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Abstract 
 

The fitness of consumers varies widely in aquatic and terrestrial habitats depending 

on resource quantity and quality. In aquatic food webs, herbivores are most affected 

by a variable resource quality, which is caused by considerable spatial and seasonal 

variations of nutrient availability in an ecosystem. Herbivores underlie a particularly 

high pressure in terms of their ability to acquire a sufficient nutrient supply in order to 

maintain high rates of growth and reproduction in heterogeneous environments. 

Particularly for organisms with limited motility such as gastropods, food searching is 

a very cost-intensive process. The effectiveness of food searching could be 

increased through the perception of diet-derived infochemicals that convey 

information about a food resource’s quality over a certain distance. Chemical 

information transfer is a major agent in the regulation of interspecific and intraspecific 

interactions in natural ecosystems. The information transmission via chemical cues, 

like volatile organic compounds (VOCs) would clearly help to optimize foraging 

processes of herbivores and it would be adaptive for them to have efficient 

chemoreceptive mechanisms to locate food resources over distances. Despite the 

importance of the interaction of primary producers and grazers for the structure of a 

benthic natural system there is little knowledge about factors and mechanisms that 

allow the communication of these organisms. 

This study aimed to elucidate important aspects and mechanisms of a snail-

periphyton interaction, mediated by the transmission of volatile infochemicals from 

algae and this study highlights the natural relevance. As model organisms, the 

common pond snail Lymnaea stagnalis and the benthic green alga Uronema/ Ulothrix 

fimbriata were used for investigations like growth and behavioural assays but also for 

GC-MS analyses. I was able to show that the availability of essential macro-elements 

Nitrogen and Phosphorous in benthic algae lead to reduced fitness of juvenile L. 

stagnalis and additionally to qualitative and quantitative changes in the algal VOCs 

bouquet. The results of the behavioural assays revealed that VOCs extracted from U. 

fimbriata serve as foraging cues for L. stagnalis. Further, I was able to demonstrate 

for the first time that snails are able to differentiate between high and low quality food 

sources just by the perception of food odours released from benthic green algae after 

cell wounding. In field experiments I tested whether this foraging strategy is relevant 
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on a larger spatial scale. The data of the field experiments showed that L. stagnalis is 

able to recognise algal odour bouquets as foraging infochemicals under natural 

conditions. Further findings gave also strong evidence that the feeding style of snails 

(radular cell damage) leads to VOC release under natural conditions because the 

grazing of L. stagnalis caused an aggregation of conspecifics under natural 

conditions. Furthermore, L. stagnalis appear to be able to distinguish between high 

and low quality food resources based on resource-quality specific odour bouquets 

under natural conditions. My results suggest that the perception of volatile cues is a 

process relevant on environmental scales and thus a possible mechanism to explain 

the frequently observed patchy distribution of grazers in ecosystems. The results of a 

VOCs liberation experiment demonstrated that gastropod grazing indeed leads to 

VOCs release. Further, I was able to show that a certain threshold of VOCs level is 

necessary for L. stagnalis which induces a directed foraging behaviour towards the 

odour. Finally, a mass balance model demonstrated that the grazer mediated VOC 

release is able to yield signal concentrations sufficient for the recognition by other 

lymnaeids which then utilize these cues as foraging infochemicals. The emission of 

ecologically relevant volatiles through snail grazing with subsequent attraction of 

other gastropod grazers to algal biofilms indicates an important but so far 

understudied chemical signalling mechanism of ecological importance. 
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Zusammenfassung 
 

In aquatischen wie auch in terrestrischen Ökosystemen variiert die Fitness von 

Konsumenten in Abhängigkeit der Ressourcenquantität und -qualität. In aquatischen 

Nahrungsnetzen werden Herbivore besonders von variabler Ressourcenqualität 

beeinträchtig, die durch starke räumliche und saisonale Schwankungen der 

Nährstoffverfügbarkeit im Ökosystem verursacht wird. Herbivore Grazer unterliegen 

einem besonders hohen Druck, eine ausreichende Nährstoffversorgung für hohe 

Wachstums- und Reproduktionsraten in heterogenen Umgebungen sicherzustellen. 

Insbesondere für Grazer mit begrenzter Beweglichkeit, wie Gastropoden 

(Schnecken), ist die Nahrungssuche ein sehr kostenintensiver Prozess. Die 

Effektivität der Nahrungssuche von herbivoren Gastropoden könnte durch die 

Wahrnehmung von Signalsubstanzen erhöht werden, die nicht nur Auskunft geben 

über An- und Abwesenheit von Futter, sondern gleichzeitig die Futterqualität 

anzeigen. Die Übertragung von Informationen mittels chemischer Signale ist ein 

wichtiger Aspekt bei der Regulation von inter-und intraspezifischen Interaktionen in 

natürlichen Ökosystemen. Die Wahrnehmung nährstoffabhängiger Infochemikalien, 

zu denen flüchtige organische Verbindungen (volatile organic compounds, VOCs) 

gehören, wäre für Grazer hoch adaptiv und würde dazu führen, ihre Nahrungssuche 

deutlich zu optimieren. Trotz der Bedeutung der Interaktion von Primärproduzenten 

und Konsumenten und deren Einfluss auf die Struktur von aquatischen Ökosystemen 

gibt es kaum Wissen über Faktoren und Mechanismen, die diese Kommunikation 

ermöglichen. 

Diese Studie untersucht wichtige Aspekte und Mechanismen einer durch 

Infochemikalien von Algen vermittelten Grazer/ Algen Interaktion und zeigt vor allem 

die ökologische Bedeutung dieser Prozesse. Als Modellorganismen wurden die 

Gemeine Spitzschlammschnecke (Lymnaea stagnalis) und die benthische Grünalge 

Uronema/ Ulothrix fimbriata für Untersuchungen zu Wachstum und Verhalten, sowie 

auch für die GC-MS-Analysen verwendet. Ich konnte nachweisen, dass eine geringe 

Nährstoffverfügbarkeit in benthischen Algen zu reduzierter Fitness von juvenilen L. 

stagnalis sowie zu quantitativen und qualitativen Veränderungen im Algen-VOCs-

Bouquet führen. Die Ergebnisse der Verhaltenstests zeigten, dass aus U. fimbriata 

extrahierte VOCs von L. stagnalis als Fouragierkairomone wahrgenommen werden. 
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Desweiteren konnte ich zum ersten Mal beweisen, dass L. stagnalis in der Lage ist, 

zwischen VOCs aus Algen mit hoher und niedriger Qualität zu unterscheiden. Die 

Relevanz dieser Futtersuch-Strategie in größeren räumlichen Skalen wurde in 

Freilandversuchen getestet. Die Daten der Freilandversuche zeigten, dass L. 

stagnalis auch unter natürlichen Bedingungen in der Lage ist, VOCs aus Algen als 

Fouragierkairomone wahrzunehmen. Weitere Untersuchungen unter natürlichen 

Bedingungen stellten dar, dass die Beweidung eines Biofilms von L. stagnalis, 

Artgenossen herbeilockt. Das deutete stark darauf hin, dass der Fraßstil von L. 

stagnalis (raspeln mittels Radula verursacht Zelllyse) zur VOC-Freisetzung führt. 

Darüber hinaus ist L. stagnalis in der Lage, auch unter natürlichen Bedingungen 

Nahrungsressourcen von hoher und niedriger Qualität basierend auf 

ressourcenspezifischen Biofilmbouquets zu unterscheiden. Meine Ergebnisse deuten 

darauf hin, dass die Wahrnehmung von flüchtigen Signalen ein relevanter Prozess in 

Ökosystemen ist. Das könnte somit ein möglicher Mechanismus sein, um die häufig 

beobachtete heterogene Verteilung von herbivoren Grazern in Ökosystemen zu 

erklären. Die Ergebnisse von VOC-Freisetzungs-Experimenten zeigten, dass 

Grazing von L. stagnalis tatsächlich zur Freisetzung von VOCs führt. Weiterhin 

konnte ich den Schwellenwert von VOC-Konzentrationen bestimmen, der notwendig 

ist, um eine gerichtete Verhaltensreaktion von L. stagnalis in die Richtung der 

Signalquelle auszulösen. Schließlich konnte mittels eines Massenbilanz-Modells 

dargestellt werden, dass die grazing-induzierte VOC Emission ein Signal in 

ausreichender Konzentration freisetzt, welches andere Lymnaeide als Futtersignal 

wahrnehmen können. Die grazing vermittelte Emission von ökologisch relevanten 

flüchtigen Stoffen aus Algen die dann zu Anlockung von Artgenossen führt, deutet 

auf einen wichtigen, aber bisher wenig erforschten chemischen Signalmechanismus 

von ökologischer Bedeutung hin. 
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General introduction and aim of the study 
 

Chemical communication plays a fundamental role for the regulation of inter- and 

intraspecific interactions of organisms and the understanding of chemical signal 

transfer is of great importance to explain the ecologically relevant interactions (Dicke 

and Sabelis 1988, Vos et al. 2006). Many substances can be active as infochemicals 

for example proteins, amino acids, or aldehydes, lipids and terpenes (Klaschka 

2008). Infochemicals that affect interspecific interactions, are so called 

semiochemicals (behaviour-modifying chemicals) (Dicke and Sabelis 1988). 

Semiochemicals are divided into three categories: allomones, kairomones or 

synomones, the classification depends on the organisms which benefit from the 

interaction (Dicke and Sabelis 1988). One major group of semiochemicals that 

serves as chemical cues are volatile organic compounds (VOCs). VOCs are 

substances of low molecular weight which possess a low to medium hydrophilicity, 

which makes them functional as chemical cues in both aquatic and terrestrial 

environments (Fink 2007). 

Numerous studies extensively investigated the ecological functions of VOCs in 

terrestrial ecosystems and their importance for interspecific interactions, especially 

plant herbivore/pollinator interactions (Laothawornkitkul et al. 2009, Figure 1). For 

example VOCs liberated from flowers are well known as floral scents. The primary 

ecological importance of floral scents is the extent to which it mediates interactions 

between flowers and their animal visitors (Dudareva and Pichersky 2010). Other 

VOCs released from leaves and roots have been reported to protect plant organs 

from infection by plant pathogens (Croft et al. 1993, Shiojiri et al. 2006) and thus 

maintain the fitness of plants. A very special infochemial-mediated interaction occurs 

among plants, insect herbivores and their natural enemies such as insect carnivores. 

Here plants emit VOCs as response to an herbivorous attack which recruits the 

natural enemies of the herbivores that damage the plant, thus facilitate an indirect 

plant defense strategy (Ode 2006, Arimura et al. 2009). These so-called tritrophic 

interactions are not restricted to aboveground plant parts, but occur also 

belowground. For example, insects that feed on maize roots initiate the liberation of 

volatiles, which attracts nematodes that prey on insect larvae (Rasmann et al. 2005). 

Finally, volatile emission does not only affect herbivores and pathogens but can also 

trigger defense responses in neighbouring plants (Baldwin et al. 2006). Plants are 
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able to ´eavesdrop´ on VOCs liberated from herbivore-attacked neighbors to activate 

defenses before they are attacked themselves. This interaction might help to 

enhance the fitness of plants in natural communities. 

Figure 1: Volatiles released from plants above and below ground (modified after 

Most common volatiles in higher plants are the so called green-leaf volatiles (GLVs) 

that are known to induce inter- and also intraspecific interactions. The name derives 

from the characteristic scent that is produced when green leaves are disrupted or 
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alcohols, aldehydes and esters. Intact and healthy plants usually 

release very small amounts of GLVs, but the GLV production increases dramatically 

after plant tissue is damaged by herbivory (Rose et al. 1996, Van den Boom et al. 

so called oxylipins (oxygenase-derived derivatives of fatty acids)

when the fatty acids within the membrane lipids are 

such as lipoxygenases (LOX, Andreou and Feussner 2009

The involved metabolic pathway is called oxylipin pathway. In higher plants, 

polyunsaturated fatty acids (PUFAs) linolenic and linoleic acid are 

used for the synthesis of GLVs (Blée 2002). Besides the lipoxygenase pathway, 
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volatiles are also synthesised via the isoprenoid or the shikimic acid pathways 

(reviewed in Laothawornkitkul 2008). All these pathways have been relatively well 

studied in terrestrial plants but the biochemical regulation and function of most of 

these compounds are not clearly known. 

In comparison to the interactions that have been found to be regulated by VOCs 

terrestrial habitats, there is only little knowledge about the role of volatile 

infochemicals in aquatic environments interactions (Fink 2007). One of the first 

volatile infochemical that was identified in an aquatic environment was the 

pheromone Ectocarpene, secreted from settled female gametes of the marine brown 

algae Ectocarpus siliculosus to attract motile male gamets (Müller et al. 1971). The 

most commonly studied example regarding infochemicals is an activated defence 

strategy of marine diatoms against herbivorous zooplankton. This interaction gained 

special attention, because diatoms provide the bulk of the food resources in oceans 

that sustains the marine food chain to the top predator. It was reported that copepods 

that extensively fed on diatoms possessed a high egg production but the hatching 

rate was really low even though the diatoms were rich in proteins, vitamins and 

essential fatty acids (Ianora and Poulet 1993). In 1999 researchers could identify 

PUAs from the diatom Thalassiosira rotula and demonstrated that they inhibited 

embryonic development of copepods and sea urchin embryos (Miralto et al. 1999). 

Due to the production of cytotoxic volatiles, diatoms potentially sabotage the future 

generations of their predators by the inhibition of the growth of the copepod 

population. Similar compounds were earlier isolated from freshwater diatoms 

(Wendel and Jüttner 1996) but the biological function of these VOCs was unknown at 

this time. Later, it could be demonstrated that the volatiles released from the 

freshwater diatoms are not only active in the regulation of defense mechanisms but 

can be instead attractive to gastropod grazers (Radix ovata) and serve as foraging 

cues (Fink et al. 2006a). These freshwater pulmonates were also shown to use algal 

VOCs bouquets liberated from damaged benthic green algae as food-finding signals 

(Fink et al. 2006b). For the green algae it was shown that multicomponent odour is 

necessary to elicit the foraging behaviour of the gastropods whereas single 

components of the VOC bouquet induced no behavioural response (Fink et al. 

2006b).  
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Other studies emphasised the beneficial role of volatiles from cyanobacterial biofilms 

as habitat finding cues for freshwater nematodes (Höckelmann et al. 2004) and 

aquatic insects (Evans 1982). Cyanobacterial biomats which are known to produce a 

variety of volatile odours (Jüttner 1984) serve in this interaction as habitat and offer 

shelter and food for the free living organisms. Since cyanobacteria are known to emit 

a broad variety of volatiles other aquatic organisms also use these infochemicals 

most likely for interaspecific interactions. Thus, volatile semiochemicals play also 

important and different roles in structuring diverse interspecific interactions in aquatic 

food webs.  

Typically these volatiles liberated from algae and cyanobacteria are produced via 

oxylipin or carotene oxidase pathways in both marine and freshwater systems 

(Jüttner 1995, Pohnert and Boland 2002). Several studies investigated the 

biosynthesis of oxylipins in marine diatoms (reviewed in Pohnert 2005) and showed 

that volatile PUAs are, like in higher plants, break-down products from oxidative 

transformation of polyunsaturated fatty acids (PUFAs). In diatoms glycoclipids 

(D'Ippolito et al. 2004, Cutignano et al. 2006) and phospholipids (Pohnert 2002, 

Fig. 2) are efficiently cleaved upon cell damage via lipolytic activity. This involves 

lipoxygenase (LOX) and hydroperoxide lyase and thereby the transformation of 

PUFAs is induced (Pohnert 2005). The free C16 and the C20 PUFAs eicosapentaenoic 

(EPA) and arachidonic acid serve as precursors and are converted by lipoxygenases 

and lyases to PUAs to produce volatile aldehydes (D'Ippolito et al. 2004, Ianora and 

Miralto 2010). The synthesis of aldehydes and other oxylipins in marine diatoms is 

caused by cell damage and that leads to mixing of substrates and enzymes 

(Cutignano et al. 2006). Beside diatoms, it was also shown for the benthic green alga 

U. fimbriata to liberate a multicomponent odour mix of C5 and C7 lypoxygenase 

products and a variety of volatile nor-carotenoids after cell damage (Fink et al. 

2006b). Due to high diversity of primary producers many substances and pathways 

provide the option to release varying and ecological relevant infochemicals into the 

surrounding that could give information about the presence of food resources. 



 
Figure 2: Proposal of the biosynthesis of volatiles 
from phospholipids enables the release of volatiles from diatoms 
Pohnert 2002).  
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Proposal of the biosynthesis of volatiles of T. rotula. The hydrolysis of EPA 
from phospholipids enables the release of volatiles from diatoms 

The quantity and the quality of food resources are decisive for the fitness of 

consumers and both can vary widely in aquatic and terrestrial habitats. The 

consequences of the uptake of low quality resources are reduced growth and 

reproduction, as it has been shown for several invertebrates (Trichilo and Leigh 

1988, Stelzer and Lamberti 2002, Stiling and Moon 2005). The resource quality 

depends on different factors (Sperfeld et al. 2012), in particular on the availability of 

elements nitrogen (N) and phosphorous (P), related to carbon 

(Sterner and Elser 2002). The balance of these elements in 

living systems is expressed as C:N:P stoichiometry. In this context, several studies 

reported that resource quality was even more important than food quantity 

and Kreutzer 2002, Fink and von Elert 2006). Usually, there is a heterogeneous 

nutrient availability in both aquatic and terrestrial ecosystems because the 

content of food resources can vary both spatially and seasonally (Elser et al. 2000)

Such heterogeneity in nutrient content (C:N:P ratio) of resources can lead to reduced 

(Elser et al. 2000). However, most animals are homeostatic and 

maintain constant body elemental composition actively even while ex
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composition of the food is completely balanced with respect to the animal’s 

requirements. Herbivores are homeostatic, while primary producers typically show a 

flexible stoichiometry (Persson et al. 2010). Therefore, especially herbivores highly 

need a balanced supply of nutrients in order to maintain growth and reproduction in 

heterogeneous environments (Sterner and Elser 2002). For herbivores like snails 

with low motility, food searching is even more cost-intensive because they move slow 

and their locomotion is based on secretion of a polysaccharide mucus (Lauga and 

Hosoi 2006). Therefore, it would be highly adaptive for such slowly moving 

consumers to be able to identify and locate high-quality resources over certain 

distances by perceiving food quality dependent signals like VOCs.  

Therefore I hypothesised in chapter I , whether herbivorous freshwater gastropods 

are able to use VOCs not only as food finding signals (Fink et al. 2006b) but also as 

indicators for resource quality.  

As model organism the great pond snail Lymnaea stagnalis (L.) was chosen. It is a 

common benthic grazer and inhabits a wide range of freshwater habitats and was 

shown to feed on filamentous algae (Bovbjerg 1968). By manipulating the nutrient 

content of the filamentous green alga Uronema/ Ulothrix fimbriata, I aimed to obtain a 

food resource of defined algal food quality. In a laboratory growth experiment, I 

investigated the impact of nutrient content of the algal food on the fitness of juvenile 

pond snails. Using behavioural assays in the laboratory, I examined in chapter I  the 

foraging behaviour of L. stagnalis towards VOCs released from U. fimbriata grown 

under high and low nutrient availability.  

 

Several studies on natural ecosystems documented that heterogeneous resource 

availability plays a major role in the spatial variation of animal abundance (Wiens 

1976, McNaughton 1988, Morgan et al. 1997). The patchiness at both levels of 

primary producers and herbivores is believed to be a major cause for non-equilibrium 

processes in trophic interactions, though the mechanisms leading to heterogeneity at 

the consumer level are poorly understood. To investigate and to quantitatively assess 

behavioural responses of consumers to changes in resources that lead to their 

patchy distribution, movement models have been developed (Focardi et al. 1996, 

Farnsworth 1998). Theoretical considerations already predicted directed walks 

(Fronhofer et al. 2013), but mechanisms that could explain such directed movements 

are rare.  
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Since many species live in patchy environments where food resources are often 

heterogeneously distributed, it would be adaptive for them to have efficient 

chemoreceptive mechanisms to locate food resources over distances. The 

recognition of such diet derived infochemicals could lead to a directed foraging 

behaviour. A directed movement of consumers through the heterogeneous 

landscape based on behavioural decisions would be advantageous in comparison to 

random movement. In contrast, random searching for suitable food patches would 

require increased activity, which causes costs and leads to reduced fitness. In the 

laboratory experiments on the freshwater grazer L. stagnalis (chapter I ), it was 

demonstrated that these freshwater gastropods are attracted by algal VOCs, but the 

environmental relevance under natural conditions of this chemically mediated 

interaction was not yet clear. From previous studies it was known that algal cells 

release VOCs after cell wounding (Fink et al. 2006a, b). But it was not clear how 

volatiles could be released under natural conditions.  

Therefore I hypothesised in chapter I  that detection of algal foraging cues should be 

relevant on larger spatial scales and that the grazing of L. stagnalis, which is based 

on radular cell damage, could lead to the release of volatile lipoxygenase products. L. 

stagnilis recognise the algal volatiles as foraging cues and that leads to attraction of 

conspecifics and similarly to a patchy distribution pattern. In chapter II  I analysed in 

field experiments the foraging behaviour of L. stagnalis to volatiles and tested 

whether snails´ grazing on natural biofilm leads to attraction of conspecifics which 

would indicate that volatiles are released.  

In a further experimental approach within chapter II , I analysed the adaptive 

behavioural response of snails to conspecifics that graze simultaneously on high or 

low quality biofilm to see if the snails recognise volatiles as resource quality 

indicators on a large spatial scale. 

From previous studies it is known that cell disruption leads to the release of algal 

volatiles. However, until now it is not yet clear how the cell disruption occurs that 

leads to algal VOCs release under natural conditions. Interestingly, the feeding mode 

of aquatic gastropods involves the rasping of substrate-attached algal biofilms via 

their radular tongue, which most likely causes massive algal cell damage during the 

snails’ ingestion process that lead to the liberation of volatiles. During movement, 

gastropods could then compare the intensity of chemical stimuli in their proximity and 

use the concentration gradients for orientation (Chase 1982). Therefore, it was 
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reasonable to hypothesise that feeding style of the grazers leads to cell disruption in 

biofilm algae. The cell damage leads to the activation of the enzyme cascade that 

causes the liberation of VOCs and subsequently to the attraction of other gastropod 

grazers from the surroundings. Probably a certain concentration of volatiles is 

necessary to induce foraging behaviour of the snails.  

 

Therefore I hypothesized in chapter III , that while L. stagnalis scrapes over the 

substrate, algal cells are damaged and this initiate the formation of VOCs. Further I 

hypothesized that a certain threshold concentration of VOCs is necessary to initiate a 

directed foraging behaviour of L. stagnalis towards a VOC source. The threshold 

value is the concentration level above which an odorous signal can be perceived 

and/or a response measured (Lawless and Heymann 1999). 

To investigate these hypotheses, I conducted experiments in the laboratory and 

tested whether grazing of the freshwater gastropod L. stagnalis on benthic algae 

causes the release of VOCs (chapter III) . To determine the threshold concentration 

of volatiles I analysed the behavioural response of L. stagnalis towards a gradient of 

different VOC concentrations. 

Using experimental data sets collected within chapter I-III, I developed a simple 

mass balance model to evaluate that grazing-mediated cell disruption can cause the 

liberation of sufficient amounts of VOCs to elicit foraging behaviour in freshwater 

gastropods.  

With the present study I aim to give new insights in the functions and mechanisms 

that are involved in the infochemical-mediated interaction of primary producers and 

consumers. Additionally I want to demonstrate that the emission of volatiles is an 

important chemical signaling mechanism of ecological importance. 
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Summary 

1. Foraging success generally depends on various environmental and 

physiological factors. Particularly for organisms with limited motility such as 

gastropods, food searching is a very cost-intensive process. As energy gain 

through foraging is dependent on both resource quality and quantity, 

consumers have to be able to differentiate between varying resource items. 

2. The effectiveness of food searching could be increased through the perception 

of diet-derived chemical signals that convey information about a food 

resource’s quality over a certain distance. This strategy would clearly help to 

optimize movement decisions. 

3. In this study, we investigated the foraging behaviour of a freshwater gastropod 

towards volatile signal substances released from benthic algae grown under 

high and low nutrient availability, representing high and low food quality, using 

behavioural assays in the laboratory.  

4. Our results demonstrate that volatile organic compounds (VOCs) serve as 

foraging kairomones for these aquatic, benthic herbivores. Further, we were 

able to show for the first time that snails are able to differentiate between high 

and low quality food sources only by the perception of food odours alone 

(volatile infochemicals). 

5. Gas chromatography coupled with mass spectrometry demonstrated 

quantitative as well as qualitative differences in the chemical composition of 

the VOC’s bouquet, dependent on algal nutrient content. 

6. Our results suggest that the recognition of resource quality via the reception of 

signal substances is likely to be adaptive for consumers with low mobility to 

maximize ingestion of high quality resources. 

Introduction 

The fitness of consumers varies widely in aquatic and terrestrial habitats depending 

on resource quantity and quality. Frequently, resource quality was found to be even 

more important than food quantity (Boersma & Kreutzer 2002; Fink & von Elert 2006). 

The ingestion of low quality resources leads to reduced growth, reproduction and 

altered foraging behaviour, as has been shown for several invertebrates (Trichilo & 

Leigh 1988; Stelzer &Lamberti 2002; Stiling & Moon 2005). Multiple factors have 

been found to determine resource quality (Sperfeld, Martin-Creuzburg & Wacker 
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2012) in particular the availability of the essential macro-elements nitrogen (N) and 

phosphorous (P), related to carbon (C) as energy source (Sterner & Elser 2002). The 

balance of these elements in living systems is expressed as C:N:P stoichiometry. 

The N and P content of food resources can vary both spatially and seasonally, 

leading to a heterogeneous nutrient availability for consumers in both aquatic and 

terrestrial ecosystems (Elser et al. 2000). Heterogeneity in nutrient content (C:N:P 

ratio) of resources can lead to nutritional constraints on consumer fitness (Elser et al. 

2000). This is of particular importance for herbivores, as they maintain a homeostatic 

regulation of body elemental composition, while primary producers typically show a 

flexible stoichiometry (Persson et al. 2010). Herbivores thus underlie a particularly 

high pressure in terms of their ability to acquire a balanced supply of nutrients in 

order to maintain high rates of growth and reproduction in heterogeneous 

environments (Sterner & Elser 2002).Hence, the ability to locate food from distance 

based on environmental cues and to move towards high-quality food resources in a 

habitat with patchy resource quality distribution would be highly advantageous 

(Fronhofer, Hovestadt & Poethke 2013). This is particularly true for homeostatic 

gastropod grazers, as they are characterized by a slow, cost-intensive locomotion 

based on the secretion of a polysaccharide mucus (Denny 1980). Information about 

the quality of food resources could be transmitted via chemical signals similar to 

pollinator attraction by plant chemical signals (reviewed by Raguso, 2009). The most 

common signals in terrestrial ecosystems are volatile organic compounds (VOCs) 

(Baldwin et al. 2006; Gershenzon 2007). VOCs are substances of low molecular 

weight which possess a low to medium water solubility, which makes them 

accessible as chemical cues in both aquatic and terrestrial environments (Fink 2007). 

Decades of research has focused on the ecological functions of VOCs in terrestrial 

ecosystems (e.g. Kessler & Baldwin 2001; Baldwin et al. 2006;Kessler & Halitschke 

2009). However, until recently, only very few studies have investigated the ecological 

functions of VOCs in aquatic environments (Fink 2007). For instance, wounded 

microalgal cells are known to liberate volatile lipoxygenase products which are 

involved in an activated chemical defense strategy against grazers (Miralto et al. 

1999; Pohnert & Boland 2002;Ianora et al. 2004). Freshwater gastropods were 

demonstrated to utilize VOC mixtures liberated from damaged cells of both diatoms 

(Achnanthes biasolettiana) and green algae (Ulothrix fimbriata) as food-finding 

signals (Fink, von Elert & Jüttner 2006a; Fink, von Elert & Jüttner 2006b). It would be 
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highly adaptive for grazers to not only be able to detect the presence of food sources 

but quality differences between them via olfactory cues. 

The goal of our study therefore was to investigate whether herbivorous freshwater 

gastropods are able to perceive VOCs as indicators of resource quality. The common 

pond snail Lymnaea stagnalis (L.) which feeds on filamentous algae (Bovbjerg 1968) 

was chosen as a model consumer species. By manipulating the nutrient content of 

the benthic green alga U. fimbriata in continuous cultures, we created a defined 

resource for the assessment of algal food quality in a growth experiment with juvenile 

pond snails. In these experiments, the pond snails’ behavioural response to VOCs 

released from these algae with different nutrient content was investigated. 

Specifically, we addressed the following hypotheses: 1) The somatic growth rate of 

juvenile L. stagnalis is dependent on the C:N:P stoichiometry of the resource. 2) The 

snails are able to perceive volatile signal released from benthic algae. 3) Nutrient 

limitation in terms of P and N changes the algal VOC bouquet and therefore 4) 

provokes an adaptive behavioural response of the gastropods towards VOCs from 

high quality resources. 

 

Materials and methods 

Cultures 

Juveniles of the freshwater gastropod L. stagnalis were hatched and reared from 

eggs laid by adult individuals originally collected in a pond in Appeldorn, Germany, 

and kept in a climate chamber at 20 ± 0.5° C under constant dim light in aerated tap 

water. The snails were fed Tetra PlecoMin™ fish food pellets (Tetra, Melle, Germany) 

ad libitum. The filamentous green alga U. fimbriata (strain SAG 36.86 from the 

Göttingen Algal Culture Collection, SAG) was continuously cultivated in chemostats 

on Cyano medium (Von Elert & Jüttner 1997) with a light (PAR) intensity of 80 µmol 

photons s-1 m-2. Cyano medium was originally designed for cyanobacteria and is thus 

particularly rich in dissolved phosphorus (400 µM K2PO4) and nitrogen (8000 µM 

NaNO3). Nutrient-limited algae were obtained by culturing U. fimbriata on Cyano 

medium with either reduced phosphorus (8 µM K2PO4) or reduced nitrogen (400 µM 

NaNO3) concentrations. The different algal nutrient treatments will be further referred 

to as follows: Nutrient-limited algae reduced in P (-P+N) or in N (+P-N), nutrient 
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saturated treatment (+P+N). Carbon concentrations of the algal suspensions were 

estimated from photometric light extinction at 480 nm using carbon-extinction 

equations. 

Elemental analyses 

For nutrient analyses, aliquots of the respective U. fimbriata cultures were filtered on 

pre-combusted glass fibre filters (Whatman GF/F, 25 mm Ø). Filters for C/N analysis 

were dried at 60°C for 24 h and packed in tin capsu les (HekaTech) for subsequent 

analysis using a Thermo Flash EA 2000 Analyser. For analysis of the particulate 

phosphorus, the filters were directly transferred into a solution of potassium 

peroxodisulfate and 1.5% sodium hydroxide and then autoclaved for 60 min at 

120°C. Subsequently, soluble reactive phosphorus wa s analysed using the 

molybdate-ascorbic acid method (Greenberg, Trussel & Clesceri 1985). For C:N:P 

analysis of the algae, three aliquots per sampling day of each algal culture were 

filtered and analysed. For the nutrient analyses of the snails, soft bodies were 

extracted from the shells under a dissecting microscope, dried at 60°C, ground to a 

powder and analysed as described above. The C:N:P ratios of the experimental 

snails were calculated for each single snail. In the case of the gastropods fed with P-

limited algae, the individual soft-body dry masses were too low for be analysed 

separately. Hence, replicates had to be pooled to yield enough biomass for C/N 

analysis.  

Growth experiment 

The initial shell length (i.e. the distance from the apex to the most distal part of the 

shell’s aperture) of a cohort of approx. 10-day-old L. stagnalis juveniles was 

determined to the nearest 0.02 mm using a calliper. In the growth experiment, the 

snails were kept individually in glass containers with 200 ml of aerated tap water at 

20 ± 0.5°C under dim light. The experiment consiste d of three treatments (+P+N, -

P+N, +P-N) with eleven replicates each and a food biomass equivalent to 2 mg 

particulate organic carbon per individual. Water and food were renewed daily. The 

snails were transferred to new containers every other day to avoid accumulation of 

biofilm and waste products. On day 33, the snails fed +P+N algae consumed almost 

100 % of the provided food; the experiment was then terminated in order to avoid a 

growth limitation caused by food quantity. At the end of the experiment, the snails’ 
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shell length was measured and the soft-bodies were removed from the shells under a 

dissecting microscope, frozen at -80°C and subseque ntly freeze dried to determine 

the softbody dry mass (dm). Because the initial softbody dry mass of the snails in the 

experiment could not be determined directly, the lengths of 20 juvenile snails within 

the same size range as the experimental animals were measured; the snails were 

then removed from their shells and their soft bodies were freeze dried. The dry mass 

was determined with a microbalance (Mettler UTM2) to the nearest microgram. A 

regression curve was calculated with the soft body mass and shell length data. Using 

the measured shell lengths and the regression function, the initial soft body mass of 

the snails at the beginning if the experiment could be estimated. The dry masses of 

the animals on day 1 and day 33were used to calculate the somatic growth rate. The 

somatic growth rate [d-1]was calculated as: 

� =	
ln ���	
�� − ln�������

����
 

where dmstart is the estimated dry mass (calculated from the regression function) of 

the animals at the beginning of the experiment and dmfinal is that of the juvenile snails 

after 33 days (t = 33). 

Food choice assays 

Algal VOCs for food choice assays were extracted from batch cultures of U. fimbriata 

as described by Fink, von Elert and Jüttner (2006b). To initiate the release of VOCs, 

an algal biomass equivalent to 10 mg particulate organic carbon of U. fimbriata was 

extracted with 25 % sodium chloride by closed-loop stripping for 45 min and 

adsorbed onto Tenax TA (Chrompack, 150 mg/tube) as described by Jüttner(1988). 

The VOC extract was obtained as described by Fink, von Elert and Jüttner (2006b) 

by eluting the adsorbent material with diethyl ether. The ether was carefully 

evaporated to dryness under a gentle stream of nitrogen gas and the residue directly 

re-dissolved in 100 µl ethanol. Control samples were prepared in the same way 

(25 % sodium chloride in 40 ml ultrapure water) but without algae. Sodium chloride 

and all solvents were analytical grade and were obtained from VWR, Darmstadt, 

Germany. 

The food-choice assay was based on the setup developed by Fink et al. (2006b). 

Prior to the food choice experiments, the juvenile snails were starved for 24 hours to 
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increase their food searching motivation. The food choice assays were conducted in 

aquaria (320 x 170 x 180 mm) filled with 1 L of filtered (0.2 µm) and aged tap water. 

To release VOCs from a defined position, two containers (Fink et al. 2006b) were 

placed at opposite sides of each aquarium. The samples (VOC extracts from 

U. fimbriata +P+N, -P+N, or +P-N) and the extraction control were each dissolved in 

7 ml of filtered tap water, gently filled into the respective containers and released by 

opening the containers. The position of the extraction control and VOC container was 

regularly exchanged between replicate assays toavoid a directional bias. In a series 

of control assays (n = 12), both containers were filled with filtered tap water only. 

At the beginning of the experiment, five individually labelled L. stagnalis of equal size 

(15 ± 5 mm) were placed into the centre of the aquarium. The snails were given five 

minutes to acclimate to the experimental setup before the experiment was started by 

opening the VOC source containers. The position of the snails was then recorded 

every minute using a coordinate system placed beneath the aquarium. The 

coordinate system was composed of concentrical rings (1 cm apart from each other) 

starting from two VOC source containers at the opposite ends of the aquarium (score 

0). Hence, the position of each individual snail could be determined as the relative 

distance to both VOC point sources at any time point (see supplementary figure S1). 

The position reading of all snails at the start of the experiment was 0 due to the equal 

distance to both containers. The snails’ position readings ranged from -27 cm 

(closest to the VOCs source 1) to +27 cm (closest to the VOCs source 2). The 

position of each snail was recorded every 60 seconds for 45 minutes in each assay; 

from these 45 minutes, the interval from 5 to 35 minutes was defined as the active 

search phase based on preliminary experiments. To avoid pseudoreplication, the 

mean of the relative distances of the five individuals from one assay was considered 

as one replicate. Since the relative preference for VOCs from algae with high or low 

nutrient (P or N) content was to be determined in the further assays, a gastropod 

preference index (GPI) was calculated as: 

GPI =
∆(���	���� !	��	 �"#��$)	�cm�

∆#�#($�cm�
 

where ∆ (VOC source or control) is the mean sum of the position readings in the respective 

half of the choice arena, ∆total is the total sum of the position readings from both sides 

of the choice arena. The GPI thus gives the proportion of snail positions in the 



Chapter I
 

20 
 

respective half of the aquarium. For example, a GPI of 0.8 for the +P+N VOC extract 

treatment indicates that 80 % of the snail positions were recorded on the side with 

the +P+N VOCs, whereas 20 % of the positions were recorded in the half with the 

+P-N VOCs.Hence, observed GPIs range from -1 (maximum preference for VOCs 

from nutrient depleted algae) to +1 (maximum preference for VOCs extract from 

nutrient saturated U. fimbriata).  

VOCs Analyses 

VOCs were extracted from chemostat cultures of U. fimbriata by closed-loop stripping 

as described above. VOCs were then thermally desorbed from Tenax TA (Jüttner 

1988) and directly transferred onto a capillary column (DB 1301, 30-m length, 

0.250 mm i.d., 0.25 µm film thickness, J&W Scientific, Folsom, CA, USA) of an 

Agilent 7890A gas chromatograph combined with an Agilent 5975C single 

quadrupole mass spectrometer (Agilent, Waldbronn, Germany). Helium was used as 

the transfer and carrier gas. VOCs produced by U. fimbriata were separated with the 

temperature program 4 min at 0°C, 3° C min −1 to 45°C, 30°C min −1 to 95°C, 10°C 

min−1 to 105°C, 30°C min −1 to 165°C,5°C min −1 to 180°C, and 5 min at 230°C, and 

were identified by comparing the retention times and mass spectra (EI at 70 eV) with 

those of reference compounds (Aldrich). The compounds were quantified by using 

calibration curves previously determined for each compound using 3-hexanone as 

internal standard and compound-specific target ions. Only the four compounds 1-

penten-3-ol, 1-penten-3-one, trans-2-pentenal, and E,E-2,4-heptadienal could be 

calibrated directly. Since the cis isomer of 2-pentenal and the E,Z isomer of 2,4-

heptadienal were not available, the quantification of these two compounds was done 

using the calibration of the respective trans isomers. 

Statistical Analyses 

Prior to using parametric tests, all data were checked for normal distribution using the 

Shapiro-Wilks test and for homoscedasticity using Levene’s test. The growth rates of 

the snails kept under different food regimes were tested for differences in growth rate 

using one-way analysis of variance (ANOVA) with snail soft body growth rate as the 

dependent variable and the algal nutrient treatment as the predictor variable followed 

by post-hoc comparison with Tukey`s honest significant difference test (HSD) for 

unequal n. Not every animal survived until the end of the experiment, thus an 
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unequal number of replicates were obtained for the different treatments. The C:N:P 

ratios of the samples (snails and U. fimbriata) were log (x) transformed to ensure 

homoscedasticity prior to one-way ANOVA followed by Tukey´s HSD, with the C:N:P 

ratio as dependent variable. The gastropods’ mean relative positions in the 

behavioural assays were analysed via a repeated-measurement ANOVA with the 

mean relative position of the five individuals per assay as the dependent variable, the 

food nutrient treatment as the fixed factor and reading time as random factor 

(repeated measurement). To analyse the gastropod preference indices (GPI) of the 

respective VOC treatments, GPI values were arc-sin square root transformed 

(Underwood 1997). We statically tested the transformed GPIs of the corresponding 

replicates in one half of the choice arena versus the GPIs in the other half with a one-

way ANOVA with GPI as the dependent variable and the food nutrient treatment as 

fixed factor.  

The total amounts of VOCs released from the different U. fimbriata cultures were 

compared via a one-way ANOVA. Due to heteroscedasticity of the data, a non-

parametric Kruskal- Wallis ANOVA on ranks followed by Dunn’s post-hoc test was 

used to assess the differences between the amounts of each single VOC released 

from nutrient-saturated and nutrient depleted U. fimbriata. All statistical analyses 

were performed using Sigma Plot® v. 11 (SysStat), except for the repeated-

measures ANOVA, which was calculated using Statistica® v.10 (StatSoft) and a 

significance level of 0.05. 
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Results 

Somatic growth rate 

The somatic growth rate of juvenile L. stagnalis fed +P+N algae was significantly 

higher than the growth rate of snails fed with algae depleted in either P or N (F2,24 = 

172.8, p < 0.005, Fig. 1). Snails grown on -P+N and +P-N algae had a six-fold (-P+N 

U. fimbriata) or three-fold (+P-N U. fimbriata) lower growth rate than snails fed 

nutrient saturated algae (Fig. 1).  

 

C:N:P ratios of U. fimbriata and L. stagnalis 

An analysis of variance (ANOVA) of the C:N:P ratios of the U. fimbriata cultures 

confirmed that the P and N availability in the culture medium strongly influenced algal 

stoichiometry (F 2,6 = 1128.09, p < 0.05, Fig. 2). Algae grown under P-depletion had 

higher C:P and N:P ratios than algae grown at sufficient P supply in the growth 

medium. The C:N ratio of U. fimbriata grown on +P-N medium was significantly 

higher than in the other two algal cultures. When juvenile L. stagnalis were fed either 

nutrient-saturated or nutrient-depleted U. fimbriata, their soft body N:P ratio was not 

affected (F2,12 = 1.73, p = 0.218, Fig. 2). The C:N ratio of gastropods fed with +P-N 

algae was slightly but significantly higher than the C:N ratio of snails fed nutrient-rich 
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Figure 1: Somatic growth rate (mean ± SE of n(+P+N) = 9, n(-P+N) = 6,
 n(+P-N) = 11) of L. stagnalis in the laboratory growth experiment. Different letters
indicate significant differences between treatments. 
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or P-limited algae (F2,12 = 18.54, p < 0.05), and the C:P ratio of soft bodies was lower 

in snails fed +P-N algae (F2,12 = 4.32, p < 0.05) than in snails fed nutrient saturated or 

–P+N algae. 
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Figure 2: C:N:P ratios (mean ±SE) of U. fimbriata (n = 3) and L. stagnalis (n(+P+N)= 7,  
n(-P+N) = 5 and n(+P-N)  = 3) grown under different nutrient regimes; note different 
scaling of the y-axes; different letters indicate significant differences. 

 

Food choice experiments 

Control assays without chemical stimuli on either side of the aquarium confirmed that 

there was no directional bias, i.e. no preference for either side could be observed (Fig 
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3). In bioassays in which algal VOC extracts were applied, i.e. when snails could 

choose between a VOC extract from U. fimbriata and a control extract, juvenile 

L. stagnalis showed a clear chemical attraction towards the source of algal VOCs 

(Fig. 3). This preference for algal VOCs was demonstrated by a significantly higher 

mean relative position of the gastropods towards the VOC source in the active 

searching phase (repeated measures ANOVA, F1,21= 5.12, p < 0.05) than towards 

the control source. 
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Figure 3: Mean relative position (± SE) of L. stagnalis to the VOC source containers 
in the food choice assays; test extracts (filled circles): VOCs of disrupted U. fimbriata 
cells (n = 11); control assays (open circles): both containers filled with water (n = 12); 
the non-shaded area indicates the phase of active search behaviour.  

VOC analyses 

All of the main VOC components previously reported to occur in U. fimbriata by Fink 

et al. (2006b) were found both in nutrient-saturated as well as in nutrient-depleted 

algae (Tab. 1).  
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Table 1 : Results of Kruskal-Wallis one-way analyses of variance on ranks (followed 
by post-hoc comparisons using Dunn’s test) of the mean (of n=7) amounts of the five 
major VOCs released from nutrient-saturated, P- and N-depleted U. fimbriata. 
Different letters indicate significant differences at p<0.05. 

 H df +P+N -P+N +P-N 

1-penten-3-one 15.348 2 a b b 

1-penten-3-ol 17.121 2 a b a,b 

cis-2-pentenal 16.196 2 a b a,b 

(E,Z)-2.4-heptadienal 11.143 2 a b b 

(E,E)-2.4-heptadienal 16.794 2 a b a,b 

 

However, both the total quantity and the relative composition of VOCs were strongly 

influenced by the algal nutrient content. The total amounts of VOCs released from 

nutrient- saturated algae were significantly higher than the quantity of VOCs released 

from P- and N-limited U. fimbriata (ANOVA, F2,18= 522.94, p < 0.0001, Tab. 1, Fig. 4). 

In total, P- and N-limited algae released 18-fold and 30-fold lower amounts of VOCs, 

respectively, than nutrient-saturated algae. Nutrient-limited algae released reduced 

amounts of C5 components (1-penten-3-one,1-penten-3-ol,cis-2-pentenal,trans-2-

pentenal) in comparison to measured C5 VOC amounts from nutrient-saturated 

algae. The VOC component trans-2-pentenal could not be quantified in nutrient-

depleted U. fimbriata because the detected amounts were below the limit of 

quantification. In contrast, algae limited in N and P released proportionally higher 

amounts of the C7 compounds (E,Z)-2.4-heptadienaland (E,E)-2.4-heptadienal than 

nutrient-saturated U. fimbriata did (Fig. 4). 
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Figure 4:  Relative composition of the VOCs bouquets of nutrient-saturated, P- and 
N-limited U. fimbriata; numbers above the bars give mean total amounts of VOCs  
(± SE of n = 7). 

Food choice experiments with VOCs of nutrient-saturated and of P-and N-
depleted U. fimbriata 

When juvenile L. stagnalis were given the choice between VOCs extracted from  

-P+N algae versus VOCs extracted from +P+N algae, the snails clearly preferred the 

VOCs released from nutrient-rich algae (one-way ANOVA, F1,20 = 159.96, p < 0.001, 

Fig.5). The same preference was observed when the snails had the choice between 

VOCs liberated from +P-N algae versus +P+N algae: the snails clearly preferred the 

VOC bouquet derived from the high-quality food (one-way ANOVA, F1,20 = 51.11, 

p < 0.001, Fig.5). The average GPI obtained in these choice assays was significantly 

higher than in the control GPI: 80 % of the readings were the near VOCs source from 

nutrient-saturated algae.  
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Figure 5:  Gastropod position index (during the active searching period 5 - 35 min, ± 
SE) of L. stagnalis in the behavioural biotests dependent on the offered VOC 
extracts. White bars represent control assays (n = 12) in which both containers were 
filled with water; filled bars represent food choice assays (n = 11) in which one 
container contained VOCs extracted from nutrient-saturated U. fimbriata, while the 
respective container on the opposite end of the aquarium was filled with either an 
extraction control (black bars), VOCs from P-limited (light grey bars) or N-limited 
(dark grey bars) U. fimbriata. Asterisks indicate significant differences (*** p <0.001) 
within one setup. 
 

Discussion 

It has been suggested that the use of volatile signals for the evaluation of nutritional 

resource quality should be a highly adaptive strategy for consumers (Goff & Klee 

2006) but experimental evidence is lacking. Here we demonstrate for the first time 

that a freshwater gastropod can evaluate a resource’s dietary quality over a distance. 

The observed change in foraging behaviour clearly showed that the snails are able to 

perceive and distinguish the chemical cues released from the resource. 
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Effects of nutrient availability on algae and gastropods 

Our results show that a sufficient availability of the macro-elements P and N is crucial 

for gastropod growth: The growth rate of snails was higher when they fed on high 

quality food, and somatic growth was severely constrained when snails ingested –

P+N algae. Furthermore, we observed mortality during the growth experiment only in 

the treatment where the snails had been fed P-depleted algae. This highlights the 

importance of dietary P for freshwater invertebrates (Stelzer & Lamberti 2002; Fink & 

von Elert 2006).The ingestion of +P-N U. fimbriata also constrained the growth of 

juvenile L. stagnalis, but not as severely as the intake of P-depleted algae. These 

findings are similar to those found for the somatic growth rate of the freshwater 

pulmonate R. ovata (Fink & von Elert 2006) and the lotic pleurocerid snail Elimia 

livescens (Stelzer & Lamberti 2002). Hence, the C:N:P ratio of U. fimbriata cultures 

was a good indicator of food quality. Low availability of dissolved nitrogen led to a 

high algal C:N ratio, whereas low amounts of dissolved phosphorus in the algal 

growth medium caused a high algal C:P ratio as was previously reported by Fink& 

von Elert(2006).In comparison to the flexible algal stoichiometry, the C:N:P analyses 

of juvenile snails showed more constant body C:N:P ratios which were independent 

of the nutrient ratios in their diet. Hence, L. stagnalis can be considered to be a 

homeostatic consumer (Persson et al. 2010). Our findings confirm the results of 

previous studies (Sterner & Elser 2002) which investigated the growth limitation of 

primary consumers by the elemental composition of their food resources. For primary 

consumers, in particular for homeostatic organisms, the unbalanced availability of the 

essential elements P and N can lead to severe nutrient constraints. Therefore an 

effective strategy for optimizing nutrient uptake would be advantageous, e.g. food 

recognition via signal substance perception. However, this requires that food 

resources release different signals depending on nutrient content and also that 

consumers are able to recognize these differences.  

Our analysis of algal VOCs showed that the nutrient availability of dissolved nutrients 

(PO4 and NO3) had a strong impact on the bouquet of VOCs released from 

U. fimbriata upon cell damage. As also found in a previous investigation by Fink et 

al.(2006b)the C5 components 1-penten-3-on, 1-penten-3-ol were the most abundant 

components in the bouquet released from lysed cells of U. fimbriata. The chemical 

analysis of the VOC extracts derived from algae grown under different nutrient 
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regimes revealed that the nutrient-depleted algal cultures liberated the same VOC 

components as nutrient-saturated algae, but in substantially lower amounts. 

Additionally, the comparison of the VOC mixtures showed clear differences in the 

relative composition of the VOC’s bouquet. It seems likely that the nutrient depletion 

affected biochemical processes within the algae which caused the observed 

differences in the algal VOC’s bouquets. The release of volatile substances is based 

on cell damage which initiates an enzymatic cascade. The enzymatic pathway that 

leads to VOC’s release in benthic green algae has not yet been explained, but 

Pohnert& Boland (2002) suggested a VOC release pathway in diatoms: The enzyme 

cascade starts with the degradation of the phospholipid membrane to unsaturated 

fatty acids and finally leads to the release of a volatile cleavage product called 

oxylipin(Pohnert & Boland 2002). Under natural conditions, multiple factors can 

initiate this VOC liberating cascade, including mechanical damage by hydrodynamic 

forces, meiofauna and grazing herbivores (Fink 2007). However, the impact of 

nutrient limitations on VOC production has, to our knowledge, not been investigated 

in any other aquatic organism so far. Hence, the ecologically relevant question thus 

was, whether L. stagnalis are able to recognize differences in algal dietary quality 

through changes in the VOC’s bouquet and if they might therefore be able to 

differentiate between high and low quality food by the odour alone. 

Effects on gastropod behaviour 

In the present study it was clearly shown that L. stagnalis respond to the VOC 

bouquet released from damaged cells of the benthic green alga U. fimbriata as a cue 

for finding food. Such a behavioural response had previously been demonstrated for 

a closely related pulmonate gastropod (Radix ovata) by Fink et al.(2006b). In the 

study of Fink et al. (2006b), it was further demonstrated that the attraction of snails 

was clearly mediated by volatile compounds and not other, more hydrophilic algal 

products. The single compounds were insufficient for the attraction of snails, but only 

the mix (bouquet) of C5 and C7 volatiles mediated the attraction to the freshwater 

snails. At the beginning of the behavioural assays, L. stagnalis showed an undirected 

movement within the first five minutes. Presumably, the VOC mixture had not 

reached the middle of the experimental set yet, so that the snails first perceived 

thesignal after these five minutes. Afterwards the herbivores exhibited a directed 

movement towards the source of the algal VOCs. The preference behaviour was 
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exhibited for approx. 30 minutes before the response started to decline. This 

decreased response could be explained by a lack of reward (i.e. food) for the snails 

or by degradation or partial evaporation of VOCs. Another more probable explanation 

for the decreasing response is no clear VOC concentration gradient was detectable 

in the choice arena (aquarium) after the experimental period. Such a concentration 

gradient is necessary to initiate a directed food searching response by terrestrial 

snails (Chase 1982). When L. stagnalis were offered VOC extracts from +P-N or 

 –P+N U. fimbriata versus extracts from nutrient replete (+P+N) algae, the snails 

showed a consistent and strong preference for the VOCs from nutrient-saturated 

algae. Hence, these snails are able to sense food quality differences based solely on 

odorous dietary compounds. We are not able distinguish whether this differential 

behavioural response to VOCs from high and low nutrient algae is due to the higher 

amount or the different bouquet of nutrient rich versus nutrient poor algae. However, 

field experiments suggest that the qualitative change of the bouquet might be more 

important than the quantitative change (Moelzner unpublished data). Interestingly, a 

possible linkage between flavour perception and the nutritional value of food has 

already been suggested Goff & Klee(2006). 

The observed foraging behaviour of the primary consumer L. stagnalis by using 

chemical cues is highly adaptive. We here show that the movement of snails is not 

random (Streit 1981); the perception of infochemicals enables the freshwater 

gastropods to make directed movement decisions. This should be a superior foraging 

strategy in comparison to random walks, as predicted by theoretical considerations in 

mechanical movement models (Fronhofer, Hovestadt & Poethke 2013). Contrary to 

the findings of Teyke (1995), our results further revealed that no prior feeding 

experience of the snails to U. fimbriata is necessary to initiate foraging behaviour. 

Here, the foraging behaviour is only based on the presence of algal olfactory cues. 

We conclude that the use of chemical cues to directly recognize a high-quality food 

source over distance mediates optimal foraging and could thus be an adaptive 

strategy for the fitness optimization of many animal species. 
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Supplementary figure

 

Figure S1:  Schematic drawing of the 
preference of L. stagnalis towards volatile organic compounds (VOCs) extracted from 
the green alga U. fimbriata.
from VOC source containers positioned at opposite sides in the testing chamber (for 
details see Fink et al. 2006b). The 
distance in cm from the VOC source using the coordinate system (blue and red lines 
with numbers; e.g. 0red = VOC source container, 0
difference of the distances to the respe
reading interval. The dashed line shows the center of the test chamber as well as the 
starting position of the snails.
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Supplementary figure  

Schematic drawing of the choice arena used for bioassays on the 
owards volatile organic compounds (VOCs) extracted from 

U. fimbriata. The VOC extracts and control samples were released 
from VOC source containers positioned at opposite sides in the testing chamber (for 

2006b). The position of the snails was as recorded as relative 
distance in cm from the VOC source using the coordinate system (blue and red lines 

= VOC source container, 0blue = control container and the 
difference of the distances to the respective containers for each individual snail and 
reading interval. The dashed line shows the center of the test chamber as well as the 
starting position of the snails. 
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Consumer patchiness explained by volatile 
infochemicals in a freshwater ecosystem 
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Summary 

Many animal species show considerable spatial variation in abundance within their 

habitats. Since they live in patchy environments where food resources are often 

heterogeneously distributed, it would be adaptive for them to have efficient 

chemoreceptive mechanisms to locate food resources over distances. In three field 

experiments, we investigated the foraging behaviour of freshwater herbivores to 

targets containing odorant stimuli. We demonstrate that freshwater gastropods are 

able to recognize odour bouquets as foraging infochemicals and that grazing of 

conspecifics causes an aggregation of grazers under natural conditions. Further, they 

appear to be able to distinguish between high and low quality food resources based 

on resource-quality specific odour bouquets. Our results suggest that the perception 

of volatile cues is a process relevant on environmental scales and thus a possible 

mechanism to explain the frequently observed patchy distribution of grazers in 

ecosystems. 

 

Introduction 

Across many species it is well known that organisms are unevenly distributed through 

the landscape (Downes, Lake & Schreiber 1993; Moens et al. 1999;Fryxell, 

Wilmshurst & Sinclair 2004). This patchiness at both the level of primary producers 

and herbivores is believed to be a major cause for non-equilibrium processes in 

trophic interactions, though the mechanisms leading to heterogeneity at the 

consumer level are poorly understood. Several studies documented that 

heterogeneous resource availability plays a major role in the spatial variation of 

animal abundance (Wiens 1976; McNaughton 1988; Morgan, Brown & Thorson 

1997) and movement models have been developed to quantitatively assess 

behavioural responses of consumers to changes in resources at various spatial 

scales (Focardi, Marcellini & Montanaro 1996; Farnsworth 1998). Besides acquisition 

of sufficient resource quantity, consumers (in particular herbivores) need to acquire 

resources with a balanced nutrient content in order to maintain high rates of growth 

and reproduction in heterogeneous environments (Sterner & Elser 2002).Previous 

studies demonstrated that an unbalanced availability of both food quantity and quality 

(as mineral nutrients) severely limits the growth of freshwater herbivores (Sterner 
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1993; Fink & von Elert 2006;Moelzner & Fink 2014). For consumers, random 

searching for suitable food patches would require increased activity, which causes 

costs and leads to reduced fitness. A directed movement of consumers through the 

heterogeneous landscape based on behavioural decisions would be advantageous in 

comparison to random movement. Theoretical considerations already predicted 

directed walks (Fronhofer, Hovestadt & Poethke 2013), but mechanisms that could 

explain such directed movements are rare. An effective and highly adaptive 

mechanism would be the detection and localisation of food resources over certain 

distances via the perception chemical cues. For example, Höckelmann, Moens and 

Jüttner (2004) found aquatic nematodes to be attracted to cyanobacterial biofilms by 

multicomponent odours. In earlier laboratory choice experiments (Fink, von Elert & 

Jüttner 2006a; Fink, von Elert & Jüttner 2006b; Moelzner & Fink 2014), we have 

demonstrated that freshwater gastropods are attracted by algal volatile organic 

compounds (VOCs), but the environmental relevance of this chemically mediated 

interaction was not yet clear from the available laboratory studies. The benthic green 

alga Ulothrix fimbriata (Moelzner and Fink 2014) and also the diatom Achnanthes 

biasolettiana (Fink et al. 2006a) have been shown to release low-molecular volatile 

substances upon cell disruption. For diatoms, it was shown that cell damage initiates 

an enzyme cascade that leads to the degradation of membrane phospholipids and 

subsequent release of volatile cleavage products(Pohnert & Boland 2002). Under 

natural conditions, cell wounding can be initiated by multiple factors like mechanical 

damage by hydrodynamic forces or grazing herbivores (Fink 2007). When 

gastropods graze on a biofilm, their radula rasps over the underlying substrate (Elliott 

& Susswein 2002). This feeding style probably causes severe cell disruption and 

subsequent liberation of VOCs. Herbivores could use such grazing-induced volatiles 

to localize food sources. The advantage of low-molecular infochemicals is that they 

diffuse slowly in aquatic surrounding which enables the rapid formation of chemical 

gradients surrounding a source (Steinke, Malin & Liss 2002). During movement, 

gastropods could compare the intensity of chemical stimuli in their surroundings and 

detect concentration gradients that enable them to orientate to chemical signals like 

VOCs (Chase 1982). Moreover, it would be even more adaptive for consumers when 

they might use these grazing-induced odorant stimulants to distinguish resources 

based on their nutritional quality. 



Chapter II 
 

38 
 

In the current study we investigated whether gastropod consumers perceive and 

pursue odorant signals and subsequently aggregate on the corresponding food patch 

which – together with increased patch residence time – should ultimately result in a 

patchy grazer distribution. Specifically, we hypothesised that (1) gastropods show 

patchy distribution patterns in a natural lake ecosystem, (2) a synthetic mix of VOCs 

(Fink et al. 2006b)designed to mimic the natural odour bouquet from a benthic alga is 

recognized by these gastropods and leads to local aggregation of grazers, (3) 

grazing of snails on a biofilm is recognized by conspecifics and induces aggregation 

near the corresponding grazing patch, (4) a different availability of dissolved nutrients 

causes changes in the VOC bouquet of natural biofilms, and (5) when snails graze 

simultaneously on high or low quality biofilm, their conspecifics recognize the quality 

difference based on volatile cues and exhibit an adaptive response by aggregating 

near the high quality resource. To investigate these hypotheses, we conducted three 

field experiments in artificial ponds using the great pond snail Lymnaea stagnalis (L.) 

as a model consumer species. The first experiment (I) investigated the behavioural 

response of the grazers towards a synthetic mixture of pure odour compounds, while 

the second experiment (II) assessed the distribution of snails dependent on the 

presence of grazing conspecifics. Finally, a third field experiment was designed to 

analyse the behaviour of gastropods that had the choice between conspecifics 

grazing on patches of high or low dietary quality. 

 

Material and methods 

Gastropods & biofilm 

For the field choice assays, adults of the freshwater gastropod L. stagnalis(Fig. 1A) 

were collected from a pond in Appeldorn, Germany and were kept in artificial ponds 

in the botanical garden of the University Cologne on natural periphyton. Prior to 

experiment II, algal biofilms were precolonized for a month in outside aquaria on 

unglazed ceramic tiles (4.7 x 4.7 cm, V&B pro architectura, Germany) until they had 

reached a final dry mass of 10 mg tile-1. The aquaria were inoculated with a 1:1 

mixture of tap and pond water (pond of the Cologne Biocenter) and approx. 30 mg 

POC of a pure Ulothrix fimbriata culture (strain SAG 36.86, Culture Collection of 

Algae, Göttingen, Germany) to enable the establishment of semi-natural periphyton 
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communities. A granulose slow-release fertilizer (Plantacote TM Depot 6M, Urania, 

Agrochem, 10 beads per aquarium) was used to constantly provide P and N for 

periyphyton growth (Hillebrand & Kahlert 2001). To produce biofilms with different 

nutrient content for experiment (III), the tiles were precolonized for four weeks as 

described above. Afterwards the pond/ tap water mixture was replaced by algal 

growth medium. Tiles with nutrient saturated biofilm were kept in a medium that was 

originally designed for cyanobacteria (Von Elert & Jüttner 1997)and is thus 

particularly rich in dissolved phosphorus (400 µM K2PO4) and nitrogen (8000 µM 

NaNO3). Nutrient-depleted biofilms were obtained by culturing the tiles on algal 

medium with reduced phosphorus (8 µM K2PO4) and reduced nitrogen (400 µM 

NaNO3) concentrations. The two different biofilm nutrient treatments will be further 

referred to as: Nutrient-depleted (–P–N) and nutrient saturated treatment (+P+N). 

Since algal biomass development is reduced under low nutrient conditions, 

precolonisation was started four weeks earlier for the –P–N tiles compared to the 

+P+N tiles.  

Elemental analyses of the biofilm prior to choice assays 

The biofilms were analysed prior to the field choice assays to ensure that nutrient 

content differed. For this, the biofilms were removed from the tiles with a scalpel and 

resuspended in a defined volume of tap water. The algal suspension of each 

replicate was divided into four aliquots of different volumes: Two aliquots were 

analysed for C/N and particulate P, respectively as described by Moelzner and Fink 

(2014). The third aliquot was preserved with Lugol´s iodine solution for the 

determination of the taxonomic composition and the fourth aliquot was used for VOC 

extraction to further analyse the algal VOC bouquets via gas chromatograph 

combined with mass spectrometry. VOCs produced by biofilms were identified by 

comparing the retention times and mass spectra with those of reference compounds 

and quantified using 3-hexanone as internal standard as described by Moelzner and 

Fink (2014).The C:N:P ratios of the biofilm samples and the amounts of VOCs 

released from nutrient saturated and depleted biofilm were analysed via one-way 

ANOVAs followed by Tukey´s HSD Tests using SigmaPlot® v. 11 (SysStat). 
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General setup of field choice experiments 

The field food choice assays were conducted in four circular artificial ponds (diameter 

1.9 m, Unique Koi, Germany) filled with 560 L of aged tap water which resulted in a 

water level of20 cm. The ponds were shaded with a PVC tarpaulin to avoid direct 

sunlight on the experimental setups. To enable the snails to select between the two 

targets we deployed two transparent Makrolon® plates (40 x 40 cm, Fig. 1) at the 

opposite sides of the artificial ponds in a distance of approx 75 cm to each other. The 

ponds and the position of the target areas in the ponds were randomly assigned for 

each replicate assays to avoid a directional bias. 

Prior to the field choice assays, the experimental animals were starved for 72 hours 

to increase their food searching motivation and enlarge their olfactory sensitivity 

(Croll & Chase 1980). For each experiment, 36 starved L. stagnalis of similar shell 

length (30 ± 10 mm) were randomly distributed within the ponds. Subsequently, the 

prepared target areas were inserted into the choice arena. The snails were given ten 

minutes to acclimate to the experimental setup before the experiment was started. 

The number of the snails located on each of the target areas was then recorded 

every 30 minutes for three or six hours, depending on the experiment (see below). 

The mean number of snails that would be situated on one target plate with a 

theoretical random distribution was calculated as (Nsnails*Atarget)/Apool where Nsnails is 

the total amount of experimental snails, Atarget the area of the target plate and Apond 

the area of the artificial pond. 
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Figure 1: The great pond snail, Lymnaea stagnalis grazing on periphyton (A); 
experimental design for field choice assays with L. stagnalis grazing on biofilm on the 
sample target and biofilm only on the control target (field choice assay (II)) in top (B) 
and frontal view (C); the targets were placed into the circular artificial ponds as far as 
possible from each other (B); eight tiles with one snail per tile for the sample target 
and eight biofilm tiles for the control target were place on the polycarbonate plate and 
covered with a net (C) to exclude the experimental snails. 

Field choice experiment (I) with a synthetic VOC bouquet 

During experiment (I) the preference of the snails towards a synthetic VOC bouquet 

was investigated. Earlier laboratory studies (Fink et al. 2006b, Moelzner unpublished) 

have demonstrated that freshwater gastropods are attracted not only by natural, 

algae-borne odour bouquets, but also to a synthetic bouquet made from pure 

components and designed to mimic the VOC mixture liberated from benthic green 

algae. To test whether snails respond similarly to the presence of synthetic bouquets 

under natural conditions, we designed a VOC mix based on the known odour 

bouquet of the green alga Ulothrix fimbriata (Fink et al. 2006b). By using the synthetic 

VOC bouquet, we were able to offer identical VOC concentrations in all replicates 

and could easily produce large amounts of samples necessary for the field assays. 

All VOCs were dissolved in ethanol p.a. and diluted with distilled water (final volume: 

30 mL) whereas the control consisted of ethanol and distilled water only. To mimic 

the hypothesized VOCs gradient through gastropod grazing, we continuously 

pumped the VOC mix using peristaltic pumps (Minipuls 3, Gilson) and Tygon tube 
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(T3601-13, Saint Gobain) into the artificial ponds. During the field experiments, the 

odour reservoirs were stored on ice. The tube opening was located in the middle of 

the target plates from which a volume of 10 mL h-1 VOCs (2.56 µg h-1, concentration 

in the pond: 4.57 ng L-1 h-1) was pumped onto each of the target areas. Every 30 

minutes, the number of snails on each of the plates was counted for total 

experimental duration of 3 h.  

Field choice experiment (II) with grazing snails 

In the field choice experiment (II), we analysed whether snails that graze on an algal 

biofilm attract conspecifics through the release of VOCs. For this experiment, we 

used the same artificial ponds but a different setup for the target areas (Fig. 1B, C). 

On each target plate, two metal frames were mounted and covered by 1 mm mesh. 

The nets were tightly attached on the plate with Velcro strips (Hillebrand & Kahlert 

2001). Four snails and four tiles were positioned within each cage, whereas the 36 

experimental snails were excluded from the food patches by the cages’ mesh. The 

cages allowed that VOCs which were released through snail grazing on the algal 

biofilm could be liberated into the surrounding water. 

The field choice experiment (II) consisted of two variants. In the first variant, eight 

empty tiles (four per cage) with one snail per tile were placed on the control target 

plate whereas eight biofilm tiles (four per cage) with one snail per tile were placed on 

the opposite target area. This was intended to control for the attraction of 

conspecifics (e.g. by pheromones) independent of their foraging activity. In the 

second variant of field choice assay (II) we wanted to control whether the biofilm 

alone attracts snails. Therefore, eight biofilm tiles without snails were placed on the 

control target plate and eight biofilm tiles with one snail on each tile were placed on 

the other target area. Every 30 minutes for six hours the snails which were located on 

the target areas were counted. 

Field choice experiment (III) 

In field choice experiment (III), we analysed whether snails get attracted by 

conspecifics grazing on a nutrient rich (+P+N) biofilm in comparison to conspecifics 

grazing on a nutrient depleted biofilm (–P–N). The experimental setup was similar to 

the one above. Two cages were attached per target plate. Since we were limited in 

the number of biofilm tiles, we had to reduce the tile number from four to two tiles per 
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cage, to conduct sufficient assays and biofilm analyses. For the assays, two biofilm 

tiles and two snails per tile were placed within each cage. For statistical analyses of 

all three field experiments, the data were tested for homogeneity of variances. The 

data set of the field assays I and II (control biofilm) were ln transformed to obtain 

homogeneity of variances. Then, the mean number of gastropods on the respective 

target areas was compared via a repeated-measurement ANOVA with the treatment 

or control as the fixed factor and reading time as random factor (repeated 

measurement). The repeated-measurement ANOVA was used to detect any possible 

difference between the mean numbers of gastropods on the different target areas, as 

previously described by Fink et al. (2006b) for similar purposes. The statistical 

analyses were performed with Statistica® v.10 (StatSoft) and a significance level of 

0.05. We assumed that not all 36 experimental snails would be equally motivated for 

food searching, but also searching for e.g. mating partner or spawning grounds. 

Therefore, a preference index (PI) for all actively choosing snails (i.e. that 

demonstrated attraction to either of the target/control plates) was calculated. The 

preference index was calculated as (S / S + C) where S is the number of gastropods 

on the target plate with the synthetic VOC mix (in expt. I), snails grazing on a natural 

biofilm (in expt. II) and snails grazing on nutrient saturated biofilm (in expt. III), C is 

the number snails on the control target plates (in expts. I, II) and snails grazing on 

nutrient depleted biofilm (in expt. III). The PI was calculated at minute 180, to obtain 

comparable PI values for all bioassays despite different total duration. Hence, a PI of 

1 indicates that 100 % of the snails that have selected one of the target plates with 

synthetic VOC mix or grazing conspecifics whereas a PI of 0 means that all 

gastropods were situated on the control target plates. 

 

Results 

Field choice experiments 

In field choice experiment (I), where snails could choose between a synthetic VOC 

mix and a solvent control, the animals significantly preferred the source of the VOC 

bouquet over the control source (repeated measures ANOVA, F1,14 = 14.83, p < 0.05, 

Fig. 2, Tab. 1). The PI was 0.78 ± 0.12 SE, demonstrating that almost 80 % of the 

animals were located on the target plate with the infochemicals.  
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Figure 2: Mean number (± SE) of L. stagnalis on the target area in the first field 
choice experiment with a synthetic VOC bouquet (n = 8), corresponding to the VOCs 
liberated from wounded green algae (Fink 2006b); filled squares: numbers of snails 
on the target area with synthetic VOC bouquet; open squares: numbers of 
L. stagnalis on the control target; the grey square and the dashed line indicate the 
mean number of snails which would be situated on the plate at a random distribution 
(start condition). 

 

In field choice experiment (II), we investigated whether actively grazing L. stagnalis 

attract conspecifics, presumably through the release of VOCs. The experimental 

snails were significantly attracted by conspecifics grazing on biofilm tiles compared to 

a control with conspecifics on empty tiles (repeated measures ANOVA, F1,10 = 5.84, 

p < 0.005, Fig. 3 A, Tab. 1). The PI was 0.74 ± 0.06 SE. Hence, approximately 75 % 

of the experimental snails were located on the target plate with conspecifics grazing 

on biofilm. In the second variant of the field choice assay (II) it was investigated 

whether the biofilm emits attractive infochemicals in the absence of gastropod 

grazers (Fig. 3 B). Here, the experimental snails showed a significant preference for 

the conspecifcs grazing on a biofilm versus biofilm alone as shown by the 

significantly higher mean number of snails on the sample target plate (repeated 

measures ANOVA, F1,14 =  6.57, p < 0.05, Fig. 3 B, Tab. 1) as also shown by the PI of 

0.63 ± 0.02 SE.  
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Figure 3: Mean number (± SE) of L. stagnalis on the target areas in the second field 
choice experiment depending on the presence of grazing conspecifics; A: number of 
snails on the target area with conspecifics grazing on biofilm (filled squares) versus 
the number of snails on the control target area with conspecifics on empty tiles (open 
squares, n = 6);B:number of snails on the sample target area with conspecifics 
grazing on biofilm versus the number of snails on the control target area where tiles 
with biofilm only were offered (open squares, n = 8); the grey square and the dashed 
line indicate the mean number of snails which would be situated on the plate at a 
random distribution (start condition). 
 

Prior to field choice assay (III), we conducted analyses of the biomass, molar C:N:P 

ratios and VOCs of the nutrient depleted and nutrient saturated biofilms (Fig. 4). The 

analyses of the C:N:P ratios of the biofilms grown on the tiles confirmed that the algal 

stoichiometry was highly influenced by the availability of dissolved P and N in the 

algal growth medium. Biofilms grown under P and N depleted conditions had 

significantly higher C:P ratios (F1,4 = 83.51, p < 0.001) and C:N ratios (F1,4 = 239.50, 

p < 0.001) in comparison to biofilms on tiles grown under nutrient saturated 
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conditions (Fig. 4 A,B). The dry mass of the biofilm grown under nutrient depleted 

conditions was significantly higher than in the P and N saturated biofilm (F1,4 = 12.97, 

p < 0.05), due to a longer precolonisation period prior to the experiments. However, 

microscopic analysis showed very similar algal community compositions irrespective 

of the fertilisation treatment and all samples contained U. fimbriata. The VOCs 

analysis demonstrated that all main VOCs previously reported to occur in U. fimbriata 

(Fink et al. 2006b; Moelzner & Fink 2014) were also present in our biofilm samples. 

The total amounts of VOCs released from nutrient- saturated biofilms were not 

significantly higher than the quantity of VOCs released from –P–N biofilms (one-way 

ANOVA, F1,4 = 0.087, p > 0.05, Fig. 4C). However, the relative composition of the 

bouquets differed between the nutrient treatments: Nutrient-depleted biofilms 

released significantly lower amounts of the C5 component 1-penten-3-olin 

comparison to nutrient-saturated biofilm (one-way ANOVA, F1,4 = 0.087, p > 0.05, 

Fig. 4C). In contrast, the –P–N biofilm released proportionally, but not significantly 

higher amounts of the C7 compounds (E,Z)-2,4-heptadienal (one-way ANOVA, 

F1,4 = 2.437, p = 0.193, Fig. 4C) and (E,E)-2,4-heptadienal than the nutrient-saturated 

biofilm (one-way ANOVA, F1,4 = 1.289, p = 0.320, Fig. 4C). 

 

Figure 4:  Analyses of the biofilm grown on tiles under different nutrient regimes in 
the field; A: biofilm stoichiometry, molar C:P and C:N ratios (mean ± SE, n(+P+N)= 3,  
n(-P-N)  = 3); note the different scaling of the y-axes; B: biofilm dry mass (mean ±SE, 
n(+P+N)= 3,n(-P-N) = 3); asterisks indicate significant differences; C: relative composition 
of the volatile bouquets of nutrient-saturated, P- and N-depleted biofilms (± SE of  
n = 3). 
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Subsequently, the tiles covered with biofilm with either high or low nutrient content 

were offered in field choice assay (III). Snails were attracted by conspecifics that 

grazed on biofilm with high P and N content as demonstrated by a significant higher 

mean number of snails on the target plate with the +P+N biofilm versus the target 

plate with nutrient-depleted biofilm (repeated measures ANOVA, F1,12 = 6.40, 

p < 0.05, Fig. 5, Tab. 1). The PI was 0.66 ± 0.11 SE, thus demonstrating that two 

thirds of attracted snails were situated on the plate with conspecifics grazing on 

nutrient-rich biofilm. 

 

Figure 5: Mean number (± SE) of L. stagnalis on the target areas in the third field 
choice experiment (n = 7) dependent on the nutrient content of the grazed biofilms in 
the enclosures; depicted are the number of snails on the target area with conspecifics 
grazing on biofilm grown under nutrient saturated conditions (filled squares, +P+N) 
versus the number of snails on the target plate with conspecifics grazing on nutrient 
depleted biofilm (open squares,–P–N); the grey square and the dashed line indicate 
the mean number of snails which would be situated on the plate at a random 
distribution (start condition). 
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Table 1: Results of repeated-measurement analyses of variances on the mean number of 
gastropods in the field choice assays 

 

 
SS df F P  

I.  Experiment (choice between synthetic VOCs targe t and control target, n = 8)  

Treatment 21.592 1 14.836 0.0017  

Error 20.375 14    

Time 2.826 5 2.142 0.0704  

Time x treatment 1.649 5 1.249 0.2955  

Error 18.474 70    

II.  Experiment  a (choice between snails grazing on natural biofilm o r empty tiles, n = 6)  

Treatment 225.000 1 5.840 0.0362  

Error 385.250 10    

Time 56.917 11 2.704 0.0040  

Time x treatment 14.167 11 0.673 0.7610  

Error 210.417 110    

II.  Experiment  b (choice between snails grazing on natur al biofilm or biofilm only, n = 8) 

Treatment 93.521 1 6.569 0.0225  

Error 199.313 14    

Time 145.417 11 5.949 0.0000  

Time x treatment 24.229 11 0.991 0.4568  

Error 342.188 154    

III.  Experiment, choice between snails grazing on +P+N or –P-N biofilm, n = 7) 

Treatment 198.107 1 6.400 0.0264  

Error 371.429 12    

Time 91.488 5 7.446 0.0000  

Time x treatment 18.250 5 1.485 0.2080  

Error 147.429 60    
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Discussion 

Herbivores are generally known to be heterogeneously distributed in their habitats 

(Sandulli & Pinckney 1999; Fratini, Cannicci & Vannini 2001;Kie et al. 2002). The 

patchy distribution patterns demonstrate that within one region, some localities 

contain dense animal abundances, while other nearby habitats are not occupied by 

herbivores. Several studies suggest that animals respond to local heterogeneity of 

food supplies (McNaughton 1988; Focardi et al. 1996;Fryxell et al. 2004). Resource 

patchiness can occur both in terms of resource quantity or nutrient availability (i.e. 

resource quality). The nutrient supply can have tremendous influence on the nutrient 

content of food resources and thus may affect the foraging behaviour of animals 

because these individuals have to yield high rates of energy intake in order to 

increase their fitness (Hill & Grossman 1993; Moelzner & Fink 2014). 

Field choice experiment (I) with a synthetic VOC bouquet 

When we offered a synthetic VOC bouquet in field choice experiment (I), the grazers 

were clearly attracted by these infochemicals even on a naturally relevant spatial 

scale. This resulted in a heterogeneous snail distribution pattern similar those 

commonly observed in the field (Brown 1985; Smith, Vaala & Dingfelder 2003).The 

synthetic VOC mix was designed to mimic the bouquet of the benthic green alga 

U. fimbriata. Such a synthetic bouquet has already been shown to be attractive for 

the freshwater gastropod species Radix ovate (Fink et al. 2006b)and L. stagnalis 

(Moelzner, unpublished data). Gastropods possess efficient chemoreceptive 

mechanisms which enable them to orientate towards chemical signals(Croll 1983). 

The sensory mechanisms that lead to the detection of volatiles are not yet known. 

The chemosensory organs that are known to be involved in chemoreception of 

gastropods are the paired tentacles and the unpaired osphradium, a sensory epithel 

located in the mantle cavity (Townsend 1974; Wedemeyer & Schild 1995). An 

analysis of chemosensory neurons of L. stagnalis indicated that the lip and tentacle 

nerves play a crucial role in appetitive reception and feeding behaviour in response 

to chemical stimuli (Nakamura et al. 1999). 
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Field choice experiment (II) with natural biofilm and grazers 

In experiment (II), we investigated whether snails that graze on a natural biofilm 

attract conspecifics presumably through the release of lipoxygenase products after 

radular cell damage. From prior studies it is known that cell disruption is required for 

VOC release from algae (Pohnert & Boland 2002). We clearly demonstrate thatthe 

experimental snails were attracted to the target with conspecifics grazing on a biofilm 

in comparison to the control targets which again resulted in a patchy gastropod 

distribution in the experimental ponds. During the experiment, the grazing snails were 

caged under a net. Therefore, the experimental snails had no access to the food 

patch and this allows us to separate infochemical effects from patch residence 

effects. The results of the assays where control targets with snails on empty tiles 

were present demonstrated that conspecifics without biofilm were not attractive to 

other L. stagnalis individuals. In contrast, the results of the assay with the control 

target with biofilm only demonstrated that more snails were located on the control 

target than it would have been expected with a random distribution. This suggests 

that the control tiles with biofilm alone (i.e. without snail), also liberated VOCs that 

were attractive to snails but not as attractive as grazing conspecifics. Presumably, 

meiofauna, bacteria, fungi and micorgrazers feeding on biofilm, caused cell disruption 

which may cause a release of VOCs (Fink 2007). Similar to our findings, a previous 

study demonstrated that mangrove snails get attracted by conspecifics feeding on 

leaves, while intact leaves and non-feeding snails were not attractive (Fratini et al. 

2001). This supports the idea that the grazing activity itself leads to the release of 

chemical stimuli. The results of experiment (II) clearly indicate that the experimental 

snails were attracted from their feeding conspecifics after they perceived volatiles as 

foraging kairomones over distance and as a consequence exhibited a patchy 

distribution pattern. This is further supported by the observation that the bouquet of 

VOCs released from this natural biofilm was similar in composition to the artificial 

bouquet designed to mimic the odour of the green alga U. fimbriata (Fink et al. 

2006b; Moelzner & Fink 2014).  

 

Biofilm analyses 

The analysis of biofilm C:N:P ratios clearly demonstrated that the nutrient depleted 

biofilms exhibited a lower C:P ratio than the nutrient saturated biofilm. High C:P ratios 
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result in low resource quality and causes reduced growth of the consumers (Fink & 

von Elert 2006; Moelzner & Fink 2014). The chemical analysis of the VOCs extracted 

from the biofilm samples revealed that nutrient-saturated and nutrient-depleted 

biofilms released similar total amounts of VOCs, independent from the availability of 

the essential nutrients P and N. However, the relative composition of the algal VOC 

bouquet was altered with different nutrient supply, as we had also observed in an 

earlier study (Moelzner & Fink 2014). Since the tiles for the experiments were pre-

colonized in natural lake water with addition of the green alga U. fimbriata, the 

analysed biofilm consisted partly of U. fimbriata and a natural algal community. Thus 

we expected similar but not equal VOCs bouquets to the known bouquet of 

U. fimbriata. In earlier publications, it was shown that diatoms which were also part of 

the analysed biofilm, do also release volatiles after cell disruption (Fink et al 2006a).  

These volatiles were shown to function as food finding cues but are chemically 

different from the VOC bouquet of U. fimbriata. We thus assume that the specific 

VOCs bouquets of different freshwater algae can differ considerably in their chemical 

composition and VOC profiles from many more algae are required to understand 

more about their chemical diversity and ecological functions(Fink 2007). Hence, our 

analytical approach was limited to the known VOCs bouquet of U. fimbriata. The 

different nutrient content could have also have led to a changes in the algal and/or 

bacterial biofilm composition (Stoodley et al. 1998; Stelzer &Lamberti 2001) and 

subsequent changes in VOC bouquet. However, this seems unlikely at least for the 

algae based on our microscopic investigations of fixed biofilm samples.  

 

Field choice experiments (III) with biofilms of different nutrient content 

Eventhough the differences in the VOC bouquet of the biofilms with different nutrient 

quality were small, the snails were attracted by the target where conspecifcs grazed 

on biofilm with high nutrient content. Snails are known to be very sensitive to 

chemical cues (Croll 1983) and even subtle deviations in an odour can be recognized 

and lead to altered behaviour. In a previous study, it has been shown that resource 

availability has a strong influence on the volatile production of freshwater 

chrysophytes(Watson & Satchwill 2003), whereas nutrient-depleted marine diatoms 

were shown to increase the release of polyunsaturated short-chain aldehydes (PUAs, 

(Ribalet et al. 2007).  
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Interestingly, thesnails were attracted by conspecifics grazing on high quality versus 

low quality biofilm even though the biomass of the high nutrient biofilm was lower 

than thatof the low nutrient biofilm. This supports our earlier findings that food quality 

(in terms of nutrient content) is even more important for freshwater gastropods than 

food quantity (Fink & von Elert 2006; Moelzner & Fink 2014). Our findings indicate 

that adaptive behavioural decisions driven by chemical cues can influence processes 

at coarser-scales and that fine-scale structural patchiness is important for freshwater 

herbivores. Furthermore, the structural patchiness we examined is caused by a 

biological process (grazing), and thus emphasizes the natural relevance of this 

ecological interaction.  

 

Ecosystem consequences 

Although herbivory is often viewed as negative interaction from the perspective of the 

primary producer, it has been demonstrated that grazers play an important role for 

primary production in terms of nutrient recycling (McNaughton, Banyikwa & 

McNaughton 1997; Vanni 2002).Consumers indirectly fertilize primary producers 

through their dissolved and particulate excretion products and can therefore alter 

nutrient cycling and affect producers´ elemental composition (McNaughton et al. 

1997; Liess & Haglund 2007). Several studies revealed that grazer presence can 

increase the nutrient content of periphyton (Hillebrand & Kahlert 2001; Frost et al. 

2002). Thus, the feedback interaction among grazing, nutrient cycling and primary 

production might be affected by the release of VOCs. The liberation of volatile 

infochemicals by primary producers would attract consumers and conspecifics to the 

respective food patch and ensures sufficient nutrient supply through grazing 

mediated nutrient regeneration. 

The ability of many animals to select food patches that maximize their fitness is 

dependent upon their ability to recognize and assess resource patches over a range 

of spatial scales. Therefore, consumers have to optimise the length of time spent on 

each patch to maximise the number of resource items harvested per time 

unit(Wajnberg, Hoffmeister & Coquillard 2013). It is known that environmental 

patchiness can strongly influence the outcome of interspecific competition by 

favouring specific foraging strategies (Chase, Wilson & Richards 2001). The current 

study suggests that the perception of infochemicals enables straighter movements to 
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food patches and increase foraging efficiency. This should lead to increasing net 

displacement of consumers, and thereby improve their chances of finding new 

resources. 

Obviously, foraging infochemicals are not the only possible determinant of patchy 

grazer distributions. A heterogeneous distribution of herbivores may also be related 

to patchiness in predator pressure (Turner, Fetterolf & Bernot 1999), temperature 

fluctuations, water depth (Smith et al. 2003) or habitat heterogeneity (Doak 2000).  

Other factors, in particular increased patch residence time on high quantity and/or 

quality patches will further increase the patchiness in herbivore occurrence 

patterns(Nonacs 2001). Nevertheless, we here show convincing evidence that 

volatile infochemicals, liberated through the grazing activity of conspecifics, can 

cause patterns in grazer patchiness similar to those frequently observed in natural 

ecosystems.  
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Abstract 

Chemical information transfer is a major agent in the regulation of interspecific and 

intraspecific interactions in natural ecosystems. One important group of such 

infochemicals both in terrestrial and aquatic ecosystems are so-called volatile organic 

compounds (VOCs) that can evoke behavioural or physiological responses like 

predator avoidance and mate or host location. In previous work, we have 

demonstrated that freshwater gastropods utilize VOCs released from benthic algae 

as food finding cues, although the specific nature of the VOC release and perception 

were not yet clear. Therefore we tested whether gastropod grazing on biofilms leads 

to algal cell damage and a subsequent liberation of wounding-associated VOCs. In 

bioassays we investigated the algal VOC bouquet level which is necessary to elicit a 

behavioural response of freshwater gastropods. The results of the liberation 

experiment showed that gastropod grazing leads to VOCs release. We also found 

that a certain threshold level of volatiles is necessary for snails to recognise the 

volatile infochemicals and subsequently respond with a directed foraging behaviour 

towards the odour. Finally, a calculated mass balance model demonstrated that the 

grazer mediated VOC release produced a signal concentration that is sufficient to be 

recognized by conspecifics and utilized as foraging infochemicals. The emission of 

ecologically relevant volatiles through snail grazing with subsequent attraction of 

other gastropod grazers to algal biofilms indicates an important but so far 

understudied chemical signalling mechanism of ecological importance. 
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Introduction 

Within and across ecosystems infochemicals mediate inter- and intraspecific in 

(Dicke and Sabelis 1988). In particular intraspecific information exchange, via 

chemical signals (allomones), is crucial for the regulation of many predator-prey 

interactions in both terrestrial and aquatic ecosystems (Kats and Dill 1998). Hence, 

an understanding of chemical signal transduction and emission is of critical 

importance for the study of consumer-resource interactions. One important group of 

signal substances are volatile organic compounds (Baldwin, et al. 2006, Gershenzon 

2007). VOCs are small molecular compounds with a low to medium water 

hydrophilicity, which makes them functional as chemical cues in both terrestrial and 

aquatic habitats (Fink 2007). In terrestrial ecology, there are numerous studies that 

investigated the role of volatiles. For example, odour cues from nectar and pollen in 

flowers attract insect pollinators and structure plant pollinator interactions. 

Herbivorous insects were found to be repelled by chemicals released from plants 

damaged by herbivory (Bernasconi, et al. 1998, De Moraes, et al. 2001). Other 

studies on terrestrial plant-herbivore interactions reported that herbivory can induce 

the emission of VOCs from plants which attract parasitoids of the herbivores and thus 

lead to an indirect plant defence strategy (Arimura, et al. 2009, Ode 2006). 

Unfortunately, there is considerably less knowledge available on the role of VOCs in 

aquatic environments (Fink 2007). The most commonly studied example is an 

activated chemical defence strategy of marine diatoms against herbivorous 

zooplankton, which is mediated by antimitotic polyunsaturated aldehydes (Miralto, et 

al. 1999, Pohnert and Boland 2002). There, volatile aldehydes were found to inhibit 

the embryonic development of the brood of marine copepods and thus effect in an 

indirect defence of algal blooms on the population level (Ianora, et al. 2004). Further, 

it was reported that wound-activated substance from marine diatoms can act 

simultaneously as toxins and infochemicals also for benthic invertebrates (Maibam, et 

al. 2014). In previous studies (Fink, et al. 2006a, Fink, et al. 2006b, Moelzner and 

Fink 2014), we have demonstrated that freshwater gastropods use volatile organic 

compounds released from green alga as foraging infochemicals. In a field study we 

showed that grazers are attracted to a synthetic VOC mix that mimicked the natural 

algal VOC bouquet as well as when an algal biofilm is grazed upon by conspecifics 

(Moelzner and Fink in review).What is common to the studies on VOCs from marine 

and freshwater microalgae is that the liberation of VOCs appears to depend on algal 
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cell damage and a wounding-activated enzyme cascade (Fink, et al. 2006b, Pohnert 

2000). For diatoms, it was shown that the enzyme cascade starts with the 

degradation of phospholipid membranes to liberate polyunsaturated fatty acids and 

subsequent oxygenation of these fatty acids via a lipoxygenase. Finally, a lyase 

causes the release of a volatile lipoxygenase product called oxylipin(Pohnert and 

Boland 2002). Although the enzymatic mechanisms have been studied in detail 

under laboratory conditions, it is not yet clear how algal VOCs are released into the 

environment under a natural and ecologically relevant scenario. Interestingly, the 

feeding mode of aquatic gastropods involves the rasping of substrate-attached algal 

biofilms via their radular tongue, which most likely causes massive algal cell damage 

during the snails’ ingestion process. Therefore, it was reasonable to hypothesise that 

radular scraping leads to cell disruption in biofilm algae which activates the enzyme 

cascade that leads to the liberation of VOCs and subsequently to the attraction of 

other gastropod grazers from the surroundings. The property of low-molecular 

volatiles is that they diffuse slowly in aquatic surroundings which enables the 

formation of chemical gradients (Steinke, et al. 2002) and gastropods are known to 

utilize concentration gradients to orientate towards chemical signals (Chase 1982). 

Presumably, a certain concentration of infochemicals in the proximity is required for 

the animals to recognize the signal substances and show behavioural response 

towards the volatile algal cues. To investigate these hypotheses, we conducted VOC 

liberation experiments in the laboratory and tested whether grazing of the freshwater 

gastropod Lymnaea stagnalis on a biofilm-forming alga caused the release of VOCs. 

To determine how different VOC levels influence the foraging behaviour of the 

gastropods, we used behavioural bioassay to investigate the odour threshold of the 

snails’ behavioural response, and grazing experiments to quantify L. stagnalis’ 

feeding rates dependent on body size. Using these experimental data sets, we 

developed a simple mass balance model to demonstrate that grazing-mediated cell 

disruption can cause the liberation of sufficient amounts of VOCs to elicit foraging 

behaviour in freshwater gastropods.  
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Materials and methods 

Cultures 

Juveniles of the freshwater gastropod Lymnaea stagnalis were hatched and reared 

from eggs laid by adult individuals originally collected in a pond in Appeldorn, 

Germany, and kept in a climate chamber at 20 ± 0.5°C under constant dim light in 

aerated tap water. The snails were fed Tetra PlecoMin™ fish food pellets (Tetra, 

Melle, Germany) ad libitum. The filamentous green alga Uronema fimbriata (strain 

SAG 36.86 from the Göttingen Algal Culture Collection, SAG , formerly classified as 

Ulothrix fimbriata, but reassigned to the genus Uronema by (Caisová, et al. 2011) 

was continuously cultivated in chemostats on Cyano medium (Von Elert and Jüttner 

1997) with a light (PAR) intensity of 80 µmol photons s-1 m-2. Particulate organic 

carbon (POC) concentrations of the algal suspensions were estimated from 

photometric light extinction at 480 nm using previously determined carbon-extinction 

equations from POC analyses of filtered algae in a Thermo Flash EA 2000 elemental 

analyzer. 

 

VOC liberation experiment 

Prior to the VOC liberation experiment, ten adult L. stagnalis (3 – 4 cm) were starved 

for 24 h prior to the experiment to increase their feeding motivation.  A biomass of 

approx. 170 mg POC of a U. fimbriata suspension harvested freshly from the 

chemostat culture was transferred into round bottom flask and adjusted to a final 

volume of 250 mL with aged tap water. Subsequently, the preconditioned L. stagnalis 

were gently slipped into the flask and 100 ng of 3-Hexanone were added as internal 

standard. Subsequently, liberated VOCs were extracted 4 hours via ‘closed loop 

stripping’ (Jüttner 1988). With this technique, the VOCs are transferred from the 

aqueous phase into the headspace above the sample and subsequently trapped on 

150 mg of the adsorbent Tenax TA (Chrompack). Control extractions with the same 

algal biomass, but without snail grazers were conducted to test whether ungrazed 

algae also liberate VOCs. The VOCs were thermally desorbed from the adsorbent 

and analysed qualitatively and quantitatively via GC-MS (Agilent Technologies) as 

described previously (Moelzner and Fink 2014). The amounts of VOCs  
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(as ng mg C-1) were log (x+1) or √x transformed to ensure homoscedasticity prior to 

one-way ANOVA followed by Tukey´s HSD. The VOC amounts were analysed as the 

dependent variable to assess the difference between the release of each single VOC 

component using the treatment (with our without grazers) as the predictor variable. 

Threshold experiment 

For the determination of the threshold concentration of the snails’ behavioural 

response to the algal VOC bouquet, the behavioural assay developed by Fink, et al. 

(2006b) was employed. As a positive control,VOCs extracted from a 10 mg POC of a 

chemostat culture of U. fimbriata were used, while ethanol was tested as a negative 

(solvent) control. To test the snails´ respond to different VOC concentrations, we 

used a previously developed synthetic VOC mix comprised of pure compounds 

(dissolved in ethanol) and designed to mimic the natural odour bouquet of 

U. fimbriata (Fink, et al. 2006b). By using a synthetic VOC bouquet, we were able to 

offer identical VOC concentrations in all replicates and could easily produce large 

amounts of samples necessary for the odour threshold assays. The food choice 

assays were conducted in aquaria (320 x 170 x 180 mm) filled with 1 L of aged tap 

water each, in which VOC release containers were placed at the opposite sides of 

each aquarium (see Fink et al. 2006b). At the beginning of the experiment, five 

juvenile L. stagnalis with a shell length of 15 ± 5 mm were placed into the centre of 

an aquarium. The snails were given five minutes to acclimate to the experimental 

setup before the experiment was started by opening the VOC source containers. The 

response of the snails to the corresponding the VOC source was recorded every 

minute for 20 min as the relative distance of the five snails to the respective VOC 

sources. The closer a snail was situated to the VOC source, the higher was its 

relative position score. Seven different concentrations ranging from 25.6 ng L-1 to 

256 µg L-1 were offered in 8 – 21 replicate choice assays per concentration. By 

calculating the mean relative positions of the five individual snails within each 20 

minutes assay period, we derived a single preference score for each replicate assay, 

which could then be statistically compared to the mean relative position of the 

negative control (without VOCs) using analysis of variance. The threshold 

concentration was defined as the lowest concentration for which a significant 

difference in the snails’ mean position was found compared to the negative control.  
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Ingestion experiment 

The ingestion rate was measured for L. stagnalis with shell heights of 12.6 – 35.0 mm 

at non-food limiting conditions using again the culture of U. fimbriata as food source. 

The algae were collected from the chemostat culture, shock-frozen at -80°C, freeze-

dried (Christ, Alpha 1-4 LSC) and finally stored frozen until the experiments to avoid 

changes in the cells’ composition. Prior the ingestion experiment, juvenile L. stagnalis 

(preconditioned for 48 h in aerated tap water) were placed individually in circular 

glass jars (diameter: 12 cm) filled with 100 ml aerated tap water each. In the centre of 

the jar, a glass ring (diameter 3.5 cm) was positioned, in which 14 mg of freeze dried 

were placed and allowed to sediment and to re-hydrate in the container, before the 

glass ring was gently removed to allow the snails to access the resource spot. 20 

containers were stocked with algae and snails to determine grazing, while another 14 

containers received algae but no gastropods to serve as controls. After 3 h of 

grazing, the snails were removed and the remaining algae were filtered onto GF/A 

glass fibre filters (Whatman). Filters were dried for 24 hours at 60°C before 

determination of algal dry mass on a microbalance. 

 

Results 

VOC liberation experiment 

When L. stagnalis grazed on U. fimbriata, significantly higher amounts of 1-penten-3-

on (F1,14 = 8.35, p < 0.013), 1-penten-3-ol (F1,14 = 38.33, p < 0.001) and E,Z-

heptadienal (F1,14 = 6.47, p =0.024) were released into the surrounding medium 

compared to the control samples without snails (Fig. 1). The release of the 

polyunsaturated C7-aldehyde E,E-heptadienal was not significantly increased by 

gastropod grazing. The C5-aldehyde pentenal which is commonly observed in the 

bouquet from artificially damaged U. fimbriata (Fink, et al. 2006b, Moelzner and Fink 

2014), was not detectable in both experiments, neither with nor without gastropod 

grazers. 
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Figure 1: VOCs release (ng VOC mg C-1) in grazer-free controls (grey bars, n = 8) or 
with actively feeding gastropod grazers (black bars, n = 6); asterisks indicate 
significant difference between treatments according to one-way ANOVA with 
p < 0.05. 

 

Threshold experiment 

The series of negative controls without chemical stimuli on either side of the 

aquarium confirmed that there was no directional bias, i.e. no preference for either 

side of the experimental arena, as demonstrated by a mean (± SE) gastropod 

position of -0.14 ± 1.05 (Fig 2). In the series of positive controls, L. stagnalis showed 

a significant preference for the natural VOC extract from U. fimbriata with a mean 

(± SE) gastropod position of 6.21 ± 1.85 (F1,34= 8.17, p < 0.01). When a synthetic 

VOC bouquet with a concentration of 26 ng L-1 or 128 ng L-1 were offered in the 

choice assays, the snails´ position score was not significantly different from these in 

the solvent control assays. The mean position score increased significantly (4.07 

± 1.20 SE) when a VOC concentration of 0.26 µg L-1 was offered (F1,34= 4.71, 

p < 0.05). The highest mean relative position of the snails towards the VOC source 

(5.49 ± 2.88 SE) was obtained when a VOC concentration of 1.28 µg L-1 was offered 

in the choice arena (F1, 47 = 6.81, p < 0.05). When VOCs concentrations higher than 

1.28 µg L -1 were tested, the mean relative position of the snails decreased again and 
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the snails appeared to move away from the VOCs source, although the position 

readings were not significantly different to those of the solvent control assays. 
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Figure 2:  Mean position (± SE; 5 - 25 min) of L. stagnalis in the behavioural assays 
with a synthetic VOC bouquet corresponding to the VOCs liberated from wounded 
green algae (Fink 2006b); open symbol: mean position of snails in the control assays 
with water only (n = 28); filled symbol: positive controls (n = 8) with a natural VOC 
bouquet liberated from a benthic green alga; grey circles: mean position of 
L. stagnalis in the threshold assays with synthetic VOC bouquet at various 
concentrations (n = 8 - 21). 

 

Ingestion experiment 

As expected, the ingestion rate of L. stagnalis increased with increasing shell length 

(Fig. 3). For example, a snail with a shell height of 15 mm ingested approx. 0.25 mg 

C h-1, whereas a conspecific of the double size ingested approx. five times more algal 

biomass (1.14 mg C h-1). A power function (y = 2E-0.5x3.22) was fitted to the data with 

an R2 of 0.89, which corresponds to reports from the literature. Using this equation, 

the ingestion rate of L. stagnalis could be calculated for each shell height in a range 

from 12.6 mm to 35 mm.  
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Figure 3:  Relation between ingestion rate (algal mg C snail-1 h-1) of L. stagnalis and 
their shell height; snails (n = 20) of different size were fed for 3 h on saturating 
amounts of freeze-dried U. fimbriata filaments; the fitted curve is a power function 
with y = 2E-0.5x3.22, R2 = 0.89. 

 

Discussion 

VOC liberation experiment 

In prior studies it as shown that after cell lysis algal release volatiles and that 

gastropods were attracted from these chemical stimuli , but if active grazing on a 

biofilm mediates VOC liberation was not been demonstrated. The results of the 

present study now yield the missing piece in the puzzle – the grazing-mediated 

release of volatile foraging infochemicals. When snails  graze on a biofilm, their 

radula rasps over the underlying substrate (Elliott and Susswein 2002). This feeding 

style causes cell disruption and apparently a subsequent liberation of VOCs. The 

analysis of algal VOCs from the liberation experiment showed that higher amounts of 

C5 volatiles and E,Z heptadienal were released when snails grazed on U. fimbriata in 

comparison to the grazer-free controls. In prior investigations when algal cells were 

artificially damaged by freeze-thawing and addition of sodium chloride (NaCl, (Fink, 

et al. 2006b, Moelzner and Fink 2014)), the C5 VOCs 1-penten-3-on, 1-penten-3-ol 

were also found to be the most abundant components in the bouquet released from 

damaged cells of U. fimbriata. In contrast to the artificially induced VOC release 
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(Fink, et al. 2006b), the other components of the VOC bouquet of U. fimbriata 

(namely the C5 aldehydes cis- and trans-pentenal and the C7 aldehydes E,E–

heptadienal) were found only in minor concentrations. Until now, the enzymatic 

pathway that leads to release of VOCs from green algae has not yet been elucidated. 

It is plausible however, that the enzyme cascade in green algae resembles the one 

described for diatoms (Pohnert 2000).  

 

Threshold experiment 

The determination of odour thresholds is a common approach in sensory physiology, 

but also in applied research on food and fragrances. Odour thresholds are required 

to evaluate the sensory level above which an odorous signal can be perceived and/or 

a response measured(Lawless and Heymann 1999). Here we demonstrated that 

snails are able to recognize the signal substances and could identify an active 

concentration that is preferred by the snails. A minimum VOC concentration of 0.26 

µg L-1 was required for attraction of the snails towards the VOCs source. This was 

the lowest concentration, namely the threshold concentration at which the snails 

showed a clear attraction towards the VOC source in comparison to the mean 

position of the snails in the negative controls. When the VOC concentration was 

increased to 1.28 µg L- 1, the VOC source was even more attractive, as indicated by 

a higher mean relative position of the experimental snails. A similar behavioural 

response was found in behavioural experiments with honey bees, where odorants 

became progressively easier to discriminate when the concentration increased 

(Wright and Smith 2004). With increasing VOC concentration, the snails´ positions 

values decreased and the snails demonstrated the tendency to crawl into the 

opposite direction of the VOCs source. It might be that an increasing odour intensity 

affects quantitative and qualitative perceptional properties as shown for honey bees 

(Wright, et al. 2005). The bees use the information of the odour concentration as 

separate stimulus dimension which means that the odour concentration is a part of 

the overall odour identity (Wright, et al. 2005). Another possibility for the observed 

snail behaviour is that the VOC concentration was too high. Thus, no odour gradient 

could be used by the snails for orientation in their surrounding (Chase 1982).In the 

positive control assays, the attraction of the snails towards the natural algal bouquet 
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corroborates previous studies in which freshwater snails recognised algal VOCs as 

foraging kairomones (Fink, et al. 2006a, Fink, et al. 2006b, Moelzner and Fink 2014). 

However, the magnitude of the behavioural response towards chemical stimuli can 

vary and depending on sex, reproductive condition or the presence/absence of 

parasites as it was shown for marine gastropods (Curtis 1985). Or for bumblebees it 

was found that their sensitivity to odours increased with body size, since larger 

individuals have larger antennae and thus more olfactory receptors for chemical cues 

from the surrounding (Spaethe, et al. 2007).  

Ingestion experiment 

The ingestion experiment was designed to investigate the amount of algal matter that 

can be ingested by snails of a given body size. This allows the calculation of the 

amounts of VOCs that could potentially be liberated via snail grazing. As expected, 

the experiment demonstrated that the ingestion rate increased with body size (shell 

height). This body size dependence is coincident with prior findings for the same 

species (Zonneveld and Kooijman 1989). When the ingestion rate (h-1) of a snail is 

divided by the snail´s shell height the specific ingestion rate per mm shell is obtained. 

This calculation shows that one mm of a 15 mm snail ingests 0.0167 mg C whereas 

one mm of the 30 mm snails ingest 0.038 mg C. For the grazer mediated VOC 

release, this means that larger animals graze much higher amounts of biofilm than 

smaller individuals, which leads to liberation of elevated VOC amounts. However, it 

should be noted that in natural environments, the ingestion rate of organisms is not 

only dependent on body size. The feeding rate of gastropods can be affected by 

numerous factors. For example, limiting resource quality can lead to compensatory 

feeding in freshwater gastropods (Fink and von Elert 2006), and marine snails 

(Hydobiaulvae) reduce their ingestion rate even under non- limiting food conditions 

when the population density is too high (Blanchard, et al. 2000).  

Ecological relevance 

The relevant question to evaluate the ecological importance of the grazing-mediated 

release of volatile infochemicals of course is whether the grazing of natural snail 

densities and the concomitant cell lysis are sufficiently large to lead to the liberation 

of signal concentrations that surpass the perception threshold determined here. To 

evaluate whether grazing-mediated cell damage could lead to the liberation of 
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sufficient amounts of VOCs, we here aim a simple mass balance model based on the 

findings from this and previous studies: In an earlier lab study, we had quantified the 

VOCs released from an exponentially growing culture of U. fimbriata and found that 

approximately 366 ng VOCs were liberated per mg particulate algal carbon following 

cell disruption (Moelzner and Fink 2014). In behavioural choice assays, we 

demonstrated the preference of snails to this bouquet extracted from 10 mg POC of 

U. fimbriata (corresponding to 3.66 µg VOCs,(Moelzner and Fink 2014)). In our 

threshold assays with a synthetic VOC bouquet (designed to mimic the natural 

bouquet of U. fimbriata), a VOCs concentration of 1.28 µg L-1 lead to a clear 

significant behavioural response of the snails. This amount would be liberated after 

lysis of an algal biomass corresponding to 3.49 mg POC. As demonstrated in our 

ingestion experiment, a third of this biomass (1.14 mg POC h-1) is ingested by a 

medium-sized L. stagnalis with a shell length of 30 mm in one hour. Thus, 

approximately three L. stagnalis of 30 mm shell length are able to consume the algal 

biomass within one hour that is necessary to liberate a VOCs signal (1.28 µg) which 

can be recognized by consepecifics and elicit chemotactic food-finding behaviour. 

This L. stagnails population density is commonly exceeded in the field, sometimes by 

several orders of magnitude (Moelzner, pers. observation). This is further 

corroborated by field experiments in which we could demonstrate that four adult 

snails grazing on a natural biofilm attracted conspecifics from the surroundings in a 

semi-natural ecosystem (Moelzner& Fink in review). Hence, our mass balance model 

plausibly explains that gastropod grazing can liberate an odorant signal at 

concentrations that can be recognized by conspecifics and utilized as foraging 

infochemicals. 
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The interaction of primary producers and grazers is important for the structure of 

aquatic ecosystems ( e.g. Carpenter et al. 1985). In littoral zones of lakes gastropods 

like Lymnaea stagnalis are highly abundant. They play an important role in the 

benthic food web because herbivorous grazer are an essential link to higher trophic 

levels since they serve as food source for predators (Turner et al., 2000) and occupy 

a key role in the ´top-down´ control of algal biomass (Reavell 1980, Vander Zanden 

et al. 1997). In lakes, benthic algae are a major source of primary production 

(Vadeboncoeur et al. 2001). The nutrient content of those algae varies strongly, both 

spatially and seasonally (Elser et al. 2000). In such heterogeneous environments it is 

important for herbivores to acquire a sufficient nutrient supply in order to maintain 

high rates of growth and reproduction (Elser et al. 2000). The foraging success could 

be increased through the perception of diet-derived infochemicals that convey 

information about a food resource’s quality over a certain distance. Many interactions 

of organisms in ecosystems are goverened by infochemicals (Vos et al. 2006). A 

major group of infochemicals are volatile organic compounds (VOCs) which can 

induce behavioural or physiological responses like predator avoidance, mating or 

food source location (Laothawornkitkul et al. 2009). For freshwater gastropods (Radix 

ovata) it was shown that volatiles released from benthic green algae and diatoms 

upon wounding, were perceived as foraging cues (Fink et al. 2006a, b).The use of 

VOCs as signal substances could thus be a suitable mechanism for the 

communication and interaction of primary producers and grazers of a benthic natural 

system. 

 

When I investigated the somatic growth rate of L. stagnalis depending on the nutrient 

content of the resource in chapter I, the results showed that a sufficient availability of 

the macro-elements P and N was crucial for the growth of the juvenile snails. The 

growth rate was higher when they fed on high quality food Uronema/ Ulothrix 

fimbriata (+P+N), and severely constrained when snails fed on nutrient depleted 

algae (–P+N or algae +P-N). These findings were similar to those observed for the 

somatic growth rate of the freshwater pulmonate Radix ovata (Fink and von Elert 

2006) and the lotic pleurocerid snail Elimia livescens (Stelzer and Lamberti 2002). 

The analysis of the algal C:N:P ratio showed a flexible stoichiometry whereas the 
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C:N:P analyses of juvenile snails demonstrated constant body C:N:P ratios which 

were independent of the nutrient ratios in their diet. Therefore L. stagnalis can be 

considered to be a strict homeostatic consumer (Persson et al. 2010). These results 

are in line with findings of previous studies (Sterner and Elser 2002) which 

investigated the growth limitation of primary consumers by the elemental composition 

of their food resources. For primary consumers, in particular for homeostatic 

organisms like snails, the unbalanced availability of the essential elements P and N 

can strongly constrain growth and reproduction as it was shown by empirical and 

theoretical studies (Andersen et al. 2004, Frost et al. 2005). Accordingly an effective 

adaptive strategy for optimizing nutrient intake would be advantageous, e.g. food 

recognition via infochemical perception. However, this would imply firstly that food 

resources release different signals depending on nutrient content and secondly that 

consumers are able to recognize these differences. Therefore, I analysed the 

composition of the VOC bouquet released from U. fimbriata with high and low nutrient 

via GC-MS analyses. The chemical analysis of the VOC extracts revealed that the 

nutrient-depleted algal cultures liberated the same volatile components as nutrient-

saturated algae, but in a different relative composition and also in substantially lower 

amounts.These findings of the present study are in contrast with those for the diatom 

Skeletonema marinoi where N- and P-limited cells in stationary phase were found to 

produce higher amounts of volatile aldehydes than the nutrient repleted cultures 

(Ribalet et al. 2007).  

Until now, the enzymatic pathway that leads to release of VOCs from benthic green 

algae has not been elucidated. Nevertheless, researchers proposed the 

lipogxygenase pathway in diatoms (Pohnert 2000, 2002) that could lead to the 

release of volatile oxylipins. Studies on diatoms (Skeletonema costatum) showed that 

the precursor of volatile aldehydes are C16 and C20 PUFAs (D'Ippolito et al. 2004). 

The C18 fatty were expected to be the precursors for the volatiles released from the 

benthic green algae because green algae are closer related to the higher plants than 

to diatoms (Adl et al. 2012). It was shown in the present study that in U. fimbriata with 

different nutrient content the main fatty acid components are the C18 PUFAs alpha-

linoleic (C18:3) acid and stearidonic acid (C18:4). Previous studies that analysed the 

fatty acid composition of freshwater microalgae also found that the C18:3 fatty acid 

was present in all investigated algae whereas the C18:4 was found to be species 

specific (Weissman 1984).The low availability of the nutrients N and P in U. fimbriata 
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led to significantly lower amounts of the C18 PUFAs. It seemed reasonable that the 

lower amounts of C18 PUFAs caused differences in relative composition of the algal 

VOC’s bouquets. First investigations on the biosynthetic pathway gave hints that the 

C18 PUFA alpha-linoleic acid is at least the precursor for the C7 aldehyde heptadienal 

(Moelzner, Roth, Fink unpublished). Further analyses are necessary to clarify the 

lipoxygenase pathway of the benthic green algae into detail.  

Therefore I hypothesised whether L. stagnalis is able to recognize differences in algal 

dietary quality through changes in the algal VOCs bouquet and if it might therefore be 

able to differentiate between high and low quality food by the odour alone. In 

behavioural assays I found the freshwater gastropod L. stagnalis to be attracted by 

the VOCs bouquet released from damaged cells of the benthic green alga U. 

fimbriata. A similar foraging behaviour was reported for another pulmonate gastropod 

(Radix ovata) by Fink et al. (2006b). In a further series of bioassays L. stagnalis 

showed a consistent and strong preference for the VOCs from nutrient-saturated 

algae versus VOC extracts from nutrient depleted U. fimbriata. So indeed, the 

observed foraging behaviour of the snails demonstrated that they are able to sense 

food quality differences based solely on odorous dietary compounds. Nevertheless, it 

was not possible to constitute, whether this differential behavioural response of the 

snails to the algal bouquets from high and low nutrient algae was due to the higher 

amount or the different relative composition of VOCs bouquets. However, the results 

of field experiments (chapter II ) suggest that the foraging behaviour is based on 

qualitative change and not on the quantitative change. Interestingly, a possible 

linkage between flavour perception and the nutritional value of food has already been 

suggested by Goff & Klee (2006).The results of the bioassays show that the usage of 

infochemicals as food quality indicators enables the freshwater gastropods to make 

directed movement decisions. Additionally, decision making based on chemical cues 

is highly adaptive for such slow moving grazers. This should be a superior foraging 

strategy in comparison to random walks, as predicted by theoretical considerations in 

mechanical movement models (Fronhofer et al. 2013). Contrary to the findings of 

Teyke (1995), our results further revealed that no prior feeding experience of the 

snails in respect to U. fimbriata is necessary to initiate foraging behaviour. Here, the 

foraging behaviour is only based on the presence of algal olfactory cues. 
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Further I hypothesised that detection of algal foraging cues should be relevant on a 

larger spatial scales. It is also not clear how volatiles could be released under natural 

conditions. Therefore I hypothesised that the grazing of snails which based on 

radular cell damage, could lead to the release of volatile lipoxygenase products that 

are recognized as foraging cues. In chapter II  I therefore analysed in field 

experiments the foraging behaviour of L. stagnalis to volatiles and tested whether 

snails´ grazing on natural biofilm leads to attraction of conspecifics which would 

indicate that volatiles are released.  

At first I tested whether L. stagnalis is able to detect volatiles on a naturally relevant 

spatial scale (I). Therefore I used a synthetic VOC mix which was designed to mimic 

the bouquet of the benthic green alga U. fimbriata. Such a synthetic bouquet has 

already been shown to be attractive for the freshwater gastropod species Radix ovata 

(Fink et al. 2006b). L. stagnalis was clearly attracted to the VOC source even on a 

larger spatial scale. 

In the second field experiment (II) within chapter II , in which L. stagnalis grazed on a 

natural biofilm it was clearly demonstrated that the conspecifics were attracted to the 

target with conspecifics grazing on tiles with biofilm in comparison to the control 

targets (biofilm tiles without grazing snails). The results also support the hypothesis 

that snails´ grazing initiates VOCs release: target with snails grazing on biofilm and 

the synthetic VOCs source similarly evoked an attraction of L. stagnalis. In a variant 

field experiment it was demonstrated that only biofilm was also attractive for the 

snails. This suggests that the biofilm alone (i.e. without macro grazers), also liberated 

VOCs that were attractive to L. stagnalis, but not as attractive as grazing 

conspecifics. Presumably, meiofauna, bacteria, fungi and micorgrazers feeding on 

biofilm, produced cell disruption which may cause a release of VOCs (Fink 2007). 

Similar to our findings, a previous study demonstrated that mangrove snails get 

attracted by conspecifics feeding on leaves, while intact leaves and non-feeding 

snails were not attractive (Fratini et al. 2001). This supports the idea that the grazing 

activity itself leads to the release of chemical stimuli, which functioned as distance 

attractants as it was demonstrated for floral scents for pollinators of patchily 

distributed plants (e.g., Knudsen et al. 1999). 

The results of grazing experiment (II) clearly indicated that the experimental snails 

were attracted from their feeding conspecifics. This resulted in a heterogeneous snail 
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distribution pattern similar to those commonly observed in the field (Brown 1985, 

Smith et al. 2003). 

It is known that herbivores are heterogeneously distributed in their habitats (Sandulli 

and Pinckney 1999, Fratini et al. 2001, Kie et al. 2002). Several studies suggest that 

animals respond for example to local heterogeneity of food supplies (McNaughton 

1988, Focardi et al. 1996, Fryxell et al. 2004). Resource patchiness can occur both in 

terms of resource quantity or nutrient availability (i.e. resource quality). The nutrient 

availability can have tremendous influence on the nutrient content of food resources 

and thus may affect the foraging behaviour of animals because these individuals 

have to yield high rates of nutrient uptake in order to increase their fitness (Hill and 

Grossman 1993, chapter I ). From the results presented in chapter I  it was known 

that differences in algal dietary quality lead to changes in the VOC bouquet of U. 

fimbriata. L. stagnalis was thus able to recognize differences in the algal odours.  

Therefore, I hypothesised that the different nutrient availability in a natural biofilm 

leads to changes in the VOC bouquet. Further I hypothesised that L. stagnalis might 

be able to differentiate between high and low quality food resource on a natural 

relevant spatial scale based on the odours released while conspecifics graze on a 

natural biofilm.  

In a third experimental approach (III) of chapter II, I therefore analysed the VOC 

bouquet of the biofilms with different nutrient content and tested if the grazing of L. 

stagnalis on food patches with high versus low nutrient availability would lead to an 

attraction of L. stagnalis to the target with conspecifics grazing on the nutrient rich 

food resource. The chemical analysis of the VOCs extracted from the biofilm samples 

revealed that nutrient-saturated and nutrient-depleted biofilms released similar total 

amounts of VOCs, independent from the availability of the essential nutrients P and 

N. However, the relative composition of the algal VOC bouquet was altered with 

different nutrient supply, as I had also observed in chapter I . Since the tiles for the 

experiments were pre-colonized in natural lake water with addition of the green alga 

U. fimbriata, the analysed biofilm consisted partly of U. fimbriata and a natural algal 

community. Thus we expected similar but not equal VOCs bouquets to the known 

bouquet of U. fimbriata. In earlier publications, it was shown that diatoms which were 

also part of the analysed biofilm do also release volatiles after cell disruption (Fink et 

al 2006a). Even though the differences in the VOC bouquet of the biofilms with 
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different nutrient quality were small, I could demonstrate in the third field experiment 

(III) that L. stagnalis was attracted by the target where conspecifics grazed on biofilm 

with high nutrient content. From snails it is known that they are very sensitive to 

chemical cues (Croll 1983) and even subtle deviations in an odour can be recognized 

and lead to altered behaviour. During movement, gastropods compare the intensity of 

chemical stimuli in their proximity and detect concentration gradients that enable 

them to orientate towards chemical signals (Chase 1982). In aquatic environments 

local concentration gradients of VOCs can develop, because seconds after cell 

damage high amounts of volatile aldehydes are released, as it was shown for 

diatoms (Pohnert 2000). Furthermore the wound activated lipoxygenase was shown 

to retain its activity in seawater over several minutes after wounding (Fontana et al. 

2007). Altogether, the rapid onset of the aldehyde biosynthesis, the activity duration 

of the wound-activated lipoxygenase coupled with the slow diffusion velocity provide 

good conditions for the establishment of a stable chemical cue gradient.  

 

In prior investigations, it was demonstrated that when algal cells of benthic algae 

were artificially damaged by freeze-thawing and addition of sodium chloride, the 

algae released volatiles (Fink et al. 2006b, chapter I ). Furthermore I demonstrated in 

the field experiments of chapter II that a synthetic VOC bouquet and grazing of 

conspecifics on biofilm induced foraging behaviour of L. stagnalis. I therefore 

hypothesized that while L. stagnalis scrape over the substrate, cells are wounded 

and this initiate the enzyme cascade that leads to the formation of VOCs. In chapter 

III, I investigated in laboratory experiments, whether the feeding style of L. stagnalis 

cause the liberation of VOCs. The data of this liberation experiment clearly showed 

that higher amounts of C5 volatiles and E,Z heptadienal were released when snails 

grazed on U. fimbriata in comparison to the grazer-free controls.  

In order to further develop an idea to which extend the algal VOCs bouquet shapes 

or influences the foraging behaviour of the grazers, a detection threshold is required. 

This threshold should facilitate to evaluate the sensory level of organisms from that 

on, an odorous signal is recognized and leads to a response.Therefore I 

hypothesized in chapter III that a certain threshold concentration of VOCs is 

necessary to initiate a directed foraging behaviour of L. stagnalis towards a VOC 

source.In further bioassays I investigated the detection threshold of L. stagnalis for 
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different concentrations of a synthetic VOC mix. It could be demonstrated that at very 

low VOC concentration no response to the VOC source occurred. With increasing 

VOC bouquet concentration the snails got attracted and I found the threshold 

concentration at which L. stagnalis showed a clear attraction towards the VOC 

source. With a two times higherVOC concentration than the threshold concentration 

the VOC source was even more attractive. Such a similar foraging behaviour was 

found in behavioural experiments with honey bees, where odorants became 

progressively easier to discriminate when the concentration increased (Wright and 

Smith 2004). When the concentration was elevated by factor 10, L. stagnalis showed 

no foraging response to the VOC source anymore. When the VOC concentration was 

100 or 1000 higher than the threshold concentration, L. stagnalis tend to crawl into 

the opposite direction of the VOCs source. Most likely the increasing odour intensity 

affected quantitative and qualitative chemical cue perception of the snails as it was 

for example shown for honey bees (Wright et al. 2005). Bees used the information of 

the odour concentration as a separate stimulus dimension which means that the 

odour concentration is a part of the odour identity (Wright et al. 2005). An increased 

concentration changes the identity of the scent and is not recognized anymore. 

Another explanation for the negative response of the snails at very high VOC levels is 

that the VOC concentration in the choice arena was so high that no VOC 

concentration gradient developed. In a motionless aquatic environment chemicals are 

transported via molecular diffusion (Webster and Weissburg 2009). The transport of 

the chemicals can be described by Fickian diffusion, where the flux is proportional to 

the concentration. Consequently, a rapid distribution of the VOCs occurred and thus 

no odour gradient could be used by the snails for orientation in their surrounding 

(Chase 1982). However, the magnitude of the behavioural response towards 

chemical stimuli can vary and is depending on sex, reproductive condition or the 

presence/absence of parasites as it was shown for marine gastropods (Curtis 1985). 

For example it was found for bumblebees that their sensitivity to odours increased 

with body size, since larger individuals have larger antennae and thus more olfactory 

receptors for chemical cues from the surrounding (Spaethe et al. 2007). 

Like insects, gastropods do also possess efficient chemoreceptive mechanisms 

which enable them to orientate towards chemical signals (Croll 1983). The 

chemosensory organs that are known to be involved in chemoreception of 

gastropods are the paired tentacles and the unpaired osphradium, a sensory epithel 
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located in the mantle cavity (Townsend 1974, Wedemeyer and Schild 1995). An 

analysis of chemosensory neurons of L. stagnalis indicated that the lip and tentacle 

nerves play a crucial role in appetitive reception and feeding behavior in response to 

chemical stimuli (Nakamura et al. 1999). These sensitive chemosensory organs 

enable L. stagnalis to recognize not only foraging cues from food resources but also 

i.e. kairomones from predatory fish. The primary anti-predator behaviour in L. 

stagnalis is to crawl out of the water which is even enhanced when the fish 

kairomone is paired with alarm cues, from crushed conspecifics (Dalesman et al. 

2007). Previous studies used L. stagnalis to investigate cue association learning and 

anti-predator behaviour. It was found that L. stagnalis was capable to relate a 

potential predation risk to a recent experience (Dalesman et al. 2006). This indicates 

that the L. stagnalis might also use the mechanism of cue association learning in 

order to remember to the smell of the good food.  

The final hypothesis of the present work was; whether the grazing of natural snail 

densities and the concomitant wound mediated VOCs liberation are sufficiently large 

enough to lead to the liberation of signal concentrations that surpass the perception 

threshold determined in chapter III . 

I thus developed a simple mass balance model based on the findings from chapter I  

and III and previous studies: In the lab study in chapter I , I could quantify the amount 

of VOCs, extracted from 10 mg POC of U. fimbriata that was attractive to L. stagnalis 

in behavioural assays. In the detection threshold assays in chapter III  with a 

synthetic VOC bouquet (designed to mimic the natural bouquet of U. fimbriata), I 

determined the threshold level of VOCs that lead to a clear significant behavioural 

response of the snails. This amount would be liberated after lysis of an algal biomass 

corresponding to a third of the biomass of U. fimbriata extracted in for the choice 

assays in chapter I . From the ingestion experiment in chapter III, I showed that a 

tenth of this biomass is ingested in one hour by a medium-sized L. stagnalis with a 

shell length of 30 mm. Thus, approximately three snails of 30 mm shell length are 

able to consume the algal biomass within one hour that is necessary to liberate a 

VOCs signal that is as strong as the threshold concentration. This can be recognized 

by conspecifics and elicit chemotactic food-finding behaviour. This L. stagnalis 

population density is commonly exceeded in the field, sometimes by several orders of 

magnitude (Moelzner, pers. observation). This is further corroborated by field 
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experiments in which I could demonstrate that four adult snails grazing on a natural 

biofilm attracted conspecifics from the surroundings in a semi-natural ecosystem 

(chapter II ). Hence, the mass balance model plausibly explains that gastropod 

grazing can liberate an odorant signal at concentrations that can be recognized by 

conspecifics and utilized as foraging infochemicals. 

 

The current work clearly demonstrated that the transfer of infochemicals is important 

in an aquatic environment to interpret behavioural but also physiological responses of 

organisms to predict the resource finding success. Infochemicals distributed in the 

environment can provide a reliable roadmap to consumers about potential high 

quality resources in their proximity. From the perspective of the primary producer, 

herbivory is a negative interaction but it has been demonstrated that grazers play an 

important role for primary production in terms of nutrient recycling (McNaughton et al. 

1997, Vanni 2002). Consumers indirectly fertilize primary producers like benthic 

algae through their dissolved and particulate excretion products and can therefore 

alter nutrient cycling and affect producers´ elemental composition (McNaughton et al. 

1997, Liess and Haglund 2007). Several studies revealed that grazer presence can 

increase the nutrient content of periphyton (Hillebrand and Kahlert 2001, Frost et al. 

2002). Thus, the feedback interaction among grazing, nutrient cycling and primary 

production might be affected by the release of VOCs. The liberation of volatile 

infochemicals by primary producers would attract consumers and conspecifics to the 

respective food patch and ensures sufficient nutrient supply through grazing 

mediated nutrient regeneration. 

Furthermore, adaptive behavioral decisions driven by chemical cues can influence 

processes at coarser-scales and fine-scale structural patchiness is important for 

freshwater herbivores. The structural patchiness I examined is caused by a biological 

process (snail grazing), and thus emphasizes the natural relevance of this ecological 

interaction of herbivores and primary producers. 

 



General references 
 

84 
 

General references 
 

Adl, S. M., A. G. B. Simpson, C. E. Lane, J. Lukeš, D. Bass, S. S. Bowser, M. W. Brown, F. 

Burki, M. Dunthorn, V. Hampl, A. Heiss, M. Hoppenrath, E. Lara, L. le Gall, D. H. 

Lynn, H. McManus, E. A. D. Mitchell, S. E. Mozley-Stanridge, L. W. Parfrey, J. 

Pawlowski, S. Rueckert, L. Shadwick, C. L. Schoch, A. Smirnov, and F. W. Spiegel. 

2012. The Revised Classification of Eukaryotes. Journal of Eukaryotic Microbiology 

59:429-514. 

Andersen, T., J. J. Elser, and D. O. Hessen. 2004. Stoichiometry and population dynamics. 

Ecology Letters 7:884-900. 

Arimura, G.-i., K. Matsui, and J. Takabayashi. 2009. Chemical and Molecular Ecology of 

Herbivore-Induced Plant Volatiles: Proximate Factors and Their Ultimate Functions. 

Plant and Cell Physiology 50:911-923. 

Baldwin, I. T., R. Halitschke, A. Paschold, C. C. von Dahl, and C. A. Preston. 2006. Volatile 

signaling in plant-plant interactions: "Talking trees" in the genomics era. Science 

311:812-815. 

Blée, E. 2002. Impact of phyto-oxylipins in plant defense. Trends in Plant Science 7:315-322. 

Boersma, M., and C. Kreutzer. 2002. Life at the edge: Is food quality really of minor 

importance at low quantities? Ecology 83:2552-2561. 

Bovbjerg, R. V. 1968. Resonses to food in Lymnaeid snails. Physiological Zoology 41:412-&. 

Brönmark, C., and L. A. Hansson. 2000. Chemical communication in aquatic systems: an 

introduction. OIKOS 88:103-109. 

Brown, K. M. 1985. Intraspecific life history variation in a pond snail: The roles of population 

divergence and phenotypic plasticity. Evolution 39:387-395. 

Carpenter, S. R., J. F. Kitchell, and J. R. Hodgson. 1985. Cascading Trophic Interactions and 
Lake Productivity. BioScience 35:634-639. 

Chase, R. 1982. The olfactory sensitivity of snails, Achatina fulica. Journal of Comparative 

Physiology 148:225-235. 

Croft, K. P. C., F. Jüttner, and A. J. Slusarenko. 1993. Volatile products of the lipoxygenase 

pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas 

syringae Pv-phaseolicola. Plant Physiology 101:13-24. 

Croll, R. P. 1983. Gastropod Chemoreception. Biological Reviews Of The Cambridge 

Philosophical Society 58:293-319. 

Curtis, L. A. 1985. The Influence of Sex and Trematode Parasites on Carrion Response of 

the Estuarine Snail Ilyanassa obsoleta. Biological Bulletin 169:377-390. 



General references
 

85 
 

Cutignano, A., G. d'Ippolito, G. Romano, N. Lamari, G. Cimino, F. Febbraio, and A. Fontana. 

2006. Chloroplastic glycolipids fuel aldehyde biosynthesis in the marine diatom 

Thalassiosira rotula. Chembiochem 7:450-456. 

D'Ippolito, G., S. Tucci, A. Cutignano, G. Romano, G. Cimino, A. Miralto, and A. Fontana. 

2004. The role of complex lipids in the synthesis of bioactive aldehydes of the marine 

diatom Skeletonema costatum. Biochimica et Biophysica Acta 1686:100-107. 

Dalesman, S., S. D. Rundle, R. A. Coleman, and P. A. Cotton. 2006. Cue association and 

antipredator behaviour in a pulmonate snail, Lymnaea stagnalis. Animal Behaviour 

71:789-797. 

Dalesman, S., S. D. Rundle, and P. A. Cotton. 2007. Predator regime influences innate anti-

predator behaviour in the freshwater gastropod Lymnaea stagnalis. Freshwater 

Biology 52:2134-2140. 

Dicke, M., and I. T. Baldwin. 2010. The evolutionary context for herbivore-induced plant 

volatiles: beyond the ‘cry for help’. Trends in Plant Science 15:167-175. 

Dicke, M., and M. W. Sabelis. 1988. Infochemical terminology: based on cost-benefit 

analysis rather than origin of compounds? Functional Ecology 2:131-139. 

Dudareva, N., and E. Pichersky. 2010. Biology of floral scent. CRC Press. 

Elser, J. J., W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, 

S. S. Kilham, E. Mc Cauley, K. L. Schulz, E. H. Siemann, and R. W. Sterner. 2000. 

Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578-580. 

Evans, W. G. 1982. Oscillatoria sp. (Cyanophyta) mat metabolites implicated In habitat 

selection in Bembidion obtusidens (Coleoptera, Carabidae). Journal of Chemical 

Ecology 8:671-678. 

Farnsworth, K. D., Beecham, J.A. 1998. How do grazers achieve their distribution? A 

continuum of models from random diffusion to the ideal free distribution using biased 

random walks. The American Naturalist 153:509-526. 

Fink, P. 2007. Ecological functions of volatile organic compounds in aquatic systems. Marine 

and Freshwater Behaviour and Physiology 40:155-168. 

Fink, P., and E. von Elert. 2006. Physiological responses to stoichiometric constraints: 

nutrient limitation and compensatory feeding in a freshwater snail. OIKOS 115:484-

494. 

Fink, P., E. von Elert, and F. Jüttner. 2006a. Oxylipins from freshwater diatoms act as 

attractants for a benthic herbivore. Archiv für Hydrobiologie 167:561-574. 

Fink, P., E. von Elert, and F. Jüttner. 2006b. Volatile foraging kairomones in the littoral zone: 

Attraction of an herbivorous freshwater gastropod to algal odors. Journal of Chemical 

Ecology 32:1867-1881. 



General references 
 

86 
 

Focardi, S., P. Marcellini, and P. Montanaro. 1996. Do ungulates exhibit a food density 

threshold? A field study of optimal foraging and movement patterns. Journal of 

Animal Ecology 65:606-620. 

Fontana, A., G. d'Ippolito, A. Cutignano, A. Miralto, A. Ianora, G. Romano, and G. Cimino. 

2007. Chemistry of oxylipin pathways in marine diatoms. Page 481  Pure and Applied 

Chemistry. 

Fratini, S., S. Cannicci, and M. Vannini. 2001. Feeding clusters and olfaction in the mangrove 

snail Terebralia palustris (Linnaeus) (Potamididae : Gastropoda). Journal of 

Experimental Marine Biology & Ecology 261:173-183. 

Fronhofer, E. A., T. Hovestadt, and H. J. Poethke. 2013. From random walks to informed 

movement. OIKOS 122:857-866. 

Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen, and V. Matzek. 2005. Are you 

what you eat? Physiological constraints on organismal stoichiometry in an 

elementally imbalanced world. OIKOS 109:18-28. 

Frost, P. C., R. S. Stelzer, G. A. Lamberti, and J. J. Elser. 2002. Ecological stoichiometry of 

trophic interactions in the benthos: Understanding the role of C:N:P ratios in lentic 

and lotic habitats. Journal of the North American Benthological Society 21:515-528. 

Fryxell, J. M., J. F. Wilmshurst, and A. R. E. Sinclair. 2004. Predictive models of movement 

by Serengeti grazers Ecology 85:2429-2435. 

Goff, S. A., and H. J. Klee. 2006. Plant volatile compounds: Sensory cues for health and 

nutritional value? Science 311:815-819. 

Hatanaka, A. 1993. The biogeneration of green odor by green leaves. Phytochemistry 

34:1201-1218. 

Hill, J., and G. D. Grossman. 1993. An energetic model of microhabitat use for rainbow trout 

and rosyside dace. Ecology 74:685-698. 

Hillebrand, H., and M. Kahlert. 2001. Effect of grazing and nutrient supply on periphyton 

biomass and nutrient stoichiometry in habitats of different productivity. Limnology and 

Oceanography 46:1881-1898. 

Höckelmann, C., T. Moens, and F. Jüttner. 2004. Odor compounds from cyanobacterial 

biofilms acting as attractants and repellents for free-living nematodes. Limnology and 

Oceanography 49:1809-1819. 

Ianora, A., and A. Miralto. 2010. Toxigenic effects of diatoms on grazers, phytoplankton and 

other microbes: a review. Ecotoxicology 19:493-511. 

Ianora, A., and S. A. Poulet. 1993. Egg viability in the copepod Temora-stylifera Limnology 

and Oceanography 38:1615-1626. 



General references
 

87 
 

Jüttner, F. 1984. Dynamics of the Volatile Organic Substances Associated with 

Cyanobacteria and Algae in a Eutrophic Shallow Lake. Applied and Environmental 

Microbiology 47:814-820. 

Jüttner, F. 1995. Physiology and biochemistry of odorous compounds from fresh-water 

cyanobacteria and algae. Water Science and Technology 31:69-78. 

Kats, L. B., and L. M. Dill. 1998. The scent of death: Chemosensory assessment of predation 

risk by prey animals. Ecoscience 5:361-394. 

Kie, J. G., R. T. Bowyer, M. C. Nicholson, B. B. Boroski, and E. R. Loft. 2002. Landscape 

heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 

83:530-544. 

Klaschka, U. 2008. Odorants – Potent Substances at Minor Concentrations: The Ecological 

Role of Infochemicals. Pages 305-320 in K. Kümmerer, editor. Pharmaceuticals in the 

Environment. Springer Berlin Heidelberg. 

Knudsen, J. T., S. Andersson, and P. Bergman. 1999. Floral Scent Attraction in Geonoma 

macrostachys, an Understorey Palm of the Amazonian Rain Forest. OIKOS 85:409-

418. 

Laothawornkitkul, J., J. E. Taylor, N. D. Paul, and C. N. Hewitt. 2009. Biogenic volatile 

organic compounds in the Earth system. New Phytologist 183:27-51. 

Lauga, E., and A. E. Hosoi. 2006. Tuning gastropod locomotion: Modeling the influence of 

mucus rheology on the cost of crawling. Physics of Fluids (1994-present) 18:-. 

Lawless, H., and H. Heymann. 1999. Descriptive Analysis. Pages 341-378  Sensory 

Evaluation of Food. Springer US. 

Liess, A., and A. L. Haglund. 2007. Periphyton responds differentially to nutrients recycled in 

dissolved or faecal pellet form by the snail grazer Theodoxus fluviatilis. Freshwater 

Biology 52:1997-2008. 

McNaughton, S. J. 1988. Mineral-nutrition and spatial concentrations of african ungulates. 

Nature 334:343-345. 

McNaughton, S. J., F. F. Banyikwa, and M. M. McNaughton. 1997. Promotion of the cycling 

of diet-enhancing nutrients by African grazers. Science 278:1798-1800. 

Miralto, A., G. Barone, G. Romano, S. A. Poulet, A. Ianora, G. L. Russo, I. Buttino, G. 

Mazzarella, M. Laabir, M. Cabrini, and M. G. Giacobbe. 1999. The insidious effect of 

diatoms on copepod reproduction. Nature 402:173-176. 

Moelzner, J., and P. Fink. 2014. The smell of good food: volatile infochemicals as resource 

quality indicators. Journal of Animal Ecology:in press. 

Morgan, R. A., J. S. Brown, and J. M. Thorson. 1997. The effect of spatial scale on the 

functional response of fox squirrels. Ecology 78:1087-1097. 



General references 
 

88 
 

Müller, D. G., L. Jaenicke, M. Donike, and T. Akintobi. 1971. Sex attractant in a brown alga - 

chemical structure. Science 171:815. 

Nakamura, H., S. Kojima, S. Kobayashi, I. Ito, Y. Fujito, H. Suzuki, and E. Ito. 1999. 

Physiological characterization of lip and tentacle nerves in Lymnaea stagnalis. 

Neuroscience Research 33:291-298. 

Ode, P. J. 2006. Plant chemistry and natural enemy fitness: Effects on Herbivore and Natural 

Enemy Interactions. Annual Review of Entomology 51:163-185. 

Persson, J., P. Fink, A. Goto, J. M. Hood, J. Jonas, and S. Kato. 2010. To be or not to be 

what you eat: regulation of stoichiometric homeostasis among autotrophs and 

heterotrophs. OIKOS 119:741-751. 

Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. 

Angewandte Chemie-International Edition 39:4352-4354. 

Pohnert, G. 2002. Phospholipase A(2) activity triggers the wound-activated chemical defense 

in the diatom Thalassiosira rotula. Plant Physiology 129:103-111. 

Pohnert, G. 2005. Diatom/Copepod Interactions in Plankton: The Indirect Chemical Defense 

of Unicellular Algae. Chembiochem 6:946-959. 

Pohnert, G., and W. Boland. 2002. The oxylipin chemistry of attraction and defense in brown 

algae and diatoms. Natural Product Reports 19:108-122. 

Price, P. W., C. E. Bouton, P. Gross, B. A. McPheron, J. N. Thompson, and A. E. Weis. 

1980. Interactions Among Three Trophic Levels: Influence of Plants on Interactions 

Between Insect Herbivores and Natural Enemies. Annual Review of Ecology and 

Systematics 11:41-65. 

Rasmann, S., T. G. Kollner, J. Degenhardt, I. Hiltpold, S. Toepfer, U. Kuhlmann, J. 

Gershenzon, and T. C. J. Turlings. 2005. Recruitment of entomopathogenic 

nematodes by insect-damaged maize roots. Nature 434:732-737. 

Reavell, P. E. 1980. A study of the diets of some british frewshwater gastropods. Journal of 

Conchology 30 30:253-271. 

Ribalet, F., T. Wichard, G. Pohnert, A. Ianora, A. Miralto, and R. Casotti. 2007. Age and 

nutrient limitation enhance polyunsaturated aldehyde production in marine diatoms. 

Phytochemistry 68:2059-2067. 

Rose, U., A. Manukian, R. R. Heath, and J. H. Tumlinson. 1996. Volatile Semiochemicals 

Released from Undamaged Cotton Leaves (A Systemic Response of Living Plants to 

Caterpillar Damage). Plant Physiology 111:487-495. 

Sandulli, R., and J. Pinckney. 1999. Patch sizes and spatial patterns of meiobenthic 

copepods and benthic microalgae in sandy sediments: a microscale approach. 

Journal of Sea Research 41:179-187. 



General references
 

89 
 

Shiojiri, K., K. Kishimoto, R. Ozawa, S. Kugimiya, S. Urashimo, G. Arimura, J. Horiuchi, T. 

Nishioka, K. Matsui, and J. Takabayashi. 2006. Changing green leaf volatile 

biosynthesis in plants: An approach for improving plant resistance against both 

herbivores and pathogens. Proceedings of the National Academy of Sciences 

103:16672-16676. 

Smith, G. R., D. A. Vaala, and H. A. Dingfelder. 2003. Distribution and abundance of 

macroinvertebrates within two temporary ponds. Hydrobiologia 497:161-167. 

Spaethe, J., A. Brockmann, C. Halbig, and J. Tautz. 2007. Size determines antennal 

sensitivity and behavioral threshold to odors in bumblebee workers. 

Naturwissenschaften 94:733-739. 

Sperfeld, E., D. Martin-Creuzburg, and A. Wacker. 2012. Multiple resource limitation theory 

applied to herbivorous consumers: Liebig's minimum rule vs. interactive co-limitation. 

Ecology Letters 15:142-150. 

Stelzer, R. S., and G. A. Lamberti. 2002. Ecological stoichiometry in running waters: 

periphyton chemical composition and snail growth. Ecology 83:1039-1051. 

Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: the biology of elements from 

molecules to the biosphere. Princeton University Press, Princeton, New Jersey. 

Stiling, P., and D. C. Moon. 2005. Quality or quantity: the direct and indirect effects of host 

plants on herbivores and their natural enemies. Oecologia 142:413-420. 

Teyke, T. 1995. Food attraction conditioning in the snail Helix pomatia. Journal of 

Comparative Physiology A 177:409-414. 

Townsend, C. R. 1974. The chemoreceptor sites involved in food-finding by the freshwater 

pulmonate snail, Biomphalaria glabrata (Say), with particular reference to the function 

of the tentacles. Behavioral Biology 11:511-523. 

Trichilo, P. J., and T. F. Leigh. 1988. Influence of resource quality on the productive fitness of 

flower thrips (Thyanoptera, thripidae) Annals of the Entomological Society of America 

81:64-70. 

Vadeboncoeur, Y., D. M. Lodge, and S. R. Carpenter. 2001. Whole-lake fertilization effects 

on the distribution of primary production between benthic and pelagic habitats. 

Ecology 82:1065-1077. 

Van den Boom, C. E. M., A. Van Beek Teris, M. A. Posthummus, A. de Groot, and M. Dicke. 

2004. Qualitative and quantitative variation among volatile profiles induced by 

Tetranychus urticae feeding on plants from various families. Journal of Chemical 

Ecology 30:69-89. 

Vander Zanden, M. J., G. Cabana, and J. B. Rasmussen. 1997. Comparing trophic position 

of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature 

dietary data. Canadian Journal Of Fisheries And Aquatic Sciences 54:1142-1158. 



General references 
 

90 
 

Vanni, M. J. 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of 

Ecology and Systematics 33:341-370. 

Vos, M., L. E. M. Vet, F. L. Wäckers, J. J. Middelburg, W. H. van der Putten, W. M. Mooij, C. 

H. R. Heip, and E. van Donk. 2006. Infochemicals structure marine, terrestrial and 

freshwater food webs: Implications for ecological informatics. Ecological Informatics 

1:23-32. 

Webster, D. R., and M. J. Weissburg. 2009. The Hydrodynamics of Chemical Cues Among 

Aquatic Organisms. Annual Review of Fluid Mechanics 41:73-90. 

Wedemeyer, H., and D. Schild. 1995. Chemosensitivity of the osphradium of the pond snail 

Lymnaea stagnalis. Journal of Experimental Biology 198:1743-1754. 

Weissman, J. 1984. Screening for lipid yielding microalgae: Activities for 1983. 

Wendel, T., and F. Jüttner. 1996. Lipoxygenase-mediated formation of hydrocarbons and 

unsaturated aldehydes in freshwater diatoms. Phytochemistry 41:1445-1449. 

Wiens, J. A. 1976. Population responses to patchy environments. Annual Review of Ecology 

and Systematics 7:81-120. 

Wright, G. A., and B. H. Smith. 2004. Different Thresholds for Detection and Discrimination of 

Odors in the Honey bee (Apis mellifera). Chemical Senses 29:127-135. 

Wright, G. A., M. G. A. Thomson, and B. H. Smith. 2005. Odour concentration affects odour 

identity in honeybees. Proceedings of the Royal Society B: Biological Sciences 

272:2417-2422. 

 



Record of achievement
 

91 
 

Record of achievement 
 

Chapter 1: The smell of good food: volatile infoche micals as resource quality 
indicator 

Results described in this chapter were exclusively performed by me or under my direct 

supervision. Patrick Fink was involved in all technical discussions and discussions 

regarding the design and has critically read the manuscript. 

 

Chapter 2: Consumer patchiness explained by volatil e infochemicals in a 
freshwater ecosystem 

Results described in this chapter were exclusively performed by me or under my direct 

supervision. Patrick Fink was involved in all technical discussions and discussions 

regarding the design and has critically read the manuscript. 

 

Chapter 3: Gastropod grazing on benthic algae leads  to liberation of food-
finding infochemicals 

Results described in this chapter were exclusively performed by me or under my direct 

supervision. Patrick Fink was involved in all technical discussions and discussions 

regarding the design and has critically read the manuscript. 



 
 

92 
 

Bisherige Publikationen im peer-review Verfahren 

 

 1  Moelzner, J. & Fink, P. (2014) The smell of good food: Volatile infochemicals as 

resource quality indicators. Journal of Animal Ecology,DOI: 10.1111/1365-

2656.12220 

 

2  Moelzner, J. & Fink, P. (under review) Consumer patchiness explained by volatile 
infochemicals in a freshwater ecosystem. Ecosphere 

 

3 Moelzner, J. & Fink, P. (under review) Gastropod grazing on benthic algae leads to 

liberation of food-finding infochemicals. Oikos 

 

 

 

 

 

 

 

1entspricht chapter 1 

 

2entspricht chapter 2 

 

3entspricht chapter 3 



Acknowledgements
 

93 
 

Acknowledgements 
 

Einen ganz besonders großen Dank richte ich an meinen Betreuer Dr. Patrick Fink. 

Danke dass du mir die Möglichkeit gegeben hast dieses Projekt zu bearbeiten, für 

deine stets offene Tür, deine Unterstützung in der Welt der Wissenschaft, deine 

Geduld und das man Fragen grundsätzlich erstmal mit „Jein“ beantworten sollte, 

denn es kommt auf die Sichtweise an. Und danke dass du mich in die Wüste 

geschickt hast. Die Forschungsreise nach Chile war ein krönender Abschluss und 

eine unvergesslich Erfahrung. 

 

Ich danke Prof. Dr. Eric von Elert, für seine offene Tür, seine Anregungen, dass er 

mir einen Platz im `coolen` Büro gab und für die Weihnachtsessen. Unvergesslich, 

besonders die Ente in Portwein-Feigensauce, danke für diese großartige Geste. 

 

Auch danke an Prof. Dr. Michael Bonkowski für die Erstellung des Zweitgutachtens. 

 

Einen ganz lieben Dank richte ich an meine Arbeitsgruppe ohne die es nicht 

dasselbe gewesen wäre. Einen speziellen Dank an Hanne, das Organisationstalent. 

 

Besonders möchte ich meinen Doktoranden Kollegen und Stauffenratsmitgliedern 

Christoph, Mark Thomas und Sophie danken für ein tolles freundschaftliches 

Miteinander, für anregende Diskussionen, Kritik und die Weiterbildungsmaßnahmen 

im Fach Fußball und Star Wars und dass es immer was zu lachen gab. 

 

Ein ganz großer Dank gilt dem `Ladies Lunch Club`. Liebe(r) Alex, Anne, Kathi, 

Robert und Timm, es war ne wirklich tolle Zeit. Danke für eure Unterstützung und 

Freundschaft in allen Höhen und Tiefen und für wundervolle Mensa und Garten 

Erinnerungen.  

 



Acknowledgements 
 

94 
 

Ganz großen Dank an Anna, Katja, Sabine, Olga. Danke Mädels, ihr seid die aller 

Besten! Ich bin froh Freunde wie euch zu haben. Ganz besonders möchte ich 

Sabinchen danken für ihr Coaching und ihre Liebenswürdigkeit. 

 

Ich möchte auch Colya danken für seine Geduld, Unterstützung in allen Lebenslagen 

und seine großartigen Kochkünste. 

 

Meiner lieben Familie danke ich für die Unterstützung, es macht mich stolz, dass ihr 

stolz seid. Es ist vollbracht. 

 

Es gibt auch noch viele andere tolle Leute, die mich auf diesem Weg begleitet und 

mit lieben Gesten und Taten unterstützt haben, die aber nicht alle aufgezählt werden 

können. Ganz großen Dank an euch alle. 



Acknowledgements
 

95 
 

 

Köln, 01.10.2014 

Erklärung         

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, 

die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der 

Arbeit – einschließlich Tabellen und Abbildungen -, die anderen Werken in Wortlaut 

oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich 

gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität 

zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen 

Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche 

Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.  

 

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte 

Dissertation ist von Dr. Patrick Fink betreut worden.  

 


