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Abstract

Theinherent complexity of interacting quantum many-body systems poses an outstand-
ing challenge to both theory and experiment. Especially in the presence of strong elec-
tronic correlations, highly interesting and perplexing physical phenomena can occur.

In this thesis, we focus on three different examples of strongly correlated electron sys-
temsin which different types of defects occur. First, we investigate the Heisenberg-Kitaev
model formulated on a triangular lattice. Using a mixture of numerical and analytical
techniques we map out the entire phase diagram for the classical and quantum models.
We provide an analytical foundation to the intriguing Zs-vortex ground state, in which
strong spin-orbit coupling leads to the formation of a lattice of topological point defects.
This state was observed previously in classical Monte Carlo simulations. We furthermore
propose the iridate BaslrTiyOg to be a prime candidate for the realization of such a state.

The second part deals with the physics of a defect in the form of a localized magnetic
moment which is embedded into a metallic environment: the Kondo effect. Although
this effect has been a cornerstone of condensed matter physics for more than 50 years,
its properties in real-space are still not fully understood. What is the Kondo screening
cloud—the extended many-body state of entangled conduction electrons? We present
numerical results in 1D and 2D for the charge density oscillations created by the impu-
rity. We find that the entire RG flow of the problem is recovered in these oscillations,
elucidating the internal structure of the screening cloud.

Finally, we investigate the competition between the Kondo effect and Majorana
physics. Majorana bound states are highly interesting objects which exhibit unusual
statistics and could be used as a building block of a topological quantum computer. Re-
cently, signatures of their existence were observed in experiment, and we here examine
how Kondo physics (which might play a role in real systems) interact with such Majorana
bound states.






Kurzzusammenfassung

Die Komplexitat wechselwirkender Quanten-Vielteilchensysteme stellt eine enorme Her-
ausforderung sowohl fiir Theorie als auch fiir Experimente dar. Insbesondere in Syste-
men von stark wechselwirkenden Elektronen kdnnen ungewdéhnliche neue physikalische
Phanomene auftreten.

In dieser Arbeit betrachten wir drei unterschiedliche Beispiele solcher stark korrelier-
ter Systeme, in denen jeweils verschiedene Arten von Defekten auftreten. Als erstes wid-
men wir uns dem Heisenberg-Kitaev-Modell, formuliert auf dem Dreiecksgitter. Mit nu-
merischen und analytischen Methoden sind wir in der Lage, das vollstandige Phasendia-
gramm zu untersuchen, sowohl fiir das klassische als auch das quantenmechanische Mo-
dell. Wir liefern eine analytische Grundlage fiir den Z»-Vortex-Zustand, in welchem starke
Spin-Bahn-Wechselwirkung dazu fiihrt, dass sich ein Gitter aus topologischen Punktde-
fekten aufbaut. Dieser Zustand wurde kiirzlich das ersten Malin klassischen Monte-Carlo-
Simulationen beobachtet. Wir schlagen vor, dass solch ein Zustand in dem Ubergangs-
metalloxid BaslrTio Qg existieren kénnte.

Im zweiten Teil widmen wir uns der Physik eines Defektes in Form eines an eine metalli-
sche Umgebung gekoppelten lokalen magnetischen Moments: dem Kondo-Effekt. Dieser
Effekt ist seit seiner Beschreibung vor iber 50 Jahren ein Grundpfeiler der Festkorper-
physik. Dennoch wird die dazugehérige Physik im Ortsraum weiterhin kontrovers disku-
tiert. Was genau ist die Kondo-Screening-Cloud - der ortlich ausgedehnte, verschrankte
Zustand zwischen magnetischem Moment und Leitungsband-Elektronen? Wir prasentie-
ren numerische Resultate fiir Ladungsdichte-Oszillationen in 1D und 2D, in denen wir den
gesamten Renormierungsgruppenfluss des Problems wiederfinden. Damit kdnnen wir
Aussagen Uber die innere Struktur der Screening-Cloud tatigen.

Schlief3lich beschaftigen wir uns mit der Frage, wie der Kondoeffekt mit der Majorana-
physik konkurriert. Gebundene Majoranazustande sind hochinteressante Objekte mit
ungewohnlicher Statistik, die als mogliche Bausteine eines topologischen Quantencom-
puters in Frage kommen. In 2012 konnten experimentell {iberzeugende Hinweise auf
deren Existenz nachgewiesen werden. Wir betrachten den Einfluss des Kondoeffekts,
welcher im experimentellen Aufbau eine Rolle spielen konnte, auf solche Majoranazu-
stande.
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Chapter 1.
Introduction

Condensed matter systems with strong electronic correlations have brought forth some
of the most remarkable physics of the last decades. From the Kondo effect, in which a
single localized magnetic degree of freedom forms an entangled state with conduction
electrons in its vicinity, to the physics of Mott insulators, where the strong Coulomb re-
pulsion pins electrons down thereby suppressing charge transport, to spin liquids, an
exotic quantum state that shows no magnetic order even at zero temperature.

Given the fact that already the Helium atom, the second-simplest element, does not
allow a closed analytical solution, it is truly fascinating that physicists have been able to
successfully describe and understand condensed matter systems comprised of exponen-
tially many, much more complicated constituents. In these many-body systems, the indi-
vidual constituents can conspire to create entirely new, emergent phenomena [1], such
as fractional charges [2], heavy fermions [3], non-abelian anyons [4], or the still some-
what mysterious high-T, superconductors [5]. Such physics cannot be understood con-
structively from looking at a single component of the system as they are true many-body
effects.

Whereas some of these systems, such as topological insulators [6] or Majorana edge
states [7], can be well-described in terms of non- or weakly-interacting theories, in many
other cases the strong interactions cannot be neglected. In fact, in these cases they are
crucial for the occurrence of novel physics. A remarkable example is given by the physics
of the so-called Mott insulators. The electrons in crystalline materials can typically travel
through the system by “hopping” from one lattice site to the next. Under certain circum-
stances, however, the strong Coulomb repulsion forbids two electrons to be on the same
lattice site at a time, thereby effectively pinning electrons down and suppressing charge
transport, and the only remaining degree of freedom is the magnetic moment of the elec-
tron’s spin. These localized magnetic degrees of freedom can display a broad variety of
vastly different behavior, being either magnetically ordered in a broken-symmetry state,
or completely fluctuating even at zero temperature; a spin liquid state in which no sym-
metry is broken. Materials and phenomena which exhibit such physics are currently one
of the central research topics of both experimentalists and theorists. While this great in-
terest was spurred strongly by the discovery of high-T, superconductivity in which elec-
tron correlations play an important role [8], numerous other fascinating and novel phe-
nomena can occur in strongly correlated systems, with a multitude of possible applica-
tions in devices such as superconducting magnets or even quantum computers.

In part one of this thesis we introduce a selection of models of strongly correlated sys-
tems that play a major part in the remainder of the text. Already in the simplest case of a
single localized magnetic degree of freedom, historically termed an “impurity”, the highly
non-trivial Kondo effect manifests: below a characteristic temperature scale, a complex
many-body singlet forms and the magnetic degree of freedom is screened. This effect
has witnessed a revival in the last years due to the advent of nano-scale devices such as
quantum dots, allowing for accurate control of the relevant parameters and new possible
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applications of Kondo physics [9]. We present the Anderson impurity model and discuss
how it leads to local moment formation and the low energy Kondo physics. Focusing
then on the Mottinsulators mentioned above, we present the infamous Hubbard model,
a deceptively simple Hamiltonian which at present is far from fully understood [8]. Con-
sidering the limit of a strong Coulomb interaction, we find the Heisenberg Hamiltonian,
an effective model of the spin degrees of freedom. Finally, incorporating orbital order-
ing effects, we discuss a similar model with anisotropic exchange interaction: the Kitaev
model.

We then present the two numerical techniques we used extensively for the results in
this thesis: the numerical renormalization group (NRG) and the density matrix renormal-
ization group (DMRG). The former was devised by Kenneth Wilson in 1975 [10] and to this
dayisthe weapon of choice forimpurity problems. Almost two decades later, Steve White
invented the DMRG in 1992 [11], where based on Wilson’s NRG he formulated an algorithm
to calculate ground state properties of generic lattice Hamiltonians in 1D. Although both
methods are typically used in very different contexts, they are born from the same ideas
and can thus be considered from a common point of view.

Part two considers a model comprised of both Heisenberg and Kitaev terms, formu-
lated on the triangular lattice. We discuss how in certain transition metal oxides strong
spin-orbit coupling leads to a formation of a state characterized by effective j = 1/2 de-
grees of freedom. Furthermore, in some of these materials, the specific exchange inter-
action between these degrees of freedom might be described in terms of the Heisenberg-
Kitaev model. Whereas the honeycomb version of this model has been subject of great
theoretical and experimental discourse, we here focus on the triangular lattice. Thus
far, only results for the classical model are known [12,[13], most of them numerical. We
present a thorough analysis of the entire phase diagram, including analytical and numer-
ical approaches for both the classical and quantum case.

In part three, we turn our focus to the Kondo effect. Although it has been one of the
arguably most researched condensed matter topics of the 20th century [9], its real-space
physicsisstill discussed controversially. In a broad parameter regime, an Anderson impu-
rity behaves partly like a potential scatterer. This scattering induces static charge density
oscillations around the impurity, known as Friedel oscillations [14]. Building on previous
findings [15], we present numerical results for the Friedel oscillations in which we recover
the full renormalization group flow of the impurity problem, allowing for a detailed anal-
ysis of the structure of the notorious Kondo screening cloud — the quantum many-body
singlet thought to be exponentially far extended in real-space.

The fourth and final part investigates the interplay between Kondo physics and Ma-
jorana bound states at the edges of quantum wires. Majorana fermions are exotic par-
ticles which are their own anti-particles. While they are conjectured to exist as possible
high-energy particles, it has become clear that they might also occur in the form of quasi-
particle excitations in condensed matter systems. In fact, in a seminal experiment, sig-
natures in transport measurements of so-called Kitaev wires have strongly indicated the
existence of Majorana bound states in these systems [16]. Although the evidence is com-
pelling, several factors might influence the results, among them disorder and the Kondo
effect. Thus, these side effects must be ruled out to achieve an unambiguous detection
of Majorana modes. We consider the interplay of Kondo and Majorana physics in an ex-
perimentally relevant setup, and show that in the experimentally relevant regimes the
low-energy physics is indeed dominated by the Majorana bound state.
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Chapter 2.
Models of strongly correlated electrons

In a typical solid the intricate subtleties of quantum mechanics are combined with a
vast number of ~ 1023 particles. Since these particles interact in various ways, an ex-
act microscopic description of such materials seems intractable. However, it turns out
that a large number of materials have properties that are comparatively insensitive to
the Coulomb repulsion between electrons. In these cases, theories such as Fermi liquid
theory, in which electrons are replaced by quasi-particles emerging from collective exci-
tations, provide a remarkably good description of the low-temperature physics. In fact,
many of the most intensively studied phenomena in condensed matter physics in recent
years can be described to a significant degree in terms of non- or weakly-interacting mod-
els: among them are topological insulators and superconductors 6], Majorana fermions
in 1D wires [7], and graphene [17].

However, in many materials the correlations between the electrons are dominating
factors and cannot be neglected. These strong correlations cannot be treated pertur-
batively anymore and in many cases lead to drastically different physics! In fact, al-
ready a single strongly correlated site coupled to a system of otherwise effectively non-
interacting particles can give rise to such physics known as the Kondo effect, which has
kept physicists busy for decades before it could finally be solved. A different example of
strongly correlated systems is given by the transition metal oxides, in which the strong
Coulomb correlations lead to a variety of intriguing physical phenomena, the arguably
mostfamous one being the high-T, superconductivity discovered in doped cuprates. The
unusual electronic and magnetic properties of many strongly correlated materials have
also found many real-life applications such as superconducting magnets and magnetic
storage [18].

In this chapter we introduce the models of strongly correlated systems considered in
the main body of this thesis. This also provides a background for the discussion of nu-
merical techniques in the next chapter. Starting with a non-interacting system which
contains only a single site with a strong Coulomb interaction (the single-impurity Ander-
son model and the Kondo model, cf. Parts@]and [M), we then present the infamous Hub-
bard model and its strong-coupling limit, the Heisenberg spin-Hamiltonian. Finally, we
introduce the Kitaev model, a special case of a so-called compass model, which is similar
to the Heisenberg model, but the spin interactions are anisotropic and depend on lattice
properties (cf. Part[B).

2.1. Quantum impurity problem

The arguably simplest non-trivial paradigm of a strongly correlated system is the intro-
duction of a single strongly correlated impurity into an otherwise non-interacting sys-
tem. Such systems are already very hard to solve and contain rich physics. The poster
child of quantum impurity physics is the infamous Kondo effect: the unexpected mini-
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mum that was measured in the electronic resisitvity of gold as the temperature is low-
ered. The dominant contribution to the resistivity in metals comes from the scattering of
conduction electrons on phonons. As the temperature is lowered, these phonon modes
are suppressed and a finite residual resistivity due to lattice defects in the metal remains.
However, in the presence of magnetic impurities, it was found [19] that below a certain
temperature the resistivity increased. Thirty years later, Jun Kondo could attribute this
effect to the spin-scattering of conduction electrons on the impurity spin [20] which leads
to a logarithmic divergence in the resistivity below a characteristic temperature, the so-
called Kondo temperature T . Although the origin of the resistance minimum was now
understood, the unphysical logarithmic divergence still posed a serious problem. A con-
certed effort by many workers, especially a scaling analysis by Anderson [21], suggested
that upon lowering the temperature, a local magnetic moment builds up on the impurity,
and subsequently, below Tk, this local moment is screened from the rest of the system by
the formation of a spin-singlet state with conduction band electrons. The definitive con-
firmation of this picture eventually came with Wilson’s numerical renormalization group
method (NRG) [10}22], see Chap.[3]

2.1.1. Single-impurity Anderson model

The Hamiltonian of a generic quantum impurity system can always be cast into a form
consisting of three parts: the Hamiltonian of the host system, the Hamiltonian of the
isolated impurity and a coupling between the two,

H= Hhost + Himp + Hhostfimp- (21)

In the context of Kondo physics, the formation of a local moment on the impurity and
the screening by conduction electrons can be well understood within the framework of
a special quantum impurity Hamiltonian: the single-impurity Anderson model (SIAM),
introduced by Anderson in 1961 [23]]. In the SIAM, the host system is described by non-
interacting particles and for infinite or periodic systems the Hamiltonian is diagonal in
momentum space,

Hyost = ngcir(gckga (2.2)
ko

where cLU creates an electron with spin o =7 / | and momentum k in the conduction
band, and ey isthe dispersion relation. This approachis justified by Landau’s Fermi liquid
theory: At sufficiently low temperature the long-range Coulomb interaction between the
electrons in the metal is screened and the effective degrees of freedom in the system can
be viewed in terms of quasi-particles which move around in the host system nearly freely
[3]. Neglecting the small remaining interaction between these quasi-particles turns out
to be a reasonable approximation.

The second partin Eq. is the impurity part of the Hamiltonian. In the SIAM it de-
scribes a single orbital with level energy ¢, and a Coulomb interaction U':

Hinp = eping + Unpyiigy, (2.3)

where s = )" i, is the occupation number operator with 71, = f;fa, and fj. creates
an electron with spin ¢ on the impurity orbital. When the impurity orbital is embedded
in the host metal, the two systems are coupled via a hybridization Vj.. We can neglect the
k-dependence of the hybridization if the impurity couples only locally to a translationally
invariant system, and in this thesis we always assume a constant hybridization Vi, = V.
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The Hamiltonian Hyost—imp iS then given by
Hhost—imp =V Z (f(j:COJ + CI)gfo') ; (24)

where now cga = % >k cJ{w (with the system’s volume V) creates an electron in the

host system orbital coupling to the impurity. Without loss of generality we can always
define the origin of the host system’s coordinate system such that the hybridizing orbital
is located atr = 0.

Local moment formation in the SIAM

To understand how the SIAM allows for the formation of a magnetic moment on the impu-
rity, we consider the isolated impurity Hamiltonian Hjy,,. Defining |0) as the unoccupied
impurity orbital, the impurity can be in one of the following four states, given here with
their corresponding energies:

0) E=0,
foy=11  E=e,
o= E=e,

Aoy =1 E=2+U.

To obtain a spin doublet ground state (i.e. either |1) or |])), single occupation must be
favored (e; < e, where er is the Fermi energy), but the Coulomb energy must be strong
enough to disfavor energetic excitations to the doubly-occupied state (e; + U > €p).
Setting the Fermi level to e = 0, the requirement for the ground state to be a local
magnetic moment can thus be compactly expressed as

—U <er <O. (2.5)

Inthe special case when ¢; = —U /2 the impurity is called particle-hole symmetric, as the
transformation ny — 2 — ns leaves the Hamiltonian invariant.

2.1.2. Kondo model

The SIAM provides a description of the quantum impurity system for arbitrary energies
and occupation of the impurity orbital. However, we have argued that at the heart of the
Kondo effect lies the spin-flip scattering on a magnetic impurity moment. Since we have
identified the parameter regime in which the SIAM can sustain a local moment, we can
derive an effective, simplified Hamiltonian for this special case. To this end, we project
the Hamiltonian onto the subspace in which the impurity is singly-occupied. This is done
via the so-called Schrieffer-Wolff transformation [24]. Taking into account virtual exci-
tations to the zero- and doubly-occupied manifolds up to second order, this projection
yields the following effective Hamiltonian, called the Kondo Hamiltonian:

H = Hyost + K Y _ e 0, +JS; 0, (2.6)
kk/c

where S andsg arethe spin—% operators for the impurity local moment and the host sys-
tem orbital spin which couples directly to the impurity. These two operators are defined
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as
Sr=Y flogpt, 2.7)
o0’
S = Z cz)o_aw,cog,, (2.8)

o0’

with the vector of Pauli matrices o = (0%, 0Y,0%). The first term Hys is again given
by Eq. and the second termin Eq. is a purely potential scattering contribution.
The effective Heisenberg exchange coupling J and the potential scattering strength K
are given (to second orderin V') by [3]

1 1
J = V2< + ) (2.9a)
U+er —ef
2
K= V— i — ! . (2.9b)
2 \—¢ U-+tey

Egs. (2.9) show that in the particle-hole symmetric case, e; = —U/2, the potential scat-
tering term vanishes, K = 0, and the spin interaction simplifies to
Av|?

J = T (2.10)

Since the parameters U and ¢ are constrained by Eq. , J is always positive and thus
the interaction is always antiferromagnetic. This fact is an essential result as it leads to
the singlet formation and screening of the impurity spin at low energies.

At this point we want to stress that the Kondo Hamiltonianin Eq. is a low-tempera-
ture effective model of the full single-impurity Anderson model defined by Egs. (2.1)-(2.4).
Whereas the latter also describes charge fluctuations on the impurity at high energies,
the former assumes a strictly singly-occupied impurity and models only the low-energy
spin-spin interactions. The high-energy physics of both models differ, but the low-energy
behavior and ground states of both models are identical.

2.1.3. Poor man’s scaling and the renormalization group

Having introduced two related models—the single-impurity Anderson model and its low-
energy counterpart, the Kondo model—which describe a metallic host containing mag-
netic impurities, we now turn to the explanation for the occurrence of the resistance min-
imum. The experimentally observed correlation between the existence of a Curie-Weil}
behavior in the impurity susceptibility (a local moment) and the appearance of the resis-
tance minimum suggested the origin of the latter to be related to magnetic impurities.
Perturbational treatments of the Anderson and Kondo models, however, could not re-
produce the minimum. Only when Kondo in 1964 [20] extended the perturbational cal-
culations within the Kondo model to third orderin J, the spin degeneracy of the impurity
could be shown to lead to the appearance of log(7/ D) terms. The resistivity is then given

by
kT

where Ry is the resistivity calculated to second order and py is the density of states at the
Fermi level and k3 the Boltzmann constant.

R(T) = Ry [1 +2JppIn (
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Figure 2.1.: Virtual second-order excitations into the high-energy band segments in poor
man’s scaling. The thick horizontal lines represent the state of the impurity
spin. The interactions with conduction band states (thin lines) flip the impurity
spin, leading to a virtual excitation into the eliminated band edge (dashed line).
Subsequently, the impurity spin is flipped back into its original state. The left
diagram shows the process of an electron in a quantum state |k 1) being scat-
tered into the band edge and then back into the state |k’ 1). The right diagram,
on the other hand, describes the process of a particle from the band edge being
scattered into the bulk of the band (leaving a hole in the band edge) and then
being scattered back into the band edge.

This result finally explained the origin of the resistance minimum by attributing it to
spin-spin interactions which dominate the physical processes at low enough tempera-
tures. Unfortunately, it also implied the divergence of all physical quantities for " — 0.
The problem of how to extend the calculations to the regime T" <« T attracted the at-
tention of many theorists and quickly became known as the Kondo problem. 1t could
eventually be overcome with the help of the poor man’s scaling technique developed
by Anderson in 1970 [21]. In this approach the band width is progressively reduced, and
second-order virtual excitations to the band edges are eliminated perturbatively. In each
step, an energy interval of size § D is cut off from the band at the edges. The reduced band
thusrunsfrom (—D+|0D|) — (D —|0D|). Excitations to the eliminated states are taken
into accout perturbatively, and it turns out that the only non-trivial contributions arise
from virtual second-order excitations into the high-energy intervals and back. Fig.
shows diagrammatic representations of these processes.

Once the band width is reduced, the resulting Hamiltonian has exactly the same form
as the original. However, the coupling parameters are renormalized J — J and the
Hamiltonian is now defined on a reduced bandwidth 2D = 2(D — |§D|). The reduction
step is then applied repeatedly, and in the limit of infinitesimally small energy intervals,
|0D| — dD,yields a differential equation for the coupling parameter J, viz.

dJ
dIn(D)

— —2p02 + O (037) . (212)

This differential equation defines a flow of the coupling parameter as the tempera-
ture/energy scale is progressively reduced. Integrating Eq. (2.12) we find a so-called
scaling invariant of the Kondo effect, the Kondo temperature T

1 ~ 1
Dexp|—— )| =Dexp| ——= | ~Tk. 2.13
() = Do (7)1 e

Theinvariance of T under the reduction of the energy scale implies that, for low enough
temperatures, all properties of the system must depend only on this parameter Tx. A
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better estimate of T is obtained from perturbation theory to third order, giving

1
T = D+/poJ exp (—) . (2.14)
podJ

The renormalization group

Building on the scaling ideas by Anderson discussed in the previous section, we can
formulate the more general concept of the renormalization group (RG) method, which
was largely pioneered in the context of critical systems in condensed matter physics by
Kadanoff [25] and Wilson [10]. It is a mapping R of a Hamiltonian H (K) which is spec-
ified by a set of coupling parameters K = (K, Ko, ...), into a new Hamiltonian of the
same form but with different (renormalized) coupling parameters K, formally:

R(K) =K. (2.15)

The series of points K defines trajectories in parameter space, also called the RG flow (in
the sense that these trajectories have a direction and are smooth). Typically, the trans-
formation R consists of integrating out local (microscopic) degrees of freedom in order
to eventually obtain a description of the system on a macroscopic level. An example
for such a transformation was given in the last subsection by the reduction of the band
width. Otherexamplesinclude Wilson’s real-space renormalization group procedure (see
Chap.[3), and the Kadanoff block spin transformation in which the RG scheme consists
of an explicit coarse-graining of space. Both these schemes are discussed in more detail
in Ref. [10].

A key concept within the RG framework is that of fixed points. A fixed point is a point
K* where the RG transformation leaves the coupling parameters invariant,

R(K*) = K*. (2.16)

At these points, further application of the RG scheme will not change the description
of the system anymore. One generally distinguishes between stable and unstable fixed
points. The trajectories in the vicinity of a stable fixed point are drawn towards it—the
system flows to the stable fixed point. In the neighborhood of an unstable fixed point,
however, trajectories are eventually driven away and flow to the stable fixed point.

2.1.4. Fixed Points of the RG flow

Applying the renormalization group idea to the symmetric flat-band Anderson model
renormalizes the parameters U — U and V' — V. We find three distinct fixed points
[3,22], and in Fig.we show the RG flow diagram for the symmetric Anderson model.
The three fixed points can be interpreted in a physically intuitive way:

Free orbital (FO): At high temperatures, T' ~ D, charge fluctuations to and from the
impurity are dominant and the system is described by the (unstable) free orbital
fixed point. At this fixed point, the impurity can be in all four possible states. The
charge fluctuations lead to peaks in the impurity density of states pimp(€) ate = ey
and e = ey + U, which are commonly known as the Hubbard satellites.

Local moment (LM): Lowering the temperature (or energy scale) by applying the RG
scheme iteratively, below a certain energy scale charge fluctuations are frozen out
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Figure 2.2.: Renormalization group flow of the symmetric Anderson model [3]. The only
stable fixed point is the strong coupling fixed point at V2 — oo. The red line in-
dicates the RG flow shared with the Kondo model where only the local moment
and strong coupling fixed points are present. In the Kondo model, J ~ V2/U
is the renormalized parameter.

and the impurity orbital becomes singly-occupied, forming a local magnetic mo-
ment. The system flows away from the FO fixed point to the (unstable) local mo-
ment fixed point. In the RG flow the LM fixed point lies at U — co. In this regime,
the Kondo model serves as an adequate low-energy theory of the Anderson model.
Accordingly, the Kondo model with .J = 0 (cf. Egs. (2.10)) is described by the same
LM fixed point.

Strong coupling (SC): Further lowering the temperature, as soon as the Kondo temper-
ature scale at Tk is reached, spin-scattering processes become dominant and the
formation of the Kondo singlet groundstate is represented by the system flowing to
the stable strong-coupling fixed point. In the impurity density of states the forma-
tion of the singlet leads to a narrow peak of width T around the Fermi level: The
so-called Kondo resonance. The SC fixed pointis the V2 = oo limit of the Anderson
model, and accordingly the J = oo limit of the Kondo model.

Fig.[2.3]shows the impurity entropy in the single-impurity Anderson model as a function
of w for three different sets of impurity parameters. At high energies, w ~ D, the systemis
atthe FOFP, and the four possible states of the impurity yield an entropy Simp = log(4) =
21og(2). At a non-universal energy scale, the impurity degrees of freedom reduce to that
of a single spin—%, and Si,p, = log(2). Finally, below the Kondo scale the impurity is
screened, the resulting singlet state has an entropy of S, = log(1) = 0.

2.1.5. The Kondo resonance

The spin exchange between the conduction electrons and the localized impurity spin
qualitatively change the energy spectrum of the system [9]. The combined scattering
processes generate a new state, known as the Kondo resonance, at the Fermi level ef.
This new state also substantiates the intuitive picture we have established so far: the
electrons mainly contributing to the low-temperature conductivity of a metal have ener-
gies around the Fermi level. Since the Kondo resonance also forms at the Fermi energy,
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Figure 2.3.: Impurity entropy in the single-impurity Anderson model as a function of w for
three different sets of impurity parameters. The data was obtained with the
Numerical Renormalization Group for a constant hybridization function, and
the parameters of the Anderson model were e;/D = —0.8 x 1073, V/D =
3x1073andU/D =1 x 1073,1.125 x 1073 and 1.25 x 10~ (solid, dashed,
and dotted lines).

it is precisely these electrons that are affected most, leading naturally to an increased
resistivity. Various experimental measurements of the Kondo resonance [26,[27] have
recently been obtained by measuring the linear-response conductance G and the differ-
ential conductance dI/dV through a quantum dot, which was tuned to form a spin-%
impurity.

2.2. The SU(2) Heisenberg Spin Model

In the previous section we considered the case of a system of non-interacting fermions
coupled to a single impurity—a localized orbital with strong Coulomb interaction. The
description of a metal in terms of a Fermi liquid, i.e. non-interacting fermionic quasipar-
ticles, is a vital approach that has proven to be very successful in many cases. However,
when electron-electron interactions become dominant this description is not useful any-
more. The physics of such strongly correlated electrons is, in fact, a bona fide example
of the inapplicability of Fermi liquid theory [8].

2.2.1. Hubbard model

Avery fruitful starting-point for the description of such systems is given by the Hubbard
model; a deceptively simple tight-binding Hamiltonian with only on-site interactions. It
has been proposed by J. Hubbard in 1963 to understand the physics of transition metal
monoxides [28], but it has since been applied to many different systems and problems,
e.g. heavy fermions 3] and high-T, superconductivity [29]. It has been attacked with the
full range of analytic and numerical techniques available to condensed matter theorists,
butin spite of its simplicity it is at present far from being completely understood [8]. The
Hubbard-Hamiltonian is given by

Huubbard = —t Z C,TUC]-U +U Z it T, (2.17)
(i7),0 i
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where C;ra creates an electron with spin ¢ at lattice site 4, and 7;, = cl.tacw is the occu-
pation number operator. The first term describes the hopping of electrons between two
nearest-neighbor sites i and j, with the hopping amplitude t. The second term represents

the strong Coulomb interaction between two electrons on the same site.

2.2.2. Mottinsulators and Heisenberg Hamiltonian

One of the many successes of the Hubbard model was the description of Mott insulators:
materials that under conventional band theory are expected to be conducting, however
show insulating behavior in experiment. The explanation of this discrepancy in terms of
strong interactions between electrons follows immediately from the Hubbard model.

Starting from the Hubbard Hamiltonian in Eq. at half-filling (i.e. an electron con-
centration of on average one electron per lattice site), we examine the effect of inter-
actions. To this end, we consider the dimensionless interaction parameter U/t. In the
weakly interacting limit, U/t < 1, one can resort to standard Fermi liquid theory and the
interaction termin Eq. can beviewed as a mere perturbation to the non-interacting
system. In the opposite limit of U/t > 1, however, the electrons in the system will be
localized at each site. The immense energy penalty from the Coulomb repulsion is thus
avoided at the expense of the (much smaller) kinetic energy t. In this case charge carriers
cannot travel through the system and the system becomes insulating; this is known as a
Mott insulator [30]. The groundstate of the half-filled Hubbard model for U >> t is thus
a system where each site is occupied by one electron, carrying a spin-%. To derive an ef-
fective theory for this situation we treat the hopping of electrons in perturbation theory,
and integrating out second-order virtual excitations into intermediate states in which a
site becomes doubly-occupied yields the Heisenberg spin-Hamiltonian:

HHeisenberg = JZ S; - Sja (2.18)
(i)

where S; = (S, 57, S7) is the vector of spin-3 operators at site 7, and

2t

=7
The interaction in Eq. (2.18) is antiferromagnetic, since J > 0. The origin of this fact
can be explained very simply [8]: For two neighboring sites occupied with electrons of
parallel spin, an intermediate state of both electrons on one site is strictly forbidden by

the Pauli principle. The same process is allowed, though, for electrons of anti-parallel
spin. In the latter case, such a process leads to an energy gain of AE = —2t2/U.

J (2.19)

2.3. The Kitaev Honeycomb Model

The interaction terms in the Heisenberg model are isotropic, i.e. symmetry operations of
the underlying lattice do not change the Hamiltonian. Now, we discuss a special model
with anisotropic interactions, i.e. where the relative spatial alignment of two interacting
spins determines the type of interaction. This model was first presented by A. Kitaev in
2006, after he had found an exact solution to it [31] while considering it in the context of
fault-tolerant quantum computation.

Not only is the fact that an exact solution to a (non-trivial) 2D model exists remarkable
by itself, this so-called Kitaev model furthermore possesses an abundance of compelling
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(a)

Figure 2.4.: (a) The honeycomb lattice of the Kitaev model. Each site belongs to one of two
sublattices, shown here as empty or filled disks. The gray diamond shows the
unit cell containing two sites. (b) A graphical representation of the Majorana
fermionization. The large gray bubbles represent a spin-% and each black dot
represents one Majorana fermion.

physical properties: It can be solved by mapping to non-interacting Majorana fermions,
its ground state is a true quantum spin liquid with topological order [32], and it contains
both abelian and non-abelian anyonic excitations in the presence of a magnetic field.
At the time of Kitaev’s original publication it was not clear how to realize this model in
a real system [31]. Recently, however, Khaliullin and co-workers suggested [33] that the
Kitaev model might be in part realized in certain transition metal oxide systems with or-
bital degrees of freedom. This discovery spurred a lot of research and is one of the main
motivations for the problems considered in this thesis (see Part[ll). In the following, we
present the model along with a sketch of the solution.

2.3.1. The model

The Kitaev model consists ofspin-% degrees of freedom located at the vertices of a honey-
comb lattice, Fig.[2.4[a). The lattice can be subdivided into two sublattices with the unit
cell containing two sites. Interactions occur between nearest-neighbor spins and are di-
vided into three types depending on the direction of the link between the sites. Each type
of interaction is an Ising-like coupling of one spin component and we call them “z-links”,
“y-links” and “z-links”, see Fig.[2.4(a). The full Hamiltonian is given by

Hiitaev = Jo Y SEST+Jy > SUSY+J. ) 8757, (2.20)

x—links y—links z—links

with three independent coupling parameters J,, J, and J.. As the honeycomb lattice
is bipartite there is no geometrical frustration when considering only nearest-neighbor
interactions. However, it is the anisotropic spin-interaction terms that highly frustrate
the model. To see this, consider one spin interacting with its three neighbors: for each
individual neighbor, the spin minimizes its energy by aligning along a different spin axis,
which cannot be fulfilled with respect to all three neighbors at the same time.
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2.3.2. Majorana fermions

The Dirac equation as a relativistic generalization of the Schrédinger equation describes
all spin—% particles (such as electrons) as well as their anti-particles (such as positrons).
Whereas in general particles and their anti-particles are different, Ettore Majorana
showed in 1937 [34] the existence of a solution of the Dirac equation which is its own
anti-particle. This is most easily seen in terms of operators where the Majorana solution
is a linear combination of two “regular” Dirac-fermions. Consider the fermionic operator
¢ (cj.) that destroys (creates) a Dirac particle and obeys the canonial anticommutation

relation {c;, c;} = 0;;. From this, we can construct the following linear combination:

1 + 1 t
Vil = E (ci + Ci) , Vi = E (ci — ci) . (2.21)

These new operators ~y; are purely real solutions to the Dirac equation. They are thus
hermitian and also obey fermionic statistics

(V1) = 0w =Y (2.22)

Eq. (2.22) shows explicitly that the Majorana fermions are indeed their own anti-particle.
From Egs. (2.21) we furthermore see that we can express a regular Dirac fermion as the
combination of two Majoranas as

6 = 2 (i1 + i) o= (i — i) (2.23)
i \& Vi1 Yi,2) i \/§Z Vi1 Yi2) - .

In its original paper, Ettore Majorana speculated that his findings might apply to neu-
trinos, which at that time were themselves only hypothetical. Remarkably, more than
80 years later, it is to this day still not certain whether neutrinos are in fact Majorana
fermions or not [35]]. Furthermore, the theory of supersymmetry in high energy physics
also has put forth candidates for Majorana fermions, such as the so-called weakly inter-
acting massive particles (WIMPs) in the context of dark matter [36].

In the field of condensed matter physics, the search for Majorana fermions has recently
attracted much interest as it was suggested that they occur as quasiparticle excitationsin
a variety of systems. Although the use of Majorana fermions in condensed matter theory
is mostly motivated from a purely mathematical standpoint [35], the possibility of real
materials exhibiting such physics leads to a realistic chance of further exploring and even
utilizing their exotic features.

We discuss how the Kitaev model can be solved in terms of Majorana fermion operators
in the following sections, and in Part[IVjwe focus on a different system at the center of the
current search for Majorana fermions.

2.3.3. Representation of spins by Majorana fermions

Following Kitaev’s original solution, we employ the Majorana fermions initially as a math-
ematical tool which turns out to be essential for the solution of the Kitaev model. To this
end, we represent one spin at site ¢ by four Majorana fermions which we call o; , 87, f’,
and (7. The spin operators can now be written in terms of these Majoranas as

ST =ifla,, (2.24)
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Figure 2.5.: Phase diagram of the Kitaev model. Shown is a cut at J, + J, + J, = const
through the positive octant. The gapped phase A and the gapless phase B are
discussed in the main text. The other octants have equivalent phase diagrams.

where~y € {z,y, z}. Fig.[2.4(b) gives a graphical representation of this transformation. A
side-effect of this mapping is that with the introduction of the Majorana operators we
doubled the Hilbert space. This, however, can be remedied by restricting the Hilbert
space to its physical sector, which can be done by requiring the new spin operators to
fulfill the spin SU(2) algebra. In the Majorana representation, the Kitaev Hamiltonian Eq.

becomes .
H:%E:h@@@ymw (2.25)
@
where the sum runs over nearest-neighbors (ij) and, as before, v € {z,y,z} corre-
sponds to the type of link. Remarkably, the operators #;; commute with each other and
the Hamiltonian, and we can therefore split the Hilbert space into eigenspaces of each
@;; which are indexed by their eigenvalues £-1. Replacing the operators @;; by their eigen-
values u;; yields a Hamiltonian quadratic in the Majorana modes. This non-interacting
problem is then exactly solvable.

2.3.4. Spectrum and phase diagram

The freedom of fixing every u;; leaves us with the question which configuration mini-
mizes the ground state energy? In fact, from a theorem by Lieb [37] it follows that the
ground state is achieved by a field configuration where u;;, = 1 for all links where j be-
longs to the even sublattice, and & to the odd sublattice. This configuration obviously has
a translational symmetry and we find the fermionic spectrum by Fourier transformation
of the operators in the Hamiltonian

]
H = Z ; Jvuijaiaj. (2.26)
LY

The spectrum is then readily found as

e(k) = +4 | Jpea 4 g ela g1 (2.27)
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with the two lattice vectors of the honeycomb lattice a; = (3, %3) and ay = (—3, ¥3).
From here, we can immediately identify the parameter regime in which the spectrum is
gapless (i.e. a solution exists for (k) = 0), which is the case exactly when the following

three triangle inequalities are fulfilled

[ Jal < [Jy| + |J:]
[Tyl <[l + 72|
[Tl < [ el + [yl

We call the gapless phase B, and the gapped phases A, and show them in Fig.[2.5/for a
cut through the parameter space for which J, + J, 4+ J, = const.

2.3.5. Spin liquid ground states

Aremarkable property of the Kitaev model was first elucidated in Ref. [32]: In its ground
state, dynamical two spin correlation functions are short ranged and vanish exactly be-
yond nearest-neighbor separation, independent of the values of J,, J, and J.. Therefore,
the ground state, in both phases A and B, is given by a short-ranged quantum spin liquid
with no long range spin order [38].

In the phase A the spin liquid is gapped and has a Z, topological order. In fact, in
the limit that one coupling is much stronger than the two others, e.g. J,, J, < J, the
Hamiltonian can be mapped to the toric code [31], a thoroughly studied model of a topo-
logical quantum error correcting code [39]. The phase B, on the other hand, is gapless,
and it contains quasi-particle excitations in the form of non-abelian anyons, objects of
tremendous interest in the context of topological quantum computation, see also Part
I\VA

Thus, the combination of an exact solution and the great number of rich physics, such
as the non-abelien anyonic excitations in the gapless spin liquid state, have made this
model a central focus of theoretical and experimental condensed matter research in re-
cent years.






Chapter 3.
Numerical methods: DMRG and NRG

Strongly-correlated many-body quantum systems on low-dimensional lattices present
a challenging task for both analytical and numerical treatment. The presence of strong
interactions leads to failure of perturbation theory. Field-theoretic approaches have led
to great insights but oftentimes rely on severe approximations. Numerically, a lattice
system of finite size can in principle always be solved exactly by means of diagonaliza-
tion. However, the Hilbert space of the problem grows exponentially in system size and
thus severely restricts the system sizes feasible for simulation to the order of currently
O(10). Although computational power steadily increases, this exponential barrier can-
not be overcome and one has to turn to approximate solutions.

Kadanoff’s block spin renormalization group was a first major step to understanding
how to successfully apply renormalization group ideas from other fields in condensed
matter physics. In his paper [25], he shows a way to define components of the theory at
large distances by iterative aggregation of components at shorter distances. By group-
ing spins into blocks and then transforming the system so that each group of spins is
now represented by a single effective spin, one effectively “zooms out” of the system
and eventually reaches a description of the long length scale (or, conversely, low-energy)
physics. This approach was further corroborated by Kenneth G. Wilson while working
on the Kondo problem, and led to the invention of the numerical renormalizaton group
(NRG) algorithm [10]. However, the concepts and ideas that enabled the NRG to be to this
day the most powerful weapon to tackle Kondo physics fail for essentially all many-body
lattice systems. Even a single free particle in a box cannot be described by Wilsons’s ap-
proach. Eventually, Steven R. White realized that an important change in the approach
was needed to enable it to treat general one-dimensional lattice systems to great accu-
racy. In 1992 he invented the density matrix renormalization group (DMRG) technique
[11] which since then has proven to be the most powerful numerical method for one-
dimensional systems know to date. Recently, with a deeper understanding of the un-
derlying mathematical and physical structures, and the growth in computational powers
available, the DMRG algorithm could be extended to also treat 2D systems (however only
systems of small width).

Although the problems for which NRG and DMRG are best suited are very different,
and although both algorithms have strongly differing features, at their core they are in-
timately related. In this chapter, we introduce both techniques from the point of view of
their common foundation and in the modern language of matrix product states.

3.1. Reducing the size of the Hilbert space
The Hilbert space of a quantum lattice system comprised of NV sites with a local Hilbert

space of dimension d is exponentially large with a dimension D = d”. However, it turns
out that not the entire Hilbert space is required to describe the ground state of a realistic

19
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Hamiltonian, and renormalization group methods for many-body systems (see Chap.[2.1)
have the goal to identify precisely the relevant degrees of freedom of a given system. To
this end, it is important to better understand how we can reduce the full Hilbert space to
a relevant sub-manifold.

3.1.1. Entanglement entropy

How much a state is spread throughout the full Hilbert space can be quantified by means
of the entanglement entropy. Consider a system X which is comprised of two subsys-
tems A and B such that X = A U B. Assuming this system to be in a pure state |¢),
the entanglement entropy is defined as the von Neumann entropy of either subsystem
(since it is the same for either subsystem). First, we can formulate the reduced density
matrices for each subsystem by tracing out the other subsystem,

pa="Trp )W,  pp="Traly) (Y] (3.1)

The operators j4 and pp have the same eigenvalues, \;, and by applying iteratively a
singular value decomposition (SVD) [40] the full state |¢)) can be written in the so-called
Schmidt decomposition as

W) =) Aila); ® |b), (3.2)

where |a), and |b), are eigenvectors of p4 and pp, respectively. This formulation is re-
lated to the matrix product states we discuss below, where a state is written in terms of
tensor products of local objects. From the spectrum of the reduced density matrices one
can now rigorously define the entanglement entropy as

S:’ITpAlogpA:—Z)\glog)\?. (3.3)

If |¢) is @ non-entangled state, the density matrices only have one non-vanishing eigen-
value which—due to normalization—is Ay = 1, and accordingly the entanglement en-
tropy vanishes, S = 0. On the other hand, a maximally entangled state will have an ex-
ponentially large number of equal eigenvalues, leading to the (maximal) entanglement
entropy S = log D.

3.1.2. Arealaws

At first glance, one might argue that a calculation of the entanglement spectrum must
be performed in the full Hilbert space and we have thus gained nothing. However, one
can prove for one-dimensional systems and certain two-dimensional systems that low-
energy eigenstates of gapped Hamiltonians with local interactions obey so-called area
laws for the entanglement entropy [41,/42]. In particular, the entanglement entropy of
the ground states of such systems grows proportionally to the surface of the cut rather
than the subsystem’s volume. Taking for instance the two subsystems A and B asin Fig.
we find S(A) ~ OA = L+ W. ForalD system, thisin factimplies S4 = Sp = const.

Itis important to stress that the fact that most systems have an area law leads to dra-
matic consequences, as it heavily constrains the number of possible candidates for the
ground state in the Hilbert space. Indeed, the manifold of states with an entanglement
entropy that grows with boundary rather than volume makes up only an exponentially
small part of the full Hilbert space [[40,43]. Therefore, by reducing the Hilbert space of the
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L

Figure 3.1.: Subsystems A and B comprising the full system X = A U B. If the system
obeys an area law, the entanglement entropy of subsystem A grows with the
boundary between A and B, S4 ~ W + L, and not with the volume of A,
Sa~W-L.

problem to the relevant manifold of states obeying an area law, we can massively reduce
the required computational resources.

In fact, it turns out [44] that using the formalism of matrix product states (or more gen-
erally tensor networks), which we describe below, one automatically targets exactly such
states. Accordingly, when constructing numerical RG methods to focus on the most rele-
vant degrees of freedom, it is natural to formulate them in the context of matrix product
states.

3.2. Matrix product states

To introduce the formalism of matrix product states, consider a lattice of L sites where
each site has a local Hilbert space of dimension d. While the following discussion is valid
for arbitrary dimensions of the system, for our purposes we assume the lattice to be one-
dimensional. Any pure state of this system can be formulated as

W)= Coruny lo1)lo2) .. loL), (3.4)

015,01,

where the sum runs over all d” states in the full Hilbert space and we have an exponen-
tially large number of coefficients ¢4, . », . A matrix product state is a representation of
this state by means of local objects, where the coefficients ¢, . », are expressed in terms
of matrices A7' as

Coroy, = ATVAG? . ATHATE. (3.5)

and thus the state |¢)) is given in a matrix product state formulation by

Wy = > AT'AP .. ATV ATE|ow)|oa) .. ow) - (3.6)

O1,-50L

At this point, of course, this is a mere reformulation and the number of total coefficients
is naturally still exponentially large. In fact, the dimensions of the matrices A grow ex-
ponentially, where AJ" is a (1 x d) matrix, A% is (d x d?), and so forth. The dimensions
grow for the first half of the matrices, then they decrease in the same manner until finally
AT isa (d? x d) matrix, and A% isa (d x 1) vector. Thus, for a practical (numerical)
treatment we have gained nothing so far.
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To see how we can reduce the level of complexity by finding an optimal approximation,
consider again the Schmidt decomposition in Eq. (3.2). From the reasoning above we
know that for only slightly entangled states, only a few density matrix eigenvalues \;
contribute most of the weight. By summing only over the M largest eigenvalues ); in
Eq. (3.2), we can thus create an approximate state |¢)) ~ |+), and it can be shown [40]
that this is in fact an optimal approximation.

Turning back to the matrix product states we can in the same fashion limit the max-
imum matrix dimension of the matrices A7’ to be M < d. The matrix size yields an
upper bound for the rank of the reduced density matrices, and in this sense takes on the
same role as the M in the Schmidt decomposition. By keeping only the largest M sin-
gular values in each decomposition, we can thus approximate the state |¢)) with a set of
matrices A7* where each matrix is at most of dimension (M x M).

3.2.1. Matrix Product Operators (MPO)

With the representation of arbitrary states as matrix product states, we now turn to the
representation of operators. In the basis of the MPS states, {|o;) }, we can write any op-
erators as [[40]

O= 3 X Wyt Wi W o) o, )
O15-0L 01 ,...,07,
where we have introduced the notation for a basis state
lo) = |o1) |o2) ... |oL) . (3.8)

The Wf"/ in Eq. are matrices just like the matrices A7 in Eq. with the only dif-
ference that they depend on not one but two external indices, o and ¢/, which can be
understood as ingoing and outgoing physical states. The coefficients of the operator are
then readily obtained as

(@|0)a’) = W W Wk e o (3.9)
The application of an MPO to an MPS follows straight-forwardly from their definitions:
Olwy =3 (W Wgo W) (AT A2 . WiE) o)

oo
=Y N7N...N°"|o), (3.10)
(o

where the new matrices N° have the multiplied dimension of the MPS and the MPO.
Noteably, the form of the MPS stays invariant at the prize of an increased matrix size.
In typical applications, however, the new MPS can be truncated again to the original
matrix dimensions. The operation of summing over exponentially many basis vectors
01,09, ..., 01) has been reduced to a polynomial operation, of order Ld?> D3, M? where
Dyy is the dimension of the MPO [40].

3.2.2. Graphical representation of MPS and MPO

While generally the usage of MPS requires a lot of notational overhead, a much more con-
venient diagrammatic notation exists. From this point, we use the general word tensor
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for each quantity occurring in the MPS description. In this sense, numbers are tensors of
rank 0, vectors are tensors of rank 1, matrices of rank 2, etcﬂ In the diagrammatic nota-
tion, the tensors are represented by shapes and indices of the tensors are represented by
lines emerging from the shapes. Lines connecting two tensors imply a summation over
the corresponding index. In Fig.[3.2we show examples of the basic diagrams we use, in-
cluding an example of a matrix-vector multiplication showcasing the summation over an
index.

In Fig. 3.3 we show the representation of the matrix product state, Eq. (3.6), and the
representation of a matrix product operator, (3.7), both for a chain of length L = 5. The
usage of squares instead of circles for the MPO is merely a help of better distinction of the
two types of objects; the relevant property is the number of legs protruding from each
tensor.

3.2.3. Canonical form of an MPS

Thus far, aside from the dimensionality we have not put any constraints on the matrices
A7" in the MPS. However, in the light of the variational ground state search of the DMRG,
itis useful to have the MPS be in the so-called canonical form. This form assures the cor-
rect normalization required in the DMRG process. We start with a general MPS with no
normalization assumptions,

)= 3 MY M7|ov)...or). 311

O150L
Performing an SVD on the first matrix M7* yields
M =USVT, (3.12)

and we replace the original matrix M7 by the new matrix A7' = U. Next we generate a
new matrix M5?* by multiplying SV from the left to the matrix /72,

MJ? = SVTMZ2. (3.13)
After transforming all matrices in the original expression, we have generated the state

Wy = Y AT'MF* ... M]*|oy)...|oL). (3.14)
01,.-50],
The important reward from this procedure is the fact that due to the SVD the matrix A7

has the property that (A7* )f AT' = 1. Iterative continuation of this scheme leads to the
final MPS representation in (left-)canonical form

Wy = > A7 AT |ow)...|oL), (3.15)
01550
where all matrices are normalized such that (A;”)T A7 =1fori=1,...,L.IntheSVD

of the last (d x 1)-matrix M7, the product SV T yields a single number, which is precisely
the norm of the initial state.
The same procedure can be applied starting from the last matrix M ?~ and moving to

'This nomenclature is rooted in the more general theory of tensor networks, of which the MPS framework
is a subset.
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Figure 3.2.: Diagrammatic representation of (from left to right) a vector v;, a matrix /;; and
a rank-3 tensor T;,,. The right-most picture shows a contraction of a vector v
with a matrix M, the result being a vector w; = >, v; M;;.
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Figure 3.3.: Left: Graphical representation of a matrix product state |¢) for a chain of length
L = 5. Right: Representation for a matrix product operator O for the same
chain.

the left. In this case, the matrices M are being iteratively replaced by the matrices %4l
from the SVD, and the neighboring matrix to the left is transformed into

M7t = MT'US. (3.16)
After each matrix is transformed, the final state is in the right-canonical form, given by

)= D W Vi) ... or), (3.17)

01,..50],

where all matrices V" again fulfill the relation (Vi‘”)T V.7 = 1, which again follows from
the SVD.

Let us remark at this point, that instead of starting from the left or the right end, one
can of course also start from an arbitrary point in the state, generating a so-called mixed
canonical form.

3.3. Real-space renormalization

At this point we introduce the common renormalization idea behind Wilson’s NRG and
White’s DMRG. Conceptually, both methods operate in the same way: Consider a finite

A1 A2 A3 A4 A5
) ) )

Wl W2 W3 W4 W5

(A1) (A2)" (43)"  (A1)"  (4s)°

Figure 3.4.: Graphical representation of an expectation value ()| H|v)
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Figure 3.5.: Lowest lying states of the entire system A U B (solid line), and the two lowest
lying states of each subsystems A and B (dashed lines).

chain lattice of length L with open boundary conditions. The Hilbert space of each site i
is given by H; and has dimension dim #; = d. The Hilbert space of the full system is then
H = ®f:1 H;, and has dim H = d”. Starting with the isolated first site i = 1, the re-
maining sites are successively appended to the system. To avoid the exponential growth
of the full Hilbert space, in each step the new Hilbert space is truncated to a maximum
dimension M. Denoting the truncated Hamiltonian with dimension dim X < M with a
tilde, this step can be formally written for the first two sites as

Hy ® Hy — Ha, (3.18)
where the index on the right-hand side denotes the (truncated) Hilbert space of the sites
i =1,...,n. The general form of this transformation is thus

Hoo1 @ Hn, — Ha, (3.19)

and once this procedure has been performed on the entire system, we have an approx-
imated representation of the original system. But how do we decide how we truncate
the Hilbert spaces? Since we are generally interested in the ground state of the system,
one possible suggestion could be to keep only the part of the Hilbert space which corre-
sponds to states of lowest energy. In fact, this is precisely what is done in Wilson’s NRG.
After a careful mapping of the physical system to a rather artificial chain lattice, by keep-
ingonly the lowest energy states in each step a faithful (even ‘numerically exact’) solution
is found for the ground state.

However, this scheme fails for generic systems, which can be understood immediately
by considering the simple case of a particle in a box. The crucial problem is visualized in
Fig.[3.5, where the system has been divided into two subsystems A and B. The lowest-
lying energy states (in fact, all states) of each subsystem vanish at the boundary. How-
ever, the ground state of the full system A U B has its maximum amplitude in the center.
It is immediately clear that no finite combination of the states from A and B can yield
the ground state for A U B.

White’s key insight for the DMRG algorithm was to base the truncation scheme not on
the lowest-lying energies, but rather on those states that contribute most to the system.
These states are those with the most weight in the reduced density matrix of each sub-
system, which closes the loop to the matrix product representation we discussed above.
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3.4. Density Matrix Renormalization Group

The original formulation of the DMRG by White is found in Ref. [11]. Based on Wilson’s
numerical renormalization group (see below), it was formulated from the viewpoint of
real-space renormalization: Starting from a single site, more and more sites are succes-
sively added to the Hamiltonian while in each step truncating the Hilbert space to keep
only those states with the largest spectral weight in the density matrices. After a desired
system size is reached, the obtained state is optimized by iteratively optimizing each in-
dividual site in sweeps through the system. A comprehensive overview of this original
formulation can be found in Ref. [45].

The further development of this method, however, has led to the realization that it, in
fact, naturally operates on matrix product states [40]. The DMRG algorithm can be equiv-
alenty reformulated as the variational optimization of a given MPS. For the results of this
thesis, we used an implementation of the MPS-DMRG approach which has been devel-
oped with support from the Swiss Platform for High-Performance and High-Productivity
Computing (HP2C) and based on the ALPS libraries [46/47].

3.4.1. Variational optimization of a matrix-product state

Assume we have a Hamiltonian H given as an MPO. Furthermore, consider the class of
normalized matrix product states with a maximum matrix dimension of M. To find the
optimal approximation to the (true) ground state of H within this class of states, we need
to find the state |¢0) which minimizes the energy,

(Y[Hp)

E=——"1 (3.20)
(¥[)
After introducing a Lagrangian multiplier A, this translates to extremizing
(W H|) = A (wle). (3.21)

Such a minimization is generally computationally difficult and not very efficient, due to
the bignumber of free parameters. However, a variational solution can be found by itera-
tively minimizing one tensor of [¢)) at a time, then proceeding to the next one. While this
scheme is essentially identical to White’s single-site DMRG algorithm, the optimization
can also be carried out by considering two sites at a time (the two-site DMRG algorithm),
which might converge better under certain circumstances. However, generally it is a pri-
ori not obvious, which of the two methods leads to a better convergence. Details on the
two-site optimization can be found in Refs. [11,/45].

Let us now assume our MPS to be in (either left- or right-) canonical form, so that each
tensoris properly normalized. In order to optimize a single tensor, i.e. minimize Eq.
with respect to this tensor, we fix all other tensors in the MPS, leaving out the currently
considered one. As an example, we consider the situation of Fig.[3.6]and optimize the
tensors AZ®. The effective Hamiltonian erﬁ is then found by leaving out A3, shown di-
agrammatically in Fig.[3.6] To optimize the local tensors, we first reshape all d matrices
AZ? into one big vector A3 of maximum length dM 2. The coefficients in this vector are
the variational parameters and the minimization can be written as

min ((WIH[Y) ~ A (0]0)) = min (AlHaAs = AAL-As). (322)
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Figure 3.6.: Graphical representation of the effective Hamiltonian H.g for the optimization
of tensor As in a 5-site system.

This minimization can now be performed by solving

ai* (AgHeﬁAg — AL A3> — 0, (3.23)
3

which leads to the eigenvalue problem
HegAs = MAs. (3.24)

An exact numerical diagonalization of this problem for matrices of dimension dM? is in
most cases out of the question. However, as we are usually only interested in the ground
state, the eigenvalue problem can be solved by sparse-matrix techniques such as the
Lanczos 48] or Jacobi-Davidson [49] algorithms, which are numerically fast but only give
results for the lowest few eigenstates and eigenvectors.

3.4.2. Optimization procedure

Having discussed the optimization of a single tensor, we now turn to the optimization of
the full MPS |¢). This procedure can be broken down into the following steps:

1. Initial MPS and normalization
Construct an initial MPS for the desired system, truncated to a maximum bond di-
mension of M. Typically this is done by either constructing a state using some
knowledge about the physical system, or by generating a random MPS. This initial
MPS is then transformed into right-canonical (see above) to ensure a proper nor-
malization of its tensors.

2. Right sweep
Starting at site i = 1, solve the eigenvalue problem for tensor A;. Similar to the
calculation of the canonical form above, the new A; is then decomposed by SVD
into A; = USVT, where the matrix U becomes the new tensor A1, and the SV T is
multiplied from the left to the next tensor As. This ensures proper normalization of
the tensors (as by definition UTU = 1). Then, we move to the next site, i — i + 1,
and repeat this procedure untili = L — 1.

3. Left sweep
Oncetheright sweep has optimized sitei = L —1, theright sweep has transformed
the entire system (with the exception of site i = L) into left-canonical form. We
can thus simply repeat set previous step in the other direction, with the left sweep
starting at site i = L. Asin step 3, the tensor A; is diagonalized, and after the SVD,
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the matrix V1 becomes A4;. US are multiplied from the right to the tensor 4;_;.
Again, this ensures normalization as V1V = 1. Repeat for the next site, i — i — 1,
untils = 1.

The process of sweeping once right and then left are commonly referred to as one ‘sweep’
through the system. This sweeping is repeated until the energy converges. For a system
with open boundary conditions, this procedure recovers precisely the single-site DMRG
method, albeit formulated in the language of MPS [11,|40,/50]. Since in each step the
parameters of one tensor are optimized, the energy can only be lowered in this process.
For one-dimensional gapped Hamiltonians which have an area law, this method works
extraordinarily well, producing results with an accuracy of 10~ and better [50].

3.4.3. Ensuring ground state convergence

The bond dimension parameter M is a crucial factor determining the accuracy of the
DMRG results. If M is too small for the system at hand, the resulting wavefunction may
not be represented accurately. However, performing several calculations with increasing
M can remedy this problem as one can examine the convergence behavior towards the
exactresult (weremind ourselves thatin the limit M/ — oo DMRG produces exact results).
Another more subtle issue arises from the fact that the DMRG is globally a variational
method and as such might get stuck in a metastable minimum [51].

A general technique to avoid metastable minima in DMRG calculations which is espe-
cially useful in the MPS formulation was given by S. White in Ref. [52]. In the next sub-
section we demonstrate the occurrence of effective long-range interactions in the simu-
lation of 2D systems with the DMRG. Consider for instance a hopping term between two
sites which are nearest-neighbors in the physical system, but far apart in the MPS rep-
resentation. Correlations due to this interaction might be incorrectly suppressed in the
calculations, since in the DMRG process the extra states required to allow for the hopping
between the two physical sites might not help lower the energy of one tensor, unless they
are already present in the tensor corresponding to the other site [53]]. The solution sug-
gested in Ref. [52] is to add a noise term to the density matrix at each step. This leads to
correlations between sites further apart being artificially inserted, and thus the physical
correlations are “kept alive” until the calculation has run once through the entire system.
At this point, the addition of extra terms can generally be turned off.

3.4.4. 2D lattices

The DMRG is constructed to work on one-dimensional lattices, and to simulate higher-
dimensional systems one must first map them to a chain. While this mapping introduces
long-range interactions, which however increase the computational costs only slightly,
a much bigger problem arises due to the entanglement scaling. In 1D systems with an
area law the entanglement entropy is constant, but in 2D it grows with the boundary of
the subsystem, i.e. linearly in system width. In the chain representation, in order to keep
the accuracy of the calculation fixed, this growth in entanglement entropy can only be
accommodated for by keeping more states in the calculation. In fact, the number of re-
quired states grows exponentially with the system width [54]. However, even with the
exponential growth MPS can still successfully describe systems of moderate width. In
typical applications, the used lattices have a long length L ~ O(10?) and a somewhat
smaller width W ~ O(1), with open boundary conditions in the length direction, and (if
required) periodic boundary conditions in the width direction. A thorough discussion of
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Figure 3.7.: One possible mapping of a 4 x 4 square lattice to a one-dimensional system,
demonstrating the introduction of long-range interactions (gray lines) to the
resulting 1D chain.

the application of DMRG to 2D systems can be found in Ref. [53]. In Fig.[3.7jwe demon-
strate one possible way of mapping a 4 x 4 square lattice system to a chain, where the
gray linesin the right figure show the induced long-range interactions, and the black lines
indicate the nearest-neighbor hoppings.

3.4.5. Calculating excited states

Aside from the ground state properties, one can also use the DMRG to calculate excited
states. In fact, the calculation of the gap to the first excited state is oftentimes of funda-
mental importance for the classification of phases and their robustness [53].

A powerful way to calculate excited states in the DMRG takes direct advantage of the
formulation in the MPS framework, which makes it possible to calculate overlaps of wave
functions in separate calculations. After the ground state |¢)y) of a Hamiltonian H is
found in an MPS representation using DMRG, one defines a Hamiltonian

H = H+ wh, (3.25)

where Py = |¢g) (10| is a projection operator to the ground state and w > 0is an energy
penalty for states which are not orthogonal to |¢). For a large enough w, the ground
state |1)1) of the modified Hamiltonian H’ will be the second lowest eigenstate (which
can be either an excited state or a second ground state in a degenerate system) of the
original Hamiltonian H [53]. After the states |1)) and |¢)1) are found, one can proceed to
calculate the next excited state by including both P and a new projector P; = |¢1) (1|
in the Hamiltonian.

Simply put, in each calculation a state with lowest energy is found with the constraint
that it be orthogonal to a given set of other states. While this method provides a very
efficient way of obtaining excited states and energy spectra, we briefly comment on the
computational cost. The result for an excited state depends greatly on the accuracy of
the lower-lying previously obtained states. Thus, for an accurate computation of many
excited states the maximum matrix dimension M kept for all DMRG runs must be much
higher than just for a ground state calculation. Furthermore, since with this method the
excited states can only be computed sequentially (as the previously found states are the
required input to the calculation), the number of excited states which are accessible to a
high accuracy is limited to the order of O(1) in a realistic setting.

3.5. Numerical Renormalization Group

After having introduced the DMRG algorithm, we now — somewhat anachronistically —
present the numerical renormalization group (NRG) algorithm, which was invented by K.
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Wilson in 1975 [10] and later on laid the foundation for the development of the DMRG.
While the DMRG algorithm is constructed for ground state calculations of generic lattice
Hamiltonians, the NRG focuses on the solution of quantum impurity problems, see Sec.
The two main steps in a NRG run consist of mapping the quantum impurity problem
onto a semi-infinite tight-binding chain. In the second step, this chain is iteratively di-
agonalized. This diagonalization is essentially equivalent to a sweep in the DMRG, with
the main difference that the truncation of the Hilbert space is performed with respect to
the lowest-lying energy states, rather than the density matrix eigenvalues. The relation
between the NRG and other RG methods is straight-forward and it allows for the exami-
nation of an RG flow of thermodynamic observables.

3.5.1. Hybridization function

An important feature of the Hamiltonian for a quantum impurity problem given in
Egs. (2.2)-(2.4) is the fact that the host system is non-interacting and thus readily di-
agonalizable in momentum space, i.e.

Hiost = Y €4 iy Crco- (3.26)
ko

In this case the conduction band degrees of freedom can be integrated out, yielding the
so-called hybridization function A(w). The latter contains all relevant information about
the host system from the viewpoint of the impurity and is thus the only input needed
to solve the impurity problem. The precise form of the hybridization function for the
Hamiltonian given above is

AR AT s Vil
Alw) = A% (w) —iA (w)—gl_rg% 2 PR S (3.27)
In the case that the hybridization is independent of k, V), = V, this becomes
1
Alw) = |V)? — iV 6w — ex). 3.28
(@) = VY S eIV D8 — e 329

Real and imaginary parts of A(w) are related to each other by the Kramers-Kronig rela-
tion [3], and thus it suffices to know only the imaginary part, which is given by the local
density of states of the host site coupling to the impurity. Assuming, as before, that the
impurity couples to the site at r = 0, this yields

Al(w) = 7V?po(w)
= —V21ImG?(0,0;w), (3.29)

where we have used that the local density of states can be expressed in terms of the
local retarded Green function. The superscript (0) here indicates that the host system
is comprised of free conduction electrons. The calculation of such local Green functions
will be discussed in much detail in Part[lll, along with the various low-energy properties
of the hybridization functions we encounter.

In summary, the only required input to the NRG method is the (imaginary part of the)
hybridization function A(w) and the parameters for the isolated impurity, U, ey and V.
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3.5.2. Wilson chain

In order to use the aforementioned RG scheme to treat the problem of a magnetic im-
purity embedded in a generic d-dimensional host system, we first need to discretize the
system. To this end, the host system (which is represented here by the hybridization func-
tion) is mapped onto a semi-infinite tight-binding chain, the so-called Wilson chain. This
mappingis possible even for 2D and 3D host systems, since in the Kondo effect the s-wave
modes are dominant at low energies and any angular dependence of system parameters
is not important. The idea is to iteratively map energy intervals—going from high to low
energies—to the discrete sites of the Wilson chain. Here, the interpretation is intuitive:
going to greater distances on the Wilson chain directly translates to going to lower ener-
gies in the original problem. Or equivalently, in the real-space RG sense, each site in the
Wilson chain can be associated with a real-space shell around the impurity. The first site
in the Wilson chain then corresponds to the region closest to the impurity, and itin turn
couples to a shell further away, and so forth [3},/10].

Logarithmic discretization

All of the information about the non-interacting host system that is relevant to the im-
purity problem is contained in the hybridization function. This implies that the partic-
ular form of the host Hamiltonian does not matter as long as the hybridization function
does not change. The following reformulation of the Anderson impurity model will prove
amenable to the discretization in the next step:

D D
H = Himp + Z / de g(e)al a,, + Z / de h(e) (f;aw + H.c.) , (3.30)
7 D 7 _D

with a generic dispersion g(¢), a hybridization h(¢) and fermionic operators [aco, ai,a/] =
d(e — €')d,4. For this new formulation, the hybridization function A(w) is given by [55]

de(w)

Aw)=m o

h(e(w))?, (3.31)

with e(w) the inverse function to g(e), i.e. g(e(w)) = w. The functions g(e) and h(e) must
now be constructed in such a way that the hybridization function equals thatin Eq. (3.29).
For a constant A(w) = Ay, this can for instance be achieved by setting g(¢) = € and
h(e) = \/Ap/m.

In the form of Eq. the system can now be conveniently discretized. To this end,
we introduce a discretization parameter A > 1 and define a set of intervals within the
band with the discretization points (see Fig.[3.8{a))

wp = £AT", n=20,1,2,.... (3.32)

There is a certain freedom to the choice of the functions g and / in Eq. (3.31). Here, we
follow Ref. [55] and shift all e-dependence into the function g(e). The function h(e) is ap-
proximated as a step function, where for each interval [w,,, w,,+1] itis given by the average
of the hybridization function in that interval (see Fig.[3.8|b))

1 /™ A
hE=— / de (6), (3.33)
d, T
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(a) Aw) (b) A(w)

® o

174 to ty 2

Figure 3.8.: Logarithmic discretization of the hybridization function coupling to the impu-
rity (black disk). (a) The hybridization function A(w) (solid line, here as an ex-
ample that of a semi-infinite chain, see Chap.[7.1.1). While the impurity couples
to the full function, the band is logarithmically discretized with a parameter
A > 1. (b) The hybridization function is then transformed into a discrete set of
values. (c) From the discretized hybridization function the semi-infinite Wilson
chain is constructed.

where the integration runs over the nth interval, and d,, = A="(1 — A~!) is the width
this interval. Finally, the discretized Hamiltonian is given by

H =Himp + Y (g,faiwam + §;bgobng)
no

1
= t (gt - + 1 —t
+ ﬁ ; (fo‘ (’Yn apo + Tn bna) + (’Yn Ay, + Yn bno‘) fg’) s (334)
where fi
" de A(e)e
== /md, i, ol T 3.35
777, \/r n gn f:t’n dEA(E) ( )

The fermionic operators a,,, and b, act in the nth energy interval, for a derivation see
Ref. [56]. In the next step, the Hamiltonian (3.34) is mapped onto a semi-infinite tight-
binding chain.

Mapping to semi-infinite chain

From the discretized Hamiltonian in Eq. (3.34) we can readily read off the fermionic de-
gree of freedom to which the impurity directly couples,

1 N _
S b.). 3.36
Co deA(E) (771 Uy + Tn na) ( )

The operators ¢y, act on the zeroth orbital of the Wilson chain. The operators for the
following sites can be iteratively constructed, alongside with the effective hopping am-
plitudes ¢,, between these sites and the level energies for each site, ¢, [56]. The hopping
amplitudes (see Fig.[3.8(c)) decay exponentially with distance n—a direct consequence
of the logarithmic discretization—and thus eventually guarantee a clear scale separation
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in the energies. For certain special cases, the calculation of the ¢,,’s can be performed an-
alytically and in the limit of a completely flat hybridization function the level energies are
en, = 0 for all n, and the hopping amplitudes are given by

p o QEATHA-ATT)

- 2v/1 — A—2n—1,/1 — A—2n-3 ’ (3.37)

where we explicitly find the exponential dependence on n. Of course, in practice we can-
not treat an infinite Wilson chain, therefore one truncates the chain after a certain num-
ber of sites when sufficiently low energy ranges are reached. Typical values of A are on
the order of 2, and the Wilson chain typically reaches lengths of about 60 sites [56].

After the mapping, when truncating the Wilson chain at site IV, we are left with what is
essentially asingle-impurity Anderson model for a semi-infinite inhomogeneous 1D tight-
binding chain, given by the Hamiltonian [56]

H =Hin,p, + f/z (f;coa + H.c.)

N N-1
+ Z el ¢+ Z [tn (c;fwanU + Hc)} , (3.38)
o,n=0 o,n=0

where the operator ¢, destroys a fermion with spin o on theWilson chain at site n, and
the parameters ¢,, and t,, are given above. The hybridization V is given by

D
V2= % / de A(e) (3.39)

—-D

vyhich, using Eq. (3.29), in the case of a constant bare hybridization Vi, = V reduces to
V=V.

3.5.3. Finding the ground state

After the transformations introduced in the previous subsections, we have successfully
reformulated the Anderson impurity model as a finite lattice system, consisting of the
strongly-correlated impurity and the Wilson chain. At this point the exponential decay of
the hopping amplitudes along the chain come into play: Knowing the spectrum of a given
part of the chain up to some length, the remaining sites only make exponentially small
corrections due to the exponentially small energy scales further down the chain [40]. To
find the ground state, the NRG recipe follows the ideas presented in Sec. Starting
with just the impurity and the first site, more sites are added iteratively and in each step
the Hilbert space is truncated to keep only the M states of lowest energy. In contrast to
general lattice Hamiltonians, this truncation scheme is perfectly suited for Kondo physics
and their particular formulation as a Wilson chain.

Let us now formulate this scheme more precisely [57]: The dimension of the impurity’s
Hilbert spaceis dy = 4, and the local Hilbert spaces of each chain site is also of dimension
d = 4. The Hamiltonian of the chain up to length n, ., lives in a Hilbert space with basis
states |o;), where i = 0 for the impurity and then i = 1, ..., n for the sites in the chain.

Starting with a chain of length n such that its Hamiltonian #,, can be diagonalized
exactly, we find the « eigenstates |¢7). One then projects H,, on the M states of lowest
energy and adds the next site at n + 1 to the chain, yielding 7, ,1. The Hilbert space of
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the new Hamiltonian 7,1 is of dimension dD and its eigenstates can be written as

d D
00 =D D (AT s 01 low) (3.40)

on=1a=1

where [A7"] 5 is a matrix composed of the coefficients in the expansion. From this for-
mulation oneimmediately sees that the NRG process operates on matrix products states.
In each step of the iterative diagonalization, the current state can be written (by repeat-

edly using Eq. (3.40)) as an MPS, viz.

[thn) = Z AGPAT AT oo (3.41)

00,-+-,0n

In the language of the density matrix renormalization group, we can think of the itera-
tive diagonalization process in the NRG as a single right-sweep in which the truncation
scheme keeps the lowest energies rather than those with largest weight in the reduced
density matrix.

Renormalization group flow

In contrast to the variational optimization of a general MPS as discussed in the context of
DMRG, the NRG procedure can be readily understood from a RG point of view. Whereas
in the DMRG algorithm sweeps are performed back and forth until the energy converges,
traversing along the chain in the NRG directly corresponds to the standard RG scheme
in which going to greater distances implies consideration of lower energy scales. In this
sense, from the NRG one can obtain the true RG flow as a function of energies, or equiv-
alently temperature, recovering the fixed points of the corresponding quantum impurity
problem discussed in Sec.[2.1

3.5.4. Calculation of dynamic quantities

A physical quantity of which we make ample use in this thesis is the impurity spectral
function of the Anderson impurity model,

1
Aimp,a (w, T) =——1Im Gimp,a (w, T), (3.42)

T
where Gimp »(w, T') is the impurity Green function for the spin-species o, evaluated at an
energy w and temperature T'. Knowing the eigenstates, |r), and eigenenergies, F,, of the
Hamiltonian, the spectral function can be written in the Lehmann representation as [56]

Atmpo(@,T) = Z’(lT) S My P (79 4 8B b — (B~ B), (343

with the partition function Z(T") = ) exp(—/SE;) and the many-body matrix elements
M, ,» = (r|fs|r'). During the iterative diagonalization process, the spectral function can
be calculated in each step, yielding a result which is valid for the energy range corre-
sponding to the given step. For each stepn = 1,2, ..., the spectral density is thus eval-
uated at a frequency w ~ w,, where w,, is the characteristic energy scale of the Hamilto-
nian 7,,. This procedure yields a discrete spectrum. To generate a smooth spectrum, the
o distribution in Eq. is replaced by a continuous function which is typically taken
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to be a Gaussian [58] or logarithmic Gaussian [59] distribution.
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Chapter 4.

Transition metal oxides as j = 1/2 Mott
insulators

The transition metals are found in the center of the periodic table and are defined by the
presence of a partially filled (inner) d shell. Of great interest are the transition metal ox-
ides (TMO), in which each transition metal ions is surrounded by a cage of oxygen ions
(the so-called ligands). The physical phenomena found in the 3d TMOs range from high-
T, superconductivity in layered cuprates, colossal magnetoresistance in perovskite man-
ganites, to the coexistence of magnetism and ferroelectricity [60]. In the crystal field cre-
ated by the ligand cage the orbital degrees of freedom of the transition metals take on a
prominent role [61]. Therefore, the diverse properties of the TMOs are largely a result of
the strong electron-electron interaction between electrons occupying the same orbital.

While the physics of 3d TMOs form a venerable but still vibrant field of research, the
heavier 4d and 5d TMOs introduce interesting and non-trivial new physics due to the
strong spin-orbit coupling found in these elements. In fact, the TMOs with partially filled
5d shells are largely governed by a balanced interplay of electronic correlations, crystal
field effects and spin-orbit coupling. All three contributions enter with roughly the same
strength, facilitating a large variety of quantum states in these materials, such as Weyl
semi-metals, axion insulators, or topological Mott insulators [62].

We focus here on a special situation in which the transition metal oxides become Mott
insulators, in which strong spin-orbit coupling leads to the formation of an effective j =
% degree of freedom. Such a state was first observed by Kim et al. in 2008 [63], where
despite the assumption that it should be metallic, the iridate SraIrO4 was found to be a
Mott insulator exhibiting exactly the aforementioned physics. The discovery of this novel
state has spurred a lot of research, and it was found to also occur in the hexagonal iri-
dates NaslrOs [64] and LisIrOs [65]. There, the effective degrees of freedom form well-
separated layers of honeycomb lattices. The orbital nature of the localized ‘spins’ intro-
duces a strong spatial dependence of the interactions, and Khaliullin et al. suggested in
Ref. [33] that these materials might be described by a combination of Heisenberg physics
and the celebrated Kitaev model, see Sec.[2.3]

In this chapter, we recapitulate the formation of such j = % states in transition metal
oxides with partially filled 5d shells and discuss it as a possible ground state for the re-
cently synthesized iridate BaslrTisOg, which contains transition metal oxides forming lay-
ers of a triangular lattice. With this motivation we discuss the physics of the Heisenberg-
Kitaev model on the triangular lattice in the next chapter.

4.1. Effective spin moment in transition metal oxides
In this section, we demonstrate how the combined effects of crystal field splitting and

spin-orbit coupling lead to the formation of a Mott insulating state in the 5d transition
metals oxides, and finally to an effective spin-like degree of freedom.
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4.1.1. Atomic orbitals

From quantum mechanics we know that the state of an electron in a hydrogen atom is
described completely by a set of four quantum numbers: the principal quantum number
n, the azimuthal quantum number ¢, the magnetic quantum number m, and the elec-
tron’s spin quantum number m,. In a real-space representation, the wavefunction of the
electron canbe splitinto aradial part R,,,, an angular part Y, and the spin wavefunction
o"™s. In polar coordinates, r = (7,0, ¢), itis then given as:

Untmymy (1,0, 0) = Rpe(2r/n) - Y™ (0,¢) @ a™, (4.1)

where the angular component component Y, is a spherical harmonic and the radial
component R has a generally complex structure but always decays exponentially in r.
The real-space part of these wave functions (i.e. omitting the spin part) defines the so-
called atomic orbitals, which give the probability amplitude for an electron to be found
in a given location within the atom.

The principal quantum number n can take on integer valuesn = 1,2, ..., and it de-
scribes the different energy shells of the atom. The azimuthal quantum number ¢ de-
termines the orbital angular momentum of the orbital. For a given energy level n, the
groups of orbitals corresponding to different values of £ are labelled s, p, d and f, refer-
ringto ¢ = 0,1,2 and 3, respectively. For ¢ > 3 the naming continues in alphabetical
order (omitting j). The so-called subshell defined by n and ¢ still has some degree of
freedom which is captured by the magnetic quantum number my. The latter can take on
integer values my = —/, ..., . Thus, the determination of a specific orbital requires all
three quantum numbers n, ¢, and my. Due to the Pauli exclusion principle, each orbital
can host at most two electrons of different spin quantum number, and thus the state of
a single electron is entirely described by the four quantum numbers.

Neglecting at this point effects such as the relativistic spin-orbit coupling (see below)
and placing the atom in a spherical potential, for a given n and /4, the total energy of
the considered state is independent of the value of the magnetic quantum number. This
degeneracy can be lifted by external effects, such as a crystal potential which arises when
considering atoms in a material.

Although these orbitals are obtained for the hydrogen atom, they are at least qualita-
tively similar to the description of atoms with more than one electron, and can thus be
used as a good approximation.

Hund’s rule(s)

Shortly after the advent of quantum mechanics and the atomic orbital model, Friedrich
Hund in 1925 formulated a set of rules 66467 which are used to determine the electronic
configuration of a multi-electron atom in its ground state. Although Hund formulated
three rules, here we only consider the first rule, which can be stated as follows:

Fora given electronic configuration, the term with maximum multiplicity has
the lowest energy.

The multiplicity is equal to 25 + 1, where S is the total spin for all electrons. To fill up
the degenerate energy levels in the ground state of the atom, according to Hund’s rule,
one first places one electron with a given spin, e.g. spin-7, in every orbital. Once all or-
bitals are occupied, one starts filling up the orbitals with electrons of opposite spin, in
our example spin-J.
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Figure 4.1.: Thefive d-orbitals for n = 3in the octahedral oxygen cage of a transition metal
oxide. The two e, orbitals are spatially extended towards the oxygen atoms,
raising their energy due to the Coulomb interaction. The three ty, orbitals,
however, are pointing away from the oxygens.

4.1.2. e, and t,, orbitals in a crystal field

The transition metals are defined by a partially filled inner d shell, thus we specifically
consider here these d level orbitals embedded into a crystal background. For an atom
in a spherical potential, the d level (with angular momentum quantum number ¢ = 2)
has five degenerate eigenfunctions |¢, m;), where my; = +2,£1,0. In most transition
metal oxides however, the transition metal ion is surrounded by an octahedral cage of six
oxygen ions—the so-called ligands—which create a crystal field with cubic (rather than
spherical) symmetry acting on the d-electrons of the transition metal atom, lifting the 5-
fold degeneracy. In this case, the eigenfunctions of a d-electron are not the |¢, my) states
anymore, but rather linear combinations of them yielding the following five real-valued

orbitals

dz2 = [2,0) bital (4.2)
egjorbitals .
dxzny = %(’272>+|2’ _2>) I
Aoy = 5 (12:2) — [2.-2))
dy: = 75 (12,1) +12,-1)) togorbitals (4.3)

dyw = _% (‘27 1> - |27 _1>)7

which are shown in Fig.[4.1, All three ty, orbitals have the same energy, as do the two e,
but the energy of the ty, orbitals is lower than that of the e, orbitals, which can be un-
derstood from the following perspective: The two e, orbitals are aligned along the z-axis
and as aflat “cross” along the z— and y—axes, respectively. The d-electrons are therefore
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Figure 4.2.: 5d level splittings by the crystal field and the spin-orbit coupling, resulting in
an effective j = 1/2 degree of freedom.

close to the oxygenions and their energy is raised by the (repulsive) Coulomb interaction.
On the other hand, the ty, orbitals are oriented diagonally to the axes, i.e. away from the
ligands. The Coulomb interaction is thus smaller and accordingly these three orbitals are
energetically more favorable [8,68]. The resulting energy difference between the ty, and
e, states is historically called 10Dq [69], values for which are typically of the order of ~
2-3eV[68]. The splitting into e, and ty, levels is shown schematically for the case of a 5d

shellin Fig.[4.2}

4.1.3. Spin-orbit coupling and effective j = 1/2

So far we have considered a purely non-relativistic description of an atom. While this
approximation is indeed justified for lighter atoms such as the hydrogen atom, it turns
out thatin transition metal oxides the electron spin and the subsequent relativistic spin-
orbit coupling play an important role. In fact, they are the key ingredient leading to the
existence of Mott-insulating effective j = 1/2 statesin the Iridate transition metal oxides.

Spin-orbit coupling

Consider a single electron orbiting a nucleus with charge Ze, where 7 is the atomic num-
ber and e the elementary charge, fixed at the center of the coordinate system. Changing
our frame of reference to that of the electron, from special relativity we know that the
moving nucleus induces a magnetic field which interacts with the spin of the electron.
While thisis just an intuitive picture, a rigorous result can be derived from the Dirac equa-
tion, which replaces the Schrédinger equation in the relativistic case. Expanding in small
v/c, the first correction term due to spin-orbit coupling is then given by

Hsoc = AL - S, (4.4)

where L = (L*, LY, L*) is the orbital angular momentum and S = (5%, S¥, 5%)T is the
spin of the electron. Introducing the operator for the total angular momentum

J=L+S8, (4.5)
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the energy shift due to the spin-orbit contribution can be written as

AB=AL-8) =7 (0 - W2~ (5))
:%(j(j—i—l) 1)~ s(s+1). (4.6)

Let us now discuss the coupling constant A. From the expansion of the Dirac equation

one finds that [70]
1 1dV(R)

T 2m22 R dR
where R is the distance between electron and nucleus. The potential V' (R) created by a
nucleus with Z € N protons is given by

(4.7)

Ze?
V(R) = ——. 4.8
(R) = - (4.
Plugging Eq. in Eq. and using furthermore that the expectation value of 1/ R3
is given by [71]

(i), ~ e
R/, L+ 1)+ 1)n3ay’ '

with the Bohr radius a5, we finally obtain that the coupling constant scales as
A~ 24 (4.10)

This derivation only takes into account a single electron and a heavy nucleus, but the
Iridates host, of course, more than one electron. These additional electrons, however,
participate in a screening of the nucleus and comparison with experimental data reveals
that Eq. is still a good approximation.

In summary, the effective spin-orbit coupling can thus be roughly approximated to be
proportional to the fourth power of the number of protons in the atom’s nucleus, and in
e.g. the heavier transition metals Rh, Ru, Os, and Ir, it cannot be neglected anymore. In
fact, in Ir'* ions with an atomic number of 77, it was found to be as large as A ~ 380meV
[72], far exceeding possible intersite interactions between its ty, orbitals and spins [73].

Formation of j = 1 in the Iridates

The large spin-orbit coupling of the Iridates has a crucial effect on their physical behavior.
Combined with the effects of crystal field splitting it leads to an effective j = % angular
degree of freedom, combining both spin and orbital physics.

To see this, consider the typical Iridium valence Ir** which has a 5d° configuration, i.e.
the 5d shell is occupied by five electrons. Due to the crystal field splitting discussed in
the last section, these orbitals are split up into the e, and tp, manifolds, differing by an
energy of 10Dq. From Hund’s rule, we further know how to fill up the low-lying to, orbitals
with the five electrons, resulting effectively in a single hole in the to, triplet, see Fig.[4.2]

In materials with an incomplete 3d shell, it is well understood that in this situation the
large Coulomb interaction between electrons in the ty, orbitals creates Mott insulating
behavior. The 5d orbitals are spatially much more extended than the 3d orbitals and the
Coulomb interaction is an order of magnitude smaller, which could lead to the assump-
tion that these materials should be metallic. However, the fact that they are indeed Mott
insulators with an effective j = % degree of freedom can be understood from their strong
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spin-orbit coupling. To see this, consider how the angular momentum operators act in
the tp, subspace. It will turn out to be convenient to perform a basis transformation in
this subspace, so that the new basis vectors ¢; for the ty, states are given as linear com-
binations of the d,, d,., and d.,, orbitals [74],

1 1
= — (dy —idyz), = dyy, 1 =——(dyr +1idy,) . 411
P41 \@( yz) b0 y ¢ \/§< yz) (4.1)
For the e, states we keep the original basis vectors
Y1 = d,2, Py = d$2_y2. (4.12)

In this new basis, {¢1, ¢o, —1, 11,12}, the angular momentum operators have the fol-
lowing matrix representation,

0 1 0 |v3 —1
. 1 0 1,0 0
I*=——1| 0 1 0 [v3 1], (4.13a)
V2 -3 0 V3|0 0
-1 0 10 o0
0 1 0 |v3 -1
-1 1 0 0
v=——"190 -1 o |v3 -1/, (4.13b)
V2 -3 0 —v3| 0 0
1 0 1 0 0
1 0 oo o
0 0 0|0 =2
L*=—10 0 —-1]/0 0 |. (4.13¢)
0 0 0]0 O
0 -2 010 0

The upper left 3 x 3 block of each matrix thus corresponds to the ty, manifold. Consid-
ering the action of the £ = 2 angular momentum operator L‘=2 in this subspace, we find
thatitis given exactly by the action ofa/ = 1 angular momentum operatonﬂ only withan
overall negative sign [75,76]. In other words: Projected onto the ty, subspace, the / = 2
angular momentum operator Lt2 , acts like an effective ¢ = 1 angular momentum oper-
ator with a negative sign, —Lf 1. We can check that the operators Lf ! represented by
the upper left 3 x 3 blocks of the matrices (4.13a)-(4.13c) indeed fulflll the commutation
relations for a negative angular momentum.

[LF L' = —ie L™, (4.14)

where ey, is the totally antisymmetric tensor. The effective angular momentum opera-
tor can thus be defined as L.g = —LfQZgl, and the spin-orbit term in the model can thus
be recast into the form

AL-S — — AL - S, (4.15)

with £,z = 1. The total effective angular momentum operator then becomes J.¢ =

'The only purpose of our basis transformation was to see this immediately. Of course, this result is inde-
pendent of the specific basis for the tz4 subspace.
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L.s + S, which yields two energy levels, given by a doublet state with jog = leg — 0 =
and a quartet state with jog = g + 0 = %, where o = % is the spin quantum numbe
Calculating the energy shift due to the spin-orbit coupling gives [77]

1
2
r.

Jeff(Jeff + 1) . E

A

(4.16)

and we find that the jog = % doublet has energy A and the jog = % quartet has lower
energy —\/2. We can again use Hund’s rule to fill up states in the quartet with four of the
five d° electrons. The remaining electron resides in the doublet band, see Fig. The
system can thus be described as a half-filled jog = % single band system with a band
narrow enough that even a small Coulomb interaction U can open a gap and create a
Mottinsulating state [63-65]. We schematically show the energy bands in the lower panel

of Fig.[4.2]

4.2. Spininteractions

Mott insulators with orbital degrees of freedom have first been comprehensively studied
in the 1980s by Kugel and Khomskii [61], with the realization that the directional nature
of the orbital degree of freedoms leads to spin-selective interactions [78]]. The term com-
pass models was coined at that time and has since been used to subsume a plethora
of different models which are all characterized by the following two conditions [78]: (i)
thereis only an interaction between certain vector components of S, and (ii) on different
bonds in the lattice, different vector components interact. In general terms, the degree
of freedom need not be a proper spin—% but can be given by any type of pseudospin op-
erator, however for our purposes we focus only on the former. In the Kitaev model which
we discussed in Sec. 2.3 the interactions between two spins are given by S/ S}, where
v = z,y, z depends on the orientation of the bond, making the Kitaev model a special
(because somewhat symmetric, compared to e.g. the 120 degree model [79])) specimem
of acompass model. In the following we discuss how such “Kitaev-type” interactions can
appear in transition metal oxides.

For a Mott-insulating 5d transition metal oxide, the magnetic interactions between two
transition metal ions are mediated via the ligand oxygens by the mechanism of superex-
change. Similar to the discussion of the Mott insulator in Sec.[2.2.2] this superexchange is
facilitated by virtual hopping of electrons to intermediate states and back, only that here
these processes happen via the oxygen atoms. We discussed the strongly anisotropic na-
ture of the orbital degrees of freedom in the last sections and now, following Ref. [33]], we
show how this may lead to the realization of spin-selective interactions in such systems.
These interactions are of the Kugel-Khomskii type and, among other models, occurin the
Kitaev model, see Sec.[2.3] The superexchange via a ligand oxygen can happen via two
different dominant paths:

e 180° paths. These are dominant when two oxygen cages of the transition metal
oxides share a corner, as depicted in Fig.[4.3(a). The interaction happens along the
line connecting the transition metalions, hence the name 180°. In this case, equiva-
lent orbitals are coupled via the 2d orbital of the oxygen, e.g. d,,. on the leftion with
dy. on the right ion. For these paths, the hopping is diagonal in the orbital index,
and the effective Hamiltonian for two neighboring ions contains a Heisenberg-type
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Figure 4.3.: Schematic of the two possible superexchange paths. The top row shows the

two exchange paths, the center and bottom row show the alignment of the or-
bitals participating in the exchange. (a) 180° path coupling the same orbitals,
yielding an isotropic Heisenberg interaction. The two lower figures show the
same exemplary interaction from a side and top view, respectively. (b) 90°
paths coupling different orbitals, resulting in an effective Kitaev interaction.
Both lower figures are shown from a top view, each showing one half of the
full 90° exchange path.

exchange interaction and an anisotropic term,
HIF = 118 - Sj+ J2 (Si - eij) (S - e5) , (4.17)

where the operators S represent the effective j = 1/2 spin-orbital moments on
the transition metal ions. The vectors e;; are unit vectors parallel to the line con-
necting the two transition metal ions and the coupling constants .J; ;, depend on
microscopic parameters [33]. In the limit of strong spin-orbit coupling J; > J
and the isotropic Heisenberg interaction dominates.

90° paths. In these paths, the interaction happens at a 90° angle with respect
to the line connecting the ions, see Fig.[4.3{b). In contrast to the 180° paths, here
different orbitals are coupled and the hopping matrix has only non-diagonal en-
tries. Along the two possible paths, the charge transfer amplitudes interfere de-
structively and the isotropic part the effective Hamiltonian vanishes exactly [33].
The remaining anisotropic interaction is given by

HY" =-JS]S], (4.18)

where v € {x,y, z} is given by the relevant orbital alignment of the intermediate
oxygen ion. In Fig.[4.3|b) the oxygen orbital is p., thus here v = z.
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Figure 4.4.: The parallel-edge alignment of the transition metal oxides in BazIrTi;Og. The
Ir-O-O-Ir exchange paths are longer than the Ir-O-Ir paths in the honeycomb
iridates, but they still lead to interactions of Kitaev type, albeit of somewhat
smaller magnitude compared to the Heisenberg coupling.

4.3. Kitaev interactions in real materials

We have seen how transition metal oxides with a strong spin-orbit coupling can form a
j = 1/2 ground state which, due to its orbital origin, has a strong anisotropic interac-
tion behavior. The effective exchange interactions depend on microscopic parameters
and edge-sharing octahedra lead to a Kitaev interaction. In realistic materials, however,
one must expect otherinteractions to be present, mostly anisotropic Heisenberg interac-
tions due to direct overlap of the transition metal orbitals [80]. Nonetheless, the spin lig-
uid ground state of the Kitaev model (see Sec.[2.3) is stable against a small perturbation
by an isotropic Heisenberg exchange [80], and a possible realization of Kitaev physics is
therefore within reach. We now discuss two materials for which Heisenberg-Kitaev mod-
els have been proposed to be the relevant theoretical description.

4.3.1. The honeycomb iridates A,IrO;

Chaloupka et al. argued in 2010 [80] that A21rO3 compounds (where typically A = Na or
A = Li) might be described by the so-called Heisenberg-Kitaev model, a mixture of both
Heisenberg and Kitaev interactions:

H=Ju» Si-Sj+Jk Y 857, (4.19)
(i) (il

where the value of y € {x,y, 2z} depends on the orientation of the nearest-neighbor link
(ij). The effective spins on the Iridium ions form well-separated layers of honeycomb
lattices in such a way that for each real-space bond direction a different spin component
interacts [81]. The prospect of a possible realization of the Kitaev model, including its
spin liquid ground state, has led to a vast amount of research devoted to such materials.
An abundance of experimental data [64,|65}(82-84], ab initio calculations [85-88], and
model simulations [89-95] for these hexagonal systems has fueled an ongoing discussion
about the actual spin-orbital ordering mechanism in these materials.

Although the spin liquid ground state of the Kitaev model was shown [80] to be stable
against small Heisenberg-type perturbations, in the honeycomb Iridates the Heisenberg
interaction is still large enough to destroy the spin liquid. Experimental findings [86] do
indeed indicate a magnetically ordered ground state.

4.3.2. The triangular iridate BasIrTi, 0y

A material which might be described by the Heisenberg-Kitaev model on the triangular
lattice is BaslrTiaOg [96]. This compound crystallizes in a hexagonal structure consist-
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Figure 4.5.: The structure of BaslrTi2Og. The right column shows the triangular lattice
which emerges between the spins on the Iridium ions. The gray planes indi-
cate that for each direction different orbitals become relevant, leading to the
anisotropic Kitaev-type interactions.

ing of well-separated layers in which the Ir** ions form a triangular lattice, its structure
is shown is shown in Fig.[4.5 Early experimental results measured a high antiferromag-
netic Weiss temperature (|| > 400K) [97], indicating a strong coupling between the
effective j = 1/2 degrees of freedom on the Ir** ions. The oxygen octahedra in the tri-
angular lattice layers are separated from each other, but they are still oriented towards
each otherasin the previously discussed case of the honeycomb iridates: Any two neigh-
boring octahedra have two parallel edges as shown in Fig.[4.5] The exchange path for
the iridium ions in two neighboring oxygen cages is Ir-O-O-Ir (Fig.[4.4) and as such some-
what longer than in the honeycomb iridates in which the exchange path only runs via one
ligand oxygen. However, this longer path still leads to destructive interference and the
subsequent suppression of the isotropic Heisenberg exchange, resulting in an effective
anisotropic Kitaev spin-coupling. Due to the longer exchange paths this contribution is of
much smaller magnitude compared to the honeycomb iridates, and Heisenberg physics
are expected to be dominant. In terms of the Heisenberg-Kitaev model, Eq. (4.19), this
means that the experimentally relevant parameter regime should be assumed to be for
Ji > |Ji| with an antiferromagnetic Heisenberg coupling, Ji > 0.

Site disorder and spin liquid behavior

Since the ionic radii of the Ir** and Ti** ions are very similar, a site disorder may de-
velop where a certain portion of the Iridium and Titanium ions exchange their positions.
This disorder has been found to be fairly large, ranging from 21% to 37% [96]. For
these materials, no magnetic ordering down to lowest temperatures has been found,
and a spin liquid has been suggested as a possible ground state [96]. However, it is un-
clear whether this absence of ordering must be contributed to the site disorder, and thus
whether it would vanish in the case of a clean single crystal.



Chapter 5.

The Heisenberg-Kitaev model on the
triangular lattice

In Secs.[2.2]and[2.3|we introduced the Heisenberg and Kitaev models, respectively. Both
of these models are by themselves of great interest as they contain a plethora of exotic
physical phenomena. The Heisenberg model has proven successful in the description of
ferromagnetic and antiferromagnetic materials. The honeycomb Kitaev model, on the
other hand, is celebrated for the existence of an exact solution and its spin-liquid ground
states. While the Kitaev model originally had been investigated from a purely theoretical
point of view, in the previous chapter we showed how spin-orbit coupling in transition
metal oxides can lead to the appearance of Kitaev-type interactions in real materials. Ki-
taev introduced and solved his original model on the honeycomb lattice [31]. However,
the Kitaev Hamiltonian can equally be defined on any lattice in which the bonds between
sites can be subdivided into three sets of different spatial orientation [99], such as the tri-
angularor kagome lattices [12)13]. In this work, we concentrate on the case of a triangular
lattice. The exact solution of the Kitaev model in terms of Majorana fermions on the hon-
eycomb lattice does not generalize to the triangular lattice, and so far the nature of its
ground state is not clear. However, in materials such as the BaslrTioO9 compound dis-
cussed in the previous chapter, the appropriate model is proposed to be a combination
of both types of interactions in the Heisenberg-Kitaev model.

Numerical results for the full phase diagram of the classical Heisenberg-Kitaev model
on the triangular lattice have been reported in Ref. [12], with one of the main results being
the observation of a phase close to the antiferromagnetic Heisenberg point, character-
ized by the formation of a lattice of Z5 vortices. In this chapter we complement these
findings with analytical and numerical results for the classical and the quantum model.
After first discussing the relevant physics of the Heisenberg model on the triangular lat-
tice, we then consider the effect of adding a Kitaev interaction. We present the full phase
diagram for both the classical and quantum models and proceed to consider each phase
individually and in more detail.

5.1. The Heisenberg model on the triangular lattice

As a preparation to the discussion of the Heisenberg-Kitaev model on the triangular lat-
tice, it is useful to first review the physics of the plain Heisenberg model without any
Kitaev interactions,

H=Jg) Si-S; (5.1)

(i7)

In the ferromagnetic case, Ji < 0, the spins can trivially minimize their energy by align-
ing parallel to each other. In contrast, the nature of the quantum ground state for the
antiferromagnetic model, Jix > 0, has long been debated. By now, however, it is under-
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Figure 5.1.: (a) The triangular lattice and the three lattice vectors a;. (b) First Brillouin zone
of the triangular lattice and the basis vectors of the reciprocal lattice G;, show-
ing the four special points Kand K, T and M. (c) The 120° order of the triangular
lattice. The three sublattices are colored differently. (d) Wilson loop on the up-
ward pointing triangular lattices to calculate vorticity.

stood that the antiferromagnetic model has a ground state characterized by the so-called
120° order. This specific ordering and its topological properties play an important role in
our subsequent discussion of the emergent Zs vortex lattice phase.

5.1.1. 120° order of the antiferromagnetic model

The triangular lattice is shown in Fig.[5.1(a). It is spanned by the lattice vectors

a; =a 1 a, = -1 a, = —2 ! (5.2)

T O ) Yy 2 \/g 9 z 2 \/g 9 .
where a is the lattice constant which we will henceforth set to a = 1. Note that a two-
dimensional lattice of course only requires two basis vectors and thata, = —a, — a,.

However, in order to keep our mathematical formulation of the system more elegant we
will use all three vectors. As each site in the triangular lattice has six direct neighbors,
its first Brillouin zone is a hexagon, as shown in Fig.[5.1(b). The basis vectors G; of the
reciprocal lattice connect the centers of two Brillouin zones and are defined in the usual
way by the condition that G; - a; = 27d;;. They are (with a = 1) given by

1
3

The magnetic order of the ground state of a given Hamiltonian naturally depends on
the type of exchange interaction between individual spins. The nearest-neighbor Heisen-
berg model Eq. contains only a single interaction Jg7, which can be either ferromag-
netic (Jy < 0) or antiferromagnetic (Ji > 0). On bipartite lattices, the antiferromag-
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netic ground state at 7' = 0 is given by a perfectly staggered spin ordering: The two-
sublattice structure allows for every spin to align perfectly antiparallel with all its neigh-
bors. However, the triangular lattice is a prime example of a non-bipartite lattice where
antiferromagneticinteractions lead to frustration due to the geometry of the lattice. Con-
sider one triangular plaquette with three spins: While two spins can order antiferromag-
netically, the third spin can never be antiparallel to both its neighbors at the same time.
This frustration typically leads to a highly degenerate ground state, where quantum fluc-
tuations are strongly enhanced. For the Heisenberg antiferromagnet on the triangular
lattice it was argued by Anderson that the ground state of this system is given by res-
onating valence bonds [100}101] in which pairs of spins form singlet dimers, covering the
entire lattice. While this idea was intriguing as it provided a connection to the pairing
mechanisms in high-temperature superconductors, it is by now established that the an-
tiferromagnetic ground state of the triangular spin—% Heisenberg model at 7' = 0O is in
fact given by a state with long-range magnetic order, characterized by the 120° order-
ing [1024107] of the spins. This order is shown in Fig.[5.1(c): The spins are all co-planar
and the angle between any two neighboring spins is 120°, or 27 /3.

Let us formulate more rigorously how this order comes about. We first introduce the
Fourier transform of the spin operators,

1 .
Si _ S zk~ri’ 5.4
i ) Ske (5.4)

kel.BZ

where N is the number of spins and the summation of the momenta runs over the entire
first Brillouin zone. We can now formulate the Heisenberg Hamiltonian in momentum
space, which yields
H= Y J°K)Sk-S i (5.5)
ke1.BZ

with the exchange interaction in momentum space given by

Jk)=Jug Y cos(a; k), (5.6)

1=x,Y,2

where the a; are the lattice vectors defined above. Minimizing this expression, we im-
mediately find that 7° (k) is minimal at the corners of the Brillouin zone. Each corner of
the Brillouin zone is related to two other corners by the reciprocal lattice vectors, which
leaves us with only two factually inequivalent corners, given by the K- and K’-points. For
the description of the magnetic order, the two relevant wave vectors are thus the ones
connecting the center of the Brillouin zone with these two points, given by

4
Q=+

1
(1), -

As a next step, we use these two vectors to describe the spin order in the classical limit.
To this end, we introduce the following notation to describe a general classical spin:

Si = SQ(r;), (5.8)

where S'is the length of the spin, r; is the real-space vector pointing at lattice site 7 and
2 is a unit vector (which we throughout denote with a hat) in R3 determining the orien-
tation of the spin. As the magnetic order is determined by the momenta at +Q, we can
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write the spin orientation as

N

Qr) = Q' 4 c.c., (5.9)

where € is a complex vector (which does not necessarily have to be of unit length) and
c.c. means complex conjugation. The constraint that Q(r) is a purely real vector which
must be of length one at each site implies

O%(r) = Q2e¥QT 4 ()2 e 2QT 4 2|2 = 1. (5.10)

Except for the special case that Q - r = nw with n € Ny, this condition can only be
fulfilled for any r if Qq is chiral, i.e. Q3 = (£2)° = 0. Thus, we can without loss of

generality assume the spins to lie in the z-y-plane and set Q¢ = —-(1,4,0)7. This leads

V2
to the following expression for the orientation vector to describe the classical spin order

at zero temperature:
Q1200 (r) = €1 cos(Q - 1) + exsin(Q - r). (5.11)

The vectors e; are the three orthonormal basis vectors in three-dimensional spin space,
forwhiche; -e; = §;; and e; x e3 = e3, and which we here identified with the Cartesian
basis vectors. Finally, from the Hamiltonian Eq. we can immediately find the energy
per spin of this state. In the classical limit it is given by

€120° 23
= -5“—Jy. 5.12
N 5 (512)

5.1.2. 7, vortices as topological point defects of the 120° order

An essential tool in the discussion of phase transitions is the order parameter as a mea-
sure of the degree of order in any given phase. But even when one is not directly con-
cerned with phase transitions, the order parameter might reveal important information,
such as the topological defects of the system. For the 120° state the order parameter con-
sists of three distinguishable arrows in a plane [108], and the order parameter space is,
in fact, isomorphic to the three-dimensional rotation group SO(3). This can be seen if we
relate the spin order to the orthonormal frame defined by the vectors &; for which only
rotations keep the internal structure intact.

How does a topological defect of the 120° order look like? In this context, we can define
a topological defect as an irregularity in the 120° spin order which cannot be eliminated
by a continuous transformation. In a different sense, a defect can be understood as a
‘singularity’ in the order parameter [109]. The classification, stability and existence of
such defectsis generally discussed by means of the fundamental group (or firsthomotopy
group) of the order parameter space. In our case, the first homotopy group of SO(3) is

1(SO(3)) = Za, (5.13)

which in 2D indicates that the system has stable point defects (in contrast to e.g. line
defects). These defects manifest as vortices in the order parameter, which translates to
a twisting of the 120° structure when going along a path around the vortex core. Pre-
cisely at the core, however, the order parameter diverges and it is not possible anymore
to assign a 120° order here. A vortex can further be labeled by its winding number: The
cumulative rotation of the order parameter along a closed path around the vortex core
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Figure 5.2.: Vortices in the 120° order. The SO(3) order parameter of the 120° order is deter-
mined by the orientation of three arrows (dotted, dashed, solid) which define
the local spin order on a plaquette of the triangular lattice. The thicker white
arrows illustrate the chirality vectors k, which by definition are orthogonal to
the local spin structure. In the shown configurations, the dotted arrow points
out of the plane of the page, i.e. the plane of the 120° order is perpendicular to
the page. (a) shows a perfect 120° order with a homogeneous order parameter,
(b) shows a vortex and (c) an anti-vortex. For a discussion we refer to the main
text.

is always 6 = 2mn, where n € Ny is the winding number. For the 120° order, however,
Eq. tells us that in this case the vortices have a Z, structure. Accordingly, we only
have one type of vortex, and any pair of vortices can be continuously transformed to yield
a state where both are eliminated.

To measure the rigidity of the 120° order parameter we now define a chirality vector
on each upward pointing triangle plaquette (the shaded triangles in Fig.[5.1(d)) as follows:

K(r) = 3\2/3 (Sr X Sr+a, + Srta, X Sr—a, + Sr—a. X Sy) (5.14)
with the lattice vectors a; as defined in Fig.[5.1] The vector x(r) is perpendicular to the
plane of the local 120° order of the plaquette defined by the position r, and its length
gives a measure of the quality of the 120° structure [108]. In a perfect 120° ordered state,
the chirality vectors on all plaquettes are the same, k(r) = &g and |Ro| = 1. Any devi-
ation from the perfect 120° order, however, immediately changes the texture of chirality
vectors, and it vanishes as soon as two spins on a plaquette are parallel.

Fig.[5.2]shows what a vortex looks like in the chirality vectors. The vortex-free configu-
ration is shown in (a), where the order parameter is the same for each plaquette and the
chirality vectors are homogeneous. Fig. (b) shows a vortex configuration: The local 120°
structure and thus the chirality vectors rotate clockwise when going around the closed
path. The corresponding anti-vortex is shown in (c), where the order parameter rotates
counter-clockwise. The vortex can be continuously transformed into the anti-vortex, but
neither can be continuously transformed into the vortex-free configuration.

In order to finally calculate the number of vortices enclosed by any given closed path
C, we introduce the “vorticity” function, which is given by the cumulative rotation of chi-
rality vectors along this path [108]. Due to the Z, nature of the vortices, the total number
of vortices measured this way will either be one or zero. To be able to resolve individ-
ual vortices, it is thus important to consider paths of appropriate size and shape. The
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rhombic path shown in Fig.[5.1(d) was found to yield very good results [12], therefore we
will use this path in our calculations, too. We define the rotation between two chirality
vectors k; and k; by an angle w;; and a rotation axis n;;:

w;j = arccos (K; - Kj) , (5.15a)
Ki X Kj

fj = ——2>. (5.15b)
|I€i X Iij|

At this point it is crucial to be able to distinguish between rotations by 0 (no rotation)
and 27. To achieve this, we use the special unitary group SU(2), which is a two-valued
representation of SO(3). Any given rotation (w, i) can then be represented by the two
following SU(2) matrices [108]:

Ui]‘ = :texp (%flm . O') s (5.16)

where o = (0%, 0Y, O'Z)T is the vector of Pauli matrices, and replacing w <+ 27 — w and
n <> —nreversesthesign of U;;. Let us consider now the product of these matrices along
the closed contour C on the lattice of chirality vectors

Ue= [] Uy=+1, (5.17)
(ij)eC

where T isthe 2 x 2 identity matrix. Since SU(2) is non-abelian, the order of the multiplica-
tion is important and we define the direction for a contour to run in a counter-clockwise
fashion. The result that for any closed contour, Ug is given by the identity matrix up to
a sign follows directly from the definition in Eq. and the fact that the sum of an-
gles w;; along a closed path must add up to integer multiples of 27. The vorticity of the
contour C can then be simply defined via the trace of U¢ as

1
vie) = JtrlUe = %1, (5.18)

In conclusion, once the chirality vectors are obtained directly from the spin configura-
tion, the vorticity of any given closed path can be calculated. In our definition, a vorticity
of V[C] = 1 means that C contains no (or, equivalently, an even number of) vortices,
whereas a negative vorticity V[C] = —1, on the other hand, indicates that C contains a
vortex (or an odd number of vortices).

5.1.3. Static spin structure factor

While theoretical analysis generally allows for the calculation of numerous different
quantities, it is vital to provide links to experiment. In the treatment of magnetic sys-
tems, such a link is given by the static spin structure factor S. It is commonly measured
in magnetic neutron scattering experiments, and from its Bragg peak structure one can
infer magnetic properties of the observed materials. In spin-% systems, it is defined as
the spatial Fourier transform of the equal-time spin-spin correlation function [110] for
the spin component ~:

SV(k) =) e i) (5757 (5.19)

2
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Summing over all spin components  then yields the full spin structure factor S(k) =
S*(k) + SY(k) + S*(k), which is measured in scattering experiments with non-spin-
polarized neutrons. In the classical limit at ' = 0, fluctuations (both thermal and quan-
tum) vanish, and the expectation value in Eq. is trivially given by the product of the
spin vectors, (S; - S;) = S; - S;. In this case, we find

classical, 7=0

(k) = | Z etk 51712 (fluctuation — free). (5.20)

The Bragg peaks in the structure factor indicate the dominant wave vectors which appear
in the spin structure. For a state with commensurate magnetic order, these peaks thus
directly identify the ordering vectors. Using Eq. to calculate the structure factor of
the (classical) 120° state given in Eq. (5.11), we find

Siage (k) = ‘Z (e Q)

~ 5k £ Q). (5.21)

We have thus recovered the expected result that in the antiferromagnetic ground state
of the triangular Heisenberg model at 7" = 0, all components of the spin structure factor
are peaked in the corners of the Brillouin zone at +Q.

5.2. The Heisenberg-Kitaev model

Let us now consider the Heisenberg-Kitaev model in which we add a Kitaev term to the
Heisenberg model on the triangular lattice:

H= JHZS ST Y Y S1ST. (5.22)

Y=,Y,z y—links

In the triangular lattice we can immediately identify three different spatial bond direc-
tions which we can label as z-, y- and z-links respectively. Due to the rotational Cg sym-
metry of the lattice (a global rotation by 27/6 leaves the lattice invariant) the specific
labeling of each group of links is arbitrary, but for the sake of consistency we define an
x—link to be parallel to lattice vector a,, a y-link to be parallel to a,, and a z-link to be
parallel to a.. This labeling is shown by a different coloring of the links in Fig.[5.1(a). The
physical behavior of this Hamiltonian depends solely on the coupling parameters Jz and
Jxi . Aconvenient way to investigate all possible relative strengths of the two interactions
is to parameterise Jy and Jk on the unit circle using an angle a:

Juy = cos(a), Jx =sin(a), (5.23)

where a € [0, 27). This way, we have reduced the effective parameters to only one pa-
rameter, and by running a from 0 to 27 one can access any point in the phase diagram.
This parameterization is frequently used in discussions of the full phase diagram of the
Heisenberg-Kitaev model [12}/94].

5.2.1. Klein duality and SU(2)-symmetric points

The particular form of the Heisenberg-Kitaev Hamiltonian Eq. (5.22) leads to an interest-
ing property: A local basis transformation of the spin operators transforms the Hamilto-
nianinsuch away thatthe form of the Hamiltonian is preserved but the coupling parame-
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ters are changed. This feature was first discussed in Refs. [111,]112] and is especially useful
here as it reveals two additional SU(2)-symmetric points of the Hamiltonian (in addition
to the two Heisenberg points at « = 0 and a = 7). While this “trick” had been well-
known for years, its underlying mathematical structure was first elucidated in Ref. [13]],
where it was shown that the structure of the basis transformation is that of the Klein four
group Zsy x Zs. Following this logic, we refer to the mapping as the Klein duality.

Consider the following representation of the Klein four group, given by the tuple (T, x)
consisting of a set of elements I and a multiplication defined as followdl}

r={1,z,y,z} (5.24a)

rXr=yxy=zxz=rxyxz=1. (5.24b)

Each bond in the lattice can immediately be labeled with ;; € {z,y, 2} according to the
Kitaev interaction it carries. Using the group structure of (I, x), we then proceed to find
labels a; € T for each site. These site labels finally determine the type of basis rotation
to be performed in spin space. To this end, we start by labeling a reference site ¢ with the
identity 1. The labels for the rest of the sites are then found by using the multiplication
rules in Eq. on the bond labels along an arbitrary path connecting two sites. As
an example, consider the reference site at 4, labeled with 1 and a path connecting sites ¢
and j (cf. Fig.[5.3(a)). Assume this path consists of the bond sequence z — y — z — .
Then the site j will be labeled

rxyXxzxr=1xz=ux. (5.25)
=1
If the considered lattice is compatible with the duality transformation, the labels result-
ing from the outlined procedure do not depend on the chosen path. This is the most
general way of constructing the sublattice labeling and works for arbitrary (Klein dual)
lattices. The resulting structure for the case of the triangular lattice and the path from
the example is shown in Fig.[5.3|a).

Once the lattice has been divided into the four sublattices determined by the site labels
a;, the spin basis on each site where a; # 1 is rotated by 7w around the spin axis 5. This
rotation around one of the three axes effectively reverses the sign of the other two spin
components. More explicitly, the transformations for the four types of sites are:

a; =1 (S*, Y, 57%) — ( S%, SY, S%) (5.262)
a; = (S%,SY,57) — ( §%,—8Y,—S7) (5.26b)
a; =y (S, ¥, 57) — (—8%, SY,—S7) (5.26¢)
a; = 2 (S®, Y, 57) — (—8%,—8Y, S7). (5.26d)

After this transformation, the form of the Heisenberg-Kitaev Hamiltonian, Eq. (5.22), is
unchanged, but the parameters are transformed:

JH — —JH,

(5.27)
Jg — 2Jg + Jk.

It should be noted at this point that the duality transformation is a simple basis ro-
tation, and thus two dual points on the phase diagram can be described by the same

"Note that the Klein group is abelian and the multiplication is thus commutative.
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Figure 5.3.: (a) The four-color labeling of the triangular lattice. The bold arrows show the
path used in the example in the text. (b) The angular parameterisation of the
Heisenberg-Kitaev model with an angle o € [0, 27), where Jg = cos(«) and
Ji = sin(«). The purple lines illustrate the structure of the mapping between
two pointsin the phase diagram. The four dots indicate the location of the four
SU(2)-symmetric points: The yellow (green) pair corresponds to the antiferro-
magnetic (ferromagnetic) Heisenberg model and its dual Hamiltonian.

effective model, albeit with an enlarged/shrunk unit cell and different magnetic order,
for an example see Fig.[5.4] Therefore, if one knows the ground state at any point in the
phase diagram, by applying the duality transformation (i.e. the basis rotation) one imme-
diately finds the ground state of the dual Hamiltonian. In the discussion of the phases of
the Heisenberg-Kitaev model we repeatedly refer to this fact as it allows us to analyze
only half of the phase diagram, while the other half can be immediately found by the
Klein duality.

SU(2) symmetric points

The anisotropic spin interactions in the Kitaev Hamiltonian explicitly break the SU(2)
invariance of the Heisenberg-Kitaev model. However, a closer inspection of Egs. (5.27)
shows that for the special case that

Jrk = =2Jg (5.28)

the Kitaev coupling Jx vanishes after the basis rotation and the transformed Hamilto-
nian consists only of the SU(2)-symmetric Heisenberg term. Thus it turns out that the
phase diagram of the Heisenberg-Kitaev model has in fact four SU(2)-symmetric points:
the ferro- and antiferromagnetic Heisenberg points at Jy # 0 and Jx = 0, and their
dual counterparts given by Eq. (5.27).

A clearer picture of the Klein duality emerges in the angular parameterisation as given
in Eq. (5.23). In this context, the Klein duality provides a (unique) mapping between the
left hemisphere (Ji < 0) and the right (i > 0) on the circle defined by «, see Fig.[5.3|b)
where the set of lines illustrates the mapping. The four SU(2) symmetric points are indi-
cated by the yellow (green) circles, corresponding to the (anti-)ferromagnetic Heisenberg
point and its dual.

Spin configurations at the SU(2) symmetric points

Fig.[5.4shows the classical spin configurations at the four SU(2)-symmetric points along
with the unit cells of each configuration, where the magnetic order at the dual points
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Figure 5.4.: Spin configurations and their dual configurations: (a) 120° order, (b) dual 120°
order, (c) ferromagnet, and (d) dual ferromagnet. The gray diamond shows the
unit cells of each configuration.

was obtained by a applying the basis transformation discussed above. This transforma-
tion Eq. doubles the size of the unit cell [112,[113], as indicated by the gray dia-
monds in the figure. While the 120° order gets transformed into a similar albeit larger
structure, the dual ferromagnet is characterized by the formation of ferromangetically
ordered chains with each chain oriented antiferromagnetically with respect to its two
neighboring chains. Remarkably, although the dual ferromagnet exhibits antiferromag-
netically ordered (i.e. staggered) spins, it is still an exact eigenstate of the Hamiltonian
at that point and as such contains no quantum fluctuations, and it thus is an effectively
classical ground state.

5.3. Phase diagram

With help of the Klein duality we could already identify four SU(2) symmetric points which
each correspond to a different phase. Numerical simulations show, however, thatin both
the classical and the quantum model a fifth extended phase around the antiferromag-
netic Kitaev point exists. Before discussing each phase in more detail below, we here
give an overview of the phase diagram as obtained in Ref. [12] for the classical case and
our own results for the quantum model.
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5.3.1. Previous numerical results for the classical model

The full phase diagram for the classical Heisenberg-Kitaev model on the triangular lat-
tice was examined numerically in Ref. [12]. Results obtained from classical Monte Carlo
methods show the existence of a rich phase diagram, including a phase around the an-
tiferromagnetic Heisenberg point characterized by a lattice of Z5 vortices. The classical
phase diagram alongside schematic illustrations of the structure factors for each phase
are shown in Fig.[5.5] In the following, we recap the results found in Ref. [12] as they serve
as a motivation and starting point for our work.

Lattice of Z, vortices

The arguably most intriguing phase is found around the antiferromagnetic Heisenberg
pointfora ~ 0 (Jg > 0, |Jx| < Jg): While the classical ground state at exactly Jx = 0
is given by the 120° ordering of the spins, a small Kitaev exchange interaction locally pre-
serves this order but distorts it on long distances. The order becomes incommensurate
with the lattice and leads to the appearance of topological Zs vortices discussed in Sec.
Inthe ground state these vortices form a triangular lattice with lattice vectors paral-
lel to the microscopic ones. The distortion away from the 120° order is most clearly seen
in the spin structure factor, where the dominant peaks of the components S” (k) each
move slightly away from the K-point, depending on the component v and the sign of J,
as is shown schematically in Fig.[5.5|

Ferromagnetic phases

At the ferromagnetic Heisenberg point o« = 7, the classical ground state is given by a ho-
mogeneous constant magnetization, as shown in Fig.c). This state is, in fact, also an
eigenstate of the full quantum-mechanical model. The phase around the ferromagnetic
state (denotet FM in Fig.[5.5) was found to be somewhat stable against deviations from
the exact SO(3) symmetric point by turning on Kitaev interactions. For a ferromagnetic
Kitaev interaction Jx < 0, the phase indeed persists until the Heisenberg interaction
vanishes exactly. By virtue of the Klein duality, one can map the FM phase to its dual
phase FM'. Here, the spin order is stripy with a doubled unit cell as shown in Fig.d).

The absence of any spatial modulation in the spin order of the ferromagnetic point at
a = w implies that the dominant wave vector is simply k = 0. This can be seen from
Eq. (5.9): In the case of a constant £2(r) the exponential function must be constant as
well which can only hold for Q = 0. This property is recovered in the spin structure
factor, where for the entire FM phase the only Bragg peak is found in the center of the
Brillouin zone at T". In contrast, the order in the FM’ phase is non-constant. Here, for the
particular ground state order each spin component is described by a different ordering
vectors. This again translates to the structure factor, where the Bragg peaks now sit half-
way between two Brillouin zone corners at the M points.

Kitaev points and nematic ordering

An interesting classical state is found at the Kitaev points « = +7/2, where the Heisen-
berg interaction vanishes and the system is described entirely by the triangular Kitaev
model. These points are self-dual (i.e. the Klein duality maps them to themselves) and
must thus have a ground state which is invariant under the Klein basis transformation.
The Monte Carlo results in Ref. [12] show that the spins form Ising chains along one of the
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Figure 5.5.: Phase diagram of the classical model as obtained from classical Monte Carlo
methods in Ref. [12]. I and I’ denote the incommensurate Z, vortex lattice
phase and its dual, respectively. FM and FM’ are the ferromagnet and its dual.
The yellow shading around o« = 7/2 indicates the nematic Kitaev phase. For
each phase, the spin structure factor is shown schematically, with the peaks of
the components §7 (k) shown. The components ~y are distinguished by three
colors red, blue and green. Figure adapted from Ref. [12].

three lattice directions, where the chains are ordered antiferromagnetically for & = 7 /2
and ferromagnetically for « = —7/2. The type of Ising interaction is determined by the
Kitaev coupling along the chosen lattice direction in which the chain forms, i.e. if the
chains form along the direction of the Kitaev z-links, the effective Ising model for two
spins on a chain is H;; = S;°S7. As the two remaining Kitaev interactions acting be-
tween two neighboring chains do not couple to this component, flipping the spinsin a
chain does not cost any energy. Thus, each chain is two-fold degenerate. Furthermore,
the freedom of choosing any of the three lattice directions finally leads to a sub-extensive
degeneracy of 3 x 2% states, where L is the linear system size.

Deviating from the ferromagnetic Kitaev pointimmediately leads to the ferromagnetic
order described in the previous section: Since flipping chains does not cost energy, any
infinitesimal negative or positive Heisenberg interaction arranges the chains to the con-
figurations Fig.c) and (d), respectively. The classical Kitaev pointata = —7/2isthus
indeed a (self-dual) singular point in the phase diagram.

The antiferromagnetic Kitaev point o = 7 /2, however, appears stable against Heisen-
berg perturbations as each spin’s neighbors in an adjacent Ising-AFM chain compensate
each other [114]. This extended region is termed nematic in Fig.

5.3.2. Phase diagram for the quantum model

The results from Ref. [12] cited in the last section were calculated for the classical model.
An obvious question is how quantum fluctuations for the case of spin-% degrees of free-
dom affect the phases. We performed sparse matrix diagonalization calculations using
the Jacobi-Davidson [49//115] algorithm on various clusters consisting of up to 27 sites (for
more detail see App.[B). While the ground state energy itself provides a useful quantity
to compare with analytics, its second derivative with respect to the parameter « helps
indicate the phase boundaries, as the points at which —d? Ey/da? seems to diverge in-
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Figure 5.6.: Ground state energy E (black line) and its second derivative, —d? Ey /da? (red
line), with respect to the parameterization angle . Peaks in the second deriva-
tive show the position of phase transitions. The data were obtained with sparse
matrix diagonalization on a 24-sites cluster with periodic boundary conditions
(see main text). The colored bar on the bottom refers to the color scheme of

Fig.B.7}

dicate phase transitions. The results are shown in Fig. and the phase boundaries
that we thus identified were used to create the quantum phase diagram shown in Fig.
Close investigation of the classical and quantum phase diagrams shows that some
phase boundaries are shifted slightly (which might be a conspiracy of quantum fluctua-
tions and finite-size effects due to the smaller cluster size for the exact diagonalization
calculations), but all phases are present in both cases, which should be attributed to the
mainly classical nature of the various ordered phases.

5.4. 7, vortex lattice phase

In the discussion of the phases in the triangular Heisenberg-Kitaev model, we first focus
on the vortex lattice phase around the antiferromagnetic Heisenberg point at & ~ 0. In
order to identify the ground state in this parameter regime, we first show that any finite
Kitaev interaction immediately destabilizes the 120° order. Subsequently, from an ap-
proximative solution of the Hamiltonian in the continuum limit by means of an expanded
Luttinger-Tisza method, we show that a lattice of Z5 vortices forms, which is in perfect
agreement with the previously reported results obtained from classical Monte Carlo cal-
culations [12].

5.4.1. Instability of the 120° order for finite Kitaev coupling

Let us first consider the fate of the classical 120° order in the presence of finite Kitaev in-
teractions. Itis a priori not clear how small anisotropic interactions affect the spin order,
but we show that even an infinitesimal Kitaev coupling leads to an instability of the 120°
state.

As the magnetic order of the spins discussed in Sec.5.1.1| spontaneously breaks the
(continuous) symmetry of the Hamiltonian, we expect the existence of three Goldstone
modes. To identify these modes we consider small (i.e. long-wavelength) fluctuations
of the spin vector. These fluctuations around the 120° order can be parameterized by
two real fields 7, (r) with @ = 1, 2. Recalling our previous notation for classical spins,
S, = Sﬂ(ri), the addition of fluctuations yields the following form for the orientation
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Figure 5.7.: Phase diagram of the quantum model obtained from exact diagonalization,
with annotations labeling the phases based on both analytical and numerical
calculations. This figure summarizes our results and should serve as a refer-
ence point.

vector:

PN

Q(r) = Quzoe (1) \/1 = (m1(r))? = (ma(r))* + 3(x), (5.29)

where 500 is given in Eq. (5.11) and the square-root ensures that Q2(r) = 1. The fluc-
tuation termis given by

6Q(r) = mi(r)[—ersin (Q - r) + ey cos (Q - r)] + ma(r)es. (5.30)

Plugging this Ansatz in the Heisenberg-Kitaev Hamiltonian and expanding up to second
orderin the fluctuation fields 7, one obtains a second-order correction £2) to the energy,
E = Neqage + €@, where the energy of the 120° order is given by Eq. and N is the
number of sites. The fluctuation part consists of two contributions,

D =g?+ Y P, (5.31)
Y=z,Y,2
where 882) contains isotropic fluctuations due to the Heisenberg interaction and 552)
contains anisotropic fluctuations from the Kitaev interaction which are dependent on
the bond-type ~. The full expressions for £(2) are given in App. The eigenmodes of the
fluctuations are found with the help of Fourier transformation,

Wa(ri):\/lﬁ S e, (k). (5.32)

kel.BZ

No Kitaev interaction, Jx = 0

Let us first discuss the case of Jx = 0. In the absence of Kitaev interactions the

anisotropic contribution vanishes, E(Q)IJKZO = (()2). The energy of the fluctuations
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Figure 5.8.: Energies of the model: The exact diagonalization data was obtained on a 24
sites cluster, the Monte Carlo data on a 24 x 24 cluster at temperature T’ =
0.005. All five phases are present: The Zg ferromagnet and its dual phase, the
Zo vortex crystal (VC) phase and its dual, and the “quantum” phase around the
Kitaev point which is dominated by quantum fluctuations. The four SU(2)-
symmetric points are shown as yellow spheres.

is then given by

2
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T=T,Y,2

with 7} (k) = m,(—k). The prefactor of the field 7 vanishes in the center of the Brillouin
zone at k = 0. The field w5, however, vanishes when k is in the corner of the Brillouin
zone, e.g. k = +Q. When either field 7, drops out of the Hamiltonian, the corresponding
fluctuations do not cost any energy, i.e. the modes become massless (or soft). These
zero modes 7 (k = 0) and m2(+Q) identify three Goldstone modes that correspond
to a long-wavelength rotation and tilting of the local orthogonal frame, respectively. In
particular, the energy dispersion of the tilting mode w2 (k), i.e. the second term in the
sum in Eq. (5.33), can be expanded around momentum Q and then, for |q| < |Q, takes
the form

tilt ~ 2
5Q+q Tie=0 ~ JHS gq . (534)

Finite Kitaev interaction, Ji # 0

For a finite Kitaev coupling we can still diagonalize the problem to obtain the eigenen-
ergies perturbatively in Jg. If we consider the long-wavelength limit of small momenta
lg| < |Q]|, the three zero modes cannot couple to each other (as they are too far away
from each other in momentum space). Then, to lowest order, the dispersion relation ob-
tained for the tilting mode in this limit is given by

agﬁrq R~ JHSQEq2 — 2] S? Z q-aysin(Q - ay) (eg)2 . (5.35)

V=a,y,2
Any finite Jx # Oresultsin a negative value ofeglﬁrq at certain momenta ki, indicating
that the ground state order becomes unstable. We have thus found that the tilting Gold-
stone modes trigger the instability of the 120° antiferromagnetic orderingin the presence
of a finite Kitaev interaction Jg . The wavevector at which £'!* becomes maximally neg-
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ative is given by

Jr 4 .
kinst = Eg _Z: Ay SIH(Q : 37)(6’:;)2
y=z,y,z
Je 1 [+ (e3)* —2(e5)’

2
~Ju3 ( V3 {(65)2 - (63)2} ) 7 39

which can be expressed entirely in terms of the vector e3. Without loss of generality, we
can assume the spins of the 120° ordering to be confined within the z-y plane. Then

es = z and Eq. (5.36) reduces to

JK 1 Jrg 2
Kinst = — = ———a,. 5.37
" Jn <\}g> Ji /3 (5:37)

5.4.2. Continuum limit of the Heisenberg-Kitaev Hamiltonian

By establishing the instability of the antiferromagnetic ordering at Ji; > 0 and infinitesi-
mal Kitaev interaction Jx, we have shown that the 120° order cannot be the correct clas-
sical ground state. In fact, from the numerical results, we instead expect the ground state
to be given by anincommensurate spin order forming a large-scale lattice of Z, vortices.
In the following section, by considering a continuum limit of the problem we present an
analytical solution which indeed recovers such a state. Our solution is an approximation
to the true ground state, but it still exhibits the characteristic properties found earlier in
numerics.
Let us first formulate the full Heisenberg-Kitaev Hamiltonian in momentum space:

H= Y S [7°&)1+T"Kk)] Sk, (5.38)

kel.BZ

where the Heisenberg interaction 79(k) is given by Eq. (5.6) and the Kitaev interaction
is encoded in the matrix:

TE(K) = Jk cos(ay - k) ) (5.39)
cos(a; - k)

From the classical Monte Carlo results we know that, on short length scales, the 120° or-
deris preserved, albeit with a slowly varying spatial modulation which is the origin of the
topological defects. Itis therefore reasonable to approximate the problem by expanding
the full Hamiltonian to second order around the wave vectors of the 120° order, =Q. As-
suming k = Q + q with |g| < 1, this yields the continuum Hamiltonian in k-space

B \/g az-q
H = / dgSq+q T(Q)1 + 7JK a,-q S_(Q+q (5-40)

lal<A a-d
with an infrared cut-off A and the exchange interaction

T(q) = _3/a [1 s (ﬂ . (5.41)

2 3Jy
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To allow for the spatial modulation of the orthonormal frame which locally defines the
120° order, we modify the expressionin Eq. by allowing the vectors e; to depend on
the positionr,

e; — e;(r). (5.42)

In this formulation, the classical spin at site r can now be expressed as

S(r) = SQ(r) = S e (r) cos(Q - r) + ex(r)sin(Q - r)]
S , ,
= 7 [e (r)e’ QT +eT(r)e Q7] (5.43)
where we defined et = (e; + ies) /v/2. Back-transforming Eq. to real-space then
yields the Hamiltonian

3JH52/ _ [ o . 4Jk
H = dr e (r) |-V? —i—=-a., - V| el (r) + const. 5.44
1 W;z S (@) NI L (5.44)

Again, for Jxg = 0 this Hamiltonian reduces to the continuum limit of the Heisenberg
model, but any finite Kitaev interaction induces a coupling to constant gauge fields,
which are here given by the lattice vectors a;. The magnetization can thus minimize
its energy by allowing for a spatial modulation of the SO(3) order parameter on length
scales ~ Jg/Jk, which is the expected result.

5.4.3. Luttinger-Tisza approximation of the classical ground state

While the 120° order instability and the continuum Hamiltonian indicate on an analytical
level the existence of an incommensurate ground state for finite Jk, it turns out that
an exact classical ground state is difficult to obtain. This is mainly due to the strong
condition that the spin length be strictly S at every site. However, one can loosen this
constraint and obtain an approximate ground state with varying spin lengths. This is
known as the Luttinger-Tisza approximation [116,(117]], in which the strong conditions that
|S(r)| = S for any r are replaced by the weaker condition that the spin length must be
conserved only on average. This yields a ground state which is a good approximation for
large length scales, Jx |r|/Jg > 1, or, alternatively, for small momenta |q| < Jx/Jg.
To set up the Luttinger-Tisza approximation, we use the notation introduced in Sec.
However, the spin orientation vectors are no longer unit vectors, and here we for-
mally define
S(r) = SQ(r), (5.45)

for an arbitrary R3-vector 2. The energy functional for the classical spins then assumes
the following form:

E=JpS”> Q- Qi+ IS ) Q1) =) N7 - 1), (5.46)

(ig) ¥I1{i5) i
where ©2; = Q(r;). This functional is given by the Heisenberg-Kitaev Hamiltonian and
an additional term which locally imposes the unit length of the spin vector with the help

of the Lagrange multiplier A;. In the simplest Luttinger-Tisza approximation, the N La-
grange multipliers are reduced to only one by changing the last term in Eq. (5.46) to

Ao > (QF - 1). (5.47)

%
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This way one effectively requires the sum of all spins squared to be IV, but each individual
spin can have arbitrary length. While within this approximation the problem becomes
tractable, the approximation is fairly coarse. To see how it can be improved, however, we
need to reformulate the problem in momentum space. Pluggingin the Fourier transforms
of the spin vectors,

1 .
Q=— kT, 5.48
Wi > K (5.48)

kel.BZ
the functional Eq. (5.46) then takes a form similar to Eq.

&
o Z N [TOR)L + T5 (k)] Qi + Z A k- - Qi — Ao (5.49)
K k!

where \g = Ax—o, and the summations all run over the entire first Brillouin zone. In this
formulation, softening the spin length conservation requirementasin translates to
keeping only the A\g multiplier, and setting Ay, = Oforanyk = 0. This reveals a dominant
mode k(! and the corresponding amplitude 91(<1) to be used in the Fourier expansion
Eq. (5.48). By successively identifying further modes and their amplitudes, we can thus
gradually improve our approximation.

At the Heisenberg point Jx = 0, we recover the results from Sec.[5.1.1and find that
the diagonal components of the matrix are minimal for momenta at the K and K’ points
in the corner of the Brillouin zone. In this case, the system is fully described by only one
dominant mode k = Q, thus leading to 120° ordering. Turning on Kitaev interactions
Jix # 0, we see from Eq. that the minimum is shifted away from the corners. For
every spin component a different new minimum appears and the new dominant wave
vectors then have the form

k) =Q-ta,, (5.50)

where v = x,y,z,and t € Riis a function of Jx /Jy. These wave vectors are incom-
mensurate with the lattice and lead to a modulation in the real-space spin configuration
on length-scales of the order ~ 1/t. A consequence of the incommensurability of the
kﬁ,l) vectors is that the Fourier components QV(kgl)) which belong to these wave vectors
generally induce further finite Fourier components (higher harmonics) of the Lagrange

multiplier as discussed above, they are given by /\ﬂk(l) with v = z,y, 2. These finite
Y
©)

Lagrange multipliers in turn induce two finite secondary Fourier components Q*(k 5)
with the secondary modes

k), = Q—t(2a5 — aa), (5.51)

where a, 3 = x,y,z and 8 # a. In this fashion, each mode k() induces higher-order
modes k(it1), The corresponding Fourier components Qa(k(i)) define the amplitude of
these modes and can be found by straight-forward minimization of the Hamiltonian.

In our calculation, we keep the primary and secondary modes given above, and neglect
all higher orders. Minimizing the functional in Eq. we obtain for the energy per site
in this approximation

J -3t 15¢ 6t 6t
ELT(t):—é{{Nsin7r G —|—sin7r+6 +cos7r—g +8sinwz

t t
—i—jg(cosﬂ—g(i —I—SSinﬂ—g6>}, (5.52)
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which still depends on the parameter ¢ that quantifies the distance of the primary
Bragg peaks k") from the corner of the Brillouin zone. To find the ground state en-
ergy e (tmin), One now needs to find ¢, by minimizing Eq. (5.52). The result is shown
as a green solid line in Fig.[5.8] and it is in excellent agreement with results from the clas-
sical Monte Carlo simulation. In particular, it is important to point out that the energy
eLr (tmin) for Jx # 0is lower than the energy of the 120° state, which for Jx # 0 is given

by
1
€1200 = _525(3JH + JK). (5.53)

Itis now straight-forward to construct the corresponding classical ground state. The state
resulting from the Luttinger-Tisza approximation is still a function of ¢. It is given by the
spin components

4 A . 1 ,
0 (x) = 5 =Re (ié | f@taatom) 1 S i@ tas e ) | (5 50)

B:CU,y,Z
o

where ¢ € Ris aphase andrg = (z0,y0)” fixes an origin. The ground state is finally
obtained by setting ¢t = t,in. The spin length |€2,(r)]| varies in space, but it nevertheless
remains always finite so that the orientation of £2,(r) is always well defined.

One shortcoming of this result is the fact that in the limit Jx — 0 it does not recover
the 120° order. The limit |q| < Jgx/Jg does not commute with Jx — 0, and, as a
consequence, does not smoothly connect with the Heisenberg point. However, in the
limit Ji — 0 the value of t;, — 0and epr(0) = —S23.Jy /2 still recovers the exact
classical ground state energy. Furthermore, for finite Jx, the state Eq. is in very
good agreement with numerical results, as we will discuss now.

Vortices

The approximate classical ground state of Eq. does indeed contain a lattice of Z,
vortices, thus confirming the numerical results in Ref. [12]. This can be easily seen by
calculating the chirality in Eq. and from this the vorticity. Fig.[5.9|compares both
quantities obtained from the Monte Carlo results and the mean-field state.

Fig.[5.14shows the obtained chirality vectors (top row), the length of the chirality vec-
tors (middle row) and the calculated vorticity (bottom row). The lattices in the Monte
Carlo simulation have a side-length of L = 18 and periodic boundary conditions. We per-
formed 50 000 thermalization sweeps at a temperature 7" = 0.05, and then successively
reduced the temperature to 7" = 0 in another 50 000 sweeps. The point on the phase
diagram is @« = 0.1467, which yields a relative Kitaev coupling strength of Jx /Jg =
tan a =~ 0.49.

After finding t.,;n numerically, the texture of the calculated chirality clearly resembles
that of the Monte Carlo results. The orientation of the vortex crystal is fixed by the under-
lying triangular atomic crystal lattice, and its lattice constant grows by decreasing the
Kitaev interaction Jg. One difference between numerics and analytics is that for a given
value of Jg, the distance between to vortices is slightly overestimated in our analytical
results. This can be attributed to two facts: Keeping only the first two dominant modes
is a significant improvement over the simplest approximation but still omits a lot of in-
formation kept in higher modes. The more higher terms are kept, the less will each spin
deviate from unity length, and one can expect that in this case the formation of topo-
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Figure 5.9.: Chirality and vorticity obtained from classical Monte Carlo simulations and the
mean field result. The Monte Carlo simulations were performed for periodic
boundary conditions at 7" = 0.05 with 50 000 thermalization sweeps and then
50000 sweeps at 7' = 0. All results are obtained for a = 0.1467. Top row:
The (normalized) chirality vectors in which the vortices can be identified. The
color code refers to the out-of-plane component S*. Center row: The absolute
value of the chirality vectors. In the core of the vortices the chirality vectors
have minimal length, which is seen in both results. Bottom row: The vorticity
V[C] calculated from the chirality vectors using the rhombic paths C discussed
in Sec.[5.1.2 showing that the vortices are in fact Z; vortices as defined in the

main text.
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logical defects is enhanced. Secondly, our analytical approximation has been performed
for the case of small Jk. In the numerical simulations, on the other hand, the Kitaev
coupling needs to be large enough to fit at least two vortices inside the lattice cluster.

However, the arguably most striking difference is that the length of the chirality vec-
tors in the analytical results vanishes quickly as one approaches a vortex core, whereas
the change in length is much less pronounced in the Monte Carlo results. This can be at-
tributed to the fact that the spin length is not conserved in the analytical approach and
thus the variation of the chiralities is allowed to be much stronger.

Spin structure factor

Further agreement between numerical and analytical results can be found in the spin
structure factor. From Egs. and it follows that the modes included in the ana-
lytical solution manifest themselves as Bragg peaks. A characteristic of the spin structure
factor of the Z5 vortex lattice phase is the correlation between the position of magnetic
Bragg peaks and the corresponding spin component: If we take into account only modes

up to second order, we find that S*(k) has one dominant Bragg peak at position K

and two secondary Bragg peaks at kf)ﬁ for B # «a. Within our approximation the rela-

tive weight of secondary and primary Bragg peaks are predicted to be 1/42 = 1/16 and,
according to Eq. the dominant primary Bragg peak of S (k) are shifted away from
the Brillouin zone corner by ¢, in the direction a,,. Fig.shows a comparison of the
numerical data obtained from classical Monte Carlo and our analytical solution.

Both primary and secondary Bragg peaks are clearly present, with the analytical es-
timates (arrows) agreeing nicely. In the last section we argued that the distance of vor-
tices is overestimated in our result. This small effect naturally translates to the structure
factor where the distance of the Bragg peaks from the corners is accordingly slightly un-
derestimated. Nonetheless, the analytical and numerical results are in very good agree-
ment: The positions of the both primary and secondary Bragg peaks are reproduced very
accurately.

Since we ran the Monte Carlo simulations at small but finite temperatures, we find a
slight broadening of the Bragg peaks. Also, an exact commensurability of the vortex lat-
tice with the size of the cluster of the microscopic lattice is generally not given and this
frustration further affects the Monte Carlo averages. Comparing the relative heights of
the primary and secondary Bragg peaks in the numerical results can therefore be ex-
pected to be somewhat unreliable. However, in our Monte Carlo results we find the ratio
to be

(1)
&";)) ~19+4, (5.55)
S(ky”)

which, within error margins, agrees with our analytical prediction ofS(k&l))/S(k/(Bz)) =
16.

5.4.4. Dual Z, vortex lattice

With the help of the duality transformation in Egs. (5.26d) and (5.27) one immediately
obtains the energy and ground state of the phase dual to the Zs vortex around Jy < 0
and Jg = —2Jg > 0. The energy is shown in Fig.[5.8
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Figure 5.10.: The spin structure factor in the corner of the Brillouin zone around k = —Q,
for @« = 0.1527, with a normalized scale such that the primary Bragg peaks
have a height of 1. The numerical data was calculated on a Cs-symmetric clus-
ter with an edge length of 20 sites. After 2000 000 thermalization sweeps at a
temperature T' = 0.05, another 2 000 000 sweeps were run in which the tem-
perature was gradually lowered to T = 0. The full spin structure factor (upper
left panel) is given as the sum of its components, S(k) = S*(k) + SY(k) +
S*(k). The dashed lines indicate the Brillouin zone borders, and the arrows
depict the analytical results for the primary and secondary Bragg peaks.

5.5. Ferromagnetic order

In contrast to the antiferromagnetic case, the ground state of the ferromagnetic Heisen-
berg model is given by a constant, homogeneous spin configuration, Q(r) = € with
22 = 1. This state is an exact eigenstate of the Hamiltonian and it contains no quantum
fluctuations, which arise in the antiferromagnetic model e.g. due to spin-flip terms. The
corresponding classical energy per site is easily found and independent of the orienta-
tion of . It is given by

erm = S? (3Jy + Jk) . (5.56)

At Jx = 0 (or o = ) this corresponds to the exact ground state energy of the quantum
mechanical system (see Fig.[5.8). However, any finite Jx gives rise to fluctuation correc-
tions to the ground state. It turns out that these fluctuations lower the O(3) symmetry
of the Heisenberg ferromagnet and discriminate between the various orientations of £2.
We find that in this case, order-by-disorder leads to a minimization of the energy when
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the spins align along one of the three spin-axes. This reduces the symmetry from O(3) to
Zg as only six possible directions for the magnetization remain. A similar result for the
antiferromagnetic Heisenberg-Kitaev model on the honeycomb lattice was reported in
Ref. [118].

Spin-wave analysis of the Z; ferromagnet

To see how quantum fluctuations affect the ferromagnetic ground state we perform a
1/S expansion for |Jx /Jr| < 1and Jg < 0. With the standard Holstein-Primakoff
transformation we can express the spin operators in terms of bosonic operators:

gf =5 - azai, Sj =14/25 — alT-aZ- a;, 5’; = az\/ 25 — aZai, (5.57)

where S = S¥ +iSY. Here, azw are bosonic annihilation (creation) operators for the
site ¢ = r;, and we chose the operator 5S¢ to be aligned along the local z-axis. The spin
operator S within the laboratory frame is related to S = (5%,5Y,5%)T by a rotation

S = RS with the SO(3) matrix

—sin¢g —cosfcos¢ sindcos o
R=| cos¢ —cosfsing sinfsing |, (5.58)
0 sin 6 cosf

where ¢ € [0,27) and 6 € [0, 7]. After reformulating the Hamiltonian in terms of the

bosonic operators, we expand to second order in the azm’s. The first-order term vanishes

and we find the two contributions H = H(® + H® where H® = Nepy; and
1 R

H? = = Z w;r(hkz/}k - S Z (cos(k-ay) —1) (2JH + Jk (1 - Qg))] ’

kel.BZ V=T,Y,2
(5.59)

where we defined the two-component spinor wlt = (al, a_k> and the orientation vector

is given by Q = R(0,0,1)T. The expression for hy is given in App. B, along with the
fluctuation correction to the energy in lowest order in the Kitaev interaction which are
obtained by a Bogoliubov transformation. Here we focus only on the result: the energy

to second orderin | Ji | has the forme = Nepy + 6%213[ with

Lo _ S Jg32v3-m)
FM 2 | Jg| 87

(1 + O+ 0 Qﬁ) . (5.60)

Because 21/3 — 7 > 0, this expression is negative for any finite value of Jx. With the
constraint that 22 = 1, the correction 5%21\)4 becomes maximally negative when the vec-
tor Q points along one of the six equivalent (100) directions, i.e. any of the coordinate
axes. At the Heisenberg point, Jx = 0, the ferromagnetic ground state manifold is the
2-sphere. Any finite Kitaev interaction, however, reduces this manifold to only six points

corresponding to a Zg ferromagnetic order parameter.
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Figure 5.11.: (a) Ground state energy of the quantum ferromagnet in an external Zeeman
field as a function of the direction of the applied magnetic field B, where we
have subtracted the ground state energy for B = Z. The Kitaev coupling
strength is Jx/Jg = tan(117/10) ~ 0.32. The energy is minimal when the
magnetizationis pinned along one of the three axes, and maximal when point-
ing along the space diagonals. (b) The same results shown for the cut along
theyellow linein (a). Each line corresponds to a different value of Jx /Jg . For
Ji /Ju = 0the ground state energy does not depend on the direction of the
magnetization. Upon increasing Jx /Jp up to Jx/Jg = tan(11mw/10), the
directional dependence becomes more and more pronounced. The dashed

line is a fit of Eq. (B.10).

5.5.1. Dual Z; Ferromagnet

The dual point of the Heisenberg ferromagnet is located at Jy > 0Oand Jx = —2Jy. The
classical ground state energy of the dual ferromagnetic state is obtained from Eq. (5.56),

epar = 52( Ty + JK). (5.61)

As before, the physical properties of the ferromagnetic Hamiltonian directly carry over
to its dual point. Accordingly, the dual ferromagnetic state is also an exact ground state,
and fluctuations arise for any Jx # —2Jp. The latter, following the arguments of the
previous section, then favors a dual Zg ferromagnetic ordering.

5.5.2. Numerical results

To further support the analytical results for the ferromagnet, we performed numerical
simulations for both the quantum system with quantum fluctuations and the classical
system with thermal fluctuations.

Quantum fluctuations: Fig. shows the results for the ground state energy of a
small cluster of 12 sites calculated by exact diagonalization. The lattice cluster is imple-
mented with periodic boundary conditions and preserves the Cg rotational symmetry of
the lattice, thus it has no bias towards any direction in real space. To obtain the ground
state energy as a function of the direction of the magnetization, we applied a magnetic
field to each spin,
cos(¢) sin(6)
B = B | sin(¢)sin(0) |, (5.62)
cos(0)
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Figure 5.12.: Magnetization histograms from classical Monte Carlo simulations. The sys-
tem is a Cg-symmetric cluster with periodic boundary conditions. The side
length is L = 12, the total number of sites is N = 3L? = 432. Each image
consists of the histograms for six Monte Carlo runs. Each run was performed
at a temperature of T' = 0.005, and comprised 6 000 000 sweeps, of which
300 000 were thermalization sweeps. Left: Full SU(2) symmetry at the ferro-
magnetic point & = . Right: Pinning of the magnetization to the spin axes

away from the ferromagnetic point at a = 17 for a cluster of side length of

L = 12 with fully periodic boundary conditions.

where ¢ € [0,27)and § € [0, w]. By changing the angles ¢ and #, we adjusted the magne-
tization to point along different directions. In Fig.[5.17(a) we show results for the change
in the ground state energy as a function of the orientation of B, taken relative to the case
when B || z. The Kitaev coupling is taken to be Jx /Jy = tan(117/10) ~ 0.32. We
find that, in agreement with our analysis above, the ground state energy of the system is
minimal when the magnetization points along one of the three spin axes. A scan of the
energies when changing the orientation of B along the yellow line shown in Fig.[5.11[a),
we analyze the effect of different Kitaev couplings. In Fig.[5.11{b) each line corresponds
to a different value of Ji. For Jx = 0, the energy does not depend on the direction of
B. For any finite Jx # 0, minima in the energy occur immediately, becoming more pro-
nounced as Jx grows. The black dashed line in Fig.[5.17(b) is a fit of Eq. (B.10), showing
perfect agreement.

Thermal fluctuations: Considering fluctuations, we find that thermal fluctuations in
the classical system lead to the same result as the quantum fluctuations discussed be-
fore. To this end, we performed classical Monte Carlo calculations for a system with 432
spins for a fixed value of o = %w. In Fig. we show histograms of the magnetiza-
tion obtained from a single Monte Carlo run. In the SO(3) symmetric case where Jx = 0
(o = 7), we find no preferred direction for the magnetization, and the histogram shows
values distributed over the entire sphere. Once a finite Kitaev interaction is included, at
o= %w the histogram shows that the magnetization is strongly focused along the spin
axes, confirming the results obtained before for the case of quantum fluctuations.
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5.6. Kitaev phase

Aside from the antiferromagnetic and ferromagnetic phases discussed so far, the numer-
ical results for both classical and quantum models show the existence of an extended
phase around the antiferromagnetic Kitaev point, Jx > 0. In the classical limit, the
ground state of the Kitaev model on the triangular lattice, Ji; = 0and Jx > 0, is charac-
terized by the formation of independent Ising-chains along one of the three lattice direc-
tions, thereby spontaneously breaking the Cj lattice rotation symmetry. Before present-
ing our numerical results for the quantum model at the Kitaev point, we briefly discuss
the Kitaev model on the triangular lattice from an analytical perspective.

5.6.1. Applicability of the Majorana fermion formalism

The Kitaev model on the honeycomb lattice can be solved exactly, so an obvious ques-
tion is whether we can also solve it on the triangular lattice. While we cannot answer
this question in general, it turns out that the solution by Majorana fermionization as pre-
sented in Sec.[2.3]is not applicable here. The key point in the solution of the honeycomb
model is the presence of a sufficient number of conserved quantities (the plaquette op-
erators), which commute with each other and the Hamiltonian. This property is lost on
the triangular lattice. A different, slightly less rigorous but physically intuitive reasoning
is given by noting that in the honeycomb lattice, each bond between two spins is mod-
eled by two Majorana fermions, one from each site. Each spin is decomposed into four
Majorana fermions, three of which participate in the three links to neighboring sites, and
the remaining fourth one describes the site itself. The triangular lattice, however, has
coordination number six, i.e. each site has six neighbors. Thus, the required number of
Majorana fermions to employ the same scheme as in the honeycomb lattice is seven.
This, however, is a nonsensical requirement as seven Majorana fermions would require
a Hilbert space of dimension \/57 = 8v/2, which is both unphysical and in disagreement
with the 4-dimensional Hilbert space of a spin—%.

5.6.2. Numerical results

In order to investigate the quantum mechanical ground state of the Kitaev model on the
triangular lattice we carried out extensive numerical calculations using the density ma-
trix renormalization group (DMRG, see Chap.[3) on triangular lattice strips of length L
and width W with open boundary conditions. These lattice clusters break the Cy rota-
tional symmetry of the triangular lattice, and in the classical limit we expect a 2'V-fold
ground state degeneracy with W independent Ising-chains forming along the longer di-
rection. Considering the effects of quantum fluctuations on these classical states, our
numerical results suggest that this degeneracy is lifted in the quantum model by an in-
duced correlation between next-nearest neighbor chains. Directly neighboring chains,
however, remain uncorrelated. Thus, for the lattices we used we end up with two sets
of coupled chains, where chains within one set are correlated with each other, yielding
a ground state degeneracy of 22, independent of system size. For system which do not
break the rotational Cs symmetry of the triangular lattice, this degeneracy should be ex-
pected along each of the three lattice directions, yielding a ground state degeneracy of
3 x 22 in the thermodynamic limit.

We investigated the degeneracy by calculating the lowest few energies of lattices with
a width of up to W = 4, and a length of up to L = 16, for an antiferromagnetic Kitaev
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Figure 5.13.: Energy gaps of a 3 x L triangular lattice strip with open boundary conditions.
All values are given in relation to the ground state energy Fy, i.e. AF; =
E, — Ey. The figures on the right show numerical results for (S*(r)S*(ry))
spin correlations, where the black disk with the white dot indicates the po-
sition rg, the diameter of the disks indicates the strength of the correlation
and the color indicates the sign, with red corresponding to negative (anti-
ferromagnetic) and black to positive (ferromagnetic) correlations. The lines
are fits, dashed line: f(z) = agexp(—z/ay), dash-dotted line: f(z) =
ag exp(—x/a1) + asz, dotted line: ag — ag exp(—x/aq)

coupling, Jx > 0. In Fig.[5.13|we show results for the energy gaps of a system with W = 3
(a 3-leg ladder),
AFE; = E; — Ey, (5.63)

where Ej is the ground state energy and E; is the i*! excited state. The first three excited
states collapse exponentially onto the ground state energy as the length of the system
increases, which is in perfect agreement with the 22-degeneracy conjectured above. The
next four excited states collapse to the same energy, too, however with the gap to the
ground state growing linearly in system length. Finally, the 8" excited state exponen-
tially approaches a constant value.

To identify the physical nature of the various states we calculated spin correlations
functions, (S7(r)S7(rp)) for v = x,y, z. These correlations functions confirm the pic-
ture we have established so far: The four lowest states consists of chains along the L-
direction, ordered antiferromagnetically in the x-component where the order is induced
by the S}"S7 Kitaev coupling along this direction. In the right panel of Fig.we show
exemplary correlation functions, in which we also see the clear absence of correlations
between directly neighboring chains. In the ground state manifold two next-nearest
neighbor chains are correlated antiferromagnetically, where the interchain coupling is
mediated along the rhombic path shown as a thick line. In Fig.[5.14| we show results
for the ground state of the 4-leg ladder. Here, we clearly find the suppression of spin-
correlations along the two shorter directions (y and z), while the dominant direction (z)
shows strong correlations.
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Figure 5.14.: Spin-spin correlations, (S7(r)S7(ro)), in the ground state of a4 x 6 triangular
Kitaev model. The white dot indicates the position ry. Red disks correspond
to negative (antiferromagnetic) and black disks correspond to positive (ferro-
magnetic) correlations.

Excitations

Having identified the ground state, the question arises what the system’s excitations in
the thermodynamic limit are. From the spin correlators, see Fig. we find that the
linear growth of the energy gaps A E, through A Ex is due to a breaking of the antiferro-
magnetic order between two chains. The energy cost associated with flipping an entire
chain is linear in the system’s length, and should clearly be forbidden in the thermody-
namic limit.

The next excited state in our data, corresponding to the state with energy Fjg, shows a
breaking of spin correlations on a single site within a chain. The energy penalty associ-
ated with this local defect does not depend on system size, therefore we expect this to
be the relevant excitation for the infinite system.

5.7. Summary and outlook

In conclusion, we have investigated the full phase diagram of the Heisenberg-Kitaev
model formulated on the triangular lattice. The Heisenberg-Kitaev model is known to be
compatible with the Klein duality [13]; a special basis transformation which provides a
mapping between two halves of the phase diagram. This allows for the direct translation
of results obtained for one phase to its dual phase. Motivated by previous numerical
results for the classical model [12], we presented analytical approaches and numerical
results for both the classical and the quantum model. Using exact diagonalization rou-
tines, we showed that the rich phase diagram of the classical model is preserved in the
quantum case.

Ferromagnetic phases. We investigated the ferromagnetic phase analytically using a
spin wave analysis, corroborated by numerical results using classical Monte Carlo and
exact diagonalization. Close to the ferromagnetic Heisenberg point, the inclusion of a
finite Kitaev interaction leads to an order-by-disorder effect which pins the magnetiza-
tion along one of the three spin-axes, thereby lowering the ground state symmetry from
0(3) in the classical and SU(2) in the quantum case to Zg. For the classical model, this
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effect is mediated by thermal fluctuations, whereas quantum fluctuations drive the pin-
ning in the quantum model. A similar effect has been observed before in the honeycomb
Heisenberg-Kitaev model [118]. Our numerical results show very good agreement with
the solutions we obtained in our sin wave analysis. Via the Klein duality, this physics
directly translates to the dual ferromagnetic phase.

Kitaev points. Inthe absence of the Heisenberg interaction, the system reduces to the
pure Kitaev Hamiltonian. While the honeycomb version of the model is exactly solvable
using Majorana fermionization, this is not the case for the triangular lattice. Furthermore,
in contrast to the spin liquid ground state of the honeycomb model, our numerical results
indicate a ground state with nematic order. In the classical Kitaev model on the trian-
gular lattice, the ground state is characterized by the formation of completely indepen-
dent Ising-chains, generating a sub-extensive ground state degeneracy. We performed
extensive DMRG simulations for triangular lattice ladders with a width of up to four legs.
Calculating the first few lowest-lying states and spin correlation functions, we conjec-
ture that the ground state of the quantum model is given by Ising-like chains, ordered
(anti-)ferromagnetically at the (anti-)ferromagnetic Kitaev point. These chains, however,
are not independent. Rather, quantum fluctuations induce correlations between next-
nearest chains, reducing the ground state degeneracy to 3 x 22.

The ferromagnetic Kitaev model is a singular point in the phase diagram, as any finite
Heisenberginteraction can immediately drive the ground state into the ferromagnetic or
dual ferromagnetic order, depending on its sign. The antiferromagnetic Kitaev phase, on
the other hand, is an extended phase. Our numerical simulations indicate, however, that
any finite Heisenberg interaction breaks the ground state degeneracy. While our results
for finite system sizes yield a clear picture of the ground state, it is at this point not clear
if these results carry over to the thermodynamic limit.

Vortex lattice. The mostinteresting phase model forms around the antiferromagnetic
Heisenberg point, when a small Kitaev interaction disturbs the 120° order. Previous
numerical results indicate [12] that in this case the magnetic order is distorted on long
length scales, leading to the formation of a lattice of topological point defects in the form
of Zs vortices. These results were first obtained from classical Monte Carlo simulations
in Ref. [12]. In this chapter, we showed analytically that any finite Kitaev coupling imme-
diately destroys the 120° order of the antiferromagnetic Heisenberg point. Furthermore,
using an expanded Luttinger-Tisza approach, we could give an analytical approximation
to the ground state which also confirms the build up of the Z5 vortex lattice, confirming
to a very high degree of accuracy the Monte Carlo results.

Furthermore, we propose that the triangular Heisenberg-Kitaev model might be
the relevant model to describe the low-energy physics of the transition metal oxide
BaslrTiaOg. In this material, the specific form of the exchange paths between to iridium
ions is suggested to lead to the realization of Kitaev-type interactions, similar to honey-
comb iridates [33,64}/65(81]. In BaslrTi2Og, however, this interaction is thought to be
much weaker, and we argue that the Z, vortex lattice discussed above lies well within
the experimentally relevant parameter regime.

Thus far, the synthesis of BaslrTioOg has suffered from strong disorder due to site inver-
sion effects as the Ti** and I*T ions are of comparable size. However, with refined meth-
ods it might be possible to grow a non-disordered single crystal and perform polarized
neutron spectroscopy. The static spin structure factor is an experimentally accessible
observable with which the existence of a vortex lattice phase could be investigated.
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Chapter 6.

Friedel oscillations and the Kondo
screening cloud

Since its first experimental observation and the subsequent theoretical description and
solution, the Kondo effect (cf. Sec. has been a cornerstone of condensed matter
physics, from the early experiments with iron impurities in gold [19], to heavy fermion
systems, to the highly topical search for Majorana fermions (cf. Chap.[IV). Quantum im-
purity physics has been a ubiquitous and permanent field of study for more than 50
years, and the Kondo effect and many of its varieties and generalizations are by now
well understood. In this light, it is deeply surprising that the real-space physics of the
Kondo effect are still unclear and discussed controversially. The existence of a Kondo
energy scale T suggests a real-space length scale Rx = hvp /Tx where vp is the Fermi
velocity. This length scale is thought to define the extension of the many-body singlet
between impurity and conduction electrons; the infamous Kondo screening cloud, the
“holy grail” [9] of Kondo research. One way of observing this Kondo cloud is in the
charge density oscillations surrounding a magnetic impurity [119H122]. These oscilla-
tions approach their standard form at long distances, while at shorter distances they are
governed by Kondo physics [119]. However, for the typically exponentially small values
of T, the size of the screening cloud is exponentially large, and so far no experimental
evidence has been found. The absence of experimental proof has lead to criticism of the
screening cloud concept [123], yet analytical and numerical calculations clearly show
the appearance of such a length scale in various quantities [15,[124,(125]. Very recently, a
refined scanning tunneling microscopy technique was used to observe Kondo signatures
in the local density of states away from the impurity position [126], and an experimental
verification of the Kondo cloud may finally be within reach.

In this chapter, we discuss general properties of the Kondo screening cloud. We re-
view the occurrence of Friedel oscillations around potential-scattering impurities, and
recapitulate previously found results on the Kondo cloud.

6.1. Occurrence of a length scale in Kondo physics

In the solution of the Kondo problem, using his NRG method, Wilson could prove that the
Kondo groundstate is a singlet state. However, the precise structure of this state remains
unclear. Below the characteristic energy/temperature scale T, the local magnetic mo-
ment on the impurity is dynamically screened by conduction electrons and a many-body
singlet forms. We can relate an energy E to a wave-vectorkvia |k| = E//(hvr), wherevp
is the Fermi velocity. Accordingly, it follows naturally that one can assign a length scale

to the Kondo temperature by
h’UF

kpTk’

Ry ~ (6.1)
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which is the distance at which the effective Kondo coupling becomes large. Investigat-
ing the RG flow (see Sec.[2.1) of the Kondo and Anderson impurity models we find that
going from high to low energies, the screening of the impurity moment sets in when
E ~ Tg. Equivalently, Rx might be considered as the length scale which describes
the spatial range of the Kondo effect. In a real-space RG sense, at the length Ry the
antiferromagnetic coupling becomes large and at distances r > Ry (corresponding to
energies ¥ < Tk the system is described by the strong-coupling fixed point. In this
regime, the impurity degrees of freedom are completely screened. This interpretation is
indeed consistent with Fermi liquid theory in which one imagines conduction electrons
not participating in the screening at r > R to not be affected by the presence of the
impurity. The question remains as to where the screening occurs?

6.2. The screening cloud scenario

The commonly adopted scenarioin the literature (see e.g. Refs. [9,124]) is that of a screen-
ing cloud of a spatial extent R around the impurity. The cloud consists of electrons that
have previously interacted with the local moment and accordingly contain information
about the impurity, and thus, effectively, about each other [9]]. The length scale Rk then
defines the distance to the impurity at which the scattered electrons are not correlated
anymore. The popular picture is that below T, the electrons inside this cloud form a
many-body spin-singlet with the impurity spin. The implication is that the groundstate
of a Kondo system should have the following real-space form:

1
7

The electrons in the cloud around the impurity collectively form a spin—% degree of free-
dom (denoted by |o) ;,,.4> Witho =1} / }) which together with theimpurity spin (denoted
by |0) i With o =1 / |) form a spin-singlet. The extension of the [kondo — singlet) ob-
jectis Ry, and atdistances greaterthan R the local moment on the impurity is ‘hidden’
inside the Kondo singlet. Thus, the rest of the system behaves like a Fermi liquid with al-
tered boundary conditions (compared to the no-Kondo case) since a number of electrons
is removed from the Fermi sea to participate in the screening cloud.

kondo — singlet) = —= (1) )etona — Wiy Metona ) - (62)

6.2.1. Spin-spin correlations

The Kondo effect is a direct result of spin-interactions and the groundstate is given by a
spin singlet. Therefore, a length scale of the Kondo effect should be most directly visible
in spin-spin correlations. In fact, assuming a groundstate of the form given in Eq. (6.2),
the following quantity is suited to reveal information about the screening in real-space:

xs(r) = (8383) + / ar' (5352) (6.3)

[/ |<r

where S”} and S’;’f are the z-components of the impurity spin and the conduction electron
at position r, respectively.

In Ref. [127] a perturbative analysis of x /() in the weak-coupling regime close to the
impurity, < Rx was performed. Moreover, the strong-coupling limit of x ¢(r) for dis-
tances r > Ry was considered in Ref. [128], by application of Noziéres’ Fermi liquid
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theory. In both cases, the spin-correlations are of the same form,
(835%) ~ cos®(kplrl)/r, (6.4)

where the two regimes are distinguished by differing values of the exponent . In partic-
ular, for a one-dimensional system the power-law behavior of the spin-correlators is
-1
Sz A r ) r < RK7
; { L (6.5)
r=°, 1> Rg.

This result has been confirmed by various numerical calculations using different meth-
ods, such as Quantum Monte Carlo [129], an NRG method that was extended in such a
way to be capable of calculating real-space correlations accurately [130], and DMRG cal-
culations [131]. In Refs. [129,131] the value of x ¢(r) was calculated and it was found that
for |r| > R the screening is complete whereas it is not complete when |r| < Rg-.

6.3. Challenges to the screening cloud picture

The common picture described above is intuitive and straight-forwardly interprets the
Kondo length scale as the extension of the the Kondo singlet. This interpretation nicely
captures the Fermi liquid behavior of the conduction electrons in the region outside the
cloud, r > Rpg. However, it also suffers from some subtle problems, which indicate
that the understanding of a Kondo length scale must be—at least slightly—adjusted. One
immediately obvious issue arises when considering the limit of a vanishing Kondo cou-
pling. From Eq. we know that the Kondo temperature depends exponentially on
the Kondo coupling J, so for the Kondo length scale one obtains

_1
Ry Tgl x erod, (6.6)

It is thus obvious that decreasing the coupling between impurity and conduction band
leads to an increase in R, and in the limit of a decoupled impurity, J — 0, the size of
the cloud diverges, Rx — oo. The implication is that in this limit the screening cloud
spreads out over the entire system and all conduction electrons participate in the singlet
state screening the impurity. However, in the limit J — 0 the impurity is strictly decou-
pled on the level of the bare Hamiltonian, and no screening takes place. Turning to the
renormalization group point of view, for a decoupled impurity the system never flows
from local moment to strong coupling and remains at the LM FP as w — 0. The impu-
rity entropy is S(w — 0) = log(2), clearly indicating that the impurity retains a spin-%
degree of freedom in the ground state, and the latter it thus clearly not a singlet.

A second inconsistency arises from the effect of temperature, which introduces a

length scale
fH}F

kT’
This length scale interferes with the detection of the Kondo length scale [125,(130] and as
soon as T > Tk the Kondo effect is completely suppressed. However, for T' > T the
numerical results show no change for the region inside the Kondo cloud, i.e. r < R,
which is inconsistent with the destruction of a Kondo cloud singlet.

Rr

(6.7)
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6.4. Kondo length scale in charge density oscillations

Spin correlation functions seem like the obvious quantity to show a Kondo length scale.
However, numerical investigations of such correlators are currently only feasible using
techniques such as e.g. the density matrix renormalization group (DMRG). Although the
power of modern supercomputers allows for the treatment of fairly long 1D system (on
the order of a few hundred sites), Kondo physics happen at exponentially small ener-
gies, requiring ideally an exponentially large host system. It turns out that charge den-
sity oscillations can be calculated much simpler, e.g. due to the possibility of expressing
Green functions in 1D systems exactly as a simple algebraic formula. The charge density
oscillations in the host system depend only on local impurity quantities, and the only in-
teracting part of the problem is the impurity problem, which can be solved numerically
exactly with the NRG. In this section we show how a Kondo length scale appears in the
charge density oscillations, before turning to the discussion of numerical results in the
next chapters.

6.4.1. Calculation of the charge density oscillations from Green functions

For our analysis of the Friedel (or charge density) oscillations, we now introduce some
important quantities which help us in the actual calculations. A central object in our
work is the retarded single-particle Green function. In its real-space formulation, it is a
function of two positionsr and r’ and time ¢ — ¢/, and it is defined as

Goor (v, 0’5t — ') = —iO(t — 1) {cmr , Ur )}}, (6.8)

where ©(t) is the Heaviside step function which here ensures causality (t > ), {a,b} =
ab + ba is the anticommutator of operators a and b, and ¢, (t) is the annihilation op-
erator for an electron with spin ¢ at position r and time ¢. A physical interpretation of
Goo (r,r';t — t') is that it gives the amplitude for a particle at r’ inserted at time ¢’ to
propagateﬂ into a state at position r and time ¢. With help of a Laplace transformation,
the real-time Green function in Eq. can be expressed in frequency space. For puerly
real frequencies w € R this transformation does not converge, therefore we need to per-
form an analytic continuation, i.e. adding an infinitesimal imaginary part to w. We thus
define the complex frequency argument z = w+1id, where in this notation we henceforth
imply taking the limit of 0 ™\, 0. This finally yields the expression

[e.e]

Gao/(r> I‘/; Z) = <<Car; C:rr’r’>>z - /d(t - t,) eiz(t_t,)Goa’(ra I',;t - t/)v (69)
0

where we introduced the double-bracket notation for the retarded Green function in fre-
guency space. This notation on the one hand reminds us of the fact that the Green func-
tion is really a certain kind of correlation function of two fermionic operators, and it will
on the other hand be convenient later on when applying equations of motion to the
Green function.

The Green function is an essential tool in the description of many-body systems and it
contains a lot of information [132,133]. From it, we can define anotherimportant quantity

'Green functions are often also called propagators.
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in many-body physics, the spectral function

A(r;w) = Z <—1 lim ImGgo(r,r;w—l—i(S))

ooty VTN

= —igi\r%lm Goo(r,r;W0 + 19). (6.10)
In the last equality we assumed the absence of an external magnetic field. In this case,
the Green functions that are diagonal in the spin index are equal, G4 (r,r';t — t') =
G (r,r';t—1") and the summation yields a factor of 2. Following from the interpretation
of the Green function, the spectral function can be understood as the probability density
for puttingin (w > 0) or taking out (w < 0) a particle at r and energy w. As a probability
density, it furthermore fulfills the sum rule

o

/ dw A(r,w) = 1. (6.1)

—0o0

In the cases we consider, the spectral function equals the energy-resolved local density
of states and the charge densities at r and temperature T" can thus be expressed in terms
of the spectral function as [134]

o0

n(r,T) = /de(r;w)f(w,T), (6.12)

—00

where f(w,T) = [exp(w/T)) + 1]~ ! is the Fermi distribution function. At zero tempera-
ture, T = 0, the Fermi function becomes a step function, f(w,0) = ©(—w). For a system
with half-bandwidth D the frequency summation only runs overw € [—D, D], and plug-
ging in Eq. with a Fermi level at e = 0 yields for the charge density at position

r
0

2
n(r)=—=1limIm [ dwG(r,r;w+ id). (6.13)
T 6\
-D

The Green function contains all the required information about the system at hand. For
an interacting system, such as a strongly-correlated impurity coupling to a metallic host,
it is a highly complicated object. However, in the next section we show that it can be ex-
pressed in terms of two components; one contains all the information about the impurity
physics, whereas the other only depends on the geometry of the host system.

6.4.2. Equations of motion and 7 -matrix

Differentiating the Green functionin Eq. with respect to time, for a time-independent
Hamiltonian H we find that ({cy; c§,>>z has the following equations of motion:

2({eyi b)) + ((Leys b)), = ey, e 1) (6.14)

where X is an arbitrary quantum number and .- = [H, -] is the Liouville operator, which
is defined as the commutator with the Hamiltonian. Using these equations of motion,
for a quantum impurity system as introduced in Section[2.1one can derive the following
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important relation for the full Green function in real space, see App.[At
Gr,r';2) = GO, r';2) + GO(r,0;2)T(2)GO(0,1'; 2), (6.15)

where 7 (z) is the so-called scattering T-matrix. The superscript (Y)’. means that these
Green functions are those of the same system without the impurity. These functions do
not depend on the impurity and are entirely determined by the system’s geometry, for
a lattice geometry they are therefore often called ‘lattice Green functions’ Conversely,
Eq. immediately shows that all information about the impurity is contained in the
T -matrix, which for the single-impurity Anderson model (cf. Sec.[2.1.1) is given in terms
of the impurity Green function

T(Z) = V2 <<fa; f;>>z = VQGimP(Z)a (616)

where f; creates an electron with spin o on the impurity orbital. Note that we have
dropped spin indices as the Green functions do not depend on the spin. Summing over
spins, as before, yields a trivial factor of 2. Eq. can be understood in a very intu-
itive way: The second term contains the impurity’s contribution to the non-local Green
function between points r and r’. This contribution is obtained by ‘traveling’ from r’ to
the impurity at 0, evaluating the local impurity 7T-matrix, and then going from there to
positionr.

Having discussed all ingredients to calculate charge densities, we show in Fig.
a diagrammatic representation of the logic we follow in our construction. The main
constituent is the no-impurity (V' = 0) real-space Green function G(©) (r,r;z). Using
Eq. (3.29), we can find the hybridization function of the system, which in turn serves as
an input to the Numerical Renormalization Group. From there one obtains the impurity
Green function and thus the 7-matrix. Finally, plugging Eq. in Eq. we then
integrate over all negative frequencies to retrieve the charge densities at different points
in space. The difference in charge densities compared to the no-impurity situation then
follows directly from

An(r) = n(r) —nO(r)

2
= —=limIm [ dw [G(r, r;w+i0) — GO (r, r;w + i6)

T N\ 0
—-D
2 / 2
L TR dw [G(O) (r,0;w + 15)} T (w +1i6), (6.17)
T N\ 0
“D

where due to time-reversal invariance we could use G (r,r'; 2) = GO (r/, r; 2).

6.4.3. Friedel oscillations

Before considering magnetic impurities and the resulting Kondo physics, we first discuss
the simpler case of a non-magnetic, purely potential-scattering impurity in a system of
non-interacting electrons. The Hamiltonian of the host electrons is diagonal in momen-
tum space and given by Eq. (2.2). The impurity is modeled by a local delta-function po-
tential at position r(, which could be the result of e.g. a single site in a lattice system
having a different level energy than the rest of the homogeneous system. Conduction
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0) f dw
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Figure 6.1.: Diagram depicting the underlying logic of our calculations. From the lattice

Hamiltonian we calculate lattice Green functions G,(fr))(z). With these, the hy-
bridization function A(z) can be obtained which serves as input to the NRG.
After solving the impurity problem with the NRG and calculating the impurity
Green function G4(z), we combine the latter with the lattice Green functions to
calculate the full real-space Green function G,.(z) and finally the charge den-
sities n(r).

electrons scatter from this potential and the full Hamiltonian for this system is given by

H = Z ekclkcgk + Z Kkk,clkcgk,, (6.18)
ko kk'c

where Ky = (ak[ﬂﬁg|ak’> is the scattering amplitude, and |ok) is a Bloch state in the
lattice. The altered on-site energy at position ry furthermore leads to a local change in
the charge density. However, classical electrodynamics tell us that the excess charge at
position ry cannot create a sustained electric field in the metal. Rather, the free conduc-
tion electrons re-arrange themselves to compensate the impurity on a microscopic level.
This charge compensation takes on the form of the so-called “Friedel oscillations” [14]:
A repulsive potential leads to a build-up of charge surrounding the impurity. The spa-
tial decay of these static charge displacements around the impurity is described by a
power-law which is modulated by a characteristic oscillatory behavior with a period of
2kr, where kr is the Fermi momentum. The leading asymptotic form in a d-dimensional
isotropic system is

An(r) =n(r) —no ~ cos(2kr [r — ro| + 70)

y , for |r —rg| = oo, (6.19)
[ — 1o
where n(r) = <CI'CI‘> is the charge density at position r, and ng(r) = ny is the constant
charge density of the homogeneous system in the absence of an impurity. An(r) thus
measures the excess charge for a system with impurity compared to the same system
without the impurity. The potential scattering also leads to a phase shift g = n(cr) in
the conduction electrons at the Fermi level, which depends on the scattering amplitude
Ky . Friedel oscillations have successfully been studied experimentally using scanning
tunneling microscopy measurements [135-138] for various systems.

The occurrence of such density oscillations is a direct result of the potential scattering.
However, when the impurity is not only a potential scatterer, but also has a magnetic de-
gree of freedom, the resulting Kondo physics affect the long-distance form of the Friedel
oscillations in a distinctive way that evokes the elusive Kondo length scale, as we will
discuss below.
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6.4.4. Previous results for the Friedel oscillations in a free electron gas

The behavior of the Friedel oscillations around an impurity is completely determined by
the non-interacting lattice Green functions and the scattering 7-matrix. The latter is a
well-studied object [3,/139] and allows us to make some qualitative statements at this
point. A signature of the Kondo effect is the characteristic resonance in the 7-matrix
which occurs on the order of the Kondo temperature T . Below this energy scale, the
magnetic impurity is screened by conduction electrons. This low energy regime relates
to long distances in real-space, and, accordingly, far away from the impurity the system
is not affected by the (screened) impurity. The only effect remaining at this length scale is
the potential scattering phase shift, and therefore the charge density oscillations should
approach their Friedel form for distances » > hvp/Tk [15]. On short distances, how-
ever, the screening of the impurity is not complete and the impurity is still “visible” to
the charge density oscillations. This purely qualitative analysis already indicates the exis-
tence of a crossover between the two real-space regions r < hvp /Tx andr > hvp /Tk.
The full Kondo Hamiltonian Eq. contains the magnetic Heisenberg exchange inter-
action and also a potential scattering term. It is important to recall at this point that the
potential scattering term vanishes for a particle-hole symmetric impurity. Zero potential
scattering, of course, implies no charge density oscillations. Thus, it is necessary to have
a particle-hole asymmetric impurity configuration in order to create density oscillations.

The occurrence of a Kondo length scale in the Friedel oscillations around an impurity
was first discussed in Refs. [119,]121]. Recently, Affleck et al in Ref. [15] presented more
detailed calculations supplemented by numerical results. There, the authors considered
a Kondo impurity in an isotropic, translationally invariant host system of non-interacting
conduction electrons in d dimensions. In this system the Friedel oscillations are modu-
lated by a universal scaling function F'(r/ R ) which only depends on the Kondo scale:

An(r) ~ ]rl|d [cos (2]6}7"1" - %d + 2770> F(r/Rk) — cos <2kp7" — Wzd)} . (6.20)

Note that if F'(r) is constant this reduces to an expression proportional to the one in
Eq. (6.19). Let us briefly discuss this result at particle-hole symmetry, where Friedel os-
cillations must vanish. To this end, consider a one-dimensional tight-binding system at
particle-hole symmetry. There, the parameters become d = 1, kr = w/2 and ny = 0.
Since (for a lattice constant of one) r is restricted to integer values, the density oscilla-
tions An(r) vanish exactly, as expected.

From perturbative expressions of the 7-matrix, the form of F'(r) for the short- and far-
distance limits were derived. In the vicinity of the impurity, Kondo screening is not yet
complete and

32

81n?(Ry /1)’

The perturbative arguments used in the derivation of this behavior breaks down when
r/ Rk becomes of order 1. But for r > Rp, or equivalenty w < T, Noziére’s Fermi
liquid theory [3] becomes applicable and yields (up to second order in r/ Rg):

F(r/Rg)—1 (r < Rg). (6.21)

194% _ 3P W?
(r/Rk)  32(r/Rk)?*’

with the Wilson number W =~ 0.4128. This number is a universal constant for the Kondo
model which relates the Kondo scale Tk (which is calculated from perturbative high-

F(r/Bi) = =1+ 4 (r > Rg) (6.22)
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energy considerations) to the low-energy T' = 0 impurity susceptibility, which is associ-
ated with the strong coupling regime [3]. Egs. and imply a crossover in the
density oscillations: In the absence of Kondo physics, FF = 1. However, when Kondo
physics are present, F'(r/Ry) is close to 1 for r < Rg and goes to —1 for r > Rk,
which is equivalent to the potential scattering phase shift 79 in Eq. picking up an
additional 7 /2 from the Kondo effect, 9y — 19 + 7/2. Numerical results calculated with
the NRG method presented in Ref. [130] show a good agreement with these analytical
expressions.






Chapter?7.
1D and Quasi-1D lattices

To expand on previous resultsin the literature, in this section we consider numerically the
charge density oscillations in the single-impurity Anderson model on 1D and quasi-1D lat-
tices. InRef. [15] the crossover in the densities were studied for the Kondo Hamiltonian—a
low-energy effective model of the single-impurity Anderson Hamiltonian (see Sec.[2.1).
From the RG perspective, at the Kondo length Rx ~ 1/Tk the system flows from the
local moment fixed point to the strong coupling fixed point. However, in the single-
impurity Anderson model, a second crossover exists at high energies, when the charge
fluctuations are frozen out and the system flows from the free orbital fixed point to the
local moment fixed point. In this chapter we show the existence of a second length scale
given by this high-energy crossover, Rrr. In fact, the entire RG flow in frequency space
is completely reproduced in the density oscillations.

In the first section, we consider the tight-binding limit of a semi-infinite chain with an
Anderson impurity coupling to its end. Then, we show how to generalize the calculation
of lattice Green functions for lattices of a finite width, such as ribbons or tubes. For these
systems, although the geometry of the lattice alters the form of the charge density oscil-
lations, we find equivalent results to the simple 1D case.

7.1. Lattice Green functions

From equation Eq. (6.15) we know that aside from the impurity Green function, the

main ingredient in the calculation of the charge densities are the lattice Green functions
GE(B (z). As discussed above, whereas the impurity Green function is a local quantity, the
Green functions between two points in the system for the case that the impurity is not
coupled to the system, i.e. V' = 0, are non-local quantities. In the following we call these
Green functions “free” Green functions if V' = 0. For a 1D chain, a convenient way to
calculate real-space propagators is to make use of the equations of motion in Eq. (6.14).
This calculation can be extended to also work for systems with a finite width. Fig.
shows the geometries we consider. In this section, we present the equations of motion

method and results for the lattice Green functions.

7.1.1. 1D chain

The simplest host system geometry we consider is a semi-infinite tight-binding 1D chain
at half-filling. It is shown graphically in left part of Fig.[7.1(a). Let us recall the definition
of the single-impurity Anderson model as discussed in Sec.2.1}

H = Hioq + €5ty + Uiy + V'3 ( flegs +Hee.) (71)
o
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(a) 1D chain °

(b) quasi-1D square lattice ribbon

(c) honeycomb tube (periodic boundary conditions in width)

Figure 7.1.: The lattices considered in this section, the semi-infinite configuration is shown
on the left and the infinite system on the right. In the lower illustration, on the
left the honeycomb ribbon is shown with the impurity coupling to all sites.

The host Hamiltonian Hy, for the semi-infinite 1D chain is given by

Hyost = ¢ i Z (czociﬂg + H.c.) . (7.2)

=0 o

Upon transforming the fermionic operators ¢; into a diagonal basis, one finds the disper-
sion relation which in turn yields the bandwidth D = 2|¢| with the hopping amplitude ¢.
As afirst step, we calculate the free Green function at the end of the chain. As we show in
App.[A for the lattice described by Eq. it is given in a continued fraction expression
as

1 1
G9(z) = - , 73
00(2) t° z— tQGéO())(Z) )

z— "
where weintroduced a slightly more compact notation for Green functionsin 1D, G; (2) =

G(r;,rj; z). We can solve for G(()%) (z) and find the closed expression

z— V22 — 412
o) = 2V .4

Further application of the equations of motion then enables us to find arbitrary free
Green functions on the chain, exploiting the important fact that our model only includes
nearest-neighbor hoppings. Given a (not necessarily free) local Green function G; ;(2),
the Green function on the next site is

Gi7i(2’) = Géo(%(z) + t2Gi—1,i—1(2) [G((]?())(z)} ? s (7.5)

)
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Then, using Eqs. and (7.4), one can iteratively calculate any local Green function on
the chain. When V' > 0theimpurity (which couples only locally to the chain site atr = 0)
can be taken as the first site in the chain, albeit with a hopping to the next site given
by V instead of ¢. From this perspective, once we obtained the impurity Green function
Gimp(z) from the NRG, this function serves as a starting point in Eq. (7.5). Finally, for the
difference of the Green functions with and without the impurity, AG,..(2) = Gy..(2) —
an?,? (z) we find:

V2

2r42
Gy (2) = 5 Ginp(2) [1GO()]

(7.6)

Let us remark on two important aspects here. First, in a translationally invariant system
(regardless whether the symmetry is discrete or continuous), the Green functions gen-
erally only depend on the relative distance in real-space, i.e. Gy (2) = Gr_y/(2). Of
course, the coupling of an impurity to a particular site removes this invariance, but also
in a semi-infinite chain with no impurity this symmetry is not given anymore, due to the
chain ending. Second, by transforming only one of the operators in the Green function
(see App.[A) one finds the non-local free Green function

r+1

1 1 .
Gy)(z) = - [t G<0>(z)} = Seirttman(s/(2) (77)

With this, we see that Eq. is in fact equivalent to the Dyson equation Eq. (6.15):

Grr(2) = GO(2) + G (2) V2Gimp(z) G (2). (7.8)
=T(2)

)

T

Fig.shows the three first non-local free Green functions G(()
1D chain calculated from Eq. (7.7).

(z) for the semi-infinite

Infinite chain

So far we have calculated all relevant quantities for a semi-infinite chain. From equations
of motion it follows directly that the infinite system (Fig.[7.7(a), right figure) is easily con-
structed by connecting two semi-infinite chains at = 0. Consider the continued fraction
expressionin Eq. for the Green function at the end of the semi-infinite chain. For the
infinite system, this turns into

G (z) = = . (7.9)

Plugging this function in Eq.[7.5 the real-space Green functions in the infinite system are
then found by

A 5(0) 24 ©0) (17

Gii(2) = Gyo(2) +°Gim1i-1(2) [GO,O(z)} . (7.10)
Note that only our starting point has changed: The function G(()?())(z) inthe lastequationis
still the Green function obtained for the semi-infinite chain, Eq. (7.4). In the lower panels
of Fig. [7.2) we show exemplary results for the non-local Green functions of the infinite
chain.
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Figure 7.2.: Real (solid) and negative imaginary (dashed) parts of the free (V = 0) non-local
lattice Green function fort = —1/2. The top tow shows results for the semi-
infinite chain between sites 0 and r, the bottom row shows similar results for
the infinite chain.

7.1.2. Square lattice and honeycomb lattice ribbons

In the method presented in the previous section, we used the equations of motion to
relate one site to both its neighbors. Importantly, in a one-dimensional chain there is
only a single path connecting two arbitrary sites, and by relating neighboring sites we
could thus completely contain all required information in our calculations. In an infinite
system of dimension > 1, this is no longer true: There is a generally infinite number of
paths connecting any two sites, therefore a rigorous treatment with equations of motion
in real-space cannot yield a result. In Chap. [8|we present alternative ways to deal with
this situation. However, for the same reason it is clear that for systems infinite in one
dimension but finite in the other dimensions, equations of motion are still appropriate.
Here, we present a generalization [140] of the method from the last section, which at its
core is exactly equivalent, albeit formulated in a slightly more elaborate fashion.

7.1.3. Square lattice ribbons

Consider a semi-infinite “ribbon” of square lattice geometry, see the left figure in the mid-
dle row of Fig.[7.1] Let us assume the ribbon to be of width W = 2N + 1, with N € N.
The Hamiltonian of the ribbon (without the impurity) is then given by

t
host_tz Z [ 1oCletime T Clam) oyt T HC|, (7.11)

=0 y=—
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where sz )0 Creates an electron at siter = (z,y)”. The coordinate system we use
here is shown graphically in Fig. The main idea of how to proceed is to group all
sites with the same z-coordinate (which we henceforth call a “column”) into a vector-
valued compound object. Then, we can reformulate the Hamiltonian Eq. in a matrix

notation. To this end, let us define the vector of operators

C(x7N)7U
C(z,N-1),0
Cr,o0 = ) (7'12)

C(CE,—N-"-l),O’
C(IafN)zo'

which contains all annihilation operators for sites in column z. The Hamiltonian (7.11)
can now be formulated as

00 00
Hﬁ(]):')st = Z CI},O'MJICZ‘,U +1 Z (cl,a ’ cm—l—l,o + HC) ) (7-13)
=0 =0

where the matrix M, defines the hopping between all sites within column x. For the sake
of a precise notation, we henceforth denote matrices by an underline. The second term
in the Hamiltonian is the hopping between two neighboring columns, and in the case of
the square lattice is it simply given by the scalar product. Furthermore, as the system at
hand is homogeneous, the hopping matrix M . does not depend on the z-position of the
column, thus M = M. For the square lattice it assumes tridiagonal form and is given

as
(t)

¢
0+ . (7.14)

0 ¢
t 0
M=y

(t)
The entries in parentheses are only present for a “tube system”, i.e. a ribbon with peri-

odic boundary conditions in the y-direction. Fig.[7.3(a) shows an example of a subsystem
described by the matrix M.

With the matrix-valued formulation of the Hamiltonian (7.13), one can now proceed
along the same lines as for the simple 1D case in order to calculate arbitrary free lattice
Green functions between any two sites in the system. Starting, as before, with the cal-
culation of the Green functions at the end of the semi-infinite system, one finds again a
continued-fraction expression as in 1D, however for this system it is matrix-valued:

Go(2) = [A(z) — *[A(2) — *[A(z) — .. ]!
= [A(2) — ?Gy(2)] 71, (7.15)

where the matrix A(z) isgivenby A(z) = z1 — M. G,(z) isthe W x W-matrix of all free
Green functions between operators in cq,:
Gol2)is = O 10 (D) = {00 ool (7.16)
=0 1-7 B (07Z)7(07]) B (Ovi)70’ (Ovj)vo— ’ ’

z

where i,j € [N, N] C Z. Note again that we have omitted spin indices in the Green
functions (but notinthe operators) as the Green functionsin our scenarios do notdepend
on spin. Equally to the 1D case, a closed expression for G,(z) can be found. It formally
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Figure 7.3.: (a) The coordinate convention for the square lattice ribbon. The blue bubble
indicates the column of sites combined into the vector of operators ¢y, (see
main text), the hoppings in which are given by the matrix M. (b) Leaving out
certain bonds generates a “brick wall” lattice which is topologically equivalent
to the honeycomb lattice. Two inequivalent repeating columns are needed to
describe this lattice (solid and dashed bubble), thus requiring two hopping ma-
trices M, and M.

resembles the result for the 1D chain and is given as

(VAG? ~ 471 + A(:))

o7 . (7.17)

Gy(z) =

Furthermore, Green functions between sites in column x = 0 and x = n are obtained by
(cf. Eq. (7.7))
1
Go2) = 7 [t Go()" (719)

where the components of the matrix G,,(z) are the Green functions:

(0)
(G(2)]i; = Gy 0y () = ({00007 Chpy o)) (7.19)

z

Considering the technical features of this method we can thus summarize that the cal-
culation of non-local Green functions in a semi-infinite squarelattice ribbon can be done
by taking a W x W-matrix to the (n + 1)st power. This can be implemented efficiently
by diagonalizing the matrix first and then multiplying the eigenvalues. As the final re-
sult of this section, we consider the V' = 0 case with an impurity coupling to the site at
r = (0,0)”. The charge density difference at positionr = (z, y)” can then be found with
Eq. (6.17), and the Green function AGy,(2) is given by

2
AGrr(2) = =V Ginp(2) ([Gg))(z)]oy) , (7.20)
with the (scalar) impurity Green function Gimp(2).

In Fig.we show the free Green functions G) (z) for a semi-infinite ribbon of width
W =3andr = (r,0)L. A comparison with Fig. reveals that the Green functions are
of a similar structure, however decorated with more complex features. In the figures we
have plotted the data in units of the half-bandwidth D.
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Figure 7.4.: Real (solid) and negative imaginary (dashed) parts of the free (V' = 0) non-local
lattice Green function fort = —1/2. The top shows results for the semi-infinite
ribbon of width W = 3 between sitesrg = 0 and r = (r,0)7, the bottom row
shows similar results for the infinite system.

Bandwidth of the ribbon lattices

In the 1D chain, the half-bandwidth is given by D = 2t. For the ribbon systems, with
increasing width W the bandwidth grows monotonously from the D = 2t value and
asymptotically approachesits 2D limit D = 4t, which is the half-bandwidth of the infinite
square lattice.

Infinite ribbons

Along the same lines as discussed in the previous section, we can connect two semi-
infinite ribbons to model an infinite one. Eq. (7.15) then assumes the form

Go(2) = [A(z) — 262Gy (2)] 7, (7.21)

while the remaining equations stay unchanged. As before, we show results for the non-
local Green functions of an infinite ribbon in the bottom row in Fig.[7.4]

While in principle these results allow for precise calculations of arbitrary Green func-
tions in (semi-)infinite 2D lattices of finite width, the size of the matrices and the increas-
ing number of oscillations in the resulting functions quickly make wide systems unfeasi-
ble. However, this method still turns out to be very useful: With a slightly more involved
approach (but following the same logic) that we discuss in the next section, the calcu-
lations can be extended to a honeycomb lattice, allowing for the precise calculation of
Green functions in e.g. a tight-binding description of a carbon nanotube.
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7.1.4. Honeycomb lattice tubes

The first theoretical description [141} 142] and subsequent experimental realization
[143l]144] of single-walled carbon nanotubes has led to remarkable progress in numerous
fields such as engineering [145H147], science [148] and even medicine [149]. Due to their
minute width, nanotubes can be modeled as 1D systems [141]. However, the method we
present here describes the full tube in a tight-binding approximation and thus allows
for a more detailed examination. From the point of view of our previous sections, a
carbon nanotube can be viewed as a honeycomb lattice ribbon with periodic boundary
conditions in the width-direction, see Fig.[7.1(c). The 1D chain and square lattice systems
considered so far have a unit cell of one site. Furthermore, due to the spatially homo-
geneous geometry, after grouping sites in vectors c;, we required only a single matrix
M and the identity 1 to describe the hopping in the system. The honeycomb lattice,
however, is bipartite with a unit cell consisting of two sites, distinguished by a different
shading in the figure. For our purposes, it is important to realize that, topologically, the
honeycomb lattice is equivalent to a “brick wall” lattice, therefore allowing us to treat it
as a square lattice with certain bonds missing.

A nanotube is typically characterized by the direction in which the graphene sheet has
been “rolled up”, i.e. the direction perpendicular to the tube axis. More specifically, going
around the tube defines a vector in the plane of the graphene sheet,

C = naj + mao, (7.22)

where a, /, are the two lattice vectors of the honeycomb lattice, see Fig.. Depending
on the (relative) values of n and m, one discerns between three classes of nanotubes:
zigzag (n,0), armchair (n,n) and chiral (n, m). While zigzag nanotubes are insulating,
the armchair nanotubes are metallic [150]. Therefore, since we are interested in the
Kondo in the tube, in the following we focus on the armchair geometry.

As shown in Fig.[7.3{b), a honeycomb lattice ribbon is composed of two inequivalent
columns of sites, described by the two matrices M ; and M, which alternate throughout
the ribbon. The Hamiltonian for the tube is then given by

Honey __ 2 : t t
Hhost - CI,UMICm,0+ E Cz,oMZCz,o

reven rodd
L—-1

+ 3t (e Carro +He). (7.23)
=0

Asinthesquare lattice case, the matrices M , describe the hopping between sites within
a given column. For the armchair system

0
t

O O o+
+~ O O

o O
+ O O
S O o+

(7.24)

o O o+
o O
<

)

Il
+~ O O
O o+

0 t 0
respectively. The entries in the upper right and lower left corners of Ms wrap the ribbon
around to form a tube. As before, we can formulate a matrix-valued continued fraction
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Figure 7.5.: Negative imaginary (dashed) parts of the free (V' = 0) non-local lattice Green
function on the semi-infinite honeycomb tube with a circumference of 16 sites.
We leave out the real part for clarity. Note the different y-scale between the
first and remaining two panels.

expression for the Green function at the end of a semi-infinite system. Defining, as before,
matrices A, (z) = z1 — M, with o = 1, 2, the matrix of Green functions at the end of a
semi-infinite system which ends in a column described by A, (for instance, the system
shown in Fig.[7.3(b) ends on a column described by M ;) can then be expressed by

Go(2) = [Aa(2) — #Ga(2)] ', (7.25)
where @ = 2 for o« = 1 and vice versa. Since A4, and A, are block-diagonal and have full
rank they are invertible. Considering—without loss of generality—the matrix G, we find
(we omit the frequency arguments for notational clarity)

1
G, = ﬁéfl <\/(A1A2)2 — 41241 Ay + A1A2> : (7.26)

The matrix G5 can be obtained from G viaGy = Alglégl and vice versa. While this ex-
pression is indeed exact, it is ambiguous since the square root of a W x W -matrix leaves
a choice of 2" sign-combinations. However, there is one physical solution: Since the
entries of the G, matrices are retarded Green functions, they need to fulfill the Kramers-
Kronig relations.

Along the same lines as before, we can now find Green functions along the tube. For
conciseness and clarity, we revert our notation to the one used previously: The matrix of
Green functions connecting column n and column m are denoted by G(n,m; z). Then,
assuming the Green function matrix G(0, 0; z) for the system in Fig. we can obtain
the matrix of Green functions connecting the zeroth column to the first column by multi-
plying with G, from the right or left:

Q(Oa 1, Z) =t Q(Oa Oa Z) QQ(Z)’ (7273)
G(1,0;2) =t Gy(2) G(0,0; 2). (7.27b)

Using Eq.[6.15} the difference in Green functions in column one is then with and without
the impurity

AG(1,1;2) = tGo(2)G4(2) VEG4(2) By tG,(2)Gy(2) . (7.28)
———— —— ———
G(1,052) =T (z) G(0,1;2)
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a)

Quantum dot region

Figure 7.6.: (a) Schematic picture of an armchair nanotube, showing a region gated off from
the rest of the tube by gates V... This region functions as a quantum dot. We
model such a setup by coupling the spin-% impurity to all sites at the end of
the nanotube. (b) The vector na; 4+ mas in which the graphene sheet is “rolled
up” determines its geometry. Shown are the two vectors (n, n) (armchair) and
(n,0) (zigzag) which lead to non-chiral nanotubes.

Where B isa W x W-matrix determining how the impurity couples to the system. This
result, of course, can be iterated and eventually leads to

G(n,n;2) =t* G, (2) G(n —1,n — 1;2) G, (2), (7.29)

where « alternates between 1 and 2, reflecting the alternation of the geometries along
the nanotube. In Fig.[7.5|we show results for the local and non-local Green functions ob-
tained by application of Eq. (7.27a) for a tube of width W = 16. Because of the periodic
boundary conditions in the y-direction, the system is translationally invariant in this di-
rection. Recall that the entries of the matrix G(0, ; z) are the Green functions

(0)

G(0,752)i5 = (e chy)). (7.30)
and from the translational invariance it follows that all diagonal entries must be iden-
tical. The imaginary part of the diagonal entries, Im G(0, 0; w);;, is gapless indicating a
metallic behavior for the armchair nanotube [141].

Impurity setups in nanotubes

In real experiments with carbon nanotubes, the impurity is typically constructed by gat-
ing off a part of the tube, as shown in Fig.[7.6] The blue rings depict applied voltages
that gate off the confined red region. This region functions as the quantum dot [151,/152],
whereas the rest of the tube is the lead. The important observation at this point is, that
since the “impurity” is merely a part of the nanotube, it couples to all sites at the end.
This justifies the picture in Fig.[7.1[c). We show in App.[Alhow to determine the matrix B
for arbitrary cases of the impurity coupling to multiple sites. In the case at hand, we find
that the connection matrix consists only of 1’s:

1 ... 1
By=1|: . ]. (7.31)
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Figure 7.7.: Non-local Green functions appearing in the calculation of the charge densities
in a semi-infinite nanotube where the impurity couples to all sites at the end.
The functions are divided by the number of sites in the tube’s circumference
W.

Equivalence of a nanotube to a 1D chain

In Eq. we have formulated the Dyson equation for the nanotube. As seen in the last
section, for the situation which resembles most that of experiments, the impurity couples
to all sites of the same sublattice at the end of the tube. With the corresponding matrix
from Eq. (7.28), we find numerically that the hybridization function for the impurity is
in fact equivalent to that of a 1D chain, albeit multiplied by the number of sites in the
circumference of the tube and shifted by t. In fact, in this specific scenario, Eq. can
be formulated as

Grano(z) = W [G&?}(z — 1) + Gz — 1) V2Cinp(z — 1) GO (= — t)} . (1.32)
where W is the tube circumference, and all functions on the right-hand side are those
of the simple 1D chain. The bandwidth of the nanotube system, however, is D = 3t, i.e.
the band is given by w € [—3t, 3t]. We show examples of the resulting Green functions in
Fig.[7.7]

It is important to note that this special relation only holds when the impurity couples
to the nanotube in the fashion described above. Therefore, the description of the Green
functions in terms of the simple objects of the 1D chain can only be applied when using
Eq. since it is a direct consequence of the particular form of the matrix B,,. If one
considers e.g. the case of an impurity side-coupled to an infinite nanotube, this result is
not valid anymore and the full matrix-valued method must be applied.

7.2. Impurity Green functions

The T-matrix is proportional to the impurity Green function, see Eq. (6.16), which we
calculate using the NRG. We discussed in Sec.[3.5that all required information about the
host system is contained in the hybridization function A(w), which is proportional to the
local Green function of the site to which the impurity connects, see Eq. (3.29). In this
section we present results for the impurity Green functions entering the calculation of
the densities.

The negative imaginary parts of the local Green functions for the semi-infinite chain
and the semi-infinite ribbons are shown in Figs. respectively. The Green func-
tions for the effective 1D system of the armchair nanotube are shown in Fig.[7.7] Kondo
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Figure 7.8.: Negativimaginary part of the impurity Green function, —Im Gimp, (w), obtained
for the semi-infinite 1D chain with impurity parameterse; /D = —0.07,U/D =
0.2 and V/D = 0.075. In the left panel the “Hubbard satellites” are seen at
energies €5 and €5 + U, alongside the sharp, narrow Kondo resonance at the
Fermilevel,w = 0. Theright panel shows the same data on a logarithmic scale.
The Kondo temperature Tk can be defined as the full width at half maximum
of the resonance, here indicated by a dashed line.

physics play out on exponentially low energy scales, and while the differences in the lat-
tices we consider here lead to different features in the hybridization functions on energy
scales of the band edge, w ~ O(D), around the Fermi level each system can be approxi-
mated by a constant hybridization function. Unsurprisingly, the corresponding impurity
Green functions are highly similar, only differing slightly at higher energies. Whereas the
spectral function in the host system is given by Eq. (6.10), the impurity spectral function
is defined similarly as
2 .. .

Aimp(w) = - %1{1(1) Im Gimp(w + 0). (7.33)
In Fig.[7.8)we show the spectral function obtained for an impurity at the end of a semi-
infinite 1D chain, normalized so that the Kondo resonance has a maximum at 1. The
charge fluctuations in the Anderson impurity model lead to two high energy resonances,
known as the Hubbard satellites. These resonances are associated with the FO FP, they
occur at energies relating to the energy cost of adding one electron (¢ ) and a second en-
ergy (es + U) to the unoccupied impurity. The slow rise of spectral weight, ~ 1/ log(w)?,
is characteristic of the LM FP, and finally at the Kondo scale, T, the Kondo resonance
saturates. Here, the system is described by the SC FP, and results form Fermi liquid theory
show an asymptotic behavior ~ 1 — w?, whereas the asymptotic behavior for w > Ty
can be calculated perturbatively. The asymptotic functions are given as

1—a(w/Tg)? w<Tk

mlm AAimp(w) = { b
cHogtrmr @ > T

(7.34)

shown in the right panel of Fig.[7.8]

7.3. Real-space RG flow in the charge densities

Referring to the diagram in Fig.[6.1, we are now equipped with all necessary Green func-
tionsto calculate the charge density oscillations. We find that every relevant energy scale
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in the impurity problem leads to the existence of a characteristic length scale in real
space. In fact, the entire RG structure is reproduced in the charge density oscillations,
which is our main result of this chapter. This confirms the results for the Kondo scale in
Ref. [15], and extends them to a more comprehensive picture in terms of the entire RG
flow.

7.3.1. 1D chain

A key point in our results is that the real-space charge densities are obtained from an
integral transformation of the 7-matrix, given by Eq. (6.17). The lattice Green functions
are complex objects, but generally become highly oscillatory for far distances [15]. For
the 1D chain, using Eq. and expanding to first orderinw < D the densities are given
by

0

_i 1\l iw(r+1)/t
7rt21m( 1) /dwe T(w). (7.35)

An(r) ‘WSD

—00

The important point is that in the |w| < D limit in 1D, equation Eq. takes on the
form of a Fourier transformation. The inverse is generally well-defined and thus we ex-
pect all information contained in the 7-matrix to be equally contained in the density os-
cillations. Indeed, we find that the full RG structure of the underlying quantum impurity
problem is wholly reproduced [125] in the spatial variation of An(r), as shown in Fig.[7.9]
There, we compare the energy dependence of the 7-matrix with the space dependence
of the densities, normalized by the pure potential scattering contribution AnP*(r) atlong
distances. While the energy scale of the local moment crossover 77,5 ~ O(U) was cho-
sen to be similar for each system in the figure, the Kondo temperatures are widely differ-
ing. The difference between T75; and T’k is deliberately tuned to be exaggerated to yield
a clear energy and scale separation. The densities in the lower panel exhibit RG flow be-
tween all three fixed points as a function of distance. The crossover from local moment
to strong coupling regime is given by a sign change in the oscillations, as discussed in
Ref. [[15] for the Kondo model.

The two crossover points at Ry s and Rg can be easily identified in the charge den-
sities and we indeed find the expected results that Ry ~ 1/Tpa and R ~ 1/Tk.
In particular, as the impurity-host coupling decreases, the length scale Ry grows and
finally diverges, Rx — o0, for the case of an uncoupled impurity. The impurity then
persists as a local magnetic moment and the long-distance behavior in real-space is de-
scribed correspondingly by the local moment fixed point. In that sense, the region r <
R isnot perse a “screening cloud”, but contains an internal structure differentiating re-
gions described by free orbital and local moment physics from regions at ~ R in which
screening occurs.

7.3.2. Square lattice ribbons

With the RG flow fully contained in the charge density oscillations of a 1D system, we now
turn to quasi-1D systems of a finite width—the ribbons discussed above. As before, we
use Eq. to calculate the densities, with the lattice Green functions obtained from
Egs. and (7.18).

Fig.[7.10]shows the structure in the charge density oscillations for ribbons of different
widths with an impurity coupled to the site at r = (0,0). The density oscillations are
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Figure 7.9.: Comparison of the spectrum vs. inverse frequency (upper panel) and the nor-
malized excess charge density vs. distance (lower panel) for the T' = 0 Ander-
son model on a semi-infinite 1D chain. The parameters of the Anderson model
are for all systems V/D = 3 x 1072 and ¢4 /D = —0.8 x 1073, The Coulomb
interaction wastunedtobe U/D = 1x1073,1.125/D x 10~3 and 1.25 x 103
(solid, dotted, and dashed lines). The RG fixed points describing the different
regions are given as free orbital (FO), local moment (LM) and strong coupling
(sC).

strongest going diagonally away from the impurity. At the boundary of the system they
are reflected, thus generating a characteristic zig-zag pattern. We discuss the origin of
the focusing along the diagonals in more detail in Sec. The more complex matrix
structure of the problem does not allow us to investigate the behavior of the charge den-
sities to such far distances as in the simple 1D case. However, by choosing parameters
such that the Kondo temperature becomes large, we can push the Kondo length scale
to small values, R ~ O(10%), thus making it possible to examine the Kondo crossover
without the need to go to very long distances. As seen in Fig.[8.1, when going away from
the impurity along the central line where y = 0, the zig-zag pattern leads to the oscilla-
tions being strongest every (W +1)st site. The absolute values of the density oscillations
on these sites, |An(z, 0)|, are shown in Fig.[7.11|for a strip of width W = 9. As in the 1D
case discussed before, the density oscillations change sign at the Kondo length scale,
which leads to a sharp dip in the absolute values. We find a good agreement with the
expected behavior of R ~ 1/Tx where the Kondo temperature is extracted from the
thermodynamics, e.g. the impurity entropy. This behavior is demonstrated in Fig. [7.17]
where the dip in the density oscillations moves toward the impurity for greater values
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Figure 7.10.: Charge density oscillations for ribbons of widths W = 9,11, 13. The size of the
circles is proportional to the density differences An(r), the red (blue) circles
are > 0 (< 0). The density oscillations are clearly strongest diagonally away
from the impurity, and reflected on the boundary. The impurity has a level
energy of ey /D = —0.07, an on-site Coulomb interaction of U/D = 0.2 and
a hybridization strength V/D = 0.075.

of the hybridization V. From Egs. (2.14) and (2.10) we know that the Kondo temperature

grows with V, since
T U
% ~ 2V, /%e p0aVE (7.36)

therefore confirming the observed behavior of the dips. The density oscillations in
the square lattice ribbons possess a non-trivial structure, but the characteristic Kondo
crossover is nevertheless still present.

The dimension of the matrices used in the calculation of the Green functions grows
linearly in the width of the ribbons. The matrix multiplications and diagonalizations have
a numerical complexity that scales as O(W?3). Furthermore the lattice Green functions
obtain more features for wider systems, therefore requiring the numerical integration
of Eq. to be done more accurately. In the next chapter we present two different
methods to investigate the infinite square lattice. However, it should be noted at this
point that the equations of motion method introduced here has the advantage that it
can be expanded to treat disordered system by introducing local level energies on each
site, e,. Furthermore, this method can also be used to describe three-dimensional slab-
type lattices.
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Figure 7.11.: Charge density oscillations for a ribbons of width W = 9, taken along the
central line where r = (z,0). Plotted are the absolute values on a log scale,
where the sign change at ~ Ry is shown as a sharp dip. The results shown
are obtained for parameters e; /D = —0.07,U/D = 0.2 and V/D = 0.075
(circles) and V/D = 0.078 (crosses, dotted line), respectively. The triangles
show the oscillations for a pure potential scatterer where e;/D = —0.07,
U=0andV = 0.075.

7.3.3. Nanotubes

We discussed previously how the impurity setup that we employ for the nanotube leads
to an effective 1D model for the densities. Using again Eq. in Eq. leads to an
asymptotic expression for the charge oscillations along the tube:

0
An(r) Wb —%Ime%%ﬁﬁdﬂ) / dw e_i%(“_l) T(w)
T
\/g 0
w%@w/Q —@Im efi%(ﬂrl)(_l)ﬂrl / dw eiw(r+1)/t T(\/§W/2) (7.37)

The expression in the last line is essentially that for the 1D chain in Eq. (7.35), however
multiplied by a factor v/3/2 and with an additional modulation factor of e =5 ("*1), The
argument of the 7-matrix is also rescaled by the factor v/3/2 ~ 0.86, which slightly
changes the Kondo temperature and accordingly the Kondo length scale. Assuming a
non-interacting impurity, U = 0, the Friedel oscillations due to the potential scattering
thus decay similarly to the simple 1D chain as ~ 1/r, superimposed by a modulation
with a period of three sites. In Fig.[7.12) we compare results obtained numerically from
Eq. with the asymptotic result from Eq. (7.37), proving that the 1D description of
the nanotube is justified.

For a correlated impurity, U > 0, we again find the RG flow contained in the density
oscillations. However, the modulation of the densities results in essentially three sets of
densities, see Fig.[7.12] In Fig.[7.13)we show the same comparison as in the simple 1D case.
In the lower panel, each line connects densities belonging to one of the three subset of
sites, given by 3n+i,wheren € Nandi = 0, 1, 2. Atboth length scales, the local moment
scale Ry and the Kondo scale Ry, we see a change in the density oscillations. How-
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Figure 7.12.: Charge density oscillations along a nanotube for pure potential scattering at
U/D =0,e/D = —0.1,V/D = 0.167. The extra phase in the expression for
the densities, Eq. (7.37), introduces a periodicity of three sites.

ever, contrary to the simple 1D case, the Kondo crossover does not show up as a simple
sign change. Only one of the three subsets changes sign whereas the other two grow in
magnitude. At distances r < R, the density oscillations are thus strongly suppressed
and only at r > R do they reach their simple potential scattering behavior.

7.3.4. Experimental observation

We have shown that the entire information of the full RG flow is contained in the charge
density oscillations surrounding an Anderson impurity in a simple 1D chain, but also in
quasi-1D nanoribbons and nanotubes. While the nanotube we described has a realistic
circumference of 16 sites (or 8 hexagons, respectively), the density oscillations decay as
a power-law and in a real system disorder and noise quickly render a measurement to
the required accuracy impossible at this point in time. In fact, the recent success [126,
153H155] of measuring signatures of the Kondo effect in the local density of states only a
few sites away from the impurity indicates that direct experimental results for the charge
density oscillations hundreds of sites away from the impurity are currently out of the
question.

Very recently, a different proposal for the measurement of the Kondo cloud has been
put forth [156], however as of the writing of this thesis no experimental results to this end
have been published.

7.4. Summary

We have calculated the static charge density oscillations due to a particle-hole asym-
metric Anderson impurity in one-dimensional and quasi-one-dimensional lattices. The
description of an impurity problem in terms of an RG framework is generically a function
of energy or distance. The density oscillations are given in terms of an integral trans-
formation of the 7-matrix, which itself is related to the impurity local density of states.
As such, the entire information of the RG flow, which is contained in the 7-matrix, must
equally be contained in the static density oscillations. We can directly confirm this con-
cept numerically, showing that the RG flow including all fixed points is recovered in the
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Figure 7.13.: Comparison of the spectrum vs. inverse frequency (upper panel) and the nor-
malized excess charge density vs. distance (lower panel) for the 7" = 0 Ander-
son model on a semi-infinite 1D chain. The parameters of the Anderson model
areforall systems V = 0.75 x 1072 and ¢ = —0.8 x 10~3. The Coulomb in-
teractionwastunedtobe U = 1 x 1073,1.125 x 1073 and 1.25 x 10~3 (solid,
dotted, and dashed lines).

envelope function of the density oscillations.

Furthermore, we used a matrix-valued equations of motion approach for the calcula-
tion of Green functions on square lattice ribbons and honeycomb lattice nanotubes. In
the case of the latter, we can show that an experimentally relevant setup can be mapped
to an effective 1D chain with an extra phase factor.

Finally, our results suggest a slightly adjusted understanding of the Kondo screening
cloud. We conclude that the region inside the Kondo screening cloud is described by
the local moment fixed point, and the region outside is described by the strong coupling
fixed point — the screening of the impurity does not occur before the system flows to the
strong coupling fixed point at distances on the order of ~ R.



Chapter 8.
Square lattice

Calculating Green functions for arbitrary lattices of dimension d > 1 to high accuracy
is generally a formidable task. Using equations of motion works well in 1D and can be
extended to quasi-1D (see the previous chapter). The computationally critical part in the
calculation is the repeated inversion of a matrix, an operation with generally scales as
O(N?), and thus the complexity of the calculations grows strongly with the width of the
system, makingitintractable for an infinite 2D system. One could express the Green func-
tions in k-space and perform a Fourier transformation to generate the real-space repre-
sentation. However, this involves a d-dimensional integral over highly oscillatory func-
tions which is numerically hard, especially when the required accuracy of the result is as
high as in our case. One thus has to look for more specialized methods tailored to the
particular lattice under consideration.

For simple cubic lattices (such as the square lattice), arbitrary Green functions in d di-
mensions can in fact be calculated in a very efficient manner via their lower-dimensional
counterparts. More specifically, square lattice Green functions are given by a convolu-
tion of two 1D Green functions. This result was presented for local Green functions in
Refs. [157},/158].

Furthermore, recursive methods for various lattices—among them the square lattice-
have been found which do not require any integrations [159,160]. Although these meth-
ods are exact, they suffer greatly from build-up of numerical error, which so far can only
be circumvented for certain high symmetry directions on the lattices. For the square lat-
tice, such a direction is along the lattice diagonals. We argued in Sec.[8.1]that most of
the intensity of charge density oscillations is focused along the diagonals and thus this
method—which we will call Morita’s method after its inventor [159]—allows us to examine
these to high accuracy.

In the following we discuss some properties of the Friedel oscillations on a square lat-
tice, then we briefly review the convolution method for arbitrary Green functions and
Morita’s method for functions along the diagonals. Finally, results for the densities and
the Kondo RG flow are presented.

8.1. Friedel oscillations on the square lattice

The results for the density oscillations on the square lattie ribbons considered in Chap.
showed an example where the lattice geometry strongly influences the real-space
physics. Turning to an infinite 2D system, the arguably simplest lattice configuration is
that of a square lattice: Its lattice vectors are a; = aé, and a; = aé,, where ém/y are
the cartesian basis vectors and a is the lattice constant. The unit cell is given as a square
of area a2, containing one site. In reciprocal space, the first Brillouin zone is a square
with an area of a?/(472). For the remainder of this chapter, we set the lattice constant

109
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toa = 1. The bath Hamiltonian we consider is

Hyan =t ) (CI‘,UCI",J + H.c.) , (8.1)

(rr’)o

where the site positions arer = (z,y)” = za; + yaz and the summation runs over
nearest neighbors. This Hamiltonian describes non-interacting electrons and it can be
diagonalized by Fourier transformation, yielding the dispersion relation

e(k) = t[cos (kg) + cos (ky)] , (8.2)

wherek = (k,, k,)7 isavectorin thefirst Brillouin zone. The bandwidth 2D of the model
is determined by the dispersion’s extremal energies and is readily found to be 2D = 4t.

Despite its geometrical simplicity, the square lattice gives rise to some interesting phy-
sics. Its influence on Friedel oscillations has been studied before [161,162], and in the fol-
lowing we would like to give an intuitive picture of the results, following the arguments
in Ref. [163]. Green functions can be understood as a description of how electrons of en-
ergy w move from a point source r’ to other points r in the system. Furthermore, charge
density oscillations in a system fundamentally result from scattering processes of con-
duction electrons on an impurity and can be calculated from the real-space Green func-
tion Gy (w + 6), cf. Eq. . It is thus clear that the shape of the Friedel oscillations
is directly related to the propagation of electrons in the system. Indeed, by examining
the electron’s group velocity (determined by the Fermi surface of the system), one can
identify regions where electron transport and thus density oscillations are strong. The
group velocity is given by [110]

vg(k) = %Vka(k), (8.3)
where e(k) is the band structure and the gradient is taken with respect to the wave vector
k. When many group velocity vectors point in a certain direction, electron flux in this
direction will be greatly enhanced. This effect is called electron focusing [163] and in the
following we examine this effect on the square lattice. At half-filling, the Fermi surface
is determined by £(k) = 0, which for the square lattice dispersion from Eq. is the
contour given by |k.| 4 |k,| = 7, as shown in Fig.[8.] The group velocity is normal
to the Fermi surface, and along the flat edges the group velocity vectors are all parallel,
resultingin a very strong electron focusing along the lattice diagonals. Therefore, Friedel
oscillations due to a potential scatterer have greatest intensity going diagonally away
from the impurity [163}/164]. After presenting results for the full system, we specifically
focus on the lattice diagonals since most of the charge density is centered along them.

8.2. Green functions on the infinite lattice

In principle, lattice Green functions for arbitrary lattice with translational symmetry can
always be obtained from a straight-forward Fourier transformation. While this approach
is of great usefulnessin analytical treatments, it is usually only feasible when considering
continuum limits in field theories. Here, we are rather interested in calculating (numeri-
cally accurate) effects of the microscopic features of the lattice. The Fourier transforma-
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k. /7

Figure 8.1.: Left panel: The dispersion e(k) of the square lattice in the first brillouin zone
for ¢t = 1. Right panel: The dispersion shown as contours of constant energy.
The Fermi surface e(k) = 0 at half-filling is shown as the solid black diamond.
The group velocity v, along the Fermi surface is strongly focused along four
distinct directions (arrows). The group velocities are largest at the center of
the flat edges of the Fermi surface.

tion for real-space Green functions on the square lattice are given as

D
1 . /
Grr/(z) = \/72—7]_ / dk €Zk'(r_r )kak/(z)
)

1 k- (r—r’)

67, “((\r—r
= — k— 4
ﬁﬂ/d z—e(k)’ (84)

with the square lattice dispersion (k) given in Eq. (8.2). The main problem with this ap-
proach is the computationally involved 2D integral. Since this transformation has to be
performed per frequency argument w, it is unfeasible to perform the integration to the
required accuracy each time. Another route could be to employ Discrete Fourier Trans-
formation methods. There, however, the system effectively acquires a finite size. Further-
more, in both cases, to avoid divergencies in the integrand, we must always implement a
finitedin z = w—+1id, which broadens the resulting Green functions and further decreases
the accuracy.

While this approach is thus not viable for our purposes, we must resort to other meth-
ods of calculating the lattice Green functions. In the following, we present two such
methods for the square lattice.

8.2.1. The convolution method

In Refs. [157,/158] a method was introduced to calculate lattice Green functions for a d-
dimensional simple cubic lattice from a convolution of (d — 1)-dimensional Green func-
tions. In the case of the 2D square lattice, lattice Green functions can then be obtained
from Green functions for the one-dimensional chain, viz.

D
G?D(w +1i6) = / dw’ Gi0 (W' — w +i6) GLY (w + id), (8.5)

—-D
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wherer = (z,y) andr’ = (2/,%/), and G}C{?D, (2) = ((ca; cL))z is the (non-local) lattice
Green function for the chain as discussed in the previous chapter. Using the commonly

adopted sign * for the convolution operator we can rewrite this as
2D 1D 1D
G (2) = Gy (2) x Gy i (2). (8.6)

The usefulness of this result lies in two important facts:

e The 1D Green functions are simple objects for which a simple analytical expression
exists, see Sec.[7.1} and they can thus be calculated very efficiently.

e The convolution of two functions is equivalent to a multiplication of their Fourier
transforms. Thus, instead of Fourier transforming a 2D object, now we only need
the Fourier transformation (and back-transformation) of a 1D Green function, a
much simpler task. The Fourier transformation can be carried out numerically
very efficiently using the Fast Fourier Transformation algorithm, an excellent im-
plementation of which can be found in the FFTW3 library [165].

We employ this method for the investigation of the shape and extension of the Kondo
cloud in the square lattice in Sec.[8.4]

8.2.2. Morita’s iterative method

The convolution method from the last subsection is a powerful tool for the calculation
of Green functions. However, due to the non-trivial numerical operations such as the
Fourier transformation, the accuracy is thus far high enough to produce satisfactory re-
sults for considering distances from the impurity of only a few hundred sites.

With regard to the exponentially large length scales associated with the Kondo effect,
we now introduce a different method of calculating Green functions on the square lat-
tice, which is constrained to work only along the lattice diagonals. As discussed in Sec.
however, this is in fact precisely the region that we expect to find the strongest den-
sity oscillations. For the sake of clarity, in this section we use a slightly different notation
for the Green functions. We are only concerned with Green functions on the lattice diag-
onals and can therefore express the Green functions only in terms of the distance to the
impurity along the diagonals,

G(n;2) = Gro(2), (8.7)

wherer = n(é, +&,)andn € N.

The algorithm we use was first introduced by Morita in Ref. [159]. However, in its orig-
inal formulation it is extremely sensitive to numerical errors and only generates reliable
results when |r| < 30. A refinement of this method was proposed in Ref. [160], strongly
increasing its numerical stability. As a starting point we require the local lattice Green
function G(°)(0; z), and the non-local Green function connecting the origin with its diag-
onal neighbor, G(©)(1; z). These can be expressed exactly as:

GO0;2) = Z K(D/2), (8.9)
2 /22 z
GO(1;2) = p— <8 — 1> K (4/2) = -B(4/2), (8.9)

with the half-bandwidth D = 4¢. K(x) is the complete elliptic integral of the first kind
and E(z) is the complete elliptic integral of the second kind. From here, Morita’s method
provides a recursive scheme which we briefly describe in the following.
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The Green function G(°)(n; z) can be related to G(*)(n — 1; z) via a (frequency- and
distance-dependent) factor R(n; z). The inital equation of the recursion is thus

GO(1;2) = R(0,2)GO(0; 2). (8.10)
Plugging in Egs. and yields
222 E(D/z)

The values of R(n, z) for n > 0 are then given in terms of the previously found R(n, z)
by the following formula [160]:

CA(n+1) (222 (321%)

Since R(n + 1, z) is given only in terms of R(n, z), this way one can calculate lattice
Green functions along the diagonal of the square lattice iteratively in a numerically very
efficient manner. After calculating R(m, z) for every 0 < m < n, we find

n—1

H R(m, z)

m=0

GO (n;z) = GO(0; 2). (8.13)

The resulting Green functions are those of an infinite lattice, that means we neither have
to perform any broadening nor do we have to deal with finite size effects. Furthermore,
once the functions in Egs and are known, the remaining calculation is simple
and can be performed very efficiently by a computer. Therefore, this method allows us
to generate highly accurate results, which we use to discuss the real-space RG flow in the
square lattice in Sec.[8.5]

8.2.3. Results for the Green functions

In Fig. We show results for the square lattice Green functions, G(©)(n; z) for various
values of n, calculated using the recursive Method by Morita. The arguably most striking
feature of these functions is the van-Hove singularity at the Fermi level, where the imagi-
nary part of the Green functions diverges logarithmically, which we discuss in more detail
in the next section.

8.3. Impurity Green functions

In Sec.[7.2]we presented impurity Green functions for the Anderson model for the 1D and
quasi-1D system. In these system, the host density of states near the Fermi level is ap-
proximately constant. The resulting impurity Green functions therefore all resembled
those obtained for the simple flat band model [3]. The logarithmically diverging van-
Hove singularity in the hybridization function for the Anderson model on the square lat-
tice, shown in the upper left panel of Fig.[8.2] however, is qualitatively different from a
flat band model and we now discuss the implications for the impurity problem and the
NRG calculations.
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Figure 8.2.: Lattice Green functions Gf,%) (w) on the square lattice diagonalr = n(é, +&,),
negative imaginary part (black line) and real part (gray line). The first figure
shows the local Green function obtained directly from the exact definition in
Eq. (8-8). The remaining Green functions are calculated with Morita’s recursive
method. The most important feature in the square lattice Green functions is
the logarithmic divergence near the Fermi level.

8.3.1. Van-Hove singularity in the hybridization function

The problem of a logarithmically diverging hybridization function is discussed by means
of the ‘poor man’s scaling’ approach and numerically using NRG in Ref. [166]. Numeri-
cally, one accounts for the divergence in the hybridization function by constructing the
Wilson chain long enough to resolve energies well below the Kondo scale, thereby cap-
turing all relevant physics at T. The results agree well with those found from analytical
approaches.

The main consequence of the divergence is the occurrence of non-Fermi liquid behav-
ior when the van-Hove singularity is exactly at the Fermi level, as is the case in our setup.
As T — 0, the huge spectral weight around the Fermi level leads to an overcompen-
sation in the screening process [166]], similar to the overscreened Kondo problem [167].
This effect is visible in the thermodynamic impurity quantities, such as the susceptibil-
ity or the entropy, which show a nonmonotonous behavior as’T" — 0. Furthermore, the
Kondo resonance in the impurity Green function decays logarithmically, Aim,(w) — 0,



8.3 Impurity Green functions 115

3.0 T 1 1 1 1 1 1
0.00
25F —0.02 .
_ ol —0.04
E s -0.06 o ®
™~ B - ] ] ] ] |~ 7
& 0.08 10 105 10 107 102 10
£ 1.0} |
<5
0.5F SC LM FO
0.0k .
10 10" 10”10 10®  10°  10* 107 10°

T

Figure 8.3.: Impurity entropy as a function of temperature for an impurity side-coupled to
the square lattice. The three RG fixed points are clearly visible. In the strong
coupling fixed point the impurity entropy becomes negative but logarithmi-
cally approaches zero. Parameters used are common V/D = 3 x 1073 and
€f/D = —1.5x1073,varyingU/D = 6 x 1073,5 x 1073,4 x 1073 (black, red
and blue lines). The inset shows a closeup of the negative region. The dashed
lineisafit S(T) = —a/|In(T/D)|°, with a = 1.25622 and § = 0.980212.

forw <« Tk.

8.3.2. Entropy and Green functions

In Ref. [166] the following estimate was given for the Kondo temperature in a square lat-
tice system:
Tx ~ /| J|e VP (8.14)

where b is a constant on the order of the inverse bandwidth D~!. From this, the low-
temperature behavior of the impurity entropy could be derived and was found to be

a

Simol L) = T D)

(8.15)
with constants a and § on the order of 1. The overcompensation of the dynamic screen-
ing leads to negative values in the impurity entropy as 7' — 0, where logarithmically
approaches zero upon further lowering the temperature [166,(1681169]. Of course, this re-
sults holds for the impurity contribution to the entropy, and the entropy of the entire sys-
tem is always non-negative. In Fig.[8.3|we show results from our NRG calculations for the
impurity entropy as a function of temperature for three different parameter sets. Com-
paring with the flat band model results in Fig.[2.2, we find that all three fixed points of the
Anderson impurity model are present and one can observe the change of T upon vary-
ing the impurity parameters. In the inset, a fit of Eqn. to the low-temperature be-
havior is shown. The fit parameters were obtained to be ¢ = 1.25622 and 6 = 0.980212.

Fig. [8.4] shows results for an impurity Green function. We recover the two Hubbard
satellites at high energies, and see a narrow sharp resonance around the Fermi level.
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Figure 8.4.: Bottom panel: Negative imaginary part of the impurity Green function. The
inset shows the logarithmic decay as w — 0. The data was calculated for an
Anderson impurity with parameters ¢;/D = 0.07, U/D = 0.22and V/D =
0.04.

As shown in the inset, this resonance builds up as w ~ Tk, but for w <« Tk decays
logarithmically like

w—0 1

— Im Gipmp(w)

8.4. Shape of the screening cloud

In the 2D free electron gas, Friedel oscillations induced by a potential scatterer fall off ra-
dially with An(r) ~ r=2[14]. As discussed above, this anisotropy is broken in the square
lattice and, at half filling, the flat areas of the Fermi surface lead to four discrete direc-
tions of maximum electron transport (Fig.[8.1), and accordingly, charge density oscilla-
tions are strongest along the lattice diagonals. Since a charge surplus on one site leads
to a charge deficit on its four neighboring sites, the excess charge densities induced by a
localized potential are thus always of the same sign when going along the lattice diago-
nally. In the case of a 1D chain discussed in Sec.[7.3] the excess charge densities oscillate
symmetrically around zero, An'”(r) ~ (—1)"/r, with a changing envelope function of
the oscillations as the system flows from the free orbital (FO) to local moment (LM), and
from LM to the strong coupling (SC) fixed points.

In Fig.[8.5)we plot the absolute value of the charge density oscillations on a logarith-
mic scale. This difference decays smoothly and monotonously if the impurity is not corre-
lated (U = 0) and thus only a potential scatterer. However, as soon as strong correlations
on the impurity are present and the system flows to the SC fixed point, the oscillations
change at specific distances from the impurity. Similar to Fig. the data plotted in
Fig. has a minimum at the point where the oscillations change, which can be seen
clearly as a dark line with a characteristic shape. Following the arguments given in Sec.
and the general notion of a correspondence between RG flow in inverse frequency
space and real-space, the area enclosed by the minimum can be associated with the LM
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U/D =0.04 U/D=0.22

Figure 8.5.: Charge density oscillations in the square lattice. The Anderson impurity with
parameters ey /D = —0.07, V/D = 0.04 is coupling to the site in the center.
Shown here are the logarithms of the absolute value of the charge density os-
cillations, log |An(r)|. The dark line shows a minimum, which indicates the
point where the oscillations change sign.
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Figure 8.6.: Comparison of the spectrum vs. inverse frequency (upper panel) and the excess
charge density vs. distance (lower panel) for the T' = 0 Anderson model not the
square lattice. The density oscillations are taken along the lattice diagonal. Pa-
rameters of the Anderson model are V/D = 3 x 1073, ¢;/D = —1.5 x 1073,
andvaryingU/D = 6 x 1073,5 x 1072, 4 x 10~ (dotted, dashed, solid lines).
The RG fixed points describing the different regions are given as free orbital
(FO), local moment (LM) and strong coupling (SC). Furthermore, the density os-
cillations have been normalized by the pure potential scattering contribution
at long distances, sin(2§) with the scattering phase shift 6.

fixed point, whereas on the outside of it the system has reached the SC fixed point.

As expected, the strong electron focussing due to the flat edges of the Fermi surface
(see Sec. leads to the charge density oscillations being strongest along the lattice
diagonals, where they are about an order of magnitude larger than in the directions of the
x- or y-axis. Furthermore, the fact that the regions away from the diagonals contribute
only very little to the screening of the impurity, the distance at which the crossover occurs
does not follow the exponential growth which is found along the diagonals (see below).

8.5. RG flow in real space along lattice diagonals

Having established the real-space shape of the crossover from regions of weak to strong-
coupling on the square lattice, we now turn to examining further the charge density os-
cillations along the lattice diagonals, using the iterative method described in Sec.[8.2.2]
We can carry out this calculation to a much higher accuracy, and Fig.[8.6/shows our main
result: In direct analogy to the 1D case discussed in Sec.[7.3] the full RG flow is contained
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in the Friedel oscillations away from the impurity. Since frequency and distance are re-
lated by r ~ w™!, we again plot in the upper panel the negative imaginary part of the
T-matrix as a function of inverse negative frequency. This way we can, as before, asso-
ciate the relevant energy scales to a length scale.

We have found that, contrary to the isotropic case, the Friedel oscillations along the
diagonal do not fall off as 1/r2, but rather 1/r with logarithmic corrections. The lower
panel shows the Friedel oscillations divided by 1/r. The crossovers between the differ-
ent regions is clearly visible, furthermore we find a clear correspondence to the change
in energy scales in the upper panel. Whereas for the full lattice we have previously es-
tablished the existence of a crossover from local moment to strong coupling fixed point,
these results show that the whole RG flow is reproduced.

We find that, as long as the the convolution method is computationally sensible, both
methods produce the same results along the diagonals.

8.6. Summary

We have used two different exact methods for the calculations of lattice Green functions
on the square lattice. From these Green functions, using the NRG to solve the impurity
problem, we obtained the static charge density oscillations induced by an Anderson im-
purity side-coupled to the lattice. Similar to the 1D case discussed in the previous chap-
ter, we recover the entire RG flow, including all three fixed points of the model. While
previous analytical calculations have considered results for the free electron gas [15], we
here investigated specifically the influence of the square lattice geometry. For one, the
logarithmic divergence of the density of states at the Fermi energy directly influences
the quantities under considerations: both the impurity entropy and the impurity spectral
function exhibit logarithmic corrections at low energies. However, the most prominent
effect of the lattice geometry is surely the electron focusing due to the flat edges of the
Fermi surface: the directions of electronic transport—and therefore the charge density
oscillations—are strongly centered along the diagonal lattice directions away from the
impurity. Along these directions, we find that the envelope function of the oscillations
changes for each fixed point, in direct correspondence with the 1D results.
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Chapter 9.

Majorana zero modes in quantum wires

The realization of a quantum computeris one of the great goals in modern science, bring-
ing together researchers from fields such as engineering, computer science, theoretical
and experimental physics. The computational power of qubits living in a quantum me-
chanical Hilbert space far exceeds that of any classical device [170]. However, construct-
ing a quantum computation device is far from trivial, and thus far only very basic oper-
ations could be performed successfully [171,[172]. One of the main challenges is to avoid
the decoherence, i.e. destruction, of a finely tuned quantum state by external influences.
A lot of research has therefore gone into the study of fault-tolerant quantum computa-
tion [173]). It was suggested by A. Kitaev in Ref. [174] that a topologically ordered state
can serve as physical analog of an error-correcting quantum code, opening up the field
of topological quantum computers.

Consider two particles moving around each other so as to interchange their positions.
This procedure leads to a multiplication of the overall quantum state by e®. In three
dimensions, the process of moving a particle the whole way around another one (i.e.
exchanging both particles twice) can be continuously deformed into a process where no
exchange takes place. This means that in three dimensions, only one topological distinct
way of swapping the particles exists. Two swaps are identical to no swap and the phase
must be ¢’® = 41 [31]. In two dimensions, however, this exchange is topologically non-
trivial and the phase can take on any rational multiple of 27r. The process of moving many
such particles around each other in non-trivial ways is called braiding. If the order of
the braiding operations matter, the anyons are called non-abelian, whereas in the other
case they are abelian. In Ref. [175] it was proved that by braiding certain types of non-
abelian anyons, universal quantum computation can be performed. Furthermore, the
topological underpinnings of anyons provide a realization of a quantum memory that
is protected from decoherence. This topological rigidity of anyons makes topological
quantum computing one of the key candidates in the realization of a robust quantum
computer.

An example of anyonic particles is given by Majorana bound states (MBS), where Majo-
rana fermions are bound to some form of localized defect, e.g. a vortex core in a super-
conductor or the ends of a finite 1D wire. In fact, while MBS are intriguing even from a
purely conceptual point of view, their possible application in quantum computation has
played a big role in the recent quest for their detection. In this chapter, we introduce Ki-
taev’s Majorana quantum wire, a “simple but rather unrealistic” [[7] model exhibiting un-
paired and spatially well-separated Majorana fermions, bound to the wire’s ends. These
MBS are robust and, in principle, could be manipulated to perform the braiding opera-
tions discussed above. Although originally a toy model, it turned out that a realization
was possible, which we discuss in the end of this chapter. In the next chapter, we consider
possible effects of quantum dots that might form naturally in realistic setups.
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9.1. Kitaev’s superconducting wire

In the quest for fault-tolerant quantum devices, A. Kitaev presented [7] a toy model of a
one-dimensional system in which spatially separated, localized Majorana fermions occur
naturally. These Majorana zero modes are decoherence-protected (since they are located
far apart from each other) and could be used to engineer a reliable quantum memory
device [7]. Consider the following superconducting system of spinless (or, equivalently,
spin-polarized) fermions on a chain consisting of L >>> 1 sites. The system’s tight-binding
Hamiltonian is given by

N N 1

H= Z (—tc;cj_H + Acjcjqr + H.c.) — “Z <c}cj — 2) , (9.1)
. =

Jj=1

where t is the hopping amplitude, i the chemical potential and A the superconducting
gap. The operator ¢; annihilates a spinless fermion at lattice site i. In Sec.[2.3|we have
introduced Majorana fermions and shown how one Dirac fermion ¢; can be split into a
linear combination of two Majorana modes +; 1 and +; ». Rewriting Eq. in terms of
these Majorana operators yields

N—-1

. N
2
H= |- Z; L2 + Z:l <(A + t)yj,27j41,1 + (A — t)’Yj,17j+1,2> .92
J= J=

Let us now consider two special cases. In the absence of superconductivity and hopping,
t = A = 0, the Hamiltonian reduces to

. N
i
== E 1: Vi1 Vi2- (9.3)
]:

In this case, the two Majorana modes on each sites are paired up together. This is shown
schematically in Fig.[9.1[a). In the second scenario, both superconducting and hopping
terms are present, for simplicity we set A = ¢ > 0, and the chemical potentialis i = 0.
Then, the Hamiltonian takes on the form

it =
H= 3 Z V5,2Yi+1,1- (9.4)
7j=1

Majoranas from different sites are paired together. Remarkably, the two Majorana modes
atthe end of the chain, 71 1 and yn 2, have entirely dropped out of the Hamiltonian! Sim-
ply put, there is no energy cost associated with the two modes, thus they occur at zero
energy. Furthermore, even if u # 0 but || < 2t and A # 0, these boundary modes
exist [7]. They are spatially separated and their overlap is exponentially small in system
size, making them robust against perturbations.

9.2. A more realistic model: Topological superconductors

Kitaev’s Majorana wire from the previous section is thus far a mere theoretical construct.
However, various suggestions for experimental realization have since been put forth, the
most promising ones are given by a one-dimensional heterostructure of a superconduc-
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Figure 9.1.: (a) Kitaev’s wire in the limiting case where Majorana fermions are paired up on
each site. The bigger white shapes depict the Dirac fermions described by the
operators c;, whereas the small gray circles show the Majorana fermions, de-
scribed by operators 7 ,, n = 1,2. Each Dirac fermion is composed of two
Majoranas. (b) The same system in the opposing limit. Majoranas belonging to
different sites pair up, leaving two unpaired Majorana modes at the two ends
of the chain. (c) Experimental setup in the realization of Kitaev’s quantum wire.
The wire is placed on top of a superconductor and upon application of a mag-
netic field B, Majorana edge states form, depicted by the two stars.

tor and a semiconductor [176H4178]. In these structures, a semiconducting quantum wire
with strong spin-orbit coupling is resting on a superconductor. Due to the close prox-
imity of the two, the wire inherits a superconducting pairing mechanism. Upon appli-
cation of an external magnetic field, this system can be driven into a so-called topolog-
ical phase which effectively realizes Kitaev’s system introduced above [179]. Recently,
such a setup has famously been realized in experiment [16], in which transport measure-
ments have indeed shown a conductance peak at the Fermi energy, strongly suggesting
the experimental discovery of Majorana modes. The experimental setup is schematically
shown in Fig.[9.7(c). The quantum wire is on top of the superconductor, and also con-
nected to a normal metal lead. The stars indicate the expected position of the Majorana

fermions [16].

We now closely follow Ref. in presenting the model. Consider a one-dimensional
semiconducting wire with spin-orbit coupling of strength o and an orthogonal magnetic
field B,. The proximity effect with a neighboring bulk superconductorinduces an s-wave
pairing field A in the wire. We furthermore include a local Coulomb interaction between
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Figure 9.2.: Dispersion relations for various parameter regimes of the Hamiltonian in

Eq. (9.5). For an explanation see the main text.

the electrons, leading to the following Hamiltonian:

N-1
1 .
Hrge = — Z Z 3 (t c;f.o_cj_HUéJ’U/ + ac;f»awga,chU, + H.C.)
7=0 oo’
N
2.2

7=0 0,0’

[(t — 1) c;r-acja&m/ + Bzcjaagglcja/]

N
+ Z I:A (chcji + H.C.) + UﬁjTﬁji] s (9.5)
=0

where ¢ is the ith Pauli matrix and n;, = ¢ ¢ counts the spin-o fermions at site i. To

10 10

understand how this Hamiltonian leads to the appearance of Majorana modes, we now
start with its simplest form and step by step include more terms and discuss their effects.
The corresponding dispersion relations are shown in Fig.[9.2}

(i)

(iii)

Consider first the time-reversal invariant noninteracting limitwherea = A = B, =
U = 0. Inthis case, the Hamiltonian describes free spinful fermionsin a 1D wire with
a hopping amplitude t and chemical potential u. Its dispersion relation around the
Fermi points is given by a parabola ¢;, ~ k2, as shown in Fig.i).

Introducing spin-orbit coupling into the system, a > 0, splits the dispersion relation
into two parabolas, one for each spin alignment, see Fig.[9.2{ii). The spin-orbit cou-
pling term favors aligning the spins along or against the y direction, depending on
their momentum. In Fig.[9.2{ii), “right-moving” electrons with positive momentum
will align their spins along the positive y-axis, whereas the spins of the “left-moving”
electrons will align along the negative y-axis.

Turning on the magnetic field B, # 0 changes the system crucially by canting the
spins along the z-direction. This effectively couples the different spin-bands and, as
shown by the two bold lines in Fig.[9.2[iii), opens up a gap at & = 0. We now have
a finite region of the chemical potential © (when p is within the gap) in which the
system only has two Fermi points and can thus effectively be viewed as a system of
spinless fermions.

The system at this point connects smoothly to Kitaev’s spinless fermions in Eq. (9.1). As
discussed in the previous section, turning on a weak pairing field A couples electrons
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Figure 9.3.: Spatial and energy-resolved conductance maps of a Fe atomic chain close to
its end. The conductance map at zero bias (middle panel) shows an increased
conductance close to the end of the chain, indicating the existence of a Majo-
rana quasi-particle mode. Figure taken from Ref. [181].

of opposite momentum, driving the system into a topologically superconducting phase.
Thus, we obtain an experimental realization of Kitaev’s Majorana quantum wire.

A quantitative analysis [178] shows that the topological superconducting state exists
for parameter ranges

B, >0,
—/B2 - A2 < p</B2-A,

as only in this regime the system maps to the spinless system in Eq. (9.1). So far we have
not taken interactions between the electrons into account, U = 0. In Ref. [180] it was
shown that the inclusion of a finite Coulomb interaction, U > 0, essentially leads to
two important effects: The superconducting pairing is suppressed and hence the bulk
gap protecting the topological phase decreases. This in turn leads to an increase in the
localization length of the Majorana fermions, which is per se undesirable from an exper-
imental standpoint. On the other hand, interactions increase the magnetization of the
wire, leading to significant broadening of the chemical potential window in which the
system connects to Kitaev’s model, making the model somewhat more robust against
perturbations and disorder.

In conclusion, within the right parameter regime, the system in Eq. can be effec-
tively described by Eq. (9.2). Interactions in the wire do not destroy these physics, but
rather stabilize them against disorder. Hence, in a finite system with open boundary con-
ditions, such systems exhibit exponentially localized Majorana modes at the leftand right
ends.

(9.6)

9.2.1. Experimental results

In 2012, the group around L. Kouwenhoven at TU Delft for the first time reported the ob-
servation of a zero-bias peak in transport measurements performed on the setup pre-
sented in the previous section [16]. This result was widely regarded as an answer to the
question whether Majorana zero modes do exist [182], although such a conductance peak
could also have been caused by the Kondo effect or disorder in the wire. Furthermore,
very recently measurements in a mathematically related, yet experimentally somewhat
different setup were performed [181]. There, ferromagnetic iron (Fe) atomic chains were
placed on the surface of a superconducting lead. The onset of superconductivity was
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accompanied by peaks in the conductance, which could be spatially resolved and were
shown to appear at the ends of the wires. Part of their data is shown in Fig.[9.3] clearly
showing a conductance peak forming close to the edge of the one-dimensional wire at
zero bias. This experiment thus provides further evidence that Majorana modes do in-
deed form in such quantum wire setups.



Chapter 10.
Majorana fermions vs. the Kondo effect

Akey observation in the experimental realizations of the model presented in the previous
chapter was the observation of a zero-bias conductance peak at the end of the quantum
wire. However, in the experimental setup used in Ref. [16] a setup as shown in Fig. c)
was used. Noteably, the confined region between the normal lead and the supercon-
ductor might lead to the formation of a quantum dot [16}/183-185]. In this case, such a
quantum dot could host a single spin degree of freedom and eventually lead to a possible
occurrence of the Kondo effect, see Sec.[2.1] Acompetition between the superconducting
proximity effect and Kondo correlations has been shown to also lead to a zero-bias con-
ductance peak [186,(187] for certain values of the magnetic field in the setup. Therefore, it
is crucial to understand the competition of Kondo and Majorana physics in this system in
order to clearly distinguish the possible origins of such zero-bias peaks. In this Chapter,
we investigate such a situation theoretically by considering a quantum dot coupled to
a generally interacting lead on the one side, and a Majorana mode on the other side, as

shown in Fig.

10.1. The model

First we present our theoretical model. We consider a nanostructure comprised of a
fermionic degree of freedom localized on a quantum dot. This local moment couples to
an SU(2)-invariant, one-dimensional lead consisting of interacting fermions and to a Ma-
jorana mode in a topological superconductor, the setup is sketched in Fig.[10.1} Since we
are interested in the low-energy physics, we can focus on the regime of a singly-occupied
quantum dot, yielding an effective spin-% degree of freedom. Furthermore, with energies
well below the superconducting gap A, we do not need to incorporate the full topological
superconductor. Instead, it suffices to effectively consider only the two Majorana modes
~1 and 79, localized at its ends. The full Hamiltonian is then given by

H = Hxy + Hgp + Hyv—qp + Hrsc—qp- (10.1)

The fermions in the lead are described in a tight-binding approximation with a hopping
amplitude ¢t and Coulomb interaction Uy by

Hy = ~t Y (€lyipro + Hee ) + Uy D g, (10.2)
1,0 %
where n;, = c;racio counts the spin-o fermions at site i. The quantum dot and its cou-

pling to the lead are modeled by the single-impurity Anderson model, Egs. and (2.4),
where the Hamiltonian for the isolated dot (i.e. the impurity) is

Hqgp = efng + Unypyhigy, (10.3)
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Figure 10.1.: The setup for our model: A normal metal lead is coupled to a quantum dot via
a hopping V. On the other end, this quantum dot couples via a hopping A to a
topological superconductor, which hosts two Majorana zero modes at either
end (y; and ~2). This setup is obtained from the one in Fig.after including
a quantum dot between lead and Majorana mode.

where the operator f; creates a spin-o fermion on the quantum dotand ny = flf(,. The
quantum dot couples to the site at i = 0 in the lead by with a hopping V:

Hyv-ap = V'Y (flegy + oy ) - (10.4)

We assume the length of the superconductor to be much greater than the coherence
length of the Majorana modes, £. The coupling between quantum dot and the Majorana
mode at the far end of the superconductor of length L is exponential smallin L/&, see
Sec.[9.1, and we thus neglect it here. Hence, the tunneling between the dot and the Ma-
jorana mode ~; is given by

Hrsc—qp = iAn (fT + fTT) ; (10.5)

with the hopping amplitude A. The Majorana mode at the end of the TSC is spin-polarized
[188]], and we thus model here an interaction only with one spin-species on the quantum
dot.

10.1.1. Low-energy effective theory for the quantum dot

In Sec.[2.1.2)we discussed that an effective low-energy theory of the single-impurity An-
derson model is obtained by projecting out states in which the impurity is empty or dou-
bly occupied by means of the Schrieffer-Wolff transformation. In the standard case this
leads to the Kondo model. In our system, however, we have to take into account the
coupling to the Majorana mode. After performing the transformation [189], the effective
low-energy Hamiltonian for our setup is given as

H = Hyny, + Hp, (10.6)
with Hyy, given in Eq. and the boundary Hamiltonian Hp given by
Hp = — |\26-8° +|V[*¢ S - s0

iAVIn [(cm + ch) <§2‘ + £+Sz) e, (cg¢s+ n CNS—” .07
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Figure 10.2.: Separation into left- and right-movers in the bosonization scheme. The dis-
persion relation is approximated linearly around the Fermi points kg, for
which e(kr) = ep. The modes with positive momentum, k& > 0, are the right-
movers and those with negative momentum, k& < 0, are the left-movers.

Furthermore,
1
0= 3 Z clo.aw,cm, (10.8)
oo’

is the spin operator at position = in the lead, S is the spin operator on the quantum dot,

and we defined
1 1

- 4+ -
lerl — U — ey

Thefirsttermin Eq. describes an effective magnetic field acting on the quantum dot
spin which is generated by virtual hopping of electrons from the topological supercon-
ductor to the quantum dot. The second term is the standard Kondo interaction between
the lead and the dot. Finally, the third term is generated by processes in which an elec-
tron tunnels between the lead and the superconductor via a virtual state on the dot. We
discuss the general casein Sec.and the particle-hole symmetric model, ey = —U/2,
in Sec.[10.4l

&+ (10.9)

10.2. Bosonization of the model

In order to carry out an RG analysis of our effective model, we use a bosonized version
of the Hamiltonian, treating it as a Luttinger-Tomonaga liquid. In this formulation, by
analyzing the various boundary conditions we can identify the low-energy fixed points
of the effective model.

The Luttinger liquid approach is a powerful method to describe interacting Fermions
in one-dimensional systems [190+H192]. It was proposed by Tomonaga in 1950 and is
based on the insight that, in one-dimensional systems, the relevant degrees of freedom
are given by collective density waves rather than single particle excitations. The reason
for this lies in the fact that moving fermions in one dimension cannot avoid each other
and inevitably momentum is transferred to neighboring particles—a crucial difference to
higher dimensional systems. This transfer of energy eventually leads to the emergence
of collective bosonic density-wave degrees of freedom. Importantly, these collective
excitations turn out to appear independently in the spin and charge channels, leading to
the famous phenomenon of spin-charge separation [193]], which was directly observed
in experiment for the first time in 1996 [194].
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In the Luttinger liquid approach, one commonly approximates the dispersion relation
of the particles close to the Fermi energy, and then relates the single-particle creation
and annihilation operators to string operators corresponding to the relevant charge and
spin degrees of freedom. Linearizing the dispersion relation (k) around the Fermi points

at kp, see Fig.[10.2] yields

(k)= > vplk+kr)+ Y vp(k—kp), (10.10)

where the Fermi velocity is given by vp = kr/m.. The modes close to —kf are called
left movers, and the ones close to &k are called right movers, referring to the direction in
which they propagate. By linearizing the model around the Fermi points, we implicitly fo-
cuson the physics on large length-scales, and it is thus reasonable to take the continuum
limit also in the operators, viz.

Cio — Vo). (10.11)

In the spirit of the discussion above, one introduces bosonic fields for spin ¢, and
charge 64, from which we can construct the following fields

bp(x) = P1(z) + ¢ () (charge density)
0,(x) = 0y() + 6, (x) (charge current)

bo(x) = Pr(x) — ¢y (2) (spin density)
Oy(x) = O4(x) — 0, (), (spin current)

where the indices on the left refer to the spin fields (o) and charge fields (p). To avoid
unnecessary confusion, in this chapter we henceforth denote spin-indices by s =7, | in-
stead of 0. With these fields, we can express the fermionic annihilation operators for left-
and right-moving particles in the continuum limit as [190]

Wrs(z) = P”\/lea exp (-\}i {(r bo(x) — 0,(2)) + 5 ( G (1) — ea(x))D . (10.12)
with » = +1 for right-/left-moving fermions and s = +1 for spin 1/| respectively. I is
a factor preserving the correct commutation relations and a is the ultraviolet cut-off of
the theory, given e.g. by the interatomic spacing. With these new operator definitions,
the Hamiltonian can now be formulated entirely in terms of the two fields ¢ and 6. The
interactions between particles are captured in the important Luttinger parameter K, for
the spin sector and K, for the charge sector, where for each sector [133,190]

K,<1, K,>1: repulsiveinteraction, (10.13)
K,=1, K,=1: nointeraction, (10.14)
K,>1, K,<1: attractiveinteraction. (10.15)

With these operators, the bosonized lead Hamiltonian can then be expressed as a spinful
Luttinger liquid in terms of the bosonic fields introduced above as

Hyi= ;)Z/dx [Kn (Wn)2+KL(V¢n)2 : (10.16)
0

n=0,p n
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Normal metal

Superconductor

Figure 10.3.: Andreev reflection: At the boundary between a normal metal and a supercon-
ductor an incident spin-1 electron creates a Cooper pair in the superconduc-
tor and a spin-| hole which is scattered back into the normal metal.

where v, is the velocity for charge and spin modes, respectively.

10.2.1. Andreev reflection

We have formulated our setup as a boundary problem for a 1D wire. To this end, it is
crucial to understand the nature of the various boundary conditions that might occur in
the model. At this point we briefly sketch the physics of Andreev reflection, which will be
used throughout the remainder of this chapter.

Let us consider the junction of a normal lead metal to a (topological) superconduc-
tor. Our focus lies on electrons with energies E traveling through a metallic system con-
nected to the superconductor, occupying the half-plane with y < 0, see Fig. The
superconducting gap, below which no states can be formed, is A > 0. What happens
when the electrons hit the boundary of the superconductor? Naively one would expect
that if the incident electrons have energies E < A, they are backscattered into the
metal since they lack the energy to break-up a Cooper pair. However, in 1964 Andreev
showed [195] that something very different happens: Assume an incident spin-1 elec-
tron. At the boundary to the superconductor this electron with wave vector k is scat-
tered into a spin-|. hole, with wave vector —k, see Fig.[10.3] The incoming electron forms
a Cooper pairinthe superconductor, with the second required spin-| electron taken from
the metal. This process does not violate time-reversal symmetry and thus the same can
happen with an incident hole, scattering back an electron into the metal.

10.2.2. Boundary conditions of the effective model

Before examining the interplay of the Kondo and Majorana couplings, we now give a
qualitative picture of the nature of the competing interactions and their corresponding
boundary conditions in the system.

Coupling to the lead: In the limit of a vanishing Majorana coupling, A — 0, the full
Hamiltonian reduces to that of the standard Kondo model. In this case, the ground
state is described by the strong-coupling Kondo fixed point including the singlet
formation discussed in Sec.[2.1] In terms of the boundary conditions for lead elec-
trons, a phase shift is induced so that at the boundary

VR (0) = ¥, (0), (10.17)

with the scattering phase shift 19 which depends on the potential at the boundary
and is given by 9 = 7/2 in the particle-hole symmetric limit [196].
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Coupling to the Majorana mode: The Majorana coupling A, on the other hand, favors
the formation of an entangled state with the fermion parity (even or odd number)
in the lead. We describe this state in more detail when discussing the particle-hole
symmetric model, see Sec.[10.4] In the absence of the quantum dot, such a system
is characterized by a perfect Andreev reflection fixed point with boundary condi-
tions

Pro(0) = 1 _(0), (10.18)

which describes the phenomenon of a right-moving electron being scattered into
a left-moving hole at the boundary (see above).

The difference in the boundary conditions clearly shows that the two essential couplings
in our system (Kondo vs. Majorana) compete and, individually, drive the system to differ-
ent fixed points.

10.3. Renormalization group analysis and numerical results

Having formulated the model in a field-theoretical description, we can now employ a
renormalization group (RG) analysis to identify the low-energy fixed points of the system
boundary. We can identify four couplings from Eq. which appear in the RG equa-
tions:

h(0) = —| A2 (Zeeman field)
J12(0) = ANV [é+ (Majorana)
J3(0) = [V[’¢,. (Kondo)
We henceforth assume the electrons in the lead to have SU(2) symmetry, which means

that the Luttinger parameter in the spin sector is K, = 1. The RG equations up to
quadratic order are then given by

dZ(Z) o) W (1 . I;) (10.19a)
dﬁéf) _ (i B 41Kp> J1(0) (10.19b)
dJ;éE) _ (i - 41Kp> (6 W (10.19¢)
dﬁéﬁ) _ gigi) (10.19d)

where (is the logarithmic length scale. The Zeeman operator h(¢) is relevant and leads to
a polarization of the spin on the quantum dot. On the other hand, the Majorana couplings
Ji(¢) and J(¢) arerelevantif the Luttinger parameter in the charge sectoris K, > % The
Kondo coupling J3(¢) is marginal. The competition between the Majorana and Kondo
interactions appears as the second order correction ~ J5(¢)J3(¢) in Eq. and is
thus contained in the flow of the operator J;(?).

If the impurity-lead coupling is weak, J3(¢)/(7mvs) < 1, the Majorana coupling J2(¥)
dominates the flow of the parameters and the system eventually flows to a fixed point
described by the Majorana interaction rather than the Kondo interaction, and we conjec-
ture that the same is true also for the case when the impurity is strongly coupled.
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Characteristics of the Majorana-dominated fixed point

Let us now discuss in more detail the RG equations (10.19a)-(10.19d). The prefactor of
the linear term for the Zeeman operator h(¢) is largest, and thus this operator grows
strongest under the RG flow. On a given length scale ¢* it will become dominant, h(¢*) >
Jo(*); at this point the quantum dot feels an effective magnetic field and the spin will be
completely polarized along the z-axis. Accordingly, the operator S* acquires a classical
expectation value and the terms containing spin raising and lowering operators S* in
the boundary Hamiltonian Eq. are strongly suppressed. The remaining term con-

tains the coupling of spin-up electrons to the Majorana mode, ~ iy, <¢0T + T/J(T)T)- There-

fore, we can conclude that the boundary conditions of the lead are different for spin-up
and spin-down electrons. Since spin-up electrons couple to the Majorana mode, the low-
energy fixed point here corresponds to Andreev boundary conditions (ABC), which scat-
ter right moving electrons into left-moving holes,

e (0) = 1,,(0). (10.20)

Spin-down electrons, on the other hand, do not couple to the Majorana mode. They can
only interact via the quantum dot through a virtual second-order spin-exchange process
(remember that we have already projected the impurity down to single occupation). But
since the impurity spin is strongly polarized it cannot be flipped, and a spin-down con-
duction electron must thus always be scattered back into a spin-down electron. This,
effectively, yields “normal” boundary conditions (NBC):

YR (0) = 1 (0). (10.21)

We denote this fixed point as A ® N, for the Andreev reflection in the spin-up and the
normal reflection in the spin-down sector, respectively.

10.3.1. Numerical results away from particle-hole symmetry

The RG analysis above relies on perturbative RG equations taken in the weak coupling
limit. Therefore, strictly speaking, they are not valid at strong coupling. To examine this
limit, we have performed DMRG calculations using the Hamiltonian in Eq. to cor-
roborate our conjecture in the strong coupling case. The fact that the systems flows to a
fixed point described by the two different boundary conditions A® N can be seeninvar-
ious static correlation functions, of which we have examined the superconducting triplet
correlator, defined in the continuum limit as

Ty (@) = {(¥5(2) 015 (2)) (o (2') Duribo(a)))] 0 (10.22)
x (2B@-0ay

In the bulk of the wire, this correlation function decays algebraically as [190]
Ty(z,2") o |x — x/|_(Kﬁ_l+1). (10.23)

Let us now discuss how this behavior is changed at the boundary, ' — 0, for our bound-
ary conditions. The behavior of the correlation function is still a power law given by

T, (x) o x|, (10.24)
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where the exponent d, depends on the spin 0. The Andreev boundary conditions for
spin-up electrons lead to a strong suppression of fluctuations in the spin-up field 6+. The
decay of the spin-tripled correlator must thus be slower than in the bulk, and we find

1
dy = —i(K,;1 +1). (10.25)

Accordingly, the spin-down field 0 strongly fluctuates for the normal boundary condi-
tions. Therefore, the decay of the spin-down correlator is stronger, leading to

dy = —%(Kp‘l +1). (10.26)

Discretized system

For our DMRG calculations, we implement a discretized model using the tight-binding
Hamiltonian Eq. for the lead and the low-energy effective Hamiltonian Eq.
for the boundary. In a finite system, the Kondo effect depends strongly on the parity of
the lead electrons, it is strongly suppressed if the number of conduction electrons in the
lead is even [197]. Therefore, we always choose an odd number of sites in the lead in
our simulations. We furthermore fix the lead to be at half-filling and set U, = 0 to avoid
certain instabilities like charge density waves or pairing instabilities. The non-interacting
lead thus implies K, = 1.

The discretized version of the correlator in Eq. is obtained by replacing the
derivative of a fermion field with the difference in the site operators,

Opo () = Cit1,0 — Ciros (10.27)

where ¢; is the annihilation operator for spin o at site 2 = x;. The triplet correlator then
becomes

To(z) = Ty(z;) = <(cj7gcj.+17g — czyacla) (CO,UCLU — copco,g))

= <C;[,JC;[+1,JCO,JCLU> ) (1028)
where in the second line we have taken into account that chL = cuc, = O forany set of
quantum numbers p.

The DMRG simulations were performed for system sizes of up to 127 sites, keeping up
to M = 800 states in the calculations to ensure accurate results also for the gapless lead.
Fig.[10.4shows the numerical results: The correlation function T, () shows a clearly dif-
ferent behavior depending on the value of the spin. From a scaling analysis of our nu-
merical data we extract the exponents d; ~ —1 and d| ~ —3 for the thermodynamic
limit, which is in perfect agreement with our predictions in Egs. (10.25) and (10.26). This
confirms that the strong coupling fixed point is indeed controlled by the Majorana inter-
action rather than the Kondo interaction.

10.4. Results at the particle-hole symmetric point

We now turn to the discussion of the special particle-hole symmetric pointate; = —U/2.
For these values of the parameters, £ = 0. Furthermore, £, = 4/U, which leads to the
appearance of a standard Kondo term J3sg - S with J3 = 4|V|?/U, see also Eq. (2.10).
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Figure 10.4.: Left panel: Triplet pairing correlation function T, (x) for the couplings h/t =
0.2, Ji/t = 0.2, Jo/t = 1, J3/t = 0.5 where t is the hopping in the lead.
The upper set of lines show the correlation function for spin-1 fermions, while
the lower show the correlation function for spin-| fermions. Dashed lines in-
dicate fits to a power-law decay. Right panel: Exponents d; (circles) and d;
(triangles) extracted from the fits of the triple pairing correlation, as a func-
tion of inverse length.

The boundary Hamiltonian Eq. therefore becomes
Hp = iJon | (4(0) + 61(0))S* + 0] (0)S* + 0 (0)S™| + Jgso S, (10.29)

This Hamiltonian can be brought to a somewhat simpler form by introducing the follow-
ing set of Majorana operators:

ne = 11(0) +¥](0) (10.30a)
y =i (%(0) - %(0)) (10.30b)
0= = ¥1(0) + ¢ (0). (10.30¢)

With these operators, Eq. (10.29) can be written as

Hp =1Js Z ¥15%N + J380 - S. (10.31)

a=T,Y,z

Inthe absence of the parameters h and J;, one can see from the RG equations Egs.
and that J flows to strong coupling. As a result, the system forms an entangled
state involving the fermion parity shared between the v; and 7,,(0) modes and the impu-
rity spin. Before we discuss the first part of this statement, let us investigate how the spin
fluctuations come about. The particle-hole symmetric Hamiltonian is invariant under
the anti-unitary symmetry

T =CK, (10.32)

where K is complex conjugation and C is charge conjugation, i.e. f, — f; and ¢, — wl.
When acting on the quantum dot impurity spin, 7 is similar to the time-reversal symme-
try, and [189]

TST ! = -8, (10.33)
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which implies that the spin strongly fluctuates, i.e. (S) = 0. Away from particle-hole
symmetry, the 7-symmetry is broken and the impurity spin is polarized.

Entangled ground state

Now we turn to the action of the Majorana operators v; and 7. To this end, we remind
ourselves that we can formulate each Majorana fermions in term of two Dirac fermions,
see Egs. (10.30). Here, we consider without loss of generality the the term ~17,.

M1 [00) = [11) o : : o

111) = [00) |00) + |11) is eigenstate if combined parity is even, (10.34a)
TNz =
M [01) = [10)

|01) + |10) is eigenstate if combined parity is odd, (10.34b)
M7 [10) = [01)

where in the state |ij) the first and second index correspond to the Hilbert space of the
Dirac fermion associated with ~; and 7,, respectively. The inclusion of the fluctuating
spin finally leads to the ground state taking on the form

|00 1) + |11 ) for even parity in the lead, (10.35a)
|01 1) + |10 }) for odd parity in the lead. (10.35b)

10.4.1. Numerical results at particle-hole symmetry

We now present our numerical results for the particle-hole point. First, we consider the
superconducting triplet correlator already discussed away from particle-hole symmetry.
Another interesting quantity is the spin-spin correlator which further indicates the ab-
sence of the Kondo effect for finite Majorana coupling. Finally, results for the static spin
susceptibility of the quantum dot spin can be obtained exactly from the Hamiltonian
Eq. in the limit of vanishing Kondo coupling J3. We compare these results for this
case and also extend the numerical calculations to the case of finite J3, agreeing nicely
with analytical results.

Superconducting triplet correlation

We now present numerical results to verify the results at the particle-hole symmetric
point. To this end, we consider the following form of the boundary Hamiltonian Hp in

Eq. (10.7):
Hp =J3Sy-s0+iJom [(wm + ¢8T> S* + w&S* + ¢0,¢S_} , (10.36)

where J; = h = 0 at the particle-hole symmetric point. We again consider the super-
conducting triplet correlation function 7, (z) from Eq. (10.22). In particular, we examine
the dependence of the exponent d, on the Majorana coupling ), see Fig. We see
that for zero Majorana coupling, A = 0, the correlation function decays with the same
exponent for both spin-up and spin-down electrons, d; = d;. However, including the
Majorana coupling, the exponents immediately become different. We have calculated
the exponents for systems of different sizes, and an extrapolation shows that they sat-
urate at dy ~ —1 and d; ~ —3, which confirms that the strong-coupling fixed point is
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Figure 10.5.: Dependence of the exponent d,, on the Majorana coupling J; for a fixed Kondo
coupling J3/t = 0.5, at the particle hole symmetric point with J; = h =
0. Solid lines correspond to dy, dashed lines to d;. System sizes are L =
32,64,96, 128 (black, red, blue, green), and an extrapolationto L — o is
shown as a dotted line.

described by the A ® N boundary conditions discussed above.

Static spin-spin correlator

Another quantity from which one can infer the dominating behavior in the strong-
coupling limit is given by the equal-time spin-spin correlation function (S,(x)S,(0)).
It was shown in Ref. [130] that the Kondo effect leads to a particular crossover in the
correlations at a distance of the Kondo length scale Rk (see Sec.[6.2.1), where

-1 forz < Ry,

(S%(x)S5%(0)) ~ {i_z fore > Ry (10.37)

In Fig.[10.6|we show our numerical results. Plotted is the spin-spin correlator (5% (x)S%(0))
as a function of z at the particle-hole symmetric point, Eq. (10.29), and for different val-
ues of the Majorana coupling Jo. We tuned the Kondo coupling .J3 such that in for zero
Majorana coupling, Jo = 0, we see a clear sign of the Kondo crossover and can thus
conclude that here the system is described by the Kondo strong-coupling fixed point.
However, upon including the Majorana coupling we find that this crossover quickly dis-
appears, and in the entire range the correlation function decays as = =2, implying that
there is no Kondo effect

Impurity spin susceptibility

Another interesting quantity to examine in the particle-hole symmetric limit is the im-
purity spin susceptibility. At the particle-hole symmetric point, e = ¢g = —U/2, the
impurity spin is strongly fluctuating. Detuning the gate voltage by V;, i.e. € = ¢y + V,
we find that the impurity spin shows nontrivial behavior suited to distinguish between
Kondo and Majorana physics. This difference is easily understood qualitatively: In the
Kondo effect, a particle-hole asymmetric impurity does not affect the spin expectation
value, and therefore (S) = 0 for all values of V;,. The Majorana coupling, on the other
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Figure 10.6.: (S,(z)Sz(0)) away from the quantum dot boundary for J; = 0.5 and J; =
0.1n withn = 0,1,...,10 (top to bottom) at the particle-hole symmetric
point. In the Kondo dominated regime (J; = 0, big circles) the correlation
function shows a characteristic crossover from 1/x-dependence at short dis-
tancesz < Ry to1/2% atz > Ry [130]. Here Ry is the Kondo length scale.
Clearly, the correlation function exhibits a different behavior in the Majorana-
dominated regime (J2 > 0, big triangles). There, the correlation function
decays as 1/2? in the entire range.

hand, polarized the spin along the z-axis for V,;, # 0. To examine the effect of a finite V,
consider the perturbation Hamiltonian obtained by introducing a small V;:

A2 4iN|t
Hy = eV, (—8’ ge 4 4 |fymz(0)>. (10.38)

U? U?
Using linear response theory, one finds the impurity spin susceptibility [189]

0 (S%)
o,

2e

_ 167V 2vp
o Un? ¢

DU?

log [

U
dvp V2 >\2] , (10.39)
Vo=

where D is the half-bandwidth of the lead system and we have used that Jo = 4\V/U
at the particle-hole symmetric point. This behavior is very distinct from the Kondo case,
thus we suggest that studies of impurity-spin fluctuations in TSC-QD-NL structures might
be used to help in identifying Majorana zero-energy modes.

To confirm this behavior, we ran DMRG calculations of up to 64 sites of the Hamiltonian
Eq. (10.7). Weset U = 8 and V' = 1, using up to M = 400 states and measuring (S*) on
the impurity. Slightly detuning the chemical potential in the range V, € [—0.05,0.05],
we could extract the numerical derivative 0 (S*) /0V,. To minimize effects due to the
finite size of the system, we ran the calculations several times, each time multiplying the
Kondo-coupling term by an additional factor « to suppress or enhance the Kondo energy
scale. The results are shown in Fig. For intermediate values of X we find that the
susceptibility can be well fit by a function ~ log(bA?), as expected from Eq. (10.39). We
furthermore see that an enhanced Kondo coupling suppresses the spin susceptibility,
which can be easily understood from the fact that at the Kondo strong coupling fixed
point the impurity participates in the formation of a spin-singlet and the susceptibility
vanishes, (S) — 0.
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Figure 10.7.: Impurity spin susceptibility for a system of L. = 64 sites with U = 8 and
V = 1, wheredifferent dashed lines correspond to simulations where we have
multiplied the Kondo term of Eq. byx = 0,0.5,1, 1.5, 2 (from top to bot-
tom). The black line (round points) was obtained for k = 1, i.e. it represents
the unmodified Hamiltonian (10.7). The solid lines show a fit to a log(bA?) (see
Eq. (10.39)), with @ and b as fit parameters over a regime of intermediate \.

The nice agreement of our numerical data with the results from Eq. (10.39) confirm that
the spin susceptibility should provide an interesting experimental quantity to distinguish
Kondo from Majorana physics in the setup we consider.

10.5. Summary

In conclusion, we have studied the physical properties of a quantum dot coupled to a
1D topological superconductor and a normal metallic lead. In the experimentally rel-
evant parameter regime, the low energy theory for such a system involves Kondo and
Majorana-induced interactions [189]. We focus on the competition between Majorana
and Kondo couplings, where both drive the system to different many-body ground states.
If the distance between the localized Majorana modes is taken to be far enough, we show
that the low-energy infrared fixed point is governed by the Majorana physics rather than
the Kondo effect. We found these results analytically using a perturbative RG scheme,
and corroborate the emerging picture with numerical data obtained with the DMRG.

We consider the impurity spin susceptibility, an experimentally accessible quantity,
and show how to distinguish between Kondo and Majorana physicsin the lab. We predict
that in the presence of a coupling to the Majorana mode the impurity spin polarization
(S) shows a strong dependence on tuning the gate voltage away from the particle-hole
symmetric point: whereas it vanishes at the particle-hole symmetric point, the spin is
polarized as the gate voltage is detuned. In fact, the impurity spin susceptibility’s depen-
dence on the Majorana coupling is highly non-trivial. In the Kondo-dominated regime,
on the other hand, the impurity spin is strongly fluctuating for all values of V, regardless
whether the system is at the particle-hole symmetric point or not. These results have
important ramifications for experiments trying to detect Majorana zero modes, where
the natural formation of a local magnetic moment might interfere with the measure-
ments. The exceptional degree of parameter control in quantum dot experiments, how-
ever, might turn out to be highly useful for distinguishing these different phenomena in
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experiment.
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Appendix A.

Real-space Green functions from equations
of motion

A.1. Green functions for the semi-infinite 1D chain

The Hamiltonian for the Anderson impurity model defined on a 1D chain is given by

oo
H=tY Y (ejaciﬂo_ + H.c.) +epig + Uiy + V' (fgcm, - H.c.) . (A)

=0 o

We now derive how local and non-local Green functions in this system can be obtained
from equations of motion. To this end, we start by considering the same setup for a chain
of finite length L. The chain Hamiltonian is then given by

L-1
H=t Z Z (c;raciﬂo + H.c.) . (A.2)

=0 o

The equations of motion for the Green function G, .5 (2) = ((¢ne; Cjna>>z forn,m > 1
are then straight-forwardly obtained from Eq. (6.14) as

t 1
Gn,m = ; (Gn—l,m + Gn+l,m) + gén,ma (A3)

where we have omitted spin and frequency indices for clarity. For real parameterst¢, V' €
R, this expression is symmetric in n and m:

t 1
Gn,m - ; (Gn,m—l + Gn,m+1) + gdn,m- (A4)

In the first step we consider the chain without the impurity by setting V' = 0, and calcu-
late the local Green function at one of its ends, G[(f())(z). Starting at the other end of the

chain, we find the following relations:

145
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Continuing this calculation down the chain, we eventually obtain

1
(0
((]7()):

with a fraction of depth L. Taking the limit . — oo, this expression becomes a continued
fraction and we can write it in a closed form as

2 _ A2
¢O-_ 1 _ o go_zEvE o4 (A7)
) 2 (0) i 2t2
z—t GO’O

The negative imaginary part of Gg% is proportional to the spectral function A,,—g and we

must thus choose the sign of the square root such that the negative imaginary part of
G((f()) is strictly non-negative. Before reintroducing the impurity to the system, we sum-
marize four important relations which are readily obtained from the equations of motion
calculation:

1 ¢

G =+~ (Gotn + Crs1n) (A.8a)

Grrin = Gyyt Gon (A.8b)
Grrin-1=Giyt G (A.8¢)
Gt = Gt = éGn_l,n_l + EGHM_L, (A.8d)

where Egs. and follow directly from Eq. (A.4), and Egs. and

follow from Eq. (A.5) in the limit L — 0. From these expressions, we can obtain a general
expression for the local Green function G, ,, at a pointn > 1 in the system:

2
G = Gy + 82 Gy GO (A.9)

which allows us to traverse the chain site by site in order to calculate the local Green
function at arbitrary sites.

When the impurity couples to the site at n = 0, these calculations are valid as long as
n > 1. With the impurity reinstated, V' # 0, using the equations of motion for G o we
find

2Goo=V Gro+tGipo+1
=V Gro+12 GY) Goo +1
jGw:G%+VG$Gm, (A.10)

where Gy, = ((f; cL>>. Again applying the equations of motion to G s o yields

\% t
Gro= ;Gﬁf + ;Gf,l. (A.17)
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Using the expression from Egs. finally gives us
G Gr+GO L ro—vale
fO—* 1+ Goo 0=V GooGrr (A12)
Plugging this into gives us the final expression for Gy o:
2
Goo =GOy + V2 Gry (GR) (A13)

which, in combinations with Eq. (A.9), allows us to calculate arbitrary Green functions
in the system. The difference in the Green functions for systems with and without the
impurity are readily calculated. Consider for simplicity the difference in the local Green
functions at position n = 1:

AG1p =G — 50%

=G+ G+ v Gy (683)] (62)" - [+ 2 ()]

=12V Gimp (Ggog)
V2

= 5 Gimp [t Gl " (A14)

which recovers the result in Eq. forn = 1.

Extended systems

The extension of the calculation from the previous section readily generalized to systems
of finite size. One simply regroups all Green functions in the way discussed in Sec.[7.1.2}
After applying equations of motion to each Green function, the calculation can be per-
formed in a matrix-vector formalism and has the same form as the calculation or the 1D
chain. In the next section we discuss the calculation for the nanotube system, which is a
special case of the square lattice ribbons.

A.2. Green functions for ribbons and tubes

The extension of the calculation from the previous section readily generalized to systems
of finite width. One simply regroups all Green functions in the way discussed in Sec.[7.1.2}
Upon applying equations of motion to each Green function, one finds that the calculation
can be performed in a matrix-vector formalism and has the same form as the calculation
or the 1D chain.

Here we derive the relevant equations for the calculation of lattice Green functions for
the nanotube. This calculation can immediately be transferred to the (simpler) square
lattice ribbon systems. In the nanotube setup, we must distinguish between two types
of matrices 1 and 2, which alternate through the system. This issue does not occur in the
squarelattice ribbons, where only one hopping matrix is required.

We introduced the hopping matrices M ; and M, for the nanotube in Sec. The
matrix of Green functions connecting to the first column is given as G,,(z). Assuming
that the column at position n is described by matrix M, after applying the equations of
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motion to each coefficient of the matrix G,,, forn > 1 we find,
21— M,|G,(2) =tG,_1(2) +t G, 11(2) + dnol. (A15)

Defining the two matrices 4, 5(2) = 21 — M, /,, we can perform a calculation along the
lines of the previous section, starting with a finite tube of length L, with the last column
described by M (again omitting frequency arguments for clarity):

AG,=tGr (A.16)
AyGy  =tG o +tG] (A17)
=G 1= [AQ - tzél_l] - tGr o (A18)

Continuation of this scheme yields
G, = [Ay = [A; = P[4y — . ]G, . (A19)

n

Forthe case that the impurity is absent from the system, and the first column is described
by M ,, this becomes (due to the delta function in Eq. (A.15))

G = A1 = 14, — P14 - T (.20
and if the system’s first column is described by M,
G =4, — P[4 — P[4, — . 7T (n21)

with which we recover Eq. (7.25):

-1

G = A -], (A.22a)
-1

GY = [a,-2c] (A.22b)

By plugging Eq. into and recalling that A, and A, commute and are in-
vertible, one can solve for Q((]l) and finds

I
Gy = 5pAT! W (4145)° — 4124, 4 +A1A2) . (n23)

Combining the previous results, the find furthermore that to advance a local Green func-
tion by one column in real space, we must apply the matrix Q(()l) or Q(()2) (depending on
the lattice geometry of this step), once from both sides. Thus, advancing a local Green
function one and two steps becomes (due to the alternating columns 1 and 2):

G, =226Va, G, (A.242)
G =266 a, 6" aY, (A.24b)

an so forth.

Result for the square lattice ribbons

As mentioned above, the square lattice ribbons only require a single set of matrices. In-
deed, by simply replacing A = A; = A,inEq. (A.23), we recover the result for the square
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lattice ribbons:

e (\/AQ 41+ A) . (A.25)

G =

A.2.1. Impurity coupling to more than one site

Let us now discuss a generalized method of coupling the impurity to the systems consid-
ered here. The impurity Green function obtained from the NRG is a scalar function: it is
therefore a priori not clear how to combine it with the matrix formalism which we con-
structed. To this end, we define a connection vector, 1., which describes to which sites
the impurity couples. For a system of width W, the vector has length W and the nth
coefficient in it describes the coupling between the impurity and the site in the host at
positionr = (0,n), and a 1 indicates a coupling, and a 0 indicates now coupling. For
the case of the armchair nanotube considered in Sec.[7.1.2] we considered the situation
where every site in the first column of the nanotube couples to the impurity. Therefore,
the connection vector in this setup takes on the form

1.=[1,1,1,1,...,1]%. (A.26)

Again, careful application of the equations of motion yields the following expression for
the matrix of Green functions at the end of the system,

Gy = V2 Gimp G 1,17 G, (A.27)
:EO

where a € {1,2} again determines the type of column at the end of the tube, and we
have defined the connection matrix

By=1.17. (A.28)
In the case of Eq. (A.26) this becomes,

1 1 ...1
Bo=|[:|[1,....,1] =]+ .. . (A.29)






Appendix B.

Calculations for the triangular Kitaev
model

B.1. Lattice clusters used in the numerical calculations

In Sec.[5.3|we presented results for the ground state of the Heisenberg-Kitaev model on
the triangular lattice obtained from sparse-matrix diagonalization. To reliably reproduce
the phase boundaries of the entire phase diagram, the lattice under consideration should
be compatible with all different phases. Fig.[B.Tshows the four lattice clusters we used. To
minimize finite size effects, all clusters are implemented with periodic boundary condi-
tions. Except for the 12-site cluster, the periodic boundary conditions require compromis-
ing on the symmetries. We immediately see that only clusters (i) and (iv) implement the
discrete Cg rotational symmetry of the triangular lattice. Accordingly, in the two other
clusters one direction is special. The following table summarizes the symmetries of each
cluster:

Cluster #spins Klein Cg 120° AFM chains

(M) 12 VRV v
(ii) 24 X X v
(ifi) 24 X/ v
(iv) 27 X v X

The next biggest cluster after the 12-site cluster that incorporates all symmetries is
comprised of 48 sites, which is currently intractable with exact diagonalization routines.
However, a comparison of the results for all lattices in Fig.[B.l|shows that in each case
all phases are present, albeit with slightly shifted boundaries. Lattice cluster (iii) only
breaks the Cg rotational symmetry, which only affects the nematic phase around the Ki-
taev point by lifting the ground state degeneracy. Therefore, the results shown in Fig.[5.6|
were obtained using cluster (iii).

G ey s 4

) (i1) (111) (iv)

Figure B.1.: Lattice clusters used in the exact diagonalization calculations.
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B.2. Instability of the 120° order

The second order correction to the energy of the 120° induced by fluctuations has the

form
ED =g+ Y P+ D P+ Y e (B.1)

x—links y—links z—links

The first term corresponds to the correction coming from the Heisenberg interaction. It
is given by

J 82
5(()2) = - Z {(512005@' + H2> mumj + (21200055 — JuS?) 7T2i7r2j:| , (B.2)
(i5)

where the summation runs over all nearest-neighbor links. The contribution due to the
anisotropic Kitaev interaction is given by

552) = JS? [(e?e? cos(Q - r;) cos(Q - r;) + egeq sin(Q - r;) sin(Q - r;)

—ele] |:COS(Q -1;)sin(Q - r;) +sin(Q - r;) cos(Q - rj)Dmmlj
+ 6g6gﬂ2i7r2j

+ (—e'ly sin(Q - r;) + eg cos(Q - ri)>eg7rli772j

+ (—61/ sin(Q - r;) + eg cos(Q - rj)>eg7r1j7rgi] : (B.3)

where we have used 7,; = 7, (r;) witha = 1,2and v = z, v, 2.

B.3. Spin-wave analysis of the ferromagnet

The second order correction to the ferromagnetic Hamiltonian in the spin-wave analysis
is given by

CEEIEDY [wlihkwk—s > (cos(k-a) ~ 1) (274 + Jk (1—03))],

k€1.BZ V=T,Y,2
(B.4)

with the two-component spinor wl = (alt, a_k>. The spin orientation vector is given by

—sin¢g —cosfcos¢ sinfcoso 0
Q=] cos¢p —cosfsing sinfsing 0 (B.5)
0 sin 6 cos 6 1

=R
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with R € SO(3) being a rotation matrix. The matrix h,_is given by

hy =28 [JH Z (cos(k-ay) — 1)1

+ JK{_((:’o’s(k cag) — 1) <eje;]1 + (ef )20t + (e;)za*>
+ (cos(k - a,) — 1) (e;e;]l + (e;)QJ“L + (e;)2a_>
+ (cos(k - as) — 1)etes (1 — UI)H, (B.6)

%R(L +i,0)7
and o* = $(0” £ ig¥). With the help of a Bogoliubov transformation we can compute
the correction depy to the classical ground state energy (5.56). To elucidate the analyt-
ical structure we focus on the contribution to this correction only to lowest order in the

Kitaev interaction,

h h
depM = — Z h21 ‘12 k)
kel BZ 1K) 7 =0

with the Pauli matrices 0%, 0¥, and 0%, and we used the abbreviations e* =

+ —_
i ’ (B.7)

S JE Z |coedef + cyefe

2N ‘JH’ Kelhz Cx t+ ¢y —l— Cy
where we have defined the shorthand ¢, = (cos(k-a,) —1). To evaluate this expression
we need the following integrals over the Brillouin zone

1 CaCp N—oo
— —
N weThz Co +cyte
1 /dk%%:mg ,M(l,g ) (B.8)
VLBZl ) Co+Cy+ s 3 of 67 B/ '

We evaluated here the integrals in the thermodynamic limit, N — oo, with the volume
2
of the first Brillouin zone given by V; gz = %,

Furthermore, we need the following identity:

> (eher)? =—(efe,)? = (efer)* + [(e

'Y:x7y7z

B
N—
no
—
9
< 4
N~—
no
—
>
8
SN—
no
—~
>
< |
N—
no
[t
>
v
>
R

:i(1+@§+@§+fl;‘). (B.9)

Putting these results together yields the second-order energy correction in Eq. (B.10):

Lo _ S Ik 32v3—m)
FM 9 | Ty 8w

(1 + 0+ + Qﬁ) . (B.10)
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