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Zusammenfassung 

Das Oberflächenprotein CD74 wird auf der Membran von B-Zellen, Makrophagen und 

Epithelien exprimiert und kontrolliert viele Bereiche des Immunsystems. Von 

besonderem Interesse ist die Rezeptorfunktion von CD74 für das Chemokin MIF 

(macrophage migration inhibitory factor). Bei der Bindung von MIF an CD74 werden - 

unter anderem über den Korezeptor CD44 - die AKT, MAPK und NF-B Signalwege 

aktiviert, welche die Zellproliferation anregen und die Apoptose hemmen. 

Bei vielen Tumorarten, wie z. B. Magenkarzinomen und B-Zell-Lymphomen, wird eine 

Überexpression von CD74 beobachtet. Die Funktion von CD74 in B-Zell-Lymphomen 

wurde im Fall der chronischen lymphatischen Leukämie (CLL) veranschaulicht, bei der 

nicht nur CD74 sondern auch MIF hoch reguliert sind. CLL tritt im hohen Lebensalter 

auf und ist die häufigste Leukämieform in Europa und Nordamerika. Das 

Tumormikromilieu spielt eine zentrale Rolle in der CLL und trägt maßgeblich zum 

Überleben der CLL-Zellen bei. Daher wird bei der Entwicklung von möglichen 

Therapien ein besonderes Augenmerk auf das Zusammenspiel der CLL-Zellen mit dem 

Tumormikromilieu gesetzt. 

Die Rolle von CD74 in der CLL wurde meist in primären, humanen CLL-Zellen und 

Zelllinien in vitro untersucht ohne das Tumormikromilieu zu berücksichtigten. Um den 

Einfluss von CD74 auf die B-Zell-Onkogenese im Zusammenspiel mit dem 

Mikromilieu in vivo genauer zu untersuchen, wurden in dieser Arbeit das CLL 

Mausmodell (Eµ-TCL1-transgen) mit dem CD74-defizienten Mausmodell gekreuzt. In 

den dadurch generierten TCL1+ CD74ko Mäusen wurden dann die CLL-Entwicklung 

sowie die Veränderung der zellulären Signalwege untersucht und mit der 

Kontrollgruppe TCL1+ CD74wt verglichen. 

In TCL1+ CD74ko Mäusen waren die gemessene Tumorlast im Blut, die Infiltration 

leukämischer Zellen in lymphatischen Organen und das Überleben der Tiere 

vergleichbar mit dem der Kontrollgruppe. Des Weiteren wurden Proliferation und 

Apoptose der CLL Zellen nicht von der CD74-Expression beeinflusst. Stimulations-

experimente mit leukämischen Zellen beider Modelle zeigten jedoch, dass die 

Aktivierung der AKT Kinase durch MIF nur in Gegenwart von CD74 stattfand, 

während die ERK und NF-B Signalwege CD74-unabhängig waren.  

Anhand dieser Ergebnisse konnte in dieser Arbeit erstmals gezeigt werden, dass die 

Deletion von CD74, anders als MIF und CD44, die Entwicklung der CLL im 

Mausmodell nicht wesentlich beeinflusst. Zusammenfassend lässt sich somit auf eine 

untergeordnete Rolle der MIF vermittelten CD74 –Signalwege für das Wachstum und 

die Entwicklung von CLL Zellen schließen. 
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Abstract 

CD74 is a surface protein expressed on B cells, macrophages and many epithelial cells 

and has been found to control several aspects of the immune system. One of them is its 

function as surface receptor for the chemokine macrophage migration inhibitory factor 

(MIF). Signaling through the CD74 receptor and its co-receptor CD44 upon MIF 

binding leads to activation of the AKT, MAPK and NF-B pathways, and thereby 

promotes cell proliferation and survival. 

Elevated expression of CD74 has been observed in several human cancers e.g. gastric 

carcinoma and B cell neoplasia. The role of CD74 in B cell neoplasms has been 

suggested in the case of chronic lymphocytic leukemia (CLL), where both the receptor 

CD74 and its ligand MIF are upregulated. CLL is one of the most common leukemias 

found in adults in Europe and North America. The microenvironment plays a central 

role to CLL development and progression. 

So far, studies on the role of CD74 in CLL were based on experiments with primary 

CLL cells or cell lines in vitro. However, the exact contribution of CD74 to the 

pathogenesis of CLL remained far from being understood. 

To understand the role of CD74 for the pathogenesis of leukemia, this project aimed to 

determine the influence of the CD74 receptor during B cell lymphomagenesis and the 

mechanisms underlying CD74-dependent signaling in B cells by using the CLL mouse 

model (Eµ-TCL1-transgenic). Eµ-TCL1 transgenic mice pro- and deficient for CD74 

(TCL1+ CD74wt and TCL1+ CD74ko) were generated and monitored for CLL 

development and activation of pro-survival signaling upon MIF stimulation. 

CLL development in TCL1+ CD74ko mice was similar to control TCL1+ CD74wt mice 

depicted by comparable growth of the leukemic load, development of hepato-

splenomegaly and overall survival. Moreover, the apoptosis and proliferation rate of 

malignant cells from TCL1+ CD74ko mice were similar to control mice. Experiments 

with MIF stimulation in CLL cells showed that MIF induced AKT activation in a CD74 

dependent manner, whereas ERK and NF-B activation did not differ between TCL1+ 

CD74wt and TCL1+ CD74ko cells.  

Taken together this study showed that targeted gene deletion of Cd74 does not influence 

the development of CLL in Eµ-TCL1-transgenic mice and suggested that the pathways 

mediated by MIF through CD74 are not sufficiently potent to promote growth of CLL 

cells. 
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1 Introduction 

1.1 Chronic Lymphocytic Leukemia 

Chronic lymphocytic leukemia (CLL) is one of the most common leukemias in Europe 

and North America. It mostly affects older individuals with an median age of 65 to 70 

years and rarely under 50 years of age, with men being twice as often affected as 

women [1, 2]. The World Health Organization describes CLL as leukemic, lymphocytic 

lymphoma distinguishable from small lymphocytic leukemia (SLL) by its leukemic 

appearance [3]. Like other cancers, CLL is caused by genomic damage that alters 

distinct signaling pathways in B cells which leads to the induction of anti-apoptotic 

proteins and the downregulation of pro-apoptotic proteins [4]. Dysregulated expression 

and signaling of these cell death regulators then leads to a progressive accumulation of 

long-lived and apoptosis-resistant B cells in the peripheral blood, bone marrow and 

secondary lymphoid tissues [1]. 

1.1.1 Epidemology and Etiology 

The incidence of CLL lies at 3/100.000/year and varies with age and sex structure of the 

population [4, 5]. Rates of CLL in the population show also significant international 

variation, with the highest rates in the U.S. and Europe and the lowest rates in Asia [6]. 

The cause for CLL is still unsure. Large, population-based case-control and cohort 

studies have shown significant familial aggregation of CLL with first degree relatives 

being three times more likely to have CLL or other lymphoid neoplasms than the 

general population [6-8]. While there is evidence for a genetic disposition for CLL, 

attempts to link genetic aberrations to CLL have been unsuccessful [6]. Additionally, 

linking CLL incidences with environmental exposure to radiation or other chemicals 

showed no consistent evidence so far [4]. On the other hand, induction through viral 

infection, e.g. Epstein- Barr-Virus (EBV) and Merkel cell polyomavirus (MCPyV), is 

often discussed [9], but could not be proven so far [10]. 

1.1.2 Diagnosis 

The World Health Organization and the guidelines from the international workshop on 

CLL defined a count of more than 5x109 monoclonal CD5-positive B cells per litre 

blood, which is consistent for more than 3 months, as a safe diagnosis for CLL [11]. To 

differentiate CLL cells from other B cell lymphomas, cell surface marker are used 
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which characterize the CLL cell phenotype. In flow cytometric analyses CLL cells are 

simultaneously positive for the surface marker CD19, low levels of CD20, CD23 and 

aberrant CD5 [12]. Often CLL is found during routine checkup, since many patients do 

not develop any symptoms [13]. Typical symptoms of CLL are lymphocytosis leading 

to enlargement of lymphoid organs (e.g. spleen and liver) and the swelling of lymph 

nodes, weight loss, abdominal pain, night sweat, susceptibility to infection and 30% of 

patients develop skin irritation. At a later stage defective haematopoiesis leads to 

anemia resulting in fatigue and weakness, while thrombocytopenia leads to bleeding 

[14]. Rai and colleagues developed a system of clinical staging CLL that could 

prospectively distinguish patients according to their overall outlook for survival [15-17]. 

Later Binet and colleagues added another prognostic classification [18]. Both methods 

of staging are recognized as simple, yet accurate predictors of survival and are still used 

in a modified version to group patients with CLL based on physical examination and 

complete blood counts [3, 11, 19]. 

In the last years molecular and cellular markers have been identified that also could 

predict disease progression. Especially the mutational profile of the immunoglobulin 

genes, cytogenetic abnormalities, serum-based markers like β2-microglobulin and 

cellular marker like CD38 and ZAP-70 show strong prognostic value [4, 20]. 

1.1.3 Pathophysiology 

One hallmark of CLL cells is the expression of the B cell receptor (BCR) [21]. The 

BCR is expressed on the plasma membrane of B cells as a disulfide-bonded complex of 

heavy and light immunoglobulin (Ig) chains associated with the Ig and Ig (or 

CD79a/CD79b) heterodimer. The BCR is the key molecule for the signaling pathway 

involved in B cell proliferation, survival, differentiation, anergy and apoptosis [22]. The 

Ig component of the BCR has a unique molecular feature, which marks CLL cells and 

determines the indolent or aggressive nature of the disease. In this context CLL can be 

divided into two main subsets, based on whether the tumor arose from a B cell prior to 

initiation of somatic hypermutation in the Ig variable (V) region genes (unmutated 

CLL), or after this process had taken place and then stopped (mutated CLL) [23]. The 

unmutated cases show an aggressive disease progression which is often accompanied by 

high ZAP-70 expression, while mutated cases show a more indolent form with low 

ZAP-70 expression [24]. Furthermore, conventional cytogenetic analyses and 

fluorescent in situ hybridization (FISH) showed genetic aberrations in ~82% of CLL 

cases [25]. Among those aberrations, four are quite commonly found, del(17q13), 
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del(11q23), del(13q14) and trisomy 12 [20]. The 17p deletion (del17p) affects the tumor 

suppressor p53 protein and is associated with a poor prognosis [26], as well as the 11q 

deletion (del11q), which is mostly accompanied by a mutation in the ATM kinase 

leading to impaired DNA damage response in the cells [27, 28]. Deletion of 13q 

(del13q) is associated with a better prognosis and leads to the loss of the microRNA’s 

miR15 and miR16 [29], which target the anti-apoptotic protein BCL-2 [30]. Despite the 

heterogeneity in the disease, CLL patients show a common gene expression signature 

differentiating them from other lymphoid cancers, which led to the conclusion that CLL 

patients share a common mechanism of transformation or cell of origin [31, 32]. 

Recently, studies were linking unmutated CLL to unmutated mature CD5-positive B 

cells and mutated CLL to a distinct CD5- and CD27-positive post–germinal center B 

cell subset [33]. 

Another hallmark of CLL is the accumulation of mature B cells that escape 

programmed cell death and undergo cell cycle arrest in the G0/G1 phase [34]. In 

accordance, CLL cells show a low proliferation rate and overexpression of the anti-

apoptotic proteins of the BCL-2 family (BCL-XL, BAG1, MCL-1) while the pro-

apoptotic proteins (BAX, BCL-XS) are under expressed [35]. Despite their apparent 

longevity in vivo, culturing of CLL cells in vitro results in spontaneous apoptosis, 

indicating a supporting role for the microenvironment in CLL cell survival [36]. 

Interestingly, first studies in the microenvironment of CLL revealed pseudo follicles 

and cell clusters in lymph nodes and the bone marrow. Those clusters consist of 

increased numbers of CD4-positive T cells and CLL cells. CD4-positive T cells express 

the CD40 ligand, which stimulates B cells and induces expression of anti-apoptotic 

proteins [37, 38]. T cells also secret anti-apoptotic cytokines like Interleukine 4 (IL-4) 

providing further stimulus for B cells [39]. In fact, stimulation with CD40 ligand and 

IL-4 prevented CLL cells from apoptosis in vitro [37]. In addition stromal cells, nurse 

like cells and follicular dendritic cells are found in the microenvironment of CLL cells. 

Nurse like cells differentiate from CD14-positive monocytes through the interaction 

with CLL cells, which in turn protect CLL cells from apoptosis mediated through the 

production of B cell-activating factor of the TNF family (BAFF), the proliferation-

inducing ligand (APRIL) [40] and the secretion of stromal-derived factor 1 (SDF-1) [41, 

42]. Bone marrow derived stromal cells and follicular dendritic cells also provide a 

complex system of survival signals for CLL cells. For one they express integrins 
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interacting with CLL cells and secondly secret cytokines like SDF-1 and VEGF 

(vascular endothelial growth factor) to further enhance CLL survival [43]. 

Another cytokine playing an important role in the maintenance of the CLL clone is the 

macrophage migration inhibitory factor (MIF). MIF is a proinflammatory and 

immunoregulatory cytokine ubiquitously expressed in cells of the mammalian system 

and has been shown to promote CLL development [44]. On B cells MIF binds to the 

surface receptors CD74, CXCR2 and CXCR4 and thereby stimulates pro-survival 

signaling. In CLL it has been shown that binding of MIF to the receptor CD74 leads to 

the production of Interleukine 8 (IL-8) and the upregulation of the anti-apoptotic protein 

BCL-2, which in turn promote CLL cell survival [45, 46] (this aspect will be further 

discussed under 1.4). 

Taken together, CLL cells actively shape their microenvironment by producing 

cytokines and chemokines, and by subverting normal accessory cells to promote 

leukemia-cell survival, proliferation, and escape from immune surveillance [43]. 

1.1.4 Therapy 

Chronic lymphocytic leukemia is a disease which is not curable. The only curative 

approach is allogeneic stem cell transplantation, which has a high lethality rate of 25% 

and therefore is only used on high-risk patient with good fitness [11, 47]. The 

management of CLL has changed a lot in the last decades due to a better understanding 

of the biology of the disease and the approval of new drugs. Treatment is chosen 

depending on the clinical stage of the disease, cytogenetics, patients fitness and 

treatment situation [48]. In 2008 the international workshop on CLL updated guidelines 

for the management of CLL [11]. Patients in clinical Binet stage A and B without active 

symptomatic disease are not treated but controlled after the “watch and wait”-principle. 

First-line treatment for patients in higher stages involves chemotherapy with differing 

regimes depending on the patient fitness. Patients with a 17p deletion have a very poor 

prognosis and often show resistance to chemotherapy [49]. First-line treatment for these 

high-risk patients so far were the purine analog Alemtuzumab in combination with 

steroids [50]. Since most patients eventually relapse alternative treatments within 

clinical trials are suggested [48]. Recently several novel drugs targeting kinases 

involved in the pro-survival signaling of B cells have been approved by regulatory 

agencies or are under evaluation. Among them being the BTK inhibitor Ibrutunib [51], 

the PI3K inhibitor Idealisib (GS1101) [52], which showed promising results in 
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refractory patients. This recent advances show the importance to dissect and understand 

the biology of the disease to provide the right approach to treat the disease. 

1.2 CLL animal models 

Mouse models recapitulating human malignancies are valuable tools for pre-clinical 

studies and to study pathological mechanisms. Several mouse models for CLL have 

been generated either through mimicking genetic aberrations, deregulated gene 

expression in CLL or driven by ectopic oncogene expression (reviewed in [53]). 

The first mouse resembling human CLL was the Eµ-TCL1-transgenic mouse generated 

in 2002 by Bichi and colleagues [54]. Since then several transgenic mice have been 

created that also lead to CLL-like disease. One of them is the APRIL-transgenic mouse, 

which resembles the elevated levels of the tumor necrosis factor (TNF) family member 

APRIL found in sera of CLL patients. At 9- to 12-month-old APRIL transgenic mice 

develop lymphoid tumors that originate from expansion of the peritoneal B-1 B cell 

population [55]. Another model is the BCL-2xtraf2dn double transgenic mouse, 

studying the influence of both these molecules in CLL pathogenesis [56]. Both BCL-2 

and the TNF-associated factor 2 (TRAF2) have been implicated in mediating CLL cell 

survival [35, 57]. The single BCL-2 or TRAF2 mutant mice develop lymphadenopathy 

and splenomegaly with age due to lymphoid cell expansion but only the BCL-2xtraf2dn 

double transgenic mice develop an age-dependent B cell leukemia resembling human 

CLL [56]. Next to those, mice mimicking the deletion of 13q14 (e.g. mir-15/16-1-/- and 

14qC3 minimal deleted region (MDR)-/- mice), the most frequent genetic lesion found in 

CLL [29], also develop CLL-like disease and provide evidence for the tumor suppressor 

function of a CLL-associated genetic lesion [58]. 

The most notable difference between those mouse models is the penetrance of the 

phenotype which is highest in the Eµ-TCL1 mice (~100%), intermediate in 14qC3 

MDR knock-out and APRIL-transgenic mice (40-50%) and lowest in the mir-15/16-1 

knock out mice [53]. Due to the complete disease penetrance and the similarities in the 

developed disease to human CLL, Eµ-TCL1 mice have become the most commonly 

used model in CLL research. 

1.2.1 Eµ-TCL1 mice 

TCL1 is a proto-oncogene highly expressed in most B cell and T cell tumors, e.g. CLL 

and T-PLL [59, 60]. Under physiological conditions TCL1 is expressed during B cell 

development in pre-B cells, antigen-naïve IgM-positive, mantle zone and germinal 
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centre B cells [61, 62], and during T cell development in early T cells before the T cell 

receptor is expressed [63]. 

In CLL, TCL1 expression correlates with aggressive clinical progression and the 

phenotypic features like unmutated IgVH and ZAP-70 expression [59]. In 2002, Bichi 

and colleagues used the human TCL1 gene to establish a CLL mouse model. For that, a 

350 bp sequence of the human TCL1 gene was put under the control of the murine IgVH 

promotor and the Eµ enhancer to ensure expression in immature and mature B cells. 

These mice spontaneously develop B cell hyperplasia first evident in the peritoneal 

cavity (~ 2 months) and later in the lymph nodes, spleen, bone marrow and blood (~ 3-8 

months). Later at around 8-12 months these mice develop a CLL-like disease with an 

accumulation of CD5-positive B cells in the spleen, liver and lymph nodes [54]. 

Furthermore, the BCRs of Eµ-TCL1-transgenic mice resemble those from human CLL 

patients with the more aggressive from of the disease (unmutated IgVH gene 

rearrangements) and exhibited stereotype in IGHV, IGKV and IGLV gene 

rearrangements [64]. Since its development, the Eµ-TCL1-transgenic mouse has been 

used by many laboratories to elucidate the functional role of specific molecules in the 

onset and progression of CLL in vivo (overview in Figure 1), providing new insights 

into the pathogenic role of those genes in the dysregulation of signaling, proliferation, 

and apoptosis, and in the aberrant cross-talk with the microenvironment [53]. 

 

Figure 1: Study of novel pathogenic mechanisms in the Eµ-TCL1-transgenic mouse model 
Deletion or overexpression (tg: transgenic) of molecules in the Eµ-TCL1-transgenic mouse model 

affecting disease phenotype. (bm: bone marrow; TAM: tumor associated macrophages) (from [53]) 
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Functionally, TCL1 interacts with the protein kinase B (AKT) mediated by the PH 

domain of AKT. The interaction enhances the kinase activity and promotes the nuclear 

translocation of the AKT kinase, leading to the transduction of anti-apoptotic and 

proliferative signals [65]. However, the effects of TCL1 on AKT are not sufficient to 

explain TCL1 oncogenesis in Eµ-TCL1-transgenic mice, since AKT activation itself 

does not cause B cell neoplasia [66, 67]. Studies on different transgenic mouse models 

(e.g. APRIL) showed the importance of the NF-B pathway in the development of a 

CLL-like disease suggesting a role of the NF-B pathway in the pathogenesis of CLL 

[68]. Interestingly, there are studies showing that TCL1 enhances NF-B activation 

independent of AKT through direct interaction with IB [67]. Studies on the oncogenic 

effect of TCL1 expression in B cells are still not completed and also suggest TCL1 as 

transcriptional regulator of the CREB binding protein p300 and the activating protein 1 

(AP-1) [69]. 

1.3 CD74 

The invariant chain (Ii, known as CD74 when expressed on the plasma membrane) is a 

type II membrane protein first identified as the MHC class II-associated chaperon [70]. 

It is expressed in HLA class II-positive cells like B cells, monocytes, macrophages, 

Langerhans cells, dendritic cells, thymic epithelial cells and gastric epithelial cells. 

CD74 controls several aspects of the immune system; e.g. B cell development, dendritic 

cell motility, thymic selection and has been associated with B cell neoplasia and solid 

tumor development, progression and metastasis [70]. 

The human CD74 gene (chromosome 5, 9 exons) and the murine counterpart 

(chromosome 18, 8 exons) share much homology. Both have two main transcript 

variants (p31 and p41), with humans having two further transcripts (p35 and p43), 

resulting from an alternative translation start site [71, 72]. The human and the murine 

CD74 consist of a 29-46 amino acid NH2-terminal intracytoplasmic domain, depending 

on which of two alternative initiation codons are translated, a 26-amino acid 

hydrophobic transmembrane region, and a 160-amino acid extracytoplasmic domain 

containing two N-linked carbohydrate chains [73] (Figure 2). In both species the shorter 

isoform of CD74 predominates with an estimated ratio of 9:1 [74]. The p33 and the p35 

isoform regulate the MHC class II antigen presentation, while the p41 and p43 isoform 

encode a thyroglobulin type 1 domain that can bind cathepsins [75]. 
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Figure 2: CD74 structure 
The schema shows the intracytoplasmic (IC), transmembrane (TM) and extracellular (EC) domains of 
CD74. Amino acid numbers refer to the human p35 variant. CLIP: class II-associated invariant chain 
peptide. ICD: Intracellular domain.(from [73]) 

 

1.3.1 The invariant chain (Ii) part of the MHC class II complex 

The first and best described function of the invariant chain (Ii) is its part in the major 

histocompatibility class II complex (MHC class II), which controls a major component 

of the immune system. The invariant chain functions as a chaperone helping with the 

proper folding of MHC class II proteins and protection from peptide binding during 

transit through the ER [76-78] (reviewed in [79]). In more detail, after synthesis in the 

endoplasmic reticulum (ER) the Ii combines with MHC class II heterodimers, where it 

assures proper folding and assembly of the MHC class II dimers [80-82]. This complex 

then exits the ER and travels through the golgi apparatus to the endosomal 

compartment. The cytoplasmic tail of Ii contains two di-leucin-based motifs, which are 

essential for efficient sorting [83]. During the transit to the endosomal compartment 

binding of the Ii to the MHC class II prevents the unspecific binding of peptides to the 

complex [84]. After the Ii-MHC class II complex reaches the endocytic compartment, 

the Ii is progressively degraded until only an Ii derived peptide called CLIP (class II 

associated invariant chain derived peptide) remains associated to MHC class II. CLIP 

then is exchanged for an antigenic peptide. The mature MHC class II-peptide complexes 

are then translocated to the cell surface for CD4+ T cell recognition [79]. 
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In 2012 the group from Basha et.al. showed that the Ii also associates with MHC class I 

molecules in dendritic cells. There Ii directs a subset of MHC class I molecules to the 

endolysosomal pathway, where dissociation of the Ii and reassembly of MHC class I 

with antigenic peptides are carried out [85], showing that the Ii is also involved in the 

cross-presentation pathway of dendritic cells that has a major role in the generation of 

MHC class I-restricted, cytolytic T cell response to viral protein.  

1.3.2 The surface receptor CD74 

Several studies showed that 2-5% of the invariant chain (Ii) is found on the cell surface 

[86, 87]. A small subset of the Ii is modified by the addition of chondroitin sulfate and 

rapidly transported from the golgi apparatus to the cell surface [88], where it remains 

for a short time with an estimated surface half-life of ten minutes [89]. Expression of 

this cell surface protein, designated CD74, is independent from the expression of class 

II molecules [90, 91]. CD74 is expressed on several MHC class II positive cells (B 

cells, monocytes, macrophages, Langerhans cells, dendritic cells, thymic epithelium and 

gastric epithelial cells) but is also found on a number of cells without MHC class II (e.g. 

pulmonary alveolar epithelium, colon epithelium) [92, 93]. On the surface CD74 is a 

receptor for extracellular MIF, D-DT/MIF-2 and bacterial proteins [94-99]. 

1.3.2.1 CD74 receptor signaling 

Studies on the signaling function of surface CD74 revealed several signaling pathways 

(overview Figure 3). The major part is the identification of CD74 as a high-affinity 

receptor for the macrophage migration inhibitory factor (MIF) [94]. MIF is a 

proinflammatory and immunregulatory cytokine, which is ubiquitously expressed in 

mammalians (reviewed in [100]). Extracellular MIF binds to CD74 and survival signals 

via the SYK, MAPK, AKT or the NF-κB pathways are transmitted [94, 101, 102]. 

Those signaling events result in cell proliferation and inhibition of apoptosis [94, 103]. 

Although it was shown that phosphorylation of the serine residues takes place on the 

p35 variant of Ii [104], the short cytoplasmic sequence of CD74 does not appear to 

signal directly. It was demonstrates that MIF-induced extracellular signal-regulated 

kinase 1 and 2 (ERK1/2) MAP kinase activation is dependent on CD44 in fibroblast, 

monocytes, B cells (Raji cell line) and macrophages [105]. CD44 is a structurally 

diverse and multivalent co-receptor due to prominent alternative splicing and 

posttranslational modifications (e.g., glycosylation). It recruits several kinases (e.g. 
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receptor tyrosine kinases and non-receptor src family kinases), which eventually all 

evoke strong MAPK/ERK and PI3K/AKT responses [106].  

Studies using a CD74 activating antibody show that activation of CD74 also results in 

the cleavage of the intracellular cytoplasmic domain of CD74 (CD74-ICD) in B cells 

[107, 108] by a process called regulated intermembrane proteolysis (RIP). In RIP 

cleavage of the membrane protein releases a new active peptide which migrates into the 

nucleus to regulate gene transcription (reviewed in [109, 110]). The RIP of the CD74-

ICD is dependent on PI3K/AKT phosphorylation [111] and induces activation of the 

NF-B p65 and the B cell-enriched co-activator TAFII105 leading to cell proliferation 

and survival [112, 113].  

MIF is also a non-cognate, high-affinity ligand for the chemokine receptors CXCR2 and 

CXCR4 [101, 114]. Both chemokine receptors belong to the family of seven helix-

membrane-spanning G-protein coupled receptors. CXCR2 is the cognate receptor for 

CXC chemokines such as CXCL8, and CXCR4 is the cognate receptor for SDF1 

[115]. It has been shown that CD74 forms complexes with CXCR2 or CXCR4 on the 

surface of monocytes and T cells [101, 116], which has been suggested to amplify MIF 

triggered responses in monocytes [101]. 

 

Figure 3: CD74- dependent MIF signaling 
Schema of MIF induced CD74 signaling. 1: Binding of MIF leads to regulated intermembrane proteolysis 

(RIP) of the intracellular domain (ICD) of CD74, which then induces activation of the NF-B pathway. 2: 
MIF binding to CD74 leads to the recruitment of the co-receptor CD44, which induces activation of the 
PI3K/AKT and MAPK pathway. 3: CD74 and CXCR2 or CXCR4 form a complex leading to G-protein 

coupled (Gi) AKT activation upon MIF binding. 
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1.3.3 CD74 physiology 

Development of the CD74-knockout mouse (CD74ko) revealed the profound effect of 

CD74 on the MHC class II biology and the immune system [76]. Kept under controlled 

conditions, CD74 deletion generally did not change the health status of the mice, which 

was comparable to that of wild type mice [117], only occasional severe wasting was 

reported [76]. Studies on the CD74ko mice revealed decreased levels of MHC class II 

surface expression on splenic B cells due to misfolding and dimerization of the MHC 

class II complex, which causes its retention in the endoplasmatic reticulum and vesicles 

[76, 77]. Since MHC class II plays a critical role in both thymic selection and peripheral 

expansion of CD4+ T lymphocytes [118], CD74ko mice show decreased numbers of 

mature CD4+ T cells in the thymus and periphery. 

Additionally, the loss of CD74 leads to a higher motility of dendritic cells due to an 

interaction of the motor protein myosin II with the cytoplasmic tail of CD74 in the 

endosomal compartment of dendritic cells. Upon degradation of CD74 through 

Cathepsin S the myosin II dissociates from the endosome and binds to actin leading to 

an enhanced motility of dendritic cells [119, 120]. 

Finally, studies with CD74ko mice showed that CD74 is an essential cofactor for B cell 

maturation. Splenic B cells from mice lacking CD74 showed a developmental block in 

an immature state [121]. B cell development in mammalians takes place in the primary 

lymphoid tissue (e.g. bone marrow, fetal liver) with the formation of immature B cells. 

Subsequently final differentiation into mature B cells, that are responsive to antigens, 

takes place in the secondary lymphoid tissue (e.g. lymph nodes and spleen) [122]. In 

CD74ko mice the differentiation block is characterized by an accumulation of B cells in 

the transitional stage 1 (T1), marginal zone B cells and a decreased life span of 

follicular B cells [123] in the spleen. Mechanistically, activation of surface CD74 leads 

to regulated intermembrane proteolytic release (RIP) of the intracellular domain of 

CD74 (CD74-ICD) [107, 108] by Sppl2a (Signal peptide peptidase-like 2a) [124]. The 

cleaved CD74-ICD then translocates to the nucleus and activates the NF-κB p65 

homodimer and the TAFII105 B cell enriched co-activator [111, 113]. Insufficient NF-

κB activation in CD74 knockout mice then leads to a developmental block of B cell 

maturation [125]. 
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1.3.4 CD74 pathophysiology 

CD74 expression is increased in diverse tissue injury disorders, such as gastric 

epithelium during Helicobacter pylori infection [97], ulcerative colitis [126], heart-

ischemia-reperfusion injury [127], toxin-induced liver fibrosis [128] and human 

atherosclerotic plaques [129]. Additionally, CD74 is expressed by a broad range of 

malignant cells, e.g. in more than 90% of B cell neoplasms [130] and solid tumors 

including clear renal carcinoma [131], intestinal adenomas [132], lung tumors [133] and 

breast cancers [73, 134]. Since CD74 is essential for initiating signaling cascades 

induced by MIF, leading to cell proliferation and cell survival, it is often involved in 

carcinogenesis and tumor progression, e.g. in gastric carcinoma [135] and B cell 

neoplasia [130]. 

1.3.4.1 CD74 during Helicobacter pylori infection 

Expression of CD74 is increased in the gastric epithelium during Helicobacter pylori 

infection [97]. Helicobacter pylori binds directly to CD74 via urease, a common 

bacterial protein involved in the catalysis of urea [98], leading to increase of CD74 gene 

and protein expression in the gastric epithelium [97]. Additionally, binding of 

Helicobacter pylori to CD74 triggers signaling of the NF-B pathway causing the 

expression and secretion of Interleukin-8 [97]. Interleukine-8 (IL-8) is a pro-

inflammatory cytokine and potent chemotactic factor for neutrophils, which increases 

the inflammatory response [70]. MIF is also highly expressed during Helicobacter 

pylori infection and binds to the abundant CD74 receptor leading to the activation of 

NF-B and ERK1/2 pathways [45, 105], which further promote the production of 

inflammatory cytokines and the increase of cell proliferation and survival [135, 136]. 

Together CD74 and MIF might contribute to carcinogenesis in chronic conditions 

through the upregulation of IL-8, which has its own mechanism leading to increased 

proliferation and tumor growth and angiogenesis [135]. 

1.3.4.2 CD74 in B cell neoplasia 

CD74 expression is found on many B cell malignancies [130] and is also highly 

expressed on many cell lines used as models for hematological neoplasms [137].  

Functionally, CD74 together with CD44 is essential for initiating signaling cascades 

induced by MIF in mature B cells [45]. MIF induces cell entry into S-phase by elevating 

cyclin E levels in a CD74-CD44-dependent manner, resulting in cell proliferation. The 
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same cascade leads to elevated expression of BCL-2, an anti-apoptotic protein 

supporting cell survival [45, 111]. Moreover, it was demonstrated that CD74 

stimulation by MIF recruits the tyrosine kinase receptor, c-Met, to the CD74/CD44 

complex and thereby enables the induction of its signaling cascade within the B cell. 

This signaling results in secretion of hepatocyte growth factor (HGF), which stimulates 

the survival of the mature B cell population in an autocrine manner [138].  

Another axis inducing B cell survival involves the NF-B pathway. Binding of MIF to 

CD74 leads to activation of the p65 domain of the NF-B pathway which in turn 

increases the transcription and expression of TAp63 [139]. The p63 protein shows high 

sequence and structure homology to p53 [140] and plays a role in development 

regulation of limbs, skin, most epithelial tissue and epidermal differentiation [141]. In 

B cells TAp63 binds to the Bcl-2 promotor and increases the expression of the anti-

apoptotic protein BCL-2, which in turn leads to cell survival. Taken together, MIF 

binding to CD74 initiates pro-survival signaling, resulting in proliferation of the mature 

B-cell population, and their rescue from death [142]. 

The functional significance of this has especially been studied in Chronic Lymphocytic 

Leukemia (CLL) where it could be shown that CLL cells overexpress both CD74 and its 

ligand MIF in comparison to healthy B cells. 

1.4 CD74 in Chronic Lymphocytic Leukemia 

CD74 and its binding partner MIF are suggested to play a pivotal role in the regulation 

of malignant B cell survival in chronic lymphocytic leukemia (CLL) (reviewed in 

[142]). CLL cells show an upregulated expression of the surface receptor CD74 as well 

as MIF production [44, 46]. Studies using cell lines and CLL cells from patients show 

that MIF binding to CD74 on CLL cells leads to an increase in Interleukin-8 (IL-8) 

transcription and secretion [46]. IL-8 in turn induces BCL-2 expression, which then 

activates the anti-apoptotic pathway in CLL cells, though no effect on proliferation was 

observed [142]. IL-8 is a member of the CXC chemokine family, which is important in 

autoimmune, inflammatory and infectious diseases [143-145]. In addition, the 

chemokine IL-8 itself possesses tumorigenic and proangiogenic properties [146]. In 

CLL increased serum levels of IL-8 were shown to have negative prognostic 

significance [147]. Thus the signaling cascade induced by the MIF/CD74 axis results in 

an important CLL cell survival mechanism, which appears from the very early stages of 

the disease [46]. 
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Also, CD74 plays an important role in the homing of CLL cells into the bone marrow. 

The bone marrow stroma plays an essential role in B lymphopoiesis by providing 

survival niches for both normal and leukemic mature B cells [148]. Adhesion of CLL 

cells to bone marrow stromal cells has been shown to rescue these lymphocytes from 

apoptosis [149]. With disease progression accumulation of CLL cells into the bone 

marrow increases, with advanced stage CLL cells showing a higher expression of the 

VLA-4 integrin compared to early stage cells [150, 151]. The VLA-4 integrin enables 

retention and survival of CLL cells in the bone marrow, an environment which is 

enriched with the VLA-4 ligands, VCAM-1, and fibronectin [151]. MIF and CD74 were 

demonstrated to play a significant role in the regulation of VLA-4 expression in CLL. 

Thus, MIF/CD74 and its target gene VLA-4 facilitate migration of CLL cells back to 

the bone marrow, where they interact with the supportive environment that rescues them 

from apoptosis [150]. 

Taken together these results suggest that blocking of CD74 or its ligand MIF, e.g. with 

an antagonistic anti-CD74 antibody, might inhibit survival of CLL cells and their 

homing to the bone marrow. In fact, Reinart et al. showed recently that deletion of MIF 

delays the development of CLL in the mouse model (Eµ-TCL1-transgenic mice) by 

reducing the survival of CLL cells [44]. Additionally, Fedorchenko et al. showed that 

deletion of the CD74 co-receptor CD44 reduced the tumor-burden in the CLL mouse 

model and led to prolonged survival [152]. At the moment the expression of CD74 on B 

cells is being exploited to develop novel strategies for the therapy of B cell lymphoma. 

Labelling of anti-CD74 monoclonal antibodies with radioactivity or cytostatic drugs, to 

enhance targeting of the malignant cells, was demonstrated to effectively kill malignant 

B cells in vitro and in vivo [153-157]. 
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1.5 Objective 

The surface receptor CD74 has been shown to be an important regulator of B cell 

survival. Binding of the macrophage migration inhibitory factor (MIF) to CD74 

regulates the activity of several pro-survival pathways such as PI3K/AKT, MAPK or 

NF-B in normal and malignant B cells.  

Studies on MIF, the high-affinity ligand of CD74, and the CD74 co-receptor CD44 have 

shown that both molecules promote disease development in the CLL mouse model. 

Since CD74 is known to be the mediator of MIF-induced and CD44-mediated 

intracellular signaling transduction, we postulated a central role for CD74 in CLL 

development and CLL survival signaling. 

So far, studies on the role of CD74 in CLL are based on experiments with primary CLL 

cells or human cell lines in vitro. Given the strong dependence of CLL cells on the 

tumor microenvironment, the exact contribution of CD74 to the pathogenesis of CLL is 

far from being understood. Thus, the CD74 knock out mouse was crossed with the 

murine CLL-model (Eμ-TCL1-transgenic). Using this model, this project aimed to 

clarify the influence of the CD74 receptor during B cell oncogenesis and the 

mechanisms underlying CD74-dependent signaling in B cells.  

In detail, the resulting TCL1+ CD74wt and TCL1+ CD74ko mice were analyzed 

comparing the leukemic load, overall survival and biology of the malignant B cells. 

Furthermore, the mechanism of CD74-dependent regulation of pro-survival signaling 

was studied using murine malignant B cells from the established mice. 
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2 Results 

2.1  CD74 expression in Eµ-TCL1-transgenic mice 

Studies on CLL showed a significantly higher expression of the surface protein CD74 in 

human CLL cells compared to healthy B cells [46]. The aim of this project was to study 

the role of the CD74 in CLL development by using the Eµ-TCL1-transgenic CLL mouse 

model. Therefore, the expression of CD74 in malignant B cells was examined during 

the development of CLL in the Eµ-TCL1-transgenic mouse model (Figure 4). Splenic B 

cells from Eµ-TCL1-transgenic mice (TCL1+) at different leukemic stages (ranging 

from 22% - 94% CD5+/CD19+ cells) were isolated. CD74 protein expression was 

analyzed by immunoblotting. In this experiment the CD74 protein expression did not 

differ in Eµ-TCL1-transgenic mice compared to wild type control mice (TCL1wt). 

 

Figure 4: CD74 expression in splenic B cells from wild type and TCL1+ mice 
Splenic B cells of wild type (TCL1wt) and TCL1-transgenic (TCL1+) mice, with different leukemic load, 
were isolated and lysed. Protein lysates were separated using SDS-PAGE and transferred on to a 
nitrocellulose membrane. Immunodetection was performed using ECL detection. Leukemic load was 
measured using flow cytometry (percentage of CD5+ B cells in the spleen). 

 

In parallel, blood from TCL1+ mice was taken every 3 months and CD74 expression 

measured in CD5-expressing B cells by flow cytometry (Figure 5). Here, a significant 

increase in the mean fluorescence of the CD74 signal was observed in highly leukemic 

TCL1+ mice compared to TCL1wt mice (3 months: TCL1wt 43.58±10.4 vs. TCL1+ 

32.44±5.5; 6 months: TCL1wt 35.56±7.6 vs. TCL1+ 56.58±17.6; 9 months: TCL1wt 

52.54±3.3 vs. TCL1+ 69.83±11.8; 12 months: TCL1wt 43.99±8.8 vs. TCL1+ 93.6±6.6 

MFI). 
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Figure 5: Flow cytometric analyses of CD74 expression in malignant B cells from murine 
blood samples 
A: Flow cytometric analysis of CD74 expression in CD5-expressing B cells from murine blood samples 
in TCL1wt and TCL1+ mice. Blood samples were stained with CD5, CD19, CD45 and CD74 antibodies. 
After gating on lymphocytes using the CD45 expression and the side scatter (SS INT), malignant B cells 
were gated on using both CD5 and CD19 expression. Using the CD5+/CD19+-gate, mean fluorescent 
intensity (MFI; here depicted as X-AMean) of CD74-FITC signal was measured. The appropriate isotype 
control was used as control. B: Blood samples of TCL1wt and TCL1+ mice were taken from different age 
groups and CD74 expression in CD5+ B cells was measured via flow cytometry. ( PB: peripheral blood) 
[t-test, *** p<0.0005, bars show SEM; TCL1wt n=5; TCL1+ 3 months n=7, 6 months n=4, 9 months n=5, 
12 months n=7] 
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2.2 CD74 in the development of TCL1-induced CLL  

Studies on CD74 and its role in the malignant transformation of B cells were mostly 

carried out in primary human samples and human cell lines. Given the strong 

dependence of CLL cells on the tumor microenvironment [39, 43, 158, 159], the 

functional contribution of CD74 to the pathogenesis of CLL within this niche is far 

from being understood. Thus, the CD74-knockout mouse (CD74ko) was crossed with the 

murine CLL model (Eµ-TCL1-transgenic) to study the functional influence of CD74 in 

the pathogenesis of TCL-1-induced CLL. 

2.2.1 Crossbreeding of Eµ-TCL1-transgenic mice with CD74ko mice 

Breeding of the CD74ko mouse with the Eµ-TCL1-transgenic mouse was done in the 

animal facility of the Experimental Medicine at the University Hospital of Cologne. 

Since a homozygous state of the transgene TCL1 might cause artificial phenotypes, 

special care in the breeding strategy was taken to avoid a homozygous state of TCL1 in 

the F2 generation. Animals of the F2 generation with the genotypes TCL1+/wt Cd74-/- 

and TCL1+/wt Cd74wt/wt (from now on called TCL1+ CD74ko, TCL1+ CD74wt 

respectively) where used for the analyses of leukemic development and survival. 

 

Figure 6: Breeding strategy for TCL1+ with CD74ko mice 
B6C3H Eµ-TCL1 mice homozygous for TCL1 were crossed with C57Bl/6J CD74-/- mice. To avoid 
homozygosity for TCL1 in experimental animals, F1 generations were crossed using TCL1+ mice with 
TCL1wt mice leading to F2 generations with the preferred genotype. 
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Littermates with TCL1wt/wt Cd74wt/wt and TCL1wt/wt Cd74-/- genotypes (from now on 

called TCL1wt CD74wt, TCL1wt CD74ko respectively) were used as controls. 

The genotypes of the mice were controlled by polymerase chain reaction (PCR) using 

tail tissue from the mice. Genomic DNA was extracted from the tissue samples and used 

as templates in the PCR with suitable primer pairs. For Cd74, one primer pair is binding 

to the exon 1 and exon 4 in the gene and another primer pair binds to the neomycin 

cassette inserted into the genome to delete Cd74. Figure 7 shows a schema of the PCR 

strategy to analyze Cd74 expression. Similarly, the TCL1 status was analyzed by using a 

TCL1-specific primer pair (data not shown). 

 

Figure 7: Genotyping PCR for CD74 status 
Genomic DNA was extracted from mice tails and then used for PCR. A: Primer pairs were binding to 
either exon 1 and 4 (165 bp) or to the neomycin cassette (260 bp). B: Example of PCR products separated 
by agarose gel electrophoresis. 

 

2.2.2 Leukemia development in TCL1+ CD74ko mice 

The Eµ-TCL1-transgenic mouse model develops a CLL-like disease with an 

accumulation of CD5-positive B cells in the peripheral blood, spleen, liver and lymph 

nodes [54]. Therefore, leukemic load and hepatosplenomegaly in TCL1+ CD74wt and 

TCL1+ CD74ko mice was measured in order to monitor the development of leukemia. 

The leukemic load in the blood of TCL1+ CD74wt and TCL1+ CD74ko mice was 

compared at months 3, 6, 9 and 12 by measuring the leukocyte number (WBC) and 

amount of malignant B cells (CD5+/CD19+). The leukocyte count of both strains 
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showed similar levels in the course of disease development from 6 to 12 months (6 

months: TCL1+ CD74wt 14080±583.7 vs. TCL1+ CD74ko 12370±744.6; 9 months: 

TCL1+ CD74wt 14740±891.7 vs. TCL1+ CD74ko 23190±6005; 12 months: TCL1+ 

CD74wt 28830±3443 vs. TCL1+ CD74ko 37560±7812 cells/µl) (Figure 8). The TCL1+ 

CD74ko group showed a significantly lower leukocyte count at 3 months (TCL1+ 

CD74wt 14730±367.5 vs. TCL1+ CD74ko 9488±250.1 cells/µl), which was in agreement 

with published data, that CD74ko mice show a lower leukocyte count due to a lower 

number of mature B cells in the periphery [160]. 

 

Figure 8: White blood cell count in TCL1+ CD74wt and TCL1+ CD74ko mice 
Blood samples of TCL1+ CD74wt and TCL1+ CD74ko mice were taken every 3 months and the white 
blood count (WBC) measured using the XE-5000 hematology-analyzer. [t-test, *** p<0.0001, bars show 
median] 

 

Additionally to the leukocyte count, the amount of malignant CD5-expressing B cells 

was measured using flow cytometry (Figure 9A). The analysis of CD5-expressing B 

cells also revealed no significant difference in the number of malignant B cells in 

TCL1+ CD74ko mice compared to TCL1+ CD74wt mice (3 months: TCL1+ CD74wt 

270.2±29.4 vs. TCL1+ CD74ko 354.1±59; 6 months: TCL1+ CD74wt 1512±674.6 vs. 

TCL1+ CD74ko 2696±496.7; 9 months: TCL1+ CD74wt 3187±660.6 vs. TCL1+ CD74ko 

5617±1292; 12 months: TCL1+ CD74wt 7691±1936 vs. TCL1+ CD74ko 7201±1983 

cells/µl) (Figure 9B). 
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Figure 9: Absolute numbers of CD5-expressing B cells in TCL1+ CD74wt and TCL1+ 
CD74ko mice 
A: Flow cytometric analysis of malignant B cells in murine blood samples from TCL1+ mice in the 
course of leukemia development. Blood samples were stained with CD5, CD19 and CD45 antibodies. 
After gating on lymphocytes using the CD45 expression and the side scatter (SS INT) malignant B cells 
were gated on using both CD5 and CD19 expression. Malignant B cells show a medium CD5 expression, 
which is clearly distinguished from T cells with a high CD5 expression (middle panel). B: Blood samples 
of TCL1+ CD74wt and TCL1+ CD74ko mice were taken every 3 months and used for flow cytometric 
analyses of CD5-expressing, malignant B cells. Absolute numbers were calculated using the white blood 
count from Figure 8. [bars show median]. 
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Furthermore, splenomegaly and hepatomegaly were analyzed in both groups, since Eµ-

TCL1-transgenic mice, like CLL-patients, show increased infiltration of malignant cells 

into the lymphoid tissues [54]. As shown in Figure 10, both mouse models developed 

similar hepatosplenomegaly (liver weight: TCL1+ CD74wt 3.46±0.4g vs. TCL1+ CD74ko 

3.63±0.3g; spleen weight: TCL1+ CD74wt 1.34±0.3g vs. TCL1+ CD74ko 1.48±0.1g). 

 

 

Figure 10: Hepatosplenomegaly in TCL1+ CD74wt and TCL1+ CD74ko mice 
A: Analysis of liver weight at time of death in TCL1+ CD74wt (n=33) and TCL1+ CD74ko (n=37) mice.  
B: Analysis of spleen weight at time of death in TCL1+ CD74wt (n=33) and TCL1+ CD74ko (n=37). [bars 
show median] 

 

2.2.3 BCR genetics in TCL1+ CD74ko mice 

The status of heavy chain gene somatic hyper mutations in the B cell receptor is one of 

the prognostic markers for CLL. The Eµ-TCL1-transgenic mouse was described to 

develop leukemia resembling the aggressive, unmutated IgVH CLL cases [54]. The 

status of heavy-chain gene somatic hyper-mutations and the immunoglobulin heavy and 

light chain usage was analyzed in leukemic, murine samples. Table 1 shows that both 

TCL1+ CD74wt and TCL1+ CD74ko mice developed an IgVH unmutated B cell clone. 
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Table 1: BCR-genetics in TCL1+ CD74wt and TCL1+ CD74ko mice 

Genotype IGHV IGHD IGHJ Mutation status 

TCL1+ CD74wt 1-26 1-1 1 unmutated; in-frame; no stop-codon, 

TCL1+ CD74wt 11-2 2-1 1 unmutated; in-frame; no stop-codon, 

TCL1+ CD74wt 12-3 3-1 1 unmutated; in-frame; no stop-codon 

TCL1+ CD74wt 7-3 2-3 1 unmutated; in-frame; no stop-codon 

     

TCL1+ CD74ko 3-8 1-1 1 unmutated; in-frame; no stop-codon 

TCL1+ CD74ko 12-3 3-3 1 unmutated; in-frame; no stop-codon 

TCL1+ CD74ko 12-3 3-2 1 unmutated; in-frame; no stop-codon 

TCL1+ CD74ko 12-3 2-3 1 unmutated; in-frame; no stop-codon 

TCL1+ CD74ko 6-6 4-1 3 unmutated; in-frame; no stop-codon 

 

2.3 Distribution of myeloid lineage cells in the spleen of TCL1+ CD74ko mice 

As mentioned before, the microenvironment with its different stimuli is important for 

the survival of CLL cells. The study from Reinart et al. showed that deletion of the 

CD74 receptor ligand MIF led to a decreased migration of macrophages into the spleen 

[44]. To further dissect the role of CD74 in the migration of microenvironmental cells to 

the spleen, different cells of the myeloid lineage were analyzed in the spleen of TCL1+ 

CD74wt mice and compared to the TCL1+ CD74ko spleens (Figure 11). Using flow 

cytometry with antigens specifically expressed on monocytes/macrophages 

(CD11b+/CD18+) [161], dendritic cells (CD11c+) [162], granulocytes (Gr-1+) [163] and 

macrophages (F4/80+) allowed to quantify the amount of these myeloid cells found in 

the spleen. Aged mice of control groups, not transgenic for TCL1, were included in the 

analysis to compare wild type and CD74ko mice. As shown in Figure 11 both TCL1wt 

groups showed similar levels of the tested myeloid lineage cell populations (TCL1wt 

CD74wt CD11b+/CD18+: 15.47±8%, CD11c+: 32.29±19.1%, Gr-1+: 21.57±7.9%, 

F4/80+:8.46±4.7%; TCL1wt CD74ko CD11b+/CD18+: 17.3±6.5%, CD11c+: 19.47±1.1%, 

Gr-1+: 38.23±6.4%; F4/80+:3.58±0.7%). However, a significant increase of monocytes 

and granulocytes was observed in the spleen of TCL1+ CD74ko mice (CD11b+/CD18+: 

2.1±0.4% TCL1+ CD74wt vs. 8.57±2.3% TCL1+ CD74ko; Gr-1+: 7.1±1.4% TCL1+ 

CD74wt vs. 18.68±4.9% TCL1+ CD74ko). Dendritic cells were found equally in the 

spleens of TCL1+ CD74wt and TCL1+ CD74ko mice (9.69±1.2% TCL1+ CD74wt vs. 
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15.33±3.7% TCL1+ CD74ko). Additionally, F4/80+ macrophages were also found in 

similar amounts (1.34±0.7% TCL1+ CD74wt vs. 3.4±2.1% TCL1+ CD74ko). 

 

 

Figure 11: Flow cytometric analyses of myeloid cells in the spleen of TCL1+ CD74ko mice 
A: Flow cytometric analysis of myeloid cells in isolated splenocytes from a TCL1wt CD74ko mouse. 
Splenocytes were stained with CD11b, CD11c, CD18, CD45, F4/80 and Gr-1 antibodies. After gating on 
CD45+-cells, expression of other antigens was analyzed. B: Splenocytes from aged mice (~12 months) 
were isolated and used for flow cytometric analyses. Different myeloid cell types were distinguished 
within the CD45+ cell population. [t-test, *p<0.05, **p<0.005, bars show SEM; TCL1wt CD74wt n=3 (n=5 
for CD11b+/CD18+ and n=7 for F4/80+), TCL1wt CD74ko n=3 (n=7 for CD11b+/CD18+ and F4/80+), 
TCL1+ CD74wt n=8, TCL1+ CD74ko n=4 (n=6 for CD11b+/CD18+ and F4/80+)] 
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To further analyze the number of macrophages in the spleen of leukemic mice, spleen 

sections were stained with a CD68 antibody specific for macrophages. After staining, 

slides were scanned and red stained cells were counted at 40-fold magnification (Figure 

12). The staining showed similar amounts of macrophages between leukemic TCL1+ 

CD74wt and TCL1+ CD74ko mice (14.3±3.8 vs. 20±6.1 of CD68+ cells). 

 

Figure 12: Macrophages in the spleen of TCL1+ CD74ko mice 
Spleen sections of leukemic mice were stained for CD68 by immunohistochemistry. A: Two examples of 
the staining (40-fold magnification) per genotype are shown (CD68 positive cells are dark red). B: 10 
high power fields per mice were counted and the mean depicted in the box plot. [t-test, n.s. p>0.05, bars 
show SEM; n=5 per group] 

 

2.4 Impact of CD74 deletion on apoptosis and proliferation of malignant B cells 

CD74 as a receptor has been shown to regulate the activity of several pro-survival 

pathways such as PI3K/AKT, MAPK or NF-B in normal and malignant B cells [94]. 

To study the effect of CD74 on the apoptosis and the proliferation, both parameters 

were measured in malignant B cells from the spleen of TCL1+ CD74ko mice and 

compared to TCL1+ CD74wt mice. 

2.4.1 Apoptosis of malignant B cells in TCL1+ CD74ko mice 

Since CD74 plays a pivotal role in the proliferation and survival signaling in B cells 

[46], apoptosis rate was analyzed in malignant B cells from TCL1+ CD74wt and TCL1+ 

CD74ko mice in situ via immunohistochemistry and ex vivo by culturing. First spleen 

sections of leukemic mice were stained for cleaved Caspase 3, a critical molecular 

effector of apoptosis, which is responsible for the proteolytic cleavage of many key 
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proteins [164]. After staining, slides were scanned and brown stained cells were counted 

at 40-fold magnification (Figure 13). 

 

Figure 13: Apoptosis rate in the spleens of TCL1+ CD74wt and TCL1+ CD74ko mice 
Spleen sections of leukemic mice were stained for cleaved Caspase 3 by immunohistochemistry. A: Two 
examples of the staining (40-fold magnification) per genotype are shown (cleaved Caspase 3+ cells are 
brown). B: 10 high power fields per mice were counted and the mean depicted in the box plot. [t-test, n.s. 
p>0.05, bars show SEM; TCL1+ CD74wt n=6; TCL1+ CD74ko n=4] 

 

Staining of cleaved Caspase 3 in spleens of leukemic mice showed no significant 

difference in the number of stained cells, representing apoptotic cells, between TCL1+ 

CD74wt and TCL1+ CD74ko. Quantification of 10 bright fields per mouse showed 

insignificantly more apoptotic cells in the spleens of TCL1+ CD74ko mice [TCL1+ 

CD74wt 4.71±1.2 vs. TCL1+ CD74ko 10.63±5.2 cleaved Caspase 3-positive cells]. 

To have a closer look at the survival of TCL1-induced leukemic cells after deletion of 

CD74, ex vivo analyses of apoptosis was carried out. Splenocytes from leukemic mice 

were cultured in cell culture medium. Spontaneous apoptosis of unstimulated 

splenocytes was then measured by staining for Annexin V and 7-AAD using flow 

cytometry. Figure 14 shows the percentage of viable cells (Annexin V and 7-AAD 

negative) after ex vivo culturing for 24 h. Cells from leukemic TCL1+ CD74ko mice 

showed an insignificant higher amount of viable cells after unstimulated culturing 

[Figure 14A; TCL1+ CD74wt 54±8% vs. TCL1+ CD74ko 85±1% viable cells].  



Results 

- 29 - 

 

Figure 14: In vitro apoptosis analyses of leukemic mice 
Splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice were isolated and analyzed for 
viability by staining for Annexin V and 7-AAD after 24h in culture A: without additional stimuli [Mann 
Whitney test, n.s. p>0,05, bars show SEM; n=6 per group] B: with Fludarabine (50 µM) treatment. 
[Mann Whitney test, n.s. p>0.05, bars show SEM; n=4 per group] 

 

Furthermore apoptosis was tested after treatment with Fludarabine, a purine nucleoside 

analog and the major choice for CLL chemotherapy. The drug is cytotoxic against both 

dividing and resting cells [165, 166]. In dividing cells, fludarabine inhibits ribonucleo-

tide reductase and DNA synthesis [167] whereas in quiescent cells the main mechanism 

of cytotoxicity appears to be inhibition of cellular DNA repair processes leading to the 

induction of apoptosis [168]. Cells from both groups showed a similar reduction of 

viability after treatment with Fludarabine (Figure 14B; TCL1+ CD74wt 34±7% vs 

TCL1+ CD74ko 59±10% viable cells). 

 

2.4.2 Proliferation of malignant B cells in TCL1+ CD74ko mice 

Besides apoptosis, proliferation of malignant B cells was measured in both mouse 

models. Two different methods were used to analyze the proliferation capacity of B 

cells in vivo. The first one was measuring the BrdU incorporation. Bromodeoxyuridine 

(BrdU) is an analog of the DNA precursor thymidine and is incorporated into newly 

synthesized DNA by cells entering and progressing through the S phase of the cell cycle 

[169]. The incorporated BrdU can be stained with a specific BrdU antibody. Here 

leukemic mice (~9 months) were injected with BrdU intraperitoneally and sacrificed for 

splenocyte isolation after 24h. 
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Figure 15: Proliferation capacity of lymphocytes from TCL1+ CD74wt and TCL1+ CD74ko 
mice 
Mice were injected with BrdU (2 mg) intraperitoneally and splenocytes were isolated after 24h. The cells 
were stained with CD45, CD5, CD19 and a BrdU antibody. BrdU uptake then was measured via flow 
cytometry in A: lymphocytes (CD45+) and B: malignat B cells (CD5+/CD19+). [t-test *p<0.05, bars show 
SEM; n=5 per group] 

 

Flow cytometric analyses gating on lymphocytes showed a higher amount of 

proliferating lymphocytes in TCL1+ CD74ko spleens compared to TCL1+ CD74wt mice 

(Figure 15A; TCL1+ CD74wt 7.3±1.2 % vs. TCL1+ CD74ko 12.9±1.3% of lymphocytes). 

On the other hand, gating on CD5+ B cells showed no differences in the proliferation 

capacity of malignant B cells between both groups (Figure 15B; TCL1+ CD74wt 7.4±0.9 

% vs. TCL1+ CD74ko 11.7±1.9% of CD5+ B cells). 

Second, proliferation was quantified using immunohistochemistry. Spleen sections of 

leukemic mice were stained for Ki-67 expression. Ki-67 is a nuclear protein that is 

present at low levels in quiescent cells but is increased in proliferating cells [170]. After 

staining, slides were scanned and brown stained cells were counted at 40-fold 

magnification. Quantification of Ki-67 positive cells in the spleen sections showed that 

both genotypes display equal amounts of proliferating cells (Figure 16; TCL1+ CD74wt 

324±79.1 vs. TCL1+ CD74ko 332.8±24.2 Ki-67 positive cells). 
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Figure 16: Proliferation in the spleen of TCL1+ CD74wt and TCL1+ CD74ko mice  
Spleen sections from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice were immunohistochemically 
stained with Ki-67 antibody. A: Two examples of the staining (40-fold magnification) per genotype are 
shown (Ki-67+ cells are brown). B: 10 high power fields per mice were counted and the mean depicted in 
the box plot. [t-test; n.s. p>0.05, bars show SEM; n=4 per group] 

 

2.5 Overall survival of TCL1+ CD74ko mice 

To compare CLL pathogenesis between the two mouse models, overall survival of both 

groups was monitored. Around 40 mice per group were included in the survival 

experiment. Observation was carried out until mice became moribund (weight loss 

<10%, apathy, swollen abdomen or lymph nodes). Sick animals, not caused by CLL, 

were euthanized and censored in the Kaplan-Meier curve. Parallel the mice were 

analyzed for the leukemic load by a 3-month blood examination as described previously 

(2.2.2). Survival observation was carried out for 700 days. A median survival of 414 

days for TCL1+ CD74wt mice was observed, which is in accordance with data within our 

research group. Mice from the TCL1+ CD74ko group showed a median survival of 430 

days, which is not significantly different to the control group.  
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Figure 17: Overall survival of TCL1+ CD74ko mice 
Overall survival of TCL1+ CD74wt and TCL1+ CD74ko mice was observed for up to 700 days. [Mantel-
Cox test, p>0.05; ticks show censored events; TCL1+ CD74wt n=47; TCL1+ CD74ko n=48] 
 

2.6 Syngeneic transplantation of murine CLL cells into CD74ko mice 

In 2001 the group of Hofbauer et al. described the syngeneic transplantation of CLL-

like cells from Eµ-TCL1-transgenic mice into wild type mice [171]. Since CLL cells 

highly depend on the microenvironment to survive and proliferate, this model is a good 

tool to analyze the role of the microenvironment in the engraftment of an established 

malignant clone. 

In this project, this method was used to further analyze the influence of CD74 in the 

microenvironmental cells (e.g. dendritic cells or monocytes) on the development of the 

CLL-like disease. For this purpose, the spleen of highly leukemic C57BL/6 Eµ-TCL1 

mice (TCL1+/+) were removed and the malignant B cells isolated as described under 

5.11. Cells were injected into young (~3 months) wild type and CD74ko mice (C57BL/6 

and C57BL/6 CD74ko) intraperitoneally. The engraftment of the CLL-like cells was 

observed through blood sampling every week. Both groups, CD74wt and CD74ko mice, 

showed an engraftment of the malignant TCL1+ B cells after 2 weeks of injection. 

Measurement of CD5-expressing B cells in the peripheral blood over 6 weeks showed 

similar growth of the malignant cells in both CD74wt and CD74ko mice (Figure 18A). 

Additionally, both groups presented splenomegaly at the time of death with a similar 

spleen weight (CD74wt 1.16±0.1 g vs CD74ko 1.17±0.2 g) (Figure 18B). The median 
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survival of both groups was reached after 6 weeks with a insignificant longer survival of 

CD74ko mice, 44 days, compared to CD74wt mice, 36.5 days (Figure 18C). 

 

Figure 18: Syngeneic transplantation of malignant TCL1+ B cells 
Isolated and purified malignant B cells from a leukemic C57BL/6J TCL1+ mice were injected i.p. into 
C57BL/6J CD74wt or CD74ko mice. In this experiment malignant cells obtained from two different mice 
were used. A: Engraftment of the CD5+ B cells was examined by taking blood samples from recipient 
mice every week. CD5+ B cells were measured using flow cytometry. [bars show SEM; CD74wt n=12; 
CD74ko n=13]. B: Spleen weight at time of death. [t-test, n.s. p>0.05, bars show SEM; CD74wt n=7, 

CD74ko n=6] C: Overall survival of recipient mice after injection of malignant B cells. [Mantel-Cox test, 
p>0.05; ticks show censored events; CD74wt n=14, median survival 36.5 days; CD74ko n=10, median 
survival 44 days] 
 

2.7 CD74-dependent regulation of pro-survival pathways 

Based on the available publications, showing CD74 as an important regulator of pro-

survival pathways such as PI3K/AKT, MAPK and NF-B [94], the signaling in murine 

TCL1-induced CLL was analyzed. Using the malignant cells from TCL1+ CD74wt mice 



Results 

- 34 - 

and comparing them to cells from TCL1+ CD74ko mice, we aimed to distinguish 

between CD74-dependent and – independent signaling events. 

2.7.1 Activation of pro-survival pathways in unstimulated murine CLL cells 

To analyze the activation status of key players in the pro-survival pathways in B cells 

from TCL1+ CD74wt and TCL1+ CD74ko mice, splenocytes of highly leukemic mice 

were isolated and immediately lysed. Proteinlysates were analyzed by immunoblotting. 

In order to study the activation of the PI3K/AKT pathway, phosphorylation of AKT 

(S473) (pAKT) was detected and showed weak activation of AKT with only one mouse 

per group showing a strong band for pAKT. The phosphorylation of GSK3 is 

inhibited by activated AKT. Here, the phosphorylation of GSK3 (S9) also showed no 

clear difference between both genotypes. The activation of the MAPK pathway was 

studied by detecting the phosphorylation of ERK1/2 (T202/Y204) (pERK) and showed 

strong bands in the majority of the probes suggesting a high basal activationof the 

MAPK pathway in malignant B cells in both TCL1+ CD74wt and TCL1+ CD74ko mice. 

The activation of the NF-B pathway was also studied by detecting phosphorylation of 

p65 (S536) (pNF-B), which showed similar patterns in both groups. 

 

Figure 19: Activation of pro-survival pathways in unstimulated murine CLL cells 
Proteinlysates from isolated splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice 
(CD5+/CD19+-cells >50%) were separated using SDS-PAGE and transferred on to a nitrocellulose 
membrane. Immunodetection was performed using the Odyssey Imaging system. [one mouse per column; 

pSyk (Y525/526), pAKT (S473),pGSK3 (S9), pERK (T202/Y204), pNF-B (S536)] 
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Since the B cell receptor signaling (BCR) is of particular importance for CLL cell 

survival and proliferation [23, 172], the activation of SYK, a kinase directly 

downstream of the B cell receptor, was also studied. Phosphorylation of SYK 

(Y525/Y526) (pSYK) was detected in all samples and was similar between TCL1+ 

CD74wt and TCL1+ CD74ko mice (Figure 19). 

2.7.2 Activation of pro-survival pathways in MIF-stimulated murine CLL cells 

CD74-signaling was shown to be activated through binding of the macrophage 

migration inhibitory factor (MIF) [94], which then leads to the activation of the 

PI3K/AKT, MAPK and NF-B pathway. Here, splenocytes from leukemic TCL1+ 

CD74wt and TCL1+ CD74ko mice were stimulated with recombinant MIF and activation 

of pro-survival pathways was analyzed. To avoid B cell isolation, which might 

stimulate B cells beforehand, only splenocytes from highly leukemic mice with at least 

70% malignant B cells (CD5+/CD19+) in the spleen were used.  

 

Figure 20: Activation of pro-survival pathways upon MIF stimulation 
Splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice (CD5+/CD19+-cells >70%) were 
isolated and starved for 4h. Stimulation with recombinant murine MIF (100ng/ml) was carried out for the 
depicted timepoints. Protein lysates were separated using SDS-PAGE and transferred on to a 
nitrocellulose membrane. Immunodetection was performed using ECL detection. Top left shows a 

representative Immunoblot. Densitometry of 4 independent experiments (3 for SYK and NF-B 
phosphorylation) was evaluated using ImageJ software. ( pSyk (Y525/526), pAKT (S473), pERK 

(T202/Y204), pNF-B (S536)) [t-test; * p<0.05; bars show SEM] 
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Proteinlysates were analyzed by immunoblotting for phosphorylation of SYK, AKT, 

ERK1/2 and NF-B. Figure 20 shows a clear AKT activation upon MIF stimulation in 

splenocytes from TCL1+ CD74wt mice (median ratio pAKT to AKT 2±0.3), which is 

significantly diminished in leukemic cells from TCL1+ CD74ko mice (median ratio 

pAKT to AKT 1.2±0.1). Phosphorylation of SYK, ERK1/2 and NF-B varied among 

the tested mice and showed no clear difference between both groups.  

 

2.7.3 Signal transduction upon MIF stimulation in human CLL cells 

To confirm the results from MIF stimulation experiments in murine leukemic cells, 

human CLL samples were also stimulated with recombinant human MIF (see 5.9). 

Similar to murine TCL1+ CD74wt cells, a clear induction of AKT activation through 

phosphorylation was observed after stimulation with recombinant MIF (median ratio 

pAKT to AKT 1.47±0.2) (Figure 21). Activation of NF-B was also observed after 5 

min of MIF stimulation, whereas ERK phosphorylation slightly decreased after 

stimulation with recombinant MIF. 

 

Figure 21: Activation of pro-survival pathways upon MIF stimulation in human CLL 
CLL cells were isolated from blood samples and starved overnight. Stimulation with human recombinant 
MIF (100ng/ml) was carried out for the depicted timepoints. Protein lysates were separated using SDS-
PAGE and transferred on to a nitrocellulose membrane. Immunodetection was performed using ECL 
detection or the Odyssey Imaging system. On the left a representative Immunoblot is shown. 
Densitometry of 4 independent experiments was evaluated using ImageJ software. (pAKT (S473), pERK 

(T202/Y204), pNF-B (S536)). Patient status: Raji stage II, Binet stage A-B, IGVH unmutated, untreated, 
2 of 4 patients del13q. [bars show SEM] 
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2.7.4 CD74 receptor stimulation in murine CLL cells 

To test whether the signaling events from above (2.7.2) were CD74 receptor specific, 

splenocytes from leukemic mice were stimulated with an antibody against CD74. As 

described under 5.9 splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice 

were isolated and stimulated with the CD74 antibody or with an IgG control antibody. 

As depicted in Figure 22 on the left, both the CD74 antibody and the IgG control 

induced AKT and ERK1/2 phosphorylation in cells from a TCL1+ CD74wt mouse. In 

cells from the leukemic TCL1+ CD74ko mouse neither the CD74 antibody nor the IgG 

control antibody could noticeably induce AKT or ERK1/2 phosphorylation. Further 

testing of the antibody after removing of sodium azide in the antibody dilution and 

blocking the FC receptor on the tested cells, to avoid unspecific stimulation of the cells, 

also did show AKT phosphorylation upon stimulation with IgG control antibody (data 

not shown). 

 

Figure 22: Activation of pro-survival pathways upon CD74 antibody stimulation 
Splenocytes from a leukemic TCL1+ CD74wt and TCL1+ CD74ko mouse (CD5+/CD19+-cells >70%) were 
isolated and starved for 4h. Stimulation with CD74 specific antibody or IgG control antibody (5 µg/ml) 
was carried out for the depicted timepoints. Protein lysates were separated using SDS-PAGE and 
transferred on to a nitrocellulose membrane. Immunodetection was performed using ECL detection or the 
Odyssey Imaging system. [pAKT (S473), pERK (T202/Y204)]. 

 

2.7.5 MIF signaling involving CD74 co-receptors CXCR2, CXCR4 and CD44 

MIF signaling does not only rely on CD74 receptor binding, but MIF also binds to the 

chemokine receptors CXCR2 and CXCR4. Both receptors were found to form a 

receptor complex with CD74 (reviewed in [73]). Next to CXCR2 and CXCR4, is CD44 

an integral member of the CD74 receptor complex leading to MIF signal transduction 

[105]. All three receptors have been shown to work together with CD74 to activate the 

pro-survival signaling pathways involving PI3K/AKT in B cells [105, 173] (Figure 3). 



Results 

- 38 - 

2.7.5.1 CD74 co-receptor expression levels in TCL1+ CD74ko mice 

First the expression level of CD44 and CXCR4 on B cells from TCL1+ CD74ko mice 

was measured in blood samples using flow cytometry.  

CD44 expression is known to increase during leukemogenesis in TCL1-transgenic mice 

[152]. Therefore surface expression levels of CD44 were measured in preleukemic and 

leukemic TCL1+ CD74wt and TCL1+ CD74ko mice (Figure 23). CD44 expression was 

further distinguished between normal B cells (CD19+) and malignant B cells 

(CD5+/CD19+) in the tested groups. In correlation with published data, TCL1+ CD74wt 

mice showed an increase in CD44 expression during leukemia development (CD19+: 

preleukemic 24.81±3.6 vs leukemic 52.08±6.2 MFI; CD5+/CD19+: preleukemic 

47.17±3.9 vs leukemic 65.67±6.5 MFI). The same increase was observed for CD44 

expression in B cells from TCL1+ CD74ko mice (CD19+: preleukemic 44.76±3.9 vs 

leukemic 91.22±12.6 MFI; CD5+/CD19+: preleukemic 76.21±2.7 vs leukemic 

99.89±14.9 MFI). Noticeably there is a significantly higher surface expression of 

CD44 overall in TCL1+ CD74ko mice compared to TCL1+ CD74wt mice. 

 

Figure 23: Surface CD44 expression on B cells from pre- and leukemic TCL1+ mice 
Blood samples from TCL1+ CD74wt and TCL1+ CD74ko mice were taken at a preleukemic stage (~ 3 
months) and at the leukemic stage (~ 12 months). CD44 surface expression was measured using flow 
cytometry. Using the CD19+ or CD5+/CD19+-gate, mean fluorescent intensity (MFI) of the CD44 signal 

was normalized to the appropriate isotype control (MFI). [Mann Whitney test, * p<0.05, bars show 
SEM; n=4 per group] 
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CXCR4 expression was also shown to be up regulated in CLL cells [174] and is known 

to form a functional receptor complex with CD74 binding MIF [116]. Therefore 

CXCR4 surface expression was measured in TCL1+ CD74ko B cells from blood samples 

and compared to TCL1+ CD74wt, as well as to TCL1wt CD74wt and TCL1wt CD74ko mice 

(Figure 24). The results show no significant difference of CXCR4 expression in B cells 

(CD19+) between wild type and TCL1-transgenic mice (TCL1wt CD74wt 2.34±0.8 vs 

TCL1+ CD74wt 1.98±0.7 MFI). Additionally, deletion of CD74 did not influence 

CXCR4 expression on B cells in wild type or TCL1-transgenic background (TCL1wt 

CD74ko 2.39±0.5 vs TCL1+ CD74ko 2.67±0.3 MFI). 

 

Figure 24: Surface CXCR4 expression on B cells from murine blood samples 
Blood samples from TCL1wt CD74wt, TCL1wt CD74ko and TCL1+ CD74wt, TCL1+ CD74ko mice were 
taken at ~4 months of age. CXCR4 surface expression was measured using flow cytometry. Using the 
CD19+-gate, mean fluorescent intensity (MFI) of the CXCR4 signal was normalized to the appropriate 

isotype control (MFI). [Mann Whitney test, n.s. p>0.05, bars show SEM; TCL1wt CD74wt, TCL1wt 
CD74ko n=5; TCL1+ CD74wt, TCL1+ CD74ko n=4] 

 

2.7.5.2 MIF stimulation of murine CLL cells upon CXCR2- and CXCR4- or 

CD44 inhibition  

Since CXCR2, CXCR4 and CD44 are involved in MIF/CD74-dependent signaling the 

influence of these receptors/co-receptor on the CD74-dependent AKT activation in 

murine malignant B cells was further studied. Therefore stimulation experiments with 

recombinant MIF from 2.7.2 were performed using CXCR2- and CXCR4-inhibitors or a 

CD44 blocking antibody, to exclude MIF signal transduction through those additional 
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receptors. Figure 25 shows a representative immunoblot of murine leukemic cells 

stimulated with recombinant MIF (rMIF) under inhibiting conditions. As seen before, 

cells from the TCL1+ CD74wt mouse showed an activation of AKT when stimulated 

with rMIF, which is diminished in cells from a TCL1+ CD74ko mouse. Addition of 

CXCR2 and CXCR4 inhibitors led to an increase in the basal pAKT-level compared to 

cells starved without inhibitors (TCL1+ CD74wt CXCR 2+4 0min 1.46), while in TCL1+ 

CD74ko the basal pAKT-level decreased (TCL1+ CD74ko CXCR 2+4 0min 0.39). 

Nonetheless, pAKT levels in both mice slightly increased upon stimulation with rMIF. 

Inhibition of CD44 also led to a decreased pAKT-level in TCL1+ CD74ko before 

stimulation, which couldn not be induced after stimulation with rMIF. In contrary, 

activation of AKT was unaffected by CD44 antibody treatment in TCL1+ CD74wt cells. 

 

Figure 25: rMIF stimulation under CXCR2 and CXCR4 or CD44 inhibition 
Splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice (CD5+/CD19+-cells >70%) were 
isolated: Cells were serum starved in culture medium containing CXCR2 and CXCR4 inhibitors 
(SD225002: 45 nmol and AMD31000: 30 nmol respectively) or CD44 inhibiting antibody (IM7: 10 
µg/ml) for 4h.Stimulation with recombinant murine MIF (100ng/ml) was carried out afterwards for the 
depicted timepoints. Protein lysates were separated using SDS-PAGE and transferred on to a 
nitrocellulose membrane. Immunodetection was performed using ECL detection. Densitometry was 

evaluated using ImageJ software. [pAKT (S473), pERK (T202/Y204), pNF-B (S536)] 

 

Activation of ERK was induced trough stimulation with rMIF in both genotypes and 

was unaffected by treatment with the inhibitors or the CD44 blocking antibody. 

Phosphorylation of NF-B was slightly induced after stimulation with rMIF and was 
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unaffected by CD44 antibody treatment in both genotypes. Repetition of the experiment 

with longer stimulation times showed that inhibition of the chemokine receptors 

CXCR2 and CXCR4 as well as CD44 did result in similar MIF-induced AKT, ERK1/2 

and NF-B phosphorylation in TCL1+ CD74ko compared to TCL1+ CD74wt cells 

(Figure 26). 

 

Figure 26: Densitometrical analyses of rMIF stimulation under CXCR2 and CXCR4 or 
CD44 inhibition 
Splenocytes from leukemic TCL1+ CD74wt and TCL1+ CD74ko mice (CD5+/CD19+-cells >70%) were 
isolated. Stimulation with recombinant murine MIF (100ng/ml) was carried out after starvation for the 
depicted timepoints. Protein lysates were separated using SDS-PAGE and transferred on to a 
nitrocellulose membrane. Immunodetection was performed using ECL detection. Densitometry was 

evaluated using ImageJ software. [pAKT (S473), pERK (T202/Y204), pNF-B (S536)] A: Cells were 
starved for 4h in culture medium containing CXCR2 and CXCR4 inhibtors (SD225002: 45 nmol and 

AMD31000: 30 nmol respectively. [n=2 for AKT and ERK phosphorylation, n=1 for NF-B 
phosphorylation; bars show SEM] B: Cells were serum starved for 4h in culture medium containing 
CD44 inhibiting antibody (IM7: 10 µg/ml). [n=1] 

 

2.8 B cell development in TCL1+ CD74ko mice 

CD74 has been found to control several aspects of the immune system. One example is 

its involvement in B cell maturation which leads to an developmental block of CD74ko 

B cells at the immature stage [121]. Phenotypically, the differentiation block is 

characterized by an accumulation of marginal zone B cells and a decreased life-span of 

follicular B cells [123]. Therefore the B cell maturation in TCL1+ CD74ko mice was 

analyzed and compared to TCL1+ CD74wt and TCL1wt control mice. Splenic B cells of 

young (~2 months) and aged (~ 9 months) mice were analyzed by flow cytometric 
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analyses using antibodies against CD19, CD21/35, CD45 and IgD, which allowed the 

determination of different stages of B cell development in the spleen (transitional stage 

1, transitional stage 2 and marginal zone B cells) (Figure 27). 

 

Figure 27: Flow cytometric analyses of B cell maturation in the spleen 
Splenocytes were isolated and stained for flow cytometric analyses of B cell subpopulations. Splenocytes 
were stained with CD19, CD21/CD35, CD45 and IgD. Lymphocytes were clearly distinguishable by 
CD45 expression and the side scatter. Using the lymphocyte gate, B cells were distinguished by CD19 
expression. Gating on CD19+ cells, B cells from transitional stage 1 (CD21/35low, IgDlow), transitional 
stage 2 (CD21+, IgDhigh) and marginal zone (CD21high, IgD low) were distinguished. 

 

As published before [121], young TCL1wt CD74ko mice showed a developmental block 

between the transitional stages 1 and 2 and a significant increase in marginal zone B 

cells compared to wild type mice (Transitional 1: TCL1wt CD74wt 10.5±0.9 % vs. 

TCL1wt CD74ko 20.6±1.1 %; Transitional 2: TCL1wt CD74wt 75.9±1.8 % vs. TCL1wt 
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CD74ko 41.4±1.2 %; Marginal Zone: TCL1wt CD74wt 5.3±0.8 % vs. TCL1wt CD74ko 

19±0.6 %) (Figure 28A). This effect was completely abolished in young mice crossed 

with the Eµ-TCL1-transgenic mouse. Only an increase in marginal zone B cells was still 

observed in TCL1+ CD74ko compared to TCL1+ CD74wt mice (Marginal Zone: TCL1+ 

CD74wt 6.8±0.2 % vs. TCL1+ CD74ko 10.3±0.4 %).  

 

Figure 28: B cell development in young and old TCL1+ CD74ko mice 
Splenocytes were analyzed by flow cytometric analyses for different B cell subpopulations. A: Young 
mice (~2 months). [n=3 per group; t-test, *** p<0.0005, ** p<0.005; bars show SEM]. B: Aged mice (~9 
months). [t-test, ** p<0.005, *** p<0.0005, bars show SEM; TCL1wt CD74wt and TCL1wt CD74ko n=6, 
TCL1+ CD74wt n=9, TCL1+ CD74ko n=8;] (B cell subpopulations from transitional stage 1 (CD21/35low, 
IgDlow), transitional stage 2 (CD21+, IgDhigh) and marginal zone (CD21high, IgD low) 
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To further analyze B cell development upon CD74 deletion in a leukemic background, 

splenocytes from aged mice were also measured via flow cytometry (Figure 28B). 

While there was still a significant accumulation of marginal zone B cells in aged 

TCL1wt CD74ko mice compared to TCL1wt CD74wt mice (Marginal Zone: TCL1wt 

CD74wt 7.6±1.8 % vs. TCL1wt CD74ko 20.5±5.5 %), there was a similar amount of 

transitional stage 1 and 2 B cells in the spleen. In leukemic Eµ-TCL1-transgenic mice, 

the amount of the three tested B cell subpopulations was similar between CD74-wild 

type and -knock out mice. Interestingly, leukemic mice, TCL1+ CD74wt and TCL1+ 

CD74ko, showed a significant increase in B cells of the transitional stage 1 compared to 

TCL1wt CD74wt and TCL1wt CD74ko mice.  
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3 Discussion 

This project aimed to clarify the influence of the CD74 receptor during B cell 

lymphomagenesis and the mechanisms underlying CD74-dependent signaling in B cells 

using the CLL mouse model. 

After studies within our group showed the importance of the chemokine MIF and the 

surface protein CD44 in the pathogenesis of TCL1-induced CLL [44, 152], both 

involved in CD74 signaling pathways, a central role for CD74 in CLL development and 

CLL survival signaling was postulated.  

This study shows, that targeted genetic deletion of Cd74 does not influence the 

development of CLL in the Eµ-TCL1-transgenic mice. 

3.1 CD74 expression is upregulated in Eµ-TCL1-transgenic mice 

This study used the commonly utilized Eµ-TCL1-transgenic mouse model. At around 8- 

12 months these mice develop a CLL-like disease resembling the aggressive form of the 

disease [54].  

To test the validity of the Eµ-TCL1 mouse model for the analysis of CD74, expression 

of CD74 was measured during leukemia development. Results show that the expression 

of CD74 is upregulated in CD5-positive B cells from the peripheral blood, whereas it 

stays similar to wild type B cells in the spleen. While results of CD74 overexpression in 

malignant cells from the peripheral blood are in line with the literature showing an 

increase of CD74 expression in human CLL cells from patient blood samples [142], 

uniform expression of CD74 in malignant B cells from the spleen has not been 

described before. The differential regulation of CD74 expression between varying 

compartments is hinting to a correlation between the microenvironment and the CD74 

expression in malignant B cells. Analyses of CD74 expression in human CLL cells from 

proliferative centers such as the lymph node could provide further insight. 

3.2 CD74 deletion does not influence development in TCL1-induced CLL 

Eµ-TCL1-transgenic mice where crossed with the CD74ko mice and resulting TCL1+ 

CD74ko mice then were compared to the well described TCL1+ CD74wt mice [175]. 

Although CD74 expression is over expressed in CLL cells, monitoring of the mice 

during disease development showed that overall survival of Eµ-TCL1-transgenic mice 

was not influenced by CD74 deletion.  
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Accordingly, TCL1+ CD74ko mice showed similar increase in the leukocyte count and 

number of malignant B cells in the course of disease development. Proliferation and the 

apoptosis rate of the malignant cells in the TCL1+ CD74ko model also show similar 

results to TCL1+ CD74wt mice. Additionally, infiltration of malignant cells into 

lymphoid tissue is independent from CD74 expression leading to similar enlargement of 

liver and spleen at time of death. Taken together the results show that CD74 deletion 

does not influence disease development in TCL1-induced CLL. 

These results are unexpected since CD74 has been shown to be an important factor in 

pro-survival signaling in B cells [111] and is suggested as a target for B cell neoplasia 

therapy [130]. Previous studies on CD74 in B cell survival were using primary human 

CLL cells from blood samples or B lymphoma cell lines [46, 105] excluding the 

microenvironment, an important factor for CLL survival (reviewed in [36]). Here the 

role of the microenvironment was taken into consideration by using the CLL mouse 

model. CLL cells actively shape their microenvironment by producing cytokines, 

chemokines and by subverting normal accessory cells to promote leukemia cell survival 

[43]. This dynamic process might compensate the loss of CD74 signaling in B cells and 

lead to “normal” CLL development.  

Another factor plays the proto-oncogene TCL1, which is overexpressed in the B cells of 

the mouse model. TCL1 itself has been shown to interact with AKT and to enhance its 

kinase activity leading to the transduction of anti-apoptotic and proliferative signals 

[65], which itself could be a strong supporter for CLL cells.  

Despite the microenvironment and the TCL1 overexpression, deletion of the CD74-

ligand MIF or the CD74-co-receptor CD44 is sufficient to delay CLL development in 

the Eµ-TCL1 mouse model [44, 152]. MIF is a ubiquitously expressed proinflammatory 

and immuneregulatory cytokine involved in inflammation by promoting the release of 

pro-inflammatory mediators, such as TNFα and interleukins (IL-1β, IL-6, IL-8) [176], 

which themselves have been implicated to support CLL cell survival [39]. Additionally, 

MIF does not bind to CD74 exclusively. The chemokine receptors CXCR2 and CXCR4 

also are high-affinity receptors for MIF, triggering cell responses [101]. Next to binding 

to surface receptors, MIF is endocytosed into the cells leading to endosomal signaling 

responses [173]. Reinart et al. suggested that MIF supports the expansion of the 

malignant clone via the accumulation of tumor associated macrophages (TAMs) to the 

leukemia homing organs [44], but it remains to be explored if MIF secreted by B cells 

or macrophages is the main source.  
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Nonetheless the process of MIF-induced TAM accumulation into leukemia homing 

organs might be independent of CD74 signaling. Indeed, screening for myeloid cells 

and macrophages in the spleen of leukemic mice shows that infiltration of macrophages 

and dendritic cells is comparable between TCL1+ CD74wt and TCL1+ CD74ko mice, 

supporting the hypothesis that MIF regulated migration of TAMs is CD74 independent. 

In the case of the CD74-co-receptor CD44, Fedorchenko et al. showed that stimulation 

of the CD44 receptor by its natural ligands hyaluronic acid and chondroitin sulfate 

promotes CLL survival in vitro [152], supporting the possibility that CD44 promotes 

CLL survival by a mechanism independent of MIF/CD74 signaling. 

In another attempt, the role of CD74 in the tumor microenvironment was tested. While 

TCL1 expression is restricted to B cells, deletion of Cd74 is ubiquitously expressed in 

the tested mouse model. To dissect the influence of CD74 in cells from the CLL 

microenvironment, e.g. dendritic cells or monocytes, syngeneic transplantation 

experiments were established in the laboratory. Results display similar engraftment of 

established TCL1 B cell clones (C57Bl/6J TCL1+/+) in CD74ko mice (C57Bl/6J CD74-/-) 

and CD74wt mice (C57Bl/6J CD74wt/wt), showing that engraftment of a B cell clone was 

independent from CD74 expression in the microenvironment.  

To elucidate the role of CD74 in the B cell clone, transplantation of an established 

TCL1+ CD74ko B cell clone (B6C3H Eµ-TCLwt/+ CD74-/-) was carried out but was not 

successful (data not shown). The syngeneic genetic background of experiment mice is 

crucial for successful transplantation [171]. Therefore transplantation within the 

C57Bl/6J background is working, while the transplantation within the undefined and 

mixed background of the B6C3H Eµ-TCL1-transgenic mice was unsuccessful in this 

study. 

3.3 AKT kinase activation upon MIF stimulation is CD74-dependent 

The established TCL1+ CD74ko mouse model provides a good tool to further analyze the 

mechanisms underlying MIF/CD74-dependent signaling in B cells.  

First, the activation of signaling pathways in unstimulated B cells of both TCL1+ 

CD74wt and TCL1+ CD74ko mice was analyzed, showing the same status between both 

genotypes.  

MIF stimulation experiments show that only AKT activation is CD74-dependent, while 

the other tested pro-survival pathways involving SYK, ERK1/2 and NF-B are 

unaffected. In concurrence, published data show that binding of MIF to CD74 leads to 
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transmission of survival signals trough the AKT pathway [94]. Nonetheless, it has also 

been shown that ERK1/2 and NF-B pathways are activated by MIF binding to CD74 in 

cell lines, macrophages, monocytes and Raji B cells [111, 113], which cannot be 

observed in the here tested murine B cells.  

Data from the literature using the CD74 antibody (C-16) to analyze CD74 specific 

activation could not be reproduced [46, 111, 139]. Here stimulation with the isotype 

control led to similar signaling events in cells stimulated with the CD74 antibody. 

To verify the results from the murine samples, primary CLL cells from patient samples 

were also stimulated with recombinant MIF and analyzed for the activation of the pro-

survival signaling. Similarly, AKT activation upon MIF stimulation is observed. 

Phosphorylation of ERK1/2 remained unaffected, while NF-B activation was induced. 

Overall these results show that AKT activation is induced upon MIF stimulation in the 

murine and the human system, but these signaling events are not efficient to induce 

proliferation or cell survival in B cells. 

Since MIF signaling responses are also transmitted through the chemokine receptors 

CXCR2 and CXCR4 and the CD74 co-receptor CD44 [45, 101], their influence on MIF 

stimulated signaling activation was addressed. First the expression of CXCR4 and 

CD44 has been measured in the mouse models showing that deletion of CD74 in Eµ-

TCL1-transgenic mice increases the surface expression of CD44 in B cells. CXCR4 

expression remained similar between both mouse models although CXCR4 as well as 

CD44 expression are known to increase during CLL development [152, 174]. Taking 

into consideration that CXCR4 expression had been measured in young mice with not 

fully manifested leukemia, differential CXCR4 expression is possible in highly 

leukemic mice. The chemokine receptor CXCR2 has been described not to be expressed 

on splenic B cells [177] and therefore has not been measured.  

Nonetheless inhibitors for both chemokine receptors have been included in experiments 

to exclude the possibility of MIF signaling via CXCR2 or CXCR4. Stimulation 

experiments with CXCR2 and CXCR4 inhibition before MIF addition show a skewed 

AKT activation profile suggesting unspecific activation of the cells by these inhibitors 

before MIF stimulation. Although both inhibitors have been shown to be highly specific 

receptor antagonist for human cells [177-179], it is possible that the murine systems 

reacts differently. Moreover, MIF might activate other pathways, which have not been 

described before. 
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Similarly, AKT activation upon MIF stimulation seems to be unaffected by CD44 

antibody treatment. CD44 is known to mainly transmit MIF/CD74-induced ERK1/2 

activation [105], but in this experiment treatment with the CD44 antibody could not 

inhibit MIF-dependent ERK1/2 activation. The CD44 antibody IM7, used in the 

experiments, does not block the binding of hyaluronic acid to CD44 [180] but has been 

shown to efficiently block CD44 transmitted cellular functions [181]. Additionally, the 

CD44 antibody induces cell death in malignant B cells from Eµ-TCL1-transgenic mice 

in vitro [152]. The question whether the CD44 antibody IM7 is sufficiently blocking 

MIF/CD74-transmitted signaling through CD44 has not been analyzed yet. Further 

analyses with genetically deleted CXCR2, CXCR4 and especially CD44 could provide 

additional insights into MIF-dependent signaling events. 

To gain further insight into CD74 dependent signaling, gene array analyses with RNA 

samples from splenic B cells of young pre-leukemic TCL1+ CD74wt and TCL1+ CD74ko 

mice has been screened (data not shown). Pathway analyses and manually viewing of 

differential expressed genes between TCL1+ CD74wt and TCL1+ CD74ko mice did not 

reveal differential expression of genes involved in B cell signaling events. Gene array 

analyses with samples from aged leukemic mice could provide further insight into the 

gene expression profile of malignant B cells from TCL1+ CD74ko mice. 

3.4 TCL1 overexpression alters B cell development in CD74ko mice 

Overexpression of TCL1 in B cells of CD74ko mice diminishes the B cell differentiation 

block phenotypically found in young CD74ko mice. Studies have shown that CD74 is an 

essential cofactor for B cell maturation by mediating activation of the NF-B 

transcription program [113]. Mice deficient for CD74 show accumulation of immature 

B cells in the transitional stage 1 (T1) and the marginal zone (MZ) B cells in the spleen, 

while follicular, transitional stage 2 (T2) B cells are decreased [123]. Here those 

findings are reproduced in young TCL1wt CD74wt and TCL1wt CD74ko mice.  

However, in young mice transgenic for TCL1, levels of T1 B cells and T2 B cells are 

similar independently from CD74 deletion. Only MZ B cells are still significantly 

accumulated in TCL1+ CD74ko splenocytes. Therefore, TCL1 seems to play an 

important role in B cell differentiation that might compensate for the lack of CD74 

signaling. In fact, TCL1 has been implicated to cooperate with the NF-B pathway 

[182]. More specifically, Ropars et al. showed direct bind of TCL1 to IB, the inhibitor 

of NF-B transcription factors, which may increase the concentration of free NF-B 
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molecules [67]. Our results suggest a higher NF-B activation in TCL1+ CD74ko mice 

which is able to overcome diminished CD74-dependent NF-B signaling. To test this 

hypothesis, several attempts to analyze NF-B activation in B cells from wild type and 

Eµ-TCL1-transgenic mice using the electrophoretic mobility shift assay (EMSA) have 

been done showing varying results between the tested mice (data not shown). So far, the 

hypothesis could not be verified and could be addressed in future experiments.  

To have a complete picture of the B cell development in the mouse models from this 

project, aged or leukemic mice have been analyzed as well. Aged mice show similar 

amounts of B cell subpopulations independent of the CD74 status. In all tested 

genotypes the amount of immature B cells is comparable between CD74 wild type and 

knock out mice. Only MZ B cells are still significantly increased upon CD74 deletion. It 

seems that defective B cell development in CD74ko mice only becomes apparent in 

young mice, while older CD74ko mice only shown an increase in MZ B cells. 

Interestingly, leukemic Eµ-TCL1-transgenic mice show a significant increase in T1 B 

cells regardless of CD74 deletion compared to wild type mice. Published data shows 

that CLL cells from Eµ-TCL1-transgenic mice show a CD5+, CD19+, CD21low, IgDlow 

phenotype [183], so that malignant B cells from the mice tested here fall in the category 

of transitional stage 1 B cells (characterized as CD19+/CD21/35low, IgDlow). 
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3.5 Conclusion and Outlook 

For the first time, this study analyzed the role of CD74 in B cell lymphomagenesis in 

vivo by using the Eµ-TCL1-transgenic CLL mouse model. 

Previous studies on MIF, the high affinity ligand of CD74, and the CD74 co-receptor 

CD44, have shown that both molecules promote disease development in the CLL mouse 

model, postulating a central role for CD74 in CLL development and CLL survival 

signaling. 

In this study we could show that like in human CLL, CD74 expression is upregulated in 

malignant B cells of Eµ-TCL1-transgenic mice. Furthermore, targeted genetic deletion 

of Cd74 in this CLL model does not influence the development of CLL, the 

proliferation and apoptosis of the malignant B cells or the overall survival of the 

animals. While MIF induced AKT activation, a kinase involved in B cell pro-survival 

signaling, it failed to stimulate a number of additional pathways through CD74, such as 

MAPK/ ERK1/2 and NF-B.  

Additionally, we found that TCL1 overexpression diminishes the CD74-related B cell 

maturation block in mice showing the impact of TCL1 on B cell signaling. Although we 

could not show the effect of TCL1 on AKT and NF-B signaling in this study, 

published data show that TCL1 activates both pathways. Therefore future studies could 

focus on the role of TCL1 onto B cell development and B cell survival signaling.  

Taken together this study showed that targeted gene deletion of Cd74 - other than its 

ligand MIF and its co-receptor CD44 - does not influence the development of CLL in 

Eµ-TCL1-transgenic mice and suggested that the pathways mediated by MIF through 

CD74 are not sufficiently potent to promote growth of CLL cells. 
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4 Materials 

4.1 Instruments 

Device and Type Company 

4°C Fridge; -20°C and -80°C Freezer AEG, Stockholm, Schweden 

ABI 3130 sequencer Applied Biosystems, Darmstadt 

Centrifuge 5415 R, 5415 D, 5810 R Eppendorf, Hamburg

Counting chamber Typ: Neubauer Marienfeld, Lauda Königshofen 

Elisa-Reader μQuant BioTek, Bad Friedrichshall 

Film processor Curix 60 AGFA, Köln 

Gallios™ 10/3 flow cytometer Beckmann Coulter, Krefeld 

Incubator Heraeus, Hanau 

Incubator C200 Labotec, Göttingen 

Lab water purification system Elix Advantage 15 Millipore, Schwalbach/Ts 

Laminar flow hood Laminar Air HA2448 Heraeus, Hanau 

Lasergene software DNAStar; Madison, WI, USA 

Medical X-Ray film Fujifilm, Düsseldorf 

Microscope Axiophot Zeiss, Göttingen 

Mini centrifuge Rotilabo® Carl Roth GmbH & Co. KG, Karlsruhe 

NanoDrop 1000 PEQLAB Biotechnologie, Erlangen 

Nitrogen tank Thermo Fisher Scientific, Bonn 

Odyssey® Imaging system Li-Cor Bioscience, Lincoln, USA 

PCR-machine Mastercycler EPgradient S Eppendorf, Hamburg 

pH meter Mettler-Toledo, Schwerzenbach 

Power supply peqPower 300  PEQLAB Biotechnologie, Erlangen 

Protein electrophoresis system BioRad Laboratories, München 

QuadroMACS™ separator  Miltenyi Biotech, Bergisch Gladbach 

Radiographic cassette AGFA, Köln 

Scanner Pannoramic 250 Flash 3DHISTECH Kft., Budapest, Ungarn 

Scanner Perfection 3490 Photo Epson, Meerbusch 

Single channel pipettes Research® variabel Eppendorf, Hamburg 

Special accuracy weighing machine Navigator™ OHAUS, Parsippany, NJ, USA 

ThermoMixer Eppendorf, Hamburg 

Trans-Blot DS Semi Dry BioRad Laboratories, München 
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UV-Camera system LTF Labortechnik, Wasserburg 

Vortex VWR, Darmstadt 

Water pump jet Brand, Wertheim 

Waterbath1003 Heidolph, Schwabach 

Welding equipment TEW, Reseda, USA 

XE-5000 hematology-analyzer SysmexEurope GmbH, Norderstedt 

 

4.2 Chemicals and reagents 

Chemicals and reagents Company 

2-mercaptoethanol Carl Roth GmbH & Co. KG, Karlsruhe 

5x Green GoTaq® Reaction Buffer Promega, Mannheim 

Acetic acid Carl Roth GmbH & Co. KG, Karlsruhe 

Acrylamide 30% Carl Roth GmbH & Co. KG, Karlsruhe 

Agarose Biozym, Hess, Oldendorf 

Ammonium chloride (NH4Cl) Carl Roth GmbH & Co. KG, Karlsruhe 

Ammonium persulfate (APS)  Carl Roth GmbH & Co. KG, Karlsruhe 

Bovine Serum Albumin (BSA) PAA, Pasching, Österreich 

Bromphenol blue Carl Roth GmbH & Co. KG, Karlsruhe 

Calcium chloride (CaCl2) Carl Roth GmbH & Co. KG, Karlsruhe 

CellPack BD Pharmingen™, Heidelberg 

Complete mini (Protease inhibitor) Roche, Mannheim 

DABCO Carl Roth GmbH & Co. KG, Karlsruhe 

Disodium hydrogen phosphate (Na2HPO4) Carl Roth GmbH & Co. KG, Karlsruhe 

dNTP´s Fermentas GmbH, St. Leon-Rot 

DTT AppliChem GmBH, Darmstadt 

Ethanol Carl Roth GmbH & Co. KG, Karlsruhe 

Ethidium bromide Carl Roth GmbH & Co. KG, Karlsruhe 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth GmbH & Co. KG, Karlsruhe 

Fetal Calf Serum (FCS) PAA, Pasching, Österreich 

Formaldehyde 4% Merck, Darmstadt 

Glycerol Carl Roth GmbH & Co. KG, Karlsruhe 

HEPES Gibco, Darmstadt 

Isopropanol Carl Roth GmbH & Co. KG, Karlsruhe 
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LSM 1077 PAA, Pasching, Österreich 

Lymphoprep STEMCELL Technologies SARL, Köln 

Methanol Carl Roth GmbH & Co. KG, Karlsruhe 

Milk powder Carl Roth GmbH & Co. KG, Karlsruhe 

Monopotassium phosphate (KH2PO4) Carl Roth GmbH & Co. KG, Karlsruhe 

Mowiol 4-88 Carl Roth GmbH & Co. KG, Karlsruhe 

n-Butanol Sigma-Aldrich, Steinheim 

Nonidet P-40 (NP-40) Gibco, Darmstadt 

Penicillin/Streptomycin-Solution Sigma-Aldrich, Steinheim 

PhosStop (Phosphatase inhibitor) Roche Diagnostics, Mannheim 

Poly (dI/dC) Thermo Fischer Scientific, Bonn 

Ponceau S  Sigma-Aldrich, Steinheim 

Potassium bicarbonate Carl Roth GmbH & Co. KG, Karlsruhe 

Power SYBR® Green  Applied Biosystems, Darmstadt 

RosetteSep® Human B cell enrichment cocktail STEMCELL Technologies SARL, Köln 

RPMI-1640  PAA, Pasching, Österreich 

Sodium azide (NaN3) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium chloride (NaCl) Carl Roth GmbH & Co. KG, Karlsruhe 

Sodium dodecyl sulfate (SDS) Carl Roth GmbH & Co. KG, Karlsruhe 

Taq-polymerase Fermentas GmbH, St. Leon-Rot 

Tetramethylethylenediamine (TEMED) Carl Roth GmbH & Co. KG, Karlsruhe 

Tri-sodium citrate Carl Roth GmbH & Co. KG, Karlsruhe 

Trilogy Cell Marque Corp., CA, USA 

Tris Merck, Darmstadt 

Trypan Blue Stain 0,4% Gibco, Darmstadt 

Tween-20  Carl Roth GmbH & Co. KG, Karlsruhe 

Xylene Carl Roth GmbH & Co. KG, Karlsruhe 

4.3 Substances 

Substance company 

AMD 3100 (CXCR4 inhibitor) Sigma-Aldrich, Steinheim 

Recombinant mouse MIF R&D systems 

Recombinant human MIF Kindly provided by Dr. Richard Bucala 

SD225002 (CXCR2 inhibitor) Cayman Chemical 
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4.4 Antibodies 

4.4.1 Antibodies for Immunoblotting 

Antibody specificity Clone Source Company 

-Actin C-11 goat SantaCruz Technologies, CA, USA 

Akt (pan) 40D4 mouse CellSignaling Technology, MA, 
USA 

BCL-2 Poly6119 rabbit BioLegend®, CA, USA 

CD74 In-1 rat BD Pharmingen™, Heidelberg 

p42/44 MAPK (ERK1/2) Polyclonal rabbit CellSignaling Technology, MA, 
USA 

p42/44 MAPK (ERK1/2) 3A7 rabbit CellSignaling Technology, MA, 
USA 

GAPDH FL-335 rabbit SantaCruz Technologies, CA, USA 

NF-B (p65) D14E2 rabbit CellSignaling Technology, MA, 
USA 

phospho-AKT (S473) D9E rabbit CellSignaling Technology, MA, 
USA 

Phosphor-GSK3 D85E12 rabbit CellSignaling Technology, MA, 
USA 

phospho-p42/44 MAPK 
(ERK1/2) (T202/Y204) 

D13.14.4E rabbit CellSignaling Technology, MA, 
USA 

phospho-NF-B (p65) (S536) 93H1 rabbit CellSignaling Technology, MA, 
USA 

phospho-Syk (Y525/526) Polyclonal rabbit CellSignaling Technology, MA, 
USA 

Syk Polyclonal rabbit CellSignaling Technology, MA, 
USA 

TCL1 Polyclonal rabbit CellSignaling Technology, MA, 
USA 

Goat IgG Polyclonal donkey SantaCruz Technologies, CA, USA 

Mouse IgG HRP-linked Polyclonal horse CellSignaling Technology, MA, 
USA 

Rabbit IgG HRP-linked Polyclonal goat CellSignaling Technology, MA, 
USA 

Rat IgG Poly 4054 goat BioLegend®, CA, USA 
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4.4.2 Antibodies for cell culture 

Antibody specificity Clone company 

mouse IgM F(ab)2 µ chain LE/AF  SouthernBiotech, AL, USA 

CD44 LE/AF IM7 BioLegend®, CA, USA 

CD74 C-16 SantaCruz Technologies, CA, USA 

human IgG P-17 SantaCruz Technologies, CA, USA 

 

4.4.3 Antibodies for flow cytometry 

Antibody specificity Clone Fluorochrome Company 

CD3 17A2 APC-Cy7 BioLegend®, CA, USA 

CD5 53-7.3 PE BioLegend®, CA, USA 

CD5 53-7.3 PerCP BioLegend®, CA, USA 

CD5 53-7.3 PerCP-Cy5.5 eBioscience, Inc, CA, USA 

CD11b M1/70 PE-Cy7 BioLegend®, CA, USA 

CD11c N418 APC-Cy7 BioLegend®, CA, USA 

CD18 M18/2 AlexaFluor 647 BioLegend®, CA, USA 

CD19 6D5 PacificBlue BioLegend®, CA, USA 

CD21/CD35 7E9 FITC BioLegend®, CA, USA 

CD23 B3B4 PE-Cy7 BioLegend®, CA, USA 

CD44 IM7 PE BD Pharmingen™, Heidelberg 

CD45 30-F11 PacificOrange Life technologies™, Darmstadt 

CD74 In-1 FITC BD Pharmingen™, Heidelberg 

CXCR4 REA107 APC Miltenyi Biotec, Bergisch Gladbach 

F4/80 BM8 AlexaFluor 488 BioLegend®, CA, USA 

Gr-1 RB6-8C5 PE BioLegend®, CA, USA 

IgD 11-26c.2a PE BioLegend®, CA, USA 

IgM RMM-1 APC BioLegend®, CA, USA 

Isotype control rat 
IgG2b 

A95-1 FITC BD Pharmingen™, Heidelberg 

Isotype control rat 
IgG2b 

A95-1 PE BD Pharmingen™, Heidelberg 

Isotype control REA REA293 APC Miltenyi Biotec, Bergisch Gladbach 
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4.5 Mouse strains 

TCL1+ mouse  Hetrozygous transgenic overexpression of human TCL1  [54] 

 in B cells ( B6C3H Eµ-TCL1) 

CD74ko mouse  Homozygous knockout of the Cd74 gene   [117] 

   (C57Bl/6J CD74-/-) 

TCL1+/+ mouse  Homozygous transgenic overexpression of human TCL1 

 in B cells (C57Bl/6J Eµ-TCL1) 

 

4.6 Oligonukleotides 

Primer sequence amplicon 

CD74 wt 1 5’-CGA CCT CAT CTC TAA CCA TGA ACA G-3’  

CD74 wt 2 5’-TCA CTC AAG GCA ACC TTC CTG C-3’ 165 bp 

CD74 neo 1 5’-CTT GGG TGG AGA GGC TAT TC-3’  

CD74 neo 2 5’-AGG TGA GAT GAC AGG AGA TC-3’ 260 bp 

TCL1 universal 5’-GCC GAG TGC CCG ACA CTC-3’  

TCL1 reverse 5’-CAT CTG GCA GCA GCT CGA-3’ 300 bp 

-Actin forward 5’-GAC AAA ACT CCT GAG GCC ATA-3’  

-Actin reverse 5’-TTG CTG ATC CAC ATC TGC TG-3’ 490 bp 

NF-B sense 5’-AGT TGA GGG GAC TTT CCC AGG C-3’  

NF-B antisense 5’-G CCT GGG AAA GTC CCC TCA ACT-3’  

 

4.7 Special reagents and Kits 

Ragent or Kit Manufacturer 

5x Green Go Tag reaction buffer Promega, Mannheim 

ApopTag® Plus peroxidase In Situ Apoptosis Detection 
Kit 

Millipore , Schalbach/Ts. 

CD19 microbeads, mouse Miltenyi Biotec, Bergisch Gladbach 

Complete Mini Roche Diagnostics, Mannheim 

FITC AnnexinV Apoptosis Detection Kit I BD Pharmingen™, Heidelberg 

FITC BrdU Flow Kit BD Pharmingen™, Heidelberg 

Microvette® 100 LH Sarstedt, Nümbrecht 
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NE-PER® Nuclear and Cytoplasmic Extraction 
Reagents 

Thermo Fischer Scientific, Bonn 

Pan B cell Isolation Kit II Miltenyi Biotec, Bergisch Gladbach 

PhosSTOP Roche Diagnostics, Mannheim 

Pierce ECL Western Blotting Substrate Thermo Fischer Scientific, Bonn 

RNeasy Plus Mini Kit  Qiagen, Hilden 

Roti® Quant Carl Roth GmbH & Co. KG, 
Karlsruhe 

UltraVision LP Kit Thermo Fischer Scientific, Bonn 

4.8 Primary patient material 

All CLL patients in this study had a confirmed diagnosis according to standard criteria [Cheson 

et al. 1996]. Patients represented different Binet stages and have been untreated. All patients 

provided written informed consent and the study was in accordance with the declaration of 

Helsinki and approved by the internal review board of the University Hospital Cologne. 

The study was supported by the Biobank of the Center of Integrated Oncology Cologne Bonn 

funded by the German Cancer Aid, with special references to Lukas C. Heukamp and Thomas 

Landwehr. 

4.9 Software 

Adobe Illustrator  

Adobe Photoshop 

Endnote  

FlowJo 

GraphPad Prism 

Image J 

Image Studio Lite 

Kaluza® Flow Analysis Software 

Microsoft Office 

Pannoramic Viewer 
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5 Methods 

5.1 Breeding 

Breeding of Eµ-TCL1 transgenic mice with CD74-knockout animals (CD74ko) were done in the 

animal facility of the Experimental Medicine at the University Hospital of Cologne. Crossing of 

both strains led to F2 generations of Eµ-TCL1 mice with CD74 in wildtype (TCL1+ CD74wt) or 

knockout (TCL1+ CD74ko) configuration. The animals were kept under a controlled atmosphere 

with semi-annual health checks in individually ventilated cages at groups of maximum 5 mice. 

They were allowed to feed and drink ad libitum. Breeding was done on a one to one basis and 

pups were weaned after 21 days. Experiments were approved by the state of North Rhine 

Westphalia, Germany, under #9.93.2.10.31.07.098. 

5.2 Genotyping 

To assess the correct genotype in experimental mice a piece of the tail is cut at the time of 

weaning. Genomic DNA is prepared and the region of interest is amplified in a polymerase 

chain reaction (PCR). 

5.2.1 DNA-Preparation 

A piece of tail is put into a tube and lysed for an hour in 100 μl of lysis buffer in a thermomixer 

at 95°C. The probes were cooled of at 4°C for 30 min and then 100 µl neutralisation buffer is 

added. After mixing the samples are used for the following PCR or stored at 4°C. 

DNA Lysis buffer: 

10 M NaOH 2.5 ml

0,5 M EDTA 1 ml

add H2O 1 l

  

Neutralisation buffer: 

1 M Tris-HCl 40 ml

add H2O 1 l

         

5.2.2 Polymerase-Chain-Reaction (PCR) 

Amplification of DNA fragments is done by polymerase-chain-reaction (PCR). A piece of DNA 

is amplified with specific primers binding to the gene of interest. The amplification is done with 

Taq (named after the thermophilic bacterium Thermus aquaticus) -polymerase by in vitro 

enzymatic replication.  
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PCR reaction mix TCL1-Genotyping 

PCR reaction components concentration Amount for n=1 

Green Go Taq Reaction Buffer 5x 5 µl 

dNTP’s 10 mM 0.5 µl 

Primer TCL1 universal 10 pmol 1 µl 

Primer TCL1 reverse 10 pmol 1 µl 

Primer �-Actin forward 10 pmol 0.75 µl 

Primer �-Actin reverse 10 pmol 0.75 µl 

Taq-Polymerase  0.2 µl 

H2O  14.8 µl 

Template  1 µl 

  25 µl 

  

Cycler -Program 

PCR reaction components temperature time  

Inititaion 95°C 10 min  

Denaturation 95°C 30 sec  

Annealing 62°C 30 sec 30 cycles 

Elongation 72°C 1 min  

Final elongation 72°C 5 min  

    

PCR reaction mix TCL1-Genotyping 

PCR reaction components concentration Amount for n=1 

Green Go Taq Reaction Buffer 5x 5 µl 

dNTP’s 10 mM 0.5 µl 

Primer CD74 wt 1 10 pmol 1 µl 

Primer CD74 wt 2 10 pmol 1 µl 

Primer CD74 neo 1 10 pmol 1 µl 

Primer CD74 neo 2 10 pmol 1 µl 

Taq-Polymerase  0.2 µl 

H2O  14.8 µl 

Template  1 µl 

  25 µl 
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Cycler -Program 

PCR reaction components temperature time  

Inititaion 95°C 10 min  

Denaturation 95°C 1 min  

Annealing 59°C 45 sec 36 cycles 

Elongation 72°C 1 min  

Final elongation 72°C 7 min  

 

5.2.3 Agarose gel electrophoresis 

Horizontal agarose gel electrophoresis is carried out to separate DNA fragments according to 

size. Agarose gel is made by dissolving agarose in 1x TAE buffer through boiling. Gels contain 

1.5 % to 2 % agarose, depending on the size of the DNA fragments. Adding 0.5µg/ml ethidium 

bromide (EtBr) to the gels, allowed visualization of DNA under UV-light. After setting of the 

gels at room temperature, 12.5 µl of PCR product is loaded on to the gel. The Green Go Taq 

Reaction Buffer used for PCR (see 5.2.2) already provided gel loading buffer to avoid leakage 

of the samples from the wells. Agarose gels are run in 1x TAE buffer for approximately 30 min 

at 100V. DNA bands then are visualized by UV light (366 nm) exposure. 

50x TAE buffer: 

Tris 242 g

0.5 M Na2EDTA (pH=8,0) 100 ml

add H2O 1 l

5.3 Blood analysis 

5.3.1 Blood sampling 

For the analysis of leukemia, blood of the experimental mice is taken from the lateral tail vein. 

Mice are warmed up under red-light to dilate the blood vessel. An incision at the tail vein is 

done by a scalpel and the blood is collected in a heparin coated microvette. A total volume of 

approximately 40-50 µl blood is taken for each mouse and then further used for differential 

blood cell count and flow cytometry. 

5.3.2 Differential blood count 

To determine the complete blood count, blood is diluted 1:10 with CellPack and measured on a 

Sysmex XE-2100. Characteristics of the cells are measured by flow cytometry where the blood 

is separated by a semiconductor into a number of channels. The XE-2100 has got five different 
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channels, differentiating the white blood count, the differential leukocyte count as well as 

reticulocyte count and fluorescence platelet count. 

5.4 Extraction of organs 

If an animal died or was euthanized because of severe disease, organs including spleen, bone 

marrow, liver and lymph nodes were taken out and fixed in a 4 % formalin solution and stored 

in the dark at 4°C until embedding in paraffin. Before fixation, parts of the spleen were prepared 

for further ex vivo analysis by FACS, for detection of the malignant clone or apoptosis and 

proliferation. 

5.5 Cell culture 

5.5.1 Culture conditions 

Primary cells were cultured at 37 °C, a relative humidity of 90 % and 5 % CO2. RPMI cell 

culture medium is supplemented with 10 % (v/v) FCS, 1 % HEPES-buffer and 1 % penicillin / 

streptomycin. 

5.5.2 Counting 

Cells were diluted with Trypan Blue, which is a vital stain selectively staining dead cells. 

Approximately 10 μl of dilution were transferred into a “Neubauer” chamber. Four squares were 

counted and an average was calculated. The number of cells (n) in one square equals n x 104 per 

ml divided through dilution factor of Trypan Blue. 

5.5.3 Freezing and thawing of cells 

Cells were harvested at 300 g for 5 min. The pelleted cells were then resuspended in freezing 

medium at 1x107 cells / ml. Aliquots were pipetted into cryotubes and frozen at -80°C in 

freezing containers. For long term storage cryotubes were transferred into liquid nitrogen 

storage tanks. 

For thawing of the cells, frozen vials were taken out of the liquid nitrogen tank, carefully 

thawed at 37 °C in the water bath and immediately transferred into a 15 ml tube containing 10 

ml of prewarmed culture medium. Pelleting the cells by centrifugation at 300 g for 5 min 

removed the toxic DMSO. Cells were then resuspended in fresh culture medium. 

Freezing medium: 

RPMI 500 ml

DMSO 10 %

FCS 40 %
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5.6 Isolation of primary murine cells 

5.6.1 Isolation of primary murine splenocytes 

Animals were killed by cervical dislocation and the abdominal cavity opened after sterilisation 

of the surface with 70 % ethanol. After localisation of the spleen the organ was taken out with 

tweezers and transferred into ice-cold PBS. A single cell suspension was obtained by 

homogenizing the tissue and filtering cells trough a 100 µm nylon cell strainer (BD Pharming) 

into PBS on ice. After rinsing the mesh with 5-10 ml PBS, cells were harvested by 

centrifugation (300g 5 min). Red blood cells were lysed by 1x AcK buffer for 3 min at room 

temperature. After washing the cells with PBS, cells were counted and used for further 

experiments.  

10 x PBS: 

NaCl 80 g

KCl 2 g

Na2HPO4-2H2O 17.8 g

KH2PO4 2.4 g

add H2O 1 l

pH 7,4 

   

10 x AcK: 

NH4Cl  82.9 g

KHCO3 10 g

EDTA 0.37 g

add H2O 1 l

5.6.2 Isolation of primary murine B cells 

Isolation of B cells from murine splenocytes was carried out by using the MACS®-technology 

from Miltenyi Biotec. In principle cells are magnetically labelled with MACS MicroBeads and 

then the sample is applied to a MACS column placed in a MACS separator. While unlabelled 

cells pass through the magnetic field of the separator, magnetically labelled cells are retained 

within the column. Afterwards the column is removed from the separator and the magnetically 

labelled cells are eluted from the column. With this technology both labelled and unlabelled 

cells can easily be isolated with high purity and recovery. The efficiency of the B cell isolation 

was subsequently tested by flow cytometry. 
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5.6.2.1 Positive B cell selection 

For positive selection of B cells the CD19 MicroBeads for mouse were used (Miltenyi Biotec) 

according to manufacturer’s instructions. CD19 MicroBeads bind to CD19 expressing B cells 

and lead to the retention of labelled B cells in the magnetic field. After washing of the column, 

labelled B cells were eluted by removing the column from the separator.  

5.6.2.2 Negative B cell selection 

To avoid stimulation of B cells through labelling with CD19 MicroBeads, negative selection 

was carried out. The Pan B cell II isolation kit for mouse (Miltenyi Biotec) provided a cocktail 

of biotinylated CD3ε, CD4, CD8a, CD49b, Gr-1, and Ter119 antibodies labelling non B cells. 

These cells are subsequently labelled with anti-biotin MicroBeads. With this method unlabeled 

B cells flow through the magnetic field, leaving magnetically labeled non B cells in the column. 

5.7 Isolation of primary human CLL cells 

Primary human CLL cells were kindly provided by Thomas Landwehr from the CLL Biobank 

of the Center of Integrated Oncology Cologne Bonn. Blood samples were taken from patients 

into S-Monovette® with EDTA K3E (Sarstedt). Then 50 µl RosetteSep human B cell 

enrichment cocktail was added to 1 ml blood and incubated for 20 min at room temperature. An 

equal amount of wash buffer was added. This mixture then was carefully pipetted to the side of 

a SepMate™-50 tube filled with 15 ml Lymphoprep™ (STEMCELL Technologies). 

Centrifugation at 1200 g for 10 min separated the B cell phase from the other cells. The B cell 

phase was filled into a new tube, where cells were washed with wash buffer and centrifuged at 

300g for 10 min. The supernatant was discarded and the B cell pellet resuspended in culture 

medium. 

Wash buffer: 

DPBS 500 ml

FBS Good (heat inactivated) 50 ml

 

Culture medium: 

RPMI 1640 GlutaMAX™ 500 ml

FBS Good (heat inactivated) 50 ml

Penicillin (10.000 Units) 
/Streptomycin (10 mg/ml)) 

5 ml
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5.8 Flow cytometry 

Fluorescence activated cell sorting (FACS) provides a method to study cells based on the 

specific light scattering and fluorescent characteristics of each cell. Expression of either surface 

or intracellular proteins can further be detected by staining the cells with fluorochrome-

conjugated antibodies (see 4.4.3), whereas cells expressing endogenous fluorescent proteins can 

be detected directly. For flow cytometry single cell suspensions were prepared beforehand.  

5.8.1 Staining of surface proteins 

Up to 1x 107 cells in 100 µl PBS were stained with 1 µl antibody solution for 20 min in the dark 

at room temperature. After staining cells were washed with PBS and centrifuged (300 g 5 min). 

For blood samples, red blood cells were lysed using AcK buffer (see 5.6.1) and then washed 

with PBS. Cell pellets then were resuspended in 100- 200 µl PBS and measured using the 

Gallios™ 10/3 flow cytometer (Beckman Coulter). 

5.8.2 Staining of intracellular proteins 

For staining of intracellular proteins permeabilization reagent IntraPrep™ from Beckmann 

Coulter was used. First, surface staining was carried out as described above. After washing of 

the cells, pelleted cells were resuspended in 50 µl reagent I and mixed well by vortexing. After 

15 min incubation in the dark at room temperature cells were washed with ~ 4 ml PBS 

(centrifugation 300 g 5 min). Then cells were resuspended in 50 µl reagent II without vortexing. 

After 5 min incubation in the dark at room temperature 1 µl of conjugated antibody for 

intracellular staining was added. Staining was carried out for 10 min in the dark at room 

temperature. After washing with ~ 4ml PBS (centrifugation 300 g 5 min), pelleted cells were 

resuspended in 100- 200 µl PBS and measured using the Gallios™ 10/3 flow cytometer. 

5.9 Stimulation experiments 

Stimulation of primary murine splenocytes and human CLL cells was carried out in RPMI 

medium containing 1 % penicillin / streptomycin but no FCS (RPMI+). 1.5x107 cells were used 

per time point and condition.  

Single cell suspensions were washed with RPMI+ and further processed under a sterile laminar 

flow hood to avoid contamination. Cells were then resuspended in RPMI+ to 1.5x107 cells per 

800 µl medium. 800 µl cell suspension was then pipetted into 24-well plates. Human CLL 

samples were starved overnight and murine cells were starved for 4 h under culture conditions. 

Then cells were stimulated with 100 ng/ml recombinant MIF (diluted into 200 µl RPMI+), 5 

µg/ml CD74 anibody (C-16) or 5 µg/ml IgG (P-17) for 0, 5, 15, 30 or 60 min. During the time 

periods cells were kept under culture conditions at 37°C. Stimulation was stopped by quickly 

transferring cell suspensions into 1.5 ml tubes and spinning off at max speed for 30 sec. The 
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supernatant was taken off carefully and cell pellets diluted into 75 µl protein lysis buffer. Lysis 

of cells was carried out as described under 5.10.1. The CD44 inhibiting antibody (IM7 LE/AF 

10 µg/ml) or CXCR2- (SD225002 45 nmol) and CXCR4-inhibitor (AMD3100 30 nmol) were 

added before starvation for 4h. 

5.10 Protein biochemistry 

5.10.1 Preparation of cell lysates 

In order to access the protein status of the cell, the cell membrane needs to be ruptured. 

Therefore cell lysis is carried out. All following steps were carried out on ice to avoid 

degradation of proteins. 

Up to 1x107 cells were resuspended in 50 µl protein lysis buffer containing protease and 

phosphatase inhibitors, and lysed on ice for 30–60 min. Cell debris, DNA and insoluble proteins 

were spun off by centrifugation at 13.000 rpm for 15 min at 4°C. The supernatant containing the 

soluble protein lysate was taken and pipetted into a fresh tube. Protein lysates were either used 

directly or stored at -80°C until further use. 

Protein lysis buffer: 

1 M Tris (pH 7,5) 5 ml

0,5 M EDTA (pH 8,0) 400 µl

5 M NaCl 3 ml

NP-40 0.2 ml

add H2O 100 ml

   PhosphoSTOP and complete mini from Roche were added 

freshly to the protein lysis buffer 1:10. 

5.10.2 Protein quantification 

Protein concentrations in protein lysates were measured using the Roti® Quant from Carl Roth, 

which is based on the method described by Bradford in 1976 [184]. Measurement was carried 

out after manufacturers’ instructions. In short a BSA standard ranging from 0-100 µg was 

prepared and protein lysates were diluted 1:40 till 1:50 with protein lysis buffer to stay within 

the measurable range. 200 µl diluted Roti® Quant solution was added to 50 µl protein sample 

and incubated for 5 min at room temperature. Afterwards the optical density was measured at 

595 nm. Protein concentrations in the samples were calculated based on the BSA standard 

curve. BSA standards were measured in duplicates und samples in triplicates. 
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5.10.3 SDS Polyacrylamide gel electrophoresis (PAGE) 

SDS-PAGE is used to separate denatured proteins according to their molecular weight. 

Therefore two sequential gels were cast, the bottom gel, so called separation gel, is basic (pH 

8.8) and has a high polyacrylamide content (usually 12 %) which allows the separation of 

proteins according to their molecular size. On top, the so called stacking gel is cast which is 

slightly acidic (pH 6.8) and has a lower polyacrylamide concentration (5%), where proteins are 

poorly separated but form a slim defined band. Sample loading buffer containing SDS and -

mercaptoethanol was added to the protein samples (~ 30 µg protein) which were then cooked 

for 5 min at 95°C. Sodium Dodecyl Sulfat (SDS) is an anionic detergent applied to protein 

samples to linearize proteins and impart a negative charge, so that they run towards the positive 

pole during electrophoresis. -mercaptoethanol, a hybrid of ethylene glycol, further denatures 

the proteins by reducing disulfide bonds in the proteins. After cooling off, samples were 

transferred to the gel. Electrophoresis was carried out using a vertical apparatus Mini Protean II 

(BioRad). Equal amounts of protein samples and the molecular weight marker (PageRuler™ 

Prestained, Fermentas) were loaded in the slots of the stacking gel. Gels were run at 120 V, until 

the blue running front has travelled to the bottom of the separating gel.  

 

Solutions 
Stacking gel 

5% 

Separation gel 

12 % 

H2O 3.4 ml 6.6 ml 

Tris (1 M, pH 6.8) 630 µl - 

Tris (1,5 M, pH 8.8) - 5 ml 

10 % SDS 50 µl 200 µl 

10 % APS 50 µl 200 µl 

30 % Acrylamide 830 µl 8 ml 

TEMED 5 µl 20 µl 

 

10 x Electrophoresis buffer: 

Tris 30.28 g

Glycine 144.12 g

SDS 10 g

add H2O 1 l
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4 x Sample buffer: 

1 M Tris (pH 6.8) 5 ml

Glycerol 2 ml

SDS 4 g

-Mercaptoethanol 200 µl

add H2O 10 ml

5.10.4 Protein transfer 

For the detection of the protein of interest, the separated protein bands from the SDS-PAGE are 

transferred on to a membrane by an electrical field. The so called blotting process was achieved 

by using the Semi-Dry-Blot system from BioRad. Proteins were transferred onto nitrocellulose 

membranes. Membranes, filter paper and fibre pads were all pre-soaked in transfer buffer. 

Transfer buffer: 

Glycine 7.21 g

Tris 1.52 g

Methanol 100 ml

add H2O 500 ml

After assembling of the blot and carefully removing air bubbles, transfer of the proteins were 

carried out 45 mA per blot for 1.5 – 2 h. To proof blotting efficiency membranes were stained 

with PonceauS red solution after transfer. PonceauS visualizes proteins by reversibly binding 

positively charged amino groups. Washing with ddH2O removes the dye completely. 

5.10.5 Immunoblotting 

To visualize proteins of interest specific antibodies were used. First membranes were blocked 

with Blotto buffer at room temperature for 1 h to avoid unspecific binding of the antibodies. 

After washing off residual blocking buffer with TBS-T (3 x 10 min), membranes were 

incubated with the specific primary antibody, diluted in antibody diluent, overnight at 4°C. In 

the next day membranes were washed with TBS-T (3 x 10 min) and incubated with the 

appropriate secondary antibody diluted in Blotto buffer at room temperature for at least 1 h. 

Depending on the detection system secondary antibodies were labeled with horse radish 

peroxidase (HRP) or a fluorochrome. After incubation with the secondary antibody, membranes 

were washed with TBS-T (3 x 10 min) and detection was carried out. 
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Blotto buffer: 

Milk powder 25 g

1 M Tris (pH 8.0) 25 ml

5 M NaCl 8 ml

NP-40 1 ml

1.5 M CaCl2 0.4 ml

add H2O 500 ml

 

10 x TBS-T: 

NaCl 87 g

Tris 12.11 g

Tween- 20 10 ml

add H2O 1 l

              pH 7.6 

 

Antibody diluent: 

1 M HEPES (pH 7.4) 2.5 ml

5 M NaCl 25 ml

BSA 2.5 g

Tween-20 0.5 ml

10 % NaN3 1.5 ml

add H2O 250 ml

 

5.10.5.1 Detection by chemiluminescence 

Visualization of HRP-labeled antibodies was carried out by using the enhanced 

chemiluminescent (ECL) detection system. Pierce ECL-reagents A and B (ThermoFischer 

Scientific) were freshly mixed 1:1 and membranes were incubated in ECL-mix for 2 minutes. 

Membranes were briefly freed from excessive liquid and put between two clean clear foils in a 

light protected film cassette. Kodak X-ray films were exposed to membranes between 10 sec 

and 1 h, dependent on antibody and protein load. Exposed films were developed using an 

automated photo developing machine (Kodak). 
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5.10.5.2 Detection by fluorescence 

To visualize fluorochrome-labeled secondary antibodies (IRdye® 800CW or IRdye® 680) 

membranes were scanned on the Odyssey imaging system from Li-Cor at 700 nm or 800 nm. 

5.11 Syngeneic transplantation of TCL1-CLL cells 

Massively enlarged spleens from C57BL/6 Eµ-TCL1 (TCL1+/+) mice were removed and single 

cells were obtained by homogenizing the tissue and filtering the cells trough a 100 µm nylon 

cell strainer. Lymphocyte separation was carried out using LSM 1077 (PAA) according to 

manufacturer’s instruction. Isolated lymphocytes were counted and diluted to 1x107 cells per 

200 µl into PBS. Parallel lymphocytes were analyzed for purity and percentage of malignant B 

cells via flow cytometry. If more than 90% of isolated lymphocytes were malignant B cells 

(expressing CD5 and CD19), cells were stored by freezing or transplanted immediately into 

young recipient mice (~ 3 months) via intraperitoneal injection. The engraftment of the 

malignant cells was observed by measuring blood samples. If recipient mice became highly 

leukemic (over 90 % malignant cells in the blood) or showed signs of suffering, mice were 

sacrificed and lymphocytes isolated as mentioned above. These malignant B cells were further 

stored by freezing or injected into new recipient mice. Malignant cells were transferred into up 

to three different recipient generations. In this study malignant cells were passaged through 1 

recipient generation before transferred to experimental mice, leading to a fast growing and 

aggressive clone. 

5.12 Quantification of proliferating cells 

To analyze the proliferation capacity of murine malignant cells in vivo, BrdU incorporation was 

measured. Bromodeoxyuridine (BrdU) is an analog of the DNA precursor thymidine and 

incorporated into newly synthesized DNA by cells entering and progressing through the S phase 

of the cell cycle [169]. The incorporated BrdU then can be stained with specific anti-BrdU 

antibodies. 

In this study the FITC BrdU Flow Kit from BD Pharming was used. Leukemic mice (~ 9 

months) were injected with 2 mg BrdU i.p and sacrificed after 24 h to isolate primary 

splenocytes (see 5.6.1). Splenocytes then were stained according to manufacturer’s instruction. 

Shortly, cells were stained for surface marker and further permeabilized to allow intracellular 

staining. Then cells were treated with DNase in order to expose BrdU epitopes before they were 

stained with a specific FITC-labelled BrdU antibody. After staining cells were measured via 

flow cytometry.  
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5.13 Quantification of apoptosis 

In order to measure the apoptotic capacity of murine malignant B cells the FITC Annexin V 

Apoptosis Detction Kit from BD Pharming was used. Cells undergoing apoptosis are 

characterized by certain morphologic features including loss of plasma membrane asymmetry 

and attachment, condensation of the cytoplasm and nucleus, and internucleosomal cleavage of 

DNA. One of the early steps involves the exposure of phosphatydilserine (PS) to the extra-

cellular environment. Annexin V is a phospholipid-binding protein that has a high affinity for 

PS and thus serves as a sensitive probe for cells that are undergoing apoptosis. A vital dye like 

7-AAD (7-Amino-Actinomycin), which is a fluorescent intercalator that undergoes a spectral 

shift upon association with DNA, helps to distinguish vital cells from late apoptotic (Annexin V 

and 7-AAD positive) or necrotic cells (only 7-AAD positive). 

To measure apoptosis in murine malignant B cells, mice were sacrificed at leukemic stage (~ 

9months) and primary splenocytes were isolated. Then cells were kept under cell culture 

conditions (see 5.5.1) for 24 h. Depending on the experiment Fludarabin, an purine analog 

interfering with DNA synthesis was added to the culture medium at a concentration of 50 µM. 

Staining for Annexin V and 7-AAD was carried out after manufacturer’s instructions and cells 

measured via flow cytometry. 

5.14 IGVH status 

The IGVH status of samples was kindly carried out by the group of Manuel Montesinos-Rongen 

(Institute for Pathology; UKK Cologne). Shortly, Trizol based RNA extraction from murine 

splenocytes was followed by gene sequence analysis on an ABI3130 sequencer using the 

Lasergene software. Sequence comparison was performed with mouse germline gene sequences 

using the IMGT database. 

5.15 Immunohistochemistry 

For immunohistochemistry staining organs were first fixed in 4% paraformaldehyde to preserve 

tissue from degradation, and to maintain the structure of the cell and of sub-cellular 

components. Fixed organs were then embedded into paraffin wax. Afterwards, using a steel 

knife mounted in a microtome 4 µm thick tissue sections were cut which then were mounted on 

a glass microscope slide. For staining sections were deparaffinized and rehydrated: 

  Incubate sections in Xylene two times for 10 min 

  Incubate sections in decreasing Ethanol for 1 min each; 100% →100% 

→96%→96%→70% 

  Incubate sections in ddH2O for 5 min 

Next antigen retrieval was carried out to break the methylene bridge, which were formed during 

fixation, and expose the antigenic sites in order to allow the antibodies to bind. Therefore 



Methods 

- 72 - 

sections were either boiled (heat induced epitope retrieval) or incubated in acidic buffer for 20 

min. The next steps, blocking and staining, were carried out using the UltraVision LP Kit 

(Thermo Scientific). After washing of the sections (wash buffer 1x TBS-T; see 5.10.5), UltraV 

Block was applied for 5 min and followed by primary antibody incubation.  

Antibody Antigen retrieval Dilution Incubation time and temperature

CD68 30 min 95°C in Trilogy buffer 1:50 60 min, room temperature

cCaspase3 20 min 10mM sodium citrate pH 6,0 1:100 30 min room temperature

Ki-67 20 min 10mM sodium citrate pH 6,0 1:50 30 min room temperature

After another washing step sections were incubated in Enhancer for 15 min, followed by 

another washing step and incubation in AP polymer for 15 min. Then slides were washed three 

times and stained with FastRed solution for ~10 min. During FastRed staining sections need to 

be watched under a microscope to avoid background staining. Staining was stopped by washing 

the slides. Counterstain was carried out using Hemalaun solution for 1 min. Sections were 

embedded in Mowiol. 
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