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Kurzzusammenfassung

In der vorliegenden Arbeit beweisen wir eine Reihe von Aussagen iiber die Beschaf-
fenheit, modularen Transformationseigenschaften und das asymptotische Verhalten von
Fourier-Koeffizienten meromorpher Jacobi-Formen. Desweiteren geben wir Anwendun-
gen in der Theorie der Lie Superalgebren. Durch Arbeiten von Kac und Wakimoto,
Bringmann und Ono, Bringmann und Folsom sowie Bringmann, Folsom und Mahlburg
ist bekannt, dass die Erzeugendenfunktionen von Kac-Wakimoto-Charakteren von

sl(m|n)" Superalgebren im Wesentlichen meromorphe Jacobi-Formen sind. Die Ar-
beit von Bringmann und Folsom verallgemeinernd, untersuchen wir Kac-Wakimoto-
Charaktere fiir jede Wahl von ganzen Zahlen m > n > 0. Dariiberhinaus beziehen
wir in unsere Untersuchungen allgemeine meromorphe Jacobi-Formen von positivem
Index in einer Variablen sowie Kac-Wakimoto-Charaktere in mehreren Variablen ein.
Abschlielend untersuchen wir das asymptotische Verhalten der Fourier-Koeffizienten
von Kac-Wakimoto-Charakteren in einer Variablen, wobei wir eine Verallgemeinerung

der Hardy-Ramanujan-Kreismethode verwenden.

Abstract

In this thesis, we prove several results concerning the shape, the modular properties,
and the asymptotic behavior of the Fourier coefficients of meromorphic Jacobi forms,
with applications to Lie superalgebras. By work of Kac and Wakimoto, Bringmann
and Ono, Bringmann and Folsom, and Bringmann, Folsom, and Mahlburg it is known
that the generating functions of Kac-Wakimoto characters relative to the sf(m|n)"
superalgebra are essentially meromorphic Jacobi forms. Extending previous work of
Bringmann and Folsom, we investigate Kac-Wakimoto characters for any choice of inte-

gers m > n > 0. Subsequently, we extend the study to any single-variable meromorphic



Jacobi form of positive index, and to multivariable Kac-Wakimoto characters. Finally,
we investigate the asymptotic behavior of the Fourier coefficients of single-variable Kac-

Wakimoto characters using a generalization of the Hardy-Ramanujan Circle Method.
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CHAPTER 1

Introduction

1.1 Automorphic forms: Bridges for number theory

It sometimes happens that “interesting” sequences can be better understood consid-
ering their generating functions, which, in some cases, satisfy nice analytic properties.
This phenomenon often appears in the context of modular and Jacobi forms. On the
other hand, the rich algebraic structure of these functions gives a hint for their Fourier
coefficients to encode apparently unrelated interesting and hidden informations. It is
nowadays one of the main goals in number theory to understand the bridges between
automorphic forms and other branches of mathematics. One of the most important
and fascinating examples is given by the so-called Monstrous Moonshine, the hidden
relation between the Fourier coefficients of the modular invariant j-function and the
dimensions of irreducible representations of the Monster group M, the largest sporadic

simple group (of order ~ 8 - 1053).

The story of Moonshine started in 1978, when J. McKay made a surprising and

astonishing discovery, that we may summarize as:

196884 = 196883 + 1,
21493760 = 21296876 + 196883 + 1,

864299970 = 842609326 + 21296876 + 2 - 196883 + 2 - 1.

In fact, these are the first three of infinitely many equations, in which the left-hand



sides consists of the Fourier coefficients of the j-function

J(7) = o + TA4 4 196884€™™7 + 21493760¢ ™" + 8642099707 + -,

and on the right hand side, we find linear combinations of the dimensions of the
smallest irreducible representations of M. This observation suggested that an infinite-
dimensional graded representation of M must exist. Since the graded dimension is the
graded trace of the identity element of M, J. G. Thompson [33] conjectured that the
graded traces of nontrivial elements g of M on such a representation may be viewed in
the same way. It was in 1979, when G. H. Conway and S. P. Norton [14] conjectured
that certain Hauptmoduln (modular functions that are generators of a genus 0 modular
function field) are the graded traces of infinite-dimensional representations of M. This
unexpected connection is knows as the Monstrous Moonshine, and it was proven by R.
Borcherds [3] in 1992, using the no-ghost theorem from string theory and the theory

of vertex operator algebras and generalized Kac-Moody algebras.

In the same spirit as Monstrous Moonshine, between the 70s and the 80s in a series
of papers [20, 21, 23, 24], V. G. Kac and M. Wakimoto constructed a bridge between
number theory (again the theory of modular forms) and Lie theory. Roughly speaking,
the previously explained role of the Monster group was replaced by certain infinite

dimensional Lie algebras. We describe this connection in more details in Appendix

Al

1.2 Recent development in the theory of meromorphic Jacobi

forms

The theory of holomorphic Jacobi forms was first extensively studied by M. Eichler and
D. Zagier [16]. One of the main properties of a holomorphic Jacobi form ¢ (of positive

index) is that it has a theta-decomposition, i.e., it can be written as ¢ = h-1, where 9



is a vector-valued theta-function, and h is a vector-valued function whose components
are “essentially” the Fourier coefficients of ® (see (4.3.1)). In particular, due to the

modularity of ¢ and 19, the function h is a vector valued modular form.

If we allow ® to be meromorphic in the elliptic variable, i.e., ® is a quotient of
two holomorphic Jacobi forms, what we said above for holomorphic Jacobi forms is no
longer true. In the third chapter of his Ph.D. thesis [36], while investigating the nature
of mock theta functions, S. Zwegers showed that if ¢ is a meromorphic Jacobi form
then its Fourier coefficients are no longer modular. More precisely, he showed that the
error to the modularity can be controlled by adding a certain non-holomorphic function
which depends on the poles of ¢, and that if ¢ has only simple poles, then the Fourier

coefficients are mixed mock modular forms.

Subsequently, A. Dabholkar, S. Murthy, and D. Zagier [15] reinvestigated and re-
formulated this phenomenon motivated by the study of the quantum theory of black
holes. In their approach, they constructed a canonical decomposition of a meromorphic
Jacobi form into a finite part and a polar part, which arises “naturally”, and they have
a concrete interpretation in the theory of black holes. Moreover, they investigated in
detail the modularity of the canonical Fourier coefficients (the Fourier coefficients of
the finite part) in the case that ¢ has poles of order at most 2. They showed that they

have a mock modular behavior.

Finally, investigating the modularity properties of certain characters associated to
certain Lie superalgebras (see Section A.1), K. Bringmann and A. Folsom described

the structure of the Fourier coefficients of the meromorphic Jacobi form
9 (z+37)"
Hz; )

where 9 is as in (2.3.1), and m > n > 0 are even integers. In this case, when the
Jacobi form has poles of order n > 2, the structure of its Fourier coefficients is more

complicated and led to the definition of a new automorphic object, almost harmonic



Maass forms (see Definition 2.2.6). We also mention K. Bringmann and A. Folsom’s
subsequent paper in collaboration with K. Mahlburg [8], where they studied the special

case of m = n > 0. For negative index Jacobi forms we refer the reader to [6].

1.3 The results of this thesis

We now turn to the main results of this thesis. The main goal is to extend the results
explained above to more general settings. Here we state the theorems without technical

details. Precise statements and discussions may be found in the relevant chapters.

Roughly speaking, the main purpose of this thesis is to determine the structure and
the transformation properties of single and multivariable meromorphic Jacobi forms
of positive index. As an application, we apply these results to the Kac-Wakimoto
characters, in order to determine their transformation properties and the asymptotic

behavior of their coefficients.

As mentioned before, in [7], K. Bringmann and A. Folsom studied the modularity
and the structure of Kac-Wakimoto characters related to the Lie superalgebra sf(m|n)”,
for m = n = 0 (mod 2). We extend their results to any pair of integers (m,n),
with m > n > 0. With this assumption, we deal with meromorphic Jacobi forms of
integral or half-integral index. We shall see that studying Kac-Wakimoto characters is

“equivalent” to studying the canonical Fourier coefficients h, of
9 (z+37)"
d(z;m)"

Roughly speaking, these are, up to g-powers, the Fourier coefficients of ® in a specific

(1.3.1)

range on z. For a precise definition, we refer the reader to (3.1.5). We have the

following result.

Theorem 1.3.1. Let m > n > 0 withn, m € Z, let { € Z, and let hy be the (th

canonical Fourier coefficient of (1.3.1). Then hy is a component of the holomorphic



m—n—1
3 .

part of a vector-valued almost harmonic Maass form of weight

As a consequence, we have the following modularity result for Kac-Wakimoto char-

acters.

Corollary 1.3.2. With the assumptions as in Theorem 1.3.1, let try,, . (@) be the
(th Kac-Wakimoto character associated to the irreducible st(m|n)"-module of highest
weight A(£). Then, up to multiplication by q powers and a modular form, try,. (@) is

a component of the holomorphic part of a vector-valued almost harmonic Maass form.

For a more precise relation between the Kac-Wakimoto characters and the canonical

Fourier coefficients of Theorem 1.3.1, we refer the reader to Appendix A.2.

The Jacobi form considered in Theorem 1.3.1 is not a special case. Indeed, we
shall show that the same modularity properties are satisfied by the canonical Fourier
coefficients of any meromorphic Jacobi form of positive index, that admits poles at

torsion points.

Theorem 1.3.3. Let ¢(z;7) be a meromorphic Jacobi form of positive index M and
weight k, with poles with respect to z in QT + Q. Moreover, let hoy = (hy), (mod 2M)
where hy is the (th canonical Fourier coefficient of . Then hoy is the holomorphic

part of a vector-valued almost harmonic Maass form of weight k — %

Kac-Wakimoto characters as considered by Bringmann, Folsom, and Ono [7, 11, 17],
and as we take into account in Corollary 1.3.2 are specializations of more general

characters given in [24] as

I (1 + Cfqu_%> (1 + Cilg;lgk_%)

chF =) chFf =e™ ] —. (132
tez i1 [T (1 - C§m+jqk_%> (1 - C_lfr;ijqk_i)
The function chF' is “essentially” the multivariable meromorphic Jacobi form
0 (24 57)™
b(z,u;7) = [Ty 0 (e 4w+ 57) : (1.3.3)

[Tjma 9 (2 = wj; 7)™



In joint work with K. Bringmann, we extend the notion of canonical Fourier coefficient
to the multivariable setting, which we denote by h (see (5.3.2)). Extending the previous
results to multivariable Jacobi forms, we have the following. For the notation we refer

the reader to Subsection 5.1.1.

Theorem 1.3.4. The canonical Fourier coefficient h: C*™' x H — C™™ ™ s the holo-

m—n—1
D) .

morphic part of a multivariable almost harmonic Maass-Jacobi form of weight

As a special case, considering m, = n; = 1 for all r and j in (1.3.3), we show
that considering the additional variables in the generating function of Kac-Wakimoto
characters imposes extra structure which gives a cleaner picture for the specialized
character as these are specializations of mixed H-harmonic Maass-Jacobi forms (see

Definition 2.3.6).

Corollary 1.3.5. The multivariable Kac-Wakimoto characters chF, are the holomor-

phic parts of mized H-harmonic Maass-Jacobi form.

Finally, in light of Theorem 1.3.1 and Theorem 1.3.3, we investigate the asymptotic
behavior of the coefficients of Kac-Wakimoto characters. Let
ter,n(A(ﬁ))qLoq_é = Zce(t)qt.
>0
Using a generalization of the Hardy-Ramanujan Circle Method, in Theorem 6.1.2, we
determine the asymptotic behavior of ¢,(t) as ¢ — +o0o. We omit the statement of
this result in this section since it is rather technical and needs heavy notation. As a

consequence, we determine the main term in the asymptotic behavior ¢,(t).

Corollary 1.3.6. Ast — oo

co(t) ~ Ctz=2%™V (5 +m5=)

Y



where

1.4 Outline of the Thesis

In Chapter 2, we give all the preliminaries necessary to prove our results. More pre-

cisely, we describe the automorphic forms we are interested in (modular form, Jacobi

forms, and non-holomorphic generalizations), as well as certain differential operators

acting on these forms. In Chapter 3, we prove Theorem 1.3.1 and Corollary 1.3.2.

We give a unified proof considering Kac-Wakimoto characters relative to s¢(m|n)”", for

any possible choice of integers m > n > 0, without any restriction on the parity. We

extend this result to any meromorphic Jacobi form of positive index in Chapter 4, prov-

ing Theorem 1.3.3. In Chapter 5, we consider multivariable Kac-Wakimoto characters,

proving Theorem 1.3.4 and Corollary 1.3.5. Finally, in Chapter 6, we investigate the

asymptotic behavior of single-variable Kac-Wakimoto characters. This leads to the

proof of Corollary 1.3.6.






CHAPTER 2

Automorphic forms and differential operators

Here and throughout the thesis, we denote by H the complex upper half plane:
H:= {7 € C: Imr > 0}.

The special linear group SLy(Z) := {(‘C‘ Z): a,b,c,d € Z,ad — bc = 1} acts on H via
Mobius transformations

ar +b
cr+d

v=(2%) :H—=H, T = YT =

Since the points of the quotient space SLy(Z)\H are moduli (i.e., parameters) for the
isomorphism classes of elliptic curves over C, the group SLy(Z) is sometimes called
modular group. The dramatis personae of this thesis are (generalizations of) modular
forms. Roughly speaking, a modular form is a function defined on H that transforms
in a specific way under the action of SLy(Z). However, the theory of modular forms
becomes much more rich and interesting whenever one considers functions that satisfy
this transformation property just for certain congruence subgroups of SLy(Z), i.e.,
finite index subgroups whose elements satisfies certain congruence properties. For the
purposes of this thesis, we consider three kinds of congruence subgroups, namely, for

a positive integer N, we define



Additionally, it is also possible to define an action of the Jacobi group I'” := SLy(Z)x Z>

on C x H via

(1, () :CxH—oCxH,  (z7)— (A”“ )

CT+d7PYT

where v = (‘;Z) We recall that the group law in I'V is given by (v,v)(n,u) :=

(yn,vn + u), where the vectors have to be considered row vectors. This action gives
rise to the definition of two variable relatives of modular forms, in the same spirit as
before, which are called Jacobi forms. The notion of congruence subgroups extend in

a natural way, and we define T'j (N) := [o(N) x Z% and T'{ (N) := '} (N) x Z2.

Before giving the precise definition of the objects mentioned in the previous discus-

sion we need to introduce several differential operators, which play a key role.

2.1 Differential operators

The entire theory of non-holomorphic modular and Jacobi forms depends on the action
of several differential operators on the space of C*°-functions. The role of these oper-
ators is of fundamental importance for a deep understanding of the relations between
number theory and representation theory. For a detailed discussion, we refer the reader

to [2]. We describe separately the single-variable case and the multivariable case.

2.1.1 Single-variable differential operators

Throughout this subsection we let f: H — C € C*(H). The parameter in H is indicated
by 7 = u+1v, where u and v denotes respectively the real part and the imaginary part

of 7. Moreover, for convenience of notation we denote

g 1,0 .0 o 1[0 .0
87.—5—5(%—2%)7 @-—@—5(%+2%>~ (2.1.1)

10



As we shall see, in this thesis we consider certain classes of functions which are defined
as invariant or almost invariant functions, with respect to the action of the slash oper-
ator, and that are eigenfunctions with respect to the action of the hyperbolic Laplace
operator, sometimes simply called the Laplacian. For a fixed integer (resp. half integer)
k and a matrix 7 € SLy(Z) (resp. € I'g(4)), we define the automorphy factor of weight
k by

. Ver +d ifk ez,
J(0,m) = (21.2)
(¢)es'Ver+d ifkei+2Z,
where

1 ifd=1 (mod 4),
Ed =

i ifd=3 (mod4),

and where () denotes the Kronecker—Legendre symbol. The weight &k slash operator
. defines an action of the modular group SLy(Z) (resp. T'g(4)) on the space of C>-
functions f : H — C by

fla@) =40 7) 2  f(yr). (2.1.3)

The weight k& hyperbolic Laplace operator is defined by
Ay = —40%0,0= + 2ikvO=.
It is a standard fact that these two operators commute.

Lemma 2.1.1. Letting f € C>*°(H) and v € SLy(Z), then
Ae(f|,7) = Ae()] -
Proof. To prove this lemma it is enough to apply Proposition 2.1.2 to (2.1.4). O

Fixing k (= weight), we shall consider certain C-vector spaces of functions invariants

with respect to ’k It is possible to move between spaces of different weights thanks

11



to the action of the Maass raising operator Ry and Maass lowering operator L, which
are defined by
k
Ry, = 2i0, + —, Ly = —2iv*0-.
v

The well known commutator relation
—A, = /Ck:—i-QRk + k= Ry_oLs (2.1.4)
implies the following.

Proposition 2.1.2 ([28], Section 7). If f € C*°(H) and v € SLy(Z), then

Ri()|,,07 = Be(f,7), Apya(Ri(f)) = Re(Axk(f)) + kRi(f),
Li(N)],_ v = Le(f],7)s Aro(Li(f)) = Li(Ar(f)) — (k = 2)Lr(f)

We conclude this subsection describing a differential operator which plays a funda-
mental role in the theory of harmonic weak Maass forms, namely, the é-operator. For

a fixed half integer k, we define & by
& = 20070=. (2.1.5)

As proven in [4], & is a map between harmonic weak Maass forms and holomorphic
modular forms. We shall describe this in more details in Subsection 2.2.2. More

generally, one can use this operator to classify non-holomorphic modular forms.

2.1.2 Multivariable differential operators

The theory in the multivariable case is much more rich. Not only we can extend
all the single-variable operators previously described, but there exist other differential
operators which play an important role and interact with each other in a marvelous way.

With few exceptions, we describe the situation for 2-variable differential operators.

12



Here and throughout, we denote column vectors by v = (v;)1<i<n = (v1,- -+ ,Up).
Moreover, for an n x n matrix M and a vector v € C", we denote by v’ the transpose
row vector, and define

MIv] = v'Mv.
Let n € Nand g: C" xH — C € C*°(C" x H). As before, the parameter in H is denoted
by 7 = u + v, while the parameter in C" is denoted by z = x + iy. For n = 1 we set
z = z;. For a matrix L € M,,(Z), and a half integer k, the weight k£ and index L slash

operator is defined by

em'( S5 Lz AT+p]+ LA T+22° LX) z ar + b
9l A w)(z57) = g ( : )

gy, )% cr+d er+d
where j(7,7) is given in (2.1.2) and [y = (24), (A, p)] €I/ x Z™.
Remark. To facilitate the reader, we explicitly give the slash operator in the special

case n = 1. Let k € %Z and M a positive integer. The weight k and index M slash

operator |k yy defines an action of the Jacobi group ' on C*°(C x H) by

9l lr ]2 7) =

627Ti( Me (z+)\‘r+,u)2+M)\27+2M)\z) P
YT
gy, T)% MNerva”

For fixed k € %Z and M € Z, the Casimir operator

T—T7)?

Cer = —2(1 = 7)%0:07 — (2k — 1)(7 = T) 0 + ~——~ ( klr —7) 5

4miM g 00t AmiM =0z
(z—2)(T=7) . - ) B o
+ S D002 — 2w = 2)(7 = T)0,0 + (1= k) (= = 2)0s + ~ 0,02
(=% k(r=7)\ p, G=2)(T-7), .
+< o )T T %

extends the notion of Laplace operator. Moreover, we define the Heisenberg Laplace
operator AL, and the heat operator Hys by

T—T
2i
Hys = 81iMo, — 02,

AL = 0,05 + 2r M (z — 2) 05,

13



These two operators commute with ! L1 & we can see in the following proposition.

Proposition 2.1.3. For v € SLy(Z) and ¢ € C* (H x C), we have

CkJ\/[ <Q0’k’M’Y> = (Ck,M@) }k,MﬁY’

Af (eloar) = (A%9) o

Proof. The proof of this proposition follows from Proposition 2.1.4 noting that both
Crr and AXL can be written in terms of the raising and lowering operators (see (2.3)

and (2.4) in [12]). O

In contrast to the single variable case, it is possible to jump between different spaces
of Jacobi forms whose weights differ by 1. To do so, we recall the 2-variable raising

and lowering operators

— —\2
" - - k
XM =2 (aT + 2720+ omint & 2)2 + ) :
T—T

(r—7)" 17—-T
YPM =0, — dr M2
T—T
xhM ::—72_2,7(<T—?)a%+<z—z>a;),
Yk’M ::_T—?ag
* 5 0=

which were introduced by Berndt and Schmidt in [2] (Section 3.5).

Remark. As one can immediately see from the definition, the lowering operators do
not depend on the weight or the index. For this reason, we will sometimes omit them

from the notation.

For the purposes of this thesis we give a more general definition for X_ allowing
many elliptic variables. Let N € Z.,. For a positive definite matrix L € GLy(Z),
define

T—T

X =xMr=
T 2

(r=7)0+(z-2)-0z),
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where “” denotes the standard scalar product in RV, z = (21, ,zy), and 9, =

(02, -+, 05y ). The following proposition summarizes their properties.

Proposition 2.1.4 ([2] Remark 3.5.2). For vy € SLy(Z) and ¢ € C* (H x C), we have

k7 k7
XiM (90|k,M7> - (XiM90> ‘kﬂ,M%

k7 k7
v (90|k,M7> - (Yi MSO) |ki1,M7‘

Finally, we introduce two multivariable generalizations of the £-operator defined in

(2.1.5), namely,

T—T
ouom (57)
H T =T _opime22a
= - T—T az
Sk =\

As for &, these two operators can be used to classify non-holomorphic Jacobi forms.

kol

_3
2

(- =m0 =20+ 1 (50) 2).

It will be useful for our computation to use the following compact version of the
Casimir operator, in terms of the differential operators previously described. The
operator Cj s can be written in terms of the raising and the lowering operators, as

described in the following proposition.

Proposition 2.1.5. With the notation as above, we have

XEM k 1 Iy 2 4 2
C — - AH o X27 (Yk,M> o <Y]<,‘7M>
oM 2nM * onM M 2nM ( * - (r—7) \ ~

T—T
21(2k — 1
| 2i2k=1)

— kM-
T—T

Before proving this proposition, we need the following lemma describing certain

commutator relations between the operators introduced before.

Lemma 2.1.6. With the notations as above, we have

16me M

T—T

HyX_ = X_Hy +2A% + X_, (2.1.6)

15



N\ 2k
7\ 2 1
<T .T> Gy =X_— ——Y2 (2.1.7)

Proof. By definition

HyX_ = (87iM0, — 0?) (— (=7 =DE-3) (%) :

which equals

SwiM (_2(7'2; ?)8# (7 ;Z.T)2(%37 (2 2—2 Z)(% (7 T;Ez Z) 6%87)
N ((T—T)z&aQ (T=T)(z=72) 4 5 2(7—?)&6)
2 Tz 7 Xz 2 zUz

Rearranging the terms we rewrite it as

2 T 2

(_ (=72, (-D(-3) 5%) (8iMO, — O%) — 87 M (7 — 7)0-

— 8T M(z —Z)0s + 2(7—2_ T)(%az +4rM(z — 2)05,

?
which gives (2.1.6). The proof of (2.1.7) is trivial. O

Proof of Proposition 2.1.5. From (2.3) in [12], we know that

1
Cronr :2X_IT_72,MXE,M - <X_IT_72,My_kfl,My_k,M _ Yffl,My_il_cfZMXﬁ,M)

k—2 k—1,M~ kM
——ZyhMyh
2 M~ -
1 k—2
( * +27TM++> - M TSVl
1 k—2
—AXFM _ B+ Al (2.1.8)

2rM oM~ M

We compute A and B separately.
By definition we have

N\ 2 —\ 2
Zaz+2m'M(Z_f) +k_2>+ ! (i@z—llﬂMZ_i).

z —

T—T

A=4i (&—i—

16



Expanding the square in the second summand of (2.1.9), we get

_ N\ 2
— — k—2
.A_4z'<& - iz J <Z i) + _)
T—T T—T T—T

1 9 2 R—Z dmiM o (2 —Z 2
—— | =07 — 8miM , — 4 M )
+27rM< 0, —8mi T—?a 7__?—1—(% ) (7’—?))

which equals

2% 1 2
4i0. — 24 2k —5) = 2k —5).
O = o Maz k=S = oy —?( k=5)

We now move to B. By definition

=+ ol
=
+
\]
RN
\]
/N
T
|
DO | Ot
N———

XJk:z,M X

therefore

T—T

1 21 )
B=x2"y?zq 2 (k:— —) Y2,

As a consequence, we rewrite (2.1.8) as

1 2 ke M 1 9 2i 9\ 12

H 2k — X0 — Xz My k—=1Y

(27TM — ( 5>) 2 M ( N T—T ( 2) -
2

k—
— A
+ orM M
To conclude, we note that using (2.1.6), the Casimir operator equals
1 21 k.M Ly 2 k H
Coy=——X_H 21X — —X27Y — Ay
ear =g X+ T A v
P e SV SN Y
2riM (T —T) 2niM (T —T)
k 1 Lp 49 2i(2k — 1)
———X_H Ay — XV —Y? ) 4 ——
omd M ot 27TM( T (r=7) —>+ s

where in the last step we have used (2.1.7). O

We conclude this subsection by recalling a commutator relation between Cj, 5; and

kM
yhM,
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Proposition 2.1.7. With the notation as above, we have

CoaYr M =YEMe, oy — (k-2 v

In order to prove Proposition 2.1.7, we need the following, which can be easily

deduced from Proposition 3.6 in [32].

Lemma 2.1.8. The following are true:

1 XMy kM _ kM sk My kM
I - -

)

kM~ kM kM ok M 2% kM
2. XY =Y XDT — Yo

T—T

3. YEMy M _ y My kM _ oy,

4. ABYEM = yPMAR _ om pry M

Proof of Proposition 2.1.7. Using the decomposition in (2.1.8) and Lemma 2.1.8, we
compute each piece separately. In what follows we omit the weight and the index from

the notation of each operator. We assume them to be k and M respectively everywhere.

1. For the first piece, we have

21

T—T

Xp (X_Yi) = Xp (Yo X_ — Y ) = VX X —

Y. X —-X,.Y.
2. Next, we compute

Y+Y+ (X_Y+) - Y+Y+ (Y+X_ - Y_) - Y+Y+Y+X_ - Y+Y+Y_

18



3. Finally, we can see that
X+Y_ (Y_Y+) = X+Y_ (YJ’_Y_ — 27TM) = X+ (Y_Y+) Y_ — 27TMX+Y_
=X, Y,Y. —27M)Y_ —2rMX,Y_

— (X, Y)Y.Y. —47rMX, Y.
2i

T—T

21

T—T

- Y+X+Y_Y_ -

V.YV —4rMX.Y._.

Therefore, using these three equalities and part 4 of Lemma 2.1.8, we have

ContYs =2 (Yf,MX_IT_—Z,MXE,M_ 21 Yf_Q,MXE,M_Xi—Q,My_k,M)

T—T

1 2i
(Yf’MXi_Q’MYk_LMYk’M——Z y oMy ko LMy kM

M T—T

k-2
—arMXYPMYEM) ¢ S (VP Af — 2mMy )
m

> 1M <Yf,MYf71,MYf72,MXE,M _ Yf,Myffl,My_k,M>
T
1

:Y+Ck7M + Z(T - ?)Y+£k,M — (k - 2)Y+ — 27T—MY+A1;I/[

To conclude the proof it is enough to check that

) _ 1
Ceom = Chmapm — 0T — T)&km + WA]@,

which can be easily proven using Proposition 2.1.5.

2.2 Modular forms and harmonic weak Maass forms

In this section, we recall the notions of holomorphic modular form and certain non-
holomorphic generalizations such as harmonic weak Maass forms. More information
about these objects can be found in the path breaking papers [4, 36]. For a complete

overview we refer the reader to [28, 34].
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2.2.1 Weakly holomorphic Modular forms and Quasimodular forms

At the beginning of this chapter we recalled that the group SLy(Z) acts on the upper
half plane H via Mobius transformations. In fact, this action yields an action of SLy(Z)
on C*-functions on H via the slash operator, already defined in (2.1.3). Here and
throughout this section, we let k € %Z. Moreover, here and throughout the thesis, we

2miT

let g :=e

Definition 2.2.1 (Weakly holomorphic modular forms). Let x be a Dirichlet character
modulo N € Z~y. A holomorphic function f: H — C is called a weakly holomorphic

modular form of weight k, level N, and Nebentypus character x if the following hold:

1. For each v = (24) € To(N), f|, 7= x(d)f.

2. The poles of f, if any, are supported at the cusps of To(N), i.e., f does not have
poles on H, and for all v € SLy(Z), f has a Fourier expansion of the form

floam) =" an)gy,  n,ez (2.2.1)
n>n.y
As an example of modular form we recall the Dedekind n-function
1 .
n(r) =g [[(1-¢). (2.2.2)
Jj=21
As we shall see, this function appears as a factor in the generating function of Kac-

Wakimoto characters. In the following lemma we recall the transformation properties

of n (see for instance [30]).

Lemma 2.2.2. The n-function satisfies the following modular transformation law for
ally = (24) € SLy(2):
n(yr) = Y(y)(er +d)2n(7).

Here, the multiplier () is a 24th root of unity, which is given explicitly in [30].
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The C-vector space of weakly holomorphic modular forms of weight k and level N
is denoted by M;(N). If n,, > 0 (defined in (2.2.1)) for all v € SLy(Z), then f is called
holomorphic modular form, while if n, > 0 for all v € SLy(Z), then f is called a cusp
form. The C-vector space of holomorphic modular forms (resp. cusp forms) of weight
k and level N is denoted by My(N) (resp. Sk(N)). Special and important examples of
modular forms are given by FEisenstein series. In order to define them, for a positive
integer k& we denote the divisor function by o4—1(n) == >4, d*=1. For even k > 2,

the weight k Fisenstein series Ej is given by

where B; denotes the usual kth Bernoulli number. It is a standard fact that for each
even k > 4, E} is a holomorphic modular form of weight k£ and level 1. Moreover, the
graded ring M (1) := @, My (1) is freely generated by the Eisenstein series F, and E.
The Eisenstein series Ej fails to be modular. However, it is a standard fact that adding

a simple non-holomorphic term yields a modular object. More precisely, its completion

EQ(T) = Ey(1) — 3

™

transforms as a modular form of weight 2 and level 1. Functions like E, play an
important role in the theory, and generate the space of almost holomorphic modular

forms (over the space of modular forms), firstly introduced by Kaneko and Zagier [25].

Definition 2.2.3 (Almost holomorphic modular forms). A function f: H — C is called

(weakly) almost holomorphic modular form of weight k and level N if the following
hold:

1. For each v € T'o(N), f‘k'y:f.

2. The function f can be written as a polynomial in % with (weakly) holomorphic
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coefficients, i.e., there exist fo,--- , fp (weakly) holomorphic functions such that

The integer D is called the depth of f, and the holomorphic function fo is called

a quasimodular form.

The set of quasimodular forms of a given weight k, level N, and depth D is
a C-vector space, denoted by QM p(N), and it includes derivatives of holomor-
phic modular forms. We also denote the filtered ring of quasimodular forms by
OM(N) := UpQM;, p(N) In the following proposition we describe the basic proper-

ties of quasimodular forms. For more details see [5, 25].

Proposition 2.2.4. 1. We have

07 (QMp(N)) € QMyta pr1(N).

2. Every quasimodular form in QMyg(N) is a polynomial in Ey with modular coef-

ficients, namely,

D
QM. p(N) = €D My_o(N) - E3.
r=0

2.2.2 Harmonic weak Maass forms and almost harmonic Maass forms

In this subsection, we introduce the definition of certain non-holomorphic modular
forms, introduced in 1949 by H. Maass [27], and generalized by J. Bruinier and J.
Funke in [4], called harmonic weak Maass forms, as well as certain generalizations.
The theory of harmonic weak Maass forms has been extensively developed in the last
decade, and it has been discovered that they play a key role in the connection between
number theory and other branches of mathematics and physics. For an overview we

refer the reader to [15, 28, 34].
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Definition 2.2.5 (Harmonic weak Maass form). A smooth function h: H — C is called
a harmonic weak Maass form of weight k, level N, and Nebentypus character x if the

following hold:

1. For each v € T'o(N), h‘kfy = x(d)h, where d is the lower right entry of .

2. The function h is annihilated by the hyperbolic Laplacian, i.e.,

Agh = 0.

3. There exists a polynomial Py(q) = Y5 ., ct(n)¢" € Clg™'] such that h(r) —
Pi(q) = O (e7%) as v — oo for some € > 0. Analogous conditions are required

at all the cusps.

Remark. Harmonic weak Maass forms are required to satisfy moderate growth condi-
tions at the cusps. However, this is not the more general definition. In [4] J. Bruinier
and J. Funke considered also other types of harmonic Maass forms based on varying the
growth conditions at cusps. The term “weak” refer to the third condition in Definition

2.2.5.

The C-vector space of harmonic weak Maass forms of weight k, level N, and char-
acter x is denoted by Hy(N,x). For convenience, we use the terminology “harmonic
Maass form” instead of “harmonic weak Maass form”. For k # 1 harmonic weak Maass
forms have an expansion at infinity given by

h(t) = Z ct(n)g" + Zc‘(n)F(l — k,4m|n|v)q", (2.2.3)
n>—o0 n<0
where I'(a,z) := [ e "t !dt is the incomplete Gamma-function. The holomorphic

part
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is called a mock modular form. We will refer to h™ := h — h* as the non-holomorphic
part of h. The &-operator introduced in (2.1.5) defines a surjective map between

harmonic Maass forms and cusp forms:

§o—: Ha (N, x) = Sk(IV,X).

We will refer to the cusp form &_x(h) as the shadow of h™.

Remark. Since two harmonic Maass forms with the same non-holomorphic part differ
by a weakly holomorphic modular form, and since the &-operator only sees the non-
holomorphic part of h, we say that h~ and & (h) are respectively the non-holomorphic

part and the shadow of the harmonic Maass form h.

Remark. If the shadow is a unary theta function, we refer to the mock modular form

as a mock theta function, following Zagier’s definition.

We conclude this subsection by defining almost harmonic Maass forms, certain non-
holomorphic automorphic forms recently introduced by K. Bringmann and A. Folsom
[7]. These functions still need to be studied, especially the space that they generate.
They extend the notion of harmonic Maass forms, almost holomorphic modular forms,
and mixed harmonic Maass forms, i.e., C-linear combinations of harmonic Maass forms
multiplied by modular forms, such that the entire function satisfies the transformation

property of a modular form.

Definition 2.2.6 (Almost harmonic Maass form). A smooth function H: H — C is
called an almost harmonic Maass form of weight k € %Z and depth r € NU {0} for a

congruence subgroup r of I and character x if the following hold:

1. Forally= (%) € T, H|wy(r) = x(d)H(7).

2. The function H can be written as a finite linear combination of objects of the form

> iji;;_V (h), where h is a harmonic weak Maass form of weight k + 2 — v,
j=1
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v e %Z is fized, and g; are almost holomorphic modular forms of weight v — 2j

and character x.

The holomorphic part of H is called an almost mock modular form.

Remark. Note that the first condition follows from the shape of an almost harmonic

Maass form.

One can easily check that almost harmonic Maass forms generalize both harmonic
weak Maass forms and almost holomorphic modular forms. Indeed, if h is trivial, then
H is an almost holomorphic modular form. If the functions g; are trivial and the depth

r =1, then H = h is a harmonic weak Maass form.

2.3 Holomorphic, meromorphic, and non-holomorphic Jacobi

forms

The aim of this chapter is to define and give the basic properties of Jacobi forms. These
are multivariable functions that are a cross between elliptic functions and modular
forms. In analogy with the modular objects described in the previous section, we
shall consider not only holomorphic Jacobi forms, but also certain non-holomorphic

generalizations. For an extensive description of these objects we refer the reader to

[16].

2.3.1 Holomorphic Jacobi forms

As in Subsection 2.1.2, throughout this section, we denote by z a vector of variables
in C", and by 7 a variable in H. Because of the transformation properties of a Jacobi
form (see Definition 2.3.1) we shall refer to z as the elliptic variables, and to 7 as the

modular variable.
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Definition 2.3.1 (Holomorphic Jacobi form). A holomorphic function p: C* xH — C
is a holomorphic Jacobi form of weight k € 3Z, index L € GL,(Z) (positive definite),
and level N if it satisfies the following.

1. For all [y, (A, p)] € To(N)’, |, [v: A p)](z7) = (2 7).

L[Im(z)]

alm(t)+2m () )

2. For some a >0, p(z 1) = 0O(e

The C-vector space of Jacobi forms of given weight k, index L, and level N is denoted
by Jk7L(N) .

The most famous example of Jacobi form is the so called Jacobi’s theta function

Wz, 1) = Z qéegm”@%). (2.3.1)

VE%—&-Z
In the following proposition we summarize the main properties of ¥ (for example, see

30] (80.31) and (80.8)).

Proposition 2.3.2. The following are true:
1. For all A\, p € Z we have
Vz+ AT+ ;1) = (—1)A+”q_%e_2”iAzi9(z; 7).

2. For ally = (*}) € SLy(Z) we have

micz?
’ (CTid;w) — () (er + eIz 7).
Here i) is as in Lemma 2.2.2

3. Jacobi triple product identity:

Wz 7) = _iqéefwiz H (1—¢") (1 _ 627Tizqn71) (1 _ 6727m'zqn) ‘

n>1
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With a slight modification of ¥ it is possible to construct Jacobi forms of any

positive index M € %N, namely, for each ¢ (mod 2M),

»

Unre(z;7) = Z g 27z, (2.3.2)
neZ
n=¢ (mod 2M)
We refer to these functions as index M Jacobi theta functions. The following propo-

sition describes the transformation properties of the vector-valued! function 9, =
wW)é (mod 2M)"
Proposition 2.3.3 (Eichler—Zagier, [16] Section 5). The function 9p;: C x H — C*M

15 a vector-valued holomorphic Jacobi form of weight % for SLo(Z) with Weil repre-
sentation o: SLo(Z) — GLap(C) defined by or = diag <62”i%> and s =

0<t<2M
<62”57€47> , . More precisely, 9, satisfies the following transformation laws:
0<r<2M
Iy (z;74+ 1) = orOu (2;7),

z 1 pr22
I (—;——) = 72e2miT 05V (2; 7).

T T

Jacobi’s theta functions play a fundamental role in the theory of Jacobi forms.
They are not just nice examples, but they allow the so called theta decomposition of
any holomorphic Jacobi form, as described in the following proposition. In order to
state the result, we introduce the following notation, that will be often used throughout
the thesis. We denote the vector of elliptic variables by z = (z1,---,2,) = (z,u).

Moreover, we define the blocks of a matrix L € GL,(Z) by

oM bl .
L= |, 2MeN, beZz" ", LeGL,(2).
b L

Finally, for any n € N, we denote the standard scalar product between two elements

a and b in C" by a - b. The following proposition extends Theorem 5.1 in [16], where

1See Subsection 2.3.12
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the one-dimensional case is considered. We omit the proof since it is very similar to

that of Theorem 5.1 in [16].

Proposition 2.3.4 (Theta decomposition). Let ¢: C" x H — C be a real-analytic

function, holomorphic in the elliptic variable z. Assume that ¢ satisfies

SO‘k,L [(89), A w] =¢

for all (X, ) € Z**, then there exists a function h: C" x H — C* such that

1
o(z1)=p(z,uT)=h(u;T) Iy <z+ ST b;T) :
Moreover, if gp‘kL (v, (A, )] = @ for all v in a congruence subgroup of SLo(Z), then
the function h = {h}, (mod 207) 1S @ vector-valued real-analytic modular form of weight

k — % and index L* (see (5.2.6) ), with multiplier system o=, with respect to the same

congruence subgroup as .

We shall refer to the components h, of h as the Fourier coefficients of ¢ with respect

to z. In fact, they differ by the standard Fourier coefficients of ¢ by a g-power.

2.3.2 Almost holomorphic Jacobi forms and H-Harmonic Maass Jacobi

forms

As we have seen, it is possible to consider non-holomorphic functions that transform
as modular forms, such as harmonic Maass forms. In the same spirit, we describe
analogous non-holomorphic Jacobi forms. More precisely, we consider functions that

are non-holomorphic in both the elliptic and modular variables.

The first class of non-holomorphic Jacobi forms that we consider generalizes quasi-
modular forms (see Definition 2.2.3), i.e., we describe a two variable generalization of

the weight 2 Eisenstein series Fs.
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Definition 2.3.5 (Almost holomorphic Jacobi forms). A function ¢ : C" x H — C is
called an almost holomorphic Jacobi form of index L € GL,(Z) and weight k € Z if it
is a polynomial in % and —=, with (weakly) holomorphic coefficients in (2,7) that

satisfies the same transformation properties of a Jacobi form. The constant term of

this polynomial is called a quasi-Jacobi form.

Remark. The definition above may be extended to congruence subgroups, vector-valued

functions, multipliers, in the same way as for holomorphic Jacobi forms.
Remark. In [26], Libgober considered one-dimensional quasi-Jacobi forms of index 0.

The simplest example of almost holomorphic Jacobi form is given by the weight 1

Jacobi-Eisenstein series

* 1
Ei(z;7) = E T
1(z7) - (z4+ar +b)’

where Y * denotes the Eisenstein summation

A B
> e Y (3

(a,b)ez? a=—A

The associated almost holomorphic Jacobi form is given by

~ z
Ei(z;7) = Ey(z;7) + —
T—7

Another class of non-holomorphic Jacobi forms is given by H-harmonic Maass Ja-
cobi forms. We give the definition introduced by K. Bringmann, M. Raum, and O.
Richter in [12], extending previous definitions given by B. Berndt and R. Schmidt [2]
and A. Pitale [29].

Definition 2.3.6 (H-harmonic Maass-Jacobi forms). A real-analytic function ¢ : C x
H — C s called a Maass-Jacobi form of weight k € Z and index M € %N for G7 (G

a congruence subgroup of I'Y ) if the following conditions are satisfied:
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1. For all [y, (\, n)] € G, we have gp‘“M[% AN, w))(z;7) = @(z;7).
2. There ezists A € C such that C () = M.

3. For each fixred z = at+ 3 € C, the function p(at + [3;7) is bounded, as Im(T) —

Q.

If X in condition (2) equals 0, then we say that ¢ is harmonic. If in addition AE () =
0, then ¢ is called Heisenberg harmonic (H-harmonic). Finally, we call ¢ a mized
(H-)harmonic Maass-Jacobi form if it satisfies condition (1), and it can be written as
a linear combination of (H-)harmonic Maass-Jacobi forms multiplied by weak Jacobi

forms.

Remark. We slightly modify the definition given in [12], relaxing the requirement on

the growth condition.

In general it is not always clear how to determine the holomorphic part of a H-
harmonic Maass Jacobi form. In fact, it is not always obvious that it exists. However,
the functions of interest for this thesis naturally occur as holomorphic parts of (mixed)
H-harmonic Maass-Jacobi forms. We thus, in analogy to mock modular forms, call
them mock Jacobi forms. A special example of a mock Jacobi form, which plays an
important role in this paper, is the Appell-Lerch sum, defined for M € N and z, w € C
such that w — z ¢ ZT + Z:

2 .
qMa 647rzMozz

fu(z,wiT) = (2.3.3)

_ p2mi(z—w) pa
ae”Z 1 € ( )(]

In [36], Zwegers studied and used this function to relate meromorphic Jacobi forms
with Ramanujan’s mock theta functions. In particular, he determined a

non-holomorphic completion for f;, in order to make it transform as a 2-variable
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Jacobi form. To describe this, we need the real-analytic function Ry, defined by

= % feles) o (0eomis) )]

A= (mod 2M)

i 2 o
X e v 27T’LA’LU7 (234)

where w € C, and F(z) := Qfoz e~ ™ du. The completion of fy is the function fM

defined by
~ 1
fu(zow; ) = fu(z,w;T) — 5 Z Ry o(w; ) 0ar0(2; 7). (2.3.5)

£ (mod 2M)

Zwegers proved the following.

Proposition 2.3.7 (Zwegers). For M € Z, the function fM transforms like a Jacobi
form on C* x H of weight 1 and index (%) _$,,) for SL2(Z) x Z%.

To explain Appell sums in the framework of harmonic Maass(-Jacobi) forms we de-

scribe the action of certain differential operators on the real-analytic functions Ry o(w; 7).

Proposition 2.3.8. With the notation as above, the following are true:

1. The function Ry is annihilated by the Heisenberg operator A™, . and the Casimir

operator C%,—M' Moreover, for each (o, ) € R?,

H_ 6_4""M0‘2q_M0‘2RM75 (z+ar + 5 7')] = 0.

1
2. The function >’ M (Rarye) is an eigenfunction with respect to C%,_M of eigenvalue

N

3. Let o and B € Q, then A% q_MO‘QRM,z (at + 537')] =0.
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Proof. We start by proving part 1. We point out that H_ys (Rpre) = 0. For the special
case M = 1 the result is stated in Section 1 of [13]. A simple change of variable implies

the statement for any M.

Next, we prove that Ry, is annihilated by the Heisenberg operator. In order to do

so, we recall that by Lemma 1.8 of [36], we have

—omi(tz— L F _ 1 - \ F :
O aaa (7)) = =20/ (=6 (2arz — 2 —
T—T)2

(2.3.6)

(z-2)2

2mM==" " The operator 0, acts trivially on anti-holomorphic func-

where F(z;7) :=e

tions in z, thus, using (2.3.6), we have that A (Raseia(2;7)) equals

_ViMe 2Ty (2Mz - % + 07 —2M?) ( L Z> ((F(Z; 7) ) |

8miM 2 T—7)3

A direct computation gives that

Therefore Ry, is annihilated by AH M-

We proceed by showing that C%’_M<RM7Z) = 0. To do so, we make use of Propo-
sition 2.1.5. In particular, since {1y, (Rare) = 0 (it can be easily seen with a direct
computation), it remains to prove that

1

X2 (020: (Ragep (7)) = 0.

For this, using (2.3.6), we compute

2 [Rarepn (2 7)) = 05 [H (7 —7)) ———%

where

‘ 2 1
H(Z;T) — 9 /Z-M6727rz22+4€W719 <2MZ — 5 +£T,2M’T> .
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1
Since H(z; —7) and 0;[H(Z; —7)] are anti-holomorphic, applying X2’ Mo equation

F(z;71)
(r-7z2])
To conclude, a direct computation shows that

1om [ F(z;7) 1M F(z7)
X2 - = X?2 &z — =0
* (ﬁ—?)z) i ( (T—FPD

The proof of part 2 follows from the previous ones, using Proposition 2.1.7.

(2.3.7), we obtain

o [H(z —7) x2 M (—(F@;T)l) H(z-mxs (55

T—T)2

To conclude, we prove part 3. By definition of A% the statement is equivalent of
showing that

2 1 2
0,07 a7 Rage (a7 + B:7)| = = =05 |47 Rua (a7 + 7))

10
ie.,
0,0 [Rars (a7 + 6 7)] = (2micM = 1) 0 [Rage ar + 557)].

From Lemma 1.8 in [36] we know that

)2 6—471'Mv(04+%)

Or [Rars (o + B 7)] = emler 0000 4= 53

4 M

n—1i t—M —n?M7—n aT —M)7—1
X Z(—l) 2<n+a—|— 53 >e M7—n(2M (0T 48)+(E=M)7—3)

nE%JrZ

Computing the holomorphic derivative term by term we get the result. O]

The function Ry, is the prototype of the non-holomorphic part of a harmonic
Maass-Jacobi form. Morover, specializing the elliptic variable to torsion points, we get
the non-holomorphic part of a harmonic weak Maass form. In the last part of this
subsection we construct the “mock” part needed to prove our claims. To do so, we
consider a slight modification of the Appell sum fj;, namely

( ' ) - em‘z (_1)nq%(n2+n)€2m’nw
p =, W) = 19( 1— e27rizqn

w; T> neZ ’
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where z € C and w € C*. This function was considered and studied by Zwegers in
[36], therefore we will refer to it as Zwegers’ u-function. Zwegers discovered that p can

be completed to a non-holomorphic Jacobi form zi by the addition of the real-analytic

function
. . Im(z) A1 —mid2r—2miz
R(z;7) = Z {sgn(/\) - E ((/\ + Im(T)) 2Im(7')) } (=1)* e ,
namely,
iz, w; ) = p(z,w;T) + %R(z —w;T). (2.3.8)

One can easily note that R has the same shape of Ry, (see (2.3.4)). In fact, for
te{0,1,---,2M — 1} we have

, a2 1
Ryye(z1) = —iesz(M—f)q—szﬁ) R (2Mz b +7(0— M); 2MT> :
In the following proposition, we describe the transformation properties of fi.

Proposition 2.3.9 (Zwegers, Theorem 1.11 in [36]). With the notation as above, the

following are true:

1. Forallk, £, m, n € Z, we have

— 171 2 .
% 627rz(k—m) (z—w) =~

i(z+kr 40w+ mr+n;7) = (=1)FHming w(z,w;T).

2. For ally = (2}) € SLy(Z), we have

c(sz)2

N 2z w 5 [ R
: = d)?2 cr+d .
M<07+d707+d’77> vl er - d)re Az wiT),

where ¥ 1s the multiplier of the Dedekind n-function.

Choosing z and w such that z —w — 2Mz — 4+ 7({ — M), we define the functions

2miz(M—4 —M 1 . .
,U,SM’Z)(Z'T)ZI 2e2mix(M=0) =31 u(2Mz—§,(M—€)T,2MT) if ¢ # M,

21 (2Mz + 75, 5 2M ) if ¢ =M,
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and

_(e=M)?

. 1
/LgM’Z)(z; 7) = 2e¥ M =0 =y, <2Mz, (M —O)T+ 3’ 2]\/[7) :

From the discussion above, we know that ,ugM’Z) and uéM’g) can be completed to non-

holomorphic Jacobi forms, and from (2.3.8) we know that they have both the same
non-holomorphic part Ry e(z; 7). Explicitly, for j € {1,2}, we define

A0 () = 0 (2 7) + Rage(z7).

Note that /LEM’Z) and ugM’e) are defined in different domains. The first is defined for

2Mz ¢ 2M7Z + 1 + Z, while the second for 2Mz ¢ 2M7Z + Z. As a consequence of

Proposition 2.3.9, we have the following transformation properties for ﬁEM’E) and ﬁgM’f).

In order to state the result, for (a, 8) € Z* we define

(a—Da+cB, ba+ (d—1)p € Z,

Lopi= ab) e SLy(Z):
pi= (80 €8La(2) M (—cB +ba? + (d— a)aB) € Z

Corollary 2.3.10. Let M € 3Z and ¢ € {0,--- ,2M — 1}. Then for j € {1,2}, the

following are true:

1. For any |y, (r,s)] € I{(4M),

sl (r 9l () = (F)PMu () PR (),

where ¥ is the multiplier of the Dedekind n-function.
2. Let (o, ) € Q*. For any vy € T s NT1 (M), the following are true:
(a) Let Ej(f) = Oy [q*MQQﬁg-M’K)(w +ar+ ;1) o then
hils7(r) = () hy(7).
(b) Let Gi(r) = ¢ M @™ (ar + B;7), then

J

§j|%7(7) = () 7%g;(7).
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In part (2) of Corollary 2.3.10 we have constructed two real-analytic modular forms,
whose non-holomorphic part is respectively g~ o Ryo(ar + p;7) and
g M*9, [Rare(w+ a1+ B;7)],,_o- In addition, Proposition 2.3.8 implies that these
functions are annihilated by the Laplacian. Combining these two results we have the

following.

Corollary 2.3.11. With the notion as above, for j € {1,2} the following are true:

1. The function q_Mo‘Qﬁg-M’é)(aT + B3;7) is a harmonic Maass form of weight % for

Lop.

2. The function O, [q_Mazﬁg»M’Z)(w +art + f; 7')] is a harmonic Maass form of

w=0

weight 3 for Ty .

3. The function ﬁgM’e)

index —M for T (4M).

) : - - : 1
(2;7) is a H-harmonic Maass-Jacobi form of weight 5 and

The definitions described so far do not always suffice in order to describe the objects
we are interested in this thesis. In fact, we need to introduce a vector-valued notion

for each of them.

Definition 2.3.12. Given a (projective) representation o: SLy(Z) — GL(C?), where
d € Z~g, of SLa(Z) on GL(CY), we say that a function

F:C"xH—C?

(where n = 0 in the case of modular forms and harmonic weak Maass forms, while in
the case of Jacobi forms n > 0) transforms vector-valued of weight k and level N if for

all v € To(N) we have
Fl,y = e(v)F,

where on the left-hand side the slash operator is taken component-wise.
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CHAPTER 3

Kac-Wakimoto characters in one variable

3.1 Introduction

Let trr,, ,.( A0 g™ denote the specialized character associated to the irreducible s¢(m|n)"-
module of highest weight A(¢)}, which we will refer to as the ¢th Kac-Wakimoto char-
acter. Here m > n > 0 are integers, and we fix here and throughout the chapter

M := =5, Letting £ run through the integers, we consider their generating function

[24]

_ I (G I G )
chF := ; chF (! = k]:[l ((1 - qu_%> (1 - g—lqk—%>)” :

with chF} as in (A.2.1). We recall that ¢ = €2™*. Using Jacobi’s triple product identity

(3.1.1)

(see part 3 of Proposition 2.3.2) one can easily rewrite chF’ as

9 (z+ 2 7)"
19(2'—}—%;7)” ’

chF =) chF¢’ = (=1)"i"¢Mgs ()

lezZ

(3.1.2)

where 9 denotes the Jacobi theta function and 7 is the Dedekind n-function (2.2.2). Due
to the elliptic transformation properties of ¢, in order to study the Fourier coefficients
of chF', which are ”essentially” the Kac-Wakimoto characters try,, (), we can reduce
our investigation to the meromorphic Jacobi form

19(2+ %;T)m

Oz 7)== —5 G

(3.1.3)

!For more details see Chapter 1
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For a more precise explanation, we refer the reader to Appendix A.2.

In [7] K. Bringmann and A. Folsom described the shape and the modularity prop-
erties of the Kac-Wakimoto characters in the case of m and n positive even integers.
The goal of this chapter is to give a generalization of their results for any pair of in-
tegers m > n > 0, regardless of the parity. With this more general setting we will
encounter half-integral weight and half-integral index Jacobi forms, which also satisfy

slightly different transformation properties. To be more precise, as the index of ® is

m—n

5, it has half-integral index if m and n have opposite parity. In this case, we need

to construct a slightly different theta decomposition for ® involving half-integral in-
dex theta functions. In addition, when n is odd the parity of ® as a function of its
elliptic variable changes. This modifies the group under which the Fourier coefficients

transform.

3.1.1 Statement of the theorems

m—-n

5 € %Z. For a real number z

Let m > n > 0 be positive integers, and as before M =
we denote the fractional part of x as {z}, and for any integer ¢ we define L := (+{M}.
In order to state the main result of this chapter, we consider the /th Fourier coefficient

of @ around z; € C, namely

zo+1
hfo)(T) = / (z;7)e 22 Az, (3.1.4)

20

Remark 1. In order to make the integral in (3.1.4) well defined, we need to be more pre-
cise. To do this, we recall certain assumptions as in [7, 15]. If & would be holomorphic,
then the integral would be independent on the path of integration and well-defined for
any zg. For meromorphic ®, we assume the path to be the straight line, if there are
no poles on it. If z; is a pole of @, then we note that the integral in (3.1.4) depends
only on the height of the path, and not on the initial point of the line. Therefore, we
replace the straight line [zg, zo + 1] with [29 + 6, z0 + 0 + 1], where § is such that zy +
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is not a pole of ®. Finally, if there is a pole on the path which is not an endpoint, we
define the value of the integral as the average of the integral over a path deformed to

pass just above the pole and the integral over a path just below it.

Following the approach of A. Dabolkar, S. Murthy, and D. Zagier [15], and K.
Bringmann and A. Folsom [7], we generalize the definition of the ¢th canonical Fourier
coefficients of @ to half-integral index Jacobi forms as

[%a

ho(r) = ) (7). (3.1.5)

The aim of this chapter is to prove the following result concerning the shape and the

modularity of the functions h,.

Theorem 3.1.1. Let ' :=T'4(2) (resp. T'(2)) if m and n have the same parity (resp.
opposite parity). The function hy = (h¢)e (mod 2m) 8 a vector-valued almost mock

modular form of weight M — % for T

As we show in Appendix A.2, for —-M </ < M

oy 2=1M 2

ter,n(A(g))qLO = (=1)"i g 2 Tamp 7M7) hy(7), (3.1.6)
while for [¢] > M try,,  (a@)g™® differs from hip by a linear combination of quasi-
modular forms. In particular, we can immediately derive the transformation properties

and the shape of the Kac-Wakimoto characters.

Corollary 3.1.2. Assume the notation of Theorem 3.1.1. Up to the multiplication by

2M—1

1-2M 21, the Kac-Wakimoto characters ter’n(A(g))qLO are the holomorphic

2
n(T) =2 gant

parts of components of a vector-valued almost mock modular form of weight M — % for

r.
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3.1.2 Outline of Chapter 3

This chapter proceeds as follows. In Section 3.2, we give some preliminary results. More
precisely, we describe a vector-valued half-integral index theta function that allows a
theta decomposition of half-integral index Jacobi forms. Furthermore, we describe the
transformation properties of certain half-integral index Appell sums. Finally, we de-
scribe the action of the heat operator and the raising operator on the non-holomorphic
function Ry (see (2.3.4)). In Section 3.3, we prove Theorem 3.1.1. To do this, we

generalize the approach used in [7] to half-integral index Jacobi forms.

3.2 Preliminaries

3.2.1 Half-integral index Jacobi forms

In order to give a theta decomposition for half-integral index Jacobi forms, for each

positive integer N and for A € {0, 1}, we define the vector-valued Jacobi theta functions

even —omi £ /\
Wa(2;7) = (e IN YN 2 (z+ )) ,
4N 0<¢<N

A
®odd( ) _ (6 2WZ4N19N2£+1 (Z+ )) ,
4N 0</<N

Onn(z;7) = (BFN(27), O%4 (25 7))

where the function ¥y, was introduced in (2.3.2). The aim of this subsection is to

describe their transformation properties. To do so, we define the multiplier system

02 : SLa(Z) — GLan(C) as follows. For v = (24) € SLy(Z), let

/701 Z s (mod 2Nc¢) 627ri (LS2_§1}\LISc+dh2 if ¢ 7é 0,
ah,E,N(/y) = s=t (mod 2N) (321)

27rz%

e 4N ifCIO.
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We define the following matrices in GLy(C):

oV = oV (7)== (agh,zz,N(W))ogh,kNv
o4 — 50dd () .= (a2h+1,2é+1,N(7))ogh,e<N7
Wi = (M () = (azn,2041,8 (7)) o< pen s
WY =WV (y) = (a2h+1,2€,N(’7))0§h,Z<N :

Then gy is defined by

oN () W)

oan () =
Wy () o)

The following lemma describes the key properties of oon. Here and throughout, let Oy

(resp. 1y) be the N x N zero matrix (resp. identity matrix).
Lemma 3.2.1. With the notation as above, the following are true.

1. If N is even, then each of the matrices o§", o§%, W™, and W™ can be written

i the form (g ﬁ) for for certain A and B € M%(C)
2. If N is even and v € Ty(2), then w§*" = wi@? = Oy.
8. If N is odd and v € T'o(2), then " = o3% = Oy.

Proof. The proof follows from the following identities

_ i bdh?—2bhe

anen(y) =e N aganen (),

anen(y) = aneran N (7).

More precisely, these two equalities imply that

ah,e,N(W) = ah+N,£+N,N(’Y):

ah+N,e,N(’Y) = ah,€+N7N(7)a
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which allows us to conclude part 1. The proof of parts 2 and 3 follow by definition
(3.2.1). 0

We now have all the ingredients to prove the transformation properties of @y . In

order to state the result, in light of the previous lemma, we write

govem 1 o,even,Z O_Odd 1 O_odd,?
even .__ N N O_odd o N N
N even,2 even,1 N odd,2 odd,1

N N o ON

Proposition 3.2.2. Let N be a positive integer and A € {0,1}. Then the following

are true:

1. The function On(z;7) is a vector-valued Jacobi form of weight % and index N

for SLa(Z), with multiplier system oo .

2. The function OF' (% %) (resp. @Odd (2, 5)) s a vector-valued Jacobi form of

weight § and index 5 for To(2), with multiplier system oS (= 1) oS (resp.

dd, dd,2
ogn (1) gy ).

Proof. The proof of part 1 is an immediate consequence of Proposition 2.3.3. We give

the proof of part 2 for @F'. The proof for @Odd is analogous. First of all, note that

even £ T even <
OF (313) = TOm (377).

where Ty := (1y,(=1)*1y). Let v = (%) € I'q(2). Since 2N is even, from part 1 and

from part 2 of Lemma 3.2.1, it follows that

ven < 77— 1 2milNe even ven <
@?VS (m, 7) (CT + d) 2¢ 2 CT+d) T Oon ('}/) 31\%0 (5, T) . (322)
The symmetry of o537 (7) implies

T O_even</y) — (O_S\]z\?nl +( 1))\0_;\]/\(;11 2) T)\.

42



We can therefore rewrite the right-hand side of (3.2.2) as

27iNcz2

(er + d)be 500 (5™ + (1) 05y™) Tr ©53% (5:7)

T 2
= (er + )= (o5 + (-1 05 5% (5:7)

which gives the desired result. O

3.2.2 Additional properties of the Appell sums

The Appell sum fi (see (2.3.3)) plays a key role in the entire thesis. In this subsection

we describe the main properties of fj; needed in this section.
The first result that we need concerns the elliptic and the modularity properties of

far when we slightly shift the elliptic variables simultaneously.

Proposition 3.2.3. The completion of the Appell sum fAM satisfies the following prop-

erties:

1. Let N € $Z.. For any X and pp € Z and X € {0,1}

AT+ 1 +)\7"|‘M
u s
2N 2N

fv (2 + > = 2" fiy (2,0 7).

2. Fory=(2%) €o(2) and X € Z,

]? z n A U n )\‘
N\er+td "4AN er +d 4]\/’77’
. ~ A A
= (cT + d)emrﬁd(zzfuz)fN (Z + N + mQT) .

Proof. The first property comes from the fact that fN “almost depends” on z —u. To

be more precise, we recall that fN can be written as

~

In(zyuym) = eQmN("_z)A\gN (z—=u,2Nz— N7+ N;7),
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(_1)2Nn Nn(n+1) g2minu

q9
nezZ 1—e2miz qm

where Agy(z,u;7) = €™y . The elliptic transformation prop-

erties of Ay described in Theorem 2.2 in [37] immediately gives the result.

For the second property, applying Proposition 2.3.7 we obtain

]? z +/\ U +)\‘
N\erxd AN er+d an' "

¢ —~ by A
= (7 + d)e*miera (o Certd)z-w) F (z + (o7 + ) ut (e + d); T) '

Part 1 of this proposition and the fact that v € I'g(2) gives the desired result. ]

The next step consists of describing the action of certain operators introduced in
Section 2.1 on the real-analytic functions Ry, defined in (2.3.4). The goal is to relate
the derivatives respect to the elliptic variable of Ry, with the raising operator applied
to Rpre itself. Following the proof of Theorem 3.5 in [7], it is clear that the only
condition needed to make this connection possible is that the function Rjs, must be

annihilated by the heat operator H,,;, as we show in the following proposition.

Proposition 3.2.4. Let g(z;7) be a smooth function in both z and T, and assume that
Hylg(z;7)] = 0. Then for any positive integer j

2
o Mz

o9 [ g ()

oAl [e%%g (z; T)i| = (47rM)j Ré/g (9. 19(27)]—0) - (3.2.4)

z=0

= (4 M) R, (9(0;7)), (3.2.3)

z=0

Remark. In the statement of Proposition 3.2.4 we consider powers of the raising oper-

ator. By that we mean

R']]i, = Rk+2(j—1) O-++0 Rk+2 o Rk

Proof. In Theorem 3.5 in [7], Bringmann and Folsom proved (3.2.4). The proof of
(3.2.3) is very similar, therefore we skip the proof here. We note that a different proof
can be derived as a special case of Proposition 5.3.7, where a multivariable version of

this Proposition is considered. O
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As a consequence of Propositions 2.3.8 and 3.2.4, we have the following key result.

Corollary 3.2.5. For any real number 8 € R, the following identities hold:

agj[ 2 Rote (2 + B )] = (—4x M)’ R}, (Rare(B; 7)),

z=0

. 27 M2z2 1
822]4-1 [ 20 Ry (2 + f3; )] = (—47TM) Ré/Q (2_maz [Rare (2 + B; T)]z:()) :

We conclude this subsection by proving an identity involving the Appell sum which
will be used several times in this thesis. This result was proven by K. Bringmann and

A. Folsom in [7]. First, we need the following lemma.

Lemma 3.2.6. Leta € Q\ Z and 0 <y < 1 such that |x| = y*. Then

sgn(a) +sgn(f) , 1 1
2 2 ST T g
tez

Proof. The left-hand side equals

sgn(a) %—i— Z z' | = sgn(a ( —i—Zngn(“ ) . (3.2.5)

tez >0
sgn(¢)=sgn(a)
By assumption |%¢%(@)| = ylal < 1 thus (3.2.5) can be written as

1 1 1 1
senla) | 5+ T ) T Tt T
]

Proposition 3.2.7. For each A € Q\ Z positive, for u € R and Im(z) = AIm(T) the

following identity holds:

_ 2_ — i
fM(Z w: 7_) o _19MO Z 7_ § eZm@z 2 q Mn €n€ 27r1u(2Mn+€)'

leZ nGZ

W <n<A
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Proof. By definition, the left-hand side can be written as

Mn? AmiMnz _1 1
Zq € ( 2 + 1 — e27ri(zu)qn> ’

neZ

)q"| = e~2mm()(A+n)  Therefore, by Lemma 3.2.6 the term

By assumption |7~

above equals

nt

n2 _AniMnz SgnA+n +Sgn‘€ Til(z—u
ZqM AmiM Z ( ) ()62 () g

2
nez ez

Sending first £ to £ — 2Mn and then n to —n, and interchanging the two summations,

we get the desired result. O]

3.3 Proof of Theorem 3.1.1

3.3.1 Transformation properties of ¢

In this section we prove Theorem 3.1.1. We shall follow the ideas used in [7] and [15].
The main issue in this setting is that we have to deal with half-integral index Jacobi
forms. We solve this problem by splitting ® into an even part and an odd part. The
integrality of the index dictates the vanishing of one of those parts. We can then use a

similar argument to treat both of the parts, giving a unified proof for the general case.

For r € Z. we define (r) :=r — [551] € {1,2}. The transformation properties of

® can be deduced from the transformation properties of ¥ (see Proposition 2.3.2).

Proposition 3.3.1. With the notation as above, the following hold:
1. For \, u € Z, we have
CI)(Z AT —I—IU;T) _ (—1)2M()\+M)+m)\€727”;M()\2T+2)\Z)@(Z;T).

2. For any v € I'y(2), we have

N

v <ﬁ’ W) = x()(er + DM ETB (2 1),
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where x(7) = ¥(7)M(=1)%, with ¥(y) the multiplier of the n-function (see
Lemma 2.2.2).

3. The function ® has the same parity as n, namely, ®(—z;7) = (=1)"P(z; 7).

3.3.2 Canonical Fourier coefficients and canonical decomposition

It is known by Theorem 3.9 of [36] that any meromorphic Jacobi form of positive
index splits into a theta decomposition and another term which can be expressed in
terms of the residues of Appell sums multiplied by the Jacobi form itself. Dabholkar,
Murthy, and Zagier [15] revisited Zwegers’ proof defining a canonical splitting of any
meromorphic Jacobi form of positive integral index and poles of order at most 2 into
two pieces: a finite part, which has the shape of a theta decomposition, and a polar
part, which depends just on the poles of the Jacobi form. We follow this last approach
to investigate half-integral index Jacobi forms. We will also make use of the parity of

® to get some more information about its Fourier coefficients.

Since ® is a meromorphic function in the elliptic variable, a global Fourier expansion
does not make sense, however due to the elliptic transformation property its poles have
a nice symmetry. More precisely, we know that they are exactly the points in the
lattice A, := Z7 + Z. In particular, for any 2z, € C such that Im(zy) ¢ ZIm(7), the (th
normalized Fourier coefficient of ® in z

02

hézo) (1) :=q ToM

/ZOJrl O(2z;7)e(—lz)dz

20
is well defined. If Im(zy) € ZIm(7) we modify the definition as explained in Remark 1

in Subsection 3.1.1.

Remark. We use the same notation as in [15]. However, our definition is slightly
different. More precisely, it generalizes the definition in [15] since we deal with a half-

integral index Jacobi form. In this setting the half-integrality of the index is equivalent
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to the 2-periodicity of ® as a function of z. As we shall prove later, for 1-periodic ®
we have h{™ (1) = 0 for £ odd. If we denote by K\*) the Fourier coefficient defined in
[15], then a change of variables shows that hS*) (1) = K**)(7).

The transformation properties of ® imply the following properties of héz(’).

Lemma 3.3.2. For each { € Z, the normalized Fourier coefficient héZO) satisfies the

following periodicity properties:
2o AT
1. For each \ € Z, h((gﬁM,\(T) = (—1)’\nh£ o >(T)
2. We have h(fg)(T) = (—1)"@_20)(7)-

Proof. First we prove part 1. By definition

1
h(zo) ( ) _ —% o ) (2 . —%—M)\Q —2mi(€+4MN)z d
v (T) = ¢q 2;7T)q e z.

20
From Proposition 3.3.1 we know that ® (22 + A1;7) = (—1)"q M e 3mMAg (22, 7),

therefore

(z0) An _2 ot 8 _ority
h€+4M)\(T) = (=1)"q 1om Q22+ A7) q 2e dz

20

Zo-&-%)

An _ 2 ZO+%+1 —2milz An (
_ (_1) g~ T6M / 6} (22;7‘) e dz = (_1) hé (T)

0+%
We now prove part 2. By definition and the change of variable z — —z, we have

2 —2z0—1 )
h(_ZO) 7) = _q*ﬁ O (—2z;7) e = 2. 3.3.1
l

20

The parity of ® (see Proposition 3.3.1) implies that (3.3.1) equals

2 —%0 )
(—1)"q*1gW / ® (22;7) e 2™ dz.

zo—1

To conclude it is enough to change the integration variable as z — 2z — 1 to obtain

2 —zo+1 )
B (7) = (~1)"q o / @ (227) e dz = (—1)"hy ().

20
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For a fixed zy, Lemma 3.3.2 implies a non-periodicity for the normalized Fourier
coefficients. To be more precise, a difference between two of them gives a non-trivial
contribution of the residues of ® in a certain parallelogram. However, as Dabholkar,
Murthy, and Zagier showed for second order poles, it is possible to obtain periodicity
making zo dependent on 7. This led to the definition of canonical Fourier coefficients.
For each integer ¢ we define the ¢th canonical Fourier coefficient by

LT

he(T) := hg_m)(T).

Corollary 3.3.3. For each ¢ € Z, the canonical Fourier coefficient h, satisfies the

following properties:

1. For each X € Z, hyrapra(7) = (=1)" hy(7).
2. We have h_¢(1) = (—=1)"h(7). In particular, if n is odd, ho(T) = 0.

3. We have hy(T) = hapr—o(7).

In order to treat the integral and the half-integral index cases simultaneously, we

define the even and the odd vector-valued canonical Fourier coefficients by

h3y (1) = (ho(7), ha(7), - -+ hanr—2(7)) = (hae(T)) o<pcons » (3.3.2)

h;’%}i(r) = (ha(7), ha(T), -+ hupr—1 (7)) = (h2€+1(7'))ogz<2M-
Lemma 3.3.4. If M € N (resp. M € 5 +N) then 94d(1) = 0 (resp. hSM (1) = 0).

Proof. By definition,



Making the substitution z — 2z + % in the second integral, we obtain

_ LT
8M

2 —sirts .
he(1) = (1 + (—1)"2M) g o / ® (2z;7) e dz,
which equals 0 if £ and 2M have opposite parity. O

We now generalize the canonical decomposition to our situation. We define the
finite part of the meromorphic Jacobi form & by

z T

even even O O T
O (i7) 1= W) - 53, (555 ) + () - O3, (555)

23
where @g;‘;{n and @g;‘;{n are described in Subsection 3.2.1. As the notation suggest,
the function ®* is no longer meromorphic. Instead, it is a holomorphic function whose
Fourier coefficients with respect to z coincide (up to g-powers) with the canonical
Fourier coefficients. Moreover, if ® is holomorphic, then the integral defining hsy; no
longer depends on the path of integration or on the initial point z;. Therefore, in light

of Proposition 2.3.4, in this case ®f coincides with ®.

In order to define the polar part of ® (see (3.3.9)), we need some more notation.
As mentioned before, the function ® has poles of order n in Z7 + Z. We denote the
Laurent expansion of ®(z;7) in z = 0 by

n—u(n)

D (z7) =

J=0

Dyn)+2(7)
(27T2'Z)L(n)+2j

+O(1) as z — 0. (3.3.3)

We recall that ¢(n) was defined at the beginning of Section 3.3. As we shall see in the
next lemma, the Laurent coefficients D, are quasimodular forms (see Definition 2.2.3).
Their completions turn out to be the Laurent coefficients of a similar function, this
time real-analytic in 7, namely

n—u(n)
2

nMz2 DL(n)_,_gj(T)
e v @ (Z, T) = W

+O(1) as z — 0. (3.3.4)
=0
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In the following proposition, we describe the modular properties of the functions ﬁj

and D;. Here, £ denotes the single-variable lowering operator.

Proposition 3.3.5. With the notation as above, the following facts are true.

1. For0 <35 < %("), the function D,(n)42;(T) is an almost holomorphic modular
form of weight M — v(n) — 25 for I'y(2), with the same multiplier system as ®.
More precisely, for each v € T'g(2),

Dyuy+25(v7) = x(7)(er + )M 7D, ) (7).

2. For0<j < %("), the function 5L(n)+2j (7) is the holomorphic part of D ) 12;(T),

1.€., it is a quasimodular form.

3. For each 0 < j < [”T_l}

Dy ny124(T) = <4M7r)j L7 (Dyny(7)) -

M 22

Proof. We start by proving part 1. For simplicity, we define F(z;7) := e +» and
® := F®. One can easily see that F' satisfies the modular transformation of a Jacobi

form of index —M and weight 0. In particular, ® transforms as

o <mi d;w) = x(V)(er + DMD (2;7). (3.3.5)

Writing both the right and the left-hand sides of (3.3.5) with their Laurent expansions

in z =0, using (3.3.4), we obtain

n—:u(n)
2

D\(ny42i(77)

(2miz)Hn)+2 (er +d) ™+ O(1)

J=0
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To conclude part 1 it is enough to compare the coefficient of 24" ~2% for any fixed j.

To prove part 2, we first write explicitly the Laurent expansion of F in z = 0,

namely
O [F(2,7)],0q or 2rM\" 2
F(z7)=)_ o= 1+ —) 5 (3.3.6)
r>0 r>0
Using the Laurent expansions (3.3.3), (3.3.4), and (3.3.6), we obtain
n—u(n) ~ .
2 —S
~ Dynyroi(1) ( MY’
D\ (n)+2s = D,(n)+2s ; - . 3.3.7
(n)+2s(7) (n)+25(7) +j§1 2-(j—s)! \ 2mv (3:3.7)

The claim is then proven in light of part 1.

We conclude the proof by showing part 3. Since the lowering operator annihilates

holomorphic functions, using (3.3.7) we have

n—u(n)

£ (Dynysan(r)) = ; % <—%>j_s.c (vjl_s) | (3.3.8)

)
J !

A direct computation shows that

therefore (3.3.8) becomes

n—u(n)

M G~ Dignyso;(7) M\
L DL n)+2s = 35_ / —
( (n)+2 (7')) or j;rl 2-(j—s—1)! 270
M
= %DL(H)'FQ(S'F:L)(T)’

Iterating this computation s times, we conclude the proof. O

We now define the polar part of ® by

n—u(n) — .
(I)P(Z, ) m 2 DL(n)—i—Qj(T) & t(n)+2j—-1 1+ (_1)2M
’ (t(n)+25 — 1) \ 2mi 2

1—(=1)2M n+T n+T
—i—TfM 2 ——— U+ ——T :
u=0

J=0

xf(+n +n')
MGt T e T

AM AM
(3.3.9)
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The functions ®F and ®* are the two pieces in the canonical decomposition of ®, as
we see in the following proposition. We note that depending on the parity of 2M, one
of the two pieces defining ®F vanishes. This agree with the definition of ®%, itself

divided into an even part and an odd part.
Proposition 3.3.6. With the notation as above we have ® = &F + &F,

Proof. We consider the difference ® — ®%', and we prove that it equals ®F. Let A €
Q\ 3Z, then for z such that Im(z) = Alm(7) we have by definition

Ar+1 — g+l A
O(z;7) — dF(2;7) = Ze’rwz (/ —/ ) ®(2u; 7)e ™ du. (3.3.10)
e

ez AT T8M

Making the change of variables w — 2u and noting that
CI)(U +1; T)emf(u—i-l) _ (_1)£+2M(D(u; T)em'ﬁu,

Cauchy’s residue theorem and the fact that ®(z;7) has poles in Z7 + Z imply that
(3.3.10) equals

: milz —mil(utar) 1+ (_1)£+2M
27rzZe Z Rgg O(u+ ar;T)e —_—

2
leZ ace”Z
—ﬁ<a<2A
1 (=) R .
:27”2%6 D D C DA Res (®(u; 7)emiulETAMa))
leZ acZ

4

—W<Oé<2A

(3.3.11)
where in the second step we used the elliptic transformation of ®. Using the Laurent
expansion of ® in u = 0 (see (3.3.3)) and interchanging the summations, (3.3.11) can

be written as
J

D"*Zj (T) 8”—2j—1 Z 1+ (_1)é+2M milz

(n—2j — 1)!(2miyn-2-17" 2 ‘

j=0 ez

% Z (_1)naq—Ma2—%)‘6—7riu(€+4Ma)

a€(—557,24)NZ

23



If we now split the sum into two pieces according to the parity of £ and then use (3.2.7),

we can rewrite the argument of J, as

1 _12M 1— _12M

2 AM’ 4M’ 2 4M ’ AM

__ﬁMO (Z+4M )

This conclude the proof since the extra summand given by the theta function is inde-

pendent on u, and therefore annihilated by 0,. O

In the following proposition, we rewrite ® in terms of the almost holomorphic
modular forms D; instead of their holomorphic parts l~)j. This will be useful in order

to determine the completions of & and ®F.

Proposition 3.3.7. The function ®° equals

n—u(n)

i +2j ) ﬁ t(n)+2j-1 e—wMu2 1+(_1)2M
gt + 2j — 1)! \ 2mi 2

« f ( L >+1—(_1)2Mf +TL—|—T +n+r
z z u .
M TEVARY Ve 2 M AM ° " AM o

Proof. The proof is almost identical to the proof of Proposition 3.3.6. In (3.3.11) it is

enough to replace the Laurent expansion (3.3.3) with the modified Laurent expansion

(3.3.4). 0

3.3.3 Modular properties of h,

In the previous subsection, more precisely in Proposition 3.3.6, we have seen how to
canonically decompose the function ¢ into a finite part, which is holomorphic, and a
polar part, which is meromorphic and only depends on the poles of ®. In Proposition

3.3.7, we have also seen an alternative way to write ®°. In that decomposition the
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functions D,,_,; transform as modular forms, as we proved in Proposition 3.3.5. More-
over, the Appell sums are well known to be closely related to Jacobi forms, as we saw
in Proposition 2.3.7. Using that, we are able to complete the polar part ®7, i.e., to add
a certain non-holomorphic function to ® to get a modular object. This immediately

gives a completion for the finite part ®F, and therefore for h$}" and h$57.

Analyzing the shape of ®7, i.e., a linear combination of almost holomorphic mod-
ular forms multiplied by derivatives of the Appell function, it is natural to define its

completion by substituting fas by far (see (2.3.5)), namely,

n—u(n)

22: w425 (7) & n)+2j—-1 e_ﬂyuQ 1+ (—1)2M
+ 2j —1)! )

= 2mi 2
F (+ n_o.n >—|—1_(_1)2Mf L ntT o ntT
M\t T 2 M\TT T T a0 T) )|
(3.3.12)
Defining
n—u(n)
L+ (=DM [~ Dimyr2i(7)
Reven =
217 (7) 4 JZ:; (t(n)+25 —1)!
y au L(n)+2j1< _ﬁIVIHQR (u + n ) 7—>>
2 ‘ PN T EM 2 ’
0<t<2M
n—cu(n)
Rodd ( ) .:1 — (_1)2M 22: DL(n)+2j(T)
2Mnd" s 4 (t(n) +25 —1)!

y 9y, \ Y 1( mr? B (u n T>>
[ e — + —_—
2mi 2M260L o g2 ’
0<t<2M

then by (2.3.5) we have that

£ Ven even £ T O [¢] 2T
(1) = @7(=i7) — REi(1) - O5i7, (5i5) — s (1) - @, (5:5)

Analogously, we define the completion ®F of ®F as

= even even . T o] o £ T
B (7) i= ©F () + RN (1) - O, (55 ) + Ratd(n) - 53, (555)
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Since both ®f and the non-holomorphic piece has a theta decomposition, we define
the completions of h$\™ and h3.7 as the coefficients in the theta decomposition of OF.

More precisely,

~even/odd even/odd even/odd
hy (1) :=hyy, + RQM,n (7),

and therefore we also have

" (7) = By (7) - O3, (55 ) + B () - @588, (552). (3.3.13)
Proposition 3.3.8. The functions OF and O satisfy the same modular transfor-
mation law as ®. In particular, the functions iAL;}\Zn and lAz;;\lj are vector-valued non-
holomorphic modular forms of weight M—% for T'o(2), with multiplier system described
i Proposition 2.3.4.

Proof. Looking at the definition of ®” in (3.3.12), we consider the modular transfor-
mation property of each summand, omitting the constants. We show that each of them
satisfies the same modular transformation as ®. Indeed, using Proposition 3.3.5 and

Proposition 3.2.3, for each v € I'y(2), we have

[ e (14 (—1)2M z n n
Diyray () 2071 [ o= -
(n)+2j (77—) u e 9 fM CT+d+4M’u+4M7f}/T
1—(—1)2M z n+ T n+yT
Ty Gyttt T 7))

v(n j— —nMu? 1 + -1 2M
= X(V)(CT + d)MDL(n)+2J<T>au( )+2‘7 1 |:6 v (%

x ( ot — >+1_(_1)2Mf T Y
z u T z u T .
M AM’ T AM? 2 M AM T AM o

Since the automorphy factor is the same for each summand and equal to the automor-

phy factor of ®, we conclude that ® transforms as ®. Since & = & — & the same
~ ~even ~odd

statement is true for ®¥. The transformation properties of h;\e/[ and hg a follow from

3.3.13). using Proposition 2.3.4. Il
( , using Prop
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3.3.4 Shape of EQM

o~even

To conclude the proof of Theorem 3.1.1, we need to describe the shape of h,,, and
ﬁ;j;. In particular, we write their non-holomorphic pieces as described in the definition
of almost harmonic Maass forms (see Definition 2.2.6). This is just a consequence of
Corollary 3.2.5 and Proposition 3.3.5. We recall that each component of the vector-

valued function R;}’&%Odd(ﬂ is defined as

Diray(r) _ (0, ) T B (5 i)
= (un) +2j — 1\ 2mi RO VAPV

n—eu(n)
2

for a certain integer ¢. Using the two results cited above, we rewrite it as

n—u

I~

n)

- v ['g‘/f—b(") (Db(n) (T)) Rj (aL(n)*l |:R ’ (ﬁ + n Z):| )
(2mi) =1 (y(n) +25 — 1) U=z 7 MEN9 T8 2/ use)

=0
Let @g(T) be a mock theta function whose non holomorphic part is

oum 1 (Ronre (% + 4345 3)) (it exists by Corollary 2.3.11), and denote by Gy its holo-
morphic part. Moreover, define the vector-valued functions

n—u(n

Naog

2 4 Ly D7)

even =) v(n RJ 1 G

R e Lo T I A ,
"~ 0<0<2M
n—u(n) )
2 4j ,Cg\/[_ (DL(n) (7’)) i

odd u(n) y

= 0_ R e |

g s (2) =1 (y(n) + 25 — 1)! L(”)*a( 2041(T))
- 0<t<2M
n—u(n) )

; 2 Gew@e)

)= - Ry (Gor()

T — (2mi) = (u(n) +2j — DI T3 2(7) )
~ 0<t<2M
n—u(n) .

G y 4 Ly (D7) _

odd u(n)

- Ry () |

o S @m0t (in) +25 - 1) T 2641(7)

B 0<e<2M
where 04 = 1i(_41)2M Then by construction

-~even

__ 1.even even __ 1.even even Seven
h,y,, = hoy + Roy, = hoy — G + G
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To conclude it is enough to note that Q\e"en is a vector-valued almost harmonic Maass
form, and that h3};" — G°" is a vector-valued almost holomorphic modular form, and

in particular a vector-valued almost harmonic Maass form.

This concludes the proof of Theorem 3.1.1. As a direct consequence, in light of
Appendix A.2, one can derive the modularity of the Kac-Wakimoto characters, and

the shape of their completions.
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CHAPTER 4

Fourier coefficients of one variable meromorphic

Jacobi forms

4.1 Introduction

In Chapter 3, we saw how to describe the modularity properties of the Fourier coef-
ficients of the meromorphic Jacobi form & (see (3.1.3)). Recall that ® has positive
integral or half-integral index and has poles in the lattice Z7 + Z, which simplifies the
situation. Once again, we recall that in [15] the authors studied general positive index
meromorphic Jacobi forms with poles at arbitrary torsion points, but only considered
poles of order at most 2. The aim of this chapter is to generalize their result, and our
result of Chapter 3, to any meromorphic Jacobi form of positive, integral index. In
light of our description in Chapter 3 it is clear that everything can be easily generalized

to the half-integral case and to Jacobi forms with multipliers.

4.1.1 Statement of the theorem

Throughout this chapter, we assume ¢ to be a meromorphic Jacobi form with positive
integral index m and integral weight k for a congruence subgroup I' of SLy(Z), whose
poles lie in Q7 4+ Q. Following the notation of Chapter 3, we consider the vector-valued

function

hyy, (1) := (he(7)), (mod 2m) »
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where hy is the ¢-th canonical Fourier coefficient of ¢ (see (4.3.1)). We generalize the
results in [7] and [15] describing the modularity and the shape of the Fourier coefficients

of any positive index meromorphic Jacobi form.

Theorem 4.1.1. With the notation as above, the function hy,, is a vector-valued almost

mock modular form of weight k — % forT.

A more precise version of this theorem concerning the multiplier system occurring

in the modular transformation property of hs,, is given in Proposition 4.3.3.

4.1.2 Outline of Chapter 4

In Section 4.2, we describe some properties of the poles of a meromorphic Jacobi form.
Furthermore, we introduce and describe a real-analytic function which transforms as
a negative index Jacobi form. This function will play a central role in the proof of the

Theorem 4.1.1, which will be given in Section 4.3.

4.2 Preliminaries

The techniques used in this chapter are very similar to those of the previous one;
therefore, most of the preliminaries are already described in Section 3.2. In this more
general situation, we still need to describe the basic properties of the set of poles of ¢,
which were much simpler in the previous setting, and a non-holomorphic Jacobi form

7rmz2
of negative index, which will play the role of the function e+ in the case of ®.

4.2.1 The set of poles

For each fixed 7 € H we denote by S(™) the set of poles of z + ¢(z;7). Note that

this set has a nice symmetric shape. Indeed, from the elliptic transformation property
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of ¢ it follows that each pole in S() is equivalent to a pole in SéT) = S N P after
translating by Z7 + Z, where P := [0,1)7 + [0,1). Moreover, since P is bounded and

¢ is meromorphic, S is finite. We let also
ST i={(a,8) €Q*:ar+ B €57}, (4.2.1)

and for each s = (a, ) € S denote the associated pole by z,(7) = z, = ar+5 € S).
Finally we define SéT) by replacing S by SST) in (4.2.1).

For each v = (24) € SLy(Z) and for each s € SU7, one has the relation

_ 25(7)
%(7) = cr+d’
which immediately implies
ST = (er +d)SO (4.2.2)
and
Sty =80, (4.2.3)

For each Jacobi form of weight k& and index m on SLy(Z), and for each o and § € Q,
Theorem 1.3 of [16] implies that the function ¢™* ¢(at + §;7) is a modular form of

weight k on the finite index subgroup

(a—Da+cB, ba+(d-1)5 € Z,

T, 5:= chb € SLy(Z) :
B ( d) 2) m (—cf%+ba? + (d—a)aB) € Z

of SLy(Z). Therefore, if we define the subgroup I'y, of SLy(Z) by

Tyi= () Tap (4.2.4)
(a,8)eS”

which can be easily seen to be of finite index, then for all v € I',, and for each s € S,

z,(y7) € SOT). This fact, together with (4.2.3) and the modular law of ¢, implies that
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S is I'-invariant (under right multiplication). In fact, it is straightforward to prove

that for each v € Iy, the map

87— 80 — &7

s+ 57— sy (mod Z?)

is the identity map.

4.2.2 A non-holomorphic Jacobi form of negative index

In this subsection, we introduce a non-holomorphic Jacobi form F®), which plays a
central role for two reasons. Firstly, it relates the Laurent coefficients of a meromorphic
Jacobi form to certain almost holomorphic modular forms, whose non-holomorphic
parts can be given as a linear combination of the Laurent coefficients themselves.
Secondly, it allows us to relate the image of a certain class of functions under the
differential operator 0. to the image under the Maass raising operator. The latter

property was already proven in Proposition 3.2.4.

For s = (o, ) € Q*, uw € C, and 7 € H, we define

m7ru2

FO(uy7) = v e2rimlaft2au) g

Note that F® is holomorphic in « and non-holomorphic in 7.

mTru2

Remark. The function e™v—~ = F©9(y; 1) appears in Chapter 3. In fact, s represents

an element of S(()T), and the function ® studied in Chapter 3 has a unique pole at

0esi.

A straightforward computation gives the following transformation properties for

FG),

Lemma 4.2.1. Let s = (o, 3) € Q>. Then the function F®) satisfies the following

transformation laws:
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1. Forally = (2%) € SLy(2)

F(S) ( Tj_ d’ ,}/7—) = e_QFi#T-?—LCZ(ZS’Y"—u)QF(S'Y) (u7 7—) .
CT

2. Forall\, pe”z

F(s—i—(z\,u)) (u7 7_) _ eQﬂ'im(au—,@)\)qu2647rim)\(zs+u)F(s) (u7 7_).

Proof. We start by proving the modular property. Denoting as usual z4(7) = a7t + £,

we note that F®) can be rewritten as

FO(u;r) = o2zt (2 (1) +0)® —2s (1) Qut2s (7))

Using this notation and the fact that <4 =1 — 22¢ Tm (y7) =

el et and zg(y7) =

|CT+d

sy (T)
ct+d

we get

F(s) < Uu 777‘) _ eQTFi%W(( (77-)_5,_CT+d)2—zs(77)<cfﬁ+zs("/T)))

_ eQni% ((z57(7)+u)2 Z:ij — 257 (T) (2ut-25+ (’7’)))

_ - _cm 2
= € 27r7’c7'+d (ZS'Y+U) F(SV) (/u/’ 7—) ,

which proves the first claim.

The second claim follows by a trivial computation, namely

F(SH’\’“))(U; 7_) _ e"”‘Tuz627Tim((a+)\)(ﬂ+#)+2(a+)\)u) m(a+\)?

q

= F® (u; 7‘)eQmm((OCM-FB)\)-i-Qu/\-i-Q)\m—)qm)\2

— eZﬂim(aufﬁ/\)qm,\Q e47rim)\(zs+u) F(S) (u7 7_)’
which concludes the proof. O]

Returning to the general problem, let ¢ be a meromorphic Jacobi form, and denote

by z, = ar + (3 one of its poles, where s = (a,3) € Q2. We define the Laurent
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coefficients ﬁj(-s) of ¢ relative to zs by

e 1) (o
o(z 4 255 T) = Z g]mi)s +O(1) as z — 0 (4.2.5)

j=1

where ng denotes the order of the pole. Furthermore, we define the functions DJ(S) as

the Laurent coefficients of F)(z;7)@(z + 24;7) in the elliptic variable, namely

ns D(S)(T>

FO(z)p(z +257) =)

— (2miz)) O(1) asz—0. (4.2.6)

Proposition 4.2.2. With the notation as above, the following are true:

1. For each 1 < j < ng the function DJ@ is an almost holomorphic modular form of

weight k — j for I'y, (see (4.2.4)).

2. For each 1 < j < ng the holomorphic part of D](-S) s given by

ns—j

¢ e(maf) Z 5;‘23 (7)(4mima)>.
A=0

In particular, the functions ﬁj are quasimodular forms.

3. For each 1 < j < ng and for k € {1,2}, we have

D= () & (o).

m

Proof. We first prove the modularity of D](.S). From the definition of Jacobi forms and

from Lemma 4.2.1, it follows that for each v € I',,, we have

(s) u . u . _ kp(sy)(,,. .
F (c7‘+d’77> © (c7’+d —1—28(77'),77') (e + d)"F (u; T)p(u + 255 7).

Using the elliptic transformation properties of both F®) and ¢, we shift sy to s, using

the discussion in Subsection 4.2.1, say s = sy + (A, u1), for some (), ) € Z%, obtaining

(e + d)kF(SV) (u; T)p(u+ 25,5 7) = ezmm(o‘“_w)(cr + d)kF(S) (u; T)p(u + 24 7).
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Note that (A, ;1) depends on v and s. Since vy € I'y,, one can show that eZmimlan—PA) — 1
In particular, writing both the right and the left hand sides in terms of the Laurent

expansion, we obtain

(s) _ k—j y(s)
D; (y7) = (em + d) 'D;7(T),

which proves the modular property. It remains to prove that they can be written as
polynomials in % with weakly holomorphic coefficients. Clearly, each Dﬁs)(r) can be
written as a combinations of Laurent coefficients of p(u+ zy; 7) and F®) (u; 7) in u = 0.

More precisely, it is easy to see that

ns—j
() _ L =) AT ().
S g G (Do [F ()]

It is straightforward to show that O [F ) (u; T)}uzo equals g™ times a polynomial in

L with coefficients in C. Furthermore, its constant term is given by (4mwima)". From

(s)

these observations it follows that D; (7) is an almost holomorphic modular form, whose

holomorphic part is given by

ng—7J
¢ " e(map) Z D;‘i)rj (7)(4mima).
A=0

This proves parts 1 and 2. For the proof of part 3 we refer the reader to the proof of

Proposition 3.3.5, which is very similar. O

4.3 Proof of Theorem 4.1.1

4.3.1 Canonical Fourier coefficients and canonical decomposition

By assumption, the meromorphic Jacobi form ¢ has integral index and is 1-periodic in
both 7 and z, thus we do not need to split the Fourier coefficients into even and odd
pieces, as we did in the case of the Kac-Wakimoto characters generating function .

We can therefore use the original definition of canonical Fourier coefficient introduced
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by Dabholkar, Murthy, and Zagier, namely
— 4= +1
2
he(r) == ¢ %n / p(z7)¢ " dz, (4.3.1)

_ LT
2m

for each integer £. We also define the vector-valued function h,,,, whose components

are the canonical Fourier coefficients,

hy,, () == (hf(7)>oge<2m—1 .

Note that hy,, coincides with the vector-valued function h§>" introduced in (3.3.2).
Also, if the meromorphic Jacobi form has a pole on the path of integration, which by
assumption is the straight line, then we treat the integral as explained in Remark 1 of

Section 3.1.1.

Remark. The definition of canonical Fourier coefficient and the canonical splitting of a
meromorphic Jacobi form which we soon recall were introduced in [15] for any mero-
morphic Jacobi form of positive index. However, in that case the authors investigate
the modularity property of the Fourier coefficients restricting to the case of poles of

order at most 2.

We define the finite part o of ¢ as
0" (2:7) == Do (1) - O (25 7),
where ¥, = (9.0) ¢ (mod 2m) Was introduced in Subsection 2.3.1. Moreover, we give the
polar part o of ¢ as
e D(s

oF I

Zs ES(T) J=1

<27”> [fm(z,u+zs;7')

—E(S)(u; T) - On(z;7) ,

m
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) are the Laurent coefficients of @ at the pole z, € SéT), as de-

where the functions lAjJ(S
scribed in (4.2.5), while the vector-valued function E® (u; 1) 1= < Er(j,,)K(u; 7'))

is defined for s = («, 5) by

£ (mod 2m)

sgn(r—l—l)—sgn(r—{—Qma) 2
E((OHIB)) . = 2 Im T 27r7,r(u+ﬁ)'
)= Y : B

reZ
r=¢ (mod 2m)

Proposition 4.3.1. With the notation as above, we have ¢ = ¥ + oF.

Proof. The proof is very similar to that of Proposition 3.3.6 and to the original proof
of Bringmann-Folsom in [7]. In this more general situation, for non zero poles s, we
point out the appearance of the vector-valued function E,, and the importance of the

“symmetries” of the poles, described in Subsection 4.2.1.

Let 2 := At € C be fixed, where A € Q. Since both ¢ and " are meromorphic in
z, we assume without loss of generality that Im(z) = Im(2) = Av. By definition

plan) = mn =Y [ puner ws)
tez P(Z-557)

where for x, y € C P(z,y) is the parallelogram of vertices {z,y,x+1,y+1}. As before,
S(™) is the set of poles of z +— ¢ (z;7). Applying the Residue Theorem, we rewrite the

right hand side of (4.3.2) as

. . —2mil(u+tzs) 2milz
2mi Z Z E{;eg (p(u+z57)e ) X, (4.3.3)
teZ ZSES("—)PIP(AT,—%T)
Due to the elliptic transformation properties of o, each pole z, € SN P (Z, —%7) can

be written as z;, = w, + A7, for a certain w, € SéT) and A € Z. Then, for w, = a7 + 3

we rewrite the sum over the poles as

B sgn (A — A) —sgn (A + 55 + )
> =) 5 ‘

ZSGS(T)OP<AT,—ﬁT) wseS(()T) AezZ
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Note that if a = % for a certain integer ¢, then this function counts the pole with
multiplicity %, as we expect from the exceptional cases described in Remark 1. Using
the Laurent expansion of ¢ at w, and the elliptic transformation properties of ®, we
obtain that (4.3.3) equals

it sgn(A—A) —sgn (A + 55 +a
2622 Z Z 5 ( 2 )

tez weeS() AEZ

u=0

Ns N(S) j—1
% Z Dj (T) ﬁ ’ |:qu)\27€/\67271'1'(€+2”1)\)(quws)
2 G~ )i \2mi ’

where ng is the order of w,. Rearranging the order of summations and shifting the

variables as in the proof of Proposition 3.3.6, this last expression can be written as

o Z Z () (2%)1 [qu (2mAz)

Lestn i=1 XeZ

sgn (A + A) + sgn (£ + 2ma
XZ g ( ) 2g ( )qé)\e(g(z_u_ws)) ’

lez u=0

To conclude the proof, it is enough to show that the term in brackets is in fact

fm (zyu+ 25 7) — E(S)(u; T) - Oz 7).

m

This can be proven by splitting the summation on ¢ as

ngn()\—i—A) +sgn (0+ 1) +ngn(€—|—2ma) —sgn (0 + 1)
2 2 '
teZ ez
The first summation gives f,, (z,u + z; T) as a consequence of Proposition 3.2.7, while

a trivial computation shows that the second piece gives E®) (u + 2, 7) - 9 (2;7). O

We conclude this subsection by giving an alternative description of ¢! in terms of
the almost holomorphic modular forms DJ(-S) defined in (4.2.6). The proof is analogous
to that of Proposition 3.3.7, therefore we omit it. In what follows, F®) is the non-

holomorphic Jacobi form described in Subsection 4.2.2.
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Proposition 4.3.2. We have

0" (z7)
- Z i Dj@@-) & i=1 fm (zyu+ 255 7T) B Eg;i)(“ﬂ—) I (2;7)
= 2 (j—1)! \ 2ri FOlwr)  FOwr) 77
ZSESéT) j=1 u=0

4.3.2 Modular properties of h,,,

In order to understand the modular property of hs,,, we use the same method as in
the previous chapter. More precisely, we complete the polar and the finite parts of ¢,
and then we use the properties of the theta decomposition to derive the transformation

laws of ha,,.

We define the completion of ¢*

p Ng Ds j—1
7 :_sz—l (QM)

fm (z,u + zg; 7')]
=0

S(T) j=1 F(S)(u§ T)
= "(%7) = Run(7) - Om(2;7), (4.3.4)
where
s D s) i1 Er(n)e(u T) — 1ng(u + 25, 7)
Rm(T) = Z( ) ]Zl ] — 1 (27_”) F(S)(U, 7-)
S T

0<e<2m
Note that the second equality in (4.3.4) is a consequence of (2.3.5). Similarly, we define

the completion p" of o’
@F(Z; T) = <pF(z; T)+ Rpn(T) - Op(z;7) = ﬁQm(T> (2 7),

where we let

~

hoy, (7) 1= hop(7) + R (7).
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Proposition 4.3.3. The functions ¢ and o satisfy the same transformation proper-
ties as . In particular, the function IALZm 15 a vector-valued non-holomorphic modular

form of weight k — % for T' with multiplier system described in Proposition 2.35.4.

Proof. The elliptic transformation property follows from the analogous transformation
for ]?m(z, u + zs; 7). In order to show the modular property, for all v = (‘; 2) el we
consider
n s ) — u+2s (T) .
P Z z DJ( )(’)/T) aﬁ -1 fm <07+d’ CT-‘:d ’fYT>
YT | = — ; :
v\ +d v (7—D! \ 2mi F() (m?’YT)

z5(yr)esi™ I=1 u=0

Using Lemma 4.2.1, Proposition 4.2.2, and the transformation properties of fm(z, u+

2s;T) in Proposition 2.3.7, we can write it as

. [ cmz? - D; 57) -1
— d
(er +d) e(m’—i—d) Z Z (7 — 1! (2#2)

yes(m =1

fm(z,u + 2503 T)
FGM) (u;T) . '

Note that the sum over z,(yr) € S is the same as the sum over z,(7) € S{” by

virtue of (4.2.2).

Since ¢ and @7 satisfy the same transformation properties, the same must be true
for 3 = ¢ — 3F. Finally, the modularity of ha,, follows since its components are the

theta-coefficients of $*', as we showed in Proposition 2.3.4. O]

4.3.3 Shape of Hm

To conclude the proof of Theorem 4.1.1, we need to show that ﬁ2m has the shape of
an almost harmonic Maass form. However, this is just an immediate consequence of

Proposition 4.3.2 and Corollary 3.2.5. More precisely, each component of R,, can be
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written as

1
ES?Z(u; T) — §Rm7€(“ + Zg; 7')} ) )
u=0

L), o

2i

Note that Corollary 3.2.5 deals with the function R,,,. It is easy to verify that the
heat operator annihilates E,,, as well, therefore, by Proposition 3.2.4, the results in
Corollary 3.2.5 holds for Em,g—%Rm ¢. By Corollary 2.3.11, we see that for . € {2, 2} the

Oy

1
function 22 [R,, o(u + 24 7)],_, is the non-holomorphic part of a harmonic Maass

form @f;:e, whose holomorphic part is denoted by G,”,. Defining

Q0L (D, (7))
o= R (G (r) ,
zsgf) j=0 (2] 4+t — %)l ( 0 ) o
O mod 2m
o[ ),
O\ & S ST Ee) |
zses(()ﬂ j=0 5 .

ns—%—L

2

where ng(1) := [ }, we have
ﬁ2m2h2m+Rm:h2m+é\%+§% —g% —Q%

By construction G1 and Gs are vector-valued almost harmonic Maass forms, while
2 2
hy,,—G1 —Gs is an almost holomorphic modular form, in particular an almost harmonic
2 2

Maass form.
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CHAPTER 5

Multivariable Kac-Wakimoto characters

5.1 Introduction

In the previous chapters we described the shape and the modularity of the single-
variable Kac-Wakimoto characters, and more generally of the Fourier coefficients of
2-variable Jacobi forms of positive index. However, Kac-Wakimoto characters as inves-
tigated by Bringmann, Folsom, and Ono [7, 11, 17], and as we considered in Chapter

3, are specializations of more general characters given in [24] as

~ I (1= ™) (16l .

N

) )
We can easily see that specializing all the &. = 1 we get (3.1.1).

In this chapter, we show that considering the additional variables in (5.1.1) im-
poses extra shape which gives a cleaner picture for the specialized character as these
are specializations of mixed H-harmonic Maass-Jacobi forms. This construction, com-
bined with the techniques described in Chapter 4, allows to describe the shape and

the modularity of the Fourier coefficients of multivariable meromorphic Jacobi forms

(Fourier coefficients with respect to a single fixed elliptic variable).
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5.1.1 Statement of the results

Let m > n > 0 be positive even integers, and M := 7. Let (my,--- ,m,) € N° and
(n1,--+,n¢) € N"such that 3%, m; = m and Z;Zl nj = n. Moreover, we define the
matrix
2M b"
v I/
where

b = (bsabt) = (mb e, Mg, Mgy 7nt)T7

L : = diag (b,, —b,) .

In this chapter, we consider the function ®: C*™'*1 x H — C defined by

| | (Z + u, + %;T)mr

r=1

[Tjma 9 (2 = wy; 7)™

where 9 is the classical Jacobi theta function (2.3.1). Here, we use the notation u :=

O(z,u;7) = (5.1.2)

(uy, -+ ,us,wy,---wy) for the elliptic variables.

The function ® is clearly a multivariable meromorphic Jacobi form, whose trans-
formation properties will be explicitly described in Proposition 5.2.2.
The aim of this chapter is to describe the shape and the modularity properties

of the canonical Fourier coefficient h of ® with respect to the elliptic variable z (see

(5.3.2) for the definition).

Theorem 5.1.1. The canonical Fourier coefficient h: C*t* x H — C2M s the holo-
morphic part of a multivariable almost harmonic Maass-Jacobi form of weight M — %,

index L* (see (5.2.6)) for I'g(2), and with multiplier system described in Proposition
2.3.4.

Considering the special case of ® when b = (1,---,1) and using Jacobi’s triple
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product identity (see Proposition 2.3.2), we can rewrite chF' as

chF = efo(—1)mi¢M (H 6”“”) (H 6““”) ¢ ()Mo <z + %, u; 7') :
r=1 j=1

Therefore, as a consequence of Theorem 5.1.1, we can deduce the shape of the multi-

variable Kac-Wakimoto characters.

Corollary 5.1.2. The multivariable Kac-Wakimoto characters chFy are the holomor-

phic parts of mixed H-harmonic Maass-Jacobi form.

5.1.2 Outline of Chapter 5

In Section 5.2, we generalize certain objects and tools used in the previous chapters
to the multivariable setting. This will be the necessary preliminaries for the proof of

Theorem 5.1.1 in Section 5.3.

5.2 Preliminaries

Most of the preliminary results needed in this chapter have already been described
in the previous chapters. In this section, we generalize the function F(*) described in
Subsection 4.2.2 to a multivariable setting.

5.2.1 An elementary non-holomorphic multivariable Jacobi form

Let F': C?2 x H — C be the function defined by

F(z,w;T) := p2miM L : (5.2.1)
and G its normalization
F (z,w;T)
Glzw:7) = =W 5.2.2
(cwir) = F e (522)
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If z =0, we sometimes use the notation F'(w;7) := F (0,w; 7). This function is a non-

holomorphic Jacobi form of index — (4 %) and weight 0, as we see in the following

lemma.

Lemma 5.2.1. The function G satisfies the following transformation properties:

1. For all \, p € Z, we have

G(z,w 4+ M + p; 7) = ™ M¥EG (2 w; 7).

2. For ally = (Y) € SLy(Z), we have

z w - Mc 2
G . — 727”c-r+d (z +2zw)G . )
(CT‘Fd’CT‘Fd?VT) € (Z7wa7—)

Proof. The proof is just a direct computation and follows immediately from the fol-

lowing transformation properties of F"

1. For all A\, p € Z, we have

Flz,w+ M+ ;1) = AriM (VT2 w))F(z,w;T).

2. For all v = (%) € SLy(Z), we have

p w . c 2 c =2
F . — —QWZM(W(Z'FU}) +c?+dw )F S .
(CT+d’CT+d’7T> ‘ )

To prove the first of these two claims we note that by definition

2miM (—(”“’*mi(f*ﬂ)z )

T—T

Flzyzw+ AT+ ;1) =e€

2mM (4 w—)2 422 (r—7)2 4 2(z4w—w) A (1 — 7))

T—T

271'1M(<Z+w w)? A2 (1—7)4+2(z+w— w))\)

2miM (N2 (T =)+ 2 (- w)’\)F(z,w;T).
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For the second claim, by definition we have

z+w w 2
& w QWZ‘MM 2m<M((z+w)(c?+g)—ﬁ(crtd))2
o T ) =€ T =e (cr+d(cT+d)(r—7) | 5.2.3
(CT +d cr+d 7 ) ( )
Using
cT +d ¢
=1+(—-7 ,
T +d ( )cF +d
T +d c
=1—-(r—7)——,
cT + d ( )C’T + d

the right-hand side of (5.2.3) equals

62m‘M(ﬁ ((z+w)? (1= (7=7) 255 )+ (1+(r—7) =55 ) —2(+w)w) )

2m’M(_C(Z+w)2 I i

—e ct4d cr+d)F(2’w;7_).

]

As in the one-variable case, the function G allows to construct the completion of
the Laurent coefficients of ® with respect to z at each pole, considering (u; 7) as fixed.

Knowing that ¥(z; 7) has simple poles in z at Z7 + Z, it follows that ® has ¢ poles in

z € {wy,--- ,w:}. We denote the Laurent expansion of ® as z — w; by
. o~ Day(wi7)

Analogously, we define the Laurent expansion of G®, which clearly has the same poles,

namely
n;

Gle.w;T)(e +wy,u;T) = )

Dy ;(u;7)
————= 4 0(1 e — 0.
(2mie)* +00)
Here, we have used a new elliptic variable w which can be expressed in terms of u,
namely,

: 1
w=w b-u+ w;. (5.2.5)

T oM
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Remark 2. Note that the new elliptic variable w is just a linear combination of the
elliptic variables u. In particular, if we look at F' as a function of u, applying the

transformation u+ A7+ p is equivalent to applying w—+ A7+ p, with A := ﬁb A+ Aot
and f1:= 57b - o+ figy .

As mentioned before, the function ® is a multivariable meromorphic Jacobi form,

whose transformation properties are described in the following proposition.

Proposition 5.2.2. The function ®, defined in (5.1.2), satisfies the following trans-

formation properties:
1. For all (A, A) € Z57Y and (p, ) € Z°T ) we have

o (z FAT A+ g u+ AT+ .U;T) _ (_1)b~u+(0,bt)->\q—%L[(A,)\)}6—27ri(z,u)TL()\,)\)

X D (z,u;7).
2. For ally = (2Y) € To(2), we have
Y . A1) = x(9)(er + d)M e FrllEYG (4w 7)
ct+d et +d A

where the character x(y) was defined in Proposition 3.3.1.

Proof. We first prove the elliptic transformation law. If (A\,A) € Z*™! and (u, p) €
Z5tH1 then

CIB Y Gu 3 QAT+ ()i
[Ty 9 (2= wy 4+ = A )T + (= frogy); 7)™

O(z+ AT+ py,u+ AT+ @ 7)

while, using the transformation properties of ¥, equals

e, (1) _OBA? o 17204 )
( LM g G o ami( b 1/2) O T)>

r=1

T O(z,u;7).

nj
Ht ((_1)>\+>\s+j+u+us+jq 2 3—27Fi(2—wj)()\—)\s+j))

j=1

78



Since m and n are even by assumption, the factor in parentheses equals

(_1)Zr e+ nj(/\s+j+us+j)q—%(zr mr (A Ar)2 =50 nj(A=As5)?) o278 (— 32, mn (aur) +32 5 mj (z—wy) )

)

which, by definition of L, equals

(_ 1>b~u+(0,bt)->\q—%L[(A,A)} e—27rz'(z,u)TL()\,)\) '

We now prove the modular transformation property. By the definition of & and

using the modularity of 1}, we have

(2 ) et s

) 77 zZ—W j
ct+d er+d szlﬁ(aﬂflﬁT) I

If v € I'g(2), then d — 1 is even, and we can rewrite the right-hand side as

T ( (7)3(— )i(CT—I—d)ze%cHd)(HW)19(z+ur+%;7'))mr

nj

( (et 4+ d) Femertn )y (z —wy; T >)

= P ()3 (1) (o7 + d) T e T s (S me G2 m o)) g gy,
Similarly as before, by the definition of L we have

ooy (S mr(etur =5 my(a—w;)?) _ e Elew)]
O

The transformation properties of ® dictate “almost” modular and elliptic transfor-
mation properties for its Laurent coefficients. The following proposition describes the
transformation properties of l~)>\7j and D, ;. In order to give the statement, we define
the matrix

1
L*:=1L— mbbT. (5.2.6)

Proposition 5.2.3. For each j € {1,--- ,t} and each X\ € {1,--- .n;}, the function
D, j is an almost holomorphic Jacobi form of weight M — \. More precisely it satisfies

the following transformation properties:
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1. For all A\, p € Z°%" such that 71:b- X and 51;b- p € Z, we have
Dy (u+ A7+ p;7) = (_1)b-u+(0,bt)-,\e—QTriM(/\ZT—l—Q)\w)qféL*[)\}efwriuTL*)\
X D, (u;7),
where X\ and p are defined in Remark 2.

2. For ally = (¢Y) € SLy(Z), we have

D, (mi df”) = x(y)(er + dM T emEra M 2mM et D ()

where x 1s as in Proposition 3.3.1.

Proof. We start by proving the modular property. We recall that by definition w =
w;j + 717b - u and define z := ¢ + w. With this notation, we see that the functions D, ;

are the Laurent coefficients of

1
G(z —w,w;7)P (z - mb u, u; 7') : (5.2.7)

in z = w. From the transformation properties of G and ¢ (see Lemma 5.2.1 and

Proposition 5.2.2), the function in (5.2.7) has automorphy factor
N e R )

It is a standard fact that

[ sveua)] sl £ [(-phmua)]|

Therefore, the automorphy factor can be written as

x()(er + d)Mera (et i),

where in the last step we have used the identity

3 K—ﬁb u uﬂ — " [ul.
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As a consequence, we obtain

. Dy, (ﬁ; 77') (er + d)A
Z +(27ri5))‘ +00)
A—1

T

= X()(er + et ) S

Dy ;(u;1)
(2mie)*

+0(1).

Comparing the coefficient of €™ on both the right- and the left-hand sides, we obtain

the result.

For the elliptic property, the computation is very similar. Shifting u — u+ A7+ pu,
(i.e., shifting w and z by AT 4+ p, where A and p are as in the hypothesis) in (5.2.7),
we obtain the elliptic factor

(- 1)b-u+(0,bt)~>\ L[] 2 (2M,\(z—w)—(,\—ﬁb.)\,A)TL(z—ﬁb-u,u)) . (5.2.8)

q

The second term in the exponent can be easily written as

1 T
(A, 0)" L(2,0) + <—mb A A) L(0,u) = 2M Xz + AT L*u,

where in the last equality we have used

1 T
(—mb : A, A) L (O, 11) = )\TL*U.
Therefore, the entire elliptic factor in (5.2.8) turns out to be

(- 1)b-u+(0,bt)->\q7Q(()\,,\))e27ri<—2M/\w+>\TL*u) '

To conclude, it is enough to show that

q—%L[(A,)\)] _ q—M)\Q—%L* (]

This follows easily, arguing as in the proof of the modularity property.

Finally, in order to show that the functions D, ; are almost holomorphic Jacobi

forms, it is enough to note that

k! \ 271

D, j(u;7) := Z Dy j(w; T)l ( O ) G (e,w;T)]._p - (5.2.9)

O
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5.3 Proof of Theorem 5.1.1

5.3.1 Canonical Fourier coefficients and canonical decomposition

In this subsection we generalize the canonical decomposition given by Dabholkar,
Murthy, and Zagier [15] to the multivariable case. Here we consider the Fourier coeffi-

cients with respect to a single elliptic variable z. For a fixed w € C, we define

2

w—+1
B (us7) = g e / D (2, w5 m)e 2Tz, (5.3.1)

The path of integration is the straight line from w to w + 1. If the there is a pole of
® on it, we adopt the same modifications as in Remark 1. We define the ¢th canonical

Fourier coefficient of ® as
he(u;7) = hg_m)(u; 7). (5.3.2)

With this choice, using the elliptic transformation property of & with respect to z, it
is easy to show that

he(w; T) = hgpopn (s 7).

In particular, we can define the vector-valued function h := (), (y0q 2ns)- We define

the finite part of ® by the theta decomposition

1
OF(z,u;7) := h(u;7) - Iy (z+ mb u; 7') .

Moreover, we define the polar part of ® as

D u;7) (0 Al b-u b-u
P . )\J 3
2z wT) = ZZ 1)! <2_7rz) {fM<Z oM’ 2M +wﬂ+”)

j=1 A=1

b b-u
_ Z EM((ZM +wj+€T>I9Mg(Z—|— A ) ,

¢ (mod 2M)
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where the polynomial E), is given by

1 1 ) ‘
Ene(u; 1) = Z 5 <sgn (/\ + 5) —sgn (A + QMIm(U))) quf‘wef%rz)\u'
A=t ?rigd 2M)

(5.3.3)
The functions ® and ® provide the canonical decomposition of ®, as shown in the

following proposition.

Proposition 5.3.1. With the notation as above, we have ® = & + &L,

Proof. We fix apoint W := X7+Y (X, Y € R), and assume Im(z) = Xv. Furthermore,
call P the parallelogram of vertices W, W + 1, _2% + 1, and —;—JQ. We have already
seen that the poles of ® with respect to z are in w; modulo Z7+Z, for all j € {1,--- ,t}.
A pole is inside P if and only if

1
~5a7? <Im(w; + pr) < ImW = X,

for some p € Z. This is equivalent to requiring

B 12 < Im(w;)
2M — v

+pu< X

As usual, the function that describes whether a pole is inside P or not is

S(u, ) ::%(sgn (/L—F%JrM) — sgn (quM—X)).

From the Residue Theorem it follows that

Oz, 1) — O (2w 7) =200 Y D D " S(ul) Res  (B(w,uy7)e ™) (!

W=w,;+ut
¢cZ j=1 pez ’

t
= 271 Z Z Z S(,u, f) 1:5{:608 ((I)(g -+ wj + UT, 7.)6727ri€(6+wj+,u7')) Cé.

ez j=1 pez

Using the elliptic transformation property of ®, one has

Qe +wj+pr,u;T) = q_M“2e_%i“b'“e_‘l“M“(ij)(I)(5 + wj,w; 7).

83



Therefore, ® — & can be rewritten as

t
i Z Z Z S(u, g)Céqup,zf,u€€727riub-u6727r’i(€+2M,u,)wj

€z j=1 pez

X R_eos (P(e +wj, 7)6_27”5(“2]‘4#)) .

Shifting the variables as y — —pu and then ¢ — ¢ 4+ 2M p1, we obtain

O (z,u;7) = —27T'LZZqM“ CZM“e2m“b“ZS —u, 0+ 2Mp)q et

j=1 pez lez

X e~ 2T Reg (<I>(6 + wj, u; 7')6_2md) . (5.34)

e=0

Note that the residue can be written as

Res (®(8—|—w4 u;7) 27”58 i DT u7T 0.\ [6727”&]
e=0 7 “— 2mi(r 2mi e=0"

In particular, ® — ®f equals

8 (4 [
7“ — T

j=1 r=1 ueZ

% Z S(—p, €+ 2M,u)q“€<£€—27rié(wj+s)] '
e=0

lezZ
A standard computation allows us to write the expression in brackets as an Appell
Lerch sum and an error term, which is holomorphic. More precisely, as claimed, we
can express the difference ® — & as

t n; =X r—1
ZZ D, ;(a;7) [ 0- 1
- (7“%1)!)<27m'> [fM (2+2_J\4b " IWb.u+wj+€;T)

j=1 r=1

1
- Z EM’Z(QMb u+ w; +¢; 7)19]\/[4( +Wb llT) . (535)

£ (mod 2M) =0

]
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As in the single variable case, the polar part of ® can be written in a slightly
different way, where the Laurent coefficients 15ij are replaced by their completions

D, ;. We describe this phenomenon in the following proposition.

Proposition 5.3.2. With the notation as above, the polar part of ® can be written as

oF Z’U,T ZzD)\]'U,T <a€>>\—1 [fM(Z—i_ﬁb'u.,w(j)—i‘é‘;T)

pariws I\ 2mi G (g, w); 1)

Ene (w9 +&,7) Orre (2 + 5570w 7)
> G (e, wl);7)

¢ (mod 2M) =0

Here we omit the proof since it can be derive from the proof of Proposition 3.3.7.

5.3.2 The modular properties of h

As in the single variable case, the finite part and the polar part of a multivariable
meromorphic Jacobi form can be completed to functions which transform as Jacobi
forms, and this property will be inherited by the canonical Fourier coefficients, i.e., the

components of h. To show this, we need the non-holomorphic vector-valued function

ZZD”‘” o
! 2mi ’
=0/ ¢ (mod 2M)

7j=1 A=1
where EMI = Eng — %RM,Z and w") as in (5.2.5). We define the completion P of

EM,g (w(j) + g, 7')
G (g, w\;T)

O as
~ 1
O (z,u;7) = ®P(2,u;7) — R(u;7) - Yy (z—l— Wb u; 7') :

and the completion OF of ®F as
~ 1
OF(z,u;7) = ®F (2, w;7) + R(w;7) - Oy (z + mb : u;T) .

In the following proposition we show that these two functions are multivariable non-

holomorphic Jacobi forms.
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Proposition 5.3.3. The functions ®F and O satisfy the same transformation prop-

erties as P.

Proof. As we shall see, each summand of the double summation defining o gives
the same automorphy factor, therefore we can reduce to showing the transformation

properties of

Dyy(wr) (9N [ Far (2 + gb - w w4 e57)
(r—1)! \2mi G (e, wd; 1)

for fixed r and j.

We start by showing the modular transformation property. Let v = (24) € SLy(Z).

For a function f, let Aut(f) be the automorphy factor of f. Therefore, since

P . TJ c7'+d’77—)
¢ (m—l—d CT+d7/YT>_ ZZ (r—1)!

7j=1 r=1

—1 7 1 bu wWie, >
(a”jd) fu <CT+d M ertd’ crtd 0 1T (5.3.6)

27 e wl@) | ’
G crt+d’? et+d? T =0

Aut(Dy. 5 )Aut(f]yj)
Aut(G)

our goal is to show that equals the automorphy factor of ®. Using

Proposition 5.2.3 we have that

Mc

Aut (DT,’ ) X(’Y)(CT—‘—CZ)M r 27rz<2”c+dL*[ ]+CT+d 2)7

with w as in (5.2.5). From the transformation properties of fM, we know that
st () = er-+ )50 7)
Finally, Lemma 5.2.1 implies that

Aut (G) — e 2 42ew)
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Note that the contribution of € in Aut (G) cancels the contribution of € in Aut (fM)

Combining the three automorphy factors, we get

Aut (D,;) Aut (fM) ' Ba)*
: _ M—r1, 25 (Sroul+M (=+52))
Aut (G) x(v)(er + d) € ' (5:3.7)

Using L* = L— % and the block-representation of L, one can trivially see that (5.3.7)

equals
Aut (D, ;) Aut <]?M)
Aut (G)
As a consequence, each summand on the right-hand-side of (5.3.6) becomes

. : = \N""'[T bu () | .

ric D, i(u;r) (0 fM(Z—l— wY) + ¢ 7')
d M—r+1 c7_erL[(z,u)] 7,7\ cr+d 2M : )

x()er +d) c (r—1)! 27 G (e,w); 1)

— X(7) (e 4 d)M T+ gzria W],

e=0

Changing the variable —=— — ¢, we obtain

r—1 [ 7 . .
mic L[(z,u)]M ( 0: > [fM (z + '20—]\‘417 w) 4 ¢; 7_)

M d —
X(W)(CT + d) gert (’F _ 1)| 21 G (57 w(])j 7‘)

which equals the automorphy factor of ®.

Now we show the elliptic transformation property. Shifting the elliptic variable u
by AT 4+ p (where A = ()\,),) is equivalent of shifting w = w") by A*7 + p*, where
A= ﬁb “A+ Aoy and pt = ﬁb S st

Again, we compute each summand in the definition of oF separately. We need to

calculate

ap(Z—i-)\T,u—l—)\T—l—u;T):—

J
P (428 L AN+ 22) 7y (it b ), w® 4 N7t e 7)
w

x 0r .
c G (g, w9 + N1 + p*; 7)

e=0
For a function f we denote by ElI(f) its elliptic factor. We start with Ell (D, ;), which

by Proposition 5.2.3 equals

Ell(D,;) = (_1)b.u+(07bt)~)\q—M()\*)2—%L*[)\]62m'(—2M)\*w—uTL*A).
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From the elliptic transformation properties of fM, we have that its elliptic factor equals
Ell (fM) _ qM((A*)Q*(AJr%)z) 2mi(2MN (wte) —2M (A-53) (=+ 5 ) )
Finally, the elliptic factor of G is
Ell(G) =e(2M\¢) .

Therefore, a direct computation gives that

Ell (D, ) Ell (fM)

_ _1)b-,u+(0,bt)~)\qf%L*[A]*M()Hr%)2627ri(7uTL*A72M(A+%) (=+5%))
Ell (G)

Using L* = L— % and the block-definition of L, a trivial computation gives

Ell (D, ) Ell (fM>

_ (1 )P0 A~ L LION)] ~2mi(zm) TLOAN)

which equals the elliptic factor of ®. O

We note that both ® and R - 19, can be written as a theta decomposition. This

implies that also ®7F has this property, namely

~ ~ 1
®F(z,u;7) = h(u;7) - 9 (Z—Fmb'uﬂ'),

where
fl(u; 7):=h(u;7) + R(u; 1)

is the completion of h. The following result is direct consequence of Proposition 2.3.4.

Corollary 5.3.4. The vector-valued function h transforms as a Jacobi form of weight

M — % and index L* for T'o(2), with multiplier system as in Proposition 2.3.4.
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5.3.3 Action of certain operators

A special property of the non-holomorphic functions EMJ is that they are non-trivially
annihilated by several differential operators which play a fundamental role in the theory
of Jacobi forms. This was shown in Proposition 2.3.8, where the result was stated in

terms of Ry .. The fact that the same result holds for EM,K is easy to check.

We proceed by describing the action of the lowering operator on the completed
Laurent coefficients D, ;, and the action of the raising operator on the non-holomorphic
functions Rpre. This will be used to describe the shape of the vector-valued non-

holomorphic Jacobi form h.

Proposition 5.3.5. For all A € {1,--- ,n;}, we have

M
X_(Dy(w)) = 4—D,\+27j(u; 7).
T
In particular, for A € {1,2} andn € N
M n
X0 Dy = (41 ) D7),

In order to prove Proposition 5.3.5, we need the following result.

Lemma 5.3.6. For each positive integer r > 1, we have

r(r—1)

X LG e mg) = O

Moreover, for r € {0,1}, we have
X_ (3G (e, ws7)]._g) = 0. (5:38)

Proof. For r € {0,1}, the proof is straightforward. It is enough to check that 1 and

W= are annihilated by X_.

T—T
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For r = 2 we proceed by induction. We denote by G := &7 [G (g, w; 7)]._,. First,

we note that for all » > 1, one has

G" =G OGW 4 (r —1)— M

(T —T)

G2, (5.3.9)

Let r = 2. Then applying the lowering operator and using (5.3.8) yields

M

M
X -
= + o

X_(GP)=X_(GW)GY + —

(T —T)

(G(O)) G

Using (5.3.8), we prove the claim.

Assume that the statement is true for all 0 < s < r. Applying the lowering operator

and using (5.3.8) yields

M M
— —G=2, (5.3.10)
mi(T —7T)

X_(GM) =x_(G" ) GW+(r-1) o

X_ (G2 +(r-1)

By induction, we may rewrite the right-hand side of (5.3.10) as

M(r—1)(r—2) (r—3) (1) (r—1)M*(r —2)(r —3) M
r G('r 4) -1 _G(T 2)
A GrUET Am2i(T —T) +r )271'
_ M(T — 1)(7’ — 2) G(T—S)G(l) + M(T — 3) G(r—4) + M(T — 1) G(T‘—Z)‘
47 im(T —7T) 27
Using (5.3.9), this equals
M(T — 1)(T — 2) G(r—2) + M(T — 1)G(r—2) _ T‘(’I" — 1)MG(T'—2)
47 2T 4
This conclude the inductive step. O

Proof of Proposition 5.3.5. We only prove the first claim. The second statement fol-
lows trivially. Using (5.2.9) and the fact that 15,\7]- are holomorphic functions, we can

write

X (D7) = gﬁxwg(u; 126 ((5) Gemnl).

90



By Lemma 5.3.6 this equals

E (s T) ! =) : |G (g, w;T)]
D r : S W; -
- ot ( —2)I \ 27 e=0
Changing r into r + 2 and applying again (5.2.9), we conclude the proof. O

To conclude this subsection, we show how to use the function F' defined in (5.2.1)
to relate the action of the differential operator 0. to the action of the raising operator

X_kgM. This extends previous works of Bringmann and Folsom [7].

Proposition 5.3.7. For all A\ € Ny, we have

Fw; 7)02 —ﬁﬁjﬂ; )] = (—amit ) (XY (B (i)
P (w; )02+ _Eg(flgw;)] = i (—ama) (XE7) T (VT (R () ).

In order to prove Proposition 5.3.7, we need several identities.

Lemma 5.3.8. Let f(w;7) € C*°(C x H). Then, the following are true:

1 XERRM () = XM (f) =

777

2. XEPTM (@, [f]) = 0 | XM = 250, (] - STM 25, |

NPT @) - 23 [ X)) = 16mM st ]~ e

(T—7)2

Proof. Part 1 follows directly by definition of Xﬁ’_M. We now prove part 2. By

definition, we have

X572 (9, [f]) = 20 <8T6w )+ =2l + (—zmM (‘j:f) + ffi) D, [f])
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and

w—w 1

0, [X5 ()] = 2 (afaw A+ T+ Lo,

T—T T—T

+ (—zm'M (lj :f) + - ﬁ ?> 0w [f] = 47?1'M%f) .

Therefore, as claimed,

XE2 (00 1f]) = 0 [XE ()] = 2 ( SOl M ) |

We now prove part 3. By definition,

X5 (82 [f]) = 2i (afazv S+ == fai[f] + (—%ZM (“; = f) + ffi) Oull ]>

and
a;, [X5(f)] = 2 (8783} ]+ == E_Uai[f] - —0a1f]
T—T T—T
_ w—w\> k W —w 4miM

Taking the difference

w—w SmM
—_Qaw[f]—(T_—?)Qf?

(=)

X_]T_+2,—M (85) [f]) . 82

w

[X_’ﬁ’_M( f)] = —167M
we conclude the proof. O

Before proving Proposition 5.3.7, we need the following proposition.

Proposition 5.3.9. For any f(w;7) € C*°(C x H), one has

XEM (s (w;T))] _ kM <F(w37)331 EW?T)D . (5.3.11)

F(w; )05 Flw )
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Proof. We proceed by comparing the left and the right-hand sides of (5.3.11). In order

to simplify the notation, for A € N, we define

Fr= Falw; ) = F(uw; 7)) {F(;;ﬂ} ,
O Lf] = 0 [f (w; 7).
The left-hand side of (5.3.11) explicitly becomes
XM+ 2m0, [ XE()| + 02 [xEM)]. (5.3.12)
Similarly, the right-hand side may be written as
XM Fof + 2F10, [f] + 02 [f)) - (5.3.13)
Using the general fact that for two functions g and h,

XETM(gh) = gX 7Y (R) + X2 (g)h,

and noting that
X370 (‘Fl) =0,

gives that (5.3.13) can be written as
F XM + X0(Fo) f 4+ 2R X2 M0, () + XY (A2 (). (5.3.14)

Subtracting (5.3.12) from (5.3.13) gives that the difference between the right and the
left-hand side of (5.3.11) equals

Fa (XE2V (1) = X)) + X0 () f

+ 27 (XY (@ 1)) = 00 [ XETV()] ) + XEPM (@2 11)) 02 [ xEV()]
(5.3.15)
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Using Lemma 5.3.8, we can write (5.3.15) as

. ) .
Faeee f + X3 (F) ] + 27, (ﬁaw - 8wM%f>
- 16#M%8w ] — % . (5.3.16)

To conclude the proof, it is enough to show that (5.3.16) equals 0. This can be done

with a direct computation using

w—w

Fi=—dmiM——, (5.3.17)
—w)? AdmiM
Ryt Gl 3.1
St M
X (F) = - .
+ ( 2) (7_ _?)2
O

We now have all the ingredients needed to prove Proposition 5.3.7.

Proof of Proposition 5.3.7. The A = 0 case is trivial for both of the statements. For
A > 1 we proceed by induction. To simplify the notation, throughout the proof, we
omit the variables when writing the functions. We start by proving the first claim. For

A =1, the left-hand side equals

52 [EW] + 26, [EM,@} Fé, [%] Rar Fo2 [H , (5.3.19)

where we have used the notation d,, := 2=. Using (5.3.17), (5.3.18), and the identity

2 [Rase e +wim)] = =M, [Ruse wir)]

e=0

which follows by Proposition 2.3.8, equation (5.3.19) equals

oM —w —w)? 1 ~
—— |0, + v l_an — 27rz'M(w w)2 + — | R
) T—T (r—7) 2(r —7) ’
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By definition of X, we prove the case A = 1.

Assume now that the statement is true for A — 1. Then

po [ = () o [ (327 ()]

Applying Proposition 5.3.9 A times yields

() s e o] - (2 (05 o),

as claimed.

Now we prove the second statement. For A = 1, we have

et (75) =g (1] () -2 [ s ()
g i (] )

where we have used the A = 0 case. Using (5.3.17) and (5.3.18), we write this as

1 <(Z_M_ T ol ?2 _ 4M‘i - Z@w + 52) <Y+ (RM4>> (5.3.20)

2 \ (T —7)

A direct computation gives

02 Ve (Bare) | = =m0, Vi (Rare)| + 2 (Fare) .

w(r —7)

Thus, we rewrite (5.3.20) as

U (=T + 20 (v ()

E
which by definition of X}’ M concludes the proof for A = 1. Assume that the statement

is true for A — 1, then

e [ <5 (5) [ () (s ()]
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Applying Proposition 5.3.9 A\ times, we rewrite this as

1 /(M\M! 319 M\ M1 9
—5 (?> (X ) (F(S {F}q (RW)D (5.3.21)
By induction, firstly using the A = 0 case, and then the A = 1 case, we have
1 1~ M _3_um ~
Fo? ( = ~ (Rw, 4)) — —2nFs {FRW] = = X3 (Ve (Rare)) -
Thus, as claimed, (5.3.21) equals

() () (5 () ).

—+ vlw

5.3.4 Shape of h

To conclude the proof of Theorem 5.1.1, we need to show that the components of h
have the shape of an almost harmonic Maass-Jacobi form. This fact follows from the
results proved in the previous subsection, more precisely from Proposition 5.3.5 and
Proposition 5.3.7. Indeed, they imply that each component of the non-holomorphic

function R can be written as

Z Z —XA (D1,5(u; 7)) <X-%—>)\(EM,Z('LU§T)>
. [5] N
530 Y X Pt (3 (7 [t )

Jj=1 x=0

In Proposition 5.1 of [12] it is shown that Ry, is the non-holomorphic part of a H-

harmonic Maass-Jacobi form, fiy ¢, whose holomorphic part is denoted by ppre. To be
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1 3

more precise, for « € {3, 5}, we define

P e (0 i
G.(wi) = | 2 (2§+ng)! )

¢ (mod 2M)
[njfbfl/2:|
_ Xt: T lpx (Dﬁl’j(u;r))
gL(HJT) = : 1
=1 =0 (2)\ + 11— 5)'
1 _ a7\ 2
LA Y2 ~
x (X%) (BW > Ante(w; T)
¢ (mod 2M)

Then we have
th—g;—gé-l-é;-i-é;-
2 2 2 2

By construction QA% and C?g are vector-valued almost harmonic Maass-Jacobi forms,
while h — G 1= Q% is an almost holomorphic Jacobi form, therefore, in particular, an

almost harmonic Maass-Jacobi form.
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CHAPTER 6

Asymptotics results for Kac-Wakimoto characters

6.1 Introduction

In the previous chapters, we saw how to describe the Fourier coefficients of a mero-
morphic Jacobi form in terms of Appell functions and almost holomorphic modular
forms. This allowed us to derive their transformation properties. In particular, in
Chapter 3, we described the transformation properties of the Kac-Wakimoto characters
trr,. . (A() related to the Lie superalgebra sf(m|n)”, which we showed to be described
as the Fourier coefficients of a quotients of theta functions (3.1.2). Using different
methods, in [9] K. Bringmann and K. Mahlburg described asymptotic formulas for the
coeflicients of try,  (ae) in the case of s€(m|1)". The aim of this chapter is to extend
Bringmann-Mahlburg’s result to s¢(m|n)", to any m > n > 0. For an easier notation,
we restrict to the case of m =n =0 (mod 2). However, this procedure applies without

many differences to the other cases.

6.1.1 Statement of the Theorems

Asymptotic results for the coefficients of characters associated to affine Lie algebras
were studied by V. G. Kac and D. Peterson [22]. For an affine Lie algebra g, denote
by L(A) the g-module with highest weight A, and consider the so-called weight space
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decomposition
L(A) = D L(A),
A

where A runs through the dual roots lattice. Denoting by mults(A) the multiplicity of

each weight space L(A),, for each A, one defines the character of the module as
chrp) = ZmultA()\)q’\.
A

Using the modularity of the so called “string functions” of the character and applying
Tauberian theorems, V. G. Kac and D. Peterson studied the asymptotic behaviour of

the weight multiplicities for affine Lie algebras.

Theorem 6.1.1 (Kac-Peterson, [22], Section 4.7, Theorem B). If g is an affine Lie

algebra with € + 1 simple roots, then, as m — oo,
multy (A — md) ~ 273g T b & VA,
where a and b are certain explicit constants that are determined by g.

Remark. The weight expression A — md and the constants a and b all depend on the

Cartan subalgebra.

One of the most famous results in analytic number theory is the so-called Circle
Method, due to Hardy and Ramanujan [18]. They developed this method in order to
study the asymptotic behavior of the partition function p(m), giving an asymptotic
series expansion with polynomial error. Refining Hardy and Ramanujan’s work, in [30],
H. Rademacher obtained an exact formula for p(m) in terms of Kloosterman sums and
the classical modified Bessel function (for a precise statement see [30]). Similar results
were then established for any weakly holomorphic modular form of negative weight by

H. Rademacher and H. Zuckerman [31, 35].

In general the Kac-Wakimoto characters are not modular, thus Rademacher’s method

does not apply. However, in order to give asymptotic series expansion for partitions

100



without sequences, in [10] K. Bringmann and K. Mahlburg extended this method for
linear combination of modular forms multiplied by mock modular forms. Using a re-
finement of this “mock modular” Circle Method and the Saddle point method the same
authors [9] established asymptotics for the coefficients of try, A@)q"®. More precisely,
writing

_£
trr,, (ana°q 2 = ZCz(t)qt,
>0

they found an explicit asymptotic expansion for ¢,(t) as t — oo in terms of Kloosterman
sums, Bessel functions, and a certain principal part (see Theorem 1.1 in [9] for details).
Surprisingly, the “continuous” principal part gives the main contribution, and the

authors showed in particular that, as ¢ — oo,

Vm + 162”@‘
8t/3

Using the structure of Kac-Wakimoto characters for n > 1 (recall Chapter 3), the

co(t) ~ (6.1.1)

general structure for the Fourier coefficients of meromorphic Jacobi forms described in
Chapter 4, and in view of the previous result for the case n =1 [9], in this chapter we
establish an asymptotic series expansion for the coefficients ¢,(t) of

_£
tre, .a@g"°q 2 =Y _clt)q, (6.1.2)

>0

as t — oo. For notational simplicity, we only consider the case that m and n are both

even. The other cases can be treated similarly. To state our theorem we need some

m—n
2

more notation. Here and throughout, we set M := Moreover, we define the

constants

? 2M -1 7

8(6) ::4M + 224 — 5, (613)
On(r) == % 43\4 2MQ4 -
n _r r? 2M —1
W) =gty T
5m _n 2M —1
8 24
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For integers r and s we denote by Q,(s), R.(s), and T,(s) certain Fourier coefficients
defined in Corollary 6.3.2 and Proposition 6.3.3, while K}, K ko, and K h, are certain
Kloosterman-type sums defined in (6.3.2), (6.3.4), and (6.3.6). The function /; is the

usual modified Bessel function of level 1. In general, for integer ¢ > 1 we define

1 P
]g(Z) = % 5( )t_e ldt

where the contour encloses the origin and is traversed in a counterclockwise direction.

Finally, we define the principal value integral P, by

- \J _—2mc A 9 N2
AACa W)= [ TR [ st R agas
R

cosh (7o) 9, ,

(6.1.4)
where J, L € N, A, C' € Ry, and W € R. For the notation o}, ;, 7} ;, and ¢ we refer
the reader to Section 6.2.2.

Theorem 6.1.2. Let 0 < ¢ < 2M. With the notation as above, as t — oo, the

coefficients of trr,, . (aw)) satisfy the following asymptotic behaviour:

. 2M—1 . \/— 4_7]' .
W= % S ekt mn (FyFe-ao)

0<k<vt T=0 s€du(r
2/k 0<s<26h(r)

ﬁ SV Y R ot (5 <)

0<k<vt T=0 s€dy(r)+
2[k 0<s<25 (

+ Z Z Z Z Z D*<j7)‘7:u7u)}?1:,r(_t78)

1<k<vZJ=1 = (mod 2Mk) A=1 pu=0 g<yy<n=2i s€26p+Z
2tk r=(—M (mod 2M) - 2 0<s<26p

X N2(j_)\+u)ku_§T2j+2u(S)Pk (QMk + 57 57 2()\ - ,u) - 17 2(] - )‘) + :u7t - E(f))

+0 (t% log t> :

Using the asymptotic result for the principal value integral and the well known

asymptotic behavior of the Bessel functions (see Section 6.3.4), one can see that the
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main contribution comes from the non-holomorphic term, as happens in the case of

n = 11in [9]. More precisely, we obtain the following result.
Corollary 6.1.3. Assuming the notation as above, as t — oo, we have

co(t) ~ Ct%—ze%\/@

)

where

6.2 Preliminaries

In this section we firstly describe the transformation properties the Kac-Wakimoto

characters. Secondly, we briefly recall the Circle Method and we apply it to (6.1.2).

6.2.1 Transformation properties

Let ¢ be a meromorphic Jacobi form of weight k£ € Z and index N € N, with a unique
pole (modulo Z7 + Z) of order n = 0 (mod 2) in z = 0. Moreover, assume that ¢ is an
even function in z. This is the setting for the generating function of the Kac-Wakimoto
characters, as we shall see later in this section. We recall the main results of Chapter

4 adapted to this special setting.

We denote the Laurent expansion of ¢ in z = 0 by

o(z;7) = i Byy(r). +0(1). (6.2.1)

p (2miz)%

By Proposition 4.2.2, we know that the functions EQJ' are quasimodular forms. We

denote their completion by By, (see (4.2.6)). Moreover, from Proposition 4.3.1, we
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know that ¢ canonically decomposes as

n

plzir)= Y he(T)ﬁN,z(z;T)—ZM ( 85) : [fn(z67)]_ys (6.2.2)

¢ (mod 2N) = (25 — 1) \ 2mi

where the functions hy are the canonical Fourier coefficients of ¢ (see (4.3.1)), and fn
is the level N Appell function. In Proposition 4.3.3 we saw that the functions h, can

be completed to almost harmonic Maass forms ﬁg, namely,

n

ha(r) = hy(r) — %; (f;]—_(?), (287;) 7 [RN,e(s;T)e— e o (6.2.3)

where Ry is defined in (2.3.4). Therefore, in order to understand the modularity of
hy, it suffices to understand the modularity of the By, /ﬁg, and Ryy. The first two
objects transform as (vector-valued) modular forms, with multiplier system depending
on ¢. On the other hand, the functions Ry, are independent of the Jacobi form. We
describe their transformation law in the following proposition. To state it, we need the

level N Mordell integral

1 _ (e+m)?

‘ 1
HéM) (u; 7_) — §q_ T e 2mi(+M)u iy <2Mu + (g + M)T + 5; QMT) ,

where

TiTw?—2muw

e
Hu,7t):= [ ———d
(w3 7) /Rcosh(ﬂw) v

is the standard Mordell integral. Moreover, let o be as in Proposition 2.3.3 and let

w(?,7) be the entry of o~! in the ¢th row and rth column.

Proposition 6.2.1. For all v = (‘é 3) € SLo(Z) such that ¢ > 0 the function Ry,
satisfies the following transformation property:
‘6 N /C'LL2
Butin= ¥ S i ()
r (mod 2M) (CT+d>§ cr+d
a2
+2 Z eQmﬁHﬁMC) (ujer +d) .

r (mod 2Mec)
r=¢ (mod 2M)
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Proof. The following relations are either well known or straightforwardly proven:

1. For all ¢ € N, we have

fu(zu; 1) = Z Gt Mz (2 4 e s )

r (mod c)

2. The function fj; is Z-invariant in 7.
3. We have the following:

f 2 u 1 27riM(22_u2) f ( ) H(M)( )19 ( )
—, === | =Te g Z,uyT) — E w; T) O (2T
M 7_ 7_ 7_ M ) 7 ( d2M) r ] M7

Note that part 1 is related to Proposition 6 of [1], and that part 3 is proven in [36]

Proposition 3.3. Using 1. and 2., we have

) = (st ies)  (24rlar ) u
fM<c7'—|—d cr+d! ) Z e d ch( rd arad

r  (mod c)

_ Z €2ﬂi(Mr2'w+iﬁﬁ§)ch ;z—irr(aT—l—b)7 u - 1
ct+d ct+d  er+d

r  (mod c)

Then, using 3., we obtain

> e2mi(Mrivr+ 287 ) g2miia (er(ar+0)* =) (o 4 ) (ch (z +r(ar +b),u; e + d)

r  (mod c)

_ Z HéMC)(u; CT—i-d)ﬁMCys(z—{—T((LT—}—b);m‘—{—d))

s (mod 2Mc)

Since a and c are coprime, using again the first fact in the opposite direction, we obtain

Z 2mi(Mr2yr+ 2008 4 20 (ar(ar+b))? - ))ch (z+r(at +b),u; e + d)

r (mod c)

Mc ( 2
— @c7+d

_“2)fM(z, u;T).
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Therefore, we can write

f z U
M CT—I—d CT—I—d

e (CT + d) 27TlcT+d (227U2)fM(Z, u’ 7—) _ (CT + d) Z 627T7:(MT2T+2MT’Z+C£{:(1(22711,2))

r  (mod c)

- as?
X Z 2 ite HMO (u; o7 + d)0pres(z + 773 07),
s (mod 2Mc)

which equals

z Uu 22

B (CT + d) 27”c-r+d (fouQ) Z 627ri4dzxs4c HgMc) (u; cT + d)ﬁM7S(Z; 7').

s (mod 2Mc)

On the other hand, we know that

s z U
M cer+d CT—i-d

U 1 U z
_fM <CT+d CT+d )+§ Z )RM,T <C7_+d777') 79M,'r’ (CT_’_d;’yT)

r  (mod 2M

(e Qe o a5

1 U Z
- . 9
+2 Z BRary (CT—i—d’W_) MT( Ta )

r  (mod 2M)

where in the last step we have used the transformation properties of fM. Comparing

the two equalities above one can write

. ds?
= Z Ry (w;m) sy (257) — Z e anre HMO (u et + d)0p (25 7)
r  (mod 2M) s (mod 2Mc)
Mc(u 722) 1 U z
d 1 2wz#_ R ., . 0 ., .
(CT+ ) 2 (ZdQM) M, CT+d’7T M, c7‘+d’77— )
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which can be written as

1 a2
> | gRuelwn = Y FTERHM et +d) | ara(z7)
r (mod 2M) £ (mod 2Mc)
(=r (mod 2M)

1 . cu2 1
= (e + d)ﬁe?mﬁiﬁ 3 Z Ry <_u : 7') Z w(l, )00 (2;7) -
) ¢ (

Y
r (mod 2M T +d mod 2M)

From the linear independence of the Jacobi theta functions ¥y, one concludes the

proof. O

From now on we consider the following meromorphic Jacobi forms:

9(z+ )"
B(z7) = % (6.2.4)
g (20 (z+Z;7) "
U(z;7) = < I ) . (6.2.5)

Note that ® is the same function studied in Chapter 3. Moreover, the function (®, V)
is a vector valued Jacobi form for SLy(Z). Due to the transformation properties of
¥ (see Proposition (2.3.2)), we deduce the transformation properties of ® and VU, as
described in the following proposition. Here, x*, X and x* are certain characters that

can be easily made explicit, although it is not necessary for our purposes.

Proposition 6.2.2. The functions ® and V satisfy the following modular transforma-

tion laws:
1. For each vy = (2%) € I'o(2), we have @‘MMv(z;T) =x*(7)®(z; 7).
2. For each v = (%) € I'1(2), we have @‘MMW(Z;T) =X(7)¥(z; 7).

3. For each v = (24) € SLy(Z) with a = 0 (mod 2), we have \II‘MM’)/(Z;T) =
X(M®(z 7).
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It is straightforward to show that ® and W satisfy also the elliptic transformation
law of a Jacobi form, although it is not in the interest of this chapter. Since ¢ has a
simple pole in z = 0, ® and ¥ are meromorphic Jacobi forms with a unique pole of
order n in z = 0. In particular, their Laurent coefficients and their canonical Fourier
coefficients satisfies the same properties as the general function ¢ described before. In
the following table we fix the notation for the canonical Fourier coefficients and Laurent

coefficients of ® and ¥, as well as their completions.

canonical Fourier coeff. he | ge
completion of canonical Fourier coeff. | hy, | gy

Laurent coeff. 52]' E2j

completion of Laurent coeff. Dy; | Ey;

Table 6.1: Fourier and Laurent coefficients

In light of Proposition 4.2.2, Proposition 4.3.3, and Proposition 6.2.2 we have the

following.

Proposition 6.2.3. With the notation as above the functions Bg and Dsj satisfy the

following transformation properties:

1. For each v = (2%) € I'o(2), we have

h ! M w rA T
he(T) = X*<7)(67+d) r (%;W) (€, ) (7).

2. For each v = (}) € SLy(Z) with a =0 (mod 2), we have

(1) = ——(er + S w(tr)a o).

X" (7) r  (mod 2M)
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3. For each v = (24) € I'o(2), we have

Dyj(1) = (e + d)2j_MD2j (y7).

1
X (7)
4. For each v = (2%) € SLy(Z) with a =0 (mod 2), we have

Dyj(1) = (et + d)Qj_MEgj (7).

1
“(7)

=

Here the w(l,r)s are the same as in Proposition 6.2.1.

As a consequence, we can now derive explicitly the modularity of the Fourier coef-

ficients h, under the action of the full modular group.

Proposition 6.2.4. The functions hy satisfy the following modular transformation

properties:

1. For each v = (2%) € I'y(2)

1 1 & (or + d)Y
ho(T) = ——(er + d)? S wl b () Y
X*(7) v et X< (2-1)
gmidr? [ Oe S _Mx<? e
X Doj(yT) Z et ante (27”,) [e v H WY (e5er + d)LZO :
r  (mod 2Mc)
r={ (mod 2M)
2. For each v = (Y) € SLy(Z) with a even
1 1 : (e + d)%~
ho(r) = =—— (et +d)2™ > w(l,r)g.(y7) Z
X (’Y) r  (mod 2M) j=1 2‘] o 1
gmidr? [ Oe A _Mx<? e
B2y (rr) Z o (27ri> [e v (e + dﬂ e=0

r  (mod 2Mc)
r=¢ (mod 2M)
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Proof. Here we prove part 1. The proof of part 2 is very similar. Writing h, according

to (6.2.3) and using Proposition 6.2.3, we have that

1_ M N
he(7) = % S Wby
v r  (mod 2M)
1 : (et + d Z-M Dy; (1) < 0 )2j_1 [ Mre?
- _Z X RM,g(éT;T)e*T .
2 p (27 — )! \ 2mi e=0
Using again (6.2.3), the expression above equals
et +d =M
( *(>) w(f,'r) (hﬂ(’w-)
X r (mod 2M)
1 & Dayl(y7) ( . )2”"1 { g
+ 3 — ; Ry o(g;y7)e” 6D
2 ‘= (25 — 1)! \ 2mi o
1 : (cT + d) M Dyi(y7) (O -t _ Mne?
2 ; () (25 —=1)! (27r2') [RM’E(&T)Q ’ L:o'

To conclude, we rewrite [/, in the last summand according to Proposition 6.2.1,
and we note that the contribution of Rjs, from the first and the second summands
cancel. This can be also argued considering the non-holomorphicity of Ry, being

he(7) holomorphic. O

We now have all the ingredients needed to describe the transformation property
of the Kac-Wakimoto characters. As alluded to in Section 3.1, the generating func-
tion for Kac-Wakimoto characters (6.1.2) is essentially the meromorphic Jacobi form
d (z + 3 7'). More precisely, one can see that for each ¢ € Z the ¢-th Kac-Wakimoto

character is given by

1N 2M-1
¢ Lo I za q24
UL (A@)4" = P (T)q o07) : (6.2.6)

The transformation of Kac-Wakimoto character arise directly from Proposition 6.2.4

and Lemma 2.2.2.
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Proposition 6.2.5. The Kac-Wakimoto character try,, , a@)q™° satisfies the following

modular transformation laws:

1. For each v = (2%) € I'o(2)

2M 1 2M—1 h,(~yT

Tk 2M—1
X (7) v ot o n(y7)
L gimra ()M (e +d)Y 2 Dy(y7)
q ; =
() (27 — Db n(yr)2t
X > e (O e~ M55 19 (e;er+d)| .
271 " e=0

r (mod 2Mc)
r=¢—M (mod 2M)

2. For each v = () € SLy(Z) with a even

2M—1
(YT
tern( (Z))qLO e qALM—"_QJM 1¢( ) Z w(f — M, 7’)&

= 2M—1
X0 oot o n(y7)
L ) I (et P By
q = : -
X)) o (2D nhr)Pt
2j—1
amidr” (O [ — Mzt (M)
X Me v H ; d .
Z e*™a 2m’) e Y (gyer + )5:O
r (mod 2Mc)
r=0— (mod 2M)

6.2.2 The Circle Method

In this section we briefly recall the Circle Method, we fix the notation, and we apply
it to Kac-Wakimoto characters. This will give us four main terms, which we analyze

separately in the following sections.

Given a holomorphic modular form f, the Circle Method allows to understand the
asymptotic behavior of its Fourier coefficients. Roughly speaking, we can say that
it is a “nice” parametrization of the Cauchy integral of f, that allows an optimal

approximation of the Fourier coefficients of f due to its modular properties. For a
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classical description of this method we refer the reader to the primary work of G.
Hardy and S. Ramanujan [18], and to the revisitation of H. Iwaniec and E. Kowalski

in Chapter 20 of [19].

6.2.3 Notation

To explain the Circle Method, we need some definitions and notation. All the material
in this section can be found in Chapter 20 of [19]. For a positive integer N consider

the Farey series of order N defined by
h
FN::{E:gcd(h,k)zl, 0§h<k‘§N}.

It is a standard fact that the Farey series can be used to split the unit interval into

disjoint subintervals as follows: Given three consecutive elements in Fy

hy - h - ha

ki ko ky
one defines ¥}, , = m and U} ;= m It is straightforward to check that the
intervals [% — D por %4— ﬁ%k) are all disjoint as % runs through the elements of the

Farey series. Furthermore, the union of these intervals gives the whole interval (0, 1).

Furthermore, it is well known that for j € {1,2} and N € N, the following facts hold:
1. N—k< k‘j < N;
2. hk; = (=1) (mod k);

1 1
3- m < 19?1,]6719/}:,]6 < m.
For a fixed % € F, we define the variable

h+iz
Thik = — + —
h.k L k}’
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where z € C is a complex variable that satisfies Re(z) > 0. This clearly implies
Thir € H. Let [a], denotes the inverse of @ modulo b. Then for each element % e Fy
we choose [—h]; to have parity opposite to that of k. We point out that this is always
possible. Indeed, from the properties above we can choose [—hl, = ko if k is even, and

either [—h|p = ky or [—hlx = ko + k if k is odd. With these choices, the matrix

[_h]k _[—h}kh-ﬁ-l
Yhke = g
k —h

lies in SLy(Z). We define the image of 73, ; under 73 by

~ B [—h]y 7
Thik = ThkThk = 2 + E

Note that the automorphy factor k7, — h is equal to iz. Finally, we define g5 =

627.(2'7}1,]6 and qh,k e ezTriTh’k'

6.2.4 The Circle Method

Applying Cauchy’s Theorem to (6.1.2), we obtain

1 e
ct) = i t1“L7,L,n(/\(e))qL°q 2q~ D g, (6.2.7)
T Jlgl=r

where r is any fixed real number in (0, 1). For our purposes the best choice for r turns

out to be

_ 27
ri=e NZ,

where N := [t!/2|. Parametrizing the path of integration as

U ef%JrQﬂ'iu

Y

with u € [0, 1], and using the partition of the unit interval as described in the previous

subsection, one can rewrite (6.2.7) as

Q_ng
k h,k _ 2
Cg(t) = Z tI‘me(A(@))qLoq (H—Q) du

h =]
hepy "k Uhk
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In the integral above, note that 7 depends on u. Finally, we rewrite each integral as

ﬂg,k — t+£
c(t) = Z / ter,n(A(é))q;ﬁ(th,x(g 2)d(b, (6.2.8)

_19/
%GFN hk

where we have defined the variables z and ¢ as

B Cut ) __h+z'z

T—Thyk—u NZ_]{ k’
h iz 1
O X

Using Proposition 6.2.5, we split ¢,(¢) into four pieces, splitting the Mordell integral
from the g-series and splitting the Farey series based on the parity of k. Before giving

the splitting, we define the following characters:

)= e )
v = LD )
)=
ﬁﬁ%zﬂ%g;gmﬁ

We obtain
cr(t) = X1 + Xo + Xg + Xy,
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where

Uik h(7 c(0)—
21 = Z Z Xr(’}/h,k)/ %thg td¢, (6.2.9)
“Yhk

*EFN (mod 2M)
2|k

9y Joes

' gr(Th,k) £)—t

Y = Z Z Xr(’Yh,k)/ qufﬁ do,
“Uhk )

h EFN (mod 2M)
2’[k

- X)) [P it -t Daj(Fu)
Be Yy Y s gy D,

kEFN j=1 r rnod 2Mk)
2|k r={— (mod 2M)

a 2.]71 2772
X ( E.) [e‘M“‘E NT p (MF) (5;@',2)} do,

21

._ X)L i c0)—t Fai(Thi)
BT Y T S g B

kEFN j=1 r rnod 2Mk)
21k r={— (mod 2M)

5.\ %1
><( a_) [e_MQOH,ng) (5;2’;:)} de.

271

We recall that £(¢) was defined in (6.1.3).

Remark. Note that the formula representing the contribution arising from the case of
k even is the same as the one associated to the case of k odd, up to the term in 7, .

In particular, these terms are gy x-series. Since

|ah,k;| S 6_7r7

the main contribution for our final bound will come from the term that contains the
smaller gj, ;-power. We shall see that this occurs in the case of k£ odd, so we are mainly
interested in Xy and 4. In fact, from [9], we may expect that the main contribution

will comes from ¥,.
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6.3 Proof of the main results

6.3.1 The principal parts

In this section, we explicitly compute the principal parts of the canonical Fourier

coeflicients n(fsg(;j),l and n(f)rg(}},l, and those of the Laurent coefficients n(jz §g§21 and
Eaj (1)
7](7)2&171 N

We start by computing the g-expansion of W")g% and n(f)g(]@)_l. In the following

proposition we calculate the g-expansion of the numerator.

Proposition 6.3.1. Let the h,’s and the g,’s be as in Table 6.1. For each r € Z, let
re(=M,M] and 7 € (—=2M,0] be congruent to r modulo 2M . Then,
M_ 72 ¥l S
hr<7-) =gt am Z Qr(g)q
s>0

and

7. 2 s
gr(r) = ¢¥ 50 Y Ri(s)a?,

s>0
for certain complex numbers QF(s) and R:(s).
Proof. By definition
o E (o4 L)
he(T)=q — 27 (""dz.
(1) =q . 90z )" ¢ "dz

The integrand is a power series in ( whose coefficients are functions of ¢. In particular,
the only term of this power series that gives a non-zero contribution to the integral is
the coefficient of (°. Since our goal is to understand the minimal power of ¢ appearing
in the expansion of h,, it is enough to find the minimal power of ¢ in the coefficient
of ¢° in the (-expansion of the integrand. In order to do so, we rewrite it using the

Jacobi’s triple product identity (see Proposition 2.3.2) obtaining

—M—r M [T (1 + qul)m (1 + CilqA)m
[Loi M =¢a )" (1= ¢

¢
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To write the denominator as a power series, using the geometric expansion, we need
both [¢| < 1 and [("'¢| < 1. Since inside the integral Im(z) = —55Im(7), this is
equivalent of requiring —2M < r < 0. We are allowed to make this choice since h,
depends just on r modulo 2M. By symmetry, to obtain the minimal power of ¢, we
can assume A = 1. In particular, we look for the minimal power of ¢ in the coefficient
of ¢ in . .

g M (1" (14" (Z @) (Z (clq)A> :

A>0 A>0

It is easy to check that if r + M > 0 (i.e., » = 7) the minimal power of ¢ is q%,
since the term ¢° appears in the expansion of (~0+M) (1 4+ )™, If r + M < 0, then

to cancel (~"*M) one requires the expansion of (1 + (¢ 'q)", giving the extra term

¢~ +tM) Thus, the minimal power of ¢ in A, is
q_%+%—(T+M) — q%_%

The computation for g, is similar. For the seek of completeness we give the entire
proof also in this case. Using again the Jacobi’s triple product identity, we obtain
2 [utl . s (1 - Cq/\_%> <1 - C_lq)‘_%>
g7"<7—) = qu q Cfir ~ n _ n d
w H)\Zl (1—¢gM)" (1 —¢1gY)

In this case, we may also assume r € (—2M, 0] in order to write the denominator in

0|3

zZ.

power series. Arguing as above and noting that § —r > 0, it turns out that the minimal

power of ¢ in the coefficient of ¢° is the minimal power of ¢ in the coefficient of ("~ 2 of

q—ﬁff—% (1 _ C—lq%>m <Z (C—lq)k>n.

A>0

Since m > § — r, the minimal power of ¢ is
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We have computed the ¢g-expansion of the numerator of n(f)’“g(;,)_l and n(f;g)_l . From

the definition of 7, we can easily compute the principal part of the entire functions.

For convenience of notation, we define the numbers

M r? 2M — 1
§h(r) = _Z+4M+ 24 )

m  (F+M)? 2M—1
dy(r) == _§+ i + TR

where 7 and 7 are as in Proposition 6.3.1.

Corollary 6.3.2. The functions % and 2M r have the following q—expansion:
h‘T'<T) —Op (1 2
oy =40 D Qi)
s>0

and

gT( 0g(r) B
7 R qz,
n(r)*M= ;)

for some complex numbers Q,(s) and R.(s).

In the remainder of the section, we compute the principal part of the Laurent

coefficients of ® and W. For convenience of notation, we define the constants

M o1
§p 1= —— — —
b 6 24
5 n 2M —1
By 24

Proposition 6.3.3. The functions (DigM - and (EiéM r have the following q-expansion:

Dyi(t)  _ s (=1 ( M\’ s
W—q ° Z Y (M) szjﬂr(s)q,

Eoi(m) (=M M\ s
W - 0< ;—Zj 7! Ao Z Dojrar(s)a?,
r>Tg

for some complex numbers Vajio,(s) and Thjio,(s).
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Proof. We only prove the result for %,

since the other case is analogous. If we
define the function

V(z;7)

Y

9 (z;7) -

2
and we denote by 9¥()

the derivative of ¢ with respect to z (respectively for ¥*), then
we can write

by - (5T 20 (57)
ST 0 (0 r) 1 0@ (057
90 ()

o (5

29+ (05 7)" <1+19;(f()é D2 Oz

0 (3;7)
_2”19* 0;7)" <1+Zd2j )’

for some coeflicients dy;(7). It is a standard fact that
1 27)2

9 (—;T> = —277( 7)
2 n(7)

9% (0;7) = 9D(0;7)

and

= —2mn(7)>.
In particular, the Laurent coefficients 52]' of ® in z = 0 can be written as

2 2m
B(r) = gmin 1T

n(,r)m+3n
and for 1 < j < ”T_2

m—27 _—27 n— 77(27_)2171
Dy, () = 2" ¥ 14 QJW 2j (7).

. . . 9@ (L,
By construction the functions ds; are combination (sum and multiplication) of ﬁ
2
*(2v) (0, . .
d2 1; (OEE’)T) for arbitrary v € Z. Therefore, they are g-series without principal part
It follows that

S
n 2] E Un 2] qz,

s>0
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for certain constants U,_s;(s). To conclude, it is enough to note that

Dyj(7) = Z _ =Ly <%)r1~72r+2y‘(7)

r! dmv
OSTSHE2J
M <_1)T M " E
=q* Z T(m) ZUQT+2j(S)q27
o<r<nz21 5>0
and so
Doyy(1) w1 (=1 ( M\’ s
TCE AP D=l =) D BLESICTE
OSTS";J s>0
for certain constants V;(s). O

6.3.2 The holomorphic part

In this section, we give an asymptotic estimate of the terms >»; and X5 defined in

(6.2.9), using the Circle Method.

6.3.2.1 The even case

We start by studying 31, which we recall to be defined by
2M—1

-3 zwk/”%hgtdgb

hepy =0 / U(Th K
T N
Z\k

Remark 3. We split the g, y-series % into two pieces, accordingly to the sign of

the exponent of g, ;. The non-principal part is uniformly bounded over the outer sum,
since |gn| < e™7. As a consequence, its contribution is smaller than

2M—1 9!

h.k 27z
33 wlon / =200 s, (63.1)

EFN r=0 L
2|k

Since Re(z) = %, the integrand is bounded, and since [ g,k dop < = (6 3.1) can be
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bounded again by

1
DD D=
0<k<+t 0<h<k VGk
2k ged(h,k)=

where we have used known inequalities 1nv01v1ng Euler’s totient function. In particular,

the non-principal part gives a contribution bounded by O(1).

Next we compute the contribution of the principal part. Defining the Kloosterman-

type sum Ky, (a, 8) by

Kip(0,8) = > xolump)etm 5 e Flems, (6.3.2)
0<h<k
ged(h,k)=1
and writing the principal part of % as
> Q) = )T,
s€p (r)+Z
0<s<dp(r)

we can rewrite >, as

2M—1 19;: .

Do D D Q) —s)Kis(—t.s) / TR (O ) gy 4 0(1).

_ 29/
0<k<yt =0 s€du(r)+Z Ik
2|k 0<s<dp,(r)

We finally recall the well known integral evaluation as N — +o0 [31]:

i 2 a b 4 1
[ exetas= S in (i) <o ().

where a, b > 0, h € Iy, and where [ is the level 1 modified Bessel function. The
error term coming from the integral evaluation gives a contribution O(1) to 3 (it is a

similar computation as in Remark 3). As a consequence, we conclude that

Y=
\ 0<%<:\/5 Tz;
2k
Z Qr (0 (1) — 8) Ky (—t, 5)%1} <4% g(t — 5(@))) +O(1). (6.3.3)
s€dp(r)+Z
0<s<6p(r)
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6.3.2.2 The odd case

The analysis in the odd case is exactly the same as in the even case. Defining

]?km (OZHB) — Z %T(,Yth)ezﬂzhek(Z)QZLm (ah+ [ h]k)’ (634)
0<h<k
ged(h,k)=1

(Th,k)

replacing 0y,(r) by d,4(r), and denoting the principal part of W as

5€204(r)+Z
0<s<284(r)
one obtains
2M—1
e Y Y
0<k<vt =0
ofk
~ 4
> R(6,(r) = ) Kpp(—t, s)ﬁl1 <—7r f(t—e(é))) +0(1). (6.3.5)
2k kE V2
5€264(r)+Z
0<s<284(r)

6.3.3 The non-holomorphic part

In this section, we determine an asymptotic estimate for ¥3 and ¥4 (6.2.9).

6.3.3.1 The odd case

We begin by rewriting explicitly the derivatives of the Mordell integral.

Lemma 6.3.4. With the notation as above, the following equality holds:

0.\ 1 e L N2 p=z .,
—mMe (Mk) (~. ; _ : 2T 7% o 53 0hs
(271’2) [e HM (e ZZ)} = E g D(j,v, Iu)—é e°™ IME ¢ SME

7ro'2 r 1 1
(1 -+ 2@’0’)2(”_“)_16_ SMEz _27"0( onk T2 T anikiz )
X do,
R

cosh(mo)
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where
(2] o 1) M] V"l‘M_* :3—2v

2w —p) — DG — v)pu! gi—vino2i—uts

D(j v, p) =
Proof. By definition

HM (21r) = %q—ﬁie—2wizz " (2Mz ol + %; 2MT) ,
where H is the Mordell integral defined in (5.3.9).

Using the transformation (see Proposition 1.2 of [36])

1 1
H(z;7)= —¢ TH(; —;),

one can write
: (2 8) 1 1
H(M) . _ ¢ 2 QWZ—H ad . .
SR W e R S T VALY VoY Vs

Replacing 7 by iz, z by € and M by Mk, we obtain

j , x 2 € 14 1 1
MR sy v emipytomgs (2Mket ) H|— ;— .
ek (8192) = o saae iz " 2Mk T AMkiz'  2Mkiz

On the other hand, a direct computation gives

and

as v [6%82-&-”5 (14-2ix) :| — 2v—1 ,U,) _% "1 t2iz v .
2mi —~ 2mz 2iz

o
This gives
%\ (a1
€ —7Mte? .
= : ]
(Qm') [e S (12|
J 2(j—v) 2v—1
]—1 88 |:—M2t] 65 [ (ME) . i|
TIME H .
2 <21/— 1) (2m’) ¢ o \ 2i e-an (&12)]

! (2] — 1) <Mt) v (25 — 2v)! ie2mi T o e~ 2Mkze 20 ( 11wz )
- € z
2v—1 (J—v)! 2v2Mkz R cosh (7o)

v=1
v—1 o\ w—2u—1
v—1\ (2u)! MEN" (1+ 2i0 a
—— do.
XZ( ) ! ( 2m’> ( 2iz > ’

©n=0
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Reordering the terms and replacing ¢ by r + Mk, we conclude the proof. m

We define the Kloosterman-type sum

[?;;r (a,ﬁ) — Z )Z;(,Yh,k)ezmﬁezmhe]ge)e%(amg[—h]k), (6.3.6)

0<h<k
ged(h,k)=1

and the constant term

D*(j7 V?/"L’u) = D(j7 V?/’l’)

%% (M)ﬂ

4r

(27 —1)! ul
Furthermore, according to Proposition 6.3.3, we write the principal part in the expan-
sion of n(b; ?;](J)_l as
Ey;(7) (—=1)wtM A\ .
- L = T ' . s 2.
n(r)2M-1 Zn% ! o 6; bi+2u () i
0<’U4<7 S E+Z
-2 0<s<20p

Thus, we can rewrite >4 as

3 a1
R DD S S DG A mwEL(—ts)
1<k<v£ 7=l 7 (mod 2Mk) =1 p=0 g<y< n—22j s€20p+2Z
2tk r=¢0—M (mod 2M) - 0<s<26p
; 1 s
) N2 0= P [ = 5 oN 21,2 — 2N+ it — (M
2j+2 (S) k 2Mk+272a % y 4] +,u7 5f< )

+0 <t% logt) , (6.3.7)

where Py is the principal value integral defined in (6.1.4).

Remark 4. The error term O (t% log t) comes from the non-principal part of n(%%f(;)*

More precisely, for this summand, one has the asymptotic expansion

A—1

2 i: 2. i > DA pu) Ky, (—t, )N

1<k<+t J=1 r (mod 2ME) A=1 u:OOSuSn—;j
2tk r=¢—M (mod 2M)
T 1
X kh3P 20,20 — 20— 1,2) — 2\ + st — eo(M
2 k(QMk+2” o 12 = 20 gt = 2 ))7

124



which is O (t% log t) in light of Lemma 6.3.5. Note that for the same reason, the same
error term will come from the contribution of Y3, as we shall see in Subsubsection

6.3.3.2

6.3.3.2 The even case

For Y3 we can use the same analysis as for ¥;. We point out that in this case the

function n(D ;;M : has no principal part, which makes this term of lower exponential

decay. More precisely, one has

A—1

2. Z > i Z D* (, A, ) K (=8, 0) N2U A

1<k<vt Jj=1 r (mod 2Mk)  A=1 p=0 g<y<n
2|k r=0— (mod 2M)
1 T
k2P 2N =2 — 1,25 — 2\ t—e(l
: 2k<2Mk 20 p—L2j =22+ 5())

where the Kloosterman sum K* is defined by

K]:J, (O{,ﬂ) = Z X:(’Yh,k) 27m4Mk€27rz’h€k(l)e%(ah+ - h]k)

0<h<k
ged(h,k)=1

6.3.4 The principal value integral

In this subsection, we provide the main term in the asymptotic expansion of the prin-
cipal value integral P,. To do that, we split the integral into two parts, one in terms

of the finite integral

7)£J) (a, By 1) = /1 We—%wﬁ) (1- w2)% I (H\/l — w2> dw, (6.3.8)

_y sinh (rwa

and the second one which gives an error term, as we show in the following lemma. In

(6.3.8), we assume J, L € N, and a, /3, and p € Q.
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Lemma 6.3.5. Let W ~ N2. Then, as N — 400, we have

Tid 2miC 5 (4MC’)%
kW

27 W
xpﬁﬁQMMCAVMﬂx%vcw>+o<fi—).

Pu(A,C, J,L;W) = —(2i) e

kNL—l—l

Moreover, if C' =0, then, as N — 400, we have

27 W
e N2

To prove this result, we need the following well-known asymptotic behavior for the

Bessel function (see e.g. Proposition 3.3 in [9]).

Lemma 6.3.6. Let I, be the classical modified I-Bessel function. For positive real A, B

and for half-integral ¢, as N — +00, we have

i B 4 2ra 1
{—1 (Az+ )d — = I /AB 8 B+=75 ol —).
/sz ”= (A) E(kr e O v

Furthermore, for positive A and negative B, as N — +00, we have

Iy 1

’ /—1 (Az—l— ) d 27rB+ ZWQA o)

[WZ ¢= T\ N )
h.k

Proof of Lemma 6.3.5. Making the change of variables o — o + %, Py equals

) J , —27Ac ﬂg,k o 1 2
-4(2@Je—mA?/m9—f————b/) L% (W+(C~)) 4g do. (6.3.9)
R

sinh(7o) 9,

We point out that the path of integration remains R since the integrand is a holomorphic
function. Furthermore, it is straightforward to check that the vertical contribution goes

to 0. Splitting the integral in do as [, = f\a\<\/m + flo|>\/m and using Lemma 6.3.6,
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we rewrite (6.3.9) as

L+1

J —2wAc ) C’ _ 0_2 2
RACILW) = [ T (S
o|<vanic sinh(ro) k W

2
4 o? N U Ca )
I — ——1]]d do.
Siae ( k \/W (O 4M)> o+0 (k:NL“) /R sinh(7o) 7

(6.3.10)

o’

sinh(mo)

Considering the second integral, note that the function is bounded on all of

R. Therefore the integral turn out to be a Gaussian integral, which is also bounded.

g

Rescaling the integration variable of the first integral as w = N/ YTel and using (6.3.8),

we conclude the proof. O

In the reminder of the section, we determine the main asymptotic term for Pr .

To do this, we make use of the Laplace method.

Proposition 6.3.7. With the notation as above, as T — 0o, we have

T T
PY(a, B;T) = < +0(€ )

ol T2

Furthermore, for J > 1, as T — 400, we have
PN T = 0 £
¢ (Oé, ﬁa T) =0 |-

Proof. We split the integral into two pieces as
J ,—27wp

PE(J)(Oz,ﬁ;T) _ / we - - (1 — w2)§ I, (TW) dw

wj<2 sinh(rwa)

J ,—2mwp ¢
+/ (1= w?) L (TVT = ) dw.
1

<lwl<1 sinh(mwa)

It is a standard fact that, as © — 400, we have

== (10 (1)) @a
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Therefore, the main contribution in the first summand is given by

wJ€f27rw,8 . N 6T\/lfw2 0 1 4 1o
— (1 - t— 1 — . 3.
/|w|<§ sinh(mwa) ( v ) V2T < * (T>) v (6.3.12)

Furthermore, since I, is monotonically increasing in [0, 00), (6.3.11) implies that [,
2

[SIEN

<Jy|<1
is of exponentially lower order than (6.3.12). To finish the proof, it is enough to apply
Laplace method to (6.3.12). More precisely, if
J ,—2mwp .

Fr(w) = L) (1—w?)? 7, (6.3.13)

 sinh(rwa

g(w) :=vV1—w? (6.3.14)

N

then (6.3.12) equals

\/;T_T /_i fr(w) (1 +0 (%)) eT9) du, (6.3.15)

Since g is an even function with a local maximum in 0, expanding f and g in Taylor

expansion, we rewrite (6.3.15) as

1 : " w? Tg(O)JrTg”(U)lL2 e"90)
Nord F3(0) + £5(0) ) e Tdw+0 (=5 ). (6.3.16)
2

Remark. We consider the Taylor expansion of ¢ until the third term since the other
terms gives an exponentially lower order. Furthermore, the other terms in the Taylor

expansion of f; gives a higher power of N at the denominator, which fall into the error.

Remark. The odd Taylor coefficients of f; give no contribution because ¢ is even, so

the integral becomes 0.

The integral in (6.3.16) is a Gaussian integral, thus it can be written as

eT'9(0) 1 o eT'9(0)
0y o ()
orT vT\  ¢"(0) T

Note that ¢(0) =1, ¢”(0) = —1. Moreover, for J =1 we have

w 1

fi(0) = Tim =

w—0 sinh(raw) 7T«

128



while for J > 1

This gives the desired result. O]

6.3.5 Proof of Theorem 6.1.2 and Corollary 6.1.3

In the previous sections we have provided all the ingredients necessary to prove Theo-

rem 6.1.2 and Corollary 6.1.3.

Proof of Theorem 6.1.2. In Section 6.2.4 we splitted c,(t) into four pieces, denoted by
Y;, for j € {1,2,3,4}. From Remark 4 it follows that the contribution of X falls

in the error term. To conclude the proof, it is enough to recall (6.3.3), (6.3.5), and
(6.3.7). O

We now proceed with the proof of Corollary 6.1.3.

Proof of Corollary 6.1.3. From Lemma 6.3.5 and Proposition 6.3.7 it follows that, as
N — +o0,

_miA 1 L+l
2e M2O 2 e%m

L+2
2

Py (A, C 1, L; W) ~ (6.3.17)

77
Remark. Note that on the left-hand side of (6.3.17) the parameter N is implicit in the

definition of P,. More precisely, it is related to the Farey series.

From the asymptotic behavior of the Bessel function I, and (6.3.17), we see that
each of the terms X, ¥y, and ¥4 has a main asymptotic term which grows exponen-
tially, which is maximized for £ = 1. More precisely, the exponential contribution is
respectively

ATV E—e(0)  Am /oy —e(D)  Amy/op(t—2(0)

Y Y

Since we are free to choose r in any range of length 2M, for the first summand we

choose r € [—M, M|, while in the second summand we choose r € [-2M,0]. With
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this choice it is straightforward to check that 0 > max,{d,(r), d,(r)}, and this implies
that the major contribution comes from 4. It remains to compute the asymptotic of
this term. One can easily see that the major contribution is obtained for j =1, A =1,

p =0, and u = § — 1. In particular, the major contribution comes from the term

% n % n__ g
D (1, 10,5 - 1) K7 ya(—t,20)t5 7T, (265) Py (W"SE’ 1,0,t) ,

where
]\4n773 'z _1 m
D*<17170’E_1): . 2n“( )z
2 25(4#)571 (% _ 1)'
[?ik»f—M(_t, 25E) — 627TZ'ZZAJ;IZ.1VI2+1
J4 2M%e—2ﬂiﬁ n 2M-—1 4, \/m
Pr( 5o 05, 1,0,8 ) ~ e [y S T,
1<2M7 E, L, 7) - 8+ - )
Gluing together these data, we get the desired result. .
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APPENDIX A

Kac-Wakimoto characters

A.1 Kac-Wakimoto characters and Jacobi forms: A brief

overview

Given a simple finite-dimensional Lie algebra g over C endowed with a suitably nor-
malized invariant symmetric bilinear form (+|-), one associates an affine Lie algebra g,

i.e., the infinite-dimensional Lie algebra over C defined by
g:=glt,t 1o CK @Cd

satisfying certain commutator relations. Here K denotes the central element of g, while
d is an outer derivation of g[t,t '@ CK. By identifying g with the subalgebra 1®g, one
extends the bilinear form to g, which is still non-degenerate, symmetric, and invariant.
Furthermore, given a Cartan subalgebra b and a Borel subalgebra b = h@n, of g (here
n, is a maximal nilpotent subalgebra of g), it is possible to define a Cartan subalgebra

and a Borel subalgebra of g by
b
b

CdobhoaCK,

a@ ny @ (Brsogt") .

Extending a linear function A € 6* (the dual space) to b by zero on all other summands,
let L(A) be the highest weight integrable module over @, i.e., the irreducible module

that admits an eigenvector of b with weight A. Since K is the central element of g, it is
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represented by a scalar A(K), called the level of L(A). Using the following coordinates

~

on b

HthQm’(—rd—i-z—i-tK), where 7, t € C, and z € b ,

one can define define the character of L(A) corresponding to the weight space decom-

position with respect to H as

chpy (7, 2,1) = trp 2mil=rdtztiK)
which converges on the domain

X ={h €b: Re(h|K) > 0} = {(7, 2, t): Im(7) > 0}

We denote by Pk the finite set of highest weights A of level A(KX) modulo CK. Defining

the normalized character
chy(r, z,t) == eQmmATChL(A)(T, z,t),

for a suitable rational mp, the Weyl-Kac character formula implies that the finite set

{cha: A € Pk} is SLo(Z)-invariant under the following action:

(gg).(ﬂZ’t):(aT—l—b . c(t|t)>.

cr+d er+d’  cr+d

This property is called modular invariance, and using a number-theoretical lexicon, it
is equivalent to saying that the vector-valued function {chy: A € Pg} is a Jacobi form

(we address the reader to Subsection 2.3 for details).

A natural question might be whether these arguments extend to the case of finite-
dimensional simple Lie superalgebras. A Lie superalgebra is a (non-associative) Zo-
graded algebra, or superalgebra, over a commutative ring (typically R or C) whose prod-
uct, called the Lie superbracket or supercommutator, satisfies two conditions (analogs
of the usual Lie algebra axioms, with grading), called the super skew-symmetry and

the super Jacobi identity. In this case, the situation is slightly different. Indeed, the
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previous explained modular invariance property becomes now a “mock-modular invari-
ance” property, i.e., the vector-valued Kac-Wakimoto characters transforms as mock
modular (or Jacobi) forms. For a precise definition of mock modular transformation
property, we refer to Section 2.2. Roughly speaking, these functions are not invariant
under the action of a certain congruence subgroup of SLy(Z), but we are able to control
the modularity by adding a certain “nice” non-holomorphic piece. In fact, there exist
another way to describe this phenomenon, which is the heart of this thesis. Denoting by
trr,, .(a0) the (th Kac-Wakimoto character relative to the Lie superalgebra sf(m|n)"
for each integer ¢, we considering their generating function
trp,, . (2;7) = Z trr,. . (aq) (1)
lezZ
The mock modularity of the Kac-Wakimoto characters is equivalent to say that try,,

is a meromorphic Jacobi form.

A.2 Kac-Wakimoto characters as canonical Fourier coefficients

Let F' be the Lie superalgebra considered in [24], Section 3, and for each ¢ € Z denote

by F, the (th gl(m|n)"-module arising in the charge decomposition of F' (see (3.4) in

[24]), with m > n > 0. Also, fix M := ™" Let chF} be the associated character. Its
generating function chF is given in (5.1.1). Moreover, let L(A(¢)) be the irreducible
sf(m|n)”-module of highest weight A(¢), and denote by chL(A(¢)) the associated char-
acter. Assuming the basic specialization as in (4.7) of [24], we denote the specialized
character by ter,n(A(g))qLO. As showed in Section 4 of [24], we have

trr,, .(a(e)q"° = chFy - H (1-4"). (A.2.1)

k>1

The generating function chF'(z; 7) of the Kac-Wakimoto characters chFy(7) is a mero-

morphic function in z, therefore its Fourier coefficients are not globally well defined.

133



However, we can define the functions chFy(7) locally, as the Fourier coefficients of

. Im(7) Im(7)
chF(z;7) for —=5% < z < =57, namely

1
chFy(7) ::/ ChF(z;T)e*%”'eZdz. (A.2.2)
0

Since chF'(z; 7) is meromorphic Jacobi form, we shall see that changing the range cor-
respond to choose a different Fourier coefficient, say chFy, o5 instead of chFy, for some
k € Z. Moreover, the difference between chF, and chFy oy is a linear combination of

quasimodular forms.

Let @ as in (3.1.3). In the following Lemma, we show the relation between chFy

and the canonical Fourier coeflicients of ®.

Lemma A.2.1. Let —M < { < M and consider the (th canonical Fourier coefficient

he of ®. Then, we have
2 m—n
chFy(1) = (=)™ ()" ™qTm=m 12 by (7).
Proof. From (3.1.2), we know that

chF(z;7) = T(1)e*™ ™M= (z + g; T> : (A.2.3)

where T(7) := (—=1)™i "¢ s n(7)"~™. Plugging (A.2.3) into (A.2.2) and changing the

T

variable of integration as z — z — 7, we get

02

chFy(r) =T (1)qg>m=—m""5

m—n T

hEL(T) = T(T)qﬂ"%*Thlt@) (1), (A.2.4)

where héz(’)(r) is defined in (3.3.1). In the second equality we have used Lemma (3.3.2).

(-3) _

To conclude the proof it is enough to note that for —M < ¢ < M, we have h, y/ =
Pggnr. O

For ¢ ¢ {—M,—M+1,---, M — 1}, the Kac-Wakimoto characters chF; can not be

written in terms of the canonical Fourier coefficients of ®. However, their difference
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can be expressed as a linear combination of quasimodular forms. More precisely, these
quasimodular forms are the Laurent coefficients of ® near z = 0, as we show in the
following lemma. We describe the result for m = n = 0 (mod 2). Analogous results

can be obtained for the other cases.

Lemma A.2.2. Let —M < { < M and k € N. Then, we have

(6+2M k)2

ChFyoni(7) = (=)™ "p(r) Mg R <he+M(T)

k—1 n/2 —Ma?—a(t+M) (_ {4+ M((2a+1 2j-1
+§;q ((2; _+1)1( S DZJ'(T>>~

Proof. With the same notation as in Lemma A.2.1, from (A.2.4) we know that

chFronis(r) = T D7) = TG E ) (),

where in the second equality we use part 1 of Lemma 3.3.2. Using the Residue Theorem,

we have

k—1
—5tkT . —2mi z o
hij; )(7') = hpo e (T) + 2mi Z lj:eos (CI)(Z +ar;T)e? (t+M)z (”M)) )
a=0

Using the elliptic transformation properties and then Laurent expansion of ® in z =0

(see (3.3.3)), we conclude the proof. O
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