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Kurzzusammenfassung

In der vorliegenden Arbeit beweisen wir eine Reihe von Aussagen über die Beschaf-

fenheit, modularen Transformationseigenschaften und das asymptotische Verhalten von

Fourier-Koeffizienten meromorpher Jacobi-Formen. Desweiteren geben wir Anwendun-

gen in der Theorie der Lie Superalgebren. Durch Arbeiten von Kac und Wakimoto,

Bringmann und Ono, Bringmann und Folsom sowie Bringmann, Folsom und Mahlburg

ist bekannt, dass die Erzeugendenfunktionen von Kac-Wakimoto-Charakteren von

sl(m|n)∧ Superalgebren im Wesentlichen meromorphe Jacobi-Formen sind. Die Ar-

beit von Bringmann und Folsom verallgemeinernd, untersuchen wir Kac-Wakimoto-

Charaktere für jede Wahl von ganzen Zahlen m > n > 0. Darüberhinaus beziehen

wir in unsere Untersuchungen allgemeine meromorphe Jacobi-Formen von positivem

Index in einer Variablen sowie Kac-Wakimoto-Charaktere in mehreren Variablen ein.

Abschließend untersuchen wir das asymptotische Verhalten der Fourier-Koeffizienten

von Kac-Wakimoto-Charakteren in einer Variablen, wobei wir eine Verallgemeinerung

der Hardy-Ramanujan-Kreismethode verwenden.

Abstract

In this thesis, we prove several results concerning the shape, the modular properties,

and the asymptotic behavior of the Fourier coefficients of meromorphic Jacobi forms,

with applications to Lie superalgebras. By work of Kac and Wakimoto, Bringmann

and Ono, Bringmann and Folsom, and Bringmann, Folsom, and Mahlburg it is known

that the generating functions of Kac-Wakimoto characters relative to the s`(m|n)∧

superalgebra are essentially meromorphic Jacobi forms. Extending previous work of

Bringmann and Folsom, we investigate Kac-Wakimoto characters for any choice of inte-

gers m > n > 0. Subsequently, we extend the study to any single-variable meromorphic

v



Jacobi form of positive index, and to multivariable Kac-Wakimoto characters. Finally,

we investigate the asymptotic behavior of the Fourier coefficients of single-variable Kac-

Wakimoto characters using a generalization of the Hardy-Ramanujan Circle Method.
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4.3.3 Shape of ĥm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Multivariable Kac-Wakimoto characters . . . . . . . . . . . . . . . . . 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Statement of the results . . . . . . . . . . . . . . . . . . . . . . 74

x



5.1.2 Outline of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 An elementary non-holomorphic multivariable Jacobi form . . . 75

5.3 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Canonical Fourier coefficients and canonical decomposition . . . 82

5.3.2 The modular properties of h . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Action of certain operators . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Shape of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Asymptotics results for Kac-Wakimoto characters . . . . . . . . . . . 99

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Statement of the Theorems . . . . . . . . . . . . . . . . . . . . 99

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 Transformation properties . . . . . . . . . . . . . . . . . . . . . 103

6.2.2 The Circle Method . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 The Circle Method . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Proof of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 The principal parts . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.2 The holomorphic part . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.3 The non-holomorphic part . . . . . . . . . . . . . . . . . . . . . 122

6.3.4 The principal value integral . . . . . . . . . . . . . . . . . . . . 125

6.3.5 Proof of Theorem 6.1.2 and Corollary 6.1.3 . . . . . . . . . . . . 129

xi



A Kac-Wakimoto characters . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Kac-Wakimoto characters and Jacobi forms: A brief

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Kac-Wakimoto characters as canonical Fourier coefficients . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xii



List of Tables

6.1 Fourier and Laurent coefficients . . . . . . . . . . . . . . . . . . . . . . 108

xiii





CHAPTER 1

Introduction

1.1 Automorphic forms: Bridges for number theory

It sometimes happens that “interesting” sequences can be better understood consid-

ering their generating functions, which, in some cases, satisfy nice analytic properties.

This phenomenon often appears in the context of modular and Jacobi forms. On the

other hand, the rich algebraic structure of these functions gives a hint for their Fourier

coefficients to encode apparently unrelated interesting and hidden informations. It is

nowadays one of the main goals in number theory to understand the bridges between

automorphic forms and other branches of mathematics. One of the most important

and fascinating examples is given by the so-called Monstrous Moonshine, the hidden

relation between the Fourier coefficients of the modular invariant j-function and the

dimensions of irreducible representations of the Monster group M, the largest sporadic

simple group (of order ≈ 8 · 1053).

The story of Moonshine started in 1978, when J. McKay made a surprising and

astonishing discovery, that we may summarize as:

196884 = 196883 + 1,

21493760 = 21296876 + 196883 + 1,

864299970 = 842609326 + 21296876 + 2 · 196883 + 2 · 1.

In fact, these are the first three of infinitely many equations, in which the left-hand
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sides consists of the Fourier coefficients of the j-function

j(τ) =
1

e2πiτ
+ 744 + 196884e2πiτ + 21493760e4πiτ + 864299970e6πiτ + · · · ,

and on the right hand side, we find linear combinations of the dimensions of the

smallest irreducible representations of M. This observation suggested that an infinite-

dimensional graded representation of M must exist. Since the graded dimension is the

graded trace of the identity element of M, J. G. Thompson [33] conjectured that the

graded traces of nontrivial elements g of M on such a representation may be viewed in

the same way. It was in 1979, when G. H. Conway and S. P. Norton [14] conjectured

that certain Hauptmoduln (modular functions that are generators of a genus 0 modular

function field) are the graded traces of infinite-dimensional representations of M. This

unexpected connection is knows as the Monstrous Moonshine, and it was proven by R.

Borcherds [3] in 1992, using the no-ghost theorem from string theory and the theory

of vertex operator algebras and generalized Kac-Moody algebras.

In the same spirit as Monstrous Moonshine, between the 70s and the 80s in a series

of papers [20, 21, 23, 24], V. G. Kac and M. Wakimoto constructed a bridge between

number theory (again the theory of modular forms) and Lie theory. Roughly speaking,

the previously explained role of the Monster group was replaced by certain infinite

dimensional Lie algebras. We describe this connection in more details in Appendix

A.1.

1.2 Recent development in the theory of meromorphic Jacobi

forms

The theory of holomorphic Jacobi forms was first extensively studied by M. Eichler and

D. Zagier [16]. One of the main properties of a holomorphic Jacobi form ϕ (of positive

index) is that it has a theta-decomposition, i.e., it can be written as ϕ = h ·ϑ, where ϑ

2



is a vector-valued theta-function, and h is a vector-valued function whose components

are “essentially” the Fourier coefficients of Φ (see (4.3.1)). In particular, due to the

modularity of ϕ and ϑ, the function h is a vector valued modular form.

If we allow Φ to be meromorphic in the elliptic variable, i.e., Φ is a quotient of

two holomorphic Jacobi forms, what we said above for holomorphic Jacobi forms is no

longer true. In the third chapter of his Ph.D. thesis [36], while investigating the nature

of mock theta functions, S. Zwegers showed that if ϕ is a meromorphic Jacobi form

then its Fourier coefficients are no longer modular. More precisely, he showed that the

error to the modularity can be controlled by adding a certain non-holomorphic function

which depends on the poles of ϕ, and that if ϕ has only simple poles, then the Fourier

coefficients are mixed mock modular forms.

Subsequently, A. Dabholkar, S. Murthy, and D. Zagier [15] reinvestigated and re-

formulated this phenomenon motivated by the study of the quantum theory of black

holes. In their approach, they constructed a canonical decomposition of a meromorphic

Jacobi form into a finite part and a polar part, which arises “naturally”, and they have

a concrete interpretation in the theory of black holes. Moreover, they investigated in

detail the modularity of the canonical Fourier coefficients (the Fourier coefficients of

the finite part) in the case that ϕ has poles of order at most 2. They showed that they

have a mock modular behavior.

Finally, investigating the modularity properties of certain characters associated to

certain Lie superalgebras (see Section A.1), K. Bringmann and A. Folsom described

the structure of the Fourier coefficients of the meromorphic Jacobi form

ϑ
(
z + 1

2
; τ
)m

ϑ(z; τ)n
,

where ϑ is as in (2.3.1), and m > n ≥ 0 are even integers. In this case, when the

Jacobi form has poles of order n > 2, the structure of its Fourier coefficients is more

complicated and led to the definition of a new automorphic object, almost harmonic
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Maass forms (see Definition 2.2.6). We also mention K. Bringmann and A. Folsom’s

subsequent paper in collaboration with K. Mahlburg [8], where they studied the special

case of m = n > 0. For negative index Jacobi forms we refer the reader to [6].

1.3 The results of this thesis

We now turn to the main results of this thesis. The main goal is to extend the results

explained above to more general settings. Here we state the theorems without technical

details. Precise statements and discussions may be found in the relevant chapters.

Roughly speaking, the main purpose of this thesis is to determine the structure and

the transformation properties of single and multivariable meromorphic Jacobi forms

of positive index. As an application, we apply these results to the Kac-Wakimoto

characters, in order to determine their transformation properties and the asymptotic

behavior of their coefficients.

As mentioned before, in [7], K. Bringmann and A. Folsom studied the modularity

and the structure of Kac-Wakimoto characters related to the Lie superalgebra s`(m|n)∧,

for m ≡ n ≡ 0 (mod 2). We extend their results to any pair of integers (m,n),

with m > n > 0. With this assumption, we deal with meromorphic Jacobi forms of

integral or half-integral index. We shall see that studying Kac-Wakimoto characters is

“equivalent” to studying the canonical Fourier coefficients h` of

ϑ
(
z + 1

2
; τ
)m

ϑ (z; τ)n
. (1.3.1)

Roughly speaking, these are, up to q-powers, the Fourier coefficients of Φ in a specific

range on z. For a precise definition, we refer the reader to (3.1.5). We have the

following result.

Theorem 1.3.1. Let m > n > 0 with n, m ∈ Z, let ` ∈ Z, and let h` be the `th

canonical Fourier coefficient of (1.3.1). Then h` is a component of the holomorphic

4



part of a vector-valued almost harmonic Maass form of weight m−n−1
2

.

As a consequence, we have the following modularity result for Kac-Wakimoto char-

acters.

Corollary 1.3.2. With the assumptions as in Theorem 1.3.1, let trLm,n(Λ(`)) be the

`th Kac-Wakimoto character associated to the irreducible s`(m|n)∧-module of highest

weight Λ(`). Then, up to multiplication by q powers and a modular form, trLm,n(Λ(`)) is

a component of the holomorphic part of a vector-valued almost harmonic Maass form.

For a more precise relation between the Kac-Wakimoto characters and the canonical

Fourier coefficients of Theorem 1.3.1, we refer the reader to Appendix A.2.

The Jacobi form considered in Theorem 1.3.1 is not a special case. Indeed, we

shall show that the same modularity properties are satisfied by the canonical Fourier

coefficients of any meromorphic Jacobi form of positive index, that admits poles at

torsion points.

Theorem 1.3.3. Let ϕ(z; τ) be a meromorphic Jacobi form of positive index M and

weight k, with poles with respect to z in Qτ + Q. Moreover, let h2M := (h`)` (mod 2M),

where h` is the `th canonical Fourier coefficient of ϕ. Then h2M is the holomorphic

part of a vector-valued almost harmonic Maass form of weight k − 1
2
.

Kac-Wakimoto characters as considered by Bringmann, Folsom, and Ono [7, 11, 17],

and as we take into account in Corollary 1.3.2 are specializations of more general

characters given in [24] as

chF =
∑
`∈Z

chF`ζ
` = eΛ0

∏
k≥1

∏m
r=1

(
1 + ζξrq

k− 1
2

)(
1 + ζ−1ξ−1

r qk−
1
2

)
∏n

j=1

(
1− ζξm+jq

k− 1
2

)(
1− ζ−1ξ−1

m+jq
k− 1

2

) . (1.3.2)

The function chF is “essentially” the multivariable meromorphic Jacobi form

Φ(z,u; τ) :=

∏s
r=1 ϑ

(
z + ur + 1

2
; τ
)mr∏t

j=1 ϑ (z − wj; τ)nj
. (1.3.3)
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In joint work with K. Bringmann, we extend the notion of canonical Fourier coefficient

to the multivariable setting, which we denote by h (see (5.3.2)). Extending the previous

results to multivariable Jacobi forms, we have the following. For the notation we refer

the reader to Subsection 5.1.1.

Theorem 1.3.4. The canonical Fourier coefficient h : Cs+t × H → Cm−n is the holo-

morphic part of a multivariable almost harmonic Maass-Jacobi form of weight m−n−1
2

.

As a special case, considering mr = nj = 1 for all r and j in (1.3.3), we show

that considering the additional variables in the generating function of Kac-Wakimoto

characters imposes extra structure which gives a cleaner picture for the specialized

character as these are specializations of mixed H-harmonic Maass-Jacobi forms (see

Definition 2.3.6).

Corollary 1.3.5. The multivariable Kac-Wakimoto characters chF` are the holomor-

phic parts of mixed H-harmonic Maass-Jacobi form.

Finally, in light of Theorem 1.3.1 and Theorem 1.3.3, we investigate the asymptotic

behavior of the coefficients of Kac-Wakimoto characters. Let

trLm,n(Λ(`))q
L0q−

`
2 =

∑
t≥0

c`(t)q
t.

Using a generalization of the Hardy-Ramanujan Circle Method, in Theorem 6.1.2, we

determine the asymptotic behavior of c`(t) as t → +∞. We omit the statement of

this result in this section since it is rather technical and needs heavy notation. As a

consequence, we determine the main term in the asymptotic behavior c`(t).

Corollary 1.3.6. As t→∞

c`(t) ∼ Ct
n
2
−2e

2π
√
t(n2 +m−n−1

6 ),
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where

C :=

(
m−n

2

)n
2
−1
eπi

9m−5n
8

√
n
8

+ m−n−1
24

2
n+1

2 π
n
2

(
n
2
− 1
)
!

.

1.4 Outline of the Thesis

In Chapter 2, we give all the preliminaries necessary to prove our results. More pre-

cisely, we describe the automorphic forms we are interested in (modular form, Jacobi

forms, and non-holomorphic generalizations), as well as certain differential operators

acting on these forms. In Chapter 3, we prove Theorem 1.3.1 and Corollary 1.3.2.

We give a unified proof considering Kac-Wakimoto characters relative to s`(m|n)∧, for

any possible choice of integers m > n > 0, without any restriction on the parity. We

extend this result to any meromorphic Jacobi form of positive index in Chapter 4, prov-

ing Theorem 1.3.3. In Chapter 5, we consider multivariable Kac-Wakimoto characters,

proving Theorem 1.3.4 and Corollary 1.3.5. Finally, in Chapter 6, we investigate the

asymptotic behavior of single-variable Kac-Wakimoto characters. This leads to the

proof of Corollary 1.3.6.
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CHAPTER 2

Automorphic forms and differential operators

Here and throughout the thesis, we denote by H the complex upper half plane:

H := {τ ∈ C : Imτ > 0}.

The special linear group SL2(Z) :=
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
acts on H via

Möbius transformations

γ =
(
a b
c d

)
: H→ H, τ 7→ γτ :=

aτ + b

cτ + d
.

Since the points of the quotient space SL2(Z)\H are moduli (i.e., parameters) for the

isomorphism classes of elliptic curves over C, the group SL2(Z) is sometimes called

modular group. The dramatis personae of this thesis are (generalizations of) modular

forms. Roughly speaking, a modular form is a function defined on H that transforms

in a specific way under the action of SL2(Z). However, the theory of modular forms

becomes much more rich and interesting whenever one considers functions that satisfy

this transformation property just for certain congruence subgroups of SL2(Z), i.e.,

finite index subgroups whose elements satisfies certain congruence properties. For the

purposes of this thesis, we consider three kinds of congruence subgroups, namely, for

a positive integer N , we define

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

Γ1(N) :=
{(

a b
c d

)
∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}
,

Γ(N) :=
{(

a b
c d

)
∈ Γ1(N) : b ≡ 0 (mod N)

}
.
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Additionally, it is also possible to define an action of the Jacobi group ΓJ := SL2(Z)nZ2

on C× H via

(γ, (λ, µ)) : C× H→ C× H, (z, τ) 7→
(
λz + µ

cτ + d
, γτ

)
,

where γ =
(
a b
c d

)
. We recall that the group law in ΓJ is given by (γ, v)(η, u) :=

(γη, vη + u), where the vectors have to be considered row vectors. This action gives

rise to the definition of two variable relatives of modular forms, in the same spirit as

before, which are called Jacobi forms. The notion of congruence subgroups extend in

a natural way, and we define ΓJ0 (N) := Γ0(N) n Z2 and ΓJ1 (N) := Γ1(N) n Z2.

Before giving the precise definition of the objects mentioned in the previous discus-

sion we need to introduce several differential operators, which play a key role.

2.1 Differential operators

The entire theory of non-holomorphic modular and Jacobi forms depends on the action

of several differential operators on the space of C∞-functions. The role of these oper-

ators is of fundamental importance for a deep understanding of the relations between

number theory and representation theory. For a detailed discussion, we refer the reader

to [2]. We describe separately the single-variable case and the multivariable case.

2.1.1 Single-variable differential operators

Throughout this subsection we let f : H→ C ∈ C∞(H). The parameter in H is indicated

by τ = u+ iv, where u and v denotes respectively the real part and the imaginary part

of τ . Moreover, for convenience of notation we denote

∂τ :=
∂

∂τ
=

1

2

(
∂

∂u
− i ∂

∂v

)
, ∂τ :=

∂

∂τ
=

1

2

(
∂

∂u
+ i

∂

∂v

)
. (2.1.1)
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As we shall see, in this thesis we consider certain classes of functions which are defined

as invariant or almost invariant functions, with respect to the action of the slash oper-

ator, and that are eigenfunctions with respect to the action of the hyperbolic Laplace

operator, sometimes simply called the Laplacian. For a fixed integer (resp. half integer)

k and a matrix γ ∈ SL2(Z) (resp. ∈ Γ0(4)), we define the automorphy factor of weight

k by

j(γ, τ) :=


√
cτ + d if k ∈ Z,(
c
d

)
ε−1
d

√
cτ + d if k ∈ 1

2
+ Z,

(2.1.2)

where

εd :=


1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4),

and where
( ·
·

)
denotes the Kronecker–Legendre symbol. The weight k slash operator∣∣

k
defines an action of the modular group SL2(Z) (resp. Γ0(4)) on the space of C∞-

functions f : H→ C by

f
∣∣
k
γ(τ) := j(γ, τ)−2kf(γτ). (2.1.3)

The weight k hyperbolic Laplace operator is defined by

∆k := −4v2∂τ∂τ + 2ikv∂τ .

It is a standard fact that these two operators commute.

Lemma 2.1.1. Letting f ∈ C∞(H) and γ ∈ SL2(Z), then

∆k(f
∣∣
k
γ) = ∆k(f)

∣∣
k
γ.

Proof. To prove this lemma it is enough to apply Proposition 2.1.2 to (2.1.4).

Fixing k (= weight), we shall consider certain C-vector spaces of functions invariants

with respect to
∣∣
k
. It is possible to move between spaces of different weights thanks

11



to the action of the Maass raising operator Rk and Maass lowering operator Lk, which

are defined by

Rk := 2i∂τ +
k

v
, Lk := −2iv2∂τ .

The well known commutator relation

−∆k = Lk+2Rk + k = Rk−2Lk (2.1.4)

implies the following.

Proposition 2.1.2 ([28], Section 7). If f ∈ C∞(H) and γ ∈ SL2(Z), then

Rk(f)
∣∣
k+2

γ = Rk(f
∣∣
k
γ), ∆k+2(Rk(f)) = Rk(∆k(f)) + kRk(f),

Lk(f)
∣∣
k−2

γ = Lk(f
∣∣
k
γ), ∆k−2(Lk(f)) = Lk(∆k(f))− (k − 2)Lk(f).

We conclude this subsection describing a differential operator which plays a funda-

mental role in the theory of harmonic weak Maass forms, namely, the ξ-operator. For

a fixed half integer k, we define ξk by

ξk := 2ivk∂τ . (2.1.5)

As proven in [4], ξk is a map between harmonic weak Maass forms and holomorphic

modular forms. We shall describe this in more details in Subsection 2.2.2. More

generally, one can use this operator to classify non-holomorphic modular forms.

2.1.2 Multivariable differential operators

The theory in the multivariable case is much more rich. Not only we can extend

all the single-variable operators previously described, but there exist other differential

operators which play an important role and interact with each other in a marvelous way.

With few exceptions, we describe the situation for 2-variable differential operators.

12



Here and throughout, we denote column vectors by v = (vi)1≤i≤n = (v1, · · · , vn).

Moreover, for an n× n matrix M and a vector v ∈ Cn, we denote by vt the transpose

row vector, and define

M [v] := vtMv.

Let n ∈ N and g : Cn×H→ C ∈ C∞(Cn×H). As before, the parameter in H is denoted

by τ = u + iv, while the parameter in Cn is denoted by z = x + iy. For n = 1 we set

z = z1. For a matrix L ∈ Mn(Z), and a half integer k, the weight k and index L slash

operator is defined by

g
∣∣
k,L

[γ, (λ,µ)](z; τ) :=
eπi(−

c
cτ+d

L[z+λτ+µ]+L[λ]τ+2ztLλ)

j(γ, τ)2k
g

(
z

cτ + d
;
aτ + b

cτ + d

)
,

where j(γ, τ) is given in (2.1.2) and
[
γ =

(
a b
c d

)
, (λ,µ)

]
∈ ΓJ n Zn.

Remark. To facilitate the reader, we explicitly give the slash operator in the special

case n = 1. Let k ∈ 1
2
Z and M a positive integer. The weight k and index M slash

operator
∣∣
k,M

defines an action of the Jacobi group ΓJ on C∞(C× H) by

g
∣∣
k,M

[γ, (λ, µ)](z; τ) :=
e2πi(− Mc

cτ+d
(z+λτ+µ)2+Mλ2τ+2Mλz)

j(γ, τ)2k
g

(
z

cτ + d
; γτ

)
.

For fixed k ∈ 1
2
Z and M ∈ Z, the Casimir operator

Ck,M := −2(τ − τ)2∂τ∂τ − (2k − 1)(τ − τ)∂τ +
(τ − τ)2

4πiM
∂τ∂

2
z +

k(τ − τ)

4πiM
∂z∂z

+
(z − z)(τ − τ)

4πiM
∂z∂

2
z − 2(w − z)(τ − τ)∂τ∂z + (1− k)(z − z)∂z +

(τ − τ)2

4πiM
∂τ∂

2
z

+

(
(z − z)2

2
+
k(τ − τ)

4πiM

)
∂2
z +

(z − z)(τ − τ)

4πiM
∂z∂

2
z

extends the notion of Laplace operator. Moreover, we define the Heisenberg Laplace

operator ∆H
M and the heat operator HM by

∆H
M :=

τ − τ
2i

∂z∂z + 2πM(z − z)∂z,

HM := 8πiM∂τ − ∂2
z .

13



These two operators commute with
∣∣
k,M

, as we can see in the following proposition.

Proposition 2.1.3. For γ ∈ SL2(Z) and ϕ ∈ C∞ (H× C), we have

Ck,M
(
ϕ
∣∣
k,M

γ
)

= (Ck,Mϕ)
∣∣
k,M

γ,

∆H
M

(
ϕ
∣∣
k,M

γ
)

=
(
∆H
Mϕ
) ∣∣

k,M
γ.

Proof. The proof of this proposition follows from Proposition 2.1.4 noting that both

Ck,M and ∆H
M can be written in terms of the raising and lowering operators (see (2.3)

and (2.4) in [12]).

In contrast to the single variable case, it is possible to jump between different spaces

of Jacobi forms whose weights differ by 1. To do so, we recall the 2-variable raising

and lowering operators

Xk,M
+ := 2i

(
∂τ +

z − z
τ − τ

∂z + 2πiM
(z − z)2

(τ − τ)2 +
k

τ − τ

)
,

Y k,M
+ := i∂z − 4πM

z − z
τ − τ

,

Xk,M
− := −τ − τ

2i
((τ − τ) ∂τ + (z − z) ∂z) ,

Y k,M
− := −τ − τ

2
∂z,

which were introduced by Berndt and Schmidt in [2] (Section 3.5).

Remark. As one can immediately see from the definition, the lowering operators do

not depend on the weight or the index. For this reason, we will sometimes omit them

from the notation.

For the purposes of this thesis we give a more general definition for X− allowing

many elliptic variables. Let N ∈ Z>0. For a positive definite matrix L ∈ GLN(Z),

define

X− = Xk,L
− := −τ − τ

2i
((τ − τ) ∂τ + (z− z) · ∂z) ,
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where “·” denotes the standard scalar product in RN , z = (z1, · · · , zN), and ∂z :=

(∂z1 , · · · , ∂zN ). The following proposition summarizes their properties.

Proposition 2.1.4 ([2] Remark 3.5.2). For γ ∈ SL2(Z) and ϕ ∈ C∞ (H× C), we have

Xk,M
±

(
ϕ
∣∣
k,M

γ
)

=
(
Xk,M
± ϕ

) ∣∣
k±2,M

γ,

Y k,M
±

(
ϕ
∣∣
k,M

γ
)

=
(
Y k,M
± ϕ

) ∣∣
k±1,M

γ.

Finally, we introduce two multivariable generalizations of the ξ-operator defined in

(2.1.5), namely,

ξk,M :=

(
τ − τ

2i

)k− 3
2
(
−(τ − τ)∂τ − (z − z)∂z +

1

4πM

(
τ − τ

2i

)
∂2
z

)
,

ξHk,M := −
√
τ − τ
2iM

e−2πiM
(z−z)2
τ−τ ∂z.

As for ξk, these two operators can be used to classify non-holomorphic Jacobi forms.

It will be useful for our computation to use the following compact version of the

Casimir operator, in terms of the differential operators previously described. The

operator Ck,M can be written in terms of the raising and the lowering operators, as

described in the following proposition.

Proposition 2.1.5. With the notation as above, we have

Ck,M =
Xk,M
− HM

2πM
+

k

2πM
∆H
M −

1

2πM

(
X

1
2
,M

+

(
Y k,M
−

)2

− 4i

(τ − τ)

(
Y k,M
−

)2
)

+
2i(2k − 1)

τ − τ
ξk,M .

Before proving this proposition, we need the following lemma describing certain

commutator relations between the operators introduced before.

Lemma 2.1.6. With the notations as above, we have

HMX− = X−HM + 2∆H
M +

16πiM

τ − τ
X−, (2.1.6)
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(
τ − τ

2i

) 5
2
−k

ξk,M = X− −
1

4πM
Y 2
−. (2.1.7)

Proof. By definition

HMX− =
(
8πiM∂τ − ∂2

z

)(
−(τ − τ)2

2i
∂τ −

(τ − τ)(z − z)

2i
∂z

)
,

which equals

8πiM

(
−2(τ − τ)

2i
∂τ −

(τ − τ)2

2i
∂τ∂τ −

(z − z)

2i
∂z −

(τ − τ)(z − z)

2i
∂z∂τ

)
+

(
(τ − τ)2

2i
∂τ∂

2
z +

(τ − τ)(z − z)

2i
∂z∂

2
z +

2(τ − τ)

2i
∂z∂z

)
.

Rearranging the terms we rewrite it as(
−(τ − τ)2

2i
∂τ −

(τ − τ)(z − z)

2i
∂z

)(
8πiM∂τ − ∂2

z

)
− 8πM(τ − τ)∂τ

− 8πM(z − z)∂z + 2
(τ − τ)

2i
∂z∂z + 4πM(z − z)∂z,

which gives (2.1.6). The proof of (2.1.7) is trivial.

Proof of Proposition 2.1.5. From (2.3) in [12], we know that

Ck,M =2Xk−2,M
+ Xk,M

− − 1

2πM

(
Xk−2,M

+ Y k−1,M
− Y k,M

− − Y k−1,M
+ Y k−2,M

+ Xk,M
−

)
+
k − 2

2πM
Y k−1,M

+ Y k,M
−

=

(
2Xk−2,M

+ +
1

2πM
Y+Y+

)
Xk,M
− − 1

2πM
Xk−2,M

+ Y−Y− +
k − 2

2πM
∆H
M

=AXk,M
− − 1

2πM
B +

k − 2

2πM
∆H
M . (2.1.8)

We compute A and B separately.

By definition we have

A = 4i

(
∂τ +

z − z
τ − τ

∂z + 2πiM

(
z − z
τ − τ

)2

+
k − 2

τ − τ

)
+

1

2πM

(
i∂z − 4πM

z − z
τ − τ

)2

.

(2.1.9)
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Expanding the square in the second summand of (2.1.9), we get

A = 4i

(
∂τ +

z − z
τ − τ

∂z + 2πiM

(
z − z
τ − τ

)2

+
k − 2

τ − τ

)

+
1

2πM

(
−∂2

z − 8πiM
z − z
τ − τ

∂z −
4πiM

τ − τ
+ (4πM)2

(
z − z
τ − τ

)2
)
,

which equals

4i∂τ −
1

2πM
∂2
z +

2i

τ − τ
(2k − 5) =

1

2πM
HM +

2i

τ − τ
(2k − 5).

We now move to B. By definition

Xk−2,M
+ = X

1
2
,M

+ +
2i

τ − τ

(
k − 5

2

)
,

therefore

B = X
1
2
,M

+ Y 2
− +

2i

τ − τ

(
k − 5

2

)
Y 2
−.

As a consequence, we rewrite (2.1.8) as(
1

2πM
HM +

2i

τ − τ
(2k − 5)

)
Xk,M
− − 1

2πM

(
X

1
2
,M

+ Y 2
− +

2i

τ − τ

(
k − 5

2

)
Y 2
−

)
+
k − 2

2πM
∆H
M .

To conclude, we note that using (2.1.6), the Casimir operator equals

Ck,M =
1

2πM
X−HM +

2i

τ − τ
(2k − 1)Xk,M

− − 1

2πM
X

1
2
,M

+ Y 2
− +

k

2πM
∆H
M

+
2k − 1

2πiM(τ − τ)
Y 2
− −

4

2πiM(τ − τ)
Y 2
−

=
1

2πM
X−HM +

k

2πM
∆H
M −

1

2πM

(
X

1
2
,M

+ Y 2
− −

4i

(τ − τ)
Y 2
−

)
+

2i(2k − 1)

τ − τ
ξk,M ,

where in the last step we have used (2.1.7).

We conclude this subsection by recalling a commutator relation between Ck,M and

Y k,M
+ .
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Proposition 2.1.7. With the notation as above, we have

Ck,MY k−1,M
+ = Y k−1,M

+ Ck−1,M − (k − 2)Y k−1,M
+ .

In order to prove Proposition 2.1.7, we need the following, which can be easily

deduced from Proposition 3.6 in [32].

Lemma 2.1.8. The following are true:

1. Xk,M
− Y k,M

+ = Y k,M
+ Xk,M

− − Y k,M
− ;

2. Xk,M
+ Y k,M

+ = Y k,M
+ Xk,M

+ − 2i
τ−τ Y

k,M
+ ;

3. Y k,M
− Y k,M

+ = Y k,M
+ Y k,M

− − 2πM ;

4. ∆H
MY

k,M
+ = Y k,M

+ ∆H
M − 2πMY k,M

+ .

Proof of Proposition 2.1.7. Using the decomposition in (2.1.8) and Lemma 2.1.8, we

compute each piece separately. In what follows we omit the weight and the index from

the notation of each operator. We assume them to be k and M respectively everywhere.

1. For the first piece, we have

X+ (X−Y+) = X+ (Y+X− − Y−) = Y+X+X− −
2i

τ − τ
Y+X− −X+Y−.

2. Next, we compute

Y+Y+ (X−Y+) = Y+Y+ (Y+X− − Y−) = Y+Y+Y+X− − Y+Y+Y−.
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3. Finally, we can see that

X+Y− (Y−Y+) = X+Y− (Y+Y− − 2πM) = X+ (Y−Y+)Y− − 2πMX+Y−

= X+ (Y+Y− − 2πM)Y− − 2πMX+Y−

= (X+Y+)Y−Y− − 4πMX+Y−

=

(
Y+X+ −

2i

τ − τ
Y+

)
Y−Y− − 4πMX+Y−

= Y+X+Y−Y− −
2i

τ − τ
Y+Y−Y− − 4πMX+Y−.

Therefore, using these three equalities and part 4 of Lemma 2.1.8, we have

Ck,MY+ =2

(
Y k,M

+ Xk−2,M
+ Xk,M

− − 2i

τ − τ
Y k−2,M

+ Xk,M
− −Xk−2,M

+ Y k,M
−

)
− 1

2πM

(
Y k,M

+ Xk−2,M
+ Y k−1,M

− Y k,M
− − 2i

τ − τ
Y k−2,M

+ Y k−1,M
− Y k,M

−

−4πMXk−2,M
+ Y k,M

−

)
+
k − 2

2πM

(
Y k,M

+ ∆H
M − 2πMY k,M

+

)
+

1

2πM

(
Y k,M

+ Y k−1,M
+ Y k−2,M

+ Xk,M
− − Y k,M

+ Y k−1,M
+ Y k,M

−

)
=Y+Ck,M + i(τ − τ)Y+ξk,M − (k − 2)Y+ −

1

2πM
Y+∆H

M .

To conclude the proof it is enough to check that

Ck,M = Ck−1,M − i(τ − τ)ξk,M +
1

2πM
∆H
M ,

which can be easily proven using Proposition 2.1.5.

2.2 Modular forms and harmonic weak Maass forms

In this section, we recall the notions of holomorphic modular form and certain non-

holomorphic generalizations such as harmonic weak Maass forms. More information

about these objects can be found in the path breaking papers [4, 36]. For a complete

overview we refer the reader to [28, 34].
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2.2.1 Weakly holomorphic Modular forms and Quasimodular forms

At the beginning of this chapter we recalled that the group SL2(Z) acts on the upper

half plane H via Möbius transformations. In fact, this action yields an action of SL2(Z)

on C∞-functions on H via the slash operator, already defined in (2.1.3). Here and

throughout this section, we let k ∈ 1
2
Z. Moreover, here and throughout the thesis, we

let q := e2πiτ .

Definition 2.2.1 (Weakly holomorphic modular forms). Let χ be a Dirichlet character

modulo N ∈ Z>0. A holomorphic function f : H → C is called a weakly holomorphic

modular form of weight k, level N , and Nebentypus character χ if the following hold:

1. For each γ =
(
a b
c d

)
∈ Γ0(N), f

∣∣
k
γ = χ(d)f .

2. The poles of f , if any, are supported at the cusps of Γ0(N), i.e., f does not have

poles on H, and for all γ ∈ SL2(Z), f has a Fourier expansion of the form

f
∣∣
k
γ(τ) =

∑
n≥nγ

a(n)q
n
N , nγ ∈ Z. (2.2.1)

As an example of modular form we recall the Dedekind η-function

η(τ) := q
1
24

∏
j≥1

(
1− qj

)
. (2.2.2)

As we shall see, this function appears as a factor in the generating function of Kac-

Wakimoto characters. In the following lemma we recall the transformation properties

of η (see for instance [30]).

Lemma 2.2.2. The η-function satisfies the following modular transformation law for

all γ =
(
a b
c d

)
∈ SL2(Z):

η (γτ) = ψ(γ)(cτ + d)
1
2η(τ).

Here, the multiplier ψ(γ) is a 24th root of unity, which is given explicitly in [30].
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The C-vector space of weakly holomorphic modular forms of weight k and level N

is denoted by M !
k(N). If nγ ≥ 0 (defined in (2.2.1)) for all γ ∈ SL2(Z), then f is called

holomorphic modular form, while if nγ > 0 for all γ ∈ SL2(Z), then f is called a cusp

form. The C-vector space of holomorphic modular forms (resp. cusp forms) of weight

k and level N is denoted by Mk(N) (resp. Sk(N)). Special and important examples of

modular forms are given by Eisenstein series. In order to define them, for a positive

integer k we denote the divisor function by σk−1(n) :=
∑

1≤d|n d
k−1. For even k ≥ 2,

the weight k Eisenstein series Ek is given by

Ek(τ) := 1− 2k

Bk

∑
n≥1

σk−1(n)qn,

where Bk denotes the usual kth Bernoulli number. It is a standard fact that for each

even k ≥ 4, Ek is a holomorphic modular form of weight k and level 1. Moreover, the

graded ring M(1) :=
⊕

kMk(1) is freely generated by the Eisenstein series E4 and E6.

The Eisenstein series E2 fails to be modular. However, it is a standard fact that adding

a simple non-holomorphic term yields a modular object. More precisely, its completion

Ê2(τ) := E2(τ)− 3

πv

transforms as a modular form of weight 2 and level 1. Functions like Ê2 play an

important role in the theory, and generate the space of almost holomorphic modular

forms (over the space of modular forms), firstly introduced by Kaneko and Zagier [25].

Definition 2.2.3 (Almost holomorphic modular forms). A function f : H→ C is called

(weakly) almost holomorphic modular form of weight k and level N if the following

hold:

1. For each γ ∈ Γ0(N), f
∣∣
k
γ = f .

2. The function f can be written as a polynomial in 1
v

with (weakly) holomorphic
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coefficients, i.e., there exist f0, · · · , fD (weakly) holomorphic functions such that

f(τ) =
D∑
j=0

fj(τ)

vj
.

The integer D is called the depth of f , and the holomorphic function f0 is called

a quasimodular form.

The set of quasimodular forms of a given weight k, level N , and depth D is

a C-vector space, denoted by QMk,D(N), and it includes derivatives of holomor-

phic modular forms. We also denote the filtered ring of quasimodular forms by

QMk(N) := ∪DQMk,D(N) In the following proposition we describe the basic proper-

ties of quasimodular forms. For more details see [5, 25].

Proposition 2.2.4. 1. We have

∂τ (QMk,D(N)) ⊆ QMk+2,D+1(N).

2. Every quasimodular form in QMk(N) is a polynomial in E2 with modular coef-

ficients, namely,

QMk,D(N) =
D⊕
r=0

Mk−2r(N) · Er
2 .

2.2.2 Harmonic weak Maass forms and almost harmonic Maass forms

In this subsection, we introduce the definition of certain non-holomorphic modular

forms, introduced in 1949 by H. Maass [27], and generalized by J. Bruinier and J.

Funke in [4], called harmonic weak Maass forms, as well as certain generalizations.

The theory of harmonic weak Maass forms has been extensively developed in the last

decade, and it has been discovered that they play a key role in the connection between

number theory and other branches of mathematics and physics. For an overview we

refer the reader to [15, 28, 34].
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Definition 2.2.5 (Harmonic weak Maass form). A smooth function h : H→ C is called

a harmonic weak Maass form of weight k, level N , and Nebentypus character χ if the

following hold:

1. For each γ ∈ Γ0(N), h
∣∣
k
γ = χ(d)h, where d is the lower right entry of γ.

2. The function h is annihilated by the hyperbolic Laplacian, i.e.,

∆kh = 0.

3. There exists a polynomial Ph(q) :=
∑

n≤0 c
+(n)qn ∈ C[q−1] such that h(τ) −

Ph(q) = O (e−εv) as v → ∞ for some ε > 0. Analogous conditions are required

at all the cusps.

Remark. Harmonic weak Maass forms are required to satisfy moderate growth condi-

tions at the cusps. However, this is not the more general definition. In [4] J. Bruinier

and J. Funke considered also other types of harmonic Maass forms based on varying the

growth conditions at cusps. The term “weak” refer to the third condition in Definition

2.2.5.

The C-vector space of harmonic weak Maass forms of weight k, level N , and char-

acter χ is denoted by Hk(N,χ). For convenience, we use the terminology “harmonic

Maass form” instead of “harmonic weak Maass form”. For k 6= 1 harmonic weak Maass

forms have an expansion at infinity given by

h(τ) =
∑

n�−∞

c+(n)qn +
∑
n<0

c−(n)Γ(1− k, 4π|n|v)qn, (2.2.3)

where Γ(a, x) :=
∫∞
x
e−tta−1dt is the incomplete Gamma-function. The holomorphic

part

h+(τ) :=
∑

n�−∞

c+(n)qn
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is called a mock modular form. We will refer to h− := h− h+ as the non-holomorphic

part of h. The ξ-operator introduced in (2.1.5) defines a surjective map between

harmonic Maass forms and cusp forms:

ξ2−k : H2−k(N,χ)→ Sk(N,χ).

We will refer to the cusp form ξ2−k(h) as the shadow of h+.

Remark. Since two harmonic Maass forms with the same non-holomorphic part differ

by a weakly holomorphic modular form, and since the ξ-operator only sees the non-

holomorphic part of h, we say that h− and ξk(h) are respectively the non-holomorphic

part and the shadow of the harmonic Maass form h.

Remark. If the shadow is a unary theta function, we refer to the mock modular form

as a mock theta function, following Zagier’s definition.

We conclude this subsection by defining almost harmonic Maass forms, certain non-

holomorphic automorphic forms recently introduced by K. Bringmann and A. Folsom

[7]. These functions still need to be studied, especially the space that they generate.

They extend the notion of harmonic Maass forms, almost holomorphic modular forms,

and mixed harmonic Maass forms, i.e., C-linear combinations of harmonic Maass forms

multiplied by modular forms, such that the entire function satisfies the transformation

property of a modular form.

Definition 2.2.6 (Almost harmonic Maass form). A smooth function H : H → C is

called an almost harmonic Maass form of weight k ∈ 1
2
Z and depth r ∈ N ∪ {0} for a

congruence subgroup Γ̃ of Γ and character χ if the following hold:

1. For all γ =
(
a b
c d

)
∈ Γ̃, H|kγ(τ) = χ(d)H(τ).

2. The function H can be written as a finite linear combination of objects of the form
r∑
j=1

gjR
j−1
k+2−ν (h) , where h is a harmonic weak Maass form of weight k + 2 − ν,
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ν ∈ 1
2
Z is fixed, and gj are almost holomorphic modular forms of weight ν − 2j

and character χ.

The holomorphic part of H is called an almost mock modular form.

Remark. Note that the first condition follows from the shape of an almost harmonic

Maass form.

One can easily check that almost harmonic Maass forms generalize both harmonic

weak Maass forms and almost holomorphic modular forms. Indeed, if h is trivial, then

H is an almost holomorphic modular form. If the functions gj are trivial and the depth

r = 1, then H = h is a harmonic weak Maass form.

2.3 Holomorphic, meromorphic, and non-holomorphic Jacobi

forms

The aim of this chapter is to define and give the basic properties of Jacobi forms. These

are multivariable functions that are a cross between elliptic functions and modular

forms. In analogy with the modular objects described in the previous section, we

shall consider not only holomorphic Jacobi forms, but also certain non-holomorphic

generalizations. For an extensive description of these objects we refer the reader to

[16].

2.3.1 Holomorphic Jacobi forms

As in Subsection 2.1.2, throughout this section, we denote by z a vector of variables

in Cn, and by τ a variable in H. Because of the transformation properties of a Jacobi

form (see Definition 2.3.1) we shall refer to z as the elliptic variables, and to τ as the

modular variable.
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Definition 2.3.1 (Holomorphic Jacobi form). A holomorphic function ϕ : Cn×H→ C

is a holomorphic Jacobi form of weight k ∈ 1
2
Z, index L ∈ GLn(Z) (positive definite),

and level N if it satisfies the following.

1. For all [γ, (λ,µ)] ∈ Γ0(N)J , ϕ
∣∣
k,L

[γ, (λ,µ)](z; τ) = ϕ(z, τ).

2. For some a > 0, ϕ(z; τ) = O(eaIm(τ)+2π
L[Im(z)]
Im(τ) ).

The C-vector space of Jacobi forms of given weight k, index L, and level N is denoted

by Jk,L(N).

The most famous example of Jacobi form is the so called Jacobi’s theta function

ϑ(z; τ) :=
∑

ν∈ 1
2

+Z

q
ν2

2 e2πiν(z+ 1
2). (2.3.1)

In the following proposition we summarize the main properties of ϑ (for example, see

[30] (80.31) and (80.8)).

Proposition 2.3.2. The following are true:

1. For all λ, µ ∈ Z we have

ϑ(z + λτ + µ; τ) = (−1)λ+µq−
λ2

2 e−2πiλzϑ(z; τ).

2. For all γ =
(
a b
c d

)
∈ SL2(Z) we have

ϑ

(
z

cτ + d
; γτ

)
= ψ(γ)3(cτ + d)

1
2 e

πicz2

cτ+d ϑ(z; τ).

Here ψ is as in Lemma 2.2.2

3. Jacobi triple product identity:

ϑ(z; τ) = −iq
1
8 e−πiz

∏
n≥1

(1− qn)
(
1− e2πizqn−1

) (
1− e−2πizqn

)
.
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With a slight modification of ϑ it is possible to construct Jacobi forms of any

positive index M ∈ 1
2
N, namely, for each ` (mod 2M),

ϑM,`(z; τ) :=
∑
n∈Z

n≡` (mod 2M)

q
n2

4M e2πinz. (2.3.2)

We refer to these functions as index M Jacobi theta functions. The following propo-

sition describes the transformation properties of the vector-valued1 function ϑM :=

(ϑM,`)` (mod 2M).

Proposition 2.3.3 (Eichler–Zagier, [16] Section 5). The function ϑM : C× H→ C2M

is a vector-valued holomorphic Jacobi form of weight 1
2

for SL2(Z) with Weil repre-

sentation % : SL2(Z) → GL2M(C) defined by %T := diag
(
e2πi `

2

4M

)
0≤`<2M

and %S :=(
e2πi−`r

2M

)
0≤r,`<2M

. More precisely, ϑM satisfies the following transformation laws:

ϑM (z; τ + 1) = %TϑM (z; τ) ,

ϑM

(
z

τ
;−1

τ

)
= τ

1
2 e2πiMz2

τ %SϑM(z; τ).

Jacobi’s theta functions play a fundamental role in the theory of Jacobi forms.

They are not just nice examples, but they allow the so called theta decomposition of

any holomorphic Jacobi form, as described in the following proposition. In order to

state the result, we introduce the following notation, that will be often used throughout

the thesis. We denote the vector of elliptic variables by z = (z1, · · · , zn) =: (z,u).

Moreover, we define the blocks of a matrix L ∈ GLn(Z) by

L =

2M bT

b L̃

 , 2M ∈ N, b ∈ Zn−1, L̃ ∈ GLn−1(Z).

Finally, for any n ∈ N, we denote the standard scalar product between two elements

a and b in Cn by a · b. The following proposition extends Theorem 5.1 in [16], where

1See Subsection 2.3.12
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the one-dimensional case is considered. We omit the proof since it is very similar to

that of Theorem 5.1 in [16].

Proposition 2.3.4 (Theta decomposition). Let ϕ : Cn × H → C be a real-analytic

function, holomorphic in the elliptic variable z. Assume that ϕ satisfies

ϕ
∣∣
k,L

[(
1 0
0 1

)
, (λ,µ)

]
= ϕ

for all (λ,µ) ∈ Z2n, then there exists a function h : Cn × H→ C2M such that

ϕ(z; τ) = ϕ(z,u; τ) = h (u; τ) · ϑM
(
z +

1

2M
u · b; τ

)
.

Moreover, if ϕ
∣∣
k,L

[γ, (λ, µ)] = ϕ for all γ in a congruence subgroup of SL2(Z), then

the function h = {h`}` (mod 2M) is a vector-valued real-analytic modular form of weight

k − 1
2

and index L∗ (see (5.2.6)), with multiplier system %−1, with respect to the same

congruence subgroup as ϕ.

We shall refer to the components h` of h as the Fourier coefficients of ϕ with respect

to z. In fact, they differ by the standard Fourier coefficients of ϕ by a q-power.

2.3.2 Almost holomorphic Jacobi forms and H-Harmonic Maass Jacobi

forms

As we have seen, it is possible to consider non-holomorphic functions that transform

as modular forms, such as harmonic Maass forms. In the same spirit, we describe

analogous non-holomorphic Jacobi forms. More precisely, we consider functions that

are non-holomorphic in both the elliptic and modular variables.

The first class of non-holomorphic Jacobi forms that we consider generalizes quasi-

modular forms (see Definition 2.2.3), i.e., we describe a two variable generalization of

the weight 2 Eisenstein series E2.
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Definition 2.3.5 (Almost holomorphic Jacobi forms). A function ϕ : Cn × H→ C is

called an almost holomorphic Jacobi form of index L ∈ GLn(Z) and weight k ∈ Z if it

is a polynomial in
zj−zj
τ−τ and 1

τ−τ , with (weakly) holomorphic coefficients in (z, τ) that

satisfies the same transformation properties of a Jacobi form. The constant term of

this polynomial is called a quasi-Jacobi form.

Remark. The definition above may be extended to congruence subgroups, vector-valued

functions, multipliers, in the same way as for holomorphic Jacobi forms.

Remark. In [26], Libgober considered one-dimensional quasi-Jacobi forms of index 0.

The simplest example of almost holomorphic Jacobi form is given by the weight 1

Jacobi-Eisenstein series

E1(z; τ) :=
∑∗

(a,b)∈Z2

1

(z + aτ + b)
,

where
∑∗ denotes the Eisenstein summation

∑∗

(a,b)∈Z2

:= lim
A→+∞

A∑
a=−A

(
lim

B→+∞

B∑
b=−B

)
.

The associated almost holomorphic Jacobi form is given by

Ê1(z; τ) := E1(z; τ) +
z − z
τ − τ

.

Another class of non-holomorphic Jacobi forms is given by H-harmonic Maass Ja-

cobi forms. We give the definition introduced by K. Bringmann, M. Raum, and O.

Richter in [12], extending previous definitions given by B. Berndt and R. Schmidt [2]

and A. Pitale [29].

Definition 2.3.6 (H-harmonic Maass-Jacobi forms). A real-analytic function ϕ : C×

H→ C is called a Maass-Jacobi form of weight k ∈ Z and index M ∈ 1
2
N for GJ (GJ

a congruence subgroup of ΓJ) if the following conditions are satisfied:
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1. For all [γ, (λ, µ)] ∈ GJ , we have ϕ
∣∣
k,2M

[γ, (λ, µ)](z; τ) = ϕ(z; τ).

2. There exists λ ∈ C such that Ck,M(ϕ) = λϕ.

3. For each fixed z = ατ +β ∈ C, the function ϕ(ατ +β; τ) is bounded, as Im(τ)→

∞.

If λ in condition (2) equals 0, then we say that ϕ is harmonic. If in addition ∆H
M(ϕ) =

0, then ϕ is called Heisenberg harmonic (H-harmonic). Finally, we call ϕ a mixed

(H-)harmonic Maass-Jacobi form if it satisfies condition (1), and it can be written as

a linear combination of (H-)harmonic Maass-Jacobi forms multiplied by weak Jacobi

forms.

Remark. We slightly modify the definition given in [12], relaxing the requirement on

the growth condition.

In general it is not always clear how to determine the holomorphic part of a H-

harmonic Maass Jacobi form. In fact, it is not always obvious that it exists. However,

the functions of interest for this thesis naturally occur as holomorphic parts of (mixed)

H-harmonic Maass-Jacobi forms. We thus, in analogy to mock modular forms, call

them mock Jacobi forms. A special example of a mock Jacobi form, which plays an

important role in this paper, is the Appell-Lerch sum, defined for M ∈ N and z, w ∈ C

such that w − z /∈ Zτ + Z:

fM(z, w; τ) :=
∑
α∈Z

qMα2
e4πiMαz

1− e2πi(z−w)qα
. (2.3.3)

In [36], Zwegers studied and used this function to relate meromorphic Jacobi forms

with Ramanujan’s mock theta functions. In particular, he determined a

non-holomorphic completion for fM , in order to make it transform as a 2-variable

30



Jacobi form. To describe this, we need the real-analytic function RM,` defined by

RM,`(w; τ) :=
∑
λ∈Z

λ≡` (mod 2M)

{
sgn

(
λ+

1

2

)
− E

((
λ+ 2M

Im(w)

Im(τ)

)√
Im(τ)

M

)}

× e−πi
λ2

2M
τ−2πiλw, (2.3.4)

where w ∈ C, and E(z) := 2
∫ z

0
e−πu

2
du. The completion of fM is the function f̂M

defined by

f̂M(z, w; τ) := fM(z, w; τ)− 1

2

∑
` (mod 2M)

RM,`(w; τ)ϑM,`(z; τ). (2.3.5)

Zwegers proved the following.

Proposition 2.3.7 (Zwegers). For M ∈ Z, the function f̂M transforms like a Jacobi

form on C2 × H of weight 1 and index
(

2M 0
0 −2M

)
for SL2(Z) n Z2.

To explain Appell sums in the framework of harmonic Maass(-Jacobi) forms we de-

scribe the action of certain differential operators on the real-analytic functionsRM,`(w; τ).

Proposition 2.3.8. With the notation as above, the following are true:

1. The function RM,` is annihilated by the Heisenberg operator ∆H
−M , and the Casimir

operator C 1
2
,−M . Moreover, for each (α, β) ∈ R2,

H−M

[
e−4πiMαzq−Mα2

RM,` (z + ατ + β; τ)
]

= 0.

2. The function Y
1
2
,−M

+ (RM,`) is an eigenfunction with respect to C 3
2
,−M of eigenvalue

−1
2
.

3. Let α and β ∈ Q, then ∆ 1
2

[
q−Mα2

RM,` (ατ + β; τ)
]

= 0.
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Proof. We start by proving part 1. We point out that H−M (RM,`) = 0. For the special

case M = 1
2

the result is stated in Section 1 of [13]. A simple change of variable implies

the statement for any M .

Next, we prove that RM,` is annihilated by the Heisenberg operator. In order to do

so, we recall that by Lemma 1.8 of [36], we have

∂z [RM,`+M(z; τ)] = −2i
√
iMe

−2πi
(
`z− `2

4M
τ
)
ϑ

(
2Mz − 1

2
+ `τ ;−2Mτ

)
F (z; τ)

(τ − τ)
1
2

,

(2.3.6)

where F (z; τ) := e2πiM
(z−z)2
τ−τ . The operator ∂z acts trivially on anti-holomorphic func-

tions in z, thus, using (2.3.6), we have that ∆H
M (RM,`+M(z; τ)) equals

−
√
iMe−2πi`z− `2

4M
τϑ

(
2Mz − 1

2
+ `τ ;−2Mτ

)(
− τ − τ

8πiM
∂z +

z − z
2

)(
F (z; τ)

(τ − τ)
1
2

)
.

A direct computation gives that(
− τ − τ

8πiM
∂z +

1

2
(z − z)

)(
F (z; τ)

(τ − τ)
1
2

)
= 0.

Therefore RM,` is annihilated by ∆H
−M .

We proceed by showing that C 1
2
,−M(RM,`) = 0. To do so, we make use of Propo-

sition 2.1.5. In particular, since ξ 1
2
,−M (RM,`) = 0 (it can be easily seen with a direct

computation), it remains to prove that

X
1
2
,−M

+ (∂z∂z (RM,`+M(z; τ))) = 0.

For this, using (2.3.6), we compute

∂2
z [RM,`+M(z; τ)] = ∂z [H(z;−τ)]

F (z; τ)

(τ − τ)
1
2

+H(z;−τ)∂z

[
F (z; τ)

(τ − τ)
1
2

]
, (2.3.7)

where

H(z; τ) := −2i
√
iMe−2πi`z+ `2

4M
τϑ

(
2Mz − 1

2
+ `τ ; 2Mτ

)
.
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Since H(z;−τ) and ∂z [H(z;−τ)] are anti-holomorphic, applying X
1
2
,−M

+ to equation

(2.3.7), we obtain

∂z [H(z;−τ)]X
1
2
,−M

+

(
F (z; τ)

(τ − τ)
1
2

)
+H(z;−τ)X

1
2
,−M

+

(
∂z

[
F (z; τ)

(τ − τ)
1
2

])
.

To conclude, a direct computation shows that

X
1
2
,−M

+

(
F (z; τ)

(τ − τ)
1
2

)
= X

1
2
,−M

+

(
∂z

[
F (z; τ)

(τ − τ)
1
2

])
= 0.

The proof of part 2 follows from the previous ones, using Proposition 2.1.7.

To conclude, we prove part 3. By definition of ∆ 1
2

the statement is equivalent of

showing that

∂τ∂τ

[
q−Mα2

RM,` (ατ + β; τ)
]

= − 1

4iv
∂τ

[
q−Mα2

RM,` (ατ + β; τ)
]
,

i.e.,

∂τ∂τ [RM,` (ατ + β; τ)] =

(
2πiα2M − 1

4iv

)
∂τ [RM,` (ατ + β; τ)] .

From Lemma 1.8 in [36] we know that

∂τ [RM,` (ατ + β; τ)] = e2πi(ατ+β)(M−`)q−
(`−M)2

4M
e−4πMv(α+ `−M

2M )
√

4Mv

×
∑

n∈ 1
2

+Z

(−1)n−
1
2

(
n+ α +

`−M
2M

)
e−n

2Mτ−n(2M(ατ+β)+(`−M)τ− 1
2).

Computing the holomorphic derivative term by term we get the result.

The function RM,` is the prototype of the non-holomorphic part of a harmonic

Maass-Jacobi form. Morover, specializing the elliptic variable to torsion points, we get

the non-holomorphic part of a harmonic weak Maass form. In the last part of this

subsection we construct the “mock” part needed to prove our claims. To do so, we

consider a slight modification of the Appell sum fM , namely

µ(z, w; τ) :=
eπiz

ϑ(w; τ)

∑
n∈Z

(−1)nq
1
2(n2+n)e2πinw

1− e2πizqn
,
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where z ∈ C and w ∈ C×. This function was considered and studied by Zwegers in

[36], therefore we will refer to it as Zwegers’ µ-function. Zwegers discovered that µ can

be completed to a non-holomorphic Jacobi form µ̂ by the addition of the real-analytic

function

R(z; τ) :=
∑

λ∈ 1
2

+Z

{
sgn (λ)− E

((
λ+

Im(z)

Im(τ)

)√
2Im(τ)

)}
(−1)λ−

1
2 e−πiλ

2τ−2πiλz,

namely,

µ̂(z, w; τ) := µ(z, w; τ) +
i

2
R(z − w; τ). (2.3.8)

One can easily note that R has the same shape of RM,` (see (2.3.4)). In fact, for

` ∈ {0, 1, · · · , 2M − 1} we have

RM,`(z; τ) = −ie2πiz(M−`)q−
(`−M)2

4M R

(
2Mz − 1

2
+ τ(`−M); 2Mτ

)
.

In the following proposition, we describe the transformation properties of µ̂.

Proposition 2.3.9 (Zwegers, Theorem 1.11 in [36]). With the notation as above, the

following are true:

1. For all k, `, m, n ∈ Z, we have

µ̂ (z + kτ + `, w +mτ + n; τ) = (−1)k+`+m+nq
(k−m)2

2 e2πi(k−m)(z−w)µ̂ (z, w; τ) .

2. For all γ =
(
a b
c d

)
∈ SL2(Z), we have

µ̂

(
z

cτ + d
,

w

cτ + d
; γτ

)
= ψ(γ)−3(cτ + d)

1
2 e−πi

c(z−w)2

cτ+d µ̂ (z, w; τ) ,

where ψ is the multiplier of the Dedekind η-function.

Choosing z and w such that z−w 7→ 2Mz− 1
2

+ τ(`−M), we define the functions

µ
(M,`)
1 (z; τ) :=


2e2πiz(M−`)q−

(`−M)2

4M µ
(
2Mz − 1

2
, (M − `)τ ; 2Mτ

)
if ` 6= M,

2µ
(
2Mz + τ−1

2
, τ

2
; 2Mτ

)
if ` = M,
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and

µ
(M,`)
2 (z; τ) := 2e2πiz(M−`)q−

(`−M)2

4M µ

(
2Mz, (M − `)τ +

1

2
; 2Mτ

)
.

From the discussion above, we know that µ
(M,`)
1 and µ

(M,`)
2 can be completed to non-

holomorphic Jacobi forms, and from (2.3.8) we know that they have both the same

non-holomorphic part RM,`(z; τ). Explicitly, for j ∈ {1, 2}, we define

µ̂
(M,`)
j (z; τ) := µ

(M,`)
j (z; τ) +RM,`(z; τ).

Note that µ
(M,`)
1 and µ

(M,`)
2 are defined in different domains. The first is defined for

2Mz /∈ 2MτZ + 1
2

+ Z, while the second for 2Mz /∈ 2MτZ + Z. As a consequence of

Proposition 2.3.9, we have the following transformation properties for µ̂
(M,`)
1 and µ̂

(M,`)
2 .

In order to state the result, for (α, β) ∈ Z2 we define

Γα,β :=

( a bc d ) ∈ SL2(Z) :
(a− 1)α + cβ, bα + (d− 1)β ∈ Z,

M (−cβ2 + bα2 + (d− a)αβ) ∈ Z

 .

Corollary 2.3.10. Let M ∈ 1
2
Z and ` ∈ {0, · · · , 2M − 1}. Then for j ∈ {1, 2}, the

following are true:

1. For any [γ, (r, s)] ∈ ΓJ1 (4M),

µ̂
(M,`)
j

∣∣
1
2
,−M [γ, (r, s)](z; τ) = (−1)2Msψ(γ)−3µ̂

(M,`)
j (z; τ),

where ψ is the multiplier of the Dedekind η-function.

2. Let (α, β) ∈ Q2. For any γ ∈ Γα,β ∩ Γ1(M), the following are true:

(a) Let ĥj(τ) := ∂w

[
q−Mα2

µ̂
(M,`)
j (w + ατ + β; τ)

]
w=0

, then

ĥj
∣∣

3
2

γ(τ) = ψ(γ)−3ĥj(τ).

(b) Let ĝj(τ) := q−Mα2
µ̂

(M,`)
j (ατ + β; τ), then

ĝj
∣∣

1
2

γ(τ) = ψ(γ)−3ĝj(τ).
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In part (2) of Corollary 2.3.10 we have constructed two real-analytic modular forms,

whose non-holomorphic part is respectively q−Mα2
RM,`(ατ + β; τ) and

q−Mα2
∂w [RM,`(w + ατ + β; τ)]w=0. In addition, Proposition 2.3.8 implies that these

functions are annihilated by the Laplacian. Combining these two results we have the

following.

Corollary 2.3.11. With the notion as above, for j ∈ {1, 2} the following are true:

1. The function q−Mα2
µ̂

(M,`)
j (ατ + β; τ) is a harmonic Maass form of weight 1

2
for

Γα,β.

2. The function ∂w

[
q−Mα2

µ̂
(M,`)
j (w + ατ + β; τ)

]
w=0

is a harmonic Maass form of

weight 3
2

for Γα,β.

3. The function µ̂
(M,`)
j (z; τ) is a H-harmonic Maass-Jacobi form of weight 1

2
and

index −M for ΓJ1 (4M).

The definitions described so far do not always suffice in order to describe the objects

we are interested in this thesis. In fact, we need to introduce a vector-valued notion

for each of them.

Definition 2.3.12. Given a (projective) representation % : SL2(Z) → GL(Cd), where

d ∈ Z>0, of SL2(Z) on GL(Cd), we say that a function

F : Cn × H→ Cd

(where n = 0 in the case of modular forms and harmonic weak Maass forms, while in

the case of Jacobi forms n > 0) transforms vector-valued of weight k and level N if for

all γ ∈ Γ0(N) we have

F
∣∣
k
γ = %(γ)F,

where on the left-hand side the slash operator is taken component-wise.
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CHAPTER 3

Kac-Wakimoto characters in one variable

3.1 Introduction

Let trLm,n(Λ(`))q
L0 denote the specialized character associated to the irreducible s`(m|n)∧-

module of highest weight Λ(`)1, which we will refer to as the `th Kac-Wakimoto char-

acter. Here m > n > 0 are integers, and we fix here and throughout the chapter

M := m−n
2

. Letting ` run through the integers, we consider their generating function

[24]

chF :=
∑
`∈Z

chF`ζ
` =

∏
k≥1

((
1 + ζqk−

1
2

)(
1 + ζ−1qk−

1
2

))m
((

1− ζqk− 1
2

)(
1− ζ−1qk−

1
2

))n , (3.1.1)

with chF` as in (A.2.1). We recall that ζ = e2πiz. Using Jacobi’s triple product identity

(see part 3 of Proposition 2.3.2) one can easily rewrite chF as

chF =
∑
`∈Z

chF`ζ
` = (−1)mi−nζMq

M
3 η−2M(τ)

ϑ
(
z + τ+1

2
; τ
)m

ϑ
(
z + τ

2
; τ
)n , (3.1.2)

where ϑ denotes the Jacobi theta function and η is the Dedekind η-function (2.2.2). Due

to the elliptic transformation properties of ϑ, in order to study the Fourier coefficients

of chF , which are ”essentially” the Kac-Wakimoto characters trLm,n(Λ(`)), we can reduce

our investigation to the meromorphic Jacobi form

Φ(z; τ) :=
ϑ
(
z + 1

2
; τ
)m

ϑ (z; τ)n
. (3.1.3)

1For more details see Chapter 1
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For a more precise explanation, we refer the reader to Appendix A.2.

In [7] K. Bringmann and A. Folsom described the shape and the modularity prop-

erties of the Kac-Wakimoto characters in the case of m and n positive even integers.

The goal of this chapter is to give a generalization of their results for any pair of in-

tegers m > n > 0, regardless of the parity. With this more general setting we will

encounter half-integral weight and half-integral index Jacobi forms, which also satisfy

slightly different transformation properties. To be more precise, as the index of Φ is

m−n
2

, it has half-integral index if m and n have opposite parity. In this case, we need

to construct a slightly different theta decomposition for Φ involving half-integral in-

dex theta functions. In addition, when n is odd the parity of Φ as a function of its

elliptic variable changes. This modifies the group under which the Fourier coefficients

transform.

3.1.1 Statement of the theorems

Let m > n > 0 be positive integers, and as before M = m−n
2
∈ 1

2
Z. For a real number x

we denote the fractional part of x as {x}, and for any integer ` we define L := `+{M}.

In order to state the main result of this chapter, we consider the `th Fourier coefficient

of Φ around z0 ∈ C, namely

h
(z0)
` (τ) :=

∫ z0+1

z0

Φ(z; τ)e−2πiLz dz. (3.1.4)

Remark 1. In order to make the integral in (3.1.4) well defined, we need to be more pre-

cise. To do this, we recall certain assumptions as in [7, 15]. If Φ would be holomorphic,

then the integral would be independent on the path of integration and well-defined for

any z0. For meromorphic Φ, we assume the path to be the straight line, if there are

no poles on it. If z0 is a pole of Φ, then we note that the integral in (3.1.4) depends

only on the height of the path, and not on the initial point of the line. Therefore, we

replace the straight line [z0, z0 + 1] with [z0 + δ, z0 + δ + 1], where δ is such that z0 + δ

38



is not a pole of Φ. Finally, if there is a pole on the path which is not an endpoint, we

define the value of the integral as the average of the integral over a path deformed to

pass just above the pole and the integral over a path just below it.

Following the approach of A. Dabolkar, S. Murthy, and D. Zagier [15], and K.

Bringmann and A. Folsom [7], we generalize the definition of the `th canonical Fourier

coefficients of Φ to half-integral index Jacobi forms as

h`(τ) := h
(− `τ

2M )
` (τ). (3.1.5)

The aim of this chapter is to prove the following result concerning the shape and the

modularity of the functions h`.

Theorem 3.1.1. Let Γ := Γ0(2) (resp. Γ(2)) if m and n have the same parity (resp.

opposite parity). The function h` := (h`)` (mod 2M) is a vector-valued almost mock

modular form of weight M − 1
2

for Γ.

As we show in Appendix A.2, for −M ≤ ` < M

trLm,n(Λ(`))q
L0 = (−1)mi−nq

2−1M
24

+ `2

4M η1−2M(τ)h`(τ), (3.1.6)

while for |`| > M trLm,n(Λ(`))q
L0 differs from h`+M by a linear combination of quasi-

modular forms. In particular, we can immediately derive the transformation properties

and the shape of the Kac-Wakimoto characters.

Corollary 3.1.2. Assume the notation of Theorem 3.1.1. Up to the multiplication by

η(τ)1−2Mq
`2

4M
+ 2M−1

24 , the Kac-Wakimoto characters trLm,n(Λ(`))q
L0 are the holomorphic

parts of components of a vector-valued almost mock modular form of weight M − 1
2

for

Γ.
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3.1.2 Outline of Chapter 3

This chapter proceeds as follows. In Section 3.2, we give some preliminary results. More

precisely, we describe a vector-valued half-integral index theta function that allows a

theta decomposition of half-integral index Jacobi forms. Furthermore, we describe the

transformation properties of certain half-integral index Appell sums. Finally, we de-

scribe the action of the heat operator and the raising operator on the non-holomorphic

function RM,` (see (2.3.4)). In Section 3.3, we prove Theorem 3.1.1. To do this, we

generalize the approach used in [7] to half-integral index Jacobi forms.

3.2 Preliminaries

3.2.1 Half-integral index Jacobi forms

In order to give a theta decomposition for half-integral index Jacobi forms, for each

positive integer N and for λ ∈ {0, 1}, we define the vector-valued Jacobi theta functions

Θeven
N,λ (z; τ) :=

(
e−2πi `λ

4N ϑN,2`

(
z +

λ

4N
; τ

))
0≤`<N

,

Θodd
N,λ(z; τ) :=

(
e−2πi `λ

4N ϑN,2`+1

(
z +

λ

4N
; τ

))
0≤`<N

,

ΘN,λ(z; τ) =
(
Θeven
N,λ (z; τ),Θodd

N,λ(z; τ)
)
,

where the function ϑN,` was introduced in (2.3.2). The aim of this subsection is to

describe their transformation properties. To do so, we define the multiplier system

%2N : SL2(Z)→ GL2N(C) as follows. For γ =
(
a b
c d

)
∈ SL2(Z), let

ah,`,N(γ) :=


1√

2Nci

∑
s (mod 2Nc)
s≡` (mod 2N)

e2πias
2−2hs+dh2

4Nc if c 6= 0,

e2πi b`
2

4N if c = 0.

(3.2.1)
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We define the following matrices in GLN(C):

σeven
N = σeven

N (γ) := (a2h,2`,N(γ))0≤h,`<N ,

σodd
N = σodd

N (γ) := (a2h+1,2`+1,N(γ))0≤h,`<N ,

ωodd
N = ωodd

N (γ) := (a2h,2`+1,N(γ))0≤h,`<N ,

ωeven
N = ωeven

N (γ) := (a2h+1,2`,N(γ))0≤h,`<N .

Then %2N is defined by

%2N(γ) :=

σeven
N (γ) ωodd

N (γ)

ωeven
N (γ) σodd

N (γ)

 .

The following lemma describes the key properties of %2N . Here and throughout, let 0N

(resp. 1N) be the N ×N zero matrix (resp. identity matrix).

Lemma 3.2.1. With the notation as above, the following are true.

1. If N is even, then each of the matrices σeven
N , σodd

N , ωodd
N , and ωeven

N can be written

in the form
(
A B
B A

)
for for certain A and B ∈MN

2
(C).

2. If N is even and γ ∈ Γ0(2), then ωeven
N = ωodd

N = 0N .

3. If N is odd and γ ∈ Γ0(2), then σeven
N = σodd

N = 0N .

Proof. The proof follows from the following identities

ah,`,N(γ) = e−2πi bdh
2−2bh`
4N a0,dh+`,N(γ),

ah,`,N(γ) = ah,`+2N,N(γ).

More precisely, these two equalities imply that

ah,`,N(γ) = ah+N,`+N,N(γ),

ah+N,`,N(γ) = ah,`+N,N(γ),
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which allows us to conclude part 1. The proof of parts 2 and 3 follow by definition

(3.2.1).

We now have all the ingredients to prove the transformation properties of ΘN,λ. In

order to state the result, in light of the previous lemma, we write

σeven
N :=

σeven,1
N σeven,2

N

σeven,2
N σeven,1

N

 , σodd
N :=

σodd,1
N σodd,2

N

σodd,2
N σodd,1

N

 .

Proposition 3.2.2. Let N be a positive integer and λ ∈ {0, 1}. Then the following

are true:

1. The function ΘN,0(z; τ) is a vector-valued Jacobi form of weight 1
2

and index N

for SL2(Z), with multiplier system %2N .

2. The function Θeven
N,λ

(
z
2
; τ

2

)
(resp. Θodd

N,λ

(
z
2
; τ

2

)
) is a vector-valued Jacobi form of

weight 1
2

and index N
2

for Γ0(2), with multiplier system σeven,1
2N +(−1)λσeven,2

2N (resp.

σodd,1
2N + (−1)λσodd,2

2N ).

Proof. The proof of part 1 is an immediate consequence of Proposition 2.3.3. We give

the proof of part 2 for Θeven
N,λ . The proof for Θodd

N,λ is analogous. First of all, note that

Θeven
N,λ

(z
2

;
τ

2

)
= Tλ Θeven

2N,0

(z
2

; τ
)
,

where Tλ :=
(
1N , (−1)λ1N

)
. Let γ =

(
a b
c d

)
∈ Γ0(2). Since 2N is even, from part 1 and

from part 2 of Lemma 3.2.1, it follows that

Θeven
N,λ

(
z

2(cτ + d)
;
γτ

2

)
= (cτ + d)

1
2 e

2πiNcz2

2(cτ+d) Tλσ
even
2N (γ) Θeven

2N,0

(z
2

; τ
)
. (3.2.2)

The symmetry of σeven
2N (γ) implies

Tλσ
even
2N (γ) =

(
σeven,1

2N + (−1)λσeven,2
2N

)
Tλ.

42



We can therefore rewrite the right-hand side of (3.2.2) as

(cτ + d)
1
2 e

2πiNcz2

2(cτ+d)
(
σeven,1

2N + (−1)λσeven,2
2N

)
Tλ Θeven

2N,0

(z
2

; τ
)

= (cτ + d)
1
2 e

2πiNcz2

2(cτ+d)
(
σeven,1

2N + (−1)λσeven,2
2N

)
Θeven
N,λ

(z
2

;
τ

2

)
,

which gives the desired result.

3.2.2 Additional properties of the Appell sums

The Appell sum fM (see (2.3.3)) plays a key role in the entire thesis. In this subsection

we describe the main properties of fM needed in this section.

The first result that we need concerns the elliptic and the modularity properties of

fM when we slightly shift the elliptic variables simultaneously.

Proposition 3.2.3. The completion of the Appell sum f̂M satisfies the following prop-

erties:

1. Let N ∈ 1
2
Z>0. For any λ and µ ∈ Z and λ ∈ {0, 1}

f̂N

(
z +

λτ + µ

2N
, u+

λτ + µ

2N
; τ

)
= e2πiλ(u−z)f̂N(z, u; τ).

2. For γ =
(
a b
c d

)
∈ Γ0(2) and λ ∈ Z,

f̂N

(
z

cτ + d
+

λ

4N
,

u

cτ + d
+

λ

4N
; γτ

)
= (cτ + d)e2πi cN

cτ+d
(z2−u2)f̂N

(
z +

λ

4N
, u+

λ

4N
; τ

)
.

Proof. The first property comes from the fact that f̂N “almost depends” on z − u. To

be more precise, we recall that f̂N can be written as

f̂N (z, u; τ) = e2πiN(u−z)Â2N (z − u, 2Nz −Nτ +N ; τ) ,
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where A2N(z, u; τ) := eπiz
∑

n∈Z
(−1)2NnqNn(n+1)e2πinu

1−e2πizqn . The elliptic transformation prop-

erties of AM described in Theorem 2.2 in [37] immediately gives the result.

For the second property, applying Proposition 2.3.7 we obtain

f̂N

(
z

cτ + d
+

λ

4N
,

u

cτ + d
+

λ

4N
; γτ

)
= (cτ + d)e2πi cN

cτ+d(z2−u2+ λ
2N

(cτ+d)(z−u))f̂N

(
z +

λ

4N
(cτ + d), u+

λ

4N
(cτ + d); τ

)
.

Part 1 of this proposition and the fact that γ ∈ Γ0(2) gives the desired result.

The next step consists of describing the action of certain operators introduced in

Section 2.1 on the real-analytic functions RM,` defined in (2.3.4). The goal is to relate

the derivatives respect to the elliptic variable of RM,` with the raising operator applied

to RM,` itself. Following the proof of Theorem 3.5 in [7], it is clear that the only

condition needed to make this connection possible is that the function RM,` must be

annihilated by the heat operator HM , as we show in the following proposition.

Proposition 3.2.4. Let g(z; τ) be a smooth function in both z and τ , and assume that

HM [g(z; τ)] = 0. Then for any positive integer j

∂2j
z

[
e2πMz2

2v g (z; τ)
]
z=0

= (4πM)j Rj
1/2 (g(0; τ)) , (3.2.3)

∂2j+1
z

[
e2πMz2

2v g (z; τ)
]
z=0

= (4πM)j Rj
3/2 (∂z [g(z; τ)]z=0) . (3.2.4)

Remark. In the statement of Proposition 3.2.4 we consider powers of the raising oper-

ator. By that we mean

Rj
k := Rk+2(j−1) ◦ · · · ◦Rk+2 ◦Rk.

Proof. In Theorem 3.5 in [7], Bringmann and Folsom proved (3.2.4). The proof of

(3.2.3) is very similar, therefore we skip the proof here. We note that a different proof

can be derived as a special case of Proposition 5.3.7, where a multivariable version of

this Proposition is considered.
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As a consequence of Propositions 2.3.8 and 3.2.4, we have the following key result.

Corollary 3.2.5. For any real number β ∈ R, the following identities hold:

∂2j
z

[
e−

2πMz2

2v RM,` (z + β; τ)
]
z=0

= (−4πM)j Rj
1/2 (RM,`(β; τ)) ,

∂2j+1
z

[
e−

2πMz2

2v RM,` (z + β; τ)
]
z=0

= (−4πM)j Rj
3/2

(
1

2πi
∂z [RM,` (z + β; τ)]z=0

)
.

We conclude this subsection by proving an identity involving the Appell sum which

will be used several times in this thesis. This result was proven by K. Bringmann and

A. Folsom in [7]. First, we need the following lemma.

Lemma 3.2.6. Let a ∈ Q \ Z and 0 < y < 1 such that |x| = ya. Then

∑
`∈Z

sgn(a) + sgn(`)

2
x` = −1

2
+

1

1− x
.

Proof. The left-hand side equals

sgn(a)

1

2
+

∑
`∈Z

sgn(`)=sgn(a)

x`

 = sgn(a)

(
1

2
+
∑
`>0

xsgn(a)`

)
. (3.2.5)

By assumption |xsgn(a)| = y|a| < 1, thus (3.2.5) can be written as

sgn(a)

(
−1

2
+

1

1− xsgn(a)

)
= −1

2
+

1

1− x
.

Proposition 3.2.7. For each A ∈ Q \ Z positive, for u ∈ R and Im(z) = AIm(τ) the

following identity holds:

fM(z, u; τ)− 1

2
ϑM,0(z; τ) =

∑
`∈Z

e2πi`z
∑
n∈Z

− `
2M

<n<A

q−Mn2−`ne−2πiu(2Mn+`).
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Proof. By definition, the left-hand side can be written as∑
n∈Z

qMn2

e4πiMnz

(
−1

2
+

1

1− e2πi(z−u)qn

)
.

By assumption |e2πi(z−u)qn| = e−2πIm(τ)(A+n). Therefore, by Lemma 3.2.6 the term

above equals ∑
n∈Z

qMn2

e4πiMnz
∑
`∈Z

sgn(A+ n) + sgn(`)

2
e2πi`(z−u)qn`.

Sending first ` to `− 2Mn and then n to −n, and interchanging the two summations,

we get the desired result.

3.3 Proof of Theorem 3.1.1

3.3.1 Transformation properties of Φ

In this section we prove Theorem 3.1.1. We shall follow the ideas used in [7] and [15].

The main issue in this setting is that we have to deal with half-integral index Jacobi

forms. We solve this problem by splitting Φ into an even part and an odd part. The

integrality of the index dictates the vanishing of one of those parts. We can then use a

similar argument to treat both of the parts, giving a unified proof for the general case.

For r ∈ Z>0 we define ι(r) := r −
[
r−1

2

]
∈ {1, 2}. The transformation properties of

Φ can be deduced from the transformation properties of ϑ (see Proposition 2.3.2).

Proposition 3.3.1. With the notation as above, the following hold:

1. For λ, µ ∈ Z, we have

Φ(z + λτ + µ; τ) = (−1)2M(λ+µ)+mλe−2πiM(λ2τ+2λz)Φ(z; τ).

2. For any γ ∈ Γ0(2), we have

Φ

(
z

cτ + d
; γτ

)
= χ(γ)(cτ + d)Me2πiMcz2

cτ+d Φ(z; τ),
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where χ(γ) := ψ(γ)6M(−1)
mc
4 , with ψ(γ) the multiplier of the η-function (see

Lemma 2.2.2).

3. The function Φ has the same parity as n, namely, Φ(−z; τ) = (−1)nΦ(z; τ).

3.3.2 Canonical Fourier coefficients and canonical decomposition

It is known by Theorem 3.9 of [36] that any meromorphic Jacobi form of positive

index splits into a theta decomposition and another term which can be expressed in

terms of the residues of Appell sums multiplied by the Jacobi form itself. Dabholkar,

Murthy, and Zagier [15] revisited Zwegers’ proof defining a canonical splitting of any

meromorphic Jacobi form of positive integral index and poles of order at most 2 into

two pieces: a finite part, which has the shape of a theta decomposition, and a polar

part, which depends just on the poles of the Jacobi form. We follow this last approach

to investigate half-integral index Jacobi forms. We will also make use of the parity of

Φ to get some more information about its Fourier coefficients.

Since Φ is a meromorphic function in the elliptic variable, a global Fourier expansion

does not make sense, however due to the elliptic transformation property its poles have

a nice symmetry. More precisely, we know that they are exactly the points in the

lattice Λτ := Zτ + Z. In particular, for any z0 ∈ C such that Im(z0) /∈ ZIm(τ), the `th

normalized Fourier coefficient of Φ in z0

h
(z0)
` (τ) := q−

`2

16M

∫ z0+1

z0

Φ(2z; τ)e(−`z) dz

is well defined. If Im(z0) ∈ ZIm(τ) we modify the definition as explained in Remark 1

in Subsection 3.1.1.

Remark. We use the same notation as in [15]. However, our definition is slightly

different. More precisely, it generalizes the definition in [15] since we deal with a half-

integral index Jacobi form. In this setting the half-integrality of the index is equivalent
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to the 2-periodicity of Φ as a function of z. As we shall prove later, for 1-periodic Φ

we have h
(z0)
` (τ) = 0 for ` odd. If we denote by K

(z0)
` the Fourier coefficient defined in

[15], then a change of variables shows that h
(z0)
2` (τ) = K

(2z0)
` (τ).

The transformation properties of Φ imply the following properties of h
(z0)
` .

Lemma 3.3.2. For each ` ∈ Z, the normalized Fourier coefficient h
(z0)
` satisfies the

following periodicity properties:

1. For each λ ∈ Z, h
(z0)
`+4Mλ(τ) = (−1)λnh

(z0+λτ
2 )

` (τ).

2. We have h
(z0)
−` (τ) = (−1)nh

(−z0)
` (τ).

Proof. First we prove part 1. By definition

h
(z0)
`+4Mλ(τ) = q−

`2

16M

∫ z0+1

z0

Φ (2z; τ) q−
`λ
2
−Mλ2

e−2πi(`+4Mλ)z dz.

From Proposition 3.3.1 we know that Φ (2z + λτ ; τ) = (−1)nλq−Mλ2
e−8πiMλzΦ (2z; τ),

therefore

h
(z0)
`+4Mλ(τ) = (−1)λnq−

`2

16M

∫ z0+1

z0

Φ (2z + λτ ; τ) q−
`λ
2 e−2πi`z dz

= (−1)λnq−
`2

16M

∫ z0+λτ
2

+1

z0+λτ
2

Φ (2z; τ) e−2πi`z dz = (−1)λnh
(z0+λτ

2 )
` (τ).

We now prove part 2. By definition and the change of variable z 7→ −z, we have

h
(z0)
−` (τ) = −q−

`2

16M

∫ −z0−1

−z0
Φ (−2z; τ) e−2πi`z dz. (3.3.1)

The parity of Φ (see Proposition 3.3.1) implies that (3.3.1) equals

(−1)nq−
`2

16M

∫ −z0
−z0−1

Φ (2z; τ) e−2πi`z dz.

To conclude it is enough to change the integration variable as z 7→ z − 1 to obtain

h
(z0)
−` (τ) = (−1)nq−

`2

16M

∫ −z0+1

−z0
Φ (2z; τ) e−2πi`z dz = (−1)nh

(−z0)
` (τ).
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For a fixed z0, Lemma 3.3.2 implies a non-periodicity for the normalized Fourier

coefficients. To be more precise, a difference between two of them gives a non-trivial

contribution of the residues of Φ in a certain parallelogram. However, as Dabholkar,

Murthy, and Zagier showed for second order poles, it is possible to obtain periodicity

making z0 dependent on τ . This led to the definition of canonical Fourier coefficients.

For each integer ` we define the `th canonical Fourier coefficient by

h`(τ) := h
(− `τ

8M )
` (τ).

Corollary 3.3.3. For each ` ∈ Z, the canonical Fourier coefficient h` satisfies the

following properties:

1. For each λ ∈ Z, h`+4Mλ(τ) = (−1)nλh`(τ).

2. We have h−`(τ) = (−1)nh`(τ). In particular, if n is odd, h0(τ) = 0.

3. We have h`(τ) = h4M−`(τ).

In order to treat the integral and the half-integral index cases simultaneously, we

define the even and the odd vector-valued canonical Fourier coefficients by

heven
2M (τ) := (h0(τ), h2(τ), · · · , h4M−2(τ)) = (h2`(τ))0≤`<2M , (3.3.2)

hodd
2M (τ) := (h1(τ), h3(τ), · · · , h4M−1(τ)) = (h2`+1(τ))0≤`<2M .

Lemma 3.3.4. If M ∈ N (resp. M ∈ 1
2

+ N) then hodd
2M(τ) = 0 (resp. heven

2M (τ) = 0).

Proof. By definition,

h`(τ) = q−
`2

16M

∫ − `τ
8M

+1

− `τ
8M

Φ (2z; τ) e−2πi`z dz

= q−
`2

16M

(∫ − `τ
8M

+ 1
2

− `τ
8M

+

∫ − `τ
8M

+1

− `τ
8M

+ 1
2

)
Φ (2z; τ) e−2πi`z dz.
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Making the substitution z 7→ z + 1
2

in the second integral, we obtain

h`(τ) =
(
1 + (−1)`+2M

)
q−

`2

16M

∫ − `τ
8M

+ 1
2

− `τ
8M

Φ (2z; τ) e−2πi`z dz,

which equals 0 if ` and 2M have opposite parity.

We now generalize the canonical decomposition to our situation. We define the

finite part of the meromorphic Jacobi form Φ by

ΦF (z; τ) := heven
2M (τ) ·Θeven

2M,n

(z
2

;
τ

2

)
+ hodd

2M (τ) ·Θodd
2M,n

(z
2

;
τ

2

)
,

where Θodd
2M,n and Θodd

2M,n are described in Subsection 3.2.1. As the notation suggest,

the function ΦF is no longer meromorphic. Instead, it is a holomorphic function whose

Fourier coefficients with respect to z coincide (up to q-powers) with the canonical

Fourier coefficients. Moreover, if Φ is holomorphic, then the integral defining h2M no

longer depends on the path of integration or on the initial point z0. Therefore, in light

of Proposition 2.3.4, in this case ΦF coincides with Φ.

In order to define the polar part of Φ (see (3.3.9)), we need some more notation.

As mentioned before, the function Φ has poles of order n in Zτ + Z. We denote the

Laurent expansion of Φ(z; τ) in z = 0 by

Φ (z; τ) =

n−ι(n)
2∑
j=0

D̃ι(n)+2j(τ)

(2πiz)ι(n)+2j
+O(1) as z → 0. (3.3.3)

We recall that ι(n) was defined at the beginning of Section 3.3. As we shall see in the

next lemma, the Laurent coefficients Dj are quasimodular forms (see Definition 2.2.3).

Their completions turn out to be the Laurent coefficients of a similar function, this

time real-analytic in τ , namely

e
πMz2

v Φ (z; τ) :=

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(2πiz)ι(n)+2j
+O(1) as z → 0. (3.3.4)
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In the following proposition, we describe the modular properties of the functions D̃j

and Dj. Here, L denotes the single-variable lowering operator.

Proposition 3.3.5. With the notation as above, the following facts are true.

1. For 0 ≤ j ≤ n−ι(n)
2

, the function Dι(n)+2j(τ) is an almost holomorphic modular

form of weight M − ι(n) − 2j for Γ0(2), with the same multiplier system as Φ.

More precisely, for each γ ∈ Γ0(2),

Dι(n)+2j(γτ) = χ(γ)(cτ + d)M−ι(n)−2jDι(n)+2j(τ).

2. For 0 ≤ j ≤ n−ι(n)
2

, the function D̃ι(n)+2j(τ) is the holomorphic part of Dι(n)+2j(τ),

i.e., it is a quasimodular form.

3. For each 0 ≤ j ≤
[
n−1

2

]
Dι(n)+2j(τ) =

(
4π

M

)j
Lj
(
Dι(n)(τ)

)
.

Proof. We start by proving part 1. For simplicity, we define F (z; τ) := e
πMz2

v and

Φ̃ := FΦ. One can easily see that F satisfies the modular transformation of a Jacobi

form of index −M and weight 0. In particular, Φ̃ transforms as

Φ̃

(
z

cτ + d
; γτ

)
= χ(γ)(cτ + d)M Φ̃ (z; τ) . (3.3.5)

Writing both the right and the left-hand sides of (3.3.5) with their Laurent expansions

in z = 0, using (3.3.4), we obtain

n−ι(n)
2∑
j=0

Dι(n)+2j(γτ)

(2πiz)ι(n)+2j
(cτ + d)ι(n)+2j +O(1)

= χ(γ)(cτ + d)M

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(2πiz)ι(n)+2j
+O(1) as z → 0.
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To conclude part 1 it is enough to compare the coefficient of z−ι(n)−2j for any fixed j.

To prove part 2, we first write explicitly the Laurent expansion of F in z = 0,

namely

F (z; τ) =
∑
r≥0

∂2r
z [F (z; τ)]z=0

(2r)!
z2r = 1 +

∑
r>0

(
2πM

v

)r
z2r

2 · r!
. (3.3.6)

Using the Laurent expansions (3.3.3), (3.3.4), and (3.3.6), we obtain

Dι(n)+2s(τ) = D̃ι(n)+2s(τ) +

n−ι(n)
2∑

j=s+1

D̃ι(n)+2j(τ)

2 · (j − s)!

(
− M

2πv

)j−s
. (3.3.7)

The claim is then proven in light of part 1.

We conclude the proof by showing part 3. Since the lowering operator annihilates

holomorphic functions, using (3.3.7) we have

L
(
Dι(n)+2s(τ)

)
=

n−ι(n)
2∑
j=s

D̃ι(n)+2j(τ)

2 · (j − s)!

(
−M

2π

)j−s
L
(

1

vj−s

)
. (3.3.8)

A direct computation shows that

L
(

1

vj−s

)
= − j − s

vj−s−1
,

therefore (3.3.8) becomes

L
(
Dι(n)+2s(τ)

)
=
M

2π

n−ι(n)
2∑

j=s+1

D̃ι(n)+2j(τ)

2 · (j − s− 1)!

(
− M

2πv

)j−s−1

=
M

2π
Dι(n)+2(s+1)(τ).

Iterating this computation s times, we conclude the proof.

We now define the polar part of Φ by

ΦP (z; τ) :=

n−ι(n)
2∑
j=0

D̃ι(n)+2j(τ)

(ι(n) + 2j − 1)!

(
∂u
2πi

)ι(n)+2j−1 [
1 + (−1)2M

2

×fM
(
z +

n

4M
,u+

n

4M
; τ
)

+
1− (−1)2M

2
fM

(
z +

n+ τ

4M
,u+

n+ τ

4M
; τ

)]
u=0

.

(3.3.9)
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The functions ΦF and ΦP are the two pieces in the canonical decomposition of Φ, as

we see in the following proposition. We note that depending on the parity of 2M , one

of the two pieces defining ΦP vanishes. This agree with the definition of ΦF , itself

divided into an even part and an odd part.

Proposition 3.3.6. With the notation as above we have Φ = ΦF + ΦP .

Proof. We consider the difference Φ − ΦF , and we prove that it equals ΦP . Let A ∈

Q \ 1
2
Z, then for z such that Im(z) = AIm(τ) we have by definition

Φ(z; τ)− ΦF (z; τ) =
∑
`∈Z

eπi`z

(∫ Aτ+1

Aτ

−
∫ − `

8M
+1

− `
8M

)
Φ(2u; τ)e−2πi`u du. (3.3.10)

Making the change of variables w 7→ 2u and noting that

Φ(u+ 1; τ)eπi`(u+1) = (−1)`+2MΦ(u; τ)eπi`u,

Cauchy’s residue theorem and the fact that Φ(z; τ) has poles in Zτ + Z imply that

(3.3.10) equals

2πi
∑
`∈Z

eπi`z
∑
α∈Z

− `
4M

<α<2A

Res
u=0

(
Φ(u+ ατ ; τ)e−πi`(u+ατ) 1 + (−1)`+2M

2

)

= 2πi
∑
`∈Z

1 + (−1)`+2M

2
eπi`z

∑
α∈Z

− `
4M

<α<2A

(−1)nαq−Mα2− `α
2 Res
u=0

(
Φ(u; τ)e−πiu(`+4Mα)

)
,

(3.3.11)

where in the second step we used the elliptic transformation of Φ. Using the Laurent

expansion of Φ in u = 0 (see (3.3.3)) and interchanging the summations, (3.3.11) can

be written as

J∑
j=0

D̃n−2j(τ)

(n− 2j − 1)!(2πi)n−2j−1
∂n−2j−1
u

[∑
`∈Z

1 + (−1)`+2M

2
eπi`z

×
∑

α∈(− `
4M

,2A)∩Z

(−1)nαq−Mα2− `α
2 e−πiu(`+4Mα)


u=0

.
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If we now split the sum into two pieces according to the parity of ` and then use (3.2.7),

we can rewrite the argument of ∂u as

1 + (−1)2M

2
fM

(
z +

n

4M
,u+

n

4M
; τ
)

+
1− (−1)2M

2
fM

(
z +

n+ τ

4M
,u+

n+ τ

4M
; τ

)
− 1

2
ϑM,0

(
z +

n

4M
; τ
)
.

This conclude the proof since the extra summand given by the theta function is inde-

pendent on u, and therefore annihilated by ∂u.

In the following proposition, we rewrite ΦP in terms of the almost holomorphic

modular forms Dj instead of their holomorphic parts D̃j. This will be useful in order

to determine the completions of ΦP and ΦF .

Proposition 3.3.7. The function ΦP equals

ΦP (z; τ) =

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(ι(n) + 2j − 1)!

(
∂u
2πi

)ι(n)+2j−1 [
e
−πMu2

v

(
1 + (−1)2M

2

×fM
(
z +

n

4M
,u+

n

4M
; τ
)

+
1− (−1)2M

2
fM

(
z +

n+ τ

4M
,u+

n+ τ

4M
; τ

))]
u=0

.

Proof. The proof is almost identical to the proof of Proposition 3.3.6. In (3.3.11) it is

enough to replace the Laurent expansion (3.3.3) with the modified Laurent expansion

(3.3.4).

3.3.3 Modular properties of h`

In the previous subsection, more precisely in Proposition 3.3.6, we have seen how to

canonically decompose the function Φ into a finite part, which is holomorphic, and a

polar part, which is meromorphic and only depends on the poles of Φ. In Proposition

3.3.7, we have also seen an alternative way to write ΦP . In that decomposition the
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functions Dn−2j transform as modular forms, as we proved in Proposition 3.3.5. More-

over, the Appell sums are well known to be closely related to Jacobi forms, as we saw

in Proposition 2.3.7. Using that, we are able to complete the polar part ΦP , i.e., to add

a certain non-holomorphic function to ΦP to get a modular object. This immediately

gives a completion for the finite part ΦF , and therefore for heven
2M and hodd

2M .

Analyzing the shape of ΦP , i.e., a linear combination of almost holomorphic mod-

ular forms multiplied by derivatives of the Appell function, it is natural to define its

completion by substituting fM by f̂M (see (2.3.5)), namely,

Φ̂P (z; τ) :=

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(ι(n) + 2j − 1)!

(
∂u
2πi

)ι(n)+2j−1 [
e
−πMu2

v

(
1 + (−1)2M

2

×f̂M
(
z +

n

4M
,u+

n

4M
; τ
)

+
1− (−1)2M

2
f̂M

(
z +

n+ τ

4M
,u+

n+ τ

4M
; τ

))]
u=0

.

(3.3.12)

Defining

Reven
2M,n(τ) :=

1 + (−1)2M

4

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(ι(n) + 2j − 1)!

×
(
∂u
2πi

)ι(n)+2j−1 (
e−

πMu2

v R2M,2`

(u
2

+
n

8M
;
τ

2

)))
0≤`<2M

,

Rodd
2M,n(τ) :=

1− (−1)2M

4

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(ι(n) + 2j − 1)!

×
(
∂u
2πi

)ι(n)+2j−1 (
e−

πMu2

v R2M,2`+1

(u
2

+
n

8M
;
τ

2

)))
0≤`<2M

,

then by (2.3.5) we have that

Φ̂P (z; τ) = ΦP (z; τ)−Reven
2M,n(τ) ·Θeven

2M,n

(z
2

;
τ

2

)
−Rodd

2M,n(τ) ·Θodd
2M,n

(z
2

;
τ

2

)
.

Analogously, we define the completion Φ̂F of ΦF as

Φ̂F (z; τ) := ΦF (z; τ) +Reven
2M,n(τ) ·Θeven

2M,n

(z
2

;
τ

2

)
+Rodd

2M,n(τ) ·Θodd
2M,n

(z
2

;
τ

2

)
.
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Since both ΦF and the non-holomorphic piece has a theta decomposition, we define

the completions of heven
2M and hodd

2M as the coefficients in the theta decomposition of Φ̂F .

More precisely,

ĥ
even/odd

2M (τ) := h
even/odd
2M +Reven/odd

2M,n (τ),

and therefore we also have

Φ̂F (z; τ) = ĥ
even

2M (τ) ·Θeven
2M,n

(z
2

;
τ

2

)
+ ĥ

odd

2M (τ) ·Θodd
2M,n

(z
2

;
τ

2

)
. (3.3.13)

Proposition 3.3.8. The functions Φ̂F and Φ̂P satisfy the same modular transfor-

mation law as Φ. In particular, the functions ĥ
even

2M and ĥ
odd

2M are vector-valued non-

holomorphic modular forms of weight M− 1
2

for Γ0(2), with multiplier system described

in Proposition 2.3.4.

Proof. Looking at the definition of ΦP in (3.3.12), we consider the modular transfor-

mation property of each summand, omitting the constants. We show that each of them

satisfies the same modular transformation as Φ. Indeed, using Proposition 3.3.5 and

Proposition 3.2.3, for each γ ∈ Γ0(2), we have

Dι(n)+2j (γτ) ∂ι(n)+2j−1
u

[
e
−πMu2

v

(
1 + (−1)2M

2
f̂M

(
z

cτ + d
+

n

4M
,u+

n

4M
; γτ

)
+

1− (−1)2M

2
f̂M

(
z

cτ + d
+
n+ γτ

4M
,u+

n+ γτ

4M
; γτ

))]
u=0

= χ(γ)(cτ + d)MDι(n)+2j(τ)∂ι(n)+2j−1
u

[
e
−πMu2

v

(
1 + (−1)2M

2

×f̂M
(
z +

n

4M
,u+

n

4M
; τ
)

+
1− (−1)2M

2
f̂M

(
z +

n+ τ

4M
,u+

n+ τ

4M
; τ

))]
u=0

.

Since the automorphy factor is the same for each summand and equal to the automor-

phy factor of Φ, we conclude that Φ̂P transforms as Φ. Since Φ̂F = Φ− Φ̂P , the same

statement is true for Φ̂F . The transformation properties of ĥ
even

2M and ĥ
odd

2M follow from

(3.3.13), using Proposition 2.3.4.

56



3.3.4 Shape of ĥ2M

To conclude the proof of Theorem 3.1.1, we need to describe the shape of ĥ
even

2M and

ĥ
odd

2M . In particular, we write their non-holomorphic pieces as described in the definition

of almost harmonic Maass forms (see Definition 2.2.6). This is just a consequence of

Corollary 3.2.5 and Proposition 3.3.5. We recall that each component of the vector-

valued function Reven/odd
2M,n (τ) is defined as

n−ι(n)
2∑
j=0

Dι(n)+2j(τ)

(ι(n) + 2j − 1)!

(
∂u
2πi

)ι(n)+2j−1 [
e−

πMu2

v R2M,`

(u
2

+
n

8M
;
τ

2

)]
u=0

,

for a certain integer `. Using the two results cited above, we rewrite it as

n−ι(n)
2∑
j=0

4j

(2πi)ι(n)−1

LjM−ι(n)

(
Dι(n)(τ)

)
(ι(n) + 2j − 1)!

Rj

ι(n)− 1
2

(
∂ι(n)−1
u

[
R2M,`

(u
2

+
n

8M
;
τ

2

)]
u=0

)
.

Let Ĝ`(τ) be a mock theta function whose non holomorphic part is

∂
ι(n)−1
u

(
R2M,`

(
u
2

+ n
8M

; τ
2

))
(it exists by Corollary 2.3.11), and denote by G` its holo-

morphic part. Moreover, define the vector-valued functions

Geven(τ) := δ+

n−ι(n)
2∑
j=0

4j

(2πi)ι(n)−1

LjM−ι(n)

(
Dι(n)(τ)

)
(ι(n) + 2j − 1)!

Rj

ι(n)− 1
2

(G2`(τ))


0≤`<2M

,

Godd(τ) := δ−

n−ι(n)
2∑
j=0

4j

(2πi)ι(n)−1

LjM−ι(n)

(
Dι(n)(τ)

)
(ι(n) + 2j − 1)!

Rj

ι(n)− 1
2

(G2`+1(τ))


0≤`<2M

,

Ĝeven(τ) := δ+

n−ι(n)
2∑
j=0

4j

(2πi)ι(n)−1

LjM−ι(n)

(
Dι(n)(τ)

)
(ι(n) + 2j − 1)!

Rj

ι(n)− 1
2

(
Ĝ2`(τ)

)
0≤`<2M

,

Ĝodd(τ) := δ−

n−ι(n)
2∑
j=0

4j

(2πi)ι(n)−1

LjM−ι(n)

(
Dι(n)(τ)

)
(ι(n) + 2j − 1)!

Rj

ι(n)− 1
2

(
Ĝ2`+1(τ)

)
0≤`<2M

,

where δ± := 1±(−1)2M

4
Then by construction

ĥ
even

2M = heven
2M +Reven

2M,n = heven
2M − Geven + Ĝeven.
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To conclude it is enough to note that Ĝeven is a vector-valued almost harmonic Maass

form, and that heven
2M −Geven is a vector-valued almost holomorphic modular form, and

in particular a vector-valued almost harmonic Maass form.

This concludes the proof of Theorem 3.1.1. As a direct consequence, in light of

Appendix A.2, one can derive the modularity of the Kac-Wakimoto characters, and

the shape of their completions.
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CHAPTER 4

Fourier coefficients of one variable meromorphic

Jacobi forms

4.1 Introduction

In Chapter 3, we saw how to describe the modularity properties of the Fourier coef-

ficients of the meromorphic Jacobi form Φ (see (3.1.3)). Recall that Φ has positive

integral or half-integral index and has poles in the lattice Zτ + Z, which simplifies the

situation. Once again, we recall that in [15] the authors studied general positive index

meromorphic Jacobi forms with poles at arbitrary torsion points, but only considered

poles of order at most 2. The aim of this chapter is to generalize their result, and our

result of Chapter 3, to any meromorphic Jacobi form of positive, integral index. In

light of our description in Chapter 3 it is clear that everything can be easily generalized

to the half-integral case and to Jacobi forms with multipliers.

4.1.1 Statement of the theorem

Throughout this chapter, we assume ϕ to be a meromorphic Jacobi form with positive

integral index m and integral weight k for a congruence subgroup Γ of SL2(Z), whose

poles lie in Qτ + Q. Following the notation of Chapter 3, we consider the vector-valued

function

h2m(τ) := (h`(τ))` (mod 2m) ,
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where h` is the `-th canonical Fourier coefficient of ϕ (see (4.3.1)). We generalize the

results in [7] and [15] describing the modularity and the shape of the Fourier coefficients

of any positive index meromorphic Jacobi form.

Theorem 4.1.1. With the notation as above, the function h2m is a vector-valued almost

mock modular form of weight k − 1
2

for Γ.

A more precise version of this theorem concerning the multiplier system occurring

in the modular transformation property of h2m is given in Proposition 4.3.3.

4.1.2 Outline of Chapter 4

In Section 4.2, we describe some properties of the poles of a meromorphic Jacobi form.

Furthermore, we introduce and describe a real-analytic function which transforms as

a negative index Jacobi form. This function will play a central role in the proof of the

Theorem 4.1.1, which will be given in Section 4.3.

4.2 Preliminaries

The techniques used in this chapter are very similar to those of the previous one;

therefore, most of the preliminaries are already described in Section 3.2. In this more

general situation, we still need to describe the basic properties of the set of poles of ϕ,

which were much simpler in the previous setting, and a non-holomorphic Jacobi form

of negative index, which will play the role of the function e−
πmz2

v in the case of Φ.

4.2.1 The set of poles

For each fixed τ ∈ H we denote by S(τ) the set of poles of z 7→ ϕ(z; τ). Note that

this set has a nice symmetric shape. Indeed, from the elliptic transformation property
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of ϕ it follows that each pole in S(τ) is equivalent to a pole in S
(τ)
0 := S(τ) ∩ P after

translating by Zτ + Z, where P := [0, 1)τ + [0, 1). Moreover, since P is bounded and

ϕ is meromorphic, S
(τ)
0 is finite. We let also

S(τ) :=
{

(α, β) ∈ Q2 : ατ + β ∈ S(τ)
}
, (4.2.1)

and for each s = (α, β) ∈ S(τ) denote the associated pole by zs(τ) = zs = ατ+β ∈ S(τ).

Finally we define S(τ)
0 by replacing S(τ) by S

(τ)
0 in (4.2.1).

For each γ =
(
a b
c d

)
∈ SL2(Z) and for each s ∈ S(γτ), one has the relation

zs(γτ) =
zsγ(τ)

cτ + d
,

which immediately implies

S(τ) = (cτ + d)S(γτ) (4.2.2)

and

S(γτ)γ = S(τ). (4.2.3)

For each Jacobi form of weight k and index m on SL2(Z), and for each α and β ∈ Q,

Theorem 1.3 of [16] implies that the function qmα
2
ϕ(ατ + β; τ) is a modular form of

weight k on the finite index subgroup

Γα,β :=

( a bc d ) ∈ SL2(Z) :
(a− 1)α + cβ, bα + (d− 1)β ∈ Z,

m (−cβ2 + bα2 + (d− a)αβ) ∈ Z


of SL2(Z). Therefore, if we define the subgroup Γϕ of SL2(Z) by

Γϕ :=
⋂

(α,β)∈S(τ)
0

Γα,β, (4.2.4)

which can be easily seen to be of finite index, then for all γ ∈ Γϕ and for each s ∈ S(τ),

zs(γτ) ∈ S(γτ). This fact, together with (4.2.3) and the modular law of ϕ, implies that
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S(τ) is Γϕ-invariant (under right multiplication). In fact, it is straightforward to prove

that for each γ ∈ Γϕ, the map

S(τ)
0 −→ S(τ) −→ S(τ)

0

s 7−→ sγ 7−→ sγ (mod Z2)

is the identity map.

4.2.2 A non-holomorphic Jacobi form of negative index

In this subsection, we introduce a non-holomorphic Jacobi form F (s), which plays a

central role for two reasons. Firstly, it relates the Laurent coefficients of a meromorphic

Jacobi form to certain almost holomorphic modular forms, whose non-holomorphic

parts can be given as a linear combination of the Laurent coefficients themselves.

Secondly, it allows us to relate the image of a certain class of functions under the

differential operator ∂ε to the image under the Maass raising operator. The latter

property was already proven in Proposition 3.2.4.

For s = (α, β) ∈ Q2, u ∈ C, and τ ∈ H, we define

F (s)(u; τ) := e
mπu2

v e2πim(αβ+2αu)qmα
2

.

Note that F (s) is holomorphic in u and non-holomorphic in τ .

Remark. The function e
mπu2

v = F (0,0)(u; τ) appears in Chapter 3. In fact, s represents

an element of S
(τ)
0 , and the function Φ studied in Chapter 3 has a unique pole at

0 ∈ S(τ)
0 .

A straightforward computation gives the following transformation properties for

F (s).

Lemma 4.2.1. Let s = (α, β) ∈ Q2. Then the function F (s) satisfies the following

transformation laws:
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1. For all γ =
(
a b
c d

)
∈ SL2(Z)

F (s)

(
u

cτ + d
; γτ

)
= e−2πi cm

cτ+d
(zsγ+u)2

F (sγ) (u; τ) .

2. For all λ, µ ∈ Z

F (s+(λ,µ)) (u; τ) = e2πim(αµ−βλ)qmλ
2

e4πimλ(zs+u)F (s)(u; τ).

Proof. We start by proving the modular property. Denoting as usual zs(τ) = ατ + β,

we note that F (s) can be rewritten as

F (s)(u; τ) = e2πi m
2iv ((zs(τ)+u)2−zs(τ)(2u+zs(τ))).

Using this notation and the fact that cτ+d
cτ+d

= 1− 2ivc
cτ+d

, Im (γτ) = v
|cτ+d|2 , and zs(γτ) =

zsγ(τ)

cτ+d
, we get

F (s)

(
u

cτ + d
; γτ

)
= e

2πi
m|cτ+d|2

2iv

(
(zs(γτ)+ u

cτ+d)
2
−zs(γτ)( 2u

cτ+d
+zs(γτ))

)

= e2πi m
2iv ((zsγ(τ)+u)2 cτ+d

cτ+d
−zsγ(τ)(2u+zsγ(τ)))

= e−2πi cm
cτ+d

(zsγ+u)2

F (sγ) (u; τ) ,

which proves the first claim.

The second claim follows by a trivial computation, namely

F (s+(λ,µ))(u; τ) = e
mπu2

v e2πim((α+λ)(β+µ)+2(α+λ)u)qm(α+λ)2

= F (s)(u; τ)e2πim((αµ+βλ)+2uλ+2λατ)qmλ
2

= e2πim(αµ−βλ)qmλ
2

e4πimλ(zs+u)F (s)(u; τ),

which concludes the proof.

Returning to the general problem, let ϕ be a meromorphic Jacobi form, and denote

by zs = ατ + β one of its poles, where s = (α, β) ∈ Q2. We define the Laurent
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coefficients D̃
(s)
j of ϕ relative to zs by

ϕ(z + zs; τ) =
ns∑
j=1

D̃
(s)
j (τ)

(2πiz)j
+O(1) as z → 0 (4.2.5)

where ns denotes the order of the pole. Furthermore, we define the functions D
(s)
j as

the Laurent coefficients of F (s)(z; τ)ϕ(z + zs; τ) in the elliptic variable, namely

F (s)(z; τ)ϕ(z + zs; τ) =
ns∑
j=1

D
(s)
j (τ)

(2πiz)j
+O(1) as z → 0. (4.2.6)

Proposition 4.2.2. With the notation as above, the following are true:

1. For each 1 ≤ j ≤ ns the function D
(s)
j is an almost holomorphic modular form of

weight k − j for Γϕ (see (4.2.4)).

2. For each 1 ≤ j ≤ ns the holomorphic part of D
(s)
j is given by

qα
2me(mαβ)

ns−j∑
λ=0

D̃
(s)
λ+j(τ)(4πimα)λ.

In particular, the functions D̃j are quasimodular forms.

3. For each 1 ≤ j ≤ ns and for κ ∈ {1, 2}, we have

D
(s)
κ+2j(τ) =

(
4π

m

)j
Lj
(
D(s)
κ (τ)

)
.

Proof. We first prove the modularity of D
(s)
j . From the definition of Jacobi forms and

from Lemma 4.2.1, it follows that for each γ ∈ Γϕ, we have

F (s)

(
u

cτ + d
; γτ

)
ϕ

(
u

cτ + d
+ zs(γτ); γτ

)
= (cτ + d)kF (sγ)(u; τ)ϕ(u+ zsγ; τ).

Using the elliptic transformation properties of both F (s) and ϕ, we shift sγ to s, using

the discussion in Subsection 4.2.1, say s = sγ + (λ, µ), for some (λ, µ) ∈ Z2, obtaining

(cτ + d)kF (sγ)(u; τ)ϕ(u+ zsγ; τ) = e2πim(αµ−βλ)(cτ + d)kF (s)(u; τ)ϕ(u+ zs; τ).
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Note that (λ, µ) depends on γ and s. Since γ ∈ Γϕ, one can show that e2πim(αµ−βλ) = 1.

In particular, writing both the right and the left hand sides in terms of the Laurent

expansion, we obtain

D
(s)
j (γτ) = (cτ + d)k−jD

(s)
j (τ),

which proves the modular property. It remains to prove that they can be written as

polynomials in 1
v

with weakly holomorphic coefficients. Clearly, each D
(s)
j (τ) can be

written as a combinations of Laurent coefficients of ϕ(u+zs; τ) and F (s)(u; τ) in u = 0.

More precisely, it is easy to see that

D
(s)
j (τ) =

ns−j∑
λ=0

1

(2πi)λλ!
D̃

(s)
λ+j(τ)∂λu

[
F (s)(u; τ)

]
u=0

.

It is straightforward to show that ∂nu
[
F (s)(u; τ)

]
u=0

equals qα
2m times a polynomial in

1
v

with coefficients in C. Furthermore, its constant term is given by (4πimα)n. From

these observations it follows thatD
(s)
j (τ) is an almost holomorphic modular form, whose

holomorphic part is given by

qα
2me(mαβ)

ns−j∑
λ=0

D̃
(s)
λ+j(τ)(4πimα)λ.

This proves parts 1 and 2. For the proof of part 3 we refer the reader to the proof of

Proposition 3.3.5, which is very similar.

4.3 Proof of Theorem 4.1.1

4.3.1 Canonical Fourier coefficients and canonical decomposition

By assumption, the meromorphic Jacobi form ϕ has integral index and is 1-periodic in

both τ and z, thus we do not need to split the Fourier coefficients into even and odd

pieces, as we did in the case of the Kac-Wakimoto characters generating function Φ.

We can therefore use the original definition of canonical Fourier coefficient introduced
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by Dabholkar, Murthy, and Zagier, namely

h`(τ) := q−
`2

4m

− `τ
2m

+1∫
− `τ

2m

ϕ(z; τ)ζ−`dz, (4.3.1)

for each integer `. We also define the vector-valued function h2m, whose components

are the canonical Fourier coefficients,

h2m(τ) := (h`(τ))0≤`<2m−1 .

Note that h2m coincides with the vector-valued function heven
2m introduced in (3.3.2).

Also, if the meromorphic Jacobi form has a pole on the path of integration, which by

assumption is the straight line, then we treat the integral as explained in Remark 1 of

Section 3.1.1.

Remark. The definition of canonical Fourier coefficient and the canonical splitting of a

meromorphic Jacobi form which we soon recall were introduced in [15] for any mero-

morphic Jacobi form of positive index. However, in that case the authors investigate

the modularity property of the Fourier coefficients restricting to the case of poles of

order at most 2.

We define the finite part ϕF of ϕ as

ϕF (z; τ) := h2m(τ) · ϑm(z; τ),

where ϑm = (ϑm,`)` (mod 2m) was introduced in Subsection 2.3.1. Moreover, we give the

polar part ϕP of ϕ as

ϕP (z; τ) := −
∑

zs∈S(τ)
0

ns∑
j=1

D̃
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1

[fm (z, u+ zs; τ)

−E(s)
m (u; τ) · ϑm(z; τ)

]
u=0

,
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where the functions D̃
(s)
j are the Laurent coefficients of ϕ at the pole zs ∈ S(τ)

0 , as de-

scribed in (4.2.5), while the vector-valued function E(s)
m (u; τ) :=

(
E

(s)
m,`(u; τ)

)
` (mod 2m)

is defined for s = (α, β) by

E
((α,β))
m,` (u; τ) :=

∑
r∈Z

r≡` (mod 2m)

sgn
(
r + 1

2

)
− sgn (r + 2mα)

2
q−

r2

4m
−rαe−2πir(u+β).

Proposition 4.3.1. With the notation as above, we have ϕ = ϕF + ϕP .

Proof. The proof is very similar to that of Proposition 3.3.6 and to the original proof

of Bringmann-Folsom in [7]. In this more general situation, for non zero poles s, we

point out the appearance of the vector-valued function Em and the importance of the

“symmetries” of the poles, described in Subsection 4.2.1.

Let z̃ := Aτ ∈ C be fixed, where A ∈ Q. Since both ϕ and ϕF are meromorphic in

z, we assume without loss of generality that Im(z) = Im(z̃) = Av. By definition

ϕ (z; τ)− ϕF (z; τ) =
∑
`∈Z

e2πi`z

∫
P(z̃,− `

2m
τ)
ϕ(u; τ)e−2πiu`, (4.3.2)

where for x, y ∈ C P (x, y) is the parallelogram of vertices {x, y, x+1, y+1}. As before,

S(τ) is the set of poles of z 7→ ϕ (z; τ). Applying the Residue Theorem, we rewrite the

right hand side of (4.3.2) as

2πi
∑
`∈Z

∑
zs∈S(τ)∩P(Aτ,− `

2m
τ)

Res
u=0

(
ϕ (u+ zs; τ) e−2πi`(u+zs)

)
e2πi`z. (4.3.3)

Due to the elliptic transformation properties of ϕ, each pole zs ∈ S(τ)∩P
(
z̃,− `

2m
τ
)

can

be written as zs = ws + λτ , for a certain ws ∈ S(τ)
0 and λ ∈ Z. Then, for ws = ατ + β

we rewrite the sum over the poles as

∑
zs∈S(τ)∩P(Aτ,− `

2m
τ)

=
∑

ws∈S(τ)
0

∑
λ∈Z

sgn (λ− A)− sgn
(
λ+ `

2m
+ α

)
2

.
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Note that if α = `
2m

for a certain integer `, then this function counts the pole with

multiplicity 1
2
, as we expect from the exceptional cases described in Remark 1. Using

the Laurent expansion of ϕ at ws and the elliptic transformation properties of Φ, we

obtain that (4.3.3) equals

∑
`∈Z

e2πi`z
∑

ws∈S(τ)
0

∑
λ∈Z

sgn (λ− A)− sgn
(
λ+ `

2m
+ α

)
2

×
ns∑
j=1

D̃
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1 [
q−mλ

2−`λe−2πi(`+2mλ)(u+ws)
]
u=0

,

where ns is the order of ws. Rearranging the order of summations and shifting the

variables as in the proof of Proposition 3.3.6, this last expression can be written as

ϕP (z; τ) = −
∑

ws∈S(τ)
0

ns∑
j=1

D̃
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1
[∑
λ∈Z

qmλ
2

e (2mλz)

×
∑
`∈Z

sgn (λ+ A) + sgn (`+ 2mα)

2
q`λe (` (z − u− ws))

]
u=0

,

To conclude the proof, it is enough to show that the term in brackets is in fact

fm (z, u+ zs; τ)− E(s)
m (u; τ) · ϑm(z; τ).

This can be proven by splitting the summation on ` as∑
`∈Z

sgn (λ+ A) + sgn
(
`+ 1

2

)
2

+
∑
`∈Z

sgn (`+ 2mα)− sgn
(
`+ 1

2

)
2

.

The first summation gives fm (z, u+ zs; τ) as a consequence of Proposition 3.2.7, while

a trivial computation shows that the second piece gives E(s)
m (u+ zs; τ) · ϑm(z; τ).

We conclude this subsection by giving an alternative description of ϕP in terms of

the almost holomorphic modular forms D
(s)
j defined in (4.2.6). The proof is analogous

to that of Proposition 3.3.7, therefore we omit it. In what follows, F (s) is the non-

holomorphic Jacobi form described in Subsection 4.2.2.
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Proposition 4.3.2. We have

ϕP (z; τ)

= −
∑

zs∈S(τ)
0

ns∑
j=1

D
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1
[
fm (z, u+ zs; τ)

F (s)(u; τ)
− E(s)

m (u; τ)

F (s)(u; τ)
· ϑm(z; τ)

]
u=0

.

4.3.2 Modular properties of h2m

In order to understand the modular property of h2m, we use the same method as in

the previous chapter. More precisely, we complete the polar and the finite parts of ϕ,

and then we use the properties of the theta decomposition to derive the transformation

laws of h2m.

We define the completion of ϕP as

ϕ̂P (z; τ) : = −
∑

zs∈S(τ)
0

ns∑
j=1

D
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1
[
f̂m (z, u+ zs; τ)

F (s)(u; τ)

]
u=0

= ϕP (z; τ)−Rm(τ) · ϑm(z; τ), (4.3.4)

where

Rm(τ) :=

 ∑
zs∈S(τ)

0

ns∑
j=1

D
(s)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1
[
E

(s)
m,`(u; τ)− 1

2
Rm,`(u+ zs; τ)

F (s)(u; τ)

]
0≤`<2m

.

Note that the second equality in (4.3.4) is a consequence of (2.3.5). Similarly, we define

the completion ϕ̂F of ϕF as

ϕ̂F (z; τ) := ϕF (z; τ) +Rm(τ) · ϑm(z; τ) = ĥ2m(τ) · ϑm(z; τ),

where we let

ĥ2m(τ) := h2m(τ) +Rm(τ).
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Proposition 4.3.3. The functions ϕF and ϕP satisfy the same transformation proper-

ties as ϕ. In particular, the function ĥ2m is a vector-valued non-holomorphic modular

form of weight k − 1
2

for Γ with multiplier system described in Proposition 2.3.4.

Proof. The elliptic transformation property follows from the analogous transformation

for f̂m(z, u + zs; τ). In order to show the modular property, for all γ =
(
a b
c d

)
∈ Γ, we

consider

ϕ̂P
(

z

cτ + d
; γτ

)
= −

∑
zs(γτ)∈S(γτ)

0

ns∑
j=1

D
(s)
j (γτ)

(j − 1)!

(
∂ u
cτ+d

2πi

)j−1
 f̂m

(
z

cτ+d
, u+zsγ(τ)

cτ+d
; γτ
)

F (s)
(

u
cτ+d

; γτ
)


u=0

.

Using Lemma 4.2.1, Proposition 4.2.2, and the transformation properties of f̂m(z, u+

zs; τ) in Proposition 2.3.7, we can write it as

−(cτ + d)ke

(
cmz2

cτ + d

) ∑
zsγ(τ)∈S(τ)

0

ns∑
j=1

D
(sγ)
j (τ)

(j − 1)!

(
∂u
2πi

)j−1
[
f̂m(z, u+ zsγ; τ)

F (sγ)(u; τ)

]
u=0

.

Note that the sum over zs(γτ) ∈ S(γτ)
0 is the same as the sum over zsγ(τ) ∈ S(τ)

0 by

virtue of (4.2.2).

Since ϕ and ϕ̂P satisfy the same transformation properties, the same must be true

for ϕ̂F = ϕ− ϕ̂P . Finally, the modularity of ĥ2m follows since its components are the

theta-coefficients of ϕ̂F , as we showed in Proposition 2.3.4.

4.3.3 Shape of ĥm

To conclude the proof of Theorem 4.1.1, we need to show that ĥ2m has the shape of

an almost harmonic Maass form. However, this is just an immediate consequence of

Proposition 4.3.2 and Corollary 3.2.5. More precisely, each component of Rm can be
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written as

∑
zs∈S(τ)

0

[ns−1
2 ]∑
j=0

4jLj
(
D

(s)
1 (τ)

)
(2j)!

Rj
1
2

(
E

(s)
m,`(0; τ)− 1

2
Rm,`(zs; τ)

)

+
∑

zs∈S(τ)
0

[ns2 ]−1∑
j=0

4jLj
(
D

(s)
2 (τ)

)
(2j + 1)!

Rj
3
2

(
∂u
2πi

[
E

(s)
m,`(u; τ)− 1

2
Rm,`(u+ zs; τ)

]
u=0

)
.

Note that Corollary 3.2.5 deals with the function Rm,`. It is easy to verify that the

heat operator annihilates Em,` as well, therefore, by Proposition 3.2.4, the results in

Corollary 3.2.5 holds for Em,`− 1
2
Rm,`. By Corollary 2.3.11, we see that for ι ∈ {1

2
, 3

2
} the

function ∂u
2πi

ι− 1
2 [Rm,`(u+ zs; τ)]u=0 is the non-holomorphic part of a harmonic Maass

form Ĝs,ι
m,`, whose holomorphic part is denoted by Gs,ι

m,`. Defining

Gι(τ) :=

 ∑
zs∈S(τ)

0

ns(ι)∑
j=0

4jLj
(
D

(s)

ι+ 1
2

(τ)
)

(
2j + ι− 1

2

)
!
Rj
ι

(
Gs,ι
m,`(τ)

)
` (mod 2m)

,

Ĝι(τ) :=

 ∑
zs∈S(τ)

0

ns(ι)∑
j=0

4jLj
(
D

(s)

ι+ 1
2

(τ)
)

(
2j + ι− 1

2

)
!
Rj
ι

(
Ĝs,ι
m,`(τ)

)
` (mod 2m)

,

where ns(ι) :=
[
ns− 1

2
−ι

2

]
, we have

ĥ2m = h2m +Rm = h2m + Ĝ 1
2

+ Ĝ 3
2
− G 1

2
− G 3

2
.

By construction Ĝ 1
2

and Ĝ 3
2

are vector-valued almost harmonic Maass forms, while

h2m−G 1
2
−G 3

2
is an almost holomorphic modular form, in particular an almost harmonic

Maass form.
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CHAPTER 5

Multivariable Kac-Wakimoto characters

5.1 Introduction

In the previous chapters we described the shape and the modularity of the single-

variable Kac-Wakimoto characters, and more generally of the Fourier coefficients of

2-variable Jacobi forms of positive index. However, Kac-Wakimoto characters as inves-

tigated by Bringmann, Folsom, and Ono [7, 11, 17], and as we considered in Chapter

3, are specializations of more general characters given in [24] as

chF =
∑
`∈Z

chF`ζ
` := eΛ0

∏
k≥1

∏m
r=1

(
1 + ζξrq

k− 1
2

)(
1 + ζ−1ξ−1

r qk−
1
2

)
∏n

j=1

(
1− ζξm+jq

k− 1
2

)(
1− ζ−1ξ−1

m+jq
k− 1

2

) . (5.1.1)

We can easily see that specializing all the ξr = 1 we get (3.1.1).

In this chapter, we show that considering the additional variables in (5.1.1) im-

poses extra shape which gives a cleaner picture for the specialized character as these

are specializations of mixed H-harmonic Maass-Jacobi forms. This construction, com-

bined with the techniques described in Chapter 4, allows to describe the shape and

the modularity of the Fourier coefficients of multivariable meromorphic Jacobi forms

(Fourier coefficients with respect to a single fixed elliptic variable).
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5.1.1 Statement of the results

Let m > n > 0 be positive even integers, and M := m−n
2

. Let (m1, · · · ,ms) ∈ Ns and

(n1, · · · , nt) ∈ Nt such that
∑s

j=1 mj = m and
∑t

j=1 nj = n. Moreover, we define the

matrix

L :=

2M bT

b L̃

 ,

where

b = (bs,bt) := (m1, · · · ,ms, n1, · · · , nt)T ,

L̃ : = diag (bs,−bt) .

In this chapter, we consider the function Φ: Cs+t+1 × H→ C defined by

Φ(z,u; τ) :=

∏s
r=1 ϑ

(
z + ur + 1

2
; τ
)mr∏t

j=1 ϑ (z − wj; τ)nj
, (5.1.2)

where ϑ is the classical Jacobi theta function (2.3.1). Here, we use the notation u :=

(u1, · · · , us, w1, · · ·wt) for the elliptic variables.

The function Φ is clearly a multivariable meromorphic Jacobi form, whose trans-

formation properties will be explicitly described in Proposition 5.2.2.

The aim of this chapter is to describe the shape and the modularity properties

of the canonical Fourier coefficient h of Φ with respect to the elliptic variable z (see

(5.3.2) for the definition).

Theorem 5.1.1. The canonical Fourier coefficient h : Cs+t × H → C2M is the holo-

morphic part of a multivariable almost harmonic Maass-Jacobi form of weight M − 1
2
,

index L∗ (see (5.2.6)) for Γ0(2), and with multiplier system described in Proposition

2.3.4.

Considering the special case of Φ when b = (1, · · · , 1) and using Jacobi’s triple
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product identity (see Proposition 2.3.2), we can rewrite chF as

chF = eΛ0(−1)mi−nζM

(
m∏
r=1

eπiur

)(
n∏
j=1

eπiwj

)
q
M
3 η(τ)−2MΦ

(
z +

τ

2
,u; τ

)
.

Therefore, as a consequence of Theorem 5.1.1, we can deduce the shape of the multi-

variable Kac-Wakimoto characters.

Corollary 5.1.2. The multivariable Kac-Wakimoto characters chF` are the holomor-

phic parts of mixed H-harmonic Maass-Jacobi form.

5.1.2 Outline of Chapter 5

In Section 5.2, we generalize certain objects and tools used in the previous chapters

to the multivariable setting. This will be the necessary preliminaries for the proof of

Theorem 5.1.1 in Section 5.3.

5.2 Preliminaries

Most of the preliminary results needed in this chapter have already been described

in the previous chapters. In this section, we generalize the function F (s) described in

Subsection 4.2.2 to a multivariable setting.

5.2.1 An elementary non-holomorphic multivariable Jacobi form

Let F : C2 × H→ C be the function defined by

F (z, w; τ) := e2πiM
(z+w−w)2

τ−τ , (5.2.1)

and G its normalization

G(z, w; τ) :=
F (z, w; τ)

F (0, w; τ)
. (5.2.2)
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If z = 0, we sometimes use the notation F (w; τ) := F (0, w; τ). This function is a non-

holomorphic Jacobi form of index −
(
M M
M 0

)
and weight 0, as we see in the following

lemma.

Lemma 5.2.1. The function G satisfies the following transformation properties:

1. For all λ, µ ∈ Z, we have

G(z, w + λτ + µ; τ) = e4πiMλzG(z, w; τ).

2. For all γ =
(
a b
c d

)
∈ SL2(Z), we have

G

(
z

cτ + d
,

w

cτ + d
; γτ

)
= e−2πi Mc

cτ+d(z2+2zw)G (z, w; τ) .

Proof. The proof is just a direct computation and follows immediately from the fol-

lowing transformation properties of F :

1. For all λ, µ ∈ Z, we have

F (z, w + λτ + µ; τ) = e2πiM(λ2(τ−τ)+2λ(z+w−w))F (z, w; τ).

2. For all γ =
(
a b
c d

)
∈ SL2(Z), we have

F

(
z

cτ + d
,

w

cτ + d
; γτ

)
= e−2πiM( c

cτ+d
(z+w)2+ c

cτ+d
w2)F (z, w; τ) .

To prove the first of these two claims we note that by definition

F (z, w + λτ + µ; τ) = e
2πiM

(
(z+w−w+λ(τ−τ))2

τ−τ

)

= e
2πiM

(
(z+w−w)2+λ2(τ−τ)2+2(z+w−w)λ(τ−τ)

τ−τ

)

= e
2πiM

(
(z+w−w)2

τ−τ +λ2(τ−τ)+2(z+w−w)λ

)

= e2πiM(λ2(τ−τ)+2(z+w−w)λ)F (z, w; τ).
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For the second claim, by definition we have

F

(
z

cτ + d
,

w

cτ + d
; γτ

)
= e2πiM

( z+wcτ+d
− w
cτ+d)

2

γτ−γτ = e2πiM
((z+w)(cτ+d)−w(cτ+d))2

(cτ+d)(cτ+d)(τ−τ) . (5.2.3)

Using

cτ + d

cτ + d
= 1 + (τ − τ)

c

cτ + d
,

cτ + d

cτ + d
= 1− (τ − τ)

c

cτ + d
,

the right-hand side of (5.2.3) equals

e2πiM( 1
τ−τ ((z+w)2(1−(τ−τ) c

cτ+d)+w2(1+(τ−τ) c
cτ+d)−2(z+w)w))

= e
2πiM

(
− c(z+w)2

cτ+d
+ cw2

cτ+d

)
F (z, w; τ).

As in the one-variable case, the function G allows to construct the completion of

the Laurent coefficients of Φ with respect to z at each pole, considering (u; τ) as fixed.

Knowing that ϑ(z; τ) has simple poles in z at Zτ + Z, it follows that Φ has t poles in

z ∈ {w1, · · · , wt}. We denote the Laurent expansion of Φ as z → wj by

Φ(ε+ wj,u; τ) =

nj∑
λ=1

D̃λ,j(u; τ)

(2πiε)λ
+O(1) ε→ 0. (5.2.4)

Analogously, we define the Laurent expansion of GΦ, which clearly has the same poles,

namely

G(ε, w; τ)Φ(ε+ wj,u; τ) =

nj∑
λ=1

Dλ,j(u; τ)

(2πiε)λ
+O(1) ε→ 0.

Here, we have used a new elliptic variable w which can be expressed in terms of u,

namely,

w = w(j) :=
1

2M
b · u + wj. (5.2.5)
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Remark 2. Note that the new elliptic variable w is just a linear combination of the

elliptic variables u. In particular, if we look at F as a function of u, applying the

transformation u+λτ+µ is equivalent to applying w+λτ+µ, with λ := 1
2M

b·λ+λs+j

and µ := 1
2M

b · µ+ µs+j.

As mentioned before, the function Φ is a multivariable meromorphic Jacobi form,

whose transformation properties are described in the following proposition.

Proposition 5.2.2. The function Φ, defined in (5.1.2), satisfies the following trans-

formation properties:

1. For all (λ,λ) ∈ Zs+t+1 and (µ,µ) ∈ Zs+t+1, we have

Φ (z + λτ + µ,u + λτ + µ; τ) = (−1)b·µ+(0,bt)·λq−
1
2
L[(λ,λ)]e−2πi(z,u)TL(λ,λ)

× Φ (z,u; τ) .

2. For all γ =
(
a b
c d

)
∈ Γ0(2), we have

Φ

(
z

cτ + d
,

u

cτ + d
; γτ

)
= χ(γ)(cτ + d)Meπi

c
cτ+d

L[(z,u)]Φ(z,u; τ),

where the character χ(γ) was defined in Proposition 3.3.1.

Proof. We first prove the elliptic transformation law. If (λ,λ) ∈ Zs+t+1 and (µ,µ) ∈

Zs+t+1, then

Φ(z + λτ + µ,u + λτ + µ; τ) =

∏s
r=1 ϑ

(
z + ur + 1

2
+ (λ+ λr)τ + (µ+ µr); τ

)mr∏t
j=1 ϑ (z − wj + (λ− λs+j)τ + (µ− µs+j); τ)nj

,

while, using the transformation properties of ϑ, equals
∏s

r=1

(
(−1)λ+λr+µ+µrq−

(λ+λr)2

2 e−2πi(z+ur+1/2)(λ+λr)
)mr

∏t
j=1

(
(−1)λ+λs+j+µ+µs+jq−

(λ−λs+j)2

2 e−2πi(z−wj)(λ−λs+j)
)nj

Φ(z,u; τ).
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Since m and n are even by assumption, the factor in parentheses equals

(−1)
∑
rmrµr+

∑
j nj(λs+j+µs+j)q−

1
2

(
∑
rmr(λ+λr)2−

∑
j nj(λ−λs+j)2)e2πi(−

∑
rmr(z+ur)+

∑
j nj(z−wj)),

which, by definition of L, equals

(−1)b·µ+(0,bt)·λq−
1
2
L[(λ,λ)]e−2πi(z,u)TL(λ,λ).

We now prove the modular transformation property. By the definition of Φ and

using the modularity of ϑ, we have

Φ

(
z

cτ + d
,

u

cτ + d
; γτ

)
=

∏s
r=1 ϑ

(
z+ur
cτ+d

+ 1
2
; γτ
)mr∏t

j=1 ϑ
( z−wj
cτ+d

; γτ
)nj .

If γ ∈ Γ0(2), then d− 1 is even, and we can rewrite the right-hand side as∏s
r=1

(
Ψ(γ)3(−1)

c
4 (cτ + d)

1
2 e

2πic
2(cτ+d)

(z+ur)2

ϑ
(
z + ur + 1

2
; τ
))mr

∏t
j=1

(
Ψ(γ)3(cτ + d)

1
2 e

2πic
2(cτ+d)

(z−wj)2

ϑ (z − wj; τ)
)nj

= Ψ(γ)3(m−n)(−1)
mc
4 (cτ + d)

m−n
2 e

πic
(cτ+d)(

∑
rmr(z+ur)

2−
∑
j nj(z−wj)2)Φ(z,u; τ).

Similarly as before, by the definition of L we have

e
πic

(cτ+d)(
∑
rmr(z+ur)

2−
∑
j nj(z−wj)2) = e

2πic
(cτ+d)

L[(z,u)].

The transformation properties of Φ dictate “almost” modular and elliptic transfor-

mation properties for its Laurent coefficients. The following proposition describes the

transformation properties of D̃λ,j and Dλ,j. In order to give the statement, we define

the matrix

L∗ := L̃− 1

2M
bbT . (5.2.6)

Proposition 5.2.3. For each j ∈ {1, · · · , t} and each λ ∈ {1, · · · , nj}, the function

Dλ,j is an almost holomorphic Jacobi form of weight M −λ. More precisely it satisfies

the following transformation properties:
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1. For all λ, µ ∈ Zs+t such that 1
2M

b · λ and 1
2M

b · µ ∈ Z, we have

Dr,j (u + λτ + µ; τ) = (−1)b·µ+(0,bt)·λe−2πiM(λ2τ+2λw)q−
1
2
L∗[λ]e−2πiuTL∗λ

×Dr,j (u; τ) ,

where λ and µ are defined in Remark 2.

2. For all γ =
(
a b
c d

)
∈ SL2(Z), we have

Dr,j

(
u

cτ + d
; γτ

)
= χ(γ)(cτ + d)M−reπi

c
cτ+d

L∗[u]e2πiM c
cτ+d

w2

Dr,j (u; τ) ,

where χ is as in Proposition 3.3.1.

Proof. We start by proving the modular property. We recall that by definition w =

wj + 1
2M

b ·u and define z := ε+w. With this notation, we see that the functions Dr,j

are the Laurent coefficients of

G(z − w,w; τ)Φ

(
z − 1

2M
b · u,u; τ

)
, (5.2.7)

in z = w. From the transformation properties of G and Φ (see Lemma 5.2.1 and

Proposition 5.2.2), the function in (5.2.7) has automorphy factor

χ(γ)(cτ + d)Me
2πic
cτ+d(−Mz2+Mw2+ 1

2
L[(z− 1

2M
b·u,u)]).

It is a standard fact that

L

[(
z − 1

2M
b · u,u

)]
= L [(z,0)] + L

[(
− 1

2M
b · u,u

)]
.

Therefore, the automorphy factor can be written as

χ(γ)(cτ + d)Me
2πic
cτ+d(Mw2+ 1

2
L∗[u]),

where in the last step we have used the identity

L

[(
− 1

2M
b · u,u

)]
= L∗ [u] .
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As a consequence, we obtain

nj∑
λ=1

Dλ,j

(
u

cτ+d
; γτ
)

(cτ + d)λ

(2πiε)λ
+O(1)

= χ(γ)(cτ + d)Me
2πic
cτ+d(Mw2+ 1

2
L∗[u])

nj∑
λ=1

Dλ,j(u; τ)

(2πiε)λ
+O(1).

Comparing the coefficient of ε−λ on both the right- and the left-hand sides, we obtain

the result.

For the elliptic property, the computation is very similar. Shifting u 7→ u+λτ +µ,

(i.e., shifting w and z by λτ + µ, where λ and µ are as in the hypothesis) in (5.2.7),

we obtain the elliptic factor

(−1)b·µ+(0,bt)·λq−
1
2
L[(λ,λ)]e

2πi
(

2Mλ(z−w)−(λ− 1
2M

b·λ,λ)
T
L(z− 1

2M
b·u,u)

)
. (5.2.8)

The second term in the exponent can be easily written as

(λ,0)T L (z,0) +

(
− 1

2M
b · λ,λ

)T
L (0,u) = 2Mλz + λTL∗u,

where in the last equality we have used(
− 1

2M
b · λ,λ

)T
L (0,u) = λTL∗u.

Therefore, the entire elliptic factor in (5.2.8) turns out to be

(−1)b·µ+(0,bt)·λq−Q((λ,λ))e2πi(−2Mλw+λTL∗u).

To conclude, it is enough to show that

q−
1
2
L[(λ,λ)] = q−Mλ2− 1

2
L∗[λ].

This follows easily, arguing as in the proof of the modularity property.

Finally, in order to show that the functions Dr,j are almost holomorphic Jacobi

forms, it is enough to note that

Dr,j(u; τ) :=

nj−r∑
κ=0

D̃r+κ,j(u; τ)
1

κ!

(
∂ε
2πi

)κ
[G (ε, w; τ)]ε=0 . (5.2.9)
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5.3 Proof of Theorem 5.1.1

5.3.1 Canonical Fourier coefficients and canonical decomposition

In this subsection we generalize the canonical decomposition given by Dabholkar,

Murthy, and Zagier [15] to the multivariable case. Here we consider the Fourier coeffi-

cients with respect to a single elliptic variable z. For a fixed ω ∈ C, we define

h
(ω)
` (u; τ) := q−

`2

4M e−2πi `
2M

b·u
∫ ω+1

ω

Φ(z,u; τ)e−2πi`zdz. (5.3.1)

The path of integration is the straight line from ω to ω + 1. If the there is a pole of

Φ on it, we adopt the same modifications as in Remark 1. We define the `th canonical

Fourier coefficient of Φ as

h`(u; τ) := h
(− `τ

2M )
` (u; τ). (5.3.2)

With this choice, using the elliptic transformation property of Φ with respect to z, it

is easy to show that

h`(u; τ) = h`+2M(u; τ).

In particular, we can define the vector-valued function h := (h`)` (mod 2M). We define

the finite part of Φ by the theta decomposition

ΦF (z,u; τ) := h(u; τ) · ϑM
(
z +

1

2M
b · u; τ

)
.

Moreover, we define the polar part of Φ as

ΦP (z,u; τ) := −
t∑

j=1

nj∑
λ=1

D̃λ,j(u; τ)

(λ− 1)!

(
∂ε
2πi

)λ−1 [
fM

(
z +

b · u
2M

,
b · u
2M

+ wj + ε; τ

)

−
∑

` (mod 2M)

EM,`

(
b · u
2M

+ wj + ε; τ

)
ϑM,`

(
z +

b · u
2M

; τ

)
ε=0

,
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where the polynomial EM,` is given by

EM,`(u; τ) :=
∑
λ∈Z

λ≡` (mod 2M)

1

2

(
sgn

(
λ+

1

2

)
− sgn (λ+ 2MIm(u))

)
q−

λ2

4M e−2πiλu.

(5.3.3)

The functions ΦF and ΦP provide the canonical decomposition of Φ, as shown in the

following proposition.

Proposition 5.3.1. With the notation as above, we have Φ = ΦF + ΦP .

Proof. We fix a pointW := Xτ+Y (X, Y ∈ R), and assume Im(z) = Xv. Furthermore,

call P the parallelogram of vertices W , W + 1, − `τ
2M

+ 1, and − `τ
2M

. We have already

seen that the poles of Φ with respect to z are in wj modulo Zτ+Z, for all j ∈ {1, · · · , t}.

A pole is inside P if and only if

− `

2M
v ≤ Im (wj + µτ) ≤ ImW = Xv,

for some µ ∈ Z. This is equivalent to requiring

− `

2M
≤ Im(wj)

v
+ µ ≤ X.

As usual, the function that describes whether a pole is inside P or not is

S(µ, `) :=
1

2

(
sgn

(
µ+

`

2M
+

Im(wj)

v

)
− sgn

(
µ+

Im(wj)

v
−X

))
.

From the Residue Theorem it follows that

Φ(z,u; τ)− ΦF (z,u; τ) = 2πi
∑
`∈Z

t∑
j=1

∑
µ∈Z

S(µ, `) Res
w=wj+µτ

(
Φ(w,u; τ)e−2πiw`

)
ζ`

= 2πi
∑
`∈Z

t∑
j=1

∑
µ∈Z

S(µ, `) Res
ε=0

(
Φ(ε+ wj + µτ,u; τ)e−2πi`(ε+wj+µτ)

)
ζ`.

Using the elliptic transformation property of Φ, one has

Φ(ε+ wj + µτ,u; τ) = q−Mµ2

e−2πiµb·ue−4πiMµ(ε+wj)Φ(ε+ wj,u; τ).
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Therefore, Φ− ΦF can be rewritten as

2πi
∑
`∈Z

t∑
j=1

∑
µ∈Z

S(µ, `)ζ`q−Mµ2−µ`e−2πiµb·ue−2πi(`+2Mµ)wj

× Res
ε=0

(
Φ(ε+ wj,u; τ)e−2πiε(`+2Mµ)

)
.

Shifting the variables as µ 7→ −µ and then ` 7→ `+ 2Mµ, we obtain

ΦP (z,u; τ) = −2πi
t∑

j=1

∑
µ∈Z

qMµ2

ζ2Mµe2πiµb·u
∑
`∈Z

S(−µ, `+ 2Mµ)qµ`ζ`

× e−2πi`wj Res
ε=0

(
Φ(ε+ wj,u; τ)e−2πiε`

)
. (5.3.4)

Note that the residue can be written as

Res
ε=0

(
Φ(ε+ wj,u; τ)e−2πiε`

)
=

nj∑
r=1

D̃r,j(u; τ)

2πi(r − 1)!

(
∂ε
2πi

)r−1 [
e−2πi`ε

]
ε=0

.

In particular, Φ− ΦF equals

−
t∑

j=1

nj∑
r=1

D̃r,j(u; τ)

(r − 1)!

(
∂ε
2πi

)r−1
[∑
µ∈Z

qMµ2

ζ2Mµe2πiµb·u

×
∑
`∈Z

S(−µ, `+ 2Mµ)qµ`ζ`e−2πi`(wj+ε)

]
ε=0

.

A standard computation allows us to write the expression in brackets as an Appell

Lerch sum and an error term, which is holomorphic. More precisely, as claimed, we

can express the difference Φ− ΦF as

−
t∑

j=1

nj∑
r=1

D̃r,j(u; τ)

(r − 1)!

(
∂ε
2πi

)r−1 [
fM

(
z +

1

2M
b · u, 1

2M
b · u + wj + ε; τ

)

−
∑

` (mod 2M)

EM,`

(
1

2M
b · u + wj + ε; τ

)
ϑM,`

(
z +

1

2M
b · u; τ

)
ε=0

. (5.3.5)
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As in the single variable case, the polar part of Φ can be written in a slightly

different way, where the Laurent coefficients D̃λ,j are replaced by their completions

Dλ,j. We describe this phenomenon in the following proposition.

Proposition 5.3.2. With the notation as above, the polar part of Φ can be written as

ΦP (z,u; τ) = −
t∑

j=1

nj∑
λ=1

Dλ,j(u; τ)

(λ− 1)!

(
∂ε
2πi

)λ−1
[
fM
(
z + 1

2M
b · u, w(j) + ε; τ

)
G (ε, w(j); τ)

−
∑

` (mod 2M)

EM,`

(
w(j) + ε; τ

)
ϑM,`

(
z + 1

2M
b · u; τ

)
G (ε, w(j); τ)


ε=0

.

Here we omit the proof since it can be derive from the proof of Proposition 3.3.7.

5.3.2 The modular properties of h

As in the single variable case, the finite part and the polar part of a multivariable

meromorphic Jacobi form can be completed to functions which transform as Jacobi

forms, and this property will be inherited by the canonical Fourier coefficients, i.e., the

components of h. To show this, we need the non-holomorphic vector-valued function

R (u; τ) :=

(
t∑

j=1

nj∑
λ=1

Dλ,j(u; τ)

(λ− 1)!

(
∂ε
2πi

)λ−1
[
R̃M,`

(
w(j) + ε; τ

)
G (ε, w(j); τ)

]
ε=0

)
` (mod 2M)

,

where R̃M,` := EM,` − 1
2
RM,` and w(j) as in (5.2.5). We define the completion Φ̂P of

ΦP as

Φ̂P (z,u; τ) := ΦP (z,u; τ)−R(u; τ) · ϑM
(
z +

1

2M
b · u; τ

)
,

and the completion Φ̂F of ΦF as

Φ̂F (z,u; τ) := ΦF (z,u; τ) + R(u; τ) · ϑM
(
z +

1

2M
b · u; τ

)
.

In the following proposition we show that these two functions are multivariable non-

holomorphic Jacobi forms.
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Proposition 5.3.3. The functions Φ̂F and Φ̂P satisfy the same transformation prop-

erties as Φ.

Proof. As we shall see, each summand of the double summation defining Φ̂P gives

the same automorphy factor, therefore we can reduce to showing the transformation

properties of

Dr,j(u; τ)

(r − 1)!

(
∂ε
2πi

)r−1
[
f̂M
(
z + 1

2M
b · u, w(j) + ε; τ

)
G (ε, w(j); τ)

]
ε=0

for fixed r and j.

We start by showing the modular transformation property. Let γ =
(
a b
c d

)
∈ SL2(Z).

For a function f , let Aut(f) be the automorphy factor of f . Therefore, since

Φ̂P

(
z

cτ + d
,

u

cτ + d
; γτ

)
= −

t∑
j=1

nj∑
r=1

Dr,j

(
u

cτ+d
; γτ
)

(r − 1)!

×
(
∂ ε
cτ+d

2πi

)r−1
 f̂M

(
z

cτ+d
+ 1

2M
b·u
cτ+d

, w
(j)+ε
cτ+d

; γτ
)

G
(

ε
cτ+d

, w
(j)

cτ+d
; γτ
)


ε=0

, (5.3.6)

our goal is to show that
Aut(Dr,j)Aut(f̂M)

Aut(G)
equals the automorphy factor of Φ. Using

Proposition 5.2.3 we have that

Aut (Dr,j) = χ(γ)(cτ + d)M−re2πi( 1
2

c
cτ+d

L∗[u]+ Mc
cτ+d

w2),

with w as in (5.2.5). From the transformation properties of f̂M , we know that

Aut
(
f̂M

)
= (cτ + d)e

2πi
(
Mc
cτ+d

(
(z+b·u

2M )
2
−(w+ε)2

))
.

Finally, Lemma 5.2.1 implies that

Aut (G) = e−
2πiMc
cτ+d

(ε2+2εw).
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Note that the contribution of ε in Aut (G) cancels the contribution of ε in Aut
(
f̂M

)
.

Combining the three automorphy factors, we get

Aut (Dr,j) Aut
(
f̂M

)
Aut (G)

= χ(γ)(cτ + d)M−r+1e
2πic
cτ+d

(
1
2
L∗[u]+M(z+b·u

2M )
2
)
. (5.3.7)

Using L∗ = L̃− b·bT
2M

and the block-representation of L, one can trivially see that (5.3.7)

equals

Aut (Dλ,j) Aut
(
f̂M

)
Aut (G)

= χ(γ)(cτ + d)M−r+1e
πic
cτ+d

L[(z,u)].

As a consequence, each summand on the right-hand-side of (5.3.6) becomes

χ(γ)(cτ + d)M−r+1e
πic
cτ+d

L[(z,u)]Dr,j(u; τ)

(r − 1)!

(
∂ ε
cτ+d

2πi

)r−1
[
f̂M
(
z + b·u

2M
, w(j) + ε; τ

)
G (ε, w(j); τ)

]
ε=0

.

Changing the variable ε
cτ+d
7→ ε, we obtain

χ(γ)(cτ + d)Me
πic
cτ+d

L[(z,u)]Dr,j(u; τ)

(r − 1)!

(
∂ε
2πi

)r−1
[
f̂M
(
z + b·u

2M
, w(j) + ε; τ

)
G (ε, w(j); τ)

]
ε=0

,

which equals the automorphy factor of Φ.

Now we show the elliptic transformation property. Shifting the elliptic variable u

by λτ + µ (where λ = (λr)r) is equivalent of shifting w = w(j) by λ∗τ + µ∗, where

λ∗ := 1
2M

b · λ+ λs+j and µ∗ := 1
2M

b · µ+ µs+j.

Again, we compute each summand in the definition of Φ̂P separately. We need to

calculate

Φ̂P (z + λτ,u + λτ + µ; τ) = −
t∑

j=1

nj∑
r=1

Dr,j(u + λτ + µ; τ)

(r − 1)!

× δr−1
ε

[
f̂M
(
z + b·u

2M
+
(
λ+ b·λ

2M

)
τ +

(
µ+ 1

2M
b · µ

)
, w(j) + λ∗τ + µ∗ + ε; τ

)
G (ε, w(j) + λ∗τ + µ∗; τ)

]
ε=0

.

For a function f we denote by Ell(f) its elliptic factor. We start with Ell (Dr,j), which

by Proposition 5.2.3 equals

Ell (Dr,j) = (−1)b·µ+(0,bt)·λq−M(λ∗)2− 1
2
L∗[λ]e2πi(−2Mλ∗w−uTL∗λ).
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From the elliptic transformation properties of f̂M , we have that its elliptic factor equals

Ell
(
f̂M

)
= q

M
(

(λ∗)2−(λ+b·λ
2M )

2
)
e2πi(2Mλ∗(w+ε)−2M(λ+b·λ

2M )(z+b·u
2M )).

Finally, the elliptic factor of G is

Ell (G) = e (2Mλ∗ε) .

Therefore, a direct computation gives that

Ell (Dr,j) Ell
(
f̂M

)
Ell (G)

= (−1)b·µ+(0,bt)·λq−
1
2
L∗[λ]−M(λ+b·λ

2M )
2

e2πi(−uTL∗λ−2M(λ+b·λ
2M )(z+b·u

2M )).

Using L∗ = L̃− bbT

2M
and the block-definition of L, a trivial computation gives

Ell (Dr,j) Ell
(
f̂M

)
Ell (G)

= (−1)b·µ+(0,bt)·λq−
1
2
L[(λ,λ)]e−2πi(z,u)TL(λ,λ),

which equals the elliptic factor of Φ.

We note that both ΦF and R · ϑM can be written as a theta decomposition. This

implies that also Φ̂F has this property, namely

Φ̂F (z,u; τ) = ĥ(u; τ) · ϑM
(
z +

1

2M
b · u; τ

)
,

where

ĥ(u; τ) := h(u; τ) + R(u; τ)

is the completion of h. The following result is direct consequence of Proposition 2.3.4.

Corollary 5.3.4. The vector-valued function ĥ transforms as a Jacobi form of weight

M − 1
2

and index L∗ for Γ0(2), with multiplier system as in Proposition 2.3.4.
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5.3.3 Action of certain operators

A special property of the non-holomorphic functions R̃M,` is that they are non-trivially

annihilated by several differential operators which play a fundamental role in the theory

of Jacobi forms. This was shown in Proposition 2.3.8, where the result was stated in

terms of RM,`. The fact that the same result holds for R̃M,` is easy to check.

We proceed by describing the action of the lowering operator on the completed

Laurent coefficients Dλ,j, and the action of the raising operator on the non-holomorphic

functions RM,`. This will be used to describe the shape of the vector-valued non-

holomorphic Jacobi form ĥ.

Proposition 5.3.5. For all λ ∈ {1, · · · , nj}, we have

X− (Dλ,j(u; τ)) =
M

4π
Dλ+2,j(u; τ).

In particular, for λ ∈ {1, 2} and n ∈ N

Xn
− (Dλ,j(u; τ)) =

(
M

4π

)n
Dλ+2n,j(u; τ).

In order to prove Proposition 5.3.5, we need the following result.

Lemma 5.3.6. For each positive integer r > 1, we have

X− (δrε [G (ε, w; τ)]ε=0) =
r(r − 1)M

4π
δr−2
ε [G (ε, w; τ)]ε=0 .

Moreover, for r ∈ {0, 1}, we have

X− (δrε [G (ε, w; τ)]ε=0) = 0. (5.3.8)

Proof. For r ∈ {0, 1}, the proof is straightforward. It is enough to check that 1 and

w−w
τ−τ are annihilated by X−.
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For r = 2 we proceed by induction. We denote by G(r) := δrε [G (ε, w; τ)]ε=0. First,

we note that for all r > 1, one has

G(r) = G(r−1)G(1) + (r − 1)
M

πi(τ − τ)
G(r−2). (5.3.9)

Let r = 2. Then applying the lowering operator and using (5.3.8) yields

X−
(
G(2)

)
= X−

(
G(1)

)
G(1) +

M

πi(τ − τ)
X−
(
G(0)

)
+
M

2π
G(0).

Using (5.3.8), we prove the claim.

Assume that the statement is true for all 0 ≤ s < r. Applying the lowering operator

and using (5.3.8) yields

X−
(
G(r)

)
= X−

(
G(r−1)

)
G(1)+(r−1)

M

πi(τ − τ)
X−
(
G(r−2)

)
+(r−1)

M

2π
G(r−2). (5.3.10)

By induction, we may rewrite the right-hand side of (5.3.10) as

M(r − 1)(r − 2)

4π
G(r−3)G(1) +

(r − 1)M2(r − 2)(r − 3)

4π2i(τ − τ)
G(r−4) + (r − 1)

M

2π
G(r−2)

=
M(r − 1)(r − 2)

4π

(
G(r−3)G(1) +

M(r − 3)

iπ(τ − τ)
G(r−4)

)
+
M(r − 1)

2π
G(r−2).

Using (5.3.9), this equals

M(r − 1)(r − 2)

4π
G(r−2) +

M(r − 1)

2π
G(r−2) =

r(r − 1)M

4π
G(r−2).

This conclude the inductive step.

Proof of Proposition 5.3.5. We only prove the first claim. The second statement fol-

lows trivially. Using (5.2.9) and the fact that D̃λ,j are holomorphic functions, we can

write

X− (Dλ,j(u; τ)) =

nj−λ∑
r=0

D̃λ+r,j(u; τ)
1

r!
X−

((
∂ε
2πi

)r
[G (ε, w; τ)]ε=0

)
.
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By Lemma 5.3.6 this equals

M

4π

nj−λ∑
r=2

D̃λ+r,j(u; τ)
1

(r − 2)!

(
∂ε
2πi

)r−2

[G (ε, w; τ)]ε=0 .

Changing r into r + 2 and applying again (5.2.9), we conclude the proof.

To conclude this subsection, we show how to use the function F defined in (5.2.1)

to relate the action of the differential operator ∂ε to the action of the raising operator

Xk,M
+ . This extends previous works of Bringmann and Folsom [7].

Proposition 5.3.7. For all λ ∈ N0, we have

F (w; τ)∂2λ
w

[
R̃M,` (w; τ)

F (w; τ)

]
= (−4πM)λ

(
X

1
2
,−M

+

)λ (
R̃M,` (w; τ)

)
,

F (w; τ)∂2λ+1
w

[
R̃M,` (w; τ)

F (w; τ)

]
= −i (−4πM)λ

(
X

3
2
,−M

+

)λ (
Y

1
2
,−M

+

(
R̃M,` (w; τ)

))
.

In order to prove Proposition 5.3.7, we need several identities.

Lemma 5.3.8. Let f(w; τ) ∈ C∞(C× H). Then, the following are true:

1. Xk+2,−M
+ (f)−Xk,−M

+ (f) = 4i
τ−τ f ;

2. Xk+2,−M
+ (∂w [f ])− ∂w

[
Xk,−M

+ (f)
]

= 2i
τ−τ ∂w [f ]− 8πM w−w

(τ−τ)2f ;

3. Xk+2,−M
+ (∂2

w [f ])− ∂2
w

[
Xk,−M

+ (f)
]

= −16πM w−w
(τ−τ)2∂w [f ]− 8πM

(τ−τ)2f .

Proof. Part 1 follows directly by definition of Xk,−M
+ . We now prove part 2. By

definition, we have

Xk+2
+ (∂w [f ]) = 2i

(
∂τ∂w [f ] +

w − w
τ − τ

∂2
w[f ] +

(
−2πiM

(
w − w
τ − τ

)2

+
k + 2

τ − τ

)
∂w [f ]

)
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and

∂w
[
Xk

+ (f)
]

= 2i

(
∂τ∂w [f ] +

w − w
τ − τ

∂2
w[f ] +

1

τ − τ
∂w[f ]

+

(
−2πiM

(
w − w
τ − τ

)2

+
k

τ − τ

)
∂w [f ]− 4πiM

w − w
(τ − τ)2

f

)
.

Therefore, as claimed,

Xk+2
+ (∂w [f ])− ∂w

[
Xk

+ (f)
]

= 2i

(
1

τ − τ
∂w[f ] + 4πiM

w − w
(τ − τ)2

f

)
.

We now prove part 3. By definition,

Xk+2
+

(
∂2
w [f ]

)
= 2i

(
∂τ∂

2
w [f ] +

w − w
τ − τ

∂3
w[f ] +

(
−2πiM

(
w − w
τ − τ

)2

+
k + 2

τ − τ

)
∂2
w [f ]

)

and

∂2
w

[
Xk

+ (f)
]

= 2i

(
∂τ∂

2
w [f ] +

w − w
τ − τ

∂3
w[f ] +

2

τ − τ
∂2
w[f ]

+

(
−2πiM

(
w − w
τ − τ

)2

+
k

τ − τ

)
∂2
w [f ]− 8πiM

w − w
(τ − τ)2

∂w[f ]− 4πiM

(τ − τ)2
f

)
.

Taking the difference

Xk+2,−M
+

(
∂2
w [f ]

)
− ∂2

w

[
Xk,−M

+ (f)
]

= −16πM
w − w

(τ − τ)2
∂w [f ]− 8πM

(τ − τ)2
f,

we conclude the proof.

Before proving Proposition 5.3.7, we need the following proposition.

Proposition 5.3.9. For any f(w; τ) ∈ C∞(C× H), one has

F (w; τ)∂2
w

[
Xk,−M

+ (f (w; τ))

F (w; τ)

]
= Xk+2,−M

+

(
F (w; τ)∂2

w

[
f (w; τ)

F (w; τ)

])
. (5.3.11)
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Proof. We proceed by comparing the left and the right-hand sides of (5.3.11). In order

to simplify the notation, for λ ∈ N, we define

Fλ = Fλ(w; τ) := F (w; τ)∂λw

[
1

F (w; τ)

]
,

∂λw [f ] := ∂λw [f(w; τ)] .

The left-hand side of (5.3.11) explicitly becomes

F2X
k,−M
+ (f) + 2F1∂w

[
Xk,−M

+ (f)
]

+ ∂2
w

[
Xk,−M

+ (f)
]
. (5.3.12)

Similarly, the right-hand side may be written as

Xk+2,−M
+

(
F2f + 2F1∂w [f ] + ∂2

w [f ]
)
. (5.3.13)

Using the general fact that for two functions g and h,

Xk,−M
+ (gh) = gXk,−M

+ (h) +X0,0
+ (g)h,

and noting that

X0,0
+ (F1) = 0,

gives that (5.3.13) can be written as

F2X
k+2,−M
+ (f) +X0,0

+ (F2) f + 2F1X
k+2,−M
+ (∂w [f ]) +Xk+2,−M

+

(
∂2
w [f ]

)
. (5.3.14)

Subtracting (5.3.12) from (5.3.13) gives that the difference between the right and the

left-hand side of (5.3.11) equals

F2

(
Xk+2,−M

+ (f)−Xk,−M
+ (f)

)
+X0,0

+ (F2) f

+ 2F1

(
Xk+2,−M

+ (∂w [f ])− ∂w
[
Xk,−M

+ (f)
])

+Xk+2,−M
+

(
∂2
w [f ]

)
− ∂2

w

[
Xk,−M

+ (f)
]
.

(5.3.15)
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Using Lemma 5.3.8, we can write (5.3.15) as

F2
4i

τ − τ
f +X0,0

+ (F2) f + 2F1

(
2i

τ − τ
∂w [f ]− 8πM

w − w
(τ − τ)2

f

)
− 16πM

w − w
(τ − τ)2

∂w [f ]− 8πM

(τ − τ)2
f. (5.3.16)

To conclude the proof, it is enough to show that (5.3.16) equals 0. This can be done

with a direct computation using

F1 = −4πiM
w − w
τ − τ

, (5.3.17)

F2 = (4πiM)2 (w − w)2

(τ − τ)2
− 4πiM

(τ − τ)
, (5.3.18)

X0,0
+ (F2) = − 8πM

(τ − τ)2
.

We now have all the ingredients needed to prove Proposition 5.3.7.

Proof of Proposition 5.3.7. The λ = 0 case is trivial for both of the statements. For

λ ≥ 1 we proceed by induction. To simplify the notation, throughout the proof, we

omit the variables when writing the functions. We start by proving the first claim. For

λ = 1, the left-hand side equals

δ2
w

[
R̃M,`

]
+ 2δw

[
R̃M,`

]
Fδw

[
1

F

]
+ R̃M,`Fδ

2
w

[
1

F

]
, (5.3.19)

where we have used the notation δw := ∂w
2πi

. Using (5.3.17), (5.3.18), and the identity

δ2
ε

[
R̃M,` (ε+ w; τ)

]
ε=0

= −4Mδτ

[
R̃M,` (w; τ)

]
,

which follows by Proposition 2.3.8, equation (5.3.19) equals

−2M

πi

(
∂τ +

w − w
τ − τ

∂w − 2πiM
(w − w)2

(τ − τ)2 +
1

2(τ − τ)

)
R̃M,`.
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By definition of X+, we prove the case λ = 1.

Assume now that the statement is true for λ− 1. Then

Fδ2λ
w

[
1

F
R̃M,`

]
=

(
M

π

)λ−1

Fδ2
w

[
1

F

(
X

1
2
,−M

+

)λ−1 (
R̃M,`

)]
.

Applying Proposition 5.3.9 λ times yields(
M

π

)λ−1 (
X

5
2
,−M

+

)λ−1
(
Fδ2

w

[
1

F
R̃M,`

])
=

(
M

π

)λ (
X

1
2
,−M

+

)λ (
R̃M,`

)
,

as claimed.

Now we prove the second statement. For λ = 1, we have

Fδ3
w

(
R̃M,`

F

)
= − 1

2π
F

(
δ2
w

[
1

F

]
Y+

(
R̃M,`

)
+ 2δw

[
1

F

]
δw

[
Y+

(
R̃M,`

)]
+

1

F
δ2
w

[
Y+

(
R̃M,`

)])
,

where we have used the λ = 0 case. Using (5.3.17) and (5.3.18), we write this as

− 1

2π

(
iM

π(τ − τ)
+ (2M)2 (w − w)2

(τ − τ)2
− 4M

w − w
τ − τ

δw + δ2
w

)(
Y+

(
R̃M,`

))
. (5.3.20)

A direct computation gives

δ2
w

[
Y+

(
R̃M,`

)]
= −4Mδτ

[
Y+

(
R̃M,`

)]
+

2Mi

π(τ − τ)
Y+

(
R̃M,`

)
.

Thus, we rewrite (5.3.20) as

M

π2i

(
3

2(τ − τ)
− 2πiM

(w − w)2

(τ − τ)2
+
w − w
τ − τ

∂w + ∂τ

)(
Y+

(
R̃M,`

))
,

which by definition of X
3
2
,−M

+ concludes the proof for λ = 1. Assume that the statement

is true for λ− 1, then

Fδ2λ+1
w

[
1

F
R̃M,`

]
= − 1

2π

(
M

π

)λ−1

Fδ2
w

[
1

F

(
X

3
2
,−M

+

)λ−1 (
Y+

(
R̃M,`

))]
.
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Applying Proposition 5.3.9 λ times, we rewrite this as

− 1

2π

(
M

π

)λ−1 (
X

3
2

+2,−M
+

)λ−1
(
Fδ2

w

[
1

F
Y+

(
R̃M,`

)])
. (5.3.21)

By induction, firstly using the λ = 0 case, and then the λ = 1 case, we have

Fδ2
w

(
1

F
Y+

(
R̃M,`

))
= −2πFδ3

w

[
1

F
R̃M,`

]
=
M

π
X

3
2
,−M

+

(
Y+

(
R̃M,`

))
.

Thus, as claimed, (5.3.21) equals

− 1

2π

(
M

π

)λ((
X

3
2
,−M

+

)λ (
Y+

(
R̃M,`

)))
.

5.3.4 Shape of h

To conclude the proof of Theorem 5.1.1, we need to show that the components of h

have the shape of an almost harmonic Maass-Jacobi form. This fact follows from the

results proved in the previous subsection, more precisely from Proposition 5.3.5 and

Proposition 5.3.7. Indeed, they imply that each component of the non-holomorphic

function R can be written as

t∑
j=1

[
nj−1

2

]∑
λ=0

4λ

(2λ)!
Xλ
− (D1,j(u; τ))

(
X

1
2
+

)λ (
R̃M,`(w; τ)

)

+
1

2π

t∑
j=1

[
nj−2

2

]∑
λ=0

4λ

(2λ+ 1)!
Xλ
− (D2,j(u; τ))

(
X

3
2
+

)λ (
Y

1
2
,−M

+

[
R̃M,`(w; τ)

])
.

In Proposition 5.1 of [12] it is shown that R̃M,` is the non-holomorphic part of a H-

harmonic Maass-Jacobi form, µ̂M,`, whose holomorphic part is denoted by µM,`. To be
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more precise, for ι ∈ {1
2
, 3

2
}, we define

Gι(u; τ) :=


t∑

j=1

[
nj−ι−1/2

2

]∑
λ=0

4λXλ
−

(
Dι+ 1

2
,j(u; τ)

)
(2λ+ ι− 1

2
)!

×
(
X ι

+

)λ(Y 1
2
,−M

+

2π

)ι− 1
2

µM,`(w; τ)


` (mod 2M)

,

Ĝι(u; τ) :=


t∑

j=1

[
nj−ι−1/2

2

]∑
λ=0

4λXλ
−

(
Dι+ 1

2
,j(u; τ)

)
(2λ+ ι− 1

2
)!

×
(
X ι

+

)λ(Y 1
2
,−M

+

2π

)ι− 1
2

µ̂M,`(w; τ)


` (mod 2M)

.

Then we have

ĥ = h− G 1
2
− G 3

2
+ Ĝ 1

2
+ Ĝ 3

2
.

By construction Ĝ 1
2

and Ĝ 3
2

are vector-valued almost harmonic Maass-Jacobi forms,

while h − G 1
2
− G 3

2
is an almost holomorphic Jacobi form, therefore, in particular, an

almost harmonic Maass-Jacobi form.
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CHAPTER 6

Asymptotics results for Kac-Wakimoto characters

6.1 Introduction

In the previous chapters, we saw how to describe the Fourier coefficients of a mero-

morphic Jacobi form in terms of Appell functions and almost holomorphic modular

forms. This allowed us to derive their transformation properties. In particular, in

Chapter 3, we described the transformation properties of the Kac-Wakimoto characters

trLm,n(Λ(`)) related to the Lie superalgebra s`(m|n)∧, which we showed to be described

as the Fourier coefficients of a quotients of theta functions (3.1.2). Using different

methods, in [9] K. Bringmann and K. Mahlburg described asymptotic formulas for the

coefficients of trLm,1(Λ(`)) in the case of s`(m|1)∧. The aim of this chapter is to extend

Bringmann-Mahlburg’s result to s`(m|n)∧, to any m > n > 0. For an easier notation,

we restrict to the case of m ≡ n ≡ 0 (mod 2). However, this procedure applies without

many differences to the other cases.

6.1.1 Statement of the Theorems

Asymptotic results for the coefficients of characters associated to affine Lie algebras

were studied by V. G. Kac and D. Peterson [22]. For an affine Lie algebra g̃, denote

by L(Λ) the g̃-module with highest weight Λ, and consider the so-called weight space
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decomposition

L(Λ) =
⊕
λ

L(Λ)λ,

where λ runs through the dual roots lattice. Denoting by multΛ(λ) the multiplicity of

each weight space L(Λ)λ, for each λ, one defines the character of the module as

chL(Λ) :=
∑
λ

multΛ(λ)qλ.

Using the modularity of the so called “string functions” of the character and applying

Tauberian theorems, V. G. Kac and D. Peterson studied the asymptotic behaviour of

the weight multiplicities for affine Lie algebras.

Theorem 6.1.1 (Kac-Peterson, [22], Section 4.7, Theorem B). If g̃ is an affine Lie

algebra with `+ 1 simple roots, then, as m→∞,

multΛ(λ−mδ) ∼ 2−
1
2a

`+1
4 bm−

`+3
4 e4π

√
am,

where a and b are certain explicit constants that are determined by g̃.

Remark. The weight expression λ −mδ and the constants a and b all depend on the

Cartan subalgebra.

One of the most famous results in analytic number theory is the so-called Circle

Method, due to Hardy and Ramanujan [18]. They developed this method in order to

study the asymptotic behavior of the partition function p(m), giving an asymptotic

series expansion with polynomial error. Refining Hardy and Ramanujan’s work, in [30],

H. Rademacher obtained an exact formula for p(m) in terms of Kloosterman sums and

the classical modified Bessel function (for a precise statement see [30]). Similar results

were then established for any weakly holomorphic modular form of negative weight by

H. Rademacher and H. Zuckerman [31, 35].

In general the Kac-Wakimoto characters are not modular, thus Rademacher’s method

does not apply. However, in order to give asymptotic series expansion for partitions
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without sequences, in [10] K. Bringmann and K. Mahlburg extended this method for

linear combination of modular forms multiplied by mock modular forms. Using a re-

finement of this “mock modular” Circle Method and the Saddle point method the same

authors [9] established asymptotics for the coefficients of trLm,1(Λ(`))q
L0 . More precisely,

writing

trLm,1(Λ(`))q
L0q−

`
2 =

∑
t≥0

c`(t)q
t,

they found an explicit asymptotic expansion for c`(t) as t→∞ in terms of Kloosterman

sums, Bessel functions, and a certain principal part (see Theorem 1.1 in [9] for details).

Surprisingly, the “continuous” principal part gives the main contribution, and the

authors showed in particular that, as t→∞,

c`(t) ∼
√
m+ 1

8t
√

3
e2π

√
(m+1)t

6 . (6.1.1)

Using the structure of Kac-Wakimoto characters for n ≥ 1 (recall Chapter 3), the

general structure for the Fourier coefficients of meromorphic Jacobi forms described in

Chapter 4, and in view of the previous result for the case n = 1 [9], in this chapter we

establish an asymptotic series expansion for the coefficients c`(t) of

trLm,n(Λ(`))q
L0q−

`
2 =

∑
t≥0

c`(t)q
t, (6.1.2)

as t→∞. For notational simplicity, we only consider the case that m and n are both

even. The other cases can be treated similarly. To state our theorem we need some

more notation. Here and throughout, we set M := m−n
2

. Moreover, we define the

constants

ε(`) :=
`2

4M
+

2M − 1

24
− `

2
, (6.1.3)

δh(r) :=− M

4
+

r2

4M
+

2M − 1

24
,

δg(r) :=− n

8
+
r

2
+

r2

4M
+

2M − 1

24
,

δE :=
n

8
+

2M − 1

24
.
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For integers r and s we denote by Qr(s), Rr(s), and Tr(s) certain Fourier coefficients

defined in Corollary 6.3.2 and Proposition 6.3.3, while Kk,r, K̃k,r, and K̃∗k,r are certain

Kloosterman-type sums defined in (6.3.2), (6.3.4), and (6.3.6). The function I1 is the

usual modified Bessel function of level 1. In general, for integer ` > 1 we define

I`(z) :=
1

2πi

∮
e
z
2(t+ 1

t )t−`−1 dt,

where the contour encloses the origin and is traversed in a counterclockwise direction.

Finally, we define the principal value integral Pk by

Pk(A,C, J, L;W ) :=

∫
R

(1 + 2iσ)Je−2πσA

cosh (πσ)

∫ ϑ′′h,k

−ϑ′h,k

zLe
2π
k

(
zW+ 1

z

(
C− 1

4M (σ− i
2)

2
))

dφ dσ,

(6.1.4)

where J , L ∈ N, A, C ∈ R>0, and W ∈ R. For the notation ϑ′h,k, ϑ
′′
h,k, and φ we refer

the reader to Section 6.2.2.

Theorem 6.1.2. Let 0 ≤ ` < 2M . With the notation as above, as t → ∞, the

coefficients of trLm,n(Λ(`)) satisfy the following asymptotic behaviour:

c`(λ) =
2π√
t− ε(`)

∑
0<k≤

√
t

2|k

2M−1∑
r=0

∑
s∈δh(r)+Z
0<s≤2δh(r)

Qr(s)Kk,r(−t, s)
√
s√

2k
I1

(
4π

k

√
s

2
(t− ε(`))

)

+
2π√
t− ε(`)

∑
0<k≤

√
t

2|k

2M−1∑
r=0

∑
s∈δg(r)+Z
0<s≤2δg(r)

Rr(s)K̃k,r(−t, s)
√
s√

2k
I1

(
4π

k

√
s

2
(t− ε(`))

)

+
∑

1≤k≤
√
t

2-k

n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

j∑
λ=1

λ−1∑
µ=0

∑
0≤u≤n−2j

2

∑
s∈2δE+Z
0<s≤2δE

D∗(j, λ, µ, u)K̃∗k,r(−t, s)

×N2(j−λ+u)kµ−
1
2T2j+2u(s)Pk

(
r

2Mk
+

1

2
,
s

2
, 2(λ− µ)− 1, 2(j − λ) + µ; t− ε(`)

)
+O

(
t

1
2 log t

)
.

Using the asymptotic result for the principal value integral and the well known

asymptotic behavior of the Bessel functions (see Section 6.3.4), one can see that the
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main contribution comes from the non-holomorphic term, as happens in the case of

n = 1 in [9]. More precisely, we obtain the following result.

Corollary 6.1.3. Assuming the notation as above, as t→∞, we have

c`(t) ∼ Ct
n
2
−2e

2π
√
t(n2 + 2M−1

6 ),

where

C :=
M

n
2
−1eπi

5M+2m
4

√
n
8

+ 2M−1
24

2
n+1

2 π
n
2

(
n
2
− 1
)
!

.

6.2 Preliminaries

In this section we firstly describe the transformation properties the Kac-Wakimoto

characters. Secondly, we briefly recall the Circle Method and we apply it to (6.1.2).

6.2.1 Transformation properties

Let ϕ be a meromorphic Jacobi form of weight k ∈ Z and index N ∈ N, with a unique

pole (modulo Zτ + Z) of order n ≡ 0 (mod 2) in z = 0. Moreover, assume that ϕ is an

even function in z. This is the setting for the generating function of the Kac-Wakimoto

characters, as we shall see later in this section. We recall the main results of Chapter

4 adapted to this special setting.

We denote the Laurent expansion of ϕ in z = 0 by

ϕ(z; τ) =

n
2∑
j=1

B̃2j(τ)

(2πiz)2j
+O(1). (6.2.1)

By Proposition 4.2.2, we know that the functions B̃2j are quasimodular forms. We

denote their completion by B2j (see (4.2.6)). Moreover, from Proposition 4.3.1, we
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know that ϕ canonically decomposes as

ϕ(z; τ) =
∑

` (mod 2N)

h`(τ)ϑN,`(z; τ)−
n
2∑
j=1

B̃2j(τ)

(2j − 1)!

(
∂ε
2πi

)2j−1

[fN(z, ε; τ)]ε=0 , (6.2.2)

where the functions h` are the canonical Fourier coefficients of ϕ (see (4.3.1)), and fN

is the level N Appell function. In Proposition 4.3.3 we saw that the functions h` can

be completed to almost harmonic Maass forms ĥ`, namely,

ĥ`(τ) := h`(τ)− 1

2

n
2∑
j=1

B2j(τ)

(2j − 1)!

(
∂ε
2πi

)2j−1 [
RN,`(ε; τ)e−

Nπε2

v

]
ε=0

, (6.2.3)

where RN,` is defined in (2.3.4). Therefore, in order to understand the modularity of

h`, it suffices to understand the modularity of the B2j, ĥ`, and RN,`. The first two

objects transform as (vector-valued) modular forms, with multiplier system depending

on ϕ. On the other hand, the functions RN,` are independent of the Jacobi form. We

describe their transformation law in the following proposition. To state it, we need the

level N Mordell integral

H
(M)
` (u; τ) :=

i

2
q−

(`+M)2

4M e−2πi(`+M)uH

(
2Mu+ (`+M)τ +

1

2
; 2Mτ

)
,

where

H(u; τ) :=

∫
R

eπiτw
2−2πuw

cosh(πw)
dw

is the standard Mordell integral. Moreover, let % be as in Proposition 2.3.3 and let

ω(`, r) be the entry of %−1 in the `th row and rth column.

Proposition 6.2.1. For all γ =
(
a b
c d

)
∈ SL2(Z) such that c > 0 the function RM,`

satisfies the following transformation property:

RM,`(u; τ) =
∑

r (mod 2M)

ω(`, r)

(cτ + d)
1
2

e2πiMcu2

cτ+d RM,r

(
u

cτ + d
; γτ

)
+ 2

∑
r (mod 2Mc)
r≡` (mod 2M)

e2πi dr
2

4McH(Mc)
r (u; cτ + d) .
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Proof. The following relations are either well known or straightforwardly proven:

1. For all c ∈ N, we have

fM(z, u; τ) =
∑

r (mod c)

qMr2

e4πiMrzfMc (z + rτ, u; cτ) .

2. The function fM is Z-invariant in τ .

3. We have the following:

fM

(
z

τ
,
u

τ
;−1

τ

)
= τe

2πiM(z2−u2)
τ

fM(z, u; τ)−
∑

r (mod 2M)

H(M)
r (u; τ)ϑM,r(z; τ)

 .

Note that part 1 is related to Proposition 6 of [1], and that part 3 is proven in [36]

Proposition 3.3. Using 1. and 2., we have

fM

(
z

cτ + d
,

u

cτ + d
; γτ

)
=

∑
r (mod c)

e2πi(Mr2γτ+ 2Mrz
cτ+d )fMc

(
z + r(aτ + b)

cτ + d
,

u

cτ + d
; cγτ

)

=
∑

r (mod c)

e2πi(Mr2γτ+ 2Mrz
cτ+d )fMc

(
z + r(aτ + b)

cτ + d
,

u

cτ + d
;− 1

cτ + d

)

Then, using 3., we obtain

∑
r (mod c)

e2πi(Mr2γτ+ 2Mrz
cτ+d )e2πi Mc

cτ+d((z+r(aτ+b))2−u2)(cτ+d)
(
fMc (z + r(aτ + b), u; cτ + d)

−
∑

s (mod 2Mc)

H(Mc)
s (u; cτ + d)ϑMc,s(z + r(aτ + b); cτ + d)

)
Since a and c are coprime, using again the first fact in the opposite direction, we obtain

∑
r (mod c)

e2πi(Mr2γτ+ 2Mrz
cτ+d

+ Mc
cτ+d((z+r(aτ+b))2−u2))fMc (z + r(aτ + b), u; cτ + d)

= e
Mc
cτ+d(z2−u2)fM(z, u; τ).
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Therefore, we can write

fM

(
z

cτ + d
,

u

cτ + d
; γτ

)
= (cτ + d)e2πi Mc

cτ+d(z2−u2)fM(z, u; τ)− (cτ + d)
∑

r (mod c)

e2πi(Mr2τ+2Mrz+ Mc
cτ+d(z2−u2))

×
∑

s (mod 2Mc)

e2πi ds
2

4McH(Mc)
s (u; cτ + d)ϑMc,s(z + rτ ; cτ),

which equals

fM

(
z

cτ + d
,

u

cτ + d
; γτ

)
= (cτ + d)e2πi Mc

cτ+d(z2−u2)fM(z, u; τ)

− (cτ + d)e2πi Mc
cτ+d(z2−u2)

∑
s (mod 2Mc)

e2πi ds
2

4McH(Mc)
s (u; cτ + d)ϑM,s(z; τ).

On the other hand, we know that

fM

(
z

cτ + d
,

u

cτ + d
; γτ

)
= f̂M

(
z

cτ + d
,

u

cτ + d
; γτ

)
+

1

2

∑
r (mod 2M)

RM,r

(
u

cτ + d
; γτ

)
ϑM,r

(
z

cτ + d
; γτ

)
= (cτ + d)e2πi Mc

cτ+d(z2−u2)f̂M (z, u; τ)

+
1

2

∑
r (mod 2M)

RM,r

(
u

cτ + d
; γτ

)
ϑM,r

(
z

cτ + d
; γτ

)
,

where in the last step we have used the transformation properties of f̂M . Comparing

the two equalities above one can write

1

2

∑
r (mod 2M)

RM,r (u; τ)ϑM,r (z; τ)−
∑

s (mod 2Mc)

e2πi ds
2

4McH(Mc)
s (u; cτ + d)ϑM,s(z; τ)

= (cτ + d)−1e2πi
Mc(u2−z2)

cτ+d
1

2

∑
r (mod 2M)

RM,r

(
u

cτ + d
; γτ

)
ϑM,r

(
z

cτ + d
; γτ

)
,
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which can be written as

∑
r (mod 2M)

1

2
RM,r (u; τ)−

∑
` (mod 2Mc)
`≡r (mod 2M)

e2πi d`
2

4McH
(Mc)
` (u; cτ + d)

ϑM,r(z; τ)

= (cτ + d)−
1
2 e2πiMcu2

cτ+d
1

2

∑
r (mod 2M)

RM,r

(
u

cτ + d
; γτ

) ∑
` (mod 2M)

ω(`, r)ϑM,` (z; τ) .

From the linear independence of the Jacobi theta functions ϑM,` one concludes the

proof.

From now on we consider the following meromorphic Jacobi forms:

Φ(z; τ) :=
ϑ
(
z + 1

2
; τ
)m

ϑ (z; τ)n
, (6.2.4)

Ψ(z; τ) :=

(
q

1
8 ζ

1
2ϑ
(
z + τ

2
; τ
))m

ϑ(z; τ)n
. (6.2.5)

Note that Φ is the same function studied in Chapter 3. Moreover, the function (Φ,Ψ)

is a vector valued Jacobi form for SL2(Z). Due to the transformation properties of

ϑ (see Proposition (2.3.2)), we deduce the transformation properties of Φ and Ψ, as

described in the following proposition. Here, χ∗, χ̃ and χ̃∗ are certain characters that

can be easily made explicit, although it is not necessary for our purposes.

Proposition 6.2.2. The functions Φ and Ψ satisfy the following modular transforma-

tion laws:

1. For each γ =
(
a b
c d

)
∈ Γ0(2), we have Φ

∣∣
M,M

γ(z; τ) = χ∗(γ)Φ(z; τ).

2. For each γ =
(
a b
c d

)
∈ Γ1(2), we have Ψ

∣∣
M,M

γ(z; τ) = χ̃(γ)Ψ(z; τ).

3. For each γ =
(
a b
c d

)
∈ SL2(Z) with a ≡ 0 (mod 2), we have Ψ

∣∣
M,M

γ(z; τ) =

χ̃∗(γ)Φ(z; τ).
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It is straightforward to show that Φ and Ψ satisfy also the elliptic transformation

law of a Jacobi form, although it is not in the interest of this chapter. Since ϑ has a

simple pole in z = 0, Φ and Ψ are meromorphic Jacobi forms with a unique pole of

order n in z = 0. In particular, their Laurent coefficients and their canonical Fourier

coefficients satisfies the same properties as the general function ϕ described before. In

the following table we fix the notation for the canonical Fourier coefficients and Laurent

coefficients of Φ and Ψ, as well as their completions.

Φ Ψ

canonical Fourier coeff. h` g`

completion of canonical Fourier coeff. ĥ` ĝ`

Laurent coeff. D̃2j Ẽ2j

completion of Laurent coeff. D2j E2j

Table 6.1: Fourier and Laurent coefficients

In light of Proposition 4.2.2, Proposition 4.3.3, and Proposition 6.2.2 we have the

following.

Proposition 6.2.3. With the notation as above the functions ĥ` and D2j satisfy the

following transformation properties:

1. For each γ =
(
a b
c d

)
∈ Γ0(2), we have

ĥ`(τ) =
1

χ∗(γ)
(cτ + d)

1
2
−M

∑
r (mod 2M)

ω(`, r)ĥr(γτ).

2. For each γ =
(
a b
c d

)
∈ SL2(Z) with a ≡ 0 (mod 2), we have

ĥ`(τ) =
1

χ̃∗(γ)
(cτ + d)

1
2
−M

∑
r (mod 2M)

ω(`, r)ĝr(γτ).
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3. For each γ =
(
a b
c d

)
∈ Γ0(2), we have

D2j(τ) =
1

χ∗(γ)
(cτ + d)2j−MD2j(γτ).

4. For each γ =
(
a b
c d

)
∈ SL2(Z) with a ≡ 0 (mod 2), we have

D2j(τ) =
1

χ̃∗(γ)
(cτ + d)2j−ME2j(γτ).

Here the ω(`, r)s are the same as in Proposition 6.2.1.

As a consequence, we can now derive explicitly the modularity of the Fourier coef-

ficients h` under the action of the full modular group.

Proposition 6.2.4. The functions h` satisfy the following modular transformation

properties:

1. For each γ =
(
a b
c d

)
∈ Γ0(2)

h`(τ) =
1

χ∗(γ)
(cτ + d)

1
2
−M

∑
r (mod 2M)

ω(`, r)hr(γτ) +
1

χ∗(γ)

n
2∑
j=1

(cτ + d)2j−M

(2j − 1)!

×D2j(γτ)
∑

r (mod 2Mc)
r≡` (mod 2M)

e2πi dr
2

4Mc

(
∂ε
2πi

)2j−1 [
e−

Mπε2

v H(Mc)
r (ε; cτ + d)

]
ε=0

.

2. For each γ =
(
a b
c d

)
∈ SL2(Z) with a even

h`(τ) =
1

χ̃∗(γ)
(cτ + d)

1
2
−M

∑
r (mod 2M)

ω(`, r)gr(γτ) +
1

χ̃∗(γ)

n
2∑
j=1

(cτ + d)2j−M

(2j − 1)!

× E2j(γτ)
∑

r (mod 2Mc)
r≡` (mod 2M)

e2πi dr
2

4Mc

(
∂ε
2πi

)2j−1 [
e−

Mπε2

v H(Mc)
r (ε; cτ + d)

]
ε=0

.
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Proof. Here we prove part 1. The proof of part 2 is very similar. Writing h` according

to (6.2.3) and using Proposition 6.2.3, we have that

h`(τ) =
(cτ + d)

1
2
−M

χ∗(γ)

∑
r (mod 2M)

ω(`, r)ĥr(γτ)

− 1

2

n
2∑
j=1

(cτ + d)2j−M

χ∗(γ)

D2j(γτ)

(2j − 1)!

(
∂ε
2πi

)2j−1 [
RM,`(ε; τ)e−

Mπε2

v

]
ε=0

.

Using again (6.2.3), the expression above equals

(cτ + d)
1
2
−M

χ∗(γ)

∑
r (mod 2M)

ω(`, r)

(
h`(γτ)

+
1

2

n
2∑
j=1

D2j(γτ)

(2j − 1)!

(
∂ε
2πi

)2j−1 [
RN,`(ε; γτ)e−

Nπε2

Im(γτ)

]
ε=0

)

− 1

2

n
2∑
j=1

(cτ + d)2j−M

χ∗(γ)

D2j(γτ)

(2j − 1)!

(
∂ε
2πi

)2j−1 [
RM,`(ε; τ)e−

Mπε2

v

]
ε=0

.

To conclude, we rewrite RM,` in the last summand according to Proposition 6.2.1,

and we note that the contribution of RM,` from the first and the second summands

cancel. This can be also argued considering the non-holomorphicity of RM,`, being

h`(τ) holomorphic.

We now have all the ingredients needed to describe the transformation property

of the Kac-Wakimoto characters. As alluded to in Section 3.1, the generating func-

tion for Kac-Wakimoto characters (6.1.2) is essentially the meromorphic Jacobi form

Φ
(
z + τ

2
; τ
)
. More precisely, one can see that for each ` ∈ Z the `-th Kac-Wakimoto

character is given by

trLm,n(Λ(`))q
L0 = h`−M(τ)q

`2

4M

(
q

1
24

η(τ)

)2M−1

. (6.2.6)

The transformation of Kac-Wakimoto character arise directly from Proposition 6.2.4

and Lemma 2.2.2.

110



Proposition 6.2.5. The Kac-Wakimoto character trLm,n(Λ(`))q
L0 satisfies the following

modular transformation laws:

1. For each γ =
(
a b
c d

)
∈ Γ0(2)

trLm,n(Λ(`))q
L0 = q

`2

4M
+ 2M−1

24
ψ(γ)2M−1

χ̃∗(γ)

∑
r (mod 2M)

ω(`−M, r)
hr(γτ)

η(γτ)2M−1

+ q
`2

4M
+ 2M−1

24
ψ(γ)2M−1

χ∗(γ)

n
2∑
j=1

(cτ + d)2j− 1
2

(2j − 1)!

D2j(γτ)

η(γτ)2M−1

×
∑

r (mod 2Mc)
r≡`−M (mod 2M)

e2πi dr
2

4Mc

(
∂ε
2πi

)2j−1 [
e−

Mπε2

v H(Mc)
r (ε; cτ + d)

]
ε=0

.

2. For each γ =
(
a b
c d

)
∈ SL2(Z) with a even

trLm,n(Λ(`))q
L0 = q

`2

4M
+ 2M−1

24
ψ(γ)2M−1

χ̃∗(γ)

∑
r (mod 2M)

ω(`−M, r)
gr(γτ)

η(γτ)2M−1

+ q
`2

4M
+ 2M−1

24
ψ(γ)2M−1

χ̃∗(γ)

n
2∑
j=1

(cτ + d)2j− 1
2

(2j − 1)!

E2j(γτ)

η(γτ)2M−1

×
∑

r (mod 2Mc)
r≡`−M (mod 2M)

e2πi dr
2

4Mc

(
∂ε
2πi

)2j−1 [
e−

Mπε2

v H(Mc)
r (ε; cτ + d)

]
ε=0

.

6.2.2 The Circle Method

In this section we briefly recall the Circle Method, we fix the notation, and we apply

it to Kac-Wakimoto characters. This will give us four main terms, which we analyze

separately in the following sections.

Given a holomorphic modular form f , the Circle Method allows to understand the

asymptotic behavior of its Fourier coefficients. Roughly speaking, we can say that

it is a “nice” parametrization of the Cauchy integral of f , that allows an optimal

approximation of the Fourier coefficients of f due to its modular properties. For a
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classical description of this method we refer the reader to the primary work of G.

Hardy and S. Ramanujan [18], and to the revisitation of H. Iwaniec and E. Kowalski

in Chapter 20 of [19].

6.2.3 Notation

To explain the Circle Method, we need some definitions and notation. All the material

in this section can be found in Chapter 20 of [19]. For a positive integer N consider

the Farey series of order N defined by

FN :=

{
h

k
: gcd(h, k) = 1, 0 ≤ h < k ≤ N

}
.

It is a standard fact that the Farey series can be used to split the unit interval into

disjoint subintervals as follows: Given three consecutive elements in FN

h1

k1

<
h

k
<
h2

k2

,

one defines ϑ′h,k := 1
k(k+k1)

and ϑ′′h,k := 1
k(k+k2)

. It is straightforward to check that the

intervals
[
h
k
− ϑ′h,k, h

k
+ ϑ′′h,k

)
are all disjoint as h

k
runs through the elements of the

Farey series. Furthermore, the union of these intervals gives the whole interval (0, 1).

Furthermore, it is well known that for j ∈ {1, 2} and N ∈ N, the following facts hold:

1. N − k < kj ≤ N ;

2. hkj ≡ (−1)j+1 (mod k);

3. 1
2Nk

< ϑ′h,k, ϑ
′′
h,k <

1
Nk

.

For a fixed h
k
∈ FN , we define the variable

τh,k :=
h

k
+
iz

k
,
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where z ∈ C is a complex variable that satisfies Re(z) > 0. This clearly implies

τh,k ∈ H. Let [a]b denotes the inverse of a modulo b. Then for each element h
k
∈ FN

we choose [−h]k to have parity opposite to that of k. We point out that this is always

possible. Indeed, from the properties above we can choose [−h]k = k2 if k is even, and

either [−h]k = k2 or [−h]k = k2 + k if k is odd. With these choices, the matrix

γh,k :=

[−h]k − [−h]kh+1
k

k −h


lies in SL2(Z). We define the image of τh,k under γh,k by

τ̃h,k := γh,kτh,k =
[−h]k
k

+
i

zk
.

Note that the automorphy factor kτh,k − h is equal to iz. Finally, we define qh,k :=

e2πiτh,k and q̃h,k := e2πiτ̃h,k .

6.2.4 The Circle Method

Applying Cauchy’s Theorem to (6.1.2), we obtain

c`(t) =
1

2πi

∫
|q|=r

trLm,n(Λ(`))q
L0q−

`
2 q−(t+1) dq, (6.2.7)

where r is any fixed real number in (0, 1). For our purposes the best choice for r turns

out to be

r := e−
2π
N2 ,

where N := bt1/2c. Parametrizing the path of integration as

u 7→ e−
2π
N2 +2πiu,

with u ∈ [0, 1], and using the partition of the unit interval as described in the previous

subsection, one can rewrite (6.2.7) as

c`(t) =
∑
h
k
∈FN

∫ h
k

+ϑ′′h,k

h
k
−ϑ′h,k

trLm,n(Λ(`))q
L0q−(t+ `

2) du.
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In the integral above, note that τ depends on u. Finally, we rewrite each integral as

c`(t) =
∑
h
k
∈FN

∫ ϑ′′h,k

−ϑ′h,k

trLm,n(Λ(`))q
L0
h,kq

−(t+ `
2)

h,k dφ, (6.2.8)

where we have defined the variables z and φ as

τ = τh,k = u+
i

N2
=:

h

k
+
iz

k
,

φ = u− h

k
=
iz

k
− i

N2
.

Using Proposition 6.2.5, we split c`(t) into four pieces, splitting the Mordell integral

from the q-series and splitting the Farey series based on the parity of k. Before giving

the splitting, we define the following characters:

χr(γ) :=
ψ(γ)2M−1

χ∗(γ)
ω(`−M, r)

χ̃r(γ) :=
ψ(γ)2M−1

χ̃∗(γ)
ω(`−M, r)

χ∗r(γ) :=
ψ(γ)2M−1

χ∗(γ)
e2πi dr

2

4Mc

χ̃∗r(γ) :=
ψ(γ)2M−1

χ̃∗(γ)
e2πi dr

2

4Mc

We obtain

c`(t) = Σ1 + Σ2 + Σ3 + Σ4,
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where

Σ1 :=
∑
h
k
∈FN
2|k

∑
r (mod 2M)

χr(γh,k)

∫ ϑ′′h,k

−ϑ′h,k

hr(τ̃h,k)

η(τ̃h,k)2M−1
q
ε(`)−t
h,k dφ, (6.2.9)

Σ2 :=
∑
h
k
∈FN
2-k

∑
r (mod 2M)

χ̃r(γh,k)

∫ ϑ′′h,k

−ϑ′h,k

gr(τ̃h,k)

η(τ̃h,k)2M−1
q
ε(`)−t
h,k dφ,

Σ3 :=
∑
h
k
∈FN
2|k

n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

χ∗r(γh,k)

(2j − 1)!

∫ ϑ′′h,k

−ϑ′h,k

(iz)2j− 1
2 q
ε(`)−t
h,k

D2j(τ̃h,k)

η(τ̃h,k)2M−1

×
(
∂ε
2πi

)2j−1 [
e−Mπε2N2

H(Mk)
r (ε; iz)

]
ε=0

dφ,

Σ4 :=
∑
h
k
∈FN
2-k

n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

χ̃∗r(γh,k)

(2j − 1)!

∫ ϑ′′h,k

−ϑ′h,k

(iz)2j− 1
2 q
ε(`)−t
h,k

E2j(τ̃h,k)

η(τ̃h,k)2M−1

×
(
∂ε
2πi

)2j−1 [
e−Mπε2N2

H(Mk)
r (ε; iz)

]
ε=0

dφ.

We recall that ε(`) was defined in (6.1.3).

Remark. Note that the formula representing the contribution arising from the case of

k even is the same as the one associated to the case of k odd, up to the term in τ̃h,k.

In particular, these terms are q̃h,k-series. Since

|q̃h,k| ≤ e−π,

the main contribution for our final bound will come from the term that contains the

smaller q̃h,k-power. We shall see that this occurs in the case of k odd, so we are mainly

interested in Σ2 and Σ4. In fact, from [9], we may expect that the main contribution

will comes from Σ4.
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6.3 Proof of the main results

6.3.1 The principal parts

In this section, we explicitly compute the principal parts of the canonical Fourier

coefficients hr(τ)
η(τ)2M−1 and gr(τ)

η(τ)2M−1 , and those of the Laurent coefficients
D2j(τ)

η(τ)2M−1 and

E2j(τ)

η(τ)2M−1 .

We start by computing the q-expansion of hr(τ)
η(τ)2M−1 and gr(τ)

η(τ)2M−1 . In the following

proposition we calculate the q-expansion of the numerator.

Proposition 6.3.1. Let the hr’s and the gr’s be as in Table 6.1. For each r ∈ Z, let

r̂ ∈ (−M,M ] and r̃ ∈ (−2M, 0] be congruent to r modulo 2M . Then,

hr(τ) = q
M
4
− r̂2

4M

∑
s≥0

Q∗r(s)q
s

and

gr(τ) = q
m
8
− (r̃+M)2

4M

∑
s≥0

R∗r(s)q
s
2 ,

for certain complex numbers Q∗r(s) and R∗r(s).

Proof. By definition

hr(τ) = q−
r2

4M

∫ − rτ
2M

+1

− rτ
2M

ϑ
(
z + 1

2
; τ
)m

ϑ(z; τ)n
ζ−r dz.

The integrand is a power series in ζ whose coefficients are functions of q. In particular,

the only term of this power series that gives a non-zero contribution to the integral is

the coefficient of ζ0. Since our goal is to understand the minimal power of q appearing

in the expansion of hr, it is enough to find the minimal power of q in the coefficient

of ζ0 in the ζ-expansion of the integrand. In order to do so, we rewrite it using the

Jacobi’s triple product identity (see Proposition 2.3.2) obtaining

ζ−M−rq
M
4

∏
λ≥1

(
1 + ζqλ−1

)m (
1 + ζ−1qλ

)m∏
λ≥1 (1− ζqλ−1)n (1− ζ−1qλ)n

.
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To write the denominator as a power series, using the geometric expansion, we need

both |ζ| < 1 and |ζ−1q| < 1. Since inside the integral Im(z) = − r
2M

Im(τ), this is

equivalent of requiring −2M < r < 0. We are allowed to make this choice since hr

depends just on r modulo 2M . By symmetry, to obtain the minimal power of q, we

can assume λ = 1. In particular, we look for the minimal power of q in the coefficient

of ζ0 in

q
M
4 ζ−(M+r) (1 + ζ)m

(
1 + ζ−1q

)m(∑
λ≥0

ζλ

)n(∑
λ≥0

(
ζ−1q

)λ)n

.

It is easy to check that if r + M ≥ 0 (i.e., r = r̂) the minimal power of q is q
M
4 ,

since the term ζ0 appears in the expansion of ζ−(r+M) (1 + ζ)m. If r + M < 0, then

to cancel ζ−(r+M) one requires the expansion of (1 + ζ−1q)
m

, giving the extra term

q−(r+M). Thus, the minimal power of q in hr is

q−
r2

4M
+M

4
−(r+M) = q

M
4
− r̂2

4M .

The computation for gr is similar. For the seek of completeness we give the entire

proof also in this case. Using again the Jacobi’s triple product identity, we obtain

gr(τ) = q−
r2

4M

∫ w+1

w

q−
n
8 ζ

n
2
−r

∏
λ≥1

(
1− ζqλ− 1

2

)m (
1− ζ−1qλ−

1
2

)m∏
λ≥1 (1− ζqλ)n (1− ζ−1qλ)n

dz.

In this case, we may also assume r ∈ (−2M, 0] in order to write the denominator in

power series. Arguing as above and noting that n
2
−r > 0, it turns out that the minimal

power of q in the coefficient of ζ0 is the minimal power of q in the coefficient of ζr−
n
2 of

q−
r2

4M
−n

8

(
1− ζ−1q

1
2

)m(∑
λ≥0

(
ζ−1q

)λ)n

.

Since m > n
2
− r, the minimal power of q is

q−
r2

4M
−n

8 q
n
4
− r

2 = q
m
8
− (r+M)2

4M .
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We have computed the q-expansion of the numerator of hr(τ)
η(τ)2M−1 and gr(τ)

η(τ)2M−1 . From

the definition of η, we can easily compute the principal part of the entire functions.

For convenience of notation, we define the numbers

δh(r) := −M
4

+
r̂2

4M
+

2M − 1

24
,

δg(r) := −m
8

+
(r̃ +M)2

4M
+

2M − 1

24
,

where r̂ and r̃ are as in Proposition 6.3.1.

Corollary 6.3.2. The functions hr(τ)
η(τ)2M−1 and gr(τ)

η(τ)2M−1 have the following q–expansion:

hr(τ)

η(τ)2M−1
= q−δh(r)

∑
s≥0

Qr(s)q
s
2

and
gr(τ)

η(τ)2M−1
= q−δg(r)

∑
s≥0

Rr(s)q
s
2 ,

for some complex numbers Qr(s) and Rr(s).

In the remainder of the section, we compute the principal part of the Laurent

coefficients of Φ and Ψ. For convenience of notation, we define the constants

δD := −M
6
− 1

24

δE :=
n

8
+

2M − 1

24
.

Proposition 6.3.3. The functions
D2j(τ)

η(τ)2M−1 and
E2j(τ)

η(τ)2M−1 have the following q-expansion:

D2j(τ)

η(τ)2M−1
= q−δD

∑
0≤r≤n−2j

2

(−1)r

r!

(
M

4πv

)r∑
s≥0

V2j+2r(s)q
s
2 ,

E2j(τ)

η(τ)2M−1
= q−δE

∑
0≤r≤n−2j

2

(−1)r+M

r!

(
M

4πv

)r∑
s≥0

T2j+2r(s)q
s
2 ,

for some complex numbers V2j+2r(s) and T2j+2r(s).
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Proof. We only prove the result for
D2j(τ)

η(τ)2M−1 , since the other case is analogous. If we

define the function

ϑ∗(z; τ) :=
ϑ(z; τ)

z
,

and we denote by ϑ(2ν) the derivative of ϑ with respect to z (respectively for ϑ∗), then

we can write

Φ(z; τ) =

(
ϑ
(

1
2
; τ
)

+ ϑ(2)
(

1
2
; τ
)
z2

2
+ · · ·+O(zn)

)m
zn
(
ϑ∗ (0; τ) + ϑ∗(2) (0; τ) z2

2
+ · · ·+O(zn)

)n
=

ϑ
(

1
2
; τ
)m

znϑ∗ (0; τ)n

(
1 +

ϑ(2)( 1
2

;τ)
ϑ( 1

2
;τ)

z2

2
+ · · ·+O(zn)

)m
(

1 + ϑ∗(2)(0;τ)
ϑ∗(0;τ)

z2

2
+ · · ·+O(zn)

)n
=

ϑ
(

1
2
; τ
)m

znϑ∗ (0; τ)n

(
1 +

∑
j≥1

d2j(τ)z2j

)
,

for some coefficients d2j(τ). It is a standard fact that

ϑ

(
1

2
; τ

)
= −2

η(2τ)2

η(τ)

and

ϑ∗ (0; τ) = ϑ(1)(0; τ) = −2πη(τ)3.

In particular, the Laurent coefficients D̃2j of Φ in z = 0 can be written as

D̃n(τ) = 2min
η(2τ)2m

η(τ)m+3n

and for 1 ≤ j ≤ n−2
2

D̃n−2j(τ) = 2m−2jπ−2jin−2j η(2τ)2m

η(τ)m+3n
d2j(τ).

By construction the functions d2j are combination (sum and multiplication) of
ϑ(2ν)( 1

2
;τ)

ϑ( 1
2

;τ)

and ϑ∗(2ν)(0;τ)
ϑ∗(0;τ)

, for arbitrary ν ∈ Z. Therefore, they are q-series without principal part.

It follows that

D̃n−2j(τ) = q
M
4

∑
s≥0

Un−2j(s)q
s
2 ,

119



for certain constants Un−2j(s). To conclude, it is enough to note that

D2j(τ) =
∑

0≤r≤n−2j
2

(−1)r

r!

(
M

4πv

)r
D̃2r+2j(τ)

=q
M
4

∑
0≤r≤n−2j

2

(−1)r

r!

(
M

4πv

)r∑
s≥0

U2r+2j(s)q
s
2 ,

and so
D2j(τ)

η(τ)2M−1
= q

M
6

+ 1
24

∑
0≤r≤n−2j

2

(−1)r

r!

(
M

4πv

)r∑
s≥0

V2r+2j(s)q
s
2 ,

for certain constants Vj(s).

6.3.2 The holomorphic part

In this section, we give an asymptotic estimate of the terms Σ1 and Σ2 defined in

(6.2.9), using the Circle Method.

6.3.2.1 The even case

We start by studying Σ1, which we recall to be defined by

Σ1 =
∑
h
k
∈FN
2|k

2M−1∑
r=0

χr(γh,k)

∫ ϑ′′h,k

−ϑ′h,k

hr(τ̃h,k)

η(τ̃h,k)2M−1
q
ε(`)−t
h,k dφ.

Remark 3. We split the q̃h,k-series
hr(τ̃h,k)

η(τ̃h,k)2M−1 into two pieces, accordingly to the sign of

the exponent of q̃h,k. The non-principal part is uniformly bounded over the outer sum,

since |q̃h,k| ≤ e−π. As a consequence, its contribution is smaller than

∑
h
k
∈FN
2|k

2M−1∑
r=0

χr(γh,k)

∫ ϑ′′h,k

−ϑ′h,k

e
2πz
k

(t−ε(`))dφ. (6.3.1)

Since Re(z) = k
t
, the integrand is bounded, and since

∫ ϑ′′h,k
−ϑ′h,k

dφ ≤ 2√
tk

(6.3.1) can be
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bounded again by ∑
0≤k<

√
t

2|k

∑
0≤h<k

gcd(h,k)=1

1√
tk
≤ 1,

where we have used known inequalities involving Euler’s totient function. In particular,

the non-principal part gives a contribution bounded by O(1).

Next we compute the contribution of the principal part. Defining the Kloosterman-

type sum Kk,r (α, β) by

Kk,r (α, β) :=
∑

0≤h<k
gcd(h,k)=1

χr(γh,k)e
2πi

hε(`)
k e

2πi
k

(αh+β[−h]k), (6.3.2)

and writing the principal part of
hr(τ̃h,k)

η(τ̃h,k)2M−1 as∑
s∈δh(r)+Z
0<s≤δh(r)

Qr(δh(r)− s)q̃−sh,k,

we can rewrite Σ1 as

Σ1 =
∑

0<k≤
√
t

2|k

2M−1∑
r=0

∑
s∈δh(r)+Z
0<s≤δh(r)

Qr(δh(r)− s)Kk,r(−t, s)
∫ ϑ′′h,k

−ϑ′h,k

e
2π
k (z(t−ε(`))+ s

2z )dφ+O(1).

We finally recall the well known integral evaluation as N → +∞ [31]:∫ ϑ′′h,k

−ϑ′h,k

e
2π
k (za+ b

z ) dφ =
2π

k

√
b

a
I1

(
4π

k

√
ab

)
+O

(
1

Nk

)
,

where a, b > 0, h
k
∈ FN , and where I1 is the level 1 modified Bessel function. The

error term coming from the integral evaluation gives a contribution O(1) to Σ1 (it is a

similar computation as in Remark 3). As a consequence, we conclude that

Σ1 =
2π√
t− ε(`)

∑
0<k≤

√
t

2|k

2M−1∑
r=0

∑
s∈δh(r)+Z
0<s≤δh(r)

Qr(δh(r)− s)Kk,r(−t, s)
√
s√

2k
I1

(
4π

k

√
s

2
(t− ε(`))

)
+O(1). (6.3.3)
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6.3.2.2 The odd case

The analysis in the odd case is exactly the same as in the even case. Defining

K̃k,r (α, β) :=
∑

0≤h<k
gcd(h,k)=1

χ̃r(γh,k)e
2πi

hε(`)
k e

2πi
k (αh+β

2
[−h]k), (6.3.4)

replacing δh(r) by δg(r), and denoting the principal part of
gr(τ̃h,k)

η(τ̃h,k)2M−1 as

∑
s∈2δg(r)+Z
0<s≤2δg(r)

Rr(δg(r)− s)q̃
− s

2
h,k ,

one obtains

Σ2 =
2π√
t− ε(`)

∑
0<k≤

√
t

2-k

2M−1∑
r=0

∑
s∈2δg(r)+Z
0<s≤2δg(r)

Rr(δg(r)− s)K̃k,r(−t, s)
√
s√

2k
I1

(
4π

k

√
s

2
(t− ε(`))

)
+O(1). (6.3.5)

6.3.3 The non-holomorphic part

In this section, we determine an asymptotic estimate for Σ3 and Σ4 (6.2.9).

6.3.3.1 The odd case

We begin by rewriting explicitly the derivatives of the Mordell integral.

Lemma 6.3.4. With the notation as above, the following equality holds:

(
∂ε
2πi

)2j−1 [
e−πMε2N2

H(Mk)
r (ε; iz)

]
ε=0

=

j∑
ν=1

ν−1∑
µ=0

D(j, ν, µ)
N2(j−ν)kµ−

1
2

z2ν−µ− 1
2

e2πi r
4Mk e

π
8Mkz

×
∫

R

(1 + 2iσ)2(ν−µ)−1e−
πσ2

2Mkz
−2πσ( r

2Mk
+ 1

2
+ 1

4Mkiz )

cosh(πσ)
dσ,
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where

D(j, ν, µ) :=
(2j − 1)!

(2(ν − µ)− 1)!(j − ν)!µ!

M j−ν+µ− 1
2 i3−2ν

πj−ν+µ22j−µ+ 1
2

.

Proof. By definition

H
(M)
`−M(z; τ) =

i

2
q−

`2

4M e−2πiz`H

(
2Mz + τ`+

1

2
; 2Mτ

)
,

where H is the Mordell integral defined in (5.3.9).

Using the transformation (see Proposition 1.2 of [36])

H (z; τ) =
1√
−iτ

eπi
z2

τ H

(
z

τ
;−1

τ

)
,

one can write

H
(M)
`−M(z; τ) =

i

2
√
−2iMτ

e2πi
(2Mz+ 1

2)
2

4Mτ e2πi `
4MH

(
z

τ
+

`

2M
+

1

4Mτ
;− 1

2Mτ

)
.

Replacing τ by iz, z by ε and M by Mk, we obtain

H
(Mk)
`−Mk (ε; iz) =

i

2
√

2Mkz
e2πi `

4Mk
+ π

2Mkz (2Mkε+ 1
2)

2

H

(
ε

iz
+

`

2Mk
+

1

4Mkiz
;− 1

2Mkiz

)
.

On the other hand, a direct computation gives(
∂ε
2πi

)2(j−ν) [
e−πMtε2

]
ε=0

=

(
Mt

4π

)j−ν
(2(j − ν))!

(j − ν)!
,

and(
∂ε
2πi

)2ν−1 [
e

2Mkπ
z

ε2+πε
z

(1+2ix)
]
ε=0

=
ν−1∑
µ=0

(
2ν − 1

2µ

)
(2µ)!

µ!

(
−Mk

2πz

)µ(
1 + 2ix

2iz

)2ν−2µ−1

.

This gives(
∂ε
2πi

)2j−1 [
e−πMtε2H

(Mk)
`−Mk (ε; iz)

]
ε=0

=

j∑
ν=1

(
2j − 1

2ν − 1

)(
∂ε
2πi

)2(j−ν) [
e−πMε2t

]
ε=0

(
∂ε
2πi

)2ν−1 [
H

(Mk)
`−Mk (ε; iz)

]
ε=0

=

j∑
ν=1

(
2j − 1

2ν − 1

)(
Mt

4π

)j−ν
(2j − 2ν)!

(j − ν)!

ie2πi `
4Mk

2
√

2Mkz
e

π
8Mkz

∫
R

e−
πσ2

2Mkz e−2πσ( `
2Mk

+ 1
4Mkiz )

cosh (πσ)

×
ν−1∑
µ=0

(
2ν − 1

2µ

)
(2µ)!

µ!

(
−Mk

2πz

)µ(
1 + 2iσ

2iz

)2ν−2µ−1

dσ.
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Reordering the terms and replacing ` by r +Mk, we conclude the proof.

We define the Kloosterman-type sum

K̃∗k,r (α, β) :=
∑

0≤h<k
gcd(h,k)=1

χ̃∗r(γh,k)e
2πi r

4Mk e2πi
hε(`)
k e

2πi
k (αh+β

2
[−h]k), (6.3.6)

and the constant term

D∗(j, ν, µ, u) := D(j, ν, µ)
i2j−

1
2

(2j − 1)!

(
M

4π

)u
(−1)u+M

u!
.

Furthermore, according to Proposition 6.3.3, we write the principal part in the expan-

sion of
E2j(τ)

η(τ)2M−1 as

E2j(τ)

η(τ)2M−1
=

∑
0≤u≤n−2j

2

(−1)u+M

u!

(
M

4πv

)u ∑
s∈2δE+Z
0<s≤2δE

T2j+2u(s)q̃
− s

2
h,k .

Thus, we can rewrite Σ4 as

Σ4 =
∑

1≤k≤
√
t

2-k

n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

j∑
λ=1

λ−1∑
µ=0

∑
0≤u≤n−2j

2

∑
s∈2δE+Z
0<s≤2δE

D∗(j, λ, µ, u)K̃∗k,r(−t, s)

×N2(j−λ+u)kµ−
1
2T2j+2u(s)Pk

(
r

2Mk
+

1

2
,
s

2
, 2λ− 2µ− 1, 2j − 2λ+ µ; t− ε`(M)

)
+O

(
t

1
2 log t

)
, (6.3.7)

where Pk is the principal value integral defined in (6.1.4).

Remark 4. The error term O
(
t

1
2 log t

)
comes from the non-principal part of

E2j(τ)

η(τ)2M−1 .

More precisely, for this summand, one has the asymptotic expansion

∑
1≤k≤

√
t

2-k

n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

j∑
λ=1

λ−1∑
µ=0

∑
0≤u≤n−2j

2

D∗(j, λ, µ, u)K̃∗k,r(−t, s)N2(j−λ+u)

× kµ−
1
2Pk

(
r

2Mk
+

1

2
, 0, 2λ− 2µ− 1, 2j − 2λ+ µ; t− ε`(M)

)
,
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which is O
(
t

1
2 log t

)
in light of Lemma 6.3.5. Note that for the same reason, the same

error term will come from the contribution of Σ3, as we shall see in Subsubsection

6.3.3.2

6.3.3.2 The even case

For Σ3 we can use the same analysis as for Σ4. We point out that in this case the

function
D2j(τ)

η(τ)2M−1 has no principal part, which makes this term of lower exponential

decay. More precisely, one has

Σ3 =
∑

1≤k≤
√
t

2

∣∣k
n
2∑
j=1

∑
r (mod 2Mk)

r≡`−M (mod 2M)

j∑
λ=1

λ−1∑
µ=0

∑
0≤u≤n−2j

2

D∗(j, λ, µ, u)K∗r,k(−t, 0)N2(j−λ+u)

× kµ−
1
2Pk

(
r

2Mk
+

1

2
, 0, 2λ− 2µ− 1, 2j − 2λ+ µ; t− ε(`)

)
,

where the Kloosterman sum K∗ is defined by

K∗k,r (α, β) :=
∑

0≤h<k
gcd(h,k)=1

χ∗r(γh,k)e
2πi r

4Mk e2πi
hε(`)
k e

2πi
k (αh+β

2
[−h]k).

6.3.4 The principal value integral

In this subsection, we provide the main term in the asymptotic expansion of the prin-

cipal value integral Pk. To do that, we split the integral into two parts, one in terms

of the finite integral

P(J)
L (α, β;µ) :=

∫ 1

−1

wJe−2πwβ

sinh (πwα)

(
1− w2

)L
2 IL

(
µ
√

1− w2
)

dw, (6.3.8)

and the second one which gives an error term, as we show in the following lemma. In

(6.3.8), we assume J , L ∈ N, and α, β, and µ ∈ Q.
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Lemma 6.3.5. Let W ∼ N2. Then, as N → +∞, we have

Pk(A,C, J, L;W ) = −(2i)Je−πiA
2πiC

L+1
2 (4MC)

J+1
2

kW
L+1

2

× P(J)
L+1

(√
4MC,A

√
4MC;

4π

k

√
CW

)
+O

(
e

2πW
N2

kNL+1

)
.

Moreover, if C = 0, then, as N → +∞, we have

Pk(A, 0, J, L;W ) = O

(
e

2πW
N2

kNL+1

)
.

To prove this result, we need the following well-known asymptotic behavior for the

Bessel function (see e.g. Proposition 3.3 in [9]).

Lemma 6.3.6. Let I` be the classical modified I-Bessel function. For positive real A,B

and for half-integral `, as N → +∞, we have∫ ϑ′′h,k

−ϑ′h,k

z`−1e
2π
k (Az+B

z ) dφ =
2π

k

(
B

A

) `
2

I`

(
4π

k

√
AB

)
+ e8πB+ 2πA

N2 O

(
1

kN `

)
.

Furthermore, for positive A and negative B, as N → +∞, we have∫ ϑ′′h,k

−ϑ′h,k

z`−1e
2π
k (Az+B

z ) dφ = e2πB+ 2πA
N2 O

(
1

kN `

)
.

Proof of Lemma 6.3.5. Making the change of variables σ 7→ σ + i
2
, Pk equals

−i(2i)Je−πiA
∫

R

σJe−2πAσ

sinh(πσ)

∫ ϑ′′h,k

−ϑ′h,k

zLe
2π
k

(
zW+ 1

z

(
C− σ2

4M

))
dφ dσ. (6.3.9)

We point out that the path of integration remains R since the integrand is a holomorphic

function. Furthermore, it is straightforward to check that the vertical contribution goes

to 0. Splitting the integral in dσ as
∫

R =
∫
|σ|<
√

4MC
+
∫
|σ|>
√

4MC
and using Lemma 6.3.6,
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we rewrite (6.3.9) as

Pk(A,C, J, L;W ) =

∫
|σ|<
√

4MC

σJe−2πAσ

sinh(πσ)

2π

k

(
C − σ2

4M

W

)L+1
2

× IL+1

(
4π

k

√
W

(
C − σ2

4M

))
dσ +O

(
e

2πW
N2

kNL+1

)∫
R

σJe−2πAσe
8π
(
C− σ2

4M

)
sinh(πσ)

dσ.

(6.3.10)

Considering the second integral, note that the function σJ

sinh(πσ)
is bounded on all of

R. Therefore the integral turn out to be a Gaussian integral, which is also bounded.

Rescaling the integration variable of the first integral as w = σ√
4MC

and using (6.3.8),

we conclude the proof.

In the reminder of the section, we determine the main asymptotic term for PL+1.

To do this, we make use of the Laplace method.

Proposition 6.3.7. With the notation as above, as T →∞, we have

P
(1)
` (α, β;T ) =

eT

παT
+O

(
eT

T 2

)
.

Furthermore, for J > 1, as T → +∞, we have

P
(J)
` (α, β;T ) = O

(
eT

T 2

)
.

Proof. We split the integral into two pieces as

P
(J)
` (α, β;T ) =

∫
|w|< 1

2

wJe−2πwβ

sinh(πwα)

(
1− w2

) `
2 I`

(
T
√

1− w2
)

dw

+

∫
1
2
<|w|<1

wJe−2πwβ

sinh(πwα)

(
1− w2

) `
2 I`

(
T
√

1− w2
)

dw.

It is a standard fact that, as x→ +∞, we have

I`(x) =
ex√
2πx

(
1 +O

(
1

x

))
. (6.3.11)
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Therefore, the main contribution in the first summand is given by∫
|w|< 1

2

wJe−2πwβ

sinh(πwα)

(
1− w2

) `
2
− 1

4
eT
√

1−w2

√
2πT

(
1 +O

(
1

T

))
dw. (6.3.12)

Furthermore, since I` is monotonically increasing in [0,∞), (6.3.11) implies that
∫

1
2
<|y|<1

is of exponentially lower order than (6.3.12). To finish the proof, it is enough to apply

Laplace method to (6.3.12). More precisely, if

fJ(w) :=
wJe−2πwβ

sinh(πwα)

(
1− w2

) `
2
− 1

4 , (6.3.13)

g(w) :=
√

1− w2, (6.3.14)

then (6.3.12) equals

1√
2πT

∫ 1
2

− 1
2

fJ(w)

(
1 +O

(
1

T

))
eTg(w) dw. (6.3.15)

Since g is an even function with a local maximum in 0, expanding f and g in Taylor

expansion, we rewrite (6.3.15) as

1√
2πT

∫ 1
2

− 1
2

(
fJ(0) + f ′′J (0)

w2

2

)
eTg(0)+Tg′′(0)w

2

2 dw +O

(
eTg(0)

T 2

)
. (6.3.16)

Remark. We consider the Taylor expansion of g until the third term since the other

terms gives an exponentially lower order. Furthermore, the other terms in the Taylor

expansion of fJ gives a higher power of N at the denominator, which fall into the error.

Remark. The odd Taylor coefficients of fJ give no contribution because g is even, so

the integral becomes 0.

The integral in (6.3.16) is a Gaussian integral, thus it can be written as

eTg(0)

√
2πT

fJ(0)
1√
T

√
− 2π

g′′(0)
+O

(
eTg(0)

T 2

)
Note that g(0) = 1, g′′(0) = −1. Moreover, for J = 1 we have

f1(0) = lim
w→0

w

sinh(παw)
=

1

πα
,
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while for J > 1

fJ(0) = 0.

This gives the desired result.

6.3.5 Proof of Theorem 6.1.2 and Corollary 6.1.3

In the previous sections we have provided all the ingredients necessary to prove Theo-

rem 6.1.2 and Corollary 6.1.3.

Proof of Theorem 6.1.2. In Section 6.2.4 we splitted c`(t) into four pieces, denoted by

Σj, for j ∈ {1, 2, 3, 4}. From Remark 4 it follows that the contribution of Σ3 falls

in the error term. To conclude the proof, it is enough to recall (6.3.3), (6.3.5), and

(6.3.7).

We now proceed with the proof of Corollary 6.1.3.

Proof of Corollary 6.1.3. From Lemma 6.3.5 and Proposition 6.3.7 it follows that, as

N → +∞,

Pk (A,C, 1, L;W ) ∼ 2e−πiAM
1
2C

L+1
2

W
L+2

2 π
e

4π
k

√
CW . (6.3.17)

Remark. Note that on the left-hand side of (6.3.17) the parameter N is implicit in the

definition of Pk. More precisely, it is related to the Farey series.

From the asymptotic behavior of the Bessel function I` and (6.3.17), we see that

each of the terms Σ1, Σ2, and Σ4 has a main asymptotic term which grows exponen-

tially, which is maximized for k = 1. More precisely, the exponential contribution is

respectively

e4π
√
δh(r)(t−ε(`)), e4π

√
δg(r)(t−ε(`)), e4π

√
δE(t−ε(`)).

Since we are free to choose r in any range of length 2M , for the first summand we

choose r ∈ [−M,M ], while in the second summand we choose r ∈ [−2M, 0]. With
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this choice it is straightforward to check that δE > maxr{δh(r), δg(r)}, and this implies

that the major contribution comes from Σ4. It remains to compute the asymptotic of

this term. One can easily see that the major contribution is obtained for j = 1, λ = 1,

µ = 0, and u = n
2
− 1. In particular, the major contribution comes from the term

D∗
(

1, 1, 0,
n

2
− 1
)
K̃∗1,`−M(−t, 2δE)t

n
2
−1Tn(2δE)P1

(
`

2M
, δE, 1, 0, t

)
,

where

D∗
(

1, 1, 0,
n

2
− 1
)

=
M

n−3
2 i

1
2 (−1)

m
2

2
5
2 (4π)

n
2
−1
(
n
2
− 1
)
!

K̃∗1,`−M(−t, 2δE) = e2πi `−M
4M i

M+1
2

Tn(2δE) = (−1)M

P1

(
`

2M
, δE, 1, 0, t

)
∼ 2M

1
2 e−2πi `

4M

πt

√
n

8
+

2M − 1

24
e

4π
√
t(n8 + 2M−1

24 ).

Gluing together these data, we get the desired result.
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APPENDIX A

Kac-Wakimoto characters

A.1 Kac-Wakimoto characters and Jacobi forms: A brief

overview

Given a simple finite-dimensional Lie algebra g over C endowed with a suitably nor-

malized invariant symmetric bilinear form (·|·), one associates an affine Lie algebra ĝ,

i.e., the infinite-dimensional Lie algebra over C defined by

ĝ := g[t, t−1]⊕ CK ⊕ Cd

satisfying certain commutator relations. Here K denotes the central element of ĝ, while

d is an outer derivation of g[t, t−1]⊕CK. By identifying g with the subalgebra 1⊗g, one

extends the bilinear form to ĝ, which is still non-degenerate, symmetric, and invariant.

Furthermore, given a Cartan subalgebra h and a Borel subalgebra b = h⊕n+ of g (here

n+ is a maximal nilpotent subalgebra of g), it is possible to define a Cartan subalgebra

and a Borel subalgebra of ĝ by

ĥ = Cd⊕ h⊕ CK,

b̂ = ĥ⊕ n+ ⊕ (⊕n>0gt
n) .

Extending a linear function Λ ∈ ĥ∗ (the dual space) to b̂ by zero on all other summands,

let L(Λ) be the highest weight integrable module over ĝ, i.e., the irreducible module

that admits an eigenvector of b̂ with weight Λ. Since K is the central element of ĝ, it is
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represented by a scalar Λ(K), called the level of L(Λ). Using the following coordinates

on ĥ

ĥ 3 h = 2πi(−τd+ z + tK), where τ , t ∈ C, and z ∈ h ,

one can define define the character of L(Λ) corresponding to the weight space decom-

position with respect to ĥ as

chL(Λ)(τ, z, t) := trL(Λ)e
2πi(−τd+z+tK),

which converges on the domain

X = {h ∈ ĥ : Re(h|K) > 0} = {(τ, z, t) : Im(τ) > 0}.

We denote by PK the finite set of highest weights Λ of level Λ(K) modulo CK. Defining

the normalized character

chΛ(τ, z, t) := e2πimΛτchL(Λ)(τ, z, t),

for a suitable rational mΛ, the Weyl-Kac character formula implies that the finite set

{chΛ : Λ ∈ PK} is SL2(Z)-invariant under the following action:

(
a b
c d

)
· (τ, z, t) =

(
aτ + b

cτ + d
,

z

cτ + d
, t− c(t|t)

cτ + d

)
.

This property is called modular invariance, and using a number-theoretical lexicon, it

is equivalent to saying that the vector-valued function {chΛ : Λ ∈ PK} is a Jacobi form

(we address the reader to Subsection 2.3 for details).

A natural question might be whether these arguments extend to the case of finite-

dimensional simple Lie superalgebras. A Lie superalgebra is a (non-associative) Z2-

graded algebra, or superalgebra, over a commutative ring (typically R or C) whose prod-

uct, called the Lie superbracket or supercommutator, satisfies two conditions (analogs

of the usual Lie algebra axioms, with grading), called the super skew-symmetry and

the super Jacobi identity. In this case, the situation is slightly different. Indeed, the
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previous explained modular invariance property becomes now a “mock-modular invari-

ance” property, i.e., the vector-valued Kac-Wakimoto characters transforms as mock

modular (or Jacobi) forms. For a precise definition of mock modular transformation

property, we refer to Section 2.2. Roughly speaking, these functions are not invariant

under the action of a certain congruence subgroup of SL2(Z), but we are able to control

the modularity by adding a certain “nice” non-holomorphic piece. In fact, there exist

another way to describe this phenomenon, which is the heart of this thesis. Denoting by

trLm,n(Λ(`)) the `th Kac-Wakimoto character relative to the Lie superalgebra s`(m|n)∧

for each integer `, we considering their generating function

trLm,n(z; τ) :=
∑
`∈Z

trLm,n(Λ(`))(τ)e2πi`z.

The mock modularity of the Kac-Wakimoto characters is equivalent to say that trLm,n

is a meromorphic Jacobi form.

A.2 Kac-Wakimoto characters as canonical Fourier coefficients

Let F be the Lie superalgebra considered in [24], Section 3, and for each ` ∈ Z denote

by F` the `th gl(m|n)∧-module arising in the charge decomposition of F (see (3.4) in

[24]), with m > n > 0. Also, fix M := m−n
2

. Let chF` be the associated character. Its

generating function chF is given in (5.1.1). Moreover, let L(Λ(`)) be the irreducible

s`(m|n)∧-module of highest weight Λ(`), and denote by chL(Λ(`)) the associated char-

acter. Assuming the basic specialization as in (4.7) of [24], we denote the specialized

character by trLm,n(Λ(`))q
L0 . As showed in Section 4 of [24], we have

trLm,n(Λ(`))q
L0 = chF` ·

∏
k≥1

(
1− qk

)
. (A.2.1)

The generating function chF (z; τ) of the Kac-Wakimoto characters chF`(τ) is a mero-

morphic function in z, therefore its Fourier coefficients are not globally well defined.
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However, we can define the functions chF`(τ) locally, as the Fourier coefficients of

chF (z; τ) for − Im(τ)
2

< z < Im(τ)
2

, namely

chF`(τ) :=

∫ 1

0

chF (z; τ)e−2πi`z dz. (A.2.2)

Since chF (z; τ) is meromorphic Jacobi form, we shall see that changing the range cor-

respond to choose a different Fourier coefficient, say chF`+2Mk instead of chF`, for some

k ∈ Z. Moreover, the difference between chF` and chF`+2Mk is a linear combination of

quasimodular forms.

Let Φ as in (3.1.3). In the following Lemma, we show the relation between chF`

and the canonical Fourier coefficients of Φ.

Lemma A.2.1. Let −M ≤ ` < M and consider the `th canonical Fourier coefficient

h` of Φ. Then, we have

chF`(τ) = (−1)mi−nη(τ)n−mq
`2

2(m−n)
+m−n

12 h`+M(τ).

Proof. From (3.1.2), we know that

chF (z; τ) = T (τ)e2πiMzΦ
(
z +

τ

2
; τ
)
, (A.2.3)

where T (τ) := (−1)mi−nq
m−n

6 η(τ)n−m. Plugging (A.2.3) into (A.2.2) and changing the

variable of integration as z 7→ z − τ
2
, we get

chF`(τ) = T (τ)q
`2

2(m−n)
−m−n

8 h
( τ2 )
`−M(τ) = T (τ)q

`2

2(m−n)
−m−n

8 h
(− τ2 )
`+M (τ), (A.2.4)

where h
(z0)
` (τ) is defined in (3.3.1). In the second equality we have used Lemma (3.3.2).

To conclude the proof it is enough to note that for −M ≤ ` < M , we have h
(− τ2 )
`+M =

h`+M .

For ` /∈ {−M,−M + 1, · · · ,M − 1}, the Kac-Wakimoto characters chF` can not be

written in terms of the canonical Fourier coefficients of Φ. However, their difference
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can be expressed as a linear combination of quasimodular forms. More precisely, these

quasimodular forms are the Laurent coefficients of Φ near z = 0, as we show in the

following lemma. We describe the result for m ≡ n ≡ 0 (mod 2). Analogous results

can be obtained for the other cases.

Lemma A.2.2. Let −M ≤ ` < M and k ∈ N. Then, we have

chF`+2Mk(τ) = (−1)mi−nη(τ)−2Mq
(`+2Mk)2

4M
+M

12

(
h`+M(τ)

+
k−1∑
α=0

n/2∑
j=1

q−Mα2−α(`+M) (−(`+M(2α + 1)))2j−1

(2j − 1)!
D̃2j(τ)

)
.

Proof. With the same notation as in Lemma A.2.1, from (A.2.4) we know that

chF`+2Mk(τ) = T (τ)h
(− τ2 )
`+M+2Mk(τ) = T (τ)h

(− τ2 +kτ)
`+M (τ),

where in the second equality we use part 1 of Lemma 3.3.2. Using the Residue Theorem,

we have

h
(− τ2 +kτ)
`+M (τ) = h`+M(τ) + 2πi

k−1∑
α=0

Res
z=0

(
Φ(z + ατ ; τ)e−2πi(`+M)zqα(`+M)

)
.

Using the elliptic transformation properties and then Laurent expansion of Φ in z = 0

(see (3.3.3)), we conclude the proof.
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