Analysis of a second *Drosophila* Cornichon Protein

Inaugural-Dissertation

zur Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

vorgelegt von
Waldemar Wojciech
aus Laurahütte

Köln, 2014
Berichterstatter/in: Prof. Dr. Siegfried Roth

Berichterstatter/in: Prof. Dr. Henrike Scholz

Tag der letzten mündlichen Prüfung: 02.07.2014
Contents

Contents

- List of abbreviations IV

Introduction 1

1.1 The model organism *Drosophila melanogaster* 1

1.2 The early secretory pathway 2

1.3 COPII vesicle formation and cargo selection 4

1.4 COPII dependent cargo concentration 6

1.5 Transmembrane cargo receptors 6

1.6 The Cornichon protein family: Conserved cargo receptors 8

1.7 Human Cornichon homolog 4:蛋白 interactions and specificity for secretory cargo 10

1.8 Cornichon function: Evidence for diverse roles in neurotransmission 11

1.9 Objective 13

Materials and methods 14

2.1 Materials 14

2.1.1 General laboratory equipment 14

2.1.2 Chemicals 14

2.1.3 Reaction kits 14

2.1.4 Restriction enzymes and buffers 15

2.1.5 Solutions and media 15

2.1.6 Fly stocks 17

2.1.7 Oligonucleotides and primers 18

2.1.8 Vectors and plasmids 20

2.1.9 Antibodies and fluorescent dyes 21

2.1.10 Microscopy 21

2.1.11 Computer software 22

2.2 Methods 22

2.2.1 Fly stock keeping and breeding 22

2.2.2 Fly stock keeping and breeding for behavioural experiments 23

2.2.3 Evaluation of mendelian crosses 23
2.2.4 Negative gravitaxis assay ... 23
2.2.5 Adult survivorship assay ... 24
2.2.6 Developmental survivorship assay 25
2.2.7 Alcohol sensitivity assay ... 25
2.2.8 Generation of transgenic flies 26
2.2.9 Generation of cnir knock-out flies 27
2.2.10 Generation of a Δcnir/cniAR55 double mutant 28
2.2.11 Generation of clones .. 28
2.2.12 Extraction of genomic DNA ... 29
2.2.13 RNA extraction and cDNA synthesis 29
2.2.14 Quantification of DNA .. 30
2.2.15 Polymerase chain reaction (PCR) 30
2.2.16 Gel electrophoresis .. 31
2.2.17 Sequencing of DNA .. 31
2.2.18 Cloning and ligation .. 32
2.2.19 Transformation of bacteria ... 33
2.2.20 Isolation of plasmid DNA ... 33
2.2.21 Cloning of cnir donor construct 33
2.2.22 Preparation of egg shells ... 34
2.2.23 Dissection, fixation and antibody staining in ovaries 34
2.2.24 Dissection, fixation and antibody staining in imaginal discs 34
2.2.25 Phylogenetic analysis of Cornichon proteins and protein membrane topology ... 35

3 Results .. 36

3.1 Phylogenetic analysis of Cni proteins and the Cnir membrane topology ... 36
3.2 Generation of a cnir knock-out line 36
3.3 Survivorship of Δcnir throughout development 42
3.4 Survivorship of adult Δcnir flies 45
3.5 Locomotion defects of Δcnir flies 45
3.6 Ethanol sensitivity of Δcnir flies 48
3.7 Muscular rescue of locomotion defects 50
3.8 Neuronal rescue of locomotion defects 53
3.9 Cnir protein localization and neuronal rescue with GFP:Cnir 56
3.10 Analysis of a cnir/cni double mutant 61
4 Discussion

4.1 Generation of a mutant for cnir: A putative ortholog of human CNIH4

4.2 Δcnir is not lethal but has an impact on mortality throughout development and adult life

4.3 Locomotor behaviour depends on Cnir function in neurons but not in muscles

4.4 Loss of Cnir leads to decreased ethanol sensitivity

4.5 GFP tagged Cnir potentially localizes to the ER but is not functional in the soma

4.6 Drosophila Cni and Cnir do not show strong functional redundancy in the soma

4.7 Perspectives

References

Supplement

List of figures

List of tables

Zusammenfassung

Abstract

Danksagungen

Erklärung

Lebenslauf
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>adenylyl cyclase</td>
</tr>
<tr>
<td>act</td>
<td>actin</td>
</tr>
<tr>
<td>AMPA</td>
<td>ρ-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid</td>
</tr>
<tr>
<td>AMPAR</td>
<td>ρ-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor</td>
</tr>
<tr>
<td>AR</td>
<td>adrenergic receptor</td>
</tr>
<tr>
<td>At</td>
<td>Arabidopsis thaliana</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>b</td>
<td>black</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>3′-5′-cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary</td>
</tr>
<tr>
<td>cds</td>
<td>coding sequence</td>
</tr>
<tr>
<td>CA</td>
<td>countercurrent apparatus</td>
</tr>
<tr>
<td>Cf</td>
<td>partition coefficient</td>
</tr>
<tr>
<td>CFP</td>
<td>cyan fluorescent protein</td>
</tr>
<tr>
<td>cn</td>
<td>cinnabar</td>
</tr>
<tr>
<td>Cni</td>
<td>Cornichon</td>
</tr>
<tr>
<td>CNIH</td>
<td>Cornichon homolog</td>
</tr>
<tr>
<td>Cnir</td>
<td>Cornichon related</td>
</tr>
<tr>
<td>COPI/II</td>
<td>coat protein complex I/II</td>
</tr>
<tr>
<td>CyO</td>
<td>Curly of Oster</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DD2R</td>
<td>Dopamine D2-like receptor</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>Dnc</td>
<td>Dunce</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>Dm</td>
<td>Drosophila melanogaster</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>ER associated degradation</td>
</tr>
</tbody>
</table>
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>eye</td>
<td>eyeless</td>
</tr>
<tr>
<td>ERES</td>
<td>ER exit sites</td>
</tr>
<tr>
<td>fig.</td>
<td>figure</td>
</tr>
<tr>
<td>FLP</td>
<td>flipase</td>
</tr>
<tr>
<td>FRT</td>
<td>flipase recombination target</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase activating protein</td>
</tr>
<tr>
<td>GEF</td>
<td>guanine exchange factor</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>Gg</td>
<td>Gallus gallus</td>
</tr>
<tr>
<td>Gla</td>
<td>glazed</td>
</tr>
<tr>
<td>GluR</td>
<td>glutamate receptor</td>
</tr>
<tr>
<td>GPCR</td>
<td>G protein coupled receptor</td>
</tr>
<tr>
<td>Grk</td>
<td>Gurken</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Hs</td>
<td>Homo sapiens</td>
</tr>
<tr>
<td>hs</td>
<td>heat shock promoter</td>
</tr>
<tr>
<td>IF</td>
<td>irregular facit</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pairs</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>M</td>
<td>mole</td>
</tr>
<tr>
<td>MCP</td>
<td>bacteriophage MS2 coat protein</td>
</tr>
<tr>
<td>MET</td>
<td>mean elution time</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mhc</td>
<td>myosin heavy chain</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>Mm</td>
<td>Mus musculus</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NGS</td>
<td>normal goat serum</td>
</tr>
<tr>
<td>NMJ</td>
<td>neuromuscular junction</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>nos</td>
<td>nanos</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>Nv</td>
<td>Nasonia vitripennis</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBT</td>
<td>phosphate buffered saline with Triton X-100</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pr</td>
<td>purple</td>
</tr>
<tr>
<td>Rn</td>
<td>Rattus norvegicus</td>
</tr>
<tr>
<td>rpm</td>
<td>round per minute</td>
</tr>
<tr>
<td>ry</td>
<td>rosy</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>Sc</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>Sco</td>
<td>Scutoid</td>
</tr>
<tr>
<td>SM</td>
<td>second multiple</td>
</tr>
<tr>
<td>SOC</td>
<td>super optimal broth with catabolite repression</td>
</tr>
<tr>
<td>Sp</td>
<td>Sternopleural</td>
</tr>
<tr>
<td>SSC</td>
<td>saline-sodium citrate</td>
</tr>
<tr>
<td>tab.</td>
<td>table</td>
</tr>
<tr>
<td>Taq</td>
<td>Thermus aquaticus</td>
</tr>
<tr>
<td>TARP</td>
<td>transmembrane AMPAR regulatory protein</td>
</tr>
<tr>
<td>Tc</td>
<td>Tribolium castaneum</td>
</tr>
<tr>
<td>TGFα</td>
<td>transforming growth factor α</td>
</tr>
<tr>
<td>TMD</td>
<td>transmembrane domain</td>
</tr>
<tr>
<td>TM2</td>
<td>third multiple 2</td>
</tr>
<tr>
<td>TM6B</td>
<td>third multiple 6B</td>
</tr>
<tr>
<td>Tris</td>
<td>tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>tub</td>
<td>tubulin</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>UAS</td>
<td>upstream activating sequence</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>w</td>
<td>white</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
<tr>
<td>YFP</td>
<td>yellow fluorescent protein</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>X-Gal</td>
<td>bromo-chloro-indolyl-galactopyranoside</td>
</tr>
<tr>
<td>β-Gal</td>
<td>β-Galactosidase</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 The model organism Drosophila melanogaster

The fruit fly Drosophila melanogaster is one of the best studied model organisms in biology. Besides the classical advantages like the short generation time of only ten days and the high number of progeny, the Drosophila genome is also completely sequenced since the year 2000 [Adams et al., 2000]. Furthermore, it is estimated that approximately 75% of human disease genes have an obvious ortholog in flies, which makes Drosophila a valuable model for human disease [Chien et al., 2002].

The advantages of Drosophila as a model are augmented by the availability of diverse techniques for genetic manipulation that allow the precise study of genes and their roles in cellular processes. For example, transgenesis via the P element-mediated [Rubin and Spradling, 1983] and φC31 integrase transformation [Bischof et al., 2007] systems offer the opportunity for expression studies of tagged proteins to monitor their cellular and subcellular localization. Furthermore, the UAS/Gal4 system [Brand and Perrimon, 1993] enables misexpression of genes to investigate their temporal and spatial requirement. In addition, the FLP/FRT system [Chou et al., 1993; Xu and Rubin, 1993; Chou and Perrimon, 1996] for generation of mitotic clones can be used to analyze labeled mutant cells in direct comparison to wild type cells in the same tissue. Finally, genetic tools to create gene knock-outs via homologous recombination allow the generation of mutants for any gene of interest [Gong and Golic, 2003; Huang et al., 2008].

Overall, Drosophila holds many tissues that are accessible for extensive manipulation and are models for many cellular and developmental events. Oogenesis, for example, requires almost all cellular processes for the development of a stem cell into a mature egg, such as cell cycle control, fate specification, cell polarization and epithelial morphogenesis [Bastock and St Johnston, 2008]. In addition, Drosophila imaginal discs are a common epithelial model for investigation of pattern formation and cell proliferation [McClure and Schubiger, 2005]. Furthermore, the larval neuromuscular junction (NMJ) poses a comparatively simple system to investigate developmental and functional plasticity at synapses that possess glutamate receptors homologous to those in the mammalian brain [Menon et al., 2013].
Moreover, *Drosophila* is a complex organism with a rich behavioral repertoire that has been established as a model for larval and adult locomotion [Gargano *et al.* 2005; Inagaki *et al.* 2010; Sinadinos *et al.* 2012], alcohol research [Devineni and Heberlein 2013], as well as aging [Partridge *et al.* 2011].

In this thesis, all of these advantages of *Drosophila* as a model are applied to investigate the function of Cornichon-related (Cnir). *Drosophila* Cnir belongs to a highly conserved protein family of cargo receptors, but its function has not been investigated. In the early secretory pathway of all eukaryotic cells, Cornichon proteins facilitate efficient endoplasmic reticulum (ER) export of numerous secretory proteins. Therefore, the mechanisms of early protein secretion are introduced below.

1.2 The early secretory pathway

In eukaryotic cells many proteins enter the secretory pathway in order to be accurately delivered with the correct temporal and spatial localization, such as to the plasma membrane or extracellular space. Therefore, this process is crucial for cell function and development of all eukaryotic organisms [Dancourt and Barlowe 2010; D’Arcangelo *et al.* 2013].

Secretory proteins have sorting elements that are recognized by the intracellular transport machinery at multiple stages of the transport process to guide the protein cargo to its proper location. The organization of the secretory pathway, which consists of membrane bound compartments, strongly depends on coat protein complexes. Those complexes recognize sorting signals at the surface of single compartments and selectively sort proteins into transport vesicles. The best studied coat complexes are clathrin and coat protein complexes I and II (COPI and COPII). Each of those complexes is a multi subunit structure, and direct binding of a subunit to a cargo protein is required for uptake into a forming carrier vesicle. However, in some cases the efficient incorporation of a cargo into a transport vesicle requires adaptor proteins or transmembrane receptors [Dancourt and Barlowe 2010].

Translation and folding of nascent secretory proteins take place at the ER. An efficient quality control system ensures that unfolded proteins are retained or not recognized for uptake into COPII vesicles and subsequent transport to pre Golgi or Golgi compartments until proper folding occurs [Vembar and Brodsky 2008; Dancourt and Barlowe 2010]. The transport between ER and Golgi is highly dynamic [Sciaky *et al.*].
The anterograde transport of secretory proteins in COPII vesicles is equilibrated by a retrograde transport in COPI vesicles in order to recycle vesicle components and ER resident escaped proteins (fig. 1.1). However, secretory cargo advances steadily forward, while resident proteins of the early secretory pathway are dynamically transported back into the proper compartments (Dancourt and Barlowe, 2010).

To understand cargo selection for anterograde transport from the ER, it is important to elucidate the composition of COPII vesicles and mechanisms of their formation. Hence, these processes are considered next.

Figure 1.1 | Bidirectional transport between ER and Golgi
Scheme of the bidirectional transport between ER and Golgi. Nascent secretory proteins are translated and folded in the ER. Completely folded transmembrane and soluble cargo proteins are subsequently incorporated into COPII vesicles for anterograde transport to the pre-Golgi and Golgi compartments. The anterograde transport is balanced by a retrograde transport in COPI vesicles in order to recycle vesicle components and retrieve escaped ER resident proteins (R). As a consequence of those processes, secretory cargo moves steadily anterograde, while resident proteins localize dynamically to early secretory compartments (figure from Dancourt and Barlowe, 2010).
1.3 COPII vesicle formation and cargo selection

The machinery responsible for budding of COPII vesicles is localized to regions known as ER exit sites (ERES) [Orci et al., 1991; Bannykh et al., 1996; Rossanese et al., 1999; Dancourt and Barlowe, 2010]. The different steps in COPII vesicle assembly are depicted in fig. 1.2.

The first event in COPII vesicle formation is the activation of the small GTPase Sar1p by its guanine exchange factor (GEF) Sec12p. As a consequence of Sar1p activation through the exchange of GDP to GTP, its hydrophobic N-terminal amphatic α-helix is exposed and inserted into the ER membrane. That process leads to the bending of the membrane and recruitment of the Sec23-Sec24 complex. This complex serves as a cargo adaptor and furthermore as a specific GTPase activating protein (GAP) complex for Sar1p. Lastly, the outer layer, consisting of Sec13-Sec31 heterotertramers, forms around the Sar1-Sec23-Sec24 pre budding complex. This leads to formation of a cage like structure that bends the lipid bilayer of the ER and finally buds vesicles [Lee et al., 2004, 2005; Budnik and Stephens, 2009; Dancourt and Barlowe, 2010; D’Arcangelo et al., 2013]. In vitro studies have shown that cage like structures [Stagg et al., 2006], as well as COPII vesicles [Matsuoka et al., 1998], can be formed with merely the corepurified proteins (Sar1p, Sec23-Sec24, Sec13-Sec31) and synthetic liposomes [Dancourt and Barlowe, 2010; D’Arcangelo et al., 2013].

In addition to the primary feature of forming vesicles, the COPII recognizes and selects cargo proteins for uptake into vesicles, while separating them from ER resident proteins [Salama et al., 1993; Barlowe et al., 1994]. Typically, cargoes can be subdivided into integral membrane proteins and soluble luminal proteins. Transmembrane proteins can have one or multiple membrane spanning segments and a type I topology with the N-terminus facing the inside, or a type II topology with the N-terminus facing the outside of the ER lumen [Dancourt and Barlowe, 2010]. Transmembrane cargoes have sorting signals presented on their cytoplasmic surfaces that direct their uptake into COPII [Bonifacino and Glick, 2004]. Biochemical approaches show that transmembrane cargo proteins bind to the Sec23-Sec24 complex. Furthermore, this interaction is sorting signal dependent [Aridor et al., 1998; Kuehn et al., 1998]. The presence of a non hydrolyzable GTP is able to stabilize the formation of the cargo complex consisting of Sec23-Sec24, Sar1p-GTP and cargo. In contrast, the controlled hydrolysis of GTP by Sar1p enables the complex to dissociate. Thus, the cargo can be released from its sorting subunits and COPII components can be recycled at ERES.
Introduction

Figure 1.2 | COPII vesicle formation and cargo selection

Scheme of the COPII vesicle formation and cargo selection process. The GEF Sec12p activates Sar1p. Subsequently, Sec23-Sec24 binds to the activated membrane-bound Sar1p-GTP and form pre budding complexes. In those complexes Sec24p is responsible for binding to sorting signals present on cargo proteins. As indicated, the binding of cargo proteins to Sec24p can be direct or mediated by transmembrane sorting receptors. Ultimately, the Sec13-Sec31 complex is recruited to the pre budding cargo complexes, forming the outer layer. This leads to curvature of the ER membrane and finally budding of the vesicle (figure modified from D’Arcangelo et al. [2013]).

[Dancourt and Barlowe, 2010]. The binding of Sec24p to well defined sorting signals is possible due to various cargo recognition sites within this protein [Miller et al., 2003; Mosessova et al., 2003]. In addition, the diversity of potentially recognized sorting signals is increased by the presence of several Sec24p isoforms [Miller et al., 2002; Wendeler et al., 2007].

Many soluble cargo proteins do not span the ER membrane and thus cannot be recognized by COPII subunits. Furthermore, not all secretory proteins possess noticeable COPII sorting signals. Hence, transmembrane cargo receptors may be necessary to facilitate efficient export of many types of secretory cargoes from the ER by linking them to the COPII budding complex [Dancourt and Barlowe, 2010].

The cargo recognition is often associated with cargo concentration. Therefore, the mechanisms of cargo concentration will be addressed in the following section.
1.4 COPII dependent cargo concentration

Early studies already suggested that viral transmembrane proteins can be concentrated during transport from the ER to the Golgi [Quinn et al., 1984] and that some viral glycoproteins can be concentrated up to tenfold during vesicle budding from the ER [Balch et al., 1994]. Those results were supported by in vitro data [Salama et al., 1993; Rexach et al., 1994; Aridor et al., 1998; Kuehn et al., 1998] and genetic experiments [Kappeler et al., 1997; Nishimura and Balch, 1997] indicating a COPII dependent concentrative ER export of integral membrane cargo [Dancourt and Barlowe, 2010]. As previously mentioned, the recognition of signals in transmembrane cargo strongly relies on Sec24p [Miller et al., 2003; Mosessova et al., 2003].

Although transmembrane cargoes are concentrated during transport, soluble secretory proteins show both, concentrative [Mizuno and Singer, 1993; Malkus et al., 2002] or bulk flow mechanisms [Martínez-Menárguez et al., 1999]. Which mechanism is used depends mainly on the cargo investigated [Barlowe, 2003; Dancourt and Barlowe, 2010]. Therefore, bulk flow and concentrative ER export mechanisms cannot be seen as mutually exclusive [Dancourt and Barlowe, 2010]. Importantly, there is evidence that secretory cargo requires cargo receptors for concentration into COPII during budding from the ER [Barlowe et al., 1994; Kuehn et al., 1998; Dancourt and Barlowe, 2010].

As previously discussed, cargo receptors are crucial for recognition and concentration of cargo. How cargo receptor binding to its cargoes is regulated, the impact of cargo receptors on ER quality control and the consequences of mutation of a specific cargo receptor are described below.

1.5 Transmembrane cargo receptors

Many abundant membrane proteins that localize to early secretory compartments and transport intermediates act in cargo sorting and transport between the ER and Golgi. Cells lacking specific cargo receptors show particular sorting defects characterized by an inefficient export of a subset of secretory proteins from the ER, while other secretory proteins traffic at normal rates. Cargo sorting receptors are believed to cycle between ER and Golgi compartments in COPII and COPI vesicles due to cytoplasmically exposed coat recognition signals. Thus, anterograde transport of a specific cargo through binding in the ER is followed by dissociation in the pre Golgi and
Golgi compartments. The dissociation is induced by a lower pH and potentially by Ca$^{2+}$ gradients. This in turn leads to conformational changes in cargo receptors to decrease their affinity for cargo. In addition, every characterized cargo receptor forms oligomeric complexes, allowing major conformational shifts in slightly different pH conditions, which is a widely used mechanism for regulation of binding affinity [Dancourt and Barlowe, 2010].

Cargo receptors can be subdivided into canonical and non canonical. The first link lumenal cargo to the COPII coat while the latter facilitate transport of integral membrane proteins, which could exhibit their own ER export motifs [D’Arcangelo et al., 2013].

While cargo receptors appear not to be involved in cargo folding, the binding of cargo to a receptor is directly connected to the ER quality control. For instance, yeast strains lacking certain cargo receptors show activation of the unfolded protein response pathway [Belden and Barlowe, 2001a; Bue et al., 2006; Jonikas et al., 2009; Dancourt and Barlowe, 2010]. Furthermore, a terminally misfolded ER associated degradation (ERAD) substrate in yeast has a reduced turnover rate when its cargo receptor is lacking. It could be that in this case susceptibility of the misfolded cargo for ERAD depends on prior binding to its receptor for ER exit and subsequent retrieval from post ER compartments [Kincaid and Cooper, 2007]. Yet, an affinity of a cargo receptor for its misfolded cargo can also be reduced, which might help to guide the misfolded cargo away from the ER folding chaperones, making it more prone to ERAD [Dancourt and Barlowe, 2009, 2010]. Furthermore, some data demonstrate that several cargo receptors recognize preferentially completely folded and assembled cargo [Otte and Barlowe, 2004; Appenzeller-Herzog et al., 2005; Dancourt and Barlowe, 2009, 2010]. Thus many different mechanisms possibly couple cargo binding to its receptor to the ER quality control.

Although cargo receptors share most of the common features described in the previous sections, each of them has specific activities. The following section will address the function of the Cornichon protein family of cargo receptors in more detail.
The Cornichon protein family: Conserved cargo receptors

Drosophila Cornichon (Cni) is the founding member of a conserved protein family of cargo receptors [Roth et al., 1995]. At least two Cni paralogs can be found in almost all eukaryotes analyzed so far, ranging from plants to vertebrates. In Drosophila, the cni mutation is characterized by a ventralized embryo due to a failure in ER export of the TGFα ligand Gurken (Grk). For proper signaling, Grk must be processed and transported to the oocyte surface [Roth et al., 1995; Herpers and Rabouille, 2004; Bökel et al., 2006; Dancourt and Barlowe, 2010]. It has been shown molecularly that the first 30 membrane proximal residues of Grk are necessary for interaction with the N-terminal half of Cni. The Drosophila genome encodes a second Cni paralog known as Cni-related (Cnir). Although very little is known about cnir, there are hints that the two Drosophila cni genes have partially overlapping functions. For example, the lack of one cnir copy in a cni amorphic mutant background leads to synthetic lethality. Furthermore, it has been shown that expression of cnir under the control of a cni promoter rescues the synthetic lethality, as well as some somatic phenotypes of cni mutant flies [Bökel et al., 2006]. Mechanistically, the recognition of cargo by Cni proteins, as well as its role as a cargo receptor, seem to be conserved, since studies of the mammalian Cornichon homolog 1 (CNIH1) shows that the protein colocalizes with makers of the early secretory pathway and that it affects secretion of mammalian TGFα [Castro et al., 2007; Dancourt and Barlowe, 2010].

One of the molecularly best studied Cni proteins is the yeast Erv14p, a small hydrophobic protein, which spans the ER membrane three times and is a non canonical cargo receptor (fig. 1.3). Hence, it has one cytoplasmic loop and one that faces the ER lumen. Erv14p is a component of COPII vesicles that mediate cargo export of the transmembrane secretory protein, Axl2p, to the cell surface. The delivery of Axl2p is important for budding site selection [Powers and Barlowe, 1998, 2002]. It has been demonstrated that Erv14p physically interacts with Axl2p, as well as the COPII pre budding Sec23-Sec24-Sar1-GTP complex. Binding of Erv14p to subunits of the COPII coat is believed to depend on conserved residues in its cytoplasmic second loop domain [Powers and Barlowe, 2002].

Furthermore, Erv14p is involved in the transport of Sma2p which is important for prospore membrane formation during yeast sporulation. Prospore membrane defects
Figure 1.3 | Model of Erv14p
Model of the Erv14p protein structure with its N-terminus being cytoplasmically localized, while its C-terminus resides in the ER lumen. The cytoplasmic second loop is believed to be crucial for Erv14p binding to the COPII coat (figure modified from Powers and Barlowe [2002]).
Introduction

properties, rather than sequence motifs [Herzig et al., 2012]. It could be that Erv14p functions as a chaperone to protect cargo TMDs from degradation, which is possibly triggered by hydrophobic mismatches between the thin lipid bilayer of the ER and the long TMDs of those cargoes [D’Arcangelo et al., 2013].

Although TMD length of cargo proteins is also crucial for their Golgi exit and localization to the plasma membrane, Erv14p does not play a role in this later sorting process. It has been speculated that in this case Golgi exit of cargo requires another cargo receptor, or depends on a different vesicle composition [Herzig et al., 2012].

1.7 Human Cornichon homolog 4: Protein interactions and specificity for secretory cargo

Novel investigations identify the human CNIH4 as an interaction partner of members from the three major families of G protein coupled receptors (GPCRs). GPCRs represent the largest superfamily of cell surface receptors and although they do not possess a high sequence homology they share a seven TMD topology, with each TMD being 20-30 amino acids long. GPCRs are categorized into six families (A-F), with A-C representing the main families [Caers et al., 2012; Sauvageau et al., 2014]. GPCRs regulate an immense number of physiological and cellular processes like proliferation, development, sensory perception, metabolism, nerve transmission, neuromodulation and locomotion [Bendena et al., 2012]. Thus, they are activated by a broad range of ligands. For example, family A GPCRs are activated by odorants, biogenic amines, neuropeptides, peptidergic hormones, lipids, nucleotides, proteases, and even photons. Family B GPCRs bind to hormones and peptides, while family C (metabotropic glutamate) binds to amino acids, ions, and tastants [Allen and Roth, 2011]. Yet, all known neuropeptide GPCRs belong to family A (rhosopsin-like) or family B (secretin-like) [Caers et al., 2012].

After synthesis, folding and assembly, GPCRs are packed into COPII vesicles at ERES [Dupré et al., 2006; Dong et al., 2008; Sauvageau et al., 2014] and transported through the pre Golgi and Golgi compartments to the plasma membrane. During the trafficking process, many GPCRs undergo consecutive post translational modifications like N- and O-glycosylation, which can be used as readouts for their maturation state [Dong et al., 2007; Sauvageau et al., 2014]. Strikingly, the ER exit has been shown
to be the bottleneck in maturation and cell surface transport of GPCRs [Petaja-Repo et al. 2000; Sauvageau et al. 2014].

Human CNIH4 interacts selectively with members from the three major families of GPCRs (A-C) and the COPII components Sec23 and Sec24. Furthermore, it does not bind single TMD proteins like EGFR, the T-cell receptors CD4 and CD8, or the 12 TMD adenyl cyclase, which implies CNIH4 specificity in cargo selection. CNIH4 localizes to the early secretory pathway and overexpression, as well as knock down of CNIH4, causes retention of GPCRs in the ER. However, low levels of CNIH4 are crucial for maturation and cell surface expression of the G protein coupled β2-adrenergic receptor (family A). In contrast to the knock-down of CNIH4, the overexpression leads to proteasome mediated degradation of receptors. This indicates an active function of CNIH4 in degradation of ER retained cargo. CNIH4 does not colocalize with GPCRs at the plasma membrane and selectively binds to the immature ER form of β2-adrenergic receptor, indicating no permanent interaction. Taken together, the data suggest an important function of CNIH4 in regulation of GPCR export levels [Sauvageau et al. 2014].

Interestingly, many Drosophila GPCRs, neuropeptides and GPCR signaling pathways elements are important models for their vertebrate homologs due to high functional conservation. Even minor changes in GPCRs, or their regulatory proteins can result in behavioral plasticity because of changes in GPCR controlled pathways [Benedena et al., 2012]. However, there is no evidence for involvement of Drosophila Cni proteins in the control of GPCR trafficking and the potentially resulting behavioral alterations.

Although Cni proteins represent a conserved family of cargo receptors, there is evidence that they also possess a role beyond trafficking of transmembrane cargo. New studies show that some Cni paralogs are involved in regulation of neurotransmission through Glutamate receptors. Therefore, the Cni function in neurons is highlighted next.

1.8 Cornichon function: Evidence for diverse roles in neurotransmission

Several recent studies identify Cni proteins as a functional subunit of ionotrophic glutamate receptors (GluRs) of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropio
nic acid) subtype [Schwenk et al., 2009; Kato et al., 2010; Shi et al., 2010; Coombs et al., 2012]. The tetrameric AMPA receptors (AMPARs) consist of the pore-lining α-subunits GluA1-4 and auxiliary β-subunits that regulate their gating properties and trafficking. Thereby, the β-subunits mediate swift excitatory synaptic transmission in the mammalian brain [Harmel et al., 2012]. The transmembrane AMPAR regulatory proteins (TARPs) have six isoforms and are β-subunits of most AMPARs [Gill et al., 2011]. Nevertheless, it has been shown that the majority of AMPARs in the rat brain are co-assembled with Cornichon homolog 2 and 3 (CNIH2 and CNIH3), rather than TARPs. In heterologous cells, CNIH proteins increase surface expression of AMPARs and furthermore alter channel gating by slowing deactivation and desensitization kinetics [Schwenk et al., 2009; Kato et al., 2010; Shi et al., 2010; Coombs et al., 2012]. The picture is complicated further by a diverse localization of CNIH2 in different neuron types depending on the expressed TARP isoform. For instance, CNIH2 can be found in the surface of hippocampal neurons, while it is absent at the surface of Purkinje neurons of stargazer mice expressing a different TARP isoform [Gill et al., 2011]. In addition, CNIH2 differentially modulates AMPAR kinetics depending on the TARP isoform composition in the receptor complex [Gill et al., 2012].

The first in vivo analysis of Cni proteins was performed in CNIH2/CNIH3 conditional knock-out mice.Glutamate gated currents are strongly reduced in CNIH2/CNIH3 mutant hippocampal neurons due to the selective binding of CNIH2 and CNIH3 to GluA1 [Herring et al., 2013]. Thus only GluA1 containing AMPARs, which are predominant in hippocampal neurons and deactivate slowly, can be localized to the plasma membrane [Lu et al., 2009; Herring et al., 2013]. It is reasoned that interaction of CNIH2 and CNIH3 with other GluA α-subunits is prevented depending on the TARP isoform expressed in hippocampal neurons. Therefore, transport and gating of different AMPARs seems to be regulated by the interaction of its α-subunits, CNIHs and TARPs [Herring et al., 2013]. In keeping with the importance of CNIH2 in regulation of AMPARs, its deletion has been reported to be involved in mild intellectual disorders in human disease [Floor et al., 2012]. Furthermore, elevation of the CNIH1-3, but not CNIH4, mRNA levels have been reported in the prefrontal cortex of schizophrenia patients [Drummond et al., 2012].

Other studies indicate that CNIH2 still possesses its conserved function as a cargo receptor continuously cycling between ER and Golgi in a COPII dependent manner. In the ER, CNIH2 is believed to alter the glycosylation pattern of GluA2, thus regulating
AMPAR maturation and thereby possibly influencing AMPAR function at synapses [Harmel et al., 2012; Brockie et al., 2013].

A study of the sole Cni homolog (CNI-1) in Caenorhabditis elegans shows that it colocalizes with the AMPAR subunit GLR-1 and the Sec24 COPII component, indicating a role in regulation of GLR-1 trafficking. Furthermore, CNI-1 colocalizes with synaptic GLR-1. In contrast to the reports on CNIH2 and CNIH3 function in hippocampal neurons of knock-out mice [Herring et al., 2013], nematode mutants for cni-1 possess elevated synaptic transmission through AMPARs. Consistently, worms lacking CNI-1 function display a higher number of GluRs at synapses [Brockie et al., 2013]. In addition, reconstitution experiments with the vertebrate CNIH1 and CNIH2 show similar results. Therefore, although Cni proteins seem to have an evolutionarily conserved function in the regulation of AMPARs there might be additional regulatory effects on AMPAR transport in vertebrate neurons [Brockie et al., 2013].

Although the primary neurotransmitter in excitatory synapses in the fly brain is acetylcholine [Yasuyama and Salvaterra, 1999], the Drosophila larval neuromuscular junction (NMJ) synapses use ionotropic GluRs homologous to AMPARs in the mammalian brain. Moreover, many synaptic components are conserved between Drosophila and vertebrates [Chen et al., 1986; Davis et al., 1989; Lahey et al., 1994; Tabuchi and Südhof, 2002; Banovic et al., 2010; Sun et al., 2011; Menon et al., 2013]. However, no connection between Cni proteins and Glutamate receptors has been described in the fly.

1.9 Objective

The aim of this thesis was to investigate the loss of function phenotype of the Drosophila cnir gene and its impact on the viability and behavior of the fly. Furthermore, the goal was to analyze potential functional overlaps with its paralog cni.
2 Materials and methods

2.1 Materials

2.1.1 General laboratory equipment

All plastic laboratory equipment used was ordered from the companies Eppendorf (Wesseling-Berzdorf), Sarstedt (Nümbrecht), Simport Plastics Ltd. (Beloeil, QC Canada), Regina Industries Ltd. (Newcastle, England), Sorenson BioScience (West Salt Lake City, USA) and Ratiolab (Dreieich).

2.1.2 Chemicals

All chemicals used during this thesis were ordered from the companies Roth (Karlsruhe), Sigma Aldrich (Steinheim), Invitrogen (Karlsruhe), VWR International GmbH (Darmstadt) and Polysciences Europe GmbH (Eppelheim).

2.1.3 Reaction kits

Table 2.1 shows all used reaction kits and the company they were manufactured by. The kits were all used according to the supplied manuals.

<table>
<thead>
<tr>
<th>Reaction Kit</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenElute Plasmid Midiprep Kit</td>
<td>Sigma Aldrich, Steinheim</td>
</tr>
<tr>
<td>HiSpeed Plasmid Midi Kit</td>
<td>Qiagen, Hilden</td>
</tr>
<tr>
<td>Zymoclean Gel DNA Recovery Kit</td>
<td>Zymo Research, Orange, USA</td>
</tr>
<tr>
<td>ZR Plasmid Miniprep Classic</td>
<td>Zymo Research, Orange, USA</td>
</tr>
<tr>
<td>TOPO TA Cloning Kit Dual Promoter</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pENTR Directional TOPO Cloning Kit</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>SuperScript II Reverse Transcriptase</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
</tbody>
</table>
2.1.4 Restriction enzymes and buffers

Table 2.2 shows all restriction enzymes that were used, as well as the company they ordered from and the buffers they were used in. Each enzyme was used according to suggestions of the manufacturer.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Company</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotI</td>
<td>Thermo Scientific, Schwerte</td>
<td>Buffer O</td>
</tr>
<tr>
<td>NdeI</td>
<td>Thermo Scientific, Schwerte</td>
<td>Buffer O</td>
</tr>
<tr>
<td>BglII</td>
<td>Thermo Scientific, Schwerte</td>
<td>Buffer BamHI</td>
</tr>
<tr>
<td>AscI</td>
<td>NEB, Ipswich, England</td>
<td>Buffer BamHI</td>
</tr>
</tbody>
</table>

2.1.5 Solutions and media

All solutions and media used for this thesis are listed in table 2.3 in alphabetical order and were made with distilled H₂O (Milli-Q Water Purification System, Millipore, Eschborn) or labeled individually if not.

<table>
<thead>
<tr>
<th>Solution/Medium</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin:</td>
<td>100 mg/ml stock solution in 50% ethanol</td>
</tr>
<tr>
<td>Apple juice agar:</td>
<td>40 g agar</td>
</tr>
<tr>
<td></td>
<td>1 l H₂O</td>
</tr>
<tr>
<td></td>
<td>333.4 ml commercial apple juice</td>
</tr>
<tr>
<td></td>
<td>6.4 g commercial sugar</td>
</tr>
<tr>
<td></td>
<td>2.66 g liquid nipagin</td>
</tr>
<tr>
<td>BSA (10 %):</td>
<td>BSA in PBS</td>
</tr>
<tr>
<td>Fly food 1:</td>
<td>85 g agar-agar</td>
</tr>
<tr>
<td></td>
<td>766 g maize groats (Küper, Oberhausen)</td>
</tr>
<tr>
<td></td>
<td>180 g dry yeast (Biospringer, Maisons Alford, France)</td>
</tr>
<tr>
<td></td>
<td>100 g soy flour (Edelsoja, Hamburg)</td>
</tr>
<tr>
<td></td>
<td>816 g malt extract (Leyh-Pharma GmbH, Trusetal)</td>
</tr>
<tr>
<td></td>
<td>408 g beet treacle (Grafschafter Krautfabrik, Meckenheim)</td>
</tr>
</tbody>
</table>
Materials and methods

150 ml nipagin solution
45 ml propionic acid

Fly food 2 (20l):
160 g agar-agar
1200 g polenta
300 g dry yeast
1600 ml beet treacle
57 ml propionic acid
160 ml nipagin
filled with H₂O to 20l

Homogenization buffer:
160 mM sucrose
80 mM EDTA pH 8
100 mM Tris pH 8
0.5 % SDS
0.1 mg/ml Proteinase K

Injection buffer:
0.1 mM phosphate buffer pH 7.4
5 mM KCl

LB-medium:
0.5 % NaCl
1 % peptone 140
0.5 % Bacto yeast
adjusted to pH 7 with 2 M NaOH

LB-agar:
LB-medium with 15 g/l agar

NGS 100 %:
normal goat serum in H₂O

PBS 10x:
80 g NaCl
2 g KCl
14.4 g of Na₂HPO₄
2.4 g of KH₂PO₄
dissolved in 800 ml H₂O, adjusted pH 7.4, filled up to 1 l
with H₂O and autoclaved

PBT:
PBS with Triton-X 100

Proteinase K:
50 mg/ml diluted in PBT

SOC medium (1 l):
20 g bacto-tryptone
5 g bacto-yeast extract
0.5 g NaCl
10 ml 250 mM KCl pH 7
5 ml 2 M MgCl₂
autoclaved and 20 ml of sterile 1 M glucose added

TAE buffer $50 \times (1 \text{l})$: 242 g Tris
57.1 ml acetic acid
100 ml 0.5 M EDTA pH 8

TE buffer $10 \times$: 100 mM Tris pH 8
10 mM EDTA

X-Gal: 100 mg/ml stock solution in DMF (dimethylformamide)

2.1.6 Fly stocks

Table 2.4 shows all fly stock used during this thesis, as well as their source. The fly stocks from the collection of Prof. Dr. Siegfried Roth (Institute for Developmental Biology, University of Cologne) are labeled by SCR (stock collection Roth). Stocks received from other groups from the university of cologne are labeled as: SCS (Stock collection Scholz), SCU (Stock collection Uhlirova), SCL (Stock collection Leptin). Δcnir $[w^+]$ stocks without specific labeling derive from line no. 5.

<table>
<thead>
<tr>
<th>Fly stock</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>w^{1118}</td>
<td>SCR</td>
</tr>
<tr>
<td>w^{1118}</td>
<td>SCS</td>
</tr>
<tr>
<td>$w^-;\ IF/CyO; MKRS/TM6B$</td>
<td>SCR</td>
</tr>
<tr>
<td>$w^-;\ Gla/CyO; MKRS/TM2$</td>
<td>SCR</td>
</tr>
<tr>
<td>$w^{1118};\ Sp/CyO; TM2/TM6B$</td>
<td>SCS</td>
</tr>
<tr>
<td>$w^{1118};\ appl::Gal4$</td>
<td>SCS</td>
</tr>
<tr>
<td>$w^-;\ IF/CyO; appl::Gal4/TM6B$</td>
<td>this thesis</td>
</tr>
<tr>
<td>$w^-;\ act::Gal4$</td>
<td>SCL</td>
</tr>
<tr>
<td>$w^-;\ mhc::Gal4$</td>
<td>SCL</td>
</tr>
<tr>
<td>$y^-\ w^-\ hs::FLP; Sp/SM6; TM6$</td>
<td>SCR</td>
</tr>
<tr>
<td>$hs::Cre; Sco/CyO$</td>
<td>SCL</td>
</tr>
<tr>
<td>$y^-\ w^-;\ Ubi::GFP Ubi::GFP FRT40A/CyO$</td>
<td>BL#5198</td>
</tr>
<tr>
<td>$eye::FLP; \ FRT40A\ tub::Gal80/CyO; \ act::Gal4\ UAS::GFP/TM6B$</td>
<td>SCU</td>
</tr>
</tbody>
</table>
Materials and methods

\[y^- w^- ; hs::FLP hs::I-SceI/TM6 \quad \text{BL#6935} \]
\[y^- w^- ; \text{Pin/CyO} ; \text{Gal4}^{221[w-]} \quad \text{BL#26259} \]
\[w^- ; \text{P[dcnir]/TM2 (no. 14)} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] / \text{CyO (no. 5, 7, 21, 24 and 40)} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] / \text{CyO} ; \text{MKRS/TM6B (no. 5)} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] (\text{no. 5, 7, 21, 24 and 40}) \quad \text{this thesis} \]
\[w^{1118} ; \Delta\text{cnir} [w^+] (\text{no. 5 in Scholz } w^{1118} \text{ background}) \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir/CyO} ; \text{MRKS/TM6B (no. A1, B1 and C6)} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir/CyO (no. B2 and C2)} \quad \text{this thesis} \]
\[b \, \text{cniAR}^{55} \, \text{pr cn/CyO} \quad \text{SCR} \]
\[b \, \text{cniAR}^{55} / \text{CyO} \quad \text{SCR} \]
\[b \, \text{cniAR}^{55} \, \text{FRT40A/CyO} ; \, \text{ry/ry} \quad \text{SCR} \]
\[b \, \text{cniAA}^{12} / \text{CyO} \quad \text{SCR} \]
\[w^- ; b \, \text{Df(2L)III18/CyO b} \quad \text{SCR} \]
\[b \, \text{cniAR}^{55} / \text{CyO} ; \, \text{UAS::Tc-Star:3xHA/TM6B} \quad \text{this thesis} \]
\[b \, \text{cniAR}^{55} \, \text{pr cn/CyO} ; \, \text{nos Gal4 UAS::MCP:GFP/TM6B} \quad \text{this thesis} \]
\[\Delta\text{cnir} [w^+] \, b \, \text{cniAR}^{55} \, \text{FRT40A/CyO (no. 2 and 9)} \quad \text{this thesis} \]
\[\text{Df(2l)S7/SM6a} \quad \text{SCR} \]
\[\text{Df(2l)S7 b cniAR}^{55} \, \text{pr cn/CyO} \quad \text{SCR} \]
\[\text{IF/CyO} ; \, \text{UAS::cnir/TM6B (no. 11-5)} \quad \text{this thesis} \]
\[\text{IF/CyO} ; \, \text{UAS::GFP:cnir/TM6B (no. 12-1)} \quad \text{this thesis} \]
\[\text{IF/CyO} ; \, \text{UAS::cnir:GFP/TM6B (no. 10-2)} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] ; \, \text{UAS::cnir} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] ; \, \text{UAS::GFP:cnir} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] ; \, \text{UAS::cnir:GFP} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] ; \, \text{appl::Gal4} \quad \text{this thesis} \]
\[w^- ; \Delta\text{cnir} [w^+] ; \, \text{mhc::Gal4} \quad \text{this thesis} \]

2.1.7 Oligonucleotides and primers

Table 2.5 contains all used oligonucleotides and primers, as well as their sequence from 5’ to 3’. All oligonucleotides were synthesized by Sigma-Aldrich (Steinheim).
Materials and methods

The primers were prediluted to a 100 µM stock and a 1/10 dilution of this stock was used for final application.

Table 2.5 | Oligonucleotides

<table>
<thead>
<tr>
<th>No.</th>
<th>Oligonucleotide</th>
<th>Sequence from 5’ to 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cnir5’ homology arm_fw</td>
<td>GCGGCCGCCTTGTGGCAGACAGACTG</td>
</tr>
<tr>
<td>2</td>
<td>cnir5’ homology arm_rev</td>
<td>CATATGTATGACTAATAATTGCTTTTCAC</td>
</tr>
<tr>
<td>3</td>
<td>cnir3’ homology arm_fw</td>
<td>AGATCTAGTGTAGCCCAATAAGGCTTCGAC</td>
</tr>
<tr>
<td>4</td>
<td>cnir3’ homology arm_rev</td>
<td>GGCAGCGCCCTGACACAGAAAACGTGCCG</td>
</tr>
<tr>
<td>5</td>
<td>cnir_seq1</td>
<td>ACTTCGCCGCGCATGTAC</td>
</tr>
<tr>
<td>6</td>
<td>cnir_seq2</td>
<td>GGTCACTGACGACAGTC</td>
</tr>
<tr>
<td>7</td>
<td>cnir_seq3</td>
<td>GTAAGAAAAGTAACCACGTCC</td>
</tr>
<tr>
<td>8</td>
<td>cnir_seq4</td>
<td>CGATCACCCTGCTGAC</td>
</tr>
<tr>
<td>9</td>
<td>cnir_seq5</td>
<td>AAGTTAACCAAGAATTTTATAATG</td>
</tr>
<tr>
<td>10</td>
<td>cnir_seq6</td>
<td>CCCGCAAGACGCCCAC</td>
</tr>
<tr>
<td>11</td>
<td>cnir_seq7</td>
<td>AGTCAAAGGAAATAGCCCG</td>
</tr>
<tr>
<td>12</td>
<td>cnir_seq8</td>
<td>GGACACTGTGTCGCC</td>
</tr>
<tr>
<td>13</td>
<td>cnir_seq9</td>
<td>GCAAATGCTTATCAAAATTCT</td>
</tr>
<tr>
<td>14</td>
<td>cnir_seq10</td>
<td>GTACATGCCGCGCAAGT</td>
</tr>
<tr>
<td>15</td>
<td>cnir_seq11</td>
<td>GGCCGCAACACCAAAACAAAA</td>
</tr>
<tr>
<td>16</td>
<td>cnir_seq12</td>
<td>TTGTTTTGTTGCTGGGCC</td>
</tr>
<tr>
<td>17</td>
<td>cnir_seq13</td>
<td>GTTTACGCGGCCACAG</td>
</tr>
<tr>
<td>18</td>
<td>cnir_seq14</td>
<td>CCCAAAGCGGGTCCT</td>
</tr>
<tr>
<td>19</td>
<td>cnir_seq15</td>
<td>ATGGGGTTTCTTTAGTCCC</td>
</tr>
<tr>
<td>20</td>
<td>cnir_seq16</td>
<td>ATGACAGATCTGCCTGTATT</td>
</tr>
<tr>
<td>21</td>
<td>cnir_seq17</td>
<td>GGCAGCGAAAAGGACGA</td>
</tr>
<tr>
<td>22</td>
<td>cnir_seq18</td>
<td>GGGTCAGCTTATGCTATGGAAC</td>
</tr>
<tr>
<td>23</td>
<td>cnir_seq19</td>
<td>ACAGGACCAACACAAAACAAAT</td>
</tr>
<tr>
<td>24</td>
<td>cnir_seq20</td>
<td>TGCCGACTAGGTCGC</td>
</tr>
<tr>
<td>25</td>
<td>cnir_seq21</td>
<td>CTGCTCTGCTGCTGAC</td>
</tr>
<tr>
<td>26</td>
<td>Deletion_Hsp70</td>
<td>GAGTGCCGTTTAAGGCTGCA</td>
</tr>
<tr>
<td>27</td>
<td>Deletion_v(2)K05816</td>
<td>GGGTCTCTAGTTGGTGCTGTG</td>
</tr>
<tr>
<td>28</td>
<td>Deletion_CG17258</td>
<td>AGTCTCTTGGCTGGCTTC</td>
</tr>
<tr>
<td>29</td>
<td>Deletion_white</td>
<td>TTCCGGGTGCTGCGATAC</td>
</tr>
</tbody>
</table>
Materials and methods

2.1.8 Vectors and plasmids

All vectors and plasmids used for this thesis and their source is given in table 2.6.

Table 2.6: Vectors and plasmids

<table>
<thead>
<tr>
<th>Vector/Plasmid</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCRII-TOPO</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pCRII-TOPO 5’ hom. arm</td>
<td>this thesis</td>
</tr>
<tr>
<td>pCRII-TOPO 3’ hom. arm</td>
<td>this thesis</td>
</tr>
<tr>
<td>pGX-attP</td>
<td>Huang et al. [2008]</td>
</tr>
<tr>
<td>pGX-attP-cnir 5’ hom. arm</td>
<td>this thesis</td>
</tr>
<tr>
<td>pGX-attP-cnir 5’ 3’ hom. arms</td>
<td>this thesis</td>
</tr>
<tr>
<td>pGE-attB</td>
<td>Huang et al. [2008]</td>
</tr>
<tr>
<td>pENTR/D-TOPO</td>
<td>Invitrogen, Karlsruhe</td>
</tr>
<tr>
<td>pENTR/D-TOPO-cnir_cDNA_N-ter</td>
<td>this thesis</td>
</tr>
<tr>
<td>pENTR/D-TOPO-cnir_cDNA_C-ter</td>
<td>this thesis</td>
</tr>
<tr>
<td>pTGW (1075)</td>
<td>DGRC</td>
</tr>
<tr>
<td>pTGW-cnir_cDNA_N-ter</td>
<td>this thesis</td>
</tr>
<tr>
<td>pTGW (1076)</td>
<td>DGRC</td>
</tr>
<tr>
<td>pTWG-cnir_cDNA_C-ter</td>
<td>this thesis</td>
</tr>
<tr>
<td>pTW (1129)</td>
<td>DGRC</td>
</tr>
<tr>
<td>pTW-cnir_cDNA_N-ter</td>
<td>this thesis</td>
</tr>
</tbody>
</table>
2.1.9 Antibodies and fluorescent dyes

Tables 2.7, 2.8 and 2.9 contain all antibodies and fluorescent dyes employed, the organism they were raised in, their source and the dilutions that were used. All antibody stocks were kept at -20°C for long term storage, while predilutions were kept at 4°C.

<table>
<thead>
<tr>
<th>Table 2.7</th>
<th>Primary antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Organism</td>
</tr>
<tr>
<td>anti-GFP</td>
<td>rabbit</td>
</tr>
<tr>
<td>anti-GFP</td>
<td>mouse</td>
</tr>
<tr>
<td>anti-DE-cadherin (DCAD2)</td>
<td>rat</td>
</tr>
<tr>
<td>anti-Sec23</td>
<td>rabbit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2.8</th>
<th>Secondary antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibody</td>
<td>Organism</td>
</tr>
<tr>
<td>anti-rabbit-Alexa Fluor 488</td>
<td>goat</td>
</tr>
<tr>
<td>anti-mouse-Alexa Fluor 488</td>
<td>goat</td>
</tr>
<tr>
<td>anti-rat-Alexa Fluor 568</td>
<td>goat</td>
</tr>
<tr>
<td>anti-rabbit-Alexa Fluor 568</td>
<td>goat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2.9</th>
<th>Fluorescent dyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dye</td>
<td>Source</td>
</tr>
<tr>
<td>DAPI</td>
<td>Vector Laboratories, Servion, Switzerland</td>
</tr>
</tbody>
</table>

2.1.10 Microscopy

The examination of fluorescent antibody staining was performed on an Axioplan2 light microscope (Zeiss, Göttingen). This microscope is equipped with an HBO UV lamp and an AxioCam color 412-312 digital camera, driven by Axiovision (Release 4.6.3, Zeiss, Göttingen) software.
2.1.11 Computer software

Table 2.10 in this section shows all computer programs and the applications they were used for.

<table>
<thead>
<tr>
<th>Software</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Photoshop CS4</td>
<td>image processing</td>
</tr>
<tr>
<td>CLUSTL 2.0.12</td>
<td>sequence alignment</td>
</tr>
<tr>
<td>DFM 28</td>
<td>automated fly counting and calculation of the MET</td>
</tr>
<tr>
<td>Gene Codes Corporation Sequencher 4.9</td>
<td>sequence analysis</td>
</tr>
<tr>
<td>GraphPad Software QuickCalcs</td>
<td>calculation of p values from χ^2</td>
</tr>
<tr>
<td>JabRef 2.9.2</td>
<td>reference management</td>
</tr>
<tr>
<td>Microsoft Office 2010</td>
<td>figure assembly and statistical analysis</td>
</tr>
<tr>
<td>Oligo Calculator version 3.26</td>
<td>oligonucleotide analysis</td>
</tr>
<tr>
<td>Oligo Calculator version 3.26</td>
<td>DNA sequence analysis</td>
</tr>
<tr>
<td>pDRAW32 revision 1.1.104</td>
<td>DNA sequence analysis</td>
</tr>
<tr>
<td>Phylogeny.fr [Dereeper et al., 2008]</td>
<td>phylogenetic analysis</td>
</tr>
<tr>
<td>Statsoft, Inc. STATISTIKA 9.1</td>
<td>statistical analysis</td>
</tr>
<tr>
<td>TeX Live 2013</td>
<td>writing</td>
</tr>
<tr>
<td>TeXstudio 2.3</td>
<td>writing</td>
</tr>
<tr>
<td>TMpred</td>
<td>protein membrane topology prediction</td>
</tr>
<tr>
<td>TMHMM v. 2.0</td>
<td>protein membrane topology prediction</td>
</tr>
<tr>
<td>Zeiss Axio Vision Release 4.6.3</td>
<td>image capturing</td>
</tr>
</tbody>
</table>

2.2 Methods

2.2.1 Fly stock keeping and breeding

All *Drosophila* fly stocks were kept as described in [Ashburner, 1989] on fly food 1 at room temperature in plastic vials (Regina Industries Ltd, Newcastle, England). To reduce the generation time, crosses were kept at 25 °C. For each cross unfertilized female flies were used to grant virginity and thus the genetic purity of the crosses. Therefore, female flies were collected that were younger than 8 h at 25 °C and younger than 20 h at 18 °C.
2.2.2 Fly stock keeping and breeding for behavioural experiments

To ensure stringent parameters for all behavioral experiments, all flies were kept on fly food at 25 °C, stable humidity levels of 60% and in 12 h light/dark cycle during crosses and waiting periods. Each cross was set up in big plastic vials with 30 virgin female flies and 15 male flies. The flies were allowed to lay eggs for 4 days and then transferred to new vials up to 4 times. The male progeny from each cross were collected 14 days after the cross was set up and used for experiments 2-4 days later, to allow the flies to recover from CO₂ treatment.

2.2.3 Evaluation of mendelian crosses

For the evaluation of Mendelian crosses a χ² test was applied in Microsoft Excel 2010 and p values were calculated via GraphPad Software QuickCalcs with one degree of freedom. The formula used to calculate χ² was \((O₁-E₁)^2/E₁+(O₂-E₂)^2/E₂\) with O being the counted number flies and E the expected number flies of a genotype.

2.2.4 Negative gravitaxis assay

A negative gravitaxis assay was used to identify motor function defects in *Drosophila* [Inagaki *et al.*, 2010]. The setup of the countercurrent apparatus enables testing of two experimental groups in parallel under exactly identical conditions (fig. 2.1).

![Figure 2.1 | Scheme of the countercurrent apparatus](image)

The assay was performed with 35-42 male flies per experimental group. The flies were transferred to the first tube and permitted to settle for 5 min. In step 1 the apparatus was knocked on a surface to shake down all flies. In step 2 the position of
Materials and methods

the apparatus was shifted to the left and the flies were allowed to climb for 30 s. In step 3 the position of the apparatus was shifted to the right, transferring all flies that managed to climb at least 50% of the distance to the next vial. The steps 1-3 were repeated 5 times. To immobilize flies during counting, the apparatus was incubated on -20 °C for 2 min 3 times, knocking the flies down between the repeats. Flies remaining in vials 1-2 were scored as group 1, those remaining in vials 2-4 as group 2 and those remaining in vials 5-6 as group 3. Before each experimental repeat the apparatus was incubated at room temperature for 30 min. The statistical evaluation was performed in Microsoft Excel 2010. The partition coefficient (Cf) was calculated using the formula Cf= \((N_2+2N_3+3N_4+4N_5+5N_6)/(5(N_1+N_2+N_3+N_4+N_5+N_6))\) with \(N_k\) being the number of flies in the \(k^{th}\) tube. The comparison between Cf values was made using a t-test with the setting tails=2 and test type=2.

2.2.5 Adult survivorship assay

Thw assay was used to determine the lifespan of adult Drosophila. Each test group consisted of approximately 100 male flies kept in medium fly vials. The flies were kept as described in 2.2.2 and transferred to fresh food vials two times per week. The first transfer was made on day 4 and the second on day 7. After each transfer dead flies remaining in the old food vial were scored. Each death is considered an event. The statistical evaluation of survivorship data was made in Microsoft Excel 2010 using the log rank test [Bland and Altman, 2004; Ziegler et al., 2007] with the formula LR= \((O_1-E_1)^2/E_1+(O_2-E_2)^2/E_2\). \(O_G= \sum\) of observed events in a group over all time points and \(E_G= \sum\) of all \(E_Gi\). \(E_Gi= d_i \times r_{Gi}/r_i\) with \(E_Gi\) being the expected number of events in a group at a time point, \(d_i\) the number of events (both groups) at the time point, \(r_{Gi}\) the number of individuals under risk in a group before the event and \(r_i\) the total number of individuals (both groups) under risk before the event. The calculation of p values from \(\chi^2\) was made via GraphPad Software QuickCalcs with one degree of freedom. To compensate for the error of cross comparisons between experimental groups, the Bonferroni correction was applied, dividing the significance level (e.g. \(p \leq 0.001\)) by the total number of comparisons made.
2.2.6 Developmental survivorship assay

The developmental survivorship assay was used to determine mortality in single steps of the *Drosophila* life cycle. First, flies were allowed to lay eggs on an apple juice agar plate with a drop of yeast paste over night. Subsequently, eggs were collected and 100 eggs per genotype were transferred to fresh apple juice agar plates. Each single egg had at least 2 egg diameters distance to the next one to prevent hypoxic effects. Every petri dish was surrounded by liquid yeast to prevent larvae from escaping. After two days all eggs were checked for fertilization and the hatched larvae were transferred into big food vials. This was done via transfer of the outer ring of the apple juice agar. 14 days after egg lay the eclosed adult flies were removed from the food vial. Ultimately, all pupae and adults were scored. The statistical comparison of survival rates from one developmental stage into the next was made with an ANOVA test that was performed via Statsoft, Inc. STATISTIKA 9.1. The parameters used were post-hoc analysis and Tukey’s HSD (honestly significant difference). The statistical evaluation of survivorship data was made in Microsoft Excel 2010 as described in section 2.2.5 using the log rank test [Bland and Altman, 2004; Ziegler et al., 2007]. The calculation of p values from χ^2 was made via GraphPad Software QuickCalcs with one degree of freedom. To compensate for the error of cross comparisons among experimental groups, the Bonferroni correction was applied as described in section 2.2.5.

2.2.7 Alcohol sensitivity assay

The alcohol sensitivity assay was used to identify a potential influence of ethanol on motor function in *Drosophila*. The experiments were performed in an inebriometer (fig. 2.2 described in Cohan and Graf [1985] and Bellen [1998]. The apparatus is filled with ethanol fumes and enables to score for alcohol induced loss of motor function. Intoxicated flies fall through the column and are counted automatically by passing through a laser barrier installed at the exit of the apparatus.

Each test group consisted of approximately 100 male flies which were inserted into the inebriometer. The settings for ethanol pressure were 2.5 and for H$_2$O pressure 2.2. For each experimental group the mean elution time (MET) was determined via DFM 28. The statistical evaluation of the alcohol sensitivity assay was performed using an ANOVA test in Statsoft, Inc. STATISTIKA 9.1. The parameters used were post-hoc analysis and Tukey’s HSD (honestly significant difference).
2.2.8 Generation of transgenic flies

The generation of transgenic flies was performed via P element-mediated transgen-
essis [Rubin and Spradling, 1983]. The system integrates a transgene into a random position in the fly genome.

For the injection procedure flies were allowed to lay eggs on an apple juice agar plate for 30 min. Then, the embryos were dechorionated with bleach and stuck onto an apple juice agar stripe. Subsequently, they were transferred to a cover slip, which was covered with heptane glue on one edge in order to attach the embryos. After the transfer the embryos were dried for 16 min in a desiccator and then covered with 10S voltalef oil. The injections were made with an Eppendorf FemtoJet micro injector and for each construct 400 µg transformation vector carrying the transgene of choice was injected. Phenol red was added to the injection mixture to facilitate visualization of the injected liquid. Subsequently, the cover slip with the injected embryos was transferred into a petri dish filled with apple juice agar and surrounded by liquid yeast to avoid the escape of hatched larvae. Larvae that hatched about 24 h after injection, were then transferred to food vials and allowed to develop till adulthood.
Freshly eclosed injected flies were then crossed to \(w^{-}; IF/CyO ; MKRS/TM6B \) or \(w^{-}; Gln/CyO ; MKRS/TM2 \) flies and their progeny were screened for the appearance of red eyes. Afterwards, red eyed flies were backcrossed with the previously mentioned stocks to map the insertion to a chromosome and balance the stock.

2.2.9 Generation of cnir knock-out flies

The generation of \(cnir \) knock-out flies was performed via the ends out gene targeting system \cite{Gong2003, Huang2008}. This system uses a transgenic donor construct containing homology arms flanking the gene of interest. Upon enzymatic excision and linearization, the donor mimics a DNA double strand break. Then, the endogenous DNA repair machinery of \textit{Drosophila} uses this donor for homologous recombination, replacing the targeted gene locus with a marker gene provided by the donor.

In the first cross \(w^{-}; p\{dcnir\}/TM2 \) female flies were crossed with \(y^{-}w^{-}; hs::FLP \) \(hs::I-SceI/TM6 \) male flies. Females were allowed to lay eggs for approximately 72 h. Subsequently, larvae were given a 1 h heat shock in a circulating water bath at 38 °C on 4 consecutive days to activate the donor construct via FLP mediated excision and I-SceI mediated linearization (mosaic eyes indicated by *). \(w^{-}; hs::FLP \) \(hs::I-SceI/p\{dcnir\}^{*} \) females were collected and crossed to \(y^{-}w^{-}; Pin/CyO ; Gal_{4221}^{[w^{-}]} \) males to test for the presence of the \textit{UAS-reaper} construct, which is part of the donor but lays outside of the homology arms. Thus, it should be lost in the progeny in case of targeted homologous recombination at the designated genomic locus. Potential \(w^{-}; \Delta cnir/Pin \) or \textit{CyO} flies were crossed to \(y^{-}w^{-}; Pin/CyO ; Gal_{4221}^{[w^{-}]} \) flies for an additional selection against the presence of the \textit{UAS-reaper} construct and for chromosome mapping. Stocks were established in case of the insertion of the \textit{white} marker on the second chromosome. The insertion site of the \(P\{dcnir\} \) construct and the successful replacement of the \(cnir \) locus (\textit{cnir} start codon till stop codon) was tested via PCR. The position of the 5’ homology arm was confirmed using the primer pair no. 26/27 and the position of the 3’ homology arm using the primer pair no. 28/29. Furthermore, the primers no. 32-33 were used to test for the presence of the \textit{cnir} locus as they lay withing the cds of the \textit{cnir} gene and span the second intron. The control primer pair for this PCR was no. 30/31 inside of the \textit{V(os)f5816} gene upstream of the 5’ homology arm.
Materials and methods

To eliminate the \(w^+ \) marker from \(w^- ; \Delta cnir \ [w^+] \) flies (stock no. 5), females from this stock were crossed to \(hs::Cre ; Sco/CyO \) males. The flies were allowed to lay eggs for approximately 72 h. Afterwards, larvae were heat shocked in a circulating water bath for 10 min at 37 °C. Eclosed females were crossed to \(w^- ; IF/CyO ; MKRS/TM6B \) males. Progeny from this cross with white eyes was then crossed to the same marker stock and finally used to establish \(w^- ; \Delta cnir \) stocks. The successful removal of the \(w^+ \) marker was tested using the primer pair no. 13/16.

2.2.10 Generation of a \(\Delta cnir/cni^{AR55} \) double mutant

To generate a \(\Delta cnir/cni^{AR55} \) double mutant \(w^- ; \Delta cnir \ [w^+] \) female flies were crossed to \(b \ cni^{AR55} \ FRT40A/CyO ; ry/ry \) male flies. Then, \(\Delta cnir \ [w^+] /b \ cni^{AR55} \ FRT40A \) females were crossed to \(w^- \); \(b \ Df(2L)III18/CyO \) \(b \) males for recombination. To preselect flies likely carrying the \(cni \) mutation (putative \(\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A/CyO \) \(b \)), flies were selected based on the presence of the black marker gene in close proximity to \(cni^{AR55} \). Those flies were then crossed to \(b \ cni^{AA12}/CyO \) flies. This was done to check for the presence of \(cni^{AR55} \) based on the \(cni \) mutant egg phenotype of putative \(\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A/CyO \) \(b \) mothers. To check for the presence of \(\Delta cnir \) in putative \(\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A/CyO \) lines, males from those stocks were crossed to \(w^{1118} \) females. The male progeny from this cross were screened for the presence of the \(w^+ \) marker.

2.2.11 Generation of clones

The generation of mitotic clones was done via the FLP/FRT sytem [Xu and Rubin, 1993]. For the induction of mutant clones in the \(Drosophila \) female germ line \(y^- w^- \) \(hs::FLP ; Sp/SM6 ; TM6 \) female flies were crossed to \(y^- w^- \); \(Ubi::GFP \) \(Ubi::GFP \) \(FRT40A/CyO \) male flies. \(y^- w^- \) \(hs::FLP ; Ubi::GFP \) \(Ubi::GFP \) \(FRT40A/SM6 \); TM6 males were collected in the next generation and crossed to \(\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A/CyO \) females. The flies were allowed to lay eggs for approximately 72 h. Afterwards, larvae were heat shocked in a circulating water bath for 1 h at 37 °C on four consecutive days for clone induction. Eclosed \(y^- w^- \) \(hs::FLP ; Ubi::GFP \) \(Ubi::GFP \) \(FRT40A/\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A \) female flies were then collected for dissection of ovaries.

For induction of mutant clones in larval imaginal discs \(eye::FLP ; FRT40A \) \(tub::Gal80/CyO ; act::Gal4 \) \(UAS::GFP/TM6B \) females were crossed to \(\Delta cnir \ [w^+] \) \(b \ cni^{AR55} \ FRT40A/
Materials and methods

CyO males. eye::FLP ; FRT40A tub::Gal80/Δcnir [w+] b cniA^{R55} FRT40A ; act::Gal4 UAS::GFP/+ third instar larvae were collected for dissection of eye imaginal discs.

2.2.12 Extraction of genomic DNA

During the DNA extraction all centrifugation steps were carried out at 14000 rpm in a microcentrifuge 5417R (Eppendorf, Wesseling-Berzdorf) at 4 °C.

For the extraction of genomic DNA 1 to 5 young and healthy adult flies were transferred to a 1.5 ml reaction tube and frozen at -80 °C for 5 min. After this, 200 µl of homogenization buffer containing 50 µg/ml proteinase K were added and the flies were crushed with a tissue grinder. Subsequently, the mixture was incubated at 58 °C overnight. Then, 100 µl of 4.5 M NaCl were added and the reaction tube agitated. Then, 225 µl of chloroform were added and the mixture agitated for 10 min on a wheel. Afterwards, the tube was centrifuged for 10 min and the upper phase of the mixture was transferred to a new reaction tube. To precipitate DNA 1 volume of 100% isopropanol was added to the transferred upper phase and the tube was agitated. Afterwards, the tube was centrifuged for 10 min. Subsequently, the isopropanol was decanted, the pellet washed with 0.5 ml of 70% ethanol and incubated at room temperature for 15 min. After another centrifugation step for 10 min, the ethanol was decanted, the pellet dried for 5 min at room temperature and ultimately redissolved in 20-30 µl of H₂O.

2.2.13 RNA extraction and cDNA synthesis

During RNA extraction all centrifugation steps were carried out in a microcentrifuge 5417R (Eppendorf, Wesseling-Berzdorf) at 4 °C.

5 ovaries were dissected in cold PBS and transferred into a tube with 250 µl of Trizol. Afterwards, 250 µl of Trizol and 2 µl of glycogen were added. Then, the mixture was incubated at room temperature for 5 min. Subsequently, 100 µl of chloroform were added, the tube vortexed and incubated at room temperature for 2-3 min. Afterwards, the tube was centrifuged at 12000 rpm for 15 min. Then, the aqueous phase was transferred to a new tube, 250 µl of 100% isopropanol were added and the mixture was incubated at room temperature for 10 min. After this, the sample was centrifuged at 12000 rpm for 10 min, the RNA pellet washed with 5000 µl of 100% ethanol and vortexed. After centrifugation at 9500 rpm for 5 min, the RNA pellet was dried at
room temperature for 5-10 min. Then, the RNA was redissolved in 20 µl of RNase free H2O, vortexed and centrifuged briefly. Ultimately, the RNA was incubated at 55-60 °C for 10 min, centrifuged shortly and kept at -80 °C for further application.

For the synthesis of cDNA the SuperScript II Reverse Transcriptase (Invitrogen, Karlsruhe) was used according to the supplied manual. The priming method of choice was Oligo(dT) that hybridize to 3′ poly(A) tails. This method is recommended for new mRNA targets in the user manual.

2.2.14 Quantification of DNA

The DNA was quantified via spectral photometry on a NanoDrop 2000c Spectrophotometer (Thermo scientific, Schwerte) NanoPhotometer (Implen, München). The quality of the DNA was determined by the OD260/OD280 ratio.

2.2.15 Polymerase chain reaction (PCR)

All PCRs [Mullis et al., 1986; Mullis and Faloona, 1987; Saiki et al., 1988] were carried out in a C1000 and S1000 Thermal Cycler (Bio Rad, München). The method was used to amplify DNA fragments of interest by running through a sequence of cyclically repeated reaction steps shown in the list below.

All fragments that were used for cloning were amplified with the Expand High Fidelity PCR System (Roche, Mannheim). All other PCRs that did not require the proofreading activity of the previously mentioned system were run using the RED-Taq DNA Polymerase (Sigma Aldrich, Steinheim) ready-to-use mixture or my-Budget 5 x PCR-Mastermix ”Ready-to-Load” (Bio-Budget, Krefeld). All PCRs with amplicons larger than 3 kb were run at an extension temperature of 68 °C to preserve the DNA polymerase. For smaller amplicons the extension temperature was raised to 72 °C. The extension time depended on the expected product size and was adapted from the Expand High Fidelity PCR System manual. Furthermore, the annealing temperature of the primers was determined with the Oligo Calculator version 3.26 and thus varies.
Materials and methods

Reaction mixture for standard PCR (50 µl):

- 0.75 µl Expand High Fidelity enzyme mix (2.6 U)
- 5 µl Expand High Fidelity buffer (10x)
- 1 µl dNTP (10 mM)
- 1 µl DNA template (50-500 ng/µl)
- 2 µl primer forward (10 µM)
- 2 µl primer reverse (10 µM)

Filled with H₂O to final volume

<table>
<thead>
<tr>
<th>Reaction Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initial denaturation of DNA</td>
<td>94 °C</td>
<td>2 min</td>
</tr>
<tr>
<td>2. Denaturation of DNA</td>
<td>94 °C</td>
<td>15 s</td>
</tr>
<tr>
<td>3. Annealing of the primer</td>
<td>50-62 °C</td>
<td>30 s</td>
</tr>
<tr>
<td>4. Extension</td>
<td>68 or 72 °C</td>
<td>1-8 min</td>
</tr>
<tr>
<td>5. Final Extension</td>
<td>68 or 72 °C</td>
<td>4-8 min</td>
</tr>
</tbody>
</table>

Reaction steps 2-4 cycled 30-35 x

2.2.16 Gel electrophoresis

DNA fragments were separated and analyzed on 0.8%-1% agarose gels containing ethidium bromide in a final concentration of 0.5 µg/ml. All gels were made with 0.5x TAE buffer. The electrophoresis was performed in a Mupid-One (Eurogentec, Köln) gel chamber in 0.5x TAE buffer. Samples in 1x loading buffer were loaded into gel slots. As a reference marker for fragment sizes 3-5 µl of SmartLadder, 1 kb DNA ladder, or 1 kb plus DNA ladder (Eurogentec, Köln; Invitrogen, Karlsruhe) were loaded on the gel. The separation of the fragments was carried out at 50-100 V. For visualization of the DNA fragments, the gel was excited with UV light of a wavelength of 366 nm on a transilluminator (Molecular Imager Gel Doc XR, Bio Rad, München) and photographed.

2.2.17 Sequencing of DNA

For sequencing of DNA samples were send to GATC Biotech (Konstanz). Alternatively, the Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Darm-
Materials and methods

Sanger (1977) was used. The method is a modified PCR-based version of the original Sanger sequencing protocol [Sanger et al. 1977]. During this PCR the nucleotides are fluorescently labeled.

Reaction mixture (10 μl):

0.25 μl Big dye v3.1
2.5 μl Big dye buffer
DNA (approximately 50 ng/μl plasmid or PCR product)
0.25 μl primer 10 mM
filled with H2O to final volume

<table>
<thead>
<tr>
<th>Reaction step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Denaturation of DNA</td>
<td>96 °C</td>
<td>10 s</td>
</tr>
<tr>
<td>2. Annealing of the primer</td>
<td>55 °C</td>
<td>5 s</td>
</tr>
<tr>
<td>3. Extension</td>
<td>60 °C</td>
<td>4 min</td>
</tr>
</tbody>
</table>

reaction steps 1-3 cycled 32 x

2.2.18 Cloning and ligation

The cloning into the pCRII-TOPO and pENTR/D-TOPO vectors, as well as Gateway cloning into a Destination Vector was performed according to the user manuals from Invitrogen (Karlsruhe).

For conventional ligation of an insert into a vector, the protocol from Invitrogen was used with slight modifications. The reaction conditions are given in the list below.

Reaction mixture (20 μl):

30 fmol vector
90 fmol insert
4 μl T4 DNA ligase buffer 5 x
1 μl T4 DNA ligase 1 U
filled with H2O to final volume

incubated at room temperature for 3 h
2.2.19 Transformation of bacteria

For amplification of plasmid DNA electro competent DH5α *E.coli* were used. The bacteria were stored in 50 µl aliquots at -80°C, thawed on ice and 1 µl of isolated plasmid or 2 µl of ligation were added. Afterwards, the bacteria were incubated on ice for 1 min and accordingly transferred into an electroporation cuvette (PEQLAB Biotechnologie GMBH, Erlangen). Subsequently, they were given an electronic pulse of 1800 V in an EasyjecT Prima electroporator (Equibio, Ashford, England) and transferred into 250 µl of SOC medium. Then, the bacteria were incubated at 37°C with agitation for 1 h. Afterwards, they were plated onto LB-agar with ampicillin and optionally also with X-gal.

2.2.20 Isolation of plasmid DNA

For the isolation of low concentrations of plasmid DNA the ZR Plasmid Miniprep Classic (Zymo Research, Orange, USA) was used. If higher concentrations of plasmid DNA were desired, either the GenElute Plasmid Midiprep Kit (Sigma Aldrich, Steinheim) or HiSpeed Plasmid Midi Kit (Qiagen, Hilden) were used. The bacteria were grown as described in the user manuals.

2.2.21 Cloning of *cnir* donor construct

The *cnir* 5′ and 3′ homology arms were amplified via standard PCR with the forward and reverse primers matching their names (tab. 2.6 no. 1-4). Both homology arms were cloned into the pCRII-TOPO vector and fully sequenced using the primers 5-25 in table 2.6. The 5′ homology arm was cut from the pCRII-TOPO 5′ hom. arm vector by a double digestion with the restriction enzymes NotI and NdeI in the buffer O. Then, the vector was purified via gel extraction. In parallel, the pGX-attP underwent the same restriction and purification procedure. Then, the 5′ homology arm was cloned into the pGX-attP vector. Subsequently, the pGX-attP-cnir 5′ hom. arm vector and the pCRII-TOPO 3′ hom. arm vector were double digested with BglII and Ascl in the buffer BamHI respectively. Ultimately, the 3′ homology arm was cloned into the pGX-attP-cnir 5′ hom. arm vector. The pGX-attP-cnir 5′ 3′ hom. arms plasmid was used as transformation vector to generate *w−*; *P{dcnir}/TM*2 flies.
2.2.22 Preparation of egg shells

Flies of the desired genotype were allowed to lay eggs on an apple juice agar plate with a drop of yeast paste over night. Then, eggs were collected with a brush, washed with H$_2$O and transferred to a microscopy slide with Hoyer’s medium/lactic acid (1:1). The preparations were kept at 60 °C for at least 24 h before microscopy.

2.2.23 Dissection, fixation and antibody staining in ovaries

For detection of protein localization in ovarian tissues fluorescent antibody staining was performed. For detection, a primary antibody against the protein of choice is used for specific binding. Finally, a fluorescently labeled secondary antibody against the primary is used for final detection of protein localization.

All steps during dissection and fixation, washing, blocking reactions and incubations during the procedure were made with PBT (PBS 0.1 % Triton X-100), at room temperature with a volume of 1 ml and if not, labeled individually. Each washing step, blocking reaction and incubation were carried out with agitation.

Three to four days before dissection freshly hatched female flies were put into fly vials with dry yeast to stimulate production of big ovaries. Afterwards, they were dissected in cold PBT.

The ovaries were fixed in 4 % formaldehyde diluted in PBT and shook for 10 min on a wheel. Afterwards, they were used directly for the following staining procedure. First, the fixed ovaries were washed twice with PBT for 5 min and then blocked in PBT (PBS 1 % Triton X-100) with 1 % BSA for 1 h. Afterwards, the incubation with the primary antibody was made in PBT (PBS 1 % Triton X-100) with 1 % BSA at 4 °C over night. On the next day the ovaries were washed again twice with PBT for 5 min and then blocked in PBT with 10 % NGS for 1 h. Subsequently, the ovaries were incubated with the secondary antibody in PBT for 2-3 h. Finally, they were washed twice with PBT and mounted in Vectashield, or alternatively Vectashield with DAPI.

2.2.24 Dissection, fixation and antibody staining in imaginal discs

For detection of protein localization in imaginal discs fluorescent antibody staining was performed. The detection procedure is described in 2.2.23.

All steps during dissection and fixation, washing, blocking reactions and incubations during the procedure were made with PBT (PBS 0.1 % Triton X-100), at room
temperature with a volume of 1 ml and if not, labeled individually. Each washing step, blocking reaction and incubation were carried out with agitation.

Third instar larvae were dissected on ice and fixed in 4\% paraformaldehyde for 20 min. Afterwards, the larval carcasses containing imaginal discs were washed 3 times with PBT for 5 min and then blocked in PBT with 5\% NGS for 1 h. Then, the incubation with the primary antibody was made in PBT at 4°C over night. Subsequently, the carcasses were washed three times with PBT for at least 20 min. Then, secondary antibody was added to the imaginal discs and they were incubated for 2-3 h in the dark. Finally, the imaginal discs were washed three times with PBT for 20 min and then mounted on microscopy slides in Vectashield, or alternatively Vetcashield with DAPI.

2.2.25 Phylogenetic analysis of Cornichon proteins and protein membrane topology

The \textit{Drosophila} Cornichon protein sequences were downloaded from flybase.org in FASTA format and then blasted in ncbi.nlm.nih.gov to obtain homologous protein sequences from other species. The phylogenetic analysis was made via Phylogeny.fr \cite{Dereeper2008} using the "one click" settings. The prediction of the transmembrane topology of Cornichon proteins was made via TMHMM v2.0 and TMpred.
3 Results

3.1 Phylogenetic analysis of Cni proteins and the Cnir membrane topology

To obtain a more comprehensive view on the phylogeny of Cni proteins, a phylogenetic analysis was performed (fig. 3.1). Although almost all eukaryotes possess at least two Cni paralogs it is not always possible to see direct orthology of Cni proteins across species. Cni paralogs from *Arabidopsis thaliana* (*At*), for example, rather group together and do not show specific homology to Cni proteins from yeast, invertebrates or vertebrates. Strikingly, the *At* Cni-like1 protein has four transmembrane domains (TMDs) (topology predicted by TMHMM v2.0 and TMpred), which is in contrast to the three TMDs of most Cni proteins as depicted for *Drosophila* Cnir in fig 3.2.

Furthermore, the *At* putative CNI protein has only two TMDs (topology predicted by TMHMM v2.0 and TMpred). However, human CNIH4 splice variants with only two TMDs have also been reported [Sauvageau et al. 2014]. Both Cni paralogs from *Saccharomyces cerevisiae* (*Sc*) also group together, without showing a clear sequence homology with any Cni protein from other species. However, amongst invertebrates and vertebrates the relationship between individual Cni proteins becomes more obvious. The only Cni present in *Caenorhabditis elegans* (*Ce*), and the Cni proteins from insects, including *Drosophila melanogaster* (*Dm*) Cni, are most closely related to the vertebrate paralogs CNIH1, CNIH2 and CNIH3, where CNIH2 and CNIH3 may have arisen from CNIH1 by two consecutive gene duplications.

Interestingly, the vertebrate CNIH4 proteins show higher sequence homology to the insect Cnir proteins than to their paralogs CNIH1-CNIH3, suggesting an ancient original duplication within the animal lineage.

3.2 Generation of a cnir knock-out line

There is no published cnir mutant *Drosophila* stock. Therefore, a cnir knock-out line was generated via ends out gene targeting in the *Drosophila* germ line [Gong and Golic 2003; Huang et al. 2008]. This system makes use of a transgenic donor construct containing homology arms flanking the gene of interest. Upon enzymatic excision and linearization, the donor mimics a DNA double strand break. Then, the endogenous
Figure 3.1 | Phylogenetic Analysis of Cni Proteins
Phylogenetic analysis of Cni proteins from *Arabidopsis thaliana* (*At*), *Saccharomyces cerevisiae* (*Sc*), *Drosophila melanogaster* (*Dm*), *Nasonia vitripennis* (*Nv*), *Tribolium castaneum* (*Tc*), *Mus musculus* (*Mm*), *Gallus gallus* (*Gg*), *Rattus norvegicus* (*Rn*) and *Homo sapiens* (*Hs*). Red numbers show branch support values. PhyML phylogenetic analysis using aLRT statistical test for branch support [Dereeper et al. 2008].
DNA repair machinery of *Drosophila* uses this donor for homologous recombination, replacing the targeted gene locus with a marker gene provided by the donor. The *cnir* gene is located on the left arm of chromosome 2 and has only one transcript of 871 bp length (fig. 3.3; flybase.org). It encodes a small protein of 157 amino acids and a molecular weight of 18.43 kDa (fig. 3.2; http://www.uniprot.org). The genomic locus of *cnir* is flanked by multiple genes within a region of only ~10 kb. The aim was to remove the *cnir* coding sequence (cds) and the introns (590 bp), but leave the untranslated regions (UTRs) intact. The deletion locus can be targeted via site-specific transgenesis [Bischof et al., 2007]. Therefore, intact UTRs simplify the generation a N- or C-terminally epitope tagged Cnir driven from its endogenous promoter with only small alterations of the transcript. The *cnir* genomic locus and gene structure, as well
as the position of the homology arms used for targeting of *cnir* are depicted in fig. 3-3.

Figure 3.3 | The *cnir* genomic locus

A. Scheme of the *cnir* genomic locus and the positions of the 5’ and 3’ homology arms used for cloning of the *P{dcnir}* donor construct. The *cnir* gene is highlighted in red and genes included in the homology arms are marked in yellow. B. *cnir* gene structure from 5’ to 3’ with 3 exons (blue), 2 introns (black lines) and UTRs (grey). The planned deletion of 590 bp for a *cnir* knock-out is indicated below the scheme.

A scheme of the targeting strategy employed for the knock-out of the *cnir* locus is depicted in figure 3.4. The transgenic *P{dcnir}* donor consists of the previously mentioned homology arms (5’ and 3’) flanking an *attP* site, a *white* (*w^+*) marker gene, and two *loxP* sites, which in turn flank the *white* gene. Furthermore, *P{dcnir}* has a *UAS::Reaper* construct downstream of the 3’ homology arm, which causes lethality upon GAL4 mediated neuronal activation. In the event of a specific recombination, *P{dcnir}* integrates into the target genomic locus and *UAS::Reaper* will be lost as a consequence, while it is likely to be maintained in the case of non targeted integrations. Thus, *UAS::Reaper* helps to select against false positive targeting events. The *P{dcnir}* is activated by FLP mediated excision from its insertion site on the third chromosome and subsequent I-Sce-I mediated linearization (indicated by *), which mimics a DNA double strand break. In a subsequent process, the donor is used by the endogenous DNA double strand break repair machinery to replace the *cnir* gene with the *white* marker gene. The *loxP* sites were used for subsequent Cre mediated excision of *white*. This allows *attP* site-specific transgenic targeting of the knock-out locus as described by [Bischof et al.] (2007).
activated \(P\{dcnir\}^* \) donor construct

\[
\begin{array}{c}
\text{cnir 5'arm} \quad \text{attP} \quad \text{loxP} \quad \text{white}\ast \quad \text{loxP} \quad \text{cnir 3'arm} \quad \text{UAS::Reaper}
\end{array}
\]

homologous recombination

\[
\begin{array}{c}
\text{cnir 5'arm} \quad \text{cnir} \quad \text{cnir 3'arm}
\end{array}
\]

\[\Delta\text{cnir} \text{ knock-out line}\]

\[
\begin{array}{c}
\text{cnir 5'arm} \quad \text{attP} \quad \text{loxP} \quad \text{white}\ast \quad \text{loxP} \quad \text{cnir 3'arm}
\end{array}
\]

\[\Delta\text{cnir} \text{ knock-out line } w\ast\]

\[
\begin{array}{c}
\text{cnir 5'arm} \quad \text{attP} \quad \text{loxP} \quad \text{cnir 3'arm}
\end{array}
\]

Figure 3.4 | Targeting of \(\text{cnir} \)

A scheme of the targeting strategy for the \(\text{cnir} \) locus. First, the linearized and thus activated \(P\{dcnir\}^* \) construct is used as a template for homologous recombination. The donor is engineered such that two homology arms flank the sequence designated to replace the targeted locus. Through successful homologous recombination the endogenous \(\text{cnir} \) region is replaced from start to stop codon by the sequence between both homology arms. Furthermore, a specific integration leads to a loss of the \(\text{UAS::Reaper} \) construct downstream of the 3' homology arm, which can be used for selection against false positive targeting. Ultimately, Cre mediated recombination is utilized for excision of the \(\text{white} \) marker gene, allowing \(\text{attP} \) site-specific transgenic targeting of the kock-out locus.

Out of 380 targeting crosses, 47 putative \(\Delta\text{cnir} \) flies were obtained, of which 23 contained an insertion on the second chromosome, indicating successful \(\text{cnir} \) targeting. Five of the subsequently established potential \(w\ast; \Delta\text{cnir} [w\ast] \) stocks (no. 5, 7, 21, 24 and 40) were tested via PCR for the position of the appropriate \(P\{dcnir\} \) insertion. A scheme illustrating the locations of all test PCR fragments and documentation of the actually obtained PCR amplicons is depicted in fig. 3.5.

First, the insertion of \(P\{dcnir\} \) was tested using the position of the homology arms as a reference. The first primer pair was positioned inside of the \(\text{white} \) marker gene.
Figure 3.5 | Test for cnir knock-out and removal of the white marker

A. Scheme of the Δcnir founder line with the white marker gene still present. The position of each test PCR fragment used for validation of a successful knock-out with the expected product size indicated (colored lines). B. SmartLadder (Eurogentec, Köln) as a size reference for the test PCR fragments. C. Test PCR products for the insertion of the white marker and replacement of the cnir sequence from start to stop codon, as well as the position of the 3’ (orange) and 5’ (blue) homology arms. D. Obtained amplicons for the cnir gene (red) and a control fragment upstream of the 5’ homology arm (green). E. PCR fragments for the sequence between both homology arms before and after Cre mediated excision of the white marker gene (black). w−; Δcnir [w+]: 5, 7, 21, 24 and 40; w−; Δcnir: A1, B1, B2, C2 and C6; w− ;; P{dcnir}/TM2: C in gels C and D; wt: C in gel E.

and downstream of the 3’ homology arm (fig. 3.5 C; orange). The second primer pair lay upstream of the 5’ homology arm and again inside of the white marker (fig. 3.5 C; blue). Thus, only an insertion in the accurate genomic locus can yield PCR products. The control PCR was made using genomic DNA from w− ;; P{dcnir}/TM2 flies, which possess the endogenous cnir locus, as well as the P{dcnir} insertion on the third chromosome. A fragment of the expected 4.2 kb size was obtained for the position of the 3’ homology arm. Furthermore, a 4.7 kb product was obtained for
the position of the 5′ homology arm. The genomic DNA from \(w^- \); \(P\{dcnir\}/TM2 \) flies did not yield any PCR products, confirming that an amplification of the expected fragments is only possible with \(P\{dcnir\} \) insertion in the designated genomic locus.

To confirm whether the \(cnir \) gene was successfully removed from its endogenous genomic locus, a test PCR was made using a primer pair spanning the second intron of the \(cnir \) gene with an expected amplicon of 200 bp (fig. 3.5 D; red). A control PCR was made on the same genomic DNA, aiming to amplify a 400 bp product inside of the \(V(2)k05816 \) gene upstream of the 5′ homology arm (fig. 3.5 D; green). It was possible to obtain both products from \(w^- \); \(P\{dcnir\}/TM2 \) genomic DNA. This result also reconfirms that the lack of product in the previously described experiment is not due to poor quality of genomic DNA. However, all \(\Delta cnir \) stocks lack the smaller product, while the larger could be obtained. Those results indicate a successful deletion of the \(cnir \) gene in the tested stocks.

After removal of the \(white \) marker gene via Cre mediated recombination, the \(w^- \); \(\Delta cnir \) stocks (no. A1, B1, B2, C2 and C6) were tested with a primer pair spanning the sequence between both homology arms (fig. 3.5 E; black). Therefore, in case of a successful removal of \(w^+ \) a 640 bp product is expected, while a 3.75 kb product is expected in case of the presence of the full \(P\{dcnir\} \) sequence between the homology arms in the \(w^- \); \(\Delta cnir [w^+] \) stock (no. 5). A control PCR was made on wt genomic DNA, which should yield a 1.25 kb product because of the presence of the endogenous \(cnir \) locus. Amplicons of the expected size were obtained from genomic DNA of all tested \(w^- \); \(\Delta cnir \) stocks and both controls, indicating a successful Cre mediated excision of the \(white \) marker gene.

3.3 Survivorship of \(\Delta cnir \) throughout development

Since \(w^- \); \(\Delta cnir [w^+] \) mutant flies turned out to be viable, they were first analyzed for survival rates throughout development. Lethality rates were determined after fertilization, hatching, pupation and eclosion. To see if the loss of \(cnir \) causes increased mortality in any of those stages, each stage was considered independently (fig. 3.6).

For this and all following experiments the \(w^- \); \(\Delta cnir [w^+] \) line no. 5 was used. For reasons of simplification, the stock will be referred to thereafter as \(\Delta cnir \) only. As a control for \(\Delta cnir \) mutants (n= 498), \(w^{1118} \) (n= 500) and \(\Delta cnir/+ \) (n= 500) flies were used. The heterozygous flies were used to identify putative dominant or dosage effects of the \(cnir \) mutation.
The Δcnir flies have a reduced fertilization and hatching rate in comparison to both control genotypes. However, Δcnir flies show a lower pupation and eclosion rate only in comparison to the heterozygous control. Bars= mean ± sem; Δcnir (green) n= 498; w^{1118} (blue) n= 500; Δcnir/+ (red) n= 500; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001

The fertilization rate of eggs from w^{1118} flies (97.4 ± 0.7 %) does not differ significantly from that of Δcnir/+ flies (94.6 ± 0.8 %). However, the fertilization rates from both genotypes are significantly higher compared to that of Δcnir (p ≤ 0.01; p ≤ 0.001)

The hatching rates of w^{1118} larvae (98.0 ± 0.6 %) and that of Δcnir/+ larvae (97.9 ± 0.6 %) again do not differ significantly. Compared to the hatching rate of Δcnir larvae (88.7 ± 0.8 %), that of both w^{1118} and Δcnir/+ larvae is higher (p ≤ 0.001 for both comparisons).

However, the rate of pupation in Δcnir (84.0 ± 1.9 %) is not significantly lower than that of w^{1118} (89.2 ± 2.8 %), while it is significantly lower (p ≤ 0.05) than that of Δcnir/+ (93.6 ± 1.4 %).
Results

Figure 3.7 | Survivorship until adulthood
Survival curves for the experimental genotypes. Δcnir survival till adulthood is lower ($p \leq 0.0001$) than Δcnir/+ and also lower ($p \leq 0.0001$) than w^{1118} survival. Both control genotypes do not differ in their survivorship till adulthood. Thus the lack of both cnir copies has an influence on survivorship till adulthood, while the lack of just one copy does not exhibit any effect. Bars= mean ± sem; Δcnir (green) n= 498; w^{1118} (blue) n= 500; Δcnir/+ (red) n= 500.

The same can be observed for the eclosion rate, which is not significantly different between Δcnir (94.9 ± 2.0 %) and w^{1118} (98.6 ± 0.6 %), whereas it is significantly lower in Δcnir ($p \leq 0.05$) compared to Δcnir/+ (99.8 ± 0.2 %).

Analogous to adult lifespan experiments, the generated data was used to investigate the cumulative survivorship of each experimental genotype across all developmental stages until adulthood (fig. 3.7). The evaluation of the data also shows that Δcnir mutant survivorship into adulthood is lower ($p \leq 0.0001$) than that of w^{1118} and also lower ($p \leq 0.0001$) than that of the Δcnir/+ genotype. Thus, cnir mutants have a higher risk of mortality passing through the investigated developmental stages in comparison to both control genotypes, which do not do not differ significantly in
their survivorship until adulthood. Hence, the lack of one cnir copy also does not lead to an increased mortality. In total, only $62.9 \pm 2.1\%$ $\Delta cnir$ flies reach adulthood, while $84.8 \pm 2.7\%$ w^{1118} and $86.4 \pm 0.9\%$ $\Delta cnir/+ \, \text{flies emerge as adults}$. Most notably, a strikingly high proportion of the eclosed $\Delta cnir$ flies sticks to the food inside of the vial, which cannot be observed for the control genotypes.

3.4 Survivorship of adult $\Delta cnir$ flies

Beyond the previously described increased mortality throughout development, $\Delta cnir$ mutant flies held under stock keeping conditions have a shorter lifespan than other common laboratory fly stocks. To evaluate the lifespan of the mutants, a survival experiment was performed comparing the mutant stock with $\Delta cnir/+ \, \text{heterozygous}$ and $w^{1118} \, \text{control flies}$. The survival curves for the three experimental genotypes are depicted in fig. 3.8.

The median lifespan of $\Delta cnir$ flies is 37 days and their maximum lifespan is 74 days. The evaluation of the survival curves shows that mutant flies have a shorter lifespan ($p \leq 0.0001$) than w^{1118} flies, which have a median lifespan of 40.5 days and a maximum lifespan of 81 days. Furthermore, mutant flies have a shorter lifespan ($p \leq 0.0001$) than $\Delta cnir/+ \, \text{flies}$, which display a median lifespan of 47.5 days and a maximum lifespan of 95 days. However, w^{1118} flies also have a shorter lifespan ($p \leq 0.0001$) than $\Delta cnir/+ \, \text{heterozygous flies}$. This result indicates putative stress in w^{1118} flies, rather than a positive influence of the lack of one cnir copy in the heterozygous flies. Importantly, $\Delta cnir$ have a reduced lifespan in comparison to both control genotypes.

3.5 Locomotion defects of $\Delta cnir$ flies

A major trait of $\Delta cnir$ flies is that they preferentially remain at the bottom of the food vial. This is surprising, as normally flies tend to walk up against the earth’s gravitational field when they are exposed to a gravity stimulus, which is a robust behavior known as negative gravitaxis [Beckingham et al., 2005]. Therefore, this behavior can be used to quantify potential locomotion defects by monitoring the distribution of flies in the countercurrent apparatus (CA) after execution of the climbing assay [Inagaki et al., 2010]. The CA consist of six tubes (see 2.2.4) and flies distribute in the CA depending on how often they chose to climb up the tube wall. In a genetically homogeneous population of independently acting flies with a constant likelihood to climb
Figure 3.8 | Survivorship of adult *Drosophila*

Survival curves for the experimental genotypes. Δcnir flies have a shorter lifespan (p ≤ 0.0001) than Δcnir/+ and also a shorter lifespan (p ≤ 0.0001) than w1118 control flies. Furthermore, w1118 flies have a shorter lifespan (p ≤ 0.0001) than Δcnir/+ flies. Bars= mean ± sem; w1118: n= 977; Δcnir/+ n= 943; Δcnir n= 979. Maximum lifespan is indicated by colored crosses.

up the wall in all attempts (0-5), the distribution of flies in the CA should be binomial [Benzer, 1967; Inagaki et al., 2010]. The comparison of measured- to binomial distributions with the partition coefficient Cf has shown that wt and mutant flies distribute in a binomial fashion [Benzer, 1967; Kamikouchi et al., 2009]. Thus, calculating the Cf can be used to quantify negative gravitaxis [Inagaki et al., 2010].

The behavioral assay demonstrated that Δcnir are able to climb up the vial wall given enough time after application of a gravity stimulus. However, the legs appear to be slightly shaky. Because the X chromosome of the Δcnir stock did not definitely correspond to the w1118 control stock background, it was essential to test for a putative influence of this chromosome in the locomotion assay used. Therefore, only Δcnir/+ flies carrying this X chromosome were used in the assay. Furthermore, this genotype allowed the simultaneous testing of whether the lack of one cnir copy has dominant or dosage effects that alter locomotion.
Results

Figure 3.9 | Locomotion of \(w^{1118} \) and \(\Delta cnir/+ \) flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals no statistically significant difference between \(w^{1118} \) (blue) and \(\Delta cnir/+ \) (red) flies. Furthermore, both experimental genotypes reach group 3 of the CA above the literature value for wt flies [Inagaki et al., 2010]. Thus, there are no dominant or dosage influences on locomotion through the lack of one \(cnir \) copy. \(w^{1118} \): 4.2 ± 1.1% group 1, 13 ± 3.7% group 2, 82.8 ± 3.8% group 3; \(\Delta cnir/+ \): 4.1 ± 1% group 1, 8.2 ± 1.9% group 2, 87.7 ± 2.4% group 3; bars= mean ± sem; n= 10 trials per experimental group.

The distribution of flies in the CA after the locomotion assay is depicted in fig. 3.9. Both experimental groups were tested in 10 trials. After execution of the climbing assay the vast majority (82.8 ± 3.8%) of \(w^{1118} \) flies successfully climbed through the CA in group 3. Similarly most (87.7 ± 2.4%) \(\Delta cnir/+ \) flies also reached group 3. It has been reported that at least 60% of wt flies progress to group 3 of the CA upon correct execution of the assay [Inagaki et al., 2010]. Moreover, the statistical evaluation reveals no significant difference in the distribution of flies in the countercurrent apparatus between \(w^{1118} \) (Cf= 0.85 ± 0.02) and \(\Delta cnir/+ \) (Cf= 0.87 ± 0.01) flies. Thus, there is no detectable influence of the X chromosome in the \(\Delta cnir \) stock on the locomotion assay used. Furthermore, there are no obvious dominant or dosage effects caused by the lack of one \(cnir \) copy.

Because \(\Delta cnir/+ \) flies showed no locomotion defects, they were used as a control for assaying the locomotion of \(\Delta cnir \) flies (fig. 3.10). Both experimental groups were tested in 10 trials.
Figure 3.10 | Locomotion of \(\Delta cnir/+ \) and \(\Delta cnir \) flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between \(\Delta cnir/+ \) (red) and \(\Delta cnir \) (green) flies. Moreover, \(\Delta cnir \) flies show impaired locomotion and do not reach group 3 of the CA above the literature value for wt flies \cite{Inagaki2010}. \(\Delta cnir/+ \): 3.2 ± 0.9% group 1, 24.8 ± 3.4% group 2, 72 ± 3.4% group 3; \(\Delta cnir \): 84.8 ± 6.7% group 1, 12.8 ± 5.8% group 2, 2.4 ± 1.1% group 3; bars: mean ± sem; n=10 trials per experimental group; ***p ≤ 0.001.

Similar to the previous results, the majority (72 ± 3.4%) of \(\Delta cnir/+ \) flies progressed to group 3 of the CA. In contrast, most (84.8 ± 6.7%) \(\Delta cnir \) flies remain in group 1 of the CA. The statistical evaluation shows a highly significant difference (p ≤ 0.001) in the distribution of flies between \(\Delta cnir/+ \) (Cf= 0.79 ± 0.02) and \(\Delta cnir \) (Cf= 0.11 ± 0.04). Hence, the lack of \(cnir \) function leads to a strong impairment of \emph{Drosophila} locomotion.

3.6 Ethanol sensitivity of \(\Delta cnir \) flies

As previously shown, \(\Delta cnir \) flies show strong locomotion defects. Since ethanol influences postural control \cite{Bellen1998, Devineni2013} and thus locomotion, it was tested whether flies with an already defective locomotion show enhanced sensitivity to ethanol.
Flies naturally show a negative gravitaxis behavior when tested in the inebriometer and stay at the top of the column. However, if exposed to ethanol fumes in the column they lose postural control and fall progressively from one baffle to the next. Thus, sensitivity to ethanol can be measured as the mean elution time (MET) needed for flies to reach the bottom of the column [Devineni and Heberlein 2013].

The results for ethanol sensitivity of the tested genotypes w^{1118}, $\Delta cnir/+ \text{ and } \Delta cnir$ are depicted in fig. 3.11. Each experimental group was tested in 10 trials. There is no statistically significant difference in ethanol sensitivity between w^{1118} (MET= 19.3 ± 1.15) and $\Delta cnir/+ \text{ (MET= 19.27 ± 0.75) flies.}$ This indicates that the lack of one $cnir$ copy does not have any effect on ethanol sensitivity in Drosophila. Although $\Delta cnir$ flies are strongly impaired in locomotion, surprisingly they are less sensitive to ethanol fume induced loss of postural control (MET= 29.97 ± 1.63). This MET is significantly higher than that of w^{1118} (p ≤ 0.001) or $\Delta cnir/+ \text{ (p ≤ 0.001) flies.}$
3.7 Muscular rescue of locomotion defects

Locomotor disturbance in Drosophila is due to pathology of muscles, peripheral neurons, or the central nervous system [Slawson et al., 2011]. To test whether the locomotion defects of ∆cnir flies are due to a lack of cnir function in muscle cells or neurons, rescue experiments in both tissues were conducted. A UAS::cnir rescue construct was expressed in muscle cells of ∆cnir flies using a mhc::Gal4 driver line [Schuster et al., 1996].

To examine potential dominant influences of the UAS::cnir rescue construct or the mhc::Gal4 driver line on locomotion, both were tested heterozygously in ∆cnir flies (fig. 3.12). Furthermore, this experiment can reveal a putative leaky expression of the UAS::cnir construct, indicated by a rescue without Gal4 driven expression. Each experimental group was tested in 10 trials.

Figure 3.12 | Locomotion of ∆cnir ; mhc::Gal4/+ and ∆cnir ; UAS::cnir/+ flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals no statistically significant difference between ∆cnir ; mhc::Gal4/+ (yellow) and ∆cnir ; UAS::cnir/+ (blue) flies. Furthermore, both experimental genotypes show impaired locomotion and do not reach group 3 of the CA above the literature value for wt flies [Inagaki et al., 2010]. ∆cnir ; mhc::Gal4/+: 33.3 ± 9.0% group 1, 27.4 ± 4.1% group 2, 39.3 ± 6.8% group 3; ∆cnir ; UAS::cnir/+ : 17.9 ± 5.3% group 1, 32.1 ± 2.9% group 2, 50.0 ± 5.0% group 3; bars= mean ± sem; n= 10 trials per experimental group.
Results

In the Δcnir; mhc::Gal4/+ genotype flies are distributed fairly evenly across all three groups of the CA. In comparison, Δcnir; UAS::cnir/+ flies were distributed slightly more graded in the CA groups with 50.0 ± 5.0% of flies reaching group 3. However, the statistical analysis shows that there is no significant difference in the distribution of Δcnir; mhc::Gal4/+ flies (Cf= 0.51 ± 0.07) and Δcnir; UAS::cnir/+ flies (Cf= 0.63 ± 0.04). Furthermore, in both experimental groups less than 60% of flies reach group 3 of the CA, in contrast to wt expectations [Inagaki et al., 2010]. Hence, both tested genotypes show impaired locomotion and either can be used as a negative control for the rescue experiment.

Figure 3.13 | Locomotion of Δcnir; mhc::Gal4/UAS::cnir and Δcnir; UAS::cnir/+ flies
Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals no statistically significant difference between Δcnir; mhc::Gal4/UAS::cnir (red) and Δcnir; UAS::cnir/+ (blue) flies. Moreover, both experimental genotypes show defective locomotion and do not reach group 3 of the CA above the literature value for wt flies [Inagaki et al., 2010]. Therefore, expression of Cnir in muscle cells of Δcnir mutants does not rescue locomotor impairment. Δcnir; mhc::Gal4/UAS::cnir: 29.0 ± 7.6% group 1, 25.2 ± 3.3% group 2, 45.8 ± 8.3% group 3; Δcnir; UAS::cnir/+: 12.8 ± 2.3% group 1, 41.2 ± 2.3% group 2, 46.0 ± 3.0% group 3; bars= mean ± sem; n= 10 trials per experimental group.

Next, it was tested whether muscle specific activation of the UAS::cnir construct via mhc::Gal4 in Δcnir flies rescues the locomotion defect (fig. 3.13). Δcnir; UAS::cnir/+ flies served as control since they showed a slightly higher Cf value in the previous
experiment, making a potential statistically significant rescue more robust. Both experimental groups were tested in 10 trials.

Less than half (45.8 ± 8.3%) of Δcnir flies expressing Cnir in muscle reached group 3 of the CA. In comparison, cnir mutant flies carrying only the UAS::cnir construct were distributed nearly evenly in the last two groups of the CA (46.0 ± 3.0% group 3). There is no statistically significant difference in the distribution of Δcnir ; mhc::Gal4/ UAS::cnir rescue flies (Cf= 0.55 ± 0.07) compared to Δcnir ; UAS::cnir/+ (Cf= 0.62 ± 0.02) control flies. Moreover, neither experimental group reaches the literature value of at least 60% flies in group 3 for wt [Inagaki et al., 2010]. Therefore, expression of cnir in muscle cells does not rescue the locomotion defects of Δcnir flies.

![Figure 3.14](image)

Figure 3.14 | Locomotion of Δcnir ; mhc::Gal4/UAS::cnir and Δcnir/+ ; UAS::cnir/+ flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between Δcnir ; mhc::Gal4/UAS::cnir (red) and Δcnir/+ ; UAS::cnir/+ (green) flies. Thus, Δcnir ; mhc::Gal4/UAS::cnir flies have impaired locomotion in comparison to the Δcnir/+ ; UAS::cnir/+ control, which reaches group 3 of the CA above the literature value for wt flies [Inagaki et al. 2010]. This confirms that there is no rescue via muscle specific expression of Cnir in Δcnir flies. Δcnir ; mhc::Gal4/UAS::cnir: 39.3 ± 10.0% group 1, 19.1 ± 3.0% group 2, 41.6 ± 8.4% group 3; Δcnir/+ ; UAS::cnir/+ : 2.6 ± 0.8% group 1, 5.9 ± 1.5% group 2, 91.6 ± 1.9% group 3; bars: mean ± sem; n=10 trials per experimental group; ***p ≤ 0.001.
Since at least one copy of the third chromosome in the experimental genotypes (fig. 3.12 and 3.13) is altered in comparison to the initially characterized Δcnir flies (fig. 3.10), it was tested whether the locomotion defects are still caused solely by the Δcnir mutation. For this purpose the rescue genotype Δcnir; mhc::Gal4/UAS::cnir was compared to Δcnir/+; UAS::cnir/+ control flies, which only lack one copy of cnir (fig. 3.14). Both experimental groups were tested in 10 trials.

Again, only less than half (41.6% ± 8.4%) of the rescue flies reached group 3 of the CA. In contrast, almost all flies (91.6% ± 1.9%) from the heterozygous control climbed into group 3 of the CA. In this case, the distribution of flies differs statistically significant (p ≤ 0.001) between Δcnir; mhc::Gal4/UAS::cnir flies (Cf= 0.48 ± 0.09) and Δcnir/+; UAS::cnir/+ flies (Cf= 0.90 ± 0.01). In addition, only heterozygous control flies climb into group 3 of the CA above the literature threshold (60%) for wt [Inagaki et al., 2010]. Hence, the locomotion defects are caused by the lack of cnir function and are not due to heterozygous alterations of the third chromosome. Furthermore, the motor impairment cannot be rescued via muscle specific expression of Cnir in Δcnir flies.

3.8 Neuronal rescue of locomotion defects

As mentioned before, locomotor impairment in Drosophila is due to pathology of muscles, peripheral neurons, or the central nervous system [Slawson et al., 2011].

As the rescue experiments in muscle tissue were not successful, it was tested whether pan neuronal appl::Gal4 [Torroja et al., 1999] driven cnir expression leads to rescue of locomotion impairment of Δcnir flies. As for the muscle rescue experiments, the UAS::cnir construct and the appl::Gal4 line were tested heterozygously for putative dominant influences on locomotion in a Δcnir mutant background (fig. 3.15). Both experimental groups were tested in 10 trials.

A vast majority (85.9 ± 5.4%) of Δcnir; appl::Gal4/+ flies was not able to leave group 1 of the CA. In comparison, Δcnir; UAS::cnir/+ were distributed almost evenly in the last two groups of the CA (39.5 ± 2.4% group 3). The statistical analysis shows a significant difference (p ≤ 0.001) in the distribution of Δcnir; appl::Gal4/+ flies (Cf= 0.10 ± 0.03) and Δcnir; UAS::cnir/+ flies (Cf= 0.61 ± 0.02).

This result might indicate a leaky expression of the UAS::cnir construct, leading to a minor rescue of the locomotion impairment. However, in both experimental groups less than 60% of flies reached group 3 of the CA as reported for wt flies [Inagaki et al.]
Results

Figure 3.15 | Locomotion of \(\Delta cnir; appl::Gal4/+\) and \(\Delta cnir; UAS::cnir/+\) flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between \(\Delta cnir; appl::Gal4/+\) (yellow) and \(\Delta cnir; UAS::cnir/+\) (blue) flies. This could indicate a minor rescue of locomotor impairment via leaky expression of \(UAS::cnir\). However, both genotypes show impaired locomotion and do not reach group 3 of the CA above the literature value expected for wt flies [Inagaki et al., 2010]. \(\Delta cnir; appl::Gal4/+\): 85.9 ± 5.4% group 1, 9.4 ± 3.6% group 2, 4.7 ± 2.0% group 3; \(\Delta cnir; UAS::cnir/+\): 13.0 ± 2.3% group 1, 47.5 ± 2.3% group 2, 39.5 ± 2.4% group 3; bars: mean ± sem; n=10 trials per experimental group; ***p ≤ 0.001.

Thus, both tested genotypes show defective locomotion and either could be used as a negative control for the rescue experiment. Due to the higher Cf value, \(\Delta cnir; UAS::cnir/+\) flies were chosen as control in the rescue experiment, as the higher Cf value makes a potential statistically significant rescue more robust. Each experimental group was tested in 10 trials (fig. 3.16).

In the \(\Delta cnir; appl::Gal4/UAS::cnir\) rescue genotype expressing \(cnir\) in neuronal cells, most flies did indeed reach group 3 of the CA (75.9 ± 3.7%). In the control genotype \(\Delta cnir; UAS::cnir/+\), fewer than 60% of flies reached group 3 of the CA, similar to the previous assay (compare figs. 3.15 and 3.16). The distribution of flies differs significantly (p ≤ 0.001) between \(\Delta cnir; appl::Gal4/UAS::cnir\) (Cf= 0.81 ± 0.02) and \(\Delta cnir; UAS::cnir/+\) (Cf= 0.66 ± 0.03). Furthermore, the rescue genotype reaches group 3 of the CA above the literature threshold for wt flies [Inagaki et al., 2010]. Thus,
expression of \textit{cnir} in neurons is crucial for reconstitution of functional locomotion in \textit{\Delta cnir} flies.

Although statistically significant, it was next tested, whether the neuronal rescue of locomotion in \textit{\Delta cnir} flies (fig. 3.16) is complete, or just partial. For this purpose, the rescue genotype was compared to \textit{\Delta cnir/}+; \textit{UAS::cnir/}+ flies, as a more rigorous and robust representative of wt climbing behavior (fig. 3.17). Each experimental group was tested in 10 trials.

As in the last assay (fig. 3.17), most (66.7 ± 4.5\%) \textit{\Delta cnir; appl::Gal4/UAS::cnir} flies climbed into group 3 of the CA. However, an even greater majority of \textit{\Delta cnir/}+; \textit{UAS::cnir/}+ flies (91.2 ± 1.4\%) reached group 3 of the CA. The distribution of flies is significantly different (p ≤ 0.001) between the rescue genotype (Cf= 0.76 ± 0.0) and the heterozygous control (Cf= 0.89 ± 0.01), where the latter performed substantially
Results

Figure 3.17 | Locomotion of Δcnir; appl::Gal4/UAS::cnir and Δcnir/++; UAS::cnir/+ flies
Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between Δcnir; appl::Gal4/UAS::cnir (red) and Δcnir/++; UAS::cnir/+ (green) flies. Thus, the rescue of locomotor impairment via Cnir expression in neurons could be only partial. Δcnir; appl::Gal4/UAS::cnir: 3.6 ± 1.1% in group 1, 29.7 ± 4.1% group 2, 66.7 ± 4.5% group 3; Δcnir/+; UAS::cnir/+: 1.0 ± 0.8% group 1, 7.8 ± 1.0% group 2, 91.2 ± 1.4% group 3; bars= mean ± sem; n= 10 trials per experimental group; ***p ≤ 0.001.

better. Hence, the rescue through neuronal expression of Cnir in Δcnir flies might be only partial.

3.9 Cnir protein localization and neuronal rescue with GFP:Cnir

To investigate the subcellular localization of Cnir, a N-terminally and a C-terminally tagged Cnir under the control of the UAS promoter were generated. The act::GAL4 [Wang et al. 2007] driven expression of both epitope tagged Cnir versions in the large and flat cells of the squamous follicular epithelium of stage 10 egg chambers is depicted in fig. 3.18. Both N-terminally and C-terminally GFP tagged Cnir localize to the circumference of the nucleus in densely packed puncta. However, the punctate distribution also extends far into the cytoplasm of the cell. Furthermore, the density
of the dots decreases with increasing distance to the nucleus. The Protein Disulfide Isomerase (PDI) is a ER resident protein [Ferrari and Söling, 1999]. The distribution of Cnir resembles the localization reported for PDI in the squamous follicular epithelium of *Drosophila* egg chambers [Bökel et al., 2006].

![Figure 3.18](image)

Figure 3.18 | Subcellular localization of GFP tagged Cnir

Cells of the squamous follicular epithelium of stage 10 egg chambers. Both, the N-terminally and C-terminally GFP tagged Cnir localize to a large structure, which is most dense in proximity to the nucleus but also extends far into the cytoplasm. A: Overlay of DNA stained with DAPI (blue) and GFP:Cnir labeled with an ant-GFP antibody (green); A’ single channel image of GFP:Cnir from A: B Overlay of DNA stained with DAPI (blue) and Cnir:GFP labeled with an ant-GFP antibody (green); B’ single channel image of Cnir:GFP from B.

It was crucial to address the question whether the GFP tagged Cnir proteins are biologically functional. For this purpose, rescue experiments were conducted driving *appl::Gal4* mediated expression [Torroja et al., 1999] of N-terminally GFP tagged Cnir in neuronal cells of Δcnir flies. Analogous to the neuronal rescue described
Results

previously, Δcnir; appl::Gal4/+ and Δcnir; UAS::GFP:cnir/+ flies were first tested for dominant influences of the transgenic constructs on the third chromosome (fig. 3.19). Furthermore, this test served as a control for leaky expression of the UAS::GFP:cnir construct, which could be indicated by a rescue in the absence of the appl::Gal4 driver. Each experimental group was tested in 5 trials.

![Graph showing locomotion of Δcnir; appl::Gal4/+ and Δcnir; UAS::GFP:cnir/+ flies](image)

Figure 3.19 | Locomotion of Δcnir; appl::Gal4/+ and Δcnir; UAS::GFP:cnir/+ flies
Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between Δcnir; appl::Gal4/+ (yellow) and Δcnir; UAS::GFP:cnir/+ (blue) flies. However, both genotypes show impaired locomotion and do not reach group 3 of the CA above the literature value for wt flies [Inagaki et al., 2010]. Δcnir; appl::Gal4/+: 90.9 ± 5.5% group 1, 7.6 ± 4.5% group 2, 1.5 ± 1.0% group 3; Δcnir; UAS::GFP:cnir/+: 69.8 ± 6.7% group 1, 26.5 ± 5.6% group 2 3.8 ± 1.9% group 3; bars: mean ± sem; n=5 trials per experimental group; *p ≤ 0.05.

Similar to former experiments, most (90.9 ± 5.5%) of the Δcnir; appl::Gal4/+ flies remain in group 1 of the CA. The distribution of Δcnir; UAS::GFP:cnir/+ flies in the CA appears similar and 69.8 ± 6.7% remain in group 1. However, the statistical analysis reveals a significant difference (p ≤ 0.05) in the distribution of Δcnir; appl::Gal4/+ flies (Cf= 0.07 ± 0.04) and Δcnir; UAS::GFP:cnir/+ flies (Cf= 0.21 ± 0.04). Still, both experimental groups do not reach the wt threshold of flies climbing into group 3 of the CA [Inagaki et al., 2010] and show strong impairment in locomotion.
Figure 3.20 | Locomotion of Δcnir ; appl::Gal4/UAS::GFP:cnir and Δcnir ; UAS::GFP:cnir/+ flies

Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals no statistically significant difference between Δcnir ; appl::Gal4/UAS::GFP:cnir (red) and Δcnir ; UAS::GFP:cnir/+ (blue) flies. Furthermore, both genotypes show impaired locomotion and do not reach group 3 of the CA above the threshold for wt flies [Inagaki et al., 2010], indicating no successful rescue via neuronal expression of GFP:Cnir. Δcnir ; appl::Gal4/UAS::GFP:cnir: 81.8 ± 6.3 % group 1, 12.2 ± 3.2 % group 2, 6.1 ± 4.0 % group 3; Δcnir ; UAS::GFP:cnir/+: 70.2 ± 7.5 % group 1, 24.0 ± 5.6 % group 2, 5.9 ± 2.0 % group 3; bars= mean ± sem; n= 10 trials per experimental group.

The rescue experiment was thus conducted using the Δcnir ; UAS::GFP:cnir/+ flies as control for the Δcnir ; appl::Gal4/UAS::GFP:cnir rescue genotype. Again, this was done because this group showed a higher Cf value in the previous experiment, improving the robustness of a statistically significant rescue. Both experimental groups were tested in 10 trials and the results are shown in fig. 3.20.

However, most flies remained in group 1 of the CA for both tested genotypes and no statistically significant difference was found in the distribution of Δcnir ; appl::Gal4/UAS::GFP:cnir (Cf= 0.15 ± 0.05) and Δcnir ; UAS::GFP:cnir/+ (Cf= 0.21 ± 0.04) flies. Therefore, the neuronal expression of a N-terminally GFP tagged Cnir does not lead to rescue of locomotion defects of Δcnir flies.

In order to investigate whether the locomotion impairment in the previous experiment is due to the lack of cnir function and not due to dominant effects of the
Results

Figure 3.21 | Locomotion of Δcnir ; appl::Gal4/UAS::GFP:cnir and Δcnir/+ ; UAS::GFP:cnir/+ flies
Distribution of flies in groups of the CA after the climbing assay. Analysis of the Cf value reveals a statistically significant difference between Δcnir ; appl::Gal4/UAS::GFP:cnir (red) and Δcnir/+ ; UAS::GFP:cnir/+ (green) flies. In contrast to the control, the rescue genotype shows impaired locomotion and does not reach group 3 of the CA above the literature threshold for wt [Inagaki et al., 2010]. This shows that there is no rescue via neuronal expression of GFP:cnir in Δcnir mutants. Δcnir ; appl::Gal4/UAS::cnir: 70.0 ± 5.1% group 1, 21.0 ± 3.8%, group 2, 9.0 ± 2.4% group 3; Δcnir/+ ; UAS::GFP:cnir/+ : 4.7 ± 1.9% group 1, 18.5 ± 1.6% group 2 76.8 ± 2.8% group 3; bars= mean ± sem; n= 7 trials per experimental group.

transgenic constructs on the third chromosome, the rescue genotype was compared to Δcnir/+ ; UAS::GFP:cnir/+ flies, which are heterozygous for the Δcnir locus and the UAS::GFP:cnir transgene. Both experimental groups were tested in 7 trials. The results are illustrated in fig. 3.21

A significant difference (p ≤ 0.001) in the climbing ability could be observed between the heterozygous control flies (Cf= 0.81 ± 0.02) and the rescue genotype (Cf= 0.21 ± 0.04), which still showed severe locomotor impairment. As expected, the control flies reached group 3 above the literature threshold for wt flies [Inagaki et al., 2010]. Hence, the locomotion defects are caused by the lack of cnir function in the rescue genotype and are not restored by expression of a N-terminally GFP tagged
Results

Cnir. Furthermore, the motor impairment is not caused by dominant effects of the transgenic constructs on the third chromosome.

The UAS::Cnir::GFP construct was not tested for its ability to rescue locomotor defects of Δcnir mutant flies so far. However, a successful rescue with the epitope tagged Cnir is crucial to support the observed protein localization (fig. 3.18).

3.10 Analysis of a cnir/cni double mutant

It was reported that the lack of one cnir copy in a cni^{AR55} amorphic mutant background leads to synthetic lethality in Drosophila. Only in combination with the hypomorphic cni^{AA12} allele could some Df(2L)JS7 cni^{AR55}/cni^{AA12} escapers be observed and these were strongly malformed. Furthermore, it has been shown that expression of cnir under the control of a cni promoter rescues parts of the synthetic lethality, as well as some somatic phenotypes of cni mutant flies [[Bökel et al.], 2006]. Those experiments indicated a potential functional redundancy of both cni genes in Drosophila. However, the previous data were generated using the deletion Df(2L)JS7 [Sekelsky et al., 1995], which removes a 214.5 kb region containing cnir and 36 other genes genes. Therefore, a Δcnir/cni^{AR55} FRT40A double mutant was generated to reinvestigate the synthetic lethality crosses from Bökel et al. [2006]. Moreover, this double mutant was used for induction of somatic clones to analyze if the lack of both cni genes causes cell lethality.

Fig. 3.22 depicts Δcnir/cni^{AR55} mutant clones in the follicular epithelium of a stage 10 egg chamber. The cell shape outlined by DE-Cadherin does not differ between mutant and wt cells. Also, the shape of nuclei of Δcnir/cni^{AR55} mutant cells does not differ from those of wt cells. Most importantly, large clones can be observed, showing that the lack of both cni genes does not cause cell lethality in the follicular epithelium of Drosophila egg chambers.

To confirm those results, Δcnir/cni^{AR55} clones were induced in a second epithelial tissue, namely in the eye imaginal discs of third instar larvae. Again, the cell shape outlined by the DE-Cadherin does not differ between double mutant and wt cells. Furthermore, the presence of Δcnir/cni^{AR55} clones demonstrates that the lack of both cni genes does not cause cell lethality in the eye imaginal disc.

This result was surprising in comparison to the synthetic lethality data from Bökel et al. [2006]. Therefore, test crosses with the newly generated Δcnir mutant and the Δcnir/cni^{AR55} double mutant were made to get a better understanding of those former
Follicular epithelium of a stage 10 egg chamber (A-D) oriented with the anterior pole to the left side. Wt cells are marked by the presence of GPF labeled with an anti-GFP antibody (green), while Δcnir/cni^AR55 double mutant cells lack GFP expression (encircled by white dashed line). DE-Cad is labeled with the anti-DE-Cad antibody (red) and DNA is stained with DAPI (white). Wt cells, as well as Δcnir/cni^AR55 double mutant cells do not differ in shape. Furthermore, the shape of nuclei does not differ between wt and double mutant cells. Large clones can be observed, indicating that the lack of both cni genes does not cause cell lethality.

studies. Moreover, some crosses described in that previous study were reproduced. The results are summarized in fig. 3.24.

First, w^-; Δcnir [w+]/CyO flies were crossed to Df(2L)S7/SM6a flies to see whether the precise cnir deletion is viable over the large deficiency removing cnir and 36 adjacent genes. The expected percentage (p exp.) of transheterozygous flies in the progeny (n=152) is 33% and the observed number is 19.7% of Δcnir [w+]/Df(2L)S7 flies. Al-
Results

Figure 3.23 | Somatic $\Delta cnir/cni^{AR55}$ clones in third instar larvae eye imaginal discs

Eye imaginal disc of a third instar larva (A-C) and a magnified view of $\Delta cnir/cni^{AR55}$ mutant clones (A'-C'). $\Delta cnir/cni^{AR55}$ cells are marked by the presence of GFP (green) and encircled by a white dashed line in A'-C', while wt cells lack GFP expression. DE-Cad is labeled with the anti-DE-Cad antibody (red). Wt cells and $\Delta cnir/cni^{AR55}$ double mutant cells do not differ in shape. Furthermore, clones can be observed indicating that the lack of both cni genes does not cause cell lethality.

though this value is significantly lower ($p \leq 0.001$) than the expected, the result also confirms viability of the homozygous $\Delta cnir$ mutant.

Next, $Df(2L)J57b$ cni^{AR55} pr cn/CyO flies were crossed to w^{-}; $\Delta cnir [w^{+}]$ flies to test if the lack of one cni gene copy (cni^{AR55} amorphic allele) in a $cnir$ mutant background leads to synthetic lethality as described for the reciprocal state. The p exp. of $Df(2L)J57b$ cni^{AR55} pr $cn/\Delta cnir [w^{+}]$ flies in the progeny ($n=110$) is 50% and the observed value is 59.1%. Strikingly, there is no significant difference between p exp. and the observed frequency. Thus, $cnir$ mutant flies lacking one copy of cni are viable.

Before testing for synthetic lethality as described in the published data [Bökel et al., 2006], a control experiment was set up crossing b cni^{AR55} $FRT40A/CyO$; ry/ry flies
Figure 3.24 | Test crosses for functional redundancy of both Drosophila cni genes

Each bar represents the total progeny from a cross. The expected percentage of flies of the genotypes in the figure legend is marked by a red line. The scored percentage of flies of a certain genotype are indicated by the non yellow proportion of the bar. The percentage of flies not corresponding to the monitored genotype is indicated in yellow. Although most observed percentages differ significantly from the expected frequency, no lethality can be seen in \textit{cnir} mutants (red) and \textit{cnir}/\textit{AR} \textit{55} \textit{AR} \textit{12} mutants (green). Interestingly, no synthetic lethality can be observed through removal of \textit{cnir} in a \textit{cnr} \textit{AR} \textit{55}/\textit{AR} \textit{12} mutant background (blue and orange). Strong lethality can only be observed in \textit{cnr} \textit{AR} \textit{55}/\textit{AR} \textit{55} amorphic mutants even without the lack of one \textit{cnir} copy (pink, grey and white). Furthermore, there is no strong lethality in a \textit{cnir} mutant lacking one \textit{cni} copy (purple). *** \(p \leq 0.001\) indicates a significant difference between the expected percentage (p exp.) of flies of a scored genotype and the observed percentage.

carrying the \textit{cni} amorphic allele with \textit{b cni} \textit{AR} \textit{12}/\textit{CyO} flies carrying the \textit{cni} hypomorphic allele. The p exp. of \textit{b cni} \textit{AR} \textit{55} \textit{FRT} \textit{40A}/\textit{b cni} \textit{AR} \textit{12} flies in the progeny (133) is again 33\% and the monitored value 18.0\%. Although p exp. and the observed frequency of transheterozygous flies differs significantly (p \(\leq 0.001\)), \textit{cni} mutants are viable.

Then, the experimental condition leading to synthetic lethality was reproduced utilizing the newly generated \textit{\Delta} \textit{cnir}/\textit{cni} \textit{AR} \textit{55} double mutant instead of the chromosome bearing the \textit{Df(2L)JS7} deletion. \textit{\Delta} \textit{cnir} \textit{w} \textit{+} \textit{b cni} \textit{AR} \textit{55} \textit{FRT} \textit{40A}/\textit{CyO} flies were crossed to \textit{b cni} \textit{AR} \textit{12}/\textit{CyO} flies. The p exp. of \textit{\Delta} \textit{cnir} \textit{w} \textit{+} \textit{b cni} \textit{AR} \textit{55} \textit{FRT} \textit{40A}/\textit{b cni} \textit{AR} \textit{12} flies in the
Results

progeny (n=203) is 33% and the observed percentage is 12.8%. Although the value is significantly lower (p ≤ 0.001) than the expected, no strong lethality can be seen. Furthermore, cni deficient flies from the previous experiment show a similar reduction of the expected genotype.

Because those results were surprising, the experimental conditions leading to synthetic lethality as published by Bökel et al. [2006] were repeated. For this purpose, Df(2L)S7 b cniAR55 pr cn/CyO flies were crossed to b cniAA12/CyO flies. The p exp. for Df(2L)S7 b cniAR55 pr cn/b cniAA12 flies in the progeny (115) is 33% and the observed frequency is 20.0%. Although this value differs significantly (p ≤ 0.001) from the expected, no synthetic lethality can be seen. Furthermore, Bökel et al. [2006] found only very few escapers in this experimental condition (≤ 1%), which are described as severely malformed. This could not be observed in the crosses performed.

Since neither previous cross shows the reported synthetic lethality, it was tested whether the used stocks carry the mutant cni alleles and Δcnir [w+]. The Δcnir [w+] deletion can be easily traced by the presence of the white gene replacing the cnir locus. To confirm that the cni alleles are still present in the used stocks, eggs from b cniAR55 FRT\textsubscript{40}A/b cniAA12 and Δcnir [w+] b cniAR55 FRT\textsubscript{40}A/b cniAA12 females were prepared (fig. 3.25). Wt eggs possess two dorsal appendages, an anterior micropyle and a posterior aeropyle. In contrast, cniAR55/cniAA12 female flies produce ventralized eggs without dorsal appendages and a posterior micropyle due to a failure in Grk signaling [Roth et al., 1995]. Both tested genotypes show ventralized eggs without dorsal appendages and a posterior micropyle. Therefore, the cni alleles are still present in the utilized stocks, confirming that no synthetic lethality occurs after removal of one cnir copy in a cni mutant background.

Next, it was tested whether the stronger cniAR55 allele in the experimental crosses leads to synthetic lethality. For this purpose, Δcnir [w+] b cniAR55 FRT\textsubscript{40}A/CyO flies were crossed to b cniAR55/CyO flies. The p exp. of Δcnir [w+] b cniAR55 FRT\textsubscript{40}A/b cniAR55 flies in the progeny (n=148) is 33% and the observed frequency is 0.7%. The expected and monitored percentage differs significantly (p ≤ 0.001). Furthermore, only one fly emerged as adult indicating strong lethality in the cni homozygous amorphic mutant lacking one cnir copy.

Again, the originally published data were reproduced crossing Df(2L)S7 b cniAR55 pr cn/CyO flies to b cniAR55 pr cn/CyO flies. The p exp. of Df(2L)S7 b cniAR55 pr cn/b cniAR55 pr cn flies in the progeny (n=127) is 33% and the monitored percentage 2.4%.
Figure 3.25 | Ventralized eggs from cni mutant mothers

Egg shells from wt female flies with two dorsal appendages, an anterior micropyle (left) and a posterior aeropyle (right) (A). Egg shell from a b cnirAR55 FRT40A/b cnirAA12 mother lacking dorsal appendages and having a posterior micropyle (B). Egg shell from a Δcnir[w+] b cnirAR55 FRT40A/b cnirAA12 mother without dorsal appendages and also lacking posterior structures, marked by the presence of a posterior micropyle (C).

Even though both values differ significantly (p ≤ 0.001) and thus reveal a strong lethality, cni amorphic mutant flies lacking one cnir copy can be seen.

Ultimately, it was tested whether the cni amorphic mutant is viable. b cnirAR55 FRT40A/CyO ; ry/ry flies were crossed to b cnirAR55/CyO flies. The p exp. of b cnirAR55 FRT40A/b cnirAR55 flies in the progeny (n=73) is 33% and no fly of that genotype was observed. Another experiment was performed crossing b cnirAR55/CyO flies to b cnirAR55 pr cn/CyO flies. The p exp. in this setup is the same as in the previous cross but no b cnirAR55/b cnirAR55 pr cn flies were seen in the progeny (n= 146). However, in other crosses with an altered third chromosome in comparison to the original amorphic cni stocks (supplementary fig. S.1) up to 6.88% of b cnirAR55/b cnirAR55 pr cn flies were observed in the progeny (n= 189) with a p exp. of 11%. This difference is not statistically significant. Hence, lethality of the cni amorphic mutants is most likely caused due to lethal influences in the genetic background.

Since no synthetic lethality can be observed through removal of cnir in a cnirAR55/cnirAA12 mutant background and there is no lethality in a cnir mutant lacking one cni copy, both Drosophila Cni proteins do not seem to have a functional redundancy in the soma. Furthermore, lethality in cnirAR55 amorphic mutants is most likely caused by influences in the genetic background of the fly stocks.
4 Discussion

4.1 Generation of a mutant for cnir: A putative ortholog of human CNIH4

The phylogenetic analysis performed shows that the Cni proteins from yeast and plants do not show clear orthology to Cni proteins from other species. However, insect Cni and nematode CNI-1 are closely related to the vertebrate CNIH1, from which CNIH2 and CNIH3 may have arisen from 2 consecutive gene duplications. Drosophila Cni has been shown to play an important role in ER export of the TGFα ligand Grk [Roth et al., 1995; Herpers and Rabouille, 2004; Bökel et al., 2006], which is a function that has been also proposed for the human CNIH1 [Castro et al., 2007]. No such function has been reported for worm CNI-1. Instead, it is involved in regulation of ER export of AMPARs [Herring et al., 2013]. A similar function in trafficking, as well as regulation of AMPAR kinetics has been demonstrated for the vertebrate CNIH2/3 [Schwenk et al., 2009; Kato et al., 2010; Shi et al., 2010; Gill et al., 2011; Coombs et al., 2012; Gill et al., 2012; Harmel et al., 2012; Brockie et al., 2013].

Strikingly, insect Cnir shows highest sequence homology to the vertebrate CNIH4 and is more distantly related to the Cni proteins mentioned above. CNIH4 has been recently shown to be involved in the regulation of ER export of members from the three major GPCR families [Sauvageau et al., 2014]. There appears to be a high functional conservation of Cni proteins in AMPAR regulation and possibly AMPAR and TGFα trafficking. Therefore, it is reasonable to speculate that a functional conservation in GPCR trafficking also applies to Cnir and its human ortholog CNIH4.

There is no published cnir mutant Drosophila stock. In this thesis a precise deletion of the cnir coding sequence and introns was successfully generated using the means of targeted gene knock-out via homologous recombination [Gong and Golic, 2003; Huang et al., 2008]. Furthermore, the efficiency of the knock-out was high and led to generation of multiple Δcnir mutant stocks. This facilitates the analysis of Drosophila Cnir and may represent the first in vivo study of a putative CNIH4 ortholog.
4.2 \(\Delta \text{cnir} \) is not lethal but has an impact on mortality throughout development and adult life

The generated \(\Delta \text{cnir} \) flies are homozygously viable and fertile. However, they show an increased mortality in development and adult life.

Although mutants for Cornichon proteins show specific sorting defects, there are only very few \textit{in vivo} studies. Analysis from yeast, \textit{Drosophila} and \textit{C.elegans} show that every mutant analyzed so far is viable [Roth \textit{et al.}, 1995; Powers and Barlowe, 1998, 2002; Bökel \textit{et al.}, 2006; Herring \textit{et al.}, 2013] and in the case of \textit{erv}15 does not even show any obvious phenotype [Nakanishi \textit{et al.}, 2007]. As reviewed in Dancourt and Barlowe [2010], it is known from analysis of cargo receptors that their deletion only results in an inefficient ER export of a subset of proteins, while other traffic at normal rates. Furthermore, fully folded cargo of a given receptor still traffics from ER to Golgi in bulk flow rates and is not exposed to ER associated degradation [Belden and Barlowe, 2001b; Bue and Barlowe, 2009]. Therefore, deletion of \textit{cnir} could result in reduced ER exit of its cargoes, but be sufficient for viability of the organism.

Interestingly, it has been demonstrated for the \(\alpha_{2B} \)-AR (family A GPCR) that its third intracellular loop interacts directly with the COPII subunits Sec24C/D [Dong \textit{et al.}, 2012]. While it is unclear whether Cnir is involved in trafficking of GPCRs, it could be that the receptors are incorporated into COPII vesicles by diverse mechanisms. It might potentially require a combination of direct COPII recognition and binding by cargo receptors for sufficient concentration of cargo [Sauvageau \textit{et al.}, 2014]. Further evidence for this general mechanistic comes from the yeast transmembrane protein Gap1, which relies on its cargo receptor Erv14p and a diacidic COPII recognition motif for efficient export from the ER [Malkus \textit{et al.}, 2002; Castillon \textit{et al.}, 2009; Sauvageau \textit{et al.}, 2014]. Thus, Cnir cargoes like GPCRs could possibly also traffic from the ER more efficiently than through bulk flow alone. This more efficient ER export could be achieved via direct binding of COPII components and provide an explanation for viability of \(\Delta \text{cnir} \) mutants.

Nevertheless, the lack of Cnir has a distinct impact on survival of \textit{Drosophila} throughout development and adult life. For example, \(\Delta \text{cnir} \) flies have a decreased fertilization rate of eggs and a lower hatching rate of embryos from eggs compared to control flies. Although presenting a less consistent view in comparison to the controls, \(\Delta \text{cnir} \) flies seem to pupate and eclose less successfully. Overall, the survival of \(\Delta \text{cnir} \) flies into
adulthood is strongly affected by the lack of Cnir protein. Furthermore, the lifespan of adult flies is decreased in comparison to control flies. As mentioned before, even bulk flow rates could potentially suffice for viability of the organism and Cnir cargo might bind to COPII components directly as reported for α_2B-AR \cite{Dong2012}. Therefore, Cargoes could be trafficked at rates which are high enough for survival of the fly. However, the generated data indicate that a lack of Cnir function is disadvantageous and causes increased mortality throughout developmental stages and adult life. If Cnir is involved in trafficking of GPCRs, it is striking that the Δcnir mutant is viable, given the immensely broad range of regulatory functions of GPCRs in almost all physiological and cellular processes in insect life \cite{Bendena2012,Caers2012}. Although CNIH4 has been shown to bind to members of the three major families of GPCRs \cite{Sauvageau2014}, only six GPCRs have been tested. Moreover, out of those six only the β_2-AR was studied intensively for its interaction with CNIH4. Therefore, CNIH4 could bind to only a subset of GPCRs, or at least not influence trafficking of all GPCRs to the same extend. This could possibly depend on the capability of certain GPCRs to bind to COPII subunits, while others might not have this property. The same principles might apply for the CNIH4 ortholog Cnir. However, it is likely that phenotypes associated with $cnir$ deletion could be extremely pleiotropic if GPCR trafficking is broadly affected.

\section*{4.3 Locomotor behaviour depends on Cnir function in neurons but not in muscles}

The lack of Cnir also leads to a severe locomotion defect. The cause of locomotor impairment in \textit{Drosophila} lays in the pathology of muscles, peripheral neurons, or the central nervous system \cite{Slawson2011}. The generated data indicate that Cnir function in neurons, but not in muscle cells, is crucial for reconstitution of wild type locomotor behavior of Δcnir flies.

As discussed above, \textit{C.elegans} CNI-1 \cite{Herring2013} and the vertebrate CNIH2/3 are involved in trafficking and regulation of AMPARs. \cite{Schwenk2009,Kato2010,Shi2010,Gill2011,Coombs2012,Gill2012,Harmel2012,Brockie2013}. Interestingly, the \textit{Drosophila} NMJ utilizes ionotropic GluRs homologous to AMPARs in the mammalian brain and there is a high degree of conservation of synaptic components between fly and vertebrates \cite{Chen1986}.
Furthermore, the NMJ expresses GluRs postsynaptically in muscle cells [Menon et al., 2013]. Even though unlikely with regard to the phylogenetic data, we hypothesized that Cnir could be the functional ortholog of worm CNI-1 and vertebrate CNIH2/3 and locomotor impairment of \(\Delta cnir \) mutants results from altered synaptic transmission via GluRs. However, the failed rescue in muscle cells provides further evidence for the generated phylogeny and the functional conservation amongst Cornichon proteins. *Drosophila* Cnir is only distantly related to the Cornichon proteins involved in GluR regulation and trafficking in the worm and vertebrates, while fly Cni is more closely related to them. Although not investigated during this thesis, it is an interesting question whether the fly Cni has a distinct function in GluR regulation and trafficking.

As mentioned previously, human CNIH4 has been reported to have an important function in trafficking of the three major families of GPCRs [Sauvageau et al., 2014] and is closely related to *Drosophila* Cnir. Upon activation, GPCRs transduce the extracellular signal into an intracellular response. The conformational change of a GPCR upon ligand binding leads to activation of the G protein. This in turn leads to an exchange of GDP to GTP in the \(\alpha \) subunit of the G protein. Subsequently, GTP-bound \(\alpha \) dissociates from the \(\beta \gamma \) dimer and both can interact with effector proteins to induce cellular responses. The most frequent \(\alpha \) subunits are \(\alpha_q \), \(\alpha_s \) and \(\alpha_{i/o} \). The first two \(\alpha \) subunits are stimulating, while \(\alpha_{i/o} \) acts inhibitory downstream of GPCR signaling [Caers et al., 2012]. GPCRs are involved in a myriad of biological processes, but many of those receptors are activated by neuropeptides [Bendena et al., 2012; Caers et al., 2012]. Strikingly, GPCRs, neuropeptides and GPCR signaling pathways elements are sensitive to minor changes, which are believed to result in behavioral plasticity because of alterations in GPCR controlled pathways [Bendena et al., 2012].

The successful rescue of locomotor impairment via pan neuronal expression of Cnir in \(\Delta cnir \) mutants might indicate restoration of GPCR trafficking in neurons. Thus, Cnir could be a potentially interesting upstream component of GPCR regulation. The G protein coupled dopamine receptors have been directly associated with abnormal locomotor behavior and Parkinson’s disease [Missale et al., 1998; Emilien et al., 1999; Vallone et al., 2000; Draper et al., 2007]. Moreover, loss of dopaminergic neurons and therefore loss of signaling via dopamine GPCRs is linked to locomotor dysfunction in *Drosophila*. This motor impairment is marked by a premature loss of climbing ability,
resting tremor and premature death [Feany and Bender, 2000; Haywood and Staveley, 2004; Draper et al., 2007]. In addition, pan neuronal knock-down of the Dopamine D2-like receptor (DD2R; family A GPCR) has been directly associated with low locomotor activity in Drosophila [Draper et al., 2007]. Although it was not investigated whether the locomotor dysfunction of ∆cnir mutants increases with age, a minor resting tremor and premature death can be observed. Furthermore, a rescue of locomotor behavior via Cnir expression in neuronal cells, could possibly indicate recovery of trafficking of dopamine activated GPCRs to wild type-like levels. However, the obtained results indicate that the rescue might be only partial. There could be several reasons for an incomplete rescue. It has been shown for the human CNIH4 that both, lack and over-expression of the protein, lead to retention of GPCRs. Since the UAS/Gal4 technique is a strong overexpression system, it could be that the adequate expression levels are not met in the experimental setup. Moreover, CNIH4 has been shown to interact with members of the three major families of GPCRs [Sauvageau et al., 2014]. Therefore, a multitude of GPCRs might be retained to a certain degree in the ER. Another possibility is that GPCR export levels in other tissues than neurons could also contribute to the locomotor impairment.

4.4 Loss of Cnir leads to decreased ethanol sensitivity

Ethanol induces a gradual loss of postural control [Bellen, 1998; Devineni and Heberlein, 2013]. Therefore, we speculated that ∆cnir flies with an already impaired locomotion, would show a increased sensitivity towards ethanol. However, cnir mutant flies exhibit a decreased ethanol sensitivity. Strikingly, signaling downstream of GPCRs has been shown to have a crucial role in ethanol response of Drosophila [Moore et al., 1998; Diamond and Gordon, 1997; Bellen, 1998; Ruppert, 2013].

One important downstream effector of GPCR signaling is the adenylyl cyclase (AC) which synthesizes the second messenger cAMP out of ATP [Caers et al., 2012]. In a feedback loop, cAMP can activate the protein kinase A (PKA) which then phosphorylates the cyclic nucleotide phosphodiesterase 4 (PDE4). This leads to hydrolyzation of cAMP and terminates signaling [Conti and Beavo, 2007].

In Drosophila, cAMP synthesis is activated as an acute response to ethanol and is reduced through chronic ethanol exposure [Diamond and Gordon, 1997; Bellen, 1998; Ruppert, 2013]. Importantly, alcohol induced behavior is also altered through genetic manipulation of cAMP interacting pathways. Amnesiac is a neuropeptide which acts
as an AC and directly increases cAMP levels [Feany and Quinn, 1995] similarly to Rutabaga, a Ca^{2+}-calmodulin sensitive AC [Livingstone et al., 1984; Levin et al., 1992]. DCo is a major catalytic subunit of the cAMP dependent PKA and thus relies on cAMP for its activity [Lane and Kalderon, 1993]. Mutants for all three cAMP pathway components display an increased ethanol sensitivity [Moore et al., 1998]. Strikingly, Moore et al. [1998] did not find any altered ethanol sensitivity in the mutant for the Drosophila PDE4 ortholog Dunce (Dnc), which has elevated cAMP levels. However, studies from Ruppert [2013] show a decreased sensitivity towards ethanol in Dnc^{M11} amorphic mutants.

Although speculative, one can reason that the lack of Cnir leads to inefficient trafficking of a GPCR that signals via G_{\alpha_i/o}. As a consequence, this would lead to elevated cAMP levels and provide an explanation for the reduced ethanol sensitivity of the \Delta cnir mutant. Even if Cnir is involved in trafficking of a multitude of GPCRs specificity of the phenotype could be mediated via tissue specific expression of the GPCR and G_{\alpha_i/o}.

4.5 GFP tagged Cnir potentially localizes to the ER but is not functional

Consistent with the conserved role of Cni paralogs as cargo receptors mediating ER export of secretory proteins both, N- and C-terminally GFP tagged Cnir putatively localize to the ER. The Protein Disulfide Isomerase (PDI) is a ER resident protein [Ferrari and Söling, 1999]. Even though no colocalization studies are shown in this thesis, the subcellular distribution of Cnir strongly resembles the localization reported for PDI in the squamous follicular epithelium of Drosophila egg chambers [Bökel et al., 2006]. Furthermore, the localization of Cnir is very similar to that reported for its human ortholog CNIH4. In cell culture CNIH4 localizes to a large structure that is dense in the close proximity of the nucleus, but extends throughout the whole cell [Sauvageau et al.] 2014).

The expression the N-terminally GFP tagged Cnir in neuronal cells does not restore locomotor behavior in \Delta cnir flies. This indicates that the protein tag disrupts Cnir function. It could well be that the rather big GFP tag interferes with Cnir binding to the COPII subunits or its cargo. Strikingly, Sauvageau et al. [2014] used N-terminal vYFP, CFP, as well as C-terminal eYFP tags of the same size as GFP in their co-
immunoprecipitation experiments with CNIH\textsubscript{4}. CFP:CNIH\textsubscript{4} has been shown to bind to the β_2-AR and CNIH\textsubscript{4}:eYFP to the chemokine CCR\textsubscript{5} receptor. Therefore, tags on both termini do not seem to interfere with CNIH\textsubscript{4} binding to the GPCR cargo. Furthermore, vYFP:CNIH\textsubscript{4} was demonstrated to bind to Sec\textsubscript{23} and Sec\textsubscript{24}, suggesting that the N-terminal tag does not interfere with binding to COPII subunits. The fact that GFP:Cnir does not rescue locomotor defects of Δcni\textsubscript{r} flies could indicate that the locomotor impairment is caused by an inefficient ER export of a cargo that is structurally unrelated to the GPCRs tested by Sauvageau \textit{et al.} \cite{2014}. In this scenario the tag could interfere with Cnir binding to this cargo. Another possibility is that the protein tag differentially influences Cnir binding of different GPCRs. In this case, the phenotype could be specifically caused by inefficient trafficking of a subset, or even one GPCR. This in turn could be correlated with the putatively different mechanisms for GPCR concentration into COPII vesicles. While GPCRs that bind COPII subunits directly \cite{Dong et al., 2012} could be more tolerant for reduced affinity to Cnir due to a GFP tag, others that do not bind COPII might be more sensitive for those alterations. Above that, even a slightly reduced affinity of a GPCR cargo to GFP:Cnir could have little influence on an \textit{in vitro} binding assay, while it could have big effects on \textit{in vivo} signaling levels in \textit{Drosophila}. As already mentioned, even slight alterations of GPCR signaling pathways result in behavioral plasticity \cite{Bendena et al., 2012}.

It will be interesting to see whether Cnir:GFP can rescue motor impairment of the \textit{cnir} mutant flies. A fully functional tagged Cnir will be crucial for reliable biochemical approaches to identify Cnir cargoes and for Cnir localization studies.

4.6 \textit{Drosophila} Cni and Cnir do not show strong functional redundancy in the soma

It was reported that the lack of one \textit{cnir} copy in an amorphic mutant background leads to synthetic lethality in \textit{Drosophila}. Furthermore, escapers were only observed in combination with the amorphic/hypomorphic \textit{cni} mutant background lacking one \textit{cnir} copy. Moreover, those escapers were strongly malformed. It has also been shown that expression of \textit{cnir} under the control of a \textit{cni} promoter rescues parts of the synthetic lethality, as well as some somatic phenotypes of \textit{cni} mutant flies \cite{Bökel et al., 2006}. The drawback of those experiments is that the data were generated using the deletion
Discussion

\(Df(2L)JS7 \) [Sekelsky et al., 1995]. This deficiency removes a 214.5 kb containing \(cnir \) and 36 other genes.

Because of those genetic results and the broad range of cargoes transported by Cni paralogs in yeast [Powers and Barlowe, 1998, 2002; Nakanishi et al., 2007; Castillon et al., 2009; Herzig et al., 2012] and vertebrates [Castro et al., 2007; Harmel et al., 2012; Brockie et al., 2013; Sauvageau et al., 2014] we speculated that mutation of both \(Drosophila \) cni genes could lead to cell lethality. However, no cell lethality can be observed in both somatic tissues tested and large double mutant cell clones can be seen. This could indicate that cargoes of Cni proteins still traffic at sufficient rates for survival of the cell. As discussed above, fully folded cargo of a cargo receptor still traffics from ER to Golgi in bulk flow rates and is not exposed to ERAD [Belden and Barlowe, 2001b; Bue and Barlowe, 2009]. Moreover, a multitude of cargoes of Cni proteins might additionally bind directly to the COPII coat as described for the GPCR \(\alpha_{2B}\)-AR [Dong et al., 2012] and the yeast Gap1 [Malkus et al., 2002; Castillon et al., 2009; Sauvageau et al., 2014].

Interestingly, the genetic experiments from Bökel et al. [2006] could not be reproduced with the newly generated \(\Delta cnir/cni^{AR55} \) double mutant and no synthetic lethality could be observed in cni amorphic/hypomorphic mutants hemizygous for \(\Delta cnir \). Moreover, reproduction of the experiments with the originally used stock did also not lead to synthetic lethality. A strong lethality could only be detected in cni amorphic mutants hemizygous for \(\Delta cnir \). However, the lethality is not as strong as described in the published data. Furthermore, the amorphic cni mutants used in control crosses also display lethality depending on the chromosomal background. This indicates the presence of lethal factors that might have accumulated in the genetic background of the amorphic stocks. Apart from the somatic phenotypes associated with cni mutation, no severely malformed flies could be observed in cni mutants hemizygous for \(\Delta cnir \). The genetic findings cannot completely rule out a functional redundancy of both \(Drosophila \) Cni paralogs, but the somatic impact of their mutation is not as strong as initially assumed. Thus, \(Drosophila \) Cni proteins could have a high selectivity towards a pool of transmembrane cargo as suggested by Sauvageau et al. [2014] for human CNIH1-4 proteins.
4.7 Perspectives

There is evidence that human CNIH4 is involved in the regulation of ER export of the three major families of GPCRs [Sauvageau et al., 2014]. Although the investigated effects on survival throughout development, adult lifespan, locomotor function and ethanol sensitivity of ∆cnir mutants could be reasonably linked to abnormal GPCR signaling, the data in this thesis provide only indirect hints towards a potential role of Cnir in GPCR trafficking. Therefore, the most pressing future experiment is to investigate interaction of Cnir with GPCRs. Although there are only few antibodies available for GPCRs, even those few could suffice to investigate ER exit of the receptors in ∆cnir mutants, especially if Cnir interacts with a similarly broad range of GPCRs like its ortholog CNIH4. ER exit has been shown to be the bottleneck in maturation and cell surface transport of GPCRs [Petaja-Repo et al., 2000]. Hence, it would be possible to investigate the proportion of different GPCRs reaching the plasma membrane in diverse tissues of cnir mutant flies microscopically. Many GPCRs have been shown to undergo consecutive post translational modifications like N- and O-glycosylation after ER exit, which can be used as readouts for their maturation state [Dong et al., 2007; Sauvageau et al., 2014]. Furthermore, Sauvageau et al. [2014] demonstrated that the Cnir ortholog CNIH4 interacts with immature β2-AR and that ER retained cargo undergoes degradation. Therefore, it might be crucial to investigate protein lysates from ∆cnir mutants via western blots, to find if immature forms of GPCRs are overrepresented due to ER retention. Moreover, one could examine if ∆cnir mutants possess degradation intermediates of GPCRs, which would indicate retention of receptors in the ER. Furthermore, co-immunoprecipitation of a GPCR with an epitope tagged version of Cnir could provide valuable hints to a putative function of Cnir in trafficking of GPCRs. Although in vitro binding assays might not rely on a fully functional epitope tagged Cnir, it would be more reliable to conduct the experiments with a tagged version that is able to rescue the locomotor defects of ∆cnir mutants. Since a neuronal rescue with a GFP:Cnir was not successful, C-terminally tagged Cnir could provide a tool for those experiments. As previously described, DD2R has been shown to be involved in locomotion of Drosophila [Draper et al., 2007]. Therefore, locomotor impairment of ∆cnir mutants could be directly linked to inefficient ER exit of DD2R. First western blot experiments have already been conducted using an anit-DD2R antibody. However, endogenous expression of DD2R is low. Therefore, it might be necessary to
Discussion

use overexpression systems in cell culture to see DD2R degradation intermediates, or to perform efficient co-immunoprecipitation experiments with Cnir.

The human CNIH4 localizes to the ER and interacts with the COPII subunits Sec23 and Sec24 [Sauvageau et al., 2014]. Thus, a functional epitope tagged Cnir is also crucial to conduct colocalization studies with COPII components and ER resident proteins like PDI [Ferrari and Söling, 1999] to support its role as cargo receptor. The employed antibodies could then be used for co-immunoprecipitation experiments. An anti-Sec23 antibody has already been tested for staining in ovaries (fig. S.2).

The analysis of ∆cnir mutants showed that Cnir function is essential in neurons of Drosophila for normal locomotor behavior. However, it would be interesting to know which neuronal circuits depend on Cnir function. Therefore, Cnir expression with different neuronal Gal4 driver lines could provide a better understanding of the affected neuronal circuits. The discovery of those circuits would also narrow down possible GPCR cargoes. Furthermore, it would be essential to investigate whether ethanol sensitivity can be restored to wt levels upon neuronal expression of Cnir.

Finally, it would be of great importance to utilize a functional epitope tagged cnir for site specific transgenesis [Bischof et al., 2007] at the ∆cnir locus. This would offer the possibility to monitor the subcellular and tissue specific expression of Cnir from its endogenous promoter and could provide valuable insights into neurons relying on Cnir function. Furthermore, this could again help to select for possible GPCR cargoes.

Although initially hypothesized, the results from this thesis do not indicate a strong functional redundancy of Drosophila Cni proteins in the soma. As discussed before, Drosophila Cni proteins might have a high selectivity towards a pool of transmembrane cargoes. Therefore, an interesting question is whether the apparently conserved function in AMPAR regulation and trafficking that has been proposed for Cornichon proteins in C.elegans [Herring et al., 2013] and vertebrates [Schwenk et al., 2009], Kato et al., 2010, Shi et al., 2010, Gill et al., 2011, Coombs et al., 2012, Gill et al., 2012, Harmel et al., 2012, Brockie et al., 2013], also applies to Drosophila Cni. To investigate Cni function, it would be crucial to generate a mutant in a cleaner chromosomal background as reported for cnir in this thesis. Another option could be to purify the available cni amorphic stocks from the seemingly present lethal factors. The larval NMJ expresses GluRs homologous to AMPARs in the mammalian brain postsynaptically in muscle cells [Menon et al., 2013]. Thus, a knock-down of cni in muscles cells via RNAi [Dietzl et al., 2007, Ni et al., 2011] might provide evidence for a function of Drosophila Cni in
regulation and trafficking of GluRs. The knock-down might cause altered locomotion of flies due to changed synaptic transmission via GluRs. Moreover, a possible change in the proportion of GluRs reaching the cell surface of muscle cells could be monitored microscopically via antibody staining in the larval NMJ.
References

References

References

Supplement

Figure S.1 | The cni^{AR55} amorphic mutation is not lethal in an altered chromosomal background

The cni^{AR55} amorphic mutant progeny with an altered third chromosome (scored genotype) is viable. Furthermore, there is no statistically significant difference between the p.exp and the observed frequency of the scored genotype. The percentage of the scored genotype is indicated (blue) and the expected percentage of this genotype is marked by a red line. The yellow proportion of the bar represents all non scored genotypes in the total progeny (n= 189) from the cross.
Figure S.2 | Localization of the COPII subunit Sec23 in a stage 10 egg chamber

Stage 10 egg chamber with the anterior pole to the top left. Sec23 is labeled with an anti-Sec23 antibody (red). A. Sec23 signal can be seen in a crescent shape at nuclei of the follicular epithelium. B. Image from A with an altered microscopical focus. Sec23 localization can be observed around the nurse cell nuclei.
<table>
<thead>
<tr>
<th>Number</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Bidirectional transport between ER and Golgi</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>COPII vesicle formation and cargo selection</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Model of Erv14p</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Scheme of the countercurrent apparatus</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Scheme of the inebriometer</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>Phylogenetic Analysis of Cni Proteins</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Predicted Cnir membrane topology</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>The cnir genomic locus</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Targeting of cnir</td>
<td>40</td>
</tr>
<tr>
<td>3.5</td>
<td>Test for cnir knock-out and removal of the white marker</td>
<td>41</td>
</tr>
<tr>
<td>3.6</td>
<td>Analysis of survival rates throughout development</td>
<td>43</td>
</tr>
<tr>
<td>3.7</td>
<td>Survivorship until adulthood</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Survivorship of adult Drosophila</td>
<td>46</td>
</tr>
<tr>
<td>3.9</td>
<td>Locomotion of w^{1118} and Δcnir/+ flies</td>
<td>47</td>
</tr>
<tr>
<td>3.10</td>
<td>Locomotion of Δcnir/+ and Δcnir flies</td>
<td>48</td>
</tr>
<tr>
<td>3.11</td>
<td>Ethanol sensitivity of w^{1118}, Δcnir/+ and Δcnir flies</td>
<td>49</td>
</tr>
<tr>
<td>3.12</td>
<td>Locomotion of Δcnir; mhc::Gal4/+ and Δcnir; UAS::cnir/+ flies</td>
<td>50</td>
</tr>
<tr>
<td>3.13</td>
<td>Locomotion of Δcnir; mhc::Gal4/UAS::cnir and Δcnir; UAS::cnir/+ flies</td>
<td>51</td>
</tr>
<tr>
<td>3.14</td>
<td>Locomotion of Δcnir; mhc::Gal4/UAS::cnir and Δcnir/+ ; UAS::cnir/+ flies</td>
<td>52</td>
</tr>
<tr>
<td>3.15</td>
<td>Locomotion of Δcnir; appl::Gal4/+ and Δcnir; UAS::cnir/+ flies</td>
<td>54</td>
</tr>
<tr>
<td>3.16</td>
<td>Locomotion of Δcnir; appl::Gal4/UAS::cnir and Δcnir; UAS::cnir/+ flies</td>
<td>55</td>
</tr>
<tr>
<td>3.17</td>
<td>Locomotion of Δcnir; appl::Gal4/UAS::cnir and Δcnir/+ ; UAS::cnir/+ flies</td>
<td>56</td>
</tr>
<tr>
<td>3.18</td>
<td>Subcellular localization of GFP tagged Cnir</td>
<td>57</td>
</tr>
<tr>
<td>3.19</td>
<td>Locomotion of Δcnir; appl::Gal4/+ and Δcnir; UAS::GFP:cnir/+ flies</td>
<td>58</td>
</tr>
<tr>
<td>3.20</td>
<td>Locomotion of Δcnir; appl::Gal4/UAS::GFP:cnir and Δcnir; UAS::GFP:cnir/+ flies</td>
<td>59</td>
</tr>
<tr>
<td>3.21</td>
<td>Locomotion of Δcnir; appl::Gal4/UAS::GFP:cnir and Δcnir/+ ; UAS::GFP:cnir/+ flies</td>
<td>60</td>
</tr>
<tr>
<td>3.22</td>
<td>Somatic Δcnir/cni^{ARK5} clones in the follicular epithelium</td>
<td>62</td>
</tr>
<tr>
<td>3.23</td>
<td>Somatic Δcnir/cni^{ARK5} clones in third instar larvae eye imaginal discs</td>
<td>63</td>
</tr>
<tr>
<td>3.24</td>
<td>Test crosses for functional redundancy of both Drosophila cni genes</td>
<td>64</td>
</tr>
<tr>
<td>3.25</td>
<td>Ventralized eggs from cni mutant mothers</td>
<td>66</td>
</tr>
<tr>
<td>S.1</td>
<td>The cni^{ARK5} amorphic mutation is not lethal in an altered chromosomal background</td>
<td>89</td>
</tr>
<tr>
<td>S.2</td>
<td>Localization of the COPII subunit Sec23 in a stage 10 egg chamber</td>
<td>90</td>
</tr>
</tbody>
</table>
List of tables

2.1 Reaction Kits ... 14
2.2 Restriction enzymes .. 15
2.3 Solutions and media ... 15
2.4 Fly stocks .. 17
2.5 Oligonucleotides ... 19
2.6 Vectors and plasmids .. 20
2.7 Primary antibodies .. 21
2.8 Secondary antibodies 21
2.9 Fluorescent dyes ... 21
2.10 Computer software ... 22
Zusammenfassung

Abstract

Cornichon proteins represent a highly conserved protein family of cargo receptors mediating efficient endoplasmic reticulum (ER) export of numerous transmembrane proteins in all eukaryotes analyzed so far. Drosophila possesses two cornichon genes: cornichon and cornichon-related (cnir). The former is well known for its function in establishment of dorsoventral polarity in the oocyte. This process relies on ER export and processing of the TGFα ligand Gurken and its transport to the oocyte surface. The function of Cnir has not been studied so far and is the subject of this thesis. Phylogentic analysis showed that Cnir represents a putative ortholog of the human Cornichon homolog 4 (CNIH4). A precise deletion of the cnir gene was generated through ends-out targeting via homologous recombination. The cnir mutants are viable but have an increased mortality throughout development and adult life. Furthermore cnir mutant flies display a strong locomotor defect, as well as a reduced sensitivity towards ethanol. Analysis via rescue experiments demonstrated that Cnir function is required in neurons for restoration of locomotor behavior. Using GFP tagged proteins, Cnir was found to putatively localize to the endoplasmic reticulum, supporting a conserved role as cargo receptor. A double mutant for both Drosophila Cornichon proteins was generated and its clonal analysis, as well as crossing genetics, indicate no functional redundancy in the soma. This suggests a selectivity of Cornichon proteins towards specific cagro pools. The putative Cnir ortholog CNIH4 has been shown to interact with the three major families of G protein coupled receptors (GPCRs) and is involved in their trafficking. GPCRs represent the largest superfamily of cell surface receptors and regulate almost every physiological and cellular process, making their trafficking an important field of study. Locomotor impairment and Parkinson’s disease have been linked to perturbation of dopaminergic pathways in fly and vertebrates. Furthermore, ethanol sensitivity is associated with altered cAMP levels downstream of GPCR signaling. Therefore, locomotor impairment and reduced ethanol sensitivity of cnir mutants might be linked to inefficient GPCR trafficking and thus reduced signaling levels.
Danksagungen

Zuerst möchte ich Herrn Prof. Dr. Siegfried Roth für die Möglichkeit danken diese Arbeit in seinem Labor bearbeiten zu dürfen. Des Weiteren gilt ihm großer Dank für die Betreuung dieser Arbeit und für die anregenden Hilfestellungen.

Frau Prof. Dr. Henrike Scholz danke ich für das Erstellen des Zweitgutachtens und zudem für die Einführung in Drosophila Verhaltensexperimente und deren Diskussion.

Des Weiteren gebührt Dr. Sebastian Grönke großer Dank für die Bereitstellung der Materialien zum Gen-Knock-Out durch homologe Rekombination und für das Teilen seiner Erfahrungen auf diesem Gebiet.

Ich möchte Frau Dr. Kristen Panfilio für das Korrekturlesen dieser Arbeit und die Diskussionen danken. Dank gilt auch allen anderen Korrekturlesern dieser Arbeit.

Oliver Karst und Stefan Kölzer sei an dieser Stelle auch für sämtliche technische Hilfestellung gedankt. Insbesondere gilt dies für die Generierung transgener Fliegen.

Besonderer Dank gilt natürlich auch allen früheren und jetzigen Mitgliedern der Arbeitsgruppen Roth und Scholz. Dies gilt sowohl für die hilfreichen Diskussionen, als auch für die überaus freundschaftliche Atmosphäre während und auch abseits der Arbeitszeiten.

Ich danke natürlich auch meiner gesamten Familie in Deutschland und Kolumbien, die mich im Verlaufe dieser Arbeit bedingungslos unterstützt hat, vor allem wenn es mal nicht so gut lief. Gleiches gilt auch für alle meine Freunde.
Erklärung

(Ort, Datum) (Waldemar Wojciech)
Lebenslauf

Persönliche Daten

<table>
<thead>
<tr>
<th>Name</th>
<th>Waldemar Miroslaw Wojciech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anschrift</td>
<td>Marie-Juchacz Straße 17 50129 Bergheim</td>
</tr>
<tr>
<td>Geburtsdatum und -ort</td>
<td>12.03.1982 in Laurahütte</td>
</tr>
<tr>
<td>Staatsangehörigkeit</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Schulische Ausbildung

<table>
<thead>
<tr>
<th>Schuljahr</th>
<th>Schule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989-1993</td>
<td>Fortunascule in Oberaußem/Niederaußem</td>
</tr>
<tr>
<td>1993-2002</td>
<td>Erftgymnasium in Bergheim</td>
</tr>
</tbody>
</table>

Zivildienst

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-2003</td>
<td>Zivildienst an der Paul-Kraemer-Schule in Frechen</td>
</tr>
</tbody>
</table>

Studium

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Studium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diplomsprüfungsfächer: Genetik, Entwicklungsbiologie, Biochemie</td>
</tr>
</tbody>
</table>

Diplomarbeit bei Prof. Dr. Siegfried Roth am Institut für Entwicklungsbiologie der Universität zu Köln

Titel: Genetic and Molecular Analysis of a new Component of the Oocyte Polarity in *Drosophila*

Seit 2010

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Tätigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doktorarbeit bei Prof. Dr. Siegfried Roth am Institut für Entwicklungsbiologie der Universität zu Köln</td>
</tr>
</tbody>
</table>

Titel: Analysis of a second *Drosophila* Cornichon Protein