
Interactive High Performance
Volume Rendering

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Stefan Zellmann

aus Bergisch Gladbach

Hundt Druck GmbH, Köln

Jahr der Veröffentlichung: 2014

Berichterstatter/in: Prof. Dr.-Ing. Ulrich Lang

Prof. Dr. Ewald Speckenmeyer

Tag der mündlichen Prüfung: 7. Juli 2014

c© Copyright by Stefan Zellmann 2014

All Rights Reserved

Abstract

This thesis is about Direct Volume Rendering on high performance computing

systems. As direct rendering methods do not create a lower-dimensional geometric

representation, the whole scientific dataset must be kept in memory. Thus, this

family of algorithms has a tremendous resource demand. Direct Volume Rendering

algorithms in general are well suited to be implemented for dedicated graphics

hardware. Nevertheless, high performance computing systems often do not provide

resources for hardware accelerated rendering, so that the visualization algorithm

must be implemented for the available general-purpose hardware.

Ever growing datasets that imply copying large amounts of data from the compute

system to the workstation of the scientist, and the need to review intermediate

simulation results, make porting Direct Volume Rendering to high performance

computing systems highly relevant. The contribution of this thesis is twofold.

As part of the first contribution, after devising a software architecture for general

implementations of Direct Volume Rendering on highly parallel platforms, paral-

lelization issues and implementation details for various modern architectures are

discussed. The contribution results in a highly parallel implementation that tackles

several platforms.

The second contribution is concerned with the display phase of the “Distributed

Volume Rendering Pipeline”. Rendering on a high performance computing system

typically implies displaying the rendered result at a remote location. This thesis

presents a remote rendering technique that is capable of hiding latency and can thus

be used in an interactive environment.

Kurzfassung

Diese Dissertation fokussiert sich auf direktes Volume Rendering auf Höchstleistungs-

rechnern. Weil für direkte Visualierungsmethoden keine geometrische Hilfsrepräsen-

tation niedrigerer Dimension benötigt wird, so dass der gesamte wissenschaftliche

Datensatz im Arbeitsspeicher vorgehalten werden muss, ist der Ressourcenbedarf

dieser Familie von Algorithmen immens. Im Allgemeinen bietet sich zur Implemen-

tierung eher Grafikhardware an. Diese wird von Höchstleistungsrechnern häufig aber

nicht zur Verfügung gestellt, so dass der Visualisierungsalgorithmus speziell für die

verfügbare, für den universellen Einsatz gedachte, Hardware implementiert werden

muss.

Das stete Wachstum wissenschaftlicher Datensätze impliziert Datenbewegungen

im großen Maße vom Höchstleistungsrechner zur Workstation des Wissenschaftlers.

Außerdem besteht zunehmend der Bedarf danach, Zwischenergebnisse bereits während

der Simulation begutachten zu können. Diese zwei Faktoren begründen die Relevanz

dessen, Direktes Volume Rendering für Höchstleistungsrechner zu portieren. Der

Beitrag dieser Arbeit ist zu diesem Zwecke zweigeteilt.

Im Rahmen des ersten Teilbeitrags werden auf der Basis einer Software-Architektur-

beschreibung, die generelle Implementierungen von Direktem Volume Rendering für

hochgradig parallele Plattformen lanciert, Details zur parallelen Implementierung

für zahlreiche moderne Architekturen erörtert. Dieser Teilbeitrag resultiert in einer

hochgradig parallelen Implementierung, die auf zahlreichen Plattformen effizient

lauffähig ist.

Der zweite Teilbeitrag behandelt die Darstellungsphase in der “Verteilten Volume

Rendering Pipeline”. Rendering auf Höchstleistungsrechnern basiert typischerweise

auf Remote Rendering Techniken. Diese Dissertation schlägt eine Remote Rendering

Technik vor, mit deren Hilfe es möglich ist, Latenzen zu verstecken, und die deshalb

in interaktiven Umgebungen zum Einsatz kommen kann.

Acknowledgements

First and foremost I would like to thank my advisor Prof. Dr. Ulrich Lang. He gave

me the opportunity to study an interesting topic in depth. I consider it a privilege.

Furthermore, I would like to thank Dr. Jürgen Schulze and the scientists at the

High Performance Computing Center Stuttgart (HLRS), who initially developed the

DeskVOX volume rendering software. Without their groundwork, this thesis would

not have been possible at all.

Special thanks go to my former colleague Martin Aumüller who has been a guide,

especially in my first years as a scientist.

My thanks go also to my two student coworkers, Alexander Bolz and Stavros Delisavas.

Programming is primarily a lot of work, and much of the work conducted during the

course of this thesis would have been left undone without their help.

I also wish to thank my colleagues who read this thesis and who influenced me with

their interesting discussions. Their suggestions contributed to the quality of this

work. My thanks go, in alphabetical order, to Viktor Achter, Matthias Flasko, and

Yvonne Percan.

Some of the figures and results in this thesis are reprints and were originally published

by ASME and IASTED, respectively. The original publications are acknowledged at

the positions where they occur in the text. The figures were reprinted with friendly

permission of the respective copyright owner.

The work for this thesis was conducted over a period of almost five years. During

that time, my work was supported by the German Federal Ministry of Education

and Research (BMBF), who funded the research project “Visualization in Parallel

Manycore Environments” (VisPME) [Vis11]. Later, my work was supported by a

grant from the Centre for High-Performance Scientific Computing in Terrestrial

Systems, HPSC TerrSys, in the Geoverbund ABC/J [HPS12].

Contents

1 Introduction 1

1.1 Structure . 1

1.2 Motivation . 3

1.3 Contributions . 4

2 Scientific Visualization 5

2.1 Brief Introduction to Scientific Visualization 6

2.2 Classification of Scientific Datasets 8

2.3 Visualization Pipelines . 11

2.4 Visualization Methods for Scientific Datasets 13

2.4.1 Contouring . 13

2.4.2 Slicing . 15

2.4.3 Particle Tracing . 15

2.4.4 Color Mapping . 16

2.5 Scientific Visualization and High Performance Computing 18

3 State of the Art in Parallel Direct Volume Rendering 19

I

II CONTENTS

3.1 Introduction to Direct Volume Rendering 20

3.2 Direct Volume Rendering Algorithms 29

3.2.1 Texture-Based Volume Rendering 30

3.2.2 Frequency Domain Volume Rendering 33

3.2.3 Shear-Warp Volume Rendering 34

3.2.4 Volume Splatting . 35

3.2.5 Cell Projection . 39

3.2.6 Ray Casting . 41

3.2.7 Out-of-Core Volume Rendering 42

3.3 Parallel Programming Models . 43

3.3.1 Single Instruction Multiple Data 46

3.3.2 Shared Memory Computing 47

3.3.3 Distributed Memory Computing 49

3.3.4 General-Purpose Programming with NVIDIA R© GPGPUs . . . 50

3.3.5 Programming Models for the Intel R© Xeon PhiTM Coprocessor 53

3.4 Parallel Direct Volume Rendering Techniques 55

3.4.1 Sorting Classification for Parallel Rendering 55

3.4.2 Sort-First Volume Ray Casting 57

3.4.3 Sort-Last Parallelization for Multi-GPU Systems and Dis-

tributed Memory Systems . 59

3.4.4 Load-Balancing for Parallel Direct Volume Rendering 63

3.5 Direct Volume Rendering and Visualization Systems 65

3.5.1 ImageVis3D . 65

CONTENTS III

3.5.2 Voreen . 65

3.5.3 DeskVOX . 66

3.5.4 ParaView . 67

3.5.5 VisIt . 67

3.5.6 COVISE . 68

4 A Software Architecture for Distributed Volume Rendering 69

4.1 Distributed Volume Rendering . 70

4.2 The Distributed Volume Rendering Pipeline 71

4.3 Data Distribution . 72

4.4 Generic Parallelization Scheme for Sort-Last Rendering 73

4.5 Display Phase . 75

4.6 Interactive Resource Management . 76

4.6.1 One Resource Per User . 76

4.6.2 Multiple Resources Per User 77

5 Implementing the Parallel Rendering Phase of the Distributed Vol-

ume Rendering Pipeline 79

5.1 Sort-First Volume Ray Casting for High

Performance Computing Platforms 81

5.1.1 GPGPU Volume Ray Casting Implementation 81

5.1.2 Sort-First Parallel Volume Ray Casting for Multi-Core Systems 86

5.1.3 SIMD-Based Ray Casting Kernel for Intel R©-

Compatible CPUs . 89

IV CONTENTS

5.1.4 SIMD-Based Ray Casting Kernel for Intel R© Xeon

PhiTM Coprocessors . 100

5.1.5 Comparison of the Sort-First Ray Casting Implementations . . 103

5.2 Sort-Last Implementation for Many-Core Systems 105

5.3 Integration into the Direct Volume Rendering Library Virvo 106

5.4 Results . 108

5.5 Conclusions . 122

6 Decoupling Rendering and Display Phase 125

6.1 Image-Based Remote Volume Rendering 126

6.2 Remote Rendering Technique . 129

6.2.1 Remote Rendering of 2.5D Image Data to Hide Latency 129

6.2.2 Constructing the Reprojection Matrix 131

6.2.3 Depth Buffer Generation from Volumes 134

6.2.4 Reprojection Artifacts . 137

6.2.5 Performance Penalties . 140

6.3 Enhancements to the Remote Rendering Technique 141

6.3.1 Server-Side Latency Hiding 141

6.3.2 Corrections for Local Illumination 144

6.3.3 Depth Buffer Compression . 145

6.4 Application to Virtual Reality . 146

6.5 Results . 148

6.5.1 Performance Analysis . 148

6.5.2 Error Estimates for the Depth Heuristics 156

CONTENTS V

6.6 Conclusions . 163

7 Summary, Conclusions and Future Work 165

7.1 Contributions and Relevance of this Work 165

7.2 Conclusions . 167

7.3 Outlook . 168

Bibliography 171

VI CONTENTS

Chapter 1

Introduction

1.1 Structure

This thesis is structured as follows.

Chapter 1, i. e. the remainder of this chapter, outlines the motivation for this thesis.

This is followed by a brief overview of the two main contributions presented in this

work.

Chapter 2 gives a general overview of scientific visualization algorithms. Being far

from comprehensive, this chapter classifies the scientific visualization algorithms that

later on are investigated more thoroughly in a broader context.

Chapter 3 summarizes the current state of the art for parallel Direct Volume

Rendering algorithms. The problem setting for Direct Volume Rendering along with

algorithms to achieve it in real-time is presented. Along with that, parallelization

strategies are reviewed that are suitable for different kinds of hardware that is

typically found in high performance computing systems.

Chapter 4 devises a software architecture for Distributed Volume Rendering on

high performance computing systems. The software architecture follows a pipeline

approach. With maximum versatility in mind, the chapter outlines how specialization

of various pipeline stages can lead to a visualization tool that is capable of running on

1

2 CHAPTER 1. INTRODUCTION

highly heterogeneous hardware platforms with manifold usage scenarios ranging from

interactive applications in Virtual Reality over in situ visualization to visualization

of large datasets on dedicated graphics hardware.

Chapter 5 is concerned with the first major contribution of this thesis and proposes

a concrete implementation of the parallel rendering stage of the Distributed Volume

Rendering Pipeline introduced in Chapter 4. A sort-last Multi-GPU implementation is

accompanied by a CPU-based SIMD implementation, that scales to modern hardware

platforms like the Intel R© Xeon PhiTM coprocessor. The rendering performance of

the system is evaluated.

Chapter 6 elaborates on the second contribution of this work and devises a specific

implementation for the display phase of the pipeline from Chapter 4. An interactive

technique for remote rendering of volume datasets is presented that allows for hiding

latency and computation time by decoupling rendering and display phase. This

is achieved by using an image-based rendering technique and 2.5D data from the

remote server.

Chapter 7 briefly summarizes the main contributions of this work, reviews its major

conclusions and suggests opportunities for future research.

1.2. MOTIVATION 3

1.2 Motivation

The ubiquity of heterogeneous many-core systems in the recent years not only had

an impact on codes that perform scientific calculations, but also on the visualization,

which is the predominant part of the ensuing interactive post-processing phase

and which is used to gain insights into the scientific data that originates from the

simulation. Not only must the visualization algorithms keep pace with the steadily

growing dataset sizes that result from scientific simulations, but also with the need

of the scientist to explore the simulated data interactively.

In the second half of the last century, high performance computing (HPC) systems

were usually used in a batch fashion, i. e. the scientist submitted a compute job,

which would later be scheduled for execution and would even later write its results

to a mass storage system from which the scientist could retrieve them. While this

mode of execution is still the common case in HPC even today, many scientists wish

to adapt their simulation at run time based on the inspection of intermediate results.

In such scenarios, visualization can help as a means of inspection to create a feedback

loop to adapt simulation parameters. Quite often, in such cases it is not desirable

or infeasible to copy scientific data from the high performance computing system

to the client computer the scientist uses. Designing visualizations that run on the

same system as the simulation does can be challenging. On top of that, having to

display the data on a computer at a remote location introduces an additional source

of overhead and adds heterogeneity to the overall system.

Direct Volume Rendering (DVR) denotes a family of algorithms that can be used to

display a wide variety of three-dimensional datasets. Many simulation codes produce

results that can be rendered using this family of algorithms or generate outputs

that can be resampled to be renderable with DVR. Because of that, it is especially

important to adapt DVR algorithms to run on heterogeneous many-core systems,

which can be equipped with all types of processors and accelerators.

This thesis illuminates the various aspects that need to be considered when adapting

DVR to many-core systems. These aspects include, amongst others, the different

parallelization paradigms that the serial algorithms need to be adapted to and

4 CHAPTER 1. INTRODUCTION

considerations for hiding latency introduced by networks connecting the many-

core system with the client computer the scientist is interacting with. Theoretical

considerations are followed by concrete implementations which are then evaluated

regarding their general fitness for the application in terms of the quality of the

resulting images, as well as their performance in terms of execution time.

1.3 Contributions

The contribution of this work is divided into two separate areas:

Advances in Parallel Direct Volume Rendering. Modern workstations and

HPC systems expose several means for parallelization through add-in card-based

coprocessors, programmable GPUs and fast network interconnect. With the

advent of GPGPU computing, Multi-GPU systems became prevalent. This work

proposes ways to exploit these means for interactive Direct Volume Rendering.

Implementations for several modern hardware platforms are evaluated and

combined into a flexible software architecture that facilitates Direct Volume

Rendering on heterogeneous systems. The developed software is integrated

into an open source visualization package and published along with it under

an open source software license.

Interactivity Techniques for Remote Volume Rendering. When frame rates

drop significantly below 30 Hz, in Virtual Reality this can cause nausea and

fatigue. Maintaining interactive frame rates can be a challenge in the context of

remote visualization introducing network latency. An image-based interactivity

technique for remote rendering is proposed that decouples the rendering phase

from the display phase and is thus capable of hiding latency. The decoupling

technique is specifically designed for Direct Volume Rendering and relies on

heuristics to deduce a depth buffer from volume datasets to generate 2.5D data

for remote display.

Chapter 2

Scientific Visualization

The need for visualization can generally arise in any scientific discipline. Natural

sciences produce tremendous amounts of data from simulations and measurements.

In that case, visualizations are needed that aim at a higher level of abstraction to

filter the information that is beneficial from the information that doesn’t carry any

significant meaning. Engineering often aims at the virtual reconstruction of tools or

machinery, whilst retaining their original proportions, so that they can e. g. be judged

regarding ergonomics. Archaeologists may have an interest in physical plausibility,

e. g. when lighting scenarios at ancient sites are simulated in order to understand

the original lighting conditions. Artists may be interested in photorealism. That

said, while the disciplines that develop a need for visualization are manifold, so are

the methods that are used to fulfill those needs, and even further, while one type

of visualization is suitable for one discipline, it may be counterproductive for the

other. This thesis concentrates on visualization scenarios where datasets need to be

visualized that are connected to a spatial description, i. e. their underlying topology

can be mapped to points in 3D space. Rather than reaching for photorealism or

physical plausibility, the primary aim of the algorithms investigated through the

course of this thesis is to distinguish relevant from irrelevant information. Typical

fields of application are medical imaging or weather forecasting. The family of

algorithms that this thesis is centered around, Direct Volume Rendering (DVR),

nevertheless, is not the primary focus of this chapter. Rather than that, this chapter

5

6 CHAPTER 2. SCIENTIFIC VISUALIZATION

aims at motivating the general notion of scientific visualization, and it tries to devise

a formal language to categorize the various types of scientific datasets, along with a

broad overview of the general types of algorithms that are applicable to visualize

some of those datasets. DVR is a tool that specifically aims at visualizing a certain

subset of these datasets.

This introductory chapter is organized as follows. Section 2.1 briefly introduces and

defines the notions visualization and scientific visualization. Section 2.2 provides

a formal overview of scientific datasets alongside with a means to classify them

regarding their spatial topology and the characteristic traits of the data items that

make up the datasets. Section 2.3 reviews pipeline approaches to map data from

measurements or simulation to specific visualizations. Section 2.4 gives an overview

of some common visualization methods that can be used for the various kinds of

datasets, and Section 2.5 gives a short introduction to the connection between

scientific visualization and high performance computing (HPC), which is one of the

key aspects of this thesis.

2.1 Brief Introduction to Scientific Visualization

Visualization is a discipline that is concerned with the generation of images from

general data. McCormick et al. [MDBZ87] define visualization as “[...] a method of

computing (that) [...] transforms the symbolic into the geometric, enabling researchers

to observe their simulations and computations. Visualization offers a method for

seeing the unseen. It enriches the process of scientific discovery and fosters profound

and unexpected insights.” The authors also provided a coarse classification by

subdividing visualization into the fields:

• Computer graphics

• Image processing

• Computer vision

• Computer-aided design

2.1. BRIEF INTRODUCTION TO SCIENTIFIC VISUALIZATION 7

• Signal processing

• User interface studies

Hansen and Johnson [JH04] generally described the goal of visualization being “the

creation of a visual representation to help explain complex phenomena” in their

Visualization Handbook.

Earnshaw and Wiseman [EW92] postulated that “Scientific visualization is concerned

with exploring data and information in such a way as to gain understanding and

insight into the data. The goal of scientific visualization is to promote a deeper level

of understanding of the data under investigation and to foster new insight into the

underlying processes, relying on the humans’ powerful ability to visualize.”

For the purposes of this work, the term scientific visualization will be defined as

follows.

Definition 1 (Scientific Visualization) Scientific visualization is the transfor-

mation of abstract data to a geometrical representation in order to gain a further

understanding of the data. The need for scientific visualization stems, amongst others,

from the humans’ limited ability to perceive and imagine N-dimensional problem

spaces and aims at narrowing these down to a more comprehensible depiction in

the spatial domain of the simulation or the measurement performed to obtain the

dataset in the first place. Scientific visualization is often, but not necessarily, aided

by computation.

This working definition expresses several aspects in which the author’s opinion differs

from those of the authors of the aforementioned textbooks.

In contrast to McCormick et al., the author argues that visualization is not solely a

method of computing but in general the result of human imagination, independent

of the medium the individual uses to express his or her imagination.

This work’s definition differs from that of Earnshaw and Wiseman in that it specifically

does not state information as the entity to be visualized. Underlying this is a

distinction between the notions data and information which assumes that data

8 CHAPTER 2. SCIENTIFIC VISUALIZATION

is uninterpreted. Raw data can however be converted to meaningful information

through a cognitive process. In fact, the author argues that the process of visualizing

data is one that actually facilitates this very transformation of abstract data to

information, which is then accessible and useful to the scientist. This distinction is

also reasonable in order to distinguish the field of scientific visualization from the

large field of information visualization, which is not covered by this work. Scientific

datasets are typically located in a spatial domain like in 2D or 3D space. In that case,

the spatial context does not need to be deduced but is present a priori, which is in

contrast to the datasets that are typically processed using information visualization.

For multi-dimensional datasets, i. e. datasets which may have an underlying spatial

topology but exhibit single data items with a higher dimensionality than that of

the space they are located in, the best mapping needs to be found that extracts the

most relevant information regarding the parts of the data items pertaining to the

remaining dimensions. Narrowing down the data to depict the relevant information

in a perceivable way is of uttermost importance. Examples of multi-dimensional

datasets can be found in turbulence simulation, where the simulation domain spans

a spatial context and data items consist e. g. of velocity vectors in conjunction

with pressure and particle emission. Visualizing multi-dimensional datasets can be

accomplished by combining several of the techniques that are all but briefly motivated

in Section 2.4.

2.2 Classification of Scientific Datasets

Scientific visualization methods are designed to explore various types of datasets

differing in terms of their underlying topology, their dimensionality and their time

dependence. In the following, a mathematical formalism to classify scientific datasets

in terms of those properties is introduced.

In general, scientific datasets are made up of a finite set of data items, which are

located in an N−dimensional Hilbert space. The topology of the dataset determines

the connectivity of these data items in space and time. Specific manifestations of

topologies are e. g. scattered topologies [CJ05], grid topologies [HLC91] or mesh

2.2. CLASSIFICATION OF SCIENTIFIC DATASETS 9

Figure 2.1: Topologies with varying degree of structuredness. From left to right,
Top to bottom: scattered data, structured grid, regular grid, cartesian grid with
equidistant spacing between vertices, rectilinear grid with equidistant spacing between
vertices in each dimension, adaptive grid structure where nodes with a higher
resolution emphasize regions of interest.

topologies [TYRG+06]. Grid topologies impose a cyclic, closed graph data structure

on top of the dataset, where the locations of the data items are modeled as vertices

and connections are modeled as edges. Grid topologies can be further classified

into structured and unstructured grids, where structure implies a regular pattern of

the connections between the data items regarding distances between vertices and

angles between edges. In cases where the number of edges leaving a vertex cell

is constant, one often refers to grid topologies in terms of the N − dimensional

geometric primitive the edges connecting neighboring vertices form, resulting in

terms like rectangular grids or tetrahedron grids. The volumetric regions spanned by

the convex hull of these geometric primitives are referred to as cells. Figure 2.1 shows

numerous examples of 2D topologies exhibiting varying degrees of structuredness. A

good overview of topologies for scientific datasets is given in Chapter 7 of [JH04].

The dimensionality of scientific datasets on the one hand depends on the dimen-

sionality of the Hilbert space the data items are located in. On the other hand,

the dimensionality depends on the domain of the data items. Specialized scientific

visualization methods exist for 2D and 3D spatial dimensions and for data items

such as scalars, vectors or tensors [HPvW94].

10 CHAPTER 2. SCIENTIFIC VISUALIZATION

Time dependent datasets typically exhibit time-varying data items. The topology of

the dataset may also vary with time. This may have a varying impact on the way

the dataset is stored and processed. Regular, adaptive grid topologies are used when

the researcher exploring the dataset is especially interested in specific regions that

are modeled using a higher grid resolution than the rest of the spatial domain. If

these regions of interest are in motion, it may be possible to store the change of the

grid with time as an increment of the previous time step and not having to store the

whole topology anew for each frame. With unstructured grids, storing increments in

general may be more difficult because of the weak connectivity of arbitrary grid cells.

Anyhow, the dimensionality of scientific datasets that this thesis focuses on usually

does not vary with time.

In accordance to this classification, a general way to analytically describe scientific

datasets is by using tuples of the form (X,S, T), where X denotes the topology of

the dataset, S stands for the data value at the grid position that depends on the

dimensionality of the domain and T ∈ N \ 0 denotes time dependence.

For example, the tuple

((i, j, k) , s) , (2.1)

i, j, k ∈ N, describes a 3D dataset located on a uniform grid, where each grid cell

stores a scalar value and the dataset consists of only one time step.

The tuple

((xi, xj) , (vx, vy) , t) , (2.2)

xi, xj ∈ R, i, j ∈ N can be used to express a dataset located on an unstructured grid,

with multiple time steps storing vectors at each cell.

This mathematically formal description can be used to generally describe each type of

the scientific datasets that the algorithms elaborated upon in this thesis are applicable

to. In terms of a formal definition, the dataset is then a function of space and time,

2.3. VISUALIZATION PIPELINES 11

which maps to a single variable or a higher dimensional codomain. Apart from that,

this formal description makes no assumptions on how actual values of the function

can be retrieved. For most nontrivial datasets, an analytical description is impossible

to find. Datasets from measurement or simulation are usually available as a set of

tuples for each specific data item. That said, in that case, it is the very nature of the

dataset that there is a tuple for every data item in space, and for high resolutions

of the underlying topology of the dataset, the amount of tuples can be tremendous.

Because of that, apart from the formal description of a dataset in a mathematical

sense, one also needs to consider the way that actual data items are stored, and the

amount of data items that need to be visualized strongly influences the visualization

algorithms that are applicable for the dataset. This thesis concentrates on algorithms

that can cope with large grids that store tremendous amounts of data items.

2.3 Visualization Pipelines

In order to visualize datasets like the ones described above, post-processing steps are

necessary to generate images from the abstract data items. Visualization pipelines

often constitute the principal ground on which visualization systems are built.

Frequently, the dataflow through the visualization pipeline is visually programmable

e. g. by using a dataflow network. Examples of visualization software packages

that facilitate this type of visual programming are ParaView (cf. Section 3.5.4)

Figure 2.2: Haber McNabb visualization pipeline, enhanced with a data analysis
phase as proposed by dos Santos and Brodlie. The data analysis stage is typically not
interactive and is used to transition from multivariate or multidimensional data to
data that can be visualized, e. g. by means of interpolation or a Principal Component
Analysis.

12 CHAPTER 2. SCIENTIFIC VISUALIZATION

and COVISE (cf. Section 3.5.6). Haber and McNabb [HM90] proposed a dataflow

model that datasets must be subjected to in order to create displayable content. The

pipeline comprises the stages

Filtering. During filtering, raw data is filtered for items of interest. When e. g. the

turbulent flow of water in a drainage system is simulated, sites like crossings

or bends may be of higher interest because phenomena like eddies are likely

to occur there, while plane bendings may be less interesting and are thus not

considered for visualization. The filtering stage is often user controlled. The

data after filtering is called focus data.

Mapping. The mapping stage assigns positional information and properties like

colors to the focus data from filtering. Often, the mapping step is actually

a remapping step, e. g. if the original data was simulated on a rectangular

grid, and is replaced with a hierarchical data structure that carries the same

information but can be rendered more efficiently. The geometric data that

results from this pipeline stage must be in a form that is e. g. suitable for one

or a combination of the visualization algorithms described in Section 2.4.

Rendering. At this stage, an actual image is created from the geometric repre-

sentation that was obtained during mapping. Rendering is often hardware

accelerated. Then, the implementation of the algorithm that is used must be

capable of producing graphic primitives that are supported by the graphics

hardware. As a result of this pipeline stage, image data in the form of pixels is

generated, that can e. g. be written to the frame buffer.

One might argue that in some cases, the mapping step is obsolete or there is no clear

distinction between mapping and filtering or mapping and rendering. For instance,

if the simulation was performed on a grid in the first place, and this grid is now

reused for rendering, a mapping to geometric data is unnecessary. On the other

hand, post-classification transfer functions (cf. Section 2.4.4) map data values to

colors after reconstruction, which is typically performed during rendering. Also, if

hierarchical data structures are employed for filtering, e. g. to put a higher emphasize

2.4. VISUALIZATION METHODS FOR SCIENTIFIC DATASETS 13

on certain regions of interest and assigning more grid cells to those than to other

regions, filtering actually implies a geometric mapping.

In 2004, dos Santos and Brodlie [dSB04] enhanced this model with a data analysis

phase to address multidimensional data (cf. Figure 2.2). Dasgupta and Kosara

[DK12] added a feedback loop to the visualization pipeline that is based on cognition

and perception and that can be used to alter parameters of the various stages to

adapt the rendered output dynamically. In general, the various stages of the pipeline

are often implemented to be adapted interactively. For example, the process of

finding an appropriate location for a cutting surface is a user controlled filtering

step. The ensuing process of finding an appropriate mapping e. g. from densities to

colors is also often guided through user interaction, and during rendering the user

usually interacts with the dataset by adjusting camera parameters like view point

and zoom. If the user is not satisfied with the result, she may return to any of the

pipeline stages and make adjustments.

2.4 Visualization Methods for Scientific Datasets

This section introduces some of the more commonly used methods to visualize

scientific datasets. As there is an overwhelming variety of visualization methods

applicable to the numerous kinds of datasets described above, this section only

presents a small, representative selection of visualization algorithms. The section

mainly focuses on visualization methods aimed at 3D datasets with an underlying

grid topology. The family of DVR algorithms, which also falls under this category,

will be covered in more detail in Chapter 3 and is thus omitted from this section.

2.4.1 Contouring

Contouring algorithms extract isolines from 2D datasets or isosurfaces from 3D

datasets. Contours are extracted by defining an isovalue that falls in the range

of possible data values and which is used to determine which data items are on

the inside or on the outside of the contour. Generally speaking, given a dataset

14 CHAPTER 2. SCIENTIFIC VISUALIZATION

Figure 2.3: Marching cubes contouring algorithm: the patterns are used to derive
the 256 possible ways an isosurface may intersect a box through permutation.

(X,S, T), contouring algorithms hence extract only those parts of the dataset where

S takes on a specific value c ∈ S, for arbitrary X and arbitrary T . In the 3D case,

the contour then represents the infinitesimally thin transition between two different

media. Contours are typically extracted as part of an offline process and are then

converted e. g. to a polygon mesh that can be rendered with graphic acceleration.

The Marching Cubes Algorithm [LC87] is a famous representative of the family of

contouring algorithms for the 3D case. An isosurface is extracted by independently

processing the cuboid cells of a uniform 3D grid. The eight data values at the

vertices of each cuboid are evaluated to be on the inside or on the outside of the

isosurface using the isovalue. If one of two neighboring vertices is on the inside and

the other one is on the outside, the exact location where the isosurface intersects

the connecting edge is approximated using linear interpolation. Only a limited edge

configuration can possibly be intersected by the isosurface, so that the triangulation

for each configuration, that is necessary for edge generation, can efficiently be stored

in a lookup table. All 256 possible cases can then be obtained as a permutation

of one of the 15 patterns depicted in Figure 2.3. Unit normals are necessary for

2.4. VISUALIZATION METHODS FOR SCIENTIFIC DATASETS 15

shading calculations. These are obtained by calculating central differences for the

box vertices. From these, normals for the triangle vertices can also be calculated

using linear interpolation.

2.4.2 Slicing

Slicing or cutting in general is a process that extracts a lower order representation

from a higher order representation by leaving out information. Slicing algorithms

are quite often combined with a facility for probing, which requires the visualization

algorithm to run interactively and enables finding an appropriate location e. g. of

a 3D cutting geometry through user interaction. Generally, in a common slicing

scenario a dataset (X,S, T) is given, with arbitrary X, S and T . Further a proxy

representation (Y, T) is given. The algorithm then proceeds by extracting only those

values from the original dataset for visualization where x = y, x ∈ X and y ∈ Y .

This is usually followed by a mapping process to colorize the extracted data, e. g.

by using contouring (cf. Section 2.4.1) or color mapping (cf. Section 2.4.4). Quite

often, (Y, T) is a plain represented through a normal N ∈ Y and an anchor position

P ∈ Y , and Y = R3. It is safe to say that the most common usage scenario of slicing

algorithms is one where X = R3 and Y = R3, i. e. information is extracted from a

3D dataset using a 3D cutting surface. In contrast to contouring, where information

was extracted based upon evaluating S to have taken on a certain value, slicing

algorithms extract information based on spatial location X.

2.4.3 Particle Tracing

Yet another family of visualization algorithms is particle tracing, where the aim is to

extract information that is related to the progression of data items over time t ∈ T .

Particle tracing is used to extract trajectories from vector fields. Generally, datasets

of the type (X,S, T), where t ∈ T > 1, can be meaningfully used to perform particle

tracing. Furthermore, most often S ∈ R3 is a vector space that represents velocity.

Particles are then released into the velocity vector field at positions yt ∈ Y, t ∈ T .

The initial positions are called seed points. If yt ∈ X, y is subjected by the vector field

16 CHAPTER 2. SCIENTIFIC VISUALIZATION

and a new position yt+1 is computed using integration. The integration order will

directly influence the fitness of the position estimate. Fourth order integration like it

is performed using the Runge-Kutta method [Bak77] has proven to provide stable

computational results. Particle tracing algorithms can be distinguished based upon

the way that actual trajectories are depicted over the course of time. Pathlines show

the whole paths that particles follow after being released into the vector field, until

eventually leaving it. Streamlines represent only the local orientation of particles in

an instance of time. Most recently, with the advent of general-purpose programming

capabilities of GPUs, particle tracing implementations have become feasible [Bus11]

that allow not only for interactively setting seed points, but also for interactive

trajectory computation.

2.4.4 Color Mapping

Color mapping provides a means to express certain information by assigning color to

specific properties of data items. In case of simple color maps, a color is provided

for a specific data value using a lookup table. The data values are usually scalar to

obtain reasonable sizes for the lookup table.

Quite often, a general mapping

t : D → Rc (2.3)

from the data domain D to a visual spectrum Rc is desired. Most often, the spectrum

is represented by a color space like RGB, so that a common case implies that c = 3.

Such functions, which map data values to colors are called transfer functions. Since

the mapped colors are not useful on their own but depend on a proxy representation,

transfer functions are used in conjunction e. g. with one of the visualization methods

introduced in this section. In the case of slicing, it usually suffices or is even desirable

to only map from data values to colors.

In the context of Direct Volume Rendering algorithms, which this thesis is focused

on and which are the gist of the ensuing chapter, on top of that, a mapping

2.4. VISUALIZATION METHODS FOR SCIENTIFIC DATASETS 17

t : D → R (2.4)

from data values to transparency is desirable in addition to mere color mapping. In

addition to that, there is in general no restriction regarding which kind of data should

be mapped to colors or transparency. In the presence of fields, e. g. the gradient may

be a trait of interest that can be mapped and can provide further insight at regions

where different media transition.

Some visualization algorithms like slicing or Direct Volume Rendering rely e. g. on

trilinear or higher-order interpolation to reconstruct the dataset between grid cells.

Transfer functions can then be applied pre-interpolative, i. e. to the actual data items

of the grid, or post-interpolative, i. e. to the interpolated data sample. Since transfer

function application is often referred to as classification, the classification order is

often referred to using the terms pre-classification and post-classification. Hadwiger

et al. show in Chapter 4 of [HKRS+06], that post-interpolative transfer functions

are better suited for reconstruction of datasets containing high frequencies.

Transfer function design, specifically in conjunction with DVR, is a research topic

on its own because the task of finding a useful mapping from a field to colors and

opacities tends to be challenging for users, that typically are no computer scientists,

but rather surgeons or neurologists, which rely on transfer functions to distinguish

e. g. a tumor from healthy tissue. Automatic transfer function design [KD98] [ZT09]

[RBB+11] can be useful if a bulk of datasets is processed or if for any other reason a

thorough review of each dataset through the user is impractical or not possible at

all. Quite often, the default transfer function used in visualization systems is the

rainbow color map, which maps data items to highly saturated colors. Alternatives

were proposed which also take perceptual considerations into account [Mor09].

18 CHAPTER 2. SCIENTIFIC VISUALIZATION

2.5 Scientific Visualization and High Performance

Computing

Scientific visualization and HPC are interdependent in that on the one hand, visu-

alization is typically the predominant step of the interactive post-processing phase

of simulations, and on the other hand because it relies on resources that allow for

interactive computation of the algorithms involved in visualization. With an increase

in the compute resources that are available for visualization, parts of the visualization

pipeline outlined above can be implemented interactively, which was impossible so far.

For example, with the advent of general-purpose computing capabilities on GPUs

(see Section 3.3.4), contouring algorithms or particle tracing can be computed in

real-time under certain conditions [Bus11] [AW13]. With GPUs becoming available

as cluster resources, and graphics researchers using programming paradigms like

message passing or multithreading, the interdependence between the two disciplines

grows to an even higher degree. Under these conditions, concepts to optimize the

communication patterns during post-processing need to be iterated. If e. g. signifi-

cant parts of the visualization pipeline are performed on an HPC system, remote

rendering (cf. Chapter 6) can be employed, and bandwidth issues must be taken into

consideration. In situ visualization is a concept that aims at providing a feedback

loop to interactively monitor intermediary results in order to adjust parameters of

an ongoing simulation.

From the development of the recent years, it seems clear that the two disciplines,

scientific visualization and high performance computing, must be considered in

conjunction rather than as two separate research areas. The book edited by Bethel et

al. [BCH12] provides a general overview of the concepts involved when intermingling

the realm of scientific visualization with that of HPC. Many of the concepts introduced

there, like e. g. sort-last compositing, are highly relevant for this thesis. In contrast

to being general about mixing scientific visualization and HPC, this thesis focuses

on Direct Volume Rendering specifically. The ensuing chapter focuses on the current

state of the art in Direct Volume Rendering on HPC systems. While Chapter 4

devises a software architecture for volume rendering on HPC systems, concrete

implementations are proposed and evaluated in Chapters 5 and 6.

Chapter 3

State of the Art in Parallel Direct

Volume Rendering

Section 2.2 proposed a notation to describe scientific datasets as a function of their

topology, their dimensionality and their time dependence. Some subset from the

huge selection of available algorithms for scientific visualization was introduced that

is applicable to various kinds of scientific datasets.

The following section concentrates on a set of algorithms that are used to implement

one specific visualization technique called Direct Volume Rendering (DVR). That

technique is used to directly render datasets of the general form

(X,S, T) , X ∈ R3, S ∈ Rn and T ∈ N. (3.1)

Direct rendering in this case means that a direct mapping from the data domain to

the image plane is preferred over e. g. explicitly extracting a representative geometry

like an isosurface first and rendering that afterwards. Although DVR is applicable

to general grid topologies, and although algorithms like e. g. ray casting (see Section

3.2.6) in its general form or cell projection (see Section 3.2.5) specifically support

unstructured grid types, the datasets of interest in this thesis typically are of the

form

19

20 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

(X,S, T) , X ∈ N3, S ∈ R and T ∈ N. (3.2)

Note that hierarchical grid types can be completely described by combining uniform

grids using a divide and conquer strategy. Uniform grids and their hierarchical

“siblings” typically originate from medical imaging methods such as magnet resonance

tomography (MRT) or X-ray computed tomography (CT), or from simulations like

the ones used in astrophysics or meteorology.

This chapter begins with a description of the physical phenomena involved when

light interacts with participating media in a volume of space, resulting in an integral

equation (the scattering equation), that DVR algorithms seek to solve incrementally.

In the following, the current state of the art in sequential DVR algorithms is presented.

This is followed by a brief recapitulation of the general parallel programming models

that are used to optimize for different hardware platforms. Then a description

follows on how these programming models can be used to parallelize the various

sequential DVR algorithms. The chapter concludes with an overview of actual DVR

implementations that can be found in current visualization systems.

3.1 Introduction to Direct Volume Rendering

The following section provides the reader with an introduction to the kind of problems

solved with Direct Volume Rendering, as well as with a brief overview of how DVR

is typically implemented on modern hardware. A more comprehensive overview of

methods for real-time DVR and their theoretical background can e. g. be found in

the textbook by Hadwiger et al. [HKRS+06]. This section on the optical models

underlying DVR is loosely based upon this textbook, as well as on the paper by

Max [Max95] and the chapter on DVR and transfer function pre-integration from

the Visualization Handbook [JH04].

DVR is a visualization technique that is typically used to display 3D fields. The

data items at each discrete location of the 3D field are often, but not necessarily,

scalars. The topology of the 3D field is expressed through a 3D grid. DVR in its

3.1. INTRODUCTION TO DIRECT VOLUME RENDERING 21

emission absorption out-scatteringin-scattering

Figure 3.1: Phenomena involved in the interaction of light traveling along a ray,
and the matter that is contained by the medium that the ray travels through. The
depiction is inspired by Figure 1.3 from Hadwiger et al. [HKRS+06]. Emission of
radiative energy is due to heat that originates from light interacting with matter.
Absorption is the opposite phenomenon, where radiative energy is transformed into
heat. Scattering phenomena are usually evaluated probabilistically and also result in
energy associated with the light ray being increased or removed.

general form is used interdisciplinarily, with applications coming e. g. from medicine,

engineering or natural sciences. As stated in [BCH12], DVR algorithms generate

images from volume data without explicit geometry extraction. Although being

computationally more expensive, direct rendering methods prevent information loss.

On top of that, parameters like isovalues, since being applied to the data directly,

are typically implemented using table lookups and thus do not impose execution

halts e. g. for extracting a new isosurface.

DVR methods aim to solve the scattering equation [KVH84]. The scattering equation

stems from geometric optics and provides a physically approximate basis to describe

the interaction of light and matter from the participating medium that light is

traveling through. This is typically expressed in terms of the following phenomena

(cf. Figure 3.1) that light running along a straight line interacting with matter is

subject to.

Emission. A heated body emits radiation, and some of the emitted radiative

energy possibly falls in the frequency of visible light.

Absorption. Radiative energy that can be encountered along the light ray interacts

with the medium and is converted to heat.

22 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

Δs

E

Figure 3.2: Schematic that physically motivates the light-matter interaction models
introduced in this section. In the limit, when ∆s goes to 0, absorption, emission and
scattering become proportional to the projected area of the particles.

In-Scattering. Radiative energy from the medium is scattered towards the light

ray, resulting in an increased amount of energy associated with the ray.

Out-Scattering. Radiation that is located along the path of the light ray is

scattered towards the outside of the participating medium. Thus, energy is

removed from the ray.

The following mathematical formulation of the aforementioned phenomena that

eventually results in a construct called the volume rendering integral is based on

Max 1995 [Max95] and Section 8.1 of [JH04], which is basically a summary of the

aforementioned publication.

The probability of light being emitted, absorbed or scattered along a ray is in

the following considered to be proportional to the amount of particles ρ per unit

volume along the direction ω of the ray. Particles are considered to be spherical with

projected area A = πr2. The particles flow through a cylinder having a base of area

E and a length of ∆s. Thus the cylinder contains N = ρE∆s particles per unit of

time t (cf. Figure 3.2).

Let ∆s now tend to 0. Then, in a model that takes only absorption into account, the

light intensity gathered along the ray at distance s is described by the differential

equation

3.1. INTRODUCTION TO DIRECT VOLUME RENDERING 23

dI

ds
= −τ (s) I (s) , (3.3)

which can be analytically solved as follows:

I (s) = I0e
−
∫ s
0 τ(t)dt. (3.4)

I0 denotes the light intensity at s = 0, i. e. the position where the ray enters the

volume, and τ = Aρ denotes the extinction coefficient.

The term that I0 is multiplied with,

T (s) = e−
∫ s
0 τ(t)dt, (3.5)

is called the transparency at position s. The absorption only model thus describes

the influence of the medium at each continuous position s acting upon a background

light source.

Assuming that the particles now glow diffusely and letting ∆s go to 0 again, the

emission only model can be described by the differential equation

dI

ds
= C (s) ρ (s)A = C (s) τ (s) = g (s) , (3.6)

with the source term g (s) accounting for glow that adds energy scattered towards

the eye along the direction of the ray. Solving this differential equation yields

I (s) = I0 +

∫ s

0

g (t) dt. (3.7)

Combining the two models yields the absorption plus emission model

dI

ds
= g (s)− τ (s) I (s) (3.8)

24 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

and its analytical solution

I (s) = I0e
−
∫ s
0 τ(r)dr +

∫ s

0

g (t) e−
∫ s
t τ(r)drdt. (3.9)

In this model, the background light is attenuated, and emitted energy is scattered

towards the eye. The emitted energy is then itself attenuated by the opacity that

was already gathered along the ray so far.

In addition to emission and absorption, external illumination is usually accounted

for by evaluating a local shading formula such as the Lambert formula for diffuse or

the Phong formula for specular lighting [Pho75] at positions where the ray interacts

with the medium. The normal needed to evaluate such lighting models is usually

approximated by calculating the gradient ∇f (x, y, z). The gradient for an arbitrary

position in the medium is usually estimated by using central differences in a region

[f (x, y, z)− δ, f (x, y, z) + δ], i. e.

∇f (x, y, z) =
1

2δ

 f (x+ δ, y, z) + f (x− δ, y, z)

f (x, y + δ, z) + f (x, y − δ, z)

f (x, y, z + δ) + f (x, y, z − δ)

 (3.10)

(cf. [HKRS+06], Section 5.3).

Local illumination is then calculated at position X as

S (X,ω) = r (X,ω, ω′) i (X,ω′) , (3.11)

where r (X,ω, ω′) is a bidirectional reflection distribution function (BRDF), i (X,ω′)

is the incoming light intensity at position x from direction ω′, and ω is the direction

into which light is reflected.

Local illumination usually only contributes if the gradient magnitude is well defined

at the respective sampling position. Otherwise, the local illumination term is set to

0 and only emission and absorption are accounted for.

3.1. INTRODUCTION TO DIRECT VOLUME RENDERING 25

Local illumination is combined with the emission and absorption model by adjusting

the source term g from above to account for non-directional glow E (X) and the

single-scattering term S (X,ω, ω′):

g (X,ω) = E (X) + S (X,ω) (3.12)

More complicated models adjust the source term g to account for multiple scattering

as well. Evaluating multiple scattering involves finding the intensity at each position

x in each direction ω, so that the source term at distance s becomes

g (s, ω) =

∫
4π

r (X = sω, ω, ω′) I (X − sω, ω′) dω′, (3.13)

which integrates the incoming light from all directions on the unit sphere. Only

more recent publications concentrate on producing images accounting for multiple

scattering in real-time [ASW13] [ZM13], while typical real-time implementations

incorporated into popular visualization systems (cf. Section 3.5) usually only account

for emission, absorption and local illumination at best.

Because there exists no analytical solution to the scattering equation for nontriv-

ial datasets, the problem is usually discretized e. g. by substituting a Riemann

sum for the integration. Consider the absorption plus emission model represented

through Equation 3.8. The integral underneath the continuous curve representing

the extinction coefficient τ (s) can be approximated using a sum:

∫ s

0

τ (r) dr ≈
n∑
i=1

τ (i∆x) ∆x, (3.14)

where ∆x = D
n

is the step size and n is the number of steps necessary to march a

ray from the outermost edge of the volume at position 0 to the eye at position D.

Further, from the rule of exponents it follows that

26 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

e−
∑n

i=1 τ(i∆x)∆x =
n∏
i=1

e−τ(i∆x)∆x. (3.15)

Similar considerations hold for the rest of Equation 3.8, which can then approximately

be solved using the following system of Riemann summations:

I (D) ≈ I0

n∏
i=1

ti +
n∑
i=1

gi

n∏
j=i+1

tj, (3.16)

where ti = eτ(i∆x) and gi = g (i∆x).

Applying some further transformations and letting αsrc = 1−T (s) (i. e. reformulating

Equation 3.16 in terms of opacity rather than transparency), this yields the basic

operation that is necessary to compose an image from a discretized version of

the scattering equation: alpha compositing. The compositing equations provide

calculation rules to derive color and opacity based on the order in which volume

samples are blended to form a final image. The compositing equations apply to all of

the DVR algorithms described in Section 3.2. They are independent of the type of

decomposition that the algorithm requires to evaluate the scattering equation - some

of the algorithms rely on an image space decomposition, while others rely on an

object space decomposition. Nevertheless, depending on the traversal order in which

e. g. a ray or a slicing plain is traversed through the volume, either the front-to-back

compositing equation

Cdst = Cdst + (1− αdst)αsrcCsrc
αdst = αdst + (1− αdst)αsrc (3.17)

or the back-to-front compositing equation

Cdst = αsrcCsrc + (1− αsrc)Cdst
αdst = αsrc + (1− αsrc)αdst (3.18)

3.1. INTRODUCTION TO DIRECT VOLUME RENDERING 27

applies, where Csrc is the color portion of the incoming radiance, Cdst is the radiance

that was already accumulated, αsrc is the opacity associated with the sampling

position and αdst is the accumulated opacity.

The relationship between the two compositing equations, which are also referred to

as the under -operator (front-to-back) and over -operator (back-to-front) [PD84], and

the emission and absorption model can also be seen by representing the exponential

from Equation 3.4 as a Taylor series expansion:

I (s) = I0e
−
∫ s
0 τ(t)dt = I0

(
1− τ (s) +

(τs)2

2!
− (τs)3

3!
+ . . .

)
≈ I0 (1− τ (s)) (3.19)

(cf. Section 8.2.1.2 of [JH04]), which corresponds to accounting for absorption by

multiplying Cdst and αdst by (1− αsrc).

When accumulating opacity by e. g. marching a ray through the volume density

using Equations 3.17 or 3.18 to evaluate the sums from equation 3.16, the sampling

frequency n must be chosen appropriately (i. e. according to the sampling theorem,

see e. g. [FvDFH90] and the remarks regarding pre-integrated classification below).

Anyway, for the time being, consider n to be chosen arbitrarily, e. g. based on a

performance measurement that is used to maintain a certain, fixed frame rate at

run time and adjusts n accordingly. Because n directly affects the ray marching

step size D/n, decreasing n will result in the overall opacity to decrease because the

extinction coefficient is obtained through a transfer function lookup, and the result

from that lookup is absolute rather than relative to the step size. This is reasonable

regarding a continuous integration but will result in inconsistencies with Riemann

summation. Then an opacity correction step that adjusts the absolute opacity to

the step size is necessary [LCNC98] [KLT07]:

α′ = 1− n
√

1− α. (3.20)

Alternative compositing schemes not based on the scattering equation exist. Max-

28 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

imum intensity projection (MIP) [HMS95], which is e. g. used for X-ray imaging,

assigns the color of the volume sample with the highest intensity:

Cdst = max {Cdst, Csrc} . (3.21)

This compositing scheme in general is less computationally intensive because there is

no need to sort for front-to-back or back-to-front evaluation (neglecting bandwidth

considerations that possibly mandate a coherent traversal order). On the other hand,

by neglecting the traversal order when weighing the volume samples encountered

during volume traversal, natural depth cues are not accounted for, that would other-

wise result from attenuation through volume density in front of the current sample.

While the focus of this thesis is on DVR algorithms that employ alpha compositing,

adapting to alternative compositing schemes like MIP can be implemented intuitively

by substituting only a few calculations, especially if the alternative compositing

scheme is order-independent.

Deciding for one of the two traversal orders has certain implications concerning the

reliability of the final image as well as on optimization opportunities that exist for

certain algorithms. Given that the discretized evaluation of the scattering equation

is performed with limited floating-point precision, the result obtained through front-

to-back compositing will in general be different from the result obtained through

back-to-front compositing. This is because the addition operation (+) and the

multiplication operation (×) for floating-point numbers in general do not have

the associative property. Because of the iterative nature of the two compositing

equations, round-off errors will grow more severe because of accumulation. With the

front-to-back compositing scheme, samples near the viewing position will affect the

final image to a higher degree, while it is the other way around with back-to-front

compositing. The influence of the round-off errors will increase with increasing

sampling rates. Front-to-back compositing can facilitate the implementation of the

early-ray termination optimization strategy (cf. e. g. [MIH04]).

Engel et al. [EKE01] proposed to enhance DVR using a technique called pre-

integrated classification. From the sampling theorem follows that a signal can only

be reconstructed if it is band-limited and if sampling frequencies higher than the

3.2. DIRECT VOLUME RENDERING ALGORITHMS 29

Nyquist frequency, i. e. twice the frequency of the original signal, are used for

sampling [FvDFH90]. However, if the term τ (s) from Equation 3.8 is obtained from

a transfer function, reconstruction of the original signal results in not only having to

sample the 3D volume data, but also the transfer function which potentially contains

high frequencies too. With the naive approach, the appropriate sampling frequency

is proportional to the Nyquist frequency of the volume times the Nyquist frequency

of the transfer function. With pre-integration, however, opacity as a function of two

sample positions s1 and s2 and the length of the line segment spanning s1 and s2

is pre-calculated and then stored in a lookup table. This lookup table is then used

instead of the post-classification lookup that would usually have been performed.

That way, the appropriate sampling frequency is only proportional to the frequency

of the volume dataset. Pre-integrating the transfer function thus helps to reduce

round-off errors and to increase performance because of the lower sampling frequency

necessary. Pre-integrated classification in general is applicable to each of the DVR

algorithms motivated in the following section.

3.2 Direct Volume Rendering Algorithms

An interactive solution to the scattering equation laid out in the previous section

is only possible to obtain for trivial problems. In more realistic cases, a trade off

is necessary between interactivity and the physical correctness of the output image.

Interactive DVR algorithms often only take the absorption and emission term of

the scattering equation into account. Scattering phenomena are often simplified to

single-scattering only. Figure 3.3 shows a medical dataset obtained from a computed

tomography that is rendered using DVR and local illumination with the Blinn-Phong

reflectance model [Bli77].

The following subsections summarize algorithms for interactive DVR. Being designed

to target different hardware platforms, these algorithms are part of visualization

systems that are widely used by researchers. Each algorithm either relies on a

decomposition of the volume dataset in object space or on a decomposition of image

space for display.

30 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

Figure 3.3: Computed tomography medical dataset rendered using DVR, with a
local illumination model applied.

3.2.1 Texture-Based Volume Rendering

Texture-based Direct Volume Rendering algorithms are specifically designed for hard-

ware with texture mapping capabilities like GPUs or dedicated graphic workstations.

The first authors to propose texture-based DVR algorithms were Hastreiter et al.

[HÇE96] and later Westermann and Ertl [WE98] or Dachille et al. [DKC+98]. Krüger

et al. [KW03] provided an overview of how to implement texture-based approaches

on modern GPUs. A thorough overview can also be found in the aforementioned

textbook by Hadwiger et al. [HKRS+06].

Texture-based approaches decompose object space into a set of surfaces that in the

following will be referred to as a proxy geometry. Graphics hardware primitives

are usually planar. Thus the proxy geometry usually consists of polygons, albeit

composite geometries like e. g. spherical shells [LMHJ99] [KW03] were proposed

as well. In the latter case, the spherical shells are constructed using tesselation.

In the more usual case using a planar proxy geometry, polygons are rendered in

back-to-front or front-to-back order. The individual polygons constituting the proxy

geometry are often referred to as slices. Two methods are prevalent: object-aligned

slices used with 2D texturing and viewport-aligned slices used with 3D texturing.

3.2. DIRECT VOLUME RENDERING ALGORITHMS 31

Image

Plane
Object-aligned

Slices

Camera

Figure 3.4: Object-aligned slicing. Slices are drawn parallel to the object axes
of the volume dataset. Colors and transparency are assigned from 2D textures.
Quadrangles can be precomputed and 2D texture lookup is more efficient than
3D texture lookup. On the downside, bilinear interpolation will result in a poor
reconstruction of the 3D function inherent to the volume dataset.

Object-aligned slicing (cf. Figure 3.4) samples the volume datasets in object space

using pre-calculated quadrangles. The quadrangles are drawn parallel to one of the

object axes of the volume dataset. The volume dataset is organized into a set of

2D textures with one texture per quadrangle. The 2D textures provide colors and

transparency values obtained e. g. by applying a transfer function (cf. Subsection

2.4.4). Then the quadrangles are rendered in back-to-front or front-to-back order while

applying the appropriate compositing equation. The continuous function represented

by the volume dataset is typically reconstructed using bilinear interpolation, which

can be performed fast by modern graphics hardware. This approach has several

disadvantages. 2D textures provide fast lookup using bilinear interpolation but will

result in a poor reconstruction compared to e. g. trilinear interpolation using 3D

textures. Another shortcoming of the object-aligned slicing approach are visual

artifacts that become visible if the volume dataset is rotated so that the axis the

slices are drawn along is almost perpendicular to the normal of the image plane. In

that case, the volume dataset appears to have holes because one can see through the

quadrangles used as proxy geometry. This shortcoming can be mitigated by having

one stack of quadrangles and textures per object axis and flipping depending upon

32 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

Image

Plane Viewport-aligned

Slices

Camera

Figure 3.5: Viewport-aligned slicing. Slices parallel to the image plane are used
to sample a 3D texture. Intersection polygons need to be recreated each time the
virtual camera moves. 3D texturing enables trilinear or higher-order reconstruction
kernels.

the angle between object coordinate axis and the normal to the image plane. While

the hole artifacts can be hidden this way, each time the quadrangle stack gets flipped,

the appearance of the image will change recognizably due to compositing accuracy

and due to the fact that the direction in space of the bilinear interpolation operation

changes. On top of that, the memory requirements triple with this approach.

The term viewport-aligned slicing is a bit misleading because it suggests that slices

are actually quadrangles that are aligned to the four corners of the virtual viewport

entity maintained by graphics application programming interfaces (APIs). In contrast

to that, the technique referred to as viewport-aligned slicing assumes that object

space is sampled using planes that are parallel to the image plane (cf. Figure 3.5).

Because the term viewport-aligned slicing is used throughout the literature, this

expression is adopted by this work, anyway.

With slices parallel to the image plane, the proxy geometry cannot be precomputed.

In general the proxy geometry will also not consist of quadrangles only. The proxy

geometry is created by sampling the volume using parallel planes with equal distances.

For each plane the intersection with the bounding box of the volume dataset needs to

be calculated, which result in either a triangle, a quadrangle, a pentagon or a hexagon.

3.2. DIRECT VOLUME RENDERING ALGORITHMS 33

Like in the object-aligned slicing case, alpha compositing can then be performed

in back-to-front or front-to-back order. Texture coordinates are calculated for the

vertices of the intersecting polygons which are used to lookup colors and transparency

values from a 3D texture. The continuous function represented by the volume dataset

can be reconstructed using trilinear interpolation which is implemented by the fixed

function pipeline of modern graphics hardware. Higher-order reconstruction kernels

like e. g. tricubic interpolation can also be applied using programmable graphics

hardware. Reconstruction using 3D textures will typically be slower than sampling

2D textures, but will in general produce more faithful results.

In order to speed up the proxy geometry generation process, portions of the box-

plane intersection calculations can be transferred to the GPU. Rezk Salama and

Kolb [RSK05] proposed to perform the intersection test in a vertex program. They

employed this optimization to load balance the fragment stage of the rendering

pipeline and the vertex stage, with the latter potentially being starved on GPUs that

in these days did not yet implement a unified shader architecture. In their case, six

vertices need to be transferred to the GPU per box per plane. If the intersection test

produces a polygon consisting of less vertices, identical vertices will be generated.

Duplicate vertices will result in degenerate triangles which will not contribute to

the fragment stage of the rasterization pipeline. Zellmann and Lang [ZL13] showed

that the proxy geometry generation can be accelerated by distributing the box-plane

intersection calculations among a vertex program and a geometry program. Fast

box-plane intersection tests are crucial if the volume dataset is not only organized

into one single bounding box, but into a hierarchy of bounding boxes like a uniform

grid or an octree (cf. e. g. Section 16.5 from [SSC02]). Such hierarchies are used to

implement acceleration techniques like empty-space skipping [LMK03].

3.2.2 Frequency Domain Volume Rendering

Frequency Domain Volume Rendering [TL93] (FDVR) works by applying a discrete

Fourier transform to the volume dataset and exploiting the fact that in the fre-

quency domain, according to the Fourier slice-theorem, the volume dataset can be

reconstructed using a single slice. This effectively reduces the complexity of volume

34 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

reconstruction from O (n3) in terms of the participating voxels to O (n2log n) time.

Although extensions and even ports to GPUs were proposed [VKG04] [JvRLHK04],

the major shortcomings of this technique remain

Increased Memory Demand. Since the Fourier transform outputs complex

numbers, in general the size of the volume dataset at least doubles. On top of

that, while reconstruction in the spatial domain is usually sufficient using e. g.

one byte per voxel, this is not the case with frequency domain reconstruction.

Totsuka and Levoy [TL93] e. g. stated, that for effective FDVR, 16 bytes per

voxel are necessary.

Lack of Depth Cues. When extracting a single slice from the volume, the volume

rendering integral can only be evaluated in parts. Specifically, absorption of

light emitted by volume particles, i. e. occlusion, cannot be accounted for. This

shortcoming can be mitigated e. g. by deploying a local reflectance model, but

remains a major insufficiency of the FDVR method.

Given these shortcomings, and the fact that the complexity of DVR in the spatial

domain can be reduced using other means, FDVR in general is not compatible to

spatial domain algorithms and is thus not in wide use.

3.2.3 Shear-Warp Volume Rendering

The shear-warp algorithm [LL94] combines properties of image-order algorithms

and object order-algorithms. Shear-warp algorithms usually act on uniform grids

which are treated as stacks of image slices. This analogy is valid, given e. g. that

CT-scanners often actually output stacked image data. The class of algorithms is

based on two transforms. A shear transform converts the slices of the volume to

a coordinate system where all viewing rays are parallel and perpendicular to the

slices (cf. Figure 3.6 a.)). For perspective projections, this shear operation also

includes a scale (cf. Figure 3.6 b.)). Then, the transformed slices are combined

using one of the compositing equations to form an intermediate image. The ensuing

warp transforms the intermediate image to the final image. Algorithms can exploit

3.2. DIRECT VOLUME RENDERING ALGORITHMS 35

Viewing Rays Viewing Rays

Slices Slices

Image Plane Image Plane

Viewing Rays Viewing Rays

Slices Slices

Image Plane Image Plane

a.) b.)

Figure 3.6: Shear factorization for the shear-warp algorithm. a.) converting the
volume to sheared object space, where all parallel viewing rays are perpendicular
to the volume slices, involves a shear transform. b.) In addition, for perspective
projections, a scale transform of the volume slices is necessary. This figure was
influenced by Figure 1 and Figure 2 from [LL94].

the property that voxels in sheared object space (i. e. after the shear transform was

applied to the volume dataset) are aligned to pixels in the intermediate image. The

shear-warp algorithm traditionally is targeted towards CPU implementations, where

it can benefit from optimizations such as run-length encoding. This encoding scheme

can typically be implemented more efficiently on CPUs than e. g. on GPUs, which

are optimized for high throughput and rely on coherent memory accesses.

Schulze et al. [SNL01] elaborated on further optimizations to run the perspective

shear-warp algorithm in virtual environments. Their optimizations comprised a

reduced quality in order to guarantee constant frame rates. They identified the

compositing step as the limiting factor and proposed to reduce its costs by combining

fewer slices than present in the volume dataset, or by using intermediate images with

a lower resolution than that of the actual display. In [SL02], the authors discussed

parallelization issues of the perspective shear-warp algorithm for different HPC

platforms.

3.2.4 Volume Splatting

Volume splatting is an object-order approach that was first proposed by Westover in

1989 [Wes89]. The ensuing description of the volume splatting algorithm is based on

Westover’s publication from 1990 [Wes90], which incorporates several enhancements

36 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

to the algorithm described in his original publication.

The splatting algorithm is based on spreading footprints for each volume sample to

the image plane. Footprint evaluation is the opposite operation to texture mapping.

With texture mapping, the elliptical footprint of a single pixel in image space is

mapped to texture space and all texture samples that the footprint overlaps contribute

to the color of the pixel. With footprint evaluation, the contribution of a single

volume sample is spread into image space, affecting every pixel the footprint overlaps.

Westover restricted himself to orthographic projection, which reduced footprint

evaluation to only once per view computing the footprint as a template stored in a

2D lookup table and mapping this to image space using a constant 2D offset.

If the volume was equally spaced in all three dimensions of the uniform grid, the

reconstruction kernel to determine the footprint from is a sphere, but in general, if

the spacing of the grid differs among axes, the reconstruction kernel is an ellipsoid.

The view-dependent footprint is then a general ellipse in screen space.

The screen space extent of the footprint to determine the dimensions of the lookup

table is found by first transforming the unit sphere in matrix form U by the grid

scale S, i. e. the real number in each dimension by which the grid has to be divided

so that the spacing between grid cells equals one:

E = SU (3.22)

Then the sample in grid space is transformed to screen space by applying the viewing

transform V :

R = V −1TEV −1 (3.23)

The resulting matrix

3.2. DIRECT VOLUME RENDERING ALGORITHMS 37

R =


A D/2 E/2 0

D/2 B F/2 0

E/2 F/2 C 0

0 0 0 −K

 (3.24)

can be interpreted as a general ellipsoid equation in quadric form:

K = Ax2 +By2 + Cz2 +Dxy + Exz + Fyz (3.25)

which can be solved for the x extent

x = ±
√√√√√ K

A− D2

4B
− (E−DF

2B)
2

4
(
C−F2

4B

) (3.26)

as well as for the y extent

y = ±
√√√√√ K

B − D2

4A
− (F−DE

2A)
2

4
(
C−E2

4A

) (3.27)

of the 2D footprint lookup table.

For mapping the projected ellipsoid to screen space, which results in a generally

oriented ellipse, having the ellipsoid stored in quadric form is most useful. Then the

screen space ellipse can easily be determined as

P = Xx2 + Y y2 + Zxy (3.28)

with X =
(
A− E2

4C

)
, Y =

(
B − F 2

4C

)
and Z =

(
D − EF

2C

)
. The footprint can then

be rendered by mapping points from the unit circle to the general ellipse.

While Westover’s original algorithm from 1989 was restricted to MIP rendering,

38 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

in his publication from 1990 he enhanced the splatting algorithm with full alpha

compositing. To achieve this, he solved the sorting problem inherent to alpha

compositing by using a so called sheet buffer. A sheet was a plane parallel to the

image plane, which was swept in back-to-front or front-to-back order through the

volume. For each sheet sampling position the intersecting volume samples were

splatted to the sheet. The sheets themselves were then composited in the appropriate

order, so that the correct overall traversal order was guaranteed. This approach

is similar to the texture-based sampling using viewport-aligned slices described in

Section 3.2.1.

There were many extensions to the original volume splatting algorithm. Laur and

Hanrahan [LH91] proposed a hierarchical, progressive volume splatting approach.

Mao et al. [MHK95] extended the algorithm to accommodate curvilinear grids. Their

adjustment necessitated footprint recreation not only per view, but per view and per

volume sample, so that a common footprint table was no longer applicable. Their

slightly different footprint calculation method was fast enough to compute footprints

on the fly. While Westover’s original algorithm with one footprint table per view

was only applicable to orthographic views where all footprints have the same extent

regardless of their distance to the virtual camera, the footprint evaluation method

from Mao et al. is also useful for volume splatting with a perspective view. Zwicker

et al. [ZPvBG01] reduced aliasing artifacts using Gaussian resampling filters. Chen

et al. [CRZP04] later presented a hardware-accelerated version of the same algorithm

using GPUs.

Object-order approaches like volume splatting in general are useful because they not

only allow for task parallelism but also for data parallelism. Volume samples can be

handled almost independently and can thus be assigned to different processors which

only need to communicate for compositing sheets. One of the problems that arise

from volume splatting though is the relatively high sampling rate that is necessary

to avoid annoying artifacts visible at the transitions between volume samples. On

top of that, the sorting problem inherent to volume rendering can be solved more

naturally using texture-based approaches or image-order approaches like ray casting,

which is described in detail in Section 3.2.6.

3.2. DIRECT VOLUME RENDERING ALGORITHMS 39

3.2.5 Cell Projection

Most of the algorithms discussed so far are only applicable to regular grids. Arbi-

trary grid representations and especially unstructured grids demand for alternative

algorithms that can cope with those grid types. The cell projection algorithm is

capable of rendering tetrahedra. For regular grid types, which this thesis mainly

focuses on, the algorithms described so far and in the remainder of this section may

be a better match regarding performance. Cell projection, in contrast to e. g. ray

casting (cf. Subsection 3.2.6), uses rasterization to output volumetric primitives to

the screen.

Shirley and Tuchman [ST90] proposed a cell projection technique to display tetrahedra

using graphics hardware and that can thus be used to render arbitrary unstructured

grids, given that they have been tetrahedralated [She03], which is the analogous

operation to triangulation in the 2D plane. The idea behind their projection algorithm

was to render only outlines of the tetrahedra and send these as semi-transparent

triangles to the graphics card. Decomposition of tetrahedra into triangles was view

point dependent, so that one to four triangles were generated from the front facing

boundaries of one tetrahedron for each change of the camera configuration. The

opacity of a tetrahedron varied across the area of the triangles and depended on the

thickness of the tetrahedron at the position of the projected image space fragment

that the rasterizer evaluated. The thickness was accounted for by weighing the

opacity by the Euclidian distance a hypothetical ray entering at this position would

travel through the tetrahedron. To avoid having to perform ray integration at each

fragment position, which was at that time not affordable with graphics hardware, ray

integration was only performed at the thickest point of the tetrahedron and colors

and opacity at the remaining positions were approximated using linear interpolation.

Extinction was accounted for by applying the back-to-front compositing equation.

When projecting tetrahedra, four basic projection types can occur that resulted in

different sets of triangles to be rendered and that influenced the way the thickest

point of the tetrahedron was determined.

Marroquim et al. [MMFE06] used two GPU passes to accelerate the cell projection

algorithm. Their implementation used multiple render targets to project tetrahedra

40 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

to image space in a first pass. RGBA textures were used to input data: one texture

with 32 bits per channel that stored all vertices, another texture with 32 bits per

channel that stored the four indices to vertices that formed the tetrahedra, and a

third one with 8 bits per channel that stored the classification value. The shader

executed during the first pass then projected the vertices to image space and tested

for one of the four projection types. The output of the first shader program was

stored to two 32 bit RGBA textures and contained the thickness of the tetrahedron,

its centroid, the entry and exit intersection vertices that were determined based on

the thickest point of the tetrahedron, as well as the number of the vertices needed

to build up a triangle fan to rasterize this tetrahedron. The tetrahedra were then

sorted in back-to-front order on the CPU, either based on an approximate bucket

sort implementation used when the volume was animated or moving, or based on

an O (n log n) sorting algorithm (merge sort) for still frames. Because sorting was

performed based on the previously determined centroids of the tetradehedra, the

authors mentioned that this approach is not guaranteed to produce “100% correct

results in all cases”. The second GPU pass then rendered the projected tetrahedra,

with fragments corresponding to linearly interpolated tetrahedron vertex colors. The

authors improved the image quality by applying partial pre-integration [MA04].

One shortcoming of the view point dependent cell projection approach is the fact

that primitives must be drawn in back-to-front order. Although this is also true for

the viewport-aligned, texture-based slicing approach (cf. Subsection 3.2.1), with the

cell projection approach no implicit order is imposed upon the proxy geometry and

thus back-to-front sorting is necessary. Alternative approaches [LCCK02] organized

tetrahedra using space-partitioning data structures like octrees to sort them in an

appropriate order or to apply level-of-detail to render data elements more coarse

when they are further away from the viewer. Another shortcoming of rendering

tetrahedra is the additional storage necessary when tetrahedralizing an arbitrary,

unstructured grid.

3.2. DIRECT VOLUME RENDERING ALGORITHMS 41

Image Plane

C0C1C2Cn-1Cn

c0

α0

a.)

c1

α1

cn-1

αn-1

Image Plane

CnCn-1C1C0

b.)

c0

α0

c1

α1

cn-1

αn-1

Figure 3.7: a.) Ray casting with back-to-front compositing. The image plane
is sampled at pixel positions. Then, at each discrete sampling position along the
ray, the value associated with the sample is determined using some interpolation
scheme. After classification, the color values ci are iteratively blended on top of the
background intensity C0 using the sampled transparency values αi. Cn is the color
that is output to the screen. b.) Ray casting with front-to-back compositing. If the
product of the αi reaches a threshold 1− ε, ray traversal can be terminated early.
Cn is the color that is blended with the background intensity and then eventually
output to the screen.

3.2.6 Ray Casting

Ray casting [Lev88] is an image-order algorithm that solves the scattering equation

by piecewise linear integration along the path of individual rays through the volume.

Volume ray casting implementations are typically organized into one phase for

primary ray setup and into another phase for integration and compositing. Primary

rays integrate over image space, usually interpreting the set of image pixels as a

uniform grid for regular or stratified sampling. Usually, at least one primary ray

is assigned per image pixel. Then a single intersection with the bounding object

of the volume is performed for each ray to decide whether to enter the integration

phase or to assign the background color to the image pixel. The integration now

depends on the characteristics of the volume density stored. The kinds of operations

performed during integration depend on the type of the grid that is used. If the

dataset is organized using a uniform grid, piecewise integration along the ray is

typically implemented by using a ray marching approach. Each ray is traversed

through the volume density in back-to-front- or front-to-back order (cf. Figure 3.7).

42 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

For that, a ray segment having a length that is proportional to the sampling rate

is determined a priori. Depending on the traversal order, this ray segment is then

moved through the volume density either from the exit position to the entry position

of the primary ray or vice versa. Each time the ray segment is used to prolong

the path followed along the ray, the volume is sampled at the position where the

tip of the marching segment is located. With post-classification or pre-integrated

classification, the transfer function is then sampled using this data value and the

color from classification is composited on top of the already accumulated color by

either using the back-to-front compositing equation or the front-to-back compositing

equation. In the case of front-to-back compositing, ray traversal can be terminated

early if the accumulated opacity reaches a certain threshold.

When the whole volume density was traversed, the accumulated color is stored in a

data structure associated with the image pixel that the primary ray is assigned to.

With supersampling, the color would than possibly be combined with other rendering

results for that pixel, before finally being output to the screen for display or getting

handed over to the visualization application for further post-processing.

3.2.7 Out-of-Core Volume Rendering

Out-of-core techniques are used when the volume dataset does not fit into the

memory of the compute node which is used for rendering as a whole. This is often

the case with GPU-accelerated volume rendering, where the amount of video memory

is typically far lower than the amount of main memory available. In such cases,

the volume dataset is subdivided into convex subobjects which fit into the video

memory. If the underlying topology of the volume dataset is a uniform grid, these

subobjects are usually axis-aligned boxes and the technique involved is called bricking

[KMM+01] [RV06].

The bricks are then sent to the GPU for rendering sorted in back-to-front or front-to-

back order, depending on the order used for alpha compositing. For reconstruction

on the GPU, each brick is constructed with an appropriate amount of overlapping

border voxels. The amount of additional voxels depends on the reconstruction filter

3.3. PARALLEL PROGRAMMING MODELS 43

used. Storing an excessive amount of border voxels increases the memory footprint

of the rendering algorithm.

Bricking in general is applicable to all of the aforementioned DVR algorithms but

is especially useful for the GPU-accelerated techniques. Bricking can also be useful

in the context of cache access optimization (the technique is then referred to as

swizzling, cf. Section 5.1.3) as well as for empty-space leaping accelerations. In the

first case, brick sizes are chosen so that the content of an entire brick can fit into one

cache line. In the latter case, whole bricks can be marked to contain the same value

or even the zero value. Integration can then be simplified by striving over those

regions with large steps while not having to actually enter the brick and load its

whole content to memory at all.

Out-of-core rendering does of course not only have to be applied to the spatial extent

of the volume dataset, but can be used e. g. to render large, time-dependent datasets.

If the whole dataset does not fit into the memory of the GPU, but a single time

step can be accommodated, out-of-core rendering can be thought of as a streaming

approach, where only the content is streamed into memory that is needed at a certain

instance in time.

3.3 Parallel Programming Models

In the course of the past decades, processor evolution coarsely followed Moore’s

Law, which predicts roughly a doubling of transistors per die every eighteen months.

With die sizes shrinking considerably while retaining transistor count with every

second generation of CPUs, since the past few years this evolution threatens to come

to a halt. This is mainly due to lack of suitable manufacturing processes for ever

smaller transistors, as well as due to the problem of heat dissipation that arises

with such densely packed transistors. A strategy of the processor manufacturers to

mitigate this hence is to increase the number of processor cores per package. Higher

parallelism forces the software developer to be more aware of making her application

scale to the increase in processor cores. Amdahl’s Law [Amd67]:

44 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

S =
1

rs + rp
n

(3.29)

provides a measure for the speedup S that is achievable with n processors, if the

percentage of serial code rs versus the percentage of parallelizable code rp in a

program is known. This relationship between speedup and the portion of code that

is parallelizable makes it obvious how important it is to structure one’s code to

expose a large degree of parallelism, especially if n is growing, which generally can

be assumed at least for the next few years.

Level of Parallelism Programming Model
Instruction Level
Parallelism

Mostly influenced by the compiler, programmer can help by
avoiding pipeline stalls (e. g. exiting loops early). Today is
less an issue because of shorter pipelines and sophisticated
compiler architectures.

SIMD Instructions Explicitly by using SIMD assembler instructions. Implicitly
by using auto-vectorizing compilers. Programming lan-
guages like Fortran or Cilk PlusTM provide array notation
that can be translated to vector instructions.

Multi-Core Threading APIs like pthreads, Intel R© Threading Building
BlocksTM or OpenMP.

Local Area Network Message Passing (MPI), explicit programming with sockets.

Accelerators GPUs and the like. Can be used to offload entire parts of
an algorithm. Typically expose a high degree of parallelism
at the cost of an expensive context switch when transferring
execution from the CPU to the coprocessor.

Table 3.1: Levels of parallelism exposed by HPC system and the typical means
that the programmer can use to influence the behavior of her code.

3.3. PARALLEL PROGRAMMING MODELS 45

HPC systems traditionally tend to be quite heterogeneous and thus expose parallelism

on different levels. Table 3.1 provides an overview of the various levels and how they

can be targeted by the programmer. The levels that need to be explicitly targeted

by the programmer are covered in more detail in the remainder of this section.

Modern processor cores are typically built from small execution units like logic gates

or arithmetic logic units (ALUs). Those execution units are often coupled using

a pipeline approach [PH08], which is crucial to gain the high throughput achieved

by modern processors. The length of the pipeline in the past often was the unique

feature of the processor architecture. An increase in the pipeline depth reached its

previous climax with the Netburst architecture incorporated into the Intel R© Pentium

4TM [SGC01]. Since that release, architectures tended to expose a shorter pipeline in

favor of an increase in CPU cores, which mitigated the pressure to keep an extremely

deep pipeline filled with data items to be processed.

Each processor core of most modern CPUs has access to several general-purpose

registers which usually store single fixed-point or floating-point items. In addition to

that, they usually also possess vector registers and corresponding vector instructions,

which act on the whole register while imposing a latency that is comparable to

their corresponding general-purpose instruction. Section 3.3.1 goes into more detail

regarding the programming models associated with this level of parallelism.

CPU architectures nowadays also tend to expose a higher degree of parallelism

by having two or more CPU cores per CPU casing, yielding so called multi-core

processors. HPC systems that accommodate several CPU sockets are referred to

as Symmetric Multiprocessing (SMP) systems, because autonomous, yet usually

identical CPU cores connect to a single shared memory. Section 3.3.2 introduces

several SMP architectures as well as the programming models needed to optimize for

this kind of system.

Distributed memory architectures mark the opposite end of the communication

patterns introduced in this section. Nodes with local memory are connected using a

fast interconnect like InfiniBand R©. Though modern implementations provide means

for fast memory exchange, communication patterns are typically prone to latency

that is high compared to latency on SMPs. Section 3.3.3 introduces distributed

46 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

memory architectures and the programming models associated with them.

More recent developments are based on enhancing the traditional compute system

with an additional plug-in accelerator like a GPGPU. In the very beginning, GPUs

implemented a fixed functionality that could not be adjusted by other means than

configuration. With programmable shaders, these shortcomings were partially soft-

ened. Later, with unified shader architectures and even later with general-purpose

programming APIs like NVIDIA R© CUDATM, GPUs evolved into highly parallel

processors which were optimized for extreme throughput and which could be used for

arbitrary computations. Section 3.3.4 gives a general overview of modern GPGPU

architectures and how they can be programmed. Section 3.3.5 introduces the x86-

based Intel R© Xeon PhiTM accelerator, which competes with GPGPUs since being

deployed on a plug-in board that connects to the host processor over PCI Express

and can be used to offload x86 code.

3.3.1 Single Instruction Multiple Data

The Single Instruction Multiple Data (SIMD) architecture is implemented by many

modern CPUs, which provide additional registers for vector processing. The tax-

onomy that this term is based upon was introduced by Flynn in 1972 [Fly72], who

distinguished parallel processors based on the way they process data elements. While

multiprocessor systems typically execute a number of threads that operate on the

same data items concurrently (see Section 3.3.2), SIMD execution units perform the

same instruction on SIMD registers that can store multiple data items. The SIMD

width N denotes the number of single-precision floating point data items that fit into

one SIMD register. Modern CPUs exhibit SIMD widths ranging from 4 (e. g. SSE 4)

to 16 (e. g. the upcoming AVX 512).

Instead of performing arithmetic operations on scalars, the operations are executed on

a vector with essentially the same latency as their corresponding scalar instructions.

SIMD instruction sets typically provide a mechanism to mask out data elements in

the vector that do not participate in an operation. This allows the design of code

paths with dynamic branches, without having to specify jump or branch instructions.

3.3. PARALLEL PROGRAMMING MODELS 47

Rather than that, masks are used to decide whether a data element participates in

an operation (“if-branch”), or if it doesn’t (“else-branch”). Regarding these traits, it

becomes immediately clear that masking in general is prohibitive. In the worst case,

if there is only one data element left in the SIMD register to be processed, and the

remaining data elements are inactive, the vector instruction essentially degrades to a

simple scalar instruction.

Intrinsics are extensions to the programming language that some compilers provide.

Modern compilers usually provide intrinsics to program the vector units of modern

processors. Vector intrinsics spare the programmer from having to deal with a

limited number of vector registers, register spilling or stack unwinding after function

calls. Intrinsics provide low-level vector types that can accommodate basic integer or

floating-point numbers and thus provide the programmer with strong type checking

features normally known from high-level programming languages like C or C++.

On the other hand, programming with vector intrinsics means being explicit about

which specific vector instruction is called. Most modern compilers provide an auto-

vectorization feature which generates vector instructions when called with appropriate

optimization parameters. Anyway, in that case special care must be taken that

the compiler is actually able to generate vector instructions for every single line of

code. Context switches that occur when program execution transitions from vector

registers to general-purpose registers or vice versa are prohibitive because they result

in pipeline stalls on most modern CPUs.

Chapter 5 provides a detailed description of several SIMD implementations of the

ray casting algorithm targeting various processor architectures. That chapter also

goes into more detail on how vector intrinsics are used in the specific cases and on

how code must be restructured to sufficiently benefit from the SIMD features of

modern CPUs.

3.3.2 Shared Memory Computing

Traditional HPC shared memory systems accommodate multiple cores that are

located in the housing of one node, that usually come with a shared chipset and that

48 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

communicate with each other via a fast interconnect. This is opposed to distributed

memory systems (cf. Subsection 3.3.3), where the compute cores are located on

different nodes which communicate over a relatively slow, latency prone network

interconnect. Shared memory computing (SMC) techniques exist that specifically

map to the former. Different paradigms for Interprocess Communication (IPC) can

be used, that are facilitated by modern operating systems [Ste98].

Native shared memory programming with the Unix operating system e. g. can be

done by means of the POSIX Shared Memory API. This API provides ways for two

processes to exchange data without having to copy it to a dedicated memory region.

Instead of that, each process maps a region of the other process’s memory. This is

achieved by obtaining a pointer to a mapped memory region through the POSIX

API. With the proper knowledge of what data is located in the mapped region, the

process can then access the other process’s data items without having to copy them

to its own heap memory.

Multithreading APIs provide a more lightweight method of managing two parallel

control flows that potentially access common memory items. In contrast to SMC with

multiple processes, threads are required to be managed by a common parent process.

This abandons the problem of having to keep track of the processes that mapped a

shared memory region and only being able to destroy it if all processes released their

handle to that region. Furthermore, threads tend to be a more lightweight entity on

many operating systems regarding bookkeeping. With most multithreading APIs,

accessing shared memory from two parallel control flows is quite natural, usually

the control flow of a thread is executed through a callback function or a virtual

member function, which can access the shared data via a pointer argument. This

makes programming even simpler compared to mere shared memory programming,

because the programmer does not have to care about the byte representation of the

shared data items, but can access them using the native data structures used in the

program. Multithreaded programming is facilitated by numerous operating system

specific APIs like the POSIX Threads API (pthreads). In contrast to that, OpenMP

[DM98] is a popular industry standard that many compiler vendors support and that

facilitates multithreaded programming through annotation. This can be achieved

by inserting preprocessor clauses and pragmas (which are hints to the compiler to

3.3. PARALLEL PROGRAMMING MODELS 49

perform a certain task in a specific way) into an ANSI C, ISO C++ or Fortran

program which describes a serial control flow. Annotation-based parallelization is

particularly popular because in theory, no changes to a serial code are necessary

other than pragmas that are evaluated at compile time, thus retaining correctness

given that the serial code was validated for correctness.

Shared memory systems are often distinguished based on locality properties of the

memory that is attached to the cores. Non-uniform memory access (NUMA) systems

[BSF+91] usually have local memory associated with each core, which is accessible

from all the other cores. Some NUMA systems provide a global address space.

Anyway, because of the memory locality, accessing memory that is located near the

core imposes a lower latency than accessing memory that is far away. Cache coherent

non-uniform memory access (ccNUMA) systems have a local, non-shared cache and a

hardware abstraction layer that maintains cache coherence. While easier to program,

ccNUMA chip design in general is more complex than ordinary NUMA chip design.

3.3.3 Distributed Memory Computing

A vast amount of textbooks is available that discuss the topic of distributed memory

computing. The following considerations present only a very brief overview of the

topic and are loosely based on the textbook by Peter Pacheco [Pac11]. Distributed

memory systems (DMS) are comprised of multiple processors that are equipped with

a local memory and which communicate via an interconnect that typically imposes

high latency and limited bandwidth, especially when compared to the latency and

bandwidth characteristics of SMPs. The more processors the DMS is comprised of, the

more important grows the choice of topology of the underlying network interconnect.

Rings or tori are typical cyclic network topologies found in DMS implementations.

Point-to-point topologies become less simple to implement, the more processors are

in use. Hypercubes can be a reasonable alternative to fully connected networks.

There are several programming models available for programming DMSs. The

most commonly available programming model is probably based on raw socket

communication using the internet protocol (IP) in conjunction with the transmission

control protocol (TCP) or the user datagram protocol (UDP). The two protocols,

50 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

which basically differ in the guarantees that the protocol makes regarding the possible

loss and the retrieval of data packages, are based on communication on several physical

and logical layers. This stacked architecture naturally imposes latency only due to

the use of a general-purpose protocol. Low-latency interconnects like InfiniBand R©

on the other hand can be programmed with non-standardized APIs provided by the

manufacturer. A very popular standard that is in wide use by the HPC community

and whose implementations use those low-level APIs is the Message Passing Interface

(MPI). MPI does not rely on the TCP/IP stack, although it can be implemented on

top of an IP-based network. The MPI programming model is essentially centered

around processes that have a rank assigned with them. Processes typically, but not

necessarily run on different processors. Processes are identified by their rank and

roles like master or slave can be implemented based on them. Messages which are

passed between processes may contain arbitrary data. In addition to point-to-point

communication (“unicast”), broadcast communication is also possible.

3.3.4 General-Purpose Programming with NVIDIA R© GPG-

PUs

Graphics processing units (GPUs) in the previous decade developed from fixed-

function, single-purpose coprocessors to most versatile multi-purpose data-parallel

streaming processors (cf. Chapter 2 from [HKRS+06]). Shading languages allowed to

freely program dedicated stages of the fixed-function pipeline [Ros09] like the vertex

processing stage and the rasterization stage. At the same time, and in contrast

to this graphics-oriented development, programming APIs emerged that allowed

to freely program GPUs for general-purpose computations. What at first sounds

like a contradiction at second thought turned out to be a viable approach. The

development that turned GPUs from fixed-function processors into highly flexible

compute nodes led to GPUs evolving into processors that can process a large amount

of lightweight tasks simultaneously. As a consequence, researchers began to “abuse”

the graphics APIs to port their high-throughput algorithms to GPUs. As a reaction

to this development, general-purpose GPU APIs emerged that allowed to freely

program GPUs using general-purpose languages like the C programming language.

3.3. PARALLEL PROGRAMMING MODELS 51

Without having to worry about specifics related to graphics like using textures for

storage or frame buffers to output results, porting scientific applications to GPUs

highly improved the accessibility of this platform. The two most common GPGPU

APIs today are NVIDIA R© CUDATM [SK10] and the open standard OpenCL [Khr13].

With their complex memory hierarchies, GPGPUs can be viewed as small NUMA

systems that life on a plug-in card themselves. Contemporary GPGPUs expose an

intricate memory hierarchy. A thorough understanding of that hierarchy is crucial to

achieve efficient GPGPU implementations. The following description of the GPGPU

programming model adapts the nomenclature that NVIDIA R© uses in its hardware

and API documentation [NVI13].

The system that contains the GPU and that provides the infrastructure to perform

communication and memory copies to the GPU in the following will be referred to

as the host or the host system, while the GPU itself will be referred to as the device.

The same distinction will hold for the terms host program and device program, where

the host program refers to the software program that initiates the execution of an

algorithm on the GPU, e. g. by copying data to and from the GPU and providing

control information.

Modern GPUs are organized into a set of Streaming Multiprocessors (SM). These

correspond to the shader processors from the unified shader architectures [LNOM08]

that modern GPUs are based upon. The SMs have a small on-chip shared memory

attached to them that all threads scheduled on this SM can access with low latency.

The DDR memory that is attached to the graphics board is referred to as global

memory. Global memory can be accessed by all threads from all SMs, but for

the price of lower bandwidth and higher latency. While the NVIDIA R© CUDATM

documentation gives some insight into the latency involved with global memory

accesses (i. e. 400 - 800 cycles depending on the compute capability of the GPU), it

is less specific about the latency involved with shared memory access, stating that

its latency is “much lower” than that of global memory.

The common programming model of NVIDIA R© CUDATM and OpenCL is based on

an implicit SIMD approach. Groups of threads are scheduled by the SM in so called

warps. E. g. on the NVIDIA FermiTM [WKP11] architecture, a warp consists of 32

52 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

threads. No branch prediction is applied when the threads in the warp execute, i. e.

if one thread enters a branch, all other threads will either execute the same branch

or wait until the whole warp finished execution. NVIDIA R© calls this approach Single

Instruction Multiple Thread (SIMT). In contrast to the Intel R© SIMD programming

model, neither the SIMD width, nor masking of inactive SIMD lanes have to be

accounted for, but are handled implicitly by the GPGPU API.

GPGPU kernels make up the device program and describe the control flow of a single

thread in a warp. Kernels are typically programmed using structured programming

languages. OpenCL programs can only be written using a subset of the ANSI-C

programming language, while CUDATM provides bindings for other languages like

e. g. Fortran. Kernels are compiled into instructions for the specific GPU. The GPU

code can either be generated at compile time of the host program or at run time,

e. g. at program start or right before the algorithm will be executed on the device.

From within the device program, a memory hierarchy can be accessed, with the

differing memory layers having different implications on latency and bandwidth

of a memory access. Global memory can be read from and written to by every

thread. With NVIDIA R© devices manufactured before FermiTM, read accesses were

not cached, which made them an expensive operation that needed to be minimized

throughout the device program. With later architectures, global memory reads are

cached. Global memory can directly be accessed from the host using memory copying

instructions or direct memory access (DMA), on devices where this is supported.

Texture memory is cached but read-only on the device and can be written to from

the host. Shared memory can be accessed from all threads scheduled on the SM that

the shared memory is attached to. Because warps are scheduled on one SM, shared

memory accesses need to be synchronized explicitly. Accesses to global memory and

texture memory are synchronized implicitly by the scheduler, who will wait for all

SMs having executed the kernel before returning execution to the host program.

Each thread also has access to a small amount of local registers.

GPGPU implementations can benefit from the massive parallelism provided by

modern GPUs. Because of the weak branch prediction and the caching strategies

that are less elaborate than the ones implemented on modern CPUs, GPU threads

3.3. PARALLEL PROGRAMMING MODELS 53

are a lightweight construct compared to CPU threads. GPUs are capable of hiding

latency behind computation by providing massive parallelism. When programming

GPGPU algorithms, it is often a good choice to avoid memory accesses by e. g. not

storing pre-calculated results, but rather by computing these anew if needed. One

major bottleneck of GPGPU algorithms nowadays is the communication overhead

for copying data over PCI Express (PCIe), which is used by today’s hardware to

connect host and device. GPGPU algorithms at least need to amortize this overhead

by exposing a sufficient amount of parallelism. Image-order DVR algorithms lend

themselves well to GPGPU implementations, because threads can execute mostly in

parallel if they are e. g. assigned to process one image pixel (cf. Section 3.4.2).

3.3.5 Programming Models for the Intel R© Xeon PhiTM Co-

processor

The Intel R© Xeon PhiTM coprocessor is an x86-compatible accelerator that is attached

to the host using PCI Express. A thorough overview of the underlying Many Integrated

Core (MIC) architecture, formerly known as the Knights Corner architecture, can

be found in [JR13]. In essence, the coprocessor is an SMP on a single chip, that

is comprised of 50 or more cores and wide 512 bit SIMD units. The coprocessor

that the author of this thesis has access to comes with 60 in-order cores that can

run four concurrent hardware threads each. At its current state, the 60 in-order

cores are connected using a bidirectional ring bus and each core is equipped with an

8-way 512 KB L2 cache. Each core is additionally equipped with an L2 translation

lookaside buffer (TLB) that caches translations of virtual memory addresses to

physical memory addresses, which evidently occur often on systems with many cores

accessing a shared memory. An 8 GB GDDR5 RAM is accessible via the on-chip

memory controller. The current version of the coprocessor comes with a dedicated

64 bit instruction set that is not backward compatible to its CPU counterparts but

that offers some special commands like scatter / gather operations and hardware

math instructions like fast reciprocal, power, exponential and square root functions.

The coprocessor can be viewed as a separate node which actually comes with full

TCP- and InfiniBand R© stacks, runs a Linux operating system and can be accessed

54 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

using a secure shell. Following this design philosophy, Intel R© thus proposes two

execution modes for user-mode programs. Native applications run completely on the

coprocessor. The user compiles her application in a way that the main routine of

the program is assembled to the instruction set of the coprocessor. Then she copies

the executable and all external libraries (which of course were also compiled for the

coprocessor) to the Xeon PhiTM and connects to it e. g. using secure shell to execute

the application. In contrast to that, offload applications are initiated on the host.

Code portions that run on the coprocessor are separated into dedicated object files

by the compiler. When the application is executed, the object code is handed over

to the coprocessor using an operating system service running on the host. At the

time of writing, object code for the Xeon PhiTM can only be created with the Intel R©

compiler suite.

Intel R© advertises its accelerator to generally support each of the parallel programming

models that are used to program ordinary SMPs. The Xeon PhiTM thus comes

with support for the threading models described above, such as Posix Threads or

OpenMP, as well as with an optimized MPI implementation. Key to scaling to

the MIC architecture, in addition to exploiting thread parallelism, is vectorization

to exploit the 512 bit SIMD registers. These can e. g. be programmed by using

auto-vectorization. A more explicit means is the Intel R© Cilk PlusTM programming

language [Int14], which provides an array notation which is similar to that of the

Fortran programming language and which can be used to formulate an algorithm in

terms of vector operations. An even more explicit means is to directly use the vector

instructions of the MIC architecture, e. g. by using MIC vector intrinsics which act

on 512 bit fixed- or floating-point built-in data types that internally map to the 32

available SIMD registers.

For graphics applications, the preferred mode of operation is most likely offloading.

Although in fact a native application model is at least imaginable - e. g. by using

the VNC protocol [RSFWH98] or X server forwarding - additional overhead due to

network traffic and having to perform unoptimized rendering in software would be

unreasonably high with this execution model. Intel R© proposes two programming

models for offloading to the coprocessor. One programming model is based on

annotations. The portions of the code that shall be offloaded are marked using

3.4. PARALLEL DIRECT VOLUME RENDERING TECHNIQUES 55

preprocessor pragma clauses. Data can be send to and from the coprocessor by

specifically marking it as in, out or inout data, which is then either copied to the

device prior to the computation, copied back to the host after computation, or both.

Allocation is handled in a similar manner using pragma directives. An alternative

approach to offloading is exposed through the Cilk PlusTM programming language.

Cilk PlusTM is based on a shared memory approach. Cilk PlusTM essentially is

an extension to the C/C++ programming language, which adds several language

constructs for parallel programming. One of these language constructs enables to

call an offload function or execute an offload code block on the coprocessor. With

Cilk PlusTM nevertheless, data is shared among host and device using a common

address space rather than being copied explicitly.

3.4 Parallel Direct Volume Rendering Techniques

This section starts with a classification of parallel rendering algorithms in general.

Different architectures lend themselves more or less well to algorithms being catego-

rized based on this classification. GPGPU ray casting on one GPU e. g. is a candidate

for an image space parallelization, while object space parallelization is applicable

to distributed rendering scenarios on Multi-GPU systems or on distributed memory

systems. Load balancing issues are addressed in the remainder of the section. This

section will only provide a theoretical background of the parallelization techniques.

A more thorough investigation based on actual implementations as well as results

from performance measurements can be found in Chapter 5.

3.4.1 Sorting Classification for Parallel Rendering

The sorting classification for parallel rendering proposed by Molnar et al. [MCEF94]

was widely adopted by the high performance graphics community. The authors

argued that assigning post-processed data (i. e. data that was prepared for rendering,

such as geometry from surface rendering or proxy geometry for volume data) and

pixels to processors can be viewed as a sorting problem. The main stages involved

56 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

in rendering and finally displaying an image are the geometry processing stage

and the rasterization stage. At the geometry stage, 3D primitives are processed

and finally converted to fragments in image space. At the rasterization stage, the

fragments are processed to obtain the final color for the respective image pixels.

Workload assignment is then a sorting problem regarding the order in which the

results generated by the participating processors contribute to the final image. Based

on this proposition, the authors distinguished three classes of parallel rendering

algorithms that depended on the stage in the rendering pipeline where the sorting

happens.

With sort-first parallel rendering, sorting is performed most early in the rendering

pipeline. Image space is initially divided into a set of disjoint regions that cover

the whole 3D viewport occupied by the application. Often a tiled subdivision is

used. Image tiles are then assigned to processors. The tiles are then rendered in

parallel and are finally stored to their respective region in a shared frame buffer or

the local frame buffer of one or more dedicated processors which are responsible for

image construction. The granularity of the subdivision into tiles can be exploited for

load balancing. The tiles can e. g. be served to the processors on demand from a

priority queue whenever a processor is starved. Image space subdivision can also be

performed hierarchically e. g. using quadtrees (cf. e. g. Section 16.5 from [SSC02])

to circumvent the shortcomings of a high granularity and having to manage a large

queue with many tiles, without risking to starve some of the rasterization processors

for a significant amount of time.

With the sort-middle approach, post processed data as well as pixels are distributed

among the processors. Sorting happens in-between the geometry stage and the

rasterization stage. Some processors in the pipeline are assigned post processed data,

while other processors are assigned regions of image space. Data that was processed

in parallel on the geometry stage is then passed on to the rasterization stage. The

rasterization stage processes fragments in parallel. The data flow from the geometry

stage to the rasterization stage usually contains geometry in the form of fragments

that were transformed to image space e. g. by applying perspective projection,

frustum culling and clipping. While the sort-middle approach is usually found

in graphics hardware, the parallel visualization pipelines of common visualization

3.4. PARALLEL DIRECT VOLUME RENDERING TECHNIQUES 57

software are realized using either sort-first or sort-last parallel rendering.

Sort-last parallel rendering performs the sort after the rasterization stage. Geometry

processing and rasterization are performed by the participating processors in parallel,

resulting in one intermediate image per processor. These independently rendered

images are eventually assembled to a final image using compositing. In the presence

of transparency, alpha compositing is applied, while with opaque geometry that

was rendered to a z-buffer, depth compositing is applied where only the frontmost

fragment from all intermediate images contributes to the final image.

Sort-last rendering has the advantage over sort-first rendering that it accomplishes

data parallelism by design. This can be an important factor for DVR, where the

size of the volume datasets grows with the third power of their spatial resolution.

Sort-first approaches do not naturally lend themselves well to data parallelism,

because in general it cannot be predetermined which parts of the post processed data

will occupy a certain region in image space for an arbitrary camera transformation.

DeMarle et al. [DGBP05] and later Ize et al. [IBH11] proposed to circumvent this

shortcoming by using a caching strategy called Distributed Shared Memory (DSM).

Sort-first rendering on the other hand can benefit from frame-to-frame coherence

and load balancing that is more easily applicable. Sort-middle rendering algorithms

are hard to scale to systems with large amounts of processors because image pixels

and geometry need to be reassigned to processors per frame, which results in a

tremendous amount of time spent for communication overhead.

3.4.2 Sort-First Volume Ray Casting

The ray casting algorithm is especially well suited for a sort-first parallel GPGPU

implementation on NVIDIA R© CUDATM GPUs. In that case, GPU kernels are

implemented so that one GPU program assigned to a single thread implements the

complete ray marching procedure for exactly one ray. The GPGPU implementation

can benefit from the trilinear interpolation capabilities that the GPUs implement

efficiently when sampling the volume dataset at discrete positions. With the CUDATM

programming model, multiple threads will be scheduled in a warp. Nevertheless, the

58 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

restrictions to branching of threads in a warp will only result in slight efficiency drops

because of the coherent traversal scheme of the ray marching procedure. Neighboring

rays will exit the volume at nearby positions and on top of that are likely to access

the same volume elements, resulting in an efficient utilization of the caches that are

attached to global memory and to texture memory. For the NVIDIA R© FermiTM

architecture [WKP11] and later architectures, NVIDIA R© significantly improved

the scheduler that launches warps on Streaming Multiprocessors. Implementations

targeting NVIDIA R© GPUs from prior generations will benefit from a persistent

thread scheduling approach as it is e. g. described in [AL09] or [GSO12]. With a

persistent thread approach, image space is subdivided into regions with sizes aligned

to the warp size of the GPU. On each Streaming Multiprocessor, one warp of threads

is started that is persistent throughout the rendering process for one image and

immediately acquires a region to render. When a warp finishes rendering a region, a

dedicated thread from the warp increments a counter in shared memory and the whole

warp processes the next region until there are no more regions left. Incrementing

the shared memory counter can efficiently be performed using atomic operations.

Persistent thread approaches resemble the general task queue approaches [CT08].

Chen et al. [CVKG10] raise the approach to actually have the CUDATM kernels

persistent, which are then served new work from the CPU.

GPGPU ray casting can efficiently be parallelized for Multi-GPU systems using

sort-first rendering (cf. Section 3.4.4) as well as sort-last rendering (cf. Section 3.4.3).

For DVR with mere local illumination, the communication overhead imposed on the

ray marching algorithm by either approach is minimal, so that the overall overhead

for sending data over the PCIe interface is negligible. Nevertheless, certain modalities

like large volume datasets or in situ visualization scenarios [Ma09] can make it a viable

option to perform volume rendering on the CPU. Knoll et al. [KTW+11] present

a SIMD CPU volume ray casting implementation for large volume datasets. CPU

ray casting implementations typically cannot compete with GPU implementations

in terms of interactivity due to their lack of 3D texture support in hardware and

because they currently do not expose as high a level of parallelism as GPUs do.

Nevertheless, as will be shown in this thesis, with sophisticated implementations,

DVR on CPUs is at least on the verge to being computed interactively with frame

3.4. PARALLEL DIRECT VOLUME RENDERING TECHNIQUES 59

rates of 30 Hz or higher. CPU implementations like the one proposed by Knoll et al.

or the one proposed in Chapter 5 can even be superior to GPGPU implementations.

Specifically, when rendering very large datasets, one may benefit from the more

sophisticated cache organization of modern CPUs. CPU memory nowadays is also

usually larger than GPU memory by at least an order of magnitude, so that larger

datasets can be accommodated without having to use out-of-core techniques like

the ones described in Section 3.2.7. Chapter 5 describes a parallel rendering system,

where a Multi-GPU system using CUDATM GPGPU ray casting is accompanied by

a CPU SIMD ray casting implementation.

3.4.3 Sort-Last Parallelization for Multi-GPU Systems and

Distributed Memory Systems

Sort-first parallel DVR and GPGPU systems are a powerful combination because

the SMs are all attached to memory that can be accessed with relatively low latency.

In situations where memory is local to the participating processors, and interprocess

communication incurs a high overhead, sort-last parallelization can be the method

of choice. Communication that involves the interconnect of the mainboard, main

memory, or even a network interconnect between nodes of an HPC system typically

incurs such an overhead.

A rather new development is the use of more than one GPU per node to perform

rendering. Marchesin et al. [MMD08] proved the general feasibility of Multi-GPU

systems for DVR. They analyzed Multi-GPU DVR with texture-based and ray

casting-based implementations and report almost linear scalability, e. g. a speedup

of 3.5 using 4 GPUs for a small dataset. With datasets that did not fit into the

texture memory of a single GPU, and that needed to be rendered using out-of-core

methods before, they even reported speedups of factor 8, which is due to the decrease

in communication between mainboard and GPUs for rendering. Their findings prove

that Multi-GPU systems are a hardware platform that is extremely viable for DVR

and specifically for large datasets.

Volume datasets of the form (X,S, T), X ∈ N3, S ∈ R and T ∈ N (i. e. uniform

60 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

grids and scalar data) are especially simple to parallelize using sort-last because

uniform grids can easily be subdivided into convex objects: subdividing once along an

axis-aligned plane at an arbitrary inner border between cells yields a subdivision into

two new uniform grids. Although a uniform subdivision may suffice for certain cases,

higher scalability can be achieved by using hierarchical space subdivision schemes.

A popular space subdivision scheme in computer graphics is one that splits objects

along all of their principal axes using a hyperplane in a divide and conquer manner.

In two dimensions, this yields a so called quadtree, while its three-dimensional

counterpart is called an octree [SSC02]. A general space subdivision scheme is the

k -d tree [Ben75]. k -d trees are also created using a divide and conquer approach. The

subdivision starts by assigning the axis-aligned bounding box (AABB) of the uniform

grid to the root of the k -d tree. Each tree node is then further split based upon some

heuristic. The split is performed by finding the most appropriate principal axis based

on that heuristic and by then determining the most appropriate position to locate a

hyperplane (which is an actual plane in three dimensions) that splits the AABB of

the node into two halves. Each half becomes a new node. The heuristic is also used

to terminate the subdivision. The k -d tree is a special case of the general family

of BSP trees. The two of them differ in that for k -d tree creation, an axis-aligned

subdivision is performed, while BSP trees are created using arbitrary split planes.

This extra flexibility is typically not needed when hierarchically organizing volume

data that was sampled on a uniform grid.

After finding an appropriate subdivision, the leaf nodes of the space partitioning

data structure are assigned to one rendering processor each. Each processor can

then perform rendering without even knowing that it is only responsible for a partial

dataset. Care has only to be taken about an overlap at the inner borders of the

subvolumes. These may be necessary to perform correct (e. g. trilinear) interpolation

at the borders or for correct gradient estimation for local illumination (cf. Section 3.1).

The image that each processor creates only depicts a subset of the volume dataset

and must contain an alpha channel. Using the k -d tree, sorting these intermediate

images is then particularly easy by performing an in or out test with the current

camera position and the two half-spaces at each level of the tree and visiting the

“back” node first.

3.4. PARALLEL DIRECT VOLUME RENDERING TECHNIQUES 61

The intermediate images are then assembled to form the final image using alpha

compositing, which involves communicating image data between processors. In its

most simple variant, compositing is not parallelized but performed by each rendering

processor sending its complete intermediate image to the processor that is responsible

for display. Sort-last image compositing per se is a reduction problem, because

a parallel summation over a set of distributed data items needs to be computed.

In the special case of alpha compositing, that summation is not associative and

the summand’s contributions are weighed according to their order. With many

rendering processors, it can easily become the bottleneck restricting the performance

of sort-last parallel rendering algorithms. In order to reduce bandwidth pressure

on the interconnect used, several optimizations were proposed in the literature to

parallelize that task.

Direct send compositing [Neu94] [EP07] works as follows. In addition to the data

partitioning, screen space is partitioned into n disjoint tiles. This partitioning can

be arbitrarily chosen e. g. for best pixel read-back performance. After each processor

has performed rendering, it performs pixel read-back for the n − 1 tiles it is not

responsible for and sends each of them to its n − 1 counterparts. In consequence,

each processor receives n− 1 tiles. Each processor then performs alpha compositing

for the tile it is responsible for, e. g. by using a GPU. In many cases, a distributed

result may be acceptable. In cases where this is not desired, the n− 1 processors

read back the tile they are responsible for and send it to the processor responsible

for display (given that one of the n rendering processors is responsible for rendering

and display).

Direct send compositing can lead to network contention due to many simultaneous

messages [BCH12]. Tree-based compositing algorithms like binary swap [lMPH94] can

help to mitigate this pressure by applying a subdivision based on divide and conquer.

The compositing algorithm achieves this by adjusting the size of the communicated

image based on the locality of the communication. The algorithm works as follows: n

processors may participate in the compositing algorithm, where n = 2m and m ∈ N
(i. e. n is a “power of two)”. The algorithm is performed in multiple rounds. After

having rendered their intermediate image, each two neighboring processors swap the

opposite half of their composited image. The recipient unites its incoming half with

62 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

the image that it retrieved so far by applying a compositing operator. With each

round, the image portion that is swapped between processors is divided by half, while

locality decreases. During the second round, each two processors swap a quarter

of their already assembled image, but with their second to nearest neighbor. This

procedure of halving the image size and doubling the distance between processors

continues until the size of the swapped image portions equals 1
n

of the original image

size. The relation between message size and communication distance allows for an

increased scalability compared to direct send.

One major shortcoming of binary swap compositing is, that it is only applicable

for a power of two processor count. This is due to the fact that the size of each

communication group is limited to two. The 2-3 Swap algorithm [YWM08] adapts

the Binary Swap algorithm to cope with arbitrary processor counts. This is achieved

by exploiting the observation that any integer greater than one can be represented

through a sum of twos and threes. Initially, a compositing tree with k levels is

constructed recursively. From that, the group sizes and communication patterns of

tree-based algorithms can be deduced. Tree construction works as follows. For an

arbitrary N ∈ N, N being the number of processors participating in compositing,

let K ∈ N and 2K−1 ≤ N < 2K . Then the compositing tree is constructed by

successively assigning the processor count n of the current round and partitioning it

into two sets L and R, so that l = |L| = bn
2
c and r = |R| = dn

2
e. Further, let d = K

initially. For each round, if r < 2d, create two child nodes, otherwise create three

child nodes from a new partitioning L, M and R, l = |L| = bn
3
c, m = |M | = bn

3
c

and r = |R| = dn
3
e. Then proceed by recursively repeating this procedure for each

child and adjusting n and d to the current round. Note that for N being a power

of two, the resulting compositing tree will correspond to that from binary swap.

Otherwise, the compositing tree obtained by this procedure will reduce variation in

group sizes and thus the complexity imposed by the compositing algorithm. During

image compositing, after each round groups are merged together and image portions

are exchanged, just as this is the case with binary swap. Because groups may either

be of size two or three, maintaining the order is slightly more complicated and is

obtained by using a procedure that takes the processor count per group at the next

level in the tree into account.

3.4. PARALLEL DIRECT VOLUME RENDERING TECHNIQUES 63

While the group sizes ki, with i being an index over the number of communica-

tion groups per round r in 2-3 swap were limited to two or three, the radix-k

algorithm [PGR+09] generalizes compositing by allowing more combinations of

k = (k1, k2, ..., kr) and r. All groups in one round have the same size and direct send

compositing is performed in each communication group. Within each round, any

factorization
r∏
i=1

ki = N is permitted. This makes direct send as well as binary swap

special cases of the radix-k algorithms.

Bethel et al. [BCH12] report timing results for the four sort-last compositing

algorithms and conclude that the radix-k algorithm is not only more flexible than

traditional approaches like direct send or binary swap, but can even outperform

them by several factors.

Because of the huge amount of samples that need to be accumulated during integra-

tion, DVR in general is highly susceptible to asymptotic errors [EJR+13] due to the

finite accuracy of floating-point computations [Gol91]. This can become especially

displeasing in the context of sort-last parallel rendering. In that case, round-off

errors accumulate independently among the processors, which can cause artifacts

at the transitions between the subvolumes [BPT02]. Strategies to mitigate this

effect include rendering using higher computational accuracy or rendering using more

rendering contexts than there are processors. In the latter case, smaller subvolumes

can be rendered, which naturally require less samples and thus reduce the likelihood

of tremendous errors. Both strategies induce increased overhead that can influence

the overall performance of the compositing calculations.

3.4.4 Load-Balancing for Parallel Direct Volume Rendering

Parallelization of the DVR algorithms can typically result in load imbalances. With

sort-last, if two processors take part in rendering and the volume is equally shared

between them, load imbalances can occur if one processor renders its part faster than

the other processor. In that case, load imbalances can stem from multiple sources.

If the two processors in general have different capabilities and these capabilities

can be quantified, load-balancing, i. e. the distribution of work as a reaction to load

64 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

imbalances, is easily achieved. If load imbalances stem from factors like camera

orientation or a dynamically adjustable transfer function, load-balancing with sort-

last is in general not easily achievable because it would typically imply transferring

whole volume chunks from one processor to the other.

Nevertheless, load imbalances are even more imminent with sort-first parallel al-

gorithms because they are largely influenced by dynamic camera adjustments and

must thus be accounted for each frame anew. Sort-first load-balancing schemes are

often task queue based, like the persistent thread approach that is e. g. used by the

GPGPU implementation described in Chapter 5. Here the work is subdivided into

tasks by splitting screen space into tiles. Threads are generated persistently at the

beginning of the program execution and idle while no work needs to be done. When

the task queue is filled with new screen space tiles, the threads become busy until

the task queue is empty again. That way, threads can be kept persistent and no

thread creation overhead is necessary for each frame. On top of that, the workload

is balanced because threads do not idle as long as there is work left in the queue.

A persistent thread approach is often accompanied by organizing screen space tiles

along a space-filling curve [KA97]. That way, locality can be exploited. If one

processor acts upon a specific region of screen space, with coherent datasets it is

likely that the data items that are currently in memory or even in the cache of the

processor can be reused for the work that is associated with the neighboring tile.

Cosenza et al. [CDE13] based dynamic load-balancing for sort-first surface ray tracing

on a cost estimate that was computed on the GPU and stored in a G-buffer. This

was then used for load-balancing by assigning costs to screen space tiles, which were

split based on the cost estimate and then enqueued to the task queue for rendering.

That way, tiles with a high workload could be rendered first, which was beneficial

because when rendered first, the workload could effectively be hidden.

3.5. DVR AND VISUALIZATION SYSTEMS 65

3.5 Direct Volume Rendering and Visualization

Systems

This section reviews visualization systems that incorporate Direct Volume Rendering.

Along with a discussion of which specific algorithms are used by the respective

visualization system, a brief review is provided of how Direct Volume Rendering is

integrated into the overall execution model of each system. Each of the discussed

visualization systems is either open source, or the source code of the visualization

system is available to the author of this thesis for inspection.

3.5.1 ImageVis3D

ImageVis3D [FK10] is a mere DVR application with cross-platform support and whose

user interface is based on Qt [Qt 14]. ImageVis3D includes the Tuvok subsystem as a

DVR library. Tuvok implements a variety of DVR algorithms, ranging from 2D and

3D texture-based volume rendering to shader-based GPU ray casting. Tuvok uses

OpenGL R© as well as DirectX R© as underlying low-level graphics APIs, depending on

the platform it was compiled for. Large datasets can be accommodated by using

out-of-core rendering techniques (cf. Section 3.2.7). Progressive rendering allows for

interactive frame rates by adapting the quality of the images to the desired frame

rate, making use of level of detail (LOD) techniques. The ImageVis3D graphical

user interface (GUI) as well as the Tuvok DVR library can be extended using plugin

mechanisms provided by the respective APIs. An ImageVis3D implementation exists

that brings DVR to the iOS operating system. This implementation actually runs

on the client tablet or phone and is based on OpenGL R© for Embedded Systems

(OpenGL R© ESTM).

3.5.2 Voreen

Voreen [MSRMH09] is a visualization system that is centered around DVR. Voreen is

based on a dataflow network approach where processors represent the network nodes

66 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

and are used to implement DVR algorithms or auxiliary structures like clipping

planes. Voreen’s DVR algorithms are implemented using OpenGL R© . In addition to

mere volume rendering, Voreen supports annotation of volumes using labels, glyph

rendering, speedlines to visualize motion, and various additional features. With

its dataflow network approach, Voreen allows for rapid-prototyping. Voreen comes

with several GLSL-based ray casting implementations, that support either isosurface

rendering, MIP (cf. Section 3.1) or DVR, which can be chosen from using run time

compilation.

3.5.3 DeskVOX

DeskVOX [Des14], which abbreviates “VOlume eXplorer for the Desktop”, is a

mere DVR application. The Virvo DVR library [SWWL01] is at the heart of the

application and implements the DVR algorithms. The Virvo library mainly supports

volume datasets that are defined on uniform grids. Virvo provides implementations

of the various types of DVR algorithms (see Section 3.2): a Shear-Warp Volume

Rendering implementation as well as a CPU ray casting implementation using

SSE 4.1 for running on Intel R© x86- and Intel R© x86-64-compatible CPUs, texture-

based DVR using either 2D textures, stacked 2D textures or 3D textures, a ray

casting implementation targeting the Intel R© Xeon PhiTMand a GPGPU ray casting

implementation based on NVIDIA R© CUDATM. Most of the algorithms implemented

in Virvo perform post-classification. Shaders for transfer function lookup are provided

that support various dimensionalities that the data items at the voxels may have.

DeskVOX itself is an application with a lightweight user interface based on Qt. The

UI provides means to edit 1D- and 2D transfer functions, with the rendered image

adapting to the changes in real-time, as well as several other interaction means with

the volume data, such as editable regions of interest or clipping planes, that can be

used to create partial views of the volume dataset. DeskVOX comes with utilities

to convert general data files storing structured volume data to the native format

interpreted by the Virvo library.

During the course of writing this thesis, several DVR algorithms or related methods

3.5. DVR AND VISUALIZATION SYSTEMS 67

were integrated into the Virvo library, so that DeskVOX now also possesses facilities

e. g. for parallel DVR (cf. Chapter 5) on several hardware platforms, and image-based

remote rendering. Because the COVISE visualization software (see Section 3.5.6) also

uses the Virvo library to perform DVR, most of the features available in DeskVOX

are accessible from COVISE too.

3.5.4 ParaView

Unlike ImageVis3D, Voreen and DeskVOX, which are visualization systems that are

centered around DVR, ParaView [Kit14a] [Hen04] (as well as each of the visualization

systems summarized in the remainder of this section) is a full-fledged visualization

system that integrates DVR as a component of a wide variety of visualization

algorithms. ParaView is based on a demand-driven dataflow network [Mor09].

Demand driven dataflow networks function in a bottom-up fashion, i. e. nodes that

are chronologically located at the end of the acyclic dataflow graph and are typically

sinks like renderers, send messages to the source nodes at the beginning and demand

that they make data available.

ParaView is based on the Visualization Toolkit (VTK) [Kit14b] [SML06], which is

used to implement a vast variety of visualization algorithms. Among those algorithms

are also facilities to perform DVR. Anyway, VTK does not support parallel DVR

algorithms of large datasets.

3.5.5 VisIt

VisIt [Vis14] [ABW+13] [CBB+05] is a general visualization system that is in wide use

in several scientific communities like meteorology or natural sciences in general. Unlike

ParaView or COVISE, VisIt does not support to visually program the visualization

pipeline using a dataflow network, but provides the visualization algorithms through

disconnected modules. VisIt is based on a client-server architecture and specifically

provides remote rendering facilities. VisIt comes with several hardware accelerated

and software DVR algorithms, namely splatting, texture-based rendering and ray

68 CHAPTER 3. STATE OF THE ART IN PARALLEL DVR

casting. Although targeted towards large scientific datasets, VisIt currently offers no

support for large volume datasets and thus relies on downsampling before being able

to display the dataset.

3.5.6 COVISE

COVISE [RLL+96] is a visualization software that is based on an event-driven

dataflow network, i. e. on execution of the network, data is distributed to the

modules in a top-down fashion. COVISE facilitates the interactive post-processing

phase by providing modules that can interface with simulations or that can read

simulation results from file systems. Algorithms like cutting surface calculation

or particle tracing (cf. Section 2.4) can be used to process the data for rendering.

COVISE provides several grid data types, that can be displayed using renderer

modules. Different renderer modules exist, an Open Inventor-based [Wer93] renderer

is used for desktop environments, while the renderer COVER is used for Virtual

Reality applications. COVER comes with a 3D GUI that can be used to interact

with virtual environments.

For Direct Volume Rendering of structured grids, COVISE uses the Virvo library,

which is also used for DVR in DeskVOX (see Section 3.5.3). Virvo integrates

with COVISE in several ways. COVISE itself provides modules to read and write

volume datasets to and from the file system. In addition to that, the structured

grid COVISE data type can be converted to Virvo volume descriptions, which hold

the packed volume data along with additional meta information. Because of the

various algorithms that are provided by COVISE, volumes need to be rendered in

conjunction with opaque geometry. The DVR algorithms themselves are integrated

into COVISE as a plugin for the desktop renderer and the VR renderer. While the

desktop renderer only provides facilities for mere viewing of the volumes, the VR

renderer COVER has an advanced GUI with a transfer function editor that can be

used in virtual environments. Through the integration of the algorithms described

in this thesis into the Virvo library (cf. Section 5.3), advanced features like parallel

DVR on Multi-GPU systems and distributed memory systems are freely available in

COVISE and COVER.

Chapter 4

A Software Architecture for

Distributed Volume Rendering

The implementation of a DVR software designed to run on HPC systems requires a

heterogeneous and flexible software architecture. Not only must the system provide

parallel rendering facilities, but also support for the specific types of hardware that the

actual rendering is performed on, support for different kinds of network interconnect,

as well as multi-user support. The following section recommends an architecture for

such a DVR software based on a pipeline approach. These recommendations and

results were published by Zellmann and Lang [ZL12]. This section is heavily based

upon the research from this paper. Figures 4.1 through 4.3 were originally published

as part of the paper and are reprinted with friendly permission of IASTED.

An implementation based on the software architecture proposed in the remainder of

this section was integrated into the DVR library Virvo (cf. e. g. [Sch03]). Where

this is helpful, the theoretical descriptions of the underlying concepts of the software

architecture are accompanied by a description of implementation details that illustrate

why certain design decisions were made.

69

70 CHAPTER 4. SOFTWARE ARCHITECTURE

4.1 Distributed Volume Rendering

In contrast to mere parallel DVR, with rendering systems running on HPC systems a

broader definition for DVR using parallel resources in a multi-user context is necessary.

In order to derive a working definition, the term Distributed Volume Rendering unites

all varieties of volume rendering on parallel hardware. Parallelization on HPC systems

cannot be solely applied in terms of the sorting classification described by Molnar

et al. [MCEF94]. Datasets consisting of multiple time steps can be distributed so

that the time steps are processed in parallel. If more than one user accesses the

HPC system to perform volume rendering, distribution of parallel resources must

be assigned so that multiple jobs are served in parallel. These modalities are likely

to be combined, so that e. g. two rendering jobs can be served at the same time,

with both jobs themselves requiring parallel resources to accommodate their datasets.

This leads to the following working definition:

Definition 2 (Distributed Volume Rendering) The term Distributed Volume

Rendering unites the notions of parallel volume rendering and multi-user volume

rendering. Parallel volume rendering implies data or task parallelism. Data and task

parallelism may imply distribution in space and time. Distributed Volume Rendering

implies the capability to support simultaneous accesses by multiple users in addition

to accesses by single users. Combinations of these ways of utilization are possible.

Figure 4.1: Distributed Volume Rendering Pipeline, data distribution and display
phase are sequential tasks, while rendering and compositing are usually performed
by multiple processors in parallel.

4.2. THE DISTRIBUTED VOLUME RENDERING PIPELINE 71

4.2 The Distributed Volume Rendering Pipeline

Pipeline approaches are omnipresent in Computer Graphics and Visualization ap-

plications [Bli96] [Mor13]. Pipelines in these contexts usually are an abstraction of

the data flow through the execution of a specific algorithm like the rasterization

algorithm implemented on modern graphics cards [Pin88], or through a more loosely

coupled set of tasks, like the data flow visualization paradigm found in numerous sci-

entific visualization applications [Hen04] [RLL+96]. A GPU-based volume rendering

pipeline was proposed by Vollrath et al. [VWE05]. Their publication was oriented

towards volume rendering on a single computer with only one GPU and divided the

rendering algorithm itself into several stages. Peterka et al. [PRY+08] proposed a

parallel volume rendering pipeline. The pipeline approach in their paper is similar

to the Distributed Volume Rendering Pipeline proposed by this work, with the main

difference being that this work identifies the display phase as an additional pipeline

stage. The display phase determines how a remote rendered image is displayed on a

remote client. A more thorough investigation of the display phase than the brief one

following in the remainder of this chapter can be found in Chapter 6. The remaining

stages of the pipeline in Peterka et al. comprised I/O, Render and Compositing,

which directly map to the other pipeline stages identified by this work and which are

described in detail in the following. Pipeline approaches have the advantage that

stages typically are loosely coupled. With loose coupling, program logic from a single

stage can be exchanged to implement custom logic, as far as the interface is identical

to the original stage regarding the data that flows into and out of the stage.

The pipeline approach proposed by this work is depicted in Figure 4.1. The composit-

ing stage is an optional stage that is only needed with parallel volume rendering and

a spatial data distribution. Rendering and compositing are tasks that are usually

performed in parallel, while data distribution and display are typically tasks that are

assigned to a single processor. The pipeline is optimized for sort-last parallel volume

rendering, but sort-first parallel volume rendering could easily be incorporated too.

This work in general follows the pipeline approach specifically because of its simplicity

when it comes to specializing the stages of the pipeline. The focus of the architecture

is to facilitate the implementation of a visualization system that is capable of running

72 CHAPTER 4. SOFTWARE ARCHITECTURE

on highly heterogeneous hardware platforms. Usage scenarios comprise real-time

applications running in VR, exploration of large datasets on dedicated graphics

hardware, or in situ visualization, where the dataset that was e. g. generated as the

result of a simulation remains on the cluster used to run the simulation, so that the

available hardware must suffice to generate the visualization. The pipeline stages

and the way they can be specialized to match the needs of a most versatile system

for Distributed Volume Rendering are discussed in further detail in the remainder of

this chapter.

4.3 Data Distribution

In case of sort-last volume rendering data distribution requires careful adjustment.

Then the dataset is usually divided among the worker nodes to accomplish not just

task parallelism, but also data parallelism. In this case, distribution schemes are

desired that reduce redundancies in communicating data over the network. With

sort-last parallel volume rendering, a visibility sorting data structure such as k -d trees

[Ben75] are employed to accomplish a spatial subdivision and assignment of data to

the worker nodes. The data distribution task is assigned to a dedicated worker node

that also serves as the master node. Usually, this node would also be responsible

for synchronization of the compositing stage. Volume data is distributed from the

master node to the worker nodes in a top-down fashion. The implementation based

on the software architecture makes use of specialization of this stage in two ways.

Parallel File System. The volume dataset is located on a parallel file system

that each worker node has access to. Then the master node only needs to

distribute the convex bounding object of the volume data to each worker node

that it is assigned to, i. e. only the outlines of the k -d tree nodes need to be

distributed. With that information, the worker nodes can load their assigned

part of the dataset from the file system.

IP Multicast. Like in the parallel file system case, the outlines of the convex

bounding objects need to be distributed to the worker nodes by the master

4.4. GENERIC PARALLELIZATION FOR SORT-LAST 73

node. After that, the master node sends the whole dataset via IP Multicast.

The worker nodes sort out their respective pieces of the dataset and store only

those permanently.

With the parallel file system approach, the whole network load is imposed on the

connection between the nodes and the file server. Multicast is based upon the UDP

protocol, so that a reliability layer is necessary to ensure that all the data was received

by the worker nodes. To ensure that each datagram reached its recipient, additional

meta information needs to be communicated and with the specific implementation,

if multicast failed, TCP unicast is used to resend the data to the single node that

the multicast failed for. The choice of the appropriate distribution method should

be based on practicality reasons such as the size of the dataset, the reliability of the

network connecting the nodes, or upon locality in terms of the physical connection

between the HPC system and the file server. Allowing for several ways to distribute

the volume datasets increases the versatility of the visualization software.

4.4 Generic Parallelization Scheme for Sort-Last

Rendering

The generic parallel rendering stage of the Distributed Volume Rendering Pipeline is

implemented by means of an abstract renderer interface that each renderer inherits

from. That way, the various DVR algorithms described in Section 3.2 can be

accommodated as separate renderers.

Remote clients also inherit from the abstract renderer data type. These renderers

maintain a network connection to communicate with a remote server instance. This

remote server instance itself is capable of running any kind of renderer, uses this

to render an image, and returns it to the remote client in response to a rendering

request. The specifics behind the network connection are also hidden behind a layer

of abstraction, so that e. g. TCP sockets can easily be interchanged for an MPI

implementation without affecting the remote server and remote client pair.

Sort-last parallel rendering is supported by the pipeline in a generic fashion by having

74 CHAPTER 4. SOFTWARE ARCHITECTURE

Figure 4.2: Renderer class hierarchy distinguishing between elementary renderers
and renderers that indirectly perform volume rendering. Remote renderers connect
to remote servers that themselves run arbitrary renderers. Brick renderers provide
means for parallelization and handling of large datasets.

a special parallel renderer instance called a brick renderer. For sort-last parallel

volume rendering, the volume has to be subdivided into convex objects. Such a

subdivision is achieved by the brick renderer by partitioning the volume into disjoint

bricks that are organized using a k -d tree visibility sorting data structure. The

abstract brick renderer maintains the k -d tree. Brick renderers are then derived from

by serial and parallel brick renderers. Serial brick renderers store a list of elementary

renderers, i. e. renderers that directly implement a DVR algorithm, for each leaf of the

k -d tree. The k -d tree is then consecutively traversed in back-to-front order and each

leaf is processed by the renderer associated with it. That way, out-of-core rendering

like it was described in Section 3.2.7 is achieved and volumes can be displayed that

do not fit into the video memory of a single graphics card as a whole. Parallel brick

renderers also perform back-to-front traversal, but perform processing of the leaf

nodes in separate threads. Each thread has a separate renderer. Each thread can

possibly have a separate OpenGL R© rendering context, that can be scheduled on

one of multiple GPUs by means of configuring the thread to GPU affinity using

the operating system. Renderers associated with the threads can be elementary

renderers or remote clients. If the renderers are remote clients, a distributed memory

4.5. DISPLAY PHASE 75

sort-last parallel volume rendering scenario can be implemented. This hierarchy is

arbitrarily extensible in a nested fashion by having e. g. the remote clients themselves

running a Multi-GPU configuration or even a distributed memory configuration.

The particular software design follows an approach which specifically accommodates

sort-last parallel rendering by integrating the spatial data structure for visibility

sorting into the architecture. Supporting sort-last is more complicated when it comes

to software architectural issues. The main reason for that is the fact that data is

distributed among the nodes of the HPC system and a dedicated node is necessary

for bookkeeping. The software design, however, is explicitly capable of supporting

a setup using sort-first parallel rendering and even combinations of sort-first and

sort-last rendering. A concrete implementation of the parallel rendering stage of

the Distributed Volume Rendering Pipeline for a combined Multi-GPU and SIMD

CPU architecture is proposed and evaluated in Chapter 5. This implementation

dedicates basic processing units to render data stored at the leafs of the k -d tree

used for sort-last, while each basic processing unit itself employs sort-first to render

the intermediate image it is responsible for.

4.5 Display Phase

In addition to the pipeline stages from Peterka et al., this work identifies the display

phase as a significant means for specialization. This stems from the fact that this

work focuses on remote rendering scenarios where the display client process is running

on another computer than the render server process.

Having the display phase separated from the preceding rendering stage can be

beneficial in many ways. The most simple implementation of the display phase would

output the array of colors obtained from the rendering stage to the currently bound

rendering context. In addition to that, a more advanced implementation could e. g.

upscale the array of colors to match to a higher resolution or redirect the output to

a file. The specific implementations that were integrated into the Virvo DVR library

are a simple direct rendering display client, a remote rendering display client using

image compression, and the image-based remote rendering display client described

76 CHAPTER 4. SOFTWARE ARCHITECTURE

below in Chapter 6.

4.6 Interactive Resource Management

Interactive visualization applications have special requirements regarding resource

management. This work proposes an interactive resource management approach

based on zero configuration networking (zeroconf) [SC05]. The interactive resource

management approach can handle rendering requests from a multi-user environment.

As an extension to that, multiple resources can be assigned to one job. With the

flexibility introduced by zeroconf, a job can even be enhanced using additional

resources without having to stop the job for reassignment.

4.6.1 One Resource Per User

Figure 4.3 outlines the basic control flow of the resource acquisition procedure. The

interactive resource management system is realized as a client-server model. The

server-side consists of several remote rendering servers and one resource manager

instance. The resource manager serves as the gateway to the remote client instance

that implements the display phase of the Distributed Volume Rendering Pipeline.

Remote servers can register with the resource manager at any time using zeroconf.

A handle to the remote server is then stored in a queue of available resources.

The resource manager can serve requests from multiple users. Requests are paired

with interactive resources to jobs. When a job was set up successfully, a network

connection is established between the client and the assigned remote server. Rendering

events are then passed between remote client and remote server until the network

connection is closed. After that, the remote server can be enqueued to the resources

queue again. The great benefit of the zeroconf approach is that HPC systems can be

enhanced with new resources at run time and that remote servers that are temporarily

unavailable e. g. due to maintenance can simply be removed without affecting the

whole system.

4.6. INTERACTIVE RESOURCE MANAGEMENT 77

Figure 4.3: Resources register with the resource manager subsystem using a zero
configuration networking protocol. The resource manager establishes connections
between remote servers and remote clients by pairing requests and resources to jobs.

4.6.2 Multiple Resources Per User

In addition to providing multi-user support, the resource manager can support the

allocation of multiple resources to a single user. In that case, one job binds a set of

resources to render the dataset in parallel using a brick renderer. In the static case,

the acquisition procedure is similar to the case where only one resource is assigned

per user. The complexity of having to allocate multiple resources is hidden behind

the job and thus opaque to the user, who establishes a network connection with the

master process maintaining the k -d tree when the requested amount of resources is

available.

While the abstraction implemented by the brick renderers hides the details from

the user, the zeroconf approach used by the resource manager is most promising.

Although not implemented in the current version of the resource management

subsystem of Virvo, in the future the zeroconf approach could be exploited to enable

the user to request additional resources at run time. In addition to having to

rebuild the k -d tree, the participating resources would need to distribute part of

their workload to the newly added resource. In that case, care must be taken that a

78 CHAPTER 4. SOFTWARE ARCHITECTURE

k -d tree is constructed that allows for adding an additional node in a fashion that

only a fraction of the acquired data would need to be transferred.

In the context of providing multiple resources to a single user with the aid of zeroconf,

scheduling would also become an interesting issue. A conservative scheduling strategy

would probably imply that a user requiring multiple resources will have to wait until

the desired amount of resources is available. Using zeroconf and scaling at run time,

scheduling strategies could be implemented that assign fewer resources earlier and

provide additional resources to the job when they become available. Such a strategy

could be extended to assign less capable resources at the beginning, and exchanging

these for more ones providing a higher performance at run time. Although scheduling

is out the scope of this thesis, this topic provides tremendous opportunity for future

work.

Chapter 5

Implementing the Parallel

Rendering Phase of the

Distributed Volume Rendering

Pipeline

This chapter proposes a concrete implementation of the parallel rendering stage of

the Distributed Volume Rendering Pipeline from Chapter 4. The implementation is

directed towards many-core systems, which are served using a combination of sort-last

and sort-first parallel rendering. Many-core systems can consist of arbitrary processors

which can perform rendering tasks. One such family of processors are GPGPUs,

which are targeted using a sort-first parallel volume ray casting implementation.

CPUs are another constituent of many-core architectures and are targeted using

a packet traversal-based SIMD volume ray casting implementation in conjunction

with a sort-first multi-core implementation based on a task queue approach. This

implementation is feasible for modern CPUs exposing the SSE 4.1 or the AVX

instruction set and can even scale to HPC coprocessors like the Intel R© Xeon PhiTM

by providing code paths specifically designed for the 512 bit wide SIMD instruction

set of this hardware. If multiple of the aforementioned processing units are available,

their individual results are combined using sort-last rendering. Figure 5.1 provides

79

80 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Volume Data Processors

Coprocessor

GPGPU

CPU

...

Sort-Last Compositing

Figure 5.1: Architecture underlying the parallel DVR implementation. The volume
dataset is subdivided for sort-last compositing. Chunks of data are served to
processors, which implement sort-first parallel volume ray casting. Processors may
range from CPUs over GPGPUs to coprocessors like the Intel R© Xeon PhiTM. Platform
specific ray casting code is loaded that is either customized for GPGPUs using
NVIDIA R© CUDATM, or for Intel R© compatible hardware using SIMD instructions.
After sort-last compositing, the final image is passed on to the display phase of the
Distributed Volume Rendering Pipeline.

5.1. SORT-FIRST VOLUME RAY CASTING 81

an overview of the architecture underlying the parallel rendering implementation.

The chapter is organized as follows. Section 5.1 describes several sort-first DVR

implementations that are targeted towards different architectures which are suited for

graphics processing to varying degrees. Section 5.2 outlines how the various sort-first

implementations are combined using sort-last parallel rendering, and Section 5.3

summarizes their integration into the open source DVR library Virvo. Section 5.4

provides a formal evaluation of the sort-first implementations based on performance

measurements. Section 5.5 finally concludes this chapter.

5.1 Sort-First Volume Ray Casting for High

Performance Computing Platforms

The ensuing subsections describe concrete implementations for sort-first parallel

DVR using ray casting for GPGPU architectures and for CPU architectures. These

descriptions are followed by a comparison of the implementations for the various

architectures.

5.1.1 GPGPU Volume Ray Casting Implementation

The compute power of GPGPUs is exploited using a parallel ray casting implementa-

tion like the one described in Section 3.4.2. The implementation uses the NVIDIA R©

CUDATM technology. While Section 3.4.2 outlined the basic principles for paralleliz-

ing ray casting on a GPGPU, this section describes a specific implementation.

Ray casting is performed using a single CUDATM kernel that is called from the

host with the current camera and viewing transform as parameters. That way, the

most significant part of the ray casting algorithm is executed on the GPGPU, which

initially receives the volume, while later on only some control information on how to

render the volume for a specific view point is necessary. After the whole ray casting

procedure was executed on the device, the rendered color buffer is either transferred

back to the host for further processing, or is displayed using pixelbuffer objects

82 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

which come with CUDA’s interoperability layers with the graphics APIs OpenGL R©

or DirectX R©. This approach of having the most compute intensive part of the ray

casting algorithm execute on the device minimizes expensive communication over

the PCIe interface.

On the device, a persistent thread approach is used to serve threads that are active

throughout the rendering job and that process disjoint portions of screen space.

This approach effectively balances the workload on devices with inferior scheduling

capabilities.

Algorithm 1: Disjoint screen space portions are distributed to warps of persis-
tent CUDATM threads. The first (or any arbitrarily chosen) thread in the warp
uses atomic operations to increment the screen space portion counter. After
barrier synchronization, ray casting is performed independently by all threads.

1 counter ← 0
2 while 1 do
3 if first thread in warp then

4 counter ← AtomicAdd(counter, 1)

5 if counter ≥ maxportions then
6 return
7 end

8 portion.xy ← ScreenSpacePortion(counter)

9 end

10 all threads:

11 WaitLocalBarrier()
12 RayCast(portion)

13 end

Figure 5.2 outlines the basic control flow of a single warp of persistent threads. One

dedicated thread in the warp queries a task queue maintaining disjoint image space

portions. If a portion of image space is left for rendering, the thread increments

a counter indicating how many portions of image space are processed. The incre-

ment operation must be synchronized among all threads and is implemented using

atomic operations (cf. [AL09]). If all portions of image space are processed, the

algorithm terminates. Algorithm 1 illustrates this approach using pseudo code. In a

5.1. SORT-FIRST VOLUME RAY CASTING 83

Figure 5.2: Control flow of a single CUDATM warp implementing a persistent
thread approach for volume ray casting. After a portion of screen space is obtained,
each thread can independently process a single ray.

84 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

technical paper that was published as an addendum to [AL09], Aila et al. [ALK12]

investigated the usefulness of a persistent thread approach on the later NVIDIA R©

GPU architectures codenamed FermiTM and KeplerTM and concluded that on these

architectures persistent threads provide no performance advantage over naive ap-

proaches that dedicate fixed amounts of workload to single warps. The authors

attributed this to the advanced scheduling capabilities of these later architectures,

but also concluded that a persistent thread approach, while not being advantageous

on these architectures, on the other hand does not incur a performance decrease, so

that the implementation described in this thesis is optimal in terms of backwards

compatibility, and for contemporary NVIDIA R© GPU architectures.

Algorithm 2: Setting up primary rays involves applying the backward model-
view and projection transform to calculate object coordinate ray origin positions
and ray direction vectors from image pixels.

1 (* two opposite points in normalized device coordinates *)

2 u← (thread.x/(imagewidth− 1)) ∗ 2− 1
3 v ← (thread.y/(imageheight− 1)) ∗ 2− 1

4 ori← make float4(u, v,−1, 1)
5 dir ← make float4(u, v, 1, 1)

6 (* convert back to eye coordinates *)

7 ori← InvProjectionMatrix ∗ ori
8 dir ← InvProjectionMatrix ∗ dir
9 (* convert back to object coordinates *)

10 ori← InvModelviewMatrix ∗ ori
11 dir ← InvModelviewMatrix ∗ dir
12 (* divide out homogeneous coordinate *)

13 ori.xyz ← ori.xyz/ori.w
14 dir.xyz ← dir.xyz/dir.w

15 (* make dir a direction vector by subtracting the two points and

normalizing *)

16 dir.xyz ← dir.xyz − ori.xyz
17 normalize(dir.xyz)

18 make ray(ori.xyz, dir.xyz)

5.1. SORT-FIRST VOLUME RAY CASTING 85

With the SIMT approach (cf. Section 3.3.4), parallel code for the whole warp is

generated implicitly, while only the control flow for a single thread is exposed through

the GPU kernel. Thus, the ray casting procedure can be generally described for a

single ray, with the CUDATM compiler generating parallel GPU machine code for

the kernel in device code.

Each thread therefore computes a primary ray as follows. First a ray in normalized

device coordinates is defined that is perpendicular to the image plane and orthogonal

to the screen space position of the image pixel associated with the thread. Then

the inverse projection and model-view transform is applied to that ray to obtain a

ray having object coordinates. Algorithm 2 outlines this transformation in detail.

The image pixel associated with the ray is initially assigned the background color.

The ray is then tested for intersection with the bounding box of the volume and

is only processed further if the test does not fail. Then all active threads in the

warp sample the volume at their current position, perform post-classification with

their volume sample and optionally apply a local reflectance model. The obtained

color is then blended on top of the already calculated color using alpha compositing.

Early-ray termination is performed by testing the composited color for being fully or

nearly opaque. If this is not the case, the ray is marched on and then tested for still

being originated inside the volume’s bounding box. If all rays in the warp finished

execution, the color associated with them is assigned to their respective location in

the frame buffer memory region. When there are no more screen space portions to

process, program execution returns to the host. The image can either directly be

displayed on the graphics card, or it is copied to host memory for further processing

(the latter being necessary e. g. if sort-last compositing is performed on a GPU other

than the one used for ray casting).

The CUDATM implementation makes tremendous use of C++ template programming

to shift run time decisions to compile time. E. g. the decision whether the optional

reflection calculations should be performed, is made by compiling two separated

device kernels, one with the shading branch enabled and the other one compiled

without the shading branch. Based on the users choice, the appropriate kernel is

then loaded at run time, before the volume dataset is loaded. This approach on the

one hand guarantees run time efficiency, but on the other hand can result in high

86 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

compilation times and an increased size of the compiled binary containing the ray

casting kernels.

Because there is no branch prediction for code executed by the threads in a single

warp, it is mandatory to avoid divergence of the code paths. Ray casting of structured

volume data is especially benign regarding branch divergence. The only dynamic

branches in the ray casting code involve tests for the ray actually hitting the volume,

as well as tests for the ray exiting the volume. In both cases, for nearby rays the

probability is high that if one ray passes the test, all the rays that are processed in a

packet pass the test. In general, the more threads are traced through the volume in

a single warp, the higher the probability that some threads miss one of the tests, are

thus marked inactive early and cannot contribute during the remaining computation.

If warps are underutilized due to many inactive threads, one approach could be

to reassign work to single threads from different warps during execution. Wald

[Wal11] investigated techniques he called warp compaction for ray tracing, just to

find out that reorganizing warps for better utilization is not beneficial on current

GPGPU hardware. Underutilized SIMT warps nevertheless are more problematic

e. g. in surface ray tracing scenarios, which typically involve stochastic sampling and

highly divergent secondary rays, which are generated to evaluate phenomena like soft

shadows or glossy reflection. The DVR algorithm implemented for the purposes of

this thesis, anyhow, is based on traversing coherent rays through the volume density,

so that warp underutilization in general is a less imminent problem compared to

warp underutilization in Monte Carlo ray tracing.

5.1.2 Sort-First Parallel Volume Ray Casting for Multi-Core

Systems

With the NVIDIA R© CUDATM-based implementation, the workload distribution

among SMs is performed via persistent threads and a task queue approach, while the

SIMT units are programmed implicitly. Programming Intel R©-compatible CPUs re-

quires similar considerations. Modern Intel R©-compatible CPUs are multi-core CPUs,

with programmable SIMD units having a word length of 128 to 256 bit pertaining

to each CPU core [FBJ+08]. To efficiently utilize the hardware, applications must

5.1. SORT-FIRST VOLUME RAY CASTING 87

Figure 5.3: Control flow for the ray casting algorithm implemented on a multi-core
CPU. One thread is launched per CPU core. Threads retrieve screen space portions
from a task queue and process them using the SIMD unit and packet ray casting.

88 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

incorporate multi-core- as well as SIMD parallelism. The remainder of this subsection

illustrates how the ray casting workload is distributed to the cores of a multi-core

CPU. Figure 5.3 outlines the control flow of ray packets that are used to traverse

the volume dataset. Ray packets unify neighboring rays into a slab.

Screen space decomposition is performed using a two-level approach. First of all,

screen space is subdivided into disjoint regions that are served to the cores of the

CPU. These regions themselves are then further subdivided to be processed by the

SIMD units of the CPU cores by traversing them using ray packets. While the ray

packet traversal is covered by the ensuing subsection, this subsection concentrates

on the screen space decomposition and distribution on the multi-core level.

Knoll et al. [KTW+11] in their CPU-based DVR system referred to the screen space

regions that are served to the CPU cores as “packets”, while they called the SIMD

packets, which in general form a subset of the screen space regions, “packlets”. This

thesis does not adopt this nomenclature but refers to the data passed to the CPU

cores as screen space regions or screen space portions, and to the subset served to the

SIMD units as packets. By this, it follows the terminology that was highly adopted

by the ray tracing literature [WSBW01] [BEL+07] [ORM08].

Screen space decomposition and distribution on the multi-core level is based on a

task queue approach. For that, screen space is subdivided into small, disjoint regions.

For the purposes of this work, these regions are either rectangular tiles or horizontal

stripes, which effectively are realized by creating tiles having a height of one pixel.

In general, on modern CPU systems there are far more regions than threads that

can be scheduled on different CPU cores, e. g. for some configurations tiles with a

size of 16× 16 pixels proved to be reasonably fast. The regions are then enqueued

into a globally available task queue, that each rendering thread has access to.

With this implementation, as many rendering threads are created as there are CPU

cores. Each thread is pinned to one CPU core [KOWT11]. Rendering commands are

issued to the threads via an event-based system. When the task queue was filled with

screen space regions and the rendering command was issued to an individual thread,

that one retrieves one region from the task queue and starts processing it using its

SIMD units. After each ray packet traversal, the thread writes its computed pixel

5.1. SORT-FIRST VOLUME RAY CASTING 89

colors to the respective positions in a global array of colors. When all screen space

regions were processed, the global array of colors is used to fill the frame buffer.

As there are usually far more screen space regions than there are rendering threads,

this approach balances the workload among the rendering threads since the assignment

of screen space regions to threads is performed dynamically. The implemented load-

balancing scheme is a common one for parallel real-time graphics. A similar approach,

although applied to surface ray tracing and based on a cost estimate, was e. g. recently

proposed by Cosenza et al. [CDE13] (cf. Section 3.4.4).

5.1.3 SIMD-Based Ray Casting Kernel for Intel R©-

Compatible CPUs

This subsection describes how to optimize volume ray casting for Intel R©-compatible

CPUs. In general, nevertheless, many of the remarks e. g. regarding ray packet

layouts and the description of the wrapper classes for vector intrinsics also apply

to the ensuing Subsection 5.1.4, which describes optimizations for the Intel R© Xeon

PhiTM architecture, which are to a significant degree derived from the considerations

made in this subsection.

With SIMD-based volume ray casting, in contrast to programming the SIMT units

of the NVIDIA R©

GPGPUs in terms of the execution of a single threads, the SIMD parallelism must

be programmed explicitly. With this implementation, that is achieved by traversing

ray packets instead of single rays through the volume dataset. Ray packets lend

themselves especially well to SIMD implementations, because a single operation like

a dot product or a normalization routine for direction vectors can be executed upon

the whole packet instead of upon a single ray [WSB01]. Ray packets are especially

useful because of spatial coherence that can be exploited by traversing adjacent rays

through the volume. On architectures that gain their speed advantages through a

sophisticated cache organization, coherence considerations are crucial.

When implementing the SIMD ray packet traversal algorithm, several levels of ab-

straction need to be considered which typically trade computation cost for portability.

90 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Most explicit programming of the SIMD units results in the highest control over

register usage and instruction utilization, at the cost of highly unportable code.

The highest level of control can be reached when explicitly programming with the

machine code instructions provided by the targeted instruction set. On Intel R©

-compatible CPUs, one can e. g. use the SIMD extensions SSE or AVX [FBJ+08].

When explicitly programming using the vector instructions using inline assembly

code, the programmer has to take care of register usage, which involves explicitly

programming the control flow in terms of loading of data items to and from specific

vector registers.

Intel R© enables a slightly higher abstraction level by providing so called vector

intrinsics (cf. Section 3.3.1). Intrinsics wrap vector instructions using C-functions

and provide vector data types that fit into one register of the SIMD vector units

provided by the CPU. Depending on the architecture of the targeted instruction

set, the SIMD width of a vector amounts to 128 bits for SSE, 256 bits for AVX or

512 bits for the native instruction set of the Intel R© Xeon PhiTM coprocessor card.

Being able to program with pseudo high-level programming language variables that

the C-function wrappers operate upon, the programmer does not have to explicitly

load data items to and from the vector registers. Load- and store instructions are

generated by the compiler. This facilitates high-level access to SIMD programming

with vector instructions, but can result in less efficient register usage. The overall

behavior can be fine-tuned in an ensuing profiling step, e. g. by changing the order

of certain vector instructions to help the compiler to generate more efficient code.

Intrinsics enable the programmer to use high-level constructs such as loops. The

programmer does not need to explicitly care to only use a certain number of registers

or to spill register content if too many registers are in use. She also does not need to

store and restore state before and after function calls. Nevertheless, fine-tuning is

usually necessary for the compiler-generated code.

Programming ray tracing-based algorithms with SIMD instructions typically implies

most of the data structures involved to be organized as Structures of Arrays (SoA)

instead of Arrays of Structures (AoS) [KTW+11]. SoA ray traversal is implemented

by packing rays together into a common data structure called a packet. With that, a

5.1. SORT-FIRST VOLUME RAY CASTING 91

Algorithm 3: Ray packet as Array of Structures vs. ray packets as Structure
of Arrays.

1 (* AoS packet *)

2 struct ray

3 float ox, oy, oz
4 float dx, dy, dz

5 endstruct

6 ray packet[N]

7 -----------------------

8 (* SoA packet *)

9 struct ray packet

10 float ox[N], oy[N], oz[N]
11 float dx[N], dy[N], dz[N]

12 endstruct

13 ray packet packet

group of coherent rays can be traversed through the volume that is likely to interact

with the same grid cells. This traversal scheme promises better cache utilization and

more coherent memory access patterns in general, which for large datasets is crucial

to the overall performance of the ray casting algorithm.

The approach of organizing data structures to contain arrays instead of single

data items tends to be less readable for humans but can help the compiler during

optimization. Invoked with flags hinting the compiler to optimize serial code using

the vector units, vector instructions can be generated without explicitly using them

or their intrinsic equivalents. This feature which is called “auto-vectorization” is

supported by all modern compilers known to the author. Efficient vector instructions

can only be generated by the auto-vectorizer if the code is organized in a fashion that

hints the compiler how to translate the serial code into SIMD code. If the arrays

contained in the data structure e. g. have a length corresponding to the SIMD width

of the instruction set that is used, and if their first memory address is aligned in

accordance to the targeted instruction set, the compiler is able to produce an efficient

92 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

mapping of the arrays to vector registers. Arithmetic or comparison operations

performed on SoA variables can be translated to vector operations by the compiler.

Typically, if complicated constructs like loops grow more complicated, the likelihood

that the compiler can auto-vectorize the code decreases. In general, constructs

like dependent loop iterations are of course prohibitive because the auto-vectorizer

relies on loop unrolling so that e. g. four iterations can be flattened to a single

iteration using vector arithmetic. Writing code that is auto-vectorizable can be

quite cumbersome. While the use of intrinsics or even assembler instructions implies

that new instruction sets must be targeted with platform-specific code, the same

is true, although less obvious, if one relies on the auto-vectorization feature of the

compiler. In that case, special care has to be taken that efficient SIMD code is

generated on all platforms by any compiler. Under the worst conditions, if no special

care is taken, code will be generated that implies context switches where data is

swapped from vector registers to general-purpose registers, which is prohibitive in

terms of efficiency. The author argues that anyway, if optimized code is ported to a

new platform, adjustments are necessary, independent of whether vectorization is

achieved implicitly by using auto-vectorization or explicitly by using intrinsics or

assembler code.

When DVR is implemented using ray casting, candidates for SoA implementations

are the ray packets (cf. Algorithm 3). When storing ray packets as AoS, compilers

will typically pack at most the x, y and z component of the origin points and

direction vectors into one vector register, respectively. This will result in a low

register utilization that becomes more infeasible with growing SIMD widths that

come with newer hardware architectures. On top of that, if ray packets are stored

that way, the ray traversal algorithm can only slightly benefit from parallel vector

operations. Consider e. g. the normalization operation for a single direction vector

D = (Dx, Dy, Dz):

D =
D√

D2
x +D2

y +D2
z

, (5.1)

where the terms to the second power are of course computed using a single mul-

tiplication. Assuming that this operation is applied to an array of N ′ 3D vectors,

5.1. SORT-FIRST VOLUME RAY CASTING 93

without optimizations applied, the floating-point unit (FPU) will require N ′ times

three multiplications, two additions, one square root operation and three divisions to

compute this equation. For simplicity’s sake, in the following it will be assumed that

each of these instructions have the same latency. Without optimization, normalizing

a direction vector would thus take N ′ times nine floating-point instructions. With

AoS ray packets, the compiler could e. g. translate this operation to exploit vector

parallelism in the following way:

D[n] =
D[n]√

D[n] ·D[n]
,∀n ∈ {0, 1, ..., N − 1} , (5.2)

where N is the SIMD width of the targeted instruction set, and · is a vector operation

mapping to a SIMD instruction that computes the dot product of the two vector

arguments (such an instruction is e. g. available on Intel R© CPUs supporting the SSE

4.1 instruction set). Translated to an actual programming language, this layout will

require a loop over the N elements of the vector, while N times three multiplications

and two additions can be substituted by N dot product vector instructions. Assuming

that the dot product vector instruction has the same latency as the square root

and the arithmetic instructions, this optimization will result in N times five vector

instructions. With an SoA layout, normalization could be performed as follows:

D[N] =
D[N]√

D[N]2x +D[N]2y +D[N]2z

, (5.3)

with all arithmetic operations as well as the square root and the assignment being

vector instructions and D[N] being a four-vector, where each D[N]x, D[N]y and

D[N]z are SIMD vectors. Note that now, there is no need to loop over an array of N

vectors, because the SIMD operations are executed on arrays of size N . Neglecting

the assignment operation, this layout yields nine vector instructions in total. Given

an N of e. g. 4, as this is the case when targeting SSE, this compares to 20 instructions

for the AoS layout.

The calculation from above is of course only meant for illustration and cannot provide

a realistic estimate of the actual instruction count incurred by either of the two

94 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

memory access patterns. Real processors typically implement instruction pipelines

and use out-of-order execution to reorder instructions for better pipeline utilization,

so that an absolute comparison of the instruction count incurred by a specific memory

access pattern is in general not meaningful.

Using an SoA layout for the ray packet data structure will provide the compiler

with sufficient hints to generate efficiently vectorized code, even if vectorization is

not performed explicitly. On top of that, using SoA layouts will in general lead to

more highly optimized code. Initialization e. g. is a more efficient operation if a

contiguous region of memory is assigned to a vector register through an optimized

“memcpy” routine rather than using shuffle operations. Apart from merely resulting

in a reduced instruction overhead, the most important benefit probably stems from

the fact that an SoA layout yields better cache utilization, especially in the context

of packet ray casting. Neighboring rays are likely to access the same or at least

nearby memory locations, especially if trilinear interpolation is involved where a

tight neighborhood of voxels is sampled at a specific position along a ray.

Despite the ubiquity of auto-vectorization features offered by most compilers, for the

purposes of the implementation presented in this thesis, an approach based on vector

intrinsics is used. This decision was made because the author has the opinion that

highly optimized code must be ported to new hardware platform for efficiencies sake,

and because being explicit about the very instructions that the code is compiled

to, finer optimizations are possible that will yield more highly optimized code than

this is achievable using auto-vectorization. On the other hand, in order to be able

to program in a high-level fashion and to share code between the various SIMD

implementations, the intrinsics are wrapped using vector math classes (cf. Algorithm

4). Those can be used to implement ray packets (cf. Algorithm 5). Using the ANSI

C typedef facility on the type of the SIMD vector enables portability to alternative

vector instruction sets. This can be accomplished by using a compile time define

so that the type simd vec masquerades as an alternative vector type, and by using

intrinsics from the alternative instruction set to implement the operators and vector

functions.

Programming with the wrapper classes is then mainly analogous to programming

5.1. SORT-FIRST VOLUME RAY CASTING 95

Algorithm 4: Vector math class using SSE vectors in a SoA fashion to mimic
scalar vector math data types. Two-vector or four-vector classes are designed
in conceptually the same way.

1 (* map m128 SSE vector type to a platform-independent name *)

2 typedef m128 simd vec

3 operator+(simd vec a, simd vec b)
4 return mm add ps(a, b)
5 end

6 (* SoA three-vector *)

7 struct vec3

8 simd vec x
9 simd vec y

10 simd vec z

11 endstruct

12 operator+(vec3 a, vec3 b)
13 (* use operator+ from above *)

14 return vec3(a.x + b.x, a.y + b.y, a.z + b.z)
15 end

16 (* more operators *)

17 (* ... *)

18 dot(vec3 a, vec3 b)
19 return a.x*b.x + a.y*b.y + a.z*b.z
20 end

21 normalize(vec3 a)
22 return a / sqrt(dot(a,a))
23 end

24 (* more functions *)

25 (* ... *)

96 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Algorithm 5: Ray packets using SoA vec3’s. The interface of the packet can
be used similarly to that of a single ray.

1 struct ray packet

2 vec3 ori
3 vec3 dir

4 endstruct

Algorithm 6: Primary ray packets are set up analogously to single primary
rays as outlined in Algorithm 2, except that N pixel positions are necessary for
initialization that span the whole region the packet is responsible for.

1 (* SIMD vectors *)

2 simd vec x, y, u, v
3 vec4 ori, dir

4 (* for SSE, PixelPositions e. g. returns the array

[(x,y),(x+1,y),(x,y+1),(x+1,y+1)] *)

5 (x, y)← PixelPositions(thread.xy)

6 (* two opposite points in normalized device coordinates *)

7 u← (x/(imagewidth− 1)) ∗ 2− 1
8 v ← (y/(imageheight− 1)) ∗ 2− 1

9 ori← make float4(u, v,−1, 1)
10 dir ← make float4(u, v, 1, 1)

11 (* ray packet setup analogous to single ray setup *)

12 (* ... *)

5.1. SORT-FIRST VOLUME RAY CASTING 97

Algorithm 7: Wrapper functions for arithmetic SIMD intrinsics. Binary
operators can be wrapped using operator overloading, while ternary, masked
arithmetic operators must be wrapped using ordinary (inline) function calls.
Calling the binary operators is far more legible.

1 (* binary add operation *)

2 simd vec operator+(simd vec a, simd vec b)
3 return mm add ps(a, b)
4 end

5 simd vec add(simd vec a, simd vec b, simd vec mask)

6 simd vec ifexpr ← a+ b

7 (* masked vector component gets 0 *)

8 simd vec elseexpr ← 0

9 (* if/else SIMD vector construct *)

10 return mm or ps(mm and ps(mask, ifexpr), mm andnot ps(mask,
elseexpr))

11 end

12 (* call to binary operators *)

13 simd vec e← a+ b+ c+ d

14 (* analogous call to ternary operators with mask *)

15 simd vec f ← add(add(add(a, b, inactive), c, inactive), d, inactive)

98 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

a scalar version of the ray casting algorithm, except for the code sections where

the rays are set up or where data is accessed, e. g. to read from the volume data

array or to write colors to the color array. When processing a screen space region,

this region is further subdivided into subregions that match the SIMD width of the

targeted processor. These subregions are then processed sequentially. Ray packets

are initialized as outlined in Algorithm 6, which is analogous to Algorithm 2 from

the previous subsection, despite that packets are initialized with the screen space

positions of a set of pixels instead of only a single pixel. If a ray exits the volume

or has gathered enough opacity so that the threshold that was set for early-ray

termination is reached, that ray is marked inactive. In contrast to single ray traversal,

ray packet traversal continues while any of the rays in the packet is active. Inactive

rays are marked as inactive by using bitwise masks. This can lead to underutilization

especially if the traversal patterns of the rays differ significantly.

Nevertheless, using ray casting to evaluate the absorption plus emission model, where

no secondary rays are generated, ray traversal tends to be quite coherent because of

the regularity of the access pattern and of the grids that are traversed. That said,

having to scale to wider SIMD units means having to traverse wider ray packets,

where the probability to suffer from underutilization in general grows. Providing a

measure of the degree to which one can scale the ray casting algorithm using SIMD

is a research problem not sufficiently tackled so far.

Masked arithmetic operations require functions to be called that take three arguments.

In addition to the two operands that the arithmetic operation is performed upon,

the mask itself must be passed to the operator. While e. g. the SIMD intrinsic

architecture for the Intel R© Xeon PhiTM natively supports ternary intrinsic functions

(cf. Subsection 5.1.4), the masking behavior must be emulated for SSE by using

if-else constructs of the form

(mask ∧ ifexpr) ∨ (mask ∧ ¬elseexpr) .

Algorithm 8 shows how a masked addition can be realized using an if-else construct

that sets the masked out SIMD-vector components of the result to 0.

5.1. SORT-FIRST VOLUME RAY CASTING 99

Algorithm 8: Emulating masked SIMD-operations.

1 simd vec if else(simd vec ifexpr, simd vec elseexpr, mask m)
2 return mm or ps(mm and ps(m, ifexpr), mm andnot ps(m,

elseexpr))
3 end

4 simd vec add(simd vec a, simd vec b, mask m)
5 return if else(a + b, 0, m)
6 end

Since calling native masked intrinsics and their analogs taking two operands imposes

the same latency, using intrinsics taking two operands whenever possible is preferred

for reasons of legibility. Calling intrinsics taking two operands can be wrapped by

overloading the appropriate arithmetic operator. However, masked intrinsics cannot

be wrapped that way in C++, which only supports a single ternary operator that

cannot be overloaded for arithmetic calculations. The inner loop of the ray casting

algorithm for uniform grids is divided into a general traversal step to determine

the source color at a specific sample position, and a compositing step that blends

the source color with the destination color. If masked SIMD instructions and their

ordinary counterparts have the same latency, masked operations must only be used

for the compositing step, so that an (invalid) source color is actually computed for

masked out rays, while the final color is not affected by the computations.

Several authors reported that swizzling can be advantageous for more coherent

cache accesses [HKRS+06] [KTW+11]. Swizzling is a cache coherence pattern that

reorganizes the volume data. While the texture memory layouts of GPUs in general

are not known by the developers due to the hardware vendors not publishing detailed

descriptions, CPU memory is known to be organized sequentially. If the memory

layout that is used to store the volume follows a scanline order, cache misses for

coherent memory accesses are likely. If, in contrast to that, the voxels contained in

bricks are flattened and then stored in scanlines, memory access patterns will be

more coherent. In addition to that, the stride with which the data is accessed is

independent of the coordinate axis that is most parallel to the viewing direction. In

theory, pairing this data locality strategy with space-filling curves is a promising

100 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

approach. During the course of this thesis, swizzling was implemented and tested

informally. The outcome was however less promising than the literature suggested.

A more formal analysis of the impact of this cache locality strategy thus remains

future work.

5.1.4 SIMD-Based Ray Casting Kernel for Intel R© Xeon

PhiTM Coprocessors

The ray casting implementation for the Intel R© Xeon PhiTM coprocessor is largely

based on the implementation for x86 processors with SIMD vector units from the

previous subsection. A detailed description of the coprocessor and its underlying

MIC architecture can be found in Section 3.3.5.

Most implementations will favor an offload approach over a native implementation of

the ray casting algorithm for the Xeon PhiTM coprocessor, and the implementation

proposed hereby will make no exception to this. Ray casting fortunately lends

itself quite well to an offload implementation because essentially only those parts

of the execution need to be performed on the host that provide control information

or that are responsible for displaying the frame buffer. In its current state, the

coprocessor is connected to the host over the PCIe interface, so that communication

to and from the device incurs the performance bottleneck with the highest impact.

The benefit from having most parts of the ray casting algorithm execute on the

device and thus reducing communication overhead is thus rather not debatable. This

assumption, nevertheless, would not be that evident if the ray tracing kernel would

contain dynamic branching that results in incoherent ray traversal. The overhead of

maintaining a stack in device memory was investigated e. g. in [BWW+01], and the

authors presented an efficient BVH traversal implementation for the wide SIMD units

of the MIC architecture. Their findings suggest that even ray traversal algorithms

with a high degree of dynamic branching can be efficiently implemented as offload

code without additional communication with the host. The offload approach thus

strongly resembles the CUDATM implementation outlined earlier, which performs the

same algorithmic parts on the device that are also performed on the coprocessor. In

contrast to the GPU implementation, nevertheless, copying the frame buffer back to

5.1. SORT-FIRST VOLUME RAY CASTING 101

the host CPU after rendering is mandatory because the coprocessor is not equipped

with a graphics output.

For the implementation of the offload algorithm, an explicit data copy approach

based on annotation through directives was favored over a shared memory approach

between host and device using Cilk PlusTM. Threads are created once on the device

and pointers to on-device shared memory regions, such as the color buffer, the volume

data, the transfer function, or viewing matrices, are initialized for each thread. The

ray casting algorithm is thus initiated on the host CPU, which copies the color

buffer and the current camera matrix to the shared memory of the coprocessor and

activates the rendering threads by means of synchronization using condition variables.

Although the x86 CPU implementation and the coprocessor implementation have

a common code base, copying is of course only performed when the coprocessor is

involved. The algorithm then proceeds similarly to the CPU algorithm by requesting

screen space portions and rendering them independently.

Algorithm 9: The SIMD vector classes are shared by the implementations.
For that, only the appropriate base instructions must be chosen at compile
time.
1 simd vec operator+(simd vec a, simd vec b)
2 #ifdef SSE
3 (* SSE code path *)

4 return mm add ps(a, b)
5 #elif defined MIC
6 (* MIC code path *)

7 return mm512 add ps(a, b)
8 #endif
9 end

The main difference between the two implementations are the number of threads

on the one hand, and the different SIMD width on the other hand. The task queue

based ray casting implementation in general scales to the 240 threads that can be

scheduled concurrently on the Xeon PhiTM coprocessor the author of this thesis

has access to. The SSE SIMD code, on the other hand, cannot be executed by

the coprocessor and must thus be rewritten using the 512 bit SIMD instructions

that the MIC architecture provides. Apart from the differing SIMD widths, the two

102 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

instruction sets also differ because the MIC architecture provides masked instructions.

Because the vector wrapper classes proposed above are designed to accommodate

both native and emulated masked instructions (cf. Section 5.1.3), reusing the vector

classes is simply a matter of deciding for the appropriate instruction set architecture

(ISA) at compile time (cf. Algorithm 9).

Algorithm 10: Optimized RGBA texture lookups for SSE and MIC. In both
cases, it is beneficial to store the transfer function as AoS. With SSE, this allows
for only one store instruction. With the MIC architecture, the expensive context
switch can be avoided altogether by using gather intrinsics that implement
incoherent memory access in hardware.

1 typedef simd veci index t
2 vec4 rgba(index t idx)
3 #ifdef SSE
4 (* Store indices to general-purpose registers *)

5 int indices[4] ←store(idx)
6 vec4 color(lut[indices[0]], lut[indices[1]], lut[indices[2]], lut[indices[3]])
7 (* Colors are stored as AoS => transpose *)

8 return transpose(color)
9 #elif defined MIC

10 (* Simplified gather, intrinsic calls are actually more

complicated due to conversion and scaling parameters *)

11 simd vec r = mm512 i32extgather ps(idx, lut)
12 simd vec g = mm512 i32extgather ps(idx + 1, lut)
13 simd vec b = mm512 i32extgather ps(idx + 2, lut)
14 simd vec a = mm512 i32extgather ps(idx + 3, lut)
15 return vec4(r, g, b, a)
16 #endif
17 end

Nevertheless, the MIC ISA provides some instructions that are exclusive to the MIC

architecture and can be useful for the ray casting implementation. On the one hand,

there are so called non-temporal load and store instructions and prefetch instructions

that control how and when data is written to the cache before and after it was

accessed [KKC+13]. Furthermore, gather and scatter instructions were introduced

with the MIC ISA which are specifically useful to implement the post-classification

phase of the ray casting algorithm. The rays in a packet are likely to not reconstruct

5.1. SORT-FIRST VOLUME RAY CASTING 103

the same values during traversal. Since these values are then reinterpreted as indices

into the tabulated transfer function, those lookup table accesses are thus incoherent.

On the CPU, the only solution to this is to store all reconstructed indices to general-

purpose registers, lookup the appropriate values from the transfer function table

and restore those to SIMD floating-point registers. With the MIC architecture, this

operation can be implemented using a single gather instruction, which is illustrated

in Algorithm 10. Accessing the 3D volume texture can also be optimized by using

gather instructions. Note that the signature of the actual gather intrinsic is a bit

more verbose than the code listing suggests. Specifically, the actual intrinsics take

arguments that allow to specify the source type that is upconverted to a 32 bit

floating point number. This can be used to support volumes like the carp dataset

used for the tests below in Section 5.4, which consist of 16 bit data items rather than

8 bit data items.

5.1.5 Comparison of the Sort-First Ray Casting Implemen-

tations

The ray casting implementations described above, although having a common code

base, actually differ regarding their fitness to certain use cases as well as the ex-

pectations one may have regarding the performance that is achievable with the

different implementations. GPUs, while prevalent in the HPC community nowadays,

nevertheless are commodity hardware which is used to equip graphic workstations

that are e. g. used by designers or artists. Anyway, even mobile GPUs like the

ones that are shipped with notebooks are quite potent, share technology with their

HPC counterparts and their counterparts from the professional segment, and can in

general be programmed using CUDATM.

Coprocessors like the Intel R© Xeon PhiTM on the other hand are targeted towards

HPC systems and are usually not found in commodity systems. Thus, the two

implementations, the one targeted towards GPGPUs and the one targeted towards

Intel R© coprocessors, though structurally similar and based on the same code, in

general serve quite different purposes. While GPUs are omnipresent, the Intel R©

Xeon PhiTM code path is especially interesting for in situ visualization scenarios

104 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

where the HPC system is equipped with several coprocessor nodes. Thus, while

one typical usage scenario for the GPU implementation will be direct rendering,

the implementation for the Intel R© Xeon PhiTM will typically be used in a remote

rendering scenario.

The main advantage of the CPU implementation stems from the fact that the ray

casting algorithm can make use of the full amount of CPU main memory on the

one hand, and of the CPU’s intricate cache architecture on the other hand. In

addition to that, no offloading procedure is needed, so that the latency and the

limited bandwidth of the PCIe interconnect are not an issue for this code path either.

GPGPUs are traditionally optimized for high throughput. This stems from the

historical roots of those systems. GPUs were from the beginning on designed to

provide fixed-functionality to process large amounts of vertices or fragments occupying

image pixels in parallel. Although with programmable shaders in general and with

the unified shader architectures specifically, this rigidity was partly mitigated, GPUs

remain at their strongest when being served homogeneous workloads at a high rate.

This makes algorithms like DVR especially well suited for those architectures. DVR

calculations like computing the volume rendering integral of individual rays can be

performed independently. On top of that, the DVR implementation can make use

of several features such as hardware-based trilinear interpolation or optimized 3D

texture access, that must be implemented using many instructions and that needs to

be specifically optimized for memory accesses on CPU platforms.

In general, the main difference between the CUDATM implementation and the CPU

implementation, apart from hardware support for trilinear texture interpolation, is

that the CPU implementation is based on packets, and the GPU implementation

is not. Section 5.1.3 nevertheless showed that SIMD ray packet traversal can be

implemented to mimic single-ray traversal by the use of C/C++ language constructs.

Aila and Laine [AL09] evaluated packet traversal versus CUDATM kernels traversing

only a single ray and found the latter to be superior. The author of this thesis

nevertheless argues that even when traversing a single ray per CUDATM kernel,

the general control flow, where threads are organized in warps and the execution

of all threads halts if only a single thread reaches a branch that the other threads

5.2. SORT-LAST IMPLEMENTATION FOR MANY-CORE SYSTEMS 105

do not enter, strongly resembles packet traversal, anyway. The same performance

implications have to be considered for rays in a packet that are inactive due to

masking and for rays on the GPU that do not participate in the execution of

a dynamic branch. However, the CUDATM programming model is more flexible,

because it can scale to various warp sizes without having to rewrite the actual kernel.

Commonalities in the form of implicit vectorization on GPUs, and in the form of

design patterns for SIMD code to masquerade as code acting on single data items,

exist, although they are not immediately obvious.

5.2 Sort-Last Implementation for Many-Core Sys-

tems

Sort-last rendering is used when the DVR is executed algorithm on many-core systems.

Many-core systems in this case subsume two specific types of computer systems:

on the one hand clusters of computers connected via a network, and on the other

hand Multi-GPU systems, where GPUs are connected over PCIe. This allows for

quite heterogeneous configurations because a cluster node can itself be a Multi-GPU

system. In such a system, atomic units are either single accelerators like GPUs, or a

group of CPU cores in a node. With the proposed configuration, each atomic unit

executes one of the sort-first code paths described above on a subset of the volume

dataset. The contributions from the various atomic units are then combined using

sort-last compositing.

Sort-last rendering is initialized by first finding an appropriate data partitioning

and then organizing the resulting volume blocks using a k -d tree. The k -d tree is

maintained by a parallel brick renderer like it was described in Section 4.4. On a

Multi-GPU system, one thread per GPU is committed to sending control information

and downloading the color buffer. With the network solution, each node runs a

separate instance of the DVR library (cf. Section 5.3). In any case, each of those

asynchronous computational units renders the share of the volume that was assigned

to it concurrently. Compositing is started when all units reached a synchronization

barrier. Compositing itself is performed by traversing the k -d tree according to the

106 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

current viewing position.

Compositing was implemented using a simple approach where whole images are sent

to a compositing node. This approach is known to scale badly because it imposes

severe network contention when many processors are involved. However, for the

common scenario with at most four GPUs in one node, the compositing phase did

not prove to be a bottleneck. For use cases with more processors involved, this

observation will likely not hold true. In order to support general use cases, having

an implementation based on one of the compositing algorithms described in Section

3.4.3, probably by using a library for compositing, would be more desirable. Sort-last

rendering with DVR is a well-understood problem. This thesis therefore does not

include an evaluation of this implementation. A formal analysis of sort-last DVR on

a cluster can be found in Bajaj et al. [BPT02], while an analysis of sort-last DVR

on Multi-GPU systems was conducted by Marchesin et al. [MMD08].

5.3 Integration into the Direct Volume Rendering

Library Virvo

The parallel implementations were integrated into the DVR library Virvo (cf. Section

3.5.3). Since both DeskVOX as well as COVISE use this library for DVR, both

visualization systems can benefit from the parallelization. This section gives a

technical overview of the integration into the Virvo library.

The various sort-first ray casting implementations were integrated using Virvo’s

plugin mechanism that can load dynamic code at run time. This is convenient since

that way the most efficient instruction set can be chosen dynamically based on the

available configuration. The configuration is tested at run time for the availability of

accelerators like a GPGPU or an Intel R© Xeon PhiTM, and for the availability of SSE

or AVX using the CPUID instruction [Int13].

Sort-last parallel Multi-GPU rendering was integrated into the Virvo library by means

of the abstraction layer described in Section 4.4 and is available on platforms that

support an X server with the GLX protocol [LWK05]. Each GPU is then associated

5.3. INTEGRATION INTO THE DVR LIBRARY VIRVO 107

with a separate GLX window or a GLX Pbuffer, which is bound to a specific GPU

via configuration, e. g. by running one X server per GPU or by configuring only one

X server, but with two X displays as a parent to the GLX window. With NVIDIA R©

CUDATM, it is in general possible to bind a task to a specific GPU by means of a

simple API call. However, the implementation via the GLX protocol was chosen to

implement the parallel rendering stage of the Distributed Volume Rendering Pipeline

in a most generic way. By associating the rendering modules with their respective

GPU via configuration, renderers can be accommodated that are not implemented

using CUDATM. This makes the sort-last rendering algorithm reusable e. g. for the

texture-based rendering code paths that are also implemented as part of the Virvo

library. CPU execution does not have to be explicitly bound to an X server or X

display if running on the local machine. Similarly, this it is not necessary for the

Intel R© Xeon PhiTM coprocessor. These rendering modules may share the X server

and even the X display with one of the other rendering modules. In practice, and

if the viewing context allows for direct rendering, with the current implementation

these modules actually run in a thread that has access to the viewing context and can

use hardware accelerated OpenGL R© function calls to directly display the rendered

content.

The CUDATM rendering modules use an OpenGL R© Pixel Buffer Object (PBO) for

direct rendering. This is a feature that is provided by CUDATM, which interfaces

with OpenGL R© or DirectX R© via an interoperability layer. The directly rendered

result is then retrieved by the CPU by either invoking calls to immediately read

pixels to an array in memory, or by accessing it via frame buffer objects and texture

read-back. Compositing is then performed by the thread having access to the viewing

context, which finally displays the composited image.

When rendering on a cluster, a dedicated server process is started on the nodes.

This process maintains a separate instance of the Virvo library and communicates

with the display node using an abstract network connection interface. This server

process was implemented as a separate tool that ships with DeskVOX. This tool is

not limited to being used with the DeskVOX application, but is accessible to any

application that uses Virvo for DVR.

108 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

5.4 Results

The competitiveness of the many-core DVR implementations was evaluated by

performing measurements of the execution time as an approximation of their processor

time. Performance tests were carried out for the various sort-first ray casting

implementations. While GPUs and similar coprocessors used for the evaluation

are solely dedicated to rendering (or to performing tasks that indirectly serve the

rendering task, such as swapping data to and from the cache), CPUs are typically

used to perform tasks not related to rendering, such as displaying the GUI of the

operating system or performing operating system tasks in general. During the

collection of the timing results, care was taken to ensure that no additional, compute

intensive tasks compete with the rendering task for CPU resources.

Figure 5.4 depicts the volume datasets that were used to evaluate the performance

of the individual implementations. For the measurements, specific post-classification

transfer functions were applied to each dataset, which only differ regarding their

color mapping. The alpha mapping, if not stated otherwise, was the same for each

dataset: a ramp that linearly ascends from fully transparent to fully opaque while the

density value of the volume sample increases from 0 to 1. Further, local illumination

was disabled. The reasoning behind this was to create a most similar basis for the

comparison. Local illumination calculations typically are gradient-based and only

apply to volumetric regions with a sufficiently high gradient magnitude. Note that in

the figure, different color transfer functions as well as local illumination are enabled

for aesthetic reasons. The datasets in general vary regarding their spatial extent and

the number of time steps they store. While the engine dataset, in combination with

the specific transfer function applied, exhibits a strong isosurface, which occludes

most inner parts of the engine, the visible male CT-scan dataset was rendered with a

transfer function that reconstructs the bones with full opacity, and the surrounding

tissue so that one can see through it to the bones. The aneurism dataset is less dense,

so that a significant part of the dataset does not contribute to the actually rendered

image. In those cases, the early-ray termination optimization will not apply and rays

have to be fully traversed through the volume. The large-eddy simulation dataset

(LES) was the output from a scientific simulation of a weather phenomenon called a

5.4. RESULTS 109

Figure 5.4: Datasets used for the evaluation of the sort-first DVR implementations.
From left to right, top to bottom: a.) Engine dataset (256 x 256 x 128 x 1, 1 channel,
8 bit per channel), b.) Visible Human CT-scan (512 x 512 x 1877 x 1, 1 channel, 8
bit per channel), c.) Aneurism (256 x 256 x 256 x 1, 1 channel, 8 bit per channel),
d.) Large-eddy simulation (199 x 199 x 89 x 360, 1 channel, 8 bit per channel), e.)
Artificial dataset with gradually changing density (32 x 32 x 32 x 1, 1 channel, 8
bit per channel), f.) CT-scan dataset (256 x 256 x 512 x 1, 1 channel, 16 bit per
channel).

110 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

dustdevil. Only the dust concentration is contained in the volumetric presentation of

this dataset. The animation consists of 360 time steps. A more thorough explanation

of the simulation and the simulated phenomenon can be found in [KS13]. The

transfer function applied to the dataset is not a ramp like it was applied to the

other datasets. Instead, it assigns zero opacity to the data items ranging from 0 to

approximately 0.1. The transfer function was designed to reveal eddy phenomena

around the ground plane and results in a highly transparent dataset. Similar to the

aneurism test scenario, this is challenging for the early-ray termination optimization.

The gradient dataset is an artificial dataset which varies the density gradually along

one principal axis. The carp dataset, in contrast to the other datasets, stores 16 bit

density values at the grid cells.

The timing procedure for the various algorithms was the following. Screen sizes of

1920× 1080 pixels (Full HD) were considered. An automated test procedure was set

up that first moved the volume to the center of the viewing frustum using a view all

operation (i. e. determine the bounding sphere of the volume and locate the camera at

the outer rim of the dataset, pointing towards the center of the dataset). The volume

was then rotated in incremental steps about the three principal world coordinate

axes. The incremental step size was 2◦, the volume was rotated 90 times about

each axis, resulting in a 180◦ rotation and 270 different view points. This procedure

favors view points where the primary rays hit at most two sides of the axis-aligned

bounding box of the volume. In general, this may lead to a more coherent traversal

pattern compared to an arbitrary rotation in 3D space. Although this behavior

has probably less influence on these particular tests, the rotations were nevertheless

not performed exactly about the principal axes, but a slight, random deviation was

introduced. The procedure was carried out two times per test modality. To account

for potential cache warm-up effects, the first pass was however discarded, so that

the actual timing procedure was performed for 270 frames in total. The time to

render a single frame was then determined by averaging the total execution time

over the 270 rendered frames. All test modalities were configured to use the early-ray

termination optimization. Along each ray, opacity was gathered up to a threshold of

95 %, and if this threshold was surpassed, ray traversal was terminated. When rays

were traversed in packets, packet traversal was of course only terminated if all rays

5.4. RESULTS 111

in the packet had finished traversal. The volumes were sampled with a step width

that was inversely proportional to the number of voxels contained in the volumes

along one principal axis.

Engine Visible Male Aneurism LES Gradient Carp
Avg. Pixels 25 % 4 % 36 % 21 % 35 % 5 %

Table 5.1: Relative screen space occupied by the various datasets, based on
averaging the axis-aligned bounding rectangles in window coordinates over each
frame of the timing procedure.

The view all operation to locate the dataset at a distant position implies that only

some portions of the screen are actually covered by the volume. Depending on

the properties of the datasets, those portions may differ considerably. The Visible

Male dataset and the Carp dataset for instance are narrow, which results in the

dataset being moved relatively far away from the viewing position. Less screen space

being occupied by the dataset will generally result in a lower rendering workload.

Table 5.1 gives an overview of the average portion of screen space that each volume

occupied during the rendering procedure, relative to the actually available 1920×1080

pixels. The values were obtained by performing the timing procedure once for each

dataset and computing the axis-aligned bounding rectangle of each view in window

coordinates. The bounding rectangle was deduced by projecting the axis-aligned

bounding box to window coordinates.

The ensuing evaluation summarizes the timing measurements for the Array of

Structure-based code path targeted towards CPUs, the Structure of Array-based

code path that was implemented with SSE, the Intel R© Xeon PhiTM code path as well

as the code path using NVIDIA R© CUDATM. All results presented in this section

were obtained by executing the volume rendering application remotely using X11

forwarding. However, only the actual rendering time was measured. More specifically,

any setup time for color buffers, or time for copying data to and from a GPU or a

coprocessor was omitted. The reasoning behind this is better comparability between

the various modes. In principal, it would e. g. be possible to perform direct rendering

using pixel buffer objects on a GPU, while this is not an option on the Intel R© Xeon

PhiTM which is not equipped with a graphics output. Setup times and copying incur

112 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

constant overhead. Furthermore, changes in technology may very well render the

overhead of copying data over PCIe obsolete in the near future. By omitting the

communication overhead from the results, their significance will then, however, stay

the same.

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 1.015 0.510 0.258 0.131 0.067
Visible Male 0.239 0.121 0.064 0.034 0.017
Aneurism 2.872 1.439 0.723 0.364 0.183
LES 0.682 0.345 0.175 0.090 0.047
Gradient 0.471 0.239 0.123 0.065 0.034
Carp 0.149 0.077 0.041 0.023 0.013

Table 5.2: Average rendering times in seconds using the AoS-based CPU renderer
and nearest neighbor reconstruction.

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 1.954 0.984 0.493 0.249 0.126
Visible Male 0.483 0.247 0.127 0.067 0.032
Aneurism 5.658 2.833 1.421 0.712 0.357
LES 1.297 0.646 0.326 0.166 0.085
Gradient 0.820 0.412 0.210 0.108 0.056
Carp 0.261 0.133 0.069 0.037 0.020

Table 5.3: Average rendering times in seconds using the AoS-based CPU renderer
and trilinear interpolation.

Tables 5.2, 5.3, 5.4, and 5.5 summarize the timing results for the sort-first ray casting

implementation targeted towards CPUs. All measurements were performed on a

system with two Intel R© Xeon R© E5-2690 octa-core server CPUs. Each physical core

has a maximal clock rate of 2.90 GHz. Intel R©’s hyper-threading technology [Per05]

was deactivated, so that 16 cores could be used concurrently. All executables were

created using the Intel R© Compiler, version 14.0.1, and the compiler option -O2 for

optimization. Threads were “pinned” so that exactly one thread was scheduled

per core. The tables show results for tests using AoS-based rendering with nearest

neighbor reconstruction, AoS-based rendering with trilinear interpolation, SoA-

5.4. RESULTS 113

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 0.302 0.155 0.080 0.042 0.023
Visible Male 0.083 0.044 0.024 0.015 0.008
Aneurism 0.878 0.442 0.224 0.114 0.059
LES 0.198 0.103 0.054 0.030 0.016
Gradient 0.121 0.063 0.035 0.021 0.011
Carp 0.054 0.029 0.017 0.011 0.006

Table 5.4: Average rendering times in seconds using the SoA-based SSE renderer
and nearest neighbor reconstruction.

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 0.409 0.207 0.106 0.055 0.029
Visible Male 0.112 0.059 0.033 0.020 0.011
Aneurism 1.175 0.590 0.297 0.151 0.076
LES 0.259 0.132 0.069 0.037 0.020
Gradient 0.155 0.081 0.044 0.025 0.013
Carp 0.062 0.034 0.019 0.012 0.007

Table 5.5: Average rendering times in seconds using the SoA-based SSE renderer
and trilinear interpolation.

based rendering with nearest neighbor reconstruction, and SoA-based rendering with

trilinear interpolation, respectively.

Among other factors, the scaling behavior of the ray casting implementation is

of interest. Therefore, the CPU implementations were evaluated by performing

measurements using 1, 2, 4, 8, or 16 concurrent CPU threads. Table 5.6 and 5.7

deduce the parallel efficiency (speedup over processor count) from the raw data

tables for the SoA implementation and the two reconstruction modes. To calculate

the speedup (cf. Equation 3.29), the portions of the serial code that is executed and

the portions of the code that execute in parallel must be known. For lack of this

information, the speedup is approximated as the time it takes a single thread to

render an image over the time it takes N threads to render the same image. Figure

5.7 and 5.8 also show plots of the efficiency. In general, all scenarios in any case

exhibit good scalability up to the maximum of 16 threads. The use of SoA packets

114 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 1.000 0.974 0.944 0.899 0.821
Visible Male 1.000 0.943 0.865 0.692 0.648
Aneurism 1.000 0.993 0.980 0.963 0.930
LES 1.000 0.961 0.917 0.825 0.773
Gradient 1.000 0.960 0.864 0.720 0.688
Carp 1.000 0.931 0.794 0.614 0.563

Table 5.6: Parallel efficiency of the SoA-based SSE renderer with nearest neighbor
reconstruction (see also Figure 5.7).

1 Thread 2 Threads 4 Threads 8 Threads 16 Threads
Engine 1.000 0.988 0.965 0.930 0.881
Visible Male 1.000 0.949 0.848 0.700 0.636
Aneurism 1.000 0.996 0.989 0.973 0.966
LES 1.000 0.981 0.938 0.875 0.809
Gradient 1.000 0.957 0.881 0.775 0.745
Carp 1.000 0.912 0.816 0.646 0.554

Table 5.7: Parallel efficiency of the SoA-based SSE renderer with trilinear interpo-
lation (see also Figure 5.8).

compared to single-ray traversal leads to nearly linear scaling, too. The differences

range from factor 3 up to a factor of nearly 5 for the scenario with the Aneurism

dataset and linear interpolation, even though packets of size 4 suggest a maximum

acceleration of factor 4. The sub-linear speedup can be explained by cache coherence.

Ray packets can make better use of caches because coherent primary rays, as they

are used when evaluating the absorption and emission model, tend to access adjacent

memory regions. With single-ray traversal, the rays handling one tile are traversed

consecutively using a depth-first pattern, so that adjacent rays cannot benefit from

cache coherence.

Another interesting aspect is the influence of memory accesses on performance.

Performing trilinear interpolation in order to reconstruct the volume dataset at a

sample position requires eight memory accesses, while assigning the value of the

nearest voxel requires only one memory access. All tests were thus performed

5.4. RESULTS 115

Threads

Efficiency

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1.0

Engine

Vis. Male

Aneurism

LES

Gradient

Carp

Figure 5.5: Parallel efficiency of the SoA-based SSE renderer with nearest neighbor
reconstruction (see also Table 5.6).

both for reconstruction using the nearest neighbor method as well as for trilinear

interpolation. Note that on GPUs, trilinear interpolation can be performed in

hardware and the CUDATM implementation makes use of this fact. The results

obtained from evaluating the CPU implementations show some interesting behavior

in this regard. Rendering with AoS and trilinear interpolation takes about twice the

time it takes to render with AoS and the nearest neighbor method, although eight

times more memory accesses are necessary. This is due to the fact that the data

items used for interpolation are typically adjacent and thus likely to already be in

the cache. With the ray packet implementation, however, the overhead for trilinear

interpolation is only proportional to a factor of 1.5, and even lower factors in certain

cases, which supports the assumption that SoA traversal results in memory access

patterns that yield a better cache utilization.

Table 5.8 and 5.9 summarize the results for the Xeon PhiTM code path for nearest

neighbor reconstruction and trilinear interpolation, respectively. Table 5.10 and

5.11 show the parallel efficiency deduced from Table 5.8 and 5.9 for 30, 45, 60, 120,

116 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Threads

Efficiency

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1.0

Engine

Vis. Male

Aneurism

LES
Gradient

Carp

Figure 5.6: Parallel efficiency of the SoA-based SSE renderer with trilinear
interpolation (see also Table 5.7).

and 240 Threads, respectively. The executable was also compiled with the Intel R©

compiler, version 14.0.1, and the compiler flag -O2 for optimization. For the tests,

the threads were “pinned” in order to prohibit rescheduling on another core. Above

the limit of 120 threads, i. e. when two threads were scheduled per core, the scalabity

in general dropped. Nevertheless, for datasets imposing a high workload, like the

Aneurism dataset, scheduling up to four threads per core results in a performance

increase. It is notable that the algorithm, though being embarrassingly parallel in

theory, does not scale linearly up to 120 threads and above. However, the flattening

of the scalability curve can have various reasons. In general, devising schemes to

balance the workload among the threads even better would probably be worth the

effort. On the other hand, the drop in scalability could very well be due to contention,

because 240 threads simultaneously access the memory controller of the coprocessor.

A reason like that could probably only be mitigated by a complete algorithmic

redesign. Nevertheless, because the coprocessor code path in general is competitive

and the algorithm itself is embarrassingly parallel and thus very well suited for the

MIC architecture, such an effort could lead to unforeseen issues which might impact

5.4. RESULTS 117

1 Thrd. 30 Thrd. 45 Thrd. 60 Thrd. 120 Thrd. 240 Thrd.
Engine 0.744 0.045 0.027 0.022 0.015 0.014
Visible Male 0.361 0.017 0.013 0.011 0.009 0.010
Aneurism 2.241 0.107 0.074 0.059 0.033 0.028
LES 0.327 0.022 0.017 0.014 0.010 0.010
Gradient 0.207 0.017 0.012 0.011 0.011 0.014
Carp 0.223 0.012 0.008 0.007 0.006 0.006

Table 5.8: Average rendering times in seconds using the Xeon PhiTM renderer and
nearest neighbor reconstruction.

1 Thrd. 30 Thrd. 45 Thrd. 60 Thrd. 120 Thrd. 240 Thrd.
Engine 1.629 0.071 0.049 0.042 0.024 0.025
Visible Male 1.170 0.050 0.036 0.032 0.022 0.021
Aneurism 4.997 0.200 0.136 0.102 0.058 0.046
LES 0.484 0.032 0.022 0.019 0.012 0.011
Gradient 0.281 0.025 0.016 0.018 0.014 0.017
Carp 0.526 0.024 0.018 0.014 0.011 0.012

Table 5.9: Average rendering times in seconds using the Xeon PhiTM renderer and
trilinear interpolation.

performance. The efficiency comparison also suggests that the higher the workload,

the better the scalability. For instance, the efficiency in general increases when linear

interpolation is performed instead of nearest neighbor reconstruction.

A special trait of the Intel R© Xeon PhiTM coprocessor is the existence of dedicated

instructions for gathering data from an array using incoherent integer indices. Table

5.12 compares the code path where the volume texture lookup routine and the transfer

function lookup routine were optimized using a total of five gather instructions, and a

code path where this behavior was emulated by copying the indices to general-purpose

registers and constructing new SIMD vectors following the table lookups. The ray

casting algorithm performs these two types of lookups in its innermost loop, and

optimizing them is crucial to obtain maximum performance. In the case of trilinear

interpolation, volume lookup happens eight times, while the lookup to the RGBA

transfer function is carried out only once. The differences in performance for the two

118 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

1 Thrd. 30 Thrd. 45 Thrd. 60 Thrd. 120 Thrd. 240 Thrd.
Engine 1.000 0.551 0.612 0.564 0.413 0.221
Visible Male 1.000 0.708 0.617 0.547 0.334 0.150
Aneurism 1.000 0.698 0.673 0.633 0.566 0.333
LES 1.000 0.495 0.427 0.389 0.273 0.136
Gradient 1.000 0.406 0.383 0.314 0.157 0.062
Carp 1.000 0.619 0.619 0.531 0.310 0.155

Table 5.10: Parallel efficiency of the Xeon PhiTM implementation with nearest
neighbor reconstruction (see also Table 5.10).

1 Thrd. 30 Thrd. 45 Thrd. 60 Thrd. 120 Thrd. 240 Thrd.
Engine 1.000 0.765 0.738 0.646 0.566 0.272
Visible Male 1.000 0.780 0.722 0.610 0.443 0.232
Aneurism 1.000 0.833 0.817 0.817 0.718 0.453
LES 1.000 0.504 0.489 0.425 0.336 0.183
Gradient 1.000 0.375 0.390 0.260 0.167 0.068
Carp 1.000 0.731 0.649 0.626 0.399 0.183

Table 5.11: Parallel efficiency of the Xeon PhiTM implementation with trilinear
interpolation. (see also Table 5.11).

code paths were striking, anyway. For the compute intensive Aneurism and LES

datasets and reconstruction using trilinear interpolation, for instance, performance

more than doubled when the gather intrinsics were used. The increase in performance

when rendering the other datasets in general was significant, specifically if trilinear

interpolation was used and the copying of indices to general-purpose registers occurred

eight times. These two functionalities, volume lookup and transfer function lookup,

are at the heart of any DVR algorithm, so that it is crucial to apply this optimization

when implementing DVR on the MIC architecture in general. The author of this

thesis wonders, why the auto-vectorizer was not able to recognize this distinct memory

access pattern and perform this optimization automatically.

The GPGPU used for the evaluation of the CUDATM ray casting implementation is

an NVIDIA R© Tesla R© K20TM . The Tesla R© series is targeted towards the compute

segment and does, like the Intel R© coprocessor, not have a graphics output. Because

5.4. RESULTS 119

Threads

Efficiency

1 30 45 60 120 240
0

0.2

0.4

0.6

0.8

1.0

Engine

Aneurism

Gradient

Carp

Figure 5.7: Parallel efficiency of the Xeon PhiTM implementation with nearest
neighbor reconstruction (see also Table 5.10).

of that, the GPGPU is also operated using remote rendering. However, like this was

the case for the other implementations, only the actual rendering phase of the ray

casting algorithm was measured and overhead for copying data to and from the device

are omitted from the results. Tables 5.13 and 5.14 present the rendering times using

CUDATM , and additionally summarize the results of all the other implementations

for comparison. For brevity’s sake, a scalability analysis of the ray casting algorithm

is omitted for the CUDATM code path.

At first sight, one can see from the results that trilinear interpolation is virtually free

on GPGPUs, while the optimized x86 code paths impose an increase of factor 1.5 for

first-order reconstruction. The GPGPU implementation in general outperforms both

x86 implementations. The Intel R© Xeon PhiTM implementation is superior to the

CPU implementation regarding rendering times, specifically if the dataset imposes a

relatively high workload.

120 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Threads

Efficiency

1 30 45 60 120 240
0

0.2

0.4

0.6

0.8

1.0

Engine
Vis. Male

Aneurism

Gradient

Carp

Figure 5.8: Parallel efficiency of the Xeon PhiTM implementation with trilinear
interpolation (see also Table 5.11).

no gather, nn gather, nn no gather, lerp gather, lerp
Engine 0.016 0.014 0.035 0.025
Visible Male 0.010 0.010 0.024 0.021
Aneurism 0.036 0.028 0.114 0.046
LES 0.012 0.010 0.024 0.011
Gradient 0.016 0.014 0.028 0.017
Carp 0.007 0.006 0.014 0.012

Table 5.12: Average rendering times in seconds on the Intel R© Xeon PhiTM .
Columns from left to right: 1.) without gather optimization and with nearest
neighbor reconstruction, 2.) with gather optimization and with nearest neighbor
reconstruction, 3.) without gather optimization and with trilinear interpolation, 4.)
with gather optimization and with trilinear interpolation. All results were obtained
on the Xeon PhiTM coprocessor using 240 threads.

5.4. RESULTS 121

AoS CPU SoA CPU MIC CUDA
Engine 0.067 0.023 0.014 0.011
Visible Male 0.017 0.008 0.009 0.007
Aneurism 0.183 0.059 0.028 0.016
LES 0.047 0.016 0.010 0.008
Gradient 0.034 0.011 0.011 0.008
Carp 0.013 0.006 0.006 0.006

Table 5.13: Average rendering times in seconds for all four code paths and nearest
neighbor reconstruction.

AoS CPU SoA CPU MIC CUDA
Engine 0.126 0.029 0.024 0.011
Visible Male 0.032 0.011 0.021 0.007
Aneurism 0.357 0.076 0.046 0.017
LES 0.085 0.020 0.011 0.008
Gradient 0.056 0.013 0.014 0.008
Carp 0.020 0.007 0.011 0.006

Table 5.14: Average rendering times in seconds for all four code paths and trilinear
interpolation.

122 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

5.5 Conclusions

This section investigated implementation issues for porting DVR ray casting to

heterogeneous HPC platforms. In a most theoretical sense, the problem of marching

individual rays through a volume density must be considered embarrassingly parallel.

Unfortunately, because of the memory bottleneck of contemporary computers, and the

fact that volume ray casting is especially memory bound, actual implementations must

find a way to align memory access patterns that reduce cache misses. This section

proposed several implementations that target several HPC platforms, which are not

necessarily a good match for DVR. The section showed that the ray casting algorithm

as a popular representative of DVR algorithms in general can be implemented to be

competitive when compared to a GPGPU implementation. GPGPUs are naturally a

good match for DVR algorithms, which benefit from high throughput and hardware

support for trilinear interpolation.

Intel R© x86-compatible CPUs expose parallelism through a shared memory archi-

tecture that can be programmed in a Multiple Instruction, Multiple Data (MIMD)

fashion, and through SIMD registers with special vector instructions. It was shown

that for ordinary ray marching with coherent memory access patterns, ray packet

traversal using a Structure of Arrays layout is superior over single-ray traversal.

These findings match the observations that were previously made by other researchers

regarding surface ray tracing. Traversing rays in packets imposes an extra amount

of complexity on software design. The section devised wrapper structures with

which it is possible to write packet traversal as if a single ray was traversed. The

results show that mimicking single-ray traversal by using wrapper classes for SIMD

vector data types can result in efficient code being generated by the compiler, if

the function and data structure layout allows all constructs to be inlined by the

compiler, and if additional overhead like that for template instantiation is resolved at

compile time. The results also show that programming on the instruction level with

intrinsics is beneficial. This was especially true for the implementation targeting

the Intel R© Xeon PhiTM coprocessor, which provides special intrinsics for incoherent

memory accesses from a linear array. Here, the compiler would not make use of

these special instructions on its own, and thus explicit use of vector instructions

5.5. CONCLUSIONS 123

was necessary to fully exploit the capabilities of the coprocessor’s instruction set

architecture. The Intel R© Xeon PhiTM code path is especially interesting because

it demonstrates that the ray casting algorithm is able to scale up to hundreds of

concurrent threads. Nevertheless, it was impossible to outperform CPU ray casting

by orders of magnitude. In general, the efficiency of the coprocessor implementation

increases with higher workloads. On x86-compatible architectures, when using packet

ray traversal, the costs for first-order reconstruction, which implies accessing the

eight surrounding voxels of the sampling position, amounts to approximately 1.5

times the costs for nearest neighbor reconstruction, which requires only a single voxel

lookup.

Compared to x86 architectures, GPGPUs have an advantage because they provide

highly optimized and hardwired memory access mechanisms for 3D arrays. Because of

that, first-order texture reconstruction comes at virtually no additional cost compared

to nearest neighbor reconstruction. On top of that, GPGPUs nowadays provide a

highly flexible programming model based on multiple threads that act like being linked

in a SIMD fashion, but that can be programmed largely without communication

among each other. On the downside, using GPGPUs imposes the additional overhead

of having to communicate via PCIe, which is impractical especially if dataset sizes

exceed the amount of video memory available on the GPU.

124 CHAPTER 5. IMPLEMENTING THE PARALLEL RENDERING PHASE

Chapter 6

Decoupling Rendering and Display

Phase

A special trait of the Distributed Volume Rendering Pipeline outlined in Section 4.2

is the display phase that follows after image generation and compositing. Logically

decoupling the display phase from the prior stages has the advantage that it can be

specialized in a variety of different ways. This section proposes to decouple the display

phase from rendering to hide latency that is inflicted upon the whole Distributed

Rendering Pipeline. The technique described in this section is an approximate

method targeted towards interactive applications like visualization in Virtual Reality,

where frame rates that drop significantly below 30 Hz can cause fatigue or even

nausea.

This chapter is in parts based upon a conference publication by Zellmann et al.

[ZAL12] and is structured as follows. Section 6.1 gives an introduction to remote

rendering as well as image-based rendering and provides a brief overview of work that

relates to the method proposed by this work. Then, in Section 6.2 an image-based

remote rendering technique is presented that employs image reprojection, which

decouples the rendering stage from the display stage, and which is thus capable of

hiding latency. Sections 6.3 and 6.4 propose several enhancements to the image-based

remote rendering technique and how it can be integrated with interactive applications.

Section 6.5 presents results from a formal evaluation of the proposed algorithm, while

125

126 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Section 6.6 briefly concludes this chapter.

6.1 Image-Based Remote Volume Rendering

Remote rendering is a technique where rendering workloads are physically decoupled

for load balancing purposes. Typically, the rendering task is subdivided into compute

intensive and less compute intensive tasks, which are then distributed among a pool

of compute resources that are usually spatially detached. In the case of DVR, the

compute intensive parts comprise volume integration and image compositing, while

displaying the final image is considered a cheap operation. Specific implementations

usually realize remote rendering over commodity networks using the TCP/IP protocol

layer or low-latency networks like InfiniBand R© [Pfi01]. Implementations are then

usually based on a client-server model.

When applied to the Distributed Volume Rendering Pipeline, the rendering phase

and the compositing phase are assigned to one remote computer or a network of

remote computers, while the display phase is assigned to the client computer. While

the subdivision into phases which are distributed among a pool of compute resources

could in general be accomplished in different ways, for the purposes of this section

the term remote rendering will be referred to as described above. The server-side of

the remote rendering application is responsible for rendering and compositing, while

the client-side is responsible to display the final image.

The client that is responsible for the display phase is often equipped with less capable

rendering hardware than the computer or the network of computers assigned to

the rendering and compositing phase. Because this is not only true for remote

rendering applied to DVR, but also for other scenarios, the display computer for

remote rendering is often portable or even a handheld device. A broad overview of

remote rendering in general can be found in the PhD thesis of Dieter Schmalstieg

[Sch97].

Remote rendering can be implemented into the renderer module of a visualization

application or as a middleware that the visualization software uses to transfer con-

6.1. IMAGE-BASED REMOTE VOLUME RENDERING 127

trol information and rendered images. Examples of such a middleware are the

remote display capabilities of the X Window System [LWK05], the VNC remote desk-

top application [RSFWH98] or the dedicated remote rendering software VirtualGL

[Com14b].

Stegmaier et al. [SME02] presented a general remote rendering middleware that

uses the X Window remote display functionality, but directly intercepts the graphics

API calls for rendering by replacing the GLX library of the operating system with

a customized one. The replacement library renders images into a GLX Pbuffer

off-screen render target. When the GLX call was issued that swaps the back buffer

and the front buffer, instead of being displayed, the Pbuffer’s content is downloaded

to main memory and then transferred over the network to the client-side for display.

In contrast to that, Sharp et al. [SRC10] developed a specialized remote rendering

system that is dedicated to remote volume rendering in clinical environments. Their

solution is coupled with CT scanning devices and can produce interactive images

on the fly. The system supports a multi-user environment. The target platform is a

Multi-GPU cluster environment that delivers remote rendered images to thin clients

used by physicians in the operating rooms.

The highest degree of specialization is achievable if the remote rendering software is

integrated into the visualization application. That way, certain assumptions about

the rendered data can be made that would be invalid in general. Only hardware

accelerated algorithms can benefit from specialized middleware like VirtualGL or

the approach proposed by Stegmaier et al. Mere X Window remote display is a

general solution to the remote rendering problem, but is inefficient in the context of

hardware accelerated rendering because graphics API calls are not directly processed

but sent to the client-side, where they are executed. This behavior results in high

bandwidth requirements and the necessity of the client computer to be equipped

with dedicated graphics hardware.

Pajak et al. [PHE+11] proposed an algorithm where low-resolution images are

rendered using a deferred-shading like algorithm on the server, which is then send

to the client along with depth information and motion flow images. From these,

the client can then reconstruct a lossy, high-resolution image. Because of the low

128 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

resolution of the images processed on the server, the authors’ subdivision into stages

differed from the traditional remote rendering pipeline, because a significant amount

of work is transferred from the server-side to the client-side. The publication also

focused on compression suitable for the depth images and the motion-flow images

and in that way relates to the technique proposed in this thesis, which also relies on

transferring depth images over a network connection.

Image-based rendering (IBR) aims at the reconstruction of the plenoptic function of

a 3D environment based on discrete samples. IBR techniques traditionally originated

from efforts to approximate photorealistic image synthesis by directly altering real

images or images that were already synthesized, but e. g. for an alternative camera

transformation. IBR techniques can be classified based upon the extent to which an

explicit geometry is necessary to synthesize the image. A classification of different

IBR techniques was given by Shum and Kang [SK00]. A more comprehensive

introduction to image-based rendering can e. g. be found in the textbook by Shum

et al. [SCK11].

Shade et al. [SGHS98] proposed the layered depth image (LDI) approach, which

in terms of the classification from Shum and Kang falls in the category of IBR

techniques with an explicit geometry. In addition to the color information, a depth

information is stored along with each pixel. The images are stored in multiple layers

with different depths and then warped according to the current camera transform.

Because the depth images overlap, disocclusion artifacts that occur when 2D images

are warped are no longer visible. If the view point differs significantly from the view

point the LDI was generated for, holes between the layers become visible.

Coconu’s and Hege’s publication [CH02] relates to the work in this thesis because

they also used an image-based technique using hardware accelerated point cloud

rendering. They implemented a level-of-detail approach by organizing a 3D scene

using an octree data structure. Depending on the level-of-detail, surfaces are either

represented as triangles or as points. They also had to face occurrences of holes

in-between the point cloud and met the resulting artifacts by expanding the points

to elliptical splats.

6.2. REMOTE RENDERING TECHNIQUE 129

6.2 Remote Rendering Technique

This work exploits remote rendering in conjunction with an IBR technique to decouple

rendering and the ensuing display phase to hide latency. The IBR technique falls in

the category of algorithms with an explicit geometry. The remote rendering algorithm

is implemented as part of the visualization software DeskVOX and is specifically

designed to be used with DVR.

In the following, the computers that are used to perform rendering and compositing

are holistically referred to as the server, while the computer responsible for the

display phase will be called the client. The following subsections elaborate on the

various steps that are performed on both the server-side and the client-side.

6.2.1 Remote Rendering of 2.5D Image Data to Hide La-

tency

Remote rendering scenarios are subject to latency from several sources. Delays are

not only due to the possibility of excessive rendering times, but also due to the

added communication overhead that arises when having to transfer image data over

a network connection. The technique proposed by this work aims at hiding that

latency by decoupling the display stage from the prior stages of the Distributed

Volume Rendering Pipeline.

The display phase of the Distributed Volume Rendering Pipeline is executed on the

client-side. Other than with ordinary remote rendering approaches, the technique

proposed by this work relies on image data that is accompanied by a depth buffer

that is generated on the server and then sent to the client for display. That way, the

server is not required to send data to the client at a refresh rate of 30 Hz. Rather

than that, the 2.5D dataset can be used to generate an approximate image that is

visually plausible, which is the case if the current view point and the view point the

2.5D dataset was generated for differ only slightly.

The client initially creates two threads for image data retrieval and asynchronous

rendering, respectively (cf. Figure 6.1). The first thread maintains a socket connec-

130 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.1: The image-based client application maintains two threads to asyn-
chronously render the data from the previous frame in one thread and, in the
meantime, to listen for view point changes and new data in the second thread.

tion, which is used to send the camera transformation to the server, whenever the

camera view point is changed. Then the thread listens for new 2.5D data sent back

by the server. When 2.5D image data is obtained from the server, the dataset is

stored to a memory location shared by the two threads.

The second thread is responsible for asynchronously rendering the 2.5D dataset.

This is done by transforming the 2.5D image buffer to 3D point primitives that can

be displayed using GPU hardware acceleration. Initially and whenever the size of

the viewport of the viewing window is changed, a new vertex buffer object (VBO)

is created to contain the points. The world space x- and y-positions of the points

depend on the image space coordinates of their associated image pixels and are

thus constant. The z-coordinates that depend on the depth buffer sent along with

the image data on the other hand changes from frame to frame. Recreating the

whole VBO for each new frame was found to be too time consuming by Zellmann et

al. and led to a palpable interruption when new data was received. To avoid this

interruption, VBOs are only recreated initially and on changing the viewport of the

viewing window. As long as the viewport stays the same, the x- and y-positions

6.2. REMOTE RENDERING TECHNIQUE 131

of the points do not need to be updated because their assignment to image pixels

does not change. What does change is the z-position of the points, which depends

on the newly created depth buffer that is sent along with the image data, as well

as the image data itself. Therefore, for interactive updates, a vertex shader is used

that processes all incoming point primitives and adjusts their position based on a

texture lookup. The new depth values are sent to the vertex stage using a 2D texture.

The same is done for the color values, which are sent to the vertex shader using an

uncompressed RGBA texture. The vertex shader adjusts only the z-positions of the

points and their associated colors. As far as the viewport does not change, but new

2.5D is received from the server, only the textures need to be updated, which is a

lightweight operation compared to recreating the whole VBO.

6.2.2 Constructing the Reprojection Matrix

Instead of merely applying the actual camera transform for the current camera

configuration to the vertices, the vertex shader is also used to perform the reprojection

step by applying the associated reprojection matrix to all points in parallel. This

matrix is constructed on the client-side based on the camera transform which was

valid when the 2.5D dataset was created. The old camera transform is retrieved

from the server along with each new dataset. The following subsection describes the

construction of the reprojection matrix.

In order to reduce bandwidth pressure, the remote rendering technique relies on

storing the depth buffer with one byte per sample. Thus, so that no precision is

unnecessarily lost, in the case of this technique, image space z-coordinates do not

cover the whole range from the near-clipping plane to the far-clipping plane. Only

the range that is actually spanned by the volume dataset is stored in the depth

buffer. This limited range can then be stored using a higher precision. This strategy

is illustrated in Figure 6.2.

The server, when it performs DVR, initially generates sample positions in world

space, which are then transformed to image space according to the rules imposed by

the rasterization pipeline implemented on current GPUs. In addition to the 2.5D

132 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

anear

znear zfar znear zfar

anearafar afar0...255 0...255

Figure 6.2: Saving depth buffer precision by only storing the limited range spanned
by the volumetric region. The left image shows a setup which can benefit from the
depth range adjustment by ignoring the empty space beyond anear and afar. The
right image is a zoomed in view, where the depth range adjustment is not beneficial
because anear coincides with the near-clipping plane and afar coincides with the
far-clipping plane.

data samples, the server also records the current camera transform as well as the

range that the z-coordinates of the image space samples span to implement the range

downscaling technique from above. Neglecting the depth range downscaling, the

reprojection method proposed in this work would basically only apply the backwards

transform of the camera transform for the original view point to the 2.5D image

data and depth buffer. This would result in the points being transformed back to

world space. Then the current camera transform could be applied to the world space

coordinates by the vertex shader, which would warp the 2.5D dataset for the original

view point to match the current view point.

The range downscaling requires an additional step during the construction of the

reprojection matrix. The reprojection matrix, which is assembled on the client-side,

is itself composed of several transforms.

First of all, the image space samples are transformed back to normalized device

coordinates. This is done by applying the inverse viewport transform

6.2. REMOTE RENDERING TECHNIQUE 133

V −1 =


1
w/2

0 0 l
w/2
− 1

0 1
h/2

0 b
h/2
− 1

0 0 2 −1

0 0 0 1

 (6.1)

to the 2.5D image data, where w and h are the width and height and l and b are the

leftmost and bottommost positions of the viewport, respectively.

The points in normalized device coordinates obtained by applying V −1 do not yet

reflect the adjusted depth range. The depth range that was recorded during rendering

is represented by the real numbers anear and afar

with

anear ≥ znear

and

afar ≤ zfar

where znear and zfar are the near- and the far-clipping plane in normalized device

coordinates. The inverse depth range transform is applied by multiplying the matrix

D−1 =


1 0 0 0

0 1 0 0

0 0 afar − anear anear

0 0 0 1

 (6.2)

to the points in normalized device coordinates. These can then be transformed

back to world space by application of the ordinary inverse model-view-projection

transform, i. e. by first multiplying by the inverse projection matrix PR−1 and then

by the inverse of the combined model- and view matrix MV −1. The assembled

reprojection matrix for warping thus reads

134 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.3: Dataset exhibiting multiple layers of translucent media. The transfer
function exposes three solid, nested spheres, so that a ray traveling through the
medium potentially crosses six boundary layers. A depth value for such a ray is
non-obvious.

W = MV −1 × PR−1 ×D−1 × V −1 (6.3)

and is passed to the vertex shader to reproject all 2.5D image points in parallel.

The vertex stage of the client program for this simple configuration only consists of

applying the reprojection matrix to all vertices.

6.2.3 Depth Buffer Generation from Volumes

The remote rendering technique described in this thesis is in principle not limited

to DVR, but is applicable to any rendering algorithm that is able to produce 2.5D

image data. Generating a depth buffer from volumes rendered using DVR is however

more challenging than e. g. deducing depths from polygonal renderings where no

transparency is involved. In the latter case, depending on the rendering algorithm,

depth values are easily deduced by using e. g. the first hit position of a primary ray

with the scene objects, or the frontmost entry in a z-buffer.

6.2. REMOTE RENDERING TECHNIQUE 135

In the case of surface rendering, the depth buffer is easy to deduce because only

the cross section between two different media is considered for rendering. In DVR,

all participating media contribute to the image. Unlike it is the case with mere

surface rendering, volumes are well defined throughout their whole region, and not

only at their boundaries. In general, there is not necessarily a distinct cross section

between two media along the path of a ray intersecting a volume, and even if there

is, contention may arise if more than two different types of medium are intersected

by the ray and all of them are assigned translucent colors (cf. Figure 6.3). On

top of that, it is not even true that the most plausible depth buffer value for the

ray necessarily coincides with one of the boundary layers between participating

media. Such a justification is not valid because of the very fact that the volume

is well defined at every voxel. Because of this ambiguity, depth buffer generation

can only be performed heuristically. Different heuristics may apply based upon

certain assumptions. One valid assumption may for instance be that the transfer

function extracts an isosurface from the volume data and that all features beyond

the isosurface are mostly occluded.

The evaluation of the heuristics described in the remainder of this subsection are

based on different assumptions regarding the nature of the transfer function and the

volume dataset. They are exemplarily described based on the ray casting algorithm.

Anyway, the heuristics are in general applicable to any DVR algorithm but lend

themselves well to a ray casting implementation because they rely on the analysis of

cumulative quantities that are gathered along single rays.

Heuristics for depth buffer generation are divided into two classes. Single-pass

heuristics are evaluated during ray traversal. Since no additional rendering pass is

necessary, these heuristics are cheap regarding execution time. Conversely, two-pass

heuristics are evaluated using two rendering passes. These heuristics are expected to

produce results of higher quality at the cost of a higher execution time.

The single-pass heuristics comprise the following:

Entry A ray is traversed through the volume once. The depth value is recorded

at the z-position where the first non-transparent voxel along the ray was

encountered.

136 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Exit A ray is traversed through the volume once. The depth value is recorded at the

z-position where the last non-transparent voxel along the ray was encountered.

Midpoint The Entry and Exit z-positions are recorded in a ray traversal pass.

The depth value is recorded at the midpoint between Entry- and Exit position.

Peak A ray is traversed through the volume once. The depth value is recorded at

the z-position where the highest opacity was encountered.

Threshold A ray is traversed through the volume once, and alpha compositing is

performed. The depth value is recorded where the accumulated opacity reaches

a certain threshold.

Gradient A ray is traversed through the volume once. The depth value is recorded

at the z-position with the highest gradient between two neighboring voxels.

The evaluated two-pass heuristics are the following:

Relative Threshold In a first rendering pass, alpha compositing is performed to

gather the total opacity encountered along the path of the ray. In a second

rendering pass, alpha compositing is performed again and the depth value

reaches a certain threshold, that is weighed by the total opacity gathered during

the first rendering pass.

Entry / Exit Mean In a first rendering pass the Entry- and Exit heuristics are

evaluated. Then a second ray is traversed and alpha compositing is performed.

The depth value is recorded at the z-position where the accumulated opacity

reaches the arithmetic mean between Entry- and Exit opacity.

Note that the Threshold single-pass heuristic can only produce useful results for

meaningful opacity thresholds. If the threshold cannot be reached along any ray,

because the general alpha contribution along the ray is too low, the recorded depth

values will coincide with the backsides of the volume’s bounding box. Although this

problem is less imminent with the Relative Threshold heuristic because the threshold

is weighed by the total opacity observed along the ray, the opacity threshold should

6.2. REMOTE RENDERING TECHNIQUE 137

Figure 6.4: Image-based remote rendering of a CT head dataset. Left: the original
image before reprojection. Middle: reprojection that was applied due to a slightly
altered view point. Holes are visible especially around the nose and the left eye,
where no image data from the original view point is available. Right: hole artifacts
grow more annoying due to an extreme reprojection.

be implemented as a user-defined parameter that can be adjusted to the specific

combination of volume data and transfer function.

The proposed heuristics were designed to handle different scenarios. If the transfer

function contains high frequencies, it is likely that a strong isosurface is present that

determines the depth values. Other combinations of datasets with transfer functions

do not favor strong isosurfaces but extract mostly homogeneous regions. Not all of

the various heuristics will be good matches for both extremes. A thorough evaluation

of the proposed heuristics follows below in Section 6.5.

6.2.4 Reprojection Artifacts

The proposed reprojection technique is an extreme approximation, which only

produces the illusion of actually interacting with the real dataset for slight changes

to the camera transform. The method is subject to multiple sources of uncertainty,

which will result in visually disturbing artifacts. The most obvious artifacts that arise

are holes, which for the purposes of this work are defined as image pixels for which

no image data is available and which are thus, for lack of a better alternative, set to

the background color. The remote rendering technique relies on the fact that for the

138 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.5: This sequence of images shows a case where a depth heuristic produces
severe reprojection artifacts. Left: image rendered for the original view point. Middle:
exact rendering of the same dataset, but with a slightly altered view point. Right:
this image was created by reprojecting the 2.5D dataset representation depicted on
the left side to the view point of the image in the middle. The Peak heuristic was
used to generate the depth buffer for the 2.5D dataset. The right image showcases
jumping artifacts that arise due to the fact that the Peak heuristic does not take
cumulative effects along the ray into account.

course of only a few frames and view point changes, e. g. due to slight movements

of the head in a Virtual Reality application, these artifacts are negligible. When

the difference between current and original view points increase, whole regions of

connected holes arise and the illusion of actually interacting with the real dataset

instead of with a 2.5D image-based approximation diminishes. Figure 6.4 illustrates

how those artifacts grow more severe, the more the current and the original camera

transforms diverge.

Artifacts may also arise if the heuristic employed for depth buffer generation on the

server is insufficient for the dataset. The generated depth buffer in general is subject

to errors originating from the trade-off between execution times and quality. Two-

pass heuristics require the dataset to be rendered twice on the server-side but tend

to produce results with a higher quality than those obtainable through single-pass

heuristics. Apart from that, some of the heuristics introduced in Subsection 6.2.3

favor volume dataset and transfer function combinations with certain characteristics

like an easily extractable isosurface or a large amount of transparency that is assigned

homogeneously to all data items by the transfer function, regardless of their data

6.2. REMOTE RENDERING TECHNIQUE 139

Figure 6.6: The left and middle images show correct renderings of the Marschner
Lobb test dataset [ML94]. The right image was rendered using the reprojection
technique with depth values generated by using the Relative Threshold heuristic. In
the right image, artifacts are visible that are due to samples generated for incorrect
lighting conditions. Especially the highlights resulting from local illumination calcu-
lations for specular lighting are implausible. The magnified views show a highlight
where this problem is most obvious.

value. Figure 6.5 shows an image exhibiting strong artifacts that arise due to an

inappropriate depth heuristic that jumps between isosurfaces at different depths.

Another source of artifacts, that every remote rendering application is potentially

subject to, are compression artifacts that occur when the image stream is encoded

using a lossy compression algorithm. The IBR-based technique proposed in this

thesis is subject to compression artifacts even to a higher degree, because not only

the 2D image, but also the depth buffer is potentially compressed using a lossy

algorithm. Subsection 6.3.3 outlines compression schemes that specifically apply to

depth values.

Artifacts may also arise from reflections that were approximated using a reflectance

model simulating mere local illumination. In particular, specular highlights are only

valid for the view point before warping, but not for the new view point (cf. Figure

6.6). Reflectance models like the Phong model [Pho75] typically add diffuse and

specular contributions to the sample color. The color contribution due to diffuse

reflection is then approximated using Lambert’s formula

140 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Cdiffuse = (N · L)Kd (6.4)

for positive angles between the unit vector to the light source L and the normal

vector at the sample position N , where Kd is a diffuse material property. In contrast

to the diffuse contribution, which only depends on the position of the light source

and on the sample position, the specular contribution is also view point-dependent:

Cspecular = (V ·N)nKs, (6.5)

where V is a unit vector to the viewing position and Ks the material property that

represents the specular reflection. This general behavior holds true for most other

reflectance models that take specular reflection into account [Bli77] [CT82] [War92]

[LFTG97]. Using the proposed technique in conjunction with such a reflectance

model thus may produce implausible images.

Because of these shortcomings, the image-based rendering technique is only applicable

for interactive applications which suffer from latency that only necessitates a few

frames to be approximated. If the two view points differ to much, the resulting

reprojection will become implausible. Section 6.3 proposes approaches to conceal

the various kinds or mitigate the effects of the artifacts described in this section to

enhance the credibility of the reprojected images.

6.2.5 Performance Penalties

Although the image-based remote rendering technique was designed to actually hide

latency, the algorithm itself may impose several sources of overhead. On the server,

on the one hand evaluating the various heuristics to deduce the artificial depth buffer

results in overhead during rendering. Evidently, especially the two-pass heuristics

suffer from this shortcoming. On the other hand, compressing the resulting buffers

and sending them to the client over the network connection is a cause of increased

overall time consumption.

6.3. ENHANCEMENTS TO THE REMOTE RENDERING TECHNIQUE 141

Conversely, on the client side, the overhead for image retrieval and decompression

is effectively hidden behind computation because of the asynchronous nature of

the image-based technique. Here, in comparison to mere remote rendering without

latency hiding through warping, performance pressure arises from the geometry setup.

The number of primitives that must be rendered grows linearly with the targeted

screen resolution. Up until now, the assumption was made that dimensionless point

primitives that occupy a single pixel on the screen were used to represent the warped

points. In general, enhancements to the trivial algorithm are imaginable that soften

this restriction, so that primitives may occupy more than a single screen pixel. In

that case, care must be taken to avoid tremendous performance pressure due to an

increasing amount of fragments that need to be processed. However, with the unified

shader architectures implemented by modern GPUs, a workload imbalance due to

uneven geometry and fragment distribution is not to be expected.

6.3 Enhancements to the Remote Rendering Tech-

nique

This section proposes several enhancements to the image-based remote rendering

technique from above. On the one hand, approaches are presented to enhance the

quality and credibility of the generated images on the client side, while on the other

hand strategies are proposed that help to improve the overall performance of the

remote rendering system. The described techniques tackle the issues reported in

Section 6.2.4 and in Section 6.2.5.

6.3.1 Server-Side Latency Hiding

While the image-based remote rendering technique on the client is asynchronous by

design, the server-side may suffer from performance issues due to additional overhead

that is not related to rendering. The influence of these performance penalties, which

originate from image compression and sending the compressed data over the network,

can be hidden by performing rendering and the aforementioned tasks asynchronously

142 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Thread Save

Message queue

Thread listening

on socket connection

Enqueue messages

Thread Pool

Assign tasks

Render

Compress,

Send

Figure 6.7: Asynchronous event system on the server. The event system was
designed to interleave image compression and socket communication from an earlier
rendering request with computations from the current request. As a side effect, using
a maintenance thread for the message queue, duplicate requests can be discarded.

6.3. ENHANCEMENTS TO THE REMOTE RENDERING TECHNIQUE 143

as well. This demands for an event system that can handle asynchronous requests

on the server, because in general one cannot predict how rendering and sending for

subsequent requests interleave. Figure 6.7 depicts the workflow of the asynchronous

event system that was integrated into the Virvo DVR library. The asynchronous

event system is centered around a server class that basically consists of a thread safe

queue that collects incoming messages. Each message is associated with a unique

identifier and a token that can be translated to an event. Objects of the server class

can handle multiple incoming connections which are also distinguished based on

unique identifiers. Server instances are implemented using subclasses that implement

a virtual handler function that processes the events. An image-based remote server

may e. g. handle the render event in a different way than a mere remote rendering

server does, since it must provide a depth buffer for the rendered image. The abstract

server object uses one thread to maintain the state of the message queue. That

thread performs the select system call to read messages from the connected sockets.

It then enqueues the retrieved messages into the synchronized queue. During the

course of that, a simple optimization is possible. If several messages were issued that

demand for the same event to be handled, only one message needs to be kept in the

queue and the others may be discarded. That way, several render events can e. g.

be merged to a single render event. Messages can now be consumed by multiple

threads. While one thread may e. g. be concerned with rendering, another thread

can send image data to the client asynchronously. That way, all the latency that is

associated with remote rendering can be hidden behind rendering, which is usually

the most time-consuming task. In the latter case, the time it takes for an image to be

displayed by the client after control information like camera matrices and viewport

was sent, is effectively bound by the time it takes for rendering.

The proposed optimization scheme - hiding overhead due to compression and com-

munication behind an ensuing rendering task - is crucial for the image-based remote

rendering technique to be effective. Additional sources of increased overhead, nev-

ertheless, are the two-pass heuristics incorporated with the hope to generate more

reliable depth buffers. Because the two passes are dependent, they cannot be per-

formed asynchronously. Nevertheless, since the color buffer is already created after

the first rendering pass, the workflow could be further rectified by sending the color

144 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

buffer asynchronously immediately after the first rendering pass, and thus only

having to send the depth buffer after the second rendering pass. Nevertheless, this

type of optimization will be less effective when performed in conjunction with hiding

compression and communication behind the ensuing rendering event and is thus

noted for future work.

6.3.2 Corrections for Local Illumination

Renderings with a reflection model applied suffer from inconsistencies because the

angle between the surface normal and the light vector goes into these calculations

and generally differs per view point. A fix for this behavior can be implemented

by deferring the lighting calculations to image space. Then, the normals are calcu-

lated per sampling position, but rather than performing lighting calculations with

them immediately, they are temporarily accumulated, like colors and opacities are.

The accumulated normals can then be transferred to the client in an additional

buffer. This accumulation process can be implemented in different ways, where each

implementation is a heuristic again. Pure averaging of the normals may e. g. be

undesirable if a strong isosurface is extracted from the data. Then it would be a more

intuitive approach to accumulate the normal by favoring sampling positions near the

isosurface over sampling positions that are farther away. Choosing an appropriate

normal accumulation heuristic is a similar task to choosing a heuristic for depth

buffer extraction. A formal analysis of those heuristics and the general fitness of the

deferred lighting calculation approach is, nevertheless, out of the scope of this thesis

and remains future work.

After transferring the normal buffer to the client, the shading calculations are

performed per vertex. In general, any reflection model can be applied to the 2.5D

data. The shaded color can then be blended with the color buffer from the server,

which accounts for an evaluation of the volume rendering integral with absorption

and emission and source and extinction terms obtained through the application of a

post-classification transfer function.

Though this procedure will produce more accurate results because the lighting

6.3. ENHANCEMENTS TO THE REMOTE RENDERING TECHNIQUE 145

calculations match the current viewing configuration, the bandwidth pressure that

it implies renders this procedure inapplicable if implemented naively. In order to

reduce this bandwidth pressure, several optimizations can be applied.

Normals are direction vectors. So, in contrast to storing normals in cartesian

coordinates, a representation in polar coordinates reduces the amount of floating-

point variables per normal from 3 to 2 and thus the memory demand per normal

from 12 bytes to 8 bytes. The memory demand can be further reduced by storing the

normals with half-float precision, i. e. with 16 bits per floating-point value instead of

32 bits. Storing normals with a precision as low as 8 bits was shown to be sufficient

for surface rendering in the past [Mit07]. Assuming that normals are largely coherent

over smooth surfaces, the size of the normal buffer could be drastically reduced

by using downscaling, so that the same normal is e. g. assigned to a screen space

region of 4 × 4 neighboring image fragments. By combining these approaches with

ordinary compression algorithms, the bandwidth impact of sending an additional

normal buffer over the network can be dramatically reduced.

6.3.3 Depth Buffer Compression

Depth buffers demand compression schemes that differ e. g. from the chrominance /

luminance-based compression algorithms that are used for RGB images. There exist

a number of patents that describe efficient depth compression algorithms. This is

mainly due to the fact that depth buffer compression is of interest for the graphic

card vendors who have a need to incorporate depth buffer compression into their

GPUs. Hasselgren and Akenine-Möller summarized some of the algorithms [HAM06].

Most of the algorithms are based on processing tiles, which is reasonable e. g. in

cases where a sort-middle approach (cf. Section 3.4.1) is used. A common scheme of

the algorithms is to define some proxy, such as a plane, that interpolates the depth

field of the respective tile. The depth buffer can then be stored as offsets to the

proxy. Assuming a sufficiently coherent depth buffer, the offsets can be stored with

a much lower precision than the original depth values.

For this thesis, anyhow, the implementation of a dedicated compression algorithm

146 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

remains future work. Nevertheless, sending a raw depth buffer is not an option

because this can result in a multiple of the bandwidth consumption compared to

sending only compressed RGB images. Because of that, several image compression

algorithms were evaluated to compress the depth buffer. PNG, a lossless image

compression algorithm and Snappy, a general compression algorithm, both provide

reasonable compression ratios and fast encoding and decoding. In order to obtain the

performance measurements from Section 6.5.1, the Snappy compression algorithm

was used, because this lossless technique proved to deliver good compression ratios

at high compression and decompression speeds. An evaluation of various image

compression algorithms for depth buffers can also be found in Section 6.5.1.

6.4 Application to Virtual Reality

In Virtual Reality (VR) applications, the position of the user is usually tracked and

thus the camera configuration needs to be adjusted continuously. Drops in frame

rates due to latency or halts are intolerable because they are one cause of the motion

sickness that users of VR applications often suffer from. The image-based rendering

technique is a perfect match for VR applications because it can effectively hide

latency.

The image-based rendering technique was integrated into the VR renderer COVER,

which is part of the COVISE visualization software (cf. Section 3.5.6). COVER

executes only the display phase of the Distributed Volume Rendering Pipeline, while

the previous stages run in a separate server program that ships with the Virvo library.

An integral part of VR applications are stereo rendering capabilities. Stereo rendering

creates the illusion that the projection to the 2D image plane is actually three-

dimensional by overlaying one image per eye with an adjusted perspective, and

then filtering the respective content using glasses. Two stereo rendering modes are

common:

Passive Stereo. Two perspectives are overlaid “in space” and later separated

using the polarization properties of light. A spatial overlay means that image

6.4. APPLICATION TO VIRTUAL REALITY 147

space is subdivided among the two perspectives so that each rendered image

occupies half of the available pixels. The composited image containing the

two perspectives is then projected onto a screen or canvas with a polarization

filter attached to it. The glasses are equipped with filters that have matching

polarization. That way, the respective image is redirected to the appropriate

eye by blocking all the light that comes from the image for the other eye.

Active Stereo. This stereo mode is based on a “time overlay”. Two perspectives

are rendered one after another and are displayed at high refresh rates of 100

Hz and beyond. Shutter glasses operate at the same frequency that the display

device does and alternatingly shut out all light that belongs to the left eye and

to the right eye. The stereo mode is said to be active because the glasses need

a power supply. Synchronization between the glasses and the display device is

accomplished by using a synchronizer which is hooked up to the graphics card

of the rendering computer. The graphics card typically has to support active

stereo by providing compatibility with the synchronizer, and by providing the

ability to render to disjoint memory buffers for the left and the right eye.

COVER supports both stereo modes. The IBR technique was implemented in an

active stereo scenario using a Full HD powerwall and optical tracking of the user’s

head. The user can also use a tracked pointing device that is equipped with mouse

buttons. The active stereo scenario is the easier one to implement, because it does not

require asynchronous execution. Because of the time overlay paradigm, frames are

rendered consecutively. With an asynchronous execution mode, the IBR technique is

harder to implement because there would be two processes that are each attached to

a server process. With these two server processes, that each operate independently,

in general the two 2.5D approximate images will not match and the illusion of 3D

viewing would thus be disturbed. With active stereo and consecutive execution,

this problem is largely mitigated. This is because the instances in time that the

two eyes are served with new images can be easily synchronized by means of the

asynchronous message system. A timestamp can be attached to the messages, and

rendering requests are only processed if there is another rendering request with

the same timestamp. With VR scenarios where two display clients are served by

148 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

two independent server processes, this synchronization must be implemented using

interprocess communication.

6.5 Results

The evaluation of the image-based remote rendering technique for DVR was conducted

based on several criteria. A performance analysis outlines timing and bandwidth tests.

A perceptual evaluation gives insight in how the various heuristics to extract a depth

buffer from volumes perform with different combinations of volume datasets and

transfer functions. The perceptual analysis contrasts the amount of visual artifacts

in terms of holes, which will affect the user experience through flickering, with the

faithfulness of the reconstruction, which is important in the context of scientific

visualization.

6.5.1 Performance Analysis

This section considers the image-based remote rendering technique from a performance

view point. The algorithm was evaluated in terms of the overhead that is imposed

by sending a depth buffer in contrast to sending only RGB images, and in terms of

the performance penalties imposed by rendering points instead of mere image pixels.

The time consumed by the remote rendering algorithm is divided into three periods

which can in parts be interleaved. On the server-side, on top of the time it takes

to generate an image using DVR, overhead occurs due to depth buffer generation,

potentially due to a second rendering pass, and also due to compressing the image

buffer and the depth buffer. After compression, the image needs to be sent over

the network. On the client-side, the buffers are received, and additional overhead

compared to mere image rendering occurs due to the high geometry load imposed by

the image-based rendering technique itself. These three phases - server-side, network

transfer and client-side - were analyzed as follows.

Different compression algorithms were considered. The overhead on the server-side

was considered by measuring the time it takes to compress the buffers based on

6.5. RESULTS 149

Figure 6.8: Test volume that was used to evaluate the depth buffer compression
using various image compression algorithms. In the following, the three view points
will be referred to as Far (left), Default (center), and Near (right).

the type of compression algorithm used. On the client, the time was measured

that it takes to decompress the buffers, and the time it takes to render the point

cloud associated with the buffers. The time it takes to transfer the image data and

depth buffer over the network is harder to separate. Network transfers are usually

implemented as streams by the operating system and the networking APIs. This

implies that library calls to send data are implemented as non-blocking functions

which return immediately, while asynchronously streaming the data to be sent to

the network connection. A reliable measurement of the actual time it takes to

send data over the network is thus hard to achieve, specifically if the data transfer

only takes split seconds. Furthermore, the time overhead is largely due to the

available bandwidth that the network connection supplies, which is subject to several

influencing factors which are outside the scope of the algorithm. Because of that,

to judge the overhead imposed on the network connection, the compression ratio

of the different compression techniques was measured as an absolute indicator of

the overhead imposed by the network transfer. In order to measure the overall

performance of the remote rendering algorithm and its latency, the rate at which new

depth images are received from the server was measured (for those timing results,

see Table 6.6 and the detailed description of the timing procedure below).

For the performance measurements, three different types of compression were applied

to the depth images: PNG image compression, Snappy compression and JPEG image

compression. All tests were performed on an Intel R© CoreTM i7 920 CPU running

Ubuntu Linux 12.04 with Linux kernel 3.2.0-39. All software packages were built

using the GNU compiler toolchain version 4.6.3. Further, the PNG library, version

150 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

View Point Depth Depth (kB) Image Image (kB)
Far 200.00 10 71.43 117
Default 62.50 33 14.29 566
Near 40.00 50 6.67 1217

Table 6.1: Compression ratios for the three view points from Figure 6.8, obtained
using the PNG algorithm. Compression ratios are presented along with the absolute
size of the compressed buffer.

View Point Depth Depth (kB) Image Image (kB)
Far 19.23 105 13.33 610
Default 14.93 135 4.35 1865
Near 12.99 156 2.02 4010

Table 6.2: Compression ratios obtained using the Snappy algorithm.

1.2.46 [Roe14], and the Snappy library, version 1.0.4-1 [Goo14], were used. For

JPEG compression, libjpeg-turbo, version 1.1.90 [Com14a], was used. In contrast to

the PNG and Snappy implementations, the JPEG implementation is optimized for

several SIMD instruction sets, including the SSE instruction set provided by the Intel

CPU used for the performance measurements. The measurements were performed

for an artificial test dataset viewed from different camera positions (cf. Figure 6.8).

These positions were chosen to include a varying amount of actual depth pixels and

of holes. The “compression level” is a parameter to the PNG algorithm which trades

off compression ratio for compression and decompression speed. For this performance

analysis, the compression level, which ranges from 0 to 9, was set to 5. The lossy

JPEG compression algorithm was configured to use a quality of 75 %.

View Point Depth Depth (kB) Image Image (kB)
Far 62.50 32 125.00 64
Default 31.25 64 62.50 128
Near 62.50 32 62.50 128

Table 6.3: Compression ratios obtained using the JPEG algorithm.

6.5. RESULTS 151

PNG Snappy JPEG
View Point Depth Image Depth Image Depth Image
Far 49.7 215.2 1.1 7.8 8.9 11.7
Default 49.0 312.5 1.4 11.4 9.6 12.4
Near 48.9 559.6 1.7 26.2 9.3 12.7

Table 6.4: Average time in milliseconds for compressing the three Full HD images
from Figure 6.8 using PNG, Snappy, and JPEG.

PNG Snappy JPEG
View Point Depth Image Depth Image Depth Image
Far 7.7 37.5 1.7 6.2 4.1 7.8
Default 9.5 62.9 1.4 6.3 4.4 9.5
Near 10.0 62.8 1.8 13.9 4.3 11.1

Table 6.5: Average time in milliseconds for decompressing the three Full HD images
from Figure 6.8 using PNG, Snappy, and JPEG.

Tables 6.1, 6.2, and 6.3 summarize the compression ratios (size of uncompressed

data over size of compressed data) of the algorithms for the three camera positions.

The measurements were performed for a viewport size of 1920× 1080 pixels (Full

HD). An uncompressed depth image of that size amounts to 8, 100 kB for the 32

bit image buffer and 2, 025 kB for the 8 bit depth buffer. Table 6.4 lists the time

that compression took for the three view points, and Table 6.5 summarizes the

amount of time necessary for decompression. Of highest interest are the performance

measurements for the depth buffer, while the results for the image buffers are included

for completeness. All timing results were averaged over a representative amount of

frames. The timing procedure itself was implemented using the high resolution clock

class from the C++ Library Boost::Chrono for high-precision timing results.

The JPEG algorithm is the only lossy compression technique that was used for the

comparison. JPEG has two significant shortcomings in the context of image-based

remote volume rendering. On the one hand, JPEG does not support images with an

alpha channel, so that opacity needs to be transferred along with the depth images

in a separate buffer. This is relevant if the rendered volume shall be composited on

152 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.9: Comparing JPEG compression for the depth buffer to lossless compres-
sion. All color buffers were compressed using the lossless Snappy algorithm. Depth
buffers were compressed, from left to right, top to bottom: JPEG, 25% quality,
JPEG, 75% quality, Snappy (lossless), DVR rendering w/o 2.5D data for comparison.

6.5. RESULTS 153

Dataset Frames Rendered / sec. Frames Received / sec.
Artificial 29.1 29.1
CT-Head 16.6 16.6
Visible Human 23.3 23.3

Table 6.6: Frame rates at which images for the three test datasets were generated
on the server, and frame rates at which they were received on the client. The update
rates are virtually indistinguishable, which shows that server-side latency hiding is
an effective means to conceal remote rendering overhead for compressing images on
the server and sending them over the network.

top of some other geometry such as an isosurface. For the course of the performance

tests, this modality was neglected, but needs to be considered if DVR is performed as

part of a visualization which combines different rendering techniques. On the other

hand, artifacts that JPEG compression introduces are considered to be acceptable

for RGB images, while this in general is not true for depth buffers. Figure 6.9 shows

compressed depth buffers with different JPEG qualities, compared to lossless depth

buffer compression and a DVR image for completeness. The typical block artifacts

known from JPEG compression for RGB images are especially disturbing with the

compressed depth buffer.

Although the compression ratios obtained with the PNG algorithm were superior

to those obtained using Snappy or JPEG, the compression speed was inapplicable

for interactive scenarios, even if the overhead is hidden e. g. behind rendering on

the server. PNG compression is thus only an option if interactive frame rates are

of lower importance than bandwidth issues, e. g. if rendering is performed using a

wide area network (WAN). Equally general, one may say that the lossless Snappy

algorithm is competitive, even if compared to the lossy JPEG algorithm, and renders

it a potent candidate for use in interactive environments. Most specifically, the

Snappy algorithm proved to be superior at compressing and decompressing the depth

buffer, even if compared to dedicated image compression algorithms like JPEG. Note

that these findings not necessarily hold true for image compression, where the JPEG

algorithm, when disregarding its impact on image quality, is superior to Snappy

compression in several cases.

154 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.10: Three datasets used to evaluate the IBR technique. From left to right:
Artificial dataset (32 x 32 x 32 voxels), CT-Head dataset (256 x 256 x 225 voxels),
Visible Human dataset (512 x 512 x 1877 voxels).

Because of its good results for image compression and its general superiority for depth

buffer compression, the subsequent performance tests were based on compression

of both the image data and the depth buffer using the Snappy algorithm. The

IBR technique was evaluated using several timing procedures. To conduct the

tests, a server computer and a desktop client were used. Both computers had

Ubuntu Linux 12.04 with Linux kernel 3.2.0-39 installed. The server computer was

equipped with two physical CPUs of type Intel R© XeonTM E5-2690, which can each

run eight concurrent threads through multi-core and hyper-threading technologies.

The client was equipped with an an Intel R© CoreTM i7 920 CPU. The server computer

was equipped with four NVIDIA R© GeForce GTX TitanTM GPUs. However, for

the ensuing tests, only one of the GPUs was actually used. The two computers

communicated over an ethernet connection with a maximum bandwidth of 1 Gbit/s.

Image-based remote rendering was performed. For the performance tests, the two-

pass heuristic Relative Threshold (cf. Section 6.2.3) was used to generate the depth

buffer. The three configurations depicted in Figure 6.10 were used to conduct the

tests. The timing procedure was the same as the one outlined in Section 5.4: frame

rates were averaged over a sequence of 270 rendered frames. The sequence rotated

the volume about the principal axes in world coordinates, with a slight, random

deviance about the two remaining axes. Viewports of size 1920 × 1080 pixels (Full

6.5. RESULTS 155

Dataset Color and Depth Texture Update Time (ms)
Artificial 4.6
CT-Head 4.2
Visible Human 4.2

Table 6.7: The time it takes to update the two textures that supply colors and depth
to the IBR shader for Full HD viewports. As expected, these times are independent
of the dataset size.

HD) were considered.

Table 6.6 outlines the actual frame rates that it took to render on the server and

compares it to the rate at which the frames were received at the client. The results

show that the rendering speed is proportional to the rate at which new frames

are received on the client. For typical dataset sizes like the ones used for the

performance tests, due to hiding latency behind rendering on the server side and the

fast decompression that the Snappy algorithm provides, there is thus no significant

extra overhead that arises due to using the remote rendering implementation.

After receiving the 2.5D dataset, the next step comprises updating of the color

texture and the depth texture, and actually rendering the point cloud. The following

timing results were obtained by applying the same test procedure like the one

described above. Several OpenGL function calls, like the ones to update texture

buffers, or those to render vertex buffer objects, are non-blocking and execution

immediately returns after the call was issued. To obtain correct timing results,

OpenGL synchronization fences were used, which basically are barriers which are

waited upon until all previous GPU events finished execution. As can be seen from

Table 6.7, updating the color and depth textures on an NVIDIA R© GeForceTM GPU

takes approximately 4 ms, independent of the size of the dataset rendered.

Table 6.8 shows the average time it takes to render the point buffers for the three

test datasets. Once again, rendering times are not bound by the size of the dataset.

In comparison to the rate at which frames are rendered, new images are received

rather infrequently. As a coarse approximation based on the timing results, three

frames are displayed using warping, while one frame is received and the color and

156 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Dataset Rendering Times for the Point Buffer (ms)
Artificial 9.6
CT-Head 11.3
Visible Human 11.1

Table 6.8: Time it takes to render Full HD frames using the IBR technique. Once
again, the execution times were not bound by the dataset size, which is crucial for
the latency hiding technique to be effective.

depth texture are updated accordingly. Because of that, execution is bound by the

rendering time of the point buffers. That way, latency can effectively be hidden on

the client side.

6.5.2 Error Estimates for the Depth Heuristics

A perceptual analysis of the IBR remote rendering technique was conducted for

the conference publication by Zellmann et al., who compared the heuristics for

extracting depth buffers from volume datasets in order to judge their fitness for

different combinations of volume datasets and transfer functions.

Because the 2.5D technique can only reconstruct parts of the artificial world that

the depth images were generated for, an error analysis must take two variables

into account. On the one hand, it is of interest for the error analysis to judge how

faithfully an unbiased rendering can be reconstructed from the 2.5D data. On the

other hand, a qualitative analysis will typically take into account to which degree the

approximate image is biased by visual artifacts due to holes. Hole artifacts, though

displeasing, will not conceal actual facts. They just occur due to no sufficient data

being available to render a specific region of the image. They thus cannot solely serve

as the basis for a qualitative judgment of the depth heuristic used to generate the

image. The faithfulness of the reconstruction on the other hand is directly influenced

by the reliability of the depth heuristic to place a fragment of the 2.5D dataset at an

appropriate z-position. The color contribution along a ray is typically influenced by

few features encountered along the ray. If the z-position happens to be completely

misplaced in regard to that feature, one may deem the reconstruction to be unfaithful.

6.5. RESULTS 157

On the other hand, since the image-based rendering technique is usually used for

latency hiding, visually disturbing artifacts may very well be judged as important an

issue as unfaithful results, because the incorrect frame will typically only be viewed

for the fraction of a second. In that case, hole artifacts will manifest themselves as

flickering. This aliasing artifact is due to the fact that features that are not visible

in one image suddenly become visible in the next.

For their evaluation of the various heuristics in terms of their faithfulness, the authors

used the Peak Signal-To-Noise-Ratio error metric (converted to dB) of the resulting

images

PSNRi = 10 · log10

(
MAX2

T

MSEi

)
, (6.6)

where MSIi is the mean squared error of the image and MAXT is the maximum

noise. The noise, that is used to calculate the mean squared error, was determined

by subtraction of pixel intensities. For that, original images were rendered using the

IBR technique. The depth images obtained by this procedure were warped using

tiny changes in the viewing angle. The resulting, warped images were then compared

to reference images that were obtained by ordinary renderings for the same viewing

configuration.

PSNR in general is known to fail as a reliable error metric in certain situations,

specifically if the contents compared differ to much [HTG08]. PSNR is typically used

when e. g. a compression codec is compared to a raw image. On the other hand,

because PSNR is a noise metric based on image pixel comparison, comparing content

known to be identical will also obscure the results. For example, if two renderings of

a dataset, which were compressed using two different codecs, are compared, and the

rendered objects are viewed from afar, most of the image pixels will be assigned the

background color. Comparing the two images will probably give a high PSNR of

nearly 30 dB, but this result will not be meaningful because the known similarities

obscure the differences one is typically interested in.

So, in order to obtain meaningful results, for the conference proceeding and for

the results that were collected for this thesis, not the PSNR for whole images was

158 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.11: Original position and expected outcome for the test scenario with a
transfer function that extracts an isosurface from the test dataset. This figure was
originally published in [ZAL12] and is reprinted with friendly permission of ASME.

compared, but only for those image pixels that have an actual depth value associated

with it. Per definition, this is true for those pixels that are not holes, and thus also

for those pixels that were not assigned the background color because the ray used

for integration missed the bounding box of the volume. That way, not only could

a reliable judgment be achieved that is based on PSNR. Furthermore, the analysis

could be separated in terms of the two variables that influence the quality of the

reconstruction: visually displeasing artifacts and actual reconstruction errors due to

miscalculation. That way, the rectified PSNR could be used to judge the faithfulness

of the reconstruction, and the relative amount of holes could be used to judge its

visual quality.

Two configurations were used to evaluate the various depth heuristics, which are

shown in Figure 6.11 and 6.12. The dataset used to perform the evaluation is

the General Electric engine dataset that is freely available for scientific studies on

the internet [Uni06]. Two types of different transfer functions were designed to

reconstruct information of interest from the volume dataset. Figure 6.11 shows a

transfer function that extracts a strong isosurface from the data. Figure 6.12 shows

6.5. RESULTS 159

Figure 6.12: Original position and expected outcome for the test scenario with a
transfer function that favors mostly transparent features. This figure was originally
published in [ZAL12] and is reprinted with friendly permission of ASME.

a setup with a transfer function that maps low opacity values to data items, so

that the choice of a suitable z-position for the 2.5D fragment certainly will be more

ambiguous than with the isosurface setup.

Both test setups were subjected to the test scenario in the same way. First the

volume was rotated and translated to its initial position which is depicted on the

left sides of both Figure 6.11 and 6.12. A 2.5D image was rendered for the initial

position, which was then warped by 20◦ about the y axis of the object coordinate

system. On the right side of both figures, the unbiased outcome is depicted after not

warping the intermediate representation, but rotating the actual dataset. This test

procedure was carried out for the depth heuristics proposed in Section 6.2.3, which

were each applied to both test scenarios. The heuristics Threshold and Relative

Threshold accumulate opacity up to a certain amount. In the case of the Threshold

heuristic, for the evaluation opacity was accumulated up to 80 %, and in the case

of the Relative Threshold heuristic, during the second rendering pass, opacity was

accumulated up to 80 % of the opacity that was evaluated along the ray during the

first rendering pass.

160 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Figure 6.13: Results for the isosurface scenario. First and second row: single-pass
heuristics. Third row: two-pass heuristics. From left to right - first row: Entry,
Exit and Midpoint heuristics. Second row: Threshold, Peak and Gradient heuristics.
Third row: Relative Threshold and Entry / Exit Mean heuristics. The highlighted
image in the lower right corner depicts the unbiased outcome after a rotation instead
of a warp transformation. This figure was originally published in [ZAL12] and is
reprinted with friendly permission of ASME.

6.5. RESULTS 161

Figure 6.14: Results for the scenario with a transfer function assigning low opacity
to the data items. See the caption for Figure 6.13 for the assignment of result images
to depth heuristics. The highlighted image was again obtained by rotating the
original dataset instead of warping the 2.5D approximate rendering. This figure was
originally published in [ZAL12] and is reprinted with friendly permission of ASME.

162 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

Heuristic PSNR (dB) Holes (%)
Entry 19.52 17
Exit 11.32 20
Midpoint 11.29 13
Threshold 21.2 19
Peak 16.11 30
Gradient 20.55 24
Relative Threshold 21.92 26
Entry / Exit Mean 19.54 18

Table 6.9: Peak Signal-To-Noise Ratios and holes in percent for various depth
heuristics applied to the engine dataset with the isosurface extracting transfer
function from Figure 6.11. Those results were originally published in [ZAL12] and
are reprinted with friendly permission of ASME.

Table 6.9 and 6.10 summarize the results from the conference publication for the two

test scenarios. Figures 6.13 and 6.14 show the outcome of the evaluation for both

datasets.

For the setup that extracted an isosurface from the dataset, a PSNR greater than

20 dB suggests that the most faithful results were obtained using the heuristics

Gradient, Threshold, and Relative Threshold. For the other setup, the heuristics

Threshold and Relative Threshold produced acceptable results. The Peak heuristic

was specifically insufficient to reconstruct an isosurface because it produced jumping

artifacts. In the specific case, these stem from the fact that both the front-side as well

as the back-side of the engine have similar material properties and thus compete for

the assignment of the peak position. Slight variations would favor the front-side along

one ray, and the back-side along the neighboring ray, in an unpredictable manner.

The heuristics Entry, Exit, Midpoint, and Entry / Exit Mean proved unreliable

because they tend to map all depth values to a single plane, even if the contour

described by an isosurface that was extracted was highly faceted.

Most notably, though producing the most reliable results, the two-pass heuristics

did not prove to be absolutely superior to the single-pass heuristics. The Gradient

heuristic did for certain configurations like the one where a strong isosurface was

extractable from the dataset provide acceptable results, but the Threshold heuristic

6.6. CONCLUSIONS 163

Heuristic PSNR (dB) Holes (%)
Entry 15.83 20
Exit 17.26 18
Midpoint 15.94 14
Threshold 18.21 15
Peak 17.96 21
Gradient 16.88 22
Relative Threshold 19.02 28
Entry / Exit Mean 15.48 29

Table 6.10: Peak Signal-To-Noise Ratios and holes in percent for the setup from
Figure 6.12. Those results were originally published in [ZAL12] and are reprinted
with friendly permission of ASME.

in particular proved to produce acceptable results for general scenarios, even with a

lot of transparent data items present.

6.6 Conclusions

The image-based remote rendering technique proposed in this chapter is capable of

effectively hiding latency. Because of that, it can be used in interactive scenarios or

in virtual environments. With its low demand for compute power, it can be used to

perform remote rendering on thin clients such as notebook PCs, or on desktop clients

with commodity graphics hardware. On the downside, this flexibility comes at the

cost of higher bandwidth consumption due to the depth buffer that must be sent

along with the remote rendered image. This penalty can nevertheless be mitigated

to a large degree by using compression. The lossless Snappy algorithm proved

specifically well suited. The compression ratios that were obtained for compressing

the depth buffer using Snappy are superior even to the lossy JPEG format, and the

implementation used for this thesis can compress and decompress image buffers and

depth buffers at interactive rates.

The image-based rendering technique, though meant to hide latency, actually in-

troduces additional overhead that highly impacts the overall performance of the

164 CHAPTER 6. DECOUPLING RENDERING AND DISPLAY PHASE

rendering system if implemented naively. Therefore, in order for the remote render-

ing technique to become effective, an implementation is mandatory that hides the

extra latency behind calculations such as rendering. The proposed implementation

accomplishes this by means of an asynchronous event system on the server side.

The effectiveness of the image-based remote rendering technique in conjunction

with the asynchronous event system was proved by performing several performance

measurements. These showed that the rate at which new images are generated on

the server, and the rate at which these new images are received at the client, are

mostly identical. Furthermore, rendering Full HD point clouds took only a third of

the rate at which Full HD frames were received from the server, so that the technique

can be effectively used to hide latency. In general, when rendering at 20 to 30 frames

per second, images were received at the same rate. In the meantime, Full HD frames

could be rendered by warping the 2.5D intermediate dataset at 90 to 100 frames per

second, which is in general sufficient for most interactive applications.

Several enhancements to the image-based rendering algorithm help to conceal visual

artifacts. Actual rendering errors nevertheless may have an even higher impact,

especially if remote rendering is used to explore a scientific or even medical dataset.

Rendering errors are mainly introduced by choosing an inappropriate heuristic to

estimate the depth buffer. Several heuristics were evaluated. The evaluation was

based on a noise estimator that was adjusted to exclude image regions without a

depth contribution. Two-pass heuristics in general proved to be slightly superior to

single-pass heuristics. Nevertheless, single-pass heuristics that accumulate opacity or

that consider the gradient of the voxel field generally proved to result in an acceptable

depth buffer extraction.

Chapter 7

Summary, Conclusions and Future

Work

This chapter briefly summarizes and concludes this thesis and gives an outlook on how

the methodology that was proposed and evaluated could be developed further. This

final chapter is structured as follows. Section 7.1 summarizes the main contributions

of this work and outlines their relevance. Section 7.2 summarizes the main conclusions

and Section 7.3 gives an outlook on possible future work.

7.1 Contributions and Relevance of this Work

Direct rendering of volumetric phenomena without a prior extraction of a surface

representation is highly relevant to several research communities. Meteorologists for

example rely on the ability to interactively explore volumetric datasets of weather

phenomena [HAF+96]. Two developments could be observed more recently in the

context of scientific visualization. On the one hand, the increasing adoption of in situ

visualization implies that visualization algorithms are executed on hardware that

is no good match for graphic processing. On the other hand, because predictions

suggest that the continuous shrinking of transistor sizes will come to a halt in the near

future, Moore’s law will no longer hold. Even today, the performance increase that

165

166 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

was achieved by packing more transistors on a die is no longer realizable and is thus

replaced through higher parallelism by the hardware vendors. Those developments

are not limited to esoteric hardware such as it is found in HPC systems, but they

can already be witnessed in the context of multi-core processors, where the number

of cores per processor continuously increased in recent years. Those developments

motivate the relevance of the two main contributions of this thesis, i. e. designing

and implementing visualization algorithms for highly parallel hardware platforms,

and improving remote rendering algorithms which enable visualization algorithms at

the same physical location where the simulation is executed.

This work devised a software architecture for distributed volume rendering. The

pipeline approach that was proposed is based on the design considerations of Peterka

et al. [PRY+08], but extends their approach to explicitly support remote rendering

scenarios. The display phase of the Distributed Volume Rendering Pipeline is used

to divide rendering and display of the scientific dataset and can e. g. be used to

implement interactivity techniques.

The two phases of the Distributed Volume Rendering Pipeline that typically impose

the highest computational workload are the parallel rendering phase and the display

phase. In scenarios which shift the execution of visualization algorithms from client

workstations to server computers, the visualization algorithms need to be specifically

adapted in order to render with a high quality and at high frame rates. This thesis

identified many-core systems as the most heterogeneous HPC architecture, which

exposes parallelization in different ways. Processing units (e. g. CPUs, GPGPUs, or

other types of accelerators) were identified to constitute the basic building blocks of

many-core systems, and which can be contained by the latter in different combinations.

A workload distribution was proposed that assigned rendering tasks to the processing

units. Those rendering tasks were executed using sort-first parallel rendering. This

design scales to architectures containing many processing units by combining them

using sort-last parallel rendering. That way, data parallelism among the processing

units can be achieved. Prototypical implementations focused on sort-first rendering,

which were targeted towards several hardware platforms.

The display phase, which follows after image compositing, can be implemented

7.2. CONCLUSIONS 167

to support a variety of different modalities. The scenario targeted in this thesis

considered remote rendering with latency from several sources. With the remote

rendering approach proposed in this work, it is possible to obtained a fixed frame

rate that is independent of the network interconnect between client and server, and

of dataset sizes that prohibit interactive rendering. This was achieved by using a

reduced dataset for rendering on the client while waiting for new image data. This

reduced dataset was built from a 2.5D representation of the most recently obtained

image. Several optimizations were proposed, which help to improve the overall quality

of the rendered output and the responsiveness of the implementation. Deducing a

depth buffer from volume data is only possible using heuristics. Several heuristics

were evaluated regarding their fitness for different alpha transfer functions.

7.2 Conclusions

The evaluation of the ray casting algorithm implemented for Intel R©-compatible CPUs,

for the Intel R© Xeon PhiTM coprocessor, and for NVIDIA R© GPGPUs revealed the

following. In general, the best match for DVR using ray casting is the GPGPU,

because of its high memory bandwidth and its hardware support for trilinear texture

lookups. However, using SoA-based ray packet traversal, optimized implementations

of the ray casting algorithm are at least competitive. For typical dataset sizes,

the GPGPU outperforms x86-compatible platforms by factors of 1.5 to 2. The

dedicated gather instruction that is available on the Intel R© Xeon PhiTM can help

to dramatically improve the execution of the algorithm. This is promising because

future CPU architectures will also support this instruction.

The image-based remote rendering algorithm was evaluated in terms of its per-

formance and in terms of quality. Good performance is crucial for this type of

algorithm to actually be effective. A method that promises to hide latency should

only introduce a minimum of extra overhead. This was ensured by means of data

compression on the one hand, and server-side latency hiding on the other hand. It

was shown that good compression rates for depth buffers can actually be obtained

by using image compression algorithms. Server-side latency hiding, which can be

168 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

viewed as a double buffering technique, proved to hide the extra overhead introduced

by remote rendering behind calculations that would also have occurred with direct

rendering. Various single-pass heuristics were able to produce faithful depth buffers

that proved sufficient to give the impression of interacting with actual 3D data over

the course of a few frames.

7.3 Outlook

During the work for this thesis, several interesting topics arose that were not in-

vestigated in depth. The following list is only an incomplete synopsis of those

topics.

The literature on DVR algorithms argues that swizzling can be used for effective

cache utilization. Because of that, the SSE code path was adapted to access swizzled

volume data. For that, the volume was considered to consist of bricks the size 43.

In a preprocessing step, the volume was traversed “brickwise”, and the data items

encountered were flattened to form a contiguous array in main memory. The ray

traversal algorithm was then augmented using an index function that matches this

altered memory layout. In theory, a bricked memory layout should result in a better

cache utilization when combined with the depth-first traversal favored by the ray

casting algorithm. The author informally tested the implementation on several

contemporary Intel R© CPUs, but found it to provide no performance increase over

the scanline memory layout that can be implemented more intuitively. However,

the evaluation was informal and comprised only contemporary CPUs. It would

be interesting to analyze the influence of swizzling on rendering performance on

hardware that e. g. does not provide out-of-order instruction execution, like older

Intel R© PentiumTM CPUs or the Intel R© Xeon PhiTM.

Knoll et al. [KTW+11] proposed a CPU implementation that, in addition to the early-

ray termination optimization, also makes use of the empty-space leaping optimization.

To accommodate this optimization, the authors had to favor AoS ray traversal over

SoA packet traversal in order to traverse the BVH they used to organize the volume.

This approach necessitates the use of a stack to dissolve the recursion necessary to

7.3. OUTLOOK 169

traverse the BVH, with a stack counter maintained per thread. A formal comparison

of the two approaches - accepting the additional overhead necessary for BVH traversal

or abandoning the use of the empty-space leaping optimization - would be of high

interest.

The image-based rendering technique suffers from visual artifacts which arise because

the reduced 2.5D dataset does in general not cover the whole screen space for a new

camera configuration. The influence of those artifacts could probably be mitigated

by using a splatting technique that distributes the color contribution of a pixel over

a larger region in screen space. Implementing such a technique would arouse new

problems, like artifacts at the boundaries between splats, which would need to be

accounted for.

With the proposed configuration, 2.5D image pixel compositing is deferred until the

execution of the display phase. However, this thesis only considered that the color

and depth buffers were only composited on top of a uniformly colored background.

It would be interesting to evaluate the algorithm’s usefulness in a sort-last rendering

scenario. With an implementation targeted towards sort-last rendering, the 2.5D

representation would already have to be accounted for during compositing, i. e. during

the execution of the parallel rendering phase of the Distributed Volume Rendering

Pipeline.

Obtaining a normal for faithful local illumination on the client when using the

image-based remote rendering technique can only be done heuristically. While this

thesis only suggests some possible implementations for normal accumulation, a formal

evaluation like the one conducted for the depth buffer generation heuristics would be

an interesting topic to be investigated in the future.

170 CHAPTER 7. SUMMARY, CONCLUSIONS AND FUTURE WORK

Bibliography

[ABW+13] Sean Ahern, Eric Brugger, Brad Whitlock, Jeremy S. Meredith, Kath-

leen Biagas, Mark C. Miller, and Hank Childs. Visit: Experiences with

sustainable software. CoRR, abs/1309.1796, 2013.

[AL09] Timo Aila and Samuli Laine. Understanding the efficiency of ray

traversal on GPUs. In Proceedings of High-Performance Graphics 2009,

pages 145–149, 2009.

[ALK12] Timo Aila, Samuli Laine, and Tero Karras. Understanding the efficiency

of ray traversal on GPUs – Kepler and Fermi addendum. NVIDIA

Technical Report NVR-2012-02, NVIDIA Corporation, June 2012.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages

483–485, New York, NY, USA, 1967. ACM.

[ASW13] Marco Ament, Filip Sadlo, and Daniel Weiskopf. Ambient volume scat-

tering. IEEE Transactions on Visualization and Computer Graphics,

19(12):2936–2945, 2013.

[AW13] Stefan Auer and Rüdiger Westermann. Direct contouring of implicit

closest point surfaces. In M.-A. Otaduy and O. Sorkine, editors, EG

2013 - short papers, pages 1–4. Eurographics Association, 2013.

[Bak77] N.S. Bakhvalov. Numerical methods: analysis, algebra, ordinary differ-

ential equations. MIR Publishers, 1977.

171

172 BIBLIOGRAPHY

[BCH12] Wes E. Bethel, Hank Childs, and Charles Hansen. High Performance

Visualization—Enabling Extreme-Scale Scientific Insight. Chapman &

Hall, CRC Computational Science. CRC Press/Francis–Taylor Group,

Boca Raton, FL, USA, November 2012.

[BEL+07] Solomon Boulos, Dave Edwards, J. Dylan Lacewell, Joe Kniss, Jan

Kautz, Peter Shirley, and Ingo Wald. Packet-based whitted and distri-

bution ray tracing. In GI ’07: Proceedings of Graphics Interface 2007.

ACM, May 2007.

[Ben75] Jon L Bentley. Multidimensional binary search trees used for associative

searching. Communications of the ACM, 18(9):509–517, 1975.

[Bli77] James F Blinn. Models of light reflection for computer synthesized

pictures. In SIGGRAPH ’77: Proceedings of the 4th annual conference

on Computer graphics and interactive techniques, August 1977.

[Bli96] Jim Blinn. Jim Blinn’s corner: a trip down the graphics pipeline.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

[BPT02] Chandrajit Bajaj, Sangmin Park, and A. Thane. Parallel multi-pc

volume rendering system. CS & ICES Technical Report, University of

Texas at Austin, 2, 2002.

[BSF+91] William J. Bolosky, Michael L. Scott, Robert P. Fitzgerald, Robert J.

Fowler, and Alan L. Cox. NUMA policies and their relation to memory

architecture. In ASPLOS IV: Proceedings of the fourth international

conference on Architectural support for programming languages and

operating systems. ACM, April 1991.

[Bus11] Bussler, Michael and Rick, Tobias and Kelle-Emden, Andreas and

Hentschel, Bernd and Kuhlen, Torsten. Interactive particle tracing in

time-varying tetrahedral grids. In Proceedings of the 11th Eurograph-

ics conference on Parallel Graphics and Visualization, pages 71–80.

Eurographics Association, 2011.

BIBLIOGRAPHY 173

[BWW+01] Carsten Benthin, Ingo Wald, Sven Woop, Manfred Ernst, and

William R. Mark. Combining single and packet ray tracing for arbitrary

ray distributions on the intel(r) mic architecture. IEEE Transactions

on Visualization and Computer Graphics, 2001.

[CBB+05] Hank Childs, Eric Brugger, Kathleen Bonnell, Jeremy Meredith, Mark

Miller, Brad Whitlock, and Nelson Max. A contract based system for

large data visualization. In Visualization, 2005. VIS 05. IEEE, pages

191–198. IEEE, 2005.

[CDE13] Biagio Cosenza, Carsten Dachsbacher, and Ugo Erra. GPU cost es-

timation for load balancing in parallel ray tracing. In International

Conference on Computer Graphics Theory and Applications (GRAPP),

pages 139–151, 2013.

[CH02] Liviu Coconu and Hans-Christian Hege. Hardware-accelerated point-

based rendering of complex scenes. In EGRW ’02: Proceedings of the

13th Eurographics workshop on Rendering. Eurographics Association,

July 2002.

[CJ05] Christopher S. Co and Kenneth I. Joy. Isosurface generation for large-

scale scattered data visualization. In Proceedings of Vision, Modeling

and Visualization, pages 233–240, 2005.

[Com14a] Commander, Darrell. libjpeg-turbo — main / libjpeg-turbo. http:

//www.libjpeg-turbo.org/Main/HomePage, 2014.

[Com14b] Commander, Darrell. Virtualgl — main / libjpeg-turbo. http://www.

virtualgl.org, 2014.

[CRZP04] Wei Chen, Liu Ren, Matthias Zwicker, and Hanspeter Pfister.

Hardware-accelerated adaptive EWA volume splatting. In VIS ’04:

Proceedings of the conference on Visualization ’04. IEEE Computer

Society, October 2004.

http://www.libjpeg-turbo.org/Main/HomePage
http://www.libjpeg-turbo.org/Main/HomePage
http://www.virtualgl.org
http://www.virtualgl.org

174 BIBLIOGRAPHY

[CT82] Robert L. Cook and Kenneth E. Torrance. A reflectance model for

computer graphics. ACM Transactions on Graphics (TOG), 1(1):7–24,

January 1982.

[CT08] Daniel Cederman and Philippas Tsigas. On dynamic load balanc-

ing on graphics processors. Proceedings of the 23rd ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pages

57–64, 2008.

[CVKG10] Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R. Gao.

Dynamic load balancing on single-and multi-GPU systems. IEEE Inter-

national Symposium on Parallel and Distributed Processing (IPDPS),

pages 1–12, 2010.

[Des14] DeskVOX. Deskvox volume explorer. https://github.com/deskvox/

deskvox, 2014.

[DGBP05] David E. DeMarle, Christiaan P. Gribble, Solomon Boulos, and

Steven G. Parker. Memory sharing for interactive ray tracing on

clusters. Parallel Computing, 31(2):221–242, 2005.

[DK12] Aritra Dasgupta and Robert Kosara. The importance of tracing data

through the visualization pipeline. In Proceedings of the 2012 BELIV

Workshop: Beyond Time and Errors-Novel Evaluation Methods for

Visualization, page 9. ACM, 2012.

[DKC+98] Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter, and

Arie Kaufman. High-quality volume rendering using texture mapping

hardware. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

workshop on Graphics hardware, pages 69–ff., 1998.

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP: an industry stan-

dard API for shared-memory programming. Computational Science &

Engineering, IEEE, 5(1):46–55, 1998.

https://github.com/deskvox/deskvox
https://github.com/deskvox/deskvox

BIBLIOGRAPHY 175

[dSB04] Selan dos Santos and Ken Brodlie. Gaining understanding of multi-

variate and multidimensional data through visualization. Computers

& Graphics, 28(3):311–325, 2004.

[EJR+13] Tiago Etiene, Daniel Jonsson, Timo Ropinski, Carlos Scheidegger, Joao

Comba, Luis Nonato, Robert Kirby, Anders Ynnerman, and Claudio

Silva. Verifying Volume Rendering Using Discretization Error Analysis.

Visualization and Computer Graphics, IEEE Transactions on, 20(99),

2013.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-

integrated volume rendering using hardware-accelerated pixel shading.

In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop

on Graphics Hardware, HWWS ’01, pages 9–16, New York, NY, USA,

2001. ACM.

[EP07] Stefan Eilemann and Renato Pajarola. Direct send compositing for

parallel sort-last rendering. In EG PGV’07: Proceedings of the 7th

Eurographics conference on Parallel Graphics and Visualization. Euro-

graphics Association, May 2007.

[EW92] Rae Earnshaw and Norman Wiseman. An introductory guide to scien-

tific visualization. Springer-Verlag, 1992.

[FBJ+08] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong

Kuo. Intel avx: New frontiers in performance improvements and energy

efficiency. Intel White Paper, 2008.

[FK10] Thomas Fogal and Jens Krüger. Tuvok, an Architecture for Large Scale

Volume Rendering. Proceedings of the 15th International Workshop on

Vision, Modeling, and Visualization, pages 57–66, 2010.

[Fly72] Michael J. Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, 21(9):948–960, September 1972.

[FvDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer Graphics: Principles and Practice (2Nd Ed.).

176 BIBLIOGRAPHY

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1990.

[Gol91] David Goldberg. What every computer scientist should know about

floating-point arithmetic. ACM Comput. Surv., 23(1):5–48, March

1991.

[Goo14] Google. snappy - a fast compressor/decompressor - google project

hosting. https://code.google.com/p/snappy/, 2014.

[GSO12] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. A study of persistent

threads style GPU programming for GPGPU workloads. Innovative

Parallel Computing (InPar), 2012, pages 1–14, 2012.

[HAF+96] William L. Hibbard, John Anderson, Ian Foster, Brian E. Paul, Chad

Schafer, and Mary K. Tyree. Exploring coupled atmosphere-ocean mod-

els using Vis5D. International Journal of High Performance Computing

Applications, 10(2):211–222, 1996.

[HAM06] Jon Hasselgren and Tomas Akenine-Möller. Efficient depth buffer

compression. In EUROGRAPHICS Conference On Graphics Hardware:

Proceedings of the 21 st ACM Eurographics symposium on Graphics

hardware: Vienna, Austria, pages 103–110, 2006.

[HÇE96] Peter Hastreiter, Huseyin K. Çakmak, and Thomas Ertl. Intuitive and

interactive manipulation of 3D data sets by integrating texture mapping

based volume rendering into the openinventor class hierarchy. Bild-

verarbeitung fuer die Medizin: Algorithmen, Systeme, Anwendungen,

pages 149–154, 1996.

[Hen04] Amy Henderson. The ParaView Guide: A Parallel Visualization Ap-

plication. Kitware, November 2004.

[HKRS+06] Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, Daniel

Weiskopf, and Klaus Engel. Real-time Volume Graphics. A. K. Peters,

Ltd., Natick, MA, USA, 2006.

https://code.google.com/p/snappy/

BIBLIOGRAPHY 177

[HLC91] Robert B. Haber, Bruce Lucas, and Nancy S. Collins. A data model for

scientific visualization with provisions for regular and irregular grids.

In IEEE Conference on Visualization, 1991., pages 298–305, 1991.

[HM90] Robert B. Haber and David A. McNabb. Visualization idioms: a

conceptual model for scientific visualization systems. Visualization in

Scientific Computing, pages 74–93, 1990.

[HMS95] Wolfgang Heidrich, Michael McCool, and John Stevens. Interactive

maximum projection volume rendering. In Visualization, 1995. Visual-

ization ’95. Proceedings., IEEE Conference on, pages 11–18, 1995.

[HPS12] High-performance scientific computing in terrestrial systems, HPSC

TerrSys. http://www.hpsc-terrsys.de, 2012.

[HPvW94] Lambertus Hesselink, Frits H. Post, and Jarke J. van Wijk. Research

issues in vector and tensor field visualization. IEEE Computer Graphics

and Applications, 14(2):76–79, March 1994.

[HTG08] Quan Huynh-Thu and Mohammed Ghanbari. Scope of validity of PSNR

in image/video quality assessment. Electronics Letters, 44(13):800,

2008.

[IBH11] Thiago Ize, Carson Brownlee, and Charles D. Hansen. Real-time ray

tracer for visualizing massive models on a cluster. In Eurographics

Symposium on Parallel Graphics and Visualization, 2011.

[Int13] Intel R©. Intel R© 64 and ia-32 architectures devel-

oper’s manual: Vol. 2a. http://www.intel.com/

content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-software-developer-vol-2a-manual.

pdf, September 2013.

[Int14] Intel R©. Intel R©cilkTM plus. http://software.intel.com/en-us/

intel-cilk-plus, 2014.

[JH04] Christopher Johnson and Charles D. Hansen. Visualization Handbook.

Academic Press, Inc., Orlando, FL, USA, 2004.

http://www.hpsc-terrsys.de
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
http://software.intel.com/en-us/intel-cilk-plus
http://software.intel.com/en-us/intel-cilk-plus

178 BIBLIOGRAPHY

[JR13] James Jeffers and James Reinders. Intel Xeon Phi Coprocessor High

Performance Programming. Elsevier Science & Technology Books,

2013.

[JvRLHK04] Thomas Jansen, Bartosz von Rymon-Lipinski, Nils Hanssen, and Erwin

Keeve. Fourier volume rendering on the GPU using a split-stream-FFT.

In Vision, modeling, and visualization 2004: proceedings, November

16-18, 2004, Standford, USA, page 395. IOS Press, 2004.

[KA97] Hüseyin Kutluca and Cevdet Aykanat. Image-space decomposition

algorithms for sort-first parallel volume rendering of unstructured grids.

The Journal of Supercomputing, 15(1):51–93, 1997.

[KD98] Gordon Kindlmann and James W. Durkin. Semi-automatic generation

of transfer functions for direct volume rendering. In Proceedings of the

1998 IEEE symposium on Volume visualization, pages 79–86. ACM,

1998.

[Khr13] KhronosTMGroup. OpenCL - the open standard for parallel program-

ming of heterogeneous systems. http://www.khronos.org/opencl/,

January 2013.

[Kit14a] Kitware. ParaView - open source scientific visualization. http://www.

paraview.org, 2014.

[Kit14b] Kitware. Vtk - the visualization toolkit. http://www.vtk.org, 2014.

[KKC+13] Rakesh Krishnaiyer, Emre Kultursay, Pankaj Chawla, Serguei Preis,

Anatoly Zvezdin, and Hideki Saito. Compiler-based data prefetching

and streaming non-temporal store generation for the intel(r) xeon

phi(tm) coprocessor. In IPDPS Workshops, pages 1575–1586. IEEE,

2013.

[KLT07] Jong Kwan Lee and Newman S. Timothy. New method for opacity

correction in oversampled volume ray casting. Journal of WSCG,

15(1–3):1–8, 2007.

http://www.khronos.org/opencl/
http://www.paraview.org
http://www.paraview.org
http://www.vtk.org

BIBLIOGRAPHY 179

[KMM+01] Joe Kniss, Patrick McCormick, Allen McPherson, James Ahrens, James

Painter, Alan Keahey, and Charles D. Hansen. Interactive texture-

based volume rendering for large data sets. Computer Graphics and

Applications, IEEE, 21(4):52–61, 2001.

[KOWT11] Tobias Klug, Michael Ott, Josef Weidendorfer, and Carsten Trinitis. Au-

topin: automated optimization of thread-to-core pinning on multicore

systems. In Per Stenström, editor, Transactions on high-performance

embedded architectures and compilers III, Lecture Notes in Computer

Science, pages 219–235. Springer-Verlag, Berlin, Heidelberg, 2011.

[KS13] Martina Klose and Yaping Shao. Large-eddy simulation of turbulent

dust emission. Aeolian Research, 8:49–58, 2013.

[KTW+11] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D. Hansen, Hans

Hagen, and Michael E. Papka. Full-resolution interactive CPU vol-

ume rendering with coherent BVH traversal. Pacific Visualization

Symposium (PacificVis), 2011 IEEE, pages 3–10, 2011.

[KVH84] James T. Kajiya and Brian P. Von Herzen. Ray tracing volume densities.

In SIGGRAPH ’84: Proceedings of the 11th annual conference on

Computer graphics and interactive techniques. ACM, January 1984.

[KW03] Jens Krüger and Rüdiger Westermann. Acceleration techniques for

GPU-based volume rendering. In VIS ’03: Proceedings of the 14th

IEEE Visualization 2003 (VIS’03). IEEE Computer Society, October

2003.

[LC87] William Lorensen and Harvey Cline. Marching cubes: A high resolution

3D surface construction algorithm. SIGGRAPH ’87: Proceedings of the

14th annual conference on Computer graphics and interactive techniques,

1987.

[LCCK02] Joshua Leven, Jason Corso, Jonathan Cohen, and Subodh Kumar.

Interactive visualization of unstructured grids using hierarchical 3D

textures. In Volume Visualization and Graphics, 2002. Proceedings.

180 BIBLIOGRAPHY

IEEE / ACM SIGGRAPH Symposium on, pages 37–44. IEEE Press,

2002.

[LCNC98] Barthold Lichtenbelt, Randy Crane, Shaz Naqui, and Hewlett-Packard

Company. Introduction to Volume Rendering. Hewlett-Packard Profes-

sional Books. Prentice Hall PTR, 1998.

[Lev88] Marc Levoy. Display of surfaces from volume data. IEEE Comput.

Graph. Appl., 8(3):29–37, May 1988.

[LFTG97] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and

Donald P. Greenberg. Non-linear approximation of reflectance functions.

In SIGGRAPH ’97: Proceedings of the 24th annual conference on

Computer graphics and interactive techniques. ACM Press/Addison-

Wesley Publishing Co., August 1997.

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: a progressive

refinement algorithm for volume rendering. SIGGRAPH Comput.

Graph., 25(4):285–288, July 1991.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a

shear-warp factorization of the viewing transformation. In Computer

Graphics Proceedings, Annual Conference Series, 1994.

[LMHJ99] Eric C. La Mar, Bernd Hamann, and Kenneth I. Joy. Multiresolution

techniques for interactive texture-based volume visualization. In Pro-

ceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99),

VISUALIZATION ’99, Washington, DC, USA, 1999. IEEE Computer

Society.

[LMK03] Wei Li, Klaus Mueller, and Arie Kaufman. Empty Space Skipping

and Occlusion Clipping for Texture-based Volume Rendering. In VIS

’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03). IEEE

Computer Society, October 2003.

BIBLIOGRAPHY 181

[lMPH94] Kwan liu Ma, James S. Painter, and Charles D. Hansen. Parallel

volume rendering using binary-swap compositing. IEEE Computer

Graphics and Applications, 14:59–68, 1994.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.

NVIDIA Tesla: A unified graphics and computing architecture. Micro,

IEEE, 28(2):39–55, 2008.

[LWK05] John Leech, Paula Womack, and Phil Karlton. OpenGL graphics with

the X Window System. Silicon Graphics, Mountain View, CA, USA,

December 2005.

[MA04] Kenneth Moreland and Edward Angel. A fast high accuracy volume

renderer for unstructured data. In Volume Visualization and Graphics,

2004 IEEE Symposium on, pages 9–16. IEEE, 2004.

[Ma09] Kwan-Liu Ma. In situ visualization at extreme scale: Challenges and

opportunities. IEEE Computer Graphics and Applications, 29:14–19,

2009.

[Max95] Nelson Max. Optical models for direct volume rendering. IEEE

Transactions on Visualization and Computer Graphics, 1(2):99–108,

June 1995.

[MCEF94] Steven Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A

sorting classification of parallel rendering. IEEE Computer Graphics

and Applications, 14:23–32, 1994.

[MDBZ87] Bruce Howard McCormick, Thomas A. DeFanti, Maxine D. Brown,

and Raul Zaritsky. Visualization in Scientific Computing, 1987.

[MHK95] Xiaoyang Mao, Lichan Hong, and Arie Kaufman. Splatting of curvilin-

ear volumes. In Visualization, 1995. Visualization ’95. Proceedings.,

IEEE Conference on, pages 61–68, 1995.

[MIH04] Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara. Parallel volume

rendering with early ray termination for visualizing large-scale datasets.

182 BIBLIOGRAPHY

In ISPA’04: Proceedings of the Second international conference on

Parallel and Distributed Processing and Applications. Springer-Verlag,

December 2004.

[Mit07] Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH

2007 Courses, SIGGRAPH ’07, pages 97–121, New York, NY, USA,

2007. ACM.

[ML94] Stephen R. Marschner and Richard Lobb. An evaluation of reconstruc-

tion filters for volume rendering. In R. Daniel Bergeron and Arie E.

Kaufman, editors, IEEE Visualization, pages 100–107. IEEE Computer

Society, 1994.

[MMD08] Stéphane Marchesin, Catherine Mongenet, and Jean-Michel Dischler.

Multi-GPU sort-last volume visualization. In EG PGV’08: Proceedings

of the 8th Eurographics conference on Parallel Graphics and Visualiza-

tion. Eurographics Association, April 2008.

[MMFE06] Ricardo Marroquim, André Maximo, Ricardo Farias, and Claudio

Esperança. GPU-based cell projection for interactive volume render-

ing. In 19th Brazilian Symposium on Computer Graphics and Image

Processing, SIBGRAPI’06, pages 147–154. IEEE, 2006.

[Mor09] Kenneth Moreland. Diverging color maps for scientific visualization. In

Proceedings of the 5th International Symposium on Visual Computing.

Springer Berlin Heidelberg, December 2009.

[Mor13] Kenneth Moreland. A Survey of Visualization Pipelines. IEEE Trans-

actions on Visualization and Computer Graphics, 19(3):367–378, March

2013.

[MSRMH09] Jennis Meyer-Spradow, Timo Ropinski, Jörg Mensmann, and Klaus

Hinrichs. Voreen: A rapid-prototyping environment for ray-casting-

based volume visualizations. Computer Graphics and Applications,

IEEE, 29(6):6–13, 2009.

BIBLIOGRAPHY 183

[Neu94] Ulrich Neumann. Communication costs for parallel volume-rendering

algorithms. Computer Graphics and Applications, IEEE, 14(4):49–58,

1994.

[NVI13] NVIDIA R©. CUDA C programming guide. http://docs.nvidia.com/

cuda/pdf/CUDA_C_Programming_Guide.pdf, July 2013.

[ORM08] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. Large ray

packets for real-time Whitted ray tracing. In Interactive Ray Tracing,

2008. RT 2008. IEEE Symposium on, pages 41–48, 2008.

[Pac11] Peter Pacheco. An Introduction to Parallel Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2011.

[PD84] Thomas Porter and Tom Duff. Compositing digital images. SIGGRAPH

Comput. Graph., 18(3):253–259, January 1984.

[Per05] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan

2005, 2005.

[Pfi01] Gregory F. Pfister. An introduction to the InfiniBand architecture.

High Performance Mass Storage and Parallel I/O, 42:617–632, 2001.

[PGR+09] Tom Peterka, David Goodell, Robert Ross, Han-Wei Shen, and Rajeev

Thakur. A configurable algorithm for parallel image-compositing ap-

plications. In High Performance Computing Networking, Storage and

Analysis, Proceedings of the Conference on, pages 1–10. ACM, 2009.

[PH08] David A. Patterson and John L. Hennessy. Computer Organization

and Design, Fourth Edition, Fourth Edition: The Hardware/Software

Interface (The Morgan Kaufmann Series in Computer Architecture

and Design). Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 4th edition, 2008.

[PHE+11] Dawid Pajak, Robert Herzog, Elmar Eisemann, Karol Myszkowski,

and Hans-Peter Seidel. Scalable Remote Rendering with Depth and

Motion-flow Augmented Streaming. Computer Graphics Forum, March

2011.

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

184 BIBLIOGRAPHY

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Graph-

ics and Image Processing, 18(6):311–317, 1975.

[Pin88] Juan Pineda. A parallel algorithm for polygon rasterization. ACM

SIGGRAPH Computer Graphics, 22(4):17–20, 1988.

[PRY+08] Tom Peterka, Robert Ross, Hongfeng Yu, Kwan-Liu Ma, Wesley

Kendall, and Jian Huang. Assessing improvements to the parallel

volume rendering pipeline at large scale. Proceedings of SC 08 Ultra-

scale Visualization Workshop, pages 13–23, 2008.

[Qt 14] Qt Project. Qt project. http://qt-project.org, 2014.

[RBB+11] Marc Ruiz, Anton Bardera, Imma Boada, Ivan Viola, Miquel Feixas,

and Mateu Sbert. Automatic transfer functions based on informa-

tional divergence. IEEE Transactions on Visualization and Computer

Graphics, 17(12):1932–1941, 2011.

[RLL+96] Dirk Rantzau, Ulrich Lang, Ruth Lang, Harald Nebel, Andreas Wierse,

and Roland Rühle. Collaborative and interactive visualization in

a distributed high performance software environment. In M. Chen,

P. Townsend, and J.A. Vince, editors, High Performance Computing

for Computer Graphics and Visualisation, pages 207–216. Springer

London, 1996.

[Roe14] Roelofs, Greg. libpng home page. http://www.libpng.org/pub/png/

libpng.html, 2014.

[Ros09] Rost, Randi J. and Licea-Kane, Bill and Ginsburg, Dan and Kessenich,

John M. and Lichtenbelt, Barthold and Malan, Hugh and Weiblen,

Mike. OpenGL Shading Language. Addison-Wesley Professional, 3rd

edition, 2009.

[RSFWH98] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and

Andy Hopper. Virtual network computing. Internet Computing, IEEE,

2(1):33–38, 1998.

http://qt-project.org
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html

BIBLIOGRAPHY 185

[RSK05] Christof Rezk-Salama and Andreas Kolb. A vertex program for effi-

cient box-plane intersection. Proc. Vision, Modeling and Visualization

(VMV), pages 115–122, 2005.

[RV06] Daniel Ruijters and Anna Vilanova. Optimizing GPU volume rendering.

Journal of WSCG, 14(1-3):9–16, 2006.

[SC05] Daniel Steinberg and Stuart Cheshire. Zero configuration networking:

the definitive guide. O’Reilly Media, Inc., 2005.

[Sch97] Dieter Schmalstieg. The remote rendering pipeline - managing geometry

and bandwidth in distributed virtual environments. PhD thesis, Vienna

University of Technology, November 1997.

[Sch03] Jürgen P. Schulze. Interactive Volume Rendering in Virtual Environ-

ments. PhD thesis, University of Stuttgart, August 2003.

[SCK11] Heung-Yeung Shum, Shing-Chow Chan, and Sing Bing Kang. Image-

Based Rendering. Springer, 2011.

[SGC01] Dave Sager, Desktop Platforms Group, and Intel Corp. The microar-

chitecture of the pentium 4 processor. Intel Technology Journal, 1:2001,

2001.

[SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski.

Layered depth images. In SIGGRAPH ’98: Proceedings of the 25th

annual conference on Computer graphics and interactive techniques.

ACM, July 1998.

[She03] Jonathan Richard Shewchuk. Updating and constructing constrained

delaunay and constrained regular triangulations by flips. In SCG ’03:

Proceedings of the nineteenth annual symposium on Computational

geometry. ACM, June 2003.

[SK00] Heung-Yeung Shum and Sing Bing Kang. A review of image-based

rendering techniques. In Visual Communications and Image Processing,

pages 1–12, June 2000.

186 BIBLIOGRAPHY

[SK10] Jason Sanders and Edward Kandrot. CUDA by Example: An In-

troduction to General-Purpose GPU Programming. Addison-Wesley

Professional, 1 edition, July 2010.

[SL02] Jürgen P. Schulze and Ulrich Lang. The parallelization of the per-

spective shear-warp volume rendering algorithm. In EGPGV ’02:

Proceedings of the Fourth Eurographics Workshop on Parallel Graphics

and Visualization. Eurographics Association, September 2002.

[SME02] Simon Stegmaier, Marcelo Magallón, and Thomas Ertl. A generic

solution for hardware-accelerated remote visualization. Eurographics

Association, May 2002.

[SML06] Will Schroeder, Ken Martin, and Bill Lorensen. Visualization Toolkit:

An Object-Oriented Approach to 3D Graphics, 4th Edition. Kitware,

4th edition, December 2006.

[SNL01] Jürgen P. Schulze, Roland Niemeier, and Ulrich Lang. The perspective

shear-warp algorithm in a virtual environment. In Proceedings of the

Conference on Visualization ’01, VIS ’01, pages 207–214, Washington,

DC, USA, 2001. IEEE Computer Society.

[SRC10] Toby Sharp, Duncan Robertson, and Antonio Criminisi. Volume

rendering on server GPUs for enterprise-scale medical applications.

Technical Report 72, Microsoft Research, Cambridge, UK, Microsoft

Research, Cambridge, UK, 2010.

[SSC02] Mel Slater, Anthony Steed, and Yiorgos Chrysanthou. Computer Graph-

ics and Virtual Environments: From Realism to Real-time. Addison-

Wesley, 2002.

[ST90] Peter Shirley and Allan Tuchman. A polygonal approximation to

direct scalar volume rendering. In San Diego Workshop on Volume

Visualization, pages 63–70. ACM, 1990.

BIBLIOGRAPHY 187

[Ste98] W. Richard Stevens. UNIX Network Programming: Interprocess com-

munications. The Unix Networking Reference Series , Vol 2. Prentice

Hall PTR, 1998.

[SWWL01] Jürgen P. Schulze, Uwe Wössner, SP Walz, and Ulrich Lang. Volume

rendering in a virtual environment. In Immersive Projection Technol-

ogy and Virtual Environments 2001: proceedings of the Eurographics

Workshop in Stuttgart, Germany, May 16-18, 2001, page 187, 2001.

[TL93] Takashi Totsuka and Marc Levoy. Frequency domain volume rendering.

In Proceedings of the 20th annual conference on Computer graphics

and interactive techniques, pages 271–278. ACM, 1993.

[TYRG+06] Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak,

Omar Ghattas, Kwan-Liu Ma, and David R. O’Hallaron. From mesh

generation to scientific visualization: An end-to-end approach to par-

allel supercomputing. In Proceedings of the ACM/IEEE SC 2006

Conference, 2006.

[Uni06] Universität Erlangen. The volume library. http://www9.informatik.

uni-erlangen.de/External/vollib/, 2006.

[Vis11] VisPME, BMBF-No.: 01IH08009B. http://vis.uni-koeln.de/

vispme.html?&L=1, 2011.

[Vis14] VisIt. Main page - visitusers.org. http://www.visitusers.org, 2014.

[VKG04] Ivan Viola, Armin Kanitsar, and Meister Eduard Gröller. GPU-based

frequency domain volume rendering. In SCCG ’04: Proceedings of the

20th spring conference on Computer graphics, April 2004.

[VWE05] Joachim E. Vollrath, Daniel Weiskopf, and Thomas Ertl. A generic

software framework for the GPU volume rendering pipeline. Proc.

Vision, Modeling and Visualization, pages 391–398, 2005.

[Wal11] Ingo Wald. Active thread compaction for GPU path tracing. In

Proceedings of High Performance Graphics 2011, 2011.

http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://vis.uni-koeln.de/vispme.html?&L=1
http://vis.uni-koeln.de/vispme.html?&L=1
http://www.visitusers.org

188 BIBLIOGRAPHY

[War92] Gregory J. Ward. Measuring and modeling anisotropic reflection.

In SIGGRAPH ’92: Proceedings of the 19th annual conference on

Computer graphics and interactive techniques. ACM, July 1992.

[WE98] Rüdiger Westermann and Thomas Ertl. Efficiently using graphics hard-

ware in volume rendering applications. In SIGGRAPH ’98: Proceedings

of the 25th annual conference on Computer graphics and interactive

techniques. ACM, July 1998.

[Wer93] Josie Wernecke. The Inventor Mentor: Programming Object-Oriented

3d Graphics with Open Inventor, Release 2. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1st edition, 1993.

[Wes89] Lee Westover. Interactive volume rendering. In VVS ’89: Proceedings

of the 1989 Chapel Hill workshop on Volume Visualization, pages 9–16.

ACM, May 1989.

[Wes90] Lee Westover. Footprint evaluation for volume rendering. In SIG-

GRAPH ’90: Proceedings of the 17th annual conference on Computer

graphics and interactive techniques. ACM, September 1990.

[WKP11] Craig M. Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. Fermi

GF100 GPU architecture. Micro, IEEE, 31(2), 2011.

[WSB01] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive dis-

tributed ray tracing of highly complex models. In Rendering Techniques

2001 - Proceedings of the 12th EUROGRAPHICS Workshop on Ren-

dering, pages 274–285, 2001.

[WSBW01] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner.

Interactive rendering with coherent ray tracing. Computer Graphics

Forum (Proceedings of EUROGRAPHICS), 20(3):153–164, 2001.

[YWM08] Hongfeng Yu, Chaoli Wang, and Kwan-Liu Ma. Massively parallel

volume rendering using 2-3 swap image compositing. In SC ’08: Pro-

ceedings of the 2008 ACM/IEEE conference on Supercomputing, pages

1–11. IEEE Press, August 2008.

BIBLIOGRAPHY 189

[ZAL12] Stefan Zellmann, Martin Aumüller, and Ulrich Lang. Image-Based Re-

mote Real-Time Volume Rendering - Decoupling Rendering from View

Point Updates. In Proceedings of the ASME 2012 International Design

Engineering Technical Conferences & Computers and Information in

Engineering Conference. ASME, 12 -15 August 2012.

[ZL12] Stefan Zellmann and Ulrich Lang. A Software Architecture for Dis-

tributed Volume Rendering on HPC Systems. In Proceedings of the

24th IASTED International Conference on Parallel and Distributed

Computing and Systems, pages 94–101. IASTED, 12 -14 November

2012.

[ZL13] Stefan Zellmann and Ulrich Lang. A Comparison of GPU Box-Plane

Intersection Algorithms for Direct Volume Rendering. In Proceedings

of the 14th IASTED International Conference on Computer Graphics

and Imaging, pages 153–160, February 2013.

[ZM13] Yubo Zhang and Kwan-Liu Ma. Lighting design for globally illuminated

volume rendering. IEEE Transactions on Visualization and Computer

Graphics, 19(12):2946–2955, 2013.

[ZPvBG01] Matthias Zwicker, Hanspeter Pfister, Jereon van Baar, and Markus

Gross. EWA volume splatting. In Visualization, 2001. VIS ’01. Pro-

ceedings, pages 29–538, 2001.

[ZT09] Jianlong Zhou and Masahiro Takatsuka. Automatic transfer func-

tion generation using contour tree controlled residue flow model and

color harmonics. IEEE Transactions on Visualization and Computer

Graphics, 15(6):1481–1488, 2009.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefer-

tigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der

Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im

Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung

kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder

Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen

Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche

Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte

Dissertation ist von Prof. Dr.-Ing. Ulrich Lang betreut worden.

Köln, den 19.08.2014

Curriculum Vitae

Persönliche Daten

Stefan Zellmann

Saaler Straße 68

51429 Bergisch Gladbach

Geboren am: 8. Februar 1981

Geburtsort: Bergisch Gladbach

Staatsangehörigkeit: Deutsch

Ausbildung und Beruf

09/1987 - 08/1991 Grundschule Kürten

09/1991 - 07/2000 Albertus Magnus Gymnasium Bergisch Gladbach, allge-
meine Hochschulreife

08/2000 - 07/2001 Zivildienst

10/2001 - 03/2009 Universität zu Köln, Diplomstudium im Fach Wirt-
schaftsinformatik

05/2009 - aktuell Universität zu Köln, Lehrstuhl für Informatik, Tätig-
keit als wissenschaftlicher Mitarbeiter am Seminar für
Computergrafik und Visualisierung

	Introduction
	Structure
	Motivation
	Contributions

	Scientific Visualization
	Brief Introduction to Scientific Visualization
	Classification of Scientific Datasets
	Visualization Pipelines
	Visualization Methods for Scientific Datasets
	Contouring
	Slicing
	Particle Tracing
	Color Mapping

	Scientific Visualization and High Performance Computing

	State of the Art in Parallel Direct Volume Rendering
	Introduction to Direct Volume Rendering
	Direct Volume Rendering Algorithms
	Texture-Based Volume Rendering
	Frequency Domain Volume Rendering
	Shear-Warp Volume Rendering
	Volume Splatting
	Cell Projection
	Ray Casting
	Out-of-Core Volume Rendering

	Parallel Programming Models
	Single Instruction Multiple Data
	Shared Memory Computing
	Distributed Memory Computing
	General-Purpose Programming with NVIDIA® GPGPUs
	Programming Models for the Intel® Xeon Phi™ Coprocessor

	Parallel Direct Volume Rendering Techniques
	Sorting Classification for Parallel Rendering
	Sort-First Volume Ray Casting
	Sort-Last Parallelization for Multi-GPU Systems and Distributed Memory Systems
	Load-Balancing for Parallel Direct Volume Rendering

	Direct Volume Rendering and Visualization Systems
	ImageVis3D
	Voreen
	DeskVOX
	ParaView
	VisIt
	COVISE

	A Software Architecture for Distributed Volume Rendering
	Distributed Volume Rendering
	The Distributed Volume Rendering Pipeline
	Data Distribution
	Generic Parallelization Scheme for Sort-Last Rendering
	Display Phase
	Interactive Resource Management
	One Resource Per User
	Multiple Resources Per User

	Implementing the Parallel Rendering Phase of the Distributed Volume Rendering Pipeline
	Sort-First Volume Ray Casting for HighPerformance Computing Platforms
	GPGPU Volume Ray Casting Implementation
	Sort-First Parallel Volume Ray Casting for Multi-Core Systems
	SIMD-Based Ray Casting Kernel for Intel®-Compatible CPUs
	SIMD-Based Ray Casting Kernel for Intel® Xeon Phi™ Coprocessors
	Comparison of the Sort-First Ray Casting Implementations

	Sort-Last Implementation for Many-Core Systems
	Integration into the Direct Volume Rendering Library Virvo
	Results
	Conclusions

	Decoupling Rendering and Display Phase
	Image-Based Remote Volume Rendering
	Remote Rendering Technique
	Remote Rendering of 2.5D Image Data to Hide Latency
	Constructing the Reprojection Matrix
	Depth Buffer Generation from Volumes
	Reprojection Artifacts
	Performance Penalties

	Enhancements to the Remote Rendering Technique
	Server-Side Latency Hiding
	Corrections for Local Illumination
	Depth Buffer Compression

	Application to Virtual Reality
	Results
	Performance Analysis
	Error Estimates for the Depth Heuristics

	Conclusions

	Summary, Conclusions and Future Work
	Contributions and Relevance of this Work
	Conclusions
	Outlook

	Bibliography

