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Abstract

We introduce novel models for disordered solids at very low temperatures with the
goal of representing the physics of disorder causing local random fluctuations in the
masses and inter-constituent forces. The basic model that provides the clean limit upon
which the other models are built is a variant of the harmonic crystal. Neglecting the
difference between longitudinal and transverse vibrational modes, known as phonons,
we use a large number, n, of phonon bands. All models are constructed within a
harmonic approximation for small oscillations about a stable ground state. That means
that runaway dynamics are excluded, but interactions between phonons are neglected.
Disorder is added by way of 14 suitable ensembles of local (hence sparse) random
matrices. Each of these ensembles comes with a non-negative variance interpreted as
the disorder strength. In principle, any of these disorder types can be combined, hence
we obtain a model kit of disordered phonons.

To assess the building blocks in our kit, we study the average density of states
in the large-n limit, known as the coherent potential approximation (CPA). It is
determined self-consistently by means of illustrative diagrammatic as well as rigorous
supersymmetric techniques. The validity of this mean-field type approximation in
three dimensions is verified by comparison with exact numerical diagonalisation.

Two of our elementary models, one with pair potential (or “spring constant”) and one
with mass disorder, are particularly interesting. The model with strong spring constant
and weak mass fluctuations is microscopically well motivated and leads to a phase
transition (at finite disorder strength). A critical point terminates the weak-disorder
(or Debye) phase, above which a strong-disorder phase is discovered. This novel phase
features a finite density of states at zero energy. The two-parameter space of models
combining both of these disorder types is called interfering mass and spring constant
disorder (IMSC) model. Unlike the widely used two-level tunnelling system (TTLS)
model, we do not make any a priori assumption about a finite density of scatterers at
low energies. Hence we show that disorder alone is, in principle, sufficient to explain
the experimental finding of the heat capacity of vitreous systems varying linearly with
temperature below about 1 K, first observed in 1971.

The new strong-disorder phase is stable under the addition of most of the other
disorder types. Assuming that the IMSC model is renormalisable and that critical
points of the renormalisation group (RG) flow are correctly identified from the CPA,
we predict a tentative RG flow diagram. Under these assumptions, the novel phase is
also stable under the RG flow.
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Kurzzusammenfassung

Wir konstruieren im Rahmen dieser Arbeit neuartige Modelle für ungeordnete Fest-
körper bei sehr tiefen Temperaturen. Diese beschreiben harmonische Schwingungen
um einen stabilen Grundzustand, deren Normalmoden als Phononen quantisieren.
Stabilität bedeutet hier, dass anfänglich kleine Auslenkungen aus der Gleichgewichts-
lage unter Zeitentwicklung klein bleiben, was eine notwendige Voraussetzung für die
Vernachlässigung der Wechselwirkungen zwischen Phononen ist. Das zugrundeliegen-
de Modell des harmonischen Kristalls stellt den sauberen Grenzfall verschwindender
Unordnung in allen Modellen dar. Wir vernachlässigen den Unterschied zwischen
longitudinalen und transversalen Schwingungsmoden und verallgemeinern den har-
monischen Kristall zu einem Modell mit einer beliebigen Anzahl, n, lokaler Moden,
resultierend in n Phononen-Bändern. Es werden 14 verschiedene Ensembles lokaler
Zufallsmatrizen zur Modellierung der Unordnung benutzt, jedes mit einer nicht negati-
ven Varianz (Unordnungsstärke). Durch Unordnung verursachte lokale Fluktuationen
in den Massen und in den harmonischen Kräften werden durch diese Zufallsvariablen
möglichst wirklichkeitsnah in die Modelle einbezogen. Alle Unordnungstypen in diesem
Modellbaukasten ungeordneter Phononen können beliebig kombiniert werde.

Um die einzelnen Modelle hinsichtlich ihrer Realitätsnähe und Vorhersagekraft zu
bewerten berechnen wir die Zustandsdichte asymptotische für große n. Dies entspricht
einer als “coherent potential approximation” (CPA) bekannten Näherung. Die Berech-
nung mittels anschaulicher Diagrammatik liefert die selben Ergebnisse wie die rigorose
supersymmetrische Methode. Die Anwendbarkeit der CPA in drei Dimensionen wird
durch den Vergleich mit exakter Diagonalisierung verifiziert.

Besonders interessant ist ein Modell, dass schwache Unordnung in den Massen mit
starker Unordnung in den Kräften kombiniert. Dieses Modell ist mikroskopisch gut
motiviert und führen zu einem (Quanten-)Phasenübergang bei endlicher Unordnungs-
stärke. Die (Debye) Phase schwacher Unordnung endet an einem kritischen Punkt
und bei stärkerer Unordnung finden wir eine neuartige Phase mit einer endlichen und
positiven Zustandsdichte bei beliebig kleiner Energie. Anders als das weit verbreitete
zwei-Level Systeme (TTLS) Modell wird eine positive Zustandsdichte an Streuzentren
bei kleinen Energien in unserem Modell nicht von vornherein angenommen. Wir können
somit zeigen, dass Unordnung prinzipiell ohne Weiteres ausreicht um die experimen-
tell erstmals 1971 beobachtete lineare Temperaturabhängigkeit der Wärmekapazität
amorpher Festkörper bei Temperaturen unterhalb von etwa 1 K zu erklären.

Die neue Phase starker Unordnung ist stabil unter Hinzunahme der meisten anderen
Unordnungstypen. Unter Annahme der Renormierbarkeit und korrekt identifizierter
kritischer Punkte treffen wir eine vorläufige Vorhersage für den Renormierungsgrup-
penfluss, welcher die neue Phase ebenfalls stabilisiert.
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1 Introduction

1.1 Outline

This thesis is organised as follows. In the present Chapter 1, we review the relevant
experimental findings as well as some existing models in order to motivate the con-
struction of novel models for vitreous solids at low temperatures, or more specifically
for disordered phonons. In Section 1.3 we review the harmonic crystal as the standard
model of phonons in a not quite standard form. This is the basic deterministic model
which we augment by disorder. In Section 1.5, we elaborate on bosonic random matrix
models and in particular on stability. We consider this aspect as very important even
though it has often been neglected in the literature.

In Chapter 2, we introduce most of our model classes, i.e. give the details of how
the random matrix ensembles are constructed. The structural distinction between
additive and interfering disorder is introduced in Section 2.1 before coming to the
physical distinction between disorder of different types in the mass and spring sector in
Section 2.2. We then explain the general idea of the diagrammatics to be used and settle
our notation by deriving the self-consistency equations (SCE) for the case of additive
disorder in Section 2.3. In Section 2.4, we immediately elaborate on our results for the
average density of eigenfrequencies (DOS) in the coherent potential approximation
(CPA, explained in Section 1.5.3) for the mass, spring length, and pinning disorder
models in the additive as well as the interfering variant. The derivation of the SCE
for the interfering models is postponed to Section 2.7 for pedagogical reasons. We
highlight the interfering mass disorder model, which is the first one to feature the
strong disorder phase with positive DOS at zero frequency, discussed in Section 2.4.2b.

The model building continues with a brief discussion of the class of band mixing
disorder models before coming to the spring constant disorder models in Section 2.6.
In particular, Section 2.6.2 is devoted to the interfering spring constant disorder
model, which we consider as the summit of our disordered phonon model kit. This
is the counter part to the interfering mass disorder model in that for strong spring
and weak mass disorder it is microscopically better motivated but still features the
strong-disorder phase.

In Chapter 3 we first introduce the remaining model classes. These are the time-
reversal invariance breaking models, discussed in Section 3.1, as well as the models
that implement spring length disorder without introducing pinning, studied in Sec-
tion 3.2. Supersymmetry is used to derive the relevant self-consistency (or saddle-point)
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1 Introduction

equations describing the DOS of these new models as well as of some of the afore
mentioned models. In particular, we compare the SCE derived by different techniques
in Chapter 3, Chapter 2 and in [SZ10] to show that the different methods yield the
same results. The detailed description of the supersymmetry techniques, in particular
the Hubbard-Stratonovich transformation following [Zir98], are given in Section 3.3
after the discussion of the results. Chapter 4 contains an extensive summary and
outlook.

1.2 Motivation

Starting with its discovery in 1971, the anomalous behaviour of strongly disordered,
so-called vitreous or glassy, solids at low temperatures has been the subject of extensive
experimental study, see [ZP71] for the seminal paper, [Ste73, Ste76] for more extensive
experimental results and [TRV02, PLT02, HRK+12] for some more recent experimental
results and review. The power laws for the specific heat capacity, C, and the heat
conductivity, Λ, as functions of the temperature at very low temperatures (< 1 K)
show a striking universality. The very same laws are found in materials ranging from
disordered crystals over a plethora of chemically different glasses to complex systems
such as polymers. The essential observations are: a linear temperature dependence
of C and a (roughly) quadratic temperature dependence of Λ to leading order in the
temperature.

Our goal is to find a model for disordered solids which is generic enough to potentially
explain these universal observations. Nevertheless, we will exclusively calculate the
temperature dependence of the specific heat and use this one as the primary indicator
for whether our models are in the right universality class. We will therefore compute
the density of states of our models. As explained in Section 1.3.4, a density of states
following a power law, ρ ∝ Eχ−1 for some χ ∈ R to leading order in low energy, E,
leads to the specific heat following a law with power increased by one, C ∝ Tχ. With
this in mind, typical data plots showing C/T can be read as depicting directly the
density of states, up to scale. For examples, see Figure 6 and 8 in [Ste76] and Figure 4
in [Ste73], which have been reproduced in Figure 1.1 for the convenience of the reader.
The most prominent feature in these plots is ρ ∝ C/T > 0 at T = 0.

To appreciate why these experimental findings are surprising, or “anomalous”, we
review the “normal” crystal in Section 1.3. In this so-called harmonic crystal model for
lattice vibrations, the density of states follows ρ(E) ∝ Ed−1 to leading order (known
as the Debye approximation) in d dimensions. This means that one expects to find
the heat capacity to scale like C ∝ T 3 in experiments on 3-dimensional systems, as is
indeed the case for clean crystals.

Notwithstanding some models which have been proposed for their explanation, the
striking universality of the above-mentioned abnormal power laws in amorphous solids

2



1.2 Motivation

Figure 1.1: Comparison of specific heat divided by temperature for various samples of
vitreous materials and the prediction of the Debye model. Notice the trend
towards a finite value at zero temperature in the experimental data.ab

aReprinted figures with permission from R. Stephens, Physical Review B, 13, 852, 1976. Copyright
(1976) by the American Physical Society.

bReprinted figure with permission from R. Stephens, Physical Review B, 8, 2896, 1973. Copyright
(1973) by the American Physical Society.
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1 Introduction

Ri
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Figure 1.2: Schematic picture of the harmonic crystal as a model of masses and springs.

is “poorly understood”, according to e.g. [FA86, PLT02, LV13]. In Section 1.4 we will
review some of those models, in particular the most widely used tunnelling two level
systems (TTLS) model.

1.3 Non-interacting phonons

In this section we review a deterministic model of a solid which is usually called the
harmonic crystal in standard text books (see e.g. [JM73] or [AM76]). Its elementary
excitations describe vibrations and quantise as bosons, called phonons. The phrase
harmonic is used to stress that we do not take interactions between phonons into
account. More precisely speaking, a harmonic Hamiltonian is of second order in
positions and momenta (or equivalently in creation and annihilation operators) and
hence the equations of motion are linear. In this sense, all models considered in this
thesis are harmonic. The translation-invariant crystal described in this section will
serve as the clean limit for all disordered systems constructed in this thesis.

The general idea is that the constituents (atoms or molecules) forming our solid
are replaced by point masses and the inter-constituent forces are only treated in the

4



1.3 Non-interacting phonons

harmonic approximation. Hence the pair potential is specified by two parameters, the
distance at which a pair of constituents rests force-free and the strength of the restoring
force. At this level, the model becomes one of masses and springs, see Figure 1.2.
Throughout, we will use this metaphor of springs to describe the pair potentials.

1.3.1 Harmonic crystal

For concreteness, we choose the cubic lattice of total side length L ∈ N in d dimensions
with periodic boundary conditions as the spatial structure underlying our model.
Although such “primitive cubic” crystals do exist in nature (e.g. sodium chloride), our
main interest is in universal aspects rather than in modelling a concrete material.

The sites of the lattice and the directed links are denoted by1

C0 := Zd/LZd

and C1 := {(i, i+ ej) ∈ C2
0 | j ∈ {1, . . . , d}},

(1.1)

respectively, where ej denotes the lattice vector in direction2 j. While C0 and C1

specify the topology of the lattice, which we will keep fixed, the geometry can be
encoded into an embedding R : C0 ↪→ Rd/(La)Zd (inducing an embedding of C1),
where a denotes the lattice spacing. In later sections, we set a = 1, i.e. the embedding
to be the trivial one.

Rephrasing the last paragraph in less mathematical terms, we denote the equilibrium
position of the mass at site i ∈ C0 by Ri ∈ Rd and directed links between these positions
by Ri,j := Ri − Rj . The elementary degrees of freedom of our models are the local
displacements of each mass from its equilibrium position, denoted by qi ∈ Rd. Hence
the actual positions of the masses are given by Qi := Ri + qi as shown in Figure 1.2.
To derive the Hamiltonian from this schematic picture, recall that Hooke’s law for
springs with spring constants κi,j and relaxed lengths li,j states that the potential
energy of any configuration of the masses is to leading order in q given by∑

(i,j)∈C1

κi,j
2

(|Qi −Qj | − li,j)2 (1.2a)

=
∑

(i,j)∈C1

κi,j
2

(
(|Ri,j | − li,j)2 + 2 (|Ri,j | − li,j)

(qi − qj) ·Ri,j
|Ri,j |

)
(1.2b)

+
∑

(i,j)∈C1

κi,j
2

(
li,j
|Ri,j |

(
(qi − qj) ·Ri,j
|Ri,j |

)2

+
|Ri,j | − li,j
|Ri,j |

(qi − qj)2

)
. (1.2c)

1Notice that C0 and C1 denote the sets of sites or links. The vector spaces to be associated with
them are more complicated than the spaces of chains that are usually considered in algebraic
geometry, hence we refrain from using that language here.

2Here the choice of the overall direction, ±ej , does not matter, what matters from Section 2.1.1 on is
a consistent orientation of all links pointing in one direction.
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1 Introduction

If all li,j = |Ri,j | then, in equilibrium, all springs are relaxed and oscillations in a
given direction only couple to the neighbours in that direction. We call this model
the relaxed harmonic crystal. Whilst looking very natural for the cubic lattice of
masses and springs of equal length and strength, depicted in Figure 1.2, this model is
unlikely to be the optimal one for describing a real solid. The feature of decoupled
oscillations in different dimensions is rather special for the cubic lattice restricted to
nearest neighbour interactions, which we only use for simplicity and do not consider
as fundamental. Furthermore, a very small amount of disorder in κ and/or l (or even
structural disorder) will almost surely rule out the relaxed crystal model, as each li,j
would need to be adapted to the equilibrium positions, which in turn depend on all
other parameters.

Instead, we should generically expect li,j 6= |Ri,j | in equilibrium, i.e. at least some of
the springs are stretched or compressed. In this case, we can see in Equation (1.2b)
that there is potential energy stored in these springs and each of them pulls or pushes
its masses with some force. However, by the definition of equilibrium, these forces at
each mass cancel, hence the overall sum in Equation (1.2b) is zero. In our periodic
system, effectively living on a torus, it is easy to imagine that there can be an overall
tension, since the crystal cannot contract. Also in the realistic situation of a real
disordered crystal or glass, we should expect local stress and strain.

The opposite extreme to the relaxed crystal is given by li,j = 0. Here the inter-
constituent forces are purely attractive. We will call this limit the stressed harmonic
crystal. This model neglects the difference between transverse and longitudinal waves
completely and hence is not perfectly realistic either. However, it is at least stable
under spring constants disorder. It also has the appealing feature that the degrees of
freedom are completely unrelated to dimensions. More concretely, every qki is coupled
to every neighbour qkj with the same coupling strength, independent of the direction
of Ri,j . For simplicity, we will use this stressed crystal with its enhanced symmetry
as the deterministic limit of all models and hence neglect the difference between
longitudinal and transverse waves. We believe that this model is sufficient to capture
the relevant physics, at least when it is assigned the role of the deterministic part in a
strongly disordered situation or used for the Debye approximation of the clean case.
We explicitly verify in Chapter 3 that spring length disorder of any strength does not
change the mean-field density of states.

We would like to stress that the fundamental degrees of freedom are the small
displacements from the equilibrium positions qi, which justifies the harmonic approx-
imation if the dynamics is stable. Although Equation (1.2) for li,j = 0 might look
like one could use the absolute positions Qi, just as well, this is a particularity of the
stressed crystal model which has no universal significance.

6



1.3 Non-interacting phonons

1.3.2 Phonons

Since the crystal is invariant under discrete translations, we use Fourier transform
in Equation (1.10) to obtain its eigenmodes, their quanta being called phonons. As
mentioned above, the stressed harmonic crystal model can be easily generalised to
feature any number n ∈ N of degrees of freedom per site, leading to n phonon bands
and N = nLd degrees of freedom in total.3 For the relaxed crystal model only n = d (or
a multiple thereof) would be realistic. The full Hamiltonian of the stressed harmonic
crystal is given by

H =
n∑
b=1

∑
i∈C0

p2
i,b

2µ
+

1

2
κ
∑

(i,j)∈C1

(qi,b − qj,b)2

 =
1

2

(
q, p
)
h

q
p

 , (1.3)

which is a quadratic form on the symplectic phase space,

V := Vs ⊕ Vm ' R2N . (1.4)

Here the qi,b and pi,b are linear coordinates dual to bases of Vs and Vm, respectively.
Physically, expressed in quantum mechanical terms, Vs and Vm are spanned by the
position and momentum operators, respectively. Those bases are fixed throughout.
The parameters of the model are the effective mass, µ > 0, and the spring constant,
κ > 0. The geometric mean ν :=

√
κ/µ is known as the speed of sound which is the

relevant scale for the eigenfrequencies.
In Chapter 2 we will introduce random coupling between the bands and we will study

the n → ∞ limit, which leads to the coherent potential approximation (CPA). By
construction, the deterministic part does not couple bands and thus the clean density
of states is not affected by this limit up to a trivial rescaling. As in Equation (1.3), we
denote the matrix of H by

h = h0 =

 −κ∆⊗ 1n 0

0 µ−11Ld ⊗ 1n

 =:

 S0 0

0 M0

 (1.5)

where ∆ is the standard lattice Laplacian with all diagonal matrix elements equal
to −2d and the off-diagonal matrix element between every pair of neighbouring sites
equal to +1. Thus ∆ is local in real space and diagonal in Fourier (or “momentum”)
space4 with spectrum

∆k = 2

d∑
i=1

cos(ki)− 2d = −|k|2 +O
(
|k|4
)
. (1.6)

3We neither explain nor use general band theory, for which the reader may consult e.g. [AM76].
4The Fourier space dual to the underlying lattice C∗0 is not to be confused with the momentum sector
Vm of the phase space.
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1 Introduction

As usual, momentum space is given by the dual lattice C∗0 , which is parametrised by
k ∈ [0, 2π/a)d ∩

(
2π/(aL)Zd

)
above. In the infinite volume limit, L→∞, at constant

lattice spacing, a = 1, momentum space is a torus parametrised by k ∈ [0, 2π)d.
The equations of motion are Hamilton’s equations given by the commutation relations

of q and p with H, i.e. time evolution is generated by X = Jh via

∂t

q
p

 = X

q
p

 , (1.7)

where here and throughout

J := iσ2 ⊗ 1N =

 0 1N

−1N 0

 (1.8)

denotes the symplectic unit. We stress that it is the spectrum of X (which is the
same as that of

√−M0S0) rather than that of h which defines the eigenfrequencies of
the normal modes. This becomes explicit by bringing H to harmonic oscillator form,
i.e. by applying a Fourier transformation and introducing creation and annihilation
operators:

ak =

√
mωk

2

(
qk +

i

mωk
pk

)
, a†k =

√
mωk

2

(
q−k −

i

mωk
p−k

)
(1.9)

⇒ H =
∑
k

pkp−k
2m

− 1

2
mν2∆k qkq−k =

∑
k

ωk
2

(
a†kak + aka

†
k

)
. (1.10)

Here ω2
k = −ν2∆k are the eigenvalues of M0S0. As explained in Section 1.5, it is very

important to maintain the positivity of M and S when disorder is introduced, because
this positivity is equivalent to the equations of motion (1.7) being Lyapunov-stable. If
that was not the case, dynamics would run away to large values of our fields and the
harmonic approximation would break down.

1.3.3 Debye approximation

The density of eigenfrequencies (DOS), ρ(ω), of the harmonic crystal is computed from
the Green’s function, g(z), by

ρ(ω) =
1

π
lim
ε↘0
< (g(ε+ iω)) , (1.11)

g(z) =

∫
[0,2π]d

ddk

(2π)d
z

z2 − ν2∆(k)
. (1.12)
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Notice that the DOS is obtained from the real part of the Green’s function for
z approaching the cut on the imaginary axis, since the spectrum of X is purely
imaginary. We derive the well-known result (1.12) along the way in Chapter 2. In one
dimension, this integral can be calculated exactly (see Appendix A.1.1). We get

ρ(ω) =
1

π
√

4ν2 − ω2
. (1.13)

In higher dimensions more van Hove singularities [Van53] arise, which render the
integral (1.12) intractable. Since these singularities are irrelevant for the low-energy
properties, we neglect them in the following and replace the full lattice Laplacian
by its Debye approximation, as indicated by the second equality sign in Equation
(1.6). On the level of the density of eigenfrequencies, this approximation amounts to
ρDebye(ω) ∝ ωd−1Θ(νΩ− ω) with appropriately chosen proportionality constant and
wave number cutoff Ω such that ρDebye is normalised and resembles the full density of
eigenfrequencies, ρ, to leading order in ω. A derivation is given in Appendix A.1.

1.3.4 Heat capacity

For all our models, we calculate the average density of eigenfrequencies, ρ(ω), which is
directly related to the heat capacity. In a system of units with ~ = 1 (which we are
using throughout), the internal energy is given by

U =

∫
ρ(E)

(
e
E
kT − 1

)−1
EdE . (1.14)

Using ρ(ω) ∝ ωχ−1 this leads to the specific heat following a power law, C = ∂TU ∝ Tχ.
For the clean system, we have χ = d as calculated in Equation (A.4d), consequently
C ∝ T 3 is expected for the harmonic crystal in three dimensions. This is indeed found
to be the case in real crystals of sufficient purity. However, as mentioned in Section 1.2,
strongly disordered solids behave in a markedly different way.

1.4 Existing models

1.4.1 Two level systems (TLS)

Already in 1972, Anderson, Halperin and Varma [AHV72] and Phillips [Phi72, Phi87]
proposed a model of tunnelling two level systems (TTLS). This model received quite
some attention ever since its discovery and is the most widely accepted explanation of
the above, mentioned universal features of vitreous solids at very low temperatures.

The existence and in particular a finite density of states at zero energy of such
TTLS is assumed ad hoc. Under some further assumptions about how phonons scatter
from these TTLS, which were criticised to be unrealistic by [Ste76], the experimentally

9
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found heat conductivity is explained. Although there have been many proposals for
the microscopic origin and nature of the TTLS, see e.g. [Par94, SS09, LW03, Tur04],
no clear consensus could be reached so far. In particular the “tunnelling” nature of
the model and the explanatory power of more general “two level systems” beyond a
phenomenological description have been challenged by [LV13]. Therein, the authors
explicitly ask for a random matrix model of disorder to be coupled to the harmonic
crystal model as a “convenient point of comparison” to the well established TTLS model.
In this thesis, we construct models to provide exactly such a point of comparison.

1.4.2 Beyond TLS

The paper which we found to put forward ideas closest to ours is [JSS83]. There, a
continuum version of the harmonic crystal is considered with the masses being random
variables. The distribution of masses is unbounded (Gaussian) and therefore the
ensemble contains realisations with negative masses with non-zero probability. The
authors argue, based on a field theory, that this problem is irrelevant, i.e. a bounded
distribution would not change their findings. In this thesis, we pay careful attention
to only use stable models, as explained in Section 1.5. In particular, negative masses
are forbidden. We do discuss models which are rather close to [JSS83], namely the
additive mass disorder model in Section 2.4.1 and the interfering mass disorder model
at weak disorder strength in Section 2.4.2, for which we can confirm their qualitative
findings for the density of states. However, we found that mass disorder does not lead
to a phase transition as long as the standard deviation of the inverse mass is smaller
than the mean. Hence these model classes are precisely not the once which feature a
transition to the strong-disorder phase discovered in our work.

In [CKR+10] binary mass disorder is introduced into the harmonic crystal. That is,
two different masses are placed at random on half of the sites of the lattice each. This
model ensures that masses are positive and it is likely closer to the actual microscopical
situation in certain experiments than our model for the mass disorder. The authors
find numerically that the model stays in the Debye phase, i.e. the leading order power
law of the density of states remains unchanged. This again fits to our observation of
mass disorder not being the relevant type of disorder to drive the phase transition,
unless it is allowed to fluctuate to extremely large local masses with high probability.

To our knowledge, so far no random matrix models have been considered which
guarantee every realisation to be stable while at the same time including strong
disorder for either the inverse mass or, with better physical motivation, for the spring
constants. A notable exception is given by [LSZ06], which is a purely random and zero
dimensional model. We will rediscover the latter as the random matrix limit of some
of our models.

10



1.5 Random matrix theory

1.5 Random matrix theory

Instead of adding some “scatterers”, such as TLS, to the harmonic crystal model, we
will introduce disorder in the form of random matrices that modify the local couplings,
i.e. masses and springs. In general, the term random matrix refers to a matrix which
has random variables with some joint probability distribution as its matrix entries. We
will not give an introduction to this subject here but refer to [ABDF11] for a broad and
comprehensive overview of random matrix theory and in particular its applications to
disordered metals. The application of random matrix theory to bosonic systems needs
some extra care as compared to the well studied fermionic case. This was realised and
a prototypical ensemble for disordered bosons was implemented in [LSZ06]. In this
section, we review their ideas.

1.5.1 Positive cone of bosonic random matrix theory

The well known random matrix ensembles, such as the Gaussian ensembles, are usually
used to produce the matrix of the single-particle Hamiltonian. So it might not be
obvious why many-particle aspects like the exchange statistics need to be taken into
account at all. The fundamental difference between bosons and fermions is that
the transformations that preserve the anti-commutation relations for fermions form
the (compact) orthogonal group, as opposed to the symplectic group of Bogoliubov
transformations that preserve the bosonic commutation relations. The fermionic system
is hence quite forgiving in the sense that any real symmetric matrix, h, of a bi-linear
form can be diagonalised by acting with an orthogonal matrix g by h 7→ gThg = g−1hg.
Furthermore, this action preserves the eigenvalues of h. It follows that one can use
any ensemble of real symmetric matrices and directly compute the average eigenvalue
density for a fermionic system with these single-particle Hamiltonians. Even negative
eigenvalues do not spoil the underlying many-particle picture. Due to the Pauli
principle, the many-particle Hamiltonian of a finite system of fermions is always
bounded below and therefore positive up to a trivial shift in energy.

The situation for bosons is completely different. The symplectic group also acts on the
matrix h of the Hamiltonian by h 7→ gThg 6= g−1hg. However, diagonalisability by this
action is a non-trivial property and eigenvalues are not preserved.5 In Section 1.3.2,
we explain that one should consider the generator of time evolution X = Jh as
fundamental. Throughout, J = iσ2 ⊗ 1 denotes the symplectic unit. The spectrum of
X, rather than the one of h, determines the eigenfrequencies of the decoupled harmonic
oscillators as explained in Section 1.3.2, if one can bring X to harmonic oscillator
form in the first place. It is of crucial importance that the eigenvalues of X are purely

5Notice that, although one can change to a basis of creation and annihilation operators as in Equation
(1.10), it is still the (now twisted) symplectic group that acts and the argument above remains
untouched.
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imaginary for the time evolution to be stable. That means initially small displacements
have to stay small under time evolution for the harmonic approximation to be justified.
Or, in more physical terms, the eigenfrequencies, ωi, necessarily need to be real for
the system to oscillate instead of running away.

To provide a more geometric view on the space of admissible Hamiltonians for
bosonic systems, denote the real symplectic group of Bogoliubov transformations
over R2N by Sp = {g−1 = JgTJ−1}. It is a physical requirement that h be real
symmetric and positive in order to provide a matrix of a bilinear form which leads to
stable classical dynamics. In fact, these features are already sufficient for symplectic
diagonalisablity.

More precisely, for all h = hT > 0 there exist (unique up to ordering) eigenfrequencies
ω ∈ (R+)N and a g ∈ Sp(2N) such that gThg = Ω(ω) := diag(ω1, . . . , ωN , ω1, . . . , ωN ).
In physical terms, this means that we can change to a basis of quasi-particles for
which the Hamiltonian is in harmonic oscillator form, H =

∑
i ωi/2(a†iai + aia

†
i ). More

precisely,

[X,Ad(J)(X)T ] = 0⇒ ∃g ∈ Sp : g−1Xg =

 0 diag(ω)

−diag(ω) 0

 ∈ t, (1.15)

where t denotes the standard Cartan subalgebra of sp(2N) =
{
x = −JxTJ−1

}
. Since

J ∈ sp, this means that gThg is indeed diagonal and positivity of h is preserved.

Now we have arrived at the geometrical picture of a positive cone, E , of admissible
time evolution generators:

X ∈ E := Ad(Sp(2N))
(
JΩ
(
(R+)N

))
⊂ sp(2N)

within the symplectic Lie algebra sp(2N). All realisations of time evolution generators
drawn from ensembles constructed in this thesis lie in E in order to avoid runaway
dynamics and to ensure the existence of a stable ground state.

1.5.2 Construction of ensembles

Since we have just established that taking h to be symmetric and positive ensures
X = Jh ∈ E , it is natural to write the former as a square. This is the essential idea
of [LSZ06], where a Wishart ensemble was used for h = RTR. An interesting point,
which we make use of in Chapter 2, is that R might be non-square, i.e. we have the
freedom to introduce an auxiliary Euclidean space, W ' R2(1+α)N for some α ≥ 0, to
which R is mapping.

The pure random matrix model, without deterministic terms or an underlying
lattice structure, with α = 0 + O(1/N), and broken time-reversal invariance, has
been extensively studied in [LSZ06] and [Lüc09]. Using supersymmetry as well as
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orthogonal polynomials, all correlation functions have been computed. The density of
eigenfrequencies of this model has a ρ ∝ ω−1/3 divergence for small ω, which is not
compatible with the experimentally observed linear dependence of the heat capacity
on temperature.

Thus it is our goal to construct more realistic models in order to explain the
experimental results. To this end, we start from the clean harmonic crystal and do
not add a full 2N by 2N random matrix, which would couple all degrees of freedom
without accounting for their spatial distance. Instead we use local random matrix
couplings of size of order 2n by 2n. That means that the random matrices used in this
thesis are very sparse, just as the matrix of the clean system h0.

1.5.3 Coherent potential approximation

The coherent potential approximation (CPA), as introduced by [Sov67] and reviewed
by e.g. [YM73], is an approximation of the average Green’s function of self-consistent
mean-field type. This means that fluctuating quantities, such as the random mass and
springs matrices, are replaced by so-called coherent matrices which are constant in
space but complex valued and energy dependent. Their value as a function of energy
is determined by one or more so-called self-consistency equations (SCE).

As recognised by [Weg79], the average Green’s function of certain n-orbital models
is to leading order in n→∞ the same as the CPA average Green’s function for n = 1.
This version of the CPA is particularly well suited for the application to random matrix
models. Furthermore, it is controlled by a large parameter which in principle makes it
possible to calculate corrections to the leading order behaviour.

We use this approximation in the following, where n was already introduced to
be the number of degrees of freedom per site, i.e. as the number of (phonon) bands.
Although we do not calculate sub-leading terms in n, we compare our density of states
to the one obtained by exact diagonalisation of finite-size matrices at n = d to verify
that the CPA results are accurate (see Section 2.4.2c).
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In this chapter, we introduce a number of models. To guide the reader through the
gallery, we give an overview over the 4 physically distinct types of disorder that we
are going to add to the harmonic crystal model, namely mass, spring constant, spring
length disorder, and random pinning in Section 2.2. We have developed a (to our
knowledge novel) way of implementing the disorder, which we call interfering. All
types of disorder can either be implemented in the more standard way, which we call
additive, or as interfering disorder, as explained in Section 2.1. This leads to a total of
8 different types of disorder which will be introduced in this chapter, together with
two more variants of implementing spring length disorder which we call band mixing.
The remaining 4 time-reversal invariance breaking types are left for Chapter 3.

Most of these disorder types do not lead to a phase with a finite density of eigen-
frequencies in three dimensions. The purpose of discussing them is, apart from
completeness, to introduce the ideas one by one which finally lead to the interesting
(and possibly physically relevant) model classes. Further, all disorder types introduced
here can be combined in order to investigate which aspects of the model are crucial
for which phase and under which additional disorder types the phases are stable.

Let us briefly mention that time-reversal invariance forbids (random) couplings
between positions and momenta and review the concrete definition of the density of
eigenfrequencies before coming to disorder.

Time-reversal invariance. As long as our solids are not rotating rather quickly, it
is hard to imagine how time-reversal invariance of lattice vibrations could be broken,
since phonons are charge-less and do not couple to magnetic fields. For this reason,
we consider the time-reversal invariant case to be the physically relevant one which
deserves our primary focus. This means that the Hamiltonian, H, has to be of the
form

H =
1

2

(
pTMp+ qTSq

)
, (2.1)

with the inverse mass matrix M = MT = M † > 0 and S = ST = S† > 0, i.e. there
must not be terms coupling p and q. It follows that we should add disorder to M
and S separately as mass disorder and springs disorder. As discussed in detail in
Section 1.5, every disordered realisation of M and S must be positive in order for the
system to be stable and our harmonic (or random phase) approximation by a quadratic
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Hamiltonian to make sense. We apply the idea of writing operators as squares (see
Section 1.5.2) to ensure positivity for M and S individually.

Density of eigenfrequencies. Throughout this thesis, we calculate the Green’s
function within the coherent potential approximation (CPA, see Section 1.5.3) corre-
sponding to the large-matrix limit of our random matrix models. When time-reversal
invariance is preserved, we refer to this also as the coherent mass and coherent springs
approximation. Concretely, we calculate the density of eigenfrequencies1 from the
Green’s function as follows:

ρ(ω) = lim
ε→0+

1

π
< g(ε+ iω) = lim

N→∞

〈
1

2N

∑
iω0∈σ(X)

δ(ω − ω0)

〉
, (2.2)

where g(z) := lim
N→∞

1

2N

〈
Tr(z −X)−1

〉
(2.3)

is the normalised trace of the resolvent operator. Here σ(X) denotes the spectrum
of X = Jh. Notice that, due to σ(x) ⊂ iR, we are indeed interested in the real part
of g. As mentioned in Section 1.3.4 and 1.2, ρ(ω) is a quantity of primary interest
since it determines the heat capacity of the disordered solid and it is also an important
ingredient in the calculation of other observables, such as the heat conductivity.

From Equation (2.3) one can proceed by expanding the geometric series, which
reduces the calculation of g to a combinatorial task by Wick’s theorem. To leading
order in n, this can be handled diagrammatically. Throughout this chapter we will
employ this technique which is rather simple and quickly produces the self-consistency
equations. Thus it is well suited to scan through a large class of models to find the
most promising one for further investigation. However, the validity of this expansion
and re-summation may be questioned, in particular for small z. In Chapter 3 we set
the mathematically rigorous (and also more powerful) machinery of supersymmetry
into motion. There we will show in particular that the results of this chapter are
correct (within their domain of validity).

2.1 Additive and interfering implementations of disorder

All disorder implementations are built from Gaussian distributed random matrix
ensembles which are shifted by a deterministic part before or after being squared. In
this way, we produce variants of Wishart ensembles, thereby staying in the realm of
physically meaningful Hamiltonians for bosonic systems as introduced in Section 1.5.

1Throughout this thesis, we employ the usual physics notation of writing ρ(ω) and similar to denote
the distribution f 7→

∫
R ρ(ω)f(ω)dω without implying that the density exists as a function. On

the other hand, all densities of eigenfrequencies in CPA encountered in this thesis do exist and are
piece wise smooth.
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2.1 Additive and interfering implementations of disorder

In [SZ10] we added a positive and symmetric disorder term given by a Wishart
ensemble to a deterministic hamiltonian: h = h0 +RTR. We can do the same on the
level of M = M0 + RTMRM and similarly for S to produce a time-reversal invariant
version of the model considered there. This way of implementing the disorder will
be called additive. An interesting variation is to also write the deterministic part as
a square. This is always possible for a positive symmetric matrix. We will further
demand the square roots to be local operators in an appropriate sense (as explained in
Section 2.1.1). In this setting, we can add disorder to the square roots individually.
One concrete variant is

M = µ−1(Dm +Rm)T (Dm +Rm)

and S = κ(Ds +Rs)
T (Ds +Rs) ,

(2.4)

where µ−1DT
mDm = M0 and κDT

s Ds = S0 are the deterministic parts, introduced in
Section 1.3.1. We will refer to this implementation of disorder as interfering if R
is locally square, i.e. if D and R have the same image. The name is motivated by
the “interfering” terms, DT

mRm +RTmDm, not already contained in the additive part,
M = M0 +RTmRm.

Note that M0 = µ−11N is taken to be scalar (i.e. proportional to the identity).
Details of how to choose the square root of the Laplacian in the spring sector are
given in Section 2.1.1, but let us mention right away that we choose the plain square
root of M0 to be scalar as well, i.e. Dm = 1N . Consequently we can rewrite M in
Equation 2.4 as

M = µ−1(1N +Rm)T (1N +Rm) . (2.5)

We stress that the crucial point about interfering disorder is that R is first shifted by
a constant matrix and then squared, as opposed to the additive implementation, where
R is first squared and then shifted. The square root of S is important for the physical
interpretation of the disorder model, see Section 2.2, but not for the implementation
being dubbed additive or interfering.

2.1.1 Auxiliary spaces and square roots

In this section, we explain the details of how the additive and interfering disorder types
are implemented and in particular how both can be treated simultaneously. As was
mentioned in Section 1.5.1 and is noticeable in Equation (2.4), we have the freedom
to introduce auxiliary Euclidean target spaces for Rm : Vm →Wm and Rs : Vs →Ws.
For the interfering model, it is clear that we should first produce the square roots of
the deterministic parts, which then determine the spatial structure of W and hence
largely also R.
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As mentioned above, we choose the square root of the inverse mass matrix to be the
trivial one, i.e. Dm is, for each i ∈ C0, proportional to an embedding of Vm(i) into
an auxiliary space Wm(i) = (W}

m(i) ' Rn)⊕ (W+
m(i) ' Rαmn) at site i. Throughout,

we use } to indicate quantities related to interfering and + for quantities related to
additive disorder. The parameter αm ∈ 1

nN is used to tune the aspect ratio of Rm, i.e.
it determines the number of additional auxiliary dimensions. The total auxiliary space
for the mass sector is given by

Wm =
⊕
i∈C0

Wm(i) ' RL
d(1+αm)n and Dm = 1Ld ⊗

(
1n ⊕ 0(αmn)×n

)
. (2.6)

Here and in the following we often show matrices. Therefore we fix the basis of V
given by the original position and momentum operators and some orthonormal basis2

of W . The notation 0(αmn)×n : Vm(i) → Wm(i)+ denotes the rectangular matrix of
the constant zero map. Notice that additive and interfering disorder do not (directly)
couple. We make this explicit by writing

Rm = R}m ⊕R+
m : Vm →W}

m ⊕W+
m . (2.7)

Now we can take a closer look at the structure of Equation (2.4),

µM =

 Dm +R}m

R+
m

T  Dm +R}m

R+
m


= (Dm +R}m)T (Dm +R}m) + (R+

m)TR+
m .

(2.8)

By using different disorder strengths, i.e. different variances for the Gaussian probability
distributions for the entries of R} and R+, we can consider an arbitrary mixture of
interfering and additive disorder. While R} is naturally square, the aspect ratio αm of
R+
m can be tuned.3

The square root Ds of the lattice Laplacian is implemented by placing the auxiliary
spaces, Ws(l) = W}

s (l) ⊕W+
s (l) ' R(1+αs)n, on the links, l ∈ C1, as introduced in

Equation (1.1). This means that we implement

Ws =
⊕
l∈C1

Ws(l) ' RdL
d(1+αs)n . (2.9)

On the level of bands, the story is the same as in the M sector. We split Rs = R}s +R+
s

with the aspect ratio of R+
s being called αs ≥ 0. The spatial part of Ds+Rs : Vs →Ws

2More precisely, we only fix the orthogonal decomposition of W into the additive and interfering
sector. Given this decomposition, all matrices are invariant (in distribution) under orthogonal
basis change.

3Notice that αm changes the index of the linear operator Rm, which turns out to be of minor
importance as long as Dm or R}

m are non-zero.
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mapping from sites to links is zero unless the site and link under consideration are
adjacent. If so, Ds acts as ±1n, the sign depending on whether the site is at the start
or end point of the oriented link. This action squares to the appropriate multiple of
the lattice Laplacian (see Figure 2.1 for a schematic picture).

Vs Ws

Ws

Vs

Ws

Vm

Wm

Vm

Wm

Figure 2.1: Left: action of the square root Ds : Vs → Ws of the spring constants S.
Up and to the right Ds acts by +1n, down and to the left by −1n. Right:
action of Dm.

2.2 Physical types of disorder

To make the situation more transparent, especially in the springs sector, we drop
the Euclidean structure of W}

s . This means that W}
s does not come with a scalar

product. Instead, spring constants should really be considered as the matrix of the
isomorphism κ : Ws →W ∗s . Complementing the local picture in Figure 2.1, we give a
more conceptual sketch of the situation in Figure 2.2.

Vs Ws

Ds
W ∗
s

κ
V ∗
s

DT
s

V ∗
m Vm

µ−1 J−1
smJ−1

ms

Figure 2.2: The structure of q̈ = J−1
msµ

−1J−1
smD

T
SκDS q reveals the physical meaning of

the individual matrices.
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Here, all maps and spaces have a clear physical meaning. Vs contains local displace-
ments. These are translated into spring elongations in W}

s via Ds. The clean Ds

reflects the geometry of the stressed harmonic crystal. In terms of masses and springs
(see Equation (1.2)), adding a random part to Ds means disordering the relaxed spring
lengths. In particular, each realisation is no longer of the form of a stressed crystal
since terms distinguishing between longitudinal and transverse modes are randomly
generated. We call this spring length disorder. Here the interfering disorder type, as
indicated in Equation 2.4 is very natural.

The isomorphism κ : W}
s
∼→ (W}

s )∗ maps spring elongations to spring tensions,
which is the role of spring constants. Ergo, randomness in κ will be called spring
constant disorder. As in Equation (2.5), κ and its square root can be chosen to be
scalar if some fixed isomorphism proportional to κ is understood. Being additive
or interfering here has a similar meaning as in the mass sector, i.e. the distinction
is between κ + RTR and (

√
κ + R)T (

√
κ + R). Also for springs, additive disorder

randomly increases the local spring constants while interfering disorder might also
lower them. Spring constants locally fluctuating down to zero effectively removes some
springs from the model at random. This is as close to structural disorder as we get in
this thesis.

The spring part of Figure 2.2 is completed by the dual of D, which maps spring
tensions to forces, DT : W ∗S → V ∗S . In total, S = DTκD describes how displacements
cause forces.

The symplectic structure, J , provides a non-degenerate pairing of Vs and Vm and
hence isomorphisms Jsm : Vs → V ∗m and Jms = −JTsm : Vm → V ∗s . In quantum terms,
these are given by (i times) the commutator, or in classical terms by the Poisson
bracket of phase space. The second part of Hamilton’s equations (1.7) is given by
ṗ = J−1

smS q, which is represented in Figure 2.2 by the chain of maps from Vs, containing
q, to Vm, containing p. Notice that the matrix of J−1

sm = −1N is the same as that of
Jsm.

In the mass sector, µ−1 translates momenta into velocities. Similar to the spring
sector, J−1

ms completes Hamilton’s equation, q̇ = J−1
msµ

−1p. Due to the site-diagonal
structure of µ−1, there is only one type of disorder to be added, namely mass disorder,
similar to spring constant disorder. Overall, the diagram4 in Figure 2.2 generates
accelerations as in q̈ = J−1

msµ
−1J−1

smD
T
SκDS q = −MS q and similarly for p̈.

The upshot of this section is that the “auxiliary” space in the interfering spring
length sector, W}

s , has a physical meaning as does the corresponding square root
Ds. The scalar product on this space is determined by the spring constants κ. The
other spaces introduced in Section 2.1.1 are actually auxiliary for the definition of the
Wishart ensembles. They are introduced together with scalar products, equivalent to
isomorphisms W+

s ' (W+
s )∗ and Wm 'W ∗m.

4Notice that this diagram is in particular not commuting.
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2.2 Physical types of disorder

2.2.1 Probability distributions

Now we have all definitions in place to specify the physically different types of disorder
to be studied. The simplest one is mass disorder. Here the space of local square roots,
Lm ⊂ {Vm →Wm}, is given by operators mapping from physical to auxiliary spaces,
both associated with sites. “Local” here means site diagonal, i.e. all Rm ∈ Lm are
required to act by zero, unless the origin and target sites are the same. As explained
above, Rm is split into an additive and an interfering part, Rm = R+

m +R}m, for which
we define Gaussian probability measures〈

f(R}m, R
+
m)
〉
∝
∫
Lm

f(R}m, R
+
m) e

− n

2b}m
Tr(R}

m)TR}
m−αmn

2b+m
Tr(R+

m)TR+
m
dR}m dR

+
m (2.10)

with normalisation 〈1〉 = 1. Here the appropriately rescaled variances, b}m and b+m,
measure the disorder strength of interfering and additive disorder, respectively.

When adding disorder to S, it is important to note that the springs introduced
in Section 1.3 only couple to (qi − qj)2, i.e. the resulting contributions to the total
energy are invariant under global shifts of all displacements, which are the Goldstone
modes of broken translation invariance. In addition to disordering the length and
spring constants of these original springs, we also introduce a third type of disorder
in the S sector, namely terms proportional to (qi + qj)

2. These terms represent a
random pinning to a background (substrate), which can be visualised by springs that
attach each mass to its equilibrium position. However, we reserve the term springs
to the original springs and will denote the translation invariance breaking terms as
pinning. Let Lsp ⊂ {Vs → Ws} be the space of operators mapping from each site
only to adjacent edges. Let Π act on Lsp by swapping all pairs of blocks associated
with the same edge. I.e. the matrix block Π(R)|Vs(i)→Ws(l) is defined to be equal to
R|Vs(j)→Ws(l) for l = (i, j) ∈ C1. This formalises the notion of pinning and spring
length disorder to be the operators in

Lp/s := {R ∈ Lsp : Π(R) = ±R} , (2.11)

respectively. In particular, Ds ∈ Ls. Notice that Ls and Lp are orthogonal with
respect to TrV

(
RTs Rp

)
= 0 for Rp/s ∈ Lp/s. This leads to factorisation of the Gaussian

probability measure:

〈f(Rs, Rp)〉s,p ∝
∫
Ls

∫
Lp

f(Rs, Rp)e
− n
bs

TrRTs Rse
− n
bp

TrRTp Rp dRs dRp , (2.12)

where, again, 〈1〉s,p = 1.
In this chapter, spring length disorder is only discussed in combination with the

less well motivated random pinning because we want to keep the diagrammatics as
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simple as possible and hence do not consider diagrams that connect different points in
space, which would arise otherwise. This will be remedied in Chapter 3 with the help
of supersymmetry. Section 2.6 offers the spring constant disorder model as a type of
disorder in the S sector which can be handled diagrammatically without introducing
pinning. At least in three dimensions, such models without pinning are certainly more
relevant to describe experiments. For now we choose bs = bp =: bsp, which leads to

〈f (Rs +Rp)〉s,p = 〈f (Rsp)〉sp ∝
∫
Lsp

f(Rsp)e
− n
bsp

TrRTspRsp dRsp . (2.13)

While ignoring the difference between spring length and pinning disorder for now,
we will right away use different disorder strengths, b+sp and b}sp, for the additive and
interfering parts,

〈
f(R}sp, R

+
sp)
〉
∝
∫
Ls

f(R}sp, R
+
sp) e

− n

b}sp
Tr(R}

s )TR}
s −αmn

b+sp
Tr(R+

s )TR+
s

dR}sp dR
+
sp . (2.14)

In this form, spring length and pinning disorder can be treated diagrammatically.

2.3 Additive disorder diagrams

In this section, we explain the diagrammatic derivation of the self-consistency equations
(SCE) for the CPA DOS of the additive mass and spring length disorder model,
postponing the more general case to Section 2.7 for pedagogical reasons. That is, we
specialise to b}m = b}p = b}s = 0 from Section 2.3.2 on. As mentioned in Section 2.2.1,
we will restrict ourselves to5 bs = bp = bsp throughout this chapter, i.e. we do never
treat spring length and pinning disorder separately, in order to keep the diagrammatics
tractable.

In summary, the specific model to be studied in this section has the form:

µM = 1 +RTmRm (2.15)

and κ−1S = −∆ +RTspRsp , (2.16)

with the probability distribution of Rm and Rsp given in Equation (2.10) and (2.14).

5Whenever sub- or superscripts are omitted, the corresponding equation is understood as a template
and all specialisations of the template obtained by inserting admissible labels are to be true. For
example, bs = bp is to say that b+s = b+p and b}s = b}p .
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2.3 Additive disorder diagrams

2.3.1 Geometric series and self-energy

We start from Equation (2.3) with the aim of expanding the geometric series and
then averaging term by term. The first step of the derivation is to use time-reversal
invariance to rewrite the resolvent operator as

(z − Jh)−1 =

 z −M
S z

−1

=

 z(z2 +MS)−1 M(z2 + SM)−1

−S(z2 +MS)−1 z(SM + z2)−1

 . (2.17)

Here and in the following, we omit the unit matrix 1N . As advertised in Section 1.3.1,
it is MS (or equivalently SM) which determines the Green’s function g from the
reduced resolvent operator G. The latter tends to the clean G0 for b→ 0:

g(z) =
1

2N
Tr
V

(z − Jh)−1 = − z

N
Tr
Vq
G (2.18)

with G := −(z2 +MS)−1 = (1−G0R)−1G0 =
∞∑
l=0

(G0R)lG0 (2.19)

and G0 := −(z2 +M0S0)−1 . (2.20)

In this section, M0 = µ−1DT
mDm = µ−1 is considered as a scalar and a fixed isomor-

phism Vm ' V ∗m is understood. Similarly S0 = κDT
s Ds = −κ∆, where the isomorphism

W}
s → (W}

s )∗ is understood and κ is treated as scalar. We also identify Vs ' Vm via the
non degenerate pairing provided by the symplectic form and the above isomorphisms.
All random variables have been gathered into

R := MS −M0S0 = M0R
T
SRs +RTmRmS0 +RTmRmR

T
s Rs . (2.21)

Calculating the average of (G0R)l over our Gaussian measures introduced in Sec-
tion 2.2.1 reduces to a combinatorial task due to the elementary identity∫

f(x)e−
1
2b
x2

= f(∂y)
∣∣
y=0

e
b
2
y2
, (2.22)

leading to Wick’s theorem. In our setting, this means that we draw all symbols repre-
senting matrices (see Figure 2.3) in the order corresponding to the matrix polynomial
we want to average. Then we sum over all diagrams obtained from this string of
shapes by joining triangles with the same labels by double lines in all possible ways.
To leading order in large n we show below that only non-crossing diagrams contribute.
Similar diagrammatics for non-crossing averages of matrix polynomials have been
pioneered by [tH74].
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∝ 1N

Figure 2.3: Graphical notation for the elementary matrices. The upper left single circle
denotes a deterministic matrix (such as G0, M0, etc.) and the upper right
double circle a coherent matrix (such as G, M, etc.). The left triangle
stands for a transposed random matrix (RTm or RTsp) and the right one for

Rm or Rsp. The elementary average 〈RTR〉 is depicted in the lower line.

The first observation is that higher order terms in the expansion of 〈g〉 contain
copies of lower order terms joined by G0, which implies that we can re-sum

G =

〈∑
l

(G0R)lG0

〉
= (G−1

0 − Σ)−1 (2.23)

where the “self energy” Σ consists of irreducible diagrams. Here “irreducible” means
that diagrams cannot be cut by removing one G0. The next observation is that
only non-crossing diagrams contribute to leading order in n (see Section 2.7 for some
examples). Throughout, it is more convenient to work with the coherent inverse mass
matrix M (called coherent mass for short) and the coherent springs (matrix) S than
with the self-energy, because the irreducible diagrams have the following structure:

Σ =MS −M0S0 (2.24)

⇒ −G−1 = z2 +MS . (2.25)

Comparing Equation (2.25) with (2.19) and (2.20), the meaning of these coherent
matrices becomes clear. The CPA amounts to replacing the fluctuating matrices M
and S with the coherent ones. The latter have to be determined self-consistently and
will in general be complex and z-dependent and tend to M0 and S0 in the clean limit.

Whilst this section has been general in that it also applies to the diagrammatics of
the interfering and combined model, we will now specialise to the purely additive case.

2.3.2 Re-summation

The series of irreducible diagrams for M is shown in Figure 2.4. The diagrams in the
spring sector look exactly the same with all variants of M and S symbols exchanged.
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2.3 Additive disorder diagrams

M = M0 + Rm Rm

+ Rm Rm SG Rm Rm

+ Rm Rm SG Rm Rm SG Rm Rm + . . .

= M0 + Rm B+
m Rm

Figure 2.4: Diagrammatic derivation of the coherent mass of the additive mass disorder
model.

Re-summing the geometric series of bubble diagrams called B+
m in Figure 2.4, we

obtain

M = M0 + µ−1b+mB
+
m (2.26a)

B+
m = 1 +B+

m

b+m
µαm

1

n
Tr (SG) (2.26b)

S = S0 + dκb+spB
+
sp (2.26c)

B+
sp = 1 +Bsp

κb+sp
αs

1

n
Tr (MG) . (2.26d)

The factor of d in the spring sector is due to the free summation indicated by the
wiggly loop contributing a factor nα+

s d = dim (⊕l∈C1W (l)), where the direct sum runs
over edges adjacent to some site i ∈ C0.

The solutions of these self-consistency equations are discussed in Section 2.4.1.
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2.4 Mass, spring length, and pinning disorder models

2.4.1 Additive disorder

The model of additive mass, spring length and pinning disorder, b}sp = b}m = 0, is a
time-reversal invariant version of [SZ10]. A similar model has been studied in [JSS83].
The authors of the latter also consider additive mass disorder and argue that spring
constant disorder does not change the qualitative picture. We present the detailed
assessment of this claim for our model below. Notice, however, that our model ensures
positivity of the mass matrix and is thus dynamically stable. More importantly, we
take the inverse mass to be fluctuating. On the level of the DOS, this is equivalent
to fluctuations in ν2 = κ/µ, which might locally become very small in our case. In
contrast, [JSS83] take µ to fluctuate with finite variance around a finite value, hence ν
is bounded away from zero.

The diagrammatics for the additive model are presented in Section 2.3. The resulting
self-consistency equations (2.26) can be rewritten as(

B+
sp

)−1
= 1 +

b+sp
αs

g̃

z̃
µM (2.27a)

(µM− 1)
b+m
αm

g̃z̃ = (µM)2 + µM
(

1− αm
αm

b+m − 1

)
− b+m
αm

(2.27b)

κ−1S = −∆ + d b+spB
+
sp (2.27c)

and g̃ =
1

n
Tr

z̃

z̃2 + µMκ−1S , (2.27d)

where we have eliminated the parameter B+
m stemming from the geometric series of

bubble diagrams in the mass sector. Further we measure frequency in units of ν, i.e.
z̃ = z/ν and consequently g̃ = νg is measured in the same units. Equations (2.27) can
be combined into a single equation that is to be solved for the (complex) coherent
mass as a function of (complex) frequency, M(z), which in turn determines g(z) via
Equation (2.27b).

2.4.1a Debye phase

In Equation (2.27b), the left hand side vanishes for z = 0. Hence we must have one of
two solutions for the coherent inverse mass at zero frequency, but only the positive one,
µM(z = 0) = 1 + b+m +O((b+m)2), connects continuously to the clean case, M0 = µ−1.
For b+m > 0, the second solution would lead to a negative density of states and will be
disregarded. This means that a small amount (b+m � 1) of Mass disorder increases
the inverse mass and hence the speed of sound by a factor 1 + b+m. Notice that M in
Equation (2.15) was defined to be the sum of two independent6 positive (semi) definite

6More precisely speaking, M0 and RTmRm are free in the sense of free probability.
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2.4 Mass, spring length, and pinning disorder models

operators, hence the eigenvalues are necessarily shifted up. The two solutions for M
do not meet for any b+m ≥ 0. As a consequence, continuity forbids the additive mass
disorder model to have a transition to any strong disorder phase and the Debye phase
persists for any disorder strength. This is in agreement with the findings of [JSS83].

To leading order in small −z2 = ω2, b+sp, and b+m, spring length and pinning disorder
leads to a shift in the denominator of g:

−ω̃2 7→ db+sp(1 + b+m)− ω̃2 . (2.28)

This shift has a drastic effect, since the Debye DOS is proportional to

ρ(ω) ∝ <
(
iω
√
x log

(
1−√x
1 +
√
x

))
(2.29)

for x =
ν2Ω2

ω̃2 − db+sp(1 + b+m)
, (2.30)

in odd dimensions and ρ(ω) ∝ <(iω log(1 − x)) in even dimensions, as can be seen
from Equations (2.27c), (2.27d), (A.2), and (A.8) or (A.9). The Green’s function is
rendered purely imaginary and consequently the density of states to be zero for

|ω| <
√
db+sp(1 + b+m) , (2.31)

opening a gap at small frequencies. We will show in Chapter 3 that this gap is actually
due to pinning rather than spring length disorder.

In Figure 2.5 we confirm that the numerical solution of the self-consistency equations
(SCE) stays in the Debye phase, even for very strong additive mass disorder and that
indeed a gap of width of the order of

√
bsp is opened up by pinning disorder.

2.4.1b Strong disorder limit

For µ−1, κ→ 0 at constant µ−1b+m and κb+sp, the Green’s function is determined by

ẑ

αmαs
ĝ3 +

2− αm − αsd
αmαs

ĝ2 +

(
ẑ +

1− αm − αsd+ αmαsd

ẑαmαs

)
ĝ = 1 (2.32)

for ĝ = νg
√
b+mb

+
sp and νẑ

√
b+mb

+
sp = z. For d = αs = αm = 1 this is the self-

consistency equation for the Green’s function found in [LSZ06], which in particular
leads to ρ(ω) ∝ ω−1/3 to leading order in small frequencies. This also holds true in
higher dimensions if αm = 1 = αsd. If exactly one of these two conditions holds then

ĝ(z = 0) =
αsαm

αsd+ αm − 2
(2.33)
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Figure 2.5: CPA DOS in three dimensions. Left: interfering compared to additive
mass disorder. Top to bottom: interfering disorder model in the Debye
phase (b}m = 0.5, marked with +), clean Debye model (dashed line), and
additive disorder model (b+m = 1, b+m = 10, and b+m = 100, marked with x, ∗
and boxes, respectively). Right: a small amount of pinning is added to the
interfering mass disorder model (b}m = 0.5, b}s = 10−8, top, marked with
+) and additive mass disorder model (b+m = 1, b+s = 10−8, bottom, marked
with x).

is finite. Notice that this is the case for the most natural values αm = αs = 1, if d > 1.
If Equation (2.33) yields a negative number then the time evolution operator cannot
have full rank and it follows that there is a δ-peak of zero modes. For ĝ(z = 0) > 0
in Equation (2.33), however, we find that the DOS of this purely random model is
positive and finite at zero frequency. This is the first promising hint at a phase which
could explain the experimentally observed linear heat capacity. In Section 2.4.2 we
discuss the interfering disorder model, which features a transition to this new phase at
finite disorder strength.

The generic case of full rank αm > 1 < αsd leads to g ∝ z being purely imaginary
to leading order, similar to the clean case. Also the second order contribution to g
vanishes and the DOS follows the law ρ ∝ ω4.

2.4.2 Interfering disorder

We focus on the interfering mass, spring length and pinning disorder model in this
section, i.e. b+sp = b+m = 0. This also renders αm and αs irrelevant. Apart from the
deterministic scale, there are only two parameters left. These are the strength of
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2.4 Mass, spring length, and pinning disorder models

interfering mass disorder b}m, as well as b}sp, which tunes interfering spring constant
and pinning disorder simultaneously.

The diagrammatic derivation of SCE for this model is technically a little more
involved, but conceptually very similar to the one presented in Section 2.3. For this
reason, we postpone the detailed derivation to Section 2.7. Here, we start from the
resulting Equation (2.75) (restricted to b+ = 0), which yields

b}mg̃z̃ = B}m(B}m + b}m − 1) (2.34a)

µM = B}m(B}m + b}m) =
1−B}sp
b}spB

}
sp

z̃

g̃
(2.34b)

κ−1S = −B}sp∆ + b}sp(d− 1 + g̃z̃) (2.34c)

and g̃ =
1

n
Tr

z̃

z̃2 + µMκ−1S , (2.34d)

where again z̃ = z
ν and g̃ = νg. Again, we can combine Equations (2.34) into a single

self-consistency equation that determines the (complex) value of the vacuum bubble
series B}m(z), which in turn determins the other parameters and in particular the
Green’s function. Note, however, that this equation generally has more than one
solution. We determine which is the correct one by demanding B}m to be continuous
in all parameters, ρ to be non-negative, and g(z) to decay like 1/z for large z. (The
latter is actually not discriminating.)

2.4.2a Weak disorder

The effects of weak disorder are (qualitatively) similar to those found in Section 2.4.1.
Here, Equation (2.34a) at z = 0 is solved by either B}m(z = 0) = 0 or B}m(z = 0) =
1− b}m. The latter is the relevant solution for small b}m since it connects continuously
to the clean limit (and it leads to a finite and positive density of states). To leading
order in small frequencies, the effect of interfering mass disorder of strength b}m is to
rescale

M0 = µ−11 7→ M = µ−1
(
1− b}m

)
1 (2.35)

i.e. mass disorder effectively increases the mass or decreases the speed of sound by a
factor of 1− b}m. This is the first hint to the interfering model being more interesting
than the additive model as it indicates that low energy modes are being generated
by disorder. The power law of the DOS at small frequencies is the same as in the
clean case, i.e. ρ ∝ ωd−1, see Equation (A.3). Equation (2.35) is correct in Debye
approximation and to first order in z but for all 0 ≤ b}m < 1, i.e. this is not just a
perturbative result. We have confirmed this effect also in the numerical solution of the
SCE. See for example Figure 2.5.
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At this point, we would like to mention that, on the perturbative level (see Equation
(2.65)), pure spring length disorder has a similar effect on the speed of sound as mass
disorder. However, this effect is precisely cancelled by the random pinning of equal
strength that we are currently considering. In contrast, to leading order in small z
and for b}m < 1 pinning leads to a shift,

−ω̃2 7→ b}sp(d− 1)(1− b}m)− ω̃2 . (2.36)

As mentioned in Section 2.4.1a, this leads to a gap at small frequencies. Here, it is of

half-width
√
b}sp(d− 1)(1− b}m) to leading order in small b}sp.

2.4.2b Interfering mass disorder model

The above considerations for small b}m and b}sp motivate setting b}sp = 0 for now.
At small frequencies, this interfering mass disorder model looks very similar to the
clean Debye model with an increased mass as long as mass disorder is weak, b}m < 1.
At the critical value b}m = 1, the regime of weak disorder terminates. For critical
disorder, the unique solution of Equation (2.34a) is B}m(z = 0) = 0. Also for strong
(b}m > 1) disorder, this solution is the only one that leads to a non-negative density of
eigenfrequencies.

For b}m = 1, we have (B}m)2 = g̃z̃. Using the Debye approximation (see Section 1.3.3
and A.1) and integrals computed in Appendix A.1.1, we determine the solution of
Equations (2.34) to leading order7 in z̃:

g̃ ∝


z̃

1
3 d ≥ 3

z̃
1
3 log

2
3 (z̃) d = 2

z̃−
1
5 d = 1 .

(2.37)

For strong disorder, b}m > 1, we find to leading order7

g̃ =



√
b}m−1

b}mΩ

√
d
d−2 d ≥ 3

√
b}m−1

b}mΩ

√
− log(z̃) d = 2(

(b}m−1)3

4(b}m)4

) 1
5
z̃−

3
5 d = 1 .

(2.38)

Notice that 0 < g(z = 0) < ∞ for all b}m > 1 in three dimensions and maximal for
b}m = 2 (see Figure 2.8). In two dimensions, the density of states of this model diverges,
but only at a logarithmic rate.

7In two dimensions, the next-to-leading order terms come with log log(z) instead of log(z). In all
other dimensions, the next-to-leading order terms are of higher power in z.
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Figure 2.6: Coherent potential approximation of the density of eigenfrequencies (CPA
DOS) of the interfering mass disorder model in two dimensions. Left:
critical disorder strength. Right: Large disorder. The right plot shows
ρ̃ as a function of

√
− log(ω̃) and we have reversed the x-axis such that

small frequencies are again on the left. The fitted slope agrees with the
predicted value of π−3/2/4 within numerical accuracy.

These power laws are well observable in the numerical solution of the self-consistency
equation in three dimensions. In particular, the unusual power law ρ ∝ ω1/3 at b}m = 1
is clearly visible and for b}m > 1 the density of eigenfrequencies stays constant at low
energies, as shown in Figure 2.7. Also in two dimensions, the numerical solution fits
the analytic predictions very well. It takes careful examination to spot the logarithmic
contribution at criticality, but for strong disorder, the logarithmic divergence is easier
to find as shown in Figure 2.6.

Since S is purely deterministic in the currently considered mass disorder model,
there is no meaningful random matrix limit. Sending κ→ 0 leads to the spectrum of
X being exactly zero, which is correctly reproduced by the self-consistency equations
(2.34) leading to g ∝ 1/z and hence ρ ∝ δ(ω) in this limit. In the limit of µ−1 → 0 at
finite κ and µ−1b}m, the strong disorder phase persists (as can be seen from inserting
g̃ = (κµ−1)1/2g back into Equation (2.38)).

2.4.2c Numerically averaged finite size spectra

Together with Artur Swiech, we numerically calculated the integrated density of states
(also known as cumulative distribution function) for the interfering random mass model
by pseudo-random sampling and exact diagonalisation for small system size L. Since
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Figure 2.7: CPA DOS of the interfering mass disorder model in three dimensions.
At the critical value of disorder (left), the inset reveals the power law
at criticality, where the slope is 1/3. For large disorder (right), ρ̃(ω̃) is
constant to leading order.
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Figure 2.8: Left: CPA DOS for the interfering mass disorder model at very small
frequencies in three dimensions as a function of disorder strength. The
solid line is our prediction, (

√
3/2/π2)1/3

√
bm − 1/bm, as given in Equation

(2.38). Note that there are no fitting parameters. Right: Spring length
disorder and pinning do not change the qualitative picture. The dashed
line is again the bsp = 0 result and the solid line the asymptotic behaviour.
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h is a sparse matrix, the Lanczos algorithm is used to find the smallest eigenvalues for
larger system size. All simulations were done for n = d bands and finite lattice size L in
two and three dimensions for the full Laplacian (i.e. without Debye approximation). By
comparison with these results, we confirm that the CPA results for the leading-order
power laws of the DOS are applicable to the physically relevant case of n = d bands,
although the CPA becomes exact only for n→∞.

The effect of weak disorder is best observed in two dimensions, where we can go
to large lattice size. In Figure 2.9, we can see the expected Debye power law with
increased mass as long as frequencies are high enough to escape finite size effects. More
interestingly, Figures 2.10 and 2.11 confirm the existence of the critical transition to
the strong-disorder phase in three dimensions with the predicted leading order power
laws. In particular, the finite density of states at zero frequency in three dimensions is
confirmed.

In two dimensions, the simulation results at strong disorder look similar to those in
three dimensions. That is, we do not find logarithmic divergences, but a finite density
of states at zero. This is not completely unexpected. Even if the mean-field results in
such low dimension were still trustworthy, the logarithmic terms only become visible
at frequencies well below the finite-size limit. Notice that for example a very small
amount of random pinning added to the interfering mass disorder model also removes
the logarithmic factors within our CPA.

We notice that, in particular for strong disorder, the numerical averaging already
converges after rather few (meaning 10 to 50) samples. Even for a single sample, the
integrated density of states hardly deviates from its average value.

2.4.2d Spring length disorder and pinning

Taking also spring length disorder and random pinning of equal strength into account,
the most notable result is that b}m = 1 still marks a critical phase, independent of b}sp.
This is because Equation (2.34a) is independent of b}sp and so are the solutions B}m(z)
and alsoM(z = 0), which in turn leads to the phase transition upon vanishing. Spring
length disorder does not lead to similar phenomena for S. More precisely, B}sp(z = 0)
stays finite for any 0 ≤ b}sp <∞. Consequently, spring length disorder only influences
the pre-factor of ρ to leading order in ω, not the law. However, the additive term ∝ 1
in Equation (2.34c) does remove the logarithmic factors in two dimensions. This term
is due to pinning, as we hinted at several times but prove only in Chapter 3.

More concretely, for critical mass disorder (b}m = 1) in any dimension larger than
one and any 0 < b}sp <∞, we find g̃ ∝ z̃1/3. As mentioned in Section 2.4.2a, the width

of the gap in the Debye phase goes to zero as
√

1− b}m and there is no gap for b}m ≥ 1.

For strong mass disorder b}m > 1 the DOS at zero frequency is finite. Also here, the
logarithmic factor in two dimensions is removed. The value of ρ(0) is now determined
by a transcendental equation (see Figure 2.8). For bsp > 0 we can send µ−1 → 0 and
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Figure 2.9: The integrated density of states of the interfering mass disorder model
computed from exact diagonalisation (marked with grey +) for a lattice
of 100× 100 sites (in two dimensions), compared to our CPA prediction
(marked with black x, low frequency prediction marked with dashed line)
and the integrated Debye density of states (dotted line). Note that there
are no fitting parameters.

κ → 0 at constant µ−1b}m and κb}sp and obtain a non-trivial purely random lattice

model. In the rescaled units ĝ := νg
√
bmbsp and νẑ := z/

√
bmbsp we find

1 = ẑĝ + (d− 1)ĝ2 + ẑĝ3 . (2.39)

Since for the purely random model there is no distinction between additive and
interfering disorder, Equation (2.39) is the same as Equation (2.32) for αm = αs = 1.
It was discussed in Section 2.4.1b.

2.4.3 Combined additive and interfering disorder

Before closing this section, we would like to mention some results for the model of
combined additive and interfering mass, spring length and pinning disorder. In this
model, there are already six parameters. The corresponding SCE are derived in
Section 2.7. Yet we have learnt in the previous sections that the leading order power
law of ρ(ω) is already determined by the leading order laws ofM(z) and S(z). As was
always the case throughout this chapter, the coherent springs matrix at zero frequency
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Figure 2.10: Integrated density of states from exact diagonalisation (203 sites, grey +)
for the interfering random mass model compared to our CPA prediction
(black x) at critical disorder strength in three dimensions. The slope of
the dotted line is about 4/3.

is non-vanishing, also in the combined model and the phase of the system is determined
by the law of the coherent mass. M(z = 0) in turn is now determined by a third order
polynomial. One of the roots is

µM(z = 0) = 0 , (2.40)

witch corresponds to the strong disorder phase that we found in Section 2.4.2b. The
other two solutions lead to non-trivial functions of the three parameters of the M
sector, but from their perturbative form we can identify

µM(z = 0) = 1 + b+m + b}m

(
2αm

b+m
+ 1 + 2αm − 2b+m

)
+O(b2m) , (2.41)

to be the additive solution, i.e. the one found in Section 2.4.1. Notice that for b}m > 0
this solution does not connect to the clean case for b+m → 0. The third solution,

µM(z = 0) = 1 + (2b+m − 1)b}m +O(b2m) , (2.42)

is the interfering solution, i.e. it connects continuously to the weak-disorder phase
found in Section 2.4.2b. This is the one solution, which also connects to the clean

35



2 Models

10−4

10−3

10−3 10−2

∫ ω̃ 0
ρ̃
(x

)d
x

ω̃

bm = 3/2

Figure 2.11: Integrated density of states from exact diagonalisation (203 sites, grey +)
for the interfering random mass model compared to our CPA prediction
(black x) at strong disorder in three dimensions. The slopes are both
equal 1 (within numerical accuracy).

case for any small 0 < b+m, b
}
m � 1 and is hence the generic weak-disorder solution.

As discussed above, it leads to a Debye phase with a rescaled mass. Already on this
perturbative level, we can see how additive disorder works against a transition to the
strong disorder phase. In fact, this solution does not meet the other solutions for any
value of the parameters. As a consequence, there is no phase transition and the Debye
phase persists also for strong disorder, similar to the additive disorder model (see
Figure 2.12 for a numerical verification). All plots are for αm = αs = 1, but varying α
does not change the qualitative picture.

Since the combined model, like the additive model, is always in the Debye phase,
random pinning of any type opens a gap. In Figure 2.12 we see the gap caused by
pinning, the Debye contribution due to additive disorder and a constant region remnant
of the stronger interfering disorder phase.

We would like to stress that the DOS as a function of b+m and ω at b}m > 1 is smooth
everywhere, except for ω = b+m = 0, where it is discontinuous in b+m. A caricature of
the situation is given by the function (ω, b) 7→ ω/(ω + b) on R≥0 × R≥0.
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Figure 2.12: Left: CPA DOS for combined additive and interfering mass disorder in
three dimensions. Top to bottom: b+m = 0 (+), b+m = 10−8 (x), b+m = 10−3

(∗), b+m = 0.1 (empty boxes), and b+m = 10 (filled boxes). Right: interfering
mass(+) and combined model with b+m = 10−6 and b+s = b}s = 10−8 (x).

2.4.4 Conclusions from the mass, spring length, and pinning disorder
models

From the additive and interfering disorder models studied in this section, we have
learnt the following:

• Interfering mass disorder effectively increases the mass, i.e. decreases the speed
of sound, by a factor 1 − b}m for weak (b}m < 1) disorder. It leads to a critical
transition at b}m = 1 to a strongly disordered phase with a finite density of states
at ω = 0 in three dimensions.

• In coherent potential approximation (CPA), logarithmic divergences of the density
of states of the interfering mass disorder model in two dimensions are found for
critical and strong disorder.

• In the critical and strong-disorder phase in two dimensions, random pinning
removes these logarithmic factors. In ≥ 3 dimensions at critical or strong disorder,
the qualitative features of ρ(ω) are not changed by adding random pinning.

• In the weak-disorder (Debye) phase, random pinning leads to a gap in the
spectrum.
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• Additive mass disorder decreases the mass, i.e. increases the speed of sound, by
a factor 1 + b+m and does not lead to a critical transition to a strong-disorder
phase.

• Combining additive and interfering mass disorder also leads to a model without
strong disorder phase, similar to the purely additive case. To get a transition
to a non-Debye phase at finite disorder strength, it is crucial to implement the
disorder such that the speed of sound can fluctuate down to zero, locally. For
our mass disorder model this means that we must disorder in the interfering way.

• In particular, ρ(ω = 0) discontinuously drops to zero when an infinitesimal
amount of additive mass disorder is added to the interfering mass disorder model
in the strong-disorder phase. The size of the Debye-region which is created in
the band centre however depends smoothly on b+m > 0.

• For the interfering mass disorder model, we confirm the power laws that are
predicted within coherent mass and Debye approximation by comparison to exact
spectra for finite lattices with n = d phonon bands.

Strictly speaking, the techniques used in this chapter do not allow us to disentangle
the effect of random pinning spring and length disorder on the self-consistent level.
The above formulations are supported by perturbative arguments in this chapter, but
are confirmed in Section 3.2.

2.5 Band mixing disorder models

From our experience with the disorder models studies so far, we learn that the coherent
springs matrix, S, replacing the fluctuating S, must be proportional to the Laplacian
in order to avoid the gapped phase. That is, disorder must not lead to an additive
(scalar) contribution to S, or, in other words, we are looking for a model with S ∝ S0.
This is another definition of the spring constant disorder model (see Section 2.2). We
will show that both agree, i.e. that the model outlined in Section 2.2 does lead to
S ∝ S0 in Section 2.6. To get a feeling for how to implement spring constant disorder,
we briefly describe a model, which might look promising at first but does nevertheless
lead to pinning.

An admissible way (i.e. preserving positivity and symmetry of M and S) of imple-
menting disorder is the following:

M = M0 +RTmM0Rm (2.43)

and S = S0 +RTs S0Rs . (2.44)

The construction of this band mixing disorder model is even simpler than for the spring
length disorder model considered above. There are no auxiliary intermediate spaces
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and both Rm : Vm → Vm and Rs : Vs → Vs should be site diagonal. The effect of this
kind of disorder is to mix and weight bands randomly. Of course, all disorder models
considered in this thesis mix bands at some point, but here the structural aspects
(compare to Figure 2.1 and 2.2) are provided by the deterministic part alone.

Using Gaussian disorder distributions once more, this model can be handled dia-
grammatically:

〈f(Rx)〉 ∝
∫
Loc

f(Rx)e−
n

2bx
TrRTxRx dRx . (2.45)

In fact, the mass sector of this model is exactly the same (up to rescaling bm) as
for the additive mass disorder model and also the combined band mixing disorder
diagrams are similar to the additive ones. We obtain:

M = M0 +
bm
n

Tr

(
M0

1−M0
bm
n Tr (GS)

)
(2.46a)

S = S0 +
bs
n

Tr

(
S0

1− S0
bs
n Tr (GM)

)
(2.46b)

G−1 = z2 +MS . (2.46c)

Notice that both, coherent mass and coherent springs, have gained an additive term
and S is not proportional to S0. From the discussion in Section 2.4.1a and 2.4.2a,
we learn that a scalar summand in S leads to a gap in the Debye phase. In fact, we
can see already in Equation (2.44) that S = S0 +RTs S0Rs breaks global translation
invariance, i.e. the zero modes of S0 are not preserved. Also on the local scale, it is
easy to spot that terms like (ξiqi − ξjqj)2, for random ξ, break the invariance under
global shifts of all qi and lead to random pinning.

From Equations (2.46) we see that both types of disorder increase the speed of sound
to leading order in small disorder strength. This is due to the additive nature of the
model. We could now also study an interfering version, but in the mass sector this
would be the same as the interfering mass model considered in Section 2.4.2b and in
the spring sector it seems impossible to implement local band mixing without causing
random pinning. For this reason, we refrain from developing the band mixing model
further and rather turn to actual spring constant disorder.

2.6 Spring constant disorder models

The interfering mass disorder model with deterministic springs, studied in Sec-
tion 2.4.2b, features a strong disorder phase that could explain the experimentally
observed linear temperature dependence of the heat capacity. However, the inverse
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Figure 2.13: Sketch of two neighbouring physical spaces, V (i) and V (j), together with
the auxiliary spaces located at the same sites or the shared edge as well as
the action of R and D in the mass and spring constant disorder model.

mass fluctuating down to zero means that there are extremely heavy particles in the
model, or that certain points are fixed, i.e. can not be accelerated. This is not likely
generic the physical cause of the low energy modes. A more realistic model of a
disordered solid should take randomness in the properties of the springs into account.
We found that pinning leads to a gap in the weak-disorder phase, which is not observed
in experiment. Moreover, it is hard to imagine pinning disorder in the bulk of a three
dimensional material and a model of interfering spring length disorder without pinning
is not studied diagrammatically to avoid technical difficulties. This will be remedied
by supersymmetry in Chapter 3 but the aim of this section is to construct a model
for spring constant disorder that does not lead to random pinning and can still be
handled diagrammatically with ease.

2.6.1 Additive spring constant disorder

The discussion in Section 2.5 in view of Figure 2.2 indicates that we should locally
multiply spring constants by random variables to produce a model, which preserves
the invariance under global displacements. Schematically, (ξij(qi− qj))2 should be used
instead of (ξiqi−ξjqj)2. This leads us to construct the additive spring constant disorder
model, which can be handled diagrammatically and does not introduce pinning. It is
given by

M = M0 +DT
mR

T
mRmDm (2.47a)

and S = S0 +DT
s R

T
s RsDs . (2.47b)
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We recall that the target space for Ds : Vs →Ws has the physical meaning of spring
elongations, explained in Section 2.2. In the spring constant disorder models, we have
the freedom to introduce a new auxiliary target space for Rs : Ws → Us. As before, the
mass sector is equivalent to the other versions of mass disorder introduced above, but
to stress the duality of mass and spring constant disorder in this model, we use similar
formulas for M and S in Equation (2.47a). We may also use two auxiliary spaces for
the M sector, which will be associated with the sites. For the S sector, the auxiliary
spaces are located on the links. Dm and Ds are as introduced in Section 2.1.1 with
Wi ' Wl ' Vi ' Rn for i ∈ C0 and l ∈ C1. The new spaces are Um(i) ' Rαmn and
Us(l) ' Rαsn. Notice that the formal meaning of α in this model is slightly changed
as compared to the spring length disorder model. See Figure 2.13 for a schematic
picture of the spatial arrangement of auxiliary spaces. The appropriate spaces of local
operators are given by site and link-diagonal operators:

Lm :=
⊕
i∈C0

{Rm(i) : Wm(i)→ Um(i)} (2.48)

and Ls :=
⊕
l∈C1

{Rs(l) : Ws(l)→ Us(l)} (2.49)

and the probability measures are (as usual) Gaussian,

〈f(Rs, Rm)〉 =

∫
Ls

∫
Lm

f(Rs, Rm)e−
n

2bm
TrRTmRm dRm e

− n
2bs

TrRTs Rs dRs . (2.50)

The diagrammatics for this model is the same as for the additive spring length and
mass disorder model (see Section 2.3) with slightly changed meaning of the symbols.
Now triangles include a factor of the corresponding square root of the deterministic
part. The resulting SCE are

M = M0(1 + αmbmBm) (2.51)

B−1
m = 1− bm

n
Tr(M0GS) (2.52)

S = S0(1 + αsbsBs) (2.53)

B−1
s = 1− bs

n
Tr(S0GM) . (2.54)

These can be rewritten in a more compact form:

gz = 1 + (1 + αmbmBm)
Bm − 1

bmBm
= 1 + (1 + αsbsBs)

Bs − 1

bsBs
(2.55a)

and g =
1

n
Tr

z

z2 − ν2(1 + αmbmBm)(1 + αsbsBs)∆
. (2.55b)
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Comparing Equation (2.55b) with (2.34d) and the discussion in Section 2.4.2a, we
see that the spring constant disorder model is indeed gapless. The leading order effect
of additive disorder is, as usual, to increase the speed of sound by 1 + bs. This can
be seen directly by solving Equation (2.55a) for z → 0, or by realising that coherent
spring constant and mass disorder are equivalent. More precisely, there is an exact
duality of exchanging bs and bm and relabeling Bs and Bm in Equations (2.55). The
phenomenology of additive spring constant disorder is therefore the same as for the
additive mass disorder in Section 2.4.1. Also the conclusion of Section 2.4.1 applies,
namely the additive internal disorder model stays in the Debye phase and there is no
strong disorder phase.

2.6.2 Interfering spring constant disorder

Gathering our experience from Section 2.4.4 and 2.6.1, it becomes clear that we should
forge an interfering spring constant disorder model in order to combine the existence
of a strong-disorder phase with the absence of pinning and the corresponding gap in
the weak-disorder phase. This is done as follows:

M = DT
m(1n +Rm)T (1n +Rm)Dm (2.56a)

S = DT
s (1n +Rs)

T (1n +Rs)Ds , (2.56b)

where we choose the dimensions to match, i.e. Rn ' Vm(i) ' Wm(i) ' Um(i) and
also Rn ' Vs(i) ' Ws(l) ' Us(l) and 1n in Equations (2.56) stands for latter of
these isomorphisms. Notice that all realisations of M and S are symmetric and
positive, hence also this model is Lyapunov-stable. As mentioned in Section 2.6.1,
the development focuses on the spring sector. M is written in a similar way only for
convenience but is equivalent (up to rescaling bm) to the interfering mass disorder
model considered above.

We could combine additive and interfering disorder, as explained in Section 2.1.1, by
choosing Um(i) ' R(1+αm)n and similarly for S. Although we learn from Section 2.4.3
that this is not a good idea if we want to get a strong disorder phase.

The diagrammatics for this model is exactly the same as for the interfering spring
length and pinning disorder model explained in Section 2.7, except for the meaning of
the triangle symbol. This now also includes a deterministic square root factor. Also
the resulting SCE are similar to the ones discussed in Section 2.4.2, namely

M = M0Bm(Bm + bm) (2.57a)

S = S0Bs(Bs + bs) (2.57b)

gz =
Bm(Bm + bm − 1)

bm
=
Bs(Bs + bs − 1)

bs
(2.57c)

g =
1

n
Tr

z

z2 +MS . (2.57d)
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By construction, the coherent mass and springs are proportional to their deterministic
values. As with the additive model, there is a duality of coherent masses and spring
constants. The DOS will be discussed in the following, but we can already infer from
the above mentioned duality between M and S sector that there will be a strong spring
constant disorder phase.

2.6.2a Weak disorder

From Equation (2.57c) we can read off that for weak disorder (bm, bs < 1) we have
Bs(z = 0) = 1− bs similar to Bm. Hence weak mass disorder rescales the inverse mass
by 1− bm, as before, and weak spring constant disorder does exactly the same, namely
rescaling κ by 1− bs. Therefore both types of disorder decrease the speed of sound,

ν2 7→ ν2(1− bs)(1− bm) . (2.58)

In fact, as long as bs < 1, we can apply the analysis of Section 2.4.2b. On the critical
line, bm = 1 for bs < 1, the density of states shows the critical power law behaviour
as discovered for the interfering mass disorder model, given in Equation (2.37). For
strong mass, but weak spring constant disorder, bm > 1 at bs < 1, we find a finite
density of states at zero. Its value is changed by a factor (1− bs)−1/2 as compared to
the interfering mass disorder model, see Equation (2.38). By the duality mentioned
above, the bm < 1 sector is the same as the bs < 1 sector with the roles of bm and bs
exchanged.

From now on, we restrict our attention to d ≥ 3 dimensions. Here, summarising the
above results, we have the following non-Debye phases:

• For bs < 1 and bm > 1, we have

g̃(z = 0) =
1

Ωbm

√
bm − 1

1− bs

√
d

d− 2
. (2.59a)

• For bm < 1 and bs > 1, roles are exchanged,

g̃(z = 0) =
1

Ωbs

√
bs − 1

1− bm

√
d

d− 2
. (2.59b)

• For bs < 1 and bm = 1, we have to leading order

g̃ =

(
d

(d− 2)Ω2

1

1− bs

) 2
3

z̃
1
3 . (2.60a)

• And for bs = 1 and bm < 1, again the same with exchanged roles

g̃ =

(
d

(d− 2)Ω2

1

1− bm

) 2
3

z̃
1
3 . (2.60b)
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2.6.2b Critical disorder

For bs = bm = 1 there is a double-critical point in the phase diagram where the two
critical lines intersect. Here, we have B2

m = B2
s = gz and we find

g̃(z = 0) =
1

Ω

√
d

d− 2
(2.61)

in d ≥ 3 dimensions. This is the continuation of Equation (2.59). For bs > 1, bm = 1,
and d ≥ 3 we find

g̃ =

(
bs − 1

b2sΩ
2

d

d− 2

) 2
5

z̃−
1
5 (2.62)

and similarly with bs replaced by bm for bs = 1 and bm > 1.

2.6.2c Strong disorder

The last regime to study is bm, bs > 1. Here, we find to leading order

g̃ =

(
(bs − 1)(bm − 1)

Ω2b2sb
2
m

d

d− 2

) 1
3

z̃−
1
3 (2.63)

in d ≥ 3 dimensions. This is the [LSZ06] phase and the only solution of the SCE that
can be continuously connected across the dashed critical lines in Figure 2.14 to the
phases of constant density of states. The solution with both Bs(z = 0) = 1− bs and
Bm(z = 0) = 1 − bm also leads to a positive (Debye-like) density of states, but the
only way of reaching it continuously is through the double critical point.

2.6.3 Conclusions from the spring constant disorder models

The interfering mass and spring constant disorder (IMSC) model marks the point of
culmination of this chapters model building efforts. It features disorder in the mass as
well as in the springs sector, all realisations of disorder lead to stable dynamics and
the physical symmetries, in particular time-reversal invariance and invariance under
global translations, are preserved. Switching on disorder continuously modifies the
clean density of states by decreasing the speed of sound up to a critical point. In the
interesting critical and strong-disorder phases, the coherent speed of sound, V, as a
function of frequency vanishes at ω = 0. The latter is defined to be the real part of
coherent mass and springs, −V(ω)∆ := <(M(ω)S(ω)), as a function of frequency. In
the Debye phase, V determines the pre-factor of the Debye power law of the DOS. The
phase diagram of the IMSC model is summarised in Figure 2.14.

In Figure 2.15 we speculate about the RG flow of the interfering internal disorder
model. If the model is renormalisable with two couplings given by bs and bm, and
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0 < ρ(0) <∞ ρ ∝ ω−1/3

bm
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1

Figure 2.14: Left: Phase diagram of the IMSC model. There is an exact duality
of exchanging bm and bs, i.e. upon reflecting the phase diagram at
the diagonal. There are three extended phases: the Debye phase for
0 ≤ bm, bs < 1 marked with dots, the phase of finite DOS at zero
frequency at bs < 1 and bm > 1, marked with diagonal lines, and the
LSZ phase with ρ ∝ ω−1/3 for bm, bs > 1, marked by horizontal lines.
The weak disorder critical lines at bm = 1 and bs < 1 with ρ ∝ ω1/3 are
marked with bold solid lines and the strong disorder critical lines where
ρ ∝ ω−1/5 are marked with bold dashed lines. At the double-critical point
at bm = bs = 1, the DOS at zero frequency is finite.

Figure 2.15: Right: Tentative RG flow diagram inferred from the positions of the four
tentative critical points and the M -S-duality.

if the critical points have been correctly identified within our investigation of the
mean-field density of states, then the flow diagram is strongly constrained. Assuming
that changes the disorder strength are always relevant or irrelevant (but not marginal)
only leaves two possibilities for the qualitative RG flow diagram, one of which is shown
in Figure 2.15 and the other one is the same but with all arrows reversed. The decision
which is the correct one boils down to whether the clean fixed point is stable or not.
In both scenarios, a starting point in the 0 < ρ(0) <∞ phase will retain this property,
either because it flows toward the double-critical point, or because it flows towards
the interfering random mass model (or its dual) at strong disorder.

The computation of RG flow of the yet to be derived field theory remains a subject
for future research. The first steps along this path up to the derivation of a suitable
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Figure 2.16: Additional symbols for the square roots of the deterministic parts. The
left one stands for DT

m or DT
sp and the right one for Dm or Dsp.

(super) lattice field theory will be presented in Chapter 3.

2.7 Interfering disorder diagrams

In this section we derive the self-consistency equations (SCE) for the interfering and
combined mass, spring length, and pinning disorder models. The only constraint is
that still spring length and pinning disorder must be of equal strength bs = bp = bsp.
In addition to the symbols used in Section 2.3 (see Figure 2.3), we also need a symbol
for the deterministic square roots D. This is introduced in Figure 2.16.

Now the elementary contractions for our Gaussian integrals (as displayed in Fig-
ure 2.3) are:

〈RTmRm〉 = (b}m + b+m)1N and 〈RTspRsp〉 = d(b}sp + b+sp)1N . (2.64)

At this elementary level, we can discriminate between the effects of spring length and
pinning disorder:

〈RTpRp +RTs Rs〉 ∝ 2d bp 1 +
1

2
(bp − bs)∆ . (2.65)

This means that for bs = bp we only see the effect of pinning, since the effect of spring
constant disorder generating the Laplacian is precisely cancelled. For a more thorough
discussion going beyond the perturbative level, see Section 3.2.

To calculate the Green’s function g, the first steps of rewriting the resolvent operator
and expanding the geometric series are the same as given in Section 2.3.1. Now the
random part involves 15 terms:

ν−2R := ν−2(MS −M0S0) = RTmRmR
T
s Rs +DT

mRmR
T
s Rs +RTmDmR

T
s Rs (2.66)

+RTmRmD
T
s Rs +RTmRmR

T
s Ds +DT

mDmR
T
s Rs +DT

mRmD
T
s Rs + . . . . (2.67)

Note that R does not include DT
mDmD

T
s Ds = M0S0.

To derive the rules of how to translate between diagrams and formulas, we will now
examine a few diagrams in detail (given in Figure 2.17 to 2.19). The diagrammatic
rules are then summarised in Section 2.7.1.
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Figure 2.17: These diagrams represent the expansion of 〈RTxRxY RTxRx〉, for x ∈
{m, sp} and any deterministic matrix Y .

The contributions of the diagrams in Figure 2.17 for x = m are (top to bottom)(
b}m + b+m

)2
Y , (2.68a)(

(b}m)2 +
(b+m)2

αm

)
1

n
Tr
V (i)

(Y ) 1N , (2.68b)

and

(
(b}m)2 +

(b+m)2

αm

)
1

n
Y T . (2.68c)

For x = sp in Figure 2.17 we have(
d(b}sp + b+sp)

)2
Y , (2.69a)

d

(
(b}sp)

2 +
(b+sp)

2

αs

)
1

n
Tr
V (i)

(Y )1N , (2.69b)

and

(
(b}sp)

2 +
(b+sp)

2

αs

)
1

4n
(4d+ ∆)Y T . (2.69c)

Notice that only the upper two diagrams are non-crossing and the third diagram is of
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Figure 2.18: Diagram for 〈RTxDxY D
T
xRx〉 (same notation as in Figure 2.17)

lower order in n.8 The diagram in Figure 2.18 evaluates to

b}m
n

TrV (i)(D
T
mDmY )1N for x = m (2.70a)

and
b}s
n

TrV (i)(D
T
s DsY )1N for x = sp . (2.70b)

It might not be obvious which diagram comes with which geometric factor. To
illustrate when the number of sites per link (2) or links per site (2d) comes in, we give
a few instructive examples of more complicated diagrams involving Rsp in Figure 2.19.
They evaluate to (top to bottom)(

b}sp
n

)2

Tr
V (i)

(Y ) Tr
V (i)

(DT
SDSZ)1N , (2.71)

d
(
b}sp + b+sp

) b}sp
n
DT
SDS Tr

V (i)
(Y Z) , (2.72)

and

(
b}sp
n

)2

Tr
V (i)

(Y ) Tr
V (i)

(Z)DT
SDS . (2.73)

These are also helpful for distinguishing b+ from b} terms.

2.7.1 Diagrammatic rules

Starting from the diagrams explicitly evaluated in the last section, we derive the
following rules for expanding 〈g〉 diagrammatically:

• All diagrams contributing to leading order (in n) are non-crossing.

• Each triangle has to be joined to a mirrored triangle with the same label by a
vanilla line.

• Next to each vanilla line there runs a wiggly line (sometimes drawn elsewhere in
the figures for aesthetic reasons).

8If we distinguish between pinning and spring constant disorder, the second diagram will produce
terms proportional to

∑
i,j∈C0

∆i,j Tr(∆i,jY ), which are difficult to re-sum.

48



2.7 Interfering disorder diagrams

RTsp Rsp Y RTsp Dsp Z DT
sp Rsp

DT
sp Rsp Y RTsp Rsp Z RTsp Dsp

DT
sp Rsp Y RTsp Rsp Z RTsp Dsp

Figure 2.19: Here we depict examples of bigger diagrams which appear in the expansion
of 〈g〉, where Y and Z are any matrices independent of Rsp.

• Round (deterministic) shapes have to be end points of the wiggly part of the
double line.

• Triangles pass on wiggly lines (see Figure 2.19 and 2.20).

• For each pair of M triangles there is a factor µ−1b}m/n.

• For each pair of S triangles there is a factor9 κb}sp/n.

• Loops correspond to traces.

• If all shapes along a wiggly line are triangles then there is a free wiggly loop.

9Notice that there is a factor of two, which might stem from either of the geometric factors, 2 or 2d.
However, these factors are cancelled by each bsp coming with a factor of 1/2.
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– Such free loops contribute an extra factor of n.

– If it is an S-type loop it contributes another factor of d.

– The factor of (b}x )k stemming from the triangles along the loop is replaced
by (b}x )k + (b+x )k/αk−1

x , for x ∈ {m, sp}.
Every time two non-neighbouring triangles are joined, a rainbow is created that spans
over one or more bubbles. This is due to the non-crossing nature of all relevant diagrams.
This is what implies that double lines (vanilla and wiggly) are to join pairs of shapes,
which are mirror symmetric.

2.7.2 Self-consistency equation

M = DT
m B}

m Dm + RTm B}
m +B+

m Rm

+ RTm B}
m Dm S G DT

m B}
m Rm

B}
m = 1 + Rm S G RTm B}

m

Figure 2.20: Diagrammatic derivation of the self-consistency equations for the coherent
mass in the combined additive and interfering disorder model.

We can now translate pictures back into formulas to get the Green’s function. Notice
that g = −z/N TrN G = −z/nTrV (i)G for all i ∈ C0 since the coherent mass M and
coherent springs S are translation invariant. The diagrams in Figure 2.20 together with
similar diagrams for the springs sector correspond to the following set of equations,
determining G = (G−1

0 − Σ)−1 = −(z2 +MS)−1.
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2.7 Interfering disorder diagrams

µM = b+mB
+
m +B}m

(
µM0 + b}m + b}mB

}
m

1

n
TrV (i) (M0SG)

)
(2.74a)

κ−1S = db+s B
+
sp +B}sp

(
κ−1S0 + db}sp + b}spB

}
sp

1

n
TrV (i) (S0GM)

)
(2.74b)

(B}m)−1 = 1− b}m
µ

1

n
TrV (i)(SG) (2.74c)

(B}sp)
−1 = 1− κb}s

1

n
TrV (i)(GM) (2.74d)(

B+
m

)−1
= 1− b+m

µαm

1

n
TrV (i)(SG) (2.74e)

(
B+
sp

)−1
= 1− κb

+
s

αs

1

n
TrV (i)(GM) . (2.74f)

We have introduced B+
x , which re-sums all irreducible diagrams containing b+x terms.

In terms of diagrams, this is the same sum over bubble diagrams as given for B}m in
the lower part of Figure 2.20. Before we start investigating these equations, let us first
change to natural units, z̃ := z

ν and hence g̃ := νg. We rewrite Equations (2.74) as

µM = B}m(b}m +B}m) + b+mB
+
m =

1−B}sp
b}spB

}
sp

z̃

g̃
= αs

1−B+
sp

b+spB
+
sp

z̃

g̃
(2.75a)

(B+
m)−1 = 1− b+m

αmB}m

B}m − 1

b}m
(2.75b)

b}mg̃z̃ = B}m(B}m + b}m − 1) + b+m
B+
m

B}m
(B}m − 1) (2.75c)

and g̃ =
1

n
Tr

z̃

z̃2 − µMB}sp∆ + b}spµM(d− 1 + g̃z̃) + d b+spµMB+
sp(B}sp)

−1
.

(2.75d)

Inserting Equations (2.75a) to (2.75c) into (2.75d) we obtain a single self-consistency
equation that determines the complex parameter10 B}m(z), which in turn determines
all other parameters and in particular the Green’s function, g(z). For the discussion of
the solutions of these equations, see Section 2.4.

2.7.3 Numerical solution of the self-consistency equation

In Section 2.4 and 2.6 we derived the leading order power law for g(z) from the SCE
(2.75). To verify our findings and to display the density of states at finite frequencies,
we have also solved this self-consistency equation numerically.

10In the limit b}m → 0 one should rather use (B}
m − 1)/b}m as the one parameter to determine the rest.
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The idea for the solver is to fix some 0 < ε� ω and a point b = (b}m, b
+
m, b

}
sp, b

+
sp) ∈

(R+)4 very close to 0 and, using (B}m − 1)/b}m as the relevant variable, search for a
solution of Equation (2.34d). The deterministic solution is the initial starting point,
then b is iteratively “increased” along a path towards the target point and the starting
point for the search of the new solution is extrapolated from the solutions found in the
last few steps. Concretely, to check whether the outcome is independent of the path,
we have implemented a straight line from 0 to the target b and a path that is piecewise
parallel to the axes, increasing the components one by one from 0 to their respective
target values. The source code is available at [Sch14]. All numerical solutions of the
SCE presented in this chapter were produced with this code.

2.8 Phase coherence length

Before concluding this chapter and turning our attention to the supersymmetry
arguments in Chapter 3, we calculate the decay of the Green’s function with spatial
distance. Up to this point, we have only considered the space-diagonal components,
g(z) = Gi,i(z), where

Gi,j =
1

n
Tr
Rn

〈
πi

z

z2 +MS
πj

〉
disorder

. (2.76)

Here πi and πj denote projectors onto V (i) and V (j), respectively.

We can read off the averaged resolvent operator, G = z(z2 +MS)−1, from the self-
consistency equations (2.74). In the strong disorder phase, b}m > 1 with g0 := g(0) > 0,
its Fourier components to leading order in z are given by

Gk(z) =
z

z2 − cz
(∑d

i=1 cos(ki)− d
) . (2.77)

For the interfering mass disorder model at strong disorder, we have c = 2ν2 (b}m)2

b}m−1
g0.

Across all models, we find the extended strong disorder phase with a finite DOS at zero
frequency as well as the double critical point of the interfering mass and spring constant
disorder model to be characterised by Equation (2.77) with some c > 0 depending on
the concrete model. Let us emphasise again that this is correct to leading order in
z, i.e. for small frequencies. From here we can determine the phase coherence length
by transforming back to Gx. It is important that the Debye approximation for the
momentum space integrals must not be used (or else smoothness of the integrand and
the correct decay law for large |x| is lost). Since x singles out one direction, we can
use the complex analysis arguments given in Appendix A.1.2, namely
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2.8 Phase coherence length

Gx(z) =

∫
ddk

(2π)d
eikd|x|

z − c
(∑d

i=1 cos(ki)− d
) (2.78)

=
1

c

∫
dd−1k

(2π)d−1

(
ak ±

√
a2
k − 1

)−|x|
±
√
a2
k − 1

, (2.79)

with ak := z
c + d−∑d−1

i=1 cos(ki). Here we assume x to be parallel to the dth lattice
vector, with no loss of generality (for large x). As mentioned in Equation (A.13b),

the branch of the square root is to be chosen such that
∣∣∣ak ±√a2

k − 1
∣∣∣ > 1, i.e. the

integrand decays exponentially with |x| everywhere (in k), as long as ω = =z 6= 0.
More precisely, for 0 < −iẑ := −i zc = ω̂ � 1 and d > 1, we have the following rough
estimate

(2d)−|x|−1/2 < c |Gx| <

(
1 +
√
ω̂
)−|x|

√
ω̂

, (2.80)

which in particular yields a lower bound for ρ(0) = G0(0) without using the Debye
approximation. More importantly, phase correlations do decay exponentially with
distance, if ω 6= 0.

Since we are actually most interested in ω = 0, we will now derive stronger estimates
for this case. First using Equation (2.79) and then sending ω → 0, the integrand
still has a pole at k = 0. It is integrable11 if and only if d > 2, which hints at two
being a critical dimension for the applicability of our coherent potential approximation.
Assuming d ≥ 3, we have the following estimate:

Iε(c1) < c̃|Gx(0)| < Iε(c2) + c3d
−x (2.81a)

for Iε(c) := c−1

ε∫
0

(1 + c|k|)−x |k|d−3d|k| d=3
=

1− εc− (1 + εc)x

c(1− x)(1 + εc)x
, (2.81b)

where c̃ = c(2π)d−1/Vol(Sd−2) > 0, and we may choose c1 = 2, c2 = (2d)−1, some
irrelevant c3 > 0, and a small enough ε > 0 for Equation (2.81a) to hold. In particular,
|Gx(0)| ∝ 1/|x| asymptotically for large x in three dimensions. In higher dimensions,
similar expressions yield |Gx(0)| ∝ 1/|x|d−2, asymptotically. Since Gx(0) does not decay
exponentially, the phase coherence length must diverge for ω → 0.

Denoting this length by l, i.e. |Gx(iω)| ∝ e−x/l(ω) asymptotically in x, we compute
the integral in Equation (2.79) numerically for d = 3 to find l(ω) ∝ ωλ for small ω
with λ = −1/2. This is the result which one would guess from Equation (2.79), or

11This can also be seen in Equation (2.78), directly.
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directly from Equation (2.78) with the denominator iω ≈ c|k|2/2 setting the scale
for the exponent, ikx. In the critical phase with ρ ∝ ω1/3, similar arguments yield
l ∝ ω−2/3 in d = 3 dimensions. Note that this decay of phase coherence does not imply
localisation, nor is knowledge of |G| generally sufficient to make predictions about
conduction. The point of this section is that the zero frequency modes are long-range
correlated, even in the strong disorder phase where plenty of such modes exist.
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3 Supersymmetric treatment

Similar to Chapter 2, the goal of this chapter is to compute the average density of
eigenfrequencies (DOS) from the Green’s function (as in Equation (2.2) and (2.3))
in coherent potential approximation (CPA). The supersymmetry technique is a little
more involved than the diagrammatics used in Chapter 2, but it has the advantage
that, apart from a substantial increase in mathematical rigour, we can now study the
spring length disorder model without pinning. Furthermore, models of time-reversal
invariance breaking disorder can be studied in order to compare to previous results.
We re-derive the self-consistency equations (SCE) for the models studied in Chapter 2
and verify the validity of the series expansions and re-summations used above, which a
priori might have been ill-defined. Further we also re-derive the SCE derived in [SZ10]
and verify that the Hubbard-Stratonovich method used here yields the same results as
the superbosonisation used there. A major conceptual advantage of supersymmetry
is that the CPA is only the very last step in the derivation. Below we derive a
lattice field theory, which exactly represents the Green’s function for any number of
bands. This may be used in future research to compute corrections to the CPA or
proceed to a continuum theory of non-linear σ-model, or similar type, in order to study
renormalisation.

The essential idea why supersymmetry might be helpful is

Tr(z −X)−1 = ∂z1
∣∣
z1=z2=z

Det(z1 −X)

Det(z2 −X)
(3.1a)

and
Det(z1 −X)

Det(z2 −X)
= SDet

V⊗C1|1

(
12N ⊗ diag(z2|z1)−X ⊗ 11|1

)−1
, (3.1b)

where Cp|q denotes the super (i.e. Z2 graded) vector space Cp ⊕ Cq, 1p|q the identity
on this space and SDet the super determinant. Continuing from Equation (3.1b), one
can rewrite the super determinant as a Gaussian super integral and then, paying close
attention to convergence issues, interchange that integral with the Gaussian average
over the random matrices. The details are explained in Section 3.3. An introduction
to the relevant super calculus can be found in e.g. [Zuk94]. Some further details of the
saddle-point (or “super Laplace”) method are explained in Appendix A.2.

We will now introduce the time-reversal invariance breaking (TRIB) disorder model
and present a unified model that encompasses TRIB, mass, spring length and pinning
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3 Supersymmetric treatment

disorder of arbitrary strength. Then we first discuss the resulting DOS for some
sub-models before giving the details of the actual derivation in Section 3.3.

Since most disorder types are not introduced from scratch, the reader is advised
to read Chapter 2 up to and including Section 2.2.1 before proceeding. Since neither
spring length nor band mixing disorder is considered in this chapter, the time evolution
generator will always be of the form X = J(D + R)T (D + R) where, as before,
J = iσ2 ⊗ 1N denotes the symplectic unit, D is a deterministic (sparse) matrix which
reproduces the clean limit (see Section 2.1.1), and R is a (sparse) matrix of Gaussian
distributed random variables. In this chapter, it will be convenient to incorporate the
factors of µ−1 and κ (see Equation 2.4) into D and R.

3.1 Time-reversal invariance breaking disorder

As explained in Chapter 2, we are primarily interested in time-reversal invariance
preserving disorder. Nevertheless, we will also introduce time-reversal invariance
breaking (TRIB) disorder types in this section. This will allow us to compare to our
results obtained in [SZ10]. Within the supersymmetry method, the calculations for
the TRIB model can be done along the way.

For this purpose, we use the mass, spring length and pinning disorder model of
Section 2.4 for (2 − β) ∈ [0, 1] of the phonon bands and a similar but time-reversal
invariance breaking model for the remaining β − 1 bands. More precisely, we keep

Ws(l) ' R(1+α)(2−β)n located on the edges, l ∈ C1 , (3.2a)

and Wm(i) ' R(1+α)(2−β)n located on the sites, i ∈ C0 , (3.2b)

both with slightly changed dimensions. We refrain from using different α ≥ 0 in the
different sectors, since these turned out to be (qualitatively) irrelevant in Chapter 2.
Instead we have introduced the parameter β ∈ [1, 2] to tune from the time-reversal
invariant model at β = 1 to the TRIB model at β = 2. The larger β, the more of the
disorder will be realised using a new auxiliary space,

Wms(l) ' R2(1+α)(β−1)n , located on the edges, l ∈ C1 . (3.2c)

This new space serves as the target for Rms : Vm ⊕ Vs →Wms, which is constrained to
map from a given site only to adjacent links. Further, the block of Rms mapping from
Vm(i) to Wms(l) is non-zero only if i is the starting point of the directed link l. These
locality constraints again ensure that mass disorder is site diagonal and random spring
constants and pinning only couple nearest neighbours. Denoting the space of operators
with these locality constraints, which are invariant under global displacements (see
Section 2.2.1) by Lms and the pinning-like complement by Lmp, we again use a Gaussian
distribution of random variables,
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3.1 Time-reversal invariance breaking disorder

〈
f
(
R}ms +R+

ms

)〉
∝
∫
Lms

f
(
R}ms +R+

ms

)
e
− βn

κb}ms
Tr(R}

ms)
TR}

ms
dR}ms

e
− αβn

κb+ms
Tr(R+

ms)
TR+

ms
dR+

ms ,

(3.3)

normalised to 〈1〉 = 1 and similarly for Rmp, to model TRIB disorder. We keep the
old disorder types to be distributed as in Equation (2.10) and (2.12), apart from the
minor modification of setting αs = αm = α and replacing bm by µ−1bm/β and the
other bx by κbx/β.

The square roots of the deterministic part need to gradually change their target
space in line with R as β increases. The factor 2 in the dimension of Wms (see Equation
(3.2c)) ensures that there is room for Dm and Ds to map into Wms without their images
intersecting. While Ds only changes target from Ws(l) to the S subspace in Wms(l),
Dm is now additionally distributed over Dm : Vm(i) → ∑

(i,j)∈C1
Ws(l) and all non

zero matrix entries of Dm are changed1 to 1/
√
µd in order to maintain DT

mDm = M .
As opposed to the previous chapter, see Equation (2.5), Dm now has some structural
importance in coupling positions and momenta in the interfering TRIB model.

3.1.1 Comparison of the TRIB model with [SZ10]

The saddle-point equations for the TRIB (β = 2) model, which ignores the difference
between springs and pinning (bms = bmp), are given in Equation (3.70). For the

additive model, b} = 0, we can relabel p̂ := 2p+
1 , b̂+ := 4b+

α and α̂ := αd to obtain

1

b̂+
=
α̂

p̂
− ĝ

ẑ

p̂+ µ−1

2
+

gz − 1

2(p̂+ µ−1)
(3.4)

g =

∫
ddk

(2π)d
z

z2 + (p̂+ µ−1)(p̂− κ∆k)
. (3.5)

This is exactly the saddle-point equation and expression for the Green’s function which
we computed in [SZ10] by means of superbosonisation.

This model features a gap for all 0 < b̂+ <∞ as can be seen from the additive term
in the denominator of the Green’s function, which is caused by the presence of pinning
disorder in the Debye phase (compare to Section 2.4.2d). Furthermore, there is no
transition to a strong-disorder phase. In this thesis, we found the same phenomenology
for all additive models with pinning, independent of time-reversal invariance being
broken or not.

The strong-disorder phase, which we found in the interfering mass, spring length
and pinning disorder model in Section 2.4.2, is absent in the interfering TRIB model.

1This splitting of Dm leads to a convenient separation of the additive and multiplicative sector in
the time-reversal invariance breaking case, but is of no conceptual importance. One could as well
choose one of the links at each vertex to host all of Dm.
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3 Supersymmetric treatment

The latter shows very similar behaviour to the additive TRIB model in that pinning
in the Debye phase causes a gap for all 0 ≤ b} <∞. We did not find any TRIB model
with a strong-disorder phase.

3.2 Spring length disorder without pinning

We restore the differentiation between spring constant and pinning disorder, which was
originally introduced in Section 2.2.1, Equation (2.12) but never used in Chapter 2 due
to the technical difficulties that it causes for the diagrammatics. The supersymmetry
method presented in this chapter can handle this additional feature with ease. We
specialise the saddle-point equations derived for the unified model in Section 3.3.6
to β = 1 and bp = 0. This leads to the following set of SCE for the (time-reversal
invariant) mass and spring length disorder model:

g =

∫
ddk

(2π)d
z

z2 −MS∆k
(3.6a)

µM :=
1

1 + p̃m,}2

+ µp̃m1 κ−1S := κ−1 p
s
1

2d
+

1

1 + ps,}2

(3.6b)

=
b}m(1− gz)

p̃m,}2

=
b}s (1− gz)
dps,}2

(3.6c)

µp̃m,}1 =
1

1 + p̃m,}2

(
b}m −

p̃m}2

1 + p̃m,}2

)
κ−1p̃s,}1 =

2d

1 + p̃s,}2

(
b}s −

p̃s}2
1 + p̃s,}2

)
(3.6d)

µp̃m,+1 =
b+m

1 + p̃m,+2

κ−1p̃s,+1 =
2db+s

1 + p̃s,+2

(3.6e)

p̃m,+2 =
b+m
αb}m

p̃m,}2 p̃s,+2 =
b+s
αb}s

p̃s,}2 (3.6f)

Notably, the M and S sector are almost decoupled. The two sets of equations describing
the two sectors are similar, but this should not be thought of as a “duality”, like the
one that we found for the interfering internal disorder model in Section 2.6.2. The
reason is that the various factors of d in the S sector make a matching impossible.
More precisely, the above equations for the M sector lead to

b}mgz =
b}m + pm,}2 (b}m − 1)

(1 + pm,}2 )2
− b+mp

m,}
2

1 + pm,+2

, (3.7)

which is well known from Section 2.4. For z → 0 at b+m = 0, this equation has two

solutions, namely µ̃pm,}2 = b}m
1−b}m

leading to M = µ−1(1− b}m) and p̃m,}2 →∞ leading

to M = 0. The phase transition to a strong-disorder phase occurs as the two solutions
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3.3 Supersymmetry for the unified model

meet at b}m = 1, as discussed in Section 2.4.2. The corresponding equation in the S
sector reads

b}s gz =
b}s + ps,}2 (2b}s − d(b}s + 1)) + (1− d)b}s (p̃s,}2 )2

(1 + ps,}2 )2
− db+s p

s,}
2

1 + ps,+2

. (3.8)

It has three solutions in the interfering, i.e. b+s = 0, as well as in the additive, i.e.
b}s = 0, case, none of which meet for any disorder strength. The situation is similar
to the one in the M sector for the additive or combined disorder model, described in
Sections 2.4.1 and 2.4.3. namely, S(z = 0) stays finite everywhere in parameter space
and there is no transition out of the Debye phase.

The phase diagram of the interfering mass and spring disorder model is the same as
the one of the interfering mass disorder model discussed in Section 2.4.2b, i.e. there
is a Debye phase at low mass disorder, terminated by a critical point for b}m = 1
and a strong disorder phase with a finite CPA DOS at zero frequency in d ≥ 3
dimensions. Spring length disorder of any strength rescales the speed of sound but has
no qualitative effect in any of these phases. This is in accordance with the findings
of [JSS83]. Similarly, the additive scenario is qualitatively the same as the one with
only mass disorder described in Section 2.4.1, i.e. there is no phase transition and the
system stays in the Debye phase. Also the random matrix limits of the additive and
interfering models, µ−1 → 0 and κ→ 0, are qualitatively the same as for the models
with mass disorder only.

We will now present the supersymmetric derivation of the saddle-point equations in
detail. Further conclusions from the unified model are mentioned in the summary in
Chapter 4.

3.3 Supersymmetry for the unified model

In this section we will present the derivation of the super lattice field theory and the
saddle-point equations. It will be convenient to combineD = Ds⊕Dm = Dsπ

V
s +Dmπ

V
m,

where πVx projects onto the x sector in V . Similarly R = Rm⊕(Rs+Rp)⊕(Rms+Rmp)
denotes the (Hilbert-Schmidt) orthogonal sum over all types of disorder. For β = 1
and bm = bs = bsp we get the same model as in Chapter 2 (see Equation (2.13)), due
to 2Rs := R−Π(R).

3.3.1 Linear super fields

Instead of using Equation (3.1b) directly, we take the following “detour”.2

2For the additive disorder (sub-)model this enlarging of the determinant is not necessary. There
one can use Equation (3.1b) directly and proceed by superbosonisation. Instead, since interfering
disorder is present, we will instead invoke a Hubbard-Stratonovich transformation, for which it is
convenient, if not essential, that the exponents in Equation (3.9c) and (3.10) are linear in R.
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Det
V

−1
(z −X) = Det

V

−1
(
z − J(R+D)†(R+D)

)
(3.9a)

= z−∆ dim Det
W⊕V

 z 1W i(R+D)

i(R+D)T J

−1

(3.9b)

= z−∆ dim

∫
(W⊕V )⊗R2

2∏
j=1

d(wj , vj) e
−zwTj wj−vTj Jvj−i(w

†
j (R+D)vj+v

†
j (R+D)†wj) (3.9c)

with ∆ dim := dim(V )− dim(W ) = Ldn(2− (2− β + βd)(1 + α)) . (3.9d)

The integral converges3 because the spectrum of the matrix in (3.9b) is a subset of
iR + R+, i.e. <(z) ∈ R+ and R and D are real matrices.4 Notice that we could have
introduced complex integration variables v and w to conveniently get the correct power
of the determinant. Instead the integration domain is written as C ' R2 and the
exponent in Equation (3.9c) as a bi-linear (instead of sesqui-linear) form. This point
of view will be more convenient in the odd sector and crucial in Sections 3.3.3 and
3.3.4 below. The numerator is written as a Grassmann integral

Det
V

(z −X) = z∆ dim

∫
(W⊕V )⊗R0|2

d(ξ, ξ̄, χ, χ̄) ezξ̄
T ξ+χ̄T Jχ+i(ξ̄T (R+D)χ+χ̄T (R+D)T ξ) . (3.10)

Notice that there is no convergence issue for Grassmann integration, however the sign
in the exponent depends on the chosen order of differentials in the Berezin form, i.e.
on the order of differentiation.

The next step is to gather the integration variables into the following super matrices:

Ψ :=


vT1

vT2
1
2

(
χ̄T − χT

)
1
2

(
χT + χ̄T

)

 : V → T1 ' R2|2 , (3.11a)

3For oscillatory integrals, i.e. if the covariance matrix of a Gaussian integral has purely imaginary
eigenvalues, convergence here and in the following is meant in the weak sense.

4To translate the endomorphism in Equation (3.9b) into a bi-linear form in Equation (3.9c), we
choose the isomorphisms V ' V ∗ given by the basis of position and momentum operators used
throughout. Further we have introduced W 'W ∗ to come with a Euclidean structure from the
beginning.
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3.3 Supersymmetry for the unified model

Φ :=


wT1

wT2
1
2

(
ξ̄T − ξT

)
1
2

(
ξT + ξ̄T

)

 : W → T2 ' R2|2 , (3.11b)

Ψ† := ΨT ς12 =

(
v1, v2,

χ+ χ̄

2
,
χ− χ̄

2

)
: T2 → V , (3.11c)

and Φ† := ΦT ς21 =

(
w1, w2,

ξ + ξ̄

2
,
ξ − ξ̄

2

)
: T1 →W . (3.11d)

Here the target spaces of Φ and Ψ are considered as two different5 real linear super
spaces T1 ' T2 ' R2|2. From this point of view, we use isomorphisms ςij : Tj

∼−→ Ti,
Z : T2

∼−→ T1, and τ : T1
∼−→ T2 to express “Grassmann conjugation” and the original

matrices in Equation (3.9c) and (3.10) in terms of the new super matrices,

−STr
T1

(
ZΦΦ†

)
= −z2(wT1 w1 + wT2 w2) + z1ξ̄

T ξ , (3.12)

2 STr
T2

(
ΦDΨ†

)
= 2 STr

T1

(
ΨDTΦ†

)
(3.13)

=
2∑
j=1

(
wTj Dvj + vTj D

Twj
)
− ξ†Dχ− χ†DT ξ , (3.14)

and STr
T2

(
−τΨJΨ†

)
= vT1 Jv1 + vT2 Jv2 − χ†Jχ . (3.15)

In the bases introduced along with the Ti and fixed from here on, ς12 and ς21 have the
same matrix form, ς. With this notation, the matrices of the isomorphisms are

ς := diag(12 | − iσ2), τ := diag(σ2|σ1), and Z := diag(z2|z1)⊗ 12 . (3.16)

Notice that both, Ψ and Φ, live in real linear super spaces.

3.3.2 Disorder average

To calculate the disorder average, we will need to complete squares similar to

∑
t

TrRTt Rt
Rt 7→Rt+Φ†tΨt7−−−−−−−−−→

∑
t

TrRTt Rt +
2∑
j=1

(
wTj Rvj + vTj R

Twj
)

− ξ†Rχ− χ†RT ξ +
∑
t∈T

STr ΦtΦ
†
tΨtΨ

†
t .

(3.17)

5The distinction between T1 and T2 might seem artificial at present, but will become very natural in
the Hubbard-Stratonovich transformation in Section 3.3.3.
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3 Supersymmetric treatment

The important point here is that R can only be shifted by local operators in the
appropriate space, Lt. In particular, also time-reversal invariance, if present, and the
disorder type are passed on. In order to maintain a unified notation, we will use a
combined label

t ∈ T := Tm × C0 ∪ Ts × C1 , (3.18)

where Ts := {s, p,ms,mp} × {+,}} (3.19)

and Tm := {m} × {+,}} . (3.20)

The meaning of most of these labels should be clear, like Ψi,m := ΨπVmπ
V
i where

πVi : V � V (i) for i ∈ C0 and πVm : V � Vm project out the rest of the direct
sum in the definition of V . I.e. Ψi,m is obtained from the matrix Ψ by replacing
most blocks with zeros. To keep track of the difference between spring length and
pinning, we have further introduced Ψp/s,(i,j). Here we need to swap blocks, as can
be seen from Equation (2.11). More precisely, Ψp/s,(i,j) has two non-vanishing blocks,

Ψp/s,(i,j) = Ψp/s,(i,j)(π
V
i + πVj ). The blocks are either the same, given by the sum of

the original blocks, or the negative of each other, given by the difference,

Ψp/s,(i,j) =
1

2
(Ψ±Πi,j(Ψ))πVs (πVi + πVj ) . (3.21)

The definitions for the time-reversal invariance breaking sectors, mp and ms, are
the same without projecting onto the s sector. Since not all spaces have different
sectors for every disorder type, some labels are ignored, like Φp = Φs, Φmp = Φms, and
Ψ+ = Ψ} = Ψ. All of the above definitions for the daggered versions are similar.

With this notation in place, we can write the actual disorder average compactly as∏
t∈Tm∪Ts

∫
Lt

e
−αtβn

2bt
TrRTt Rte−i(v

†Rtw+w†RTt v)+i(ξ†Rtχ+χ†RTt ξ) dRt

=
∏
t∈T

e
− 2bt
αtβn

STr ΦtΦ
†
tΨtΨ

†
t ,

(3.22)

where spatial labels on α and b are ignored and we denote α+
m := µα, α+

s/p/ms/mp :=

2α/κ, α}m := µ, and α}s/p/ms/mp := 2/κ to unify the notation.

Collecting the terms from Equation (3.12) to (3.15) and (3.22), we arrive at the
intermediate result〈

Det(z1 −X)

Det(z2 −X)

〉
∝
(
z1

z2

)∆ dim ∫∫
(W⊕V )⊗C1|1

d(Φ,Ψ)e− STrL(Φ,Ψ) (3.23a)

with L(Φ,Ψ) := ZΦΦ† + i(ΦDΨ† + ΨDTΦ†) + τΨJΨ† (3.23b)

+
∑
t∈T

2bt
βαtn

ΦtΦ
†
tΨtΨ

†
t . (3.23c)
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3.3 Supersymmetry for the unified model

Here the integration is over the original variables, (V ⊕W ) ⊗ R2|2, introduced in
Equations (3.9c) and (3.10), or, equivalently, over the linear super fields (Φ,Ψ) :
W ⊕ V → R2|2.

3.3.3 Schäfer-Wegner Hubbard-Stratonovich transformation

As long as only additive disorder is considered, as in [SZ10], no square roots of the
deterministic part are needed. In this case, b} = 0, the Φ} fields in Equation (3.23) can
be integrated out and the resulting action for the additive sector will only depend on
Φ+ through the combination ΦΦ†, which is invariant under the action of the orthogonal
group of W . This case is ideally suited to apply superbosonisation (see [LSZ07]), but
ΦDΨ† breaks this symmetry in the interfering sector. If b} > 0 and the corresponding
quartic terms are present, we need to adapt the Schäfer-Wegner version (see [SW80]),
as used in [Zir98], of the Hubbard-Stratonovich transformation to the symmetries of
our model in order to reduce the dimension of the domain of integration.

We will carefully explain how the transformation works in the boson-boson sector,
for which matters of convergence are non-trivial. The fermion-fermion sector turns out
to be less problematic and, as usual, there are no convergence issues in the odd sectors.

To concisely phrase the symmetries of our model, let γ̃B := iσ2⊗12 and η := σ1⊗12,
i.e. γ̃†B = γ̃TB = γ̃−1

B is a symplectic unit and η† = ηT = η = η−1 a symmetric swap.
Then, for each t ∈ T , we assemble

ψt :=

 (Ψ†t)B 0

0 (Φ†t)B

 (3.24)

to write the term whose dual we are looking for as

ψ̃tψt := ηψ†tψt =

 0
(

ΦtΦ
†
t

)
BB(

ΨtΨ
†
t

)
BB

0

 (3.25)

= −Ad(γ̃B)(ψ̃tψt)
T = Ad(η)(ψ̃tψt)

†. (3.26)

Notice that, depending on t, ψt either lives on the sites or the links and either Ψt or
Φt is a sum over the adjacent links/sites.

The above symmetries can be concisely phrased as ψ̃tψt ∈ igR once we have intro-
duced the complex Lie algebra

g = k⊕ p := {x = −Ad(γ̃B)xT } = sp(4) (3.27)

with (non-standard but still non-compact) real form

gR := {x ∈ g
∣∣ x = −Ad(η)x†} (3.28)
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3 Supersymmetric treatment

and corresponding Cartan decomposition

k := {x ∈ g
∣∣ x = Ad(η)x}, p := {y ∈ g

∣∣ y = −Ad(η)y}, (3.29)

which means η ∈ ikR. By construction ψ̃tψt = −Ad(σ3 ⊗ 1)(ψ̃tψt) is an additional
symmetry (i.e. ψ̃tψt is block off-diagonal), which we do not incorporate into g explicitly
for the sake of clarity of the following calculations.

We will now explain the Hubbard Stratonovich transformation given in Equation
(3.46) below. See Section 3.3.3d for a summary.

3.3.3a Embedding

There is an embedding of smooth manifolds

ιB : kR ⊕ pR ↪→ g : x⊕ y 7→ x−Ad(ey)η . (3.30)

Whilst smoothness of ιB is clear, injectivity requires some elaboration. We rewrite

Ad(ey)η = cosh(ad(y))η ⊕ sinh(ad(y))η ∈ ikR ⊕ ipR. (3.31)

Since y ∈ pR, we have ad(y)η = 0 only if y = 0. So ιB is an immersion. Further, since
y is hermitian, so is ad(y), with respect to the Hilbert-Schmidt scalar product. Hence
sinh ◦ ad |pR is injective.

3.3.3b Hubbard-Stratonovich integral

The following integral converges for any υ ∈ R+ and Υ ∈ C:∫
gR

eυTr(ιB(g))2
dg =

∫
gR

eυTr(ιB(g)+Υψ̃i,kψi,k)2
dg . (3.32)

Here Tr(ιB(g))2 = −Tr(xx†)− 2 Tr (x cosh(ad(y))η) + Tr η2 (3.33)

due to kR⊥pR, where Tr(xx†) ∈ R+ amounts to a standard real Gaussian integral on
kR and Tr (x cosh(ad(y))η) ∈ iR is oscillatory. Further, as stated in Equation (3.32),
Stokes’ theorem applies. Using Section 3.3.3a, we can consider the push forward
through ι as an integral over a smooth sub-manifold of g without boundary. Since the
integrand is non-singular, we can freely shift that contour.

We rewrite Equation (3.32) with appropriately normalised measure as
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3.3 Supersymmetry for the unified model

e
− 2bt
βαtn

Tr
(

ΦtΦ
†
tΨtΨ

†
t

)
BB = e

− bt
βαtn

Tr(ψ̃tψt)2

(3.34)

=

∫
gR

e
βαtn
4bt

Tr ιB(g)2+Tr(ιB(g)ψ̃tψt)dg , (3.35)

where Tr(ιB(g)ψ̃ψ) = Tr(xψ̃ψ)− Tr
(

(Ad(ey)η)ηψ†ψ
)

(3.36)

= Tr(xψ̃ψ)− Tr(ψe2yψ†) ∈ iR + R−, (3.37)

because ψ̃ψ ∈ igR, x ∈ gR and y = y†. We can exchange the integration over g with
those over Φ and Ψ without encountering ill-defined integrals.

For the fermion-fermion sector the situation is much simpler. Here, the Lie algebra
under consideration is

oR := {h : R4 → R4|h = −Ad(γ̃F )hT = −h†}, (3.38)

defined by γ̃F := σ2⊗σ2. It is compact and the trivial embedding ιF : oR ↪→ o does not
cause convergence issues. Now, we assemble boson-boson and fermion-fermion parts
into the full super picture. Thus let γ̃ = diag(γ̃B, γ̃F ) and ι : spoR(4|4) ↪→ spo(4|4)
with ι0 = (ιB, ιF ) and trivial embedding of the odd part. Here spo(4|4) denotes the
complex ortho-symplectic Lie super algebra with even part spo0(4|4) = sp(4)⊕ o(4)
and standard representation acting on C4|4.

3.3.3c Full supersymmetric transformation

Using the notation

P t := −i ι(g) =:


P̄ (P t1)BB P̄ (P t1)BF

(P t2)BB P̄ (P t2)BF P̄

P̄ (P t1)FB P̄ (P t1)FF

(P t2)FB P̄ (P t2)FF P̄

 ∈ spo(4|4) and (3.39)

Ξt :=


0 (ΦtΦ

†
t)BB 0 (ΦtΦ

†
t)BF

(ΨtΨ
†
t)BB 0 (ΨtΨ

†
t)BF 0

0 (ΦtΦ
†
t)FB 0 (ΦtΦ

†
t)FF

(ΨtΨ
†
t)FB 0 (ΨtΨ

†
t)FF 0

 ∈ ispoR(4|4), (3.40)

we finally arrive at the full super version of the Schäfer-Wegner Hubbard-Stratonovich
transformation:∏

t∈T
e
− 2bt
βαtn

STr ΦtΦ
†
tΨtΨ

†
t ∝

∏
t∈T

∫
dP te

−αtβn
4bt

STr(P t)
2
+iSTrP tΞt

, (3.41)

65



3 Supersymmetric treatment

where dP = ι∗(dg) is the push forward measure onto the domain −i ι(spoR). To get
back to the original notation, we rewrite

STrP tΞt = STrP t1ΨtΨ
†
t + STrP t2ΦtΦ

†
t (3.42)

STr
(
P t
)2

= STr
(
P̄ t
)2

+ 2 STrP t1P
t
2 (3.43)

with the important symmetry

P ∈ spo = {P = −Ad(γ̃)P T }, where γ̃ = −iσ2 ⊗ ς , (3.44)

and hence Pi = Ad(ς)P Ti ⇒ Pi = Ad(ς−1)P Ti . (3.45)

Notice that the appearance of the P̄ component, which is not coupled to the original
fields and can be integrated out immediately, is due to our ignorance of the additional
symmetry ψ̃ψ = −Ad(σ3)ψ̃ψ, as mentioned above.

3.3.3d Summary of the Hubbard-Stratonovich transformation

Summing up the results of this section, we have introduced a non-linear field P
with values in −iι(spoR(4|4)) ⊂ spo(4|4) to decouple the quartic ΦΦ†ΨΨ† interaction.
Denoting the target spaces of Ψ and Φ by T1 ' T2 ' R2|2 as above, the two relevant
components of P take values in HomC(T1, T2) and HomC(T2, T1), respectively. The
mass type fields live on the sites, the spring, pinning, and time-reversal invariance
breaking types live on the links. This means that for each site/link of our original
lattice we have two classes of super matrices coupling the old linear super fields, as
shown in Figure 3.1. The advantage gained is that we can now carry out the Gaussian
integrals over Φ and Ψ and replace a large number (∝ n) of linear super fields by a
small number (independent of n) of non-linear super fields, Pi.

The transformation formula to be used in the following is∏
t∈T

e
− 2bt
βαtn

STr ΦtΦ
†
tΨtΨ

†
t (3.46a)

∝
∫
DP e

∑
t∈T

(
−αtβn

2bt
STr(P t1P t2)+i STrP t1ΨtΨ

†
t+iSTrP t2ΦtΦ

†
t

)
, (3.46b)

where DP :=
∏
t dP

t
1dP

t
2.

3.3.4 Integrals over linear fields

3.3.4a Links

Collecting the terms from Equations (3.23) and (3.46), we can now compute the inte-
grals over Φ. Convergence is assured by Equation (3.37). We will do the computation
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3.3 Supersymmetry for the unified model

V (i)W (l) W (l′)· · · · · ·· · · · · ·

T1

T2

P1 P2

Φ† Φ†Ψ

Φ Φ

Ψ†

Figure 3.1: The Hubbard-Stratonovich transformation introduces new super fields, Pi.

for the three (m, s, and ms) sectors in W one by one. The simplest case is the additive
mass sector,6 but the interfering mass sector is not much more complicated.7∫ ∏

i∈C0,t∈{+,}}

e
− STr

(
−i(P i,m,t2 )Φi,m,tΦ

†
i,m,t+ZΦi,m,tΦ

†
i,m,t+iΦi,m,tDΨ†+iΨDTΦ†i,m,t

)
dΦm (3.47a)

=
∏
i∈C0

SDetC2|2

(
Z − iP i,m,+2

)α(β−2)n/2

SDetC2|2

(
Z − iP (i,m,})

2

)(2−β)n/2
e− STr(Z−iP i,m,}2 )

−1
ΨDTm,iDm,iΨ

†
. (3.47b)

For the springs and pinning sectors we should stress that Φs = Φp = ΦπWs . Hence∫ ∏
l∈C1,t∈{+,}}

e
− STr

(
−i(P l,s,t2 +P l,p,t2 )Φl,s,tΦ

†
l,s,t+ZΦl,s,tΦ

†
l,s,t+iΦl,s,tDΨ†+iΨDTΦ†l,s,t

)
dΦs (3.48a)

=
∏
l∈C1

SDet
C2|2

(
Z − iP l,s,+2 − iP l,p,+2

)α(β−2)n/2
(3.48b)

×
∏
l∈C1

e
− STr

(
Z−iP (l,s,})

2 −iP (l,p,})
2

)−1
ΨDTl,sDl,sΨ

†

SDetC2|2

(
Z − iP (l,s,})

2 − iP (l,p,})
2

)(2−β)n/2
. (3.48c)

6To verify the power counting, Equation (3.11d) and (3.2) are helpful.
7Here we used Equation (3.11b) and (3.45) to remove all dagger notation and completed the square

as a bi-linear (as opposed to a sesqui-linear) form.
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3 Supersymmetric treatment

Finally, the new time-reversal breaking disorder type, ms, is very similar to s, but for
the deterministic part not being projected onto the m or s sector and the dimension
of Wms. The corresponding factors are∫ ∏
l∈C1,t∈{+,}}

e
− STr

(
(Z−iP l,ms,t2 −iP l,mp,t2 )Φl,ms,tΦ

†
l,ms,t+iΦl,ms,tDΨ†+iΨDTΦ†l,ms,t

)
dΦms (3.49a)

=
∏
l∈C1

SDet
C2|2

(
Z − iP l,ms,+2 − iP l,mp,+2

)α(1−β)n
(3.49b)

×
∏
l∈C1

e
− STr

(
Z−iP (i,ms,})

2 −iP (i,mp,})
2

)−1
ΨDTl DlΨ

†

SDetC2|2

(
Z − iP (i,ms,})

2 − iP (i,mp,})
2

)(β−1)n
. (3.49c)

3.3.4b Sites

Collecting the terms in the exponent that involve Ψ from Equations (3.23), (3.46),
(3.47), (3.48) and (3.49) we get

LΨ(Ψ) :=
∑
i∈C0

(
Z − iP i,m,}2

)−1
ΨDT

i,mDi,mΨ† + τΨJΨ† (3.50a)

+
∑
l∈C1

(
Z − iP l,s,}2 − iP l,p,}2

)−1
ΨDT

l,sDl,sΨ
† − i

∑
t∈T

P t1ΨtΨ
†
t (3.50b)

+
∑
l∈C1

(
Z − iP l,ms,}2 − iP l,mp,}2

)−1
ΨDT

l,msDl,msΨ
† . (3.50c)

The remaining Gaussian integral involves no linear terms,∫
dΨ e− STrLΨ(Ψ) = SDet

C2|2⊗V
−1/2

(
iτ ⊗ σ2 ⊗ 1− i

∑
i∈C0,t∈{m}×{+,}}

P i,t1 ⊗ πVi,t (3.51a)

− i

2

∑
l=(i,j)∈C1,t∈{p,mp}×{+,}}

P l,t1 ⊗
(
2(πVi + πVj ) + ∆l

)
πVt +

i

2

∑
l∈C1,t∈{s,ms}×{+,}}

P l,t1 ⊗∆lπ
V
t (3.51b)

+
∑
i∈C0

(
Z − iP i,m,}2

)−1
⊗DT

i,mDi,m (3.51c)

+
∑
l∈C1

(
Z − iP l,s,}2 − iP l,p,}2

)−1
⊗DT

l,sDl,s (3.51d)

+
∑
l∈C1

(
Z − iP l,ms,}2 − iP l,mp,}2

)−1
⊗DT

l,msDl,ms

)
. (3.51e)
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Here ∆i,j denotes the component of the Laplace operator8 connecting i and j, i.e.
∆l acts by ±1 and

∑
l∈C1

∆l = ∆. Further we are using projectors9 πi,t : V � Vt(i).
The operator under the determinant is not overall a pure tensor, but there is a trivial
tensor factor over the phonon bands, which can be taken out.

∫
dΨ e− STrLΨ(Ψ) = SDet

C2|2⊗R2⊗RLd

(
τ ⊗ iσ2 ⊗ 1 (3.52a)

− i
∑
i∈C0

(P i,m,}1 + P i,m,+1 )⊗ πm ⊗ πi (3.52b)

+
1

µ

∑
i∈C0

(Z − iP i,m,}2 )−1 ⊗ πm ⊗ πi (3.52c)

+
i

2

∑
l∈C1

(P l,s,}1 + P l,s,+1 )⊗ πs ⊗∆l (3.52d)

− i

2

∑
l=(i,j)∈C1

(P l,p,}1 + P l,p,+1 )⊗ πs ⊗ (2(πi + πj) + ∆l) (3.52e)

− κ
∑
l∈C1

(Z − iP l,s,}2 − iP l,p,}2 )−1 ⊗ πs ⊗∆l

)− (2−β)n
2

(3.52f)

SDet
C2|2⊗R2⊗RLd

(
τ ⊗ iσ2 ⊗ 1 +

i

2

∑
l∈C1

(P l,ms,}1 + P l,ms,+1 )⊗ 12 ⊗∆l (3.52g)

− i

2

∑
l=(i,j)∈C1

(P l,mp,}1 + P l,mp,+1 )⊗ 12 ⊗ (2(πi + πj) + ∆l) (3.52h)

∑
l∈C1,

(Z−iP l,ms,}2 − iP l,mp,}2 )−1

(
1

µ
πm ⊗ 1− κπs ⊗∆l

))− (β−1)n
2

. (3.52i)

3.3.5 Field theory

No approximations have been made in this chapter so far. The full super lattice field
theory for the density of states reads

8Recall that we use the sign convention ∆i,i = −2d. The spatial structure of spring constants leads
to terms ∝ −∆l. The other term, ∆i,j + 2(πi + πj), has the same non-vanishing matrix elements
as ∆, but with all signs changed to +.

9Recall that the spaces on the left hand side of the projectors are introduced as direct sums. The
kernels are given by the terms not appearing on the right hand side.
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〈
Det(z1 −X)

Det(z2 −X)

〉
∝
∫
dP1dP2 e

−∑t∈T
αtβn
2bt

STrC2|2(P t1P t2) (3.53a)(
z1

z2

)∆ dim

× (3.52)× e− STrC2|2

(
n(2−β)

2
LT (P2)+n(β−1)L6T (P2)

)
(3.53b)

where we have gathered Equation (3.47) to (3.49) in

LT (P2) = α

∑
i∈C0

ln
(
Z − iP i,m,+2

)
+
∑
l∈C1,

ln
(
Z − iP l,s,+2 − iP l,p,+2

) (3.54a)

+
∑
i∈C0

ln
(
Z − iP i,m,}2

)
+
∑
l∈C1

ln
(
Z − iP l,s,}2 − iP l,p,}2

)
(3.54b)

L6T (P2) = α
∑
l∈C1,

ln
(
Z − iP l,ms,+2 − iP l,mp,+2

)
(3.54c)

+
∑
l∈C1

ln
(
Z − iP l,ms,}2 − iP l,mp,}2

)
(3.54d)

3.3.6 Saddle-point equations for the interfering disorder model

After producing a field theory, which exactly represents the Green’s function for a
rather big class of different models, we will now examine the n→∞ coherent potential
approximation (CPA) for the various sub-models. Technically, this means that we
study the saddle points (see Appendix A.2) of the action in Equation (3.53) for a
constant field configuration. We anticipate that the saddle points will feature maximal
supersymmetry, i.e. we assume that P tj = ptj ⊗ 12.

Due to the CPA, the spatial dependence of the terms in Equation (3.52) is only

in the RLd factor, which can therefore be diagonalised by Fourier transformation.
The remaining factors in C2|2 ⊗ R2 are almost diagonal, so the corresponding super
determinants can be written down explicitly as

(3.52) =: e−n
∑
k STrC1|1((2−β)LDT (k,p1,p̃2)+(β−1)LD6T (k,p1,p̃2)−2 ln(z)) , (3.55)

LDT (k, p̃1, p̃2) = ln

(
z2 +

(
µ−1

1 + p̃m,}2

+ p̃m1

)
(3.56)

×
(

2p̃p1 +

(
p̃p1 − p̃s1

2d
− κ

1 + p̃s,}2 + p̃p,}2

)
∆k

))
, (3.57)

LD6T (k, p̃1, p̃2) = ln

(
z2 +

(
µ−1

1 + p̃ms,}2 + p̃mp,}2

+
p̃mp1 − p̃ms1

2d
∆k + 2p̃mp1

)
(3.58)

×
(

2p̃mp1 +

(
p̃mp1 − p̃ms1

2d
− κ

1 + p̃ms,}2 + p̃mp,}2

)
∆k

))
, (3.59)
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where p̃m1 := −izpm,}1 − izpm,+1 , p̃s1 = −idzpm,}1 − idzpm,+1 and similarly for p̃ms1 , p̃p1,
and p̃mp1 and further zp̃2 := −ip2. Notice that this rescaling of the integration variables
does not change the measure.

We combine Equation (3.53) with (3.55) and take the limit of large lattice size∑
k 7→ Ld

∫
Dk := Ld

∫
[0,2π]d

ddk
(2π)d

as in Chapter 2. The resulting action is〈
Det(z1 −X)

Det(z2 −X)

〉
∝
∫
dp̃1dp̃2e

−nLdS(z,p̃1,p̃2) (3.60a)

S(z, p̃1, p̃2) =

∫
Dk STr

C1|1

(
(2− β)LkT (p̃1, p̃2) + (β − 1)Lk6T (p̃1, p̃2)

)
(3.60b)

LkT (p̃1, p̃2) = −β
∑

t∈{m,s,p}×{+,}}
αtb
−1
t p̃t1p̃

t
2 + α ln

(
1 + p̃m+

2

)
+ ln

(
1 + p̃m,}2

)
(3.60c)

+ αd ln
(

1 + p̃s,+2 + p̃p,+2

)
+ d ln

(
1 + p̃s,}2 + p̃p,}2

)
(3.60d)

+ LDT (k, p̃1, p̃2) (3.60e)

Lk6T (p̃1, p̃2) = −β
∑

t∈{ms,mp}×{+,}}
αtb
−1
t p̃t1p̃

t
2 + 2αd ln

(
1 + p̃ms,+2 + p̃mp,+2

)
(3.60f)

+ 2d ln
(
1 + p̃ms,}2 + p̃mp,}2

)
+ LD6T (k, p̃1, p̃2) (3.60g)

The correct normalisation is
∫
dp̃1d̃p2e

−nLdS(11|1,p̃1,p̃2) = 1. Notice that all terms
∝ ln(z), which arise in the action due to the rescaling precisely cancel with the
∆ dim ln(z) term in Equation (3.53).

3.3.6a Green’s function and clean limit

Recall (from Equation (2.3) and (3.1a)) that we are actually interested in the derivative
of Equation (3.60a) with respect to z. At super symmetric saddle points, p ∝ 11|1 and
z ∝ 11|1, the action is exactly zero and using the saddle point method (also known as
Laplace method, see Appendix A.2), we obtain the Green’s function

g(z)

z
= (2− β)

∫
ddk

(2π)d

(
z2 +

(
µ−1

1 + p̃m,}2

+ p̃m1

)
(3.61a)

×
(

2p̃p1 +

(
p̃p1 − p̃s1

2d
− κ

1 + p̃s,}2 + p̃p,}2

)
∆k

))−1

(3.61b)

+ (β − 1)

∫
ddk

(2π)d

(
z2 +

(
µ−1

1 + p̃ms,}2 + p̃mp,}2

+
p̃mp1 − p̃ms1

2d
∆k + 2p̃mp1

)
(3.61c)

×
(

2p̃mp1 +

(
p̃mp1 − p̃ms1

2d
− κ

1 + p̃ms,}2 + p̃mp,}2

)
∆k

))−1

, (3.61d)
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where pti here are understood to be the saddle-point values (of the boson-boson part
of the fields). The first observation is that the clean limit (see Equation (1.12)) is
reproduced correctly by Equation (3.61) for bt → 0, leading to pti → 0.

In Section 2.7, Equation (2.65), we have mentioned that pinning cancels the spring
constant disorder effect and is responsible for the gap, perturbatively. Now we can
verify in Equation (3.61) that this is indeed the case on the coherent level. Furthermore,
comparing Equation (3.61) (for β = 1 and bs = bp) to (2.75d) gives strong hints for
how to match saddle-point to self-consistency parameters, as is done in Section 3.3.6c.

3.3.6b Time-reversal invariant sector

We will first calculate the partial derivatives of the action with respect to the parameters
from the time-reversal invariant sector (i.e. t ∈ {m, s, p} × {+,}}) to compare to the
SCE from Section 2.7.2. Therefore let β = 1 for the rest of this section. Then, using
Equation (A.6) and (3.61), we can replace all appearing integrals over the deterministic
spectrum by appropriate functions of g. We find:

µp̃m,}1 =
b}m(1− gz)

p̃m,}2

− 1

1 + p̃m}2

− µp̃m,+1 (3.62a)

µp̃m,}1 =
1

1 + p̃m,}2

(
b}m −

1

1 + p̃m,}2

p̃m}2

)
(3.62b)

µp̃m,+1 =
b+m

1 + p̃m,+2

(3.62c)

p̃m,+2 =
b+m
αb}m

p̃m,}2 (3.62d)

2p̃s,+1

κb+s
=

2p̃p,+1

κb+p
=

d

1 + p̃s,+2 + p̃p,+2

(3.62e)

α
p̃s,+2

b+s
=
p̃s,}2

b}s
=

1 + p̃s,}2 + pp,}2

4d

1− gz − b}m(1−gz)
p̃m,}2

2pp1
g
z

1− 1+p̃s,}2 +pp,}2
κ

p̃p1−p̃s1
2d

(3.62f)

α
p̃p,+2

b+p
=
p̃p,}2

b}p
= ν2

(
1

1 + pm,}2

+ µpm1

)
g

z
− p̃s,}2

b}s
(3.62g)

2p̃s,}1

κb}s
=

2p̃p,}1

κb}p
=

d

1 + p̃s,}2 + pp,}2

(
1− 4p̃s,}2

b}s (1 + p̃s,}2 + pp,}2 )

)
. (3.62h)

Using Equation (3.61) (for β = 1), and (3.62) yields two equations for the two
parameters, pm,}2 (z) and ps,}2 (z), which in turn determine all others, in particular g(z).

72
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3.3.6c Consistency with diagrammatics

In this section we check the diagrammatic results. The first step is to note that for
bp = bs (as assumed throughout Chapter 2) we have ps,ti = pp,ti for i ∈ {1, 2} and
t ∈ {+,}}. We can now identify the self-consistency parameters in Equation (2.75)
with the saddle-point parameters in Equation (3.62). The dictionary is

µM =
1

1 + p̃m,}2

+ µp̃m1 =
b}m(1− gz)

p̃m,}2

(3.63)

B−1
s = 1 + p̃s,}2 + p̃p,}2 (3.64)

(B+
s )−1 = 1 + p̃s,+2 + p̃p,+2 (3.65)

B−1
m = 1 + p̃m,}2 (3.66)

(B+
m)−1 = 1 + p̃m,+2 (3.67)

where we have used Equation (3.62a) in Equation (3.63). With this relabeling

(3.62g)⇔ µM =
1−Bs
Bs

z̃

g̃

1

b}s
= α

1−B+
s

B+
s

z̃

g̃

1

b+s
. (3.68)

This is (part of) Equation (2.75a), where bp = bs = bsp. Using Equation (3.62h)
together with (3.62f), (3.68), and (3.62e) we get

p̃p1 = p̃s1 = p̃s,}1 + p̃s,+1 = κb}s (d− 1 + gz) + κdb+s
B+
s

Bs
(3.69)

which, together with Equation (3.63) and (3.64) identifies the expressions for the
Green’s function, (3.61)⇔ (2.75d). Finally, inserting Equation (3.66) and (3.67) into
Equation (3.7) yields Equation (2.75c). Together with Equation (3.63) this also leads
the last missing equation in (2.75a).

We have shown that the saddle-point equations for the mass, spring length and
pinning disorder model in particular confirm the validity of the SCE derived in
Section 2.7.

3.3.6d Breaking time-reversal invariance

For the maximally time-reversal invariance breaking (TRIB) model, β = 2, Equa-
tion (A.6) is in general not sufficient to replace by functions of g the two algebraically
independent integrals appearing in the saddle-point equations. The numerator and
the denominator of the integrand are now generically of second order in ∆k. In the
spirit of the Debye approximation, we could ignore the ∆2

k ∝ |k|4 +O(|k|6) terms, but
this would disregard a very prominent effect of TRIB, namely the spring-like coupling
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of momenta. Instead we specialise to bms = bmp in order to compare to [SZ10]. In this
case, we can drop the ms and mp labels, since p̃ms = p̃mp and find:

p̃+
1

κb+
=

d

1 + 2p̃+
2

(3.70a)

µM :=
1

1 + 2p̃}2
+ 2µp̃1 (3.70b)

p̃}1
κb}

=
d

1 + 2p̃}2
+ p̃1

g

z
(1 + 2p̃1) +

1 +M
M (gz − 1) (3.70c)

α
p̃+

2

b+
=
p̃}2
b}

(3.70d)

1− gz =

(
2p̃}2
κb}
−Mg

z

)
M (3.70e)

g(z) =

∫
ddk

(2π)d
z

z2 +M
(

2p̃1 − κ
1+2p̃}2

∆k

) . (3.70f)

As discussed in Section 3.1.1, these can be rephrased as the SCE found in [SZ10] by
superbosonisation instead of the Hubbard-Stratonovich transform used here.
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4 Summary and outlook

We have discovered four extended and three critical phases of our harmonic models
of disordered phonons. The observable that we calculated in order to distinguish
between these phases is the power law of the density of eigenfrequencies (DOS) in
the coherent potential approximation (CPA), ρ ∝ ωχ−1, which determines the law of
the temperature dependence of the heat capacity C ∝ Tχ. The validity of the CPA
has been checked to be correct by comparison to exact numerical diagonalisation. To
the best of our knowledge, only three of these phases were known before. One is
the Debye phase (χ = d in d spatial dimensions), which is represented by the clean
harmonic crystal and whose localisation properties due to disorder have been studied
in [JSS83]. The Debye phase is, by construction, present in all our models. Whether
or not the other phases are present depends on which types of disorder are used and in
particular on how they are implemented. The other phase that was known before is the
[LSZ06] phase (χ = 2/3), which can be realised by a zero dimensional (i.e. non-local)
random matrix model. Both of these phases are extended and so is the gapped phase
(C(T < Tc) = 0 as discovered in [SZ10]), which occurs whenever pinning disorder is
added to a model in the Debye phase. In view of the experimentally observed linear
temperature dependence of the heat capacity of vitreous solids, the most interesting
phase is the fourth extended one, which encompasses χ = 1. We have found it for
strong enough interfering mass as well as for the physically more relevant interfering
spring constant disorder. In Figure 4.2 we show some examples of the CPA DOS of
this phase in the same coordinates usually used in experimental data plots, such as
shown in Figure 1.1. The phase diagram of the IMSC model is depicted in Figure 2.14.
This is the model that combines both disorder types leading to the χ = 1 phase. It
comprises all of the above mentioned phases at finite disorder strength. The gapped
phase is not in the picture but may be introduced by adding pinning disorder.

We classify the models constructed in this thesis by the physical quantity being
disordered. There is only one physical type of mass disorder, but the pair potentials
can be blended with spring constant, spring length, pinning, or band mixing disorder.
Further we constructed spring-like and pinning-like time-reversal invariance breaking
(TRIB) disorder models (see Figure 4.1 for an overview). Each of these disorder types
can be implemented as interfering or additive disorder and in principle all of these 14
types can be combined. We stress that all resulting models are Lyapunov-stable, i.e.
there are no runaway dynamics.
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Figure 4.1: Overview over the physically different types of disorder.
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Figure 4.2: DOS of the interfering mass disorder model at strong disorder b}m > 1.
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We found that random pinning does not only remove the Goldstone modes of
broken translation invariance. In the Debye phase, it leads to a gap in the frequency
spectrum, i.e. there are no states at very low energies. Since this type of disorder lacks
a microscopic motivation, at least in three dimensions, and a gap of finite size is not
observed experimentally, we conclude that this type of disorder should be excluded for
the model to be realistic. Band mixing is a rather generic type of disorder. However, it
necessarily leads to pinning (if it is implemented locally). This type of disorder should
hence be abandoned together with pinning disorder.

Spring length disorder is microscopically well motivated. The relaxed lengths of
the springs are disordered, which leads to random local differentiation of longitudinal
and transverse waves. The inter-constituent forces in the relaxed crystal are purely
attractive, which is not ultimately realistic. Spring length disorder improves this model
by adding random short range repulsion. As we mentioned when the harmonic crystal
was introduced in Section 1.3.1, terms of this type should in principle already be
included in the clean model. However, we found spring length disorder to be irrelevant
in the sense that arbitrarily strong disorder does not lead to a phase transition (see
Section 3.2). This adds a posteriori to the justification of using the stressed crystal
and ignoring the difference between longitudinal and transverse modes in the clean
case.

Spring constant disorder, on the other hand, is found to be relevant and exactly dual
to mass disorder on the level of the DOS (see Section 2.2, in particular Figure 2.2).
As mentioned above, interfering mass and spring constant (IMSC) disorder are the
two types of disorder that lead to phase transitions. Spring constant disorder has an
indirect structural effect by effectively removing springs from the model if very low
spring constants are randomly assigned. Fluctuations in the strength of the restoring
forces are anyway a type of disorder to be included in a realistic model of disordered
solids. Our findings confirm the common belief that structural disorder is the relevant
type of disorder to drive the crystal-glass transition.

The situation in the mass sector is much simpler than in the spring sector. Since
M0 is scalar, there is no distinction like the one between spring length, spring constant
and band mixing disorder. Mass disorder is microscopically well motivated. However,
[JSS83] found that taking the mass to fluctuate down to zero locally does not lead to
a phase transition, although this kind of disorder is experimentally found to be more
relevant, at least for conduction, than random changes in the equilibrium positions
(see [HW70]). Instead, we take the inverse mass to fluctuate. In the interfering mass
disorder models it might even fluctuate down to zero. This produces a model which is
easier to formulate than the model of fluctuating spring constants since no square root
of the Laplace operator is needed. On the level of the DOS the two models are exactly
dual, although very heavy local masses are less realistic.

Interfering mass disorder can be combined with any type of spring constant or spring
length disorder for the resulting model to feature a phase with a finite DOS at zero
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frequency. The same is true for interfering spring constant disorder in combination
with any type of mass disorder. Based on the assumption of the IMSC model being
renormalisable with the two coupling constants given by the disorder strengths and
assuming further that the critical points are correctly identified from the CPA DOS,
we show a tentative RG flow diagram in Figure 2.15. According to this flow diagram,
the ρ(0) > 0 phase is also stable under renormalisation. The same arguments apply to
the phase and flow diagram of the interfering mass and spring length (IMSL) disorder
model. They are the same as those of the IMSC, except for the critical line at bs = 1
being moved up to bs =∞.

The CPA DOS for the IMSC model was derived by accessible diagrammatic means.
We did not develop the diagrammatics to include momentum exchange, hence the IMSL
model is not treated diagrammatically. Instead we use the supersymmetry technique,
which also provides a more rigorous verification of the diagrammatic self-consistency
equations (SCE). More precisely, the SCE for the CPA DOS for the models of additive
or interfering spring length disorder and random pinning of equal strength (possibly
combined with mass disorder) have been derived with both techniques in order to
demonstrate that they indeed yield the same results.

Time-reversal invariance breaking (TRIB) disorder is hardly motivated in a model of
disordered phonons. Nevertheless, we have studied it for the sake of the greater picture
of bosonic universality classes, as well as to compare to our earlier results. We found
that it makes a difference whether time-reversal invariance is being preserved or not, in
that the TRIB variant of the IMSL disorder model does not lead to a strong disorder
phase. The SCE of the additive TRIB model of equal pinning-like and spring-like
disorder strength computed via the Hubbard-Stratonovich transformation in Chapter 3
is equivalent to the one derived by superbosonisation for the same model in [SZ10].

As mentioned above, we can also sort our models into two classes in terms of how
disorder is implemented, namely as additive, or interfering, disorder. In the additive
models, the inverse mass and spring constants only fluctuate to larger values, where
the interfering model also allows them to fluctuate down to zero. Consequently, none
of the additive models feature a phase transition nor a strong disorder phase at finite
disorder strength. Here the perturbative effect of disorder at low energies is an effective
increase of the coherent speed of sound, as opposed to the overall decrease caused by
interfering disorder.

In the interfering case, the transition to the strong disorder phase happens as the
fluctuations become strong enough to outweigh the deterministic part and hence lead
to a vanishing local speed of sound with non-negligible probability. The coherent
speed of sound V is defined by VM0S0 := νMS for the models where this is possible.
It is complex and energy dependent and the phase transition happens as V(ω = 0)
reaches zero. For the additive and combined models, V(0) increases indefinitely and in
particular stays positive. Consequently, these models stay in the Debye phase (or in
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the gapped phase, if pinning is present) for any finite amount of disorder. We stress
that, if interfering and additive disorder are combined, the additive phenomenology
wins over the more interesting interfering one. Hence disorder is to be implemented
as purely interfering disorder for the resulting model to possess a strong disorder
phase (see Section 2.4.3). On the microscopic level, combined additive and interfering
disorder leads to the local speed of sound to be non-vanishing almost surely, since the
sum of two positive semi definite operators has almost surely no zero modes if the two
are free.

The model considered in [JSS83] can in our terminology also be called additive. We
confirm the authors statement that a model similar to theirs but excluding negative
masses, such as our additive mass disorder model, shows the same phenomenology, at
least on the level of the CPA DOS. As a representative of the class of additive models,
it always stays in the Debye phase. We also confirm that additional spring length
disorder has no qualitative effect. However, our models exclude the possibility of the
mass fluctuating down to zero locally, which did not lead to a phase transition in the
model studied by [JSS83].

We did not yet address the question of localisation studied in [JSS83]. There a
mobility edge was found in their additive mass disorder model in the Debye phase.
Investigating the question of localisation in our model remains an interesting direction
for future research. Starting from the lattice field theory derived in Section 3.3.5,
we are planing to advance to a continuum field theory of the non-linear σ-model (or
similar) type. Then the RG flow of this theory is to be studied in order to test our
tentative considerations and shed some light on the degree of universality of the phases
discovered in this work.

Before turning to localisation, however, the most interesting question to us is whether
the IMSC model can also explain the experimentally observed anomalous temperature
dependence of the heat conductivity Λ ∝ T 2. The corresponding calculation of the
four-point function is being done.
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A Appendix

A.1 Debye approximation (details)

The idea of the Debye approximation is given in Section 1.3.3. The main point is that
the averages over the spectrum of ∆ are approximated by

∫
[0,2π]d

ddk

(2π)d
f(∆k) ≈

d

Ωd

Ω∫
0

f
(
−k2

)
kd−1dk (A.1)

and in particular:

g(z) =

∫
ddk

(2π)d
z

z2 − ν2∆k
≈ z d

Ωd

Ω∫
0

kd−1dk

z2 + ν2k2
. (A.2)

where the cutoff Ω is to be determined such that Equation (1.12) is correctly reproduced
to first order in z. Using the integrals computed in Appendix A.1.1 the deterministic
density of states in Debye approximation is

ρ(ω) = |ω|d−1 d

2(νΩ)d
Θ

(√
ν2Ω2

ω2
− 1

)
, (A.3)

where Θ denotes the Heaviside function with Θ(x) = 1 for <(x) > 0 and Θ(x) = 0
otherwise. By definition, the density of states is normalised to

∫
ρ(ω)dω = 1, which is

still true for our approximation with any cutoff since we chose the normalisation in
Equation (A.1) accordingly.

Since ρ ∝ ωd−1 is the correct power law for the full deterministic density of states, we
can tune Ω such that our approximation is correct to leading order at low frequencies.
In the following, we compute this leading order pre-factor.1

1The calculation also shows that the range of applicability of the Debye approximation (for the clean
system) is 0 < |ω| � ν/a. We consider the lattice spacing to be fixed at a = 1, but still, in the
low-energy sector we are interested in, the Debye approximation is justified.
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∫
ddk

(2π)d
lim
ε→0
< z

z2 − ν2∆k
(A.4a)

=
1

2

∫
ddk

(2π)d
lim
ε→0

ε

ε2 + x2
(A.4b)

≈ πVol(Sd−1)

4(2π)d

∫
δ
(
x(k2)

) (
k2
) d−2

2 d(k2) (A.4c)

=
πVol(Sd−1)

2(2π)d

( |ω|
ν

)d−1

, (A.4d)

where we have changed coordinates to

2x2 =

(
ω2 + ν2∆k

)2
ω2 − ν2∆k

≈
(
ω2 − ν2k2

)2
ω2 + ν2k2

. (A.4e)

Albeit being an expansion in k, the approximation in (A.4e) is correct to leading order2

in ω due to the δ factor in (A.4c), which localises the integral at k2 = ω2/ν2.

Comparing (A.3) with (A.4d) we find

Ω = 2π

(
d

ν Vol(Sd−1)

) 1
d

=


2
√
π
(
d
2ν

(
d
2

)
!
) 1
d d even

1
2π

d+1
2d

(
d!

ν( d−1
2 )!

) 1
d

d odd .
(A.5)

Inserting this cutoff into (A.1) completes the Debye approximation.

A.1.1 Integrals over the deterministic spectrum

The integrals encountered above are of the form∫
a+ bf(k)

c+ df(k)
g(k)dk =

b

d
+
ad− bc
d2

∫
g(k)dk

c/d+ f(k)
. (A.6)

The integral over the exact spectrum of the Laplacian in one dimension is

2π∫
0

dk

2π

1

a+ cos(k)
=

1√
a2 − 1

, (A.7)

where the branch of the square root has to be chosen such that |a±
√
a2 − 1| > 1 (see

Appendix A.1.2).

2Notice that Vol(S0) = 2.

82



A.1 Debye approximation (details)

The integrals over the spectrum in Debye approximation in higher dimensions are
given by

2Ω

(−a)n

Ω∫
0

k2ndk

a+ k2
=
√
x log

(
1−√x
1 +
√
x

)
+

n∑
k=1

2xk

2k − 1
, (A.8)

for d = 2n+ 1 odd, or

2

(−a)n

Ω∫
0

k2n+1dk

a+ k2
= log (1− x) +

n∑
k=1

xk

k
, (A.9)

for d = 2n + 2 even. In both cases we used the abbreviation x := −Ω2/a. Notice
that in both cases the arising power series exactly cancels the leading order terms
for x → 0, i.e. a → ∞, hence in this limit the leading order term in any dimension
is Ωd/(ad). In the opposite limit, a→ 0, the leading order term is the constant one,
namely Ωd−2/(d− 2), if d ≥ 2. In one or two dimensions, the leading order term is the
logarithmic one.

Both series can be extracted from the generating function

2i

Ω∫
0

eiykdk

1 + k2
= e−y(E(y(iΩ + 1))− E(y))− ey(E(y(iΩ− 1))− E(−y)) (A.10)

where

E(x) = −
∞∫
−x

e−t

t
dt = γ + log(x) +

∞∑
n=1

xn

n!n
(A.11)

is the exponential integral.

A.1.2 Some complex analysis

A particular integral needed several times in this thesis is

2π∫
0

eikx

a− cos(k)

dk

2π
, (A.12)

for some x ∈ N and a ∈ C \ [−1, 1]. Since cos(z) = cos(z + 2π) for all z ∈ C, we
can shift the contour in the iR direction using Cauchy’s (or Stokes’) theorem and
a rectangular closed path in which the vertical contributions cancel, see FigureA.1.
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A Appendix

Picking up the additional contribution from the single first order pole in the upper
half plain, the contour can then be moved to +i∞+ [0, 2π]. The cosh contribution
from the denominator renders the integrand to be constantly zero on this contour,
even if x = 0, hence we find the above integral to be given by the residue alone, i.e.

2π∫
0

eikx

a− cos(k)

dk

2π
= ±e

±ix arccos(a)

i
√

1− a2
=

(
a±
√
a2 − 1

)−x
±
√
a2 − 1

, (A.13a)

where we used that arccos(a) = i ln(a±
√
a2 − 1) = ±i ln(a+ i

√
1− a2). The correct

sign is determined by the pole lying in the upper half plain,3

= arccos(a) > 0⇔
∣∣∣a±√a2 − 1

∣∣∣ > 1 , (A.13b)

where a /∈ [−1, 1] guarantees that exactly one of the two branches of the square root
fulfils Equation (A.13b).

R

iR

2π0

Figure A.1: The contour of the integral
∫ 2π

0 f(k)dk over a meromorphic periodic func-
tion, f(z) = f(z + 2π), with a single pole at the marked position may be
shifted. Integration over the original black contour yields the same result
as integration over the dashed contour, picking up the residue.

A.2 Super Laplace method

Lemma A.1. Let S : Rm|2n → R1|1 be an even smooth super function with positive
numerical part S0 and a unique singular point xS of the numerical part, which is

3For x = 0 we may choose to move the contour towards −i∞, which means choosing the other pole,
but the additional sign is then compensated by the pole being encircled clockwise.
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A.2 Super Laplace method

to be non degenerate, i.e. ∂xiS0(xS) = 0 and Det
(
∂xi∂xjS0

)
(xS) 6= 0. Let further

Pf
(
∂ξi∂ξjS

)
(xS) 6= 0 and let f : Rm|2n → R1|1 be a smooth super function with

numerical part f0 non vanishing at xS. Then we have the asymptotic behaviour

1

Nn

∫
Rm|2n

f(x, ξ)e−NS(x,ξ)D(x, ξ) = (−2)n
f0(xS)e−NS0(xS)√

SDet(S′′)0(xS)

(
1 +O(

1√
N

)

)
(A.14)

where √
SDet(S′′)0(xS) =

√∣∣Det
(
∂xi∂xjS0

)
(xS)

∣∣
Pf
(
∂ξi∂ξjS

)
0

(xS)

Proof. We compute∫
Rm|2n

f(x, ξ)e−NS(x,ξ)D(x, ξ) (A.15a)

=

∫
Rm

Dmxe−NS0(x)∂2n
ξ

(∑
I

fI(x)ξI

) n∑
k=0

(−N)k

k!

∑
I 6=0

SI(x)ξI

k
 (A.15b)

=

(
1 +O

(
1√
N

))
e−NS0(x)√∣∣Det(∂xi∂xjS0)(xS)

∣∣f0(xS)
(−N)n

n!
(A.15c)

×
∑
σ∈Σ2n

sign(σ)
n∏
i=1

Sσ(2i−1)σ(2i)(xS) (A.15d)

= (−2)nNn f0(xS)e−NS0(xS)√
SDet(S′′)0(xS)

(
1 +O(

1√
N

)

)
(A.15e)

where we used the ordinary Laplace method in Equation (A.15d), ignoring lower order
contributions in N . Note that the appearing sums are finite, hence interchanging them
with the integration is of no concern. The absolute value is due to the fact that one
has to deform the contour such as to run through the saddle-point in the direction of
steepest descent. Further we used the formula for the Pfaffian

Pf(X) =
1

2n n!

∑
σ∈Σ2n

sign(σ)
n∏
i=1

Xσ(2i−1)σ(2i)(xS) =
√

Det(X)

Corollary A.2. From the above proof we see that we can use the generalisations
of Lemma A.1 for multiple saddle points or saddle point manifolds known from the
ordinary Laplace method, provided Pf

(
∂ξi∂ξjS

)
(xS) 6= 0 and f0(xS) 6= 0 for all saddle

points. If one of the two vanishes, lower order contributions will become dominant.
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Index

C: specific heat capacity, 2
C0 = Zd/LZd: set of sites of the cubic lattice in d dimensions, 5
C1: set of directed links connecting nearest neighbours in C0, 5
∆ denotes the lattice Laplacian, 7
E : positive cone of admissible time evolution generators, 12
J = iσ2 ⊗ 1N : symplectic unit, 8, 11, 20
L: the lattice size is Ld, 5, 7
Λ: thermal conductivity, 2
Lm ⊂ {R : Vm →Wm}: vector space of (site diagnoal) mass disorder operators, 21
Lp/ssubset{R : Vm → Wm}: vector spaces of spring constants and pinning disorder

operators, 21
M : momentum-momentum block of the Hamiltonian, called inverse mass matrix, 17
N = nLd: number of degrees of freedom, 7
S: displacement-displacement block of the Hamiltonian corresponding to springs, 17
Sp = {g−1 = JgTJ−1}: real symplectic group, 11, 12
V : symplectic single particle phase space, V = Vs ⊕ Vm ' R2N ' ⊕l∈C0V

l, 7
Vm: vector space of momentum operators, Vm ' RN , 7
Vs: vector space of position (displacement) operators, Vs ' RN , 7, 20
W : Euclidean vector space hosting random variables, R : V →W 'Wm ⊕Ws, 12
Wm: Rm : Vm →Wm ' R(1+αm)Ldn, see W , 17, 18
Ws: Rs : Vs →Ws ' Rd(1+αs)Ldn, see W , W}

s has the physical interpretation of spring
extensions, 17, 20

X: generator of time evolution via Hamilton’s equation, 8, 11, 12
αm: relative dimension of local auxiliary with respect to the local physical space of

momentum operators see Wm, 18, 21
αs, see Ws

β: continuously tunes from time reversal invariant model at β = 1 to the fully time
reversal invariance breaking case at β = 2, 56

b
+/}
m : additive/interfering mass disorder strength, 21

b
+/}
s : additive/interfering spring length disorder strength, 21
χ: power of the law for the heat capacity as a function of temperature, C ∝ Tχ, 2, 75
d: dimension of physical space, see C0, 5, 7
g = limN→∞ 1

2N

〈
Tr(z −X)−1

〉
: greens function for X, see also ρ, 8, 16

h: matrix of H in (q, p) coordinates, including disorder, 7
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κ: denotes the spring constant in the clean system, 7, 20
µ: (effective) mass in the clean system, 7
n: number of bands, i.e. number of degrees of freedom per lattice site, 7
ν denotes the speed of sound in the clean system, 7
ρ(ω) := limN→∞

〈
1

2N Tr iδ(iω −X)
〉
, density of eigenfrequencies (DOS) see X, 2, 8,

16
sp =

{
x = −JxTJ−1

}
: Lie algebra of the real symplectic group, 12

CPA: coherent potential approximation, 1, 7, 16

DOS : (local) density of states or (local) density of eigenfrequencies, see ρ, 1, 75

IMSC : interfering mass and spring constant disorder, 44, 75, 77
IMSL: interfering mass and spring length disorder, 78

SCE: self-consistency equation(s), 1, 13, 22, 27, 46, 55, 78

TRIB : time-reversal invariance breaking disorder, 55, 56
(T)TLS : (tunneling) two-level systems, 9
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ähnlicher Intensität fortführen können wie in den letzten Wochen der Promotion.

Ganz herzlicher Dank gilt auch der Deutsche Telekom Stiftung die meine Forschungs-
arbeit in den letzten Jahren maßgeblich finanziert hat und insbesondere meinem
Mentor, Klaus Kinkel. Die Treffen mit ihm sowie den Mitstipendiaten stellen eine
Bereicherung weit jenseits der finanziellen Aspekte dar.

Für die finanzielle Förderung während meines Diplomstudiums und der Promotion,
sowie die deutliche Verbesserung der Studienbedingungen möchte ich mich bei der
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