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Overview of thesis projects, collaborations, and publications

All steps, tasks and experiments necessary for planning, realization, completion, and
publication of the projects, which all contribute to this thesis work were carried out by myself,
unless stated otherwise in ‘contribution of coauthors or collaborators’ under each of the
following projects. Felix Beuschlein, senior author in all publications, my mentor, and
principle investigator of our study group is not mentioned separately, as he was closely
involved in all parts and aspects of the projects, which were carried out under his permanent

supervision.

Project 1: Identification and characterization of the adrenal side population

Publication: The side population phenomenon enriches for designated adrenocortical
progenitor cells in mice. Lichtenauer U, Shapiro I, Sackmann S, Drouin J, Scheele J, Maneck
M, Klein C, Beuschlein F. J Endocrinol. 2012 Dec;215(3):383-91. doi: 10.1530/JOE-12-0393.

Epub 2012 Oct 5

Contribution of coauthors or collaborators:

Jaques Droin: principal investigator, Montreal Canada, provided us with Tpit-Knockout
animals, which we bred and used for the investigation of the role of ACTH in side population
cells.

Jirgen Scheele, principal investigator, Freiburg, provided us with Pbx1 haploinsufficent
animals, which we bred and used to characterize the influence of Pbx1 haploinsufficiency on
side population cells.
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Christoph Klein, principal investigator and Matthias Maneck, PhD student, Institut fiir
Pathologie, Regensburg, carried out Microarray analyses on side population vs. non-side
population cells, and helped us interpreting the data and provided us with the heatmap (Figure
2A of original publication). His established platform is especially designed for small cell
numbers.

Simone Sackmann: graduate student, supported me with organ harvesting and intraperitoneal
ACTH applications.

Igor Shapiro, lab technician of our research group, took over most of the maintenance work
such as tagging, tailing and genotyping of mice, passaging of cell culture cells and regular cell
culture medium, exchange. He also supported me with the immunohistochemistry staining
procedure.

All coauthors contributed to their part of the Material & Method section, read the draft, made
suggestions to improve the manuscript and proof-read the final version before submission.

My contribution to this project:

Except for the contributions of the collaborators listed above, the whole project was planned,
carried out and published by myself under the supervision of my mentor Felix Beuschlein, as
mentioned in the preceding introductory statement of the overview. In detail, the acquisition
of the mice strains needed for our study as well as most of the breeding was organized by me
including taking care of the licensing for animal testing. In addition, I also established the
PCR genotyping assay that was required. I adapted the side population staining procedure for
adrenal cells and it is now the standard protocol used by our laboratory. Thereafter, I carried
out adrenal harvesting, preparation of adrenal single cell suspensions and staining procedures
for all subsequent FACS and flow cytometric analysis. All of these staining duties were
performed under my direct supervision while they were carried out by a technician of the
Core Facility in Freiburg. Except for maintenance work, I performed all cell culture
experiments including the production of cell culture photographs used in publication. With the
support of our lab technician, Igor Shapiro, I also carried out all immunohistochemistry
experiments used in publication as well. I established and managed the communication
contacts required for the project with all the collaborators involved. All data, including data
from collaborators, was collected, interpreted, as well as prepared for publication by me under
the supervision of my principal investigator. I wrote all drafts of the manuscript, incorporating
comments and corrections from all the coauthors involved, and was responsible for submitting
the final version of the manuscript as well as handling all revisions and aspects of the rebuttal
process.
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Project 2: Cell Fusion as a model to define pluripotent and committed adrenal

progenitor cells

Publication: not published

Contribution of collaborators:

Keith Parker, principal investigator, Jean D. Wilson Center for Biomedical Research,
Southwestern University, Texas, USA, provided us with Sf1-Cre animals.

Hans Jorg Fehling, principle investigator, Institut fiir Immunologie, Universitatsklinikum
Ulm, provided us with tdRFP reporter mice.

Martin Zenke, principle Investigator, Institut fiir Biomedizinische Technologien, RWTH
Aachen, provided us with Oct4-GFP animals.

Michele Boiani, PostDoc, Max Planck Institute for Developmental Biology in Miinster,
helped us during a short research stay with SF1-tdRFP blastocyst generation to establish a
primary embryonic stem cell culture. Michele Boiani also started the embryonic body
cultures.

Igor Shapiro, lab technician of our research group, was involved in mouse breeding and
maintenance work including tagging and tailing, embryonic cell culture (medium change,
feeder cell preparations, passaging of ES cells).

My contribution to this project:

Except for the contributions of the collaborators listed above, the whole project was planned,
carried out by myself under the supervision of my mentor Felix Beuschlein, as mentioned in
the preceding introductory statement of the overview. In detail, the acquisition of the mice
strains needed for our study as well as most of the breeding was organized by me including
taking care of the licensing for animal testing. In addition, I also established the PCR
genotyping assay that was required. I established embryonic stem cell line cultures and feeder
cell preparations in our laboratory. I initiated the collaboration with the Max Planck Institute
(MPI) for Developmental Biology and organized short research visits to Miinster, where the
embryonic primary SFI1-tdRFP cell line was established together with Michele Bojani from
the MPI. I had to harvest murine adrenal glands for this project, in order to obtain adrenal
single cell suspensions for the fusion experiments, which I carried out with the support of our
lab technician, Igor Shapiro. I designed and processed all real-time PCR experiments of this
project. I established and managed the communication contacts required for the project with
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all the collaborators involved. All data, including data from collaborators, was collected and
interpreted by me under the supervision of my principal investigator. This project was
supported by a LMU FOEFOLE grant, for which I successfully applied. In consequence, I had
to manage the associated administrative tasks as the responsible investigator.

Project 3: Defining regulators of adrenal organogenesis and steroidogenesis

Publication: Lichtenauer UD, Duchniewicz M, Kolanczyk M, Hoeflich A, Hahner S, Else T,
Bicknell AB, Zemojtel T, Stallings NR, Schulte DM, Kamps MP, Hammer GD, Scheele JS,
Beuschlein F. Pre-B-cell transcription factor 1 and steroidogenic factor 1 synergistically
regulate adrenocortical growth and steroidogenesis. Endocrinology. 2007 Feb;148(2):693-

704. Epub 2006 Nov 2.

Contribution of coauthors or collaborators:

Mark Kamps, principle investigator, Department of Pathology (M.P.K.), University of
California San Diego, School of Medicine, La Jolla, California, initiated the project of
generating Pbx1 haploinsufficient animals (Figure 1A of the original publication).

Jirgen Scheele, principal investigator, Department of Internal Medicine, Universitatsklinikum
Freiburg, originally generated Pbx1 haploinsufficient animals together with Thomas Zemojtel
and Matteusz Kolanczyk, PostDocs and provided us with Pbx1 animals (Figure 1B — D)

Dominik Schulte, graduate student of our research group, started breeding Pbx1 animals in
our facility and found evidence for smaller adrenal glands in Pbx1 haploinsufficient animals
compared to wild type mice in preliminary experiments, before he left our research group.

Stephanie Hahner, endocrine fellow, Department of Medicine, Uniklinik Wiirzburg, carried
out the hormonal measurements in mouse serum.

Andrew Bicknell, principal investigator, School of Animal and Microbial Sciences,
University of Reading, Reading, United Kingdom, carried out the Hox in-situ hybridization
experiment (Figure 2 of the original publication).
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Andreas Hoflich, principal investigator, Genzentrum, LMU Miinchen, performed the realtime
PCR analyses of IgF1, IgF binding protein 1 and IgF1-receptor (Figure 4E of original Pbx1
publication).

Gary Hammer, principal investigator and Tobias Else, PostDoc, Department of Internal
Medicine, Ann Arbor, Michigan, USA, carried out Pbx1 und Sfl immunoprecipitation (Figure
6F of original Pbx1 publication).

Nancy Stallings, graduate student, Department of Internal Medicine, University of Texan,
Southwestern, Texas, USA, provided us with a Sfl artificial promotor.

All coauthors contributed to their part of the Material & Method section, read the draft, made
suggestions to improve the manuscript, and proof-read the final version before submission.

My contribution to this project:

Except for the contributions of the collaborators listed above, the whole project was planned,
carried out and published by myself under the supervision of my mentor Felix Beuschlein, as
mentioned in the preceding introductory statement of the overview. In detail, the acquisition
of the mice strains needed for our study as well as most of the breeding was organized by me
including taking care of the licensing for animal testing. In addition, I also established the
PCR genotyping assay that was required. I carried out adrenal gland harvesting and
measuring, paraffin embedding, DNA, RNA, Protein extraction, cDNA synthesis, and blood
collections. I performed the hormone stimulatory and restrain stress experiments and carried
out the immunohistochemistry and, immunoblotting, used in the publication. I established and
managed the communication contacts required for the project with all the collaborators
involved. All data, including data from collaborators, was collected and interpreted by me
under the supervision of my principal investigator. I wrote the manuscript draft, kept in
contact with the coauthors, and carried out corrections, before the final draft was submitted.

Project 4: Defining the role of side population cells in adrenocortical carcinomas

Publication: Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R,
Riickauer KD, Beuschlein F. Side population does not define stem cell-like cancer cells in the
adrenocortical carcinoma cell line NCI h295R. Endocrinology. 2008 Mar;149(3):1314-22.

Epub 2007 Dec 6.
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Contribution of coauthors or collaborators:

Klaus Riickauer, attending, Department of Neurosurgery, Universitédtsklinik Freiburg, Martin
Fassnacht, fellow, Medizinische Klinik Wiirzburg, and M. Quinkler, fellow, Medizinishce
Klinik, Charité, Berlin provided us with human adrenal tissues for our studies.

Technical on-site support was provided by Klaus Geiger, lab technician, Core Facility,
Universitétsklinikum Freiburg, for FACS experiments, and by Roland Nitschke, biologist and
head of the Life Imaging Center, Universitét Freiburg for laser confocal microscopy.

Dirk Engelbert, graduate Student, Department of Internal Medicine, Universitdtsklinikum
Freiburg, helped us with the FACS analysis and data interpretation of the cell cycle study.

Igor Shapiro, lab technician of our research group, was involved in cell culture maintenance
work, helped to establish adrenal primary cultures and was involved in the side population
staining procedure.

All coauthors contributed to their part of the Material & Method section, read the draft, made
suggestions to improve the manuscript, and proof-read the final version before submission.

My contributions to this project:

Except for the contributions of the collaborators listed above, the whole project was planned,
carried out and published by myself under the supervision of my mentor Felix Beuschlein, as
mentioned in the preceding introductory statement of the overview. In detail, I adapted the
side population staining procedure to human and mice cancer cells, e.g. by employing
confocal microscopy time course experiments, I prepared adrenal single cell suspensions from
human adrenal tumor entities. Later, I prepared and supervised all FACS and cytometric
investigations and performed all cell culture experiments with the cell line NCI-h295R
including chemotherapy treatments and proliferation assays. I performed all real-time PCR
analyses and produced all photographs used in publication. I established and managed the
communication contacts required for the project with all the collaborators involved. All data,
including data from collaborators, was collected, interpreted, as well as prepared for
publication by me under the supervision of my principal investigator. I wrote all drafts of the
manuscript, incorporating comments and corrections from all the coauthors involved, and was
responsible for submitting the final version of the manuscript as well as handling all revisions
and aspects of the rebuttal process.
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Abstract

Radioactive and transgenic tracing experiments indicate that the adult adrenal cortex is
maintained by a common pool of stem cells, which reside in the periphery of the adrenal
cortex in the subcapsular zone. For repopulation, adrenal progenitor cells migrate towards the
organ center, where they differentiate within the different specialized adrenocortical zones
and take over specific adrenocortical functions. However, isolation and detailed investigation
of adrenal progenitor cells has been hampered by the lack of known marker genes. There is
convincing data that utilizing the side population, which is based on Hoechst 33342 dye
exclusion, leads to an enrichment of progenitor or stem cells in the hematopoietic system and
multiple other tissues. In the absence of known stem cell marker genes, we employed the side
population technique on adrenal cells. In contrast to non-side population cells, side population
cells readily grew over several passages in vitro. Furthermore, after 4 weeks in culture,
immunohistochemistry revealed steroidogenic enzyme expression, suggesting spontaneous
differentiation. Microarray analysis was performed and showed that the two populations
clearly differed on the mRNA level. However, none of the genes analyzed presented with a
substantially higher expression level to be considered a valuable adrenal stem cell marker

candidate.

Interestingly, the quantity of side population cells was significantly diminished in the
context of Pbx1 haploinsufficiency. This transgenic mouse model is associated with smaller
adrenal glands, a lower adrenal proliferation rate, and impaired adrenal function, suggesting a
stem cell deficit in these animals. In contrast, Tpit'/' mice, which are ACTH-deficient,
presented with a subcapsular zone width, which was significantly enlarged in comparison to
wild type adrenals. Accordingly, the number of side population cells in these mice was
significantly higher. ACTH treatment of these animals not only reverted the subcapsular zone

width back to normal, but also resulted in a reduction of the side population fraction to a level
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similar to that of wild type animals, providing indirect evidence for a stem cell ‘arrest’ in the
state of ACTH deficiency. Overall, adrenal side population cells seem to be enriched with

progenitor cells with a rather differentiated or designated phenotype.

To define the characteristics of multipotent versus somatic adrenal stem cells, a fusion
model was established. Herein, PEG mediated cell fusion between murine adult adrenal and
embryonic stem cells was performed, however, did not render the expected spectrum of

progenitor cells.

The involvement of stem cell like cancer cells in adrenal tumorigenesis was assessed
by identifying the side population in different human adrenal tumor entities and in the human
adrenocortical carcinoma cell line NCI H295R. The Ilatter were analyzed further and
characterized, however, a tumor stem cell-like behavior could not be detected: NCI H295R
side population cells had no greater contribution to tumor growth compared to the other cells
and had no survival benefit upon exposure to chemotherapeutic substances, typically
administered in this tumor entity. Therefore, identifying side population cells does not per se

guarantee stemness, and should always result in further extensive investigations.

-13 -
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Zusammenfassung

In Untersuchungen mit Hilfe radioaktiver- und transgener Tracer konnte gezeigt
werden, dass die adulte Nebenniere einen subcapsuldren Stammzellpool aufweist, der fiir die
Organplastizitdt hauptsidchlich verantwortlich zu sein scheint. Fiir Regenerations- und
Anpassungsvorgiange migrieren Zellen aus dem subcapsuldren Bereich ins Organinnere, wo
sie innerhalb der verschiedenen spezialisierten adrenocorticalen Zonen differenzieren und
endokrine Organfunktionen iibernehmen. Die Isolierung und Charakterisierung der
Nebennierenstammzelle ist allerdings bisher nicht gelungen, nicht zuletzt aufgrund fehlender
bekannter Nebennierenstammzellmarker. Es kann angenommen werden, dass durch die
Gewinnung der ,,Side Population* (SP) aus Knochenmark und vielen anderen Geweben adulte
Stammzellen angereichert werden konnen. Wegen fehlender Stammzellmarker passten wir die
Methode an Nebennierenzellen an und konnten zeigen, dass SP-Zellen — im Gegensatz zu
nicht-SP Zellen —iiber viele Passagen hinweg in vitro kultiviert werden konnten. In SP-
Zellkulturen konnte dariiber hinaus nach 4 Wochen die Expression typischer Steroidenzyme
immunhistologisch nachgewiesen werden, was auf eine spontane Differenzierung hindeutet.
Auf der Suche nach weiteren, nebennierenspezifischeren Stammzellmarkern fiihrten wir eine
genomweite Microarray Analyse an SP und Nicht-SP-Zellen durch. Obwohl sich die beiden
Populationen in Bezug auf ihr Expressionsmuster unterschieden, lieBen sich keine Gene

ermitteln, die als potentielle Nebennierenstammzellmarker in Frage gekommen wiren.

Transgene Maiusen, die haploinsuffizient fiir den Transkriptionsfaktor Pbx1 sind,
zeichnen sich u.a. durch kleinere Nebennieren mit einer geringeren Proliferationsrate und
beeintrachtigter Nebennierenrindenfunktion aus. Interessanterweise fand sich in diesen Tieren
ein deutlich reduzierter adrenaler SP-Zell Anteil, so dass hier moglicherweise ein
Stammzelldefizit vorliegen kénnte. Bei ACTH-defizienten Tpit” Mausen hingegen war die

subcapsuldre Zone im Vergleich zu Wildtyptieren deutlich verbreitert. Passenderweise war
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der Anteil der adrenalen SP-Zellen in diesem Fall deutlich erhoht. Eine ACTH-
Langzeittherapie der Tiere normalisierte nicht nur die Breite der subcapsuldren Zone, sondern
reduzierte auch die SP-Zellfraktion auf ein mit Wildtyptieren vergleichbares Niveau, was
indirekt auf einen ,,Stamzellarrest™ in Tpit'/ " Tieren hinweisen konnte. Aufgrund dieser Daten
gehen wir zusammenfassend davon aus, dass es sich bei Nebennieren SP-Zellen am ehesten

um schon recht differenzierte direkte oder designierte Vorlauferzellen handelt.

Um somatische Progenitorzellen und multipotente Stammzellen in der Nebenniere
identifizieren, unterscheiden und charakterisieren zu konnen, wurde ein komplexes PEG-
basiertes Fusionsmodell etabliert. Leider zeigten aber die resultierenden Zellen und
Fusionshybride nicht das gewiinschte Spektrum an unterschiedlich differenzierten

Stammzellen.

Des Weiteren wollten wir wissen, ob SP-Zellen als Tumorstammzellen in humanen
Nebennierentumoren und der adrenocorticalen Zelllinie NCI H295R eine Rolle spielen
konnten. Insbesondere die Zelllinie wurde detailliert untersucht, stammzellartige
Eigenschaften konnten jedoch, trotz eindeutig identifizierbarer SP-Zellen, nicht gefunden
werden: NCI H295R SP Zellen wuchsen nicht schneller und hatten, inkubiert mit diversen
gebriuchlichen Chemotherapeutika, keinen Uberlebensvorteil gegeniiber Nicht-SP-Zellen. Es
muss geschlussfolgert werden, dass der Nachweis von SP-Zellen das Vorhandensein von
Stammzelleigenschaften nicht verldsslich vorhersagen kann und die isolierten Zellen stets

einer genaueren funktionellen Untersuchung unterzogen werden miissen.

-15 -
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Introduction/Background

Adrenal insufficiency and impaired steroidogenesis require life-long replacement
therapies, and are associated with considerable morbidity [4,5]. Acute deficiency of
glucocorticoids — ‘Addison crisis’ — is a common, dangerous threat for patients suffering from
restricted adrenal function. Due to the rarity of the disease, those episodes often remain
undiagnosed at first, leading to unnecessary and improper treatments, before the right
diagnosis eventually is found. Furthermore, patients with adrenal insufficiency have a
substantially lower quality of life compared to healthy controls [6]. For these patients, stem
cell based treatments and replacement therapies should mean major advances. To achieve this
goal, defining the adrenal stem cells, the stem cell niche and the regulatory mechanisms

involved are prerequisites.

As the structure of the adrenal gland divides the adrenal cortex in three distinct zones,
and adaptive processes seem originate exclusively from a common pool of stem cells residing
underneath the adrenal capsule, the adrenal gland is predestinated as a model to study stem
cell regulatory and differentiation mechanisms. Furthermore, the adrenal gland is hormonally
active and part of the hypothalamus-pituitary-adrenal axis, which easily allows monitoring of
cell function by measuring hormone concentrations and their influence on the regulatory
system. Studying the adrenal gland thus offers advantages over other organ systems in stem
cell research field, despite the fact, that adrenal diseases are rare and research ambitions in

this area are limited.
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1. Embryonal development:

During organogenesis, the adrenogenital primordium is formed, when coelomic
epithelial cells migrate into the neighboring mesenchyme [7,8]. The adrenogenital
primordium eventually separates, and the cranial migrating cells differentiate into adrenal
precursor cells, forming the fetal zone of the adrenal cortex (human gestational week 4). Soon
thereafter, cortisol production under ACTH regulation begins (human gestational week 8 — 9)
[9]. The definitive zone of the adrenal cortex is build up, once mesothelium mesenchyme
migrate into the mesenchyme and surround the forming cortex (human gestational week 22 —
24) [10]. Temporarily, a third zone, called transitional zone, develops between the fetal and
definitive zone after midgestation. Simultaneously, early cells of the sympathic nervous
system, originating from the neural crest, migrate into the center of the developing adrenal
gland where they differentiate into chromaffine adrenal medullary cells [11]. In the second
trimester, the adrenal fetal zone makes up 80 — 90 % of the total adrenocortical cell mass,
however vanishes quickly shortly after birth by differentiation and apoptosis. Zona
glomerulosa and Zona fasciculata are now present, but the buildup of the Zona reticularis will
take another 3 years of time. The zonation process of the adrenal cortex with its 3 distinct
zones will not come to completion until shortly before puberty. It results in the well-known
classical adrenocortical structure with an outer Zona glomerulosa, where mineralocorticoid
production takes place, a Zona fasciculate with its glucocorticoid production, and the Zona

reticularis with DHEA synthesis (Figure 1).
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2. Somatic stem cells

Organ plasticity persists throughout life in the adrenal gland, necessary for adaption

processes and organ maintenance. According to the ‘migration theory’ these tasks are

/( Subcapsularzone _
Ynd s PR ; .- Figure 1
/. Z.glomerulosa ./

/ Cross section of a
0708 > fo 19 . \ . murine adrenal gland,
¥ Z, fasciculata ‘ stained with H&E
"' i y ; X 7 _' . A (100x magnification)
: N ' depicting the specific
adreno-cortical

i
i

zonation and  the
subcapsular zone,
where somatic
adrenocortical ~ stem
cells are believed to
reside and from where
migration towards the
center for  organ
replenishment  takes
place.

believed to be carried by a somatic stem cell pool, which has its niche directly underneath the
adrenal capsule (Figure 1). From here, the cells migrate radially towards the center of the
adrenal gland and differentiate within the zone at need [3]. Somatic stem cells generally are
believed to proliferate by symmetric and asymmetric cell division allowing the adjustment of
the total number of persisting somatic stem cells as well as the number of differentiating cells

(Figure 2A).

Several observations support the migration theory concept:
e In tritiated thymidine tracing studies, centripetal migration of adrenocortical
cells from outer to inner layers was found[12].
e LacZ expression under a 21-hydroxylase[13] and a side chain cleavage
enzyme promotor [14] in transgenic animals revealed a adrenocortical
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staining pattern, suggesting that cells from inner adrenocortical zones
originate from the subcapsular region, and that repopulation takes place in a
‘radially variegated pattern’, as the cells in each ‘radial stripe’ have a
common clonal origin.

e The adrenocortical cortex reformed to some extend after enucleation of rat
adrenals leaving behind the adrenal capsule only [15,16].

e unilateral adrenalectomy led to compensatory adrenal growth on the
contralateral side [17]. Most of the proliferation activity was taking place
within the subcapsular zone [2,18].

e Stem cell typical signaling, such as active Wnt- and Shh- pathways, were
virtually exclusively present in the subcapsular zone. When silenced, proper
adrenal development was disrupted [19-21]

e Genetically marked, originally subcapsular Glil positive cells, were found
differentiated and steroidogenic enzyme expressing scattered throughout the

adrenal cortex[20].

There is now evidence, that Glil positive, Sfl negative cells might represent long-
lived non-steroidogenic adrenocortical subcapsular progenitor cells, while Glil positive, Sfl
positive cells are more differentiated and centripetally displaced throughout the adrenal cortex
[22].

Several marker genes could be identified for the definite zone (NovH,
metallopanstimulin, CD56) and the fetal zone (P-Glycoprotein, low density lipoprotein (LDL)
receptor) during embryogenesis [23,24], and, with limitations, for the Zona glomerulosa in the

adult adrenal gland (Dab2, CD56) [25,26].
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Despite all these advances in adrenal developmental biology, the identification of
adequate adrenal stem cell markers allowing the isolation or enrichment of adrenal stem cells
for further in depth characterization had been unsuccessful thus far. As the fetal zone marker
P-Glycoprotein is a product of the multidrug resistance gene 1, this finding helped to set base

for the side population studies described below.

3. Adrenal stem cell regulation

Similar to marker genes, a few factors driving and regulating adrenal differentiation
have been identified thus far. Besides its well accepted role as a regulator of P450 enzymes of
steroidogenesis [27], the transcription factor and putative orphan nuclear receptor Sfl, was
found mandatory for the initiation of the adrenal primordium and its further development, as
Sf1 knock-out mice present with a complete agenesis of adrenal glands and gonads [28,29].
Dax1, another member of the orphan nuclear receptor superfamily, suppresses SF1mediated
transactivation, however, shows a similar cellular distribution in highly proliferating areas of
the adrenal cortex [30,31]. In humans, DAX1 dysfunction leads to X-linked adrenal
hypoplasia [32,33]. Other transcription factors involved in adrenal development include pre-B
cell leukemia transcription factor 1 (Pbx1) [34], Wilms tumor 1 (Wtl) [35,36], and
CBP/p300-interacting transactivator with ED-rich tail 2 (Cited2) [36,37]. The latter acts as a
Wtl cofactor and boosters Sfl transcription. Recently, the importance of secreted signaling
mechanisms, such as the canonical Wnt [19,38] and Shh [20-22] signaling pathways, was
described. In accordance with the orphan nuclear receptors, these factors are also

indispensable for proper adrenal development (Table 1; for review: [39]).
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Mutant Gene Function Phenotype Adrenal morphology Reference
human (mouse) human (mouse KO) human (mouse KO)
SF1 (Sf1) Transcription | XY sex reversal Adrenal insufficiency, [29,40-42]
factor, NHR (Lethal, gonadal aplasia adrenal hypoplasia (aplasia)
superfamily and dysgenesis of
ventromedial
hypothalamus)
DAXI1 (Daxl) Transcription | XY sex reversal Adrenal hypoplasia, [43,44]
factor, NHR (Male infertility) persistence of fetal zone,
superfamily adrenal insufficiency
(no X-zone regression)
(Pbx1) Transcription | (lethal, adrenal agenesis) (Adrenal aplasia) [34]
factor
(Cited2) Transcription | (Cardiac malformations, (Adrenal aplasia) [37]
factor, neural crest defects)
cofactor
(Shh) Morphogen thin capsule and small [20,22]

cortex, reduced
adrenocortical proliferation

Table 1: Overview of factors involved in adrenal development (adopted from Else et al.[45])

However, the individual roles of these factors for adrenal differentiation, or initiation

of zonation, or regression of the fetal zone, are still not well understood.
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4. The cancer stem cell concept

It is intriguing to speculate that a small subset of cancerously transformed progenitor
cells could be responsible for most of the tumor growth in a given tumor entity. As this
progenitor could give rise to a variety of differentiated tumor daughter cells with diverse
phenotypes, present therapeutic approaches aiming at tumor mass reduction to the greatest
possible extent will fail to achieve long-term remissions, as residing malignant progenitors
will eventually lead to recurrence of disease (Figure 2B). Furthermore, as progenitor cells
seem to be equipped with cell membrane based pumps capable of cytotoxic drug exclusion,
stem cell-like cancer cells are proposed to have the ability to withstand higher concentrations
of cytotoxic agents used in standard chemotherapeutical regimens [46-48].

Besides a cancerously transformed progenitor cell, alternatively, a differentiated cell
could regain stem cell characteristics with the same clinical and biological consequences [49].

This concept, which has first been established in hematological malignancies such as
acute myeloid leukemia, was first described in solid breast cancer tumors by Al Hajj et al.
Herein, CD44" and CD24"*¢ cells, which accounted for approximately only 0.1 % of the total
tumor population, were able to regrow tumor in breast pads of SCID mice, while all other
tumor cells transplanted in equal numbers on the contralateral side did not have that potential
[50]. By now, tumor cells with stem-cell-like properties have now been described for a variety
of solid tumors including, neuroblastomas [51], different brain tumors [52,53], head and neck
squamous cell carcinomas [54], colon carcinomas [55], and pancreatic cancer [56].
Depending on the tumor type, different stem cell associated markers were utilized for the
isolation of stem cell-like tumor cells. Common markers besides CD44/CD24 include CD133

(prominin), c-kit, Sca-1, sphere forming ability and the side population phenomenon.
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Figure 2:

Stem cell concept: By symmetric cell division, a somatic stem cell can give rise to two daughter
stem cells, or two differentiated cells. Alternatively, by assymetric cell division, a somatic stem cell
can give rise to a stem cell and a differentiated cell (A). Cancer stem cell concept: Stem cell-like
cancer cells, accounting for approximately 0.1 % of tumor cells, survive chemotherapy by drug
evading mechanisms, eventually leading to recurrent disease (B).

General accepted criteria for a stem cell-like cancer cell include [49,57-59]:
e ability to self-renew
e ability to re-grow the original tumor (e.g. in xenograft in vivo models) with
e recapitulation of most or all more differentiated cell types within an individual
tumor

e extensive proliferative capacity

Specifically targeting stem cell-like cancer cells could potentially eradicate the cellular
origin of a stem cell driven tumor and cure the disease, even when the rest — in this case the
majority — of tumor cells are left in place. This pathophysiological new concept has aroused
considerable clinical interest. However, most isolation methods used today lead to cancer
stem cell enriched heterogeneous and impure cell populations, limiting the advances in
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specifically targeting stem cell-like cancer cells. However, even if this obstacle can be
overcome, and a cancer stem cell treatment was found, it remains unclear what consequences

such a treatment would mean for physiologic stem cells in other organ systems.
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Own Contributions

1. Adrenal side population enriches for adrenal progenitor cells [3]

One approach for progenitor or stem cell enrichment is the side population isolation
method. It is based on Hoechst 33342 dye exclusion mediated through cell membrane based
pumps, resulting in a distinct small cell population stained less intense accounting for
approximately 0.1 % of the total cell number ‘by the side’ upon FACS analysis with an
ultraviolet laser [60,61]. The responsible membrane based pumps seem to be primarily
encoded by the multidrug resistance genes Abcg2 and Mdr1, since suppression of these genes
leads to fading or disappearance of the side population. Stem cells and premature cells are
known to express multidrug resistance genes on their cell surface, allowing the side
population phenomenon to be utilized for stem cell enrichment. This was tried first
successfully with mouse bone marrow cells [61]. Later, based on this method, potential
progenitors could successfully be isolated from multiple other tissues, including skin, muscle,
liver, brain, lung, testes, endometrium, heart, and pituitary [62-71]. Several observations made
investigating the side population in the adrenal gland particularly interesting:

e Disruption of the sonic hedgehog pathway — which was found an important
regulator of adrenocortical development — by cyclopamine, led to a significant
reduction of side population cells [72]

e Abcg?2 has been proposed a regulator of sonic hedgehog signaling, [73] further
indicating that cells isolated by Hoechst 33342 exclusion are involved in stem
cell and progenitor cell signaling.

e MDRI1 was found to be a marker for the adrenal fetal zone
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Hence, in the absence of adrenal stem cell markers, we adopted the side population
protocol according to our needs to investigate the suitability of this procedure to enrich for

murine adrenal progenitor cells.

Side population cells could readily be detected in mouse adrenals and accounted for
0.01 — 0.64 % of the total cell population (Figure 3A). As expected for a proposed cell
population with stem cell like properties, side population cells continued to grow over
multiple passages and over a period of several months, whereas non-side population cells

exposed to the same culture conditions adhered to the culture plate but never grew to a
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Figure 3 (adopted from [3]):

FACS staining pattern and gating of SP and non-SP (NSP) cells (A). Morphological appearance of
SP and NSP cells cultured for 7 days (B). FACS reanalysis of cultured side population cells (C).
Immunohistochemistry of long-term cultured SP cells revealed the expression of the steroidogenic
enzymes 3beta-Hydroxysteroid-dehydrogenase (38-HSD), p450 side chain cleavage enzyme
(SCC), and steroidogenic acute regulatory protein (StAR) (D)
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relevant density. Consistently, passaging of non-side population cells was not possible,
demonstrating self-renewal and proliferative capacity for murine adrenal side population cells
only (Figure 3B). Re-staining with Hoechst 33342 dye and Re-FACS analysis of long-term
cultured side population cells resulted — except for an expected higher proportion of side
population cells — in a FACS pattern similar to the original FACS sort, suggesting asymmetric

cell division (Figure 3C).

Immunohistochemistry of long-term cultured side population cells grown on cover
slips in a standard adrenal culture medium revealed the expression of a variety of
adrenocortical markers and typical steroidogenic enzymes indicating spontaneous
differentiation in vitro (Figure 3D). We were not able to detect significant amounts of
glucocorticoid concentrations in the culture medium, an observation we routinely find in
adrenal primary cultures grown in vitro for a couple of weeks. Besides this exception, the
established stem cell characteristics self-renewal, asymmetric cell division and differentiation

were met by murine adrenal side population cells.
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2. Potential regulators of the adrenal side population [3]

For studying potential regulators of adrenal side population cells, we took advantage

of two available transgenic mouse models.

Pbx1 is an important transcription factor for proper adrenal development, maybe even
with a regulatory function upstream of Sfl. Both factors seem to work synergistically.
Homozygous knock-out of Pbx1 leads to bilateral adrenal aplasia and is lethal. Adrenals in the
context of Pbx1 haploinsufficiency are smaller in size, present with a lower proliferation rate
(Figure 4), and impaired adrenal function, demonstrated by higher basal ACTH levels and

lower glucocorticoid output upon restrained stress experiments [2].
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Figure 4 (adopted from [2]):
Adrenals from Pbx haploinsufficient animals are smaller in size with lower adrenal weight (A), and a
lower proliferation index indicated by less PCNA expression on the mRNA (B) and protein level
(C). IHC reveals that most of the proliferation occurs in the subcapsular zone (C)
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A Pbx 1+
Figure 5 (adopted from[3]):

H&E staining of wild type
and haploinsufficient Pbx1
mice, characterized by
smaller adrenal glands with a
thinner adrenal cortex

(100x magnification, A).
B , Corresponding FACS  sort
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In contrast to this observation, Tpit” mice present with an adrenal subcapsular zone
which is substantially thinker compared to wild type animals. These mice are ACTH-deficient
and the wider adrenal subcapsular zone is similar to that of ACTH receptor knock-out mice

[74], strongly indication that disrupted ACTH signaling leads to those morphological changes.

As described typical for the subcapsular zone, and in contrast to the rest of the adrenal
cortex, the enlarged subcapsular region of Tpit” animals did not stain positive for
steroidogenic enzymes upon immunohistochemistry, which is in accordance with the theory
of a residing stem cell pool in the periphery of the adrenal cortex. Interestingly, the larger

subcapsular zone coincides with a significant higher amount of side population cells in these
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adrenals compared to wild type adrenals. Furthermore, ACTH application in vivo over 7 days
not only reverted the zone width back to normal, but is paralleled by a normalization of the
number of side population cells in these animals (Figure 6). These data might indicate a ‘stem

cell arrest’ with impaired differentiation capabilities in the context of ACTH deficiency.
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Figure 6 (adopted from[3]):

Subcapsular zone width (S) is thicker in Tpit KO mice (H&E staining A/B; 3BHSD staining A/E)
compared to heterozygous animals (A/A and A/D), but reverts back to normal after ACTH
treatment (A/C and A/F). Likewise, the side population fraction is higher compared to normal
controls and normalizes after ACTH treatment (B). Quantification of the number of side population
cells measurable in Tpit” mice compared to Tipt” mice and long-term ACTH treated Tpit”

animals (C).

Keeping this interpretation in mind, the higher ACTH levels detected in Pbxl
haploinsufficient animals could have driven a higher amount of subcapsular adrenal
progenitor cells towards differentiation, reducing the number of dormant progenitors in the

subcapsular zone. In conclusion, ACTH has to be considered an important regulator of
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adrenocortical stem cell maintenance and fate in addition to its well defined action on

steroidogenesis.

As the ability to exclude Hoechst 33342 dye is not exclusively found in progenitor
cells, the side population has to be regarded as a heterogeneous collection of cells. Although
enriching progenitor cells is possible, side population cells cannot compensate for adequate
adrenal specific stem cell markers. Therefore, whole genome microarray analysis was
performed on side population versus non-side population cells to elucidate relevant gene
expression differences between the two cell types. Since the number of harvestable adrenal
side population cells per mouse is limited, microarray analysis was performed on a platform
optimized for small cell numbers [75]. Expectedly, the expression patterns of the two
populations clearly differed. Genes associated with stem cell signaling tended to be higher
expressed, while Sf1 tended to be lower expressed in side population cells. However relevant
divergence could only be found for sets of genes and not for individual genes. Unfortunately,
even within the gene sets, no interesting candidates for a potential stem cell marker could be

identified [3].
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3. Defining pluripotent and committed adrenal stem cells

Since microarray analysis did not reveal relevant adrenal stem cell markers, alternative
strategies were being sought. Starting in the late 1990’s, fusion of somatic cells or somatic
stem cells with embryonic stem (ES) cells of both mouse and human origin arouse great
attention, as fusion hybrids were found to be pluripotent [76,77]. It has been proposed that the
somatic fusion partner undergoes reprogramming during the fusion process, in that regulatory
programs of gene expression change along with alterations of DNA methylation, leading to a
dedifferentiation of the somatic cell towards a lesser differentiated state. Do et al. even
demonstrated a complete erasure of the ‘somatic memory’ of adult neurospheres upon cell
fusion [78]. In consequence, fusion hybrids were found to have an epigenetic status and
phenotype similar to that of embryonic stem cells: Genes associated with pluripotency were
hypomethylated, the hybrid cells displayed prolonged self-renewal ability, differentiated into
derivatives of the three germ layers and even contributed to chimeras [79,80]. Despite these
conformities with embryonic stem cells, fusion hybrids usually remain tetra- or polyploid,
although spontaneous reduction to regular diploidity has been observed [81]. However, this
reduction process is considered a very rare event. Furthermore, expression profiling led to the
notion that fusion hybrids remain cells with features distinct different from both of the
originating cell populations [82]. Similarly, later studies demonstrated, that cell fusion does
not inevitably mean a unidirectional dedifferentiation process, but that, depending on the
experimental settings, characteristics of the somatic fusion partner can be acquired by fusion

hybrids during the fusion process as well [83-85].

In consequence, cell fusion appeared to be an ideal method to achieve a whole
spectrum of different adrenal cell types, ranging from pluripotent, more embryonic cells to
dedicated somatic adrenal progenitors. Serving as a model for adrenal cells in various

differentiation stages, we postulated that in depth characterization of fluorescence labeled
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resulting fusion hybrids, clonally expanded, should allow the identification of genes, relevant

for governing adrenal precursors or regulating differentiation.

We adopted the well-established polyethylenglycol (PEG) mediated cell fusion
method in our laboratory. In our model, adult adrenocortical cells from green-fluorescence-
protein (GFP)-labeled Oct4 mice (fluorescence not expressed) were fused with embryonic
stem cells from td(red fluorescence protein)RFP-labeled SF1 mice (fluorescence not
expressed). While the adult adrenal cells were obtained by applying a single cell suspension
protocol well established in our laboratory, the embryonic stem cells were harvested from

embryonic primary cultures from crossbred SF1-Cre and tdRFP reporter mice (Figure 7).

Figure 7:
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Fusion project outline resulting in Sfl dependent td-RFP expression and Oct4 dependent GFP
expression. Fusion of SF1-td-RFP blastocysts with Oct4-GFP adrenal cells should result in a variety
of tetraploid fusion hybrids (B). As controls, Sfl1-td-RFP adult adrenal cross sections display red
fluorescence (A). Oct4-GFP blastocysts display green fluorescence.
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Fusion hybrids should either express green fluorescence, once Oct4 transcription is
activated and the cell was reprogrammed to a rather embryonic state, or should express red
fluorescence, if SF1 is expressed, an essential step for initiating differentiation towards the
steroidogenic lineage. Alternatively, both fluorescences could become induced in cells with
intermediate phenotypes. If no fusion has taken place, no fluorescence is detectable as neither
the adult Oct-4/GFP adrenal cells nor the embryonic SF-1/tdRFP cells will have the ability to
induce expression of the transgenes. According to the expertise of Hans Scholer’s laboratory
at the Max Planck Institute in Miinster, GFP positive reprogrammed cells can be expected
approximately 2 — 3 days after cell fusion [83]. However, out of 10 highly technically
demanding cell fusion experiments, we were able to detect dim tdRFP expression only in one

culture dish after 14 days, indicating differentiation towards the steroidogenic lineage.
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Figure 8:
Tetraploid cells in small numbers were found in td-RFP negative cell populations only.
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Prolonged culturing intensified the detectable fluorescence over time. Surprisingly,
tetraploidity was found in 2 % of cells in the fluorescence negative control group only (Figure

8).

Embryonic bodies are routinely used as a model for unspecific spontaneous
differentiation of embryonic stem cells. Embryonic bodies derived from Sfl1-tdRFP
embryonic stem cells revealed increasing fluorescence intensity over time. Accordingly, Sfl
mRNA expression significantly increased in accordance to tdRFP fluorescence intensity

(Figure 9).

Taken together, the fusion project did not render the desired spectrum of progenitor
fusion hybrids. In contrast to the findings described in the literature, reprogrammed cells
could not be detected. Technical and procedural difficulties have been tried to overcome by
carrying out the fusion experiments partially in the Max Planck Institute for Developmental
Biology in Miinster, where a research group routinely fuses embryonic stem cells with neural
progenitor cells. Even in their hands, better results were not obtainable, possibly because the
fluorescence model is not working as it should, or because the cells used are not suitable for
cell fusion experiments. Whatsoever, as the Sfl1-tdRFP construct reliably turned red upon
differentiation, this construct appears to be valuable to be utilized in other differentiation

studies.
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Figure 9:

Prolonged cultivation of dim td-RFP positive cells resulted in an increase of fluorescence intensity
and Sfl expression on the mRNA level after multiple passages, while cells without fluorescence
after 14 days of culturing remained td-RPF negative (A). Formation of embryonic bodies results in
detectable red fluorescence and Sfl upregulation, suggesting spontaneous, undirected
differentiation towards the steroidogenic lineage.
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4. Stem cell-like tumor cells in adrenocortical carcinomas [1]

Adrenocortical carcinomas are rare, but highly malignant tumors of the adrenal cortex,
which respond poorly to standard chemotherapeutic substances [86]. Cellular heterogeneity of
the tumor and the presence of multi-drug resistance genes, which encode for membrane based
pumps that actively expel the cytotoxic drugs are being discussed as two underlying
mechanisms for this clinical observation [87]. P-glycoprotein was found a marker for the
adrenal definitive zone [24] and represents a prototype member of the ATP-binding cassette
(ABC) transporter family — especially Multi-Drug-Resistance-Gene 1 (MDRI1) [61] and
Breast Cancer Resistance Gene 1 (ABCG2) [60], which are ATP-dependent membrane
proteins predominantly expressed in excretory organs. Since the Hoechst efflux capacity of
side population cells is based on these pumps [88], the identification of the side population in
adrenocortical tumors should allow an enrichment of stem cell-like tumor cells and thus the
study of relevance of these cells in adrenocortical malignancies

The side population was first described for the isolation and characterization of stem
cell-like cancer cells in neuroblastoma tumors and corresponding cell lines by Hirschmann-
Jax et al [51]. Herein, similar to stem cell-like tumor cells isolated on the basis of cell surface
markers, side population tumor cells were found to proliferate, self-renew, and withstand
chemotherapy substances better than non-side population cells. Later, studies have extended
these findings to primary cultures for example of gastrointestinal cancers [89,90], and ovarian
cancer [91]. Interestingly, besides neuroblastoma cell lines, the isolation of tumor-like stem
cells based on the Hoechst 33342 (side population) exclusion method could also be
demonstrated for a variety of other tumor cell lines such as glioma [92], breast [93], thyroid
cancer [94], and melanoma [95] cell lines. This is remarkable, keeping in mind that cell lines

are believed to be prototypes for monoclonal cell expansion.
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After optimizing the protocol for adrenal tumor primary cultures, we could
demonstrate the presence of side population cells in a variety of different human adrenal
tissues including adrenocortical carcinomas, adenomas with different clinically relevant
hormonal excesses, and different human and mouse adrenocortical carcinoma cell lines. The
side population fraction tended to be larger the more aggressive the tumor entity was. For in
depth analyses and in order to obtain comparable results, we decided to thoroughly investigate
the well-established and widely used adrenocortical cancer cell line NCI H295R [96,97], as
the obtainable number of fresh adrenal cancers is very limited due to the rarity of the disease.

In contrast to our previous observations with regular adrenal side population cells and
in contrast to the findings published by other groups, non-side population cells from NCI
H295R cells proliferated at a similar rate as side population cells when co-cultured in equal

cell numbers (Figure 10).
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Figure 10 (adopted from [1]):

Side population (SP) and non-side population cells (NSP) had the same proliferation rate (A). To
exclude contamination, SP and NSP cells were stained with different colours and cultured together.
Still, SP cells had no proliferation advantage over NSP cells (B).
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Interestingly, although — as expected — the fraction of side population cells was higher
in FACS re-sorted side population cultures, side populations could consistently be detected in
cultured non-side population cells as well, which is incompatible with the side population

stem cell theory (Figure 11).
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Figure 11 (adopted from [1]):

In resorting experiments, SP cells (in %) could readily be detected in original side population and
non-side population (NSP) cultures.

This finding was surprising, especially since great care was taken to ensure that all

established criteria to identify a valid side population were fulfilled:

e Disappearance of the side population upon FACS analysis after pre-incubation

with the calcium channel blocker verapamil

e Optimization of the Hoechst 33342 staining procedure by confocal laser

microscopy and FACS time course experiments
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e Lower staining intensity of side population cells compared to non-side
population cells was verified using confocal laser microscopy. Accordingly,
MDRI1 and ABCG2 were significantly higher expressed on the mRNA level in
side population cells

e For comparative experiments, side populations cells from the outer tip of the
side population fraction were utilized only, to ensure the highest purity of side
population cells possible [98,99]

e Compared to non-side population cells, side population cells expressed genes
responsible for steroidogenesis on a significantly lower level in accordance

with the presumed more undifferentiated state.

Possible explanations for the same proliferation rate of side population and non-side
population cultures include cell cycle dependent expression or activity of the membrane based
pumps, or epithelial mesenchymal transition. Cell cycle differences between the two
populations could not be found. Epithelial-mesenchymal transition is generally accepted as an
important mechanism for tumor infiltration and metastasis. Although the original model
proposes a unidirectional change towards a lesser differentiated mesenchymal phenotype,
there is evidence suggesting the presence of incomplete epithelial-mesenchymal transition as
well as a reversion of this transition [100]. However, differences in epithelial or mesenchymal
marker expression levels between side population and non-side population cells could not be
found. Clinically most relevant for stem cell-like tumor cells is certainly their ability to
discharge or repel cytotoxic substances by membrane based pumps. As expected, we found
ABCG2 and MDRI, the genes encoding for these pumps, substantially higher expressed in
NCI H295R side population cells. Despite this equipment, with the exception of a mild effect

in an etoposide environment, a relevant overall survival benefit compared to non-side
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population cells could not be observed (Figure 12).
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Figure 12 (adopted from [1]):

Side population cells (white columns) -

with the exception of a mild effect when
801 exposed to etoposide (*=p<0.05) - did
601 not have a general survival advantage
40 1 over non-side population cells (black
20 columns), when being co-incubated with
0 : : chemotherapeutic agents routinely used

NaCl 0,5 mg/ml 1,0 mg/ml

viability (% of untreated NSP)

for adrenocortical carcinomas.

Since MTT measurements were performed, we cannot rule out that a small number of
cells with stem cell characteristics in the side population dishes would have survived

prolonged culturing.

In summary, side population cells of NCI H295R cells were indistinguishable in terms
of wviability, cell proliferation and cytotoxic resistance from non-side population cells,

although a valid side population was clearly detectable and isolatable. It remains unclear,
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whether these findings are attributed to this particular cell line, or if side population cells do

not play a relevant pathophysiological role in adrenocortical carcinomas.

Nevertheless, this study arrestingly demonstrates that the mere identification of side
population cells, even when all selection criteria were stringently fulfilled, does not guarantee
‘stemness’ per se. These cells need to be further evaluated and characterized functionally, to

validate presumed progenitor capabilities.
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Summary & Outlook

Despite the advances in stem cell biology, the endocrine stem cell field is still
evolving, and besides the fact, that somatic stem cells seem to persist throughout life in the
endocrine system, little is known about their nature and the niche in which they reside. The
extent of plasticity of these cells and the mechanisms of their differentiation are uncertain,
although some important factors have now been described. One of the reasons for the slow
progress in adrenal stem cell research can be attributed to the rarity of adrenal diseases and
the lack of appropriate tissue material. Nevertheless, it is generally accepted that current
treatment regimens, no matter if substitution of adrenal insufficiency or adrenal cancer
therapies, are insufficient for affected patients. This is the driving force to continue with
adrenal stem cell research beside the goal to improve and extent the knowledge of physiology

and mechanisms and factors in this field.

Applying the side population technique is an interesting approach to enrich progenitor
cells, especially in the absence of well characterized marker genes. Earlier published
observations on how adrenocortical cells are equipped together with the proposed mechanism
of the side population phenomenon, made this approach the first choice to study. Expectedly,
adrenal side population cells could be isolated, which fulfilled the general stem cell criteria
self-renewal, proliferation and differentiation. Unfortunately, further investigations including
whole genome microarray analysis, did not result in the detection of more adrenal specific
stem cell markers. Our study however demonstrated regulatory effects for the transcription
factor Pbx1 and for ACTH on side population cells, and therefore presumably also for adrenal

progenitors.

Defining one or several tissue specific stem cell markers is a prerequisite for

substantiated stem cell research. The fusion project was another approach to achieve this goal.
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PEG-mediated cell fusion was applied to generate different types of progenitor cells ranging
from embryonic-like pluripotent cells to designated adrenal progenitors. Unfortunately,
despite several approaches, the desired fusion hybrids could not be obtained. As tetraploidity
is inevitable, fusion hybrids would be an inferior choice for cell replacement treatment
strategies. After all, continuing this project would have been unreasonable. Nevertheless, the
project allowed the establishment of embryonic stem cell techniques in our lab und bore Sf1-

tdRFP cells, which can be utilized as differentiation markers for further studies.

While the fusion project was underway, Yamanaka’s land-mark paper was published,
allowing cellular reprogramming back to the embryonic stage by applying 4 key factors, Oct4,
Sox2, c-Myc, and Klf4, resulting in so called induced pluripotent stem cells [101]. Although
this method is slower and not more efficient than stem cell fusion, resulting cells are more
homogeneous and have regular ploidity [83]. Although not yet published, there is little doubt
that reprogramming adrenal cells is possible, when this or other reprogramming protocols are
applied. Recently, induced pluripotent stem cells could be transformed or differentiated to
some extend into steroid producing cells by virally transfecting Sf1 [102]. Even so, we are not
pursuing projects involving induced pluripotent stem cells as major obstacles of modern
embryonic stem cell research, such as the dependence on viral vectors for efficient

reprogramming, teratoma formation, or incomplete differentiation have yet to be overcome.

A more promising strategy in this context could be a limited reprogramming towards a
designated progenitor, instead of reprogramming the cells completely towards the embryonic
stem cell state. This more direct route has now been described for hepatocytes [103,104],
cardiomyocytes [105], and neurons [106]. Newer data even suggests, that, in contrast to
transdifferentation, a conversion of differentiated cells into a desired target tissue via
designated progenitors by reprogramming could be possible in vivo. In this study, exocrine

pancreatic cells were converted into functional B-cells [107]. Although this concept could be
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adapted to our needs by e.g. co-transfecting Sf1 and Oct4, there is no way around clearly

defining and characterizing the adrenal somatic stem cell.

Recently, sonic hedgehog signaling studies on murine adrenal glands has led to the
notion, that adrenal progenitor cells in the subcapsular region could be divided into long-term
and short-term progenitor cells, defined as Sf17** and Gli1"* cells being long-term, and Sf17**
Glil™® cells being short term progenitors. Although these markers are not suitable for cell
isolation, this study means a step forward in understanding and defining the adrenal stem cell.
It would be e.g. interesting to see, if Glil or Ptch are significantly expressed in adrenal side

population cells.

Although the initial enthusiasm regarding stem cell like-cancer cells seems to fade,
this theory has become an accepted concept in modern tumor pathophysiology. The relevance
and the extent of these subpopulations of tumor cells in endocrine cancer entities have yet to
be clarified. We addressed this issue by characterizing the side population, which could be
reliably detected in numerous human adrenal tumor entities and in the cell line NCI H295R.
We could exclude that side population cells play a relevant role as ‘cancer stem cells’ in this
standard model for adrenocortical cancer. This project in addition impressively demonstrated
that one has to be cautious declaring a certain cell type as stem cells utilizing an established

stem cell isolation method, without further characterizing these cells.

After all, the projects certainly not always rendered the anticipated results, and
cleaving to the projects, trying to find the reasons and mechanisms for divergent data, was a
challenge. Nonetheless, it has been great pleasure to work for several years intensively in the
field of endocrinology, where stem cell research has been just emerging. A whole variety of
topics and lab techniques from embryonic stem cells to stem cell-like cancer cells were
covered. One of our ongoing projects focuses on the screening of different types of
pheochromocytomas and paragangliomas for the expression of a variety of typical stem cell
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markers. Tissue-array analyses on several hundred samples collected Europe-wide should
allow to reliably answer the question whether and which stem cell markers are significantly
expressed on the protein level in this tumor entity. Further studies will aim to investigate their

involvement in tumorigenesis.
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Abbreviations

ABCG2 ATP-binding cassette sub-family G member 2
ACTH adrenocorticotropic hormone
C-kit tyrosine-protein kinase Kit (CD117),

mast/stem cell growth factor receptor (SCFR)
Dab2 disabled homolog 2

Dax1 dosage-sensitive sex reversal, adrenal hypoplasia critical region, on
chromosome X, gene 1

CD24 heat stable antigen CD24 (HSA)

CD44 cell-surface glycoprotein

CD56 neural cell adhesion molecule (NCAM)

DHEA dehydroepiandrosteron

GFP green fluorescence protein

Glil Gli family zinc finger 1

LacZ gene encoding fB-galactosidase

MDR1/ABCBI1 multidrug resistance 1, P-glycoprotein 1

Oct4 octamer binding transcription factor 4

Pbx1 pre-B-cell leukemia transcription factor 1

Ptchl protein patched homolog 1

Sca-1 stem cell antigen-1

SCID severe combined immunodeficiency

Sfl steroidogenic factor 1

Shh sonic hedgehog

tdRFP tandem-dimer red fluorescent protein

Tpit T-box factor, TPX19

Wnt family of highly conserved secreted signaling molecules

X-zone develops in the inner adrenal cortex of mice; similar to fetal zone in
primates
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