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Kurzzusammenfassung

Ein tiefgreifendes Verständnis der Margination, der Migration von Teilchen im Blutfluss zur
Gefäßwand, ist notwendig, um die Entstehung von Krankheiten, wie z. B. Blutungs- oder Herz-

Kreislauf Krankheiten, besser zu verstehen. Margination von Teilchen ist eine Voraussetzung

für eine eventuelle Bindung an die Gefäßwand. Die Bindung an die Gefäßwand ist wiederum

für Blutplättchen, das Protein namens von Willebrand-Faktor (VWF), aber auch für Trä-

gerteilchen von Kontrast- und Arzneimitteln, notwendig um ihre jeweilige Aufgabe zu erfüllen.

Während der Hämostase, einem Prozess um Blutverlust im Fall einer Verletzung zu verhindern,

binden Blutplättchen an die verletzte Gefäßwand, um die Wunde mit einem Blutpfropfen zu
schließen. In Regionen, in denen hohe Scherraten vorherrschen, wird die Bindung von Blut-

plättchen an die Wand durch den langen multimeren VWF vermittelt, welcher im gestreckten

Zustand Bindungsstellen bereitstellt. Jedoch ist der Auslöser für die Entfaltung des VWF

durch Scherkräfte immer noch nicht vollständig verstanden. Fehlfunktionen dieses Vorgangs

und Veränderungen der beteiligten Blutkomponenten können auf der einen Seite zur Bildung

von unerwünschten Blutpfropfen und diese wiederum zu Schlaganfall und Herzinfarkt und auf

der anderen Seiten zu einer Blutungsstörung führen. Des Weiteren ist die Ausschüttung von
Kontrast- und Arzneimitteln durch Trägerteilchen in das Gewebe eine Erfolg versprechende

Strategie zur Früherkennung und Behandlung von Krankheiten, wie z. B. Krebs. In dieser Ar-

beit wird die Abhängigkeit der Margination vom Volumenanteil der roten Blutkörperchen (red

blood cells – RBCs), von der Scherrate, vom Gefäßdurchmesser und von der Teilchendeformier-

barkeit, -größe und -form betrachtet, um Aufschluss über relevante physikalische Mechanismen

zu geben.

Methodisch wird die Margination anhand von Computersimulationen untersucht. Dafür

werden zwei mesoskopische hydrodynamische teilchenbasierte Simulationsmethoden verwen-

det, die dissipative particle dynamics (DPD) und die smoothed dissipative particle dyna-

mics (SDPD) Methode. Außerdem werden zweidimensionale (2D) und dreidimensionale (3D)

mesoskopische Modelle für die RBCs, Blutplättchen, Trägerteilchen und den VWF herangezo-

gen, um Blutfluss in einer vereinfachten Geometrie eines Mikrogefäßes zu simulieren.

Durch eine abstoßende hydrodynamische Wechselwirkung zwischen Kanalwand und RBCs

entsteht nahe der Wand ein RBC-freier Bereich (RBC-free-layer – RBC-FL). Für ausreichend

hohe Scherraten und einen ausreichend hohen Volumenanteil von RBCs (Hämatokrit) werden

die untersuchten Teilchen quasi im RBC-FL gefangen. Mit zunehmendem Hämatokrit steigt

die Marginationswahrscheinlichkeit. Für deformierbare Teilchen hängt die Margination deut-

lich von der Scherrate ab. Mit zunehmender Scherrate und Deformierbarkeit sinkt dabei die

Marginationswahrscheinlichkeit. Darüber hinaus zeigen die Simulationen, dass Teilchen mit

einer Größe im Mikrometerbereich und einer ellipsoiden Form mit hohem Seitenverhältnis,

ähnlich der Form von Blutplättchen, am ehesten als Trägerteilchen geeignet sind. Größere

Teilchen würden sich durch Wechselwirkung mit den RBCs von der Wand entfernen und klei-

nere Teilchen, mit einer Größe im Nanometerbereich, weisen eine zu geringe Margination in

den Bereich nahe der Wand auf. Außerdem deuten die Rotationsdynamik und weitere Studien
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über Teilchenadhäsion darauf hin, dass ellipsoide Formen besser geeignet sind als kugelför-

mige. Darüber hinaus ist die Margination in schmalen Kanälen am effizientesten. In breiten

Kanälen ist der RBC-FL zu groß, um eine ausreichende Menge an Teilchen nahe der Wand

zu gewährleisten. Jedoch nimmt die Teilchendichte mit zunehmender Kanalbreite und abneh-

mender Teilchengröße zu, was leichte Abnahmen der Margination ausgleichen kann. Den Pro-

zess der Margination betreffend wurde gezeigt, dass hydrodynamische Wechselwirkungen die

scherinduzierte Teilchenmigration weg vom RBC-FL verlangsamen und die Margination be-

schleunigen. Die Verteilung der Blutplättchen im RBC-FL wird jedoch hauptsächlich durch

die Volumenausschluss-Wechselwirkung und Kollisionen mit RBCs bestimmt. Den VWF be-

treffend führen starke interne attraktive Wechselwirkungen zwischen Monomeren eines Poly-

mermodels beim Erreichen einer kritischen Scherrate nicht nur zu einem Übergang von einem

globulären zu einem entfalteten Zustand, wie für den VWF im Experiment beobachtet, son-

dern auch zu ausreichend guter Margination. Außerdem wurde die Adhäsion von VWF an

die Gefäßwand als ein weiterer möglicher Auslöser für die Entfaltung identifiziert, denn die

Bindung von einem Ende des Polymers an die Wand verringert die kritische Scherrate um eine

Größenordnung und führt zu einer längeren Konfiguration. Die zusätzliche Bindung eines Blut-

plättchens führt zu einer noch stärkeren Entfaltung. Diese Schlussfolgerungen wurden durch

die gemeinsame Interpretation von 2D und 3D Simulationen erreicht, denn es wurde gezeigt,

dass die Margination in 2D und 3D qualitativ vergleichbar ist.
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Abstract

A profound knowledge of margination, the migration of blood components to the vessel wall in

blood flow, is required in order to understand the genesis of various diseases, as e.g., cardiovas-

cular diseases or bleeding disorders. Margination of particles is a pre-condition for potential

adhesion. Adhesion to the vessel wall is required for platelets, the protein von Willebrand

factor (VWF), but also for drug and imaging agent carriers in order to perform their partic-

ular tasks. In the haemostasis, a process to prevent blood loss in case of an injury, platelets
adhere to the injured vessel wall in order to close a lesion by a blood clot. In regions, where

high shear rates prevail, platelet adhesion is mediated by the large multimeric VWF, which, if

stretched, provides binding sites for platelets. However, the triggers for VWF stretching are

still not fully understood. Moreover, malfunction of this process and alteration of involved

blood components might lead on the one hand to undesirable blood clots and subsequently to

stroke or heart attack and, on the other hand, to severe bleeding disorders. Furthermore, the

delivery of imaging agents and drugs via targeted carriers provides a promising strategy for
early detection and therapy of diseases, for instance cancer. In this work, the dependence of

margination on system parameters such as the volume faction of red blood cells (RBCs), shear

rate, channel size, and particle deformability, size, and shape is examined, in order to shed

light on the relevant physical mechanisms.

Methodological, margination is investigated by means of computer simulations. Therefore,
two mesoscopic hydrodynamic particle-based simulation approaches, the dissipative particle

dynamics (DPD) method and the smoothed dissipative particle dynamics (SDPD) method,

are employed. Furthermore, two-dimensional (2D) and three-dimensional (3D) mesoscopic

models for RBCs, platelets, carriers, and the VWF are employed to study blood flow in

microcirculation in a simplified geometry.

For high enough shear rates and volume faction of RBCs (hematocrit), the investigated

particles become quasi-trapped in the RBC-free-layer (RBC-FL), a region depleted of RBCs,

which originates from a repulsive hydrodynamic lift of RBCs from the wall. With increasing

hematocrit, the margination probability increases. The margination of deformable particles

is also markedly influenced by the shear rate. With increasing shear rate and deformability,

the margination decreases. Furthermore, the study indicates that micron-particles with an

ellipsoidal shape and high aspect ratio, such as platelets, are favourable for drug carriers,

rather than nano-carriers or considerably larger particles. Large particles might be moved

away from the wall by RBCs and also nano-carriers show less margination into regions close

to the wall. Moreover, the rotational dynamics and different studies of particle adhesion lead

to a preference of an ellipsoidal shape over a spherical one. In addition, margination has been

found to be most efficient in narrow channels. For wide channels, the RBC-FL thickness is too

large to promote a high enough fraction of particles to be close to the wall. Furthermore, with

increasing channel size, increasing hematocrit, or decreasing carrier size, an increase of carrier

concentration is observed. Concerning the margination process, hydrodynamic interactions

have been shown to slow down the shear-induced migration away from the RBC-FL, and to
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speed up the migration from the center to the RBC-FL. However, the shape of the particle

distribution is mainly determined by excluded-volume interactions and collisions with RBCs.

Regarding the VWF, strong attractive interactions between monomers of a polymer model

lead not only to a globule stretching transition at a critical shear rate, as observed for the

VWF in experiments, but also to a sufficient margination. Furthermore, adhesion of the

VWF to the wall is identified as an additional trigger for stretching, since adhesion of one

end of the polymer to the wall decreases the critical shear rate by an order of magnitude

and leads to more extended conformations. Additionally, the adhesion of a platelet leads to

even further stretching. All these conclusions are drawn by a combined interpretation of 2D

and 3D simulations, since the margination in 2D and 3D has been shown to be qualitatively

comparable.
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1. Introduction

1.1. Motivation and relevance

Blood is an essential and complex fluid. It consists of red blood cells (RBCs), white blood

cells (WBCs), platelets, the protein von Willebrand factor (VWF), and substances that

are solved in a watery solution – the blood plasma. Blood takes care of many important

functions in the body, for instance the supply of oxygen and nutrients, removal of waste

products, immunological functions, preventing blood loss in case of an injury, and wound

heeling [1]. However, due to the complexity of the system malfunctions can lead to severe

diseases.

One of the leading causes of human disability and death in the world are cardiovas-

cular diseases (CVDs) [2]. In the year 2008 more than 17 million people died from

CVDs [2]. By definition, CVDs are diseases related to the dysfunction of the blood

circulation (vessels) and/or the heart. For instance, heart attack or stroke might be a

consequence of reduction or disruption of the blood flow to the heart or brain, respect-

ively. One possible reason are blood clots, which either form locally (thrombus) or have

been formed elsewhere and were transported via the blood (embolus), leading to an

obstruction of blood vessels. Embolism and thrombosis can have several reasons. For

instance, an undesirable blood clot may form, due to an increased coagulability of the

blood, caused by altered blood components, e.g., platelets and VWF, which are involved

in the haemostasis, a process to prevent blood loss by platelet aggregation and coagu-

lation. Furthermore, the dysfunction of the haemostasis may lead to severe bleeding

disorders [3,4]. For these reasons, it is of great importance to understand the process of

the haemostasis and to identify the involved blood components including their particular

function. Thus, triggers for an alteration of the haemostasis, for instance behavioural

risk factors and inherent genetic defects can be determined and treatment can be de-

veloped. A first step towards understanding the haemostasis, requires the investigation

of platelet and VWF distribution in blood flow, depending on blood flow properties.

Another major cause of human death in the world is cancer. In 2013 about 8 million
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people died from cancer [5]. Cancer develops due to the occurrence of abnormal cells

that multiplicate uncontrolled and change their characteristics [1]. Although, plenty

of progress has been achieved in understanding and developing treatment of cancer,

the impact on patient survival is still small [6]. Thus, cancer genesis, but also the

development of early detection and therapy strategies for cancer is still a recent research

interest. For early detection and therapy a sufficient delivery of imaging agents and

drugs at e.g., the tumor site is needed, which requires a controlled distribution of this

substances in the blood circulation. Hence, a profound knowledge of the influence

of blood flow properties and particle properties, as size, shape, and deformability on

imaging agent and drug-carrier distribution in the blood vessels is required.

1.2. Biological/medical background

The circulatory or cardiovascular system is responsible for the circulation of blood in

order to distribute oxygen (O2), carbon dioxide (CO2), nutrients, hormones etc. In

arteries primarily oxygenated blood is transported from the heart to the tissue. The

arteries branch into the smaller arterioles and even further into the smallest blood vessels,

the capillaries. In capillaries the principal exchange of nutrients and oxygen with the

tissue takes place. Afterwards, the primarily deoxygenated blood is transported from

the capillaries to the venules, the veins, and finally to the heart. During this process

about 5 litres of blood are transported per minute, what leads to over 7000 litres per

day, for a healthy adult human. The diameter of veins and arteries is in the cm to mm

range, arterioles and venules have diameters of some tens of µm, and capillaries are only

of a few µm wide. Thus, blood circulation in arterioles, venules and capillaries is called

microcirculation [1].

Mephisto in Goethes famous tragedy “Faust” has already stated correctly “Blut ist ein

ganz besonderer Saft” (“Blood is quite a peculiar sort of juice”) [7]. The blood plasma

amounts to about 55% of the blood volume and contains mainly water (95% by volume).

Additional to the three types of so-called formed elements, RBCs, WBCs, and platelets,

blood constituents are proteins and other solutes (e.g., nutrients, hormones) [1].

Red blood cells (RBCs) or erythrocytes constitute the majority of cells with a

count of about 5× 106 per µl. The volume fraction of RBCs, called the hematocrit, is

37% to 54%, varying for male and female [1]. RBCs have been discovered already around

1660–1670 by the Dutch scientist Jan Swammerdam and Anton van Leeuwenhoek [9].

RBCs are cells without a nucleus and their main components are water and haemo-
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1.2. Biological/medical background

Figure 1.1.: Scanning electron microscopy (EM) images of formed blood elements: (a) red blood
cell (RBC) (left), activated platelet (middle), and white blood cell (WBC) (right) and
(b) non-activated platelet. Source of the image (a): The National Cancer Institute at
Frederick (NCI-Frederick). The image (b) is reprinted from Ref. [8]. Copyright (2007),
with permission from Elsevier.

globin, which is responsible for the red colour. RBCs are produced in the red bone

marrow and remain in the blood for 100 to 200 days. RBCs are mainly responsible

for the transport of O2 from the lungs to the tissue and transports part of the CO2, a

waste product from the cell metabolism, back to the lung. Their discocyte (biconcave

disc-like) shape, see the electron microscopy (EM) image in Fig. 1.1 (a), is favourable

for fast exchange of O2 which is performed by diffusion, since the large surface area to

volume ratio increases the speed of the O2 uptake and release [10,11]. With an average

diameter of DRBC = 7.5 µm and a height of hRBC = 2 µm, RBCs have to be very

elastic in order to get through the small capillaries with a typical diameter of 5 µm to

8 µm [1]. Therefore, RBCs have a viscous membrane, which consists of a lipid bilayer,

and a cytoskeleton, a network which consists mainly of spectrin proteins linked by short

actin filaments to the inner monolayer, see Fig. 1.2. The lipid bilayer is area preserving,

the non-compressible inner cytosol is volume preserving, and the RBC membrane is

viscoelastic due to the attached spectrin network and the lipid membrane [12].

The smallest formed element is the platelet or thrombocyte. Platelets have been

discovered almost 200 years later than the RBCs, in 1842 by the French scientist Alfred

Donné [9]. Platelets are thin cellular fragments without a nucleus and with a disc-like

shape as presented in Fig. 1.1 (b). Their diameter varies between 2 µm and 4 µm and

they possess a thickness of about 0.5 µm [1]. After their budding off from the cells, called

megakaryocytes, in the bone marrow, they remain in the blood for about 7 to 10 days.

In addition to their outer membrane, they possess an internal cytoskeleton, composed

of polymers of actin and tubulin. Compared to RBCs, platelets are stiffer [8, 14]. On
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(a) (b)

Figure 1.2.: Illustration of spectrin network. (a) Electron micrographs of RBC membrane skeleton
from mice. The bar gives the reference length of 200 nm. The picture is taken from
Ref. [13]. (b) Illustration of a spectrin network structure.

average 150− 400× 103 per µl platelets can be found in human blood.

Cessation of bleeding is mediated by platelet accumulation next to a vascular injury.

Platelets in circulation screen the vascular bed for irregularities. As soon as a defect is

detected, the platelets react with adhesion. The process of initial platelet-plug formation

is called primary haemostasis. Low platelet counts may retard the primary haemostasis

and lead to a severe increase of bleeding times [15]. As the key player in the primary

haemostasis, platelets have several receptors, which can interact with subendothelial

components, such as collagen, to facilitate adhesion to the damaged vessel wall in case

of an injury [16, 17]. Additionally, the adhesion can be mediated by several proteins,

including the von Willebrand factor (VWF) [15]. The interactions of platelets with

VWF is important especially at high shear rates, as discussed below in more detail. In

response to the initial tethering of some platelets, other platelets in the surrounding

can become activated, which is required for their firm adhesion to the extracellular

matrix [17]. Activation leads to a more spherical shape and a formation of sticky tethers

with activated receptors, see Fig. 1.1 (a). Accumulation of adhered platelets results in

a plug, which is then further stabilized by e.g., fibrinogen fibres during the secondary

haemostasis.

Another cell species are white blood cells (WBCs) or leucocytes with a count of

about 7× 103 per µl [1]. WBCs have been discovered in 1843 by the French scientist

Gabriel Andral and the English scientist William Addison [9]. In contrast to RBCs,

WBCs possess a nucleus. They have an almost spherical shape, see Fig. 1.1 (a), with a

diameter of DWBC = 6 − 20 µm depending on the category. As a part of the immune

system, WBCs recognize foreign substances and infectious agents. WBCs migrate to
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the wall (marginate), bind to it and transmigrate into the tissue to reach the invading

organism. Furthermore, WBCs eliminate the intruder by phagocytosis [1, 18].

As mentioned above, proteins are soluted in blood. These proteins are important for

different functions e.g., the blood coagulation. One example is the glycoprotein called

von Willebrand factor (VWF), which mediates platelet aggregation at the vessel

wall in case of an injury by platelet binding, see Figs. 1.3 (a,b). VWF has been (im-

munologically) discovered as recently as 1971 by Zimmermann and colleagues [4]. The

VWF mediates the adhesion of platelets to the vessel wall at high shear rates where

platelets cannot bind autonomously. The VWF is the largest protein found in blood,

with a contour length of multimers which can be larger than 100 µm [19, 20]. This

multimeric protein is composed of identical subunits, the dimers, which have a length

of approximately 70 nm and a thickness of about 10 nm. These dimers are synthes-

ized in the endoplasmatic reticulum [4]. The dimers consist of different domains which

are responsible for interactions with different counterparts, for instance platelets, en-

zymes, or the subendothelium, see Figs. 1.3 (c,d). The multimer is assembled in the

Golgi complex and can be released into the blood plasma, stored in the Weibel-Palade

bodies, secreted basolaterally into the subendothelium, or stored in platelet α-granules.

Stored VWF is often unusually long in comparison with plasmatic VWF [4, 15]. The

ultra-large VWF (ULVWF) is typically released in response to signals which indicate

vascular damage [4]. ULVWF has been experimentally detected in blood plasma not

only after an induced release from endothelial storage sites, but also in case of certain

blood diseases [15].

The adhesion of platelets to VWF is mediated by the glycoprotein Ibα (GPIbα) that is

expressed on the surface of platelets. Platelet binding to VWF is able to withstand very

high forces which would correspond to abnormally high shear rates and may occur in a

stenosed (constricted) vessel [26]. However, GPIbα binding to immobilized VWF has

high association as well as dissociation rates [27]. Therefore, platelets mainly slide along

the VWF chains in the direction of the flow [28]. Their velocity typically corresponds

to about 2% of the velocity of freely flowing platelets. The low velocity facilitates the

formation of bonds between platelets and subendothelial ligands (e.g., collagen) which

leads to eventual platelet arrest [15, 27]. Several experimental studies [29–32] indicate

that adhesion of platelets to VWF mainly depends on the shear rate and the length of

VWF. These studies also suggest that an increased shear rate leads to a conformational

change of VWF from a globular to a stretched configuration, which is accompanied by

increased platelet adhesion. Experiments with a single VWF in shear flow [19] have
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Figure 1.3.: Von Willebrand factor (VWF) mediated platelet adhesion and VWF dimer. (a) Illustra-
tion of VWF and platelet interaction in case of an injury. Picture taken from Ref. [21].
(b) Release of VWF string (green) after stimulation of endothelial cells (green in back-
ground) and platelets (red dots) adhere to VWF. Picture taken from Refs. [22, 23].
(c) Composite negative stain electron microscopy (EM) image of VWF dimer. Picture
taken from Ref. [24]. (d) Illustration of VWF dimer derived from EM pictures taken
and modified from Ref. [25].
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shown that the average extension of VWF strongly depends on shear rate. VWF exten-

sion dramatically changes from a primarily globular to a stretched configuration when

a critical shear rate of about 5000 s−1 has been reached [19]. Furthermore, adhesion of

a stretched VWF to exposed collagen at a site of injury is also enhanced. Recent nu-

merical simulations and experiments on the formation of aggregates consisting of VWF

and colloids in shear flow [33] have confirmed that VWF length, adhesive interactions,

and shear rate are the most important factors which govern aggregate size. However,

a full understanding of what triggers the unraveling of VWF in the body, has not yet

been achieved.

An alteration of components, which participate in the primary haemostasis can lead

to extensive bleeding or undesired thrombotic events. One of the most common inher-

ited bleeding disorders is the von Willebrand disease (VWD) with an incidence of up

to 1% of the general population [3]. The VWD can be caused by a reduced number

of VWF chains (type 1), qualitative changes in their function (type 2), or their com-

plete absence (type 3). The VWD type 2 is related to defects in VWF chains due

to mutations resulting in bleeding symptoms of different severity. A different type of

blood disorder, thrombotic thrombocytopenic purpura, is caused by the dysfunction of

VWF length regulation performed by the enzyme “a disintegrin and metalloprotease

with thrombospondin type 1 motif, member 13” (ADAMTS13), which normally cleaves

long VWF chains, and therefore controls their length. This dysfunction leads to the oc-

currence of very long VWF chains in blood plasma. As a result, spontaneous formation

of VWF-platelet aggregates may occur and these small platelet clots (thrombi) can dam-

age various tissues and organs due to blood-flow blockages and can lead to myocardial

infarction and stroke [34]. Furthermore, VWF influences various other blood compon-

ents, for instance increases the life time of the blood coagulation protein factor VIII and

promotes leucocyte extravasation [35].

In addition, to the natural blood components introduced above, synthetic particles

can be injected into the circulatory system for therapeutic or other reasons. For in-

stance, the use of targeted micro- and nano-carriers for the delivery of imaging

agents and drugs provides a promising strategy for early detection and treatment of

diseases, e.g., cancer [36, 37]. However, the determination of the distribution of micro-

and nano-carriers in the organism following systemic administration has been identified

as one of several major challenges in nanomedicine [38]. Additional to their distribution

in the organism, adhesion to specific targeted sites and transport through biological bar-

riers [38–40] has to be considered. Different carrier types have been proposed for drug
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delivery. Examples are polymer conjugates that are already in clinical use [41, 42], fab-

ricated nanoparticles [42,43], and self-assembled structures from lipids or polymers with

hydrophilic and hydrophobic fragments forming liposomes, polymersomes, or worm-like

micelles [42]. All these carriers differ in shape, size, and deformability.

The role of particle size and shape for the efficient delivery is a multi-faceted problem.

Large carriers, with a characteristic diameter (Dc) greater than about 4 µm, may become

trapped in the smallest capillaries of the body [44]. Recent experiments suggest that

large particles with Dc & 3 µm are faster removed by the immune system (macrophages)

in the reticulo-endothelial system (RES) such as the liver, spleen, and lungs, because

they are subject to an enhanced phagocytosis [45,46]. Various experiments [47,48] indic-

ate that the size determines the circulation time of particles. For instance, liposomes of

an intermediate size of Dc ≈ 150− 200 nm circulate longer than those with Dc < 70 nm

and Dc > 300 nm [47]. However, microfluidic experiments [49] have shown that spheres

with the size of 2 µm exhibit a significantly higher adhesion density than particles with a

size of 500 nm and 200 nm, while nano-particles possess better internalization properties

than micro-particles [40].

Experiments with discoidal particles [45] demonstrated that they accumulate better

in the organs than their spherical counterparts. On the one hand, internalization by

macrophages appears to be reduced for elongated particles [50]. On the other hand, the

internalization into endothelial cells is reduced as well [40]. Additionally, adhesion of

different carrier types has been studied experimentally [51,52] and theoretically [53,54],

with the result that oblate ellipsoids are subject to stronger adhesion than spheres with

the same volume.

In summary, a proper cross-sectional distribution of natural and synthetic blood com-

ponents is important for accomplishing their particular task. RBCs migrate to the vessel

center [55, 56], the high velocity region, to ensure an efficient transport of O2 and CO2.

In contrast, a required pre-condition for adhesion of platelets, drug carriers, VWF as

well as WBCs is their localisation close to the wall. Therefore, a quantitative descrip-

tion of their migration to the wall (margination) under realistic blood flow conditions is

required to better understand the particular adhesion potential.

1.3. Physical/numerical background

Blood is a typical soft matter system. Soft matter embraces materials which are neither

a Newtonian liquid nor a solid. Examples of soft matter systems are colloidal suspensions

8



1.3. Physical/numerical background

(e.g., ink, milk), polymer solutions, amphiphile mixtures (e.g., soap), gels, self-propelled

swimmers (e.g., sperms), but also networks in cells. The relevant length scale of these

systems lies in the mesoscopic range, namely from 10 nm to 10 µm. Furthermore, the

relevant energy scales of these systems are comparable with the thermal energy kBT ,

with the temperature T and the Boltzmann constant kB. As the name implies, soft

materials distort easily. For instance, the shear modulus of a colloidal crystal is 14

orders of magnitude lower than the one of a molecular crystal [57]. Often soft matter

systems are composed of a dispersion medium (e.g., a liquid) with a disperse phase (e.g.,

macromolecular particles) suspended in it. Therefore, the interactions mediated by the

solvent play a crucial role in many soft matter systems.

Interactions via the solvent are called hydrodynamic interactions. Hydrodynamics

describes the dynamics of fluids. A flow of a simple (viscous) fluid is mainly described

by mass, momentum, and energy conservation and the incompressible Navier-Stokes

equation (NSE),

ρ

(

∂v

∂t
+ (v · ∇)v

)

= −∇p+ η∇2v + fext, (1.1)

∇ · v = 0

with the velocity field v = v(r, t) at the position r, the pressure field p = p(r, t), the

density ρ, the dynamic viscosity η, and an external force fext = fext(r, t). The NSE can be

derived by balancing the forces acting on a fluid volume element [58]. Hydrodynamics

is the investigation of fluid flow for given geometry, pressure, and temperature. A

main distinction is made between flows where the viscous forces and thus the diffusive

transport is dominant and the flows where the convective transport is dominant. The

Reynolds number characterizes the relative importance of the convective transport with

respect to the diffusive one. The Reynolds number Re is the ratio of the typical diffusion

time τdiff and the typical convection time τconvec,

Re = τdiff/τconvec = VtLt/ν, (1.2)

with a typical velocity of the system Vt, a typical length scale Lt, and the kinematic

viscosity ν = η/ρ. For a low Reynolds number (Re≪ 1) the diffusive transport prevails

and the fluid moves in layers without mixing (laminar), whereas for high Reynolds

numbers turbulences occur. For flows with low Reynolds numbers, also called Stokes

flow or creeping flow, the non-linear term of the NSE, the convection term, can be
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neglected ((|ρ(v · ∇)v|) (|η∆v|)−1 << 1). Hence, the incompressible NSE simplifies for

the steady state to the linear Stokes equation

∇p− η∆v = fext, (1.3)

∇ · v = 0.

One solution of the Stokes-Equation is

v(r, t) =

∫

dr′fext(r
′, t)T (r− r′), (1.4)

with the Oseen tensor T (r) = (8πηr)−1 (1+ rr/r2), with r = |r|, the unity matrix 1,

and the boundary conditions lim
r→∞

T (r, t) = 0 [59]. Since the Oseen tensor is inverse

proportional to the position (T (r) ∼ 1/r), the effect of a force is long-ranged.

In the case of moving mesoscopic particles in a fluid, each particle induces a long-

ranged flow in the fluid and is influenced by the fluid. Thus, mesoscopic particles

experience long-ranged hydrodynamic interactions among each other and with the wall

of the container. Consequently, the motion of all particles is coupled.

Due to the complexity of these many-body systems, computer simulations play an

important role in the investigation of their behaviour. Simulations can be utilized to

better understand experimental results and survey theories. Furthermore, simulations

may predict the behaviour of material under conditions which are difficult to explore

experimentally, suggest new materials, and deliver new ideas for experiments. Thereby,

a variety of simulation methods have been applied to soft matter systems.

The first computer simulation has been performed in 1953 at the Los Alamos National

Laboratories in the US. The used method was the Metropolis algorithm of the Monte

Carlo (MC) method. By random displacements of system particles, the particle

distribution corresponds finally to a given probability distribution e.g., the classical

Boltzmann distribution [60]. In this way static equilibrium properties such as the struc-

ture of the system can be investigated. Systems which have been investigated via MC

are, for instance, liquid crystals [61], polymers [62], and magnetic colloids [63].

In order to investigate the dynamics of multi-particle systems the molecular dynam-

ics (MD) simulation method was one of the first being used. Particle positions and

velocities are calculated from the Newton’s equation of motion [60,64]. MD simulations

have been applied to simple colloidal systems, as for instance, hard spheres [65].

In MC and the original MD simulation methods the dispersion medium is primarily
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neglected. However, an immersed particle in a solvent interacts with the solvent mo-

lecules that undergoes thermal fluctuations, which leads to a random motion of these

mesoscopic particle, called the Brownian Motion [66]. Furthermore, several particles

interact hydrodynamically with each other, as discussed above. The difficulty to treat

mesoscopic particles and the solvent in the same simulation is the disparity in their

length and time scales. In order to resolve the solvent dynamics, small timesteps are

needed. Therefore, long simulations would be required to resolve the mesoscopic dy-

namics as well. Furthermore, a huge amount of particles would be needed to investigate

multi-particle systems, since already one dispersed particle would consist of a high num-

ber of particles comparable to the size of the fluid molecule. However, the dynamics of

the individual solvent molecules are not relevant for the whole soft matter system. For

this reason, there exist several simulation approaches to mimic fluid interactions either

implicitly or explicitly

For instance, MD is nowadays, widely used for detailed simulations of biological mac-

romolecules [67] including implicit and explicit water models [68],

The Brownian dynamics (BD) simulation method implements the Langevin dy-

namics [69, 70]. Additional to friction and external forces, a random force acts on the

particles, mimicing the Brownian motion, which is induced by the solvent molecules.

Thus, the motion of the particles is diffusive, but hydrodynamic interactions are not

included. However, hydrodynamic interactions can be incorporated by an additional

force, given by, for instance, the Rotne-Prager or Oseen tensor, which is then also called

the Stokesian dynamics (SD) method [71].

In order to explicitly incorporate fluid interactions again two approaches exist, the

on-lattice and off-lattice methods. One on-lattice method is the lattice-gas automata

(LGA). The speciality of this method is that the particles move from site to site of a

lattice. The particles collide if they are on the same lattice side. Collisions are performed

in a way such that mass and momentum are conserved [72]. It has been shown that this

model fulfils the NSE in the continuum limit by choosing the appropriate parameters [73].

Colloidal systems [74] and polymer systems [75] have been successfully modelled with

this method. A drawback of this method is that the Galilean invariance is broken due

to the lattice. The lattice Boltzmann (LB) method has originally been developed

from the LGA and solves the Boltzmann equation on a lattice. Although the fluid is

modelled explicitly, in both lattice methods, there were originally no thermal fluctuations

included, although there exist now approaches which include fluctuations [72]. Examples

for soft matter systems modelled by LB are polymers [76], colloidal suspensions, liquid

11



1. Introduction

crystals [77], and blood [78].

One of the off-lattice methods is the multi-particle collision dynamics (MPC)

simulation method, also called stochastic rotation dynamics (SRD) [72, 79]. It consists

of discrete streaming and collision steps. During the streaming step the particles move

ballistically. For the collision step the system is divided into different cells. The collision

is implemented by a stochastic rotation of the relative velocities of all particles in one

collision cell, with respect to the center-of-mass velocity in the cell. The collision cells

are shifted before each collision step to ensure Galilean invariance [72]. MPC has been

applied, for instance, to polymers, self propelled systems, colloids, vesicle, and blood

flow [72, 80, 81].

In 1992, Hoogerbrugge and Koelman [82] introduced another off-lattice method, the

dissipative particle dynamics (DPD) method, as a combination of MD and the

LGA. Then, Español and Warren [83] developed it further, such that the Gibbs canon-

ical ensemble is the equilibrium solution of the corresponding Fokker-Planck equation,

leading to a fluctuation-dissipation theorem. In DPD three proposed forces, a conser-

vative, a dissipative, and a random force determine the position and the velocity of

the fluid particle by applying Newton’s second law. Thereby the fluid particles can be

interpreted as a molecular cluster.

Drawbacks of DPD are that the equation of state as well as the viscosity are an

outcome of the simulation. Therefore, the smoothed dissipative particle dynam-

ics (SDPD) method has been introduced as a combination of smoothed particle hy-

drodynamics (SPH) with thermal fluctuations included similar to DPD [84]. SPH is

a method, which has been originally used in astrophysics and is used to discretize the

Navier-Stokes equation. Two approximations are applied in order to obtain numerical

solutions of equations of fluid dynamics. First, the quantity, which is to be determined,

is replaced by a convolution integral of this quantity and a so called kernel function, and

second, the integral is replaced by a discrete sum [85,86]. The original SDPD formalism

lacks angular momentum conservation [84]. However, there exist variations of the SDPD

method with angular momentum conservation [87,88]. The simulation results presented

in this work have been produced with the DPD and SDPD methods.

1.4. Blood flow in silico and in vitro

Numerical simulations have been proven to be a good tool to deliver new insights in

complicated systems such as blood flow. In silico studies of blood flow can utilize differ-
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ent techniques depending on the domain to be investigated. In large vessels (diameter

larger than 500 µm) and for high enough shear rates blood can be treated as a Newto-

nian fluid with a constant viscosity, due to the high flow rates [89,90]. With decreasing

vessel diameter the fluid behaviour becomes non-Newtonian, but can still be solved by

continuum models [89]. However, for vessel sizes smaller than 100 µm, as examined in

this work, explicit modelling of RBCs is required [91]. The above introduced simulation

methods have been utilized to investigate blood with explicit modelling of blood com-

ponents under various conditions. Recent research interests range from the properties

of single cells in flow to flowing suspensions

A number of experiments [56, 92–94], theoretical approaches [95–98], and simula-

tions [99–104] have shown that RBCs, elastic capsules, and fluid vesicles exhibit a rich

dynamical behaviour in shear flow including tank-treading (TT) and tumbling (TB) mo-

tion. The TB motion corresponds to a vesicle rotating around its center-of-mass (COM)

almost as a rigid body. A TT vesicle in shear flow exhibits a stationary shape with

a finite inclination angle with respect to the flow direction, while the membrane and

inner fluid is rotating around the COM of the vesicle. A third interesting dynamic of a

single vesicle is the swinging (SW) or vacillating-breathing state, which occurs between

the TT and TB regimes. An experimental example of Ref. [94] is shown in Fig. 1.4 (α).

Essential for the SW state is that the vesicle undergoes shape deformations. Concur-

rently an oscillating inclination angle is observed. The transition between the modes

can primarily be induced by changing the viscosity contrast of the internal and external

fluid.

Blood flow takes place in blood vessels, thus the interaction of particles with the wall

has to be considered additional to shear flow. Studies in three-dimensional (3D) and

two-dimensional (2D) model systems have shown that RBCs and vesicles experience a

lift away from a wall due to the hydrodynamic interactions with the wall. This lift force

exists due to an asymmetric shape, deformability, and the TT motion. A non-deformable

sphere does not experience a lift force in a low Reynolds number flow, due to the time

reversibility of the Stokes flow. Rigid non-spherical particles can experience a lift, but

tend to tumble in flow which reduces the drift from the wall [105]. The lift force on RBCs

and vesicles has been studied experimentally [56,106,107], theoretically [55,105,108], and

numerically [104, 109]. The strength of the hydrodynamic lift force FL depends on the

size, shape, deformability, distance to the wall, fluid viscosity, and shear rate. Boundary-

integral simulations [109] and theoretical studies [105] together with experiments [56]

suggest a dependence of the lift force on the vesicle radius Rv in 3D as FL ∼ Rζ
v with
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ζ = 3 [56] and ζ = 4 [105,109]. For 2D ζ = 0.5 has been found [55]. Furthermore, the lift

force increases with increasing deformability [56]. Vesicles in simple shear flow bound

to a wall have been found to detach, see Fig. 1.4 (β) from Ref. [56], and it has been

suggest that FL ∼ η2γ̇2 [55,108], with γ̇ the shear rate. For a vesicle close to the wall at

height hv it has been suggested that FL ∼ ηγ̇ [55, 56, 109] and FL ∼ h−2
v [104, 105, 109],

but also FL ∼ h−1
v [56, 108]. Close to the wall the force is strongest and decreases with

increasing distance. The balance of lift force and gravity leads to a equilibrium distance

of the vesicle to the wall. However, under influence of microgravity a drift of vesicles is

observed at larger distances from the wall with the lift velocity vL ∼ h−2
v [107]. The TT

motion contributes to the lift force as follows. If an inclined vesicle is close to the wall,

the hydrodynamic interactions with the fluid increase the pressure in the gap between

the vesicle and lead to the lift. Concurrently, the pressure is reduced at the two caps of

the vesicle [104]; see also Fig. 1.4 (γ). Furthermore, spherical particles experience a lift

from the wall in case of an flexible wall, which also breaks the symmetry [110]. In blood

flow, the lift force leads the crowding of RBCs in the middle of the channel. Hence, a

region close to the wall depleted of RBCs, here called the RBC-free-layer (RBC-FL),

develops [111].

In blood vessels the blood components are exposed to Poiseuille flow rather than

simple shear flow. In Poiseuille flow migration to the low shear rate and high velocity

regime is numerically observed even without a wall [112]. Simulations of single and

several RBCs in Poiseuille flow have identified different shapes of RBCs, the discocyte

shape, the parachute shape, and the slipper like shape [113–115] and see Fig. 1.5 (α).

The occurrence of different shapes depends on the shear rate and the channel size.

These shapes have also been found in experiments [116]. Further numerical studies

have identified additional RBC shapes like teardrops and fin-tailed spheres in case of

sedimentation, due to gravity or centrifugation [81], see also Fig. 1.5 (β). For several

RBCs in a channel, additionally to different shapes, different alignments in flow have

been observed, as an unordered arrangement of discocyte shapes, axis aligned parachute

shapes, and a zig-zag structure of slipper-like shapes [113] as presented in Fig. 1.5 (α).

Furthermore, blood is a non-Newtonian shear thinning fluid. This shear thinning

results from RBCs, which aggregate into rouleaux structures for low shear rates (see

Fig. 1.5 (γ)) and a break-up of these stacks with increasing shear rate. Experimentally,

it has been shown that this aggregation is related to the presence of plasma proteins [117].

In simulations it has been observed that low attraction between the RBCs leads to a

good representation of this shear-thinning behaviour and the attraction forces have been
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estimated to be 2 pN to 7 pN [118].

However, in blood also other components as platelets and WBCs are present. A good

first assumption of different blood components are different sized rigid particles. It has

been observed that in bidisperse systems of large and small particles, the distribution

depends on the overall volume fraction and the volume fraction of the two compon-

ents [119]. Typically the large particles accumulate in the low shear rate region, due

to their larger drift velocity towards the center line. However, for large overall volume

fraction and large fraction of small particles, the small particles enrich the center of

the channel. Furthermore, the distribution of particles in the channel depends on their

deformability. For bidisperse systems of deformable and stiff capsules with the same

size a higher fraction of stiffer particles is found close to the wall [119].

WBC are larger and stiffer than RBCs, their count in blood is much smaller, and

they have a more spherical shape. Experimental studies in vivo and in vitro have shown

that WBCs marginate as needed to perform their function [121, 122]. However, the

margination decreases with increasing shear rate but is less sensitive to the hematocrit.

Only for hematocrit values larger than 50% and low shear rates a drastic increase of

margination has been observed. Furthermore, for the hematocrit range 20% to 30% the

strongest WBC margination occurs, supposedly due to the RBC aggregation [119, 123,

124]. Recent 2D [120] and 3D [125] simulations are in good agreement with experimental

results. Furthermore, these simulations provided an explanation for these observations.

For hematocrit values below 45% the space in front of a WBC is empty, but RBCs

coming from behind collide with the WBC and push it to the wall. However, for high

hematocrit values the RBCs occupy also the space in front of a WBC and thus act as

a ”springboard“ and the WBC is pushed towards the channel center, see Fig. 1.5 (δ).

Additional 3D simulations have shown that WBC margination is indeed stronger for the

case with aggregating RBCs than without aggregation and that the RBC aggregation

increases primarily the margination for the low shear rates [125].

Margination of platelets has been observed in vivo [126,127], as well. In vitro experi-

ments in channels from 50µm to 200 µm with rigid platelet sized beads showed that for

a significant number of beads close to the wall the hematocrit has to be larger than 7%

and the number increases with hematocrit [128]. Furthermore, the margination increase

with shear rate until an optimal value and decreases afterwards [129]. Numerical studies

that focused on platelet margination in 2D [130] and 3D [14, 131, 132] have presented

that margination of rigid particles increase with increasing hematocrit. Furthermore, a

2D study showed that the accumulation in the periphery of the blood vessel develops
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(α)

(β)

(γ)

Figure 1.4.: Overview on recent research of vesicle dynamics. (α) Swinging (SW) and tank-treading
(TT) of a RBC. (α-A) Schematic drawing of TT ellipsoid in shear flow. (α-B) SW
RBC in shear flow. (α-C) Rotation of a bead stuck to the membrane of a RBC showing
the TT motion. Picture taken from Ref. [94]. Copyright (2007) by The American
Physical Society. (β) Side-view image of a vesicle with radius 31µm with reflection on
the substrate for different shear rates from 0 s−1 to 2.5 s−1 (a-e). Taken from Ref. [56].
Copyright (2002) by The American Physical Society. (γ) Pressure field of a TT vesicle
under shear, flow given by the colour code. Taken from Ref. [104]. Copyright (2009)
by The American Physical Society.
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1.4. Blood flow in silico and in vitro

(α) (β)

(γ)

(δ)

Figure 1.5.: Overview on recent research of blood flow. (α) Snapshots of simulations of RBCs
in pressure driven flow at different shear rates and hematocrits. (α-A) Disordered-
discocyte phase, (α-B) aligned-parachute phase and (α-C) Zig-zag-slipper phase. Taken
from Ref. [113]. Copyright (2009) by the authors. (β) Snapshots from simulations of
sedimenting RBCs for different gravities. (β-a) Parachute, (β-b) teardrop, (β-c) fin-
tailed sphere, (β-d) asymmetric teardrop, (β-e) symmetric teardrop, and (β-f) same as
(β-c) but seen from above. Reproduced from Ref. [81] with permission of The Royal
Society of Chemistry. (γ) Snapshot from simulations of aggregating RBCs in shear
flow with shear rate γ̇ = 0.04 s−1. Taken from Ref. [118]. Copyright (2011) by the
authors. (δ) RBC COM distribution around a marginated hard WBC (circle) for various
hematocrit values Ht. Taken from Ref. [120]. Copyright (2012) by The American
Physical Society.
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more quickly for higher shear rates [130]. A theoretical study suggest that the near-wall

platelet excess is due to the finite size of platelets [133]. However, 3D simulations ex-

plained the platelet margination by expulsion of platelets due to velocity fluctuations

in the channel center [14, 131]. Further 3D simulations presented that disc marginate

slower than spherical particles [132].

However, several open questions remain. This work sheds light on the dependence

of margination of particles on several system parameters such as the hematocrit, shear

rate, and the channel size. In addition, the dependence of margination the particle size,

shape, and deformability, is considered in this work.

1.5. Outline

In Chapter 2, the simulation techniques DPD and SDPD with and without angular mo-

mentum conservation are introduced and compared. In Chapter 3 the employed RBC

model is introduced, single RBC and vesicle properties are examined, and characteristics

of RBC bulk flow are discussed. In this context, the typical simulation setup is described

as well. Chapter 4 comprises of the study of platelet and drug carrier margination in

microcirculation. Based on 3D simulations, the size and shape dependence of carrier

margination is discussed in detail. Subsequently, 3D and 2D simulations are compared.

Furthermore, additional carrier sizes and the influence of the carrier deformability are

presented. On the basis of 2D simulations, the dependence of margination and con-

centration on the channel size is demonstrated. Furthermore, the dependence of the

near-wall carrier concentration on hematocrit and carrier size is discussed. Finally, the

contributions of direct and hydrodynamic interactions between carriers and RBCs on

margination are examined. In addition to the carrier margination, polymer margination

is studied in Chapter 5 and compared to margination of carriers. The focus is on the

influence of different internal interactions between polymer monomers on margination.

Beforehand, the stretching characteristics of these polymers under different conditions

are analysed in shear flow, are compared to the stretching behaviour in blood flow, and

are compared to the stretching experiments with VWF. Finally, all results are summar-

ized and conclusions are drawn in Chapter 6. Possible prospects for future work are

pointed out in Chapter 7.
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2. Fluid model

Two particle based hydrodynamic simulation methods, the dissipative particle dynam-

ics (DPD) and the smoothed dissipative particle dynamics (SDPD) method, have been

employed to incorporate a fluid in the simulations and are introduced in this chapter.

DPD mainly has been utilized for 2D simulations and SDPD for 3D simulations. Con-

sidering that the SDPD method originally lacks angular momentum conservation [84], a

SDPD version with angular momentum conservation is developed and compared to the

original approach.

2.1. Dissipative particle dynamics

In DPD [82, 83], the system is represented by a collection of Np point particles. These

particles interact locally by three pairwise additive forces: a conservative force FC, a

dissipative or drag force FD, and a random FR force. Thus, the total force fi on particle

i exerted by all other particles j within a selected cut-off region and is given by

fi =
∑

j 6=i

(FC
ij + FD

ij + FR
ij). (2.1)

The proposed conservative force FC controls the pressure and the fluid compressibility,

while the pair of dissipative FD and random force FR defines a local thermostat in order

to keep a system equilibrium temperature constant. The DPD forces are local and act

only along the separation vector rij = ri − rj of the particles within a selected cut-off

radius rc (see Fig. 2.1). The conservative force is typically [134] taken to be

FC
ij = êij







aij

(

1− rij
rc

)

, for rij ≤ rc

0, for rij > rc
(2.2)

where aij is the maximum repulsion between particle i and particle j, êij = rij/rij is

the normalized separation vector between two particles, and rij = |rij|.
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2. Fluid model

Figure 2.1.: Schematic of the DPD method. All forces act along the direction of the separation
vector rij. A soft repulsive force F

C determines the system pressure and a dissipative
force F

D, which reduces the velocity difference between the particles and a random F
R

force build a thermostat.

The equation of state of a DPD fluid [134] and the speed of sound cs can be approx-

imated as

p = ρkBT + αaaρ
2 and c2s =

∂p

∂ρ
= kBT + 2αaaρ, (2.3)

for densities ρ > 2, with p being the pressure, the temperature T , the Boltzmann

constant kB, the repulsive coefficient a, and a variable αa. The compressibility β =

ρ−1∂ρ/∂p is related to the speed of sound as β = (ρc2s)
−1. Thus, in DPD the speed

of sound can be controlled by changing the repulsive coefficient a and/or fluid density.

However, a significant increase of a may affect the timestep and lead to freezing arte-

facts [135], while an increase in particle density affects considerably the computational

cost.

The dissipative force, defined as

FD
ij = −γωD(rij)(vij · êij)êij , (2.4)

reduces the velocity difference vij = vi − vj between two particles, and hence, provides

friction in the system. The term ωD(rij) is a weight function and γ is the dissipative

force coefficient.

The random force in DPD is given by

FR
ij = σωR

ijξijdt
−1/2êij , (2.5)

where ωR
ij is the weight function, σ is the random force coefficient, and dt is the timestep.

The random number ξij has to be symmetric (ξij = ξji) to guarantee total momentum

20



2.2. Smoothed dissipative particle dynamics

conservation. Furthermore, zero mean (〈ξ〉 = 0) and unit variance is required. Both

forces depend only on the relative distance and the relative velocity between two particles

to achieve Galilean invariance.

In order to satisfy the fluctuation-dissipation theorem [83], the pair of dissipative and

random force has to fulfil the conditions

ωD(rij) =
[

ωR(rij)
]2

(2.6)

and

σ =
√

2kBTγ. (2.7)

In general, the weight functions can be arbitrarily chosen. However, a typical choice is

ωD(rij) =







(

1− rij
rc

)k

, for rij ≤ rc,

0, for rij > rc,
(2.8)

where the exponent k = 1 was used in the original DPD method [134]. Other values

of k (e.g. 0.25) have been also employed in order to increase the viscosity of a DPD

fluid [136, 137].

2.2. Smoothed dissipative particle dynamics

The smoothed dissipative particle dynamics (SDPD) method combines the discretization

of the Navier-Stokes equation (NSE) as in the smoothed particle hydrodynamics (SPH)

method and the incorporation of thermal fluctuations as in DPD [84].

2.2.1. Smoothed particle hydrodynamics

In the SPH method [86], a field variable g̃(r) is replaced by the convolution integral of

a field g(r) and a kernel function W (r, rh) as

g̃(r) =

∫

V

g(r′)W (r− r′, rh) dV
′, (2.9)

where the kernel function has to be differentiable and depends on the distance |r − r′|
and the smoothing length rh. In addition, the integral over W (r − r′, rh) has to be

normalized and the condition lim
rh→0

W (r− r′, rh) = δ (r− r′) needs to be satisfied. The
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2. Fluid model

convolution integral is discretized using small fluid volumes (or particles) dV such that

ρ(r′)dV ′ → mj with the mass mj and the mass density ρ(r′) → ρ(rj) of particle j with

the position vector rj . The discretized convolution integral is then given by

g̃(ri) ≈
N
∑

j=1

mj

ρ(rj)
g(rj)W (|ri − rj |, rh), (2.10)

where N is the number of particles (Lagrangian discretization points) within the volume

Vh characterized by the smoothing radius rh. The derivatives of the field variable g(r)

and of a vector field G(r), following similar approximation strategies, are described in

Appendix A.1. The notations ρ(rj) = ρj, g(rj) = gj, and W (|ri−rj |, rh) = Wij are used

in the following.

Applying the SPH formalism, the continuity equation dρ/dt = −ρ∇ · v, with the

particle velocity v, becomes (see Eq. (A.11))

dρi
dt

=
∑

j

mjvij · ∇iWij , (2.11)

where ∇iWij can be analytically calculated as ∇iWij = −rijFij with a function F (rij) =

Fij ≥ 0. Thus, the density ρi of particle i is defined by the neighbouring particles located

within a sphere of radius rh as

ρi =
∑

j

mjWij. (2.12)

2.2.2. SDPD with angular momentum conservation

The first proposed SDPD formulation [84], using a discretization of the NSE, lacks angu-

lar momentum conservation, both locally and globally. The lack of angular momentum

conservation originates from a translational dissipative force which is proportional to the

velocity difference vector and not only to the projection of the velocity difference vector

onto the separation vector as in DPD. One possibility to conserve angular momentum

is to neglect the perpendicular component of dissipative and random forces resulting in

a method formulation very similar to DPD [87].

Here, a spin variable for every particle ωi is introduced in order to incorporate angular

momentum conservation. In addition, each particle possesses a moment of inertia Ii

analogously to the particle mass. The introduced spin variable can be interpreted in two

different ways. On the one hand, it is an approach used to recover angular momentum
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2.2. Smoothed dissipative particle dynamics

conservation in the SDPD formulation. On the other hand, the spin can be thought of

as an effective angular velocity of a fluid volume represented by a particle. However, it

should not be confused with a molecular spin. The NSE with spin [138] is given by

ρ
dv

dt
= −∇p+ (η + ηr)∇2v +

(η

3
+ ξb − ηr

)

∇ (∇ · v) + 2ηr∇× ω, (2.13)

where η is the dynamic shear viscosity, ξb is the bulk viscosity, ηr is the rotational

viscosity, and ω is the spin angular velocity. Applying the approximations in Eqs. (A.10)

to (A.14) and the Newton’s second law of motion

F = m
dv

dt
and N = I

dω

dt
, (2.14)

with N the torque, the NSE can be discretized as

FC
ij =

(

pi
ρ2i

+
pj
ρ2j

)

Fijrij ,

F
DT

ij = −
(

5η

3
+ 3ηr − ξb

)

Fij

ρiρj
vij − 5

(η

3
+ ξb − ηr

) Fij

ρiρj
êij(êij · vij), (2.15)

F
DR

ij = −2ηr
Fij

ρiρj
rij × (ωi + ωj) .

The conservative force FC
ij controls locally the pressure field in the system. The dissip-

ative force FD = FDL + FDR consists of two components. First, a translational friction

FDT leading to the reduction of the velocity difference between two particles. Second,

a rotational friction force FDR which acts on the particles’ angular velocities, such that

a spin of one particle leads to a change in translational and angular velocity of another

particle.

The defined set of deterministic forces in Eq. (2.15) can be referred to as a SPH

discretization with angular momentum conservation. However, the SDPD method also

incorporates consistently thermal fluctuations by appending a random force to the set of

forces in Eq. (2.15). Here, the combination of dissipative, rotational, and random forces

has to satisfy the fluctuation-dissipation balance. To derive the corresponding relations,

a tensor

T ij = A(rij)1+B(rij)êij êij (2.16)

is defined similar to the fluid particle model (FPM) framework [139], where A(r) and

B(r) are some functions of inter-particle distance rij with the unity matrix 1. The
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2. Fluid model

dissipative and rotational forces in Eq. (2.15) can be written in a tensorial form as

F
DT

ij = −T ij · vij , F
DR

ij = −T ij ·
(rij

2
× (ωi + ωj)

)

, (2.17)

which implies that ηr = 5η/3− ξb,

A(rij) = 4

(

5η

3
− ξb

)

Fij

ρiρj
, and B(rij) = 10

(

ξb −
2η

3

)

Fij

ρiρj
. (2.18)

Following the general framework of the FPM [139], the random force can be defined as

FR
ijdt =

√

2kBT

(

Ã(rij)dW
S

ij +
B̃(rij)

3
tr[dW ij ]1+ C̃(rij)dW

A
ij

)

· êij , (2.19)

where dW ij is a 3 × 3-matrix of independent Wiener increments, tr[dW ij ] is the trace

of this matrix, dW
S

ij = dWS
ij − tr[dW ij]1/3 is the traceless symmetric part, with the

symmetric part dWS
ij = (dW ij + dWT

ij)/2, the transposed matrix dWT
ij, and dWA

ij =

(dW ij − dWT
ij)/2 is the antisymmetric part.

In this regard, a Wiener process Wt is defined as a stochastic process, with the fol-

lowing properties [140]: W0 = 0; Wt is a random variable, almost surely everywhere

continuous over t; for s, t > 0, Wt −Ws is Gaussian with zero mean and variance t− s;

the increments are independent: for s1 ≤ t1 < s2 ≤ t2, Wt1 −Ws1 is independent of

Wt1 −Wt2 .

The functions Ã(r), B̃(r), and C̃(r) are related to A(r) and B(r) of the tensor T ij as

A(r) =
1

2

(

Ã(r)2 + C̃(r)2
)

, (2.20)

B(r) =
1

2

(

Ã(r)2 − C̃(r)2
)

+
1

3

(

B̃(r)2 − Ã(r)2
)

.

For a further simplification of the expression in Eq. (2.19), C̃(r) = 0 is selected, leading

to

Ã(rij) =

(

2

(

20η

3
− 4ξb

)

Fij

rirj

)1/2

, and B̃(rij) =

(

2

(

17ξb −
40η

3

)

Fij

rirj

)1/2

. (2.21)

The full set of forces for the SDPD method with angular momentum conservation is

24



2.2. Smoothed dissipative particle dynamics

than given by

FC
ij =

(

pi
ρ2i

+
pj
ρ2j

)

Fijrij ,

F
DT

ij = −γaij
(

vij +
êij (êij · vij)

3

)

−
2γbij
3

êij (êij · vij) , (2.22)

F
DR

ij = −γaij
rij

2
× (ωi + ωj) ,

FR
ij =

(

σa
ijdW

S

ij + σb
ij

1

3
tr[dW ij]1

)

· êij
dt
,

with the coefficients γaij and γbij given by

γaij =

(

20η

3
− 4ξb

)

Fij

ρiρj
, γbij =

(

17ξb −
40η

3

)

Fij

ρiρj
, (2.23)

and σa,b
ij = 2

√

kBTγ
a,b
ij . It is important to note that these equations are only valid for

2η/3 ≤ ξb ≤ 5η/3, such that the friction coefficients (γaij + 2γbij)/3 and γaij are positive.

Another simplification which can be made is the reduction to a single dissipative

parameter γij = γaij = γbij such that ξb = 20η/21 and

γij =
20η

7

Fij

ρiρj
, σa

ij = σb
ij = σij = 2

√

kBTγij. (2.24)

The forces of the original SDPD method [84] are very similar to those in Eq. (2.22)

with a single dissipative parameter which is γij = 5ηFij/(3ρiρj) [84]. Furthermore, the

rotational contribution to the dissipative force FDR is excluded, while the conservative

force is kept the same.

The SDPD method with angular momentum conservation will be referred to as

SDPD+a further in text and SDPD method without angular momentum conservation

will be called SDPD–a.

In both simulation methods, it is important to consider how the mass, and for

SDPD+a the moment of inertia, of a fluid particle have to be assigned. For flows

with low Reynolds numbers Re, which is the main interest of the current study, the

viscous forces are much more important than inertial forces and thus, the simulation

results are independent of the choice of m and I [88]. However, for high enough Re,

the particle mass should correspond to the mass of a fluid volume described by a single

particle and that the moment of inertia should correspond to that of a sphere with the
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2. Fluid model

same volume as a simulated particle [88, 139].

Finally, in both SDPD–a and SDPD+a simulations the Lucy function

W (r) =
105

16πr3h

(

1 + 3
r

rh

)(

1− r

rh

)3

, (2.25)

is used as a kernel function [141], which leads to F (r) = 315/(4πr5h) (1− r/h)2.

The equation of state in Eq. (2.22) is chosen to be [142]

p = p0

(

ρ

ρ0

)α

+ b, (2.26)

where ρ0 is the reference density, and the parameters p0, α, and b can be freely selected.

This pressure equation yields the speed of sound c2s = p0α/ρ0, which can be easily

controlled through the above parameters resulting in a good approximation of fluid

incompressibility [86, 143].

2.3. Integration

The time evolution of the position r and the translational velocity v in DPD, SDPD–a,

and SDPD+a, as well as the angular velocity ω in SDPD+a of a particle i follows

Newton’s second law as

ṙi = vi, v̇i =
∑

j

1

mj

Fij , ω̇i =
∑

j

1

Ij
Nij , (2.27)

with Nij the torque exerted by particle j on particle i and given by Nij = −rij ×Fij/2.

The equations above for all simulation methods are integrated from time t to t+dt with

a modified version of the velocity-Verlet algorithm [64] given by

ri(t+ dt) = ri(t) + dtvi(t) +
1

2
(dt)2fi(t)

ṽ(t+ dt) = vi(t) + λvdtfi(t)

fi(t+ dt) = fi(ri(t + dt), ṽi(t + dt))

vi(t+ dt) = vi(t) +
1

2
dt (fi(t) + fi(t+ dt)) . (2.28)

The angular momentum is integrated similar to the velocity and in all simulations λv =

0.5 is employed.
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2.4. Boundary conditions

2.4. Boundary conditions

In applications, the fluid is often confined by walls, e.g. planar or cylindrical walls.

These walls are modelled by frozen fluid particles with the same structure (e.g., the radial

distribution function) as the fluid, while the wall thickness is equal to rc or rh depending

on the method. This is realized by cutting out the required wall shape from a snapshot

of a simulation of the specific fluid. Thus, the interactions of all simulated particles,

which are not wall particles, with the wall particles are the same as the interactions

with the fluid particles.

Particles are additionally subject to reflection at the fluid-solid interface to prevent

wall penetration [144]. In order to verify if a particle would encounter a boundary the

collision time with the wall is calculated as t′ = (xk − xBC)/(vBC − vk), where the

parameters xBC, vBC are the boundary position and boundary speed and vk, xk are the

normal velocity and the position of a particle, respectively. If 0 ≤ t′ ≤ dt the particle

would encounter the wall during a timestep of length dt and from the old position r(t)

and old velocities v(dt), the new position r(t+ dt) and velocity v(t+ dt) are calculated

as

r(t+dt) = r(t)+t′v(t)+(dt−t′)v(t+dt) and v(t+ dt) = 2vBC(t)−v(t). (2.29)

This reflection rule corresponds to bounce-back reflections. Bounce-back reflections,

where the normal and the tangential component of the particle velocity is reversed, are

employed, since they provide a better approximation for the no-slip boundary conditions

in comparison to specular reflection of particles [145]. Specular reflections, where only

the normal component of the velocity is reversed, produce no-slip condition only for

high friction [145].

Additionally, a tangential adaptive shear force [144] which acts on the fluid particles in

a near-wall layer of thickness rw is employed to ensure that no-slip boundary conditions

are strictly satisfied. This adaptive shear force is given by

ft(∆h) = Ck(∆vt)

(

1− ∆h

rw

)4

, (2.30)

with the distance ∆h from the wall and Ck the adaptive force strength calculated in

an iteration via Ck+1 = Ck + αr∆vt where αr is a relaxation parameter, which can be

constant or dynamically calculated. The term ∆vt = vBC
t −vestt is the difference between

vBC
t , the given velocity of the boundary, and vestt , the estimated flow velocity at the
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2. Fluid model

boundary. After a number of iterations it converges to ∆vt = 0 and fk
t = const.

2.5. Comparison of simulation methods

In comparison with the DPD method, an advantage of SDPD is that transport coeffi-

cients, such as the fluid viscosity, can be directly specified, while in DPD they need to

be computed in a separate simulation for selected fluid parameters. Furthermore, in

SDPD the volume of a fluid particle with mass m and density ρ is clearly defined as

V = m/ρ, which also determines a physical size of the particle [84, 146]. Additionally,

in SDPD the compressibility can be better controlled, since also the pressure equation

of state is an input to the simulation and not an outcome.

In order to compare the SDPD–a and SDPD+a methods, first the fluid viscosity and

particle density are calculated for several specified viscosities, temperatures, densities,

and smoothing lengths. Second, the Taylor-Couette flow with two immiscible fluids is

simulated, since recent numerical simulations [147] have shown that the conservation

of angular momentum is necessary to obtain correct velocity and torque profiles across

immiscible fluids with different viscosities.

2.5.1. Fluid properties

A reverse-Poiseuille flow setup [148] is used to measure the fluid viscosity, where the flow

in two halves of a computational domain is driven in opposite directions applying the

same force magnitude f per particle. The fluid viscosity is then calculated by averaging

the velocity profile over the half of the channel and using the known Poiseuille flow

profile, see Eq. (3.16). The velocity profile and the particle density are computed on the

fly by averaging the velocity over all particles within a certain distance from the wall

and averaging ρ over all particles.

Here, the basic units for the mass, m (e.g., fluid particle mass), length, l, and en-

ergy, E, are introduced, since most of the parameters (e.g., temperature, imposed

shear, viscosity), which could be used for normalization, are varied. In the simula-

tions they correspond to the standard parameters m = 1, l = 1, and E = 1. The size

of a fully-periodic simulation domain has been set to 20l × 40l × 10l, where the flow

was driven along the y-axis. Model parameters for the pressure given in Eq. (2.26)

have been set to p0 = 100E/l3, b = −100E/l3, and α = 7 [86]. A broad range

of the parameter values have been covered in simulations: four different viscosities
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Figure 2.2.: Fluid properties of SDPD+a (blue) and SDPD–a (red) for different temperatures T
and pressure gradients ∆p/Lc, for a channel of length Lc. (a) Measured viscosity η
normalized by η0 = 50

√
mE/l2. (b) Particle density ρ normalized by ρ0 = 3m/l3. The

considered energy levels are kBT ∈ {0.1, 0.4, 1}E, while rh = 1.5l.
The measured viscosity is larger than η0 for low and lower for large pressure drops. This
effect is more pronounced for lower temperature. The measured density is slightly larger
than ρ0 and is dependent on temperature [88].

η0 ∈ {25, 50, 100, 120}
√
mE/l2, three energy levels kBT ∈ {0.1, 0.4, 1}E, two densities

ρ0 ∈ {3, 5}m/l3, and two smoothing lengths rh ∈ {1.5, 3.0}l.
Figure 2.2 (a) displays the measured viscosity η normalized by the specified viscosity

η0 with respect to the applied pressure gradient ∆p/Lc = fρ0/m, for a channel of length

Lc, and for a case of rh = 1.5l. The corresponding Reynolds numbers, defined as Re =

ρV̄ W/(2η), where W is the channel width and V̄ the average velocity, are ranging from

0.01 to 4.3. However, simulations with a five-fold increase of particle mass and moment

of inertia for η0 = 25
√
mE/l2, ρ0 = 3m/l3 demonstrate that the simulation results

are hardly affected by the choice of I and m, as presented in Fig. A.1 of Appendix A.

For both fluids, SDPD+a and SDPD–a, the measured viscosity is slightly larger than

η0 for small pressure gradients, but smaller than η0 for large pressure gradients. This

effect appears to be more pronounced for a lower temperature. The particle density

measurements presented in Fig. 2.2 (b) show a slight deviation from the specified value

of ρ0 = 3m/l3. However, for both SDPD+a and SDPD–a fluids the particle density

values are similar.

Figure 2.3 presents similar measurements of fluid viscosity and particle density for a

SDPD+a fluid using different ρ0 and η0 values. As the particle density is increased, the

fluid properties are better approximated resulting in a smaller variation of the measured
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Figure 2.3.: Fluid properties of a SDPD+a fluid with respect to the pressure gradient ∆p/Lc for a
channel of length Lc and particle densities ρ0 = 3m/l3 (blue) and ρ0 = 5m/l3 (purple).
(a) Measured viscosity η normalized by η0 ∈ {50, 100}

√
mE/l2. (b) Particle density

ρ normalized by ρ0. Different energy levels kBT ∈ {0.4, 1}E were considered, while
rh = 1.5l [88].
For larger densities the specified viscosity and density are better approximated.

properties from the specified values. A better result obtained for larger densities is

due to a larger number of neighbouring particles within the interaction radius rh, which

leads to a better approximation for discretized terms of the NSE. Similar trends are also

observed for the SDPD–a fluid; see Fig. A.2. In addition, the simulations demonstrate

that the particle density is independent on the specified viscosity, since it is governed by

local fluid structure of particles within a radius rh, which is characterized by the radial

distribution function.

Figure 2.4 illustrates the fluid viscosity and particle density of a SDPD+a fluid for

different smoothing lengths rh. With increasing rh the measured values move closer

to the specified ones and the temperature dependence practically vanishes. This effect

is again due to a larger number of neighbouring particles within rh leading to smaller

discretization errors for larger rh values. For a SDPD–a fluid similar results are obtained;

see Fig. A.3. However, computational costs may increase considerably for larger rh,

since it is proportional to r3h or to the number of neighbouring particles. Typically it is

suggested to use about 50 to 60 neighbouring particles in SDPD [149]. However, slightly

smaller values are also possible in simulations if small variations of fluid properties are

acceptable.
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Figure 2.4.: Fluid properties of a SDPD+a fluid for different pressure gradients ∆p/Lc, for a channel
of length Lc and smoothing lengths rh = 1.5l (blue) and rh = 3.0l (green). (a) Meas-
ured viscosity η normalized by η0 ∈ {50, 100}

√
mE/l2. (b) Particle density ρ normal-

ized by ρ0 = 3m/l3. Different energy levels kBT ∈ {0.4, 1}E were considered.
For larger smoothing lengths specified values are better approximated and differences
due to variations of temperature and viscosity vanish [88].

2.5.2. Taylor-Couette flow of two immiscible fluids

Taylor-Couette flow refers to a fluid flow in the gap between two rotating cylinders with

the inner and outer radii, Ri and Ro and the inner and outer angular frequencies, Ωi

and Ωo, respectively as shown in Fig. 2.5. A solution [147] of the incompressible NSE

(see Eq. (1.1)) for this problem yields the linear angular velocity profile

vϕ(r) = Ar +
B

r
, (2.31)

with Ri < r < Ro the radial position of the fluid and the corresponding constants

A =
ΩoR

2
o − ΩiR

2
i

R2
o − R2

i

and B =
(Ωi − Ωo)R

2
oR

2
i

R2
o − R2

i

. (2.32)

Here, it is also assumed that the system has infinite length in the cylinder-axis direction

and the angular velocities are small enough to ensure that no Taylor-Couette instabilities

occur. The radial fluid velocity component vanishes, due to symmetry reasons [147].

The inner cylinder can also be replaced by another immiscible fluid such that no

mixing between the two fluids at Ri can occur. In this case only the outer cylinder

rotates with a constant rotational frequency Ωo, which leads to the angular velocity

vϕ(r) = Ωor. Note that these solutions are independent of the viscosity values of the
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2. Fluid model

Figure 2.5.: A sketch of two cylinders with radii Ro and Ri where the subscripts ’o’ and ’i’ denote
the outer and inner cylinders, respectively. The gap between cylinders is filled with a
fluid coloured in blue. Taylor-Couette flow can be generated by rotation of the outer
cylinder with a rotational frequency Ωo and the inner cylinder with Ωi. In simulations
with two immiscible fluids, the inner cylinder (shaded area) is replaced by another fluid
which cannot mix with the fluid inside the gap between two cylindrical surfaces [88].
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Figure 2.6.: Angular velocity vϕ profiles for the Taylor-Couette flow with two immiscible fluids using
both SDPD+a and SDPD–a methods. The radial position r is normalized by the
cylinder radius Ro, while the angular velocity is scaled with the cylinder angular velocity
ΩoRo.
The SDPD+a method leads to a correct linear profile, while the SDPD–a method fails
to do so, due to violation of angular momentum conservation. The SDPD–a results
for different resolution with ρ = 10ρ0 and for a twice larger system size (marked as
“scaled”) show hardly any dependence on fluid resolution [88].
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2.5. Comparison of simulation methods

immiscible fluids.

Here, for both, the SDPD+a and SDPD–a method, the inner and outer fluids had the

following parameters p0 = 100E/l3, b = −100E/l3, α = 7, ρ0 = 3m/l3, rh = 1.5l, and

kBT = 0.4E, while the ratio of fluid viscosities was set to ηi/ηo = 3. The computational

domain was assumed to be periodic in the cylinder-axis direction, while the cylinder

wall was modelled by frozen particles as described in Section 2.4. In order to prevent

mixing of the fluids and particle penetration into the wall, specular reflections of particles

has been imposed at cylindrical surfaces with r = Ri and r = Ro. The wall particles

were rotated with a constant angular frequency Ωo in order to generate flow. The

corresponding Reynolds number is Re = ρΩoRoRi/ηo ≈ 0.3.

Figure 2.6 shows angular velocity profiles for the Taylor-Couette flow using both

SDPD+a and SDPD–a methods. The SDPD+a simulation properly captures a linear

profile of angular velocity, while the SDPD–a method leads to distinct slopes within

the regions of different viscosities. This example illustrates the importance of angular

momentum conservation and provides a validation for the new SDPD+a approach [88].

A resolution study shows that these results are unaffected by an increase of fluid

resolution in the SDPD–a method. Simulations with different densities ρ ∈ {2, 3, 5, 10}ρ0
and a larger system size have led to the same angular velocities (up to a statistical

averaging error) as presented in Fig. 2.6. Furthermore, particle mass and inertia do not

effect the simulation results as well, as shown in Fig. A.4 for simulations with a two-fold

increase/decrease of the mass and moment of inertia.
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3. Blood flow simulations

Blood consists of 37% to 54% of RBCs by volume, which also represent the majority of

cells. In order to model blood flow in small vessels (< 100 µm) it is necessary to model

RBCs explicitly in addition to a fluid, which is modelled using the techniques presented

in the last chapter. Therefore, in this chapter the applied RBC model is introduced.

Furthermore, the dynamics of a single vesicle and RBC in shear flow and flow properties

of RBCs in the bulk are discussed.

3.1. Cell model

To model RBCs realistically the viscous as well as the elastic properties, the bending

resistance, and the area and volume conservation due to the membrane, the spectrin

network, and the cytosol have to be taken into account. Two approaches to describe

RBCs have been successfully used so far, a continuum model [150–153] and a network

model [153]. In a continuum model, the RBC membrane properties are described by a

set of constitutive equations. These equations are than discretized in various ways, for

instance by a finite element or boundary integral method [151, 153]. The RBC model

introduced here is a network model from Ref. [114].

3.1.1. 3D RBC model

The RBC structure is defined by a 2D triangulated network on a membrane surface

which is characterized by a set of point particles pi, i ∈ {1, ..., Nv}, which are the

vertices of the network, see Fig. 3.1.

The vertices are connected by Ns springs and form Nt triangles. The whole potential

energy of the system is given by

U = Uspring + Ubending + Uarea + Uvolume. (3.1)
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3. Blood flow simulations

Figure 3.1.: In 3D the RBC consists of a triangulated network drawn in black. The vertices (black
dots) are connected by springs with dashpots. Between two adjacent triangles a bending
resistance exists and a local and global area, and volume constraints are employed.

The spring potential between vertex pairs,

Uspring =
Ns
∑

j=1

kBT
lm
4lp

3x2j − 2x3j
1− xj

+
kp
lj
, (3.2)

consists of a purely attractive non-linear wormlike chain (WLC) potential and a repulsive

potential, where lj is the length of the spring j, lm is the maximum spring extension,

xj = lj/lm ∈ (0, 1), the persistence length lp, kBT the energy per unit mass, and kp the

spring constant. By equating the corresponding forces [91] the equilibrium spring length

l0 can be related to the spring constant kp as

kp =
lm0
lp
kBT

(

1

4(1− x0)2
− 1

4
+ x0

)

, (3.3)

with x0 = lm/l0. Furthermore, the persistence length is determined by the linear shear

modulus

µ0 =

√
3kBT

4lplmx0

(

x0
2(1− x0)3

− 1

4(1− x0)2
+

1

4

)

+
3
√
3kp

4l30
. (3.4)

The introduced springs mimic the elastic properties of the spectrin network. Additionally

a dashpot has to be incorporated in order to take also the membrane viscosity into

account. Therefore, an additional dissipative force

FD
ij = −γTvij − γC(vij · êij)êij (3.5)
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and the random force

FR
ijdt =

√

2kBT

(

√

2γTdW
S

ij +
√

3γC − γT
tr[dW ij ]

3
1

)

· êij (3.6)

are employed. Note that this equation imposes the condition 3γC ≥ γT . Accordingly,

the membrane viscosity ηm is given by

ηm =
√
3γT +

√
3γC

4
. (3.7)

Furthermore, the bending energy is defined as,

Ubending =
∑

j∈1...Ns

kb(1− cos(ϑj − ϑ0)), (3.8)

where kb is the bending constant, ϑj is the instantaneous angle between to adjacent

triangles having the common edge j, and ϑ0 is the spontaneous angle. From the Helfrich

energy [154]

Ec =
κr
2

∫

A

(C1 + C2 − 2C0)
2 dA+ κg

∫

A

C1C2 dA, (3.9)

with the local curvatures C1, C2, the spontaneous curvature C0, and the bending rigid-

ities κr and κg, for a spherical shell, the model bending constant kb is related to the

macroscopic bending rigidity by κr =
√
3kb/2.

The last two terms of Eq. (3.1) are the global and local area, and volume conservation

constraints

Uarea =
ka(A− Atot

0 )2

2Atot
0

+
∑

j∈1...Nt

kd(Aj − A0)
2

2A0

and Uvolume =
kv(V − V tot

0 )2

2V tot
0

, (3.10)

with A and V being the total instantaneous global area and volume, and Atot
0 and V tot

0

the targeted values. The term Aj is the instantaneous area of triangle j ∈ {1, ..., Nt}
and A0 the desired one. The global area, local area, and volume constraint constants are

ka, kd and kv, respectively. All input parameters for a typical simulation are presented

in Table B.1 of Appendix B.

The RBC is characterized by the effective diameter Dr =
√

A0/π, where A0 is the

RBC surface area. Typical values for healthy RBCs are Dr = 6.5 µm, η = 1.2×10−3 Pa s,

and κr lies within the range of 50− 70kBT for the physiological temperature T = 37 ◦C.

The RBC is further characterized by the reduced volume V ∗ = 6V0/(πD
3
r) = 0.64, where
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3. Blood flow simulations

V0 is the enclosed RBC volume in 3D.

3.1.2. Triangulation

For the triangulation, first Nv vertices (points) are distributed on a surface of a sphere.

Assuming that every vertex is a point charge, the equilibrated vertex distribution on

the surface is used for triangulation. Afterwards, the sphere is conformed to a RBC by

applying that the shape of a RBC can be described [91, 155] as

z = ±D0

√

1− x2 + y2

D2
0

[

c0 + c1
x2 + y2

D2
0

+ c2
(x2 + y2)2

D4
0

]

, (3.11)

with the cell diameter D0, c0 = 0.1035805, c1 = 1.001279, and c2 = −0.561381. Fur-

thermore, the free energy of the system is minimised by applying the spring and the

bending energy and flipping of triangles [156].

3.1.3. 2D RBC model

In addition to the realistic 3D model, a 2D model [120] is introduced, since 2D simula-

tions are computationally cheaper.

Figure 3.2.: A RBC is modelled as a closed bead-spring chain in 2D. The vertices (black dots)
are connected by springs and between two adjacent spring a bending resistance exists.
Furthermore, an area conservation constraint is employed.

In 2D, a RBC is modelled as a closed bead-spring chain, see Fig. 3.2. The spring

interaction is the same as in Eq. (3.2), the bending potential is

Ubending =
∑

j∈1...Ns

kb(1− cos(ϑj)), (3.12)

for the angle ϑj between two adjacent springs which have a common vertex j. The area

and volume constraint is reduced here to the global area constraint

Uarea =
ka(A− A0)

2

2
, (3.13)
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where A is the instantaneous and A0 the desired enclosed area.

In 2D the RBC is characterized by the effective diameter Dr = L0/π, where L0 is

the cell contour length. A typical value would be Dr = 6.1 µm. The RBC is further

characterized by the reduced area A∗ = 4A0/(πD
2
r ) = 0.46. All input parameters for a

typical simulation are presented in Table B.2.

3.2. Single vesicle in shear flow

The described RBC model has been shown to reproduce experimental elasticity measure-

ments [114]. A RBC has been stretched with optical tweezers and its extension has been

measured depending on the applied stretching force [157]. Furthermore, single RBCs

and vesicles in shear flow possess interesting dynamics, which depend on the viscosity

ration of the inner and outer fluid. Thus, simulations of a vesicle in shear flow are presen-

ted and used to compare the SDPD+a and SDPD–a simulation method. Beforehand,

the implementation of the interactions between fluid and cells is introduced.

3.2.1. Fluid–cell interaction

A RBC or vesicle has to be coupled to the fluid in order to investigate its motion

in flow. The coupling is achieved through viscous friction between cell vertices and

the surrounding fluid particles, which is implemented via the dissipative and random

interactions from the DPD simulation method presented in Eqs. (2.4) and (2.5). The

strength γ of the dissipative force FD for the interaction between a fluid particle and a

membrane vertex is computed such that no-slip boundary conditions (BCs) are satisfied.

The derivation of γ is based on the idealized case of linear shear flow over a flat plane

with area Ap. In a continuum hydrodynamic description, the total shear force exerted by

the fluid on the area Ap is equal to Apηγ̇w, where η is the fluid’s dynamic viscosity and γ̇w
is the local wall shear rate. Assuming a discretized plane composed of Nv vertices, the

force on a single vertex exerted by the sheared fluid can be found as Fv =
∫

Vh
ng(r)FDdV ,

where n is the fluid number density, g(r) is the radial distribution function of the fluid,

and Vh is the half sphere volume of fluid above the plane. The total shear force on

the area Ap is than equal to NAFv. The equality of NAFv = Apηγ̇w results in an

expression of the dissipative force coefficient in terms of the fluid density and viscosity,

wall density NA/Ap, and the cut-off radius rc. Under the assumption of linear shear

flow the shear rate γ̇w cancels out. This formulation results in satisfaction of the no-slip

39



3. Blood flow simulations

BCs for the linear shear flow over a flat plane. However, it also serves as an excellent

approximation for no-slip BCs at the membrane surface [91]. Note that conservative

interactions between fluid and membrane particles are turned off, which implies that

the radial distribution function is structureless, g(r) = 1. In 2D, the surface area is

replaced by a line of length L with NL particles, and the half sphere volume is replaced

by the half circle area Ah [91, 158].

3.2.2. Dynamic regimes

Single vesicles and RBCs undergo tank-treading (TT), swinging (SW), and tumbling

(TB) motion [56,92–94,96–104]. In the TT state vesicles in shear flow exhibits a station-

ary shape with a finite inclination angle θi > 0 with respect to the flow direction, while

the membrane and inner fluid is rotating around the COM of the vesicle, see Fig. 3.3.

The TB motion corresponds to rotations as a rigid body. In between the TT and the

TB regimes, the SW state occur, where shape oscillations and a concurrently oscillating

inclination angle are observed.

Figure 3.3.: Simulation snapshots of a tank-treading (TT) vesicle in shear flow for the viscosity
contrast λ = 2. (top) A xy-plane view, where the flow is in x-direction. (bottom)
For visualization the red sphere is attached to a fixed position on a vesicle in order to
demonstrate the TT motion of the membrane. Note that small shape fluctuations are
clearly visible [88].

The occurrence of different vesicle motions is governed by shear stresses inside the

vesicle. Shear flow has two components, an elongational part which tends to stretch and

align a vesicle along the x = y axis with an inclination angle of θi = π/4 and a rotational

part of the flow which exerts a torque on the vesicle membrane. For low shear stresses
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3.2. Single vesicle in shear flow

between the membrane and the inner fluid this torque leads to the TT motion, whereas

increasing shear stresses inside the vesicle result in an effective torque and decrease of

the inclination angle. Thus, for large enough inner shear stresses a transition from TT

to TB motion occurs.

Keller and Skalak (KS) [95] derived a theory which predicts the TT-to-TB transition

for a fixed ellipsoidal shape. Moreover, the KS theory is able to predict the inclination

angle θi in the vesicle TT regime and is described in detail in Appendix B.2.

Increasing the inner shear stresses means, for instance, increasing the viscosity con-

trast λ = ηi/ηo between fluids inside and outside the vesicle with viscosities ηi and ηo,

respectively. For fluid vesicles the dynamics is very weakly dependent on shear rate,

however if elasticity is present, as for RBCs, a TB to TT motion is observed with in-

creasing shear rate if the inner viscosity is low, due to an energy barrier of the TT

motion [101].

It is important to note that for simulations with λ > 1, a simulation method with

angular momentum conservation is mandatory. This has been shown for instance for

Taylor-Couette flow with two immiscible fluids for both MPC [147] and SDPD+a in

Section 2.5.2.

In order to demonstrate this for vesicle simulations, an ellipsoidal vesicle with the

shape (r1/a1)2+(r2/a2)
2+(r3/a3)

2 = 1, where ri, i ∈ {1, 2, 3} are the Cartesian coordin-

ates and ai are the semiaxes of the ellipsoid, has been simulated. It has a prolate shape

with a1 > a2 = a3 and an aspect ratio of a1/a2 ≈ 1.7. The ellipsoid is characterized by

a reduced volume V ∗ = V/(4πR3
0/3), where R0 =

√

Atot
0 /(4π) is the effective radius of

a vesicle with area Atot
0 . An ellipsoidal vesicle with V ∗ ≈ 0.93 is employed, since this

reduced volume ensures a nearly constant shape in shear flow [97]. Thus, the comparison

of simulation results with the KS theory is justified. Note, that in this case the vertices

are not connected by springs, but the above introduced bending potential, and area and

volume constraints are employed; the parameters are given in Table B.3.

The vesicle is placed in a box of size Lx = 9.3R0 and Ly = Lz = 5.6R0. This

box size is large enough to neglect potential finite-size effects as it has been verified in

Ref. [97]. Periodic BCs are applied in x- and z-direction, while shear flow is generated

by two moving walls in the x-direction with the flow velocity v = γ̇(y − Ly/2)êx and

γ̇ being the shear rate. Two different strategies are employed to simulate two distinct

fluids separated by a membrane. The first method for fluid separation implements

bounce-back reflections of fluid particles at the triangle area, similar to the wall-particle

interaction described in Section 2.4. This method will be referred to as the ’reflection’
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3. Blood flow simulations

method further below. The implementation of fluid particle reflections provides local

conservation of momentum, while angular momentum is not strictly conserved at the

membrane. Another method for fluid separation considers tracking of fluid particles

such that the type, of the particle crossing the membrane, can be altered. Depending

on the particle type, the fluid particles interact with different dissipative forces leading

to different viscosities. Thus, the type of an outer-fluid particle is changed to the type

of an inner-fluid particle if this particle crosses the membrane from outside to inside and

vice versa. This method for fluid separation at the membrane leads to local conservation

of angular momentum. This method will be referred to as the ‘exchange’ method.

It has been shown numerically that the inclination angle depends on the Reynolds

number Re = γ̇ρ0R
2
0/ηo [104]. Therefore, the system parameters are set such that

Re < 0.1, to avoid inertial effects. The parameters are presented in Table B.4.

The inclination angle of a TT vesicle in shear flow is calculated by

θi = arctan(uy/ux), (3.14)

where u = (uxuyuz) is the eigenvector of the moments of inertia tensor, see Eq. (B.3) of

Appendix B, with the smallest eigenvalue. Figure 3.4 (a) compares inclination angles

obtained from SDPD simulations of a SDPD+a fluid, a SDPD–a fluid, and from the KS

theory for different viscosity ratios λ. The simulation results for the SDPD+a fluid agree

very well with the KS theory predictions, while the results using a SDPD–a fluid show

a significant overestimation of the inclination angle at large λ. The results for λ = 1

from both SDPD+a and SDPD–a cases coincide, indicating that angular momentum

conservation does not affect simulation results if inner and outer fluids have the same

viscosity. The deviations of the SDPD+a results from the KS theory predictions might

be due to small shape fluctuations of the vesicle and/or numerical errors, indicated

by error bars. Comparison of simulated inclination angles using the ‘exchange’ and

‘reflection’ methods for the separation of inner and outer fluids at the membrane is

shown in Fig. 3.4 (b). Although the ’reflection’ method does not strictly conserve

angular momentum at the membrane the corresponding effect on the inclination angle

seems to be rather small. Use of the ’reflection’ method leads to a slight shift of vesicle

inclination angles to smaller values [88].

Furthermore, the TT and TB frequency for a RBC measured from simulations agree

with experiments, if a membrane viscosity is chosen. However, with a purely elastic

membrane the frequency is overestimated [153].
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Figure 3.4.: Comparison of inclination angles θi of a TT vesicle in shear flow obtained from SDPD+a
(blue) and SDPD–a (red) simulations for different viscosity ratios λ. (a) Simulation
results, with the ‘exchange’ method for fluid separation employed, are compared to the
KS theory (black). (b) Comparison of the ‘exchange’ and ‘reflection’ methods for the
separation of inner and outer fluids at the membrane surface.
The inclination angles obtained from SDPD–a simulation differ significantly from the
prediction of the KS theory, whereas the results from SDPD+a simulations agree well.
Employing the ’reflection’ method, which does not strictly conserve angular momentum
at the membrane, leads to a small shift to smaller inclination angles [88].

3.3. Blood flow

Clearly, the single-cell properties influence the flow properties of RBCs in bulk flow.

Therefore, the arrangement of RBCs in blood flow will be introduced, since this is an

important requirement to understand the results of the further presented studies. Also,

the implemented interactions between cells and the typical 2D and 3D simulation setup

will be is introduced. Additionally, the differences between the DPD and SDPD methods

for blood flow simulations will be presented.

3.3.1. Cell–cell interactions

For simulations with more than one RBC, the overlapping of different cells has to be

prevented. Therefore, two types of interactions are applied. The first one, is a Lennard-

Jones (LJ) repulsion between the cell vertices. The LJ potential

ULJ(r) = 4ǫ

(

(σLJ
r

)12

−
(σLJ
r

)6
)

(3.15)

is truncated at the distance rm = 21/6σLJ at which the potential has its minimum. In

order to decrease computational cost the number of vertices can be reduced. For the
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3. Blood flow simulations

applied number of vertices solely the LJ repulsion is not sufficient to prevent overlapping.

Therefore, bounce-back reflections of the vertices of one cell on the triangle surfaces of

the other cells are also assumed, similar to the particle-wall interactions introduced in

Section 2.4.

3.3.2. Simulation setup

A typical simulated system corresponds to a cylindrical microvessel in 3D with diameter

W and length of Lc = 12.3Dr as presented in Fig. 3.5. In 2D, a slit geometry with

different widths W and a length Lc = 19.5Dr is employed and shown in Fig. 3.6. The

focus is on a channel width of W = 20 µm, but smaller and larger ones are also discussed.

The wall boundaries are modelled in 3D and 2D as described in Section 2.4. In flow

direction, periodic BCs are assumed and blood flow is driven by a constant force applied

to all solvent particles, which is equivalent to a prescribed pressure drop. A pressure

drop leads to the Poiseuille flow velocity profile

vx(r) = V0

(

1− 4r2

W 2

)

, (3.16)

for a cylindrical channel, with the maximum velocity V C
0 = ∆pW 2/(16Lcη), the dynamic

viscosity η, and the pressure drop ∆p/Lc = fn defined by the force f on the fluid

particles and the number density n. For planar walls in 2D and 3D, the maximum

velocity is V P
0 = ∆pW 2/(8Lcη).

In order to characterize the flow strength, a non-dimensional shear rate in both 2D

and 3D is defined as

γ̇∗ = ¯̇γτRBC = ¯̇γ
ηD3

r

κr
, (3.17)

where κr is the bending rigidity, ¯̇γ = v̄/W is the average shear rate (or pseudo shear rate),

and v̄ is the average flow velocity computed from the velocity profile, while τRBC defines

a characteristic RBC relaxation time. The simulated values of γ̇∗ cover the range of flow

rates characteristic for the venular part of microcirculation (¯̇γ . 80 s−1 for W ≈ 20 µm),

where it is estimated that γ̇∗ . 90 in 3D (γ̇∗ . 77 in 2D), while in arteriolar part

the flow rates are larger (¯̇γ & 110 s−1 for W ≈ 20 µm) with γ̇∗ & 120 in 3D [159, 160].

The considered range of shear rates is also relevant for tumor microvasculature, since

blood flow velocities in tumors are much reduced in comparison to those under normal

conditions, due to large geometric resistance and vessel permeability [161, 162].

In addition to the fluid particles the channel is filled with NRBC RBCs. The number of
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3.3. Blood flow

RBCs is computed according to channel hematocrit Ht, which corresponds to the volume

fraction of RBCs in 3D and to the area fraction of RBCs in 2D. Due to the repulsive LJ

interactions between the vertices, a layer of thickness σLJ/4 has been assumed around

the RBCs to calculate their effective size and thus to calculate NRBC.

Figure 3.5.: Snapshot of a 3D simulation of blood flow with hematocrit Ht = 0.3 in a cylindrical
channel with the shear rate γ̇∗ = 59. The channel diameter corresponds to W =
20µm and the length corresponds to Lc ≈ 80µm. RBCs are coloured in red and the
triangulation is shown by the black lines.

Figure 3.6.: Snapshot of 2D simulation of blood flow with hematocrit Ht = 0.3 in a slit geometry
with the shear rate γ̇∗ = 29.3. The channel width corresponds to W = 20µm and the
length corresponds to Lc ≈ 118µm. RBCs are coloured in red.

3.3.3. RBC distribution

Due to the hydrodynamic lift, RBCs in blood flow gather in the middle of the channel,

where flow velocities are large, which leads to an efficient supply of O2 and disposal of

CO2. This arrangement leads to a layer close to the wall depleted of RBCs, therefore

called the RBC-free-layer (RBC-FL). The exchange of O2 and CO2 is mainly performed

in the small capillaries with a typical diameter of 5 µm to 8 µm and which have thin walls

for this reason. Since the size of the capillaries is comparable to or smaller as the size of

the RBCs there is only a small plasma layer between the RBCs and the wall, which is to
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3. Blood flow simulations

be overcome by the substances. Furthermore, the RBCs are not equally distributed and

the shape and orientation may vary along the cross-section of the channel. Sampling

the RBC’s cross-sectional center-of-mass (COM) positions in blood flow over time leads

to a distribution, which reflects the probability of a RBC to be at a certain radial

distance ∆r = W/2 − r from the wall. These probability distributions are normalized

to unity. Figure 3.7 displays such radial COM probability distributions of RBCs for

different hematocrit values and average shear rates. In the middle of the channel the

local shear rates are lowest, therefore close packing is possible and a peak in the COM

distribution is observed. With increasing distance from the wall, the local shear rates

increase, which leads to a disturbance of the structure and consequently to a reduced

probability. Interestingly, close to the RBC-FL border, the RBCs align with the flow

and form a layer, which also leads to a peak in the COM distribution. With increasing

hematocrit, the described structure becomes more apparent as presented in Fig. 3.7 (a).

Furthermore, with increasing shear rate the packing at the center line increases and the

packing close to the RBC-FL shifts to larger distances from the wall, see Fig. 3.7 (b),

since the lift force is larger for larger shear rates. Additional to the arrangement, the

shape of the RBCs changes along the cross-section. With increasing distance form the

wall, the asphericity, the departure from a spherical shape, decreases. RBCs in the

middle of the channel even attain a more spherical shape than in equilibrium [163].

Close to the RBC-FL border the asphericity is largest, since cells are subject to the

largest shear rates.

Furthermore, the velocity profile changes due to the RBCs, when compared to the

flow of fluid alone, with the same pressure drop. The velocity profile for blood flow is

more flat in the middle of the channel, as shown in Fig. 3.8, whereas the profiles in the

RBC-FL overlap.

A frequently used measure in experiments is the wall shear rate γ̇w. For normal

Poiseuille flow the wall shear rate and the pseudo shear rate are related by γ̇w = ζγ̇∗

with ζ = 8. However, due to the flatting of the velocity profile for blood flow ζ > 8,

depending on the hematocrit.

Fluid compressibility in different methods

In order to test the simulation methods, introduced in the previous chapter, the corres-

ponding COM distributions are compared for similar simulation conditions as hemato-

crit, shear rate, and fluid viscosity. Figure 3.9 (a) presents the COM distributions of

RBCs for rh = rc, the same hematocrit, shear rate, and viscosity η for the three different
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Figure 3.7.: RBC COM distributions depending on the distance ∆r to the wall normalized by the
channel width W for different hematocrit values The different plots correspond to
(a) γ̇∗ = 39 and different hematocrit values: Ht = 0.1 (red), Ht = 0.3 (blue), and
Ht = 0.5 (green). (b) At Ht = 0.4 for the shear rates: γ̇∗ = 20 (cyan), γ̇∗ = 39
(brown), and γ̇∗ = 84 (black).
In the middle of the channel the RBCs are closely packed. For increasing local shear
rates the structure is disturbed, but close to the wall the RBCs align with the flow
and form a layer. With increasing hematocrit, the described structure becomes more
pronounced and with increasing shear rate the RBC pack closer in the middle and
migrate further away from the wall.
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Figure 3.8.: Velocity profile vx(r) scaled by the RBC relaxation time τRBC and the channel width
W for the same pressure drop depending on the radial position r for Poiseuille flow
(black curve) and blood flow at the hematocrit Ht = 0.3 (blue curve). The pressure
drop is defined by the force on the fluid particles f ≈ 165kBT/W and the number
density n = 3.
The blood flow velocity is flattened in the middle and agrees with the Poiseuille flow in
the RBC-FL, since the RBCs are gathered in the center.
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3. Blood flow simulations

simulation techniques DPD, SDPD+a, and SDPD–a. The employed fluid parameters

are presented in Tables B.5 and B.6. Both SDPD methods agree, since the viscosities

inside and outside the RBCs are equal. However, for the DPD method the RBCs are

located closer to the wall due to the compressibility of the fluid and therefore, altered

hydrodynamic interactions with the wall are observed. For the lower shear rates the

distributions from all three methods agree. For 2D simulations a larger fluid density

can be applied to treat this compressibility problem, while computational costs still

remain manageable. With a number density of n2D = 5 for 2D, instead of n3D = 3 for

3D, the COM distribution agree well in 2D for the DPD and SDPD–a method, since

the compressibility is lower.
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Figure 3.9.: COM distributions depending on the distance ∆r to the wall in 3D and ∆y in 2D
normalized by the channel width W for the different simulation methods DPD (red
curves), SDPD–a (blue curves), and SDPD+a (green curve). (a) 3D simulations at
γ̇∗ ≈ 59 and Ht = 0.3. (b) 2D simulations at γ̇∗ = 29.7 and Ht = 0.45.
The DPD fluid for the 3D simulation is too compressible and leads to incorrect results,
whereas the larger density in 2D simulations leads to an incompressible fluid.

3.3.4. Calculation of the RBC-free-layer

The RBC-FL, the region close to the wall depleted of RBCs, is an important charac-

teristic of the RBC arrangement. In order to determine the RBC-FL thickness, the

outer edge of the RBC core shown in Fig. 3.10 is measured, which is similar to RBC-FL

measurements in experiments [164,165]. The data is averaged for many RBC snapshots

at different times. In 3D, the RBC core edge is measured by projecting RBC vertices

onto the xy-plane, leading to a RBC-FL edge similar to that in Fig. 3.10. In addition

to the temporal averaging, averaging over different angular orientations (to exploit the

cylindrical symmetry of the channel) is also performed.
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Figure 3.10.: A schematic of a RBC-FL measurement. An example of a RBC-FL edge (red curve)
from a 2D simulation at Ht = 0.4 and γ̇∗ = 29.7. The x- and y-positions are
normalized by the channel width W . The blue line presents the average of the RBC-FL
edge, which defines the RBC-FL thickness.
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Figure 3.11.: Measurements of 3D RBC-FL thickness ∆RBC−FL normalized by the channel diameter
W depending on the hematocrit Ht. Different curves correspond to different shear
rates γ̇∗ = 20 (cyan), γ̇∗ = 39 (brown), and γ̇∗ = 84 (black).
With increasing hematocrit, the RBC-FL thickness decreases and with increasing shear
rate it increases.
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3. Blood flow simulations

The RBC-FL thickness ∆RBC−FL depends mainly on the hematocrit but also on the

shear rate, as illustrated in Fig. 3.11. The RBC-FL decreases with increasing hemato-

crit due to the crowded center. Furthermore, with increasing shear rate the RBC-FL

increases slightly, due to a larger lift force and the improved packing in the center of

the channel. In the limit of very small shear rates (γ̇∗ . 1), the RBC-FL should almost

vanish.
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4. Margination of platelets and

drug-delivery carriers

The cross-sectional distribution of RBCs is determined by the flow rate and their volume

fraction (hematocrit), as discussed in the previous chapter. In particular, the arrange-

ment of RBCs in the middle of the channel is crucial and develops due to a hydrodynamic

lift from the wall. The RBC migration towards the channel center leads to a near-wall

region depleted of RBCs, which is called the RBC-free-layer (RBC-FL). Since RBCs

constitute the majority of cells in blood, their distribution has a high impact on the

arrangement of other blood components, such as platelets or synthetic particles, injec-

ted into the circulatory system for therapeutic or other reasons. In order to perform a

certain task, adhesion of these components to the vessel wall is often required. Hence,

they have to migrate to the wall (marginate) to enable adhesion.

In this chapter, the focus is on the investigation of margination of particles, which

are considerably smaller and stiffer than RBCs. The dependence of the particle cross-

sectional distribution on several relevant parameters is addressed, which include blood

flow properties (shear rate and hematocrit), particle characteristics (size, shape, and

deformability), and vessel size. Furthermore, a qualitative comparison of 2D and 3D

simulations is made. Additionally, the dependence of margination on the channel size is

investigated, and the dependence of carrier concentration on channel size, hematocrit,

and carrier size is discussed. Finally, to understand the underlying mechanisms of mar-

gination, different contributions due to hydrodynamic and direct interactions between

the particles and RBCs are examined.

4.1. Size and shape dependence of margination

The margination of different carriers in blood flow is analysed depending on the hemato-

crit Ht and the normalized average shear rate γ̇∗, first for spheres of different sizes and

second for carriers with ellipsoidal shapes. Moreover, their margination efficiency and
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4. Margination of platelets and drug-delivery carriers

rotational dynamics is compared. Finally, the adhesion potential and the favourable

shape for drug delivery is discussed.

Figure 4.1 displays the various carrier shapes, emphasizing their different thickness h.

All these carriers have been constructed and modelled as described in Section 3.1. The

corresponding parameters are presented in Table C.1 and Table C.2 of Appendix C.

h: 0 0.03 0.06 0.09 0.12 0.15

Figure 4.1.: Employed 3D carrier models. Spheres and ellipsoids with triangulated mesh shown in
black. The absolute value of the thickness h is given by the colour code: from blue
(h = 0Dr) to white (h = 0.15Dr), with the RBC diameter Dr.

4.1.1. Spherical carriers

First, spheres with four different diameters (Dc ∈ {0.3, 0.28, 0.25, 0.15}Dr), with Dr =

6.5 µm being the RBC diameter, are considered. Thereby, a sphere with Dc = 0.25Dr

has half the volume of the sphere with Dc = 0.3Dr.

Margination diagrams

Sampling the carrier’s cross-sectional COM positions in blood flow over time leads to a

distribution, which reflects the probability of a carrier to be at a certain radial distance

∆r = W/2 − r from the wall. Figure 4.2 displays a radial COM distribution for RBCs

and carriers with the diameter Dc = 0.25Dr, at Ht = 0.3 and γ̇∗ ≈ 59. A corresponding

snapshot is also presented. In contrast to the RBCs, the carriers migrate into the

RBC-FL and remain quasi-trapped there.

One possibility to quantify and compare carrier margination for a wide range of flow

and carrier parameters is to calculate the probability of the carrier’s COM to be within

a certain distance δ away from the wall. Suitable distances would be the RBC-FL thick-

ness or the potential adhesion layer (PAL). The PAL is defined as the region where

adhesive interactions between the carrier’s surface and the wall would be perceptible.

The margination probabilities pδ are calculated by integrating the COM distributions
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Figure 4.2.: Distribution of different components in blood flow for the shear rate γ̇∗ ≈ 59 and the
hematocrit Ht = 0.3. (top) Center-of-mass (COM) probability distribution depending
on the radial distance ∆r to the wall normalized by the diameter W of the channel.
The curves correspond to RBCs (red) and spheres with the diameter Dc = 0.25Dr

(blue). The black arrows indicate the corresponding RBC-FL and the potential adhesion
layer(PAL). (bottom) Corresponding snapshot. RBCs are coloured in red and carriers
in blue.
RBCs migrate away from the wall due to a hydrodynamic repulsion (lift force), whereas
the carriers are quasi-trapped in the RBC-FL.
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4. Margination of platelets and drug-delivery carriers

PCOM(r) over the particular region as pδ = 2π
∫W/2

W/2−δ
rPCOM(r)dr. The COM distribu-

tions are normalized, such that pδ = 1 for δ = W/2. The analysis of the margination

into the PAL with δPAL = Dc/2 + s is restricted to a distance s = 200 nm between the

carrier’s surface and the wall, due to the resolution of the applied mesoscopic simulation

method. Although the distance s is motivated by the receptor-ligand interactions, which

occur within several nanometres, the distance of several hundred nanometres becomes

relevant for carrier-wall interactions in case of a carrier whose surface is decorated by

tethered molecules [166], or for vessels decorated with proteins such as the von Wille-

brand factor [167]. Both suggested distances depend on the system parameters. The

RBC-FL thickness depends on shear rate and hematocrit, as described in Chapter 3,

and the PAL on the size of the carriers. Therefore, it is also useful to estimate the mar-

gination into a region with a constant thickness independent of all system parameters.

These margination probabilities are then used to construct a so-called margination

diagram, in order to compare the margination for a wide range of shear rates and

hematocrit values. The margination probability into the RBC-FL (left column) and

into the PAL (right column) are displayed in Fig. 4.3 for all considered sizes of spheres.

The margination diagrams for a constant region δ = 0.31Dr are presented in Fig. C.1

of Appendix C. In all diagrams a high (low) margination probability is depicted in red

(blue). Note that the colour scale differs for the different regions. Margination into the

RBC-FL has higher probability than margination into the PAL. Thus, for the latter the

selected range for the margination probability is different in order to better contrast the

dependencies on the hematocrit and shear rate. For the RBC-FL the probability range

is chosen as pmin
RBC−FL = 0.5 and pmax

RBC−FL = 1, and for the PAL, pmin
PAL = 0 and pmax

PAL = 0.7.

The investigation of the margination of the sphere with Dc = 0.28Dr has shown that

for the low hematocrit value Ht = 0.1 at all shear rates and for the shear rate γ̇∗ = 20

at all hematocrit values the margination probability is small, therefore, Ht = 0.1 and

γ̇∗ = 20 are omitted from the margination investigations for the other spheres.

The margination probabilities show a similar dependence on hematocrit and shear rate

for all sizes. Primarily, with increasing hematocrit, the margination increases for both

choices of margination layer. However, for the sphere with Dc = 0.3Dr at Ht = 0.4 and

for the spheres with Dc = 0.28, 0.25Dr at Ht = 0.5, this trend changes and a decrease

of margination into the RBC-FL is observed, whereas the margination into the PAL

further increases. Figure 4.4 illustrates better that the probability pPAL of margination

into the PAL mainly increases rather than decreases at high Ht. Diagram cuts are

presented for all considered spheres and a shear rate of γ̇∗ = 59. For high shear rates,
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Figure 4.3.: Margination probabilities combined for different hematocrit values Ht and shear rates
γ̇∗. Left column: Margination into the RBC-FL. Right column: Margination into the
PAL. The four considered sphere diameters Dc, compared to the RBC diameter Dr,
are: (a) Dc = 0.3Dr, (b) Dc = 0.28Dr, (c) Dc = 0.25Dr, and (d) Dc = 0.15Dr. The
white squares (�) indicate the values of Ht and γ̇∗ for which simulations have been
performed. The colour code ranges from blue (low probability) to red (high probability)
and is acquired via interpolation.
The margination probability increases with increasing Ht. The margination probability
into the RBC-FL mainly increases with shear rate, whereas the probability of margina-
tion into the PAL decreases. Furthermore, the margination decreases with decreasing
size, especially Dr = 0.15Dr possesses a drastically reduced margination probability
compared to the other sizes.
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4. Margination of platelets and drug-delivery carriers

a slight decrease may be observed at Ht = 0.5, see Fig. C.2. Comparing the shear-rate

dependence of the margination for the two choices of margination layer, considerable

differences are observed. The margination probability into the RBC-FL mainly increases

with increasing shear rate. Occasionally, a slight decrease of margination for further

increasing shear rate may be observed (e.g., γ̇∗ ≈ 84, Ht = 0.3). In contrast, the

margination into the PAL mainly decreases with increasing shear rate.

Independent of the choice of margination layer, the margination probabilities decrease

with carrier size. Especially, for Dc = 0.15Dr the margination is drastically reduced

compared to the other sizes. Further, the localisation of the carriers is analysed in more

detail, to understand not only the detected dependence of margination on hematocrit

and shear rate but also the dependence on carrier size.
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Figure 4.4.: Probability pPAL of margination into the PAL depending on the hematocrit Ht for an
intermediate shear rate γ̇∗ ≈ 59. Different curves correspond to different sphere sizes:
Dr = 0.3Dr (red), Dc = 0.28Dr (orange), Dc = 0.25Dr (green), and Dc = 0.15Dr

(blue).
The sphere with Dc = 0.15Dr possesses a significantly reduced margination. No
significant decrease of margination is observed at high Ht.

Hematocrit dependence

In the majority of cases, an increase of hematocrit results in an increase of margination

for all sizes of spheres. With increasing hematocrit, the RBCs are located closer to the

wall, as illustrated by the RBC COM distributions in Fig. 4.5 for γ̇∗ ≈ 84. In other

words, the RBC-FL decreases with increasing hematocrit as presented in Fig. 3.11 of

Chapter 3. Simultaneously, the COM distribution of the carriers develops a distinct

peak in the RBC-FL. In response to the diminishing RBC-FL thickness ∆RBC−FL, the
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4.1. Size and shape dependence of margination

peak of the COM distribution for carriers approaches the wall, becomes sharper, and

its height increases.
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Figure 4.5.: COM probability distributions of a sphere with the diameter Dc = 0.28Dr (top) and
RBCs (bottom) depending on the radial distance ∆r to the wall normalized by the
channel diameter W . The curves correspond to the shear rate γ̇∗ ≈ 84 and three
different hematocrit values Ht = 0.1 (red), Ht = 0.3 (blue), and Ht = 0.5 (green).
The RBC COM distribution becomes broader with increasing hematocrit, thus the
RBC-FL thickness deceases. With decreasing RBC-FL, the peak of the carrier COM
distribution moves closer to the wall, becomes sharper, and higher.

In the following, the distance ∆MAX of the peak maximum of the COM distribution to

the wall and the height p(∆MAX) of the peak are examined. Additionally, the distance

of the average COM position in the RBC-FL (∆〈rRBC−FL〉) as well as the distance of the

average position in the whole channel (∆〈r〉) are estimated. The quantities 〈rRBC−FL〉
and 〈r〉 are the average over all cross-sectional COM positions of all carriers in the

RBC-FL, more precisely in a region of thickness 1.05∆RBC−FL and the entire channel

for all timesteps, respectively.

Figure 4.6 (a) displays the dependence of ∆MAX on the hematocrit for two sphere
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4. Margination of platelets and drug-delivery carriers

sizes and two shear rates. The considered diameters are Dc = 0.3Dr and Dc = 0.15Dr

and the two shear rates are γ̇∗ ≈ 39, and γ̇∗ ≈ 84. The dotted lines indicate the

minimum distances of the COM to the wall that are possible, namely ∆min
MAX = Dc/2.

The peak of the COM distributions reaches the minimum distance for all sphere sizes

and shear rates. Indeed, the hematocrit value for which the minimum distance is reached

depends mainly on the shear rate but hardly on the size. Higher hematocrit values are

necessary for higher shear rates to reach the minimum distance. Once the minimum

distance is reached, the maximum height increases further with increasing hematocrit

(cf. Fig. 4.7 (c)). The black lines in Fig. 4.6 (a) denote the RBC-FL thickness. At

Ht = 0.5 the RBC-FL thickness is smaller than the size of the carrier with Dc = 0.3Dr.

Therefore, the particle center cannot be located in the RBC-FL without deformations

of its shape, which is not possible for the considered nearly rigid carriers. Thus, the

drastic decrease of margination into the RBC-FL observed in Fig. 4.3 is not due to a

reduction of carriers close to the wall, which agrees with the stable margination into the

PAL, see Fig. 4.4.

Differences between the various sizes become more apparent after the analysis of the

average position in the RBC-FL. The distance ∆〈rRBC-FL〉 of the mean position in the

RBC-FL from the wall decreases with increasing hematocrit, just like the peak position,

as shown in Fig. 4.6 (b). For the sphere with Dc = 0.3Dr the average position in the

RBC-FL is closer to the minimum possible distance for both shear rates than for the

smaller sphere indicating that the peak for the larger sphere is narrower. The RBC-FL is

effectively larger for the smaller spheres, due to their smaller diameter. Smaller spheres

can come closer to the wall, as well as to the RBC core, while still being located in the

RBC-FL. Therefore, their distribution is broader and their margination into the PAL

is less effective.

Interestingly, the increase of the distance ∆〈r〉 of the average position in the entire

channel from the wall at Ht = 0.5, presented in Fig. 4.6 (c), indicates that the three

larger carriers depart from the wall. Carriers that are located close to the RBC-FL

border at Ht = 0.4 supposedly interact stronger with RBCs at Ht = 0.5 and thus get

departed; but this seems to be irrelevant for the margination into the PAL, since the

number of carriers in the PAL is stable. However, for further increasing Ht a reduction

of the margination into the PAL is likely. In contrast, the average position of the

smallest spheres decreases further at Ht = 0.5. Furthermore, a higher percentage of

small carriers is still found in the bulk, since the small spheres fit better between the

RBCs. Indeed, the curves for the three larger spheres are very similar and the mean
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4.1. Size and shape dependence of margination
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Figure 4.6.: COM distribution characteristics depending on the hematocrit Ht. (a) Distance ∆MAX

of the peak to the wall, (b) distance ∆〈rRBC−FL〉 of the mean position in the RBC-FL
to the wall , and (c) distance ∆〈r〉 of the mean position in whole channel to the wall.
All quantities are normalized by the channel diameter W . Different colours correspond
to different sphere sizes: Dc = 0.3Dr (red), Dc = 0.28Dr (orange), Dc = 0.25Dr

(green), and Dc = 0.15Dr (blue). Different curve types refer to different shear rates:
γ̇∗ ≈ 39 (dashed) and γ̇∗ ≈ 84 (solid). The coloured dotted curves indicate the
particular minimum distance to the wall Dc/2 and the black dash-dotted curve the
RBC-FL thickness ∆RBC−FL.
From Ht = 0.1 to Ht = 0.4 all carriers come closer to the wall. At Ht = 0.5 the
three largest spheres are departed from the wall. All measured quantities decrease with
increasing shear rate. Although the peak reaches the minimum distance for the sphere
with Dc = 0.15Dr, the average positions differ considerably from the minimum possible
distances.
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4. Margination of platelets and drug-delivery carriers

position is located in the RBC-FL, whereas the average position of the smallest sphere

is considerably further away from the wall than the RBC-FL border. See also Fig. C.3

for further sphere sizes.

In short summary, it has been observed that RBCs are essential for margination.

With increasing hematocrit, the RBC-FL decreases and the margination increases. The

smaller the carriers the worse the margination, because smaller carriers fit better in

the RBC bulk and their distribution in the RBC-FL are broader. Noteworthy is the

significant difference between the carrier with Dc = 0.15Dr and the other spheres, for

all investigated properties of the system. The three cases Dc ∈ {0.3, 0.28, 0.25}Dr just

differ slightly, although the volume of the sphere with Dc = 0.3Dr is twice the volume

of the sphere with Dc = 0.25Dr. Accordingly, the linear size of a carrier affects the

margination properties rather than the volume.

Shear-rate dependence

The distributions of carriers depend not only on the hematocrit, but also on the shear

rate, as seen above. The shear-rate dependence stems from the dependence of the

RBC-FL thickness on shear rate. In the limit of very small shear rates (γ̇∗ . 1), the

RBC distribution is nearly uniform, and therefore, the RBC-FL and consequently the

carrier margination should almost vanish. The increase of shear rate associated with

an increase of the RBC-FL thickness, as presented in Fig. 3.11, would explain both

observations, the increase of margination into the RBC-FL as well as the decrease of

margination into the PAL. For the former case, the margination probability is calculated

with respect to a broader channel region, but a broader RBC-FL leads also to a reduction

of margination into the PAL as seen before. Nevertheless, taking into account that RBCs

are influenced by different shear rates it is reasonable to assume that carriers may be also

influenced. Therefore, the distribution characteristics are examined depending on the

corresponding RBC-FL thickness ∆RBC−FL to exclude the effect of a different RBC-FL

thickness for various shear rates.

Figures 4.7 (a) and (b) present the distance ∆MAX of the peak and the distance

∆〈rRBC-FL〉 of the average position in the RBC-FL from the wall. Despite the new way of

plotting, both properties still depend on the shear rate. The deviations are smaller com-

pared to Figs. 4.6 (a) and (b) and are more distinct for the smaller carrier. Additionally,

the height p(∆MAX) of the maximum, i.e. the probability to find a carrier exactly at

the peak position, is clearly reduced at higher shear rates, see Fig. 4.7 (c). Thus, the

increase of margination into the RBC-FL is due to the increase of the RBC-FL thickness
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Figure 4.7.: COM distribution analysis depending on the RBC-FL thickness ∆RBC−FL and shear
rate γ̇∗. (a) Distance ∆MAX of the peak to the wall, (b) distance ∆〈rRBC−FL〉 of
the mean position in the RBC-FL to the wall, and (c) height p(∆MAX) of the peak
maximum. All parameters are normalized by the channel diameter W . (d) Time t
dependent mean squared displacement MSD(t) in RBC-FL at hematocrit Ht = 0.5.
The time is normalized by the RBC relaxation time τRBC. Different colours correspond
to different spheres: Dc = 0.3Dr (red) and Dc = 0.15Dr (blue). The dashed curves
refer to the shear rate γ̇∗ ≈ 39 and the solid curves to γ̇∗ ≈ 84.
All examined distribution characteristics still depend on the shear rate. The influence of
shear rate is stronger for the smaller sphere. The increased fluctuation at higher shear
rates is observed especially for the small sphere.
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4. Margination of platelets and drug-delivery carriers

∆RBC−FL with increasing shear rate, whereas the reduction of margination into the PAL

has additional reasons. See also Figs. C.4 (a) to (c) for further sphere sizes.

The motion of the carriers in radial direction in the RBC-FL is analysed to further un-

derstand the shear-rate dependence. Therefore, the mean squared displacement (MSD),

given by

MSD(t) =
〈

(rRBC−FL (t+ t0)− rRBC−FL (t0))
2
〉

, (4.1)

is investigated. The MSD provides a measure for the distance, a carrier diffuses in a

given time interval of length t from its original position r(t0) at time t0. Figure 4.7 (d)

shows the MSD, normalized by the RBC-FL thickness squared to eliminate the effect of

different RBC-FL thicknesses, for two shear rates at Ht = 0.5. The MSD increases with

increasing shear rate. An increase of effective fluctuations explains the reduction of the

maximum height and the change of mean position in the RBC-FL. Furthermore, the

more pronounced change in fluctuations for the small carriers is in agreement with the

stronger influence of the shear rate on the COM distribution. However, this is not the

full explanation, since at Ht = 0.4 different MSDs for various shear rates are observed

only for the smallest carrier, see also Figs. C.4 (d) and (e).

In short summary, the shear-rate dependence of margination of almost rigid carriers is

less pronounced than the hematocrit dependence. However, the shear-rate dependence

originates from an increase of RBC-FL thickness with increasing shear rate and from

effective fluctuations induced by larger shear rates.

4.1.2. Elongated carriers

Non-activated platelets have a disc-like rather than a spherical shape. Therefore, the

margination of two elongated shapes is examined. Both carriers are modelled as oblate

ellipsoids based on the surface equation 4(x2 + y2)/D2
L + 4z2/D2

S = 1, with DL being

the long axis diameter and DS being the short axis diameter. The carriers differ in

their aspect ratios (κ = DL/DS), but have the same volume as the sphere with the

diameter Dc = 0.3Dr, see Fig. 4.1. One ellipsoid has the aspect ratio of κ = 3.5, which

corresponds to De
L = 0.47Dr and De

S = 0.13Dr, respectively. The second ellipsoid has

an aspect ratio of κ = 7 (Dd
L = 0.59Dr, Dd

S = 0.09Dr). For simplicity the carrier with

the larger aspect ratio is referred to as “disc”, the other as “ellipsoid”.
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4.1. Size and shape dependence of margination

Margination diagrams

Figure 4.8 presents the margination probabilities depending on hematocrit and shear

rate for carriers of the same volume, the sphere with Dc = 0.3Dr (a), the ellipsoid (b),

and the disc (c). Please note that the plot employs different colour scales compared

to Fig. 4.3. See Fig. C.5 for the margination into a constant region. Both elongated

shapes marginate worse into the RBC-FL (left column) than the sphere. For both

elongated shapes the probabilities are smaller. However, a similar shear-rate and hem-

atocrit dependence is observed. After an initial increase, a decrease of margination

into the RBC-FL with increasing hematocrit is already starting from Ht = 0.3. For

the elongated shapes, the margination into the PAL is computed with respect to the

long diameter DL, since for this distance an ellipsoid is able to interact with the wall.

However, particles in shear flow perform rotations, thus an interaction with the wall

can just happen in a specific time window during the rotation. The PAL margination

probabilities for elongated shapes seem to be similar to the margination of the sphere.

This is confirmed in Fig. 4.9 which presents the probability pPAL of margination into

the PAL depending on the hematocrit at γ̇∗ = 59 (see also Fig. C.6 for γ̇∗ = 39 and

γ̇∗ = 84). At low hematocrit values both elongated shapes marginate slightly better

into the PAL than the sphere. However, at high hematocrit values the PAL margina-

tion probability decreases for the ellipsoid but not for the disc. The same distribution

characteristics as presented above for spheres are compared for the elongated shapes, in

order to understand the origin of discrepancies for the different shapes.

Hematocrit dependence

Figure 4.10 (a) displays the COM distributions for both, the disc and the ellipsoid with

the corresponding RBC distribution at γ̇∗ ≈ 84 and Ht = 0.5. In contrast to the COM

distributions observed for spheres, two peaks can be identified for the elongated shapes

for some parameter combinations. One peak is close to the peak of the RBCs (peak

1) and one very close to the wall (peak 2). However, for the ellipsoid the second peak

is less distinct. A particularly interesting observation is the splitting of the first peak

of the disc, with a local minimum exactly at the position of the maximum of the RBC

distribution. This has been observed for multiple parameter combinations and indicates

that the disc can easily slide between the RBCs.

Figure 4.10 (b) shows for both elongated shapes and two shear rates the distance of

the peaks to the wall. Additionally, the minimal distance of the long axis (DL/2) to
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Figure 4.8.: Margination probabilities combined for different hematocrit valuesHt and shear rates γ̇∗.
Margination into the RBC-FL (left) and the PAL (right). (a) Sphere with Dc = 0.3Dr,
(b) oblate ellipsoid with a long axis diameter of De

L = 0.47Dr and a short axis diameter
of De

S = 0.13Dr, and (c) oblate ellipsoid (“disc”) with Dd
L = 0.59Dr and Dd

S = 0.09Dr.
The white squares (�) indicate the values of Ht and γ̇∗ for which simulations have been
performed. The colour code ranges from blue (low probability) to red (high probability)
and is acquired via interpolation.
The probability of margination into the RBC-FL is significantly reduced for the elongated
shapes. However, the margination into the PAL is similar for the sphere and the disc,
but slightly reduced for the ellipsoid.
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Figure 4.9.: Probability pPAL of margination into the PAL depending on hematocrit Ht at an inter-
mediate shear rate γ̇∗ ≈ 59. The curves correspond to the sphere with Dc = 0.3Dr

(red), the ellipsoid (purple), and the disc (cyan).
At low Ht values elongated shapes marginate better. At high Ht the disc marginates
similar to the sphere, whereas the margination probability of the ellipsoid decreases.

the wall, the minimum distance of the short axis (DS/2), and the RBC-FL thickness

are depicted. Already for low hematocrit values the first peak reaches the distance that

corresponds to the long axis. Thus, the elongated carriers are close enough to interact

with the wall for lower hematocrit values than the spheres (cf. Fig. 4.6 (a)).

However, the first peak is very close to the RBC-FL border for high hematocrit values.

Furthermore, the average position in the channel is close to the RBC-FL, as shown in

Fig. 4.10 (c). Hence, a reasonable amount of carriers is located outside of the RBC-FL,

which explains the low RBC-FL margination probability, especially for the disc. Never-

theless, the thicker ellipsoids are influenced more by RBCs than the thinner discs, since

the ellipsoids mean distance ∆〈r〉 decreases for the highest Ht. However, the second peak

starts to appear for cases with ∆RBC−FL . DL/2 and is located at the minimal possible

distance DS/2. An advantage of this second peak is that carriers, located such close to

the wall, would be able to interact with adhesive sites on the wall without disturbance

by RBCs, as long as ∆RBC−FL & DS/2. The appearance of a larger second peak for the

disc also explains the larger margination probability into the PAL for the disc compared

to the ellipsoid.

Shear-rate dependence

In the case of carriers with a spherical shape, the peak height of the COM distribu-

tions changes clearly with shear rate (see Fig. 4.7 (c)). In contrast, the height of the

peaks depending on the RBC-FL thickness ∆RBC−FL for the elongated shapes (presen-
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Figure 4.10.: Distribution characteristics depending on hematocrit Ht. (a) COM distributions of
carriers with elongated shapes and RBCs (magenta curve) depending on the radial
distance ∆r from the wall normalized by the channel diameter W . The curves corres-
pond to a shear rate of γ̇∗ ≈ 84 and to the hematocrit value Ht = 0.5. (b) Distance
∆MAX of the peak to the wall, and (c) distance ∆<r> of the mean position in the
whole channel to the wall. The cyan colour correspond to the disc and the purple
colour to the ellipsoid. The symbols without lines refer to the second peak. The
dashed curve/turned-triangle correspond to γ̇∗ ≈ 39 and the solid curve/pentagon to
γ̇∗ ≈ 84. The dotted and two-fold dashed line correspond to the short axis DS and
the long axis DL, respectively. The brown and the black dash-dotted lines display the
RBC-FL thickness at γ̇∗ ≈ 39 (brown) and γ̇∗ ≈ 84 (black).
In contrast to the sphere, the COM distributions of the elongated shapes show two
peaks. Both peaks are either close to the radius of the long or of the short axis. The
ellipsoid shows an increased mean distance at high hematocrit values, which is similar
to the sphere.
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4.1. Size and shape dependence of margination

ted in Fig. 4.11 (a)), is hardly influenced by shear rate. The height of the first peak

increases with decreasing RBC-FL thickness, as observed also for spheres. However,

when the second peak appears, the height of the first peak decreases. There might be

two possible reasons. First, the carriers that have been in the region of the first peak

moved to the region of the second peak. Second, since the first peak is close to the

RBC-FL border, interactions with RBCs could displace the carriers. Interestingly, the

elongated shapes display more stable margination characteristics than the spheres. The

height of the first peak as well as the RBC-FL mean-distance presented in Fig. 4.11 (c)

hardly depend on shear rate. However, the height of the second peak depends on the

shear rate, see Fig. 4.11 (b). Especially for the disc, the height of the second peak is

reduced for the two highest shear rates, although the RBC-FL thickness is smaller.

The origin of the shear-rate dependence of the height of the second peak might be

related to an increase of effective fluctuations as discussed for the spheres. However,

there is a second aspect, which is related to the rotational motion of carriers in shear

flow. A spherical carrier is subject to a uniform rotation, while an ellipsoid displays

tumbling dynamics. Indeed, an ellipsoid whose COM is closer to the wall than its long

axis cannot freely rotate. If the distance to the wall is close to DS/2 it can hardly change

orientation, but for higher distances it is able to swing back and forth. For tumbling,

an ellipsoid is forced to move away from the wall to a distance of DL/2 making a full

rotation possible. Figure 4.12, depicts the correlation of the orientation of the disc and

the COM distance to the wall. The orientation is described by the angle θ, which is

the angle between the short axis of the disc and the radial unit vector. The colour of

the curve characterizes the COM distance to the wall. Purple corresponds to a small

distance to the wall and yellow to a larger distance. If the carrier is aligned with the flow,

the angle is θ = 0 (Figs. 4.12 (b), (d)) and during rotation the angle is 0 < θ ≤ π/2

(Fig. 4.12 (c)). The distance of a carrier located in the region of the first peak, has

to increase to reach a certain angle. Hence, after a rotation the carrier is located in

the region of the second peak. This is consistent with the observation that the peak

is located either at DL/2 or DS/2. For higher shear rates the force on the carriers is

stronger due to the higher velocity gradient in the near wall region, leading to a higher

first peak and a less distinct second peak.

4.1.3. Rotational dynamics of a carrier

The carriers’ rotational dynamics influences not only the margination as seen above

but also the adhesion efficiency. An analysis of the average angular velocities 〈ψ〉 of
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Figure 4.11.: Distribution characteristics for different shapes depending on the RBC-FL thickness
∆RBC−FL normalized by the channel diameter W . Comparison of the ellipsoid (purple)
and the disc (cyan). (a) Height p(∆MAX,1) of the first peak at the shear rates γ̇∗ = 39
(dashed curve), and γ̇∗ = 84 (solid curve). (b) Height p(∆MAX,2) of the second peak
at the shear rates γ̇∗ = 20 (diamond), γ̇∗ = 39 (turned-triangle), γ̇∗ = 59 (circle), and
γ̇∗ = 84 (pentagon). (c) Distance ∆〈rRBC−FL〉 of the mean position in the RBC-FL
and RBC-FL thickness ∆RBC−FL at γ̇∗ = 39 (brown dash-dotted line).
Initially, the first peak increases with decreasing RBC-FL thickness. When the second
peak appears the first peak decreases. Only the height of the second peak seems to
be dependent on the shear rate.
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Figure 4.12.: Orientation of a disc in flow. (a) The angle θ between the short axis of the disc
and the radial unit vector normalized by π for different times t starting from the
simulation time t0 normalized by the RBC relaxation time τRBC. The colour of the
curve corresponds to the distance ∆COM of the carriers COM to the wall, normalized
by the RBC diameter Dr. Purple refers to a short distance and yellow to a larger one.
(b-d) Snapshots for the disc whose orientation is shown in (a) at times t/τRBC = 0.005,
t/τRBC = 0.07, and t/τRBC = 0.09. This example corresponds to the shear rate
γ̇∗ ≈ 39 and hematocrit Ht = 0.5.
Initially, the carrier is close to the wall, but it has to depart from the wall to rotate.
After the rotation of 0.5π it has a distance comparable to its long axis Dd

L/2 ≈ 0.3Dr.

69



4. Margination of platelets and drug-delivery carriers

marginated carriers indicates that ellipsoidal carriers rotate considerably slower within

the RBC-FL than spherical carriers, see Fig. 4.13. Since the velocity profile in the

RBC-FL can be assumed as simple shear flow with the shear rate γ̇w, the carriers are

expected to rotate with the angular velocity ψ(t) predicted by Jeffery [168,169]. For an

oblate ellipsoid with the long radius RL = DL/2 and the short radius RS = DS/2, the

time-dependent angular velocity is given by

ψ(t) =
γ̇w

R2
L +R2

S

(

(RL cos (χ(t)))
2 + (RS sin(χ(t)))

2
)

,

with (4.2)

χ(t) = arctan

(

RL

RS

tan

(

RLRSγ̇wt

R2
L +R2

S

))

.

Averaging over time leads to

〈ψ〉 = γ̇w
κ+ 1/κ

, (4.3)

with κ = RL/RS being the aspect ratio of major and minor axis. For all spheres κs = 1

which implies that 〈ψs〉 = γ̇w/2, while for the ellipsoid κe = 3.5, and the disc κd = 7,

which results in 〈ψe〉 ≈ 0.26γ̇w and 〈ψd〉 ≈ 0.14γ̇w, such that 〈ψd〉 < 〈ψe〉 < 〈ψs〉.
The shear rate γ̇w in the simulation has been derived from the near-wall velocity

profiles in the RBC-FL in order to compare with theoretical predictions. The time-

dependent angular velocity of the carriers in the simulation has been computed as an

average of the angular velocity of all Nv particles (vertices) representing one carrier (see

Section 3.1) with ψ(t) = 1/Nv

∑Nv

i=1(ri × vi)/|ri|2 assuming a pure rotation around the

axis perpendicular to the vector between channel center and COM of the carrier. ψ(t)

has been averaged over all particles and timesteps, to obtain 〈ψ〉. The results for 〈ψ〉 in

Fig. 4.13 (a) for a sphere are close to the theoretical predictions (see also Fig. C.7 for

other sphere sizes). The angular velocities for the ellipsoid in Fig. 4.13 (b) and the disc

in Fig. 4.13 (c) are lower than the theoretical predictions. The reduced average angular

velocity for the elongated shapes is due to two reasons. First, for a carrier very close to

the wall the rotation is suppressed. Second, the rotation is slowed down by interactions

with RBCs and the wall. This is illustrated in Fig. 4.13 (d) by a reduced peak angular

velocity when the carriers’ surface is close to the wall. A lower rotational velocity of a

carrier leads to a longer interaction time between the carrier and a wall. Thus, adhesion

of elongated carriers is expected to be more efficient than for spheres with a comparable

size [158].

70



4.1. Size and shape dependence of margination

 100

 200

 300

 400

 500

 600

 0.2  0.3  0.4  0.5

<
ψ

>
τ R

B
C

Ht

(a) γ.* = 39
γ.* = 59
γ.* = 84

simulation
theory

 0

 100

 200

 300

 0.2  0.3  0.4  0.5

<
ψ

>
τ R

B
C

Ht

(b) γ.* = 39
γ.* = 59
γ.* = 84

simulation
theory

 0

 50

 100

 150

 200

 0.2  0.3  0.4  0.5

<
ψ

>
τ R

B
C

Ht

(c) γ.* = 20
γ.* = 39
γ.* = 59

γ.* = 84
simulation

theory

 0

 100

 200

 300

 400

 500

 600

 0  0.05  0.1  0.15

ψ
(t

)τ
R

B
C

(t-t0)/τRBC

(d) theory
simulation

Figure 4.13.: (a-c) Average angular velocities 〈ψ〉 as given in Eq. (4.3) for (a) the sphere with Dc =
0.3Dr, (b) ellipsoid, and (c) disc. Solid curves: simulation results and dashed curves:
theoretical predictions by Jeffery [168] for the near-wall shear rate estimated from
simulations. (d) Time t dependent angular velocity ψ(t) estimated from simulations
for Ht = 0.4 and γ̇∗ = 39 (blue dots) starting after the simulation time t0 and
theoretical predictions as given in Eq. (4.2) (red curve). 〈ψ〉 as well as t are normalized
by the RBC relaxation time τRBC.
The average angular velocity for the spheres agrees well with the theoretical predictions.
For both elongated shapes the angular velocity is smaller than for a sphere and when
compared to the theoretical predictions. The difference increases with increasing shear
rate. The reduction is due to hindered rotations close to the wall and to a reduced
maximum angular velocity stemming from interactions with the RBCs and the wall.
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4. Margination of platelets and drug-delivery carriers

4.1.4. Summary and Discussion

In summary, the margination efficiency of spherical as well as elongated carriers is mainly

influenced by the change of the RBC-FL thickness, which is mostly induced by an in-

crease of the hematocrit. With decreasing RBC-FL thickness, the margination efficiency

increases. Nevertheless, due to changes in effective fluctuations and rotations, a change

of the shear rate also affects margination. Thus, higher shear rates reduce margination.

Comparing spheres with diameters between Dc = 0.3Dr and Dc = 0.15Dr it is found

that, the smaller carriers marginate less. The sphere with Dc = 0.3Dr, which corres-

ponds to Dc = 2 µm shows the most efficient margination. However, for a small RBC-FL

thickness, larger spheres could leave the wall due to interactions with the RBCs. This

effect increases with size, since for white blood cells [125], modelled as spheres with a

diameter of Dc = 1.5Dr, a strong reduction of margination at Ht = 0.5 has been ob-

served. The crucial factor to determine the margination efficiency seems to be the linear

carrier size (diameter). The sphere with Dc = 0.15Dr is drastically less marginated than

the three larger spheres, although the volume from Dc = 0.3Dr to Dc = 0.25Dr is twice

smaller.

The majority of elongated carriers are located at a distance from the wall comparable

with their longest axis, ensuring the possibility of direct interactions with the wall for

a broad range of hematocrit values. Furthermore, for a small RBC-FL thickness, where

interactions with RBCs could negatively influence the position of the carriers, a consid-

erable fraction of carriers is located at the minimal possible distance securing potential

adhesion. Comparing the two investigated elongated shapes, a high aspect ratio seems

to be advantageous, since the margination into the PAL is more efficient for the disc,

due to the higher fraction of discs at the minimal distance to the wall. The reason is

supposedly that the disc can slide easier between RBCs.

Concerning the margination probability into the potential adhesion layer (PAL), the

larger sphere and the disc seem to be favourable shapes. An advantage of a sphere

over a disc is that the distance of the surface is independent of the orientation. The

sphere surface is always close to the wall when it is located in the PAL, whereas discs

surface is only close to the wall in a specific time window during rotation. However,

compared to a sphere, elongated shapes rotate slower. The rotations are even reduced

compared to the theoretical predictions for free shear flow, due to interactions with the

wall and the RBCs. Furthermore, the localisation of both elongated carriers seems to

be less influenced by changes in shear rate than for spheres. Additionally, for high shear

rates and low hematocrit values the disc is more beneficially distributed than the sphere.
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Besides, a larger distance to the wall might be favourable under realistic conditions in

blood vessels; for instance, carriers may become departed from the wall due to different

reasons, such as bifurcations or marginated white blood cells that are in the way. It is

likely that a departed disc returns faster to the for adhesion required distance to the

wall, since its long axis is larger than for spheres with the same volume and it can slide

between the RBCs more easily.

The presented simulation results are in good qualitative agreement with several ex-

perimental observations [49, 51, 52, 126, 128, 170]. For example, margination of micro-

particles has been observed to be more efficient than that of nano-particles in recent in

vivo experiments [49,170]. However, it has to be emphasized that margination in exper-

iments is mainly measured in terms of efficient adhesion. Recent theoretical [53,54] and

experimental [51, 52] studies suggest that ellipsoidal particles possess better adhesion

properties than spheres due to a larger contact area for adhesion interactions. Even

though margination is a necessary pre-condition for carrier adhesion to vessel walls,

carrier margination and adhesion are not equivalent, since carrier adhesion may also

depend on other factors (e.g., specific targets, the receptor/ligand density and distribu-

tion). It is also interesting to consider the drag force on an ellipsoid or sphere in shear

flow near a wall. In case of an ellipsoid close and parallel to a wall, the drag force is

found to be smaller than that on a sphere with the same volume, which was estimated

in separate simulations of a sphere and an ellipsoid in shear flow with fixed position.

Thus, adhered ellipsoidal particles experience a lower drag force due to fluid flow than

the corresponding spheres with the same volume [158].

The current knowledge about adhesion of ellipsoidal particles and the presented sim-

ulation results on margination give an idea why non-activated platelets have a disc like

shape. Similar to platelets, an elongated disc-like shape seems to be favourable for

therapeutic agents as well. However, a further requirement for efficient drug delivery

includes particle transport through vessel walls, interstitial space, and cell membranes.

For instance, particle internalization by endothelial cells and intracellular trafficking is

more efficient for spherical sub-micron particles, rather than for micron-size carriers with

an ellipsoidal shape [40].

As a consequence, the concept of multi-stage drug delivery [6, 36], where a larger

micro-particle incorporates a number of small nano-carriers, seems to be very promising.

In this way, margination and carrier delivery or adhesion to a specific target within the

microvasculature could be achieved using micro-particles, which would then be followed

by the release of nano-particles into the tissue [158].
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4.2. Simulations of carriers in two-dimensional model

systems

Two-dimensional (2D) simulations with adequate statistics consume less computational

time and hence costs than 3D simulations. For extensive studies, it is beneficial to first

perform 2D simulations to narrow the parameter range down to the most interesting one.

In order to trust 2D results with respect to the prediction of properties in 3D, it has to

be checked for some example cases that 2D simulations provide the correct qualitative

description or to recognize possible discrepancies. Therefore, in this chapter results of

2D and 3D simulations are compared. In addition, 2D simulation results for additional

carrier sizes and deformabilities are discussed.

4.2.1. Comparison of 2D and 3D simulations

The considered 2D shapes, namely circles and an ellipse, have similar diameters as

the spheres and the disc in 3D. The RBC diameter in 2D is defined as Dr = L0/π,

with L0 being the RBC contour length. The RBC diameter in 2D is taken to have a

value of Dr = 6.1 µm. The 2D RBCs are simulated according to the model described

in Section 3.1.3 and the model parameters are given in Table B.2 of Appendix B. The

shear rate γ̇∗ is calculated as in Eq. (3.17), with respect to the 2D fluid parameters,

provided in Table B.5. The carriers comprise of a number of connected particles as the

RBCs, which are constrained to maintain a rigid configuration. Information about the

number of particles per carrier and the number of carriers in several simulations is given

in Table C.3.

As described in Section 3.3.2, in 2D a slit geometry, as shown in Fig. 4.14, is used

while in 3D a cylindrical channel is employed. The width W of the 2D channel and

the diameter of the cylinder are equal. Additionally to the interactions with the walls

described in Section 2.4, the carriers experience a repulsive interaction with the channel

walls, which is implemented through the repulsive part of the Lennard-Jones (LJ)-9-3

potential,

ULJ93(r) = ǫ

[

2

15

(σLJ
r

)9

−
(σLJ
r

)3
]

for r < rm, (4.4)

where r is the distance, rm is the distance at which the potential reaches its minimum,

σLJ is the range, and ǫ is the strength. This potential is derived by integrating the

LJ-12-6 potential in Eq. (3.15) over a 3D half-space [171, 172]. The LJ-9-3 potential is
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softer then the usual LJ-12-6 potential. The minimum of this potential is at a particle

distance of rm = (6/15)1/6σLJ. Accordingly, this repulsion has to be taken into account

for the calculation of the margination into a region of thickness δ′ by δ = δ′ + rm. Here,

rm has been chosen for simplicity as an effective diameter of the carriers. However, for a

more accurate, but also more difficult determination of an effective hard sphere diameter

of particles interacting by a LJ-9-3 potential for instance the Barker-Henderson equation

[173] or the method of Andersen, Weeks, and Chandler [172, 174] could be used. Due

to the symmetry of the 2D system, the COM distributions are averaged over the half

width of the channel. Consequently, the margination probability pδ is calculated similar

to 3D, as pδ = 2
∫ δ

0
PCOM(y)dy.

Figure 4.14.: Snapshot of a 2D simulation for Ht = 0.3, γ̇∗ = 29.3, and a carrier with the diameter
Dc = 0.3Dr. RBCs are coloured in red and carriers in blue.

Margination diagrams

Figure 4.15 presents the 2D margination probability diagrams for the margination into

the RBC-FL and PAL. The considered circle diameters are Dc ∈ {0.3, 0.22, 0.15}Dr,

and the ellipse has a long axis diameter of DL = 0.63Dr and a short axis diameter of

DS = 0.09Dr. Thus, the ellipse and the sphere with Dc = 0.22Dr enclose a similar area.

As in 3D, the margination probability increases with increasing hematocrit, independent

of the considered margination layers. No reduction of margination into the RBC-FL for

high hematocrit values is observed, except for the ellipse (see Fig. 4.15 (d)). An initial

increase of margination is observed for increasing shear rate. Especially Fig. 4.15 (a)

shows that for very low shear rates no adequate margination is observed. However, the

shear-rate dependence of the margination into the RBC-FL is less pronounced than in

3D. The probability of margination into the PAL is reduced with increasing shear rate

as in 3D. Similar to 3D simulations, a decrease of margination is found for decreasing

carrier size, for both choices of margination layer. The margination into the RBC-FL

for the ellipse (Fig. 4.15 (d)) is clearly reduced compared to a circle with the same area

(Fig. 4.15 (b)). Nevertheless, in 3D the deviation of margination for a sphere and a
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4. Margination of platelets and drug-delivery carriers

disc is more distinct. The probability of margination into the PAL for the ellipse, again

computed based on its long axis, is even larger than for the circle with a similar area.

The qualitative comparison of margination diagrams implies a good agreement of 2D

and 3D simulations. This applies to the shear rate, hematocrit, and size dependence

of margination. Furthermore, the comparison of diagrams indicates that roughly γ̇∗3D ≈
1.2γ̇∗2D [158]. However, small differences are observed, particularly for the carriers with

an elongated shape. Therefore, the COM distribution characteristics are compared in

more detail, first for the RBCs and than for the carriers to better understand those

differences.

2D RBC-free-layer

In 2D, the given hematocrit values correspond to the area fraction of RBCs, while Ht

in 3D corresponds to the volume fraction. Figure 4.16 presents the RBC-FL thickness

∆RBC−FL for 2D and 3D depending on the Ht value. For the same hematocrit value

the RBC-FL thickness is smaller in 3D than in 2D. After shifting the 2D curves by

Hs
t ≈ 1.7 they overlap with the 3D curves. This is due to the cylindrical curvature

of the 3D geometry which makes the close-packing of the RBCs less efficient. This

observation explains the higher probabilities for the margination into the RBC-FL for

high hematocrit values in 2D, since the RBC-FL thickness is larger than the considered

carrier sizes. In the previous chapter, it has been shown that the RBC-FL thickness has

a strong influence on the carrier distribution. Consequently, the distribution character-

istics have to be compared for the same RBC-FL thickness ∆RBC−FL, in order to relate

2D and 3D simulation results.

Carrier distribution characteristics

The distance of the peak of the COM distribution to the wall, ∆MAX, and the mean

position in the whole channel, ∆〈r〉, for 2D and 3D simulations with γ̇∗2D = 29.7 and

γ̇∗3D = 59, respectively, are presented in Figs. 4.17 (a) and (b) (for other shear rates

see Fig. C.8). These measurements corroborate that 2D and 3D COM distributions pos-

sess similar characteristics. Some differences are mainly observed for the small carriers

(green curves). In 2D a smaller RBC-FL thickness is required for the peak maximum

to reach the minimal distance, a distance corresponding to the radius of the carrier.

On the contrary, the 2D carriers are on average located closer to the wall, than in 3D.

Additionally, the carriers with Dc = 0.3Dr remain close to the wall in 2D, while the
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Figure 4.15.: Margination probability combined for different hematocrit Ht and shear rates γ̇∗. The
diagrams correspond to the margination into the RBC-FL (left column) and the PAL
(right column). The considered carriers are circles with the diameters of (a) Dc =
0.3Dr, (b) Dc = 0.22Dr, (c) Dc = 0.15Dr, and (d) an ellipse with the long and
short diameter of DL = 0.63Dr and DS = 0.09Dr, respectively. The white squares
(�) indicate the values of Ht and γ̇∗ for which simulations have been performed. The
colour code ranges from blue (low probability) to red (high probability).
The margination diagrams show qualitatively a similar dependence on Ht, γ̇

∗, and car-
rier size and shape as in 3D. The main difference is the more pronounced margination
into both choices of margination layer for the ellipse. Especially the margination into
the PAL is even larger for the ellipse compared to the sphere with the same enclosed
area Dc = 0.22Dr.
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Figure 4.16.: Comparison of the RBC-FL thickness ∆RBC−FL normalized by the channel dia-
meter/width W depending on the hematocrit Ht for 2D (solid curves) and 3D (dashed
curves) simulations. The curve colours correspond to the shear rates, γ̇∗2D = 6.1 (red),
γ̇∗2D = 29.7 (blue), γ̇∗2D = 63.5 (green), γ̇∗3D = 20 (red), γ̇∗3D = 59 (blue), and
γ̇∗3D = 102 (green).
At the same Ht value the RBC-FL thickness in 3D is smaller than in 2D due to a less
efficient packing of RBCs in the 3D cylindrical geometry.

carriers depart from the wall in 3D. On the one hand, it is easier for the small spheres

to fit between the RBCs in 3D, due to a looser packing of the RBCs; on the other

hand the looser packing supposedly increases the interactions with the RBCs close to

the RBC-FL. Even though the small carriers, which are located in the RBC-FL, are

more effectively pushed to the wall, the larger carriers depart from the wall for high

hematocrit values.

The different packing of RBCs also leads to a distinct distribution of the discs in 2D

and 3D. For 2D simulations no clear coexistence of two peaks can be identified, and

instead, the one peak is approaching the wall with decreasing RBC-FL as presented

in Fig. 4.17 (c). Accordingly, the full mean position in 2D is considerably closer to the

wall, see Fig. 4.17 (d), which leads to the increased probability of margination into the

RBC-FL as well as into the PAL. For some shear rates and hematocrit values, long tails

of the distribution, either to closer distances to the wall or into the bulk are observed

(see Fig. 4.18). These curves are similar to those distributions in 3D when the second

peak develops or the first peak almost vanishes. In 3D, the discs can more easily slide

between the RBCs, and may stay even at a distance which is outside of the RBC-FL.

In 2D, the discs are more hindered by the RBCs. Therefore, they are pushed more to

the wall after a rotation, leading to one distinct peak which approaches the wall.

In conclusion, 2D margination simulations are able to properly capture carrier margin-

ation in blood flow. Differences, that are observed by comparing the COM distributions,
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Figure 4.17.: Comparison of carrier distribution characteristics in 2D and 3D. (a) Distance ∆MAX

of the peak of the COM distribution and (b) the distance ∆<r> of the mean position
in the whole channel to the wall normalized by the channel width/diameter W for
round carriers. In 2D, the examined carrier sizes are D2D

c = 0.3D2D
r (red), D2D

c =
0.22D2D

r (blue), and D2D
c = 0.15D2D

r (green), while in 3D, D3D
c = 0.28D3D

r (red),
D3D

c = 0.25D3D
r (blue), and D3D

c = 0.15D3D
r (green). (c) Distance ∆MAX of the

peak of the COM distribution and (b) the distance ∆<r> of the mean position in the
whole channel to the wall for ellipse (purple) and disc (cyan). The different curves
correspond to 2D (solid) and 3D (dashed) simulations. The considered shear rates are
γ̇∗2D = 29.7 for 2D and γ̇∗3D = 59 for 3D.
The carrier distribution characteristics of 2D and 3D simulations are rather similar.
However, for the round carriers, some deviations are observed for small carriers. For
elongated shapes, in 3D a second peak occurs, whereas in 2D the peak approaches
the wall. All observations can be explained by the looser packing of the RBCs in 3D.
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Figure 4.18.: COM distributions depending on the COM distance ∆y to the wall normalized by
the channel width W . The different curves correspond to different combinations of
hematocrit Ht and shear rate γ̇∗.
The presented distributions are the distributions which are closest to exhibit two peaks.

correspond to the different packing of RBCs in 2D and 3D simulations.

4.2.2. Complementary 2D simulations

The margination probability of two additional sizes of circles is investigated; smaller and

larger than the already considered ones. Furthermore, the influence of deformability of

the carrier on the margination is examined.

Large and nano carriers

The largest considered carrier has a diameter of Dc = 0.6Dr and the nano-carrier a dia-

meter of Dc = 0.04Dr. In order to simulate such a small carriers, they have been mod-

elled as single particles with a LJ-6-12 repulsion with the range σLJ = Dc (see Eq. (3.15))

from each other and from the vertices, which model the RBCs.

Figure 4.19 presents the probability of margination into the RBC-FL and the PAL

for these two carrier sizes. A low margination probability is found for both choices

of margination layer for the nano-carrier. Nonetheless, an increase of margination with

increasing hematocrit is detected. The margination is reduced at high hematocrit values

for the large carrier, because its radius is larger than the RBC-FL thickness. The

probability of margination into the PAL is high for a broad range of hematocrit values.

Additionally, Fig. 4.20 (a) demonstrates that the PAL margination probability pPAL for

the large carrier either remains similar for a thin RBC-FL or even decreases (γ̇∗ = 6.1).

This shows that the carrier moves away from the wall through interactions with RBCs
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Figure 4.19.: Margination probability diagrams for the RBC-FL (left) and the PAL (right) for dif-
ferent spherical carriers with the diameters Dc = 0.04Dr (a) and Dc = 0.6Dr (b).
The white squares (�) indicate the values of Ht and γ̇∗ for which simulations have
been performed. The colour code ranges from blue (low probability) to red (high
probability).
The nano-carrier possesses a low margination for both choices of margination layer.
The carrier with Dc = 0.6Dr shows a reduced margination into the RBC-FL compared
to a carrier with Dc = 0.3Dr for the high hematocrit values. However, the large carrier
shows a strong margination into the PAL.
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Figure 4.20.: Distributions of different sized 2D carriers. (a) Margination probability pPAL into
the PAL for the carrier with size Dc = 0.6Dr depending on the RBC-FL thickness
∆RBC−FL normalized by the channel width W for three shear rates γ̇∗ = 6.1 (dashed
curve), γ̇∗ = 29.7 (solid curve), and γ̇∗ = 63.5 (dot-dashed curve). (b) COM distribu-
tions depending on the COM distance ∆y to the wall for different carrier sizes, that
can be distinguished by different colours. The considered hematocrit is Ht = 0.4 and
the shear rate is γ̇∗ = 29.7
For small ∆RBC−FL a decrease or no further increase of pPAL is observed for the large
carrier. The nano-carrier is distributed similar to the excess fluid volume. The smaller
the carrier, the broader and flatter the COM distribution in the RBC-FL becomes.

due to its large size. In 3D, the influence of RBCs on the carriers is stronger, due to the

cylindrical curvature of the channel. Thus, the carrier would be even more displaced

from the wall. Figure 4.20 (b) presents COM probability distributions for different sizes

of circular carriers depending on the COM distance ∆y to the wall. With decreasing

size the distributions become broader and flatter, because the RBC-FL is effectively

larger, leading to a decreased number of carriers close to the wall. In particular, the

distribution of the nano-carrier is flat with no distinct peaks in the RBC-FL.

From simulation snapshots the distribution of the excess fluid volume of flowing RBCs

has been computed. It characterizes the plasma distribution in the channel, which can be

inferred from the RBC density distribution. Interestingly, the nano-carrier distribution

is very similar to the excess fluid volume. The carrier distribution is slightly higher in

the RBC-FL and accordingly lower in the channel center, due to the excluded volume

interactions between nano-carriers and RBCs. Especially for high hematocrit values

the effect of the excluded volume becomes stronger which leads to 84% margination for

Ht = 0.5. The further reduced margination into the PAL is due to the small diameter

of the nano-carrier.
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Soft carriers

Platelets are known to be more rigid than RBCs [8,14]. However, several proposed thera-

peutic agents are considerably less rigid, such as polymer conjugates and liposomes [42].

As discussed in Chapters 1 and 3, the deformability of RBCs is one reason for the hy-

drodynamic lift from the wall. Hence, it is interesting to investigate the influence of

the hydrodynamic lift on the margination of a soft carrier. Thus, a soft circle with

Dc = 0.3Dr has been modelled by a number of particles connected by springs as de-

scribed in Section 3.1.3 and parameters for the springs, area and bending constraint

coefficients are exactly the same as for RBCs given in Table B.2.

Figure 4.21 presents the margination diagrams for the RBC-FL and the PAL for soft

carriers compared to the rigid one. The margination probabilities for both choices of

margination layer are slightly reduced for the soft carrier. However, for low shear rates

the margination into the PAL is slightly better for the soft carrier.

The peak position (see Fig. 4.22 (a)) of the rigid carrier is closer to the wall for

the majority of cases and reaches the minimum possible distance for a lower RBC-FL

thickness ∆RBC−FL. However, for low shear rates and small RBC-FL thicknesses, when

the minimal distance is reached, the soft carrier deforms and comes closer to the wall

than the rigid one. Accordingly, the margination into the PAL is reduced for the soft

carrier as long as it is not compressed to the wall, see Fig. 4.22 (b). Thus, this deformable

carrier is subject to a hydrodynamic repulsion from the wall as the RBCs. In contrast to

the RBCs, the carriers have originally a circular shape and are subject to less interactions

with other blood components, which reduces the strength of the deformations. As

discussed in Section 1.4 the suggested size dependence of the lift force in 2D is FL ∼ D
1/2
c .

Thus, the lift force is expected to be reduced for the smaller carriers compared to the

RBCs and margination still occurs. However, the margination of even more flexible

particles, such as polymers, is discussed in Chapter 5.

4.2.3. Summary

The comparison of carrier margination in 2D and 3D simulations shows that the de-

pendence of margination on hematocrit, shear rate, carrier size, and carrier shape is

qualitatively similar. Even COM distribution characteristics for circles and spheres are

comparable. Slight discrepancies are caused by the different packing of RBCs in 2D and

3D. The different packing leads to a smaller RBC-FL thickness in 3D compared to 2D

for the same hematocrit. Therefore, the properties have to be compared for the same
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Figure 4.21.: Margination probability diagrams for the RBC-FL (left column) and PAL (right
column). The circle with Dc = 0.3Dr is constrained to (a) a rigid configuration
or (b) is deformable as a RBC. The white squares (�) indicate the values of Ht and
γ̇∗ for which simulations have been performed. The colour code ranges from blue (low
probability) to red (high probability).
For both choices of margination layer the deformable carrier marginates less than the
rigid one, due to a hydrodynamic repulsion from the wall.
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Figure 4.22.: 2D distribution characteristics for a deformable carrier. (a) Distance ∆MAX of the
peak of the COM distribution from the wall and (b) probability pPAL of margination
into the PAL depending on the RBC-FL thickness ∆RBC−FL, scaled by the channel
width W ; comparison of a deformable carrier (red circles) and a rigid carrier (blue
squares), both with the diameter Dc = 0.3Dr. Considered are two shear rates, namely
γ̇∗ = 20.8 (solid curves) and γ̇∗ = 63.5 (dashed curves).
The peak for the soft carrier is further away from the wall. Only for a thin RBC-FL
and a low shear rate the soft carrier deforms and is thus closer to the wall. Accordingly,
the margination into the PAL is lower for the soft carrier as long as it is not deformed.

RBC-FL thickness rather than the same hematocrit. Furthermore, small carriers as well

as elongated carriers can slide less easily among RBCs in 2D than in 3D, leading to a

decreased average distance to the wall, whereas interactions of carriers in the RBC-FL

with RBCs are less strong. Additionally, in 2D elongated carriers do not distribute at

two distinct distances from the wall, but move continuously closer to the wall with de-

creasing RBC-FL thickness. Apart from these differences, 2D simulations capture the

carrier margination properly.

Further 2D simulations indicate that carriers with a size of a few nanometres are

distributed similar to the excess fluid volume and thus do not possess a significant

margination. However, for carriers with a diameter larger than 3 µm to 4 µm an increased

departure from the wall at high hematocrit values is expected, due to interactions with

the RBCs.

Furthermore, deformable carriers are subject to a hydrodynamic lift forces and repul-

sion from the wall. Hence they are less marginated than rigid carriers of the same size.

Additionally, in 3D a further decrease of margination for deformable carriers is likely,

since the looser packing of RBCs in 3D might enable the deformable carrier to squeeze

between the RBCs more easily.
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4. Margination of platelets and drug-delivery carriers

4.3. Channel-size dependence

In addition to the channel size of W = 3.28Dr considered so far, in this section, channels

with double and half the previous width are investigated, shown in Fig. 4.23, to ascertain

that the observed dependencies of margination on hematocrit, shear rate, and carrier size

are a general feature. Furthermore, according to the decrease of the RBC density with

decreasing channel size, called Fåhræus-effect [175], the dependence of carrier (platelet)

density on the channel size, hematocrit, and carrier size is also examined.

Figure 4.23.: Snapshots for different channel sizes with different widths W : (top) W = 1.64Dr,
(middle) W = 3.28Dr, and (bottom) W = 6.56Dr. All snapshots correspond to the
hematocrit Ht = 0.3, the shear rate γ̇∗ ≈ 29.7, and carriers with the size Dc = 0.3Dr.
The RBCs are coloured in red and carriers in blue.

4.3.1. Margination

The comparison of margination diagrams for all three channel sizes for carriers with

Dc = 0.3Dr, see Fig. 4.24, indicates that the dependence of margination on hematocrit

and shear rate remains similar for different channel sizes. Figure 4.25, presenting the
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margination diagrams for the carrier with Dc = 0.15Dr, supports this proposition. Ad-

ditionally, a reduction of margination for both choices of margination layer is observed

for the smaller carriers for all three channel sizes.

Although the hematocrit, shear-rate, and carrier-size dependence is similar in all

channels, differences in margination efficiency are observed. The margination into the

RBC-FL is reduced for both, the smaller channel and the bigger channel compared to

the channel with W = 3.28Dr. On the other hand, the margination into the PAL is the

highest for W = 1.63Dr and decreases with increasing channel size.

The reduced margination at low hematocrit values for W = 1.64Dr is due to the

RBC distribution. For these low hematocrit values and the considered shear rates,

the RBCs are localized in the middle of the channel, their small axis is aligned with

the flow, and they have a parachute shape as presented in Fig. 4.26. This alignment

and shape of RBCs has been also observed experimentally [176] and numerically in 3D

simulations [113, 177]. The carriers are almost uniformly distributed with a slight peak

close to the wall, due to the absence of the alignment of RBCs that constitutes a barrier

for the carriers.

The decrease of margination into the RBC-FL at high hematocrit values is due to the

reduced RBC-FL thickness for the smaller channel, displayed in Fig. 4.27 (a). For high

hematocrit values the RBC-FL thickness is comparable to or smaller than the carrier

size. The small RBC-FL thickness is also the reason for the low margination at the

lowest shear rate.

The reduction of margination into the RBC-FL for the channel with W = 6.56Dr

is related to the distribution of the RBCs, as well. With increasing channel size, the

RBC-FL thickness increases, as shown in Fig. 4.27 (a). However, the RBC-FL thickness

does not change linearly with the channel diameter, it increases less strong. Hence, the

RBCs occupy a larger percentage of the channel. This is confirmed by the RBC COM

distributions at Ht = 0.4 and γ̇∗ = 63.5 for all channel sizes in Fig. 4.27 (b). Thus,

for the wide channel, the RBC density is reduced. This facilitates the movement of

carriers between the RBCs, especially for low hematocrit values and small carrier sizes.

A detailed comparison of the probability of margination into the RBC-FL for different

channel sizes and the carrier size Dc = 0.3Dr, presented in Fig. 4.28 (a), illustrates that

the probabilities for the channels widths W = 3.28Dr and W = 6.56Dr are very similar.

However, the probability is indeed lower for the carrier with size Dc = 0.15Dr in the

channel with W = 6.56Dr at low hematocrit values, see Fig. C.9 (a). At intermediate

hematocrit values all probabilities are similar.
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Figure 4.24.: Margination probabilities for different hematocrit Ht and shear rates γ̇∗ for carrier
with the diameter Dc = 0.3Dr. The diagrams correspond to the margination into
the RBC-FL (left column) and the PAL (right column), for three channel sizes. The
considered channel widths are (a) W = 1.64Dr, (b) W = 3.28Dr, and (c) W =
6.56Dr. The white squares (�) indicate the values of Ht and γ̇∗ for which simulations
have been performed. The colour code ranges from blue (low probability) to red (high
probability) and is acquired via interpolation.
The same dependence of margination on Ht and γ̇∗ is observed for all channel sizes.
The margination into the RBC-FL is reduced for W = 1.64Dr as well as for W =
6.56Dr compared to W = 3.28Dr. The margination into the PAL is highest for the
smallest channel and decreases with increasing channel size.
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Figure 4.25.: Margination probabilities for different hematocrit Ht and shear rates γ̇∗ for carrier
with the diameter Dc = 0.15Dr. The diagrams correspond to the margination into
the RBC-FL (left column) and the PAL (right column), for three channel sizes. The
considered channel widths are (a) W = 1.64Dr, (b) W = 3.28Dr, and (c) W =
6.56Dr. The white squares (�) indicate the values of Ht and γ̇∗ for which simulations
have been performed. The colour code ranges from blue (low probability) to red (high
probability) and is acquired via interpolation.
The same dependence of margination on Ht and γ̇∗ is observed for all channel sizes.
Compared to the margination of the carrier with size Dc = 0.3Dr (Fig. 4.24), the
margination is reduced for the smaller carrier for all channel sizes. Exceptions are the
cases where the carrier with Dc = 0.3Dr does not fit into the RBC-FL, whereas the
carrier with Dc = 0.15Dr fits.
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Figure 4.26.: RBC (red) and carrier (blue) distribution in a channel with W = 1.64Dr. (top) COM
distribution depending on the distance ∆y to the wall normalized by the channel width
W for the hematocrit values Ht = 0.1 (solid curve) and Ht = 0.3 (dashed curve).
(bottom) Snapshot for Ht = 0.1. The snapshot for Ht = 0.3 is shown in Fig. 4.23.
The considered shear rate is γ̇∗ = 29.7 and carrier size is Dc = 0.3Dr.
At low Ht the RBCs are aligned, all in the same way, in the middle of the channel.
Hence, RBCs do not form a barrier for the carriers and the carriers are uniformly
distributed in the channel.
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Figure 4.27.: Comparison of RBC distributions for different channel sizes. (a) The RBC-FL thickness
∆RBC−FL, scaled by the RBC diameter Dr, over the hematocrit Ht. The considered
carrier size Dc = 0.3Dr is depicted by the cyan dotted line. (b) COM distribution of
RBCs for different channel width, depending on the distance ∆y to the wall, scaled
by the channel width W . The considered shear rates are γ̇∗ = 6.1 (dashed curves)
and γ̇∗ = 63.5 (solid curves). The considered channel width are W = 1.64Dr (red
curves), W = 3.28Dr (blue curves), and W = 6.56Dr (green curves).
The RBC-FL thickness increases with increasing channel size but scales by another
factor than the vessel size. The wider the vessel, the higher the percentage of the
channel which RBCs occupy.
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The reduction of margination into the PAL for the channel with W = 6.56Dr is due

to the wider RBC-FL thickness and the associated broader carrier distributions in the

RBC-FL, leading to a reduced number of carriers close to the wall. Although the carrier

COM distribution possesses a distinct peak in the RBC-FL, the peak reaches, if at

all, the minimal distance only for the highest hematocrit value (exception: γ̇∗ = 6.1),

see Fig. C.10.

In the channel with W = 1.64Dr, carriers can be outside of the RBC-FL while still

being located close to the wall, due to the small channel width and collisions with

RBCs. Therefore, the probability of margination into the PAL is increased, hence

adhesion is likely to be most efficient in narrow channels. Nevertheless, a more detailed

comparison of the probability of margination into the PAL between the channels with

W = 1.64Dr and W = 3.28Dr illustrates that for Dc = 0.3Dr and high hematocrit values

the margination probability decreases for the narrow channel. Carriers are departed from

the wall supposedly due to interactions with RBCs. A similar effect has been observed

for the large carrier size Dc = 0.6Dr at a channel width W = 3.28Dr. Additionally, it has

to be considered that for the same hematocrit value the packing in 3D is less efficient,

leading to smaller RBC-FL thicknesses as discussed in the previous section. Smaller

RBC-FL thicknesses might in turn cause a reduced margination into the PAL for the

channel with W = 1.64Dr, whereas for the channel with W = 6.56Dr the margination

might be increased. Furthermore, a different shear-rate dependence is observed for the

channel width W = 1.64Dr that has not been resolved in the diagrams, as shown for

Dc = 0.3Dr in Fig. 4.28 (b) and for Dc = 0.15Dr in Fig. C.9 (b). For W = 3.28Dr, the

margination probability is lowest for the highest shear rate. At low hematocrit values

this is also true for the channel with W = 1.64Dr. However, for higher hematocrit values

the probability is higher at higher shear rates.

The RBC as well as the carrier distribution change for a wider channel of width

W = 9.84Dr. A maximum is observed in the middle of the channel for the RBC COM

distribution, due to close packing of RBCs that is even larger than the peak close to

the RBC-FL border, see Fig. 4.29. The peak close to the wall disappears [163] for even

larger channel sizes. Due to the larger RBC-FL thickness, that is ∆RBC−FL = 0.77Dr,

faster carriers can easily overtake the slower carriers that are close to the wall, which

leads to the formation of two lanes of moving carriers. Consequently, a double peak

appears in the COM distribution with a distance of the two local maxima of about a

carrier diameter.
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Figure 4.28.: (a) Margination probability pRBC−FL into RBC-FL and (b) margination probability
pPAL into the PAL depending on hematocrit Ht for a carrier of size Dc = 0.3Dr.
Different curve colours correspond to different channel sizes: W = 1.64Dr (red),
W = 3.28Dr (blue), and W = 6.56Dr (green). Different shear rates correspond
to different curve types: γ̇∗ = 6.1 (dot-dashed), γ̇∗ = 20.8 (solid), and γ̇∗ = 63.5
(dashed).
The pRBC−FL differs slightly between W = 3.28Dr and W = 6.56Dr at low Ht. For
W = 1.64Dr, pRBC−FL decreases at low as well as high Ht. For W = 1.64Dr, pPAL

increases with shear rate for biological relevant hematocrit values, whereas it decreases
with increasing shear rate for W = 3.28Dr.
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Figure 4.29.: Distribution of RBCs (red) and carriers with Dc = 0.3Dr (blue) in a channel width
W = 9.84Dr. (top) COM distribution depending on the distance ∆y to the wall,
scaled by the channel width W . The RBC COM distributions has been scaled by a
factor 5. The considered hematocrit value is Ht = 0.4 and the shear rate is γ̇∗ = 29.7.
(bottom) A corresponding snapshot is shown.
For the RBC COM distribution a maximum in the middle of the channel is observed
that is even larger than the peak close to the RBC-FL border. The carrier distribution
splits into two peaks with one carrier diameter difference, because faster carriers can
easily overtake slower carriers in the wide RBC-FL.
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4. Margination of platelets and drug-delivery carriers

4.3.2. The ‘reverse’ Fåhræus effect

So far, the carrier margination probability, the probability for a carrier to be close to

the wall, has been discussed. Clearly, strong margination is likely to enhance particle

adhesion. However, the density of the carriers also influences the adhesion probability;

the higher the density the higher the probability. Therefore, the dependence of carrier

density on channel and carrier size is discussed.

Robin Fåhræus found already in 1929, almost a hundred years ago, in in vitro blood

flow experiments [175] that RBCs flow faster than the average flow. Therefore, the av-

erage concentration of RBCs in human blood decreases with decreasing vessel diameter.

Concurrently, the RBC velocity increases in narrow channels. For a discussion of this

issue, the tube hematocrit and the discharge hematocrit have to be introduced. The

tube hematocrit Ht, referred earlier to as hematocrit, is the volume fraction of RBCs

inside the channel. The discharge hematocrit Hd corresponds to the volume fraction of

RBCs leaving the channel per unit time. Both, Ht and Hd can be found from the RBC

cross-sectional density profile H(r), as

πR2Ht = 2π

∫ R

0

H(r)rdr (4.5)

πR2V̄ Hd = 2π

∫ R

0

H(r)v(r)rdr, (4.6)

with R = W/2, the average velocity V̄ = 2R−2
∫ R

0
v(r)rdr, and the cross-sectional

velocity profile v(r) [163].

The Fåhræus effect is related to the existence of the RBC-FL. In wide channels the

RBC-FL thickness is negligible compared to the tube diameter and the RBC distribution

is uniform, therefore Ht ≃ Hd. In in vitro experiments, it has been shown that Hd/Ht =

1, for channels with W & 0.5− 1mm [178,179]. In narrow channels the RBCs gather in

the high-velocity region, the channel center, and therefore pass the channel faster than

the average flow, so that Hd > Ht.

In Fig. 4.30, a closed system is sketched, consisting of a wide channel (A) with the

cross sectional area AA that splits into two narrow channels (B), which have the same

diameter and cross sectional area AB = AA/2. From the mass conservation and the

continuity equation it follows

QA = 2QB (4.7)
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4.3. Channel-size dependence

A

B

B

Figure 4.30.: Sketch of a channel system to illustrate the Fåhræus effect.

for the flow rate Q = V̄ A. Equation (4.7) applies also for the flow rates of RBCs alone,

QRBC, which are defined by the integral on the right hand side of Eq. (4.6). Therefore,

from HA
d V̄

AAA = 2HB
d V̄

BAB and V̄ AAA = 2V̄ BAB follows HA
d = HB

d for the discharge

hematocrits. For the wide channel it can be assumed HA
t ≃ HA

d and for the narrow

channel HB
d > HB

t , which results in HA
t > HB

t . Thus, the RBC volume fraction is larger

in the wider channel.

The change of the tube hematocrit depends generally on tube diameter, hematocrit,

and shear rate. Theoretically, a solution for the fraction of tube and discharge hematocrit

can be derived by assuming a constant RBC distribution in the channel up to the

distance ∆RBC−FL from the wall

H(r) =







H0, if 0 ≤ r ≤W/2−∆RBC−FL

0, if W/2−∆RBC−FL < r < W/2 .
(4.8)

Then, from the Poiseuille law the ratio

Ht

Hd

=
1

2− (1− 2∆RBC−FL/W )2
, (4.9)

is obtained, where the shear-rate and the hematocrit dependence enters via the RBC-FL

thickness ∆RBC−FL. From several experiments [179, 180], a more realistic dependence

of the ratio of tube and discharge hematocrits on channel size and hematocrit has

been derived, neglecting the shear rate dependence, since experiments showed that the

influence of shear rate in the range of shear rates appearing in the microcirculation is
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4. Margination of platelets and drug-delivery carriers

small [179]. The ratio of tube and discharge hematocrit is given by

Ht

Hd

= Hd + (1−Hd)
(

1 + 1.7e−0.3W − 0.6e−0.01W
)

, (4.10)

and is shown in Fig. 4.31 (a). For channels with diameters comparable or smaller to the

diameter of one RBC, the RBC density increases with decreasing channel size, due to a

different RBC alignment compared to wider channels and the negligible RBC-FL.
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Figure 4.31.: Fåhræus and ‘reverse’ Fåhræus effect in 3D. (a) Dependence of ratio of tube and
discharge hematocrit Ht/Hd on vessel diameter W scaled by the RBC diameter Dr

as given in Eq. (4.10) calculated for Ht = 0.35. (b) Dependence of ratio of tube and
discharge hematocrit, Ht/Hd, on Ht calculated from Eq. (4.10) (red curve), from
theory, Eq. (4.9), with ∆RBC−FL estimated from the simulations (green curve), and
directly from simulations at the shear rate γ̇∗ = 59 (blue curve) for W = 3.1Dr. (c)
Ratio Φt/Φd of the tube and the discharge volume fraction of spherical carriers with
different diameters: Dc = 0.15Dr (green), Dc = 0.25Dr (purple), and Dc = 0.3Dr

(cyan) for W = 3.1Dr.
With decreasing channel size the RBC density decreases. With increasing hematocrit
the differences between Ht and Hd decreases and Ht < Hd. For carriers Φt > Φd

and with increasing hematocrit the difference increases. Φt/Φd depends on the carrier
size.

Similar to the two hematocrits, Ht and Hd, the tube volume fraction Φt and discharge
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4.3. Channel-size dependence

volume fraction Φd of carriers can be defined (see Eqs. (4.5) and (4.6)), with Φ(r) being

the carrier density profile. In contrast to RBCs, smaller carriers are quasi-trapped in the

low velocity region of the RBC-FL. Therefore, the small carriers are expected to pass a

channel slower than the average flow, which would lead to Φt > Φd. This is opposite to

the behaviour of RBCs and is thus called the ‘reverse’ Fåhræus effect.

Contrary to in vivo and most in vitro conditions, where the discharge hematocrit is

specified for instance by the feed hematocrit [179] and the tube hematocrit is meas-

ured [163], the tube hematocrit in the presented in silico studies is an input to the

simulations.

Hence, the discharge hematocrit and the discharge volume fraction have to be cal-

culated from the velocity and the density profiles, using Eqs. (4.5) and (4.6). For the

RBCs the density distributions have been computed from simulation snapshots, since

the density distribution depends on the orientation of the RBCs. The density distribu-

tion of spherical carriers has been calculated from their COM distributions. Thus, the

probability to find the center at a certain radial position has been redistributed with

respect to the size of the sphere and the spherical shape.

Figure 4.31 (b) presents the ratio Ht/Hd for the case of W = 3.1Dr and γ̇∗ = 59

depending on the tube hematocritHt. The results from simulations are within 10% error

of the experimental measurements. Furthermore, insertion of the RBC-FL thickness

from the simulations into Eq. (4.9), leads to good theoretical predictions. The slightly

lower theoretical values are due to an overestimation of Hd, since the peak in the COM

distribution close to the RBC-FL, has been neglected. As expected, Ht/Hd < 1 and

with increasing Ht the ratio increases and consequently the difference between Ht and

Hd decreases. With increasing hematocrit, the width of the RBC distribution increases,

due to packing restrictions in the middle of the channel. This observation agrees with

experimental in vitro results [178], where Ht/Hd has been measured for several discharge

hematocrit values. These experiments further demonstrate that this effect subsides with

increasing channel size.

Likewise, Φt/Φd > 1 as expected, and the difference increases further with increasing

tube hematocrit, according to the increase of margination at high hematocrit values.

Thus, the density of carriers near the wall increases with increasing hematocrit. For

the small carriers, Φt/Φd increases at all considered hematocrit values, whereas Φt/Φd

remains constant for the bigger carriers, since they cannot come closer to the wall, due

to their size. Through this restriction, higher velocities are weighted more for the larger

carriers and Φd does not decrease further. In other words, for larger carriers the density

97



4. Margination of platelets and drug-delivery carriers

cannot increase further.

In the limit of very small Ht values, Φt/Φd . 1 is expected, since in the case of

more than one carrier in the channel, the majority of carriers will gather close to the

channel center. In the limit of very large Ht values, the space the RBCs occupy increases

and concurrently the RBC-FL decreases. Hence, Ht/Hd approaches unity and Φt/Φd

is expected to decrease to a value close to unity as well, since no margination may

occur similar to simulations with non-deformable (rigid) RBCs, which do not form a

RBC-FL [132].

Two-dimensional (2D) simulations were employed to examine the effect of the channel

size. In 2D, the tube and discharge hematocrits are defined as

WHt =

∫ W

0

H(y)dy

WV̄ Hd =

∫ W

0

H(y)v(y)dy,

(4.11)

with V̄ =
∫ W

0
v(y)dy/W . As in 3D, Φt and Φd are defined accordingly. The dens-

ity distribution of RBCs has been calculated from snapshots, and the carrier density

distribution from the COM distributions.

Figure 4.32 (a) presents the ratio of Ht and Hd for five channel sizes W/Dr ∈ {1.64,

2.46, 3.28, 6.56, 9.84}. As expected from the theoretical consideration and experimental

predictions in Fig. 4.31 (a), Ht and Hd become similar with increasing channel size. At

high Ht, the channels with W = 3.28Dr and W = 1.64Dr possess similar values which

agrees with the experimental predictions. However, for W = 1.64Dr at low Ht, Ht/Hd

is even larger than for W = 6.54Dr. The reason for these high values is the special

orientation of RBCs at this tube hematocrit, presented in Fig. 4.26. The localization of

the RBC center in the middle, the alignment of the short axis in flow direction, and the

biconcave shape leads to a density distribution with a local minimum in the middle of

the channel as shown in Fig. 4.33. Hence, lower velocities are weighted more and thus

Hd is reduced, since the middle of the channel is the region with the highest velocity.

With increasing Ht the density distribution becomes more uniform and Hd increases.

Figure 4.32 (b) presents, for the channel size W = 3.26Dr, the comparison of the

tube and the discharge volume fraction of carriers with different sizes depending on the

tube hematocrit. As in 3D, the increase of density with increasing tube hematocrit is

stronger for smaller carriers. For larger carrier sizes, the curve levels off, due to their
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Figure 4.32.: Fåhræus and ‘reverse’ Fåhræus effect in 2D. (a) Dependence of the ratio of tube
hematocrit Ht and discharge hematocrit Hd on Ht for different channel sizes at the
average shear rate γ̇∗ = 29.7. (b) Dependence of the ratio of tube Φt and discharge
volume fraction Φd on Ht for different carrier sizes at the average shear rate γ̇∗ = 29.7.
(c) Φt/Φd dependence on Ht for different channel sizes and two carrier sizes at the
average shear rate γ̇∗ = 29.7. (d) Φt/Φd dependence on channel size W normalized
by the RBC diameter Dr for the carrier with diameter Dc = 0.3Dr and at the average
shear rate γ̇∗ = 29.7.
For high hematocrit values and narrow channels Φt/Φd is larger for smaller carriers.
The differences vanishes with increasing channel size. Although carriers pass the
channel slower than the average flow their density increases with increasing channel
size.
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Figure 4.33.: Density distribution of RBCs depending on the distance to the wall ∆y in a channel
with W = 1.64Dr and γ̇∗ = 29.7. The curves correspond to different hematocrit
values; Ht = 0.1 (blue) and Ht = 0.5 (green).
At low hematocrit values the RBC localization in the middle of the channel and the
alignment of the small axis with the flow direction, their biconcave shape leads to a
density distribution with the maximum away from the center.

larger diameter. The larger the carrier, the smaller the increase of Φt/Φd with Ht.

However, for the excess fluid volume only a slight density increase is observed while

the nano-carriers exhibit a considerable increase of density near the wall, due to the

excluded-volume interactions with the RBCs.

The comparison of different channel sizes for the carriers with Dc = 0.3Dr and Dc =

0.15Dr are presented in Fig. 4.32 (c). For all channel sizes, the small carries exhibit a

higher ratio of Φt and Φd, which means that for high hematocrit values the density of

small carriers would be higher for a similar discharge volume fraction. However, with

increasing channel size the differences between the carrier sizes diminish.

Noteworthy is the increase of Φt/Φd with channel size as shown in Fig. 4.32 (d),

although the ratio of Ht and Hd already increases. It follows that the carrier tube

volume fraction increases with channel size similar to the tube hematocrit. The reason

here is that the RBC-FL increases for increasing channel size, but not proportionally to

the channel diameter. The ratio of RBC-FL thickness and the channel size decreases

with increasing channel size. However, it remains unclear what happens for even wider

channels. For wider channels, the RBC distribution is constant over the cross section,

but a RBC-FL still exists. The RBC-FL thickness compared to the channel width is

negligible, but provides still the possibility of margination. As long as the carrier are

properly marginated, Φt/Φd will increase with increasing channel size. However, with

increasing channel size the fraction of the channel the RBCs occupy increases, which
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might lead to a decrease of the local RBC density although the RBC volume fraction

increases. Furthermore, it has been shown that the alignment of RBCs with the flow

next to the RBC-FL vanishes with increasing channel size [163], which promotes escaping

the RBC-FL for wider channels. Additionally, margination times have to be taken into

account. For wider channels also the time increases the carriers need to marginate.

Therefore, it may be unlikely that in vessels wider than 1mm the carrier distribution

reaches a steady state. Thus, a decrease of Φt/Φd may be likely with further increasing

channel width.

4.3.3. Summary

Comparing the margination into the RBC-FL and the PAL for channels of width W

in the range 1.64Dr to 6.56Dr, a similar hematocrit and carrier size dependence of

margination is observed. For the narrowest channel, an increase of margination into

the PAL is observed with increasing shear rate, whereas a decrease is observed for the

other channel sizes. However, besides the highest hematocrit value, the margination into

the PAL is highest for the narrow channel and decreases with increasing channel size.

Especially for the widest channel with W = 6.56Dr the PAL margination is drastically

reduced, due to the larger available space in a broader RBC-FL. For the narrowest

channel and the highest hematocrit value of Ht = 0.6, the carriers are displaced from

the wall through interactions with RBCs, and thus the PAL margination is reduced. It

has to be pointed out that this effect is expected to be more pronounced in 3D. However,

the RBC tube hematocrit decreases with decreasing channel size, which is known as the

Fåhræus effect. Thus, the carrier should remain marginated.

In contrast to RBCs, which pass a narrow channel faster than the average flow, the

carriers pass the channel slower. This leads to a tube volume fraction which is larger

than the discharge volume fraction, here introduced as a ‘reverse’ Fåhræus effect. Nev-

ertheless, an increase of carrier density is observed with increasing channel size, for the

examined channel sizes with the largest channel of width W = 9.84Dr, because the

RBC-FL thickness does not increase linearly with the channel width. This is an ad-

vantage, because with increasing channel size the margination decreases, but through a

higher density the adhesion probability may not be strongly effected. Furthermore, for

the biologically relevant hematocrit values, the density of smaller carriers is higher in

the considered channels, under the assumption of the same discharge volume fraction.

The difference diminishes with increasing channel size and is expected to be even smal-

ler for the smaller carriers with a further increase of channel size. However, the density
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4. Margination of platelets and drug-delivery carriers

increase may compensate for the decrease of margination for smaller carriers. Thus, the

system might not be very sensitive to a change in carrier or platelet size, which vary

between 2 µm and 5 µm in diameter [8]. A decrease of carrier density for even wider

channels may be possible due to lower local RBC density, missing RBC layer close to

the RBC-FL, due to alignment with the flow, and longer margination times.

In conclusion, from the margination point of view, adhesion is likely to happen prefer-

ably in channels of size 10 − 20 µm rather than in wider ones. The density increase of

carriers for wider channels and smaller carriers may compensate for the margination

reduction for increasing channel sizes and decreasing carrier sizes. However, the effect is

not very pronounced, thus nano-particles can not be considered for a sufficient adhesion.

Furthermore, to determine an appropriate size for therapeutic particles, the delivered

volume has to be considered rather than the number of carriers, which again favours

micron-sized carriers.

4.4. Margination mechanism

Platelets and carriers appear to be quasi-trapped in the RBC-FL. Although platelets are

located in the RBC-FL, there exists a probability to escape from the RBC-FL, as seen

for some platelet trajectories in Fig. 4.34 (a). To analyse this behaviour, Figs. 4.34 (b)

and (c) present the time which platelets need in order to cross the RBC-FL border

depending on their COM position in the channel. Three hematocrit values and three

shear rates have been investigated. Initially the platelets are located either inside or

outside the RBC-FL. For platelets, which are initially located inside the RBC-FL, the

time has been tracked until it has crossed a distance of 1.15∆RBC−FL to the wall, with

∆RBC−FL being the RBC-FL thickness. Platelets, which are initially located outside

the RBC-FL, were tracked until they crossed the distance 0.85∆RBC−FL from the wall.

By measuring the time until the platelet crossed a larger and smaller distance than

∆RBC−FL, respectively it can be assumed to detect real crossing events and exclude

small fluctuations. These measurements have been performed for 2D simulations, due

to a large number of simulations, which are required to gain sufficient statistics. Clearly,

platelets remain in the RBC-populated region for considerable shorter times than they

remain in the RBC-FL. The time they need for a crossover depends on the hematocrit

and the shear rate. The hematocrit hardly influences the time platelets stay outside the

RBC-FL. However, hematocrit influences the time platelets stay inside the RBC-FL.

For an intermediate hematocrit value platelets remain longest in the RBC-FL, since for
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low hematocrit values the platelets can easily slide between the RBCs, whereas for high

hematocrit values the RBC-FL decreases, which also favours crossing. The higher the

shear rate, the quicker the carriers reach the RBC-FL and the quicker they can leave

it. However, the time until a platelet leaves the RBC-FL depend more strongly on the

shear rate than the time that is needed to enter the RBC-FL.
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Figure 4.34.: (a) Trajectory ∆r(t) of a sphere with Dc = 0.28Dr, normalized by the channel width
W started from the time t0, and depending on the time t normalized by the RBC
relaxation time τRBC. The different curves correspond to two hematocrit values Ht =
0.2 (red) and Ht = 0.4 (green). The RBC-FL border is denoted by the dashed lines.
(b, c) Measurements of the time ∆t for a 2D circular carrier of size Dc = 0.3Dr

required to cross the RBC-FL border depending on the COM distance ∆y to the wall.
(b) Different curves correspond to different Ht: Ht = 0.2 (red), Ht = 0.3 (blue),
Ht = 0.4 (green), and Ht = 0.5 (purple). (c) Different curves correspond to different
average shear rates γ̇∗: γ̇∗ = 6.1 (red), γ̇∗ = 29.7 (blue), and γ̇∗ = 63.5 (green).
Carriers are able to cross the RBC-FL border and escape from the RBC-FL. Carriers
remain in the RBC-FL for longer times than they need to marginate.

Up to now, investigations of the dependence of carrier and platelet margination on

a large number of system parameters have been reported. However, the question what

makes a carrier stay longer in the RBC-FL than in the RBC populated region remains
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unacknowledged. It is now obvious that the RBC distribution has a strong impact on the

platelet distribution. For instance, the hematocrit has to be high enough, such that the

center of the channel is sufficiently populated and RBCs form a barrier for the platelets.

On the other hand, a wide enough RBC-FL is required, otherwise platelet margination

diminishes. This has been discussed above and observed in experiments [128] at high

hematocrit values and low shear rates. Further numerical studies monitored a decrease

of particle margination for RBCs with a high viscosity ratio between the inner and the

outer fluids, for which the RBC-FL decreases [132].

Different theoretical and numerical studies have been performed to understand the

underlying mechanism of margination. The finite size of platelets influences their dis-

tribution [133]. However, 2D lattice Boltzmann simulations [130] suggested that pure

volume exclusion is not sufficient to explain platelet margination. For pure volume ex-

clusion a uniform platelet distribution within the available space was expected, but has

not been observed. Theoretical calculations predict that rebound collisions between the

marginated platelets and RBCs play a role [181]. Furthermore, the lateral diffusion of

platelets varies in radial direction, due to interactions with RBCs [130,182]. A proposed

mechanism is related to velocity fluctuations, which depend on the radial position in

the channel [14, 131]. However, in addition to the lateral diffusion, an additional drift

to the RBC-FL border is required to achieve a consistent platelet near-wall excess [130].

This drift is suggested to be due to hydrodynamic interactions with the tank-treading

RBCs.

Numerical simulations are used to better understand the influence of direct (excluded-

volume) and hydrodynamic interactions between platelets and RBCs, respectively. On

account of this, one of these two interactions is turned off and changes in the COM

distributions are monitored. First, simulations, where direct (excluded-volume) inter-

actions between platelets and RBCs are turned off, are compared to simulations with

direct interactions turned on and to simulations without RBCs. Second, simulations

with hydrodynamic simulations turned off are compared to the original simulations.

4.4.1. Excluded-volume interactions turned off

The distribution of platelets in Poiseuille flow in the absence of RBCs depends on the

particle type and the Reynolds number Re. Deformable particles and rigid particles with

an asymmetric shape experience a lift from the wall [183–185]. According to the Stokes

equation in Eq. (1.3), rigid spherical particles undergo no lateral migration across the

streamlines due to time reversibility [184]. For higher Reynolds numbers inertia effects
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4.4. Margination mechanism

have to be taken into account. Inertia leads to gathering of spherical particles at a

distance of 0.6R from the axis, which is called the Segré-Silberberg effect [186–188]. In

the considered simulations the Reynolds number is defined as Re = ¯̇γρW 2/η. For the

3D simulations with W = 3Dr it is 0.05 ≤ Re ≤ 0.26. Therefore, inertial effects can be

neglected.

For a monodisperse suspension of particles, mutually hydrodynamic interactions be-

tween the particles induce motion across a stream line. On the one hand each particle

rotates in shear flow [168] and induces and circulatory velocity field around itself inducing

a drag force [189]. On the other hand, when particles in a shear flow, which move with

different velocities, overtake each other, their velocity fields lead to lateral displacements

what leads to shear-induced diffusion [189]. The steeper the velocity gradient, the

stronger is this effect. Hence, particles in Poiseuille flow close to the wall change their

lateral position more often than particles close to the center, where they consequently

remain longer. This effect is called shear-induced migration [190–192].

COM distributions of platelets in a fluid with RBCs and a fluid without RBCs are

compared to evaluate the influence of hydrodynamic interactions between RBCs and

platelets on the platelet distribution. Therefore, the repulsive LJ interaction between

RBCs and platelets, and the reflections of platelets on the RBC surface are turned off. In

this way RBCs and carriers do not “see” each other, but they are suspended in the same

fluid. These simulations have been performed for spheres with the diameterDc = 0.28Dr,

Dc = 0.15Dr, and the ellipsoid with the long and short axis diameter, DL = 0.47Dr and

DS = 0.13Dr, respectively. The compared distributions are computed after the same

number of timesteps has passed and are averaged over the same number of timesteps.

This condition is kept for all simulation results which will follow. Furthermore, the

RBC distributions are compared to the previous simulations to ensure that there are no

changes, see Fig. C.11.

Figure 4.35 shows that the carriers in the fluid with RBCs remain closer to the wall,

even in the RBC-FL, than the carriers in the fluid without RBCs. The simulations

have been performed for the hematocrit Ht = 0.3 and two pressure gradients that

were induced by the force f ′ = fkBT/W on the fluid particles. Indeed, this effect is

hardly observed for small spheres with Dc = 0.15Dr and is strongest for the ellipsoid.

This indicates that for hydrodynamic interactions with the RBCs the shear-induced

migration is slower, especially for carriers with large extensions. Hence, this effect is

likely to increase the time a carrier remains in the RBC-FL.

An obvious difference between the simulations are the different velocity profiles, for

105



4. Margination of platelets and drug-delivery carriers

 0

 0.005

 0.01

 0.015

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
O

M
 d

is
tr

ib
ut

io
n

∆r/W

(a) free, f = 39.5
hydro, f = 41.5

RBC-FL f = 41.5

free, f = 75
hydro, f = 75.5

RBC-FL f = 75.5

 0

 0.005

 0.01

 0.015

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
O

M
 d

is
tr

ib
ut

io
n

∆r/W

(b) free, f = 42.5
hydro, f = 42.5

RBC-FL f = 42.5

free, f = 80.5
hydro, f = 80.5

RBC-FL f = 80.5

Figure 4.35.: Influence of hydrodynamic interactions on carrier distribution for (a) a sphere with
Dc = 0.28Dr and (b) an ellipsoid. COM distributions for free flowing carriers in
Poiseuille flow (red, blue) and carriers flowing in a fluid together with RBCs, but
carriers and RBCs do not directly interact (purple, cyan). Two different pressure
gradients are examined. The force on the fluid particles is f ′ = fkBT/W .
With hydrodynamic interactions the shear-induced migration is slower, since carriers
partially remain in the RBC-FL.

the cases with and without RBCs, as also discussed in Section 3.3.3. The velocity profile

for the simulations with RBCs is flattened in the center due to the RBCs. Such a velocity

profile can be fitted by

vx(r) = a

(

1−
( r

R

)b
)

, (4.12)

with a and b being two fitting parameters and the radial position r and the radius of

the channel R = W/2. The values obtained for a flow with Ht = 0.4 and γ̇∗ = 39 are

a = 0.264 and b = 4.89. In the former discussed simulations a constant force is applied

to all fluid particles to mimic a pressure drop. In order to investigate the effect of the

different velocity profiles, the fluid particles in separate simulations are restricted to a

given velocity in flow direction, given by Eq. (4.12). The minimal distance to the wall

is not changed by the different velocity profiles, as presented in Fig. 4.36. Hence, the

velocity profile can be excluded as to be a reason for the different COM distributions of

carriers in a fluid together with RBCs and a fluid without RBCs.

In a next step, platelets were restricted to stay in a near-wall region, since it has

been suggested [130] that the hydrodynamic interactions influence mainly the distribu-

tion of platelets close to the RBC-FL. Therefore, the platelets have been constrained

by a LJ-9-3 repulsion (see Eq. (4.4)) at a distance similar to the RBC-FL thickness,

whereas the RBCs were unaffected. Without RBCs, carriers come as close to the wall
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Figure 4.36.: Influence of velocity profile on carrier distribution. (a) Velocity profile v(r) depending
on the distance ∆r to the wall normalized to the channel width W for the simulations
with the carriers free in the channel with normal Poiseuille flow (red), in a fluid with
velocity profile as given from Eq. (4.12) (green), and in a fluid with RBCs, but excluded-
volume interactions are turned off (purple). Comparison of COM distributions of (b)
a sphere with Dc = 0.15Dr and (c) an ellipsoid. All curves are based on an applied
force of f ′ ≈ 45kBT/W
The velocity profile can be excluded as to be a reason for the different COM distribu-
tions of carriers in a fluid without RBCs and a fluid with RBCs.
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Figure 4.37.: COM distributions of a sphere with Dc = 0.28Dr for the original setup (red), platelets
confined to the RBC-FL (purple), platelets confined to the RBC-FL and interactions
with RBCs tuned off (blue), and platelets confined to a region of thickness comparable
with the RBC-FL, but in a fluid without RBCs (cyan). All curves are for a pressure
gradient induced by a force of f ′ ≈ 75kBT/W .
The distribution close to the wall develops due to the direct interactions with the RBCs
and is only slightly influenced by hydrodynamic interactions.

as possible, because of the shear-induced migration, as presented in Fig. 4.37. However,

for a fluid with RBCs, but excluded-volume interactions turned off, a slight shift of the

curve is observed. To verify that the restriction does not change the distribution, sim-

ulations have been performed with the restriction for the platelets, while platelet and

RBC interactions were turned on. Apart from the distance near to the barrier, these

simulation results agree well with the results from the original simulation. It means

that the hydrodynamic interactions close to the wall have only a weak influence on the

platelet distribution. Thus, the platelet distribution is mainly generated by the direct

interactions (collisions) with RBCs.

4.4.2. Hydrodynamic interactions turned off

With the former simulations, the effect of hydrodynamic interactions in and close to the

RBC-FL has been studied. Additionally, different simulations have been performed to

examine the influence of hydrodynamic interactions in the RBC populated region. Hence,

the hydrodynamic interactions have been turned off, while excluded-volume interactions

between RBCs and platelets by a LJ repulsion and reflections were considered. There-

fore, two different background fluids have to be defined in the same simulation. One fluid

interacts specifically with the RBCs and another fluid with the carriers, without inter-

actions between the two fluids. The two fluids are driven by the same forces emulating
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4.4. Margination mechanism

the same pressure gradient.

First, COM distributions after a short simulation time are compared. For all carrier

types, a larger number of carriers remained outside the RBC-FL for the simulations

without hydrodynamic interactions, whereas the carriers in the normal simulations are

already marginated, see Fig. 4.38 (top). However, the effect seems to be the weakest

for the small carrier. This is confirmed by comparing the COM distributions after a

considerably longer simulation time in Fig. 4.38 (bottom). The curves for the carrier

with Dc = 0.15Dr are similar for both types of simulations. However, for the sphere

with Dc = 0.3Dr and the ellipsoid, a reasonable number of carriers still remained in the

RBC populated region. Thus, hydrodynamic interactions speed the margination up.
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Figure 4.38.: Carrier COM distributions for (a) a sphere with Dc = 0.28Dr, (b) Dc = 0.15Dr, and
(c) an ellipsoid. Compared are simulations with and without hydrodynamic interactions.
The curves are averaged after a short simulation time (top) and a longer simulation
time (bottom).
Without hydrodynamic interactions the carriers remain longer in the center of the
channel. The effect is stronger for larger carriers.

The observations above agree well with force measurements on 2D carriers depending

on the COM position. For these measurements, the center of a carrier was constrained

by a harmonic potential to a specific distance to the wall and the force on the center has

been measured in the course of a simulation. As presented in Figs. 4.39 (a,b), the carriers

experience a positive force (a force in the direction to the wall) in the RBC populated

region. The force vanishes in the middle of the channel and becomes negative close to the

RBC-FL. The force increases with increasing hematocrit and average shear rate. The
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4. Margination of platelets and drug-delivery carriers

force measurements correspond to a potential for the carrier with a local minimum in the

middle of the channel center and in the RBC-FL; see a shape estimation in Fig. 4.39 (c).

Hence, in the channel as well as in the RBC-FL a high percentage of carriers should be

expected, which is indeed observed for simulations without hydrodynamic interactions.
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Figure 4.39.: Force on a carrier constrained by a harmonic potential at a specific distance ∆y to
the wall normalized by the channel width W . (a) Hematocrit has been varied with
γ̇∗ = 29.7, (b) the average shear rate γ̇∗ has been varied at Ht = 0.45, and (c) a
shape estimation of the corresponding potential.
The force on the carriers increases with increasing hematocrit and increasing shear rate.
The forces predict that carriers are likely to stay in the RBC-FL, but also in the middle
of the channel. This corresponds to the case without hydrodynamic interactions.

4.4.3. Summary

The following different simulation setups were used to investigate the influence of direct

and hydrodynamic interactions between platelets and RBCs on the platelet distribution:

• Fluid without RBCs, normal Poiseuille flow.

• Fluid without RBCs, with velocity profile similar to simulations with RBCs.

• Fluid with RBCs, without direct (excluded-volume) interactions between RBCs

and platelets.
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4.4. Margination mechanism

• Fluid with RBCs, without direct interactions, platelets confined to RBC-FL.

• Fluid with RBCs, with direct interactions, platelets confined to RBC-FL.

• Separate fluids for RBCs and platelets, with direct interactions.

• Original, fluid with RBCs, with direct interactions, all cells free in the channel.

The comparison of simulations of platelets in a fluid without RBCs and with RBCs,

but excluded-volume interactions turned off, indicate that with hydrodynamic interac-

tions the shear-induced migration is slower and thus may increase the time platelets

remain close to the wall. Furthermore, simulations of platelets confined to the RBC-FL,

compared for a fluid without RBCs, a fluid with RBCs but direct interactions turned off,

and with direct interactions turned on, indicate that the distribution in the RBC-FL is

mainly induced by direct interactions (collisions) with the RBCs. However, simulations,

with hydrodynamic interactions between platelets and RBCs turned off, show that the

hydrodynamic interactions speed up the transport of platelets to the RBC-FL. The

carriers with larger sizes are effected stronger by the missing hydrodynamic interaction,

since the smaller spheres fit better between the RBCs, and thus collide less often with

them and can more easily find a path between the RBCs towards the RBC-FL. It

can be hypothesized that the flow around the RBCs guides the carriers through the

available space past the RBCs. The flow reduces collisions and speeds up the transport

to the RBC-FL, which fits well with the diverse times carriers need to enter or leave

the RBC-FL. Furthermore, the flow around the RBCs is likely to influence also the

orientation of the ellipsoid such that it fits better in between the RBCs. Additionally,

the proposed induced fluctuations in the solvent which accelerate the margination pro-

cess [14, 131] might be a reason as well. In order to separate the different mechanisms,

further studies are required.
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5. Von Willebrand factor stretching

in simple shear and blood flow

At high shear rate regimes, e.g., in the microcirculation, the interaction of von Wille-

brand factor (VWF) and platelets is essential for a successful performance of the primary

haemostasis. For instance, if wall shear rates exceed approximately 1500 s−1, platelet

velocities are too high for direct binding and their adhesion is practically mediated by

VWF [15]. Experiments have shown that the stretching of VWF triggers platelet as

well as VWF adhesion to the vessel wall. However, the triggers, which lead to VWF

unfolding in case of an injury, are still not fully identified. Therefore, the extension of a

free-flowing and tethered VWF in simple shear flow is studied.

Another important aspect of primary haemostasis process is the availability of all

necessary components near the site of injury, which is affected by their distribution

within the vessel cross-section. As presented above in Chapter 4, platelets are subject

to margination. However, more deformable blood components experience a stronger hy-

drodynamic lift, as observed numerically for polymers [193,194]. Furthermore, polymers

can be used as therapeutic agents [41]. Therefore, the margination of polymers with

different internal interactions in blood flow is also investigated.

5.1. Von Willebrand factor model

As proposed in literature [195], the VWF is modelled as a bead-spring chain with a

monomer radius am, see Fig. 5.1, with an attractive interaction between its monomers.

The interaction potential is given by

U

kBT
= κs

Nm−1
∑

i=1

(ri+1,i − 2am)
2 + ǫ

∑

ij

(

(

2am
ri,j

)12

− 2

(

2am
ri,j

)6
)

, (5.1)

where ri,j = ri − rj is the distance between two beads i and j. The first part of

the potential corresponds to a harmonic spring between neighbouring beads with an
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5. Von Willebrand factor stretching in simple shear and blood flow

equilibrium spring length of 2am and the spring constant κs. In order to keep the

distance of neighbouring monomers essentially constant, κs = 200kBTa
−2
m has been

chosen in all presented simulations. The second part of the potential corresponds to a

Lennard-Jones (LJ) interaction with the strength ǫ and the distance 2am at which the

potential reaches its minimum. On the one hand, the LJ interaction imposes excluded-

volume interactions between the beads for bead distances ri,j < 2am. On the other hand,

additional attractive interactions between the beads are included for bead distances

of ri,j > 2am. The properties of two polymer types are explored. One polymer type

(repulsive) employs only the repulsive part of the LJ interaction. The other polymer type

(attractive) is modelled with the attractive part of the LJ potential, and the attraction

strength is varied.

Figure 5.1.: Model of VWF as flexible polymer, described as a bead-spring chain. Snapshot from a
3D simulation.

5.2. Single von Willebrand factor in solvent

The velocity profile close to a vessel wall is approximately a simple shear flow. Hence,

the behaviour of the introduced polymer types is investigated in simple shear flow. The

focus is on the stretching of chains tethered to the wall and the effect of a platelet

attached additionally to the chain. However, first, static properties and the stretching

of free-flowing polymers in simple shear flow are compared to theory, other numerical

investigations, and experiments.
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5.2. Single von Willebrand factor in solvent

5.2.1. VWF in equilibrium

The radius of gyration Rg, the second moment of the mass distribution, is a measurement

to define a characteristic size of a polymer chain [196]. It is given by

〈

R2
g

〉

=
1

Nm

Nm
∑

i=1

(ri − rCOM)
2 =

1

N2
m

Nm−1
∑

i=1

Nm
∑

j=i+1

(ri − rj)
2, (5.2)

where ri is the position of monomer i and rCOM is the mean position of all monomers.

This characteristic size scales with the number of monomers Nm as

Rg ∝ Nν
m. (5.3)

The exponent ν depends on the quality of the solvent. In a good solvent, the chain

is swollen and behaves similar to a polymer chain with excluded-volume interactions

between the segments. For a good solvent, the Flory theory yields the Flory exponent

ν = 3/(d + 2), where d is the dimension and which is exact for 1, 2 and 4 dimensions.

Thus, in a 2D system for a good solvent the Flory exponent is ν = 3/4. In a 3D

system it is ν ≈ 3/5 [197] and experimental measurements yield ν = 0.588 [198]. In

a poor solvent the polymer chain is collapsed. The smallest globule can be achieved

when monomers arrange in a close-packed configuration corresponding to ν = 1/d. This

leads to ν = 1/3 for a 3D and ν = 1/2 for a 2D system. The boundary between a

good and a poor solvent is called theta solvent. In a theta solvent the polymer behaves

similar to an ideal polymer chain with ν = 1/2 in 2D and 3D. For an ideal chain,

the attractive and repulsive interactions between the monomers are balanced, hence

the connections between the beads describe a random walk. Interestingly, a 2D coiled

polymer configuration in a poor solvent behaves as an ideal chain.

Numerically, the radius of gyration has been estimated in the course of a simulation

and averaged over all timesteps after equilibration. The simulations have been performed

in a periodic box with a length of LB > 4Rg, since it has been suggested that for these

box sizes finite size effects can be neglected [199]. 2D simulations have been performed

for polymers, which bead size corresponds to am = 0.3 µm, with the number of beads

Nm ∈ {17, 26, 34, 42, 60, 80, 100}, and with the attraction strengths between the beads

ǫ̃ = ǫkBT , with ǫ ∈ {0.1, 0.5, 1, 1.25, 1.5, 2, 2.5, 4}. The curves in Fig. 5.2 show that

changing the LJ interaction is the same as changing the quality of the solvent. With

increasing ǫ the radius of gyration decreases. For high ǫ the curves for different Nm
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overlap, since the average radius of gyration squared is normalized by Nma
2
m and for a

poor solvent R2
g ∝ Nm. The repulsive polymer behaves as a polymer chain in a good

solvent. The configuration the attractive polymer adopts, depends on the interaction

strength ǫ. With increasing attraction strength ǫ the exponent ν decreases. For high

enough ǫ a close-packed configuration is reached. For the same polymer model in 3D

similar results are obtained, see Fig. D.1 of Appendix D.
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of a polymer chain.
(a)
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is normalized by Nma
2
m, with Nm being the number of beads and the bead

radius am, depending on the attraction strength ǫ̃ = ǫkBT . Different curves correspond
to different chain lengths: Nm = 17 (red), Nm = 26 (blue), and Nm = 34 (green).
(b) Logarithm of
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depending on the number of beads compared to the expected
scaling from theory. Different curves correspond to different monomer interactions.
The radius of gyration for a repulsive polymer behaves as a flexible polymer in a good
solvent and for increasing attraction strength the polymer coil is almost closed packed,
as a polymer in a poor solvent.

For further investigations, a polymer with Nm = 26 is employed whose contour

length corresponds to L = 15.6 µm. This value has been motivated by the length of

ULVWF [19]. For the attractive polymers, the two attraction strengths ǫ = 2 and ǫ = 4

have been employed, since the ǫ that corresponds to the theta-solvent is close to unity.

For these attraction strengths the polymers possess a nearly collapsed configuration.

The radii of gyration for the employed polymers are on average: 〈Rg〉 = 4.1am for ǫ = 4,

〈Rg〉 = 4.5am for ǫ = 2, and 〈Rg〉 = 8.1am for the repulsive polymer.

5.2.2. Free VWF in simple shear flow

In a next step, the stretching behaviour of the polymer chains in simple shear flow,

depending on the shear rate, is examined. Therefore, the simulation setup consists
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5.2. Single von Willebrand factor in solvent

of a slit geometry as for blood-flow simulations. The fluid parameters are also the

same as in blood-flow simulations and are presented in the second row of Table B.5.

The length of the channel in flow direction is Lc = 233.3am = 4.49L and the width

W = 66.6am = 1.28L. In flow direction periodic boundary conditions are employed,

whereas in the perpendicular direction, the fluid is confined by two walls. The simple

shear flow has been obtained by moving these two walls in opposite directions with

the same velocity magnitude. The shear rate γ̇ = ∆v/W , with ∆v being the velocity

gradient between the walls, is normalized by the characteristic time scale τ = a2mη/kBT

to characterize the flow strength.

The behaviour of the free polymer has been examined for different distances to the

wall. Therefore, the COM position yCOM of the polymer has been trapped at the distance

yCOM to the wall by the spring potential

UCOM = ks(yCOM − y0)
2, (5.4)

with the spring strength ks = 115.2kBT/a
2
m.

Figure 5.3.: Sketch of the measurements of the polymer extension RS in flow direction.

A polymer in shear flow undergoes a periodic stretch-and-tumble motion [200]. The

polymer extends, due to the different velocities to which different parts of the polymer

are exposed to. The extension is followed by a tumbling that results in a partial collapse.

The stretching of the polymer is measured as the extension in flow direction RS, depicted

in Fig. 5.3. Furthermore, for all presented results it has been surveyed that the extension

is due to unfolding and that the bonds do not stretch. The bond probability distributions

for some example cases are presented in Fig. D.2.

Figures 5.4 (a) and (b) display the time-dependent change ofRS for two polymer types,

each for two shear rates. An increase in shear rate leads to an increase of the rotational

velocity. This change can be identified through the similar frequencies of extension

peaks for the repulsive polymer in Fig. 5.4 (a), since the time is scaled by the shear

rate. The attractive polymer with ǫ = 4 displays on average a lower extension than the

repulsive polymer. Furthermore, at low shear rates it maintains a globular configuration.
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Figure 5.4.: Extension of polymer chains with different internal interactions. (a, b) Time-dependent
extension RS of a polymer chain for two shear rates γ̇τ = 0.325 (brown) and γ̇τ = 2.6
(black) for (a) the repulsive polymer chain and (b) an attractive polymer chain with
ǫ = 4. The extension is scaled by the length of the chain and the time t, starting from
time t0, is normalized by the shear rate γ̇. The dashed lines show the corresponding
averaged values. (c) Average extension 〈RS〉 for all polymer types, the repulsive polymer
(green), the attractive polymer with ǫ = 2 (blue) and ǫ = 4 (red) depending on the
normalized shear rate γ̇τ . The solid curves correspond to the COM trapped at the
middle of the channel and the dashed curves to the COM at y0 = 0.15W , with W
being the channel width.
For attractive polymers a critical shear rate has to be reached before unfolding events
are observed. The critical shear rate depends on the attraction strength.
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5.2. Single von Willebrand factor in solvent

Figure 5.4 (c) presents the averaged extension 〈RS〉 for these polymer types with respect

to the normalized shear rate γ̇τ . For the investigated range of shear rates, the extension

of the repulsive polymer shows a weak dependence on the shear rate, while the attractive

polymers remain collapsed up to a critical shear rate. It has been observed in this study

and other 3D numerical studies based on Stokesian dynamics [195] that especially for

the attractive polymer the stretching starts with protrusions which emerge from the

globule. If the force is high enough, the protrusions are pulled apart. For low shear

rates the forces are too small to overcome the attractive forces acting on the protrusions

from the globule. Thus, the critical shear rate as well as the width of globular-to-

stretched transition strongly depends on ǫ. Furthermore, the polymer extension is more

pronounced if it is located close to a wall [201], shown for a polymer trapped at a

distance to the wall of yCOM = 0.15W . For all polymer types an increase of extension is

observed close to the wall. However, for the attractive polymers still a critical shear rate

has to be exceeded to enable stretching. The lower the attraction strength, the larger is

the change of the critical shear rate. The more pronounced extension of the VWF close

to the wall increases the interaction probability with platelets and the subendothelium

while prohibits it in the bulk, where it is unwanted. A comparison of the extension

behaviour of the polymer to experimental results [19] indicates that the polymer model

with ǫ = 4 is most suitable to model the VWF.

The unfolding and folding depend on the shear rate and the viscosity, because those

quantities mainly determine the time a protrusion exists and the force on the protrusion.

The polymer extension has been measured for different fluid viscosities and shear rates,

to validate that the extension of the globule is mainly dependent on the stress ς = ηγ̇,

and is independent of the particular viscosity of the fluid. Indeed, a good agreement of

the curves in Fig. 5.5 confirms that the average extension depends mainly on the stress.

The observed deviations for low viscosities are due to restrictions of the DPD simulation

method. For too high velocities the fluid becomes compressible and the results may be

unphysical [137].

Since the activity of the VWF depends strongly on its length, the stretching of poly-

mers consisting of three different number of beads Nm ∈ {17, 26, 42} are compared for

an attractive polymer with ǫ = 4 in the middle of the channel and close to the wall.

Interestingly, the ratio of the average extension and the polymer length is decreasing

with increasing polymer size, see Fig. 5.6 (a). Nevertheless, the real extension of the

longer chain is larger, which could promote platelet binding, see Fig. 5.6 (b). The larger

polymer also seems to be effected more when placed near a wall, such that the change
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Figure 5.5.: Average extension 〈RS〉 of an attractive polymer with ǫ = 2 normalized by the polymer
length L and depending on the normalized shear rate γ̇τ . Different curves correspond
to different fluid viscosities η̃ = ηkBTdta

−2
m , with dt being the simulation timestep and

am the bead radius.
The polymer extension depends mainly on the stress ηγ̇. Deviations from the expected
curve for low viscosities are due to the compressibility of the DPD fluid.

of extension close to the wall increases with increasing chain length. However, all poly-

mers were held at the same COM distance to the wall. Since the larger polymer has

a larger radius of gyration, it is subject to stronger interactions with the wall. It can

be expected that the small chain would show a similar dependence if it were held at a

similar distance compared to its radius of gyration.

5.2.3. Tethered VWF in simple shear flow

The stretching of polymer chains with one end tethered to the wall is examined, to incor-

porate the adhesion of plasmatic VWF, but also the ULVWF stored in the subendothe-

lium and the Weibel-Palade bodies, which are released in the case of an injury and

remain tethered there [167, 202]. Therefore, the last bead at one end of the polymer

chain has been fixed to the position y = 0 and has been moved with the same velocity

as the wall.

In comparison to a free polymer, the attachment to the wall results in an increased

extension of both repulsive and attractive polymers for the same shear rate, as presented

in Figs. 5.7 (b-d). For the attractive polymers adhered to the wall, the critical shear

rates for stretching are about one order of magnitude lower than that for a free chain.

This is due to a different dynamics of a free and attached chain. The free polymer

generally exhibits a cyclic transition between an extended and a globular conformation

during its rotation in shear flow, while the rotation of an attached polymer is frustrated.
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Figure 5.6.: Average extension 〈RS〉 of the attractive polymer with ǫ = 4 (a) scaled by the polymer
length L and (b) scaled by the monomer radius am. The considered bead numbers of
the chains are Nm = 17 (red), Nm = 26 (blue), and Nm = 42 (green). The position
of the COM of the polymer is either fixed to the middle of the channel (solid curves)
or fixed to the distance y0 = 0.15W from the wall, with the channel width W (dashed
curves).
The larger the chain the smaller is the ratio of the extension and its length, but the
larger is the ratio of extension and the monomer radius.

Therefore, the attached polymer is quasi-stationary extended and the extension of the

polymer is given by the competition between the stretching forces and the attractive

forces. Thus, adhesion of the VWF to the wall is identified as a trigger for extension.

Furthermore, this explains the advantage of the released and tethered ULVWF strings,

which might be able to stretch and thus expose binding sites for the prevailing shear

rate, while plasmatic VWF remains collapsed.

In addition, platelet adhesion to the VWF further facilitates its stretching. The

platelet consists of connected beads which are constrained to a rigid configuration and it

has a diameter of Dc = 0.12L. The platelet has been fixed to the free end of the polymer

by trapping it between the last two beads of the polymer chain, see Fig. 5.11. The

excluded-volume interactions between the beads of the polymer and the platelet prevent

the escaping of the platelet. The springs between the platelet beads and the polymer

beads, respectively, are strong enough to prevent stretching of the beads. Interestingly,

platelet adhesion mainly influences the extension of the attractive polymers. For them

the critical shear rate is considerably further decreased. Thus, adhesion of platelets of

the VWF may facilitate the extension of the VWF and following makes adhesion of

further platelets and VWF possible.

The average density distribution depending on the x- and the y-position in the channel

are measured to characterize the configuration of the polymer chains under these differ-
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Figure 5.7.: Average extension 〈RS〉 of polymers normalized by the polymer length L depending on
the normalized shear rate γ̇τ for a polymer coil in the middle of the channel (purple),
at a COM position y0 = 0.15W (cyan), attached to the wall (orange), and attached
to the wall with an adhered platelet (brown). (a) Assembled snapshots of polymers in
simulations, (b) repulsive polymer, and (c,d) attractive polymers with (c) ǫ = 2, and
(d) ǫ = 4.
Tethering of the polymer to the wall and the adhesion of a platelet increases the polymer
extension drastically. By tethering the polymer the critical shear rate for extension is
reduced by about one order of magnitude.
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5.2. Single von Willebrand factor in solvent

ent conditions. The density distributions in Fig. 5.8 for tethered polymer chains and

in Fig. 5.10 for tethered polymer chains with an attached platelet are for all considered

polymer types (horizontal) and for three different normalized shear rates γ̇τ = 0.0065 (a),

γ̇τ = 0.065 (b), and γ̇τ = 0.325 (c). These density distributions have been calculated

from simulation snapshots. Thus, the bead positions have been analysed such that the

tethered bead is always located at x = 0.

The repulsive polymer chain possesses large fluctuations for low shear rates, which

becomes evident by the broad density distribution and low local densities. A snapshot

for the case γ̇τ = 0.0065 is shown in Fig. 5.9 (a). With increasing shear rate, fluctuations

are reduced, the chain remains in a narrower y-range, and the local density increases.

The attractive polymers are collapsed for the low shear rates. For ǫ = 4 and γ̇τ = 0.0065,

the globule is even symmetric with the center at the x-position of the tethered bead.

The polymer with ǫ = 2 shows higher fluctuations than ǫ = 4. This becomes apparent

by the lower local densities and broader distributions. With increasing shear rate, a

part of the loose end remains collapsed, whereas the chain closer to the tethered point

becomes stretched. For γ̇τ = 0.325 the distribution for the repulsive polymer and the

attractive polymer look rather similar, whereas the attractive polymer with ǫ = 4 is still

partially coiled. Comparison of the cases ǫ = 2 at γ̇τ = 0.065 and ǫ = 4 at γ̇τ = 0.325

shows that the coil configurations are different. The distribution looks more round for

the polymer with ǫ = 2, whereas it looks more rectangular for ǫ = 4. This is confirmed

by the snapshots presented in Figs. 5.9 (b) and (c). The polymer chain for ǫ = 4 is

folded in three layers, whereas for ǫ = 2 the chain is wound-up.

The force on the chain beads close to the globule is determined by the friction of the

globular polymer part and the adhesion strength of the polymer coil. On the one hand,

the adhesion strength determines the force that is needed to pull the globule apart. On

the other hand, comparison of Fig. 5.9 (b) and Fig. 5.9 (c) indicates that the coil for ǫ = 2

has a more spherical shape and experiences higher velocity gradients which increase the

friction force. For instance, the drag on a sphere, the Stokes friction FSt = 6πηRv, is

proportional to the velocity v and the radius R of a sphere. The applied LJ attraction is

short ranged, since at distances larger than three bead diameters the potential vanishes.

Therefore, it is beneficial that the polymer with strong internal interactions does not

form a spherical shape but a layered configuration, since this shape induces less friction.

In addition, with increasing shear rate, the number of layers is reduced.

With an attached platelet, the polymer configurations change. The polymers reach

larger y-positions, due to the finite extension of the platelet and thus are exposed to
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Figure 5.8.: Density probability distribution depending on the x- and y-coordinate, both scaled by
the length of the polymer L. The colour code ranges from white (low probability) to
blue (large probability). The tethered bead has always the position x = 0. Different
columns correspond to different polymer types: (left) repulsive, (middle) attractive
with ǫ = 2, and (right) ǫ = 4. Different columns correspond to different shear rates
(a) γ̇τ = 0.0065, (b) γ̇τ = 0.065, (c) and γ̇τ = 0.325.
Less attraction corresponds to broader distributions. For high shear rates the distribu-
tion of the repulsive polymer and the attractive polymer with ǫ = 2 are similar.

(a) (b) (c)

Figure 5.9.: Polymer snapshots for tethered polymers showing (top) the chain beads and (bottom)
the bonds to illustrate the folding. (a) Repulsive polymer at γ̇τ = 0.0065, (b) attractive
polymer with ǫ = 2 at γ̇τ = 0.065, and (c) ǫ = 4 at γ̇τ = 0.325.
The attractive polymer with ǫ = 2 shows a more circular configuration while with ǫ = 4
the polymer is folded similar to a rectangular block.
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5.2. Single von Willebrand factor in solvent

larger flow velocities which additionally increase the friction in addition to that already

induced by the existence of the platelet. For the repulsive polymer, the density profiles

are more narrow in the diagonal direction, which indicates that fluctuations are sup-

pressed. Beside the low shear rate, the distributions for the repulsive and the attractive

polymer with ǫ = 2 are rather similar. For ǫ = 4 at low shear rates, the polymer is still

coiled but the globule is forced to higher x-values, due to the presence of the platelet.

With increasing shear rate not only the chain portion between the tether point and the

globule but also a short part between the globule and the attached platelet are stretched.

Furthermore, the globular part is less ordered and therefore more round, due to induced

fluctuations by the platelet, see Fig. 5.11.

The second row in Fig. 5.9 already indicates that the globular part of the polymer

chains have an interesting internal structure. A deeper insight into the structure of

the globules is given by the average y-position of the various beads depending on the

bead number n, presented in Fig. 5.12 for all the polymer types, different shear rates,

and with and without an attached platelet. For the platelet-free repulsive polymer, the

polymer chain protrudes more into the channel the further the bead is away from the

tethering point. Only the highest bead numbers show a decrease, due to fluctuations

of this beads. For the platelet-free attractive polymers, the oscillations indicate the

folding of the polymer chain into the globule. The broad variations for the ǫ = 2

polymer indicate that the beads follow a circular path. For ǫ = 4 smaller variations are

observed indicating an additional zig-zag structure. Interestingly, the highest point is

always the first maximum. The chain folds under the stretched chain to reduce friction.

The decreasing values with increasing shear rate indicate that the globule consists of

less rows with increasing shear rate. For the polymers with attached platelet the profiles

confirm that the chain with ǫ = 4 shows a similar profile than ǫ = 2 without the platelet.

The chain possesses less zig-zag structure, but is ordered more circular. Furthermore,

the chains for ǫ = 2 at very low shear rates and ǫ = 4 at intermediate shear rates are

almost stretched but the beads still form a zig-zag structure, see also Fig. 5.11 (b).

Experiments indicated that stretching of VWF triggers the adhesion of VWF to the

wall, but also adhesion of platelets to the VWF [19, 29–32]. The reason is that due to

stretching the dimer domains become exposed facilitating the binding [203]. Numerically,

this process is too complex to simulate on an atomistic level, since realistic simulations

of subdomains of the dimer require already immense computational effort [204]. In the

presented coarse-grained simulations it seems plausible to correlate possible adhesion to

the angle between two bonds to incorporate the conformational change. This angle is
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Figure 5.10.: Density probability distribution depending on the x- and y-coordinate, both scaled by
the length of the polymer L. The colour code ranges from white (low probability) to
blue (large probability). The tethered bead has always the position x = 0. Different
columns correspond to different polymer types: repulsive (left), attractive with ǫ =
2 (middle), and ǫ = 4 (right). Different rows correspond to different shear rates
(a) γ̇τ = 0.0065, (b) γ̇τ = 0.065, and (c) γ̇τ = 0.325.
Adhesion of a platelet leads to further extension of all polymers. For an intermediate
shear rate the attractive polymer with ǫ = 4 is more fluctuating than without a platelet
and the profile looks similar to the polymer with ǫ = 2 without a platelet. They
experience higher velocity gradients and for the highest shear rate all three polymer
configurations look similar

(a) (b)

Figure 5.11.: Snapshots of a polymer with an attached platelet for the attractive polymer with ǫ = 4
at two shear rates (a) γ̇τ = 0.0325 and (b) γ̇τ = 0.065.
The globule looks more round than without a platelet, and although the chain is almost
stretched, the beads order in a zig-zag structure. A similar configuration as in (b) is
observed for the attractive polymer with ǫ = 2 at shear rate γ̇τ = 0.0325.
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Figure 5.12.: Average y-position scaled by the polymer length L for all beads with number n for
(a) the repulsive polymer, (b) the attractive polymer with ǫ = 2, and (c) the attractive
polymer with ǫ = 4. (top) The polymers are tethered with one end to the wall and
(bottom) additionally a platelet is attached to the free end of the chain. Different
curves correspond to different normalized shear rates: γ̇τ = 0.0065 (red), γ̇τ = 0.065
(green), and γ̇τ = 0.325 (cyan).
With adhered polymer the configuration of the attractive polymer with ǫ = 4 is similar
to the one of the polymer with ǫ = 2 without an attached platelet.
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calculated with the aid of the trigonometric relation cos(ϕ) = (l212 + l223 − l213) /(2l12l23),

with lij being the distance between the beads i and j, where the beads 1 and 2, and 2

and 3 are connected by bonds. Figure 5.13 presents the angle probability distribution,

for different shear rates and configurations. For the repulsive polymer the probabil-

ity increases with increasing angle. However, with increasing shear rate the difference

between small and large angles increases. For attractive polymers at low shear rates,

which model the VWF, the lowest angle has the highest probability. With increasing

shear rate the angle distribution shifts to larger angles. For the stretched configurations,

all angles are close to 180◦. The three distinct peaks, which can be identified for the

attractive polymers, are at the three angles ϕ = 60◦, 120◦ and 180◦. This peaks are due

to the packing of the particles as depicted in Fig. 5.14.
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Figure 5.13.: Probability distribution of angles ϕ between neighbouring bonds scaled by π for (a) the
repulsive polymer, (b) the attractive polymer with ǫ = 2, and (c) the attractive polymer
with ǫ = 4. (top) The polymers are tethered with one end to the wall and (bottom)
additionally a platelet is attached to the free end of the chain. Different curves
correspond to different normalized shear rates: γ̇τ = 0.0065 (red), γ̇τ = 0.065 (green),
and γ̇τ = 0.325 (cyan).
For the repulsive polymer the largest angles have always the highest probability. For
the repulsive polymers the largest probability shifts from low to large angles with
increasing shear rate. The peaks occur at 60◦, 120◦, and 180◦, due to the packing of
the attractive polymers, see Fig. 5.14.

So far, averaged properties have been considered to shed light on the configuration
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5.2. Single von Willebrand factor in solvent

Figure 5.14.: Illustration of the angle distribution in the polymer coil with peaks at 60◦, 120◦, and
180◦.

of the polymers. However, examining the time-dependent extensions of the adhesive

polymers, considerable fluctuations can be observed at long timescales. Some example

cases are presented in Fig. 5.15. This indicates that the permanent competition between

the friction and the adhesion force leads to an alternating extension with time. However,

to investigate those fluctuations in more detail much longer simulations are needed,

which is out of the scope of this work.

5.2.4. Summary

The inclusion of an attractive interaction between the beads of a bead-spring polymer

chain leads to close-packed polymer globules. Under simple shear flow, the polymers

with attractive interactions possess a stress-dependent cyclic stretching, in contrast to

a polymer with just excluded-volume interactions between the beads. The stronger

the attraction, the larger is the critical shear rate, at which protrusions can lead to

unfolding of the chain and the steeper is the transition from coiled to stretched. The

polymer, modelled with the strongest attraction strength ǫ = 4 is an appropriate model

for the VWF, as the shear-rate dependent extension indicates. Furthermore, longer

chains stretch to longer conformations.

By tethering one end of the polymer to the wall, the critical shear rate reduces by one

order of magnitude and larger extensions are observed. Adhesion of a platelet to the free

end further decreases the critical shear rate and increases the extension. Although, both

examined attractive polymers, which were modelled with different attraction strengths,

were almost closed packed under static conditions, under simple shear flow the config-

uration and the extension behaviour is considerably different. For low shear rates, the

polymer with the adhesion strength ǫ = 2 possess more roundish and loose configuration,
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Figure 5.15.: Examples for variations of the time-dependent extension RS(t) of tethered attractive
polymer chains at different normalized shear rates γ̇τ . (a) ǫ = 2, γ̇τ = 0.325, (b)
ǫ = 4, γ̇τ = 0.325, (c) ǫ = 2, γ̇τ = 0.0325 with attached platelet, and (d) ǫ = 4,
γ̇τ = 0.0325 with attached platelet. The extension is normalized by the polymer
length L and the time t by the typical system time τ .
At long timescales large alternating fluctuations of the extension are observed.
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5.3. Von Willebrand factor margination

whereas the polymer with the strong adhesion strength ǫ = 4 has a more rectangular

folded configuration. For higher shear rates, the configuration of the polymer with

ǫ = 2 possess configurations similar to a polymer with only excluded-volume interac-

tions between the beads. For an attached platelet, the configuration of the polymer

with the ǫ = 4 is similar to the polymer with ǫ = 2 without an attached platelet.

As a result, the following scenario can be sketched to describe the primary haemostasis.

Due to an injury, collagen is exposed to the blood and/or stored ULVWF is released.

Since the released ULVWF is still anchored to the vessel wall, it unfolds although the

plasmatic VWF remains in its almost globular configuration. Therefore, platelets as

well as the plasma VWF can bind. Close to the wall the VWF is able to stretch, which

increases the binding probability. With a bound platelet which also slides along the

VWF, stretching proceeds further and other VWF and platelets can bind more easily.

This leads to onset of the whole cascade. This fits to experimental results where platelet

adhesion is mediated by plasma VWF alone, but needed a considerable longer time

compared to the case with wall-bound VWF [205]. However, not considered in this

work is that for larger lesions the flow close to the wall changes. The elongational part

of the flow is likely to become important. It has been shown that elongational flow

promotes further stretching of plasmatic VWF [206] and thus adhesion to the wall and

to platelets.

Furthermore, incorporation of adhesion of VWF to the wall and of platelets to the

VWF would require an adhesion potential which depends on the angle between two

neighbouring bonds, since especially for the attractive polymers the angle distribution

shifts from small to large angles for increasing shear rate. Although adhesion is out

of the scope of this work, it should be mentioned that recent numerical studies suggest

catch bonds [207,208] as an appropriate interaction mechanism. Furthermore, for chains

tethered to the wall, slow alternating extensions are observed which might be interesting

for further studies.

5.3. Von Willebrand factor margination

Sufficient extension of VWF, to provide adhesion of VWF and platelets to the wall,

occurs close to the vessel wall and is increased by VWF adhesion, as seen above. Exper-

imental [209,210], numerical, and theoretical studies [211–214] have shown that flexible

as well as semiflexible polymers [215] in a dilute suspension undergo cross-stream migra-

tion in simple shear and Poiseuille flow. In low confinement, where the channel width
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5. Von Willebrand factor stretching in simple shear and blood flow

is larger than the radius of gyration (W/Rg > 5), the polymers migrate to the channel

center for both, simple shear and Poiseuille flow, due to hydrodynamic interactions with

the walls. In simple shear flow a peak in the middle of the channel develops, whereas for

Poiseuille flow they possess a symmetric double peak for large Péclet numbers, due to the

different extension and diffusivity for different shear rates [209–215]. The Péclet number

is the ratio of the convective to the diffusive transport rate [58]. In strong confinement,

where the channel width is smaller or comparable to the radius of gyration (W/Rg ≤ 5),

the polymers migrate to the channel wall, since the hydrodynamic interactions with the

wall, which lead to migration to the center, are screened [212, 213]. However, in blood

flow the VWF has to marginate to the wall even in low confinement. Hence, the focus

in this section is to elucidate how the margination of polymers changes for different

blood-flow conditions and polymer types. Furthermore, the stretching of the polymer is

analysed and the polymer margination is compared to platelet margination.
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Figure 5.16.: Margination diagrams and snapshots for the (a,d) repulsive polymer, (b) the attractive
polymer with ǫ = 2, (c,e) and ǫ = 4. The white squares (�) indicate the values of
Ht and γ̇∗ for which simulations have been performed. The colour code ranges from
blue (low probability) to red (high probability) and is acquired via interpolation. Both
snapshots are for the system parameters Ht = 0.3 and γ̇∗ ≈ 29.7.
The attractive polymer with ǫ = 4 marginates drastically better than the other two.
The snapshots indicate that the margination is related to the stretching of the polymers.
The repulsive polymer fits better between the RBCs in the bulk and can come closer
to the RBCs at the RBC-FL border.

Figure 5.16 presents the polymer margination into the RBC-FL depending on the

hematocrit and shear rate γ̇∗ in a channel of width W = 3.28Dr for the repulsive

polymer and the attractive polymers with ǫ = 2 and ǫ = 4, respectively. The margination

probability is clearly highest for the attractive polymer with ǫ = 4 than for the other ones

for all shear rates and for Ht < 0.5. For large hematocrit values also for the attractive
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5.3. Von Willebrand factor margination

polymer with ǫ = 2 and the repulsive polymer notable margination is observed. The

margination probability of the attractive polymer with ǫ = 2 is higher than that for the

repulsive polymer especially for low shear rates. However, the margination for ǫ = 2 is

closer to the repulsive polymer than to the ǫ = 4 polymer. The snapshots in Figs. 5.16 (d)

and (e) at Ht = 0.3 and γ̇∗ = 29.7 illustrate that the extension of the polymers change.

The more flexible the polymer, the larger is the lift force from the wall and the lower

is the margination. Additionally, the extension of the polymer determines how well the

polymer can slide between the RBCs and it defines the distance the polymer can have

to the RBCs, if it is located close to the RBC-FL. The comparison of the polymer

margination diagrams with the platelet margination diagrams in Fig. 4.15 shows that

the polymer margination is more influenced by changes of the average shear rate. With

increasing average shear rate the margination decreases. This is likely to be due to

the increase of local shear rates which extend the polymer and change the polymer

configuration.

For a more quantitative analysis of the polymer extension in blood flow, Fig. 5.17

presents the extension of the polymer depending on the distance of the COM position

to the wall. The extension of the repulsive polymer differs only slightly for different shear

rates, which explains why the margination of this polymer type is almost independent of

shear rate. With increasing hematocrit, the COM of the polymer approaches closer the

wall where the polymer also stretches more. However, for larger distances from the wall

a change of hematocrit seems to have no considerable effect. For the attractive polymers,

an increase of stretching with increasing hematocrit as well as shear rate is found. The

effect is more pronounced for the polymer with stronger attraction. These observations

illustrate the reduced margination for increasing shear rates. A less globular polymer

experiences a higher lift force and due to the stretching the polymer fits better in between

the RBCs and also can come closer to the RBCs if it is located in the RBC-FL. At

higher shear rates the differences for different Ht become more pronounced, whereas for

high hematocrit values the difference between different shear rates is less pronounced.

Noteworthy is the drop of extension close to the RBC-FL before the extension increases

drastically, that is monitored for all three polymers.

Figure 5.18 compares the extension of the three polymer types for two hematocrit

values and two shear rates. For low hematocrit values the repulsive polymer is most

stretched over the whole channel and changes only slightly for different distances to

the wall. However, the attractive polymer with ǫ = 4 exhibits a clear increase with

decreasing distance to the wall. With increasing hematocrit and shear rate, the differ-
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Figure 5.17.: Average extension 〈RS〉 normalized by the polymer length L depending on the distance
∆y of the COM position to the wall normalized by the channel width W for the
(a) repulsive polymer, (b) the attractive polymer with ǫ = 2, and (c) the attractive
polymer with ǫ = 4. Different curve colours correspond to different combination of
hematocrit values (Ht ∈ {0.3, 0.6}) and average shear rates γ̇∗ ∈ {6.1, 29.7, 63.5}.
For all polymer types the extension increases drastically in the RBC-FL. The stronger
the attraction, the more the extension depends on the hematocrit and the shear rate.

ences between the polymer types diminish. Especially for the shear rate γ̇∗ = 63.5 and

Ht = 0.6, the curves for the repulsive polymer and the attractive polymer with ǫ = 2

overlap. However, for all cases the attractive polymer with ǫ = 4 is less extended in the

bulk but can extend to similar lengths in the RBC-FL.

In order to examine the elongation of the polymer depending on the local shear rate

in blood flow, the channel is divided into several layers in y-direction. For every layer a

local shear rate is estimated from the velocity profile assuming simple shear flow in this

region. The measured extension is then associated with the shear rate of the layer the

COM is located in. In Fig. 5.19 the extension of a polymer depending on the local shear

rate in blood flow is compared to the extension in simple shear flow. For the repulsive

polymer the extensions in blood flow are similar to those in simple shear flow. However,

for the attractive polymers the extension is increased. This indicates that interactions

with RBCs favour stretching, since the largest values correspond to high hematocrit

values. The effect is more pronounced the higher the local shear rate and the stronger

the attraction strength is.

Finally, the VWF COM distributions are compared to each other and to the distribu-

tions of circular platelets with a diameter of Dc = 0.15. As in Chapter 4 the distance

of the peak (Fig. 5.20) and the distance of the mean position in the channel (Fig. 5.21)

to the wall are examined. The distance of the peak as well as the mean position in the

whole channel to the wall is for the attractive polymer with ǫ = 4 at low shear rates
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Figure 5.18.: Average extension 〈RS〉 normalized by the polymer length L depending on the COM
position ∆y for the repulsive polymer (red curves), the attractive polymer with ǫ = 2
(blue curves), and ǫ = 4 (green curves). Only data points are shown, which have
been estimated by averaging at least 500 values. The different plots correspond to
the system parameters (a) Ht = 0.3, γ̇∗ = 29.7, (b) Ht = 0.6, γ̇∗ = 29.7, and
(c) Ht = 0.6, γ̇∗ = 63.5.
For the attractive polymer with ǫ = 4 the difference between extension in the bulk and
close to the wall is largest. However, with increasing Ht and γ̇∗ the polymer extension
becomes similar for the different polymer types.
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Figure 5.19.: Comparison of average polymer extension 〈RS〉 normalized by the polymer length L
depending on the (local) scaled shear rate γ̇τ compared for different average shear
rates (symbols) and simple shear flow (brown curve) for (a) the repulsive polymer,
(b) the attractive polymer with ǫ = 2, (c) and the attractive polymer with ǫ = 4.
For the repulsive polymer the extension in blood flow is similar to the extension in
shear flow. For the attractive polymers, as the hematocrit increases, the stretching
increases in blood flow compared to simple shear flow, due to interactions with the
RBCs.
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Figure 5.21.: Distance ∆〈r〉 of the mean position in the whole channel from the wall normalized by
the channel width W . Comparison between the repulsive polymer (red), the attractive
polymer with ǫ = 2 (blue), ǫ = 4 (green), and a circular platelet with Dc = 0.15Dr

(black) at three different shear rates (a) γ̇∗ = 6.1, (b) γ̇∗ = 29.7, and (c) γ̇∗ = 63.5.
With increasing shear rate the distance of mean position to the wall fro all polymers
become similar. For low shear rates the attractive polymer with ǫ = 4 is very similar
to the platelet.
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5. Von Willebrand factor stretching in simple shear and blood flow

similar to the small platelet. With increasing shear rate the distances increase like for

the platelet. However, the changes are more drastic for the polymer, due to the stronger

lift force. Consequently, the polymers have similar distributions for high shear rates and

are thus considerable further away from the wall than the platelet. One reason is that

the lift force scales as FL ∼ γ̇ [56,109] as discussed in Section 1.4. However, this applies

to all particles, but the higher the shear rate the more the attractive polymers are exten-

ded, as seen above. Thus, the shape is less symmetric and also the flexibility increases

which leads to an increased lift force [56]. Furthermore, the extension in y-direction of

the polymer decreases, the polymers can more easily squeeze between the RBCs and in

the RBC-FL they can come closer to the RBC.

5.4. Summary

Strong attractive interactions between the polymer beads increase drastically the mar-

gination. Thus, the globule form of the VWF does not only prevent spontaneous binding

of platelets in the bulk, but also takes care that the plasmatic VWF is marginated. Fur-

thermore, the polymer with strong attractive interactions stretches considerably close

to the wall, due to interactions with the RBCs which is even slightly more efficient than

in simple shear flow but is still coiled in the bulk. Therefore, adhesion to collagen can be

provided if needed. However, it has to be pointed out that the examined polymer length

correspond to the ULVWF. The average size of plasmatic VWF has been found to be

about 6 dimers [216], which corresponds to a length of about 420 nm. Considering that

the size distribution exhibits an exponential dependence [216], it is expected that espe-

cially the longer chains are closer to the wall than the smaller ones, which are expected

to be distributed more uniformly similar to the nano-carrier investigated in Section 4.2.

This conclusion is also consistent with the increased activity of longer VWF chains, for

instance in the thrombotic thrombocytopenic purpura disease [34]. Longer chains mar-

ginate better and thus, a higher number of chains is located close to the wall. Close

to the wall a polymer with strong internal interactions stretches considerably and clot

formation is highly promoted.
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6. Summary and Conclusion

In this thesis, a systematic in silico study of the migration of various blood components

to the wall in blood flow, which is called margination, has been presented. Applying two

particle-based and full-hydrodynamic simulation methods, blood has been modelled as

a mixture of fluid, RBCs, and different blood components.

The two utilized methods are the DPD method [82, 83] for 2D simulations and the

SDPD method with angular momentum conservation [84, 88] for 3D simulations. DPD

has been shown to model a solvent with low enough compressibility for the applied

parameters and SDPD with angular momentum conservation has been demonstrated

to properly capture the single dynamics of vesicles [88]. Considered blood components

are platelets, drug carriers, and the protein called von Willebrand factor (VWF). The

margination of WBCs has been investigated elsewhere [120, 121, 125], but has been

considered in discussions.

RBCs have a biconcave shape, platelets are small discs, and for drug carriers a huge

variety of shapes is possible [41–43]. RBCs, platelets, and carriers are all modelled as

triangulated networks, involving the viscoelastic properties, area conservation, bending

resistance, and volume conservation, due to the lipid bilayer, the spectrin network, and

inner cytosol [114,153,156]. In 2D simulations the RBCs and carriers/platelets are mod-

elled as closed bead-spring chains with a bending resistance and an area conservation

constraint [120]. In both dimensions, platelets and carriers are stiffer than RBCs similar

to experimental measurements [8,14]. In 3D simulations the carriers are faintly deform-

able and in 2D simulations they are completely rigid. The VWF has been modelled

as a bead-spring polymer chain [195], employing a harmonic spring between the neigh-

bouring beads. In addition, all monomers are subject to a volume exclusion, but may

also experience an additional attraction, due to different cut-off distances of a truncated

Lennard-Jones (LJ) interaction between all monomers.

Blood flow simulations have been performed in a cylindrical channel for a wide range

of normalized average shear rates γ̇∗ and volume fraction of RBCs, the hematocrit. In

3D a straight cylindrical vessel with the diameter of 20 µm has been used, in 2D a
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slit geometry with different widths. The examined hematocrit values are 10% to 60%,

whereas the natural human hematocrit lies in the range of 37% to 54% [1], but assumes

smaller values in narrow channels. The considered shear rate ranges from γ̇∗ = 20

to γ̇∗ = 99 and covers the flow rates which are characteristic for the venular part of

microcirculation with γ̇∗ . 90, while in the arteriolar part the flow rates are higher with

γ̇∗ & 120 [159,160]. Furthermore, the considered shear rates are also relevant for tumor

microvasculature, since blood flow velocities in tumors are much reduced [161, 162].

In flow, RBCs experience a hydrodynamic lift force from the wall, due to their asym-

metric shape and deformability [55, 56, 104–109]. Consequently, in blood flow RBCs

gather in the middle of a channel and close to the vessel walls a region depleted of RBCs

develops, called the RBC-free-layer (RBC-FL). Hence, margination is analysed in terms

of the probability that a particle (platelet, carrier, VWF) is located in the RBC-FL

and in terms that the carrier is located in the potential adhesion layer (PAL), a region

close to the wall where a direct interaction of the particle surface with the wall may

be possible. These probabilities have been calculated from the center-of-mass (COM)

probability distribution. Furthermore, these particle distributions are analysed in more

detail, considering the peak position of the COM distribution, the average position in

the RBC-FL, and the average position in the whole channel.

By 3D simulations, the margination of different shapes has been examined, including

four spheres with diameters between 1 µm to 2 µm and two oblate ellipsoids with the

long axis diameters 3.1 µm and 3.9 µm, and different aspect ratios (3.5, 7). By 2D

simulations a similar sized ellipse and similar sized circles are investigated. Additionally,

the margination of other particle sizes (diameter: 0.25 µm and 3.7 µm) and the influence

of particle deformability has been examined for a channel of 20 µm width in 2D.

The comparison of 2D and 3D simulations indicates that indeed the dependence of

margination on the hematocrit, shear rate, carrier size and shape in 2D is qualitatively

similar to the dependence observed in 3D. However, 3D simulation results have to be

compared to higher hematocrit values in 2D, since different packing of RBCs leads in

2D to a larger RBC-FL thickness for the same hematocrit. Furthermore, for the ellipse

with the highest aspect ratio the dynamics is different in 2D and 3D. Nevertheless, the

results of both simulations in both 2D and 3D can be interpreted together in order to

draw conclusions.

RBCs are essential for the occurrence of margination. The margination efficiency

of weakly deformable particles is mainly determined by the hematocrit. The larger the

hematocrit, the smaller the RBC-FL thickness and the more efficient is the margination –
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as long as the RBC-FL is not considerably smaller than the particle radius. However, the

shear rate influences the margination as well. Initially, the margination increases with

increasing shear rate, due to the developing inhomogeneous RBC distribution. After

reaching a certain shear rate, an increase of shear rate leads to a reduced margination,

since with increasing shear rate the RBC-FL increases and effective fluctuations reduce

the margination efficiency. Moreover, the more deformable the particles, the stronger is

the influence of the shear rate on the margination efficiency. An increased deformability

leads to a decreased margination with increasing shear rate.

An important result is that margination decreases with decreasing carrier size. More

precisely, for spheres the linear size determines mainly the margination efficiency, be-

cause a sphere (Dc = 2 µm) marginates almost similar to a sphere with half the volume,

but the sphere with half the diameter marginates drastically less. Moreover, nano-

carriers (Dc = 250 nm) distribute similar to the plasma and thus do not possess a

significant margination. Indications are found that spheres with diameters larger than

3 µm to 4 µm might be departed from the wall, similar to what has been shown for

WBCs [120,125].

The simulation results agree with experimental measurements [49,51,52,126,128,170].

In vitro an increase of margination with increasing hematocrit [128] has been observed.

Moreover, with increasing shear rate an increase of margination has been observed fol-

lowed by a decrease of margination with increasing shear rate after an optimal shear rate

value has been reached [129]. Furthermore, microfluidic experiments [49] have shown

that spheres with the size of 2 µm exhibit a significantly higher adhesion density than

particles with a size of 500 nm and 200 nm.

The study indicates that micron-particles with either a spherical shape or an ellips-

oidal shape with a high aspect ratio, such as platelets, are favourable for margination.

The flat disc with an aspect ratio of 7 shows a similar margination into the PAL with

respect to the long axis compared to a sphere with the same volume. An ellipsoid with

smaller aspect ratio but same volume possess less margination. This is due to the fact

that at high hematocrit values a high enough fraction of flat carriers is located with

their COM at a distance from the wall similar to their small radius. Moreover, the

angular velocity of ellipsoids is reduced in blood flow compared to a sphere and even

theoretical predictions, and the drag force on an ellipsoid close to the wall is smaller than

the drag on a sphere. Other theoretical and experimental studies [51–54] have shown

that ellipsoidal particles exhibit better adhesion properties than spheres, due to a larger

contact area for adhesion interactions. Taking these results into account, an ellipsoidal
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6. Summary and Conclusion

shape may be profitable for drug carriers, although the surface of an rotating ellipsoid

is only close enough to the wall for possible adhesion in a small time window during the

rotation. These results, combined with the observations that particle internalization by

endothelial cells and intracellular trafficking is more efficient for spherical sub-micron

particles, rather than for micron-size carriers with an ellipsoidal shape [40], promote the

concept of multi-stage drug delivery [6, 36], where a larger micro-carrier incorporates a

number of small nano-particles which are, after adhesion of the micro-carrier to the wall,

released into the tissue.

In order to study the effect of channel size, the margination in channels with four

other sizes (width: 10 µm, 15 µm, 40 µm, and 60 µm) has been presented in 2D. The

above described hematocrit, shear rate, and carrier-size dependence of margination is

similar for all examined channel sizes. However, margination has been shown to be most

efficient for narrow vessels (. 20 µm in 2D), since the RBC-FL thickness increases with

increasing channel size and consequently margination into the PAL is reduced.

With the channel size also the concentration of RBCs and carriers changes. RBCs

pass the channel faster than the average flow, thus the tube hematocrit, the volume

fraction of RBCs in the specific channel, is smaller than the discharge hematocrit, the

volume fraction leaving the channel per unit time. With increasing channel size, the

tube and the discharge hematocrit become more similar. It follows that the RBC con-

centration increases with increasing channel size, which is called the Fåhræus effect [175].

Accordingly, the concentration change of carriers with changing hematocrit, carrier size,

and channel size has been discussed, by examining their tube and the discharge volume

fraction. In contrast to the RBCs, carriers are localised close to the wall and thus they

pass a channel slower than the average flow, introduced as a ‘reverse’ Fåhræus effect.

With increasing hematocrit the carrier density increases, because the margination im-

proves. However, the RBC-FL thickness does not increase linearly with the channel

diameter, it increases less. Therefore, the density of carriers increases with increasing

channel size similar to the RBC density. Consequently, the density increase could com-

pensate for a reduced margination in larger channels. Similarly, size fluctuations may

be balanced, because the tube volume fraction of smaller carriers is larger assuming the

same discharge volume fraction.

In order to understand the process of margination, the contribution of direct and hy-

drodynamic interactions between platelets and RBCs on margination has been examined.

Therefore, either the excluded-volume or the hydrodynamic interactions between the

platelets and RBCs have been turned off. It has been shown that the shear-induced
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migration close to the RBC-FL is slower for platelets, which hydrodynamically interact

with RBCs, since platelets experiencing hydrodynamic interactions with RBCs are loc-

ated closer to the wall. Furthermore, hydrodynamic interactions seem to speed up the

migration from the center to the RBC-FL by guiding the path between the RBCs, since

without hydrodynamic interactions more carriers remain outside the RBC-FL than with

hydrodynamic interactions. However, the platelet distribution in the RBC-FL is mainly

determined by excluded-volume interactions and collisions with RBCs.

In order to understand the trigger of VWF extension in case of an injury, the chain

extension of polymers in simple shear flow is investigated, with respect to different

shear rates and internal monomer interactions. The mainly investigated chain length

corresponds to L = 15.6 µm. The following configurations have been examined: a

polymer with its COM fixed in the middle of the channel, its COM fixed close to

the wall, with one end attached to the wall, and additionally to the wall attachment

decorated with one platelet. The main focus has been on the last two configurations.

Strong attractive interactions between the beads of a polymer lead to a globule stretch-

ing transition at a critical shear rate as observed in experiments [19]. The less adhesive

the monomers, the lower the shear-rate dependence on the polymer configuration. Adhe-

sion of one end of the polymer to the wall decreases the critical shear rate for stretching

by an order of magnitude, leads to longer configurations, and adhesion of a platelet

leads to even further stretching. This indicates that adhesion of VWF triggers stretch-

ing. Furthermore, released and tethered ULVWF is able to extend, whereas the soluble

VWF remains coiled. Thus, the release of ULVWF triggers the aggregate formation by

providing binding sides for platelets and soluble VWF.

The margination efficiency of the repulsive and attractive polymers is examined and

compared to the margination efficiency of rigid carriers. In addition, the stretching

dependence of VWF on hematocrit, normalized average shear rate, polymer position,

and local shear rate in blood flow is investigated. Polymers with strong attractive

interactions marginate drastically better than these with low attractive interactions.

Furthermore, the margination of the examined polymers depends much stronger on shear

rate and is less than for rigid carriers. For higher local shear rates, the polymer coil

becomes more flexible and deforms and thus, margination is reduced. The stronger the

internal interactions, the more apparent is the dependence of extension on hematocrit

and the normalized average shear rate. With both, increasing hematocrit and shear

rate, larger elongations are observed. The stretching is strongest in the RBC-FL, since

the local shear rates are highest there and the polymer has free space. Therefore, the
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6. Summary and Conclusion

probability of spontaneous platelet plug formation is suppressed in the channel, but at

the same time adhesion of soluble VWF to the wall has a certain probability in case of

an injury.

As a concluding remark, this in silico study of margination in this thesis presents new

insights about the dependence of margination of blood components such as platelets, von

Willebrand factor, and drug carriers on blood flow properties (hematocrit, shear rate),

particle properties (size, shape, deformability), and channel width, but also about the

dependence of particle density on these properties, and about margination mechanisms.

Thus, a further piece is added to the big puzzle of understanding haemostasis and devel-

oping early detection and therapy strategies for diseases as, for instance, cardiovascular

diseases and cancer.
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7. Outlook

The simulations results obtained so far provide interesting new insights about margina-

tion and thus, a good theoretical basis for further studies. For future work, two different

directions are conceivable.

First, margination is a requirement for adhesion to the wall, but is not equivalent,

since adhesion ability may also depend on receptor/ligand density and distribution.

Therefore, the incorporation of adhesive interactions between the carriers and the wall

would provide a possibility to compare quantitatively simulations with experiments and

shed light on further important parameters.

Moreover, the intricate interplay between the different blood components can be in-

vestigated by including attractive interactions of VWF to the wall and platelets to VWF.

For instance, the effect of hematocrit, shear rate, soluble and wall-bound VWF on the

platelet plug formation can be examined. Figure 7.1 presents a sketch of a simulation

taking all important components into account.

Figure 7.1.: Sketch of further investigations. Future work could include attractive interactions
between platelets and VWF with the wall and attractive interactions between VWF
and platelets.

One suggestion for adhesive interactions is to model the dependence of stretching of

VWF and improved adhesion by correlating the adhesion strength to the angle between

the two neighbouring bonds. Furthermore, catch bonds have been suggested for both,

appropriate VWF-platelet and VWF-wall interaction [207,208]. Studying systems with
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7. Outlook

soluted VWF and platelets of different concentration in shear flow might lead to an

understanding of the early stage of shear-dependent aggregation formation not only for

normal VWF but also for mutations.

Second, this study sheds light on the margination dependence on a multiplicity of

parameters in a simplified geometry. After this, different additional aspects could be

considered leading to a more realistic environment. One aspect is the geometry of a

healthy, but also of an injured blood vessel. A second aspect is to take further properties

of blood into account. Different system properties that could be included in simulations

are listed below.

More realistic blood vessels

Blood vessels are not rigid, they are comprised of elastic tissue and muscles and are

different for different vessel types [1]. Furthermore, the endothelium is covered by a

so-called endothelial surface layer (ESL) with a thickness of 0.3µm to 1 µm and with

glycocalyx, macromolecules attached to the plasma membrane, with a thickness of some

tens of nanometers [217, 218]. The ESL impedes the plasma flow, increasing the flow

resistance and leading to very low tube hematocrit values compared to the bulk hem-

atocrit [217, 218]. These properties could also influence the margination properties.

Bifurcations and junctions

Another interesting feature are bifurcations and junctions, which may affect the platelet

adhesion ability. The microvascular network consists of short segments (∼ 400µm to

800 µm) linked by bifurcations. Depending on the flow velocity and the geometry of

the daughter branches, RBCs and plasma can be unevenly distributed in the daughter

branches, leading to a heterogeneity. Thereby, larger vessels with higher volume flow

lead to an increased hematocrit [218]. If one of the daughter vessels is only perfused

by plasma and void of RBCs, this is called ‘plasma-skimming’ [219, 220]. Thus, at

bifurcations and junctions the margination may not only diminish, but also the carrier

density in the various channels may be changed as for RBCs.

Pulsatile flow

Another very controversial topic is the influence of pulsatile flow in microcirculation.

The question is, whether a pulsatile flow exists in microcirculation and what impact

it has. This topic is mainly discussed in the context of the development of acute and

chronic cardiac support systems. Some studies suggest that pulsatile flow exists in mi-

crocirculation and that it improves the velocity of cells in the capillaries and increases

the number of perfused capillaries compared to non-pulsatile perfusion [221, 222]. How-
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ever, if pulsatile flow is important in microcirculation the pulsation might also effect

carrier margination and VWF extension.

Altered flow in case of injury

Concerning blood clotting in case of an injury, it may be taken into account that the flow

initially changes, due to the lesion and subsequently, due to the formed blood clot [223].

For instance, it has been suggested that elongational flow is likely to increase the stretch-

ing VWF [206, 224] and thus, adhesion to the wall and to platelet would be reinforced.

Furthermore, the narrowing and widening of blood vessels, called vasoconstriction and

vasodilation, respectively is involved in the primary haemostasis [1].

Aggregation of RBCs

Moreover, blood is a ‘shear-thinning’ fluid, meaning that the viscosity decreases with

increasing shear rate. On the one hand, RBCs deform in response to high shear stresses.

On the other hand, for low shear rates RBCs aggregate into so-called rouleaux form-

ations, comparable to a stack of coins [117]. This aggregation is mediated by plasma

proteins and a strong increase of these aggregations is observed associated with diseases

as atherosclerosis, AIDS, and diabetes [118]. With increasing shear rate, these fragile

piles break up, which is the major cause of the shear-thinning [220]. An observed im-

pact of aggregation, for instance on WBC margination, is an increase of margination for

high hematocrit values and low shear rates assuming that the aggregation represents an

additional expulsion force, but also leads to an increase of the RBC-FL [125] and would

also have an impact on carrier margination.
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Appendix A.

Fluid model

A.1. Smoothed dissipative particle dynamics

Here, the calculations of derivatives of field variables similar to those in SPH [86] are

summarized.

Using Eq. (2.10), the first derivative of a field g̃ can be approximated as

(

∂g̃

∂x

)

i

≈
N
∑

j=1

mj

ρj
g
∂Wij

∂xi
, (A.1)

where the notations are identical to those in the main text of Chapter 2. A disadvantage

of this approximation is that the derivative does not vanish for g̃ being a constant

function. Therefore, a better approximation is given by

∂g̃

∂x
=

1

φ

(

∂(g̃φ)

∂x
− g̃

∂φ

∂x

)

, (A.2)

where φ has to be a differentiable function. Following Eq. (A.1),

(

∂g̃

∂x

)

i

≈ 1

φi

N
∑

j=1

mj

ρj
φj (gj − gi)

∂Wij

∂xi
. (A.3)

is obtained. When φ = 1, Eq. (A.3) reduces to

(

∂g̃

∂x

)

i

≈
∑

j

mj

ρj
gji
∂Wij

∂xj
, (A.4)

where gji = gj − gi. In Eq. (A.3), φ = ρ can also be selected, yielding an approximation
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for the first derivative as
(

∂g̃

∂x

)

i

≈ 1

ρi

∑

j

mjgji
∂Wij

∂xi
. (A.5)

The choice for different discretizations (φ = 1 or φ = ρ) may depend on the problem

of interest. For instance, when different interacting fluids with large density ratios are

considered, it has been shown that the approximation in Eq. (A.3) with φ = 1 is more

accurate than that with φ = ρ, because ρ in Eq. (A.4) is included directly inside the

sum [86,225]. Furthermore, if only a single fluid is employed, an approximation ρi ≈ ρj

can be used making the above choices for φ equivalent.

There exists another definition for the first derivative,

∂g̃

∂x
= φ

(

∂

∂x

(

g̃

φ

)

+
g̃

φ2

∂φ

∂x

)

, (A.6)

leading to
(

∂g̃

∂x

)

i

≈ φi

N
∑

j=1

mj

ρj

(

gj
φj

+
gi
φ2
i

φj

)

∂Wij

∂xi
. (A.7)

A choice of φ = 1 leads to

(

∂g̃

∂x

)

i

≈
N
∑

j=1

mj

ρj
(gj + gi)

∂Wij

∂xi
, (A.8)

while for φ = ρ Eq. (A.7) becomes

(

∂g̃

∂x

)

i

≈ ρi

N
∑

j=1

mj

(

gj
ρ2j

+
gi
ρ2i

)

∂Wij

∂xi
. (A.9)

The above defined approximations can be used to also approximate the other differ-

ential operators of the Navier-Stokes equation (NSE). For instance, using Eq. (A.5) the

gradient of g̃(r) can be approximated as

(∇g̃)i ≈ − 1

ρi

∑

j

mjgij∇iWij, (A.10)

where gij = gi − gj . Similarly, the divergence and the curl of a vector field G̃(r) are
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A.1. Smoothed dissipative particle dynamics

discretized as

(

∇ · G̃
)

i
≈− 1

ρi

∑

j

mjGij · ∇iWij , (A.11)

(

∇× G̃
)

i
≈− ρi

∑

j

mj

ρiρj
(Gj +Gi)×∇iWij . (A.12)

The second derivatives are then given by

(

∇
(

∇ · G̃
))

i
≈ −

∑

j

mj
Fij

ρiρj
(5êij (êij ·Gij)−Gij) (A.13)

and
(

∇2g̃
)

i
≈ −2

∑

j

mj
Fij

ρiρj
gij, (A.14)

where êij = rij/rij is the unity vector along the separation direction of particles i and

j [84].
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A.2. Comparison of simulation methods

Regarding the simulations presented in Section 2.5, a number of simulations were per-

formed to verify that the simulation results are independent of the choice for particle

mass and moment of inertia for low enough Re numbers. Figure A.1 illustrates that the

effect of both mass and moment of inertia on the measured viscosity can be neglected

for the studied range of flow Re numbers [88].

 0.9

 0.95

 1

 1.05

 1.1

 0  0.5  1  1.5  2  2.5  3

η/
η 0

∆P/Lc l
4/E

m = m0  , I = I0  
m = 5m0, I = I0  
m = m0  , I = 5I0
m = 5m0, I = 5I0

Figure A.1.: Dependence of fluid properties on mass and moment of inertia. Measured viscosity η,
scaled by η0 = 25

√
mE/l2 depending on the pressure gradient ∆P/Lc, with Lc being

the channel length for different mass and moment of inertia values. The density is
ρ0 = 3m/l3.
Although both, mass and moment of inertia, are varied, the measured values of η are
hardly affected [88].

Additional to measurements of fluid properties for a SDPD+a fluid presented in

Figs. 2.3 and 2.4 of Section 2.5, Figs. A.2 and A.3 show the measured fluid viscos-

ity and density of a SDPD–a fluid, depending on the pressure drop, input viscosity,

input density, and temperature. Similar to SDPD+a, the fluid properties are better

approximated for an increased particle density, see Fig. A.2. Furthermore, with increas-

ing smoothing length rh the measured values are closer to the specified ones and the

temperature dependence practically vanishes, see Fig. A.3.

A similar test for the Taylor-Couette flow using both SDPD–a and SDPD+a methods

have been performed to verify that simulation results are independent of the choice of

particle mass and moment of inertia for low enough Re numbers. Figure A.4 illustrates

that for all choices of mass and moment of inertia the measured angular velocity profiles

agree.
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Figure A.2.: Fluid properties of a SDPD–a fluid for different pressure gradients ∆p/Lc, for a channel
of length Lc and particle densities ρ0 = 3m/l3 (blue) and ρ0 = 5m/l3 (purple).
(a) Measured viscosity η normalized by η0 ∈ {50, 100}

√
mE/l2. (b) Particle density

ρ normalized by ρ0. Different energy levels kBT ∈ {0.4, 1}E were considered, while
rh = 1.5l. This plot corresponds to Fig. 2.3.
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Figure A.3.: Fluid properties of a SDPD–a fluid for different pressure gradients ∆p/Lc, for a chan-
nel of length Lc and smoothing lengths rh = 1.5l (blue) and rh = 3.0l (green).
(a) Measured viscosity η normalized by η0 ∈ {50, 100}

√
mE/l2. (b) Particle density ρ

normalized by ρ0 = 3m/l3. Different energy levels kBT ∈ {0.4, 1}E were considered.
This plot corresponds to Fig. 2.4.
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Figure A.4.: Angular velocity vφ profiles for the Taylor-Couette flow with two immiscible fluids
using both (a) SDPD–a and (b) SDPD+a methods for different mass m and moment
of inertia I. The radial position r is normalized by the cylinder radius Ro, while the
angular velocity is scaled with the cylinder angular velocity ΩoRo.
For all masses and moments of inertia the same results are obtained [88].
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Appendix B.

Blood flow simulations

B.1. Cell model

Tables B.1 and B.2 present the RBC model parameters for the 3D and 2D model,

respectively, which have been introduced in Section 3.1.1. For Table B.1 the given

parameters correspond to Eqs. (3.2), (3.5) to (3.8), and (3.10). For Table B.2 the

parameters correspond to Eqs. (3.2), (3.12), and (3.13).

Nv lm Y ϑ0 κr Atot
0 V tot

0 kd ka kv ηm
unit 1 l0 µN/m rad kBT µm2 µm3 kBT/D

2
r kd Dr/kd kBTτ/D

2
r

value 500 2.2 18.9 0 70 133 92.5 42250 49 325 122.7

Table B.1.: 3D RBC model parameters corresponding to Section 3.1.1. Nv is the number of vertices
per cell, lm is the maximum spring extension, and l0 is the spring length set to the value
of the initially triangulated membrane surface. Y is the Young’s modulus, ϑ0 is the
spontaneous angle between two adjacent faces. κr is the macroscopic bending rigidity.
Atot

0 is the desired cell area and V tot
0 is the cell volume, while kd is the local area

constraint coefficient, ka is the global area constraint coefficient, and kv is the volume
constraint coefficient. The desired area A0 of the triangles is set to the value of the
initial membrane triangulation. The membrane viscosity ηm is derived by Eq. (3.7) with
γC = 21.8kBTτRBC/D

2
r and γT = 65.4kBTτRBC/D

2
r .

Nv lm/l0 L0/µm ϑ0 κr/kBT A0/µm2 ka/(kBT/D
2
r)

RBC 50 2.2 19.22 0 50 13.6 37210

Table B.2.: 2D RBC model parameters corresponding to Section 3.1.3. Nv is the number of vertices
forming a cell, lm is the maximum spring extension, and l0 is the initial spring length.
L0 is the cell’s contour length, ϑ0 is the spontaneous angle between two neighbouring
bonds, κr is the macroscopic bending rigidity, A0 is the desired cell area, and ka is the
area constraint coefficient.
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Appendix B. Blood flow simulations

B.2. Single vesicle in shear flow

The Keller and Skalak (KS) theory assumes a fixed ellipsoidal shape (r1/a1)2+(r2/a2)
2+

(r3/a3)
2 = 1, where ri, i ∈ {1, 2, 3} are the Cartesian coordinates and ai are the semiaxes

of the ellipsoid. The motion of a vesicle is derived by considering energy balance between

the energy supplied by the fluid and the energy which dissipates on the membrane and

inside the vesicle. This balance leads to a differential equation given by

dθi
dt

=
1

2
γ̇ (B cos(2θi)− 1) , (B.1)

where γ̇ is the shear rate. If B > 1, the vesicle is in the tank-treading (TT) regime,

and hence, a steady inclination angle can be found as θi = 0.5 arccos(1/B), where B is

a function of vesicle shape and viscosity contrast given by

B = f0

(

f1 +
1

f1

1

1 + f2(λ− 1)

)

,

f0 =
2

a1/a2 + a2/a1
,

f1 = 0.5 (a1/a2 − a2/a1) , (B.2)

f2 = 0.5g(α2
1 + α2

2),

g =

∫ ∞

0

(α2
1 + s)−3/2(α2

2 + s)−3/2(α2
3 + s)−1/2 ds,

αi =
ai

(a1a2a3)
1/3
.

Note that the vesicle’s membrane viscosities are not considered here.

The moment of inertia tensor I, which is used to compute the inclination angle of a

vesicle in Eq. (3.14), by using the eigenvalues of this tensor, is given by

I =







y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2






. (B.3)
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B.2. Single vesicle in shear flow

Tables B.3 and B.4 show the cell model parameters corresponding to Eqs. (3.8)

and (3.10) and the fluid parameters corresponding to Eq. (2.26), used in 3D simula-

tions of a single vesicle in shear flow presented in Section 3.2.2.

kd/(kBT/R
2
0) ka/(kBT/R

2
0) kv/(kBT/R

3
0) κr/kBT γ̇τv

1145 11450 12256 21.7 0.36

Table B.3.: Vesicle parameters in units of energy kBT and effective vesicle radius R0 corresponding
to Eq. (3.8) and Eq. (3.10). kd is the local and ka the global area constraint coefficient,
kv is the volume constraint coefficient, κr is the bending rigidity, and γ̇ is the shear rate
normalized by a characteristic vesicle relaxation time τv = ηoR

3
0/κr, with ηo being the

outer fluid viscosity.

p0 ρ0 α b rc η0 n kBT
100 3.0 7 100 1.5 20.0 3 0.4

Table B.4.: SDPD fluid parameters used in 3D simulations of a single vesicle in shear flow for
SDPD–a and SDPD+a corresponding to Section 3.2.2. p0, ρ0, α, and b are model
parameters that correspond to Eq. (2.26). η0 is the desired outer dynamic viscosity, n
is the number density, and kBT is the energy unit. The measured (real) outer fluid
viscosity η for SDPD–a is η−a = 20.2 and for SDPD+a it is η+a = 19.9.
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Appendix B. Blood flow simulations

B.3. Blood flow

Table B.5 shows the fluid parameters of the DPD fluid corresponding to Eqs. (2.2),

(2.4), and (2.5) and measured properties for 3D and 2D simulations used in blood flow

simulations, which are presented in Sections 3.3.3, 4.2, and 4.3 and Chapter 5. Table B.6

shows the fluid parameters corresponding to Eq. (2.26) for the SDPD fluid employed for

3D simulations, which are presented in Section 3.3.3 and Chapter 4.

D m a γ rc k n kBT η
2D γ̇∗ ≤ 20 1 40 10 1.5 0.3 5 1 72.2
2D γ̇∗ > 20 1 40 20 1.5 0.3 5 1 144.4
3D all γ̇∗ 1 4 22 1.5 0.1 3 0.1 104.3

Table B.5.: DPD fluid parameters used in 2D and 3D simulations. m is the mass of a fluid particle,
a and γ are the conservative and dissipative force coefficients, respectively. rc is the
interaction cut-off radius, k is an exponent for the dissipative-force weight function,
n is the number density of fluid particles, kBT is the energy unit with kB being the
Boltzmann constant and T temperature, and η is the measured fluid’s dynamic viscosity.

p0 ρ0 α b rc η0 n kBT η
100 3.0 7 80 1.5 100.0 3 0.4 109.2

Table B.6.: SDPD fluid parameters used in 3D simulations. p0, ρ0, α and b are model parameters.
η0 is the desired dynamic viscosity, n is the number density, kBT is the energy unit, and
η is the measured (real) fluid viscosity.
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Appendix C.

Margination of platelets and

drug-delivery carriers

C.1. Size and shape dependence of margination

Table C.1 presents the carrier model properties, corresponding to Eqs. (3.2), (3.8),

and (3.10), which have been used for all 3D simulations presented in Chapter 4.

lm/l0 Y/(µN/m) θ0 κr/kBT kd/(kBT/D
2
r ) ka/kd kvDr/kd

2.2 189 θl0 866 422500 50 3250

Table C.1.: 3D carrier model parameters that are similar for all carriers. lm is the maximum spring
extension and l0 is the spring length set to the value of the initially triangulated mem-
brane surface. Y is the Young’s modulus, θ0 is the spontaneous angle between two
adjacent faces set to θl0 being the angles of the initially triangulated shape. The mac-
roscopic bending rigidity κr. kd is the local area constraint coefficient, ka is the global
area constraint coefficient, and kv is the volume constraint coefficient. The description
of the model can be found in Section 3.1.

Table C.2 gives an overview over the number of vertices per carrier and the number

of carriers per 3D simulation. The ellipsoids are characterized by a effective diameter

defined as Dc =
√

Atot
0 /π.

In Section 4.1 margination diagrams have been presented for the two different choices

of margination layer, namely the RBC-FL and PAL, which depend on system properties.

Therefore, the margination diagrams for a constant region of width δ = 0.31Dr for 3D

simulations of the four spherical carriers are presented in Fig. C.1. Similar hematocrit

and shear rate dependence on margination is observed as for the two other choices of

margination layer.
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Appendix C. Margination of platelets and drug-delivery carriers

Shape Dc/Dr N Nv

Sphere 0.3 6 350
Sphere 0.28 6 350
Sphere 0.25 10 300
Sphere 0.15 20 150

Ellipsoid 0.36 6 350
Ellipsoid 0.43 6 350

Table C.2.: 3D carrier model parameters. Dc is the diameter for the spheres and the effective
diameter Dc =

√

Atot
0 /π of the ellipsoids. N is the number of carriers per simulation

and Nv is the number of vertices per carrier, see Section 3.1 for details.
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Figure C.1.: Margination probability for carrier margination into a region with constant distance
δ = 0.1W = 0.31Dr depending on the hematocrit Ht and the shear rate γ̇∗. The
considered spheres have the diameter: (a) Dc = 0.3Dr, (b) Dc = 0.28Dr, (c) Dc =
0.25Dr, and (d) Dc = 0.15Dr. The white squares (�) indicate the values of Ht and
γ̇∗ for which simulations have been performed. The colour code ranges from blue (low
probability) to red (high probability).
The margination increases with increasing Ht apart from Ht = 0.5 for the three largest
spheres. Initially the margination increases with increasing shear rate, but for high
shear rates it starts to decrease. The margination is similar for the three largest sizes
but for Dc = 0.15Dr margination is considerably reduced. All observations are in
agreement with the observations made for the margination into the RBC-FL and the
PAL in Fig. 4.3.
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C.1. Size and shape dependence of margination

Corresponding to Fig. 4.4, which shows the margination probability into the PAL for

γ̇∗ ≈ 59 for all four spheres, Fig. C.2 presents the margination probability into the PAL

for γ̇∗ ≈ 39 and γ̇∗ ≈ 84. Figure C.2 also shows a significantly reduced margination

for the smallest carrier and shows slight decreases of the margination probability for

Ht = 0.5 at γ̇∗ ≈ 84.
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Figure C.2.: Probability pPAL of margination into the potential adhesion layer (PAL) depending on
the hematocrit Ht at γ̇∗ ≈ 39 (triangles–solid curves) and γ̇∗ ≈ 84 (squares–dashed
curves). Different colours correspond to different sphere sizes: Dc = 0.3Dr (red),
Dc = 0.28Dr (orange), Dc = 0.25Dr (green), and Dc = 0.15Dr (blue).
The sphere with Dc = 0.15Dr possesses a significantly reduced margination. For
γ̇∗ ≈ 84 slight decreases of pPAL are observed for Ht = 0.5

Figure C.3 shows the carrier distribution characteristics dependent on the hematocrit

of spherical carriers similar to Figs. 4.6 (a) and (b), but for carriers with the diameters

Dc = 0.22Dr and Dc = 0.25Dr. Similar to Fig. 4.6 (a) with increasing hematocrit

the peak maximum reaches the minimum distance. However, the distance of the mean

position in the RBC-FL to the wall is for both carriers further away from the minimal

position compared to the carrier with Dc = 0.3Dr in Fig. 4.6 (b) and also further away

for the smaller carrier.

Figure C.4 shows the carrier distribution characteristics dependent on the RBC-FL

thickness of spherical carriers similar to Figs. 4.7 (a) to (d), but for carriers with the dia-

meters Dc = 0.22Dr and Dc = 0.25Dr. A similar dependence on the RBC-FL thickness,

shear rate, and carrier size of the measured properties is observed as in Figs. 4.7 (a)

to (d). Additional, it shows the mean squared displacement at Ht = 0.4 in Fig. C.4 (e)

for all carriers, where only a shear rate dependence is observed for the smallest carrier

in contrast to Fig. 4.7 (d) and Fig. C.4 (d).
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Figure C.3.: COM distribution characteristics depending on Ht. (a) Distance of the peak to the
wall, ∆MAX and (b) distance ∆〈rRBC−FL〉 of the mean position in the RBC-FL to
the wall Both quantities are normalized by the channel diameter W . Different curve
colours correspond to different sphere sizes: Dc = 0.28Dr (orange) and Dc = 0.25Dr

(green) Different curve types refer to different shear rates: γ̇∗ ≈ 39 (dashed) and
γ̇∗ ≈ 84 (solid). The coloured dotted curves indicate the particular minimum distance
to the wall Dc/2 and the black dash-dotted curve the RBC-FL thickness ∆RBC−FL for
γ̇∗ ≈ 84.
With increasing Ht the peak maximum reaches the minimum distance, similar to the
results shown in Fig. 4.6,. Furthermore, ∆〈rRBC−FL〉 is further away from the minimal
position for the smaller carrier.
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Figure C.4.: COM distribution analysis depending on the RBC-FL thickness ∆RBC−FL and shear rate
γ̇∗. (a) Distance of the peak to the wall, ∆MAX, (b) distance ∆〈rRBC−FL〉 of the mean
position in the RBC-FL to the wall, and (c) height of the peak maximum p(∆MAX).
These parameters are normalized by the channel diameter W . (d) Time t dependent
mean squared displacement MSD(t) in RBC-FL at hematocrit Ht = 0.5. (e) MSD(t)
in RBC-FL at hematocrit Ht = 0.4. The time is normalized by the RBC relaxation
time τRBC. Different curves correspond to different sphere diameters: Dc = 0.3Dr

(red), Dc = 0.28Dr (orange), Dc = 0.25Dr (green), Dc = 0.15Dr (blue). The dashed
curves refer to the shear rate γ̇∗ ≈ 39 and the solid curves to γ̇∗ ≈ 84. The black
dash-dotted curve the RBC-FL thickness ∆RBC−FL for γ̇∗ ≈ 84..
At Ht = 0.4 a deviating MSD for different shear rates is only observed for the carrier
with Dc = 0.15Dr. Hence, a change in fluctuations does not fully explain the shear
rate dependence of margination.
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Appendix C. Margination of platelets and drug-delivery carriers

Figure C.5 presents the margination probability of the ellipsoid and the disc into a

constant distance of thickness δ = 0.31Dr. Also here, a similar hematocrit and shear

rate dependence of margination is observed as in Figs. 4.8 (b) and (c).
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Figure C.5.: Margination probability into a region with constant distance δ = 0.1W = 0.31Dr

depending on the shear rate γ̇∗ and hematocrit Ht. The white squares (�) indicate
the values of Ht and γ̇∗ for which simulations have been performed. The colour code
ranges from blue (low probability) to red (high probability).
Compared to Fig. C.1 (a) the margination in the constant region is reduced for elongated
shapes, since δ is just slightly larger than the long axis radius of the considered shapes.
For high Ht the margination for the disc is higher, because a high second peak occurs,
see Fig. 4.10. The margination dependence on Ht and γ̇∗ is similar to the margination
into the two other choices of margination layer shown in Figs. 4.8 (b) and (c).

Figure C.6 presents the margination probability into the PAL for all three carriers

with the same volume (sphere, ellipsoid, and disc) for the shear rates γ̇∗ = 39 and

γ̇∗ = 84, corresponding to Fig. 4.9, which shows the margination probability for the

shear rate γ̇∗ = 59. For the highest shear rate not only the margination probability

for the ellipsoid, but also for the disc decreases for Ht = 0.5, whereas for the lowest

shear rate the margination probability for the disc is larger than for the sphere at all

hematocrit values.

Corresponding to Figs. 4.13 (a) to (c), Fig. C.7 presents the angular velocity of the

three spheres with the diameter of Dc = 0.28Dr, Dc = 0.25Dr, and Dc = 0.15 depending

on hematocrit and shear rate. The measured angular velocities agree with the theoretical

predictions by Jeffery [168].
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Figure C.6.: Probability pPAL of margination into the PAL depending on hematocrit Ht. Curve
colours correspond to the sphere with Dc = 0.3Dr (red), ellipsoid (purple), and disc
(cyan). Solid curves refer to a shear rate of γ̇∗ = 39 and dashed curves to γ̇∗ = 84.
At low Ht values elongated shapes marginate better. At high Ht the disc marginates
similar as the sphere, whereas the margination probability of the ellipsoid decreases. At
Ht = 0.5 and γ̇∗ = 84 also the margination of the disc is reduced.
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Figure C.7.: Average angular velocities 〈ψ〉 as given in Eq. (4.3) normalized by the RBC relaxation
time τRBC for the spheres with the diameters (a) Dc = 0.28Dr, (b) Dc = 0.25Dr,
and (c) Dc = 0.15. Solid curves: simulation results and dashed curves: theoretical
predictions by Jeffery [168] for the near-wall shear rate that has been estimated from
the simulation velocity profiles.
For all spheres the theoretically predicted and the measured average angular velocities
agree.
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C.2. Simulations of carriers in two-dimensional

model systems

Table C.3 presents the number of particles (vertices) per carrier and the number of

carriers per simulation for the 2D simulations for different sizes of carriers and different

channel sizes presented in Sections 4.2 and 4.3.

cell size Dc = 0.6Dr Dc = 0.3Dr Dc = 0.22Dr Dc = 0.15Dr Dc = 0.04Dr

N c
v 40 20 15 10 1

NW=20µm 4 6 20 20 100
NW=10µm / 6 / 14 /
NW=15µm / 6 / / /
NW=40µm / 12 / 30 /
NW=60µm / 27 / / /

Table C.3.: Carrier characteristics. N c
v is the number of particles (vertices) per carrier for 2D sim-

ulations and N is the number of carriers in the system depending on the channel width
W and particle size. For the ellipse N c

v and NW=20µm is similar as for the circle with
Dc = 0.3Dr .

Figure C.8 is complementary to Fig. 4.17. Here, the distance ∆MAX of the peak

maximum to the wall and the distance ∆<r> of the average COM position in the whole

channel is compared for 2D and 3D for different shear rates and for round and elongated

shapes.
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Figure C.8.: Comparison of carrier distribution characteristics in 2D and 3D. (a) Distance ∆MAX of
the peak position to the wall and (b) distance ∆<r> of the mean position in the whole
channel to the wall normalized by the channel width/diameter W for round carriers.
In 2D, the examined carrier size is D2D

c = 0.3D2D
r , while in 3D, D3D

c = 0.28D3D
r .

The considered shear rates are γ̇∗2D = 6.1 (purple) and γ̇∗ = 63.5 (red) for 2D and
γ̇∗3D = 20 (purple) and γ̇∗ = 84 (red) for 3D. (c) Distance ∆MAX of the peak position
to the wall and (d) distance ∆<r> of mean position in the whole channel to the wall
for ellipse (purple) and disc (cyan). The considered shear rates are γ̇∗2D = 6.1 (cyan)
and γ̇∗ = 63.5 (brown) for 2D and γ̇∗3D = 20 (cyan) and γ̇∗ = 84 (brown) for 3D. The
different curves correspond to 2D (solid) and 3D (dashed) simulations.
The distribution characteristics agree well in 2D and 3D. Just the disc distribution
does not possess a second peak as already shown in Fig. 4.17 and some deviations are
observed for high shear rates.
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C.3. Channel-size dependence

C.3. Channel-size dependence

Figure C.9 presents the probability of margination into the RBC-FL and the PAL for

carriers with Dc = 0.15Dr complementary to Fig. 4.28, which shows the margination

probabilities for carriers with Dc = 0.3Dr. Figure C.9 shows similar results as Fig. 4.28.

However, compared to Fig. 4.28 (a), the probability of margination into the RBC-FL

of the smallest channel differs less from the probabilities of the wider channels for the

smaller carriers as presented in Fig. C.9 (a).
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Figure C.9.: (a) Margination probability pRBC−FL into the RBC-FL and (b) margination probability
into the PAL pPAL depending on hematocrit Ht for a carrier of size Dc = 0.15Dr.
Different curve colours correspond to different channel sizes: W = 1.64Dr (red),
W = 3.28Dr (blue), and W = 6.56Dr (green). Different shear rates correspond
to different curve types: γ̇∗ = 6.1 (dot-dashed), γ̇∗ = 20.8 (solid), and γ̇∗ = 63.5
(dashed).
The results agree with the observations for carriers with Dc = 0.3Dr in Fig. 4.28.

Figure C.10 shows the distance of the peak of the COM distribution for the carriers

with Dc = 0.3Dr and Dc = 0.15Dr for different shear rates for a large channel width

W = 6.56Dr. As stated in the main text of Section 4.3.1 the peak reaches the minimal

distance of Dc/2 from the wall only for the highest hematocrit besides for the lowest

shear rate.
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Figure C.10.: Carrier peak position ∆MAX for a large channel width W = 6.56Dr for the carriers
with size Dc = 0.3Dr (a) and Dc = 0.15Dr (b) for different shear rates: γ̇∗ = 6.1
(red), γ̇∗ = 29.7 (blue), and γ̇∗ = 63.5 (green). The minimal distance Dc/2 is marked
by the black dotted line.
Except the lowest shear rate, the peak reaches the minimum position only for the
smallest RBC-FL thickness.

172



C.4. Margination mechanism

C.4. Margination mechanism

Regarding the test, if the alteration of hydrodynamic and excluded-volume interactions

between RBCs and platelets influence the RBC COM distributions, Fig. C.11 shows the

comparison of the RBC COM distribution for the cases of the original simulation, the

simulation where excluded-volume interactions are turned off, where excluded volume

interactions are turned off and the carriers are constrained to a near-wall region and for

the simulation where the hydrodynamic simulations are turned off. For all these cases

the RBC COM distribution agree well for the same shear rate and hematocrit values as

mentioned in Section 4.4.
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Figure C.11.: Comparison of RBC COM distributions depending on the distance ∆r of the COM
to the wall normalized by the channel width W , for (a) simulations with only hy-
drodynamic interactions, (b) simulations with platelets constrained to a near-wall
region with and without hydrodynamic interactions, and (c) simulations without hy-
drodynamic interactions. These examples are for a sphere with Dc = 0.28Dr at
Ht = 0.3. The force on the fluid particles is f ′ = fkBT/W
For all cases the RBC COM distributions agree well.
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Appendix D.

VWF stretching in simple shear and

blood flow

Figure D.1 shows the radius of gyration depending on the length of the polymers defined

by the number Nm of beads and the attraction between the monomers. Similar to the

2D results shown in Fig. 5.2 changing the LJ interaction is the same as changing the

quality of the solvent, see Fig. D.1 (c). For the investigated system, the ǫ = ǫ̃/kBT

that corresponds to the theta solvent is close to ǫ = 0.5, because this is when the lines

for different numbers Nm of monomers in Fig. D.1 (a) cross each other. Furthermore,

Fig. D.1 (b) shows that an increase of temperature and simultaneously increase of ǫ̃

leads to the same radius of gyration.

Figure D.2 presents the probability distribution of the bond length ∆b between neigh-

bouring monomers of a polymer chain that is tethered to the wall with one end (top)

and a chain that is additional decorated with a platelet (bottom) for all three polymer

types (a-c) scaled by the expected length of 2am. In all cases the distributions are nar-

row, thus almost no stretching of the bonds is observed and the measured extension is

indeed due to unravelling of the polymer coil.
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Figure D.1.: Measurements of the 3D average radius of gyration squared
〈

R2
g

〉

of a polymer chain.
(a)

〈

R2
g

〉

is normalized by Nma
2
m, with Nm the number of beads and am the bead

radius. It depends on the attraction strength ǫ̃ = ǫkBT . Different curves correspond
to different chain length: Nm = 30 (red), Nm = 50 (blue), Nm = 70 (green), and
Nm = 90 (purple). (b)

〈

R2
g

〉

for Nm = 30 and different temperatures T . (c) Logarithm
of
〈

R2
g

〉

depending on the number of beads compared to the expected scaling from
theory. Different curves correspond to different monomer interactions.
The radius of gyration for a repulsive polymer behaves as in a good solvent and for
increasing attraction strength the polymer coil is almost closed packed.
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Figure D.2.: Probability distribution of bond length ∆b normalized by the desired value the polymer
diameter 2am for (a) the repulsive polymer, (b) the attractive polymer with ǫ = 2, and
(c) ǫ = 4. (top) The polymers are tethered with one end to the wall and (bottom)
additionally a platelet is attached to the free end of the chain. Different curves corres-
pond to different normalized shear rates: γ̇τ = 0.0065 (red), γ̇τ = 0.065 (green), and
γ̇τ = 0.325 (cyan).
Almost no stretching of the bonds is observed and the measured extension is indeed
due to unraveling of the polymer coil.
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