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Kurzzusammenfassung

Die thermischen Eigenschaften verschiedener atmosphärischer Höhenlagen erdähn-
licher Planeten können aus druckverbreiterten Molekülübergängen ermittelt wer-
den. Mittels bodengebundener Heterodynspektroskopie werden einzelne solcher
druckverbreiterten CO2-Absorptionslinien bei 10µm Wellenlänge auf der Nacht-
seite des Planeten Venus beobachtet. Außerdem wird ein Spektrum von der
Tagseite des Mars untersucht, welches ebenfalls eine verbreiterte Absorptionslinie
aufweist. Infrarot-Heterodynspektroskopie ist auf die atmosphärischen Schichten
sensitiv, in denen die Absorption stattfindet. Auf der Venus entspricht dies Höhen-
lagen in der Mesosphäre zwischen ∼ 60–95 km. Auf dem Mars findet die Absorp-
tion in der Troposphäre zwischen der Oberfläche und einer Höhe von ∼ 35 km
statt.

Die atmosphärischen Parameter werden mit einer auf dem Levenberg-Marquard-
Optimierungsalgorithmus basierenden Rückwärtsroutine erlangt. Diese vergle-
icht iterativ die Beobachtungsdaten mit Planetenspektren, welche mit Hilfe eines
Strahlungstransportmodells unter Berücksichtigung des irdischen spektralen Trans-
missionsgrads in der obersten planetaren Atmosphäre errechnet wurden. Ein de-
taillierter proof of concept wird durchgeführt, um den Einfluss der Höhenauflösung
zu untersuchen und um die Verlässlichkeit der neu entwickelten Routine zu be-
stätigen.

Während zweier Beobachtungskampagnen, die im März und im Mai 2012 stattge-
funden haben, sind vier verschiedene Positionen auf der Nachtseite der Venus
beobachtet worden. In dieser Arbeit werden erstmalig die an den jeweiligen Posi-
tionen erlangten Temperaturprofile präsentiert. Die Höhenauflösung der erhal-
tenen Profile beträgt ∼ 4.5 km. Die so erhaltenen Profile werden mit bereits
bekannten Temperaturmessungen anderer luft- und bodengebundener Beobach-
tungsmethoden, sowie mit der Venus International Reference Atmosphere ver-
glichen. Die gemessenen Temperaturen stimmen gut mit den gefundenen Daten
anderer Beobachtungstechniken überein. Ein besonderes Augenmerk liegt auf dem
Vergleich der an einer speziellen Beobachtungsposition erhaltenen Temperaturen
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2 Kurzzusammenfassung

mit denen, die zeitgleich während einer koordinierten Messreihe im Mai 2012 mit
dem Venus Express Radio Science Experiment gemessen worden sind. Zusätzlich
zu existierenden Beobachtungstechniken können nunmehr heterodyne Infrarot-
Beobachtungen von hochaufgelösten Spektrallinien Temperaturmessungen von der
Nachtseite der Venus liefern.

Die Untersuchung von verbreiterten CO2-Absorptionslinien auf der Tagseite vom
Mars wurde an einem Spektrum durchgeführt, das während einer Beobachtungs-
kampagne im Jahr 2010 aufgenommen wurde. Die vorläufigen Ergebnisse des
erhaltenen Temperaturprofils werden hier nun präsentiert. Das erhaltene Pro-
fil wird mit einer Vorhersage aus der Mars Climate Database verglichen, zu der
eine zufriedenstellende Übereinstimmung gefunden werden kann. Ein weiterer,
ausführlicher proof of concept wird durchgeführt, um die besonderen atmosphäri-
schen Bedingungen für den Mars zu berücksichigen und um den Beitrag der, da
durch Sonneneinstrahlung hervorgerufen nur auf der Tagseite präsenten, nicht-
thermischen Emissionslinien auf die Auswerteroutine zu untersuchen. Die Auswer-
tung von atmosphärischen Temperaturen auf der Tagseite des Mars unterliegt
zusätzlichen Einschränkungen, die in erster Linie von der dünnen Atmosphäre
und der vielfältigen Topografie der Marsoberfläche herrühren.



Abstract

Atmospheric thermal properties of different altitude layers of terrestrial planets can
be deduced from pressure-broadened molecular transition features. Ground-based
heterodyne spectroscopy is used to observe the nightside of Venus by probing single
pressure-broadened CO2 absorption lines at around 10µm. In addition, a dayside
spectrum of Mars, also containing a pressure-broadened absorption feature was
investigated. Infrared heterodyne spectroscopy is sensitive to those atmospheric
layers, which can be identified as the absorption line formation region. These
layers correspond to an altitude range in the Venusian mesosphere between ∼ 60
and ∼ 95 km. On Mars, the line formation region is located in the troposphere
between the surface and an altitude of ∼ 35 km.

Retrieval of atmospheric parameters is based on a Levenberg-Marquard χ2 op-
timization that iteratively compares observed data to telluric transmittance cor-
rected planetary top-of-atmosphere spectra calculated using a radiative transfer
algorithm. A sophisticated proof of concept is performed to investigate the in-
fluence of the altitude resolution and to demonstrate the reliability of the newly
developed retrieval technique.

During two observing campaigns in March and May 2012, four different locations
on the Venusian nightside hemisphere were investigated. In this thesis, the re-
trieval of vertical temperature profiles in the nightside atmosphere of Venus using
mid-infrared heterodyne spectroscopy is reported for the first time. The retrieval
can be deduced with an altitude resolution of ∼ 4.5 km. The retrieved profiles
are compared to existing space- and ground-based observations as well as to the
Venus International Reference Atmosphere. The temperatures found are in good
agreement to other retrieval techniques. Emphasis is given to the comparison of
the temperatures from one specific location to thermal profiles simultaneously ob-
tained with the Venus Express Radio Science Experiment during a coordinated
observing campaign in May 2012. Sub-Doppler resolution infrared heterodyne ob-
servations can now provide temperature measurements on the dark side of Venus
that complement those techniques.
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4 Abstract

Analysis of a broad CO2 absorption feature obtained at the Martian dayside dur-
ing an observing campaign in 2010 is performed and a preliminary temperature
profile is retrieved. This profile is compared to predictions from the Mars Cli-
mate Database and found to be in satisfactory agreement. A further detailed poof
of concept is provided, addressing the specific preconditions of the Martian at-
mosphere and analyzing the contribution of the solar induced non-thermal CO2

emission on the retrieval method. It is found, that the deduction of atmospheric
dayside temperatures on Mars is subject to additional restrictions, which are due
to the thin atmosphere and the multifarious topography.



Chapter 1

Introduction

”Anybody who has been seriously engaged in scientific work of any kind
realizes that over the entrance to the gates of the temple of science are
written the words: ’Ye must have faith.’”
(Max Planck)

Comparative climatology of terrestrial planets is a subject of high impact for many
researchers. The climate change on Earth has brought the topic also to public
awareness, which promotes significant interest in the atmospheric processes of
our - and other - planets. A better understanding of the physical and chemical
processes in the atmospheres of the terrestrial planets contributes to gain insights
into the evolution and development of our solar system.

The biggest question for mankind has always been: are we alone in the universe?
Besides the philosophical and theological approach, science can provide hints to
answer this question by finding tracers of life. The most appropriate candidate to
host life in our solar system is Mars. A strong release of the trace gas methane
into the Martian atmosphere (CH4) in 2003 [1, 2] was controversially discussed
to be of biogenic production [3], especially, since the event has not been observed
afterwards [4, 5]. The environmental conditions, however, could have been favor-
able for life to evolve on Mars in the past [6]. It is nowadays believed, that the
early atmospheres of Venus, Earth and Mars began under similar conditions [7]
and have now estranged, due to the respective orbital location or geology.

5



6 Chapter 1 - Introduction

The investigation of the terrestrial planets’ atmospheres in our own solar system is
crucial to explore and understand the boundaries of the so-called habitable zone.
The circumstellar habitable zone is the region around the central star, where the
ambient conditions for a planet are such, that liquid water could be present on the
surface [8]. Unsurprisingly, planets are orbiting stars everywhere in our galaxy.
The proof was given in 1990’s when first evidences for exoplanets were found [9].
Today, there are over 1800 confirmed detection of extra-solar planets [10], and the
number is increasing continuously. Thanks to the Kepler observations, the thresh-
old of finding a planet similar to ours has been crossed and a numerous amount
of Earth-like planets were found in the habitable zones around other stars [11–13].
The habitable zone is colloquially called the ”Goldilocks zone”: the first is too hot,
the other too cold, but the third one is just right!
The inner edge of the habitable zone in our solar system is populated by Venus.
Despite the fact that Venus’ surface temperature is now far too hot to hold liquid
water, the initial composition of Venus included enough water to form an ocean
[14]. Nevertheless, Venus has lost its oceans and the liquid water has vaporized
into the atmosphere, where it is continuously dissociate by ultraviolet (UV) ra-
diation in the past hundreds of millions of years [15]. By now, Venus’ climate is
dominated by a strong greenhouse effect, which heats the surface to a temperature
of ∼ 740 K [16].
Mars, in contrast, resides at the outer edge of the habitable zone. It is believed,
that Mars used to hold surface oceans, too [17]. These oceans have also evapo-
rated into the atmosphere, but opposite to Venus, the water has not contributed
to a condensation of the atmosphere. The lack of a magnetic field makes Mars
susceptible to the influences of the solar wind, which has eroded the uppermost
atmospheric layers, leading to a depletion of light molecules [7].
Despite the undoubtedly existing commonalities, the three terrestrial planets differ
a lot from each other and every single one of them possesses its unique characteris-
tics. Their atmospheric thermal structure and composition provides insights into
the evolution of the planet. When mankind is searching for Earth-like planets,
it is most likely, that it will also find Venus- or Mars-like planets. Therefore, it
is important to understand, why and how the climate evolution of the terrestrial
planets in the habitable zone around our sun is so diverge. Especially, since their
atmospheric structure varies only through different input parameters like i.a. solar
insulation or molecular abundances. However, modeling planetary atmospheres is
not trivial and observations are essential to improve the basic understanding of
the unequal conditions.

The atmospheric molecules yield a manifold of physical parameters, representing
the local state of the observed atmosphere. This encourages scientists to make
use of remote sensing techniques to reveal their properties. First sophisticated
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spectroscopic observations to investigate the thermal properties of Mars and Venus
from Earth were conducted in 1923 by Pettit and Nicholson [18, 19]. In the past 50
years, space exploration missions to Venus and Mars have contributed significantly
to our knowledge about Earth’s neighbor planets. Especially the atmosphere of
Mars is undoubtedly the most studied extraterrestrial atmosphere. 28 current
and past missions have been successfully accomplished since the 1964 Mariner 4
flyby [20]. In the last decade, the National Aeronautic and Space Administration
(Nasa) missions Mars Global Surveyor (MGS) [21], Mars Climate Orbiter (MCO)
[22], Mars Odyssey (MO) [23], Mars Reconnaissance Orbiter (MRO) [24] and Mars
Science Laboratory (MSL) [25] as well as the European Space Agency’s (Esa) Mars
Express mission [26] have continuously provided information about the processes
and the structure of Mars’ atmosphere. In contrast, 16 missions dedicated to
Venus have been performed since 1961 [20] and only the Esa spacecraft Venus
Express [27] is currently orbiting the planet. Since the space exploration of Venus
suffers a diminution in the next years, the importance of ground-based observations
increases significantly.

Ground-based observations of fully spectrally resolved molecular transitions in ter-
restrial planets’ atmospheres require ultra high spectral resolution with ν

∆ν
≥ 107.

In the mid-infrared (mid-IR) wavelength region around 10µm, this can only be
provided by using the heterodyne technique. CO2 is the most abundant molecule
in the atmospheres of Venus and Mars and the atmospheric window in the telluric
transmission at 10µm, in combination with the ultra-high frequency resolution
of infrared (IR) heterodyne instruments, allows the detection of single Doppler-
shifted molecular lines. In recent years, heterodyne spectroscopy has been applied
to investigate a variety of physical conditions on different planets, moons and the
sun [28]. The technique was used to gain knowledge about the dynamical prop-
erties [29–32] and thermal conditions [33–35] around the Venusian mesopause, to
measure winds [36–40] and temperatures [41] in the mesosphere of Mars, as well
as to investigate abundances of minor species like ozone [42–44] or methane [4] in
the Martian atmosphere. In addition, observations were performed to determine
ethane abundances [45, 46] and the dynamical [47] and thermal structure [48, 49]
on the Saturnian moon Titan and to investigate species abundances in the at-
mosphere of the gas giant Jupiter [50]. Recently, first observations of the telluric
atmosphere were performed in solar occultation, to derive stratospheric dynamics
from ozone and to obtain the Earth’s atmospheric transmission [51].

Up to now, temperatures of Venus’ and Mars’ atmospheres have been investigated
by analyzing the solar induced CO2 emission line, which occurs only at very low
pressure (1µbar =̂ 0.001 hPa). There, the molecules are not in local thermody-
namic equilibrium (LTE) and the line shape is purely Doppler-broadened. This
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(a) On Venus, the background radiation
emerges from the main cloud layer. At an
altitude of ∼ 63 km the atmosphere becomes
opaque for IR radiation.

(b) On Mars, the background radiation
emerges from the surface. Due to the multifar-
ious Martian topography, the surface pressure
can strongly vary.

Figure 1.1: Illustration of the atmospheric structure of Venus and Mars. The redish
area represents the absorption line formation region. Note that the contribution of the
altitude layers to the line formation is turned upside down. The continuum is defined
by the background radiance, whereas the line center is formed in the higher altitudes.
The non-LTE emission line occurs only on the sunlit sides of the planets and in only one
pressure layer around 0.001 hPa, indicated by the yellow bar. The resulting spectra are
a superposition of the two features. On the nightside, only the absorption feature can
be observed. (Stangier 2014 [52])

low-pressure layer corresponds to an altitude of ∼ 110 km in the Venusian and to
∼ 75 km in the Martian atmosphere [53]. In lower altitudes, the CO2 molecules ab-
sorb the background radiation emerging from the surface of Mars or the clouds of
Venus, forming a broad absorption line. The basic structure of the atmosphere of
Venus and Mars and the line forming region on the respective planet is illustrated
in Fig. 1.1. The non-LTE emission occurring in higher altitudes on the dayside is
superimposed to the underlaying LTE absorption feature in the finally detected
spectrum. A typical spectrum from the Martian dayside is shown in Fig. 1.2(b).
On the nightside, no solar pumped emission exists and only the LTE feature is



9

(a) Venus nighhtside: No narrow non-LTE
emission can be observed. Data were obtained
in 2012, probing the CO2 P(12) transition. See
Chap. 4 for details.

(b) Mars dayside: The narrow non-LTE emis-
sion line can be observed. Data were obtained
in 2005, probing the CO2 P(2) transition. From
Sonnabend et al. [55].

Figure 1.2: Typical IR heterodyne spectra from Venus and Mars. Both spectra contain
a broad absorption feature, originating from the respective altitudes indicated in Fig. 1.1.

detected. An example of a nightside spectrum of Venus is given in Fig. 1.2(a).
Analysis of the broad CO2 LTE features is performed for the first time. This
expands the probing region into deeper altitude levels, significantly widening the
field of application for infrared heterodyne spectroscopy. The line forming region
was found to be in an altitude region between ∼ 60 km and ∼ 95 km on Venus and
between the surface at 0 km and ∼ 35 km on Mars. The shape of the absorption
line is primarily depending on the thermal properties in the different altitudes.
Hence, an inverse retrieval algorithm can reduce the local temperature profile in
these atmospheric layers. This describes a completely new approach for dealing
with ultra high resolution spectra obtained in the mid-IR [54]. In addition to
expanding the probing altitude, the analysis of observed spectra on the planets’
nightside enables access to a hemisphere that was not approached by investiga-
tions with IR heterodyne spectroscopy up to now. Thus, the investigation of the
Venusian nightside spectra is of high interest and will be the main subject of this
work.

In this thesis, the development and application of a completely new retrieval
technique for thermal profiles from data obtained with infrared heterodyne spec-
troscopy is presented. In Chap. 2 the principles of the heterodyne technique and
the instruments used for observations are presented.
The newly developed inverse fitting routine (Ifr) is discussed in detail together
with a proof of concept in Chap. 3. By investigating synthetic heterodyne spectra,
created to simulate observations, it is shown, that the Ifr can reliably retrieve
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temperatures when applied to spectra deduced on the Venusian nightside, con-
taining CO2 absorption lines.
Emphasis is given to the analysis of measured data from Venus, obtained during
two different observing campaigns in 2012, and to their comparison to a variety of
other temperature profiles from space- and ground-based observations and model
predictions in Chap. 4. The temperatures found are in good agreement to other
observational profiles.
The atmosphere of Mars differs to that of Venus in terms of molecular abun-
dances. Although the volume-mixing-ratio of CO2 is almost identical, the column
density and thus the surface pressure on Mars is of magnitude 10−4 smaller than
on Venus. The thin Martian atmosphere and the variable topography yield more
complications for the retrieval of thermal profiles. In addition, the orbital constel-
lation between Earth and Mars constrains the observations to the Martian dayside,
where a non-LTE emission line is superimposed to the broad absorption feature.
These changing external preconditions and their effect on the retrieval algorithm,
as well as preliminary results from one observed spectrum are presented in Chap. 5.
Besides Venus and Mars, other terrestrial planets exist in our solar system. An
outlook on the potential of the Ifr to retrieve temperatures on Titan and the most
terrestrial planet - the Earth - is discussed in Chap. 6, before, finally, a summary
is provided.



Chapter 2

Infrared Heterodyne
Spectroscopy

”And in the end, it’s heterodyning or die.”
(Parody of the Song ”Golden Eye”)

Heterodyne spectroscopy is a powerful tool to observe the atmospheres of terres-
trial planets. It provides ultra high spectral resolution of ν

∆ν
≥ 107, yielding the

capability to resolve single molecular transition features. Fully resolved molecu-
lar transitions provide information about physical parameters, like temperatures,
abundances or dynamical properties. The heterodyne technique is most commonly
applied in the radio and sub-mm regime of the electromagnetic spectrum. How-
ever, in recent years, this technique has been established to derive ground-based
direct wind and temperature measurements by remote sensing of Doppler-shifted
and -broadened molecular transitions also in the mid-IR wavelength regime.

In the following, the heterodyne technique will be introduced in Sec. 2.1. In Sec. 2.2
the sensitivity of the receivers is described and characterized briefly. A short
introduction on the spectroscopic line broadening effects is given Sec. 2.3, and in
the last part of this chapter, the instruments used for observations are presented
(Sec. 2.4).

11
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2.1 Heterodyne Technique

Heterodyning is the superposition of two transversal polarized, planar electromag-
netic (EM) waves. In Fig. 2.1 a schematic overview of a heterodyne receiver is
displayed.

In a heterodyne receiver, the radiation emerging from the object to be analyzed
is coherently superimposed to a well-known reference radiation provided by the
so-called local oscillator (LO). Various beam combining elements can be used for
superposition. Most commonly, beam splitters, Fabry-Pérot resonators or waveg-
uides are used. In the IR, waveguides are not as advanced yet, but first efforts
were made towards a miniature IR heterodyne receiver using waveguides as beam
combiner [56].

Figure 2.1: Schematic view on the heterodyne principle. Two planar EM-waves are
superimposed by a beam combining element. The spatial superposition is detected by
a photomixer which converts the THz radiation down to few GHz. The radio frequency
(RF) is then analyzed by standard RF components. From Stupar [41].
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After superposition, the combined beam is detected by a detector, commonly called
(photo-)mixer. The mixer must possess a non-linear characteristic in order to
mix the high frequency signals from the source and the LO. Due to the mixing
process, new frequencies of few GHz are generated. These frequencies can now be
analyzed and processed using standard radio spectroscopic devices. The spatial
superposition can be described by the summation of their electric fields ELO,sig so
that the electric field at the detector is

Edet = ELO cos(ωLO t+ ΦLO) +
∑
k

Esig,k cos(ωsig,k t+ Φsig,k) (2.1)

where ωLO,sig is the output frequency of the LO and of the signal, respectively. It
has to be noted, that the electric field of the signal Esig consists of several spatial
modes and thus has to be treated as the sum of the individual components k.
The incident power on the photomixer Pdet is proportional to the intensity of the
radiation Idet, which can be expressed as the square of the electric field

Idet ∝ E2
det (2.2)

defining

Pdet =
1

ηq

hν

e0

Idet (2.3)

with

Idet = ILO +
∑
k

Isig,k + 2ηhet
∑
k

√
ILO Isig,k cos(‖ωLO − ωsig,k‖ t+4Φk) (2.4)

where4Φk is a constant phase shift between the LO and the signal. ηhet = ηq + ηmix
is the heterodyne efficiency, which takes the quantum efficiency of the detector ηq
and optical losses, i.e. at the beam combiner, ηmix into account. The initial and
the sum frequencies are to high and cannot be processed. They are represented
by the DC components ILO +

∑
k Isig,k and result in an averaged photo current.

Only the difference frequency 4ωk = ‖ωLO − ωsig,k‖ between the detected signals,
called intermediate frequency (IF) is detected. The IF spectrum contains all orig-
inal spectral information. The spectral size of the IF spectrum depends on the
bandwidth of the applied photomixer and is typically of few GHz.

Due to the symmetry of the cosine function two valid solutions for 4ω can be
found. All frequencies ωsig,k < ωLO originate in the lower side band (LSB), fre-
quencies ωsig,k > ωLO originate in the upper side band (USB) of the so-called
double side band (DSB) spectrum. In the resulting IF spectrum, a distinction
between LSB and USB cannot be made. The DSB is simply the sum of the in-
dividual contributions. In Fig. 2.2 the various steps from a direct detection to a
DSB heterodyne spectrum are illustrated.
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Figure 2.2: Steps from a homodyne to a heterodyne spectrum. Top: the homodyne
spectrum of an atmospheric absorption feature in the THz region. Center top: The same
atmospheric feature divided into the LSB and USB. Center bottom: USB and mirrored
LSB in the IF bandwidth. Bottom: resulting heterodyned DSB spectrum in the IF
bandwidth.
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2.2 Sensitivity

Comparison of the sensitivity between heterodyne and direct detection methods is
not trivial. A detailed investigation was made by Krötz [34]. In radio astronomy,
the system temperature Tsys is commonly used to describe the noise equivalent
power (NEP) of a heterodyne receiver. This notation allows the direct comparison
of various heterodyne instruments and is adapted to infrared heterodyne receivers
[55]. The NEP is the minimum detectable power with a given post detection
bandwidth of 1 Hz and can be written in terms of Tsys as

NEP =

√
8 δ2

res

δfl
kB Tsys (2.5)

with the Boltzmann constant kB, the resolution bandwidth δres and the fluctuation
bandwidth δfl of the system. In order to characterize the resolution of an acousto-
optical spectrometer (AOS, as used for signal analysis in the receiver, comp.
Subsec. 2.4.3) the Rayleigh criterion is conventional. It describes two monochro-
matic frequencies as resolved, when the first maximum of the diffraction image of
the second component coincides with the first null of the diffraction image of the
first component. Their spectral distance is the fluctuation bandwidth δfl [57].

2.2.1 System Temperature

The system temperature Tsys is convenient to characterize the noise of a heterodyne
receiver. It has to be noted, that

Tsys = Tant + Trec (2.6)

divides into two components [58]. The antenna temperature Tant is a measure for
the noise of the detected signal and the transmission line. The receiver temperature
Trec in contrast, represents the intrinsic noise contribution, originating from the
various devices of the receiver. It includes all losses in the instruments’ optics but
mainly depends on the mean quantum efficiency ηq of the mixer. ηq describes the
ratio of detected signal photons to generated electrons. Even in the ideal case of
ηhet = 1 (see Eq. (2.4)), a minimum noise contribution is indispensable. Hence,
the ideal system temperature is limited by the so-called quantum limit. It can be
written as

Tql =
h · ν
kB

(2.7)
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where h is the Planck quantum and ν the observing frequency. The quantum limit
Tql represents the minimal system temperature for a purely shot noise limited
receiver.

To determine the receiver temperature, two well-known reference signals are com-
pared. In contrast to radio or sub-mm observations, the noise contribution of the
transmission line’s thermal radiation is negligible. The incident power is directly
proportional to the system temperature. Here, Tant can be identified as the well
defined surface brightness temperature of corresponding calibration sources, called
hot H and cold C. The surface brightness temperature can be calculated accord-
ing to Planck’s Law. Thus, the incident power of the calibration sources can be
expressed as

H = α(Trec + TH) and C = α(Trec + TC) (2.8)

where α is the unknown amplification of the system. The ratio of the incident
power Y = H

C
terminates the dependency on the amplification and reveals the

receiver temperature:

Trec =
TH − Y · TC

Y − 1
. (2.9)

It is crucial to generate a high contrast between the two calibration signals. In
IR heterodyne receivers, the hot load is usually a blackbody radiator, whereas the
cold load is an absorber at room temperature.

2.2.2 Radiometer Equation and Noise Amplitude

An important parameter to describe the sensitivity of a heterodyne receiver is
the noise amplitude. To retrieve information on the noise amplitude, analysis of
the signal’s variance is important. A frequency independent noise amplitude is
common for white noise. The radiometer equation describes the decrease of the
frequency independent noise amplitude of a constant signal in time:

σ2(τ) =
Tsys√
δfl · τ

(2.10)

where σ2 is the root mean square error (RMS) in K, Tsys is the system temperature,
δfl is the fluctuation bandwidth of the back-end filter [59].

To obtain the resulting spectrum, the ratio of the incident signals from all observed
sources is determined (comp. Eq. (2.8)):

F =
S −R
H − C

(2.11)
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with H: hot calibration load, C: cold calibration load, S: sky signal, R: sky ref-
erence. The radiometer equation Eq. (2.10) is valid for the integration on each
source. To optimize the signal-to-noise ratio (SNR) it is necessary to minimize the
RMS of the retrieved spectrum in Eq. (2.11), which can be calculated according
to the error propagation law. Thus, as shown in Appendix A the RMS can be
expressed in dependence on the whole exposure time τ and the temperature of the
observed sources:

σ2 (τ, F ) =
Trec√
δflτ
· TS + TR + F (TH + TC)

TH − TC
(2.12)

For more information on the sensitivity of a heterodyne receiver please also refer
to Abbas et al. [60], Schmülling [61] and Krötz [34].

2.3 Line Broadening Effects

For the investigation of absorption features, it is essential to understand the pro-
cesses, responsible for the shape of the observed molecular transition lines. In the
following the basic effects, leading to a broadening of spectral lines are discussed.
The descriptions below are following along the lines of Bernath [62].

The energy of photons traveling through a group of molecules can be either ab-
sorbed or induce stimulated or spontaneous emission. Considering a finite volume
of molecules and an incident photon flux, Beer’s law describes that the intensity of
the incident radiation I0 abates exponentially with distance l and can be described
as

I(l) = I0e
−αl (2.13)

where α the so-called absorption coefficient in cm−1 and is depending on the ab-
sorption cross-section of the molecule and its concentration in the probed vol-
ume.

The rotational structure of a dipole, vibrating in a particular mode, is called
band. These rotational-vibrational (ro-vibrational) bands are composed of single
transitions, called lines. A typical molecular spectrum of the CO2 antisymmet-
ric stretching mode is illustrated in Fig. 2.3. To resolve one single ro-vibrational
transition, ultra high frequency resolution is required. Usually, the shape of these
lines can be described by line-shape functions, which are classified into homoge-
neous and inhomogeneous functions. The distinction is due to the properties of
the molecules. A homogeneous line shape occurs, when all molecules are subject
to equal ambient conditions, i.e. the surrounding pressure. Consequently, an inho-
mogeneous line shape is assumed for varying molecular properties, i.e. the velocity
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Figure 2.3: A typical molecular spectrum of the antisymmetric stretching mode of
CO2. One vibrational mode contains a complete band of rotational transitions. In the
insert graphic, one ro-vibrational transition line is shown in absorption. From Bernath
[62]

of the single molecules which is Maxwell-Boltzmann distributed. This broadening
effect is called Doppler-broadening.

2.3.1 Natural Lifetime Broadening

Each molecular transition possesses an intrinsic broadening effect, which is due
to the finite lifetime (τLT ) of the excited energy level. This effect is called nat-
ural lifetime broadening. In quantum mechanics, the energy state of a molecule
is described by a time-dependent wavefunction. The Fourier transformation of
an infinite wavefunction yields the frequency of the wave as a sharp delta peak.
However, since the excited state decays into a lower state by spontaneous emission
after a while, a finite lifetime of the excited state exists and the wavefunction is
not infinite. The Fourier transformation of a transition with a certain decay rate
gives the homogeneous line-shape function. The function represents a statistical
distribution around the centroid frequency and can be described by a Lorentzian
function with a full width at half maximum (Fwhm) given by

4νFwhm =
1

2πτLT
(2.14)



2.3 Line Broadening Effects 19

This Fwhm is often called natural line width and can also be regarded as a con-
sequence of the Heisenberg uncertainty principle.

2.3.2 Pressure Broadening

Pressure broadening occurs due to collisions between molecules and is thus also
called collisional broadening. To understand the process, we consider a transition
from a higher to a lower state, which can be described by a wavefunction. The
dipole moment of the molecule oscillates at a certain frequency except for time of
collision. Then, the wavefunction is disrupted and the dipole moment is altered.
This disruption leads to a finite length of the wavefunction and the Fourier trans-
formation of the divided wave yields, similar to the natural lifetime broadening, a
homogeneous line-shape function, which can be described by a Lorentzian distri-
bution. The Fwhm of the curve is proportional to the reciprocal of the average
time Tc between two collisions. Increasing the ambient pressure, decreases the
time between two collisions. Hence, the Fwhm of the line can be given in terms
of the pressure as

4νFwhm = b · p (2.15)

where b is identified as the substance-specific pressure-broadening coefficient. The
encounter of two molecules is depending on the interaction of their potentials, and
cannot be exactly determined in a group of three or more, thus, the derivation of
the pressure-broadened line shape is a difficult task and the pressure-broadening
coefficients are experimentally determined. For CO2, the self-broadening coeffi-
cient is ∼ 7.6 MHz/Torr [63].

2.3.3 Doppler-Broadening

Gas in a finite volume contains a certain amount of molecules, which are all mov-
ing in a different direction. This varying motion of the molecules provokes a small
scale frequency shift of the incident radiation, resulting in many, natural lifetime
broadened homogeneous line shapes. The envelope of this set of lines is an in-
homogeneously broadened line and can be described by a Gaussian distribution
(comp. Fig. 2.4). The Fwhm of the Doppler-broadened line is depending on the
mass m of the molecules at a given temperature T and can be written as

4νD =
ν0

c

√
8kBT ln(2)

m
(2.16)

where ν0 is the centroid frequency of the line, c is the speed of light and kB
the Boltzmann constant. From Eq. (2.16) the kinetic temperature of the observed
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Figure 2.4: An inhomogeneously broadened line (Gaussian distributed) made up of
many homogeneously broadened components (Lorentzian distributed). From Bernath
[62]

molecule can be retrieved, if the width of the line is given. Hence, fitting a Gaussian
function to a purely Doppler-broadened line shape reveals the kinetic temperature
of the molecule.

In case the molecules are subject to both broadening mechanisms, the result-
ing line-shape function must be described as a convolution of a Gaussian and a
Lorentzian distribution function. This convolution is called Voigt line-shape func-
tion.

In planetary atmospheres, the pressure decreases with altitude, since the molecules
are gravitationally forced towards the surface. The line forms either between the
surface or the altitude, where the pressure is low enough for the atmosphere to be
not optically thick anymore and the altitude where the pressure is high enough
for the pressure broadening to exceed the Doppler broadening. In this region, the
energy emerging from the background radiation source, is absorbed and re-emitted
as traveling along the path of ray. Therefore, one Voigt profile is not sufficient to
describe an atmospheric absorption line. Thus, a full radiative transfer calculation
has to be performed, which accounts for the varying pressure in the atmosphere.
Details on the radiative transfer code I used for the work herein are given in the
next chapter, Chap. 3.

2.4 Instrumentation

Infrared heterodyne spectrometer are still rare and only few instruments exist
worldwide. The first heterodyne receiver was developed at the University of Cali-
fornia (UC) in Berkeley in the early 1970s, to measure CO2 emission lines in the
atmosphere of Mars and Venus [64–67]. The biggest instrument nowadays that uti-
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lizes the IR heterodyne method is the Infrared Spatial Interferometer (Isi), which
was developed by the group of the UC Berkeley around Betz, Johnson and Towns
[68]. Isi is a high spatial resolution interferometer, consisting of three movable
1.65 m telescopes. Each of them heterodynes the incoming radiation with a CO2

laser emission [69]. The combination of interferometry and heterodyning creates
a unique way to achieve high spatial and spectral resolution. Isi’s main field of
application, however, is the investigation of stellar environments [69].

In middle of the 1970s a group at the Nasa Goddard Space Flight Center de-
veloped the Infrared Heterodyne Spectrometer (Irhs), used for planetary obser-
vations in the mid-IR wavelength region [70, 71]. At first, it was permanently
mounted at the Mc-Math Pierce Solar Telescope (McMath) in Arizona, USA, be-
fore it was relocated to the Nasa Infrared Telescope Facility (Irtf) on Hawaii.
At the end of the 1990s, the instrument was disassembled and substituted by the
newer and more flexible Heterodyne Instrument for Planetary Winds And Com-
positions (Hipwac) [72]. Hipwac was the first transportable infrared heterodyne
receiver in the world.

Around the beginning of the century, a second transportable instrument, the
Cologne Tuneable Heterodyne Infrared Spectrometer (This), was assembled. The
instrument is in operation since 2002 [73, 74].

In recent years, more mid-infrared heterodyne receivers were developed. In Cologne,
a second instrument called iChips (infrared Compact Heterodyne Instrument for
Planetary Science) was built, intended as a breadboard for laboratory measure-
ment and terrestrial observations [51]. In addition, a Japanese group is about to
start observations with their newly developed instrument at the Planets tele-
scope on Haleakala, Hawaii [75]. Besides the mid-IR receivers, a couple of near-IR
instruments exist and have been successfully applied for observations. However,
these instruments are less advanced and have mainly been used for terrestrial
observations [76, 77].

This and Hipwac are still operating and have been used for the observations
within this thesis. In the following, they will be presented in more detail. A
description of the receivers setup and most important components is given for each
instrument, to point out the major differences and commonalities. An overview
of some characteristics and specifications can be found at end of the chapter in
Tab. 2.2.
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2.4.1 THIS

Spectrometer Setup

The beam path in This is displayed in Fig. 2.5. A picture of the receiver is shown
in Fig. 2.6(a). The instrument was designed to fit in a two-story aluminum frame-
work. The receivers dimensions are 80 x 60 x 42 cm3 and it weighs approximately
80 kg. The inner part of the cube is indicated as the LO deck in the scheme in

Figure 2.5: Schematic view on the beam path in This. The broadband IR signal
(green) coming from the various radiation sources is injected into the spectrometers
optical path by a high speed galvano scanner. The radiation from the sky is split into
its optical (light blue) and its IR component by a dichroic mirror. The optical light is
detected by a CCD for guiding purposes. The IR signal is fed into the diplexer and
heterodyned to the LO beam (blue). A fraction of the LO power is routed through a
reference gas cell onto a MCT (HgCdTe) detector to monitor the output frequency of
the LO. A stabilized HeNe laser (red) is also injected into the diplexer in order to lock
the LO frequency onto a specific resonator fringe. (Sonnabend et al. [55])
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(a) This: dimension 80 x 60 x 42 cm3 (b) Hipwac: dimension 75 x 80 x 137 cm3

Figure 2.6: Photos of the two receivers.

Fig. 2.5. The LO deck contains the beam combining optics, the detector and the
LO. In addition, all components required for frequency stabilization are mounted
inside the LO deck. The upper part of the receiver contains all the optics nec-
essary for matching the instrument to different telescopes with different F# [55].
It is marked as the signal deck in Fig. 2.5. Besides the IR signal and calibration
components, an indispensable optical guide system is located on the signal deck.
All electronic components, needed for operation are mounted into two separate
19” racks which makes it convenient for transportation and handling.

The Local Oscillator - QCL

This is the first infrared heterodyne receiver that uses quantum cascade lasers
(QCLs) as LO. QCLs are semiconductor lasers and have been developed in 1994
by Faist et al. [78]. In these types of lasers, photon emission is obtained by op-
tical transitions of electrons between confined energy levels [79]. The transitions
take place between intersubbands in a multi-quantum-well structure. In Fig. 2.7
the scheme of a QCL with the concept of alternating wells and barriers is on
display.



24 Chapter 2 - Infrared Heterodyne Spectroscopy

Figure 2.7: Energy diagram of a QCL from Yao et al. [80]. The laser transition takes
place in the active region between sub-band 3 and 2. The sub-bands contain alternating
structure of quantum-wells and barriers in order to force stimulated emission.

The advantage of QCLs compared to other lasing devices, i.e. diode lasers, are their
high continuous wave (CW) output power and spectral tuning range. A QCL is a
multi layer semiconductor usually made out of GaInAs/AlInAs heterostructures.
The emission frequency of the laser is depending on the layer structure and can
be tailored over a wide range by changing only the thicknesses. Hence, a mani-
fold of QCLs are available in the mid-IR wavelength regime between 3µm–25µm
[80]. However, two kinds of QCLs have to be distinguished. The multi-mode
Fabry-Perot (FP) devices and the distributed feedback (DFB) QCLs. DFB-QCLs
possess an incorporated internal grating which allows monochromatic single-mode
operation with a narrow linewidth [81, 82]. Despite the narrow linewidth, DFB-
QCLs provide a spectral tuning range of approximately 1% around the central
wavenumber [78]. Tuning of the device can be achieved by either changing the ap-
plied current or the operation temperature. The former results in a fast, the latter,
due to a longer thermal relaxation time, in a slow tuning effect. This provides a

#
λpeak tuning range operating temperature

µm cm−1 µm cm−1 K

1 10.54 948.63 10.51–10.57 947–951.5 187–243

Table 2.1: QCL mounted in This during observations for this work.
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common tuning range of 6–10 cm−1. Initially, QCLs had to be liquid nitrogen (LN)
cooled to be operated at low temperatures. In recent years, the development was
successfully driven towards devices that could be operated at room temperature
[79]. LN cooled DFB-QCLs are used in This. Mostly, the devices are heated addi-
tionally, in order to increase their tunability. A list of the important parameters of
the device used in This during observations for this work is given in Tab. 2.1.

The Beam Combiner - Diplexer

A confocal FP ring resonator, called diplexer, is used as the beam combining
element. Two focusing mirrors, with a focal length of 30 mm each, are placed in the
respective opposed focal spot. The beams are injected into the resonator through
two highly reflective beam splitters. The transmission in the diplexer follows the
Airy function and, assuming a good alignment, the maxima are separated by4ν =
c/2 · l, with l the length of the resonator. The suppression of side modes from the
QCL and the avoidance of accidental reflective feedback are two advantages of the
setup. To assure optimal amplification in the cavity, one mirror can be modulated
by a piezo actuator at a frequency of a few hundred Hz. This way, the diplexer can
serve also for frequency stabilization purposes. The LO can be stabilized to the
maximum of a resonator fringe with an accuracy of ∼ 1 MHz. Further information
can be found in the work of Wirtz [83], Sonnabend [73], Sonnabend et al. [55] and
Sornig [84].

Beam Selection and Signal Calibration

In Sec. 2.2.2, we learned from Eq. (2.11), that for obtaining a calibrated spectrum it
is necessary to observe four different input signals. To select the different radiation
sources a galvano scanner is implemented into the spectrometer (comp. Fig. 2.5).
The scanner switches between the calibration loads Hot, Cold and the beam from
the sky provided at the on-source Signal and the off-source Reference port. In
THIS, the hot load is a black body radiation source at 673 K and the cold load a
room temperature absorber. In addition, a steady state emitter, observed through
a reference gas cell, is introduced as a fifth source, required for monitoring the
frequency position and stabilization of the LO. The galvano scanner enables high
speed switching between the various positions within only a few milliseconds. It
injects the required broadband signal beam by rotating into the accurate angular
position. Its high switching frequency can be precisely synchronized with the
observing procedure. This enables the measuring of the loads and the source
within the short period of one observing cycle.
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2.4.2 HIPWAC

Spectrometer Setup

The setup of Hipwac is displayed in Fig. 2.8 and a picture of the instrument can
be found in Fig. 2.6(b). The size of the receiver is 75 x 80 x 137 cm3. It weighs
approximately 90 kg. In contrast to THIS, the optical components in Hipwac

Figure 2.8: Schematic view on the beam path in Hipwac. The broadband signal
coming from the sky is split into its visible (light blue) and its IR (green) component by
a dichroic mirror. The visible light is detected by a CCD for guiding purposes. To select
the hot load, a flip mirror can be introduced into the beam path. A chop between the
hot and the cold load is achieved by a chopper wheel. The IR signal is superimposed
to the LO beam (blue) on a beam splitter. The LO output power can be reduced in
the attenuator. By removing a flip mirror, the LO output frequency can be monitored
in a spectrum analyzer. The heterodyned beam is detected by the IR mixer and finally
analyzed. (Stangier 2014 [52])
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are vertically aligned and the two decks are mounted to the opposed sides of an
upright optical plate. The receivers framework is made of carbon fibers. The LO
deck contains the LO, an attenuator and a spectrum analyzer. On the signal deck
the calibration loads, the beam combining element and an optical guide system
are located. In addition, the optical components which are needed for telescope
adaption can be found on the signal deck. The broadband signal coming from the
sky is fed into the instrument from the top, through a hole in the lid. The IF
signal provided by the mixer can not only be analyzed with an AOS, but also with
a high-resolution filter bank [45], which is omitted in the scheme in Fig. 2.8, since
it was not used for data acquisition in this work.

The Local Oscillator - CO2 Gas Laser

In Hipwac the LO signal is provided by a CO2 gas laser. In order to increase
the spectral coverage of the instrument, two different laser gain tubes can be
selected. Each laser gain tube contains different CO2 isotopes, yielding a manifold
of transitions around the 12C16O2 I-, and II-band centered at 10.4µm and 9.4µm,
respectively. The desired transition can be selected by tuning the cavity length
of the gain tube. This can be achieved by changing the angle of incidence of
an incorporated diffraction grating on one end of the tube. In gas lasers, though,
tunability is limited and the monochromatic LO output frequency is restricted to a
small bandwidth around the energy peak of the specific transition. To guarantee a
stable output frequency, the laser is locked to the peak of the gain profile [85].

The advantage of CO2 gas lasers is their high output power. To ensure a con-
stant power for the various transitions and to avoid signal saturation on the back-
end detection devices an attenuator is introduced in the LO beam path (comp.
Fig. 2.8). The spectrum analyzer serves for monitoring the selected transition of
the laser.

Beam Selection and Signal Calibration

Hipwac cannot be applied as flexible as This. Since it is not equipped with an
appliance to switch between signal and reference, the instrument must rely on
telescopes which are capable of chopping the beam on the sky, e.g. the Irtf. The
hot load can be observed by introducing a flip mirror into the beam path. The
flip mirror is electronically controlled in order to obtain a calibration measurement
remotely. A chopper wheel is then used to chop between the hot and the cold load.
The cold load in Hipwac is represented by the filled areas of the chopper wheel,
which are kept at room temperature. The hot load is a black body radiator with
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a surface temperature of 1273 K. In Hipwac the calibration procedure cannot be
implemented into the observing procedure as it is in This. Therefore, it has to be
done after each measuring cycle.

The various broadband signals are heterodyned to the LO signal on the beam
combining element, which is a 2 x 3 inch2 ZnSe beam splitter. The beam splitter
has a special IR coating which reflects 10 % and transmits 90 % of the signal.

THIS HIPWAC

Local oscillator QCL CO2-Laser
Operating wavelength 7.8–11.2µm (tunable) ∼ 10µm (CO2-band)
Beam combiner Diplexer Beam splitter
Receiver Dimensions 80× 60× 42 cm3, 80 kg 75× 80× 137 cm3, 90 kg
AO-Spectrometer 3 GHz, 6000 channels 1.6 GHz, 3000 channels
Spectral Stability ∼ 0.3 MHz ≤ 0.01 MHz
Maximum Resolution ν

∆ν ≥ 107, adjustable
Sensitivity Tsys≤ 3000 K at 10µm

Table 2.2: List of important specifications for This and Hipwac.

2.4.3 IR Mixer and AOS

Both instruments use an mercury-cadmium-telluride (HgCdTe or Mct) IR de-
tector. In each case, it is a doped semiconductor pin-photodiode optimized for
heterodyne detection between 7.6µm and 12.0µm. It consists of four single detec-
tor chips, each of them embodies one pin-photodiode buried in an optical cavity.
The incorporated resonator creates a standing wave pattern within the HgCdTe
material to optimize sensitivity of each chip to different wavelengths [86]. The
resonator increases the quantum efficiency ηq to ∼ 80 %. The photomixers have to
be LN cooled and their 3 dB cutoff is at ∼ 3 GHz.

The back-end spectrometers used for signal analysis are AO-spectrometers. AOS
were developed and assembled at our institute [57] and have been applied success-
fully for various purposes in the field of radio-astronomy and spectroscopy for many
years [74, 87, 88]. The two AOS applied in the instruments are slightly different.
Both possess a fluctuation bandwidth δfl of 1.3 MHz. The AOS used in This has
an IF bandwidth B of 3 GHz, the one in Hipwac of 1.5 GHz, respectively, limiting
the IF bandwidth of the entire instrument.

In an acousto-optical spectrometer, the IF photons of the signal to be analyzed,
excite grating vibrations of a Bragg crystal. These vibrations modulate the refrac-
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tive index of the crystal. A laser beam is routed through the crystal and collimated
onto a linear CCD. This enables the simultaneous detection of the broadband IF
signal, since the modulated dispersion of the crystal, caused by the spectral dis-
tribution of the IF, leads to a spatial refraction of the AOS laser. The amount of
channels of the CCD defines the bandwidth B of the AOS. In This, the AOS-CCD
has 6000 channels and in Hipwac 3000, respectively. For more detailed informa-
tion on the functionality of an AOS, please refer to the work of Schieder et al. [57],
Siebertz [89] or Olbrich [90]. Further analysis and data processing is performed
by a PC.

2.4.4 Spectral Stability

One important factor for observations requiring long integration times is the spec-
tral stability of the receiver. The importance even increases for ultra high spectral
resolution. To claim a spectral resolution of ∼ 1 MHz is only valuable, if the spec-
tral stability is guaranteed to be less or equal to this value. The spectral stability
of the AOS can be assumed as given, as it was proven several times in the past
[57, 89, 90]. Additionally, a comb generator with defined spectral distance of
50 MHz between the comb emission lines, is implemented into the IF processing
box in order to calibrate the AOS-CCD precisely. Hence, all potentially slow and
long term drifts of the back-end spectrometer, caused by varying ambient temper-
atures can be ruled out.

In This, the spectral stability was tested by observing a well known molecular
transition feature of a reference gas in absorption. The pressure of the gas must
be low enough to obtain an only Doppler-broadened line shape. Commonly, a
pressure of less than ∼ 5 hPa is sufficient [55]. A Gaussian distribution is fitted to
the absorption line, yielding the IF center frequency of the feature. The procedure
was repeated every 30 s for 4500 s, simulating real observing conditions. A typical
result of such a stability measurement is shown in Fig. 2.9. The obtained standard
deviation of the IF frequency position of the line, which directly correlates to the
output frequency stability of the LO, is 0.3 MHz. The slight slope, that can be
observed in Fig. 2.9(b) is due to the thermal properties of the QCL. However, these
long term drifts can be neglected, since an absorption line is frequently measured
during the observing procedure, for LO frequency calibration purposes.

In Hipwac, an additional load for monitoring the spectral stability of the receiver
is abdicated. The CO2 gas lasers are assumed to provide a stable output frequency
over the observing period. The laser can only emit at the rest frequency of the
selected transition to which it is locked. The transition is selected by changing
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(a) (b)

Figure 2.9: Spectral stability of This from Sonnabend et al. [55]. IF line center
frequency variation over time. The inset values in (b) are the mean value and the
standard deviation (SD) given in MHz.

the resonator length. The rest frequency is independent from external parameters
such as ambient pressure or temperature. The resonator length however, can vary
due to external influences and must be stabilized to keep the output frequency
constant. This is achieved by a piezo actuator, controlling the incorporated grating
at the end of the laser gain tube. Hence, the LO output frequency can only be
slightly tuned within a small bandwidth around the very narrow emission peak of
less than 10 kHz. This can only result into a potential frequency drift which is two
magnitudes smaller than the resolution bandwidth of the AOS and thus negligible.
In case of a major deviation, the stabilization circuit would be truncated and the
incident would be indicated on the electronic control rack.

2.4.5 Allan Variance Measurement

A key factor for astronomical and terrestrial observations is the amplitude stability
of the receiver. Its variance, σ, must decrease with increasing integration time, τ
(comp. Eq. (2.10), radiometric behavior) [91]. The Allan variance method, a com-
mon procedure to investigate the accuracy of time and frequency standards [92],
is used to demonstrate the radiometric decrease of the noise amplitude. The mini-
mum of the Allan variance can be determined using a power law, where frequency
drifts are proportional to τβ and the white noise contribution is proportional to 1

τ
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[93]. It can be written as:

σ2
A(τ) =

a

τ
+ bτβ with β ≥ 1 (2.17)

Hence, when the variance is plotted on a logarithmic scale, the −1 slope defines the
time interval in which the radiometer equation must be valid and only white noise
contributes to the spectrum. This time interval can be individually determined
for each receiver and defines the maximal integration time for one cycle τcyc, the
so-called Allan-time. During that time, all individual sources need to be observed.
To obtain the resulting spectrum, the single cycles are stacked, conserving the pure
white noise contribution. In This the Allan-time is ∼ 60 s [73].





Chapter 3

Retrieval Method

”A thermometer is a device that measures temperature or a temperature
gradient using a variety of different principles.”
(Oxford English Dictionary)

In recent years, the dark side of Venus was observed with IR heterodyne technique.
Unsurprisingly, broad CO2 absorption lines were detected. These observations
posed the question: is it possible to retrieve thermal profiles from these CO2

absorption features, which are seen not only on the Venusian nightside but also on
the Martian dayside? If affirmative, which altitude region would they probe?

First steps of analyzing the CO2 absorption features on Venus with IR heterodyne
spectroscopy were performed a long time ago in the early 1980s by Deming et
al. [94]. However, spectroscopy technology and atmospheric models were not as
advanced as they are nowadays and no further effort was put into these studies
ever since.

Subject of this work is to use a radiative transfer model to create an inverse fitting
routine, capable to extract pressure-temperature profiles from measured spectra.
Initially, a nominal profile was used as an input parameter for the model in order
to simulate the local atmospheric conditions.

In this chapter, the model (Sec. 3.1) and the inversion routine (Sec. 3.2) are pre-
sented in detail. In Sec. 3.3 the altitude resolution for the retrieval method will be
explained and in Sec. 3.4 a proof of concept is given.

33
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3.1 The Model CoDAT

Infrared heterodyne spectroscopy produces sub-Doppler resolution spectra that
need a specialized analysis utility. The infrared heterodyne group of the Nasa
Goddard Space Flight Center developed a model for an accurate representation of
the spectra of planetary atmospheres acquired with IR ground based heterodyne
observations at telescopes with a finite aperture. The model allows a beam inte-
grated radiative transfer calculation over various parameters such as species abun-
dances, dynamics and thermal properties distributed over the field of view (FoV).
The measured true line shapes include information on the abundance and tem-
perature structure in the region of spectral line formation. The radiative transfer
code, called Composition and Dynamics Analysis Tools (Codat), was specifically
developed to model and fit such highly resolved line spectra.

Codat is an atmospheric molecular line-by-line radiative-transfer modeling engine
that can also integrate spatially variable properties of the target’s atmosphere
in sub-resolution elements across the spectrometer beam, if needed. The engine
can incorporate perturbations to the line shape that result from varying viewing
angle due to the finite size of the diffraction limited telescope beam projected
on the planet. This beam-integrated technique is vital to the uniqueness of the
retrieval and confidence in the derived atmospheric properties, especially when the
viewing geometry is such that the instrument beam captures contributions from
a range of planetary longitudes and viewing angles. Codat accounts for all these
effects directly in the analysis. All relevant information concerning the model and
radiative transfer code can be found in more detail in the work of Hewagama et
al. [95].

3.1.1 Geometrical Segmentation of the Beam

The radiative transfer calculation of Codat is based on the basic geometric formal-
ism for beam integrated spectra that was developed by Goldstein [96] in the late
1980s. The mathematical formalism describes the projection from a thin spherical
shell to a two-dimensional circular area. The geometrical input parameters are
important for dividing the tangential vector to the spherical shell into the compo-
nents parallel and perpendicular to the line-of-sight (LoS). These parameters are
also needed for calculating the latitudinal and longitudinal position relative to the
observer. However, to transform the projections into relative coordinates, only the
axis tilt between the planetary and the celestial north pole (called inclination, β) as
well as between the planetary north pole and the plane of the sky (called azimuth,
α) has to be taken into account. The viewing angle is defined as the inclination
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(a) Top of the atmosphere projection of a
planet viewed from the north to a disk on the
sky plane which is rotated around the EW axis
by 90◦. The sky plane represents an example of
a possible fragmentation into a sub-resolution
grid.

(b) The cross-section of atmospheric shells for
a circular symmetry is shown on the left, in-
cluding the illustration of a ray emerging from
the bottom of the atmosphere. The shaded area
represents the geometrically thin shells. These
shells are assumed to be semi-infinite plane par-
allel layers as shown on the right.

Figure 3.1: Illustrations of the geometrical conditions for the model in the case where
the FoV is equal to the apparent planetary disk from Hewagama et al. [95].

between the local radius vector and the LoS. It has to be noted, that the viewing
angle increases for observing positions along an arbitrary line, originating in the
center of the apparent disk (the sub-observer point (SOP)) towards the limb. This
is illustrated in Fig. 3.1(a) for the case of a planetary disk equal in size to the FoV.
In addition, Fig. 3.1(a) represents the two-dimensional circularly symmetric grid
which is used to divide the planetary disk for beam integrated calculations. The
grid displayed in Fig. 3.1(a) is an example of a possible segmentation of the beam.
For Codat, various beam models using different grids are at hand.

A higher viewing angle results in a longer ray path through the atmosphere. Thus,
a ray penetrating the atmosphere will encounter varying conditions (thermal struc-
ture, wind shears, etc.) caused by the curvature of the planet. Codat does not
account for the curvature in terms of regarding the changing external conditions.
It only considers the longer ray path through the atmosphere within the FoV by
tilting the LoS to the viewing angle as it is indicated in Fig. 3.1(b). The portion
of the atmosphere associated with a beam element is represented by geometri-
cally thin (4R � R) shells. The shell segments are approximated by a set of
semi-infinite plane parallel layers. It has to be pointed out, that the illustrations
in Fig. 3.1(a) and Fig. 3.1(b) are examples of the previously assumed case of an
apparent planetary disk size equal to the FoV.

For a single-element beam Codat assumes a ray path through the atmosphere as
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it is indicated by case A in Fig. 3.1(b) even at the limb, meaning the curvature is
completely neglected. This is also true for a multi-element beam at the limb, in
the case where the apparent disk is much bigger than the FoV. The importance of
dividing the beam into smaller portions increases significantly when the ratio be-
tween FoV and apparent disk is ∼ 1. Thus, the sub-resolution beam segmentation
is necessary for analyzing the atmosphere of small terrestrial bodies like Titan.
However, on Venus, for example, especially when it is close to inferior conjunction,
the FoV/apparent disk ratio is � 1, since the apparent disk is more than one or-
der of magnitude bigger than the diffraction limited FoV of the telescope. In that
case, a single-element beam is a sufficient approximation of the observation. This
approximation improves computational efficiency while employing the geometry
calculations incorporated in the modeling code.

3.1.2 Radiative Transfer through the Atmosphere

Infrared thermal radiation forms in planetary atmospheres over a wide range of at-
mospheric parameters, such as the thermal and species composition as well as the
pressure level corresponding to the altitudes. For example, the continuum radia-
tion of Mars emerging from the warm surface suffers absorption by CO2 molecules
in the overlaying atmosphere. IR heterodyne technique provides ultra high fre-
quency resolution of ∼ 1 MHz. Thus, a pressure broadened single ro-vibrational
transition can be measured. For analysis, however, the radiative transfer model
must provide spectral calculations which are commensurate with the observed
data. For most applications, a ∼ 1 MHz frequency grid is applied to match the
instruments frequency resolution. The frequency grid though, can be adapted to a
possible resampling of the acquired spectra to lower resolution. The grid is chosen
in a way, that it symmetrically matches the IF bandwidth around the LO fre-
quency which was used for observations. In other words, the spectral grid has to
be centered around the LO frequency.

The radiation transport through the atmosphere is assumed to be time indepen-
dent. The radiative transfer is approximated with the use of homogeneous semi-
infinite plane parallel atmospheric layers as described above. Each layer possesses
an abrupt boundary condition. Furthermore, the atmosphere is assumed to be
isotropic and dominated by absorption/emission processes; i.e. scattering is ne-
glected. The engine provides a monochromatic transfer for each frequency in the
previously chosen grid. The transfer can then be calculated for a given viewing an-
gle by cumulating the line-by-line contributions of transitions from all constituents
in the remote atmosphere. A nominal coarse layering and composition distribution
for the molecule of interest is presented in the algorithm. On Venus and Mars,
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the only relevant constituent is CO2 and affects due to trace molecular species are
neglected. In Chap. 4 and Chap. 5 more information on the composition of the
observed planetary atmospheres can be found. Assuming hydrostatic equilibrium
and the ideal gas law, the model constructs a set 1000 plane parallel vertically
stratified layers. Each layer is chosen to be optically thin, isothermal and homo-
geneous. The thickness of a layer is typically ∼ 10 m. For a single layer, local
thermodynamical equilibrium is assumed. Thus, each layer is a small black body
radiator, emitting thermal radiation according to the Planck law. The whole at-
mospheric transfer is thus simulated by calculating the influence of the radiation
from the adjacent layer to the next in a bottom to top stratification.

The frequencies of the specific molecular transition is provided by either the Hi-
tran [97] or the Geisa [98] line atlas. The monochromatic spectral calculations
are performed at the corresponding frequency grid, using a Voigt line shape.

The top-of-the atmosphere planetary spectrum is further modulated by telluric
extinction before reaching the ground-based telescope. A correction for the ter-
restrial atmosphere is thus included into the engine. The contribution of Earth’s
atmosphere is modeled using a modified version of the Ncar Genln2 (National
Center for Atmospheric Research General Line-by-Line atmospheric transmittance
and radiance model) terrestrial atmospheric transmittance and radiance modeling
algorithm [99, 100].This package includes standard atmosphere models by region
and season for the gases of significance in our spectral region. It calculates the at-
mospheric transmission on the basis of the given input parameters, such as target
elevation or observer altitude. This contribution from the Earth’s atmosphere is
analytically removed in the modeling and analysis. Since heterodyning is a spatial
coherent detection method, scattering or stray light in the terrestrial atmosphere
have minimal influence on the spectra and are neglected.

3.1.3 Simulating the Observed Spectra

The Codat package has been used extensively in the past as a forward model
for analyzing atmospheric data from ground based IR heterodyne observations
[42, 43, 45–48, 50]. In these cases, all relevant atmospheric parameters have been
included into the code to accurately model the radiative transfer at the correspond-
ing observing site. These parameters include the planetary aspect data, such as
the apparent angular disk or the SOP and sub-solar point (SSP) in longitude and
latitude. Furthermore, the beam position on the apparent disk has to be marked,
given in relative coordinates on the planet in respect to the equator and the cen-
tral meridian longitude (CML). In this notation, sky north and sky west have a
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positive whereas sky south and sky east a negative sign. However, for clarity the
relative planetary coordinates, necessary to indicate the beam position, will be
given in celestial directions north (N), west (W), south (S) and east (E) in the
further text.

In addition to the geometrical constrains, the Doppler frequency shift has to be
taken into account. The relative velocity between the target and the observer de-
fines the spectral shift of the observed transition relative to the rest frequency in
a stationary reference system. This shift is known as the relative Doppler shift.
An additional shift, originating by the angular velocity of the targets circulat-
ing atmosphere and the observers locations angular velocity is called differential
Doppler. The differential Doppler shift is of magnitudes smaller than the relative
Doppler shift. However, given a rotational movement in the targets atmosphere
the differential Doppler must be taken into account when analyzing the dynamics
of the planets atmosphere but will be neglected for investigations of the thermal
properties further on.

The whole fitting section, indispensable when using Codat as a forward model, is
generally not of any interest for the retrieval algorithm and will not be discussed
here in detail. Retrieved temperatures are still influenced by two critical parame-
ters: absolute calibration of radiance and spectral line shape position. The former
is represented by the scale factor which must be estimated during observations.
The scale factor represents the accuracy of the adaption of the instrument to the
telescope. It also includes all optical coupling losses of the signal. The scale fac-
tor is an important quantity and its influence, properties and behavior will be
discussed in Subsec. 3.4.1. The line position can be calculated from the relative
Doppler shift between target and observer, however, due to winds in the target’s
atmosphere, a small frequency variation is possible. For analyzing spectra where
a non-LTE emission line is superimposed to the broad absorption line, i.e. dayside
measurements of Mars, the code provides the possibility to add an auxiliary line
profile to the spectrum. The auxiliary line is represented by a Gaussian distribu-
tion function and the intensity, the width and the frequency position can be fitted
in order to derive information on the present dynamics and temperatures in the
low pressure region of 10−3 hPa. This analysis of the non-LTE emission has been
the main task of Codat in the past.

3.2 Extracting Thermal Profiles

The intension of the newly developed retrieval algorithm was to create the Ifr,
capable of extracting these atmospheric parameters from the measurement, which
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have previously been input parameters as described above in Sec. 3.1.3. For the
work herein, emphasis was given to the retrieval of the predominant pressure-
temperature gradient in the planet’s nightside atmosphere. For convenience the
thermal profile will be called pT-profile.

The initial approach was to write an inversion algorithm, that runs the radiative
transfer engine for the given observing location on the planet and iteratively com-
pares the model to the data. The scheme of the newly developed Ifr is given
in Fig. 3.2. In a first step, a sophisticated guess has to be assumed as the initial
boundary condition. Starting of from this initial guess, Codat creates a mod-
eled spectrum based on the observationally constrained input parameters given
in the code (step 2 in Fig. 3.2). In a third step, the residuals between the mod-
eled spectrum and the data are calculated and a least square fit of the residuals
is applied. The three steps are performed by consecutively altering the tempera-
ture layer by layer within one iteration. The iteration process itself is repeated,
until the residuals between the model and the data are minimal and convergence
is reached. By minimizing the residuals, the true value of the pT-profile can
be retrieved. The fit to the residuals is performed by incorporating robust non-
linear Levenberg-Marquardt based model parameter optimization algorithms to
constrain the derivation of model atmospheres consistent with observed spectra
and to estimate statistical uncertainties for the model parameters. The profile thus
retrieved represent the true atmospheric thermal structure, required to accurately
simulate the radiative transfer so that the obtained model spectrum coincides to
the observational one.

The Ifr is written in the interactive data language (Idl) environment. The soft-
ware contains various modules, e.g. for building the initial guess, calling the Codat
input and the data files. The program uses the Idl incorporated subroutine
Curvefit2 for fitting. Curvefit2 provides such a least square fit to a non-
linear function of an arbitrary number of parameters. The thermal profiles are
presented to the optimization algorithm in parametrized form. Additionally, up-
per and lower bounds have been imposed on these quantities. The complete Idl
code for the inversion routine is given in Appendix B.

Under the assumption of a constant-with-altitude atmospheric CO2 volume mixing
ratio, the coupling between the abundance and thermal structure is relaxed [101].
The main task at hand reduces to the judicious selection of set of atmospheric
pressure layers for which the parameters can be accurately extracted using the
inversion technique.
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3.3 Altitude Resolution

The gaseous atmosphere of a terrestrial planet is assumed to be an ideal gas.
Since, according to the ideal gas equation, pressure and temperature are directly
correlated, their simultaneous deduction is not possible with just one reference
measurement. Thus, to retrieve a vertical pressure/temperature gradient, one
parameter needs to be fixed. In our case, the pressure levels are fixed whereas the
temperature is allowed to vary in order to fit the model to the data. To obtain
a realistic assumption of the pressure levels, hydrostatic equilibrium through the
atmosphere above 60 km is assumed. The barometric formula relates the pressure
to the altitude as:

p(h) = p0 · e−
h
H (3.1)

where, p0 is the pressure at height h0, H = RT g−1M−1 the scale height of the
atmosphere containing a gas with the molar mass M at temperature T , g is the
gravitational constant of the planet and R= 8.315 J mol−1 K−1 the gas constant.
The scale height H represents the altitude in atmosphere, where the pressure
dropped to 1/e of the surface pressure. Here, H is used to estimate the first order
altitude resolution of the pT-profile.

For Venus, atmospheric composition can be assumed to be almost purely CO2

with a mixing ration of 0.965, with MCO2 = 44.01 g mol−1 and g= 8.87 m s−2. Since
the Venusian atmosphere becomes optically thick for IR radiation at an altitude
of ∼ 63± 3 km [102] , the surface pressure of the opaque shell must be adapted
for Eq. (3.1) to p0 = 100 hPa. On a global scale, T is estimated to be between
200 K and 240 K, yielding H in the interval from 4.26 km to 5.11 km. This yields
an uncertainty of the calculated pressure levels, which is taken into account by
displaying error bars for the resulting pT-profile.

The altitude resolution is constrained by the data. Finer resolution grids for the
altitude did not have solutions on which the fitting routine would converge. An-
other effect that appeared when using a finer altitude resolution is an oscillation of
the retrieved pT-profile. This oscillation is caused by a cross correlation between
adjacent pressure layers. The spectral information is not high enough to resolve
smaller altitude bins and the retrieval algorithm can compensate an erroneous tem-
perature by assuming an inversely wrong temperature in the next pressure layer.
This leads to a propagating error through the whole pT-profile. The influence of
the altitude resolution on the retrieval has been studied and investigated inten-
sively for this work. Examples of such oscillating pT-profiles, where the altitude
resolution was to high are shown in Fig. 3.3.
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Figure 3.3: Examples of retrieved oscillating pT-profiles were the altitude resolution
was chosen to be too high. The profiles where deduced from the same synthetic spectrum.
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(a) Synthetic spectrum based on a monotonic
decreasing with altitude profile at the sub-
observer point.

(b) Synthetic spectrum based on a perturbed
pT-profile at the equator 65◦ W of the CML.

Figure 3.4: Synthetic spectra - Blue: Modeled radiative transfer through the atmo-
sphere based on the temperature profile displayed in the insert graphic. Red: Model,
superimposed with random white noise in order to simulate observed data. The data
was smoothed over 5 MHz for display.

3.4 Proof of Concept

To investigate the reliability of the described retrieval method, temperatures were
reobtained from synthetic data, which were created using previously well-known
profiles. In a first step, Codat was used to simulate the radiative transfer through
the Venusian atmosphere at an arbitrary position on the planet using a given input
pT-profile. Then, white noise was added to the model with a noise magnitude,
adequate to simulate an observed heterodyne spectrum. As mentioned in Sec. 2.4.5,
the measured data possess only white noise if the integration time for one cycle
does not exceed the Allan-time. Hence, an investigation of the synthetic spectra
with pure with noise is adequate. Two such spectra are displayed in Fig. 3.4(a) and
Fig. 3.4(b) for one observing position at the sub-observer point on the planetary
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Figure 3.5: Influence of the scale factor and the background radiation to the incident
signal intensity. An increase of the background radiation in terms of the surface temper-
ature has a non-linear effect on the spectral distribution (colored lines). The increase of
the scale factor, results in a purely linear intensity scaling over the whole spectral range
(dashed lines).

disk and another at the equator and 65◦W (EQ65W) of the CML. The insert
graphics in Fig. 3.4 represents the initial pT-profile used as input parameter for
the model. The blue line in the main graphic displays the modeled spectrum from
Codat. The red spectra are the synthetic data sets with white noise. Data was
smoothed over 5 MHz for display. It is sufficient to assume a pure white noise
contribution.

3.4.1 The Scale Factor

As discussed before, the scale factor is one of the most crucial parameters for
the retrieval algorithm. The scale factor is introduced into Codat to account for
optical losses in the transmission line between the telescope primary mirror and the
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detector. It can be understood as a linear intensity correction factor. In an ideal
case of a perfect alignment to the telescope and lossless optical components the
scale factor equals 1. However, in a real system, optical losses have a measurable
effect on the intensity and cannot be neglected. Nevertheless, the losses in the
instrument itself are not relevant, because the incident signal intensity on the
detector is calibrated in relation to the different calibration loads. Thus, the scale
factor varies with the quality of instruments telescope adaption. It is essential
to investigate, whether a variation in the scale factor contributes to the thermal
profile analog to a change of the background temperature, or only by resulting in
a linear shift of the whole profile.

In order to investigate the influence on the retrieved profile the correlation between
the scale factor and the background radiation emitted by the targets surface was
investigated. Therefore, Codat was used to simulate spectra for different back-
ground radiations. In Fig. 3.5 the correlation between the scale factor and the
targets background radiation is displayed. The pT-profile was given and only the
bottom layer, representing the surface temperature of a blackbody radiator, was
modified. The temperature has been increased in steps of 5 K from 230 K up
to 280 K. The intensity of the background radiation is normalized to the spec-
tral intensity distribution corresponding to a surface temperature of 230 K (comp.
colored lines in Fig. 3.5).

In Fig. 3.5, it can be observed, that the increase of the background radiation has
a non-linear influence on the spectral distribution of the incident signal intensity.
This is within the expectation, since the background radiation originates from
the bottom of the line forming region and must have a more complex effect on
the shape of the absorption line, because the whole radiative transfer through the
atmosphere is biased by the surface emissivity of the radiator. Hence, the scale
factor can only produce a total shift of the retrieved profile, due to the purely linear
intensity scaling of the signal (comp. dashed lines in Fig. 3.5). Local variations of
the temperature gradient between the single pressure layers are not affected by
the scale factor. The scale factor can thus be decoupled from the temperature
retrieval.

Nevertheless, good knowledge of the scale factor is inevitable to avoid linear shifts
of the whole profiles. In order to estimate the scale factor it is convenient to observe
well characterized uniform filled sources such as the lunar disk or the sun. The
scale factor usually varies within a range of 1.4 to 2.8 depending on the instrument
and the telescope.
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(a) (b)

Figure 3.6: Fit guess for synthetic spectra. Blue: Modeled radiative transfer through
the atmosphere based on the initial guess temperature profile. Red: synthetic data as
introduced on Fig. 3.4. Green: residuals between initial guess model and synthetic data.

3.4.2 The Initial Guess

The analysis described herein does not employ an a-priori based optimal estima-
tion. In order to define the inevitable initial boundary condition for the retrieval
method, an initial guess is created. When starting the routine, the user has to
enter the approximate absolute intensity of the absorption line tip and its center
frequency. From these parameters and under the assumption of a pressure broad-
ening of the line with a self broadening coefficient of 0.12 cm−1/atm, an initial
DSB spectrum is created. From there on, the initial temperature profile, which is
used for further analysis, contains two arrays of parameters, the pressure gradient
and the temperatures in the corresponding layers. The pressure layers are fixed
and calculated in advance (comp. to the following Sec. 3.3). The bottom pressure
layer, from where the background radiation is emitted, can be retrieved and fitted
by the routine. This retrieval is constrained by the self broadening of the line at
the highest pressure. However, an initial pressure must be assumed in the input
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(a) Retrieved pT-profile (red) for a monotonic
increasing input profile (blue). Only the top
point deviates significantly from the input file.
This can be due to saturation of the line tip.

(b) Retrieved pT-profile (red) for a disturbed
input profile (blue). All points are in good
agreement within the error margins.

Figure 3.7: Retrieved pT-profiles (output, red) from synthetic data (comp. Fig. 3.4).
In blue, the input profiles are displayed. Pressure errors account for the varying scale
height in the atmosphere. For information on the temperature errors, please refer to the
main text.

file as a dummy character. The initial temperature array is calculated according
to Planck’s law for the radiation originating at the highest pressure level and the
radiative transport through the atmosphere using Codat. Starting from this ini-
tial guess, the inversion routine can iteratively adapt the temperature profile, such
that the residuals between the data set and the modeled spectrum are minimized.
In Fig. 3.6 examples of a data set and the corresponding spectrum according to
the respective initially guessed pT-profile are displayed.

3.4.3 Analysis of Synthetic Spectra

The output pT-profiles, which were deduced from the synthetic data are displayed
in Fig. 3.7. The input (blue) and the retrieved profiles (red) agree within the
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uncertainty margins. As mentioned, retrieved temperatures are influenced by two
critical parameters: absolute calibration of radiance and spectral line position
(affected by differential Doppler shift correction). The former is represented by
the scale factor as discussed before in Subsec. 3.4.1. The line position can be
calculated from the relative Doppler shift between target and observer. However,
due to winds in the target’s atmosphere, a small frequency variation is possible.
To obtain the temperature uncertainty, the scale factor is varied by ± 10 % and
the frequency position by ± 5 MHz around their expected values. In case any of
these parameters possesses an unrealistic value, the fitting routine does not find a
closed solution and crashes. Thus, at least 31 pT-profiles for each spectrum were
deduced. Finally, all profiles are averaged. The uncertainties are represented by
the deviation of the maximum and the minimum values to the median. For the
analyzed profiles, deviations that exceed the uncertainties are only seen near the
upper and lower boundaries of the profile in Fig. 3.7(a). However, the results are
still compatible to the input values and the relative errors are less than 10%.

This can be understood when regarding the so-called normalized altitude weight-
ing functions in Fig. 3.8. These functions describe the contribution of the single
pressure layers to the spectrum at a certain frequency. The weighting functions
are an approximation of the error analysis of the forward model in terms of the
specific parameter. They give an idea on the information content of a set of mea-
surements. However, the altitude resolution is, despite the well-defined peaks, not
only correlated to the widths of the peaks, but also to their spacing, as it has been
described by Roger et al. [103]. In Fig. 3.8, the normalized weighting functions are
displayed for these frequencies, where the contribution from the single layers of
the applied pressure grid for the retrieval of the temperature profiles in Fig. 3.7 is
maximal. It can now be stated, that for the low pressure layers, no defined peak
can be found. Hence, the contribution from the high altitudes to the pT-profile
is minimal. Also, for the bottom layer at around 100 hPa in both profiles, the
peak of the function is not found, since one, the contribution to the spectra ex-
tends beyond the detection bandwidth and two, the atmosphere gets opaque at
these altitudes. Nevertheless, the weighting functions can proof, that the pressure
grids, applied for deducing the thermal properties, are reasonable. Since there is
no overlapping of the peaks, there are no cross-correlations between the pressure
layers. Hence, the information content in the spectra is sufficient to resolve the
proposed amount of atmospheric layers.

Further studies on the uncertainties of the retrieval algorithm were made by an-
alyzing the deviation between the input and the output model. In Fig. 3.9 the
synthetic data, which have been used for the proof of concept so far are plotted
along with the output model. The best fit, as mentioned before, is found by itera-
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(a) At the line center (0 MHz), the line form-
ing occurs between 2 hPa and 0.2 hPa. Contri-
butions at 1000 MHz offset of the center, are
located at low altitudes < 61 km.

(b) The contribution maximum at 33 MHz for
the pressure layer at ∼ 1.8 hPa is not as defined
as for all other layers, nevertheless a clear local
maximum can be identified and the layer can
be resolved.

Figure 3.8: Normalized altitude weighting functions. Displayed is the contribution of
the single pressure layers to the spectrum at 6 frequencies. The frequencies are those,
where the contribution from one specific layer is maximal. The frequencies are given as
an offset to the frequency of the line center.

tively varying the pT-profile and thus adapting the model, calculated with Codat,
to the synthetic data set. However, taken the uncertainties of the retrieval into ac-
count, as they have been discussed before, an output model was calculated. Hence,
the final output models, shown in Fig. 3.9, are based on the deduced pT-profiles
displayed in Fig. 3.7. In addition, the residuals between the input model and the
synthetic data and the output model and the synthetic data are displayed. It can
be observed, that the noise amplitudes of the residuals are commensurate to each
other and linear through zero. For better understanding, the residuals between
the input and the output model was calculated and is plotted in Fig. 3.9. It has
to be noted, that these residuals (yellow line) are in both cases smaller than the
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(a) Synthetic data as displayed in Fig. 3.4(a).
Best fit to the data yielding the retrieved pT-
profile displayed in Fig. 3.7(a).

(b) Synthetic data as displayed in Fig. 3.4(b).
Best fit to the data yielding the retrieved pT-
profile displayed in Fig. 3.7(b).

Figure 3.9: Comparison between the input model and the best fit. The blue and red
lines represent the input model and synthetic data. The green line represents the best
fit to the synthetic data (output model). On the bottom of the figures, the residuals
between the input model and the synthetic data (blue), between the output model and
the synthetic data (green) and between the input and the output model (yellow) are
displayed.

SNR, which was initially superimposed to the input model. Thus, the convergence
of the output model to the input model is depending on the SNR of the synthetic
data. It has to be remarked, that the uncertainty of the output model, hence the
best fit to the data, depends on the SNR. However, the global solution is still well
described by the minimization of the residuals and the retrieved profiles in Fig. 3.7
are within the uncertainty margins.

From these studies, it can be shown, that the newly developed retrieval method
delivers reliable results for the pT-profiles. In the next step, the method will be
applied to actual measurements acquired on Venus.



Chapter 4

The Atmosphere of Venus

”Only at the end do you realize the power of the Dark Side.”
(Star Wars)

4.1 State of the Art

Venus is besides the moon the brightest object in the sky without self-luminescences
and it has been an object of interest for mankind since the antique days. The planet
Venus is a solid body with an equatorial radius of 6051.8 km and is of similar size
as Earth. Since Venus possesses a surrounding atmosphere it can be categorized
as a terrestrial planet. Due to its Earth-like size it is often called Earth’s sister
planet, although there are some major differences between the two, e.g. the clock-
wise rotation direction of the solid body. This retrograde rotation is unique for a
planet in our solar system. The rotation axis of Venus has almost no tilting angle
against its orbital plane, yielding a lack of seasons during the Venusian year. De-
spite the very small inclination, the axis tilt is given as 177.36◦ in order to define
a counterclockwise rotation. In Fig. 4.1, pictures of the planet can be found, taken
with ultraviolet (Fig. 4.1(a)) and real color (Fig. 4.1(b)) imagery. Venus has no
natural satellite and is the second planet from the sun. Its elliptical orbit’s semi-
major axis is ∼ 0.72 AU and the sidereal orbiting period is ∼ 224.7 Earth days.
The very slow solid body rotation of the planet, with a period of ∼ 243.0 hours,
yields a divergence between the sidereal rotation period and the solar day. A solar
day, the time between two sunrises on Venus, is only ∼ 116.7 hours, thus by a fac-

51
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(a) Ultraviolet image of Venus’ clouds as seen
by the Pvo in 1979 [104].

(b) Venus in real colors, processed from clear
and blue filtered Mariner 10 images. Image pro-
cessing by R. Nunes [105].

Figure 4.1: Images of Venus

tor of ∼ 2.08 smaller. The most important bulk and orbital parameters of Venus
and Earth are summarized in Tab. 4.1. Venus is globally covered by a thick, fast
rotating, high-altitude, Y-shaped cloud layer (comp. Fig. 4.1(a)) and its surface
pressure is with ∼ 92.000 hPa almost one magnitude higher than on Earth.

4.1.1 Introduction

Ground-based observations of temperatures on Venus have been performed since
the middle of the 20th century using microwave and infrared spectroscopy [19, 107].
With the dawn of the space era, mesospheric temperatures were measured from
space. Since then, a manifold of missions, including orbiter, landers, entry probes
and flybys have been performed [20], shading light on the mysteries of Venus’
atmosphere.

The recent space- and ground-based observing techniques and exemplary results
are presented and discussed in the first part of this chapter (comp. Subsec. 4.1.3 and
Subsec. 4.1.4). In addition, the most sophisticated circulation models for Venus’
atmosphere which have been developed lately are introduced in Subsec. 4.1.5. The
observations that were performed on Venus are presented in the second part,
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Parameter Venus Earth Ratio (Venus/Earth)

Radius at equator (km) 6051.8 6378.1 0.949
Surface gravity (km/s2) 8.87 9.81 0.905
Natural satellites 0 1 -
Semimajor axis (106 km) 108.21 149.6 0.723
Sidereal orbit period (days) 224.701 365.256 0.615
Sidereal rotation period (days) 243.0 0.998 243.686
Solar day (days) 116.750 1 116.750
Obliquity to orbit (deg) 177.36 23.44 7.567

Distance from Earth (106 km)
Minimum 38.2 - -
Maximum 261.0 - -

Apparent diameter (arcsec)
Minimum 9.7 - -
Maximum 66.0 - -

Table 4.1: Important orbital parameters of Venus and Earth from [106].

Sec. 4.2. In the third part of this chapter, first measurements of CO2 absorption
lines from the Venusian nightside atmosphere, using IR heterodyne spectroscopy
are analyzed and the resulting pT-profiles will be presented and discussed (comp.
Subsec. 4.3.1). In the fourth part, a comparison to selected, well-established ob-
serving techniques will be given in more detail, in order to investigate the results
in the context of other Venus temperature retrieval methods (comp. Sec. 4.4). Em-
phasis will be given especially to the coordinated observing campaign with the Vex
Radio-science Experiment (VeRa) during observations in May 2012 (Sec. 4.3.3).
Finally, in Sec. 4.5 a conclusion will be drawn for the analysis of Venus nightside
temperature profiles, which were deduced from infrared heterodyne spectroscopy
for the first time.

4.1.2 Structure, Composition & Thermal Properties

Venus’ atmosphere can be divided into three main thermal regimes: the tropo-
sphere (0–60 km), the mesosphere (60–100 km) and the thermosphere (> 100 km).
In the dense and stable troposphere, temperature decreases monotonically by a
lapse rate of ≈ -10 K km−1[108, 109]. The turbulent and thermally variable meso-
sphere contains either a temperature gradient and several inversions on the night-
side [110–112] or isothermal behavior on the dayside [109]. The thermosphere
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above 100 km is very cold, especially on the nightside and thus it is also often
called cryosphere [113].

The troposphere extends into the main cloud layer. Recent observations show
that the upper cloud top is located around 74 km altitude for low and mid lati-
tudes and subsides to ∼ 65 km at the poles [114], assuming roughly 22 km cloud
thickness. Above and below the main cloud layer variable hazes exist [115, 116].
Planck radiation originates from the top of the main clouds and the atmosphere
becomes opaque to thermal infrared radiation in altitude regions around 60 km cor-
responding to the 100 hPa pressure level [102]. The troposphere holds the strong
retrograde zonal superrotation. The four day period of the superrotation is a mean
value for an altitude corresponding to the cloud top, where the RZS reaches its
maximum with wind speeds of up to 100 ms−1. The rotation period extends to five
days at the equator, and decreases to three days for mid-latitudes and towards the
poles. A meridional wind component is almost negligible at these altitudes (max.
10 ms−1 at 50◦ latitude and zero at the equator and the poles) [117]. Towards the
poles though, the superrotation extends in spiral-like patterns and forms a fast ro-
tating vortex on both hemispheres. The thermal properties of the vortices reveal
a slightly warmer polar region compared to the surrounding latitudes, yielding a
cold collar at ∼ 75◦ latitude.

The dynamics in the thermosphere are dominated by an axis-symmetric circula-
tion, the so-called sub-solar to anti-solar (SS-AS) flow. This stable circulation cell
is driven by solar insolation in the UV spectral range. Molecules are heated and
rise at the SSP, they escape radial symmetrically and are accelerated along the
pressure gradient field lines towards the day-night boundary, called the terminator.
The pressure gradient evolves by the big temperature difference between the sunlit
dayside and the dark nightside. Then, on the nightside the molecules decelerate
and subside at the ASP. Due to some asymmetry, caused by rotational influences
and shear effects from the mesospheric RZS contribution, the downwelling of the
air masses appears not precisely at the ASP, but in its close vicinity [118]. The dy-
namics of Venus dayside thermosphere at ∼ 110 km have been extensively studied
using IR-heterodyne observation techniques [30–32].

The mesosphere, located between the tropo- and the thermosphere is the turbulent
transition region between the two most dominant wind regimes. Direct measure-
ments of wind speeds in the mesosphere are rare due to the lack of valuable tracers
in these altitudes. Only sub-mm observations of CO can provide information on
the dynamical properties of the mesosphere by observing Doppler-shifted absorp-
tion lines. Altitude resolution, however, is thus depending on model constrains
and SNR of the spectra.
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The atmosphere of Venus contains mostly carbon dioxide and nitrogen. Minor
gaseous species can be found with a concentration of few ppm. Aerosols and
droplets of sulfuric acid occur in the clouds, which are mainly composed of sulfur
oxide and these droplets. Trace amounts of sulfur, chloride and carbon indicate
that Venus might have been volcanically active [118]. In Tab. 4.2 an overview of
the atmospheric parameters and the composition of the major and minor species is
given for Venus and Earth. The high amount of CO2 in the Venusian atmosphere
and its dense structure yields a strong greenhouse effect on Venus [116]. This
greenhouse effect leads to the fact, that, despite its further solar distance compared
to Mercury, the surface of Venus is the hottest in our solar system.

Parameter Venus Earth

Surface pressure (hPa) 92000 1014
Surface density (kg/m3) ∼ 65 1.217
Mass of atmosphere (kg) 4.8×1020 5.1×1018

Mean molecular weight (g/mole) 43.45 28.97

Composition
Major 96.5% CO2 78.08% N2

3.5% N2 20.95% O2

Minor 150 ppm SO2 9340 ppm Ar
70 ppm Ar 400 ppm CO2

20 ppm H2O 18.18 ppm Ne
17 ppm CO 5.24 ppm He
12 ppm He 1.7 ppm CH4

7 ppm Ne 0.55 ppm H2

Table 4.2: Atmospheric parameters of Venus and Earth. Minor constituents are given
in parts per million (ppm) [106].

4.1.3 Space-based Observations

The era of space exploration of Venus has started about 50 years ago. The So-
viet Union inaugurated the investigation of the planetary structure from space,
badging the United States to pick up the race. Space-based observations of at-
mospheric temperatures is performed ever since, either remotely, by using various
instruments on board of the Soviet Venus exploration spacecrafts, i.e. Venera 9, 10,
15–16 [120–124], the US Mariner 5 [125, 126], Pioneer Venus (PV) [127] and Mag-
ellan [128] or through in-situ measurements of their entry probes and landers [129].
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(a) Drawing of the Vex spacecraft with the incorporated
payloads, from Svedhem et al. [27]. Only the instruments
Virtis, Spicav/Soir and VeRa will be presented herein.

(b) Sketch of the Vex orbit. Fig-
ures along the orbital time. From
Titov et al. [119]

Figure 4.2: Venus Express spacecraft and orbit.

More recently, the observations of Esa’s Venus Express (Vex) [27] have greatly
contributed to our understanding of Venus’ atmosphere. Vex is the latest space-
craft that successfully reached the planet. A later attempt by the Japan Aerospace
Exploration Agency (Jaxa) to install the orbiter Akatsuki around Venus in 2010
was not accomplished [130]. The satellite is currently orbiting the sun and another
try to enter into a Venus orbit cannot be performed earlier than November 2015
[131, 132]. The recent Vex mission of Esa is presented in more detail in the fol-
lowing, given emphasis on the instruments which are applied to investigate Venus’
thermal properties.

Venus Express - VeRa, VIRTIS & SOIR

Current space-based remote sensing of the Venusian mesospheric and thermo-
spheric temperatures is successfully performed on board of Vex by the Visible
and Infrared Thermal Imaging Spectrometer (Virtis) [133], the Solar Occultation
in the InfraRed (Soir) spectrometer [134] and the Venus Express Radio Science
Experiment (VeRa) [135]. Those instruments have provided multiple data sets
during the last decade, but due to orbital constrains, the global coverage is lim-
ited.
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Figure 4.3: Scheme of the probing altitudes in the Venusian nightside hemisphere of
the space- and ground-based instruments and observing techniques, which are discussed
and compared in this work.

Venus Express is Esa’s first satellite exploration mission to Venus. Vex was
launched in November 2005 and injected into its assigned 24-hour elliptical quasi-
polar orbit in April 2006. The mission was proposed to find a valuable reuse for the
design of the spacecraft Mars Express [136]. The key scientific objectives include
the comprehensive investigation of the atmospheric composition and chemistry,
dynamics and structure, as well as observations of the cloud and haze layers and
studies of the energy balance and global greenhouse effect.

The satellite bus is a cubic 3-axes stabilized platform with two telecommunica-
tion antennas, fixed to opposed sides of the cube. The main antenna, which is
oriented towards Venus, is a 1.3 m dish (comp. Fig. 4.2). The payload includes
seven instruments, from which five are inherited from the Mars Express mission.
The locations of the instruments in the spacecraft are shown in Fig. 4.2(a). Vex
spectroscopic observing bandwidth spans from the UV to the thermal IR wave-
length. Various observation techniques are applied by the different instruments,
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Figure 4.4: Ray bending in Venus’ atmosphere displayed in a planetocentric coordinate
system from Häusler et al. [135]. Ray path closest approach distance r0 and deflection
angle α are related to the impact parameters and the refraction index n(r).

such as direct detection methods or solar, stellar or radio-occultation. The instru-
ments probing the atmosphere in the altitude region between 60 km and 100 km,
which is the relevant region for comparison to IR heterodyne observations, will be
presented in the following. A schematic overview of the probing altitudes of the
various instruments and techniques is given in Fig. 4.3.

Vex has passed its nominal phase mission. It is now operating at its fourth
extension and it is difficult to foresee how long it can be operated, especially as
far as fuel reserve is concerned. However, Esa has announced in June 2013 that
funding will be terminated by the end of 2014 [137]. With the imminent shut down
of Vex and the orbital insertion failure of Akatsuki, the importance of ground-
based observations increases significantly.

VeRa

The Venus Express Radio Science Experiment sounds the atmosphere in the X- and
S-band at 3.6 cm and 13 cm. The scientific aims of VeRa are manifold and the study
of the thermal properties of the neutral atmosphere is just one of them. The VeRa
experiment is a radio occultation measurement. An ultrastable oscillator (Uso),
on board of Vex, serves as a reference radiation source [138]. The signal of the
Uso is detected by ground-based receivers. VeRa probes the neutral atmosphere
between ∼ 40 km and ∼ 90 km by analyzing the refracted ray emitted by the Uso.
The highly refractive atmosphere of Venus makes the altitude region below 40 km
inaccessible for radio occultation, however, above this boarder the instrument can



4.1 State of the Art 59

Figure 4.5: Example of a pT-profile as seen by VeRa, from Tellmann et al. [109].
Three profiles are calculated for observations at 85◦N and LT 15:50 with upper boundary
conditions 170, 200 and 230 K. The profiles merge at an altitude of ∼ 90 km.

characterize the thermal behavior as a function of altitude, latitude and local
time (LT) [135]. During the Earth occultation of the spacecraft, the radio ray
penetrates the atmosphere and is subject to a varying refraction angle as it emerges
through the different altitudes. Hence, the ray bending is depending on the present
atmospheric conditions. In Fig. 4.4 a scheme of the radio signal’s trajectory in
the Venusian atmosphere is shown. The utilization of two simultaneous one-way
downlink frequencies enables observations during ingress and egress of one orbit
[108].

To derive the temperature gradient in the atmosphere, hydrostatic equilibrium
and the ideal gas law is assumed for data processing. The height profiles can be
directly deduced from the neutral density number profile, which is simultaneously
obtained by VeRa during one occultation, as it is described in detail by Tellmann
et al. [109]. Thus, the temperature profile is calculated as

T (h) =
µup
µ(h)

· Tup +
m̄

k · n(h)

∫ hup

h

n(h′) · g(h′)dh′ (4.1)
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where h is the altitude, µ(h) the refractive profile, n(h) the neutral density pro-
file, m̄ the mean molecular mass of the mixed neutral atmospheric species, g(h)
the altitude-dependent acceleration of gravity. The integration requires an up-
per boundary condition, represented by the parameter Tup. This upper boundary
condition is chosen to represent the temperature at an altitude of 100 km. For
retrieval, three profiles with different upper boundary conditions are investigated.
An example of the pT-profile derived from radio occultation observations is dis-
played in Fig. 4.5 with Tup = 170, 200 and 230. A large amount of these profiles
have been collected up to now with a very high altitude resolution of a few hundred
meters. The uncertainties of the retrieved temperatures vary with altitude, with
the highest uncertainty at the upper boundary of 100 km ( 10%) and the lowest
uncertainty of a fraction of a Kelvin at the lowest accessible altitudes. Comparison
of VeRa measurements to IR heterodyne observations will be discussed in detail
in Subsec. 4.3.3 and Subsec. 4.4.1.

VIRTIS

Virtis is the acronym of the Visible and Infrared Thermal Imaging Spectrom-
eter. The spectrometer is directly inherited from the Esa Rosetta mission.
It combines imaging and spectrometry in a unique way. The dual instrument
covers the visible and near-IR wavelengths from 0.3µm to 5µm, split into two
imaging spectrometers, the Virtis-M-vis (0.3–1µm) and Virtis-M-IR (1–5µm)
and one high resolution spectrometer Virtis-H (2–5µm), with separate telescopes
[133]. The FoV on Venus, corresponding to the slit aperture of the spectrometer
is 0.25×64 mrad for the Virtis-M channels covering about one-third of the di-
ameter of Venus apparent disk at the orbital apocenter. The single resolution
cell of Virtis is 0.58×1.75 mrad, yielding a spatial resolution of ∼ 20 km on the
Venusian disk. Besides the monitoring of trace gases in the lower atmosphere
and total cloud opacity, as well as atmospheric dynamics in and above the main
cloud deck, Virtis has been applied for investigations of the thermal properties of
Venus’ nightside mesosphere. The Virtis-M-IR channel was used to observe the
CO2 band at 4.3µm. The spectral resolution was chosen in a way to be adequate
to probe the altitude region between 63 km and 96 km [112]. On the dayside the
signal is dominated by the 4.3µm non-LTE emission and the model used for anal-
ysis cannot account for this contribution. Thus, only nighttime temperature maps
are at hand from Virtis observations. Lately, also Virtis-H observations were
analyzed for nightside temperature retrieval by Migliorini et al. [139]. The high
spectral resolution observation of the mid-IR CO2 band can additionally provide
a large amount of global temperature maps. Therefore, space-based infrared spec-
troscopy can contribute a lot to the investigation of Venus’ nightside hemisphere,
despite its fairly poor vertical resolution.
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Figure 4.6: Example of the mean temperature field as observed by Virtis from Grassi
et al. [112]. Temperatures are mapped as a function of latitude and local time for four
selected pressure levels: (a) 100 mbar, (b) 31.6 mbar, (c) 12.6 mbar (d) 4.0 mbar.

Examples of the thermal distribution of Venus’ southern hemisphere at four dif-
ferent altitudes are given in Fig. 4.6. The mean temperature field of the nightside,
as seen by Virtis, from local time 18:00 to 6:00 is on display. A detailed compari-
son to the deduced profiles from IR-heterodyne observations at the corresponding
observing location and local time will be presented later on. It can be observed in
Fig. 4.6, that strong variability of the temperature is present at the high pressure
level (100 mbar) in the middle latitudes between 45◦S and 70◦S. Whereas in the
lower pressure levels at 12.5 mbar, the temperature increases towards the pole, but
an isothermal behavior during the whole night is observed for each latitude.

A newly developed retrieval technique by Haus et al. [140] derives temperature
profiles from Virtis measurements in a self-consistent way in dependence on the
cloud parameters, i.e. the cloud top where the atmosphere gets opaque for IR
radiation. Their technique underlines the possibility of cloud top altimetry by
investigation of continuum radiation. They have found that the cloud top has a
strong variability with latitude and local time [141].
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Figure 4.7: Example of two sets of profiles: (left) a North polar measurement and
(right) an equatorial measurement. [. . . ] (top) In the CO2 density panels, the points are
the retrieved individual density values, and the black line is the averaged profile. The
error ranges between 1 and 5%. (bottom) In the temperature panels, the gray envelope
is the error on the temperature. Typical temperature error values are 1 to 20 K, from
Mahieux et al. [142].

SPICAV/SOIR

The Solar Occultation in the InfraRed instrument is one of three spectrometers
which are accumulated into the French Spicav (Spectrospcopy for the Investiga-
tion of the characteristics of the atmosphere of Venus) receiver. The Soir spec-
trometer is a solar occultation IR spectrometer operating in the near-IR spectral
region between 2.2–4.3µm. The spectral resolution of the instrument is with
ν
∆ν
≥ 1.5×104 the highest of any instrument on board of Vex. The main scientific

objective was the determination of mixing ratios of water and deuterated water in
the atmosphere [143]. Additionally, the thermal properties and composition of the
neutral atmosphere can be derived iteratively from the rotational structure of the
fully resolved CO2 absorption bands [134]. With Soir, the CO2 density and tem-
perature can be retrieved between 70 km and 170 km altitude. Since the receiver
utilizes the solar occultation technique, observations can only be performed at the
terminator. The slit of Soir has a rectangular shape with a spatial viewing angle
of 30 arcmin. The apparent size of the sun at Venus’ orbit is ∼ 44 arcmin, so that
the slit remains within the solar apparent dimension [142].
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Temperature retrieval with Soir requires good knowledge of the CO2 density pro-
file that is deduced simultaneously. To derive the CO2 densities, however, a pT-
profile has to be assumed as initial boundary condition. These steps are then
repeated iteratively until convergence between the model and the data is reached
[134, 142]. In addition, the profiles are grouped in five latitude zones, which are
chosen to be statistically meaningful. The mean and standard values of the at-
mospheric parameters, i.e. temperature, are then computed. This way, zonally
averaged, altitude dependent Vast (Venus Atmosphere from Soir measurements
at the Terminator) profiles are created [142]. An example of a retrieved Vast
density and temperature profiles is given in Fig. 4.7.

4.1.4 Ground-based Observations

Ground-based measurements of temperatures in the Venus’ mesosphere are most
commonly conducted by observing carbon monoxide (CO) transitions in the sub-
mm wavelength range [111, 144–146]. Also investigation of O2 airglow can provide
thermal information of Venus’ nightside [147, 148]. The probing altitudes are
displayed in Fig. 4.3, together with the space instruments on board of Vex. In
the following, the two ground-based observing techniques are introduced.

Sub-mm Observations

An important tracer in Venus’ atmosphere is carbon monoxide. The first CO tran-
sition in the microwave spectral range at 115 GHz has been detected in 1976 [149].
In recent years, ground-based observations of the rotational transition of the 12CO
and 13CO isotopes have been conducted extensively by Clancy et al. [111, 146, 150]
and Rengel et al. [144] [145]. Sub-mm observations are commonly performed using
heterodyne receivers with a spectral bandwidth, sufficient to resolve the two tran-
sitions simultaneously. The thermal and structural properties of the mesosphere
between 60 and 120 km altitude can be probed with this technique. For thermal,
dynamical and compositional analysis, a spectral convolution between the spectra
of two isotopes is analyzed. Since the observation of the 12CO and 13CO isotopes is
performed simultaneously, the possibility to precisely model the radiative transfer
through the atmosphere exists. This allows a self-consistent model-data spectral
line comparison [146]. For fitting the model to the lines, an optimal estimation
method is applied, similar to the algorithm for infrared heterodyne as described
before in Chap. 3. An a-priori guess has to be introduced to the routine as initial
boundary condition. The altitude resolution of sub-mm observations is approxi-
mately 2 km. The SNR is much higher, compared to IR heterodyne spectroscopy.
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Figure 4.8: Retrieved temperature (top panel) and CO volume mixing (lower panel)
profiles, associated with the sub-mm radiative transfer analysis from observations on
August 11, 2007 at the center of the apparent disk of 12CO and 13CO line absorptions.
The dashed line envelopes indicate 2σ precision limits, from Clancy et al. [146].

However, a major drawback of observations at few hundred GHz is the low spatial
resolution. Since, the optics cannot be assumed as simple rays at these wave-
lengths, the Gaussian optic has to be taken into account. There, the divergence
of the beam is anti-proportionally depending on the wavelength of the radiation.
Besides, the FoV is depending on the dish size of the telescope and is approxi-
mately of one magnitude larger then the FoV for IR observations. Additionally,
sub-mm, mm or radio heterodyne receivers are much more sensitive to the ambient
weather conditions, i.e. humidity and vaporised water in the air. Of course, these
receiver provide a coherent detection as well and scattered light is not affecting
the noise contribution, but the temperature of the transition line, called antenna
temperature in Eq. (2.6), contributes to the total performance of the receiver, the
system temperature Tsys.

Clancy et al. have performed lots of observations since 2001 using the Mauna Kea
based Jcmt (James Clerk Maxwell Telescope). In particular, a global mapping of
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the Venusian nightside disk has been conducted during each inferior conjunction
between 2001 and 2007 [146]. The data was acquired using Jcmt’s sub-mm B-
band receivers for detecting the J = 3 → 2 transition of 12CO at a frequency of
∼ 345 GHz and of 12CO at ∼ 330 GHz. The system temperature, Tsys, was typically
between ∼ 200–1000 K with a quantum limit of Tql = 16.6 K and the FoV at these
frequencies was ∼ 14 arcsec. Consequently, a global mapping consists of 4–5 beam
elements along the equator or CML. As an example, the retrieved temperature
and CO volume mixing ratio profiles from one sub-mm nightside observations at
the Jcmt is shown in Fig. 4.8. The pT-profile in the top graph is plotted for an
altitude between∼ 80–115 km. The retrieved temperatures are roughly between
200 K and 175 K for altitudes up to 86 km, before an inversion layer and rapid
cooling appears above.

The German group from the Max-Planck Institute (Mpi) for Solar System Re-
search usually uses the Heinrich-Hertz Submillimeter Telescope (Hhsmt) at the
summit of Mount Graham, AZ, USA. The telescope’s location is elevated 3178 m
above sea-level and its primary dish is 10 m across. A detailed comparison be-
tween the data from Rengel et al. will be discussed later on in Subsec. 4.4.2. They
observed, amongst others, the J = 2 → 1 transition, at frequencies of ∼ 230 GHz
for 12CO and ∼ 220 GHz for 13CO.

O2-Airglow

Ground-based observations of airglow phenomena in the Venusian nightside atmo-
sphere have been investigated for the O2 near-IR emission at 1.27µm since the mid
1970s. Connes et al. [151] have found, that the near-IR emission is roughly 1,000
times brighter than the previously discovered visible O2-airglow. It is believed,
that oxygen atoms are created by UV photolysis of CO2 in the dayside atmo-
sphere and then rapidly transported towards the ASP, where the atoms recombine
to molecular oxygen under emission of radiation. The transmission path is in an
altitude of ∼ 120 km, driven by the SS-AS flow dominated circulation cell. Thus,
the particles are accelerated on the sunlit and decelerated on the dark hemisphere.
The recombination of the atomic particles does not happen exactly at the ASP, but
is shifted slightly towards the dawn terminator [152]. The recombined molecules
are excited and emit the excess energy via radiation in downwelling [153]. The al-
titude region where O2-airglow occurs is assumed to be between 90–100 km. After
nocturnal recombination, the molecules are forced on their way back to the sunlit
side of the plant, where they combine with CO to CO2, completing the cycle.
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Figure 4.9: Distribution of the airglow intensity on July 14, 2007 at Irtf for 3 different
measurements with an integration time of ∼ 30 min, from Ohtsuki et al. [154]. The
orientation of Venus is indicate on the right hand side.

Rotational temperatures can be recalculated from the observed intensity of the
transitions in the emitting layer. Commonly, a spectral distinction between the
P, Q and R-branch of the ro-vibrational band can be made with sufficiently high
spectral resolution of ν

4ν ≈1000. However, a vertical resolution cannot be achieved
with airglow observations. Typical O2-airglow temperatures vary between 175–
193 K, yielding a fitting uncertainty of 40–70 K. The emission in the corresponding
altitude region for the equatorial latitudes shows a strong diurnal thermal and spa-
tial variability within hours [152] but is strongly enhanced around the ASP [154].
The advantage of airglow measurements is the possibility of direct temperature
retrieval from the line intensity. A global mapping and investigations of latitudi-
nal or longitudinal variations performed by Ohtsuki et al. [154] can be found in
Fig. 4.9. The figure shows the variability of the emission intensity on the Venusian
nightside for three measurements in July 2007.

O2-airglow measurements have also been performed from space, using the Vex
Virtis-M channel. These observations are the most reliable source for the latitu-
dinal morphology of the emission. In addition, further airglow measurements, espe-
cially for the NO recombination UV emission of nitrogen and oxygen in ∼ 115 km
altitude, have been performed and analyzed [155], but will not be further con-
sidered, since the altitude exceeds the probing region for IR heterodyne observa-
tions.



4.1 State of the Art 67

4.1.5 General Circulation Models

General circulation models (Gcms) for Venus’ atmosphere are still rudimentary.
The first model for Venus’ thermal properties in the lower and middle atmosphere
was developed in 1985 [110] as the Venus International Reference Atmosphere
(Vira) [156] and updated in 1997 [157]. The model is based on the in-situ mea-
surements performed by the PV lander [158]. More recent models addressing the
mesosphere were developed in the past years, laying stronger emphasis on simulat-
ing the dynamical behavior of clouds [159–161]. These models, however, assume
heating rates which are inconsistent with observation [162]. The most realistic
attempt to include the radiative transfer was achieved by an analytical approach
by Lebonnois et al. [163].

Venus International Reference Atmosphere

The Venus International Reference Atmosphere was the first attempt to model
Venus’ lower and middle atmosphere with small uncertainties up to an altitude of
∼ 100 km. The model accumulates various data sets from the early space missions
to Venus, such as Pvo and the Venera missions [110]. It relies on the data provided
by the entry probes to predict the thermal structure of the deep atmosphere below
40 km. The measurements of the Venera probes showed a highly variable deep
atmosphere with thermal fluctuations of 30 K, whereas the four Pvo landers have
detected deviations of only 10 K. These differences origin in the different latitudes
and local times of the entry probes descents. However, a constant temperature
lapse rate was found and implemented into the Vira model, thus assuming static
stability for the troposphere. For the middle atmosphere, data was also collected
by using radio occultation technique. This augmentation of available data made
it possible to investigate the latitudinal behavior of the thermal properties. The
Vira model can thus predict the pT-profile for the lower atmosphere for the day-
and the nightside for 5 different latitudinal ranges 0–30◦, 30–45◦, 45–60◦, 60–75◦

and 75–90◦. However, the profiles are assumed to be equal on the norther and
southern hemisphere and the spatial resolution is rather poor. The model was
updated 12 years after its first publication, including the latest results of ground-
and space-based observations. The most important contribution to update the
thermal profiles was provided by the Vega 2 entry probes, by IR sounding of
Venera 15 and the Galileo mission and further radio occultation measurements
(Venera 15, 16, Pvo and Magellan) [157]. Nevertheless, despite the fact that the
model is outdated and knowledge on the Venusian tropo- and mesosphere has
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Figure 4.10: Global temperature map from Vtgcm simulations for the ”mean” Vex
case for observing geometry at 2.5◦N, from Brecht et al. [164].

increased significantly in the era of Vex, Vira is still the most common model,
utilized to compare observations and models to a global expectation value. It is
helpful to both, observers and modelers, for a first order classification of their
results.

NCAR VTGCM

The National Center for Atmospheric Research (Ncar) has developed one of the
first 3-dimensional (3D) hydrodynamic models for the structure and circulation
of the Venusian thermosphere in the late 1980s [165]. The Venus Thermosphere
General Circulation Model (Vtgcm) is based on a previously well established cir-
culation model for Earth which has been modified and merged with their former
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2D model for Venus. Since then, the Vtgcm has been constantly modified and
updated. The latest version is now capable of modeling both hemispheres, the
northern and the southern, separately, instead of mirroring one to the other [164].
The model provides several important parameters for the neutral atmosphere be-
tween ∼ 70–200 km at the nightside and 70–300 km at the dayside. The Vtgcm
covers the important transition region between the two dominant circulation pat-
terns, the RZS and the SS-AS flow. It was especially designed for modeling the
dynamics in the upper mesosphere and thermosphere, but can also predict the
thermodynamic behavior in these altitudes. Recent efforts have been made to suc-
cessfully implement the O2 and NO airglow effects and to sophisticatedly simulate
the nightside temperature distributions as they are observed by the various Vex
instruments.

In Fig. 4.10 a global map of the Venusian thermospheric temperatures from Vt-
gcm calculations is displayed for an exemplary observing geometry at 2.5◦N. The
Vtgcm was adapted such, that the boundary conditions of the model, i.e. solar
irradiation, matched to the mean observing conditions during Vex orbits. On
the nightside hemisphere, between LT ∼ 21:00 and 04:00, a constant, cold tem-
perature of ∼ 120 K for altitudes above ∼ 120 km can be observed. It should be
pointed out, that for lower altitudes, which are commensurate to IR heterodyne
observations, the upper mesosphere is assumed to be isothermal along the isobars
between 1–0.1 hPa (mbar). On the dayside, around noon, a hot spot is predicted
at ∼ 112 km altitude, which must be understood as an inversion layer, since the
temperatures cool down with altitude up to ∼ 140 km, before they increase again
into the warm dayside upper thermosphere. The warm layer is created by near-IR
(mostly 4.3µm) heating.

LMD GCM

The Gcm developed by the Laboratoire de Météorologie Dynamique (Lmd) has
been created to model the Venusian atmosphere from the surface to ∼ 100 km alti-
tude. This three-dimensional model is based on a Gcm for Earth, also developed
at the Lmd. The Lmd-Gcm includes topography, diurnal cycle, dependence on
specific heat and temperature and a radiative transfer module for infrared radi-
ation [163]. The model allows the computation of the temperature field, which
is globally consistent to observations. However, recent analysis of the modeled
temperature field show a deviation to space-based observations in high altitudes
(∼ 65–100 km) of roughly 10–20 K [166].

Fig. 4.11 shows an example of a computed temperature profile through Venus’
atmosphere, averaged over all latitudes and longitudes. The model is especially
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Figure 4.11: Vertical temperature profile (solid line) computed with the Lmd-Gcm.
The result is averaged over longitudes, latitudes and 2 Venus days of the simulation,
from Lebonnois et al. [163]. It is compared to the reference Vira profile.

useful to predict the climatic and atmospheric conditions of Venus. A first simula-
tion for a full radiative transfer scheme was run for 350 Venusian days (111 Earth
years) and a convergence of all atmospheric parameters towards a steady state was
achieved [163].
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4.2 Observing Campaigns

The spectrometer This and Hipwac were mounted on two different telescopes
during two campaigns in 2012. This was installed at the McMath-Pierce Solar
Telescope at Kitt Peak, Arizona, USA, whereas Hipwac was used for observations
at the Nasa Infrared Telescope Facility on Mauna Kea, Hawaii, USA. An overview
of the observing locations and conditions can be found in Tab. 4.3. Detailed infor-
mation on the specific observational parameters during the observing days can be
found in Tab. C.1 in Appendix C. For each campaign the 12C16O2 P(12) transition
in the mid-IR N-band at ν̄= 951.19226 cm−1 was probed. The relative Doppler
shift between Earth and Venus during each run was sufficient to shift the observed
line away from the core of the terrestrial CO2 absorption (comp. Tab. 4.5).

Camp. Instrument
Telescope

& Location
FoV Altitude Date

A This
McMath-Pierce,
Kitt Peak, AZ

1.7” 2096 m
March 20 - 29

2012

B Hipwac
Irtf,

Mauna Kea, HI
0.9” 4205 m

May 18 - 21
2012

Table 4.3: Overview of the observing campaigns A and B.

4.2.1 Campaign A - March 2012

Observing campaign A took place between March 20th–29th 2012 UT. This was
mounted to the McMath on Kitt Peak. The Kitt Peak Observatory is located
at an altitude of 2096 m above sea level. Solar telescopes are highly feasible for
ground-based observations of Venus, since they do not have any sun avoidance
requirements. Heterodyne spectroscopy, as a coherent detection method, allows
observations during the day, since no stray-light is collected within the field of view.
The focusing mirror’s diameter of the McMath is 1.57 m [167], which corresponds
to a diffraction limited FoV of 1.7 arcsec.

Venus was at maximum western elongation with an increasing angular diameter
from 21.1 arcsec to 24.6 arcsec. The illuminated fraction of the apparent disk
decreased from 56% to 49%.

Two different locations along the nightside equator were targeted. One observing
position at 30◦W of the terminator (corresponding LT on Venus 20:00, from here
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Figure 4.12: Observing geometry of Venus for campaign A in March 2012 at the
McMath on Kitt Peak. The blue circle represents the diffraction limited field of view
true to scale with the angular diameter of the apparent disk. The angular diameter of
the apparent disk varied between 21.1” and 24.6” and the illuminated fraction between
56% and 49% within the time of observation. For orientation, the LT and the latitudes
are indicated for the geometry on March 27.

on called EQLT20) and the other at 60◦W of the terminator (LT 22:00, called
EQNLT22). In Fig. 4.12 the observing geometry and the targeted locations, repre-
sented by the FoV, are displayed. The integration time was 154 min on source at
EQLT20, acquired between March 20th–23rd and 480 min at EQLT22 acquired be-
tween March 22nd–29th. In order to remain at a constant local time, the observing
positions were tracked and the longitudinal positions in planet based coordinates
varied from ∼ 158◦W to ∼ 168◦W for LT 20:00 and from ∼ 135◦W to ∼ 187◦W for
LT 22:00, respectively.
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Figure 4.13: Observing geometry of Venus for campaign B in May 2012 at the Irtf on
Mauna Kea. The blue circle represents the diffraction limited field of view true to scale
with the angular diameter of the apparent disk. The angular diameter of the apparent
disk varied between 49.2” and 51.4” and the illuminated fraction between 11% and 7%.
For orientation, the LT and the latitudes are indicated for the geometry on May 19.

4.2.2 Campaign B - May 2012

Observing campaign B, between May 18th and May 22nd UT, was with Hipwac
mounted on the Irtf on Mauna Kea. The telescope is located at an altitude of
4205 m above sea level. The Irtf is a Cassegrain telescope with a 3 m primary
mirror. The mirror size corresponds to a FoV of 0.9 arcsec.

With Venus approaching inferior conjunction, its angular diameter increased from
∼ 49 arcsec to ∼ 51 arcsec. The illuminated crescent of the apparent disk decreased
from 11% to 7%.
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Two different locations on the nightside were targeted. One observing position
at 67◦N and anti-solar point (ASP) longitude (67NLT0) and the other at 33◦S
at the dark limb (33SDL). In Fig. 4.13 the observing geometry and the targeted
locations, represented by the FoV, are given in relative diameters. The integration
time was 96 min at 67NLT0 acquired on May 18nd–21st UT and 160 min on source
at 33SDL, acquired between May 19th–22nd UT. To remain at the dark limb, the
observing position was kept constant at 33◦S and 85◦W of the sub-observer point,
which corresponds to an only slightly varying longitude of ∼ 1.5◦ in planet based
coordinates around ∼ 235.5◦W. For 33SDL, the planetary LT was not constant and
changed from 03:20 to 03:26. For the ASP (LT0h) longitude, the observing position
at 67◦N was tracked and the longitudinal position in planet based coordinates
varied from ∼ 279◦W to ∼ 291◦W.

Camp.
Ang. Diameter

Position Latitude Longitude
Venus

(% illuminated) Local Time

A
21.1” - 24.6” EQLT20 0◦N 158◦∼ 168◦W 20:00
(56% - 49%) EQLT22 0◦N 135◦∼ 187◦W 22:00

B
49.2” - 51.4” 67NLT0 67◦N 279◦∼ 291◦W 00:00
(11% - 7%) 33SDL 33◦S ∼ 235.5◦W 03:20 - 03:26

Table 4.4: Overview of the observing geometry during the observing campaigns in
2012.

4.3 IR Heterodyne: Data Analysis & Results

Ground-based observations of Venus’ mesosphere were accomplished using infrared
heterodyne spectroscopy. IR heterodyne instruments have proven to be powerful
tools to investigate the dynamical and thermal properties of terrestrial planet at-
mospheres for many years [29–31, 40, 49, 70, 168]. The ultra high resolving power
of ν

∆ν
≥ 107 allows the analysis of single molecular transition features in the mid-

IR wavelength range. Measurements of temperatures in the thermosphere can be
derived from the widths of narrow CO2 non-LTE emission lines originating near
the 1µbar pressure level [33, 35]. However, these solar induced non-LTE emission
lines occur only on the sunlit side of the planet and cannot provide altitude re-
solved profiling of temperatures down to the cloud tops. Nightside profiles down to
the cloud tops can only be achieved by analyzing the CO2 absorption lines in the
mid-IR N-band. Such absorption features, without superimposed emission lines,
are present on the Venusian nightside. Ground-based observations can also pro-
vide long term coverage of an arbitrary position on the visible disk of the planet.
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In Fig. 4.14, a variety of observed spectra are shown. These data sets were ob-
tained during various observing runs in 2009 using This. Some of the spectra
are very noisy. All spectra show a feature at around 1700 MHz. This is due to
an impedance mismatching on the detector during observations. Therefore, these
data sets are useless for analysis of the broadening and the temperature retrieval.
However, the set of spectra can demonstrate how rapidly the non-LTE emission
feature evolves as soon as the beam slices the sunlit crescent and may serve as an
preliminary indication of the global variability of the CO2 absorption features in
the Venusian nightside hemisphere. For deduction of thermal profiles, a careful
investigation of the full line shape has to be performed. Hence, the new spectra,
acquired during the observing campaigns presented in Sec. 4.2, are used to reveal
the thermal properties of Venus. In the following, the measurements are presented
in detail.

4.3.1 Measured Spectra

Due to the ultra high frequency resolution, the observed CO2 ro-vibrational line
shape on Venus is well sampled, as is the wing of the corresponding telluric com-
ponent. In our bandpass B only a single line is noted. The neighboring CO2

transitions are beyond a spectral distance of ∼ 16 ·B and line mixing effects are
minimal.

In Fig. 4.15–4.18, the measured data (red) is displayed along with the output
model of the Ifr (blue) and their residuals (green). Each spectrum was rescaled
to 10 MHz resolution for display. The original spectra with the full resolution of
1 MHz can be found in Appendix C. The results of the newly developed inverse
fitting procedure will be presented in the following section. The data was acquired
during several observing days and co-added to increase the SNR. Prior to co-
addition, the individual IF spectra were frequency corrected, taking the varying
relative Doppler shift between Venus and Earth into account. Thus, the IF center
frequency νIF,c of the absorption line in the final heterodyne spectrum corresponds
to the frequency of the first day of observation.

To model the spectrum, the terrestrial transmittance has to be taken into ac-
count as described earlier in Subsec. 3.1.2. Thus, for campaign A, the mid-latitude
winter atmospheric model [169] and for campaign B the tropical standard model
was introduced into the Genln2 code. The resulting IR heterodyne model spec-
tra were calculated with Codat, using the retrieved pT-profile as input profile.
For comparison, it is plotted along with the data in Fig. 4.15–Fig. 4.18. Also the
residuals between the data and the model spectra are provided. The RMS is an
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Figure 4.15: Measured Spectrum from campaign A at EQLT20: The observing ge-
ometry is displayed in the insert graphic. The data is displayed in red with a SNR of
4.3± 0.5, the best fit in blue and the residuals in green. The center frequency of the line
is at 1245 MHz. The normalized RMS of the residuals indicates the noise amplitude.
See Sec. 4.3.2 for details. The normalized RMS is 1.10 for an integration time of 154 min
on source. The spectrum was rescaled to 10 MHz resolution for display. For the full
resolution spectrum see Fig. C.1.



78 Chapter 4 - The Atmosphere of Venus

Figure 4.16: Measured Spectrum from campaign A at EQLT22: The observing ge-
ometry is displayed in the insert graphic. The data is displayed in red with a SNR of
6.6± 0.5, the best fit in blue and the residuals in green. The center frequency of the line
is at 1265 MHz. The normalized RMS of the residuals indicates the noise amplitude.
See Sec. 4.3.2 for details. The normalized RMS is 0.79 for an integration time of 480 min
on source. The spectrum was rescaled to 10 MHz resolution for display. For the full
resolution spectrum see Fig. C.2.
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Figure 4.17: Measured Spectrum from campaign B at 67NLT0: The observing ge-
ometry is displayed in the insert graphic. The data is displayed in red with a SNR of
4.8± 0.3, the best fit in blue and the residuals in green. The center frequency of the
line is at 777 MHz. The normalized RMS of the residuals indicates the noise amplitude.
See Sec. 4.3.2 for details. The normalized RMS is 0.79 for an integration time of 96 min
on source. The spectrum was rescaled to 10 MHz resolution for display. For the full
resolution spectrum see Fig. C.3.
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Figure 4.18: Measured Spectrum from campaign B at 33SDL: The observing geometry
is displayed in the insert graphic. The data is displayed in red with a SNR of 6.4± 0.2,
the best fit in blue and the residuals in green. The normalized RMS of the residuals
indicates the noise amplitude. See Sec. 4.3.2 for details. The center frequency of the
line is at 777 MHz. The normalized RMS is 0.59 for an integration time of 160 min
on source. The spectrum was rescaled to 10 MHz resolution for display. For the full
resolution spectrum see Fig. C.4.
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indicator for the noise amplitude of each measurement. In the following, the RMS
is normalized to 1 erg cm−1 s−1 sr−1 cm−2 for convenience.

During campaign A, whilst observing on position EQLT20 (Fig. 4.15), the ra-
dial velocity vr between the approaching target and the observer changed from
13.22 km s−1 to 13.30 km s−1. This results in a variation of the relative Doppler
shift of 7.61 MHz. The individual spectra were corrected to obtain a resulting
line IF center frequency of 1245 MHz. The total on-source integration time was
154 min. The corresponding SNR is calculated as the ratio between the depth of
the absorption line and the noise amplitude and is found to be (4.3± 0.5). Further
analysis of the noise amplitude and the RMS will be discussed later. An overview
of the spectral properties of the single measurements can be found in Tab. 4.7. On
position EQLT22 (Fig. 4.16), vr changed from 13.26 km s−1 to 13.40 km s−1 dur-
ing the total on-source integration time of 480 min. The SNR of the spectrum
is (6.6± 0.5). The corresponding relative Doppler variation is 13.32 MHz. Here,
the individual spectra were corrected to a resulting line IF center frequency of
1265 MHz.

During campaign B, for 67NLT0 (Fig. 4.17) and 33SDL (Fig. 4.18), vr decreased
from 8.11 km s−1 to 6.83 km s−1, yielding a shift of the relative Doppler shift of
121.75 MHz. Individual measurements were corrected to an IF center frequency of
777 MHz. The SNR for 67NLT0 was found to be (4.8± 0.3) for a corresponding
integration time of 96 min and (6.4± 0.2) for 160 min of on-source integration at
33SDL. All spectral properties are summarized in Tab. 4.5

Camp. Position
vr

[km s−1]
νIF,c

[MHz]
τ

[min]
SNR

A EQLT20 (13.26± 0.04) 1245 154 (4.3± 0.5)
EQLT22 (13.33± 0.07) 1265 480 (6.6± 0.5)

B 67NLT0 (7.47± 0.64) 777 96 (4.8± 0.3)
33SDL (7.47± 0.64) 777 160 (6.4± 0.2)

Table 4.5: Overview of the spectral properties from the observations, including the
relative velocity between Venus and Earth vr, the IF center position of the absorption
line νIF,c, the total on-source integration time τ and the SNR of the data.
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4.3.2 Temperature Profiles

The retrieved pT-profiles from IR heterodyne observations are shown in Fig. 4.19–
4.22 for each observing position. An approximation of the corresponding altitude
according to the barometric formula (comp. Eq. (3.1)) in the Venusian atmosphere
is provided at the right hand y-axis of each figure. The numerical profiles are given
in Tab. 4.6 for each observing position. The assumption of a range of possible
background temperatures in the calculation of the pressure layers, yields a varying
scale height in Eq. (3.1), leading to the uncertainties in y-direction, as it has been
discussed before (comp. Sec. 3.3). The temperature uncertainties are found by
deriving multiple profiles for varying initial boundary conditions for the line center
position and the scale factor. The error bars represent the deviation between the
minimum and maximum value that was found. For details on the uncertainty
retrieval of the temperatures please refer to Sec. 3.4. Note that the profiles acquired
on the equator during campaign A are smooth and monotonically decreasing with
altitude, whereas the profiles derived from observations at mid- and high-latitudes
during campaign B show more variations. A summary on the most important
results from the retrieved profiles, such as lapse rate and high pressure boundary
for each observing position is given in Tab. 4.7.

Camp. Position
τ

[min]
RMS

lapse rate
[K km−1]

p0

[hPa]

A EQLT20 154 1.10 (-3.4± 1.3) 107.7
EQLT22 480 0.79 (-2.2± 0.7) 41.4

B 67NLT0 96 0.79 (-3.0± 1.4) 44.8
33SDL 160 0.59 (-1.6± 0.1) 52.5

Table 4.7: Overview of the properties of the retrieved thermal profiles from the ob-
servations, including the total on-source integration time τ, the normalized RMS of the
residuals between model fit and data, the retrieved maximum temperature lapse rate
and the high pressure boundary p0.

EQLT20

The RMS for EQLT20 is 1.1. At EQLT20 (Fig. 4.19), the slope changes at around
72 km altitude. Due to the logarithmic scale, and for better comparability, the
temperature lapse rate will be given in respect to the altitude in km instead of the
pressure in hPa. Altitude and pressure are correlated according to the barometric
formula given in Eq. (3.1). Applying a linear fit through the data, the lapse rate
at EQLT20 is found to be (-3.4± 1.3) K km−1 at lower altitudes and drops to (-
2.2± 0.7) K km−1 at higher altitudes. Beneath the highest pressure that could be
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Figure 4.19: pT-profile from campaign A at EQLT20: The observing geometry is
displayed in the insert graphic. The derived temperatures (with corresponding un-
certainties) in the Venusian atmosphere are displayed in red. The temperature lapse
rate can be divided into two major segments. Between the highest pressure level at
107.7 hPa, where the atmosphere becomes optically thick, and 13.5 hPa it is found to be
(-3.4± 1.3) K km−1, whereas from 13.5 hPa up to 1.8 hPa is (-2.2± 0.7) K km−1.
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Figure 4.20: pT-profile from campaign A at EQLT22: The observing geometry is
displayed in the insert graphic. The derived temperatures (with corresponding uncer-
tainties) in the Venusian atmosphere are displayed in red. The temperature lapse rate is
almost constant with (-2.2± 0.7) K km−1. At around 40 hPa the atmosphere gets opaque.
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probed (p0) of 107.7 hPa, the atmosphere becomes opaque and no further informa-
tion can be extracted from the data.

EQLT22

At EQLT22 (Fig. 4.20), there is a lapse rate of (-2.2± 0.7) K km−1 monotonically
decreasing throughout the mesosphere. Again, the mid-latitude atmosphere model
was used to simulate the terrestrial transmittance. The high pressure boundary
p0 was found to be at 41.4 hPa. For observations close to the limb, the longer ray
path along the LoS through the atmosphere provokes a higher opacity contribution
from the higher altitudes than for observations close to disk center. Hence, the
atmosphere becomes optically thick before the cloud top is reached. Unfortunately,
this cannot be avoided, because the model does not account for the curvature of
the planet. The pressure layering was adapted, according to the retrieved value for
p0. The normalized RMS is 0.79 and thus, significantly smaller due to the longer
integration time.

67NLT0

For the only observation at higher latitudes at 67NLT0 (Fig. 4.21), the temperature
profile differs from those found at low latitudes. p0 was found to be at 44.8 hPa,
here again, due to the curvature of the planet. At the lower altitudes (∼ 65 km
to ∼ 73 km) the profile is almost isothermal, before the temperature decreases in
altitude with a lapse rate of (-3.0± 1.4) K km−1. The normalized RMS of the
residuals is 0.79. The high uncertainties correspond to the broad line tip, as it can
be observed in Fig. 4.17, yielding a variation of the center frequency of > ±25 MHz.
The broadening can be caused by an isothermal profile at the high altitudes.
However, the SNR is not high enough to extract further information.

33SDL

The temperature lapse rate at 33SDL in Fig. 4.22 is (-1.6± 0.1) K km−1 up to an
altitude of ∼ 92 km. Then, a sudden decrease at high altitudes is indicated. The
high pressure boundary p0 is 52.5 hPa. The error bars are comparably small, caused
by the high SNR (normalized RMS=0.56), yielding the possibility to more precisely
estimate the input parameters. Also, the high SNR enables the resolution of the
high altitude temperature at ∼ 97 km. However, as it was shown by the analysis
of the synthetic data in Sec. 3.4.3 the top layer temperature retrieval might be
offset to the true value, due to the low amount of spectral information in the line
tip.

In Fig. 4.23, all four profiles which were retrieved during the two observing cam-
paigns are plotted for comparison.
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Figure 4.21: pT-profile from campaign B at 67NLT0: The observing geometry is dis-
played in the insert graphic. The derived temperatures (with corresponding uncertain-
ties) in the Venusian atmosphere are displayed in red. The profile is almost isothermal
at lower altitudes and decreases with a lapse rate of (-3.0± 1.4) K km−1 in higher layers.
The highest pressure, where the atmosphere gets opaque is at around 44 hPa.
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Figure 4.22: pT-profile from campaign B at 33SDL: The observing geometry is dis-
played in the insert graphic. The derived temperatures (with corresponding uncertain-
ties) in the Venusian atmosphere are displayed in red. The lapse rate in lower altitudes
is (-1.6± 0.1) K km−1. Due to the good SNR of the data (comp. Fig. 4.18), an additional
pressure layer at ∼ 0.07 hPa could be resolved. There, the temperature suddenly drops
at high altitudes. The atmosphere gets opaque at the highest pressure at ∼ 52 hPa.
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Figure 4.23: All pT-profiles from both campaigns: The derived temperatures (with
corresponding uncertainties) for the various observing positions in the Venusian atmo-
sphere are displayed.
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4.3.3 Coordinated Campaign with Venus Express

During campaign B, coordinated observations between the Vex VeRa team and
IR heterodyne ground-based spectroscopy group took place. The VeRa instrument
is presented in detail in Sec. 4.1.3. VeRa has observed during six orbits the very
position on Venus as it was observed by IR heterodyne using Hipwac at the Irtf.
Vex was in its 24-hour orbits 2218–2223 on May 17th–22nd. An overview of the
orbital parameters from Vex and the exact observing positions from VeRa can
be found in Tab. 4.8. Due to the ray bending in the atmosphere, VeRa probes a
range of latitudes and longitudes while observing. The latitudes for the bottom
point of the profile (∼ 40 km altitude) and the top point at 100 km are given for
reference in Tab. 4.8. The longitudes are not relevant for comparison, and the
true LT on Venus is given instead. In the following, the VeRa profiles will be
assigned according to a mean latitude and LT value. As discussed before, the
retrieval technique for RO data requires the assumption of upper boundary con-
ditions. Hence, each profile is represented by a set of three with varying upper
boundary conditions. The upper boundary condition, however, becomes irrelevant
for lower altitudes, since the profiles converge at ∼ 1 hPa. There, the uncertainty
of the method is given as ∼ 1 K. Since the errors are small, they will be neglected
for display. The radio signal was detected at the Esa ground stations in New
Norcia, Australia, yielding a similar viewing angle to the limb of Venus compared
to the observing location at the Irtf on Mauna Kea, Hawaii. The resulting
profiles from each VeRa measurement, all obtained during ingress, are plotted in
Fig. 4.24. The retrieved profile from the IR heterodyne observation is plotted too,
for comparison, although, simultaneous observations at the dark limb and 33◦S
were performed only during orbit 2220, 2221 and 2222. Nevertheless, profiles from

Orbit UT Date Latitude Local Time

# (mm/dd) ∼ 40 km 100 km mean ∼ 40 km 100 km mean

2218 05/17 31.15◦S 37.39◦S 34.3◦S 03:34 03:39 03:36
2219 05/18 31.75◦S 37.15◦S 34.5◦S 03:31 03:41 03:36
2220* 05/19 30.58◦S 36.80◦S 33.7◦S 03:36 03:46 03:39
2221* 05/20 31.16◦S 36.35◦S 33.8◦S 03:45 03:53 03:49
2222* 05/21 29.29◦S 35.80◦S 32.5◦S 03:49 03:59 03:54
2223 05/22 28.62◦S 35.15◦S 31.9◦S 04:06 04:11 04:08

Table 4.8: Observing geometry of VeRa during the coordinated campaign in 2012.
The latitude and LT for each orbit is given for the lowest and highest sampling point
in ∼ 32 km and 150 km altitude, as well as the the mean value. Orbits with an asterisk
correspond to the days with simultaneous IR heterodyne observation.
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one day before and after the observations, and the retrieval from orbit 2218 is
also shown, to demonstrate the highly diurnal variability of the temperatures in
the Venusian mesosphere. In the profile from orbit 2219 a warm layer at ∼ 3 hPa
can be observed. This thermal inversion tends to rapidly disappear within a few
hours, since no indication of the inversion is present in the profile from orbit 2218
and only a light warming is observed one day later, during orbit 2220. Hence,
short term thermal fluctuations in the Venus mesosphere are possible. Also, as it
can be seen in Fig. 4.24(c), small scale temperature changes, including inversions
or isothermal parts, exist in the VeRa profiles. These fluctuation can be caused
i.a. by locally constrained short time scale phenomena, like gravity waves [170].
Hence, such fluctuations, cannot be detected with ground-based IR heterodyne
spectroscopy because of the longer integration time of the former and the lower
altitude resolution of the latter. The longer integration time, yields a time average
within the stacked data set. For a better comparison of IR heterodyne retrieval
to the radio occultation measurements, the VeRa profiles are also averaged over
the observing period. The mean profile from orbits 2220–2222 is then compared
to the retrieved IR heterodyne profile in Fig. 4.25. The agreement between the
two profiles is remarkable. For lower altitudes, between the cloud top at ∼ 64 km
(52.48 hPa) and 80 km (2.49 hPa), the retrieved temperatures agree within the un-
certainty range. At 18.38 hPa, 6.77 hPa and 2.49 hPa, the obtained values are even
identical for both techniques. Above this altitude region, the VeRa profiles begin
to diverge, yielding a higher uncertainty. Comparison in this altitude region is
thus more complex. The high altitude resolution of radio occultation, of less than
1 km, yields the possibility to reveal a lot more structure in the thermal profile.
In order to make the techniques comparable, the profile of one of the methods has
to be rescaled. Since an upscaling of the IR heterodyne profile is not possible, the
VeRa profiles were downscaled to an altitude resolution commensurate with IR
heterodyne spectroscopy. The rescaled pT-profiles for VeRa observations during
the Vex orbits 2220–2222 are shown in Fig. 4.26. Again, the IR heterodyne profile
is displayed along for comparison. Additionally, the mean VeRa profile is rescaled.
This final profile yields the best representation of the radio occultation measure-
ments for comparison to the retrieval with the newly developed IR heterodyne
method. The results are displayed in Fig. 4.27. It has to be noted that almost
all retrieved temperatures agree within the uncertainty margin. Only the layer at
0.69 hPa is slightly warmer in the IR heterodyne profile. This is most probably
due to the slightly different LT of the observing position. As it can be seen in the
diurnal variation of the VeRa profiles in Fig. 4.26, a cooling of ∼ 10 K for a later
LT of ∼ 15 min is possible (comp. Fig. 4.26(a) and Fig. 4.26(c)). The LT deviation
of the observing position between IR heterodyne and the RO observations is even
∼ 30 min for the last observing day on May 21st.
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Figure 4.25: pT-profiles from coordinated observations in May 2012. The (blue) VeRa
profile represents the average of the temperature profiles obtained during radio occul-
tation observations during Vex orbits 2220–2222, observing between 32.5◦S and 33.7◦S
and LT 03:39 and 03:54. The (red) IR heterodyne profile was retrieved from data ob-
tained during simultaneous observations. The latitude was constant at 33◦S, the LT
varied between 03:20 and 03:26. Radio occultation probed a slightly different LT, with
an approximately 15 minutes offset. The observing position is indicated in the inset
graphic.
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Figure 4.27: pT-profiles from coordinated observations in May 2012. The (blue) VeRa
profile represents the average from the temperature profiles obtained during radio occul-
tation observations during Vex orbits 2220–2222, observing between 32.5◦S and 33.7◦S
and LT 03:39 and 03:54. The (red) IR heterodyne profile was retrieved from data ob-
tained during simultaneous observations. The latitude was constant at 33◦S, the LT
varied between 03:20 and 03:26. Radio occultation probed a slightly different LT, with
an approximately 15 minutes offset. The observing position is indicated in the inset
graphic.
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4.4 Comparison

In this section, the retrieved data will be compared to existing Venus temperature
observations and the reference atmosphere, as they have been previously intro-
duced in Sec. 4.1.3, Sec. 4.1.4 and Sec. 4.1.5. The results are discussed in terms of
comparison to space- and ground-based observations. Emphasis will be placed on
the radio occultation measurements from Vex with VeRa. Also the Virtis and
the Spicav/Soir team has provided data sets for comparison. Ground-based ob-
servations of CO in the Venusian atmosphere will be investigated in relation to the
IR heterodyne profiles. Additionally, a comparative study would be incomplete
without taking the Venus International Reference Atmosphere into account.

4.4.1 Comparison to Space-based Observations

VeRa

The retrieved temperature profiles derived from the measurements that have not
been subject of the coordination, are compared to existing VeRa data sets, too.
The data were provided by the VeRa team from Silvia Tellmann [171]. The exten-
sive amount of VeRa profiles enables a detailed comparison of the IR heterodyne
profiles to space-based observations for the specific observing positions. However,
despite the numerous observations with VeRa, there is no guarantee of a total
agreement between both, the observed latitude and LT. Hence, the temperature
profile, closest to the observed position will be provided for comparison. Also,
the much higher altitude resolution of the radio science experiment yields more
variability of the profiles. For better comparison, the VeRa profiles are rescaled
to a low altitude resolution commensurate, with infrared sounding, as it has been
discussed in the previous section. Therefore, the temperatures within one scale
height of ∼ 5 km are averaged, representing a mean temperature in the single lay-
ers. However, both profiles are provided for completeness.

In Fig. 4.28, the comparison between the IR heterodyne profiles from campaign A
at EQLT20 and EQLT22 to VeRa profiles at corresponding observing positions is
shown. The latitudes observed with VeRa are not identical to the IR heterodyne
observations, but the agreement is sufficient, since the FoV of IR heterodyne ob-
servations covers a range of latitudes within the telescope beam. The LT of the
VeRa profile is later than for the IR heterodyne observations for the LT 20:00 mea-
surement, and the atmosphere is warmer at lower altitudes. The profiles from the
second observing position differ in LT, too. There, the VeRa profile was obtained
for an earlier LT and the temperatures are colder than those measured with This.
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(a) VeRa profile with high altitude resolution,
∼ 0.5 km.

(b) VeRa profile with low altitude resolution,
∼ 4.2 km.

(c) VeRa profile with high altitude resolution,
∼ 0.5 km.

(d) VeRa profile with low altitude resolution,
∼ 4.2 km.

Figure 4.28: pT-profiles from IR heterodyne observations (red) and VeRa (blue) at
corresponding observing locations. (a) and (b): EQLT20 and 1◦S and LT 20:20 The two
profiles are in agreement within the error margins except for the 13.5 hPa and 1.83 hPa
layer. (c) and (d) for EQLT22 and 3◦S (3S)) and LT 21:45. The profiles agree within
the error margins for the low altitudes and the top layer.
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(a) VeRa profile with high altitude resolution,
∼ 0.5 km.

(b) VeRa profile with low altitude resolution,
∼ 4.2 km.

Figure 4.29: pT-profiles from IR heterodyne observations (red) and VeRa (blue) at
corresponding observing locations (67◦N (67N) and 69◦N (69N)) and local time (00:00h
and 02:20h). The profiles are in agreement within the error margins for the low altitudes
and the top layer.

At the lower altitudes, between ∼ 65.5 km and ∼ 76 km, the profiles are in good
agreement for EQLT22. For the higher altitudes though, the VeRa profile shows
a much cooler atmosphere. The better spatial and altitude resolution of VeRa
enables the investigation of the thermal behavior in more detail. Additionally, it
has to be considered that the integration time for observations at EQLT22 was
extensive, leading to an averaging over several days.

In Fig. 4.29 the retrieved profile from campaign B at 67NLT0 is compared to a
radio occultation measurement at 69◦N at LT 02:20. Since the FoV on campaign
B was smaller than it was on A, and the apparent disk of Venus was much bigger,
the latitudinal deviation might not be neglected this time. However, due to the
curvature of the planet, observations towards the limb cover an even larger latitude
or LT region. Thus, the geometry can, here again, be assumed as equal. The local
time, though, deviates a lot between the two observations. The profile with high
altitude resolution in Fig. 4.29(a) shows a lot of small scale inversions in the lower
altitude region between ∼ 63 km and ∼ 72 km. Nevertheless, the global structure
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of this region can be understood as isothermal, since the temperature gradient is
almost zero. This isothermal behavior can also be found in the IR heterodyne
profile. When regarding the comparison to the VeRa profile with a rescaled low
altitude resolution of ∼ 4.2 km, the measurements agree within the error margins
for each single pressure layer.

VIRTIS

Virtis temperature retrieval is quiet similar to the inversion method used for
data analysis for IR-heterodyne spectroscopy. The instrument and its applications
are presented in Sec. 4.1.3. The Virtis method, developed by Grassi et al. [172],
applies a numerical inversion to the input radiance acquired by observing the CO2

4.3µm band. The pressure grid is fixed and atmospheric opacity at 4.3µm can be
assumed as equal to the optical depth at 10.5µm. Thus, the real altitude resolution
for the Virtis temperatures is directly comparable to observations in the mid-
IR. The four IR-heterodyne pT-profiles will now be compared to Virtis profiles.
Two profiles were acquired with the Virtis-M [112] and the other two with the
Virtis-H [139] channels. The data were provided to me by the Virtis team from
Alessandra Migliorini [173]. It must be noted, that the observed positions are not
identical, neither timely nor spatially. Hence, comparison is always limited.

The retrieved pT-profile from IR-heterodyne observations during campaign A are
compared to a Virtis-M and a Virtis-H profile from the corresponding LT and
similar latitudes in Fig. 4.30. The two IR heterodyne profiles agree within the un-
certainty range for each single pressure layer with the Virtis observations. Only
the high pressure level at ∼ 100 hPa deviates for the EQLT20 (Fig. 4.30(a)) mea-
surement. The agreement of the pT-profiles for EQLT22 (Fig. 4.30(b)) is remark-
able. The temperature gradient is very similar and the values are almost identical.
The Virtis-H profile probes the atmosphere deeper than the IR heterodyne profile
does. This is caused by the observing geometry and the curvature of the planet.
The pressure grid for IR-heterodyne is chosen to be adequate for observations at
the limb. The error of the Virtis-H profile is taken from Migliorini et al. [139]
and assumed to be 4 K.

Both Virtis profiles do not show the cold bulge that is seen by VeRa for the low
latitudes at around 1 hPa in the previous comparison. The altitude resolution of
the IR receiver Virtis is identical to the IR heterodyne instrument. This gives
either an additional proof, that the cold layer can not be resolved, or as a second
possibility, is time dependent and is simply not seen during these observations.
Possibility one can be proven, following the arguments used in Sec. 4.3.3. The
lower altitude resolution yields an averaging over one scale height and small scale
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(a) The Virtis data was acquired using the
Virtis-M channel at 5◦N LT 20:00. The two
profiles are in agreement within the error mar-
gins except for the high pressure layer.

(b) The Virtis data was acquired using the
Virtis-H channel at 5◦N LT 22:00. The two
profiles are in very good agreement within the
error margins.

Figure 4.30: pT-profiles from IR heterodyne observations (red) during campaign A
and Virtis (blue) at corresponding observing positions (equator (EQ) and 5◦N (5N))
and local time.

fluctuations can not be observed. A positive argument for possibility two is that
the cold layer, was present during the coordinated campaign, but it was strongly
varying within three days (comp. Fig. 4.26), yielding a time dependency.

The profiles from campaign B are displayed in Fig. 4.31. The measurement at
67NLT0 (Fig. 4.31(a)) is compared to a corresponding Virtis-H profile from 65◦N.
The Virtis profile does not show an isothermal behavior at lower altitudes as it can
be observed in the IR heterodyne profile. Therefore, no change in the temperature
lapse rate can be seen in Virtis data for an altitude between∼ 75–85 km. However,
despite the higher temperatures in the IR heterodyne profile at ∼ 14.7 hPa, the two
profiles agree within the error margins. The 33SDL (Fig. 4.31(b)) profile agrees to
the Virtis-M profile within the uncertainty range for each single pressure layer,
except at the pressure level at ∼ 33 hPa. Also, the higher SNR of the data set
enables the resolution of the temperature at the low pressure at ∼ 0.7 hPa.
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(a) The Virtis data was acquired using the
Virtis-H channel at 65◦N LT 0:00. The two
profiles are in agreement within the error mar-
gins. The Virtis profile does not show the
isothermal behavior at lower altitudes. This
property is shifted to higher altitudes between
∼ 75–85 km.

(b) The Virtis data was acquired using the
Virtis-M channel at 35◦S LT 03:00. The two
profiles are in agreement within the error mar-
gins except for the pressure layer at ∼ 33 hPa.
Due to the observing geometry and longer in-
tegration time for this special data set, the IR-
heterodyne retrieval is sensitive to lower pres-
sures than Virtis.

Figure 4.31: pT-profiles from IR heterodyne observations (red) during campaign B
and Virtis (blue) at corresponding observing positions and local time.

SPICAV/SOIR

Comparison to Spicav/Soir data is a bit less sophisticated, since the solar occul-
tation data can only be acquired at the terminator. Also, the Spicav/Soir team
provided only weighted averaged profiles for various latitude bins over the morning
and the evening terminator. The receiver and the retrieval technique are explained
in Sec. 4.1.3. The data were provided by the Virtis team from Arnauld Mahieux
[174]. There is no distinction between the northern and southern hemisphere in
the following Spicav/Soir data. The Spicav/Soir profiles will be compared to
the retrieved pT-profiles form IR heterodyne observations. Plotted are the profiles
for the morning and evening terminator as well as a mean profile between the two.
The uncertainty of the profiles given in all plots, is the standard deviation between
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(a) Comparison between the IR heterodyne
profile (red) and the complete Soir profiles
from the morning terminator (light blue), the
evening terminator (dark blue) and the mean
profile (blue).

(b) Comparison of the IR heterodyne profile
(red) to the mean Soir profile for high lati-
tudes (blue) between 60–70◦. The black box in
Fig. (a) indicates the zoom factor on the two
profiles.

Figure 4.33: pT-profiles from IR heterodyne observations (red) and Spicav/Soir
(blue) at corresponding observing locations (67N and 60–70◦ latitudinal average) at
local time 22:00 and the terminator (evening, morning and mean), respectively. The
uncertainties of the Soir measurements are represented by the standard deviation be-
tween the morning and the evening profile. The profiles are in good agreement within
the uncertainty range for all data points.

the morning and the evening pT-profile.

In Fig. 4.32 the pT-profile, deduced from observation during campaign A at EQLT20
(Fig. 4.32(b)) and EQLT22 (Fig. 4.32(c)) are compared to the Spicav/Soir data
for the low latitudes from 0–30◦. In Fig. 4.32(a), the Spicav/Soir profile for the
whole probing altitude is displayed. The atmosphere seen by IR heterodyne tends
to be cooler at LT 20:00 than suggested by the Spicav/Soir data. However, the
Spicav/Soir profile represents the weighted average of all measurements and com-
parability is limited, since the standard deviation of the single profiles for each,
the morning and the evening measurements, are much larger in reality (4Tm/e

∼ 65 K), but have been omitted in the graphic. In Fig. 4.32(a), a zoom into the
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(a) Comparison between the IR heterodyne
profile (red) and the complete Soir profiles
from the morning terminator (light blue), the
evening terminator (dark blue) and the mean
profile (blue).

(b) Comparison of the IR heterodyne profile
(red) to the mean Soir profile for mid-latitudes
(blue) between 30–60◦. The black box in
Fig. (a) indicates the zoom factor on the two
profiles.

Figure 4.34: pT-profiles from IR heterodyne observations (red) and Spicav/Soir
(blue) at corresponding observing locations (33S and 30–60◦ latitudinal average) at the
dark limb (DL) and the terminator (evening, morning and mean), respectively. The
uncertainties of the Soir measurements are represented by the standard deviation be-
tween the morning and the evening profile. The profiles are in good agreement within
the uncertainty range for all data points, except the 0.2.

altitude region commensurate to IR heterodyne detection is given. Comparison is
performed to the mean profile from Soir. The profiles are in good agreement and
only the top altitude data point exceeds the uncertainty margin for both profiles.
The standard deviation of the mean profile is ∼ 21 K for altitude between ∼ 60
and ∼ 80 km.

For campaign B, the comparison between the high latitude measurement at 67◦N
and the corresponding Vast bin from 60–70◦ from Spicav/Soir can be found in
Fig. 4.33. The solar occultation data show a much larger variability in the alti-
tudes between 75 and 90 km, compared to the previously discussed low latitude
profiles. The standard deviation between the morning and the evening terminator
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measurements exceeds 50 K. Thus, the two profiles are in agreement within the
uncertainty. Anyhow, the profiles even agree for all pressure layers taking only the
uncertainty margin of the IR heterodyne profile into account. The other profile
from campaign B at 33SDL is compared to the Spicav/Soir profiles for the mid-
latitudes between 0–30◦ in Fig. 4.34. The solar occultation instrument detected
a large amount of variation in the mesosphere, yielding proportionally large un-
certainties due to the increased standard deviation of the mean profile compared
to the other latitudes. The uncertainty at the lower altitudes from 60–72 km is
4T ∼ 70 K. Despite this vast variability, the two data points at ∼ 2.5 hPa and
∼ 6.7 hPa of the IR heterodyne profile agree within their error margins with the
Spicav/Soir profile. Above, the errors decrease, but the two profiles are still
in good agreement, except for the 0.25 hPa pressure layer. There, a deviation of
∼ 30 K was measured.

4.4.2 Comparison to Ground-based Observations

Sub-Millimeter

Sub-millimeter observations have been performed in 2007 by Rengel et al. [144].
During their observations, Venus was close to maximum eastern elongation, yield-
ing an approximately half illuminated apparent disk. In Fig. 4.35 the observing
geometry and beam positions are displayed. The FoV (circle, dashed) was 32 arcsec
across, exceeding the size of the Venusian disk, which was ∼ 24 arcsec. The cross
(line, solid), originating in the center of Venus (circle, solid), indicates the ori-
entation in respect to the equatorial plane. The illuminated fraction of Venus is
located on the right hand side of the cross, hence, opposed is the nightside. Obser-
vations from June 14 and 15 2007 will be compared to the IR heterodyne profiles,
in particular, these sub-mm observations, which have been performed for four dif-
ferent geometrical positions on the nightside of Venus. The data were provided by
the Mpi team from Miriam Rengel [175]. Measurements including the nightside
were performed at beam positions 5, 9, 11 and 14. Positions 10, 12, 13 and 15
are pure dayside data and will not be considered for comparison. An overview
of the conditions and the geometry for sub-mm observations is given in Tab. 4.9.
The derived profiles are displayed in Fig. 4.36. All profiles from the four different
positions are plotted. Besides, the averaged profile is given, which will be used
for comparison to the IR heterodyne measurements. All profiles show a more or
less pronounced bulge in an altitude of ∼ 80 km. This inversion layer is highly
variable as it can be seen in Fig. 4.36(a) considering the profiles from position 5.
The profile 06/15/07-#2 has a strong inversion, whereas the profiles 06/15/07-#1
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Figure 4.35: Schematic of the beam positions on Venus during sub-mm observations
in June 2007. The cross (solid line) indicates the orientation of the equator and CML in
respect to the equatorial plane. The circles indicate the FoV (dashed) and the Venusian
apparent disk (solid), respectively. Observing geometry at point 5, 9, 11 and 14 include
measurements of the nightside. Beam position 10, 12, 13 and 15 will be omitted in the
following. From Rengel et al. [144].

Beam position Date δα δβ profiles
Fig. 4.35 (2007) [arcsec] [arcsec] quantity

5 06/14 0 0 4
9 06/14 14 -2 3
11 06/14 19 -2 2
5 06/15 0 0 3
14 06/15 16 -2 1

Table 4.9: Geometrical parameters for sub-mm observations on Venus nightside. δα
and δβ (right ascension and declination) are the astronomical coordinates of a point on
the celestial sphere when using the equatorial coordinate system [144]. The last column
gives the amount of profiles obtained on the specific observing day and geometry.
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(a) (b)

(c) (d)

Figure 4.36: Pressure-temperature profiles from sub-mm observations on June 14 and
15 2007. The dashed lines represent the single measurements at the corresponding posi-
tion in Fig. 4.35. The solid lines display the average of all profiles from one position. The
uncertainties of the mean profile are the averaged uncertainties from all measurements.
At position 14, only one profile is available.
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(a) IR heterodyne observations at the equator
and local time 20:00.

(b) IR heterodyne observations at the equator
and local time 22:00.

Figure 4.37: pT-profiles from IR heterodyne observations (red) during campaign A
and sub-mm observations (bluish) for all sub-mm observing positions on the Venusian
nightside disk in June 2007. The sub-mm profiles are the mean values of the profiles in
Fig. 4.35 in the respective altitude region. The IR heterodyne profiles agree within the
uncertainty range with the sub-mm observations.

and -#3 are a lot colder at the respective altitude. However, these temporal vari-
ations cannot be observed with IR heterodyne spectroscopy, especially due to the
much longer integration time. It is therefore useful to compare only the averaged
profiles to the IR heterodyne measurements. Also, the lower spatial resolution of
sub-mm observations has to be pointed out again. The FoV does not even resolve
the Venusian disk during these observations. Thus, comparison of single profiles
to the spatially variable IR data is limited and an analysis of each single IR het-
erodyne measurement in respect to all averaged sub-mm profiles will be discussed
in the following.

In Fig. 4.37 the comparison of the retrieved profiles from campaign A to the aver-
aged sub-mm observations from observing position 5, 9, 11 and 14 are presented.
The temperatures of both retrieval techniques agree within the uncertainty mar-
gin. Although, the sub-mm profiles show more variability, it has to be pointed
out, that the sub-mm profiles represent an weighted average over a broad range
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(a) IR heterodyne observations at 67◦N and lo-
cal time 0:00.

(b) IR heterodyne observations at 33◦S and the
dark limb.

Figure 4.38: pT-profiles from IR heterodyne observations (red) during campaign B
and sub-mm observations (bluish) for all sub-mm observing positions 5 (disk center) on
the Venusian disk in June 2007. The sub-mm profiles are the mean values of the profiles
in Fig. 4.35 in the respective altitude region. The IR heterodyne profiles agree within
the uncertainty range with the sub-mm observations.

of LT, since the beam covers almost all of the nightside disk. Taken this into
account, the IR heterodyne profile at EQLT20 (Fig. 4.37(a)) is shifted to colder
temperatures compared for instance to the profile from observing position 5, which
was acquired with a beam centered on the Venus’ apparent disk, yielding contri-
bution also from the sunlit side of the planet. The other profile, obtained during
campaign A, EQLT22 (Fig. 4.37(b)) agrees within the uncertainty range with all
sub-mm profiles at each pressure layer. The IR heterodyne profile shows a much
more stable temperature decrease with altitude, again caused by the long integra-
tion of 480 min whilst the seven days of observations, but also due to the higher
altitude resolution of the sub-mm profiles.

For campaign B, the high latitude measurement at 67NLT0 (Fig. 4.38(a)), is diffi-
cult to compare. The sub-mm profiles were all obtained at, or close to, the equator.
The wide FoV does include the high latitudes too, but the characteristics of the cir-
cumpolar region cannot be defined well enough by sub-mm measurements to make
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a sophisticated analysis of these latitudes. Still, the average profiles are compared
to the IR heterodyne data for the sake of completeness. The sub-mm profiles, un-
surprisingly, do not show the isothermal part in the lower altitude. Nevertheless,
the variability of the temperatures retrieved with sub-mm heterodyning enables at
least a global comparison and it is to observe, that the profiles coincide. Concern-
ing the observing position at 33SDL (Fig. 4.38(b)) comparison is very limited due
to geometrical constrains. Sub-millimeter measurements were carried out close to
Venus orbit’s maximum eastern elongation. Thus, the nightside of Venus, which
was half illuminated, covered only local times roughly from noon to midnight. The
profile obtained with IR heterodyne, in contrast, covers a local time from 3:20 till
3:26 in the morning, hence a position on Venus, not approachable from the ground
in June 2007. The profiles plotted in the graph nevertheless agree within in the
uncertainty range. The bottom layer at ∼ 65 km altitude is remarkably cooler for
the IR profile, whereas at higher altitudes, especially at ∼ 91 km it is substantially
warmer. This might be most probably due to the vast divergence of the observed
local times.

4.4.3 Comparison to the Reference Atmosphere

As mentioned before in the introductory part of this chapter, the Venus Interna-
tional Reference Atmosphere provides the most commonly used model profiles for
representation of the thermal properties of Venus. Although the model is only
based on five profiles each on the day- and the nightside, and the outdated state
of the art, it is still the model for temperature comparison. Talking about Venus’
thermal properties, the Vira profiles have to be taken into account, at least for
completeness.

In Fig. 4.39 the five Vira pT-profiles at hand for the Venusian nightside are dis-
played. The profiles were taken from Seiff et al. [110]. The model predicts a
cooling of the lower altitudes within the cloud deck (40–60 km) towards the poles,
whereas the upper altitudes above the clouds tend to develop a warmer isothermal
part or even transform into an inversion layer. All profiles converge into the same
course at an altitude of ∼ 100 km. The model does not distinguish between the
northern and the southern hemisphere and assumes a symmetric behavior. The
temperatures in the altitude region commensurate to IR heterodyne observations
will be compared to the retrieved profiles in the following.

The profile derived from the first observing position on campaign A at EQLT20 is
plotted together with the Vira prediction for the low latitudes between 0–30◦ in
Fig. 4.40(a). The measurement agrees within its uncertainty range to the model
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Figure 4.39: Model predictions from Vira for pT-profiles for the Venusian nightside.
The latitudinal variation represents the northern and southern hemisphere, assuming a
symmetric behavior. Towards higher latitudes, the low altitude temperature (40–60 km)
decreases. At the cloud top, a change in the temperature profile is predicted for all
latitudes. In the low latitudes, a steep lapse rate for a monotonically decreasing with
altitude profile is observed, transforming into an isothermal layer with a tendency of
an inversion towards the poles. The profiles merge for the upper boundary at 100 km
altitude.
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(a) IR heterodyne observations at the equa-
tor and local time 20:00. The profiles coincide
within the uncertainties of the IR heterodyne
profile.

(b) IR heterodyne observations at the equator
and local time 22:00. The two profiles coincide
except for the pressure layer at 0.55 hPa.

Figure 4.40: pT-profiles from IR heterodyne observations (red) during campaign A
and Vira model predictions (blue) for the corresponding low-latitudes between 0–30◦,
averaged over the Venusian nightside.

for each single pressure layer. The small deviation to higher temperatures in the
region between 60–75.5 km and the crossing point at 75 km, predicting colder air
above, can be due to the low latitudinal resolution of the model. Also the Vira
profiles is averaged for the whole nightside, neglecting all thermal variations from
the evening to the morning terminator. In Fig. 4.40(b), the same Vira model for
low-latitudes is displayed along with the IR heterodyne profile at EQLT22. The
two profiles coincide within the error margins, except for the pressure layer at
0.55 hPa, ∼ 87 km altitude. The large deviation in this layer is part of the global
behavior of the IR heterodyne profile, which tends to measure slightly warmer
temperatures than predicted by Vira in the higher altitudes. Only the high
pressure layer (lowest altitude) is colder than the Vira model claims. However,
again, it has to be pointed out, that the model is only an average over a manifold
of parameters and thus, cannot be regarded as representative for the selected
observing geometry.
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(a) IR heterodyne observations at 67◦N and lo-
cal time 0:00. The two profiles coincide within
the uncertainties of the IR heterodyne profile.

(b) IR heterodyne observations at 33◦S and the
dark limb. The two profiles do not agree within
the uncertainties, except for the middle layers.

Figure 4.41: pT-profiles from IR heterodyne observations (red) during campaign B
and Vira model predictions (blue) for the corresponding latitudes between 60–75◦

(Fig. 4.41(a)) and 30–60◦ (Fig. 4.41(b)), averaged over the Venusian nightside.

The comparison between the Vira model for for the campaign B measurements
is provided in Fig. 4.41. For higher latitudes between 60–75◦ at observing po-
sition 67NLT0 (Fig. 4.41(a)) the model shows a small temperature inversion at
altitudes around 69 km. The IR heterodyne profile is almost isothermal for the
corresponding region just above the cloud layer. Except for the high pressure
layer at 44.77 hPa, all temperatures are in agreement with the Vira prediction.
Above the inversion layer, the model, as well as the observations, show a decrease
with altitude and the profiles are, despite the bad spatial resolution of the model,
compatible. The profile measured at the 33SDL is displayed along with the mid-
latitude Vira profile in Fig. 4.41(b). The Vira model predicts a constant decrease
with altitude of the temperature in the Venusian nightside mid-latitudes. A small
bulge towards a higher temperature can be observed in the profile at an altitude
around 70 km. For higher altitudes, above∼ 87 km, the model gets isothermal. The
two profiles show the most significant deviation of all profiles. Only the tempera-
tures in the middle pressure layers at 6.77 hPa and 2.49 hPa are in agreement with
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the Vira prediction within their uncertainties. However, the previous compar-
isons to space- and ground-based observations have proven, that the observations
are a sophisticated representation of the mesospheric thermal structure. The large
deviation of the two profiles might be due to the lack of data and, as mentioned
before, the poor spatial resolution. Especially the high diurnal variability in the
mesospheric mid-latitudes can explain the bad compliance of the observation and
the model.

4.5 Conclusion Venus

The new inversion routine, especially developed to deduce vertical pressure- tem-
perature profiles by analyzing the shape of CO2 absorption lines, has been applied
to four different spectra, obtained on the nightside hemisphere of Venus. The
data sets were retrieved during two observing campaigns in 2012. Retrieval of
thermal profiles from ground-based observations in the mid-IR has never been ac-
complished before. The results represent vertical temperature profiles, which are
obtained from ground-based IR heterodyne spectroscopy for the first time ever.
The new technique enlarges the possibility of investigation of the Venusian atmo-
sphere from Earth. It is found, that an integration time of at least 90 min on the
source is needed to receive a SNR, which is sufficient for the retrieval method.
The uncertainties of the temperatures are depending on the SNR and are found
to be in the range between 1.5–25 K. The altitude resolution of the new Ifr for
Venus profiles is one full scale height of ∼ 4.5 km throughout the probing region.
The corresponding pressure grid is calculated according to the barometric formula
in Eq. (3.1) and is adapted to the specific conditions of each observing position.
The required integration time imposes constrains on the possibility to observe
short time fluctuations, i.e. to investigate the static stability of the mesosphere.
However, the new technique has proven to be applicable to extraterrestrial obser-
vations and thus widens the field of application for remote sensing in the mid-IR
wavelength range.

The results are discussed in the context of existing measurements from space and
ground. An overview of each observing position, compared to all other considered
profiles is given in Fig. 4.42. It is found, that the profiles retrieved with IR hetero-
dyne observations coincide in any way to the previously well-established observing
techniques. Variability of the IR heterodyne profiles with latitude and local time
is observed. Especially towards the pole, an isothermal behavior of the lower alti-
tude, just above the clouds, is seen. This is conform to other observations.
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(a) EQLT20 (b) EQLT22

(c) 67NLT0 (d) 33SDL

Figure 4.42: pT-profiles from IR heterodyne observations (red) at the four different
observing positions plotted with all profiles from the different observing techniques and
model predictions described in the previous comparison section.
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Ground-based observations is not compatible to space exploration in respect to
spatial resolution or integration time, but it stands out by its financial budget and
flexible application possibilities. The results found in the work herein are proven
to be reliable and a high potential for future measurements is given. Comparison
to models, however, is still limited, but IR heterodyne observation can contribute
to improve existing Gcms by providing observed data. The new ground-based
observing possibility can contribute a lot to the exploration of Venus, especially
in the post-Vex era. Despite the lower altitude resolution for IR observations
compared, i.e. to heterodyning at sub-mm wavelengths, infrared measurements
can provide a much more detailed mapping of the planet, due to its higher spatial
resolution.

Besides the thermal properties in the Venusian atmosphere, the new inversion rou-
tine could also be able to contribute altimetry data. As mentioned, the Venusian
atmosphere becomes opaque to IR radiation at the cloud top. Hence, the highest
pressure value that is found, can be allocated to the cloud top altitude. However,
this would need a revision of the applied radiative transfer code. Up to date,
Codat does not account for the curvature of the planet, since it was designed as a
2D model. To assign a defined cloud top altitude at locations more than 30◦ apart
from the disk center, a 3D model is mandatory.





Chapter 5

The Atmosphere of Mars

”Mars is there, waiting to be reached.”
(Buzz Aldrin)

5.1 Introduction

Mars is the second closest planet to Earth and the fourth in the heliocentric row.
The planet possesses a surrounding atmosphere and a solid core. Besides Mer-
cury, Mars is the smallest planet in our solar system with an equatorial radius of
3396.2 km. Its red surface is caused by oxidized iron, which globally covers the
planet. Despite its smaller size, Mars is presumably the most Earth-like planet
in our solar system in terms of climate condition and habitability. The orbit is
elliptical with a semi-major axis of ∼ 1.52 AU and a sidereal orbiting period of
∼ 686 Earth days. The sidereal rotation period is just a little longer than on
Earth, yielding a 24.6 h Mars-day. Mars is the only other terrestrial planet, be-
sides Earth, with an atmosphere that shows a distinct seasonal behavior due to
an axis tilt of 25.19◦. The Martian seasons are commonly characterized in terms
of the solar longitude LS. A solar longitude of 0◦ corresponds to the northern
hemisphere spring equinox. During the winter season, large ice caps form in the
polar regions as it can be seen in Fig. 5.1(a). The most important bulk and or-
bital parameters of Mars are summarized in comparison to Earth in Tab. 5.1. The
Martian topography is versatile, but basically it has to be distinguished between
the so called lowlands in the northern hemisphere and the highlands in the south-
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(a) Martian surface features. The Syrtis Major
region can be found at ∼ 270◦ longitude [176].

(b) Mars observed during a global dust storm
in September 2001

Figure 5.1: Global images of Mars, taken by the Wide-Field Planetary Camera 2 on
the Hubble Space Telescope

ern hemisphere. The Martian equivalent of the telluric sea-level, or geoid, is called
areoid, defined at the pressure level of the triple-point of water, at 6.105 hPa.

The atmosphere of Mars can be divided into three main thermal regimes. The
lower atmosphere, the troposphere, extends up to an altitude of ∼ 45 km. The
mesosphere is located between ∼ 45 km and ∼ 110 km. On top, the exosphere, or
thermosphere is located up to ∼ 200 km altitude. The hottest temperatures in the
troposphere can be found around the SSP during summer, when solar insulation
is at its maximum. The coldest temperatures, on the other hand, are found to
be at the winter poles. Hence, the temperatures are subject to a high latitudinal
variability over seasons. The thin Martian atmosphere can supply only a small
greenhouse effect. Therefore, a high temperature gradient exists between the day-
and the nightside atmosphere, forcing zonal wind fields around the planet [7].

Besides the gaseous component of the atmosphere, the Martian dust plays an
important role for the radiative balance of the planet. During global dust storms,
i.e. the dust is lifted into the lower troposphere, covering the planet in an opaque
shell. See Fig. 5.1(b) for a reference picture on this effect. The dust absorbs
solar light at visible and mid-IR wavelengths around 9µm [178]. Lofted dust can
contribute to a strengthening of the Martian meridional circulation cells and thus
leads to a stronger pressure gradient [7]. The airborne dust can contribute on one
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Parameter Mars Earth Ratio (Mars/Earth)

Radius at equator (km) 3396.2 6378.1 0.532
Surface gravity (km/s2) 3.71 9.81 0.379
Natural satellites 2 1 -
Semimajor axis (106 km) 227.92 149.6 1.524
Sidereal orbit period (days) 686.980 365.256 1.881
Sidereal rotation period (days) 1.027 0.998 1.029
Solar day (hours) 24.660 24.000 1.027
Obliquity to orbit (deg) 25.19 23.44 1.075

Distance from Earth (106 km)
Minimum 55.7 - -
Maximum 401.3 - -

Apparent diameter (arcsec)
Minimum 3.5 - -
Maximum 25.1 - -

Table 5.1: Important orbital parameters of Mars and Earth from [177].

Parameter Mars Earth

Surface pressure (hPa) 6.105 1014
Surface density (kg/m3) ∼ 0.020 1.217
Mass of atmosphere (kg) 2.5×1016 5.1×1018

Mean molecular weight (g/mole) 43.34 28.97

Composition
Major 95.3% CO2 78.08% N2

2.7% N2 20.95% O2

1.6% Ar -
0.13% O2 -
0.07% CO -

Minor 210 ppm H2O 9340 ppm Ar
100 ppm NO 400 ppm CO2

2.5 ppm Ne 18.18 ppm Ne
0.85 ppm HDO 5.24 ppm He
0.3 ppm Kr 1.7 ppm CH4

0.08 ppm Xe 0.55 ppm H2

Table 5.2: Atmospheric parameters of Mars and Earth. Minor constituents are given
in parts per million (ppm) [177].
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Figure 5.2: Kinetic temperatures in the 0.001 hPa pressure level retrieved from IR
heterodyne observations of CO2 non-LTE emission features in 2007 (black), compared
to Mcd model predictions. The error bars represent the fitting uncertainty (black) and
monthly average from the Mcd (red). From Stupar [41].

hand to the greenhouse effect, by back-scattering emitted light from the Martian
surface, but on the other hand, weaken the solar insulation, producing local regions
of high static stability [179].

5.1.1 Temperatures from IR Heterodyne on Mars

In recent years IR heterodyne spectroscopy has been utilized to study the thermal
properties of the Martian mesosphere. For this purpose, spectra taken on the
dayside of the planet were analyzed. The Martian dayside spectra are composed of
two different features: a broad absorption feature from lower, pressure-broadening
dominated altitudes and a narrow non-LTE emission core. For the investigation
of the purely Doppler-broadened non-LTE features, the broad CO2 absorption
line, originating from lower altitudes needs to be removed. Temperatures on the
sunlit side of the planet can be directly deduced from the width of the non-LTE
emission feature. Non-LTE emission occurs at a pressure level around 1µbar
(0.001 hPa). CO2 molecules in the atmosphere are pumped by solar irradiation to
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higher energy states at 4.3µm and de-excite by spontaneous emission at 10.3µm.
The probability for spontaneous emission increases that for collisional de-excitation
at this low pressure level [53]. A careful analysis of the thermal properties at
the 0.001 hPa level has been conducted by Stupar [41]. He used Codat as a
forward model in order to diminish the effect of the absorption feature to the non-
LTE. Hence, a good knowledge on the underlaying thermal profile is inevitable.
Therefore, model predictions from the Mars Climate Database (Mcd [180]) were
used as input pT-profiles, carefully chosen for the specific observing position. A
latitudinal variability of the kinetic temperatures between ∼ 170 and ∼ 200 K for
observations performed in 2007 was found. Fig. 5.2 shows a comparison between
the IR non-LTE temperatures and model predictions from the Mcd. With the
newly developed Ifr, the temperature profiles can be additionally deduced from
the absorption line, widening the probing altitude to the lower troposphere. Hence,
the impact of IR heterodyne observations can be increased significantly for the
Martian atmosphere.

5.2 Retrieval of Thermal Profiles

First attempts to deduce vertical temperature profiles from observations on the
Martian dayside have been performed recently. Up to date, only preliminary results
for one observing geometry can be provided. The approach of the Ifr suffers some
issues when applied to Mars observations which will be discussed in the following.
Further studies need to be made in the future, in order to establish the Ifr for
Mars. A proof of concept that, performed to show the reliability of the Ifr for
Martian data, did not yet provide the unambiguous results as it was the case for
Venus. Hence, predications on the thermal properties of the Martian atmosphere
at lower altitudes are still limited. In addition the analyzed data seem to be
contaminated by a standing wave pattern in the back-end radiometer. In the
following, the proof of concept is presented in detail and the results from first
analysis of Martian spectra using the Ifr are discussed.

5.2.1 Altitude Resolution

The biggest constraint when dealing with Martian data is the altitude resolution
in the lower troposphere. Following the approach described in Sec. 3.3 by using
the barometric formula for a first order assumption of the pressure layering, the
scale height on Mars is estimated to be around 10.5 km. A CO2 volume mixing
ratio of 0.935 is assumed. The gravitational constant on Mars required in Eq. (3.1)
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is g= 3.71 m s−2 and the pressure at the surface is chosen to be 6.1 hPa, which cor-
responds to the 0 km altitude at the areoid. Since the Martian surface holds more
topographic variability than the Venusian cloud decks, the surface pressure may
vary by ± 4.0 hPa. The average temperature at - and within the first atmospheric
layer above - the surface on Mars is highly variable in latitudes and local time and
T is estimated to be between 190 K and 230 K, yielding a scale height between
9.67 km and 11.71 km. This leads to an uncertainty in the determined pressure,
which is accounted for by providing error bars in the plots.

5.2.2 Proof of Concept

Similar to the Venus proof of concept in Sec. 3.4, a variety of synthetic spectra was
created to simulate observed IR heterodyne data. To create the spectra, pressure-
temperature profiles were extracted from the Mcd as input profiles and white
noise was added to the modeled spectra.

One major impact on the retrieval of thermal profiles from data obtained at the
Martian dayside is the presence of the non-LTE emission line in the core of the
absorption feature. In order to investigate the influence of the emission feature
on the retrieval method, two spectra with different non-LTE emission intensities
were created based on the same pT-profile. The pressure grid for the retrieval
was determined according to an altitude resolution of a full scale height. The
results are summarized in Fig. 5.3. In the top figures (Fig. 5.3(a) and Fig. 5.3(b)),
the synthetic spectra are displayed along with the input model and the output
model. The spectrum displayed by the blue line was obtained using the blue pT-
profile in Fig. 5.3(c) in both cases. The green lines represent the computed spectra,
using the retrieved output pT-profiles - also displayed in Fig. 5.3(c). During the
retrieval, the non-LTE emission was simulated by Codat by superimposing a
Gaussian function with given input parameters to the absorption line at the specific
frequency position. Only the intensity of the non-LTE emission line was varied.
The Fwhm was kept constant. It can be observed, that the output model deviates
strongly from the data sets. The residuals, plotted at the bottom of Fig. 5.3(a)
and Fig. 5.3(b) show a wavy pattern. The wings of the line cannot be accurately
fitted when applying the chosen pressure grid. However, the normalized altitude
weighting functions displayed in Fig. 5.3(d) show well-defined and isolated peaks,
yielding the capability to resolve each specific pressure layer individually. Only
the top layers contribute equally to the line formation and the layer at the lowest
pressure of ∼ 0.15 hPa must be neglected. The intensity of the non-LTE emission
core influences the quality of the fit only at the line core. Nevertheless, the derived
temperature profiles in Fig. 5.3(c) agree within the uncertainties to each other and
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(a) (b)

(c) (d)

Figure 5.3: Synthetic spectra to simulate observed IR heterodyne data from Mars.
Top: (a) and (b) - Synthetic data with white noise (red), modeled radiative transfer
through the atmosphere, 1) (blue) based on the blue input-profile displayed graphic
(c) and 2) (green) based on the retrieved pT-profiles in graphic (c) for the respective
spectrum, each with the corresponding residuals to the data. 4) The residuals between
the input and the output model (yellow). The data sets were smoothed over 5 MHz for
display. Bottom: (c) - Input (blue) and retrieved (redish) pT-profiles from the synthetic
spectra. (d) - Normalized altitude weighting functions to display the contribution of the
single pressure layers to the spectra at 5 different frequencies. The frequencies are those,
where the contribution of one specific layer is maximum. The frequencies are given as
an offset to the frequency of the line center.
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(a) (b)

(c) (d)

Figure 5.4: Synthetic spectra to simulate observed IR heterodyne data from Mars.
Top: (a) and (b) - Synthetic data with white noise (red), modeled radiative transfer
through the atmosphere, 1) (blue) based on the blue input-profile displayed graphic
(c) and 2) (green) based on the retrieved pT-profiles in graphic (c) for the respective
spectrum, each with the corresponding residuals to the data. 4) The residuals between
the input and the output model (yellow). The data sets were smoothed over 5 MHz for
display. Bottom: (c) - Input (blue) and retrieved (redish) pT-profiles from the synthetic
spectra. (d) - Normalized altitude weighting functions to display the contribution of the
single pressure layers to the spectra at 5 different frequencies. The frequencies are those,
where the contribution of one specific layer is maximum. The frequencies are given as
an offset to the frequency of the line center.
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to the input profile, although variations in the profiles exist. These variations
are due to cross-correlations between the low-pressure layers, which cannot be
individually resolved.

Further synthetic spectra were created, taking a different temperature input profile
as a basis (comp. Fig. 5.4(a) and Fig. 5.4(b)). With the gained knowledge about the
altitude resolution, these spectra were analyzed and the pT-profiles were regained.
This time, the pressure layers were calculated assuming an altitude resolution of
half a scale height in the high pressure levels (< 1 hPa) and one full scale height
above. This approach was performed in order to increase the fit quality at the wings
of the absorption line. The resulting temperature profiles for two such spectra,
with a low and a high non-LTE emission intensity are plotted at the bottom left
in Fig. 5.4. The two profiles agree within the uncertainties except for the value at
∼ 1 hPa. However, the profiles are still not in exact compliance, which would have
been expected. This can be due to the influence of the non-LTE emission peak.
At the top of Fig. 5.4 the input and the output model are compared. The models
are based on the thermal profiles plotted in Fig. 5.4(c). The output models fit very
well to the data and the residuals are even and without any noticeable variation
that exceeds the noise. The deviation between the input and the output model is
reasonable small - less than the noise amplitude. Hence, in order to obtain a better
fit between the in- and the output model, the SNR has to be increased.

Another issue could still be the altitude resolution, which might have been chosen
to high with a value of half a scale height. The normalized altitude weighting
functions for the applied pressure grid are plotted in Fig. 5.4(d). It can be ob-
served, that only the two bottom layers can be resolved. The contribution to the
line forming in the third layer is already smeared and the contribution from the
∼ 3.7 hPa and the ∼ 2.2 hPa layer at a frequency ± 35 MHz offset to the line center
is almost identical. Hence, a cross-correlation between the two layers cannot be
avoided anymore. The high altitude layers, in contrast, contribute mostly to the
line tip. Since the non-LTE emission is superimposed at these frequencies, the
retrieved temperatures are of limited significance. It can be assumed, that the
line wings form in the pressure layers between the surface and ∼ 1 hPa (∼ 20 km
altitude). Nevertheless, the top layers cannot be neglected, since they contribute
to the line formation even down to the lower layers. Only the top layer at 0.1 hPa
has no influence on the line forming and must be omitted for future retrieval.

With these synthetic data sets it can be shown, that the basic idea of the Ifr can
be applied to heterodyne spectra obtained in the Martian dayside atmosphere.
The influence of the non-LTE emission core is marginal and vanishes within the
retrieval uncertainty. Nevertheless, the first attempts to retrieve sophisticated and
reliable temperature profiles from these spectra suffered some issues which cannot
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be neglected. A careful investigation of the altitude resolution has to be performed
when dealing with Martian spectra, since is neither the spectra can be accurately
modeled (for a low altitude resolution of a full scale height) nor cross-correlation
between the adjacent layers can be avoided (for a high altitude resolution of half a
scale height). Hence, the truth is somewhere in between, yielding the possibility of
a non-linear pressure binning. This has to be taken into account for the analysis
of observed spectra.

Figure 5.5: Observing geometry of Mars for campaign C in March 2010 at the Irtf on
Mauna Kea. The blue circle represents the diffraction limited field of view true to scale
with the angular diameter of the apparent disk. The angular diameter of the apparent
disk was ∼ 11” and the illuminated fraction 94% . For orientation, the LT and the
latitudes are indicated for the geometry on March 12.
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5.3 Data Analysis and Results

To investigate the behavior of the Ifr when applied to measured data, a spectrum
obtained with with IR heterodyne observations is analyzed. In the following,
relevant information on the spectral properties is given and preliminary results are
presented.

5.3.1 Observing Campaign C

Observation of absorption lines on the Martian dayside were carried out, amongst
others, using the spectrometer This at the Irtf in March 2010. Mars was at
solar longitude Ls = 62.8, which corresponds to the northern summer, in Martian
year 30. Mars’ angular diameter was 11” with an illuminated fraction of 96%. One
observing position was approached, which possesses a SNR feasible for temperature
retrieval. The observing geometry and the positions are shown in Fig. 5.5. The
blue circle indicates the FoV at the targeted position, true to scale to the apparent
disk of Mars. The observed position is located at 45◦N latitude and 151◦W in
planetary coordinates, corresponding to an LT on Mars of ∼ 10:00 (45NLT10).
The total on-source integration time was ∼ 17 min and any possible changes in
the observing geometry due to the motion of Mars will be neglected for this short
period.

Camp. Instrument
Telescope

& Location
FoV Altitude Date

C This
Irtf,

Mauna Kea, HI
0.9” 4205 m

March 12
2010

Table 5.3: Overview of the observing campaign C.

Ls
Ang. Diameter

Position Latitude Longitude
Mars

(% illuminated) Local Time

62.8 11” (96%) 45NLT10 45◦N 151◦W 10:00

Table 5.4: Overview of the observing geometry for campaign C.

5.3.2 Measured Spectrum at 45NLT10

The measured spectrum from observations at position 45NLT10 is shown in Fig. 5.6.
The corresponding SNR, here again calculated as the ratio between the depth of
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the absorption line and the noise amplitude, was found to be (5.8± 1.5). The data
(red) is plotted along with the output model of the Ifr (blue) and their residuals
(green). The spectrum was rescaled to 10 MHz resolution for display. The original
spectrum with the full resolution of 1 MHz can be found in Appendix D. The model
is based on the retrieved thermal profile displayed in Fig. 5.7 and discussed in the
next section. To obtain the temperature profile from the data, a pressure grid was
calculated assuming a layering which corresponds to three fourth of a scale height
for the high-pressure layers (< 1.5 hPa) and a full scale height above. This was
intended to improve the fit quality and to simultaneously avoid cross-correlation
between adjacent pressure layers. However, the fit of the Ifr does still not match
the data very well. A sine fit was applied to the residuals, revealing a standing
wave pattern that contaminates the data. The standing wave has a frequency of
∼ 830 MHz and was interspersed to the IF processing while observing. In the gray
shaded area, the non-LTE emission core resides. It can be observed, that despite
the sinusoidal behavior, the residuals are minimal at those frequencies. For analyz-
ing the spectrum, the non-LTE emission was modeled by Codat by superimposing
a Gaussian fit to the absorption line. The analysis of the width of the non-LTE
emission would thus require a removal of the standing wave pattern in the data.
The retrieved kinetic temperatures from the Gaussian width would therefore be
erroneous.

5.3.3 Results and Comparison

The retrieved pT-profile is plotted in Fig. 5.7. Additionally, the Mcd profile for the
corresponding observing position is provided for comparison. Despite the bad fit to
the spectrum, caused by the standing wave in the data, the retrieved profile agrees
to the Mcd profile within the uncertainties at three pressure layers. The lowest
pressure layer is of low significance, since 1) the non-LTE emission is superimposed

45NLT10

p (hPa) 4p (hPa) T (K) 4T (K)
0.13 0.03 198.4 2.8
0.35 0.07 175.9 23.8
0.95 0.15 187.7 16.9
2.94 0.41 205.0 6.6
7.80 0.80 220.4 3.3

Table 5.5: Retrieved temperature at given pressure layers for IR-heterodyne observa-
tions on Mars
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Figure 5.6: Measured Spectrum from Campaign C at 45NLT10: The observing ge-
ometry is displayed in the insert graphic. The data is displayed in red with a SNR of
5.8± 1.5, the best fit in blue and the residuals in green. The center frequency of the line
is at 1148 MHz. The normalized RMS of the residuals indicates the noise amplitude.
The normalized RMS is 1.59 for an integration time of 17 min on source. The spec-
trum was rescaled to 10 MHz resolution for display. For the fully resolved spectrum see
Fig. D.5. The gray shaded area marks the frequency position of the line center, where
the non-LTE emission resides. It can be seen, that due to the fit of the emission, the
residuals in this area are minimal, despite the sinusoidal standing wave pattern.
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Figure 5.7: Temperature profile from Campaign C at 45NLT10: The derived tempera-
tures (with corresponding uncertainties) in the Martian atmosphere are displayed in red.
The observing geometry is displayed in the insert graphic. The blue profile represents
the pT-profile predicted by the Mcd for the corresponding observing position. The two
profiles agree within the uncertainties, except for the lowest and the highest pressure
layer.
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to the data and 2) the contribution to the line formation from this layer is not
high enough (comp. Fig. 5.3(d)). The highest pressure layer deviates from the
Mcd prediction towards higher temperatures. That can be due to the altitude
resolution, which is not high enough to resolve small-scale variations like this
temperature inversion close to the surface. Hence, the Ifr retrieves an averaged
temperature for the high-pressure layer.

5.4 Conclusion Mars

With the presented analysis, first statements about the possible application of
the newly developed Ifr can be given. The analysis of the Martian synthetic
spectra yields a variety a complications that must be accounted for. The most
crucial point is the altitude resolution of the retrieval. A careful analysis of the
spectra has to be performed and different pressure grids need to be applied to avoid
cross-correlations between adjacent layers and to uniquely resolve and retrieve the
dominant temperature in each layer. In addition, the non-LTE emission feature
that is present on the Martian dayside pollutes the spectra. Since the low pressure
layer contributes also to the line formation offset to the line center position, a
temperature can still be retrieved. However, the low pressure temperatures are
not as reliable as those in the high-pressure layers and further studies on the
influence of this emission feature needs to be performed.

The analysis of one measured spectrum shows a surprisingly good agreement to
the prediction from the Mcd, despite the very low fit quality. A standing wave
pattern, polluting the spectrum, that was never seen before, was revealed from
the data. A sine fit to the residuals yields a frequency of ∼ 830 MHz of the wave,
which was picked up during observations. The results are yet only preliminary and
still of low significance.





Chapter 6

Outlook and Summary

”There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy. .”
(William Shakespeare’s Hamlet)

Besides Venus and Mars, more terrestrial planets exist in our solar system. Espe-
cially the study of Titan’s atmosphere by investigating the dynamical and thermal
structure and composition has been emphasized by IR heterodyne spectroscopy
in the past [49]. In addition, atmospheric studies of the most terrestrial planet
- the Earth - by using IR heterodyne spectroscopy has been initiated recently.
The possibility of the retrieval of thermal and dynamical properties of the telluric
stratosphere is of high interest in the future.

In the following sections, an outlook on further applications on Mars and Venus
for the newly developed Ifr is given (see Sec. 6.1.1). In Sec. 6.1.2, the potential
application to Titan measurements and in Sec. 6.1.3, the possible analysis of telluric
ozone is discussed briefly.

135
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6.1 Outlook

6.1.1 Retrieval of Kinetic Temperatures

Mars

The analysis of the Martian dayside spectra requires further investigation, however,
the principal application of the Ifr to Mars data has been shown in Chap. 5.
Besides the analysis of the absorption line and the coherent deduction of thermal
profiles, the kinetic temperature of the CO2 molecules at the low pressure layer of
0.001 hPa can be performed by fitting the non-LTE emission line. An implication of
Codat as forward model into the Ifr would enlarge the potential of the routine
by simultaneously deriving the thermal profile and the kinetic temperature. A
manifold of data from a variety of observing campaigns since 2005 has not yet
been processed. Especially the data sets obtained during an observing campaign
in 2007, shortly after a global duststorm was present on Mars, are of interest. An
approach to derive the kinetic temperatures using the Mcd profiles as basis has
failed in the past, due to the erroneous temperature/pressure profiles which did
not account accurately for the lofted dust.

Venus

On Venus, the non-LTE emission core can be observed together with a broad
absorption feature for observations at the terminator. As it has been displayed
in Fig. 4.14 in Chap. 4, a strong emission feature exists as soon as the FoV covers
only small fractions of the sunlit side of Venus. Hence, a simultaneous deduction
of the thermal profile and the kinetic temperature in the 0.001 hPa pressure layer
would also be possible for Venus observations. This approach would strengthen
the impact of Ifr since the altitude probing region could be increased up to an
altitude of ∼ 110 km.

Another future plan should be the global mapping of the Venusian nightside by
using IR heterodyne spectroscopy. The high spatial resolution of infrared obser-
vations would allow a sophisticated investigation of a broad variety of observing
position on the apparent planetary disk. In addition, continuous ground-based
observations of the thermal properties of Venus’ nightside can be performed and
significantly contribute to the understanding of the atmospheric properties. With
the imminent shut-down of Vex, the space exploration of Venus suffers a great
loss and ground-based observations need to be intensified.
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It was shown, that the Ifr has the potential to retrieve the high pressure boundary,
where Venus atmosphere becomes opaque for infrared radiation. This pressure
layer corresponds to the top of the main cloud deck. Hence, cloud top altimetry
could be a further application of the Ifr. For a reliable retrieval of the altitude of
the opaque shell around Venus, either a 3-dimensional model needs to be applied,
which can account for the curvature of the planet towards the limb, or the approach
has to be restricted to an observing area spanning between about ± 30◦ away from
the sub observer point. Within this area, the curvature of the planet has no
noticeable effect.

6.1.2 Titan

The Saturnian moon Titan is the most Earth-like body in the outer planetary
system. Its atmosphere consists mainly of molecular nitrogen (N2) and methane
(CH4) whereas only trace amounts of CO2 and other hydrocarbons like ethane
(C2H6) can be found [182]. The thermal structure of the atmosphere would al-
low only the detection of emission features, since the temperature profile shows a
strong inversion in the higher altitudes (comp. Fig. 6.1). Observations of ethane

Figure 6.1: Temperature vs. altitude profile in Titan’s atmosphere from the surface
to 300 km (0.1 hPa) altitude. Profiles were acquired with the RO experiment aboard of
the Cassini spacecraft at four different orbits probing various latitudes (Schinder et al.
[181]).
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Figure 6.2: Measurements of ethane emission lines from Titan taken with HIPWAC
at the Subaru telescope in 2003. Codat was used to fit the data for a uniformly mixed
C2H6 mole fraction profile. From Kostiuk et al. [49].

emission lines have been performed in Titan’s atmosphere using ground-based in-
frared heterodyne spectroscopy by Kostiuk et al. [49]. They used the full radiative
transfer code Codat presented in the Chap. 3 as a forward model with a known
input temperature profile to find the best fit to the line. They have found that
varying the thermal profile leads to a better fit result and were therefore able to
judge on the thermal behavior in certain altitude regions. This approach requires
a reliable profile as input parameter. The line broadening is also affected by the
vertical volume-mixing-ratio of the molecule. For a self-consistent derivation of
the true vertical temperature profile a good SNR and a precise knowledge on the
abundance profile is needed. The former requires a very long integration time,
similar to observations on Venus. The latter is reasonably well mixed [183] in the
line forming region between 10 hPa and 0.1 hPa [49].

A retrieval of the vertical temperature profile from IR heterodyne observations
could be accomplished under certain conditions. The apparent size of Titan from
Earth is considerably small and large telescopes, like the Subaru telescope on
Mauna Kea, are needed to spatially resolve the planetary disk. One issue that
then needs to be considered is that the line shape contains information on the
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global average of the temperature profile, which is highly variable [181]. However,
this would be comparable to the spatial resolution of sub-mm observations at Mars
and Venus. Mapping of temperatures cannot be accomplished using ground-based
IR heterodyne techniques and in the era of space-based remote sensing of Titan’s
atmosphere the scientific contribution of ground-based observations of Titan is
only of low significance.

6.1.3 Earth

In recent years the IR heterodyne instruments This and iChips have been used
to observe stratospheric ozone (O3) in the telluric atmosphere. The atmospheric
ozone layer peaks at an altitude of around 30 km, which makes it highly feasible for
analysis of stratospheric dynamics and temperatures. In Fig. 6.3 a spectrum of a
telluric O3 absorption line is shown. the spectrum was obtained in solar occultation
mode in February 2010. The line forming region is assumed to be around the
O3 peak density, but a full analysis of the line shape, using a radiative transfer
model has not yet been performed. The main issue concerning the analysis of solar
occultation measurements, is that the radiative transfer code at hand, Codat, can
only calculate the bottom to top transfer (comp. Chap. 3). The radiation detected
on Earth is emerging through the atmosphere from the top to the bottom. Two
possible scenarios can thus lead to a sophisticated full analysis of the O3 line shape.
One, Codat has to be revised and updated such that a transfer calculation for
radiation penetrating the atmosphere from space to the surface is possible, or two,
the more likely scenario, that Codat will be replaced in the Ifr by a radiative
transfer code, that already possesses the required capabilities.

Two important parameters can be retrieved from the line shape of the O3 absorp-
tion feature. The pressure-broadening of the line, yields the thermal profile in
the atmosphere, comparable to analysis of the CO2 absorption lines presented in
this work. The second parameter, not detectable in measurements of absorption
features of extraterrestrial atmospheres, is the line of sight wind velocity. Solar
occultation measurements of atmospheric trace gases on Earth yield the big ad-
vantage of a very high SNR (comp. Fig. 6.3(a)), commonly one to two magnitudes
higher than on Venus or Mars, even for short integration times. This high SNR en-
ables the revelation of the dynamical profile in the atmospheric layers. Up to now,
only one LoS wind velocity was retrieved from the ozone line by fitting a Voigt
profile to the center of the line. The line core is formed in higher altitudes region
than the broader wings. The fit yields the center frequency and the Doppler shift
of the line away from its rest frequency is thus due to a stratospheric wind. The
retrieval of the LoS wind velocities in Fig. 6.3 is summarized in Stangier et al. [51].
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(a) One example of a measured O3 ab-
sorption line and a Voigt fit to the line
peak (red). The SNR for an integration
time of ∼ 5 min is ∼ 65 and thus more
than 15 times higher than on Venus or
Mars.

(b) Resulting line of sight wind velocities from the
Doppler shifted peak positions of the absorption line
plotted vs. the observing time. The fit error is repre-
sented by the error bars. A sine function with a period
of 24 h was fitted to the data.

Figure 6.3: Measured stratospheric O3 absorption line and LoS wind velocities. From
Stangier et al. [51].

A vertical wind shear, or even different wind velocities, in the stratosphere lead
to a deformation of the line shape due to varying Doppler shifts. The idea is to
fit 4–5 absorption features to different spectral regions. Each fit yields a Doppler
shifted center frequency. From these fits, an analysis of the vertical wind profile
can be provided. This technique has been successfully applied on stratospheric
ozone emission features using microwave detection techniques [184].

One issue still to solve is the accuracy of the ozone rest line. The uncertainty of
the O3 line in the mid-IR is unreported in the Hitran database. Hence, spectro-
scopic laboratory measurements of the precise center frequency of the detected O3

transition must be performed in advance to give a reliable statement on the real
stratospheric winds.
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6.2 Summary

In this thesis, the retrieval of atmospheric temperatures from pressure-broadened
CO2 absorption lines, observed with infrared heterodyne spectroscopy was per-
formed for the first time.

In the introductory chapter the possibilities of planetary science in general and
heterodyne spectroscopy in particular were discussed. The new approach of in-
vestigating the broad absorption features widens the probing altitudes for IR het-
erodyning in the planetary atmospheres of Venus and Mars. In addition, a brief
overview of the content of this thesis was provided in Chap. 1.

In the second chapter, the principles of infrared heterodyne spectroscopy were
presented and the sensitivity and noise properties were discussed briefly. Also an
introduction on the different line broadening effects was given in Chap. 2, conclud-
ing that a radiative transfer model is necessary to fully describe the absorption
behavior of planetary atmospheres. The third part of this chapter was focused
on the characteristics of the heterodyne receivers This and Hipwac, which have
been used for observations.

The newly developed Ifr was presented in detail in Chap. 3, along with a proof of
concept of the retrieval for the Venusian nightside. The model, used for calculating
the radiative transfer through the atmospheres (Codat), was discussed and an
investigation of the altitude resolution applicable for Venus’ mesospheric nightside
spectra was provided. It was found, that the retrieval of thermal profiles with
an altitude resolution of approximately one full scale height (on Venus ∼ 4.5 km)
has been possible. It could be shown, that a lower resolution leads to unwanted
oscillations in the retrieved profiles in higher altitudes, due to cross-correlations
between adjacent atmospheric layers. The proof of concept showed the reliability
of the Ifr, under the assumption of these previously found preconditions.

The thermal properties of Venus were discussed extensively in Chap. 4. After some
introductory sections on the specific atmospheric characteristics and the state of
art in remote sensing and in-situ measuring techniques and circulation models, the
observing campaigns in 2012, especially performed to obtain Venusian nightside
spectra, were presented. The analysis of the measured spectra was described and
the first thermal profiles retrieved from IR heterodyne observations were presented.
During the second campaign in 2012, a coordinated measurement was conducted
together with the Vex VeRa experiments. The results of this campaign were
elaborated and a very good agreement between the profiles of the two techniques
was found. In the last part of the chapter, further thorough comparison of the
newly retrieved temperatures to other space- and ground-based observations as
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well as to the Venus International Reference Atmosphere was accomplished.

In contrast to Venus, Mars shows a strong CO2 absorption features on its dayside.
The thermal properties of Mars were discussed in Chap. 5 and a further, diligent
proof of concept was performed, accounting for the changed preconditions for
Martian dayside spectra. Especially the contribution of the solar induced non-LTE
emission feature was emphasized, but also the influence of the altitude resolution
on the retrieval was investigated. It could be shown, that the retrieval of Martian
temperatures in the lower altitudes is much more sensitive to the applied pressure
layering than on Venus. An altitude resolution of approximately three quarter of
a full scale height for the lower layers was adequate to model the spectrum and
to concurrently retrieve a profile without cross-correlations. With this knowledge,
a measured spectrum from observations in 2010 was analyzed. A contamination
of the data by a standing wave, which interspersed during the measurement, was
found. Despite the contaminated data set, the found temperatures coincide with
predictions from the Mars Climate Database.

The last chapter (Chap. 6) of this thesis, including this summary, gave an outlook
on the potential future applications of the Ifr. The retrieval of thermal properties
from Venus’ dayside and the simultaneous deduction of the kinetic temperatures
from the non-LTE emission was discussed. Additionally, possible observations of
temperatures on the terrestrial Saturn moon Titan and solar occultation measure-
ments of stratospheric ozone on Earth were exposed.
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A Optimization of Integration Times

According to the error propagation law, the error of the spectrum calculated in
Eq. (2.11) is

∆F · (H − C) =
√

∆S2 + ∆R2 + F 2 · (∆H2 + ∆C2) (A.1)

Assuming radiometric behavior for each source ∆i2 = i√
δτi

, i= S, R, C, H and in-

troducing Eq. (2.8) it is

∆F · (H − C) =
1√
δfl
·

√
S2

τS
+
R2

τR
+ F 2 ·

(
H2

τH
+
C2

τC

)
(A.2)

In order to find the minimum value for the noise amplitude of the measured spec-
trum F, as described in Eq. (2.11), it is necessary to minimize the expression un-
derneath the square root in Eq. (A.2). To take the side condition

τ − Σiτi = 0 with i = S, R, C, H (A.3)

into account, neglecting potential dead times τd, the Lagrange formalism is used.

χ = S2
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.
= 0

(A.4)
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which obviously states that

τH = τC ·
H

C
and τS = τR ·

S

R
and τS = τH ·

S

FH
(A.5)

Introduction of those expressions into Eq. (A.3) results in

S

τS
=

1

τ
(S +R + F (H + C)) (A.6)

and substitution of τH and τC in Eq. (A.2) with the terms found in Eq. (A.5)
yields

∆F · (H − C) =
1√
δfl
·
√
S

τS
· (S +R + F (H + C)) (A.7)

By introducing Eq. (2.8) and Eq. (A.6), the resulting noise amplitude in K in
dependence on the total integration time τ can be written as

σ2 (τ, F ) · (TH −TC) = ∆F · (TH −TC) =
Trec√
δflτ
· (TS + TR + F (TH + TC)) (A.8)

With those calculations the total integration τ time can be divided into accurate
exposure times τi on each source to achieve optimal noise reduction performance
of the instrument.
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B The IDL Inversion Routine

Status: April 2014:

1 ; a tm temp inver t e s t
2 ; Version 4.0
3
4 ; ========================================================
5 pro a tanh in i t , n1 , hw, x val4tanh , tanh func
6
7 n2 = n1 ∗ 1 .0 d0
8
9 x va l4tanh = dindgen ( n1 ) / n2 ∗ ( 2 .0∗hw ) − hw

10
11 tanh func = tanh ( x va l4tanh )
12
13 end
14
15 ; ========================================================
16 function atanh , x i n t v a l
17
18 common a t a n h i n i t s , x val4tanh , tanh func
19
20 ; ind = where ( x i n t v a l g t 1 or x i n t v a l l t −1 )
21 ; i f ( ind [ 0 ] ne −1 ) then beg in
22 ; pr in t , ”Out o f bounds va lue when c a l c u l a t i n g inverse−tanh [−1 ,1]

in : ” , x i n t v a l
23 ; pr in t , ” f o r e lements ” , ind
24 ; STOP
25 ; e nd i f
26
27 ; I n t e r p o l a t e the f i n e g r i d to determine the inverse−tanh .
28 return , ( i n t e r p o l ( x val4tanh , tanh func , x i n t v a l ) )
29
30 end
31
32 ; ========================================================
33 pro atm temp invert params packing , params , ac t i on=act i on
34
35 common parameters , t base , t baseMin , dt base , p0 base , dp base ,

inpts , t in , pin , t s u r f
36
37 common c o n t r o l l e r s , vary , lo bound , up bound
38
39 common data ObsConf igFi le , dind , obsConf igFi l e , da taF i l e
40
41 ; Constra in ing the pre s sure o f the l owe s t l a y e r ( su r f a c e pre s sure )
42 ; to a p o s i t i v e range i s ach ieved us ing a mapping to the h yp e r b o l i c
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43 ; tan func t i on .
44 ; Tanh( x ) i s bounded by −1 ( f o r x −> − i n f ) and +1 ( f o r x −> +in f ) .
45 ; The func t i on z ( x ) = 1+tanh ( x ) has the bounds 0 < z ( x ) < 2 , wi th
46 ; the symmetry po in t be ing z ( x ) = +1 at x=0. However , we o f f s e t t h i s
47 ; po in t to x = 1 fo r enhanced s t a b l i t y in the op t im i za t i on .
48 ; In the op t imiza t ion , we guide the a l gor i thm to a s o l u t i o n f o r the
49 ; p re s sure cons t ra ined by s p e c i f i c bounds . These bounds are centred

on
50 ; a new v a r i a b l e x2 = x − 1 and z ( x2 ) = z ( x−1) = +1 fo r x2 = 0
51 ; ( i . e . , tanh ( x2 ) = 0 at x2=0 and x=1) . This a l s o guarentees t ha t
52 ; 1+tanh ( x2 ) r e s u l t s in a p o s i t i v e va lue P > 0 mapping f o r P.
53 ; Pressure minimum : P0 (= pres s o f l a y e r above l a y e r c l o s e to
54 ; s u r f a c e ) −− lower bound .
55 ; Pressure d i f f r e n c e dP = P1 − P0 ; where P1 i s the maximum in

the
56 ; l owe s t l a y e r pre s sure range −− P1 i s the upper bound .
57 ; Pressure at su r f a c e l a y e r : P = P0+dP∗(1+tanh ( x2 ) ) /2
58 ; By design , f o r x2 −> −in f , we have P = P0
59 ; f o r x2 −> +inf , we have P = P0 + dP = P1
60 ; f o r x2 = 1 , we have P = P0 + dP/2
61 ; We map the pres sure parameter to x2 .
62 ; x2 = atanh ( 2∗( P − P0 ) / dP − 1 )
63 ;
64 ; For the temperature , we have
65 ; T = T baseMin + dT∗(1+tanh ( x ) ) /2 where T baseMin i s sma l l
66 ; p o s i t i v e r e a l va lue .
67 ; x = atanh ( 2∗( T−T baseMin )/dT − 1 )
68 ;
69
70 case ac t i on of
71
72 ; Pack the parameters v e c t o r .
73 0 : begin
74 ; Map the pre s sure in the l owe s t l a y e r ( c l o s e s t to su r f a c e ) to a
75 ; v a r i a b l e guarenteed to be p o s i t i v e ( see above d i s cu s s i on ) .
76 v a r p s u r f = 1 .0 d0 + atanh ( ( pin [ inpts −1] − p0 base ) / $
77 dp base ∗ 2 .0 d0 − 1 .0 d0 )
78 ; Map the temperature va l u e s so i t i s p o s i t i v e .
79 v a r t i n x = 1 .0 d0 + atanh ( ( t i n − T baseMin ) / dT base ∗ 2 .0 −

1 .0 )
80 v a r t s u r f x = 1 .0 d0 + atanh ( ( t s u r f − T baseMin ) / dT base ∗ 2 .0

− 1 .0 )
81
82 ; Construct the vec t o r conta in a l l parameters −− both f i x e d and
83 ; v a r i a b l e .
84 p a l l = [ var t inx , va r t su r f x , v a r p s u r f ]
85
86 params [ ∗ ] = p a l l [ where ( vary ) ]
87
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88 end
89
90 ; Unpack the paraemters v e c t o r and popu la t e the r e a l v a r i a b l e s .
91 1 : begin
92
93 ; The parameters wi th v a r i a b l e ( vary ) s e t f o r a c t i v e f i t t i n g .
94 ind0 = where ( vary eq 1 )
95 ; The l a y e r s where the temperature i s s e t to vary .
96 ind1 = where ( ind0 le ( inpts −1) )
97 ; F i l l t he l a y e r s where the temperature i s s e t to vary .
98 t i n [ ind0 [ ind1 ] ] = T baseMin + dT base ∗ 0 .5 d0 ∗ ( 1 . 0 d0 + $
99 tanh ( params [ 0 : ( t o t a l ( vary [ ind0 [ ind1 ] ] ) −1 )

] − 1 .0 d0 ) )
100
101 ; I f reques ted , r e s e t the su r f a c e temperature .
102 i f ( where ( ind0 eq i np t s ) ne −1 ) then $
103 t s u r f = T baseMin + dT base ∗ 0 .5 d0 ∗ ( 1 . 0 d0 + $
104 tanh ( params [ t o t a l ( vary [ ind0 [ ind1 ] ] ) ] −

1 .0 d0 ) )
105
106 ; I f reques ted , r e s e t the su r f a c e pre s sure .
107 i f ( where ( ind0 eq i np t s+1 ) ne −1 ) then begin
108 psur fx = params [ t o t a l ( vary [ ind0 [ ind1 ] ] ) + 1 ]
109 pin [ i np t s − 1 ] = p0 base + dp base ∗ 0 .5 d0 ∗ $
110 ( 1 .0 d0 + tanh ( psur fx − 1 .0 d0 ) )
111 endif
112
113 end
114 else : begin
115 print , ” I l l e g a l va lue for ac t i on ( only 0 ,1 permitted ) : ” , a c t i on
116 endelse
117
118 endcase
119
120 end
121
122 ; ========================================================
123 pro atm temp invert funct , x , params , fvec , i s a v e=isave , i t e r=i t e r ,

flambda=flambda
124
125 common parameters , t base , t baseMin , dt base , p0 base , dp base ,

inpts , t in , pin , t s u r f
126
127 common c o n t r o l l e r s , vary , lo bound , up bound
128
129 common data ObsConf igFi le , dind , obsConf igFi l e , da taF i l e
130
131 common atm vals , ngases , ixgas , iqv , xqv , s e l f , qvmix , $
132 z0 , radius , grav , theta , ground , pmix , $
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133 molwt , bckgrd , nems , wems , ems
134
135 i f ( n e lements ( i s a v e ) ne 1 ) then i s a v e = 0
136 i f ( n e lements ( i t e r ) ne 1 ) then i t e r = 0
137 i f ( n e lements ( f lam ) ne 1 ) then f lam = 0
138
139 ; Unpack the parameters and popu la t e the v a r i a b l e s a s s o c i a t e d wi th

the
140 ; p h y s i c a l p r o p e r t i e s .
141 atm temp invert params packing , params , ac t i on=1
142
143 i f ( i s a v e eq 1 ) then begin
144 ; s a v f i l e = ’ I t e r −’ + s trcomress ( i t e r , /remove ) + ’ . sav ’
145 s a v F i l e = ’ I t e r− ’ + strcompress ( i t e r , /remove ) + ’ . sav ’
146 print , ” ∗∗∗∗ Saving parameters for i t e r #:” + strcompress ( i t e r )

+ ” ∗∗∗∗ ”
147 save , f i l e=savFi l e , params , inpts , t in , pin , t s u r f
148 endif
149
150 i f ( t s u r f le 0 .0 ) then begin
151 print , ” I l l e g a l va lue for s u r f a c e temperature (K) : ” , t s u r f
152 stop
153 endif
154 i f ( min ( t i n ) le 0 .0 ) then begin
155 print , ” I l l e g a l va lue for temperature in l a y e r s (K) : ” , min ( t i n

)
156 stop
157 endif
158 i f ( pin [ 0 ] le 0 .0 ) then begin
159 print , ” I l l e g a l va lue for s u r f a c e p r e s su r e (mb) : ” , pin [ 0 ]
160 stop
161 endif
162
163 irhs atm , f i l e=’ f o r t . 91 ’ , read=0, wr i t e =1, $
164 inpts , pin , t in , $
165 ngases , ixgas , iqv , xqv , s e l f , $
166 qvmix , $
167 z0 , radius , grav , theta , $
168 ground , $
169 pmix , molwt , t su r f , bckgrd , $
170 nems , wems , ems
171
172 comm = ’ sed −e s / T sur f / ’ + strmid ( s t rcompress ( t su r f , /remove ) , 0 ,

7 ) + $
173 ’ / ’ + ’ −e s /DATAFILENAME/ ’ + f i l e ba s ename ( dataF i l e ) + ’ / ’

+ $
174 ’ < ’ + obsCon f i gF i l e + ’ > f o r t . 94 ’
175
176 spawn , comm, e x i t s t a t u s=s t a t u s
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177
178 i f ( s t a t u s ne 0 ) then begin
179 print , ” Error modifying obse rver c o n f i g u r a t i o n f i l e : ” ,

obsCon f i gF i l e
180 print , ” Reported s t a t u s e r r o r : ” , s t a t u s
181 stop
182 endif
183
184 i f ( t o t a l ( f i n i t e ( t i n ) ) ne n e lements ( t i n ) ) then stop
185
186 spawn , ’ / usr / l o c a l / codat / bin /beamwrap1 ’ , e x i t s t a t u s=s t a t u s
187
188 i f ( s t a t u s ne 0 ) then begin
189 print , ” Error in CoDAT execut ion ; r epor t ed error : ” , s t a t u s
190 stop
191 endif
192
193 r e a d r e s u l t s , f i l e=’ f i t r e s u l t s . dat ’ , f r e q=freq0 , model=m0
194
195 ; f v e c = m0[ dind ]
196
197 p vec = [ t in , t su r f , pin [ inpts −1] ]
198
199 ; Upper−l im i t peg
200 up peg = abs ( t o t a l ( ( p vec − up bound )>0 ) )
201
202 ; Lower−l im i t peg
203 l o peg = abs ( ( t o t a l ( lo bound − p vec )>0 ) )
204
205 ; Perturb the s p e c t r a l model i f any sub s e t o f parameters exceed the
206 ; bounds .
207 f z = i n t e r p o l ( m0, f req0 , x )
208 fve c = f z + ( up peg + lo peg )
209
210 i f ( i s a v e eq 1 ) then oplot , x , fz , c o l=3
211
212 ; i f ( up peg g t 0 or l o p e g g t 0 ) then STOP
213
214 end
215
216 ; ========================================================
217 pro a t m te mp in ve r t r e po r t r e su l t s su bpr o , lun , chisq , flambda ,

params , ps ig , $
218 t su r f , pin , t in , t i n g u e s s , p su r f gue s s , t s u r f g u e s s
219
220 np = n elements ( params )
221 inp t s = n elements ( pin )
222
223 printf , lun , ” =========================================”
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224 printf , lun , ” ∗∗ Finaly reduced ch i sq : ” , ch i sq
225 printf , lun , ” ∗∗ Marquardt parameter : ” , flambda
226 printf , lun , ””
227
228 printf , lun , ” ∗∗ Parameter va lue s ( normal ized ) f o l l o w ”
229 for i =0,np−1 do $
230 printf , lun , s t rcompress ( i , /remove ) + ” ” + strcompress (

params [ i ] , /remove ) + $
231 ” ” + strcompress ( p s i g [ i ] , /remove )
232
233 printf , lun , ””
234 printf , lun , ” ∗∗ S o l u t i o n s ”
235 printf , lun , ” Tsurf ( s o l u t i o n&guess ) : ” , t su r f , t s u r f g u e s s , $
236 format=’ ( a28 , 1 x , f 7 . 3 ) ’
237 printf , lun , ” Psurf ( s o l u t i o n&guess ) : ” , pin [ inpts −1] , p su r f gue s s ,

$
238 format=’ ( a28 , 1 x , f 7 . 3 ) ’
239 printf , lun , ””
240 printf , lun , ” P (mb) T (K) T Guess (K) ”
241 for i =0, inpts−1 do $
242 printf , lun , pin [ i ] , t i n [ i ] , t i n g u e s s [ i ] , format=’ ( f 7 . 3 , 4 x , f 8 . 3 , 4 x

, a11 ) ’
243 printf , lun , ””
244 printf , lun , ” =========================================”
245
246 end
247
248 ; ========================================================
249 pro a t m t e m p i n v e r t r e p o r t r e s u l t s , ch isq , flambda , params , ps ig , $
250 t su r f , pin , t in , t i n g u e s s , p su r f gue s s , t s u r f g u e s s , f i l e=

s a v e F i l e
251
252 ; Pr int to screen
253 a tm te mp in ve r t r e po r t r e su l t s su bp ro , −1, chisq , flambda , params ,

ps ig , $
254 t su r f , pin , t in , t i n g u e s s , p su r f gue s s , t s u r f g u e s s
255
256 ; Write to a t e x t f i l e .
257 openw , lun , / get , s a v e F i l e+’ . txt ’
258 a tm te mp in ve r t r e po r t r e su l t s su bp ro , lun , chisq , flambda , params ,

ps ig , $
259 t su r f , pin , t in , t i n g u e s s , p su r f gue s s , t s u r f g u e s s
260 c l o s e , lun & f r e e l u n , lun
261
262 end
263
264 ; ========================================================
265 pro atm temp inver t i t e r show
266
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267 n = 0
268
269 f i l e s = f i l e s e a r c h ( ’ tmp/ ’ , ’ I t e r −∗. sav ’ , count=n )
270
271 i f ( n ge 1 ) then begin
272
273 r e s t o r e , f i l e s [ 0 ]
274
275 m = s i z e ( params , /dimen )
276 m = m[ 0 ]
277
278 p = db la r r ( m, n )
279
280 for i =0 ,(n−1) do begin
281 r e s t o r e , f i l e s [ i ]
282 p [∗ , i ] = 1 .0 d0 + tanh ( params − 1 .0 d0 )
283 endfor
284
285 s e t p l o t , ’ ps ’
286 e p s F i l e = ’ ParamChanges ’
287 device , f i l e=e p s F i l e+’ . eps ’ , x s i z =5, y s i z =4, / inch , / encaps , / c o l o r
288 make ct , nco l=m
289 plot , indgen (n) +1, p [ 0 , ∗ ] , yran =[(min (p) −0.01)>(−1.01) , (max(p)

+0.01) <2.01] , $
290 ysty =1, xsty =1, backg=1, c o l =0, x t i t=’ I t e r a t i o n number ’ , $
291 y t i t=’ Parameter va lue ( normal ized ) ’
292 for i =1 ,(m−1) do oplot , indgen (n) +1, p [ i , ∗ ] , c o l=1+i
293 device , / c l o s e
294 s e t p l o t , ’ x ’
295
296 spawn , ’ epstopdf ’ + e p s F i l e + ’ . eps ’
297 i f ( f i l e t e s t ( e p s F i l e+’ . pdf ’ ) eq 1 ) then begin
298 spawn , ’rm −f ’ + e p s F i l e+’ . eps ’
299 case ! v e r s i o n . os of
300 ’ darwin ’ : spawn , ’ open ’ + e p s F i l e+’ . pdf ’
301 ’ l i nux ’ : spawn , ’ ev ince ’ + e p s F i l e+’ . pdf ’
302 endcase
303 endif
304
305 endif
306
307 end
308
309 ; ========================================================
310 pro atm temp inve r t pa r s e gue s sF i l e , pin , t in , t su r f , vary , lo bound ,

up bound , $
311 opt ion=iopt , f i l e=f i l e
312
313 i f ( n e lements ( i op t ) ne 1 ) then begin
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314 print , ’ Syntax : ’
315 print , ’ a tm temp inve r t pa r s e gue s sF i l e , pin , t in , t su r f , $ ’
316 print , ’ vary , lo bound , up bound , $ ’
317 print , ’ opt ion =0, f i l e =”FitGuess . txt ” ’
318 print , ’ a tm temp inve r t pa r s e gue s sF i l e , pin , t in , t su r f , $ ’
319 print , ’ vary , lo bound , up bound , $ ’
320 print , ’ opt ion =1, f i l e =”FitGuess . txt ” ’
321 r e t a l l
322 endif
323
324 case i op t of
325
326 0 : begin
327 openr , lun , / get , f i l e
328 skipcomments , lun
329 readf , lun , i np t s
330 x = db la r r ( 6 , i np t s )
331
332 vary = i n t a r r ( i np t s+2 )
333 lo bound = i n t a r r ( i np t s+2 )
334 up bound = i n t a r r ( i np t s+2 )
335 skipcomments , lun
336 readf , lun , x
337 pin = reform ( x [ 1 , ∗ ] )
338 t i n = reform ( x [ 2 , ∗ ] )
339 vary [ 0 : ( inpts −1) ] = reform ( x [ 3 , ∗ ] )
340 lo bound [ 0 : ( inpts −1) ] = reform ( x [ 4 , ∗ ] )
341 up bound [ 0 : ( inpts −1) ] = reform ( x [ 5 , ∗ ] )
342
343 skipcomments , lun
344 y = db la r r ( 4 )
345 readf , lun , y
346 t s u r f = y [ 0 ]
347 vary [ i np t s ] = reform ( y [ 1 ] )
348 lo bound [ i np t s ] = reform ( y [ 2 ] )
349 up bound [ i np t s ] = reform ( y [ 3 ] )
350
351 skipcomments , lun
352 y = db la r r ( 4 )
353 readf , lun , y
354 pin [ ( inpts −1) ] = y [ 0 ]
355 vary [ i np t s +1] = reform ( y [ 1 ] )
356 lo bound [ i np t s +1] = reform ( y [ 2 ] )
357 up bound [ i np t s +1] = reform ( y [ 3 ] )
358
359 c l o s e , lun & f r e e l u n , lun
360 end
361
362 1 : begin
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363 inp t s = n elements ( pin )
364 openw , lun , / get , f i l e
365 printf , lun , ”# Thermal p r o f i l e guess ”
366 printf , lun , ”# Number of l a y e r s ”
367 printf , lun , i np t s
368 printf , lun , ”# Layer P (mb) T (K) Fix/Vary LowerB

UpperB”
369 for i =0, inpts−1 do begin
370 printf , lun , i +1, pin [ i ] , t i n [ i ] , 1 , t i n [ i ]−50.0 , t i n [ i

]+50 .0 , $
371 format=’ ( i , 4 x , f 8 . 4 , 4 x , f 6 . 2 , 4 x , i2 , 4 x , f 6 . 2 , 4 x , f 6 . 2 ) ’
372 endfor
373
374 printf , lun , ”# Sur face temperature (may be d i f f e r e n t than in

above p r o f i l e ) ”
375 printf , lun , t su r f , 1 , t su r f −25, t s u r f +25, $
376 format=’ ( f 6 . 2 , 4 x , i2 , 4 x , f 6 . 2 , 4 x , f 6 . 2 ) ’
377
378 printf , lun , ”# Pressure of l a y e r c l o s e s t to s u r f a c e ( same as

in above p r o f i l e ) ”
379 printf , lun , max( pin ) , 1 , max( pin )−10, max( pin ) +10, $
380 format=’ ( f 6 . 2 , 4 x , i2 , 4 x , f 6 . 2 , 4 x , f 6 . 2 ) ’
381
382
383 c l o s e , lun & f r e e l u n , lun
384 end
385
386 else : begin
387 print , ” I l l e g a l va lue for i op t : ” , iopt , ” . . . . . Quit ing ! ”
388 r e t a l l
389 end
390
391 endcase
392
393 end
394
395 ; ========================================================
396 pro a t m t e m p i n v e r t p l o t r e s u l t s , pin , t in , or igAtmFile
397
398 s e t p l o t , ’ ps ’
399 e p s F i l e = ’ FitSummary ’
400 device , f i l e=e p s F i l e+’ . eps ’ , x s i z =5, y s i z =8, / inch , / encaps , / c o l o r
401 make ct , nco l=3
402
403 th = 4
404 ! p . mult i = [ 0 , 1 , 2 ]
405
406 irhs atm , f i l e=origAtmFile , read=1, wr i t e =0, zn , zpin , z t i n
407
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408 plot , t in , pin , yran=[max ( [ pin , zpin ] ) +1 ,(min ( [ pin , zp in ] ) ) ] , $
409 /nodata , / ylog , backg=1, c o l =0, char th i ck=th , c h a r s i z =1.1 , $
410 xran=[min ( [ t in , z t i n ] ) −2,max ( [ t in , z t i n ] ) +2] , xsty =1, ysty =1, $
411 t i t=’ User s p e c i f i e d ( b lack ) , Recovered ( red ) ’ , x t i t=’T (K) ’ , $
412 y t i t=’P (mb) ’ , th i ck=th , xth i ck=th , yth i ck=th , xmargin =[10 ,4 ]
413 oplot , t in , pin , c o l =2, th i ck=th
414 oplot , z t in , zpin , c o l =0, th i ck=th
415
416 r e a d r e s u l t s , f i l e=’tmp/ f i t r e s u l t s . dat ’ , f r e q=f , model=m, data=d
417 d m = d − m
418 xran = [ min ( f )−1, max( f )+1 ]
419
420 plot , f , d , xsty =1, ysty =1, t i t=’ Data & Fit ’ , yran=[min ( [ d , d m ] ) −1,

max ( [ d , d m ] ) +1] , $
421 xran=xran , x t i t=’ ! 4Dm! 3 (MHz wrt LO) ’ , y t i t=’ I n t e n s i t y ( erg / s /cm! u

−1!n/cm! u2 ! n/Sr ) ’ , $
422 th i ck=th , xth i ck=th , yth i ck=th , c o l =0, backg=0, char th i ck=th ,

c h a r s i z =1.2
423 oplot , f , m, th i ck=th , c o l=2
424 oplot , f , d m , c o l=4
425 oplot , [ xran [ 0 ] , xran [ 1 ] ] , [ 0 , 0 ] , th i ck=th , c o l =0, l i n =2
426
427 device , / c l o s e
428 s e t p l o t , ’ x ’
429 ! p . mult i = 0
430
431 spawn , ’ epstopdf ’ + e p s F i l e + ’ . eps ’
432 i f ( f i l e t e s t ( e p s F i l e+’ . pdf ’ ) eq 1 ) then begin
433 spawn , ’rm −f ’ + e p s F i l e+’ . eps ’
434 case ! v e r s i o n . os of
435 ’ darwin ’ : spawn , ’ open ’ + e p s F i l e+’ . pdf ’
436 ’ l i nux ’ : spawn , ’ ev ince ’ + e p s F i l e+’ . pdf ’
437 endcase
438 endif
439
440 end
441
442 ; ========================================================
443 pro atm temp invert
444
445 common a t a n h i n i t s , x val4tanh , tanh func
446
447 common parameters , t base , t baseMin , dt base , p0 base , dp base ,

inpts , t in , pin , t s u r f
448
449 common c o n t r o l l e r s , vary , lo bound , up bound
450
451 common data ObsConf igFi le , dind , obsConf igFi l e , da taF i l e
452
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453 common atm vals , ngases , ixgas , iqv , xqv , s e l f , qvmix , $
454 z0 , radius , grav , theta , ground , pmix , $
455 molwt , bckgrd , nems , wems , ems
456
457 ; De le t e a l l o l d windows
458 WHILE !D.WINDOW ne −1 do wdelete
459
460 ; The obse rve r con f i g u r a t i on f i l e .
461 obsCon f i gF i l e = ’ . . / Base/ f o r t .94−Base−sim−0N0W’
462
463 ; The data f i l e .
464 dataF i l e = ’ . . / data /034 . dat ’
465
466 ; The atmospheric thermal p r o f i l e .
467 atmFile =’ . . / Base/ f o r t . 91 venus 100mbar ’
468
469 ; Enter the corresponding index
470 index = 001
471
472 ; Sca l e f a c t o r
473 s c a l e f a c = 1 .5
474
475 ; LO frequency [cm−1]
476 l o f r e q = 951.19226
477
478 pushd , ’ tmp ’
479
480 ; Remove e x i s t i n g save f i l e s t h a t s t o r e in t e rmed ia t e parameter va l u e s
481 spawn , ’rm −f I t e r −∗. sav ’
482
483 ; Parse the atmospheres f i l e .
484 irhs atm , f i l e=atmFile , read=1, wr i t e =0, $
485 inpts , pin0 , t in0 , $
486 ngases , ixgas , iqv , xqv , s e l f , $
487 qvmix , $
488 z0 , radius , grav , theta , $
489 ground , $
490 pmix , molwt , t su r f 0 , bckgrd , $
491 nems , wems , ems
492
493 ; Ex t rac t the data
494 read data , i n f i l e=dataFi l e , f r e q=freq0 , spec=data0 , wt=w0 , switchwt=

c0
495
496 plot , f r eq0 , data0
497 ; Ask f o r cen ter f requency o f ab sorp t i on l i n e
498
499 print , ” P lease mark the bottom of the absorpt ion l i n e ( i gno re any

emis s ion ) : ”
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500 cursor , f min , a
501 print , f min , a
502 userValue1 =f min
503 ; a = 12.5
504 ; a = 32.6
505 ; Print , ””
506 ; Print , ”Please en ter cen te r f requency o f ab sorp t i on l i n e : ”
507 ; read , userValue1
508 ; userValue1 = 1079
509 ; f min = userValue1
510 Print , ””
511 Print , ”Value entered : ”
512 Print , f min
513 Print , ””
514 ; Print , ” I f correc t , p l e a s e en ter ’1 ’”
515 ; read , userValue2
516 ; i f ( userValue2 ne 1 ) then beg in
517 ; pr in t , ”OK, q u i t t i n g . . . . . abor ted by user !”
518 ; r e t a l l
519 ; e nd i f
520 ; a = 9.0
521 ; pr in t , ”Please mark the bottom of the ab sorp t i on l i n e ( i gnore any

emiss ion ) :”
522 ; cursor , f min , a
523
524 ; The pres sure broadening c o e f f i c i e n t ( s e l f : 0 .12 cm−1/atm) conver ted
525 ; to MHz/mb.
526 p c o e f = 0 .3 ∗ 3 .0 d4 / 1013 .0
527
528 f i t G u e s s F i l e = ’ FitGuess ’
529
530 i f ( f i l e t e s t ( F i tGues sF i l e ) eq 1 ) then begin
531
532 ; A Guess F i l e does e x i s t . Assume user wants t h i s to be used .
533 print , ””
534 print , ” ∗∗∗ Guess f i l e found in tmp . Wil l use t h i s ∗∗∗ ”
535 print , ” Waiting for 2 sec ”
536 wait , 2 . 0
537 print , ””
538 a tm temp inve r t pa r s e gue s sF i l e , pin0 , t in0 , t su r f 0 , vary ,

lo bound , up bound , $
539 opt ion =0, f i l e=f i t G u e s s F i l e
540 endif else begin
541
542 f r e q s h 0 = ( f min + ( pin0 ∗ p c o e f ) ) < max( f r eq0 )
543 f r e q s h 1 = f r e q s h 0 / 3 .0 d4 + l o f r e q
544
545 data0x = smooth ( data0 , 10 )
546
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547 DSB = i n t e r p o l ( data0x , f req0 , f r e q s h 0 ) ; ∗ 2.0 / s c a l e f a c
548 i n t = ( DSB − 0 .5∗median ( DSB ) ) ∗ s c a l e f a c
549
550 ; Construct i n i t i a l gue s s e s .
551 t i n g u e s s = mult i bb ( f r e q=f r eq sh1 , i n t=int , / i 2 t )
552 t s u r f g u e s s = mult i bb ( f r e q =[mean( f r e q s h 1 ) ] , i n t =[max( i n t ) ] , /

i 2 t )
553 a tm temp inve r t pa r s e gue s sF i l e , pin0 , t i n g u e s s , t s u r f g u e s s ,

vary , $
554 lo bound , up bound , opt ion =1, f i l e=f i t G u e s s F i l e
555 print , ” ∗∗∗∗∗∗ Guess f i l e c r ea ted . I f needed p l e a s e r e v i s e and ”

+ $
556 ” ente r 1 to cont inue . ∗∗∗∗∗”
557 read , userValue0
558 i f ( userValue0 ne 1 ) then begin
559 print , ” OK, q u i t i n g . . . . . . User entered : ” , userValue0
560 f i l e d e l e t e , ’ FitGuess / ’
561 cd , ’ /home/ t h i s / taa /temp−i nver t−v5/ ’
562 r e t a l l
563 endif
564 a tm temp inve r t pa r s e gue s sF i l e , pin0 , t in0 , t su r f 0 , vary ,

lo bound , up bound , $
565 opt ion =0, f i l e=f i t G u e s s F i l e
566 endelse
567
568 t i n g u e s s = t in0
569 p s u r f g u e s s = reform ( pin0 [ inpts −1] )
570 t s u r f g u e s s = t s u r f 0
571
572 ; S tore i n i t i a l v a l u e s .
573 pin = pin0
574 t i n = t i n g u e s s
575 t s u r f = t s u r f g u e s s
576
577 t ba s e = max( [ t in , t s u r f ] )
578 t baseMin = 050 .0
579 dT base = 2 .0 ∗ t ba s e
580
581 ; Clamp the near su r f a ce pre s sure to a va lue h i gher than the l a y e r
582 ; above so v a r i a t i o n s do not in t rude in t o lower pre s su r e s caus ing a
583 ; p re s sure in v e r s i on during an op t im i za t i on i t e r a t i o n .
584 p0 base = pin [ i np t s − 2 ] + 0 .2 ; max( pin ) + 5.0
585
586 ; Ensure t ha t the a c t i v e f i t boundar ies o f the l owe s t l a y e r pre s sure
587 ; does not extend to very h igh va l u e s −− clamp upper bound to 20%
588 ; above the guess va lue .
589 dp base = 1 .2 ∗ pin [ i np t s − 1 ] − p0 base
590
591 ; I n i t i a l i z e parameters .
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592 params = db la r r ( t o t a l ( vary ) )
593
594 ; The t o t a l number o f parameters .
595 np = n elements ( params )
596
597 ; I n i t i a l i z e the common b l o c k v a r i a b l e s used in the tanh/atanh
598 ; c a l c u l a t i o n .
599 a tanh in i t , 20000L , 5 . 0 , x val4tanh , tanh func
600
601 ; Pack the parameter v a r i a b l e .
602 atm temp invert params packing , params , ac t i on=0
603
604 ; Crop masked reg ions .
605 dind = where ( c0 ne 0 )
606 c = c0 [ dind ]
607 wts = w0 [ dind ]
608 data = data0 [ dind ]
609 f r e q = f r eq 0 [ dind ]
610
611 make ct , nco l=3
612 ymax = max( data0 , min=ymin )
613 yde l = ymax − ymin
614 yran = [ ymin − 0 .05∗ ydel , ymax + 0.2∗ yde l ]
615
616 plot , f r eq , data , psym=3, backg=1, c o l =0, xsty =1, yran=yran , ysty =1,

$
617 x t i t=’ ! 4m! 3 (MHz, wrt LO) ’ , y t i t=’ Radiance ’ , t i t=’AOS data f i l e : ’

+ dataFi l e , $
618 /nodata
619 oplot , f req0 , data0 , psym=3, c o l=3
620 oplot , f r eq , data , psym=3, c o l=0
621
622 ; Show i n i t i a l guess .
623 atm temp invert funct , f r eq , params , y i n i t
624 oplot , f r eq , y i n i t , c o l=4
625
626 ; Set maximum number o f i t e r a t i o n s and t o l e r anc e l e v e l f o r

convergence .
627 itmax = 50
628 t o l = 1 .0 d−3
629
630 p i n i t = params
631
632 y f i t = c u r v e f i t 2 ( f req , data , wts , params , ps ig , function=’

atm temp inver t funct ’ , $
633 itmax=itmax , i t e r=i t e r , t o l=to l , ch i sq=chisq , / noderiv , / double ,

s t a t u s=status , $
634 yer r=yerr , mininc =0.01 , flambda=flambda )
635
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636 oplot , f r eq , y f i t , c o l=2
637
638 popd
639
640 case s t a t u s of
641 0 : begin
642 print , ” Convergence reached . I t e r a t i o n s : ” , i t e r
643 end
644 1 : begin
645 print , ” LM f a i l e d to converge . Chisq i n c r e a s i n g without bounds”
646 print , ch i sq
647 end
648 2 : begin
649 print , ” LM f a i l e d to converge . I t e r a t i o n s : ” , i t e r
650 print , ” Truncated by maximum number of i t e r a t i o n s : ” , itmax
651 end
652 else : begin
653 print , ”Unknown e r r o r s i g n a l : ” , s t a t u s
654 end
655 endcase
656
657 ; Create a su bd i r e c t o r y f o r s t o r i n g r e s u l t s .
658 saveDir = ’T−i n v F i t s ’
659 f i l e m k d i r , saveDir
660
661 ; The base f i l ename fo r sav ing r e s u l t s .
662 s a v e F i l e = saveDir + ’ /AtmFit ’
663 s a v e F i l e = saveDir + ’ /Venus/sim/pT ’ + STRCOMPRESS( index , /

r emove a l l ) + ’ ’ + STRCOMPRESS( userValue1 , / r emove a l l )
664
665 ; S tore f i t r e s u l t s as TEXT and IDL/SAVE formats .
666 a t m t e m p i n v e r t r e p o r t r e s u l t s , ch isq , flambda , params , ps ig , $
667 t su r f , pin , t in , t i n g u e s s , p su r f gue s s , t s u r f g u e s s , f i l e=

s a v e F i l e
668 save , f i l e=s a v e F i l e+’ . sav ’ , p i n i t , params , ps ig , y f i t , f r eq , data , $
669 y i n i t , ch isq , flambda , pin , t in , t s u r f
670
671
672 ; Show i t e r a t i o n s
673 ; a tm temp inve r t i t e r show
674
675 window , / f r e e
676 th = 2
677 ang = f indgen (20) /19∗2∗ ! p i
678 usersym , cos ( ang ) , s i n ( ang ) , / f i l l
679
680 plot , t i n g u e s s , pin0 , yran=[max ( [ pin0 +3, pin ] ) , min ( [ pin0 , pin ] ) ] , /

ylog , backg=1, c o l =0, $
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681 xran=[min ( [ t in , t in0 , t s u r f ] ) −5,max ( [ t in , t in0 , t s u r f ] ) +5] , xsty =1,
ysty =1, $

682 th i ck=th , t i t=’ Guess ( b lack ) , r ecovered ( red ) , i n i t ( green ) ’ , $
683 x t i t=’T (K) ’ , y t i t=’P (mb) ’
684 oplot , [ t s u r f g u e s s ] , [ p s u r f g u e s s ] , psym=8, c o l =0, symsiz=2
685 oplot , t in , pin , c o l =2, th i ck=th
686 oplot , [ t s u r f ] , [ max( pin ) ] , psym=8, c o l =2, symsiz=2
687
688 ; Overp lo t I n i t i a l p r o f i l e ( on ly f o r s imu la ted data s e t s )
689 OpenR, lun , ’ tmp/ i n i t p r o f / f o r t . 91 in i t 0N non−i s o h i gh−r e s ’ , /

Get lun
690
691 he a de r I n i t = StrArr (1 )
692 d a t a I n i t = FltArr (4 ,20 )
693
694 ReadF, lun , header In i t , d a t a I n i t
695
696 p i n i t = d a t a I n i t [ 1 , ∗ ]
697 Tin i t = d a t a I n i t [ 2 , ∗ ]
698
699 oplot , Tinit , p in i t , c o l =4, symsize=2
700
701 ; Compare to s imu la t i on case .
702 ; a tm t emp i n v e r t p l o t r e s u l t s , pin , t in , ’ Base/ f o r t .91−ThermProf4 ’
703
704 FILE DELETE, ’tmp/ FitGuess ’
705
706 ;PARSE FORT91 TO FITGUESS
707 Print , ” FitGuess updated for l i n e p o s i t i o n @” +STRCOMPRESS( userValue1

)+”MHz”
708
709 end
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C Venus Observation: Spectra & Geometry

Figure C.1: Measured spectra from campaign A at EQLT20 in high resolution (comp.
Fig. 4.15). The data is displayed in red with a SNR of 4.3± 0.5, the best fit in blue
and the residuals in green. The center frequency of the line is at 1245 MHz. The
normalized RMS of the residuals indicates the noise amplitude. See Chap. 4 for details.
The normalized RMS is 1.10 for an integration time of 154 min on source.
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Figure C.2: Measured spectra from campaign A at EQLT22 in high resolution (comp.
Fig. 4.16). The data is displayed in red with a SNR of 6.6± 0.5, the best fit in blue
and the residuals in green. The center frequency of the line is at 1265 MHz. The
normalized RMS of the residuals indicates the noise amplitude. See Chap. 4 for details.
The normalized RMS is 0.79 for an integration time of 480 min on source.
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Figure C.3: Measured spectrum from campaign B at 67NLT0 in high resolution (comp.
Fig. 4.17). The data is displayed in red with a SNR of 4.8± 0.5, the best fit in blue and the
residuals in green. The center frequency of the line is at 777 MHz. The normalized RMS
of the residuals indicates the noise amplitude. See Chap. 4 for details. The normalized
RMS is 0.79 for an integration time of 96 min on source.
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Figure C.4: Measured spectrum from campaign B at 33SDL in high resolution (comp.
Fig. 4.18). The data is displayed in red with a SNR of 6.4± 0.2. The best fit in blue
and the residuals in green. The center frequency of the line is at 777 MHz. The normal-
ized RMS of the residuals indicates the noise amplitude. See Chap. 4 for details. The
normalized RMS is 0.59 for an integration time of 160 min on source.
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D Mars Observation: Spectrum

Figure D.5: Measured Spectrum from Mars at 45NLT10 in high resolution (comp.
Fig. 5.6). The data is displayed in red with a SNR of 5.8± 1.5, the best fit in blue
and the residuals in green. The center frequency of the line is at 1148 MHz. The
normalized RMS of the residuals indicates the noise amplitude. See Chap. 5 for details.
The normalized RMS is 1.59 for an integration time of 17 min on source.
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P. Drossart, V. Formisano, B. Häusler, O. Korablev, W. J. Markiewicz, D. Neve-
jans, M. Pätzold, G. Piccioni, T. L. Zhang, F. W. Taylor, E. Lellouch, D. Koschny,
O. Witasse, H. Eggel, M. Warhaut, A. Accomazzo, J. Rodriguez-Canabal, J. Fab-
rega, T. Schirmann, A. Clochet, M. Coradini, Venus Express – The first Euro-
pean mission to Venus, Planetary & Space Science 55 (2007) 1636–1652. doi:

10.1016/j.pss.2007.01.013.

http://dx.doi.org/10.1086/126823
http://nssdc.gsfc.nasa.gov/planetary/projects.html
http://nssdc.gsfc.nasa.gov/planetary/projects.html
http://dx.doi.org/10.1126/science.279.5357.1671
http://dx.doi.org/10.1126/science.279.5357.1671
http://dx.doi.org/10.1029/1999JE001145
http://dx.doi.org/10.1023/B:SPAC.0000021006.84299.18
http://dx.doi.org/10.1023/B:SPAC.0000021006.84299.18
http://dx.doi.org/10.1016/j.actaastro.2005.03.043
http://dx.doi.org/10.1016/j.actaastro.2005.03.043
http://dx.doi.org/10.1007/s11214-012-9916-y
http://dx.doi.org/10.1016/j.pss.2007.01.013
http://dx.doi.org/10.1016/j.pss.2007.01.013


170 BIBLIOGRAPHY

[28] G. Sonnabend, D. Wirtz, R. Schieder, P. F. Bernath, High-Resolution Infrared
Measurements of H2O and SiO in Sunspots, Sol. Phys.233 (2006) 205–213. doi:

10.1007/s11207-006-2488-9.

[29] F. Schmuelling, J. Goldstein, T. Kostiuk, T. Hewagama, D. Zipoy, High preci-
sion Wind measurements in the upper Venus atmosphere, in: AAS/Division for
Planetary Sciences Meeting Abstracts #32, Vol. 32 of Bulletin of the American
Astronomical Society, 2000, p. 1121.

[30] M. Sornig, T. Livengood, G. Sonnabend, P. Kroetz, D. Stupar, T. Kostiuk,
R. Schieder, Venus upper atmosphere winds from ground-based heterodyne spec-
troscopy of CO 2 at 10µm wavelength, Planetary & Space Science 56 (2008) 1399–
1406. doi:10.1016/j.pss.2008.05.006.

[31] M. Sornig, T. A. Livengood, G. Sonnabend, D. Stupar, P. Kroetz, Direct wind
measurements from November 2007 in Venus’ upper atmosphere using ground-
based heterodyne spectroscopy of CO 2 at 10 µm wavelength, Icarus217 (2012)
863–874. doi:10.1016/j.icarus.2011.03.019.

[32] M. Sornig, G. Sonnabend, D. Stupar, P. Kroetz, H. Nakagawa, I. Mueller-Wodarg,
Venus’ upper atmospheric dynamical structure from ground-based observations
shortly before and after Venus’ inferior conjunction 2009, Icarus225 (2013) 828–
839. doi:10.1016/j.icarus.2012.12.005.

[33] G. Sonnabend, M. Sornig, R. Schieder, T. Kostiuk, J. Delgado, Temperatures
in Venus upper atmosphere from mid-infrared heterodyne spectroscopy of CO 2

around 10µm wavelength, Planet. Space Sci.56 (2008) 1407–1413. doi:10.1016/

j.pss.2008.05.008.

[34] P. Krötz, Observations of Upper Mesophere Temperatures on Venus and Evalua-
tion of Mid-Infrared Detetctors for the Tuenable Heterodyne Infrared Spectrometer
(THIS), Ph.D. thesis, University of Cologne (2010).
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infrared spectroscopy of ethane in Titan’s stratosphere in the Huygens epoch,
Journal of Geophysical Research (Planets) 111 (E10) (2006) 11. doi:10.1029/

2005JE002669.

http://dx.doi.org/10.1029/2006GL026900
http://dx.doi.org/10.1029/2006GL026900
http://dx.doi.org/10.1029/2010GL043335
http://dx.doi.org/10.1016/j.icarus.2011.11.009
http://dx.doi.org/10.1016/j.icarus.2005.12.001
http://dx.doi.org/10.1016/j.icarus.2005.12.001
http://dx.doi.org/10.1016/j.icarus.2006.03.012
http://dx.doi.org/10.1016/j.icarus.2006.03.012
http://dx.doi.org/10.1016/j.icarus.2009.05.005
http://dx.doi.org/10.1006/icar.2002.6823
http://dx.doi.org/10.1029/2005JE002669
http://dx.doi.org/10.1029/2005JE002669


172 BIBLIOGRAPHY

[47] T. Kostiuk, T. A. Livengood, G. Sonnabend, K. E. Fast, T. Hewagama, K. Mu-
rakawa, A. T. Tokunaga, J. Annen, D. Buhl, F. Schmülling, D. Luz, O. Witasse,
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Heterodynspektrometers mit einem Bleisalz–Diodenlaser als Lokaloszillator,
Ph.D. thesis, University of Cologne (1997).

[62] Bernath, Peter F, Spectra of Atoms and Molecules, Oxford University Press, 1995.

[63] R. L. Abrams, Broadening coefficients for the P(20) CO2 laser transition, Applied
Physics Letters 25 (1974) 609. doi:10.1063/1.1655330.

[64] D. W. Peterson, M. A. Johnson, A. L. Betz, Infrared heterodyne spectroscopy of
CO2 on Mars, Nature250 (1974) 128–130. doi:10.1038/250128a0.

[65] A. L. Betz, M. A. Johnson, R. A. McLaren, E. C. Sutton, Heterodyne detection of
CO2 emission lines and wind velocities in the atmosphere of Venus, ApJ208 (1976)
L141–L144. doi:10.1086/182251.

[66] M. A. Johnson, A. L. Betz, R. A. McLaren, C. H. Townes, E. C. Sutton, Nonther-
mal 10 micron CO2 emission lines in the atmospheres of Mars and Venus, ApJ208
(1976) L145–L148. doi:10.1086/182252.

[67] A. L. Betz, R. A. McLaren, M. A. Johnson, E. C. Sutton, Infrared heterodyne
spectroscopy of CO2 in the atmosphere of Mars, Icarus30 (1977) 650–662. doi:

10.1016/0019-1035(77)90087-2.

[68] M. A. Johnson, A. L. Betz, C. H. Townes, 10-micron heterodyne stellar interferom-
eter, Physical Review Letters 33 (1974) 1617–1620. doi:10.1103/PhysRevLett.

33.1617.

[69] D. D. S. Hale, M. Bester, W. C. Danchi, W. Fitelson, S. Hoss, E. A. Lipman, J. D.
Monnier, P. G. Tuthill, C. H. Townes, The Berkeley Infrared Spatial Interferom-
eter: A Heterodyne Stellar Interferometer for the Mid-Infrared, ApJ537 (2000)
998–1012. doi:10.1086/309049.

[70] T. Kostiuk, M. J. Mumma, Remote sensing by IR heterodyne spectroscopy, Ap-
plied Optics 22 (1983) 2644–2654. doi:10.1364/AO.22.002644.

http://dx.doi.org/10.1364/AO.15.000427
http://dx.doi.org/10.1063/1.1655330
http://dx.doi.org/10.1038/250128a0
http://dx.doi.org/10.1086/182251
http://dx.doi.org/10.1086/182252
http://dx.doi.org/10.1016/0019-1035(77)90087-2
http://dx.doi.org/10.1016/0019-1035(77)90087-2
http://dx.doi.org/10.1103/PhysRevLett.33.1617
http://dx.doi.org/10.1103/PhysRevLett.33.1617
http://dx.doi.org/10.1086/309049
http://dx.doi.org/10.1364/AO.22.002644


174 BIBLIOGRAPHY

[71] J. J. Goldstein, M. J. Mumma, T. Kostiuk, D. Deming, F. Espenak, D. Zipoy,
Absolute Wind Velocities in The Lower Thermosphere of Venus Using Infrared
Heterodyne Spectroscopy, Icarus 94 (1991) 45–63. doi:10.1016/0019-1035(91)

90140-O.
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[84] M. Sornig, Investigations of Upper Atmosphere Dynamics on Mars and Venus by
High Resolution Infrared Heterodyne Spectroscopy of CO2, Ph.D. thesis, Univer-
sity of Cologne (2009).

[85] F. J. Duarte, Tunable lasers handbook, Academic Press, 1996.

[86] Raytheon Vision Systems, Operating Procedures and Test Reports for Wideband
HgCdTe Photomixer Detectors (2005).

[87] T. de Graauw, F. P. Helmich, T. G. Phillips, J. Stutzki, E. Caux, N. D. Whyborn,
P. Dieleman, P. R. Roelfsema, H. Aarts, R. Assendorp, R. Bachiller, W. Baechtold,
A. Barcia, D. A. Beintema, V. Belitsky, A. O. Benz, R. Bieber, A. Boogert, C. Bo-
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Special thanks go to Mareile Strücker for proof reading my thesis. I know that it
must have been a tough time for an English teacher!

Besonderer Dank gebührt all meinen Freunden, die mich in all den Jahren begleitet
haben und die unzertrennlich in allen Lebenslagen eng zusammen stehen. Mit euch
ist das Leben lebenswert und es wird niemals langweilig! Insbesondere erwähnt sei
an dieser Stelle Dr. Mario Zacharias, den ich an meinen ersten Tag an der Uni, dem
06. Oktober 2003, kennengelernt habe und der mich auf meinem Weg - meistens
mit einer Flasche Bier in unseren Händen - stets begleitet hat.
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