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Science cannot solve the ultimate mystery of nature.

And that is because, in the last analysis, we ourselves are part of nature and

therefore part of the mystery that we are trying to solve.

Max Planck (1932)



Abstract

The starch of potato (Solanum tuberosum L.) tubers is a renewable resource and an im-

portant component of multiple food and non-food products. Optimized starch yield, the

product of tuber starch content and tuber yield, is therefore the central selection criterion

in breeding programs for starch potatoes. The aim of this work was the detection of di-

agnostic single nucleotide polymorphism (SNP) markers for starch yield optimization by

marker-assisted selection.

A novel association mapping population of 282 potato genotypes formed the basis of this

thesis. Within a collaborative project with breeders, this population was assembled and

phenotyped in replicated field trials in Northern Spain for the starch yield determining

traits tuber starch content, tuber yield, weight and number. The population was geno-

typed for known diagnostic PCR markers, SSR markers and novel SNPs in candidate genes,

which were reported in the literature to have a function in starch or yield accumulation in

potato or other organisms. In addition, three subpopulations were selected based on the

highest (cases) and lowest (controls) trait values for tuber starch content, tuber yield and

starch yield. Ninety varieties and breeding clones in total were genome-wide genotyped

for 8,303 SNPs using the SolCAP Potato Array. SNPs with highly significantly different

allele frequency between the case-control subpopulations for each trait were selected and

genotyped in the entire population. Furthermore, the same case-control subpopulations

were genotyped with next-generation RAD sequencing. Highly significant SNPs differing

between cases and controls were analyzed for effects on the protein sequence and location

in previously known candidate genes.

Using a mixed linear model including population structure and kinship for association anal-

ysis, 21 diagnostic SNP markers and one insertion-deletion polymorphism were identified

in candidate genes for tuber starch and yield-related traits. These associations resulted

from the targeted candidate gene approach as well as from the genome wide case-control

study by SolCAP Potato Array genotyping. A set of 430 novel and non-obvious candidate

loci for tuber starch content, yield and starch yield was obtained from the RAD sequencing

approach. Nine loci were detected in both genome-wide genotyping methods and are of

special interest for further analysis.

All three applied concepts resulted in the detection of novel marker-trait associations and

candidate genes. This study shows the value of combining a knowledge-based associa-



tion mapping approach with genome-wide discovery of polymorphisms as a tool for the

detection of novel and non-obvious candidate genes and markers.



Zusammenfassung

Kartoffelstärke ist ein nachwachsender Rohstoff und ein wichtiger Zusatzstoff in der Lebens-

mittelindustrie sowie ein Additiv in anderen Industriezweigen. Optimierter Stärkeertrag,

das Produkt aus dem Stärkegehalt und dem Gesamtertrag der Knollen, ist daher das zen-

trale Selektionsmerkmal in Züchtungsprogrammen für Stärkekartoffeln. Das Ziel dieser

Arbeit war die Identifizierung von diagnostischen Single Nucleotide Polymorphism (SNP)

Markern um die Marker-gestütze Selektion auf optimalen Stärkeertrag zu ermöglichen.

Grundlage dieser Arbeit war eine neue Assoziationskartierungspopulation von 282 Kartoffel-

Genotypen. Diese wurde im Rahmen einer Zusammenarbeit mit Züchtern zusammengestellt

und für Merkmale phänotypisiert, die den Stärkeertrag bestimmen, nämlich Stärkegehalt

und Gesamtertrag der Knollen, sowie Knollen-Anzahl und Gewicht. Die Population wurde

mit diagnostischen PCR Markern aus früheren Studien, SSR Markern und neuen SNPs aus

Kandidatengenen, die in der Literatur beschrieben sind, genotypisiert. Zusätzlich wurden

aus der Gesamtpopulation drei Subpopulationen zusammengestellt, die aus je zwei Grup-

pen von Genotypen mit den höchsten (Fälle) bzw. niedrigsten (Kontrollen) Werten für

Knollenstärkegehalt, Ertrag und Stärkeertrag bestanden. Die insgesamt neunzig Sorten

und Zuchtklone wurden mittels des genomweiten SolCAP Kartoffel SNP Array (8.303

SNPs) genotypisiert. SNPs mit hochsignifikant unterschiedlicher Allelhäufigkeit zwischen

den Fall- und Kontrollgruppen für das jeweilige Merkmal wurden in der Gesamtpopula-

tion genotypisiert. Die gleichen Subpopulationen wurden darüber hinaus mittels Next-

Generation RAD-Sequenzierung genotypisiert. Signifikante SNPs zwischen der Fall- und

Kontrollgruppe wurden auf ihre Auswirkung auf die Proteinsequenz durch nicht synonyme

SNPs sowie auf ihre Präsenz in bisher bekannten Kandidatengenen analysiert.

Mit Hilfe eines linearen gemischten Modells, das Populationsstruktur und Verwandschafts-

grad berücksichtigte, wurden 21 diagnostische SNP Marker und ein Insertions-Deletions

Polymorphismus für Knollenstärke- und Ertragsmerkmale identifiziert. Diese Assoziatio-

nen resultierten aus dem Kandidatengen-Ansatz sowie der genomweiten Genotypisierung

anhand des SolCAP Kartoffel SNP Arrays. Mittels RAD Sequenzierung wurden 430

neue und nicht-offensichtliche Kandidatengene für Knollenstärkegehalt, Gesamtertrag und

Stärkeertrag gefunden. Neun dieser Kandidatengene resultierten aus beiden genomweiten

Genotypisierungsmethoden und sind von besonderem Interesse für weitere Analysen.

Alle drei Konzepte dieser Arbeit führten zur Identifikation neuer Marker-Merkmal Assozi-



ationen und Kandidatengene. Diese Studie zeigt, dass die Kombination eines wisssens-

basierten Assoziationskartierungs-Ansatzes und genomweiter SNP Analyse in Fall-Kontroll-

Studien einen wichtigen Beitrag zur Erkennung neuer, nicht-offensichtlicher Kandidaten-

gene und Marker führt.
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1. General Introduction

1.1. The potato success story

Potatoes have been an important food crop for a long time. They are a valuable source of

carbohydrates, proteins and vitamins as well as minerals. The beginning of the cultivated

potato was most likely a single domestication event originating from Solanum bukasovii

in southern Peru (Spooner et al., 2005). The potato plant has taken roots in Europe

between 1570-1572 when missionaries brought it to Spain upon their return back from

South America. In the beginning, the plant was acknowledged for its pretty flowers. The

first documented mention of the potato as food was in a letter in 1577 (Oliemans, 1988).

The nun Teresa of Ávila expressed her appreciation for a parcel of potatoes and their

good taste. Within three centuries after the introduction of potato to Spain, the plant

made its way through Europe and struck roots deeply into European culture. About 300

years later, Vincent van Gogh depicted a typical peasants meal in his famous painting

The Potato Eaters (1885): five people are sitting around a table, eating potatoes from

one large dish (Rijksmuseum Kröller-Müller, 1961).

Potato applications are manifold In former times, the potato was ”the bread of the

poor” (Oliemans, 1988), but nowadays it is an important player in the diets of cultures all

over the world. It ranges amongst the top five agricultural crops - after corn, wheat and

rice - with an average world potato production of 370 million tons per year (FAO Crops

Statistics Database, 2013).

Despite the importance as a food crop, not all grown potatoes are designated for consump-

tion. About 10 million tons of potatoes were harvested in Germany in 2010. Most of these

potatoes (70%) were consumed as table potatoes or processed products like chips and

french fries. The second largest share of 20% was used for the production of starch by the

starch industry (Statistisches Bundesamt, 2012). Potato starch is extracted from tubers

and applied as an additive in several industrial processes. Depending on the application,

starches for industrial use are often chemically modified (Ellis et al., 1998). The total

starch production in Europe in 2010 was 10 million tons. 14% of this starch was produced

from potatoes, whereas in Germany this proportion amounted to nearly 50% of the total

starch production in 2010 (Fachverband der Stärke-Industrie, 2013). Consequently, the

1



Chapter 1. General Introduction

potato plays an important role in the starch industry.

Potato starch Potato starch has some features that makes it different from corn or wheat

starch. It has a neutral taste, a white color, a higher viscosity and a higher purity with

low lipid and protein content (Jobling, 2004; Südstärke Informationsdienst, 2013a). The

major industrial sectors for potato starch are the food, paper, general and textile indus-

tries (Avebe, 2013; Ellis et al., 1998). In the food industry, potato starch is applied as

an additive for example in flour instant mixes, custards, packet soups or infant formulae

(Ellis et al., 1998; Südstärke Informationsdienst, 2013c). Major applications in the paper

industry are in paper production, surface coating and the rubber lining of, for example,

envelopes (Südstärke Informationsdienst, 2013d). Furthermore, it is applied in the produc-

tion of textiles in weaving mills (Südstärke Informationsdienst, 2013e) and for a multitude

of applications in general industry, like fertilizer granulation and as binder for fiberglass

fabrics (Avebe, 2013; Südstärke Informationsdienst, 2013b).

1.2. Potato genetics

The cultivated European potatoes Solanum tuberosum (ssp. tuberosum) are autotetraploids

(2n=4x=48), which means that they have four alleles per locus. Homologous chromo-

somes pair at random during meiosis (Milbourne et al., 2007). In addition, there are

tuber-bearing varieties under cultivation that are non-tuberosum species with ploidy lev-

els ranging from diploid to hexaploid (Van den Berg and Jacobs, 2007). Potatoes are

outbreeding plants. Therefore they obtain a high level of heterozygosity and are prone to

inbreeding depression, making it difficult to obtain homozygous lines. The heterozygosity

in commercial cultivars is preserved by the clonal propagation of tubers (Milbourne et al.,

2007; The Potato Genome Sequencing Consortium, 2011).

1.3. Marker technology

The molecular marker technologies all derive from the natural DNA sequence variation

of individuals (Gebhardt, 2005). A multitude of markers has been developed for the

visualization of this variation over the last decades. The first molecular markers were de-

veloped based on polymorphisms in restriction enzyme recognition sites (RFLP; Botstein

et al., 1980). They were followed by PCR-based marker systems, for example microsatel-

lite (SSR) markers, RAPD markers (Welsh and McClelland, 1990; Williams et al., 1990),

AFLP markers (Vos et al., 1995), single-strand conformation polymorphism (SSCP) mark-

ers or cleaved amplified polymorphic sequences (CAPS) markers.

2



Chapter 1. General Introduction

Sequencing technologies, such as Sanger amplicon sequencing, then allowed for the de-

tection of single nucleotide polymorphisms (SNPs) and therefore the estimation of allelic

dosages at SNP loci for individual genotypes. In potato, five allele combinations can be

present at a bi-allelic SNP position: two homozygous combinations (nulliplex, quadruplex)

and three heterozygous combinations (simplex, duplex and triplex).

SolCAP Potato Array Custom-made arrays are used for the analysis of large amounts

of SNPs per genotype (e.g. Hamilton et al., 2011). A recent development for potato in

this field is the Infinium 8303 Potato Array (Felcher et al., 2012), hereafter referred to as

the SolCAP Potato Array. The SolCAP Potato Array allows the simultaneous genotyping

of an individual with 8,303 SNP markers. It was developed from sequence information

of five North American (Atlantic, Premier Russet, Snowden, Kennebec, Shepody) and

one European potato variety (Bintje). Sequence data was generated by next-generation

transcriptome sequencing in the case of Atlantic, Premier Russet and Snowden as well as

drawn from public databases for Bintje, Kennebec, Shepody (Hamilton et al., 2011). The

marker loci for the array were selected in a way, that 36% of the markers are located in

candidate genes of interest and 6% are previously mapped markers. Further markers (57%)

in coding regions were selected for a maximum coverage of the potato genome (Felcher

et al., 2012). So far, three papers have been published implementing the SolCAP Potato

SNP Array. Felcher et al. (2012) describe the design of the array as well as the integration

of two diploid linkage maps with the potato genome sequence. Also a tetraploid bi-parental

mapping population was genotyped with the SolCAP Potato Array (Hackett et al., 2013).

Its first application in European potato germplasm was in a pilot study by Stich et al.

(2013), where population structure and linkage disequilibrium were tested in a set of 36

tetraploid cultivars and eight diploid potato clones.

RAD sequencing The progress of next-generation sequencing (NGS) methods and the

decreasing prices for sequence runs have led to a number of novel techniques for the detec-

tion of polymorphisms between genotypes. Many methods reduce the complexity of the

genome. Some examples are genotyping by sequencing (GBS; Uitdewilligen et al., 2013),

sequence-based genotyping (SBG; Truong et al., 2012) and restriction-site associated DNA

tag sequencing (RAD sequencing; Baird et al., 2008). RAD sequencing reduces the size

of the genome by a restriction enzyme fragmentation and a subsequent shearing and size

selection step. In combination with NGS it generates sequences of RAD tags that are dis-

tributed over the whole genome. The method was first described by Baird et al. (2008) and

a detailed protocol was provided by Etter et al. (2011). The huge amount of genetic mark-

ers that is gained in comparison to the relatively low cost for library preparation and NGS

makes the method attractive also for non-model species. As a result of this, the examples

3



Chapter 1. General Introduction

for the implementation of RAD sequencing are already manifold and the list still keeps

expanding. The following is only a representation of the most prominent examples. The

applications reached from fine-mapping and population genetics in threespine stickleback

(Baird et al., 2008) and guppy (Willing et al., 2011) to marker detection for germplasm-

genotyping in bornean elephant (Sharma et al., 2012), globe artichoke (Scaglione et al.,

2012) and eggplant (Barchi et al., 2011). So far eggplant is the only representative of the

solanaceous crops that has been genotyped by RAD sequencing. Furthermore, genotyping

mapping populations by RAD sequencing for constructing high-density linkage maps was

used in barley (Chutimanitsakun et al., 2011), perennial ryegrass (Pfender et al., 2011)

and grapevine (Wang et al., 2012). Until now, the utilization of RAD sequencing has

also been described for genotyping of a number of tetraploid species, like rapeseed (Bus

et al., 2012), bamboo (Wang et al., 2013) and sturgeons (Ogden et al., 2013). The special

strength of RAD sequencing is its high-throughput polymorphism detection.

1.4. Linkage analysis and physical map of potato

1.4.1. Genetic maps of potato

The construction of genetic maps of potato is based on the principle of linkage analysis.

Two loci that lie in physical distance to each other on the same chromosome are considered

to be genetically linked as they are not inherited independently (Griffiths et al., 2005). For

the construction of a linkage map, a mapping population is essential. The offspring should

be segregating for polymorphic markers. By calculating the recombination frequency, the

genetic distance between loci can be estimated (Gebhardt, 2007).

The first genetic linkage maps of potato were based on RFLP marker technology and

used the synteny between potato and tomato. Bonierbale et al. (1988) presented the first

genetic map of potato based on an interspecific cross between diploid potato lines. The

first map within the gene pool of diploid S. tuberosum was released by Gebhardt et al.

(1989). These genetic maps function as reference molecular maps. Many more linkage

maps were published in the years following the first publication of genetic maps of potato

(e.g. Gebhardt et al., 1991; Milbourne et al., 1998; Van Eck, 1995).

To close the gaps between markers in the same linkage groups, an ultra-high density genetic

map was established based on 10,000 polymorphic AFLP markers, which is considered the

most elaborate linkage map of potato (Van Os et al., 2006).

In a recent study, Hackett et al. (2013) genotyped an intensively studied tetraploid map-

ping population (Bradshaw et al., 2008; Meyer et al., 1998) with the SolCAP Potato Array

(Felcher et al., 2012) and created a high-density linkage map based on approximately 4000

polymorphic SNPs.
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1.4.2. Physical map of the potato genome

The first physical map of potato was published in 2011 (The Potato Genome Sequencing

Consortium, 2011). A doubled monoploid, Solanum tuberosum group Phureja DM1-3

516 R44, hereafter referred to as the potato genome sequence, was sequenced. Since the

initial release, the sequence has been updated continuously. Version v4.03 is the most

recently improved version that was constructed by integrating information from genetic

and physical maps (Sharma et al., 2013). With the availability of the potato genome

sequence it is now feasible to compare linkage maps with the physical positions of markers

and to look at QTL regions in more detail. Also in silico mapping of candidate genes by

sequence homology and the estimation of the copy numbers are now possible.

1.5. QTL linkage and association mapping in potato

The major perspective of genetics is the correlation of phenotypic variation with DNA

sequence variation (Van Eck, 2007). Two leading concepts are available to achieve this:

quantitative trait locus (QTL) linkage mapping, which is based on genetic maps, and

association mapping, which is based on linkage disequilibrium (LD).

1.5.1. Linkage mapping

The association of phenotypic trait values with segregating alleles of molecular markers

in a mapping population is referred to as linkage mapping. The aim of linkage mapping

is to detect genomic regions that explain phenotypic variation in a trait of interest and

the subsequent identification of potential causal genes in that region. QTL are regions on

the chromosomes which are physically linked to a molecular marker allele. The QTL and

the marker allele are inherited together. Underlying genes of a quantitative trait, which

has a wide distribution of phenotypes, can be located on all chromosomes (Gebhardt

et al., 2005). For linkage analysis, several types of mapping populations are suitable

(Collard et al., 2005). After establishing the mapping population, it is genotyped with

segregating molecular markers and phenotyped for the quantitative trait of interest. A

linkage map is produced from the molecular marker data and QTL are detected by marker-

trait association.

QTL linkage analysis in potato is mainly carried out on diploid level. This is due to the

highly heterozygous nature of the potato plants. A large number of QTL studies deal

with resistances to biotic stresses like Phytophthora infestans (e.g. Li et al., 1998), root

cyst nematodes (e.g. Kreike et al., 1994) and abiotic stresses (e.g. drought tolerance:

Anithakumari et al., 2011). Furthermore, yield- and quality-related traits were studied

with QTL mapping, such as specific gravity (Freyre and Douches, 1994), starch content and
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yield (Schäfer-Pregl et al., 1998), cold-sweetening (Menéndez et al., 2002) and enzymatic

discoloration (Werij et al., 2007).

Although linkage mapping in tetraploid potato is not as straight-forward as in diploid

potato, there are successful examples, such as the resistance studies for late blight (Brad-

shaw et al., 1998; Li et al., 1998; Meyer et al., 1998). Bradshaw et al. (2008) mapped 16

QTL for yield, agronomic and tuber quality traits in a tetraploid full-sub family mapping

population. More examples were reviewed by Milbourne et al. (2007) and Van Eck (2007).

1.5.2. Association mapping

Alternatively to the family-based linkage mapping approach, association mapping is a

method for the detection of marker-trait associations in a population of individuals that

are related by descent. The method takes advantage of historical meiotic recombinations

and linkage disequilibrium (Flint-Garcia et al., 2003). It was first established in the study

of complex inherited diseases in human populations, where it is not feasible to establish

segregating mapping populations from crosses (Gebhardt et al., 2004).

For association mapping, a population consisting of diverse germplasm including cultivars,

breeding clones and landraces is assembled and phenotyped for the complex traits of inter-

est. Molecular markers are then analyzed in the population and marker-trait associations

between phenotypic and genetic variation are detected. In the case of candidate gene as-

sociation mapping, the molecular markers are obtained from knowledge-based candidates,

whereas markers for genome-wide association mapping randomly cover all chromosomes

in high density.

Association mapping is based on linkage disequilibrium (LD). LD is defined as the non-

random association of two alleles in a population (Flint-Garcia et al., 2003). This is

often the case for loci that are in close proximity to each other on the same chromosome

(linkage). However, LD can also occur between alleles on different chromosomes (Flint-

Garcia et al., 2003). There are different opinions regarding the extend of LD in tetraploid

potato. D’hoop et al. (2010) report a distance of 5 cM for genome-wide LD. Stich et al.

(2013) suggest a linkage decay within 275 bp. Association mapping is an application of

LD (Soto-Cerda and Cloutier, 2012), where the associated marker and the quantitative

trait locus are in LD or physically linked in the ideal case (Gebhardt, 2013).

Population structure analysis to avoid false-positives in association mapping The

genotypes of a potato population are a collection of individuals that are related by descent

(Gebhardt et al., 2005). Consequently, there is a potential bias towards relatedness in the

statistical analysis, which means that a trait of interest can, for example, be linked to a

gene pool or a geographic origin (Flint-Garcia et al., 2003). The information about the
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degree of relatedness between genotypes in the mapping population plays a critical role in

association mapping in order to avoid false positives. While a marker may not be linked

to a QTL, there is a considerable risk of detecting a significant association only based on

the genetic relatedness between individuals (Pritchard et al., 2000).

There are several options to assess population structure in potato based on genetic mark-

ers. The two options arising from a factor analysis approach are principal coordinate

(D’hoop et al., 2010; Pajerowska-Mukhtar et al., 2009; Urbany et al., 2011) and principal

component analysis (D’hoop et al., 2010), where genotyping information from molecular

marker data is processed. In another approach, the marker data are analyzed by Bayesian

clustering, implemented in the software Structure (Pritchard et al., 2000). This has

been applied in the field of potato research in several studies (D’hoop et al., 2010; Li

et al., 2008; Pajerowska-Mukhtar et al., 2009; Simko, 2004; Simko et al., 2006). Further

options for population structure assessment are Analysis of Molecular Variance (AMOVA)

and hierarchical clustering (D’hoop et al., 2010).

Kinship In an association mapping population, substructure can be present caused by

identity by descent. To detect allele identity in state, a kind of relatedness independent

from identity by descent (Stich et al., 2008), a kinship matrix (Yu et al., 2006), is required

for the analysis. The kinship matrix includes the pairwise comparison between all geno-

types based on molecular markers. Stich et al. (2008) prefer this method to the use of

pedigree-based kinship (Malosetti et al., 2007). Several methods for estimating kinship

are available, for example, the method of Loiselle et al. (1995), VanRaden (2008) or the

EMMA algorithm (Kang et al., 2008).

Applications of association mapping Association mapping has been used to detect ge-

netic variation that explains variation of complex traits in plants, as for example in corn

(Wilson et al., 2004), wheat (Breseghello and Sorrells, 2006), barley (Cockram et al., 2008)

rice (Huang et al., 2011), perennial ryegrass (Skot et al., 2005), Arabidopsis (Aranzana

et al., 2005), rapeseed and sugar beet (Stich and Melchinger, 2009). The first example

of association mapping in tetraploid potato germplasm was published by Gebhardt et al.

(2004), who studied an assembled collection of 600 potato cultivars to detect marker-

trait associations for late blight resistance and maturity based on historic recombina-

tion events. Further association mapping studies based on candidate genes followed for

resistance against Verticillium dahliae (Simko et al., 2004) and Phytophthora infestans

(Malosetti et al., 2007; Pajerowska-Mukhtar et al., 2009). More examples are yield and

tuber quality traits such as tuber starch content, tuber yield, starch yield and chip qual-

ity (Fischer et al., 2013; Li et al., 2008, 2005). Similarly, tuber bruising susceptibility,

tuber shape and plant maturity were studied by association mapping in tetraploid potato
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(Urbany et al., 2011).

A broader way of looking at marker-trait associations is by genome-wide association map-

ping. D’hoop et al. (2008) gave a first example of this approach, although the amount of

markers used in the study was still rather low. Another example for genome-wide asso-

ciation mapping in a small genotype panel was described by Uitdewilligen et al. (2013).

There are no further examples of genome-wide association mapping in potato.

1.5.3. Advantages of association mapping compared to linkage mapping

According to Flint-Garcia et al. (2003), there are three main advantages of association

mapping compared to linkage mapping.

Firstly, the mapping resolution of association mapping is better due to the higher amount

of meiotic events, whereas linkage mapping generally looks at the recombination in a

single meiotic generation (Gebhardt, 2007). However, when working with potatoes, this

is not such a significant advantage, since Gebhardt et al. (2004) found that only relatively

few meiotic generations separate individual genotypes. This is likely due to the clonal

propagation of potato whereby the meiotic generation is conserved.

Secondly, a high number of alleles can be detected with association mapping. In a segre-

gation population, the maximum amount of different alleles possibly detected at one locus

in the offspring of a diploid linkage mapping population are four and eight in a tetraploid

linkage mapping population. In an assembled population of 200 tetraploid genotypes, the

theoretical maximum number of different alleles at one locus is 800. Because of a reduced

statistical power, marker-trait associations of very rare alleles are not likely to be detected.

Therefore, association mapping is mainly suitable for the detection of common variants

(Flint-Garcia et al., 2003).

Thirdly, the markers can be immediately applied in breeding programs. Detected markers

are directly and broadly applicable when the mapping population consists of appropriate

breeding material (Li et al., 2013; Stich and Melchinger, 2010).

1.6. Pooling strategies for dissecting the genetic background of

quantitative traits

Although the prices for high-throughput genotyping have decreased a lot with the develop-

ment of novel high-throughput genotyping methods, such as the SolCAP Potato Array, it

is still a costly procedure for breeders to analyze their complete germplasm. Pooling strate-

gies have been developed for reducing the amount of genotypes in analyses. A prominent

concept in plants is bulked segregant analysis and a concept from human disease studies

is the case-control study.
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1.6.1. Bulked segregant analysis

Bulked segregant analysis requires a segregating bi-parental mapping population (Collard

et al., 2005). Genotypes with extreme phenotypes are bulked into two groups and are then

compared at the genetic level for the identification of the underlying genetics. The focus

of bulked segregant analysis is on the detection of markers closely linked to quantitative

trait loci (Collard et al., 2005; Meksem et al., 1995). A bulked segregant analysis pooling

strategy can be a shortcut to the identification of markers that tag quantitative trait loci

(Collard et al., 2005) and it is an effective screening approach for the detection of candidate

genes that have an effect on the traits of interest (Kloosterman et al., 2010).

The analysis of complex traits by bulked segregant analysis has been applied by a multitude

of crop studies, for example in corn (Quarrie et al., 1999), barley (Chen et al., 2011), rice

(Takagi et al., 2013; Zhang et al., 2009) and grapevine (Donald et al., 2002). Apart from

these diploid crops, bulked segregant analysis has been used for fine-mapping of genes

in polyploid wheat (Trick et al., 2012). In potato, bulked segregant analysis has been

applied for qualitative traits (Li et al., 1998; Meksem et al., 1995), but also quantitative

traits were studied in diploid and tetraploid genetic background. In their study on potato

wart disease resistance, Ballvora et al. (2011) analyzed two tetraploid half-sib families.

Similarly, Kloosterman et al. (2010) tested the suitability of bulked segregant analysis in

a diploid mapping population. They aimed at the identification of candidate genes for

tuber flesh quality and cooking type as well as free methionine content by conducting a

bulked segregant analysis profiling experiment.

1.6.2. Case-control studies

In a case-control study, phenotypically different groups are compared to dissect the genetic

background of complex traits. The concept is widely used in human disease risk studies

(Balding, 2006) and therefore phenotypic groups are related by descent, rather than se-

lected from a bi-parental mapping population as done in bulked segregant analysis. The

objective is to screen these pools for obtaining an idea of the relevant disease and the risk

factor as well as the genetic background of the observed differences (Balding, 2006).

Huang et al. (2011) suggested the use of a case-control study to maximize the probability

of finding new marker-trait relations in corn as compared to a genome-wide association

study. In potato, this approach has successfully been adopted for the identification of can-

didate genes by comparative proteomics. Urbany et al. (2012) have assembled two genetic

pools of ten genotypes per group, which differ in tuber bruising susceptibility. By compar-

ing the protein expression between both pools, novel candidate genes were detected. The

obtained candidate genes were subsequently tested in an association mapping population

of potato cultivars (Urbany et al., 2011). Similarly, Fischer et al. (2013) applied compar-
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ative proteomics to identify novel candidate genes that are associated with cold-induced

sweetening. The individuals in the pools showed an extremely low and an extremely high

amount of studied trait, respectively. Candidate gene association mapping confirmed that

DNA sequence variation explained part of the phenotypic variation of cold sweetening in

potato tubers (Fischer et al., 2013).

1.7. QTL mapping of tuber quality, starch and yield-related

traits in potato

Reference molecular function maps were established for resistance traits (Gebhardt and

Valkonen, 2001) as well as carbohydrate metabolism, sugar accumulation and transport

(Chen et al., 2001; Menéndez et al., 2002; Schäfer-Pregl et al., 1998; Werij et al., 2012) to

locate candidate genes on the genetic map and to see to which extent they co-localize with

QTL regions. In more recent studies, candidate gene based association mapping revealed

marker-trait associations for resistance, yield and quality traits. In this section, the focus

is on the tuber quality, starch and yield-related traits, which were mapped in potato.

1.7.1. Tuber and starch quality traits

Tuber quality According to Van Eck (2007), tuber quality traits are starch content,

discoloration - such as processing quality, cold-sweetening, enzymatic discoloration and

bruising - cooking type and texture, glycoalkaloid content, growing defects and tuber size

uniformity.

Potato tuber starch content, which is defined as the percentage of starch in relation to the

total tuber weight (Von Scheele et al., 1936), ranges between 15-20% (Schäfer-Pregl et al.,

1998) and is of special importance for the nutritional value. Furthermore, the potato starch

mills calculate the price for potatoes based on tuber starch content and tuber yield (Avebe,

2013; Mahl, 2013, personal communication). Schäfer-Pregl et al. (1998) and Werij et al.

(2012) studied tuber starch content in diploid mapping populations, resulting in many

QTL for the trait. Candidate gene based marker-trait associations were detected by Li

et al. (2005), Li et al. (2008), Draffehn et al. (2010), Urbany et al. (2011) and Fischer

et al. (2013).

Processing quality is of major importance for the production of potato chips and French

fries. QTL studies for frying color (Bradshaw et al., 2008), chipping color (Douches and

Freyre, 1994; Werij et al., 2012), cold-sweetening and sugar accumulation (Menéndez et al.,

2002; Werij et al., 2012) were performed and many genomic regions were identified. Molec-

ular markers for frying color (D’hoop et al., 2008) and chip quality (Fischer et al., 2013;

Li et al., 2008, 2005) were detected by association mapping.
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Furthermore, tuber quality traits were investigated by QTL studies (Bradshaw et al., 2008,

cracks in tubers), bulked segregant analysis (Kloosterman et al., 2010, cooking type) and

association mapping (Urbany et al., 2011, bruising susceptibility).

Starch quality traits Starch has very different properties, depending on its source and

individual composition. It is often modified for the applications in the food and the

pharmaceutical industry (Ellis et al., 1998). As mentioned previously, potato starch is

well-known for its high quality and special features. Special starch quality traits mapped

by linkage analysis in potato were, for example, amylose content (Van de Wal et al., 2001;

Werij et al., 2012), starch phosphorylation, gelling temperature and average granule size

(Werij et al., 2012). Candidate gene based association mapping resulted in applicable

markers for starch phosphorylation in breeding programs (Uitdewilligen, 2012; Wolters

et al., 2011).

1.7.2. Tuber yield

Probably one of the most important traits for potato growers is tuber yield. Higher

yield levels result in cost optimization and potentially lower environmental impact. Most

breeders automatically breed for this trait with the pre-selection of phenotypes that are

well-performing. Potato yield is a very complex trait that is strongly influenced by envi-

ronmental conditions, agricultural system and preceding crop (Becker and Leithold, 2008)

on the one hand and genetic composition on the other hand. The average yield of potato

lies at about 43 tons per hectare (Bundesministerium für Ernährung Landwirtschaft und

Verbraucherschutz, 2013, data for Germany 2007-2012).

There is only a limited number of studies that deal with the mapping of yield traits.

Several QTLs for yield were reported by Schäfer-Pregl et al. (1998) and Bradshaw et al.

(2008). Marker-trait associations for tuber yield were detected in the association mapping

studies of D’hoop et al. (2008), Li et al. (2008, 2005) and Urbany et al. (2011). There are

no really obvious candidate genes for this trait and there is a lack of molecular markers

that can be applied in breeding programs.

1.7.3. Starch yield

The most interesting feature of potato as a renewable resource for starch is the amount of

starch that can be obtained per unit of arable land. Hence, in potato cultivation for the

starch industry it is of major interest to produce the maximum possible amount of starch

per plant. Starch mills pay potato farmers according to the amount of starch yield, which

is the calculated product of tuber starch content and potato tuber yield. These two traits

are negatively correlated (Li et al., 2013; Urbany et al., 2011).
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So far, candidate gene based association mapping revealed only a few marker-trait asso-

ciations for starch yield. The majority were detected and confirmed in the same genetic

background of the Chips-All population (Draffehn et al., 2010; Fischer et al., 2013; Li

et al., 2008, 2005).

1.8. Breeding for optimized starch yield traits

1.8.1. Marker-assisted selection in potato

Breeding efforts can be accelerated by marker-assisted selection (MAS), selecting for diag-

nostic molecular markers that are associated with traits of interest. A diagnostic molecular

marker is linked to a trait of interest or is tagging a region that is associated with the

trait of interest. A selection for these markers in the progeny of a cross enlarges the

genetic basis for the traits in the offspring and is a critical factor of the marker-assisted

breeding process (Collard et al., 2005; Li et al., 2013). Li et al. (2013) confirmed the ap-

plicability of allele-specific PCR-based markers for marker-assisted selection in breeding

populations with different genetic background. Ortega and Lopez-Vizcon (2012) further-

more described the use of molecular markers for disease resistance in a commercial potato

breeding program.

Genomic selection Compared to other crop breeding programs, the number of markers

in potato used in breeding programs is rather low. In corn or wheat breeding programs, the

concept of genomic prediction has been acquired, where a large amount of genome-wide

genetic markers is used for ”accelerating genetic gains” (Crossa et al., 2013). Genomic

predictions of genotype performance in the field can be made based on the genetic markers

(Lado et al., 2013). At present, potato breeding programs are far from that. The so-called

breeders eye and phenotyping results are still the most important factors in the selection

process, along with a few molecular markers.

Markers for starch yield optimization Three major traits are involved in breeding for

starch yield optimization: tuber starch content, tuber yield and starch yield, since starch

yield is the product of tuber starch content and tuber yield. When looking at the natural

variation in the potato germplasm, there is evidence for a wide distribution of the traits.

Especially for tuber starch content, where the wild Solanum species can have up to 50%

dry matter, as compared to the cultivated S. tuberosum genotypes (Jansen et al., 2001).

As a drawback, these wild species have poor agronomic performance and low yield. Tuber

starch content is a trait that can be easily assessed and usually has a high heritability (Li

et al., 2013; Urbany et al., 2011). Tuber yield, on the other hand, can only be measured

12



Chapter 1. General Introduction

late in the breeding process, when sufficient tubers are generated for a yield assessment

trial. As a result of this, the information on starch yield can only be obtained at the same

time as yield. A large set of diagnostic markers, especially for tuber yield and starch yield,

could significantly accelerate the breeding process for these traits.

1.8.2. Genetically modified potatoes

With genetic modification, novel genetic variation is introduced into existing potato culti-

vars. The most prominent example for potato breeding with the application of genetically

modification is the cultivar Amflora (BASF Plant Science, Limburgerhof, Germany). Its

starch is amylose-free which is achieved by an antisense construct targeting granule-bound

starch synthase I.

An alternative for the introduction of novel variation is a mutagenesis approach. Plants

with novel traits that are generated by this method are not considered as genetically

modified organisms. Muth et al. (2008) introduced a method for precision breeding for

novel starch properties. EMS-induced point mutations in an allele of granule-bound starch

synthase I causes protein truncation. Plants homozygous for this mutation showed a

phenotype with reduced amylose contents.

Furthermore, there are studies about the modification of transporters in the plants that

lead to altered starch yield-related traits. Regierer et al. (2002) reported a large increase

of tuber starch content and tuber yield by transgenic down-regulation of adenylate kinase

activity. By transgenic over-expression of Glucose-6-phosphate translocator and adenylate

translocator in amyloplasts, tuber yield and tuber starch content were strongly increased

(Zhang et al., 2008). When not only sink capacity but also source capacity in leaves

was strengthened, an almost doubled amount of tuber starch yield could be measured in

transformed potato plants (Jonik et al., 2012).

1.9. Objectives of this thesis

The objective of this study was the detection of diagnostic SNP markers for starch yield

optimization in potato to facilitate marker-assisted selection. The main focus lay on potato

tuber starch and yield-related traits that were studied in a novel association mapping

population of commercially relevant potato genotypes.

Three concepts were applied for the identification of sequence variation in the population: a

knowledge-based candidate gene study in which SNPs were identified in genes of the starch

metabolic pathway and marker-trait associations were detected by association mapping

(Chapter 2). Furthermore, 90 genotypes in three case-control populations were genotyped

with the SolCAP Potato Array (Chapter 3) as well as by next-generation RAD sequencing
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(Chapter 4).

The underlying hypothesis was that sequence variation in genes can be detected by these

concepts and that the identified sequence polymorphisms explain variation in phenotypic

traits related to starch yield in potato.
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2. Association mapping for starch yield

optimization in a novel potato population

2.1. Background

The market for industrially use potatoes is a fast-growing sector, reaching 20% of the

total production at present (Statistisches Bundesamt, 2012, data for Germany in 2010).

Industrially used potatoes are mainly processed for the production of starch and starch

derivatives. Potato starch yield - meaning the amount of starch extracted from the total

tubers of one potato plant - is a trait of major interest in the potato breeding process.

It is the product of tuber starch content and tuber yield per area unit (dt/ha). Tuber

starch content can be easily measured and is a highly heritable trait (Bradshaw et al.,

2008; Urbany et al., 2011), with several markers available for molecular marker-assisted

breeding (see Chapter 1). Tuber yield and tuber starch yield can only be assessed late in

the breeding process and only few molecular markers are available.

Candidate gene association mapping in potato In the preceding years, plant breeding

research has adopted association mapping from human population genetics, which has the

advantage that populations do not have to be generated from specific crosses (Flint-Garcia

et al., 2003). Populations are assembled from the pool of existing genotypes.

Association mapping is based on the application of linkage disequilibrium (LD). LD is

the non-random association of alleles in a population of individuals related by descent.

Marker-trait associations can be established because the alleles of a molecular marker are

in LD with QTL (Flint-Garcia et al., 2003).

Association mapping by a candidate gene approach makes use of knowledge-based can-

didates from literature or reference molecular function maps (e.g. Chen et al., 2001;

Menéndez et al., 2002; Schäfer-Pregl et al., 1998; Werij et al., 2012). Molecular mark-

ers are then developed for these loci and marker-trait associations are identified by a

suitable statistical model. For avoiding false positives in the detection of marker-traits

associations in candidate gene association mapping, population structure and kinship are

taken into account as part of a mixed linear model (Stich et al., 2008; Yu et al., 2006).
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Approach In order to detect diagnostic SNP markers for tuber starch yield by candidate

gene association mapping, a novel potato population was established and phenotyped for

starch as well as yield related traits. Knowledge-based candidate genes were selected and

marker-trait associations were analyzed from sequence variation in the selected loci by

applying a mixed linear model that accounts for a hidden population structure and a

marker-based kinship relationship.
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2.2. Material and Methods

2.2.1. Plant material

A new population was established for this project. In total 350 genotypes (Appendix B,

Table B.1) were planted and phenotyped at the breeding company Appacale (Burgos,

Spain) and at the Neiker research institute (Vitoria-Gasteiz, Spain). Two different sub-

populations of tetraploid breeding clones and varieties were grown in an open field trial at

the two sites in two subsequent years. 50 standard commercial varieties were included in

both subpopulations. Furthermore 18 landraces and 20 diploid individuals were planted

in the trial (Table 2.1). 50 Solanum wild species, which were kept in vitro, were grown in

tunnels at the Neiker research station in 2010.

Table 2.1.: Planted potato genotypes at the Appacale and Neiker sites in the
two trial years. All genotypes were phenotyped with the exception of the
Wild Solanum species

Location 2010 2010 2011 2011

Appacale Neiker Appacale Neiker

Standards varieties 50 50 50 50
Commercial cultivars 47 94 36 94
Breeding clones 60 13 45 13
Landraces – 18 – 12
Diploid clones 20 – 8 –
Wild Solanum species – 50 – –

Total genotypes 177 225 139 169

2.2.2. Experimental design

The trials were planted in an Augmented Design (Petersen, 1985) in blocks of 25 cultivars

with the varieties Desirée, Kennebec and Jaerla as testers in each block.

At the two sites, the experimental setup was slightly differing for each year. At the Neiker

site, 10 tubers were planted per clone in one block. In 2010, four representative, single

plants were harvested and phenotyped in each plot. Four plants of each plot were harvested

and bulked for phenotypic analysis in 2011.

At the Appacale site, two tubers were planted for each genotype in 2010. These two

plants were harvested and bulked for further phenotypic analysis. To reduce the influence

of environmental variation, the number of plants grown and phenotyped was increased to

six plants per plot in 2011.
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2.2.3. Phenotypic data

The plants were phenotyped by the breeding companies Neiker and Appacale. The mea-

sured traits and their units were as follows: tuber yield (g/plant) (TY), tuber number

(tubers/plant) (TN), tuber under water weight (g/plant). Tuber weight (g/tuber) (TW)

was calculated from TY and TN. Amylose content in percent of the total starch (AMY)

was measured, following the method of Hovenkamp-Hermelink et al. (1988). Tuber starch

content (%) (TSC) and tuber starch yield (g/plant) (TSY) are derived parameters. Spe-

cific gravity (ρ) was calculated from TY and tuber under water weight (Equation 2.1) and

TSC (Equation 2.2) was directly calculated from ρ according to Von Scheele et al. (1936).

TSY is the product of TY and TSC (Equation 2.3), representing the average amount of

total tuber starch in one plant. The primary phenotype data are given in Appendix B

(Table B.2).

ρ =
TY (air) (g/plant)

TY (air) (g/plant)− Tuber under water weight (g/plant)
(2.1)

TSC (%) = 17.546 + (199.07 (ρ− 1.0988)) (2.2)

TSY (g/plant) = TY (g/plant) · TSC (%) (2.3)

2.2.4. DNA extraction

Fresh potato leaves were sampled from all potato genotypes. The leaves were frozen in

liquid nitrogen (-80◦C), lyophilized and stored at -20◦C. Genomic DNA was extracted

from 20 mg lyophilized leaf material, using the DNeasy Plant Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer’s protocol. An extra washing step with 500 µl

ethanol (96%) was performed, preceding the elution of the DNA from the colums. DNA

concentrations and quality were determined using the Qubit dsDNA BR Assay Kit (In-

vitrogen, Karlsruhe, Germany) and visually examined by electrophoresis on a 1% agarose

gel in comparison to λ DNA (Invitrogen, Karlsruhe, Germany).

2.2.5. Genotypic data

The tetraploid varieties (standard varieties, commercial cultivars), breeding clones and

landraces, in total 282 individual, were genotyped with a diverse set of markers. These

282 genotypes are further referred to as the Quest population. Microsatellite markers,

allele specific PCR markers, cytoplasm markers and candidate gene sequences were used

for genotyping and subsequent analyses.
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Microsatellite markers The results of Pajerowska-Mukhtar et al. (2009) suggested that

a minimum of 25 microsatellite markers, also called SSR makers, is sufficient to identify

population structure in tetraploid potatoes. Therefore, 29 SSR markers were in total

selected from several sources and scored in the Quest population (Appendix Table B.5).

The main selection criteria were that the primers amplify a single locus in the genome,

that the markers show clearly distinguishable bands on the gel and are polymorphic in

the population. At least one marker per chromosome arm was selected.

Microsatellite markers were amplified in a 25 µl reaction volume, containing 50 ng genomic

DNA, 8 mM Tris-HCL pH 8.3, 40 mM KCl, 6.4 mM MgCl2, 0.08% Trifon X-100, 160 µM

of each dNTP (Roth, Karlsruhe, Germany), 0.2 µM of each primer, 1U Ampliqon Taq

Polymerase (Ampliqon, Odense M, Denmark) and deionized water (Merck KGaA, Darm-

stadt, Germany). Markers were amplified under the following PCR conditions: 3 min at

94◦C, 2 min at annealing temperature (Appendix B, Table B.5), 90 sec at 72◦C, followed

by 29 cycles of 94◦C (60 sec), annealing temperature (60 sec) and 72◦C (45 sec), completed

by a final elongation step of 5 min at 72◦C (Provan et al., 1996). For markers with Ta 60-

54◦C, touchdown PCR was performed with the same procedure, lowering the temperature

by 1◦C per cycle until the final annealing temperature was reached. The success of the

PCR and the intensity of the bands was assessed on an 2% agarose gel.

Appropriate Spreadex gels (Elchrom Scientific AG, Cham, Switzerland) for SSR allele

separation were selected and running time was determined using the information of pre-

vious SSR genotyping as well as the ElQuant Software, provided online by the manufac-

turer. The gels were run in the Elchrom SEA 2000 system (Elchrom Scientific AG, Cham,

Switzerland) using the operational instructions by the supplier. Allele sizes were measured

in comparison to the M3 size standard marker. The marker alleles were scored as absent

or present {0,1} and treated as dominant marker as described by Ghislain et al. (2009).

Electrophoresis patterns of SSR markers are given in Appendix B (Figure B.1).

Cytoplasm type markers The Quest population was genotyped with cytoplasm-specific

markers to detect the cytoplasm type of each individual. The analysis was performed

by Rena Sanetomo (NARO Hokkaido Agricultural Research Center, Japan). Six types

of cytoplasms were distinguished as described in detail by Hosaka and Sanetomo (2012):

T type (the most prevalent type in S. tuberosum spp. tuberosum), D type (introduced

from S. demissum), A type (the most prevalent S. tuberosum ssp. andigena type), P type

(introduced from S. phureja), and M type (Mother type, or an ancestral type of Andean

cultivated potatoes) as well as W type (Wild species), including the S. stoloniferum derived

sub-type.
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Starch and yield associated PCR markers Six allele specific PCR markers and one

epistatic interaction that were available for genes that are associated with starch and

yield traits, were analyzed in the Quest population. The markers and their associations

are presented in Table 2.2. Primer sequences and annealing temperature are given in

Appendix B (Table B.6).

Table 2.2.: PCR markers associated with starch and yield in previous studies.
Arrows indicate the direction of the allele effect on the trait compared to the
population mean

Locus Chromo- Marker allele Trait Source
some

Pho1a 3 Pho1a-HA TSC ↑, TSY ↑ Schreiber et al. (in preparation)
Pain1 3 Pain1-8c TSC ↑, TSY ↑ Li et al. (2008, 2013)
Pho1b 5 StpL-3e TSC ↑, TY ↓ Li et al. (2008, 2013)
GP171 8 GP171-a TSC ↓ Li et al. (2008)
HSP70 9 HSP70-bad TSC ↓, TY ↑ Fischer et al. (in preparation)
Rca 10 Rca-1a ns Li et al. (2008)

Pain1-8c*Rca-1a TSC ↑, TSY ↑ Li et al. (2010)

Pho1a/Pho1b=starch phosphorylase 1a/1b, Pain1=potato vacuolar invertase 1, GP171=non coding genomic

fragment, HSP70=heat shock protein 70, Rca=rubisco activase, TSC=tuber starch content, TY=tuber yield,

TSY=tuber starch yield

Candidate gene genotyping SNP markers were developed for starch and yield associated

candidate genes and scored in the Quest population.

Gene coding sequence information was obtained from published accession numbers and

retrieved from the NCBI database (NCBI; http://www.ncbi.nlm.nih.gov/). These se-

quences were then BLASTed against the potato genome sequence (version v4.03) (The

Potato Genome Sequencing Consortium, 2011). Loci obtained, transcript or superscaf-

fold numbers were then inserted in the PGSC Genome Browser (PGSC Genome Browser;

http://solanaceae.plantbiology.msu.edu/cgi-bin/gbrowse/pgsc-potato-dm/) and loci were

manually detected on the scaffolds, if not annotated. The position on the pseudomolecule,

the genomic sequence as well as the exon-intron structure of the PGSC representative gene

model were retrieved. When the locus was not annotated, the published cDNA sequences

together with the reference genomic sequence were entered in NCBI Spidey (NCBI Spidey;

http://www.ncbi.nlm.nih.gov/spidey/) to reveal the exon-intron structure of the gene as

well as the position of the start and the stop codon.

Gene specific primers were designed to be located at the borders of the exons and to

have a length of about 600 bp. Ideally a fragment included as little intron sequence as

possible to avoid indels, that cause frame shifts in the sequencing output and make scoring
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impossible. The primers used for amplicon sequencing are shown in Table 2.3.

The standard PCR reaction was performed in a 25 µl reaction volume, containing 50 ng

genomic DNA, 10 mM Tris-HCL pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.1% Trifon X-100,

100 µM of each dNTP (Roth, Karlsruhe, Germany), 0.4 µM of each primer, 1U Ampliqon

Taq Polymerase (Ampliqon, Odense M, Denmark) and deionized water (Merck KGaA,

Darmstadt, Germany). Markers were amplified under the following PCR conditions: 3 min

incubation time at 95◦C, followed by 35 cycles of 94◦C (20 sec), annealing temperature

(Table 2.3) (40 sec) and elongation step at 72◦C (60 sec), followed by 10 minutes final

elongation at 72◦C. The fragment length determined the elongation time at 72◦C and was

adjusted to 30 seconds per 500 base pairs. The amplification result was then checked on

a 1.5% agarose gel.

Following PCR amplification, the products were purified with Illustra ExoStar (GE

Healthcare Europe GmbH, München, Germany) for 15 min at 37◦C, followed by 15

min at 80◦C. PCR fragments were custom sequenced by the Max Planck-Genome-centre

Cologne (http://mpgc.mpipz.mpg.de/home/) on Applied Biosystems (Weiterstadt, Ger-

many) 3730XL Genetic Analyzer sequencer. Premixed reagents were purchased from

Applied Biosystems and oligonucleotides for PCR as well as sequencing reactions were

purchased from Sigma-Aldrich (Taufkirchen, Germany).

The generated sequences were aligned and SNPs were detected with the NovoSNP software

(Weckx et al., 2005). The SNP dosages of the Quest genotypes were then scored using

both the Data Acquisition & Data analysis software DAx 8.1 (Van Mierlo Software Con-

sultancy) and manual scoring. The SNPs were predominantly bi-allelic and were coded

into five genotype classes {0,1,2,3,4}, with {0} being the class homozygous for the SNP al-

lele represented by the potato genome sequence (AAAA), {1,2,3} the three heterozygous

genotypes (AAAB, AABB, ABBB) and {4} the class homozygous for the second SNP

allele (BBBB). SNPs with more than two alleles were excluded from the analysis.

2.2.6. Statistical analyses

Analyses were performed with the statistical software R (R Development Core Team, 2013)

if not stated otherwise.

Phenotypic data analysis The phenotypic data of the two sites in 2010 and 2011 were

compiled and treated to correct for the experimental design, using a linear model with

two factors, implemented in the R package ’stats’ using the function lm(). There was not

sufficient data to correct for the experimental design at Neiker in both years, therefore

correction was solely performed for the phenotypic data of Appacale. The factor block had

9 levels. The levels of the factor tester corresponded to the three tester varieties Desiree,

21



Chapter 2. Association mapping for starch yield optimization in a novel potato
population

T
a
b

le
2.

3.
:
C

a
n

d
id

a
te

g
e
n

e
lo

c
i

th
a
t

w
e
re

se
q
u

e
n

c
e
d

a
n

d
g
e
n

o
ty

p
e
d

in
th

e
Q
u
e
st

p
o
p

u
la

ti
o
n

.
G

iv
en

ar
e

th
e

p
ri

m
er

s,
th

e
an

n
ea

li
n

g
te

m
p

er
at

u
re

fo
r

th
e

P
C

R
re

ac
ti

on
,

th
e

fr
ag

m
en

t
le

n
gt

h
as

w
el

l
as

th
e

se
q
u

en
ci

n
g

p
ri

m
er

to
p

er
fo

rm
th

e
S

a
n

g
er

a
m

p
li

co
n

se
q
u

en
ci

n
g

fo
r

su
b

se
q
u

en
t

S
N

P
sc

or
in

g

L
o
cu

s1
C

h
ro

m
o-

P
ri

m
er

P
ri

m
er

se
q
u

en
ce

(5
’-

3
’)

T
a

le
n

g
th

sc
o
re

d
so

m
e

(◦
C

)
(b

p
)

S
N

P
s/

in
d

el
s

C
P
12
-2

1
C

P
12

-2
4F

2
G

G
C

A
A

C
A

A
T

T
G

C
T

G
G

T
G

T
T

A
5
9

4
5
3

1
1
/
1

C
P

12
-2

3R
G

C
C

T
A

A
T

T
C

A
T

A
G

C
A

T
T

C
A

A
G

A
T

T
C

S
S
sI
V

2
S

S
sI

V
F

1
C

T
C

A
A

T
G

A
A

G
C

T
C

G
T

G
T

C
C

A
5
0

8
6
9

1
5
/
–

S
S

sI
V

R
3
2

C
A

A
A

A
T

T
C

C
G

A
A

G
G

C
A

T
C

T
C

P
G
M
1

3
P

G
M

1
1F

2
A

T
G

G
C

T
A

T
G

G
A

G
A

G
T

G
C

A
T

T
G

A
5
7

1
0
6
0

1
7
/
–

P
G

M
1

1R
G

T
A

T
C

C
A

A
T

T
G

G
C

A
A

G
G

T
A

A
T

T
G

T
C

S
ss
I

3
S

ss
I-

7
1F

G
G

A
T

A
C

T
C

A
T

G
G

G
A

A
A

T
A

A
C

A
A

C
T

C
C

5
7

1
0
2
2

1
8
/
1

S
ss

I-
7

1R
2

C
A

A
T

C
A

G
G

T
C

G
A

A
T

T
G

G
A

A
G

G
P
G
I1

4
P

G
I1

1F
A

G
C

A
T

C
T

A
C

T
C

A
C

C
T

T
C

T
T

C
A

T
C

T
T

T
C

5
6

4
9
2

1
4
/
1

P
G

I1
1R

2
T

G
C

A
A

A
C

T
G

G
C

A
A

A
C

A
G

C
T

T
P
h
o1
b

5
P

h
o1

b
3F

T
G

T
T

G
C

A
A

G
A

A
A

A
G

C
T

A
A

A
C

C
A

A
5
7

1
1
7
8

2
3
/
1

P
h

o1
b

3R
2

G
A

T
C

A
C

C
A

A
T

C
T

C
G

G
G

A
T

C
A

B
E
L
5

6
B

E
L

5
2F

C
G

A
T

T
A

T
G

G
A

A
G

C
C

A
A

T
G

G
T

5
7

6
6
8

2
0
/
–

B
E

L
5

2R
2

G
G

A
A

A
T

C
G

C
T

T
A

T
T

C
C

C
A

C
T

C
B
M
Y
1

8
β

-A
m

y
I

F
2
,3

G
C

T
A

C
T

G
G

A
A

C
A

T
G

G
T

G
A

C
A

G
A

6
0

3
4
2

1
0
/
–

β
-A

m
y
I

R
3

A
G

A
G

C
A

T
T

T
T

C
T

C
C

A
G

C
A

A
G

1
C

P
1
2
-2

=
C

h
lo

ro
p

la
st

p
ro

te
in

1
2
,

S
S

sI
V

=
so

lu
b

le
st

a
rc

h
sy

n
th

a
se

4
,

P
G

M
1
=

p
h

o
sp

h
o
g
lu

co
m

u
ta

se
1
,

S
ss

I=
so

lu
b

le
st

a
rc

h
sy

n
th

a
se

1
,

P
G

I1
=

p
h

o
sp

h
o
g
lu

co
is

o
m

er
a
se

1
,

P
h

o
1
b

=
st

a
rc

h
p
h

o
sp

h
o
ry

la
se

1
b

,
B

E
L

5
=

p
o
ta

to
B

E
L

1
-l

ik
e

tr
a
n

sc
ri

p
ti

o
n

fa
ct

o
r

5
,

B
M

Y
1
=

b
et

a
-a

m
y
la

se
1
;
2

P
ri

m
er

u
se

d
fo

r
a
m

p
li
co

n
se

q
u

en
ci

n
g
;
3

P
ri

m
er

fr
o
m

K
ru

si
ew

ic
z

et
a
l.

(2
0
1
1
)

22



Chapter 2. Association mapping for starch yield optimization in a novel potato
population

Jaerla and Kennebec that were planted in each block. First the correction factors were

estimated (Equation 2.4 and then the phenotypic data were corrected for the block effects

(Equation 2.5).

y = µ+ block + tester + ε (2.4)

y* = y − block (2.5)

Adjusted entry means over the two years and two sites were calculated from corrected data

(Appacale) and primary data (Neiker) according to Li et al. (2008) using the linear model

(Equation 2.6). Basis for the adjustment was the set of 50 tetraploid standard cultivars

that were grown at both sites in both years. The levels of the factor genotype corresponded

to the number of genotypes in the trial and factor levels for the factor location were 4:

Appacale site in 2010, Appacale site in 2011, Neiker site in 2010 and Neiker site in 2011.

y = µ+ genotype + location + ε (2.6)

Heritability is not only a measure for inheritance but if used for one generation with

no selection, it gives an indication for the repeatability of the phenotypic data. It is

calculated from the ratio between genotypic and phenotypic variance. Therefore, variance

components were estimated by a mixed linear model with location as fixed and genotype

as random term (Equation 2.7). The mixed linear model was implemented in the package

’lme4’ by the function lmer(). Based on the estimated variance components, heritability

(H2) was calculated, where σ2
g represents the variance component for the genotypic main

effect, σ2
e represents the variance component for the residuals and n the number of locations

(Equation 2.8).

y = µ+ genotype + location + ε (2.7)

H2 =
σ2
g

σ2
g + σ2

e
n

(2.8)

Partial correlations between phenotypic traits were calculated based on the adjusted entry

means. Partial correlations describe the relationship between two traits without the effect

of other traits. They were calculated for the 282 genotypes of the Quest population with

the function cor() (package ’corpcor’). A custom-made script was provided by Niklas

Körber (MPIPZ, Cologne, Germany).
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Assessment of hidden population structure Two approaches were applied for the de-

tection of possible population structure: principle coordinate analysis and a Bayesian

clustering approach.

The principle coordinate analysis (PCoA) (Gower, 1966) is based on pairwise genetic

distances between the genotypes that were calculated from the microsatellite marker data

that were sored as dominant markers. Jaccard’s distances were calculated with R package

’prabclus’ using the function jaccard() under default settings. Distances were transformed

by square root transformation to obtain euclidean properties, following Reif et al. (2005).

Principal coordinate analysis was performed based on Jaccard’s distances between cultivars

with the R package ’stats’ by applying the function cmdscale(). The custom-made script

was provided by Benjamin Stich (MPIPZ, Cologne, Germany). The explained variance of

each principal coordinate was calculated. The total explained variance of the first eleven

coordinates was 10% and the results of principal coordinates one to eleven were extracted

for further analysis.

Population structure was further determined with a Bayesian approach, by analyzing the

microsatellite marker data with the software Structure 2.3.4 (Pritchard et al., 2000).

Burn-in time as well as iteration number was set to 100,000 with 10 repetitions, testing

the probability of 20 subpopulations in the Quest population. The results of the run

were submitted to Structure harvester (Earl and VonHoldt, 2012) and the most

likely number of subpopulations was determined by the log likelihood combined with the

Evanno method (Evanno et al., 2005).

Marker data and missing values Three markers with more than 5% of missing values

were excluded from the analysis. Missing marker data was replaced at random, according

to the proportion of genotypic classes within each individual marker. For SNP markers

there were maximum five classes {0,1,2,3,4}, while missing values in SSR and indel markers

were replaced with {0,1}, resembling the proportion of absent and presence. There were

no missing values in the PCR marker data set and cytoplasm types. This method was

tested in a subset of markers, where missing values were replaced three times at random.

The difference between p-values of association mapping (see below) were neglectable.

Association mapping For association mapping, a two-step analysis approach was cho-

sen, as described by Stich et al. (2008). First adjusted entry means were calculated and

then association mapping was performed, using a mixed linear model, which accounts for

population structure and kinship. The mixed linear model equation for the PK method

(Stich et al., 2008; Yu et al., 2006) is shown in Equation 2.9. The population structure

was accounted for by the P matrix, wherefore the first eleven principal coordinates were

extracted, explaining 10% of the variance in sum. The K matrix represented the kinship
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between genotypes as random effect. It was based on 183 dominantly scored SSR marker

alleles using the ’EMMA’ package (Kang et al., 2008).

In total, 309 markers were tested for associations with five phenotypic traits. 118 SNP

markers and 4 indel markers from candidate genes, 181 SSR markers and 6 PCR mark-

ers. In addition, epistatic interaction between two PCR markers and association with

cytoplasm-type was assessed. The analysis was performed with a mixed linear model

(Zhang et al., 2010) implemented in the software package ’GAPIT’ (Lipka2012). GAPIT

was modified for the analysis of tetraploid data by Alexander E. Lipka (Cornell University,

USA).

y = µ+ P + K + ε (2.9)

Linkage disequilibrium LD was estimated for all pairs of SNP markers with a chi-square

test, based on an allele frequencies at all SNP loci. The obtained p-values were corrected

with the Bonferroni-Holm correction (Holm, 1979) to account for the multiple testing

problem. The analysis was performed using a custom-made script provided by Benjamin

Stich (MPIPZ, Cologne, Germany).

25



Chapter 2. Association mapping for starch yield optimization in a novel potato
population

2.3. Results

2.3.1. Phenotypic analysis

Phenotypic traits were assessed for 300 individuals that were planted at two trial sites in

two subsequent years. The 50 wild Solanum species, with one plant per genotype grown

from in vitro culture and cultivated in the tunnel, were not phenotyped.

Adjusted entry means Adjusted entry means were calculated for the 300 genotypes

based on the experimental design (Appendix Table B.3). Boxplots of the adjusted entry

means are shown in Figure 2.1. All groups of genotypes had a similar TSC and AMY, as

the medians were similar for all groups. The medians of the different groups of genotypes

for TY, TSY, TN and TW follow similar patterns, with the landraces having lower values

compared to all other groups. TN in diploid clones was similar to tetraploids, while TW

was much lower, showing that the lower yield of diploids was due to TW, not TN.

The histograms of the phenotypic trait values (Figure 2.2) all followed a normal distribu-

tion. The histogram of TN was slightly skewed to the left.

Heritability of phenotypic traits The heritability shows the repeatability of the pheno-

typic traits and was calculated from the ratio between genotypic and phenotypic variance

(Table 2.4). TSC had the highest heritability (0.830), followed by TSY, TY, TN and TW.

AMY had a very low heritability (0.028). This means that the variation in the trait is

mainly due to environmental factors rather than to genetic factors. Therefore, AMY was

excluded from association analysis.

Table 2.4.: Estimated variance and heritability of phenotypic traits. Vg represents
the variance component for the factor genotype and Ve of the residuals. H2 is
the estimated heritability

Trait TSC TY TSY TN TW AMY

Vg 3.746 145,273 3,168.6 20.70 704.15 0.09
Ve 3.065 198,944 3,969.5 30.98 1,079.84 12.02
H2 0.830 0.745 0.762 0.728 0.723 0.028

Correlations among traits Partial correlations where calculated between pairs of traits.

They are a measure for the correlation between two traits with the effects of the other

variables removed. In Figure 2.3, the partial correlations between the traits in the 282

genotypes of the Quest population are shown by a correlogram.
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Figure 2.1.: Box plots of the adjusted entry means. Traits are depicted for tetraploid
varieties [standard varieties (STD) and commercial cultivars (CUL)], breeding
clones (BRE), landraces (LAN) and diploid clones (DIP)
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Figure 2.2.: Histograms of the adjusted entry means.
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TSC and TY showed a strong negative correlation, which was highly significant (p-

value <0.001). TSY shows a strong positive correlation (p-value <0.001) with both TY

and TSC. Significant positive correlations existed between TY and TN as well as TW. A

negative correlation was observed between TN and TW. The correlation coefficients and

corresponding p-values are given in Appendix B (Table B.4).

Figure 2.3.: Partial correlations between pairs of traits for the genotypes of the
Quest population *significant at α=0.05; **significant at α=0.01; ***sig-
nificant at α=0.001; ns=not significant.

2.3.2. Population structure analysis

282 individuals of the Quest population were genotyped with 29 microsatellite markers,

including all varieties (standard and commercial cultivars), breeding clones and landraces.

183 alleles were sored for absence (0) or presence (1).

Principal coordinate analysis Based on the genotyping with microsatellite markers, Jac-

card’s distances were calculated and transformed to obtain euclidean properties (Reif

et al., 2005). Figure 2.4 depicts a histogram of the estimated distances between genotypes.

Principal coordinate analysis (PCoA) was performed, based on distance values. Figure 2.5

illustrates the 282 Quest genotypes, separated by Principal coordinate 1 (PC1) and Prin-

cipal coordinate 2 (PC2). A large cluster of cultivars and breeding clones can be observed

as well as a clustering trend of the landraces. In addition, a small cluster of four cultivars

appears. The explained variance of PC1 was 1.18% and of PC2 1.08%.
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Figure 2.4.: Distribution of Jaccard’s distance estimates among genotype pairs
of the Quest population

Figure 2.5.: Principal coordinate plot of the Quest population. The 282 genotypes
of the Quest population were separated by the first two principal coordinates
(PC) which were calculated on the basis of Jaccard’s distances. Numbers in
parentheses are the percentage of explained variance by the PC
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Bayesian clustering The number of subpopulations in the Quest population was fur-

thermore assessed by Bayesian clustering, using the software Structure. The result of

the analysis was processed with the Structure Harvester online tool (Earl and Von-

Holdt, 2012). The output of the log likelihood and Evanno method (Evanno et al., 2005)

indicate the most likely amount of two subpopulations (K=2) in the Quest population

(see also Appendix A, Figure A.1). The barplots for K=2 are shown in Figure 2.6. When

sorting the inferred subpopulations according to genotype group, the landraces show a

more prominent representation of subpopulation 2. Representatives of subpopulation 2

can also be found in cultivars and breeding clones.

Cytoplasm type In order to find alternative underlying structure, cytoplasm types were

determined. The 282 genotypes of the Quest population were analyzed by Rena Sane-

tomo (NARO Hokkaido Agricultural Research Center, Japan) according to the method

of Hosaka and Sanetomo (2012). Six different types of cytoplasm were present in the

population. 144 of 189 cultivars showed T type cytoplasm (the most prevalent type in

S. tuberosum ssp. tuberosum). D type (introduced from S. demissum and W type (Wild

species) existed in about the same number in varieties (D=23 and W=22) and breeding

clones (D=12 and W=15). 27 of 38 W cytoplasm types showed the W/γ sub-type of

S. stoloniferum. A type (the most prevalent S. tuberosum spp. andigena type), P type

(introduced from S. phureja) and M type (Mother type, or an ancestral type of Andean

cultivated potatoes) were very rare (A=9, P=6 and M=1) and appeared only in landraces.

The cytoplasm type was put into context with the number of inferred subpopulations from

the Bayesian clustering approach. 90.6% of T type and 86.6% of W type was represented

in subpopulation 1 (Table 2.5, Figure 2.6 c). A, M and P were solely represented in

subpopulation 2, while D type was equally represented in both inferred subpopulations

(52.8% and 47.2% respectively).

Table 2.5.: Cytoplasm types in the K=2 subpopulations that were inferred by
Bayesian clustering

Cytoplasm type Total Subpopulation % per subpopulation

1 2 1 2

T 192 174 18 90.6% 9.4%
D 36 19 17 52.8% 47.2%
W 38 33 5 86.6% 13.2%
A 9 0 9 0% 100%
P 6 0 6 0% 100%
M 1 0 1 0% 100%

Total 282 226 55
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(a) Barplot of inferred subpopulations K=2 ordered according to Q-value

(b) Barplot of inferred subpopulations K=2 ordered according to genotype group (tetraploid
cultivars (1=standard varieties, 2=commercial cultivars), 3=breeding clones, 4=landraces)

(c) Barplot of inferred subpopulations K=2 ordered according to cytoplasm type (1=T type,
2=D type, 3=W type, 4=A type, 5=P type, 6=M type)

Figure 2.6.: Structure graphical output of population structure for 282 geno-
types at population size K=2, with genotypes ordered (a) accord-
ing to the two subpopulations, (b) genotypes ordered to match the
genotype group and (c) ordered according to cytoplasm type. In-
dividual genotypes are plotted on the x-axis. The probability (Q-value) of
each genotype belonging to subpopulation 1 (red) or subpopulation 2 (green)
is plotted on the y-axis
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2.3.3. Candidate genes and mapping

Functional candidate genes related to starch and yield traits were compiled from the

literature. Positions in the genome and gene copy numbers were detected by in silico

mapping against the potato genome sequence (version v4.03). All functional candidate

genes are presented in Table 2.6.

RFLP markers linked to starch and yield QTL (Schäfer-Pregl et al., 1998) were mapped

to the potato genome sequence (version v4.03). The physical map of potato is shown in

Figure 2.7 and includes also PCR markers as well as compiled candidate genes for starch

and yield related traits. Chromosomes 7, 8 and 12 have a different chromosome orientation

on the physical map when compared to the QTL map of Schäfer-Pregl et al. (1998). In a

few cases the order of RFLP markers in QTL regions on the physical map was different

from the mapping positions reported on the genetic maps. Some of the QTL from Schäfer-

Pregl et al. (1998) fit to small regions of the physical map, other QTL spread over large

regions of a chromosome, such as the QTL on chromosomes 1, 6 and 12 (Figure 2.7).

2.3.4. Association mapping

A total of 309 polymorphic markers that were scored in the 282 individuals of the Quest

population were tested for associations the phenotypic traits TSC, TY, TSY, TN and

TW using a mixed linear model including kinship and population structure. Kinship was

assessed applying the ’EMMA’ algorithm (Kang et al., 2008) and population structure

was represented by the first 11 principal coordinates of the PCoA, explaining 10% of

the variance. 118 markers from bi-allelic SNPs and 4 indel markers that were scored in

amplicon sequences of eight candidate genes were tested for marker-trait associations as

well as 181 microsatellite alleles from 29 loci and 6 PCR markers. In addition, epistatic

interaction between two PCR markers and the cytoplasm type of the clones were tested

for associations with the traits. The complete genotypic data is presented in Appendix B

(Table B.7).

40 polymorphic markers (13%) were significantly (p-value <0.01) associated with at least

one phenotypic trait. Marker-trait associations are given in Table 2.7 and Table 2.8. All

markers associated with any trait (α=0.05) are reported in Appendix B (Table B.8). 32

of markers were associated with a single trait. 7 markers were associated with two traits.

Two markers were associated with TSC as well as TSY, two markers with TY and TSY,

one marker with TY and TW, one marker with both TSC and TN and one marker with TN

and TW. 14 markers were associated with TSC, four markers with TY, eight markers with

TSY, 14 markers with TN and seven markers with TW. The most significant associations

were detected for TN, with three associations having p-values <0.001. One further highly

significant (α=0.001) marker-trait association was detected for TSC.

33



Chapter 2. Association mapping for starch yield optimization in a novel potato
population

Figure 2.7.: Physical map of potato (version v4.03) showing a selection of
knowledge-based candidate genes for starch and yield traits. Mark-
ers for tuber starch and yield QTL (Schäfer-Pregl et al., 1998) are indicated
together with reported PCR markers associated with tuber starch content and
tuber yield (Table 2.2). Markers and genes that were genotyped in this study
are shown in bold
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Table 2.6.: Potato genes functionally related to tuber starch and yield traits. Compiled information from literature search and in

silico mapping (potato genome sequence, version v4.03)

Locus Chromo- Gene number Position (bp) Possible Gene name; Literature

some PGSC0003... Start End trait assumed gene function source

CP12-2 1 DMG400009042 62,723,718 62,724,360 yield Calvin cycle protein CP12; Singh et al. (2008)

Calvin cycle

AOX1a-3 1 DMG400012558 81,916,714 81,920,957 starch, Alternative oxide synthase 1a Krusiewicz et al. (2011)

red.sugar

SSsIV 2 DMG400008322 30,142,740 30,152,314 starch Soluble starch synthase IV; Roldán et al. (2007)

starch granule formation in

Arabidopsis thaliana

LIPIII-27 2 DMG400031758 33,058,256 33,059,792 starch Triacylglycerol lipase III Urbany et al. (2011)

SssIII 2 DMG400016481 36,377,154 36,379,312 starch Soluble starch synthase III; Abel et al. (1996)

starch synthesis

SssII 2 DMG400001328 46,189,568 46,196,715 starch Soluble starch synthase II; Abel et al. (1996)

starch synthesis

AmyZ-3 3 DMG400020603 35,999,186 36,002,230 starch α-amylase; starch Li et al. (2008)

degradation

Pain1 3 DMG400013856 39,255,053 39,259,538 starch Potato vacuolar invertase 1; Li et al. (2008)

starch-sugar interconversion

PGM1 3 not annotated 41,493,531 41,510,113 starch Plastidial phosphoglucomutase; Tauberger et al. (2000)

tuber starch synthesis

SssI 3 DMG402018552 45,887,534 45,896,549 starch Soluble starch synthase I; Li et al. (2008)

starch synthesis

KT-InvInh 3 DMG400010146 49,448,372 49,449,153 starch, Kunitz-type Invertase inhibitor; Fischer et al. (2013)

yield invertase inhibition

Pho1a 3 DMG400007782 – – starch Starch phosphorylase 1a; Li et al. (2008)35
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Table 2.6.: (continued)

Locus Chromo- Gene number Position (bp) Possible Gene name; Literature

some PGSC0003... Start End trait assumed gene function source

starch degradation, plastidial

StDPE1 4 DMG400016589 53,993,893 54,001,156 starch Disproportionating enzyme 1; Lloyd et al. (2004)

starch degradation

AmyZ-2 4 DMG400007974 68,256,932 68,260,197 starch α-amylase; starch Li et al. (2008)

degradation

PGI1 4 DMG400012910 70,220,253 70,227,163 starch Plastidial phosphoglucoisomerase; Lu and Sharkey (2006)

transitory starch breakdown in

Arabidopsis leaves

AmyZ 4 DMG400009891 71,332,557 71,337,468 starch α-amylase; starch Li et al. (2008)

degradation

CP12-3 4 DMG400009928 72,039,178 72,040,140 yield Calvin cycle protein CP12; Singh et al. (2008)

Calvin cycle

Pho1b 5 DMG400028382 346,678 352,885 starch, Starch phosphorylase 1b; Li et al. (2008)

yield starch degradation, plastidial

StSP6A 5 DMG400023365 51,319,128 51,320,774 yield FT homolog; Navarro et al. (2011)

tuberization control

CP12-1 6 DMG400007286 195,064 195,709 yield Calvin cycle protein CP12; Singh et al. (2008)

Calvin cycle

BEL5 6 DMG400005930 54,709,882 54,713,896 yield Potato BEL1-like trans- Chen et al. (2003)

cription factor; tuber formation

HQT 7 DMG400011189 1,001,854 1,006,278 yield Hydroxycinnamoyl CoA quinate Urbany et al. (2011)

transferase

StPha2 7 DMG400004101 10,832,288 10,839,563 starch Plasma membrane H+-ATPase2 Li et al. (2008)

Driving proton coupled active

sucrose transport36
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Table 2.6.: (continued)

Locus Chromo- Gene number Position (bp) Possible Gene name; Literature

some PGSC0003... Start End trait assumed gene function source

AOX1a-2 8 DMG400018484 3,686,704 3,689,036 starch, Alternative oxide synthase 1a Krusiewicz et al. (2011)

red.sugar

StBT1 8 DMG400020780 32,228,795 32,232,705 yield, The Brittle1 protein homolog; Leroch et al. (2005)

starch plastidic adenine nucleotide

uniporter

AOX1a 8 DMG400007614 47,496,732 47,500,233 starch, Alternative oxide synthase 1a Krusiewicz et al. (2011)

red.sugar

BMY1 8 DMG400001855 50,592,099 50,595,681 starch, β-amylase 1; starch Scheidig et al. (2002)

red.sugar degradation

StADK 9 DMG400027906 6,770,217 6,774,069 yield Plastidial adenylate kinase; Regierer et al. (2002)

starch synthesis, tuber yield

Rca 10 DMG400019149 50,945,736 50,948,506 yield Ribulose bisphosphate carb- Li et al. (2008, 2010)

oxylase activase; CO2

fixation, Calvin cycle

GLDH 10 DMG400008132 58,305,327 58,313,142 yield L-galactono-1,4-lactone Urbany et al. (2011)

dehydrogenase

UGPase 11 DMG401013333 808,268 814,810 starch UDP-Glucose pyrophosphory- Sowokinos et al. (2004)

lase; starch degradation

DBE 11 not annotated 3,945,875 3,946,053 starch Debranching enzyme; Kossmann et al. (1996)

starch synthesis Chen et al. (2001)

Ant 11 DMG400013596 34,615,686 34,619,192 starch, Adenylate transporter; Chen et al. (2001)

yield starch synthesis

StLapN 12 DMG400007831 2,328,178 2,335,525 starch, Leucine aminopeptidase, Fischer et al. (2013)

yield neutral;
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Direction of effects on a trait were different within loci. The three significant markers

in the SssI for TW show opposite SNP allele effects. Also the two marker alleles of the

STI004 locus for TN show allele effects with opposing direction.

Marker-trait associations of polymorphic markers from candidate genes 14 biallelic

SNP markers and one indel were significantly (α=0.01) associated with at least one trait

of interest. These markers were scored at seven candidate gene loci, which encode the

enzymes chloroplast-protein 12 (CP12-2), the soluble starch synthases I and IV (SssI, SS-

sIV ), the plastidial phosphoglucomutase 1 (PGM1), the plastidial phosphoglucoisomerase

1 (PGI1), the starch phosphorylase 1b (Pho1b) and the BEL1-like transcription factor

(BEL5). No association was detected at the β-amylase 1 (BMY1) locus.

The three SNPs and one indel in the PGI1 locus were all associated with TSC. PGI1 snp267

and PGI1 snp252 had almost the same allele frequencies, p-values, R2 and a negative mi-

nor allele effect. They were in high LD (q-value=1.2E-111) and therefore considered to

be closely linked on the same haplotype. The presence of the PGI1 indel202 minor al-

lele had a negative effect on TSC and the PGI1 snp333 minor allele has a positive effect

on the trait. Two associations with tuber yield were identified in the two soluble starch

synthases: SssI snp6015 was detected in a gene that has been described previously in

potato, whereas the SSsIV snp2679 polymorphism was obtained from a novel candidate

gene, which was found, based on the homology with the Arabidopsis SSsIV gene (Roldán

et al., 2007). Two SNP markers, PGM1 snp413 and Pho1b snp4319, were associated with

TSY. The strongest marker-trait associations (p-values <0.001) were found for TN with

CP12-2 snp327 and BEL5 snp2960. These SNPs had the highest amount of explained

variance by the model, with 4.7% and 7.4%, respecively. Two further associations with

TN were detected for SssI snp5995 and Pho1b snp4431. Three SNP markers in SssI were

significantly associated with TW.

Marker-trait associations of PCR markers and statistical epistatic interaction Six

allele specific PCR markers (Li et al., 2008, 2013, Fischer et al., in preparation) and one

statistical epistatic interaction (Li et al., 2010), for which associations with tuber and

starch yield related traits were reported, were genotyped and tested for associations in

the Quest population. In total, three marker-trait associations were detected. Two at

significance level α=0.01 and one at significance level α=0.05.

Pain1-8c was positively associated with TSC and TSY, which confirmed the finding of

Li et al. (2008). The presence of the Rca-1a allele was associated with TSC. There is

a negative effect on the population mean in the presence of the allele in the Quest

population. In the population of Li et al. (2008), this marker-trait association was not

significant but showed a negative association with chips-quality. The HSP70-bad allele

38



C
h

ap
ter

2.
A

sso
ciation

m
a
p

p
in

g
for

starch
y
ield

op
tim

ization
in

a
n

ov
el

p
otato

p
op

u
lation

Table 2.7.: Marker-trait associations of candidate genes in the Quest population. All markers were tested with tuber starch content

(TSC), tuber yield (TY), tuber starch yield (TSY), tuber number (TN) and tuber weight (TW)

Locus SNP locus SNP Minor SNP TSC TY TSY TN TW

alleles allele frequency p-value (R2) p-value (R2) p-value (R2) p-value (R2) p-value (R2)

Candidate gene markers

CP12-2 snp327 T/C1 0.004 (C)2 ns3 ns ns 0.000 (4.7) ↑4 ns

SSsIV snp2679 A/T 0.062 (T) ns 0.006 (2.4) ↑ ns ns ns

PGM1 snp413 A/T 0.035 (T) ns 0.011 (2.1) ↓ 0.008 (2.4) ↓ 0.036 (1.5) ↓ ns

SssI snp5871 A/G 0.446 (G) ns ns ns ns 0.009 (2.1) ↓
snp5907 G/C 0.046 (C) ns ns ns 0.011 (2.2) ↑ 0.003 (2.8) ↓
snp5995 C/T 0.008 (T) ns ns ns 0.005 (2.7) ↑ ns

snp6015 T/A 0.007 (A) ns 0.005 (2.6) ↑ 0.017 (1.9) ↑ ns 0.003 (2.7) ↑
PGI1 snp333 A/G 0.035 (G) 0.007 (2.3) ↑ ns ns ns ns

snp252(267) T/A 0.082 (A) 0.006 (2.4) ↓ ns ns ns ns

indel202 wt/indel 0.076 (indel) 0.010 (2.1) ↑ ns ns ns ns

Pho1b snp4319 C/G 0.310 (G) ns 0.014 (1.9) ↑ 0.009 (2.3) ↑ ns 0.016 (1.8) ↑
snp4431 A/T 0.006 (T) ns ns ns 0.008 (2.5) ↓ ns

BEL5 snp2960 A/G 0.003 (G) ns ns ns 0.000 (7.4) ↑ ns

1The nucleotide represented in the potato genome sequence stands on the first position; 2Minor allele frequency of allele displayed in parenthesis;
3Not significant at significance level α=0.01; 4Arrows indicate the direction of the effect of the minor frequency allele on the trait

compared to the population mean
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Table 2.8.: Marker-trait associations of PCR markers and SSR markers in the Quest population. All markers were tested with

tuber starch content (TSC), tuber yield (TY), tuber starch yield (TSY), tuber number (TN) and tuber weight (TW)

Locus Marker Absent (0)/ Present allele TSC TY TSY TN TW

allele present (1) frequency p-value (R2) p-value (R2) p-value (R2) p-value (R2) p-value (R2)

PCR markers

Pain1 Pain1-8c 0/1 0.170 0.000 (4.4) ↑ ns1 0.007 (2.5) ↑2 ns ns

Rca Rca-1a 0/1 0.443 0.008 (2.3) ↓ ns ns ns ns

SSR markers

STI043 STI043-e 0/1 0.504 0.005 (2.6) ↑ ns 0.005 (2.6) ↑ ns ns

STI009 STI009-h 0/1 0.093 ns ns ns 0.009 (2.4) ↑ ns

STI001 STI001-b 0/1 0.404 0.029 (1.5) – ns ns ns 0.003 (2.6) ↓
STI058 STI058-b 0/1 0.409 ns ns 0.011 (2.2) – ns 0.002 (3.0) ↑

STI058-g 0/1 0.029 ns ns ns 0.001 (3.9) ↑ ns

STG0021 STG0021-a 0/1 0.039 ns ns ns 0.001 (3.6) ↑ ns

STM1043 STM1043-d 0/1 0.011 ns 0.043 (1.3) ↑ 0.023 (1.8) ↑ 0.000 (7.0) ↑ ns

STM1104 STM1104-f 0/1 0.125 0.002 (3.1) ↑ ns ns ns ns

STG0025 STG0025-d 0/1 0.005 ns 0.041 (1.3) ↑ 0.006 (2.6) ↑ ns ns

STI028 STI028-f 0/1 0.317 ns ns ns ns 0.001 (3.6) ↑
STI028-b 0/1 0.493 0.002 (3.2) ↑ ns ns ns ns

SSR20 SSR20-c 0/1 0.656 ns 0.017 (1.8) – 0.004 (2.9) ↓ ns ns

STM1106 STM1106-b 0/1 0.122 0.001 (3.7) ↓ ns 0.032 (1.6) ↓ ns ns

STI020 STI020-c 0/1 0.292 ns 0.024 (1.6) – 0.021 (1.8) ↑ 0.006 (2.6) ↑ ns

STM3016 STM3016-f 0/1 0.297 0.003 (2.8) ↑ ns ns ns 0.043 (1.2) –

STM3016-d 0/1 0.613 ns ns ns 0.010 (2.3) ↑ ns

STM0030 STM0030-e 0/1 0.507 ns 0.004 (2.7) ↑ 0.003 (2.9) ↑ 0.026 (1.7) ↑ ns

STI004 STI004-d 0/1 0.214 ns 0.037 (1.4) ↑ ns 0.002 (3.5) ↓ ns

STI004-k 0/1 0.160 ns ns ns 0.005 (2.7) ↑ ns

STM3009 STM3009-b 0/1 0.007 0.002 (3.1) ↑ ns ns ns ns40
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Table 2.8.: (continued)

Locus Marker Absent (0)/ Present allele TSC TY TSY TN TW

allele present (1) frequency p-value (R2) p-value (R2) p-value (R2) p-value (R2) p-value (R2)

STM1052 STM1052-c 0/1 0.712 ns 0.005 (2.5) ↑ 0.002 (3.2) ↑ ns ns

M17 M17-b 0/1 0.423 0.003 (2.9) ↑ ns 0.014 (2.0) ↑ 0.023 (1.8) ↑ ns

M4 M4-a 0/1 0.979 0.003 (2.8) ↑ ns 0.018 (1.9) ↑ 0.009 (2.3) ↑ ns

STM0003 STM0003-d 0/1 0.440 ns ns ns 0.006 (2.6) ↓ 0.006 (2.3) ↑

1Not significant at significance level α=0.01; 2Arrows indicate the direction of the effect of presence of the allele on the trait compared to the population mean
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was associated with TY (α=0.05) in the Quest population. The presence of the allele

had a positive effect on the trait, compared to the population mean. This is in accordance

with the findings of Fischer et al. (in preparation), who tested this allele for marker-trait

associations in the Chips-All population.

There was no evidence for associations of StpL-3e, GP171-a and Pho1a-HA with any of the

traits in the Quest population. Furthermore, the statistical epistatic interaction between

Pain1-8c and Rca-1a (Li et al., 2010) could not be detected, although it was very close to

significance (p-value=0.054).

Cytoplasm type Cytoplasm type was not associated with the phenotypic traits in the

Quest population.

Marker-trait associations of SSR markers Of all 181 tested microsatellite marker alleles,

24 (13.8%) were significantly (α=0.01) associated with a minimum of one phenotypic trait.

Five marker alleles were associated with two traits: one with TSC and TSY, two with TY

and TSY, one with TSC and TN and one with TN and TW.

Eight marker alleles were associated with TSC, two with TY, five with TSY, 10 with

TN and four with TW. The most significant (α=0.001) association was detected for TN.

The SSR alleles STM0037-a and STM0037-g were associated with TSC in the study of

Li et al. (2008). The marker-trait association of STM0037-a could not be confirmed in

the Quest population, but the STM0037-g allele was associated with TSC and TSY at

significance level α=0.05. All SSR alleles that were significantly (p-value <0.01) associated

with specific gravity in the study of Urbany et al. (2011) were included and tested in this

study (STI024-e, STI013-a, SSR327-a). Specific gravity is considered equal to TSC. There

was no evidence for the association of the STI024-e and STI013-a alleles with TSC in the

Quest population, but the SSR327-a allele was associated with TSC at significance level

α=0.05. The STM3009-b allele, which was significantly associated with TSC, was present

in only one individual. This individual showed the highest value of TSC in the Quest

population (Genotype N098).

2.3.5. Location of associated SNPs and amino acid exchanges

Four highly associated SNPs were found that lead to a non-synonymous amino acid ex-

change in the encoded protein. SSsIV snp2679 was located in exon 4 of the SSsIV gene

(Table 2.9). The two different encoded amino acids were aspartic acid, encoded by the

major frequency allele and valine, encoded by the minor frequency allele. Two SNPs at the

Pho1b locus lead to a non-synonymous amino acid exchange. The minor frequency allele of

Pho1b snp4319 lead to an amino acid change from proline to arginine. The PGI1 indel202
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was the insertion of a triplet repeat AAG that lead to an extra lysine in the protein. The

minor frequency allele of Pho1b snp4431 was causing an amino acid exchange from glu-

tamic acid to aspartic acid. In BEL5, the minor frequency allele of BEL5 snp2960 lead to

a non-synonymous amino acid exchange from asparagine to serine.

The CP12-2 snp327 was also located in an exon but causes a silent mutation. The same

applied to the associated SNPs of PGI1. PGI1 snp333, PGI1 snp252 and PGI1 267 were

located in an exon, but had synonymous effects. These mutations had no predicted effect

on the protein composition (Table 2.9). The following SNPs were located in intron regions

and did not encode any changes in proteins: PGM1 snp413, SssI snp5871, SssI snp5907,

SssI snp5995 and SssI snp6015 (Table 2.9).

Table 2.9.: Location of significantly associated SNPs in the gene and effects of
SNP alleles on protein level

Locus SNP locus SNP alleles SNP type amino acid
exchange

CP12-2 snp327 T/C synonymous –
SSsIV snp2679 A/T non-synonymous D <V
PGM1 snp413 A/T intron –
SssI snp5907 G/C intron –

snp5995 C/T intron –
snp6015 T/A intron –

PGI1 snp333 A/G synonymous –
snp252 T/A synonymous –
snp267 G/A synonymous –
indel202 insAAG non-synonymous extra K

Pho1b snp4319 C/G non-synonymous P <R
snp4431 A/T non-synonymous E <D

BEL5 snp2960 A/G non-synonymous N <S

2.3.6. Comparing mixed model and general linear model

In addition to the mixed linear model including population structure and kinship (MLM-

Pk), all markers were analyzed with a general linear model (GLM) and a mixed linear

model only accounting for kinship (MLM-k). This was done to get an idea how ”robust”

the significant markers are and how they perform in different models. Table 2.10 sum-

marizes the output of the markers that were significantly associated with the traits in all

three models. There were no significant marker-trait associations for TN in the MLM-k.

The p-values of all models are given in Appendix B (Table B.9).
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Table 2.10.: Markers that were highly significantly associated in three different
models. Significance levels were α=0.001 in general linear model (GLM) and
mixed linear model including kinship (MLM-k) and α=0.01 for mixed linear
model including kinship and population structure (MLM-Pk). Markers with
p-values <0.0001 in GLM and MLM-k are considered ”robust” and are shown
in bold

SNP locus Model TSC TY TSY TN

CP12-2 snp327 GLM 2.85E-06
MLM-k ns
MLM-Pk 2.36E-04

SssI snp5995 GLM 5.54E-04
MLM-k ns
MLM-Pk 0.005

PGI1 snp333 GLM 1.83E-06
MLM-k 4.01E-06
MLM-Pk 0.007

Pho1b snp4319 GLM 1.46E-04
MLM-k 2.09E-04
MLM-Pk 0.009

BEL5 snp2960 GLM 9.10E-09
MLM-k ns
MLM-Pk 5.07E-06

STI058-g GLM 7.12E-04
MLM-k ns
MLM-Pk 8.03E-04

STG0021-a GLM 1.94E-04
MLM-k ns
MLM-Pk 0.001

STM1043-d GLM 3.20E-05
MLM-k ns
MLM-Pk 9.21E-06

STM1104-f GLM 1.08E-05
MLM-k 1.72E-05
MLM-Pk 0.002

STM1052-c GLM 4.37E-04 6.87E-04
MLM-k 5.67E-04 8.63E-04
MLM-Pk 0.005 0.002

Pain1-8c GLM 2.79E-07
MLM-k 8.22E-07
MLM-Pk 2.32E-04

Rca-1a GLM 1.85E-05
MLM-k 3.37E-05
MLM-Pk 0.008
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2.3.7. Linkage disequilibrium

LD between all pairs of SNP loci was tested with a chi-square test using the 118 bi-allelic

SNP markers. q-values were obtained after correcting for multiple testing (Figure 2.8,

Appendix Table B.10).

The total amount of marker pairs in significant (q-value <0.05) LD was 937 out of 6903

tested marker pairs (13.6%). Intralocus pairs in significant LD (α=0.05) in relation to

the total amount of intralocus pairs were 32.8%. All interlocus pairs in significant LD in

relation to the total amount of interlocus pairs were 10.9%. The highest LD was found

between markers from same locus.

The candidate genes were located on chromosomes 1-6 and 8, with PGM1 and SssI both

located on chromosome 3. Of the 238 marker pairs tested on chromosome 3, 113 (47.5%)

were in significant LD. Intralocus pairs of polymorphisms in significant LD were 33.2%,

with half of the markers in PGM1 and the other half in SssI. Interlocus pairs of polymor-

phisms in significant LD on chromosome 3 were 14.3%.

A pattern of LD, spanning five chromosomes was detected between SNPs at the PGI1locus

(chromosome 4) with SNPs at the SssI (chromosome 3), Pho1b (chromosome 5), BEL5

(chromosome 6) and BMY1 (chromosome 8) loci.
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Figure 2.8.: Linkage disequilibrium between pairs of SNPs in candidate genes.
Displayed are -log q-values. Each row and line corresponds to one SNP posi-
tion. Loci are framed with black boxes
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2.4. Discussion

Candidate gene association mapping was applied to find natural variation at candidate

gene loci with the aim to detect diagnostic SNP markers for tuber starch and yield-related

traits. A novel association mapping population, the Quest population, was assembled

from varieties, advanced breeding lines and landraces. The genotypes were grown at two

breeding stations in northern Spain in two subsequent years, with 50 standard varieties

at both locations to facilitate joint statistical analysis of phenotype data. The population

was phenotyped for tuber starch and yield-related traits: TSC, TY, TSY, TN, TW and

AMY. AMY showed very low repeatability, suggesting a large environmental effect and

was therefore excluded from association analysis. Marker-trait associations were detected

using a mixed linear model, taking into account locations, years, population structure and

kinship.

2.4.1. Novel marker-trait associations detected by candidate gene association

mapping

Seven of the eight examined candidate gene loci show a minimum of one marker-trait

association with at least one trait. This lead to a set of markers that can be directly

applied in molecular marker-assisted selection in a breeding program. This result is not

unexpected. The selection of candidate genes was knowledge-based. It focused on the

functionality of the gene in the metabolic pathway of starch synthesis or its putative func-

tion for yield. Furthermore, genes in chromosomal regions that were co-localizing with

QTL for starch content and yield (Schäfer-Pregl et al., 1998) were favored in the selection

process. Therefore, the sequence variation of candidate genes might be directly associated

with the observed phenotypic variation because it is located in the causal gene. How-

ever, association mapping makes use of the principle of LD, meaning that the phenotypic

variation can also be caused by alleles of a gene that is in LD with the causal gene. Can-

didate gene association mapping has been shown to be a valid method for the detection of

marker-trait associations in potato (Fischer et al., 2013; Gebhardt et al., 2004; Li et al.,

2008, 2005; Malosetti et al., 2007; Pajerowska-Mukhtar et al., 2009; Simko et al., 2004;

Urbany et al., 2011). The application of diagnostic SNP markers that were obtained by as-

sociation mapping in potato breeding programs has been proven possible (Li et al., 2013).

The diagnostic SNP marker that are detected by candidate gene association mapping can

directly be implemented in breeding programs for potato starch yield optimization by

marker-assisted selection although they might not be located in the causal gene.
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Markers for tuber starch yield A significant marker-trait association for TSY was de-

tected for the plastidial starch phosphorylase Pho1b. Pho1b plays a major role in the

starch degradation and synthesis pathway. It was chosen as a candidate gene because of

its co-localization with a QTL for tuber starch and yield (Schäfer-Pregl et al., 1998). Li

et al. (2008) reported a significant marker-trait association of the StpL-3e SSCP marker

allele with TSC and TY. However, there was no significant association of the StpL-3e allele

with TSC or TY in the Quest population. This could be due to the fact that the Pho1b

amplicon was designed in 1,500 bp distance to the StpL-3e fragment and the LD was not

high enough to detect the similar marker-trait associations. There was no association of

the SNPs at the Pho1b locus with either TSC or TY, but Pho1b snp4319 was significantly

associated with TSY. The minor allele had a positive effect on the trait and a frequency of

about 30%. This frequency should be further increased by marker-assisted selection. Also,

the SNP caused an amino acid exchange in the protein, which could potentially influence

the protein structure and thereby its properties. In addition to the model accounting for

population structure and kinship, Pho1b snp4319 was also highly significant in both GLM

and MLM with only kinship. It can therefore be regarded as a rather ”robust” marker.

Pho1b snp4319 has a positive effect on TSY and can be of value in increasing desirable

alleles in a potato breeding program for superior cultivars with improved TSY.

The plastidial PGM1 generates glucose 1-phosphate, the substrate of AGPase and was

therefore a functional candidate to yield markers for TSC and TSY. PGM1 snp413 was

associated with TSY, with the minor frequency allele having a negative effect on the

trait. The SNP is located in the intron region of the gene, which indicates that it is

physically linked or in LD with the causal SNP. The candidate gene was chosen based on

the article of Tauberger et al. (2000), who conducted an antisense inhibition experiment of

the plastidial phosphoglucomutase in potato. They report that potato lines with decreased

activity of the plastidial PGM had a decreased amount of TSC, while tubers showed no

morphological changes. Apart from the functional aspects, the gene was located in a QTL

region for starch content (Schäfer-Pregl et al., 1998). Therefore marker-trait associations

for starch content and starch yield were expected, provided that PGM1 is the causal gene.

One SNP marker for TSY could be detected in PGM1, which is suggested to be linked to

the causal SNP and that can be directly applied to breeding for increased starch yield.

Markers for tuber yield Soluble starch synthase I (SssI) is a key enzyme in the metabolism

of starch in potato tubers. In addition to that it is linked to in a starch QTL (Schäfer-

Pregl et al., 1998). The SssI snp6015 polymorphism was positively associated with TY

and the minor frequency allele is only present in simplex. The SNP is located in the

intron region of the gene. Li et al. (2008) described an association with TSC and TSY.
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Surprisingly, no marker-trait associations with either of these two traits were detected. It

is possible, that the SssI-4b allele from the study of Li et al. (2008) was not detected as

SNP by amplicon sequencing, although the PCR fragment was designed in a way that it

included the complete amplified fragment of Li et al. (2008). The haplotype of the SSCP

allele might be hidden within the detected SNPs and no haplotype tagging SNP might

have been detected. A way of verifying this would be to test the amplicon for SssI in the

genetic background of the Chips-All population. There were no marker-trait associa-

tions for TSC and TSY found in the SssI candidate gene, but one marker for TY could

be detected.

The soluble starch synthase IV polymorphism SSsIV snp2679 is a potential marker for

potatoes with higher TY. Three soluble starch synthases were described in potato (Werij

et al., 2012). A fourth soluble starch synthase SSsIV was reported in Arabidopsis thaliana

(Roldán et al., 2007). It was suggested to have a function in the control of starch granule

formation in leaves. Furthermore, it was located in a QTL region for starch and yield

(Schäfer-Pregl et al., 1998). Based both on function and position, SSsIV might be as-

sociated with TSC or TSY in potato. But instead, SSsIV snp2679 was associated with

TY. A possible explanation for this result is that Arabidopsis has no storage organs like

potato. Therefore, homologous genes can have a totally different function. Furthermore,

the Arabidopsis SSsIV mutant shows not only a phenotype for increased starch granule

size, but also a growth deficient phenotype. This indicates that the gene might have an

additional impact on the general plant performance, which again could be influencing yield

levels. Another explanation is, that the SSsIV candidate gene is not the causal gene. It

might be physically linked or in LD with the causal gene and sequence variation of SSsIV

is mirroring the sequence variation of the causal gene. The minor allele frequency was

0.062. This means that the allele was not very frequent in the tested plant material. As

the effect of the minor frequency allele was positive, if can still be of interest for breeding.

The SSsIV snp2679 polymorphism should be tested in other genetic background for veri-

fication of the marker-trait association with TY, but it is a good potential candidate for

the optimization of TY by marker-assisted selection.

The CP12-2 locus encodes a chloroplast protein 12 that is involved in the Calvin cycle

(Singh et al., 2008), suggesting an influence on yield traits in potato. Three different CP12

loci are present in the potato genome on chromosomes 1, 4 and 6. Kare Lehman Nielson

from Aalborg University (Denmark) reported that a CP12 gene was found associated

with potato TY in an RNA sequencing experiment (EAPR meeting, Wageningen, The

Netherlands, 2010, oral presentation). Therefore a marker-trait association was expected

with TY, which could not be detected in this study. There are several explanations for

this. Firstly, the examined CP12-2 on chromosome 1 might not be the corresponding
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locus. Secondly, the relevant allele was not tagged by one of the SNPs. It was challenging

to design an appropriate amplicon with sufficient polymorphisms for CP12-2, as the gene

exists of one exon (data not shown) of approximately 400 bp. A third reason is that the

relevant allele is either not present or very rare in the genetic background of the Quest

population and is therefore not associated. In association mapping, the statistical power

to detect marker-trait associations of common variants is much higher than of rare alleles

(Flint-Garcia et al., 2003). The best possible amplicon was designed for CP12-2 and no

association with TY was detected, but associations with TY might be found by testing

further CP12 loci.

Markers for tuber starch content PGI1 is the plastidial isoform of phosphoglucoiso-

merase. It is active in transitory starch breakdown in the leaves of Arabidopsis (Lu and

Sharkey, 2006). One indel and three SNP markers were associated with TSC, of which

two SNPs were physically linked. PGI1 is a novel candidate which has not been described

in potato so far. For this study it was chosen based on functionality as well as its position

in a starch QTL (Schäfer-Pregl et al., 1998). The significant SNP and indel markers were

all located in the exon region of the gene, but all of them do not cause an amino acid

exchange. PGI1 snp333 was highly associated in all three tested statistical models and

the minor frequency SNP allele had a positive effect on the trait. For these reasons it is

a suitable marker for application in marker-assisted selection, as it is a ”robust” marker.

The PGI snp333 marker should be applied in marker-assisted selection for TSC in potato

breeding programs, due to its high potential to be repeatable in other genetic background.

The BMY1 locus encodes β-amylase I, a key enzyme in the degradation of starch in

the plastid. However, no marker-trait association for TSC was detected in the Quest

population. Scheidig et al. (2002) showed the role of BMY1 in transitory starch breakdown

in leaves by antisense expression in potato plants. Expression data in the genome browser

show, that it is not only expressed in leaves, but also in potato tubers. The candidate

gene was selected based on its function but to the same extend because of its location in

the region of a starch QTL (Schäfer-Pregl et al., 1998) on chromosome 8. It was expected

to be associated at least with TSC. Provided that BMY1 is a causal gene, there are

several possible explanations for the missing marker-trait associations. One reason might

be that the QTL in the study of Schäfer-Pregl et al. (1998) was detected based on an

allele that is a rare allele in the Quest population, as diploids seem rather different from

tetraploids (Stich et al., 2013). Associations with rare alleles are unlikely to be significant

in associations mapping, as the method is more suitable for the detection of associations

with common variants (Flint-Garcia et al., 2003). Furthermore, it may be possible that

the designed amplicon did not have sufficient SNPs to differentiate all haplotypes and the
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SNPs are representing clusters of haplotypes. By this, the statistical power of a rare allele

would be insufficient to allow a significant marker-trait association. A third explanation

is that the allele of the QTL study (Schäfer-Pregl et al., 1998) is simply not represented

in the Quest population. As mentioned before, BMY1 is involved in starch degradation

process, possibly leading a higher amount of reducing sugars (Krusiewicz et al., 2011).

Therefore it might play an important role in cold induced sweetening and could be directly

linked to chipping quality in potato. The lack of significant marker-trait associations at

the β-amylase I locus BMY1 could be due to an under-representation of a rare allele

in the Quest population. Still, the fragment may be valuable for testing marker-trait

associations with chipping quality in a different genetic background.

Markers for tuber number The marker-trait associations for TN might be interesting

for marker-assisted selection of novel-type potato cultivars. The most significant marker

trait associations at candidate loci are detected for TN, together with the largest amount

of explained variance by the model. The minor alleles of CP12-2 snp327, SssI snp5995

and BEL5 snp2960 had a positive effect on average TN. However, the genotype classes

associated with higher TN are only represented by a small amount of individuals. Fur-

thermore, the boxplots and histograms of TN illustrate the wide phenotypic variation in

TN with up to 50 tubers in one plant in the case of commercial cultivars. This suggests

that these cultivars have a large number of very small tubers. In agriculture practice,

these mini-tubers are discarded directly on the field by the harvesting machine. Never-

theless, the market for fresh food potato varieties is open for new cultivars and varieties

with small tubers might be of interest in the future. The CP12-2 snp327, SssI snp5995

and BEL5 snp2960 polymorphisms are unlikely to be suitable for the breeding of starch

potatoes, but could become interesting markers for breeding cultivars with an increased

number of mini-tubers.

Markers for tuber weight Three marker-trait associations were detected for TW, all in

the SssI locus, but they are unlikely to be suitable for marker-assisted selection. The

minor frequency allele of SssI snp5907 had a negative effect on TW. Similarly, the mi-

nor frequency allele of of SssI snp5871 had a negative effect on TW, but the two SNP

alleles were almost equally represented in the population. The minor allele frequency of

SssI snp6015 showed a positive effect on TW, but the allele had an extremely low fre-

quency. It is only present in a few genotypes in simplex and all SNPs are non-coding.

Also, the polymorphisms are not highly significant in the other statistical models. This

indicates that the polymorphisms are not sufficiently strong markers for the application

in breeding programs. Therefore, the marker-trait associations for TW seem not suitable

for direct implementation in a potato breeding program, unless the associations would be
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confirmed in a different genetic background.

2.4.2. Known marker-trait associations verified in a novel genetic background

Allele specific associations from previous studies were validated in a novel genetic back-

ground confirming their value for marker-assisted selection. Three of six diagnostic SNP

markers known to be associated with starch related traits in other populations showed

similar associations in the Quest population. The positive association of the Pain1-8c

allele with TSC and TSY (Li et al., 2008) was confirmed. The Rca-1a allele was associated

with TSC in the Quest population. This result was unexpected, as the allele showed no

significant association with TSC in previous studies. However, Rca-1a was associated with

chips quality in the Chips-All population and the presence of the allele had a negative

effect on the chips quality of chips. Bad chipping quality is caused by a higher amount of

reducing sugars and therefore more degraded starch, resulting in a lower starch content.

TSC and chips quality are positively correlated (Li et al., 2013; Werij et al., 2012), which

means that a higher starch content is correlated with a higher chips quality. It can there-

fore be suggested, that the Rca-1a association with TSC was strong enough to show in the

analysis in the Quest population, opposed to the study of Li et al. (2008). HSP70-bad

showed a moderate positive association with TY in the Quest population. Fischer et

al. (in preparation) reported that the presence of the allele showed a negative effect on

TSC and a positve effect on TY in the Chips-All population (Li et al., 2008). Thus, one

of the two associations could be confirmed in the novel genetic background. No marker

trait associations were detected for Pho1a-HA, StpL-3e and GP171-a. Also the statistical

epistatic interaction between Pain1-8c and Rca-1a was not detected in the Quest popu-

lation. Li et al. (2013) reported, that the marker-trait associations from previous studies

can not always be verified in other populations. This may be due to the different genetic

background and the changing environmental conditions of the trial years, influencing phe-

notypic data. The Chips-All population was evaluated in Northern Germany, whereas

the Quest population was evaluated in Northern Spain. The different latitudes could be

causing genotype-by-environment interaction, leading to different associations. Several,

though not all, reported marker-trait associations from previous studies for starch and

yield traits in potato could be verified in the novel association mapping population.

2.4.3. Marker-trait associations detected for SSR markers

A number of new associations of SSR markers with traits were detected, while SSR marker-

trait associations reported in previous studies could not be confirmed. 24 of 181 tested

microsatellite alleles were associated with at least one phenotypic trait. The most inter-

esting alleles, which were also highly significantly associated in the simple models, were
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STM1104-f for TSC and STM1052-c for TSC as well as TY. STM1104-f is part of the

granule-bound starch synthase I (GBSSI) encoding locus, which is active in the starch

synthesis and highly influences starch composition in potato (Muth et al., 2008). These

markers could have a potential for breeding programs. There is always a number of SSR

markers associated with traits, but often these can not be verified in other studies. In

this study, for example, all significant SSR marker-trait associations from Li et al. (2008)

and Urbany et al. (2011) were included and tested in the Quest population. Only two

associations could be detected at a higher significance threshold (α=0.05) (STM0037-g,

SSR327-a). As described above, this can be due to the fact, that the populations were

grown at different latitudes and in different years, leading to genotype-by-environment

interactions which influence the result of the association mapping.

2.4.4. Moderate population structure detected in commercially used potato

germplasm

Population structure was analyzed in the Quest population to avoid false-positive marker-

trait associations in association mapping. Population structure was assessed with two

approaches. With both the principal coordinate analysis and the Bayesian clustering

method, the landraces were separated from the tetraploid cultivars and breeding clones.

This could be due to the fact, that the landraces were varieties that are non-tuberosum

species and had a different genetic background. Some also have other ploidy levels. In

addition, the cytoplasm test showed that the landraces only had A, P and M type of

cytoplasm and those three types were represented solely in subpopulation 2. This showed

that the group of landraces were composed of germplasm different from S. tuberosum.

The detected population structure was only moderate. The clustering result of the PCoA

had no strong statistical support as the proportion of explained variance compared to

other studies (Stich et al., 2013) was rather low. Also, the visual output of Structure

clarifies that the groups were not clearly separated from each other. These results prove the

presence of a very moderate population substructure, which is supported by the findings

of previous studies in tetraploid potato (D’hoop et al., 2010; Gebhardt et al., 2004; Li

et al., 2008; Simko et al., 2004, 2006; Stich et al., 2013; Urbany et al., 2011). These

findings are in contrast to Hamilton et al. (2011), who described a quite distinct population

substructure. However, they were testing a much more diverse set, including diploid

breeding lines, genetic stocks and cultivated Solanum species next to commercial tetraploid

potato cultivars.

The data suggest an underlying selection for cytoplasm types by breeding programs.

The output of the Bayesian clustering method visualized that the frequency of genotypes

present in subpopulation 2 (green) tended to decrease from breeding clones to varieties.
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So those results might show that subpopulation 2 is slowly being eliminated through the

breeding process. T, D and W type of cytoplasm preliminary existed in the varieties and

breeding clones. Also almost all T type and W type were represented in subpopulation

1 (red). In contrast D type was equally represented in both subpopulations. Therefore,

those extreme differences in frequency might suggest that the T type and W type were

preferentially selected in subpopulation 1 as opposed to D type and other types.

2.4.5. Linkage disequilibrium between alleles of unlinked loci

There was evidence of LD between unlinked markers that can lead to the detection of

marker-trait associations located in distant genomic regions. More than 10% of all inter-

locus SNP pairs - interchromosomal as well as intrachromosomal - were in significant LD,

which was higher than expected after the findings of Pajerowska-Mukhtar et al. (2009).

LD between unlinked loci can have several reasons, such as selection, mutation, mating

system, population structure (Soto-Cerda and Cloutier, 2012). Basically, association map-

ping relies on the mechanism of LD. Marker-trait associations can be detected because

quantitative trait loci are in linkage disequilibrium with a polymorphic marker. LD can

be broken by recombination events, so the best possible marker lies directly in the causal

gene. In potato there are large haplotype blocks, which are due to a rather low number

of meiotic events between genotypes (Gebhardt et al., 2004). This favors the detection

of marker-trait associations of markers that are not located in the causal gene. Still, the

detected markers can be applied directly in breeding programs. The disadvantage of large

haplotype blocks can be that it is hard to put hands on a causal gene. The causal gene

and the molecular marker-trait association can be distal to each other due to strong LD

between unlinked loci. However, the associations found by candidate gene association

mapping can still be implemented in potato breeding programs.

The majority of marker pairs in LD (32.8%) were found within loci, which is due to

physical linkage. Marker pairs of the 118 bi-allelic SNP markers that were detected by

candidate gene amplicon sequencing were tested for LD with a chi-square test. More

than thirty percent of the intralocus pairs showed significant LD and the highest LD was

found between markers from same locus. This result was expected, due to the physical

linkage of SNP alleles within the same locus. Physical linkage leads to increased LD values,

meaning that there is a non-random association of alleles in the population (Soto-Cerda

and Cloutier, 2012). This result is comparable to the findings of Pajerowska-Mukhtar et al.

(2009), who found that almost half of the detected polymorphisms in LD were intralocus

pairs.

The special pattern of LD between SNP alleles spanning a number of chromosomes might

be due to the co-selection of haplotypes. The LD plot showed a pattern of SNP alleles in
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LD, spread over five chromosomes. Alle genes (PGI1, SssI, Pho1b, BEL5, BMY1) were

candidates that function in a joint network for starch synthesis and degradation. It may

be that certain alleles are under co-selection with each other. The would explain why

those SNP alleles occur together more frequent than expected under the assumption that

they are independent from each other. Therefore, the possible co-selection of haplotypes

of candidate genes within a network may be detected by the LD between SNP alleles,

which spread over five chromosomes.

2.4.6. Limitations of candidate gene association mapping

Candidate gene association mapping is a knowledge-based method for the detection of

diagnostic SNP markers. The method makes use of information, that is present in the

literature. Appropriate candidates are chosen based on their functionality in pathways

or co-localization with QTL regions from mapping studies. The only limitation is the

researcher’s knowledge about pathways as well as creativity, when it comes to elaborate

on putative function of genes from other organisms. In order to find really novel diagnostic

markers, an unbiased approach may be more suitable.

Linkage disequilibrium is a limiting factor in the detection of diagnostic SNP markers by

candidate gene association mapping. The larger the physical distance between the marker

and the causal gene, the higher the risk that the LD between marker and causal gene

is broken by recombination during breeding. The ideal marker for a trait lies therefore

directly in the candidate gene. For finding markers directly in causal genes, a low LD would

be favorable, although the required marker density would rise drastically. Until now, there

are several different claims on the extend of LD in potato as well as the necessary marker

density for genome-wide association studies, ranging from 275 bp (Stich et al., 2013) up

to 70 kb Simko et al. (2006). However, if LD really decayed as rapidly as reported by

Stich et al. (2013), this would mean that almost all associations detected in the candidate

gene association mapping approach would be directly located in causal genes. The large

number of marker-trait associations that has been found so far, with a limited number of

markers indicate that the extend of LD must be larger than 275 bp.

2.4.7. Concluding paragraph

The results from this study demonstrate that diagnostic SNP markers for the optimization

of starch yield by marker-assisted selection can be identified by candidate gene association

mapping. It has proven to be a valuable tool for the detection of diagnostic molecular

markers for traits that can only be assessed late in the breeding process. Marker-assisted

selection for these traits speed up the breeding process, saving valuable resources and time.
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3. Potato tuber starch and yield markers

identified by SolCAP Potato Array

genotyping in a case-control design and

association mapping

3.1. Background

Potato (Solanum tuberosum) is a tetraploid and highly heterozygous crop which is of

major importance for the food, the feed and the industrial use. The market share of

starch potatoes is growing (Statistisches Bundesamt, 2012). Breeding for special traits by

molecular marker-assisted selection is the focus of potato breeders. However, there is a

limited number of molecular markers available for the desired traits.

Higher throughput genotyping assays, such as the SolCAP Potato Array, have been re-

cently developed (Felcher et al., 2012). High-density genotyping of potato germplasm with

8,303 SNPs can be performed at relatively low cost. In a case-control study, two groups

of unrelated genotypes with extremely high and low values for a trait are screened by

genotyping. Information about the genetic background of the differences is obtained by

comparing the groups (Balding, 2006). The combination of a case-control design with

high-density genotyping could be a valuable tool for the detection of novel markers.

Approach The major goal of this study was the discovery of novel candidate genes for

tuber starch content, tuber yield and tuber starch yield. Therefore, three case-control

studies were designed. Selected potato cultivars and breeding clones, were assembled

in pools that showed extremely high and low values for the desired traits. About 48

genotypes, per case-control study, were assigned to the two pools and all individuals were

genotyped for 8,303 SNPs with the SolCAP Potato Array. SolCAP SNPs significant for

tuber starch and yield-related traits were selected from the results of the case-control

studies and validated by association mapping in the full Quest population.
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3.2. Materials and Methods

3.2.1. Case-control design

For this study, 90 genotypes were selected, based on the adjusted entry means, from

tetraploid cultivars and breeding clones of the Quest population (Chapter 2). 48 geno-

types with extremely high and extremely low values of tuber starch content (TSC) and

tuber yield (TY), respectively, were assigned to two case-control populations. A third

case-control population for tuber starch yield (TSY) was established from 45 genotypes

(Table 3.1, Table 3.2). The phenotypic data of the case-control pools are depicted in

Figure 3.1.

Table 3.1.: Genotypes in the case-control studies. The genotypes were selected from
the Quest population, based on the adjusted entry means for tuber starch
content (TSC), tuber yield (TY) and tuber starch yield (TSY). ’high’ and
’low’ represent the deviation of the extreme phenotypes from the population
mean

Trait ’high’ pool ’low’ pool Total

TSC 24 24 48
TY 24 24 48
TSY 21 24 45

Table 3.2.: Genotypes selected from the Quest population for the case-control
studies. Indicated are the number of genotypes grown at the two breeding
stations Appacale and Neiker

Cultivars Breeding clones Total

Appacale + Neiker (Standards) 9 – 9
Appacale 15 34 49
Neiker 24 8 32

Total 48 42 90

3.2.2. Sample preparation and SNP genotyping

Genomic DNA was extracted as described in Chapter 2. After extraction, the DNA

samples were diluted to 200 ng genomic DNA in 4 µl. The 90 genotypes together with 6

technical replicates were genotyped individually with the Infinium 8,303 Potato Array at

the Life & Brain Center (Department of Genomics, Bonn, Germany) on an Illumina iScan

system, applying the Infinium assay.
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Figure 3.1.: Box plots of the adjusted entry means of case-control populations
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The genotypes of the SNP markers were called from the bi-allelic marker data of the

tetraploid potato clones, implementing the software package ’fitTetra’ (Voorrips et al.,

2011). The package was run using the function fitTetra with the option try.HW=F. The

service company provided the script for the data analysis, which was applied by Shyamku-

mar Immadi. Each individual was assigned to one of the five possible genotypes at one

SNP marker locus.

3.2.3. Statistical analysis of case-control studies

Pearson’s goodness-of-fit test (chi-square test) was applied to test the null hypothesis that

the allele frequency of the bi-allelic SNP makers in the contrasting pools are equal. The

null hypothesis was rejected at the significance level α=0.01. This means that with p-

values lower than 0.01, it was accepted that the allele frequencies in the two pools were

significantly different. The chi-square tests were performed by Enrique Ritter (Neiker,

Vitoria-Gasteiz, Spain) using the software SAS (version 9.1).

Six pairs of technical replicates were included in the analyzed genotypes. For each pair

the Person’s correlation coefficient was calculated to assess repeatability of the method.

3.2.4. Candidate loci selection

In the case-control studies, only genotypes with the most extreme values for the trait

of interest were included. In the full Quest population, these traits had a quantitative

distribution (Chapter 2). A subset of six SolCAP SNPs at relevant candidate loci was se-

lected from the SolCAP marker loci to validate these marker-trait associations in a broader

genetic background. Three major selection criteria were applied: significance, genomic po-

sition and function. In detail, all SolCAP SNPs with significantly different (α=0.01) allele

frequency between the contrasting pools were mapped to the potato genome sequence

(version v4.03) for each case-control study individually. Positions showing a cluster of

significant SNPs were considered more interesting than positions with isolated SNPs. In a

clustering region, the SNP with the strongest association was selected and the annotated

genes in the area of about 500 kb around the SolCAP SNP was investigated to detect

potential candidate genes for the trait of interest. The main focus lay on regions with

little previous marker information. Major starch and yield loci in QTL regions, such as

the AGPaseS-a locus on chromosome 1 (Schäfer-Pregl et al., 1998), were excluded. The

function of the gene including the SolCAP SNP was the least important selection criterion,

as it was considered unlikely to find the causal gene for a trait. However, genes in an in-

teresting region, that were reported to act in carbohydrate or yield related pathways and

contained highly significant SolCAP SNPs were favored. The selected, novel candidate

loci with their associated trait and putative function are described in Table 3.3.
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3.2.5. Genotyping for association mapping

Two methods were chosen for genotyping: pyrosequencing and amplicon sequencing. The

methods are described below. The pyrosequencing assay allowed for lower-cost genotyping

of individual SNPs. Candidate genes that had an intron-exon structure which enabled the

design of longer PCR fragments were genotyped by amplicon sequencing. This resulted

in additional SNP loci in those candidate genes. The primers and PCR conditions for the

pyrosequencing assay as well as for amplicon sequencing are given in Table 3.4.

Amplicon sequencing of candidate genes Primer design, amplicon sequencing and SNP

detection were performed as described in Chapter 2. In brief, a PCR product of about

500 bp length was amplified. The fragments were sequenced with Sanger sequencing at the

Max Planck-Genome-centre Cologne (Germany) on an Applied Biosystems (Weiterstadt,

Germany) 3730XL Genetic Analyzer sequencer. Polymorphisms were scored with the Data

Acquisition & Data analysis software DAx 8.1 (Van Mierlo Software Consultancy) as well

as manual scoring.

Pyrosequencing for genotyping of SNPs The pyrosequencing assay is based on sequenc-

ing by synthesis (Ronaghi et al., 1998). The method has successfully been applied for the

genotyping of single nucleotide polymorphisms in tetraploid potatoes (e.g. Draffehn et al.,

2010; Rickert et al., 2002).

PCR primers were designed as described for Sanger sequencing, but with a fragment length

of 100-300 bp in such a way that the significant SolCAP SNP was targeted. The sequencing

primer was designed to anneal to the template with a maximum distance of 3 bp between

the 3’ end of the primer and the SolCAP SNP. The PCR primer that annealed on the

strand opposite to the sequencing primer was biotinylated on the 5’ end.

PCR fragments for pyrosequencing were amplified in a 25 µl reaction volume, containing

50 ng genomic DNA, 10 mM Tris-HCL pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.1% Trifon

X-100, 200 µM of each dNTP (Roth, Karlsruhe, Germany), 0.4 µM of each primer, 1U

Ampliqon Taq Polymerase (Ampliqon, Odense M, Denmark) and deionized water (Merck

KGaA, Darmstadt, Germany). PCR fragments for pyrosequencing were amplified under

following PCR conditions: 2 min at 94◦C, followed by 50 cycles of 93◦C (45 sec), annealing

temperature (45 sec) and 72◦C (60 sec), completed by a final elongation step of 10 min

at 72◦C. The success of the PCR and the intensity of the bands was assessed on a 1.5%

agarose gel.

PCR products were prepared for pyrosequencing and the pyrosequencing was performed,

following the protocol given in Appendix B (Protocol B.1). The samples were sequenced

with the Pyrosequencing PSQ96 MA System (Biotage AB, Uppsala, Sweden) using the
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Pyromark Gold Q96 reagents kit (Qiagen, Hilden, Germany). Signals were analyzed, using

the software supplied by the manufacturer.

3.2.6. Association mapping

The SNPs from the selected candidate loci obtained by genotyping of the Quest pop-

ulation were tested for marker-trait associations, implementing the R package ’GAPIT’

(Lipka et al., 2012). Association mapping was performed with a mixed linear model, in-

cluding population structure and kinship. Data preparation and statistical analyses are

specified in Chapter 2.

3.2.7. Analysis of linkage disequilibrium

Linkage disequilibrium (LD) between significant SolCAP SNP loci from the case-control

studies was assessed by a chi-square test like described in Chapter 2. LD was also tested

for candidate genes, that were selected based on the output of the case-control studies.
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3.3. Results

3.3.1. SolCAP SNP genotype calling

90 potato cultivars and breeding clones were analyzed for 8,303 SNP loci with the Sol-

CAP Potato Array. The bi-allelic marker data were analyzed using the R-package ’fitTe-

tra’ (Voorrips et al., 2011). 2,238 SNPs were excluded in the scope of the analysis and

genotypes were assigned to 6,065 SNPs, corresponding to a success rate of 73%.

Additionally, six technical replicates were genotyped to observe the repeatability of the

method. The Person’s correlation coefficient was calculated for each pair of technical repli-

cate, based on the 6,065 high quality polymorphic SolCAP SNPs. Correlations between

technical replicate pairs ranged between 94-97% (Appendix Table B.13). Because of the

high correlation between pairs, only one replicate of each pair was kept for the further

analysis.

3.3.2. Statistical analysis of case-control studies

The 90 genotypes were assigned to the designated ’high’ and ’low’ pools of the case-control

studies. The case-control studies were analyzed with a chi-square test for different allele

distribution between contrasting pools. In total, 328 SolCAP SNPs had significantly differ-

ent allele frequencies between pools in at least one of the case-controls studies (Appendix

Table B.17). 207, 85 and 76 significant SolCAP SNPs were obtained from the case-control

studies for TSC (Appendix Table B.14), TY (Appendix Table B.15) and TSY (Appendix

Table B.16), respectively. The results of the statistical analysis of the case-control studies

are summarized in Figure 3.2. The two SolCAP SNPs that were significant in all three

case-control studies were solcap snp c2 16349, that mapped to a region with no annotation

on chromosome 2, and solcap snp c2 25372, which is located in the citrate synthase encod-

ing locus (PGSC0003DMG400007797) on chromosome 12. Figure 3.3 depicts the physical

map of the potato genome sequence (version 4.03) with the 328 significant SolCAP loci

from the TSC, TY and TSY case-control studies.

In total, 14 candidate loci from previous reports (Fischer et al., 2013; Li et al., 2008; Urbany

et al., 2011, Fischer et al. in preparation, Schreiber et al. in preparation, Chapter 2)

(Appendix Table B.18) were represented in the 328 significant SolCAP SNPs. The relevant

loci are shown in Table 3.5.

3.3.3. Association mapping of selected candidate loci

24 polymorphic SNP loci, of which nine were SolCAP SNP markers, were obtained by

genotyping six selected candidate loci in the Quest population. The genotypic data are
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Figure 3.2.: SolCAP SNPs with significantly (α=0.01) different allele frequencies
between pools of case-control studies. The detailed list of all significant
SolCAP SNP loci is provided in Appendix B (Table B.17)

Table 3.5.: Loci from previous reports (Appendix Table B.18) that were present
in the 328 significant SolCAP SNPs

Locus Chromo- PGSC gene id Case-control
some (PGSC0003...) study

G6PPT-1 1 DMG400044320 TSC
Pho1a 3 not on physical map TSC
AMY-4/2 4 DMG400009891 TSC
SBE I 4 DMG400009981 TSC
CP12-3 4 DMG400009928 TSC
CP12-1 6 DMG400007286 TY
DBE-6/1 6 DMG402007274 TSC
SPS-7 7 DMG400027936 TY
AGPaseB-a 7 DMG400031084 TSC
HSP70 9 DMG400008917 TY
BMY-9 9 DMG400001549 TSC
INV-10/2 10 DMG400008388 TY
INV-n-11/3 11 DMG400026530 TSY
HXK-12 12 DMG400000295 TSY
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Figure 3.3.: Physical map of potato (version 4.03). Shown are significant (α=0.01)
SolCAP SNP markers from the case-control studies for TSC, TY and TSY.
Candidate loci obtained from the case-control studies with SolCAP Potato
Array genotyping that were tested by association mapping in the Quest pop-
ulation are depicted in bold italics on the right side of the chromosome
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given in Appendix B (Table B.7). The polymorphic markers were tested for marker-trait

associations with TSC, TY, TSY, TN and TW by implementing a mixed linear model,

including population structure and kinship. The association statistics were described in

Chapter 2.

Seven polymorphic markers (31.8%) were significantly (α=0.01) associated with at least

one phenotypic trait. Two markers were associated with TSC, three markers with TY

and three markers with TSY. There were no associations for TN and TW. Marker-trait

associations are displayed in Table 3.6. All markers associated with any trait (α=0.05)

are reported in Appendix B (Table B.8).

Six SolCAP SNP markers selected from case-control studies The six candidate loci

were selected based on significantly different allele frequencies of SolCAP SNps in pools

of case-control studies for high and low TSC, TY and TSY. The AP2TF, QUA1 and CIS

encoding loci were analyzed by amplicon sequencing, where the relevant SolCAP SNP was

genotyped along with further SNPs in the amplicon. The SolCAP SNPs of the F2PA,

CP12-1 and 60S loci were analyzed by pyrosequencing. Marker-trait associations with

the traits of four out of the six selected SolCAP SNP markers were validated in the full

population.

Allele frequencies of the AP2TF solcap snp c2 16349 marker were significantly dif-

ferent between the pools of all three case-control studies. However, there was

no statistical evidence for marker-trait associations in the full Quest population.

QUA1 solcap snp c2 9204 showed significant different allele frequency distribution be-

tween pools for high and low TY. Association mapping of the SNP in the full pop-

ulation confirmed this marker-trait association (p-value <0.05). Also the associa-

tion of F2PA solcap snp c2 11924 with TSC was verified. Additionally, the polymor-

phism showed a significant marker-trait association with TSY. Significant marker-trait

associations of 60S solcap snp c2 3063 (case-control studies TY, TSY) were detected

for TY (α=0.05) and TSY (α=0.01). There was no evidence for an association of

CIS solcap snp c2 25372 (case-control studies TSC, TY, TSY) with any of the pheno-

typic traits when analyzed in the large panel.

Result of SolCAP SNP markers that were not significant in case-control studies

Three SolCAP SNPs that showed no significant difference between allele frequencies in

the contrasting pools of the case-control studies were genotyped. This was done either

because of the presence in the Sanger sequencing amplicon (AP2TF solcap snp c2 16350,

QUA1 solcap snp c2 9203) or the proximity to the SolCAP SNP in the pyrosequencing

assay (F2PA solcap snp c2 11925). In the case of QUA1 solcap snp c2 9203, the p-value

of the chi-square test in the case-control study for TY was 0.055.
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Table 3.6.: Significant marker-trait associations of candidate loci in the Quest population. Loci were selected from the
case-control studies for TSC, TY and TSY and genotyped by amplicon sequencing or pyrosequencing

Locus SNP locus SNP Minor SNP TSC TY TSY Case-control population
alleles allele frequency p-value (R2) p-value (R2) p-value (R2)

AP2TF c2 163491 G/A2 0.014 (A)3 ns4 ns ns TSC, TY, TSY
F2PA c2 11924 G/A 0.098 (A) 0.003 (2.9) ↑5 0.013 (2.0) – 0.000 (4.3) ↑ TSC
CP12-1 c2 54011 C/T 0.097 (T) ns 0.004 (2.6) ↓ 0.004 (2.8) ↓ TY
QUA1 c2 9203 C/G 0.467 (C) ns 0.008 (2.2) ↑ 0.023 (1.7) ↑ ns

snp1506 G/A 0.073 (G) ns 0.004 (2.6) ↑ ns –
c2 9204 G/A 0.465 (G) ns 0.014 (1.9) ↑ 0.047 (1.3) ↑ TY

60S c2 3063 C/T 0.149 (C) ns 0.015 (1.9) ↓ 0.001 (3.6) ↓ TY, TSY
CIS c2 25372 C/T 0.474 (T) ns ns ns TSC, TY, TSY

snp6741 C/G 0.435 (C) 0.001 (3.4) ↑ ns ns –

1SolCAP SNP locus full name is ’solcap snp ...’ 2The nucleotide represented in the potato genome sequence stands on the first position; 3Minor allele frequency of

allele displayed in parenthesis; 4Not significant at significance level α=0.01; 5Arrows indicate the direction of the minor frequency allele effect on the trait compared

to the population mean;
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F2PA solcap snp c2 11925 and QUA1 solcap snp c2 9203 showed significant (α=0.01)

associations with TY. QUA1 solcap snp c2 9203 was in highly significant LD (q-

value=1.54E-205) with the QUA1 solcap snp c2 9204 polymorphism, which was selected

from the case-control study for TY. There was no evidence for the association of

AP2TF solcap snp c2 16350 with any trait in the full Quest population.

Further marker-trait associations Two marker-trait associations were detected between

polymorphic SNP loci in the amplicons of QUA1 and CIS, respectively. QUA1 snp1506

was significantly associated with TY and the presence of the minor frequency allele had a

positive effect on the trait. CIS snp6741 was significantly associated with TSC with the

minor frequency SNP allele having a positive effect on the trait.

3.3.4. Comparing genotyping results

The results of the genotyping with the SolCAP SNP array and the subsequent genotype

assignment by ’fitTetra’ were compared to the genotyping by amplicon sequencing and

pyrosequencing.

The differences between the genotyping by amplicon sequencing and ’fitTetra’ ranged

between 8-33%. The strongest deviation was detected for AP2TF solcap snp c2 16349

with 33%. Here, the clustering results of ’fitTetra’ showed the genotype classes {0,1,2}
and {4}. Manual analysis of the SNP (SNP alleles A/B) showed that signals for

AP2TF solcap snp c2 16349 were seperated in two distinct main genotype classes {ABBB,

BBBB}. In line with this result, two genotype classes {ABBB, BBBB} were detected by

amplicon sequencing. A comparison of the groups showed that the ’fitTetra’ classes {0,1,2}
were in one group with amplicon sequenced genotype class {BBBB} and ’fitTetra’ class

{4} was in one group with amplicon sequenced genotype class {ABBB}. The deviation

between the two genotyping methods for the AP2TF solcap snp c2 16350 polymorphism

was 27%. Manual analysis of the SNP showed that the pattern of the SolCAP genotying

did not allow genotype assignment and that the genotype assignments of ’fitTetra’ for that

SNP were artifacts.

The differences between the genotyping by pyrosequencing and the ’fitTetra’ output ranged

between 0-6%, except for F2PA solcap snp c2 11925 (55%). The clustering results of the

F2PA solcap snp c2 11925 SNP by ’fitTetra’ showed the genotype classes {0}, {2} and {4},
whereas all five genotype classes were found with pyrosequencing. By manual clustering it

was very hard to separate the heterozygotes from each other. As a result of that, ’fitTetra’

clustered all heterozygotes in class {2}, corresponding to genotype {AABB}.
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Table 3.7.: Comparing genotyping by the SolCAP Potato Array based on geno-
type assignment of ’fitTetra’ with Sanger amplicon sequencing and
pyrosequencing

Locus SolCAP SNP Total Number of genotypes Different

(solcap snp ...) identical different in [%]

Amplicon sequencing
AP2TF c2 16349 90 60 30 33

c2 16350 90 66 24 27
QUA1 c2 9203 89 82 7 8

c2 9204 89 70 19 21
CIS c2 25372 89 77 12 13

Pyrosequencing
F2PA c2 11924 85 84 1 1

c2 11925 87 39 48 55
CP12-1 c2 54011 90 90 0 0
60S c2 3063 84 79 5 6

3.3.5. Linkage disequilibrium

LD between significantly different SolCAP SNPs from case-control studies A chi-

square test was performed to test the LD between the alleles of the 328 SolCAP SNP

markers that showed significantly different allele distributions between contrasting pools

in at least one case-control study (Appendix Table B.12). Of the total of 53,628 pair-

wise comparisons, 5.7% were in significant LD (q-value <0.05). Of all intra-chromosomal

marker pairs 14.5% were in significant LD (q-value <0.05), whereas the amount of inter-

chromosomal marker pairs in significant LD in relation to the total amount of inter-

chromosomal marker pairs was 4.8%.

LD clusters within chromosomes 1 and 3 The highest LD was found in intra-

chromosomal regions on chromosomes 1 and 3, respectively, where large clusters of marker

pairs in LD were detected.

The largest LD cluster was detected on chromosome 3. LD between pairs of mark-

ers for chromosome 3 is shown in Figure 3.4 (b). The obvious cluster of Sol-

CAP SNP markers in strong LD was located in the region between 54.1-56.7 Mbp

(chr03:54141884..56672205). The physical distance between the flanking markers (sol-

cap snp c2 47843, solcap snp c1 8194) was 2.53 Mbp. There were neither QTL markers

nor candidate genes from previous studies located in that region of the chromosome. The

Pain1 locus was also not part of the the LD cluster on chromosome 3. Furthermore,

the PGM1 and SssI loci were not located in the LD cluster. All marker pairs in highly
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significant (q-value <1,00E-06) LD were obtained from the case-control study for TSC.

Schreiber et al. (in preparation) presented a detailed list of 127 genes that were mapped in

silico. All genes are operational in starch synthesis and degradation and where cloned and

characterized in either potato or tomato. The genome sequence of the region contained

many genes as well as two large assembly gaps. However, the LD cluster did not contain

any of the listed genes.

Furthermore, two smaller clusters of marker pairs in high LD were identified on chro-

mosome 1. The larger cluster of the two was located at the distal end of chro-

mosome 1, flanked by SolCAP SNPs solcap snp c2 14730 and solcap snp c2 30956

(chr01:86441447..88451942, length 2.01 Mbp). This region was located in 0.4 Mbp dis-

tance from the AGPaseS-a locus, which is located in a QTL for TSC (Schäfer-Pregl et al.,

1998). Looking at all marker pairs that are in highly significant (q-value <1,00E-06) LD in

the cluster, significant markers from all three case-control studies for TSC, TY and TSY

were represented. Of the gene list from Schreiber et al. (in preparation), the INV-1/3

(PGSC0003DMG400001596) was located in that region, containing three SolCAP SNP

markers. No different allele frequencies were detected for these three polymorphisms in

any of the case-control studies. The second marker cluster on chromosome 1 was located in

the region around 75 Mbp (chr01:75333643..76958587), stretching over a length of 1.6 Mbp

between solcap snp c1 5267 and solcap snp c2 2423. Figure 3.4 (a) depicts the LD plot

of markers on chromosome 1. The region included the GP88 marker for a yield QTL

(Schäfer-Pregl et al., 1998). Significant markers from all three case-control studies for

TSC, TY and TSY were present in this region.

LD between SNPs of selected candidate loci LD between all pairs of the 23 genotyped

SNPs from candidate loci was tested with a chi-square test. In total, 67 (26.5%) out of 253

marker pairs were in significant (q-value <0.05) LD. The highest LD was found between

markers from the same locus (Figure 3.4 c, Appendix Table B.11).

3.3.6. Comparing mixed model and general linear model

The most significant marker-trait associations of three statistical models are summarized

in Table 3.8: the results of the general linear model (GLM), the mixed linear model

including kinship (MLM-k) and the most stringent mixed linear model including kinship

and population structure (MLM-Pk). The comparison between the models is given in

Appendix B (Table B.9).
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(a) Chromosome 1 (b) Chromosome 3

(c) SNP alleles of candidate loci

Figure 3.4.: Linkage disequilibrium between marker pairs of significant SolCAP
SNP loci on chromosomes 1 (a) and 3 (b) as well as between SNP
alleles of candidate loci that were scored in the entire population
(c). Displayed are -log q-values of chi-square test between pairs of SolCAP
SNPs. Each row and line corresponds to one SNP position
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Table 3.8.: Markers that were highly significantly associated in three different
models. Significance levels were α=0.001 in general linear model (GLM) and
mixed linear model including kinship (MLM-k) and α=0.01 for mixed linear
model including kinship and population structure (MLM-Pk). Markers with
p-values <0.0001 in GLM and MLM-k are considered ”robust” and are shown
in bold

SNP locus Model TSC TY TSY

CIS snp6741 GLM 5.98E-06
MLM-k 9.67E-06
MLM-Pk 0.001

CP12-1 solcap snp c2 54011 GLM 4.84E-08 4.14E-05
MLM-k 2.05E-07 8.81E-06
MLM-Pk 0.004 0.005

F2PA solcap snp c2 11924 GLM 4.08E-04
MLM-k 5.10E-04
MLM-Pk 0.003

QUA1 solcap snp c2 9203 GLM 7.48E-05
MLM-k 1.13E-04
MLM-Pk 0.008

QUA1 snp1506 GLM 1.26E-04
MLM-k 1.82E-04
MLM-Pk 0.004

60S solcap snp c2 3063 GLM 1.04E-05
MLM-k 1.96E-05
MLM-Pk 0.001
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3.4. Discussion

3.4.1. Novel diagnostic SNP markers detected by genotyping in a

case-control design

Case-control studies are a suitable tool for the pre-selection of non-obvious candidate

genes for developing diagnostic SNP markers. Ninety tetraploid potato genotypes were

selected from an association mapping population that was phenotyped for starch and

yield-related traits. In total, three case-control studies were designed for TSC, TY and

TSY. All individuals were genotyped with 8,303 SNP markers by the SolCAP Potato

Array and genotypes were assigned using the ’fitTetra’ package (Voorrips et al., 2011).

Statistical analysis of the SNP allele frequency between contrasting pools of case-control

studies revealed 328 SNPs with significantly different allele frequencies between pools.

Six SolCAP SNPs that had significantly different allele frequencies in contrasting pools

for TSC, TY or TSY, or a combination of those, were genotyped in the full association

mapping population. Association mapping could validate marker-trait associations of four

out of the six selected SolCAP SNPs. The markers showed highly significant associations

with the traits which is probably based on the strong pre-selection of the candidate SolCAP

SNP loci. By that, it was possible to test markers in loci that are non-obvious candidate

genes for the complex traits. It is unlikely that the loci would have been chosen in a

knowledge-based approach. In the light of the extend of LD reported for tetraploid potato

cultivars and breeding material (e.g. D’hoop et al., 2010; Simko et al., 2006; Stich et al.,

2013), it remains unclear whether the identified markers are located directly in a causal

gene or more likely in LD with the causal gene. The case-control study design, which

has been adopted from human disease studies, has proven to be a valuable tool for the

dissection of complex traits in tetraploid potatoes. It is a straightforward method for

the pre-selection of candidate genes that should be further confirmed in a larger genetic

background.

Markers for tuber starch yield and tuber yield The complex traits tuber yield and starch

yield may be influenced by enzymes that are active in pathways that regulate sugar levels in

plants. An interesting candidate is the Calvin cycle chloroplast protein 12 locus (CP12-1)

on chromosome 6. In the case-control study for TY, CP12-1 solcap snp c2 54011 showed

significantly different allele frequencies between the contrasting pools. CP12 was proposed

to have a functional role in potato yield, shown in an RNA sequencing experiment (Kare

Lehman Nielson, EAPR meeting 2010, oral presentation). Furthermore, an association

of the CP12-2 locus with TN, a yield-related trait, was found in the Quest population

(Chapter 2). In this study, CP12-1 solcap snp c2 54011 was highly significantly associated
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with TY and TSY in all three statistical models in the Quest population. CP12 was

identified to interact with the Calvin cycle proteins GAPDH (glyceraldehyde 3-phosphate

dehydrogenase) and PRK (phosphoribulokinase) (Pohlmeyer et al., 1996; Wedel et al.,

1997). The Calvin cycle is responsible for the carbon fixation in plants and located in the

chloroplasts. Moreover, the CP12 genes are expressed in non-photosynthetic tissues in A.

thaliana (Singh et al., 2008), which is in line with the constitutive expression of CP12-

1 in potato tissues (genome browser version v.4.03). These findings suggest a role of

CP12-1 in non-photosynthetic tissues in potato. The expression of CP12-1, presumably in

amyloplasts, may regulate GAPDH that is also active in glycolysis. Sequence variation may

increase the activity or expression of the protein, enhancing the availability of plant sugars

and thereby indirectly influencing yield levels. This makes CP12-1 solcap snp c2 54011 a

highly beneficial marker for the development of superior cultivars with optimized tuber-

and starch yield.

A SolCAP SNP at the non-obvious candidate locus encoding a predicted 60S acidic ribo-

somal protein PO (60S) is of potential value for marker-assisted selection for starch yield

in breeding programs. The 60S solcap snp c2 3063 showed significantly different allele

frequencies in the TY and TSY case-control studies. When genotyped and tested in the

Quest population, these marker-trait associations were validated and highly significant

in all three statistical models. The minor frequency allele had a negative effect on the

trait with a frequency of about 15% in the population. In a breeding program the allele

frequency should be reduced to obtain cultivars with potentially higher yield and starch

yield levels. 60S is located in a region with no described QTL for starch or yield. Still,

the candidate SNP was selected based on its putative function in a ribosomal subunit.

Polymorphisms could potentially influence functionality and thereby fitness of the plant.

60S solcap snp c2 3063 SNP could therefore be of high value for the selection of potato

cultivars with improved tuber and starch yield.

Markers for tuber starch content The association of the F2PA solcap snp c2 11924

polymorphism in the fructose-bisphosphate aldolase encoding F2PA locus on chromosome

5 with TSC and TSY may be a result of increased source capacity. The SNP was se-

lected from the output of the case-control study for TSC. It co-localizes with a starch

and yield QTL on the top of chromosome 5 (Schäfer-Pregl et al., 1998). The F2PA locus

has sequence homology with the recently cloned Solanum tuberosum plastidial aldolase

(NM 001288043). Plastidial F2PA is an enzyme of the Calvin cycle and has an effect on

photosynthetic carbon fixation (Uematsu et al., 2012). Jonik et al. (2012) showed that

transgenic potato plants with increased source-capacity in combination with elevated sink

strength resulted in elevated levels of starch content and yield. Therefore, the associations
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of F2PA solcap snp c2 11924 with TSC and TSY might by explained by the activity of

F2PA in the Calvin cycle. Sequence variation in F2PA may lead to a different expression

of haplotypes or a change in protein composition, thereby enhancing the carbon fixation

rate and indirectly elevating starch content by increased source capacity.

A valuable marker for starch yield optimization in breeding programs is a novel polymor-

phism in the citrate synthase CIS locus on chromosome 12. One SNP of the candidate

locus (CIS solcap snp c2 25372) was associated in all three case-control studies for TSC,

TY and TSY. Although these associations were not validated by association mapping, a

marker-trait association at the CIS locus (CIS snp6741) was found highly significant with

TSC. Citrate synthase is the first enzyme of the citric acid cycle. In the citric acid cycle,

the plant generates energy as well as precursors for numerous biochemical reactions (Wie-

gand and Remington, 1986). The energy production is maintained by the degradation

of carbohydrates and other products (Wiegand and Remington, 1986). An explanation

for the association at the CIS locus with TSC may be a reduced activity of CIS alleles,

resulting from sequence variation, which may indirectly maintain levels of carbohydrates

in sink tissues and thereby starch content. Based on the highly significant marker-trait as-

sociation in all statistical models and the function of the gene, CIS snp6741 is a beneficial

SNP marker for the development of cultivars with elevated levels of TSC.

Markers for tuber yield QUA1 encodes a glycosyltransferase Quasimodo1 protein.

Two polymorphisms in this non-obvious candidate gene are potential markers for TY.

QUA1 solcap snp c2 9204 had significant different allele frequencies between the pools

of the TY case-control study. The QUA1 solcap snp c2 9203 polymorphism lies in the

same locus and was not significant in the case-control study for TY. However, it is in al-

most complete linkage with QUA1 solcap snp c2 9204 and it was close to significance

in the case-control study for TY (p-value=0.055). Both polymorphisms were signifi-

cantly associated with TY in association mapping. Opposed to QUA1 solcap snp c2 9204,

QUA1 solcap snp c2 9203 is highly significant in all three statistical models, with a higher

amount of variance explained by the model. This makes QUA1 solcap snp c2 9203 a good

candidate for marker-assisted selection for superior genotypes with high TY levels. The mi-

nor frequency allele has a positive effect on the trait and its frequency should be increased

in a breeding program. Similarly, increasing the minor frequency allele of QUA1 snp1506

by positive selection can potentially enhance yield levels. The polymorphism was detected

by amplicon sequencing of the QUA1 locus and shows a significant and positive marker-

trait association with TY. Two valuable SNP markers for TY (QUA1 solcap snp c2 9203

and QUA1 snp1506) were obtained from the non-obvious candidate QUA1.
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Not all associations from case-control studies could be verified in the entire population

However, not all SolCAP SNPs from case-control studies lead to significant marker-trait

associations when tested in the full Quest population. CIS solcap snp c2 25372 was asso-

ciated in all three case-control studies, while there was no evidence for marker-trait associ-

ations in association mapping. This result is in line with the report of Huang et al. (2011),

who found that loci identified by genome-wide genotyping in smaller population sizes are

not necessarily significant in a larger populations. Similarly, AP2TF solcap snp c2 16349

was significant in all three case-control studies without evidence for marker-trait associa-

tions in the full population. However, there was a large deviation between the genotyping

of AP2TF solcap snp c2 16349 by ’fitTetra’ on the one hand and by amplicon sequencing

on the other hand. This proved to be a result of incorrect clustering by ’fitTetra’, leading to

inflated allele frequencies and a false-positive in the analysis. When comparing the results

of the case-control studies with association mapping in the full size population, missing

associations can be caused by the fact that not all loci that are associated in small panels

are also associated in larger populations, but might also be due to genotyping errors.

3.4.2. Genotyping with the SolCAP Potato Array appropriate tool for marker

detection in populations of European potato germplasm

The SolCAP Potato Array is a suitable tool for the large scale genotyping of European

potato cultivars and breeding clones. 6,065 polymorphic SNP markers of totally 8,303

tested markers were informative. The success rate of the SolCAP genotyping (73%) is

comparable to the results of a previous experiment by Stich et al. (2013). They reported

a success rate of 75% after genotyping 36 tetraploid european potato cultivars with sub-

sequent manual assignment of genotypes. Both studies confirm that the application of

the SolCAP Potato Array is highly beneficial for the genotyping of commercial European

potato germplasm.

However, the genotyping with the SolCAP Potato Array has a bias towards polymorphisms

of North American potato germplasm. A limitation of the SolCAP Potato Array is that

the polymorphisms on the array were primarily obtained from North American cultivars

(Hamilton et al., 2011). Therefore, polymorphisms that separate European potato geno-

types might not be present on the SolCAP Potato Array. Furthermore, the SNPs were

discovered between only five genotypes and polymorphisms tagging minor allele frequency

were probably not detected. Uitdewilligen et al. (2013) showed that the detection variant

with such a small number of genotypes is likely limited to the most common variants. An

indication for the under-representation of minor frequency alleles and polymorphisms that

are characteristic for European germplasm is the unexpectedly low number of significant

candidate loci from starch and yield-related traits from previous studies, despite the pres-
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ence of SolCAP SNPs in these loci. Thus, when genotyping potato clones with the SolCAP

Potato Array one has to keep in mind that there is a potential under-representation of ge-

netic variation that is characteristic for European potato genotypes. If the focus would lie

on the latter, the recently developed 20k array (SolSTW-20k-Wageningen Uitdewilligen,

2012) might be a suitable choice for genotyping.

3.4.3. Clusters of SolCAP SNP loci in highly significant LD are likely result

of limited meiotic recombination between potato lines

The large haplotype blocks could be a consequence of the limited meiotic recombinations

between potato genotypes. A region on chromosome 3 was detected with significant SNPs

from the case-controls study for TSC that were in very high LD. The markers are spread

over 2.53 Mbp. This is a clear deviation from the reported LD decay between 275 bp

(Stich et al., 2013) and 70 kbp (Simko et al., 2006). As all significant SolCAP SNPs in

that region were solely obtained from the TSC case-control study, one explanation is that

this region contains genes and haplotypes of importance for TSC. The Quest population

was assembled with the focus on starch properties, possibly enhancing the amount of

genotypes containing the LD cluster. Another explanation is that population structure

might have had an influence on the the result of the case-control studies, as suggested

by Pritchard and Donnelly (2001). One can imagine, that the individuals within pools

are likely to be more closely related than individuals between pools. Although a modest

population structure was detected in the Quest population, there is no indication to

assume that an underlying structure could have influenced the result. The reason is, that

the substructure was separating tetraploid cultivars and breeding clones from landraces

and landraces were not selected for the case-control studies. Nevertheless, no starch QTL

have been reported for that region up to now and no obvious candidate genes from the

starch synthesis or degradation are located in that region. The existence of large haplotype

blocks were also reported in previous association mapping populations that were assembled

from potato varieties and advanced breeding lines (Gebhardt et al., 2004; Malosetti et al.,

2007; Simko et al., 2006) and might be a result of selection or the limited amount of meiotic

recombination between lines. Similarly, two LD clusters were detected on chromosome 1,

with significant SolCAP SNP markers from all three case-control studies. There is a

possibility that the LD blocks are the result of selection. Due to the lack of any obvious

candidate genes or QTL from previous studies, the LD blocks are more likely to be a

consequence of the low genetic distance between cultivars.
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3.4.4. Usefulness and limitations of case-control studies for dissecting

quantitative traits in potatoes

The advantages of case-control studies for discovering candidate loci associated with quan-

titative traits in potato are manifold, although the method has its limitations. Applying

a case-control study design for the dissection of quantitative traits has three major ad-

vantages. Firstly, the populations are easy to establish. Pools of genotypes with available

phenotype data for the desired trait can be assembled directly. The method does not

require the generation of a bi-parental mapping population, like in the case of bulked

segregant analysis. Secondly, by the strong bias towards the trait of interest, markers for

implementation in breeding programs can be developed quickly. A genome-wide genotyp-

ing approach allows the detection of novel and non-obvious candidate genes. However,

case-control studies also have their limitations. It remains difficult in the application of

a pooling strategy to distinguish if the candidate genes are causal genes, in LD with the

causal gene or simply false-positives from the analysis (Kloosterman et al., 2010). Fur-

thermore, hidden population structure might influence the result of case-control studies,

especially if very diverse germplasm is used (Pritchard and Donnelly, 2001). Keeping in

mind the limitations, the case-control study design is highly beneficial for the dissection

of complex traits in potato.

3.4.5. Concluding paragraph

In this study, a case-control study design in combination with genome-wide SNP geno-

typing was tested for applicability in development of novel diagnostic SNP markers for

complex traits. The concept of the case-control study design was adopted from human

genetics. In alliance with the SolCAP Potato Array genotyping, it is a comparably low-

cost genome-wide genotyping concept that is time saving and results in novel, non-obvious

candidate genes. The results prove that the described approach is of great interest for the

detection of diagnostic SNP markers.
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4. Genome-wide SNP discovery by RAD

sequencing in tetraploid potato unravels

novel candidate genes for starch yield

traits

4.1. Background

The dissection of the genetic factors underlying the variation in phenotypic traits is of

major interest in genetic studies. A prominent example in potato is Sanger amplicon

sequencing of candidate genes and subsequent association mapping (Chapter 2). A lim-

itation of that method is that the selection of appropriate candidate genes is based on

knowledge that is present in literature. Furthermore, only a limited number of sequence

variants can be assessed with this method as primer design is challenging for the highly

heterozygous tetraploid potato. Increased numbers of markers are obtained by higher-

density genotyping, which became possible with the availability of the SolCAP Potato

Array (Chapter 3). Still, probes on this array were designed by knowledge-based selection

criteria (Felcher et al., 2012).

The unbiased genome-wide detection of markers became feasible with the development

of next-generation sequencing methods that reduce the complexity of genomes and the

amount that needs sequencing. RAD sequencing is a tool for genome-wide genotyping

of DNA polymorphisms. The polymorphisms are randomly distributed over the whole

genome and therefore novel, non-obvious candidate genes can be detected. Urbany et al.

(2012), Fischer et al. (2013) and the study described in Chapter 3 of this thesis showed

that a case-control study design is a valuable tool for marker-development for complex

traits in potato.

Approach The main objectives were to test the applicability of RAD sequencing for large-

scale genotyping of tetraploid potato and to identify novel candidate genes for starch and

tuber yield traits. In order to maximize the output at a limited amount of costs, the

case-control design was applied in the combination with RAD sequencing.
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4.2. Materials and Methods

4.2.1. Experimental design

Three case-control studies with phenotypically contrasting pools for tuber starch content

(TSC), tuber yield (TY) and tuber starch yield (TSY) were established from tetraploid

varieties and breeding clones of the Quest population. The background of the popula-

tion and the selection of phenotypes for the case-control studies was described in detail

in Chapters 2 and 3, respectively. A total of ninety genotypes were represented in the

three case-control populations. Additionally, six technical replicates were included in the

experiment.

Assumptions on restriction sites, RADtags and SNP detection The potato genome has

a size of 844 Mb with a GC content of 35% (The Potato Genome Sequencing Consortium,

2011). The recognition site of the selected restriction enzyme KpnI is G’GTACC. Based on

both genome size and GC content, the estimated number of restriction enzyme recognition

sites (restriction sites) in the genome was 82,219. This corresponds to a total amount of

164,439 RADtag, as two RADtags are created at each restriction site (Table 4.1).

Aiming at a an average fold coverage of 5x of each of the four alleles per genotype, 48

genotypes could be multiplexed per sequencing lane for paired-end sequencing on an Illu-

mina HiSeq2000. On average, 300 million sequencing reads are generated per sequencing

lane. The generated sequence length per RADtag was expected to be about 80 bp after

removing adapter and barcode sequence. Based on a size selection of about 300-400 bp (see

library preparation), the paired-end sequence was generated in 300-400 bp distance of the

recognition site. Therefore, the sequence generated per RADtag was expected to be about

160 bp. The reported SNP frequencies of potato differed between 1 SNP/140 bp in exon

regions, 1 SNP/80 bp in intron regions (Uitdewilligen, 2012) up to 1 SNP/21 bp Rickert

et al. (2003), which is similar to the findings of Uitdewilligen et al. (2013) (1 SNP/24 bp

in exon and 1 SNP/15 bp in intron regions). This lead to assumed numbers of 183,359,

320,878 and 1.22 million detected SNPs, respectively (Table 4.1).

4.2.2. RAD library preparation and sequencing

The RAD libraries for paired-end sequencing were prepared according to Etter et al. (2011)

with modifications by Bus et al. (2012). In brief, 2 ng of genomic DNA of each genotype

was digested with the KpnI restriction enzyme. The 96 samples were individually bar-

coded with a custom-made P1 adapter (Bus et al. unpublished data), which was ligated

to the restriction enzyme cut sites. The samples were then pooled into two libraries of

48 individuals each. Samples were sheared by ultrasound and fragments of 300-400 bp
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Table 4.1.: Assumptions on restriction sites, RADtags and SNP detection.

Detail Number

Size of potato genome1 844 Mb
GC content potato genome 35%
Expected number of KpnI restriction sites 82,219
Expected number of RADtags 164,439
Illumina HiSeq2000 sequences per lane 300,000,000
Expected sequence per RADtag minus adapter 160 bp

SNP frequencies and expected number of SNPs
1 SNP/140 bp exon2 183,359
1 SNP/80 bp intron2 320,878
1 SNP/21 bp3 1,252,869

1 The Potato Genome Sequencing Consortium (2011); 2 Uitdewilligen (2012);
3 Rickert et al. (2003)

length were selected by extraction from an agarose gel. An A-overhang was added to

the blunt ends and the common P2 adapter (Bus et al. unpublished data) was ligated to

the template. After a PCR enrichment step, a final size selection was performed. The

detailed protocol for the RAD sequencing library preparation in potato is given in Ap-

pendix B (Protocol B.2). Library quality was determined on a 2100 Bioanalyzer (Agilent

Technologies, Böblingen, Germany) and the two libraries were sequenced in two lanes of

the Illumina HiSeq2000 system at the Max Planck-Genome-centre Cologne (Germany)

with GAIIx chemistry.

The adapter ligation steps were optimized and P1 as well as P2 Adapters were ligated at

16◦C overnight instead of 30 min at room temperature, due to a re-occurring contamination

band at 150 bp. The 96 barcoded P1 adapters, the common P2 adapter as well as PCR

primers for the enrichment step were provided by Anja Bus (Bus et al. (unpublished

data). The barcodes of the P1 adapters were designed to be at least six mutational steps

separated from each other.

4.2.3. Sequence analysis and SNP detection

The sequence analysis and SNP detection as well as statistical analyses were performed

by Jia Ding (MPIPZ, Cologne, Germany). Paired-end reads were combined from both

sequencing lanes and reads were sorted according to their barcode, allowing the maximum

of 1 mismatch. Reads with a barcode showing more than one mismatch were discarded.

No mismatch was allowed at the restriction site. The sequences were mapped against the

potato genome sequence (version v2.1.11) (The Potato Genome Sequencing Consortium,

2011) using the Bowtie package (Bowtie; Langmead et al., 2009). Reads that did not map
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to a unique position in the genome were excluded from further analyses.

Sequencing reads of individual genotypes were assigned to the three case-control popu-

lations for TSC, TY and TSY, accordingly. Further analysis was performed for pooled

sequence reads. Bi-allelic SNP positions were called within pools using the Genome Anal-

ysis Toolkit (GATK; McKenna et al., 2010).

4.2.4. Statistical analyses of case-control studies

Fisher’s exact test was implemented with a custom-made Perl script to test if allele fre-

quencies of the two SNP alleles were significantly different between the ’high’ and ’low’ pool

of each of the three case-control studies. The result was corrected for multiple testing by

FDR (Bonferroni’s approach) and significant (FDR <0.05) SNPs were combined with an-

notation information (version v2.1.11) to obtain a final list of SNP markers in annotated

loci. Synonymous and non-synonymous SNPs were identified with the SnpEff package

(SnpEff; Cingolani et al., 2012), by comparing the detected SNPs to the annotation file of

the potato genome sequence (version v2.1.11).
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4.3. Results

4.3.1. Sequencing result and mapping

Sequencing the RAD libraries with totally 96 individually barcoded genotypes on two

lanes of an Illumina HiSeq2000 system generated 346 million paired-end reads (Table 4.2).

The sequences were processed and statistically analyzed by Jia Ding (MPIPZ, Cologne,

Germany). 89% contained an individual 12 bp barcode with the maximum of one mismatch

allowed. 40% of the reads had a restriction site, with no mismatch. In total, 139 million

reads had an individual barcode and a perfect restriction site. These paired-end reads

were mapped to the potato genome sequence (version v2.1.11). Reads that did not map

to unique positions in the genome were excluded and the uniquely mapped paired-end

sequences were assigned to the case-control studies, accordingly. Further analysis was

performed for pooled sequence reads.

Table 4.2.: Summary statistics for RAD sequencing of 96 genotypes of the Quest
population. Sequences were generated on an Illumina HiSeq2000

Statistic Number
(x106)

Total Illumina paired-end sequences 346.52
Reads containing barcode (≤1 mismatch) 310.76
Reads containing restriction site 140.33
Reads containing barcode (≤1 mismatch) + restriction site 139.00

4.3.2. Statistical analysis of case-control studies

The total number of SNPs detected in the case-control study for TSC was 579,352. 601,837

SNPs were detected in the case-control study for TY and 598,703 for TSY (Table 4.3.

The SNPs of each case-control study were tested for differences in SNP allele frequencies

between the contrasting pools with a Fischer’s exact test. p-values were corrected for

multiple testing (FDR). In total, 58,850 (TSC), 46,542 (TY) and 20,402 (TSY) SNPs with

significantly (FDR <0.05) different allele frequencies between pools were detected. 26%

(TSC), 25% (TY) and 29% (TSY) of the significant SNPs were located in annotated loci

of the potato genome sequence (version v2.1.11) (Table 4.3). The significant (FDR <0.05)

SNPs in the case-control study for TSC were distributed over 5,281 annotated loci. In

the case-control studies for TY and TSY, the significant SNPs were distributed over 4,563

and 2,982 loci, respectively.

The effects of the significant SNPs on the protein were predicted with the SnpEff package

(Cingolani et al., 2012). 2,793 SNPs (in 1,621 loci) from the case-control study for TSC
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had a non-synonymous effect. From the significant SNPs detected in the case-control

study for TY the number of SNPs with a non-synonymous effect was 2,139 (in 1,319 loci)

and in the case-control study for TSY 1,094 (in 752 loci) (Table 4.3.

Table 4.3.: Results of statistical analysis of the case-control studies. (i) Total num-
bers of detected SNPs in pools, (ii) SNPs with significantly (FDR <0.05) differ-
ent allele frequencies between pools as well as (iii) non-synonymous SNPs be-
tween pools. The genotyping was performed by RAD sequencing. TSC=tuber
starch content, TY=tuber yield and TSY=tuber starch yield

Study Total Significant SNPs Loci with significant SNPs

total in annotated loci total non-synonymous
total non-synonymous

TSC 579,352 58,850 15,307 2,793 5,281 1,621
TY 601,837 46,542 11,646 2,139 4,563 1,319
TSY 598,703 20,402 5,850 1,094 2,982 752

4.3.3. Knowledge-based validation of case-control study results

The presence of candidate genes and markers that were described in previous studies

(Fischer et al., 2013; Li et al., 2008, 2013; Urbany et al., 2011, Fischer et al. in preparation;

Schreiber et al. in preparation; Chapter 2) (Appendix Table B.18) was investigated in loci

that contained at least one significant (FDR <0.05) SNP in the case-control populations.

The results of the comparisons are shown in Figure 4.1 (a-c). 29 loci were in common

between the case-control study for TSC and the compiled list of candidate genes and

markers, 21 loci between the case-control study for TY and 18 loci for TSY. In total, 32

loci detected in any of the case-control studies were represented on the compiled list of

142 candidate genes and markers (Figure 4.1 d, Table 4.4).

PCR markers from previous studies In total, two loci containing allele specific PCR

markers from previous studies were detected in the loci of the case-control studies

that contained at least one significantly (FDR <0.05) different SNP. The Rca locus

(PGSC0003DMG400019149) had 4 different SNPs between contrasting pools in the case-

control study for TSC. The Rca-1a marker was reported to be associated with chips quality

(Li et al., 2008) and associated with TSC (Chapter 2). The 4 SNPs detected by RAD

sequencing were not included in the Rca-1a PCR fragment.

The HSP70 locus (PGSC0003DMG400008917) had 3 significantly different SNPs in the

case-control study for TSC, 7 significant SNPs in the case-control study for TY and 1

significant SNP in the case-control study for TSY. The HSP70-bad allele was reported to
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(a) TSC (b) TY (c) TSY

(d) intersecting set

Figure 4.1.: Venn diagrams of the loci detected by RAD sequencing (at least one
significant SNP per locus) and that were present on the compiled
list of candidate genes and markers from previous studies for the
case-control studies (Appendix Table B.18). (a) TSC, (b) TY, (c) TSY
and (d) all overlapping loci detected in any of the case-control studies
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Table 4.4.: Loci from previous reports (Appendix Table B.18) that were repre-
sented by at least one significant (FDR <0.05) RAD sequencing SNP
and present in at least two case-control populations (Figure 4.1). Loci
with more than five significant RAD sequencing SNPs, containing minimum
one SNP with non-synonymous effect, and the relevant case-control study are
shown in bold

Locus Chromo- PGSC gene id Case-control
some (PGSC0003...) study

Cis 1 DMG400028982 TSC, TY
AOX1a-3 1 DMG400012558 TSC
INV-1/2 1 DMG400001596 TSC, TY
LIPIII-27 2 DMG400031758 TY, TSY
HT-2/1 2 DMG400022402 TSC, TY, TSY
SuSy-2 2 DMG400016730 TSC
HT-2/2 2 DMG400026402 TSC, TY, TSY
SS V 2 DMG400030619 TSC
HXK-2 2 DMG400030624 TSC, TY, TSY
SssI 3 DMG402018552 TSC, TSY
Pk 4 DMG400025298 TSC, TY
MT 4 DMG400024812 TSC
SBE I 4 DMG400009981 TSC, TY, TSY
GWD 5 DMG400007677 TSC, TSY
239E4left 5 DMG400015743 TSC, TY, TSY
DBE-6/1 6 DMG402007274 TSC, TY, TSY
SPS-7 7 DMG400027936 TSC, TY
StPha2 7 DMG400004101 TSC, TY
SuSy-7/2 7 DMG400013546 TSC, TY, TSY
AGPaseB-7 7 DMG400031084 TSC
AOX1a-2 8 DMG400018484 TSY
BMY-8/2 8 DMG400001855 TSC, TY
INV-8/2 8 DMG400004790 TSC, TY, TSY
BMY-8/3 8 DMG400012129 TSC, TY
HSP70 9 DMG400008917 TSC, TY, TSY
StADK1 9 DMG400027906 TSC
HT-9 9 DMG400031832 TSC, TY, TSY
SPS-9 9 DMG400026428 TY, TSY
PWD 9 DMG400016613 TSC, TSY
Rca 10 DMG400019149 TSC
UGPase-11 11 DMG401013333 TSC, TY, TSY
AGPaseB-12 12 DMG400046891 TSC, TY, TSY
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be associated with TSC and TY in the background of the Chips-All population (Fischer

et al. in preparation) and with TY in the Quest population (Chapter 2). All detected

SNPs were not in the same region as the HSP70-bad PCR fragment.

Marker-trait associations from association mapping of candidate genes in the Quest

population Seven candidate genes were selected, genotyped and tested for associations

with starch and yield-related traits in Chapter 2. Six of the candidate genes were annotated

in the potato genome sequence: CP12-2, SSsIV, SssI, PGI1, Pho1b and BMY1.

In total, two of the candidate loci were found to have at least one significant (FDR <0.05)

SNP in any of the case-control studies. The SssI locus (PGSC0003DMG402018552) had

2 significant SNPs in the case-control study for TSC and 2 significant SNPs in the case-

control study for TSY. The SssI snp6015 was associated with TY and TSY in the associ-

ation mapping study (Chapter 2). All significant SNPs detected by RAD sequencing were

not located in the PCR fragment that was analyzed by amplicon sequencing (Chapter 2).

The BMY1 locus (PGSC0003DMG400001855) had 1 significant SNP in the case control

studies for TSC and 2 significant SNPs in the case-control study for TY. There was

no evidence for any marker-trait association of the BMY1 amplicon in the association

mapping study (Chapter 2). The SNPs that were detected by RAD sequencing were not

located in the PCR fragment that was analyzed by amplicon sequencing (Chapter 2).

4.3.4. Comparing the results of genotyping methods

The results of the case-control studies with RAD sequencing were compared to the results

of the case-control studies with SolCAP Potato Array genotyping (Chapter 3). Annotated

loci with at least one significant (FDR <0.05) SNP were compared to annotated loci that

had at least one significant (p-value <0.01) SolCAP SNP (Appendix Table B.17).

The results of the comparisons are shown in Figure 4.2 (a-c). 45 loci were detected with

both genotyping methods in the case-control study for TSC. 11 loci were in common

between the case-control study for TY and 14 loci in the case-control study for TSY. The

65 loci (Figure 4.2 d) are listed in Table 4.5.

In the SolCAP Potato Array genotyping study (Chapter 3), six candidate loci were selected

from the results of the case-control studies and tested for marker-trait associations the

Quest population by association mapping. Five of the six loci were annotated in the

potato genome sequence: F2PA, CP12-1, QUA1, 60S and CIS.

Of these five annotated loci, CIS (PGSC0003DMG400007797) was found in the intersecting

set of the TSC and TY case-control studies (Figure 4.2 d, Table 4.5). It had 2 signifi-

cant (FDR <0.05) SNPs in the case-control study for TSC and 1 significant (FDR <0.05)

SNP in the case-control study for TY. With the SolCAP Potato Array genotyping, the
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(a) TSC (b) TY (c) TSY

(d) intersecting set

Figure 4.2.: Venn diagrams of the loci detected by RAD sequencing (at least one
significant SNP per locus) and SolCAP Potato Array genotyping of
the case-control studies for TSC (a), TY (b) and TSY (c) and the
intersecting set (d). The compared loci contained at least one significant
(α=0.01) SolCAP SNP (Appendix Table B.17) or one significant (FDR <0.05)
RAD sequencing SNP
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Table 4.5.: Loci detected by RAD sequencing (at least one significant SNP per locus)

and SolCAP Potato Array genotyping of the case-control studies for TSC,

TY or TSY or a combination of those (Figure 4.2). In bold are Loci that were

also on the compiled list of candidate genes and markers (Appendix Table B.18)

PGSC gene id Chromo- Case-control Annotation

(PGSC0003...) some study (version v2.1.11)

DMG400006816 1 TSC ATP binding protein

DMG400006800 1 TSC NBS-LRR protein

DMG400027768 1 TSY Cop11 protein

DMG400027526 1 TSY Prolyl-tRNA synthetase

DMG400022473 1 TSC, TY Zeta-carotene desaturase

DMG401028588 1 TSY Nucleolar GTPase

DMG400028611 1 TSC Peroxisomal membrane protein pmp34

DMG400030950 1 TSC Myo inositol monophosphatase

DMG400010198 2 TSC Conserved gene of unknown function

DMG400022953 2 TSC Pyruvate decarboxylase

DMG400010718 2 TY GDSL-motif lipase/hydrolase family protein

DMG401017733 2 TSC Zinc finger protein

DMG400026392 2 TSC, TY Mannose-6-phosphate isomerase

DMG400043061 2 TY Serine-threonine protein kinase, plant-type

DMG400024596 3 TSC Protein kinase atmrk1

DMG400024561 3 TSC Ser/Thr protein kinase

DMG400000619 3 TSC Nucleosome-binding protein

DMG400000639 3 TSC Delta 9 desaturase

DMG400014223 3 TSC 4-coumarate–CoA ligase 2

DMG400025300 4 TSC Conserved gene of unknown function

DMG401007955 4 TY ALCATRAZ/SPATULA

DMG400005138 4 TSY Glucan endo-1,3-beta-glucosidase

DMG400009981 4 TSC 1,4-alpha-glucan branching enzyme

(SBEI)

DMG400010007 4 TSC Pyrophosphate-fructose 6-phosphate 1-

phosphotransferase subunit alpha

DMG400025121 5 TSC 6-phosphogluconate dehydrogenase, decar-

boxylating

DMG400031262 5 TSC Methyltransferase

DMG400030978 5 TSC Polygalacturonase non-catalytic subunit

AroGP2

DMG400024449 5 TY 26S proteasome subunit

DMG400008445 5 TSC, TSY 60S ribosomal protein L6

DMG400023508 5 TSY Kinase

DMG402007274 6 TSC Isoamylase isoform 3 (DBE-6/1)
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Table 4.5.: (continued)

PGSC gene id Chromo- Case-control Annotation

(PGSC0003...) some study (version v2.1.11)

DMG400007297 6 TY Protein phosphatase-2C

DMG400026598 6 TSC Conserved gene of unknown function

DMG400027936 7 TY Sucrose-phosphate-synthase (SPS-7)

DMG400032791 7 TY, TSY Casein kinase

DMG400028951 7 TSC Aconitase

DMG400009380 7 TSY Receptor protein kinase CLAVATA1

DMG400017292 7 TSC Protein pof4

DMG400031084 7 TSC ADP-glucose pyrophosphorylase,

small subunit (AGPaseB-7)

DMG400031099 7 TSC Endosomal P24A protein

DMG400007070 7 TSC Polynucleotide kinase-3’-phosphatase

DMG400022169 7 TSC Poly(A)-specific ribonuclease PARN

DMG400014831 8 TSC HSP DnaJ N-terminal domain-containing

protein

DMG400007390 8 TSC Beta-ketoacyl-CoA synthase

DMG400024217 8 TSC Pseudo response regulator

DMG402012981 9 TSY Serine-threonine protein kinase, plant-type

DMG400008917 9 TY Heat shock protein 70 (HSP70)

DMG400029885 9 TSC Kinase

DMG400014421 10 TSY Proline synthetase associated protein

DMG400025001 10 TSY Global transcription factor group

DMG400028261 10 TSC Fructose-bisphosphate aldolase

DMG400013259 11 TSY Nonsense-mediated mRNA decay protein

DMG400015693 11 TSC Resistance gene

DMG400016219 11 TSC GTP cyclohydrolase II

DMG400031071 11 TSC Nam 9

DMG400009246 11 TSY 8-oxoguanine DNA glycosylase

DMG400030212 11 TSC Nitrate reductase

DMG400019987 11 TSC Tubulin-specific chaperone E

DMG400015547 11 TSY Protein kinase

DMG400015368 12 TSC Conserved gene of unknown function

DMG400007797 12 TSC, TY Citrate synthase

DMG400002929 12 TSC Chaperonin 21

DMG400001096 12 TSC Transporter

DMG400004280 12 TSC Phytocalpain

DMG400004277 12 TSC Dead box ATP-dependent RNA helicase
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CIS solcap snp c2 25372 was found to be significant in all three case-control studies (Chap-

ter 3). There was no evidence for marker-trait associations when it was tested in all geno-

types of the Quest population. The CIS snp6741 was associated with TSC in the Quest

population. The significant SNPs that were detected by RAD sequencing were not located

in the amplified PCR fragment for amplicon sequencing (Chapter 3).

4.3.5. Combining information of genotyping studies with compiled list of

candidate genes and markers

Three loci were detected that were significant in the case-control study for TSC genotyped

with RAD sequencing, in the case-control study for TSC with SolCAP Potato Array

genotyping (Table 4.5) and also present on the compiled candidate gene and marker list

(Appendix Table B.18): the SBEI locus (PGSC0003DMG400009981), the DBE-6/1 locus

(PGSC0003DMG402007274) and the AGPaseB-7 locus (PGSC0003DMG400031084).

In the case-control study for TY, two loci were detected to be significant in the case-control

studies of both genotyping methods that were present on the compiled list of candidate

genes and markers: the SPS-7 locus (PGSC0003DMG400027936) and the HSP70 locus

(PGSC0003DMG400008917), described by Fischer et al. (in preparation).

There was no overlap of loci with significant SNPs between the case-control study geno-

typed with RAD sequencing, the case-control study for TSY with SolCAP Potato Array

genotyping (Chapter 3) and the compiled candidate gene list.

4.3.6. Detection of novel candidate genes by case-control studies with RAD

sequencing

In order to find novel candidate gene markers by RAD sequencing of case-control stud-

ies, the results of the statistical analysis were compared to the list of candidate genes

and markers (Appendix B, Table B.18). Here, only loci with at least five SNPs that had

significantly (FDR <0.05) different allele frequencies between the contrasting pools, con-

taining a minimum one SNP with non-synonymous effect on the protein, were compared

to the compiled list of candidate genes and markers (see above) to remove already known

candidates from the set. There were 290 novel candidate loci in the case-control study

for TSC, 184 loci in the case-control study for TY and 56 loci for TSY (Figure 4.3 a-c).

In total, 430 novel candidate loci were detected by the genotyping of case-control studies

by RAD sequencing (Figure 4.3 d). The candidate loci were distributed over all chromo-

somes. They were also located in regions, where no QTL for starch or yield were described

by Schäfer-Pregl et al. (1998). The novel candidate loci are depicted on the potato map

(Figure 4.4) and the list of the novel candidate genes is given in Appendix B (Table B.28).
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(a) TSC (b) TY (c) TSY

(d) Novel candidate genes

Figure 4.3.: Venn diagrams of loci containing more than five significantly
(FDR <0.05) different SNPs, of which minimum one had a non-
synonymous effect on the protein, in comparison to the compiled
list of candidate genes and markers (Appendix Table B.18). The 430
novel loci that were not contained in the compiled list of candidate genes and
markers are shown for the three case-control studies (d)
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Figure 4.4.: Physical map of potato (version v4.03). Shown are the 430 novel candi-
date loci containing more than five significant (FDR <0.05) SNPs, of which
minimum one had a non-synonymous effect on the protein, detected by RAD
sequencing in the case-control studies for TSC, TY and TSY (Appendix Ta-
ble B.28). Compiled candidates (Chapter 2) are in italics. Candidate genes
and markers that were tested by association mapping (Chapters 2+3) are in
bold
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The set of 9 loci between the novel candidate genes from the RAD sequencing study and the

loci detected by the genotyping with the SolCAP Potato Array (Chapter 3) was identified

(Table 4.6). 8 loci were common between the case-control study for TSC (Figure 4.5 a).

There were no common loci between the case-control studies for TY (Figure 4.5 b). One

common locus was detected between the case-control studies for TSY (Figure 4.5 c). This

locus was not part of the common loci detected for TSC.

(a) TSC (b) TY (c) TSY

Figure 4.5.: Venn diagrams of novel candidate loci from RAD sequencing (Ap-
pendix Table B.28) and the SolCAP Potato Array genotyping in the
case-control studies for TSC, TY and TSY (Appendix Table B.17).
The loci obtained from the SolCAP experiment contained at least one signif-
icant (α =0.01) SolCAP SNP (Chapter 3)

Table 4.6.: Novel candidate loci from RAD sequencing (Appendix Table B.28)
and the SolCAP Potato Array genotyping in the case-control studies
for TSC, TY and TSY. The loci obtained from the SolCAP experiment
contained at least one significant (α=0.01) SolCAP SNP (Chapter 3)

PGSC gene id Chromo- Case-control Annotation
(PGSC0003...) some study (version v2.1.11)

DMG400006800 1 TSC NBS-LRR protein
DMG400022473 1 TSC Zeta-carotene desaturase
DMG400010198 2 TSC Conserved gene of unknown function
DMG400031262 5 TSC Methyltransferase
DMG400030978 5 TSC Polygalacturonase non-catalytic subunit

AroGP2
DMG400023508 5 TSY Kinase
DMG400007390 8 TSC Beta-ketoacyl-CoA synthase
DMG400031071 11 TSC Nam 9
DMG400002929 12 TSC Chaperonin 21
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4.4. Discussion

4.4.1. Novel candidate genes detected for starch-yield traits by RAD

sequencing in case-control studies

Novel candidate genes for TSC, TY and TSY were detected by RAD sequencing in a case-

control study design. In total, 430 novel and non-obvious candidate genes were detected

in the case-control studies. The candidate loci were distributed over all chromosomes and

also located in regions with no QTL for starch or yield described (Schäfer-Pregl et al.,

1998). There were two major selection criteria for the detection of novel candidate genes.

Firstly, only non-synonymous SNPs were taken into account for the selection, as the non-

synonymous effect on the protein may lead to a change in the efficiency of the protein,

the binding affinity or the formation of complexes. Thereby, a difference in phenotypic

variation may be explained. Secondly, more than five significant SNPs had to be present

in the locus. As a result, the number of false-positives was expected to be reduced as

a higher number of significant SNPs was suggested to ensure a region that is associated

with the relevant trait. The nine non-obvious candidate genes, that were detected in

all three case-control studies by RAD sequencing as well as by SolCAP Potato Array

genotyping (Chapter 3), are of special interest for further analysis. Further steps could be

the validation of the associations in a larger genetic background by the design and testing

of allele-specific primers for the highly significant SNPs of the novel candidates. SNPs

with validated marker-trait associations can then directly be applied by marker-assisted

selection in potato breeding programs. Still, the discovered candidates may not be the

causal genes for the studied traits and the functional analysis of candidate genes could

provide further information.

4.4.2. RAD sequencing valuable tool for genome-wide genotyping of

tetraploid potato

RAD sequencing is a valuable tool for genome-wide genotyping of tetraploid potatoes.

This is the first study of genotyping by RAD sequencing in potato. More than half a

million SNPs, distributed over all chromosomes, were detected in each case-control study.

Depending on the assumptions of SNP frequency in potato, the calculated number of

expected SNPs ranged between less than 200,000 (1 SNP/140 bp in exon; Uitdewilligen,

2012) and more than 1 million (1 SNP/21 bp in exon; Rickert et al., 2003). Around 300,000

SNPs were expected at a frequency of 1 SNP/80 bp, which was reported for intron regions

(Uitdewilligen, 2012). The RAD sequences in this study were not only generated from

exon and intron regions, but also from non-coding regions of the genome. The number of

detected SNPs lay above the expected number at a SNP frequency of 1 SNP/80 bp, which
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may be due to a higher nucleotide diversity in the non-coding regions of the genome. The

extensive number of more than half a million SNPs in each case-control study allowed for

a genome-wide statistical analysis.

4.4.3. Marker-trait associations from previous studies confirmed by RAD

sequencing

A number of marker-trait associations with TSC, TY and TSY, reported in previous stud-

ies, were validated by genotyping by RAD sequencing and case-control analysis. Two loci

were detected with the case-control analysis, containing PCR markers that were associated

with starch content and yield in previous studies. The Rca locus was detected in the case-

control study for TSC, confirming the previous association of the Rca1a allele (Li et al.,

2008) with TSC (Chapter 2). Similarly, the associations of the HSP70-bad allele (Fischer

et al. in preparation) with TSC and TY were confirmed. Due to pooling the sequences

prior to SNP analysis, the co-segregation of RAD sequencing SNPs with the allele specific

markers could not be tested. Furthermore, marker-trait associations of candidate genes,

which were tested in the genetic background of the Quest population (Chapter 2+3),

were confirmed in the case-control studies with RAD sequencing. The association of the

SssI locus (Chapter 2) with TSY was confirmed as well as the association of CIS with

TSC (Chapter 3). Thus, previously reported marker-trait associations in the same as well

as different populations could be verified by the case-control study design, confirming the

practicability of RAD sequencing for the detection of candidate genes.

However, not all reported marker-trait associations in the Quest population were signif-

icant in the case-control study. There are several explanations for the lack of associations

in the case-control studies. Firstly, the locus may not have been represented in the gen-

erated sequences. The genomic sequence of a candidate locus has to contain a minimum

of one restriction site in order to be represented by a RADtag. Secondly, there may have

been a restriction site polymorphism. This would lead to a null-allele which does not al-

low for the detection of all haplotypes and therefore the true variation of the locus would

be missing. Thirdly, the sequence variation detected by RAD sequencing was too distal

from the previously associated polymorphism. If the LD decay was high between the two

regions within the candidate gene, it might be that the marker-trait association could not

be detected. Furthermore, SNPs were selected based on location in annotated genes and

Pho1a SNPs, for example, are not detected due to this approach. Therefore, the reasons

for the lack of previous associations can be manifold.

For one tested candidate gene (BMY1) there was no evidence for marker-trait associations

in the entire Quest population (Chapter 2). In contrast to that, significant SNPs were

detected in the case-control studies. The significant SNPs from the case-control studies
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were not located in the region of the previously tested amplicon. The tested amplicon

for BMY1 had furthermore a length of less than 350 bp, covering 10 SNPs. A possible

explanation for the detection of significant SNPs in the case-control study, contrary to

expectations, may be that the amount of SNPs was not sufficient to tag all existing haplo-

types. The newly detected significant SNPs might tag different haplotypes. However, this

could not be tested as the sequences were pooled prior to the analysis and no genotype

data of individuals was available. A re-analysis of sequence data would be required for

the test of co-segregation between RAD sequencing SNPs and amplicon sequencing SNPs.

The design of new allele-specific primers based on the sequencing information may lead to

the detection of novel marker-trait associations in the full Quest population.

4.4.4. Marker-trait associations detected for SNPs in knowledge-based

candidate genes

Marker-trait associations in knowledge-based candidate genes were detected by RAD se-

quencing. All loci with significant SNPs in the case-control studies were compared to a

compiled list of candidate genes. The list contained (i) starch- and yield-related candidate

genes from this thesis (Chapter 2) and (ii) candidate genes operational in starch sugar

interconversion (Schreiber et al. in preparation). The four top hits, which were also found

in the case-control study with SolCAP Potato Array genotyping were the associations

of SBEI, DBE-6/1 and AGPaseB-7 with TSC and the association of SPS-7 with TY.

In general, the detection of significant SNPs in the knowledge-based candidate loci illus-

trates the potential of the case-control studies with RAD sequencing for the discovery of

marker-trait associations. In the case of the knowledge-based candidate loci, allele-specific

markers can be developed from the sequencing information for the directly implementation

in marker-assisted selection.

4.4.5. Limitations of RAD sequencing in tetraploid potatoes

The RAD sequencing method reduces the complexity of the genome. Therefore, it allows

for a higher number of multiplexing on sequence lanes, which reduces the cost of high-

density SNP detection. Still, there are two main limitations of the method, that need

to be considered. The first limitation is that by the reduction of complexity, not all

loci are represented by the sequences generated. In order to increase the amount of

coding regions that are sequenced, the libraries could be prepared based on transcriptome

sequence. Still, it would be unlikely that all loci were represented due to the tissue-

and time point-specific expression of genes. Another possibility to influence the amount of

coding regions that are sequenced is the choice of restriction enzyme. A restriction enzyme,

which selectively cuts in coding regions of the genome, might be desired. However, new
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restriction enzymes require the design of new individual P1 adapters, which is the major

matter of expense in the experiment, aside from the sequencing. In this study, the KpnI

restriction enzyme was chosen. It is a rare cutting enzyme that cuts in GC rich regions.

Thereby, a desired bias towards coding regions was introduced. A second limitation of the

RAD sequencing method is the high heterozygosity of tetraploid potatoes. With the large

number of polymorphisms, the chance for a restriction site polymorphism is high. The

polymorphism in a restriction site leads to a null allele because the haplotypes lacking the

restriction site are not detected. Keeping these limitations in mind, RAD sequencing is a

valuable tool for genome-wide genotyping in tetraploid potatoes.

4.4.6. Concluding paragraph

Genome-wide SNP discovery by RAD sequencing in tetraploid potato was applied for the

first time in a case-control study design with the objective to find novel candidate genes for

complex traits. In total 430 novel non-obvious candidate genes were discovered for starch

and yield-related traits. Furthermore, new marker-trait associations with knowledge-based

candidate genes were detected. Based on the sequence information, markers for direct im-

plementation in marker-assisted selection can be generated. The results of this study show

that RAD sequencing in a case-control study design is an efficient tool for the detection

of novel candidate genes for complex traits in polyploid species.
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5. General discussion

This thesis focused on the detection of novel SNP markers and candidate genes for potato

tuber starch and yield-related traits, such as tuber starch content and tuber yield, in the

framework of the project ”Quality Starches by Exploiting New Breeding Tools in Solanum

tuberosum” (Quest). In order to pursue this research objective, different genotyping

methods were applied in combination with association mapping and case-control study

design.

5.1. Novel markers and candidate genes for starch yield traits by

combined association mapping and case-control analysis

lead to

A novel set of markers and candidate genes was detected for starch yield, tuber starch

content and tuber yield. Combining association mapping and a case-control design for the

detection of sequence variation associated with phenotypic variation lead to the discovery

of novel SNP markers and candidate genes in tetraploid potatoes. Both approaches make

use of assembled populations (Table 5.1). The individuals are related by descent and

share historic meiotic recombination events (Flint-Garcia et al., 2003). A lower number

of genotypes is required for a case-control study than for association mapping. Marker-

trait associations by association mapping are detected by the implementation of rather

challenging statistics - a mixed linear model including population structure and kinship

between the genotypes - while the statistical analysis of case-control studies is much more

straightforward. The result of the case-control study is a pre-selection of genetic markers.

These markers need further confirmation in a larger population size as loci identified in

smaller population sizes are not always significant in a larger genetic background (Huang

et al., 2011). The markers obtained from association mapping, on the other hand, can

be directly implemented in breeding programs for marker-assisted selection (Flint-Garcia

et al., 2003). Both approaches have their special strengths and limitations. This thesis

showed the value of combining the approaches in order to find novel SNP markers and

candidate genes for complex traits in potato.
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Table 5.1.: Comparison of association mapping and case-control study design
for the detection of marker-trait associations

Features Association mapping Case-control study

Number of genotypes high low
Implementation of results direct application in needs further con-

breeding programs firmation
Statistics difficult easy

5.2. Candidate gene based and high-density genotyping

methods have individual strengths and limitations

Three genotyping methods were applied for the detection of genotypic variation in the ge-

netic background of the Quest population. A lower-density genotyping method was used

in association mapping and two high-density genotyping methods were tested in a case-

control study design. With Sanger amplicon sequencing, the individuals were genotyped

for a small number of knowledge-based candidate genes. The PCR fragments were designed

so they yielded between 10 and 40 SNPs (Table 5.2). The genotypes were analyzed with

the SolCAP Potato Array for 8,303 SNPs in each individual. By RAD sequencing, more

than half a million SNP positions were detected in the samples. However, the difficulties

with sample preparation and data processing increased with the number of SNPs that were

detected. Similarly, the cost were comparably high for the genotyping by RAD sequencing

compared to Sanger amplicon sequencing and the SolCAP Potato Array genotyping. The

main advantage of the genome-wide high-density genotyping methods was the detection

of novel candidate genes for the traits of interest, while Sanger amplicon sequencing relied

on previous knowledge about the genes. All genotyping methods allowed for the detection

of sequence variation in potato individuals. Variation in knowledge-based candidate genes

was detected by the Sanger amplicon sequencing method, while SNPs in non-obvious can-

didate loci could be detected by genotyping with the SolCAP Potato Array and RAD

sequencing.

Is it more desirable to genotype potatoes with an array or with next-generation sequencing

technologies? Genotyping with the SolCAP Potato Array generates information about a

maximum of 8,303 SNPs of each individual. However, the method had two shortcomings.

Firstly, the SNP loci on the array were selected based on their function and relevance

(Felcher et al., 2012). Secondly, the SNP information was obtained mainly based on North

American potato cultivars. Thereby it is missing valuable alleles of characteristic European

potato alleles (Chapter 3). Uitdewilligen (2012) developed a potato array containing

20,000 SNP markers. The SNPs were selected based on sequencing information of 80
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Table 5.2.: Comparing genotyping methods for the detection of sequence vari-
ants in potato. The genotyping was performed in the Quest population
(Chapters 2 to 4)

Features Sanger amplicon SolCAP RAD
sequencing Potato Array sequencing

SNP detection 10-40/fragment ≤8,303 <500,000
Sample preparation easy easy difficult
Data processing easy medium difficult
Cost low low high

European potato cultivars and the array was designed to include rare alleles as well.

However, this array is also knowledge-based. In order to find novel candidate loci for

complex traits it is desired to genotype with an unbiased approach. In this thesis, the

applicability of RAD sequencing for genotyping tetraploid potato cultivars was tested.

The approach is rather unbiased, although the detection of sequencing variants depend on

the presence of the recognition site of the restriction enzyme. With the decreasing cost of

next-generation sequencing, it will become more feasible to apply large-scale genotyping

methods that are based on this technique. These methods will eventually outperform the

array technology, once analysis-pipelines become more user-friendly.

5.3. Sketching a picture of potato breeding in the future

The future of marker-trait association studies in potato breeding programs is likely to

be situated in a more quantitative marker-assisted selection system. At present, potato

breeding is still a matter of the ”breeder’s eye”, with the support of a limited amount

of molecular markers. In other crops, such as corn and wheat, the concept of genomic

selection is increasingly applied (Crossa et al., 2013). Genomic selection is a strategy,

where a diverse population of individuals (training population) is intensively genotyped

and phenotyped in several years and locations. This training population is then used for

the development of marker sets that can predict the field performance of individuals based

on their genotypes (Cabrera-Bosquet et al., 2012). The success of this method strongly de-

pends on the quality of the training population. Trend-setting would be the establishment

of a potato collection as training population with diverse germplasm, phenotyped for de-

sired traits in world-wide potato growing regions. Genome-wide high-density genotyping

should be performed with a next-generation sequencing method, such as RAD sequencing

(Chapter 4) or a genotyping-by-sequencing approach (e.g. Uitdewilligen et al., 2013). The

most challenging part is most likely the phenotyping over many years at different loca-

tions. Firstly, the quarantine regulations for shipping plant material between countries
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are rather strict due to regulations on sanitary conditions. This may be a problem for the

world-wide distribution of potato tubers. Secondly, the phenotyping methods have to be

standardized across all locations and years. The breeders and growers will have to provide

space for the repeated planting of the training population and they need to invest the time

for the phenotyping. Another major challenge will be the data processing. However, a

successful example for data analysis for genomic prediction on a public database is already

available for casava (Casavabase; http://www.cassavabase.org/breeders/index.pl) and is

upcoming for tomato (Sol Genomics Network; http://solgenomics.net/breeders/index.pl).

There is a realistic chance for the successful application of genomic selection for complex

traits in potato in the future, if these challenges can be overcome.

5.4. Concluding remarks

In this thesis, three concepts were applied with the objective to detect sequence variation

that explains phenotypic variation in starch and yield-related traits in potato: association

mapping with a knowledge-based candidate gene approach (Chapter 2), a case-control

study with genotyping by the SolCAP Potato Array (Chapter 3) and genotyping with

next-generation RAD sequencing (Chapter 4). All three concepts resulted in the de-

tection of novel marker-trait associations and candidate genes. Association mapping of

knowledge-based candidate genes resulted in the detection of 14 diagnostic SNP markers

and one indel. The case-control studies for tuber starch content, tuber yield and starch

yield in combination with SolCAP Potato Array genotyping lead to the detection of 328

marker-trait associations, of which seven SNP markers were validated by association map-

ping in the full population. By genotyping with next-generation RAD sequencing of the

case-control studies, 430 novel candidate genes were discovered for tuber starch content,

tuber yield and starch yield. Further confirmation of the novel candidate genes will be ob-

tained by the genotyping and analysis of the respective polymorphisms in a larger genetic

background. The results of this thesis show that the genome-wide discovery of polymor-

phisms is an efficient tool for the detection of novel candidate genes and markers. The

decreasing cost for next-generation sequencing will allow for the genotyping of an entire

association mapping population by RAD sequencing. For further studies, this genotyping

method might be of high value in combination with association mapping.
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Stich, B., Möhring, J., Piepho, H.-P., Heckenberger, M., Buckler, E. S., and Melchinger,

A. E. (2008). Comparison of mixed-model approaches for association mapping. Genetics,

178(3):1745–54.

115



References

Stich, B., Urbany, C., Hoffmann, P., and Gebhardt, C. (2013). Population structure

and linkage disequilibrium in diploid and tetraploid potato revealed by genome-wide

high-density genotyping using the SolCAP SNP array. Plant Breeding, 132(6):718–724.
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A. Supplemental data
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Figure A.1.: Structure harvester output for Bayesian clustering of Quest pop-
ulation. (a) plotted mean of log likelihood and (b) figure delta K as described
by Evanno et al. (2005)
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Appendix A. Supplemental data

(a) Barplot of inferred subpopulations K=2 ordered according to Q-value

(b) Barplot of inferred subpopulations K=3 ordered according to Q-value

(c) Barplot of inferred subpopulations K=4 ordered according to Q-value

(d) Barplot of inferred subpopulations K=5 ordered according to Q-value

Figure A.2.: Structure graphical output of population structure for 282 geno-
types for subpopulations K=2, K=3, K=4 and K=5. Genotypes are
ordered according to the probabilities (Q-values) of each genotype belonging
to one of the number of inferred subpopulations
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Appendix A. Supplemental data

Figure A.3.: Amplicon sequence CP12-2. The genomic sequence of the PCR fragment
that was analyzed for association mapping is displayed. Detected SNPs and
indels are indicated by an arrow. Arrows of significantly (α=0.01) associated
sequence polymorphisms are in black. The positions are given in relation to
the ATG

Figure A.4.: Amplicon sequence AP2TF. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.5.: Amplicon sequence SSsIV. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.6.: Amplicon sequence PGM1. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.7.: Amplicon sequence SssI. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.8.: Amplicon sequence PGI1. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.9.: Amplicon sequence Pho1b. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.10.: Amplicon sequence F2PA. For detailed description see Figure A.3

Figure A.11.: Amplicon sequence CP12-1. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.12.: Amplicon sequence BEL5. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.13.: Amplicon sequence QUA1. For detailed description see Figure A.3

Figure A.14.: Amplicon sequence BMY1. For detailed description see Figure A.3
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Appendix A. Supplemental data

Figure A.15.: Amplicon sequence 60S. For detailed description see Figure A.3

Figure A.16.: Amplicon sequence CIS. For detailed description see Figure A.3
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Table A.1.: Genotype information accompanied by their code used in the Quest project. Codes are as following.

First digit: S=Standard, grown at breeding stations Appacale and Neiker, A=breeding station Appacale, N=breeding

station Neiker; second digit: 0+1=commercial variety, 2+3=breeding clone, 4=landrace variety, 5=diploid clone,

6=Wild Solanum species; third digit: sequential number

Code Variety/Clone Code Variety/Clone Code Variety/Clone Code Variety/Clone

S001 Agria A039 Sahel A520 D99H3.2 N099 Voyager

S002 Alava A040 Sandra N001 Adriana N100 Zadorra

S003 Alegria Oro A041 Shannon N002 Agata N101 Zafira

S004 Almera A042 Surya N003 Aladin N103 Zarina

S005 Amanda A043 Tosca N004 Albata N104 Zela

S006 Antina A044 Tuskar N005 Alda N105 Zepa

S007 Baraka A045 Ute N006 Amalia N106 Zunta

S008 Camila A046 Valeria N007 Ambition N201 05/104-4

S009 Candela A047 VR 808 N008 Amora N202 05/110-4

S010 Carrera A201 2006P46-6 N009 Amorosa N203 05/111-2

S011 Daniela A202 05/104-2 N010 Andean Sunrise N204 05/112-3

S012 Desiree A203 05/104-5 N011 Arcade N205 05/113-2

S013 Esta A204 05/110-3 N012 Arene N206 05/114-3

S014 Fina de Carvallo A205 05/112-1 N013 Armada N207 05/115-4

S015 Fina de Gredos A206 05/112-2 N014 Arrow N208 05/116-3

S016 Fontane A207 05/113-5 N015 Artemis N209 05/117-1

S017 Goya A208 05/114-2 N016 Asun N210 05/118-1

S018 H-88 31/34 A209 05/115-1 N017 Avalon N211 05/119-2

S019 H98A/11 A210 05/116-4 N018 Ayala N212 05/122-3

S020 H98A/18 A211 05/117-2 N019 Belda N213 05/123-1
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Table A.1.: (continued)

Code Variety/Clone Code Variety/Clone Code Variety/Clone Code Variety/Clone

S021 H98A/25 A212 05/117-5 N020 Brda N401 Senora Warni

S022 H98B/2 A213 05/118-3 N021 Buesa N402 Chaucha

S023 Heidrun A214 05/119-3 N022 Cabadia N403 Socco Huaccoto

S024 Idoia A215 05/119-5 N024 Cazona N404 Sipancachi

S025 Isle of Jure A216 05/122-1 N025 Cherie N405 Laram Ajawiri

S026 Jaerla A217 05/122-5 N026 Corine N406 NKD-141

S027 Jimena A218 05SH74-4 N027 Corrida N407 Yana Sucre

S028 Kennebec A219 05SH83-7 N028 Diba N408 Wila Huaka Lajra

S029 Lady Claire A220 2003P55-6 N029 Duquesa N409 Rosca

S030 Leire A221 2000P4-6 N030 Edurne N410 Chiar Surimana O Phinu

S031 Melibea A222 2000P5-5 N031 Elfe N411 Morada Turuna

S032 Miranda A223 2000Q84-7 N032 Europrima N412 Kashpadana Amarilla

S033 Monalisa A224 2001Q29-10 N033 Fenix N413 Holandesa

S034 Mustang A225 2003P32-4 N034 Festival N414 Poluya

S035 Nagore A226 2003P54-4 N035 Gorbea N415 Negrita

S036 Nela A227 2004M30-5 N036 Ibicenca N416 Color Unckuna

S037 Opal A228 2004P10-10 N040 Inona N417 NKD-168

S038 Orla A229 2004P13-6 N041 Integra N418 NKD-169

S039 Palogan A230 2004P8-4 N042 Irati N601 AMB 1643

S040 Panda A231 2004Q28-7 N043 Isla N602 ADR 18344

S041 Priamos A232 2004Q3-3 N044 Iturrieta N603 BER 3607

S042 Ramses A233 2004R81-1 N045 Jesus N604 BLV 2190

S043 Spinta A234 2005P107-3 N046 Kasta N605 BST 7986
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Table A.1.: (continued)

Code Variety/Clone Code Variety/Clone Code Variety/Clone Code Variety/Clone

S044 Stemster A235 2005P135-2 N047 Kondor N606 BRC 28023

S045 Turia A236 2005P144-1 N048 L 37 (4x) N607 BRD 218215

S046 Valetta A237 2005P88-5 N049 Lora N608 BUK 15424

S047 Valnera A238 2005P89-4 N050 LT-8 N609 BLB 8008

S048 Verdi A239 2005Q102-2 N051 LT-9 N610 CAN 501

S049 Vivaldi A240 2005Q106-3 N052 Lutetia N611 CAP 32678

S050 Zorba A241 2005Q49-3 N053 Madeleine N612 CPH 10052

A001 Anais A242 2005Q69-2 N054 Maika N613 CMM 5856

A002 Aster A243 2006D9-6 N055 Maniton N614 CHC 17034

A003 Asterix A244 2006FF67-17 N056 Marfona N615 CHP 18060

A004 Atlantic A245 2006P37-2 N057 Marietema N616 DDS 2880

A005 Aurea A246 2006P39-11 N058 Melody N617 FLH 2335

A006 Barna A247 2006P42-13 N059 Merida N618 GND 2423

A007 Bartina A248 2006P45-2 N062 Montico N619 GRL 7180

A008 Bellini A249 2006P56-3 N063 Morada N620 HAN 2843

A009 Brodick A250 2006Q113-12 N064 Murato N621 HDM 2848

A010 Caesar A251 2006Q49-6 N065 Musica N622 JAM 481

A011 Cara A252 2006Q66-9 N066 N-180 N623 LPH 27215

A012 Chopin A253 2006Q68-4 N067 Naga N624 MAG 2118

A013 Cinja A254 2006Q88-2 N068 Nerea N625 MRN 2278

A014 Colorado A255 2006Q88-25 N070 Omega N626 MED 2226

A015 Courage A256 2006Q88-34 N071 Onda N627 MCD 17596

A016 Denar A257 2006Q89-1 N072 Orchestra N628 MCQ 2319
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Table A.1.: (continued)

Code Variety/Clone Code Variety/Clone Code Variety/Clone Code Variety/Clone

A017 Ditta A258 2006Q92-2 N073 Pecaro N629 MTP 17829

A018 Electra A259 99P41-6 N074 Pedro Muñoz N630 NRS 7211

A019 Fabiola A260 SH 2267 N075 Presto N631 OKA 17998

A020 Fabula A501 03-DH2-1/26 N076 Primavera N632 PTA 15442

A021 Gabriella A502 03-DH2-1/29 N077 Red Baron N633 PCS 2877

A022 Granola A503 05-DH2-1/48 N078 Red Pontiac N634 PHU IPV48

A023 Hermes A504 04-DGNR13-7 N079 Riviera N635 PNT 3863

A024 Husar A505 04-DGNR13-9 N080 Roja Riñon N636 PLD 8182

A025 Innovator A506 04-DGNR14-2 N081 Romano N637 PLT 53650

A026 Labadia A507 04-DGNR14-3 N083 Rosa Gold N638 QUM 27163

A027 Lady Rosetta A508 04-DGNR15-4 N084 Rudolph N639 RAP 636

A028 Laura A509 04-DGNR15-6 N085 Saline N640 SPL 959

A029 Marella A510 04-DGNR16-4 N086 San N641 STN 4715

A030 Norchip A511 04-DIP1/1 N087 Satellite N642 STO 2092

A031 Obelix A512 04-DIP1/3 N089 Saviola N643 SCR 18206

A032 Optima A513 DIP1/9 N091 Sofia N644 TAR 3746

A033 Pamela A514 05-DGNR17-1 N092 Soprano N645 TOR 767

A034 Ponto A515 05-DH2-12-2 N094 Taurus N646 TRF 18335

A035 Ramos A516 05-DH2-14-3 N095 Tebina N647 VNT 8239

A036 Red Scarlett A517 05-DH2-17-1 N096 Tramontana N648 VRN 15451

A037 Rodeo A518 05-DH2-17-2 N097 Victor N649 VER 1340

A038 Romeo A519 D99H2.10 N098 Violeta N650 YUN 2173
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B. Supplemental data provided on CD

Supplemental Content

Figure B.1 Electrophoresis patterns of SSR markers in QUEST

Protocol B.1 Pyrosequencing protocol (version august 2013)

Protocol B.2 RAD sequencing protocol (version august 2012)

Sequence B.1 Genomic sequence CP12-2 (PGSC0003DMG400009042)

Sequence B.2 Genomic sequence AP2TF (not annotated)

Sequence B.3 Genomic sequence SSsIV (PGSC0003DMG400008322)

Sequence B.4 Genomic sequence PGM1 (not annotated)

Sequence B.5 Genomic sequence SssI (PGSC0003DMG402018552)

Sequence B.6 Genomic sequence PGI1 (PGSC0003DMG400012910)

Sequence B.7 Genomic sequence Pho1b (PGSC0002DMG400028382)

Sequence B.8 Genomic sequence F2PA (PGSC0003DMG400030565)

Sequence B.9 Genomic sequence CP12-1 (PGSC0003DMG400007286)

Sequence B.10 Genomic sequence BEL5 (PGSC0003DMG400005930)

Sequence B.11 Genomic sequence QUA1 (PGSC0003DMG400020103)

Sequence B.12 Genomic sequence BMY1 (PGSC0003DMG400001855)

Sequence B.13 Genomic sequence 60S (PGSC0003DMG400029622)

Sequence B.14 Genomic sequence CIS (PGSC0003DMG400007797)

Table B.1 List of genotypes that were grown in the Quest project

Table B.2 Primary phenotype data

Table B.3 Adjusted entry means Quest population and diploid clones

Table B.4 Partial correlations between phenotypic traits in the Quest popula-

tion

Table B.5 SSR markers genotyped in the Quest population

Table B.6 PCR markers genotyped in the Quest population

Table B.7 Genotypic data QUEST population (Chapters 2+ 3)

Table B.8 All marker-trait associations (p-value <0.05)

Table B.9 Comparison between GLM, MLM-k and MLM-Pk statistical models

(p-values)

Table B.10 LD between alleles of candidate gene SNPs (Chapter 2)
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Table B.11 LD between alleles of candidate gene SNPs (Chapter 3)

Table B.12 LD between alleles of SolCAP SNP loci (Chapter 3)

Table B.13 Correlation between SolCAP technical replicates

Table B.14 Result chi-square test SolCAP SNPs in case-control study for TSC

Table B.15 Result chi-square test SolCAP SNPs in case-control study for TY

Table B.16 Result chi-square test SolCAP SNPs in case-control study for TSY

Table B.17 List of 328 significant (p-value <0.01) SolCAP SNPs in the case-

control studies

Table B.18 Compiled list of 142 annotated candidate genes and markers from

previous studies

Table B.19 List of detected RADseq SNPs in the case-control study for TSC

Table B.20 List of detected RADseq SNPs in the case-control study for TY

Table B.21 List of detected RADseq SNPs in the case-control study for TSY

Table B.22 List of significant (FDR <0.05) RADseq SNPs in annotated loci in

the case-control study for TSC

Table B.23 List of significant (FDR <0.05) RADseq SNPs in annotated loci in

the case-control study for TY

Table B.24 List of significant (FDR <0.05) RADseq SNPs in annotated loci in

the case-control study for TSY

Table B.25 List of significant (FDR <0.05) RADseq SNPs in the TSC case-

control study containing more than 5 significant and non-synonymous

RADseq SNPs per locus

Table B.26 List of significant (FDR <0.05) RADseq SNPs in the TY case-control

study containing more than 5 significant and non-synonymous RAD-

seq SNPs per locus

Table B.27 List of significant (FDR <0.05) RADseq SNPs in the TSY case-

control study containing more than 5 significant and non-synonymous

RADseq SNPs per locus

Table B.28 List of novel candidate loci from RADseq for tuber starch con-

tent, tuber yield and starch yield, more than 5 significant and non-

synonymous SNPs per locus
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Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte

Dissertation ist von PD Dr. Christiane Gebhardt betreut worden.
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