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Introduction

Words like extremes, extremal events, worst case scenarios have long become an integral part

in the vocabulary of financial researches and practitioners. This is not without reason. In view

of the extreme and highly correlated financial turbulences in the last decades, the introduction

of new (ill-understood) derivative products, and growing computerization of financial trading

systems, it becomes evident that events that were believed to occur once in one hundred or

even one thousand years (based on the standard financial models) tend to occur much more

frequently than expected leading to severe unexpected losses on financial markets. Modeling

and forecasting those extreme events is a topic of vivid interest and great importance in the

current research of quantitative risk management and is exactly the topic of the thesis at hand.

In this thesis, we consider the problem of modeling very large (in absolute terms) returns on

financial markets and focus on describing their distributional properties. Our aim is to design

an approach that can accommodate the characteristic features of those returns, namely, heavy

tails, contagion effects, tail dependence, and clustering in both magnitudes and times of occur-

rences. Additionally, the thesis contributes to the literature on forecasting extreme electricity

spot prices. The challenge of this problem is determined, first, by the difficulty of modeling the

price directories in high-frequency settings, and, second, by the distinctive feature of electricity,

namely, its limited storability. Furthermore, in this thesis, we investigate a problem of estimat-

ing probability distributions whose tails decrease very slowly (heavy-tailed distributions). In

particular, we study the properties of two popular estimators of those distributions in the case

when the underlying data is top-coded, i.e., unknown above a certain threshold.

To cope with the task of describing extreme events, both an accurate quantitative analysis –

a focus of this thesis – as well as a sound qualitative judgement are required. Considering the

latter, for example, it is astonishing to see how many early warnings of the subprime crisis

2007 both in the press (see Danielsson [2013]) and in the academics (see Das, Embrechts, and

Fasen [2013] and Chavez-Demoulin and Embrechts [2011] for an overview) were ignored by the

regulators and practitioners. Examples of blunders with the quantitative analysis include, among

others, an extensive reliance on correlation based risk measures, which are known to be often

misleading, see Embrechts, McNeil, and Straumann [2002], and an often unjustified use of the

Gaussian copula in the standard pricing formulas for tranches of collateralized debt obligations.

It is known from Sibuya [1959] that this copula underestimates the probability of joint extremal

events, because it does not exhibit tail dependence, see Chavez-Demoulin and Embrechts [2011].

Whatever the reason of that misuse of quantitative methods in practice, the statistical modeling

1



Introduction 2

of extreme events, as a crucial component in understanding heavy-tailed phenomena, needs to

be further developed from a scientific point of view.

Currently there is general agreement that daily financial data is well described by (multivari-

ate) distributions whose tails are much heavier than the ones of the normal distribution and

whose dependence structure can accommodate clustering of extremes. Popular models that can

partly fulfil the above requirements are generalized autoregressive conditional heteroskedastic-

ity (GARCH) [Bollerslev, 1986] and stochastic volatility, see Shephard [1996] for an overview.

The popularity of those models is founded by their computational simplicity and ability to cap-

ture volatility clustering and heavy-tailed phenomena. Furthermore, a GARCH process can

also account for clustering of extremes [Davis and Mikosch, 2009a]. In particular, large values

of a GARCH process always occur in clusters, as opposed to a stochastic volatility process,

whose large values behave similarly to extremes of the corresponding serially independent pro-

cess [Davis and Mikosch, 2009b]. These findings imply that a GARCH model performs better

than a stochastic volatility model in describing the timing of extreme events in financial data.

Although displaying very useful features, there are limitations for using GARCH processes. In

particular, those processes do not seem to accurately capture the size of extremes in financial time

series [Mikosch and Stărică, 2000]. Furthermore, the stationarity condition of GARCH processes

restricts their applications to situations with finite variance. As it will be highlighted in Section

2 of the thesis, the assumptions of finite variance is inappropriate for modeling electricity spot

prices. From a statistical point of view, extreme observations may also have strong deleterious

effects on the parameter estimates and tests of a GARCH model [van Dijk, Franses, and Lucas,

1999].

Overall, extreme observations have its own unique features which differ substantially from the

rest of the sample and hence cannot always be accommodated by models that are intended to

describe the whole structure of the data. To capture those unique features, there is increased

interest in approaches that use mainly extreme observations for inferences. This requirement

calls for applications of extreme value theory. In this thesis, we will introduce models developed

in the framework of that theory and consider specific problems of modeling extreme events on

financial as well as electricity markets that have attracted much attention in the literature in

recent years.

Extreme Value Theory (EVT) studies phenomena related to very high or very low values in

sequences of random variables and in stochastic processes. EVT provides fundamental theo-

retical results and a multitude of probabilistic approaches to modeling heavy tails and extreme

multivariate dependences. A basic result of the univariate EVT is the Fisher-Tippet-Gnedenko

theorem, see de Haan and Ferreira [2006] (Theorem 1.1.3), which allows for modeling the maxima

of a set of contiguous blocks of stationary data using the generalized extreme value distribution

(up to changes of location and scale) Hξ(x) = exp
(
−(1 + ξx)

−1/ξ
+

)
. In particular, if for inde-

pendent random variables X1, X2, . . . with the same probability distribution function F , there

exist sequences an > 0, bn ∈ R, such that

lim
n→∞

P

(
max (X1, X2, . . . , Xn)− bn

an
≤ x

)
= lim
n→∞

Fn (anx+ bn)→ H(x)
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where H(x) is a non-generate distribution function, then the only possible non-generate dis-

tribution H(x) is of the form Hξ(ax + b). Another model for extremes is provided by the

Pickands-Balkema-de Haan theorem (see Pickands [1975], Balkema and de Haan [1974]), which

is inherently connected to the previous model through a common basis of Karamata’s theory

of regular variation. According to that theorem the distribution of excesses of a heavy-tailed

random variable over a sufficiently high threshold is necessarily the generalized Pareto distri-

bution (GPD) G(x; ξ, β) = 1 − (1 + ξx/β)
−1/ξ
+ . The choice of that high threshold is however

complicated in practice as it depends on the second order properties of the distribution function,

see Chavez-Demoulin and Embrechts [2011]. Along with the GPD choice for the magnitudes of

the excesses, the occurrence of those excesses follows a Poisson process, see Leadbetter [1991].

The results of the univariate EVT allow for the statistical modeling of common risk measures

like Value-at-Risk (used more in banking) and expected shortfall (used more in insurance). Note

however that application of the GPD and the generalized extreme value distribution is often

confronted with a problem of interpretation of the parameters from a practitioner’s point of view

(in contrast to mean and standard deviation of the normal distribution). A fundamental work

considering the univariate EVT and applications of those models to financial data is Embrechts,

Klüppelberg, and Mikosch [1997], see also McNeil and Frey [2000] for estimation of tail related

risk measures. Extensions of the univariate EVT to stationary time series which show a certain

short-range dependence can be found in Leadbetter, Lindgren, and Rootzen [1983].

Multivariate extensions of the (classical) univariate EVT play also an important role in describ-

ing extreme events, especially considering their dependence structure. The basic result of the

multivariate EVT concerns the limit multivariate distribution of the componentwise block max-

ima. In particular, if for independent and identically distributed random vectors (X1,i, . . . , Xd,i),

i = 1, 2, . . . there exist sequences ak,n > 0, bk,n ∈ R, k = 1, . . . , d such that

lim
n→∞

P

(
max (Xk,1, , . . . , Xk,n)− bk,n

ak,n
≤ xk, k = 1, . . . , d

)
→ H (x1, ..., xd)

where H (x1, ..., xd) is a distribution function with non-degenerate marginals, then H (x1, ..., xd)

is a multivariate extreme value distribution. This distribution is characterized by the margins,

which have the generalized extreme value distributions Hξk(x) = exp
(
−(1 + ξkx)

−1/ξk
+

)
, k =

1, . . . , d, and by copula C, referred to as extreme value copula, for which it holds

∀a > 0,∀(u1, . . . , ud) ∈ [0, 1]d : C (u1, ..., ud) = C1/a (ua1 , ..., u
a
d) .

A specific dependence structure (not unique) implied by the above property provides useful

copulas, for example Gumbel and Galambos copulas, for capturing the joint tail behavior of risk

factors that show tail dependence. Applications and discussions of multivariate extreme value

distributions can be found in de Haan and de Ronde [1998], Embrechts, de Haan, and Huang

[2000], Tawn [1990], Haug, Klüppelberg, and Peng [2011] and Mikosch [2005]. An extensive

textbook treatment of EVT can be found in de Haan and Ferreira [2006] and Resnick [2007].

The solid theoretical background behind EVT makes its application for modeling extreme events

natural and consequent. As it is noted in Chavez-Demoulin and Embrechts [2010], a careful use

of EVT models is preferred above the casual guessing of some parametric models that may fit
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currently available data over a restricted range, where only a few (if any) extreme observations are

available. Due to the strict underlying assumptions and the non-dynamic character, however, the

methods of EVT are not always directly applicable in situations where the extremes are serially

dependent, as it is the case in almost all financial time series. This problem was discussed, among

others, in Leadbetter, Lindgren, and Rootzen [1983], Chavez-Demoulin, Davison, and McNeil

[2005], Chavez-Demoulin and McGill [2012], Davison and Smith [1990], Coles [2001] (Chapter

5), and see also Chavez-Demoulin and Davison [2012] for an overview.

In this thesis we will attempt to contribute to the literature by proposing models which extend

the current results of EVT and offer new insight with modeling extreme events in serially de-

pendent time series. In particular, we will review theoretical and practical questions that arise

in the process of modeling extreme events on financial and electricity markets in daily and high-

frequency settings. Under extreme events we understand situations when a financial parameter

(e.g., equity return, electricity spot price) exceeds a characteristic high threshold (e.g., 99.9%th

quantile). The questions of conditional modeling occurrence times and magnitudes (heavy tails)

of those events as well as their complex dependence structure will be addressed.

Outline and summary

Chapter 1 deals with the problem of modeling multivariate extreme events observed in finan-

cial time series. The major challenge coping with that problem is to provide insights into the

temporal- and cross-dependence structure of those extreme events in view of their clustering,

which is observed both in their sizes and occurrence times, and specific dependence structure

in the tails of multivariate distributions. Furthermore, those events demonstrate a certain syn-

chronization in occurrences across markets and assets (e.g., contagion effects), which motivates

the application of multivariate methods. To capture those characteristic features, we develop a

multivariate approach based on self-exciting point processes and EVT. We show that the con-

ditional rate of the point process of multivariate extreme events (constructed as a superposition

of the univariate processes) is functionally related to the multivariate extreme value distribution

that governs the magnitudes of the observations. This extreme value distribution combines the

univariate rates of the point processes of extreme events into the multivariate one. Extensive

references to the point process approach to EVT can be found in Resnick [1987]. Due to its point

process representation, the model of Chapter 1 provides an integrated approach to describing two

inherently connected characteristics: occurrence times and sizes of multivariate extreme events.

A separate contribution of this chapter is a derivation of the stationarity conditions for the self-

exciting peaks-over-threshold model with predictable marks (this model was first presented in

McNeil, Frey, and Embrechts [2005], Section 7.4.4). We discuss the properties of the model, treat

its estimation (maximum likelihood and method of moments), deal with testing goodness-of-fit,

and develop a simulation algorithm. We also consider an application of that model to return

data of two stock markets (MSCI-EU, MSCI-USA) and four major European banks (Deutsche

Bank, HSBC, UBS, and RBS).

Along with financial time series, electricity spot prices are also strongly exposed to sudden

extreme jumps. Contrary to financial markets, where the reasons of turmoil are often explained

by behavioral aspects of the market participants, in electricity markets the occurrence of extreme

prices is attributed to an inelastic demand for electricity and very high marginal production
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costs in the case of unforeseen supply shortfalls or rises in the demand for electricity. Due to

the lack of practical ways to store electricity, those inelasticities and high marginal costs may

manifest themselves in electricity prices that exceed the average level a hundred times. This

type of price behavior presents an important topic for risk management research and is of great

relevance for electricity market participants, for example, retailers, who buy electricity at spot

prices but redistribute it at fixed prices to consumers. In Chapter 2 of this thesis we present a

model for forecasting the occurrence of extreme electricity spot prices. The unique feature of

this model is its ability to forecast electricity price exceedances over very high thresholds (e.g.

99.99%th quantile), where only a few (if any) observations are available. The model can also be

applied for simulating times of occurrence and magnitudes of the extreme prices. We employ a

copula with a changing dependence parameter for capturing serial dependence in the extreme

prices and the censored GPD (to account for possible price ceilings on the market) for modeling

their marginal distributions. For modeling times of the extreme price occurrences we propose a

duration model based on a negative binomial distribution, which can reproduce large variation, a

strong clustering pattern and the discrete nature of the time intervals between the occurrences of

extreme prices. This duration model outperforms the common approaches to duration modeling:

the autoregressive duration models (Engle and Russell [1998]) and the Hawkes processes (Hawkes

[1971]), see Bauwens and Hautsch [2009] for an overview. Once being estimated, our forecasting

model can be applied (without re-estimation) for forecasting occurrences of price exceedances

over any sufficiently high threshold. This unique feature is provided by a special construction

of the model in which price exceedances over very high thresholds may be triggered by the

price exceedances over a comparatively smaller threshold. Our forecasting model is applied to

electricity spot prices from Australia’s national electricity market.

Another research question addressed in this thesis is the estimation of heavy-tailed distribu-

tions on top-coded observations, i.e., observations, whose values are unknown above a certain

threshold. Not knowing the exact values of the upper-order statistics in the data, the top-coding

(right-censoring) may have a strong effect on estimation of the main characteristic of the heavy-

tailed distributions – the tail index, the decay rate of the power function that describes the

distribution’s tail. This problem occurs, for example, in the insurance industry where, due to

the policy limits on insurance products, the amount by how much the insurance claims (typically

heavy-tailed) exceed those limits is not available. The tail index plays a crucial role in determin-

ing common risk measures (e.g., Value-at-Risk, expected shortfall) and is therefore required to

be estimated accurately. In Chapter 3 we examine how two popular estimators of the tail index

can be extended to the settings of top-coding. We consider the maximum likelihood estimator of

the generalized Pareto distribution and the Hill estimator. Working in the framework of Smith

[1987], we establish the asymptotic properties of those estimators and show their relationship to

various levels of top-coding. For high levels of top-coding and small values of the tail index, our

findings suggest a superior performance of the Hill estimator over the GPD approach. This result

contradicts the broad conclusion about the performance of those estimators in the uncensored

case as it was established in Smith [1987].

The main chapters of the thesis are based on academic papers. Chapter 1 is in line with Grothe,

Korniichuk, and Manner [2012], which is a joint work of Oliver Grothe, Volodymyr Korniichuk,

and Hans Manner, all of whom have contributed substantially to the paper. Korniichuk [2012]
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underlies Chapter 2. Finally, Chapter 3 is based on Korniichuk [2013]. Since the papers under-

lying the chapters of the thesis are independent of each other, those chapters can be read in any

order. Each of the chapters has a detailed introduction (motivation) and a conclusion. The final

chapter of the thesis shortly summarizes the major contributions.



Chapter 1

Modeling Multivariate Extreme

Events Using Self-Exciting Point

Processes

1.1 Motivation

A characteristic feature of financial time series is their disposition towards sudden extreme jumps.

As an empirical illustration consider Figure 1.1, which shows occurrence times and magnitudes

of exceedances of MSCI-USA and MSCI-EU indices’ negated returns over a high quantile of their

distributions. It is apparent from the figure that both occurrence times and magnitudes of the

exceedances resemble a certain clustering behavior, namely, large negative returns tend to be

followed by large ones and vice versa. Additionally, this clustering behavior is observed not only

in time but also across the markets, which is manifested, among others, in the occurrence of joint

exceedances. This synchronization of large returns’ occurrences may be attributed to the infor-

mation transmission across financial markets, see, for example, Wongswan [2006], where, based

on high-frequency data, international transmission of economic fundamental announcements is

studied on the example of the US, Japan, Korean and Thai equity markets. Other channels of

the informational transmission are described in Bekaert, Ehrmann, Fratzscher, and Mehl [2012],

where, in particular, the authors provide a strong support for the validity of the “wake-up call”

hypothesis, which states that a local crisis in one market may prompt investors to reexamine

their views on the vulnerability of other market segments, which in turn may cause spreading of

the local shock to other markets. Clustering of extreme events may also be caused by intra-day

volatility spillovers both within one market and across different markets, see Golosnoy, Gribisch,

and Liesenfeld [2012] for a recent study of this topic. In general, it is not clear whether the

joint exceedances are triggered by a jump in one component or just caused by a common factor

– both scenarios occur in financial markets and are interesting to analyze. The behavior of ex-

treme asset-returns presents an important topic for research on risk management and is of great

relevance especially in view of the latest financial crisis.

7



Chapter 1. Modeling Multivariate Extreme Events Using Self-Exciting Point Processes 8

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

2

4

6

8
Panel 1: Exceedances of the negated MSCI−USA daily returns

Time

E
xc

ee
da

nc
es

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

2

4

6

8
Panel 2: Exceedances of the negated MSCI−EU daily returns

Time

E
xc

ee
da

nc
es

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.5

1
Panel 3: Joint Exceedances Indicator

Time

Figure 1.1: Exceedances of negated MSCI-USA (Panel 1) and MSCI-EU (Panel 2) daily log-
returns over the respective 0.977th quantiles. Bar plot indicating times of the joint exceedances

(Panel 3).

The problem of modeling jumps or exceedances above high thresholds in asset-returns was consid-

ered in many papers. For example, Bollerslev, Todorov, and Li [2013] approach this problem by

partitioning jumps into idiosyncratic and systemic components, and by further direct modeling

of the jumps’ distributional properties based on the results of extreme value theory. Aı̈t-Sahalia,

Cacho-Diaz, and Laeven [2011] propose a Hawkes jump-diffusion model in which self-exciting

processes (with mutual excitement) are used for modeling clustering of extreme events both

in time and across assets. That paper develops a feasible estimation approach based on the

generalized method of moments and provides strong evidence of self-excitation and asymmetric

cross-excitation in financial markets. Modeling multivariate exceedances above high thresholds

is also a topic of intensive research in extreme value theory. For example, it was shown in the

literature that the multivariate generalized Pareto distribution is the natural distribution for

multivariate extreme exceedances, see Smith, Tawn, and Coles [1997] and Rootzen and Tajvidi

[2006]. Recent studies considering the estimation of the probability that a random vector falls

in some remote region are Einmahl, de Haan, and Krajina [2013] and Drees and de Haan [2012].

Note, however, that those methods are not directly applicable when the extremes are clustering

in time. Extensive treatments of EVT methods can be found in de Haan and Ferreira [2006] or

Resnick [2007]. Studies that are related to modeling clusters in financial data are Bowsher [2007]

who introduces a new class of generalized Hawkes process (including non-linear models) and

studies with its bivariate version the transaction times and mid-quote changes at high-frequency

data for a NYSE stock, as well as Errais, Giesecke, and Goldberg [2010] who employ self-exciting

processes for modeling portfolio credit risk, in particular, for the valuation of credit derivatives.

Considering the recent developments in modeling extreme asset-returns, there is still a demand

for a model that can provide insights into the temporal- and cross-dependence structure of

multivariate extreme events in view of their clustering and specific dependence structure in the

tails of (multivariate) distributions. In this chapter of the thesis we develop a model that can

fill this gap. Working in the framework of marked self-exciting point processes and extreme

value theory (EVT), we model multivariate extreme events as a univariate point process being

constructed as a superposition of marginal extreme events. For modeling the marginal processes
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of exceedances we revise the existing specification of the univariate self-exciting peaks-over-

threshold model of Chavez-Demoulin, Embrechts, and Nešlehová [2006] and McNeil, Frey, and

Embrechts [2005], which is able to cope with the clustering of extremes (in both times and

magnitudes) in the univariate case. After this revision, we are able to formulate stationarity

conditions, not discussed in the literature before, and to analyze the distributional properties of

the model. This constitutes a separate contribution of this chapter of the thesis.

We show that the only way how the marginal rates can be coupled into the multivariate rate

of the superposed process is through the exponent measure of an extreme value copula. The

copula used for the construction of the multivariate rate follows naturally from EVT arguments,

and is the same extreme value copula that governs the (conditional) multivariate distribution

of the marginal exceedances at the same point of time. This result provides an integrated ap-

proach to modeling occurrence times and sizes of multivariate extreme events, because those two

characteristics are inherently connected. Furthermore, the results provide insight into the depen-

dence between point processes that are jointly subject to EVT. This is in contrast to alternative

approaches in the literature, where the dependence between marginal point processes is incor-

porated through an affine mutual excitement, see, for example, Aı̈t-Sahalia, Cacho-Diaz, and

Laeven [2011], Embrechts, Liniger, and Lin [2011], and magnitudes of the jumps (if considered)

are modelled in a separate way.

Concerning the advantages of our method, it is worth noting that we use the data explicitly only

above a high threshold. This allows us to leave the time series model for the non-extreme parts

of the data unspecified. We consider the dependence structure of multivariate exceedances only

in regions where the results from multivariate extreme value theory (MEVT) are valid. Further-

more, the MEVT enables us to extrapolate exceedance probabilities far into remote regions of

the tail where hardly any data is available. With such a model we are able to extract the prob-

abilities of arbitrary combinations of the dimensions in any sufficiently remote region. Since the

model captures clustering behavior in (multivariate) exceedances, and accounts for the fact that

not only times but also sizes of exceedances may trigger subsequent extreme events, the model

provides asymmetric influences of marginal exceedances so that spill-over and contagion effects

in financial market may be analyzed. This model may be of great interest for risk management

purposes. For example, we can estimate the probabilities that from a portfolio of, say, d assets,

a certain subset falls in a remote (extreme) set conditioned on the event that some other assets

(or at least one of them) from that portfolio take extreme values at the same point of time. We

shortly discuss other possible risk management applications of the model and provide real data

examples.

To estimate our proposed model, we derive the closed form likelihood function and describe the

goodness-of-fit and simulation procedures. As noted earlier, our model treats a multivariate

extreme exceedance as a realization of a univariate point process. This property is advantageous

for the estimation, because, as it is mentioned in Bowsher [2007], there are currently no results

concerning the properties of the maximum likelihood estimation (MLE) for multivariate point

processes. For the univariate case, on the other hand, it is shown in Ogata [1978], that under

some regularity conditions, the MLE for a stationary, simple point process is consistent and

asymptotically normal. Inspired by Aı̈t-Sahalia, Cacho-Diaz, and Laeven [2011], we consider
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also the model estimation based on method of moments, which, however, seems to underperform

the MLE in the case of our model. The reason for this may lie in both the choice of moment

conditions and in the fact that all moment conditions are based on the goodness-of-fit statistics,

which cannot be directly calculated from the sample independently from the unknown parameters

of the models.

In the empirical part of the chapter, we apply our model to study extreme negative returns

on the financial markets (USA, Europe) and in the European banking sector (Deutsche Bank,

RBS, HSBC, and UBS). The results of goodness-of-fit tests demonstrate a reasonable fit of

the model and suggest an empirical importance of the self-exciting feature for modeling both

occurrence times, magnitudes, and interdependencies of the extreme returns. We find that

conditional multivariate distributions of the returns are close to symmetric with the strength

of dependence strongly responding to individual jumps. Despite the symmetrical structure of

the distribution, there are still asymmetric effects coming from the self-exciting structure of the

conditional marginal distributions of the exceedances’ magnitudes. This self-exciting structure

provides also a natural way how to model time-varying volatility of the magnitudes and, hence,

their heavy tails.

The rest of the chapter is structured as follows. The model and its properties are derived in

Section 1.2. In Section 1.3 we describe estimation of the model, along with the goodness-of-fit

and simulation procedures. Section 1.4 presents applications of the model to financial data and

Section 1.5 concludes. Finally, some of the goodness-of-fit graphs and intermediary calculations

are relegated to the Appendix.

1.2 Model

The major challenges in constructing the model presented in this section are twofold. First, the

model should capture the distinctive features of multivariate extreme events typically observed

in financial markets, namely, clustering and spillover effects. Second, the model should be able to

account for the specific distributional properties of magnitudes of extreme observations (i.e., for

the distributions over the threshold). For both reasons, our model is developed in the framework

of extreme value theory and marked point processes.

Throughout the text we use the following notation. Consider a random vector Xt = (X1,t, . . . , Xd,t)

which may, e.g., represent daily (negated) log-returns of d equities at time t. By u = (u1, . . . , ud),

the initial threshold, we denote a vector with components relating to sufficiently high quantiles

of the marginal distributions of Xt. We focus on the occurrence times as well as the magni-

tudes of multivariate extreme observations, which we define as situations when Xt exceeds u

in at least one component. Under an i-th marginal extreme event we understand the situation

when Xi,t > ui. We refer to such extreme events as marginal exceedances and characterise

them by occurrence times Ti,1, Ti,2, . . . and magnitudes (the marks) of realizations X̃i,1, X̃i,2, . . .,

i.e., X̃i,k = Xi,Ti,k . The history that includes both the times and magnitudes of exceedances of

(Xi,s)s<t above ui will be denoted as Hi,t and the combined history over all marginal exceedances

is denoted as Ht =
⋃d
i=1 Hi,t.
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This section is structured as follows. Section 1.2.1 deals with the univariate self-exciting peaks-

over-threshold model, which is the basis for our multivariate model developed in Section 1.2.2.

Section 1.2.3 provides some properties of the multivariate model.

1.2.1 Univariate model

This section deals with the univariate self-exciting peaks-over-threshold model. After a short

review of this model, we reconsider some parts of its construction to enrich it with some new

useful properties. In particular, we suggest a new specification for the impact function which,

contrary to its existing specification, provides an intuitively reasonable mechanism how past

exceedances trigger the future ones (Section 1.2.1.2), allows us to set a stationarity condition

and to develop some distributional properties of the univariate model (Section 1.2.1.3). Finally,

in Section 1.2.1.4 we consider the relationship of the univariate self-exciting peaks-over-threshold

model to the general framework of the extreme value theory.

1.2.1.1 Self-exciting POT model

The basic setup to model univariate exceedances is to assume independent and identically dis-

tributed (iid) data and to use a peaks-over-threshold (POT) model developed in Davison and

Smith [1990] and Leadbetter [1991]. In the framework of EVT, the POT model is based on

the asymptotic behavior of the threshold exceedances for iid or stationary data if these are in

the maximum domain of attraction of some extreme value distribution. If the threshold is high

enough, then the exceedances occur in time according to a homogeneous Poisson process and

the mark sizes are independently and identically distributed according to the generalized Pareto

distribution (GPD).

The self-exciting POT model presented in Chavez-Demoulin, Davison, and McNeil [2005] ex-

tends the standard set-up of the POT model by allowing for temporal dependence between

extreme events. This temporal dependence is introduced into the model by modeling the rate of

occurrences in the standard POT method with self-exciting processes, see Hawkes [1971].

Definition 1.1. (Self-exciting point process) A point process N(t), representing the cumulative

number of events up to time t, is called a (linear) self-exciting process with the conditional rate

τ(t), if

P (N(t+ ∆)−N(t) = 1 | Ht) = τ(t)∆ + o(∆), P (N(t+ ∆)−N(t) > 1 | Ht) = o(∆)

with

τ(t) = τ + ψ

∫ t

−∞
c
(
X̃s

)
g (t− s) dN(s), τ > 0, ψ ≥ 0,

where X̃s indicates the event’s mark at time s. The impact function c(·) determines the contri-

bution of events to the conditional rate and the decay function g(·) determines the rate how an

influence of events decays in time. When no mark is associated with the event c
(
X̃s

)
≡ 1.
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Choices of impact and decay functions are discussed in Section 1.2.1.2. The self-exciting POT

is further extended in McNeil, Frey, and Embrechts 2005, where the temporal dependence is

incorporated also into the conditional distribution of the marks, i.e., also the distribution of the

marks depends on past information. We refer to this model as the self-exciting POT model with

predictable marks (SE-POT). For convenience and consistency of notation we present the model

using subindizes i = 1 . . . d which will later refer to the dimensions of our multivariate model.

In the SE-POT model, the rate of crossing the initial threshold ui is modelled by a self exciting

point process where the rate is parametrized as

τi(t, ui) = τi + ψiv
∗
i (t), τi > 0, ψi ≥ 0, (1.1)

with

v∗i (t) =

∫ t

−∞
ci (Xi,s) gi (t− s) dNi(s), (1.2)

where again ci(·) and gi(·) denote, respectively, the impact and decay functions, and Ni(s) is a

counting measure of i-th margin exceedances.

Additionally, the excesses over the threshold ui are now assumed to follow the GPD with shape

parameter ξi and time varying scale parameter βi + αiv
∗(t). In particular, for xi > ui,

P (Xi,t ≤ xi | Xi,t > ui,Hi,t) = 1−
(

1 + ξi
xi − ui

βi + αiv∗i (t)

)−1/ξi

=: Fi,t (xi) , βi > 0, αi ≥ 0.

(1.3)

This distribution covers the cases of Weibull (ξi < 0), Gumbel (ξi = 0) and Fréchet (ξi > 0) tails,

corresponding to distributions with finite endpoints, light tails, and heavy tails, respectively. For

ξi = 0, the distribution function in (1.3) should be interpreted as Fi,t (xi) = 1 − e−xi . Finally,

due to the GPD as the conditional distribution of the marks, the conditional rate of exceeding

a higher threshold xi ≥ ui scales in the following way

τi(t, xi) = τi(t, ui)

(
1 + ξi

xi − ui
βi + αiv∗i (t)

)−1/ξi

, xi ≥ ui, (1.4)

where τi(t, ui) is the rate of crossing the initial threshold ui given by Equation (1.1). The

conditional rate τi(t, xi) explicitly describes the conditional distribution of times of exceedances

above any threshold xi ≥ ui in the following way.

P
(
Ti,k+1 (xi) ≤ t | Hi,Ti,k(xi)

)
= 1− exp

(
−
∫ t

Ti,k(xi)

τi(s, xi)ds

)
, t ≥ Ti,k (xi) , (1.5)

where Ti,k (xi) denotes (random) time of the k-th exceedance of (Xi,s)s∈R above xi. The above

relationship is a direct consequence of the definition of the conditional intensity as the combina-

tion of hazard rates of the time intervals between exceedances, see Daley and Vere-Jones [2005],

p. 231. There is a small abuse of notation in the equation above, as, to make the notation easy,

we interchange the use of a hazard rate, a deterministic function, with the conditional intensity,

a piecewise determined amalgam of hazard rates.

Note that the self-exciting component v∗i (t) enters both τi(t, ui) in (1.1) and Fi,t in (1.3) and thus

provides a specific “clustering mechanism” into the conditional distribution of both times and
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marks of exceedances. After an exceedance occurs at time t0 with mark x0, the function v∗i (·)
jumps by ci (x0) and increases the instantaneous probability of the exceedance’s occurrence and

the marks’ volatility (through time-varying scale parameter βi(t)). In absence of exceedances

v∗i (·) tends towards zero through function gi (·). Being a transmitter of information of past

exceedances to the future ones, the function v∗i (·) may be interpreted as a kind of volatility

measure of extreme exceedances. This interpretation may be found also in Bowsher [2007], where

the estimated mid-quote intensity is used as approximation to the stock price’s instantaneous

volatility.

The clustering mechanism of the SE-POT model, how past exceedances may trigger the oc-

currence of future exceedances, can quite accurately describe the cluster behavior of extreme

exceedances observed on financial markets, see Chavez-Demoulin and McGill [2012]. That is

why the SE-POT model is chosen as a cornerstone for our multivariate model developed in

Section 1.2.2.

Because of the overall importance of the SE-POT model for our multivariate model, in the next

sections we develop some of its distributional properties, including a stationarity condition, and

reconsider the existing specifications for the decay and impact functions.

1.2.1.2 Decay and impact functions

Considering functional specification of the decay and impact functions in (1.2) there are advan-

tages in some specific forms. The decay function chosen in this thesis is g(s) = e−γs, γ > 0

(the subindex “i” is dropped), which is a popular specification suggested in Hawkes [1971]. This

specification makes the self-exciting process a Markov process [Oakes, 1975] and leads to a simple

formula for the covariance density (derived in Proposition 1.3). This choice is also motivated in

view of Boltzman’s theory of elastic after-effects, see Ogata [1988], p.11. An alternative is the

function g(s) = (s+ γ)
−(1+ρ)

, with γ, ρ > 0. This specification originally comes from seismology,

where is known as Omori law, see Helmstetter and Sornette [2002]. Due to the substantial ad-

vantages in deriving the analytical formulas, we will stick to g(s) = e−γs throughout this chapter

of the thesis.

The aim of the impact function c(·) is to capture the effect of the marks of exceedances onto the

conditional rate of future exceedances. A popular choice is c(x) = eδx, see for example Chavez-

Demoulin and McGill [2012] or McNeil, Frey, and Embrechts [2005] (Section 7.4.3). However, an

important point to consider when specifying that function is to ensure its ability to accurately

extract information from the marks. Provided the conditional distribution of the marks is time-

varying (as it is indeed the case with the SE-POT model, see (1.3)), one expects c(·) to account

not only for the magnitudes of the marks but also for the conditional distribution from which they

were drawn. To put it differently, not the size of the mark but its quantile in the corresponding

conditional distribution is decisive in determining the effect of the mark onto the conditional

rate. Thus, instead of specifying c(·) as a fixed function, we suggest the following specification

c(xt) = c∗ (Ft(xt)) ,
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where Ft is the marks’ conditional distribution (1.3) and c∗(·) is an increasing function [0, 1]→
[1,∞]. This specification can properly capture the time-varying impact of an exceedance on the

conditional rate. An easy way to construct c∗(·) is as c∗(·) = 1 + G←(·), where G←(·) is the

inverse of a distribution function G of some continuous positive random variable with finite mean

δ. With such c∗(·) the impact function takes the form

c(xt) = 1 +G← (Ft(xt)) . (1.6)

We will use the above specification for the impact function throughout the text. In the empirical

part of this chapter, we will use G← of an exponential distribution, which yields c∗(u) = 1 −
δ log(1− u).

Besides the appropriate extraction of information from the marks, the choice (1.6) for the impact

function is advantageous over c(x) = eδx, because (1.6) allows us to set the stationarity condition

for the SE-POT model and to develop its distributional properties. In the next section we discuss

those properties.

1.2.1.3 Stationarity condition and properties of the SE-POT model

As it was noted in Chavez-Demoulin, Davison, and McNeil [2005], the SE-POT model relates to

the class of general self-exciting Hawkes processes and constitutes by its construction a branching

process. A comprehensible explanation of the Hawkes process’ representation as a branching

process can be found in Møller and Rasmussen [2005] or Hawkes and Oakes [1974].

According to the branching process representation, there are two types of exceedances above the

initial threshold in the SE-POT model: immigrants, that arrive as a homogeneous Poisson process

with a constant rate τ , and descendants (triggered events), that follow a finite Poisson process

with decaying rate determined by function v∗(·), see Daley and Vere-Jones [2005] (see Example

6.3(c)). Since both immigrants and descendants can trigger further descendants, for setting

stationarity conditions it is necessary to consider the average number of the first-generation

descendants trigged by one exceedance (whether by an immigrant or descendant).

That average number of triggered descendants is known as a branching coefficient and we denote

it as ν. It is usual to consider ν = 1 as a certain level of stability of the exceedance process:

if ν ≥ 1 the development of the process could explode, i.e., the number of events in finite time

interval tends to infinity. Clearly, in that case the process is non-stationary. In the seismological

literature, see Helmstetter and Sornette [2002], the situation of ν > 1 is called super-critical

regime.

For practical application the case ν < 1 is the most important because then the process of

exceedances becomes stationary, provided the process of immigrants is stationary as well (which

is the case in the SE-POT model). In the SE-POT model with ν < 1, exceedances occur in finite

clusters of length (1 − ν)−1, where exceedances within the cluster are temporally dependent

but the clusters themselves are independent. In Proposition 1.2 we provide a formula for the

branching coefficient and the stationarity condition of the SE-POT model.
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Proposition 1.2. The process of exceedances with the conditional intensity τ(t, u) of the SE-

POT model, where τ(t, u) is as in (1.1)-(1.2) (dropping the subindex i), with decay function

g(s) = e−γs, and the impact function as in (1.6), has the branching coefficient ν = ψ(1+δ)
γ and

is stationary if ν < 1 with an average rate τ̄ := E[τ(t, u)] = τ
1−ν .

Proof. Due the branching process’s representation of the SE=POT model, the sufficient condition

for stationarity of the SE-POT with conditional intensity τ(t) requires Eτ(t) = τ̄ ∈ (0,∞), see

Daley and Vere-Jones [2005], Ex.6.3(c). From (1.1) τ̄ can be expressed as

τ̄ = τ + ψE

∫ t

−∞
c
(
X̃s

)
g (t− s) dN(s). (1.7)

Note, that from the interpretation of the branching coefficient in Hawkes and Oakes [1974] and

Daley and Vere-Jones [2005] (Example 6.3(c)) it follows that ν = ψE
∫ t
−∞ c

(
X̃s

)
g (t− s) dN(s).

Since the integral on the right-hand side of the above equation is just a sum of random variables,

we can write

E

∫ t

−∞
c
(
X̃s

)
g (t− s) dN(s) =

∫ t

−∞
g (t− s) E

[
c
(
X̃s

)
dN(s)

]
. (1.8)

From construction of the SE-POT model, see (1.1) and (1.3), it immediately follows that random

variables X̃s and dN(s) are dependent in general but conditional v∗(s) (or even Hs) they are

independent. Hence it follows,

E
{
c
(
X̃s

)
dN(s)

}
= E

{
E
[
c
(
X̃s

)
dN(s)

∣∣∣Hs]} = E
{

E
[
c
(
X̃s

)∣∣∣Hs] E [dN(s)|Hs]
}
, (1.9)

where E [dN(s) | Hs] = τ(s)ds and, considering the conditional distribution of X̃s in (1.3),

E
[
c
(
X̃s

)∣∣∣Hs] =

∫ ∞
0

c(x)fs(x)dx,

where fs(x) = dFs(x)
dx = 1

β+αv∗(s)

(
1 + ξ x

β+αv∗(s)

)−1/ξ−1

is the conditional distribution density

function of X̃s.

Note that the integral in the above equation tends to infinity in all cases when the order of c(x)

exceeds 1/ξ. In particular, the integral tends to infinity with c(x) = eδx, which is a commonly

used specification for c(x) in the literature Chavez-Demoulin, Davison, and McNeil [2005] and

McNeil, Frey, and Embrechts [2005]. With the specification (1.6), however, we get

E
[
c
(
X̃s

)∣∣∣Hs] =

∫ ∞
0

c∗ (Fs(x)) fs(x)dx =

∫ 1

0

c∗ (u) du.

In Section 1.2.1.2 it was suggested to construct c∗(·) as c∗(·) = 1 + G←(·), where G←(·) is an

inverse of the distribution function G of some continuous positive random variable with mean δ.

Using this construction to calculate integral in the above equation we get

E
[
c
(
X̃s

)∣∣∣Hs] = 1 + δ. (1.10)
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Substituting this result and E [dN(s) | Hs] = τ(s)ds into (1.9) we get

E
[
c
(
X̃s

)
dN(s)

]
= τ̄(1 + δ)ds,

which with (1.8) provides a formula for the expected value

E

∫ t

−∞
c
(
X̃s

)
g (t− s) dN(s) = τ̄(1 + δ)

∫ ∞
0

g (s) ds.

Substituting the above equation into (1.7), finally yields

τ̄ =
τ

1− ψ(1 + δ)
∫∞

0
g (s) ds

. (1.11)

and

ν = ψ(1 + δ)

∫ ∞
0

g (s) ds.

Thus, under the assumption of stationarity, we must have

ν = ψ (1 + δ)

∫ ∞
0

g (s) ds < 1.

With, g(s) = e−γs, the above condition takes the form

ψ (1 + δ)

γ
< 1.

Under the stationarity condition of Proposition 1.2, the moments of the counting measure N(t, t+

s) of marginal exceedances above the initial threshold in time interval (t, t+ s) can be expressed

as follows

E [N(t, t+ s)] = sτ̄ , s > 0,

Var [N(t, t+ s)] = sτ̄ + 2

∫ s

0

(s− z)µ(z)dz, s > 0,

Cov [N(t1, t2), N(t3, t4)] =

∫ t2

t1

∫ t4

t3

µ (z1 − z2) dz1dz2, t1 < t2 < t3 < t4,

where µ(u) is the process’ covariance density defined as

µ(z) =
E [dN(t+ z)dN(t)]

(dt)2
− τ̄2, z > 0.

A reference for the above formulas can be found in, e.g, Vere-Jones and Davies [1966], p.253.

Proposition 1.3. Setting the decay function as g(s) = e−γs and the impact function as in (1.6)

the covariance density of the SE-POT model takes the form

µ(z) = Ae−bz, z > 0, (1.12)
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where

b = γ − ψ(1 + δ), A =
τ̄ψ(1 + δ) (2γ − ψ(1 + δ))

2 (γ − ψ(1 + δ))
.

Proof. The covariance density µ(z) of the SE-POT process of exceedances above the initial

threshold is defined for z > 0 as

µ(z) =
E [dN(t+ z)dN(t)]

(dt)2
− τ̄2, z > 0,

and for z < 0 the covariance density reads µ(z) = µ(−z).

Note that for the case z = 0 , the situation is slightly different, because E
[
(dN(t))

2
]

=

E [dN(t)] = τ̄ ds, i.e., the covariance density for z = 0 equals τ̄ . The complete covariance

density µ(c)(z) (we use the same notation as in Hawkes [1971]) takes the form

µ(c)(z) = τ̄ Iz=0 + µ(z), (1.13)

where IA denotes an indicator of event A.

To obtain an explicit formula for the covariance density µ(z), we follow the procedure described

in Hawkes [1971]. For z > 0 we write

µ(z) = E

{
E

[
dN(t)

dt

dN(t+ z)

dt

∣∣∣∣Ht+z]}− τ̄2 = E

{
dN(t)

dt
E

[
dN(t+ z)

dt

∣∣∣∣Ht+z]}− τ̄2 =

E

{
dN(t)

dt

[
τ + ψ

∫ t+z

−∞
c
(
X̃s

)
g (t+ z − s) dN(s)

]}
− τ̄2 =

τ̄ τ − τ̄2 + ψ

∫ t+z

−∞
g (t+ z − s) E

[
c
(
X̃s

) dN(t)

dt

dN(s)

ds

]
ds. (1.14)

Recalling (1.9) and (1.10) we can write

E

[
c
(
X̃s

) dN(t)

dt

dN(s)

ds

]
= E

{
E
[
c
(
X̃s

)∣∣∣Hs] E

[
dN(t)

dt

dN(s)

ds

∣∣∣∣Hs]} =

(1 + δ)E

[
dN(t)

dt

dN(s)

ds

]
= (1 + δ)

(
µ(c)(s− t) + τ̄2

)
,

which substituted in (1.14) yields

µ(z) = τ̄ τ − τ̄2 + ψ(1 + δ)

∫ t+z

−∞
g (t+ z − s)

(
µ(c)(s− t) + τ̄2

)
ds =

τ̄ τ − τ̄2 + ψ(1 + δ)

∫ z

−∞
g (z − v)

(
µ(c)(v) + τ̄2

)
dv =

τ̄ τ − τ̄2

(
1− ψ(1 + δ)

∫ ∞
0

g (z − v) dv

)
+ ψ(1 + δ)

∫ z

−∞
g (z − v)µ(c)(v)dv.

Together with (1.11) and (1.13), the above equation transforms

µ(z) = ψ(1 + δ)

(
g(z)τ̄ +

∫ z

−∞
g (z − v)µ(v)dv

)
, (1.15)
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or, exploiting the symmetry of µ(z),

µ(z) = ψ(1 + δ)

(
g(z)τ̄ +

∫ ∞
0

g (z + v)µ(v)dv +

∫ z

0

g (z − v)µ(v)dv

)
. (1.16)

As it was noted in Hawkes [1971], the above equation is difficult to solve analytically in general.

But for the case when g(·) decays exponentially the analytical solution may be obtained. Setting

g(v) = e−γv and taking the Laplace transform (denote it as µ∗) of (1.16), we get

µ∗(y) =
τ̄ψ(1 + δ) (2γ − ψ(1 + δ))

2(γ − ψ(1 + δ))

1

y + γ − ψ(1 + δ)
.

Recalling that the Laplace transform f∗(y) of f(z) = eaz equals f∗(y) = 1
y−a , it is easy to see

from the above equation that

µ(z) =
τ̄ψ(1 + δ) (2γ − ψ(1 + δ))

2(γ − ψ(1 + δ))
e−(γ−ψ(1+δ))z.

With (1.12) the above formulas for second moments of the counting process N take the forms

Var [N(t, t+ s)] = sτ̄ +
2A

b2
(
bs+ e−bs − 1

)
and

Cov [N(t1, t2), N(t3, t4)] =
A

b2

(
e−b(t3−t2) − e−b(t3−t1) − e−b(t4−t2) + e−b(t4−t1)

)
, (1.17)

for t1 < t2 < t3 < t4.

From this one can conclude, first, that the variance of N(t, t + s) grows for large s linearly

with s – a feature similar to Brownian motion. Second, the covariance between N(t1, t2) and

N(t3, t4) reduces exponentially to zero as t3 − t2 → ∞. This property corresponds with the

earlier statement that exceedances occurring within one cluster are serially dependent but those

lying in different clusters are uncorrelated.

In this section we analysed the SE-POT model from the perspective of self-exciting point-

processes. In the next section we discuss the relationship of the SE-POT model to EVT models.

1.2.1.4 Relationship of SE-POT and EVT

As it was noted in Section 1.2.1.3, the SE-POT model relates to the class of general self-exciting

Hawkes processes. On the other hand, by setting α = ψ = 0 the SE-POT transforms to the

standard POT model for iid exceedances. Hence, one can expect that the SE-POT can be

regarded as a special representation of point process of non-independent extremes.

According to the extremal index’ theory (see Section 4 in Leadbetter, 1983), the extremal clusters

of exceedances of a stochastic processes with an extremal index θ < 1 (e.g., GARCH) have an

average cluster size θ−1 and occur in time according to a homogeneous Poisson process, i.e.,
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individual exceedances follow a Poisson cluster process. The parallels to the SE-POT model

are that there individual exceedances occur also according to a Poisson cluster process with an

average cluster size (1− ν)−1 and cluster arrival rate τ , see Hawkes and Oakes [1974].

To set the relationship between the properties of SE-POT model and the extremal index, note

that the latter is an asymptotic concept and the former model is rather a finite sample empirical

representation of the possible asymptotic dependence. This difference precludes the formalization

of that relationship, but still note that the SE-POT model meets all the assumptions required

for the extremal index. Those assumptions include stationarity of the process, heavy-tailedness

of the marks, and a mixing condition D(wn) that restricts the “long range” dependence in the

process, for details consult Leadbetter [1988], Section 2. While the first two conditions are

discussed earlier in the text, we refer to Daley and Vere-Jones [1988], Proposition 10.3.IX, for

the general proof of the last condition. That proposition states that a cluster process is mixing

if the process of cluster-centers is mixing itself. Indeed, this is the case for the SE-POT model

where the the process of cluster-centers is a homogeneous Poisson process with rate τ .

1.2.2 Multivariate Model

In this section we introduce our approach to model the process of multivariate exceedances of

Xt = (X1,t, . . . , Xd,t), t ∈ R above any x ≥ u, where u = (u1, . . . , ud) is the initial threshold,

conditioned on the history of the past realizations. The model is subject to multivariate extreme

value theory (MEVT), accounting for the specific multivariate dependence structure between

exceedances, and to the SE-POT model, accounting for the clustering in times of occurrence and

marks of marginal extreme events.

Under a multivariate exceedance at time t we understand a situation when Xt exceeds x in at

least one component. Our model provides an instantaneous conditional rate that Xt exceeds

any x ≥ u in at least one component. Each of the univariate components is modeled as a

SE-POT process as described in Section 1.2.1. This conditional multivariate rate and the rates

of the univariate processes can then be used to extract the probabilies of all combinations of

exceedances, e.g., that Xt exceeds x ≥ u in all components simultaneously.

1.2.2.1 Model Construction

Assuming that the point process of marginal exceedances of Xt = (X1,t, . . . , Xd,t) above x ≥ u is

governed by the conditional rates τi(t, xi), i = 1, . . . , d of the SE-POT model, the ultimate aim of

the multivariate model is to provide an instantaneous conditional rate of at least one exceedance

of Xt above x. We denote this rate as τ(t,x). From the interpretation of the conditional rate as

a combination of hazard rates, see Daley and Vere-Jones [2005], Section 7.2, it should hold for

τ(t,x) that

P (Tk(x) > t | Ht0) = exp

(
−
∫ t

t0

τ(s,x)ds

)
, t ≥ t0 ≥ Tk−1(x), (1.18)
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where Tk−1(x) is the time of the last event, when (Xs)s≤t0 exceeds x in at least one component.

The following proposition shows the relationship of the joint rate τ(t,x) and the marginal rates

τi(t, xi), i = 1, . . . , d.

Proposition 1.4. If the marginal point processes of exceedances of Xt = (X1,t, . . . , Xd,t), t ∈
R above threshold x = (x1, . . . , xd), that lies above the initial threshold u = (u1, . . . , ud), are

governed by conditional rates τi(t, xi), i = 1, . . . , d of the SE-POT model, then the conditional

rate of the event that Xt exceeds x in at least one component is of the form

τ(t,x) = Vt

(
1

τ1(t, x1)
, . . . ,

1

τd(t, xd)

)
, (1.19)

where Vt is the exponent measure of extreme value copula C∗t , i.e.,

Vt (y1, . . . , yd) = − logC∗t

(
e−1/y1 , . . . , e−1/yd

)
. (1.20)

Proof. For the ease of presentation, we employ the following notation. N(t,x) denotes a counting

measure of events when (Xs)s≤t exceeds x in at least one component. T1(x), T2(x), . . . stand for

the consecutive times of those multivariate events. The corresponding notation for the marginal

processes of exceedances are denoted as, respectively, Ni(t, xi) and Ti,1(xi), Ti,2(xi), . . .

Provided there is no exceedance at time t, the conditional distribution of TN(t0,x)+1(x) given

Ht0 can be expressed in terms of marginal times of exceedances in the following way

P
(
TN(t0,x)+1 (x) > t | Ht0

)
= P

(
T1,N1(t0,x1)+1 (x1) > t, . . . , Td,Nd(t0,xd)+1 (xd) > t | Ht0

)
.

(1.21)

Recall that Ht0 =
⋃d
i=1 Hi,t0 , where Hi,t0 is a history of point process of exceedances of (Xi,s)s≤t0

above the initial threshold ui.

The conditional set Ht0 contains information both on the conditional distribution of the mar-

gins (i.e., distribution of Ti,Ni(t0,xi)+1(xi) > t0 given Hi,t0) and on their joint distribution (i.e.,

distribution of Ti,Ni(t0,xi)+1(xi) > t0 given Ht0). Since we know from (1.5) that

P
(
Ti,Ni(t0,xi)+1 (xi) ≥ t | Hi,t0

)
= exp

(
−
∫ t

t0

τi(s, xi)ds

)
, t ≥ t0,

we decompose the right-hand side of (1.21) into the conditional distribution of the margins

given their own histories and joint distribution of those conditional distributions (with help of a

copula1):

P
(
T1,N1(t0,x1)+1(x1) > t, . . . , Td,Nd(t0,xd)+1(xd) > t | Ht0

)
=

P
(
Ū1,N1(t0,x1)+1 ≤ e

−
∫ t
t0
τ1(s,x1)ds

, . . . , Ūd,Nd(t0,xd)+1 ≤ e
−
∫ t
t0
τd(s,xd)ds

)
=: Ct0

(
e
−
∫ t
t0
τ1(s,x1)ds

, . . . , e
−
∫ t
t0
τd(s,xd)ds

)
, (1.22)

1In continuous case, a copula is a multivariate distribution function with uniformly on [0, 1] distributed
marginal distributions. A detailed introduction to copulas can be found in Nelsen [2006]. For an excellent
review of copula based models for econometric time series see Patton [2012].
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where Ūi,Ni(t0,xi)+1 := exp
(
−
∫ Ti,Ni(t0,xi)+1(xi)|Hi,t0
t0

τi(s, xi)ds
)

, with Ti,Ni(t0,xi)+1(xi) | Hi,t0 de-

noting a random variable Ti,Ni(t0,xi)+1(xi) conditioned on Hi,t0 ; Ct0 is a copula function condi-

tioned on the information set Ht0 . The use of copula function is justified because Ūi,Ni(t0,xi)+1 ∼
Unif[0, 1].

Comparing (1.22) and (1.18), the condition on the intensity τ(t, x1, . . . , xd) reads

exp

(
−
∫ t

t0

τ(s, x1, . . . , xd)ds

)
= Ct0

(
e
−
∫ t
t0
τ1(s,x1)ds

, . . . , e
−
∫ t
t0
τd(s,xd)ds

)
. (1.23)

To solve the above equation, note that for t0 ↑ t the following holds∫ t

t0

τ(s, x1, . . . , xd)ds ≈ (t−t0)τ(t0, x1, . . . , xd) and

∫ t

t0

τi(s, ui)ds ≈ (t−t0)τi(t0, ui), i = 1, . . . d,

which, in turn, allows us to write

τ(t, x1, . . . , xd) = − lim
t0↑t

logCt0
(
e−(t−t0)τ1(t0,x1), . . . , e−(t−t0)τd(t0,xd)

)
t− t0

.

Denoting s = 1/(t− t0) and setting t0 = t in the subscript of copula and in τi(t0, ui), we obtain

τ(t, x1, . . . , xd) = − log lim
s→∞

Ct

(
e−

τ1(t,x1)
s , . . . , e−

τd(t,xd)

s

)s
. (1.24)

With the following intuitive boundaries on τ(t, x1, . . . , xd)

0 < max{τ1(t, x1), . . . , τd(t, xd)} ≤ τ(t, x1, . . . , xd) ≤
d∑
i=1

τi(t, ui) <∞,

we conclude that a non-trivial limit in (1.24) exists for all 0 < τi(t, ui) <∞, i = 1, . . . , d, namely,

there exists a function C∗t (w1, . . . , wd) ∈ [0, 1] defined on (w1, . . . , wd) ∈ [0, 1]d, such that

lim
s→∞

Ct

(
e−

τ1(t,x1)
s , . . . , e−

τd(t,xd)

s

)s
= C∗t

(
e−τ1(t,x1), . . . , e−τd(t,xd)

)
∈ (0, 1). (1.25)

From the results of multivariate extreme value theory, see for example Gudendorf and Segers

[2010], it is well known that if there exists a copula C(w1, . . . , wd) such that

lim
s→∞

C
(
w

1/s
1 , . . . , w

1/s
d

)s
= C∗ (w1, . . . , wd) , ∀ (w1, . . . , wd) ∈ [0, 1]d, (1.26)

then C∗ is an extreme value copula and C is said to be in the domain of attraction of C∗. Surely,

this definition applies to (1.25) with wi = e−τi(t,ui). Hence, we conclude that C∗t is an extreme

value copula.

Note that for any extreme value copula C∗ there exists a measure V , the exponent measure,

such that

C∗ (w1, . . . , wd) = exp

(
−V

(
1

− logw1
, . . . ,

1

− logwd

))
, (1.27)

where for the exponent measure, we have the homogeneity property

V (ay1, . . . , ayd) =
1

a
V (y1, . . . , yd) ∀a > 0. (1.28)
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Denoting the exponent measure of C∗t as Vt, the final conditional rate of at least one exceedance

above (x1, . . . , xd) takes the form

τ(t, x1, . . . , xd) = Vt

(
1

τ1(t, x1)
, . . . ,

1

τd(t, xd)

)
.

Note that since Ct in (1.25) is conditioned on the information set Ht we allow the copula C∗t ,

and hence Vt, to evolve with time.

Remark 1.5. The presence of the extreme-value copula in rate (1.19) is quite surprising, as the

derivation considers only the conditional time intervals between exceedances, not their magni-

tudes. Furthermore, if τi(t, xi) and the dependence parameters of Vt do not evolve with time,

we obtain a standard EVT model. Note, that extreme value copulas include a broad spectrum

of dependence structures, including the independence case. Popular extreme value copulas are

Gumbel, Galambos, Hüsler-Reiss, and t-EV copulas, see Gudendorf and Segers [2010].

The extreme value copula in Proposition 1.4 has a direct relationship to the copula that governs

the sizes of exceedances of Xt above u. The following proposition formulates that relationship.

Proposition 1.6. The extreme value copula that governs the multivariate conditional rate (1.19)

from Proposition 1.4 is the same copula that governs the limiting distribution of the normalized

magnitudes of Xt, i.e., for every fixed t there exist sequences at(n) = (a1,t(n), . . . , ad,t(n)) ∈ Rd+
and bt(n) = (b1,t(n), . . . , bd,t(n)) ∈ Rd, such that

lim
n→∞

nP

(
X1,t − b1,t(n)

a1,t(n)
> y1 ∪ . . . ∪

Xd,t − bd,t(n)

ad,t(n)
> yd

)
= Wt

(
1

y1
, . . . ,

1

yd

)
, (1.29)

with Wt

(
1
y1
, . . . , 1

yd

)
being equal to Vt

(
1
y1
, . . . , 1

yd

)
from Proposition 1.4.

Proof. Since the point process of exceedances of (Xs)s∈R above a sufficiently high threshold is

assumed to follow the SE-POT model, the magnitudes of exceedances of Xt have the generalized

Pareto distribution (1.3). Clearly, the GPD belongs to the maximum domain of attraction of

the extreme value distribution, which reassures the existence of the normalized constants at(n)

and bt(n) such that (1.29) holds.

It remains to be shown that Wt = Vt, or, in terms of copulas, C◦t = C∗t , where C◦t is an

extreme value copula associated with exponent measure Wt, see (1.20). It suffices to prove that

relationship for the case when Xi,s, i = 1, . . . , d, does not depend on its own history, because

C∗t models the (limiting) conditional survival distributions of time intervals between marginal

exceedances, see (1.22) and (1.25). Although the marginal exceedances of (Xi,s)s∈R, i = 1, . . . , d

are serially dependent, due to conditioning of those survival distributions with the SE-POT

model, which captures that serial dependence, the functional form of C∗t is the same as if the

marginal exceedances were serially independent.

Consider iid random vectors Yj = (Y1,j , . . . , Yd,j), j = 1, 2, . . . that have the same dependence

structure as Xt. We assume that the margins of Yj are unit Frechet distributed, P (Yi,j ≤ y) =

e−1/y, i = 1, . . . , d. This assumption does not deprive of the proof’s generality, because the

marginal tail distribution of Xt is known and the relationship Wt = Vt defines the equivalence
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only in the corresponding dependence structures of Xt and of the one suggested by exponent

measure Vt. Relationship (1.29) for Yj reads

lim
n→∞

nP

(
Y1,j

n
> y1 ∪ . . . ∪

Y1,j

n
> yd

)
= Wt

(
1

y1
, . . . ,

1

yd

)
.

It is a well known result from the EVT that for A ∈ [0, 1] and B = Rd+ \ [(0, y1)× . . .× (0, yd)]

the point process

Nn(S = A×B) =

n∑
j=1

I{(j/n,Yj/n)∈S}, as n→∞, (1.30)

of events when (Yj/n) exceeds threshold y = (y1, . . . , yd) in at least one component converges

in distribution to a Poisson point process with rate λ (A)×Wt

(
1
y1
, . . . , 1

yd

)
, where λ (A) is the

Lebesgue measure of A ∈ [0, 1] and Wt is the exponent measure of the set B. For details consult

Coles and Tawn [1991] and Theorem 6.1.11 in de Haan and Ferreira [2006].

Using the same notation for counting measures and times of exceedances of (Yj/n) above thresh-

old (y1, . . . , yd) as in the proof of Proposition 1.4 and recalling that intervals between homoge-

neous Poisson events are exponentially distributed (with the mean equal to the inverse rate), the

conditional distribution of TN(t0,y)+1(y) given Ht0 takes the form

P
(
TN(t0,y)+1(y) > t | Ht0

)
= exp

[
−(t− t0)Wt

(
1

y1
, . . . ,

1

yd

)]
. (1.31)

On the other hand, from straightforward arguments one can conclude that marginal processes

of exceedances of (Yi,j/n) above yi also converges to the homogeneous Poisson process on [0, 1]

with rate limn→∞ nP (Yi,j/n > yi) = limn→∞ n
(
1− e−1/(yin)

)
= 1/yi, i.e.,

P
(
Ti,Ni(t0,yi)+1(yi) ≥ t | Hi,t0

)
= exp

(
− t− t0

yi

)
, t ≥ t0.

The above distribution allows us to express the right-hand side of marginal decomposition (1.21)

as

P
(
T1,N1(t0,y1)+1(y1) > t, . . . , Td,Nd(t0,yd)+1(yd) > t | Ht0

)
=

P
(
Ū1,N1(t0,y1)+1 ≤ e−

t−t0
y1 , . . . , Ūd,Nd(t0,yd)+1 ≤ e

− t−t0yd

)
=: C◦t0

(
e−

t−t0
y1 , . . . , e

− t−t0yd

)
, (1.32)

where Ūi,Ni(t0)+1 = exp
(
−Ti,Ni(t0,yi)+1(yi)|Hi,t0−t0

yi

)
with Ti,Ni(t0,yi)+1(yi) | Hi,t0 denoting a ran-

dom variable Ti,Ni(t0,yi)+1(yi) conditioned on Hi,t0 , and C◦t0 is a copula function.

Equating (1.32) to (1.31) we obtain the following condition on the copula C◦t0 :

C◦t0
(
e−z1 , . . . , e−zd

)
= exp

[
−aWt

(
a

z1
, . . . ,

a

zd

)]
, a > 0,∀t0 < t (1.33)

where we denote zi = (t− t0)/yi and a = t− t0. Existence of the unique copula C◦t0 is guaranteed

only in the case when the right-hand side of (1.33) does not change with a. Since this condition

is nothing else than the homogeneity property of the exponent measure: aWt

(
a
z1
, . . . , azd

)
=



Chapter 1. Modeling Multivariate Extreme Events Using Self-Exciting Point Processes 24

Wt

(
1
z1
, . . . , 1

zd

)
, ∀a > 0, – we conclude that C◦t0 exists and it can be expressed as

C◦t0 (w1, . . . , wd) = exp

[
−Wt

(
1

− logw1
, . . . ,

1

− logwd

)]
, (1.34)

where wi denotes e−zi from (1.33). From decomposition (1.27) it follows that C◦t0 is an extreme

value copula. Note that C◦t0 is independent of the conditional set Ht0 .

Due to the characteristic property (see Theorem 7.44 in McNeil, Frey, and Embrechts [2005]) of

extreme value copulas:

C◦t0 (us1, . . . , u
s
d) = C◦t0 (u1, . . . , ud)

s
, s > 0. (1.35)

the limit copula in (1.25) with Ct := C◦t yields the same limiting copula C∗t = C◦t . Hence, we

conclude that exponent measure Vt of C∗t equals exponent measure Wt of C◦t .

The above proposition presents an interesting result, because it relates the multivariate rate

(1.19) to the extreme value copula of the properly normalized magnitudes of Xt∗ . This relation-

ship may be regarded as an extension of the EVT result (1.30) for multivariate exceedances in

the independence case to the special case of dependence provided by the SE-POT model and the

(possible) time-variation of the exponent measure Vt.

1.2.2.2 A closer look at the model implied dependence

Proposition 1.4 develops a natural way how dynamics of marginal exceedances can be incor-

porated through extreme value copula C∗t into the construction of the multivariate rate (1.19).

Combining the point processes of marginal exceedances, the copula C∗t provides a specific type

of dependence between them. In this section we attempt to clarify the concept of dependence be-

tween the point processes provided by our multivariate model and we suggest a way of modeling

that dependence.

Consider a specific form of rate (1.19) with exponent measure Vt(y1, y2) =
(
y−θ1 + y−θ2

)1/θ
of the

two-dimensional symmetric Gumbel copula. Rate (1.19) takes the form

τ(t, x1, x2) =
[
τ1(t, x1)θ + τ2(t, x2)θ

]1/θ
,

where θ is the dependence parameter of the Gumbel copula. In the limit this copula approaches

the two-dimensional comonotonicity copula as θ →∞ and the independence copula as θ = 1. It

is easy to verify that for τ(t, x1, x2) it holds

τ(t, x1, x2)|θ>1 =
[
τ1(t, x1)θ + τ2(t, x2)θ

]1/θ
< τ1(t, x1) + τ2(t, x2) = τ(t, x1, x2)|θ=1 . (1.36)

The above inequality illustrates the concept of the point processes’ dependence suggested by

our model: if the marginal processes of exceedances are “dependent” (θ > 1), then the (instan-

taneous) expected number of events at which at least one of the margin exceeds the threshold

is always smaller than the expected number of the events in the “independence” case (θ = 1).
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Thus, if the two marginal processes of exceedances are dependent, then the probability that the

margins exceed any threshold (x1, x2) simultaneously is strictly larger than in the independent

case, i.e., strictly larger than zero. Note that by holding for any threshold (x1, x2), this describes

dependence not only of the times of the exceedances, but also of their marks.

Note further that the feature of simultaneous marginal exceedances is a direct consequence of the

point process interpretation of the extreme value theory as it described in Propositions 1.4 and

1.6 and that it presents a characteristic property of our model. It provides a specific definition

of the dependence between point processes which are subject to EVT.

From a practical point of view, the concept of dependence between point processes of exceedances

may be particularly useful in modeling moderately aggregated data, where simultaneous extreme

events are observable, such as daily data. That concept may also be applicable for high-frequency

data. This, however, may require a specific definition of simultaneous exceedances, e.g, those

exceedances that occur in time interval of, say, 10 seconds can be regarded as simultaneous.

Nevertheless, in recent studies, see Bollerslev, Todorov, and Li [2013] for an overview, it was

argued that in high-frequency data the occurrence of common jumps across different assets may

be induced by strong dependencies in the “extreme”.

Returning to the modeling aspects, note that due to the conditioning on Ht, the exponent

measure Vt, and hence copula C∗t , in the specification of conditional rate (1.19) may evolve

through time. There are three possible ways for this time-evolution: first, C∗t remains the same

through time; second, the functional form of C∗t remains the same but its parameters vary

through time; finally, both the functional form and the parameters vary through time. In this

thesis we focus on the second option and fix the functional form of C∗t (this choice is supported

by Proposition 1.6) leaving its dependence parameter to change over time. The time-variation

of the dependence parameter is a useful property, which can be justified from the financial point

of view by contagion, frailty, and clustering of marginal exceedances which cause the strength of

dependence described by C∗t to change.

From the interpretation of the dependence between the point process, it is plausible to pa-

rameterize the time-varying dependence parameter θ(t) as a finite function of the number of

simultaneous exceedances of (Xs)s<t above the initial threshold. The relationship between the

dependence and the number of simultaneous exceedances is also encountered in the literature,

see, e.g., Bae, Karolyi, and Stulz [2003]. On the other hand, it is reasonable to allow for changes

in the dependence parameter when at least one of the margins jumps. This accounts for the fact

that contagion between markets may occur in response to losses from only one of the markets.

Finally, the dependence parameter may include (exogenous) information of some risk factors zt

such as the CBOE Volatility Index (VIX), which are believed to influence or forecast the strength

of dependence between the margins. One way to construct the time varying dependence param-

eter θ(t) ≥ 0 (assuming that its size is proportional to the strength of dependence) is given by

the multivariate Hawkes process

θ(t) = θm +

d∑
i=1

ψm,i

∫ t

−∞
gm,i(t− s)dNi(s) + Υ

′
zt, θm ≥ 0,Υ ≥ 0, ψm,i ≥ 0,∀i, (1.37)
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where Ni(s) is a counting measure of ith marginal exceedances, gm,i(·) is the decay function, e.g.,

gm,i(t) = e−γm,it, and Υ is a vector of coefficients. This parametrization is not derived from any

theoretical arguments, but is simply one possible parametrization of many others that could be

thought of. However, we believe (1.37) is one of the easiest and most practical ways to account

for time-varying changes in the degree of the extreme dependence described by C∗. Estimating

the model with dependence parameter (1.37), one can carry out statistical tests to identify the

most influential factors for dependence modeling and place restrictions on the parameters. Note

that the multivariate model discussed in this chapter of the thesis captures the dependence in

two aspects: marginally, through the self-exciting structure of the conditional intensities, and

cross-sectionally, through θ(t). This allows for a certain “decoupling” of the dependence and

hence contributes to its more effective modeling. Note that the precise functional forms of θ(t)

chosen for our applications are discussed in later sections.

1.2.3 Properties of the multivariate model

Using the multivariate model of exceedances, in this section we infer the joint conditional dis-

tribution of the marks (Section 1.2.3.1) and develop an approach to estimate probabilities to

fall into any sufficiently remote region (Section 1.2.3.2). In Section 1.2.3.3 we investigate the

mechanism how single marginal exceedances may trigger the other margins to exceed the initial

threshold. Finally, Section 1.2.3.4 outlines useful implications of the model for risk management.

1.2.3.1 Joint conditional distribution of the marks

Proposition 1.6 intuitively suggests that from the conditional multivariate rate τ(t, x1, . . . , xd)

one should be able to infer the conditional joint distribution of the sizes of exceedances. Indeed,

from the interpretation of τ(t, x1, . . . , xd) as an instantaneous (i.e., as the time interval tends to

zero) conditionally expected number of events when (Xs)s∈(t,t+1) exceeds (x1, . . . , xd) in at least

one marginal component per unit time, it follows

P

(
d⋃
i=1

Xi,t > xi

∣∣∣∣∣
d⋃
i=1

Xi,t > ui,

)
=
τ(t, x1, . . . , xd)

τ(t, u1, . . . , ud)
, xi ≥ ui, i = 1, . . . , d

and hence

P

(
X1,t ≤ x1, . . . Xd,t ≤ xd

∣∣∣∣∣
d⋃
i=1

Xi,t > ui,

)
= 1− τ(t, x1, . . . , xd)

τ(t, u1, . . . , ud)
. (1.38)

This conditional distribution of the marks incorporates the dynamics of marginal exceedances

and of the dependence shifts. Equation (1.38) may be useful for estimation of the conditional

marginal expected shortfall, see Section 1.2.3.4.

A characteristic property of distribution (1.38) is that it provides a positive coefficient χU of

upper tail dependence between the all marginal pairs of the distribution. Considering the two-

dimensional version of (1.38), the coefficient of upper tail dependence χU may be expressed
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as

χU = lim
q→1−

2− 2q − τ (t, (1− q)τ (t, u1, u2) , (1− q)τ (t, u1, u2)) /τ (t, u1, u2)

1− q
= 2− τ(t, 1, 1).

(1.39)

For example, with the Gumbel symmetric dependence structure, χU = 2− 21/θ(t). Note that χU

is time-varying. This feature enables to approach the modeling of extreme dependencies with

more flexibility. Furthermore, the upper tail dependence allows us to model clustering of the

exceedances’ sizes, which we observe in real data.

1.2.3.2 Probabilities of exceedances in a remote region

Proposition 1.4 provides a conditional multivariate rate of an event that Xt exceeds x in at least

one component. Equation (1.19) can also be used to construct the conditional rate that Xt falls

in any “remote” set A ∈ Rd+ \ [(0, u1)× . . .× (0, ud)]. We denote this rate as τ (t,A). This can

be achieved by calculating the model’s conditional intensity λ (t, x1, . . . , xd) which is defined as

follows ∫ ∞
x1

. . .

∫ ∞
xd

λ (t, s1, . . . , sd) dsd . . . ds1 = τ (t, x1, . . . , xd) ,

where τ (t, x1, . . . , xd) is the multivariate rate (1.19). With this intensity, the conditional rate

τ (t,A) takes the form

τ (t,A) =

∫
x∈A

λ (t, x1, . . . , xd) dxd . . . dx1. (1.40)

Formulation (1.40) is very useful for practical applications, because with only one rate (1.19) we

can infer the extremal behavior of (Xt)t∈R in any remote region without a need of re-estimating

the model.

1.2.3.3 Contagion mechanism

Clustering of (multivariate) extreme events in both times and magnitudes is a ubiquitous feature

of financial time-series. The sources for that clustering may be attributed to financial contagion

and/or exposure to (unobservable) common risk factors that determine the extreme behavior of

the returns. Without distinguishing the reason for the clustering, our model, being deliberately

a reduced-form one, provides a specific clustering mechanism in occurrence of multivariate ex-

treme events. This mechanism is propagated in three channels. First, making the dependence

parameter depend on the history of past exceedances allows an adjustment of the strength of

that dependence, which in turn may accelerate occurrence of joint extreme events. Second, our

model provides upper tail dependence in distribution of the marks of exceedances, see Section

1.2.3.1. Due to this feature our model reproduces clustering in the magnitudes of exceedances.

Finally, the sheer possibility of joint extreme events, implied by our model, induces the univariate

extremes to occur jointly, which consequently triggers further joint exceedances.
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Figure 1.2: Probability of a joint ex-
treme event at time point t condi-
tioned on the event that at least one of

the margins jumps at t.
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the first margin’s conditional rate.

To highlight the last point on a two-dimensional version of our model, consider an event that at

least one univariate exceedance happens at time t. Conditioned on this event, there is a non-

negligible probability that both margins of the model jumps jointly. Figure 1.2 illustrates the

level of this conditional probability for different values of marginal rates τ1 (t, u1) and τ2 (t, u2).

For the calculations, the two-dimensional model with the Gumbel symmetric exponent mea-

sure and θ(t) = 2 is used. The conditional probability is calculated as (τ1 (t, u1) + τ2 (t, u2) −

τ (t, u1, u2))/τ (t, u1, u2), where τ (t, u1, u2) =
(
τ1 (t, u1)

θ(t)
+ τ2 (t, u2)

θ(t)
)1/θ(t)

. The occur-

rence of a joint exceedance increases the conditional intensities of both margins, which, in turn,

increases the conditional probability of a next co-exceedance. This interplay leads to the clus-

tering in occurrence of simultaneous extreme events.

Figure 1.2 may also serve to describe the contagion mechanism implied by our model. For

example, consider a single exceedance by the first margin at time t. This event instantaneously

increases the conditional rate of the first margin, i.e., τ1(t+, u1) > τ1(t, u1), and hence the

multivariate rate, i.e., τ(t+, u1, u2) > τ(t, u1, u2), where we denote t+ = t + ∆ for very small

∆ > 0. Investigating the contagion, it is of interest to note that the first margin’s exceedance

does not affect the conditional rate of the second margin exceedances but affects indirectly the

time of their occurrences. This indirect contagion mechanism can be described as follows: an

increase τ(t, u1, u2)→ τ(t+, u1, u2) triggers the occurrence of multivariate (when at least one of

the margins jumps) exceedances, which, in turn, may trigger, with the conditional probabilities

in Figure 1.2, the occurrence of simultaneous exceedances, i.e., the exceedance when both the

margins jump, which through the self-exciting structure of the processes trigger future jumps.

To quantify this contagion impact, we suggest to consider the difference, π2 (t, t+), between the

increments of the conditional rates. π2 (t, t+) is defined as follows

π2

(
t, t+

)
:= ∆t,t+τ1(s, u1)−∆t,t+τ(s, u1, u2) (1.41)

with ∆t1,t2τ(s) := τ(t2) − τ(t1), t is the time when the first margin jumps, and t+ = t + ∆ for

very small ∆ > 0. From the interpretation of a conditional rate as an instantaneous (i.e.,

as the time interval tends to zero) conditionally expected number of events in a unit time

interval, it follows that ∆t,t+τ1(s, u1) and ∆t,t+τ(s, u1, u2) express the instantaneous expected
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Figure 1.4: π
(
t, t+

)
: increase in the rate of the joint exceedances triggered by a joint ex-

ceedance at time t.

number of, respectively, the first margin’s or multivariate (when at least one of the margins

jumps) exceedances triggered by the first margin’s jump at time t. Hence, π2 (t, t+) describes the

instantaneous expected (incremental) number of exceedances by the second margin, triggered

by the first margin’s event at time t. It is straightforward to show that π2 (t, t+) ≥ 0, with

π2 (t, t+) = 0 in case when the margins are independent. Note that π2 (t, t+) is defined only for

those t’s when the first margin’s exceendances occur. Figure 1.3 illustrates π2 (t, t+) for different

values of ∆t,t+τ1(s, u1). For the calculations we used the symmetric Gumbel exponent measure

with θ(t) = 2, τ1(t, u1) = τ2(t, u1) = 0.05. Similarly to π2 (t, t+) one can straightforwardly

construct π1 (t, t+). To quantify the effect of the joint exceedances, we suggest to consider

π (t, t+) := ∆t,t+τ1(s, u1) + ∆t,t+τ2(s, u2) − ∆t,t+τ(s, u1, u2), which determines the increase in

the rate of the joint exceedances triggered by a joint exceedance at time t. With the settings

used for construction of the previous figure, Figure 1.4 illustrates π (t, t+) for different values of

∆t,t+τ1(s, u1) and ∆t,t+τ2(s, u2).

The contagion mechanism provided by our model differs from the one discussed in the literature,

e.g., Aı̈t-Sahalia, Cacho-Diaz, and Laeven [2011], where a jump in one margin directly increases

the conditional intensity of the other margins. In our model, this relationship is not automatic

but stochastically determined based on the initial level of the intensities, see Figure 1.2.

1.2.3.4 Risk Management implications

Conditional marginal expected shortfall The ability of our model to capture tail co-

movements and effects of spreading distress caused by a single marginal exceedance can well

be exploited in measuring systemic risk of a financial system. Acharya, Pedersen, Philippon,

and Richardson [2010] introduce marginal expected shortfall (MES) as an important factor in

constructing those systemic risk measures. The MES of a firm is defined as the expected shortfall

of the firm X in a crisis. Defining a crisis as the occurrence of an extreme loss Y of the aggregate

return on the market, the MES of the firms can be expressed as

MES = E (X | Y > y∗)

where X and Y are the loss of the firm and the entire market, respectively, and y∗ denotes the

loss threshold above that the market is assumed to be in a critical state. By considering the
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conditional distributions in the above formula, one can obtain the conditional MES (notation

MESt) of the firm

MESt = E (Xt | Yt > y∗) ,

with Xt and Yt denoting the conditional up to time t loss distribution of the returns. MESt

can be estimated in the framework of the multivariate model by using conditional distribution

(1.38) of the marks. Indeed, express MESt as

MESt = E (Xt | Xt > u, Yt > y∗)+E (Xt | Xt < −u, Yt > y∗)+E (Xt | Xt ∈ [−u, u], Yt > y∗) ,

where u (−u) corresponds to the high (low) quantile of the right (left) tail of Xt. Estimating

the bivariate model for point processes of exceedances of Xt > u (Xt < −u) and Yt > y∗,

and exploiting the conditional distribution (1.3) of the marks, the first two expectations in the

above equation can easily be found. For estimation of E (Xt | Xt ∈ [−u, u], Yt > y∗) , i.e., the

non-extreme body of the distribution, one can employ conventional methods.

Portfolio risk management Consider d financial assets with the corresponding, say, daily

negated returns (R1,j , . . . , Rd,j)j=1,2,.... The daily negated return RPj of the portfolio constructed

from those assets takes the form RPj = w1R1,j + . . . + wdRd,j , where (w1, . . . , wd) are weights

of the assets in the portfolio. A typical problem that risk managers face is to estimate the

probability

P
(
RPj > b | Hj−1

)
(1.42)

for some high level of the portfolio loss b, where Hj−1 denotes a history including informa-

tion about past returns (R1,k, . . . , Rd,k)k=1,...,j−1. Using (1.40) one can estimate a lower bound

for P (Rj > b | Hj−1). Indeed, assume that the multivariate model with rate (1.19) is applica-

ble for the point process of exceedances of (R1,j , . . . , Rd,j)j=1,2,... above some initial threshold

(u1, . . . , ud). Setting b such that b > w1u1 + . . .+ wdud, there exists the conditional rate

τP (t, b) =

∫
x∈{s1,...,sd|s1w1+...sdwd>b}

λ (t, x1, . . . , xd) dx1 . . . dxd =

∫ b−w2u2−...wdud
w1

u1

. . .

∫ b−
∑k−1
l=1

wlxl−
∑d
l=k+1 wlul

wk

uk

. . .

∫ ∞
b−
∑d−1
l=1

wlxl
wd

λ (t, x1, . . . , xd) dxd . . . dx1,

which is derived from (1.40). Here, τP (t, b) is the conditional rate of the point process NP (t, b)

that counts the number of exceedances of level b by RPj = w1R1,j + . . .+ wdRd,j , j = 1, . . . , [t],

for Ri,j ≥ 0, i = 1, . . . , d. Note that NP (t, b) is a continuous process, but we observe Rj only at

discrete times j = 1, 2, . . .. Taking this discreteness into account, we can approximate the lower

bound for the conditional probability that RPj crosses the level b as the probability of at least

one exceedance of NP (t, b) in period (j, j + 1]. Formally,

P
(
RPj > b | Hj−1

)
≥ 1− P (NP (j, b)−NP (j − 1, b) = 0 | Hj−1) = 1− exp

(
−
∫ j

j−1

τP (t, b)dt

)
.
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1.3 Estimation, Goodness-of-Fit and Simulation

Maximum likelihood (ML) method is the most obvious and convenient approach for the esti-

mation of intensity-based models, see Daley and Vere-Jones [2005], Section 7. Statistical fitting

with ML of the multivariate model of exceedances presented in Section 1.2.2 can proceed through

multi-stage ML or construction of the full likelihood function. In the multi-stage ML the pa-

rameters of the marginal point processes of exceedances (τi(t, xi), for i = 1, . . . , d) are estimated

via univariate ML, and then the remaining parameters of τ(t, x1, . . . , xd) are estimated condi-

tional on the estimated parameters for τi(t, xi), for i = 1, . . . , d. Similarly as for copula-based

models, see Patton [2012], the multi-stage ML is computationally tractable, but it suffers from

the loss of efficiency compared to the estimation via the full likelihood function. Besides MLE,

one may consider estimation with the generalized method of moments (GMM), see Aı̈t-Sahalia,

Cacho-Diaz, and Laeven [2011]. We relegate the details of the GMM estimation procedure to

Appendix A and discuss it in more detail in the empirical part of this chapter.

We consider the univariate ML estimation in Section 1.3.1. Construction of the full likelihood

function is described in Section 1.3.2. The goodness-of-fit and the simulation algorithm are

presented, respectively, in Section 1.3.3 and Section 1.3.4.

Recall the notation: (X1,j , . . . , Xd,j), j = 1, 2, . . . , T ∗ are the observations, u = (u1, . . . , ud) is

the initial threshold, i.e., ui is a sufficiently high quantile of (Xi,j)j=1,2,...,T∗ ; Ti,k and X̃i,k, with

k = 1, . . . , Nui , stand for the times and marks of the marginal exceedances over ui. By Tk,

k = 1, . . . , Nu, we denote the times when Xt exceeds u in at least one component.

1.3.1 Univariate model estimation

The likelihood function, denote it as Li, of the SE-POT model for the marginal rate of ex-

ceedances τi(t, xi) is of the form, see McNeil, Frey, and Embrechts [2005],

Li = exp

(
−T ∗τi − ψi

∫ T∗

0

v∗i (s)ds

)Nui∏
j=1

λi

(
Ti,j , X̃i,j

)
, (1.43)

where Nui is the number of the marginal exceedances above ui, and

λi(t, xi) =
τi + ψiv

∗
i (t)

βi + αiv∗i (t)

(
1 + ξi

xi
βi + αiv∗i (t)

)−1/ξi−1

is the conditional intensity of the self-exciting POT model with predictable marks. The intensity

λi(t, xi) is derived from the equation∫ ∞
xi

λi(t, s)ds = τi(t, xi).



Chapter 1. Modeling Multivariate Extreme Events Using Self-Exciting Point Processes 32

With function v∗i as in (1.2), gi(s) = e−γis, and c(x) as in (1.6), the integral in (1.43) takes the

form

∫ T∗

0

v∗i (s)ds =

∫ n

0

∑
j:0<Ti,j<s

e−γi(s−Ti,j)
(

1 +G←
(
Fi,j

(
X̃i,j

)))
ds =

1

γi

Nui∑
k=1

(e−γiTi,k − e−γiTi,k+1
) k∑
j=1

eγiTi,j
(

1 +G←
(
Fi,j

(
X̃i,j

))) ,
where Fi,j(·) is the conditional distribution function of the marks defined in (1.3) and G←(·) is an

inverse of the distribution function G of some continuous positive random variable (compare to

Section 1.2.1.2). In the above equation Ti,Nui+1 should be interpreted as T ∗. For the theoretical

background behind the likelihood function (1.43) consult Daley and Vere-Jones [2005], Proposi-

tion 7.2.III. Consistency and asymptotic normality of the MLE estimator are shortly discussed

at the end of the next section.

1.3.2 Multivariate model estimation

As the first step before expressing the complete likelihood function for the multivariate model

of exceedances, we consider the procedure of constructing the densities of the observed events.

Consider an event that the k-th multivariate exceedance occurs at time Tk = t with, for exam-

ple, only the first and second (out of d > 2) margins exceeding the initial threshold with the

corresponding marks X̃1,1 > u1 and X̃2,1 > u2. Conditioning on the fact that the previous event

occurred at time Tk−1, the density of the event at time Tk reads

p
(
Tk = t | HTk−1

)
p
(
X1,t = X̃1,1, X2,t = X̃2,1, X3,t ≤ u3, . . . , Xd,t ≤ ud | Tk = t

)
, (1.44)

where p(A) denotes the density of A.

The first part of the above density can easily be obtained from (1.18) in the following form

p
(
Tk = t | HTk−1

)
= τ(t, u1, . . . , ud) exp

(
−
∫ t

Tk−1

τ(s, u1, . . . , ud)ds

)

and, due to (1.38), the second term of (1.44) reads

p
(
X1,t = X̃1,1, X2,t = X̃2,1, X3,t ≤ u3, . . . , Xd,t ≤ ud | Tk = t

)
=

− ∂2τ(t, x1, x2, u3 . . . , ud)

∂x1∂x2

∣∣∣∣
x1=X̃1,1,x2=X̃2,1

1

τ(t, u1, . . . , ud)
.

Finally, (1.44) takes the form

− ∂2τ(t, x1, x2, u3 . . . , ud)

∂x1∂x2

∣∣∣∣
x1=X̃1,1,x2=X̃2,1

exp

(
−
∫ t

Tk−1

τ(s, u1, . . . , ud)ds

)
.

The form of the above density is typical for all multivariate exceedances. To write down the

complete likelihood function of the whole sample observed multivariate exceedances occurred in
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time interval [0, T ∗] at times T1, T2, . . . , TNu , we adopt the following notation. Let

ind(t) =
{
i1, . . . , ip : Xi1,t > ui1 , . . . , Xip,t > uip

}
∈ (1, 2, . . . , d)

be the set of indices of the margins which exceed the initial margin at time t. We use ind(t) to

define the following sets: xind(t) =
(
xi1 , . . . , xip

)
, x−ind(t) = x \ xind(t), where x = (x1, . . . , xd).

With those sets, the final likelihood function takes the form

exp

(
−
∫ T∗

0

τ (s, u1, . . . , ud) ds

)
Nu∏
j=1

− ∂τ(t, x1, . . . , xd)

∂xind(Tj)

∣∣∣∣
xind(Tj)

=Xind(Tj)
,x−ind(Tj)

=u−ind(Tj)

 ,
(1.45)

where ∂τ(t,x1,x2,...,xd)
∂xind(Tj)

is a multiple partial derivative of τ(t, x1, x2, . . . , xd) by all xi with i ∈
ind (Tj). The integral in (1.45) cannot be solved explicitly. Hence, in practice, this integral is

approximated by a sum over all observations.

Considering the properties of the MLE estimators, note that the multivariate model of ex-

ceedances treats the data as a realization of a univariate point process on (0, T ∗]. This property

is advantageous for estimation, because, as it is mentioned in Bowsher [2007], there are currently

no results concerning the properties of the MLE for multivariate point processes. For the uni-

variate case, it is shown in Ogata [1978], that under some regularity conditions, the MLE for a

stationary, simple2 point process is consistent and asymptotically normal as T ∗ →∞. Concern-

ing these conditions, note that our multivariate model is stationary if both the marginal processes

of exceedances (Section 1.2.1.3) and the dependence parameter (namely risk factors zt) in (1.37)

are stationary. Employing the results from Ogata [1978], there is a subtle point considering the

conditional set used for the intensity evaluation in the likelihood, namely, whether the complete

information set from (−∞, T ∗) or rather incomplete (practically available) information set from

(0, T ∗) is used. Nevertheless, it was noted in the paper that the likelihood evaluated on (0, T ∗)

for the Hawkes self-exciting process with the exponential decay function satisfies the required

regularity conditions. It should also hold for our model, because exactly the exponential decay

function is suggested for both the SE-POT model and the dependence parameter. Another result

from Ogata [1978], which we will intensively use in the empirical part of the chapter, is that

under the null hypothesis the likelihood ratio test statistics satisfies asymptotically the standard

χ2 distribution.

1.3.3 Goodness-of-fit

Applying the models of marginal and joint exceedances in practice, where true probabilities are

unknown, it is vital to perform a goodness-of-fit procedure to check the performance of the model.

Our approach to the goodness-of-fit test is based on the probability integral transformation

[Diebold, Gunther, and Tay, 1998] of the sample of times of marginal exceedances Ti,1, . . . , Ti,Nui
with the estimated conditional intensity τi (t, ui). Recalling that for a continuous random variable

X with distribution function F , F (X) is uniformly distributed on the unit interval, we obtain

2A point process is simple, if no two events occur at the same time.
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from (1.5) that residuals χi,j , j = 1, . . . , Nui − 1 defined as

χi,j =

∫ Ti,j+1

Ti,j

τi(s, ui)ds, j = 1, 2, . . . , Nui − 1, i = 1, . . . , d,

are independent realizations from the standard exponential distribution. Since the goodness-

of-fit looks for evidence that the model is misspecified, the test of the estimated model can be

limited to checking a hypothesis that the residuals are independent realizations from the standard

exponential distribution.

With the analogous consideration as for the times of marginal exceedances, due to (1.18) we

obtain a similar result for the times of multivariate exceedances. For T1, . . . , TNu the residuals

defined as

χj =

∫ Tj+1

Tj

τ(s, u1, . . . , ud)ds, j = 1, 2, . . . , Nu − 1, (1.46)

are also independent realizations from the standard exponential distribution. We will refer to the

sample of χi,j or χj as residual (marginal) inter-exceedance intervals. Note that the goodness-

of-fit test based the standardized (marginal) inter-exceedance times directly corresponds to the

random time transformation of point processes, for details, see Section 7.4 in Daley and Vere-

Jones [2005].

To test the fit of the model in describing the marks of exceedances, we employ the concept of the

probability integral transformation as well. With the conditional distribution (1.3), the residual

marks defined as

mi,j = − 1

ξi
log

(
1 +

Xi,Ti,j − ui
βi + αiv∗i (Ti,j)

)
, j = 1, 2, . . . , Nui , i = 1, . . . , d,

should be independent realizations from the standard exponential distribution, if the estimated

model is suitable. The goodness-of-fit can be checked either graphically using QQplots, or using

a formal goodness-of-fit test such as the Kolmogorov-Smirnov or Anderson-Darling tests to test

whether the estimates of χj (or χi,j or mi,j) follow the standard exponential distribution. As

part of a goodness-of-fit procedure one can also analyze the ability of random data simulated

from the model to reproduce certain characteristics of the data. The simulation procedure is

described in the next section.

Note that the residual inter-exceedance intervals and marks are not only useful for measuring

the model’s fit, but they also form the basis for the moment estimator discussed in Appendix A.

1.3.4 Simulation

To simulate from the multivariate model of exceedances, we need to obtain both times and

marks of those exceedances. Equation (1.46) offers an easy simulation procedure for the times of

multivariate exceedances. It follows that conditioned on Tj , a realization of Tj+1 can be found

solving ∫ Tj+1

Tj

τ(s, u1, . . . , ud)ds = E, j = 1, 2, . . . ,
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where E is the standard exponential random variable. To find T1, we set T0 = 0 in the above

equation. The above simulation method is known in the literature as the inverse method, see

Daley and Vere-Jones [2005] (Algorithm 7.4.III). Alternatively, in order to omit calculation of

the integral in the equation above, one can simulate the times of exceedances by the thinning

algorithm, see Ogata [1981]. It is a simple and efficient method that requires the specification of

the conditional intensity only (without a need of solving any integrals).

To simulate the marks at times of multivariate exceedance, first, it should be identified which

margin exceeds the initial threshold, and then the marks should be simulated from the appro-

priate conditional distribution. In the two-dimensional model, for example, the marks should be

simulated as follows:

i) with probability P (X1,t > u1, X2,t ≤ u2 | Tj+1 = t) = 1 − τ2(t,u2)
τ(t,u1,u2) , only the first mar-

gin exceeds the initial threshold. The mark X1,t should be simulated from the following

distribution

P (X1,t ≤ x1 | Tj+1 = t,X2,t ≤ u2) =
τ (t, u1, u2)− τ (t, x1, u2)

τ (t, u1, u2)− τ2 (t, u2)
, x1 > u1.

ii) with probability P (X1,t ≤ u1, X2,t > u2 | Tj+1 = t) = 1 − τ1(t,u1)
τ(t,u1,u2) , only the second mar-

gin exceeds the initial threshold. The mark X2,t should be simulated from the following

distribution

P (X2,t ≤ x2 | Tj+1 = t,X1,t ≤ u1) =
τ (t, u1, u2)− τ (t, u1, x2)

τ (t, u1, u2)− τ1 (t, u1)
, x2 > u2.

iii) with probability P (X1,t > u1, X2,t > u2 | Tj+1 = t) = τ1(t,u1)+τ2(t,u2)−τ(t,u1,u2)
τ(t,u1,u2) , both the

first and the second margin exceed the initial threshold. The mark (X1,t, X2,t) should be

simulated from the following distribution

P (X1,t ≤ x1, X2,t ≤ x2 | Tj+1 = t,X1,t > u1, X2,t > u2) =

τ (t, x1, u2) + τ (t, u1, x2)− τ (t, x1, x2)− τ (t, u1, u2)

τ1 (t, u1) + τ2 (t, u2)− τ (t, u1, u2)
,

for x1 > u1 and x2 > u2.

The above cases for marginal exceedances are a direct consequence of the conditional distributions

of marks in (1.38) and hence can be extended for multivariate cases with any d > 2.

1.4 Application to Financial Data

In this section we illustrate an application of the model of multivariate exceedances to financial

data. For illustration we consider a two- and four-dimensional application of the model, and

focus on describing the behavior of extreme negative returns in financial markets worldwide and

in the European banking sector. The choice of the data for and dimension of the models is

motivated by illustrative reasons only.
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Table 1.1: Summary statistics

MSCI-USA MSCI-EU DB HSBC RBS UBS

Mean(%) 0.0232 0.0155 -0.0025 0.0192 -0.0246 -0.0100
St.Deviation 0.0116 0.0126 0.0234 0.0190 0.0330 0.0231

Skewness -0.2468 -0.1844 0.1968 -0.2152 -8.2565 0.1289
Excess Kurtosis 8.7890 8.0630 8.9337 8.6815 272.8115 12.5427

1.4.1 Data and Preliminary Analysis

To illustrate the application of the two dimensional model we consider extreme negative returns

in European and the US financial markets, which we approximate by daily log-returns of the

Morgan Stanley Capital International index for the US (MSCI-USA) and Europe (MSCI-EU)

covering the period January 1, 1990 to January 13, 2012. The data consists of 5749 observations.

The MSCI-USA index is designed to measure large and mid cap equity performance of the

US equity market, whereas the MSCI Europe Index measures the equity performance of the

developed markets in Europe and consists of the following country indices: Austria, Belgium,

Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway, Portugal,

Spain, Sweden, Switzerland, and the United Kingdom3.

The four-dimensional model is applied to negative equity returns of four major European banks:

Deutsche Bank (DB), HSBC Holdings (HSBC), Royal Bank of Scotland (RBS), and United Bank

of Switzerland (UBS), – embracing the period October 20, 1993 to January 13, 2012. The sample

consists of 4768 observations. The summary statistics for all of the time series can be found in

Table 1.1. Note that the extremely high skewness and kurtosis for RBS is the effect of several

extremely large negative returns. We decided to keep these observations since the methods we

apply have a certain robustness to outliers and we are in fact interested in very extreme events.

Furthermore, the estimate of the tail index of left tail of RBS return time series (see Table 1.4)

is larger than 0.25 suggesting that kurtosis does not exist for this time series. Note that for

estimation of our model we use negated daily log-returns on the equity, allowing us to look at

the upper rather than the lower tail.

For estimation of the multivariate model the initial threshold was set on the 97.7% quantile of

the empirical distributions of MSCI-USA and MSCI-EU series, which corresponds, respectively,

to 2.4922% and 2.8601% and results in 132 marginal exceedances for the two indexes and in 53

joint exceedances. For the bank data the initial thresholds are the following: 5.3201% for DB,

4.2021% for HSBC, 5.8534% for RBS, and 5.1799% for UBS. Those threshold correspond to the

97.9% quantile of the empirical distributions and result in 100 marginal (for all four indexes)

and 16 joint exceedances. A preliminary analysis motivating this choice of the thresholds and

verifying the extreme value condition can be found in Appendix B.

1.4.2 Copula Choice

The parametric specification for exponent measure Vt in (1.19) is still open and there are many

parametric families of dependence structure in multivariate EVT. With respect to applications,

3See www.msci.com for details.
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the dependence structure should both be as flexible as possible and be able to capture an asym-

metric dependence structure, in the sense that Vt(y1, y2) 6= Vt(y2, y1). This allows for asymmetric

responses of the probability of joint exceedances to exceedances of the individual variables im-

plying interesting economic interpretations. For example, the stock market of a small country

may react strongly to shocks to the US stock market, but not vice versa. We suggest to use the

exponent measure of the Gumbel copula4. It has a simple structure with only one parameter

θ ≥ 1, which makes it easy to add the time-dependent part and to extend it to an asymmetric

form. It also can be extended to dimensions beyond two, which is advantageous for the multi-

variate application in Section 1.4.3.2. Furthermore, its dependence function in the tail is almost

identical to the one of the t-copula for any choice of the parameters of the t-copula and is thus

very flexible, see Demarta and McNeil [2005] for details.

The non-exchangeable Gumbel copula, see Tawn [1990], has the following exponent measure

V (y1, . . . , yd) =
∑
s∈S


(∑
i∈s

wi,s/yi

)θs
1/θs

, (1.47)

where S is the set of all non-empty subsets of {1, . . . , d} and the parameters are constrained

by θs ≥ 1 for all s ∈ S, wi,s = 0 if i /∈ s, wi,s ≥ 0 (asymmetry parameters), i = 1, . . . , d

and
∑
s∈S wi,s = 1 see also Coles and Tawn [1991]. V in (1.47) is overparameterized for most

applications, as it contains 2d−1(d+2)−(2d+1) parameters. The task of estimating such a model

is very similar to the estimation of high-dimensional copula-based models, for which pair copula

construction is an effective solution to overcome a proliferation of parameters, while maintaining

the flexible dependence structure of the model, see, for example, Aas, Czado, Frigessi, and

Bakken [2009], Okhrin, Okhrin, and Schmid [2013]. The idea of pair copula construction may

also be transferred to construction of multivariate point processes with intensity (1.19). The

only condition to preserve is that the exponent measure associated with the final rate must be

one of an extreme value copula. We leave this estimation topic for future research as it is beyond

the scope of this thesis.

1.4.3 Applying the Model

1.4.3.1 Two-dimensional Model

In this section, we focus on extreme negative log-returns of MSCI-USA and MSCI-EU indexes

and estimate the multivariate model of exceedances with the two-dimensional version of (1.47):

Vt(y1, y2) =
(1− w1)

y1
+

(1− w2)

y2
+

((
w1

y1

)θ(t)
+

(
w2

y2

)θ(t))1/θ(t)

, (1.48)

where w1 and w2 denote the asymmetry parameters in the dependence structure. Setting w1 =

w2 = 1, the symmetric version of (1.48) is obtained. Based on the discussion in Section 1.2.2.2, we

parametrize dependence parameter θ(t) in the equation above as the Hawkes process of different

4We initially also considered the Galambos copula, but its fit was inferior for all applications we considered.
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exceedances and, in order to keep the model closed, we keep the specification free from exogenous

risk factors. We set

θ(t) = θ2,0 +

∫ t

0

e−γ2,0(t−s) [ψ2,1dN2,1(s) + ψ2,2dN2,2(s) + ψ2,3dN2,3(s)] , (1.49)

with θ2,0 ≥ 1, γ2,0 > 0, ψ2,i ≥ 0, i = 1, 2, 3, where N2,1(s) and N2,2(s) are counting measures

of exceedances of negated log-returns of, respectively, MSCI-US and MSCI-EU above the corre-

sponding initial thresholds. N2,3(s) is a counting measure of the joint exceedances. Such a con-

struction of the dependence parameter, along with the asymmetry of the dependence structure,

provides a certain level of flexibility in the dependence modeling. We conduct six likelihood tests

in order to identify an appropriate model. In particular, we test the hypothesis that w1 = w2 = 1

(p-value 0.6574), w1 = 1 (p-value 0.9999), w2 = 1 (p-value 0.3597), ψ2,1 = 0 (p-value 0.9999),

ψ2,2 = 0 (p-value 0.0243), and, finally, ψ2,3 = 0 (p-value 0.5401). This hypothesis testing al-

lows for a certain simplification in the dependence structure, namely, symmetry, and provides

a surprising insight that large negative exceedances of MSCI-EU have a decisive influence on

the strength of tail dependence between negative log-returns of MSCI-EU and MSCI-US indices.

Note that estimation of the model was conducted according to the one-step MLE procedure

discussed in Section 1.3.

Having estimated the bivariate model in one step, we report the parameter estimates of the SE-

POT model in Table 1.2 and estimates of the dependence parameter in Table 1.3. To compare,

we report also in the tables the estimates obtained by the one-step method of moments (MM),

see Appendix A. Note that the influence and decay functions of the SE-POT models were set in

Table 1.2: Parameter estimates of the SE-POT model by the MLE and the MM. An inverse
Hessian of the likelihood function is used to obtain the standard errors reported in parentheses

right to the MLE estimates.

MSCI-US MSCI-EU
Parameter MLE MM MLE MM

τi 0.0068 (0.0016) 0.0068 (0.0019) 0.0055 (0.0014) 0.0066 (0.0027)
ψi 0.0173 (0.0052) 0.0208 (0.0458) 0.0149 (0.0040) 0.0184 (0.0219)
γi 0.0404 (0.0103) 0.1428 (0.3476) 0.0463 (0.0132) 0.0845 (0.0904)
δi 0.6387 (0.1480) 3.8415 (3.5759) 1.1710 (0.2000) 2.2767 (1.9937)
ξi 0.2169 (0.1158) 0.2376 (0.0296) 0.2311 (0.1238) 0.2637 (0.0693)
βi 0.4623 (0.0903) 0.3353 (0.0916) 0.4145 (0.0811) 0.3327 (0.1229)
αi 0.1236 (0.0382) 0.1626 (0.4356) 0.1042 (0.0337) 0.1149 (0.1345)

branch. coeff. 0.7024 0.7053 0.6996 0.7141

the way as discussed in Section 1.2.1.2, namely, g(s) = e−γs and c∗(u) = 1− δ log(1− u).

The estimated branching coefficients of the SE-POT model are all smaller than one, which

suggests that the processes are indeed stationary, although the large estimates of tail index

(ξi) by both the MLE and the MM suggests that exceedances’ heavy-tails can only poorly

be explained by the time-varying volatility component vi(t) indicating a substantial downward

potential caused by jumps on the US and European financial markets. Without distinguishing

the reason for exceedances, our model, being by definition a jump process, can well account

for time-varying volatility by incorporating this feature into the conditional distribution of the

marks. Consider Appendix C for the goodness-of-fit statistics.
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Furthermore, comparing the MLE estimates of δi and γi, note that the marks of MSCI-EU

exceedances trigger the occurrence of future exceedances much stronger than MSCI-USA ex-

ceedances do, which corresponds to our previous conclusion that the MSCI-EU exceedances are

decisive in modeling the dependence parameter. Note that compared to the MLE estimates, the

MM ones suggest a completely different mechanism of the marks’ impact. Although their impact

is very large, its “trigger” power diminishes every day (in absence of further exceedances) with a

much faster rate than one provided by the MLE estimates. For MSCI-US estimates, for example,

those rates are, respectively, 1 − exp(−0.1428) ≈ 13.31% and 1 − exp(−0.0404) ≈ 3.96%. This

interplay between the impact and decay functions determines one mechanism of asymmetric re-

sponses of marginal events on the rate of multivariate exceedances. The marginal conditional

rates of exceeding the initial threshold (calculated with the MLE estimates) are illustrated in

Figure 1.5. For the corresponding figure for the MM estimates see Appendix D.
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Figure 1.5: Estimated conditional rate of the marginal exceedances over the initial threshold
for MSCI-USA and MSCI-EU. MLE estimates from Table 1.2.

Table 1.3: Parameter estimates of the dependence parameter. An inverse Hessian of the
likelihood function is used to obtain the standard errors reported in parentheses right to the

MLE estimates.

Parameter MLE MM
θ2,0 1.0294 (0.0285) 1.3534 (1.1089)
γ2,0 0.0147 (0.0051) 0.3345 (9.0492)
ψ2,2 0.0946 (0.0269) 1.4941 (47.6108)

The MLE estimates of the dependence parameter indicate a strong influence of the MSCI-

EU exceedances on the strength of dependence: θ(·) jumps by about 10% of its base level of

1.0294 at every time MSCI-EU exceeds its initial threshold. Based on the MLE estimates,

Figure 1.6 plots the time varying dependence parameter θ(·) (left panel) and the estimated

conditional probabilities of multivariate events when at least one margins exceed the initial

threshold compared with the (constant) empirical probability of those events (right panel). The

MM estimates suggest even a higher influence of the MSCI-EU exceedances on θ(·), but, similarly

to the case of the SE-POT model, that influence diminishes very fast due to a large estimate

of γ2,0 causing an erratic behavior in the dependence parameter, see Figure D.2 in Appendix

D. Note that extremely high standard errors for the MM estimates correspond to our general

finding based on the simulation studies that MM is inappropriate for our multivariate model.

The reason may lie both in the choice of moment conditions and in the fact that all moment

conditions are based on the goodness-of-fit statistics, which cannot be calculated from the sample

independently from the unknown parameters of the models.
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Figure 1.6: The estimated time-varying dependence parameter (left-hand panel) and the
conditional probability of multivariate events when at least one margins exceed the initial
threshold (right-hand panel) in the two dimensional model. The tick marks at the bottom of

the right panel denote times of multivariate events.

It is important to be aware of the fact that the symmetrical dependence structure, with which the

bivariate model was estimated, does not mean that the marks of exceedances have a fixed effect

on the conditional multivariate rate. Along with the estimates of the impact function, this effect

strongly depends on the exceedance history of the marginal processes, which is propagated by

self-exciting component vi(t). That history affects the marks’ conditional distribution through

(1.3), which, in turn, may provide asymmetry in the marks’ influence. For illustration, consider

Figure 1.7 which displays how the conditional rate of joint exceedances might be influenced by

different values of MSCI-EU and MSCI-US negated returns that could have happened on, say,

01.03.2009 (left panel) and 15.02.2010 (right panel). The calculation are based on the MLE

estimates. One can clearly observe the change of the marks’ influence depending on the time of

the analysis.

Figure 1.7: Effects of different values of MSCI-EU and MSCI-US negated returns, that could
have happened on 01.03.2009 (left panel) and 15.02.2010 (right panel), on the next day’s

conditional rate of joint exceedances.

Based on the MLE estimates, Figure 1.8 shows the exponential QQ-plot of the residual inter-

exceedances intervals of the bivariate model and their empirical autocorrelation functions. The

figures clearly illustrate the residual inter-exceedances intervals do not deviate much from the

standard exponential distribution suggesting the theoretical consistency of the model. This

suggestion is further supported by analysing the residual intervals with the Kolmogorov-Smirnov

and Ljung-Box (15 lags) tests, which failed to reject the null of, respectively, the standard

exponential distribution and no autocorrelation with p-values 0.5673 and 0.3817. The goodness-

of-fit tests for the marginal exceedance processes are reported in Appendix C.
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Figure 1.8: Exponential QQ-plot of the residual inter-exceedance intervals (left-hand panel)
in the bivariate model. The sample autocorrelation function of those (squared) intervals (right-

hand panel).

1.4.3.2 Four-dimensional Model

In this Section, we focus on extreme negative equity returns of four major European banks:

Deutsche Bank (DB), HSBC Holdings (HSBC), Royal Bank of Scotland (RBS), and UBS. To

save space, we restrict ourselves to maximum likelihood estimation. Furthermore, fitting the

model we prefer the sequential estimation procedure over the estimation in one step, see Section

1.3.2. The reason for this choice is that a proliferation of the model parameters hinders handling

of the likelihood function. To cope with this problem, we estimate first the SE-POT model

for marginal exceedances, and then, conditioned on those estimates, the parameters relating to

the dependence parameter. Parameter estimates of the SE-POT model are reported in Table

1.4. Note that the influence and decay functions of the SE-POT models were set in the way as

discussed in Section 1.2.1.2, namely, g(s) = e−γs and c∗(u) = 1− δ log(1− u).

Table 1.4: MLE parameter estimates of the SE-POT model. An inverse Hessian of the
likelihood function is used to obtain the standard errors reported in parentheses right to the

estimates.

Parameter DB HSBC RBS UBS
τi 0.0050 (0.0035) 0.0046 (0.0020) 0.0028 (0.0062) 0.0031 (0.0011)
ψi 0.0289 (0.0219) 0.0179 (0.0087) 0.0175 (0.0210) 0.0332 (0.0101)
γi 0.0584 (0.0829) 0.0318 (0.0116) 0.0281 (0.0557) 0.0482 (0.0395)
δi 0.5444 (0.2235) 0.3963 (0.1131) 0.4100 (0.1356) 0.2360 (0.1438)
ξi 0.0744 (0.7601) 0.1053 (0.0267) 0.3150 (0.2530) -0.0045 (0.4936)
βi 1.1457 (0.2414) 1.1037 (0.1925) 1.0846 (0.1740) 1.3582 (1.6565)
αi 0.2721 (0.1342) 0.1750 (0.0840) 0.3271 (0.3973) 0.3686 (0.1677)

branch. coeff. 0.7548 0.7836 0.8773 0.8508

Considering the efficiency of the estimates of dependence parameter, which are of concern here,

note that the majority of the loss of efficiency associated with multi-stage estimation is attributed

to estimation of shape parameter ξi, see Tawn [1990].

The estimate of tail parameter ξi for the UBS’s returns is effectively zero, which corresponds to

the tail index of a normal (light-tailed) distribution. This observations does not mean, however,

that UBS’s negative returns are unconditionally light-tailed: the phenomenon of fat tails and

serial dependence often go together, see Andriani and McKelvey [2007]. A serially dependent

process with light-tailed marks and time-varying volatility may still be estimated to have heavy
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tails, if treated as an i.i.d sample. For example, an unconditional estimate of the UBS’s tail

parameter is ξ̂ = 0.1145(0.1249). Along with the time-varying volatility, heavy tails may result

from jumps in the underlying process [Bollerslev, Todorov, and Li, 2013], which, in our model, are

accounted for by the tail index estimate. For the UBS’s returns, it seems like the marks’ heavy

tails are well captured through incorporating the self-exciting component vi(t) into the marks’

conditional distribution. The large tail parameter estimate of the RBS’s returns suggests however

that vi(t) cannot explain all variation in the tails, hence (assuming the model is correct) there is

a significant (unexpected) jump component with tail parameter ξ̂ = 0.3150(0.2530) determining

the distribution of the marks. Note that an unconditional estimate of the RBS’s tail parameter

is ξ̂ = 0.5452(0.1513). The conditional rates of exceeding the initial threshold are reported in

Figure 1.9.
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Figure 1.9: The estimated conditional rates of the marginal exceedances over the initial
threshold in the SE-POT model for negated log-returns of DB, HSBC, RBS, and UBS stocks.

To estimate dependence structure of our model, we employ the Gumbel exponent measure (1.47)

in the four-dimensional case, which provides 39 parameters responsible for the dependence struc-

ture. Clearly, this model is overparameterized for most applications and therefore some prelim-

inary analysis must be conducted to simplify that dependence structure. To do that, we first

analyse the bivariate dependencies for asymmetry. The procedure is the following: we fit the

bivariate model of excedances with the dependence parameter as in (1.49) for all pairs of the

four-dimensional data and then conduct a likelihood test on the hypothesis that the dependence

structure is symmetric. Table 1.5 reports p-values of those likelihood tests.

Table 1.5: p-values of the likelihood tests testing hypothesis that the bivariate dependence
structure in the four-dimensional model is symmetric.

Pair pValue Pair pValue

DB and HSBC 0.9219 HSBC and RBS 0.9343
DB and RBS 0.9999 HSBC and UBS 0.8160
DB and UBS 0.9974 RBS and HSBC 0.9999

It is clear from the table, the bivariate models display no evidence against symmetric dependen-

cies. Extrapolating this observation also to the trivariate models and assuming the dependence
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parameter between different combinations of the banks’ returns stays the same, we employ the

following rate of exceedances for the four-dimensional model:

τ(t, x1, x2, x3, x4) =
(
τ1(t, x1)θ(t) + τ2(t, x2)θ(t) + τ3(t, x3)θ(t) + τ4(t, x4)θ(t)

)1/θ(t)

. (1.50)

Similarly to the bivariate application, we parametrize dependence parameter θ(t) as the Hawkes

process. In this case, however, there are much more different combination of marginal events on

which θ(t) may depend. To be in line with Section 1.2.2.2, we suggest the following parametriza-

tion:

θ(t) = θ4,0 +

∫ t

0

e−γ4,0(t−s) [ψ4,1dN4,1(s) + ψ4,2dN4,2(s) + ψ4,3dN4,3(s) + ψ4,4dN4,4(s)] , (1.51)

for θ4,0 ≥ 1, ψ4,1, . . . , ψ4,4 ≥ 0, γ4,0 > 0, where N4,i(s) is a counting measure of events when

at least two banks’ negated returns exceed the initial threshold simultaneously and one of those

banks is DB for i = 1, HSBC for i = 2, RBS for i = 3, or UBS for i = 4. As it is discussed in

Section 1.2.2.2, one can design a number of alternatives to this specification, but still, in order

to keep the model closed, we stick with (1.51).

After estimating the four-dimensional model, we conduct a likelihood test on the null hypothesis

that the dependence parameter is not affected by the events described by counting measure

N4,i(·), i.e., ψ4,i = 0. Hypotheses that ψ4,1 = 0 and ψ4,4 = 0 are not rejected with p-values close

to 1. For parameters ψ4,2 and ψ4,3, p-values of the tests are, respectively, 0.0002 and 0.3269.

Hence, we decided to keep only parameter ψ4,2 in the model. This results of the likelihood

tests effectively mean that multivariate events only with HSBC’s exceedances contribute to the

dependence structure (it should not be interpreted that only extreme events of that bank affect

the dependence structure). Parameter estimates can be found in Tables 1.6.

Table 1.6: Parameter estimates of the four-dimensional model of exceedances. An inverse
Hessian of the likelihood function is used to obtain the standard errors reported in parentheses

right to the estimates.

Parameter Estimate
θ4,0 1.2304 (0.0298)
γ4,0 0.0427 (0.0132)
ψ4,2 0.1249 (0.0156)

The time varying dependence parameter θ(t) and the estimated conditional probabilities of

multivariate exceedances are depicted in Figure 1.10. The results for the goodness-of-fit can be

found in Figure 1.11. Again the hypothesis that residual inter-arrival intervals are independent

standard exponentially distributed is supported by Kolmogorov-Smirnov and Ljung-Box (15 lags)

tests, which failed to reject the corresponding null hypothesis with p-values, respectively, 0.4798

and 0.1855.

To test accurateness of the assumption that the dependence parameter between different com-

binations of the banks’ returns can be modelled as in (1.51), we consider goodness-of-fit for the

two- and three-dimensional sub-models of rate (1.50). For example, one of its three-dimensional
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Figure 1.10: The estimated time-varying dependence parameter (left-hand panel) and the
conditional probability of multivariate events when at least one margins exceed the initial
threshold (right-hand panel) in the four-dimensional model. The tick marks at the bottom of

the right panel denote times of multivariate events.
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Figure 1.11: Exponential QQ-plot of the residual inter-exceedances intervals in the four-
dimensional model (left-hand panel). The sample autocorrelation function of those (squared)

intervals (right-hand panel).

rates is of the form

τ(t, x1, x2, x3) =
(
τ1(t, x1)θ(t) + τ2(t, x2)θ(t) + τ3(t, x3)θ(t)

)1/θ(t)

. (1.52)

Treating those lower dimensional versions of (1.50) as the rates of the corresponding sum of

marginal point process, we employ the same goodness-of-fit procedure as for the main model.

Table 1.7 reports the p-values of the Kolmogorov-Smirnov and Ljung-Box (15 lags) tests for

residual inter-exceedances intervals for different combinations of the considered banks. The

corresponding exponential QQ-plots can be found in Appendix E. It is evident from the table

that all sub-models describe the data well supporting by this our suggestion that the extreme

dependence between the banks can be described by relationship (1.51). In case the number of

considered banks (firms) is large, one can consider the extreme dynamics of the market index to

construct the dependence parameter between those banks.

Table 1.7: p-values the Kolmogorov-Smirnov (KS) and Ljung-Box (LB) with 15 lags tests
for residual inter-exceedances intervals for the two- and three-dimensional sub-models of the

four-dimensional model.

Combination KS LB Combination KS LB
DB and HSBC 0.3311 0.7799 RBS and HSBC 0.5676 0.9322

DB and RBS 0.1835 0.8049 DB and HSBC and RBS 0.3231 0.4384
DB and UBS 0.5641 0.8803 DB and HSBC and UBS 0.6107 0.5896

HSBC and RBS 0.3108 0.7943 DB and RBS and UBS 0.4333 0.5212
HSBC and UBS 0.2807 0.6523 HSBC and RBS and UBS 0.4024 0.7976
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The fit of the model of joint exceedances in the two and four-dimensional cases suggest that

the model provides an efficient way to quantify the effects that cause the clustering of extreme

financial returns. Among others, these effects are the reaction of markets to common economic

factors and interplay between markets through time-varying linkages. Note that while being able

to quantify the effects, our model cannot explain the source of clustering and contagion, because

our model is decidedly reduced-form. To show when and where exactly the shock occurs, a pure

qualitative analysis is required.

1.5 Conclusion

In this chapter of the thesis, we develop a multivariate approach to model extreme asset returns

considering the conditional distributional properties of both their magnitudes and occurrence

times. The approach is developed in the framework of self-exciting point processes and mul-

tivariate extreme value theory, and follows naturally from treating the multivariate process of

extreme events as a univariate process constructed as a superposition of individual extreme

events. This is an intensity-based model which incorporates a feasible possibility to get updated

in continuous time and lends itself to likelihood inference.

The major statistical contribution of the chapter is that it shows that, provided the marginal

processes of extreme events follow the self-exciting peaks-over-threshold model, the functional

form of the multivariate rate of extreme exceedances should follow the exponent measure of an

extreme value copula. This exponent measure combines the marginal rates into the multivari-

ate one. Due to its construction, the model can capture typical features of the financial time

series, namely, heavy tails, extreme dependences, and clustering of extreme events in both time

and across the assets (markets). A separate contribution of this chapter is a derivation of the

stationarity conditions for the self-exciting peaks-over-threshold model with predictable marks

(the marginal process of exceedances).

To estimate the proposed model, we derive the closed form likelihood function and describe the

goodness-of-fit and simulation procedures. Additionally, we consider the model estimation based

on method of moments, which, however, turned out to be inferior to the MLE. The reason lies in

the fact that the moment conditions cannot be directly calculated from the sample independently

from the unknown parameters of the models.

We implemented the estimation procedure on extreme negative returns, studying MSCI-EU and

MSCI-USA indexes, and equity of Deutsche Bank, RBS, HSBC, and UBS. The goodness-of-fit

procedure demonstrates a reasonable fit of the model and suggests an empirical importance of

the self-exciting feature for modeling both occurrence times, magnitudes, and interdependencies

of the extreme returns. While the dependence structure of the model can account for asymmetry

relationships, we find that conditional multivariate distributions of the returns are close to sym-

metric. Nevertheless, there are still asymmetric effects coming from the self-exciting structure

of the conditional marginal distributions of the magnitudes of the exceedances. In the bivariate

application with MSCI-EU and MSCI-USA indexes, we find that the extreme return exceedances

of MSCI-EU are decisive (statistically) for modeling strength of the dependence between the two
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indexes. For the banking data, the multivariate exceedances with HSBC equity are the most

important for modeling the dependence.

In the future research, it would be interesting to consider high-dimensional applications of the

model for, e.g., risk management purposes, and to compare its performance to existing alter-

natives. This comparison would be particularly interesting if the application to high frequency

data is considered. In order to overcome the problem of parameters’ proliferation and to provide

a flexible estimation approach, we plan also to apply the principle of pair copula construction to

our multivariate point-process model.
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Appendix A

Method of Moments

The goodness-of-fit characteristics χj and mi,j , which are standard exponentially distributed

under a correctly specified model, can be used for construction of moment conditions for the

Method of Moments (MM) estimation of both the SE-POT and multivariate models. To estimate

seven parameters of the SE-POT model, one can set the following seven moment conditions

1
Nui

∑Nui
j=1 χj,i = 1

1
Nui

∑Nui
j=1 χ

2
j,i = 2

(
1
Nui

∑Nui
j=1 χj,i

)2

1
Nui

∑Nui
j=1 χ

3
j,i = 6

(
1
Nui

∑Nui
j=1 χj,i

)3

1
Nui

∑Nui
j=1 Zj,i = 1

1−ξi
1
Nui

∑Nui
j=1 Z

2
j,i = 2

(1−ξi)(1−2ξi)

1
Nui

∑Nui
j=1 mj,i = 1

1
Nui

∑Nui
j=1 (Tj,i − Tj−1,i) = 1

τ̄i
=: γi−ψi(1+δi)

τiγi

(A.1)

where Zj,i :=
Xi,Ti,j−ui

βi+αiv∗i (Ti,j)
follows a GPD distribution with shape parameter ξi and scale pa-

rameter 1. Solving (numerically) the above system one can easily obtain estimates for the seven

parameters of the SE-POT model. Extending this approach one can add some extra moment

conditions and employ Generalized Method of Moments (GMM) with the common procedure

of estimating the weighting matrix as the inverse of the covariance matrix, see, e.g., Greene

[2003]. However, Monte Carlo simulations (not reported in this paper) suggest that the GMM

provides inferior estimates to the MM ones. The reason for the poor performance is attributed

to numerical instability and high sensitivity to the starting values of the GMM estimators of the

SE-POT model.

One can proceed similarly for construction of the moments condition for the MM estimation the

multivariate model. In particular, those may include moment conditions on (standard exponen-

tial distributed) χj and its variants for lower dimensional models. For the MM estimation of the

48



Appendix A. Method of Moments 49

bivariate model with, say, four parameters driving θ(t), the following conditions were used

1
N

∑N
j=1 χj = 1

1
N

∑N
j=1 χ

2
j = 2

(
1
N

∑N
j=1 χj

)2

1
N

∑N
j=1 χ

3
j = 6

(
1
N

∑N
j=1 χj

)3

1
N

∑N
j=1 exp (−χj) =

(
1 +

(
1
N

∑N
j=1 χj

))−1

(A.2)

where χj is from (1.46) and N is the number of events in the sample when at least one margin

jumps. Although the method of moments is intuitive and easily programmed, in most cases,

however, the method of moments estimators are not efficient, Greene [2003]. Furthermore,

unreported simulation results suggest that the maximum likelihood is superior in finite samples

for our model.



Appendix B

Extreme value condition and the

initial threshold

The rate of multivariate extreme exceedances (1.19) is governed by the extreme value copula,

which corresponds, as it is suggested by Proposition 1.6, to the dependence structure of ex-

treme magnitudes of observations. Considering the extreme dependence one distinguishes two

possible cases: asymptotic dependence and asymptotic independence, – which require two dif-

ferent estimation procedure of the dependence structure. Hence, it is important for a correct

parametrization of the multivariate model to find the appropriate type of the asymptotic depen-

dence. The condition of heavy-tailedness of the observations must also be checked, because it is

a prerequisite for the use of the SE-POT model.
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Figure B.1: Sample mean excess plots of negated daily log-returns of the MSCI-USA, MSCI-
EU, DB, HSBC, RBS, and UBS. Solid red vertical lines indicate the initial threshold chosen

for the model estimation.

Addressing the later condition, we rely on the mean-excess function to verify if the data is heavy-

tailed and if GPD is an appropriate distribution. Details on this and other methods may be

found, e.g., in McNeil, Frey, and Embrechts [2005], Embrechts, Klüppelberg, and Mikosch [1997],
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Figure B.2: Estimated Q-curves on
negated returns of MSCI-USA and
MSCI-EU: k denotes the number of
upper order statistics used for estimation.
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Figure B.3: Exponential QQ-plots of
time intervals, measured in days, between
consecutive marginal exceeances above the

initial threshold.

Resnick and Stărică [1995], Chavez-Demoulin and Embrechts [2011]. For positive-valued data

X1, X2, . . . , Xn and its high threshold v, the mean-excess function is defined as

en(v) =

∑n
i=1(Xi − v)I{Xi>v}∑n

i=1 I{Xi>v}
. (B.1)

Plotting {Xi,n, en(Xi,n)}, where Xi,n denotes the ith order statistic, we consider a shape of the

mean-excess function for i close to n. If the shape looks approximately linear then this suggests

that GPD is an appropriate distribution for the excesses over that threshold. The point where

the mean-excess function visually becomes close to linear can be set as a threshold for GPD

estimation.

Figures B.1 plots the estimates of mean-excess function for the last 6% of the sample upper

order statistics. Solid vertical lines on the figure denote the marginal initial thresholds cho-

sen for estimation of the SE-POT. For MSCI-USA and MSCI-EU series the initial threshold

was set on the 97.7% quantile of the empirical distributions, which corresponds, respectively, to

2.4922% and 2.8601% and results in 132 marginal exceedances for the two indexes and in 53

joint exceedances. For the bank data the initial thresholds are the following: 5.3201% for DB,

4.2021% for HSBC, 5.8534% for RBS, and 5.1799% for UBS. Those threshold correspond to the

97.9% quantile of the empirical distributions, with result in 100 marginal (for all four indexes)

and 16 joint exceedances. Figure B.3 illustrates the exponential QQ-plots for the time inter-

vals between consecutive marginal exceedances above the initial thresholds. If the exceedances

occurred independently then one would observe the exponential distribution of the intervals.

Clearly, the exceedances do not occur independently: there are higher than expected frequencies

of the small time intervals, i.e., there is a clustering of high losses. This observation, along with

the heavy-tails of the returns, justifies the use of the SE-POT model.

Considering the asymptotic dependence, we employ a graphical illustration called a Q-curve, see

de Haan and Ferreira [2006] for details. Figure B.2 illustrates the Q-curve of the negative log

returns of MSCI-USA and MSCI-EU, estimated on different number (k) of upper order statistics

of the return series. The line labeled “ind” indicates the Q-curve in the independence case.

Note that flat Q-curves indicate asymptotic independence. The curves on Figure B.2 differ
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significantly from a straight line indicating that there is no asymptotic independence between

negative log returns of MSCI-USA and MSCI-EU indexes.

To visualize theQ-curve in the four-dimensional case, we report its three-dimensional projections.

Analogously to the bivariate case, a flat convex shape of the Q-curve in the three dimensional

case indicates the presence of asymptotic independence. If the shape is concave, one expects no

asymptotic independence. Figure B.4 illustrates the three dimensional Q-curves of DB, HSBC,

RBS, UBS return series, estimated on 200 upper order statistics of the return series. The
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Figure B.4: Estimated Q-curves on negated log-returns of DB, HSBC, RBS, and UBS.

curves on Figure B.4 differ significantly from a flat curve indicating that there is no asymptotic

independence between negative log returns of DB, HSBC, RBS, UBS equity prices.
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Marginal goodness-of-fit tests
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Figure C.1: Exponential QQ-plot of the residual marginal inter-exceedances intervals.
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Figure C.2: Exponential QQ-plot of the residual marks.
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Table C.1: p-values of Kolmogorov-Smirnov (KS) and Ljung-Box (LB) tests checking the
hypothesis of exponentially distributed and uncorrelated residual inter-exceedance intervals

and marks of the marginal processes of exceedances.

residual intervals residual marks
Data KS LB KS LB

MSCI-US 0.5498 0.9185 0.9558 0.9869
MSCI-EU 0.2566 0.4211 0.2358 0.9862

DB 0.3788 0.5971 0.4439 0.4809
HSBC 0.8852 0.2812 0.6144 0.6251

RBS 0.9349 0.7653 0.7534 0.3143
UBS 0.9237 0.6603 0.9563 0.0314



Appendix D

Goodness-of-fit for the bivariate

model with the MM estimates

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.2

0.4

0.6

0.8
MSCI−USA

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

0.1

0.2

0.3

0.4

Time

MSCI−EU

Figure D.1: Estimated conditional rate of the marginal exceedances over the initial threshold
for MSCI-USA and MSCI-EU. MM estimates from Table 1.2.
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Figure D.2: The estimated time-varying dependence parameter (left-hand panel) and the
conditional probability of multivariate events when at least one margins exceed the initial
threshold (right-hand panel) in the two dimensional model. The tick marks at the bottom of

the right panel denote times of multivariate events. MM estimates.
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Figure D.3: Exponential QQ-plot of the residual inter-exceedance intervals (left-hand panel)
in the bivariate model. The sample autocorrelation function of those (squared) intervals (right-

hand panel). MM estimates.



Appendix E

Goodness-of-fit for the

sub-models of the

four-dimensional model
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Figure E.1: Exponential QQ-plot for the residual inter-exceedance intervals of the bivariate
sub-models of the four-dimensional model.
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Figure E.2: Exponential QQ-plot for the residual inter-exceedance intervals of the trivariate
sub-models of the four-dimensional model.



Chapter 2

Forecasting extreme electricity

spot prices

2.1 Motivation

Electricity spot prices are typically characterized by their disposition towards sudden extreme

jumps. This phenomenon stems from the lack of practical ways to store electricity and is at-

tributed to an inelastic demand for electricity and very high marginal production costs in case of

unforeseen shortfalls in electricity supply or unexpected rises in the demand. Although lasting

for rather short time intervals, the magnitudes of those jumps may take extreme proportions

hundred times exceeding the average electricity prices. This type of price behavior presents an

important topic for the risk management research and is of great relevance for electricity market

participants, for example, retailers, who buy electricity at market prices but redistribute it at

fixed prices to consumers. Estimating the probabilities of electricity prices to exceed some high

thresholds is of paramount importance for the retailers, because even a few hours of extreme

prices on the market may cause significant losses in their portfolios.

The problem of modeling extreme electricity prices was considered in many papers, e.g., Eichler,

Grothe, Manner, and Tuerk [2012], Christensen, Hurn, and Lindsay [2012], which concentrate

on modeling times of extreme price occurrences in Australia’s national electricity market, and

Klüppelberg, Meyer-Brandis, and Schmidt [2010] for the electricity spot price model applied to

daily data of the EEX Phelix Base electricity price index. Considering the recent developments

in modeling extreme electricity prices, there is still a lack of an approach for a combined modeling

of times of occurrence and magnitudes of extreme electricity prices in real time (high frequency)

settings. To fill that gap, we develop in this chapter of the thesis a model for a complete

description of extreme electricity spot prices. The model consists of two components (sub-

models): one for modeling the magnitudes of extreme electricity prices and the other for modeling

occurrence times of extreme electricity prices. Once being estimated, our model can be applied

(without re-estimation) for forecasting the price exceedances over any sufficiently high threshold.
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Figure 2.1: Electricity prices in NSW region of Australia’s electricity market over the period
Jan 1, 2002–Dec 31, 2011.

This unique feature is provided by a special construction of the model in which price exceedances

over a comparatively small threshold may trigger the exceedances over much larger levels.

Common distributions used in the literature for modeling electricity prices are Gaussian, expo-

nential, and generalized beta (Geman and Roncoroni [2010], Becker, Hurn, and Pavlov [2007]).

Since those distributions cannot account for heavy tails of the magnitudes of extreme electric-

ity spot prices, we suggest, first, to use a generalized Pareto distribution (GPD) for capturing

the heavy tails and, second, to employ a copula (survival Clayton) with a changing dependence

parameter for capturing the serial dependence between the magnitudes. We account also for

possible ceilings in the electricity prices by applying the censored GPD approach.

For modeling occurrence times of extreme electricity prices, we propose a duration model based

on a negative binomial distribution with a time-varying parameter. That model can capture the

main features of time intervals between the extreme price occurrences, namely, the high variabil-

ity, the strong persistence, and the discreteness. We compare the performance of the proposed

model to the performance of other suitable approaches, like the autoregressive conditional dura-

tion model [Engle and Russell, 1998] and the Hawkes process [Hawkes, 1971].

The model of this chapter of the thesis is developed on and applied to the dataset of half-hourly

electricity spot prices from the four regions of Australia’s electricity market: New South Wales

(NSW), Queensland (QLD), South Australia (SA), and Victoria (VIC). The dataset consists of

175296 observations, embracing the period over January 1, 2002–December 31, 2011.

The rest of the chapter is organized as follows. In Section 2.2 we define a price spike, a building

block of our approach, and provide then a short data-analysis of the prices. In Sections 2.3

and 2.4 we present our models for, respectively, magnitudes and times of the spikes. Section

2.5 combines those models into one model for forecasting extreme electricity prices. Section 2.6

concludes.

2.2 Defining a price spike

In intra-day electricity spot prices, one frequently observes a feature which is common for most

electricity markets, namely sudden extreme prices. In Australia’s electricity market, for example,
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Figure 2.2: Mean and standard deviation of the electricity prices pooled by 30-min period
of the day.

the magnitude of some prices 300 times exceeds the sample average, see Figure 2.1 for electricity

prices from NSW region and Table 2.1 for descriptive statistics of the half-hourly prices from

the four regions of Australia’s electricity market embracing the period over January 1, 2002–

December 31, 2011. Modeling and forecasting those extreme electricity prices is the aim of this

chapter of the thesis.

A building block of our model is a (price) spike, under which we understand a situation when

the electricity price exceeds a certain high threshold. We use the spikes to develop two separate

models: one (in Section 2.3) for the magnitudes of the spikes and the other (in Section 2.4)

for the times of spike occurrences. In Section 2.5, we combine those two models into one for a

complete description of extreme electricity prices. The final model can provide probabilities of

the prices to exceed not only the threshold of the spikes, but any other sufficiently high level.

All those models are developed on the dataset from Australia’s electricity market.

Table 2.1: Descriptive statistics for half-hourly electricity spot prices (AUD/MWh) from the
four regions of Australia’s electricity market in the period over January 1, 2002–December 31,

2011.

NSW QLD SA VIC
mean 39.8 36.1 43.8 35.1

median 25.1 22.7 28.1 25.2
st. dev. 224.3 189.8 283.7 158.3

skewness 31.6 31.9 31.4 44.7
kurtosis 1138.5 1191.3 1065.1 2349.7

number of observations 175296 175296 175296 175296
Note: subscripts on the column headings indicate four regions of
Australia’s electricity market: New South Wales (NSW), Queens-
land (QLD), South Australia (SA), and Victoria (VIC).

Treating a spike as a situation when the price exceeds a certain high threshold, there are different

approaches in the literature how to set that threshold. In Christensen, Hurn, and Lindsay [2009],

Eichler, Grothe, Manner, and Tuerk [2012], the choice of the threshold is argued either by needs of

the market, e.g., 300AUD/MWh is the strike price of heavily-traded cap products in Australia’s

electricity market, or simply by convenience, e.g, setting the threshold at the 95% quantile of the

prices. In both those cases the threshold is fixed and hence does not incorporate the electricity

prices’ diurnal structure, which is explicitly manifested in the prices’ changing mean and variation

during the day, see Figure 2.2.
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Figure 2.3: Diurnal threshold. Note:
solid vertical lines illustrate parts of the
day where parameter ξ of the GPD can be
assumed to be the same, details in Section

2.3.1.1.
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Figure 2.4: Monthly proportions of the
spikes. Note: the period of atypically high
proportion of spikes in 2007 will be re-
moved in modeling occurrences times of

the spikes.

This diurnal structure has a strong impact on the retailers’ expectations of the prices. For

instance, a retailer operating on Australia’s electricity market at 6am may expect an average

price for electricity of approximately 20AUD/MWh, but at 12am the retailer’s expectation are

completely different: the average price is doubled and the standard deviation is at least tripled.

Due to these varying expectations, the price level of 155AUD/MWh at 12am can be regarded

as extreme because it exceeds the 99% quantile of the expected prices at 12am, but at 6am the

price should exceed the level of only 50AUD/MWh in order to be considered as extreme in the

same sense. Those comparatively small extreme prices carry information about the state of the

market (indicating, for example, a rise in the demand for electricity or a shortfall in the supply)

and they should therefore be accounted for in forecasting electricity prices to exceed some higher

(e.g. > 300AUD/MWh) thresholds.

Considering the diurnal distribution of the prices as a representation of the retailers’ price expec-

tations, we suggest to define a spike as a situation when the price exceeds a certain high quantile

of those expectations. For this reason we set the diurnal threshold – the threshold which consists

of 48 values corresponding to the 97% quantile of the prices happened at each of 48 half-hour

periods of the day. The choice of the 97% quantile is motivated by the intention to consider high

prices, on one hand, and to have enough data for statistical inferences, on the other hand. The

spikes defined with help of the diurnal threshold will be used in Section 2.5 for construction of

the model that can forecast the prices to exceed not only the diurnal threshold, but any other

sufficiently high levels.

Figure 2.3 and 2.4 plot, respectively, the diurnal threshold and monthly proportions of the spikes

provided by that diurnal threshold in the four regions of Australia’s electricity market in the

period over January 1, 2002–December 31, 2011. Note that an atypically high proportion of the

spikes in the year 2007 is unrepresentative for the whole dataset and can severely distort the

modeling of times of spike occurrences. We will address that issue in Section 2.4.
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Figure 2.5: Sequential sample second moments of the electricity prices on the NSW region.
The second moments were calculated on the electricity prices from the 1st Jan 2002 to the

time point denoted on x-axis.

2.3 Modeling magnitudes of the spikes

We understand a spike magnitude as the excess of the price level over the corresponding value

of the diurnal threshold at times when spikes occur. Throughout the chapter, Y1, Y2, . . . , YN

will denote N consecutive (random) spike magnitudes. In Section 2.3.1 we develop a model

for capturing the main features of the spike magnitudes. Section 2.3.2 considers a censored

estimation procedure to account for the ceiling in the electricity prices. In Section 2.3.3 we

report on the estimation results of fitting the model to magnitudes of the spikes occurred in the

four regions of Australia’s electricity market in the period over January 1, 2002–December 31,

2011.

2.3.1 Description of the model

2.3.1.1 Modeling long tails in magnitudes of the spikes

Magnitudes of extreme electricity prices are often modelled with Gaussian, exponential, or gen-

eralized beta distributions, see, for example, Geman and Roncoroni [2010], Becker, Hurn, and

Pavlov [2007]. Considering the large variability of the electricity prices, see Figure 2.1, those

methods may significantly underestimate the spike risks in the high-frequency electricity spot

prices because they cannot account for their heavy tails. In fact, the electricity prices have such

heavy tails that the sequential sample second moments of the prices erratically jump and do not

tend to any limit, see Figure 2.5. To account for the heavy tails, we suggest to use a generalized

Pareto distribution (GPD) for modeling magnitudes of the spikes. The distribution function of

the GPD is defined as follows

G(x; ξ, β) =

1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp(−xβ), ξ = 0,
(2.1)
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Figure 2.6: Mean excess functions calculated for the NSW electricity prices pooled by 1st,
14th, 19th, 36th, 45th, and 48th half-hour period of the day.

where β > 0, x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −β/ξ for ξ < 0. We shall refer to ξ and β as,

respectively, the shape and scale parameters. Note that the GPD distributed random variable

X is a heavy-tailed and it holds E
(
Xk
)

=∞ for k ≥ 1/ξ.

The GPD possesses several properties which are beneficial in modeling magnitudes of the spikes.

First, it was shown in Pickands [1975] that for distributions belonging to the domain of attraction

of an extreme value distribution, i.e., for heavy-tailed data, the GPD is a limiting distribution for

excesses over a suitably high threshold. This result basically means that the GPD is the canonical

distribution for modelling excesses over high thresholds, see McNeil, Frey, and Embrechts [2005],

Section 7.2.1. Since the electricity prices are heavy-tailed, the GPD is a natural choice to model

the magnitudes of the spikes.

Second, the GPD is characterized by threshold stability property stating that if excesses over

some threshold u1 can be modelled by the GPD with the shape parameter ξ and the scale

parameter βu1
, then excesses over the higher threshold u2 can be modelled by the GPD with the

same shape parameter ξ and the scale parameter βu2
defined as βu2

= βu1
+ ξ(u2 − u1). Using

the GPD for the spike magnitudes may provide better estimates of the tail of the spikes and

protect against arbitrariness involved in the choice of the diurnal threshold. See Davison and

Smith [1990] for a detailed record on using the GPD to model exceedances over high thresholds.

Modeling extreme electricity prices with the GPD can also be found in Klüppelberg, Meyer-

Brandis, and Schmidt [2010]. Note that the use of Paretian distributions (GPD’s special case) to

model commodity prices was first suggested in Mandelbrot [1963]. Finally, the choice of the GPD

for the tails of the electricity prices is supported by an empirical diagnostic for the GPD, namely,

the mean excess function, see Section 7.2.1 in McNeil, Frey, and Embrechts [2005]. Generally,

it holds that if that function, calculated for high thresholds, becomes linear, then the tail of the

data can well be described by the GPD model. To illustrate, Figure 2.6 plots the mean excess

functions calculated for the NSW electricity prices pooled by the half-hour periods of the day.
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Figure 2.7: Spearman’s rank correlation
between the lagged spike magnitudes.
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Figure 2.8: Histogram of the electricity
prices exceeding 400AUD/MWh.

Applying the GPD for description of the spike magnitudes is not straightforward, because the

diurnal structure of the prices implies that the spikes across the day have different characteristics

and hence they cannot be modelled by the same GPD. We suggest to model the spike magnitudes

belonging to each of 48 half-hour periods of the day by a separate GPD. In order to reduce the

number of the shape parameters (ξ) to be estimated, which, in turn, simplifies our model and

leads to more accurate estimates, we distinguish parts of the day when the shape parameters

of the prices can be assumed to be the same (but not the scale parameters). Based on the

individual estimates of ξ (not reported here) for the electricity prices pooled by each of the

half-hour periods of the day, a possible division of the day for estimation of ξ can be as follows:

12am–2am; 2.30am–7.30am; 8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm. Solid vertical lines

on Figure 2.3 illustrate that division. Further in the text, we will denote by m(i) a function

that identifies to which part of the day (where the shape parameters are assumed equal) the i-th

observation belongs, and by n(i) a function that identifies to which out of 48 half-hour periods of

the day the i-th observation belongs. The corresponding parameters of the GPD will be denoted

by ξm(i) and βn(i).

2.3.1.2 Modeling dependence in magnitudes of the spikes

In addition to the distributional choice for spike magnitudes Y1, Y2, . . . , YN , there is a need

of modeling a dependence between them. Figure 2.7 plots the estimated rank autocorrelation

of the spike magnitudes calculated as Spearman’s rank correlation between k-lagged samples

Y1, Y2, . . . , YN−k and Yk+1, Yk+2, . . . , YN . Although the autocorrelations on Figure 2.7 cannot

be directly interpreted, because time intervals between the spike occurrences ranges from 30

minutes to 5 months, they still clearly indicate a strong positive dependence between the spike

magnitudes. In addition to the strong dependence, extreme electricity prices display a peculiar

clustering behavior around the level of 10000AUD/MWh, see Figure 2.8, which is attributed to

price ceiling on the market. We will address modeling this price ceiling in Section 2.3.2.

Quantifying the dependence between the lagged magnitudes we withstand from using the Pearson

linear correlation as the measure of dependence, because, first, high variability of the spikes may

imply its infinite variance which rules out the existence of the linear correlation; second, the

linear correlation ρ between two generalized Pareto distributed random variables with shape
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parameters ξ1 and ξ2 can take values ρ ∈ [ρmin, ρmax], where

ρmin =

√
(1− 2ξ1)(1− 2ξ2)

ξ1ξ2
[(1− ξ1)(1− ξ2)B(1− ξ1, 1− ξ2)− 1] ,

ρmax =

√
(1− 2ξ1)(1− 2ξ2)

1− ξ1 − ξ2
,

with B(z, w) :=
∫ 1

0
tz−1(1 − t)w−1dt denoting a beta function. For instance, with ξ1 = 0.1 and

ξ2 = 0.4 the attainable correlations take values: ρmin = −0.3 and ρmax = 0.8, which clearly

illustrates how strongly the range of attainable correlations may be restricted and hence how

seriously the analysis may be misled if it is based on the linear correlation only. In general it

holds that the concept of correlation is meaningless unless applied in the context of a well-defined

joint model. For details about the attainable correlations and the pitfalls of linear dependence

measures consult McNeil, Frey, and Embrechts [2005], Section 5.2.1.

To describe a strong serial dependence in the spike magnitudes, we construct a model in which

the conditional distribution of a magnitude of the future spike depends only on a magnitude of

the latest one. This is motivated by the fact that the magnitude of the latest spike provides an

approximation of the most recent state of the supply and the demand for electricity indicating

whether a shift in the demand or the supply responsible for the spike is removed. Exactly this

information is most decisive for modeling spike magnitudes in high-frequency settings. For this

reason, seasonal components or long run dependencies are less relevant for this task (also because

they are already incorporated in the latest spike). Note that although only the latest spike is

used to model the magnitude of the future spike, the occurrence of this future spike depends on

the whole history of the spike occurrences as it will be highlighted in Section 2.4.

Since two consecutive spike magnitudes may have different unconditional generalized Pareto

distributions, see Section 2.3.1.1, it is reasonable to employ a copula – a conventional way

of handling dependences between non-identically distributed random variables. In a continuous

case, a copula is a multivariate distribution function with uniformly on [0, 1] distributed marginal

distributions. A detailed introduction to copulas can be found in Nelsen [2006], for an excellent

review of copula based models for econometric time series see Patton [2012]. To capture de-

pendence between two consecutive spikes Yi−1 and Yi, it is reasonable to model the conditional

distribution of Yi given Yi−1 = yi−1 as a conditional distribution of two random variables with

copula C(u1, u2), namely,

P
(
Yi ≤ y | Hti−1 , ti

)
=

∂

∂u2
C
(
FYi(y), FYi−1

(yi−1)
)
, (2.2)

where Hti−1
is a history of the first (i− 1) spikes including their magnitudes (y1, . . . , yi−1) and

times of occurrences (t1, . . . , ti−1); ∂
∂u2

C denotes a derivative of copula C(u1, u2) by the second

component; FYi is an unconditional distribution function of Yi (which is assumed to be the

GPD). Note that FYi (Yi) follows the uniform on [0, 1] distribution.

Specification (2.2) is a natural way of modelling the conditional distribution of spike magnitudes.

First, (2.2) offers a way of capturing various types of dependencies between the spike magnitudes
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and is not limited to linear correlation. Second, the use of copula in (2.2) allows for different

unconditional distributions (GPD) of the magnitudes providing more flexibility into the model.

Considering the choice for C(u1, u2), we prefer a dependence structure which is both simple, to

provide explicit simulation formulas, and flexible, to capture a changing dependence between the

spike magnitudes. We suggest to use the survival Clayton copula, which is defined as follows

C(u1, u2) = u1 + u2 +
(
(1− u1)−θ + (1− u2)−θ − 1

)−1/θ − 1, 0 < θ <∞. (2.3)

In the limit this copula approaches the independence copula as θ → 0 and the two-dimensional

comonotonicity copula as θ →∞. Beneficially to modeling clustering in magnitudes of the large

spikes, see Figure 2.7, copula (2.3) implies asymptotically dependent tails with a coefficient of

upper tail dependence λu = 2−1/θ. The choice of the Clayton copula is also motivated by the

fact that it is a limiting lower threshold copula of a large class of Archimedean copulas, see Juri

and Wüthrich [2002]. For example, the survival Clayton is the upper threshold copula of the

Galambos dependence function, which provides an accurate approximation for commonly used

Gumbel and t extreme value copulas, see McNeil, Frey, and Embrechts [2005], Section 7.6.3.

Applying copula for modeling dependence between two consecutive spikes Yi−1 and Yi, it is

reasonable to assume that the more time has elapsed between the spikes the less dependent they

are. To capture that idea, we suggest to model the dependence parameter θ of copula (2.3) as

θi = γ0 D−γ1i , γ0 > 0, γ1 ≥ 0, where Di denotes a time interval between occurrence of two

consecutive spikes Yi−1 and Yi, i.e, Di = ti − ti−1. This specification of θi implies a constant

(not time-varying) level of dependence between the spikes that are separated by the same time

interval.

With copula (2.3) and the GPD as an unconditional distribution of the spike magnitudes, the

conditional distribution of Yi in (2.2) takes the form

P
(
Yi ≤ y | Hti−1

, ti
)

= 1−
(

1 +
gi(y)θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

, (2.4)

with P (Y1 ≤ y | H0, t1) = 1 − g1(y)−1/ξm(1) , where again m(i) and n(i) denotes a function that

identifies, respectively, to which part of the day where the shape parameters are assumed equal

and to which out of 48 half-hour periods of the day the i-th observation belongs; ξm(i) and

βn(i) denote parameters of the GPD used for modeling magnitudes of the i-th spike; gi(y) =

1+ξm(i)
y

βn(i)
. Note that when the time interval between occurrence of consecutive spikes is large,

θi approaches zero vanishing any dependence between spikes Yi−1 and Yi yielding the conditional

distribution function of Yi as

P
(
Yi ≤ y | Hti−1

, ti
)

= 1− gi(y)−1/ξm(i) ,

which is the distribution function of the GPD.
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2.3.1.3 Estimation

For fully parametric copula-based time series models the most efficient estimation method is

maximum likelihood, see Patton [2012]. Assuming that the conditional distributions of the

spikes are independent, the (quasi-)likelihood of N realization y1, y2, . . . , yN of spike magnitudes

from model (2.4) takes the form

L =

N∏
i=1

∂P
(
Yi ≤ y | Hti−1

, ti
)

∂y

∣∣∣∣∣
y=yi

, (2.5)

where

∂P
(
Yi ≤ y | Hti−1

, ti
)

∂y

∣∣∣∣∣
y=yi

=
(θi + 1)

βn(i)

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(2+1/θi)
gi(yi)

θi/ξm(i)−1

gi−1(yi−1)θi/ξm(i−1)
,

(2.6)

with ∂P(Y1≤y|H0,t1)
∂y

∣∣∣
y=y1

= 1
βn(1)

g1(y1)−1/ξm(1)−1.

Computing standard errors of the estimated parameters we will consider robust standard errors,

which are calculated as the maximum likelihood analogue of White’s consistent standard errors,

see Section 17.9 in Greene [2003], and simulation-based standard errors, which are computed on

parameter estimates of the model fitted on many simulated samples from the originally estimated

model. The former approach is less sensitive to a possible misspecification of the model and the

latter approach, provided the correct model specification, yields correct finite-sample standard

errors when a number of simulations is sufficient, see Patton [2012].

2.3.1.4 Simulation and Goodness-of-fit

Applying the above model in practice, where true distributions are unknown, it is vital to

conduct a goodness-of-fit test and a simulation study to check the fit of the estimated model.

Our approach to the goodness-of-fit test is based on the probability integral transformation

[Diebold, Gunther, and Tay, 1998] of the sample of spike magnitudes y1, y2, . . . , yN with the

estimated conditional density forecast (2.4). Recalling that for a continuous random variable X

with distribution function F , F (X) is uniformly distributed on the unit interval, we obtain from

(2.4) that residuals defined as

ui = 1−
(

1 +
gi(yi)

θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

, i = 2, . . . , N, (2.7)

with u1 = 1 − g1(y1)−1/ξm(1) , are supposed to be N independent realizations from the uniform

on [0, 1] distribution, if the estimated model is correct (suitable). Since the goodness-of-fit looks

for evidence that the model is misspecified, the test of the estimated model can be limited to

checking a hypothesis that the residuals are independent realizations from the standard uniform

distribution.
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From (2.7), it is also immediate to construct the simulation procedure. It follows that

(
1 +

gi(Yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1/θi+1)

∼ Unif[0,1], i = 2, . . . , N, (2.8)

with g1(Y1)−1/ξm(1) ∼ Unif[0,1], where Y1, Y2, . . . , YN denote N consecutive (random) spike

magnitudes. Provided the knowledge of time intervals between the spikes (to calculate θi),

one can obtain a simulated spike magnitude by expressing Yi from the above equation for each

realization of Unif[0,1]. By adding to the simulated magnitude the corresponding value of the

diurnal threshold one obtains a simulated (extreme) electricity price.

2.3.2 Accounting for the price ceiling in magnitudes of the spikes

Due to legal regulations of Australia’s electricity market, the prices are capped at a maximum of

12500AUD/MWh. This ceiling was 5000AUD/MWh until April 1, 2002 and 10000AUD/MWh

in the period from April 1, 2002 to July 1, 2010. The numbers of prices in the sample which

have approximately reached the ceilings, we call those prices censored, are the following: 3

in NSW, 0 in QLD, 66 in SA, and 9 in VIC. Although there are only a few censored prices,

they still may have a strong effect on estimating tails of the spike magnitudes. For instance,

generating a sample of 500 observations from the GPD with parameters ξ = 0.7 and β = 1 and

directly estimating GPD, first, on the initial simulated sample and then on the same sample

but with all values exceeding the 95% quantile being substituted with this 95% quantile, we

get after 1000 simulations the following estimates: ξ̂ = 0.6930(0.0784) from the initial samples,

and ξ̂ = 0.4744(0.0917) from the censored samples. This example clearly indicates the need to

account for the price ceiling estimating tails of the electricity prices.

Constructing likelihood function LC which accounts for the ceiling in the electricity prices, we

distinguish four types of contribution LCi (yi) of observation Yi = yi to that likelihood function.

In case spike Yi−1 = yi−1 is censored and Yi = yi is not censored, the contribution of Yi = yi to

the likelihood is as follows

LCi (yi) =
∂P(Yi ≤ y | Hti−1 , ti, Yi−1 ≥ yi−1)

∂y

∣∣∣∣
y=yi

=

1

βn(i)

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1+1/θi)
gi(yi)

θi/ξm(i)−1

gi−1(yi−1)θi/ξm(i−1)
. (2.9)

As Yi−1 = yi−1 is not censored and Yi = yi is censored then

LCi (yi) = P(Yi ≥ yi | Hti−1
, ti, Yi−1 = yi−1) =

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−(1+1/θi)

. (2.10)

If both Yi−1 = yi−1 and Yi = yi are censored then

LCi (yi) = P(Yi ≥ yi | Hti−1
, ti, Yi−1 ≥ yi−1) =

(
1 +

gi(yi)
θi/ξm(i) − 1

gi−1(yi−1)θi/ξm(i−1)

)−1/θi
1

gi−1(yi−1)1/ξm(i−1)
.

(2.11)
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In the case of Yi−1 = yi−1 and Yi = yi being not censored, the contribution of Yi = yi is as in

(2.6).

The final likelihood function LC is a product of contributions LCi (yi) across all spikes, where

LCi (yi) takes one form of (2.6),(2.9)-(2.11).

2.3.3 Estimation results

In this section we report on the estimation results of fitting the model of Section 2.3.1 to the

magnitudes of the spikes occurred in the four regions of Australia’s electricity market over the

period January 1, 2002–December 31, 2011. Note that the model estimation is not adversely

affected by the atypically high proportion of spikes in the year 2007, see Figure (2.4), because

the conditional distribution (2.4) of the spike magnitudes depends only on the information of the

previous spike and time of the current spike occurrence, not on the whole history of the spikes.

Estimating the model, we define spikes that occurred by April 1, 2002 as censored if the associated

prices are higher than 4995AUD. Spikes happened in the period over April 1, 2002–July 1, 2010

are set as censored if the associated prices exceed the level of 9995AUD, and the spikes occurred

after July 1, 2010 are considered to be censored if the associated prices reach 12495AUD. Note

that, since the prices tend to cluster up to the ceiling, we allow for 5AUD deviation in identifying

the censored data. The numbers of observations in the sample which were set as censored are

the following: 3 in NSW, 0 in QLD, 66 in SA, and 9 in VIC. The total number of the spikes in

the samples is as follows: 5241 in NSW, 5279 in QLD, 5271 in SA, and 5278 in VIC.

Table 2.2 presents parameter estimates of model (2.4) obtained by maximizing the ceiling ad-

justed likelihood LC (column “censored”) and the unadjusted likelihood function L in (2.5)

(column “uncensored”). For estimation of the model we distinguish five parts of the day: 12am–

2am; 2.30am–7.30am; 8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm, – and model magnitudes of

the spikes within the part with the GPD which has the same shape parameter ξ but different

scale parameters β corresponding to every half-hour period of the day. Note that improving the

fit of the model for spike magnitudes in VIC region, we use another partition of the day where

the shape parameters are assumed equal. The partition is as follows: 12am–8am; 8.30am–12pm;

12.30pm–14.30pm; 15pm–5.30pm; 6pm–8pm, 8.30pm–11.30pm. In the table, we report only the

estimates of the shape parameter (ξ) of the GPD and of the dependence parameters (γ0, γ1).

To save space, estimates of the scale parameter are not displayed in the table.

Accounting for the price censoring has insignificant effects on the estimates of the shape param-

eter for NSW spikes, which have a few censored observations, but on the estimates for VIC and

SA spikes that effect is strong leading to a significant upward adjustment of the uncensored esti-

mates. Without that upward adjustment of the shape parameter estimates, the risk of extreme

prices would be underestimated.

Provided by the asymptotic distributional properties of the maximum likelihood estimators,

calculation of the robust standard errors for the parameter estimates in Table 2.2 is based on

the score vector and the inverse Hessian of the likelihood function. Since the use of asymptotic

arguments in finite-size samples may yield inaccurate results, we conduct a further analysis of
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Table 2.2: Parameter estimates of the model for spike magnitudes.

uncensored censored uncensored censored
NSW QLD

ξ̂1 0.4822 (0.0052) 0.4855 (0.0054) 0.5709 (0.0195) 0.5709 (0.0195)

ξ̂2 0.5125 (0.0022) 0.5161 (0.0029) 0.5298 (0.0022) 0.5298 (0.0022)

ξ̂3 1.1917 (0.0057) 1.1995 (0.0061) 1.2812 (0.0376) 1.2812 (0.0376)

ξ̂4 1.7956 (0.0113) 1.8161 (0.0123) 1.8200 (0.0260) 1.8200 (0.0260)

ξ̂5 0.8911 (0.0087) 0.8972 (0.0086) 1.2042 (0.0420) 1.2042 (0.0420)
γ̂0 2.8289 (0.1713) 2.8487 (0.1691) 2.7253 (0.7202) 2.7253 (0.7202)
γ̂1 0.3677 (0.0898) 0.3636 (0.0870) 1.4367 (1.7991) 1.4367 (1.7991)

SA VIC

ξ̂1 1.0049 (0.0095) 1.1463 (0.0092) 0.4693 (0.0029) 0.4841 (0.0030)

ξ̂2 0.7680 (0.0101) 0.8913 (0.0108) 0.8732 (0.0053) 0.9076 (0.0052)

ξ̂3 1.1501 (0.0303) 1.3036 (0.0325) 1.2580 (0.0163) 1.3031 (0.0164)

ξ̂4 1.7370 (0.0313) 2.3066 (0.0565) 1.6176 (0.0109) 1.6668 (0.0112)

ξ̂5 1.1263 (0.0372) 1.2982 (0.0408) 1.6290 (0.0146) 1.7265 (0.0149)

ξ̂6 – – 0.5561 (0.0082) 0.5735 (0.0083)
γ̂0 2.6284 (0.9160) 3.0280 (0.9684) 2.4701 (0.3261) 2.5457 (0.3256)
γ̂1 1.5777 (2.4453) 1.4117 (2.0451) 0.6722 (0.4040) 0.6400 (0.3559)
Note: This table presents estimates of the shape (ξ) and dependence (γ0, γ1) pa-
rameters of the model for spike magnitudes. For estimation of ξ in NSW, QLD,
and SA, five parts of the day were distinguished: 12am–2am; 2.30am–7.30am;
8am–13.30pm; 14pm–7pm; 7.30pm–11.30pm. For VIC region the following par-
tition was used: 12am–8am; 8.30am–12pm; 12.30pm–14.30pm; 15pm–5.30pm;
6pm–8pm, 8.30pm–11.30pm. The so-called “Huber sandwich estimator” is used
to obtain the robust standard errors reported in parentheses right to the estimates.

the estimators based on the ceiling adjusted maximum likelihood LC . We simulated 500 paths

of (censored) spike magnitudes with the parameter values of Table 2.2 (column “censored”) and

estimated the ceiling adjusted model on every simulated path. The mean, the standard deviation,

the mean relative bias, and the mean squared error of the estimated parameters are summarized

in Table 2.3. Non-surprisingly, the estimators show a large variation and tend to overestimate

the parameters. This large variation of the estimates is a typical feature of all extreme value

statistics, especially of those based on threshold data, see Klüppelberg, Meyer-Brandis, and

Schmidt [2010].

As a goodness-of-fit test of the estimated ceiling adjusted model, Figure 2.9 plots the autocorre-

lation of the residuals (û1, . . . , ûN ) computed according to (2.7). The estimated autocorrelations

lie mainly within the confidence bounds indicating no evidence against an assumption of zero

autocorrelations. This suggestion is supported by the Ljung-Box test (15 lags) which failed to

reject the null of no autocorrelation with p-values 61.82% for NSW, 91.44% for QLD, 16.58%

for SA, and 7.39% for VIC. The hypothesis of no autocorrelation was also supported by investi-

gating the squares of the residuals (p-values: 59.48% for NSW, 84.97% for QLD, 12.89% for SA,

28.06% for VIC). The absence of significant autocorrelation in the estimated residual indicates

the ability of our model to capture the serial dependence between the spike magnitudes.

Considering the distributional properties of (û1, . . . , ûN ), Figure 2.10 illustrates the plot of the

quantiles of transformed residuals (− log (û1) , . . . ,− log (ûN )) versus the corresponding quantiles

of the standard exponential distribution. We have also added to the figure the QQ-plots of 100
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Table 2.3: Estimated mean, standard deviation (std), mean relative bias (MRB), and mean
squared error (MSE) of estimated parameters for the ceiling adjusted model from 500 simulated

paths.

true value mean std MRB MSE true value mean std MRB MSE
NSW QLD

ξ̂1 0.4855 0.64 0.09 0.31 0.03 0.5709 0.67 0.09 0.17 0.02

ξ̂2 0.5161 0.68 0.08 0.32 0.03 0.5298 0.62 0.07 0.17 0.01

ξ̂3 1.1995 1.58 0.19 0.32 0.18 1.2812 1.51 0.15 0.18 0.08

ξ̂4 1.8161 2.48 0.28 0.37 0.53 1.8200 2.25 0.23 0.24 0.24

ξ̂5 0.8972 1.18 0.14 0.32 0.10 1.2042 1.41 0.14 0.17 0.06
γ̂0 2.8487 3.79 0.42 0.33 1.06 2.7253 3.23 0.27 0.19 0.33
γ̂1 0.3636 0.34 0.03 -0.07 0.00 1.4367 1.36 0.15 -0.05 0.03

SA VIC

ξ̂1 1.1463 1.36 0.13 0.19 0.06 0.4841 0.55 0.07 0.13 0.01

ξ̂2 0.8913 1.05 0.10 0.18 0.04 0.9076 1.03 0.12 0.13 0.03

ξ̂3 1.3036 1.56 0.14 0.19 0.08 1.3031 1.50 0.18 0.15 0.07

ξ̂4 2.3066 2.92 0.26 0.27 0.44 1.6668 1.95 0.22 0.17 0.13

ξ̂5 1.2982 1.55 0.15 0.20 0.09 1.7265 1.99 0.21 0.16 0.12

ξ̂6 – – – – – 0.5735 0.64 0.08 0.12 0.01
γ̂0 3.0280 3.64 0.28 0.20 0.46 2.5457 2.90 0.27 0.14 0.20
γ̂1 1.4117 1.35 0.13 -0.04 0.02 0.6400 0.62 0.05 -0.04 0.00
Note: This table presents characteristics for estimates of the shape (ξ) and dependence (γ0, γ1)
parameters of the ceiling adjusted model for the spike magnitudes estimated on 500 simulations
from that model with parameter values of Table 2.2 column “censored”.
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Figure 2.9: Autocorrelation of the resid-
uals. Solid vertical lines show 99% confi-

dence intervals.

Figure 2.10: QQ-plot of the transformed
residuals. Green points show expected de-

viations of the residuals.

realizations of the standard exponential random variable (in green color), to illustrate what type

of deviations one can expect. In case of a good fit of the estimated model, the transformed

residuals are supposed to be standard exponentially distributed, implying the uniform on [0, 1]

distribution of the estimated residuals. After an inspection of the plot, it becomes apparent that

the transformed residuals seem indeed be consistent with the standard exponential distribution,

although comparatively few of them deviate from the expected boundaries. Those few deviations

may be attributed, among others, to an inevitable estimation error of the model (55 estimated

parameters), the price ceiling, and a peculiar clustering behavior of the prices (especially in

QLD) around the level of 1700AUD/MWh, see Figure 2.8.

For a further analysis of the estimated ceiling adjusted model, we investigate its properties

in a small simulation study. Using the original time intervals between the spike occurrences
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to compute θi, we simulated 500 samples of the spike magnitudes (of the same length as the

original ones) and added to them the corresponding values of the diurnal threshold. The obtained

values can be considered as simulated extreme electricity prices in the absence of any ceilings.

To compare those prices with the original (censored) ones, we truncated the simulated values

at the level equal to the price ceilings of the corresponding original spikes, i.e, at the level of

12500AUD/MWh, 10000AUD/MWh, or 5000AUD/MWh depending on the time of the original

spike occurrences. The results, documented in Table 2.4, clearly indicate that the simulated

prices acceptably reproduce (in range of one standard deviation) the first two moments of the

original extreme prices and autocorrelation of the original spike magnitudes.

Table 2.4: Descriptive statistics of the actual and simulated prices (500 simulations).

actual simulated actual simulated
NSW QLD

mean 412.4 390.9 (55.97) 364.5 386.1 (39.76)
std 1237.9 1306.3 (174.9) 1037.9 1317.0 (128.2)

autocorr(1) 0.876 0.866 (0.004) 0.851 0.854 (0.004)
SA VIC

mean 474.5 452.3 (51.95) 263.3 232.6 (30.04)
std 1573.1 1488.6 (143.6) 878.3 893.6 (136.9)

autocorr(1) 0.812 0.799 (0.006) 0.853 0.827 (0.006)
Note: Standard deviations of the characteristics for simulated prices are
reported in parentheses. Row “autocorr(1)” denotes the Spearman’s
rank correlation between 1-lagged simulated spike magnitudes.

In light of the estimation results presented in this section, it seems that our model provides a

reasonable description of the spike magnitudes by capturing their heavy-tails, strong positive

dependence, and intra-day variability.

2.4 Modeling durations between spike occurrences

In this section, we concentrate on modeling times of the spike occurrences. Inspecting Figure

2.4, it becomes apparent that there was a systematic shock in Australia’s electricity market at

the beginning of 2007 causing monthly proportions of the spikes to reach the level of 60% in all

the regions. Since for explaining and forecasting of those systematic shocks a pure qualitative

analysis is required and our model is deliberately a reduced-form one, we omit that period in

statistical modeling times of the spike occurrences covering only the period over January 1, 2008–

December 31, 2010 for the model estimation, leaving the spikes happened over January 1, 2011–

December 31, 2011 for the out-of-sample evaluation. In Section 2.4.1 we define spike durations

and indicate their main features. A comparison of some existing approaches for modeling times

of spike occurrences is provided in Section 2.4.2. Section 2.4.3 introduces a new model for spike

durations. Estimation results are provided in Section 2.4.4.
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2.4.1 Spike durations

Under a spike duration, or simply duration, we understand a time interval between occurrences

of two consecutive spike. In Australia’s electricity market, the smallest duration constitutes

30 minutes, – we shall refer to that duration as a unit duration and assign a value of one to

it. Note that the unit duration denotes the smallest time interval between occurrences of two

consecutive spikes. Time intervals of 60 minutes correspond to durations of two, intervals of 90

minutes correspond to durations of three, and so on. Throughout the chapter D1, D2, . . . , DN

will denote a sample of N consecutive (random) spike durations.

A major challenge of modeling spike durations in Australia’s electricity market lies in their large

variation and high proportion of unit durations (at least 62%), see Table 2.5, indicating a strong

persistence of the spike occurrences and a distinctive integer character of the durations. There

are many models in the literature which may capture those distinctive features of the spike

durations. In the next section, we compare the performance of some of those models.

Table 2.5: Descriptive statistics for the spikes durations.

NSW QLD SA VIC
mean 64.72 95.57 52.46 43.76

std 284.09 438.83 226.78 213.59
proportion of unit durations 0.68 0.62 0.69 0.67

number of observations 760 539 969 1168
Note: spike durations are measured in units of 30 minutes.

2.4.2 Models for the spike durations

A well-known model for durations is the autoregressive conditional duration (ACD) suggested

by Engle and Russell [1998], see Bauwens and Hautsch [2009] for an overview of extensions and

applications of this model. Another suitable approach for duration (actual time) modeling is the

Hawkes process [Hawkes, 1971]. Applications of the Hawkes process to modeling financial time

series can be found in Embrechts, Liniger, and Lin [2011], Aı̈t-Sahalia, Cacho-Diaz, and Laeven

[2011], Chavez-Demoulin, Davison, and McNeil [2005], Bowsher [2007].

To demonstrate the performance of the those approaches, we estimated four models on NSW

spike durations from the period over January 1, 2008–December 31, 2010: Exponential ACD(1,1),

Weibull ACD(1,1), Burr ACD(1,1) [Grammig and Maurer, 2000], and the univariate Hawkes

process with an exponential response function. As a measure of goodness-of-fit of the estimated

models, Figure 2.11 illustrates a plot of empirical quantiles of the standardized durations (trans-

formed by theoretically implied distribution into standard exponential) of the estimated ACD

models and the residual inter-arrivals times, see Embrechts, Liniger, and Lin [2011] for a defini-

tion, of the estimated Hawkes process versus corresponding quantiles of the standard exponential

distribution.

For a reasonable fit of the models one expects the standardized durations and the residual inter-

arrivals times to follow the standard exponential distribution. The QQ-plots indicate a strong

deviation from the standard exponential distribution suggesting that the estimated ACD models
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Figure 2.11: QQ-plot of the standardized durations (transformed by the theoretically implied
distribution to the standard exponential) of the estimated ACD models and the residual inter-
arrivals times of the estimated Hawkes process. The models were estimated on NSW spike

durations occurred in the period over January 1, 2008–December 31, 2010.

and the Hawkes process are inappropriate for describing the spike durations (these estimation

results are similar to SA, QLD, and VIC regions). A possible reason for a poor performance of

the ACD model is its implied linearity of impact of past durations on the expected value of the

future ones. This linear structure of the conditional expectation may be insensitive to capture

both the large dispersion and the strong clustering behavior of the spike durations. Furthermore,

none of the models can accommodate the prominent integer character of the spike durations,

which clearly can be observed as a sharp bend in the QQ-plots.

2.4.3 Negative binomial duration model

For description of the spikes durations we need a model which can reproduce their large variation

and strong clustering pattern, and, finally, be of a discrete nature as the spikes durations are. A

possible candidate which can meet those requirements is a model based on a Poisson distribution.

An argument against the Poisson distribution is a difficulty in modeling the high variability of

the durations: the Poisson distribution has a ratio of variance to mean of one but the durations

have much higher ratios, see Table 2.5.

To accommodate the high variability of the spike durations, we suggest to use a negative binomial

distribution. This distribution can be regarded as a gamma mixture of Poisson distributions,

implying that it always has a higher ratio of variance to mean than a corresponding Poisson

distribution. This feature is beneficial for modeling a large variation of the durations. Further-

more, negative binomial distribution is more flexible, which allows for a better modelling of the

strong clustering pattern in the spike durations. A recent study of the negative binomial model

for time series can be found in Davis and Wu [2009].

A random variable X whose distribution is negative binomial with parameters r > 0 and p ∈
(0, 1) has the mean µ = r(1−p)

p , the variance σ2 = r(1−p)
p2 , and the probability mass function

fNB(k; r, p) := P (X = k) =
Γ(r + k)

Γ(k + 1) Γ(r)
pr(1− p)k, k = 0, 1, 2, . . . , (2.12)
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Figure 2.12: Density function of the negative binomial distribution.

where Γ(·) is the gamma function: Γ(k) =
∫∞

0
xk−1e−xdx. Note for a positive integer k, the

gamma function is related to the factorial by Γ(k) = (k − 1)!. Figure 2.12 illustrates density

function fNB(k; r, p) for various sets of parameters.

2.4.3.1 Model description

For modeling durations we consider the following approach. Let D1, D2, . . . , DN , be a se-

ries of (spike) durations. We assume that the conditional distribution of Di depends only on

D1, . . . , Di−1 and it can be expressed in the following way

P
(
Di = k | Hti−1

)
= fNB(k − 1; r, pi), k = 1, 2, . . . (2.13)

where fNB(·; r, p) is a probability mass function of the negative binomial distribution, see (2.12),

and pi is a function of (D1, . . . , Di−2, Di−1). Recall that Hti−1 is a history of the first (i−1) spikes

including their magnitudes (y1, . . . , yi−1) and times of occurrences (t1, . . . , ti−1). To account for

the strong persistence of the spike occurrences, we suggest the following parametrization for pi:

pi = ω + αDi−1pi−1, α ∈ (0, 1). (2.14)

This parametrization comes from a simple AR(1) process and is constructed to accommodate

an empirical evidence that spikes in the electricity prices tend to cluster. Dependence between

parameters pi and pi−1 provides an intuitive link between durations of consecutive spikes as the

dependence between them is adjusted to time span Di−1 between their occurrences: when Di−1

is small then parameter pi of Di becomes strongly influenced by pi−1 leading to an increased

probability that time interval Di will be small; in case Di−1 is large, αDi−1 ≈ 0 implying that

pi−1 has a small contribution to pi. Similarly to modeling spike magnitudes, we restrain from

incorporating seasonal components or long run dependencies into the durations modeling. This

is motivated by the fact that in high-frequently settings spikes are mainly caused by unexpected

supply shortfalls, rather than by well-known seasonal fluctuations.
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2.4.3.2 Estimation

Estimation of model (2.13) is easily performed by the (quasi-)maximum likelihood method. With

conditional distribution (2.13) and probability mass function (2.12), the log-likelihood function

of durations D1, . . . , DN takes the form

L(D1, . . . , DN ; r, ω, α) =

N∑
i=1

(log Γ(r +Di − 1)− log Γ(r) + r log pi + (Di − 1) log(1− pi)) .

(2.15)

Maximizing the likelihood we set a condition that a sample mean of durations D1, . . . , DN

should be equal to the expected value of their conditional distributions implied by the model,

namely, 1
N

∑N
i=1Di = 1

N

∑N
i=1

(
1 + r 1−pi

pi

)
. This condition is quite useful as it allows to express

r =
∑N
i=1(Di−1)∑N
i=1

1−pi
pi

and by this to reduce the number of parameters to be estimated from three

parameters to two: ω ans α. For the overall stability of the estimated model, it is necessary that

the condition pi ∈ (0, 1) (implied by definition (2.12)) holds. Expressing pi from (2.14) as

pi = ω
(
1 + αDi−1 + αDi−1+Di−2 + αDi−1+Di−2+Di−3 + . . .

)
,

it is easy to see that pi achieves its minimum of ω as Di−1 → ∞ and its maximum of ω
1−α as

Di−k = 1, for all k = 1, . . . , (i − 1). Since pi should lie within the unit interval, the following

two conditions on the parameter estimates should hold: ω > 0 and ω
1−α < 1.

2.4.3.3 Simulation and Goodness-of-fit

In this section we consider a simulation procedure and a goodness-of-fit test for the proposed

duration model. By considering the inverse of the negative binomial distribution function, it is

straightforward to simulate duration Di that follows model (2.13) in the following way

Di ∼ 1 + min [k : Ui ≤ FNB(k; r, pi)] , (2.16)

where Ui ∼ Unif[0, 1] and FNB(·; r, p) is a distribution function of the negative binomial dis-

tribution with parameters r and p. Note that min [k : u ≤ FNB(k; r, p)] denotes an inverse of

FNB(·; r, p) in point u. To construct a sample of simulated durations, function pi+1 should be

updated according to (2.14) after each realization of Di, and then the realization of Di+1 can be

found from (2.16).

Our approach to the goodness-of-fit test is based on the adaptation of the probability integral

transformation, discussed in the continuous case in Diebold, Gunther, and Tay [1998], to the

discrete case. Considering (2.16) in the way that Di (sample duration) and pi are known and

Ui is unknown one can can reproduce Di from Ui, but vice versa it is not true, because the

distribution function of Di is discrete. The only information on series U1, U2, . . . , UN which can

be extracted from the sample data D1, D2, . . . , DN is that Ui satisfies

Ui ∼ Unif [FNB (Di − 2; r, pi) , FNB (Di − 1; r, pi)] , i = 1, 2, . . . , N. (2.17)
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We shall refer to Ui defined above as a generator of Di.

In case D1, D2, . . . , DN really follow model (2.13), generators U1, U2, . . . , UN should constitute

N realizations from the uniform on [0, 1] distribution. In practice, therefore, the goodness-of-fit

test of the negative binomial duration model can be performed by testing the null hypothesis

that the sample of generators U1, U2, . . . , UN estimated according to (2.17) for a given sample

of durations follow the uniform on [0, 1] distribution. The goodness-of-fit can be checked either

graphically using QQ-plots, or formally using the Kolmogorov-Smirnov and Anderson-Darling

tests. Note that since for a fixed sample of durations D1, D2, . . . , DN the sample of estimated

generators is random, the testing of the null hypothesis should be conducted sufficient many

times and then the non-rejection rates of the null hypothesis should be analysed.

2.4.4 Estimation results

In this section we estimate the model of Section 2.4.3.1 on the spike durations from the four

regions of Australia’s national electricity market covering the period over January 1, 2008–

December 31, 2010. The parameters estimates, with the 99% confidence intervals in parentheses,

are reported in Table 2.6. The confidence intervals are computed by using the profile log-

likelihood function, because simulations and practical experience suggest these intervals provide

better results than those derived by using the numerical Hessian matrix, see, e.g., Coles [2001].

Note that the parameter estimates meet the necessary conditions of the overall stability of the

Table 2.6: Parameter estimates of the negative binomial duration model estimated on the
spike durations.

NSW QLD SA VIC
ω̂ ∗ 104 4.83 [3.67, 7.58] 4.01 [3.02, 6.02] 2.10 [1.53, 2.84] 2.13 [1.57, 2.92]
α̂ ∗ 10 6.93 [1.65, 8.79] 7.63 [3.85, 8.80] 9.91 [9.81, 9.95] 9.94 [9.88, 9.96]

r̂ 0.0541 0.0667 0.0605 0.0687
Note: The profile log-likelihood function is used to compute the 99% confidence
intervals reported in squared parentheses right to the estimates.

model, namely, ω̂ > 0 and ω̂
1−α̂ < 1.

In order to check the goodness-of-fit of the estimated model, we employ the procedure of Section

2.4.3.3 and test the hypotheses that the estimated generators, first, follow the uniform distri-

bution on [0, 1] and, second, exhibit no autocorrelation. Those hypotheses were tested with,

respectively, the Kolmogorov-Smirnov and Ljung-Box (10 lags) tests, which were conducted on

1000 different realisations of the estimated generators. Table 2.7 reports the non-rejection rates

of the conducted tests with a significance level of 1%.

Table 2.7: Goodness-of-fit test: non-rejection rates (in %) of the Kolmogorov-Smirnov and
Ljung-Box (10 lags) tests with a significance level of 1% conducted on 1000 random samples

of the estimated generators.

NSW QLD SA VIC
Kolmogorov-Smirnov 99.7 99.3 99.6 99.5

Ljung-Box(10) 75.8 92.9 40.4 26.4
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Figure 2.13: QQ-plot of a typical sample of the estimated transformed generators. Compare
this figure with Figure 2.11.

When the estimated generators really follow the uniform on [0, 1] distribution, then the non-

rejection rate of the Kolomogorov-Smirnov test with 1% significance level would approximately

be 99%, which exactly corresponds to the rates in the above table. The results of the Ljung-Box

test are less convincing but still in a high proportion of cases the generators can be assumed

to have no autocorrelation. In order to get a graphical presentation of the goodness-of-fit and

to compare it with the fit of models in Section 2.4.2, we transform a typical sample of esti-

mated generators
(
Û1, . . . , ÛN

)
(which are supposed to be uniformly on [0, 1] distributed) into(

− log Û1, . . . ,− log ÛN

)
(which are hence supposed to have the standard exponential distribu-

tion) and plot its quantiles versus quantiles of the standard exponential distribution, see Figure

2.13. Comparing this QQ-plot with that of Figure 2.11, one can observe a clear improvement in

the fit of the estimated model to the spike durations.

Verifying accuracy of the estimated duration models, we have simulated 500 samples of durations

(of the same length as the original ones) and compared their characteristics to those of the

original spike durations. Simulation results are summarized in Table 2.8. The characteristics of

Table 2.8: Descriptive statistics of the actual and simulated durations (500 simulations).

actual simulated actual simulated
NSW QLD

mean 64.72 65.24 (10.90) 95.57 97.64 (19.75)
std 284.09 291.57 (65.11) 438.83 400.01 (103.43)

proportion of unit durations 0.683 0.685 (0.018) 0.622 0.621 (0.021)
SA VIC

mean 52.46 53.92 (14.20) 43.76 49.97 (13.06)
std 226.78 301.92 (116.15) 213.59 275.56 (115.77)

proportion of unit durations 0.689 0.680 (0.019) 0.666 0.656 (0.018)
Note: The length of the simulated samples corresponds to the length of the original
durations, see Table 2.5.

the simulated data are very close (in the range of one standard deviation) to those of the initial

sample indicating the ability of our model to produce realistic simulations of spike durations.

The major reason for some inconsistencies in the simulated data lies in the large variation of

durations implied by the model, for example, with parameters estimates of the VIC region,

the implied standard deviation of the duration varies from 7.6 to 1230.2 (depending whether

pi approaches respectively its maximum or minimum value). On the other hand, exactly that
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feature in combination with the dynamic structure of the model is necessary in reproducing the

high variation of the spike durations.

2.5 Forecasting extreme electricity prices

For good risk management in electricity markets it is essential to accurately forecast extreme

electricity prices in order to prevent unexpected losses. In this section we combine the results from

Section 2.3, modeling magnitudes of the spikes, and Section 2.4, modeling the spike durations,

into one model for forecasting extreme electricity prices.

2.5.1 Forecasting approach

The duration model estimated in Section 2.4.4 readily lends itself for estimating the probability

of price spikes conditional on their past. The probability that a spike occurs at time t conditional

the last spike with duration Di−1 happened at time ti−1 can be expressed as

P(spike occurs at time t | Ht−1) =
P(Di = t− ti−1 | Ht−1)

P(Di > t− ti−1 − 1 | Ht−1)
,

where Di follows model (2.13), Ht−1 is an information set consisting of times (t1, . . . , ti−1) and

magnitudes (y1, . . . , yi−1) of the spikes up to time (t − 1). In terms of model (2.13) the above

probability takes the form

P(spike occurs at time t | Ht−1) =
fNB (t− ti−1 − 1; r, pi)

1− FNB (t− ti−1 − 2; r, pi)
, (2.18)

where FNB(·; r, p) is a distribution function of the negative binomial distribution with parameters

r and p; fNB(·; r, p) is the corresponding probability mass function. Figure 2.14 illustrates

the above conditional probability calculated with the parameters estimates of Table 2.6. Note

that for the calculation of the conditional probabilities on the plot, we set parameter pi on its

maximum achievable value in order to get the maximum achievable conditional probabilities of

spike occurrences.

Equation (2.18) provides a conditional probability that a spike occurs, i.e., that electricity price

exceeds the diurnal threshold defined in Section 2.2. Surely, the electricity market participants

may be interested in probabilities that the prices exceed other thresholds: a common example

is a price level of 300AUD/MWh which is the strike price of heavily-traded cap products in

Australia’s electricity market. Designing an approach to estimate those probabilities, one can

informally express the probability of the price to exceed some threshold y (provided it is higher

than the diurnal threshold) in the following way

P(price at time t exceeds y | Ht−1) =

P(spike occurs at time t | Ht−1)P(price at time t exceeds y | spike occurs at time t,Ht−1).
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Figure 2.14: The conditional probability of a spike occurrence on the four regions of Aus-
tralia’s electricity market. The probability was estimated according to (2.18) with parameters
values from Table 2.6. pi was set on its max achievable value: pi = 0.0016 for NSW; pi = 0.0017

for QLD; pi = 0.0232 for SA; pi = 0.0335 for VIC.

Combining the model of Section 2.3 for the spike magnitudes (see Eq. (2.4)), and the model of

Section 2.4.3 for the spike durations (see Eq. (2.18)), the above probability takes the form

P(price at time t exceeds y | Ht−1) =

fNB (t− ti−1 − 1; r, pi)

1− FNB (t− ti−1 − 2; r, pi)

[
1 +

gt(y − thm(t))
θt/ξm(t) − 1

gti−1
(yi−1)θt/ξm(ti−1)

]−(1/θt+1)

(2.19)

where ti−1 is the time of the last up to time (t − 1) spike occurrence, yi−1 is the magnitude of

that spike; gt(y) = 1 + ξm(t)
y

βn(t)
, where ξm(t) and βn(t) denote parameters of the GPD used for

modeling the magnitude of the t-th observation; θt = γ0(t − ti−1)−γ1 , and thm(t) denotes the

value of diurnal threshold corresponding to the t-th observation; finally, m(t) and n(t) denote a

function that identifies, respectively, to which part of the day where the shape parameters are

assumed equal or to which out of 48 half-hour periods of the day the t-th observation belongs.

For a further explanation of the parameters see Section 2.3.1 and Section 2.4.3.1.

Model (2.19) for forecasting the probability of extreme price occurrences provides two beneficial

features. First, although the model is estimated on the price exceedances over the diurnal

threshold (this approach yields a sufficient number of observations for the estimation), the model

can provide probabilities of the prices to exceed any higher levels without a need for re-estimation

of the model. Second, (2.19) suggests a mechanism how spikes, defined as price exceedances over

the comparatively small diurnal threshold, may trigger the occurrence of price exceedances over

much higher thresholds than the diurnal one. This relationship is provided in two channels: first,

spike occurrence triggers the occurrence of further spikes through (2.14); second, magnitude yi−1

of the last spike impacts the conditional distribution of the magnitude of the next spike through

(2.4).

2.5.2 Out-of-sample forecasting performance

As it was noted in Section 2.4, the period over January 1, 2011–December 31, 2011 of the data of

electricity prices was left for the out-of-sample forecasting evaluation. Note that this evaluation

requires computation of (2.19), which, in turn, requires the estimates of the model for spike
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magnitudes reported in Table 2.2. Although those estimates were obtained analysing the whole

sample of spikes, excluding the out-of-sample period in modeling of the magnitudes does not

significantly affect the out-of-sample forecasting results of this section.

In order to analyse the forecasting performance of the model presented in this chapter of the

thesis, we adopt the procedure suggested in Eichler, Grothe, Manner, and Tuerk [2012]. In

that study, the out-of-sample performance of seven different models was compared based on

their ability to make 1-step ahead forecasts of electricity prices to exceed 300AUD/MWh (and

100AUD/MWh) analysing the same dataset as we use for this out-of-sample evaluation. Accord-

ing to that study, a sample of forecasted price exceedances over 300AUD/MWh was constructed

using the true history of the process in the way that for each period when the estimated probabil-

ity exceeds the value of 0.5 then a price exceedance was forecasted. The forecasting performance

of the models was compared based on the correct detection rate (CDR), the ratio between cor-

rectly detected and the observed spikes, and the false detection rate (FDR), the ratio between

falsely detected and the total number of detected spikes.

Using our model for forecasting exceedances of the electricity prices over 300AUD/MWh, we

changed slightly the procedure of deciding whether an exceedance was forecasted. Since our

duration model is based on a discrete distribution, it cannot provide probabilities filling the

whole interval of [0, 1], contrary to the models in Eichler, Grothe, Manner, and Tuerk [2012].

To analyse accurately the performance of our model, we adjust the probability level, exceeding

which we decide whether the price exceedance occurs, from 0.5 to one half of the maximum spike

probability that our model can provide (see probabilities at t − ti−1 = 1 on Figure 2.14). For

example, with parameter estimates for VIC region, that probability threshold is approximately

equal to 0.4.

Table 2.9: Out-of-sample performance of the models in forecasting electricity prices exceeding
300AUD/MWh.

Our model Best CDR Best FDR Our model Best CDR Best FDR
NSW QLD

exceedances 38 38 38 37 37 37
detections 58 77 38 43 30 30

CDR 84.2 94.7 76.3 59.5 54.1 54.1
FDR 44.8 53.6 23.7 48.8 33.3 33.3

SA VIC
exceedances 29 29 29 11 11 11

detections 25 29 12 10 10 10
CDR 48.3 55.2 34.5 54.6 63.6 63.6
FDR 44.0 44.8 16.7 40.0 30.0 30.0

Note: rows “exceedances” and “detections” denote respectively the number of the actual and fore-
casted prices exceeding the level of 300AUD/MWh. Columns with headings “Best CDR” and “Best
FDR” refer to the models with respectively maximum CDR and minimum FDR analysed in Eichler,
Grothe, Manner, and Tuerk [2012]. CDR and FDR are reported in %.

Table 2.9 provides the out-of-sample performance of the models in forecasting the electricity

prices to exceed the level of 300AUD/MWh. We compare the performance of our model to

the best models analysed in Eichler, Grothe, Manner, and Tuerk [2012]. The best models were

chosen (for each region) based on two criteria: the model with the best (i.e., maximum) CDR

and the model with the best (i.e., minimum) FDR. Corresponding columns that refer to those
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models are denoted as “Best CDR” and “Best FDR”. Note that those models are not the same

for each of the regions.

An ideal model for spike forecasting provides CDR= 100% and FDR= 0%. In practice, however,

there is often a trade-off between the high CDR and the low FDR. From Table 2.9 it is apparent

that the performance of our model is always somewhere in the middle compared to performance

of the other models analysed in the table: our model provides either a higher CDR or a smaller

FDR. The only exception constitutes the performance of our model for the VIC region.

Table 2.9 provides only a limited assessment of the forecasting performance of our model, because

it is suited to estimate probabilities of the prices to exceed any sufficiently high level, not just

the level for which the model was estimated. As a demonstration of that feature, we estimated 1-

step ahead probabilities of the electricity prices to exceed different price levels: 500AUD/MWh,

1000AUD/MWh, 2000AUD/MWh, and 5000AUD/MWh, – and, applying the same procedure as

used for construction of Table 2.9, we evaluated the out-of-sample forecasting performance of our

model. Table 2.10 provides the evaluation results. Unexpectedly, the forecasting performance of

the model for higher price threshold was only slightly decreased compared to the results in Table

2.9. Moreover, for some regions the duration model showed even better results, for example, for

SA region, eight from nine spikes over 5000AUD/MWh were correctly forecasted (in the sense

that the probability exceeds some level).

This ability to forecast the electricity price exceedances over high thresholds is a unique and

valuable feature of our model. Other approaches for modeling extreme electricity prices can

experience estimation problems because very few data may be available fitting the model to the

prices that exceed very high thresholds. For example, in Australia’s electricity market, in the

period over January 1, 2002–December 31, 2010, there were only a few out of 157728 observations

when the electricity prices exceed the level of 5000AUD/MWh: 99 in NSW, 72 in QLD, 135 in

SA, and 45 in VIC.

Table 2.10: Out-of-sample performance of our model in forecasting electricity prices exceeding
500AUD/MWh, 1000AUD/MWh, 2000AUD/MWh, and 5000AUD/MWh levels.

NSW QLD SA VIC NSW QLD SA VIC
500AUD/MWh 1000AUD/MWh

exceedances 30 28 24 8 30 23 22 8
detections 34 29 23 8 28 24 22 7

CDR 70.0 50.0 54.2 62.5 63.3 56.5 50.0 50.0
FDR 38.2 51.7 43.5 37.5 32.1 45.8 50.0 42.9

2000AUD/MWh 5000AUD/MWh
exceedances 22 19 19 5 13 8 9 3

detections 22 17 13 5 11 5 9 2
CDR 63.6 63.2 42.1 40.0 61.5 62.5 88.9 33.3
FDR 36.4 29.4 38.5 60.0 27.3 0 11.1 50.0

Note: rows “exceedances” and “detections” denote respectively the number
of the actual and forecasted price exceedances. CDR and FDR are in %.



Chapter 2. Forecasting extreme electricity spot prices 84

2.6 Conclusion

This study presents a model for forecasting extreme electricity prices in real-time (high fre-

quency) settings. The model consists of two components (sub-models) which deal separately

with times of occurrence and magnitudes of extreme electricity prices. We employ a copula with

a changing dependence parameter for capturing serial dependence in the magnitudes of extreme

electricity prices and the censored GPD distribution for modeling their heavy tails. For modeling

times of the extreme price occurrences, we propose an approach based on the negative binomial

distribution. For both of the sub-models, the simulation procedure and the goodness-of-fit test

are presented.

The model is applied to half-hourly electricity prices from the four regions of Australia’s national

electricity market embracing the period over January 1, 2002–December 31, 2011. The simulation

studies and the goodness-of-fit tests indicate an ability of our model in capturing the main

characteristics of extreme electricity prices. In particular, our approach to times of the extreme

price occurrences outperforms the ACD models and the Hawkes process. The out-of-sample

evaluation also indicates a convincing performance of our model in forecasting the prices to

exceed very high thresholds.

In future research, it would be interesting to consider a multivariate approach for modeling

extreme electricity spot prices. That suggestion is motivated by the fact that in interconnected

regional markets, spikes in one region tend to trigger the occurrence of spikes in the other regions.

Multivariate approaches can capture those interdependencies and describe the contagion effects

of extreme electricity prices.



Chapter 3

Estimating tails in top-coded data

3.1 Motivation

Many practical phenomena are well described by heavy-tailed distributions. This is especially

the case in financial applications, where those distributions have already become a standard

approach for modelling financial time-series. In practice, it is may be required to estimate

heavy-tailed distributions on data that contains top-coded observations, i.e., observations that

are measured only below a certain threshold, while observations that exceed that threshold are

not measured or are simply regarded as uninformative. An example of top-coding can be found in

electricity spot prices on the markets that have a regulatory ceiling on the prices, e.g, Australia’s

national electricity market. Another example relates to insurance companies: due to policy limits

on insurance products, the amount by how much the insurance claims (typically heavy-tailed)

exceed those limits is not recorded. It is clear that the estimation of the distribution’s tail strongly

relies on the quality of the upper-order statistics of the data. Therefore, the top-coding may

have a strong effect on the estimates of the main characteristic of the heavy-tailed distributions

– the tail index, the decay rate of the power function that describes the distribution’s tail.

The problem of estimating the tail index on top-coded data has obtained much attention in the

literature. An adaptation of the Hill estimator to top-coded data is discussed in Beirlant and

Guillou [2001]. The estimation of the tail index under random-censoring assuming that both

censored and censoring distributions are in the maximum domain of attraction of the extreme

value distribution is treated in Beirlant, Guillou, Dierckx, and Fils-Villetard [2007]. Davison and

Smith [1990] shortly consider the effects of top-coding on the asymptotic loss of efficiency for

the GPD-based estimator.

Considering the recent developments in extending the results of extreme value analysis to the

top-coded case, there is still a need for an investigation how exactly different levels of top-coding

may affect the bias and the standard deviation of the most popular estimators of the tail index:

the GPD-based estimator and the Hill estimator. In this chapter of the thesis we try to fill

that gap. Working mainly in the framework of Smith [1987], we extend the maximum likelihood

estimator of the generalized Pareto distribution (GPD) and the Hill estimator to the situations

85
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when the data is top-coded. Our approach differs from the mentioned literature in that we

analyse the estimators jointly and employ the same procedure in determining observations for

estimation. This brings about an opportunity to compare their performance based on mean

squared errors (MSE) depending on the second order properties of the underlying distribution

function of the observations. In contrast to Beirlant, Guillou, Dierckx, and Fils-Villetard [2007],

we treat only the top-coding case without making any assumption about the distribution above

the censoring level and consider a more in-depth analysis of the effects of top-coding on the

estimators. Furthermore, establishing the asymptotic normality of the estimators, we provide a

detailed analysis how both the parameters of the underlying distribution and various levels of

top-coding influence the characteristics of the estimators.

We show that for situations when the proportion of the top-coded observations is large, the Hill

estimator provides a superior performance (based on MSE) over the GPD approach in estimating

tail indexes. Providing a detailed analysis of this performance, we show that it depends on a

number of factors including the size of the tail index and the second-order properties of the

underlying distribution. Note that this finding about the Hill estimator contradicts the broad

conclusion about the performance of that estimator in the uncensored case, where the GPD-

based estimator is often considered as superior, see Smith [1987]. We demonstrate our findings

in a small simulation study and apply the estimators to electricity spot prices of the Australia’s

national electricity market.

The chapter is organized as follows. In Section 3.2 we present shortly some definitions and

preliminary results concerning heavy-tailed distributions. The censored GPD (cGPD) estimator

is described in Section 3.3, the censored Hill (cHill) – in Section 3.4. Comparison of those

estimators is provided in Section 3.5. In Section 3.6 we demonstrate the performance of the

estimators in a small simulation study and a practical application to electricity data. Section

3.7 concludes.

3.2 Preliminaries

In this section we shortly present some definitions and preliminary results concerning heavy-

tailed distributions. Based on the assumptions about the underlying heavy-tailed distribution

presented in this section, we will derive the properties of the GPD-based and Hill estimators

further in the text.

3.2.1 Tail index

Suppose the distribution function F of a random variable X is in the maximum domain of

attraction of the extreme value distribution Hξ(x) = exp
(
−(1 + ξx)−1/ξ

)
for ξ > 0 (Fréchet

case), i.e., there exists a sequence of constants an > 0 and bn ∈ R such that

Fn (anx+ bn)→ exp
(
−(1 + ξx)−1/ξ

)
ξ > 0, as n→∞. (3.1)

Denote this relationship as F ∈ MDA (Hξ).
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A characteristic feature of random variables with F ∈ MDA (Hξ), ξ > 0 is that their tails decay

as a power function with rate 1/ξ, which is often referred to as the tail index of the distribution.

The parameter ξ determines heavy-tailedness of the distribution and is of great importance for

financial models. For example, daily log-returns on traded equities or commodity prices are

usually heavy-tailed, see Mandelbrot [1963] for an early study of this topic. Furthermore, the

parameter ξ determines the order of finite moments for random variable X with distribution

function F ∈ MDA (Hξ), ξ > 0, in that it holds E
(
Xk
)

=∞ for k > 1/ξ. While the estimation

of ξ is already a difficult task, as the estimation is based on “extreme” observations only, the

problem becomes even more challenging if the data is incomplete in the sense that there is

top-coding in the data. We discuss exactly this issue in the study at hand.

There are many estimators of ξ presented in the literature: the Hill estimator [Hill, 1975], the

maximum likelihood estimator based on the generalized Pareto distribution [Smith, 1987], the

Pickands estimator [Pickands, 1975], and many others, see de Haan and Ferreira [2006] for an

overview. In this study, we consider the asymptotic properties of the Hill and the GPD-based

estimators, the two most popular ones, for the case of top-coding in the data at some high level.

In particular, we shall consider how different levels of the top-coding may affect the asymptotic

bias and variance of those estimators. In the next section we define exactly what we mean by

top-coding.

3.2.2 Top-coding

Definition 3.1. A random variable X̃ is said to be top-coded at level u with respect to a

random variable X, if X̃ = X when X < u, and X̃ = u + η when X ≥ u, where η is a non-

negative random variable.

Notation: X̃ ∼ Cens(X,u).

Note that we do not make any assumption on η and consider this random variable as an error

term which distorts those realisations of X that exceed u. In practice, η is often set to be zero.

Top-coding at high levels of heavy-tailed distribution removes the largest observations from

the data and influences by this the performance of various estimators of ξ. To illustrate the

importance of the largest observations for the GPD and the Hill estimators, we use a standard

tool in robust statistics – the influence function (IF). This function describes the infinitesimal

effect of a single observation on the estimator, standardized by the value of that observation.

Consult Hampel, Ronchetti, Rousseeuw, and Stahel [1986], Section 2.1b for a formal definition

of the IF, and Section 2.3a for the IF of the maximum likelihood estimator. In general, the

IF of a maximum likelihood estimator of parameter vector θ of distribution function F can be

expressed as

ICθ,F (y) = J (F )
−1 ∂l(y; θ)

∂θ
, (3.2)

where J (F ) is the Fisher information matrix computed under underlying distribution function

F ; l(y; θ) is the log-likelihood contribution of observation with value y.



Chapter 3. Estimating tails in top-coded data 88

−3 −2 −1 0 1 2 3
−5

0

5

10

15

20
Influence Function for ξ=0.2

Normal percentile

IF

 

 
GPD
Hill

−3 −2 −1 0 1 2 3
−5

0

5

10

15

20
Influence Function for ξ=0.5

Normal percentile

IF

 

 
GPD
Hill

−3 −2 −1 0 1 2 3
−5

0

5

10

15

20
Influence Function for ξ=1.5

Normal percentile

IF

 

 
GPD
Hill

−3 −2 −1 0 1 2 3
−5

0

5

10

15

20
Influence Function for ξ=1

Normal percentile

IF

 

 
GPD
Hill

Figure 3.1: Influence function.

Using formulas (3.48) and (3.58), presented further in the text, one can show that the theoretical

IF’s of the uncensored GPD and Hill estimators of ξ can be expressed as

IFGPD(z) =
1 + ξ

ξ2

[
(1 + ξ)(1 + 2ξ)(1− z)ξ − ξ(1 + ξ) log(1− z)− (1 + 3ξ + ξ2)

]
, (3.3)

IFHill(z) = −ξ (log(1− z) + 1) , (3.4)

where z is a standard uniform probability transform of the observation’s value y with respect

to the distribution function that the estimators are supposed to estimate. Figure 3.1 illustrates

the IF’s of the uncensored GPD-based and Hill estimators of ξ. For a better exposure of the

functions, they are plotted versus standard normal percentiles Φ−1(z) (instead of z).

It is apparent from the figure that for large ξ, the effect of high-quantile observations is extremely

large for both the Hill and the GPD-based estimators, indicating that the top-coding in the data

may strongly affect the performance and asymptotic properties of those estimators. A precise

analysis of that effect is the central topic of this study. Our approach to derive those properties

is based on the framework of Smith [1987], which, in turn, requires an exact investigation of the

second-order properties of the heavy-tailed distributions. In the next section we consider those

second-order properties and highlight how the tails of random variables with F ∈ MDA (Hξ),

ξ > 0, can be modelled.

3.2.3 Regularly varying tails

According to the Fréchet-Gnedenko theorem (see Theorem 7.8 in McNeil, Frey, and Embrechts

[2005]), for the case ξ > 0, it holds

F ∈ MDA (Hξ)⇐⇒ 1− F (x) = x−1/ξL(x), as x→∞ (3.5)
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for some function L slowly varying at ∞.

Definition 3.2. A Lebesgue measurable function fα : R+ → R that is eventually positive is

regularly varying at infinity with index α ∈ R, if

lim
t→∞

fα(tx)

fα(t)
= xα, x > 0. (3.6)

For α = 0, the function is called slowly varying .

(see Definition B.1.1 in de Haan and Ferreira [2006])

Remark 3.3. Slowly varying functions change asymptotically relatively slowly, so that these

functions can essentially be treated as a constant for large values of the argument x. Formally,

it holds that
∫∞
x
tkf0(t)dt ∼ − 1

k+1x
k+1f0(x) for k < −1 as x→∞ (see Karamata’s theorem in

Appendix A.1.3 in McNeil, Frey, and Embrechts [2005]). Examples of a slowly varying function

include f0(x) = log x, f0(x) = C + x−β , C ∈ R , β > 0, etc. Regularly varying functions can be

represented by slowly varying functions in the following way: fα(x) = xαf0(x).

Relationship (3.5) allows for a specification of the heavy-tailed distribution not only by parameter

ξ but also by the properties of function L, which are essential for the performance of all estimators

of ξ. Since the slowly varying property of L is only revealed at infinity, the slowly varying function

L is the main source of a model uncertainty in any application of EVT, see Chavez-Demoulin

and Embrechts [2011].

Following Smith [1987], we assume the slowly varying function L from (3.5) satisfies a very

general condition

L(tx)/L(x) = 1 + k(t)φ(x) + o (φ(x)) , as x→∞, for each t > 0, (3.7)

such that we have k(t) 6= 0 and k(tw) 6= k(w) for all w. The term o(φ(x)) denotes, as usual,

a function such that limx→∞ o(φ(x))/φ(x) = 0. Assumption (3.7) has been widely accepted as

an appropriate condition to specify the slowly varying part in x−1/ξL(x), see Beirlant, Dierckx,

Goegebeur, and Matthys [1999].

As it is noted in Goldie and Smith [1987], condition (3.7) implies necessarily that φ(x) is regularly

varying with index ρ < 0 and k(t) = ch(t), with c constant and

h(t) :=

∫ t

1

vρ−1dv =

log t, if ρ = 0

(tρ − 1) /ρ, if ρ 6= 0
(t > 0). (3.8)

The logic of regular variation of function φ(x) follows from Bingham and Goldie [1982], Chapter

2. The detailed reasoning behind (3.7) can also be found in Goldie and Smith [1987]. Note that

in the rest of the thesis, we specify k(t) = c (tρ − 1) /ρ, for ρ < 0, treating the case of ρ = 0 as

a limit of k(t) as ρ ↑ 0. The parameter ρ is often referred to as a second-order parameter of the

heavy-tailed distribution and is responsible for the bias in estimating ξ.

Estimating tails of random variables with F ∈ MDA (Hξ), ξ > 0, it is natural to consider

“extreme” observations, i.e., those observations that exceed a certain high threshold. In the
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next section we outline the distribution of exceedances of heavy-tailed random variables. This

distribution will be used for derivation of the properties of the discussed estimators.

3.2.4 Distribution of Exceedances

Suppose we have a random variable X with distribution function F ∈ MDA (Hξ), ξ > 0. Fixing

some high threshold u, we are interested in the distribution of Y := X − u | X > u, i.e., the

excess distribution.

Definition 3.4. Let X be a random variable with distribution function F . The excess distri-

bution over the threshold u has distribution function

Fu(y) := P (X ≤ u+ y | X > u) =
F (u+ y)− F (u)

1− F (u)
, (3.9)

for 0 ≤ y < yF − u, where yF ≤ ∞ is the right endpoint of F .

(see Definition 7.17 in [McNeil, Frey, and Embrechts, 2005] )

For the case F ∈ MDA (Hξ), see relationship (3.5), and the slowly varying function is as in (3.7),

it is straightforward to show that the excess distribution function Fu(y) takes the form

Fu(y) = 1−
(

1 +
y

u

)−1/ξ

b1(u)−
(

1 +
y

u

)−1/ξ+ρ

b2(u), y > 0, (3.10)

where b1(u) = 1 − cφ(u)/ρ + o(φ(u)) and b2(u) = cφ(u)/ρ. In order to estimate the parameter

ξ, one usually consider excesses over a high threshold u, because in this case b2(u) ≈ 0 and one

can treat Fu(y) as a simple power function Fu(y) = 1−
(
1 + y

u

)−1/ξ
.

From (3.10) one can clearly see the role of the second-order parameter ρ in estimating ξ. Fixing

threshold u and letting ρ→ −∞, Fu(y) transforms to function 1−
(
1 + y

u

)−1/ξ
, the decay rate

of which is easy to estimate accurately. In the case ρ is small, the role of the leading component(
1 + y

u

)−1/ξ
becomes “diluted” by the component

(
1 + y

u

)−1/ξ+ρ
, which causes a bias in the

estimation of ξ. We will highlight the role of ρ for the considered estimators in Section 3.5.

3.3 GPD-based estimator on top-coded data

In this section we first indicate why GPD is an appropriate distribution for the excesses with

distribution function (3.10). Then, in Section 3.3.2, we consider a general procedure of GPD

estimation on top-coded data. In Sections 3.3.3 and 3.3.4, we present the properties of the cGPD

estimators for the cases when the data follows, respectively, the GPD and the excess distribution

(3.10).
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3.3.1 GPD and extreme value distributions

In estimating tails of heavy-tailed distributions, it is usual to consider their excess distributions

over a high threshold, and then to fit appropriate models to the exceedances. The main distri-

bution for exceedances over high thresholds is the generalised Pareto distribution (GPD), whose

distribution function is defined in the following way

G(x; ξ, β) =

1− (1 + ξx/β)−1/ξ, ξ 6= 0,

1− exp(−xβ), ξ = 0,
(3.11)

where β > 0, x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −β/ξ for ξ < 0. We shall refer to ξ and β as,

respectively, the shape and scale parameters.

In the framework of extreme value theory, Pickands [1975] proved that the GPD is a natu-

ral limiting excess distribution for many heavy-tailed distributions. That relationship may be

formulated in the following way.

Theorem 3.5. For an excess distribution function Fu(y) of the random variable X with distri-

bution function F , there is a positive-measurable function β(u) such that

lim
u→∞

sup
y>0
|Fu(y)−G(x; ξ, β(u))| = 0, (3.12)

if and only if F ∈ MDA (Hξ), ξ ∈ R.

(see Theorem 7.20 in McNeil, Frey, and Embrechts [2005])

This result basically means that the GPD is the canonical distribution for modelling excesses

over high thresholds, see McNeil, Frey, and Embrechts [2005], Section 7.2.1. Besides (3.12) there

are other good reasons fitting the GPD to the exceedances. One of them is the “threshold

stability” property, stating that if the GPD is a proper distribution to exceedances over some

high threshold, then the GPD with the same shape parameter is also a proper distribution to

exceednaces over the higher threshold. Another reason is that assuming the exccedances occur

in time as a Poisson process then the assumption of GPD excesses implies the classical extreme

value distributions, see Davison and Smith [1990].

From the construction of the excess distribution function (3.10), it is clear that convergence

in (3.12) depends on the second-order properties of F , namely on the function φ(u), which

determines the rate of convergence in (3.12) in the way that it typically holds

O(φ(u)) = sup
y>0
|Fu(y)−G(x; ξ, β(u))|, (3.13)

where φ(u) → 0 as u → ∞, see Smith [1987]. Term O(φ(u)) denotes, as usual, a function such

that limu→∞ sup |O(φ(u))/φ(u) | < ∞. Note that φ(u) creates a bias in estimating the GPD

on the excesses of X over the high threshold. In Smith [1987], it was shown that based on N

excesses of X over some high threshold uN (those excesses follow the excess distribution FuN as

in (3.10)), the maximum likelihood parameter estimates
(
β̂N , ξ̂N

)
of the GPD have the following
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property

N1/2

[
β̂N/βN − 1

ξ̂N − ξ

]
→d N

([
µ(1+ξ)(1−2ξρ)

1+ξ−ρξ
µξ(1+ξ)(1+ρ)

1+ξ−ρξ

]
,

[
2(1 + ξ) −(1 + ξ)

−(1 + ξ) (1 + ξ)2

])
, (3.14)

as N →∞, uN →∞ such that N1/2cξφ (uN ) /(1− ξρ)→ µ ∈ R. In the next sections we intend

to extend this result to the case when the data is top-coded at some high level.

3.3.2 Estimation of GPD on excesses under top-coding

Suppose
(
X̃1, X̃2, . . . , X̃n

)
denotes a vector of n independent realisations of random variable

X̃ ∼ Cens(X,u2,N ), where X is a heavy-tailed random variable with distribution function

F ∈ MDA (Hξ), ξ > 0, and u2,N is a threshold corresponding to a very high quantile of X.

Setting another high threshold u1,N , such that u1,N < u2,N , we consider excesses (Y1, . . . , YN )

of
(
X̃1, . . . , X̃n

)
over u1,N , namely, if X̃i > u1,N then Yk = X̃i − u1,N , where N denotes the

number of exceedances of
(
X̃1, . . . , X̃n

)
over u1,N . To estimate efficiently the tail index ξ by

fitting the GPD to (Y1, . . . , YN ), it is natural to use a censored GPD (cGPD) approach. The

idea behind the approach is simple and lies, first, in determining the region (u1,N , u2,N ), where

observations follow the GPD, and, second, in constructing the likelihood function that captures

properly the censoring in the observations. Setting the thresholds u1,N in practice, there is

always a certain trade-off between the bias and the standard deviations of the GPD’s parameter

estimates: the higher the threshold u1,N the more accurate the approximation of the tail with

the GPD (smaller bias) but smaller the number of the observations (larger variance). There

is no agreed way to choose the “optimal” threshold u1,N in the GPD estimation, see Chavez-

Demoulin and Embrechts [2011], because the choice of u1,N depends crucially on the second-order

properties of the underlying distribution function of the observations.

The likelihood function of cGPD estimator is of the form

LN (ξ, βN ; Y) =

(∏
i∈S1

g (Yi; ξ, βN )

)(∏
k∈S2

(1−G(wN ; ξ, βN ))

)
, (3.15)

where wN = u2,N − u1,N , g(y; ξ, βN ) = (∂/∂y)G(y; ξ, βN ), with function G defined in (3.11),

S1 = {k : Yk < wN} and S2 = {k : Yk ≥ wN}. Using notation δk = I(Yk ≥ wN ), the

log-likelihood function takes the form

logLN (ξ, βN ; Y) =

N∑
k=1

Lk,N (Yk), (3.16)

where

Lk,N (Yk) = (1− δk) log g(Yk; ξ, βN ) + δk log (1−G (wN ; ξ, βN )) . (3.17)

Note that since the true parameter βN depends on u1,N , as it is explicitly stated in (3.12), we

emphasize this link through the subscript N in βN .
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Following the standard procedure in the analysis of the maximum likelihood estimators, see, for

example, Cox and Hinkley [1974], Chapter 9, we define the score statistic

UN (βN , ξ) =

N∑
k=1

Uk,N (βN , ξ),where Uk,N (βN , ξ) =

[
βN∂Lk,N/∂βN

∂Lk,N/∂ξ

]

and the observed information matrix

IN =

N∑
k=1

Ik,N ,where Ik,N =

[
β2
N∂

2Lk,N/∂β
2
N βN∂

2Lk,N/∂βN∂ξ

βN∂
2Lk,N/∂βN∂ξ ∂2Lk,N/∂ξ

2

]
.

To simplify the computations, we follow Smith [1987] and multiply by βN the derivatives with

respect to βN in both UN and IN .

Letting N →∞ and u1,N →∞, we consider the convergence of the following score statistics

N1/2E(Uk,N (βN , ξ))→ b, (3.18)

E
[
Uk,N (βN , ξ)U

T
k,N (βN , ξ)

]
− E(Uk,N (βN , ξ)) (E(Uk,N (βN , ξ)))

T → H, (3.19)

N−1IN →M. (3.20)

Those limit values determine the parameters of the asymptotic distribution of the cGPD esti-

mators β̂N and ξ̂N (see Greene [2003], Chapter 17 and Smith [1987]) in the following way

N1/2

[
β̂N/βN − 1

ξ̂N − ξ

]
→d N

(
−M−1b,M−1H

(
M−1

)T)
, (3.21)

whereN (a, b) denotes a normally distributed random variable with mean a and covariance matrix

b. Note that by convergence (3.18)-(3.21) is meant for N → ∞ and u1,N → ∞ simultaneously.

We discuss this relationship and the behaviour of u2,N in Section 3.3.4.

The asymptotic normality of the estimators stated in (3.21) follows from the limit fluctuation

of the normalized vector UN (βN , ξ). In particular, since the MLE estimators β̂N , ξ̂N maximise

(3.16), it should hold that UN (β̂N , ξ̂N ) = 0. Expressing UN (β̂N , ξ̂N ) by the first order Taylor

expansion

UN (β̂N , ξ̂N ) = UN (β, ξ) + IN

[
β̂N/β − 1

ξ̂N − ξ

]
+ o(1) (3.22)

and setting UN (β̂N , ξ̂N ) = 0, one can obtain the following relationship[
β̂N/βN − 1

ξ̂N − ξ

]
=
(
−N−1IN

)−1 (
N−1UN (ξ, β)

)
(1 + o(1)). (3.23)

Provided the first two moments of Uk,N (ξ, β) exist, the Lindberg-Levy CLT suggests that

N−1/2UN (ξ, β)→d N (b, H), from which the result in (3.21) follows.

Considering the asymptotic properties of the maximum likelihood estimates, we have omitted

the analysis of the first three moments of Uk,N (ξ, β) (the regularity conditions, see Greene [2003],

p. 474) required to establish (3.22), (3.23) and ultimately (3.21). In the absence of censoring
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these conditions, under the assumption of underlying generalized Pareto and extreme value

distributions, were studied in Smith [1987] and Goldie and Smith [1987]. In the case of top-

coding these conditions automatically hold because top-coding can only decrease the variability

in the moments.

In the following two sections we study the properties of the cGPD estimators under various

assumption on the underlying distribution X.

3.3.3 Properties of cGPD estimator: X ∼ GPD

Suppose that a random variable X is such that its exceedances over some high threshold u1,N

have an exact GPD distribution with ξ > 0. The easiest example is X ∼ GPD. As usual let

u1,N and u2,N be thresholds corresponding to high quantiles of X and set such that u1,N < u2,N ,(
X̃1, . . . , X̃n

)
be a vector of n independent realizations of Cens (X,u2,N ), and (Y1, . . . , YN ) be

a vector of N excesses of
(
X̃1, . . . , X̃n

)
over the threshold u1,N , namely, for X̃i > u1,N it is set

Yk = X̃i − u1,N . Conditionally on N , the excesses (Y1, . . . , YN ) are independent and identically

distributed. It is clear that fitting the censored GPD to the excesses is a “correct” model. In

order to find the asymptotic characteristics of the parameter estimates fitting cGPD, in the

following lemma we outline some results for the score statistics in (3.18)-(3.20).

Lemma 3.6. Fitting the cGPD to the excesses (Y1, . . . , YN ) of the independent realizations of

Cens (X,u2,N ), X ∼ GPD, over the threshold u1,N , it holds for the score statistics (3.18)-(3.20)

of the maximum likelihood function (3.15):

E(Uk,N (βN , ξ)) = 0 and M = −H. (3.24)

Proof. Suppose f(x; θ) be a continuous density function with parameter θ of some continuous

random variable Z, and F (x; θ) – its cumulative distribution function. Define K(x; θ) := (1 −
δ) log f(x; θ) + δ log F̄ (w; θ), where δ = I(x > w). The expectation of ∂K(Z; θ)/∂θ with respect

to the density f(x; θ) takes the form:

Ef (∂K(Z; θ)/∂θ) =

∫ w

−∞

(
∂ log f(x; θ)

∂θ

)
f(x; θ)dx+

(
∂ log F̄ (w; θ)

∂θ

)
F̄ (w; θ) =

=

∫ w

−∞

∂f(x; θ)

∂θ
dx+

∂F̄ (w; θ)

∂θ
= 0, (3.25)

because
∂F̄ (w; θ)

∂θ
=

∂

∂θ

(
1−

∫ w

−∞
f(x; θ)dx

)
= −

∫ w

−∞

∂f(x; θ)

∂θ
dx, (3.26)

where we use the notation Ef (h (Z)) =
∫
h(x)f(x)dx. Since components of the vector Uk,N has

exactly the same form as ∂K(Z; θ)/∂θ, it follows that for the expectation of Uk,N calculated

with respect to density g(x;β, ξ), used for construction of Uk,N , it holds Eg [Uk,N ] = 0.
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To prove that M = −H, we must show H := Ef

[(
∂K(Z;θ)

∂θ

)2
]

= −Ef

[
∂2K(Z;θ)

∂θ2

]
=: −M . It

follows

Ef

[(
∂K(Z; θ)

∂θ

)2
]

= Ef

[
(1− δ)2

(
∂ log f(Z; θ)

∂θ

)2
]

+ Ef

[
δ2

(
∂ log F̄ (w; θ)

∂θ

)2
]

+ 2Ef

[
δ(1− δ)∂ log f(Z; θ)

∂θ

∂ log F̄ (w; θ)

∂θ

]
Evaluating each component separately we get:

Ef

[
(1− δ)2

(
∂ log f(Z; θ)

∂θ

)2
]

=

∫ w

−∞

(
∂ log f(x; θ)

∂θ

)2

f(x; θ)dx

=

∫ w

−∞

(
∂ log f(x; θ)

∂θ

)
∂f(x; θ)

∂θ
dx;

Ef

[
δ2

(
∂ log F̄ (w; θ)

∂θ

)2
]

=

(
∂ log F̄ (w; θ)

∂θ

)2

F̄ (w; θ) =

(
∂ log F̄ (w; θ)

∂θ

)
∂F̄ (w; θ)

∂θ
;

2Ef

[
δ(1− δ)∂ log f(Z; θ)

∂θ

∂ log F̄ (w; θ)

∂θ

]
= 0.

Finally,

Ef

[(
∂K(Z; θ)

∂θ

)2
]

=

∫ w

−∞

(
∂ log f(x; θ)

∂θ

)
∂f(x; θ)

∂θ
dx+

(
∂ log F̄ (w; θ)

∂θ

)
∂F̄ (w; θ)

∂θ
. (3.27)

To obtain Ef

[
∂2K(Z;θ)

∂θ2

]
we differentiate expression

∫ w

−∞

(
∂ log f(x; θ)

∂θ

)
f(x; θ)dx+

(
∂ log F̄ (w; θ)

∂θ

)
F̄ (w; θ) = 0 (3.28)

see (3.25), from the both sides by θ obtaining

∫ w

−∞

[(
∂2 log f(x; θ)

∂θ2

)
f(x; θ) +

(
∂ log f(x; θ)

∂θ

)
∂f(x; θ)

∂θ

]
dx

+

(
∂2 log F̄ (w; θ)

∂θ2

)
F̄ (w; θ) +

(
∂ log F̄ (w; θ)

∂θ

)
∂F̄ (w; θ)

∂θ
= 0. (3.29)

Rearranging the terms in (3.29) and comparing with (3.27) one immediately obtains M = −H.

Since components of the vector Uk,N has exactly the same form as ∂K(Z; θ)/∂θ, the statement

of the proposition M = −H follows immediately from the above calculations.

The asymptotic properties of the cGPD estimators on data generated by the Cens(X,u2,N ),

with X ∼ GPD, can be summarized in the following proposition.

Proposition 3.7. Let (Y1, . . . , YN ) be N independent realisations of excesses of Cens(X,u2,N ),

with X ∼ GPD(ξ, β), over the high the threshold u1,N (u1,N < u2,N ). As N →∞, the maximum
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likelihood cGPD estimators of the parameters ξ and βN = β + ξu1,N of the excess distribution

satisfy

N1/2

[
β̂N/βN − 1

ξ̂N − ξ

]
→d N

([
0

0

]
, H(λ)−1

)
, (3.30)

where

H(λ)−1 =
(1 + ξ)(1 + 2ξ)

(1 + 2ξ + ψ3(λ)(1 + ξ) + ψ1(λ)(2 + ψ3(λ))− ψ2(λ)(2 + ψ2(λ)))
×[

2 + ψ3(λ) −(1 + ψ2(λ))

−(1 + ψ2(λ)) 1 + ξ + ψ1(λ)

]
(3.31)

with

λ = 1 + ξ
u2,N − u1,N

βN
; ψ2(λ) =

λ−1/ξ−2

ξ
(1 + ξ − λ(1 + 2ξ)) ; (3.32)

ψ1(λ) = −λ−1/ξ−2(1 + ξ); ψ3(λ) =
λ−1/ξ−2

ξ2

(
−λ2(1 + ξ)(1 + 2ξ) + 2λ(1 + 2ξ)− (1 + ξ)

)
.

(3.33)

Proof. The statement of this proposition is based on the previous results in (3.21). Since the

components of that asymptotic result are partially determined in (3.24), the only element left to

find for completion of (3.21) is the matrix M of the expected value of the second-order derivatives

of the score vector UN , see (3.20). As the first step in calculating that matrix, we list below

some formulas required for the construction of M . With Lk,N as in (3.17) we have

βN
∂Lk,N (y)

∂βN
= −(1− δ)

[(
1 +

1

ξ

)
λ(y)−1

]
− δ 1

ξ

[
λ(wN )−1

]
+

1

ξ
, (3.34)

∂Lk,N (y)

∂ξ
=

1− δ
ξ2

[
log λ(y) + (1 + ξ)λ(y)−1

]
+

δ

ξ2

[
log λ(wN ) + λ(wN )−1 + ξ

]
− 1 + ξ

ξ2
,

(3.35)

β2
N

∂2Lk,N (y)

∂β2
N

= (1− δ)
(

1 +
1

ξ

)
λ(y)−2 +

δ

ξ
λ(wN )−2 − 1

ξ
, (3.36)

βN
∂2Lk,N (y)

∂βN∂ξ
= (1− δ)

[
2 + ξ

ξ2
λ(y)−1 − 1 + ξ

ξ2
λ(y)−2

]
+

δ

ξ2

[
2λ(wN )−1 − λ(wN )−2

]
− 1

ξ2
,

(3.37)

and

∂2Lk,N (y)

∂ξ2
= (1− δ)

[
− 2

ξ3
log λ(y) +

3 + ξ

ξ3
− 2(2 + ξ)

ξ3
λ(y)−1 +

1 + ξ

ξ3
λ(y)−2

]
+

δ

ξ3

[
3− 2 log λ(wN )− 4λ(wN )−1 + λ(wN )−2

]
, (3.38)

where λ(y) = 1 + ξy/βN , wN = u2,N − u1,N and δ = I(y > wN ). For the ease of exposition, we

shall also use λ := λ(wN ).
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With respect to the GPD density g (y; ξ, βN ) = 1
βN

(
1 + ξ y

βN

)−1/ξ−1

, one can easily calculate

the elements of matrix M , the expected value of the Hessian matrix, with the following formulas∫ w

0

log λ(y)g (y; ξ, βN ) dy = ξ − ξλ(w)−1/ξ − λ(w)−1/ξ log λ(w);∫ w

0

λ(y)−rg (y; ξ, βN ) dy =
1

1 + rξ
− λ(w)−1/ξ−r

1 + rξ
.

Calculating the Hessian matrix M with the above formulas and employing the results from

Lemma 3.6 H(λ) = −M , one can show, omitting some intermediary calculations, that matrix

H(λ) takes the form

H(λ) =
1

(1 + ξ)(1 + 2ξ)

[
1 + ξ + ψ1(λ) 1 + ψ2(λ)

1 + ψ2(λ) 2 + ψ3(λ)

]
, (3.39)

with functions ψ1(·), ψ2(·), ψ3(·) defined in the statement of the proposition.

Remark 3.8. Note, that the above asymptotic result holds as N → ∞ and we do not require

u1,N → ∞. This will be completely changed for the case when the underlying distribution is

only approximately GPD, see Section 3.3.4.

The size of λ can be treated as the level of top-coding in the data: the larger λ (provided every-

thing stays unchanged) the lower the level of top-coding in the observations used for estimation.

To consider how λ influences the asymptotic variance of the cGPD estimators, note that for the

elements that constitute covariance matrix H(λ)−1 in (3.31) the following holds

1 + ξ + ψ1(λ) ≥ 0, 1 + ψ2(λ) ≥ 0, 2 + ψ3(λ) ≥ 0, for all λ ≥ 1 and ξ > 0.

Furthermore, the functions ψ1(λ), ψ2(λ), ψ3(λ), and ψ3(λ)(1+ξ)+ψ1(λ)(2+ψ3)−ψ2(λ)(2+ψ2)

are all non-positive and increasing in λ with 0 upper bounds, and the corresponding lower bounds:

−(1+ξ), −1, −2, and −(1+2ξ). Those bounds guarantee that covariance matrix (3.31) is positive

semi-definite. The upper bounds are achieved as λ→∞ – the case when there is no top-coding;

the lower bounds are achieved as λ → 1 – the case when effectively all data is censored away.

Due to the properties of the above functions, it is easy to see, as it was expected, that the

variance of the cGPD estimators increases with the level of top-coding in the data. Figure 3.2

(right-panel) illustrates how the standard deviation of the cGPD estimator of ξ depends on the

level of top-coding λ.

3.3.4 Properties of cGPD estimator: X ∼ EVD

Suppose that the random variable X has distribution function F that belongs to the MDA of

the EVD with ξ > 0. Similarly to the settings of the previous section, let
(
X̃1, . . . , X̃n

)
be a

vector of n independent realizations of X̃ ∼ Cens(X,u2,N ), and (Y1, . . . , YN ) be a vector of N

excesses of
(
X̃1, . . . , X̃n

)
over the threshold u1,N , such that u1,N < u2,N . Conditionally on N ,

the excesses (Y1, . . . , YN ) are independent and identically distributed with distribution function
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Fu1,N
as in (3.10). In the sense of the relationship (3.12), it is clear that fitting the censored GPD

to the excesses is a correct model only asymptotically resulting in bias and increased variance

of the cGPD estimators, compared to the case of X ∼ GPD. In the following proposition, we

summarize those properties.

Proposition 3.9. Suppose X is a heavy-tailed distibution with the excess distribution as in

(3.10). Let (Y1, . . . , YN ) be N independent realisations of Cens(X,u2,N )’s excesses over the high

threshold u1,N set such that u1,N < u2,N and as N →∞,

N1/2cξφ(u1,N )

1− ρξ
→ µ ∈ R, (3.40)

u2,N

u1,N
→ λ∗ > 1. (3.41)

Then there exist a local maximum
(
β̂N , ξ̂N

)
of the cGPD likelihood function evaluated on

(Y1, . . . , YN ), such that

N1/2

[
β̂N/βN − 1

ξ̂N − ξ

]
→d N

(
H (λ∗)

−1
b, H (λ∗)

−1
)
, (3.42)

where

b (λ∗) =

 µ(1−ρξ)
1+ξ−ρξ

(
1− λ−1/ξ+ρ−1

∗

)
µ

ξ(1+ξ−ρξ)

(
ξ + (1− ρξ)λ−1/ξ+ρ−1

∗ − (1 + ξ − ρξ)λ−1/ξ+ρ
∗

) , (3.43)

and H (λ∗) as defined in (3.39).

Proof. As it is noted in Section 3.3, the limit of N1/2E (Uk,N (βN , ξ)), as N → ∞ and u1,N →
∞ simultaneously, determines the asymptotic bias of the maximum likelihood estimators in

the sense of relationship (3.21), where the expected value E (Uk,N (βN , ξ)) is evaluated with

respect to the distribution function Fu1,N
(y) as in (3.10). Note that the parameter βN , which we

wish to estimate, depends on the threshold u1,N (which in turn depends on the number of the

observations) through the threshold stability property of the GPD, namely, βN = ξu1,N . With

this parametrization for βN in the excess distribution function Fu(y), we have the following

relationships

∫ w

0

log λ(y)dFu(y) = ξ +
ξ2cφ(u)

1− ρξ
− ξb1(u)λ(w)−1/ξ − ξb2(u)

1− ρξ
λ(w)−1/ξ+ρ−(

λ(w)−1/ξb1(u) + λ(w)−1/ξ+ρb2(u)
)

log λ(w), (3.44)

∫ w

0

λ(y)−rdFu(y) =
1

1 + rξ
− ξ2crφ(u)

(1 + rξ)(1 + rξ − ρξ)
− b1(u)

1 + rξ
λ(w)−1/ξ−r−

b2(u)(1− ρξ)
1 + rξ − ρξ

λ(w)−1/ξ−r+ρ, (3.45)

where λ(y) = 1 + ξy/βN , b1(u) = 1− cφ(u)/ρ+ o(φ(u)) and b2(u) = cφ(u)/ρ.

Using these formulas, it is easy to show that the expected value E (Uk,N (βN , ξ)) of the com-

ponents (3.34)-(3.35) of the score vector Uk,N (βN , ξ) with respect to the distribution function



Chapter 3. Estimating tails in top-coded data 99

Fu1,N
(y) take the form

ξcφ(u1,N )
1+ξ−ρξ

(
1−

(
u2,N

u1,N

)−1/ξ+ρ−1
)

+ o(φ(u1,N ))

cφ(u1,N )
(1−ρξ)(1+ξ−ρξ)

(
ξ + (1− ρξ)

(
u2,N

u1,N

)−1/ξ+ρ−1

− (1 + ξ − ρξ)
(
u2,N

u1,N

)−1/ξ+ρ
)

+ o(φ(u1,N ))

 .
Due to (3.40) and (3.41), we obtain

b (λ∗) := lim
N→∞

N1/2E (Uk,N (βN , ξ)) = µ(1−ρξ)
1+ξ−ρξ

(
1− λ−1/ξ+ρ−1

∗

)
µ

ξ(1+ξ−ρξ)

(
ξ + (1− ρξ)λ−1/ξ+ρ−1

∗ − (1 + ξ − ρξ)λ−1/ξ+ρ
∗

) . (3.46)

Considering the covariance matrix in (3.42), note that its functional form is the same as in

the asymptotic distribution (3.30). This is supported by the fact that the result H = −M of

Lemma 3.6 for the case when the excesses follow exactly the GPD, holds asymptotically also

in the case with distribution function Fu1,N
, because E (Uk,N (βN , ξ)) → 0, as N → ∞ (this is

because φ(u1,N )→ 0). Furthermore, by direct calculation of elements of M (employing formulas

(3.36)-(3.38) and (3.44)-(3.45)), one can show that the elements of matrix M calculated with

distribution function Fu1,N
deviate by O(φ(u1,N )) from the corresponding components of this

matrix calculated with distribution function of the corresponding GPD. Therefore as N →∞ it

makes no difference whether M is calculated with respect to Fu1,N
or the corresponding GPD.

As a result, the covariance matrix H−1(λ∗) in (3.42) has the same form as H−1 in (3.31). The

only difference is that λ is replaced by λ∗.

Remark 3.10. Considering λ∗ := limN→∞ λN = limN→∞ u2,N/u1,N , it is clear that there are

three possible cases:

a) λ∗ ∈ [0, 1]; this case leads to degenerate results since it effectively implies that all observa-

tions (excesses) for estimation are censored away.

b) λ∗ →∞; this case effectively implies that there is no censoring. Properties of the estimators

are derived in Smith [1987].

c) λ∗ ∈ (1,∞); this case is the most important for our study as it suggests effective top-coding

in the data. For λ∗ ∈ (1,∞), threshold u2,N should increase with N in the same rate as

u1,N does.

From the assumptions (3.40) and (3.41), it is clear that the thresholds u1,N and u2,N increase

at a certain rate with N (the number of exceedances above u1,N ) and consequently with n

(the number of observations from which exceedances are observed). That relationship can be

derived by considering the second-order properties of the underlying distribution function. As

it is noted in definition (3.7), the function φ(u) is regularly varying with some index ρ < 0, i.e.

φ(u) ∼ uρL(u) , for large u, where L(u) is a slowly varying function. Due to regular variation of

φ(u) and assumption (3.40) one can conclude that

u1,N ∼ O
(
N−

1
2ρ

)
. (3.47)
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Figure 3.2: Mean (left panel) and standard deviation (right panel) of the asymptotic distri-
bution of the cGPD estimators. For this illustration the parameters are set as follows: ξ = 1/2,

µ = 1/3, ρ = −1/5.

Note in the previous sections we considered N – number of exceedances of X over u1,N –

independently of the sample size n of X realisations which yield those exceedances. In our

settings, the relationship between N and n can be set as N/(n(1 − F (v1,n))) →p 1, see Smith

[1987] p.1180, where v1,n denotes the threshold u1,N . Recalling that the function F (x) is regularly

varying with index 1/ξ, we can write N ∼ nv−1/ξ
1,n , which, substituted in (3.47), yields

v1,n ∼ O
(
n

ξ
1−2ρξ

)
.

In this study we therefore assume that the thresholds u1,N and u2,N increase with the rate

O
(
N−

1
2ρ

)
, or, equivalently, at the rate O

(
n

ξ
1−2ρξ

)
.

The result of the above proposition includes naturally the case when the data is uncensored. As

λ∗ → ∞, b (λ∗) and H−1 (λ∗) converge to its uncensored counterparts in (3.14). In particular,

for the estimator ξ̂N of ξ in the uncensored case it holds

N1/2
(
ξ̂N − ξ

)
→d N

(
µξ(1 + ξ)(1 + ρ)

1 + ξ − ρξ
, (1 + ξ)2

)
. (3.48)

Figure 3.2 illustrates how various λ∗ affect the parameters of the asymptotic distribution (3.42)

compared to the uncensored case. For this illustration we set the parameters as ξ = 1/2,

µ = 1/3, ρ = −1/5. As it was to be expected, Figure 3.2 indicates that top-coding increases

the uncertainty in the estimates by increasing both the bias and the variance in the estimation

results.

3.4 Hill estimator on top-coded data

In this section we consider a modification of the Hill estimator, see Hill [1975], for the case of

top-coding in the data. Consider a heavy-tailed random variable X with distribution function

F ∗ ∈ MDA (Hξ), ξ > 0, see (3.5). For the moment assume that there is no uncertainty in

modeling the tail of X over threshold u, i.e., the slowly varying function L(x) = C is constant

for x > u. In this case the tail of random variable X over threshold u can be modelled as



Chapter 3. Estimating tails in top-coded data 101

F ∗(x) = 1 − Cx−1/ξ, C > 0. It is natural to consider upper-order statistics that exceed some

threshold u1,N > u from n independent realizations of X and then to estimate ξ and C by the

maximum likelihood estimators ξ̄ and C̄ in the following way

ξ̄ =
1

N

N∑
j=1

log (1 + Yj,n/u1,N ) , C̄ =
N

n
u

1/ξ̄
1,N , (3.49)

where N is the number of the upper-order statistics Xn,n > Xn−1,n > . . . > Xn−N+1,n that

exceed u1,N and Yj,n = Xn−j+1,n − u1,N , see Smith [1987].

In the case when the data is top-coded the estimators (3.49) are slightly changed. Consider N

i.i.d excesses (Y1, . . . , YN ) of the random variable X̃ ∼ Cens (X,u2,N ) over the threshold u1,N

set such that u2,N > u1,N , where the tail of X above u1,N follows the distribution function

F ∗(x) = 1 − Cx−1/ξ, x ≥ u1,N . Recall that the random variable of excesses is defined as

Y := X̃ − u1,N | X̃ > u1,N . The likelihood of the excesses can be expressed as

LN (ξ; Y) =

N∏
k=1

(
f∗u1,N

(Yk; ξ)
)1−δk (

1− F ∗u1,N
(wN ; ξ)

)δk
, (3.50)

where F ∗u1,N
(y; ξ) = 1 −

(
1 + y

u1,N

)−1/ξ

is a distribution function of excesses of X over the

threshold u1,N ; f∗u1,N
(y;α) = (∂/∂y)F ∗u1,N

(y; ξ), wN = u2,N − u1,N , and δk = I (Yk ≥ wN ).

One can easily show that function (3.50) is maximised at point ξ̄N set as

ξ̄N =
1∑N

i=1 (1− δi)

N∑
k=1

[
(1− δk) log

(
1 +

Yk
u1,N

)
+ δk log

(
1 +

wN
u1,N

)]
. (3.51)

The corresponding estimator of the scale parameter C is identical to (3.49), namely C̄N =
N
n u

1/ξ̄N
1,N . Note that without censoring, i.e. as wN → ∞, and setting u1,N as the nearest

upper-order statistic of (X1, . . . , Xn), the above estimator (3.51) transforms to the standard Hill

estimator. As it is noted in Smith [1987], the uncensored version of ξ̄N differs from the Hill’s

estimator, in that deriving ξ̄N N is random and u1,N is fixed while for the standard version of

that estimator N is predetermined and u1,N is set as (N + 1)’st order statistic. Smith [1987]

points out that, in practical terms, there is little difference between those two approaches.

The estimator (3.51) is a natural choice for estimation of ξ also in the case when the tail of X

can only approximately be modelled by the distribution function F ∗(x) = 1−Cx−1/ξ, x ≥ l. In

the following proposition, we summarize the properties of the estimator (3.51) for the case when

data comes from a heavy-tailed distribution with the excess distribution function as in (3.10).

Proposition 3.11. Suppose X is a heavy-tailed distibution with excess distribution as in (3.10).

From n independent realizations of Cens(X,u2,N ), let (Y1, . . . , YN ) denote N excesses over the
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high the threshold u1,N set such that u1,N < u2,N and as N →∞,

N1/2cξφ(u1,N )

1− ρξ
→ µ ∈ R, (3.52)

u2,N

u1,N
→ λ∗ > 1, (3.53)

N (log u1,N )
−2 →∞. (3.54)

Then for the maximum likelihood estimators ξ̄N as in (3.51) and C̄N = N
n u

1/ξ̄N
1,N of the model

P (X > x) = Cx−1/ξ, x ≥ u1,N , the following holds

N1/2

[
ξ̄N − ξ

ĈN−L(u1,N )
L(u1,N ) log u1,N

]
→d N

(
µξ

1− λ−1/ξ+ρ
∗

1− λ−1/ξ
∗

[
1

1

]
,

ξ2

1− λ−1/ξ
∗

[
1 1

1 1

])
. (3.55)

Proof. Proceeding similarly as in Section 3.3, we denote Uk,N = ∂Lk,N/∂ξ and

IN =
∑N
k=1 ∂

2Lk,N/∂ξ
2, where

Lk,N = (1− δk)

[
−
(

1 +
1

ξ

)
log

(
1 +

Yk
u1,N

)
− log ξ − log u1,N

]
− δk

1

ξ
log

(
1 +

wN
u1,N

)
is a contribution of one observation (excess) to the logarithm of the likelihood function (3.50).

Equations (3.18)-(3.20) determine the parameters of the asymptotic distribution of N1/2(ξ̄N −ξ)
in the same way as in (3.21).

Using formulas (3.44)-(3.45) from the proof of the proposition 3.9, it is straightforward to show

E Uk,N =
cφ(u1,N )

1− ρξ

(
1− λ−1/ξ+ρ

N

)
, Var Uk,N =

1− λ−1/ξ
N

ξ2
+O (φ (u1,N )) , and

N−1IN → −
(

1−λ−1/ξ
N

)
ξ2 , where λN = u2,N/u1,N . Due to the relationships

N1/2cξφ(u1,N )
1−ρξ → µ in

(3.52) and λN → λ∗ in (3.53), the asymptotic relation (3.21) in this case takes the form

N1/2
(
ξ̄N − ξ

)
→d N

(
µξ

1− λ−1/ξ+ρ
∗

1− λ−1/ξ
∗

,
ξ2

1− λ−1/ξ
∗

)
, N →∞. (3.56)

For the proof the asymptotic properties of C̄N , we refer to Theorem 4.3.1 in Goldie and Smith

[1987], where, in particular, it is shown that

√
N

log u1,N

(
uξ̄N−ξ1,N − 1

)
∼
√
N
(
ξ̄N − ξ

)
(3.57)

from which the statement of the proposition can easily be proved.

The results of Proposition 3.11 also hold for the case when the data is uncensored, i.e. letting

λ∗ →∞ in (3.56). In particular, for the estimator of ξ, it holds

N1/2
(
ξ̄N − ξ

)
→d N

(
µξ, ξ2

)
. (3.58)
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Figure 3.3: Mean (left panel) and standard deviation (right panel) of the asymptotic distri-
bution of the cHill estimator. For this illustration the parameters are set as follows: ξ = 1/2,

µ = 1/3, ρ = −1/5.

Figure 3.3 illustrates how various λ∗ affect the parameters of the asymptotic distribution (3.42)

compared with the uncensored case. For this illustration we set the parameters as ξ = 1/2,

µ = 1/3, ρ = −1/5. Not surprisingly, Figure 3.2 supports a logical supposition that censoring

deteriorates the quality of the estimate by increasing both the bias and the variance in the

estimation results.

3.5 Comparison of cGPD and cHill

Based on the asymptotic properties of the cGPD and the cHill estimators derived in Proposi-

tions 3.9 and 3.11, in this section we compare the performance of those estimators in keeping

the balance between the bias and variance. At the first step, it is especially easy to compare

the asymptotic results in the uncensored case, see (3.48) and (3.58). In particular, it is clear

that for a fixed threshold, used to determine the exceedances of the observations, the standard

Hill estimator provides always a smaller asymptotic variance than the GPD-based estimator.

However, depending on the second-order properties of the underlying distribution, the biases of

those estimators may differ cardinally in favour of the GPD-based estimator. Using the mean-

squared error (MSE), Smith [1987], Chapter 4, provides a comparison of those estimators in the

uncensored case. In particular, it is shown that for large absolute values of the second-order

parameter ρ (i.e., when the Pareto tail is a very good fit), the Hill estimator of ξ is superior

(based on MSE) to the GPD estimator, but when |ρ | is small (i.e., when the Pareto tail is a

poor approximation) then the GPD estimator is superior. Another comparison (also based on

MSE) of the Hill and GPD-based estimators is provided in McNeil, Frey, and Embrechts [2005],

Chapter 7.2.5, where based on the simulation study the GPD-based estimator of ξ turned out

to be more robust to the choice of the threshold than the Hill estimator.

Overall, the second-order properties of the underlying distribution determine strongly the per-

formance of the GPD and Hill estimators in the uncensored case. In line with Smith [1987], it

is noted in Beirlant, Dierckx, Goegebeur, and Matthys [1999] that the cases when |ρ | ∈ (0, 1)

constitute a real problem for applying the Hill estimator. One may expect, however, these con-

clusions about the estimators’ performance may not necessarily hold in the top-coded case. To
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investigate this issue in more detail, we employ the procedure described in Smith [1987], Chapter

4, and consider

RMSE (ξ, ρ, λ∗) := lim
N→∞

minµ MSE for cGPD

minµ MSE for cHill
(3.59)

– a ratio of minimised (separately) with respect to µ mean squared errors of cGPD and cHill

estimators of ξ. Minimizing with respect to µ is motivated by the fact that the optimal (in

the sense of minimizing the MSE) threshold u1,N may be set differently for the considered

estimators. In the following proposition we formulate an analytical expression for RMSE based

on the estimators’ properties derived earlier in the text.

Proposition 3.12. With the cGPD estimator as in Proposition 3.9 and the cHill estimator

considered in Proposition 3.11, relationship RMSE defined in (3.59) takes the following form

RMSE(ξ, ρ, λ∗) =
d1

d2

(
e1d2

e2d1

) 1
1−2ρξ

,

where d1 = q(1 + ξ + ψ1 (λ∗)),

e1 =
q2

(1 + ξ − ρξ)2

[
−(1 + ψ2 (λ∗))(1− ρξ)

(
1− λ−1/ξ+ρ−1

∗

)
+

(1 + ξ + ψ1 (λ∗))

ξ

(
ξ + (1− ρξ)λ−1/ξ+ρ−1

∗ − (1 + ξ − ρξ)λ−1/ξ+ρ
∗

)]2

,

q =
(1 + ξ)(1 + 2ξ)

1 + 2ξ + ψ3 (λ∗) (1 + ξ) + ψ1 (λ∗) (2 + ψ3 (λ∗))− ψ2 (λ∗) (2 + ψ2 (λ∗))

and

d2 =
ξ2

1− λ−1/ξ
∗

, e2 = ξ2

(
1− λ−1/ξ+ρ

∗

1− λ−1/ξ
∗

)2

. (3.60)

with functions ψ1(·), ψ2(·), ψ3(·) as defined in (3.32)-(3.33).

Proof. Recalling that the MSE may be decomposed into squared bias plus variance, we obtain

from (3.42) that the asymptotic MSE of the cGPD estimator may be expressed as

MSE(cGPD) ≈
(
e1µ

2 + d1

)
/N, (3.61)

with e1 and d1 defined in the statement of the proposition.

Similarly, one can express the asymptotic MSE of the cHill using (3.56) in the following way

MSE(cHill) ≈
(
e2µ

2 + d2

)
/N, (3.62)

where e2 and d2 are from the proposition above.

Minimizing those MSE’s with respect to µ note that N and µ in both (3.61) and (3.62) are

interrelated through the relationship (3.40), namely,

N1/2cξφ(u1,N )

1− ρξ
→ µ. (3.63)
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To make a more in-depth analysis of this relationship, note that for N (the number of ex-

ceedances) and n (the sample size) it holds N ≈ n (1− F (v1,n)), where v1,n denotes the threshold

u1,N . Since F (·) is assumed to be a regularly varying function with index 1/ξ, the relationship

between n and N reads N ≈ nv−1/ξ
1,n LF (v1,n), where LF is a slowly varying function. Recalling

that function φ(·) is also regularly varying with index ρ < 0, the relationship (3.63) can finally

be transformed as

nv1(n)−
1−2ρξ
ξ L∗(v1(n))→ µ2(1− ρξ)2

c2ξ2
, (3.64)

where is L∗ is a slowly varying function. From the above equation we conclude that v1,n is

proportional to µ−
2ξ

1−2ρξ , and hence N is proportional to µ
2

1−2ρξ . Transferring this result to the

analysis of the asymptotic MSE’s we obtain

MSE(cGPD) ∝
(
e1µ

2 + d1

)
µ−

2
1−2ρξ MSE(cHill) ∝

(
e2µ

2 + d2

)
µ−

2
1−2ρξ . (3.65)

Following Smith [1987] we minimize separately the right-hand sides of the above expressions and

compute RMSE(ξ, ρ, λ) – a ratio of those minimized values (cGPD’s value in numerator). To

find those minimized values note that function g(µ) = (eµ2 + d)µ−k, k > 0 reaches its minimum

value of 2d
2−k

(
kd

e(2−k)

)−k/2
at point µ∗ =

√
kd

e(2−k) if g′′ (µ∗) = 2e(2− k) > 0. Since expressions

in (3.65) are of the form as g(µ) and it holds 2e1(2− k) > 0 and 2e2(2− k) > 0 with k = 2
1−2ρξ ,

it follows that

RMSE(ξ, ρ, λ∗) =
d1

d2

(
e1d2

e2d1

) 1
1−2ρξ

. (3.66)

Note that without censoring RMSE(ξ, ρ, λ∗) converges to its uncensored version:

RMSE(ξ, ρ, λ∗)→
(1 + ξ)2

ξ2

(
ξ(1 + ρ)

1 + ξ − ρξ

) 2
1−2ρξ

, as λ∗ →∞.

Depending on ρ, RMSE(ξ, ρ, λ∗) takes the following values:

RMSE(ξ, ρ, λ∗)→
q(1 + ξ)(1− λ−1/ξ−2

∗ )(1− λ−1/ξ
∗ )

ξ2
, as ρ→ −∞, (3.67)

RMSE(ξ, ρ, λ∗)→ 1, as ρ→ 0, (3.68)

RMSE(ξ, ρ, λ∗)→ 0, as ρ = −1. (3.69)

Figure 3.4 illustrates RMSE(ξ, ρ, λ∗) for various sets of the parameters ξ, ρ, λ
−1/ξ
∗ . Note, that

instead of λ∗ we report on the figure λ
−1/ξ
∗ , which, due to its construction, shows approximately

what proportion of the exceedances is top-coded.

Figure 3.4 clearly illustrates that, in contrast to the uncensored case, the performance of cGPD

estimator depends not only on ρ but also on λ
−1/ξ
∗ (the proportion of top-coded observations)

and ξ. So cGPD estimator is always superior to cHill in region of small ρ when λ
−1/ξ
∗ is small.

But when λ
−1/ξ
∗ is large, i.e., a large proportion of the exceedances is top-coded, the performance

of cGPD estimator depends strongly on ξ: the larger the parameter ξ the smaller the region of
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Figure 3.4: RMSE(ξ, ρ, λ∗) for various sets of the parameters ξ, ρ, λ∗. Note: instead of λ∗

we report on the figure λ
−1/ξ
∗ , which shows what proportion of the exceedances is top-coded.

ρ where the cGPD estimator is superior to cHill. The reason for this mixed performance of the

estimators may lie in their varying sensitivity towards loss of information caused by removing

the largest observations of the exceedances. It is apparent from Figure 3.1 that for large ξ,

the effect of high-quantile observations is extremely large for the GPD-based estimators. In

combination with the situations when the fit of the Pareto tail is poor, i.e., for ρ ∈ (0, 1), the

censoring of the largest observations affects the GPD-based estimators more than it is the case

with the Hill estimator. On the other hand, one can argue that for the cases when ξ is large

and ρ ∈ (0, 1), i.e., the region where the fit of Pareto tail is poor and extreme observations are

common, the top-coding clean up the data in the way that the Hill estimator, which basically

measures the slope of the log-exceedances, becomes less sensitive to the loss of information than

the GPD-based estimator.

3.6 Applications

3.6.1 Simulation study

In this section, we consider the appropriateness of the analytical results of the previous section

for the real-world (finite-sample) settings. Conducting a small simulation study, we consider

independent realizations of a heavy-tailed distribution and estimate the tail index in the same

way as it is usually done in practice, where the uncertainty about the thresholds is ignored

and the threshold u1,N is set at some high quantile of the realisations (surely not optimally as

considered in the previous section). The reason about that uncertainty is attributed to the fact

that second-order properties of the heavy-tailed distribution are unknown in practice.
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Without aiming to reach a complete generality, we consider the following hypothetical case for

the simulations: there are daily returns of some stock embracing the period of ten years (ap-

proximately 2500 observations); setting threshold u1,N at the 96%th quantile of the observations

(yielding approximately 100 exceedances), we estimate the tail index on those exceedances under

different levels of top-coding. The threshold set at the 96%th quantile cannot be considered as

an optimal choice in terms of minimizing a MSE of the estimates: this threshold is simply one

possible choice which could have been made in practice, where the second-order properties of the

distribution are unknown. Setting the threshold set at the 96%th quantile, we fix the number

of exceedances N = 100 with respect to the total sample size n = 2500. Alternatively, one can

fix the threshold and consider the number of exceedances as random. In practice, there is little

difference between those two approaches.

In order to capture the cases plotted in Figure 3.4, in the simulation study we consider the

following sets of parameters (ξ, ρ) for the underlying distribution and the level of top-coding

λ
−1/ξ
∗ :

Parameter-set 1: small ρ, small ξ, and

a) large λ
−1/ξ
∗ – cGPD should be superior according to our findings in Section 3.5;

b) small λ
−1/ξ
∗ – cGPD should be superior.

Parameter-set 2: small ρ, large ξ, and

a) large λ
−1/ξ
∗ – cHill should be superior;

b) small λ
−1/ξ
∗ – cGPD should be superior.

Parameter-set 3: large ρ, small ξ and

a) large λ
−1/ξ
∗ – cHill should be superior;

b) small λ
−1/ξ
∗ – cHill should be superior.

Parameter-set 4: large ρ, large ξ and

a) large λ
−1/ξ
∗ – cHill should be superior;

b) small λ
−1/ξ
∗ – cHill should be superior.

Recall: λ
−1/ξ
∗ shows what proportion of the exceedances is top-coded.

To simulate datasets corresponding to the above cases we use the Burr distribution. Its dis-

tribution function FB(x) = 1 −
(

β
β+xτ

)θ
allows for a direct specification of the second-order

properties. In particular, F̄B(x) is regularly varying with ξ = 1/(τθ) and ρ = −1/θ, see Beirlant

and Guillou [2001]. Setting the parameters of Burr distribution correspondingly to the above sets

of parameters, we simulate 1000 samples with 100 exceedances over the 96% quantile (threshold

u1,N ) of the underlying distribution. Then setting the censoring threshold u2,N such that a par-

ticular proportion (denoted as λ
−1/ξ
∗ ) of the exceedances is censored, we estimate ξ parameter on

those exceedances by cGPD and cHill estimators for various levels of censoring λ
−1/ξ
∗ . Figures

3.5-3.8 illustrate the estimates from the simulation study. As it is expected, the cGPD estimates
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Figure 3.5: Estimates of ξ by the cGPD and the cHill estimators for the Parameter-set 1.
Panel 1 and 3 correspond to the cGPD estimates. Panel 2 and 4 correspond to the cHill

estimates.
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Figure 3.6: Estimates of ξ by the cGPD and the cHill estimators for the Parameter-set 2.
Panel 1 and 3 correspond to the cGPD estimates. Panel 2 and 4 correspond to the cHill

estimates.

show a high variance, while the cHill estimates may be very biased. Summarizing statistics of

the estimates are reported in Table 3.1.

Based on the MSE results (the smallest MSE’s are marked by bold type), the performance of the

estimators corresponds completely to the performance that one would expect from Figure 3.4.



Chapter 3. Estimating tails in top-coded data 109

100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Panel 1: cGPD; ξ=0.5; ρ=−3; λ
*
−1/ξ=0.2

trial

 

 
estimated ξ
true ξ

100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Panel 2: cHill; ξ=0.5; ρ=−3; λ
*
−1/ξ=0.2

trial

 

 
estimated ξ
true ξ

100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Panel 3: cGPD; ξ=0.5; ρ=−3; λ
*
−1/ξ=0.05

trial

 

 
estimated ξ
true ξ

100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Panel 4: cHill; ξ=0.5; ρ=−3; λ
*
−1/ξ=0.05

trial

 

 
estimated ξ
true ξ

Figure 3.7: Estimates of ξ by the cGPD and the cHill estimators for the Parameter-set 3.
Panel 1 and 3 correspond to the cGPD estimates. Panel 2 and 4 correspond to the cHill

estimates.
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Figure 3.8: Estimates of ξ by the cGPD and the cHill estimators for the Parameter-set 4.
Panel 1 and 3 correspond to the cGPD estimates. Panel 2 and 4 correspond to the cHill

estimates.

In particular, the simulation results for the “Parameter-Set 2” are encouraging, as they indicate

a specific for top-coding shift in the performance of the cGPD and cHill parameters depending

on the level of top-coding. Although this simulation study serves rather demonstrative purposes,

the consistency of the theoretical and the simulated behaviour of the estimators indicates their
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Table 3.1: Estimated bias, standard deviation, and mean squared error (MSE) of estimates
of ξ by the cGPD and cHill estimators (1000 simulations).

Parameter-set Parameters Bias average St.dev. average MSE*100

ρ ξ λ
−1/ξ
∗ cGPD cHill cGPD cHill cGPD cHill

Set 1 a) -0.2 0.5 0.2 0.2535 0.4484 0.3005 0.1014 0.1546 0.2113
b) -0.2 0.5 0.05 0.2109 0.4162 0.2030 0.0858 0.0857 0.1806

Set 2 a) -0.4 1 0.2 0.1567 0.2880 0.3221 0.1452 0.1283 0.1040
b) -0.4 1 0.05 0.1251 0.2612 0.2320 0.1258 0.0695 0.0840

Set 3 a) -3 0.5 0.2 -0.0172 0.0034 0.2806 0.0563 0.0790 0.0032
b) -3 0.5 0.05 -0.0109 0.0021 0.1846 0.0518 0.0342 0.0027

Set 4 a) -3 1 0.2 -0.0112 0.0028 0.3157 0.1159 0.0998 0.0135
b) -3 1 0.05 -0.0107 0.0007 0.2230 0.1048 0.0499 0.0110

Note: The smallest MSE’s of the estimates are marked by bold type.

applicability to finite-size-sample settings and to situations when the thresholds are set non-

optimally.

3.6.2 Application to electricity prices

In this section we consider a practical example of estimating the tail index on the electricity spot

prices. As input for our analysis serves the dataset of electricity spot prices embracing the period

of the January 1, 2002 - the December 31, 2011, on South Australia (SA) regional market of the

Australia’s National electricity market. The data is recorded with frequency 30 minutes which

provides 175296 observations. This data corresponds to the settings of this chapter as the legal

regulations on the Australia’s National electricity market impose a ceiling of 12500AUD/MWh

on the electricity spot prices (this ceiling was 10000AUD/MWh until 2010), therefore our data

is indeed top-coded.

As a preliminary step to estimating the tail index, we extract the daily maximum from the

dataset of the 30min prices. This is done to reduce the correlation and seasonality effect in the

observations. As the result of this transformation, the dataset reduces to 3651 observations.

Figure 3.9 plots the daily maximum of SA electricity spot prices. The plot indicates clearly

that the prices are heavy-tailed with spikes reaching to 12500AUD/MWh. We rely also on the

mean-excess function to verify if the data is heavy-tailed and if the Pareto tail is an appropriate

model. Details on this and other methods may be found, e.g., in McNeil, Frey, and Embrechts

[2005], Chavez-Demoulin and Embrechts [2011]. For positive-valued data X1, X2, . . . , Xn and its

high threshold u, the mean-excess function is defined as

en(u) =

∑n
i=1(Xi − u)I{Xi>u}∑n

i=1 I{Xi>u}
. (3.70)

Plotting {Xi,n, en(Xi,n)}, where Xi,n denotes the ith order statistic, we consider a shape of the

mean-excess function for i close to n. If the shape looks approximately linear then this suggests

that the Pareto tail is an appropriate model for the excesses over that threshold. The point

where the mean-excess function visually becomes close to linear can be set as a threshold for

the tail index estimation. Figures 3.10 plots the estimates of mean-excess function for the last

5% of the sample upper order statistics. A solid vertical line on the figure denotes the threshold
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Figure 3.9: Daily maximum of SA electricity spot prices (since the data is very volatile,
ranging from 15AUD/MWh to 12500AUD/MWh, it is plotted on the log-scale)
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Figure 3.10: Sample mean excess plots of daily maximum of SA electricity spot prices. A
solid red vertical line indicates the threshold u1,N chosen for the estimation of ξ.

u1,N chosen for estimation of the tail index. The threshold was set on the 96.85% quantile of the

empirical distribution, which corresponds, respectively, to 1589.33AUD/MWh and results in 115

exceedances. The censoring threshold u2,N is set at the level of 10000AUD/MWh, because the

most part of the data is observed in the period when the ceiling was 10000AUD/MWh. There

are 17 observations that hit that threshold, i.e., 14.78% of the exceedances are top-coded.

The cGPD estimator yields the following estimates (with the standard deviation in parenthe-

ses) ξ̂N = 1.4272(0.3811) and β̂N = 1068.7(247.2). The cHill estimate is ξ̄N = 0.9547(0.0963).

Ignoring the top-coding in the data, the GPD-based and the Hill estimators provide the fol-

lowing estimates of ξ, respectively, 0.3268(0.1237) and 0.8236(0.0768). This example clearly

illustrates the importance of the censored-adjusted estimators: the difference in the estimates

(especially for the GPD-based ones) is so great that ignoring the top-coding may lead to a strong

underestimation of the tails of the electricity prices (compare ξ̂N = 1.4272 and ξ̂N = 0.3268).

Considering a large level of the top-coding and the fact that the cGPD and cHill estimators
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Figure 3.11: Excess distribution functions implied by the cGPD and the cHill estimators
compared to the empirical excess distribution function of the exceedances of daily maxima of

SA electricity prices.

provide a large estimate of ξ (much higher than the usual estimates in the financial literature),

one may expect, based on the analysis in Figure 3.4, that the cHill estimator provides a better

(less biased, less volatile) estimate of ξ and hence a better a fit to the data. On the other

hand, since the excess distribution function F ∗u1,N
(y; ξ) = 1−

(
1 + y

u1,N

)−1/ξ

implied by the Hill

estimator lacks the scale parameter (which is available in the GPD), one would expect that the

fit the cHill estimator is inferior to the cGPD’s one, see McNeil, Frey, and Embrechts [2005],

Section 7.2.4. Figure 3.11 plots the excess distribution functions implied by the cGPD and

the cHill estimators compared to the empirical excess distribution function. The figure clearly

illustrates that the excess distribution function of the cHill estimator fits the data convincingly

well, supporting the the major finding of this chapter that the cHill estimator provides reasonable

estimates of ξ in situations when both the parameter ξ and the level of top-coding are large.

3.7 Conclusion

Practitioners often encounter problems estimating extreme value distributions on data where the

values of observations above a certain threshold are unknown. In this chapter we examine how

two popular estimators of the extreme value distribution can be adjusted to those settings. In

particular, we consider the maximum likelihood estimation of the generalized Pareto distribution

(GPD) and the Hill estimator. Working in the framework of Smith [1987], we establish the

asymptotic normality of those estimators and provide a detailed analysis of how various levels

of top-coding influence the asymptotic bias and variance of the estimators depending on the

second order properties of the underlying distribution. For high levels of top-coding, our findings

suggest a superior performance of the Hill estimator over the GPD approach in estimating large

extreme value indexes. In particular, the Hill estimator may provide a smaller MSE than the

GPD approach. This result contradicts the broad conclusion about the performance of those

estimators in the uncensored case. Our findings are supported by a small simulation study and

an application to electricity spot prices of Australia’s national electricity market.
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Since the performance of the cGPD and cHill estimators depends strongly on the second order

properties (mostly parameter ρ) of the underlying distribution, in future research it would be

interesting to integrate the methods of ρ estimation, see, for example Fraga Alves, Gomes, and

de Haan [2003], with the estimation of the tail index on the top-coded data.



Conclusion

In view of the recent financial crisis and growing reciprocal distrust of financial institutions,

there is a strong demand for risk management models that can describe the occurrence and the

main characteristics of (multivariate) extreme events. In this thesis, we make an attempt to

develop some quantitative aspects of those models focusing mainly on applications of extreme

value theory.

Chapter 1 presents a model that can capture the typical features of multivariate extreme events

observed in financial time series, namely, clustering behavior in magnitudes and arrival times

of multivariate extreme events, and time-varying dependence. The model is developed in the

framework of the peaks-over-threshold approach in extreme value theory and relies on a Poisson

process with self-exciting intensity. We discuss the properties of the model, treat its estimation,

deal with testing goodness-of-fit, develop a simulation algorithm. The model is applied to return

data of two stock markets and four major European banks. The empirical results demonstrate

a reasonable fit of the model and support an empirical importance of the self-exciting feature

for modeling both occurrence times, magnitudes, and interdependencies of the extreme returns.

A major advantage of the proposed model is its combined approach for modeling time and

magnitudes of the multivariate extreme events in dependent time series.

The model of Chapter 1 provides also a number of suggestions for future research. In particular,

high-dimensional applications of the model are worth consideration. The problem of parameters’

proliferation, which is inevitable in this case, may be resolved by applying the principle of pair

copula construction to our multivariate point-process model (this is possible due to the repre-

sentation form in Proposition 1.4). This construction principle will provide a flexible estimation

approach and equip the model with a feasible ability to get estimated on multivariate data, say,

with 50 or larger number of dimensions.

Chapter 2 introduces a forecasting model to extreme electricity prices in high frequency settings.

The model is suited for forecasting electricity price exceedances over very high thresholds, where

no or only a few observations are available. Employing a copula with a changing dependence

parameter, the model captures explicitly the time-adjusted dependence in the extreme prices.

Magnitudes of extreme prices are modelled by the censored GPD, which allows for a price ceiling

in the electricity spot prices. For modelling occurrence times of the extreme prices, a duration

approach based on a negative binomial distribution is proposed. An eminent advantage of this

approach is that it captures the main characteristics of the occurrence times and outperforms

common duration models like the ACD models and the Hawkes processes. The forecasting model

114
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is successfully applied to electricity spot prices from Australia’s national electricity market. A

promising direction for a future research is to consider a multivariate approach for modeling

extreme electricity spot prices. Multivariate approaches can capture strong interdependences

between regional electricity markets and describe the contagion effects between them.

The aim of Chapter 3 is to examine how two popular estimators of the extreme value distributions

can be extended to the settings of top-coding, i.e., to situations when the values of observations

above a certain threshold are unknown. In particular, the maximum likelihood estimator of the

GPD and the Hill estimator are considered and their asymptotic properties under top-coding

are established. The major finding of the chapter is that the Hill estimator preforms superiorly

over the GPD-based approach in estimating small (< 1) tail indexes under high levels of top-

coding. This finding contradicts the broad conclusion about the performance of those estimators

in the uncensored case. In all cases, however, the performance of the considered estimators

depends strongly on the second order properties of the underlying distribution of observations.

In future research it would be interesting to integrate the estimation methods of the second-order

properties with the estimation of the tail index on the top-coded data. It would ensure use of

the best estimator for a particular case of the second order properties.
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Embrechts, P., C. Klüppelberg, and T. Mikosch (1997): Modelling Extremal Events for

Insurance and Finance. Springer.

Embrechts, P., T. Liniger, and L. Lin (2011): “Multivariate Hawkes Processes: an Appli-

cation to Financial Data,” Journal of Applied Probability, 48(A), 367–378.

Embrechts, P., A. J. McNeil, and D. Straumann (2002): “Correlation and Dependency in

Risk Management: Properties and Pitfalls,” in Risk Management: Value at Risk and Beyond,

ed. by M. Dempster, pp. 176–223. Cambridge University Press.

Engle, R. F., and J. R. Russell (1998): “Autoregressive Conditional Duration: A New

Model for Irregularly Spaced Transaction Data,” Econometrica, 66(5), 1127–62.

Errais, E., K. Giesecke, and L. R. Goldberg (2010): “Affine Point Processes and Portfolio

Credit Risk,” SIAM Journal of Financial Mathematics, 1, 642–665.



Bibliography 119

Fraga Alves, M. I., M. I. Gomes, and L. de Haan (2003): “A new class of semi-parametric

estimators of the second-order parameter,” Portugalia Mathematica, 60, 193–213.

Geman, H., and A. Roncoroni (2010): “Understanding the fine structure of electricity prices,”

Journal of Business, 79, 1225–1261.

Goldie, C. M., and R. L. Smith (1987): “Slow variation with remainder: a survey of the

theory and its applications,” Quarterly Journal Of Mathematics, 38(2), 45–71.

Golosnoy, V., B. Gribisch, and R. Liesenfeld (2012): “Intra-Daily Volatility Spillovers

between the US and German Stock Markets,” Working Paper.

Grammig, J., and K.-O. Maurer (2000): “Non-monotonic hazard functions and the autore-

gressive conditional duration model,” Econometrics Journal, 3, 16–38.

Greene, W. H. (2003): Econometric Analysis. Prentice Hall.

Grothe, O., V. Korniichuk, and H. Manner (2012): “Modeling Multivariate Extreme

Events Using Self-Exciting Point Processes,” CGS Working Papers.

Gudendorf, G., and J. Segers (2010): “Extreme-Value Copulas,” in Copula Theory and Its

Applications, ed. by P. Jaworski, F. Durante, W. K. Härdle, and T. Rychlik, pp. 127–145.
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Juri, A., and M. V. Wüthrich (2002): “Copula convergence theorems for tail events,” In-

surance: Mathematics and Economics, 30, 405–420.
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