposition of G, and where the approximate inequality “.” should be interpreted
as “approximately equal to a quantity which is bounded by.”

We may now assess whether it is plausible that condition (21) is met. For this, I
take the ad hoc value of α = 20 δ‖H0‖F , so

Pr

(
min
λ,λ′
|λ− λ′| ≤ α | λ, λ′ eigenvals. of H

)
. 20δ

√
n‖H0‖F (16 +NG)NG.

Reorganising factors in this expression, we expect that condition (21) is satisfied with
high probability whenever

δ � 1

20
√
n‖H0‖F (16 +NG)NG

.

For a quick rule of thumb, we may replace ‖H0‖F with its expectation

〈‖H0‖F 〉 =

√
2

n2
× Γ(n

2+1
2

)

Γ(n
2

2
)

=: h(n),

where I used that
√
n‖H0‖F is a standard chi-squared variable with parameter n2. This

replacement gives the condition:

δ � 1

20
√
nh(n)(16 +NG)NG

. (24)

Such a choice of δ would guarantee that with high probability, eq. (21) holds. In the
following, I provide a slightly smaller upper bound on δ, which however has a more
simple expression as a function of n: A short calculation shows that h(n) is strictly
increasing for n ≥ 1, and using the Stirling asymptotic formula for Γ, we find that
limn→∞ h(n) = 1. That is, h(n) ≤ 1 for all n. A sufficient condition, thus, for δ to be
small enough for eq. (21) to hold (assuming near asymptoticity), is

δ � 1

20
√
n(16 +NG)NG

. (25)

153



5.4.4 Numerical benchmark for the collision probability

The argument in Sec. 5.4.3 relied on the assumption that the asymptotic eigenvalue
statistics of GUE matrices approximates sufficiently well the finite-dimensional case.
There, I used the asymptotic eigenvalue distributions in order to evaluate the proba-
bility that two eigenvalues of the (finite-dimensional) matrix H are too close together.
Here I provide a complementary numerical approach. Specifically, I implement an
algorithm that samples random block-diagonal matrices (such as H) and count how
many samples contain eigenvalue gaps below a certain threshold α.

These numerical tests are summarized in Alg. 5.4. In a nutshell, this algorithm
samples block-diagonal matrices (where the sizes of the blocks in each sample are
themselves random), and proceeds to count how many of these sampled matrices have
a pair of eigenvalues λ1, λ2 that satisfy |λ1 − λ2| ≤ α.

More specifically, Alg. 5.4 uses a function BD – the name stands for block diag-

onalizer – which takes a matrix H0 and a partition of its dimension Λn, and creates a
block matrix by setting certain off-block-diagonal elements to zero. This is done in the
following way: for an partition {n1, . . . , nk} = Λn, with ni ∈ Z+ and

∑
i ni = n, let

IΛn ⊂ Z2
+ be given by

IΛn = {(m1,m2) | m1,m2 ∈ {ni, . . . , ni + ni+1 − 1} for some i }.

Then, BD(H0,Λn) = H , where

Hij =





(H0)ij, if (i, j) ∈ IΛn ,

0, else.
(26)

Alg. 5.4 estimates the probability that Gap(H) is smaller than some threshold
α ∈ R+. Notice that if H would have been the outcome of G-averaging, i.e. H =

PHaar(H0) as above, then |Λn| := k would be the number of non-equivalent irreducible
blocks in G. That is, it would hold that k = NG. This follows from the fact that the
samples H are such that all their blocks are independent of each other.
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Algorithm 5.4 Eigenvalue clash
Input:

• Dimension n,

• distribution p on set of partitions of n

• threshold α ∈ R+

• number of data points Ndata.

1: Sample Ndata partitions Λn ∼ p and matrices H0 ∼ PrGUE(n)

2: For each sample compute x = Gap(BD(H0,Λn))

3: Return frequency of x ≤ α.

I have tested three values of α. Moreover, the distribution p from which I sample
partitions Λn is defined by:

1. Sample kmax ∈ {1, . . . , n} uniformly. This is the maximal number of elements
in Λn,

2. Sample n1 ∈ {1, . . . , n} uniformly,

3. Sample ni ∈ {1, . . . , n−
∑

j<i nj} uniformly,

4. Continue similarly until either n−∑j<i nj = 0 for some i, or until i = kmax.

5. If the latter is the case, set nkmax = n−∑i<kmax
ni.

This procedure does not sample partitions of n uniformly, however I believe that the
results would not significantly change if these partitions were sampled differently.

The results are shown in Table 1. There, Fα denotes the fraction of samples Hi

for which Gap(Hi) ≤ α. In this table, I additionally show the sample average of the
number of elements in the partition E[|Λn|]. This gives a rough idea of how many
blocks do the samples typically have.

As we can see from the table, obtaining eigenvalue gaps below 10−6 is rather un-
likely even for high-dimensional matrices. We obtain the following rule of thumb:
Choosing a Σ for which ‖PHaar − Σ‖∞ � 10−6 makes it likely that condition (21)
holds. This way, one can expect that if one obtains a decomposition

H ' ⊕IHI

using a sample H = Σ(H0) as in Sec. 5.4.1, then it is likely that the subspaces HI

in this decomposition are close to the spaces in the true decomposition in the sense of
eq. (22).
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n α E[|Λn|] Fα
50 10−8 6.175 0/2000
50 10−7 6.175 0/2000
50 10−6 6.175 0/2000

100 10−8 6.656 0/2000
100 10−7 6.656 0/2000
100 10−6 6.656 0/2000
150 10−8 7.432 0/2000
150 10−7 7.432 0/2000
150 10−6 7.432 0/2000
200 10−8 7.798 0/2000
200 10−7 7.798 0/2000
200 10−6 7.798 1/2000
250 10−8 7.962 1/2000
250 10−7 7.962 1/2000
250 10−6 7.962 1/2000
300 10−8 8.150 0/2000
300 10−7 8.150 0/2000
300 10−6 8.150 1/2000
350 10−8 8.387 0/2000
350 10−7 8.387 1/2000
350 10−6 8.387 3/2000

Table 1: Empirical estimates of the probability of a small Gap(H). These are the
results of Alg. 5.4 for different values of n and α. For each value of n, Ndata = 2000
matrices H were sampled. Here E[|Λn|] refers to the sample average of the partition
length. These samples were filtered according to how many had Gap(H) ≤ α, for
each value of α, leading to the faction Fα.
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6 Certifying numerical decompositions

This chapter is the preprint [MMRBG21]
Montealegre-Mora, F., Rosset, D., Bancal, J. D., Gross, D. (2021). Cer-
tifying Numerical Decompositions of Compact Group Representations.
arXiv preprint arXiv:2101.12244.

I have furthermore released a Python implementation of the algorithms presented here
in [MM21]. This work was the result of a collaborative effort with my co-authors, I
was the lead researcher and programmer in this project.

This project emerged out of the work presented in Chap. 5. Specifically, the goal
was to provide a formal guarantee of correctness of the output of the RepLAB numer-
ical representation theory software suite. As seen in Chap. 5, proving such a guarantee
by directly analysing the algorithm is frustrated by two roadblocks. First, such a guar-
antee would require proving bounds on the eigenvalue separations for random matrices
of a fixed dimension. Such results are typically only known asymptotically, in the limit
of large dimensions. Second, while the working principle of RepLAB is simple, the
algorithm itself is rather complex due to runtime optimization. In practice, analyzing
such an algorithm is unwieldy.

These frustrations lead to the alternative method presented here. Ref. [MMRBG21]
instead proposes an algorithm that – given a numerical decomposition of a represen-
tation – certifies that this decomposition is close to exact. While this algorithm was
inspired by the difficulties summarized above, it is logically independent RepLAB.
Moreover, it was coded independently of RepLAB and is available at [MM21]. This
implementation is summarized and benchmarked in Chap. 7.
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Certifying Numerical Decompositions of Compact Group Representations

Felipe Montealegre-Mora,1 Denis Rosset,2 Jean-Daniel Bancal,3 and David Gross1

1Institute of Theoretical Physics, University of Cologne, Germany
2Perimeter Institute of Theoretical Physics, Waterloo, Canada.

3Université Paris-Saclay, CEA, CNRS, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France

We present a performant and rigorous algorithm for certifying that a matrix is close to being a
projection onto an irreducible subspace of a given group representation. This addresses a problem
arising when one seeks solutions to semi-definite programs (SDPs) with a group symmetry. Indeed, in
this context, the dimension of the SDP can be significantly reduced if the irreducible representations
of the group action are explicitly known. Rigorous numerical algorithms for decomposing a given
group representation into irreps are known, but fairly expensive. To avoid this performance problem,
existing software packages – e.g. RepLAB, which motivated the present work – use randomized
heuristics. While these seem to work well in practice, the problem of to which extent the results
can be trusted arises. Here, we provide rigorous guarantees applicable to finite and compact groups,
as well as a software implementation that can interface with RepLAB. Under natural assumptions,
a commonly used previous method due to Babai and Friedl runs in time O(n5) for n-dimensional
representations. In our approach, the complexity of running both the heuristic decomposition and
the certification step is O(max{n3 log n,D d2 log d}), where d is the maximum dimension of an
irreducible subrepresentation, and D is the time required to multiply elements of the group. A
reference implementation interfacing with RepLAB is provided.

I. INTRODUCTION

Semi-definite programming is a widely used numerical tool in science and engineering. Unfortunately, runtime and
memory use of SDP solvers scale poorly with the dimension of the problem. To alleviate this issue, symmetries can
often be exploited to significantly reduce the dimension [1–8] (see [9] for a review). This requires finding a common
block-diagonalization of the matrices representing the symmetry group action. A large number of numerical methods
for this task have been developed [10–23]. These algorithms must be compared along a number of different dimensions:

1. What is their runtime as a function of the relevant parameters? The most important parameters are the
dimension n of the input matrices, the dimension of the algebra A they span, and the dimension d of the largest
irreducible component?

2. Are they probabilistic or deterministic?

3. Do they assume a group structure, or do they work for algebras more generally?

4. Can they handle a situation where only noisy versions of the matrices representating the symmetry are available?

5. Which aspects are covered by rigorous performance guarantees?

While a detailed review of the extensive literature is beyond the scope of this paper, we summarize the performance
of the approaches that come closest to the methods described here.

References [20–23] give algorithms for finding a block decomposition for general ∗-algebras and come with rigorous
guarantees. Refs. [21, 22] require one to solve a polynomial optimization problem of degree 4 on Cn×n. While this
might work in practice, there is no general polynomial-time algorithm for this class of problems. The procedure of [20]
requires one to diagonalize “super-operators”, i.e. linear maps acting on n × n-matrices. This implies a runtime of
O(n6).

The method of [23] exhibits a runtime of O(max{n2 dim2 A, n3 dim A}). In this scaling, the first term comes from
finding an orthogonal basis for A and the second term arises from using this basis to project onto the commutant
and to diagonalize.1 While the method comes with a guarantee that the output decomposition is close to invariant,
it does not guarantee that the components will be irreducible in the presence of noise. The runtime is particularily
competitive for “small” algebras: If α ∈ [0, 2] is such that dim A = O(nα), the scaling becomes O(n3+α) for the case
α < 1. On the other hand, in the regime α > 1, the runtime O(n2+2α) is worse than other methods discussed below.

1 This scaling refers to Alg. B from that reference. There, the scaling of the second term is presented as O(n4 dimA). Upon a closer
inspection of their algorithm we found that its runtime is slightly better than claimed. It seems that the origin of the difference, in their
language, is that Alg. B – as opposed to Alg. A – does not require to use the subroutine Split. Instead, Alg. B projects a single random
matrix onto the commutant of A, using O(n3 dim A) operations.
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Reference [24] works on finite group representations, rather than general ∗-algebras. It generalizes Dixon’s
method [25] to handle noise in the group representation. This algorithm produces a full decomposition, how-
ever, for this it must project a full matrix basis onto the commutant of the representation and diagonalize each
projection. This means that its runtime scales quite steeply, as O(n5).

Here, we suggest to split the problem of decomposing a unitary group representation ρ on Cn into three steps:

1. Use a fast heuristic to obtain a candidate decomposition Cn ≃ R1 ⊕ R2 ⊕ . . . . One particular randomized
algorithm running in time O(n3) has been analyzed [19, 26] and implemented as part of the RepLAB [27]
software package by some of the present authors. While this algorithm seems to give accurate results in practice,
this is not underpinned by a formal guarantee.

2. Certify that each of the candidate spaces Ri is within a pre-determined distance ǫ of a subspace Ki that is
invariant under the group.

3. Certify that the invariant spaces Ki are irreducible.

With the first step already covered in Ref. [19, 26], the present paper focuses on the two certification steps. Thus,
we are faced with the situation that a heuristically obtained n × n matrix π is provided, which may or may not be
close to a projection onto an invariant and irreducible space. We provide a probabilistc algorithm for this decision
problem. More precisely, our main result is this:

Result 1. Let G be a compact group. Assume that:

1. There exists a representation g 7→ ρ(g) in terms of unitary n × n matrices.

2. In time O(n2), one can draw an element g ∈ G according to the Haar measure, and compute an approximation

ρ̃ such that maxg maxij |ρij(g) − ρ̃ij(g)| = o
(

1
n3 log n

)
.

Then there exists an algorithm that takes as input an n × n matrix π as well as numbers ǫ, pthr., and returning true
or false such that:

1. [False positive rate] The probability that the algorithm returns true even though π is not ǫ-close in Frobenius
norm to a projection onto an invariant and irreducible ρ-space is upper-bounded by pthr..

2. [False negative rate] The probability that the algorithm returns false even though π is (ǫ/2)-close in Frobenius
norm to a projection onto an invariant and irreducible ρ-space is approximately 2pthr..

3. [Runtime] As long as ǫ = o
(

1
n2 log n

)
, the algorithm terminates in time

O

((
n3 log n + D tr(π)

2
log tr π

)
log

1

pthr.

)
,

where D is time required to multiply two elements of G.

This algorithm has been implemented in Python and is available in [28].
There is an asymmetry in the way we treat false positives rates (which are bounded rigorously) and false negative

rates (which are only approximated). This reflects the different roles these two parameters play in practice. Indeed, if
the certification algorithm returns false, the symmetry reduction has failed, no further processing will take place, and
thus no further guarantees are needed. In contrast, if the algorithm returns true, the user must be able to quantify
their confidence in the result – hence the necessity to have a rigorous upper bound on the false positive rate.

In the main text, we introduce a an additional parameter δ, which can be used to tune the false negative rate
independently of the false positive rate pthr.. The interpretation is that δ is a rigorous upper bound on the false
negative rate in the limiting case where ǫ = 0 and the approximation ρ̃ is in fact exact. We have chosen δ = 2pthr. in
the displayed result, which turns out to simplify the formula for the runtime.

In practice, one can find appropriate values for δ numerically: In an exploratory phase, one can run the algorithm
for increasing values of δ, until it reliably identifies valid inputs as such. One would then certify a subspace by running
the procedure once with the δ previously obtained.

The paper is organized as follows. In Sec. II we review the mathematical setting of the paper. In Sec. III and
Sec. IV we present the algorithms to certify invariance and irreducibiltity respectively. Finally, in Sec. V we discuss
the runtime of the algorithms.
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II. MATHEMATICAL SETTING

Let G be a compact group, and (Cn, ρ) be a unitary representation of G. A subset S ⊂ G generates the group if
〈S〉 is dense in G, and it is symmetric if S = S−1.

We assume that the user can evaluate a function ρ̃ : G → Cn×n satifying

max
ij

|ρ(g)ij − ρ̃(g)ij | ≤ ǫ0, ∀ g ∈ G.

If R ⊂ Cn is the subspace to be certified and πR projects onto it, we use π̃R to denote an approximation to πR:

max
ij

|(πR)ij − (π̃R)ij | ≤ ǫ0.

We require that ǫ0 < 1
2n , however in practice ǫ0 is typically of the order of machine precision.

In the context of our algorithms, the user has obtained π̃R as an output of their numerical procedure to decompose
ρ. Using this operator as an input, the goal is to certify two statments. The first is that there exists some invariant
subspace K ⊂ Cn with associated projector πK satisfying that

‖πR − πK‖F ≤ ǫ, (1)

where ‖ · ‖F is the Frobenius norm and the precision parameter ǫ < 1/2 is an input. We call this procedure certifying
invariance. The second is that the subspace K is an irreducible G representation.

For this task, we assume that one 1. knows an upper bound rG on the number of generators of G, and 2. can
sample from the Haar measure and evaluate ρ̃ on the sample. In an appendix, we show how to relax the second
condition and instead assume only that the user can evaluate ρ̃ on a well-behaved fixed generator set. The algorithms
are probabilistic. A bound pthr. on the false positive rate – i.e. the probability that an input is certified even though
it is not close to the projection onto an irredudcible representation – is an explicit parameter.

Bounds rG on the number of generators of G are known for a wide variety of groups. For example it is known
that rG ≤ 2 when G is a finite dimensional connected compact group [29]. For a wide variety of finite simple groups,
furthermore, rG ≤ 7 (see [30] for a review).

III. THE INVARIANCE CERTIFICATE

Here we present our algorithm for the first task, that is, certifying the approximate invariance of R. Section III A
treats a closely related problem: deciding whether an operator is close to the commutant

{Y ∈ Cn×n | [ρ(g), Y ] = 0 ∀g ∈ G}

of ρ. In that section we also work in the idealized case where ǫ0 = 0. The general algorithm deciding invariance is
presented in Section III B.

A. Estimating closeness to the commutant in the ideal case

As mentioned, in this section we assume ǫ0 = 0 – i.e. that the representation ρ can be evaluated exactly – in order
to bring out the key components of the argument.

Consider an n×n matrix X (later, we will take X to be the approximate projection π̃R onto a candidate subspace).
The randomized Algorithm III.1 tests whether

‖X − PHaar(X)‖∞ ≤ ǫ.

There, ‖ · ‖∞ is the spectral norm and PHaar is the Hilbert-Schmidt projection onto the commutant

PHaar(X) := Eg[ρ(g)Xρ†(g)],

where the expectation value is with respect to the Haar distribution.
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Algorithm III.1 Closeness to Commutant

Input:

• X ∈ Cn×n,

• pthr. ∈ (0, 1), ǫ ∈ (0, 1/2).

1: Set r = 8⌈(log(1/pthr.) + log(2n))⌉
2: Sample r group elements g1, . . . , gr ∈ G Haar-randomly

3: Compute c =
∥∥∥ 1

r

∑
i ρ(gi)Xρ†(gi)−X

∥∥∥
∞

4: if 2c ≤ ǫ then
5: Return: True
6: end if
7: Return: False

Proposition 1. Let X ∈ Cn×n satisfy ‖X − PHaar(X)‖∞ > ǫ. Then, the probability that Alg. III.1 returns True is
at most pthr..

Proof. Consider the following matrix-valued random variable with mean equal to zero,

Zg :=
1

r

(
ρ(g)Xρ†(g) − PHaar(X)

)
, g ∈ G Haar random.

Using R := Id−PHaar (the projector onto the orthocomplement of the commutant of ρ), we find Zg = 1
r ρ(g)R(X)ρ†(g),

and so,

‖ZgZ
†
g‖∞ =

1

r2
‖R(X)R(X)†‖∞ =

1

r2
‖R(X)‖2

∞, ∀ g ∈ G.

This way, by the matrix Hoeffding bound [31],

Prob

[∥∥∥
∑

i

Zgi

∥∥∥
∞

≥ z‖R(X)‖∞

]
≤ 2n exp

(−rz2

2

)

where {gi} are the samples in line 2 of Alg. III.1. Taking z = 1/2, the right-hand side above is ≤ pthr. and so with
probability at least 1 − pthr. it holds that

c =
∥∥∥1

r

∑

i

ρ(gi)Xρ†(gi) − X
∥∥∥

∞
=
∥∥∥
∑

i

Zgi − R(X)
∥∥∥

∞
≥ ‖R(X)‖ −

∥∥∥
∑

i

Zgi

∥∥∥
∞

≥ 1

2
‖R(X)‖∞ > ǫ/2.

We now show a converse result, namely, that Alg. III.1 always “detects” matrices which are close enough to the
commutant.

Proposition 2. Let X satisfy ‖X − PHaar(X)‖∞ ≤ ǫ/2 for some ǫ < 1. Then Alg. III.1 deterministically returns
True upon the input X, ǫ.

Proof. For any g ∈ G it holds that

‖[ρ(g), X ]‖∞ = ‖[ρ(g), X − PHaar(X)]‖∞ ≤ 2‖X − PHaar(X)‖∞ ≤ ǫ.

Therefore, using standard norm relations we obtain

c =
∥∥∥1

r

∑

i

(
ρ(gi)Xρ†(gi) − X

)∥∥∥
∞

≤ 1

r

∑

i

∥∥∥[ρ(gi), X ]
∥∥∥

∞
≤ ǫ.
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B. The full certificate

Here, we will go beyond Section III A in two ways: First, we allow for non-zero errors ǫ0. Second, we show that a
projection that is close to being invariant is close to a projection onto an invariant subspace. The goal is, given π̃R

as an input, to certify that there is an invariant subspace K with

‖πK − πR‖F ≤ ǫ.

The procedure is given in Alg. III.2.

Algorithm III.2 Invariance certificate

Input:

• π̃R ∈ Cn×n,

• pthr. ∈ (0, 1),

• ǫ ∈ (0, 1/2).

Output:True/False

1: Set r = 8⌈(log(1/pthr.) + log(2n))⌉, ferr = 8nǫ0 + 6n2ǫ20 + 2n3ǫ30, and ǫ′ = ǫ/2
√
2 dimR

2: Sample r group elements g1, . . . , gr ∈ G Haar-randomly

3: Compute c̃ =
∥∥∥ 1

r

∑
i ρ̃(gi)π̃Rρ̃†(gi)− π̃R

∥∥∥
∞

4: if 2c̃+ ferr ≤ ǫ′ then
5: Return: True
6: end if
7: Return: False

As before, line 4 of Alg. III.2 simply takes k close to the minimum of fk(c) and does not affect the probability of
falsely certifying R. Our main result in this section is the following guarantee on the invariance certificate.

Theorem 1. Assume that for all invariant subspaces K ⊂ Cn,

‖πK − πR‖F > ǫ. (2)

Then, the probability that Alg. III.2 returns True is upper bounded by pthr..

To prove Thm. 1 we will first show that if πR is close to the commutant, then it is close to an invariant projector
πK as in eq. (1). After that, our argument will closely follow Sec. III A.

Proposition 3. Assume that πR satisfies 2
√

2 dim R ‖PHaar(πR) − πR‖∞ ≤ ǫ for some ǫ < 1. Then there exists an
invariant subspace K with projector πK satisfying ‖πR − πK‖F ≤ ǫ.

Proof. Let λ↓(M) be the vector of eigenvalues of a Hermitian matrix M ∈ Cn×n in decreasing order. By Weyl’s
perturbation theorem (see e.g. [32, Chap. VI]),

‖λ↓(PHaar(πR)) − λ↓(πR)‖ℓ∞ ≤ ǫ

2
√

2 dim R
= ǫ′.

This way, the eigenvalues of PHaar(πR) lie in [−ǫ′, ǫ′] ∪ [1 − ǫ′, 1 + ǫ′], where ǫ′ < 1/2. Let πK be the projector onto all
eigenspaces corresponding to eigenvalues in 1±ǫ′. The projector πK is invariant and satisfies ‖πK −PHaar(πR)‖∞ ≤ ǫ′.
We therefore see that,

‖πK − πR‖F ≤
√

2 dim R ‖πK − πR‖∞

≤
√

2 dim R
(
‖πK − PHaar(πR)‖∞ + ‖PHaar(πR) − πR‖∞

)

≤ 2ǫ′√2 dim R = ǫ,

where we used that rank(πK − πR) ≤ dim K + dim R = 2 dim R in the first step.

From the proof above it becomes clear that certifying that R is approximately invariant is, ultimately, just certifying
that πR is close enough to the commutant.
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Proof of Thm. 1. By Prop. 3 we may take

ǫ

2
√

2 dim R
< ‖PHaar(πR) − πR‖∞.

Let

A :=
1

r

∑

i

(
ρ(gi)πRρ†(gi) − ρ̃(gi)π̃Rρ̃†(gi)

)
, ∆R := πR − π̃R,

then,

∥∥∥1

r

∑

i

ρ(gi)πRρ†(gi) − πR

∥∥∥
∞

≤ ‖∆R‖∞ + ‖A‖∞ +
∥∥∥1

r

∑

i

ρ̃(gi)π̃Rρ̃†(gi) − π̃R

∥∥∥
∞

= nǫ0 + ‖A‖∞ + c̃.

Then, by Prop. 1, with probability at least 1 − pthr. it holds that

ǫ

2
√

2 dim R
< 2(nǫ0 + ‖A‖∞ + c̃).

We now provide an upper bound on ‖A‖∞. Let ∆(g) := ρ(g) − ρ̃(g), then

‖A‖∞ ≤ Ei

[
‖∆(gi)πRρ†(gi)‖∞ + ‖ρ(gi)∆Rρ†(gi)‖∞ + ‖ρ(gi)πR∆†(gi)‖∞

+‖∆(gi)∆Rρ†(gi)‖∞ + ‖∆(gi)πR∆†(gi)‖∞ + ‖ρ(gi)∆R∆†(gi)‖∞

+‖∆(gi)∆R∆†(gi)‖∞
]
.

Submultipliciativity, together with max{‖∆R‖∞, ‖∆(g)‖∞} ≤ nǫ0 for all g ∈ G, gives

‖A‖∞ ≤ 3(nǫ0 + n2ǫ20) + n3ǫ30.

IV. IRREDUCIBILITY CERTIFICATE

In this section we present an algorithm that certifies irreducibility. Given π̃R as an input, where R holds an
invariance certificate, the goal is to certify that the minimizer of

min
K⊂Cn

K invar.

‖πR − πK‖F (3)

is irreducible. We first present the idea of the algorithm in an idealized setting, and then come back to the noisy
scenario.

A. The ideal case

Let (CnK , ρK) be a unitary representation of G and suppose that we have access to the same primitives as in
Sec III A. Namely, we can sample Haar-randomly from G and evaluate ρK on any sample. Our task is to certify if ρK

is irreducible. The following algorithm uses random walks to acheive this.
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Algorithm IV.1 Ideal irreducibility certificate

Input:

• pthr. ∈ (0, 1), ⊲ Bound on false positive rate.

• p′
thr. ∈ (pthr., 1), ⊲ Bound on false negative rate.

Output:True/False.

1: Set r = max{rG, 8⌈(log(2/pthr.) + 2 log(nK))⌉} ⊲ G generated by ≤ rG elements

2: Set m = 2n2
K ·max{8⌈log

(
(p′

thr. − pthr.)
−1

)
⌉, ⌈log

(
p−1
thr.

)
⌉} ⊲ m number of random walks

3: Set t = 2 + ⌈log2 nK⌉ ⊲ 2t length of random walks

4: Sample r elements gi ∈ G Haar-randomly and set S = {gi} ∪ {g−1
i }

5: Sample m elements si ∈ S2t uniformly

6: Compute Em = 1
m

∑
i | tr ρK(si)|2

7: Set θm = nK

√
2/m log(1/pthr.)

8: if Em < 2(1− θm) then
9: return True

10: end if
11: return False

Theorem 2. Let ρK be reducible, then the probability that Alg. IV.1 returns True upon this input is at most pthr..

Our proof of Thm. 2 will work for any value of t, i.e. it does not rely on using t = 2 + ⌈log2 nk⌉. However, if t is
chosen too small, the algorithm could fail to recognize irreducible representations —its false negative rate would be
large. We will bound this rate at the end of this subsection.

The key for the proof of Thm. 2 is Schur’s lemma —if ρK were irreducible it would hold that tr PHaar = 1 and
otherwise it holds that tr PHaar ≥ 2. What the algorithm does is estimate a quantity which is larger than the dimension
of the commutant of ρK . As we will see, if ρK is reducible then it is exceedingly unlikely for this estimator to fall too
much below 2.

The quantity being estimated is, in fact, tr P 2t
S , where PS is the random walk operator associated to ρK . The

connection to the dimension of the commutant is made by the following statement.

Proposition 4. For any t it holds that tr PHaar ≤ tr P 2t
S .

Proof. Unitarity ensures that ‖PS‖∞ = 1. Because r ≥ rG, the probability that S generates G is one. Together with
S = S−1, this ensures that PS is self-adjoint and that the +1 eigenspace corresponds exactly to the commutant of
ρK .

Let {λi} be all the eigenvalues of PS different from one. The statement follows from

tr P 2t
S = tr PHaar +

∑

i

λ2t
i ≥ tr PHaar.

Proof of Thm. 2. It is clear that Em is an estimator for tr P 2t
S . Since ρK is unitary, furthermore, | tr ρK(g)|2 ≤ n2

K

for any g, and so by Chernoff’s bound,

Pr
[
Em ≤ (1 − θ) tr P 2t

S

]
≤ exp

(−θ2m tr P 2t
S

2n2
K

)
,

for any θ ∈ (0, 1). But by the assumption on m we may use θ = θm in the equation above. Then, using Prop. 4 and
tr PHaar ≥ 2,

Pr [Em ≤ 2(1 − θm)] ≤ Pr
[
Em ≤ (1 − θm) tr P 2t

S

]
≤ exp

(−θ2
mm tr P 2t

S

2n2
K

)
≤ exp

(−θ2
mm

n2
K

)
< pthr..

As mentioned, the proof above doesn’t rely on the particular choice of t in line 3 of Alg. IV.1. It also only uses
the bound m > 2n2

K log(1/pthr.) on the number of samples (cf. line 2). In Prop. 6, we use t > 2 + log2 n and
m > 16n2

K log2(1/(p′
thr. −pthr.)) to bound the false negative rate of the algorithm. To prove it, it’s convenient to show

the following intermediate result first.
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Proposition 5. Let S be sampled as in Alg. IV.1. The probability that ‖PHaar − PS‖∞ > 1/2 is strictly less than

2n2 exp

(−r

8

)
≤ pthr..

Proof. Let σ be the representation of G acting by conjugation on Cn×n. For a group element g ∈ G sampled Haar-
randomly, the operator

Vg :=
1

r

(1

2

(
σ(g) + σ†(g)

)
− PHaar

)

is a Hermitian random variable with zero mean. Furthermore, by unitarity of ρ and because σ(g) and PHaar are
simultaneously diagonalizable, we have that

‖Vg‖∞ ≤ 1

r
, ‖V 2

g ‖∞ ≤ 1

r2
.

But then, writing S = {gi}r
i=1 ∪ {g−1

i }r
i=1, we see that

PS − PHaar =
r∑

i=1

Vgi ,

where the operators Vgi are independent random variables satisfying the conditions above. Then, by the matrix
Hoeffding bound [31],

Prob (λmax(PS − PHaar) > x) < n2e
−rx2

2 ,

where λmax is the maximum eigenvalue. Finally, repeating the statement above for λmax(PHaar − PS) and using the
union bound, we conclude that

Prob (‖PHaar − PS‖∞ > x) < 2n2e
−rx2

2 .

Using x = 1/2 and the fact that r ≥ 8⌈(log(1/pthr.) + 2 log(n))⌉ we recover the claimed statement.

Proposition 6. Let ρK be irreducible, then the probability that Alg. IV.1 returns False upon this input is at most
p′
thr..

Proof. By Prop. 5, with probability at least 1 − pthr. it holds that

‖P 2t
S − PHaar‖∞ ≤ 2−2t, (4)

where we used P 2t
S − PHaar = (PS − PHaar)

2t because PS and PHaar commute. This way,

tr P 2t
S ≤ tr PHaar + n2

K2−2t ≤ tr PHaar +
1

16
=

17

16
.

Furthermore, by our assumption in m, we have 2(1 − θm) ≥ 3/2. But then, the Chernoff bound says that the
probability that Em ≥ 3/2 is at most

exp

(−m

n2
K

49

3 × 256

)
< exp

( −m

16n2
K

)
≤ p′

thr. − pthr..

A false positive can occur if either eq. (4) does not hold, or if conditioned on it holding, Em ≥ 3/2. By the union
bound, this probability is at most pthr. + (1 − pthr.)(p

′
thr. − pthr.) < p′

thr..

B. The noisy case

In this section we adapt the idea presented above to the noisy scenario. Suppose we have certified that a subspace
R ⊂ Cn is invariant (with precision ǫ). We now wish to certify that the minimizer K of (3) is irreducible.
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The algorithm for this is Alg. IV.2. As before, the algorithm has a controllable false positive rate pthr. as an input.
This is important from the point of view of certification —if the output is True, then one can be rather certain that
K is irreducible.

Additionally, the algorithm takes as an input a confidence parameter pthr. < δconf. < 1 which roughly tunes the
false negative rate. In fact, this parameter is used in the same way that p′

thr. was used in Alg. IV.1. Because Alg. IV.2
reduces to Alg. IV.1 in the limit of ǫ, ǫ0 → 0, we expect that the false negative rate is well approximated by δconf.

when ǫ and ǫ0 are small enough. Since the runtime of the algorithm scales with max log(1/pthr.), log(1/(δconf. − pthr.)),
a reasonable choice for the confidence parameter is δconf. = 2pthr..

Within Alg. IV.2 and throughout this section we use the following conventions:

c1 : = 2(ǫ + nǫ0)(1 + ǫ + nǫ0) + nǫ0(1 + ǫ + nǫ0)2,

c2 : = 2c1(1 + c1),

ht(x) : = (1 + x)t − 1,

dt : = ht(c2),

et : = d2t(int(tr π̃R)2 + d2t).

For the sake of clarity, we have shifted the proofs of several propositions in this subsection to App. A.

Algorithm IV.2 Irreducibility certificate

Input:

• π̃R ∈ Cn×n, ǫ ∈ (0, 1/2) ⊲ πR, ǫ satisfy (1)

• pthr. ∈ (0, 1) ⊲ Bound on false positive rate

• δconf. ⊲ Confidence parameter

Output:True/False.

1: if et ≥ 2 then
2: return False
3: end if
4: Set r = max{rG, 12⌈(log(2/pthr.) + 2 log(n))⌉} ⊲ G generated by ≤ rG elements.

5: Set m = 2
⌈

int(tr π̃R)2+d2t
2−et

·max{log
(
p−1
thr.

)
, 8 log

(
(δconf. − pthr.)

−1
)
}
⌉

⊲ m random walks

6: Set t = 2 + ⌈log2 int(tr π̃R)⌉ ⊲ 2t random walk length

7: Sample r elements gi ∈ G, set S = {gi} ∪ {g−1
i }

8: Sample m words si ∈ S2t uniformly

9: Compute E = et +
1
m

∑
i | tr ρ̃R(si)|2

10: Set θm =
√

2 log(1/pthr.)(int(tr π̃R)2 + d2t)/m(2− et)

11: if E < 2(1− θm) then
12: return True
13: end if
14: return False

Theorem 3. Assume that the minimizer K of eq. (3) is reducible. Then the probability that Alg. IV.2 outputs True
is at most pthr..

Similar to the ideal case, the proof of this theorem relies on characterizing the approximate random walk operator
QR

S given by

QR
S ( · ) :=

1

|S|
∑

s∈S

π̃Rρ̃(s)π̃†
R( · )π̃Rρ̃†(s)π̃†

R.

Our approach uses QR
S to upper-bound the dimension of the commutant of ρ restricted to K, that is tr PK

Haar, where

PK
Haar( · ) :=

∫

G

dµHaar(g)πKρ(g)πK( · )πKρ†(g)πK .
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An important object in our proof is the restricted random walk operator,

PK
S ( · ) :=

1

|S|
∑

s∈S

πKρ(s)πK( · )πKρ†(s)πK .

Notice that QR
S is a small perturbation of PK

S .

Proposition 7. Use the notation above, let Qe := PK
S − QR

S and γ be such that ‖Qe‖∞ ≤ γ. Then, for all t it holds
that

tr PK
Haar ≤ tr

(
(QR

S + γI)2t
)
.

Proof. Let {ri} be the eigenvalues of PK
S . By Weyl’s perturbation theorem, for each ri, there is some eigenvalue qi of

QR
S satisfying qi ∈ ri ± γ. In particular, QR

S + γI has tr PK
Haar-many eigenvalues in the range [1, 1 + 2γ]. Then,

tr
(
(QR

S + γI)2t
)

≥ tr PK
Haar +

∑

i s.t.
ri<1

(qi + γ)2t ≥ tr PK
Haar.

We will show that ‖Qe‖∞ ≤ c2 in Prop. 11 from App. A, and so we use γ = c2 henceforth. Then, if for any t it
holds that

tr
(
(QR

S + c2I)2t
)

< 2,

K is irreducible. We may expand

tr
(
(QR

S + c2I)2t
)

=

2t∑

k=0

(
2t

k

)
c2t−k
2 tr

(
(QR

S )k
)

(5)

=
2t∑

k=0

(
2t

k

)
c2t−k
2

1

|S|k
∑

s∈Sk

| tr ρ̃R(s)|2, (6)

where we used,

ρ̃R(s) := π̃Rρ̃(s)π̃†
R, ρ̃R(s) := ρ̃R(s1) . . . ρ̃R(sk), s ∈ S, s ∈ Sk.

Our approach is to bound the norm of all terms with k < 2t and estimate the one with k = 2t. This is because in
the regime of interest c2 is small, and so terms with non-trivial powers of c2 are of subleading order. The following
proposition will be used to bound the size of subleading terms.

Proposition 8. Let R hold an invariance certificate with precision ǫ < 1/2 and let K be the minimizer in eq. (3).
Then, for any s ∈ Sk, it holds that

| tr ρ̃R(s)|2 ≤ dim2 K + dk.

The following proposition uses the previous result to bound the size of the subleading contributions to eq. (6).

Proposition 9. Let R, K and ǫ be as in Prop. 8, and let nǫ0 < 1/2. Then,

∣∣∣∣∣
2t−1∑

k=0

(
2t

k

)
c2t−k
2 tr

(
(QR

S )k
)
∣∣∣∣∣ ≤ et.

We therefore obtain

tr PK
Haar ≤ et + tr

(
(QR

S )2t
)

= et +
1

|S|2t

∑

s∈S2t

| tr ρ̃R(s)|2.

All that is left to be shown is that the estimator for the second term used by Alg. IV.2 concentrates sharply around
its mean. For this we will use the following proposition, a simple consequence of the Chernoff bound.
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Proposition 10. Let R, K and ǫ be as in Prop. 8, and assume that K is reducible. Let {si} be m uniformly random
samples from S2t. Then, for any θ ∈ (0, 1), it holds that

Pr

[
1

m

m∑

i=1

| tr ρ̃R(si)|2 ≤ (1 − θ) tr
(
(QR

S )2t
)
]

< exp

( −θ2m(2 − et)

2(dim2 K + d2t)

)
.

We may now prove the first main result of this subsection.

Proof of Thm. 3. By our assumption on m, it holds that θm < 1. But then using Prop. 10 with θ = θm,

Pr

[
1

m

∑

i

| tr ρ̃R(si)|2 + et ≤ 2(1 − θm)

]
≤ Pr

[
1

m

∑

i

| tr ρ̃R(si)|2 + et ≤ (1 − θm)
[
tr
(
(QR

S )2t
)

+ et

]
]

≤ Pr

[
1

m

∑

i

| tr ρ̃R(si)|2 ≤ (1 − θm) tr
(
(QR

S )2t
)
]

< exp

( −θ2
mm(2 − et)

2(dim2 K + d2t)

)
< pthr..

V. TIME COMPLEXITY

Here we analyse the runtime of the certification procedures proposed and discuss several ways to optimize it.
Alg. III.2 runs in O(n3 log n) steps: the main sources of complexity are the r = O(log n) matrix products and the

spectral norm appearing in line 3. The latter has complexity at most O(n3) through the singular value decomposition.
In practice, this last step step is significantly cheaper. Ref. [33] estimates the spectral norm in time O(n2 log n).

Note that the method of [33] is probabilistic and so it raises the false positive rate, albeit in a controllable way.
Alternatively, the spectral norm can be bounded by the Frobenius norm in O(n2) operations.

To compute the runtime of Alg. IV.2 we assume that ǫ0 and ǫ are small enough that d2(2+log2 d) and e2+log2 d are
non-increasing functions of d := dim R and n. Here, dt and et are defined as in the top of Sec. IV B and we use
t = 2 + log d. For this it is sufficient to take

ǫ <
1

48(d2 + 1)(2 + log2 d)
, ǫ0 <

1

120n(d2 + 1)(2 + log2 d)
. (7)

In this regime the runtime of the algorithm, as it is written in the main text, is

O

(
n3d2 log d

(
log

1

pthr.
+ log

1

δconf. − pthr.

))
. (8)

Because the false negative rate is of secondary importance for our certificate, a convenient choice is δconf. = 2pthr.

where both terms above have the same scaling.
The main bottleneck of (8) is the n3 factor, coming from the fact that the algorithm evaluates matrix products on

Cn×n. This can be significantly reduced by either: 1. taking products in the group and then obtaining the image, or
2. restricting matrices ρ̃R(s) to the subspace R first, and taking products in this smaller space. Letting D denote the
runtime of whichever of these two is faster, the runtime becomes O(Dd2 log d log p−1

thr.).
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[39] P. P. Varjú, “Random walks in compact groups,” Documenta Mathematica, vol. 18, pp. 1137–1175, 2013.

Appendix A: Proofs

Proposition 11. Let Qe be as in Prop. 7, and c2 be as in the beginning of Sec. IVB. Then ‖Qe‖∞ ≤ c2.

Proof. Let ρK(s) := πKρ(s)πK and D(s) := ρ̃R(s) − ρK(s). Using subadditivity, we bound

‖Qe‖∞ ≤ max
s

‖D(s) ⊗ ρ̄K(s) + ρK(s) ⊗ D̄(s) + D(s) ⊗ D̄(s)‖∞ ≤ max
s

(2‖D(s)‖∞ + ‖D(s)‖2
∞).

Further writing ∆ := π̃R − πK and ∆(s) := ρ̃(s) − ρ(s), we observe that

D(s) = ∆ρ(s)(πK + ∆)† + (πK + ∆)ρ(s)∆† + (πK + ∆)∆(s)(πK + ∆)†,

and so,

‖D(s)‖∞ ≤ 2‖∆‖∞(1 + ‖∆‖∞) + ‖∆(s)‖∞(1 + ‖∆‖∞)2.

We can directly bound ‖∆(s)‖∞ ≤ nǫ0. Then, becaus R holds an invariance certificate with precision ǫ, we deduce

‖∆‖∞ ≤ nǫ0 + ǫ.

It follows that ‖D(s)‖∞ ≤ c1, where c1 is defined as in the top of Sec. IV B, and the claim follows.

Proof of Prop. 8. As in the proof of Prop. 11, let D(s) := ρ̃R(s)−ρK(s). For the sake of convenience, let us introduce
the following notation: B1(s) = D(s), B0(s) = ρK(s), and for any bit string v ∈ Fk

2 and s ∈ Sk,

Bv(s) = Bv1(s1)Bv2(s2) · · ·Bvk
(sk).

Then, using submultiplicativity, subadditivity and unitary invariance we find that

|tr(ρ̃R(s))|2 ≤
∑

v∈Fk
2

|tr Bv(s)|2

≤
∑

v∈Fk
2

‖Bv(s)‖2
F

≤ dim2 K +
∑

v 6=0

max
s

‖D(s)‖wt(v)
F

≤ dim2 K +
k∑

w=1

(
k

w

)
max

s
‖D(s)‖w

F

≤ dim2 K +
(

1 + max
s

‖D(s)‖F

)k

− 1,

where wt(v) denotes the Hamming weight of v. Then, because R holds an invariance certificate with precision ǫ,
we may use an argument analogous to the proof of Prop. 11 to bound maxs ‖D(s)‖F by c1 (defined in the top of
Sec. IV B). This finalizes the proof.

Proof of Prop. 9. We begin by observing that dk ≤ d2t for all k ≤ 2t, and so Prop. 8 implies
∣∣∣∣∣
2t−1∑

k=0

(
2t

k

)
c2t−k
2 tr

(
(QR

S )k
)
∣∣∣∣∣ ≤ [(1 + c2)2t − 1](dim2 K + d2t).

Since ǫ < 1/2, dim K = dim R. Finally, nǫ0 < 1/2 implies that int(tr π̃R) = tr πR = dim R.
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Proof of Prop. 10. By Prop. 8, | tr ρ̃R(si)|2/(dim2 K + d2t) is a random variable in [0, 1], so Chernoff’s bound gives

Pr

[
1

m

∑

i

| tr ρ̃R(si)|2 ≤ (1 − θ) tr
(
(QR

S )2t
)
]

< exp

(
−θ2m tr

(
(QR

S )2t
)

2(dim2 K + d2t)

)

But by Prop. 7 tr
(
(QR

S + c2I)2t
)

≥ tr PK
Haar ≥ 2, and by Prop. 9 tr

(
(QR

S )2t
)

≥ 2 − et, which finishes the proof.

Appendix B: Extension to a weaker scenario

Here we show how to modify our algorithms to a setting in which the user has considerably less control over the
group than is assumed in the main text. To keep the the line of argument clean, we provide only short proof sketches
for the claimed statements, and include these at the end of the appendix. In the following, the Lie algebra g of G is
endowed with a G-invariant inner product 〈·, ·〉g and a corresponding 2-norm ‖·‖g.

In the current setting, the user is assumed to know ρ̃ evaluated on a fixed symmetric generator set S. The set S
and the representation ρ must also satisfy two requirements.

The first is that S is not too ‘ill-conditioned’: We say that S is (δ, k)-dense, if for any g ∈ G there exists a word
s1 · · · sk of length k in S for which

∥∥log g−1s1 · · · sk

∥∥
g

≤ δ.

The second requirement is that the ρ-images of close-by group elements are also close-by. That is, we say that ρ is
q-bounded if it holds that

‖dρ(X)‖F ≤ q ‖X‖g , ∀X ∈ g,

where dρ is the representation of g corresponding to ρ. In summary, we assume that the user knows some numbers
(δ, k, q) such that S is (δ, k)-dense and ρ is q-bounded (we say that (G, S, ρ) is (δ, k, q)-well conditioned).

In the case G is finite, one may take k to be the Cayley diameter and q = δ = 0. When G is continuous, to the
best of our knowledge there are no explicit generator sets S known to be (δ, k)-dense. For special unitary groups, the
Solovay-Kitaev theorem provides an asymptotic result: certain generator sets are (δ, O(log4 δ−1))-dense. In the case
of SU(2), some progress towards an explicit scaling for the Solovay-Kitaev theorem has been made in [34].

Remark 1. One can modify the algorithms presented here to use a bound on the spectral gap ‖PS − PHaar‖∞ as an
input instead of (δ, k, q). However, such a bound is rarely known without diagonalizing PS . While results stating the
existence of a gap exist for a variety of compact groups, these do not quantify how large it is (e.g. [35–37]). Because
of this, we do not present such a modification.

1. Invariance certificate

The invariance certificate in this scenario is given by Alg. B.1, where we use

f(x) = 2
√

2 dim R (xk + 2knǫ0(nǫ0 + 1) + 2qδ exp(qδ) + 2nǫ0) . (B1)

Algorithm B.1 Modified invariance certificate
Input:

• {ρ̃(s) : s ∈ S} ⊂ Cn×n,

• δ ∈ (0, 1), k ∈ N, q ∈ R+, ⊲ (G,S, ρ) is (δ, k, q)-well conditioned.

• π̃R ∈ Cn×n,

• ǫ ∈ (0, 1/2).

Output:True/False

1: Let f be defined as in eq. (B1)
2: if f(maxs∈S ‖[ρ̃(s), π̃R]‖F ) ≤ ǫ then
3: Return: True
4: end if
5: Return: False
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As in the main text, the key quantity to be bounded is ‖PHaar(πR) − πR‖F . This is acheived by the following two
propositions.

Proposition 12. Let (G, S, ρ) be (δ, k, q)-well conditioned and assume that

‖[ρ̃(s), π̃R]‖F ≤ c3, ∀ s ∈ S.

Then, for all g ∈ G we have that

‖[PHaar(πR) − πR‖F ≤ kc3 + 2knǫ0(nǫ0 + 1) + 2qδ exp(qδ) =: c4(c3).

Putting this together with Prop. 3 shows that if Alg. B.1 returns True, then R is approximately invariant up to
precision ǫ.

2. Irreducibility certificate

We now move on to the irreducibility certificate. For simplicity we only present the procedure in the ideal case,
given by Alg. B.2. The certificate is in essence the same as Alg. IV.1, with the prominent difference that S is not
sampled at the start. The proof of Thm. 2 carries over exactly to the current case showing that this algorithm’s false
positive rate is at most pthr..

Alg. B.2 furthermore includes the parameter t as an input (compare line 3 of Alg. IV.1). This choice is made for
the sake of performance. Specifically, in Prop. 13 we bound the false negative rate whenever t is large enough —this
is in the same spirit as Prop 6. Here, though, the bound on t is too large to be useful in many practical settings.

Rather than using Prop. 13 to choose t, we have instead tested the performance of the algorithm for different values
of t (see [38]). There it is found that, for a variety of finite group representations, taking t & k is sufficient to bring
the empirical false negative rate down to zero.

Algorithm B.2 Modified ideal irreducibility certificate

Input:

• {ρK(s) : s ∈ S} ⊂ CnK ×nK ,

• pthr. ∈ (0, 1),

• t ∈ N.

Output:True/False.

1: Set m = 3⌈n2
K log(1/pthr.)⌉+ 1

2: Set θm = nK

√
2 log(1/pthr.)

m

3: Compute Em = 1
m

∑m
i=1 | tr ρK(si)|2, with si ∈ S2t sampled uniformly

4: if Em < 2(1− θm) then
5: return True
6: end if
7: return False

We thus conclude by analysing the false negative rate of Alg. B.2. This probability is intimately related to the
spectral gap of PK

S , —the mixing time of random walks in S. Here, we show how to obtain a bound on this spectral
gap from the parameters (δ, k, q). This result follows from Ref. [39, Lemma 5] up to some minor technical detail.

Proposition 13. There exists a constant c0 such that for any compact group G, generator set S ⊂ G and irreducible
representation ρK the following holds. If (G, S, ρK) is (δ, k, q)-well conditioned with δ ≤ (c0q)−c0 , then for any

t ≥ 1

2

log n − 1

log 1
1−1/|S|k2

,

it holds that the probability that Alg. B.2 returns False upon this input is at most

exp

(
−m

3 dim2 K

(
2 − θm

1 + (n − 1)(1 − k−2|S|−1)2t
− 1

)2
)

.
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Our approach is the following. Ref. [39, Lemma 5] gives a bound on this spectral gap as a funtion of δ, k and a
third parameter, the maximal weight length defined by

max
{

‖ω‖2
g∗

∣∣∣ ω weight in ρK

}
.

The following proposition relates this quantity to our parameter q, which in turn allows us to obtain a bound on the
mixing time in terms of (δ, k, q).

Proposition 14. Let (K, ρK) be a unitary representation of G with maximal weight length equal to w. Then

a) ρK is
√

w dim K-bounded,

b) if ρK is q-bounded, then q must satisfy q ≥ w.

3. Proofs

Proof of Prop. 12. We directly compute that for all s ∈ S

‖[ρ(s), πR]‖F ≤ c3 + 4nǫ0 + 2n2ǫ20 =: c5.

Similarly, for any s ∈ Sk,

‖[ρ(s), πR]‖F ≤ kc5,

where we used the identity [AB, C] = A[B, C] + [A, C]B iteratively.
Now, let g ∈ G be arbitrary. By assumption, there exists a word gs := s1 · · · sk in S, together with an element

gX := exp(X) for which

g = gsgX ,

‖X‖g ≤ δ.

Subadditivity and submultiplicativity imply that

‖ρ(g) − ρ(gs)‖F = ‖exp dρ(X) − I‖F

≤ ‖dρ(X)‖F exp(‖dρ(X)‖F )

≤ qδ exp(qδ),

and so

‖[ρ(g), π̃]‖F ≤ 2qδ exp(qδ) + kc5 = c4, ∀ g ∈ G.

Finally, we may use the unitarity of ρ to obtain

‖PHaar(πR) − πR‖F ≤ Eg∼G [‖[ρ(g), πR]‖F ] ,

which proves the claim.

Proof of Prop. 14. Let {ωi} be the set of weights appearing in ρK , let ω0 be a weight in that set with maximal length

(so ‖ω0‖2
g∗ = w) and let t be the Lie algebra of the maximal torus in G. We begin by noting that because ‖·‖g is

invariant under the adjoint G-action, we know that

sup
X∈g

‖dρK(X)‖2
F

‖X‖2
g

= sup
X∈t

‖dρK(X)‖2
F

‖X‖2
g

.

For any X ∈ t,

‖dρK(X)‖2
F =

∑

i

|ωi(X)|2 =
∑

i

|〈ω∗
i , X〉g|2, (B2)
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where ω∗
i is the dual of ωi with respect to the invariant inner product. Using Cauchy-Schwartz on eq. (B2) we obtain

‖dρK(X)‖2
F ≤ ‖X‖2

g

∑

i

‖ω∗
i ‖2

g ≤ (w dim K) ‖X‖2
g ,

which proves the first statement.
For the second statement, let us choose X = ω∗

0/ ‖ω∗
0‖g in eq. (B2). We obtain

‖dρK(X)‖2
F =

∑

i

|〈ω∗
i , ω∗

0〉g|2
‖ω∗

0‖2
g

≥ ‖ω∗
0‖2

g = w .

But ‖X‖g = 1 so any q ≤ w would be inconsistent with the equation above.

Proof of Prop. 13. By Prop. 14, the maximal weight-length r of ρK can be at most q. Consider the random walk
operator PS associated to ρK and let λ be the spectral norm of the restriction of PS to the traceless subspace, —by
the assumption that ρK is irreducible, we know that λ < 1.

Ref. [39, Lemma 5] implies that there exists a universal constant c0 > 0 such that if δ ≤ (c0q)−c0 , then

1 − λ ≥ 1

|S|k2
.

Hence,

tr P 2t
S ≤ 1 + (n − 1)

(
1 − 1

|S|k2

)2t

. (B3)

Then, for any x ≤ 1, the right-hand side is smaller than 2 − x if and only if

t ≥ 1

2

log n−1
1−x

log 1
1−1/|S|k2

=: tx.

Equivalently, for any t given as in the assumption of the theorem, the right-hand side of (B3) is at most 2 −xt, where

xt := 1 − (n − 1)(1 − 1/|S|k2)2t

The Chernoff bound implies that for any α > 0, if {si} are m uniform samples from S2t, then

Prob

[
1

m

∑

i

| tr ρK(si)| ≥ (2 − xt)(1 + α)

]
≤ exp

(
−α2m/3 dim2 K

)
. (B4)

Consider the choice

α =
2 − θm

2 − xt
− 1,

where θm is as in Line 1 of Alg.IV.1. Then, eq. (B4) becomes

Prob

[
1

m

∑

i

| tr ρK(si)| ≥ (2 − xt)(1 + α)

]
≤ exp

(
−m

3 dim2 K

(
2 − θm

2 − xt
− 1

)2
)

. (B5)
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7 Implementation of certification algorithm

The algorithms discussed in Chap. 6 were coded into the Python package RepCert [MM21].
This code may interface with RepLAB: the output decomposition obtained with Re-
pLAB may be directly fed as an input to RepCert. Here, I will showcase the main
components of the latter code, together with benchmarks on the performance of the
full pipeline RepLAB+RepCert. I was the main researcher in this project.

RepCert may handle the two mathematical settings discussed in [MMRBG21] (in-
cluded as Chap. 6). Namely, it can handle on the one hand the random generator

case, where one has oracle access to a Haar-random sampler from the group G. On
the other hand, it can handle the harder fixed generator case discussed in the appendix
of [MMRBG21], where one has access to a fixed set of generators and knows their
mixing time. I omit the presentation of this second case for brevity.

7.1 The certification algorithm

Recall from Chap. 6 the following definition. Let π be the orthogonal projector onto
a subspace V ⊂ Cn. We say that V is ε-close to an irreducible subrepresentation
K ⊆ Cn if ‖πK − π‖2 ≤ ε, where πK is the orthogonal projector onto K.

The general structure of the algorithm in the random generator case is the follow-
ing. As an input it receives the following three types of parameters: 1. An ε0 ∈ R+

and a set of matrices G = {g̃i} ⊂ Cn×n for which there exist gi ∈ G satisfying
maxi ‖g̃i − gi‖max ≤ ε0. 2. A set of subspaces Vi ⊆ Cn, such that Cn = ⊕iVi, and, for
each i, Vi is claimed to be an irreducible subrepresentation of G. Let di = dimVi and
πi be the orthogonal projector onto Vi. 3. A set of accuracy parameters: a bound ε0
on maxg∈G ‖g̃ − g‖max, the accuracy ε with which to certify invariance (see Alg. IV.2
in Chap. 6), the threshold false positive rate pthresh. and the approximate bound on the
false negative rate p′thresh.. The output is a list of booleans, say βi, stating whether the
space Vi was certified to be ε-close to an irreducible subrepresentation. The false pos-

itive rate is the probability that βi =True conditioned on Vi not being ε-close to an
irreducible subrepresentaiton. The false negative rate is the converse.

The algorithm then calls, for each Vi, a function invariance (presented in
Sec. 7.1.2) to certify invariance. Let {bji}j be an orthonormal basis of Vi and Bi =

(b1
i , . . . , b

di
i ) ∈ Cn×di . If this certification succeeds then, for each i the restricted

generator images are constructed,

gi := BT
i gBi ∈ Cdi×di .

These images are subsequently used to certify irreducibility of Vi.
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7.1.1 Objects

The basic data structure used by RepCert is the class rep_by_generators shown
in a simplified form below. As suggested by the name, it is a representation defined
on a set of generators of the group. Accordingly, the main properties of an object in
this class are: the dimension n, a list of names for generators, and the set of generator
images (n×n matrices). These generators are assumed to have been sampled from the
Haar measure on G, as mentioned above. While in this simpler case the choice of an
object-oriented approach migh seem overkill, this approach was taken for its flexibility
and improved readability. In particular, it allows the same data structure to handle the
fixed generator case.

class rep_by_generators():

def __init__(self, dimension, generatorSet = [], genImages =

[], **kwargs):

self.dimension = dimension #dimension of representation

self.nGens = len(generatorSet) #number of generators

self.Images = dict()

if len(genImages)>0:

self.Images = {generatorSet[i] : genImages[i] for i in

range(len(genImages))}

def add_generator_image(self,element,repImage):

assert isinstance(element,group_element)

self.Images.update({element.name : repImage})

self.generatorSet.append(element)

self.nGens += 1

def image_list(self):

return [self.Images[g] for g in self.generatorList]

7.1.2 The certification step

To certify invariance, the following code was used. There, repr is the rep_by_generators
object defined by the input, proj is the projector Pi := BiB

T
i for some i, and fl is ε0

and Pi (typically, fl is roughly the floating point precision). Moreover, the code uses
the subroutine averaging, which computes

∥∥Eg∈generatorSet[gPi g
† − Pi]

∥∥
F
.
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def invariance(repr,proj,epsilon,pthresh,fl):

epsprime =

epsilon/(2*math.sqrt(2.*math.ceil(lin.trace(proj).real)))

c = averaging(repr,proj)

n = repr.dimension

f_err = 8*n*fl + 6*(n*fl)**2 + 2*(n*fl)**3

if 2*c + f_err <= epsprime:

return True

return False

As mentioned above, once the blocks Bi have been certified to be approximately
invariant, the representation is restricted to each one of the blocks, giving generator im-
ages gi = BT

i gBi ∈ Cdi×di . These images are used to define a new rep_by_generators

object using the function below. Here, the function lin.restrict performs the re-
stricting step g 7→ gi.

def restrict_to_subrep(repr,basis):

new_ims = [lin.restrict(im,basis) for im in

repr.image_list()] # new rep images of generators

dim = len(basis) # new dimension

return rep.rep_by_generators(dim, repr.generatorList,

new_ims)

Finally, this restricted approximate representation is tested for irreducibility. Here,
I use the following conventions: pthresh is the bound on the false positive rate
(denoted pthresh. in Chap. 6), conf is the approximate bound on the false negative
rate (dentoed δconf in Chap. 6), and epsilon is the accuracy of the invariance test.
The functions rwalk.set_t and rwalk.number_samples set the length of the
random walk and the number of random walk samples used (as in lines 5 and 6 of
Alg. IV.2 in Chap. 6). Similarly, the functions const.et and const.dt compute
the constants et and dt defined in Sec. IV of that same chapter. Finally, let Vi = spanBi.
Then, the function rwalk.repRandWalkEstimator computes

1

m

m∑

i=1

| tr si|2,

where si ∈ End(Vi) is the outcome of a random walk of length 2t on the restricted

generator images {gi}g∈generatorSet. In other words,

si = g
(1)
i . . . g

(2t)
i ,
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where g(j)
i are sampled uniformly from {gi}g∈generatorSet.

def irr_cert(repr,epsilon,pthresh,pthresh_pr):

# parameters and constants:

dim = repr.dimension

if dim==1:

return True

# Random walk parameters #

t = rwalk.set_t(repr)

m =

rwalk.number_samples(repr,dim,epsilon,pthresh,t,pthresh_pr)

# other constants

et = const.et(repr,epsilon,t,dim)

dt = const.dt(repr,epsilon,t)

aux = dim**2+dt

aux*= 2*math.log(pthresh**(-1))

if et >=2 or m <= aux:

return False

# Character length estimation:

theta = math.sqrt(aux * (m*(2-et))**(-1))

E = et + rwalk.repRandWalkEstimator(repr,m,t)

# Irreducibility condition:

if E < 2*(1-theta):

return True

return False

7.2 Numerical benchmarks on RepLAB+RepCert

Here I present some simple benchmarks on the performance of the “full monty” al-
gorithm: the sequential combination of RepLAB and RepCert. Namely, I consider a
set of abstract groups G and representations ρ of G. In a first step, I use RepLAB
to decompose ρ. Subsequently, I use RepCert to certify that the components of this
decomposition are ε-close to irreducible subrepresentations.

Two things are tested in these benchmarks: the ability of RepLAB to find accu-
rate decompositions of representations on the one hand, and on the other the runtime
required by RepCert.
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Many of the known instances of symmetries in SDPs arising from quantum prob-
lems are either permutation groups, or wreath products thereof [TCUA20, RRMG17,
TFR+21]. I have thus focused on benchmarking the performance of RepLAB and
RepCert on these types of groups. Namely, I consider representations of permutation
groups Sa and of the following wreath products:

Gab := Sa o Sb,
Gabc := Sa o Sb o Sc,

where Sa is the symmetric group of degree a, and where for any group G, G o Sx
denotes the wreath product with respect to the natural representation of the symmetric
group Sx. The groups Gabc correspond to the symmetries of the Bell inequalities for a
scenario with c parties, b measurement settings, and a measurement outcomes for each
setting.

Let R be an arbitrary group, then the group elements of G′ := R o Sd are of the
form

g′ = ((r1, . . . , rd), s), (27)

where ri ∈ R and s ∈ Sd. The group law is given by

((r1, . . . , rd), s) · ((h1, . . . , hd), q) = ((r1hs−1(1), . . . , rdhs−1(d)), sq).

Two types of representations of G′ are relevant for our purposes: Let (σ,Hσ) be a
representation of G. The Sd-imprimitive representation of σ, ξσ, acts on the space

Hσ ⊗ Cd,

as

ξσ(g′) |ψ〉 ⊗ |i〉 =
(
σ(ri) |ψ〉

)
⊗ |s(i)〉 ,

where g′ ∈ G′ is given as in eq. (27), |ψ〉 ∈ Hσ and where {|i〉 | i = 1, . . . , x} is the
computational basis of Cd. The Sd-primitive representation of σ, Ξσ, acts on the space

(Hσ)⊗d,

where it acts as

Ξσ(g′) = (σ(rs−1(1))⊗ · · · ⊗ σ(rs−1(x)))πs,
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where πs permutes the d tensor factors of Hσ. An in-depth discussion of wreath prod-
ucts and the representations of wreath product groups may be found in Ref. [CSST14].

Let (πa,Ca) be the natural representation of Sa. That is, its action on the computa-
tional basis is given by

πa(s) |i〉 = |s(i)〉 , i = 1, . . . , a,

where s ∈ Sa. The following representations were decomposed using RepLAB and
subsequently certified using RepCert. 1. The third tensor power ρa := π⊗3

a of the
natural representation of Sa. 2. The Sb-primitive representation of the Sa natural
representation, ρab, of Gab. 3. The Sc-primitive representation of the Sb-imprimitive
representation of the Sa natural representation, denoted ρabc, of Gabc. The latter is
precisely the symmetry appearing in Bell inequality scenarios [RRMG17].

7.3 Benchmark results

Here I display the results of the benchmark tests introduced above. All the compu-
tations were run on the commercial desktop computers used by the network of the
Institute of Theoretical Physics, at the University of Cologne.

For each benchmarked representation ρ, RepLAB was used to find an alleged de-
composition. In displaying these decompositions, I use the following notation: If
ρ : G→ Cn×n is a representation, I write

ρ '
⊕

i

C(di)⊗ Cmi

to denote a claimed decomposition of ρ. Here, C(di) is an irreducible representation
of G with dimension di. If di = dj for two distinct terms i 6= j in the sum above,
the representations are non-equivalent. In a second step, I used RepCert to certify
these blocks: Each block was tested for invariance, and all blocks of dimension < 150

were tested for irreducibility. The reason for the latter limitation was the long runtimes
expected for higher dimensions.

In these benchmarks, I have the following parameter values of the certification
algorithms (using the notation of Chap. 6, Algs. III.2 and IV.2):

pthresh. = 10−7

δconf. = 2pthresh.

ε = 10−8

ε0 = 2−52 (machine precision).
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While most of the decompositions obtained were fully certified with these parameters,
the invariance certification failed for some of the higher dimensional blocks. Here,
I subsequently ran an invariance certification of these blocks with a lower accuracy:
ε = 10−7.

Three observations can be highlighted from the following results: First, every
tested block obtained from RepLAB was certified for invariance with an accuracy of at
most ε = 10−7. Blocks with dimensions ≤ 108 were all certified with the higher accu-
racy of ε = 10−8. This gives further evidence which points at the accuracy of RepLAB
decompositions. Second, the runtimes are typically dominated by the irreducibility
certifation step: in this step, one first restricts the generators g ∈ G to the component,
and then performs a the random walk of Alg. IV.2 from Chap. 6. The most “expen-
sive” cases tested were components with dimensions d & 100, whose certification
took on the order of magnitude of an hour. Third, the representations ρabc associated to
the symmetries of Bell inequalities [RRMG17] decompose into irreps with dimension
much smaller than dim ρabc. This way, these results open the possibility of solving the
previously inaccessible SDPs associated to multi-party Bell scenarios.

Permutation groups Sa. The values of a = 6, 7, 8, 9, and 10 were used as
benchmarks. Replab produced the following decompositions:

ρ6 = (C(16)⊗ C2)⊕ (C(10)⊗ C6)⊕ (C(9)⊗ C6)⊕ (C(5)⊗ C10)

⊕C(5)⊕ (C(1)⊗ C5),

ρ7 = (C(35)⊗ C2)⊕ C(20)⊕ (C(15)⊗ C6)⊕ (C(14)⊗ C6)⊕ (C(6)⊗ C10)

⊕ (C(1)⊗ C5),

ρ8 = (C(64)⊗ C2)⊕ C(35)⊕ C(28)⊕ (C(21)⊗ C6)⊕ (C(20)⊗ C6)

⊕ (C(7)⊗ C10)⊕ (C(1)⊗ C5),

ρ9 = (C(105)⊗ C2)⊕ C(56)⊕ C(48)⊕ (C(28)⊗ C6)⊕ (C(27)⊗ C6)

⊕ (C(8)⊗ C10)⊕ (C(1)⊗ C5),

ρ10 = (C(160)⊗ C2)⊕ C(84)⊕ C(75)⊕ (C(36)⊗ C6)⊕ (C(35)⊗ C6)

⊕ (C(9)⊗ C10)⊕ (C(1)⊗ C5).

These decompositions were certified with RepCert, the results are shown in Tab. 2.

(a, b, c) dim ρabc Irr. d Inv. Time (s) Restr. Time (s) Irr. Time (s) Inv. Irr.

6 216 16 0.375 3.522 9.817 Yes Yes
6 216 16 0.296 3.672 9.809 Yes Yes
6 216 10 0.458 0.964 3.864 Yes Yes
6 216 10 0.398 1.006 3.788 Yes Yes
6 216 10 0.365 0.975 3.716 Yes Yes
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6 216 10 0.297 1.110 3.712 Yes Yes
6 216 10 0.297 0.984 3.650 Yes Yes
6 216 10 0.297 0.979 3.800 Yes Yes
6 216 10 0.296 1.182 3.684 Yes Yes
6 216 9 0.434 0.750 3.039 Yes Yes
6 216 9 0.300 0.751 2.998 Yes Yes
6 216 9 0.297 0.819 3.011 Yes Yes
6 216 9 0.296 0.923 2.966 Yes Yes
6 216 9 0.296 0.890 3.053 Yes Yes
6 216 9 0.296 0.751 3.044 Yes Yes
6 216 5 0.426 0.197 0.780 Yes Yes
6 216 5 0.376 0.198 0.758 Yes Yes
6 216 5 0.297 0.363 0.786 Yes Yes
6 216 5 0.297 0.198 0.790 Yes Yes
6 216 5 0.297 0.198 0.786 Yes Yes
6 216 5 0.297 0.197 0.778 Yes Yes
6 216 5 0.297 0.197 0.765 Yes Yes
6 216 5 0.297 0.196 0.777 Yes Yes
6 216 5 0.297 0.195 0.781 Yes Yes
6 216 5 0.297 0.195 0.775 Yes Yes
6 216 5 0.297 0.194 0.774 Yes Yes
6 216 1 0.421 0.018 1.907 Yes Yes
6 216 1 0.300 0.018 2.145 Yes Yes
6 216 1 0.300 0.018 2.145 Yes Yes
6 216 1 0.296 0.018 2.145 Yes Yes
6 216 1 0.097 0.007 2.145 Yes Yes
7 343 35 1.318 40.22 71.22 Yes Yes
7 343 35 1.158 41.88 70.04 Yes Yes
7 343 20 1.157 8.432 18.57 Yes Yes
7 343 15 1.373 3.841 8.839 Yes Yes
7 343 15 1.366 3.914 8.937 Yes Yes
7 343 15 1.336 4.037 8.888 Yes Yes
7 343 15 1.330 3.756 8.708 Yes Yes
7 343 15 1.298 4.072 8.675 Yes Yes
7 343 15 1.159 3.936 8.969 Yes Yes
7 343 14 1.271 3.233 7.570 Yes Yes
7 343 14 1.176 3.337 7.739 Yes Yes
7 343 14 1.159 3.474 7.735 Yes Yes
7 343 14 1.159 3.407 7.652 Yes Yes
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7 343 14 1.157 3.377 7.666 Yes Yes
7 343 14 1.156 3.398 7.605 Yes Yes
7 343 14 1.156 3.383 7.621 Yes Yes
7 343 6 1.353 0.442 1.158 Yes Yes
7 343 6 1.333 0.437 1.140 Yes Yes
7 343 6 1.323 0.447 1.169 Yes Yes
7 343 6 1.313 0.445 1.149 Yes Yes
7 343 6 1.302 0.440 1.144 Yes Yes
7 343 6 1.282 0.446 1.134 Yes Yes
7 343 6 1.281 0.442 1.147 Yes Yes
7 343 6 1.259 0.440 1.154 Yes Yes
7 343 6 1.157 0.445 1.148 Yes Yes
7 343 6 1.154 0.447 1.151 Yes Yes
7 343 1 1.282 0.041 2.384 Yes Yes
7 343 1 1.197 0.041 2.145 Yes Yes
7 343 1 1.159 0.041 2.145 Yes Yes
7 343 1 1.158 0.041 2.384 Yes Yes
7 343 1 0.343 0.013 2.145 Yes Yes
8 512 64 2.841 296.4 329.8 Yes Yes
8 512 64 2.813 293.4 327.9 Yes Yes
8 512 35 2.752 49.83 75.75 Yes Yes
8 512 28 2.750 26.19 39.80 Yes Yes
8 512 21 2.828 12.09 21.29 Yes Yes
8 512 21 2.819 12.40 21.80 Yes Yes
8 512 21 2.768 12.12 21.34 Yes Yes
8 512 21 2.753 12.35 22.03 Yes Yes
8 512 21 2.740 12.33 20.96 Yes Yes
8 512 21 2.732 12.17 21.68 Yes Yes
8 512 20 2.865 10.91 19.40 Yes Yes
8 512 20 2.790 10.71 19.44 Yes Yes
8 512 20 2.766 10.99 19.34 Yes Yes
8 512 20 2.753 11.22 19.75 Yes Yes
8 512 20 2.747 10.97 19.39 Yes Yes
8 512 20 2.745 11.23 19.92 Yes Yes
8 512 7 2.889 1.001 1.713 Yes Yes
8 512 7 2.826 0.970 1.611 Yes Yes
8 512 7 2.803 0.997 1.658 Yes Yes
8 512 7 2.787 0.981 1.654 Yes Yes
8 512 7 2.774 1.087 1.672 Yes Yes
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8 512 7 2.761 1.004 1.631 Yes Yes
8 512 7 2.756 1.059 1.730 Yes Yes
8 512 7 2.733 1.038 1.666 Yes Yes
8 512 7 2.721 0.995 1.671 Yes Yes
8 512 7 2.719 1.008 1.686 Yes Yes
8 512 1 2.850 0.089 1.907 Yes Yes
8 512 1 2.770 0.089 1.668 Yes Yes
8 512 1 2.747 0.088 2.384 Yes Yes
8 512 1 2.707 0.087 2.145 Yes Yes
8 512 1 0.926 0.022 1.668 Yes Yes
9 729 105 12.01 1459. 2039. Yes Yes
9 729 105 11.92 1457. 2005. Yes Yes
9 729 56 11.88 242.0 237.9 Yes Yes
9 729 48 11.89 163.0 163.4 Yes Yes
9 729 28 12.12 36.48 40.96 Yes Yes
9 729 28 12.09 36.71 41.09 Yes Yes
9 729 28 12.05 37.30 41.13 Yes Yes
9 729 28 12.02 36.07 41.21 Yes Yes
9 729 28 11.93 36.76 41.27 Yes Yes
9 729 28 11.90 36.83 41.26 Yes Yes
9 729 27 11.95 33.37 38.17 Yes Yes
9 729 27 11.93 33.41 37.95 Yes Yes
9 729 27 11.92 33.70 37.90 Yes Yes
9 729 27 11.91 33.82 37.91 Yes Yes
9 729 27 11.90 33.61 38.17 Yes Yes
9 729 27 11.88 33.74 37.67 Yes Yes
9 729 8 12.15 2.914 2.259 Yes Yes
9 729 8 12.05 2.924 2.236 Yes Yes
9 729 8 12.02 2.801 2.251 Yes Yes
9 729 8 12.01 3.147 2.229 Yes Yes
9 729 8 11.96 2.987 2.239 Yes Yes
9 729 8 11.95 2.964 2.275 Yes Yes
9 729 8 11.92 3.070 2.232 Yes Yes
9 729 8 11.91 2.983 2.255 Yes Yes
9 729 8 11.89 3.055 2.261 Yes Yes
9 729 8 11.88 2.920 2.250 Yes Yes
9 729 1 3.277 0.054 3.337 Yes Yes
9 729 1 12.16 0.256 2.622 Yes Yes
9 729 1 12.10 0.254 2.145 Yes Yes
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9 729 1 11.91 0.251 1.907 Yes Yes
9 729 1 11.90 0.338 2.384 Yes Yes

Table 2: Benchmark for the representations ρa of Sa for several such groups. The pa-
rameter d is the dimension of the space being certified for invariance and irreducibility,
Restr. Time is the time necessary to restrict the sampled group elements to the corre-
sponding block (i.e. using the notation above, the map g 7→ gi for the i-th block). The
last two columns specify whether invariance and irreducibility were certified for the
representation. The irreducibility certification algorithm was only run for blocks with
d < 150 due to the long expected runtime for larger blocks.

Wreath product groups Gab. The values of (a, b) = (2, 7), (2, 8), (3, 5), (3, 6),
and (4, 4) were used as benchmarks. Replab produces the following decompositions:

ρ27 ' C(35)⊕ C(35)⊕ C(21)⊕ C(21)⊕ C(7)⊕ C(7)⊕ C(1)⊕ C(1),

ρ28 ' C(70)⊕ C(56)⊕ C(56)⊕ C(28)⊕ C(28)⊕ C(8)⊕ C(8)⊕ C(1)

⊕C(1),

ρ35 ' C(80)⊕ C(80)⊕ C(40)⊕ C(32)⊕ C(10)⊕ C(1),

ρ36 ' C(240)⊕ C(192)⊕ C(160)⊕ C(64)⊕ C(60)⊕ C(12)⊕ C(1),

ρ44 ' C(108)⊕ C(81)⊕ C(54)⊕ C(12)⊕ C(1).

These decomposition were fed as input into RepCert. The results of the certification
step are shown in Tabs. 3 (with ε = 10−8). As can be seen in the aforementioned
table, for certain high-dimensional blocks the algorithm failed to certify invariance at
this precision. Because of this, the invariance certification algorithm was run again on
these blocks, this time with the lower precision of ε = 10−7. The results are displayed
in Tab. 4.

The dimensions of the blocks in Tab. 4 are ≥ 160, which leads us to expect that a
long runtime of the irreducibility certification algorithm on these blocks. In particular,
Tab. 6 shows that, the runtime required to restrict to a 120-dimensional subrepresenta-
tion and to certify that it is irreducible, can be well above 1h. Because of this, I have
decided to not certify irreducibility of the blocks in Tab. 4, but rather only to certify in-
variance. I leave a more comprehensive testing of RepCert – including the certification
of irreducibility of the blocks in Tab. 4 – for future work.

(a, b, c) dim ρabc Irr. d Inv. Time (s) Restr. Time (s) Irr. Time (s) Inv. Irr.

(2,7) 128 35 0.074 31.31 70.09 Yes Yes
(2,7) 128 35 0.074 31.42 70.78 Yes Yes
(2,7) 128 21 0.074 7.286 20.56 Yes Yes
(2,7) 128 21 0.074 7.373 20.73 Yes Yes
(2,7) 128 7 0.075 0.372 1.592 Yes Yes
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(2,7) 128 7 0.074 0.370 1.562 Yes Yes
(2,7) 128 1 0.075 0.011 1.430 Yes Yes
(2,7) 128 1 0.028 0.005 1.668 Yes Yes
(2,8) 256 70 0.512 270.4 463.5 Yes Yes
(2,8) 256 56 0.408 142.5 224.5 Yes Yes
(2,8) 256 56 0.406 142.7 226.9 Yes Yes
(2,8) 256 56 0.408 142.5 224.5 Yes Yes
(2,8) 256 28 0.406 18.69 40.07 Yes Yes
(2,8) 256 28 0.408 18.62 39.32 Yes Yes
(2,8) 256 8 0.509 0.674 2.123 Yes Yes
(2,8) 256 8 0.405 0.768 2.149 Yes Yes
(2,8) 256 1 0.455 0.026 1.668 Yes Yes
(2,8) 256 1 0.136 0.009 2.384 Yes Yes
(3,5) 243 80 0.426 433.6 672.7 Yes Yes
(3,5) 243 80 0.425 434.1 673.8 Yes Yes
(3,5) 243 40 0.427 57.81 99.53 Yes Yes
(3,5) 243 32 0.426 30.34 52.41 Yes Yes
(3,5) 243 10 0.562 1.167 3.971 Yes Yes
(3,5) 243 1 0.145 0.009 2.384 Yes Yes
(3,6) 729 240 7.642 - - No -
(3,6) 729 192 7.790 - - No -
(3,6) 729 160 7.721 - - No -
(3,6) 729 64 7.816 361.2 327.0 Yes Yes
(3,6) 729 60 7.737 285.7 266.2 Yes Yes
(3,6) 729 12 7.747 4.867 5.896 Yes Yes
(3,6) 729 1 2.110 0.040 2.145 Yes Yes
(4,4) 256 108 0.521 1000. 1689. Yes Yes
(4,4) 256 81 0.416 423.1 733.8 Yes Yes
(4,4) 256 54 0.411 130.4 210.8 Yes Yes
(4,4) 256 12 0.416 1.953 5.862 Yes Yes
(4,4) 256 1 0.138 0.009 2.145 Yes Yes

Table 3: Benchmark for the representations ρab ofGab for several such groups. The pa-
rameter d is the dimension of the space being certified for invariance and irreducibility,
Restr. Time is the time necessary to restrict the sampled group elements to the corre-
sponding block (i.e. using the notation above, the map g 7→ gi for the i-th block). The
last two columns specify whether invariance and irreducibility were certified for the
representation. The irreducibility certification algorithm was only run for blocks with
d < 150 due to the long expected runtime for larger blocks.
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(a, b, c) dim ρabc Irr. d Inv. Time (s) Inv.

(3,6) 729 240 7.657 Yes
(3,6) 729 192 7.762 Yes
(3,6) 729 160 7.653 Yes

Table 4: Certification of invariance of the two high dimensional blocks which failed
the invariance test in Tab. 3. These were certified using ε = 10−7, as opposed to the
lower value of ε = 10−8 used in Tab. 3. The other parameters are the same as those
used in that table.

Double wreath product groups Gabc. The values of (a, b, c) = (2, 2, 3), (2, 2, 4),
(2, 3, 3), and (3, 3, 3) were used as benchmarks. RepLAB produces the following de-
compositions:

ρ223 ' C(12)⊕ C(12)⊕ C(8)⊕ C(6)⊕ C(6)⊕ C(3)⊕ C(3)⊕ C(1)⊕ C(1),

ρ224 ' C(48)⊕ C(32)⊕ C(32)⊕ C(24)⊕ C(24)⊕ C(24)⊕ C(24)⊕ C(16)

⊕ C(8)⊕ C(8)⊕ C(6)⊕ C(4)⊕ C(4)⊕ C(1)⊕ C(1),

ρ225 ' C(160)⊕ C(120)⊕ C(120)⊕ C(80)⊕ C(80)⊕ C(80)⊕ C(80)⊕ C(60)

⊕C(40)⊕ C(40)⊕ C(40)⊕ C(40)⊕ C(32)⊕ C(10)⊕ C(10)⊕ C(10)

⊕C(10)⊕ C(5)⊕ C(5)⊕ C(1)⊕ C(1)

ρ233 ' C(54)⊕ C(36)⊕ C(36)⊕ C(27)⊕ C(27)⊕ C(27)⊕ C(12)⊕ C(9)

⊕C(8)⊕ C(6)⊕ C(1),

ρ233 ' C(216)⊕ C(216)⊕ C(108)⊕ C(72)⊕ C(18)⊕ C(12)⊕ C(6)⊕ C(8)

⊕C(1),

These decompositions were fed as an input to RepCert. The results and runtimes
for these are shown in Tabs. 5. As in the case of Tab. 3, the precision for the invari-
ance certificate is set to ε = 10−8 in these tests. For certain high-dimensional blocks,
the algorithm fails to certify invariance at such a high precision. Analogously to the
previous tests on the groups Gab, here we run the certification algorithm with precision
ε = 10−7 on these high-dimensional blocks. The results obtained are shown in Tab. 5.

(a, b, c) dim ρabc Irr. d Inv. Time (s) Restr. Time (s) Irr. Time (s) Inv. Irr.

(2,2,3) 64 1 0.025 0.007 1.668 Yes Yes
(2,2,3) 64 1 0.010 0.003 1.430 Yes Yes
(2,2,3) 64 3 0.017 0.041 0.227 Yes Yes
(2,2,3) 64 3 0.026 0.042 0.225 Yes Yes
(2,2,3) 64 6 0.018 0.282 1.087 Yes Yes
(2,2,3) 64 6 0.017 0.198 1.084 Yes Yes
(2,2,3) 64 8 0.017 0.491 1.988 Yes Yes
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(2,2,3) 64 12 0.017 1.296 5.220 Yes Yes
(2,2,3) 64 12 0.017 1.209 5.231 Yes Yes
(2,2,3) 64 12 0.018 1.312 5.256 Yes Yes
(2,2,4) 256 1 0.384 0.024 1.668 Yes Yes
(2,2,4) 256 1 0.128 0.008 2.384 Yes Yes
(2,2,4) 256 4 0.383 0.152 0.407 Yes Yes
(2,2,4) 256 4 0.382 0.234 0.416 Yes Yes
(2,2,4) 256 6 0.381 0.333 1.142 Yes Yes
(2,2,4) 256 8 0.382 0.638 1.964 Yes Yes
(2,2,4) 256 8 0.380 0.708 1.997 Yes Yes
(2,2,4) 256 16 0.381 3.704 9.830 Yes Yes
(2,2,4) 256 24 0.380 11.61 26.30 Yes Yes
(2,2,4) 256 24 0.379 11.45 26.13 Yes Yes
(2,2,4) 256 24 0.379 11.08 26.54 Yes Yes
(2,2,4) 256 24 0.385 11.49 26.36 Yes Yes
(2,2,4) 256 32 0.385 25.59 49.49 Yes Yes
(2,2,4) 256 32 0.380 25.97 49.17 Yes Yes
(2,2,4) 256 48 0.381 85.49 142.1 Yes Yes
(2,2,5) 1024 1 20.60 0.459 2.861 Yes Yes
(2,2,5) 1024 1 5.866 0.074 2.145 Yes Yes
(2,2,5) 1024 5 20.26 2.565 0.825 Yes Yes
(2,2,5) 1024 5 20.58 2.635 0.836 Yes Yes
(2,2,5) 1024 10 20.50 6.227 3.931 Yes Yes
(2,2,5) 1024 10 20.70 6.317 3.889 Yes Yes
(2,2,5) 1024 10 20.51 6.302 3.905 Yes Yes
(2,2,5) 1024 10 20.71 6.408 3.907 Yes Yes
(2,2,5) 1024 32 20.46 68.52 51.56 Yes Yes
(2,2,5) 1024 40 20.47 119.7 97.26 Yes Yes
(2,2,5) 1024 40 20.59 116.5 97.77 Yes Yes
(2,2,5) 1024 40 20.70 117.5 97.68 Yes Yes
(2,2,5) 1024 40 20.41 118.2 97.35 Yes Yes
(2,2,5) 1024 60 20.62 337.1 263.5 Yes Yes
(2,2,5) 1024 80 20.66 782.5 665.1 Yes Yes
(2,2,5) 1024 80 20.57 779.2 654.8 Yes Yes
(2,2,5) 1024 80 20.62 784.1 660.0 Yes Yes
(2,2,5) 1024 80 20.65 785.3 656.7 Yes Yes
(2,2,5) 1024 120 20.58 - - No -
(2,2,5) 1024 120 20.48 - - No -
(2,3,3) 216 1 0.078 0.007 1.907 Yes Yes
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(2,3,3) 216 6 0.229 0.315 1.132 Yes Yes
(2,3,3) 216 8 0.231 0.613 2.076 Yes Yes
(2,3,3) 216 9 0.231 0.809 3.095 Yes Yes
(2,3,3) 216 12 0.230 1.761 5.542 Yes Yes
(2,3,3) 216 27 0.228 16.42 34.92 Yes Yes
(2,3,3) 216 27 0.230 16.54 34.75 Yes Yes
(2,3,3) 216 36 0.230 37.08 73.78 Yes Yes
(2,3,3) 216 36 0.231 36.58 73.12 Yes Yes
(2,3,3) 216 54 0.313 120.8 200.2 Yes Yes
(3,3,3) 729 1 2.144 0.039 2.384 Yes Yes
(3,3,3) 729 6 7.533 1.536 1.173 Yes Yes
(3,3,3) 729 8 7.554 2.278 2.073 Yes Yes
(3,3,3) 729 12 7.533 4.662 5.596 Yes Yes
(3,3,3) 729 18 7.527 10.77 14.91 Yes Yes
(3,3,3) 729 72 7.611 456.5 487.6 Yes Yes
(3,3,3) 729 72 7.593 462.3 484.0 Yes Yes
(3,3,3) 729 108 7.505 1401. 1664. Yes Yes

Table 5: Benchmark for the representations ρabc of Gabc for several such groups. The
parameter d is the dimension of the space being certified for invariance and irreducibil-
ity, Restr. Time is the time necessary to restrict the sampled group elements to the
corresponding block (i.e. using the notation above, the map g 7→ gi for the i-th block).
The last two columns specify whether invariance and irreducibility were certified for
the representation. Only blocks with d < 150 were attempted to be certified due to the
long runtime expected for higher dimensions.

(a, b, c) dim ρabc Irr. d Inv. Time (s) Restr. Time (s) Irr. Time (s) Inv. Irr.

(2,2,5) 1024 120 20.76 2348. 2387. Yes Yes
(2,2,5) 1024 120 20.57 2351. 2379. Yes Yes

Table 6: Certification of the two blocks which failed the invariance test in Tab. 5. These
were certified using ε = 10−7, as opposed to the lower value of ε = 10−8 used in Tab. 5.
The other parameters are the same as those used in that table.
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Conclusions, outlook and open questions

Summary

Representation theory has a long and rich history of finding applications within the
physical sciences. Throughout my thesis, I have worked on expanding this palette by
developing representation theoretical tools for quantum information theory. My focus
has been on two research directions: 1. exploring the representation theory arising
from the stabilizer formalism, together with its relation to the Theta duality and to
t-designs, and 2. proposing efficient algorithms for the numerical decomposition of
representations.

Clifford and oscillator tensor powers. The Clifford group, and the closely-related
oscillator representation of the symplectic group, play a prominent role both in quan-
tum information science as well as outside it, in fields such as convex reconstruction,
automorphic forms and classical coding theory. In particular, tensor powers represen-
tations of the form,

Cl⊗t : U 7→ U⊗t, U ∈ Cl (28)

µ⊗t : S 7→ µ⊗t(S), S ∈ Sp(Z2n
d ), (29)

have attracted the attention of these communities. For instance, in [GH17], oscillator
tensor powers are studied in order to estimate the character ratios of the symplectic
group, that is, expressions of the form

∑

ρ∈Irr Sp(Z2n
d )

χρ(S)

dim ρ
, S ∈ Sp(Z2n

d ),

where χρ is the character of the irrep ρ. These ratios are important in a variety of
applications of harmonic analysis [GH20], not least of which being their role in the
characterization random walks on finite groups [DS81]. From a physics perspective,
detailed understanding of tensor powers with low order [ZKGG16, Zhu17, Web16] has
found a wealth of applications already. A prominent example, Ref. [BBC+19], pro-
vides an algorithm for classically simulating quantum computing. It uses information
about t = 5 tensor powers to bound the stabilizer rank of magic states—the quantity
on which their algorithm’s runtime depends. It can be expected, furthermore, that a
detailed understanding of higher-order tensor power representations can lead to further
improvements in this regard.

The list of applications in this regard goes on, from quantum device characteri-
zation [RKK+18, KR21], to coding theory [NRS06] and matrix recovery [KZG16b].
The rich research that has emanated from studying tensor power representations with
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t ≤ 5 is a strong motivation for studying higher-order tensor power representations. In
Chap. 2 I have presented my contribution to this subject.

Higher order tensor powers have been studied from three perspectives in the litera-
ture. In [GNW21], the commutant of Clifford tensor powers is studied. There, a basis
for this commutant is specified, with basis elements R(T ) being labeled by certain
subspaces T ⊂ Ztd × Ztd,

R(T ) =


 ∑

(x,y)∈T
|x〉〈y|



⊗n

.

These operators furthermore form a semi-group. In [NRS06, NRS01] the invariant

polynomials of the Clifford group are studied. In this regard, they find that the space
of homogenous invariants of degree (t, t) is spanned by polynomials pT defined as

pT (x) = (x⊗t)†R(T )x⊗t,

where x = (x1, . . . , xdn) ∈ Cdn . Finally Refs. [GH17, GH20] use the notion of
rank introduced in [How10] to extend the well-known theory of the Theta correspon-
dence [How89a, KV78] to the case of finite dual pairs of groups. Specifically, the
authors find a subspace of (Cdn)⊗t – the subspace of maximal rank representations –
in which there is a pairing between the irreps of symplectic-orthogonal dual pair. More
specifically, the action of µ⊗t on this subspace decomposes as

µ⊗t|max. rank subspace '
⊕

τ∈Irr O(Ztd)

τ ⊗ η(τ),

where η : Irr O(Ztd) → Irr Sp(Z2n
d ) is an injective function. This η correspondence

can be seen as a generalization of the Θ duality between O(Rt) and Sp(R2n).
Chap. 2 generalizes the formalism of the η correspondence in two regards. The

first section, published as [MMG21a], shows that this formalism can be used to de-
compose the full representation µ⊗t rather than just the maximal rank component.
A key feature here is that lower-rank sectors correspond to the CSS code spaces in-
troduced in [GNW21]. Moreover, there is a certain “self-similarity” between dif-
ferent rank layers: the aforementioned CSS codespaces are themselves isomorphic
to lower tensor power representations, µ⊗k with k < t. The second section, the
manuscript [MMG21b], extends this formalism in order to decompose Clifford tensor
power representations. Importantly, this generalization covers the qubit case (d = 2)
which was not addressed by the original formulation of the η duality.

As a sample application of these results, Chap. 2 shows that the problem of complex-
conjugating a black box Clifford evolutions is vastly simpler than the more general case
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involving arbitrary black box unitary evolutions. If one is given a black box under the
promise that it implements some unitary evolution U ∈ U(dn), then one requires at
least dn − 1 queries of the black box in order to implement Ū [QDS+19, MSM19].
This means that performing Ū is not much simpler than performing full tomography
on U (which would require & d2n samples). On the other hand, we show that if the
promise is strengthened by guaranteeing that U ∈ Cl, then ∼ d queries are sufficent.

Approximate unitary t-designs. Chap. 3 gives an exciting application of the rep-
resentation theory of Clifford tensor powers. There, an efficient construction of ap-

proximate unitary t-designs is proposed. Recall that an approximate nitary t-design is
a probability distribution p on U(2n) for which

∥∥EU∼p[U⊗(t,t)]− EU∼Haar[U
⊗(t,t)]

∥∥
� ≤ ε,

where U⊗(t,t) = U⊗t ⊗ Ū⊗t and ‖ · ‖� is the diamond norm,

‖A‖� = sup
ρ∈End C2n⊗End C2n

‖(A⊗ 122n)(ρ)‖1

‖ρ‖1

, A ∈ End End C2n .

Exact unitary t-designs have ε = 0.
Designs and approximate designs appear in a variety of fields: they are primitives

and quantum cryptography and quantum Shannon theory, they have found a variety of
uses in quantum and classical estimation problems, and they even serve as models for
quantum chaos and certain high energy physics phenomena. For t ≤ 3, the Clifford
group is the unitary design “par excellence” in quantum information theory [Zhu17,
Web16]. Additionally, while the Clifford group fails to be a 4-design, it is sufficiently
similar to a 4-design for many applications [ZKGG16, KZG16b, KZG16a].

Generally speaking, explicitly constructing exact higher order unitary designs is
not a simple task. One rather richly structured class of exact designs are those for
which p is the flat distribution on a finite group. These unitary t-groups are rather
uncommon though: there are only finitely many instances of unitary 4-groups, for
example [BNRT20]. Even more, Ref. [BNRT20] singles out the qubit Clifford group
as the only infinite family of finite 3-groups.

In contrast, approximate unitary t-designs can be constructed in a straightforward
way for any t [BHH16]. In that seminal paper, it is proven that local random quantum
circuits converge to approximate t-designs in depth k = O(t10n2 log(1/ε)). Concep-
tually, this result is beautiful: Most Haar random unitaries require exponentially deep
local quantum circuits to be approximated. Thus, while Haar randomness is often used
as a model for quantum chaos or as a tool for several quantum information processing
tasks, it is unphysical. On the other hand, the randomness provided by approximate
designs is the outcome of polynomially deep quantum circuits and, in this sense, is
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physical.
The construction in [BHH16] is, however, not too practical if one wishes to sam-

ple from a unitary t-design using a quantum computer. Specifically, this construction
would require the implementation of O(n2) arbitrary 2-qubit gates—this is beyond the
capabilities of most, if not all, current quantum devices.

Chap. 3 presents a construction of unitary t-designs out of quantum circuits whose
overwhelming majority of local gates are Clifford gates. Local Clifford gates are typi-
cally the first gates that can be performed to high fidelity on quantum devices. Further-
more Clifford gates have an easy fault-tolerant implementation and Clifford dominated
circuits may be efficiently simulated on a classical computer [BBC+19]. This makes
our construction highly relevant for near-term quantum computers. This result, more-
over, answers the question raised in [ZKGG16] of whether the Clifford group may be
used to generate high-order unitary designs.

Consider k-interleaved random Clifford circuits, namely, circuits of the form

U1KU2K . . . UkK,

where Ui ∈ Cl are uniformly random and K is a fixed single qubit unitary (acting, say,
on the first qubit). The main theorem in Chap. 3 states that if k = Ω(t4 log2 t log(1/ε))

and n = Ω(t2), then the distribution of k-interleaved random Clifford circuits are an
ε-approximate t-design. In the case that K is sampled uniformly from U(2), explicit
constants in the scalings for k and n are found.

Numerical decomposition of representations. There are instances in life where
one must find an explicit decomposition of a given representation—that is, one must
numerically provide a set of projectors onto the irreducible components of a numeri-
cally defined representaiton. This happens, for example, in the context of symmetrizing
semi-definite programs (SDPs). Recall that an SDP is an optimization problem of the
form

max
X∈Cn×n

tr(XA0) s.t. X ≥ 0, tr(XAi) = ai, i = 1, . . . , k, (30)

where Ai ∈ Cn×n are Hermitian matrices and ai ∈ R.
SDPs are a widespread tool in science and engineering. Quantum information the-

ory is not an exception here, with SDPs appearing on a range of applications from the
simulation of quantum computing, to the study of quantum correlations. As is usual for
quantum systems, SDPs arising here typically suffer from the curse of dimensionality,
leading many interesting problem instances to be hard to directly solve. All hope is not
lost, however: many of these SDPs are highly symmetric problems whose dimension
can thus be considerably reduced. An extreme example is the linear program (LP) used
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to compute the robustness of magic (a measure of distance to the polytope of stabilizer
states). Ref. [HG19] uses symmetry to exponentially reduce the dimension of the LP,
from 4N − 1 to N (where N is the number of qubits).

Reducing the dimension of symmetric SDPs is nothing new [Val09]. In the most
general case, one may aim to directly block-diagonalize the algebra A = 〈{Ai}i〉—
because this algebra is semi-simple, the Artin-Wedderburn theorem may be used for
this.. This allows one to restrict the SDP to positive semidefinite matrices with the

same block structure asA. Algorithms for this exist [MM11, CL20, MKKK10, MM10,
dKDP11, AMB04, CSX15, CCS19, BFS93], however their runtime scales rather steeply
with n which limits their applicability.

One would hope that considering more structured symmetries might increase the
efficiency of the block diagonalizing algorithms. In the context of quantum informa-
tion, many interesting SDPs have a symmetry described by a group representation. In
order to exploit such symmetries, it is necessary to explicitly decompose the corre-
sponding representaiton.

Consider an SDP, as in eq. (30), which has the following symmetry under a sub-
group G ⊂ U(n),

gAig
† = Ai, i = 0, 1, . . . , k, g ∈ G.

Then, if U ∈ U(n) block diagonalizes G as UgU † = ⊕kj=1ρj(g)⊗ Cmj , it is such that

UAiU
† =

⊕

j

1ρj ⊗ Aij.

This way, one may replace the optimization (30) with the following series of optimiza-
tions for each j

max
Xj∈Cmj×mj

tr(XjA0j) s.t. tr(XjAij) = ai, Xj � 0, (31)

Aij = A†ij, ∀ i, (32)

so that if X∗ optimizes (30) and X∗j optimizes (31), it holds that

tr(X∗A0) =
k∑

j=1

(dim ρj) tr
(
X∗jA0j

)
.

Algorithms for this problem – that of obtaining the block-diagonalizing transfor-
mation U out of G – is, of course, itself nothing new either. When G is finite, one may
in principle exactly decompose the representation over the cyclotomic field Q[ω|G|],
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where

ω|G| = exp

(
2iπ

|G|

)
.

This is the standard approach used by, e.g., the software suite GAP [GAP21]. While
this approach produces high-quality results, it is not suitable for large finite groups nor
continuous groups.

A second approach is the Dixon algorithm [Dix70]. This method is based on the
idea that generic elements of the commutant of a reducible group G are not multiples
of the identity (and thus contain some eigenvalue gap). This method may be adapted to
accomodate for numerical errors in the specification of group elements g ∈ G [BF91].
Its runtime, O(

∑
imin

5), is still too high for many interesting applications.
In Part II of this thesis, a novel algorithm for this task is discussed.
The method is divided into two tasks: It first uses a fast heuristic to propose a

decomposition ofG [RMMB19], and after this it runs a certification algorithm to probe
the accuracy of the claimed decomposition [MMRBG21].

The first step, which I summarized in Chap. 5, runs in time O(n3). Denis Rosset
and Jean-Daniel Bancal, with whom I collaborated on this research line, have coded the
software suite RepLAB [RB18] based on the aforementioned method. This method has
already been used on the SDPs arising from Bell experiments [TFR+21], quantum con-
textuality experiments [TCUA20], and quantum communication scenarios [FST21].

Anecdotally, RepLAB has been observed to work well. More systematically, in
Chap. 5 I have provided evidence that RepLAB’s results are expected to be accurate.
The evidence is not a rigorous proof of correctness, but rather relies on several simpli-
fying assumptions. These calculations served as a “sanity check,” i.e. they indicated
that the working principle of RepLAB is likely robust enough to be useful in practice.

The algorithm for the certification step was proposed in [MMRBG21], which is
Chap. 6 in this thesis. If d is the maximal dimension of a block in the decomposi-
tion obtained with RepLAB and D is the complexity of multiplying group elements
together, the runtime of this certifying algorithm is O(n3 log n + Dd2 log d). The two
terms in this runtime come from the two subroutines in the algorithm, invariance certi-

fication and irreducibility certification, whose functions are suggested by their names.
If a projector P is certified by this algorithm, then – barring the unlikely event of a
false positive – we may conclude that there exists a projector P0 onto an irreducible
G-subrepresentation such that ‖P − P0‖F ≤ ε.

I coded the certification algorithm and it is available at [MM21]. I discuss several
key features in the code and benchmarks on its runtime in Chap. 7.
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Outlook and open questions

Through the projects I have participated in, I have been able to answer several interest-
ing questions. Equally exciting, however, is the doors they open for future work. Here
I comment on some of these new possibilities.

Explicit descriptions of special blocks in the η correspondence. A very use-
ful identity in the study of Clifford tensor powers is that the subspace of Hn,t :=

((Cd)⊗n)⊗t invariant under the orthogonal stochastic group is spanned by stabilizer
tensor powers:

HSt
n,t := range


 ∑

O∈St(Ztd)

R(O)


 = span{|ψ〉⊗t | |ψ〉 ∈ STABn}.

Given the use that this identity has found in e.g. [GNW21, HMMH+20], it is natural
to ask whether other representation spaces have similarly explicit characterizations.

One possibility is to further characterize the irreducible blocks inHSt
n,t. By eq. (36)

in [MMG21b], whenever t is not a multiple of d this subspace decomposes as

HSt
n,t '

⊕

r

η(1Str), (33)

where Str ⊆ St is the stabilizer of an r-dimensional isotropic stochastic subspace
in Ztd. This decomposition must be “skewed” with respect to stabilizer tensor powers:
indeed stabilizer tensor powers form a single Cl-orbit, and so no such state is contained
in any invariant subspace η(1Str). With decomposition (33) in mind, it is natural to ask
for an explicit characterization of each irreducible subrepresentation ofHSt

n,t.
Consider the highest rank subspace, η(1St). This block is equivalently character-

ized as

C{U |max. rank〉 | U ∈ Cl},

where

|max. rank〉 =
∑

F∈Zt×nd , rankF=t

|F 〉 .

On this state, the subgroup Gl(Znd) ⊂ Cl generated by CADD gates acts trivially. Can
this description of the block be useful? Additionally, is Gl(Znd) ⊂ Cl the maximal
subgroup of Cl acting trivially on |max. rank〉? If the latter question were answered
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positively, then the following identity would hold,

η(1St) ' IndCl
Gln(1Gln).

Explicit full decomposition of Cl⊗t for fixed t. As has been discussed, Clifford
tensor powers of degree up to t = 4 are rather well understood and this understanding
has found several applications. A natural next step would be to find explicit decompo-
sitions of other fixed values of t, for example t = 5.

In this case, Z5
2 contains only five non-trivial isotropic stochastic subspaces, namely

N1 :=〈(01111)〉, N2 := 〈(10111)〉,
N3 :=〈(11011)〉, N4 := 〈(11101)〉,
N5 :=〈(11110)〉.

These are all one dimensional and have a trivial intersection. By the proof of Lem. V.6
in [MMG21b], every subrepresentation of ∆5,0 with rank< 5 is contained in span{CNi}i.
Then,

∆5,0 '


 ⊕

τ∈Irr St(Z5
2)

τ ⊗ η(τ)


⊕ CN1 ⊕ · · · ⊕ CN5 .

By Lem. III.4 in [MMG21b], CNi ' ∆0,3 for every i. Given that Cl is a unitary 3-
design, ∆0,3 cab be explicitly decomposed using Schur-Weyl duality. The outstanding
question is to find explicit expressions for the subrepresentations of rank 5.

Estimating non-stabilizerness. A prominent application of Schur-Weyl duality in
quantum information is for the problem of spectrum estimation, i.e. given t copies of
a state ρ, estimate its spectrum. For t large enough, one can of course simply perform
individual measurements on each copy of the state, reconstruct it, and obtain the spec-
trum. A considerable advantage, however, can be obtained by allowing measurements
on ρ⊗t which do not factorize across the copies. Specifically, Keyl and Werner [KW05]
use a projective measurement arising from Schur-Weyl duality for this. Schur-Weyl du-
ality looks at two commuting actions on Hn,t: the t-th tensor power representation of
U(Hn) and the representation of St which permutes tensor factors. As a U(Hn) × St
representation,

Hn,t '
⊕

λ

Uλ ⊗ Sλ, (34)

where λ is a partition of t into at most dn parts, Uλ ∈ Irr U(Hn) and Sλ ∈ Irr St.
The Keyl-Werner approach proposes the measurement {Pλ}λ on ρ⊗t, where Pλ is the
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orthogonal projector onto the λ-th term in (34). The spectrum is estimated by λ/dn

(possibly padded with zeros).
This is exciting: suddenly the Young diagram λ – the abstract label classifying the

isotypes in (34) – gains a physical meaning. Moreover, building on this result one may
obtain a sample-optimal algorithm for quantum tomography [HHJ+17].

Now, coming back to the topics covered in this thesis, I have provided a decompo-
sition of a different pair of dual actions onHn,t—the actions of Cl and St(T ). It would
be interesting to see which quantum estimation problems could be approached using
this decomposition. Particular suspects for such a problem are estimating the several
measures of non-stabilizerness (e.g. stabilizer rank, extent or fidelity [BBC+19]).

Consider for example the problem of estimating the stabilizer fidelity of a state,

F (|ψ〉) := max
|s〉∈Stabsn

| 〈s|ψ〉 |2,

given t copies of the state. A bound may at least be obtained by estimating the expected
value

〈
ψ⊗t
∣∣PStabs

∣∣ψ⊗t
〉
,

where PStabs projects onto the space spanned by stabilizer tensor powers, or, equiva-
lently, the trivial St(T ) isotype inHn,t. This expected value upper bounds the quantity
of interest as

Ft
(∣∣ψ⊗t

〉)
: = max

|s〉∈Stabsn
|
〈
s⊗t
∣∣ψ⊗t

〉
|2

= F (|ψ〉)t ≤
〈
ψ⊗t
∣∣PStabs

∣∣ψ⊗t
〉
.

The problem with this approach is that it is currently not known how tight this bound
is.

Now suppose that one implements some projective measurement {Pk} on |ψ⊗t〉 in
order to estimate F (|ψ〉). Then,

Ft
(∣∣ψ⊗t

〉)
= F

(
R(O)U⊗t

∣∣ψ⊗t
〉)
, ∀ U ∈ Cl, O ∈ St(T ),

so that the measurement operators are subject to

〈
ψ⊗t
∣∣U⊗t, †R†(O)PkR(O)U⊗t

∣∣ψ⊗t
〉

=
〈
ψ⊗t
∣∣Pi
∣∣ψ⊗t

〉
, ∀ |ψ〉 ∈ Hn.

It is natural to simply require the operators Pk to commute with U⊗t and R(O).
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By [MMG21b, Thm. V.2],

Pk =
⊕

i

⊕

τ∈Irr St(Ti)

P
(Ti,τ)
k ⊗ 1η(τ),

where P (Ti,τ)
k commutes with Ind

St(T )

St(T )Ni
(τ).

At this point one can ask two questions. First, could the simple choice of P (Ti,τ)
k =

δk,i1Ind(τ) be useful for the estimation of the stabilizer fidelity? Second, can one pro-
vide a physical meaning to the symbols τ classifying St(T ) irreps, in the same way
that Keyl and Werner provide a physical meaning to Young diagrams?

Duality arising from real Clifford group.An important take-home message from
the results in [GH17, GH20] is that, while the Theta correspondence fails to hold ex-
actly over finite fields, it does hold on a fairly large portion of Hilbert space. Specif-
ically it holds over the span µ⊗tmax. rk of all maximal rank subrepresentations in µ⊗t. A
short calculation using [MMG21a, Thm. 1.2] shows that, for any given t, this subspace
accounts for most of Hilbert space as n grows,

dimµ⊗tmax. rk

dimµ⊗t − dimµ⊗tmax. rk
= O(exp(−n)).

This property, of the η correspondence “covering” most of Hilbert space, was already
noted in [GH17] using different techniques.

Now, consider a qubit Clifford tensor power representation ∆t,0 with t = 0 mod 4.
An object of interest in this case is the Pauli-trivial subrepresentation,

C1t = range
∑

p∈P
P⊗t.

This representation, for example, plays a prominent role in Ref. [ZKGG16] which
looks at the case d = 2, t = 4.

In [MMG21b, Sec. VI] it is shown that the real Clifford group RCl acts on C1t as
a permutation representation of

RCl/RP ' O(Hn),

where RP is the real Pauli group and H is a hyperbolic plane. Notice the following
coincidence: when studying the commutant of µ⊗t for odd d, a permutation represen-
tation R of the orthogonal group O(Ztd) arises rather naturally. I show that this coin-
cidence is not vain: in [MMG21b, Lem. VI.1], I obtain an action ∆̃ of a certain sym-
plectic group Sp(Zt−2

2 ) which commutes with the real Clifford action IndRCl(∆t,0)|C1t
.
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Thus,

C1t '
⊕

τ∈Irr O(Hn)

τ ⊗Θ(τ),

where Θ(τ) is a possibly reducible Sp(Zt−2
2 ) representation. The question is then: can

one find an exact duality on a large subspace of C1t? This is the content of Conjec-
ture VI.1 in [MMG21b]: that there exists a subspace L ⊂ C1t such that

dimL
dim C1t − dimL = O(exp(−n)),

and such that there exists an injective function η : Irr O(Hn) → Irr Sp(Zt−2
2 ) for

which

L '
⊕

τ∈Irr O(Hn)

τ ⊗ η(τ).

A positive answer to this question would likely involve a further generalization of
the η correspondence formalism, which might then be used to better understand the
representation theory of RCl.

Clifford representation theory: whereto next? I am very fond of the results
found in Chap. 2. These extend the η correspondence formalism to the Clifford group,
which could in principle be used to provide a better understanding of the representation
theory of Cl. The catch is the words “in principle:” at the moment we do not have an
explicit-enough grasp of the St(T )-Cl duality in order to realize this possibility.

This situation can be contrasted to Schur-Weyl duality. There, the understanding of
the representaiton theory of the symmetric group can be leveraged to describe in great
detail the tensor power representations of the unitary group. These details can be, for
example, useful in quantum tomography [HHJ+17] through the use of the Keyl-Werner
spectrum estiamtion procedure [KW05].

Analogously, understanding Irr St(T ) could lead to handier results on the decom-
position of ∆t,0.

A simple case in which to start working d =odd and t 6= 0 mod d, in which
case St(T ) ' O(Zt−1

d ) is an orthogonal group. The representation theory of finite
orthogonal groups has been widely studied in mathematics through Deligne-Lusztig
theory (see e.g. [Gec17, DM20] or [Car85, Chap. 7]). An important tool to study these
is the “philosophy of cusp forms” [Bum04, Chap. 47].

The η correspondence has been introduced as an approach to the representation
theory of linear algebraic groups over finite fields which is complementary to the phi-
losophy of cusp forms and, more generally, Deligne-Lusztig theory [GH20]. However,
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recent work combining the insights of both approaches has lead to some progress, for
example in extending the η correspondence beyond the “stable regime” t ≤ n [Pan20].
With this motivation, it seems plausible that combining these two formalisms can con-
tinue to shed light on the Clifford representation theory. This paints a rough picture for
a future research direction: leverage the results from Deligne-Lusztig theory to obtain

more explicit information about ∆t,0.

A first place in which this research direction can be made concrete is the following.
The representations of the form

Ind
St(T )

St(T )Ni
(τ), τ ∈ Irr St(Ti),

which appear quite naturally in the context of Clifford tensor powers, are a central
object in the philosophy of cusp forms. There, they are known as parabolic inductions

and are used as the “building blocks” that generate Irr St(T ). A better understanding
of these representations would, for example, to a better understanding of the St(T )×Cl

decomposition ofHn,t

Namely, consider the decomposition

Ind
St(T )

St(T )Ni
(τ) '

⊕

τ ′∈Irr St(T )

Cm(τ,τ ′) ⊗ τ ′,

which entails

Hn,t '
⊕

i

⊕

τ∈Irr St(Ti)
τ ′∈Irr St(T )

Cm(τ,τ ′) ⊗ τ ′ ⊗ η(τ).

One possibly interesting question is when is m(τ, τ ′) = 1? Or, in a similar note, when

is (St(T )Ni , St(T )) a Gelfand pair?3 If it were the case that m(τ, τ ′) ∈ {0, 1} for all τ
and τ ′, then any Cl × St(T )-symmetric measurement would essentially be projective.
Indeed, any such measurement would be a coarse-graining of the measurement {Pτ,τ ′},
where the operator Pτ,τ ′ projects onto the τ ′ ⊗ η(τ) component. This would, rather
elegantly, provide a physical meaning to the pairs of symbols (τ, τ ′).

Unifying the codes RepLAB and RepCert. The projects comprising Part II of
this thesis have been mostly self-contained solutions to practical issues which were
encountered while developing RepLAB [RB18]. As opposed to Part I, they aim for
concreteness rather than generality. In this way, these projects leave little room for
open questions to in which to direct further research. That said, there remains one
practical aspect that should be addressed.

The code of RepCert was developed independently of RepLAB—they are two in-

3For a definition and discussion on Gelfand pairs, see [Chap. 45][Bum04].
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dependent packages which are even written in different languages, RepCert being in
Python and RepLAB being in MatLAB. As a first stage of algorithm development this
makes sense: It eases the use of data structures specifically designed for RepCert’s
needs, without having any dependencies on RepLAB’s larger repertoire of data struc-
tures. This was especially true since, throughout the period in which RepCert was
coded, RepLAB was during a phase of very active developing. Moreover, this sep-
aration allows one to easily benchmark RepCert’s performance independently of Re-
pLAB.

From the point of view of user experience, however, it would make sense to unify
both packages. That is, to code RepCert as a particular functionality of RepLAB, so
that the user can both decompose a representation and certify the decomposition within
the same piece of software. This will be the subject of future work.
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