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Kurzzusammenfassung 

 

Corynebacterium glutamicum ist ein Gram-positives, apathogenes Bodenbakterium. Es ist 

ein wichtiger industriell genutzter Aminosäureproduzent und dient als Modellorganismus für 

die Synthese der Zellhülle in verwandten pathogenen Arten wie Mycobacterium tuberculosis, 

dem Tuberkuloseerreger. Ein auffälliges Merkmal der Zellhülle dieser Bakterien ist das Vor-

handensein einer zweiten Permeabilitätsbarriere ähnlich der äußeren Membran Gram-

negativer Bakterien. Wichtige Bestandteile sind Trehalosemono- (TMM) und dimycolat 

(TDM), langkettige Fettsäuren, die mit einem Molekül des Disaccharids Trehalose verestert 

sind. Frühere Versuche mit C. glutamicum zeigten, dass die Verknüpfung im Periplasma 

erfolgt, wofür der Export beider Moleküle notwendig ist. Dieses Modell wurde durch neue 

Studien in Frage gestellt, welche MmpL-Transporter mit dem Export von TMM aus dem 

Cytosol in Verbindung brachten. Um das beschriebene Modell der TMM-Synthese zu 

überprüfen, wurde daher in dieser Arbeit der Export von Trehalose untersucht.   

In einem C. glutamicum Teststamm konnten die cytosolische Umwandlung zuvor aufgenom-

mener Maltose in Trehalose und dessen Exkretion nachgewiesen werden, wobei eine 

extrazelluläre Umwandlung ausgeschlossen wurde. Die bestimmte Exportrate von 0.19 nmol 

× mg-1 cdw × min-1 ist für die TMM-Synthese während des Wachstums ausreichend und war 

unabhängig von der Aktivität mechanosensitiver Kanäle, welche Trehalose in anderen 

Organismen freisetzen, und von der TMM-Synthese. Zusammen mit mechanistischen 

Analysen der Exkretion deutet dies auf das Vorhandensein eines Trehalosetransporters hin, 

der diese für die TMM-Synthese im Periplasma bereitstellt. TMM und TDM wurde nur in 

Zellen nachgewiesen, in denen einer von zwei redundanten MmpL-Transportern aktiv war. 

Es wird daher ein Modell vorgeschlagen, das eine periplasmatische Synthese von TMM aus 

zuvor exportierten Substraten und einem MmpL-vermittelten Transport von TMM aus der 

äußeren Schicht der Plasmamembran zur Mycolatschicht vereint.  

Da ein rationaler Ansatz nicht zur Identifizierung eines Trehaloseexporters führte, wurde ein 

genetisch kodierter Trehalosesensor entwickelt und optimiert, welcher für das Screening 

einer Mutantenbibliothek eingesetzt werden sollte. Die Affinität dieses Sensors konnte 

jedoch durch gerichtete Mutagenese nicht ausreichend reduziert werden, um eine in vivo-

Applikation zu ermöglichen. Der Trehaloseexporter von C. glutamicum ist daher weiterhin 

unbekannt.  



Abstract 

 

Corynebacterium glutamicum is a Gram-positive, non-pathogenic soil bacterium. It is one of 

the main industrial producers for amino acids and also serves as a model organism for cell 

envelope synthesis in related pathogenic species like Mycobacterium tuberculosis, the 

causative agent of tuberculosis. A common feature of their cell envelope is the presence of a 

second permeability barrier similar to the outer membrane of Gram-negative bacteria. 

Important constituents of this lipid bilayer are the glycolipids trehalose monomycolate 

(TMM) and trehalose dimycolate (TDM), long chain fatty acids esterified to the disaccharide 

trehalose. Previous experiments with C. glutamicum indicated that the linkage of trehalose 

and a mycolic acid precursor takes place in the periplasm, necessitating the export of both 

substrates. This model was challenged by the recently described connection of MmpL 

transporters to TMM transport from the cytosol to the periplasm. To validate the current 

model of TMM synthesis, the export of trehalose was investigated in this work.  

In a C. glutamicum test strain, the cytosolic conversion of imported maltose to trehalose and 

the excretion of the latter could be shown. The extracellular conversion of substrate to 

trehalose could be excluded. Trehalose accumulation in the supernatant occurred with a 

specific rate of 0.19 nmol × mg-1 cdw × min-1, which is sufficient to maintain mycolic acid 

synthesis during growth. The rate of trehalose excretion was independent of 

mechanosensitive channels, which mediate trehalose excretion in other bacteria, and of 

TMM synthesis. Together with mechanistic analyses, this indicates the presence of a carrier 

dedicated to provide trehalose for TMM synthesis in the periplasm.  

Confirming the results published by other groups, the detection of TMM and TDM in whole 

cell extracts was dependent on the activity of either of two MmpL proteins. Nevertheless, a 

model is presented in this work that allows the periplasmic synthesis of TMM after precursor 

export and that assumes the MmpL-catalysed transport of TMM from the outer leaflet of the 

plasma membrane across the periplasm to the outer membrane.  

A trehalose export carrier could not be identified in a rational approach. Thus, a genetically 

encoded trehalose sensor was constructed and optimised to allow the screening of a mutant 

library. Although functional in vitro, the affinity of this sensor for trehalose is still too high 

and could not be reduced sufficiently by site-directed mutagenesis to allow its application in 

C. glutamicum. Thus, the trehalose export system of C. glutamicum remains unknown.  
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1 Introduction 

1.1 Corynebacterium glutamicum is an industrial producer and a model organism 

Corynebacterium glutamicum is a Gram-positive soil bacterium belonging to the 

Corynebacterineae suborder of the Actinobacteria phylum (Liebl, 2005). C. glutamicum has 

been known since the 1950s for its ability to excrete L-glutamate into the culture super-

natant (Kinoshita et al., 1957) and today it is the main industrially applied producer of 

L-glutamate and other amino acids. 2.5 million tons of L-glutamate, which is mainly used as a 

flavour enhancer, and 1.5 million tons of L-lysine, which is mainly used for animal nutrition, 

are produced in fermentation processes with C. glutamicum per year (Becker & Wittmann, 

2012). Besides amino acids, nucleoside monophosphates, which also serve as flavour 

enhancers, are produced with C. glutamicum (Demain et al., 1966; Kazarinova et al., 2002). 

The continuous optimisation of production strains demands a profound understanding of 

metabolic and regulatory pathways to increase product yields, to reduce the formation of 

byproducts, or to allow the use of alternative carbon sources. Substrate import and product 

export are also important targets to further boost production (Burkovski & Krämer, 2002). 

C. glutamicum has been studied for several decades, which has led to the development of a 

variety of techniques to construct genetically engineered C. glutamicum strains. The 

production of multiple bulk and high-value compounds like vitamins, solvents, diamines, 

ethanol, and organic acids in genetically modified C. glutamicum strains has been achieved in 

the laboratory scale, showing potential future applications for this bacterium (Sahm & 

Eggeling, 1999; Smith et al., 2010; Blombach et al., 2011; Mimitsuka et al., 2007; Kind et al., 

2011; Inui et al., 2004; Okino et al., 2005).  

The Corynebacterineae suborder also comprises pathogenic species like Mycobacterium 

leprae, Corynebacterium diphtheriae, and Mycobacterium tuberculosis, the causative agents 

of leprosy, diphtheria, and tuberculosis, respectively. The latter causes about 2 million 

deaths per year, which is more than any other infectious disease (Dye, 2006). C. glutamicum 

serves as a model organism for cell envelope synthesis within the Corynebacterineae 

suborder. The cell envelope of Corynebacterineae shows a complex structure compared to 

other Gram-positive bacteria. While the envelope of C. glutamicum resembles that of myco-

bacteria and other related bacteria in structure and function, its composition is 
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comparatively simple (Puech et al., 2001). In addition, C. glutamicum is non-pathogenic, 

grows rapidly on different carbon sources, its genome has been sequenced completely 

(Kalinowski et al., 2003), and it has been used successfully for the expression of 

mycobacterial genes (Puech et al., 2001). 

1.2 Cell envelope architecture in C. glutamicum 

A common feature of the cell envelope of Corynebacterineae (Figure 1) is the presence of a 

second lipid membrane similar to the outer membrane of Gram-negative bacteria, which can 

be seen as a fracture plane in freeze-fractured cells (Puech et al., 2001). This bilayer mainly 

consists of mycolic acids, long chain α-alkyl, β-hydroxy fatty acids with 22 to 36 carbon 

atoms in C. glutamicum, that are covalently linked to the disaccharide trehalose as trehalose 

monomycolate (TMM) and trehalose dimycolate (TDM) as well as to the arabinogalactan 

layer, forming an approximately 42 Å thick hydrophobic permeability barrier in 

C. glutamicum (Bansal-Mutalik & Nikaido, 2011; Rath et al., 2013). The arabinogalactan layer 

is covalently attached to both the peptidoglycan layer and the mycolic acid layer, 

constituting a mycolyl-arabinogalactan-peptidoglycan complex on top of the plasma 

membrane. The cell envelope is completed by an outer layer mainly consisting of 

carbohydrates and a minor share of free fatty acids (Puech et al., 2001). In some but not all 

species, an additional surface layer consisting of proteins can be found (Chami et al., 1995; 

Soual-Hoebeke et al., 1999). Mycolic acids found in corynebacteria have a simple structure in 

comparison to their mycobacterial equivalents. In general, the latter are longer (C70 – C90) 

and carry modifications like desaturations, cyclopropane rings, methoxy groups, and keto 

groups. Besides TMM and TDM, a multitude of other lipid compounds is present in the 

mycolic acid layer of mycobacteria like phthiocerol dimycocerosates, glycopeptidolipids, 

polyacyltrehaloses, and sulfolipids (Brennan & Nikaido, 1995).  

The mycolic acid layer is a major determinant of the low permeability of the cell envelope for 

antibiotics and other noxious compounds (Liu et al., 1996; Jackson et al., 1999). Mycolic acid 

synthesis is essential in mycobacteria and thus of high medical interest as a drug target for 

the treatment of tuberculosis. This extends to the synthesis of trehalose, a non-reducing 

disaccharide, which forms the polar head groups of TMM and TDM (De Smet et al., 2000; 

Kalscheuer et al., 2010). 
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Figure 1: Cell envelope structure of C. glutamicum. PM: plasma membrane; PG: peptidoglycan layer; 

AG: arabinogalactan layer; MM: mycolic acid membrane; OL: outer layer; TDM: trehalose 

dimycolate; TMM: trehalose monomycolate; MA: mycolic acids; PL: phospholipids; Boxes: 

membrane proteins. Structure and composition are adapted from Puech et al. (2001). 

In C. glutamicum, the mycolic acid layer has also been investigated for its contribution to 

amino acid excretion. L-glutamate excretion can be triggered under different conditions like 

biotin limitation, the addition of surfactants, antibiotics, or by temperature upshifts (Shiio et 

al., 1962; Nara et al., 1964; Takinami et al., 1964; Delaunay et al., 1999; Radmacher et al., 

2005b). The mechanosensitive channel MscCG has been shown to be involved in L-glutamate 

transport across the plasma membrane (Nakamura et al., 2007). Restricted by the 

hydrophobicity of the mycolic acid layer, porin proteins located in the mycolic acid layer 

probably allow the efflux of amino acids to the surrounding. Four different porins were 

identified in C. glutamicum and mycolylation of two of them has been shown recently (Huc 

et al., 2013). Notably, mycolic acid synthesis is not essential in C. glutamicum. Strains unable 

to synthesise trehalose constantly excreted L-glutamate to the medium, an effect caused by 

the lack of trehalose mycolates in these mutants (Gebhardt et al., 2007).  

The investigation of trehalose metabolism in C. glutamicum is thus of interest for the 

optimisation of C. glutamicum production strains as well as for the identification of new drug 

targets for the treatment of tuberculosis. 
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1.3 Trehalose synthesis in C. glutamicum 

Trehalose plays an important role in many organisms. It protects proteins and membranes 

during anhydrobiosis, serves as transport sugar in the haemolymph of arthropods, acts as 

compatible solute under conditions of hyperosmotic stress, and it is an important precursor 

for the mycolic acid membrane in Corynebacterineae (Strom & Kaasen, 1993; Crowe et al., 

1998; Arguelles, 2000; Luzardo et al., 2000; Tropis et al., 2005).  

In C. glutamicum, changes of the external osmolality trigger a sequence of adaptation 

mechanisms to adjust the osmotic strength of the cytosol to the external conditions to 

maintain the turgor pressure of the cell. An immediate response to hyperosmotic conditions 

is the uptake of K+ to prevent the loss of water from the cell (Wolf et al., 2003). For long-

term adaptation, K+ is then replaced by the accumulation of compatible solutes. These can 

either be taken up from the medium like glycine betaine, or they can be synthesised 

endogenously, like L-glutamate, L-proline, and trehalose. Trehalose synthesis becomes the 

most important adaptation mechanism under conditions of nitrogen starvation in the 

absence of compatible solutes in the medium (Wolf et al., 2003).  

In C. glutamicum, M. tuberculosis, and M. smegmatis three pathways are present for the 

synthesis of trehalose (Figure 2) (De Smet et al., 2000; Wolf et al., 2003). In contrast to many 

other bacteria, the most important pathway for trehalose synthesis under hyperosmotic 

conditions in C. glutamicum is the TreYZ-pathway. Two enzymes, maltooligosyltrehalose 

synthase (TreY) and maltooligosyltrehalose trehalohydrolase (TreZ), convert maltodextrines, 

which are intermediates of the glycogen metabolism in C. glutamicum, to trehalose. 

Expression of treY and treZ is constitutive to enable a fast response to sudden osmotic 

upshifts and is only slightly induced under hyperosmotic conditions (Wolf et al., 2003). The 

OtsAB-pathway converts the activated precursors UDP-glucose and glucose-6-phosphate to 

trehalose by the sequential action of trehalose-6-phosphate synthase (OtsA) and trehalose-

6-phosphate phosphatase (OtsB). Although otsA expression is slightly enhanced after 

osmotic upshifts, its activity is dispensable for trehalose synthesis under these conditions 

and thus the physiological function of this pathway in C. glutamicum remains unclear (Wolf 

et al., 2003). In the third pathway, trehalose synthase (TreS) catalyses the conversion of 

maltose to trehalose, but in C. glutamicum this pathway is only relevant for trehalose 

synthesis during growth with maltose as substrate (Tzvetkov et al., 2003). Although this 

reaction is reversible, flux from trehalose to maltose seems to prevail in the cell. TreS could 
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thus be important for trehalose degradation after conditions of hyperosmotic stress (Wolf et 

al., 2003; Kim et al., 2010a; Miah et al., 2013).  

TreS catalyses the interconversion of maltose and trehalose by a double displacement 

mechanism. A nucleophilic attack of the glucosidic bond by the catalytic L-aspartate residue 

leads to the intramolecular release of glucose, which reorients without leaving the catalytic 

site of the enzyme, and attacks the enzyme-bound intermediate (Zhang et al., 2011). Besides 

the transglucosylating activity of TreS, the release of small amounts (<10%) of glucose as a 

byproduct was also observed in vitro (Koh et al., 1998; Pan et al., 2004; Kim et al., 2010a). 

Two additional pathways for trehalose synthesis are known in other bacteria. Trehalose 

glycosyltransferring synthase (TreT) catalyses the formation of trehalose from ADP-glucose 

and glucose (Qu et al., 2004) and trehalose phoshphorylase (TreP) uses glucose-1-phosphate 

and glucose as substrates for trehalose synthesis (Maruta et al., 2002). However, both 

pathways are not present in corynebacteria.  

 

 

Figure 2: Trehalose synthesis in C. glutamicum. OtsA: trehalose-6-phosphate synthase; OtsB: 

trehalose-6-phosphate phosphatase; TreS: trehalose synthase; TreY: maltooligosyltrehalose syn-

thase; TreZ: maltooligosyltrehalose trehalohydrolase. Adapted from Wolf et al. (2003) with 

modifications. 

M. tuberculosis and M. smegmatis possess the same pathways for trehalose synthesis as 

C. glutamicum. While viable C. glutamicum mutants lacking all three pathways for trehalose 

synthesis have been successfully created (Wolf et al., 2003; Tropis et al., 2005), this was not 
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possible in mycobacteria and trehalose synthesis is thus thought to be essential in these 

bacteria (Woodruff et al., 2004; Murphy et al., 2005). Trehalose synthesis and its metabolism 

are thus interesting drug targets for the treatment of mycobacterial infections. 

1.4 Trehalose catabolism in C. glutamicum 

C. glutamicum can use different substrates like sugars, sugar alcohols, organic acids, or 

peptides as carbon and energy sources. In mixed-substrate cultivations, the co-utilisation of 

most carbon sources is observed for this bacterium (Arndt & Eikmanns, 2008). Besides its 

role as osmoprotectant and precursor for the synthesis of mycolic acids, trehalose also 

serves as substrate for growth for C. glutamicum (Henrich, 2011).  

The transport system responsible for trehalose uptake was recently identified (Henrich, 

2011). The gene cluster cg0830 – cg0835 (tus-genes) encodes an ABC trehalose uptake 

system with high affinity (KM = 0.16 µM) but low transport capacity (vmax = 2.5 nmol × mg-1 

cdw × min-1). Genes in this cluster encode two putative membrane proteins, cg0831 (tusF) 

and cg0832 (tusG), a putative periplasmic solute binding protein, cg0834 (tusE), and an 

ATPase protein, cg0835 (tusK) (Henrich, 2011). Further, two genes encoding proteins with 

unknown function are also encoded in the tus-cluster. The gene cg0830 encodes a predicted 

membrane protein with two transmembrane domains, cg0833 putatively encodes a soluble 

cytosolic protein (Schulte, 2011). Both are not required but beneficial for trehalose uptake 

(Rehorst, 2013). The genes cg0830 and cg0833 form a transcriptional operon with tusF and 

tusG, while tusE and tusK are transcribed monocistronically (Henrich, 2011; Schulte, 2011). 

C. glutamicum utilises trehalose only as a co-substrate, but spontaneous mutants were 

isolated that can use trehalose as sole carbon source (Henrich, 2011). Because the tus-genes 

are expressed independently of the carbon source and because of the low transport capacity 

of the trehalose uptake system, this has been assumed to be rather important for the 

recycling of trehalose, which is released in the periplasm during TDM synthesis, than for the 

utilisation of trehalose as carbon source. This assumption is also based on the recent 

identification of the trehalose uptake system LpqY-SugA-SugB-SugY in M. tuberculosis and 

M. smegmatis, which is characterised by its constitutive expression, its high specificity for 

trehalose, its low transport velocity, and its importance for virulence (Kalscheuer et al., 

2010). The finding of a trehalose uptake system in M. tuberculosis was surprising since this 

bacterium is thought to thrive on fatty acids due to the absence of sugar substrates in 
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human phagocytes and especially the absence of trehalose synthesis in mammals (Marrero 

et al., 2010).  

After trehalose uptake and the TreS catalysed conversion to maltose, trehalose is degraded 

via the same pathways as maltose (Figure 3), which can enter the cell via the ABC 

transporter MusFGK2E (Henrich et al., 2013). It is then metabolised by the enzyme 

4-α-glucanotransferase (MalQ), which forms maltodextrines and glucose, which is then 

phosphorylated by a glucokinase (Glk) to glucose-6-phosphate. A maltodextrine phosphory-

lase (MalP) phosphorolytically cleaves maltodextrines to form glucose-1-phosphate, which is 

then isomerised to glucose-6-phosphate by phosphoglucomutase (Pgm). The latter is then 

degraded via reactions of central carbon metabolism.  

 

 

Figure 3: Uptake and degradation of trehalose and maltose in C. glutamicum. PPP: pentose 

phosphate pathway; EMP: Embden-Meyerhof pathway. For further abbreviations see text. 

 

The presence of a second pathway for maltose and trehalose degradation in C. glutamicum 

has been shown (Henrich, 2011) in succession to its identification in M. tuberculosis and 

M. smegmatis as the sole pathway for trehalose degradation in these bacteria (Kalscheuer et 

al., 2010). Accordingly, maltose is phosphorylated to maltose-1-phosphate by a maltokinase 



Introduction   8 

(TreX) and incorporated into α-glucans, intermediates of glycogen metabolism in C. 

glutamicum (Seibold & Eikmanns, 2007), by a maltosyltransferase (GlgE) (Figure 3). However, 

it is not yet understood under which conditions this pathway is active and what impact it has 

on the metabolism of maltose and trehalose.  

In contradiction to its function as carbon source, trehalose accumulation as byproduct is 

frequently observed during bioreactor cultivation of C. glutamicum (Vallino & 

Stephanopoulos, 1993; Gourdon & Lindley, 1999; Wittmann & Heinzle, 2001). Considering 

the presence of an uptake system for trehalose and enzymes for its degradation, this 

observation was unexpected. This also indicates the presence of a trehalose export system in 

C. glutamicum but neither the mechanism of trehalose excretion to the medium nor a 

regulatory mechanism, which could be expected to hinder the uptake of trehalose, has been 

investigated in C. glutamicum yet. 

1.5 Trehalose as precursor for TMM synthesis 

Further support for the presence of a trehalose export system comes from the investigation 

of TMM and TDM synthesis in C. glutamicum. The main features of this pathway are 

supposed to be similar in different members of the Corynebacterineae, albeit additional 

steps for the synthesis of more complex mycolic acid derivatives are required in some 

members of this group. In contrast to mycobacteria, corynebacterial mutants defective in 

mycolic acid synthesis or transport are viable and thus, the latter are important model 

organisms for the examination of mycolic acid synthesis and transport.  

The precursors for mycolic acid synthesis are two fatty acids. C. glutamicum possesses two 

type-I fatty acid synthases, FAS-IA and FAS-IB (Radmacher et al., 2005a). Products of these 

enzymes are mostly C16 – C18 fatty acids during growth on glucose as substrate (Radmacher 

et al., 2005a). In M. smegmatis and M. tuberculosis, a FAS-II enzyme complex is present that 

further elongates FAS-I products (Bloch, 1977). As shown in Figure 4, mycolic acid synthesis 

then proceeds with the activation of two fatty acids via adenylation and carboxylation, 

respectively (Trivedi et al., 2004; Portevin et al., 2005; Gande et al., 2007). A polyketide 

synthase encoded by cg3178 in C. glutamicum catalyses the decarboxylative condensation of 

the two activated precursors to an α-alkyl, β-keto-acyl intermediate (Gande et al., 2004; 

Portevin et al., 2004). During condensation, the substrates and products are covalently 

linked to the polyketide synthase domains via thioester bonds (Gande et al., 2004) and the 
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condensation product is probably transferred to a mannosylphosphopolyprenol carrier (‘X’ in 

Figure 4) that has been identified as a TMM precursor in M. smegmatis (Besra et al., 1994). 

The final α-alkyl, β-hydroxy mycolic acid motif is then formed by the reduction of the 

precursor (Lea-Smith et al., 2007). 

 

 

Figure 4: Final steps of mycolic acid synthesis. Gene numbers for C. glutamicum genes encoding the 

presented enzymes are given in brackets. X denotes the mannosylphosphopolyprenol carrier 

identified as a putative mycolic acid carrying precursor for TMM in M. smegmatis. Modified after 

Portevin et al. (2005). 

 

The lasts steps of TMM synthesis in Corynebacterineae are still discussed controversially in 

the literature. Especially the localisation of the TMM forming transfer of mycolic acids onto 

trehalose remains uncertain. Nevertheless, TMM has been shown to be the mycolic acid 

donor for the formation of TDM and the mycolylation of arabinogalactane. Thereby, one 

molecule of trehalose is released to the periplasm per reaction cycle, which is catalysed by 

six mycolyltransferases with partial redundancy in C. glutamicum (Brand et al., 2003; De 

Sousa-D'Auria et al., 2003). ABC trehalose uptake systems recently identified in 

mycobacteria (Kalscheuer et al., 2010) and in C. glutamicum (Henrich, 2011) are probably 

important for the re-uptake of trehalose released to the periplasm during TDM synthesis. 
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Based on studies in M. tuberculosis and C. matruchotii, a pathway has been proposed, in 

which the mycolic acid moiety is transferred from a mannosylphosphopolyprenol carrier to 

trehalose-6-phosphate, yielding TMM-phosphate, by a hypothetical mycolyltransferase. 

TMM-phosphate could then be dephosphorylated by a hypothetical phosphatase in the 

cytosol (Shimakata & Minatogawa, 2000; Takayama et al., 2005). This model is supported by 

the observation that [14C]-labelled trehalose was only incorporated into trehalose glycolipids 

after its uptake in M. tuberculosis (Kalscheuer et al., 2010).  

Furthermore, it was recently published by several groups that inhibition of MmpL3 led to the 

accumulation of TMM in M. tuberculosis and M. smegmatis (Grzegorzewicz et al., 2012; La 

Rosa et al., 2012; Tahlan et al., 2012; Varela et al., 2012). MmpL proteins (mycobacterial 

membrane protein large) belong to the RND (restriction, nodulation, cell division) family, 

secondary active efflux transporters with broad substrate spectrum, which are found in all 

domains of life. These proteins have 12 transmembrane domains (TMD) and two large 

periplasmic domains between TMD 1 and 2 and TMD 7 and 8, which are responsible for 

substrate specificity (Yu et al., 2005). In M. tuberculosis, a total of 13 mmpL-genes are 

present. Identified substrates for MmpL transporters in M. tuberculosis comprise lipids 

found in the cell envelope like phthiocerol dimycocerosate for MmpL7 (Camacho et al., 

2001) and diacyltrehalose sulfate, a precursor for sulfolipid-I synthesis, for MmpL8 (Converse 

et al., 2003; Domenech et al., 2004). Four mmpL-genes are also present in C. glutamicum 

and simultaneous inactivation of two of these genes led to the absence of mycolic acids in 

the cell envelope. In contrast to the situation in mycobacteria, no accumulation of TMM was 

observed in this mutant (Varela et al., 2012). Thus, also transport was not shown 

biochemically, MmpL3 and homologous proteins in C. glutamicum were suggested to export 

TMM from the cytosol to the periplasm (Grzegorzewicz et al., 2012; La Rosa et al., 2012; 

Tahlan et al., 2012; Varela et al., 2012). Nevertheless, the role of MmpL transporters in the 

glycolipid metabolism of C. glutamicum remains uncertain.  

In contrast, a second hypothesis assumes that trehalose and a mycolic acid precursor are 

exported independently and react to TMM in the periplasm. Trehalose is assumed to be the 

precursor for TMM synthesis rather than trehalose-6-phosphate since trehalose synthesis via 

either of three pathways in C. glutamicum is sufficient to enable TMM synthesis (Tzvetkov et 

al., 2003; Wolf et al., 2003). Most importantly, in C. glutamicum ΔotsA ΔtreS ΔtreY Δtus, a 

mutant which is unable to synthesise and to take up trehalose, trehalose mycolate synthesis 
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could be restored by the addition of trehalose to the medium (Henrich, 2011). Further proof 

for this theory was given by the identification of an ABC transporter in C. matruchotii, which 

probably exports short-chain mycolic acids to the periplasm (Wang et al., 2006). Besides the 

export of an activated mycolic acid precursor, a prerequisite for TMM synthesis in the 

periplasm is the export of trehalose from the cytosol to the periplasm. Although trehalose is 

known to accumulate in the culture supernatant of C. glutamicum, the mechanism of 

trehalose excretion has not been investigated yet and the export system is not known. 

1.6 Aims of this project 

The model of periplasmic TMM synthesis in C. glutamicum from trehalose and a mycolic acid 

precursor requires the export of both a mycolic acid precursors and trehalose to the 

periplasm. This model is supported by the ability of C. glutamicum ΔotsA ΔtreS ΔtreY Δtus to 

use external trehalose for TMM synthesis but was challenged by the recent identification of 

MmpL proteins in C. glutamicum and related species and their assignment to the export of 

TMM to the periplasm.  

To validate the assumption of periplasmic TMM formation, trehalose excretion in 

C. glutamicum should be investigated qualitatively and quantitatively in this work. 

C. glutamicum test strains should be constructed to investigate trehalose export. Analytical 

techniques for the sensitive and specific quantification of intra- and extracellular trehalose 

concentrations should be developed to allow the mechanistic analysis of trehalose excretion. 

Besides testing unspecific mechanism probably contributing to trehalose accumulation in the 

culture supernatant, a set of genes putatively encoding sugar export systems in 

C. glutamicum should be tested for their contribution to trehalose excretion. In parallel, the 

identification of the assumed trehalose export system should be achieved by the screening 

of a C. glutamicum mutant library. To enable the identification of mutants with altered 

intracellular trehalose concentrations, a trehalose sensor based on the trehalose binding 

protein of C. glutamicum should be constructed.  

Further, trehalose transport should be investigated in C. glutamicum to resolve the apparent 

contradiction of trehalose accumulation in the supernatant of C. glutamicum cultures in 

spite of the presence of an uptake system in this bacterium. In this context, the 

biotechnological significance of engineering trehalose uptake in C. glutamicum should be 

addressed.   



Material and Methods   12 

2 Material and Methods 

2.1 Bacterial strains, plasmids, and oligonucleotides 

All bacterial strains used in this work are shown in Table 1.  

 

Table 1: Strains used in this work. 

C. glutamicum Genotype or application Reference 

ATCC 13032  Wild type (Abe et al., 1967) 

Δcg0284 Deletion of cg0284  This study 

Δcg3174 Deletion of cg3174 This study 

Δcg3174 Δcg0284 Deletion of cg3174 and cg0284 This study 

IMcg2893 Insertion of pDrive in cg2893 This study 

DM1729 Lysine overproduction strain, pyc
P458S

, hom
V59A

, lysC
T311I

 (Georgi et al., 2005) 

DM1729 IMcg0834 DM1729 with insertion of pDrive in cg0834 This study 

ΔmalQ Deletion of malQ (Henrich, 2011) 

ΔmalQ ΔtreX Deletion of malQ and treX This study 

ΔmalQ ΔtreX Δtus Deletion of malQ, treX, and the cg0831 – cg0835 gene cluster This study 

ΔmalQ ΔtreX Δtus IMcg0206 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg0206 

This study 

 

ΔmalQ ΔtreX Δtus IMcg0340 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg0340 

This study 

 

ΔmalQ ΔtreX Δtus IMcg0501 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg0501 

This study 

 

ΔmalQ ΔtreX Δtus IMcg0772 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg0772 

This study 

 

ΔmalQ ΔtreX Δtus IMcg1212 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg1212 

This study 

 

ΔmalQ ΔtreX Δtus IMcg1289 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg1289 

This study 

 

ΔmalQ ΔtreX Δtus IMcg1399 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg1399 

This study 

 

ΔmalQ ΔtreX Δtus IMcg1526 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg1526 

This study 

 

ΔmalQ ΔtreX Δtus IMcg2618 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg2618 

This study 

 

ΔmalQ ΔtreX Δtus IMcg2739 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg2739 

This study 

 

ΔmalQ ΔtreX Δtus IMcg2893 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg2893 

This study 

 

ΔmalQ ΔtreX Δtus IMcg2895 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg2895 

This study 

 

ΔmalQ ΔtreX Δtus IMcg2971 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg2971 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3038 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3038 

This study 
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C. glutamicum Genotype or application Reference 

ΔmalQ ΔtreX Δtus Δcg3178 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

cg3178 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3226 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3226 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3240 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3240 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3245 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3245 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3301 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3301 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3334 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3334 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3353 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3353 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3387 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3387 

This study 

 

ΔmalQ ΔtreX Δtus IMcg3395 Deletion of malQ, treX, the cg0831 – cg0835 gene cluster, and 

insertion of pDrive in cg3395 

This study 

 

ΔmalQ ΔmscCG ΔmscL Deletion of malQ, mscCG, and mscL (Henrich, 2011) 

ΔmalQ ΔtreX ΔmscCG ΔmscL Deletion of malQ, treX, mscCG, and mscL This study 

ΔmalQ ΔtreX ΔtreS Deletion of malQ, treX, and treS This study 

Δmus Deletion of the cg2703 – cg2708 gene cluster (Henrich, 2011) 

ΔtreS Deletion of treS (Wolf et al., 2003) 

ΔtreS Δtus Deletion of treS and the cg0831 – cg0835 gene cluster This study 

ΔotsA ΔtreS ΔtreY Deletion of otsA, treS, and treY (Wolf et al., 2003) 

ΔotsA ΔtreS ΔtreY Δtus Deletion of otsA, treS, treY, and the cg0831 –cg0835 gene 

cluster 

(Henrich, 2011) 

E. coli Genotype or application Reference 

DH5α-mcr endA1 supE44 thi-1 λ-recA1 gyrA96 relA1 deoR Δ(lacZYA-argF) 

U196 Φ80lacZΔM15 mcrA Δ(mmr hsdRMS mcrBC) 

(Grant et al., 1990) 

BL21 (DE3) F
-
 dcm ompT hsdS(rB

-
 mB

-
) gal λ(DE3) (Studier & Moffatt, 

1986) 

JM109 endA1 recA1 gyrA96 thi-1 hsdR17 (rK
-
 mK

+
) relA1 supE44 Δ(lac-

proAB) [F’ traD36 proAB laqI
q
 lacZΔM15] 

(Yanisch-Perron et al., 

1985) 

 

All plasmids used in this work are shown in Table 2.  

 

Table 2: Plasmids used in this work. 

Plasmid   Relevant characteristic or application Reference 

pBB1 Constitutive overexpression of genes in E. coli and 

C. glutamicum. Ptac, Cm
R
 

(Krause et al., 2010) 

pET29b(+)  IPTG-inducible overexpression of genes in E. coli BL21 

(DE3). PT7, Kan
R
, C-terminal 6×Histag, lacI. 

Novagen, Darmstadt 

 

pTre1 Trehalase gene from R. marinus ligated to pET23a(+) (Jorge et al., 2007) 

pET29b_tre_rmr Overexpression of a trehalase gene from R. marinus in E. 

coli BL21 (DE3) 

This study 

 

pET29b_tusE Overexpression of tusE in E. coli BL21 (DE3) This study 
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Plasmid   Relevant characteristic or application Reference 

pET29b_tusEΔN25 Overexpression of tusEΔN25 in E. coli BL21 (DE3) This study 

pET29b_tusEΔN32 Overexpression of tusEΔN32 in E. coli BL21 (DE3) This study 

pET29b_TreSen1-34 Overexpression of trehalose nanosensors TreSen1 - 34 in 

E. coli BL21 (DE3) 

This study 

pDrive Cloning vector. Kan
R
, Amp

R
, lacZα. Qiagen, Hilden 

pJET Cloning vector. Amp
R
. Thermo Scientific ,USA 

pK19mobsacB Plasmid for gene deletion in C. glutamicum. Kan
R
, oriVE. 

coli, oriT, mob, sacB 

(Schäfer et al., 1994) 

pK19mobsacB_Δcg0284 Plasmid for deletion of cg0284 in C. glutamcium This study 

pK19mobsacB_Δcg3174 Plasmid for deletion of cg3174 in C. glutamcium This study 

pK19mobsacB_Δcg3178 Plasmid for deletion of cg3178 in C. glutamcium This study 

pK19mobsacB_ΔtreX  Plasmid for deletion of treX in C. glutamcium This study 

pK19mobsacB_ΔtreStreX Plasmid for deletion of treS and treX in C. glutamcium This study 

pK19mobsacB_Δtus Plasmid for deletion of the cg0831 – cg0835 gene cluster (Henrich, 2011) 

pRSETb_AT1.03, 

pRSETb_AT1.03
YEMK

, 

pRSETb_AT3.10
MGK

, 

pRSETb_AT1.03
R122K/R126K

 

Overexpression of AT1.03, AT1.03
YEMK

, AT3.10
MGK

, and 

AT103
R122K/R126K

 in E. coli 

(Imamura et al., 2009) 

pBB1_AT1.03, pBB1_AT1.03
YEMK

, 

pBB1_AT3.10
MGK

, 

pBB1_AT1.03
R122K/R126K

 

Overexpression of AT1.03, AT1.03
YEMK

, AT3.10
MGK

, and 

AT103
R122K/R126K

 in C. glutamicum 

This study 

pRSETb_FLIPmal-2µ,  Overexpression of FLIPmal-2µ in E. coli (Fehr et al., 2002) 

pXMJ19 IPTG-inducible overexpression of genes in E. coli and C. 

glutamicum. Ptac, lacI
q
, Cm

R
.  

(Jakoby et al., 1999) 

pXMJ19_tus Overexpression of the cg0831 – cg0835 gene cluster in 

C. glutamicum. 

(Henrich, 2011) 

pXMJ19_otsBAE. coli Overexpression of the otsBA-operon from E. coli JM109 

in C. glutamicum. 

(Padilla et al., 2004a) 

pXMJ19_cg2893 Overexpression of cg2893 in C. glutamicum. This study 

pXMJ19_cg2895 Overexpression of cg2895 in C. glutamicum. This study 

 

All oligonucleotides used in this work are shown in Table 3.  

 

Table 3: Oligonucleotides used in this work. Restriction sites are underlined and the corresponding 

restriction endonucleases are given in brackets. 

Oligonucleotide Sequence Application 

delcg0284 fw a CCCGGGTCGCAAGTGGATTGTG (XmaI) Deletion of cg0284 

delcg0284 rv a CCAACTTCCATACTCCATTCCATATTCTGCGGCC

TCAAC 

Deletion of cg0284 

delcg0284 fw b GGAATGGAGTATGGAAGTTGGCCTTCATGCCG

ATCTTCC 

Deletion of cg0284 

delcg0284 rv b GGATCCCTGCTTCTCCTCCCATTC (BamHI) Deletion of cg0284 

delcg0284 check fw CCGCAGGTAAGTTAGTG Test-primer for deletion of cg0284 

delcg0284 check rv GACATAGGTGCCAAGTC Test-primer for deletion of cg0284 

delcg3174 fw a GAATTCCCAGGTGGCTCTGATGT (EcoRI) Deletion of cg3174 

delcg3174 rv a CCAACTTCCATACTCCATTCCCGGCGATGACGA Deletion of cg3174 
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Oligonucleotide Sequence Application 

CTAAC 

delcg3174 fw b GGAATGGAGTATGGAAGTTGGCGATACCGTGG

CATCTC 

Deletion of cg3174 

delcg3174 rv b GGATCCACCAGACGGTCGATAGG (BamHI) Deletion of cg3174 

delcg3174 check fw AAGGCCCTGAAAGTGTC Test-primer for deletion of cg3174 

delcg3174 check rv CTTCCACTGCGGTCATA Test-primer for deletion of cg3174 

delcg3178 fw a CCCGGGTGGTTGAGGCGGATAG (XmaI) Deletion of cg3178 

delcg3178 rv a CCAACTTCCATACTCCATTCCAACGGCCAATCG

GTAG 

Deletion of cg3178 

delcg3178 fw b GGAATGGAGTATGGAAGTTGGGACTTCGCCAA

GAAGACC 

Deletion of cg3178 

delcg3178 rv b CCCGGGCCGTCAGCTCTCCGTTAC (XmaI) Deletion of cg3178 

delcg3178 check fw CTCCTCAGCCTCGTT Test-primer for deletion of cg3178 

delcg3178 check rv TTCCGTCAGCTCTCC Test-primer for deletion of cg3178 

deltreSX fw a GGATCCTGGCCTGGAGAATTCGGATA (BamHI) Deletion of treS and treX 

deltreSX rv a CCAACTTCCATACTCCATTCCTCTTCCGATTCGT

GCTCAAC 

Deletion of treS and treX 

deltreSX fw b GGAATGGAGTATGGAAGTTGGCGTTGTACGAG

GTTGCCTAT 

Deletion of treS and treX 

deltreSX rv b CTGCAGTAAGGACACGCCTCTGCATT (PstI) Deletion of treS and treX 

deltreSX check fw TTGCTCGCCGCTACTTC Test-primer for deletion of treS and treX 

deltreSX check rv TCTGCGGTGGAGGAAGA Test-primer for deletion of treS and treX 

deltreX fw a GAATTCATCCTGAACGCCTGTACCTT (EcoRI) Deletion of treX 

deltreX rv a CCAACTTCCATACTCCATTCCAAGTGTTCTCGCC

ACATTCG 

Deletion of treX 

deltreX fw b GGAATGGAGTATGGAAGTTGGCGTTGTACGAG

GTTGCCTAT 

Deletion of treX 

deltreX rv b CTGCAGTAAGGACACGCCTCTGCATT (PstI) Deletion of treX 

deltreX check fw AGCTGGAACTCCTTCAC Test-primer for deletion of treX 

deltreX check rv TCTGCGGTGGAGGAAGA Test-primer for deletion of treX 

IMcg0206 fw TCAACGTGCCCTTAGGAATC Integration mutagenesis cg0206 

IMcg0206 rv AATACCAAGGCGCCAGCAGC Integration mutagenesis cg0206 

IMcg0206 check GCAATGATCGGTCCTTTAGC Test-primer for integration mutagenesis 

IMcg0340 fw TGGCATCCACATGCATCG Integration mutagenesis cg0340 

IMcg0340 rv TGCGTAGCTGATGGAGAAGG Integration mutagenesis cg0340 

IMcg0340 check ATCCTGCGAGACTTCAC Test-primer for integration mutagenesis 

IMcg0501 fw CTTTGGAGCACGCCGATGAG Integration mutagenesis cg0501 

IMcg0501 rv ACACTGGTCGGCGACCAATG Integration mutagenesis cg0501 

IMcg0501 check ACAGGACTGCAGACAGAAAC Test-primer for integration mutagenesis 

IMcg0772 fw CTTCATCGCTGGTCTG Integration mutagenesis cg0772 

IMcg0772 rv CCACCGACGTAGTTTC Integration mutagenesis cg0772 

IMcg0772 check CGGCGGACATATCAAAC Test-primer for integration mutagenesis 

IMcg1212 fw CCTCCACGGTGTTGGATACG Integration mutagenesis cg1212 

IMcg1212 rv CCCGTAATCAGATCGCGTTC Integration mutagenesis cg1212 

IMcg1212 check AGCTTGGTCGAACTCTTCTG Test-primer for integration mutagenesis 

IMcg1289 fw CCAGTTATCGGTGGTGTTC Integration mutagenesis cg1289 

IMcg1289 rv AGGCGATCCACCAATCGTC Integration mutagenesis cg1289 

IMcg1289 check TGCCAACGGCGAAAGTC Test-primer for integration mutagenesis 

IMcg1399 fw CTTCCATGGCGTTCATTCCG Integration mutagenesis cg1399 
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Oligonucleotide Sequence Application 

IMcg1399 rv GGTGCAGCTCTTGGAGTGTG Integration mutagenesis cg1399 

IMcg1399 check GGCGACCTTTAAGGCTTTAC Test-primer for integration mutagenesis 

IMcg1526 fw TATCGCTCCAGCGACAC Integration mutagenesis cg1526 

IMcg1526 rv ACGGAGCCAACCAGAAG Integration mutagenesis cg1526 

IMcg1526 check CAGTAGTACCGGCATAAG Test-primer for integration mutagenesis 

IMcg2618 fw TGCATCACAGTGGTGATCAG Integration mutagenesis cg2618 

IMcg2618 rv GATGATGCCCTGCTGTTCTG Integration mutagenesis cg2618 

IMcg2618 check CCGCGATGTGTTCTTCTCTG Test-primer for integration mutagenesis 

IMcg2739 fw ATACCGCCGATCACGAGTCC Integration mutagenesis cg2739 

IMcg2739 rv GTGTGGCTGGTTTCGTACTC Integration mutagenesis cg2739 

IMcg2739 check GAAGGAACTTCCCGGCTGTG Test-primer for integration mutagenesis 

IMcg2893 fw GCGTTTGCTCCAACTG Integration mutagenesis cg2893 

IMcg2893 rv AACCACACCGCCTAAG Integration mutagenesis cg2893 

IMcg2893 check CCGACCATTCGTTACAG Test-primer for integration mutagenesis 

IMcg2895 fw AGTACTATGCGCAGCTCTCC Integration mutagenesis cg2895 

IMcg2895 rv ACATCACCGGCAGATAGTCC Integration mutagenesis cg2895 

IMcg2895 check ACACTTGTCACCGTGTTC Test-primer for integration mutagenesis 

IMcg2971 fw TGCTGATGACGGTTACG Integration mutagenesis cg2971 

IMcg2971 rv TGGTGGTCAAGGAGAAG Integration mutagenesis cg2971 

IMcg2971 check GCTTCATGCTGTGAAAGG Test-primer for integration mutagenesis 

IMcg3038 fw CGTGCGTGGTGATTG Integration mutagenesis cg3038 

IMcg3038 rv GATGCGGTGTGGATG Integration mutagenesis cg3038 

IMcg3038 check GAAAGGCCTGCTCGTTG Test-primer for integration mutagenesis 

IMcg3226 fw ATCGGAATTGGCGGCGAATG Integration mutagenesis cg3226 

IMcg3226 rv TGTAGGTGCCGAAGATGTAG Integration mutagenesis cg3226 

IMcg3226 check AGGTGACACGCCTTACATTC Test-primer for integration mutagenesis 

IMcg3240 fw TCCGGCGTCGATACTTTC Integration mutagenesis cg3240 

IMcg3240 rv AGGATTCCGCCAATGAGC Integration mutagenesis cg3240 

IMcg3240 check TGGCGCATGATGAACTC Test-primer for integration mutagenesis 

IMcg3245 fw CTGCACCTGCATTCGAAATC Integration mutagenesis cg3245 

IMcg3245 rv TGCTGCTATTGCCCAGTTTG Integration mutagenesis cg3245 

IMcg3245 check AAGTAGCTGCTGGTCGAGTC Test-primer for integration mutagenesis 

IMcg3301 fw GCCGCATGGTCGTTATCCTG Integration mutagenesis cg3301 

IMcg3301 rv GCAACCGCATAGCCTGGAAG Integration mutagenesis cg3301 

IMcg3301 check TGCTTATCGACGCCCACTTC Test-primer for integration mutagenesis 

IMcg3334 fw CCGCACTATCGCAGCATTG Integration mutagenesis cg3334 

IMcg3334 rv TTCGGGTTGCCACTGTCAC Integration mutagenesis cg3334 

IMcg3334 check AACAGCCCGATTCAAG Test-primer for integration mutagenesis 

IMcg3353 fw AAAGCAGCGGTGATTGG Integration mutagenesis cg3353 

IMcg3353 rv GAGCAGGGTGACAAATGTG Integration mutagenesis cg3353 

IMcg3353 check ACCAGAATCGGGAGGAC Test-primer for integration mutagenesis 

IMcg3387 fw TCTACGGACCAGGATTTG Integration mutagenesis cg3387 

IMcg3387 rv ACGAACCAGCCATTTG Integration mutagenesis cg3387 

IMcg3387 check GGGCTAAATGCTCCAAAC Test-primer for integration mutagenesis 

IMcg3395 fw CACGCGGTCACTCCACATAC Integration mutagenesis cg3395 

IMcg3395 rv GAGGTTTCTTCGGAGCTTTC Integration mutagenesis cg3395 

IMcg3395 check GCGGGCTTTACGGTTATGCG Test-primer for integration mutagenesis 

M13 fw TGTAAAACGACGGCCAGT Test-primer for integration mutagenesis 

M13 rv CAGGAAACAGCTATGAC Test-primer for integration mutagenesis 
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Oligonucleotide Sequence Application 

tusE_fw_NdeI CATATGTCCTCGATTTCCCGCAAGA (NdeI) Cloning of tusE in pET29b 

tusEΔN25_fw_NdeI CATATGTGTAGTTCAGACTCAAGCTC (NdeI) Cloning of tusEΔN25 in pET29b 

tusEΔN32_fw_NdeI CATATGGACTCCACAGATTCCACC (NdeI) Cloning of tusE ΔN32 in pET29b 

tusE_rv_HindIII AAGCTTGCTGGAAGCGTTTTCG (HindIII) Cloning of tusE, tusEΔN25, and tusEΔN32 in 

pET29b 

tusE_fw_KpnI GGTACCGGAGGCGCCATGTCCTCGATTTCCCG 

(KpnI) 

PCR tusE for sensor construction (TreSen1) 

tusEΔN32_fw_KpnI GGTACCGGAGGCGCCGACTCCACAGATTCC 

(KpnI) 

PCR tusE for sensor construction (TreSen2, 8) 

tusEΔN47_fw_KpnI GGTACCGGAGGCGCCATGCCCATCACCTTTGC

G (KpnI) 

PCR tusE for sensor construction (TreSen3) 

tusE_fw2_KpnI GGTACCATGTCCTCGATTTCCCG (KpnI) PCR tusE for sensor construction (TreSen4) 

tusEΔN32_fw2_KpnI GGTACCGACTCCACAGATTCCAC (KpnI) PCR tusE for sensor construction (TreSen5) 

tusEΔN47_fw2_KpnI GGTACCCCCATCACCTTTGCG (KpnI) PCR tusE for sensor construction (TreSen6) 

tusEΔN25_fw_KpnI GGTACCTGTAGTTCAGACTCAAGC (KpnI) PCR tusE for sensor construction (TreSen7, 11, 12, 

13) 

tusE_Tr8_rv TGGTGCTTCTGGGATG PCR tusEN1-174 for sensor construction (TreSen8) 

tusE_Tr8_b_fw GCAAACTGGGCTGACC PCR tusEN1-174 for sensor construction (TreSen8) 

tusE_Tr8_B_rv_ 

HindIII 

AAGCTTCTAGCTGGAAGCGTTTTC (HindIII) PCR tusEN174-424 for sensor construction 

(TreSen8) 

tusEΔN20_fw_KpnI GGTACCATCGCACTGGCCG (KpnI) PCR tusE for sensor construction (TreSen9) 

tusEΔN29_fw_KpnI GGTACCTCAAGCTCCGACTCCAC (KpnI) PCR tusE for sensor construction (TreSen10) 

tusEΔN27_fw_KpnI GGTACCGACTCAAGCTCCGACTC (KpnI) PCR tusE for sensor construction (TreSen16) 

tusEΔN28_fw_KpnI GGTACCTCAAGCTCCGACTCCAC (KpnI) PCR tusE for sensor construction (TreSen17) 

tusEΔN30_fw_KpnI GGTACCTCCGACTCCACAGATTC (KpnI)  PCR tusE for sensor construction (TreSen18) 

tusEΔN31_fw_KpnI GGTACCGACTCCACAGATTCCACC (KpnI) PCR tusE for sensor construction (TreSen19) 

tusEΔN26_fw_KpnI GGTACCTCAGACTCAAGCTCCGAC (KpnI) PCR tusE for sensor construction (TreSen20) 

tusEΔN33_fw_KpnI GGTACCTCCACAGATTCCACCGCTAG (KpnI) PCR tusE for sensor construction (TreSen32) 

tusEΔN34_fw_KpnI GGTACCACAGATTCCACCGCTAGCG (KpnI) PCR tusE for sensor construction (TreSen33) 

tusEΔN35_fw_KpnI GGTACCGATTCCACCGCTAGCGAAG (KpnI) PCR tusE for sensor construction (TreSen34) 

tusE_rv_KpnI GGTACCGGCGCCGCTGGAAGCGTTTTC (KpnI) PCR tusE for sensor construction (TreSen1 - 3) 

tusE_rv2_KpnI GGTACCGCTGGAAGCGTTTTC (KpnI) PCR tusE for sensor construction (TreSen4 - 10, 14 

- 34) 

tusEΔC1_rv_KpnI GGTACCGGAAGCGTTTTCGATCGC (KpnI) PCR tusE for sensor construction (TreSen11) 

tusEΔC3_rv_KpnI GGTACCGTTTTCGATCGCTGCC (KpnI) PCR tusE for sensor construction (TreSen12) 

tusEΔC5_rv_KpnI GGTACCGATCGCTGCCTTCAT (KpnI) PCR tusE for sensor construction (TreSen13) 

yfp_Tr8_fw CGAAATCATCCCAGAAGCACCAATGGTGAGCA

AGGGCGAG 

PCR eyfp for sensor construction (TreSen8) 

yfp_Tr8_rv CCACGAGGTCAGCCCAGTTTGCCTTGTACAGCT

CGTCCATGC 

PCR eyfp for sensor construction (TreSen8) 

eyfp_fw_KpnI GGTACCATGGTGAGCAAGGGCG (KpnI) PCR mVenus for sensor construction (TreSen15 - 

34) 

eyfp_rv_HindIII CAAGCTTTTACTTGTACAG ( PCR mVenus for sensor construction (TreSen15 - 

34) 

ecfp_fw_BamHI GGATCCATGGTGAGCAAGGGC (Bam PCR ecfpΔC10 for sensor construction (TreSen15 - 

34) 

ecfpΔC10_rv_KpnI GGTACCCCCGGCGGCGGTCAC (KpnI) PCR ecfpΔC10 for sensor construction (TreSen15 - 

34) 

mVenusΔN6_fw_ GGTACCGAGCTGTTCACCGGG (KpnI) PCR mVenusΔN6 for sensor construction 
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Oligonucleotide Sequence Application 

KpnI (TreSen15 - 34) 

mVenus_rv_HindIII AAGCTTCTTGTACAGCTCGTC (HindIII) PCR mVenusΔN6 for sensor construction 

(TreSen15 - 34) 

Q5_K55A_fw TGCGATGGGCGCAAACGACACCGACAAAG Site-directed mutagenesis (tusE
K55A

) 

Q5_K55E_fw TGCGATGGGCGAAAACGACACC Site-directed mutagenesis (tusE
K55E

) 

Q5_K55_rv AAGGTGATGGGGCCGCGG Site-directed mutagenesis (tusE
K55A

 and tusE
K55E

) 

Q5_D110A_fw ATGGCGCTCGCCGTCATCTGG Site-directed mutagenesis (tusE
D110A

) 

Q5_D110N_fw CATGGCGCTCAACGTCATCTG Site-directed mutagenesis (tusE
D110N

) 

Q5_D110_rv GACGTCGTAGTCAGAGTTGC Site-directed mutagenesis (tusE
D110A

 and tusE
D110N

) 

Q5_W113A_fw CGACGTCATCGCGACCGCAGACTTCGC Site-directed mutagenesis (tusE
W113A

) 

Q5_W113A_rv AGCGCCATGACGTCGTAG Site-directed mutagenesis (tusE
W113A

) 

Q5_E259A_fw GCAGCGACCGCAGAAGAAACC Site-directed mutagenesis (tusE
E259A

) 

Q5_E259A_rv AAGGGATGCCTTGGAGATG Site-directed mutagenesis (tusE
E259A

) 

Q5_W277A_fw CGCCATTAACGCGCCATACATGTACACCAACTC Site-directed mutagenesis (tusE
W277A

) 

Q5_W277A_rv TAGGCGGTTTGGCCTTCG Site-directed mutagenesis (tusE
W277A

) 

Q5_W277F_fw GCCATTAACTTTCCATACATGTACACCAAC Site-directed mutagenesis (tusE
W277F

) 

Q5_W277F_rv GTAGGCGGTTTGGCCTTC Site-directed mutagenesis (tusE
W277F

) 

Q5_Y313A_fw CCTTGGTGGCGCCAACAACGGCATCAACG Site-directed mutagenesis (tusE
Y313A

) 

Q5_Y313A_rv GGTGGATACGCCGACGCC  Site-directed mutagenesis (tusE
Y313A

) 

Q5_Y313F_fw CTTGGTGGCTTCAACAACGGCATC Site-directed mutagenesis (tusE
Y313F

) 

Q5_Y313F_rv GGTGGATACGCCGACGCC Site-directed mutagenesis (tusE
Y313F

) 

Q5_R381A_fw CGCAGCACCAGCCCCAGTGTCTC Site-directed mutagenesis (tusE
R381A

) 

Q5_R381_rv TTTTCCAGGGATTCCTTC Site-directed mutagenesis (tusE
R381A

) 

cg2893_fw_HindIII AAGCTTATGACTTCAGAAACCTTACAG (HindIII) PCR cg2893 for overexpression 

cg2893_rv_SalI GTCGACCTAGTGCGCATTATTGGCTCCC (SalI) PCR cg2893 for overexpression 

cg2895_fw_HindIII AAGCTTATGACTGTTCAGGAATTCGAC (HindIII) PCR cg2895 for overexpression 

cg2895_rv_SalI GTCGACCTACTTCACCTTGTGCGGTG (SalI) PCR cg2895 for overexpression 

 

2.2 Media and cultivation of E. coli and C. glutamicum 

2.2.1 Media 

For cultivation of E. coli, LB medium (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl) or TB 

medium (12 g/l tryptone, 24 g/l yeast extract, 4 ml/l glycerol, 100 mM K2HPO4/KH2PO4 buffer 

pH7.4) was used. C. glutamicum precultures were grown in 2TY medium (16 g/l tryptone, 10 

g/l yeast extract, 5 g/l NaCl) or BHI medium (37 g/l brain heart infusion). For shake flask 

cultivation, CgC minimal medium was used (5 g/l (NH4)2SO4, 5 g/l urea, 21 g/l MOPS, 1 g/l 

K2HPO4, 1 g/l KH2PO4, 0.25 g/l MgSO4 × 7 H2O, 10 mg/l CaCl2, 10 mg/l FeSO4 ×7 H2O, 10 mg/l 

MnSO4 × H2O, 1 mg/l ZnSO4 × H2O, 0.2 mg/l CuSO4, 0.02 mg/l NiCl2 × 6 H2O, 200 µg/l biotin). 

The pH was adjusted to 6.8 (NaOH) for cultivations with sugars as carbon sources, to 6.3 for 

cultivations with organic acids as carbon sources and to 6.5 for cultivations with sugars and 
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organic acids as carbon sources. For bioreactor cultivations, CgXII minimal medium was used 

(same composition as CgC medium but 20 g/l (NH4)2SO4, 33 mg/l protocatechuic acid, no 

addition of MOPS, pH 7.0).  

For agar plates, 16 g/l agar was added to the liquid medium. If appropriate, E. coli strains 

were grown in the presence of 30 µg/ml chloramphenicol, 100 µg/ml kanamycin or 100 

µg/ml carbenicillin. For C. glutamicum strains 6 µg/ml chloramphenicol or 25 µg/ml 

kanamycin were added if appropriate. 

2.2.2 Cultivation of C. glutamicum in shake flasks 

Growth experiments with C. glutamicum strains were performed in 50 ml CgC minimal 

medium in baffled 500 ml shake flasks at 30°C and 110 rpm on a rotary shaker. Precultures 

were grown in 2TY broth or BHI medium over night and cells were washed twice with 0.9% 

NaCl solution before inoculating the main culture. Carbon sources and antibiotics were 

added as appropriate. 

2.2.3 Bioreactor cultivation of C. glutamicum 

Bioreactor cultivations of C. glutamicum strains were carried out in a 2 l glass fermenter 

(Biostat B, Sartorius, Göttingen) equipped with standard electrodes for the online-

measurement of pH, temperature, and the partial pressure of dissolved oxygen. The 

fractions of O2 and CO2 in the fermenter off-gas were determined photo-acoustically (BCP-

O2, Bluesens, Herten) or via infrared absorption (BCP-CO2, Bluesens, Herten), respectively. 

For batch cultivations 1 l CgXII minimal medium was used. The carbon source was chosen as 

adequate for the experiment. Temperature and pH-value were set at 30°C and 7.0, 

respectively, and the latter was controlled by the addition of 8% (v/v) H2SO4 and 5 M KOH. 

The fermenter was aerated with 1.3 l/min ambient air filtered sterile (0.2 µM). The dissolved 

oxygen saturation was maintained above 30% by adjusting the stirrer speed between 200 

rpm and 1200 rpm. Antifoam 204 (Sigma-Aldrich, USA) was added manually when necessary. 
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2.3 Molecular biology methods 

2.3.1 DNA purification, digestion, and ligation 

For the preparation of chromosomal DNA from C. glutamicum, cells from 5 ml of an 

overnight culture were harvested by centrifugation and resuspended in 1 ml TE buffer (10 

mM Tris-HCl pH 8.0, 1 mM EDTA) plus lysozyme (15 mg/ml). After incubation for 3 h at37°C, 

3 ml lysis buffer (10 mM Tris-HCl pH 8.2, 400 mM NaCl, 2 mM EDTA), 220 µl 10% sodium 

dodecyl sulfate (SDS) solution, and 150 µl proteinase K (20 mg/ml) were added. After 

incubation over night at 37°C, 2 ml saturated NaCl-solution were added and precipitated 

proteins were removed by centrifugation. The supernatant was mixed with an equal volume 

of cold ethanol. Precipitated DNA was coiled up on a glass pipette, washed with 70% 

ethanol, dried, and resuspended in 200 µl TE buffer.  

Plasmid DNA from E. coli and C. glutamicum strains was prepared using the High Pure 

Plasmid Isolation Kit (Roche, Switzerland). To improve disruption of C. glutamicum cells, 

these were incubated in resuspension buffer plus 10 µg/ml lysozyme for 1.5 h in addition to 

the standard procedure recommended by the manufacturer. For DNA digestion and ligation, 

FastDigest restriction endonucleases and T4 DNA Ligase (Thermo Scientific, USA), 

respectively, were used. 

2.3.2 Polymerase chain reaction 

For amplification of target genes by PCR (Mullis et al., 1986), EconoTaq® PLUS GREEN 

2×Master Mix (Lucigen, USA), Phusion® High-Fidelity DNA Polymerase (New England Biolabs, 

USA), or PRECISOR High-Fidelity DNA Polymerase (BioCat, Heidelberg) were used with 

plasmid DNA or chromosomal DNA as template for the amplification. Oligonucleotides were 

purchased from Eurofins MWG Operon (Ebersberg). PCR products were cloned using the 

CloneJet PCR Cloning Kit (Thermo Scientific, USA) or the QIAGEN PCR Cloning Kit (QIAGEN, 

Hilden). Sequencing of DNA was carried out by GATC Biotech (Konstanz). 

2.3.3 Site-directed DNA mutagenesis 

Site-directed mutagenesis of plasmid DNA was achieved using the Q5® Site-Directed 

Mutagenesis Kit (New England Biolabs, USA). PCR primers were designed with the 

NEBaseChanger™ software (www.nebasechanger.neb.com). 
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2.3.4 Agarose gel electrophoresis 

DNA fragments resulting from PCR reactions or the digestion of plasmid DNA were separated 

by agarose gel electrophoresis. Samples were loaded on 1% agarose gels and run in 1 × TAE 

buffer (Sambrook & Russel, 2001). After separation, DNA was stained in 1 µg/ml ethidium 

bromide solution and visualised using the UVP BioDoc-It™ Imaging system (Analytik Jena, 

Jena). The NucleoSpin® Extract II Kit (Macherey-Nagel, Düren) was used to isolate DNA from 

agarose gels. 

2.3.5 Competent E. coli and C. glutamicum cells and transformation 

Chemically competent E. coli cells were prepared and transformed by standard procedures 

(Inoue et al., 1990). 250 ml SOB medium (20 g/l tryptone, 5 g/l yeast extract, 0.6 g/l NaCl, 0.2 

g/l KCl, 2.48 g/l MgSO4 × 7 H2O) were inoculated from an LB culture and grown to OD600 = 0.3 

(37°C, 200 rpm). The cells were cooled on ice for 10 min, pelletized (850 × g, 15 min, 4°C), 

and resuspended in 80 ml TB buffer (3.025 g/l PIPES, 1.67 g/l CaCl2,18.63 g/l KCl, pH 6.7 

(KOH), autoclave, add 6.92 g/l MnCl2). After incubation on ice for 10 min, centrifugation was 

repeated and cells were resuspended in 20 ml TB buffer. 1.4 ml dimethyl sulfoxide was 

added, the suspension was aliquoted, frozen in liquid nitrogen and stored at -80°C. For 

transformation, 1 µl – 5 µl plasmid solution were added and incubated on ice for 15 min. A 

heat shock was then performed for 45 s at 42°C and 1 ml LB medium was added. The 

suspension was incubated at 37°C for 1 h and plated on selective agar plates.  

Electro-competent C. glutamicum cells were prepared by the method of van der Rest et al. 

(1999). Therefore, 10 ml LB plus 2% glucose were inoculated and incubated for 8 h (30°C, 

125 rpm). Then, 200 ml LB-I medium (LB plus 4 g/l isonicotinic acid, 25 g/l glycine, 1 ml/l 

Tween 80) were inoculated to OD600 = 0.25 and cultivated for 12 h at 20°C and 125 rpm. 

Then, the OD600 was measured, cells were harvested by centrifugation (2164 × g, 10 min, 

4°C) and washed with 50 ml cold 10% glycerol solution. After centrifugation, the pellet was 

resuspended in 1 ml per OD600 10% glycerol solution, frozen in liquid nitrogen and stored at -

80°C.  

Competent C. glutamicum cells were transformed wit 1 µl – 5 µl plasmid solution using a 

MicroPulser (Bio-Rad, München) set at 2.5 kV. Afterwards, 1 ml BHI medium was added, a 

heat shock was performed (46°C, 10 min), cells were incubated at 30°C and 125 rpm for 1 h 

and plated on selective agar plates. 
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2.3.6 Integration mutagenesis and gene deletion in C. glutamicum 

Inactivation of chromosomal genes in C. glutamicum was either achieved by integration 

mutagenesis or gene deletion.  

For gene inactivation by integration mutagenesis, the pDrive plasmid was integrated into the 

target gene by homologous recombination. Therefore, a 500 bp stretch of DNA homologous 

to the central part of the target gene was amplified by PCR and ligated to the pDrive 

plasmid. C. glutamicum was then transformed with the resulting plasmid and spread on LB 

agar plates containing 25 µg/ml kanamycin. The disruption of the target gene in kanamycin 

resistant cells was tested by PCR using a target gene specific primer and the plasmid specific 

M13_fw or M13_rv primer.  

For gene deletion, the method of Schäfer et al. (1994) was applied. Therefore, 

pK19mobsacB-derived plasmids were used to replace chromosomal regions with truncated 

DNA sequences by two successive events of homologous recombination.  

DNA sequences of 500 bp homologous to the up- and downstream regions of the target 

gene were amplified by PCR. These two PCR products were fused together in a second PCR 

step via oligonucleotide linkers (5’-GGAATGGAGTATGGAAGTTGG-3’). The PCR product was 

ligated to pK19mobsacB, a plasmid enabling positive (kanamycin-resistance gene) and 

negative (levansucrase gene, expression is lethal in the presence of sucrose) selection. After 

transformation of C. glutamicum with the resulting plasmid, kanamycin resistant cells were 

selected on LB agar plates. These were grown in 5 ml LB medium for 12 h under non-

selective conditions. Cells were then spread on LB agar plates plus 10% sucrose for the 

selection of plasmid-free cells. Finally, PCR using primers flanking the target sequence was 

applied to verify successful target gene deletion. 

2.3.7 RNA hybridisation experiments 

Total RNA was isolated with the Nucleospin® RNA II Kit (Macherey-Nagel, Düren). RNA 

hybridisation experiments were performed as described previously (Möker et al., 2004) in a 

Minifold Slot-Blot system (Schleicher & Schuell, Dassel). DIG-11-dUTP-labelled RNA antisense 

probes used for mRNA detection were constructed in a previous work (Schulte, 2011). 
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2.4 Biochemical methods 

2.4.1 Heterologous expression in E. coli BL21 (DE3) 

For overexpression of heterologous genes, E. coli BL21 (DE3) was transformed with the 

respective expression plasmid. A single colony was picked from a LB agar plate and 

transferred into 5 ml LB medium. After incubation at 37°C for several hours 50 ml – 200 ml 

TB medium was inoculated to an OD600 of 0.1. When the OD600 reached 0.8 – 1.0, 1 mM IPTG 

was added to induce gene expression. Cells were harvested by centrifugation after 16 h of 

incubation at 25°C – 37°C and stored at -20°C. 

2.4.2 Chromatographic purification of proteins 

For cell disruption, a French Pressure Cell Press (Thermo Scientific, USA) was used. Cell 

debris was removed by centrifugation (2164 × g, 30 min, 4°C).  

Protein purification was carried out on an Äkta Purifier FPLC-system (GE Healthcare, 

Freiburg). For purification via ion metal affinity chromatography (IMAC), a HisTrap™ FF crude 

1 ml column (GE Healthcare, Freiburg) was used. For protein binding to the column, washing, 

and elution, a three-step gradient of buffer A (20 mM K2HPO4/KH2PO4 buffer pH 7.5, 500 

mM NaCl, 10 mM imidazole) and buffer B (20 mM K2HPO4/KH2PO4 buffer pH 7.5, 500 mM 

NaCl, 500 mM imidazole) of individually determined ratio between 0% – 100% (v/v) solvent 

B was used at a flow rate of 1 ml/min.  

For further purification via size exclusion chromatography (SEC), samples were concentrated 

in Vivaspin 2 ml centrifugal concentrators (Sigma-Aldrich, USA) and loaded onto a Superdex 

200 10/300 GL column (GE Healthcare, Freiburg). The buffer was chosen individually for each 

protein. The flow rate was adjusted to 0.5 ml/min. 

2.4.3 Investigation of trehalose binding via intrinsic protein fluorescence 

Intrinsic protein fluorescence of purified TusE-His6 or TusEΔN25-His6 (100 µg/ml in 20 mM 

K2HPO4/KH2PO4 buffer pH 7.5, 150 mM NaCl) was excited at 289 nm in a luminescence 

spectrometer (Thermo Scientific, USA) at 30°C. 10 µM or 150 µM trehalose stock solution or 

buffer as negative control were added repeatedly and the fluorescence intensity (F) at 336 

nm (800 V detector current) was recorded. The relative fluorescence change (ΔF) was 

calculated according to equation 1 and plotted against the trehalose concentration (cTre). F0 
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is the fluorescence intensity without ligand, Fmax is the maximum fluorescence intensity 

measured in the presence of ligand. 
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2.4.4 Fluorescence measurements with metabolite nanosensors 

For fluorescence measurements in E. coli or C. glutamicum cell lysates, cells were disrupted 

in a Precellys 24 homogenizer (Peqlab, Erlangen) with 250 µl glass beads (0.1 – 0.25 mm 

diameter) in 100 mM MOPS (pH 7.5). Cell debris was removed by centrifugation (17500 × g, 

20 min, 4°C). The supernatant was diluted appropriately with the same buffer and 

transferred to black 96 well plates (Corning, USA). Fluorescence measurements were 

performed in an Infinite® 200 PRO microplate reader (Tecan, Crailsheim) with the 

temperature set to 30°C and the gain level adjusted between 60 and 100. For Förster 

Resonance Energy Transfer (FRET)-experiments with the ECFP-EYFP FRET-pair, the excitation 

wavelength was set to 435 nm and fluorescence intensities were recorded at 480 nm and 

525 nm. The fluorescence ratio (R) was calculated by dividing the latter value by the former. 

R was plotted against the trehalose concentration (cTre). Data were fitted to the Hill equation 

(eq. 2) to determine the dissociation constant (Kd). R0 is the initial FRET-ratio in the absence 

of ligand, ΔRmax is the maximum change of the fluorescence intensity and n the Hill 

coefficient. 
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2.4.5 In situ calibration of metabolite nanosensors 

For in situ calibration of metabolite nanosensors, cells were permeabilised with 0.05% CTAB. 

Therefore, CTAB, a series of different ligand concentrations, and water (ad 50 µl) were mixed 

in a 96 well plate. C. glutamicum cells expressing genetically encoded nanosensors were 

washed and resuspended in 50 mM MOPS pH 7.5. Both solutions were preheated to 30°C 

before equal volumes of both were mixed. Fluorescence ratios were determined 

immediately as described above (2.4.4). 
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2.4.6 Determination of maltose and trehalose transport rates 

Cells were grown in 2TY broth and harvested in the exponential growth phase. Cells were 

washed twice with 0.9% NaCl solution and resuspended in CgC minimal medium to OD600 = 

3. 1 ml cell solution was mixed with 980 µl CgC minimal medium and incubated at 30°C for 

3 min. The experiment was started by the addition of 20 µl radiolabelled [U-14C]-maltose 

(580 mCi × mmol-1, American Radiolabeled Chemicals, USA) premixed with unlabelled 

maltose to adjust the final maltose concentration between 50 µM and 5 mM) or 20 µl 

radiolabelled [U-14C]-trehalose (600 mCi × mmol-1, Trenzyme, Konstanz) premixed with 

unlabelled trehalose to adjust the final concentration to 50 µM. Samples of 200 µl were 

vacuum filtered through glass fibre prefilters (Millipore, USA) and cells were washed twice 

with 100 mM LiCl. The intracellular radioactivity was determined via liquid scintillation 

(Rotiszint® eco plus scintillation cocktail, Carl Roth, Karlsruhe) in a LS 6500 scintillation 

counter (Beckmann, Krefeld). 

2.4.7 Investigation of solute release after hypoosmotic shocks 

To investigate solute excretion triggered by hypoosmotic shocks, the cells were loaded with 

[14C]-labelled substrate. To enable glycine betaine uptake, the expression of betP, which 

encodes a glycine betaine uptake system, was induced by pre-cultivating C. glutamicum in 

BHI medium plus 0.5 M NaCl overnight. The cells were washed twice in cold downshock 

buffer (100 mM Mes/Tris pH 8, 5 mM Na2HPO4, 5 mM KH2PO4) to release compatible solutes 

synthesised or taken up during pre-cultivation, and resuspended in uptake buffer (100 mM 

MES/Tris pH 8, 0.9 M NaCl, 30 mM glucose, 30 mM urea, 30 mM KCl). Osmolalities of 

solutions were determined by freezing point depression (Osmomat 030, Gonotec, Berlin). 

Hypoosmotic shocks were conducted by dilution of substrate loaded cells in downshock 

buffer. 200 µl samples were filtered, washed with 3 ml isoosmotic buffer and measured by 

liquid scintillation (see 2.4.6). 

2.5 Analytical methods 

2.5.1 Determination of protein concentrations 

Protein concentrations were determined with the Bio-Rad Protein Assay (Bio-Rad, München) 

using BSA as a standard. 
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2.5.2 SDS-PAGE and Western-Blot analysis 

For separation of proteins by sodium-dodecyl-sulphate-polyacrylamide-gel-electrophoresis 

(SDS-PAGE) (Laemmli, 1970) protein solutions were mixed with 4 × sample buffer (400 mM 

Tris-HCl pH 6.7, 20% glycerol, 0.004% bromophenol blue, 4% (v/v) ß-mercaptoethanol, 4% 

SDS) and incubated for 10 min at 95°C. 12% separation gels (12 ml 30% 

acrylamide/bisacrylamide (Carl Roth, Karlsruhe), 7.5 ml separation gel buffer (1.5 M Tris-HCl, 

8 mM Na2EDTA, 0.4% SDS, pH 8.8), 10 ml H2O, 15 µl TEMED, 300 µl 10% APS) combined with 

6% stacking gels (2 ml 30% acrylamide/bisacrylamide, 2.5 ml stacking gel buffer (0.5 M Tris-

HCl, 8 mM Na2EDTA, 0.4% SDS, pH 6.8), 5.2 ml H2O, 15 µl TEMED, 75 µl 10% APS) were used 

for separation. Separation was performed in separation buffer (3 g/l Tris, 14.4 g/l glycine, 5 

g/l SDS) at 25 mA. Gels were stained with an aqueous solution of 0.2% Serva Blue G, 45% 

(v/v) methanol, and 10% (v/v) acetic acid and destained with 20% (v/v) ethanol plus 10% 

(v/v) acetic acid.  

For Western-Blot analysis proteins were separated by SDS-PAGE and transferred to a Roti®-

PVDF membrane (Carl Roth, Karlsruhe) by semi-dry blotting (Kyhse-Andersen, 1984) using a 

Hoefer SemiPhor™ TE77 transfer unit (GE Healthcare, Freiburg) with 10 mM CAPS pH 11 plus 

10% (v/v) methanol as transfer buffer. Subsequently, the membrane was blocked in wash 

buffer (50 mM Tris-HCl pH 7.4, 0.9% NaCl) plus 5% milk powder for 1 h before murine 6×-His 

epitope tag antibody (Thermo Scientific, USA) was added (1:2000 (v/v)). After 1 h of 

incubation, the membrane was washed thrice with wash buffer and anti-mouse IgG alkaline 

phosphatase antibody (Sigma-Aldrich, USA) was added to the wash buffer (1:10000 (v/v)) 

and incubated for 1 h. After three further wash steps, 10 ml detection buffer (10 mM Tris-

HCl pH 8.8) plus each 66 µl 5% NBT in 70% (v/v) dimethyl formamide and 2.5% BCIP in 

dimethyl formamide was added for detection. 

2.5.3 Carbohydrate analysis via TLC 

Thin-layer-chromatography (TLC) was applied for the qualitative analysis of carbohydrates in 

culture supernatants and of intracellular carbohydrates. ADAMANT silica gel 60 TLC plates 

(20 × 20 cm, Carl Roth, Karlsruhe) were used as stationary phase. If necessary, samples were 

desalted (Chromafix® PS-Mix, Macherey-Nagel, Düren) and concentrated by evaporation. For 

the analysis of intracellular carbohydrates, cells were separated from the medium and 

disrupted with isopropanol as described in 2.5.5. TLC plates were run up to twelve times in 
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pyridine/1-butanol/H2O (30/70/10 (v/v/v)). Carbohydrates were visualised by spraying with 

4% (v/v) H2SO4 in methanol followed by heating to 110°C. 14C-labelled carbohydrates were 

visualised in a BAS-1800 imager (Fujifilm, Japan) after exposure of BAS-MP imager plates 

(Fujifilm, Japan) to the TLC plate for 2 – 5 days. 

2.5.4 Quantitative analysis of carbohydrates and organic acids by HPLC 

High-pressure liquid chromatography (HPLC) was used to determine the concentrations of 

carbohydrates and organic acids in culture supernatants. An Elite LaChrom system (Hitachi, 

Japan) equipped with UV- and refractive index detector was used. The stationary phase 

consisted of a ChromCart 30×4 mm Nucleogel® Sugar 810 H pre-column and a 300×7.8 mm 

Nucleogel® Sugar 810 H main-column (Macherey-Nagel, Düren) heated to 40°C. As mobile 

phase, 10 mM H2SO4 was used with a flow rate of 0.5 ml/min. 

2.5.5 Quantitative analysis of trehalose using an enzymatic assay 

To determine trehalose concentrations, a trehalase from Rhodothermus marinus described 

previously (Jorge et al., 2007) was used. 20 µl of culture supernatants were mixed with 1 µl 

trehalase solution (for purification of the enzyme see 3.2.3), 29 µl H2O, and 50 µl 100 mM 

bis-tris-propane buffer pH 7.6. After incubation for 3 h at 80 °C, the glucose released by the 

hydrolysis of trehalose was determined. Therefore, 20 µl of the trehalase pretreated sample 

was mixed with 50 µl 200 mM Tris-HCl pH 7.7 plus 2 mM MgCl2, 10 µl 6 mM NADP, 10 µl 18 

mM ATP, and 10 µl 1:20 diluted hexokinase/glucose-6-phosphate dehydrogenase solution (3 

mg/ml, Roche, Mannheim). The absorption at 340 nm was recorded before and 20 min after 

the addition of the enzyme solution. Trehalose standards were treated equally to enable the 

calculation of trehalose concentrations.  

To determine intracellular trehalose concentrations, 0.5 ml cell suspension was vacuum 

filtered using glass fibre prefilters (Millipore, USA) and washed twice with 1.5 ml 0.9% NaCl 

solution. To release intracellular trehalose, the filters were incubated in 70% (v/v) 

isopropanol for 30 min. The solvent was removed completely in a vacuum concentrator 

(Eppendorf, Hamburg) and the residue was redissolved in 150 µl H2O before trehalose 

concentrations were determined as described above.  

For the calculation of intracellular concentrations, a specific intracellular volume of 1.6 µl × 
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mg-1 cdw (Botzenhardt, 2004) and a cell dry weight (cdw) concentration of 0.36 mg cdw 

× ml-1 × OD-1 were used. 

2.5.6 Quantitative analysis of amino acids via HPLC 

Amino acids in culture supernatants were measured on an Elite LaChrom HPLC system 

(Hitachi, Japan). Before injection, samples were derivatised with o-phthalaldehyde (OPA) 

(Thermo Scientific, USA). The stationary phase consisted of a RP18 Multospher 40×4 mm 

pre-column (CS-Chromatographie Service, Langerwehe) and a Nucleodur® RP-18 125×4 mm 

main column (Macherey-Nagel, Düren) heated to 35°C. Solvent A consisted of 40 mM 

sodium acetate, 0.06% sodium azide, 5% (v/v) methanol/acetonitrile (1/1, v/v). Solvent B 

consisted of methanol/acetonitrile (1/1, v/v). The solvent gradient was as follows: 0 – 8 min, 

95 – 60% A, 8 – 11 min, 60 – 0% A, 11 – 12 min, 0% A, – 8 min, 95 – 60% A, 12 – 15 min, 0 – 

95% A. The flow rate was adjusted to 0.8 ml/min. For fluorescence detection, an excitation 

wavelength of 230 nm and an emission wavelength of 455 nm were used. 

2.5.7 Glycolipid extraction and analysis by TLC 

For glycolipid extraction, cells from 50 ml of a C. glutamicum culture were washed twice with 

0.9% NaCl-solution and successively extracted with 10 ml CHCl3/CH3OH (1:2, 1:1, and 2:1 

(v/v)). The extracts were pooled and the solvent was removed in a rotary evaporator (RE-111 

Rotavapor, Büchi, Switzerland). The crude glycolipid preparation was weighted and dissolved 

in CHCl3/CH3OH/H2O (65:25:4 (v/v/v)) to a final concentration of 20 µg/µl. The sample 

constituents were separated on Durasil 25 TLC plates (Macherey-Nagel, Düren) in 

CHCl3/CH3OH/H2O (65:25:4 (v/v/v)). For staining, the plate was sprayed with 0.2% anthrone 

in H2SO4 followed by heating to 110°C. 
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3 Results 

3.1 The trehalose import system as a target for optimisation of C. glutamicum 

strains 

C. glutamicum is industrially applied mainly for the production of amino acids (Becker & 

Wittmann, 2012) but genetic engineering has been used successfully to construct strains 

overproducing other high value or bulk products in a laboratory scale. Genetically modified 

strains have also been constructed that overproduce trehalose (Padilla et al., 2004a; 

Carpinelli et al., 2006). This non-reducing disaccharide can be used for different purposes 

like the cryoprotection of cells (Eroglu et al., 2002; Barbas & Mascarenhas, 2009), 

stabilisation of enzymes during freeze-drying (Carpenter et al., 1987), stabilisation of 

vaccines for long-term storage (Kim et al., 2010b), or as a food additive (Patist & Zoerb, 

2005).  

The gene cluster cg0830 – cg0835 (tus-genes) has recently been shown to encode an ABC 

trehalose uptake system with high affinity (KM = 0.16 µM) and low transport capacity (2.5 

nmol × mg cdw-1 × min-1) in C. glutamicum (Henrich, 2011). Preventing the reuptake and 

metabolisation of fermentation products has been used to construct strains with increased 

product formation in the past (Ikeda et al., 1994; Ikeda & Katsumata, 1995). The trehalose 

uptake system of C. glutamicum is thus a potential target for strain optimisation and the 

effect of tus-gene deletion was examined in trehalose overproducing strains in this work. 

In spite of the presence of a trehalose uptake system, C. glutamicum is known to accumulate 

trehalose as a byproduct in the culture supernatant during bioreactor cultivation (Vallino & 

Stephanopoulos, 1993; Gourdon & Lindley, 1999; Wittmann & Heinzle, 2001). Since 

fermentation byproducts can hamper the purification of the product and can also reduce the 

product yield (Lee et al., 2001; Bideaux et al., 2006), the tus-gene expression during the 

cultivation of L-lysine producing C. glutamicum strains was examined in this work and it was 

attempted to reduce the accumulation of trehalose as a byproduct. 

3.1.1 Trehalose recycling improves L-lysine production 

To resolve the apparent contradiction of trehalose accumulation in spite of the presence of a 

trehalose uptake system in C. glutamicum and to evaluate the influence of trehalose 
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accumulation on amino acid production, trehalose transport was investigated in the L-lysine 

producing strains C. glutamicum DM1729 (pXMJ19) carrying an empty plasmid and 

C. glutamicum DM1729 (pXMJ19_tus) carrying a plasmid for the overexpression of the tus-

genes. Both strains were cultivated in CgXII minimal medium in a bioreactor. When the initial 

amount of 4% glucose was consumed, another 4% was added. The OD600 and the 

concentrations of glucose, L-lysine, and trehalose in the supernatant were determined.  

C. glutamicum DM1729 (pXMJ19) grew to a final OD600 of 107 ± 1.5 with a growth rate of 

0.23 ± 0.07 h-1 (Figure 5). 37.2 ± 6.2 mM L-lysine were produced with a molar yield of 

75.8 ± 18.0 mmol × mol-1 glucose. Trehalose mainly accumulated in the second half of the 

fermentation and reached a final concentration of 4.7 ± 2.1 mM.  

Expression of the tus-genes during cultivation was examined in an mRNA hybridisation 

experiment. At different time points total cellular RNA was isolated and transcripts of tusK, 

tusFG, and tusE were visualised with DIG-11-labelled RNA probes (Figure 7). The 

transcription of all genes examined here was weak compared to the 16S RNA used as a 

control. tusK transcripts were not detectable at any time point while tusFG transcripts were 

clearly detectable only at the beginning of the cultivation. tusE transcripts were detected 

after 0 h and 6 h of cultivation but decreased below the detection limit afterwards. 

Therefore, the down-regulation of tus-gene expression seems to prevent trehalose reuptake 

during the fermentation, leading to the accumulation of trehalose in the culture broth.  

Consequently, the influence of tus-gene overexpression on L-lysine production and trehalose 

accumulation was examined in C. glutamicum DM1729 (pXMJ19_tus) (Figure 6). The growth 

conditions were identical as for C. glutamicum DM1729 (pXMJ19). Overexpression of the 

tus-genes was induced by the addition of 1 mM IPTG to the medium. The growth rate was 

0.22 ± 0.04 h-1 and the final OD600 was 103 ± 8. The final L-lysine and trehalose 

concentrations were 46.8 ± 2.8 mM and 0.57 ± 0.2 mM, respectively, and the molar L-lysine 

yield was 93.0 ± 1.1 mmol × mol-1 glucose.  

In mRNA hybridisation experiments, transcripts of tusK, tusFG, and tusE were detectable at 

all time points for C. glutamicum DM1729 (pXMJ19_tus) (Figure 7). While the signal for tusK 

transcription was weak for the first three time points (0 h, 9 h, and 13 h) and increased 

afterwards, signals for tusFG and tusE transcripts were stronger at the beginning of the 

cultivation and slightly decreased after 9 h. 



Results   31 

 

Figure 5: L-lysine production with C. glutamicum DM1729 (pXMJ19). 4% glucose was added as 

carbon source at the beginning of the cultivation and again after its depletion after 16.5 h. The 

experiment was performed in triplicate and the results of one representative fermentation are 

shown here. 

 

Figure 6: L-lysine production with C. glutamicum DM1729 (pXMJ19_tus). The plasmid encodes the 

tus-genes under the control of an IPTG-inducible promoter. The experiment was performed in 

triplicate and the results of one representative fermentation are shown here. 
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Figure 7: Analysis of tus-gene expression by RNA-hybridisation. Total RNA was isolated during 

bioreactor cultivation of C. glutamicum DM1729 (pXMJ19) and C. glutamicum DM1729 (pXMJ19_tus) 

at several time points (compare Figure 5 and 6) and transcripts of tusK, tusFG, and tusE were 

visualised with DIG-11-labelled RNA probes. 16S RNA was used as a control. 

In conclusion, trehalose accumulated in the supernatant during the cultivation of 

C. glutamicum DM1729 (pXMJ19) because the expression of the tus-genes rapidly decreased 

under the conditions applied here. Overexpression of the tus-genes increased the amounts 

of the corresponding transcripts and led to a significant reduction of trehalose 

concentrations in the culture supernatant of C. glutamicum DM1729 (pXMJ19_tus). 

Furthermore, the average L-lysine yield for this strain was 23% higher than for the control 

strain. 

3.1.2 Deletion of the tus-genes increases trehalose production 

Genetically engineered C. glutamicum strains deficient in trehalose degradation can be 

applied for trehalose overproduction (Padilla et al., 2004a; Padilla et al., 2004b). The impact 

of trehalose recycling via the recently discovered trehalose uptake system (Henrich, 2011) 

on trehalose production has not been tested yet and was examined in this work.  

For the construction of trehalose overproducing C. glutamicum strains, the otsBA operon 

from E. coli JM109 was amplified by PCR and ligated to pXMJ19 as described earlier (Padilla 

et al., 2004a), resulting in the plasmid pXMJ19_otsBAE. coli. C. glutamicum ΔtreS, in which the 

trehalose synthase gene encoding the first enzyme in the trehalose degradation pathway is 

deleted, and C. glutamicum ΔtreS Δtus, in which also the gene cluster encoding the trehalose 

uptake system is deleted, were transformed with pXMJ19_otsBAE.coli. C. glutamicum ΔtreS 
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(pXMJ19_otsBAE.coli) and C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE.coli) were cultivated with 

2% sucrose and the OD600 and the intra- and extracellular trehalose concentrations were 

determined during growth (Figure 8).  

C. glutamicum ΔtreS (pXMJ19_otsBAE.coli) grew with a rate of 0.43 ± 0.01 h-1 to a final OD600 

of 32.9 ± 1.4 while the growth rate and the final OD600 for C. glutamicum ΔtreS Δtus 

(pXMJ19_otsBAE.coli) were 0.40 ± 0.01 h-1 and 29.1 ± 1.9, respectively. The time course of the 

intracellular trehalose concentration was similar for both strains. Constant levels of 17 mM 

(C. glutamicum ΔtreS (pXMJ19_otsBAE.coli)) and 25 mM (C. glutamicum ΔtreS Δtus 

(pXMJ19_otsBAE.coli)), respectively, were detected within the first 5 h of cultivation, which 

increased to 35 ± 3 mM and 34 ± 3 mM after 8 h. These values dropped to 17 ± 1 mM after 

24 h for C. glutamicum ΔtreS (pXMJ19_otsBAE.coli), and was even lower for C. glutamicum 

ΔtreS Δtus (pXMJ19_otsBAE.coli) (9 ± 2 mM). For both strains, the extracellular trehalose con-

centration increased steadily within the first 8 h to 1.94 ± 0.2 mM and 2.99 ± 0.14 mM. 

 

 

Figure 8: Trehalose overproduction in C. glutamicum ΔtreS (pXMJ19_otsBAE. coli) (A) and 

C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE. coli) (B). 2% sucrose was used as carbon source. For 

induction, 100 µM IPTG was added to the medium. 
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It remained constant afterwards for C. glutamicum ΔtreS (pXMJ19_otsBAE.coli) but further in-

creased to 3.50 ± 0.28 mM for C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE.coli) after 24 h. 

Calculating the total amounts of trehalose produced intra- and extracellularly by each strain, 

C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE.coli) produced 40% more trehalose (3.65 ± 0.32 

mM, YP/s = 62.5 mmol × mol-1 sucrose) than the control strain (2.61 ± 0.30 mM, YP/s = 44.7 

mmol × mol-1 sucrose). This shows that the deletion of the tus-genes is beneficial for the 

production of trehalose in C. glutamicum strains. 
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3.2 Investigation of trehalose export in C. glutamicum 

The cell wall of C. glutamicum contains a trehalose glycolipid bilayer similar to the outer 

membrane of Gram-negative bacteria (Puech et al., 2001). The incorporation of external 

trehalose into these glycolipids has been found to be independent of trehalose uptake in 

C. glutamicum and is therefore assumed to take place in the periplasmic space (Henrich, 

2011). In consequence, trehalose synthesised in the cytosol via either of three pathways 

(Wolf et al., 2003) has to be exported to the periplasm. Furthermore, genetically engineered 

C. glutamicum strains accumulate high amounts of trehalose in the culture supernatant. For 

example, C. glutamicum ΔmluI/pLPIgalUotsBA01 has been reported to accumulate 29 mM 

trehalose in the supernatant using 555 mM glucose as a substrate (Padilla et al., 2004b). An 

unknown trehalose export system is thus assumed to be present in C. glutamicum. However, 

trehalose export in C. glutamicum has not been shown biochemically so far.  

Trehalose excretion was thus investigated both qualitatively and quantitatively in this work. 

Therefore, a suitable C. glutamicum test strain had to be constructed and analytical methods 

had to be established for the sensitive, specific, and quantitative detection of intra- and 

extracellular trehalose. The contribution of several transport proteins to trehalose export 

was then examined. 

3.2.1 Construction of a test strain for the investigation of trehalose excretion 

In C. glutamicum, trehalose can be produced via three different pathways (Wolf et al., 2003). 

While the OtsAB-pathway and the TreYZ-pathway each synthesise trehalose in two steps 

from activated precursors, trehalose synthesis is also possible by the TreS-catalysed 

isomerisation of maltose, which can be taken up into the cell by an ABC transporter 

(Henrich, 2011). TreS is also the first enzyme for trehalose degradation in C. glutamicum, 

which then proceeds via the TreX- or MalQ-pathways (Henrich, 2011). To study trehalose 

excretion, maltose was chosen as substrate for trehalose production via the TreS-pathway. 

Therefore, a strain was needed that does not degrade maltose. The genes treX and malQ 

were thus deleted in C. glutamicum. In addition, the genes encoding the trehalose uptake 

system were deleted to prevent the reuptake of exported trehalose, resulting in the strain C. 

glutamicum ΔmalQ ΔtreX Δtus. As a control strain, C. glutamicum ΔmalQ ΔtreX ΔtreS was 

constructed by the deletion of treS in C. glutamicum ΔmalQ ΔtreX. C. glutamicum and both 
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mutant strains were examined in growth experiments in CgC minimal medium using glucose 

plus maltose or glucose plus trehalose as carbon sources (Figure 9). 

 

 

Figure 9: Growth of C. glutamicum (WT), C. glutamicum ΔmalQ ΔtreX Δtus (ΔQXtus), and 

C. glutamicum ΔmalQ ΔtreX ΔtreS (ΔQXS) on 1% glucose plus 1% maltose (left panel) or 1% glucose 

plus 1% trehalose (right panel). 

While C. glutamicum could use all three substrates for growth, C. glutamicum ΔmalQ ΔtreX 

Δtus as well as C. glutamicum ΔmalQ ΔtreX ΔtreS only used glucose within 24 h. Further, the 

growth rates for both mutant strains were reduced to 0.20 h-1 in the presence of maltose 

and glucose compared to 0.39 h-1 for C. glutamicum. The specific glucose consumption rate 

was also reduced from 26.0 µmol × mg-1 cdw × h-1 for C. glutamicum to 12.3 µmol × mg-1 

cdw × h-1 and 16.4 µmol × mg-1 cdw × h-1 for C. glutamicum ΔmalQ ΔtreX Δtus and 

C. glutamicum ΔmalQ ΔtreX ΔtreS, respectively (Figure 9). In contrast to C. glutamicum, the 

culture supernatants of both mutants showed a brownish colour after 24 h (Figure 10). Using 
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glucose plus trehalose as substrates, the growth rates of the two mutant strains were only 

slightly reduced to 0.35 h-1 compared to 0.38 h-1 for C. glutamicum. All strains completely 

consumed the added glucose within 8 h while trehalose consumption was only observed for 

C. glutamicum.  

 

 

Figure 10: Culture supernatants of C. glutamicum (WT), C. glutamicum ΔmalQ ΔtreX Δtus (ΔQXtus) 

and C. glutamicum ΔmalQ ΔtreX ΔtreS (ΔQXS). Cells were cultivated in minimal medium containing 

glucose plus maltose for 24 h. 

In conclusion, C. glutamicum ΔmalQ ΔtreX Δtus and C. glutamicum ΔmalQ ΔtreX ΔtreS were 

successfully constructed. As expected, both strains were no longer able to use maltose or 

trehalose as co-substrates for growth. In the presence of maltose, growth of both strains and 

the consumption of glucose were impaired. 

3.2.2 Radiochemical analysis of trehalose excretion by C. glutamicum ΔmalQ ΔtreX Δtus 

C. glutamicum ΔmalQ ΔtreX Δtus, C. glutamicum ΔmalQ ΔtreX ΔtreS, and C. glutamicum 

Δmus were then used to study trehalose excretion. [14C]-labelled maltose was used as 

substrate to study the uptake of maltose, the intracellular conversion of maltose to 

trehalose, and the excretion of trehalose. C. glutamicum ΔmalQ ΔtreX ΔtreS was used as a 

control strain since this strain is not able to isomerise maltose to trehalose. C. glutamicum 

Δmus, which lacks the genes encoding the maltose uptake system, was used as a control to 

exclude the extracellular conversion of maltose to trehalose. All strains were cultivated in 

2TY, harvested during the exponential growth phase, washed twice and resuspended in 10 

mM KH2PO4/K2HPO4 buffer pH 6.8. 300 µM labelled maltose was added and the cells were 

incubated for 5 h at 30°C. Samples were taken after several time points to determine the 

total radioactivity and the intracellular amount of substrate. Supernatants as well as cell 

extracts were analysed via TLC.  
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C. glutamicum ΔmalQ ΔtreX Δtus and C. glutamicum ΔmalQ ΔtreX ΔtreS completely imported 

the substrate within 50 min with similar uptake rates (11.2 ± 2.7 nmol × mg-1 cdw × min-1 and 

11.9 ± 3.5 nmol × mg-1 cdw × min-1, respectively) while C. glutamicum Δmus did not import 

any maltose even after prolonged incubation (Figure 11).  

 

 

Figure 11: Trehalose export experiment with [14C]-maltose as substrate. 300 µM [14C]-labelled 

maltose was added at 0 min and the time courses of the intracellular amount of radiolabel (●) and of 

the total amount of radiolabel (■) were recorded for C. glutamicum ΔmalQ ΔtreX Δtus (A), 

C. glutamicum ΔmalQ ΔtreX ΔtreS (B), and C. glutamicum Δmus (C). 

After the substrate was depleted, the intracellular amount of sugar remained constant for C. 

glutamicum ΔmalQ ΔtreX ΔtreS but decreased from 435 ± 31 nmol × mg cdw-1 to 135 ± 3 

nmol × mg-1 cdw after 300 min for C. glutamicum ΔmalQ ΔtreX Δtus. Assuming that trehalose 

is the only labelled metabolite excreted in the experiment, this corresponds to a trehalose 

excretion rate of 1.23 ± 0.09 nmol × mg-1 cdw × min-1. Unexpectedly, the total radioactivity 

decreased by 19% for C. glutamicum ΔmalQ ΔtreX Δtus within 300 min but remained stable 

for the other strains.  

In C. glutamicum ΔmalQ ΔtreX Δtus the intracellular ratio of maltose to trehalose was not 
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known. To examine whether TreS efficiently catalysed the formation of trehalose from 

maltose in the cytosol, cells were separated from the medium by filtration, washed, and 

disrupted in 70% isopropanol. The samples were concentrated and analysed via TLC (Figure 

12). Intracellular trehalose and maltose were detected after 50 min, 80 min, and 110 min for 

C. glutamicum ΔmalQ ΔtreX Δtus. C. glutamicum ΔmalQ ΔtreX ΔtreS accumulated maltose in 

the cells but did not produce trehalose. No other compound than maltose or trehalose was 

detected in the cell extracts.  

 

 

Figure 12: Separation of [14C]-labelled intracellular sugars via TLC. C. glutamicum ΔmalQ ΔtreX Δtus 

(ΔQXtus) and C. glutamicum ΔmalQ ΔtreX ΔtreS (ΔQXS) were cultivated in the presence of 300 µM 

[14C]-maltose and samples were taken at various time points. 

The experiments shown above prove that maltose is taken up and converted to trehalose by 

TreS in the cytosol. To investigate whether trehalose can also be excreted from the cytosol, 

culture supernatants from the experiment shown in Figure 11 were analysed via TLC (Figure 

13). At the beginning of the experiment, maltose was present in the samples of all three 

strains. For C. glutamicum ΔmalQ ΔtreX Δtus, the substrate was depleted after 50 min and 

after 300 min, a substance with identical retention as trehalose was detected in the 

supernatant. C. glutamicum ΔmalQ ΔtreX ΔtreS also imported the substrate completely but 

no trehalose was excreted. C. glutamicum Δmus neither imported [14C]-maltose nor formed 

trehalose from extracellular substrate. Two weak spots, of which one migrated slightly faster 

and one slightly slower than maltose, were detected in all supernatants. Since these spots 

were already present in all samples after 1 min of incubation and even in the maltose stan-

dard solution, they were contaminations with unknown identity from the [14C]-substrate 

solution. 
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Figure 13: TLC analysis of culture supernatants with [14C]-maltose as substrate. ΔQXtus: 

C. glutamicum ΔmalQ ΔtreX Δtus; ΔQXS: C. glutamicum ΔmalQ ΔtreX ΔtreS; Δmus: C. glutamicum 

Δmus; Std.: Maltose and trehalose standards. Samples were taken from the experiment shown in 

Figure 11. Prior to TLC analysis, samples were desalted and concentrated as described in the 

methods section. 

In conclusion, these experiments show that trehalose is exported by C. glutamicum ΔmalQ 

ΔtreX Δtus after the uptake of maltose and the TreS-dependent conversion to trehalose. 

Maltose and trehalose were clearly detectable in cell extracts of this strain. Control strains 

lacking TreS or the maltose uptake system were not able to produce trehalose.   

However, it was not possible to determine the exact trehalose export rate in this 

experiment. The total radioactivity decreased, indicating active metabolism and the 

formation of CO2 from labelled maltose. Further, the generation of trehalose from 

unlabelled precursors in the cell could not be excluded in the experiment, which would alter 

the ratio of labelled to unlabelled substrate. Hence, a quantitative analysis of trehalose 

concentrations in the supernatant was necessary to determine the exact rate of trehalose 

excretion. 

3.2.3 Enzymatic assay for quantitative trehalose detection 

To further characterise trehalose export, a quantification of trehalose concentrations in the 

cytosol and in culture supernatants of C. glutamicum strains was needed. HPLC analysis was 

not suitable for this purpose since maltose was used as substrate for trehalose production 

and the separation of maltose and trehalose was not possible with the available equipment. 

An enzymatic assay was developed here as an alternative. Trehalases are enzymes that 

catalyze trehalose hydrolysis yielding two molecules of glucose per molecule of trehalose. 
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Glucose can then be phosphorylated and oxidised to 6-phosphogluconolactone by 

hexokinase and glucose-6-phosphate dehydrogenase. The concomitant reduction of NADP to 

NADPH can be detected photometrically at 340 nm. The reaction scheme is depictured in 

Figure 14.  

 

 

Figure 14: Enzymatic assay for the determination of trehalose concentrations. Tre: Trehalose; Glc: 

glucose; G6P: glucose-6-phosphate; 6-PGL: 6-phosphogluconolactone; HK: hexokinase; G6PDH: 

glucose-6-phosphate dehydrogenase. 

 

A plasmid encoding a trehalase cloned from the thermophilic bacterium Rhodothermus 

marinus (Jorge et al., 2007) was provided by the authors. The gene was overexpressed in 

E. coli BL21 (DE3) and the protein carrying a C-terminal His6-tag was purified via IMAC and 

SEC. SDS-PAGE and Western-blot analysis showed that the protein was purified to near 

homogeneity (Figure 15). SEC elution fractions were collected, 20% glycerol (final 

concentration) was added and aliquots were stored at -80°C.  

 

 

Figure 15: Purification of trehalase after overproduction in E. coli. A: SDS-PAGE analysis; B: 

Western-blot analysis (anti-His6); M: Protein marker; 1: cell lysate; 2 – 5: IMAC elution fractions; 6 – 

7: SEC elution fractions. Elution fractions 3, 4, and 5 were pooled, concentrated by filtration (30 kDa 

cut-off) and further purified via SEC using 20 mM Tris-HCl buffer pH 7.6. Fractions 6 and 7 were used 

for enzymatic determination of trehalose concentrations. 
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An enzymatic assay using purified trehalase for trehalose detection was established (see 

2.5.5). Results of the enzymatic measurement of trehalose standards are shown in Figure 16. 

A linear correlation of the absorption difference at 340 nm for samples containing 0.1 mM to 

5 mM trehalose was obtained. Importantly, maltose was not a substrate for the enzyme. 

 

 

Figure 16: Enzymatic assay for trehalose quantification. Trehalose standards were incubated in the 

presence of purified trehalase at 80°C for 3 h and the liberated glucose was detected enzymatically. 

ΔE340 nm is the change of absorbance at 340 nm caused by NADP reduction. 

3.2.4 Quantitative analysis of trehalose excretion 

To determine the rate of trehalose release in C. glutamicum ΔmalQ ΔtreX Δtus, the strain 

was pre-cultivated in minimal medium plus 2% glucose. When all glucose was consumed, 

maltose was added to start the production of trehalose. The concentration of trehalose in 

the supernatant was determined enzymatically. C. glutamicum ΔmalQ ΔtreX ΔtreS was used 

as negative control since this strain does not convert maltose to trehalose.  

C. glutamicum ΔmalQ ΔtreX Δtus consumed all glucose within 10 h and grew to an OD600 of 

28.7 ± 0.6 (Figure 17 A). After the addition of maltose, the OD600 further increased to 

48.3 ± 0.3 after 23 h. 5.22 ± 0.27 mM trehalose were detected after 51.5 h corresponding to 

a yield of 0.19 ± 0.01 mol × mol-1 maltose. Trehalose accumulated with a constant rate of 

0.19 ± 0.01 nmol × mg-1 cdw × min-1 for 21.5 h after the addition of maltose. C. glutamicum 

ΔmalQ ΔtreX ΔtreS grew to a similar OD600 with glucose as substrate but no further increase 

of the OD600 was observed after the addition of maltose. This strain did not produce 

significant amounts of trehalose from maltose (Figure 17 B). 
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Figure 17: Trehalose export by C. glutamicum ΔmalQ ΔtreX Δtus (A) and C. glutamicum ΔmalQ 

ΔtreX ΔtreS (B). Cells were cultivated in minimal medium with 100 mM glucose. The dashed lines 

indicate the addition of 29 mM maltose after 10 h. 

3.2.5 Contribution of mechanosensitive channels to the excretion of trehalose 

Mechanosensitive channels are passive transport systems that are responsible for the 

release of osmotically active solutes under hypoosmotic conditions (Martinac et al., 1987). In 

E. coli, these transporters have been linked to the export of metabolites like glutamate, 

trehalose, lactose, and ATP from cells subjected to hypoosmotic conditions (Berrier et al., 

1992; Schleyer et al., 1993). Two mechanosensitive channels have been described in 

C. glutamicum, MscL and MscCG (Ruffert et al., 1999). To test a possible contribution of 

these channels to the accumulation of trehalose in the culture broth during cultivation of 

C. glutamicum, the strain C. glutamicum ΔmalQ ΔtreX ΔmscL ΔyggB was constructed, which 

lacks the two genes coding for mechanosensitive channels and which is also deficient in 

maltose degradation. After growth of this strain in minimal medium plus 2% glucose and 

addition of 1% maltose as substrate for trehalose production, trehalose accumulation in the 

supernatant with a rate of 0.13 nmol × mg cdw-1 × min-1 was detected. Since this rate was 

similar for C. glutamicum ΔmalQ ΔtreX Δtus (0.19 nmol × mg-1 cdw × min-1), it can be 

concluded that trehalose release to the medium occurred independent of the function of 

MscCG and MscL under the conditions applied here.  

To test for the contribution of so far unidentified mechanosensitive channels to trehalose 

excretion in C. glutamicum ΔmalQ ΔtreX Δtus, the release of trehalose after hypoosmotic 

shocks was tested. Under these conditions, compatible solutes like glycine betaine are 
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released from the cell by the opening of mechanosensitive channels (Ruffert et al., 1997). 

Cells were loaded with 300 µM [14C]-maltose in the presence of 250 µM glycine betaine to 

induce intracellular trehalose accumulation. As a control, the uptake of 250 µM [14C]-labelled 

glycine betaine in the presence of 300 µM maltose was measured in a parallel experiment. 

When cells were exposed to a hypoosmotic shock from 1790 mOsmol × kg-1 to 280 

mOsmol × kg-1, the combined intracellular amount of maltose and trehalose (which cannot 

be distinguished here, compare Figure 12) was only slightly reduced from 169 nmol × mg-1 

cdw to 146 nmol × mg-1 cdw (Figure 18).  

 

 

Figure 18: Metabolite excretion after hypoosmotic shocks. Cells were incubated in the presence of 

250 µM glycine betaine and 300 µM maltose in both experiments. Either [14C]-maltose (●) or [14C]-

glycine betaine (▼) was used. Opening of mechanosensitive channels was triggered by performing 

an osmotic downshock from 1790 mOsmol × kg-1 to 280 mOsmol × kg-1 after 31 min (first dashed 

line). After 51 min 0.1% CTAB was added (second dashed line). 

The drop of the amount of intracellular substrate to 3 nmol × mg-1 cdw after the addition of 

0.1% CTAB confirmed that the labelled substrate was not metabolised to immobile products 

during the experiment. The excretion of [14C]-labelled glycine betaine in the control experi-

ment confirmed the opening of osmoregulated channels under the experimental conditions 

(Figure 18).  

The experiments described here show that mechanosensitive channels do not release 

trehalose after hypoosmotic shocks in C. glutamicum and that MscCG and MscL are not 

responsible for trehalose excretion during shake flask cultivation. 
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3.2.6 Contribution of putative sugar export systems to the excretion of trehalose 

C. glutamicum has been shown to release trehalose to the medium in the experiments 

described above. Since mechanosensitive channels were excluded as an unspecific trehalose 

export mechanism, carrier-mediated export seemed likely. The physiological function of 

metabolite export in bacteria is not understood in most cases and sugar export has only 

been investigated in a few cases. A family of three proteins named SetA, B and C (sugar 

efflux transporter) catalysing the export of arabinose and β-galactosides like lactose and 

IPTG has been described in E. coli (Liu et al., 1999a; Koita & Rao, 2012). Also, ydeA is known 

to encode an export protein for arabinose and IPTG in E. coli (Carolé et al., 1999). A single 

trehalose exporter is known in insects, where this sugar serves as carbon capacitor and can 

be exported from fat cells to the haemolymph (Sakurai et al., 2008). The sequences of these 

proteins were used as queries in BLASTP searches (Altschul et al., 1997) to identify candidate 

genes encoding sugar transporters in C. glutamicum by Natalie Brühl (unpublished data) 

(Table 4). 

 

Table 4: Identification of genes putatively encoding sugar export proteins in C. glutamicum. BLASTP 

searches were conducted with gene sequences of previously described sugar efflux transporters as 

query (Natalie Brühl, unpublished data). 

Gene (annotation, family) C. glutamicum homologues (score, E-value) 

mdtD (putative arabinose efflux 

transporter, MFS) 

cg0206 (194 bit, 1
-50

), cg1399 (161 bit, 6
-41

), cg1289 (160 bit, 2
-40

), 

cg2893 (132 bit, 5
-32

), cg2739 (127 bit, 1
-30

) 

kgtP (alpha-ketoglutarate transporter, 

MFS) 

cg3226 (176 bit, 2
-45

), cg3395 (176 bit, 3
-45

), cg0501 (145 bit, 5
-36

), 

cg0340 (130 bit, 2
-31

) 

ydhP (predicted transporter, MFS) cg0772 (214 bit, 7
-57

), cg3334 (72 bit, 4
-14

) 

setA (sugar efflux transporter, MFS) cg3245 (32 bit, 0.052) 

setB (sugar efflux transporter, MFS) cg1212 (35 bit, 0.009), cg2739 (31 bit, 0.08) 

setC (sugar efflux transporter, MFS) cg1212 (35 bit, 0.005) 

mhpT (predicted 3-hydroxyphenyl-

propionic acid transporter, MFS) 

cg3353 (121 bit, 5
-29

), cg2618 (116 bit, 2
-27

), cg3301 (99 bit, 5
-22

) 

yebQ (predicted transporter, MFS) cg1399 (175 bit, 4
-45

), cg1289 (166 bit, 2
-42

), cg2893 (138 bit, 1
-33

), 

cg2971 (123 bit, 2
-29

), cg0206 (104 bit, 7
-24

), cg1526 (103 bit, 1
-23

) 

ydhC (putative arabinose efflux 

transporter, MFS) 

cg3038 (114 bit, 6
-27

) 

ynfM (putative arabinose efflux 

transporter, MFS) 

cg3240 (268 bit, 3
-73

) 

ydeA (arabinose efflux transporter, MFS) cg3334 (102 bit, 2
-23

), cg0772 (100 bit, 2
-22

), cg3245 (42 bit, 6
-5

) 

TRET1 (Anopheles gamibiae, facilitated 

trehalose transporter, MFS) 

cg0223 (139 bit, 2
-34

) 
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The best hits for each query were selected and a total of 23 genes were inactivated in the 

trehalose excreting test strain, C. glutamicum ΔmalQ ΔtreX Δtus, in this work. The inactiva-

tion of genes encoding trehalose export systems was expected to deteriorate its rate of 

export. The resulting strains were thus grown on 2% glucose as substrate and 1% maltose 

was added as substrate for trehalose production after glucose depletion. Trehalose concen-

trations were determined in the supernatants to calculate trehalose accumulation rates 

(Figure 19). Compared to the parental strain, C. glutamicum ΔmalQ ΔtreX Δtus, none of the 

strains tested released trehalose with a significantly reduced rate. The sole exception was 

C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893, which no longer excreted trehalose. This mutant 

was analysed in more detail (section 3.2.7). 

 

 

Figure 19: Trehalose excretion rates after inactivation of putative sugar exporters. Candidate genes 

were inactivated in C. glutamicum ΔmalQ ΔtreX Δtus (ΔQXtus). The trehalose excretion rates of the 

mutant strains were determined after the addition of maltose as substrate (see 0) and are depictured 

as relative values with the excretion rate of the parental strain set to 100%. 

3.2.7 Investigation of trehalose excretion in C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 

The gene cg2893 encodes a permease of the major facilitator superfamily (MFS). The gene 

locus is shown in Figure 20. The genes cg2893, cg2894, and cg2895 are transcribed in the 

same direction, while poxB and cg2896, which lie up- and downstream, respectively, are 

transcribed in the reverse direction. The genes cg2893 and cg2894 overlap by 10 nucleotides 

and cg2894 and cg2895 are only separated by 17 nucleotides. Hence, cg2893, cg2894, and 
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cg2895 possibly form an operon of co-transcribed genes. Like cg2893, cg2895 encodes a 

MFS permease while cg2894 encodes a TetR-type transcriptional regulator.  

 

 

Figure 20: Gene cluster cg2893 – cg2895. poxB encodes pyruvate dehydrogenase, cg2893 and 

cg2895 encode MFS-type permeases, cg2894 encodes a TetR-type regulator protein and cg2896 

encodes an endoglucanase. 

C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 no longer accumulated trehalose in the culture 

supernatant using maltose as substrate (see Figure 19). Growth of this mutant in minimal 

medium plus glucose was nearly absent and the cells aggregated during cultivation (Figure 

21). Analysis of the culture supernatants via TLC (Figure 22) after the addition of maltose to 

C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 revealed that maltose consumption was also 

impaired in comparison to C. glutamicum ΔmalQ ΔtreX Δtus, which completely consumed 

the substrate within 8 h after its addition. The lack of trehalose excretion by this mutant was 

thus most likely an indirect effect of poor growth and maltose uptake.  

Since inactivation of cg2893 caused a severe growth phenotype which hampered the 

investigation of the function of the encoded protein, the gene was cloned and overex-

pressed in C. glutamicum ΔmalQ ΔtreX Δtus (pXMJ19_cg2893). If this gene encoded an 

exporter for trehalose, this strain should export trehalose with an increased rate. Trehalose 

accumulation rates were determined as described above. C. glutamicum ΔmalQ ΔtreX Δtus 

(pXMJ19) carrying an empty plasmid was used as control (Figure 23). No significant differen-

ces concerning the trehalose accumulation rate were observed between both strains.  

 

 

Figure 21: C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 forms cell aggregates in minimal medium 

plus glucose. 
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Figure 22: TLC analysis of culture supernatants of C. glutamicum ΔmalQ ΔtreX Δtus (ΔQXtus) and 

C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 (ΔQXtus IMcg2893) after maltose addition. S: standard 

solution. Carbohydrates were visualised with 4% H2SO4 in methanol and heating to 110°C. 

Due to the severe growth phenotype of C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 plasmid 

encoded expression of cg2893 in this strain was not tested. To rule out negative effects of 

cg2893 inactivation on the expression of cg2895, which lies downstream of cg2893 in the 

hypothetical operon and also encodes a MFS type permease, the influence of disruption and 

overexpression of the latter on trehalose excretion was tested. Growth of C. glutamicum 

ΔmalQ ΔtreX Δtus IMcg2895 with glucose was similar to the parental strain (µ = 0.34 h-1 and 

0.38 h-1, respectively) and significant differences in the trehalose excretion rates were 

measured neither after inactivation nor overexpression of cg2895 (Figure 19 and 23).  

 

 

Figure 23: Effect of cg2893 and cg2895 overexpression on the trehalose accumulation rate in the 

medium. For induction of gene expression, 100 µM IPTG was added to the medium. (pXMJ19): 

C. glutamicum ΔmalQ ΔtreX Δtus (pXMJ19); (pXMJ19_cg2893): C. glutamicum ΔmalQ ΔtreX Δtus 

(pXMJ19_cg2893); (pXMJ19_cg2895): C. glutamicum ΔmalQ ΔtreX Δtus (pXMJ19_cg2895). 
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These experiments indicate that the lack of trehalose excretion by C. glutamicum ΔmalQ 

ΔtreX Δtus IMcg2893 was most likely a secondary effect of poor growth and substrate con-

sumption. Since overexpression of this gene did not increase the trehalose accumulation 

rate, this gene is unlikely to encode a trehalose exporter. The severe growth defect of this 

strain was reminiscent of strains impaired in mycolic acid metabolism. The role of Cg2893 in 

glycolipid synthesis was thus further investigated and is described in section 3.4.4. 

3.2.8 Transcriptional regulation of the putative trehalose export system 

Analysis of differential expression of genes under diverse conditions has been successfully 

applied for the identification of genes coding for export proteins in the past (Trötschel et al., 

2005; Kind et al., 2011). Thereby, mRNA extracted from cells grown under inducing and non-

inducing conditions is transcribed to cDNA and the latter is spotted on a DNA chip containing 

DNA probes for (nearly) all genes of an organism. Genes that are up- or downregulated 

under one of the applied conditions can be identified comparing transcript amounts of the 

two samples. If the transcription of gene(s) encoding the trehalose export system was 

regulated in the test strain C. glutamicum ΔmalQ ΔtreX Δtus, these could also be identified 

applying DNA microarray analysis. To test whether de novo protein synthesis is required to 

trigger trehalose export in this strain, translation was inhibited using chloramphenicol. 

Therefore, cells were pre-cultivated in minimal medium with 1% glucose as carbon source. 

After depletion of the substrate, 100 µg/ml chloramphenicol and 1% maltose were added to 

the culture. In parallel, the experiment was performed without chloramphenicol. The OD600, 

the intra-, and the extracellular concentrations of trehalose were recorded (Figure 24).  

Within 24 h after the addition of maltose, the OD600 increased in both experiments from 

about 20 to 26 (no chloramphenicol) and 32 (plus chloramphenicol), respectively. The 

intracellular trehalose concentration was in the low millimolar range before maltose 

addition in both cases. Without chloramphenicol, it linearly increased to 85 ± 4 mM after 

8.5 h and reached 124 ± 3 mM after 24 h. In the presence of chloramphenicol, the increase 

of the internal trehalose concentration occurred with a higher rate and reached 154 ± 3 mM 

after 24 h. Under the latter condition, the accumulation of trehalose in the supernatant was 

also faster (0.16 ± 0.01 nmol × mg-1 cdw × min-1 compared to 0.09 ± 0.00 nmol × mg-1 

cdw × min-1 with and without chloramphenicol, respectively). Although the internal 

trehalose concentration was higher when chloramphenicol was added, the excretion rate 
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was not reduced but even increased. This excluded the necessity of de novo protein 

synthesis to induce trehalose excretion in the experiment described here. In conclusion, the 

trehalose uptake system cannot be identified via transcriptional analyses under the applied 

conditions.  

 

 

Figure 24: Dependence of trehalose release to the medium on de novo protein synthesis. 

C. glutamicum ΔmalQ ΔtreX Δtus was pre-cultivated with glucose (not depicted) before 15 mM 

maltose was added (dashed line) (A). 100 µg/ml chloramphenicol was added to block protein 

synthesis prior to maltose addition (B). 
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3.3 Construction and application of a genetically encoded trehalose nanosensor 

C. glutamicum was shown to export trehalose in this study but the exporter could not be 

identified so far. A set of candidate genes was inactivated but none of the encoded proteins 

contributed to trehalose export. Since this rational approach was not successful, screening of 

a C. glutamicum mutant library was considered as an alternative. To construct a library 

based on gene inactivation, transposon mutagenesis could be applied, for example. 

Alternatively, genomic DNA of C. glutamicum could be fragmented, cloned in a suitable 

vector, and overexpressed in an appropriate host to construct a genomic library. However, 

the screening of such a library has to be considered as well. A likely phenotype after 

inactivation or overexpression of an exporter is an altered intracellular concentration of the 

export substrate and this could be detected with a genetically encoded FRET-nanosensor. 

Genetically encoded FRET-nanosensors consist of a ligand binding domain fused to two 

fluorescent proteins forming a FRET-pair. Binding of the ligand causes a conformational 

change of the binding domain and is translated into an altered FRET-efficiency between the 

coupled fluorescent proteins. This enables the determination of intracellular solute 

concentrations in a non-disruptive manner using fluorescence detection (Fehr et al., 2002). 

Bacterial periplasmic binding proteins (PBPs) are frequently used as binding domains for 

nanosensor construction (Jeffery, 2010). PBPs serve as receptors for the active uptake of 

mono- and oligosaccharides, amino acids, oligopeptides, cations, vitamins, etc. (Quiocho & 

Ledvina, 1996). This large family of proteins shows a common shape. Two globular domains 

are connected by a central hinge and a substrate binding pocket is formed on the interface 

of these domains (Quiocho & Ledvina, 1996). PBPs undergo a pronounced conformational 

change from an open to a closed state upon ligand binding and are thus well suited for the 

application in biosensors (Dwyer & Hellinga, 2004).  

FRET-nanosensors have been constructed to detect ions like Ca2+ (Nakai et al., 2001) and 

phosphate (Gu et al., 2006), small metabolites like ATP (Imamura et al., 2009), mono- and 

disaccharides like glucose (Fehr et al., 2003), maltose (Fehr et al., 2002), and sucrose (Chen 

et al., 2012), and amino acids like L-glutamate (Okumoto et al., 2005) and L-leucine (Mohsin 

et al., 2013), for example. FRET-nanosensors have been used to show the uptake of maltose 

by yeast cells (Fehr et al., 2002), the transport of glucose across the membrane of the 

endoplasmatic reticulum of HepG2 cells (Fehr et al., 2005), to measure steady-state glucose 

levels in plants (Deuschle et al., 2006), or to depict the accumulation of arabinose and 
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maltose in E. coli (Kaper et al., 2008). Furthermore, a sucrose sensor was used to identify a 

family of sucrose export proteins by screening a set of membrane proteins of unknown 

function from Arabidopsis thaliana expressed in human embryonic kidney cells (Chen et al., 

2012). It was thus reasoned that a trehalose nanosensor could be used as a tool for the 

detection of intracellular trehalose and to screen a C. glutamicum mutant library to identify 

proteins involved in trehalose export. A trehalose nanosensor has not yet been described in 

the literature and should be constructed in this work. The periplasmic trehalose binding 

protein of C. glutamicum was therefore characterised and finally used for the construction of 

a trehalose sensor. Since FRET-nanosensors have not been tested for the application in 

C. glutamicum yet, a set of ATP-nanosensors was expressed in this organism and used to 

establish techniques for the application of FRET-sensors in this host. 

3.3.1 Establishing metabolite nanosensors in C. glutamicum 

FRET-nanosensors for ATP have been described in the literature and have been used to 

study the energy metabolism of human epithelial cells (Imamura et al., 2009). The set of 

sensors applied here comprises two sensors with millimolar dissociation constants for ATP 

(AT1.03 and AT1.03YEMK), one sensor with a micromolar ATP dissociation constant 

(AT3.10MGK) and a control sensor that does not respond to even 10 mM ATP 

(AT1.03R122K/R126K). For expression, the genes encoding these sensor constructs were ligated 

to the E. coli – C. glutamicum shuttle vector pBB1. Successful expression in C. glutamicum 

was verified by fluorescence imaging showing the expression and correct folding of both 

fluorescence protein domains of the sensor (Figure 25).  

 

 

Figure 25: Expression of ATP-nanosensors in C. glutamicum cells. As an example for all four ATP-

sensors used in this study the expression of AT1.03YEMK is shown here in C. glutamicum 

(pBB1_AT1.03YEMK). Images were taken using an Axio Imager M1 fluorescence microscope equipped 

with an Axiocam HRm camera and an EC Plan Neofluar 100 × /1.3 Oil Ph3 objective (Carl Zeiss). 
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Table 5: Dissociation constants of ATP-nanosensors in cell lysates and permeabilised cells. Kd-values 

for sensors in E. coli cell lysates were taken from the literature (Imamura et al., 2009). The maximum 

signal changes upon ATP-addition are given in brackets. n. d. not determined. 

Sensor E. coli (cell lysates) C. glutamicum 

(cell lysates) 

C. glutamicum 

(permeabilised cells) 

AT1.03 3.3 mM 1.25 mM (0.44) 1.25 mM (0.23) 

AT1.03
YEMK

 1.2 mM 0.71 mM (1.93) 1.5 mM (0.75) 

AT3.10
MGK

 14 µM 24 µM (0.31) 91 µM (0.71) 

AT1.03
R122K/R126K

 > 10 mM - n. d. 

 

Next, cell lysates of C. glutamicum (pBB1_AT1.03), C. glutamicum (pBB1_AT1.03YEMK), 

C. glutamicum (pBB1_AT3.10MGK), and C. glutamicum (pBB1_AT1.03R122K/R126K) were 

prepared to perform in vitro calibrations of the ATP-sensors. Results of these experiments 

are shown in Figure 26 and Table 5. All Kd values were in the same range as expected from 

the literature. AT3.10MGK showed a very high affinity for ATP with a Kd-value of 24 µM. For 

AT1.03 and AT1.03YEMK the values were 1.25 mM and 0.71 mM. The control sensor 

AT1.03R122K/R126K did not respond to the addition of ATP.  

 

 

Figure 26: In vitro calibration of ATP-nanosensors in C. glutamicum cell lysates. A: C. glutamicum 

(pBB1_AT1.03); B: C. glutamicum (pBB1_AT1.03YEMK); C: C. glutamicum (pBB1_AT3.10MGK); D: C. gluta-

micum (pBB1_AT1.03R122K/R126K). The FRET-efficiency (F527/F475) was calculated by division of the 

yellow by the cyan fluorescence intensity. 
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The influence of cytosolic contents on the sensor response was studied in C. glutamicum 

cells permeabilised with 0.05% CTAB. While the Kd-value for AT1.03 remained unchanged, 

those of AT1.03YEMK and AT3.10MGK increased to 1.5 mM and 91 µM, respectively. Further, 

the maximum signal changes (ΔRmax) of the sensors were different in permeabilised cells 

compared to cell lysates. While ΔRmax was higher in cell lysates for AT1.03 (0.44 and 0.23) 

and AT1.03YEMK (1.93 and 0.75), the opposite was true for AT3.10MGK (0.31 and 0.71) (Table5). 

To test the function of the ATP sensors in vivo, different inhibitors of ATP synthesising 

reactions were added to a C. glutamicum (pBB1_AT1.03YEMK) culture (Figure 27).  

 

 

Figure 27: In vivo response of AT1.03YEMK to the perturbation of ATP synthesis. C. glutamicum was 

cultivated in CgC minimal medium plus 1% glucose. At t = 0 min 0.1% CTAB (●), 20 mM azide (▼), or 

1 mM cyanide (■) was added. The FRET-efficiency F527/F475 was calculated by division of the yellow by 

the cyan fluorescence intensity. 

CTAB leads to cell permeabilisation and therefore ATP synthesis by the respiratory chain is 

blocked completely, leaving only substrate-level phosphorylation for ATP generation. 

Addition of 0.1% CTAB caused a drop of the FRET-efficiency of AT1.03YEMK from 3.41 to 2.25, 

reflecting the immediate dilution of the intracellular ATP concentration due to cell 

permeabilisation. A partial restoration of the FRET-efficiency to 3.02 within 60 min was 

observed. Cyanide and azide are inhibitors of the cytochrome-aa3-oxidase. Cyanide was 

added at a concentration of 1 mM to partially block the activity of this enzyme (Sugiyama et 

al., 1973). The FRET-efficiency slightly decreased from 3.39 to 3.21 after the addition and 

slowly increased to 3.53 after 60 min. 20 mM azide was added to completely inhibit 

cytochrome-aa3-oxidase. Within 10 min, a decrease of the sensor signal from 3.39 to 3.05 

was observed. Only a partial recovery of the signal (3.22 after 60 min) was possible, 
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correlating with the assumption of a total inhibition of the cytochrome-aa3-oxidase branch 

of the respiratory chain under these conditions.  

In conclusion, a set of ATP-nanosensors was successfully applied for ATP measurements in 

C. glutamicum. Techniques for the calibration of FRET-nanosensors in cell lysates and 

permeabilised cells were established and the experiments showed that the sensor response 

is altered in the intracellular environment compared to experiments in cell lysates. This is 

likely to hamper the quantitative detection of ATP by this method. Nevertheless, these 

sensors were applied successfully to show relative changes of the intracellular ATP 

concentrations in C. glutamicum upon perturbation of ATP synthesis. 

3.3.2 The gene cg0834 encodes the binding protein of the trehalose ABC uptake system 

The applicability of genetically encoded FRET-nanosensors in C. glutamicum could be shown 

with the help of a set of ATP-sensors. To construct a trehalose nanosensor, the trehalose 

binding protein of C. glutamicum was characterised next.  

The tus-gene cluster comprises a gene encoding a putative periplasmic sugar binding 

protein, cg0834 (tusE) (Henrich, 2011). The function of the encoded protein was examined in 

this work. To collect information about the protein, a bioinformatic analysis of the predicted 

primary sequence encoded by cg0834 was conducted. The gene encodes a protein of 424 

amino acids with a calculated molecular weight of 45 kDa. The primary structure has 30% 

identity and 48% similarity to the trehalose/maltose binding protein from Thermococcus 

litoralis and 27% identity and 42% similarity to the maltose binding protein MalE from E. coli. 

The domain annotation given in the KEGG database (Kanehisa & Goto, 2000) classifies the 

protein as a member of either the ABC transporter substrate binding protein cluster 1 (E-

value 4.9-27), members of which are specific for oligosaccharides, glycerol-3-phsphate, and 

iron (Tam & Saier, 1993), or cluster 8 (E-value 4.4-26), members of which are specific for iron 

complexes (Tam & Saier, 1993). The protein probably also contains a PepSY domain (E-value 

= 0.51, amino acids 10 to 47), which is found in a large number of secreted bacterial proteins 

(Yeats et al., 2004). To identify a possible signal peptide targeting the protein for the export 

to the periplasm, the SignalP 4.0 algorithm (Petersen et al., 2011) was used. An N-terminal 

signal peptide with a cut-off site between amino acids 32 and 33 was predicted. In Gram-

negative bacteria, periplasmic solute binding proteins are held back by the outer membrane. 

Since the latter is missing in Gram-positive bacteria, the loss of periplasmic proteins to the 
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surrounding has to be prevented otherwise. Cysteine acylation commonly tethers these 

proteins to the membrane (Nielsen & Lampen, 1982). Using the LipoP1.0 algorithm (Juncker 

et al., 2003), a signal sequence typical for lipoproteins with a cleavage site between amino 

acids 25 and 26 was identified, resulting in an N-terminal cysteine residue that could be 

modified by acylation in the mature protein.  

Next, the function of the cg0834 gene product was tested experimentally. cg0834 and a 

truncated version lacking the first 25 codons from the N-terminus were cloned by PCR and 

overexpressed in E. coli BL21 (DE3). Both proteins, carrying a C-terminal His6-tag, were then 

purified in two steps via IMAC and SEC. For SEC, a 20 mM K2HPO4/KH2PO4 buffer pH 7.5 plus 

150 mM NaCl was used. When purified via SEC, full length TusE eluted in the void volume of 

the column probably due to aggregation of the protein. It was thus not examined further. 

Under the same conditions, the truncated protein was purified to apparent homogeneity as 

shown by SDS-PAGE (Figure 28 A) and its identity was confirmed by Western-blot analysis 

using anti-His6 antibody (Figure 28 B).  

 

 

Figure 28: Purification of TusEΔN25-His6 by IMAC and SEC. A: SDS-PAGE analysis; B: Western-Blot 

analysis using anti-His6 antibody. M: Protein marker; L: Cell lysate; FT: Flow-through of unbound 

protein; 1 – 3: IMAC elution fractions; 4– 6: SEC elution fractions. 

To examine trehalose binding to the protein, the change of fluorescence intensity of the 

protein upon trehalose addition was tested (Figure 29). The experiment showed the binding 

of trehalose with a dissociation constant of 0.42 ± 0.02 µM. The addition of buffer as a 

negative control did not lead to a change of the fluorescence intensity (not shown).  

These studies confirm that cg0834 encodes a trehalose binding protein with high substrate 

affinity (TusE in the following). The first 25 amino acids of TusE are not necessary for 

trehalose binding and probably target the protein for the export to the periplasm and for 

acylation. 
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Figure 29: Change of the intrinsic fluorescence of TusEΔN25-His6 after trehalose addition. ΔF336nm 

represents the relative difference of the fluorescence intensity at 336 nm (289 nm excitation). 

3.3.3 Development of a trehalose nanosensor 

Periplasmic solute binding proteins have been used to construct a number of metabolite 

sensors based on the proteins conformational change upon ligand binding. Coupled to two 

fluorescent proteins constituting a FRET-pair, ligand binding is translated into a change of 

FRET-efficiency. TusE was shown to bind trehalose with high affinity (see section 3.3.2) and it 

was thus chosen to construct a genetically encoded trehalose sensor (TreSen). Enhanced 

cyan and yellow fluorescent proteins (ECFP, EYFP) are commonly used as FRET pair for the 

construction of nanosensors (Fehr et al., 2002; Kaper et al., 2008; Imamura et al., 2009) and 

were also applied here.  

For the construction of a trehalose sensor, a tusE PCR product was used to exchange the 

maltose binding protein encoding malE gene of a maltose sensor (Fehr et al., 2002) using 

KpnI restriction sites. This resulted in a construct encoding TusE N- and C-terminally fused to 

ECFP and EYFP, respectively, by two linkers consisting of six amino acids (compare Figure 30). 

This construct was then ligated to the pET29b vector and overexpressed in E. coli BL21 (DE3). 

Cell lysates were prepared and titrated with a trehalose stock solution.  

After excitation at 435 nm, the fluorescence intensities at 480 nm and 525 nm, 

corresponding to the emission maxima of ECFP and EYFP, respectively, were recorded in a 

microplate reader. FRET-efficiencies were calculated by division of the latter value by the 

former. Features of all sensor constructs described in the following are summarised in 

Table 6. Oligonucleotides used for the construction are given in Table 3 in the methods 

section. 
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Figure 30: Schematic representation of the trehalose nanosensor TreSen1. For construction, a full 

length tusE PCR product was ligated in between ecfp and eyfp using KpnI restriction sites 

(underlined). Linker regions are shown in bold letters. Amino acids are numbered according to their 

position in the original proteins. 

For construction of TreSen1, the full length tusE gene was used. The FRET-efficiency of this 

construct, however, remained unchanged after the addition of trehalose (Figure 31). Using a 

truncated version of TusE lacking the first 32 N-terminal amino acids (TusEΔN32) resulted in 

a functional sensor (TreSen2 in Figure 31). The FRET-efficiency increased from 1.19 (R0) in 

the absence of trehalose to a maximum of 1.22 in the presence of trehalose (Rmax) resulting 

in a maximum change of FRET-efficiency (ΔRmax) of 0.03. The dissociation constant for 

trehalose was 0.80 µM. Removal the 47 N-terminal amino acids from TusE resulted in a non-

functional construct (TreSen3 in Figure 31). 

 

 

Figure 31: Construction of a trehalose nanosensor. ● TreSen1; ▼ TreSen2; ■ TreSen3. The FRET-

efficiency F525/F480 was calculated by division of the yellow by the cyan fluorescence intensity. 
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3.3.4 Improving the sensor response by linker modifications 

The response of FRET-nanosensors is based on a spatial reorientation of the two fluorescent 

proteins due to conformational changes of the solute binding protein upon ligand binding. 

Therefore, this conformational change has to be transmitted efficiently to the fluorescent 

proteins by the linker sequences. The latter are thus one target for the optimisation of FRET-

nanosensors (Deuschle et al., 2005; Takanaga et al., 2008).  

TreSen4 - 6 were constructed from TreSen1 - 3 by removal of 3 amino acids from the first 

(GGTGGA  GGT) and two amino acids from the second linker (GAGTGG  GGTG, see 

Figure 30) via PCR. While the constructs containing full length TusE (TreSen4) and TusEΔN47 

(TreSen6) remained non-functional, ΔRmax for TreSen5 (TusEΔN32) was improved to 0.07 (Kd 

= 1.22 µM, Figure 32) compared to 0.03 for the parental construct (TreSen2). Additionally, 

TreSen7 was constructed using TusEΔN25 and the same truncated linker sequences. The 

maximum signal change was in the same range as for TreSen2 and 5 (ΔRmax = 0.04). Further 

truncation of the linker between TusEΔN25 and EYFP in TreSen7 by two amino acids (GTGG 

 GT), resulting in TreSen14, hardly improved the maximum signal change of the sensor 

(ΔRmax = 0.05, Table 6). Next, EYFP in TreSen14 was replaced by mVenus, a yellow fluores-

cent protein reported to be brighter and less susceptible to acidic pH and chlorine ions than 

EYFP (Kremers et al., 2006). While the FRET-efficiency in the apo-state remained constant 

(1.14), ΔRmax slightly increased to 0.07 for the resulting construct (TreSen15) (Table 6).  

 

 

Figure 32: Sensor optimisation by linker modification. ● TreSen4; ▼TreSen5; ■ TreSen6; ▲ 

TreSen7. For sensor properties see text and Table 6. The FRET-efficiency F525/F480 was calculated by 

division of the yellow by the cyan fluorescence intensity. 
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Truncation of both linker sequences only slightly improved the sensor response so far. The 

actual peptide linkers of the fused proteins are not limited to the synthetic linkers 

introduced by cloning. In fact, the terminal amino acids of TusE and the two fluorescent 

proteins also have to be considered. Since the terminal amino acids of GFP are not necessary 

for the fluorescence of the protein (Li et al., 1997), ten amino acids from the C-terminus of 

ECFP, one glycine residue from the linker between ECFP and TusE, and six amino acids from 

the N-terminus of mVenus were removed by standard PCR methods. Compared to the 

parental sensor construct (TreSen15), the resulting sensor (TreSen24) showed a significant 

improvement of ΔRmax from 0.07 to 0.33. Additional N-terminal truncations of TusE, 

TusEΔN28 – TusEΔN35, were also tested in this sensor background (Table 6). Among the so 

constructed sensors, TreSen28 (TusEΔN32) performed best with a maximum signal change of 

0.39 (Figure 33). The Kd values of these sensors varied between 0.09 µM (TreSen34) and 0.26 

µM (TreSen24). 

 

 

Figure 33: Sensor optimisation by truncation of the terminal regions of ECFP and mVenus. 

● TreSen24; ▼ TreSen28. For sensor properties see text and Table 6. The FRET-efficiency F525/F480 

was calculated by division of the yellow by the cyan fluorescence intensity. 

In conclusion, a set of genetically encoded trehalose nanosensors was successfully 

constructed. As expected from previous experiments with TusE, the affinities of these 

sensors were in the nanomolar range. The sensor response upon trehalose binding was 

optimised by systematic linker truncations and the best sensor, TreSen28, showed a 

maximum signal change of 0.39.  
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Table 6: Trehalose nanosensors constructed in this work. Linker sequences are shown in bold. 

Construct Features Kd [µM] R0 ΔRmax 

TreSen1 ECFP-GGTGGA-TusE-GAGTGG-EYFP - 0.73 - 

TreSen2 ECFP-GGTGGA-TusEΔN32-GAGTGG-EYFP 0.80 1.19 0.03 

TreSen3 ECFP-GGTGGA-TusEΔN47-GAGTGG-EYFP - 0.64 - 

TreSen4 ECFP-GGT-TusE-GTGG-EYFP 0.21 0.66 0.02 

TreSen5 ECFP-GGT-TusE ΔN32-GTGG-EYFP 1.22 1.22 0.07 

TreSen6 ECFP-GGT-TusEΔN47-GTGG-EYFP - 0.74 - 

TreSen7 ECFP-GGT-TusEΔN25-GTGG-EYFP 1.08 1.17 0.04 

TreSen14 ECFP-GGT-TusEΔN25-GT-EYFP 0.56 1.06 0.05 

TreSen15 ECFP-GGT-TusEΔN25-GT-mVenus 0.70 1.14 0.07 

TreSen24 ECFPΔC10-GT-TusEΔN25-GT-mVenusΔN6 0.26 1.06 0.33 

TreSen25 ECFPΔC10-GT-TusEΔN28-GT-mVenusΔN6 0.19 1.15 0.31 

TreSen26 ECFPΔC10-GT-TusEΔN29-GT-mVenusΔN6 0.13 1.21 0.34 

TreSen21 ECFPΔC10-GT-TusEΔN31-GT-mVenusΔN6 0.17 1.09 0.35 

TreSen28 ECFPΔC10-GT-TusEΔN32-GT-mVenusΔN6 0.24 0.92 0.39 

TreSen32 ECFPΔC10-GT-TusEΔN33-GT-mVenusΔN6 0.06 1.26 0.38 

TreSen33 ECFPΔC10-GT-TusEΔN34-GT-mVenusΔN6 0.15 1.19 0.27 

TreSen34 ECFPΔC10-GT-TusEΔN35-GT-mVenusΔN6 0.09 1.08 0.33 

 

3.3.5 Trehalose quantification with FRET-sensors 

TreSen28 performed best among the constructed set of genetically encoded trehalose 

sensors. It was applied next for the determination of trehalose concentrations in trehalose 

containing culture supernatants of C. glutamicum ΔmalQ ΔtreX Δtus. In parallel, the samples 

were also measured using an enzymatic assay and the results are compared in Figure 34. 

 

 

Figure 34: Comparison of enzymatic trehalose quantification and FRET-sensor measurement. 

Supernatants of C. glutamicum ΔmalQ ΔtreX Δtus were analysed with both methods. For trehalose 

detection using a FRET-sensor, TreSen28 was titrated with a series of dilutions of each sample. 
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The trehalose concentrations determined for all samples were in the low millimolar range 

with both techniques. Although the absolute values were slightly different, a good 

correlation was obtained for most samples, showing that TreSen28 can be used for the 

quantitative determination of trehalose concentrations in culture supernatants. 

3.3.6 Development of affinity mutants 

Trehalose concentrations in C. glutamicum have been reported to reside in the millimolar 

range under various conditions (Wolf et al., 2003). As a consequence, the affinity of a 

trehalose nanosensor has to be in the same order of magnitude for experiments in vivo. The 

Kd-value of TreSen28, the sensor with the highest signal change described in section 3.3.4, 

was 0.24 µM. To alter its affinity, a rational approach was chosen. Based on a structural 

homology model, the predicted substrate binding site of TusE was redesigned by the 

introduction of point mutations to create sensors with altered affinity for trehalose.  

 

 

Figure 35: Structural homology model of TusE. Amino acids mutated in this work are represented as 

sticks. A trehalose molecule is shown in the centre of the protein model. The image was generated 

with the PyMOL molecular graphics system. 
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A structural homology model for TusE was constructed using the SWISS-MODEL web server 

in the automatic mode (Arnold et al., 2006). As template for modelling, the structure of the 

T. litoralis trehalose/maltose binding protein, which was resolved by X-ray crystallography 

(1.85 Å resolution) in the presence of trehalose (Diez et al., 2001), was used. Significant 

homology of both proteins (score 163 bits, E-value 2-40) was found for amino acids 47 – 411 

of TusE although the sequence identity of both proteins is only 30%. The homology model 

comprises amino acids 45 to 423 of TusE. The Qmean4 (Benkert et al., 2008) score of the 

modelled structure is 0.56, the Z-score (Benkert et al., 2011) is -3.4. The structural model 

was used to identify amino acids possibly contributing to trehalose binding (Figure 35).  

Seven amino acids, K55, D110, W113, E259, W277, Y313, and R381 were then exchanged in 

TreSen28 for alanine by site-directed mutagenesis. TreSen28D110A, TreSen28W113A, 

TreSen28E259A, TreSen28W277A, and TreSen28R381A were no longer functional. TreSen28K55A 

and TreSen28Y313A, however, remained functional and were also altered in their affinity for 

trehalose. The dissociation constants were 0.56 µM for TreSen28K55A and 1.11 µM for 

TreSen28Y313A, compared to 0.24 µM for the parental sensor (Figure 36).   

W277 and Y313 were also mutated to phenylalanine to test the exchange of these amino 

acids for ones with higher structural similarity than alanine. While TreSen28W277F was non-

functional, TreSen28Y313F bound trehalose with a Kd-value of 2.04 µM (Figure 36). Further, 

the positively charged lysine at position 55 was exchanged for the negatively charged 

glutamate. The resulting sensor, TreSen28K55E, bound trehalose with a Kd-value of 1.34 µM. 

 

 

Figure 36: Construction of trehalose nanosensors with altered trehalose affinity. ● TreSen28; ▼ 

TreSen28K55A;  TreSen28Y313A; ▲ TreSen28Y313F. The FRET-efficiency F525/F480 was calculated by 

division of the yellow by the cyan fluorescence intensity. 
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In conclusion, amino acids of TusE putatively contributing to ligand binding were identified 

with the help of homology modelling and mutated to construct a series of trehalose 

nanosensors with different dissociation constants, ranging from 0.24 µM to 2.04 µM. 

However, the affinity for trehalose still has to be reduced significantly to apply these sensors 

for intracellular trehalose detection in C. glutamicum. 
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3.4 Synthesis and transport of mycolic acids in C. glutamicum 

A second, outer permeability barrier present in the cell envelope of Corynebacterineae is 

one reason for the high resistance of these bacteria against antibiotic compounds. Besides 

its function as a carbon source for C. glutamicum, trehalose is an important building block 

for TMM and TDM, which are the main constituents of this layer in C. glutamicum (Tropis et 

al., 2005). While lethal in mycobacteria, viable mutants of C. glutamicum with impaired 

trehalose glycolipid metabolism have been constructed (Gande et al., 2004; Portevin et al., 

2004; Gebhardt, 2005; Varela et al., 2012). A common phenotype of such mutants is the 

agglutination of cells in liquid medium due to altered physical properties of the cell envelope 

(Portevin et al., 2004; Tropis et al., 2005). For example, the inability to synthesise trehalose 

renders C. glutamicum ΔotsA ΔtreS ΔtreY unable to form trehalose glycolipids. Since the 

addition of trehalose to the medium complemented this phenotype, it has been concluded 

that the incorporation of trehalose into glycolipids must take place in the periplasmic space 

rather than the cytosol (Tropis et al., 2005). The recent discovery of a trehalose uptake 

system in C. glutamicum (Henrich, 2011) questioned this hypothesis. Because the addition of 

trehalose also restored TMM and TDM synthesis in C. glutamicum ΔotsA ΔtreS ΔtreY Δtus, in 

which the genes encoding the trehalose uptake system are also deleted, the trehalose 

export hypothesis still remained valid (Henrich, 2011). One major prerequisite for this model 

is the export of trehalose to the periplasm and thus the presence of a trehalose export 

system in C. glutamicum.  

Cytosolic reactions of mycolic acid synthesis have been studied in detail in M. tuberculosis 

and C. glutamicum. However, proteins catalysing the transport of precursors to the 

periplasm were not known at the beginning of this work. Within the last two years, targeting 

of MmpL3, a transport protein of the RND family, by several antibiotic compounds in 

different mycobacteria was shown to cause the accumulation of TMM in cell extracts and 

MmpL3 was thus assumed to export TMM to the periplasm (Grzegorzewicz et al., 2012; 

Tahlan et al., 2012; Varela et al., 2012). In contrast, the only of these compounds tested in 

C. glutamicum was completely inactive (Grzegorzewicz et al., 2012). Further, only the 

successive disruption of two mmpL-genes in C. glutamicum caused the phenotype observed 

for MmpL3-inhibition in mycobacteria and no accumulation of TMM as a potential transport 

substrate was seen in this strain (Varela et al., 2012). The function of MmpL proteins in 

C. glutamicum is thus not fully understood yet and was investigated here. 
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3.4.1 Trehalose uptake is not required to restore mycolic acid synthesis 

For the synthesis of TMM and TDM in C. glutamicum, trehalose is required as a precursor. 

Strains deficient in trehalose synthesis and uptake have been shown to incorporate 

trehalose into cell wall glycolipids and this step is thus thought to take place in the periplasm 

(Henrich, 2011). This hypothesis was further investigated in this work.  

C. glutamicum ΔotsA ΔtreS ΔtreY is not able to form trehalose since all three pathways 

known to exist in C. glutamicum are inactive in this strain. In addition, C. glutamicum ΔotsA 

ΔtreS ΔtreY Δtus is unable to import external trehalose. Both strains were cultivated in 

minimal medium containing fructose or fructose plus trehalose as carbon sources and lipids 

were extracted and analysed via TLC. C. glutamicum was used as a positive control. As 

already reported earlier (Henrich, 2011), C. glutamicum ΔotsA ΔtreS ΔtreY and C. 

glutamicum ΔotsA ΔtreS ΔtreY Δtus formed both TMM and TDM only in the presence of 

trehalose while TDM was also detected in extracts of C. glutamicum grown without 

trehalose (Figure 37).  

 

 

Figure 37: TLC analysis of lipid extracts. WT: C. glutamicum; ΔASY: C. glutamicum ΔotsA ΔtreS ΔtreY; 

ΔASYtus: C. glutamicum ΔotsA ΔtreS ΔtreY Δtus. Cells were grown in CgC minimal medium with 

fructose (F) or fructose plus trehalose (FT). Glycolipids are stained blue, phospholipids orange. 
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Earlier experiments showed that the permeability of the cell envelope is increased in 

C. glutamicum ΔotsA ΔtreS ΔtreY (Gebhardt, 2005). To test whether this is also true for C. 

glutamicum ΔotsA ΔtreS ΔtreY Δtus, growth of this strain in the presence of ethambutol or 

carbenicillin was examined in this study. While ethambutol interferes with arabinose 

metabolism in the cytosol, carbenicillin is an inhibitor of the cross-linkage of cell wall 

peptides in the periplasm. Both antibiotics have to pass the mycolic acid layer to act on their 

targets.  

Different dilutions of cell suspensions were spotted on agar plates containing either 1 µg/ml 

ethambutol or 1 µg/ml carbenicillin. The plates were incubated for two days at 30°C. The 

presence of trehalose in the medium did not alter the growth of C. glutamicum on agar 

plates containing either antibiotic (Figure 38). Growth of C. glutamicum ΔotsA ΔtreS ΔtreY 

and C. glutamicum ΔotsA ΔtreS ΔtreY Δtus, however, was improved by the addition of 

trehalose under both conditions. Surprisingly, C. glutamicum ΔotsA ΔtreS ΔtreY Δtus grew 

better compared to C. glutamicum ΔotsA ΔtreS ΔtreY under all conditions. On agar plates 

containing carbenicillin, growth of C. glutamicum ΔotsA ΔtreS ΔtreY Δtus was fully restored 

to the level of C. glutamicum by the addition of trehalose. This was not the case on agar 

plates containing ethambutol, where growth of the former strain remained impaired.  

 

 

Figure 38: Test of antibiotic sensitivity. WT: C. glutamicum; ΔASY: C. glutamicum ΔotsA ΔtreS ΔtreY; 

ΔASYtus: C. glutamicum ΔotsA ΔtreS ΔtreY Δtus. Cells were grown on CgC minimal agar plates 

containing fructose or fructose plus trehalose. 1 µg/ml ethambutol or carbenicillin was added. 

Precultures were diluted to OD600 = 1.0 and 2 µl of a series of dilutions (1 × 10-0 - 1 × 10-3) were 

spotted on the plates. 
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In conclusion, the addition of trehalose to cells unable to form or to import trehalose not 

only restored the formation of TMM and TDM but also improved the growth of these strains 

in the presence of carbenicillin or ethambutol. These results further strengthen the model of 

extracellular trehalose incorporation into cell wall glycolipids. 

3.4.2 Trehalose export is independent of mycolic acid synthesis 

A prerequisite for the model of periplasmic incorporation of trehalose into glycolipids is the 

export of trehalose from the cytosol to the periplasm. The experiments described in section 

3.2 prove that this prerequisite is indeed fulfilled in C. glutamicum. Nevertheless, the 

formation of TDM involves the transfer of the mycolic acid moiety from one molecule of 

TMM to another. In this periplasmic reaction, one molecule of trehalose is released per 

reaction cycle. TDM synthesis could thus contribute to the accumulation of trehalose in the 

medium and the interconnection of trehalose export and glycolipid synthesis was 

investigated here.  

A mutant devoid of mycolic acid synthesis was constructed. cg3178, encoding a polyketide 

synthase essential for mycolic acid synthesis, was deleted in C. glutamicum ΔmalQ ΔtreX 

Δtus resulting in C. glutamicum ΔmalQ ΔtreX Δtus Δpks. Trehalose export by this strain was 

examined in growth experiments using 2% glucose and 1% maltose as substrates for growth 

and trehalose production, respectively, as already described (see section 3.2.4).  

Growth of C. glutamicum ΔmalQ ΔtreX Δtus Δpks on glucose was severely impaired (Figure 

39). The OD600 increased to 13.9 ± 1.1 after 81 h with a growth rate of only 0.03 ± 0.00 h-1. 

Cells aggregated during cultivation and no synthesis of TMM or TDM was detectable 

(compare Figure 41). After the addition of maltose as substrate for trehalose production, the 

OD600 further increased to 16.2 ± 0.7 and remained steady at this level. Simultaneously, 

trehalose accumulated in the culture broth with a constant rate of 0.16 ± 0.01 nmol × mg-1 

cdw × min-1 and a yield of 0.16 ± 0.02 mol × mol-1 maltose.  

These results show that trehalose accumulation in the culture broth was hardly decreased in 

the absence of trehalose mycolate synthesis and the trehalose excretion observed here was 

therefore independent of glycolipid synthesis in C. glutamicum. To prove the significance of 

trehalose export for glycolipid synthesis, the identification of the trehalose export system is 

inevitable. 
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Figure 39: Trehalose export is independent of trehalose mycolate synthesis. C. glutamicum ΔmalQ 

ΔtreX Δtus Δpks was cultivated in minimal medium with 100 mM glucose. The dashed line indicates 

the addition of 29 mM maltose as substrate for trehalose production after 81 h. 

3.4.3 Two RND-type proteins are involved in mycolic acid metabolism of C. glutamicum 

Two MmpL proteins were recently described to be involved in mycolic acid transport in 

C. glutamicum (Varela et al., 2012). To validate these observations in our C. glutamicum 

laboratory strain, the two corresponding mmpL-genes were inactivated, resulting in 

C. glutamicum Δcg0284 Δcg3174. Noteworthy, both genes could be deleted in this work 

while this was not possible in a recent study (Varela et al., 2012).  

C. glutamicum Δcg0284 Δcg3174 was cultivated in CgC minimal medium plus glucose. 

C. glutamicum and a strain deficient in mycolic acid synthesis due to the deletion of the 

polyketide synthase gene, C. glutamicum ΔmalQ ΔtreX Δtus Δpks, were used as reference 

strains (Figure 40 A). As described above (see section 3.4.2), the latter strain hardly grew at 

all (OD600 = 1.8 after 24 h). C. glutamicum Δcg0284 Δcg3174 reached a final OD600 of 7.8 after 

24 h with a growth rate of 0.12 h-1 compared to a growth rate of 0.39 h-1 and a final OD600 of 

21.1 for C. glutamicum. Both mutants, C. glutamicum Δcg0284 Δcg3174 and C. glutamicum 

ΔmalQ ΔtreX Δtus Δpks, formed cell aggregates and adhered to the glass wall of the shaking 

flask (Figure 40 B). To analyse the influence of the deletion of cg0284 and cg3174 on cell wall 

glycolipid synthesis, these were extracted from cells grown in minimal medium with fructose 

or fructose plus trehalose and analysed via TLC (Figure 41). For C. glutamicum grown on 

fructose the major glycolipid detected was TDM, TMM was detected only when trehalose 

was added to the medium. Both C. glutamicum Δcg0284 Δcg3174 and C. glutamicum ΔmalQ 

ΔtreX Δtus Δpks did neither form TDM nor TMM while the chromatographic lipid pattern was 
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unaltered in other respects. Single mutants of cg0284 and cg3174 were also constructed but 

they did not show a growth phenotype or an altered glycolipid composition (Figure 41). 

 

  

Figure 40: Growth of C. glutamicum (●), C. glutamicum Δcg3174 Δcg0284 (▼), and C. glutamicum 

ΔmalQ ΔtreX Δtus Δpks (■) in minimal medium with 1% glucose (A). C. glutamicum Δcg3174 

Δcg0284 cells aggregated in liquid culture and adhered to the glass wall of the shaking flask (B). 

 

 

Figure 41: TLC analysis of lipid extracts. WT: C. glutamicum; Δcg0284: C. glutamicum Δcg0284; 

Δcg3174:C. glutamicum Δcg3174; Δcg0284 Δcg3174: C. glutamicum Δcg0284 Δcg3174: Δpks: C. 

glutamicum ΔmalQ ΔtreX Δtus Δpks. Cells were grown in minimal medium with fructose (F) or 

fructose plus trehalose (FT). Glycolipids are stained blue, phospholipids orange. 
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3.4.4 Inactivation of cg2893 leads to altered cell envelope composition 

In the screening for gene(s) encoding a trehalose export system, disruption of cg2893 was 

found to cause a growth phenotype reminiscent of C. glutamicum strains with impaired 

glycolipid metabolism. The growth rate in C. glutamicum ΔmalQ ΔtreX Δtus IMcg2893 was 

reduced drastically compared to C. glutamicum and the cells adhered to the glass wall of the 

shaking flask.  

The gene cg2893 encodes a MFS transporter and homologous genes are found throughout 

the bacterial kingdom. Cg2893 has been identified as the exporter of diaminopentane in an 

engineered C. glutamicum diaminopentane overproducing strain (Kind et al., 2011). 

However, since C. glutamicum does not naturally produce diaminopentane, the original 

substrate of this exporter remained unknown. To further investigate the function of the 

cg2893 gene product, cg2893 was inactivated in C. glutamicum wild type. When cultivated in 

minimal medium plus glucose or glucose plus trehalose, no growth of C. glutamicum 

IMcg2893 was observed (Figure 42).  

 

 

Figure 42: Cultivation of C. glutamicum (open symbols) and C. glutamicum IMcg2893 (closed 

symbols) in minimal medium with glucose (●) or glucose plus trehalose (▼). 

To analyse cell wall glycolipids in C. glutamicum IMcg2893, the strain was cultivated in 2TY 

medium and incubated in minimal medium with glucose or glucose plus trehalose for 24 h 

before lipid extraction. As shown in Figure 43, the chromatographic pattern of the extracted 

lipids was dramatically altered in this strain. While for C. glutamicum several spots stained as 

glycolipids or phospholipids were found under both conditions, only three spots staining as 

unknown glycolipids were present in extracts of the mutant. TMM and TDM were not 
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detected. After overexpression of cg2893 the only difference to the wild type was the 

absence of TMM when grown on glucose plus trehalose (Figure 43). Thus, the role of Cg2893 

in cell wall synthesis remains unclear.  

 

 

Figure 43: TLC analysis of cell wall glycolipids. WT: C. glutamicum; IMcg2893: C. glutamicum 

IMcg2893; pXMJ19_cg2893: C. glutamicum (pXMJ19_cg2893); G: glucose, T: trehalose. Glycolipids 

are stained blue, phospholipids orange. 
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4 Discussion 

4.1 Trehalose export in C. glutamicum 

For more than 50 years, C. glutamicum has been known as an amino acid producer. During 

bioreactor cultivation of this bacterium, the accumulation of trehalose is a common 

observation and the identification of the mechanism leading to trehalose excretion could be 

valuable for further optimisation of bioprocesses.  

C. glutamicum also serves as a model organism for the investigation of mycolic acid synthesis 

within the Corynebacterineae. Trehalose containing mycolic acids contribute to the high 

resistance of these bacteria against different antibiotic compounds, for example. Earlier 

studies suggested the export of trehalose in C. glutamicum prior to its incorporation into 

trehalose containing mycolic acids, defining the necessity of a trehalose export system in this 

bacterium. However, trehalose export has neither been shown biochemically in 

C. glutamicum nor has an export system been identified or characterised so far. The recent 

linkage of MmpL transporters to the export of TMM challenged the hypothesis of trehalose 

export for glycolipid synthesis. Trehalose export was thus investigated in this study to 

validate this model and to examine the reason for trehalose accumulation in C. glutamicum 

cultures. 

4.1.1 Qualitative and quantitative analysis of trehalose export 

Trehalose accumulation is usually not observed during shake flask cultivation of 

C. glutamicum, probably due to the low rate of excretion and trehalose recycling by the 

trehalose uptake system. To study trehalose export in C. glutamicum biochemically, a set-up 

was thus chosen that has been suggested earlier (Henrich, 2011). Maltose was used as a 

substrate for TreS-mediated trehalose production and excretion in the test strain 

C. glutamicum ΔmalQ ΔtreX Δtus. As a negative control, the strain C. glutamicum ΔmalQ 

ΔtreX ΔtreS was used. For C. glutamicum ΔmalQ ΔtreX Δtus, but not for the control strain, 

trehalose accumulated in the supernatant with a constant rate of 0.19 nmol × mg-1 cdw × 

min-1 and with a yield of 0.19 mol × mol-1 after the addition of maltose (Figure 17). Using 

[14C]-maltose as substrate, trehalose excretion was investigated in more detail in both 

strains (Figure 11). C. glutamicum ΔmalQ ΔtreX Δtus and C. glutamicum ΔmalQ ΔtreX ΔtreS 

imported all substrate within 50 min. As expected, conversion of maltose to trehalose in the 
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cytosol and export of the latter were only observed for C. glutamicum ΔmalQ ΔtreX Δtus. 

Trehalose accumulation was also not observed for C. glutamicum Δmus, ruling out an 

extracellular conversion of maltose to trehalose.  

In the test strain, the intracellular amount of labelled substrate decreased with a rate of 1.23 

nmol × mg-1 cdw × min-1. However, this rate is only an approximation of the actual export 

rate since the total radioactivity in the assay decreased at the same time. This suggests the 

active metabolization of labelled maltose and the release of [14C]-CO2. Hydrolytic activity in 

addition to its transglucosylation activity has been described for purified TreS from 

C. glutamicum (Kim et al., 2010a) as well as for TreS -enzymes from other organisms (Chen et 

al., 2006; Wang et al., 2007; Zhang et al., 2011). Purified TreS from C. glutamicum produced 

0.51 mol trehalose and 0.24 mol glucose per mol maltose (Kim et al., 2010a). The decrease 

of the total radioactivity in the experiment was thus probably caused by the TreS-catalysed 

release of glucose during the interconversion of maltose and trehalose. Glucose could then 

be phosphorylated by one of several glucokinases present in C. glutamicum (Park et al., 

2000; Lindner et al., 2010) and enter central carbon metabolism. This is also consistent with 

the increase of the OD600 observed for C. glutamicum ΔmalQ ΔtreX Δtus after the addition of 

maltose to cells precultivated with glucose (Figure 17). Nevertheless, these experiments 

prove that cytosolic trehalose is excreted to the culture broth in C. glutamicum.  

Trehalose excretion has also been observed in other bacteria. After heterologous over-

expression of otsB, Lactococcus lactis accumulated 170 mM trehalose in the cytosol but at 

least 67% of the total product was found in the supernatant (Carvalho et al., 2011). 

Mechanosensitive channels were proposed to catalyse trehalose excretion in this case. 

Trehalose reuptake and its concomitant phosphorylation by a phosphotransferase system 

could then allow the degradation of trehalose in this bacterium (Carvalho et al., 2011).  

Similarly, E. coli is also known to release trehalose, although this is only detectable in strains 

without periplasmic trehalase activity (Styrvold & Strom, 1991). Under hyperosmotic 

conditions, trehalose is synthesised as an osmoprotectant in E. coli. Its excretion from the 

cytosol via mechanosensitive channels allows the fine-tuning of its cytosolic concentration 

(Berrier et al., 1992; Schleyer et al., 1993). In the periplasm trehalose can be hydrolysed to 

glucose, which is re-imported and metabolised further (Styrvold & Strom, 1991).  

A similar cycle of export of accumulated trehalose, periplasmic hydrolysis, and import of 

released glucose was shown to be involved in trehalose mobilisation in Saccharomyces 
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cerevisiae at the entry into the stationary growth phase but the trehalose exporter is 

unknown in this organism (Jules et al., 2008).  

In contrast, C. glutamicum does not possess a periplasmic trehalase and trehalose uptake is 

catalysed by an ABC transport system (Henrich, 2011), which does not phosphorylate 

trehalose during its transport. Cytosolic trehalose can be directly metabolised without the 

need to create a futile cycle of export and re-import and mechanosensitive channels did not 

contribute to trehalose excretion. Trehalose is thus not likely to be exported to adjust the 

osmotic strength of the cytosol in C. glutamicum so that another reason for its export must 

be assumed.  

The trehalose export rate determined is very low and less than 10% of the maximum 

trehalose uptake rate. It is in good agreement with the trehalose accumulation rate in 

bioreactor cultivations of C. glutamicum DM1729 (pXMJ19) (see section 3.1.1), where 4.7 

mM accumulated within 24 h (0.08 nmol × mg-1 cdw × min-1). However, the export rate 

determined for C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE. coli), which produces trehalose 

during the growth phase opposed to production with stationary cells of C. glutamicum 

ΔmalQ ΔtreX Δtus, was markedly higher (0.44 nmol × mg-1 cdw × min-1). This indicates that 

the expression of the trehalose export system could be regulated in dependence of the 

growth phase, supporting its assumed function in cell envelope synthesis. Notably, even 

higher trehalose production rates (2.97 nmol × mg-1 cdw × min-1) have been reported in the 

literature for a C. glutamicum strain overexpressing galU and the otsBA-operon from E. coli 

(Carpinelli et al., 2006).  

As a prerequisite for its assumed function in the periplasmic synthesis of glycolipids, 

trehalose export has to be fast enough to sustain the synthesis of TMM during growth of 

C. glutamicum and this question is assessed next. The cell envelope composition of 

C. glutamicum grown in minimal medium plus acetate has been determined quantitatively in 

a recent study (Bansal-Mutalik & Nikaido, 2011). The main glycolipid is TDM (0.5% cdw), 

while amounts of TMM and mycolic acids covalently bound to arabinogalactan were 

negligible (Bansal-Mutalik & Nikaido, 2011). Taking into consideration that two molecules of 

TMM are needed for the synthesis of one molecule of TDM, the minimum trehalose export 

rate needed to sustain growth with a specific rate of 0.35 h-1 is 0.05 nmol × mg-1 cdw × min-1. 

The export rate determined in this work is in the same order of magnitude and sufficient to 

maintain periplasmic glycolipid synthesis, further supporting this assumption. 
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4.1.2 Trehalose export is catalysed by an unknown carrier 

To characterise the nature of trehalose excretion, possible mechanisms are discussed in the 

following section. The observed trehalose release by C. glutamicum ΔmalQ ΔtreX Δtus rules 

out simple diffusion of trehalose through the plasma membrane since no excretion of 

maltose was seen in the control strain, although the gradient of intra- to extracellular 

maltose was even higher than for trehalose after complete substrate uptake. In addition, the 

excretion rate did not depend on the intracellular trehalose concentration in this strain. 

Simple diffusion contributes to the excretion of some hydrophobic amino acids like 

L-isoleucine (Zittrich & Krämer, 1994), L-leucine (Driessen et al., 1987), and L-proline 

(Rancourt et al., 1984), for example. However, this was expected for neither trehalose nor 

maltose due to the hydrophilicity of both sugars.  

Although transport via ABC uptake systems is generally accepted as an irreversible reaction, 

substrate export has been suggested for the L-histidine uptake system from Salmonella 

Typhimurium and two amino acid import systems from Rhizobium leguminosarum (Hosie et 

al., 2001). However, trehalose excretion in the experiments described here was not caused 

by a reversal of the uptake system since the sole trehalose uptake system of C. glutamicum 

was deleted in the test strain.  

The experiments discussed so far do not finally prove the presence of a trehalose export 

system in C. glutamicum. For example, the accumulation of trehalose in the supernatant 

could be caused by the release of trehalose during the synthesis of TDM from TMM in the 

periplasm. This has been described in the case of M. tuberculosis, where trehalose 

accumulation in the culture broth was detectable after the deletion of the trehalose uptake 

system (Kalscheuer et al., 2010). To test this possibility, a strain deficient in mycolic acid 

synthesis was constructed by deletion of cg3178 in the trehalose exporting test strain 

C. glutamicum ΔmalQ ΔtreX Δtus. This gene encodes a polyketide synthase that is required 

for one of the last steps in mycolic acid synthesis, the condensation of two activated fatty 

acid precursors, forming a β-ketoacyl intermediate of TMM synthesis (Portevin et al., 2004). 

Growth of the resulting strain in minimal medium was severely impaired and TMM and TDM 

were not detectable in cell extracts of this mutant. Trehalose accumulation was still 

observed with a rate of 0.16 nmol × mg-1 cdw × min-1. Thus, trehalose excretion is 

independent of mycolic acid synthesis in C. glutamicum. Nevertheless, the reduction in the 

accumulation rate compared to the parental strain could indicate a minor contribution of 
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this reaction to trehalose release. Besides TMM and TDM, no other trehalose containing 

compounds are known to be present in the cell envelope of C. glutamicum so that no further 

trehalose releasing reactions have to be considered as potential sources for periplasmic 

trehalose formation. Taken together, these data prove the presence of a trehalose export 

system in C. glutamicum since neither passive diffusion across the plasma membrane, nor 

reversal of the import mechanism nor a periplasmic reaction releasing trehalose were 

responsible for trehalose accumulation in the medium.  

Still, the export of trehalose could be caused by an unspecific export system like 

mechanosensitive channels. These are widely distributed among bacteria and have an 

important function in the adaptation to hypoosmotic conditions. Activated by the 

membrane stretch after passive water influx in response to sudden osmotic downshifts, they 

have been shown to release small ions and metabolites like ATP, lactose, L-glutamate, and 

trehalose in E. coli to readjust the osmotic strength of the cytosol to the surrounding (Berrier 

et al., 1992; Schleyer et al., 1993). In C. glutamicum, two mechanosensitive channels were 

identified and characterised, MscCG and MscS (Ruffert et al., 1999), and the presence of 

further stretch activated channels has been suggested (Nottebrock et al., 2003). In contrast 

to E. coli, a preferential excretion of glycine betaine and L-proline after hypoosmotic shocks 

was observed in C. glutamicum (Ruffert et al., 1997). Nevertheless, the efflux of trehalose via 

stretch activated channels was tested in C. glutamicum ΔmalQ ΔtreX Δtus after loading with 

[14C]-maltose and performing hypoosmotic shocks. Neither maltose nor trehalose was 

released while the excretion of glycine betaine in a parallel experiment demonstrated the 

opening of mechanosensitive channels under the applied conditions (Figure 18). The 

formation of trehalose from maltose in the cytosol has been shown in another experiment 

under similar conditions (Figure 12). Thus, although assumed for E. coli (Berrier et al., 1992; 

Schleyer et al., 1993) and L. Lactis (Carvalho et al., 2011), mechanosensitive channels do not 

contribute to trehalose export in C. glutamicum. Therefore, the presence of a transport 

system dedicated to the export of trehalose can be assumed.  

Albeit trehalose export needed for cell envelope synthesis is expected to depend on the 

constitutive expression of (a) gene(s), additional export systems could be responsible for the 

transport of trehalose in the presence of high intracellular trehalose concentrations. The 

upregulation of genes encoding amino acid export systems in C. glutamicum has been 

observed in situations of high internal amino acid concentrations but limited catabolism. For 
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example, expression of brnF, encoding a subunit of the branched chain amino acid exporter 

of C. glutamicum, was upregulated in the presence of high intracellular L-methionine 

concentrations (Trötschel et al., 2005). Similarly, the synthesis of the L-lysine/L-arginine 

exporter LysE was induced in the presence of 30 – 40 mM L-lysine (Bellmann et al., 2001) 

and a gene encoding a diaminopentane efflux permease was upregulated in a diamino-

pentane producing C. glutamicum strain (Kind et al., 2011). Induction of export only at high 

concentrations prevents a futile cycle of export and import of the corresponding metabolite 

when present at low concentrations and this could also be the case for trehalose export. To 

test for a possible transcriptional regulation of trehalose export, export experiments with 

C. glutamicum ΔmalQ ΔtreX Δtus were carried out in the presence of chloramphenicol to 

block de novo protein synthesis. Surprisingly, the trehalose efflux rate was even increased in 

the presence of chloramphenicol compared to the control without inhibitor. While the 

intracellular trehalose concentration increased to more than 150 mM, the export rate 

remained nearly constant during the experiment. This implies that no further export system 

was activated in the presence of high intracellular trehalose concentrations. Taking into 

consideration the low transport velocity measured, this points to a carrier-mediated export 

under substrate saturating conditions rather than a channel.  

In E. coli, members of the sugar efflux transporter (SET) subfamily of the MFS permeases 

have been shown to catalyse the export of sugars like glucose and lactose and various 

glucosides and galactosides (Liu et al., 1999a; Liu et al., 1999b). A multitude of putative 

arabinose exporters has also been identified in this organism (Koita & Rao, 2012). Their 

physiological role is not yet clear but they have been suggested to serve as emergency valves 

to prevent the accumulation of toxic sugar phosphates under conditions that lead to high 

sugar concentrations in the cell (Sun & Vanderpool, 2011; Koita & Rao, 2012).  

To assess a possible contribution of proteins homologous to known sugar exporters to the 

export of trehalose in C. glutamicum, a set of 23 genes was inactivated in the trehalose 

exporting test strain C. glutamicum ΔmalQ ΔtreX Δtus. The sole gene that attracted attention 

in this screening was cg2893 (Figure 19). Its gene product has been reported to export 

diaminopentane in C. glutamicum since the deletion of cg2893 caused a 90% reduction of 

diaminopentane excretion and the product yield increased by 20% after its overexpression 

(Kind et al., 2011). Diaminopentane is not naturally produced by C. glutamicum and thus the 

natural substrate of this permease remains unknown. However, it is not likely that trehalose 
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is its substrate for several reasons. First, although trehalose accumulation was no longer 

observed after the inactivation of this gene, the poor growth and maltose import of this 

strain compared to the parental strain do not allow the interpretation of these results as a 

lack of export. Second, in comparison to other C. glutamicum strains defective in mycolic 

acid synthesis like C. glutamicum Δcg0284 Δcg3174 or C. glutamicum ΔotsA ΔtreS ΔtreY Δtus, 

the poor growth of C. glutamicum IMcg2893 in minimal medium and the dramatically 

altered composition of lipid extracts (Figure 43) was also unexpected and points to a more 

general defect in this strain with the observed missing of TMM and TDM as a secondary 

effect. Third, neither the poor growth nor the altered lipid composition was restored after 

the addition of trehalose to the medium, which was expected in the case that this gene 

encoded the sole trehalose exporter in C. glutamicum. However, Cg2893 could also be 

important for the formation of a protein complex at the plasma membrane which could be 

needed for the biosynthesis and/or transport of further precursors for cell wall synthesis. 

The absence of Cg2893 could then not be compensated for by the addition of trehalose to 

the medium. Coupling of biosynthesis and export has been reported earlier. For example, 

the interaction of the phthiocerol dimycocerosate (PDIM) transporter MmpL7 and PpsE, a 

polyketide synthase involved in PDIM synthesis, has been shown in M. tuberculosis (Jain & 

Cox, 2005). Fourth, the trehalose export rate was not increased by the overexpression of 

cg2893 in C. glutamicum. Finally, a BLAST search showed that cg2893 is conserved 

throughout the bacterial kingdom but mycolic acid synthesis, for which trehalose export is 

assumed to be necessary, is limited to the Corynebacterineae subgroup of the 

Actinobacteria. To fully characterise the effect of cg2893 inactivation in C. glutamicum, 

further examination of the composition of the cell envelope, including the plasma 

membrane, the peptidoglycan, arabinogalactan, and mycolic acid layers are necessary.  

An overview of the mechanisms investigated for trehalose export in this work is shown in 

Figure 44. Simple diffusion of trehalose through the plasma membrane was excluded as well 

as an unspecific excretion via mechanosensitive channels, a reversal of trehalose import, and 

the dependence of trehalose export on glycolipid synthesis. Analysis of the export 

mechanism indicated a carrier mediated export of trehalose. The export rate determined 

here was very low but sufficient to sustain glycolipid synthesis in the periplasm during 

growth. These observations indicate the dedication of trehalose export for this purpose and 

further support the model of periplasmic TMM synthesis in C. glutamicum. 
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Figure 44: Mechanisms for trehalose excretion investigated and excluded in this work. 

4.2 Glycolipid metabolism in C. glutamicum  

The model of periplasmic TMM synthesis in C. glutamicum was challenged by the recent 

assignment of TMM export from the cytosol to the periplasm by MmpL transporters in 

M. tuberculosis, M. smegmatis, and C. glutamicum. TMM accumulation was observed in 

M. tuberculosis and M. smegmatis extracts after inhibition of MmpL3 and this was explained 

by the inability to export TMM from the cytosol (Grzegorzewicz et al., 2012; Tahlan et al., 

2012; Varela et al., 2012). Although this was not observed in C. glutamicum after the 

inactivation of cg0284 and cg3174, two mmpL-genes encoding proteins with apparent 

redundant function, the resulting mutants were unable to form TMM and TDM (Varela et al., 

2012). This phenotype was also confirmed in this work. Notably, the deletion of both mmpL-

genes was possible while this was not achieved in the above cited study and was also not 

possible for mmpL3, the corresponding gene in M. tuberculosis and M. smegmatis 

(Grzegorzewicz et al., 2012). This again shows that mycolic acid synthesis is not essential in 

C. glutamicum.  

The model of periplasmic TMM synthesis is mainly based on the incorporation of external 

trehalose into TMM in C. glutamicum ΔotsA ΔtreS ΔtreY Δtus (Henrich, 2011). It is also 

supported by the improved resistance of this strain against carbenicillin and ethambutol 

after the addition of trehalose to the medium, indicating a reduced permeability of the cell 

envelope due to the restoration of mycolic acid synthesis in the presence of external 
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trehalose (Figure 37 and 38). Still, the observed accumulation of TMM in M. tuberculosis and 

M. smegmatis does not contradict the extracellular incorporation of trehalose into glyco-

lipids in C. glutamicum. No evidence was given in these studies that TMM accumulated in 

the cytosol and the accumulation of TMM in the periplasmic leaflet of the plasma membrane 

could still be possible. Further, no accumulation of TMM was seen under similar conditions 

in C. glutamicum (see Figure 41 and Varela et al. (2012)), which indicates either differences 

in the mechanism or the regulation of TMM synthesis between these bacteria.  

MmpL transporters belong to the RND transporter family. In Gram-negative bacteria, these 

proteins are typically associated with at least two other proteins to span the periplasm, a so 

called membrane fusion protein and a channel forming outer membrane protein. Well 

known examples are AcrB-AcrA-TolC from E. coli, which exports β-lactam antibiotics, 

fluoroquinolones, free fatty acids, and other substrates (Sulavik et al., 2001), and MexB-

MexA-OprM from Pseudomonas aeruginosa, which transports a broad range of antibiotics 

and other substances (Poole et al., 1993). Importantly, based on structural studies, the 

export of periplasmic substrates by RND transporters has been suggested in some cases 

(Murakami et al., 2002; Symmons et al., 2009).  

In the following, a possible role of MmpL transporters in the synthesis and transport of 

mycolic acids in C. glutamicum is presented, which - besides the transport of mycolic acids 

over the plasma membrane - also considers its transport through the periplasmic space 

(Figure 45). Since TMM synthesis does not depend on activated trehalose as a precursor 

(Tzvetkov et al., 2003; Woodruff et al., 2004), the activation of a mycolic acid precursor 

(Myc-X) must be assumed to energise the formation of a covalent bond to trehalose. The 

uptake of external trehalose is also not required for TMM synthesis (Henrich, 2011) and in 

addition, the export of trehalose could be shown in this study. Thus, the hypothetical linkage 

of trehalose and Myc-X, resulting in TMM formation, could occur on the periplasmic side of 

the membrane after the export of Myc-X by an unknown transporter. A mannosylphospho-

polyprenol-bound mycolic acid has indeed been identified in M. smegmatis (Besra et al., 

1994) and this could serve both as the carrier and the activated precursor for the periplasmic 

synthesis of TMM. In C. matruchotii, an ABC transporter was linked to the export of short 

chain mycolic acids from the cytosol, which was concluded from an altered lipid composition 

of the mycolic acid layer in the absence of this transporter (Wang et al., 2006). ABC 

transporters could thus flip Myc-X to the periplasmic leaflet of the plasma membrane. 
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LipidA, for example, which is the main constituent of the outer membrane in Gram-negative 

bacteria, is flipped from the cytosolic leaflet of the plasma membrane to the periplasmic site 

by a homodimer of MsbA, a protein belonging to the ABC superfamily (Polissi & 

Georgopoulos, 1996; Zhou et al., 1998).  

 

 

Figure 45: Hypothetical model for the synthesis and transport of TMM in C. glutamicum. OL: outer 

layer; MM: mycolic acid membrane; AG: arabinogalactan layer; PG: Peptidoglycan layer; PM: plasma 

membrane; TMM: trehalose monomycolate; TDM: trehalose dimycolate; Myc-X: unknown activated 

mycolic acid precursor; PS1: mycolyltransferase (6 isoenzymes present); MFP: membrane fusion 

protein; MmpL: mycobacterial membrane protein large (2 proteins with redundant function). 

In M. tuberculosis, the gene rv3802 was speculated to encode an enzyme that could catalyse 

the transfer of mycolic acids from a carrier to trehalose (Gande et al., 2004). This gene 

clusters with genes encoding proteins involved in trehalose glycolipid synthesis. This cluster 

is conserved in all Corynebacterineae (two mycolyltransferases, a polyketide synthase, an 

acyl-AMP ligase, and an acyl-CoA carboxylase; compare Figure 4) and rv3802 is essential in 

M. tuberculosis (Sassetti et al., 2003). The encoded protein contains a serine esterase motif 
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that could catalyse the formation of an ester bond between trehalose and a mycolic acid and 

it is predicted to be localised in the periplasm and to be anchored in the plasma membrane. 

This gene is thus an interesting candidate for further analysis of TMM synthesis.  

In agreement with periplasmic substrate recognition of RND transporters (see above), TMM 

formed in this hypothetical pathway could then be transported from the periplasmic side of 

the plasma membrane to the mycolic acid layer by a tripartite complex consisting of either of 

two redundant MmpL proteins (Varela et al., 2012), an unidentified membrane fusion 

protein, and an also unidentified protein in the mycolic acid layer, where TMM serves as 

mycolic acid donor for the formation of TDM (Puech et al., 2000) and the mycolylation of 

arabinogalactan and of several proteins (Brand et al., 2003; Huc et al., 2010; Huc et al., 

2013). A putative membrane fusion protein was found in the C. glutamicum genome 

(cg3322) that shows significant sequence identity to the membrane fusion protein HlyD 

involved in haemolysin export in different bacteria. Although the annotated protein is mar-

kedly bigger than AcrA from E. coli (620 and 397 amino acids), both are predicted 

periplasmic proteins with an N-terminal transmembrane helix, tethering the protein to the 

membrane. Unfortunately, attempts to delete cg3322 in this study were not successful. 

The genome of M. tuberculosis contains 5 mmpS genes (mycobacterial membrane proteins 

small), which all except for one cluster with mmpL genes and which all encode periplasmic 

proteins with putative N-terminal transmembrane helices. Consequently, MmpS4 and 

MmpS5 have been shown to participate in siderophore and glycopeptidolipid export via 

MmpL4 and MmpL5 and were suggested to function as membrane fusion proteins in 

M. tuberculosis (Deshayes et al., 2010; Wells et al., 2013).  

This model integrates both the assumption of periplasmic TMM formation and the recent 

linkage of MmpL proteins with mycolic acid transport. Nevertheless, further experimental 

confirmation is needed to evaluate this model. To finally prove the significance of trehalose 

export for TMM synthesis in C. glutamicum, the trehalose export system has to be identified. 

4.3 Characterisation of TusE and trehalose nanosensor construction 

Since a trehalose export system in C. glutamicum could not be identified by a rational 

approach, the screening of a library of C. glutamicum mutants was targeted next. As a 

screening tool to display altered intracellular trehalose concentrations, a genetically 

encoded FRET-nanosensor for trehalose was constructed. Such sensors have been described 
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for a number of different metabolites in the literature and they allow the non-disruptive 

real-time analysis of metabolite dynamics in living cells (Fehr et al., 2004; Takanaga et al., 

2008). Periplasmic solute binding proteins have been successfully applied as metabolite 

sensing domains in nanosensors and the putative trehalose binding protein of C. glutamicum 

was characterised in this study and subsequently used for sensor construction. 

4.3.1 The gene cg0834 encodes the binding protein of the ABC trehalose uptake system 

Trehalose uptake and metabolisation were recently described in C. glutamicum (Henrich, 

2011). While deletion and episomal overexpression of cg0830 – cg0835 confirmed that this 

gene cluster encodes a trehalose uptake system (Henrich, 2011), the functions of the 

individual gene products have not been investigated experimentally yet. Since the putative 

periplasmic trehalose binding protein should be used to construct a genetically encoded 

trehalose nanosensor, the function of the cg0834 gene product was assessed in this study. 

The encoded protein was overproduced in E. coli BL21 (DE3) without the putative N-terminal 

signal peptide and purified via IMAC and SEC. When analysed for trehalose binding by 

fluorescence detection, the high affinity binding of trehalose to the protein could be shown 

(Figure 29). This confirms the function of TusE as the sugar binding protein of the trehalose 

ABC uptake system and shows that the 25 N-terminal amino acids are not required for 

trehalose binding. The dissociation constant (0.42 µM) is slightly higher than the Michaelis-

constant (0.16 µM) determined in transport assays (Henrich, 2011). A possible explanation 

could be a transport model which only allows the interaction of substrate loaded binding 

proteins with the permease domains of the transporter (Horlacher et al., 1998). Further, 

acylation of TusE could alter its substrate affinity in vivo.   

Periplasmic binding proteins are responsible for the high substrate affinity of ABC uptake 

systems and the dissociation constants reported for other periplasmic sugar binding proteins 

are in a similar range as for TusE. The trehalose/maltose binding protein of T. litoralis, for 

example, binds trehalose and maltose both with a dissociation constant of 0.16 µM 

(Horlacher et al., 1998). For the binding of maltose and maltotriose to the periplasmic 

maltose binding protein of E. coli, dissociation constants of 1 µM and 0.16 µM, respectively, 

were reported, while the Michaelis-constants for the two substrates determined in transport 

measurements were 1 µM and 2 µM, respectively (Szmelcman et al., 1976).  

TusE carries an N-terminal signal peptide typical for lipoproteins. Acylation is a common 
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modification of substrate binding proteins of Gram-positive bacteria to anchor these 

proteins in the plasma membrane to prevent their loss to the surrounding (Gilson et al., 

1988). The lipobox sequence of TusE formed by amino acids 22 to 27, A-L-A-G-C-S, matches 

well with the consensus sequence (L/V/A)-L-(S/A)-(A/G)-C-(S/G) (Sutcliffe & Russell, 1995), 

where C denotes the first amino acid of the mature protein and is also the residue that is 

thioacylated. However, acylation of TusE has not been shown experimentally. This could be 

achieved by labelling of the protein with [14C]-fatty acids during growth, for example. 

Interestingly, TusE was identified in extraction fractions containing proteins inserted into or 

associated with the peptidoglycan-arabinogalactan-mycolate-complex (Marchand et al., 

2012), verifying its periplasmic localisation in vivo. 

4.3.2 Construction of a genetically encoded trehalose nanosensor 

TusE was applied for the construction of a genetically encoded FRET-nanosensor. Therefore, 

tusE was terminally fused to ecfp and eyfp. Constructs using full length TusE or TusEΔN47, 

which lacks the predicted N-terminal PepSY domain probably not needed for trehalose 

binding, did not show a change of the FRET-efficiency upon trehalose addition. A functional 

sensor could be constructed using TusEΔN32 (TreSen2, Figure 31). However, the signal 

change of TreSen2 was only very low (0.03). A high signal change upon ligand binding is 

needed for reliable metabolite detection. Further, the maximum signal change of a sensor 

can be significantly reduced in vivo as in the case of one of the ATP-sensors tested in this 

study.  

The sensor was thus optimised by systematic linker truncations taking into consideration not 

only the artificial amino acid linkers introduced between the binding protein and the two 

fluorescent proteins but also the terminal regions of the proteins. Rigid linkers are thought 

to translate the conformational change of the binding protein more efficiently into an 

altered distance and/or orientation of the two fluorescent proteins than long and flexible 

linkers, leading to an altered FRET-efficiency (Deuschle et al., 2005; Lager et al., 2006). In the 

sensor with the highest signal change upon trehalose addition, TreSen28, both linkers were 

truncated from 2 × 6 to 2 × 2 amino acids, and 10, 6, and 32 amino acids were removed from 

the C-terminus of ECFP, the N-terminus of mVenus (which replaced EYFP), and from the N-

terminus of TusE, respectively. The maximum signal change of 0.39 for TreSen28 is in the 

same order of magnitude as reported for different other FRET-sensors. For example, a set of 
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maltose sensors with signal changes between 0.15 and 0.30 (Fehr et al., 2002), ATP sensors 

with signal changes between 0.3 – 1.9 (Imamura et al., 2009) and glucose sensors with signal 

changes from 0.15 – 0.7 were described (Deuschle et al., 2005).  

The Kd-values of trehalose sensors containing different N-terminal truncations of TusE varied 

between 0.06 µM and 1.22 µM. Since variations of the Kd–value for different constructs 

using the same truncation, TusEΔN25, were also measured (0.26 µM – 1.08 µM), these 

values likely not represent altered affinities of these constructs but were rather due to 

differences in sample preparation and analysis at different time points. Further, truncation 

of the N-terminal PepSY domain should not alter the affinity of the protein since this domain 

is not likely to be needed for substrate binding.  

Although FRET-sensors have been used successfully for a variety of applications described in 

the literature, some drawbacks were observed in this study. For example, using the ECFP-

EYFP FRET-pair, the blue light used for excitation was phototoxic for C. glutamicum cells 

when exposed repeatedly. Formation of the chromophore of GFP and derivatives thereof 

needs oxygen and causes a time-dependent change of the fluorescent properties of the 

protein (Nagai et al., 2002). Although the analyte is not altered chemically by this kind of 

detection, high-level expression of FRET-sensors could decrease the concentration of free 

ligand in the cell and thereby indirectly influence metabolite concentrations. Constitutive 

expression of ATP-sensors was highly unstable in C. glutamicum opposed to an inducible 

expression, for example, indicating detrimental effects of these sensors for the cell. Signal 

changes of a FRET-sensor rely on a conformational change of the binding protein and this 

could also be triggered by conditions other than ligand binding. Sensors with Kd-values far 

below or above the prevailing ligand concentration are thus valuable controls to exclude 

unspecific sensor responses and have been constructed in many cases by the introduction of 

point mutations in the ligand binding site (Deuschle et al., 2006; Imamura et al., 2009). 

4.3.3 Engineering the trehalose binding site of TusE 

For the use of a FRET-sensor in vivo, its Kd-value has to be in the same range as the 

intracellular ligand concentration. In C. glutamicum, trehalose concentrations in the 

millimolar range were reported under different conditions (Tzvetkov et al., 2003; Wolf et al., 

2003). In C. glutamicum ΔmalQ ΔtreX Δtus the intracellular trehalose concentration was 

around 4 mM even in the stationary growth phase and exceeded 100 mM several hours after 
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the addition of maltose. To use a trehalose sensor for the screening of a C. glutamicum 

mutant library, the affinity of TreSen28 should be reduced by a rational approach. Based on 

a structural homology model of TusE, amino acids putatively involved in trehalose binding 

were mutated in TreSen28. However, the affinity of four resulting constructs was only 

slightly altered compared to TreSen28 (0.24 µM) with the lowest affinity being 2.04 µM for 

TreSen28Y313F. Most mutations in TusE tested here led to sensors no longer responding to 

trehalose addition but it cannot be told whether trehalose binding or the translation of 

binding to an altered FRET-efficiency was impeded by these mutations.  

Several FRET-sensors described in the literature have been changed in their affinity using 

site-directed mutagenesis. For example, the sucrose binding protein from Agrobacterium 

tumefaciens was used to construct a sucrose sensor and its Kd-value could be increased from 

4 µM to 46 mM by replacing only one tryptophan residue by alanine (Lager et al., 2006). 

Similarly, the Kd-value of a maltose sensor was changed from 2 µM to 226 µM also by 

mutation of one tryptophan residue to alanine (Fehr et al., 2002).  

The inability to markedly change the sensors affinity for trehalose suggests that the binding 

site might not have been predicted correctly. For the construction of a structural homology 

model of TusE, the crystal structure of the trehalose/maltose binding protein from T. litoralis 

served as a template. This has been resolved at 1.85 Å resolution in the presence of 

trehalose, which is bound in the sugar binding site forming van der Waals contacts and 

hydrogen bonds with a total of 16 amino acids (Diez et al., 2001).  The amino acid identity of 

both proteins is only 30%, which is very low for the construction of an accurate structural 

model. At low sequence identity, alignment errors can lead to the false prediction of the 

entire structure of a protein (Baker & Sali, 2001). However, the structures of periplasmic 

solute binding proteins are usually similar despite their low sequence identity (Quiocho & 

Ledvina, 1996). The quality of a homology model can be described with the help of the 

Qmean4- and the Z-score. The former is a combination of structural descriptors for 

distances, torsion angles, and solvation using statistical potentials (Benkert et al., 2008). The 

Z-score evaluates the model by comparison of its structural features to experimentally 

determined structures (Benkert et al., 2011). Both values (0.56 and -3.4, respectively) 

indicate that the overall quality of the structural prediction for TusE is rather low. Analysis of 

the local scores of the model shows that this is mainly caused by regions of undefined 

secondary structure (loops) in TusE while structural elements like α-helices and β-sheets 
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including the central region of TusE containing the putative sugar binding pocket show good 

local scores. Thus, the quality of the TusE model should be acceptable in the regions 

essential for substrate binding. The amino acids exerting trehalose binding are probably not 

conserved between TusE and the T. litoralis trehalose/maltose binding protein and were 

thus not identified correctly in this approach. 

4.4 Manipulation of trehalose uptake leads to optimised production strains 

C. glutamicum is one of the industrial workhorses for the production of amino acids. The 

economic viability of a production process for a bulk product is largely determined by the 

substrate costs and therefore the product yield of a bioprocess is an important parameter. 

The maximum theoretical yield is determined by the topology of the metabolic network and 

the substrate used, but is often not achieved in reality. One reason can be the redirection of 

the carbon flux from product synthesis to the formation of one or more byproducts. Besides 

their influence on the product yield, the latter can also hamper the purification of the 

product. The reduction of byproduct synthesis is thus important for several reasons. Typical 

byproducts accumulating during the cultivation of C. glutamicum are pyruvate, acetate, 

lactate, L-alanine, L-valine, L-glutamate, α-ketoglutarate, and trehalose (Vallino & 

Stephanopoulos, 1993; Wittmann & Heinzle, 2001; Kind et al., 2011). In this work, the 

accumulation of trehalose in the culture broth of C. glutamicum during bioreactor cultivation 

was investigated to clarify the apparent contradiction of trehalose accumulation in spite of 

the presence of a high-affinity trehalose uptake system in C. glutamicum and the observed 

utilisation of trehalose as substrate for growth during shake flask cultivation (Henrich, 2011). 

During bioreactor cultivation of C. glutamicum DM1729 (pXMJ19), 4.7 ± 2.1 mM trehalose 

was detected in the supernatant, corresponding to 2.1% of the amount of carbon used as 

substrate. This could be reduced to only 0.57 ± 0.2 mM (0.3%) by the homologous over-

expression of the tus-genes in C. glutamicum DM1729 (pXMJ19_tus).  

Expression of the tus-genes was examined in both strains to investigate the reason for 

trehalose accumulation. While tusK transcripts were hardly detected at any time in 

C. glutamicum DM1729 (pXMJ19), tusFG and tusE transcripts were detectable at the 

beginning of the fermentation but decreased rapidly (Figure 7). Correspondingly, trehalose 

accumulated during the second half of the fermentation.  

Since the function of TusK can be partially taken over by the ATPase of the maltose uptake 
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system in C. glutamicum (Schulte, 2011), the absence of tusK transcripts does not necessarily 

abolish trehalose import. Further, tusK transcripts were also detected comparatively weakly 

in C. glutamicum DM1729 (pXMJ19_tus) and thus there might have been a problem with the 

probe used for detection. The permeases TusF and TusG, on the other hand, are essential 

constituents of the uptake system (Henrich, 2011; Rehorst, 2013) as well as the trehalose 

binding protein TusE (Schulte, 2011). Summing up, the rapid decrease of tus-gene expression 

was responsible for trehalose accumulation during fermenter cultivations of C. glutamicum 

DM1729 (pXMJ19).  

The transcriptional organisation and regulation of these genes has been investigated in 

several studies. Binding sites for the global transcriptional regulator AtlR were identified up-

stream of tusE and tusG and AtlR has been shown to activate the transcription of both genes 

(Laslo et al., 2012; Rehorst, 2013). As an effector molecule of this regulator, an intermediate 

of arabitol metabolism has been suggested but could not be identified so far (Laslo et al., 

2012). The global regulator RamA was also identified as a transcriptional activator for tusE 

expression during growth on glucose (Auchter et al., 2010). RamB regulates the expression 

of tusG (Schulte, 2011) and cAMP dependent binding of the global regulator GlxR to a 

binding site upstream of tusK was shown (Jungwirth et al., 2013). Since cAMP levels are high 

in C. glutamicum during growth on glucose (Kim et al., 2004) and GlxR acts as transcriptional 

activator of tusK (Toyoda et al., 2011), the decrease of tusK expression during bioreactor 

cultivation with glucose cannot be explained. In spite of the knowledge gained on their 

transcriptional regulation, it is not understood why tus-gene expression decreased during 

the fermenter cultivation of C. glutamicum DM1729 (pXMJ19) and to the contrary, trehalose 

serves as carbon source for C. glutamicum during shake flask cultivation.  

While beneficial for byproduct reduction, trehalose reuptake could be detrimental for 

trehalose overproduction in C. glutamicum. This could lead to enhanced product degrada-

tion and further, increased intracellular product concentrations can exert negative 

regulatory effects on biosynthetic pathways. For example, L-tryptophan production was 

enhanced by 10% to 20% in a C. glutamicum strain with a lower level of L-tryptophan uptake 

(Ikeda & Katsumata, 1995).  

The tus-gene cluster was therefore deleted in C. glutamicum ΔtreS (pXMJ19_otsBAE. coli), 

which has been reported to produce trehalose (Padilla et al., 2004a). Compared to the 

parental strain, the trehalose yield increased by 40% for C. glutamicum ΔtreS Δtus 
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(pXMJ19_otsBAE. coli) while the amount of external trehalose even increased by 80%. The 

higher rate of trehalose accumulation in the medium for the latter strain can be explained by 

the lack of trehalose reuptake, which thus effects trehalose production significantly. The 

trehalose export rate in C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE. coli) did not depend on 

the internal trehalose concentration, showing that trehalose production is limited by its 

export. In contrast, overexpression of galU has been reported to further increase the 

trehalose production rate in C. glutamicum ΔtreS (pXMJ19_otsBA) by improving the supply 

of UDP-glucose, which was reported to be limiting in this strain (Padilla et al., 2004b). To test 

whether trehalose synthesis or its export is limiting, the overexpression of galU in 

C. glutamicum ΔtreS Δtus (pXMJ19_otsBAE. coli) would be interesting.  

At the entry to the stationary phase, the intracellular trehalose concentrations increased in 

both strains tested here. This could result from an enhanced rate of trehalose synthesis 

caused by the degradation of glycogen. Glycogen accumulates in C. glutamicum during the 

growth phase and is degraded afterwards via the debranching enzyme GlgX, producing linear 

maltodextrines, which serve as precursors for trehalose synthesis via the TreYZ pathway 

(Seibold & Eikmanns, 2007). Trehalose overproduction via the TreYZ-pathway has already 

been shown in C. glutamicum strains (Padilla et al., 2004b) and likely contributed to 

trehalose production in the experiments described in this work.  

Concluding, deletion of the tus-genes improved trehalose production in C. glutamicum ΔtreS 

Δtus (pXMJ19_otsBAE. coli). On the other hand, the overproduction of the trehalose uptake 

system resulted in a significant reduction of byproduct accumulation in L-lysine producing 

strains. Engineering trehalose uptake is thus an interesting target for the optimisation of 

production strains. 
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