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Zusammenfassung 

 
Das Lungen-Adenokarzinom ist mit einer Inzidenz von ca. 50% das häufigste 

Lungenkarzinom. In 25-50% der Fälle kann kein Onkogen als 

transfomierende Ursache in den Tumorproben detektiert werden, welche die 

Entstehung eines Tumors erklären kann (Cancer Genome Atlas Research 

Network, 2014; Pao & Hutchinson, 2012). Im letzten Jahrzehnt konnten neue 

Onkogene durch die Entdeckung von Fusionsgenen beschrieben werden 

(Rikova et al., 2007; Soda et al., 2007; Takeuchi et al., 2012). Das Ziel dieser 

Studie war die Identifizierung und Beschreibung neuer onkogener 

Fusionsgene mittels der Methode der Transkriptomsequenzierung. Die 

Grundlage hierfür bildeten 25 Patientenproben von Lungen-

Adenokarzinomen, die negativ für EGFR und KRAS Mutationen waren, da 

diese bereits ca. 1/3 aller Mutationen beim Lungen-Adenokarzinom 

ausmachen (Pao & Hutchinson, 2012). Es zeigte sich, dass in 14/25 

Tumorproben keine onkogenen Mutationen und in 10/25 Tumorproben nur 

bereits bekannte onkogene Veränderungen identifiziert werden konnten. Aber 

in einer Tumorprobe konnte eine bisher unbekannte Genfusion beschrieben 

werden - CD74-NRG1. Die Untersuchung einer erweiterten Onkogen-

unbekannten Kohorte von 102 Lungen-Adenokarzinomen zeigte 4 weitere 

CD74-NRG1-positive Tumore. Alle wurden als invasiv muzinöses 

Adenokarzinom (Stadium I) diagnostiziert (4/15 invasiv muzinösen 

Adenokarzinonem innerhalb der Kohorte von Lungen-Adenokarzinomen). 

CD74-NRG1 ist die erste identifizierte Genfusion, bei der ein 

Wachstumsfaktor mit einer potentiellen Ligandwirkung (NRG1) und einem 

anderen Gen (CD74) fusioniert. Alle bisherig beschriebenen onkogenen 

Genfusionen besitzen eine Kinase-Domäne, durch die die transformierende 

Wirkung ausgeübt wird. Der Mechanismus der CD74-NRG1 Genfusion liegt in 

der membranständigen Expression des nicht in der gesunden Lunge 

exprimierten Liganden NRG1 III β3, welcher natürlicherweise vor allem für die 

Entwicklung von Schwannzellen und Kardiomyozyten benötigt wird (Hynes & 

Lane, 2005). Die exprimierte Domäne von NRG1 ist hierbei eine konservierte 
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EGF-like Domäne, die Interaktionen mit Proteinen der HER-Familie von 

Rezeptortyrosinkinasen eingehen kann. CD74-NRG1 aktiviert als Ligand den 

HER3 Rezeptor, welcher nach Bindung von NRG1 mit HER2 

heterodimerisiert und dadurch trans-phosphoryliert wird. Dies führt in den 

Lungen-Adenokarzinomzelllinien H1568 und H322 sowohl zur Aktivierung des 

PI3-Kinase- als auch des MAP-Kinase Signalweges. Darüber hinaus kann die 

CD74-NRG1 Genfusion in H1568 Zellen unter anderem das 

kontaktunabhängige Wachstum in Soft-Agar verstärken. Die 

Signaltransduktion von CD74-NRG1 über HER2 könnte therapeutisch 

relevant sein. Die Inhibierung von HER2 mit einem selektiven Inhibitor, 

Afatinib, kann die HER2-abhängige Phosphorylierung von HER3 und die 

daraus resultierende Aktivierung des PI3-Kinase Signalweges inhibieren. In 

der Zukunft muss die Onkogenität der CD74-NRG1 Genfusion unter anderem 

noch in einem Mausmodell in vivo bestätigt werden. Durch diese Arbeit 

konnte mit der Beschreibung und Charakterisierung der Genfusion sowie des 

Designs des Mausvektors der Grundstein für weitere Analysen gelegt werden. 

Darüber hinaus konnte eine gezielte potentielle Therapie für Patienten mit der 

CD74-NRG1 Genfusion aufgezeigt werden, welche bis jetzt unbehandelbar 

wären. 
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Abbrevations 

ABL - abelson murine leukemia oncogene homolog 
AJCC - American Joint Committee on Cancer 
AKT - synonym for proteinkinase B 
ALK - anaplastic lymphoma kinase 
AT - alveolar type 
ATP - adenosine triphosphate 
BASC - bronchoalveolar stem cell 
BCR - breakpoint cluster region 
BRAF - v-Raf murine sarcoma viral oncogene homolog B 
CCG - Cologne Center for Genomics 
CD74 - cluster of differenciation 74 
CDKN2A - cyclin dependent kinase (gene for p14 and p16 gene) 
cDNA - complementary DNA 
CVD - cardiovascular diseases 
CK - cytokeratin 
c-src - cellular sarcoma protein 
CRD - cysteine rich domain 
CREBBP - cAMP responsive element binding protein 
CTG - CellTiter-Glo® 
DAPI - 4’,6-diamidino-2-phenylindole 
DDR2 - discoidin domain-containing receptor 2 
DMSO - dimethylsulfoxide 
DNA - deoxyribonucleic acid 
E.coli. - Escherichia Coli 
ECL - enhanced chemiluminescence 
ECM - extracellular matrix 
EDTA - ethylenediaminetetraacetic acid 
EGFR - epidermal growth factor receptor 
EML4 - echinoderm microtubule-associated protein-like 4 
ERBB  - synonym for human epidermal growth factor receptor 
ERK - extracellular-signal-regulated kinase 
e.v. - empty vector 
FCS - fetal calf serum 
FGFR1 - fibroblast growth factor receptor 1 
FISH - fluorescent in situ hybridization 
FPKM - fragments per kilobase of exon per million fragments mapped 
GI - growth inhibition 
HA - hemagglutinin 
HER - human epidermal growth factor receptor 
HRP – horseradish peroxidase 
IMA - invasive mucinous adenocarcinoma 
IP - immunoprecipitation 
KIF5B - kinesin-1 heavy chain 
KRAS - kirsten rat sarcoma viral oncogene homolog 
LKB1 - liver kinase B1 
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MAPK - mitogen-activated protein kinase 
MHC - major histocompatibility complex 
MLL - mixed lineage leukemia 
NE - neuroendocrine 
NFE2L2 - nuclear factor (erythroid-derived 2)-like 2 
NRG - neuregulin 
NSCLC - non-small cell lung cancer 
NTRK1 - neurotrophic tyrosine kinase receptor 
p53 - protein of TP53 gene 
PAGE - polyacrylamide gel electrophoresis 
PBS - phosphate-buffered saline 
PCR - polymerase chain reaction 
PFA - paraformaldehyde 
PFS - progression-free survival 
PI3K - phosphoinositide-3-kinase 
PIK3CA - phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 
alpha 
PNEC - pulmonary neuroendocrine cell 
PVDF - polyvinylidene fluoride 
PS - penicillin/streptomycin 
RNA - ribonucleic acid 
PTEN - phosphatase and tensin homolog 
SCLC - small cell lung cancer 
SDS - sodium dodecyl sulfate 
RB1 - retinoblastoma protein 
RET - rearranged during transfection 
RSV - rous sarcoma virus 
RTK - receptor tyrosine kinase 
SCC - squamous cell carcinoma 
TE - Tris-EDTA 
TKI - tyrosine kinase inhibitor 
TP53 - tumor protein p53 
TP63 - tumor protein p63 
TTF-1 - thyroid transcription factor 1 
UICC - Union Internationale Contre le Cancer 
US - United States of America 
v-src - viral sarcoma protein 
VEGF - vascular endothelial growth factors 
VEGFR - vascular endothelial growth factor receptor 
WB - western blot 
 
 
 
The international system of units was used in this thesis. 
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1 - Introduction 

 

1.1 Cancer 
 

Cancer can be generally described as a disease caused by uncontrolled cell 

growth. In 2012 cancer led to around 8.2 million cases of death (IARC, 2012). 

However, cardiovascular diseases (CVD) are the deadliest diseases 

worldwide causing 17.3 million deaths in 2008 (cancer: 7.3 million (2008)) 

(WHO, 2011). Even now there are more cancer-related than CVD-related 

deaths in 10 European countries among men. Only in Denmark this holds also 

true for women (Nichols, Townsend, Scarborough, & Rayner, 2014). It is 

predicted that the total numbers of new cancer cases will increase to 21.4 

million by 2030 (WHO, 2011).  

 

1.2 Lung cancer 
 

1.2.1 Epidemiology 
 
Lung cancer is the most frequent and deadliest type of cancer accounting for 

1.8 million new cases (12.9% of all new cancer cases) and leading to 1.59 

million deaths (19.3%) in 2012 (IARC, 2012). Lung cancer is heavily 

associated with tobacco exposure with about 90% of lung cancer patients 

being active or former smokers (Hecht, 1999; 2002). In about 10% there are 

other factors causing lung cancer (Thun et al., 2008). The outcome for lung 

cancer patients is very poor - the five-year survival rate is only about 16% for 

all patients. Notably, the incidence rate for lung cancer in the United States of 

America (US) from 1975 - 2010 of men has dropped by 24% while it doubled 

within the same time for women. This might be explained by an increasing 

amount of female smokers, changes in smoking habits and changes in social 

behavior (Fig. 1) (National Cancer Institute, 2014). 
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Figure 1: Incidence rate for lung cancer by sex from 1975-2010 in the US. 
http://www.lung.org/assets/images/chart-and-graphs/LC-Incidence-by-Sex.png 
 
In general patients do not feel any side effects of early stage lung cancers, 

therefore about 70% of patients are diagnosed at late stage disease (stage III 

or IV). Unfortunately a diagnosis at late stage goes often in line with poor 

survival as low as 9.5 months median survival time for stage IV patients 

(Clinical Lung Cancer Genome Project (CLCGP) Network Genomic Medicine 

(NGM), 2013). For the classification of lung cancer the Union Internationale 

Contre le Cancer (UICC) and the American Joint Committee on Cancer 

(AJCC) have published the 7th edition of the international standardized TNM 

staging system. The TNM staging system describes: (1) the size and growth 

stage of the tumor (T), (2) if the tumor already spread to the lymph nodes (N) 

and (3) if the tumor has already metastasized (M). These criteria are used to 

judge a patient’s tumor stage and are updated regularly (Fig. 2) (Detterbeck, 

2009). 

 
 
Figure 2: TNM staging system according to lung cancer stage (Detterbeck, 
2009). 
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1.2.2 Classification 
 

The classification of lung cancer is assessed according to histological 

stainings. It can be coarsely divided into non-small cell lung cancer (NSCLC) 

and small cell lung cancer (SCLC) (Petersen, 2011; Travis, Brambilla, & Riely, 

2013). But due to the increasing amount of genomics data, there is a future 

trend to diagnose and classify lung cancers based on genomics data as every 

subtype has its own molecular profile. Therefore, molecular pathology can 

lead to a completely unbiased diagnosis and classification system in the near 

future and could already eliminate and further subdivide the group of large cell 

carcinomas (Clinical Lung Cancer Genome Project (CLCGP) Network 

Genomic Medicine (NGM), 2013).  

 

1.2.2.1 Small cell lung cancer 
 
Small cell lung cancer accounts for around 15% of all diagnosed lung cancer 

cases worldwide (Wahbah, Boroumand, Castro, El-Zeky, & Eltorky, 2007) and 

is highly associated with smoking. More than 90% of SCLC patients being or 

having been heavy smokers (Rosell & Wannesson, 2012; van Meerbeeck, 

Fennell, & De Ruysscher, 2011). SCLC patients typically respond very well to 

initial standard chemotherapy with platinum and etoposide but show very 

soon a resistance phenotype and tumor relapse. The tumor is characterized 

by early metastasis and patients show a very poor 2-year survival of 5% for 

extensive stage or ~15% for limited stage disease (Pleasance et al., 2010). 

Up to now no gene could be identified as therapeutical target in SCLC. Only 

the tumor suppressor genes tumor protein p53 (TP53) and retinoblastoma 

protein (RB1) are consistently inactivated in SCLC (Peifer et al., 2012; Rudin 

et al., 2012). 

 

1.2.2.2 Non-small cell lung cancer 
 

NSCLC can be divided into three main groups: adenocarcinoma, large cell 

carcinoma and squamous cell carcinoma. Other NSCLC subtypes are very 

rare.  
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Adenocarcinoma accounts for ~50% of all lung cancer cases and is the most 

frequent subtype of lung cancer. It is the leading cause for cancer-related 

mortality with more than one million deaths worldwide. The most common 

mutated driver oncogenes are kirsten rat sarcoma viral oncogene homolog 

(KRAS) and epidermal growth factor receptor (EGFR). These genes are 

mutated in about 30-40% of all lung adenocarcinomas. But still in 25-50% of 

lung adenocarcinomas the oncogenic driver is unknown (Fig. 3) (Cancer 

Genome Atlas Research Network, 2014; Pao & Hutchinson, 2012). In 

immunohistochemistry lung adenocarcinomas are typically positive for thyroid 

transcription factor 1 (TTF-1) and cytokeratin 7 (CK7) (Lau, Desrochers, & 

Luthringer, 2002; Su, Hsu, & Chai, 2006). 

 

 
 
Figure 3: Distribution of oncogenic driver mutations in lung adenocarcinoma 
(Cancer Genome Atlas Research Network, 2014). 
 

Squamous cell carcinoma (SCC) accounts for ~30% of NSCLC cases. 

Typically SCC is positive for tumor protein p63 (TP63) and cytokeratins 5/6 in 

immunohistochemistry. Common mutations for SCC are TP53, discoidin 

domain-containing receptor 2 (DDR2), nuclear factor (erythroid-derived 2)-like 

2 (NFE2L2) and fibroblast growth factor receptor 1 (FGFR1) (Clinical Lung 

Cancer Genome Project (CLCGP) Network Genomic Medicine (NGM), 2013; 
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Hammerman et al., 2011; Perez-Moreno, Brambilla, Thomas, & Soria, 2012; 

Weiss et al., 2010). 

 

Large cell carcinoma is a very heterogeneous group within lung cancer. It is 

poorly differentiated and accounts for about 10% of lung cancer cases. In 

immunohistochemistry it can only be characterized by negative TTF-1 

stainings. Due to its poor differentiation and molecular similarities to other 

lung cancer subtypes there are thoughts that large cell carcinoma are only 

poorly differentiated variants of lung adenocarcinoma or squamous cell 

carcinoma. Therefore this subtype might be a more and more vanishing entity 

(Clinical Lung Cancer Genome Project (CLCGP) Network Genomic Medicine 

(NGM), 2013). 

 

1.2.3 Cell of origin 
 

In the past a lot of research was aimed to decipher the cell of origin for every 

lung cancer subtype. But up to now the cellular origin of every lung cancer 

subtype is unknown (Fig. 4) (Sutherland et al., 2011). Recently, alveolar type 

(AT) 1/2 cells have been described as being capable of potentially initiating 

oncogenesis in mice (Desai, Brownfield, & Krasnow, 2014). From murine 

models it is known that the genetic alterations and the harboring cell type are 

very likely to be responsible for the tumor phenotype (Jackson et al., 2001; 

Meuwissen et al., 2003). Even transdifferentiation of one tumor type from one 

subtype to another have been described while tumors acquire additional 

genomic alterations (Han et al., 2014; Peifer et al., 2012). Notably cell type 

specific expression of KRAS G12D in AT2 and clara cells leads to lung 

adenocarcinoma while inactivation of TP53 and RB1 in clara, neuroendocrine 

and AT2 cells fosters the development of SCLC in mice (Fig. 4) (Sutherland et 

al., 2011; 2014). 
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Figure 4: Putative model for the role of progenitor cells in the development of 
lung cancer. (A) The role of activated kras in bronchoalveolar stem cells (BASC) in 
NSCLS. (B) Two models for the development of neuroendocrine (NE) tumors in 
epithelial cells of bronchi. (i) NE tumor arise from pulmonary neuroendocrine cells 
(PNEC), (ii) another hypothesis would be that NE tumors arise from less-
differentiated cells. (C) SCC is thought to evolve from basal cells of the trachea 
which harbors stem-cell-like properties (Sutherland & Berns, 2010). 
 

1.2.4 Treatment 
 
As distinct lung cancer types harbor distinct genomic alterations, proper 

molecular diagnosis for every subtype is indispensable. SCLC standard 

therapy consists of platinum- and etoposide-based chemotherapy and 

radiotherapy. Patients show a very high initial response to chemotherapy (70-

90%) but relapse within months (Metro & Cappuzzo, 2009; Simon & Turrisi, 

2007). The role of surgery remains controversial but there are indications that 

surgery does not prolong patient’s life (Lad, 1994; Lim, Belcher, Yap, 

Nicholson, & Goldstraw, 2008). 

Treatment guidelines for NSCLC are dependent on the tumor stage at 

diagnosis. In NSCLC patients that are staged up to IIIa a complete resection 

of the tumor is theoretically possible. Patients receive typically combined 

platinum-based chemotherapy and radiotherapy before and after surgery 
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(Vansteenkiste et al., 2013). Patients that harbor a NSCLC with stage IIIb or 

IV cannot be cured any more. For these patients histology and especially 

molecular pathology for the detection of potentially druggable oncogenic 

driver mutations is recommended (Reck et al., 2014). Personalized medicine 

was first proven to lead to a better survival in the IPASS and EURTAC trial 

showing that patients harboring mutated EGFR do benefit from targeted 

therapy of EGFR-inhibition with erlotinib or gefitinib (Fig. 5) (Maemondo et al., 

2010; Rosell et al., 2012). 

 

 
 
Figure 5: Gain of progression-free survival (PFS) by targeted therapy 
compared to chemotherapy. Kaplan-Meier plot of PFS of EGFR-mutated NSCLC 
patients treated either with chemotherapy or an EGFR-inhibitor (erlotinib) (Rosell et 
al., 2012). 
 

 

In Germany according to patient’s health conditions and cancer center, 

different treatment options are applied. As molecular diagnostics takes about 

2-4 weeks patients are treated in the meantime with platinum-based 

chemotherapy. With the application of molecular diagnostics the patient could 

gain additional and beneficial treatment options such as EGFR tyrosine 

kinase inhibitors (TKI) in the case of EGFR-mutated NSCLC as these cancers 

are dependent on EGFR signaling (Fig. 6) (Reck et al., 2014; Rosell et al., 

2012). The broader the molecular diagnostics panel, the bigger is the chance 

of having additional treatment options for specific driver lesions. Many clinical 
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trials are now conducted to analyze if targeted therapy of druggable 

oncogenic mutations leads to oncogenic dependency in these patients, 

another example beside EGFR TKIs would be crizotinib which targets 

anaplastic lymphoma kinase (ALK) and leads to a better PFS in these patients 

as well (Shaw et al., 2013). 

 

 
 
Figure 6: Relevance of molecular pathology for treatment of NSCLC (adapted 
from (W. A. Cooper, Lam, O'Toole, & Minna, 2013)). 
 

 

1.3 Tumor development 
 
Cancer is a disease of the genome and develops in a multi-step process. It is 

influenced by many different factors, e.g. cells get exposed to carcinogens 

from the environment. Those factors can finally lead to an altered expression 

of one or a set of genes, alter the genomic sequence or facilitate cells of 

developing cancer that are already predisposed by inherited somatic 

mutations (Fig. 7) ((Irigaray et al., 2007) and reviewed in (Anand et al., 2008; 

Arteaga et al., 2014)). 

 



1 - Introduction
	
  
 

 19 

 
 
Figure 7: Genetical predisposition and enviromental factors develop to 
different cancer types. (A) Inherited mutations that predispose to different cancer 
types. (B) Association of alcohol usage and smoking linked to different types of 
cancer (adapted from (Anand et al., 2008; Arteaga et al., 2014)). 
 

In many cases proto-oncogenes or tumor suppressor genes are altered by 

genomic aberrations or epigenetic modifications which cause or predispose to 

cancer development (Chin & Gray, 2008). Other possibilities include genomic 

rearrangements thereby creating fusion genes, alternative splicing or 

deletions of regulatory regions of proteins that influence tumor development 

as well (Cancer Genome Atlas Research Network, 2014; Ekstrand, Sugawa, 

James, & Collins, 1992; Soda et al., 2007).  

 

1.3.1 Oncogenes and tumor suppressor genes 
 
The oncogene hypothesis of cancer was first established by Hübner and 

Todaro in 1969 (Huebner & Todaro, 1969). Oncogenes can be defined as 

genes that encode for proteins that are capable to drive the activation of a 

potential oncogenic pathway upon deregulation. These pathways have in 

general important roles in signal transduction for cell growth, cell divisions and 

differentiation. Traditionally the first viral oncogene described was viral 

sarcoma protein (v-src) from rous sarcoma virus (RSV) by J. Michael Bishop’s 

lab (Bernstein, MacCormick, & Martin, 1976; Swanstrom, Parker, Varmus, & 

Bishop, 1983). RSV could transform chicken embryos and led to 

transformation of mouse fibroblasts. Already in 1910 Peyton Rous could show 
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that a chicken tumor was transplantable from one chicken to another and that 

he could transmit the cancer without any cells (Rous, 1910; 1911). Only a 

small change in nucleotide sequences could lead to tumor formation when 

human wild-type c-src was turned into viral derived v-src (G. M. Cooper, 2000; 

Swanstrom et al., 1983). 

There are different ways that lead to deregulation of proto-oncogenes. The 

most common ways for deregulation are either by gain-of-function mutations 

or amplifications therefore leading to constitutive and increased pathway 

activation. Structural aberrations leading to genomic rearrangements or 

translocations and segmental deletions of regulatory elements are observed 

as well to activate oncogenes constitutively (Chin & Gray, 2008). In lung 

cancer the most frequently mutated oncogenes are KRAS, EGFR, PIK3CA, 

BRAF and ERBB2 (Clinical Lung Cancer Genome Project (CLCGP) Network 

Genomic Medicine (NGM), 2013) (reviewed in (W. A. Cooper et al., 2013)).  

In contrast tumor-suppressors are negative regulators of cell growth and do 

act in a recessive fashion compared to the dominant acting oncogenes. RB1 

gene was the first tumor suppressor that has been shown to be involved in 

cell-cycle control and progression. A biallelic loss-of-function mutation of RB1 

leads to retinoblastoma which is a rapidly developing cancer of the eye in 

childhood. In general both allels of a tumor suppressor gene have to be 

inactivated to fully predispose a cell or an organism to cancer (Knudson, 

1971). The recessive fashion of tumor suppressor genes and the fact that 

both allels have to be hit to get full predisposition to cancer is reflected in their 

function. Most tumor suppressor genes are involved in cell cycle control, DNA 

repair or DNA damage sensing, cell differentiation, migration or protein 

degradation. Therefore it is very hard to treat patients with aberrations in 

tumor suppressor genes therapeutically as their function needs to be 

reconstituted instead of inhibited. This can up to now only work if the gene is 

epigenetically silenced and reactivation is achieved e.g. via histone 

deacetylase or DNA methyltransferase inhibitors which lead to global re-

expression of genes including tumor suppressor genes (Bolden, Peart, & 

Johnstone, 2006; Cameron, Bachman, Myöhänen, Herman, & Baylin, 1999). 

An inactivating mutation of TP53 in lung cancer already lowers the probability 
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of survival. Survival is even more decreased with additional oncogenic 

mutations of oncogenes and typically if already one allel is lost, the non-

mutated allel is lost by loss of heterozygosity leading to the complete loss of 

both allels (Clinical Lung Cancer Genome Project (CLCGP) Network Genomic 

Medicine (NGM), 2013). Typical tumor suppressor genes showing genomic 

aberrations in lung cancer are TP53, PTEN, RB1, LKB1 and p16/CDKN2A 

and do mainly act in cell cycle control pathways (W. A. Cooper et al., 2013).  

 

1.3.2 Hallmarks of cancer 
 
In the famous reviews “Hallmarks of Cancer” (2000) and “Hallmarks of 

Cancer: the next generation” (2011) Douglas Hanahan and Robert Weinberg 

describe essential alterations which alter and transform healthy cells and lead 

to tumor development by influencing cell metabolism and cell physiology. 

Drugs that interfere with these emerging hallmarks are used in clinical trials to 

treat human cancers (Fig. 8). Nevertheless the central hallmarks of cancer 

are:  

• resisting cell death 

• sustaining proliferative signaling 

• evading growth suppressors 

• activating invasion and metastasis 

• enabling replicative immortality 

• inducing angiogenesis 

 

In the updated version from 2011 two emerging hallmarks – deregulating 

cellular energetics and avoiding immune destruction – and two enabling 

characteristics – genome instability and mutation and tumor-promoting 

inflammation – were added (Hanahan & Weinberg, 2011). But to understand 

the general biology of cancer this introduction focuses on the core hallmarks 

of cancer from 2000. 
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Figure 8: Hallmarks of cancer and examples for druggable targets. 
 

1.3.2.1 Resisting cell death 
 

Cell death or apoptosis is a strongly controlled mechanism of the human body 

that is balanced via pro- and anti-apoptotic proteins. It is an important 

mechanism to eliminate damaged cells, cells that are misplaced or no longer 

needed or for cells that are recognized as “non-self”. This can be controlled 

either by immune cells or compounds via activation of death receptors or via 

intrinsic signaling e.g. upon DNA damage (Wang et al., 2013; N. S. Wilson, 

Dixit, & Ashkenazi, 2009). The most important enzymes signaling towards 

apoptosis are the caspase enzymes (Ashkenazi, 2008). TP53 was called 

“guardian of the genome” as p53 is one of the most important proteins 

sensing DNA damage or stress (D. P. Lane, 1992). It can sense DNA damage 

and accumulates upon DNA damage in the nucleus and arrests the cells in G1 

phase in order to get the DNA damage repaired. If this is not possible, p53 

initiates the caspase pathway by upregulating pro-apoptotic proteins which 

lead to apoptosis to prevent the transfer of damaged or mutated DNA to the 
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next generation (Ashkenazi, 2008; Kruse & Gu, 2009). In cancer cells 

apoptosis is actively inhibited by inactivating pro-apoptotic signaling pathways 

and survival is supported by the activation of anti-apoptotic pathways. In 

cancer TP53 is the most frequently mutated gene. In general it gets 

inactivated and therefore cannot trigger apoptosis any more. By this 

mechanism, cancer cells can evade apoptosis even under circumstances like 

cellular stress and accumulation of mutations (Levine & Oren, 2009). 

Especially in SCLC (up to 100%) and NSCLC (more than 50%) TP53 is 

inactivated in many patients (Clinical Lung Cancer Genome Project (CLCGP) 

Network Genomic Medicine (NGM), 2013; Peifer et al., 2012). 

 

1.3.2.2 Sustaining proliferative signaling 
 

Sustaining proliferative signaling is one of the most fundamental mechanisms 

of cancer cells. Healthy cell proliferation is tightly controlled and does need 

different stimuli for proliferation. The most prominent pathways are the 

phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase 

(MAPK) pathways which are essential and key pathways in many cancers. 

They are generally used for driving cell growth and proliferation, survival, 

angiogenesis and inhibit apoptosis. Therefore constitutive activation of these 

pathways is important for many cancers and can mediate resistance to 

therapy. Key molecules of those pathways are currently used as targets in 

running clinical trials (Baselga, 2011; Burris, 2013; P. Liu, Cheng, Roberts, & 

Zhao, 2009). The PI3K and MAPK pathways are activated by receptor 

tyrosine kinases (RTKs) which are anchored in the cellular membrane. Each 

RTK has different specificities to different ligands (growth factors). These 

growth factors are either produced in a para- or autocrine manner. By 

controlling the activated state of RTKs by a specific ligand the downstream 

pathway can be carefully controlled. Tumor cells can therefore overexpress 

the ligand, overexpress the RTK or acquire activating mutations within the 

RTK itself or increase the affinity of the ligand to the RTK, leading to 

constitutive activation of the pathway (Greulich et al., 2005; Huang, Xu, & 

White, 2009; Zadeh, Bhat, & Aldape, 2013). Another way of leading to a 
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sustained proliferative signaling within this network is via inactivation of PTEN, 

a tumor suppressor gene involved in dephosphorylation and therefore 

inactivation of the PI3K pathway. As all of the mentioned mechanisms are 

used or hijacked by cancer cells, many pathways and key proteins are 

pharmacologically used to tackle the oncogenic signaling of the tumor. 

Mutations in the PI3K and MAPK pathway are often found in lung 

adenocarcinomas and can be therapeutically targeted (Clinical Lung Cancer 

Genome Project (CLCGP) Network Genomic Medicine (NGM), 2013; Ding et 

al., 2008; Rosell et al., 2012).  

 

1.3.2.3 Evading growth suppressors 
 
The cell cycle is well controlled in normal cells to prevent the transfer of 

mutations to daughter cells or to prevent improper tissue formation. This is 

achieved via a resting (G0- or G1-phase) phase in cell cycle e.g. by the 

retinoblastoma protein 1 (RB1) before cells enter the S-phase. This tumor 

suppressor protein is important in the transmission of anti-growth signals 

classically by binding E2F – a strong transcriptional activator. RB1 is mutated, 

deleted or inactivated especially in up to 100% of SCLC but often inactivated 

in other cancers as well (Burkhart & Sage, 2008; Classon & Harlow, 2002; 

Clinical Lung Cancer Genome Project (CLCGP) Network Genomic Medicine 

(NGM), 2013; Peifer et al., 2012). If RB1 is mutated and inactivated the cells 

cannot control their cell cycle any more and cannot arrest in G0. Only about 

4% of lung adenocarcinomas are affected by inactivation of RB1. But this 

pathway is affected in about 15% of lung adenocarcinomas by CDKN2A 

mutations which acts upstream of P53 and RB1 and leads to the inactivation 

of a negative feedback loop for RB1 (Clinical Lung Cancer Genome Project 

(CLCGP) Network Genomic Medicine (NGM), 2013; Ding et al., 2008). 

 

1.3.2.4 Activating invasion and metastasis 
 
Tumor cells acquire invasive and metastasizing properties during their 

development. Normal cells depend on cell-cell interactions and cell-matrix 

interaction with the extracellular matrix (ECM). These interactions are mainly 
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provided by cadherins and intergrins that interact with the ECM and 

neighboring cells providing pro-survival and pro-proliferative signals. Normal 

cells induce apoptosis or anoikis if they loose contact with other cells or the 

ECM (Frisch & Francis, 1994; Lelièvre et al., 2012). Malignant cancer cells 

have often lost E-cadherin, one of the main proteins for cell-cell interactions, 

and do not depend on survival signals from neighboring cells or the ECM 

anymore. These tumor cells gained the ability to migrate via the blood or 

lymph vessel system to more distant organs and some of them are even able 

to establish a metastasis at a distant site (Chiang & Massagué, 2008; Klein, 

2008). As 90% of all cancer patients die from metastasis it is surprising that 

this process is not fully understood. Therefore ongoing intensive research 

focuses to slow down or even prevent metastatic spread in the future (Arteaga 

et al., 2014). 

 

1.3.2.5 Enabling replicative immortality 
 
The replicative capacity of most human body cells is limited due to the length 

of the telomeres which protect the caps of the chromosomes. During cell 

division they get shortened with each division. If their length falls below a critic 

threshold for maintaining genomic integrity, cells can induce senescence or 

apoptosis. The number of cell divisions up to this state is named Hayflick limit 

(Hayflick, 1965; Shay & Wright, 2000). Cancer cells as well as stem cells can 

bypass this limit by expressing telomerase - an enzyme that can lengthen the 

telomeres again. Therefore these cells can divide for an unlimited time. 

Telomerase inhibitors are under development in clinical trials for different 

types of cancer - especially as reexpression of telomerase is very common in 

NSCLC and SCLC and many other cancers (C.-H. Chen & Chen, 2011; 

Harley, 2008; Shay & Bacchetti, 1997).  

 

1.3.2.6 Inducing angiogenesis 
 
After tumor establishment a tumor can grow up to 1-2mm in diameter but then 

stops or becomes necrotic as oxygen or nutrition supply cannot reach the 

tumor center any more via diffusion (N. Nishida, Yano, Nishida, Kamura, & 
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Kojiro, 2006). To circumvent the growth limits, tumor cells use a process 

called tumor-associated neovascularization. This process is induced by 

cytokines, angiopoietins and vascular endothelial growth factors (VEGFs) 

which increase permeability and induce sprouting of new blood vessels. 

Secretion of VEGFs and binding to their corresponding receptor (VEGF 

receptors 1-4 (VEGFR)) can secure oxygen and nutrition supply of cancer 

cells in a multistep process (Hanahan & Folkman, 1996; Saaristo, Karpanen, 

& Alitalo, 2000; Senger et al., 1983). Inducing angiogenesis is therefore 

important for tumors to grow and survive. This is reflected in a wide range of 

tumors showing elevated levels of VEGF or VEGFR (Goel & Mercurio, 2013). 

Treatment efforts towards VEGF signaling inhibition decreases the amount of 

blood vessels but at the same time other drugs cannot reach the tumor as 

efficient as if the tumor was fully vascularized. In addition inhibition of VEGF 

or VEGF receptors can result in increased invasion and metastasis by several 

escape mechanisms (Ebos et al., 2009; Goel & Mercurio, 2013; Paez-Ribes 

et al., 2009). One possibility to escape the inhibition is for example the 

upregulation of placental growth factor that can activate VEGFR1, too 

(Fischer et al., 2007). 

 

1.3.3 Fusion-genes 
 
The first chromosomal translocation was discovered in 1960 by Peter Nowell 

and David Hungerford in a patient with chronic myeloid leukemia (Nowell & 

Hungerford, 1960). The BCR-ABL gene fusion results from a chromosomal 

translocation of chromosome 9 and 22. This fusion protein leads to cellular 

transformation and can cause leukemias (Sawyers, 1993). Due to hyperactive 

kinase activity of the ABL nuclear kinase the cell undergoes uncontrolled cell 

growth. Another decade after demonstrating that BCR-ABL is tumorigenic in 

mice, treatment with imatinib and other tyrosine kinase inhibitors were shown 

to be effective in tumor treatment mediated by the inhibition of ABL kinase 

activity (Deininger, Buchdunger, & Druker, 2005; Druker, 2003). More than 

50,000 cases of chromosomal rearrangement creating gene fusions have 

been found across all main tumor types up to now (Mitelman, Johansson, & 
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Mertens, 2007). The most interesting fusion genes are the ones generated in-

frame and therefore leading to an actual fusion protein. The best 

characterized fusion proteins are those that hijack the promoter of the 5’ part 

of gene A and fuse it to the kinase part of gene B resulting in a deregulated 

hyperactive tyrosine kinase such as in BCR-ABL. This method destroys 

regulatory elements of kinases or kinases get expressed in a tissue in which 

they are generally not expressed or only during development. Common gene 

fusions found in lung cancer are EML4-ALK, KIF5B-RET and CD74-ROS1 

(Fig. 9). In summary all described fusion genes lead to hyperactive kinases 

and to cellular transformation that can be targeted and thereby inhibited with 

specific molecules (Kohno et al., 2012; Rikova et al., 2007; Soda et al., 2007; 

Takeuchi et al., 2012). Other chromosomal translocations lead to the loss of 

function of tumor suppressor genes such as CREBBP, CHEK2 or MLL either 

by an out-of-frame fusion or by destroying functional domains of the protein 

(Jin, Mertens, Kullendorff, & Panagopoulos, 2006; Pleasance et al., 2010; Xia, 

Anderson, Diaz, & Zeleznik-Le, 2003). 

 

 
 
Figure 9: Different RET and ROS1 fusion genes found in NSCLC. The kinase 
domain (red) is conserved in every fusion protein (modified from (Takeuchi et al., 
2012)). 
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1.4. Neuregulin-HER2:HER3 signaling pathway 
 
The family of neuregulins (NRGs) is a very broad family of growth factors with 

more than 30 isoforms. They mediate cell-cell interactions in neuronal cells, 

cardiocytes, breast and epithelial cells. NRGs are divided in 6 major families. 

While types I, II, IV-VI are soluble ligands, NRG1 type III stays membrane-

tethered (Falls, 2003; L. Mei & Xiong, 2008).  

 

 
 
Figure 10: Different isoforms and processing of NRG1. Only NRG1 type III 
contains a cysteine rich domain (CRD) in its amino terminus determining the type of 
NRG1 and stays membrane-tethered compared to the other isoforms (L. Mei & 
Xiong, 2008). 
 

NRG1 type III is a crucial survival factor for Schwann cell precursors in 

embryonic nerves but is expressed in axons as well and regulates myelin 

sheath thickness (Falls, 2003; Jessen & Mirsky, 2005; L. Mei & Xiong, 2008; 

Wolpowitz et al., 2000). These functions are triggered via NRGs binding 

affinity to humane epidermal growth factor receptor 3 (HER) and HER4. Both 

are RTKs that are localized on the plasma membrane for signaling via the 

PI3K and MAPK pathway (Fig. 11) (Hynes & Lane, 2005; Sithanandam et al., 

2003; Yarden & Sliwkowski, 2001).  
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Figure 11: Interaction network of HER receptors 1-4. Different HER receptors can 
be activated by different ligands. Binding affinity of ligands to different homo- and 
heterodimers influences the signaling (modified from (Hynes & Lane, 2005)). 
 

HER3 was discovered in 1989 and is the biggest HER receptor (Kraus, Issing, 

Miki, Popescu, & Aaronson, 1989; Roskoski, 2014). It has the most PI3K (p85 

subunit binding sites of PI3K) phospho-tyrosine binding sites but has an 

impaired kinase domain activity that cannot or ~1,000 times less efficient 

phosphorylate itself or other kinases. This is due to the nonconservatively 

substitution of important amino acid residues within the kinase domain in 

comparison to the other HER family members (Hynes & Lane, 2005; 

Roskoski, 2014; Shi, Telesco, Liu, Radhakrishnan, & Lemmon, 2010). The 

best characterized dimerization partner of HER3 is HER2 which preferentially 

forms heterodimers upon NRG1 binding to HER3 and trans-phosphorylates 

HER3 (Baselga & Swain, 2009; Li, Mei, Liu, & Zhou, 2007; Plowman et al., 

1990; Yarden & Sliwkowski, 2001). Many tumors show elevated HER3 

expression levels or upregulate expression of HER3 as a resistance 

mechanism upon treatment. Thus they harbor alternative possibilities to 

trigger the PI3K and MAPK signaling pathway (Engelman et al., 2007; Sergina 

et al., 2007). Beside membranous localization, HER3 can relocalize to the 

nucleus in a cancer-specific manner. This has been discovered in NSCLC and 

correlated with increased vascular and lymphatic invasion and an overall poor 

survival (Baselga & Swain, 2009; Begnami et al., 2011; Maurer et al., 1998). 

By this interaction network NRG1 can trigger HER3 receptor activation 

including its pro-oncogenic PI3K and MAPK signaling pathways and can even 
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establish a resistance mechanism when targeted therapies inhibit other pro-

oncogenic pathways (T. R. Wilson et al., 2012). 
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2 - Aim of this study 

 
Lung cancer is the world’s leading type of cancer conducting to death (IARC, 

2012; Siegel, Ma, Zou, & Jemal, 2014). Lung adenocarcinoma accounts for 

about 50% of all lung cancer cases and in about 50% of all lung 

adenocarcinoma cases the oncogenic driver mutation is still unknown (Clinical 

Lung Cancer Genome Project (CLCGP) Network Genomic Medicine (NGM), 

2013; Pao & Hutchinson, 2012). The most common driver mutations for lung 

adenocarcinoma are EGFR and KRAS mutations, which account for about 1/3 

of all lung adenocarcinomas (Pao & Hutchinson, 2012). Since the 

identification of the EML4-ALK gene fusion in 2007, additional gene fusions 

have been found involving NTRK1, RET and ROS1 kinases (Davies et al., 

2012; Kohno et al., 2012; Soda et al., 2007; Takeuchi et al., 2012; Vaishnavi 

et al., 2013). These gene fusions lead to oncogene dependency which can be 

therapeutically used for specific treatment and therefore help to prolong  

patient’s survival (Bergethon et al., 2012; Camidge, Pao, & Sequist, 2014; 

Shaw et al., 2013). Therefore there were two objectives for this study after the 

discovery of the gene fusion in the index patient sample:  

1. Functional characterization of CD74-NRG1 gene fusion. 

As CD74-NRG1 gene fusion is a completely unknown gene fusion there was 

first the need to investigate basic properties of the gene fusion such as 

localization, interactions partners and functional relevant domains. The next 

step was to investigate biochemical effect in cells harboring the CD74-NRG1 

gene fusion as well as showing a functional change within these cells such as 

pathway activation or beneficial growth properties such as colony formation 

capabilities. 

2. Therapeutical relevance of CD74-NRG1 gene fusion 

Due to the initial study design, the finding of a novel oncogenic driver mutation 

might harbor therapeutic potential. Therefore on the basis of the functional 

characterization results, CD74-NRG1 transduced cells were screened with 

different inhibitors. They were as well analyzed for inhibition of direct and 

indirect interaction partners and effects on downstream pathways. Thus, 
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potential treatment strategies were determined as well as possible resistance 

mechanisms due to CD74-NRG1 itself. The final results should help to 

translate the findings into clinical studies and to help targeting CD74-NRG1-

positive tumors in the future. 
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3 - Material and Methods 

3.1 Antibodies 
 
protein company order no. dilution 
β-actin-HRP Santa Cruz sc-47778 1:5000 
AKT Cell signaling #9272 1:1000 
p-AKT Cell signaling #9271 1:1000 

CD74 Abcam ab22604 1:1000 (WB) 
1:80 (IP) 

CD74-PE Biolegend #357603 1:100 
ERK1/2 Cell signaling #9102 1:1000 
p-ERK1/2 Cell signaling #9106 1:2000 

HA-tag  Abcam ab130275 
1:1000 (WB) 
1:100 (flow 
cytom.) 

HER2 Cell signaling #2242 1:1000 
p-HER2 Cell signaling #2243 1:1000 
HER3 Cell signaling #4754 1:1000 

HER3 XP Cell signaling #12708 1:1000 (WB) 
1:50 (IP) 

p-HER3 Cell signaling #4791 1:1000 
MEK1/2 Cell signaling #9122 1:1000 
p-MEK1/2 Cell signaling #9121 1:1000 

NRG1 β1  AF-396-NA 1:200 (WB) 
1:20 (flow cytom.) 

S6 Cell signaling #9202 1:1000 
p-S6 Cell signaling #9205 1:1000 
gt-anti-rb-HRP Millipore #12-348 1:3000 
gt-anti-ms-HRP Millipore #12-349 1:3000 
dk-anti-gt-HRP Millipore AP-180P 1:3000 
gt-anti-rb-488 Life Technologies A-11008 1:800 
dk-anti-gt-488 Life Technologies A-11055 1:800 
gt-anti-ms-488 Life Technologies A-10680 1:800 
 
Table 1: List of antibodies including application-specific concentrations. 
 

3.2 Compounds 
 
Compounds were either purchased at Selleck chemicals, Sigma-Aldrich or 

were a kind gift of Daniel Rauh, PhD and the Lead Discovery Center. 
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3.3 DNA and RNA handling 
 
General DNA and RNA handling procedures were done according to standard 

manufacturer’s instructions. Extraction of plasmid DNA of bacterial 

transformation was done with Machery Nagel NucleoSpin mini-kit (mini), 

Machery Nagel NucleBond Xtra Midi EF kit (midi) or Machery Nagel 

NucleoSpin Gel and PCR clean-up kit. For elution of DNA TE-buffer (5mM 

Tris/HCl, pH 8.5) was used in an assay dependent volume. RNA extraction 

was performed with RNeasy mini kit (Qiagen). 

 

3.4 cDNA synthesis 
 
After RNA isolation 1µl of RNA was used for first-strand cDNA synthesis with 

the SuperScript III reverse transcriptase kit (LifeTechnologies). All reactions 

were mixed on ice. 

 
1µl oligo(dT)18 (100µM) (Thermo Fisher Scientific) 
1µl RNA template 
1µl dNTP mix (10mM) (Thermo Fisher Scientific) 

up to 13µl H2O 
 
 
The mix was heated in a thermocycler to 65°C for 5 minutes and cooled down 

on ice for 1 minute to let the oligo(dT) primers anneal to the poly-A overhangs 

of 3’ mRNA. Following the standard procedures of the protocol the mix was 

placed again in a thermocycler for 50 minutes at 50°C following inactivation 

for 15 minutes at 70°C. Subsequently 1µl RNase H (Thermo Fisher Scientific) 

was added to the reaction for 20 minutes at 37°C to remove RNA that might 

interfere in downstream applications by the formation of RNA:DNA hybrids. 

Inactivation was taken out for 10 minutes at 65°C. 

 

3.5 Sanger sequencing 
 
All Sanger sequencing reactions were performed at the Cologne Center for 

Genomics (CCG) by dideoxy-sequencing with BigDye Terminator v3.1 

(Applied Biosystems). For Sanger sequencing of specific regions from mRNA 

a mRNA-specific pre-amplification step with Maxima Hot Start Taq DNA 
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polymerase or Pfu DNA polymerase (Thermo Fisher Scientific) needed to be 

performed following general sequencing procedures. 

 

3.6 Molecular cloning 
 

3.6.1 PCR and restriction enzyme based cloning 
 
Molecular cloning is being used in molecular biology to amplify DNA. It can be 

used for many purposes e.g. investigation of protein functions, gene-/protein 

editing, for therapeutics (recombinant Insulin, (Crea, Kraszewski, Hirose, & 

Itakura, 1978)) and many more. For conventional cloning restriction enzymes 

that can cut sequence-specific DNA motifs are used because only sequence 

compatible ends can ligate and assemble in a ligation reaction. All restriction 

enzymes were purchased from Fermentas or New England Biolabs. 

Transformation of Escherichia Coli (E.coli.) bacteria (DH5α, XL-Gold or NEB 

5-alpha) were performed via standard protocols by heat shock. The CD74-

ROS and SLC-ROS (long) genes were subcloned from the pcDNA3.1(+) 

vector to the standard retroviral pBabe-puro backbone via EcoRI and XhoI 

digest. 

FIG-ROS (kind gift of Kwock-Kin Wong, MD, PhD), HER2, HER3 and CD74-

NRG1 (cDNA) were PCR amplified with adapter primers containing restriction 

sites using proofreading PCR polymerases (Pfu-Ultra, Agilent; Q5 or Phusion,  

New England Biolabs) and cloned into pBabe-puro, pBabe-hygro and/or 

pBabe-neo retroviral vector. The truncated version of CD74-NRG1 lacking the 

EGF-like domain of NRG1 was PCR amplified with primers containing suitable 

restriction sites and an additional stop codon.  

Hemagglutinin tag (HA) was added to full-length CD74-NRG1 using gene-

specific primers with a HA tag containing overhang. 

 

3.6.2 Gibson assembly 
 
Gibson assembly is a technique developed by Daniel Gibson at the J. Craig 

Venter Institute in 2009. The assembly is completely independent of 

restriction enzymes and is based on an isothermal reaction with three different 
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enzymes (5’ T5 exonuclease, Q5 DNA polymerase, Taq DNA ligase) in one 

reaction (Fig. 12).  

 
 
Figure 12: Mechanism of isothermal Gibson-Assembly reaction. Schematic 
cartoon of the three steps co-occurring in the isothermal Gibson assembly reaction 
(Gibson et al., 2009). 
 
As the reaction takes place at 50°C, which is a trade-off of the optimal 

working temperatures of the three enzymes, the most critical step is that the 

melting temperature of the complementary overhangs created by the 5’ T5 

exonuclease (first step) do match an annealing temperature of at least 50°C. 

The second and third step cannot be divided into independent steps. When 

the overlapping single-stranded DNA overhangs anneal to each other the 

DNA polymerase fills up the gaps between the chew backs and the DNA 

ligase seals the nicks in between (Fig. 12). Gibson assembly is therefore the 

method of choice being independent of any restriction enzyme and joining 

several DNA parts in one reaction to a completely new vector and/or gene 

fusion. The mCherry fluorescent protein and CD74-NRG1/CD74-NRG1_del 

have been joined via Gibson assembly to the pBabe-mCherry-CD74-

NRG1(_del) vector and used for immunofluorescent studies. The same 

approach has been used for generating the inducible mouse-targeting vector 

SERCA-Frt-STOP-FRT_LoxP-CD74-NRG1_LoxP (SERCA vector was a kind 

gift of Thomas Wunderlich, PhD (Belgardt et al., 2008)). 
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3.7 Primer 
 

3.7.1 Cloning Primer (5’ to 3’): 
 
Name length sequence 
FIG-
ROS1F_BamHI 

23 GCATGGATCCATGTCGGCGGGCG 

FIG-
ROS1R_SalI 

35 GCATGTCGACTTAATCAGACCCATCTCCATATCC
A 

CD74-
NRG1F_BamHI 

24 ctatGGATCCATGCACAGGAGGAG 

CD74-
NRG1R_SalI 

28 gatcGTCGACTTATACAGCAATAGGGTC 

NRG1_truncate
d+SalI_R 

37 GCATGTCGACCTAGAAAGTTTTCTCCTTCTCCGC
ACA 

CD74-
NRG1+HA-
TAG_SalI 

73 GATCGTCGACCTACTAGGAGGCGTAGTCAGGCA
CGTCGTATGGGTAGGCCATTTCAGGCAGAGACA
GAAAGGG 

ErbB3_F_SalI 27 GCATGTCGACATGAGGGCGAACGACGC 
ErbB3_R_SalI 31 GCATGTCGACCGTTCTCTGGGCATTAGCCTT 
HER3-pB-Eco-
Sal_F 

41 AGTGTGGTGGTACGTAGGAATTCATGAGGGCGA
ACGACGCT 

EGFP_R+pB_S
al 

43 CACACATTCCACAGGGTCGACTAGCTACTAGCT
AGTCGAGATC 

HER3-EGFP_R 27 CTCACCATCGTTCTCTGGGCATTAGCC 
HER3-EGFP_F 26 AGAGAACGATGGTGAGCAAGGGCGAG 
pB-Eco-
Sal_mCherry 

41 AGTGTGGTGGTACGTAGGAATTCATGGTGAGCA
AGGGCGAG 

mCherry-CD74-
NRG1_R 

28 CTGTGCATCTTGTACAGCTCGTCCATGC 

CD74-NRG1 
(mCherry)_F 

27 CTGTACAAGATGCACAGGAGGAGAAGC 

pB-Eco-
Sal_mCherry-
CD74-NRG1_R 

42 CACACATTCCACAGGGTCGACTATTCAGGCAGA
GACAGAAAG 

pB-Eco-
Sal_mCherry-
CD74-
NRG1_DEL_R 

42 CACACATTCCACAGGGTCGACTAGAAAGTTTTCT
CCTTCTCC 

CAG_NEW_SE
RCA_F 

67 AAACTCTTCGCGGTCTTTCCAGTGGTTAATTAAA
GTTATAATCGCTGAGGTAATATTTAAAATCATT 

CAG_Reverse_
new 

45 CCACGAAGGAGTGAGGGCTGGATATGGAAAGAC
CGCGAAGAGTTT 

KANA_Stop_ne
w_Kill_PacI_F 

78 TATCCAGCCCTCACTCCTTCGTGGGAAGTTCCTA
TTCTCTAGAAAGTATAGGAACTTCGGATCCGAAC
AAACGACCCA 

KANA-
NEW_25nt_add
ed_R 

93 GGTCGACCACTGTGCTGGCGAATTCGGCGCGC
CGAAGTTCCTATACTTTCTAGAGAATAGGAACTT
CAAGCTTACTTACCATGTCAGATCCAG 
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CD74-
NRG1_25nt_ad
ded_LoxP 

97 GGCGCGCCGAATTCGCCAGCACAGTGGTCGAC
CATAACTTCGTATAGCATACATTATACGAAGTTAT
CGCCGCCACCATGCACAGGAGGAGAAGCAG 

CD74-
NRG1_NEW_S
ERCA_R 

95 CGGCCGCTCTAGAACTAGTGGATCCCCCGGGAT
AACTTCGTATAATGTATGCTATACGAAGTTATTTT
ATTCTATTCAGGCAGAGACAGAAAGGG 

 
 

3.7.2 Sequencing Primer (5’ to 3’): 
 
Name length sequence 
pBabe_F 20 CTTTATCCAGCCCTCAC 
pBabe_R 20 CAAATCAACCACAAGCTGGA 
Fig-ROS_1_R 20 CTCGCCCCATATACTTCAGC 
Fig-ROS_2_F 20 CAAATCAACCACAAGCTGGA 
Fig-ROS_2_R 20 ATCCACTTCAGGAGCCACAT 
Fig-ROS_3_F 20 TGACTTGAAACGACCAATGC 
Fig-ROS_3_R 20 CATCAGATGTGCCTCCTTCA 
Fig-ROS_4_F 19 CCAAGGAAGGGGTGACAGT 
Fig-ROS_4_R 20 GCTGGATAAGGCTGATGACC 
Fig-ROS_5_F 22 TGGTTGACCTTGTAGACCTGTG 
Fig-ROS_5_R 20 GGCATAGTTCAGGCCTTCAG 
Fig-ROS_6_F 24 CAGGACCAACTTCAGTTATTCAGA 
Fig-ROS_6_R 20 CTTGCCAGAAGGGCAGTAAG 
CD74-ROS_1F 20 CCCCTTGAACCTCCTCTTTC 
CD74-ROS_1R 19 ATCCGCATCTTGCTCACAG 
CD74-ROS_2F 19 AAGCCTGTGAGCAAGATGC 
CD74-ROS_2R 20 CAGCTCTTTGTCCTCGTTGA 
CD74-ROS_3F 20 GCGGCTGAAGAATCAGAAGT 
CD74-ROS_3R 20 CACAGGTCCACCAGATCCAC 
CD74-ROS_4F 20 TGTATCTGGAACGCATGCAC 
CD74-ROS_4R 20 CGAAGCTCTCATTGATCACG 
CD74-ROS_5F 20 GGCGTGATCAATGAGAGCTT 
CD74-ROS_5R 20 ACTTTCCACACCTGGTTGCT 
SLC-ROS_1F 20 CCAGTGTGGTGGTACGTAGG 
SLC-ROS_1R 20 TCTGGTTCTGCAGGTTGTTG 
SLC-ROS_2F 20 GCTGCCGGATCACCTACTAC 
SLC-ROS_2R 20 CCTTCTTCAGGGTTTTCACG 
SLC-ROS_3F 18 ACCGCCGTGGATATTCTG 
SLC-ROS_3R 20 GATCTCCCAGATCAGGATGC 
SLC-ROS_4F 20 CTGATGGACGGCATCTTCAC 
SLC-ROS_4R 19 GGGCCCTCAGACTTTTCCT 
SLC-ROS_5F 20 GCCCTGATGGAAACAAAGAA 
SLC-ROS_5R 20 CCACACCTGGTTGCTGACTA 
CD74-NRG1_seq1_F 25 GCAGAATGCCACCAAGTATGGCAAC 
CD74-NRG1_seq1_R 25 GTTGCCATACTTGGTGGCATTCTGC 
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CD74-NRG1_seq2_F 24 CATCATGTGTGTGGTGGCCTACTG 
CD74-NRG1_seq3_F 24 GAAATGTCTCCACCCGTGTCCAGC 
ErbB3_1R 20 ACAGCTTCTGCCATTGTCCT 
ErbB3_2F 20 CCCTCAGGACACAGACTGCT 
ErbB3_2R 20 TGTTGCTCGAGTCCACAGTC 
ErbB3_3F 20 CCACATGCACAACTTCAGTG 
ErbB3_4F 20 CGGGCTCTGATACTTGTGCT 
ErbB3_5F 20 TCCCTGAGGGTGAATCAATC 
ErbB3_6F 20 TGGTGTGACAGTTTGGGAGT 
ErbB3_7F 20 GGAGTCTTGCCAGGAGTCTG 
ErbB3_3R 20 TCGACAGGACAAGCACTGAC 
ErbB3_4R 20 CGTTCCAAGTATCGCCTCAT 
ErbB3_5R 20 AAATCTGCCACCTGAACCTG 
ErbB3_6R 20 GTTGTCCTCCTCTGCTTCCA 
ErbB3_7R 20 CCCAGGACAGAACTGAGACC 
ErbB3_5'UTR_F 19 ATTTGCAACCTCCGCTGCC 
ErbB3_3'UTR_R 20 GGAAAAGGGGCTGGGACCTG 
ErbB2_5'UTR_F 19 AATGGCCAGGACAAACGCA 
ErbB2_3'UTR_R 20 AGCCATCTGGGAACTCAAGC 
ErbB2_1R 19 GCGTCAGGCTCTGACAATC 
ErbB2_2F 20 CCCAGCTCTTTGAGGACAAC 
ErbB2_2R 19 GTCCCCATCAAAGCTCTCC 
ErbB2_3F 20 GCCCTGGTCACCTACAACAC 
ErbB2_3R 20 TGCCTGGCATTCACATACTC 
ErbB2_4F 19 CTACTCGCTGACCCTGCAA 
ErbB2_4R 20 AAGCACCTTCACCTTCCTCA 
ErbB2_5F 20 CGGTGTGAAACCTGACCTCT 
ErbB2_5R 19 ATCCACTTGATGGGCACCT 
ErbB2_6F 20 AAGCATACGTGATGGCTGGT 
ErbB2_6R 20 GCCACTCCTGGTAGATGAGC 
ErbB2_7F 19 CCCCATCTGCACCATTGAT 
ErbB2_7R 20 GGGTCCTGGTCCCAGTAATA 
ErbB2_8F 20 TTTGATGGTGACCTGGGAAT 
EGFR _1116_R  20 TGATGGAGGTGCAGTTTTTG 
EGFR _120_R  20 TGCCTTGGCAAACTTTCTTT 
EGFR _1266_F  20 GACCTCCATGCCTTTGAGAA 
EGFR _1609_R  20 CTGACATTCCGGCAAGAGAC 
EGFR _1760_F  20 CCAGTGTGCCCACTACATTG 
EGFR _2135_R  20 CCTCAAGAGAGCTTGGTTGG 
EGFR _2265_F  20 GAAGCAACATCTCCGAAAGC 
EGFR _2635_R  22 TGCATGGTATTCTTTCTCTTCC 
EGFR _2755_F  20 CCAAGCCATATGACGGAATC 
EGFR _3133_R  20 AGAGAGCTCAGGAGGGGAGT 
EGFR _3277_F  20 TCCTCCCAGTGCCTGAATAC 
EGFR _3608_R  20 TTCTGCATTTTCAGCTGTGG 
EGFR _608_R  20 ATTGGGACAGCTTGGATCAC 



3 - Material and Methods
	
  
 

 40 

EGFR _752_F  19 GAGAGCGACTGCCTGGTCT 
EGFR_267_F  20 CAGGAGGTGGCTGGTTATGT 
EGFR_81_F 18 GAGTCGGGCTCTGGAGGA 
KRAS-cDNA-A-F 19 GGAGAGAGGCCTGCTGAAA 
KRAS-cDNA-A-R 21 TGGCAAATACACAAAGAAAGC 
KRAS-cDNA-B-F 20 TACAGTGCAATGAGGGACCA 
KRAS-cDNA-B-R 23 TGCTGATGTTTCAATAAAAGGAA 
KRAS-cDNA-C-F 23 GGAAATAAATGTGATTTGCCTTC 
KRAS-cDNA-C-R 22 CTAACAGTCTGCATGGAGCAGG 
SERCA-Stop_1F 20 CCTCGCTAGCATCTGTAGGG 
SERCA-Stop_1R 20 GCGTTGGCTACCCGTGATAT 
SERCA-Stop_2F 20 CATGGGTCACGACGAGATCC 
SERCA-Stop_2R 20 GCCCTGAATGAACTGCAGGA 
SERCA-Stop_3F 20 GTGCCCAGTCATAGCCGAAT 
SERCA-Stop_3R 20 GCCATATTTGGTGTCCCCGA 
SERCA-Stop_4F 20 GAAACCACCGTTGCCGTAAC 
SERCA-Stop_4R 24 GCCTCATCATCACTAGATGGCATT 
SERCA-Stop_5F 21 AGCAGTGGTGGAATGCCTTTA 
SERCA-
Stop_5R(IRES) 

19 GGCGGAATTGGGGTACCCT 

SERCA-Stop_6F 20 CTCCCCCTGAACCTGAAACA 
 

Table 2: List of primer sequences used for the conducted experiments. 

 

3.8 Cell lines 
 
Ba/F3 cells were a kind gift from Nikolas von Bubnoff. NIH-3T3 cells were 

purchased from the Deutsche Sammlung von Mikroorganismen und 

Zellkulturen (DSMZ). HEK293T, H322, H1395, H1563, H1568, HCC827, PC9 

and SKBR-3 have been purchased from the American Type Culture Collection 

(ATCC). H3122 cells were a kind gift from Christine Lovly, MD, PhD. 

NIH-3T3 cells were cultured in DMEM (Gibco) supplemented with 10% fetal 

calf serum (FCS) (Gibco) and 1% penicillin/streptomycin (PS) (Gibco) (≙ 

50units/ml penicillin; ≙ 50µg/ml streptomycin). Ba/F3 cells, HEK293T, H322, 

H1395, H1563, H1568, HCC827, PC9 and SKBR3 cells were cultured in 

RPMI (Gibco) supplemented with 10% FCS and 1% PS. All cells were grown 

in a humidified incubator at 37°C and 5% CO2. For passaging adherent cells 

were split at 80 – 90% confluence. Cells were washed with Phosphate 

Buffered Saline (PBS) (Gibco) and incubated in 0.25% Trypsin/EDTA (Gibco). 
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After detachment of cells from the flask, Trypsin reaction was inactivated with 

at least twice the amount of culture medium and split appropriately. 

For long-term storage of cells, a suitable amount of cells was washed, 

trypsinized and centrifuged at 300g for 5 minutes. The cells were 

resuspended in freezing media (DMEM or RPMI, 10% FCS, 1% PS and 10% 

DMSO) and frozen in cryo vials. The initial freezing step was done in 

polyfoam freezing boxes to let the cells slowly cool down to -80°C, before 

taking the cells to a liquid nitrogen tank (-196°C) for long-term storage within 

the next days. 

 

3.9 Virus production 
 
HEK293T cells were plated to 70% of confluence in according growth media 

(HEK293T cells can adapt their metabolism with different media) 

supplemented with 10% FCS and 1% PS at 37°C, 5% CO2 over night. The 

next day transfection reaction is set up for retroviral packaging vector (pCL-

eco for mouse cells; pCl-ampho for human cells, Imgenex) and the pBabe 

retroviral vector containing the gene of interest (Tab.3). 

 

 6cm / T25 T75 T175 

TransIT-LT1 (µl) 14 42 84 

Opti-MEM (µl) 486 1358 2716 

DNA (µg) 4.6 14 28 

Media (ml) 3.5 10 20 

 
Table 3: Amounts of TransIT, Opti-MEM, DNA and growth media used for 
transfection. 
 

For transfection reaction TransIT-LT1 (Mirus) was added dropwise to Opti-

MEM+Glutamax media (Gibco) and incubated for 5 minutes. The plasmid 

DNA containing pBabe retroviral vector and packaging vector are added to 

the Opti-MEM:TransIT-LT1 mixture and incubated for 25 minutes at room 

temperature in order to let the TransIT-LT1:DNA complexes being formed. 

The mixture is added dropwise to the HEK293T cells into complete growth 

media and virus-containing supernatant is collected after 48 – 60 hours. The 
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supernatant is centrifuged at 300g for 5 minutes and sterile filtered through a 

0.45µm nitrocellulose filter to make sure no cellular debris is left in the 

supernatant. The virus containing supernatant is kept for up to 3 months at 

4°C. 

 

3.9.1 Stable transduction of cells 
 
For stable expression of the desired gene cells were seeded to an appropriate 

flask to 50% confluence. Viral supernatant (80% of final volume) and 20% 

fresh growth media were mixed and 8µg/ml polybrene (Santa Cruz) was 

added to the cells. The viral supernatant was kept on the cells for 24 – 48 

hours to allow proper infection of cells. After 48 hours of the initial 

transduction the media was exchanged with complete growth media 

containing an appropriate amount of antibiotics (3µg/ml puromycin, 800µg/ml 

hygromcyin, 800µg/ml geneticin; LifeTechnologies). Antibiotics were 

exchanged every 4 days until control cells (non-transduced cells) were 

negatively selected. Proper expression of gene of interest was checked via 

immunoblot and backups of cells were frozen for long-term storage in liquid 

nitrogen. 

 

3.10 Preparation of cell lysates 
 
Cells were treated prior lysing the cells accordingly. For starving cells, cells 

were washed with PBS and grown in media with 0% FCS and 0% PS for at 

least 24 hours. Cells were washed with cold PBS to remove residual media. 

Cells were lysed in lysis buffer (Cell Signaling: 20mM Tris-HCl (pH 7.5), 

150mM NaCl, 1mM EGTA, 1% Triton, 2.5mM sodium pyrophosphate, 1mM 

beta-glycerophosphate, 1mM Na3VO4, 1µg/ml leupeptin; Roche: 1x Compete 

mini; Roth: 1mM PMSF; Calbiochem: 200µl Phophatase inhibitor cocktail set 

III; for 10ml of 1x lysis buffer) and incubated on ice for 10 minutes. Lysates 

were centrifuged for 10 minutes, 14,000rpm at 4°C. Supernatant was 

collected to a fresh tube, kept on ice and used for determining protein 

concentrations using BCA Protein Assay (Thermo Fisher Scientific). Cell 

lysates were either directly used for SDS polyacrylamide gel electrophoresis 
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or stored at -80°C. Prior loading the lysates on a SDS polyacrylamide gel, 

samples were mixed with 5x Laemmli buffer (250mM Tris (pH 6.8), 50% 

glycerol, 5% β-mercaptoethanol, 10% SDS and 0.05% bromphenol blue) and 

boiled at 95°C for 5 minutes to denature the proteins in the cell lysates and 

apply a general negative charge to each protein according to their mass 

(Shapiro, Viñuela, & Maizel, 1967). 

 

3.11 SDS-polyacrylamide gel electrophoresis (PAGE) 
 
30 – 50µg boiled cell lysates were loaded on Novex® 4-12% Tris-Glycin 

polyacrylamide gels. As a protein size standard PageRuler™ Plus Prestained 

Protein Ladder (Fermentas) was used. The proteins were separated at 120V 

in SDS running buffer (192mM Glycin, 25mM Tris-HCl, 0.1% SDS) until the 

migration front of bromphenol blue has reached the end of the gel. 

 

3.12 Western Blot / Immunoblot 
 
For blotting the proteins on a polyvinylidene fluoride (PVDF) membrane the 

PVDF membrane had to be incubated in methanol for 1 minute and 

equilibrated in transfer buffer (25mM Tris-HCl, 192mM Glycin, 20% methanol). 

The polyacrylamide gel was placed in a sandwich between PVDF membrane, 

whatman paper and sponges to guarantee a proper electric field in between 

anode and cathode to let the protein migrate and bind on the PVDF 

membrane. The transfer was run for 90 minutes at 25V. After the transfer the 

membrane was blocked in 5% skimmed milk/TBST (50mM Tris-HCl, 150mM 

NaCl, pH 7.4, 0.05% Tween-20) for 1 hour at room temperature. Primary 

antibodies were diluted according to table 1 in TBST and incubated over night 

at 4°C on a rotator. The next day membranes were washed extensively with 

TBST prior incubation with isotype-specific secondary HRP-conjugated 

antibody for 1 hour at room temperature. After extensive washing to remove 

unbound unspecific antibody with TBST at room temperature, membranes 

were incubated with enhanced chemiluminescence reagent (ECL) (GE 
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Healthcare) and western blots were captured and developed on ECL 

Hyperfilm (GE Healthcare).  

 

3.13 Co-Immunoprecipitation 
 
A co-immunoprecipitation is used to study the interaction of different proteins 

with each other as part of a complex. In a final volume of 150µl 400µg of 

protein lysate was preincubated with 25µl of prewashed agarose beads 

(Santa Cruz) for 1h at 4°C for preclearing the lysates from unspecific binding 

proteins to the beads. Beads and lysates were separated via centrifugation at 

1000g, 4°C for 5 minutes. For enrichment of CD74-NRG1 or HER3 protein, 

lysates were incubated with a CD74 or HER3 antibody at 4°C over night and 

immunoprecipitated with Protein A-agarose (mouse) or Protein G-PLUS-

agarose beads (rabbit). Beads were washed extensively with PBS. After the 

final washing step, beads were resuspended in 30µl of Laemmli buffer and 

boiled for 5 minutes at 95°C. Beads were pelleted and supernatant was 

directly loaded on a NOVEX® 4-12% polyacrylamide gel following standard 

western blotting procedure. Full lysates, lysate incubated only with agarose 

beads or only with antibody were used as controls. 

 

3.14 Supernatant concentration 
 
Supernatant of NIH-3T3 cells transduced with empty vector control or CD74-

NRG1 vector was placed on ice and centrifuged at 300g, 4°C for 5 minutes to 

pre-clear the supernatant from cellular debris. The supernatant was subjected 

to a Vivaspin® 6 centrifugal concentrator (Sartorius) with a pore size of 3kDa 

in a swinging bucket cooling centrifuge at 3000g, 4°C for 2 hours. 

Supernatant was stored at -80°C. For immunoblotting 50µl was mixed with 5x 

Laemmli buffer and loaded on a Novex® 16% polyacrylamide gel 

(LifeTechnologies) following standard procedures for western blotting. 

 

 



3 - Material and Methods
	
  
 

 45 

3.15 Soft agar assay 
 
2% and 1.2% Agarose Type IX-A ultra low (Sigma-Aldrich) was dissolved in 

ddH2O and heated in the microwave until the agarose was dissolved. Agarose 

solution was sterile aliquoted and solidified at 4°C over night. Prior use 2% 

and 1.2% Agarose was boiled for 30 minutes in a thermomixer at 95°C and 

cooled down to 60°C. 2x RPMI supplemented with 20% FCS and 2% PS was 

prewarmed to 37°C. For preparing the bottom agar equal volumes of 2% 

Agarose solution and 2x RPMI were mixed and 500µl was used per well in a 

24-well plate. The plate was stored at 4°C for 30 minutes to allow the 1% 

Agarose:RPMI media to solidify. The plate was allowed to warm to room 

temperature for 15 minutes. H1568 cells were split using standard protocol 

and cell numbers were assessed in a Z2 particle counter (Beckman Coulter). 

1.2% Agarose solution was slowly cooled down to 44°C in a thermomixer and 

mixed with equal volumes of 2x RPMI. 8000 cells were mixed with 500µl of 

0.6% Agarose:RPMI media and plated on the solidified bottom agar. The plate 

was placed at 4°C for 10 minutes to let the top agar solidify and incubated at 

37°C, 5% CO2 over night. The next day, top agar was carefully covered with 

RPMI media and incubated for 14 days. Brightfield pictures were taken with a 

Zeiss Axiovert 40 CFL microscope at 100x magnification. Colony size was 

assessed with ImageJ. 

 

3.16 Proliferation assay 
 
H322 and H1568 cells were seeded in 6 wells (initial start 40,000 cells). At 

day 1, 2 and 5 duplicates of cells were trypsinized and counted with a Z2 

particle counter (Beckman Coulter). Data were analyzed with Excel and 

graphs were plotted with R. 

 

3.17 Viability assay 
 
Cells were plated at low density in a white-bottom 96-well plate (Corning®) in 

90µl media/well over night. Compounds were prepared by serial dilution. 

DMSO was added to control wells in the highest dilution used in the assay. 
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The cells were treated for 96 hours with the compounds following 

determination of ATP content as surrogate for viability by CellTiter-Glo® 

assay (CTG) (Promega). CTG was incubated for at least 20 minutes on the 

cells up to 4 hours without light. Luminiscence was assessed on an Infinite 

200 Pro microplate reader (Tecan). Data were analyzed in Excel and plotted 

with R. 

3.18 Flow cytometry 
 
For flow cytometry 200,000 cells were resuspended in 100µl PBS 

supplemented with 2% FCS (FACS buffer) in 96-well plates with a U-shaped 

well bottom. For extracellular staining cells were incubated with primary 

antibody for 30 minutes in 30µl FACS buffer covered from light.  

For intracellular staining cells were fixed in 100µl 4% paraformaldehyde/PBS 

solution (PFA) for 30 minutes protected from light and washed extensively. 

For perforating the cell membrane, cells were resuspended in Saponin-buffer 

(0.5% Saponin, 5% FCS in PBS) and incubated in 30µl Saponin buffer with 

primary antibody. Cells were washed 3 times with 150µl FACS buffer and 

incubated with secondary antibody for 30 minutes in 30µl FACS 

buffer/Saponin buffer covered from light. Cells were washed extensively and 

resuspended in 100µl FACS buffer. Flow cytometry was performed on a BD 

LSR II at the University Hospital Bonn by Dr. Juliane Daßler. Results were 

analyzed with FlowJo (Treestar). 

 

3.19 Immunofluorescence 
 
Cells were plated on glass cover slips at 60% confluence over night. The next 

day cells were washed with PBS and fixed with 4% PFA/PBS solution for 20 

minutes protected from light. Fixation was stopped via extensive washing with 

PBS. Cells were embedded in ProLong® Gold antifade mounting media with 

DAPI (LifeTechnologies). Pictures were taken on a Leica TCS SP8 gSTED 

confocal microscope at the CECAD imaging facility at the Universitiy Hospital 

of Cologne. 
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4 - Results 

4.1 Identification of CD74-NRG1  gene fusion 
 
The objective of this study was the identification of new oncogenic driver gene 

fusions in lung adenocarcinoma. Therefore tumor specimens from 26 lung 

adenocarcinoma patients of never-smokers that were negative for KRAS and 

EGFR mutations were used for transcriptome sequencing. After applying a 

novel detection algorithm that was tweaked to detect fusion genes from 

RNAseq data in 14/25 cases no oncogenic driver mutation could be found. In 

one patient sample an amplification of the EGFR locus was found and in 9/25 

cases known fusion genes were detected. In one sample from a 64-year-old 

female patient with stage I invasive mucinous adenocarcinoma (IMA) subtype 

the novel CD74-NRG1 gene fusion was discovered for the first time (Tab. 4). 

 

 
 
Table 4: Clinical information on patients used in the screening study. Patient 
information, clinical stage and detected driver mutation of samples used for the 
transcriptome analysis. 
 

In an additional screening cohort at the Aichi cancer center in Nagoya in 4/94 
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lung adenocarcinoma patients that were never-smoker and negative for 

EGFR, KRAS, ALK, HER2 and ROS1 mutations the CD74-NRG1 gene fusion 

could be identified. The breakpoint analysis was performed at the Cologne 

Center for Genomics by Sanger sequencing from patient cDNA and validated 

to harbor the identical breakpoint as in the first index-case. Within this cohort 

all CD74-NRG1 patients (4/15) were diagnosed with IMA. IMA is very prone to 

KRAS mutations which is reflected in the cohort. 6/15 (40%) of the cases 

harbored KRAS mutations, 4/15 (27%) possessed the CD74-NRG1 gene 

fusion and in 5/15 (33%) the driver is still unknown (Fernandez-Cuesta et al., 

2014; Maeda et al., 2012). Therefore CD74-NRG1 gene fusion might be a 

new diagnostic marker and oncogenic event specific for IMA – especially as 

this finding could be validated in two completely independent cohorts (Gow, 

Wu, Chang, & Shih, 2014; Nakaoku et al., 2014). 

 

4.2 Characterization of CD74-NRG1’s general 
cellular properties 

 

4.2.1 CD74 promoter leads to expression of CD74-NRG1 gene fusion 
 
NRGs are generally not expressed in lung cells. Therefore, expression of the 

CD74-NRG1 gene fusion needs to be driven by the CD74 portion in patients 

harboring the fusion. Analysis of expression levels - fragments per kilobase of 

exon per million fragments mapped (FPKM) - of each individual gene (CD74 

and NRG1) was performed on patient samples from RNAseq reads. 

Expression levels of CD74 were distributed in a wide range starting from 49 

FPKM up to 941 FPKM (median 289 FPKM) (Fig. 13 A, upper part). In the 

index-case expression of CD74 was 195 FPKM. Compared to this no NRG1 

isoform was expressed in any of the lung cancer specimens analyzed beside 

NRG1 III-β3 in the index-case harboring the CD74-NRG1 gene fusion with 74 

FPKM (Fig. 13 A, lower part). The exact breakpoint of the CD74-NRG1 gene 

fusion is mapped to an intronic region of CD74 (chromosome 5: 149,783,493) 

and NRG1 (chromosome 8: 32,548,502). Notably reads of NRG1 III-β3 were 

only detected after the breakpoint (Fig. 13 B). This is in line with the break-
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apart fluorescence in situ hybridization (FISH) analysis showing that only one 

allel is affected and the other allel stays wild-type (Fig. 13 C) (FISH was 

performed at the Aichi cancer enter in Nagoya and analyzed by Yasushi 

Yatabe, MD, PhD) (Fernandez-Cuesta et al., 2014).  

 

 
Figure 13: Expression analysis of CD74-NRG1 gene fusion. (A) The CD74 (upper 
part) promoter is used for the expression of the NRG1 III-β3 (lower part) part of the 
CD74-NRG1 gene fusion. (B) NRG1 III-β3 reads could only be detected after the 
breakpoint. (C) NRG1 break-apart FISH picture of the index-case patient showing 
that only one allel (red arrows) of NRG1 III-β3 is affected by the chromosomal 
rearrangement (Fernandez-Cuesta et al., 2014). 
 

4.2.2 Cellular localization of the CD74-NRG1 gene fusion 
 
To investigate the localization of the newly discovered CD74-NRG1 gene 

fusion, NIH-3T3 mouse fibroblast were transduced with the pBabe retroviral 

vector system containing either empty vector (e.v.) control, CD74-NRG1 or 

carboxy-terminal hemagglutinin-tagged (HA) CD74-NRG1 (CD74-NRG1-HA) 

(Fig. 14 A). 
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Figure 14: Analysis of CD74-NRG1 localization on the cellular membrane by 
flow cytometry. (A) Immunoblot analysis of NIH-3T3 cells for protein expression of 
CD74-NRG1 (upper part) and CD74-NRG1-HA (lower part). (B, C) Flow cytometric 
analysis of NIH-3T3 cells transduced with empty vector (e.v.), CD74-NRG1 or CD74-
NRG1-HA for extra- and intracellular binding of labeled antibodies (CD74, NRG1 and 
HA) (Fernandez-Cuesta et al., 2014).  
 

 

Flow cytometric analysis for CD74 showed no shift in fluorescence intensities 

for extracellular stainings (without perforating the cell membrane) but showed 

a clear binding of the antibody for intracellular CD74 staining in CD74-NRG1 

transduced NIH-3T3 cells compared to e.v. control cells (Fig. 14 B). 

Extracellular stainings for NRG1 showed a shift in fluorescence intensities for 

CD74-NRG1 transduced cells. As this shift was not as strong as with the 

CD74 antibody this finding was confirmed by staining against HA. CD74-

NRG1-HA transduced cells showed an intensity shift with the HA antibody 

compared to e.v. control cells (Fig. 14 C). This analysis suggests that the 

CD74-NRG1 fusion gene can be localized within the cell membrane with the 

carboxy-terminal NRG1 part being expressed on the cell surface and the 

amino-terminal part of the fusion protein being localized inside of the cell 

which resembles the wild-type situation of NRG1 type III proteins (compare 
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Fig. 10). (The flow cytometry data were assessed together with Dr. Juliane 

Daßler, University Hospital Bonn.) 

Localization studies were conducted via confocal microscopy imaging in NIH-

3T3 cells transduced with e.v., or CD74-NRG1 and CD74-NRG1_del 

(truncated version of CD74-NRG1 lacking EGF-like domain) that were tagged 

at the amino-terminus of CD74-NRG1 with mCherry fluorescent protein (Xie, 

Qiao, Wu, & Tang, 2011). Localization of CD74-NRG1 and CD74-NRG1_del 

were assessed throughout the cell beside the nucleus (Fig. 15). 

 

 
 
Figure 15: Confocal microscopy images of CD74-NRG1 and CD74-NRG1_del. 
NIH-3T3 cells were transduced with retrovirus containing e.v., a mCherry-tagged 
version of CD74-NRG1 or CD74-NRG1_del. Nuclei were stained with 4’,6-diamidino-
2-phenylindole (DAPI). 
 

In summary localization of the CD74-NRG1 gene fusion is not only restricted 

to the cell membrane but is as well localized in the cytoplasm of cells. Only 

the nucleus is clearly spared out for expression of the CD74-NRG1 gene 

fusion. This would be in line with immunofluorescence pictures published for 

CD74 and/or NRG1 expression showing cytoplasmic and membranous 
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stainings but no staining of the nucleus (compare ab22603 (CD74) and 

ab53104 (NRG1), Abcam and (Xie et al., 2011)). 

 

4.2.3 CD74-NRG1’s function is achieved via the NRG1-part of the gene 
fusion 

 
When comparing different CD74-associated gene fusions in lung cancer it is 

striking that common gene fusions with CD74 as fusion partner do harbor all 

the breakpoint within the same region. For example the breakpoint of CD74-

ROS leads to a fusion on protein level at the exact amino acid position as in 

CD74-NRG1 (Fernandez-Cuesta et al., 2014; Takeuchi et al., 2012). In CD74-

NTRK1 the fusion leads to a breakpoint prolonged CD74 part of about 20 

amino acids compared to the breakpoints of CD74-NRG1 and CD74-ROS 

(Fig. 16 A) (Vaishnavi et al., 2013). 

When transducing Ba/F3 murine pro-B-cells with retrovirus containing CD74-

ROS, FIG-ROS, SLC-ROS or EGFR L858R, they become independent of IL-3 

signaling. At the same time they developed an oncogene dependency on 

ROS1 or EGFR signaling. Targeting of ROS1 by crizotinib or EGFR by 

erlotinib inhibits ROS1-kinase or EGFR thereby inducing apoptosis in these 

cell lines but not vice versa (Fig. 16 B). These results indicate that the 

functionally active part and oncogenic switch is triggered by the ROS1-kinase 

or EGFR in these cells. The 5’ fusion partners CD74, FIG and SLC do only 

lead to expression in the patients and may influence the localization but do 

not have an oncogenic function in terms of intrinsic pathway activation (Fig. 

16 B) (Charest et al., 2003; Paez et al., 2004; Rikova et al., 2007). In analogy 

to the described gene fusions and the exact breakpoint position on protein 

level NRG1 should trigger the oncogenic function in CD74-NRG1. Compared 

to the discovered gene fusions, CD74-NRG1 represents the first gene fusion 

involving a ligand (NRG1) instead of a kinase (Fernandez-Cuesta et al., 

2014). 
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Figure 16: Comparison of different gene fusions to CD74-NRG1. (A) Amino acid 
sequence alignment of CD74-NRG1, CD74-ROS1 and CD74-NTRK1 on CD74. (B) 
Viability assay with CellTiter-Glo® on Ba/F3 cells transduced with corresponding 
gene fusions and screening with crizotinib or erlotinib. Error bars are calculated by 
standard deviations of the mean. 
 

 

4.2.4 CD74-NRG1 interacts via its EGF domain with the HER3 receptor 
 
The only functional domain within CD74-NRG1 fusion protein is the EGF-like 

domain that is preserved from NRG1 III-β3. To further characterize the 

functional effect of the EGF-like domain, a truncated version of CD74-NRG1 

named CD74-NRG1_del lacking the EGF-like domain was generated (Fig. 

17).  
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Figure 17: Schematic figure of CD74-NRG1 full-length and truncated variant 
CD74-NRG1_del. Structure of CD74-NRG1 (upper part) fusion protein and truncated 
version CD74-NRG1_del (lower part) lacking the EGF-like domain compared to full-
length CD74-NRG1. (TM – transmembrane domain) 
 

Due to earlier publications, NRG1 is described as a ligand of HER3 and HER4 

receptors (Hynes & Lane, 2005; Sithanandam et al., 2003; Yarden & 

Sliwkowski, 2001). As only HER3 and not HER4 was expressed in the patient 

cohort (average of 31.4 FPKM (HER3) and 0.2 FPKM (HER4)) the interaction 

of NRG1:HER3 was further investigated. For this purpose co-

immunoprecipitations of CD74-NRG1 and the HER3 receptor were conducted 

to elucidate if the CD74-NRG1 fusion protein is capable of physically binding 

to the HER3 receptor. Therefore NIH-3T3 cells expressing HER2 and HER3 

together with either empty vector (ev), CD74-NRG1 or CD74NRG1_del were 

generated. Additionally NIH-3T3 cells expressing HER2 and HER3 were 

generated as well as NIH-3T3 cells expressing empty vector (ev), CD74-

NRG1 or CD74-NRG1_del to further investigate the role of an auto- or 

paracrine binding mode. 

The immunoblot analysis shows a clear expression and detection of the 

individual overexpressed proteins in the NIH-3T3 cells in the full lysate lanes 

(Fig. 18, lanes 1-3). Interaction of CD74-NRG1 fusion protein with the HER3 

receptor could only be detected in the HER3 co-immunoprecipitation lysates 

from cells which were transduced additionally with full-length CD74-NRG1 

gene fusion including EGF-like domain. In cells transduced with CD74-

NRG1_del or empty vector in addition to HER2 and HER3 no CD74-NRG1 

protein could be detected in the HER3 co-immunoprecipitation (Fig. 18 upper 

part, lanes 4-6). 
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To check for a specific paracrine interaction (from one cell to another) of 

CD74-NRG1 fusion protein with HER3, 1:1 mixed cultures of NIH-3T3 cells 

transduced with HER2 and HER3 and NIH-3T3 cells transduced with empty 

vector, CD74-NRG1 or CD74-NRG1_del were generated. Physical interaction 

could only be confirmed in mixed cultures of NIH-3T3 cells transduced with 

CD74-NRG1 mixed with NIH-3T3 cells transduced with HER2 and HER3 

indicating a paracrine interaction of the NRG1 portion from the CD74-NRG1 

fusion protein with the HER3 receptor via the EGF-like domain (Fig.18, lower 

part, lanes 4-6). Therefore CD74-NRG1 fusion shows interaction with 

surrounding cells and binding to the HER3 receptor thus very likely stimulating 

HER3 receptor signaling. In addition this experiments show that full-length 

CD74-NRG1 fusion protein binds to HER3 and does not need to be further 

processed (e.g. shed) for interaction. 

 

 
 
 
Figure 18: Interaction analysis of CD74-NRG1 with HER3 by HER3 co-
immunoprecipitation. Immunoblot analysis including HER3 co-immunoprecipitation 
(CoIP) of NIH-3T3 cells transduced with HER2 and HER3 and/or empty vector, 
CD74-NRG1 or CD74-NRG1_del. All genes are expressed in every NIH-3T3 cell 
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(upper part) or individual cells expressing empty vector, CD74-NRG1 or CD74-
NRG1_del were generated and mixed 1:1 with NIH-3T3 cells expressing HER2 and 
HER3 receptor (lower part) to investigate paracrine interaction of neighboring cells. 
One representative experiment is shown. 
 

In the reciprocal experiment the identical cell lysates were used for the co-

immunoprecipitation of CD74-NRG1 with a CD74 antibody and subsequent 

analysis of HER3 detection. The results confirm the immunoblot analysis of 

the HER3 co-immunoprecipitation. Only in cells or co-cultured cells which 

express full-length CD74-NRG1 fusion protein including the EGF-like domain, 

HER3 receptor is detected in co-immunuprecipitated samples indicating a 

physical interaction of the EGF-like domain of the NRG1 portion with the 

HER3 receptor as well. No HER3 receptor could be detected in cells 

transduced with empty vector or CD74-NRG1_del (Fig. 19, upper part). These 

results show a robust interaction of the EGF-like domain of CD74-NRG1 

fusion with the HER3 receptor and confirm that cells expressing the CD74-

NRG1 gene fusion are capable of interacting as well as wild type NRG1 III-β3 

with the HER3 receptor in a paracrine mode of action. Notably, no additional 

processing of full-length CD74-NRG1 fusion protein was necessary to interact 

with the HER3 receptor confirming the results of HER3 co-

immunoprecipitations. No shed NRG1 portion could be detected as described 

for other isoforms of NRG1 or claimed by Takashi Kohno’s group for CD74-

NRG1 fusion protein (Fig. 19, lower part) (Nakaoku et al., 2014). 
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Figure 19: Interaction analysis of CD74-NRG1 with HER3 by CD74 co-
immunoprecipitation. Immunoblot analysis including CD74 co-immunoprecipitation 
of different NIH-3T3 cells transduced with either HER2, HER3 and empty vector, 
CD74-NRG1 or CD74-NRG1_del (upper part) or to check for paracrine interaction in 
1:1 mixed cell cultures (lower part). 
 

4.2.5 CD74-NRG1 does not become shed in NIH-3T3 cells 
 
Due to reports that NRG1 III-β3 harbors an own shedding site and is not 

exclusively membrane-tethered compared to the other NRG1 isoforms, CD74-

NRG1 was investigated to its ability of becoming shed (Nakaoku et al., 2014). 

Shedding could already not been detected in co-immunoprecipitations of 

lysates from NIH-3T3 cells. Only full-length CD74-NRG1 could be detected in 

immunoblots of full lysates as well as of co-immunoprecipitated lysates (Fig. 

18, 19). The NRG1 portion of the CD74-NRG1 fusion protein is predicted to 

show a molecular weight of 8kDa 

(http://bioinformatics.org/sms/prot_mw.html). Therefore supernatant of NIH-

3T3 cells transduced with empty vector or CD74-NRG1 was collected and 

applied on sample concentrating columns to concentrate the supernatant for 

proteins. Immunoblot analysis of the concentrated supernatants of NIH-3T3 
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transduced cells with empty vector or CD74-NRG1 revealed no detectable 

protein with an NRG1 antibody below 10kDa. H1568 cells transduced with 

empty vector (e.v.) or CD74-NRG1 were used as controls to show specific 

antibody binding (Fig. 20). Similar to the results of the co-immunoprecipitation 

no NRG1 protein could be detected with a polyclonal NRG1 antibody that is 

specifically directed against the EGF-like domain of NRG1. Therefore CD74-

NRG1 seems at least not to become shed in NIH-3T3 cells indicating either i) 

a cell-type specific effect for processing membrane-bound NRG1 or ii) only a 

very minor portion of CD74-NRG1, fusion protein being processed that is 

undetectable in immunoblots. Beside this evidence from NIH-3T3 cells no 

further processed CD74 portion of CD74-NRG1 fusion protein could be 

detected in any immunoblot neither for murine nor in human lung 

adenocarcinoma cell lines (Fig. 14, 18, 19, 20, 21). 

 

 
 

Figure 20: Immunoblot of concentrated supernatants of NIH-3T3 cells. 
Immunoblot against NRG1 protein of concentrated supernatant (supern.) from NIH-
3T3 cells transduced with empty vector (e.v.) or CD74-NRG1. Lysates of H1568 lung 
adenocarcinoma cell line transduced with empty vector (e.v.) or CD74-NRG1 served 
as antibody control. One representative experiment is shown. 
 

4.3 Functional relevance of CD74-NRG1  gene fusion 
 

4.3.1 CD74-NRG1 can lead to increased HER3 phosphorylation and can 
activate major downstream pathways 

 
As shown in Fig. 18 and 19 CD74-NRG1 can physically interact with the 

HER3 receptor, but its ability for HER3 receptor activation needs to be 
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proven. For this purpose H322 and H1568 lung adenocarcinoma cell lines that 

were wild-type for KRAS, EGFR, HER2 and HER3 were transduced with 

empty vector (e.v.), CD74-NRG1 or CD74-NRG1_del. HER3 receptor 

activation was assessed via phospho-HER3 (pHER3) antibody and typical 

downstream targets of PI3K (phospho-AKT (pAKT) and phospho-S6 (pS6)) 

and MAPK (phospho-ERK (pERK)) pathway (Baselga & Swain, 2009; Yarden 

& Sliwkowski, 2001). Robust HER3 receptor activation could be observed in 

CD74-NRG1 transduced H1568 and H322 cells compared to empty vector 

control and CD74-NRG1_del transduced cells. Subsequent PI3K and MAPK 

pathway activation could be observed in H1568 and H322 cells only harboring 

the full-length CD74-NRG1 fusion protein compared to control cells. In line 

with reports that NRG1 induces trans-phosphorylation of HER3 by HER2, no 

differences could be observed for activation of the HER2 receptor (Li et al., 

2007). Therefore the oncogenic effect of the CD74-NRG1 fusion may be 

triggered by its ability to activate oncogenic HER3 receptor signaling and 

therefore augment survival and cell growth properties of cells (Fig. 21 A). In 

addition no HER4 receptor expression was detected by targeted sequencing 

from cDNA (data not shown) limiting the observed effects to CD74-

NRG1:HER3:HER2 interaction. 
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Figure 21: Immunoblot analysis of lung adenocarcinoma cell lines for effects 
on downstream activation of HER3. (A) H1568 and H322 cells show increased 
downstream pathway (PI3K and MAPK) activation by the CD74-NRG1 fusion protein 
compared to control cells. (B) H1395 and H1563 cells do not show a CD74-NRG1 
fusion dependent activation of HER3 receptor and PI3K pathway. Equal loading was 
assessed via actin. (t=total; p=phospho) One representative experiment is shown. 
 

H1395 and H1563  lung adenocarcinoma cell lines were confirmed to be wild-

type for KRAS, EGFR, HER2 and HER3 by Sanger sequencing (data not 

shown). H1395 shows only very low HER2 expression levels while H1563 

does not express the HER3 receptor at all (confirmed by target sequencing on 

cDNA and immunoblot analysis). Immunoblot analysis revealed no increased 

PI3K pathway activation in CD74-NRG1 transduced cells compared to control 

cells (Fig. 21 B). These results might show the dependency of CD74-NRG1 

signaling on HER3 receptor expression itself or on a minimal threshold level 

of HER2 receptor expression and/or phosphorylation in order to trigger HER3 

receptor activation. No HER4 expression could be detected by target 
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sequencing of cDNA in H1395 and H1563 cells excluding any interaction of 

CD74-NRG1:HER4 (data not shown). 

 

4.3.2 CD74-NRG1 does not transform Ba/F3 cells 
 
Ba/F3 cells were transduced with HER2 and HER3 under different selectable 

markers and kept under IL-3. When adding virus containing empty vector, 

CD74-NRG1 or CD74-NRG1_del to the cells and waiting for selection of 

stable cells, cells die without addition of IL-3. This experiment points out that 

the fusion might only add little additional effect that leads to oncogenic 

transformation. When transducing Ba/F3 cells with CD74-ROS1 or FIG-ROS 

they instantly become independent from IL-3 signaling and can be used e.g. 

for screening purposes (Fig. 16). Therefore Ba/F3 cells are not a suitable 

system for analyzing oncogenic effects of CD74-NRG1 gene fusion. 

 

4.3.3 In vitro proliferation assay reveals no increased proliferation rate 
of CD74-NRG1 transduced cell lines 

 
After proving the physical interaction and activation of HER3 receptor 

downstream signaling the question arose for a functional consequence and 

translational relevance of the CD74-NRG1 gene fusion. As PI3K and MAPK 

pathway can induce cell cycle progression and proliferation H1568 and H322 

cells transduced with empty vector, CD74-NRG1 or CD74-NRG1_del were 

used in an in vitro cell proliferation assay (P. Liu et al., 2009; Zhang & Liu, 

2002). No differences in growth properties could be detected between fusion 

transduced cells or control cells for H1568 and H322 although H322 have 

been reported to show increased proliferation when supplemented with 

recombinant NRG1 (Yen et al., 2000). 
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Figure 22: In vitro proliferation assay of H1568 and H322 cells. H1568 and H322 
cells transduced with e.v., CD74-NRG1 or CD74-NRG1_del. Cells were counted on 
days 1, 2 and 5 in duplicates (n=4). 
 

4.3.4 CD74-NRG1 increases anchorage independent growth in H1568 
cells 

 
PI3K and MAPK pathway can increase survival of cells and thereby helping 

cells to survive under more demanding conditions. H1568 cells harboring the 

CD74-NRG1 gene fusion and H1568 cells transduced with corresponding 

control plasmids (empty vector (e.v.) and CD74-NRG1_del) were used in a 

soft-agar assay to analyze their colony formation capabilities. Indeed CD74-

NRG1 fusion transduced H1568 cells showed increased colony formation 

capabilities. Colony size was about 5 times higher in CD74-NRG1 transduced 

H1568 cells compared to e.v. and CD74-NRG1_del transduced cells (Fig. 23). 

Although H1568 cells could already form colonies without any additional 

oncogene, triggering PI3K and MAPK pathways via CD74-NRG1:HER3 could 

further increase colony size indicating an increased oncogenic potential of 

cells signaling via CD74-NRG1 fusion. Notably H322 could not from any 

colonies at all and could therefore not used in this experimental setting. 
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Figure 23: Soft-agar assay of H1568 cells. (A) H1568 cells transduced with empty 
vector (e.v.), CD74-NRG1 or CD74-NRG1_del to measure anchorage independent 
growth capabilities. Average colony size normalized to e.v. control cells is shown of 
n=4 experiments. Error bars represent standard deviations. Significance p-values 
were determined by two-tailed t-test. ** ≤ 0.01, *** ≤ 0.001. (B) Representative 
pictures of soft-agar assay from H1568 cells were taken with phase-contrast 
microscope (100x magnification). The black scalebar represents 100µm. 
 

 

4.4 Translational relevance of CD74-NRG1  gene 
fusion 

 

4.4.1 CD74-NRG1 fusion protein leads to a HER2 dependent HER3 
trans-phosphorylation 

 
Targeting NRG1 in patients harboring a CD74-NRG1-positive tumor can only 

be efficient in those cases when HER receptors become activated by NRG1 

and not by other mechanism. Only a few studies have been conducted with 

anti-NRG1 antibodies. It seems that invasive capacity and proliferation of 

breast cancer cell lines SKBR-3 and MDA-MB-231 can be inhibited with 

antibodies directed against NRG1 (Montero et al., 2008). Other therapeutic 

strategies may aim towards inhibiting the interaction of HER3 or HER2 

preventing trans-phosphorylation of HER3 by HER2 upon NRG1 binding the 

HER3 receptor (Li et al., 2007).  
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Therefore afatinib, a strong type II non-ATP-competitive inhibitor that 

selectively inhibits the EGFR and HER2 receptor, is used to inhibit trans-

phosphorylation of HER3 (Blanc, Geney, & Menet, 2013; Eskens et al., 2008; 

Y. Liu & Gray, 2006; Solca et al., 2012). H1568 cells harboring the CD74-

NRG1 gene fusion show increased HER3 phosphorylation and increased 

activation of downstream signaling pathways compared to control cells (Fig. 

21, 24) (Fernandez-Cuesta et al., 2014). Inhibition of EGFR and HER2 with 

100nM afatinib (equivalent to GI40 value in H1568 cells, Fig. 25) leads to a 

complete shutdown of HER3 phosphorylation as well as inactivation of PI3K 

pathway (pAKT) after 12h and 48h (Fig. 24). Therefore HER2 inhibitors seem 

to be a promising treatment option for patients that harbor a CD74-NRG1-

positive tumor and whose signaling is driven by the interaction of NRG1 with 

the HER3 receptor. 

 

 
 
Figure 24: Immunoblot analysis of H1568 cell line treated with afatinib. H1568 
cells transduced with empty vector (e.v.), CD74-NRG1 or CD74-NRG1_del. Cells 
were treated for 12h or 48h with 100nM afatinib. Inhibition was assessed via 
phosphorylation of HER3 receptor (pHER3) and phosphorylated AKT (pAKT). Actin 
was used as loading control. One representative experiment is shown. 
 

4.4.2 Survival of H1568 and H322 cell lines harboring CD74-NRG1 gene 
fusion do not show increased viability upon EGFR and HER2 
receptor inhibition. 

 
As HER2 inhibition leads to inhibition of PI3K pathway in H1568 cells (Fig. 

24), survival upon HER2 inhibition was investigated in the following 

experiment. H1568 and H322 cells transduced with empty vector (e.v.), 
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CD74-NRG1 or CD74-NRG1_del were used in a compound screen with 

afatinib and lapatinib. Compared to afatinib, lapatinib is a type I inhibitor 

binding to the active conformation of EGFR and the HER2 receptor (Baselga 

& Swain, 2009; Solca et al., 2012). No viability differences could be observed 

in any of the H1568 or H322 cell lines (Fig. 25). As the oncogenic driver gene 

of H1568 and H322 is unknown these results indicate that no oncogenic 

dependency of these cells has been established towards the CD74-NRG1 

gene fusion. Due to lack of a specific druggable target in H1568 and H322 

cells the next experiment included the selection of lung adenocarcinoma cell 

lines that were precisely described to depend on one specific oncogenic driver 

that signals via PI3K pathway. As there are some well characterized cell lines 

available harboring activating mutations in EGFR and therefore depend on 

PI3K signaling, these cell lines were transduced with the CD74-NRG1 gene 

fusion to signal in parallel via PI3K pathway. By inhibition of EGFR while 

harboring the gene fusion at the same time, the next goal was to induce a 

resistance phenotype in these cell lines. This should be achieved via their 

alternative possibility of triggering PI3K pathway activation and thereby 

leading to a pathway switch from EGFR to HER2:HER3 signaling. 

 

 

 



4 - Results
	
  
 

 66 

 
 
Figure 25: Compound screen with afatinib and lapatinib on H1568 and H322 
cells. H1568 and H322 lung adenocarcinoma cell lines transduced with empty vector 
(e.v.), CD74-NRG1 or CD74-NRG1_del were screened for viability against afatinib 
and lapatinib by CellTiter-Glo® assay. 
 

4.4.3 CD74-NRG1 gene fusion does not lead to resistance in EGFR-
dependent cell lines 

 
HCC827 and PC-9 lung adenocarcinoma cell lines do both harbor exon 19 

deletions in EGFR which lead to strong EGFR signaling dependency 

(Cavazzoni et al., 2012). Both cell lines are highly sensitive to treatment with 

EGFR inhibitors in already low nM range such as erlotinib and gefitinib (Hua 

Cheng et al., 2011; Sharma, Bell, Settleman, & Haber, 2007). However, when 

treating CD74-NRG1 gene fusion transduced HCC827 and PC-9 cells with 

erlotinib or afatinib no changes in viability could be observed. This indicates 

that no pathway switch and resistance phenotype could have evolved. Only 

the strong EGFR dependency could be confirmed as treatment already with 

low nM doses of the cells with erlotinib and afatinib leads to strong reduction 

of cell viability (Fig. 26). As pathway switch requires HER2 and HER3 

expression, both cell lines are confirmed to express both receptors (Ono et 

al., 2004; Yonesaka et al., 2011). One publication by Jeff Settleman’s lab 

described no induction of resistance of HCC827 and PC-9 cell lines upon 
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NRG1 treatment. In contrast, the HER2 receptor amplified breast cancer cell 

line SKBR-3 and EML4-ALK expressing lung adenocarcinoma cell line H3122 

are instead described as showing a resistance phenotype upon HER2 

receptor or EML4-ALK inhibition while adding recombinant NRG1 (T. R. 

Wilson et al., 2012). 

 

 
 
Figure 26: Compound screen of fusion and control virus transduced PC-9 and 
HCC827 cell lines. PC-9 and HCC827 cell lines were treated with erlotinib (EGFR 
inhibitor) and afatinib (EGFR and HER2 inhibitor). Cell viability was assessed by 
CellTiter-Glo® assay. 
 

4.4.4 NRG1 as a resistance mechanism in SKBR-3 and H3122 cell lines 
 
NRG1 is getting more and more into the focus as oncogene and/or resistance 

mechanism in cancer (Falls, 2003; Hynes & Lane, 2005; T. R. Wilson et al., 

2012; Yarden & Pines, 2012). As a resistance mechanism NRG1 drives PI3K 

and MAPK pathway activation as an in addition or an alternative to the 

oncogenic driver present in the cancer cell. This has been shown by Jeff 

Settleman’s lab by screening experiments of well-characterized cell lines with 
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and without various growth factors. NRG1 could be shown to induce 

resistance in SKBR-3 (HER2 amplified) breast cancer cell lines when inhibited 

with lapatinib. Another cell line being more resistant upon addition of NRG1 

was H3122 (EML4-ALK positive) lung cancer cell line treated with TAE-684 

(ALK inhibitor) (T. R. Wilson et al., 2012). These results could be confirmed in 

own experiments showing a prolonged viability and higher resistance levels 

when treated with lapatinib (SKBR-3) or TAE-684 (H3122) while adding 

recombinant NRG1b (Fig. 27 A). As the EGF-like domain of recombinant 

NRG1 is identical to EGF-like domain of CD74-NRG1 fusion protein the same 

effects were expected for full-length CD74-NRG1 gene fusion transduced 

SKBR-3 and H3122 cells (Fig. 27 B). However H3122 and SKBR-3 cells were 

not able of being transducable with CD74-NRG1 or CD74-NRG1_del. Only 

stable cell lines expressing empty vector could be generated. To solve this 

issue cells were transiently transfected with empty vector (e.v.), CD74-NRG1 

or CD74-NRG1_del containing expression plasmids. But only a very minor 

shift of viability could be observed in SKBR-3 cells with the CD74-NRG1 gene 

fusion (Fig. 27 C). Therefore judging on CD74-NRG1’s capability of inducing 

resistance in these cells needs to be further analyzed. 
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Figure 27: SKBR-3 and H3122 cells induce resistance upon addition of 
recombinant NRG1. (A) Viability screen showing NRG1 inducing resistance in 
SKBR-3 and H3122 cell lines treated with lapatinib or TAE-684. (B) Alignment of 
recombinant NRG1-beta 1 and CD74-NRG1 on amino acid level showing 100% 
sequence identity of EGF-like domain. (C) SKBR-3 and H3122 cell transiently 
transfected with empty vector, CD74-NRG1 or CD74-NRG1_del inducing no 
resistance phenotype. 
 

4.5 Generation of an inducible CD74-NRG1 mouse 
 
To proof CD74-NRG1 gene fusion being oncogenic in vivo an inducible 

mouse-targeting vector was designed. The mouse-targeting vector is 

designed via short- and long arm of homology (SAH, LAH) to integrate via 
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homologous recombination into the ROSA26 locus to achieve generalized 

expression (Friedrich & Soriano, 1991; Soriano, 1999). The expression is 

driven by the CAG promoter and is inhibited via a kanamycin-stop cassette 

(KANA/STOP) harboring a SV40 poly-A terminator (Miyazaki et al., 1989; 

Niwa, Yamamura, & Miyazaki, 1991). The cassette is flanked by Frt sites (flp 

recombinase recognition sites) to start expression upon recombination with flp 

recombinase (Zhu & Sadowski, 1995). CD74-NRG1 gene fusion is flanked by 

LoxP recombination sites being able in the case of tumor formation and 

dependency to shutdown expression of CD74-NRG1 via the cre recombinase 

which might lead to tumor breakdown to ultimately proof oncogenicity of 

CD74-NRG1 fusion in vivo (Fig. 28) (Sauer & Henderson, 1988). As the 

generation of genetically-manipulated mice takes already about one year 

following breading and inducing CD74-NRG1 expression in lung via inhalation 

of flp-recombinase containing viral particles, these experiments are not part of 

the thesis and will be conducted in the near future. To investigate CD74-

NRG1’s oncogenic potential a dual-recombinase strategy is ideal, as start and 

stop of CD74-NRG1 expression can be tightly controlled and give important 

insights into tumor establishment and dependency. Right now the embryonic 

stem cells containing the CD74-NRG1 gene fusion are being generated at 

Wunderlich-lab. 

 

 
Figure 28: Dual recombinase mouse-targeting vector for CD74-NRG1-mouse. 
Schematic design of an inducible mouse-targeting vector to introduce CD74-NRG1 
gene fusion into the murine ROSA26 locus. 
 

Targeting vector CD74-NRG1

CD74-NRG1KANA/STOPCAGSAH LAH

LoxP site

Frt site
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5 - Discussion 

In this study the CD74-NRG1 gene fusion was described and characterized 

for the first time (Fernandez-Cuesta et al., 2014). Other working groups 

discovered the CD74-NRG1 gene fusion independently showing recurrence 

and confirming the initial discovery (Gow et al., 2014; Nakaoku et al., 2014). It 

seems as if CD74-NRG1 gene fusion might be a specific event for IMA as all 

patients that were CD74-NRG1-positive were diagnosed with an IMA. All 

patients were from Asian population but up to now only small cohorts were 

screened for CD74-NRG1 gene fusion. Frequencies from all 3 studies range 

from 7 – 27% within IMA patients and about 1.7% of all lung adenocarcinoma 

patients, may be leading to other frequencies in Caucasian population. 

Notably 10/11 diagnosed CD74-NRG1-positive cases were female and never-

smokers, only one case was a male who stopped smoking 8 years before 

diagnosis (Fernandez-Cuesta et al., 2014; Gow et al., 2014; Nakaoku et al., 

2014). As IMA is prone for >30% KRAS mutations, CD74-NRG1 may be 

another important driver gene in IMA with up to 27% of cases affected 

depending on the screening cohort (Maeda et al., 2012). 

Identically to all known CD74-positive gene fusions the CD74 promoter drives 

the expression of the functional active 3’-part (ROS, NTRK1 or NRG1) of the 

fusion (Fig. 13, 16) (Charest et al., 2003; Fernandez-Cuesta et al., 2014; 

Vaishnavi et al., 2013). However how the CD74 promoter is regulated or if 

regulation is changed in fusion-positive patients remains unclear. CD74’s 

main function is the regulation of trafficking of major histocompatibility 

complex (MHC) II complexes to the cell surface in antigen presenting cells 

(Beswick & Reyes, 2009). Beside assisting in antigen-presentation MAPK 

pathway activation in cells has been observed via migratory inhibitory factor 

binding to CD74 and when primed with interferon-γ (Leng et al., 2003). 

Therefore its function in non-immune competent cells as all sequenced lung 

adenocarcinomas of this study remains elusive. 

CD74 is characterized as a type II transmembrane protein with an intracellular 

amino-terminus and an extracellular carboxy-terminus (Leng et al., 2003). 
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Beside localizing to the plasma membrane there is a constant portion of CD74 

localized in the cytoplasm (Xie et al., 2011). This is in line with the flow 

cytometry analyses and confocal microscopy pictures that proof a membrane 

bound and extracellular portion of CD74-NRG1 while another portion is 

localized in the cytoplasm (Fig. 14, 15). The CD74-NRG1 gene fusion is the 

first oncogenic fusion protein that involves a ligand (NRG1) as functionally 

active part in contrast to a kinase domain. Therefore interaction studies of the 

well characterized NRG1:HER3 complex confirmed only an interaction in full-

length CD74-NRG1 transduced cells proofing that the EGF-like domain is the 

critical domain for binding HER3 (Fig. 17, 18, 19) (Baselga & Swain, 2009; 

Falls, 2003; Hynes & Lane, 2005; Yarden & Sliwkowski, 2001). NRG1 type I, 

II and IV – VI are described as being shed from the membrane and becoming 

a soluble and functional active ligand while NRG1 type III is described as 

membrane-tethered (Falls, 2003; L. Mei & Xiong, 2008; Montero et al., 2008; 

Talmage, 2008). Especially after one study claimed the CD74-NRG1 gene 

fusion (which harbors a NRG1 type III 3’-part) being shed from the membrane, 

deeper analysis was necessary to further characterize the processing of 

CD74-NRG1 (Nakaoku et al., 2014). Three points have to be discussed when 

looking at processing of CD74-NRG1 fusion. i) In not a single immunoblot 

CD74-NRG1 was detected with a CD74 antibody with a smaller size indicating 

any shedding of CD74-NRG1 (Fig. 21). However this would not exclude 

efficient proteasomal degradation. ii) In the co-immunoprecipitations for 

proving the physical interaction of the CD74-NRG1 fusion protein with HER3 

only full-length CD74-NRG1 was detected to interact with the HER3 receptor. 

This does not exclude the possibility of processing but already proofs that 

physical interaction with HER3 can occur by full-length and non-shed CD74-

NRG1 fusion protein – even in a paracrine fashion from one cell to the other 

(Fig. 18/19). iii) When concentrating the supernatant of stable transduced 

NIH-3T3 cells, no shed portion of NRG1 could be detected (Fig. 20). 

Therefore it is very unlikely that CD74-NRG1 becomes shed – especially not 

to a high degree. Another point to keep in mind is that the co-

immunoprecipitations and supernatant concentrations have been conducted 
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in a murine fibroblast cell line that may be does not express the protease that 

would be necessary for shedding. 

 

H1568 and H322 lung adenocarcinoma cell lines transduced with CD74-

NRG1 showed as expected enhanced PI3K and MAPK pathway activation 

compared to control cells (Fig. 21, left). However H1395 and H1563 cell lines 

did not show any increase in PI3K pathway activation upon transduction with 

CD74-NRG1 (Fig. 21, right). As NRG1 signaling is dependent on the HER 

receptor family it is critical that HER3 (receptor for NRG1 but kinase dead) 

and HER2 (trans-phosphorylating HER3) or HER4 (receptor for NRG1 and 

not kinase dead) are expressed (Hynes & Lane, 2005; Yarden & Sliwkowski, 

2001). H1563 cells do not express any HER3 receptor neither on cDNA level 

nor on protein level (no HER4 expression on cDNA level). Therefore CD74-

NRG1 is not able to trigger HER receptors and cannot activate downstream 

signaling especially as HER2 receptors are not phosphorylated at all. In 

H1395 cells HER2 and HER3 are expressed but not HER4 (validated on 

cDNA level). However in immunoblots HER2 and HER3 expression seems to 

be very low and other requirements are necessary for PI3K pathway 

activation by CD74-NRG1 (Fig. 21, right). As all lung adenocarcinoma cell 

lines are unknown for their driver lesion but were confirmed to be wild-type for 

KRAS, EGFR, HER2 and HER3 it is impossible to judge which additional 

factors are required for CD74-NRG1 to activate its oncogenic signaling. As 

HER2 and HER3 are expressed in H1395 but no additional effect of the 

CD74-NRG1 fusion could be observed a minimal threshold of both receptors 

is very likely to be important for activation of the downstream signaling 

pathways. The same reason may be true for the non transforming effect of 

CD74-NRG1 gene fusion in Ba/F3 cells transduced with HER2 and HER3 as 

Ba/F3 cells just died upon IL-3 withdrawal (data not shown). NRG1 stimulation 

was linked to accelerating cell growth in H322 cells (Yen et al., 2000). 

However when investigating functional effects of the CD74-NRG1 gene fusion 

in H1568 and H322 cells no increased proliferation could be detected in 

CD74-NRG1 transduced cells compared to control cells (Fig. 22). As PI3K 

and MAPK pathways were activated by CD74-NRG1 fusion protein may be 



5 - Discussion
	
  
 

 74 

even higher levels of NRG1 are necessary to increase proliferation. When 

investigating anchorage independent growth in H1568 cells transduced with 

CD74-NRG1 or control plasmids (H322 cells were not able to grow in soft-

agar), colony size was strongly increased in CD74-NRG1 transduced cells 

compared to empty vector and CD74-NRG1_del transduced H1568 cells (Fig. 

23). H1568 were already transformed and able to form colonies in control 

cells, but the CD74-NRG1 fusion protein increased colony size even more 

indicating a strong additional oncogenic effect of CD74-NRG1 fusion in H1568 

cells (Fernandez-Cuesta et al., 2014). 

Due to missing treatment options for patients with CD74-NRG1 gene fusion, 

the effect of HER2 inhibition was investigated in H1568 cells as HER2 trans-

phosphorylates HER3 upon binding of CD74-NRG1. Low nM concentrations 

of afatinib could inhibit HER3 and AKT phosphorylation (Fig. 24). The indirect 

inhibition of the HER3:NRG1 interaction network via HER2 inhibition answers 

several questions. i) The activating effects of CD74-NRG1 gene fusion can be 

effectively inhibited via HER2 inhibition in vitro. ii) HER3 phosphorylation is 

clearly dependent on trans-phosphorylation via HER2 due to the strong 

selectivity of afatinib on the HER2 receptor. 

In compound screenings with selective HER2 inihibitor (afatinib and lapatinib) 

on H1568 and H322 cells no induction of resistance by CD74-NRG1 could be 

observed (Fig. 25). However as the oncogenic driver is unknown in these cell 

lines and as these cells were already transformed, no change in pathway 

dependency could be detected as these cells were already well growing prior 

to transduction with the CD74-NRG1 gene fusion. Therefore PC-9 and 

HCC827 cells were chosen for follow up experiments as they are EGFR 

mutated and depending on EGFR signaling. However when transducing these 

cells with CD74-NRG1 gene fusion or control plasmids and treating with 

erlotinib (Hua Cheng et al., 2011; Sharma et al., 2007) or afatinib no 

increased viability levels could be detected (Fig. 26). However these results 

confirm published results that NRG1 cannot induce resistance to erlotinib in 

both cell lines (T. R. Wilson et al., 2012). As the breast cancer cell line SKBR-

3 and the lung adenocarcinoma cell line H3122 were reported to induce 

resistance to lapatinib or TAE-684 both cell lines were transduced with CD74-
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NRG1 gene fusion or control plasmids. Both cell lines showed resistance to 

inhibition with lapatinib (SKBR-3) or TAE-684 (H3122) while adding 

recombinant NRG1 protein, but SKBR-3 cells to a much lower extend than 

reported (Fig. 27 A) (T. R. Wilson et al., 2012). H3122 cells treated with 

recombinant NRG1 showed even at 10µM of TAE-684 a high viability around 

75% compared to untreated cells. However it was up to the end of this study 

not possible to establish cells stably expressing the CD74-NRG1 and CD74-

NRG1_del gene fusion which are needed for proper experiments. Neither 

SKBR-3 cells stably expressing CD74-NRG1 or CD74-NRG1_del showed 

higher viability levels under lapatinib treatment, nor H3122 transiently 

transfected with empty vector, CD74-NRG1 or CD74-NRG1_del plasmids 

showed a resistance effect when treated with TAE-684. It remains 

questionable how SKBR-3 cells are able to induce resistance under NRG1 

addition and lapatinib treatment, as HER2 cannot trans-phosphorylate HER3. 

In some breast cancer cell lines HER4 is not able to induce its oncogenic 

effect without HER2 when treated with NRG1 (Mill et al., 2012). Therefore it 

remains even more elusive how resistance is induced in SKBR-3 cells treated 

with NRG1. H3122 cells treated with TAE-684, which is a highly selective 

ROS and ALK inhibitor, can induce resistance when bypassing the ALK 

signaling with NRG1 and activate PI3K and MAPK pathways via HER2 and 

HER3. These differences in pathway inhibition may be reflected in the viability 

screen when adding recombinant NRG1. H3122 remain nearly completely 

resistant under NRG1 addition while SKBR-3 cells only showed a small shift 

in viability. Further experiments needs to be done and stable H3122 cells 

need to be generated in order to make a clear statement if CD74-NRG1 gene 

fusion can induce resistance as seen with recombinant NRG1 (Fig. 27 C). 

All discussed results were accomplished in vitro, but to ultimately judge on 

CD74-NRG1’s oncogenic capabilities it is necessary to proof the oncogenic 

effect in vivo. This poof will have important effects on patient treatment and to 

include CD74-NRG1 gene fusion in molecular diagnostic panels. The CD74-

NRG1 mouse (fusion mouse) will be generated in cologne in collaboration 

with Thomas Wunderlich, PhD (CECAD, Cologne) and Ingo Voigt (Head of 

Transgenic Core Facility, MPI of Ageing, Cologne). Therefore the in vivo proof 
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of CD74-NRG1’s oncogenic potential will take some time but will give 

important and valuable results that help to further decipher CD74-NRG1’s 

mechanism in tumor establishment. At the same time the fusion mouse is a 

very important animal model for testing potential treatment strategies. These 

results will help to treat patients in the future that harbor a tumor that is CD74-

NRG1-positive and will help to cure or enhance survival of these patients. To 

discover patients harboring CD74-NRG1 gene fusion the EUCROSS clinical 

trial has been established at the University Hospital of Cologne. Patients are 

screened for ROS-translocations. Negative patients will undergo a second 

screening round for evaluation of phosphorylation levels of HER3 (as 

predictor for activation) by immunohistochemistry leading to the identification 

of potential CD74-NRG1-positive patients as CD74-NRG1 diagnosis has not 

been established in molecular diagnostic panels yet. Therefore the results of 

this study will help to identify and treat CD74-NRG1-postive patients in the 

future. 
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6 - Summary 

Lung adenocarcinoma accounts for about 50% of all lung cancer cases. In 25-

50% of lung adenocarcinoma the oncogenic driver is still unknown. Especially 

an increasing amount of gene fusions as oncogenic driver lesion have been 

found within the last decade (Cancer Genome Atlas Research Network, 2014; 

Pao & Hutchinson, 2012). Therefore the goal of this study was to identify new 

oncogenic fusion genes. For this purpose the tumors of 25 patients with lung 

adenocarcinoma known to be negative for EGFR and KRAS mutations were 

used for transcriptome sequencing. In 14/25 patient samples no oncogenic 

alteration and in 10/25 patient samples already known oncogenic alterations 

could be detected. But in 1/25 patient sample a new gene fusion - CD74-

NRG1 - was discovered. CD74-NRG1 is the first identified gene fusion which 

involves a growth factor as ligand that is fused to a fusion partner instead of a 

kinase domain. In an extended screening cohort of 102 lung adenocarcinoma 

patients negative for common driver lesions 4 additional CD74-NRG1-positive 

patients could be identified. All were diagnosed as stage I invasive mucinous 

adenocarcinoma (4/15 invasive mucinous adenocarcinoma). Mechanistically 

CD74-NRG1 is a membrane-tethered fusion protein. The 5’ CD74 portion 

leads to the expression of NRG1 III β3 in the tumor patients. The 3’ NRG1 

portion harbors an EGF-like domain which is able to bind and activate the 

HER3 receptor. Thereby HER3 heterodimerizes with the HER2 receptor and 

becomes trans-phosphorylated by the HER2 receptor (Li et al., 2007). 

Expression of CD74-NRG1 in lung cancer cell lines H1568 and H322 leads to 

the activation of PI3K and MAPK pathways and can increase anchorage 

independent growth in H1568 cells.  

Due to the involvement of HER2 in the activation mode of CD74-NRG1 gene 

fusion signaling the inhibition of HER2 with the selective inhibitor afatinib is a 

potential treatment option in CD74-NRG1-positive lung adenocarcionomas. 

The effect of afatinib could already be shown in H1568 cells. In the future, 

CD74-NRG1’s oncogenic capabilities need to be proven with a dual 

recombinase strategy in vivo to proof oncogenic driver capabilities and tumor 
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dependency. In conclusion this study describes the CD74-NRG1 gene fusion 

for the first time and may help to improve treatment options for IMA patients 

that lack up to now any effective therapy. 
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