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Abstract 

Soil ecosystems are of fundamental importance for global carbon (C) cycling because they 

are the largest sinks and sources of terrestrial C. Therefore a detailed understanding of C 

fluxes through soil food webs is essential to predict ecosystem responses to anthropogenic 

CO2 enrichment of the atmosphere. Because organic C is also fundamental to the fertility 

of arable soils understanding of C cycling is inevitable to develop sustainable soil 

management strategies.  

Organic C enters the soil system via two different main routs: it is constantly released by 

plant roots in form of rhizodeposits and it enters the soil as dead organic matter (detritus). 

In both pathways C is directly acquired by diverse and highly active microorganisms. 

However, the C flux through microbial food webs is largely unknown predominantly due 

to the complex nature of trophic interactions.  

This PhD thesis is focusing on the functional role of protozoa in the rhizosphere and 

detritusphere of agricultural systems. Protozoa being at the base of soil food webs are 

assumed to be key-players in controlling the C flux from bacteria to higher trophic levels. 

Nevertheless the community composition in soil is largely unknown and the ecological 

importance of different protozoan taxa is even less understood.  

One aim of this thesis was to get deeper insights to the taxonomic composition and density 

of protozoan communities in arable soils. First the microbial food web was characterized at 

different soil depth and land management regimes. Further, the succession and functional 

roles of protozoan communities in controlling the flux of C in the rhizosphere and 

detritusphere was described in great detail and at high resolution.  

This study revealed highly dynamic and complex microbial food web interactions in soil 

and confirms the key-role of protozoa for the flow of C in agricultural soils. 
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Kurzzusammenfassung 

Bodenökosysteme sind von fundamentaler Bedeutung für den weltweiten 

Kohlenstoffkreislauf. Böden gelten als größte Speicher für terrestrischen Kohlenstoff,  

setzen gleichzeitig aber auch immense Mengen an CO2 frei. Daher ist ein detailliertes 

Verständnis der Kohlenstoffflüsse durch die Bodennahrungsnetze unumgänglich um 

Ökosystemreaktionen auf anthropogene Anreicherungen der Atmosphäre mit 

Treibhausgasen vorauszusagen. Weil organischer Kohlenstoff auch für die Fruchtbarkeit 

landwirtschaftlich genutzter Böden eine wichtige Rolle spielt, wird dieses Wissen 

außerdem gebraucht, um nachhaltigere Management-Strategien für Agrarökosysteme zu 

entwickeln.  

Organische Kohlenstoffverbindungen gelangen über zwei Hauptwege in die Böden: Sie 

werden kontinuierlich von Pflanzen in Form von Rhizodepositen über die Wurzeln 

freigesetzt und abgestorbene Reste von Lebewesen werden als Detritus zersetzt. Beiden 

Wegen ist gemein, dass der Kohlenstoff direkt von diversen und hochgradig aktiven 

Mikroorganismen aufgenommen wird. Der weitere Fluss dieses Kohlenstoffs durch die 

multitrophischen Nahrungsnetze im Boden ist bis heute weitgehend ungeklärt. Bedingt 

wird dies hauptsächlich durch die komplexe Natur trophischer Interaktionen.  

Der Fokus dieser Dissertation liegt auf der funktionellen Rolle der Protozoen in der 

Rhizosphäre und Detritussphäre von Agrarökosystemen. Protozoen stellen die Basis der 

Boden-Nahrungsnetze dar und es wird angenommen, dass sie das Hauptbindeglied des 

Kohlenstoffflusses zwischen der Bakteriengemeinschaft und höheren trophischen Ebenen 

sind. Nichtsdestotrotz ist die genaue Zusammensetzung der Gemeinschaften dieser 

diversen Organismengruppe im Boden weitgehend unbekannt und die ökologische 

Bedeutung einzelner Protozoentaxa ist sogar noch weniger verstanden. 

Ein Ziel der vorliegenden Arbeit war es neue Einblicke in die taxonomische 

Zusammensetzung und Populationsdichten von Protozoengemeinschaften in 

Agrarökosystemen zu gewinnen. Als erstes wurde das mikrobielle Nahrungsnetz in 

verschiedenen Bodentiefen und unter unterschiedlichen Managementbedingungen 

charakterisiert. Anschließend wurden die Sukzession und die funktionellen Rollen der 

Protozoengemeinschaften in der Kontrolle von pflanzenbürtigem bzw. von 

detritusbürtigem Kohlenstoff detailliert und in hoher Auflösung betrachtet.  
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Diese Dissertation deckt die hochgradig dynamischen und komplexen mikrobiellen 

Nahrungsnetz-Interaktionen im Boden auf und unterstreicht die Schlüsselrolle der 

Protozoen für den Kohlenstofffluss in landwirtschaftlich genutzten Böden. 
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General Introduction 

 

Carbon flow and microbial food webs in the soil 

The flow of carbon (C) within ecosystems is a major area of interest in ecology (Cheng and 

Gershenson 2007). Recently C cycling belowground is increasingly recognized as one of 

the most significant components of the global C cycle (Cheng and Gershenson 2007, Zak 

and Pregitzer 1998). Soils host the largest terrestrial C pool throughout the entire soil 

profile (Lorenz and Lal 2005), second only to that of the ocean (Stockmann et al. 2013). 

Agricultural systems represent the major form of land management, covering about 5 

billion ha of the global terrestrial land area (Drinkwater and Snapp 2011). Conversions of 

natural soils into arable fields are often followed by soil erosion and degradation of organic 

C pools (Lal 2004) which fundamentally reduces the fertility of arable soils. An 

understanding of C cycling in these particular systems is inevitable to develop sustainable 

soil management strategies. Yet the amount and composition of global soil C stock remains 

very uncertain (Scholes et al. 2009) and large parts of the distribution and sequestration of 

C within the soil is still a black-box for scientists.  

When organic C enters the soil system it is directly acquired by microorganisms. The 

abundance and diversity of soil microbiota represents the greatest reservoir of biological 

diversity world-wide (Berendsen et al. 2012, Lopez-Guerrero et al. 2013, Curtis et al. 

2002, Buee et al. 2009, Gams et al. 2007). Soil microbiota form multitrophic food webs 

which are central to different biogeochemical cycles (Gessner et al. 2010, Nielsen et al. 

2011), especially to the C cycle as 85-90% of CO2 leaving the soil is produced by 

microorganisms (Blagodatskaya 2014) 

Nevertheless, the flux of C through these microbial food webs and the role of different 

biota are still largely unidentified and the general relationship between soil biodiversity 

and ecosystem functioning remains largely unknown (Bradford et al. 2014). Especially for 

deeper soil layers the contribution of microorganisms to C dynamics has yet received very 

little attention (Kramer et al. 2013, Rumpel and Kögel-Knaber 2011), even though it is 

estimated that over 50% of the global organic C pools in soil are found below 30cm depth 

(Jobbagy and Jackson 2000).  

Most organic matter enters the soil in the decomposer pathway (Cebrian 2004). During 

decomposition plant and animal residues are initially broken down into small particles of 
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largely intact material which is then repeatedly recycled by the soil microbial community 

(Stockmann et al. 2013). This decomposing organic material is referred to as detritus. It is 

estimated that 80-90% of plant primary production enters the soil system as detritus 

(Bardgett 2005).  

For a long time it was assumed that detritus was the sole source of C driving the 

decomposer pathway but there is also a second C route into belowground food webs: 

Rhizodeposition. Rhizodeposition accounts for 5–33% of daily photoassimilates (Jones et 

al. 2009) and was first defined by Whipps and Lynch (1985) as all material lost from plant 

roots. Rhizodesposits fall into two categories: those that are passively released by diffusion 

and those that have functional significance and at least some degree of regulation of their 

exudation by plant roots (Bonkowski and Clarholm 2012, Jones et al. 2004; Paterson et al. 

2007). The rhizosphere, the thin soil layer directly attached to the root, is characterized by 

large fluxes of nutrients (rhizodeposition) and by high niche diversity (Bardgett 2005). 

Rhizosphere hosts a rich microbial community with significantly higher rates of 

metabolism and microbial biomass relative to bulk soil (Griffith 1990, Alphei et al. 1996, 

Bonkowski and Clarholm 2012). Several studies (e.g. Polierer et al. 2007, Albers 2006) 

indicate a significant role of root derived C in driving the soil food webs. Pollierer et al. 

(2007) for example found that most soil animal taxa predominantly took up root derived C 

instead of leaf litter C. This is in contrast to the, until then, common assumption that leaf 

litter serves as the major source of C for the soil community.  

Parallel to the discrimination between rhizosphere and detritusphere the nutrient flow into 

soil food webs is classically divided into two separate energy channels: the bacterial 

energy channel where about 30% of plant derived C is metabolized in form of easily 

degradable substrates (e.g. Holtkamp et al. 2011, Moore et al. 2005, Jones 1998) and the 

fungal energy channel in charge of the degradation of recalcitrant organic materials 

favored by a wide C to N ratio (e.g. De Boer et al. 2005, Frankland 1998, Dilly et al. 

2001). It is assumed that the fast bacterial energy channel dominates the utilization of 

rhizodeposits and the early stages of detritus decomposition while the much slower fungal 

energy channel is most important in the second half of detritus decomposition. Despite the 

role of soil organisms in decomposing organic matter their community structure and 

diversity is rarely included explicitly in models of C cycling (Nielsen et al. 2010). 
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Protozoa in soil 

A significant part of the soil microbial community is top-down controlled by protozoan 

grazers. Protozoa are heterotrophic, unicellular eukaryotes with rapid turnover and high 

abundances in soil. Finlay et al. (2000) for example, recorded 365 protozoan species with 

average potential numbers of 46,400 flagellates, 17,700 naked amoebae, 11,000 testate 

amoebae and 4300 ciliates in 1g of arable field soil. Protozoa are globally distributed and 

inhabit all kinds of aquatic and terrestrial habitats (e.g. Ekelund and Rønn 1994, Finlay et 

al. 2000). Especially in terrestrial systems most protozoa have the ability to form drought 

resistant resting cysts to survive harsh environmental conditions (e.g. Rivera et al. 1992). 

However, we have only scarce knowledge of the diversity of soil protozoa, their specific 

functional roles and there distribution along the soil profile.  

Despite their small size protozoa are the major consumers of bacteria in soil. They are at 

the base of the heterotrophic soil food webs, supposed to control the C flux up to higher 

trophic levels, predominantly in the bacterial energy channel (Ekelund and Rønn 1994, 

Bonkowski 2004). Especially in the rhizosphere, where protozoan densities are up to 35 

times higher than in bulk soil, bacteria are strongly top-down controlled by protozoa 

(Clarholm 1994, Bonkowski 2004). Protozoan grazing is known to keep bacteria in a more 

active state by promoting nutrient recycling and microbial turnover, thereby stimulating C 

cycling through the soil food webs (Alphei et al. 1996, Bonkowski et al. 2000, Bonkowski 

2004). Grazing induced changes in microbial community composition affect fundamental 

ecosystem properties because soil bacteria occupy some of the most important control 

points for nutrient cycling and plant growth (Rosenberg et al. 2009, Krome et al. 2009, 

Bonkowski and Brandt 2002). Nevertheless there is only scarce information about the 

exact structure of microbial soil food webs in the rhizosphere and detritusphere in general 

and the position and role of protozoa in particular.   

Although protozoa are taxonomically very diverse and originate from many different phyla 

(Adl et al. 2005) they are traditionally parted into three principal “functional groups”: 

Ciliates, flagellates and amoebae (amoebae are sometimes further distinguished into testate 

and naked amoebae; Darbyshire 1994) but only ciliates form a monophyletic group (Adl et 

al. 2012). In terms of feeding behaviour protozoa are also very diverse. Even though they 

are almost exclusively described as bacterial feeders in soil food web models (e.g. Hunt et 

al. 1987, De Ruiter et al. 1995) they in fact utilize different food sources. Some are 

omnivorous (Geisen 2014, Hess et al. 2012), others are strictly mycophagous (Geisen et al. 

in prep.) or saprophagous (Couteaux and Darbyshire 1998). The tremendous species 
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richness of soil protozoa has led to the assumption that functional redundancy is great 

among them and they are often even treated as a homogenous functional guild. On the 

other hand it is indicated, that protozoa feed selectively but there is a lack of clear evidence 

if functional differences exist between species with regard to C cycling (Nielsen et al. 

2010). However, there is an urgent need for more detailed studies on the mechanisms of 

protozoan predation (Bonkowski and Clarholm 2012). Because of the lack of reliable data 

with high taxonomic resolution, protozoa are underrepresented in comparative food web 

studies (Brose and Scheu 2014, Kefi et al. 2012, Thomson et al. 2012).  

 

Methods 

The complex nature of trophic interactions, especially at the small scale, and the 

tremendous species richness of soil microbes are a challenge when investigating microbial 

soil food web interactions. For a long time protozoan communities were only addressed 

with direct counting methods or cultivation approaches. Both are very laborious and 

require a high taxonomic expertise. However, many protozoa cannot be directly extracted 

from soil and each protozoan group needs specific observation conditions (Finlay et al. 

2000, Ekelund and Rønn 1994). Additionally most soil protozoa form resting cysts, so 

abundances determined by cultivation techniques are not really able to separate active and 

inactive protozoan communities. In order to standardize the variety of methods Finlay and 

co-workers developed a protocol combining and expanding earlier methods to quantify and 

identify protozoan morphotypes in soil (Finlay et al. 2000) which is applied in this thesis.  

Molecular tools like high throughput sequencing deliver a high taxonomical resolution. 

Nevertheless these techniques need reference databases and information about morphology 

from direct observation, making cultivation based approaches indispensable. An additional 

drawback of molecular techniques is the lack of specific molecular genetic markers for 

species of several protozoan taxa. 

For the analysis of microbial soil food webs and major energy pathways the application of 

13
C Stable Isotope Probing (SIP) has opened a window to understanding. The analysis of 

incorporation of diverse energy rich compounds into different trophic levels in the 

microbial soil food web gives new information about the general utilization of these 

substrates. Combined with high throughput sequencing it enables the identification of 

trophic food web structure of the active microbial community in high taxonomic resolution 

and allows us to identify important protozoan taxa in the rhizosphere and detritusphere. 
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Aims and structure of the thesis 

The overall goal of this PhD thesis is to understand the flux of C through the highly 

dynamic and diverse microbial food webs in arable soil. Special emphasis is placed on the 

functional role of protozoan communities as critical links for the C transfer from bacteria 

to higher trophic levels. In order to shed a light on abundances, diversity, feeding behavior 

and ecological function of protozoa in high resolution a variety of different methods was 

applied and field studies as well as different laboratory experiments were conducted. 

 

Chapter I: The first chapter investigates the effects of resource availability and quality on 

the structure of the soil microbial food web. Abundances and community composition of 

bacteria, fungi, protozoa and nematodes were investigated across a depth gradient of an 

arable field soil (plough layer, rooted soil below plough horizon and deeper root free soil) 

planted with maize and wheat and displaying different management strategies. A 

cultivation approach after Finlay et al. (2000) was used to determine and quantify the 

diversity of soil protozoan morphotypes.  

Chapter II: In the second chapter links in the microbial food webs of maize (Zea mays) 

rhizosphere and bulk soil were addressed by rRNA-SIP in tandem with next generation 

sequencing. The succession of root derived C through bacterial, fungal and protist 

consumer communities and their protozoan grazers on the next trophic level were assessed 

in high resolution. In this laboratory experiment temporal dynamics were analyzed, as well 

as C transfer from the plant into rhizosphere and bulk soil. 

Chapter III: After addressing the microbial food webs in the rhizosphere in chapter II, 

chapter III describes the resource partitioning between bacteria, fungi and protists in the 

detritusphere. Again rRNA-SIP and next generation sequencing were used, this time to 

identify key-players in the decomposition of four different 
13

C labeld C sources.  

Chapter IV: The last chapter aimed at the effects of protozoan identity and species 

richness on the community composition and mineralization capacity of a microbial 

decomposer community. In two laboratory experiments the microbial decomposition of 

maize litter in presence of different protozoan grazer communities was followed over time. 

Additionally we tested whether the most abundant morphotypes of soil protozoa form 

distinguished functional groups. 
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Chapter I: Effects of resource availability and quality on 

the structure of the micro-food web of an arable soil 

across depth
∗∗∗∗ 

 

 

 

Abstract 

Soil food webs are important determinants for the C flow through terrestrial systems, with 

the trophic networks between microbes and microfaunal grazers forming the basis for 

processing plant resources. At an agricultural field site cropped with maize or wheat, plant 

C input to soil was experimentally manipulated by amendment with maize litter as detritus. 

The community structure of dominant micro-food web components, the bacteria, fungi, 

protozoa and nematodes, was investigated across a depth gradient comprising plough layer, 

rooted soil below plough horizon, and deeper root free soil. The community composition 

and diversity within micro-food webs, and the response to resource supply, were assessed 

in summer, the vegetation period with highest root exudation. In the plough layer 

amendment with plant residues increased microbial biomass as well as density of fan 

shaped amoeba morphotypes and of bacterial- and fungal-feeding nematodes. Diversity of 

food web assemblages was assessed by operational taxonomic units (OTU) for bacteria and 

fungi, protozoan morphotypes and nematode families. Changes in diversity were either not 

apparent (fungi, protozoa), negatively related to detritus enrichment (bacteria) or positively 

linked to crop plant (bacteria, nematodes). Based on the nematode faunal analysis concept 

general food web conditions were assigned as nutrient enriched, with a high degree of 

disturbance, and a dominance of the bacterial energy channel. In sum, detritus amendment 

fostered the abundance but not the diversity of organisms as food webs remained bottom 

heavy with only small amounts of C conserved at higher trophic levels. Food web structure 

was more affected by the abiotic (soil profile) and biotic (crop plant) environment than by 

the supply with detritus resources. 

 

                                                           

∗
 for information about Co-authorships see page 154 
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Introduction 

Soils harbour an enormous diversity of organisms in multitrophic food webs that are 

central to biogeochemical cycles (Gessner et al. 2010, Nielsen et al. 2011). Soil 

invertebrates almost uniformly are omnivorous and the number of feeding links between 

species is extraordinarily high, particularly in the rhizosphere (Scheu 2002, Scheu and 

Setälä 2002). These trophic networks are based on the availability and quality of organic C 

compounds that enter the soil. Two main plant dependant bottom-up factors control this 

input, detritus e.g. slow decomposable plant material and rhizodeposits as readily available 

C resource. It is generally assumed that easy degradable substrates are predominantly 

metabolised in the bacterial energy channel and about 30% of plant derived C enters the 

food web this way (Moore et al. 2005, Holtkamp et al. 2011). In contrast, the fungal energy 

channel is favoured by a wide C/N ratio where recalcitrant materials predominate 

(Frankland 1998, Dilly et al. 2001). Therewith plants provide energy resources of different 

complexity and accessibility to the soil food web (Ruess and Ferris 2004, Scheu et al. 

2005). 

The microbial environment in the rhizosphere as well as the activity and composition of 

the microflora in the surrounding soil are distinctly structured by a diverse soil fauna 

(Scheu and Setälä 2002, Ruess and Lussenhop 2006, Bonkowski et al. 2009). Grazing by 

the microfauna enhances mineralization processes in soils and liberates nutrients bound in 

microbial biomass for plant uptake (Chen and Ferris 1999, Bonkowski et al. 2000). In 

particular in the rhizosphere bacteria are strongly top-down regulated via grazing by 

protozoa (Clarholm 1994, Bonkowski 2004). Also, nematodes as most abundant and 

diverse soil metazoa play a significant role in regulating the composition of the microflora, 

detritus decomposition rates and element cycles (Bardgett et al. 1999, Ferris 2010, Neher 

2010).  

The majority of soil organisms are concentrated in the uppermost soil horizons, suggesting 

that the complexity of decomposer food webs is reduced at deeper layers. For bacteria and 

fungi strong decline in biomass and changes in community structure were reported across 

depth transects (Fierer et al. 2003, Schütz et al. 2009). This vertical distribution of the soil 

microflora as basis of the faunal food web is reflected by a decline in biomass and diversity 

of soil animals with depth, most pronounced among the meso- and macrofauna (Sadaka 

and Ponge 2003). This suggests protozoa and nematodes to build the dominant food web 

constituents in deeper soil. These modifications in horizontal (i.e. within a trophic level) 
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and vertical (i.e. across trophic levels) diversity along soil depth likely have major 

implications for C mineralization and sequestration (Gessner et al. 2010).  

The present study, for the first time, systematically elaborates the effects of resource inputs 

on communities of all relevant constituents of the soil micro-food web across a depth 

transect in an arable soil. Quality and availability of plant resources were manipulated by 

the following treatments: fodder maize, corn maize, wheat and wheat plus maize litter. 

Fodder maize, where aboveground plant parts are removed at harvest, mainly supplies 

belowground C sources, whereas corn maize in addition adds aboveground litter to the soil. 

Plant detritus predominantly consist of complex, recalcitrant C compounds, such as 

cellulose and lignin, whereas rhizodeposits comprise labile C substrates, such as sugars, 

carboxylic and amino acids. Therefore, compared to fodder maize, corn maize is expected 

to strengthen the fungal energy channel. 

The communities of bacteria, fungi, protozoa and nematodes were investigated at 0-10 cm 

(plough layer), 40-50 cm (rooted zone below plough layer) and 60-70 cm depth (root free 

soil) in summer (July), the season with the highest root exudation. Amendment with plant 

residues is expected to trigger bottom-up effects on bacteria and fungi, which in turn 

propagates to higher trophic levels of the food web. We hypothesise that organism 

assemblages associated with the organic layer of the soil surface exploit amended 

resources most, whereas those deeper in the soil are more separated from such processes. 

The overall effect of resource supply will be a function of the changes in horizontal and 

vertical diversity within food web guilds along the depth transect.  

 

 

 

Materials and Methods 

 

Field site and agricultural management  

The experimental site was established in 2009 at an arable field located at Holtensen 

(51
o
33´N, 9

o
53´O; 158m NN) near Göttingen in Lower Saxony, Germany. The area has a 

temperate climate, with mean annual precipitation and air temperature of 720 mm and 

7.9°C, respectively. The dominant soil type is Luvisol, partly with stagnic properties 

(IUSS, 2007). Due to the long-term agricultural use two plough layers at 0.2 and 0.3 m 

depth, and a strong soil compaction, particularly below the second plough layer, occur at 
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the field. The average depth of the A horizon is 34 ± 6.4 cm (for more details see Kramer 

et al. 2012). 

Since 2009 the field is cropped with maize (Zea mays L.) and wheat (Triticum aestivum L.) 

in a stripe design of two rows. In the first vegetation period the crop was winter wheat 

(“Julius”, sown at 224 kg ha
-1

) and maize (“Ronaldinio” sown at 34 kg ha
-1

). In the second 

year corn was a hybrid maize (“Fernandez” sown at 26 kg ha
-1

) and cereal was changed to 

summer wheat (“Melon” sown at 224 kg ha
-1

) to align vegetation periods between maize 

and wheat during growing season. Fertilisation practice at maize plots was ammonium 

nitrate as urea solution (2009: 122 kg N ha
-1

; 2010: 79 kg N ha
-1

) and diammonium 

phosphate (2009/2010: 32 kg N ha
-1

, 83 kg P ha
-1

) added shortly before and after seeding. 

Wheat received granular SN fertilizer (21 kg N ha
-1

, 24 kg S ha
-1

) in March and urea 

solution was added in April, Mai and June with rates of 40 to 61 kg N ha
-1

 per application 

(for details see Kramer et al. 2012). 

 

Experimental design and soil sampling 

The study was set up to manipulate resource availability and quality for the micro-food 

web under two different crop plants. The factorial design included four treatments: fodder 

maize (FM), corn maize (CM), wheat (W) and wheat + litter (WL), each with five 

replicates. To allow feasible agricultural management wheat and maize were arranged in a 

stripe design of two rows comprising 10 experimental plots of 24 x 24 m each. With fodder 

maize aboveground plant parts are entirely moved, whereas with corn maize, only corn 

cobs are harvested and plant detritus remains on the field. To establish CM and WL maize 

shoots (without cobs) were hackled and applied (0.8 kg m
-2

 dry weight equivalent to 0.35 

kg C m
-2

; C:N ratio 16.8) on half of the harvested maize and wheat plots each autumn. The 

FM and W plots did not receive additional detritus.  

In July 2010 at each plot 10 replicate samples were taken randomly with a soil corer (diam. 

2.5 cm) to a depth of 70 cm. Soil cores were split into 10 cm layers, equal soil layers were 

thoroughly mixed and subsamples were taken for analyses of bacteria, fungi, protozoa and 

nematodes. Four replicate plots of each treatment were sampled, except for investigation of 

the bacterial community with three replicates. Protozoa were assessed for maize plots only. 

Three soil horizons were investigated: i) plough layer, 0-10 cm, ii) rooted zone below 

plough horizon, 40-50 cm, and iii) deep root free soil, 60-70 cm. Soil samples for 

investigation of bacterial and fungal communities were frozen and stored at -20°C, 
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whereas samples for analyses of the microfauna were stored at 4°C (protozoa) and 8°C 

(nematodes) until animal extraction at the next day. 

 

Microbial biomass 

Microbial biomass was estimated by the amount of soil phospholipid fatty acids (PLFAs). 

For this 2 x 4 g soil fresh weight of each plot were extracted following the procedure 

described by Frostegård et al. (1993). Briefly, lipids were extracted with Bligh and Dyer 

(chloroform, methanol, citrate buffer (pH 4); 1:2:0.8) as solvent, fractionated via silica acid 

columns and the PLFA fraction subjected to alkalic methanolysis, with 

methylnondecanoate (19:0) as internal standard. The fatty acid methyl esters (FAMEs) 

were identified by retention time comparison using a gas chromatography (GC) Auto 

System XL (Perkin Elmer Corporation, St. Louis, Norwalk, USA) equipped with a HP-5 

capillary column (50 m x 0.2 mm i.d., film thickness 0.33 µm). To verify correct 

identification of FAMEs a range of soil samples were analysed by GC-MS with a HP 5890 

series II coupled with a 5972 mass selective detector and equipped with a DB-5MS 

capillary column (30 m x 0.25 mm i.d., film thickness 0.2 µm). For more details see Poll et 

al. (2007). 

The following PLFAs were summed up to estimate bacterial biomass: i15:0, a15:0, i16:0, 

16:1ω7, i17:0, cy17:0, cy19:0 (Frostegård et al., 1993; Zelles, 1999). The PLFAs i15:0, 

a15:0, i16:0 and i17:0 are indicative for Gram-positive, and cy17:0 and cy19:0 for Gram-

negative bacteria. The PLFA 18:2ω 6,9 was used as marker for fungal biomass.  

 

Bacterial community 

Total DNA was extracted from triplicate frozen soil samples following a previously 

described procedure (Lueders et al. 2004) with minor modifications: 0.4 g fresh weight of 

soil was subjected to bead beating in extraction buffer, subsequent organic extraction and 

DNA precipitation. All centrifugation steps occurred at 15,000 g at 4 °C for 5 min. The 

extract was dissolved in 80 µl EB buffer (Qiagen GmbH, Hilden, Germany). To reduce 

humic acid contamination, DNA extracts were purified by silica matrix gel filtration in 

DyeEx 2.0 spin columns (Qiagen GmbH, Hilden, Germany).  

Bacterial communities in soil samples were analysed by 16S rRNA gene-targeted terminal 

restriction fragment length polymorphism (T-RFLP) fingerprinting with primers Ba27f-
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FAM/907r and subsequent MspI digestion as described previously (Pilloni et al. 2011). 

Prior to the PCR the DNA from the samples of 0-10 cm depth were one hundred-fold 

diluted, the others ten-fold. All T-RFLP fingerprints were performed for triplicate DNA 

extracts for each treatment and depth. Bacterial T-RFLP data was analysed with the T-

REX online T-RF analysis software (Culman et al. 2009). Background noise filtering was 

on default factor 1 for peak heights and the clustering threshold for aligning peaks across 

the samples was set to 1 using the default alignment method of T-Align (Smith et al. 2005). 

Relative T-RF abundance was inferred from peak heights. For reduction of data 

complexity, T-RFs that occurred in less than 5 % of the samples were excluded from 

further analysis. The general reproducibility of fingerprints was high. For the entire 

triplicate fingerprinting dataset, the mean T-RF abundance was 1.2% with a SD of ± 0.4%. 

Maximum SD was ± 4.8% for a T-RF of 9.9% relative abundance. 

 

Fungal community 

The total community DNA from 0.5 g bulk soil of each sample was isolated using the 

PowerSoil
®

 DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to the 

manufacturer’s protocol with the following modifications: all incubation steps were done 

at -20°C and DNA was eluted in 80µl elution buffer. Fungal ARISA PCR (Ranjard et al. 

2001) of each DNA extract was done in two replicates using a FAM (6-carboxy-

fluorescine) -labelled variant of primer ITS1F (Gardes and Bruns 1993) and unlabelled 

ITS4 (White et al. 1990) in 30 µl reaction mixtures containing 6 µl FIREPol 5x Master 

Mix (Solis BioDyne, Tartu, Estonia), 15 µM of each primer and 1 µl template DNA. PCR 

was performed with an initial denaturation step at 95°C for 5 min followed by 35 cycles at 

95°C for 40s, 54°C for 30s and 72°C for 75 s. Elongation was completed with a final step 

of 72°C for 10 min. PCR products were purified using the E.Z.N.A.® Cycle-Pure Kit 

(Omega Bio-Tek, Inc., Norcross, GA, USA). Ten ng of each purified PCR product were 

dissolved in 14 µl of deionized Hi-Di formamide (Applied Biosystems, Foster City, CA, 

USA) with 0.1 µl of internal size standard MapMarker 1000 ROX™ (BioVentures, Inc., 

Murfreesboro, TN, USA). After denaturation for 5 min at 95°C samples were chilled on ice 

for at least 10 min. Length heterogeneity of fungal ITS fragments was detected by capillary 

electrophoresis (ABI 3730xl, Applied Biosystems) with the following conditions: injection 

at 1.6 kV and separation at 15 kV for 1 h. Row profiles were analysed using Gene Mapper 

software 4.0 (Applied Biosystems). All peaks above a threshold of 100 fluorescence units 
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present in both technical replicates were kept for further analyses. OTU binning was 

performed with a binning script (Ramette 2009) using R resulting in a window size of 2 bp. 

 

Protozoa 

The abundance and morphotype diversity of major protozoan groups (flagellates, naked 

amoebae, ciliates and testate amoebae) was determined according to the protocol of Finlay 

et al. (2000). This method sets the focus on active protozoa at water-saturated soil 

conditions. From each sample three subsamples of 5 g air dried soil were re-wetted with 3 

ml filtered rain water (pore size 0.22 µm), incubated at 15°C in the dark and naked 

amoebae and flagellates were assessed after 29 days. For the classification of flagellates 

the key of Jeuck and Arndt (2013) was used. 

Subsamples of 1 g soil were diluted in 10 ml Neff’s Modified Amoebae Saline (NMAS; 

Page 1976) each and gently mixed on a shaker for 20 min. After sedimentation 1 ml of 

supernatant again was diluted with 9 ml NMAS and 10 µl transferred into wells of two 24-

well multiwell plates containing 2 ml NMAS and one sterilized amaranth seed as nutrient 

source. The plates were incubated at 15°C in the dark. After 14 and 35 days the wells were 

examined for presence of protozoa using an inverted light microscope (Nikon Eclipse 

TS100). Ciliates were investigated after 4 days of soil incubation with filtered rain water. 

To subsamples of 1 g of soil 1 ml of filtered rain water was added and two hours later 50 

µl of the soil suspension were examined in a Sedgewick-Rafter counting chamber. A 

second investigation was performed after 10 days. After 6 weeks of soil incubation, the soil 

samples were analysed for the presence of testate amoebae. 

 

Nematodes 

From each replicate plot soil subsamples (50-80 g fresh weight) were extracted with a 

modified Baermann method according to Ruess (1995). Extraction started at room 

temperature (18°C) for 24 h. Then, temperature was hourly increased by 5°C starting with 

20°C and ending at 45°C. Nematodes were fixed in cold 4% formaldehyde solution and 

total numbers of were estimated by light microscopy. Of the counted individuals 10% were 

determined mainly to genus level and assigned to feeding groups according to Yeates et al. 

(1993). Nematodes life strategy was ascribed to colonizers (c) and persisters (p) that are 

extremes on a scale from 1 to 5, respectively (Bongers 1990). 
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Community and food web indices 

The Shannon-Wiener diversity index H´ (Pielou 1971) was calculated for operational 

taxonomic units (OTUs) derived from bacterial and fungal fingerprints as well as for 

protozoa morphotypes and nematode families using the following equation: 

H´= -Σ (pi ln pi)   

with pi  the proportion of i-th OTU or taxon/morphotype in a sample. 

Nematode faunal analysis was performed without the dauerlarvae (non-active stage) of 

Rhabditidae. The Enrichment (EI), Structure (SI) and Channel Index (CI) were calculated 

according to Ferris at al. (2001). Distinctive feature is the enrichment weighting of 

nematode functional guilds. The following equations were used:  

EI = 100 * e / (e + b); SI = 100 * s / (s + b) and CI = 100 * (0.8 Fu2 / (3.2Ba1 + 0.8Fu2)  

with e the enrichment, b the basal, and s the structure component. Fu2 represents fungal 

feeders with c-p-classification 2, Ba1 bacterial feeders with c-p-classification 1. 

 

Statistical analysis 

The effects of resource amendment, crop plant and soil depth on density and community 

structure (i.e. taxa, indices) of bacteria, fungi and microfauna were analysed by ANOVA. 

As soil depth was significant for many protozoa and almost all nematode taxa the factors 

detritus and crop were set as fixed for these data sets. If significant differences were 

assigned, Tukey's Honestly Significant Difference (HSD) test was used for comparisons of 

means. Analysis was performed using STATISTICA 9.0 for Windows (StatSoft, 

Hamburg). 

Multivariate regression trees (MRT) were applied to describe relationships between OTUs 

of bacterial and fungal fingerprint data with the variables detritus, crop and depth. MRT 

forms clusters of plots by repeated splitting of the data (de`Ath 2002). Data (relative 

proportions) were arcsin square root transformed before analysis and Euclidean distances 

used for splitting. The structure of the data was visualized by principal components 

analysis (PCA) biplots of the group means from the tree analysis. Finally, the intersect 

correlation was calculated for each axis using the scores of the group means and the scores 

of the observed values. Axes with a high intersect correlation (typically > 0.8) account 



Chapter I 

26 
 

substantially for between group variance. MRT and PCA analysis was performed using the 

mvpart package (version 1.4-0) in R (version 2.11.1, R development Core Team, 2006). 

 

 

 

Results 

 

Microbial biomass  

Microbial biomass estimated as total amount of PLFAs decreased strongly with depth 

(Table 1). This decline was more pronounced for bacteria than for fungi. Generally, gram-

positive bacteria were the dominant group across treatments and depths. In the plough 

layer the total microbial biomass as well as that of bacteria and fungi was affected by both 

crop plant and detritus treatment. Values were low under fodder maize (FM), intermediate 

under corn maize (CM) and high under wheat with (WL) or without detritus (W) (total 

PLFAs: Crop: F1,12 = 14.13, p = 0.003, Detritus: F1,12 = 5.92, p = 0.03; gram positive 

PLFAs: Crop: F1,12 = 11.26, p = 0.05; gram negative PLFAs: Crop: F1,12 = 13.40, p = 0.003, 

Detritus: F1,12 = 6.59, p = 0.02; fungal PLFA: Crop: F1,12 = 6.28, p = 0.03, Detritus: F1,12 = 

6.78, p = 0.02). Addition of detritus did not affect microbial biomass in the soil layers 

below the plough sole. Compared to wheat, maize resulted in a higher microbial biomass, 

predominantly in gram positive bacteria (F1,12 = 8.05, p = 0.015) in 40-50cm depth, but the 

crop effect diminished in the root free zone in 60-70 cm. 

 

Microbial community structure 

Based on OTUs multivariate regression distinctly separated bacterial communities in the 

plough layer from those in deeper soil (Fig. 1a). Only on the tertiary grouping level, 

bacterial communities at wheat plots were discriminated between 50 and 70 cm depth. 

Within soil layers crop plant was the dominant factor for separation, whereas detritus 

amendment was of minor importance. The first dimension of the PCA explained almost 

64% of the total community variation, mainly separating the plough layer from deeper 

layers (Fig. 1b). The second dimension (21% of variation) was defined mostly by crop 
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plant. The relative abundance of the OTUs with 490, 146 and 135 bp increased with depth, 

whereas the 117, 288 and 133 bp fragments were more typical for the soil in the plough 

layer. For crop plants, the 119 and 142 bp peaks were more abundant under wheat, and the 

OTUs of 397, 533 and 447 bp under maize, respectively.  

 

Fig. 1a: Multivariate regression tree on bacterial and fungal community composition 

estimated by fingerprints.  

 

Fig. 1b: Principal component analysis for the group means of the multivariate regression 

tree in Fig. 1a. The large dots represent the multivariate group means, the individual plots 

are denoted by small dots, with matching colors to Fig. 1a. Each OTU label is located at its 

weighted mean from the group means. Intersect correlation is given in brackets. 

 

Investigated are plots cropped with either fodder (FM) or corn (CM) maize and wheat 

without (W) or with maize detritus (WL) in 0–10, 40-50, and 60-70cm depth. Eucledian 

distance was used for splitting; barplots show the multivariate OTU means. 

 



 

 

 

Table 1: Biomass of microorganisms and of dominant groups (gram positive/negative bacteria, fungi) determined by phospholipid fatty acids 

(PLFA in nmol g
-1

 DW soil ± SD). Investigated are plots cropped with either fodder (FM) or corn (CM) maize and wheat without (W) or with maize 

litter (WL) in 0–10, 40-50, and 60-70cm depth. ANOVA with *, **, *** at p < 0.05, 0.01, 0.001. Values within a soil depth with the same or no 

letters are not significantly different according to Tukey at p < 0.05. C – crop, L – litter (detritus).  

 

 
0-10cm 40-50cm 60-70cm 

 W WL FM CM ANOVA W WL FM CM ANOVA W WL FM CM ANOVA 

PLFA 
total 

34.2±2.5a 35.1±3a 27.7±1.7b 32.6±2.1ab C**,L* 6.3±1.5 6.2±1.9 7.8±1.2 10±1.1 C* 3.6±0.5 3.1±0.6 3.5±0.4 4.3±1.5  

Fungi 1.2±0.2ab 1.4±0.3a 0.8±0.1b 1.2±0.4ab C*,L* 0.2±0.01 0.2±0.04 0.2±0.04 0.2±0.03  0.2±0.1 0.2±0.1 0.13±0.02 0.2±0.03  

Gram+ 9.1±0.8a 9.2±0.6a 7.6±0.4b 8.7±0.5ab C** 1.8±0.4 1.7±0.5 2.2±0.4 2.5±0.3 C* 0.8±0.1 0.7±0.1 0.8±0.1 1±0.3  

Gram- 1.8±0.1a 1.9±0.2a 1.4±0.02b 1.7±0.1ab C**.L* 0.4±0.1 0.4±0.1 0.4±0.1 0.5±0.1  0.2±0.02 0.2±0.1 0.2±0.03 0.2±0.1  
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From the soil samples 132 ARISA-OTUs were retained, which distinctly separated plough 

layer communities from those in deeper soil layers by MRT (Fig. 1a). Only on the tertiary 

grouping level, fungal communities at maize plots differed between 50 and 70 cm depth. 

Additionally, in the plough layer FM was discriminated from all other treatments, whereas 

in deeper soil crop was the dominant factor for separation. The first two dimensions of the 

PCA (Fig. 1b) accounted for 85% of the variance in the dataset. The presence of the OTU 

with 685 bp was most apparent in the plough layer. The OTU with 603 bp was dominant in 

the fungal communities at CM, W, and WL but almost lacking at FM plots. Fungal 

communities in both deeper layers strongly correlated with the peak at 559 bp, while that at 

639 bp were detected predominantly in communities under wheat and that at 589 bp under 

maize.  

 

Protozoa 

The protozoan community comprised naked amoeba, ciliates and flagellates but no testate 

amoebae (Fig. 2). Average numbers of 14,700 flagellates, 2,800 naked amoebae and 4,100 

ciliates g
-1

 dry weight soil were found in the plough layer. Flagellates and ciliates reached 

maximum numbers in upper soil layers, whereas naked amoebae where most abundant in 

the root-free soil at 60-70 cm. Effects of detritus amendment on density were only apparent 

for amoebae with twice the numbers at CM compared to FM plots in 40-50 cm depth.  

 

 

Fig. 2: Population density of protozoa (Ind. g
-1 

DW ± SD) at plots cropped with either 

fodder or corn maize in 0–10, 40-50, and 60-70cm depth. L – litter (detritus); ANOVA 

with * at p < 0.05. 

 



Table 2: Community composition of amoebae, ciliates and flagellates (ind. g
-1

DW ± SD) at plots cropped with either fodder (FM) or corn (CM) 

maize in 0–10, 40-50, and 60-70cm depth. ANOVA with ** at p < 0.01. L – litter (detritus). 

 

 0-10 cm  40-50 cm  60-70 cm 

 FM CM ANOVA FM CM  FM CM 

Amoebae         

Acanthopodial - -  83±167 167±192  83±167 167±192 

Branched 83±167 333±471  - -  - 83±167 

Dactylopodial - 83±167  83±167 167±192  - - 

Eruptive - 167±192  - 83±167  83±167 83±167 

Fan-shaped - 500±192 L** 83±167 167±192  - 83±167 

Flamellian 83±167 167±333  - -  - 83±167 

Lingulate - 83±167  - -  - - 

Mayorellian - -  - -  83±167 83±167 

Monotactic 2667±272 1000±720 L** 583±569 1167±192  2917±1970 3500±1934 

Orthotactic - 83±167  - 83±167  - 83±167 

Polytactic 83±167 167±192  - 167±192  83±167 - 

         

Ciliates         

Colpoda 1800±2104 2600±1774  2400±2693 2200±1007  1800±2298 1000±766 

Heterotricha 1400±766 1400±766  1400±1774 800±653  400±462 1000±400 

Hypotricha 800±924 200±400  800±1131 -  - - 

         

Flagellates         

Apusomonads 1000±720 1583±687  250±167 500±793  83±167 250±319 

Bodonids 500±430 917±419  83±167 83±167  667±816 333±471 

Cercomonads 2833±1836 2417±1664  1333±770 1167±1347  1250±957 583±739 

Cryptomonads 500±430 83±167  - 250±319  500±333 417±500 

Dinoflagellates 250±319 500±638  - -  167±192 417±500 

Euglenids 500±192 333±471  417±631 250±319  1917±1101 1167±430 

Thaumatomonadids 7750±2515 6167±3756  2500±430 2833±2589  5083±2936        6250±3108 
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Overall, 11 morphotypes of naked amoebae, seven groups of flagellates and three broadly 

defined ciliate groups were distinguished (Table 2). The flagellate community was 

dominated by thaumatomonads and cercomonads, the most frequent amoebae morphotype 

was monotactic, and the majority of the ciliates belonged to the genus Colpoda. Generally, 

numbers of morphotypes decreased with depth, particularly in fan shaped amoebae and in 

cercomonads, bodonids, and apusomonads among flagellates, whereas monotactic 

amoebae (F3,16 = 4.7, p < 0.05) and euglenids (F2,21 = 9.93, p = 0.009) increased in 60-70 

cm depth. Additional detritus input affected the community composition in the plough 

layer (Table 2). Increased numbers of fan-shaped amoebae occurred at CM plots, while 

they were almost absent at FM plots (F1,18 = 13.71, p = 0.002). The density of monotactic 

amoebae in at CM plots were 30% lower compared to FM plots (F2,18 = 7.7, p = 0.004). 

 

Nematodes 

Across treatments nematode population density ranged from 15.1 Ind. g
-1

 dry weight in the 

plough layer to 0.2 Ind. g
-1

 dry weight in the root free zone, and decreased strongly with 

depth (Fig. 3). Crop plant did not significantly affect the density of nematodes, whereas 

detritus amendment resulted in highest nematode densities at CM, intermediate at W and 

WL, and lowest at FM plots across depths (plough layer: F1,12 = 3.72, p = 0.02).  

 

 

Fig. 3: Population density of nematodes (ind. g
-1 

DW ± SD) at plots cropped with either 

fodder or corn maize and wheat with and without maize detritus in 0–10, 40-50, and 60-

70cm depth. L – litter (detritus); bars within a soil depth with the same or no letters are not 

significantly different according to Tukey at p < 0.05.  

 

 



Table 3: Predominant nematode families (ind. 100 g
-1

DW ± SD) at plots cropped with either fodder (FM) or corn (CM) maize and wheat without 

(W) or with maize litter (WL) in 0–10, 40-50, and 60-70cm depth. DL – dauerlarvae. ANOVA with *, **, *** at p < 0.05, 0.01, 0.001. Values 

within a soil depth with the same or no letters are not significantly different according to Tukey at p < 0.05. C –crop, L – litter (detritus). Families 

with scattered occurrence are not listed, but considered in the total sum. 

 

 c-p 

value 

0-10cm  40-50cm  60-70cm  

 W WL FM CM ANOVA W WL FM CM ANOVA W WL FM CM ANOVA 

Bacterial feeders                 

Cephalobidae 2 177±96 201±95 156±66 251±70  17±13 29±33 14±4 21±5  7±1 6±4 3±1 10±8  

Monhysteridae 1 2±4 20±19 - 2±4  1±2 1±0.3 0.4±1 1±1  0.2±0.4 0.3±0.4 0.3±0.4 1±1  

Panagrolaimidae 1 7±8 21±17 5±9 - C* - - - -  - - - -  

Plectidae 2 8±12 26±21 2±5 2±4 C* 0.4±1 0.2±0.5 1±1 0.3±0.4  0.3±0.5 1±1    

Rhabditidae(without DL) 1 206±40 139±46 165±100 257±107 L* 1±1b 4±3b 5±2ab 44±7a C** 5±5 4±2 1±2 10±9  

Rhabditid DL - 161±133 273±214 229±150 559±275  3±2 4±3 16±13 21±11  3±1 9±9 3±3 25±42 CxL* 

Fungal feeders                 

Anguinidae 2 13±19 23±18 2±5 10±13  0.3±1 1±1 0.3±0.4 -  0.3±0.4 0.3±1 - 0.3±1  

Aphelenchidae 2 24±12b 31±7b 39±14b 109±61a C*,L* 13±5 12±6 6±2 11±5  6±4 4±2 3±2 2±1  

Aphelenchoididae 2 227±43a 229±96a 65±60b 190±60ab C* 3±1 4±4 6±5 3±2  6±3 7±5 1±1 13±13  

Plant feeders                 

Paratylenchidae 2 66±69 80±61 2±5 8±9 C* 1.8±3 0.2±0.5 1±1 0.4±1  - 0.2±0.3 - -  

Pratylenchidae 3 10±9 6±12 5±1 6±7  40.1±19a 26.8±1.2ab 4±3b 7±9b C*** 10±4a 4±4ab 4±4ab 0.3±1b C*, L** 

Tylenchidae 2 110±61 111±58 85±45 101±47  11±6 11±4 4±4 4±3 C* 2±1 3±2 2±2 12±17  

Omnivores                 

Qudsianematidae 4 2±4 3±6 4±5 2±4  0.1±0.3 0.3±1 - 0.2±0.4  0.4±1 0.3±0.4 - 1±1  

Thornenematidae 5 2±3 5±6 - -  - - - -  - - - -  

Predators                 

Anatonchidae 4 15±6 7±8 5±7 6±8  - - - -  - - - -  

Total number of 

families 
 14 17 14 14  11 11 10 10  10 12 7 9  
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The nematode community of the arable soil comprised in total 21 families, of which the 15 

predominant are presented in Table 3. Generally more families were detected under wheat 

compared to maize. Except for Monhysteridae all families significantly declined in density 

with depth (ANOVA, p < 0.05 for each family). Both, crop plant and detritus amendment 

distinctly altered nematode community composition across depth (Table 3). Briefly, as 

major effect wheat crop facilitated plant-feeding Pratylenchidae (40-50 cm: F1,12 = 21.7, p 

= 0.0006, 60-70cm: F1,12 = 8.79, p = 0.01) and Paratylenchidae (0-10 cm: F1,12 = 8.2, p = 

0.01). Detritus amendment under maize favored the bacterial-feeding Rhabditiade (0-10 

cm: F1,12 = 4.85, p = 0.05, 40-50 cm: F1,12 = 15.34, p = 0.02). The response of fungal 

feeders was inconsistent and limited to the plough layer; Aphelenchoididae reached highest 

densities at W and WL (F1,12 = 8.8, p = 0.01), but Aphelenchidae at CM (F1,12 = 8.4, p = 

0.01). 

The major trophic groups of nematodes across treatments were bacterial, fungal and plant 

feeders (Fig. 4). The density of omnivores and predators was low and mainly restricted to 

the top soil. The plough layer was dominated by bacterial feeders (55-72%), followed by 

fungal (14-26%) and plant feeders (8-18%). The different treatments most strongly 

affected fungal feeders with lowest proportions at FM, intermediate at W and WL, and 

highest at CM plots (Crop: F1,12 = 5.93, p = 0.03; Detritus: F1,12 = 12.09, p = 0.005; CxL: 

F1,12 = 10.31, p = 0.007). Wheat as crop favored plant feeders (F1,12 = 10.03, p = 0.008) and 

detritus amendment bacterial feeders (F1,12  = 5.14, p = 0.04). In the rooted zone below the 

plough layer the proportion of bacterial feeders increased (from 25 to 77%) whereas that of 

plant feeders deceased (from 58 to 10%; F1,12 = 23.53, p = 0.0005). At the root-free soil in 

60-70 cm depth bacterial feeders dominated the nematode community at detritus amended 

plots with proportions of 52 and 62% at WL and CM, respectively (F1,12 = 5.07, p = 0.04). 

 

Diversity and food web indices 

General micro-food web conditions were assessed using the nematode faunal analysis 

concept. The Enrichment Index, with values mostly above 50, points to a good nutrient 

availability in the soil (Table 4). In the rooted zone below the plough layer the nutrient 

input to the food web was higher under maize, in particular at CM plots (F1,12 = 8.8, p = 

0.01). The Structure Index was very low across treatments and depths, assigning an overall 

basal food web of low complexity. The Channel Index below 50 in the plough layer 

indicates C flow mainly through the bacterial channel. In the rooted zone fungal 
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decomposition was high at W (CI=78), whereas the bacterial pathway dominated at FM 

(CI=35) and CM (CI=27) plots (Crop: F1,12 = 12.2, p = 0.04; Detritus: F1,12 = 6.5, p = 0.02). 

The Shannon diversity index H´ was calculated for the investigated community 

components of the micro-food web (Table 4). H´ ranged from 2.2 to 2.7 for fungal 

communities, with no significant differences between depths or treatments. Bacterial 

diversity with H´ between 3.5 and 3.9 and was lowest at CM in the plough layer (Detritus: 

F1,8 = 23.34, p = 0.001; Crop x Detritus: F1,8 = 9.75, p = 0.01) and the rooted zone below 

(Crop: F1,8 = 10.73, p = 0.01). The Shannon diversity of protozoa (maize plots only) ranged 

from 1.7 to 2.1, with a tendency to decrease with depth. Nematode H´ values were between 

1.5 and 2.0, with high diversity under wheat particularly in the plough layer (Crop: F1,12 = 

22.42, p < 0.001) and the root-free deep soil (Crop: F1,12 = 7.06, p = 0.02). Wheat in 

combination with detritus revealed the highest nematode diversity (0-10 cm: Detritus: F1,12 

= 5.85, p = 0.03). 

 

 
Fig. 4: Nematode trophic structure (Proportion in % ± SD) at plots cropped with either 

fodder or corn maize and wheat with and without maize detritus in 0–10, 40-50, and 60-

70cm depth. PF – plant feeders, BF – bacterial feeders, FF – Fungal feeders. C – crop, L – 

litter (detritus); ANOVA with *, **, *** at p < 0.05, 0.01, 0.001. 

 

 



 

Table 4: Micro-food web conditions (community indices ± SD) at plots cropped with either fodder (FM) or corn (CM) maize and wheat without 

(W) or with maize litter (WL) in 0–10, 40-50, and 60-70cm depth. Presented are the Shannon diversity (H`) for dominant food web groups and the 

EI – enrichment, SI – structure, and CI – channel index for nematode communities. ANOVA with *, **, *** at p < 0.05, 0.01, 0.001; values within 

a soil depth with the same or no letters are not significantly different according to Tukey at p < 0.05. C – crop, L – litter (detritus).  

 

Food web 
0-10cm 40-50cm 60-70cm 

 W WL FM CM ANOVA W WL FM CM ANOVA W WL FM CM ANOVA 

Condition                

EI 72±3 66±3 72±12 70±7  32±15b 47±20ab 56±9ab 69±15a C* 59±17 63±7 53±19 69±7  

SI 15±8 14±8 11±12 8±6  3±6 2±3 0 2±5  6±11 8±10 26±6 4±8  

CI 21±5 28±3 22±22 23±16  78±23a 43±10ab 35±13b 27±18b C**,L* 52±37 38±18 57±37 26±6  

Diversity 

(H´) 
               

Fungi 2.5±0.2 2.5±0.3 2.2±0.2 2.4±0.3  2.7±0.2 2.7±0.2 2.4±0.5 2.6±0.2  2.4±0.6 2.5±0.6 2.4±0.3 2.5±0.5  

Bacteria 3.8±0.1a 3.8±0.0ab 3.9±0.0a 3.6±0.1b L*,CxL* 3.9±0.1a 3.8±0.0ab 3.7±0.2ab 3.5±0.1b C* 3.7±0.0 3.6±0.1 3.7±0.2 3.7±0.2  

Protozoa - - 1.7±0.1 2.1±0.1  - - 1.7±0.1 1.9±0.4  - - 1.8±0.3 1.7±0.1  

Nematodes 1.8±0.1ab 2.0±0.1a 1.6±0.1b 1.7±0.1b C***,L* 1.5±0.3 1.6±0.4 1.7±0.1 1.5±0.3  1.7±0.1 1.8±0.2 1.5±0.2 1.5±0.1 C* 
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Discussion 

 

Micro-food webs across depth 

a) Microbial communities as base of the food web 

Soil microbial communities are structured by abiotic and biotic factors, predominantly the 

microclimate of the soil and the presence of resources (Fierer et al. 2003, O’Brien et al. 

2005, Goberna et al. 2006). Bacterial and fungal biomass was at maximum in the top soil, 

reflecting the distribution pattern of crop roots mainly within the plough layer (0.01-0.22 

mg root C g-1 dry weight soil, Y. Kuzyakov pers. comm.). Microbial biomass decreased 

strongly with depth, most pronounced in bacteria, which is in line with studies from Schütz 

et al. (2009) using PLFA analyses in a transect from top soil to ground water table. Total 

biomass in the root free layer was approximately 10% of that in the plough layer, and thus 

can function as a food web basis at depth.  

Depth was also the most relevant discrimination factor for bacterial and fungal community 

composition. Top soil samples (Ap horizon) were always separated from subsoil samples 

(B horizon) in MRT ordination, irrespective of crop plant. Hence, in the plough layer 

agricultural practice, such as fertilization or tillage, affects microbial community 

composition stronger than crop, which was frequently reported for arable land (Beauregard 

et al. 2009, Helgason et al. 2010). Additionally, water and C flux through the soil profile 

was strongly affected by soil management, as assigned by higher bulk density in the B 

horizon (db=1.60 g cm-3) compared to the Ap1 horizon (db=1.38 g cm-3). This resulted in a 

strong decrease in the amount of seepage water below the plough layer (Kramer et al. 

2012).  

Below the plough layer the crop plant modulated bacterial and fungal community 

composition. Such plant effects can be attributed to specific root exudate profiles (Bais et 

al. 2006, Garbeva et al. 2008) or rhizosphere priming effects in bulk soil (Dijkstra et al. 

2006). Moreover, as bacteria maintain distinct substrate preferences during C 

transformation across soil depth (Kramer and Gleixner 2008), wheat and maize with their 

specific amounts of plant debris and detritus compounds (e.g. lignin) likely affected 

microbial community structure in resource limited deeper soil. Overall, the microbial part 

of the food web was predominantly shaped by farming practice in the plough layer, 

whereas with depth crop plant became more important.  
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b) Protozoa as major bacterial grazers 

Protozoan communities were investigated at maize plots solely, and the recorded numbers 

(Ind g-1 dry weight soil) in the plough layer, with 15,000 flagellates, 3000 naked amoebae 

and 4000 ciliates, were generally lower as communities in the 0-5 cm layer of a Scottish 

grassland soil in with 46,400 flagellates, 17,700 naked amoebae, 11,000 testate amoebae, 

and 4,300 ciliates (Finlay et al., 2000). Protozoan morphotypes showed a distinct vertical 

distribution, with flagellates and ciliates being generally most abundant in top soil, and 

naked amoebae at depth. Generally, high population densities in the upper soil layers are 

attributed to the positive impact of increased substrate levels in the rhizosphere (Ekelund et 

al. 2001). However, monotactic amoebae and euglenids had their maximum abundance at 

the deep root-free soil. This is likely not caused by translocation of protozoan cells by 

water flow, as only 9% (maize) and 3% (wheat) of the total precipitation is leaving the 

main rooting zone (K. Totsche, pers. comm.). This indicates sufficient availability of 

bacterial resources to allow amoebae and specific flagellates to reside at depth. 

The two most common flagellate groups, thaumatomonads and cercomonads, comprised 

61% of total flagellate cells detected, which is in line with several other studies (Foissner 

1991, Ekelund et al. 2001). Naked amoebae were dominated by monotactic morphotypes 

such as the monophyletic clade Tubulinea, which contains well known fungivore and 

bacterivore soil taxa, such as Deuteramoeba, Hartmannella, Sacchamoeba, among others 

(Smirnov and Brown 2004). Among ciliates, members of the genus Colpoda dominated the 

community with 58%, typical r-strategists indicating disturbed soil conditions (Foissner 

1997, Verhoeven 2001). As the applied Finlay protocol (Finlay et al. 2000) focuses on 

active protozoa, the data give evidence of distinct niche differentiation of major protozoan 

taxa along the soil profile, suggesting high competition for micro-food.   

 

c) Nematodes as consumers at different trophic levels 

Nematode numbers with 8 to 15 Ind. g-1 dry weight in investigated arable soil were similar 

to those reported from other farmlands (barley, wheat, soybean) with 8 to 10 Ind. g-1 dry 

weight (Sohlenius and Sandor 1987, Neher et al. 2005). In line with other studies nematode 

density decreased strongly with depth, which is generally attributed to changes in soil 

properties and the decline in major resources (Yeates and Bongers 1999, Liang et al. 

2005). In sum 21 nematode families were detected, which is half the number reported from 

other arable fields (Neher and Olson 1999, Neher et al. 2005).  
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The most dominant nematodes were bacterial-feeding r-strategists, common in highly 

managed arable soils (Ferris 2010). The density of omnivores and predators was low and 

mainly restricted to the top soil, indicating that the micro-food web is depleted in trophic 

levels with depth. As in any agro-ecosystem plant feeders made up a considerable 

proportion of the community, predominantly in the rooted zone (Sohlenius and Sandor 

1987, Neher, 2010). Pratylenchidae and Paratylenchidae were favored by wheat as crop, 

which may be related to the greater root biomass of wheat than maize in the plough layer 

(Kramer et al. 2012). In deep root free soil plant feeders belonged almost exclusively to the 

Tylenchidae, facultative root-/fungal feeders (Yeates et al. 1993), suggesting a diet switch 

from roots to fungi as an adaptation in foraging strategy to the changes in major resources.  

 

 

Impact of resource quality and availability 

a) Primary decomposers  

In the plough layer total microbial biomass as well as biomass of bacteria and fungi was 

lowest at FM, intermediate at CM and highest at W and WL plots. As FM received no 

above-ground detritus input, the soil harboured fewer resources for primary decomposers. 

Priming effects by amendment with recalcitrant plant residues have been predominantly 

reported in fungi but also in gram positive bacteria (Williams et al. 2006, Kramer and 

Gleixner 2008, Paterson et al. 2008). Irrespective of detritus application wheat as crop had 

an overall positive impact on the biomass of all groups, supporting the idea of plant-soil 

feedbacks on microorganisms as described recently (Berg and Smalla 2009, Ladygina and 

Hedlund 2010). 

In contrast to the observed biomass changes in bacteria, detritus amendment did not affect 

community structure assessed by MRT. Pronounced effects usually occur within the first 

weeks after application, when easy degradable substrates like carbohydrates, proteins and 

nucleic acids are available (Baumann et al. 2009, Pascault et al. 2010). Hence, in our study 

eight months after detritus application, the diminishing of appropriate substrates likely 

accounts for the lack of a distinct response in bacterial community composition. On the 

other hand, the structure of the fungal community was responsive to detritus availability, 

most evidently in the plough layer, where FM was separated from all other treatments by 

MRT. Specific OTUs common across W, WL, and CM, were rare under FM, the soil with 

the lowest input of detritus resources. This mirrors negative effects on fungal biomass, 
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hence unfavourable soil conditions for decomposer fungi, which largely depend on 

structural plant material (Moore-Kucera 2008, Baumann et al. 2009). In sum, supply rate 

and quality of resources modulated the soil C channel predominantly allocating plant 

derived substrate, which distinctly affected the primary decomposers at the base of the 

food web. 

 

b) Microbial grazers 

Ciliates are excellent indicators at higher taxonomic resolution (Foissner 1997, 1999), and 

the dominance of colpodid ciliates, in agreement with the nematode Structure Index (see 

below), confirms disturbed soil conditions in the intensively managed arable soil. The 

density of protozoa, as dominant bacterial feeders in the micro-food web, is suggested to 

depend strongly on the occurrence of their bacterial prey (Ekelund and Rønn 1994, 

Ekelund et al. 2001). However, the response to resource enhancement under maize was 

minor and only naked amoebae showed detritus induced effects in one morphotype group. 

Therefore, the relatively strong positive response of bacterivore nematodes compared to 

protozoa may indicate either competitive exclusion or intraguild predation of 

‘bacterivorous’ nematodes on protozoa (Anderson et al. 1978, Bonkowski et al. 2000).  

Nematode density was highest at CM, pointing to enhanced resource availability due to 

detritus input. The positive effects of detritus application were apparent across all depths, 

which corresponds to Leroy et al. (2009) reporting increased nematode numbers after 

organic amendments down to 70 cm depth. Predominantly fungal feeders (e.g. 

Aphelenchidae, Aphelenchoididae) were fostered in the plough layer, frequently reported 

after enrichment with high C to N organic material (Griffiths et al. 1993, Ferris and 

Bongers 2006). Generally, saprotrophic fungi are stimulated by application of organic 

resources to soil (Broder and Wagner 1988) but fungal biomass only slightly increased at 

CM plots. Considering the higher density of fungal feeders, this suggests enhanced grazing 

pressure by nematodes controlling fungal biomass. Among bacterial feeders Rhabditidae 

increased most strongly at CM, indicating that detritus input enhanced the supply of 

resources. They are considered as strong r-strategists with a short life cycle and high 

reproduction rate, closely mirroring bacterial blooms (Ferris and Bongers 2006). In sum, 

nutrient amendment via detritus sustained higher biomass in the next trophic level of the 

food web, the fan shaped amoebae and the bacterial- and fungal-feeding nematodes. Thus 

resource supply rate represented a bottom-up constrain on the size and activity of the 

micro-food web. 
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Food web characteristics 

The diverse biological interactions and the central position of nematodes in soil food webs 

are used for analysis of general food web conditions (Ferris 2010, Yeates 2010). Soil 

organic amendment results in enriched food webs, where bacteria and fungi increase and 

resources become available to the nematode community, which was reflected in the high 

Enrichment Index (EI). The Structure Index (SI) was very low, pointing to a disturbed 

basal food web, as generally reported from intensively managed agriculture sites (Neher et 

al. 2005, Thoden et al. 2011). The overall low Channel Index (CI) assigns C transfer 

predominantly in the bacterial channel of the food web, common in arable fields 

(Joergensen and Wichern 2008). However, with depth the fungal pathway became more 

important. In sum, at the investigated soil no “long” micro-food webs with substantial 

biomass at higher trophic levels could be sustained and the food web can be regarded as 

bottom heavy with only slow growth of upper predator populations across treatments. 

There is evidence that the energy and nutrient flux in decomposer food webs is affected by 

the diversity of their components (Gessner et al. 2010, Nielsen et al. 2011). As a general 

pattern diversity is expected to decrease with soil depth as well as with perturbation such 

as enrichment pulses (Giller 1996, Hartmann et al. 2009). However, the response of the 

micro-food web was not entirely consistent. This may be attributed to the relatively coarse 

taxonomic resolution in organism determination. Nevertheless, the calculated Shannon 

index is based on 132 OTUs for bacteria and fungi each, and 21 protozoa morphotypes and 

nematode families each. Based on this the diversity of fungal communities remained stable 

across depth, crop plant or detritus amendment. Some OTUs were almost exclusively 

present in the B horizon, suggesting disturbance in the intensively managed top soil. The 

apparently stable diversity therefore is rather a consequence of the overall low diversity, 

particularly in plough layer. In contrast, wheat as crop had an overall positive impact on 

bacterial and nematode communities, and detritus amendment a negative impact on 

bacteria assemblages under maize. Overall, the variable diversity pattern indicates that 

dominant groups of the micro-food web, even with apparently similar function, exploit 

different microsites and niches. Organisms of the same functional guild, e.g. bacterial-

feeding protozoa and nematodes, differ in their adaptation to prevailing soil conditions, 

providing complementary rather than redundant functions in soil services such as N 

mineralisation.  
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Conclusions 

The input of resources is generally expected to impose strong bottom-up forces on food 

web lower trophic levels, the bacteria and fungi, and that this increase propagates to higher 

trophic levels. However, our results are not consistent with this hypothesis, at least not for 

the investigated summer vegetation period after detritus amendment in the previous 

autumn. Among the primary consumers of the incoming substrate bacteria and fungi only 

moderately increased in abundance by detritus amendment, while within the next trophic 

level, guilds of nematodes that feed on bacteria and fungi were strongly responsive to 

resource enhancement. On the other hand, a considerable part of protozoa (flagellates, 

ciliates) remained unaffected. The complexity of the micro-food web expressed by the 

Shannon diversity index revealed distinct responses only within bacteria and nematodes. 

These different pattern within microbial and microfaunal groups underlines their various 

roles in soil C flux, suggesting complementary resource use as well as facilitative 

interactions among decomposer organisms. Overall, the micro-food web in the arable soil 

was of low complexity with a high degree of disturbance, and rather recalcitrant to 

enhanced resource supply as no large biomass at higher trophic levels was sustained. 
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Rhizosphere food web links uncovered – Carbon fluxes 

from maize (Zea mays L.) roots to microbial key-

consumers and their predators
∗∗∗∗ 

 

 

 

Abstract 

The flow of C via plant roots into root associated microorganisms and subsequently into 

soil food webs, and thus the coupling of belowground and aboveground systems, is one of 

the key processes determining ecosystem functioning. With the advent of high throughput 

sequencing methods it became clear that the rhizosphere of a particular plant species and 

even plant genotype selects for specific subsets of the soil microbial community, termed 

the ‘rhizosphere microbiome’. Given the highly dynamic nature of growing roots, and the 

ease by which root derived C spreads through root associated microorganisms, the 

impression of a plant’s rhizosphere microbiome as a static community might be strongly 

misleading. In particular the roles of root infecting microorganisms, such as arbuscular 

mycorrhizal fungi (AMF), as C sinks need further investigation. A comparison to free-

living assimilate utilizing microorganisms and revealing the species composition of 

rhizosphere associated microbes will greatly advance our functional understanding of 

rhizosphere processes. Furthermore, the identity of active microbial predators as well as 

the organization of rhizosphere food webs is virtually unknown, despite the ability of 

microbial grazers to significantly influence the composition and function of root associated 

microorganisms. Only few studies to date revealed that the microbial food web actively 

depends on C input from root exudates, even though great efforts have been spent to 

describe microbial communities in the plant rhizosphere.  

In a plant labeling experiment using a combined rRNA-SIP and pyrotag sequencing 

approach with 
13

C-labeled rhizodeposits we traced the C flow from roots of maize (Zea 

mays L.) through the communities of bacteria, fungi and heterotrophic protists. 

Surprisingly we found that only few taxa of the diverse microbial community in 

rhizosphere as well as in bulk soil actively rely on root exudates. AMF were the 

determining factor for the allocation of plant derived C into bulk soil microbial 

                                                 
∗
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communities, thereby providing food webs in the rhizosphere and in bulk soil with energy 

from plant photosynthates.  

We revealed the organization of the plant C associated microbial soil food web, identified 

specific microbial key players and outlined a succession of plant derived C through 

bacterial, fungal and protistan communities. These findings provide crucial insights into 

the temporal dynamics and functioning of the root associated microbiome and the identity 

of their microbial key predators in soil food webs.  

 

 

 

Introduction 

According to current knowledge soil microbiota represent the greatest reservoir of 

biological diversity world-wide (Berendsen et al. 2012, Lopez-Guerrero et al. 2013, Curtis 

et al. 2002, Buee et al. 2009, Gams et al. 2007). This tremendous soil microbial diversity is 

mainly fuelled by plant derived C that enters the soil via rhizodeposition or as detritus. In 

particular the energy flux from plants to the rhizosphere has recently been assumed to drive 

the entire soil food web (Albers et al. 2006, Bonkowski et al. 2009, Frank and Groffman 

2009). However, little is known about the paths of low-molecular weight C into soil-borne 

communities and resulting feedbacks on ecological functions (Drigo et al. 2010) especially 

for higher trophic levels in the soil food web like protozoan grazers.  

Further, the understanding of the complex interactions of plants and microorganisms is 

also very limited (Bisseling et al. 2009) but recent findings lead to the assumption that 

plants are able to shape their rhizosphere communities and that these microbiomes are 

crucial for plant health (Berendsen et al. 2012). Similar to other eukaryotes, plants and 

their microbiomes can be described as a “super-organism” since the plant relies on the soil 

microbiota for specific functions and traits (Mendes et al. 2011). The plant in turn 

cultivates its microbiome by adjusting pH, reducing competition for beneficial microbes 

and providing C rich rhizodeposits (Peiffer et al. 2013, Bais et al. 2006). Despite this 

tremendous importance of soil microbial communities the structure of belowground food 

webs and its key-players are still unknown to a large extend. Even though strong influence 

of selectively grazing protozoa on bacterial community structure was found in several 

studies (Bonkowski and Brandt 2002, Kreuzer et al. 2006, Rosenberg et al. 2009) trophic 

links between both, bacteria or fungi and protozoa, in soil are insufficiently characterized. 

Protozoa are known as one of the most abundant groups of bacterivores, but they are also 



Chapter II 

 

51 

 

consumers of a number of other food sources (Crotty et al. 2012). Microcosm studies 

provide strong evidence of the important role of protozoa in the rhizosphere, but these 

experiments are often restricted to only a few model organisms disregarding the high 

diversity of soil protozoa and the fundamental difference the presents or absence of AMF 

mean to food web organisation. The identity of protozoan taxa relevant for C fluxes in the 

rhizosphere is unknown. In sum soil protozoa form the critical link for the C transfer to 

upper trophic levels, still they have been largely ignored in relation to the “whole” soil 

food web, biogeochemical cycling or microbial ecology in general (Crotty et al. 2012, 

Wilkinson and Mitchell 2010). Understanding the C flow in food webs involving bacteria 

and protozoa can provide insides into how protozoan grazing affects bacterial function in a 

wide range of systems (Moreno et al. 2010).  

The application of 
13

C Stable Isotope Probing (SIP) to trace plant derived C fluxes into 

microbial nucleic acids (Whiteley et al. 2007, Vandenkoornhuyse et al. 2007) or other 

biomarkers (Boschker et al. 1998) has opened up a window to understand the fluxes of C 

through plant associated microbial communities (Drigo et al. 2010). RNA-SIP is directly 

linked to microbial activity (Molin and Givskov 1999) and enables us to characterize 

structure and in situ functions of specifically active microbial populations (Lueders et al. 

2004). RNA becomes labeled more rapidly than DNA because ribosomes are more 

abundant and have a faster turnover and transcription is not semiconservative. This makes 

RNA-SIP very fast and allows short term responses to be investigated (Vandenkoornhuyse 

et al. 2007). Especially for higher trophic levels like protozoan grazers, this method is 

suitable because the amount of 
13

C incorporated is proportional to the activity of the 

organism during the incubation period with the tracer. As a result we have a direct 

integrating measure on the identity of the taxonomic groups actively preying primary 

consumers of plant derived C. The use of SIP to analyse C sequestration in a microbial soil 

food web provides strong evidence for the utility of this technique in unravelling the 

turnover and flow of complex C pools in natural systems (Lueders et al. 2006). This has 

already been demonstrated for exudate based (Prosser et al. 2006, Neufeld et al. 2007, Mao 

et al. 2014, Lu and Conrad 2005, Rangel-Castro et al. 2005) and detritus based (see chapter 

III) food webs.  

 

Here we follow the largely unknown avenues of C fluxes from the rhizosphere into the 

bulk soil to elucidate the microbial key-players and food web components directly relying 

on rhizodeposits and to differentiate them from those that rely on detritus inputs (chapter 
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III). A 
13

C-labeling experiment was conducted using maize plants in agricultural soil and 

rRNA-SIP combined with subsequent pyrotag sequencing to identify pro- and eukaryotic 

soil microbes. We characterized the active bacterial, fungal and protistan, especially 

protozoan, communities in the rhizosphere and bulk soil. We expected to find different 

rhizodeposit dependent communities in rhizosphere and bulk soil, with more enriched taxa 

in the rhizosphere. Furthermore we predicted food web relevant bacterial/fungal/protozoan 

populations to be temporally and spatially dynamic because of the constantly changing 

conditions in the rhizosphere. 

 

 

 

Materials and Methods 

 

Microcosm experiment for SIP 

The experiment was conducted in two acrylic glass chamber (l: 95 cm, w: 42 cm, h: 70 cm) 

for the 
13

C-labeling and a 
12

C-control, respectively. To mimic summer conditions in 

temperate agricultural fields, maize plants were exposed to light for 12 hours each day with 

600 µmol PAR. Temperature was 28°C by day and 18°C at night. Plants were germinated 

on wet cellulose tissue and after five days, seeds and root tips were truncated to ensure 

highly branched roots and CO2 as sole C source for the plants. The next day, maize 

seedlings were planted into rhizoboxes with 135 g fresh soil from an agricultural field site 

near Göttingen, Germany (see Kramer et al. 2012). Soil was sieved (< 5mm) and well 

homogenized. The plants were watered with 15 ml water daily. One week after planting 

0.5 g l
-1

 KNO3-fertilizer was added to the water for five days. The labeling started 24 days 

after germination and three control plants were sampled directly before labeling. In both 

chambers 24 plants were inserted and 
13

CO2 (
13

C-source: sodium bicarbonate-
13

C, 98 atom 

%, Campro scientific, Berlin, Germany) or unlabeled CO2 (
12

CO2, source: anhydrous 

sodium carbonate, Sigma-Aldrich, St. Louis, USA), were pumped into the respective 

chambers. A constant CO2 concentration of 418 ± 27 ppm was established to ensure 

optimal C fixation rates. CO2 concentration was controlled via IRGA (Carbocap GM70, 

Vaisala, Vantaa, Finland). The CO2 concentration applied was only little higher than the 

natural CO2 concentration in air (about 390 ppm; Andrews et al. 2013). Soil was covered 

with parafilm to reduce CO2 efflux from soil respiration. Labeling lasted for 6 days but the 
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experimental conditions were maintained for 10 more days. Plants were watered during the 

experiment with 25 – 30 ml each day and 7.5 mg KNO3 per plant
 
was added at day 4, 6, 9, 

and 12 as plants showed signs of nitrogen deficiency. Plants were harvested at 0.5, 1, 2, 3, 

5, 8, 11 and 16 days, respectively. For sampling the fronts of the rhizoboxes were opened 

and bulk soil was carefully removed with a spatula. Roots were collected and shaken. 

Remaining adherent soil to roots was defined as rhizosphere soil (Buddrus-Schiemann et 

al. 2010). At each sampling triplicate plants were harvested, but for RNA-SIP the soil 

samples of all three plants were pooled and homogenously mixed before RNA extraction 

for rhizosphere and bulk soil samples, respectively. Dry weight of plant shoots and roots 

were determined and 
13

C excess mass was estimated for bulk soil, roots and shoots (Fig. 1). 

The δ
13

C values of shoot, root and soil samples were measured using an elemental analyzer 

NA 2500 (Carlo Erba Instruments, Milano, Italy) interfaced to a Delta XP isotope ratio 

mass spectrometer (Thermo Electron Cooperation, Bremen, Germany). 

RNA extraction and rRNA-SIP  

RNA was extracted from soil as described by Lueders et al. (2004) with minor 

modifications: 0.4 g (fresh weight) of homogenously mixed soil were used and bead 

beating was done in the presence of sodium phosphate, sodium dodecyl sulphate and 

phenol-chloroform-isoamyl alcohol (25:24:1, pH 8). All centrifugation steps were 

conducted at 20,000 x g and 4°C for 5 min. Extracted total nucleic acids (NA) were 

dissolved in 80 µl EB buffer (Qiagen GmbH, Hilden, Germany). Silica gel columns 

(DyeEx 2.0 Spin Kit; Qiagen) were used for further purification and elimination of humic 

substances. DNA was removed by digestion with DNAse I (Promega, Madison, WI, USA) 

following manufacturer protocols. Afterwards, RNA was precipitated with 2 vol. PEG 

solution (30 % (w/v) polyethylene glycol 6000, 1.6 mM NaCl) and centrifugation for 30 

min at 4°C and 20,000 x g. RNA pellets were washed once with ice cold 70 % (v/v) 

ethanol, air-dried and dissolved in 50 µl EB Buffer. The resulting RNA was quantified 

using the RiboGreen quantification kit (Life Technologies, Carlsbad, CA).  

RNA extracts from the sampling time points 1, 3, 5, 8, 11 and 16 days after the experiment 

started were selected for gradient centrifugation. Replicate rRNA extracts from 
12

C-control 

incubations were pooled and centrifuged in one composite sample. Isopycnic 

centrifugation and gradient fractionation were done as described in Glaubitz et al. (2009) 

with 750 ng of total RNA loaded into each gradient resulting in 12-13 fractions per sample.  
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Fingerprinting and pyrotag sequencing of density resolved rRNA 

Prokaryotic rRNA populations in resolved SIP fractions (fractions 2 to 10 of all gradients) 

were analyzed by T-RFLP fingerprinting (Lueders et al. 2004, Glaubitz et al. 2009). 

Labeled T-RFs were identified by comparison of T-RF abundances of “heavy” and “light” 

rRNA fractions from the 
13

C treatments, as well as with “heavy” fractions of 
12

C-controls. 

Only if a T-RF was noticeably more abundant in “heavy” 
13

C fractions than in all other 
12

C 

and 
13

C fractions, it was considered as labeled. As the bacterial labeling was strongest on 

day 5 and 8 these time points were chosen to analyze for C transfer into eukaryotic RNA. 

Based on these rRNA fingerprints (Fig. S 1, page 81), fractions 3 (‘heavy’) and 8 (‘light’) 

of all 
12

C and 
13

C SIP gradients from day 5 and 8 were subjected to 454 amplicon 

pyrosequencing.  

Bacterial pyrotags were generated as reported by Pilloni et al. (2012), adapting the 

workflow to rRNA templates instead of DNA. Shortly RT-PCR was done under identical 

conditions as for fingerprinting, applying amplicon fusion primers with respective primer 

A or B adapters, key sequence and multiplex identifiers (MID). Amplicons were purified 

and pooled in equimolar 10
9
 µl

-1
 concentration, and emulsion PCR, emulsion breaking and 

sequencing were performed as previously described in detail by Pilloni et al. (2012) 

following manufacturer protocols using a 454 GS FLX pyrosequencer with Titanium 

chemisty (Roche Applied Biosystems, Penzberg, Germany). Bidirectional reads were 

quality-trimmed and filtered as described by Pilloni et al. (2012), and reads shorter than 

250 bp after trimming were excluded from further analysis. Classification of bacterial taxa 

was done with the RDP classifier (Wang et al. 2007).  

Eukaryotic pyrotags were generated in parallel for day 5 and 8. Amplicon preparation for 

eukaryotes was done as for bacteria but with modified PCR conditions and using Brilliant 

III Ultra-Fats RT-qPCR Master Mix (Agilent Technologies, Santa Clara, USA). Quality 

trimming, filtering and exclusion of short reads were done following the same protocol as 

for prokaryotes. SSU rRNA amplicon sequences were taxonomically analyzed with the 

CREST toolbox (Lanzen et al. 2012). In brief, the amplicons were taxonomically assigned 

by MEGAN analysis of BLASTN files against the SilvaMod SSU rRNA reference 

database (LCA parameters: min. bit score 330, min. support 1, top percent 2; 50 best blast 

hits).  

Prokaryotic and eukaryotic in-vitro T-RFs were generated for the contigs with the software 

TRiFLe (Junier et al. 2008) to compare T-RF and sequencing data sets and to designate 

potential phylogenetic groups detected in-vivo TRFs.  
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Data handling 

The excess (above background) of the 
13

C tracer in a certain C pool (χ
E 

(
13

C)) was 

determined by subtracting the relative 
13

C abundance in the unlabeled pool (χ
 
(
13

C)Std, atom 

%) from the relative 
13

C abundance in this pool (P) after labeling (χ
 
(
13

C)p, atom %) and 

was expressed as g
13

C g C
-1

 (Coplen 2011): 

χ
E 

(
13

C) = χ
 
(
13

C)p - χ
 
(
13

C)Std 

 

To identify taxa directly involved in the assimilation of 
13

C from rhizodeposits within the 

different groups, pyrotag ‘enrichment factors’ (EF) in ‘heavy’ rRNA fractions were 

deduced. All taxa with EF > 0.5 and a relative read abundance of at least 0.25% in the 

corresponding heavy 
13

C fraction were considered as being 
13

C-labeled.  

The enrichment factors were calculated as: 

Enrichment factor = 
13C 

heavy / 
13C 

light – 
12C 

heavy / 
12C 

light 

with 
13C 

heavy and 
13C 

light being the relative abundance of pyrotag reads affiliated to a 

given taxon in sequenced heavy and light rRNA SIP fractions from the 
13

C treatment, and 

12
C heavy and 

12
C light being the relative abundance of pyrotag reads affiliated to a given 

taxon for the respective 
12

C-control gradient.  

 

 

 

Results 

 

Plant and soil 

Plants approximately doubled their shoot and root biomass in the 16 days of the 

experiment. Between the samplings on day 5 and day 8 the biggest average increase in 

plant growth was observed (Fig 1 A). On day 5 the plant biomass was 0.69 g DW on 

average (shoot: 0.34 g ± 0.07 g DW, root: 0.35g ± 0.09 g DW) and increased on day 8 to 

0.98 g DW (shoot: 0.48g ± 0.05 g DW, root: 0.50g ± 0.08 g DW). Each plant assimilated 

2.84 ± 0.75 mmol C d
-1

 on average during the labeling period of six days, resulting in an 

13
C excess mass of about 0.26, 0.23, and 0.007 g

13
C g C

-1
 for maize shoots, roots and bulk 

soil after 6 days of labeling, respectively (Fig. 1 B). 
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Fig. 1: mean values of plant biomass in 
12

C and 
13

C treatment (A) and 
13

C enrichment in soil, roots 

and shoots (B) of the three samples harvested each time. Error bars indicate standard deviation.  

 

Fungi 

Fungal reads accounted for between 40 % (day 5, bulk soil) and 48 % (day 8, bulk soil) of 

all eukaryotic reads. Most sequences were assigned to the supergroup Ascomycota, the 

Mortierellales, belonging to the Mucoromycotina (including the so called “sugar fungi”) 

were also very abundant (Fig. 2). Nevertheless, neither ascomycotan taxa (except some 

yeast genera), nor sugar fungi or taxa belonging to the supergroup Basidiomycota showed 

13
C enrichment in any of the investigated samples. Only taxa in the fungal supergroups 

Glomeromycota and Chytridomycota were enriched in 
13

C (Fig. 3). 

Arbuscular mycorrhizal Glomeromycota were more abundant in bulk soil, were they 

represent 7 % (d5 bulk) and 11 % (d8 bulk) of all eukaryotic reads, respectively. In the 

rhizosphere only 2 % (day 5) and 3 % (day 8) of eukaryotic reads belonged to 

Glomeromycota. Glomeromycota were the most heavily labeled fungal group on both days 

in rhizosphere and bulk soil (especially on day 8). Within the Glomeromycota the 

Paraglomerales were by far the most abundant and enriched taxon, but also the taxa 

Glomerales, Diversisporales and Archaeosporales were enriched (Fig. 3).  
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Fig. 2: Relative pyrotaq read abundance of the most common fungal taxa in rhizosphere (grey) and

bulk soil (black) on day 5 and 8 after start of labeling
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Fig. 3: Enrichment factors of labeled fungal taxa in rhizosphere (grey) and bulk soil (black) on day

5 and 8 after start of labeling

The chytridiomycotan taxa Chytridiales, Rhizophydiales and Spizellomycetales were

enriched in the rhizosphere; Rhizophydiales on day 5 and Chytridiales and

Spizellomycetales on day 8. Chytridiales were also labeled in bulk soil on day 8. Yeasts

were almost exclusively labeled in the rhizosphere and only 8 days post labelling (Fig. 5),

even though the percentage of yeast reads in the rhizosphere did not exceed the percentage

in bulk soil (Fig. 4). Concerning pyrotag reads Cryptococcus was by far the most abundant

yeast genus (Fig.4), however it was not enriched. The rhizodeposit-utilizing yeasts were

represented by the genera Saitoella in bulk soil, and Candida and Torulaspora in the

rhizosphere of maize.
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Fig. 4: Relative read-abundance of the most common yeast genera in rhizosphere (grey) and bulk

soil (black) on day 5 and 8 after start of labeling
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Fig. 5: Enrichment factors of labeled yeast genera in rhizosphere (grey) and bulk soil (black) on

day 8 after start of labeling (5 days after labelling start: no enriched yeast genera detected)

Bacteria

From day 5 onwards, selected bacterial taxa became enriched in
13

C. Generally, bacterial

taxa that were highly labeled were not the most abundant taxa according to relative pyrotag

read abundances (Fig. 6). The exception was Opitutus which was both, abundant and

strongly enriched. Enriched bacterial communities in both, rhizosphere and bulk soil

resembled each other. After 5 days of labeling Azospirillum (Alphaproteobacteria) and

Arthrobacter (Actinobacteria) were enriched in the maize rhizosphere, Mucilaginibacter

(Bacteroidetes), Ohtaekwangia (Bacteroidetes) and Massilia were enriched in bulk soil.

Sphingobium (Alphaproteobacteria), Opitutus (Verrucomicrobia) and unclassified

Oxalobacteriacea were enriched in both, rhizosphere and bulk soil. On day 8, two days

after labeling stopped, Arthrobacter was the only bacterial species exclusively labeled in

the rhizosphere whereas Kitasatospora (Actinobacteria), Ohtaekwangia and

Pseudonocardia were exclusively labeled in bulk soil. Opitutus, Mucilaginibacter,
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Massilia, Azospirillum, and Sphingobium were enriched in both the rhizosphere and bulk

soil, respectively.

Fig. 6: Enrichment factors (A) and relative sequence abundance (B) in “heavy”
13

C-rRNA fractions

for bacterial taxa labeled by
13

C-rhizodeposits in bulk soil and in the rhizosphere on day 5 and 8 of

the experiment.

Heterotrophic protists

Although the Peronosporomycetes (formerly Oomycetes) morphologically and

physiologically resemble the fungi (Dick, 2001), they have been classified as heterotrophic

protists in the taxon Stramenopiles (Adl et al., 2005, Krings et al. 2011).

Peronosporomycetes accounted for between 1 % (day 8, rhizosphere and bulk soil) and 4%

(day 5, bulk soil) of all eukaryotic reads. The most abundant Peronosporomycete taxon

was the Pythiales with 0.46 % (day 5, rhizosphere), 0.49 % (day 5, bulk soil), 0.36 % (day

8, rhizosphere) and 0.60 % (day 8, bulk soil) of all eukaryotic reads, respectively. The

second common Peronosporomycete taxon was Peronosporales with 0.26 % (day 5,



Chapter II

60

rhizosphere), 0.74 % (day 5, bulk soil), 0.07 % (day 8, rhizosphere) and 0.02 % (day 8,

bulk soil) of all eukaryotic reads. The peronosporomycete taxa were only enriched on day

5, especially in bulk soil. Labeled peronosporomycetes almost exclusively belonged to the

taxon Peronosporales (bulk soil, day 5, EF = 30.89).

Protozoan sequences accounted for about 20 – 30 % of all eukaryotic reads, being slightly

higher in rhizosphere (day 5: 25.6 %, day 8: 28.3 %) than in bulk soil (day 5: 22.4 %, day

8: 23.2 %). The protozoan communities turned out to be phylogenetically very diverse in

rhizosphere and in bulk soil, in total we found representatives of 58 different orders in our

samples.
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Fig. 7: Relative read-abundance of the most common protozoan taxa in the rhizosphere (grey) and

bulk soil (black) on day 5 and 8 after start of labeling
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Fig. 8: Enrichment factors of labeled protozoan taxa in the rhizosphere (grey) and bulk soil (black)

on day 5 and 8 after start of labeling

Kinetoplastida and Cercomonadida, both being common and abundant soil flagellates,

represented more than 1 % of all eukaryotic reads (Fig. 7), but only a small subgroup of the

Kinetoplastida, the Bodonidae, were enriched with
13

C (Fig. 8). The flagellate taxa

Bicosoecida (stramenopiles), Thaumatomonadida and, at a higher taxonomic resolution,

Apusomonadidae were enriched in the rhizosphere on day 5. Bodonidae were the only

protozoa enriched in bulk soil on day 5 (EF = 1.1). On day 8 Choanoflagellida were



Chapter II

61

labelled in both, rhizosphere (EF = 1) and bulk soil (EF = 0.5) while Apusomonadidae

were again enriched in the rhizosphere (EF = 1.8) and Bodonidae in bulk soil (EF = 3.8),

respectively.

The ciliate taxa Colpodida and Cyrtolophosidida were very abundant, especially in the

rhizosphere (Fig. 7), but only on day 8 ciliate taxa showed signs of
13

C enrichment (Fig. 8).

These taxa were Scuticociliatia (EF = 1.68 in the rhizosphere, EF = 0.66 in bulk soil) and

Cyrtolophosidida (EF = 0.5 in bulk soil).

Highest read abundances were found in naked amoebae, since six out of the ten most

abundant protozoan taxa displayed an amoeba morphotype (Fig. 7). Nevertheless, only two

of these taxa were labeled. These taxa were the Leptomyxida on day 5 and 8 in the

rhizosphere and the Dactylopodida on day 8 in bulk soil (Fig. 8).

The plant associated microbial food web

A very diverse microbial community was detected in the rhizosphere and in bulk soil, but

only specific subsets of the fungal and bacterial community did directly benefit from plant-

derived C. AMF were highly enriched and apparently transferred a large proportion of this

C into bulk soil where Peronosporales became labeled. Single celled fungi like

ascomycotan yeasts and chytridiomycotan taxa were enriched in both, rhizosphere and

bulk soil whereas filamentous saprophytic fungi did not benefit from root derived C. Only

after a labeling period of 5 days specific groups of bacteria were enriched in plant derived

13
C. These labeled subsets of the bacterial community turned out to be surprisingly similar

in the rhizosphere and in bulk soil. On the next trophic level protozoa participated from

root C in rhizosphere and bulk soil, respectively.

The pulse of C spread through the microbial community with time of labeling. The explicit

enrichment of mycorrhiza as well as the diversity of labeled taxa was higher on day 8.

While the enrichment on day 5 was mainly found in bulk soil organisms the proportion of

13
C bound in microbial biomass on day 8 was far more balanced between rhizosphere and

bulk soil.
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Discussion 

A significant part of the variation in the composition of maize rhizosphere bacteria could 

be attributed to an interaction of plant host genetics and soil factors (Peiffer and Ley 2013). 

Using a combined rRNA-SIP and pyrotag sequencing approach we found only a small 

subset of the present microbial community to be part of the microbial food web associated 

with the rhizosphere of maize plants in natural agricultural soil. Since rRNA in contrast to 

DNA is only transcribed by living and active organisms (Urich et al. 2008, Tveit et al. 

2012) we were able to portray the flow of rhizosphere C through the active root associated 

microorganisms into the bulk soil, and further into the rhizosphere and bulk soil microbial 

food webs. Because methodological differences hamper the comparability and 

interpretation of results from different SIP-studies, it must be mentioned beforehand that 

we used a very conservative approach to assign taxa as being labeled. As unlabeled rRNA 

tends to occur also in ‘heavy’ fractions and over entire caesium trifluoroacetate gradients, 

only T-RFs or pyrotag reads distinctly more abundant in the ‘heavy’ 
13

C rRNA fractions 

than in all other 
13

C and 
12

C fractions were considered as labeled in our study (Lueders et 

al. 2004). This approach will prevent false positive assignments.  

In contrast, one could define all sequences in the heavy fractions as being labeled 

(Vandenkoornhuyse et al. 2007), although identical sequences are frequently found also in 

the light fractions. Vandenkoornhuyse et al. (2007) argued that those bacteria used both 

fresh 
13

C labeled and also old unlabeled substrates as C source. Therefore, if only a small 

subgroup of a given population actually used 
13

C-labeled rhizodeposits, e.g. due to 

favorable localization near the root tips, or when the 
13

C signal was diluted in higher 

trophic levels, these taxa likely were not identified as being labeled with our conservative 

approach. For example, rhizodeposits can be taken up and incorporated into rRNA from 

rhizosphere microorganisms within hours (Vandenkoornhuyse et al. 2007, Henkes et al. 

2011), but based on T-RFLP fingerprinting we could not detect any isotope enrichment in 

bacteria during the first three days after labeling in our experiment. For analysis of 

eukaryotic communities primers optimized for protistan T-RFLP fingerprinting in 

subsurface environments (Euringer and Lueders 2008) were used. As in all primer-based 

sequencing studies targeting the entire eukaryotic community, general primers are never 

universal so that some groups are likely to be underrepresented (Berney et al. 2004, 

Epstein and Lopez-Garcia 2008, Stephenson et al. 2011, Bohmann et al. 2014). A more 

detailed discussion of the applied approach is found in the SI of chapter III (page 113). 
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Root exudate consuming microbial key-organisms 

It is often assumed that bacteria monopolize most of the easily available rhizosphere C 

(Kent and Triplett 2002), but more and more evidence accumulates that simultaneously 

saprophytic fungi, in particular root pathogens like Fusarium (Lueders et al. 2004), and so-

called ‘sugar fungi’, can be important competitors for C rich root exudates (De Boer et al. 

2005, De Boer et al. 2006, Mougel et al. 2006). Therefore we were particularly interested 

to identify enriched fungi in the maize rhizosphere. Although typical sugar fungi like 

Mortierella and other hyphal Basidiomycota and Ascomycota were common and diverse in 

our soils (Fig. 2), they were clearly not enriched. In chapter III we studied plant 

decomposition in soil from the same location as in this study and found the basidiomycote 

yeast Cryptococcus to be the strongest competitor and the major utilizer of glucose C next 

to bacteria. Accordingly, we expected Cryptococcus to be also a major competitor for root 

derived C. Interestingly, despite Cryptococcus reads were highly abundant in both, the 

maize rhizosphere and bulk soil, this yeast apparently assimilated no rhizodeposit derived 

label. Instead, yeasts of the genera Candida and Torulaspora were enriched in the maize 

rhizosphere 8 days post labeling. Also Chytridiomycota, evolutionary an early diverging 

fungal lineage consisting of mainly single celled ’zoosporic fungi’ (Barr 2001) were 

clearly enriched in the maize rhizosphere. Interestingly, these were predominantly the taxa 

Rhizophydiales and Spizellomycetales which both contain AMF parasites (Ross and 

Ruttencutter 1977, Wakefield et al. 2010). Progressive labeling of Rhizophydiales (day 5) 

and of Spizellomycetales (day 8) in the rhizosphere, and of Chytridiales (day 8) in both 

rhizosphere and bulk soil indicates a succession of root derived C through Chytridiomycota 

taxa between the sampling events. These results unambiguously demonstrate that single-

celled fungi, such as most Chytridiomycota and yeasts can play a major role as competitors 

for readily available exudates in the plant rhizosphere, but more research on yeasts is 

needed to explain the apparent differences in C uptake between different yeast taxa. 

Bacteria, despite being highly abundant and diverse in our soil, received surprisingly little 

C rich root metabolites compared to fungi, and only a small subset of the bacterial 

community was significantly enriched in the maize rhizosphere. The bacterial taxa most 

clearly depending on root exudates consisted of Opitutus (Verrucomicrobia), Sphingobium 

and Mucilaginibacter (EF > 5), further enriched species were e.g. Massilia, Azospirillum 

and Arthrobacter.  

The four taxa, Massilia (Ofek et al. 2012), Mucilaginibacter (Madhaiyan et al. 2010, Lee 

et al. 2013), Azospirillum and Arthrobacter (Babalola 2010, Gaiero et al. 2013) are all 
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known to contain plant growth promoting rhizosphere bacteria (PGPR). However, Opitutus 

and Arthrobacter appeared to be the bacterial key-players in the maize rhizosphere of our 

agricultural field soil as these taxa were not only heavily labeled but also highly abundant 

on the root surface. Verrucomicrobia have been shown to be abundant and possibly 

functional important bacteria in the rhizosphere of plants, but they have been generally 

little studied (Kielak et al. 2010). The finding that Opitutus had by far the highest read 

numbers and high enrichment indicates that this taxon was highly successful foraging for 

plant C in the maize rhizosphere and might play a critical role in the microbial food web. 

Also bacterial taxa affiliated to Sphingobium and Massilia can be very abundant in the 

rhizosphere of maize (Balkwill et al. 2006, Dohrmann et al. 2013, Peiffer et al. 2013), and 

both taxa well participated on root C. Bacterial isolates affiliated to the genus 

Mucilaginibacter are generally non-motile and supposed to produce high amounts of 

extracellular polymeric substances (Pankratov et al. 2007). Mucilaginibacter is often found 

in the rhizosphere of plants (Lee et al. 2013) but our results show that they play as well an 

important role in bulk soil food webs. 

The outstanding role of AM fungi as strong sinks for plant C is well known (Farrar et al. 

2003, Olsson and Johnson 2005, Vandenkoornhuyse et al. 2007, Johnson et al. 2002). 

Depending on the nutrient demand of the plant AMF can consume more than 20 % of plant 

assimilated C (Bago et al. 2000). Our results exactly match the findings of Olsson and 

Johnson (2005) and Drigo et al. (2010) where almost all root derived C was first captured 

by AMF, and gradually released by mycorrhizal plants between 5 - 8 days post labeling.  

Plant roots are simultaneously colonized by different AMF taxa (Kiers et al. 2012); in the 

maize rhizosphere the orders Paraglomerales, Glomerales, Diversisporales and 

Archaeosporales were important sinks of root C but the Paraglomerales were the key 

mycorrhizal taxon that captured by far most plant assimilates. In our experiment, the 

hyphal network of AMF was the only conceivable “C bridge” for the translocation of 

significant amounts of recently fixed plant C from rhizosphere into the bulk soil and 

further into bulk soil bacteria. This is in line with several other studies (Koller et al. 2013, 

Mao et al. 2014, Drigo et al. 2010). The labeled subset of bulk soil bacteria resembled the 

labeled rhizosphere community with Ohtaekwangia, Dactylospoarangium, Singulisphaera, 

Corynebacterineae and Pseudonocaria as enriched groups. Sphingobium, Arthrobacter, 

Nakamurellaceae, Sphingomonadacea, Rhodospirillacea, Azospirillum and Byssovorax 

were only enriched in bulk soil. Highest 
13

C enrichment was found for Mucilaginibacter, 

Opitutus (Verrucomicrobia), Ohtaekwangia and Massilia. Except Opitutus, none of these 
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taxa had high relative sequence abundances despite their high 
13

C incorporation. Other 

bacteria, like Arthrobacter, Singulisphaera, Azospirillum and unclassified 

Planctomycetaceae were quite abundant in the ‘heavy’ 
13

C fraction but had only little 
13

C 

enrichment as they were also abundant in all other SIP gradient fractions. This second 

group of bacteria could be important in using rhizodeposits as ‘activation energy’ to 

oxidize other pools of SOM, the so-called ‘priming effect’ (Kuzyakov 2010).  

High throughput sequencing methods targeting rhizosphere microbial DNA leave the 

impression of a plant’s microbiome as a static community. SIP experiments have the 

advantage that the dynamics of the C flow through the prominent rhizodeposit utilizers can 

be identified. Exudates are mainly released at the growing root tip (Jones et al. 2009) and is 

used by a succession of microbes as root growth proceeds. Semenov et al. (1999) described 

that fast-growing (mostly copiotrophic) bacteria that utilize easily available substrates at 

the root tip and slow-growing (possibly oligotrophic) bacteria with limited nutrient use 

capacity will oscillate wavelike along roots due to recurrent growth and death cycles 

(Liljeroth et al. 1991, Maloney et al. 1997). In addition to root exudates, also more 

complex C sources like root border cells will become labeled during the 5 - 8 days of 

incubation (Jones et al. 2009) but it is doubtful that users of more recalcitrant C might have 

taken up enough label to be detected with our conservative approach. Although we 

probably underestimated the rhizodeposit utilizing bacteria, our conservative approach 

enabled us to clearly identify the bacterial key taxa connected to the belowground C flux 

from maize plants. Some of them are known as plant growth promoting rhizosphere 

bacteria (Azospirillum, Arthrobacter, Mucilaginibacter, and Massilia); others are well-

known rhizosphere inhabitants (i.e. Sphingobium and Rhizobacter). In addition, we could 

identify bacterial key-players whose roles in rhizosphere processes were so far unknown, 

such as Ohtaekwangia, and in particular Opitutus. The findings of this experiment 

demonstrate that rhizodeposits are mainly converted by specific subpopulations of 

rhizosphere bacteria at a given time and it might be not adequate to consider overall 

bacterial biomass as a foundation for the modeling of C fluxes in soil food webs. Rather, 

the specific sub-populations utilizing defined substrates should be discerned.  

Besides bacteria and fungi the protistan Peronosporomycetes were important users of plant 

derived C 5 days post labeling. Among Peronosporomycetes are well known plant 

pathogens (Hendrix and Campell 1973, Nowiki et al. 2012) but others can also act as 

pioneer saprotrophs on fresh organic matter (Deacon 1997). Especially some Pythium 

species are known as highly competitive utilizers of easily available C compounds in soil 
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(Deacon 1997). In a decomposition study using a variety of C sources and maize litter, 

Pythium turned out to be the most important protist at all stages of decomposition, 

outcompeting all other protists in particular at glucose utilization (chapter III). Also Mao et 

al. (2014) found Pythium in the rhizosphere of switchgrass to be heavily labeled, thus 

actively utilizing root exudates. In fact, most of the Peronosporomycete pyrotag reads in 

bulk soil and rhizosphere belonged to Pythium. However, despite abundant in our 

experiment, Pythium was only slightly labeled in the rhizosphere, while Peronosporales 

were heavily labeled in bulk soil on day 5 of our experiment. Well known members of the 

taxon Peronosporales are the mainly plant pathogenic genera Phytophthora, Peronospora 

and Plasmopara. Together with the bacterial taxa Mucilaginibacter, Ohtaekwangis, 

Massilia and Opitutus and the glomeromycotan taxa Paraglomerales, the Peronosporales 

were identified as the main utilizers of root C on day 5 in bulk soil, possibly feeding as 

parasites on AMF as described for an unclassified “Pythium-like” organism by Ross and 

Ruttencutter (1977).  

Except for Peronosporomycetes all the other soil protist sequences considered in this study 

belonged to microbial grazers. These soil protozoa are important consumers of bacteria 

linking primary producers to higher trophic levels (e.g. Hunt et al. 1987, Clarholm 1985, 

Bonkowski 2004). A very diverse and temporarily highly dynamic protozoan community 

was detected in both, rhizosphere and bulk soil. Soil ciliates were more abundant in the 

rhizosphere while most taxa of naked amoebae, except Acanthamoeba and Schizopyrenida, 

were more abundant in bulk soil. Naked amoebae were the most abundant protozoan 

supergroup in pyrotag reads with six out of the ten most abundant orders belonging to this 

taxon (Fig. 7). Contrastingly, the active protozoan community directly incorporating root C 

was very different from those that were most abundant since we found the highest 

enrichment of 
13

C in flagellates with Bicosoecida, Apusomonadidae, Thaumatomonadida 

and Scuticociliatia as heavily labeled groups (EF > 1) in the rhizosphere and Bodonidae in 

the bulk soil, respectively (Fig. 8). Based on cultivation methods, Thaumatomonadida were 

already identified as a dominant protozoan group in soil originating from the same 

agricultural field site in a former study (chapter I). Another heavily enriched protozoan 

group in the rhizosphere were the facultative mycophagous Leptomyxida, a taxon with 

amoeboid morphology (Chakraborty 1982, Geisen et al. in prep.), indicating possible 

feeding on labeled fungi like yeasts or mycorrhiza. Except for slightly enriched 

Dactylopodida in bulk soil on day 8, surprisingly no other labeled naked amoebae taxon 

was found, even though naked amoebae are supposed to be one of the most competitive 
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bacterial feeders at high bacterial densities (e.g. Clarholm et al. 2006) and were found to be 

the most important grazers in other plant labeling experiments (Murase and Frenzel 2007).   

 

Microbial food web links in the maize rhizosphere 

In this study for the first time we were able to describe a complex microbial food web 

actively relying on rhizodeposits during the succession of plant derived C through 

microbial key-organisms in the maize rhizosphere.  

Plant derived C was initially kept in arbuscular mycorrhizal fungi and only from 5 days 

onwards spread through other soil microorganisms and the soil food web. The 

Glomeromycota served as the major plant-soil interface, allocating a significant amount of 

recently fixed C to bulk soil microbial communities. Bacteria became enriched only 5 days 

post labeling. At this time the microbial food web in the rhizosphere using plant derived C 

was much more diverse than the bulk soil microbial community even though at that time 

most of the label was found in a few heavily enriched bulk soil taxa like Mucilaginibacter 

or Peronosporales (Fig. 9 A). In this food web AMFs were already the major C sink, but 

they were far from being as dominant as they were 8 days post labeling. Flagellates were 

the main grazers in the rhizosphere and the only grazers in bulk soil that incorporated 
13

C 

label. Since the 
13

C signal is diluted in higher trophic levels due to increased respiration 

losses and ineffectiveness of trophic energy transfer, all enriched protozoan grazers, 

according to our stringent definition of enrichment, must have been primary consumers of 

other highly enriched microorganisms. The assimilation efficiency of microbial consumers 

is generally low(< 37 % in protists, Crotty et al. 2012). Especially at higher trophic levels 

like bacterivorous protozoa, that feed primarily on fast growing bacteria with a high 

turnover, 
13

C losses due to respiration must be tremendous (Crotty et al. 2013) resulting in 

apparently reduced assimilation ratios (Lueders et al. 2004). Eight days post labeling we 

found a higher number of 
13

C enriched taxa in the rhizosphere compared to 5 days post 

labeling. Labeled ciliates appeared for the first time in the protozoan community. A 

broader spectrum of labeled bacteria and fungi appeared to create more nutritional niches 

thereby supporting an increased number of taxa of protozoan grazes. 
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Fig. 9: Plant derived microbial soil food webs in rhizosphere and bulk soil based on plant derived 

carbon (
13

C) incorporation into RNA 5 (A) and 8 (B) days post labeling. Rhizosphere taxa are 

shown in green, bulk soil taxa in brown, taxa labelled in both, rhizosphere and bulk soil, in blue. 

Arrows indicate C-flow, size of arrows and taxa names indicate strength of 
13

C enrichment, 

dotted arrows indicate assumed C flow 
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Although our very conservative definition of 13C enrichment may have excluded potential 

users of plant derived C our results confirm the existence of a distinct, diverse and 

temporarily dynamic microbial food web strongly associated with the belowground C flux 

of maize roots in an agricultural soil (Berendsen et al. 2012).  

 

 

 

Conclusion  

Understanding the C flow into and through belowground food webs is a crucial task in soil 

ecology. This study gives detailed novel insights concerning the composition of these food 

webs in agricultural soil and describes the spread of C from maize roots through different 

microbial taxa and trophic levels.  

Even though we worked with a rather simple system, a complex, species rich and dynamic 

food web fuelled by maize exudates is portrayed. We found striking differences between 

the subset of microbial taxa with particularly high read abundances and the part of the 

community incorporating plant derived C. Our results indicate that in the rhizosphere most 

root exudates are consumed by AMF rather than by the bacterial community. As a result 

the proportion of C allocated into bacterial feeding protozoa was low. Further AMF are 

forming a highly effective C bridge from root into bulk soil, where a fraction of the plant 

derived C is liberated with a delay of several days. As a consequence the area of influence 

of the plant is much bigger than anticipated and the C supply within this zone turns out to 

be much more homogeneous than generally expected. Except for AMF, the labeled fungal 

community predominantly consisted of single celled organisms like yeasts and possibly 

AMFs parasitizing Chytridiomycota. Fast growing saprophytic sugar fungi could 

surprisingly not be identified as root exudate consumers, they seem to be less relevant in 

food webs that are fuelled by plant derived C. 

Generally, the portrayed plant C associated microbial soil food web has a high turnover 

and we observed a rapid succession of enriched organisms. 5 days post labeling mainly 

rhizosphere protozoa, especially flagellates, thrive on labeled organisms like the 

rhizosphere bacteria Sphingobium, 3 days later a complex protozoan community of 

flagellates, amoebae and ciliates in the rhizosphere and bulk soil is (directly or) indirectly 

consuming root-derived C.  
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Taken together, we reveal that food webs of root associated soil microbes are 

fundamentally different to those in bulk soil and that AMFs, yeasts and Peronosporales are 

primary consumers of plant derived nutrients, contrasting the classic notion of bacteria as 

the major recipients of nutrients. 
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No labeled bacterial T-RFs were observed before day 5. On the other days, only few 

labeled T-RFs were identified (Table 1) in the bulk soil. At day 5, T-RFs of, 428 bp, 447 

bp and 487 bp were labeled, the T-RFs of 132 bp, 447 bp and 487 bp on day 8, and the T-

RFs of 447 bp and 487 bp on day 11. In the rhizosphere, only few bacterial T-RFs were 

labeled on day 5 and 8, similar as in bulk soil samples. On day 5, one T-RF with 72 bp 

appeared weakly labeled. On day 8, T-RFs with 147 bp, 435 bp and 447 bp were 13C 

enriched in the rhizosphere (Table 1). 

 

Table 1: Labeled T-RFs with assigned taxa. exp. T-RF: T-RF recognized as labeled by 

comparing T-RFLP fingerprint of SIP gradient fractions from 13C treatments and 12C-

controls; in-silico T-RFs: best matching T-RF found in according contiq sequences. ???: no 

distinct taxa were found for this T-RF. 
 

  Day 5  Day 8 

  
exp. 

T-RF 
taxa 

in-silico 

T-RFs 

exp. 

T-RF 
taxa 

in-silico 

T-RFs 

 428 ???  132 ???   

  bulk soil 447 Opitutus 451 447 Opitutus 450 

  487 Opitutus 487 487 Opitutus 487 

 72 Arthrobacter 67 147 Azospirillum 150 

rhizosphere    435 Mucilaginibacter 435 

     447 Opitutus 450 

 
 

Only a small subset of the soil bacterial community was found to be enriched in 13C by T-

RFLP fingerprinting, additional taxa with low abundances were labeled as indicated by 

pyrotag sequencing. This discrepancy results from the generally low abundance of 13C 

enriched taxa in our experiment. Hence, T-RFs of most labeled bacteria were probably 

masked by unlabeled rRNA with the same T-RFs, and therefore not detected in the 

fingerprint approach.  
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Fig. S 1: Bar plots of the 16S rRNA T-RFLP fingerprints. Arrows indicate fractions from 

‘heavy’ (base) to ‘light’ (point) of the 12C and 13C gradients. d1, d3, d5, d8, d11 and d16 

are the sampling time points 1, 3, 5, 8, 11 and 16 days after the experiment started. 
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Fig. S 2: Bar plots of the eukaryotic rRNA T-RFLP fingerprints. d5 and d8 are the

sampling time points 5 and 8days after the experiment started.
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Chapter III: Eat all you can - Resource partitioning

between bacteria, fungi and protists in the detritusphere∗

Abstract

The mineralization and flow of plant derived C in soil is relevant to global C cycling.

Current models of organismic C fluxes in soil assume separate bacterial and fungal energy

channels in the detritusphere, depending on substrate complexity and recalcitrance. Still,

precise details on the most relevant microbiota involved, as well as on resource

partitioning, interactions and competition between them are largely lacking. Here, a

microcosm experiment was performed to trace the mineralization and assimilation of four

13
C labeled detritusphere substrates (glucose, cellulose, maize leaves and roots) in an

agricultural soil. Key label assimilating bacteria, fungi and protists were identified by

rRNA-SIP and pyrotag sequencing. The different substrates were consumed by only a few

key-players within the three investigated kingdoms. Distinct lineages within the

Actinobacteria, Bacteroidetes and Gammaproteobacteria were the main bacterial

decomposers. For fungi, basidiomycetous yeasts degraded labile and ascomycetes the more

recalcitrant substrates. Specific protists (Pythium spp.) were also highly active already in

early stages of substrate decomposition. Thus, bacteria, fungi and protists were identified

as primary consumers of all substrates, irrespective of complexity or recalcitrance.

Secondary trophic activity was more apparent for amoeboid protozoa than for flagellates,

and was observed also for bacterivorous as well as fungivorous protozoa and bacterial

micropredators. Only for detritusphere bacteria, consumer diversity increased with

substrate complexity. Members of all investigated kingdoms simultaneously consumed

available detritusphere substrates, irrespective of resource quality. Thus, separate energy

channels were not apparent in this agricultural soil, which advances current modeling

concepts for litter decomposition in soil.

for information about Co-authorships see page 155
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Introduction

Microbes fulfil crucial functions as primary decomposers of organic material such as plant

litter in soil (Berg and McClaugherty 2008, Schmidt et al. 2011). Bacteria have been

classically understood to be mainly involved in the degradation of labile organic matter,

being more active in early phases of decomposition (‘bacterial energy channel’). In

contrast, fungi were assumed to be more involved in the degradation of recalcitrant

compounds and to dominate in later stages of decomposition (‘fungal energy channel’, De

Boer et al. 2005, Moore and Hunt 1988, Paterson et al. 2008). However, more recent work

has suggested a significant role of bacteria also in the mineralization of recalcitrant

substrates, and of fungi in early stages of labile plant litter decomposition (Bastian et al.

2009, España et al. 2011, Poll et al. 2010). This has fuelled a still ongoing debate on the

specific functions of distinct soil microbiota in different phases of detritus degradation

(Strickland and Rousk 2010).

Soil microbes are known to undergo a succession during the degradation of detritus

(Bastian et al. 2009, Poll et al. 2010, Voriskova and Baldrian 2013). Furthermore, the

diversity of soil microbiota is positively influenced by substrate complexity and has been

shown to increase during decomposition (Mula-Michel and Williams 2012). Thus, resource

partitioning between microbes consuming more complex substrates may be an important

driver of the diversity of soil microbial communities (Zhou et al. 2002). Yet to date, the

role of these important mechanisms in controlling key microbial populations in the

detritusphere across microbial kingdoms has not been addressed.

Higher trophic levels also significantly influence the primary degraders of organic matter.

The bacterial energy channel is understood to be subject to top-down control by protozoan

grazers, the next relevant trophic level of soil food-webs (De Ruiter et al. 1996, Ekelund

and Ronn 1994). Fungal hyphae and yeast cells as well as complex organic matter can also

be consumed by protozoa (Adl and Gupta 2006, Hess et al. 2012). Substrate-dependent

successions of prey organisms can also be expected to affect the succession of protozoan

grazers. However, the larger group of protists is also known to harbour primary detritus

decomposers (Termorshuizen and Jeger 2008). Thus, although a general understanding of

the ecology of protists exists for the detritusphere, a comprehensive grasp of their trophic

strategies, interactions and competition for resources with other microbes remains to be

elaborated (Tixier et al. 2013).
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Modern isotopic labeling strategies such as nucleic acid-based SIP can be seminal for the

tracing of substrate derived C flows and the identification of key-microorganisms in the

soil detritusphere (Stursova et al. 2012). While most respective studies have been focused

on bacterial consumers of defined detritusphere substrates (e.g. (Haichar et al. 2007,

Padmanabhan et al. 2003, Schellenberger et al. 2010), a number of SIP studies has also

addressed the use of complex substrates over different kingdoms and/or trophic levels

simultaneously (Bernard et al. 2007, Drigo et al. 2010, Eichorst and Kuske 2012, Lueders

et al. 2006, Stursova et al. 2012, Vandenkoornhuyse et al. 2007). Still, a comprehensive

tracing of the turnover of a range of
13

C labeled plant-derived substrates of distinct quality

over all most relevant microbial groups in a given soil has not been reported to date.

Here, a SIP microcosms experiment was conducted with a well investigated arable soil

from an experimental maize field (Dibbern et al. 2014, Kramer et al. 2012, Pausch et al.

2013, Scharroba et al. 2013). Treatments included the amendment of
13

C labeled glucose

and cellulose as representative components of plant biomass, as well as maize leaves and

roots as composite substrates. We traced key label-assimilating bacteria, fungi and protists

by rRNA-SIP at an early and a later stage of decomposition. rRNA-SIP was combined with

pyrotag sequencing, a strategy yielding superior insights into the diversity of labeled taxa

(Pilloni et al. 2012, Stursova et al. 2012). We hypothesized that i) the complexity and

recalcitrance of substrates defines primary consumers across kingdoms; ii) distinct

bacterial and fungal substrate utilization channels may actually not exist; and that iii) the

diversity of primary consumers as well as secondary trophic links should increase with

substrate complexity. This comprehensive approach can significantly advance the current

understanding of resource partitioning and trophic interactions between detritusphere

microbes in arable soils.
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Materials and Methods

Soil

The soil originated from a recently installed agricultural field experiment located near

Göttingen (Germany), designed to trace the flow of plant derived C into soil food webs

(Kramer et al. 2012). Topsoil (0-10 cm) was taken from plots under wheat in October

2010. The dominant soil types at the sampling site are Cambisols and Luvisols. The C and

N content of the soil were 1.37 and 0.14 %, respectively; soil pHCaCl2 was 6.0. Topsoil

texture comprised 7 % clay, 87 % silt and 6 % sand. Further soil parameters can be found

in (Kramer et al. 2012). Rapid and pronounced incorporation of litter derived C into fungal

biomass has been shown, suggesting a high activity and assimilation potential of fungi in

the detritusphere of this soil (Kramer et al. 2012).

Microcosm setup for SIP

Soil corresponding to 50 g dry weight was filled into small steel cylinders (diameter = 5.5

cm, height = 4 cm). Four different substrates (glucose, cellulose, senescent maize leaves

and roots) were mixed into the soil, all were
13

C-labeled (> 98 atom %, determined by the

supplier). Soil microcosms without substrate amendment as well as with unlabeled

substrates (natural abundance of δ
13

C; ‘
12

C controls’) were set up as controls. Substrates

were purchased from IsoLife (Wageningen, Netherlands). Materials were added to the soil

to a final amount of 12 mg C microcosm
-1

(240 µg C g
-1

soil). Soil cylinders were placed

into air-tight glasses containing a small vessel attached to the lid to hold 1 M NaOH for

absorbing evolving CO2. The microcosms were incubated in a climate chamber at 12°C,

representing the long term mean temperature of autumn months at the field site.
12

C

treatments including controls were replicated three times while
13

C treatments were not

replicated. For further details see SI.

CO2 production, microbial biomass C (Cmic), as well as the δ
13

C in CO2 and Cmic was

determined during incubation as described (SI). The relative amounts of substrate derived

C in CO2 and Cmic were inferred. Microcosms were destructively sampled after 2, 8, 16 and

32 days.
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RNA extraction and rRNA stable isotope probing (rRNA-SIP)

RNA was extracted from soil as described by Lueders et al (2004a) with minor

modifications (see SI). RNA extracts from the most representative time points were

selected for SIP gradient centrifugation based on substrate mineralization data, substrate

derived CO2 and assimilation. These were day 8 (high substrate use) and day 32 (later

stage of decomposition) for all treatments. Soil from
12

C-control incubations was pooled

and extracted as one sample. Isopycnic centrifugation and gradient fractionation were done

as previously described (Glaubitz et al. 2009, Kleindienst et al. 2014) with 750 ng of total

RNA loaded into each gradient resulting in 12-13 fractions per sample.

Fingerprinting and pyrotag sequencing of density resolved rRNA

Bacterial, fungal and protistan rRNA in resolved SIP fractions (fractions 2 to 10 of all

gradients) were analysed by T-RFLP fingerprinting (Euringer and Lueders 2008, Glaubitz

et al. 2009, Lueders et al. 2004a). Only the glucose and leaf treatments were analysed for

protists. See SI for full methodological detail. Based on these rRNA fingerprints (Figs. S 1,

S 2, S 3, see page 115 - 117), fractions 3 (‘heavy’) and 8 (‘light’) of the
12

C and
13

C SIP

gradients from day 8 and 32 were selected and subjected to 454 amplicon pyrosequencing

(Kleindienst et al. 2014, Pilloni et al. 2012). Further details are given in the SI.

Calculation of taxon-specific enrichment factors in heavy fractions

To directly identify taxa involved in the assimilation of
13

C from amended substrates

within the different groups (bacteria, fungi, protists), pyrotag ‘enrichment factors’ (EF) in

‘heavy’ rRNA fractions were deduced modified after Zumsteg et al. (2013). We calculated

enrichment factors if the relative abundance of a given taxon in the ‘heavy’ rRNA of the

13
C treatment was > 2 % for at least one treatment and one time point. Only for protozoa,

all taxa were included in the calculation irrespective of their relative abundance in the

heavy fractions. The enrichment factors were calculated as follows:

Enrichment =
13C

heavy /
13C

light –
12C

heavy /
12C

light,

where
13C

heavy and
13C

light is the relative abundance of reads of a given taxon in

sequenced heavy and light rRNA fractions from
13

C treatments, and
12C

heavy and
12C

light

is the same for the respective
12

C-control treatments. All taxa which showed an enrichment

factor > 0.5 where considered as
13

C-labeled. In the interpretation of our labeling results,
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not only these enrichment factors, but also total relative rRNA read abundance of given

taxa in ‘heavy’ rRNA in
13

C treatments, as well as labeling patterns evident from T-RF

abundances linked to certain taxa across entire SIP gradients were considered (Figs. S 1, S

2, S 3).

Consumer diversity in heavy fractions

The ‘functional organization’ (Fo) index was calculated for the T-RFs of ‘heavy’
13

C-

gradient fractions as a further measure of the diversity and evenness of labeled bacterial

and fungal populations. Fo is based on Pareto-Lorenz evenness curves (Marzorati et al.

2008), and as in Shannon-Wiener diversity H’, community richness and relative

abundances of individual taxa are considered in Fo. However, rare taxa are less important,

as the cumulative relative abundance of 20 % of all taxa is derived. This would be 0.2 at

perfect evenness. The higher the Fo index, the more important the dominating taxa and the

less diverse the respective community becomes. Fo was calculated and averaged over three

‘heavy’ rRNA fractions per
13

C-gradient.

Results

Mineralization of amended substrates and
13

C assimilation

Mineralization of
13

C labeled substrates as well as C flow into Cmic depended on the quality

of the added substrate. Approximately two-thirds of added glucose-C and cellulose-C were

mineralized after 32 days of incubation, but only ~45 and ~12 % of leaf and root C were

mineralized over the same time, respectively (Fig. 1). Mineralization of
12

C and
13

C

substrate amendments was not significantly different (F1,14 = 0.004; p = 0.95). At day 2,

almost 70 % of the CO2 produced originated from glucose in the respective treatments, but

was diluted down to around 7 % by the end of the experiment (Fig. 2A). In contrast,

mineralization of cellulose and maize leaves peaked at day 8, with 64 and 48 % of

substrate-derived CO2, respectively. In the root treatment, the proportion of substrate

derived CO2 remained at a constantly low level, between 12 and 17 % throughout the

experiment (Fig. 2A). Consistently, resource-derived C incorporated into Cmic was highest
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for glucose (~40 %) after only 2 days of incubation (Fig. 2B). Assimilation efficiency

appeared much lower for the other substrates, and substrate-derived C was at a maximum

of ~15 % for cellulose on day 8, and of ~11 % and ~5 % for leaf and root, respectively,

towards the end of the experiment (Fig. 2B).

Fig. 1: Substrate-C mineralized to CO2 after 32 days of soil incubation.

Fig. 2: Time course of substrate derived C in CO2 (A) and Cmic (B) during SIP incubation
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rRNA stable isotope probing

The incorporation of
13

C into substrate-specific subsets of bacterial, fungal and protistan

communities was evident already via the comparison of T-RFLP fingerprints from
13

C and

12
C-control gradients (Figs. S1, S2, S3). However, our interpretation of labeling results

relies chiefly on taxon specific pyrotag ‘enrichment factors’ (EF). To support this novel

approach, almost all important labeled T-RFs (Figs. S1, S2, S3) could in fact be linked to

pyrotag-defined microbial taxa (see SI for details and methodological discussion). An

overview of the most relevant labeled prokaryotes and microeukaryotes detected in our

experiment is given in Table 1.

Labeled bacterial rRNA

The different bacterial taxa incorporating
13

C-label belonged mainly to three bacterial

phyla: Actinobacteria, Bacteroidetes and Proteobacteria (Fig. 3). Amongst the latter,

mostly Gammaproteobacteria, but also Beta- and Deltaproteobacteria were labeled. At

day 8 of incubation, reads affiliated with Arthrobacter spp. (T-RFs 61, 71, 159, Fig. S 1)

were strongly enriched (EF 31, Fig. 3) and most abundant (~40 %, Fig. S 4) in ‘heavy’

rRNA of the glucose treatment. However, also unclassified Micrococcaceae (T-RFs 61,

71), Flavobacterium spp. (T-RF 80), unclassified Oxalobacteraceae and Pseudomonas

spp. (T-RF 490) were enriched, albeit at lower read abundances. Interestingly, although

most glucose mineralization activity was complete after 8 days, a dynamic labeling pattern

was still observed after 32 days. Here, reads related to Flavobacterium spp. had lost the

label; those related to unclassified Micrococcaceae, Humicoccus (T-RFs 137, 145) and

Pseudomonas spp. became more enriched. But Arthrobacter spp. was still the dominant

taxon in ‘heavy’ rRNA.

In the cellulose treatment Cellvibrio (T-RFs 137, 486, 487, 490) and Flavobacterium (T-

RFs 79, 80) related reads were most highly enriched (EF 297 and 99) and abundant (40 and

27 %) in ‘heavy’ rRNA after 8 days. While both were strongly reduced after 32 days,

sequences of unclassified Streptomycetaceae and Kitasatospora spp. (T-RF 157) became

very important in labeled rRNA at this later time point. Less enriched and/or abundant taxa

were Cytophaga spp. after 8 days and Rugamonas spp. after 32 days.



Table 1: Summary of most important 
13

C-labeled taxa in the detritusphere SIP experiment 

Treatment  Glucose   Cellulose   Leaf   Root  

Time point 8d  32d 8d  32d 8d  32d 8d  32d 

Bacteria ++ 

++ 

+ 

+ 

+ 

+ 

 

Arthrobacter 

Micrococcaceae 

Flavobacterium  

Pseudomonas  

Oxalobacteraceae  

Humicoccus 

++ 

◄ 

— 

◄ 

+ 

◄ 

 

++ 

++ 

— 

— 

+ 

+ 

+ 

+ 

 

Cellvibrio 

Flavobacterium 

Streptomycetaceae 

Kitasatospora 

Cytophaga 

Mucilaginibacter 

Rugamonas 

Myxobacteria 

► 

► 

◄ 

◄ 

► 

— 

◄ 

◄ 

++ 

++ 

++ 

+ 

+ 

+ 

+ 

— 

 

Cellvibrio 

Flavobacterium 

Mucilaginibacter 

Cytophaga 

Ohtaekwangia 

Streptomycetaceae 

Kitasatospora 

Myxobacteria 

◄ 

++ 

— 

► 

◄ 

+ 

+ 

◄ 

 

++ 

++ 

++ 

+ 

+ 

— 

+ 

— 

 

Cellvibrio 

Flavobacterium 
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— 

◄ 

— 

— 

◄ 

— 

◄ 
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 n.a.  

* ++ strongly labeled; + labeled; – not labeled or detected; ◄ increasing labeling; ► decreasing labeling; n.a. not analysed 
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The highest enrichment in leaf and root treatments was observed for the abundant taxa 

Flavobacterium (T-RFs 79, 80, 84) and Cellvibrio spp. (T-RFs 486, 487, 490), but also in 

the less frequent Mucilaginibacter (T-RF 524) and Cytophaga spp. after 8 days. After 32 

days, high enrichment was detected for Cellvibrio, Flavobacterium and Ohtaekwangia spp. 

(T-RF 205) in both leaf and root treatments. In contrast to the leaf treatment, Cellvibrio 

rRNA showed a strongly decreased 13C enrichment in the root treatment. Similarly, some 

of the Actinobacteria became more enriched in ‘heavy’ rRNA upon biomass degradation 

after 32 days. Interestingly, the unclassified Polyangiaceae (T-RFs 69, 500) as well as 

other Myxobacteria became noticeably more abundant (3 – 17 %) and also enriched (EF 4 

– 15) with cellulose, leaf and root amendments after 32 days. Only one genus 

(Ohtaekwangia spp.; T-RF 205) appeared exclusively enriched in leaf and root treatments 

after 32 days, while virtually no labeling was observed under glucose or cellulose 

amendments.  

 

Fig. 3: 
13C-labeled bacterial taxa after 8 and 32 days of incubation. Labeling was inferred 

via comparative pyrotag enrichment in ‘heavy’ vs. ‘light’ rRNA gradient fractions of 13C 
and 12C treatments. Only labeled taxa are shown. 
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In essence, the diversity of key taxa labeled during leaf and root decomposition was not 

noticeably larger than with glucose and cellulose (Table 1). However, the functional 

organization (Fo) of bacterial rRNA fingerprints in ‘heavy’ fractions showed a clear 

decrease towards the more complex substrates (Table 2) suggesting a higher diversity and 

fewer dominant bacterial taxa in rRNA of labeled bacterial consumers of leaves and roots.  

 

Table 2: Functional organization (Fo) of heavy rRNA fingerprints as a measure of the 
structure of labeled microbial populations.  

Time 8 days 32 days 

Treatment Glucose Cellulose Leaf Root Glucose Cellulose Leaf Root 

Bacteria 
0.77  

± 0.01 a 
0.75  

± 0.04 a 
0.68  

± 0.01 b 
0.57  

± 0.03 c 
0.77  

± 0.03 ab 
0.83  

± 0.02 a 
0.61  

± 0.05 c 
0.71  

± 0.06 bc 

Fungi 
0.85  

± 0.03 ab 
0.84  

± 0.09 ab 
0.88  

± 0.02 a 
0.70  

± 0.09 b 
0.64  

± 0.15 b 
0.80  

± 0.10 ab 
0.89  

± 0.03 a 
0.83  

± 0.01 ab 

* Fo was calculated for fingerprints as introduced by (Marzorati et al. 2008). Calculations 
were averaged over the ‘heavy’ rRNA fractions 2, 3 and 4 of 13C-gradients and are shown 
± SD. Letters indicate significant differences between the treatments at the respective date 
(Tukey HSD; p < 0.05). 

 

Labeled fungal rRNA  

Labeled fungi were less diverse and showed less pronounced enrichment in ‘heavy’ rRNA 

than bacteria. However, they showed more pronounced preferences for specific substrates. 

All fungal degraders of the added detritusphere substrates belonged to Basidiomycota and 

Ascomycota (Fig. 4). A consistent trend of the Fo of ‘heavy’ fungal rRNA fingerprints with 

substrate complexity was not observed (Table 2). 

Glucose C was mainly assimilated by Cryptococcus spp. (T-RF 564, Fig. S 2), as shown by 

highly abundant (>50 %) and enriched (EF 7) reads in ‘heavy’ rRNA (Figs. 4, S 5). 

Surprisingly, no other fungi were labeled in the glucose treatment. In turn, Cryptococcus 

yeasts were not labeled in any of the other treatments. Under cellulose amendment, 

enrichment was only observed for Chaetomium-related phylotype 1 (T-RF 708) after 8 

days (~23 %, EF 9), while Geomyces spp. belonging to the Ascomycota were the only 

labeled fungi after 32 days. In the leaf and root treatments, a second Chaetomium-related 
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phylotype (T-RF 708) was enriched and highly abundant after 8 days (39 – 61 %, EF 4). 

After 32 days, labeling was additionally observed for Fusarium spp. in both plant biomass 

treatments, as well as for the first Chaetomium phylotype in the root amendment. 

 

Fig. 4: 
13C-labeled fungal and protist taxa after 8 and 32 days of incubation. Labeling was 

inferred via comparative pyrotag enrichment in ‘heavy’ vs. ‘light’ rRNA gradient fractions 
of 13C and 12C treatments. Only labeled taxa are shown. 

 

Labeled protist rRNA 

Protists within the Peronosporomycetes (formerly: Oomycetes) related to Pythium spp. (T-

RFs 418, 421, Fig. S 3) were clearly enriched (EF ~8) and abundant (12 – 18 %) in ‘heavy’ 

rRNA fractions of both treatments investigated for protists (glucose and leaf, Figs. 4, S 5). 

Protozoa rRNA read abundances in the ‘heavy’ rRNA fractions were very low in the 

glucose treatment (in comparison to fungal and Oomycete rRNA which were also detected 

with the used eukaryote primer). Overall, five amoeboid and three flagellate taxa appeared 

enriched in the leaf amendment. After 8 days, enrichment was found in four amoeboid taxa 

with strongest enrichment in the highly abundant Vannellidae (Amoebozoa, T-RF 429, 4.7 

%, EF 14) and in the less abundant Nucleariidae (Opisthoconta, 0.8 %, EF 7) (Figs. 4, S 5). 

Labeling of Vannellidae and Vampyrellidae disappeared after 32 days, while still 
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detectable in Acanthamoebidae (T-RF 484) and Nucleariidae. Leptomyxida (Amoebozoa) 

were also enriched at this later time. Amongst the flagellates, the Chrysophyceae appeared 

labeled after 8 days. This label had disappeared again after 32 days, but increased in 

Chlamydophryidae (T-RF 412), as well as in Rhynchomonas spp.. 

 

 

 

Discussion 

The diversity and succession of specific pro- and microeukaryotes actively involved in the 

degradation of detritusphere substrates in an agricultural soil was investigated here. Our 

approach was based on the interpretation of rRNA labeling relying on taxon specific 

pyrotag abundances in density-resolved gradient fractions, which is an advance of classical 

gradient interpretation based on fingerprinting (Lueders et al. 2004b, Lueders et al. 2006). 

A careful discussion of this approach can be found in the SI.  

 

Mineralization and assimilation of detritusphere substrates  

Mineralization was not influenced by the isotopic composition of amendments (Fig. 1). 

There was no difference in cumulative mineralization between the glucose and cellulose 

treatments, but initial mineralization rates were clearly highest for glucose (Fig. 2A). The 

much less efficient mineralization and assimilation of plant biomass amendments (Figs. 1, 

2) relates directly to the higher complexity of these materials (Bertrand et al. 2006, De 

Boer et al. 2005). Additionally, roots appeared more resistant to decomposition than 

leaves, possibly due to their lower content of water soluble compounds and their more 

rigid secondary cell wall structures (Bertrand et al. 2006). Overall, the observed substrate 

mineralization and assimilation rates indicated an adequate range of substrates chosen to 

address our initial hypotheses.  

 

Bacterial key-players  

The identified actinobacterial glucose consumers (unclassified members of the 

Micrococcaceae and Arthrobacter spp., Fig. 3, Table 1) have been previously described as 

glucose utilizers in soil (Padmanabhan et al. 2003, Schellenberger et al. 2010). The high 
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abundance of labeled Arthrobacter rRNA in our study indicated a high specific activity. 

Still, respective rRNA enrichment was not as high as for some of the labeled taxa in the 

other treatments, suggesting the simultaneous use of other intrinsic and probably more 

recalcitrant substrates. Therefore, involvement of Arthrobacter spp. in priming effects is 

likely, as previously proposed for Actinobacteria (Bastian et al. 2009, Bernard et al. 2007). 

Pseudomonas spp. are well known as opportunistic soil and rhizosphere bacteria 

(Hartmann et al. 2009). Surprisingly, this taxon was labeled only under glucose 

amendment in our study (Fig. 3, Table 1). This is partly in contrast to previous studies, 

where Pseudomonas spp. have been shown to utilize glucose as well as more recalcitrant 

compounds including lignin (Goldfarb et al. 2011, Padmanabhan et al. 2003).  

The early cellulose degrading community, dominated by Cellvibrio, Flavobacterium and 

Cytophaga spp., shifted to unclassified members of Streptomycetaceae and Kitasatospora 

spp. after 32 days. Members of Bacteroidetes, Cellvibrio and Flavobacterium spp. 

specifically, are known to grow on different sugars and on cellulose (Haichar et al. 2007, 

Padmanabhan et al. 2003, Schellenberger et al. 2010). Also many Streptomycetes can 

decompose polysaccharides and possess both exo- and endocellulases (Kämpfer 2006), but 

their successional involvement as observed here has never been reported. Their capacity to 

form hyphae could potentially be relevant during later stages of decomposition. 

The consistent labeling of most bacterial taxa identified as cellulose decomposers also in 

the plant residue amendments illustrates the importance of cellulose as a substrate for plant 

litter degraders. Ohtaekwangia spp., the only taxon solely labeled in the plant litter 

treatments, seemed to thrive specifically on biomass constituents other than glucose and 

cellulose. Similarly, the higher abundance and stronger label of Mucilaginibacter spp. in 

the plant biomass amendments after 8 days indicated a preferred utilization of other 

substrates. A clear labeling of unclassified members of Polyangiaceae, Sorangium and 

Byssovorax spp. (Deltaproteobacteria) emerged in cellulose, leaf and root treatments after 

32 days. These Myxobacteria are known as micropredators (Lueders et al. 2006, 

Reichenbach 1999), and could have been labeled via feeding on microbial biomass of 

primary substrate consumers. 

 

Fungal key-players  

Detritusphere fungi showed not only a clear distinction between defined substrate-utilizing 

taxa (glucose and cellulose), but in contrast to bacteria, also between utilizers of defined 
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(cellulose) and more complex substrates (leaf and root, Fig. 4). Although Zygomycetes, so 

called ‘sugar fungi’ such as Mortierella and Mucor spp., are often considered the most 

important users of low molecular weight C sources (De Boer et al. 2005), Cryptococcus 

spp. dominated glucose utilization throughout our experiment. This highlights the role of 

these fast-growing yeasts as important competitors for labile resources in soil. 

Cryptococcus species were also identified as cellulose utilizers in another recent study 

(Stursova et al. 2012), but in our experiment, they were labeled only with glucose.  

The dominating early stage cellulose utilizer, Chaetomium-phylotype 1, belongs to a genus 

known to include fast growing fungi (Straatsma et al. 1994). However, these were 

completely replaced by Geomyces spp. at the later stage of decomposition. Geomyces spp. 

can thrive under nutrient limitation (Hayes 2012) which could well explain their delayed 

involvement. Both genera have been previously identified as cellulose utilizers in SIP 

experiments (Eichorst and Kuske 2012, Stursova et al. 2012). The distinct substrate 

utilization pattern of both labeled Chaetomium phylotypes suggests that these may have 

different exoenzymatic capabilities. Critical enzymes in the degradation of plant biomass 

are known to be generally much less prevalent in bacterial than fungal populations 

(Romani et al. 2006). The generally high abundance of Chaetomium-phylotype 2, 

especially in ‘heavy’ rRNA fractions (Fig. S 5), could indicate that these fungi were of key 

importance in the release of cellulose from plant biomass, thus potentially even making it 

available for other detritusphere microbes. 

Although Fusarium species are opportunistic plant pathogens, known to be amongst the 

first colonizers of both living and dead plant biomass (Leplat et al. 2013), their 

involvement in the degradation of leaf and root amendments became apparent only after 32 

days. In our experiment, these fungi seemed only of minor importance during the initial 

attack on maize biomass, especially when compared to the aforementioned Chaetomium 

spp.. 

 

Protist key-players  

The flow of C into protists was investigated for the glucose and leaf litter treatments only. 

Because of the large overlaps in labeled bacteria detected in the non-glucose treatments 

(Table 1), we are confident that this subset allowed inferring also the most relevant 

distinctions in protist labeling. Although the Peronosporomycetes (formerly Oomycetes) 

morphologically and physiologically resemble fungi, they are classified as heterotrophic 
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protists in the taxon Stramenopiles (Adl et al. 2005). Peronosporomycetes, such as Pythium 

are important plant pathogens (Hendrix and Campbell 1973), but can also act as pioneer 

saprotrophs on fresh plant residues in soil (Deacon 1997). The high abundance and 13C-

enrichment of protists rRNA related to Pythium spp. for both treatments and time points 

indicated an important role of these protists during decomposition of these substrates. 

Remarkably, no other protists were identified as labeled in the glucose treatment.  

In contrast, clear labeling of protozoan taxa over time indicated a substantial flow of C 

from labeled prey into protozoan grazers in the leaf treatment. 13C enrichment was mainly 

found in amoeboid protozoa (Fig. 4). Acanthamoeba are among the most dominant 

protozoa in soil (Page 1976). Not surprisingly, Acanthamoebidae were one of the dominant 

labeled taxa, especially at the later stage of leaf decomposition, while Vannellidae 

dominated early in the succession (Fig. S 5). A succession of labeled taxa during leaf 

decomposition was also observed for bacterivorous flagellates, although their rRNA was 

much less abundant. Likely the amoeboid life style was more competitive under the 

conditions in our soil microcosms.  

Remarkably, facultative fungivorous taxa, such as Vampyrellidae (Hess et al. 2012) and 

Leptomyxida were also labeled in the leaf treatment. Traditionally, mostly bacterivorous 

protists are considered as relevant in soil food webs (Moore et al. 2003, Moore et al. 2005, 

Mulder et al. 2011), despite fungivorous protozoa are also ubiquitous (Ekelund 1998, Petz 

et al. 1986). Our study clearly demonstrates a significant C flux from litter material to 

facultative fungivorous amoebae.  

 

Substrate complexity and consumer diversity 

We show that substrate complexity and recalcitrance indeed defined the primary 

consumers. However, unexpectedly, we did not observe marked distinctions in key-taxa 

which assimilated C from leaf and root detritus, in spite of the lower mineralization and 

assimilation of the roots. Although effects of substrate quality (e.g. recalcitrance) on 

overall microbial community structure and diversity in soils have been reported 

(Nicolardot et al. 2007), this seems not always the case (Mula-Michel and Williams 2012). 

In our study, the most noticeable distinction between leaf and root treatments was that 

some of the labeled bacterial populations showed a much higher enrichment with root 

amendment after 8 days, but were sometimes less abundant in ‘heavy’ rRNA compared to 

the leaf treatment (i.e. Cytophaga, Mucilaginibacter, Flavobacterium and Cellvibrio spp.). 
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This indicates that these taxa may have developed strategies to specifically access 

recalcitrant substrates, which may be a key determinant of bacterial niche partitioning in 

the detritusphere (Baldrian et al. 2013, Goldfarb et al. 2011). Such patterns were not 

observed for fungal decomposers. 

Surprisingly, in view of the considerable microbial diversity present in the investigated soil 

(Dibbern et al. 2014), all substrates appeared to be consumed by only a few key-players 

over all investigated kingdoms. The early dominance of yeasts and Actinobacteria indicate 

an inter-kingdom competition between fast growing r-strategists for labile substrates. This 

is in line with the hypothesis that despite the high diversity of microbes in soil, only a 

minority dominates decomposition processes (Vandermeer et al. 1998). However, such 

mechanisms seem to be less pronounced for more complex substrates, as supported by the 

lower Fo (higher evenness) of labeled bacterial rRNA in leaf and root treatments compared 

to defined substrates (Table 2).  

 

Trophic interactions  

The most marked succession of bacterial and fungal key-players was observed during 

cellulose decomposition, a substrate of intermediate complexity and recalcitrance. 

Potentially, top-down rather than bottom-up controls of bacteria could have been involved 

here. This was especially apparent in the shifting dominance of Cellvibrio and 

Flavobacterium to Actinobacteria populations in the cellulose, but also leaf and root 

treatments over time (Table 1, Fig. 3). It is well known that the Gram-positive 

Actinobacteria (dominating glucose consumers after 8 days), are far less attractive prey for 

protozoa than Gram-negatives due to their more rigid cell walls and hyphal growth 

(Jezbera et al. 2005). It is conceivable that the initial bursts of Cellvibrio and 

Flavobacterium populations in the cellulose treatment were controlled top-down by the 

diverse amoeboid protozoa labeled in the leaf treatment, providing niches for the 

development of more grazing-resistant actinobacterial cellulose utilizers over time. 

Similarly, the absence of labeled protozoan rRNA in the glucose treatment could well be 

related to Actinobacteria as main utilizers.  

Our labeling results also provide tentative evidence for intra-bacterial predation in the 

detritusphere. As mentioned above, myxobacteria are known for their specialization in 

decomposition of biomacromolecules and complex organic matter (Eichorst and Kuske 

2012, Reichenbach 1999), but they are also potential micropredators of bacterial 

populations (Lueders et al. 2006). Their secondary rRNA labeling in the cellulose and 
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plant treatments suggests that they consumed biomass of primary detritusphere bacteria in 

parallel to protozoan predators.  

 

 

 

Conclusions 

In this detritusphere SIP experiment of an agricultural soil, bacteria, fungi, and also protists 

were identified as primary consumers of all amendments, irrespective of substrate 

complexity or recalcitrance. Therefore, the notion of distinct detritusphere energy channels 

in soil (De Boer et al. 2005, Moore and Hunt 1988, Paterson et al. 2008) appears to be an 

oversimplification not supported by our data. In contrast, our results support an ‘eat all you 

can’ perspective of the simultaneous activity and overlapping substrate usage patterns of 

bacteria, fungi and protists in the detritusphere, irrespective of resource quality. Further, 

this study provides an unprecedented level of detail on the microorganisms involved in 

detritusphere C flow in an agricultural soil. Distinct bacterivorous and presumably even 

fungivorous protozoan key-players were identified as labeled. Although taxonomic detail 

on fungal feeding protozoa in soil exists, this might be the first direct demonstration of 

their importance in a plant litter based microbial food web.  

It may not be possible to generalize the findings of this SIP study conducted for just one 

specific agricultural soil. Moreover, our methodological approach does not allow for clear 

quantitative statements on the involvement of the identified taxa in detritusphere C flow. 

Nevertheless, we believe that this work may well be of use to improve current modelling 

concepts for litter decomposition in soil. More specific, functionally and trophically 

defined microbial components may indeed be vital to improve current ecosystem models to 

more accurately predict feedbacks of e.g. changing temperatures or hydrological regime on 

C cycling (Bradford 2013, McGuire and Treseder 2010, Moore et al. 2005, van der Wal et 

al. 2013). Here, the direct linking of key microbial populations to globally relevant 

decomposition processes is still a major challenge (Trivedi et al. 2013).  
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 Supplementary Information (SI) 

 

Supplementary Materials and Methods 

Setup of microcosm experiment 

The soil was sieved (< 2 mm), stored at 4°C for a few days and water holding capacity was 

determined. Two weeks before the start of the SIP experiment, soil was pre-incubated at 

the experimental temperature of 12°C. Soil water content was gravimetrically determined 

two days before the start of the experiment. Soil moisture content was adjusted to 60 % of 

the water holding capacity. Soil bulk density was set at 1.4 g cm-3. During incubation, 

microcosms were weighed repeatedly to control water content. No significant decrease in 

soil water content was observed, adjustment was not necessary. The amended maize leaf 

(C/N: 13C of 82, 12C of 54) and root (C/N: 13C of 50, 12C of 37) material was milled (< 1 

mm) by the supplier. Microcosms were destructively sampled, the soil was homogenized 

and subsamples were stored at -80°C for RNA extraction, and at -24°C for all other 

analyses. 

 

CO2 production and microbial biomass C 

CO2 production was determined by titration over the entire incubation time in increasing 

time distances between measurements (Marhan et al. 2008). CO2 was trapped in 1 M 

NaOH and precipitated with 0.5 M BaCl2. The remaining NaOH was titrated with 0.1 M 

HCl with phenolphthalein indicator (Marhan et al. 2008). After sampling for titration, lids 

of the microcosms were left open to allow gas exchange. Another part of the precipitated 

BaCO3 was used for δ13C determination of the evolved CO2 (only in the 12C treatments). 

Microbial biomass C (Cmic) was determined by chloroform-fumigation extraction (Vance et 

al. 1987). 3 g (fresh weight) of homogenized soil was extracted with 0.025 M K2SO4 [1:4 

soil solution ratio (w/v)], shaken for 30 min at 250 rev min-1 on a horizontal shaker and 

centrifuged for 30 min at 4,422 x g. Parallel subsamples were fumigated with ethanol-free 

chloroform in a desiccator for 24 h before extraction. Organic C in the supernatants was 

measured with a DOC / TN-analyser (Dimatoc 100, Dimatec, Essen, Germany). 
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δ
13

C determination of CO2 and the microbial biomass 

For δ13C determination in evolved CO2, precipitated BaCO3 was washed with 10 ml 

deionised H2O and centrifuged at 250 x g, after which the supernatant was discarded. This 

was repeated three times until all residual NaOH was removed. Pellets of BaCO3 were then 

dried at 60°C for two days and 0.3 – 0.6 mg was weighed into tin capsules. For analysis of 

δ13C in Cmic (Marhan et al. 2010, only in 12C treatments), 10 ml aliquots of the supernatants 

of both non-fumigated and fumigated samples were dried in a rotary vacuum evaporator 

(RVC 2-25, Martin Christ, Osterode am Harz, Germany) at 60°C. The remnant was ground 

and weighed into tin capsules within a range of 7 – 30 mg (minimum of 10 µg C per 

capsule). For calculation of the δ13C of Cmic, the following equation was used: 

δ13Cmic = (cnf × δnf – cf × δf) / (cnf – cf), 

with cnf and cf the corresponding extracted organic C content (µg C g-1soil) of the non-

fumigated and the fumigated sample, and δnf and δf the corresponding δ13C values. 

δ13C measurements were done with an elemental analyzer (Euro EA 3000, EuroVector, 

Milan, Italy) coupled with an isotope ratio mass spectrometer (IRMS, Delta Plus XP, 

Thermo Finnigan MAT, Bremen, Germany). Glutamic acid USGS-40 (IAEA, Vienna; 

δ13C -26.39 ± 0.04 ‰) was used as reference material for calibration of CO2 reference gas. 

Acetanilide (C8H9NO, Merck, Darmstadt) was used as a secondary laboratory reference 

material for internal calibration. δ13C values are expressed relative to Vienna Pee Dee 

belemnite (V-PDB). 

For calculation of the relative amounts of substrate derived C in CO2 and Cmic the 

following mixing model was used: 

% C-substrate = (δsample - δreference) / (δsubstrate - δsoil), 

With δsample the δ13C value of the respective sample, and δreference the δ13C mean value of 

control samples (soil without substrate amendment). δsubstrate the δ13C value of the 

respective amended material, and δsoil the δ13C value of the Corg at the beginning of the 

experiment.  

 

RNA extraction 

Total nucleic acids were extracted from the soil following a previously described 

procedure (Lueders et al. 2004a) with minor modifications: 0.4 g (fresh weight) of soil 
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were used and bead beating was done in the presence of sodium phosphate, sodium 

dodecyl sulphate and phenol-chloroform-isoamyl alcohol (25:24:1, pH 8). All 

centrifugation steps were conducted at 20,000 x g and 4°C for 5 min. Extracted total NAs 

were dissolved in 80 µl EB buffer (Qiagen GmbH, Hilden, Germany). Silica gel columns 

(DyeEx 2.0 Spin Kit; Qiagen) were used for further purification and elimination of humics. 

DNA was removed by digestion with DNAse I (Promega, Madison, WI, USA) following 

manufacturer protocols. Afterwards, RNA was precipitated with 2 vol. PEG solution (30 % 

(w/v) polyethylene glycol 6000, 1.6 mM NaCl) and centrifugation for 30 min at 4°C and 

20,000 x g. RNA pellets were washed once with ice cold 70 % (v/v) ethanol, air-dried and 

dissolved in 50 µl EB Buffer. The resulting RNA was quantified using the RiboGreen 

quantification kit (Life Technologies, Carlsbad, CA). 

 

Quantitative gradient analyses 

After fractionation and precipitation of density-resolved rRNA, bacterial, fungal and protist 

rRNA (the latter only for selected samples) was quantified in gradient fractions via RT-

qPCR as described in Glaubitz et al.. (2009). The initial screening revealed a 13C-

dependent increase of bacterial and microeukaryotic rRNA in ‘heavy’ fractions (data not 

shown). The buoyant density of the bulk rRNA peak remained unchanged in ‘light’ 

fractions (~1.78 – 1.79 g/ml CsTFA), indicating that only specific subsets of soil 

microbiota were actively involved in the utilization of the labeled detritusphere substrates. 

 

Terminal restriction fragment length polymorphism (T-RFLP) 

fingerprinting  

Bacterial, fungal and protistan rRNA populations in resolved SIP fractions were analysed 

by T-RFLP fingerprinting. See Table S 1 for a summary of all utilized PCR assays. 

Bacterial communities were analysed with primers Ba27f-FAM / 907r and subsequent 

MspI digestion as previously described (Pilloni et al. 2011). Protistan communities were 

characterized with primers Euk20f-FAM / Euk519r and Bsh1236I digestion, in a minor 

modification of the assay originally published by Euringer and Lueders (2008). Reverse 

transcription of eukaryotic rRNA and PCR amplification was done with the Brilliant III 

Ultra-Fast SYBR Green one-step RT-qPCR Master Mix (Agilent Technologies Inc., Santa 

Clara, California) as specified by the manufacturer with 0.3 µl of each primer and 2 µl of 
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RNA template. For both bacterial and protistan amplicons, digests were purified and 

separated by capillary electrophoresis (Pilloni et al. 2011).  

Fungal communities were characterized with primers nu-SSU-0817-5’- FAM / nu-SSU-

1536-3’ (Borneman and Hartin 2000) and MspI digestion after (Edel-Hermann et al. 2008). 

First-strand cDNA was prepared using the RevertAid Premium First Strand cDNA 

Synthesis kit and provided random hexamer primers (Thermo Scientific, St. Leon-Rot, 

Germany). PCR was performed in 40 µl reaction mixtures containing 20 µl 2x GoTaq 

Green Master mix (Promega, Madison, WI, USA), 20 µM of each primer and 3 µl template 

cDNA. PCR products were purified using 5Prime PCRExtract Mini Kit (5PRIME, Inc., 

Bucksfield Road, Gaithersburg, USA) followed by MspI (Thermo Scientific, St. Leon-Rot, 

Germany) digestion of 80 ng PCR product for two hours according to the manufacturer’s 

protocol. After purification of the reaction mixture by ethanol precipitation, fungal 

communities were analyzed on a ABI 3730xl capillary electrophoresis sequencer (Applied 

Biosystems, Foster City, CA, USA) as described previously (Scharroba et al. 2012). 

Bacterial and protistan raw T-RFLP data were further processed with the T-REX online 

software (Culman et al. 2009). Background noise filtering (Abdo et al. 2006) was on 

default factor 1 for peak heights and the clustering threshold for aligning peaks across the 

samples was set to 1 using the default alignment method of T-Align (Smith et al. 2005). 

Relative T-RF abundance was inferred from peak heights. For reduction of data 

complexity, T-RFs that occurred in less than 5 % of the samples were excluded from 

further analysis. Fungal T-RFLP data with all peaks above a threshold of 100 fluorescence 

units were binned and normalized with an automatic binning script (Ramette 2009) using R 

version 2.12.2 (R Development CoreTeam 2012). The binning frame with highest 

correlation values between samples and a window size of two was chosen. Peaks with a 

relative abundance below 0.1 % were discarded as background noise. 

 

Amplicon sequencing 

Bacterial pyrotags were generated as reported previously (Pilloni et al. 2012), adapting the 

workflow to rRNA templates instead of DNA. Shortly, RT-PCR was done under identical 

conditions as for fingerprinting, applying amplicon fusion primers with respective primer 

A or B adapters, key sequence and multiplex identifiers (MID) as reported (Pilloni et al. 

2012). Amplicons were purified and pooled in equimolar 109 µl-1 concentration, and 

emulsion PCR, emulsion breaking and sequencing were performed as previously described 
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in detail (Pilloni et al. 2012) following manufacturer protocols using a 454 GS FLX 

pyrosequencer using Titanium chemistry (Roche, Penzberg, Germany). Bidirectional reads 

were quality-trimmed and filtered as previously described (Pilloni et al. 2012), and reads 

shorter than 250 bp after trimming were excluded from further analysis. Classification of 

bacterial taxa was done with the RDP classifier (Wang et al. 2007).  

Protistan pyrotags were only generated for the glucose and leaf treatments, same as for 

fingerprints. Amplicon preparation for protists was done as for bacteria but with modified 

PCR conditions (Table S1) and with the same Brilliant III Ultra-Fast RT-qPCR Master 

Mix (Agilent Technologies, Santa Clara, USA) as used for respective T-RFLP 

fingerprinting. Quality-trimming and filtering was the same as for bacterial pyrotags. 18S 

rRNA amplicon sequences were taxonomically analyzed with the CREST toolbox (Lanzén 

et al. 2012). In brief, the amplicons were taxonomically assigned by MEGAN analysis of 

BLASTN files against the SilvaMod SSU rRNA reference database (LCA parameters: min. 

bit score 330, min. support 1, top percent 2; 50 best blast hits).  

For the linking of T-RF and pyrotag data, matching sequences from bidirectional amplicon 

pools were assembled into contigs with the SEQMAN II software (DNAStar) using 

assembly thresholds of at least 97% sequence similarity over a 50 bp match window for T-

RF prediction (Pilloni et al. 2012). Only contigs containing at least one forward and one 

reverse read were used to predict in-silico-T-RFs for dominating consensus phylotypes 

using TRiFLe (Junier et al. 2008). 

For sequencing of fungal rRNA, pyrotags were amplified as described for the fungal T-

RFLP analyses, except of using the unlabeled forward primer nu-SSU-0817-5’ combined 

with the fusion primer B (modified after Becklin et al. (2012)). MID barcodes were 

inserted between the A primer and primer nu-SSU-1536-3’ to allow post-sequencing 

sample identification. PCR products were purified from agarose gels using the QIAquick 

Gel Extraction kit (Qiagen, Valencia, CA, USA). The clean amplicons were quantified 

using the Quant-IT PicoGreen dsDNA Reagent kit (Life Technologies GmbH, Darmstadt, 

Germany), diluted to 109 molecules /µl and equimolarly pooled into an amplicon library 

following manufacturer protocols (Roche, Penzberg, Germany). The fungal pyrotags were 

sequenced in one 1/4th plate using GS-FLX+ sequencer (Roche, Penzberg, Germany). The 

pyrosequences were processed and quality filtered using mothur (Schloss et al. 2009). 

Barcodes and primers were trimmed and sequences were extracted based on 100% barcode 

similarity, an average quality score of 20, read length of 300 bp after trimming of the last 

30 bp and homo-polymers of 8 bases. The chimera check command ‘uchime’ with 
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‘template self’ was used to detect potentially chimeric sequences and remove them from 

the dataset. Sequences were then clustered to operational taxonomic units (OTUs) using 

‘cd-hit-est’ with a threshold of 97 % pairwise identity. Representative sequences in the 

respective clusters, were extracted and taxonomically assigned according to the arb silva 

eukaryotic taxonomy using the ‘classify seqs’ command of mothur with 80 % cutoff. The 

taxonomic position of the dominant fungal OTUs was manually verified using the NCBI 

blast database. Fungal in-vitro T-RFs were generated based on full length clone library 

sequences done for ‘heavy’ fraction 3 with the software TRiFLe (Junier et al. 2008). 

 

Statistical Analysis 

Cumulative CO2 in 12C and 13C treatments and functional organization of bacteria and 

fungi after 8 and 32 days were analyzed by One-way ANOVA. Best fitted transformation 

(cumulative CO2: root transformation) was used to improve homogeneity of variance 

(determined by Levene’s test). Post hoc test (Tukey HSD) was used for comparison of 

means of the functional organization between treatments. Statistical analyses were done 

with the software STATISTICA 6.0 (Tulsa, OK, USA). 

 

Table S 1: Primer pairs and PCR conditions used in this study. 

Group Primers PCR conditions 

Bacteria Ba27f   (5’-3’) 
   AGA GTT TGA TCM TGG CTC AG 

Ba907r   (5’-3’) 
   CCG TCA ATT CCT TTG AGT TT 

Reverse transcription:  
30 min 45°C 
 
PCR: 5 min 95 °C; 13-25 cycles [30 sec 
95°C / 30 sec 52°C / 1 min 68°C]; 5 min 
68°C 

Protists Euk20f (5’-3’) 
   TGC CAG TAG TCA TAT GCT TGT 

Euk519r   (5’-3’) 
   ACC AGA CTT GYC CTC CAA T 

Reverse transcription:  
20 min 45°C 

PCR: 5 min 94°C; 25 cycles [30 sec 94°C / 
30 sec 52°C / 1 min 70°C]; 5 min 70°C 

Fungi Random hexamers 
 
nu-SSU-0817-5’-FAM 
TTAGCATGGAATAATRRAATAGGA 

nu-SSU-1536-3’ 
ATTGCAATGCYCTATCCCCA 

Reverse transcription: 
10 min 25°C, 30 min 60°C, 5 min 80°C  

PCR: 2 min 94°C, 35 cycles [45 sec 94°C / 
45 sec 51°C / 1 min  72°C]; 10 min 72°C  
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Supplementary Methodological Discussion 

Our approach involves the interpretation of rRNA labeling via taxon-specific pyrotag 

abundances in density-resolved gradient fractions. This is an advance of classical gradient 

interpretation based on fingerprinting (Lueders et al. 2004b, Lueders et al. 2006) in line T-

RF ‘subtraction values’ in ‘heavy’ vs. ‘light’ rRNA fractions recently introduced by 

Zumsteg et al. (2013). A cautionary discussion of this methodological approach is to be 

found here.  

Most of the pitfalls questioning the reproducibility and semi-quantitative rigor of 

pyrosequencing libraries reported to date concern less abundant taxa and rare OTUs, and 

the reliability at which they can be recovered (Gihring et al. 2012, Lee et al. 2012, Pinto 

and Raskin 2012). We have recently reported a strong reproducibility of OTU abundances 

across biologically replicated pyrotag libraries for the employed bacterial pyrotag 

sequencing approach, and shown that relative read abundances can be semi-quantitatively 

meaningful for templates with abundances between 0.2 % and 20 % (Pilloni et al. 2012). 

Our identification of labeled detritusphere microbes in this study relied on taxa with read 

abundances well within that range, thus we are confident that our approach for inferring 

taxon-specific rRNA enrichment factors provides robust information. Since fingerprinting 

of gradient fractions is a well-established tool to infer labeling in SIP, we chose to combine 

both, T-RFLP fingerprinting and pyrotag sequencing of fractions. The fact that we could 

actually link most of the important labeled taxa to T-RFs consistently enriched in heavy 

rRNA (Figs. S 1 to S 3) increases the confidence in our conclusions. Nevertheless, we want 

to caution that replicate SIP gradients and also pyrotag libraries were not analyzed in this 

study. SIP is, after all, not a quantitative but a qualitative method to identify microbes 

involved in a given C flow, at best providing some cautious information on comparative 

labeling intensity.  

In contrast to bacterial pyrotag sequencing, the sequencing and interpretation of fungal and 

especially protistan pyrotag libraries is still not routine. In that respect our study represents 

an advance. Because of the rRNA-SIP approach, we used 18S rRNA markers for fungal 

community analysis, instead of the much more frequently used ITS sequencing. The 

primers used here have been successfully applied to characterize fungal communities in 

soils using T-RFLP fingerprints (Edel-Hermann et al. 2009, Zumsteg et al. 2012), Sanger 

sequencing (Chen et al. 2012, Jumpponen 2003, Jumpponen 2011) as well as 

pyrosequencing (Arfi et al. 2012, Becklin et al. 2012). For protists, we are in fact 
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introducing a new bidirectional pyrotag sequencing approach here, based on primers 

previously optimized for protistan T-RFLP fingerprinting in subsurface environments 

(Euringer and Lueders 2008). These were utilized and analyzed analogously to our 

bacterial pyrotag pipeline. Therefore, in summary, we are confident that our general 

approach of inferring taxon-specific 13C-labeling via comparative pyrotag enrichment in 

SIP gradients is sufficiently robust to support our conclusions and, backed up by ‘classical’ 

T-RF-based gradient analyses (Figs. S 1 – S 3), a consistent further development of well-

established SIP gradient evaluation criteria (Whiteley et al. 2006). 
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Fig. S 1: Fractions 2 to 10 of rRNA gradients from the 12C and 13C treatments. Selected 
relevant T-RFs identified to represent labeled taxa and mentioned in the text are 
highlighted by numbers [fragment length in bp]. Relative abundance of all T-RFs is 100 %. 
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Fig. S 2: Bar plots of fungal 18S rRNA T-RFLP fingerprints from SIP gradients. Arrows 
indicate ‘heavy’ to ‘light’ fractions 2 to 10 of rRNA gradients from the 12C and 13C 
treatments. Selected relevant T-RFs identified to represent labeled taxa and mentioned in 
the text are highlighted by numbers [fragment length in bp]. Relative abundance of all T-
RFs is 100 %. 
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Fig. S 3: Bar plots of protist 18S rRNA T-RFLP fingerprints from SIP gradients. Arrows 
indicate ‘heavy’ to ‘light’ fractions 2 to 10 of rRNA gradients from the 12C and 13C 
treatments. Selected relevant T-RFs identified to represent labeled taxa and mentioned in 
the text are highlighted by numbers [fragment length in bp]. Relative abundance of all T-
RFs is 100 %. 
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Fig. S 4: Relative abundance of 13C-labeled bacterial taxa in ‘heavy’ rRNA after 8 and 32 
days of incubation. Only labeled taxa as identified in Fig. 3 are shown. 

 

Fig. S 5: Relative abundance of 13C-labeled fungal and protistan taxa in ‘heavy’ rRNA 
after 8 and 32 days of incubation. Only labeled taxa as identified in Fig. 4 are shown. 



Chapter III 
 

119 
 

Supplementary References 

Abdo, Z., Schuette, U. M. E., Bent, S. J., Williams, C. J., Forney, L. J., and Joyce, P., 
(2006) Statistical methods for characterizing diversity of microbial communities by 
analysis of terminal restriction fragment length polymorphisms of 16S rRNA 
genes. Environ Microbiol 8: 929-938 

 
Arfi, Y., Buée, M., Marchand, C., Levasseur, A., and Record, E., (2012) Multiple markers 

pyrosequencing reveals highly diverse and host-specific fungal communities on the 
mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol Ecol 
79: 433-444 

 
Becklin, K., Hertweck, K., and Jumpponen, A., (2012) Host identity impacts rhizosphere 

fungal communities associated with three alpine plant species. Microb Ecol 63: 
682-693 

 
Borneman, J., and Hartin, R. J., (2000) PCR primers that amplify fungal rRNA genes from 

environmental samples. Appl Environ Microbiol 66: 4356-4360 
 
Chen, M., Li, X., Yang, Q., Chi, X., Pan, L., Chen, N., Yang, Z., Wang, T., Wang, M., and 

Yu, S., (2012) Soil eukaryotic microorganism succession as affected by continuous 
cropping of peanut - pathogenic and beneficial fungi were selected. PLoS ONE 7: 
e40659 

 
Culman, S. W., Bukowski, R., Gauch, H. G., Cadillo-Quiroz, H., and Buckley, D. H., 

(2009) T-REX: software for the processing and analysis of T-RFLP data. BMC 

Bioinformatics 10: 171-171 
 
Edel-Hermann, V., Gautheron, N., Alabouvette, C., and Steinberg, C., (2008) 

Fingerprinting methods to approach multitrophic interactions among microflora and 
microfauna communities in soil. Biol Fertility Soils 44: 975-984 

 
Edel-Hermann, V., Brenot, S., Gautheron, N., Aimé, S., Alabouvette, C., and Steinberg, C., 

(2009) Ecological fitness of the biocontrol agent Fusarium oxysporum Fo47 in soil 
and its impact on the soil microbial communities. FEMS Microbiol Ecol 68: 37-45 

 
Euringer, K., and Lueders, T., (2008) An optimised PCR/T-RFLP fingerprinting approach 

for the investigation of protistan communities in groundwater environments. J 

Microbiol Methods 75: 262-268 
 
Gihring, T. M., Green, S. J., and Schadt, C. W., (2012) Massively parallel rRNA gene 

sequencing exacerbates the potential for biased community diversity comparisons 
due to variable library sizes. Environ Microbiol 14: 285-290 

 
Glaubitz, S., Lueders, T., Abraham, W.-R., Jost, G., Jurgens, K., and Labrenz, M., (2009) 

13C-isotope analyses reveal that chemolithoautotrophic Gamma- and 
Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the 
central Baltic Sea. Environ Microbiol 11: 326-337 

 



Chapter III 
 

120 
 

Jumpponen, A., (2003) Soil fungal community assembly in a primary successional glacier 
forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158: 
569-578 

 
Jumpponen, A., (2011) Analysis of ribosomal RNA indicates seasonal fungal community 

dynamics in Andropogon gerardii roots. Mycorrhiza 21: 453-464 
 
Junier, P., Junier, T., and Witzel, K.-P., (2008) TRiFLe, a program for in silico terminal 

restriction fragment length polymorphism analysis with user-defined sequence sets. 
Appl Environ Microbiol 74: 6452-6456 

 
Lanzén, A., Jørgensen, S. L., Huson, D. H., Gorfer, M., Grindhaug, S. H., Jonassen, I., 

Øvreås, L., and Urich, T., (2012) CREST – Classification Resources for 
Environmental Sequence Tags. PLoS ONE 7(11): e49334. 
doi:10.1371/journal.pone.0049334 

 
Lee, C. K., Herbold, C. W., Polson, S. W., Wommack, K. E., Williamson, S. J., McDonald, 

I. R., and Craigh Cary, S., (2012) Groundtruthing next-gen sequencing for 
microbial ecology – biases and errors in community structure estimates from PCR 
amplicon pyrosequencing. PLoS ONE 7: e44224 

 
Lueders, T., Manefield, M., and Friedrich, M. W., (2004a) Enhanced sensitivity of DNA- 

and rRNA-based stable isotope probing by fractionation and quantitative analysis 
of isopycnic centrifugation gradients. Environ Microbiol 6: 7 

 
Lueders, T., Wagner, B., Claus, P., and Friedrich, M. W., (2004b) Stable isotope probing 

of rRNA and DNA reveals a dynamic methylotroph community and trophic 
interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6: 60 

 
Lueders, T., Kindler, R., Miltner, A., Friedrich, M. W., and Kaestner, M., (2006) 

Identification of bacterial micropredators distinctively active in a soil microbial 
food web. Appl Environ Microbiol 72: 5342-5348 

 
Marhan, S., Derain, D., Erbs, M., Kuzyakov, Y., Fangmeier, A., and Kandeler, E., (2008) 

Soil organic matter mineralization and residue decomposition of spring wheat 
grown under elevated CO2 atmosphere. Agric Ecosyst Environ 123: 63-68 

 
Marhan, S., Kandeler, E., Rein, S., Fangmeier, A., and Niklaus, P. A., (2010) Indirect 

effects of soil moisture reverse soil C sequestration responses of a spring wheat 
agroecosystem to elevated CO2. Global Change Biol 16: 469-483 

 
Pilloni, G., von Netzer, F., Engel, M., and Lueders, T., (2011) Electron acceptor-dependent 

identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer 
by Pyro-SIP. FEMS Microbiol Ecol 78: 165-175 

 
Pilloni, G., Granitsiotis, M. S., Engel, M., and Lueders, T., (2012) Testing the limits of 454 

pyrotag sequencing: reproducibility, quantitative assessment and comparison to T-
RFLP fingerprinting of aquifer microbes. PLoS One 7: e40467 

 
Pinto, A. J., and Raskin, L., (2012) PCR biases distort bacterial and archaeal community 

structure in pyrosequencing datasets. PLoS ONE 7: e43093 



Chapter III 
 

121 
 

R Development CoreTeam (2012) R: A language and environment for statistical 
computing. Vienna: R foundation for statistical computing  

 
Ramette, A., (2009) Quantitative community fingerprinting methods for estimating the 

abundance of operational taxonomic units in natural microbial communities. Appl 

Environ Microbiol 75: 2495-2505 
 
Scharroba, A., Dibbern, D., Hünninghaus, M., Kramer, S., Moll, J., Butenschoen, O., 

Bonkowski, M., Buscot, F., Kandeler, E., Koller, R., Krüger, D., Lueders, T., 
Scheu, S., and Ruess, L., (2012) Effects of resource availability and quality on the 
structure of the micro-food web of an arable soil across depth. Soil Biology and 

Biochemistry 50: 1-11 
 
Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., 

Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, 
B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F., (2009) Introducing 
mothur: open-source, platform-independent, community-supported software for 
describing and comparing microbial communities. Appl Environ Microbiol 75: 
7537-7541 

 
Smith, C. J., Danilowicz, B. S., Clear, A. K., Costello, F. J., Wilson, B., and Meijer, W. G., 

(2005) T-Align, a web-based tool for comparison of multiple terminal restriction 
fragment length polymorphism profiles. FEMS Microbiol Ecol 54: 375-380 

 
Vance, E. D., Brookes, P. C., and Jenkinson, D. S., (1987) An Extraction Method For 

Measuring Soil Microbial Biomass C. Soil Biol Biochem 19: 703-708 
 
Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., (2007) Naive Bayesian classifier 

for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl 

Environ Microbiol 73: 5261-5267 
 
Whiteley, A. S., Manefield, M., and Lueders, T., (2006) Unlocking the 'microbial black 

box' using RNA-based stable isotope probing technologies. Curr Opin Biotechnol 
17: 67-71 

 
Zumsteg, A., Luster, J., Göransson, H., Smittenberg, R., Brunner, I., Bernasconi, S., Zeyer, 

J., and Frey, B., (2012) Bacterial, archaeal and fungal succession in the forefield of 
a receding glacier. Microb Ecol 63: 552-564 

 
Zumsteg, A., Schmutz, S., and Frey, B., (2013) Identification of biomass utilizing bacteria 

in a C-depleted glacier forefield soil by the use of 13C DNA stable isotope probing. 
Environ Microbiol Rep 5: 424 



Chapter IV 
 

122 
 

Chapter IV: Effects of protozoa – microbe interactions 

on carbon fluxes in the detritusphere
∗∗∗∗ 

 

 

 

Abstract 

Decomposition of organic matter is crucial for ecosystem functioning. Microorganisms, 

which are responsible for the mineralization and recycling of nutrients required by plants, 

are usually treated as a homogeneous functional guild. However, there is strong evidence 

that microbes differ in mineralization capacity. In addition, a significant part of the 

microbial community is top-down controlled by microbial grazers, such as protozoa. Since 

protozoan grazing is highly selective, and selectivity differs among species, we 

hypothesised that protozoan taxa specifically affect bacterial community structure and 

function (mineralization), and as a result, that protozoan taxa complement each other in 

grazing intensity. Further we expected that influence of protozoan species on soil bacteria 

changes during detritus decomposition. We tested the effects of different bacterivorous 

protozoan taxa on the mineralization rate of maize litter in a short-term (88h) and a long-

term (3 weeks) experiment. Arable field soil was inoculated with different species 

combinations and species richness levels using two species from each of following 

“functional groups”: flagellates, ciliates and amoeba. The effects of protozoan species 

richness, composition of functional groups within the community and the effects of 

specific species are discussed with respect to CO2-production and corresponding microbial 

C mineralization over time, taking C mineralization as a measure of overall microbial 

function. Further we tested whether changes in microbial function could be related to 

changes in microbial community composition (measured by phospholipid fatty acids 

analyses). During microbial decomposition, different protozoan grazers gained influence 

for different time intervals leading to a succession of protozoan impacts on bacterial 

mineralization. Effects of protozoan grazers on microbial respiration turned out to be 

species specific. The “functional group” turned out to be no reliable indicator of the way a 

species affects prey organisms and communities. 

 

                                                 
∗ for information about Co-authorships see page 155 
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Introduction 

The fluxes of C as an energy source into belowground food webs are a key processes of 

terrestrial ecosystems as it determines the mineralization and transfer of belowground C 

back to the atmosphere and has been estimated to be an order of magnitude larger than 

anthropogenic CO2 emissions (Nielsen et al. 2011). About 90 % of plant biomass enters the 

soil system as detritus and fuels food webs (Gessner et al. 2010). In the food web microbial 

decomposers catalyse the mineralization of C from detritus and recycle nutrients for 

primary production (Verhoef and Morin 2010). Thereby microorganisms determine a 

critical balance between C mineralization and sequestration (Gessner et al. 2010, Bardgett 

2005). Protozoa, due to their significance as the major consumers of microbial biomass in 

soils (Krivtsov et al. 2003, Hunt et al. 1987, Brussaard et al. 1990), hold a key role in the 

balance between C loss from the ecosystem by respiratory CO2 release and conservation 

through sequestration in living biotic particulate fractions (Anderson 2011). Protozoa 

strongly control bacterial populations (Glücksman et al. 2010, Koller et al. 2013, Fuhrman 

et al. 1992, Rønn et al. 2002) and are able to reduce bacterial biomass by as much as 60 % 

(Clarholm 1981). Selective grazing influences the growth condition of individual bacteria 

species (Hahn and Höfle 1999, Saleem et al. 2012), can substantially enhance bacterial 

production (Bonkowski et al. 2000, Sundin et al. 1990) and alter microbial community 

dynamics (Marschner et al. 2011, Griffiths et al. 1999, Kreuzer et al. 2006, Rosenberg et 

al. 2009, Koller et al. 2013).  

However, the microbial decomposer community has long been treated as a single 

functional guild but there is ample evidence that that microbial community composition 

plays a critical role in determining ecosystem process rates (Strickland et al. 2009, Hendrix 

et al. 1986, Schimel and Gulledge 1998, Reed and Martiny 2007). The large species 

richness of soil communities has led to the hypothesis that functional redundancy is great 

among soil organisms (Bengtsson 1998, Andren et al. 1999, Setälä et al. 2005) but there 

are clear examples that functional diversity between species affects specific ecosystem 

processes like nitrogen fixation and denitrification (Coleman and Whitman 2005) or 

specific aspects of C cycling (Nielsen et al. 2011). Although the diversity of protists in 

morphology and phylogeny is huge (Cavalier-Smith 1993, Cavalier-Smith 1998, Adl et al. 

2012) it is still an open debate whether protozoan function differs across morphotypes 

(Geisen 2014) and even more whether the identity and diversity within a functional group 

matters to ecosystem functioning (Glücksman et al. 2010, Reed and Martiny 2007, Saleem 

et al. 2012). Identifying key players in detritus decomposition is of pivotal significance as 
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it is essential to assess the consequences of biodiversity loss and subsequent effects on C 

and nutrient cycles (Gessner et al. 2010). Further, given that natural communities typically 

have multiple predators feeding on most prey, understanding emergent multiple predator 

effects on detritus decomposition is another crucial issue for community ecology (Sih et al. 

1998).  

 

We hypothesized that I) protozoan taxa specifically affect bacterial community structure 

and function (mineralization), II) complement each other in grazing intensity on the 

bacterial community and III) that the influence of protozoan species on soil bacteria 

changes during detritus decomposition. We expected no strong influence of protozoan 

identity on bacterial community structure and mineralization in the beginning of detritus 

decomposition with ample easily available C sources present (short term), but with 

reducing detritus quality (long term) we expected protozoan identity to strongly feedback 

on bacterial mineralization capacity and bacterial community. 

To test these hypotheses we manipulated species richness and functional group 

composition of protozoan communities in two related lab experiments using up to six 

different protozoan species out of the three “functional groups” ciliates, flagellates and 

naked amoebae. We measured resulting changes in bacterial respiration and protozoan 

impacts on bacterial community composition. The experiments were performed in 

microcosms with autoclaved soil and sterilized maize shoot litter as detritus which was re-

inoculated with a diverse bacterial community. Short term effects (first 3 days) of 

functional diversity and community composition of protozoa on C mineralization, as a 

measure of overall mineralization capacity, were approached using a microrespirometer 

(Griffiths et al. 2001). Long term (3 weeks) effects were investigated by using KOH 

titration. At the end of both experiments bacterial community composition was determined 

by Phospholipid fatty acid (PLFA) analyses to link group specific effects of bacterivorous 

protozoa to microbial community composition and C mineralization. This experimental set 

up allows the differentiation between species specific and functional group specific effects 

of protozoa on microbial C mineralization, allowing a high resolution of the C flow 

through microbial communities. 
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Material and Methods 

 

Experimental set-up 

A protozoa-free bacteria inoculum was produced according to the protocol of Kreutzer et 

al. (2006). Briefly, 50 g of air-dried grassland soil (0 - 10 cm, Cologne, Germany) were 

mixed on a shaker (Köttermann Typ 4020, Uetze, Germany) at 90 rpm for 20 min in 100 

ml Neff’s modified amoebae saline (NMAS, Page 1976). After 2.5 h of sedimentation the 

supernatant was passed twice through a filter (Rundfilter 595 ½, Schleicher and Schuell, 

Dassel, Germany) and the flowthrough was subsequently filtered through a 3 µm sterile 

syringe filter (Whatman, Buckinghamshire, England) and through a 1.2 µm sterile syringe 

filter (Sactorius Minisart, Göttingen, Germany), respectively. 

The protozoa-free filtrate was then added to a sterilized soil-sand mixture (1:1) and 

incubated in darkness at 20°C. Two subsamples were checked for protozoan contamination 

at 100 x magnification (Nikon Eclipse, Japan) on every second day during this incubation 

time. 

After two weeks 40 g of the bacteria/sand/soil-mixture were diluted in 60 ml NMAS and 

shaken for 30 min at 90 rpm. Finally, autoclaved soil (originating from an agricultural field 

site near Göttingen, Germany, see Kramer et al. 2012 for further information) was 

inoculated with 25 µl bacteria solution per g soil. 

Two sets of 124 microcosms were prepared: 50 ml centrifugation tubes (Falcon, Oneonta, 

NY, USA) were filled with 20 g ± 0.4 g of this soil for the long-term experiment and 2 g ± 

0.04 g soil were filled into plastic 6 ml screw cap vessels for a parallel short term 

experiment. All soil treatments were incubated at 14.6 % water-content for nine days to 

ensure establishment of the bacterial community in the soil.  

Protozoan cultures were transferred to 15 ml plastic tubes and washed three times to 

remove nutrient broth by centrifugation at 700 rpm for 3 min and resuspending the pellet in 

NMAS. Protozoan densities were microscopically estimated using a Neubauer counting 

chamber. 

About 500 protozoa/g dw soil were added as single species or in combination (Table 1) 

and incubated for 9 days to establish stable protozoa and bacteria communities. 

For the short term experiment 0.02 g ± 0.0005 g sterilized powdered maize litter (43.45 % 

C, 1.11 % N) and 200 µl sterile distilled water were mixed into the soil immediately before 

the start of the respiration measurements. Respiration was measured over the first 88 h 
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after detritus inoculation (ADI) using a microrespirometer (Griffiths 2001). After 

termination the soil was frozen for subsequent PLFA-extraction.  

In the long term experiment 0.2 g ± 0.005 g sterilized powdered maize litter and 2 ml 

distilled water were added into each tube, relatively the same amount (5 mg C per g soil 

DW) as in the short term experiment. Open tubes and a test tube containing 1 ml KOH 

(1N), to absorb produced CO2, were placed in 1l amber bottles for three weeks. Titrimetric 

determination of the CO2 production with BaCl and HCl was performed after 2, 4, 7, 10, 

14 and 21 days. CO2-content was calculated using the following formula: 

d

KOHtit

KOHtot
tvnv 4.22*)(*1.0

CO2
−

=  

with nv = neutral value, tv = titrated value; KOHtot = total KOH, KOHtit = titrated KOH, 

d = days  

 

After three weeks these samples were frozen for subsequent PLFA-extraction, too. 

C to N content of the used maize litter was estimated using Flash 2000 NC soil analyser 

(Thermo fisher scientific, Waltham, USA) and 5 x 5 g of litter. 

 

Table 1: Experimental set-up to determine effects of species (SP) and functional group 

(FG) of specific protozoan grazers (two species each of amoebae (Acanthamoeba 

castellanii and Hartmannella vermiformis), flagellates (Cercomonas longicauda and 

Spumella sp.) and ciliates (Tetrahymena pyriformis and Colpoda steinii)) on microbial 

carbon fluxes in the detritusphere 

  Treatment number 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
 Acanthamoeba   x           x     x x         x x   x x   x 
 Hartmannella     x         x         x x     x x   x   x x 
 Cercomonas       x         x   x       x   x   x x x   x 
 Spumella         x       x       x     x x   x   x x x 
 Tetrahymena 

     
x    

x  
x    

x  
x x x  

x x 
 Colpoda             x     x       x x     x x   x x x 

SP 0 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 6 
FG 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 
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Organisms 

The grazer model community consisted of two different species of each of the major 

protozoan morphotoypes representing different “functional groups” (flagellates, ciliates, 

amoebae). The feeding behaviour, morphology and cell size of these groups is supposed to 

differ tremendously. While soil flagellates are usually small, free swimming and 

selectively feeding, ciliates are rather big and consume high numbers of bacteria. The 

amoebae chosen for this experiment are in terms of body size in between the flagellates 

and ciliates. They preferentially stay attached to soil particles and graze the bacteria 

growing there. Protozoa were incubated as single species or species combination 

treatments. The species richness of the microcosms was 0, 1, 2, 4 or 6 protozoan species 

out of 0, 1, 2 or 3 functional groups, respectively. 

As ciliate species Tetrahymena pyriformis and Colpoda steinii were chosen. Tetrahymena 

pyriformis was taken because it is a model organism often used in literature. Colpoda 

steinii was taken because ciliates of the genus Colpoda usually dominate ciliate 

communities in soil. 

As flagellate species the cercomonad Cercomonas longicauda and the crysomonad 

Spumella sp. were used. Cercomonads represent one of the main flagellate groups found in 

agricultural soil. Because of their ability to show amoeboid as well as “classical” flagellate 

movement they are very effective grazers. Even though many Crysomonads are 

mixotrophic organisms, Spumella sp. is an obligate phagotroph raptorial feeder (Jones 

2000) which obtains its food by creating a water current with its longest flagellum (Zwart 

and Darbyshire 1992), whereas Cercomonas forms ventral pseudopodia during a gliding 

movement over soil particles (Bouwman and Zwart 1994).  

As amoeba species Acanthamoeba castellanii, a commonly used model organism that has 

shown massive influence on the performance of plants and bacterial community in 

previous studies (e.g. Rosenberg et al. 2009, Bonkowski and Brandt 2002) was chosen. 

The second amoeba species used was Hartmannella vermiformis. This species was taken 

because it is a relatively fast and active amoeba.  

The cultures of Colpoda, Cercomonas and Hartmannella were obtained from specimen 

isolated from the same soil used in the experiments. 

 

PLFA-Analysis 

PLFAs were extracted from 2 g of soil for the short term experiment and 4 g of soil for the 

long term experiment following the procedure described by Frostegård et al. (1993). 
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Briefly, Bligh & Dyer (chloroform, methanol, citrate buffer (pH 4); 1 : 2 : 0.8) was used as 

extraction solvent. Lipid fractionation was performed with silica columns (Bond-Elute-SI, 

500 mg, 3 ml; Agilent Technologies, Lake Forest, USA) and phospholipids were eluted 

with methanol. Methanolysis of PLFAs was conducted with 0.2 M methanolic KOH. As 

internal standard methylnondecanoate (19:0) was used to perform quantitative analyses. 

The fatty acid methyl esters (FAMEs) were kept at –20°C until analysis with isooctane as 

solvent. 

FAMEs were identified by chromatographic retention time comparison with a standard 

mixture composed of 37 different FAMEs that ranged from C11 to C24 (Sigma-Aldrich, St 

Louis, USA). Analysis was performed by gas chromatography (GC) using an Auto System 

XL (Perkin Elmer Corporation, Norwalk, USA) equipped with a HP-5 capillary column 

(50 m x 0.2 mm i.d., film thickness 0.33 µm). The injector temperature was 260°C and that 

of detector 280°C. The temperature program started with 70°C (hold time 2 min) and 

increased with 30°C/min to 160°C, and then with 3°C/min to 280°C and held for 15 min. 

The injection temperature was 260°C and helium was used as carrier gas. Evaluation was 

performed with the software Turbochrom Workstation Version 6.1.0.0 (Perkin Elmer 

Corporation, Norwalk, USA). 

To verify correct identification of FAMEs (chain length and saturation) a range of soil 

samples were analysed by GC-MS with a HP 5890 series II coupled with a 5972 mass 

selective detector and equipped with a DB-5MS capillary column (30 m x 0.25 mm i.d., 

film thickness 0.2 µm). Helium 5.0 was used as carrier gas at a flow of 1 ml/min. The GC 

oven temperature program started at 50°C (hold time 1 min), increased with 9°C/min to 

180°C, then 5°C/min to 260°C, and 20°C/min to 300°C (hold time 11 min). The transfer 

line temperature was 300°C. A mass range of 50 to 500 m/z was monitored in Scan mode. 

The following PLFAs were summed up to estimate bacterial biomass: i15:0, a15:0, i16:0, 

16:1ώ7, i17:0, cy17:0, 18:1ώ7/18:1ώ9t and cy19:0 (Frostegård et al. 1993, Zelles 1999). 

The PLFAs i15:0, a15:0, i16:0 and i17:0 are indicative for Gram-positive, and 16:1ώ7, 

cy17:0, 18:1ώ7/18:1ώ9t and cy19:0 for Gram-negative bacteria. The ratio of the PLFAs 

cy17:0 to 16:1ώ7 was used to estimate growth phase of gram negative bacteria (Fouchard 

et al. 2005, Knivett and Cullen 1965).  

 

Statistics 

Unknown until today were the dynamics of the protist populations. The specific 

experimental design enabled us to calculate the explained variance of CO2 production by 
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each protist species as a measure of its influence on mineralization rate. Hereby we were 

able to follow the succession of the functional influence of the different protist species on 

microbial mineralization through time; a measure of interaction strength (Berlow et al. 

1999). 

Statistical analyses were performed in R 2.10.1. 

 

 

 

Results 

 

I. Short term experiment 

Mineralization 

In the short term experiment, microbial respiration was neither affected by species 

richness, functional group richness or functional group identity. Except for Spumella and 

Hartmannella, all protozoan taxa enhanced microbial respiration in single species 

treatments compared to the protozoa-free controls.  

In contrast microbial respiration was strongly influenced by specific protozoan taxa at 

different time intervals indicating a rapid succession of protozoan species affecting 

decomposition of detritus (Fig. 1). Generally flagellate and ciliate species were the main 

drivers of this succession at the short time scale (Fig. 1). The succession of the influence of 

different protozoan species on CO2 production can clearly be seen by the change in F-

values of the statistical model. Peaks of explained variation of microbial respiration after 

10-20 h, 10-60 h, 30-70 h and 50-88 h were successively determined by Colpoda, 

Spumella, Tetrahymena and Cercomonas (Fig. 1). Interestingly, specific species had either 

negative (Spumella) or positive (Tetrahymena, Cercomonas, Colpoda) effects on microbial 

respiration, that partly cancelled out each other. 



Chapter IV 
 

130 
 

 

Fig. 1: Effects of specific protozoan species on microbial respiration during the first 4 days 

ADI, red line indicates threshold of significance (p < 0.05)  

 

Community composition 

In line with overall microbial respiration, PLFA composition was determined by specific 

protozoan taxa rather than by species richness or functional group identity and richness 

(Fig. 2). Especially Tetrahymena appeared to have a striking influence on microbial PLFA 

composition. 

A more detailed examination of bacteria-specific PLFAs emphasised the different 

effectiveness of the different grazers (Table 2) and revealed a negative linear effect of the 

number of functional groups on the ratio of cy17:0 to 16:1ώ7 (F1,74 = 18.81, p < 0.0001). 

Cercomonas was the only protozoan species with a significant effect on overall bacterial 

PLFAs (F1,78 = 14.80, p < 0.0001) by reducing gram positive (F1,76 = 14,24, p = 0.0441) as 

well as gram negative bacteria (F1,77 = 14,21, p = 0.0003) and the ratio of cy17:0 to 16:1ώ7 

(F1,74 = 4.95, p = 0.0291). The other flagellate species, Spumella, only led to a decrease of 

the ratio of cy17:0 to 16:1ώ7 (F1,74 = 4.05, p = 0.0478). Both ciliate species had generally 

few effects on bacterial PLFAs, but the presence of Colpoda increased the relative biomass 

of gram negative bacteria (F1,77 = 4.40, p = 0.0393). Even though they had no overall effect 
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on microbial respiration, both amoeba species reduced the ratio of cy17:0 to 16:1ώ7 

(Acanthamoeba: F1,74 = 5.31, p = 0.0240 and Hartmannella: F1,74 = 6.828, p = 0.0109) and 

affected gram positive bacteria in opposite directions, Acanthamoeba increased the relative 

biomass of gram positive bacteria (F1,76 = 18.85, p < 0.0001)., while Hartmannella reduced 

it (F1,76 = 4.79, p = 0.0318).  

 

 

Fig. 2: Discriminant function analysis of the effects of grazer species in single species 

treatments on overall PLFA composition in soil 88h after inoculation of detritus 

(Wilks`Lamda: 0.000001, F96,35= 4.39, p < 0.001), ellipses represents 80% confidence 

interval 
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Table 2: Effect (p < 0.05) of protozoan grazers on bacterial PLFA factors 88 h ADI 

(grNgro is the ratio of cy17:0 to 16:1ώ7 (growth factor of gram negative bacteria)), empty 

circles indicate increase, black circles indicate decrease, black line indicate no effects 

 

   Bacteria gram+ gram- grNgro   

 Colpoda      ―          ―          ○     ―   

 Tetrahymena      ―          ―     ―     ―   

 Spumella      ―          ―     ―      ●   

 Cercomonas       ●      ●      ●      ●   

 Hartmannella      ―          ●     ―      ●   

 Acanthamoeba      ―         ○     ―      ●   

 

 

II. Long term experiment 

Mineralization 

As in the short term experiment mineralization (CO2 evolution) of maize litter was always 

lowest in the control treatment and increased in presence of protozoan grazers. In the long 

term experiment mineralization was highest in treatments with 2 and 3 functional groups 

(230 h ADI, F3,120 = 2.79, p = 0.0433). At the first time point (41 h ADI) mineralization 

increased linear with increasing number of protozoa functional groups (F1,121 = 5.68, p = 

0.0187). In contrast to the short term experiment, protozoan species effects cumulated in a 

late peak of grazer influence rather than a rapid succession (Fig. 3).  

However, at the beginning of the long term experiment Colpoda had a major positive 

effect on microbial respiration, followed by a peak of Tetrahymena influence although the 

latter was only marginally significant (Fig. 3). After 9.5 days, when overall CO2-release 

had strongly declined, a second peak of protozoan activity and influence on the microbial 

community followed. This second phase of maize mineralization was dominated by 

positive effects of Acanthamoeba and Spumella and negative effects of Cercomonas and 

Colpoda on microbial respiration. Acanthamoeba constantly increased C mineralization 

until the end of the experiment (Fig. 3). Interestingly, Colpoda enhanced microbial 

respiration in the early phase of detritus decomposition and reduced it at a later phase. 
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These observations show that protozoan effects on overall microbial functioning are 

complex and far from simply complementary. 

 

 

Fig. 3: Effects of specific protozoan species on microbial respiration during the first 21 

days ADI, red line indicates threshold of significance (p < 0.05)  

 

Community composition 

3 weeks after start of detritus decomposition by the microbial community clear effects of 

grazer species richness on PLFA composition became visible (Fig. 4). The number of 

functional groups of protozoa had gradually shifted the bacterial community at this time, 

indicating niche complementarity between functional groups at the level of microbial 

community composition. No specific effects of single grazer species could be detected at 

the end of the experiment. 

A linear reduction of relative bacterial biomass, with increasing grazer diversity was 

observed (F1,94 = 14.04, p = 0.0003), which can be partly explained by a strong linear 

reduction of gram positive bacteria (F1,93 = 5.47, p = 0.0215). In contrast, the ratio of 

cy17:0 to 16:1ώ7 linearly increased with more protozoan functional groups present (F1,93 = 

6.03, p = 0.0160). A negative correlation between gram positive and gram negative 
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bacteria was found at the end of the long term experiment (y = -0.5207x + 49.496, R2 = 

0.2023, p < 0.001). 

 

Fig. 4: Discriminant function analysis of the effects of grazer functional group diversity on 

PLFA composition in soil three weeks ADI (Wilks`Lamda: 0.1442, F51,259= 4.67, p < 

0.001), ellipses represents 80% confidence interval 

 

Even though we did not find clear species specific effects of protozoan grazers on total 

PLFA composition an examination of bacteria specific PLFAs proved, that grazer identity 

was still affecting the composition of bacterial community composition (Table 3). Each 

species influenced at least one bacteria-correlated PLFA factor. While the flagellates 

displayed a negative impact on total bacterial biomass, Cercomonas reduced gram positive 

bacteria (F1,93 = 6.56, p = 0.0120) and reduced the ratio of cy17:0 to 16:1ώ7 (F1,93 = 4.24, p 

= 0.04234), while both amoebae reduced the ratio of cy17:0 to 16:1ώ7 (Acanthamoeba 
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(F1,93 = 4.94, p = 0.0287) and Hartmannella (F1,93 = 30.66, p < 0.0001)). Ciliate species 

had opposite effects on total bacterial biomass. Tetrahymena reduced total bacterial PLFAs 

(F1,94 = 5.67, p = 0.0193), even though it increased relative biomass of gram positive 

bacteria (F1,93 = 6.22, p = 0.0144). Colpoda, in turn, enhanced total relative bacterial 

biomass (F1,94 = 4.69, p = 0.0328), especially of gram positive bacteria (F1,93 = 5.15, p = 

0.0255) and enhanced the ratio of cy17:0 to 16:1ώ7 (F1,93 = 8.43, p = 0.0046).  

 

Table 3: Effect (p < 0.05) of protozoan grazers on bacterial PLFA factors 3 weeks ADI 

(empty circles indicate enhancement, black circles indicate decrease, circle in brackets 

indicate p < 0.1) 

 

   Bacteria gram+ gram- grNgro   

 Colpoda       ○           ○     ―      ○   

 Tetrahymena       ●           ○    (●)     ―   

 Spumella       ●          ―     ―     ―   

 Cercomonas       ●      ●     ―      ●   

 Hartmannella      ―         ―     ―      ●   

 Acanthamoeba      ―         ●     ―      ●   

 

 

 

Discussion 

Crop residues decompose in two distinct phases, an initial rapid phase where labile 

compounds are broken down and a slower phase during which the more recalcitrant 

fraction is decomposed (Marschner et al. 2011, Moore et al. 2004, Swan and Kominoski 

2012). In line with this, our measurements show that most of the easily available C sources 

have been metabolized by microorganisms 4 days ADI (CO2 evolution decreased by ~80 

% compared to experiment start), confirming a rapid exhaustion of easily available C pools 

that was followed by a gradual decrease in CO2 production until three weeks ADI at the 

end of the long-term experiment (decrease of ~97 % compared to experiment start). 

Accordingly, both phases of detritus decomposition were well reflected by our respective 

short-term and long-term experiments. Overall, microbial mineralization gradually 
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increased in presence of protozoa. This is in line with the observation that grazing in 

general (Coleman et al. 1978, Griffiths 1994a) and a diverse protozoan community in 

particular promotes C turnover and decomposition (Coleman et al. 1978, Cutler and Crump 

1929, De Telegdy-Kovats 1932, Holubar et al. 2000, Ratsak et al. 1996, Stout 1973). 

Nevertheless our results indicate that specific protozoan species had positive, while others 

had negative impacts on microbial C mineralization at a specific time point, and some 

species even exerted both, positive and negative effects over the course of the experiments. 

Because each species might have a different environmental optimum, as well as its own 

functional response and growth efficiency, detritivores and decomposers specialize on 

particular successional stages of their resource (Anderson 1975, Bastow 2012) while strong 

competition is likely to cause rapid changes in community composition (Marschner et al. 

2011). Therefore, using vastly different protist taxa and morphotypes we hypothesized 

overall detritus C mineralization rate to increase with increasing species richness of 

protozoan grazers due to mechanisms of niche complementarity (e.g. shown by Saleem et 

al. 2012). This hypothesis was based on the fact that different protozoan species exhibit 

distinct grazing preferences, and different taxonomic groups fundamentally differ in their 

grazing strategies (Boenigk and Arndt 2002; Parry 2004, Saleem et al. 2013).   

The microbial PLFA pattern at the end of the short term experiment (~ 3.5 d ADI) revealed 

that grazer identity indeed had caused specific changes in the microbial community 

patterns. This confirms our hypothesis that the species specific grazing activity of protozoa 

has the potential to rapidly modify the composition and physiological status (i.e. ratio of 

cy17:0 to 16:1ω7 for gram negative bacteria) of soil bacterial communities through 

differential grazing pressures (Glücksmann et al. 2010, Corno and Jürgens 2008, Rønn et 

al. 2002). At the end of the short term experiment we could not detect any 

complementarity effects of species richness or functional groups. This changed after 3 

weeks: species specific effects on total PLFA composition had disappeared, but a gradual 

shift in microbial community composition with increasing FG richness of protozoa 

indicates overall functional complementarity between amoebae, flagellates and ciliates. 

Likewise a linear increase in the ratio of cy17:0 to 16:1ω7 with increasing FG richness of 

protozoa indicates a shift in physiology towards the stationary growth phase in gram 

negative bacteria (Knivett and Cullen 1965). The linear reduction of bacterial biomass with 

increasing grazer species richness further demonstrates that complementarity effects 

gained influence on microbial community composition also at the species level. 

Nevertheless grazer identity had still significant and partly opposite effects on specific 
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marker PLFAs, sometimes even two species within the same functional group displayed 

these differences. Thus our hypothesis that protozoan taxa can specifically affect bacterial 

community structure and function was confirmed to a large extend. If protozoa of the same 

morphotype differ in their feeding preferences, the large number of protozoan genotypes 

being discovered can have significant consequences for both, understanding bacterial 

community dynamics and explaining variations in ecosystem C processes (Glücksman et 

al. 2010).  

Microbial C mineralization of detritus was controlled by a rapid succession of protozoan 

grazers with ciliates and flagellates dominating early successional stages. Effects of 

amoebae on microbial mineralization became visible only at late successional stages when 

bacterial production doubtlessly had ceased. At this stage, ~ 14 d ADI, the ability of 

amoebae to invade bacterial biofilms likely provided a functional advantage. This supports 

our second hypothesis that influence of protozoan species on soil bacteria changes during 

decomposition of detritus.  

Protozoan grazing can influence C mineralization in two ways. On the one hand strong 

reductions of bacterial numbers will result in decreased mineralization (Crump 1923, 

Ekelund and Rønn 1994). On the other hand excretion of nutrients by protozoan grazers 

often alleviates resource limitation of microbes to such an extent that reproduction rates of 

bacteria keep up with protozoan grazing. This can result in an almost unchanged pool of 

microbial biomass with greatly enhanced turnover and a stimulation of mineralization rates 

(Alphei et al. 1996, Bonkowski et al. 2000, Griffiths 1994b). Indeed, overall mineralization 

rate turned out to be the net result of a complex succession of grazers with partly opposite 

effects on microbial mineralization.  

A common pattern observed in bacteria and fungi is a succession of fast-growing microbial 

r-strategists (copiotrophs) that are replaced by slow-growing K-strategists (oligotrophs) 

during the distinct phases of litter decomposition (Bastian et al. 2009, Frankland 1998, Rui 

et al. 2009). High consumption rates and fast reproduction are likely the functional 

attributes that give certain protozoan taxa a head-start over others when bacterial food is in 

ample supply. These functional attributes were reflected in highly mobile ciliate filter 

feeders, being able to engulf large amounts of bacteria, and in tiny flagellate taxa with their 

fast reproduction rates, both clearly dominating during the early stages of litter 

decomposition. Such priority effects are assumed to lead to monopolization of food 

resources by distinct taxa (Urban and De Meester 2009). Succession is a dominant feature 

of detrital food webs and critical in understanding soil communities (Frankland 1998; 
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Freckman 1988; Ponge 1991; Rønn et al. 1996; Swift et al. 1979). Our results show that 

this common pattern is also reflected in behavior and influence of protozoan grazers and 

that the rapidity of these successions might be higher than generally assumed. 

Protozoa have been shown to alter the taxonomic composition and activity of bacterial 

communities in soil within three days (Rosenberg et al. 2009). This can easily lead to 

system instability (Moore and Hunt 1988) but the rapidly changing strength of species 

specific effects of protozoa on bacterial mineralization and community structure shows that 

the effects of grazer identity on total system mineralization were strong but only transient. 

This suggests weak interaction strength between generalist microbial predators. At small 

time scales these weak interaction strength stabilized overall grazer impacts and in the sum 

led to enhanced microbial mineralization thus supporting food webs dynamics (Closs et al. 

1999, De Ruiter et al. 1995, Neutel et al. 2007). Enhanced grazer diversity may also lead to 

a stabilization of ecosystem performance by weak interaction strength on major ecosystem 

process such as microbial mineralization of detritus.  

This study provides a clear example that the overall outcome of ecosystem processes, such 

as mineralization rate are regulated by the sum of positive and negative effects of complex 

species interactions operating at a very fine scale. This is in line with Glücksman et al. 

(2010) who found that grazing preferences are both more specific and less predictable than 

assumptions based on simple morphological similarities suggest. 

Because the microbial community has specific effects on decomposition, the modifications 

of bacterial community structure and activity shown in this study have important 

consequences for the entire C flow through the microbial compartment of the soil food 

web. Predation modifies bacterial turnover, thereby also affecting the mobilization of 

different C sources. Interestingly, the assumption that shared characteristics of species 

reflect similar functions is seldom tested (Verhoef and Morin 2010). Further, this “one-

taxonomic group-one-diet” hypothesis that is generally applied to generalize soil ecology 

(Eggers and Jones 2000) has very limited scope for furthering the understanding of food-

web interactions, or the impact of linkages between organisms and nutrient cycling within 

the soil (Crotty et al. 2012). For Cercomonads Glücksman et al. (2010) already found that 

even closely related and morphologically almost undistinguishable protozoan species can 

differently impact bacterial community composition and abundances. Using a much 

broader spectrum of protist morphotypes, we confirm that microbial functioning (e.g. 

mineralization capacity) is affected by protist community composition.  
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Conclusions 

Shedding light on the influence of the diverse soil protozoan community on bacterial 

community structure and detritus mineralization is of fundamental importance for 

understanding C fluxes through the soil system. Protozoa affect C fluxes in the 

detritusphere via diversity dependent top-down control of composition and function 

(mineralization) of the microbial community. Mineralization rate, being a key ecosystem 

process, overall increased in the presence of protozoa. The six different protozoan taxa in 

this study had species specific impacts on composition and mineralization capacity of the 

microbial community. The influence of different protozoan species on the bacterial 

community was constantly changing and seems to depend extremely on the stage of 

detritus decomposition. As a result a succession of protozoan effects was described.  

In general, protozoan identity seems to be more relevant for the composition of the 

microbial community at the beginning of decomposition while the species richness of the 

protozoan community turns out to be the critical determinant at a later stage.  

As a consequence of these results it has to be emphasized that the general “functional 

group concept”, classifying protozoa into the categories ciliate, amoeba and flagellate has 

to be applied with care since it is not a reliable indicator of the way a species effect prey 

organisms and communities. 
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General Discussion 

Despite the fundamental importance of the flux of C through microbial soil food webs for 

ecosystem functioning, global C balance and fertility of arable soils little is known about 

their structure and the key-taxa actually utilizing the supplied C sources. Further, 

differences between the microbial food webs in rhizosphere and detritusphere with 

different origins of C are scarcely investigated. This thesis reveals a new detailed view on 

soil microbial community compositions and C flow through different compartments of the 

soil system and illuminates the functional role of protozoa in soil food webs of an arable 

field in high taxonomic resolution. The results presented here allow a comparison of the 

microbial communities in diverse microhabitats like different soil layers, bulk soil, 

rhizosphere and detritusphere. A closer look on detritus driven systems portrayed 

successions of the microbial community in presence of different detrital energy sources 

and while decomposing the same detrital C source but in presence of different protozoan 

grazers.  

In chapter I the microbial community structure of an arable field where rhizodeposits and 

detritus serve as energy sources is portrayed in detail. Maize litter as detritus enhanced 

abundances of primary consumers but not their diversity. In general protozoan abundance 

and community composition barely responded to detritus amendment. Flagellate and 

ciliates taxa dominated top-soil layers while naked amoebae were common inhabitants of 

deep soil layers. Abundance of monotactic amoebae and euglenids even peaked in deep 

root free soil. An unexpected high diversity and abundance of protozoa beneath the 

ploughshare suggests strong food web interactions in deeper soil layers. These results 

indicate distinct niche differentiation of major protozoan taxa along the soil profile, 

suggesting high competition for microbial food.  

Chapter I delivered a detailed overview of the soil microbial communities in arable soil. 

However, the experimental set-up in the field could only scarcely distinguish between 

rhizodeposit and detritus driven microbial communities. Further the applied cultivation 

approach after Finlay et al. (2000) for determination and quantification of protozoa 

allowed a morphotype based grouping but failed in taxonomic classification. The field 

study focused on a spatial resolution and did not include temporal changes. For 

complementing the field experiment the latter aspects were addressed in subsequent lab 

experiments. Chapter II and chapter III focus on C fluxes in rhizosphere and 

detritusphere microbial communities, respectively and were able to describe the microbial 
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key-players directing these fluxes. By using high throughput sequencing in tandem with 

stable isotope probing for both experiments a high eukaryotic diversity in bulk soil, 

rhizosphere and detritusphere was found, but only a small subset of the microbial 

community actively participated in the food webs utilizing the corresponding C source. In 

chapter II complex microbial food webs relying on rhizodeposits are described during the 

succession of plant derived C through microbial key-organisms in the maize rhizosphere. 

The portrayed food webs had a high turnover and we observed a rapid succession of 

enriched organisms proving that a plant’s rhizosphere microbiome is not only 

characterized by high microbial diversity (Berendsen et al. 2012) but also extremely 

dynamic. In line with other studies (Koller et al. 2013, Mao et al. 2014, Drigo et al. 2010) 

mycorrhizal fungi turned out to be the major route for the flux of plant derived C into the 

bulk soil communities. The area of influence of mycorrhizal plants turned out to be much 

bigger than previously assumed. 

In the detritusphere (chapter III) bacteria, fungi and protists were identified as primary 

consumers of all substrates offered, irrespectively of their recalcitrance. We found that 

different amoeba and flagellate taxa played an active role in the detrital microbial food 

webs mineralizing leaf litter. Surprisingly protozoa were not significantly involved in the 

food webs utilizing glucose, even though other protists like the peronosporomycete 

Pythium played a major role in the glucose driven food webs. In chapter II several ciliate, 

flagellate and amoebae taxa turned out to be important key-players in rhizodeposit driven 

food webs. Since a large fraction of rhizodeposits consist of low-molecular weight and 

easily available C compounds like sugars (Farrar et al. 2003, Bardgett 2005) we expected 

at least some of these protozoa would also participate in detrital food webs fuelled by 

sugars. This was not the case. The results presented here underline that scaling up 

experimental results for describing ecological processes has to be done with caution, 

predominantly due to specificity and complexity of multitrophic interactions and 

dependency on environmental conditions which may easily lead to false assumptions. The 

two experiments illustrate the value of Stable Isotope Probing (SIP) and subsequent high 

throughput sequencing for the investigation of active microorganisms and interactions in 

food webs. Neither diversity nor abundance data alone would have been able to reveal the 

patterns of trophic level interactions in major energy pathways and to identify key 

organisms of C transfer. 

We know that protozoa in soil systems are both, highly abundant and morphologically as 

well as phylogenetically very diverse (Cavalier-Smith 1998, Adl et al. 2012). Nevertheless 
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our results show that only a small fraction of the protozoan community in arable soil is 

active at a specific time point in rhizosphere as well as in detritusphere. This lead to the 

question whether specific protozoan species differ in their ecological function and if the 

commonly applied division of soil protozoa into the so called “functional groups” ciliates, 

flagellates and amoeba mirror real functionally different impacts on prey communities or 

strongly oversimplify complexity. These questions were addressed in chapter IV of this 

thesis.  

During microbial decomposition of maize litter microbial C mineralization was controlled 

by a rapid succession of protozoan grazers with ciliates and flagellates dominating early 

and amoebae late successional stages. Effects of protozoan grazers on microbial respiration 

turned out to be species specific. The results showed that the general “functional group 

concept” is not a reliable indicator of the way protozoan species affect prey organisms and 

communities. Until present, most food web models only consider “functional groups” of 

protozoa (Holtkamp et al. 2011, Hunt et al. 1987, De Ruiter et al. 1995), this needs to be 

reconsidered in the light of our results. The overall outcomes of ecosystem processes like 

C mineralization are regulated by the sum of positive and negative effects of complex 

species interactions operating at a very fine scale.  

The fast successions described in all chapters capturing temporal changes (chapter II-IV) 

suggest that soil microbial communities, especially protozoan communities, are 

characterized by a high degree of competition in all investigated systems since strong 

competition is generally thought to cause rapid changes in community composition 

(Marschner et al. 2011). It is well-known that succession is a dominant feature, especially 

of detrital food webs, and critical for understanding soil communities (Frankland 1998; 

Freckman 1988; Ponge 1991; Rønn et al. 1996; Swift et al. 1979). Nevertheless this thesis 

revealed an unexpected strong and rapid succession of microbial food web composition 

and influence on C flux in terrestrial ecosystems.  

The highly dynamic nature of microbial soil food webs, expressed in high turnover rates 

and rapid succession of different taxa, together with the extreme heterogeneity of soil 

systems make it extremely difficult to predict reactions to environmental changes like 

climate change and management conditions (Eisenhauer et al. 2012). Soil communities 

form strongly interwoven food webs (Brose and Scheu 2014) even in presumably simple 

structured habitats like arable fields and and the same organisms may have different food 

preferences and trophic positions depending on food web composition. In summary, the 

presented data provides a new level of resolution and detail about microbial food webs and 
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the ecology of soil protozoa. This thesis shows that data on microbial food web dynamics 

and detailed knowledge of protozoan species and communities are a prerequisite to 

understand food web functioning and to develop accurate food web models for C fluxes 

through the ‘black box’ of microbial communities in arable soil. Further, these findings are 

crucial for development of sustainable management strategies for agricultural systems. The 

“one-taxonomic group - one-diet” hypothesis that is generally applied to generalize soil 

ecology (Eggers and Jones 2000) has very limited scope for improving the understanding 

of food web interactions, or the impact of microorganisms on nutrient cycling within the 

soil (Crotty et al. 2012). More detailed studies considering small scale variations in the 

structure of soil food webs are needed, especially at the basis of the food webs where 

different energy channels are supposed to originate (Brose and Scheu 2014).  

We found rhizosphere and detritusphere to host functional and phylogenetically different 

microbial communities that support different food web structures but a strict differentiation 

between a bacterial and a fungal energy channel (e.g. De Boer et al. 2005, Moore and Hunt 

1988, Paterson et al. 2008) is not supported by our results. This thesis shows simultaneous 

activity and overlapping patterns of the usage of different quality substrates by bacteria, 

fungi and protists (Pythium) in the detritusphere. In the rhizosphere, where bacteria were 

supposed to be the main utilizers of rhizodeposits, single celled fungi, mycorrhiza and 

protists (Peronosporales) also played an important role as primary consumers. This is in 

line with other recent findings (Crotty et al. 2012, Brose and Scheu 2014, Nieminen and 

Setälä 2001). 

Overall this thesis contributes to a great extend to disentangling complex and highly 

dynamic microbial food web interactions with protozoa in soil. As the presented results 

further underline the role of protozoa as critical links in the C transfer in root and detritus 

derived food webs as well as in deeper soil layers, the quantification and identification of 

key-taxa in the field and equally detailed analysis of other soil systems are major tasks for 

future research. 
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