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Zusammenfassung

Das olfaktorische System von Insekten hat sich seit langem bewährt um allge-

meine Mechanismen der olfaktorischen Informationsverarbeitung zu untersuch-

en. Gerüche werden von olfaktorischen Rezeptorzellen detektiert, welche in spez-

ifische Glomeruli des Antennallobus (AL) projizieren. Hier wird die olfaktorische

Information von lokalen Interneuronen (LNs) prozessiert und von Projektion-

sneuronen (PNs) zu höheren Hirnregionen weitergeleitet. Die beteiligten Neu-

rone lassen sich anhand von Transmittern und Ionenkanälen sowie ihrer elek-

trophysiologischen Eigenschaften unterscheiden, dennoch ist unbekannt wie die

verschiedenen elektrophysiologischen Eigenschaften durch zelleigene Ionenka-

näle generiert und moduliert werden. In dieser Studie wurden deshalb bio-

physikalische und pharmakologische Eigenschaften des kalziumabhängigen Ka-

liumstroms (IK(Ca)) mit Hilfe der ’whole-cell patch-clamp’ Technik untersucht

und spezifischen Interneuronen des Antennallobus aus intakten Hirnpräparaten

von adulten Schaben (Periplaneta americana) zugeordnet.

Steady-state Aktivierung mit definierten intrazellulären Kalziumkonzentratio-

nen ([Ca2+]i) zeigte, dass der IK(Ca) von Typ I LNs die größte Sensitivität für Kalz-

ium besitzt. In den übrigen AL Interneurontypen sind mehr als 10 mal höhere

[Ca2+]i notwendig um den IK(Ca) bei physiologischem Membranpotential zu ak-

tivieren. In allen AL Interneuronen wies der IK(Ca) deutliche Kalzium- und Span-

nungabhängigkeit auf, jedoch zeigten die biophysikalischen Eigenschaften Un-

terschiede in der kalziumabhängigen Aktivierung. Während in Typ I LNs der

IK(Ca) starr als Reaktion auf Ca2+ Einstrom aktiviert wird, weisen in uniglome-

rulären PNs (uPNs) und Typ II LNs die biophysikalischen Eigenschaften auf

einen kooperativen Effekt zwischen ICa und IK(Ca) Aktivierung hin.

7



Steady-state Aktivierungen bei simultanem Ca2+ Einstrom zeigten, dass der IK(Ca)

schon bei unterschwelligem Membranpotential aktivierbar ist und, dass sich in

uPNs, Typ IIb LNs und den meisten Typ IIa LNs bei hohen [Ca2+]O die IK(Ca)

Aktivierung vom ICa emanzipiert. In uPNs wurde zudem eine außergewöhnlich

hohe Stromdichte festgestellt, dagegen wurde in Typ I LNs der langsamste Ver-

lauf der kalziumabhängigen Aktivierung gemessen. Der IK(Ca) ist in allen AL

Interneuronen bereits bei unterschwelligem Membranpotential aktivierbar um

erregenden Ca2+ Einstrom entgegen zu wirken. Dennoch wurde bei ’current-

clamp’ Experimenten kein Einfluss auf das Ruhemembranpotential von uPNs

und Typ I LNs nachgewiesen. In Typ IIb LNs zeigte der IK(Ca) den schnellsten

Verlauf von kalziumabhängiger Aktivierung und Inaktivierung. Während in der

Population von Typ IIa LNs die breiteste Streuung der Messwerte festzustellen

war. Dies könnte auf unterschiedliche Subtypen von IIa LNs zurückzuführen

sein.

Trotz großer Unterschiede in der Kalziumsensitivität konnten diese keinen Kanal

Subtypen zugeordnet werden. In allen AL Interneuronen war IK(Ca) unempfind-

lich gegenüber dem SK Kanal Imhibitor Apamin. Dagegen wurde bei allen AL

Interneuronen mit Charybdotoxin eine vollständige Inhibition des IK(Ca) erreicht.

In uPNs wurde ein EC50 Wert von 2 nM ermittelt, in allen Typen von LNs lag

der EC50 Wert bei 4 nM. Iberiotoxin, ein BK Kanal Inhibitor mit hoher Spez-

ifität, zeigte einen ähnlichen aber weniger wirksamen Effekt als ChTX. Selbst

bei der höchsten verwendeten IbTX Konzentration wurde nur ein Teil des IK(Ca)

gehemmt. Obwohl IK(Ca) aus verschiedenen AL Interneuronen Unterschiede in

der Kalziumsensitivität, in der kalziumabhängigen sowie spannungsabhängigen

Aktivierung aufweisen, scheint der IK(Ca) in allen AL Interneuronen durch BK

Kanäle geleitet zu werden.
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Abstract

The olfactory system of insects has already served as a suitable model to investi-

gate mechanisms of general information processing. Thus, insect olfactory neu-

rons were used to study physiology, transmitter content, from that evoked cur-

rents as well as sensory processing on a network level. As an important step

towards understanding how distinct electrophysiological properties of neurons

are generated by intrinsic currents, I used whole-cell patch-clamp recordings to

analyze biophysical and pharmacological properties of IK(Ca) from unequivocally

identified uniglomerular projection neurons (uPNs) and local interneurons (LNs)

in the adult, intact brain of the cockroach Periplaneta americana.

Steady-state activation at defined [Ca2+]i revealed highest Ca2+ sensitivity of IK(Ca)

from type I LNs, IK(Ca) from other AL interneurons require at least 10 fold higher

[Ca2+]i to activate at physiological membrane potential. IK(Ca) from all AL in-

terneurons was clearly dependent on voltage and calcium, while biophysical

properties of IK(Ca) delineate distinct qualities in calcium dependent activation.

While IK(Ca) from type I LNs is rigidly activated in response to Ca2+ influx, bio-

physical properties of IK(Ca) from uPNs and type II LNs suggest a beneficial effect

by ICa activation.

Steady-state activation with simultaneous Ca2+ influx revealed that IK(Ca) is ac-

tive at subthreshold potential and high [Ca2+]O uncoupled IK(Ca) activation from

ICa in uPNs, type IIb LNs, and the major part of type IIa LNs. A remarkable high

current density of IK(Ca) was found in uPNs, whereas in type I LNs the slowest

time course of Ca2+-dependent activation was observed. Although IK(Ca) from

all AL interneurons is actived at subthreshold potential, buffering the membrane
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potential after excitatory Ca2+ influx, current-clamp recordings of spiking AL in-

terneurons preclude an impact of IK(Ca) on membrane resting potential.

Within the population of type II LNs, the quality of biophysical properties varied

within the range bounded by uPNs and type I LNs. Whereby IK(Ca) from type IIb

LNs displayed fastest time course of Ca2+ dependent activation and inactivation.

In type IIa LN population greatest variability of data was observed, which might

arise from different subtypes of type IIa LNs.

However, differential Ca2+ sensitivity could not be assigned to KCa channel sub-

types. IK(Ca) from all AL interneurons were insensitive to the SK channel blocker

apamin, whereas charybdotoxin achieved complete inhibition of IK(Ca) yielding

in EC50 of 2 nM for uPNs and 4 nM for both type I and type II LNs. Iberiotoxin, a

BK channel specific inhibitor displayed similar but less potent effects than ChTX,

suppressing only a fraction of IK(Ca) in all AL interneurons even at highest ap-

plied concentration. Biophysical properties of IK(Ca) delineate distinct qualities in

calcium sensitivity and calcium dependent as well as voltage dependent activa-

tion, even though IK(Ca) seems to be mediated by BK channels in all types of AL

interneurons.
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1 Introduction

Odor detection and discrimination is a powerful evolutionary advantage, as it

is essential for sensing dangers, food and fertile mates as well as it is a substan-

tial part of social behavior and learning. As an example of convergent evolution

the olfactory systems of vertebrates and invertebrates share striking similarities

in physiology and neuronal organization, suggesting that olfactory information

is processed through similar mechanisms in these unlike classes of animals (Eis-

then, 2002; Hildebrand & Shepherd, 1997; Strausfeld & Hildebrand, 1999; Wilson

& Mainen, 2006). Therefore the insect olfactory system has been studied in great

detail as a model system to understand general principles of sensory processing

on a network level (Distler et al., 1998; Fiala, 2007; Galizia & Roessler, 2010; Lau-

rent, 1999; Vosshall & Stocker, 2007). As an important step towards understand-

ing how intrinsic electrophysiological properties of different circuit components

are produced by the ion channels they endow, I analyzed biophysical properties

of the calcium-dependent potassium current IK(Ca) in distinct antennal lobe (AL)

interneurons of Periplaneta americana. Additionally, pharmacological properties

of IK(Ca) were investigated, establishing concentration-response relations for KCa

channel inhibitors with high specificity. On this basis exclusion experiments will

be performed to elucidate the impact of IK(Ca) on firing properties of AL interneu-

rons.

1.1 The insect olfactory system

When an insect perceives an odor, it is bound by odorant binding proteins lo-

cated in the membrane of olfactory sensory neurons (OSNs). OSNs are housed in
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1 Introduction

olfactory sensilla located on the insects antennea. Generally, one OSN expresses

a single functional receptor gene and its excitatory output terminates in a discrete

spherical structure of the ipsilateral antennal lobe (AL) called glomerulus, which

is the primary olfactory center and the first synaptic relay processing olfactory

information. OSNs expressing the same receptor type converge into the same

glomerulus and there they form synapses onto both local interneurons (LNs) and

projection neurons (PNs).

PNs convey the integrated olfactory information from the AL to higher order

brain centers where multimodal information processing associated to learning

and memory formation occurs. Uniglomerular PNs (uPNs) branch in a single

glomerulus within the AL and send their axons to the calyxes of the mushroom

body (MB) and the lateral lobe of the protocerebrum (LLP) (Ernst & Boeckh, 1983;

Malun, 1991a; Fusca et al., 2013).

Within the AL LNs connect different glomeruli with each other, while their neu-

rite branching pattern is limited to the AL (Ernst & Boeckh, 1983; Malun, 1991b;

Distler & Boeckh, 1998). Based on early immunohistochemical (Hoskins et al.,

1986; Malun, 1991b; Distler et al., 1998; Bicker, 1999) and electrophysiological

work (Waldrop et al., 1987; Christensen et al., 1993), LNs have been regarded as

mostly GABAergic and inhibitory. However, recent work showed that LNs are

a more heterogeneous population of neurons with very different morphological

and intrinsic electrophysiological properties (Seki & Kanzaki, 2008; Olsen & Wil-

son, 2008; Husch et al., 2009b,a; Reisenman et al., 2011; Fusca et al., 2013). Hence,

the composition and biophysical properties of ion currents from distinct interneu-

ron types are likely to differ, too.

1.2 Olfactory processing within the AL

Hitherto it is clear that LNs can also contain neurotransmitters like acetylcholine

(Shang et al., 2007; Fusca et al., 2013) or glutamate (Daniels et al., 2008) addi-

tional to neuromodulators such as peptides and biogenic amines (Ignell, 2001;

Homberg, 2002; Nässel & Homberg, 2006; Dacks et al., 2010; Neupert et al., 2012).
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1 Introduction

Up to date, two types of LNs can be distinguished by their transmitter content,

as well as morphological and electropysiological properties (Husch et al., 2009a,b;

Fusca et al., 2013). Type I LNs (LN I) display GABA-like immunoreactivity, and

upon odor stimulation or depolarizing current injection they generate Na+ driven

action potentials (Husch et al., 2009a). Type II LNs are nonspiking interneurons

which accordingly do not possess voltage activated sodium channels and pre-

sumably accomplish graded transmitter release. Within the type II LN population

at least two subtypes can be distinguished by their dinstinct morphological fea-

tures and active membrane properties (Husch et al., 2009b). Type IIb LNs respond

to odorants with relatively uniform depolarization, whereas type IIa LNs gener-

ate more complex changes in membrane potential that include depolarizations,

sometimes with Ca2+ driven spikelets or pure hyperpolarization. Both nonspik-

ing LN subtypes exhibit large voltage activated Ca2+ currents (ICa), but type IIa

LNs display a fast inactivating ICa component, while type IIb LNs show a more

sustained current profile during voltage pulses (Husch et al., 2009b). As a result,

the interglomerular circuits provided by diverse LN types, mediate complex exci-

tatory and inhibitory interactions to structure the olfactory representation within

the AL and ultimately determine the tuning profile of uPNs (Bazhenov et al., 2001;

Stopfer, 2005; Olsen et al., 2007; Shang et al., 2007; Olsen & Wilson, 2008; Assisi

et al., 2012).

Without external stimulation uPNs are spontaneously active and respond to ol-

factory stimuli with sequences of depolarizing and hyperpolarzing epochs, each

lasting hundreds of milliseconds (Christensen et al., 1998; Bazhenov et al., 2001).

A single uPN responds to a broader range of odors than the matching presynaptic

OSN, whereby one odor might elicit a temporally complex pattern with phases

of excitation and inhibition, whereas another odor elicit a phasic excitation with

no inhibition (Laurent et al., 1996; Ito et al., 2008; Lei et al., 2011). Imaging studies

have shown that different odors evoke temporally synchronized activity pattern

in different glomeruli, leading to spatial maps finally encoding for odor identity

(Galizia et al., 1999; Silbering et al., 2008; Watanabe et al., 2012). Higher odor con-

centrations evoke broader glomerular activation patterns which results in greater
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1 Introduction

spatial overlap among different odor representations (Cleland & Linster, 2002;

Sachse & Galizia, 2003).

Although network responses to odors and response profiles of participating neu-

rons are well documented we have only limited information about intrinsic elec-

trophysiological properties of participating neurons and how they are determined

by cellular mechanisms. Husch et al. (2009a) already described distinct proper-

ties of ICa from AL interneurons which correlate with their electrophysiological

properties (Husch et al., 2009b). As the electrophysiological properties of a certain

neuron are produced by the complement of intrinsic ion channels, investigation

on IK(Ca) is the next step towards understanding how olfactory information is

processed on the cellular level.

1.3 Calcium-dependent potassium channels

Since its first observation in red blood cells by Gardos (1958), IK(Ca) has been

described in numerous cell types with diverse physiological roles. Beside i.e.

it regulates secretion in endocrine and exocrine cells (Petersen & Maruyama,

1984), as well as myogenic tone and contraction of smooth muscle (Ghatta et al.,

2006). Calcium-dependent potassium channels (KCa channels) are activated by

rises in cytosolic calcium concentration ([Ca2+]i) leading to a rapid potassium ef-

flux, thereby coupling intracellular Ca2+ signalling to the membrane potential. In

neurons KCa channels play a crucial role in controlling a variety of firing char-

acteristics. They contribute to action potential repolarization, shaping the ampli-

tude and width of action potentials (Shao et al., 1999). They mediate fast (in the

range of milliseconds) and slow (in the range of seconds) after hyperpolarization

(AHP) following action potentials (Pineda et al., 1992; Stocker et al., 2004), con-

trol repetetive firing patterns, and mediate spike frequency adaptation (Gu et al.,

2007; Vandael et al., 2012). Three families of KCa channels have been identified,

which can be separated on biophysical, genetical and pharmacological grounds

and have been named KCa channels of big, intermediate, and small conductance

(BK, IK, and SK channels), respectively (Sah, 1996; Vergara et al., 1998).
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1 Introduction

BK channels

Large conductance KCa channels (BK channels; also known as maxi-K or slo-

channels) have a large unitary conductance of ~ 100 to 300 pS and are composed

of four α subunits, where a single α subunit is encoded by the slowpoke gene

(IUPHAR name KCa1.1) (Atkinson et al., 1991; Adelman et al., 1992). Functional

diversity is achieved through alternative mRNA splicing and the use of tissue-

specific transcriptional promoters (Atkinson et al., 1998; Brenner et al., 1996). The

slo gene encodes a pore-forming α subunit that shares significant homology with

pore regions of other potassium channels (Wei et al., 1994). The resultant polypep-

tide comprises seven transmembrane domains (S0 – S6), a short extracellular

amino-terminus and a large intracellular carboxyl-terminus. The intracellular

domain contains four hydrophobic segments (S7 – S10), two domains that reg-

ulate the conductance of K+ (RCK domains), and a stretch of aspartate residues

responsible for Ca2+ binding (Meera et al., 1997; Wang & Sigworth, 2009; Wu et al.,

2010).

BK channels activate in response to membrane depolarization and binding of in-

tracellular Ca2+ (Marty, 1981; McManus, 1991). Interestingly, it appears that the

effect of Ca2+ and membrane potential are allosterical processes, both of which

enhance the open probability (Horrigan & Aldrich, 2002; Latorre et al., 2010).

Each α subunit can be modulated by an accessory β subunit, which increases

the channel’s Ca2+ sensitivity by stabilizing the voltage sensor activation (Bao &

Cox, 2005). However, no β subunit has been found in insects yet (Littleton &

Ganetzky, 2000; Orio et al., 2002; Berkefeld et al., 2010). The Ca2+ ions required for

activation are mainly delivered by voltage-gated Ca2+ channels (Ca(V) channels)

directly linked to BK channels (Robitaille et al., 1993; Berkefeld et al., 2006).

Several pharmacological blockers of BK channels have been described so far, in-

cluding the two toxin peptides charybdotoxin (ChTX) and iberiotoxin (IbTX),

which are derived from scorpion venom of Leiurus quinquestriatus var. hebraeus

and Buthus tamulus, respectively (Miller et al., 1985; Galvez et al., 1990). Both

polypeptides are comprised of 37 amino acids displaying 68% sequence homol-

ogy and a solution structure of a α helix affixed by disulfide bonds to a three-
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1 Introduction

stranded β sheet (Galvez et al., 1990; Miller, 1995). Mutational studies and radi-

olabeling have provided molecular information of interaction between peptide

toxin and BK channel, and the resolved ChTX-BK complex structure unveiled

that the β sheet of ChTX is the main binding surface with Lys27 occluding the

channel pore (Qiu et al., 2009). Moreover, specific inhibition with ChTX and IbTX

revealed the physiological role of BK channels, which mediate action potential

(AP) repolarization and fast AHP in many neurons (Pineda et al., 1992; Shao et al.,

1999; Gu et al., 2007).

SK channels

Initially, small conductance Ca2+-activated potassium channels (SK) were named

according to their single-channel conductance, which ranges from 2 to 20 pS.

Later, three genes SK1, SK2 and SK3 (IUPHAR names are KCa2.1, KCa2.2 and

KCa2.3, respectively) sharing 60% sequence homology were identified and at-

tributed to the SK channel family (Köhler et al., 1996). Members display a tertiary

structure consisting of six transmembrane domains with intracellular amino- and

carboxyl-terminus. SK channels possess no voltage-sensing segment therefore

lacking voltage dependence, instead they are activated by low Ca2+ concentra-

tions (Hirschberg et al., 1999). Calcium sensitivity is conferred by calmodulin,

which is constitutively bound to the C-terminus of SK channels (Schumacher

et al., 2001). Binding of Ca2+ to calmodulin leads to a conformational change

of the channel protein, opening the channel pore, and allowing potassium efflux

(Xia et al., 1998).

Specific inhibition of SK channels by apamin allowed for their initial characteri-

zation and assigned their impact to slow AHP, spike frequency adaptation (SFA),

and tonically firing pattern (Blatz & Magleby, 1986; Bennett et al., 2000; Faber &

Sah, 2003). Up to date several pharmacological agents are known which selec-

tively inhibit SK channels, including D-tubocurarine (Ishii et al., 1997a; D’hoedt

et al., 2004), bicuculine salts (Seutin & Johnson, 1999) and the scorpion toxin scyl-

latoxin (Auguste et al., 1990, 1992).
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IK channels

The third type of KCa channels display an intermediate single-channel conduc-

tance of 20-100 pS and therefore have been named intermediate conductance

channels (IK channels) (Ishii et al., 1997b). Encoded by the SK4 gene, this channels

share structural features of SK channels, forming tetrameres from subunits con-

sisting of six transmembrane segments with an intracellular amino- and carboxyl-

terminus (Joiner et al., 1997; Khanna et al., 1999). But also formation of IK channels

from interaction by slo and slack subunits has been reported (Joiner et al., 1998).

Nevertheless, they form a distinct group of KCa channels (IUPHAR name KCa3.1)

which are not expressed in neuronal tissue and can clearly be seperated from BK

and SK channels by their sensitivity to pharmacological agents (Wei et al., 2005;

Jensen et al., 2002).

IK channels have been shown to be sensitive to clotrimazole and the peptide tox-

ins charybdotoxin and margatoxin, whereas IbTX the structurally-related selec-

tive BK channel blocker, and the specific SK channel blocker apamin were with-

out effects (Jensen et al., 2001; Bychkov et al., 2002).

Much of the knowledge about KCa channels, how they contribute to neuronal fir-

ing properties and their sensitivity to specific neurotoxins, arises from studies in

vertebrate species. Although the Drosophila genome contains one SK and a slow-

poke gene (Littleton & Ganetzky, 2000), studies from insect are rare but hint at dif-

ferential pharmacological properties of invertebrate and vertebrate KCa channels.

However, a depth knowledge of cell type specific firing properties and membrane

conductances that mediate them, is an important prerequisite towards detailed

understanding the cellular basis of olfactory information processing. Therefore,

I analyzed the Ca2+-dependent K+ currents in uPNs and different types of LNs,

as IK(Ca) plays a crucial role in controlling neuronal firing characteristics (Faber &

Sah, 2003).
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1 Introduction

1.4 Objective of this thesis

Insect olfactory neurons have been used to study physiology, transmitter content,

from that evoked currents as well as sensory processing on a network level. In

this thesis, biophysical, and pharmacological properties of IK(Ca) were analyzed

and assigned to unequivocally identified uPNs and three LN types. The specific

objectives of this study were:

• First, to analyze IK(Ca) with particular regard to calcium sensitivity, voltage

dependence, and calcium dependence. To analyze IK(Ca) activation associ-

ated to Ca2+ influx through voltage-gated Ca2+ channels. This part aimed to

characterize the complex aspects of IK(Ca) activation and presents averaged

data from a large number of experiments allowing comparison among AL

interneurons.

• Second, to examine the sensitivity of IK(Ca) to highly specific KCa channel

blocker as apamin, charybdotoxin, and iberiotoxin and establish concentra-

tion-response relations. This will set the stage for exclusion experiments

which elucidate the electrophysiological role of IK(Ca) in spiking uPNs and

type I LNs.
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2 Materials and Methods

2.1 Animals & Materials

Periplaneta americana were reared in crowded colonies at 27 ◦C under a 12:12

light/dark photoperiod regimen and fed on a diet of dry rodent food, oatmeal

and water. All experiments were performed in situ on brains from adult male

animals.

All chemicals, unless stated otherwise, were obtained from AppliChem (Darm-

stadt, Germany) or Sigma-Aldrich (Taufkirchen, Germany) with a purity grade

p.a. (per analysis).

2.2 Preparation

The intact brain preparation was based on an approach described previously

(Demmer & Kloppenburg, 2009; Husch et al., 2009a) in which the entire olfac-

tory network is left intact. Before dissection animals were anesthetized by CO2

for several minutes. The animal’s legs were amputated distal of the coxa and

the animals were placed in custom built holders. Heads and antennae were im-

mobilized with adhesive tape (tesa ExtraPower Gewebeband, tesa AG, Hamburg

Germany). The head capsule was opened by cutting a window between the two

compound eyes at the bases of the antennae. The brain was dissected in extra-

cellular saline (see below) and pinned in a Sylgard-coated (Dow Corning Corp.,

Midland, Michigan, USA) recording chamber. To gain access to the recording site

and facilitate penetration of pharmacological agents into the tissue, parts of the

AL were desheathed using fine forceps. The preparations were also enzymati-
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2 Materials and Methods

cally treated with a mixture of papain (0.3 mg/ml) and L-cystein (1 mg/ml) dis-

solved in extracellular saline (~ 3 min, 37 ◦C). For electrophysiological recordings,

the somata of the AL neurons were visualized with a fixed upright microscope

(BX51WI, Olympus, Hamburg, Germany) using a 40× water-immersion objective

(UMPLFL, 0.8 numerical aperture (NA), 3.3 mm working distance, Olympus).

2.3 Electrophysiological recordings

2.3.1 Whole-cell recordings

Whole-cell recordings were performed at room temperature (RT) following the

methods described by Hamill et al. (1981). Electrodes with a tip resistance be-

tween 2.5 - 3.5 MΩ were fashioned from borosilicate glass (inner diameter (ID)

0.86 mm, outer diameter 1.5 mm, GB150-8P, Science Products, Hofheim, Ger-

many) with a temperature-controlled pipette puller (PP-830, Narishige Interna-

tional, London, U.K.). For patch-clamp recordings the pipettes were filled with

intracellular saline solution containing (in mM): 190 K-aspartate, 10 NaCl, 1 CaCl2,

2 MgCl2, 10 HEPES and 10 EGTA to pH 7.2 with KOH, resulting in an osmo-

larity of ~ 415 mOsm. During the experiments, if not stated otherwise, cells

were superfused constantly with extracellular saline solution (in mM): 185 NaCl,

4 KCl, 1 CaCl2, 2 MgCl2, 10 HEPES and 35 D-glucose. The solution was ad-

justed to pH 7.2 with NaOH and to 430 mOsm with glucose. Whole-cell volt-

age and current-clamp recordings were made with an EPC9 patch-clamp ampli-

fier (HEKA-Elektronik) that was controlled by the program Patch Master (ver-

sion2.5, HEKA-Elektronik) running under Windows. The electrophysiological

data were sampled at 20 kHz. Recordings were low pass filtered at 2 kHz with

a 4-pole Bessel-Filter. Compensation of the offset potential and capacitive cur-

rents was performed using the ’automatic mode’ of the EPC9 amplifier. Whole-

cell capacitance was determined by using the capacitance compensation (C-slow)

of the amplifier. The liquide junction potential between intracellular and extra-

cellular solution of 15.6 mV was calculated with Patcher’s-Power-Tools plug-in
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2 Materials and Methods

(http://www3.mpibpc.mpg.de/groups/neher/index.php?page=software) for

Igor Pro (Wavemetrics, Portland, Oregon) and was compensated. To remove un-

compensated leakage and capacitive currents, a p/6 protocol was used. Voltage

errors due to the series resistance (Rs) were minimized using the Rs-compensa-

tion of the EPC9. Rs was compensated between 50% and 90% with a time con-

stant (τ) of 100 µs. For current clamp recordings the bridge-balance setting was

set to 70% to compensate for the potential drop due to the pipette. To isolate the

recorded cell from synaptic input 10 µM CNQX (6-cyano-7-nitroquinoxaline-2.3-

dione, C127, Sigma Aldrich), 50 µM DL-AP5 (DL-2amino-5-phosphonopentanoic

acid, BN0086, Biotrend), and 100 µM PTX (picrotoxin, P1675, Sigma Aldrich)

were added to the extracellular saline during current clamp recordings. These

chemicals block AMPA-, NMDA, GABAA and nicotinic acetylcholine receptors

respectively. Stimulus protocols used for each set of experiments are given in the

Results section.

2.3.2 Current isolation

IK(Ca) was isolated using a combination of pharmacological blockers, appropri-

ate holding potential and digital current subtraction protocols, based on proto-

cols that have been effective in insect preparations. Voltage activated Na+ cur-

rents were blocked by tetrodotoxin (10-6 M, TTX, T-550, Alomone, Jerusalem, Is-

rael). Ca+2 currents were blocked by CdCl2 (5 × 10-4 M), whereby IK(Ca) was indi-

rectly eliminated. The transient K+ current (IA) was blocked by 4-aminopyridine

(10-2 M, 4-AP, A78403, Sigma-Aldrich). To compensate for changes in osmolarity,

the glucose concentration was appropriately adjusted. Details of recording so-

lutions and voltage protocols for each set of experiments are given in the Result

section.

2.3.3 Data analysis

I used the software Igor Pro 6.0.1 (Wavemetrics, including the Patcher’s Power

Tools plug-in) for analysis of electrophysiological data. All calculated values are

21



2 Materials and Methods

expressed as mean ± standard deviation (SD), if not stated otherwise. To deter-

mine concentration-response relations, each concentration was applied at least

two times. Current amplitudes were scaled as a fraction of maximal current and

fit to a modified form of the Hill equation. The Hill equation (2.1) describes simul-

taneous and saturating binding of ligands activating a multi-subunit complex.

I
IMax

=
KnH · [S]nH

1 + KnH · [S]nH
(2.1)

In case of complete inhibition, the formulation is transformed to following equa-

tion:

I
IMax

=
1

1 + 10([S]−K) · nH
(2.2)

I is the measured current amplitude at toxin concentration [S], IMax is the max-

imal current amplitude under control conditions, K is the association constant

decribed by log of the concentration with half maximal effect, nH is the Hill co-

efficient describing the slope of the curve. All calculated curves have a standard

slope nH equals -1.

Conductance (G) was calculated using the equation:

G =
I

V −Vrev
(2.3)

Where I is the current density, V the test pulse potential and Vrev is the K+ equi-

librium potential. To convert current density to conductance, a K+ equilibrium

potential of -98.5 mV was calculated.

To determine voltages for half-maximal current activation, data of steady-state

activation were fit using a first-order (n = 1) Boltzmann equation:
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G
GMax

=
1

(1 + e(V0.5−V)/s)n
(2.4)

Where GMax is the maximal conductance, V equals test pulse potential, G is the

conductance at voltage V, s is the slope factor and V0.5 is the voltage at which

half-maximal activation of current occurs.

2.4 Single cell labeling

To label individual cells, 1% (w/v) biocytin (B4261, Sigma) was added to the in-

tracellular solution. After electrophysiological recordings, brains were fixed in

Roti-Histofix (P0873, Carl Roth, Karlsruhe, Germany) for 2 - 3 h at RT. Subse-

quently the brains were rinsed in 0.1 M phosphate buffered saline (PBS, 3 × 20 min,

RT). PBS contained (in mM): 72 Na2HPO4 · 2H2O and 28 NaH2HPO4 · H2O, re-

sulting in pH 7.2. All brains were processed as whole mounts. To facilitate

streptavidin penetration, brains were treated with a commercially available colla-

genase/dispase mixture (1 mg/ml, 269638, Roche Diagnostics, Mannheim, Ger-

many) and hyaluronidase (1 mg/ml, H3506, Sigma-Aldrich) disolved in PBS

(20 min, 37 ◦C). Afterwards the brains were rinsed in PBS (3 × 10 min, 4 ◦C)

and incubated in PBS containing 1% Triton X-100 (Serva, Heidelberg, Germany)

to improve streptavidin penetration, and 10% normal goat serum (Vector Labs,

Burlingame, CA, USA) to prevent unspecific interactions, for 40 min at RT. Sub-

sequently the brains were rinsed in PBS (3 × 10 min, RT) and incubated in Alexa

Fluor 633 (Alexa 633) conjugated streptavidin (S21375, Molecular Probes, Eugene,

OR, USA) dissolved 1:400 in PBS containing 10% normal goat serum and 1% Tri-

ton X-100 for 1 - 2 days at 4 ◦C. Finally brains were rinsed in PBS (3 × 10 min, RT),

dehydrated in Ethanol (50%, 70%, 90%, 100% and 100%, each concentration for

10 min), cleared and mounted in methylsalicylate (M6752, Sigma-Aldrich). The

fluorescence images were captured with a confocal microscope (LSM 510, Carl

Zeiss, Göttingen, Germany) equipped with PlanNeofluar 10× (0.3 NA) and Plan
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Apochromat 20× (0.75 NA) objectives. Alexa 633 was excited with a He-Ne Laser

at 633 nm and emission was collected through a 650 nm LP filter. For overview

pictures overlapping image stacks were merged in Photoshop CS5 (Adobe Sys-

tems Incorporated, San Jose, Ca, USA).

Sectioning

After capturing fluorescence images of the whole mounts, brains were washed

for 10 min in 100% ethanol and rehydrated in a descending ethanol series. Brains

were stored in 70% ethanol and selected brains were further rehydrated, em-

bedded in agarose (4% (w/v) Serva, Heidelberg, Germany) disolved in PBS and

100 µm thick ventrodorsal sections were cut with a vibration microtome (HM

650 V, Thermo Scientific, Walldorf, Germany). The slices were reincubated with

streptavidin overnight at -4 ◦C, rinsed with PBS (3 × 10 min) and H2O and dried

on coated slices (HistoBond 0800001, Marienfeld-Superior, Lauda-Königshofen,

Germany). After a dehydrating ethanol series (25%, 50%, 70%, 90% and 2 × 100%,

10 min each ) the slices were treated with xylene for 10 min to remove lipids and

mounted in Entellan (107961 Merck, Darmstad, Germany). Slices could be stored

and were used to obtain high resolution detail images of the innervated brain

areas with an 40× oil-immersion Plan-Neofluar (1.30 NA) objective.
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3 Results

This study aimed to characterize the IK(Ca) in olfactory interneurons of the insect

antennal lobe. Here, primary sensory input detected by olfactory sensory neu-

rons is processed. Uniglomerular projection neurons (uPNs) relay the integrated

olfactory information from this first order neuropile to higher order brain centers.

Whereas local interneurons (LN) ramify only within the AL, to ultimately restruc-

ture and shape the output of uPNs. In most neurons Ca2+-dependent K+outward

currents are crucial to shape their intrinsic firing properties.

To reveal biophysical properties of IK(Ca) in AL interneurons, whole-cell voltage-

clamp recordings were performed. The complex aspects of calcium and voltage

interaction have been investigated in a large number of experiments, performed

in collaboration with Dr. Cathleen Bradler and Andreas Klein, whose contribu-

tion is indicated in respective sections and figure legends. Sensitivity of IK(Ca)

to peptide neurotoxins apamin, charybdotoxin, and iberiotoxin was investigated

and concentration-response relations were established. On this basis exclusion

experiments were performed, in which portions of IK(Ca) were pharmacologically

blocked, to unveil the impact of IK(Ca) in shaping the intrinsic electrophysiolog-

ical properties of spiking AL interneurons. This studies were done by Dr. Ben

Warren, Viktor Bardos, Merit Klemann, and Sandra Wendler and are provided in

an appendix section 5. All recordings were performed under visual control from

cell bodies within the ventrolateral somata group (VSG) in an intact brain prepa-

ration of male P. americana.
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3.1 Identification of AL interneurons

The cell bodies of uPNs are located in a homogeneous cluster at the ventral part

of the VSG. Each of the recorded uPNs innervated a single glomerulus within

the AL by surrounding it with thick neurite fibres that give rise to fine processes

entering the dense neuropile and arborizing within the entire glomerulus (Malun,

1991a). Each uPN sends a single axon through the inner antenno-cerebral tract

(iACT) to the mushroom body calyces and the lateral lobe of the protocerebrum

(LLP) where it arborizes and terminates in boutons. Morphology and response

properties of uPNs have been investigated extensively in P. americana and are

well documented (Boeckh & Tolbert, 1993; Boeckh et al., 1984; Distler et al., 1998;

Lemona & Getz, 1998; Malun, 1991a).

The somata of LNs are arranged dorsal to the uPN soma cluster. Type I LNs own

long primary neurites that bifurcate and give rise to the Y-shaped tract (Distler,

1989). Within the AL, neurites arborize in thick branches innervating many, but

not all glomeruli. The density of processes vary between glomeruli of a given

neuron. Type I LNs are spiking interneurons that generate Na+ driven action po-

tentials (APs) (Husch et al., 2009a). Further dorsally located somata belong mostly

to non-spiking type II LNs, referred to as type IIa and type IIb LNs (Husch et al.,

2009a,b). Neurons of both LN II subtypes innervate all glomeruli of the AL, but

subtypes could be distinguished by their branching pattern within the glomeruli.

Type IIa LNs display uniform innervation of the whole glomerulus, whereas type

IIb LNs innervate all glomeruli only partially. All neurons were labeled by dye

injection via the recording pipette and were subsequently identified by their def-

inite morphology.

Figure 3.1 (following page). Morphological characteristics of LN types. Morphology of
recorded LNs was revealed by staining via the patch pipette. (A) Morphology of type I
LN (310 µm image stack, left side). The neuron innervated many, but not all glomeruli
of the AL. The density of neurites varied between glomeruli, shown in detail at the right
side (20 µm image stack). (B) Type IIa LN (320 µm image stack, left side) displayed
homogeneous innervation of all glomeruli (20 µm image stack, right side). (C) Type IIb
LN (375 µm image stack, right side) innervated all glomeruli only partially (20 µm image
stack, right side).
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Figure 3.2. Morphological characteristics of an uPN. Morphology of a recorded uPN
revealed by staining via the patch pipette. (A) 600 µm image stack of the right hemi-
sphere. The uPN innervated a single glomerulus (Gl) within the antennal lobe (AL) and
sent a single axon along the inner antenno-cerebral tract (iACT) to the mushroombody’s
calyces (Ca) and the lateral lobe of the protocerebrum (LLP). AN: antennal nerve, OP: op-
tical lobe, PC: protocerebrum. (B – D) Higher magnification of the innervated glomerulus
(C), a single calyx (B) and the LLP (D).
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3.2 Steady-state activation of IK(Ca)

Steady-state activation of IK(Ca) was investigated at defined intracellular Ca2+

concentration ([Ca2+]i) or by influx of 1 or 6 mM extracellulare Ca2+ concentra-

tion, respectively ([Ca2+]O). Thus, recording conditions were designed to activate

IK(Ca) by either persistent Ca2+ concentration or by Ca2+ influx through simulta-

neously activated CaV channels. Currents were activated by 300 ms depolarizing

voltage steps up from -60 mV, increased in 10 mV increments.

3.2.1 Steady-state activation at defined calcium concentrations

Defined [Ca2+]i were applied via the recording pipette to evaluate calcium sensi-

tivity, and voltage dependent activation of IK(Ca). Pipette solutions were prepared

by using an EGTA-Ca2+ buffering system, resulting in [Ca2+]i of 56, 143, 540, and

1800 µM. The preparation was superfused with saline containing 10-6 M TTX to

block voltage activated Na+ currents (INa), 10-2 M 4-AP to block transient potas-

sium currents (IA), and 5 ×10-4 M CdCl2 to block voltage activated Ca2+ currents

(ICa). Thus, IK(Ca) was activated by a series of depolarizing voltage pulses at

defined [Ca2+]i. Recordings fom uPNs were perfomed by Dr. Cathleen Bradler

and myself. Analysis and figures of uPNs were kindly provided by Dr. Cathleen

Bradler.

During a sustained voltage pulse IK(Ca) displayed a sustained, noninactivating

current profile (Fig. 3.3A and B). Moreover, IK(Ca) amplitudes increased with

progressively depolarizing voltage pulses, showing clear voltage dependence of

steady-state activation at all applied [Ca2+]i. Comparing the G/V relations from

different [Ca2+]i showed that increasing [Ca2+]i lowered the voltage threshold for

activation (Fig. 3.3C) and the voltage for half-maximal activation (V0.5(act)) (Fig.

3.3D). At an [Ca2+]i of 143 µM, V0.5(act) equals 100 mV in uPNs, 58 mV in type

I LNs, 215 mV in type IIa LNs and 113 mV in type IIb LNs (Fig. 3.4B), ascrib-

ing highest calcium sensitivity to type I LNs. Nonspiking type II LNs required

higher [Ca2+]i to activate at 0 mV, compared to spiking uPNs and type I LNs.

Higher [Ca2+]i are required to activate IK(Ca) from non-spiking type II LNs. At a
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Table 3.1. Steady-state activation of IK(Ca) at defined Ca2+ concentrations. Conductance
was calculated using equation (2.3). To determine Gmax, conductances were fit to a first-
order Boltzmann equation (2.4) and calculated as a fraction of Gmax. Normalized conduc-
tances were fit to a first-order Boltzmann equation (2.4) yielding in following voltages for
half-maximal activation. All values are are expressed as mean ± SD.

uPNs type I LNs type IIa LNs type IIb LNs

[Ca2+]i (µM) V0.5(act) (mV)

56 125 ± 9 – – –
143 100 ± 11 58 ± 2 215 ± 1 113 ± 3
540 69 ± 2 – – –
1800 50 ± 2 – 87 ± 1 62 ± 2

defined [Ca2+]i of 1.8 mM, V0.5(act) equales 87 mV in type IIa LNs and 62 mV in

type IIb LNs (Fig. 3.4A).

Elevation of [Ca2+]i in this extent occure only in very local spatiotemporal do-

mains close to a calcium source (Augustine et al., 2003). The [Ca2+]i is strictly

controlled as calcium serves as second messenger signal with diverse effects on

enzyme activity, gene expression, cell growth, and cell death via apotosis. Since

KCa channels are activated by ICa, steady-state activation of IK(Ca) with calcium

influx through CaV channels should resemble more physiological conditions.
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Figure 3.3. Voltage dependence of IK(Ca) from uPNs. (A) Current traces of steady-state
activation from four uPNs with distinct [Ca2+]i applied via the recording pipette. (B) Cur-
rent traces elicited by a depolarizing voltage pulse to 60 mV with different [Ca2+]i. (C)
G/V relations of steady-state activation with different [Ca2+]i. Conductances were calcu-
lated according to equation (2.3) and fit to a first-order Boltzmann equation (2.4). Con-
ductances were calculated as a fraction of maximal conductance and again fit to a first-
order Boltzmann equation to determine voltages for half-maximal activation (V0.5(act)).
(D) Voltage of half-maximal activation as a function of [Ca2+]i. This figure was kindly
provided by Dr. Cathleen Bradler.
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Figure 3.4. Voltage dependence of IK(Ca) from different AL interneurons. (A) G/V rela-
tion from steady-state activation of IK(Ca) from type IIa and b LNs with 1.8 mM or 143 µM
[Ca2+]i. (B) Comparision of G/V relations for steady-state activation from different AL
interneurons with 143 µM [Ca2+]i. Conductances were calculated according to equation
(2.3) and fit to a first-order Boltzmann equation (2.4). Conductances were calculated as
a fraction of maximal conductance and again fit to a first-order Boltzmann equation to
determine voltages for half-maximal activation (V0.5(act)).
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3.2.2 Steady-state activation with calcium influx

IK(Ca) was isolated using a combination of pharmacological tools, appropriate

holding potential and current subtraction protocols. The preparation was super-

fused with saline containing 10-6 M TTX and 10-2 M 4-AP to abolish voltage ac-

tivated sodium (INa) and transient potassium currents (IA). The [Ca2+]O was ad-

justed to 6 mM or 1 mM, respectively. To determine current-voltage relations (I/V

relations), series of 300 ms voltage pulses between -60 and +60 mV were applied

in 10 mV increments, while neurons were held at -60 mV between voltage pro-

tocols. Afterwards, another series was recorded with saline containg 5 × 10-4 M

CdCl2 additionally, which completely abolished voltage activated Ca2+ currents

(ICa). Accordingly, under Cd2+ treatment IK(Ca) was blocked too and only the

delayed rectifying K+ outward current (IK(V)) was recorded. IK(V) was digitally

subtracted from the ’untreated’ series and the resulting current profile was de-

fined as IK(Ca) (see Fig. 3.5 – 3.8A –E). The current profiles were dominated by

IK(Ca) but contain underlying ICa. Experiments contributing to this section were

performed by Dr. Cathleen Bradler, Andreas Klein, and myself. The results are

summarized in table 3.2.

Uniglomerular Projection Neurons

During a 300 ms voltage pulse, IK(Ca) consisted of a sustained, noninactivating

component and a transient component, inactivating at diverse time scales (Fig.

3.5D and E). Activated by influx of 6 mM [Ca2+]O, IK(Ca) amplitudes increased

with progressively depolarizing voltage pulses (Fig. 3.5D) and reached a max-

imal current amplitude of 28 ± 18 nA at 60 mV. At 20 mV an average current

amplitude of 18 ± 12 nA (Fig. 3.5F) was achieved. With 1 mM [Ca2+]O, peak cur-

rents were reached at 17 ± 11 mV and decreasing IK(Ca) amplitudes were observed

with progressively depolarizing voltage pulses (Fig. 3.5E). This is reflected in an

inverted U-shape of the I/V relation (Fig. 3.5G). An average maximal current am-

plitude of 18 ± 7 nA was reached at 10 mV.
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Figure 3.5. Steady-state activation of IK(Ca) from uPNs. (A – E) Current traces of steady-
state activation elicited by 300 ms depolarizing voltage steps from -60 mV to 60 mV in
10 mV increments. (A) Current traces elicited by influx of 6 mM [Ca2+]O. (B) Current
traces elicited by influx of 1 mM [Ca2+]O. (C) Current traces elicited by the same depolar-
izing voltage steps as A and B but during additional application of 5 × 10-4 M CdCl2. (D
– E) Digital subtraction of the CdCl2 treated series from ’untreated’ series yielded in IK(Ca)
activated by 6mM [Ca2+]O (D) and 1mM [Ca2+]O (E). (F) I/V relation of steady-state acti-
vation with 6 mM [Ca2+]O. (G) I/V relation of steady-state activation with 1 mM [Ca2+]O.
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Figure 3.6. Steady-state activation of IK(Ca) from type I LNs. (A – E) Current traces
for steady-state activation elicited by 300 ms depolarizing voltage steps from -60 mV to
60 mV in 10 mV increments. (A) Current traces elicited with 6 mM [Ca2+]O. (B) Current
traces elicited with 1 mM [Ca2+]O. (C) Current traces elicited during additional applica-
tion of 5 × 10-4 M CdCl2. (D – E) Digital subtraction of the CdCl2 treated series from ’un-
treated’ series yielded in IK(Ca) activated by influx of 6mM [Ca2+]O (D) and 1mM [Ca2+]O
(E). (F) I/V relation of steady-state activation with 6 mM [Ca2+]O. (G) I/V relation of
steady-state activation with 1 mM [Ca2+]O.

Type I LNs

With 6 mM [Ca2+]O, decreasing IK(Ca) amplitudes were observed at progressively

depolarizing voltage pulses (Fig. 3.6D and E). Type I LNs displayed the lowest

current amplitudes compared to other AL interneurons. With 6 mM [Ca2+]O, a

maximal IK(Ca) amplitude of 9 ± 4 nA was reached at 28 ± 17 mV and decreasing

the [Ca2+]O to 1 mM shifted the voltage of maximal current activation to more

negative potentials (Fig. 3.6F and G). With 1 mM [Ca2+]O, a maximal current

amplitude of 3 ± 1 nA was reached at 5 ± 11 mV.
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Type II LNs

The most diverse current voltage relation was observed within the type IIa LN

population. With 6 mM [Ca2+]O, IK(Ca) amplitude increased with progressively

depolarizing voltage pulses (Fig. 3.7D) in the major part of neurons and a max-

imal current amplitude of 16 ± 8 nA was reached at 60 mV (n = 22, Fig. 3.7F).

However, 12 out of 34 recorded type IIa LNs displayed decreasing current ampli-

tude with progressively depolarizing voltage steps, maximal current amplitudes

of 23 ± 18 nA were reached at 28 ± 10 mV (n = 12, Fig. 3.7F). When [Ca2+]O

was reduced to 1 mM, the major part of type IIa LNs displayed decreasing IK(Ca)

amplitudes with progressively depolarizing voltage steps and a peak current of

7 ± 6 nA was reached at 13 ± 17 mV (n = 11, Fig. 3.7G). However, in five out of 16

investigated type IIa LNs, IK(Ca) amplitudes continued to increase with progres-

sively depolarizing voltage pulses and reached a maximal amplitude of 15 ± 7 nA

at 60 mV (n = 5, Fig. 3.7G).

By contrast, all type IIb LNs displayed increasing IK(Ca) amplitudes with pro-

gressively depolarizing voltage steps when activated by simultaneous influx of

6 mM [Ca2+]O. Maximal current amplitude of 16 ± 9 nA was reached at 60 mV

(Fig. 3.8 F). Diluting the [Ca2+]O to 1 mM shifted the voltage of peak current acti-

vation to more negative potentials, a maximal current amplitude of 7 ± 5 nA was

reached at 23 ± 15 mV (n = 4, Fig. 3.8 G).

With 6 mM [Ca2+]O uPNs, type IIb LNs and the major part of type IIa LNs dis-

play increasing IK(Ca) amplitudes with progressively depolarizing voltage pulses,

reflected in a linearly increasing I/V relation. Decreasing the [Ca2+]O to 1 mM

altered the I/V relation in all uPNs as well as the major part of type IIa and type

IIb LNs to an inverted U-shaped I/V relation. The inverted U-shaped I/V relation

mirrored the I/V relation of ICa as the driving force for Ca2+ declined at higher

voltages (Husch et al., 2009a). In type I LNs, a bell-shaped I/V relation of IK(Ca)

was observed with both applied [Ca2+]O. Assuming that influx of 6 mM [Ca2+]O

was high enough to uncouple IK(Ca) activation from ICa, 1 mM [Ca2+]O constitute

appropriate conditions to study the biophysical properties of IK(Ca).
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Figure 3.7. Steady-state activation of IK(Ca) from type IIa LNs. (A – E) Current traces
for steady-state activation elicited by 300 ms depolarizing voltage steps from -60 mV to
60 mV in 10 mV increments. (A) Current traces elicited with 6 mM [Ca2+]O. (B) Current
traces elicited with 1 mM [Ca2+]O. (C) Current traces elicited by the same depolarizing
voltage steps as A and B but during additional application of 5 × 10-4 M CdCl2. (D – E)
Digital subtraction of the CdCl2 treated series from ’untreated’ series yielded in IK(Ca)
activated by influx of 6mM [Ca2+]O (D) or 1mM [Ca2+]O (E). (F) I/V relation for steady-
state activation with 6 mM [Ca2+]O. (G) I/V relation for steady-state activation with 1 mM
[Ca2+]O. Open circles ◦ indicate bell-shaped I/V relation, filled circles • indicate linear I/V
relation.
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Figure 3.8. Steady-state activation of IK(Ca) from type IIb LNs. (A – E) Current traces
for steady-state activation elicited by 300 ms depolarizing voltage steps from -60 mV to
60 mV in 10 mV increments. (A) Current traces elicited with 6 mM [Ca2+]O. (B) Current
traces elicited with 1 mM [Ca2+]O. (C) Current traces elicited during additional applica-
tion of 5× 10-4 M CdCl2. (D – E) Digital subtraction of the CdCl2 treated series from ’un-
treated’ series yielded in IK(Ca) activated by influx of 6mM [Ca2+]O (D) or 1mM [Ca2+]O
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tion, filled circles • indicate linear I/V relation.
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Table 3.2. Parameters of steady-state activation with influx of 1 and 6 mM [Ca2+]O.
Currents were evoked by 300 ms depolarizing voltage pulses from -60 to 60 mV in 10mV
increments. Values are expressed as mean ± SD.

uPNs type I LNs type IIa LNs type IIb LNs

6 mM [Ca2+]O

activation
threshold (mV)

-40 -40 -50 -40

Imax (nA) 28 ± 18 9 ± 4 23 ± 18 16 ± 9
Emax (mV) 60 28 ± 17 28 ± 10 60

1 mM [Ca2+]O

activation
threshold (mV)

-40 -50 -50 -40

Imax (nA) 21 ± 6 3 ± 1 7 ± 6 7 ± 5
Emax (mV) 17 ± 11 5 ± 11 13 ± 17 23 ± 15
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3.2.3 Current-voltage relations of IK(Ca)

Steady-state activation with simultaneously activated ICa was used to determine

I/V relations. Whole-cell capacitance of respective measurment was used to cal-

culate current density from current amplitude. All values are expressed as mean

± SD.

Uniglomerular Projection Neurons

In uPNs an average whole-cell capacitance of 17.9 ± 3.7 pF (n = 7) was given. This

corresponds to a mean current density of 1.18 ± 0.45 nA/pF (n = 7, Fig. 3.9A1).

Assuming that K+ is the main charge carrier, this equals to a mean conductance

density of 10.4 ± 4.8 nS/pF (n = 7). To compare potentials of maximal IK(Ca) acti-

vation, current amplitudes elicited by 1 mM and 6 mM [Ca2+]O were normalized

to its respective maximum (Fig. 3.9 A2 and A3). With both [Ca2+]O, IK(Ca) started

to activate at potentials more depolarized than -40 mV and with 1 mM [Ca2+]O

maximal IK(Ca) amplitudes were reached at 17 ± 11 mV (Fig. 3.9A2).

Type I LNs

An average whole-cell capacitance of 25.5 ± 9.8 pF (n = 7) was measured in type

I LNs. This corresponds to a mean current density of 117 ± 50 pA/pF (n = 7, Fig.

3.9 B1), and 1.2 ± 0.3 nS/pF mean conductance density (n = 7). IK(Ca) started to

activate at -50 mV and maximal activation was reached at 5 ± 11 mV with 1 mM

[Ca2+]O (Fig. 3.9 B2). With 6 mM [Ca2+]O voltage for activation and maximal

activation was shifted to more depolarized potentials, IK(Ca) started to activate

at potentials more depolarized than -40 mV and maximal current amplitude was

reached at 28 ± 17 mV (Fig. 3.9 B3).

Type IIa LNs

Type IIa LNs exhibited an average whole-cell capacitance of 61.9 ± 38.2 pF. This

corresponds to an average conductance density with a maximum of 182 ± 95 pA/pF

(n = 11, Fig. 3.9C1) at 10 mV for type IIa LNs with decreasing IK(Ca) amplitude.
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Type IIa LNs that displayed increasing IK(Ca) amplitude with progressively de-

polarizing voltage pulses, reached a mean current density of 154 ± 47 pA/pF

(n = 5, Fig. 3.9C1) at 60 mV. This resulted in a mean conductance density of

1.2 ± 0.2 nS/pF for type IIa LNs with decreasing IK(Ca) (n = 11) and 1.4 ± 0.6 nS/pF

for type IIa LNs with increasing IK(Ca). In type IIa LNs, IK(Ca) activated at poten-

tials more depolarized than -50 mV with both applied [Ca2+]O. In the case of

neurons that display decreasing IK(Ca) amplitude with progressively depolariz-

ing voltage pulses, potential for maximal activation was shifted from 13 ± 17 mV

in 1 mM [Ca2+]O (n = 11, Fig. 3.9 C2) to 28 ± 10 mV in 6 mM [Ca2+]O (n = 12, Fig.

3.9 C3).

Type IIb LNs

Given a mean whole-cell capacitance of 75.0 ± 38.4 pF, resulted in an average

conductance density of 137 ± 108 pA/pF with a maximum at 20 mV (n = 4, Fig.

3.9 D1). This corresponds to a mean conductance density of 945 ± 586 pS/pF

for neurons with decreasing IK(Ca). Maximal current amplitudes were reached at

23 ± 15 mV (n = 4, Fig. 3.9D2). Type IIb LNs with IK(Ca) being maximal activated

at 60 mV, displayed a mean current density of 241 ± 206 pA/pF resulting in a

mean conductance density of 1.4 ± 1.2 nS/pF (n = 2, Fig. 3.9D1).

Clearly, the exact time course and amplitude of IK(Ca) are complex functions of

membrane potential, voltage dependence of ICa, local intracellular Ca2+ concen-

tration at the KCa channel and Ca2+-, as well as voltage dependence of the un-

derlying KCa channels. Accordingly, only limited conclusions about KCa channel

intrinsic activation and inactivation properties can be made from the shape of

whole-cell currents activated by simple voltage steps depolarizing the neuron for

300 ms (Prakriya et al., 1996). Hence, elaborate voltage protocols were used to

study the complex aspects of Ca2+ and voltage activation.
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Figure 3.9. I/V relation of IK(Ca) from uPNs (A), type I LNs (B), type IIa LNs (C), and
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3.3 Calcium dependence of IK(Ca)

To further study the dependence of IK(Ca) on ICa, two-step voltage protocols were

executed. A test pulse depolarized the membrane to +60 mV, where voltage acti-

vated Ca2+ influx does not occure since the membrane is depolarized beyond the

Ca2+ equilibrium potential. The test pulse was preceded by depolarizing voltage

pulses (Ca2+ loading steps) of varying amplitude or duration, which modified

the intracellular Ca2+ concentration. Thus, during the +60 mV test pulse, IK(Ca) is

activated by depolarized membrane potential, the varying amount of Ca2+ deliv-

ered by the loading steps, and the Ca2+ resting level. Taking into account that ICa

inactivates during a sustained voltage pulse, the instantaneous Ca2+ influx dur-

ing the loading pulse is dependent a) from the potential of the loading pulse and

b) how long ICa has been activated. Experiments were perfomed by Dr. Cathleen

Bradler and myself.

In a first set of experiments 200 ms loading steps were used from -60 mV to

+60 mV increased in 10 mV increments. This voltage range covers the complete

voltage operating range of ICa (Husch et al., 2009a). Figures 3.10 – 3.13 illustrate

the Ca2+-dependence of IK(Ca) in uPNs (Fig. 3.10), type I LNs (Fig. 3.11), type

IIa LNs (Fig. 3.12), and type IIb LNs (Fig. 3.13). Panels A of Fig. 3.10 – 3.13

show recordings in which the test pulse is preceded by a loading step to +10 mV

(large Ca2+ influx) and +60 mV (no Ca2+ influx). While Ca2+ influx of the +10 mV

loading pulse is terminated by the +60 mV test pulse, IK(Ca) is activated by the

amount of Ca2+ influx through voltage-gated Ca2+ channels (CaV channels) from

preceeding loading potential and the depolarized test pulse potential of 60 mV.

IK(Ca) displayed a solely transient current profile during the test pulse, consisting

of a fast activation and complete inactivation within a few milliseconds.

The whole experiment with a complete set of loading pulses from different AL

interneurons, respectively are shown in Fig. (3.10 – 3.13)B and magnification of

IK(Ca) transients are depicted in Fig. (3.10 – 3.13)C. Plotting the normalized am-

plitudes of IK(Ca) transients during the test pulse over loading pulse potential

revealed inverted U-shaped I/V relations (Fig. (3.10 – 3.13)D and 3.14A) with
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maxima between -10 and 20 mV, the voltage range in which ICa diplay maximal

activation (Husch et al., 2009a). The mirrored I/V relations of IK(Ca) and ICa clearly

demonstrate strong Ca2+ dependence of IK(Ca).

In a second set of experiments the 60 mV test pulse was preceded by loading

steps with increasing duration (5, 10, 25, 50, 100, 200 and 400 ms), to determine

the temporal dynamics of IK(Ca) transients. The loading step potential was in-

duvidually chosen which elicited maximal IK(Ca) transients in previous loading

potential experiments Fig. (3.10 – 3.13)E. Thus, the proportion of activated IK(Ca)

is dependent on a) activation and inactivation kinetics of CaV and KCa channels

and b) the proximity and concerted activity of CaV and KCa channels. Ca2+ enter-

ing the cytosol via CaV channels leads to local and large increases of intracellular

Ca2+ concentration ([Ca2+]i) in immediate vicinity to the channel pore but rapidly

equilibrates due to difussion and buffering (Augustine et al., 2003; Fakler & Adel-

man, 2008; Pippow et al., 2009). Therefore, inactivation of IK(Ca) during the test

pulse should resemble intrinsic inactivation after ceasing Ca2+ influx of varying

amount. Due to inactivation of ICa during a sustained depolarization the instan-

taneous Ca2+ influx at the end of each loading pulse is decreasing with increasing

length of the loading pulse.

Uniglomerular Projection Neurons

IK(Ca) was activated by prepulse potentials between -40 and 50 mV, an average

maximum was achieved at 10 mV prepulse potential (n = 6), Fig. 3.10D). Alter-

ation of prepulse duration (Fig. 3.10E and F) yielded in slowest decay of IK(Ca)

transients at 10 ms, which equaled 6.4 ± 3.9 ms. Prolonged prepulse duration of

400 ms expedited the decay to 3.3 ± 0.7 ms (n = 4, Fig. 3.10F). In 4 out of 5 uPNs,

IK(Ca) maxima were elicited with 5 ms prepulses, peristing loading pulse duration

led to decreasing IK(Ca) amplitudes, but even prepulse duration of 400 ms elicited

58% of IK(Ca) amplitude (n = 5, Fig. 3.10G).
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Figure 3.10. Ca2+ dependence of IK(Ca) from uPNs. (A) Current trace with a loading
step to +10 mV (large Ca2+ influx) was followed by transient activation of IK(Ca) during
the 60 mV test pulse, while prepulse potential of 60 mV (no Ca2+ influx) led to no IK(Ca)
activation. (B) Whole experiment with a complete set of loading pulses. The 300 ms test
pulse is preceded by 200 ms loading pulses between -60 and +60 mV, increased in 10 mV
increments. (C) Magnification of IK(Ca) transients. (D) Fractional IK(Ca) amplitude plotted
as a function of loading pulse potential. (E) IK(Ca) activation by loading steps of variable
duration. The 300 ms test pulse was preceded by loading pulses of 5, 10, 25, 50, 100, 200
and 400 ms to that potential which elicited maximal IK(Ca) transients in B (*). (F) Decay
of IK(Ca) transients as a function of prepulse duration. (G) Fractional IK(Ca) amplitude as
a function of loading pulse duration. This figure was kindly provided by Dr. Cathleen
Bradler.
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Type I LNs

In type I LNs, IK(Ca) was activated by prepulse potentials between -30 and 30 mV.

Maximal IK(Ca) activation was achieved by 0 mV prepulse potential (n = 9, Fig.

3.11D). IK(Ca) transients displayed the slowest decay of 2.7 ± 0.3 ms after prepulses

of 50 ms duration, shorter or longer prepulse duration both led to an decay within

1.9 ms (n = 8, Fig. 3.11F). Maximal IK(Ca) amplitudes were elicited after 50 ms

prepulses too, 5 ms prepulses elicited 69%, and 400 ms prepulses elicited even

76% of IK(Ca) amplitude (n = 8, Fig. 3.11G).

Type IIa LNs

IK(Ca) was activated by prepulse potentials between -50 mV and 50 mV with max-

imal activation at 0 mV (n = 12, Fig. 3.12D). Transients displayed slowest decay

of 4.4 ± 3.3 ms after 10 ms prepulses, but time constants were in the same range

after 5 and 25 ms prepulses, respectively (n = 10, Fig. 3.12F). Maximal IK(Ca) am-

plitudes were elicited after 10 ms prepulses too, after 400 ms prepulses 54% of

IK(Ca) amplitudes were reached (Fig. 3.12G).

Type IIb LNs

In type IIb LNs, IK(Ca) was activated by prepulse potentials between -50 and

50 mV with an average maximum at 0 mV (n = 5, Fig. 3.13D). Maximal IK(Ca)

transients were reached with 5 ms prepulses and decayed within 3.4 ± 1.0 ms

(n = 4, Fig. 3.13F). Persisting loading pulse duration led to further decreasing

IK(Ca) amplitudes, and prepulses duration of 400 ms elicited only 41% of IK(Ca)

amplitudes (n = 5, Fig. 3.13G).

All AL interneurons displayed maximal IK(Ca) activation with prepulse potentials

between 0 and 10 mV according to potentials of maximal ICa activation (Husch

et al., 2009b,a). IK(Ca) in type I LNs was activated by the most limited range of pre-

pulse potential, only prepulses between -30 and 30 mV elicited IK(Ca) transients

(Fig. 3.14A). Plotting the fractional IK(Ca) amplitude during the test pulse over
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Figure 3.11. Ca2+ dependence of IK(Ca) from type I LNs. (A) Current traces with loading
steps to -60, 10 and +60 mV. Prepulse potential of 10 mV (large Ca2+ influx) was followed
by transient IK(Ca) during the 60 mV test pulse. With prepulse potential of -60 and 60 mV
(no Ca2+ influx) no IK(Ca) activation was observed. (B) Whole experiment with a complete
set of loading pulses. The 300 ms test pulse is preceded by 200 ms loading pulses between
-60 and +60 mV, increased in 10 mV increments. (C) Magnification of IK(Ca) transient. (D)
Fractional IK(Ca) amplitude as a function of loading pulse potential. (E) IK(Ca) activation
by loading steps of variable duration. The test pulse was preceded by loading pulses of 5,
10, 25, 50, 100, 200 and 400 ms to that potential which elicited maximal IK(Ca) transients in
B (*). (F) Decay of IK(Ca) transients as function of prepulse duration. (G) Fractional IK(Ca)
amplitude as a function of loading pulse duration.
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IK(Ca) amplitude as a function of loading pulse duration. Panels A – C and E were kindly
provided by Dr. Cathleen Bradler.
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Figure 3.13. Ca2+ dependence of IK(Ca) from type IIb LNs. (A) Current traces with
loading step to -60, 10 and +60 mV. Prepulse potential of 10 mV (large Ca2+ influx) was
followed by transient IK(Ca) during the 60 mV test pulse. With prepulse potential of -
60 and 60 mV (no Ca2+ influx) no IK(Ca) activation was observed. (B) Whole experiment
with a complete set of loading pulses. The 300 ms test pulse is preceded by 200 ms load-
ing pulses between -60 and +60 mV. (C) Magnification of IK(Ca) transient. (D) Fractional
IK(Ca) amplitude as a function of loading pulse potential. (E) IK(Ca) activation by loading
steps of variable duration. The test pulse was preceded by loading pulses of 5, 10, 25, 50,
100, 200 and 400 ms to that potential which elicited maximal IK(Ca) transients in B (*). (F)
Decay of IK(Ca) transients as a function of prepulse duration. (G) Fractional IK(Ca) ampli-
tude as a function of loading pulse duration. Panels A –C and E were kindly provided
by Dr. Cathleen Bradler.
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Figure 3.14. Dependence of IK(Ca) to ICa from different AL interneurons (A) Fractional
IK(Ca) amplitude as a function of loading pulse potential. (B) Fractional IK(Ca) amplitude as
a function of loading pulse duration. (C) Decay of IK(Ca) transients as function of prepulse
duration.

loading pulse duration revealed differences between AL interneurons. Ampli-

tude of IK(Ca) transients reached maxima with 5 ms prepulses in uPNs and type

IIb LNs. In these neurons IK(Ca) amplitude decreased constantly with further

elongated loading pulse duration to roughly 50% of maximal IK(Ca) amplitude.

Type IIa LNs exhibit maximal IK(Ca) amplitudes with 5 to 25 ms prepulse dura-

tion, peak values were observed with 10 ms loading pulses. Type I LNs displayed

the most complex relation between loading duration and IK(Ca) amplitude, 5 ms

prepulses elicited only 69% of the peak current which was reached with 50 ms

loading pulses. With further persisting prepulse duration current amplitude de-

creased, but even after 400 ms prepulses 76% of maximal IK(Ca) activation was

achieved (Fig. 3.14B). IK(Ca) transients displayed slowest decay in the range from

6.4 to 2.7 ms with prepulse durations activating IK(Ca) maximally. With 50 ms

loading pulses the decay τ equaled 4.7 ± 2.4 ms in uPNs, 2.7 ± 0.3 ms in type I

LNs, 3.8 ± 2.3 ms in type IIa LNs and 2.8 ± 0.9 ms in type IIb LNs (Fig. 3.14C).
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Table 3.3. Activation of IK(Ca) by previous Ca2+ influx. Two-step voltage protocols were
used to study the Ca2+ dependence of IK(Ca). IK(Ca) was elicited by a test pulse, depolar-
izing the menbrane to 60 mV and preceeding Ca2+ loading steps of various potential or
duration.

uPNs type I LNs type IIa LNs type IIb LNs

IK(Ca) activation by Ca2+ loading pulses of different potential

prepulse potential
E (mV)

-40 – +50 -30 – +30 -50 – +50 -50 – +50

prepulse potential
Emax (mV)

+10 0 0 0

IK(Ca) activation by Ca2+ loading pulses of various duration

Imax with prepulse
duration (ms)

5 50 10 5

I/Imax after
400 ms prepulses

58% 76% 54% 41%

slowest decay τmax
(ms)

6.4 ± 3.9 2.7 ± 0.3 4.4 ± 3.3 3.4 ± 1.0

decay τmin (ms) 3.3 ± 0.7 1.9 ± 0.7 2.3 ± 0.8 2.2 ± 0.9

50



3 Results

3.4 Pharmacological properties of IK(Ca)

IK(Ca) is mediated by SK, IK and BK channels, which can be distinguished by

their sensitivity to toxins. Here, I examined the effect of apamin, charybdotoxin

(ChTX), and iberiotoxin (IbTX) on IK(Ca) from different AL interneurons. An

[Ca2+]O of 6 mM was chosen to boost IK(Ca) amplitude, and currents were evoked

by a depolarizing voltage step to 0 mV. Concentration-response relations were

determined by application of one toxin in consecutive concentrations between

10 pM and 100 nM. Amplitudes were calculated as a fraction of IK(Ca) amplitude

under control conditions (Imax) and fit to equation (2.2, see Methods). While ap-

plication of 1 µM apamin had no effect on IK(Ca) from all AL interneurons, both

ChTX and IbTX blocked IK(Ca) in a concentration dependent way, however IbTX

had less potent effect on IK(Ca). Complete IK(Ca) inhibition was achieved by appli-

cation of ChTX, while IbTX application even at the highest concentration resulted

in only partial current block (Fig. 3.15).

ChTX started to block IK(Ca) from uPNs at concentrations around 1 nM, concentra-

tions higher than 50 nM blocked IK(Ca) completely, yielding in an EC50 of 2.4 nM

for ChTX. IbTX started to suppress IK(Ca) at concentrations around 10 pM, but

only 59% of IK(Ca) were blocked during application of 100 nM IbTX (Fig. 3.15A).

The concentration-response fit yielded in EC50 of 157 pM for IbTX.

ChTX started to block IK(Ca) from type I LNs at concentrations around 3 nM and

Figure 3.15 (following page). Pharmacology of IK(Ca) from different AL interneurons.
(A) Concentration-response relation of ChTX (n = 12) and IbTX (n = 8) from uPNs. Frac-
tional IK(Ca) amplitudes were fit to equation (2.2), yielding in an EC50 of 2.4 nM for ChTX
and 157 pM for IbTX. (B) Current traces from two uPNs under control conditions and
during application of different IbTX (upper part) or ChTX (lower part) concentrations.
(C) Concentration-response relation of ChTX (n = 6) and IbTX (n = 6) from type I LNs.
Fractional IK(Ca) amplitudes were fit to equation (2.2), yielding in an EC50 of 4.3 nM for
ChTX and 277 pM for IbTX. (D) Current traces from two type I LNs under control con-
ditions and during application of different IbTX (upper part) or ChTX (lower part) con-
centrations. (E) Concentration-response relation of ChTX (n = 7) and IbTX (n = 7) from
type II LNs. Fractional IK(Ca) amplitudes were fit to equation (2.2), yielding in an EC50 of
4.2 nM for ChTX and 7.5 nM for IbTX. (F) Current traces of two type II LNs under control
conditions and during application of different IbTX (upper part) or ChTX (lower part)
concentrations.
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Table 3.4. Pharmacology of IK(Ca) from different AL interneurons. Currents were calcu-
lated as a fraction of maximal current amplitude and fit to equation (2.2, see Methods).

uPNs type I LNs type II LNs

ChTX EC50 (nM) 2.4 4.3 4.2
residual current (%)

at 10 nM
20 30 30

IbTX EC50 (nM) 0.18 0.28 7.5
residual current (%)

at 10 nM
41 56 71

residual current (%)
at 100 nM

40 55 52

application of 100 nM ChTX resulted in complete IK(Ca) inhibition, yielding in an

EC50 of 4.3 nM. IbTX started to suppress IK(Ca) at concentrations around 10 pM

but only 46% of IK(Ca) were blocked even at highest toxin concentration applied

(Fig. 3.15C). The concentration-response fit yielded in an EC50 of 277 pM for IbTX.

Type II LNs displayed similar sensitivity to ChTX as type I LNs, but they were less

sensitive to IbTX compared to all other AL interneurons. As no difference of IK(Ca)

sensitivity to ChTX and IbTX was observed between LNII subtypes, data for both

subtypes were combined and analyzed. In type II LNs ChTX started to block

IK(Ca) at concentrations around 1 nM and 50 nM ChTX blocked IK(Ca) completely,

yielding in an EC50 of 4.2 nM. IbTX started to suppress IK(Ca) at concentrations

around 10 pM, but only 51% of IK(Ca) could be blocked even when 100 nM IbTX

were applied (Fig. 3.15E). The concentration-response fit according to equation

(2.2, see Methods) yielded in an EC50 of 7.5 nM.

In an effort to test whether SK channels contribute to IK(Ca), 1 µM apamin, a

known SK channel blocker, was applied to the preparations. To assure that changes

in current amplitude were due to blocker treatment, currents were elicited three

times in 5 min intervals under control conditions, blocker treatment, and dur-

ing wash out (Fig. 3.16A and B). Figure 3.16 depicts a recording from a single

type I LN. The average fractional amplitude out of three subsequent applications

equaled 0.91 ± 0.07 under control conditions and 0.90 ± 0.09 upon apamin appli-
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cation, which constitute no significant change in current applitude (Fig. 3.16C).

IK(Ca) from other AL interneurons was not sensitive to apamin application as well

(data not shown).
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Figure 3.16. Application of the SK channel blocker apamin on type I LN. (A) IK(Ca)
recorded under control conditions, after application of 1 µM apamin and subsequent
wash out. Each row shows an overlay of three current traces recorded after 15 min of
respective treatment. (B) Fractional IK(Ca) amplitude as a function of recording time, re-
spective treatments are indicated by grey boxes. (C) Mean fractional IK(Ca) amplitude
under control conditions, apamin application and wash out.
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3.5 IK(Ca) and underlying currents

Charybdotoxin (ChTX) was the only toxin tested, which achieved complete inhi-

bition of IK(Ca) from all AL interneurons. Therefore, I used 100 nM ChTX to ac-

complish comlete inhibition of IK(Ca) and demonstrate the pure amount of IK(Ca)

and underlying currents. Recordings were performed according to isolation of

IK(Ca) (see 3.2.2 Steady-state activation with calcium influx) with 1mM [Ca2+]O.

Previous to Cd2+ application, ChTX was added to the extracellular solution and

current traces consisting of ICa and IK(V) were elicited. Digital subtraction of con-

secutive treatments disclosed the pure amount of IK(Ca), ICa and IK(V) in different

AL interneurons (Fig. 3.17).

Generally, uPNs displayed current profiles dominated by IK(Ca). IK(V) amplitude

was remarkably smaller and, as a result of digital subtraction, ICa amplitudes ap-

peared vanishingly small (Fig. 3.17A). I/V relation of IK(Ca) and current consisting

of IK(Ca), ICa, and IK(V) were almost similar (Fig. 3.17B).

Application of TTX and 4-AP on a type I LN led to current profiles shaped by

IK(Ca), ICa and IK(V) (Fig. 3.17C). Digital subtraction revealed a prominent ICa, and

IK(V) reaching highest current amplitudes (Fig. 3.17D).

During 300 ms depolarizing voltage pulses IK(Ca) from type IIb LN displayed a

prominent transient component. At progressively depolarizing potentials, cur-

rent was superimposed by increasing IK(V) amplitude (Fig. 3.17E).

In all neurons, ICa displayed different current profiles and I/V relations than pre-

viously reported by Husch et al. (2009b). Subsequent application and required

Figure 3.17 (following page). Steady-state activation of IK(Ca) and underlying currents
from different AL interneurons. Current traces were elicited by depolarizing voltage
steps from -60 to 60 mV in 10 mV increments and cells were bathed in saline contain-
ing TTX and 4-AP. Additional application of 100 nM ChTX abolished IK(Ca) completely.
Subsequent application of Cd2+ blocked ICa as well and only IK(V) was recorded. Digital
subtraction revealed the amount of IK(Ca) and ICa within the investigated voltage range.
(A) Steady-state activation from a single uPN. (B) I/V relation of recorded and digitally
subtracted currents from this uPN. (C) Steady-state activation from a single type I LN.
(D) I/V relation of recorded and digitally subtracted currents from this type I LN. (E)
Steady-state activation from one type IIb LN. (F) I/V relation of recorded and digitally
subtracted currents from this type IIb LN.
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incubation time might cause inaccuracies in the I/V relationship, thus digital sub-

traction is less reliable than pharmacological isolation to evaluate current profiles

and I/V relations. ICa amplitudes of were in the same range as previously de-

scribed (Husch et al., 2009a,b). Comparison of defined IK(Ca) with underlying ICa

(◦ Fig. 3.17) and pure IK(Ca) (• Fig. 3.17) demonstrate that current profiles and I/V

relation were clearly dominated by IK(Ca).
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Within the AL network, distinct neurons perform different tasks to accomplish

olfactory processing (Olsen et al., 2007; Olsen & Wilson, 2008; Assisi et al., 2012;

Wilson, 2013). Distinct electrophysiological properties arise from neuron intrin-

sic ion channels and cell specific mechanisms (Husch et al., 2009a,b; Pippow et al.,

2009; Demmer & Kloppenburg, 2009). Only uPNs and type I LNs generate Na+

action potentials because they express voltage-dependent Na+ channels. Type

II LNs do not possess voltage-dependent Na+ channels and accordingly do not

fire action potentials but presumably implement graded transmitter release. Fur-

thermore, non-spiking type II LNs can be subdivided into IIa and IIb subtypes

by their active membrane properties and characteristics of voltage activated Ca2+

currents. To enhance our knowledge how distinct electrophysiological properties

are produced by intrinsic ion channels, detailed studies of ionic currents from

different AL interneurons are indispensable.

The aim of this study was to investigate pharmacological and biophysical prop-

erties of IK(Ca) from different AL interneurons which will help to understand how

IK(Ca) contributes to the electrophysiological properties of these specific neurons.

Parameters from steady-state activation of IK(Ca) was analyzed at fixed [Ca2+]i

and with low and high concentrated Ca2+ influx. To further study the Ca2+ de-

pendence of IK(Ca) two-step voltage protocols were executed. In the second part,

toxin peptides of high selectivity were used to assign KCa channels mediating

IK(Ca). Additionally, concentration-response relations were established and com-

plete inhibition of IK(Ca) was accomplished to unveile the pure amount of IK(Ca)

and underlying ICa. Based on pharmacological experiments, exclusion experi-
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ments will be performed in which IK(Ca) is partially blocked to reveal the func-

tional impact of IK(Ca) in spiking uPNs and type I LNs.

All recordings in this study were performed in an intact brain preparation. Given

that complex arborizations were still intact, perfect voltage control across the en-

tire neuron can not be assumed. However, current waveforms did not indicate

significant voltage control problems suggesting that they originated from well

voltage-clamped regions. Given the long, thin primary neurite, it is assumed that

the major part of measured currents originate from the cell bodies.

4.1 Biophysical properties of IK(Ca)

Steady-state activation of IK(Ca) was determined with Ca2+ influx of 1 and 6 mM

[Ca2+]O and with defined [Ca2+]i. With simultaneous Ca2+ influx of 1 and 6 mM,

the current profile consisted of a sustained, noninactivating component and a

more or less prominent, transient component, inactivating at diverse time scales.

In studies from rat chromaffin cells inactivating and noninactivating BK currents

have been identified (Solaro et al., 1995). Inactivating BK currents are sensitive to

cytosolic trypsin, which slowed till removed inactivation (Solaro & Lingle, 1992;

Solaro et al., 1997; Li et al., 1999). Although the structural component of BK chan-

nels that confers inactivation has not been identified, two alternative splice vari-

ants of Slo are found in chromaffin cells which are able to form heteromultimers

leading to inactivation rates of diverse time course (Saito et al., 1997; Ding et al.,

1998; Lovell et al., 2000). A biphasic current profile of IK(Ca) is also consistent with

studies from insect DUM neurons (Derst et al., 2003; Heidel & Pflüger, 2006) or

Kenyon cells (Schäfer et al., 1994; Demmer & Kloppenburg, 2009).

When defined [Ca2+]i were applied via the recording pipette, IK(Ca) displayed a

sustained non-inactivating current profile, like pSlo currents measured in HEK

293 cells after heterologous expression (Derst et al., 2003). Hence, inactivation of

IK(Ca) during a sustained voltage pulse seems to be caused by ICa inactivation and

reduction of Ca2+ concentration at the KCa channels.
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4.1.1 Calcium sensitivity and voltage dependent activation

When constant [Ca2+]i were applied, IK(Ca) from all AL interneurons displayed

clear voltage dependence. In situ recordings of AL interneurons showed that

voltages of half-maximal activation V0.5(act) were shifted to more positive poten-

tials compared to pSlo currents from heterologous expression (Derst et al., 2003).

Additionally, steady-state activation at defined [Ca2+]i from unequivocally iden-

tified AL interneurons revealed differential Ca2+ sensitivity of IK(Ca) among cell

types. Within the population of AL interneurons, IK(Ca) from type I LNs was ac-

tivated with lowest [Ca2+]i accounting to highest Ca2+ sensitivity, while uPNs

require 10 fold higher [Ca2+]i to activate at comparable membrane potential (see

table 3.1). Physiological membrane potential of non-spiking type II LNs is more

hyperpolorized than in spiking neurons, but an [Ca2+]i of 1.8 mM lead to half-

maximal IK(Ca) activation at 87 and 62 mV, indicating that type II LNs need even

higher [Ca2+]i to activate IK(Ca) within the range of their physiological membrane

potential.

Elevation of [Ca2+]i in this extent occure only in very local spatiotemporal do-

mains close to CaV channels which are linked to KCa channel (Augustine et al.,

2003; Berkefeld et al., 2006; Fakler & Adelman, 2008). Although both channel

types are directly linked by channel-channel interaction, diverse coupling of CaV-

and KCa channels has been reported (Berkefeld et al., 2006). P-type calcium chan-

nels couple to the activation of BK channels or SK channels in cerebellar Purk-

inje cells (Edgerton & Reinhart, 2003). L-type CaV channels have been reported

to activate BK channels in chromaffin cells (Marcantoni et al., 2010), whereas in

CA1 hippocampal neurons L-type channels specifically activate SK channels and

BK channels are activated by N-type CaV channels (Marrion & Tavalin, 1998). A

given cell can link differential CaV channels to the same KCa channel for selective

activation or that KCa channels respond to the domains of intracellular calcium

increase produced by several different CaV channel subtypes (Davies et al., 1996;

Turner et al., 2011). Additionally, modulatory binding partners and scaffold pro-

teins increase the potential for subtle modulation (Levitan, 2006), for example
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the slowpoke-binding protein (Slob) has been proven to alter voltage dependent

activation (Zeng et al., 2005).

4.1.2 Parameters of steady-state activation

Steady-state activation of IK(Ca) with simultaneous Ca2+ influx, revealed current

amplitudes in the same range as reported from cockroach DUM neurons (Grol-

leau & Lapied, 1995; Derst et al., 2003; Gautier et al., 2008). However, comparison

of activation by influx of 1 and 6 mM [Ca2+]O unveiled disparate I/V relations.

Activated by influx of 6 mM [Ca2+]O, IK(Ca) from uPNs, type IIb LNs, and the

major part of type IIa LNs displayed increasing current amplitudes with progres-

sively depolarizing voltage steps. Linear I/V relations of IK(Ca) have been also

reported from studies in cockroach and locust DUM neurons which used 5 mM

[Ca2+]O (Grolleau & Lapied, 1995; Derst et al., 2003; Heidel & Pflüger, 2006). Al-

though N- or bell-shaped I/V relations were refered to be characteristic of IK(Ca)

(Thomas, 1984; Nightingale & Pitman, 1989; Solaro et al., 1995).

Reducing the [Ca2+]O to 1 mM resulted in smaller current amplitudes, decreasing

with progressively depolarizing voltage pulses. This resulted in characteristic

bell-shaped I/V relations of IK(Ca), which have also been described from insect

Kenyon cells (Schäfer et al., 1994; Demmer & Kloppenburg, 2009). Linear I/V re-

lation might be produced by robust elevations of [Ca2+]i which presumably satu-

rate cytoplasmatic Ca2+ clearance mechanisms (Pippow et al., 2009). Reducing the

[Ca2+]O shifted voltage of maximal activation to more hyperpolarized potentials

too. With 1 mM [Ca2+]O, IK(Ca) started to activate at membrane potentials like

ICa in the corresponding neuron type (table 4.1), but maximum IK(Ca) amplitudes

were reached at more depolarized potential than ICa (Husch et al., 2009a,b).

This indicates strong Ca2+ dependence and suggests that IK(Ca) is active at sub-

threshold membrane potential, reducing the excitability of respective neuron by

counteracting ICa. Current-clamp recordings of uPNs and type I LNs displayed

unstable membrane potential leading to spontaneous high frequency spike trains

when IK(Ca) was completely blocked by application of 100 nM ChTX (see 5 Ap-

pendix). In contrast, 80% or at least 44% inhibition of IK(Ca) had no effect on
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Table 4.1. Comparison of IK(Ca) and ICa.

uPNs type I LNs type IIa LNs type IIb LNs

IK(Ca)
threshold (mV) -40 -50 -50 -40
Emax (mV) 17 ± 11 5 ± 11 13 ± 17 23 ± 15

ICa
threshold (mV) -35 -50 -55 -45
Emax (mV) 5.8 ± 4.9 9.0 ± 6.1 -8 ± 8 -7 ± 7

(Husch et al., 2009a,b)

average membrane potential in both types of spiking AL interneurons (see 5 Ap-

pendix).

Additionally, a remarkable high mean current density of IK(Ca) was observed in

uPNs, which was 10 fold higher compared to LN types (among which current

density was in the same range) or DUM neurons from P. americana (Heidel &

Pflüger, 2006), and 2 fold higher than Kenyon cells (Demmer & Kloppenburg,

2009). Current density of ICa from uPNs was also significantly higher compared

to all LN types (Husch et al., 2009a). In Kenyon cells, where remarkable high

current density of both ICa and IK(Ca) has been reported too, both currents support

Kenyon cell intrinsic firing properties including spike frequency adaptation (SFA)

during depolarizing current injection (Demmer & Kloppenburg, 2009).

In synaptically isolated uPNs depolarizing current injections induced trains of ac-

tion potentials with relatively regular firing patterns. Typically spike frequency

increased slightly during prolonged depolarization, spike frequency- or spike

wave form adaptations could never be observed (see Appendix Fig. 5.1). Instead,

functional parameters of IK(Ca) and ICa are subtle tuned to ensure concerted acti-

vation which sharpen excitatory potentials, contributing to spike broadening and

afterhyperpolarization in spiking AL interneurons (see Appendix Fig. 5.1 and

5.2). In contrast, type I LNs displayed two modes of repetetive firing: One popu-

lation displayed sustained firing with weak spike frequency adaptation, whereas

the second population showed likewise phasic firing pattern with strong spike

frequency adaptation. In both cases, application of ChTX or IbTX did not abol-

62



4 Discussion

ish spike frequency adaptation (see Appendix Fig. 5.2). Different mechanism are

known which contribute SFA , including Ca2+-activated potassium und chlorid

conductance (Faber & Sah, 2003; Peron & Gabbiani, 2009) or Na+-activated potas-

sium conductance, as well as inactivation of INa (Miles et al., 2005; Bhattacharjee

& Kaczmarek, 2005). Mechanisms controlling SFA seem cell specific, whereby in

lateral amygdala pyramidal neurons sAHP current and voltage activated K+ cur-

rent act together with IA determining the initial firing frequency (Faber & Sah,

2005).

4.1.3 Calcium dependent activation

To further study the calcium dependence of IK(Ca), double-pulse experiments

were performed in which Ca2+ influx was modified by potential and duration.

Maximal IK(Ca) amplitudes were achieved with prepulse potentials activating max-

imal ICa amplitudes, which leads to almost perfectly mirrored I/V relations, again

demonstrating strong Ca2+ dependence of IK(Ca) (Solaro et al., 1995; Husch et al.,

2009a).

During the test pulse, IK(Ca) displayed pure transient current profiles with fast

activation and complete inactivation. The time course of inactivation was fit by a

monoexponential function, resulting in τ (time constant of decay) between 3 and

6 ms, which is consistent with inactivating IK(Ca) from frog saccular hair cells

(Armstrong & Roberts, 2001). While inactivation of IK(Ca) from chromaffin cells

occured within 25 – 100 ms (Ding et al., 1998; Lovell et al., 2000).

With Ca2+ loading steps of various duration, the time course of IK(Ca) transients

should reflect, at least in part, the time course of Ca2+ dependent activation and

intrinsic inactivation since Ca2+ influx is stopped at test pulse potential. Varia-

tion of prepulse duration revealed that short periods of Ca2+ entry were suffi-

cient to activate maximal IK(Ca) transients in uPNs and type IIb LNs. In type I

LNs, maximal IK(Ca) activation was reached after 50 ms of Ca2+ influx, shorter

loading pulses activated only 69% of IK(Ca), but IK(Ca) following prolonged load-

ing pulses IK(Ca) displayed less attenuation in amplitude. In rat chromaffin cells

the existence of two KCa channel populations has been proposed (Prakriya et al.,

63



4 Discussion

Table 4.2. Biophysiological parameters of IK(Ca) from different AL interneurons.

uPNs type I LNs type IIa LNs type IIb LNs

V0.5(act) (mV) at defined [Ca2+]i

143 µM [Ca2+]i 100 ± 11 58 ± 2 215 ± 1 113 ± 3
1800 µM [Ca2+]i 50 ± 2 – 87 ± 1 62 ± 2

IK(Ca) activation by simultaneous influx of 6 mM [Ca2+]O

Imax (nA) 28 ± 18 9 ± 4 23 ± 18 16 ± 9
Emax (mV) 60 28 ± 17 28 ± 10 60

IK(Ca) activation by simultaneous influx of 1 mM [Ca2+]O

Imax (nA) 21 ± 6 3 ± 1 7 ± 6 7 ± 5
Emax (mV) 17 ± 11 5 ± 11 13 ± 17 23 ± 15

current density
Imax/CM (pA/pF)

1181 ± 447 117 ± 50 182 ± 95 137 ± 108

IK(Ca) activation by previous Ca2+ influx at different potential

prepulse potential
E (mV)

-40 – +50 -30 – +30 -50 – +50 -50 – +50

prepulse potential
Emax (mV)

+10 0 0 0

IK(Ca) activation by previous Ca2+ influx of various duration

Imax with prepulse
duration (ms)

5 50 10 5

I/Imax after 400 ms
prepulses

58% 76% 54% 41%

slowest decay τmax
(ms)

6.4 ± 3.9 2.7 ± 0.3 4.4 ± 3.3 3.4 ± 1.0

decay τmin (ms) 3.3 ± 0.7 1.9 ± 0.7 2.3 ± 0.8 2.2 ± 0.9
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1996). One population is activated during brief Ca2+ influx and closely associ-

ated to CaV channels (Prakriya & Lingle, 1999; Berkefeld et al., 2006). Whereas

the second population require longer Ca2+ influx and are activated by Ca2+ that

diffuses some distance from open CaV channels (Braun et al., 2000; Prakriya &

Lingle, 2000). Despite IK(Ca) from type I LNs exhibit high Ca2+ sensitivity, slow

Ca2+ mediated activation suggests that coassembly of KCa and CaV channels is

less dense compared to uPNs and type II LNs.

4.2 Pharmacology of IK(Ca) from AL interneurons

IK(Ca) is mediated by BK, IK, and SK channels which can be distinguished by

their sensitivity to toxins (Dreyer, 1990; Wei et al., 2005). In this study, I used

apamin, iberiotoxin, and charybdotoxin to identify KCa channel subtypes that

mediate IK(Ca) in AL interneurons and established concentration-response rela-

tions for ChTX and IbTX.

4.2.1 IK(Ca) from AL interneurons is apamin-insensitive

SK channels are characterized by their high sensitivity to the bee venom toxin

apamin. Consequently the peptide toxin has been used extensively to reveal the

role of SK channels on neuronal firing properties (Bond et al., 2005; Pedarzani &

Stocker, 2008; Faber, 2009; Adelman et al., 2012). SK channels contribute to AHP

that control the pattern and frequency of action potential discharge in many cell

types (Pineda et al., 1992; Bennett et al., 2000; Abel et al., 2004). In this study, 1 µM

apamin were used to test whether IK(Ca) or at least a portion of IK(Ca) are medi-

ated by SK channels and if apamin-sensitive currents contribute to uPN intrinsic

friring properties. IK(Ca) was not altered upon apamin application and uPNs dis-

played no change in firing frequency, AHP or any other parameter describing

cellular firing characteristics at all (see Appendix Fig. 5.1). Consequently, no

apamin-sensitive SK channel contribute to IK(Ca) from AL interneurons. Despite

numerous studies from vertebrate SK channels exist, studies from invertebrate

species are rare. The Drosophila genome contains one SK channel gene (Littleton
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& Ganetzky, 2000), which encodes a slow IK(Ca) in photoreceptors from omma-

tidia (Hardie, 1995; Gu et al., 2005). The reported channel from insects ommatidia

shows high similarity with its mammalian homologs but differs in two amino

acid residues that are contiguous in space and have been shown to be important

for apamin binding (Abou Tayoun et al., 2011). Additionally, a SK-like K+ conduc-

tance which mediates SFA in visual interneurons of the locust, has been proven

insensitive to even 10 µM apamin (Peron & Gabbiani, 2009).

4.2.2 Sensitivity of IK(Ca) to ChTX and IbTX

Application of 100 nM ChTX completely blocked IK(Ca) from all AL interneurons,

yielding in EC50 values of 2.4 nM for uPNs and 4.3 nM for both, type I and type II

LNs. While pSlo currents have been proven sensitive to ChTX (EC50 of 158 nM),

dSlo currents were insensitive to ChTX at nanomolar concentration (Derst et al.,

2003). Unfortunatelly, ChTX is not a selective inhibitor of BK channels, it is also

a potent inhibitor of IK channels (Kaczorowski et al., 1996; Vandorpe et al., 1998;

Fioretti et al., 2004). ChTX is also known to block other types of K+ channels,

including Shaker K+ channels cloned from Drosophila and expressed in Xenopus

oocytes or mammalian cells but not the corresponding current IA in Drosophila

(Zagotta et al., 1989).

IbTX is a second peptide toxin which has been extensively studied for its specific

inhibition of BK channel (Galvez et al., 1990; Giangiacomo et al., 1992). Although

IbTX blocked IK(Ca) from Al interneurons in a concentration dependent way, a

fraction of IK(Ca) remained even when 100 nM IbTX were applied. IK(Ca) from

spiking AL interneurons, was more sensitive to IbTX than to ChTX, yielding in

EC50 values of 157 pM (uPNs) and 277 pM (type I LNs). However, only 59%

of IK(Ca) from uPNs and 46% of IK(Ca) from type I LNs was suppressed even at

the highest IbTX concentration. In type II LNs a similar fraction, namely 53% of

IK(Ca) was suppressed by 100 nM IbTX. However, IK(Ca) of type II LNs was also

less sensitive to IbTX than IK(Ca) from spiking AL interneurons, a 10 fold higher

EC50 of 7.5 nM was achieved. Generally, IbTX had similar but less potent effects
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on IK(Ca) from AL interneurons than ChTX, which has also been reported of IK(Ca)

from DUM neurons (Heidel & Pflüger, 2006).

Although a portion of IK(Ca) was not blocked by IbTX but by application of ChTX,

it is doubtful that IK channels contribute to IK(Ca) in AL interneurons, since to

date no insect SK4 gene has been reported (Littleton & Ganetzky, 2000; Wicher

et al., 2001; Berkefeld et al., 2010). Confirmation may be achieved by application

of other neurotoxins with high specificity for either BK or IK channels. Limbat-

ustoxin from venom of the scorpion Centruroides limbatus and slotoxin from Cen-

truriodes noxius Hoffmann scorpion venom are highly selective blockers of BK

channels (Garcia et al., 1997; Garcia-Valdes et al., 2001). Maurotoxin was found to

produce specific inhibition of IK channels without effects on SK or BK channels

(Castle et al., 2003; Kharrat et al., 1996). However, evenmore neurotoxins specifi-

cally targeting insect BK channels were identified (Gunning et al., 2008; Windley

et al., 2011).

Structural determinants of ChTX and IbTX sensitivity

ChTX or α-KTx1.1 belongs to the subfamily 1 of scorpion venom peptides, as

iberiotoxin (IbTX or α-KTx1.2) and limbatustoxin (LbTX or α-KTx1.4) which in-

hibit BK channels with high affinity (Miller, 1995). IbTX and ChTX contain 37

amino acids resulting in nearly superimposable structures of the α-carbon back-

bone, consequently differences in specificity must arise from differences in the

amino acid side chains (Giangiacomo et al., 2007, 2008). Molecular cloning and re-

combinant expression of ChTX and IbTX, helped to identify amino acid residues

directly involved in the interaction with the K(Ca)channel (Mullmann et al., 1999;

Giangiacomo et al., 2007). Both peptide toxins have a globular structure and the

interaction surface is formed from 8 of the 37 residues that cover about 25% of

the peptide’s molecular surface (Park & Miller, 1992; Stampe et al., 1994). Ser10,

Trp14, Arg25, Lys27, Met29, Asn30, Arg34, and Tyr36 were classified as crucial

for channel-blocking function (Stampe et al., 1994). The positively charged Lys27

is positioned at the center of the peptide-channel complex to form a hydrogen

bonding with Tyr290 in the selectivity filter of the BK channel (Gao & Garcia,
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2003). Two important aromatic residues in the BK channel vestibule, Tyr294 and

Phe266 form aromatic π-π interaction groups with Trp14 and Tyr36 of ChTX and

IbTX (Gao & Garcia, 2003). Additionally, Met29 could form favorable contacts

with Phe299 and Tyr294, contributing to the hydrophobic core (Gao & Garcia,

2003). Whereas Asn30 in ChTX and Gly30 in IbTX are important determinants

of specificity for BK channels over KV channels (Giangiacomo et al., 2007). How-

ever, these toxins should not be considered as pharmacological tools that reliably

dissect the numerous K+ currents found in neurons (Miller, 1995). Many exam-

ples exsist of K channels with similar functional behavior but huge differences in

sensitivities to toxin homologs, or conversively, with functional differences but

similar toxin affinities. The molecular basis underlying these varied toxin sus-

ceptibilities could be slight sequence variation in the toxin receptor domain of the

channel (Miller, 1995). Nevertheless, much of the knowledge how KCa channels

regulate cellular processes depends on the specificity of inhibition with peptide

neurotoxins (Gu et al., 2007; Haghdoost-Yazdi et al., 2008).

4.3 Summary

At defined [Ca2+]i amplitudes of IK(Ca) from all AL interneurons increased with

progressively depolarizing voltage pulses, showing clear voltage dependence of

steady-state activation. Increasing [Ca2+]i lowered the voltage threshold for acti-

vation and the voltage for half-maximal activation (V0.5(act)). Since BK channels

are equipped with a voltage-sensing segment (S2–4) they display clear voltage

dependence, whereas SK and IK channel currents are voltage-insensitive (Köhler

et al., 1996; Horrigan & Aldrich, 2002; Latorre et al., 2010; Adelman et al., 2012).

Furthermore, IK(Ca) from all AL interneurons were sensitive to nanomolar concen-

trations of the BK channel blocker ChTX. Classification of vertebrate KCa chan-

nels is difficult to transfer to insect IK(Ca), but IK(Ca) from AL interneurons exhibit

characterisics typical for BK channels. Despite conformities in voltage dependent

activation and pharmacological properties, IK(Ca) from different AL interneurons

exhibit individual qualities.
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Uniglomerular Projection Neurons

At an [Ca2+]i of 1.8 mM, IK(Ca) was half-maximal activated at 50 mV membrane

potential, ascribing IK(Ca) from uPNs comparable Ca2+ sensitivity to IK(Ca) from

type IIb LNs. Activated by simultaneous influx of 1 mM [Ca2+]O, maximal IK(Ca)

activation was achieved at 17 mV suggesting a beneficial effect by activation

through underlying ICa. Influx of 6 mM [Ca2+]O presumably saturated cytoplas-

matic clearance mechanisms and uncoupled IK(Ca) from ICa, resulting in a linear

I/V relation. IK(Ca) displayed peak amplitudes after preceding Ca2+ influx of 5 –

10 ms and inactivation within 3 – 6 ms.

Although IK(Ca) is active at subthreshold potential, recordings in current-clamp

mode showed no effect on average resting potential, even when 80% of IK(Ca)

were blocked (see 5 Appendix). Inhibition of IK(Ca) reduced action potential repo-

larization rate and afterhyperpolarization, whereby spike width was prolonged

and spike frequency increased (see Appendix Fig. 5.1). Beside the impact of IK(Ca)

on reducing the excitability of uPN, high current density of both IK(Ca) and ICa,

together with biophysical properties hint to cooperative activation of IK(Ca) and

ICa to ensure concerted activation with temporal precision.

Type I LNs

At an [Ca2+]i of 143 µM, IK(Ca) was half-maximal activated at 58 mV membrane

potential, ascribing highest Ca2+ sensitivity to IK(Ca) from type I LNs. Activated

by Ca2+ influx, IK(Ca) displayed bell-shaped I/V relation at both applied [Ca2+]O,

contrary to the major part of AL interneurons. Despite its Ca2+ sensitivity, IK(Ca)

from type I LNs was activated by the most limited range of prepulse potential,

maximal IK(Ca) activation was achieved only after 25 – 50 ms preceeding Ca2+

influx whereas inactivation occured within 2 – 3 ms.

Despite current clamp recordings of type I LNs asign IK(Ca) same impact on spike

width, repolarization, and afterhyperpolarization like in uPNs (see 5 Appendix),

biophysical properties hint to a less dense coupling of KCa and CaV channels in

type I LNs. Instead IK(Ca) act as highly sensitive Ca2+ sensors in distance from the
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Ca2+ source and exhibit rigid activation following Ca2+ influx. Generally, type

I LNs display less spiking activity than uPNs and the impact of IK(Ca) is more

important on buffering the membrane potential after excitation than on signal

precision. Although type I LNs displayed SFA, even 70% inhibition of IK(Ca) had

no effect on SFA but increased spiking activity in response to depolarizing current

injection (see Appendix Fig. 5.2).

Type IIb LNs

At an [Ca2+]i of 1.8 mM, half-maximal activation occured at 62 mV membrane

potential which ascribes type IIb LNs less Ca2+ sensitivity than uPNs. Activated

by influx of 1 mM [Ca2+]O, IK(Ca) started to activate with voltage steps more de-

polarized than -40 mV suggesting a beneficial effect of IK(Ca) activation and ICa

at physiological membrane potential. Linear I/V relation of IK(Ca) was observed

with influx of 6 mM [Ca2+]O. IK(Ca) from type IIb LNs displayed peak amplitudes

after preceding Ca2+ influx of 5 ms, prolonged loading pulses led to a robust de-

crease in amplitude, whereby inactivation occured within 2 – 3 ms.

Current-clamp recordings have to prove whether IK(Ca) contributes to resting po-

tential of type IIb LNs since high Ca2+ concentration are prerequisite for IK(Ca)

activation. Elevation of [Ca2+]i in this extent occur only in close proximity of a

calcium source which can also be e.g. nicotinic acetylcholine receptors or intracel-

lular calcium stores. However, Ca2+ dependence and time course of IK(Ca) suggest

precise temporal signaling. Type IIb LNs are broadly tuned and respond to odor-

ants of many chemical classes with sustained, relatively smooth depolarizations,

implementing graded transmitter release. (Husch et al., 2009b). Calcium depen-

dence and activation of IK(Ca) are tuned to immediately respond on ICa, which

might smoothen and repolarize calcium driven depolarization.

Type IIa LNs

Highest [Ca2+]i were required to activate IK(Ca), at an [Ca2+]i of 1.8 mM, half-

maximal activation occured at 87 mV membrane potential. Activation by influx

of 1 mM [Ca2+]O hint to a beneficial effect of IK(Ca) activation and ICa, like in uPNs
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and type IIb LNs. With 1 mM [Ca2+]O, the major part of type IIa LNs exhibit bell-

shaped I/V relations, while 6 mM [Ca2+]O led to linear a I/V relation in the major

part of neurons. Although current density was comparable to type I LNs time

course of activation and inactivation displayed similarity to IK(Ca) from uPNs,

while individual values from different type IIa LNs varied within the complete

range bounded by uPNs and type I LNs. IK(Ca) from type IIa LNs displayed peak

amplitudes after 5 – 25 ms preceding Ca2+ influx and an inactivation within 2 –

4 ms after ceasing Ca2+ influx.

In type IIa LN population greatest variability of data was observed which might

arise from different subtypes of LNs. Type IIa LN population can be further sub-

divided by their response to odor stimulation, transmitter content, and fine mor-

phological patterns. Nonspiking type IIa1 LNs express ChAT-like immunore-

activity and response to odor stimulation with elaborate patterns of excitation

sometimes culminating in Ca2+-driven transients (Husch et al., 2009b; Fusca et al.,

2013). While the transmitter content of type IIa2 LNs is unknown yet, their re-

sponse to odor stimulation consist either of hyperpolarization or gradual depo-

larization, but never included Ca2+-driven spikelets (Husch et al., 2009b; Fusca

et al., 2013). Furthermore, type IIa LNs display strong active membrane proper-

ties which correlate to biophysical properties of ICa. Concerted activation of IK(Ca)

and ICa together with fast inactivation might generate Ca2+ transients.

This study provides a detailed analysis of calcium and voltage interplay activat-

ing IK(Ca) from a large number of experiments in unequivocally identified Al in-

terneurons, allowing comparision among neuron types with disinct electrophys-

iological properties. Biophysical properties of IK(Ca) delineate distinct qualities in

calcium sensitivity and calcium dependent as well as voltage dependent activa-

tion, even though IK(Ca) seems to be mediated by BK channels in all types of AL

interneurons.
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The impact of IK(Ca) on spike waveform and firing

properties

Odor responses and tuning profiles of AL interneurons are determined by their

synaptic input on the one hand, and by their intrinsic electrophysiological prop-

erties on the other. To define the role of IK(Ca) for the intrinsic electrophysio-

logical properties of AL interneurons, exclusion experiments were performed.

Spiking AL interneurons were recorded in current-clamp mode and IK(Ca) was

partially blocked by ChTX or IbTX. Additionally, cells were pharmacologically

isolated from all detectable synaptic input by application of CNQX, picrotoxin

and D-AP5. Before, during and after application of IK(Ca) blocker, a set of current

injection protocols were applied to analyze specific intrinsic elecrophysiological

properties including: resting membrane potential, cell input resistance, afterhy-

perpolarization (AHP), spike width, repolarization rate, latency to firing upon

current injection, firing threshold and postinhibitory rebound (Fig. 5.1 and 5.2).

Uniglomerular Projection Neurons

In synaptically isolated uPNs depolarizing current injections induced trains of ac-

tion potentials with relatively regular firing patterns. Typically spike frequency

increased slightly during prolonged depolarization, spike frequency- or spike

wave form adaptations could never be observed. Application of 100 nM ChTX

which blocked 100% of IK(Ca) caused the resting potential to become very unsta-

ble and led to spontaneous high frequency spike trains, which made controlled
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recordings impossible. Accordingly ChTX concentration was reduced to 10 nM

which blocked ~ 80% of IK(Ca) (see table 3.4). Upon application of 10 nM ChTX

there was no effect on the resting potential, cell input resitance or firing thresh-

old (n = 10, data not shown). Spike waveform was noticeably effected with a

significant decrease in AHP from -72.4 ± 4.6 mV to -66.7 ± 5.1 mV, as well as re-

polarization rate from -174 ± 16 to -119 ± 10 mV/ms, and an increase in spike

width from 505 ± 60 µs to 668 ± 40 µs (n = 10; p < 0.0001 for all parameters) (Fig.

5.1 A – D). The frequency of spike trains elicited by a depolarizing current pulse

increased significantly upon ChTX application from 12.9 ± 5.9 Hz to 27.7 ± 7.3 Hz

(n = 10; p = 0.0005) with a significant decrease in the latency to the first spike

from 252 ± 106 ms to 123 ± 46.8 ms (n = 10; p = 0.0041). After wash out of ChTX

spike width, repolarization rate, and AHP returned significantly to control val-

ues. Although the wash out of ChTX was not significant for spike latency and

firing frequency, these parameters showed a tendency to return to control values.

Application of 10 nM IbTX, which blocked ~59% of IK(Ca) (see table 3.4), had

similar effects as 10 nM ChTX but resulted in a more unstable resting poten-

tial. However, there was no significant change in resting membrane potential,

input resistance or firing threshold (n = 6, data not shown). IbTX reduced AHP

from -76.2 ± 5.9 mV to 64.0 ± 4.8 mV, increased spike width from 417 ± 64 µs to

468 ± 53 µs, and decreased repolarization rate from 205 ± 31 to 151 ± 29 mVs-1

(n = 6; Fig 3.5 E – G). All these effects were reversible upon wash out. Despite

these intense effects of IbTX on spike waveform, effects on spike latency and

spike frequency were not significant (n = 6; Fig. 3.5 O – Q). The wash out of IbTX

Figure 5.1 (following page). Effect of ChTX, IbTX and apamin on uPN firing prop-
erties. (A) Alterations in a single spike upon application of 10 and 50 nM ChTX and
subsequent wash out. Mean changes (B – J) in spike width (B, E and H), repolarization
rate (C, F and I) and AHP (D, G and J) upon application of 10 nM ChTX (A – D), 100 nM
IbTX (E – G) and 1 µM apamin (H – I). (K) Change of firing frequency upon application
of 10 nM ChTX and subsequent wash out. Mean changes (L – T) of latency to firing (L, O
and R), firing frequency (M, P and S) and firing threshold (N, Q and T) upon application
of 10 nM ChTX (K – N), 100 nM IbTX (O – Q) and 1 µM apamin (R – T). This figure was
kindly provided by Dr. Ben Warren.
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was significant for only some parameters as spike width, repolarization rate and

AHP.

In an effort to block SK channels which could contribute to IK(Ca), 1 µM apamin

was applied to the preparation. Application of apamin had no significant effect

on any parameter concerning spike waveform or spike frequency (Fig. 3.5 H – I

and R – T). Current-clamp recordings of uPNs were performed by Ben Warren

and Viktor Bardos. Analysis and figures were kindly provided by Ben Warren.

Type I LNs

In synaptically isolated type I LNs depolarizing current injections induced trains

of action potentials with irregular firing patterns. One portion of type I LNs dis-

played sustained firing during current pulses with weak spike frequency adap-

tation (SFA)(Fig. 5.2Hi) whereas the second proportion of type I LNs showed

likewise phasic firing pattern with strong SFA (Fig. 5.2Hii). In both cases, appli-

cation of ChTX did not abolish spike frequency adaptation. However, analysis

of other electrophysiological properties such as membrane potential, spike am-

plitude, spike width, repolarization rate or amplitude of AHP revealed no sig-

nificant differences of these parameters therefore data were pooled for further

analysis. Recordings were performed by Sandra Wendler. Analysis and figures

were kindly provided by Dr. Cathleen Bradler.

Upon application of 10 nM ChTX which blocked ~ 70% of IK(Ca) (see table 3.4,

no effect on resting potential, cell input resistance or firing threshold could be

observed (n = 9). Spike waveform was noticeably effected with a significant de-

crease in the AHP from -22.3 ± 4.6 mV to -18.9 ± 4.2 mV (n = 9; p = 0.0009), Fig.

5.2B) and a significant reduction in repolarization rate from 123.3 ± 24.7 mV/ms

to 95.9 ± 19.9 mV/ms (n = 9; p < 0.0001; Fig. 5.2D). Spike width was extended

from 677 ± 99 µs to 732 ± 109 µs (n = 9; p < 0.0001; Fig. 5.2C). The frequency of

spike trains elicited by a depolarizing current pulse increased significantly upon

ChTX application from 5.9 ± 4.7 Hz to 12.0 ± 7.2 Hz(n = 8; p < 0.0184; Fig. 5.2K)

with a significant increase in the threshold for firing from -39.3 ± 4.6 mV to -

37.5 ± 4.4 mV (n = 9; p < 0.0001; Fig. 5.2J). Although the wash out of ChTX was
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Figure 5.2. Effect of ChTX and IbTX on type I LN firing properties. (A) Alterations in a
single spike upon application of 10 nM ChTX and subsequent wash out. Mean changes
(B – G) in spike width (B and E), repolarization rate (C and F) and AHP (D and G) upon
application of 10 nM ChTX (B – D) and 10 nM IbTX (E – G). (Hi and Hii) Change of firing
frequency upon application of 10 nM ChTX and subsequent wash out. Mean changes
(I – N) of latency to firing (I and L), firing threshold (J and M) and firing frequency (K
and N) upon application of 10 nM ChTX (I – K) and 10 nM IbTX (L – N). This figure was
kindly provided by Dr. Cathleen Bradler.
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Table 5.1. Impact of IK(Ca) on action potential wave form and repetitive firing.

uPN type I LN
ChTX IbTX ChTX IbTX

spike width *** ** **** *
↑ ↑ ↑ ↑

repolarization rate *** *** **** **
↓ ↓ ↓ ↓

AHP *** *** *** *
↓ ↓ ↓ ↓

frequency *** *
↑ n.s. ↑ n.s.

latency to the first spike ** **
↓ n.s. n.s. ↓

threshold ** **
n.s. n.s. ↑ ↓

significant for the repolorization rate only, all parameter showed a tendency to

return to control values.

Current-clamp recordings of type I LNs upon IbTX application, were performed

by Merit Klemann. Analysis and figures were kindly provided by Dr. Cathleen

Bradler. Application of 10 nM IbTX which blocked ~ 44% of IK(Ca) (see table

3.4, caused no significant change in resting membrane potential, cell input re-

sistance or firing frequency (n = 7). IbTX reduced AHP from -15.1. ± 3.3 mV to

-12.0 ± 4.4 mV (n = 7; p = 0.0170), Fig. 5.2E) and slowed the repolarization rate

from 49.1 ± 9.3 mV/ms to 32.8 ± 16.5 mV/ms (n = 7; p < 0.0072; Fig. 5.2G). Spike

width was extended from 930 ± 140 µs to 1140 ± 340 µs (n = 7; p < 0.0001; Fig.

5.2F). Latency to the first spike was significantly reduced upon IbTX application

from 330 ± 110 ms to 150 ± 70 ms (n = 7; p < 0.0112; Fig. 5.2L) with a signif-

icant decrease in firing threshold from -43.3 ± 4.4 mV to -46.7 ± 5.0 mV (n = 7;

p < 0.0072; Fig. 5.2M).
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