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Abstract

This thesis deals with magnetic order in condensed matter systems and is divided
into three parts. The first part gives a closed and self-contained introduction to
the Monte Carlo methods used within this thesis with a special emphasis on a
recently introduced feedback optimized parallel tempering algorithm.
The second part deals with chiral magnets, i. e. magnets without inversion sym-
metry in their crystal structure. In these systems, weak spin-orbit coupling leads
to the formation of smooth helical structures with a long periodicity. In 2009,
the existence of a novel magnetic phase consisting of topological stable whirls,
so-called skyrmions, was discovered in these materials. Due to their topological
stability and the fact that they can be packed very densely, skyrmions are cur-
rently considered as promising candidates for future data storage applications. In
this part of the thesis, I analyze how the topological protection of these objects
is destroyed during the phase transition into another (non-topological) phase. It
turns out that the underlying microscopic process is governed by the movement
of monopoles of an emergent magnetic field created by the skyrmions.
The third part of this thesis deals with frustrated spin systems. In these sys-
tems with antiferromagnetic interactions, a special lattice geometry excludes
the simultaneous satisfaction of all competing interactions which often results
in a macroscopic ground state degeneracy. Fluctuations between these differ-
ent ground states prevent the system from developing long-range order and it
remains disordered at all temperatures, which is why these systems are often
referred to as “spin-liquids”. Interestingly, there exists an intrinsic effect called
“order-by-disorder”, in which this degeneracy can be lifted at least partially at fi-
nite temperatures due to entropic reasons, provided that the ground states differ
in their excitation spectra.
I present the first detailed theoretical study of the recently synthesized sweden-
borgite compounds and show that these systems realize spin-liquid ground states
both for the Ising and Heisenberg model. In the latter case, the order-by-disorder
effect is found to result in the entropic preference of coplanar ground states at
low temperatures.
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Kurzzusammenfassung
Diese Arbeit befasst sich mit der magnetischen Ordnung in Festkörpern und
gliedert sich in drei Themenkomplexe. Im ersten Teil werden zunächst die ver-
wendeten Monte Carlo Methoden ausführlich und in sich geschlossen vorgestellt,
wobei der in dieser Arbeit vielfach benutzte feedback optimierte Parallel Tem-
pering Algorithmus gesondert behandelt wird.
Der zweite Teil befasst sich mit chiralen Magneten, d. h. Magneten ohne Inver-
sionssymmetrie in der Kristallstruktur. In diesen Systemen führt die schwache
Spin-Bahn Kopplung zur Bildung von helischen Strukturen mit langer Periode.
Im Jahr 2009 wurde erstmals die Existenz einer neuartigen magnetischen Phase,
bestehend aus topologisch stabilen magnetischen Wirbeln, sogenannten Skyrmio-
nen, in diesen Systemen nachgewiesen. Aufgrund ihrer topologischen Stabilität
und der Tatsache, dass sie auf kleinstem Raum nebeneinander existieren können,
werden Skyrmionen derzeit u. a. als vielversprechende Möglichkeit zur Datenspe-
icherung diskutiert. In diesem Teil der Arbeit untersuche ich, wie der topologische
Schutz dieser Objekte beim Phasenübergang in eine andere (nicht-topologische)
Phase zerstört wird. Es stellt sich dabei heraus, dass der zugrunde liegende
mikroskopische Prozess durch die Bewegung von Monopolen eines emergenten,
d. h. von den Skyrmion erzeugten Magnetfeldes beschrieben werden kann.
Der dritte Teile dieser Arbeit befasst sich mit frustrierten Spinsystemen. In diesen
Systemen mit antiferromagnetischen Wechselwirkungen ist aufgrund der beson-
deren Gitterstruktur eine gleichzeitige Befriedigung aller Wechselwirkungen nicht
möglich, was oftmals in einem makroskopisch entarteten Grundzustand resultiert.
Fluktuationen zwischen diesen Grundzuständen verhindern die Ausbildung von
langreichweitiger Ordnung bei allen Temperaturen, weshalb diese Systeme häufig
auch als “Spin-Flüssigkeit” bezeichnet werden. Die Entartung des Grundzustands
kann durch einen als “Ordnung-durch-Unordnung” bekannten, intrinsischen Ef-
fekt teilweise wieder aufgehoben werden, vorrausgesetzt, dass die Grundzustände
sich in ihren Anregungsspektren unterscheiden.
In diesem Kontext präsentiere ich die erste systematische Studie der erst kür-
zlich synthetisch hergestellten Schwedenborgit Verbindungen und zeige, dass der
Grundzustand dieser Systeme sowohl für das Ising-, als auch das Heisenberg-
Modell Spin-Flüssigkeitsverhalten aufweist. Darüber hinaus zeige ich, dass der
Ordnung-durch-Unordnung Effekt im Heisenberg-Modell auftritt und zur en-
tropischen Bevorzugung von koplanaren Grundzuständen bei tiefen Tempera-
turen führt.
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Samenvatting
In dit proefschrift wordt in drie delen de magnetische ordering behandeld zoals
deze in vaste stoffen voorkomt.
In het eerste deel wordt een op zichzelf staande introductie over de Monte Carlo
simulatiemethoden gegeven. De nadruk zal worden gelegd op de recent in zwang
geraakte methode van feedback optimized parallel tempering algoritmes.
Deel twee van dit proefschrift is gewijd aan chirale magneten. Chirale mag-
neten bezitten geen inversie-symmetrie in hun kristalijne structuur. In dit type
systemen leidt zwakke spin-baankoppeling tot de formatie van gladde helische
structuren met een langdurige periodiciteit.
In 2009 werd het bestaan van een nieuwe magnetische fase, bestaand uit topolo-
gisch-stabiele wervelingen, ontdekt in deze materialen. Deze wervelingen noemt
men skyrmionen. Door hun topologische stabiliteit en het feit dat ze zeer dicht
opeengestapeld kunnen worden, worden materialen met deze fase gezien als veel-
belovend voor digitale data opslag. Dit gedeelte van het proefschrift gaat tevens
in op de opheffing van de topologische bescherming van de skymionen gedurende
de faseovergang naar een andere fase. Het blijkt dat de onderliggende micro-
scopische processen worden gedomineerd door de beweging van monopolen van
een opkomend magnetisch veld, opgewekt door de skyrmionen.
In het derde en laatste deel van dit proefschrift worden anti-ferromagnetisch
gefrustreerde spinsystemen beschouwd. In deze systemen verbiedt de speci-
fieke geometrie van het rooster elke afzonderlijke spin te voldoen aan de opti-
male configuratie. Dit resulteert (doorgaans) in de ontaarding van een macro-
scopische grondtoestand. Fluctuaties tussen deze verschillende grondtoestanden
voorkomen dat het systeem geordend raakt op grote lengteschalen. Op grote
lengteschalen blijft zo’n systeem wanordelijk bij elke temperatuur. Dit is de re-
den dat men naar dit soort materialen refereert als spinvloeistoffen.
Er bestaat een intrinsiek effect dat orde-door-wanorde heet, waarbij de ontaard-
ing (deels) wordt opgeheven bij eindige temperaturen. Dit effect is gestoeld op
entropische redenen en de voorwaarde dat de grondtoestanden verschillen in hun
excitatiespectrum.
Ik verschaf de eerste gedetailleerde theoretische studie van de recentelijk gesyn-
thetiseerde zwedenborgiet-verbindingen en toon aan dat deze systemen spin-
vloeistofgrondtoestanden toelaten, voor zowel het Ising- en Heisenbergmodel. In
het laatstgenoemde geval blijkt bij lage temperaturen het orde-door-wanorde-
effect te resulteren in de entropisch gunstigere configuratie van co-planaire grond-
toestanden.
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Part I.

Monte Carlo methods for
classical spin systems
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1. Introduction
The thermodynamical properties of classical spin models can be determined an-
alytically only in very rare cases. The probably most simple spin model is the
nearest-neighbor Ising model

H = J
∑
〈ij〉

σiσj −B
∑
i

σi, (1.0.1)

where J is the ferromagnetic (J < 0) or antiferromagnetic (J > 0) coupling be-
tween two neighboring spins and the sum runs over all pairs of nearest-neighbors.
B is an external magnetic field and each spin is represented by a variable σ which
can only take the values ±1, representing “spin-up” and “spin-down” states. While
this model is rather simple, it has only been solved analytically in one [1] and
(for vanishing magnetic field) in two dimensions [2]. The problem that arises
in the analysis of the Ising model is the large number of possible configurations
s = {σ1, σ2, ..., σN} that contribute to the calculation of the partition function

Z =
∑
σ1=±1

∑
σ2=±1

...
∑

σN=±1

exp (−H(s)/T ). (1.0.2)

On a lattice with N sites and two possible spin orientations (“up” and “down”) on
each site, there are 2N states in total. In principle, one could simply sum up all
these states in Eq. (1.0.2), but in practice, this is even numerically not possible
for moderate system sizes (not to mention system sizes sufficiently close to the
thermodynamic limit) due to the exponential growth of the phase space with sys-
tem size. The general case of spins with continuous O(n) symmetry, like the XY-
(n = 2) or Heisenberg (n = 3) model, has an even larger phase space and one
thus needs efficient numerical simulation techniques to calculate all quantities of
interest for these systems.

The probably most important technique, which is introduced in this part of the
thesis, is importance sampling Monte Carlo (MC): Instead of taking into account
all states in the calculation of expectation values etc., one uses only those states
which have a significant statistical weight p ∝ exp(−H/T ) at a given tempera-
ture. The heart of every Monte Carlo algorithm is the generation of these states
in a Markov chain by using random numbers, hence the name “Monte Carlo”.
While it is often the only applicable technique, it has also gained importance in
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1. Introduction

the last years due to ongoing advances in computer technologies which allow the
treatment of very large model systems.

In this chapter, I closely follow Ref. 3 and give a full and self-contained introduc-
tion to fundamental Monte Carlo techniques for classical spin systems, starting
with an introduction to the Metropolis algorithm in Sec. 1.1. The problem of
thermal equilibration and auto-correlation times is addressed in Sec. 1.2, followed
by a discussion of statistical errors and their origin in Sec. 1.3. In Sec. 1.4, it
is shown how critical exponentes can be determined by the means of finite-size
scaling. Finally, this chapter closes with a discussion of the implementation of
Monte Carlo methods for continuous spin-variables from a numerical point of
view in Sec. 1.5. Ch. 2 deals with advanced Monte Carlo techniques and gives
a detailed introduction to the feedback optimized parallel tempering algorithm
that is used throughout this thesis.

1.1. The Metropolis algorithm

The calculation of expectation values is one of the main goals in statistical me-
chanics. For an observable O, the expectation value is defined as

〈O〉 =

∑
{s}O(s) exp (−H(s)/T )∑
{s} exp (−H(s)/T )

, (1.1.3)

where H is the Hamiltonian, T the temperature and the sum runs over all states
s of the system. As mentioned in the introduction, the phase space grows expo-
nentially with system size and it is impossible to take all states into account in
Eq. (1.1.3).
However, one does not need to consider all possible states of a system since most
of them will have an almost vanishing statistical weight, e. g. at very low tem-
peratures, only states close to the ground state of the system will be occupied
and contribute to the sum in Eq. (1.1.3). One therefore needs a method to gener-
ate states according to the Boltzmann distribution p(s) = exp (−H(s)/T ) /Z. An
easy way of generating such an ensemble of states has been proposed by Metropo-
lis [4] and later generalized by Hastings [5]. The idea behind their algorithm is to
generate a Markov chain s1 → s2 → s3 → ... of successive states, where the next
state in the chain is chosen with a transition probability P (si → si+1) such that
it occurs with a probability given by the Boltzmann distribution. The probability
pi+1(s) that the state s occurs at timestep (i+ 1) in the chain is

pi+1(s) = pi(s) +
∑
s′

[pi(s
′)P (s′ → s)− pi(s)P (s→ s′)] , (1.1.4)

4



1.1. The Metropolis algorithm

where the sum is taken over all states s′ of the system. The first term in the
sum describes all transitions reaching state s, whereas the second term describes
all states leaving state s. In the limit i → ∞, the probability distribution pi(s)
should be stationary and coincide with the Boltzmann distribution. The sta-
tionarity condition demands that the probability that the state s occurs must be
independent from the position in the chain, i. e. pi+1(s) = pi(s), and one can
rearrange Eq. (1.1.4) to obtain the balance condition∑

s′

p(s′)P (s′ → s) =
∑
s′

p(s)P (s→ s′), (1.1.5)

Using the constraint
∑
s′ P (s→ s′) = 1 on the transition probabilities yields

pi(s) =
∑
s′

pi(s
′)P (s′ → s), (1.1.6)

which can be inserted in Eq. (1.1.4) again to obtain

pi+1(s) =
∑
s′

pi(s
′)P (s′ → s). (1.1.7)

If the Markov chain reaches a simple equilibrium state s as i→∞, this state has
to satisfy

p∞(s) =
∑
s′

p∞(s′)P (s′ → s). (1.1.8)

It is however also possible that the Markov chain reaches a dynamic equilibrium
state in which the probability distribution repeats periodically in a cycle of length
n, i. e.

p∞(s) =
∑
sn−1

P (sn−1 → s)...
∑
s1

P (s1 → s2)
∑
s0

P (s0 → s1)p∞(s0). (1.1.9)

To exclude this undesired behavior, one can impose the detailed balance condition

p(s′)P (s′ → s) = p(s)P (s→ s′), (1.1.10)

which is a stronger constraint than Eq. (1.1.5). It demands that the system
should go as often from state s to s′ as it goes from s′ to s. In a limit cycle as
in Eq. (1.1.9), there must be states for which this condition is violated at any
particular step in the Markov chain: In order for the occupation probability of a
particular state to increase, there must be more transitions into that state than
out of it. Imposing the detailed balance condition forbids any dynamics of that
kind and hence ensures that no limit cycles occur.

5



1. Introduction

By inserting the equilibrium distribution p(s) = exp(−H(s)/T ) into Eq. (1.1.10),
one finds the following condition for transition probabilities:

P (s→ s′)
P (s′ → s)

=
p(s′)
p(s)

= exp (−(H(s′)−H(s))/T )

= exp (−∆H(s, s′)/T ).

(1.1.11)

There are several different choices for the transition probabilities that fulfill
Eq. (1.1.11). Metropolis and Hastings suggested to choose

P (s→ s′) = min (1, exp(−∆E(s, s′)/T ))

=

{
1 if ∆E(s, s′) ≤ 0

exp(−∆E(s, s′)/T ) if ∆E(s, s′) > 0
.

(1.1.12)

The move connecting the different states in the Markov chain can, in principle,
be arbitrary. If the energy change associated with that move is too large, the
probability that the move is accepted will be small. Hence, one often tries to
change only the direction of a single spin at every step in the Markov-chain.
These update schemes are often referred to as “single-site updates”.

After a certain number of time steps τeq (also called equilibration time, c. f.
Sec. 1.2), the states in the Markov chain will follow the Boltzmann-distribution
and one can use the henceforth generated states to calculate observables, etc.
Assuming that one takes N measurements of an observable O using the states
si, the expectation value for this observable is approximately given by the mean
value

〈O〉 ≈
N∑
i=1

O(si). (1.1.13)

The statistical error of this approximation will be discussed in Sec. 1.3. Fig. 1.1.1
shows a schematic of the complete algorithm using a single-site update.

6



1.1. The Metropolis algorithm

re
p
ea
t

Figure 1.1.1.: Schematic illustration of the Metropolis-Hastings algorithm for the
generation of an ensemble of states that are distributed according to the Boltzmann
distribution. Typically, one tries to change the direction of every spin on the lattice
instead of just a single spin before a state is added to the ensemble.
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1. Introduction

1.2. Equilibration and auto-correlation times
Since new states in a Markov chain are generated by modifications of a previous
state, successive states are usually strongly correlated. If one starts the Markov
chain with a random state, one has to wait a certain number of time steps, the
equilibration time τeq, until the states in the Markov chain indeed follow the
Boltzmann distribution. Equilibration times can be measured simply by ana-
lyzing the time development of an observable: After τeq, when equilibrium is
reached, the value of the observable will only fluctuate around a well defined
mean value which is constant in time. In general, equilibration times can be dif-
ferent for different observables, e. g. the energy usually equilibrates faster than
other quantities such as the magnetization, and hence the equilibration times of
all observables have to be taken into account.

The correlation of states in a Markov chain also affects the measurement of
expectation values, etc. once equilibrium is reached. If two successive states are
correlated, they do not yield two independent measurements of an observable
and it will be shown in Sec. 1.3 that this influences the quality of the estimate
of an expectation value by Eq. (1.1.13). The correlation of an observable O in a
Markov chain is described by the so-called auto-correlation function

χ(t) =

∫
dt′[O(t′)− 〈O〉][O(t′ + t)− 〈O〉]

=

∫
dt′[O(t′)O(t′ + t)− 〈O〉2],

(1.2.14)

where O(t) is the instantaneous value of the observable O at time t and 〈O〉
is the average value. In a Monte Carlo simulation, one performs evenly spaced
measurements up to some time tmax and one thus needs the discretized version
of Eq. (1.2.14), which is given by [3]

χ(t) =
1

tmax − t

tmax−t∑
t′=0

O(t′)O(t′ + t)

− 1

tmax − t

tmax−t∑
t′=0

O(t′)× 1

tmax − t

tmax−t∑
t′=0

O(t′ + t).

(1.2.15)

In general, the auto-correlation function behaves as χ ∝ exp(−t/τ), where τ
is the auto-correlation time that defines the time one has to wait between two
measurements until the correlations to have decreased by a factor of 1/e. As it will
be shown in the next section, it is possible (and desirable) to take measurements
after times ∆t which are smaller than the auto-correlation time τ , and to account
for this later in the calculation of statistical errors.

8



1.3. Determination of statistical errors

1.3. Determination of statistical errors

Since only a finite number of states is used in Eq. (1.1.13) for the approximation
of expectation values, it is very important to know the statistical error of the
calculated values. For most observables, this error is simply the error of the
mean value,

∆O =

√
〈O2〉 − 〈O〉2

N
. (1.3.16)

This expression assumes that all N measurements are statistically independent,
which they might not be, if the measurements were recorded in time intervals
∆t smaller than the corellation time τ . It can be shown [3] that the correct
expression in this case is

∆O =

√
(1 + 2τ/∆t)

N
(〈O2〉 − 〈O〉2). (1.3.17)

For ∆t →∞, this expression reduces again to Eq. (1.3.16), whereas for ∆t � τ
one can ignore the 1 in the numerator and replace N = tmax/∆t to obtain

∆O =

√
2τ

tmax
(〈O2〉 − 〈O〉2). (1.3.18)

Since the error decreases as 1/
√
N , one needs four times as many measurements

in order to reduce the error by a factor of two.

There are other quantities for which the determination of the statistical error is
not that simple, namely quantities which are directly calculated from the fluctu-
ations, i. e. the variance, of an observable. The most important example is the
specific heat cV ,

cV =
∂〈H〉
∂T

=
∂

∂T

∑
sH(s) exp(−H(s)/T )∑

s exp(−H(s)/T )
=
〈H2〉 − 〈H〉2

T 2
. (1.3.19)

In order to calculate the statistical error of a quantity like this, one has to know
the standard error of the variance, which is determined by the quality of the
sample. The quality of a sample can be determined e. g. by statistical resampling
of the available data, i. e. by analyzing different subsets of the sample. A very
systematic and reproducible way to do this is the jackknife method : From an
original sample of M independent measurements, one builds M new samples,
each containing M − 1 measurements, by neglecting the ith measurement of the
original sample in the construction of the ith new sample, c. f. Fig. 1.3.2. These
new samples can be used to calculate M − 1 estimates for the variance, which on
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1. Introduction

Figure 1.3.2.: Illustration of the jackknife resampling method: From an original sample
containing M measurements, M new samples, each containing M − 1 measurements,
are constructed by omitting one of the original measurements.

the other hand, can be used to estimate the standard error of the variance as

∆Var(O) =

√√√√M − 1

M

M−1∑
i=1

(
Var(O)i −Var(O)

)2

, (1.3.20)

where Var(O)i is the variance that has been calculated from the set with the ith
measurement left out. Other resampling approaches like bootstrapping generate
new samples by randomly picking single measurements from the original one and
allow the same measurement to be picked multiple times, which has the advantage
that the original measurements do not need to be statistically independent [3].
Usually, already a couple of hundred resamplings give a very good estimate of
the error [3], which makes bootstrapping the method of choice for simulations
with a lot of measurements, where a full jackknife resampling is very elaborate.

1.4. Determination of critical exponents

If a system is close to a continuous phase transition, its behavior is governed
by strong fluctuations on large length scales. This excludes the treatment of
such critical systems by means of simple mean-field approximations which do not
incorporate these fluctuations. Unfortunately, most of the interesting physics
happens precisely in the critical region around a phase transition; the formation
of a macroscopic magnetic moment at the Curie point in a ferromagnet, or critical
opalescence, which causes large fluctuations in the refractive index of mixtures
of certain liquids, are just two examples. It is thus desirable to use methods
that can account for fluctuations in order to allow a description of these critical
phenomena.
Another important aspect of phase transitions is the concept of universality.
Close to a phase transition, many measurable properties of physical systems be-
come independent of the microscopic parameters of the underlying model. For
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1.4. Determination of critical exponents

classical spin systems with nearest neighbor interactions for instance, the inter-
action energy J between the spins does not influence the critical behavior. Only
fairly gross properties like the dimensionality of the lattice, the range of the inter-
actions and the broken symmetry enter [3]. This implies that phase transitions
fall into a number of discrete universality classes. For instance, the phase transi-
tions of a vapor/liquid system at its tricritical point and of the Ising model are,
although describing two completely different systems, believed to fall into the
same universality class and show remarkable similarities in the critical region.
Monte Carlo methods naturally incorporate fluctuations and can therefore be
applied to systems close to a phase transition, but unfortunately it is exactly this
region in which many algorithms suffer from critical slowing down, c. f. Sec. 2.1.

The most important quantities associated with a phase transition are the so-
called critical exponents, which describe how thermodynamic quantities diverge
as the phase transition is approached by lowering the reduced temperature t =
(T − Tc)/Tc to 0. From the concept of universality, it follows that two systems
within the same universality class also have the same critical exponents. The
most important ones are

cV ∝ |t|−α (specific heat) (1.4.21)

Ψ ∝ |t|β (order parameter) (1.4.22)

χ ∝ |t|−γ (order parameter susceptibility) (1.4.23)

ξ ∝ |t|−ν (correlation length) (1.4.24)

Exactly at T = Tc, one further defines δ and ν according to

J ∝ Ψδ (source field), (1.4.25)

〈Ψ(0)Ψ(r)〉 ∝ r−d+2−η (decay of spatial corr. functions), (1.4.26)

where the source field J is given e. g. by the magnetic field in the case of a
ferromagnet.
Only two of the critical exponents are independent, the others follow from the
scaling relations

νd = 2− α = 2β + γ = β(δ + 1) = γ
δ + 1

δ − 1
,

2− η =
γ

ν
= d

δ − 1

δ + 1
,

(1.4.27)

where d is the spatial dimension. Table 1.4.1 shows the critical exponents for
various spin models with short ranged interactions.
The calculation of these exponents is a major challenge in every Monte Carlo
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α β γ δ ν η
2d Ising log 1/8 7/4 15 1 1/4
3d Ising 0.11 0.325 1.24 4.82 0.63 0.33
3d Heisenberg ? 0.365 1.39 4.80 0.705 0.034

Table 1.4.1.: Critical exponents for several models with short ranged interactions.
The values for the 2d Ising model can be determined analytically, whereas other models
require numerical calculations. The entry “log” represents a logarithmic divergence.
Values taken from Ref. 6.

simulation. Since simulations are always carried out on finite systems, one will
never observe a true phase transition since the correlation length is always lim-
ited by the system size and can never truly diverge. Instead, true thermodynamic
singularities appear smoothly rounded in all simulations with a peak height that
grows with system size. It is nevertheless possible to perform simulations for
different lattice sizes and to extrapolate to the thermodynamic limit.

In the following, I illustrate the method of finite size scaling in some detail for
the susceptibility following Ref. 3 and state the results for the other exponents at
the end. One begins by expressing the susceptibility in terms of the correlation
length. Eliminating the reduced temperature from Eq. (1.4.23) using Eq. (1.4.24),
one obtains

χ ∝ ξγ/ν . (1.4.28)

In a system of finite (linear) size L ,the correlation length is cut off as it ap-
proaches the system size. This can be accounted for mathematically by writing

χ = ξγ/νχ0(L/ξ), (1.4.29)

where the dimensionless scaling function χ0(x), which behaves as

χ0(x) =

{
const. x� 1

∝ xγ/ν x→ 0
, (1.4.30)

has been introduced. The precise way in which the susceptibility is cut off close
to the phase transition is completely contained in functional form of χ0. It is
convention (and convenient) to introduce a further dimensionless function

χ̃(x) = x−γχ0(xν) (1.4.31)

and express everything in terms of this function only. Using Eq. (1.4.24) once
again and extending the above discussion to negative values of t, one finally
obtains

χ = Lγ/ν χ̃(L1/νt). (1.4.32)
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This equation provides the backbone of the finite size scaling method: If one
calculates the susceptibility for different lattice sizes and plots L−γ/νχ against
L1/νt, all curves should collapse on exactly one curve whose functional form is
given by χ̃, provided that one uses the correct values for the critical exponents
and the critical temperature. Algorithms for the corresponding fitting procedure
of these quantities are available, see e. g. Ref. 7.
The scaling relations for the other thermodynamic quantities can be derived in
the same way and read [3]

cV = Lα/ν c̃V (L1/νt), (1.4.33)

Ψ = L−β/νΨ̃(L1/νt). (1.4.34)

The determination of the critical exponents with this method is in general very
accurate if sufficient data for different lattice sizes is available. Usually, this
methods works better for larger exponents since the corresponding thermody-
namic quantities depend more strongly on the lattice size.
Problems in the determination of the critical exponents can arise if the interac-
tions posses a spatial anisotropy, e. g. if there are two distinct nearest-neighbor
interactions for spins within the same and in adjacent planes,

H = Jxy
∑
〈i,j〉∈

same plane

Si · Sj + Jz
∑
〈i,j〉∈

diff. plane

Si · Sj . (1.4.35)

This results in an anisotropic increase of the correlation lengths as the critical
point is approached, and consequently, the finite size scaling method breaks down
and cannot be applied in this case.

1.5. Implementation of Monte Carlo algorithms
for continuous spin variables

Spin update for O(3) spins The numerical simulation of spin systems with
continuous spin variables such as the XY-model or the Heisenberg model with
O(2) and O(3) spins, respectively, is much more elaborate than the simulation
of Ising-like spin variables due to their continuous degrees of freedom. This
becomes evident by examining the spin update used in the Markov chain. A new
configuration for an O(3) spin is in general proposed by evaluating two random
numbers ϕ ∈ [0, 2π] and c = cos(θ) ∈ [−1, 1] and assigning the updated position

S(ϕ, c) =

√1− c2 cosϕ√
1− c2 sinϕ

c

 (1.5.36)
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to the spin. Note that it is not possible to simply evaluate two evenly distributed
angles θ and φ and assign a new position as

S(θ, ϕ) =

sin θ cosϕ
sin θ sinϕ

cos θ

 (1.5.37)

since the configurations obtained by this update are not uniformly distributed
over the unit-sphere. The update in Eq. (1.5.36) requires not only the construc-
tion of two random numbers, but also the evaluation of angular functions and
square-roots and is hence numerically demanding when it is performed very of-
ten. If a simulation is carried out at sufficiently low temperatures, the probability
that a proposed configuration is accepted, will drop exponentially as

paccept ∝ exp

(
−∆E

T

)
, (1.5.38)

where ∆E > 0 is the energy difference between the old and new configuration.
Most of the proposed updates will thus be rejected and the algorithm becomes
inefficient. It is therefore desirable, to use a spin-update algorithm which changes
the energy of a configuration only by a certain amount such that the acceptance
rates do not drop below a certain threshold. This can be achieved according
to Ref. 8 by tilting the spin only by some angle δ out of its original position.
Starting from an arbitrary spin direction S = (Sx, Sy, Sz)

T , one can rotate this
spin by the angle α = arccos (sz) around the axis defined by

n̂ =
S× ẑ

‖S× ẑ‖ (1.5.39)

to align it parallel to the z-axis. Afterwards, one uses Eq. (1.5.36) to update
the spin position with c not chosen randomly in [−1, 1] anymore, but in [cmin, 1]
with −1 ≤ cmin < 1. This restricts the new spin to lie in a spherical cap with
opening angle δ = arccos (cmin) centered around the z-axis. At the end, the
spin is rotated back into its original frame by an rotation around n̂ by the angle
−α. The coordinates of the updated spin Snew can be expressed in terms of the
coordinates of the old spin Sold = (Sx, Sy, Sz)T as

Snew =


√

1−c2
(Sx)2+(Sy)2

([
(Sx)2Sz + (Sy)2

]
cos δ + (Sz − 1)SxSy sin δ

)
+ cSx

√
1−c2

(Sx)2+(Sy)2

(
(Sz − 1)SxSy cos δ +

[
(Sx)2 + (Sy)2Sz

]
sin δ

)
+ cSy

−
√

1− c2 (Sx cos δ + Sy sin δ) + cSz

 .

(1.5.40)
A very intuitive method to determine the optimal value for cmin iteratively is
to measure the acceptance rate and to increase or decrease cmin, depending on
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1.5. Implementation of Monte Carlo algorithms for continuous spin variables

whether the acceptance rate is lower or higher than the desired acceptance ratio.
Empirically, acceptance rates of 50− 70% have been found to be optimal. Note
that the determination of cmin should take place before one records measurements
(e. g. during the thermalization process) since varying its value breaks detailed
balance.

Over-relaxation A powerful and easy to implement method to reduce auto-
correlation times is the over-relaxation method, which exploits symmetries of the
Hamiltonian to create rejection free updates. For instance, each spin Si on the
lattice can be rotated by an arbitrary angle around the effective field

Heff
i =

∑
j

JijSj (1.5.41)

without energy cost. By choosing a rotation by π around the local field,

Si → −Si + 2
(Si ·Heff

i )

‖Heff
i ‖2

Heff
i , (1.5.42)

one can change the spin configuration as much as possible to accelerate decor-
relation. One should note that this update is non-ergodic since the energy does
not change during the update. To restore ergodicity, it has to be combined with
other methods, such as the single-site spin update discussed at the beginning of
this section. Used together, these methods can reduce the auto-correlation time
significantly compared to the random reorientation of single spins alone.

15





2. Advanced Monte Carlo
techniques

This chapter gives an overview of advanced Monte Carlo techniques with an
emphasis on the feedback-optimized parallel tempering algorithm that is used
throughout this thesis. I start with an explanation why most simple Monte
Carlo methods fail in practice and why more sophisticated methods are needed
in Sec. 2.1. Afterwards, I introduce the concept of parallel tempering in Sec. 2.2,
followed by a discussion on how the temperature points for a parallel tempering
simulations have to be chosen in order to achieve optimal equilibration in Sec. 2.3.
This chapter concludes with a brief overview of other Monte Carlo techniques in
Sec. 2.4.

2.1. Shortcomings of simple Monte Carlo
algorithms

In practice, many Monte Carlo algorithms suffer from severe problems when
applied to real systems. Two of these problems, ergodicity-breaking and criti-
cal slowing down, deserve closer attention because almost every simple Monte
Carlo algorithm encounters them. This section shall shed some light on the ori-
gin of these problems and explain the need for a more sophisticated algorithm.
The probably most promising and versatile algorithm, parallel tempering Monte
Carlo, is explained in full detail in Sec. 2.2.

Ergodicity-breaking An algorithm is called non-ergodic, if it fails to sample
the phase space properly. A very intuitive example is a system with a one-
dimensional potential featuring two minima of equal height, separated by a high
energy barrier. If the temperature of the system is small compared to the height
of this barrier, the system will most likely stay close to one of the two minima and
never cross the barrier, c. f. Fig. 2.1.1. The phase space is thus effectively split
into two parts of which only one is sampled properly. As a result, the calculated
observables may differ from run to run, depending on which part of the phase
space is sampled. To obtain correct measurements, it is important to use an
ergodic algorithm which ensures that both parts of the phase space are sampled
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E

T

phase space

Figure 2.1.1.: Illustration of a non-ergodic Monte Carlo algorithm. Once a system
(black circle) has chosen a specific minimum, it will most likely stay there and fluctuate
only into nearby states (green shaded). The states around the other minimum (red
shaded) have a similar energy but are never sampled.

with their correct statistical weight. Real systems often have many separated
minima, which a single simulation at a fixed temperature almost always fails to
sample properly. Common examples are frustrated systems like spin-glasses and
spin-ice. The most important method to solve the problem of ergodicity breaking
is parallel tempering, which is explained in detail in Sec. 2.2. Another important
method is entropic sampling [3], in which one tries to sample all states with a
certain energy with equal probability. Some methods can be problem specific,
e. g. there exists a loop-algorithm for spin-ice at low temperatures [9].

Critical slowing down For a given length of a simulation, the statistical error
on measured quantities is influenced by two aspects, c. f. Eq. (1.3.17): The size of
fluctuations, 〈O2〉 − 〈O〉2, and the auto-correlation time τ . While the size of the
fluctuations, characterized by the correlation length ξ, is specific for each model,
the auto-correlation time depends solely on the spin-update algorithm that is
used in the simulation. Since the correlation length diverges as the critical tem-
perature is approached, one needs substantially more independent measurements
in the critical region than in the non-critical-region to obtain results with the
same accuracy. On the other hand, the auto-correlation time increases for many
algorithms in the critical region: If correlations are large, a local-update algo-
rithm that changes the direction of only a single spin at a time, needs a long time
to change the state of a system in a way that correlations are lost. The resulting
(algorithm-specific) increase in the auto-correlation time in the critical region is
called critical slowing down and one major goal of any efficient Monte Carlo algo-
rithms is to reduce or even completely eliminate this effect. This can be achieved

18



2.2. Parallel tempering Monte Carlo

either by updating clusters of spins at once [3, 10] or by parallel tempering Monte
Carlo. Since cluster algorithms are not suited for the problems addressed in this
thesis, I only discuss the parallel tempering approach, c. f. Sec. 2.2.

2.2. Parallel tempering Monte Carlo

Parallel tempering Monte Carlo was originally developed for the simulation of
glassy systems [11] and is considered as the most efficient way to evade the prob-
lems of ergodicity breaking and critical slowing down. This is achieved by simu-
lating not only one system at a fixed temperature, but many replicas of the same
system at different temperatures. If the temperatures are chosen close enough,
there will be a substantial overlap of the energy histograms for two neighboring
temperatures, or, in other words, there is a probability that a configuration sam-
pled at a temperature T1 could as well be sampled at a different temperature T2,
c. f. Fig. 2.2.2. The aim of the parallel tempering approach is to allow the differ-
ent replicas to exchange their configurations with each other. A replica, which
may be stuck at a local minimum of the free energy at low temperatures, can
move up in temperature space to a larger temperature, at which it can escape
from this minimum. After spending some time at higher temperatures, where
equilibration times are small, the replica will go to a low temperature again and
probably occupy a different free energy minimum, ensuring that the phase space
is sampled properly and ergodicity is not broken. This process is illustrated in
Fig. 2.2.3.
Additionally, the repeated swapping of configurations between replicas dramati-
cally reduces auto-correlation times, which reduces the critical slowing down at
phase transitions.
The detailed balance condition Eq. (1.1.10) for two replicas with different tem-
peratures and energies reads

p(E1, T1)p(E2, T2)P ((E1, T1), (E2, T2)→ (E1, T2), (E2, T1))

= p(E1, T2)p(E2, T1)P ((E1, T2), (E2, T1)→ (E1, T1), (E2, T2)), (2.2.1)

and the transition probabilities for replica exchange thus have to fulfill

P ((E1, T1), (E2, T2)→ (E1, T2), (E2, T1))

P ((E1, T2), (E2, T1)→ (E1, T1), (E2, T2))
=
p(E1, T2)p(E2, T1)

p(E1, T1)p(E2, T2)

=
exp(−E1/T2 − E2/T1)

exp(−E1/T1 − E2/T2)
(2.2.2)

= exp

[(
1

T1
− 1

T2

)
(E1 − E2)

]
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E

H(E)

T1 T2

T1 < T2

Figure 2.2.2.: Typical energy histograms for two replicas of the same system simulated
at different temperatures T1 and T2 with T1 < T2. If the temperatures are close enough,
there is a substantial overlap between the histograms and hence a finite probability that
a configuration sampled at T1 could as well be sampled at T2.

in order to fulfill detailed balance. A common choice for the transition probabil-
ities that fulfills Eq. (2.2.2) is

pswap = min
(

1, exp

[
(E1 − E2)

(
1

T1
− 1

T2

)])
. (2.2.3)

From a computational point of view, parallel tempering algorithms can be paral-
lelized with almost no numerical overhead. Often, one is interested in the value
of observables over a wide range of temperatures and one would thus run sepa-
rate simulations for all these temperatures anyway. Parallel tempering combines
the measurements at these temperatures in a single simulation and improves the
quality of the measurement as a whole by eliminating ergodicity-breaking and
reducing critical slowing down.
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E

T1

T2

(1)

(2)

(3)

phase space

Figure 2.2.3.: Illustration of the phase space sampling in a parallel tempering Monte
Carlo simulation. (1) The replica residing in the left minimum moves “up” in tempera-
ture space from temperature T1 to T2. (2) The replica passes the energy barrier between
the two minima. (3) The replica moves down in temperature space to temperature T1

again and samples the right minimum.

2.3. Optimal choice of temperature points
Before one begins to take measurements with parallel tempering Monte Carlo,
one has to choose a set of temperatures {T 0

1 , ..., T
0
M} for the different replicas. The

quality of this set influences the quality of the simulation in a crucial way: If the
temperatures are separated too far, there will be no exchange of configurations
at all, whereas computation time is wasted if temperatures are chosen too close.
Assuming a piecewise constant specific heat, the acceptance rate for a replica
exchange between two temperatures Ti+1 > Ti is given by the incomplete beta-
function law [12–15]

paccept(Ti, Ti+1) = erfc

(
1− Ti/Ti+1√
1 + (Ti/Ti+1)2

√
NcV
2

)
, (2.3.4)

where cV is the specific heat per spin in the interval [Ti, Ti+1], N the num-
ber of sites in the system and erfc(x) the complementary error function, c. f.
Fig 2.3.4. For systems with constant, i. e. temperature-independent specific heat,
Eq. (2.3.4) implies that a constant acceptance rate can be obtained if the ratio
Ti+1/Ti is kept constant, i. e. if the temperatures follow a geometrical progression

Ti = Tmin

(
Tmax

Tmin

)(i−1)/(M−1)

for i = 1...M. (2.3.5)

Another consequence of Eq. (2.3.4) is that the acceptance rate will drop signifi-
cantly if the specific heat becomes large, as it is the case at a phase transition.
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Figure 2.3.4.: Behavior of the complementary error function erfc(x) that occurs in the
incomplete beta-function law Eq. (2.3.4). As either the distance between neighboring
temperatures or the specific heat increases, the acceptance rate for replica exchange
decreases continuously.

Furthermore, one should note that it is necessary to increase the number of repli-
cas with system size in order to keep the acceptance rate constant. Naively, one
might expect that a temperature set with constant, i. e. temperature indepen-
dent, acceptance probabilities for replica exchanges would be optimal. It has thus
been the dominating approach in the past [16] to find algorithms which construct
such a set of temperatures iteratively. One way to obtain such a set is to start
with some temperature set {T 0

1 , ..., T
0
M} and to measure the acceptance rate ai

for each temperature point T 0
i . Afterwards, the next temperature set is obtained

by

T
(k+1)
1 = T

(k)
min,

T
(k+1)
M = T (k)

max, (2.3.6)

T
(k+1)
i = T

(k+1)
i−1 +

a
(k)
i

(
T

(k)
i − T (k)

i−1

)
∑M
i=2 a

(k)
i

(
T

(k)
i − T (k)

i−1

) (Tmax − Tmin) , i = 2...M − 1,

where k labels the iteration step. This iteration scheme keeps the two extremal
temperatures fixed and increases or decreases the distance between intermediate
temperature points depending on whether the acceptance rate is small or large.
Kone and Kofke suggest in Ref. 17 that an average acceptance probability of
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≈ 20% is optimal and adding further replicas does not improve the quality of
the simulation. All these approaches do, however, not take the local diffusivity
of a replica in temperature space into account. As it turns out, this quantity is
of great importance in a parallel tempering simulation.
A recently introduced feedback-algorithm by Katzgraber et al. [16] aims at the
construction of a temperature set which maximizes the actual quantity of inter-
est in a parallel tempering simulation: the current of replicas drifting through
temperature space. This is achieved by minimizing the average round trip time
of a replica between the two extremal temperatures, Tmax and Tmin, and will in
general result in a temperature set with non-constant acceptance probabilities. I
closely follow Ref. 16 from now on and explain how this algorithm works in detail.

The diffusion of each replica through temperature space can be measured by
assigning a label “up” or “down” to each replica, depending on which of the two
extremal temperatures, Tmin or Tmax, it has visited most recently. A replica
traveling “up” in temperature space will change its label to “down” once it has
visited Tmax and vice versa, while the label remains unchanged on all intermediate
temperatures. For a given set of temperatures, one can record two histograms,
nup(Ti) and ndown(Ti), and evaluate the fraction

f(Ti) =
nup(Ti)

nup(Ti) + ndown(Ti)
(2.3.7)

of replicas moving “up” in temperature space at all temperatures. This fraction is
connected to a steady-state current j of “up”-moving replicas being produced at
Tmin and absorbed at Tmax. In the following, it is assumed that T is a continuous
variable, independent of the number of replicas. To first order in the derivative,
the current j is then given by

j = D(T )η(T )
df

dT
, (2.3.8)

where D(T ) is the local diffusivity and η(T ) is the probability distribution de-
scribing the probability for a replica to reside at temperature T . η(T ) can be
approximated by η(T ) ≈ C/∆T , where ∆T = Ti+1 − Ti is the width of the
temperature interval around the temperature T located in the interval [Ti, Ti+1]
in the current temperature set. C is a normalization constant chosen such that∫ Tmax

Tmin
η(T )dT = 1. The derivative df/dT can be obtained from the measured

data and Eq. (2.3.7) by a linear regression. Eq. (2.3.8) can be rearranged to give
a measure for the local diffusivity,

D(T ) ∝ ∆T

df/dT
, (2.3.9)
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where the normalization constant as well as the current j, which are both con-
stant for any specific choice of temperature set, have been dropped.
The aim of the algorithm is to maximize the current j by finding the optimal tem-
perature set {T opt

i }, or equivalently, the optimal probability distribution ηopt(T ).
Eq. (2.3.8) already suggests that an optimal temperature set should have more
temperature points in regions with low diffusivity and vice versa and it was in-
deed shown in Ref. 18 that the optimal probability distribution is connected to
the local diffusivity D(T ) by

ηopt(T ) ∝ 1√
D(T )

. (2.3.10)

Inserting this in Eq. (2.3.8), one finds that the dependence of the current j on
the local diffusivity can be eliminated completely by choosing a temperature set
that fulfills

dfopt

dT
= ηopt(T ) ∝ 1

∆T opt . (2.3.11)

This implies that the optimal temperature set has a constant decay in the fraction
of “up”-moving replicas,

∆fopt = f(Ti)− f(Ti+1) =
1

M − 1
, (2.3.12)

where M is the number of replicas.
The optimal set of temperatures is found iteratively by measuring the local diffu-
sivity from Eq. (2.3.9) followed by an adjustment of η(T ) according to Eq. (2.3.10)
as

η′(T ) =
C ′

∆T

df

dT
, (2.3.13)

with C ′ again chosen such that
∫ Tmax

Tmin
η′(T )dT = 1. The optimized intermediate

temperatures Ti are then obtained by choosing them according to this distribution
as ∫ Ti

Tmin

η′(T )dT =
i

M
. (2.3.14)

Depending on the quality of the initial temperature set and the strength of the
bottlenecks in the local diffusivity, about one to five iterations of the whole algo-
rithm are usually needed to obtain the fully optimized temperature set.

The algorithm can be summarized as follows:

• Start from an initial temperature set {Ti}. A temperature set with con-
stant acceptance rates, as it can be constructed with the algorithm shown
in Eq. 2.3.6, is usually a good choice. For systems with almost constant
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2.3. Optimal choice of temperature points

specific heat, a geometrical progression as shown in Eq. 2.3.5 will result in
approximately constant acceptance rates and might also be used.

• Repeat:

– Reset both histograms: nup(Ti) = ndown(Ti) = 0

– Perform a parallel tempering simulation with the current temperature
set and record the two histograms nup(Ti) and ndown(Ti). Make sure
that the simulation is long enough that steady state data is recorded.

– Calculate an estimate for the optimized probability density as

η′(T ) =
C ′

∆T

df

dT
. (2.3.15)

– Calculate the estimate for the optimized temperature set as∫ Ti

Tmin

η′(T )dT =
i

M
. (2.3.16)

• Stop once the temperature set has converged.

If the system has a strong diffusion bottleneck for the replica current, i. e. a
strong phase transition, the algorithm will locate many temperature points in
this region. This can result in very low acceptance rates in other regions and
it might be necessary to increase the total number of replicas. The number of
replicas can, however, not be increased arbitrarily since the time a replica needs
to move from one extremal temperature to the other will also increase. Assuming
a 1d random walk (as it is the case for the optimal temperature set), the average
time needed for a single trip between the two extremal temperatures scales as
t ∝
√
M , where M is the number of replicas [19]. It is therefore desirable not

to use more replicas than needed to obtain overall sufficient acceptance rates of
about 20%.

Example: The 2D-Ising model Katzgraber et al. [16] have applied their
algorithm i. a. to the well studied ferromagnetic Ising-model

HIsing = J
∑
〈ij〉

σiσj , (2.3.17)

where J < 0 is the ferromagnetic exchange constant, the sum extends over pairs
of nearest neighbors and σi is a spin variable on lattice site i, taking the values
±1. Their results are summarized in Fig. 2.3.5.
Fig. 2.3.5 a) shows the fraction of the “up” drifting replicas in temperature
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space according to Eq. (2.3.7) for different choices of temperature sets. The
commonly chosen temperature set following a geometrical progression accord-
ing to Eq. (2.3.5) shows a pronounced sharp step at the transition temperature
Tc ≈ 2.269 J , indicating that the phase transition is the bottleneck for the replica
current since most replicas are not able to cross the critical temperature. The
often recommended temperature set with a constant acceptance rate for replica
exchange (here approx. 40%) still shows this feature, although it is not as sharp
as for the geometrical progression. The optimized temperature set, however, does
not have this problem and the fraction of “up” moving replicas shows a constant
decay when plotted against the replica index, as expected.
Fig. 2.3.5 b) shows the acceptance rates for replica exchange moves in depen-
dence on the temperature. The temperature set constructed by a geometrical
progression shows a sharp drop in the acceptance rates around the phase transi-
tion, whereas the acceptance rates of the optimized temperature set peaks in this
region. This is due to the fact that the local diffusivity is strongly suppressed at
the phase transition, c. f. Fig. 2.3.5 c), which causes the algorithm to shift more
temperature points in this region as required by Eq. (2.3.10). The evolution of
the temperature set during the optimization, starting from a geometrical progres-
sion, is shown in Fig. 2.3.5 d) for five iterations. Already after three iterations,
the temperature set does not change significantly any more.
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a) b)

c) d)

Figure 2.3.5.: a) Fraction of replicas moving “up” in temperature space for different
temperature sets against the replica index. The geometrical progression (filled squares)
and a temperature set with almost constant acceptance rates of approx. 40% both show
sharp steps in the curves, indicating that too few temperature points are located in a
region with low diffusivity. The optimized temperature set shows a constant decay.
Inset: fraction of replicas moving “up” in temperature space against temperature. The
dashed line marks the critical temperature Tc ≈ 2.269 J . b) Acceptance rates for replica
exchange moves against temperature for different temperature sets. The optimized set
has high acceptance rates at the phase transition (dashed line). Inset: acceptance rates
for various system sizes N = L2. c) Local diffusivity measured with the optimized
temperature set for various system sizes. The diffusivity is strongly suppressed at the
phase transition (dashed line) d) Evolution of the temperature set in five iterations
starting from a geometrical progression. All pictures taken from Ref. 16.
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2.4. Other Monte Carlo techniques
This section intends to give a short overview of other related Monte Carlo tech-
niques. Monte Carlo integration is presented as an example how random numbers
can be used to evaluate integrals. Two other simulation methods, simulated an-
nealing and entropic sampling, are discussed for completeness. These methods
are in general inferior to parallel tempering and thus only discussed briefly.

Integration Random numbers can also be used to approximate integrals. I
show in the following that the (pure statistical) error of this approach is smaller
compared to other traditional integration methods if the dimension of the integral
is large.
In order to evaluate the integral

I =

∫
V

f(x)ddx, (2.4.18)

one evaluates the integrand N times a random points xi ∈ V . A good estimate
for the integral is then given by

I ≈ V

N

N∑
i=1

f(xi) (2.4.19)

and the error of this approximation will decrease as ∆I ∝ 1/
√
N , independent

of the dimension of the integral. The behavior of the error can be compared to
other integration methods, where the integration volume is cut into equal pieces
Vi and the integral is approximated as

I ≈
N∑
i=1

f(Vi)Vi. (2.4.20)

For these methods, the error behaves as

∆I ∝ 1

Nα/d
, (2.4.21)

where d is the dimension of the integral and α is a method-dependent constant of
order 1 (e. g. α = 3 for Simpson’s rule) [20]. Since the error increases with the di-
mensionality of the integral, there is a critical dimension dcrit = 2α, where Monte
Carlo integration becomes superior to traditional integration methods (dcrit = 6
for Simpson’s rule). The efficiency of Monte Carlo integration can be increased
by importance sampling, i. e. by sampling points not completely random in the
integration volume, but with a probability distribution that allocates more points
in regions where the integrand changes rapidly and less points in regions where
the integrand is almost constant.
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Simulated annealing Simulated annealing is a technique used to find the
ground state of a function f(x1, ..., xN ). The idea is to start with a random
configuration {x1, ..., xN} at a high temperature followed by a slow decrease of the
temperature down to 0. During the cooling process, the configuration {x1, ..., xN}
is updated continuously by some update-scheme to a new configuration that is
accepted according to the Metropolis-Hastings criterion Eq. (1.1.12), where the
energy E is replaced by the value of f . The update-scheme can again be arbitrary,
but the common choice would be to update only one variable in the configuration
at a time to achieve reasonable acceptance rates.
If f(x1, ..., xN ) has a complex landscape with many minima, it is very likely that
simulated annealing will break ergodicity at some point. Once one is trapped
in a local minumum, other minima (and probably the global one) can not be
reached anymore. Parallel tempering does not suffer this problem and is thus the
superior method.

Entropic sampling The aim of entropic-sampling methods is to sample dif-
ferent states not with their Boltzmann probability proportional to e−E/T , but
with a probability proportional to 1/ρ(E), the reciprocal density of states. The
probability that a certain state with an energy in the interval [E,E + dE] oc-
curs in the Markov chain is then proportional to the product of the density of
states, ρ(E), and the probability to sample a state within that energy interval,
1/ρ(E). In other words, due to the particular choice of the sampling probability,
one samples all energy values with a completely flat distribution and there is
no Boltzmann weight anymore which makes it hard to cross energy barriers. A
problem with this method is that the density of states is unknown at first and has
to be determined before measurements can be taken. Once the density of states
is known, the temperature dependence of an observable can be constructed from
a single measurement. A good and detailed introduction to this method can be
found e. g. in Ref. 3.
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Part II.

Magnetic monopoles in chiral
magnets
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3. Introduction
Besides the well known ferromagnetic and antiferromagnetic order, there also ex-
ist other interesting types of magnetic order in nature. A very interesting kind is
found in so-called chiral magnets. In these systems, the lack of inversion symme-
try in the atomic lattice gives rise to a Dzyaloshinskii-Moriya interaction, which
causes the magnetization to twist like a helix around an axis which is determined
either by crystal field anisotropies or an applied magnetic field. While these sys-
tems have been known to exist for more than 30 years [21], they recently gained
a lot of interest when the magnetic structure of the so-called “A-phase” [22, 23]
was identified in 2009 by Mühlbauer et al., who discovered that this phase is a
realization of a skyrmion lattice [24]. In this novel phase, topologically stable
magnetic whirls, so-called skyrmions, stack on a regular triangular lattice and
form a configuration similar to the vortex lattice in a type-II superconductor.
Since its discovery, the skyrmion lattice has gained a lot of interest due to its ex-
traordinary properties such as the very efficient coupling to electric currents [25],
which makes it a promising candidate for future spintronic applications. The fact
that skyrmions are topologically protected and thus very robust to perturbations
also renders them promising candidates for data storage. Since they are already
packed much closer than ordinary magnetic domains on hard-drives, they might
allow the construction of devices with very high memory storage densities and
lead to a further miniaturization in this area. In this context, the writing and
deleting of single skyrmions has been reported by Romming et al. in 2013 for
thin films [26].
In order to manipulate single skyrmions it is important to understand how their
topological protection is destroyed, as it happens for instance during the phase
transition from the skyrmion lattice to one of the other, non-topological phases.
As I show in this part of the thesis, this process is mediated by artificial monopoles
and anti-monopoles of an emergent magnetic field carried by the skyrmions. The
charge of these monopoles is topologically quantized and they are either confined
or deconfined, depending on temperature and magnetic field.

The structure of this part of the thesis is as follows: In this chapter, I give an in-
troduction to chiral magnets with a special emphasis on the skyrmion lattice and
its topological properties. In Ch. 4, I review the complete mean-field theory for
chiral magnets and explain how the skyrmion lattice is stabilized by considering
thermal fluctuations in gaussian order on top of the mean-field solution. A full
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Monte Carlo study of chiral magnets, including fluctuations beyond gaussian or-
der, is then presented in Ch. 5 and compared to experimental findings. Finally,
I show in Ch. 6 how magnetic monopoles and anti-monopoles of an emergent
magnetic field mediate the phase transition from the skyrmion lattice to other,
non-topological phases.

3.1. Chiral magnets
In ferromagnets, the magnetic moments tend to align parallel, resulting in a uni-
form macroscopic magnetization. In a microscopic theory, this effect is typically
captured by the simple nearest-neighbor Heisenberg Hamiltonian

HFM = J
∑
〈ij〉

Si · Sj , (3.1.1)

where Si denotes a classical O(3) spin on lattice site i, J < 0 is the ferromag-
netic exchange constant and

∑
〈ij〉 denotes a sum over pairs of nearest neighbors.

Usually, the ferromagnetic exchange is the dominant energy scale and corrections
to this Hamiltonian are just anisotropies which favor either a certain plane or
direction for the magnetization.
The symmetry of the underlying lattice imposes strong constraints on the al-
lowed interactions and anisotropies. If, e. g., the crystal structure possesses an
inversion symmetry, all interactions which transform odd under spatial inversion
are forbidden. The B20 lattice structure, c. f. Fig. 3.1.1, that is usually realized
in chiral magnets, lacks this symmetry, which gives rise to additional interac-
tions. The leading additional contribution is the Dzyaloshinskii-Moriya (DM)
interaction [27, 28]

HDM =
∑
〈ij〉

Dij · (Si × Sj) , (3.1.2)

where Dij is the so-called Dzyaloshinskii-Moriya vector, whose direction is con-
strained by the symmetries of the lattice. This interaction was first postulated
by Dzyaloshinskii in 1958 [27] on the grounds of phenomenological considerations
based on a Landau theory [27]. In 1960, Moriya identified the spin-orbit coupling
as the microscopic mechanism that generates an interaction of this form [28].

Since the expression (Si × Sj) vanishes for collinear spins, only non-collinear spin
structures can benefit from such an interaction and the corresponding energy gain
is maximized if the two neighboring spins entering Eq. (3.1.2) are perpendicular
to each other. In competition with the much stronger ferromagnetic exchange,
this leads to helical modulations of the magnetic structure with long wavelengths
λ ∝ J/D, c. f. Fig. 3.1.2. In small magnetic fields, the magnetic ground state
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3.1. Chiral magnets

Figure 3.1.1: The atomic unit cell
of the B20 crystal structure. Atoms
are located at the relative positions
(u, u, u), (1/2 + u, 1/2 − u, ū), (1/2 −
u, ū, 1/2+u), (ū, 1/2+u, 1/2−u) where
u is different for the orange and blue
ions [29]. For MnSi, the Mn- and Si-ions
are represented by the orange and blue
balls, respectively, with uMn = 0.123
and uSi = 0.845 [29]. Picture taken
from Ref. 30.

of the system is thus a helical phase in which the propagation direction of these
helices is determined solely by weak crystal anisotropies which favor a certain
direction. For larger magnetic fields, it becomes energetically favorable for the
system to have the propagation vector pointing along the direction of the field.
All spins then point in a plane perpendicular to the field and the system can
gain energy by simply tilting all spins continuously out of that plane towards the
direction of the field, leading to a spiraling umbrella structure with a macroscopic
magnetic moment, c. f. Fig. 3.1.3. Since the magnetization winds on cones around
the wave-vector q, this phase is also referred to as conical phase. Depending on
the direction of the field, the helical and conical phase are either connected by
a crossover or a first-order phase transition at some field value Bc1, where the
energy gain from tilting all spins towards the field becomes larger than the crys-
tal anisotropy energy difference between the two directions of the ordering wave
vector. Upon further increasing the field, a continuous phase transition to a field
polarized state takes place at some field Bc2. Fig. 3.1.4 shows schematically the
expected phase diagram for chiral magnets. A complete and detailed mean-field
analysis of these two states is presented in Sec. 4.1.

Experimentally, the conical phase can be identified in neutron scattering exper-
iments with a magnetic field perpendicular to the incident neutron beam by a
characteristic three-peak structure at Q = 0 and Q = ±q, where the peak at
Q = 0 originates from the uniform component of the magnetization. In the heli-
cal phase, there may exist several equivalent crystal directions preferred by some
crystal anisotropy (there are e. g. four equivalent 〈111〉 directions) and a sam-
ple will in general consist of multiple domains with different orientations of the
propagation vector. Consequently, one observes peaks at ±q for each domain,
resulting e. g. in eight peaks in total if the 〈111〉 directions are favored. Fig. 3.1.5
shows neutron scattering images for the helical and conical phase in MnSi. Note
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q

Figure 3.1.2.: In the helical phase, the magnetization winds around a propagation
vector q whose direction is defined by small crystal anisotropies. The magnetization is
strictly perpendicular to q.

q ‖ B

Figure 3.1.3.: In the conical phase, the magnetization winds around a propagation
vector q which is parallel to the applied magnetic field. In contrast to the helical
phase, all spins also tilt towards the direction of the field, leading to a conical umbrella
structure with a macroscopic magnetic moment.

Tc

field
polarized

T

B

conical

helical

para-
magnet

Bc2
Bc1

Figure 3.1.4.: The expected phase diagram for chiral magnets. Bc2 denotes the tran-
sition to the fully field-polarized state, whereas Bc1 denotes the transition/crossover
between the helical and conical phase. The solid line represents a continuous phase
transition, whereas the dashed line denotes either a first-order transition or a crossover,
depending on the direction of the magnetic field.
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a) b)

Figure 3.1.5.: a) Typical small angle neutron scattering (SANS) image for the helical
phase in MnSi at T = 16K and B = 0. Crystal field anisotropies favor 〈111〉 directions
and the four equivalent 〈111〉 directions lead to eight Bragg peaks in total, see main
text. Picture taken from Ref. 24. b) Typical neutron scattering image for the conical
phase in MnSi with a magnetic field applied in 〈110〉 direction. Picture taken from
Ref. 31.

that the aforementioned peak at Q = 0 is missing in these figures since one can
experimentally not distinguish between unscattered neutrons and scattered neu-
trons with Q = 0. The corresponding area around Q = 0 is therefore usually cut
out from the images.

3.2. Discovery of the skyrmion lattice
Besides the well understood helical and conical phase, there was also a third
phase known to exist [22, 23] in a very small pocket in the phase diagram at
intermediate magnetic fields and temperatures just below the ordering temper-
ature, c. f. phase diagram for MnSi in Fig. 3.2.8. Since the magnetic structure
of this phase was not properly understood, it was first referred to as “A-phase”.
For a long time, it was believed that it consisted of a single helix propagating
perpendicular to the applied magnetic field [22, 23]. In 2009, Mühlbauer et al.
showed that this interpretation is wrong and that the magnetic structure is much
more interesting than thought before [24].
In contrast to previous experiments, they performed neutron scattering measure-
ments with the magnetic field parallel instead of perpendicular to the incident
neutron beam, the latter being the standard setup for measurements of the con-
ical phase. They observed six Bragg spots arranged on a regular hexagon in
the plane perpendicular to the magnetic field, c. f. Fig. 3.2.6, which indicates
a multi-q structure comprised mainly out of three different helices with relative
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Figure 3.2.6.: Small angle neutron
scattering (SANS) image of the skyrm-
ion lattice phase observed in MnSi at
T = 26.45K and B = 0.164T. The
magnetic field is aligned perpendicular
to the scattering plane. Picture taken
from Ref. 24.

B

Figure 3.2.7.: Magnetic order in the
skyrmion lattice phase: The magnetic
structure forms a triangular lattice of
skyrmions that is translationally invariant
in the direction of the magnetic field and
should therefore be visualized as an or-
dered arrangement of skyrmion tubes, c. f.
Fig. 3.2.8, of which only one layer is shown
here. Picture taken from Ref. 31.

angles of 120◦.
A straightforward identification of the corresponding magnetic ground state in
real space is not that easy since neutron scattering does not yield any informa-
tion about the relative phases of the three helices to each other. The authors
have therefore performed a detailed mean-field calculation which revealed that
the energy of such a state is minimized if the relative phases are chosen such
that the magnetic structure forms magnetic whirls, so-called skyrmions, in real
space, which are arranged on a regular triangular lattice perpendicular to the
magnetic field, c. f. Fig. 3.2.7 and the right part of Fig. 3.2.8. Interestingly, this
phase appears only as a metastable state on mean-field level, but Mühlbauer et
al. have shown that thermal fluctuations in gaussian order alone are arleady suf-
ficient to stabilize it with respect to the competing conical phase. The mean-field
calculation and fluctuation corrections are discussed in detail in Sec. 4.1 and 4.2,
respectively.

Since 2009, the skyrmion lattice phase has also been observed in many other ma-
terials such as the doped semiconductor Fe1-xCoxSi [32], iron and cobalt doped
MnSi, i. e.Mn1-xFexSi and Mn1-xCoxSi [33], and the insulator Cu2OSeO3 [34].
This is in agreement with the theoretical analysis, which predicts that the oc-
currence of a skyrmion lattice is a generic feature in chiral magnets. In fact,
all above mentioned materials have a phase diagram similar to the one of MnSi
shown in Fig. 3.2.8 [32–34].
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q ‖ B

q

B

Figure 3.2.8.:Magnetic phase diagram of MnSi. In a small pocket of the phase diagram
at intermediate magnetic field and temperatures just below the ordering temperature
of T ≈ 29K, the skyrmion lattice is the magnetic ground state of the system. For
historical reasons, the skyrmion lattice phase is named “A-phase” in the figure. The
right figure shows the skyrmion lattice phase as an arrangement of magnetic whirls on
a triangular lattice perpendicular to the applied field. Picture of the phase diagram
taken from Ref. 24.

In addition to neutron scattering experiments, the skyrmion lattice has also been
observed directly with real-space imaging techniques in thin films [35] and on
surfaces of bulk materials [36, 37]. Fig. 3.2.9 a) shows a Lorentz transmission
electron microscopy image (LTEM) of the skyrmion lattice phase in a thin film
of Fe0.5Co0.5Si [36]. In this technique, one utilizes the deviation of an electron
beam due to the Lorentz force resulting from the interaction with the magnetic
moments in the sample to reconstruct the magnetic structure. Two drawbacks
of this technique are that it can only be applied to electron transparent (i. e.
very thin) samples and that it is only sensitive to the in-plane component of the
magnetization, i. e. the component perpendicular to the electron beam.
Another technique, that is sensitive to the out-of-plane component of the mag-
netization, is magnetic force microscopy (MFM). For this method, one moves a
magnetized tip directly over the surface of a sample. The interaction between the
sample and the tip cause a deviation of the tip from which one can reconstruct
the out-of-plane component of the surface magnetization. Fig. 3.2.9 b) shows the
surface magnetization of a bulk sample of Fe0.5Co0.5Si in the skyrmion lattice
phase as recorded with this technique [37].
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a) b)

Figure 3.2.9.: a) Lorentz transmission electron microscopy image of the skyrmion
lattice phase in a thin film of Fe0.5Co0.5Si. The color-code represents the in-plane
magnetization distribution. Picture taken from Ref. 36. b) Magnetic force microscopy
measurement of the surface of Fe0.5Co0.5Si. In red (blue) areas, the magnetization
points out of (in) the plane. Picture taken from Ref. 37.

3.3. Topological properties of the skyrmion lattice

Topology is a branch of mathematics that deals with properties of systems that
remain invariant under continuous deformations. This allows a classification of
systems in terms of topological invariants, e. g. the number of “holes” in its shape.
Based on this criterion, one would e. g. consider a doughnut and a coffee mug to
be topologically equivalent since both have exactly one hole and can be contin-
uously deformed into each another, c. f. Fig. 3.3.10. A doughnut and a cube, on
the other hand, would be considered as topologically distinct since one would first
have to drill a hole into the cube before it can be transformed into a doughnut.

The concept of topology has also proven to be very fruitful in the classification of
condensed matter systems [39, 40] since many systems exhibit topological phases
which are characterized by some non-local quantity depending solely on the global
structure of the phase. The fact that topological order cannot be destroyed by
continuous deformations leads to the concept of topological stability, which will

Figure 3.3.10.: Continuous transformation of a doughnut into a coffee mug. Picture
taken from Ref. 38.
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be of particular interest in this thesis.

The skyrmion lattice phase in chiral magnets is a realization of such a topological
phase. The corresponding topological invariant is the winding number W , which
is given by the integral over the skyrmion density

wµ =
1

8π
εµνλM̂ ·

(
∂νM̂× ∂λM̂

)
, (3.3.3)

where M̂ is a unit vector pointing in the direction of the local magnetization.
For skyrmions located in the xy-plane, the winding number is given by

W =
1

4π

∫
A

dxdy M̂ ·
(
∂M̂

∂x
× ∂M̂

∂y

)
. (3.3.4)

and simply counts how often the magnetization in a certain area A covers the
unit sphere. Fig. 3.3.11 shows how a skyrmion can be obtained from a singular
hedgehog configuration: First, the hedgehog is combed around the axis defined
by the north and south pole, followed by a projection into the plane that obeys
the rule that the magnetization at the north pole is mapped to a circle at infinity,
whereas the magnetization at the south pole is mapped to a single point at the
origin. This mapping reveals that the magnetization of a single skyrmion covers
the unit sphere exactly once and the winding number per skyrmion is thus quan-
tized to W = −1, where the sign comes from the fact that the magnetization
in the center of the skyrmion points downwards. Strictly speaking, the observed
skyrmions are thus anti -skyrmions, and skyrmions can be obtained from these
by the transformation M→ −M.
If the hedgehog is not combed before it is projected into the plane, one obtains
non-chiral skyrmions as shown in Fig. 3.3.12. These configurations also have
a winding number of W = −1 per skyrmion, but do not occur for the type of
Dzyaloshinskii-Moriya interaction considered here, which always prefers a certain
twist direction.

The helical and conical phases are, in contrast to the skyrmion lattice phase,
not characterized by a topological invariant. Consequently, the phase transition
between the skyrmion lattice and the conical phase is of particular interest since
it goes along with a change in topology. As already mentioned in this section,
this cannot be achieved by a smooth rearrangement of the magnetization and it
turns out that the only way to convert one phase into the other is to suppress
the amplitude |M(r)| of the magnetization locally to zero, which is energetically
very expensive. It will be shown in Ch. 6 that this phase conversion is mediated
by monopoles and anti-monopoles of an emergent magnetic field.
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Figure 3.3.11.: From a hedgehog con-
figuration to a chiral skyrmion: First,
the hedgehog is combed around an axis
defined by the north and the south pole,
followed by a projection into the plane.
Picture taken from Ref. 31.

Figure 3.3.12.: From a hedgehog con-
figuration to a non-chiral skyrmion: In
contrast to chiral skyrmions, the hedge-
hog is not combed before the projec-
tion into the plane. Picture taken from
Ref. 31.
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4. Stabilization of the skyrmion
lattice by thermal fluctuations

4.1. Mean field theory for chiral magnets

Landau mean-field theory is a phenomenological theory for the description of
phase transitions, see e. g. Refs. 41 and 42 for an introduction. Central ingredi-
ent is the existence of an order parameter which is zero in the disordered phase
and non-zero in the ordered phase. In the vicinity of a phase transition, the order
parameter is small and one can expand the free energy in powers of the order
parameter. Minimization of this functional with respect to the order parameter
yields the thermodynamic equilibrium properties of the system under considera-
tion, neglecting all fluctuations.
In a ferromagnet, the order parameter is given by the local magnetization M(r)
and the free energy G of a system can be expressed by the partition function Z
as

e−G = Z =

∫
DM e−F [M], (4.1.1)

where the functional F [M] respects all symmetries of the system.
To first order, the free energy of the system is simply given by its mean-field
value, which is defined as

G ≈ min
[
F [M]

]
≡ F [M0], (4.1.2)

where M0 is the magnetic structure that minimizes the functional F [M]. From
now on, I closely follow Refs. 24 and 43 for the review of the mean-field theory
for chiral magnets.

Mean-field theory for ferromagnets with inversion symmetry For a
ferromagnet with inversion symmetry exposed to an external magnetic field B,
the free energy functional F [M] takes the form

F [M] =

∫
d3r

(
J (∇M)

2
+ r0M

2 + UM4 −B ·M + ...
)
, (4.1.3)
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where J > 0, r0 and U > 0 are phenomenological parameters that have to be
derived from a microscopical theory of the system under consideration. The first
term proportional to J is the coarse-grained version of Eq. (3.1.1) and accounts
for the ferromagnetic character of the system by favoring a parallel alignment
of the magnetization. The second term changes its sign at the phase transition
(i. e. r0 ∝ T −Tc, where Tc is the critical temperature) and is responsible for the
spontaneous symmetry breaking, whereas the term proportional to U ensures
stability of the system by preventing arbitrary large magnetizations. The last
term accounts for the Zeeman-energy gain due to the external magnetic field.
Eq. (4.1.3) is invariant under rotations and translations in space, spatial inver-
sions, the transformation defined by (M,B)→ (−M,−B) as well as a combined
rotation of space and spin space around the axis defined by B (or an arbitrary
axis if B = 0). Other terms containing e. g. only one spatial derivative are for-
bidden since they transform as ∇ → −∇ under spatial inversion and hence do
not respect the inversion symmetry of the underlying system.
Without an external magnetic field, the free energy functional is minimized for
T < Tc by a uniform and spatial independent (i. e. ∇M(r) = 0) magnetization
with a magnitude given by

M =

√
− r0

2U
. (4.1.4)

Since the free energy functional Eq. (4.1.3) is rotationally invariant, the direction
of M is not determined by this solution. This degeneracy is lifted either by a
magnetic field or crystal anisotropies which favor a certain direction in space. For
temperatures T > Tc, the only minimum of F [M] is given by M(r) = 0, which
corresponds to a paramagnetic state.
Fig. 4.1.1 shows schematically the behavior of the free energy functional for T <
Tc, T = Tc and T > Tc in dependence on the uniform magnetization.

Mean-field theory for chiral magnets For systems without inversion sym-
metry, one has to extend the free energy functional to include terms containing
odd powers of the spatial derivative. The leading term is the Dzyaloshinskii-
Moriya (DM) interaction [27, 28], whose coarse grained version (c. f. Eq. (3.1.2))
is linear in the gradient and given by

FDM =

∫
d3r 2DM · (∇×M) , (4.1.5)

where the energy scale D is set by the spin-orbit coupling strength λSO and
the sign of D depends on the particular system. It will be shown later that
∇ ∝ k ∝ D, which makes the DM interaction term in Eq. (4.1.5) in fact second
order in the spin-orbit coupling.
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M

F (M)

M0−M0

T > Tc
T = Tc
T < Tc

Figure 4.1.1.: Schematic behavior of the free energy functional F , Eq. (4.1.3), for
T < Tc, T = Tc and T > Tc and a uniform magnetization.

In order to minimize the corresponding full free energy functional, it is useful to
first simplify the expression by rescaling the parameters as

r→ D

J
r, M→

√
JU

D
M, B→

√
UJ3

D3
B (4.1.6)

and introducing

t =
r0J

D2
, γ =

JD

U
(4.1.7)

to obtain

F [M] = γ

∫
d3r
(

(∇M)2 + 2M · (∇×M) + (1 + t)M2 + M4 −B ·M
)
. (4.1.8)

The complete physics of the mean-field theory is thus determined by the parame-
ters t and B. The next step is to exploit the translation symmetry of the system
by performing a Fourier transform of the magnetization to momentum space,

M(r) =
∑
k

eikrMk. (4.1.9)

Since the magnetization is real, the Fourier components have to satisfy Mk =
M∗
−k. This allows to rewrite Eq. (4.1.8) as a sum of quadratic terms and a
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4. Stabilization of the skyrmion lattice by thermal fluctuations

q ‖ B

Figure 4.1.2.: The conical mean-field solution of the free energy functional with
Dzyaloshinskii-Moriya interaction.

constant,

F [M]

γ
=− V t

2 −B2

4
+ V

∑
k6=0

M i
−k
[
(1 + k2)δij − 2iεijkk

k
]
M j

k

+

∫
d3r

(
M2 +

t

2

)2

+ V

(
Mf −

1

2
B

)2

,

(4.1.10)

where Mf ≡Mk=0 is the field-polarized component of the magnetization and V
the volume of the system.
The matrix

[
(1 + k2)δij − 2iεijkk

k
]
has the eigenvalues {(1 − k)2, 1 + k2, (1 +

k)2} with k = |k| and is thus positive semi-definite, as are the last two terms
in Eq. (4.1.10). The free energy is therefore bounded from below by Fmin =
−γV (t2 − B2)/4 and the mean field solution can be found by minimizing all
quadratic terms individually. For a magnetic field in z-direction and B <

√
−2t,

the solution is given by

M(r) =

Φ cos(kz)
Φ sin(kz)
Mf

 (4.1.11)

with

Mf =
1

2
B, Φ =

√
−2t−B2

2
, k =

2π

λ
= 1, k ‖ B, (4.1.12)

which describes an umbrella like conical structure propagating in direction of the
magnetic field, c. f. Fig. 4.1.2. For B >

√
−2t, the ground state of the system

is described by a fully polarized phase with a magnetic moment Mf = B/2 in
the direction of the field. As the magnetic field is reduced to zero, the uniform
magnetization Mf vanishes continuously. Exactly at B = 0, the propagation
direction of the helical structure is not determined by the free energy functional.
This degeneracy is usually lifted by small anisotropies which favor a certain di-
rection in space. One of these anisotropy terms that is allowed by the P213 space
group of the B20 crystal structure is in lowest order of the spin-orbit coupling
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Tc

B0

T

B

conical

helical

paramagnet

Figure 4.1.3.: Mean field phase diagram of a ferromagnet with additional DM inter-
action according to Eq. (4.1.8) and B0 =

√
2Dr0(T = 0)/J2U .

(∝ λ4
SO) given by [31]

Fanisotropy = A

∫
d3rM(r)(∂4

x + ∂4
y + ∂4

z )M(r)

= AV
∑
k

(k4
x + k4

y + k4
z)|Mk|2,

(4.1.13)

and locks the propagation direction either in 〈111〉 (A > 0) or 〈100〉 (A < 0)
direction. A detailed overview of all terms up to sixth order in k allowed by the
symmetry of the P213 space group can be found in Ref. 31.

In non-rescaled units, the wavelength λ of the helical modulations is given by λ =
2πJ/D (and thus of the order λ−1

SO), which is large compared to crystallographic
distances. The magnetic structure thus effectively decouples from the crystal
lattice and varies very smoothly through the whole system.
The phase boundary between the conical and paramagnetic phase is according
to Eq. (4.1.12) given by B =

√
−2t, or in original units by

B =

√
2Dr0

J2U
(4.1.14)

Fig. 4.1.3 shows the corresponding mean-field phase diagram.

Mean-field theory for the skyrmion lattice The characteristic signal of
a skyrmion lattice in neutron scattering experiments are the six Bragg spots
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4. Stabilization of the skyrmion lattice by thermal fluctuations

with relative angles of 60◦ in the plane perpendicular to the magnetic field, c. f.
Fig. 3.2.6. This implies that the skyrmion lattice basically consists out of three
different Fourier modes {k1,k2,k3} ⊥ B, with same magnitude k ≡ |k1| = |k2| =
|k3| and k1 + k2 + k3 = 0, as imposed by the 60◦ pattern1. In the following, I
discuss how such a structure can gain energy from the quartic term in the free
energy functional (although this is not sufficient to stabilize it on mean-field level).

As a first step, the q = 0 component Mf , which corresponds to the field polarized
part of the magnetization, is singled out to obtain the “true” order parameter Ψ =
M −Mf . Expanding the quartic interaction term of the free energy functional
Eq. (4.1.8) yields∫

d3r M4 =

∫
d3r

(
M4

f + 4M2
f (Mf ·Ψ) + 2M2

fΨ
2

+ 4(Mf ·Ψ)2 + 4Ψ2(Mf ·Ψ) + Ψ4
)
.

(4.1.15)

The skyrmion lattice can gain energy from the term which is cubic in the order
parameter Ψ. Its Fourier transform reads∫

d3r Ψ2(Mf ·Ψ) =
∑

k1,k2,k3 6=0

(Mf ·Mk1
)(Mk2

·Mk3
)δ(k1 + k2 + k3). (4.1.16)

The only possibility to gain energy from this term is if the magnetic structure
contains Fourier modes of three wave vectors with k1 + k2 + k3 = 0. Since the
modulus of the wave vectors is fixed by k = D/J , the three wave vectors have to
lie in the same plane with relative angles of 120◦ in between them, c. f. Fig. 4.1.4.
This already accounts for the six Bragg spots with relative angles of 60◦ observed
in experiments.
A direct calculation [24, 43] shows that the vector

∫
d3r Ψ2Ψ aligns orthogonal

to the plane spanned by k1,k2 and k3, with a prefactor that depends on the
relative phases of the three helices. The energy of the cubic term is thus min-
imized if k1,k2 and k3 are orthogonal to Mf and hence also orthogonal to B.
The relative phases between the different helices then ensure that

∫
d3r Ψ2Ψ

becomes maximally anti-parallel to Mf , which minimizes the energy gain by the
cubic term. This explains the second experimental observation that the six Bragg
spots occur in a plane perpendicular to the applied magnetic field.

Although this argument can already explain how the skyrmion lattice can gain
energy from the quartic term in the free energy functional, a more profound
1Since the magnetization is real, each Fourier mode gives rise to two Bragg peaks at ±k, which
implies that the relative angle between the three helices is 120◦, leading to the condition
k1 + k2 + k3 = 0.
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B
120◦

120◦ 120◦

k1

k2 k3

|ki| = D/J

Figure 4.1.4: Alignment of the
three wave vectors in the skyrmion
lattice solution.

Figure 4.1.5: The free energy difference
∆G = Gskyrmion−Gconical between the con-
ical and the skyrmion phase in dependence
on the magnetic field for t = −3.5. The free
energy difference is plotted in units of γt/4,
which is the energy difference between the
ferromagnetic state and the conical phase
at B = 0. Thermal fluctuations lower the
free energy of the skyrmion phase below the
energy of the conical phase, c. f. Sec. 4.2.
Picture taken from Ref. 24.

analysis is necessary to make quantitative statements about its stability. A full
study [24, 43] that takes into account also higher Fourier modes k up to some
cut-off Λ (these modes have also been observed experimentally, c. f. Ref. 44),
followed by a numerical minimization, reveals that the skyrmion lattice phase
only occurs as a local minimum of the free energy whereas the global minimum is
still given by the conical phase. The energy difference between these two phases is
however very small, in particular for intermediate magnetic fields, c. f. Fig. 4.1.5.

4.2. Thermal fluctuations in gaussian
approximation

The small energy difference between the skyrmion lattice and the conical phase,
which appears on mean-field level and favors the latter one, is in contradiction
to the observed stability of the skyrmion lattice in experiments. The fact that
the skyrmion lattice phase is observed just in a small pocket below the critical
temperature and vanishes again as the temperature is reduced further hints that
thermal fluctuations might be responsible for its stabilization. The leading order
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4. Stabilization of the skyrmion lattice by thermal fluctuations

correction to the mean-field solution is given by gaussian fluctuations [24],

∆G =
1

2
ln det

(
δ2F

δMδM

)∣∣∣∣
M0

, (4.2.17)

where M0 is the mean-field solution that minimizes F [M]. Mühlbauer et al.
have calculated the energy gain from thermal fluctuations for the conical and
the skyrmion lattice phase in Ref. 24. They find that especially the skyrmion
lattice benefits from fluctuations, which eventually leads to its stabilization with
respect to the competing conical phase for a certain field range, c. f. Fig. 4.1.5
for a comparison to the mean-field energies. Fig. 4.2.6 shows the obtained phase
diagram including gaussian fluctuations. As observed in the experiment (c. f.
phase diagram in Fig. 3.2.8), the skyrmion lattice phase is stable only in a small
pocket close to the critical temperature for intermediate magnetic fields. On the
right hand side of the vertical red dashed line, the fluctuation corrections to the
dominant Fourier modes become larger than 20%, i. e. δMfluct

k > 0.2 M0
k, and

the perturbative treatment breaks down. On the left hand side of this line, the
perturbative treatment is controlled in the sense that the fluctuation corrections
are small (<20%) and the existence of the skyrmion lattice phase can be guaran-
teed in the gray colored pocket. Below the lower horizontal red dashed line, the
skyrmion lattice becomes unstable again.
This fluctuation analysis remarkably shows that no additional interactions or phe-
nomenological parameters are required to stabilize the skyrmion lattice phase, as
proposed by several authors [45–49], which implies that the formation of a skyrm-
ion lattice is a generic feature of chiral magnets.
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4.2. Thermal fluctuations in gaussian approximation

Figure 4.2.6.: Phase diagram for chiral magnets incorporating gaussian thermal fluc-
tuations. The skyrmion lattice phase (called “A-crystal” in the figure) becomes instable
with respect to the conical phase below the horizontal red dashed line. On the right
hand side of the vertical red dashed line, the fluctuation contribution to the magnetic
structure becomes larger than 20% and the perturbation theory breaks down. On the
left hand side of this line, fluctuations are small enough (<20%) to justify the perturba-
tive treatment and the existence of the skyrmion lattice phase can be guaranteed in the
gray colored pocket. The inset is explained in Fig. 4.1.5. Picture taken from Ref. 24.
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5. Phase diagram and
thermodynamics from Monte
Carlo simulations

In this section, I extend the fluctuation analysis presented by Mühlbauer et al.
in Ref. 24 by a large scale classical Monte Carlo simulation. This approach in-
cludes fluctuations beyond gaussian order in a non-perturbative manner and is
thus ideally suited to test the stability of the skyrmion lattice phase, especially
in the region close to Tc, where the perturbative treatment breaks down due to
the strong thermal fluctuations.
Simulations for two-dimensional systems have been performed before [36, 50] and
the phase diagrams obtained are in excellent agreement with recent experiments
on thin films of Fe0.5Co0.5Si [36]. So far, these simulations have not yet been
extended to three dimensions since they are numerically very demanding. In this
chapter, I close this gap and present the first complete Monte Carlo study of
three-dimensional chiral magnets. Most of the results presented in this chapter
have been published in Ref. 51.

The structure of this chapter is as follows: I first discuss the numerical imple-
mentation with a special emphasis on the discretization of the continuum model
in Sec. 5.1. In Sec. 5.2, I present several thermodynamical quantities across the
temperature driven phase transition and compare them to experimental data.
Finally, I conclude this chapter with a presentation of the full phase diagram in
Sec. 5.3 and a discussion of the numerically obtained structure factors in Sec. 5.4.

5.1. Numerical implementation and discretization
of the continuum model

A major reason why the previous Monte Carlo studies for two-dimensional sys-
tems have not been extended to three-dimensional systems yet (except for an
energy minimization study that does not take into account thermal fluctuations
[52]) is the high computational effort: One has to simulate very large systems
in order to observe multiple twists of the helical structure. Since the length of
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5. Phase diagram and thermodynamics from Monte Carlo simulations

the helical modulations is controlled solely by the ratio J/D, one might naively
think that one can simply reduce the pitch-length by increasing the DM inter-
action. If, however, the magnetization varies significantly from site to site, as it
does for short pitch-lengths, the assumption of a continuum model is not justified
anymore. In fact, it will be shown below that the discretized model used for the
Monte Carlo simulations deviates from the continuum model in terms which are
in leading order proportional to k4 and thus relevant for all pitch-lengths that
are accessible in numerical simulations.
Assuming a slow variation of the magnetization, one can resort to the already
introduced Hamiltonian (c. f. Sec. 4.1)

H =

∫
d3r

[
J (∇M(r))

2
+ 2DM(r) · (∇×M(r))−B ·M(r)

]
, (5.1.1)

for the description of chiral magnets [21, 24]. Instead of using e. g. the full B20
structure, that is often found in chiral magnets, for the Monte Carlo simulations,
one can also implement this model on a simple cubic lattice, which, in principle,
has inversion symmetry, unless it is explicitly broken as it is done below. Ex-
tending the lattice Hamiltonian proposed in Refs. 36 and 50 to three-dimensional
systems yields1

H =− J
∑
r

Sr · (Sr+x̂ + Sr+ŷ + Sr+ẑ)−B ·
∑
r

Sr

−D
∑
r

(Sr × Sr+x̂ · x̂ +Sr × Sr+ŷ · ŷ + Sr × Sr+ẑ · ẑ) ,
(5.1.2)

where x̂, ŷ and ẑ are the basis vectors of the simple cubic lattice. Even though
this Hamiltonian does not provide any explicit anisotropies that favor a certain
crystal direction at B = 0, such anisotropies are automatically generated in the
lattice model due to discretization errors and finite size effects and it is thus not
necessary to add these terms explicitly to the Hamiltonian.

Using feedback optimized parallel tempering (c. f. Sec. 2.2 and 2.3), it was possi-
ble to equilibrate the transition from the paramagnetic to the ordered phases for
lattice sizes up to N = L3, L = 20 spins by using up to 600 replicas. At L = 30,
a significantly larger number of replicas would have been necessary, which is the
reason why the analysis is mostly restricted to L = 20.
Several things have to be taken into account in the selection of suitable param-
eters J and D for the simulation: On the one hand, one would like to have a
1Note that the parameters J,D and B from the continuum model Eq. (5.1.1) and the dis-
cretized version Eq. (5.1.2) are not in one-to-one correspondence due to the coarse graining
procedure.
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large pitch-length such that the magnetization varies smoothly enough that the
assumption of the continuum model Eq. (5.1.1) is justified, whereas, on the other
hand, one would like to observe multiple twists of the magnetization within a
system size that is still tractable in a numerical simulation. A reasonable com-
promise is given by a pitch length of 10 lattice sites, which can be obtained in
the lattice model by choosing2 D/J = tan(2π/10) ≈ 0.727. As mentioned before,
these relatively short pitch lengths lead to deviations between the lattice model
and the continuum model which have to be taken seriously. This can be seen as
follows: On the lattice, the Fourier transform of the ferromagnetic Heisenberg
interaction term reads

HFM = J
∑
k

αkSk · S−k, (5.1.3)

with

αk =− (cos(kx) + cos(ky) + cos(kz))

=− 3 +
1

2

(
k2
x + k2

y + k2
z

)
− 1

24

(
k4
x + k4

y + k4
z

)
+O(k6),

(5.1.4)

which implies that all kinds of higher order momentum terms are generated (the
constant term only shifts the energies). Comparing this to the Fourier transform
of the ferromagnetic Heisenberg term of the continuum model (∝ (∇M)2), one
finds that only terms quadratic in k are present there. In principle, one would
not be worried about the higher-order terms in the series if the ordered state
was described by a uniform spin texture, as it is e. g. the case in the purely
ferromagnetic Heisenberg model. In general, however, the critical modes do not
become soft at zero momentum, but at a finite-ordering wave-vector Q 6= 0. Due
to the use of relatively small lattice sizes in the numerical simulations (compared
to the modulation period of the helices), |Q| is in general of the order . 1 (for a
pitch length of 10 lattice sites one has |Q| ≈ 0.63). Consequently, the contribution
of the higher order terms in Eq. (5.1.4) is not negligible and spoils the analysis. In
fact, it turns out that it is impossible to reproduce the experimentally observed
shape of the phase diagram for the chosen pitch-length, c. f. Sec. 5.3.
In order to compensate these induced anisotropies, one can add next-nearest-
neighbor interactions H ′ to the Hamiltonian, chosen such that they do not break
any symmetries of the underlying system and give a better approximation of the
continuum field theory in the sense that they compensate the higher order terms.

2The energy for a helix with wave vector k is according to lattice Hamiltonian in Eq. 5.1.2
given by E = −J cos(k)−K sin(k) and thus minimized for tan(k) = D/J . For small k, one
has tan(k) = k+O(k3), and this result agrees with the result k = D/J from the continuum
theory. See Ref. 50 for details.
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They assume the form

H ′ =J ′
∑
r

Sr · (Sr+2x̂ + Sr+2ŷ + Sr+2ẑ)

+D′
∑
r

(Sr × Sr+2x̂ · x̂ +Sr × Sr+2ŷ · ŷ + Sr × Sr+2ẑ · ẑ) .
(5.1.5)

The full αk of the ferromagnetic Heisenberg term, c. f. Eq. (5.1.3), is then given
by

αk =− 3

(
1− J ′

J

)
+

1

2

(
1− 4J ′

J

)(
k2
x + k2

y + k2
z

)
− 1

24

(
1− 16J ′

J

)(
k4
x + k4

y + k4
z

)
+O(k6),

(5.1.6)

which immediately shows that one can compensate the anisotropies in leading
order by choosing J ′ = J/16. Repeating the same procedure for the DM inter-
action leads to D′ = D/8. One should note that this compensation rescales the
effective J and D (given by the prefactors of leading order terms in k) both by
the same factor of 3/4. In addition to that, there is also a modification of the
pitch-length of the helical structure, which becomes slightly shorter than with
nearest neighbor interactions alone.
To conclude, the reason for the need of this compensation is that the approxima-
tion of the gradient terms in the continuum theory Eq. (5.1.1) solely by nearest-
neighbor interactions as in Eq. (5.1.2) is not accurate if the spin configuration
varies significantly from site to site. If one could simulate larger lattices, one
could use a smaller value of D, which, in turn, increases the modulation period
of the helices. The spin configuration would then vary more smoothly, and con-
sequently, the nearest-neighbor approximation of the lattice model Eq. (5.1.2)
improves.

The concept using next-nearest-neighbors to improve the approximation of deri-
vatives is also known for ordinary functions which are given on an equally spaced
grid with distance h. While a simple central approximation

f ′(xi) =
f(xi + h)− f(xi − h)

2h
(5.1.7)

that takes into account only function values next to the point at which the
derivative is approximated, i. e. at xi ± h, yields an error of O(f ′′′(y)h2), where
y ∈ [x−h, x+h] [20], a better approximation can be achieved if one also considers
function values at xi ± 2h. For instance, the approximation

f ′(xi) =
f(xi − 2h)− 8f(xi − h) + 8f(xi + h)− f(xi + 2h)

12h
(5.1.8)
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yields an error which only scales as O(f (5)(y)h4), where y ∈ [x− 2h, x+ 2h] [20]
and is thus more accurate. Details on this topic can be found e. g. in Ref. 20.

Another problem related to the pitch-length is the choice of optimal boundary
conditions. For periodic boundary conditions, one can expect strong finite size
effects since it is not possible to choose the parameters such that helices with
different orientations, e. g. in the 〈100〉 and 〈111〉 direction, fit perfectly on the
lattice at the same time. Additionally, the shape of a cubic system of size L3

is incompatible with the triangular skyrmion lattice, which penalizes this phase
in particular. One might thus think that open boundary conditions might be
better suited for numerical simulations, but these lead to polarized spins on the
boundaries due to missing nearest-neighbor ferromagnetic and DM interactions,
which makes these spins profit maximally from an alignment in the magnetic
field. Therefore, periodic boundary conditions have been used in all simulations
and it was found that these did not lead to major complications in the simula-
tions for the chosen parameters J and D in the sense that all results compare
very well to experimental findings.

The most severe problem one encounters in the Monte Carlo simulation is, how-
ever, given by the topological stability of the skyrmion lattice phase. Even in a
feedback optimized parallel tempering simulation according to Sec. 2.2 and 2.3,
it is not possible to equilibrate the phase transition from the skyrmion lattice to
the conical phase and the former one remains as a metastable state down to low-
est temperatures. This metastability can also observed experimentally [37] and,
even though it makes the determination of the phase boundaries difficult, it can
be utilized to get some fundamental insight into the topological unwinding of the
skyrmion lattice as it is shown in Ch. 6. Strong hysteresis is also observed for the
helical to conical transition, where it is very difficult to drive the reorientation of
the helical propagation vector solely by local Monte Carlo updates once a specific
orientation is selected.

5.2. Thermodynamic quantities
Fig. 5.2.1 shows the results for specific heat

cV =
∂E

∂T
=
〈E2〉 − 〈E〉2

NT 2
(5.2.9)

obtained by Monte Carlo simulations for a system size size N = L3, L = 20 in
dependence on temperature for different magnetic fields.
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Figure 5.2.1.: The specific heat in dependence on temperature for various fields
strengths at L = 20. The broadened first-order peak vanishes continuously as the
field is increased. The crossing point at T/J ≈ 1.3 marks a Vollhardt-invariance, see
main text.

Figure 5.2.2: Experimentally measured
specific heat of MnSi. Tc marks the position
of the first-order peak at low fields, T2 the
Vollhardt-invariance and TA1 the transition
from the skyrmion lattice to the conical
phase. See Ref. 53 for more details and
images of single curves. Picture taken from
Ref. 53.
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First of all, one finds a crossing point for all curves at T/J = T ∗/J ≈ 1.3.
This crossing point, a so-called Vollhardt-invariance [54], has also been observed
experimentally in MnSi [53, 55] and is (in this case) related to a turning point in
the magnetic susceptibility χ. To see this, one notes that the universality of the
specific heat at T = T ∗ implies

0 =
∂

∂B
cV

∣∣∣∣
T=T∗

= T
∂2S

∂B∂T

∣∣∣∣
T=T∗

, (5.2.10)

which can be rearranged using the Maxwell relation ∂S/∂B = ∂M/∂T to

0 = T
∂2M

∂T 2

∣∣∣∣
T=T∗

= TB
∂2χ

∂T 2

∣∣∣∣
T=T∗

, (5.2.11)

where it was used that M = χB for sufficiently small fields. The appearance of
a turning point in the magnetic susceptibility has been explained recently by the
occurrence of a Brazovskii-scenario [56, 57], which describes how the abundance
of soft chiral fluctuations close to the critical point drives the transition to the
helical phase weakly first-order. This abundance of soft modes originates from
the fact that the helical modulations do not become soft at a single point in k-
space but on a sphere with radius k = D/J . Consequently, the density of states
for critical fluctuations exhibits a one-dimensional singularity so that interaction
corrections are expected to drive a strong suppression of the correlation length
and, eventually, a fluctuation-induced first-order transition [57].
Fig. 5.2.3 shows the experimentally measured magnetic susceptibility for MnSi at
zero-field as published in Ref. 57 (c. f. also Ref. 58 and 59 for other experimental
data) together with the data obtained from the Monte Carlo simulations, which
has been calculated from the magnetization per spin in direction of the magnetic
field (B = Bẑ) as

χzz =
∂Mz

∂Bz
=
〈M2

z 〉 − 〈Mz〉2
T

. (5.2.12)

The similarity between the two curves is striking, in particular the Monte Carlo
data also features the above mentioned turning point related to the Vollhardt
invariance at T/J = T ∗/J ≈ 1.3.

In the following, I discuss the remaining Monte Carlo data for each of the three
ordered phases separately.

Helical phase At low fields, the specific heat features a slightly broadened
first-order peak on top of a broader shoulder, indicating the transition to the
helical phase. The broadening of the peak is typical for a fluctuation driven first-
order transition [53, 57]. As the magnetic field is increased, the height of the peak
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Figure 5.2.3.: Magnetic susceptibility χzz as measured in the Monte Carlo simulation
for L = 20 (large image) and in MnSi (inset). The experimental data has been provided
by A. Bauer and was published in Ref. 57.

decreases continuously, as it is also observed experimentally upon approaching
the tricritical point located at larger fields [53], c. f. Figs. 5.2.2 and 5.2.4.

In the Monte Carlo simulations, the direction of the helical wave-vector depends
on system size. For the size of N = 203 that was used in the parallel tempering
simulations, the helical propagation vector aligns roughly in a 〈110〉 direction
since the length of the system in that direction, L〈110〉 = 20

√
2 ≈ 28.3, is ap-

proximately compatible with the chosen pitch-length of λ = 10 lattice sites. For
simulated annealing runs with a lattice size of L = 30, the helical propagation
vector aligned roughly in a 〈111〉 direction, which is again approximately com-
patible with the length of the helical modulations (L〈111〉 = 30

√
3 ≈ 52).

Skyrmion lattice phase In order to identify a phase transition into the skyrm-
ion lattice phase, one has to define a suitable order parameter which is sensitive
to the formation of skyrmions. A good choice is the topological winding number
since it is independent of many details such as the orientation and pitch-length
of the helices that build up the skyrmion lattice. For the calculation of the aver-
age winding number per layer perpendicular to the applied field, the bottom of
each unit cell of every layer is divided into two triangles as shown in Fig. 5.2.5.
Afterwards, the solid angle Ωi covered by the three spins on the edges of every
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Figure 5.2.4.: Magnetic phase diagram of MnSi derived from the specific heat (dia-
monds) and the real part (squares) and imaginary part (triangles) of the ac suscepti-
bility. One distinguishes the following regimes: helical order, conical order, skyrmion
lattice, fluctuation disordered (FD), paramagnetic (PM) and field-polarized (FP). TCP
denotes the tricritical point and VI the Vollhardt-invariance. Picture taken from Ref. 53.

triangle is computed using the Oosterom-Strackee algorithm [60]

Ωi =
S1 · (S2 × S3)

1 + S1 · S2 + S2 · S3 + S3 · S1
. (5.2.13)

The total winding number of a layer is then obtained by summing over all trian-
gles in that layer and dividing by 4π,

W =
1

4π

∑
i

Ωi. (5.2.14)

Fig. 5.2.6 shows the average winding number per layer in dependence on tem-
perature for various field strengths. For all field values, one finds the above
mentioned strongly fluctuating regime at T ≈ J , in which the winding number
is non-zero on average. Below a temperature of T/J ≈ 0.9, the winding number
drops to zero except in the intermediate field range 0.10 . B . 0.20, where it
approaches exactly the constant value 4, indicating the transition to a skyrmion
lattice phase with four skyrmion tubes (the number of skyrmions is limited by
the lattice size L = 20), whereas it enters a non-topological phase with vanishing
winding number for all other field values.
Since skyrmions are topologically protected, it is very difficult to destroy the
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B

Figure 5.2.5.: Calculation of the winding number: The system is first divided into
layers perpendicular to the magnetic field. Afterwards, the bottom of every unit cell in
each layer is divided into two triangles and for each triangle, the solid angle covered by
the spins on its corners is calculated using the Oosterom-Strackee algorithm, see main
text.
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Figure 5.2.6.: Average winding number per layer in dependence on temperature for
various field strengths at L = 20. For 0.10 . B . 0.20, the winding number approaches
exactly the constant value 4 as the temperature is lowered, indicating a skyrmion lattice
phase with four skyrmion tubes.
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5.2. Thermodynamic quantities

skyrmion lattice phase at low temperatures, where thermal fluctuations are weak.
In fact, it turns out that even a feedback optimized parallel tempering algorithm
according to Sec. 2.2 and 2.3 is not able to equilibrate the phase transition from
the skyrmion lattice to the conical phase. Instead, one finds that the system
always remains in the (metastable) skyrmion lattice phase down to lowest tem-
perature, which is the reason why one does not observe the winding number
decrease to zero again for smaller temperatures in Fig. 5.2.5. It is nevertheless
possible to determine the phase boundary between the two competing phases,
c. f. Sec. 5.3.

Conical phase The conical phase can be detected e. g. by the magnetic struc-
ture factor

S(Qc) =
1

N2

∑
ij

e−iQc·(ri−rj)〈Si · Sj〉, (5.2.15)

at the conical wave-vector3 Qc = (0, 0, atan(D/J)). Fig. 5.2.7 shows the mag-
netic structure factor as a function of temperature for different field strengths as
well as a function of field for different temperatures. As the system is cooled at
constant field, the structure factor becomes non-zero below a certain tempera-
ture, indicating a phase transition to the conical phase. If the field is just above
the level for which the skyrmion lattice is still stabilized, i. e. B/J ≈ 0.20, the
structure factor seems to jump discontinuously at the phase transition, whereas
it rises continuously for larger field values. From a numerical point of view, it
is in general difficult to make statements about the nature of a phase transition
just by the analysis of the temperature dependence of the structure factor. An
unambiguous statement can, however, be made by recording a frequency his-
togram of the structure factor exactly at the critical temperature: If the phase
transition is second order, there will be only one peak in the histogram since
the structure factor rises continuously. If, on the other hand, the transition is
first-order, i. e. if there is phase coexistence, one should find two separated peaks
in the histogram, corresponding to the values in the respective phases. Fig. 5.2.8
shows the structure factor histograms for various values of the magnetic field.
One can clearly see that a double peak structure is present for values just above
the level for which the skyrmion lattice is still stabilized, whereas only a single-
peak structure is visible for larger field values. This observation is consistent
with the phase transition turning from first- to second-order at a tricritical point
as the magnetic field is increased. This tricritical point has also been observed
experimentally in MnSi [53], c. f. Fig. 5.2.4.
If the field is increased at constant temperature (right part of Fig. 5.2.7), the

3In the simulations, the magnetic field is applied along z-direction, i. e. B = Bẑ
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Figure 5.2.7.: The structure factor at the conical wave-vector Qc (Eq. (5.2.15)) as
a function of temperature for different magnetic fields (left) and as a function of the
magnetic field for different temperatures (right).

structure factor decreases continuously to zero as the system enters a fully polar-
ized phase. The continuity of the structure factor at the transition implies that
the nature of the phase transition is second order.
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Figure 5.2.8.: Frequency histograms of structure factor at the conical wave-vector Qc

(Eq. (5.2.15)) and at the critical temperature for several magnetic fields at L = 20.

5.3. Determination of the phase boundaries

The phase boundaries between the paramagnetic and the various ordered phases
have been determined from the peak in the specific heat (helical phase) as well as
the susceptibilities of the corresponding order parameters, i. e. winding number
(skyrmion lattice) and structure factor at the conical wave-vector Qc (conical
phase). The inner phase boundaries between the ordered phases can unfortu-
nately not be determined that easily. Even in a parallel tempering simulation
with an optimized temperature set according to Secs. 2.2 and 2.3, the skyrmion
lattice phase remains metastable down to the lowest temperatures and no tran-
sition to the conical phase is observed. The reason for this is that the skyrmion
phase is topologically protected and hence very difficult to destroy. The topolog-
ical unwinding of this phase is discussed in more detail in Ch. 6.
For the transition between the helical and the conical phase, one also observes
a large hysteresis since it is very difficult to change the orientation of the he-
lical structure with local spin updates alone. In order to determine the phase
boundaries between the ordered phases, one has to compare their free energies.
Unfortunately, the free energy is (in contrast to the energy) a quantity which can
not be accessed that easily within a Monte Carlo simulation. One way to estimate
the free energy difference between two states is to simulate both states at the
same temperature and magnetic field and to record the transition probabilities

P (s→ s′) = min (1, exp((Es − Es′)/T )) (5.3.16)
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Figure 5.3.9: Different cooling paths used
to determine the phase boundaries in a
schematic phase diagram: (1) Cooling at
intermediate magnetic fields, (2) field cool-
ing at high field and subsequent decrease of
the field to the target value, (3) zero-field
cooling and subsequent increase of the field
to the target value. T

B

(2)

(3)

(1)

from one state to the other throughout the simulation, without ever performing
the actual spin update. Since the free energy is related to the probability p(s) that
a certain state s is occupied, i. e. F (s) = −T log(p(s)), one can use the detailed
balance condition Eq. (1.1.10) to estimate the free energy difference between two
states according to Ref. [61] as

∆F = −T log

(
p(s)

p(s′)

)
= −T log

(
P (s′ → s)

P (s→ s′)

)
. (5.3.17)

Unfortunately, this method requires very large statistics in order to determine the
phase boundary with a sufficient accuracy. For convenience, the energy difference
between two states was used most of the time to estimate the phase boundary.
Although this is strictly speaking not correct, it is discussed below that it leads
to almost identical results.
The energies for the skyrmion lattice phase can be obtained from the parallel
tempering simulation (path 1 in Fig. 5.3.9), whereas the energies for the conical
phase can be measured by cooling the system at high field to the desired temper-
ature followed by decreasing the field to the target value (path 2 in Fig. 5.3.9)
This way, the system enters the conical phase without ever being in the topo-
logically protected skyrmion phase. The energies are then measured for different
temperatures up to the paramagnetic transition. Throughout this process, it is
checked that the system never leaves the conical phase by monitoring the corre-
sponding order parameter.
Fig. 5.3.10 shows the energy as well as the free energy difference between the
skyrmion and the conical phase for a linear lattice size of L = 20 and B/J = 0.16.
The zero crossings of the energy and the free energy differences are almost iden-
tical, which justifies to use the energy difference to a good approximation.
For small system sizes, one can expect that the triangular skyrmion lattice, which
is incompatible with two boundaries of the simulated cubic cell, is penalized by
rather strong finite size effects, whereas the conical phase, which is at most
incompatible with one boundary, should be less affected. For larger lattices,
however, one can expect that the measured energies are closer to the respective
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Figure 5.3.10.: The energy and free energy difference between the skyrmion lattice
and the conical phase for L = 20 and B/J = 0.16 with discretization anisotropy com-
pensation by next-nearest neighbor interactions according to Sec. 5.1. The free energy
difference has been rescaled by a factor of 80 to fit on the same scale.

values in the thermodynamic limit since finite size effects become less important.
Fig. 5.3.11 shows the energy differences between the skyrmion lattice and the con-
ical phase exemplarily for fixed field in dependence on temperature for different
systems sizes. Simulations with and without next-nearest neighbor interactions
have been performed at B/J = 0.16 and B/J = 0.213̄, respectively. These values
differ by a factor of 4/3 to account for the modification of the effective J , c. f.
Sec. 5.1 for details.
For L = 20, where the skyrmion lattice is penalized by rather strong finite size
effects, the conical phase becomes eventually the ground state at low tempera-
tures even without the anisotropy compensation, but the skyrmion phase extends
over a wide range in temperature. With the compensation, the skyrmion phase
remains restricted only to a temperature range close to Tc, as it also observed
experimentally. At L = 30, the need for the anisotropy compensation becomes
even more evident: Without the compensation, the skyrmion lattice remains the
ground state down to T = 0 since it is less penalized by finite size effects. With
the compensation, however, it remains restricted to a small temperature region
again.

In order to obtain the energy difference between the helical and conical phase in
dependence on the field strength, the system is cooled to a target temperature
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Figure 5.3.11.: The energy difference per spin between the skyrmion lattice and the
conical phase for different lattice sizes with and without discretization anisotropy com-
pensation by next-nearest neighbor interactions. Simulations without (with) anisotropy
compensation were recorded at B/J = 0.213̄ (B/J = 0.16), see main text for expla-
nations. Note that the effective J is rescaled by a factor 3/4 in the case of finite
next-nearest neighbor interactions, c. f. Sec. 5.1.

both at large and at zero field (paths 2 and 3 in Fig. 5.3.9) such that the system
is in the spin polarized or helical phase, respectively. Afterwards, the field is
reduced or increased, respectively, while the energies are measured. Fig. 5.3.12
shows exemplarily the energy difference between the two phases in dependence
on the magnetic field at constant temperature. The phase boundary is then de-
termined from the zero-crossing of a fit to the corresponding data.

Fig. 5.3.13 shows the phase diagram for a lattice size of L = 20. The similarity
with the experimentally observed phase diagrams (c. f. Fig. 3.2.8 and 5.2.4)
is striking and proofs that the minimal model Eq. (5.1.2) is indeed sufficient
to reproduce all experimental findings. In particular, it proofs that thermal
fluctuations alone are indeed sufficient to stabilize the skyrmion lattice and that
this assertion holds beyond gaussian order. Furthermore, it was conclusively
shown that no additional interactions or anisotropies are needed to stabilize the
skyrmion lattice as it was proposed by several authors [45–49].
From a simulation point of view, the crucial role of lattice discretization aniso-
tropies was identified and a possible way to compensate them has been proposed
and implemented.
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5.4. Structure factors
To conclude this chapter, the structure factors of the three different ordered
phases are shown in Fig. 5.4.14 for a system of size L = 30. The states used for
the calculation of the structure factor have been obtained by simulated annealing
(skyrmion and helical phase) or by decreasing the field at constant temperature
(conical phase). The larger lattice size was chosen to obtain a better resolution in
k-space. Simulations with L = 20 lead to identical results except that the helical
propagation vector changes roughly to 〈110〉. Note that the structure factors
have been integrated over the k-direction perpendicular to the plane shown in
the figure to allow an easier identification of the phases.
As all other quantities before, the structure factors show a remarkable similarity
to experimental findings, c. f. Fig. 3.1.5 and 3.2.6.
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Figure 5.4.14.: Magnetic structure factors for the three different phases that occur in
chiral magnets in the kx−ky and kx−kz plane, integrated over the k-direction perpendic-
ular to the respective planes. The states used for the calculation of the structure factors
have been obtained by simulated annealing (helical and skyrmion phase) and decreas-
ing the field at constant temperature (conical phase). Parameters are (B, T ) = (0, 0.5)
(helical phase), (0.16, 0.84) (skyrmion phase) and (0.16, 0) (conical phase) as well as
L = 30.
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6. Emergent electrodynamics and
magnetic monopoles

This chapter deals with the phase transition from the skyrmion lattice to the
conical phase. Since the conical phase is, in contrast to the skyrmion lattice, an
ordinary, non-topological phase, it is a question of fundamental interest how the
system manages to unwind the topologically stable skyrmions during this tran-
sition. It turns out that this process is mediated by monopoles of an emergent
magnetic field associated with the skyrmions.

Sec. 6.1 reviews the derivation of these fields in detail by analyzing the influence
of a smoothly varying magnetic structure on conduction electrons. Sec. 6.2 deals
with the measurement of the emergent magnetic field via the so-called topo-
logical Hall-effect in experiments. The experimental observation of the phase
transition from the skyrmion to the conical phase by magnetic force microscopy
and small angle neutron scattering experiments is discussed in Sec. 6.3. The
underlying microscopic process of the phase conversion by magnetic monopoles
is explained with the support of Monte Carlo simulations and topological argu-
ments in Sec. 6.4. Sec. 6.5 concludes this chapter with a short comparison of these
emergent monopoles to the monopoles found in frustrated “spin-ice” materials.

6.1. Emergent electric and magnetic fields

In this section, I closely follow Ref. 62 and review how conduction electrons are
affected by a magnetic structure that contains skyrmions. It is shown that the
movement of the electrons can be described elegantly in terms of emergent elec-
tric and magnetic fields carried by the skyrmions. These fields turn out to be
topologically quantized and their influence on the electron movement can be mea-
sured e. g. in Hall-effect experiments.

Since the magnetic texture of a chiral magnet is usually very smooth in the
sense that the magnetization twists on length scales much larger than the lattice
spacing (e. g. in MnSi the pitch-length is about 190Å whereas the lattice spacing
is on about 4.56Å [24]), one can assume that the spin of a conduction electron
adjusts adiabatically to the direction of the local magnetization, c. f. Fig. 6.1.1.
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Figure 6.1.1.: Adiabatic adjustment of the spin of a conduction electron as it passes
the magnetic texture of a skyrmion. Picture taken from Ref. 63.

Assuming a free conduction electron whose spin couples to the direction of the
local magnetization M̂(r, t) = M(r, t)/|M(r, t)|, one can start with the simple
Hamiltonian

H =
p2

2m
+ Jσ · M̂(r), (6.1.1)

where p denotes the momentum of the electron, σ is the vector of the three Pauli
matrices and J < 0 accounts for the coupling between the spin of the conduction
electron and the local magnetization. The corresponding equation of motion for
the wave function ψ of the conduction electron reads

i∂tψ(r, t) =

[
p2

2m
+ Jσ · M̂(r)

]
ψ(r, t). (6.1.2)

In order to diagonalize the Hamiltonian, one can perform a unitary transforma-
tion U(r, t) on the wave function which rotates the local coordinate system such
that the local ẑ-axis points always in the direction of the local magnetization and
Jσ · M̂(r) goes over into Jσz. This transformation is given by

U(r, t) = exp (−iθσ · n(r, t)/2) , (6.1.3)

with θ being the angle of the rotation and n(r, t) = ẑ×M̂(r)/|ẑ×M̂(r)| being the
local rotation axis. Writing ψ(r, t) = U(r, t)ξ(r, t) in Eq. (6.1.2) and multiplying
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with U†(r, t) from the left, one obtains

i∂tξ(r, t) =

[
−iU†∂tU +

(
p + iU†∇U

)2
2m

+ Jσz

]
ξ(r, t). (6.1.4)

By identifying the emergent scalar and vector potentials,

V e(r, t) = −(i/qe)U†(r, t)∂tU(r, t), (6.1.5)

Ae(r, t) = −(i/qe)U†(r, t)∇U(r, t), (6.1.6)

one can rewrite the Hamiltonian in the familiar form known from minimal cou-
pling,

i∂tξ(r, t) =

[
qeV e +

(p− qeAe)
2

2m
+ Jσz

]
ξ(r, t). (6.1.7)

The meaning of the emergent charge qe, which so far drops out in these expres-
sions, will become clear shortly.
The adiabatic approximation justifies to treat the emergent potentials as a per-
turbation to the free Hamiltonian

H0 =
p2

2m
+ Jσz , (6.1.8)

which describes two bands, one corresponding to majority spins (spin pointing
in direction of the local magnetization) and one to minority spins (spin pointing
in the opposite direction). Since the spin-flip scattering length is estimated to be
much larger than the distance between skyrmions [25], one can neglect spin-flip
scattering and consider only the diagonal parts of the emergent potentials V e
and Ae by projecting these onto the two bands, which yields [62]

Eei = −∂iV e − ∂tAei = ∓ 1

2qe
M̂ ·

(
∂iM̂× ∂tM̂

)
, (6.1.9)

Bei = εijk∂jA
e
k = ∓εijk

4qe
M̂ ·

(
∂jM̂× ∂kM̂

)
. (6.1.10)

These two fields account for the Berry phase picked up by an electron on a closed
path in its parameter space as its spin adiabatically follows the direction of the
local magnetization. The sign of this phase is opposite for majority and minority
spins [64] which motivates to define the emergent charge qe as −1/2 for majority
and as +1/2 for minority spins.
The emergent fields then have the same sign for both bands and are given by

Eei = M̂ ·
(
∂iM̂× ∂tM̂

)
, (6.1.11)

Bei =
εijk
2

M̂ ·
(
∂jM̂× ∂kM̂

)
. (6.1.12)
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Eq. (6.1.11) implies that an emergent electric field can only exist if the direction
of the magnetic structure is both space and time dependent. The space depen-
dence is naturally given in chiral magnets, whereas the time dependence has to
be created from outside. This can e. g. be achieved by driving a current through
the sample, which causes a drift of the skyrmion lattice [25, 31, 65].

An emergent magnetic field can only arise in the skyrmion lattice phase since
it is directly proportional to the skyrmion density εijkM̂ ·

(
∂jM̂× ∂kM̂

)
, c. f.

Eqs. (3.3.3) and (3.3.4). Furthermore, the quantization of the winding number
enforces the flux of the emergent magnetic field to be quantized as well and
consequently each skyrmion carries exactly one (negative) flux quantum Φ0,∫

UC
Be · dA = − 2π

|qe| ≡ −Φ0, (6.1.13)

where UC denotes the magnetic unit cell of the skyrmion lattice.

6.2. Topological Hall effect

The emergent magnetic field can be observed experimentally by its influence on
the movement of conduction electrons in Hall-effect measurements. Since the
origin of the emergent magnetic field is rooted in the non-trivial topology of the
magnetic structure, this effect is often referred to as the topological Hall-effect
[66].

The normal Hall-effect occurs when electrons with charge q = −e and density
n move with drift velocity vd through a sample in the presence of an external
magnetic field B, c. f. Fig. 6.2.2. The Lorentz force

FL = −evd ×B (6.2.14)

accelerates the electrons towards one end of the sample where they accumulate.
This charge separation gives rise to an electric field E and results in a force

FE = eE, (6.2.15)

which is oriented opposite to the Lorentz force.
Eventually, the two forces balance each other and the electrons drift unaffected
by the magnetic and electric fields through the sample. The charge separation
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Figure 6.2.2.: Illustration of the Hall effect. Electrons move from the left to the right
with drift velocity vd through the sample. The Lorentz-force causes the electrons to
move downwards leading to an excess of electrons at the bottom and a shortage at the
top of the sample. This charge separation gives rise to an electric field which forces the
electrons to move upwards again. The acting forces compensate each other and a Hall
voltage can be measured between the top and bottom of the sample.

on the two sides of the sample (which effectively forms a capacitor) leads to a
voltage drop UH , the so-called Hall voltage, given by

UH = Ed =
1

ne

IB

d
, (6.2.16)

where it was used that the current I is given by I = nevdbd (c. f. Fig. 6.2.2 for
the definition of the geometric dimensions b and d).
Experimentally, one typically measures the hall resistivity

RH =
UH
I

=
B

ned
(6.2.17)

in dependence on the magnetic field. One would thus expect that the Hall resis-
tivity rises linearly with the applied field and exhibits an additional contribution
due to the emergent magnetic field, which is present only in the skyrmion lattice
phase.

This has been experimentally verified e. g. in MnSi by Neubauer et al. [66],
who measured the magnetic field dependence of the Hall resistivity for differ-
ent temperatures in and around the small pocket in the phase diagram where
the skyrmion lattice phase exists, c. f. Fig. 6.2.3 a). While the Hall resistivity
rises overall linearly with increasing magnetic field, one can observe a small addi-
tional contribution in the skyrmion lattice phase. To extract only this additional
contribution, the authors subtracted the linear background due to the normal
Hall-effect from their data, c. f. Fig. 6.2.3 b).
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a) b)

Figure 6.2.3.: a) Hall resistivity of MnSi in dependence on the magnetic field for
different temperatures. b) Additional contribution due the emergent magnetic field
obtained by subtraction of the linear background caused by to the common Hall-effect.
The additional contribution is only present in the skyrmion lattice phase, c. f. Fig. 3.2.8.
Picture taken from Ref. 66.

6.3. Experimental observation of the unwinding of
a skyrmion lattice

Since topological and non-topological phases are both realized in chiral magnets,
these systems are ideally suited for the observation of a topological phase tran-
sition. In 2013, Milde et al. analyzed the phase transition from the skyrmion
lattice to the helical phase by means of magnetic force microscopy (MFM) mea-
surements on the surface of bulk Fe0.5Co0.5Si [37]. This composition was chosen
because the periodicity of the helical modulations of ∼90 nm is large compared to
the resolution of ∼20 nm of MFM [67], which allows to observe single skyrmions
on its surface.
Fig. 6.3.4 shows the magnetic phase diagram of this compound. Interestingly,
one observes strong hysteresis, i. e. the observed state at a point in the phase di-
agram depends strongly on how this point was reached. Under zero-field cooling,
i. e. cooling without magnetic field, helimagnetic order with a propagation vector
in 〈100〉 direction occurs below a temperature of Tc ≈ 45K. As the magnetic
field is subsequently increased at T < Tc, the system first undergoes a spin-flop
transition to a conical phase at Bc1 followed by a transition to a field-polarized
state at Bc2. Additionally, the skyrmion phase is stabilized in a small pocket just
below the ordering temperature at intermediate magnetic fields.
Under field cooling, i. e. cooling at a constant magnetic field, one observes strong
hysteresis in the sense that there is only a transition from the paramagnetic to
the conical or skyrmion lattice phase, but not to the helical phase. Furthermore,
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a) b)

Figure 6.3.4.: a) Phase diagram of Fe0.5Co0.5Si observed under zero-field cooling. The
skyrmion lattice phase is confined to a small pocket just below the ordering temperature.
b) Phase diagram observed under field cooling. The skyrmion lattice phase persists as
a metastable phase down to T = 0, whereas the helical phase is never observed at finite
fields. Picture taken from Ref. 37.

upon cooling at field values in the range of the skyrmion lattice phase, this phase
survives as a metastable state down to the lowest temperatures. This facilitates
MFM measurements in two ways: First, the magnetic moments increase at small
temperatures which substantially improves the contrast of the MFM data. Sec-
ond, the topological stability of skyrmions is based on the fact that the amplitude
of the local magnetization is finite everywhere. Strong thermal amplitude fluctu-
ations close to Tc might in principle weaken their stability, whereas for T � Tc,
one can expect to observe the pure mechanism of the topological unwinding.

Fig. 6.3.5 shows typical MFM images recorded for decreasing applied field after
an initial cool-down to T = 10K at B = 20mT as well as Fourier transforms of
the surface magnetization. The image for B = 20mT (panel B1) was recorded
directly after the initial cool-down and shows a triangular lattice of skyrmions
(blue spots). As the magnetic field is lowered, one observes that neighboring
skyrmions coalesce and form an elongated pattern (see e. g. panel B2). Upon
lowering the field further, more skyrmions merge and the resulting structures
grow in length (panels B3 to B5). Eventually, a striped pattern containing var-
ious defects is formed. Such a pattern is typical for helically modulated phases
and a Fourier transform of the magnetization (panels A4 and A5) reveals that
the helices propagate mainly in 〈100〉 direction which is the easy axis in this
compound. The lifetime of the metastable skyrmion lattice was found to be long
compared to the time needed to record each image (∼17 minutes) and only small
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Figure 6.3.5.: Typical magnetic force microscopy images at the surface of Fe0.5Co0.5Si.
Red (blue) areas correspond to a magnetization pointing parallel (anti-parallel) to the
line of sight out of (into) the surface. The magnetic field is pointing out of the surface.
Panels (A1) through (A5): Images recorded as a function of magnetic field after field
cooling at B = +20mT down to T = 10K. Panel (A1) shows the image obtained
immediately after field cooling. After the initial cool-down, the field was reduced at a
fixed temperature of T = 10K (A2 to A5). During this process, the skyrmions, which
appear as blue spots in the images, merge and form elongated, line-like structures. The
left inset shows the Fourier transform of the real-space signal. Panels (B1) to (B5)
enlarge the region marked by the black rectangle in panels (A1) to (A5). Picture taken
from Ref. 37.
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changes in the MFM data has been observed after a waiting time of 15 hours
[37, 67].
To summarize, the MFM data suggests that the mechanism for the unwinding
of the skyrmion lattice is the coalescence of skyrmions into helical domains. To
check whether the same process takes also place in the bulk of the material, Milde
et al. performed small angle neutron scattering experiments with the same sam-
ple that was used for the MFM measurements. The observed scattering patterns,
shown in Fig. 6.3.6, basically agree with the Fourier transforms obtained from the
MFM data, which lends further support to the assumption that the coalescence
of skyrmions is not just a surface effect but also takes place in the bulk of the
material. The SANS measurements show an additional ring of intensity that is
not observed in the MFM data. The authors attribute this ring to the presence
of disorder and the fact that the MFM measurements only probe a very small
part of the sample, whereas the SANS measurements reflect its whole volume.

The interesting questions which are still unanswered are, on the one hand, how the
merging of skyrmions can be understood from a microscopic point of view, and,
on the other hand, how the topology changes during this process. To answer these
questions, it is desirable to model the system e. g. in a Monte Carlo simulation,
which allows to observe every magnetic moment in the vicinity of the point where
two skyrmions merge. The next section explains the details of such a simulation
and the conclusions that can be drawn from it regarding the topological properties
of the points of coalescence.
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Figure 6.3.6.: Comparison of the Fourier transforms of the magnetic force microscopy
data (left column) with small angle neutron scattering (right column). The same sample
of Fe0.5Co0.5Si was used for all measurements. Picture taken from Ref. 67.
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6.4. Emergent magnetic monopoles

In order to get some insight into the fundamental microscopic process responsible
for the merging of neighboring skyrmions, I performed classical Monte Carlo sim-
ulations following the experimental setup and protocol used in Ref. 37 as closely
as possible. As it was already discussed in Sec. 5.3, one observes strong hystere-
sis in the Monte Carlo simulations, including the metastability of the skyrmion
lattice phase under field-cooling, which is also observed experimentally. In this
section, I exploit this fact and analyze in detail the phase transition from the
skyrmion lattice to the helical phase upon decreasing the magnetic field.
After presenting the results from the Monte Carlo simulation, I discuss the topo-
logical aspects of this phase transition and show that it is mediated by magnetic
monopoles and antimonopoles of the emergent magnetic field. At the end of
this section, I discuss another numerical approach that takes into account the
real-time dynamics of the magnetic moments by solving the stochastic Landau-
Lifshitz-Gilbert equation, leading to qualitatively identical results.

Monte Carlo study Simulations were performed using the lattice Hamiltonian
Eq. (5.1.2) with D/J = arctan(2π/10) ≈ 0.73 and the anisotropy compensation
by next-nearest neighbor interactions (c. f. Sec. 5.3) on a simple cubic lattice
consisting of 42 × 42 × 30 lattice sites with open boundary conditions in 〈110〉
direction and periodic boundary conditions in the other two directions. As in
the experimental setup, the magnetic field is applied along a 〈110〉 direction and
thus perpendicular to the surfaces with open boundary conditions, c. f. Fig. 6.4.7.
Having a real surface along this direction is important in order to reproduce the
experimental setup and allows a comparison with the MFM measurements.

30

B

42

42

〈001〉

〈110〉

Figure 6.4.7: Orientation of the simple cu-
bic lattice of size 42 × 42 × 30 used in the
Monte Carlo simulations and direction of
the magnetic field. The blue shaded areas
mark the surfaces with open boundary con-
ditions and the green boxes denote unit cells
of the simple cubic lattice. Note that only
a few unit cells are shown for simplicity to
illustrate their arrangement inside the sim-
ulated cell. Picture taken from Ref. 67.
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As described in Sec. 6.3, the experiment explores the metastability of the skyrm-
ion lattice by cooling the system at a constant field that is subsequently reduced
at a fixed temperature. To be able to track metastable states in the Monte Carlo
simulation, it is necessary to perform a single simulation with local updates, i. e.
random reorientations of single randomly chosen spins (this excludes parallel
tempering due to the constant exchange of replicas). Using single-site updates,
the system is cooled down slowly at B/J = 0.16 to various temperatures ranging
from T/J = 0.4 to 0.7. As observed in the experiment, the skyrmion lattice phase
remains intact upon cooling despite the fact that the conical phase is the thermo-
dynamically stable ground state at these temperatures, c. f. Sec. 5.3. Following
the initial cool-down, the field is reduced linearly at a rate of ∆B/J = 5 · 10−4

after 250 Monte Carlo lattice sweeps. At each value of the magnetic field, the
state of the system is then averaged over 250 configurations separated by 30 lat-
tice sweeps for later analysis. These timescales have been found to average out
some thermal fluctuations but still allow to monitor the changes of the magnetic
structure during the phase conversion. Fig. 6.4.8 shows typical snapshots of the
spin configuration immediately after the initial cool-down, at low fields and at
zero field. Instead of showing the individual magnetic moments in the system,
it is (for reasons that will become clear shortly) very useful to show surfaces of
constant magnetization in the direction of the field, which provides a clear view
on the skyrmion tubes running through the system.
In contrast to the experiments, the simulation allows to monitor the process re-
sponsible for the merging of skyrmions not just at the surface but also in the bulk
of the system and is thus of great importance for the understanding of the phase
conversion. As the field is decreased, the neighboring skyrmion tubes touch and
merge into a single tube, reducing the winding number in the corresponding layer
by 1 and thus indicating a change of topology. The pattern at the front of the
simulated system (corresponding to a surface with open boundary conditions)
shows remarkable similarities to the MFM data, c. f. Fig. 6.3.5.

Topological aspects The topological aspects of the observed merging of skyr-
mions is best described in the language of the emergent electric and magnetic
fields introduced in Sec. 6.1. The most important result of this section was that
the emergent magnetic flux through a surface intersected by a skyrmion tube is
exactly given by one (negative) flux quantum −Φ0,∫

UC
BedA = − 2π

|qe| ≡ −Φ0. (6.4.18)

Fig. 6.4.9 shows schematically the merging of two skyrmion tubes in the bulk.
Going from the top to the bottom in this figure, the magnetic flux through
the layers jumps discontinuously from −2Φ0 to −Φ0 in the layer where the two
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MP
AMP

Figure 6.4.8.: Monte Carlo simulation of the phase conversion. The system was first
field cooled at B/J = 0.16 (B ‖ 〈110〉) down to T/J = 0.6, followed by a linear decrease
of the field at constant temperature. Below a critical field B−c , the skyrmion tubes touch
and merge. The arrows labeled MP and AMP point to a monopole and antimonopole,
respectively.

skyrmion tubes merge. Due to the topological nature of the skyrmions, this
is only possible by a singular field configuration for which the magnetization
vanishes locally at one point in space. Such a configuration is exactly generated
by the hedgehog defect shown in the right part of Fig. 6.4.9. The implications
on the emergent magnetic field can be seen by integrating the field over a closed
surface ∂Ω of an infinitesimal volume Ω surrounding this point,∫

∂Ω

Be · dA =

∫
Ω

∇ ·BedV

= −Φ0 (Ns
out −Ns

in)

= −Φ0,

(6.4.19)

where Ns
out (Ns

in) is the number of skyrmion tubes going out of (into) the volume
Ω. The singular hedgehog configuration at the merging point has thus winding
number −1 and creates exactly one negative quantum of emergent magnetic flux.
In that sense, the hedgehog defect carries a magnetic charge and can be inter-
preted as emergent magnetic antimonopole. The corresponding monopoles are
given by defects with winding number +1, which carry a positive flux quantum.
Note that the position of a monopole (MP) and an antimonopole (AMP) is also
marked in the numerical data presented in Fig. 6.4.8.

In order to find topological defects in the Monte Carlo simulation, it is necessary
to perform the volume integral in Eq. (6.4.19) numerically. The winding number
of the eight magnetic moments around each unit cell can be computed by a
triangulation of the surface of the unit cell according to Fig. 6.4.10. Each of the
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B

Figure 6.4.9.: Schematic illustration describ-
ing the merging of two skyrmions. At the merg-
ing point the magnetization vanishes at a singu-
lar point (arrow). The corresponding hedgehog
defect can be interpreted as an emergent mag-
netic antimonopole, which acts like the slider of
a zipper connecting two skyrmion tubes. Picture
taken from Ref. 37.

Figure 6.4.10.: Triangulation of a
unit cell of the simple cubic lattice.
To find topological defects, the sur-
face of the cube is split into twelve
triangles (gray lines). For each tri-
angle, the solid angle covered by
the spins on its corners is calcu-
lated using the Oosterom-Strackee
algorithm Eq. (6.4.20). The sum of
all solid angles divided by 4π yields
the winding number of the cube.

six surfaces is therefore split into two triangles and for every triangle the solid
angle covered by the three magnetic moments Si on its corners is computed by
the Oosterom-Strackee algorithm [60]

Ωi =
S1 · (S2 × S3)

1 + S1 · S2 + S2 · S3 + S3 · S1
. (6.4.20)

The winding number of the unit cell is then given by

W =
1

4π

12∑
i=1

Ωi (6.4.21)

and can by construction only take the values -1, 0 and +1, where +1 and −1
correspond to a monopole or antimonopole, respectively. Additionally, the wind-
ing number for every layer perpendicular to the magnetic field was calculated as
described in Sec. 5.2.
Since winding numbers are additive, the total winding number for an arbitrary
closed surface can be computed by adding the winding numbers of the elemen-
tary cubes within the volume surrounded by the surface. Local Monte Carlo
updates (or thermal fluctuations in the experiment) can therefore only create
monopole-antimonopole pairs in the bulk of the system. Single monopoles or
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B

Figure 6.4.11.: Left row: Two skyrmion tubes merge in the bulk and create a
monopole-antimonopole pair. The two monopoles move in opposite direction through
the system, zipping the tubes together like the slider of a zipper. Right row: Two
skyrmion tubes merge at the surface and create a single monopole which again acts like
the slider of zipper when moving through the system.

antimonopoles can only be created at the surface. During the Monte Carlo sim-
ulation, the monopoles and antimonopoles move through the sample and merge
neighboring skyrmion tubes like the slider of a zipper. Fig. 6.4.11 shows these
processes schematically. Since the energy cost for creating single monopoles and
antimonopoles is only half as large as for the creation of a pair (the magneti-
zation has to be suppressed only once locally), the creation of single defects at
the surface of the sample is much more likely. This is also in agreement with
the Monte Carlo simulations, in which almost all “free” defects are created at the
surfaces, whereas most pairs created in the bulk annihilate again after a short
time before they separate. For larger systems, one will probably observe that
the largest fraction of monopoles and antimonopoles is nevertheless created in
the bulk, since the surface contribution to the overall creation rate becomes ne-
glectable in the thermodynamic limit.

Fig. 6.4.12 shows the monopole density and the winding number on the two
surfaces during the decrease of the magnetic field (averaged over 15 indepen-
dent runs) after an initial cool-down to four different temperatures. As a lot of
monopole-antimonopole pairs are frequently generated and destroyed by thermal
fluctuations, all pairs with a distance smaller than three lattice sites have not
been taken into account in the counting and only the number of the remaining
“free” monopoles, which are responsible for the phase conversion, is shown.
For each temperature, there is a certain field value B−c , below which monopoles
and antimonopoles are created and the winding number on the two surfaces de-
creases. When thermal fluctuations become weaker with decreasing temperature,
less monopoles and antimonopoles are excited. Consequently, the metastable re-
gion1 of the phase diagram grows and one observes that B−c is shifted to smaller
1All statements about the metastable region have to be thought of in the context of a suffi-
ciently small time scale that allows to observe the metastability.
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Figure 6.4.12.: Left: Density of monopoles (MP) and antimonopoles (AMP) as a
function of the magnetic field for four different temperatures. The density is normalized
to a volume given by λ3

h, where λ
3
h is the wavelength of the helical state. The errorbars

indicate standard deviations of the mean obtained after averaging over 15 different
runs. Right: winding number per area λ2

h on the two surfaces with open boundary
conditions.
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field values. If the temperature is chosen low enough, the skyrmion phase remains
metastable even down to B = 0 in the simulations.
For some intermediate temperatures, the phase conversion does not take place
completely as the field is lowered to B = 0, i. e. the winding number on the
surfaces remains finite and there are still monopoles and antimonopoles present
in the bulk of the sample. An analysis of the magnetic structure reveals that the
remaining monopoles are associated to frozen-in topological defects of a helical
state, typically with a propagation vector parallel to the surface, c. f. picture for
B = 0 in Fig. 6.4.8.
On average, the density of monopoles and antimonopoles is identical. This is
rooted in the fact that time reversal M → −M followed by an rotation by π
around an arbitrary axis perpendicular to the field is a symmetry of the system
which maps monopoles to antimonopoles and vice versa.

Finally, one can consider what happens if the phase transition out of the skyrmion
lattice phase is induced by increasing instead of decreasing the magnetic field. In
this case, there exists again a certain field value B+

c , at which the skyrmion tubes
are either cut into two tubes by the creation of a monopole/antimonopole pair
at some splitting point in the bulk or unwound piece-by-piece by a monopole or
antimonopole moving from the surface along the tube into the bulk. The latter
case is again preferred due to energetic reasons.

Micromagnetic simulations Since the phase conversion is a non-equilibrium
process, it is a question of fundamental importance whether the artificial Monte
Carlo dynamics and the real-time dynamics lead qualitatively to the same results.
C. Schütte has studied the spin dynamics [37, 68] taking into account the preces-
sion of spins, their damping as well as thermal fluctuations in a micromagnetic
simulation governed by the stochastic Landau-Lifshitz-Gilbert (sLLG) equation
[69]

dS(r, t)

dt
= −S(r, t)×

[
Beff(r, t) + Bfl(r, t)

]
+ αS(r, t)× dS(r, t)

dt
, (6.4.22)

with Beff(r, t) = −δH/δS(r, t), where H is the Hamiltonian Eq. (5.1.2) of the
full system (including the anisotropy compensation by next-nearest neighbor in-
teractions, c. f. Sec. 5.3), α the dimensionless Gilbert damping and Bfl(r, t) a
randomly fluctuating field used to describe thermal fluctuations of the magnetic
moments. Its properties are determined completely by the fluctuation-dissipation
theorem, i. e.

〈Bfl(r, t)〉 = 0, 〈Bfl(ri, t)B
fl(rj , t

′)〉 = 2αTδijδ(t− t′). (6.4.23)

A numerical integration of the sLLG equation (6.4.22) yields the correct thermal
equilibrium properties and allows to study the real-time dynamics of the phase
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conversion driven by thermal fluctuations.
As in the Monte Carlo study, a system size of 42 × 42 × 30 spins was used
with a magnetic field applied along a 〈110〉 direction. A Gilbert damping of
α = 0.04 was chosen to account for magnetic relaxation. At the beginning of
the simulation, an initial skyrmion state with a lattice constant compatible with
D/J = arctan(2π/10) was initialized and relaxed for a time tinit = 1000/J at
T/J = 0.5 in a constant field of Bext/J = 0.16 by integrating the sLLG equa-
tion (6.4.22). The magnetic field was then switched off completely at t = 0 to
investigate the dynamics of monopoles and antimonopoles. Snapshots of the spin
configuration were taken throughout the simulation and averaged over a short
time interval of ∆t = 10/J to suppress spurious monopole-antimonopole pairs at
short distances, which are frequently created and destroyed during the simulation.

Fig. 6.4.13 shows the distance of the monopoles (red) and antimonopoles (blue)
from the bottom surface of the simulated box as a function of time. Monopoles
(antimonopoles) are created at the top (bottom) surface and move down (up)
through the system. As a monopole or antimonopole passes a layer in the box,
the winding number of that layer (shown by the numbers in the figure) is reduced
by one. The black arrow in the figure marks an event where a monopole and
an antimonopole meet and annihilate. As mentioned before, the creation of
monopole-antimonopole pairs is energetically very costly and one hence observes
only the creation of single defects at the surfaces.
Overall, the results from the real-time dynamics are in agreement with the Monte
Carlo simulation concerning the underlying process of the phase conversion.
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Figure 6.4.13.: Movement of monopoles through a sample after a sudden quench of
the magnetic field, based on micromagnetic simulations of the sLLG equation. Starting
in the skyrmion phase, an initial external magnetic field of Bext/J = 0.16 is set to 0
at t = 0. The distance of the monopoles (red) and antimonopoles (blue) to the lower
surface is shown in dependence on the time (in units of J−1). The numbers in the
figure denote the winding number in each layer. The black arrow marks a point where
a monopole and an antimonopole meet and annihilate. Picture taken from Ref. 67.

6.5. Conclusion and Outlook

It was shown that monopoles and anti-monopoles of an emergent magnetic field
are responsible for the unwinding of the topologically stable skyrmion lattice in
chiral magnets. Understanding the details of this process is important for future
data storage applications and provides the theoretical background for the con-
trolled writing and deleting of single skyrmions (which has already been achieved
experimentally in two dimensions [26]).
Since magnetic monopoles have also been reported for so-called “spin-ice” [70, 71],
it is instructive to compare those monopoles with the emergent monopoles found
in chiral magnets. While monopoles in spin-ice are sources of the “real” magnetic
field, their charge is not quantized and depends on several microscopic details
such as the lattice spacing. By contrast, the monopoles considered here are
sources of the emergent magnetic field and follow Dirac’s quantization condition
[72] for monopoles, i. e. they carry exactly one quantum of emergent magnetic
flux.
Furthermore, in spin-ice at zero field, the monopoles are deconfined, i. e. it
requires only a finite energy to separate monopoles and antimonopoles to an infi-
nite distance. In chiral magnets, the situation is different. Deep in the skyrmion
phase, it requires a finite amount of energy per length to merge two skyrmions
together and there is consequently a linear potential (i. e. a finite string tension)
holding monopoles and antimonopoles together. Outside of the skyrmion phase,
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this string tension vanishes or becomes negative which allows the monopoles to
separate to arbitrary distances. It would be interesting to study disordered ma-
terials, where the string tension may be a random function at every lattice site
which could result in a pinning of the monopoles.
Another interesting open question is whether phases of deconfined monopoles
may exist in chiral magnets. One candidate for such a phase is the metallic state
of MnSi under high pressure, which shows non Fermi-liquid behavior [73] with
many properties that differ significantly from those of conventional metals, e .g.
it features a resistivity proportional to T 3/2 over almost three decades in tem-
perature [33] as well as partial magnetic order on intermediate time and length
scales [74] and an unconventional Hall signature [75].
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7. Introduction
This part of the thesis deals with so-called “frustrated” spin systems. The name
refers to the fact that a simultaneous satisfaction of competing interactions in
these systems is impossible, which can often be traced back to a lattice geometry
that is incompatible with antiferromagnetic exchange interactions. Depending
on the particular lattice, frustration results in many cases in a macroscopically
degenerate ground state which is only restricted by local constraints on small
clusters of spins. Such states do not show long-ranged magnetic correlations and
are often referred to as “spin-liquids”, as they are magnetically disordered much
in the way that liquid water is disordered compared to crystalline ice.
The search for spin-liquid materials is one of the current challenges in condensed
matter physics. From a theoretical point of view, there are a handful of classical
systems known to exhibit spin-liquid behavior, but often these systems are ei-
ther not realized in nature or the corresponding quantum system orders in some
way. It was therefore not before 2012 until the first good evidence of a sys-
tem exhibiting a spin-liquid ground state was found in so-called Herbertsmithite
ZnCu3(OD)6Cl [76].
Usually, the ground state degeneracy in spin-liquids is very fragile and can be
easily lifted by small perturbations. As pointed out first by Villain [77] and later
by Chalker [78], there exists also an intrinsic way to lift the ground state degener-
acy, provided that some ground states have softer excitations than others. Such
states promote fluctuations (which can be of thermal or quantum nature) into
nearby low energy configurations and are thus entropically favored, resulting in a
selection of these states at low temperatures in an “order-by-disorder” transition.
Even though a few systems are known to exhibit this effect (see e. g. Ref. 78–81)
such a transition has not yet been observed experimentally since most of these
systems simply do not exist in nature.
In this part of the thesis, I analyze a new class of highly frustrated spin systems,
the so-called swedenborgites, consisting of stacked kagome and triangular layers.
These compounds are relatively new and have not received a lot of attention
from the scientific community yet. In the following chapters, I close this gap by
presenting the first systematic theoretical study of the simplest model believed to
describe these compounds. Using a combination of analytical arguments and nu-
merical simulations, it is found that this model features a large spin-liquid regime
as well as an order-by-disorder transition. The fact that these compounds are not
only realized in nature but also offer a very favorable tunability and convenient
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energy scales renders them prime candidates for further experimental studies.

In the remaining part of this chapter, I first explain the concept of frustration
and how it can lead to degenerate ground states. This introduction is followed
by an explanation of the order-by-disorder effect together with a review of the
antiferromagnetic Heisenberg model on the kagome lattice, which is known to
exhibit this effect. The chapter concludes with a short explanation of emergent
“Coulomb-phases” in frustrated systems.
In Ch. 8, I discuss the swedenborgite lattice structure, introduce the minimal
model that is believed to describe these compounds and compare its predictions
to some experimental findings.
The Ising model with and without magnetic field on this lattice is then analyzed
in Ch. 9. It turns out that even though this particular model is probably not
realized in nature, it features very rich physics in terms of competing degenerate
ground state manifolds and is thus of great conceptional interest in the context
of spin-liquids.
The experimentally relevant Heisenberg model is finally considered in Ch. 10. It
is found that the ground state of this model is either unique or largely degenerate,
depending on the ratio of the exchange interactions. A harmonic spin-wave anal-
ysis around coplanar ground states reveals that these states feature soft modes
which are not present in generic ground states. Numerical evidence for the there-
fore expected order-by-disorder transition is presented together with a detailed
analysis of the low-temperature behavior of the specific heat.
This part ends with some concluding remarks on a possible experimental verifi-
cation of the order-by-disorder transition.

7.1. Magnetic frustration

Magnetic frustration refers to the inability of a spin system to fully satisfy com-
peting interactions simultaneously and is often present in systems with antifer-
romagnetic interactions (see e. g. Ref. 82 and 83 for reviews). It can arise either
from a lattice geometry that is incompatible with these interactions or from com-
peting interactions beyond nearest neighbors.
The former one is referred to as geometrical frustration and is found e. g. in any
antiferromagnetic nearest-neighbor spin model on a single triangle, c. f. Fig. 7.1.1.
In general, antiferromagnetic interactions are satisfied by aligning neighboring
spins anti-parallel to each other. The special geometry of the triangle, however,
makes it impossible to choose a spin configuration which completely satisfies the
interactions on all three bonds simultaneously. Once two spins in the triangle
are aligned anti-parallel, a third spin on the remaining site cannot be aligned
anti-parallel to both of them.
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Figure 7.1.1.: Geometric frustration on a single triangle: Once the two spins on the
bottom are aligned anti-parallel, it is not longer possible for the third spin to align
anti-parallel to both of them, resulting in an unsatisfied interaction between the two
parallel aligned spins. Satisfied bond-interactions are shown in green, unsatisfied ones
in red.
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Figure 7.1.2.: Exchange frustration due to next-nearest neighbor interactions on a sin-
gle square: Nearest neighbors are coupled ferromagnetically, while next-nearest neigh-
bors are coupled antiferromagnetically. It is never possible to satisfy the interactions
on all bonds simultaneously. The two configurations shown in the figure have different
satisfied and unsatisfied bonds (shown in green and red, respectively).

The second kind of frustration is often referred to as exchange frustration and
can be found e. g. on a single square with ferromagnetic nearest neighbor and
antiferromagnetic next-nearest neighbor interactions, c. f. Fig. 7.1.2. Once the
interactions on the bonds to the nearest neighbors are satisfied, the interactions
on the bonds to the next-nearest neighbors cannot be satisfied any more and vice
versa.
In both cases, the impossibility of a simultaneous minimization of all interac-
tions also translates to every lattice constructed out of these frustrated units. It
is shown in the next section that the resulting magnetic ground state is either
a spin-liquid or magnetically long-range ordered, depending on several details of
the particular system.
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Figure 7.2.3: The triangular lattice consisting of
edge-sharing triangles. Neighboring triangles have
two common spins and each lattice site has six near-
est neighbors, indicating the strong connectedness of
the lattice.

7.2. Ground state degeneracy
The nature of the ground state in a frustrated spin system depends strongly on
the symmetry of the spin variables and the geometry of the underlying lattice
structure. In this section, it is shown how Ising and Heisenberg spins face the
problem of geometrical frustration on the triangular and kagome lattice. While
Ising spins remain disordered on both lattices, Heisenberg spins have at least on
the triangular lattice a unique ground state1.

Triangular lattice The triangular lattice, consisting of edge sharing trian-
gles, is shown in Fig. 7.2.3. The nearest neighbor antiferromagnetic Heisenberg
Hamiltonian for O(3) Heisenberg spins S on this lattice is given by

H = J
∑
〈ij〉

Si · Sj (7.2.1)

where 〈i, j〉 denotes pairs of nearest neighbors and J > 0 is the antiferromagnetic
exchange interaction. Eq. (7.2.1) can be written more conveniently as

H =
J

2

∑
4

(
S1
4 + S2

4 + S3
4
)2

+ const., (7.2.2)

where Si4 labels the ith spin on a certain triangle 4 and the sum runs over all
triangles of the lattice. The special form of the Hamiltonian in Eq. (7.2.2) allows
to read off the ground state constraints immediately: The first term in Eq. (7.2.2)
is positive semi-definite and the energy is thus minimized if the total spin L4
vanishes on every triangle, i. e. if

L4 ≡ S1
4 + S2

4 + S3
4 = 0. (7.2.3)

1Note that only classical systems are considered here.
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M Figure 7.2.4: The unique 120◦ ground state for O(3) Heisen-

berg spins on a triangle with antiferromagnetic couplings. None
of the bond interactions is satisfied completely, indicated by an
orange color.

This leads to the ground state configuration shown in Fig. 7.2.4 with 120◦ an-
gles between neighboring spins in every triangle of the lattice. In this state,
the inability to fulfill all interactions simultaneously is not manifested at specific
bonds anymore, but is rather distributed along all bonds which are now equally
unsatisfied. After a specific spin configuration is chosen in one triangle, the spin
configuration in a neighboring triangle is also fixed by Eq. (7.2.3) since both tri-
angles share two spins. Consequently, this implies that all spins on the lattice
are uniquely fixed once the spin configuration in a single triangle is chosen. The
resulting ground state is thus unique up to global rotations and the exchange of
sub-lattices.

The situation changes completely if the O(3) Heisenberg spins are replaced by
Ising spins. The Hamiltonian now reads

H = J
∑
〈ij〉

σiσj , (7.2.4)

where σ is a spin variable that can only take the values ±1. In analogy to
Eq. (7.2.3), the total spin

L4 = σ1
4 + σ2

4 + σ3
4 (7.2.5)

must vanish in the ground state. Interestingly, this is not possible any more due
to the discrete symmetry of the Ising spins. Instead, optimal configurations have
to fulfill

L4 = σ1
4 + σ2

4 + σ3
4 = ±1 (7.2.6)

on every triangle. The fact that this constraint is not as strict as the corre-
sponding constraint on Heisenberg spins has a strong influence on the ground
state manifold. After choosing the spin orientations in one triangle, the ori-
entation of the non-mutual spin in the neighboring triangle can still be chosen
independently, provided that two shared spins are anti-parallel to each other,
c. f. Fig. 7.2.5. The resulting ground state is extensively degenerate and differ-
ent ground states are connected by fluctuations that consist of flipping chains of
neighboring anti-parallel spins along a closed loop in the system. These fluctu-
ations cost no energy because the total spin on each triangle remains restricted
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Figure 7.2.5: Two neighboring trian-
gles on a triangular lattice with Ising
spins. After the spin configuration on
the lower triangle is fixed, one can still
choose the orientation of the top spin on
the upper triangle in two ways without
violating the ground state constraint
Eq. (7.2.6).

to ±1. Any ordering in a specific state is thus suppressed and the system is an
example for a spin-liquid [84, 85].

Kagome lattice The kagome lattice is shown in Fig. 7.2.6. It can be con-
structed from the triangular lattice by removing one third of the lattice sites,
which reduces the coordination number from 6 to 4. In contrast to the triangular
lattice, the single triangles are now corner - instead of edge-sharing; a fact which
has important consequences for the ground state degeneracy.
The antiferromagnetic Heisenberg Hamiltonian on this lattice has the same struc-
ture as on the triangular lattice, c. f. Eq. (7.2.1), and consequently, one finds
again that the total spin on every triangle has to vanish in the ground state, c. f.
Eq. (7.2.3). Since two neighboring triangles only share one spin, choosing a spe-
cific 120◦ configuration on one triangle does not fix the spin configuration on the
other one completely as it did on the triangular lattice. The associated degree of
freedom is the rotation of the two outer spins of the second triangle around the
axis defined by the shared spin, c. f. Fig. 7.2.7. Consequently, the spin-planes
of neighboring triangles can be different, resulting in a macroscopic ground state

Figure 7.2.6: The two-dimensional kagome lattice
consisting of corner-sharing triangles. It can be con-
structed from the triangular lattice by removing one
third of the lattice sites which reduces the coordi-
nation number from 6 down to 4.
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Figure 7.2.7: The ground state degeneracy of
the antiferromagnetic Heisenberg model on the
kagome lattice: It is possible to rotate the spins
on neighboring triangles around the axis defined
by the mutual spin without violating Eq. (7.2.3)
and thus without energy cost. A part of the
degeneracy is removed again once all triangles
on the lattice are connected.

degeneracy. A part of this degeneracy is removed again once the additional con-
straints imposed by connecting all triangles on the lattice are taken into account.

For the Ising model, the ground state on the kagome lattice is again only re-
stricted by the constraint given by Eq. (7.2.6) on every triangle. The fact that
the kagome lattice is less connected than the triangular lattice results in a larger
ground state degeneracy on the former one. Considering two neighboring tri-
angles with a fixed ground state configuration in the first one, there is a huge
freedom in choosing an allowed spin configuration in the second one since only
one spin of this triangle is already fixed.
A quantitative measure for the ground state degeneracy is the residual entropy
Sres at T = 0 which will be discussed in detail in Sec. 9.1. For the triangular
lattice one finds Sres ≈ 0.47 ln 2 [86] per spin, whereas one finds Sres ≈ 0.72 ln 2
[86, 87] on the kagome lattice.

Other lattices exhibiting spin liquid phases for both the Ising and the Heisenberg
model are usually constructed out of corner -sharing frustrated units. Famous
examples in three dimensions are the Pyrochlore lattice [79, 88, 89], consisting
of corner-sharing tetrahedra, and the hyper-kagome [90], a generalization of the
kagome lattice to three dimensions.

7.3. Order-by-disorder

Spin-liquid phases are usually very fragile in the sense that small perturbations
can easily lift the ground state degeneracy. Known mechanisms are e. g. dipo-
lar interactions and disorder [91], spin-lattice coupling [92], and Dzyaloshinskii-
Moriya interaction [93]. There exists, however, an intrinsic mechanism known
as “order-by-disorder”, in which the degeneracy is lifted purely due to entropic
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reasons. This effect was first mentioned by Villain in 1980 [77] for the diluted 2d
Ising model and gained more interest in 1987 when Henley showed that thermal
fluctuations alone are sufficient to provide an ordering mechanism for antifer-
romagnetically coupled O(3) spins on fcc lattices [94, 95]. In 1992, Chalker
showed that the same mechanism is also present for O(3) spins on the kagome
lattice [78]. The name “order-by-disorder” originates from the fact that the two
quantities temperature and entropy, both usually associated with disorder, can
under certain circumstances drive an ordering mechanism in which specific states
out of a degenerate ground state manifold are selected. The decisive quantity is
the free energy

F = E − TS, (7.3.7)

where E is the energy, T the temperature and S the entropy. Due to the en-
tropic contribution to the free energy, states with the same internal energy can
still differ in their free energy depending on how well the system can fluctuate into
nearby low energy configurations. This is shown schematically in Fig 7.3.8: The
two degenerate ground states shown have exactly the same energy, but as soon
as small thermal fluctuations are considered, the neighborhood of the ground
states becomes important as well. In the vicinity of a ground state, one can
expand the energy in the deviation ε of the spins from their respective ground
state positions. If the temperature is sufficiently small, it is justified to stop the
expansion after the leading order. For a generic ground state, this gives rise to an
effective quadratic potential around the ground state, c. f. left part of Fig 7.3.8.
For some states, it might happen that the leading order in the series expansion
is not quadratic but e. g quartic, resulting in a very flat potential around these
ground states as shown in the right part of Fig 7.3.8. These states promote fluc-
tuations into nearby low energy configurations and are thus entropically favored.
Consequently, these states have a lower free energy and are eventually selected
at low temperatures.
The same process is also shown schematically in Fig. 7.3.9 in a phase space pic-
ture. The black line denotes the ground state manifold and the orange shaded
region marks the part of the phase space that the system can fluctuate into at
a small temperature. The ground states with many nearby low energy config-
urations (thick black line) are eventually selected at low temperatures. It is
important to note that the ground state manifold does not necessarily have to
be connected as shown in the figure.

The question whether an order-by-disorder transition can occur in a system with a
degenerate ground state manifold depends again on several details. One necessary
condition is of course the presence of entropically favored ground states that
feature softer excitations than others. This condition is, however, not sufficient,
as it was shown by Moessner and Chalker in Ref. 79, who found that the answer
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Figure 7.3.8.: Schematic comparison of the neighborhood of two degenerate ground
states. The left figure shows the generic case that the energy cost for deviating spins
out of the ground state is quadratic in the deviation ε. The right figure shows a special
ground state with an excitation energy that is quartic in the deviation from the ground
state. At a finite (small) temperature, one would associate a larger entropy with the
right ground state since the system can fluctuate into more nearby low energy configu-
rations than in the left ground state. As a consequence, the right state has a lower free
energy than the left one and the degeneracy between the two ground states is lifted.

Phase space

GS manifold
accesible states

at low T

selected by 
order-by-disorder

Figure 7.3.9.: Schematic view of the phase space and the order-by-disorder effect: A
part of the ground state manifold has more nearby low energy excitations than the rest
and is thus preferred at low temperatures. Note that the ground state manifold does
not necessarily have to be connected.
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to this question strongly depends on the degeneracy of the ground state manifold
and can be expressed in a rather simple counting argument: If there are degrees
of freedom left after fulfilling all ground state constraints, the system remains
disordered at all temperatures2. Otherwise, an order-by-disorder transition will
occur at some small temperature.
On the kagome lattice, there are three degrees of freedom per triangle since
each spin has two angular degrees of freedom and is shared by two triangles.
Eq. (7.2.3), on the other hand, implies three constraints per triangle and there
are hence no degrees of freedom left. Consequently, the kagome lattice is a
candidate for the order-by-disorder effect and it is shown in Sec. 7.4 that this
effect is indeed observed in numerical simulations.
The Pyrochlore lattice, consisting of corner-sharing tetrahedra, does in contrast
not show order-by-disorder: Each tetrahedron consists of four spins which are
each shared by two tetrahedra and has accordingly four degrees of freedom. In
analogy to Eq. (7.2.3) for the triangle, one can derive that the total spin on
each tetrahedron has to vanish in the ground state, yielding three constraints per
tetrahedron. The ground state is thus (extensively) under-constrained with one
remaining degree of freedom per tetrahedron. Consequently, the system is able
to explore the whole ground state manifold without crossing any energy barriers
and there is no reason why the system should stay in a specific ground state.
It is important to note that the counting argument can easily go wrong if the
ground state constraints are not independent. A detailed discussion can be found
in Ref. 79.

7.4. Order-by-disorder on the kagome lattice

The occurrence of order-by-disorder on the kagome lattice was first described and
verified by Chalker et al. in 1992 [78]. He argued that coplanar ground states,
i. e. ground states with a mutual spin plane for all triangles of the lattice, have a
soft excitation which is not present in non-coplanar ground states and are hence
entropically favored at low temperatures. Since the breaking of continuous sym-
metries in two-dimensional systems is forbidden at finite temperatures due to the
Mermin-Wagner theorem [96], this preference is, however, only a local effect with
a temperature-dependent correlation length ξ ∝ exp(T−1). In the following, I
briefly review Chalker’s arguments as presented in Ref. 78.

Fluctuations around a coplanar ground state can be described best by a suitable

2The fact that there are as many constraints as degrees of freedom does not necessarily lead to
a unique ground state with magnetic long-range order, as one might naively think. Instead,
this often results only in local constraints for single clusters of spins, as it was shown e. g.
in Sec. 7.2 for the antiferromagnetic Heisenberg model on the kagome lattice.
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coordinate system oriented with respect to the local spin positions in the ground
state: At each lattice site i, one can choose a coordinate system with ẑi parallel
to Si in the particular ground state position and ŷi orthogonal to the ground
state plane and all ŷi mutually parallel. The remaining coordinate x̂i is chosen
such that the resulting coordinate system {x̂i, ŷi, ẑi} is right handed on every
lattice site. Remarkably, this coordinate system allows to analyze fluctuations
around all coplanar ground states without making any further assumptions.
The spin directions can be parametrized in terms of their in-plane and out-of-
plane deviations from the ground state, εxi and εyi , as

Si =

(
εxi , ε

y
i ,
√

1− (εxi )2 − (εyi )2

)T
. (7.4.8)

Inserting this parametrization into the Heisenberg Hamiltonian

H = J
∑
〈ij〉

Si · Sj (7.4.9)

and using that

(x̂i · x̂j) = −1

2
, (ŷi · ŷj) = 1, (ẑi · ẑj) = −1

2
(7.4.10)

for neighboring spins (all terms for non-neighboring spins vanish), one can expand
the Hamiltonian up to second order in the deviations and obtains

H = EGS +
J

2

∑
ij

(
(3δij −Mij)ε

x
i ε
x
j + 2Mijε

y
i ε
y
j

)
+O(ε4), (7.4.11)

where EGS is the ground state energy and

Mij =


1 if i = j
1
2 if i and j are nearest neighbors
0 else

. (7.4.12)

From Eq. (7.4.11) it becomes clear that the in-plane and out-of-plane excitations
are not coupled in the harmonic approximation. The translational invariance
of the lattice can be exploited by a Fourier transform. The eigenvalues of the
resulting 3× 3 matrix M(q) can be calculated analytically and are given by

λ0(q) = 0,

λ±(q) =
3

2

(
1±

√
1− 8

9

(
1− cos

(q1

2

)
cos
(q2

2

)
cos

(
q1 − q2

2

)))
.

(7.4.13)
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Figure 7.4.10: The soft mode with excitation energy
E ∝ ε4 on the kagome lattice: The black spins remain
idle while the red and green spins tilt out of the ground
state plane in an alternating fashion by the same amount.

The fact that there is an eigenvalue that vanishes for all q implies that there is
an excitation mode whose excitation costs no energy up to second order in the
deviation ε. The corresponding eigenvector can again be Fourier transformed
to visualize the associated mode in real space, c. f. Fig. 7.4.10. It is localized
around a hexagon and consists of tilting neighboring spins out of the ground state
plane by the same amount in an alternating fashion. The energy of this mode is
proportional to ε4 as can be seen by plugging the corresponding eigenvector into
Eq. (7.4.11).
The presence of this soft mode in coplanar ground states (and its absence in
generic, non-coplanar ground states) is eventually responsible for the preference
of these states at low temperatures.

This selection of a common spin plane does not remove the ground state degen-
eracy completely: coplanar ground states are built up out of three different spins
A, B and C, each of which must occur exactly once on every triangle on the lat-
tice. Since neighboring triangles share only one spin, there is still an extensively
large number of allowed ground states and consequently no magnetic long-range
order. Instead, quasi long-range order develops in the correlation function

g(|ri − rj |) ∝ 〈κi · κj〉 (7.4.14)

where
κi =

2

3
√

3

(
S1
i × S2

i + S2
i × S3

i + S3
i × S1

i

)
(7.4.15)

is a vector that specifies the spin plane of the ith triangle [78]. In general, a
continuous symmetry can not be spontaneously broken at finite temperature due
to the Mermin-Wagner theorem [96] and consequently these correlations exist
only on a length scale ξ ∝ exp(T−1). This implies that the system locally chooses
a common spin plane which slowly tilts on a length scale set by ξ. At small
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temperatures, however, this correlation length is much larger than all system
sizes accessible in computer simulations and the order misleadingly appears to
be long-ranged.
It is later shown in Sec. 10.2 that a fully equivalent description of the same
broken symmetry as described by Eq. (7.4.14) is given by the more convenient
two component on-site nematic order tensor [90]

Qαβ =
1

N

∑
i

(
Sαi S

β
i −

1

3
δαβ
)
. (7.4.16)

For a long time is was believed that this is the primary order parameter for the
kagome antiferromagnet. In 2008, however, Zhitomirsky showed in Ref. 90 that
this is just a secondary order parameter that couples in a Landau theory to the
primary octupolar order parameter

Tαβγ =
1

N

∑
i

(
Sαi S

β
i S

γ
i −

1

5
Sαi δ

βγ − 1

5
Sβi δ

αγ − 1

5
Sγi δ

αβ

)
(7.4.17)

via the rotational invariant term

∆FQT = QαβTαµνT βµν . (7.4.18)

If Tαβγ takes a finite value, it will act as field Qαβ and consequently induce a
finite value of Qαβ . It is, however, also possible that Qαβ induces a finite value
of Tαβγ , but this process is in contrast to the former one non-generic3. To iden-
tify the primary order parameter, Zhitomirsky performed classical Monte Carlo
simulations to find out which order parameter rises first as the temperature of
the system is lowered. The results, shown in Fig. 7.4.11, clearly proof that the
octupolar order parameter is the primary one.

The presence of soft modes in the excitation spectrum also affects the low-
temperature behavior of the specific heat. The equipartition theorem states that
each quadratic (quartic) mode, contributes a factor T/2 (T/4) to the thermal
expectation value of the energy. The specific heat, given by cV = dE/dT , for
these modes is consequently 1/2 and 1/4 per spin, respectively. For the coplanar
ordered ground states, three quadratic in-plane as well as two quadratic and one
quartic out-of-plane modes were found. Assuming that these modes are equally
occupied, one would expect a specific heat of

cV =

(
3

3
× 1

2

)
︸ ︷︷ ︸
in-plane

+

(
2

3
× 1

2
+

1

3
× 1

4

)
︸ ︷︷ ︸

out-of-plane

=
11

12
(7.4.19)

3This can only happen upon a sign change of the complete prefactor (which depends on
temperature and Q) of the term proportional to the square of the octupolar order parameter
in Landau theory.
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Figure 7.4.11: Comparison of
the nematic and octupolar or-
der parameter: The primary oc-
tupolar order parameter rises
first upon cooling and induces
the nematic order parameter.
mAF is the order parameter
of the

√
3 ×
√

3 structure (see
Ref. 90 for details). Picture
taken from Ref. 90.

in the limit of low temperatures. Fig. 7.4.12 shows the specific heat per spin
as calculated by Zhitomirsky in a classical Monte Carlo simulation [90]. One
can clearly identify three different regimes: At high temperatures, the system
is in the paramagnetic state and the specific heat slowly rises as the temper-
ature is lowered. At a temperature of the order O(10−1 J), the specific heat
approaches 1, indicating a crossover into the spin liquid regime where the ground
state constraint Eq. (7.2.3) is fulfilled on every triangle and all excitation energies
are quadratic in the deviations of the spins from the (in general non-coplanar)
ground state. Eventually, the system selects coplanar ground states at a tem-
perature of the order O(10−3 J) and the specific heat is consequently reduced to
the expected value 11/12, where it remains all the way down to zero temperature.

The short ranged correlations in the spin liquid regime also result in a broadening
of the peaks in the magnetic structure factor

S(q) =
1

N

∑
ij

〈Si · Sj〉eiq(ri−rj), (7.4.20)

which is shown in Fig. 7.4.13 for T/J = 0.02 (spin-liquid phase) and T/J = 0.005
(coplanar ordered phase). Interestingly, the selection of coplanar ordered states
goes along with the development of correlations at the antiferromagnetic wave
vector Q = (4π/3, 0) and wave vectors related by symmetry. Zhitomirsky con-
cludes in Ref. 90 that these additional peaks are not true Bragg peaks in the
sense that their intensity does not increase linearly with the system size.
There is, however, an ongoing discussion about whether the unique ground state
with ordering wave vector Q = (4π/3, 0) (also called “

√
3 ×
√

3 state” in the
literature) is eventually selected out of all coplanar ground states at low temper-
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Figure 7.4.12.: The specific heat per spin of the kagome antiferromagnet in dependence
on the temperature for a system consisting of N = 3 × 362 = 3888 spins. The black
arrow on the specific heat axis marks the value 11/12 that is expected from the mode
counting argument. Picture taken from Ref. 90.

atures. Unfortunately, most simple Monte Carlo methods are non-ergodic in the
sense that they fail to sample all coplanar spin configurations due to high energy
barriers between these states and can thus not be used to settle the question.
Chern and Moessner have thus developed a special algorithm [97] that allows
transitions between different coplanar states and further identified that the ef-
fective low energy Hamiltonian corresponds to a three-state Potts model with
a weak (J2 ≈ 0.019) second neighbor exchange interaction. Studying very large
systems with about 106 lattice sites for this effective model, they indeed observed
a small but finite magnetic moment corresponding to order at Q = (4π/3, 0).
A completely independent approach to this problem has been presented by Sach-
dev in Ref. 98, where he constructed a mean-field theory that takes into account
quantum effects by starting from the Schwinger boson representation of the spin
operators. He reports that there are two competing ground states with ordering
vectors Q = (4π/3, 0) and Q = 0 and also argues in favor of the first one due to
its lower energy.

109



7. Introduction

Figure 7.4.13.: The magnetic structure factor of the Heisenberg model on the kagome
lattice in the spin-liquid regime (left) and the coplanar ordered state (right). Shown
is a region of size 8π × 8π in reciprocal space. One can clearly observe additional
correlations at the antiferromagnetic wave vectorQ = (4π/3, 0) and wave vectors related
by symmetry in the coplanar ordered phase. Picture taken from Ref. 90.

7.5. Coulomb-phases

The ground state manifold of some frustrated systems can be described as a
so-called Coulomb-phase. The name originates from the fact that excitations
above the degenerate ground state in these systems occur as pairwise local charge
defects which interact in three dimensions via an effective Coulomb potential
V (r) ∝ (Q1Q2)/r, where r is the spatial distance between the charges. This
section intends to give a short introduction into the concept and follows closely
the presentation in Ref. 99.
It was shown in Sec. 7.2 that many frustrated system are governed by a local
constraint of the type ∑

i

Si = 0 (7.5.21)

on every cluster (i. e. triangle, tetrahedron, etc.) on the lattice. Even though
this constraint is local, it has a strong influence on the long distance behavior
of the system and allows a description of its low energy behavior in terms of an
emergent electrodynamic theory.
Eq. (7.5.21) can also be understood as a local conservation law if one identifies
the spin variables as an artificial “lattice flux”. This flux can be coarse-grained to
a continuous vector field p(r) by taking its mean value over a spherical volume
centered at r with a radius much bigger than the lattice spacing but much smaller
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7.5. Coulomb-phases

a) b)

Figure 7.5.14.: a) The square lattice with double crossings. The spin configuration
shown is a possible ground state obeying the “2in-2out” ice-rule with vanishing total
flux in every square. b) A zero-energy loop flip that does not violate the ice-rule and
thus allows fluctuations between different ground state configurations.

than the system size. The ground state constraint Eq. (7.5.21) then translates
into

∇ · p(r) = 0. (7.5.22)

which is exactly the zero-divergence condition an electric or magnetic field would
satisfy in the absence of charges.

As an example, one can consider Ising spins on the two-dimensional square lattice
with crossings shown in Fig. 7.5.14 a). If one takes the diagonals of the squares as
spin axes, each spin can point either into the center of a square or out of it, and the
ground state constraint Eq. (7.5.21) becomes a so-called “ice-rule”, which states
that every square must have two in and two out-pointing spins4. Fluctuations
between different ground states consist of flipping all spins along a closed loop in
the system such that the ice-rule is never violated, c. f. Fig. 7.5.14 b). Obviously,
states with total polarization P ≡

∫
p(r)dV = 0 have the largest number of

flippable loops. Consequently, the number of configurations N(P) for a given
total polarization is maximal at P = 0 and goes to zero as P approaches its
saturated value. The Central Limit theorem states that for a large system, N(P)

4The name “ice-rule” comes from the fact that in the hexagonal ice phase of water, every
oxygen atom is bound to 4 hydrogen atoms with two of these bonds being strong and
the other two being much weaker. Consequently, every oxygen atoms has two “near” and
two “far” protons, but it is not determined which of the 4 protons are “near” and “far”,
respectively [100].
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will take the form of a Gaussian distribution

N(P) ∝ exp
(
−P2/2σ2

)
. (7.5.23)

From this distribution, one can calculate the entropy S = ln(N(P)) and finds
that the entropic part of the free energy F = E − TS is in lowest order given by

F ∝ P2. (7.5.24)

Correlations can be evaluated by transforming Eq. (7.5.22) to momentum space,

q ·P(q) = 0, (7.5.25)

which implies that all components of P parallel to q must vanish. This implies
that all correlations of P have no component in the direction of q, i. e.

〈Pµ(−q)P ν(q′)〉 ∝
(
δµν −

qµqν
q2

)
δqq′ . (7.5.26)

Every physical observable Φ(r) has (if not forbidden by any symmetry) usually
a contribution proportional to P, i. e.

Φa(r) = Φ0
a(r) +

∑
µ

caµPµ(r), (7.5.27)

where Φ0
a(r) is the ath component of the P independent part of Φa(r) and caµ are

matrix coefficients that obey the symmetry of the lattice. The experimentally
measured magnetic structure factor is thus given by

Sab(q) = 〈Sa(q)Sb(−q)〉
=
∑
µνQ

fabµν(Q)〈Pµ(−q + Q)P ν(q−Q)〉 (7.5.28)

with fabµν(Q) being a form factor derived from the caµ′s. The singular nature
of Eq. (7.5.26) leads to so-called “pinch-points” in reciprocal space which show
a strong dependence on how the singular point at q = 0 is approached. This
singularity is translated by the form factor in Eq. (7.5.28) to other values of
q. Fig. 7.5.15 shows the magnetic structure factor for so-called “spin-ice”, the
antiferromagnetic Ising model on the pyrochlore lattice, obtained from Monte
Carlo simulations compared to measurements with the compound Ho2Ti2O7.
If one Fourier transforms the structure factor back to real space, one finds

〈Pµ(0)Pν(r)〉 ∝ δµν − dr̂µr̂ν
rd

, (7.5.29)
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7.5. Coulomb-phases

Figure 7.5.15.: The structure factor in the reciprocal hhl plane obtained from exper-
iments on the spin-ice compound Ho2Ti2O7 at T = 1.7K (left ) and from Monte Carlo
simulations (right). Picture taken from Ref. 101.

where d is the spatial dimension and r̂ = r/|r|, i. e. correlations decay with a
power law and have the spatial dependence of a dipole-dipole interaction.

Finally, one can also consider local violations of the ground state condition
Eq. (7.5.21). In the continuum theory, these defects can be understood as local
charges acting as sources and sinks of the vector field p(r). In the example of
the square lattice with crossings, such defects are in lowest order given by defect
squares with “3-in-1-out” or “1-in-3-out” configurations and carry the charge Q =
Nin − Nout = ±2, where Nin and Nout are the number of ingoing and outgoing
flux arrows (spins) per square. These defects are always created pairwise on
neighboring squares by single spin flips, c. f. Fig. 7.5.16 a) and can propagate
through the system without any energy cost by flipping an additional spin of a
defect square, c. f. Fig. 7.5.16 b)-d). By integrating the partition function under
the condition that two defects with charges Q1 and Q2 are placed at positions
r1 and r2, one finds the interesting result that these charges interact in three
dimensions via an effective Coulomb potential [99]

V (r1, r2) ∝ Q1Q2

|r1 − r2|
. (7.5.30)

This interaction is a purely entropic effect as the separation of defect squares
costs no energy since no further defect squares are produced during the move-
ment of a defect square through the system, c. f. Fig. 7.5.16. In three dimensions
(not necessarily in two dimensions) these charges are deconfined, i. e. it takes
only a finite energy to separate the charges to an infinite distance.
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7. Introduction

a) b)

c) d)

Figure 7.5.16.: a) Elementary excitation consisting of a single flipped spin (red) lead-
ing to two defect squares with violated ice-rules (yellow). b)-d) Movement of a defect
square through the system along a chain of flipped spins (red). The movement costs no
energy since the number of defect squares stays constant.
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7.5. Coulomb-phases

It is important to note that Coulomb-phases do not automatically occur in all
frustrated systems governed by local constraints. Henley states the following
conditions for the appearance of a Coulomb-phase in Ref. 99:

1. The premedial lattice, i. e. the lattice which has its sites inside the elemen-
tary frustrated units of the original lattice, has to be bipartite (e. g. the
premedial lattice of the square lattice with crossings is again the square
lattice and the premedial lattice of the kagome is the honeycomb).

2. The spin variables can be mapped uniquely to a signed flux pi running
around the ith bond of the premedial lattice.

3. The spin variables obey hard constraints such that the sum of the incoming
and outgoing fluxes at each lattice site of the premedial lattice is zero in
the ground state.

4. The system has a highly disordered ground state without any long-range
ordered pattern.

For lattices with an even number N of spins in each frustrated unit (square lattice
with crossings, pyrochlore, ...), the lattices fluxes pi are simply given by the spin
directions Si and the mapping to the Coulomb-phase is relatively obvious. Since
the ground states of these systems are described by ice-rules of the type “N/2-
in-N/2-out” on every site of the premedial lattice, these models are also called
“ice-models”. The best known model is probably the already mentioned “spin-
ice”, the antiferromagnetic Ising model on the triangular lattice [70].
If the number of spins in the frustrated units is odd, the mapping to a Coulomb-
phase is not that obvious. Sometimes, the ground state of these models can
be mapped to a hardcore dimer covering and one can define weighted fluxes
depending on whether a dimer crosses a bond of the premedial lattice. Examples
are i. a. the Ising model on the triangular lattice [102] and the Heisenberg-Kitaev
model on the honeycomb lattice [103].
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8. Swedenborgites

In this chapter, I discuss the swedenborgite compounds as a realization of a frus-
trated system with a very unusual lattice geometry. After a detailed discussion
of the lattice structure, I introduce the model that is believed to describe the
interactions in these compounds. At the end, I give a brief overview of neutron
scattering experiments that confirm the validity of this model.

8.1. Lattice structure and model
Swedenborgites are a class of materials that are structurally equivalent to the
mineral swedenborgite SbNaBe4O7, which was first discovered by the Swedish
mineralogist Gregori Aminoff 1924 in Långban (Sweden) [104]. It is named after
Emanuel Swedenborg, a Swedish scientist and theologian of the 18th century.
This class of materials recently gained interest [105–113] when it was noticed that
the Sb, Na an Be ions of the mineral could be replaced by other ions, including
magnetic ones like cobalt and iron [108, 113]. Known magnetic representatives of
this class are i. a. YBaCo4O7, YBaCo3FeO7, YBaCo2Fe2O7, Y0.5Ca0.5BaCo4O7,
CaBaFe4O7 and CaBaCo2Fe2O7. These compounds consist of corner sharing
CoO4 and FeO4 tetrahedra arranged in an alternating stack of triangular and
kagome layers, c. f. Fig. 8.1.1.
Neglecting all non-magnetic ions, one finds that the remaining magnetic ions
reside on the lattice shown in Fig. 8.1.2, which is from now on simply referred to
as the swedenborgite lattice. It has a hexagonal structure and is spanned by the
three basis vectors

a =

1
0
0

 , b =

 1/2√
3/2
0

 , c =

0
0
1

 , (8.1.1)

together with a magnetic unit cell comprised of eight atoms, c. f. Fig. 8.1.3.
It can be thought of either as a layered structure consisting of an alternating stack
of triangular and kagome lattices in an ABAC...-pattern or as a lattice of triangle
sharing bipyramids stacked along c-direction. The latter point of view empha-
sizes the unique exchange topology of the lattice: Typically, frustrated lattices are
constructed out of small corner -sharing frustrated clusters like triangles on the
kagome or tetrahedra on the pyrochlore lattice. In swedenborgites, however, the
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8. Swedenborgites

Figure 8.1.1: The hexagonal lattice struc-
ture of RBaCo4O7 as a network of corner-
sharing CoO4 tetrahedra. The magnetic
Co-ions in the kagome and triangular layers
are denoted as Co1 (red) and Co2 (blue),
respectively. R denotes a rare earth ion and
oxygen ions are shown as black dots on the
corners of the tetrahedra. J ′1, J ′2, J ′3 and J ′4
denote the four different exchange interac-
tions allowed by the P63mc symmetry of the
lattice, see main text. Picture taken from
Ref. 110.

'
' '

'

Figure 8.1.2.: The lattice formed by the magnetic ions in swedenborgite compounds.
The filled triangles denote the kagome planes. Red triangles fully belong to a single
bipyramid, whereas blue triangles connect three neighboring bipyramids.
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r1 = (1/2, 0, 0) r4 = (1/3, 1/3, 1/4) r7 = (1/6, 2/3, 1/2)

r2 = (1/2, 1/2, 0) r5 = (1/6, 1/6, 1/2) r8 = (1/3, 1/3, 3/4)

r3 = (0, 1/2, 0) r6 = (2/3, 1/6, 1/2)

Figure 8.1.3.: The unit cell of the swedenborgite lattice and the relative position of
the magnetic ions in terms of the lattice vectors.

lattice is constructed out of triangle-sharing frustrated bipyramidal clusters, i. e.
frustrated clusters which are connected by other frustrated clusters. The influ-
ence of this fact on the ground state degeneracy is discussed in detail in Sec. 10.1.

The hexagonal symmetry (space group P63mc [110]) of the lattice allows in prin-
ciple for four distinct nearest neighbor exchange interactions J ′1, J ′2, J ′3 and J ′4;
the first two inside the kagome planes and the last two between ions in the kagome
planes and adjacent triangular layers, c. f. Fig. 8.1.1. Using a spin-dimer analy-
sis based on molecular orbital electronic-structure calculations, Khalyavin et al.
have shown in Ref. 110 for cobalt oxides RBaCo4O7 (R denotes a rare earth
atom) that the in-plane interactions differ by less than 5% and the out-of-plane
interactions by less than 10%. It is thus to a good approximation justified to use
a simpler model with only two distinct exchange interactions1: J1, accounting
for the exchange inside the kagome planes and J2, describing the exchange be-
tween the kagome planes and adjacent triangular layers. One can thus adopt the
simplified Heisenberg Hamiltonian

H = J1

∑
〈ij〉∈

same layer

Si · Sj + J2

∑
〈ij〉∈

diff. layer

Si · Sj , (8.1.2)

1This results in a model with exact frustration, c. f. Sec. 10.1.
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8. Swedenborgites

where J1, J2 > 0 are antiferromagnetic exchange interactions and
∑
〈ij〉 indicates

a sum over nearest neighbors. It is shown in the next section that this minimal
model agrees well with experimental findings if the ratio J2/J1 is chosen appro-
priate for the particular compound under consideration.

8.2. Experiments and verification of the model

In order to show the validity of the Hamiltonian Eq. (8.1.2) that was introduced
in Sec. 8.1, it is desirable to compare the predictions that can be drawn from
it to experimental findings. Unfortunately, there are only a limited number of
experimental studies available at this time. A major reason for this is that the
swedenborgite compounds have so far been overlooked by a large part of the
scientific community, which can be traced back to the lack of a systematic theo-
retical study. This thesis intends to close this gap by showing that the playground
offered by these systems is much richer than thought before. This should in turn
motivate further experimental studies.

Most available experimental studies aim at the reconstruction of the magnetic
ground state from neutron scattering data. Typically, the Hamiltonian Eq. (8.1.2)
is therefore implemented in a classical Monte Carlo simulation, from which the
thermally averaged magnetic structure factor is calculated and compared to the
experimental findings. It turns out that very good agreement between the model
and experiments can be achieved by tuning the ratio J2/J1 in the range from
0 to 3/2. In the following, I focus on the two compounds CaBaCo2Fe2O7 and
YBaCo4O7, for which the magnetic structure factor has been measured using
single crystals. Measurements with powder samples of other compounds have
been published e. g. in Refs. 114 and 111.

The right part of Fig. 8.2.4 shows the magnetic structure factor of CaBaCo2Fe2O7
in the reciprocal hk0 plane at T = 4K [115, 116]. One can clearly observe sharp
Bragg peaks at q 6= 0, indicating a long-range ordered antiferromagnetic ground
state. The left part of Fig. 8.2.4 shows the magnetic structure factor obtained
by a classical Monte Carlo simulation of Eq. (8.1.2) with J2/J1 = 3/2 at T � J1

[115, 116]. The agreement between experiment and theory is striking, lending
important experimental support for the assumption of the simplified model. It
is shown in Sec. 10.1 by a detailed analysis of the Hamiltonian Eq. (8.1.2) that
its magnetic ground state is long-range ordered and independent of J2/J1 in the
regime J2/J1 ≥ 3/2. The actual ratio J2/J1 in CaBaCo2Fe2O7 might thus be
even larger than 3/2.
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8.2. Experiments and verification of the model

Figure 8.2.4.: Magnetic structure factor in the (qx, qy, 0) plane obtained from Monte
Carlo simulations of the Hamiltonian Eq. (8.1.2) with J2/J1 = 3/2 and T � J1 (left)
and neutron scattering measurements with CaBaCo2Fe2O7 at T = 4K (right). Pictures
taken from Ref. 115.

Manuel et al. studied single crystals of the compound YBaCo4O7 in Ref. 109.
Fig. 8.2.5 shows the magnetic structure factor for this compound in the recip-
rocal hk0 and hhl planes. The right hand side of the two images shows the
experimentally measured data, whereas the left hand side shows again results
from a classical Monte Carlo simulation of Eq. (8.1.2) [109], where the ratio
J2/J1 = 1 has been chosen to match the experimental data. Again, theory and
experiment show a remarkable agreement in the sense that all observed features
in the structure factor can be reproduced from the simplified model. The very
broad peaks in the magnetic structure factor indicate short correlations, which
can be traced back to the magnetic frustration in the system. It is shown in
Sec. 10.1 that the ground state of the Hamiltonian is macroscopically degenerate
for J2/J1 < 3/2, with a degeneracy that increases as J2/J1 is lowered.

Some swedenborgite compounds, e. g. YBaCo4O7, also undergo a structural
phase transition, in which the symmetry of the crystal lattice is lowered from
hexagonal (space group P63mc) or trigonal2 (space group P31c) to orthorhombic
(space group Pbn21) [117]. This symmetry lowering relieves the geometric frus-
tration of the original lattice structure, c. f. Sec. 10.1, and the assumption of the
simplified Hamiltonian with only two distinct nearest neighbor interactions is not
justified anymore. Eventually, this leads to the selection of a unique long-range

2Huq et al. report in Ref. 117 that the trigonal P31c symmetry agrees slightly better with
their measurements than the hexagonal P63mc symmetry reported e. g. by Khalyavin et al.
for RBaCo4O7 in Ref. 110

121



8. Swedenborgites

Figure 8.2.5: Magnetic structure
factor for YBaCo4O7 in the hk0
(left panel) and 0kl (right panel) re-
ciprocal planes. Each map shows
the data obtained from Monte
Carlo simulations of the Hamilto-
nian Eq. (8.1.2) with J2/J1 = 1 at
T/J1 = 4 (left hand side) and exper-
imental measurements at T = 130K
with subtracted nuclear scattering
(right hand side). Picture taken
from Ref. 109.

Table 8.2.1: An overview of some swe-
denborgite compounds with the corre-
sponding value J2/J1 in the Hamilto-
nian Eq. 8.1.2 that reproduces the mea-
sured magnetic structure factor.

Compound J2/J1 Ref.
CaBaCo2Fe2O7 ≥ 3/2 115
YBaCo4O7 ≈ 1 109

YBaCo3FeO7 ≈ 1/2 114
Y0.5Ca0.5BaCo4O7 & 0 111, 118

ordered antiferromagnetic ground state at low temperatures [117].

Since the aim of this section is only to show the validity of the simplified Hamilto-
nian, it is beyond the scope of this work to give a full and detailed overview of all
experimental studies on swedenborgite compounds. More data on the magnetic
structure factors is e. g. published in Refs. 114 and 111.
Tab. 8.2.1 shows an overview of some swedenborgite compounds with the corre-
sponding ratio J2/J1 as derived from a comparison of Monte Carlo simulations
of the Hamiltonian Eq. (8.1.2) with neutron scattering experiments.
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9. Classical Ising model on the
swedenborgite lattice

In this section, I analyze the Ising model with and without magnetic field in detail.
It turns out that even though this particular model is probably not realized in
any swedenborgite compound, it features very rich physics in terms of competing
degenerate ground state manifolds and is thus of great conceptional interest in
the context of spin-liquids.
I first introduce the concept of the residual entropy as a quantitative measure for
the ground state degeneracy and calculate it for different ratios J2/J1. At zero
field, two different ground state manifolds, separated by a first-order transition
at T = 0 and equal exchange couplings, are found. In the vicinity of this point,
the crossover temperature turns out to be linearly suppressed as a result of the
almost equal energy of the two ground state regimes. For a finite magnetic field,
one finds a rich phase diagram with six phases, in which the degeneracy is lifted
either partially or completely. Most of the results presented in this chapter have
been published in Ref. 119.

9.1. Residual entropy
For systems with a vanishing specific heat cV in the limit T → 0 and known
entropy in the disordered phase, it is possible to calculate the residual entropy
(ground state entropy) at T = 0 by integrating the Maxwell relation

dS

dT
=
cV
T

(9.1.1)

from T = 0 to T =∞. For classical systems with continuous spin variables, where
cV → const. as T → 0, this integral diverges logarithmically at T = 0 and the
method cannot be applied. The fact that dS/dT diverges for low temperatures
is a general problem of classical models. Models that take into account the
quantum nature of spins do not encounter this problem, but are analytically and
numerically much less tractable. For discrete Ising spins, however, the specific
heat vanishes as T → 0 due to the gapped excitation spectrum and the integral
over Eq. (9.1.1) converges.
Since each Ising spin has two possible orientations (up and down) that occur with
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Table 9.1.1: Known values of the
residual entropy for the Ising model
without magnetic field on different
lattices.

Lattice Sres/ ln 2 Ref.
Triangular ≈ 0.47 86
Kagome ≈ 0.72 86, 87
Pyrochlore ≈ 0.32 88

the same probability in the disordered phase, the entropy per spin at T = ∞ is
simply ln 2. The residual entropy Sres at T = 0 is then given by

Sres = ln 2−
∫ ∞

0

cV
T
dT. (9.1.2)

The specific heat that occurs in the integral is not known analytically in most
cases. It can, however, be calculated numerically, e. g. in a Monte Carlo simula-
tion.
The ratio Sres/ ln 2 is a measure for the ground state degeneracy. It ranges from
0 for a unique or sub-extensively degenerate ground state to 1 for a system with-
out any ground state constraints. Tab. 9.1.1 shows the residual entropies for the
antiferromagnetic Ising model on various lattices.

9.2. Ground state degeneracy and phase diagram
for B = 0

The ground state of the Ising model on the swedenborgite can be determined
conveniently by analyzing the building blocks of the lattice, i. e. bipyramids and
intermediate triangles, independently.
For the intermediate triangles, it was already shown in Sec. 7.2 that ground state
configurations have to fulfill

σ1
4 + σ2

4 + σ3
4 = ±1 (9.2.3)

on every triangle, resulting in a six-fold degeneracy per triangle as long as they
are isolated.
For the bipyramids, the situation is slightly more complicated. While the out-
of-plane interaction J2 favors states with all three kagome spins of a bipyramid
aligned anti-parallel to the mutually parallel triangular spins, the in-plane inter-
action J1 favors states in which the kagome spins obey Eq. (9.2.3), excluding a
full satisfaction of the out-of-plane interaction. The ground state configuration of
the bipyramids thus depends on the ratio J2/J1. For J2/J1 > 1, the three kagome
spins are aligned mutually parallel and anti-parallel to the triangular spins, c. f.
left part of Fig. 9.2.1. This configuration with energy E = −12J2 + 6J1 per unit
cell is not degenerate if one assumes that the triangular spins are fixed. In the
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J2/J1 ≥ 1 J2/J1 ≤ 1

Figure 9.2.1.: The bipyramid ground state configurations for J2/J1 ≥ 1 and J2/J1 ≤ 1.

allowed bipyramid configurations

J2/J1 > 1

J2/J1 = 1

J2/J1 < 1

Table 9.2.2.: Degeneracy of the bipyramid configurations in the different ground state
regimes. The two spins in the center of each triangle denote the triangular spins of a
bipyramid, which are assumed to be already fixed in “up” direction. The configurations
for J2/J1 > 1 and J2/J1 < 1 have an energy per unit cell of E = −12J2 + 6J1 and
E = −8J2 + 2J1, respectively.

regime J2/J1 < 1, where the in-plane interaction dominates, it becomes favorable
for the system to flip one of the three kagome spins in each bipyramid to align
it parallel with the triangular spins, c. f. right part of Fig. 9.2.1. In this config-
uration with energy E = −8J2 + 2J1 per unit cell, each bipyramid is three-fold
degenerate. For J2/J1 = 1, both above mentioned bipyramid configurations have
the same energy and the bipyramids are thus four-fold degenerate. Tab. 9.2.2
summarizes the bipyramid degeneracy in dependence on J2/J1.
The ground state of the whole system is constructed by connecting the bipyra-
mids via the intermediate triangles in the kagome planes. For J2/J1 > 1, the
stacked bipyramids are ordered along c-direction and it is sufficient to choose
the spin directions of the bipyramids and intermediate triangles in one plane
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Figure 9.2.2: The mapping
between the original ground
state on the swedenborgite lat-
tice and the Ising model on the
triangular lattice for J2/J1 > 1.
Shown is one layer of kagome
spins with the triangular spins
above and below (black). Re-
placing all bipyramids with a
single spin pointing in direction
of the respective kagome spins,
one can map the ground state to
a triangular lattice (red). Note
that the spin configuration re-
peats itself in c-direction, i. e. in
the direction orthogonal to the
plane shown.

to fix all remaining spins in the system. The problem is therefore effectively
reduced to the two-dimensional problem of Ising spins on the triangular lattice,
c. f. Fig. 9.2.2. The resulting ground state degeneracy is thus sub-extensive and
the residual entropy per spin vanishes in the thermodynamic limit.
For J2/J1 < 1, fixing one plane of biypramids and intermediate triangles does
not fix the whole ground state since bipyramids on top of each other can choose
independent kagome spin configurations. Although the triangular spins are fixed
along c-direction, the kagome planes remain degenerate, resulting in an exten-
sively degenerate ground state.
At the equal coupling point J2/J1 = 1, the degeneracy is larger than for J2/J1 < 1
since there are four types of bipyramids instead of three to choose from, c. f.
Tab. 9.2.2. Based on this argument, one can expect the ground state degeneracy
at J2/J1 = 1 to be larger than at J2/J1 < 1.

The residual entropy was calculated numerically for various ratios J2/J1 in the
range from 0 to 2 to quantify the degeneracy in the different ground state regimes.
The specific heat, which is required for this according to Eq. (9.1.2), was obtained
using feedback optimized parallel tempering Monte Carlo as described in Sec. 2.2
and 2.3. A direct comparison to simulated annealing algorithms has shown that
the latter ones are not able to sample the degenerate ground state manifold prop-
erly, especially if the couplings J1 and J2 are of the same size or if J2 is much
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Figure 9.2.3.: Residual entropy for the Ising model on the swedenborgite lattice in
dependence on J2/J1. The spin configurations shown are the bypyramid ground state
configuration for J2/J1 < 1 (left) and J2/J1 > 1 (right).

smaller than J1. The ground states obtained upon cooling have often shown
frozen defects like single defect bipyramids. The feedback optimized parallel
tempering algorithm, on the other hand, was able to overcome these problems.
Monitoring the drift of the replicas through temperature space as described in
Sec. 2.3, it was found that equilibration could be achieved for all values J2/J1. It
is thus strictly necessary to use the more sophisticated parallel tempering algo-
rithm in order to obtain correct results. The final integration of cV /T according
to Eq. (9.1.2) has been carried out using the standard trapezoidal rule for nu-
merical integration [20].
Fig. 9.2.3 shows the residual entropy in dependence on J2/J1. For J2/J1 < 1,
one finds a value of Sres/ ln 2 ≈ 0.32, which is clearly smaller than the val-
ues reported for the antiferromagnetic Ising model on the triangular lattice
(Sres/ ln 2 ≈ 0.47 [86]) and the kagome lattice (Sres/ ln 2 ≈ 0.72 [86, 87] ), but of
the same size as for so-called “spin-ice”, the antiferromagnetic Ising model on the
pyrochlore lattice (Sres/ ln 2 ≈ 0.32 [88] ), c. f. Tab. 9.1.1. For equal exchange
couplings, the enhanced degeneracy of the bipyramids results in a larger residual
entropy of Sres/ ln 2 ≈ 0.43, a value which is compatible with the assumption
that the ground state degeneracy at J2/J1 = 1 is larger than at J2/J1 < 1 as
mentioned above. For J2/J1 > 1, the residual entropy vanishes, consistent with
the assumption of a sub-extensively degenerate ground state.
To check the above results for consistency, one can also estimate the residual
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9. Classical Ising model on the swedenborgite lattice

entropy by a counting argument following Ref. 88. Starting from stacked bipyra-
mids, there are 9 (J2/J1 < 1) or 16 (J2 = J1) ground state configurations per unit
cell, if one assumes that the triangular spins are aligned parallel in c-direction.
This results in 9N/8 (J2/J1 < 1) or 16N/8 (J2/J1 = 1) allowed ground states on a
lattice with N sites. Since the direction of the triangular spins inside the columns
is a priori not fixed, there is an additional factor of 2 for each of the (N/8)2/3

columns. The influence of the intermediate triangles can be taken into account
by deflating these numbers by the probability of 6/8 that the N/4 intermediate
triangles are in a ground state configuration, leading to the estimates

Sres
N

=


1
N ln

(
9N/8

(
6
8

)N/4
2(N/8)2/3

)
≈ 0.29 ln 2 +O(N−1/3) J2/J1 < 1

1
N ln

(
16N/8

(
6
8

)N/4
2(N/8)2/3

)
≈ 0.40 ln 2 +O(N−1/3) J2/J1 = 1

(9.2.4)

Both values are very close to the values obtained from the Monte Carlo simula-
tion.

9.3. Suppression of the crossover temperature for
J2 ≈ J1

It was shown in the last section that the ground state manifold for the antifer-
romagnetic Ising model on the swedenborgite lattice is mainly characterized by
the two possible configurations of the bipyramids for J2/J1 < 1 and J2/J1 > 1.
If the exchange couplings in the system are equal, both bipyramid configurations
have the same energy and the ground state can be constructed using both types,
resulting in a larger ground state degeneracy and residual entropy at the single
point J2/J1 = 1.
In this section, the focus is on the temperature at which the crossover to the
ground state manifold occurs, in particular its dependence on the ratio J2/J1.
It is shown that the crossover temperature can be significantly suppressed if the
exchange couplings J1 and J2 are almost equal.

The crossover temperature can be determined e. g. from the specific heat. When-
ever the system locks into a specific ground state manifold, its entropy decreases
due to the truncation of the available phase space. Rearranging Eq. (9.1.1), one
finds cV = TdS/dT , i. e. this release of entropy must be accompanied by a hump
in the specific heat. Fig. 9.3.4 shows the specific heat for different ratios J2/J1.
If the kagome planes are decoupled, i. e. J2 = 0, there is only one hump in the
specific heat that signals the selection of an up-up-down or up-down-down con-
figuration on each triangle.
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Figure 9.3.4.: The specific heat of the Ising model on the swedenborgite lattice in
dependence on temperature for various ratios J2/J1. A well separated double peak
structure emerges if the ratio J2/J1 is close to 1 or if J2/J1 � 1. In both cases, the
low-temperature peak is pushed to T = 0 as J2/J1 approaches 1 or 0, respectively.

If the out-of-plane coupling is much weaker than the in-plane coupling, the sys-
tem crosses over into its ground state manifold in two steps. First, all triangles
in the kagome planes select up-up-down and up-down-down states, resulting in a
hump at a temperature of the order O(J1), whereas the triangular spins remain
disordered until a much lower temperature of the order O(J2), where the bipyra-
mids eventually enter their respective ground state configurations, accompanied
by a second peak in the specific heat. These two peaks merge into one broad peak
as J2/J1 is increased above ≈ 0.3 and the two crossovers cannot be separated
any more.
Another interesting parameter region is given by almost equal exchange cou-
plings. Exactly at J2/J1 = 1, one finds only one hump at a temperature of
O(J1), indicating that the intermediate triangles and the bipyramids enter their
respective ground state manifold at the same time. In the vicinity of this point,
i. e. J2 = J1 ± δ, one observes an additional well separated hump at low temper-
atures which is pushed towards T = 0 as δ → 0. This feature originates from the
fact that the two relevant bipyramid configurations, which are truly degenerate at
J2 = J1, appear almost degenerate for J2 ≈ J1 until the temperature becomes of
the order of their energy splitting ∆E = |J2 − J1|/2 per spin. As a consequence,
the position of the associated hump in the specific heat is found to approach
T = 0 linearly as J2/J1 approaches 1, c. f. Fig. 9.3.5. The crossover temperature
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Figure 9.3.5.: The crossover temperature to the different ground states regimes deter-
mined from the position of the low-temperature hump in the specific heat as a function
of J2/J1. Close to J2/J1 = 1, both relevant bipyramids configurations appear almost
degenerate until the temperature is low enough for the system to distinguish between
them. The dashed lines represent a linear regression.

in these systems can thus be substantially smaller than one would expect it based
on the strength of the exchange interactions. Exactly at J2/J1 = 1 and T = 0,
there is a first-order phase transition between the two ground state regimes due
to a level crossing of the energies of the two bipyramid configurations.
For values of J2/J1 significantly larger than 1, one finds again a weakly separated
double peak structure in the specific heat. The first peak at a temperature of or-
der O(J2) signals the formation ordered columns of bipyramids along c-direction,
whereas the broad second peak indicates the alignment of these columns in a way
that all intermediate triangles are either in an up-up-down or up-down-down con-
figuration according to Eq. (9.2.3).

9.4. Structure factors and correlations
One can expect from the analysis of the ground state constraints on the bipyra-
mids and intermediate triangles in Sec. 9.2 that the different ground state regimes
feature different spin-spin correlations. Due to the degeneracy of the interme-
diate triangles, correlations in the ab-plane always remain short ranged and are
expected to decay on the lattice scale. Correlations along c-direction can, how-
ever, be different for kagome and triangular spins depending on the ratio J2/J1:
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The triangular spins in each bipyramid are always aligned parallel and conse-
quently long-range ordered in c-direction. For J2/J1 > 1, the kagome spins in
every bipyramid are aligned anti-parallel to the respective triangular spins and
hence also long-range ordered along c-direction. For J2/J1 = 1 and J2/J1 < 1,
however, the probability that a kagome spin in a bipyramid is anti-parallel to the
respective triangular spin is only 3/4 and 2/3, respectively, c. f. Tab. 9.2.2. This
leads to the conclusion that the spin-spin correlation function

g(r− r′) = 〈σ(r)σ(r′)〉 (9.4.5)

as well as the magnetic structure factor

S(q) =
1

N

∑
ij

〈σiσj〉eiq(ri−rj), (9.4.6)

should show a strong anisotropic decay of correlations and behave differently for
J2/J1 = 1, J2/J1 < 1 and J2/J1 > 1.
The structure factor was calculated numerically in a Monte Carlo simulation for
all three regimes. As expected, it was found that the precise value of J2/J1 has
no influence on the result in the latter two regimes. The values J2/J1 = 1/2 and
3/2 have been simulated as representative values for these regimes since they
were relatively easy to equilibrate and thus allowed to simulate a larger lattice
size of L = 30, which increases the resolution in k-space.
Figs. 9.4.6 and 9.4.7 show the structure factor in the three different regimes
averaged over several cooling cycles down to T = 0 in the (qx, qy, qz = 0) and
(qxy, qxy, qz) plane, respectively. The white arrows in these figures represent the
reciprocal lattice vectors

k1 = 2π

 1

−1/
√

3
0

 , k2 = 2π

 0

2/
√

3
0

 , k3 = 2π

0
0
1

 (9.4.7)

which have been obtained from the basis vectors of the lattice in real space, c. f.
Eq. (8.1.1), by

k1 = 2π
b× c

a · (b× c)
, k2 = 2π

c× a

a · (b× c)
, k3 = 2π

a× b

a · (b× c)
(9.4.8)

and the white hexagons and rectangles show the first Brillouin zone. As expected,
the enhanced degeneracy of the bipyramids for J2/J1 ≤ 1 leads to weaker corre-
lations, indicated by the broadening of the peaks in the qx-qy plane. Correlations
along c-direction, on the other hand, remain long-ranged as long as J2 is finite.
For J2 = 0, the kagome planes are completely decoupled, resulting in vanishing
correlations along c-direction and very weak and short-ranged correlations in the
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9. Classical Ising model on the swedenborgite lattice

Figure 9.4.6.: The magnetic structure factor Eq. (9.4.6) for different ratios J2/J1 at
T = 0 in the (qx, qy, qz = 0) plane. The white arrows denote the reciprocal lattice
vectors and the white hexagon represents the first Brillouin zone. One can clearly
observe a broadening of the peaks for J2/J1 ≤ 1. Note the different scales of the color
code in the different images.
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Figure 9.4.7.: The magnetic structure factor Eq. (9.4.6) for different ratios J2/J1
at T = 0 in the (qxy, qxy, qz) plane. The white arrows denote the reciprocal lattice
vectors and the white rectangle represents the first Brillouin zone. One can observe a
broadening of the peaks along the qxy direction for J2/J1 ≤ 1. Note the different scales
of the color code in the different images.
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ab-plane.

For 0 < J2/J1 < 1, the structure factor shows bow-tie like structures reminiscent
of the pinch-points which occur in Coulomb-phases, c. f. Sec. 7.5. A close inspec-
tion of these structures, c. f. Fig. 9.4.8, reveals, however, that there is no direction
in which the correlations vanish completely as one moves away from the center
of the bow-tie, as it should for a real pinch-point according to Eq. (7.5.26) and
Fig. 7.5.15. Since the structure factor was obtained strictly at T = 0, thermal
broadening of a true pinch-point cannot be the reason for this observation.
It was mentioned in Sec. 7.5 that Coulomb-phases can only exist if one can
describe the ground state manifold either by an ice-rule or a hardcore dimer cov-
ering. The fact that the bipyramids and triangles on the swedenborgite lattice
consist of an odd number of spins excludes an ice-rule description and it was
also not possible to find any mapping of the ground state manifold to a dimer
covering. The observed bow-tie like features thus do not seem to be pinch-points
originating from a Coulomb-phase.
There are nevertheless some similarities between a Coulomb-phase and the ground
state manifold for J2/J1 < 1. As it was shown in Sec. 7.5, Coulomb-phases are
well known to host closed loops of zero-energy spin flips that connect different
ground states with each other. It was shown in Fig. 7.5.16 that non-closed loops
also allow defects (i. e. local violations of the ground state constraints) to move
through the system without energy cost and that these loops are thus the ori-
gin of the defect mobility in these phases. One can find similar loops within the
kagome layers of the swedenborgite lattice, consisting of neighboring anti-parallel
aligned spins, c. f. Fig. 9.4.9. In contrast to Coulomb-phases, it is however not
possible to reach every ground state by flipping such loops since the spins on the
triangular lattice remain unaffected. Nevertheless, non-closes loops can mediate
the movement of single defects, in lowest order described by bipyramids with
three instead of two kagome spins anti-parallel to the triangular ones, within the
kagome planes. One can also easily construct zero energy spin flips for J2/J1 = 1,
where the loops do not necessarily have to be closed due to the enhanced degen-
eracy of the ground state manifold, whereas no such loops exist for J2/J1 > 1.
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9.4. Structure factors and correlations

Figure 9.4.8.: Close-up of the pinch-point
like structure in the (qx, qy, qz = 0) plane for
J2/J1 = 0.5 at T = 0. There is no direction
in which the correlations vanish completely as
one moves away from the center of the bow-tie
as it should for a real pinch-point according
to Eq. (7.5.26).

Figure 9.4.9.: A zero-energy loop
spin flip in the ground state manifold
for J2/J1 < 1. Flipping the chain of
red spins at the same time does not
cost any energy and the system re-
mains in the ground state manifold.
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9.5. Ground state degeneracy and phase diagram
for B 6= 0

In this section, I study the effect of a magnetic field on the ground state degen-
eracy and consider the Hamiltonian

H = J1

∑
〈ij〉∈

same layer

σiσj + J2

∑
〈ij〉∈

diff. layer

σiσj −B
∑
i

σi (9.5.9)

with the magnetic field B applied in the direction of the Ising axis. A magnetic
field in a different direction would lead to a quantum model that favors spin flips.
As in Sec. 9.2, the ground state of the system is again constructed piecewise by
considering isolated triangles and stacked bipyramidal clusters independently. It
turns out that connecting these units at finite field is much more complicated
than in the zero-field case. The resulting phase diagram shows a large variety
of six phases with different magnetizations and degeneracies. In two of these
phases, the degeneracy is lifted only partially by the magnetic field.

On the intermediate triangles, an infinitesimal magnetic field already favors the
up-up-down configurations and thus reduces the degeneracy by a factor of two to
three-fold. These configurations with energy E = −J1 − B per triangle become
unfavorable with respect to the (non-degenerate) fully polarized states with en-
ergy E = 3J1−3B per triangle at B/J1 = 2. Fig. 9.5.10 shows the corresponding
phase diagram.

Of all possible stacked bipyramid configurations, only those which can gain en-
ergy from a magnetic field are of interest. These states and their corresponding
energies are shown in Tab. 9.5.3. The T = 0 mean-field phase diagram in the
B−J2 plane can be found by comparing their energies and is shown in Fig. 9.5.11.

While the determination of the phase diagram for isolated triangles and stacked
bipyramids is rather straightforward, the situation becomes much more compli-

Figure 9.5.10.: The phase diagram for a single triangle in a magnetic field at T = 0.
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State Energy State Energy

12J2 + 6J1

− 8B
−12J2 + 6J1

− 4B

6J1 − 6B −2J1 − 2B

−4J2 − 2J1
4J2 − 2J1

− 4B

Table 9.5.3.: All spin configurations of a unit cell (two stacked bipyramids) that can
gain energy from a magnetic field (pointing in “up” direction) and their corresponding
energy (per unit cell). The two triangles belong to different kagome layers and are
thus pointing in opposite directions. The two spins inside the triangles denote the two
triangular spins in the unit cell. The resulting phase diagram is shown in Fig. 9.5.11.

Figure 9.5.11.: T = 0 phase diagram for columns of isolated stacked bipyramids in
a magnetic field. The energies per unit cell are shown in Tab. 9.5.3. M denotes the
magnetization per spin.
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9. Classical Ising model on the swedenborgite lattice

cated when they are connected as on the swedenborgite lattice. There are certain
bipyramid configurations (e. g. the top right configuration in Tab. 9.5.3) that can
not be connected to every site of an intermediate up-up-down triangle without
an energy penalty due to the magnetic field, even though the isolated bipyra-
mids might be able to gain energy from the field if rotated in the right direction.
On the other hand, it might be favorable to have up-up-down configurations on
the intermediate triangles once they are connected to certain bipyramids, even
though an isolated triangle would prefer to be fully polarized. The only way to
find the phase diagram is to systematically write down all possible bipyramid
configurations and combine them with intermediate up-up-down or (polarized)
up-up-up triangles. This task becomes even more complicated if one takes into
account that not all bipyramids need to have the same configuration. A de-
tailed analysis of all possible combinations results in the phase diagram shown in
Fig. 9.5.12, which was also checked against Monte Carlo simulations for several
points to ensure consistency.
One finds that there are in total six different phases at finite magnetic field, four
of which differ in their magnetization. If the magnetic field is the dominating en-
ergy scale, i. e. B � J2, J1, the ground state is a completely polarized phase with
all spins pointing in direction of the field. On the other hand, if J2 dominates,
i. e. J2 � B, J1, the bipyramids take the antiferromagnetic configuration shown
in the left part of Fig 9.2.1 where the kagome spins inside the bipyramid align
anti-parallel to the triangular spins. Depending on the strength of the magnetic
field compared to J1, these bipyramids are then connected either by up-up-down
or fully polarized triangles. The other three phases can not be understood intu-
itively due to the lack of a dominating energy scale. All transitions between the
different phases are again first-order since they originate from level crossings of
the respective energies.

Fig. 9.5.13 shows the specific heat at single points within the six different phases
for which the residual entropy has again been calculated using Eq. (9.1.2). One
finds that only the M = 0 phase (Sres/ ln 2 ≈ 0.24) and the M = 1/2 phase
for J2/J1 < 1 (Sres/ ln 2 ≈ 0.11) have an extensive ground state degeneracy.
In general, the ground state degeneracy is always smaller than for zero-field, as
expected. There are, however, regions in the phase diagram where the degeneracy
changes unexpectedly as the field is varied at constant J2/J1. Following the red
line in Fig. 9.5.12, the residual entropy changes according to 0.24 ln 2 → 0 →
0.11 ln 2→ 0 in the different phases as the magnetic field is increased, i. e. there
are regions in the phase diagram where an increase of the magnetic field counter-
intuitively leads to an increase of the degeneracy. The reason is rooted in the
fact that the ground state manifold is more rigid in the intermediate M = 1/4
zero entropy phase than the two adjacent finite entropy phases. The difference
in the residual entropy between the two phases traces back to the fact that,
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9.5. Ground state degeneracy and phase diagram for B 6= 0

Figure 9.5.12.: T = 0 Phase diagram of the Ising model on the swedenborgite lattice
in an external magnetic field. “up” pointing triangles represent the blue intermediate
triangles from Fig. 8.1.2 and “down” pointing triangles represent the triangles inside
the bipyramids (red triangles in Fig. 8.1.2) with the two triangular spins shown inside.
M denotes the magnetization per spin and if a ratio is given, it denotes the ratio of
the different bipyramid configurations in the ground state. All transitions between
the different phases are first-order. Along the red line the residual entropy changes as
0.24 ln 2→ 0→ 0.11 ln 2→ 0 in the different phases as the magnetic field is increased.

while in the M = 0 phase the bipyramids are two-fold degenerate with respect
to their orientation in the field, a certain alignment of the bipyramids is favored
in the M = 1/2, J2/J1 < 1 phase, c. f. insets of Fig. 9.5.12. Exactly at the
phase boundary between the two phases with finite residual entropy, one can
again expect an increase of the entropy as in Fig. 9.2.3 due to the enhanced
degeneracy of the bipyramids. These entropy spikes upon increasing the magnetic
field are also known to occur e. g. in spin-ice at the transition from the M = 1/3
to the M = 1/2 magnetization plateau [120]. Tab. 9.5.4 gives an overview of
the calculated residual entropies on the swedenborgite lattice with and without
magnetic field in comparison to other lattices.
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Figure 9.5.13.: The specific heat for different values J2/J1 and B corresponding
to points within the six different phases of the Ising model with magnetic field,
c. f. Fig. 9.5.12. The parallel tempering feedback algorithm has been used up to
Tmax = 10 J1.

Lattice Sres/ ln 2 Ref.
Kagome ≈ 0.72 86, 87
Triangular ≈ 0.47 86
Swedenborgite J2/J1 = 1, B = 0 ≈ 0.43 this work
Swedenborgite J2/J1 < 1, B = 0 ≈ 0.32 this work
Pyrochlore ≈ 0.32 88
Swedenborgite M = 0 phase for B 6= 0 ≈ 0.24 this work
Swedenborgite M = 1/2 phase for B 6= 0, J2 < 1 ≈ 0.11 this work

Table 9.5.4.: Values for the residual entropy for the Ising model on different lattices is
descending order. The different phases for the swedenborgite lattice in finite magnetic
field are shown in Fig. 9.5.12.
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10. Classical Heisenberg model on
the swedenborgite lattice

In this chapter, I analyze the experimentally relevant Heisenberg model on the
swedenborgite lattice.
It is first shown in Sec. 10.1 that the continuous nature of the spin variables has
a strong influence on the nature of the ground state. Depending on the ratio
of the exchange interactions, the ground state is found to be either unique or
highly degenerate. In the latter case, it is shown by elaborate Monte Carlo sim-
ulations in Sec. 10.2 that the system undergoes an order-by-disorder transition
to coplanar ordered ground states at low temperatures. In section 10.3, I present
a harmonic spin-wave analysis which reveals that these states feature soft ex-
citations which are absent in generic ground states, explaining their preference
according to Sec. 7.3. As on the kagome lattice, c. f. Sec. 7.4, the presence of
these excitations also reduces the low temperate value of the specific heat, which
is analyzed in detail in Sec. 10.4.
At the end of this chapter, I conclude with some remarks on a possible experimen-
tal verification of the order-by-disorder transition with an emphasis on additional
interactions which are not accounted for in the model under consideration. Most
results presented in this chapter have been published in Ref. 121.

10.1. Ground state degeneracy

In this section, I discuss how the geometric frustration on the swedenborgite lat-
tice can result either in a unique ground state with magnetic long-range order,
a spin liquid with quasi one-dimensional ordering, or independent copies of de-
coupled kagome spin liquids, depending on the ratio of the exchange interactions
J2/J1.
The constraints on the ground state manifold can be derived by minimizing the
energy on the bipyramidal clusters and the interlacing triangles simultaneously.
The Hamiltonian Eq. (8.1.2) is therefore decomposed into two parts: One part
describing the interactions between the spins on the intermediate triangles and
one part accounting for the interactions inside the bipyramids. Using the nota-
tion from Fig. 10.1.1, the Hamiltonians for these particular units can be written
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Figure 10.1.1.: Three bipyramids and an intermediate triangle as the elementary
building blocks of the swedenborgite lattice. The spin configuration shown is the ground
state for J2/J1 ≥ 3/2.

as

Htriangle =
J1

2
(S1 + S2′ + S3′′)

2
+ const.,

Hbipyramid =
J1

2

(
S1 + S2 + S3 +

J2

J1
(S4 + S5)

)2

(10.1.1)

+
J2

2

2J1
(S4 − S5)

2
+ const.,

where the second term in the bipyramid Hamiltonian was introduced to remove
the artificial interaction between the triangular spins 4 and 5 that is generated
by the first term.
It was already shown in Sec. 7.2 that optimal configurations on a triangle have
vanishing total spin,

S1 + S2′ + S3′′ = 0, (10.1.2)

which leads to 120◦ order as shown in Fig. 7.2.4.
From Eq. (10.1.1), one can also read off the ground state constraints on the
bipyramids immediately:

S4 − S5 = 0, (10.1.3)

S1 + S2 + S3 +
J2

J1
(S4 + S5) = 0. (10.1.4)

The first term wants to align the two triangular spins on each bipyramid parallel.
Since the bipyramids are stacked in c-direction, this results in mutually parallel
triangular spins in all bipyramids along that direction. The second term requires
the total spin on each bipyramid (with S4 and S5 rescaled by a factor J2/J1)
to vanish in the ground state. Interestingly, the number of solutions to this
equation is the same as for Heisenberg spins on a single triangle in a magnetic
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J2/J1 ≥ 3/2 J2/J1 = 5/4

Figure 10.1.2.: Left: Unique ground state spin configuration for J2/J1 ≥ 3/2. Right:
A possible ground state configuration for J2/J1 = 5/4. Kagome spins are shown in red,
triangular spins are shown in blue and rescaled by a factor J2/J1 in both figures.

field B = −J2/J1(S4 + S5) [122, 123], if one considers the triangular spins as
fixed. In the following, the different regimes J2/J1 ≥ 3/2, 0 < J2/J1 < 3/2 and
J2/J1 = 0 are discussed separately.

J2/J1 ≥ 3/2 With the triangular spins being parallel, there exists a unique so-
lution to Eq. (10.1.4) only for J2/J1 = 3/2, which is that the three kagome spins
in each bipyramid are aligned mutually parallel and anti-parallel to the two trian-
gular spins as shown in the left hand side of Fig. 10.1.2. To construct the ground
state of the full system, one has to stack the bipyramids in c-direction and ensure
120◦ order at the intermediate triangles. The complete ground state spin config-
uration is shown in Fig. 10.1.1 for three bipyramids with an intermediate triangle
and in Fig. 10.1.3 as seen along the c-axis. Obviously, this state is magnetically
long-range ordered with the staggered magnetization M(q), q = (4π/3, 0, 0)T as
corresponding order parameter.
Even though the ground state condition in Eq. (10.1.4) cannot be satisfied any
more for J2/J1 > 3/2, this configuration still remains the ground state in this
regime since there is no better configuration than to align all kagome spin com-
pletely anti-parallel to the triangular spins if the (antiferromagnetic) out-of-plane
interaction J2 is increased further.

0 < J2/J1 < 3/2 In this case, the effective length of the triangular spins is
reduced below a critical threshold and there exist many solutions to Eq. (10.1.4).
A possible ground state configuration for J2/J1 = 5/4 is shown in the right part
of Fig. 10.1.2. To quantify the degree of the degeneracy in dependence on J2/J1,
one can generate random configurations for the kagome spins inside a bipyramid
with parallel triangular spins and check whether Eq. (10.1.4) is fulfilled up to
some small δ, i. e. if ∥∥∥∥S1 + S2 + S3 +

J2

J1
(S4 + S5)

∥∥∥∥ < δ. (10.1.5)
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line of sight

Figure 10.1.3.: The unique ground state configuration for J2/J1 ≥ 3/2 as seen along
the c-axis. Blue spins reside on the triangular lattices, red and green spins reside on
the two non-equivalent kagome planes.

Fig. 10.1.4 shows the fraction of 108 generated spin configurations that fulfill
Eq. (10.1.5) for δ = 0.1. The data has been normalized to the value at J2 = 0,
which reflects the degeneracy of a single triangle without triangular spins. Start-
ing from J2/J1 = 3/2, the degeneracy of the bipyramids continuously increases
as J2/J1 is lowered to zero.
A part of this degeneracy is later removed when the bipyramids are connected by
the intermediate triangles. Nevertheless, this still allows for an extensive number
of degenerate ground states since each bipyramid is only restricted by a local
constraint. Knowing the spin configuration in one bipyramid, one cannot predict
the configuration in another one, and there is consequently no long-range order.

An interesting consequence of the exchange topology of the swedenborgite lattice
is an anisotropic decay of correlations in the regime 0 < J2/J1 < 3/2. Coun-
terintuitively, the correlation length in the ab-plane, i. e. within the kagome and
triangular layers, depends on the out-of-plane coupling J2: If J2 is close to 3/2,
the bipyramids have only little freedom in choosing a spin configuration com-
patible with Eq. (10.1.4), i. e. the kagome spins inside the bipyramids will be
almost completely anti-parallel to the triangular spins. Connecting these bipyra-
mids by intermediate triangles with 120◦ configurations leads to a ground state
which differs locally only slightly from the unique ground state for J2/J1 ≥ 3/2
and features very slow decaying correlations in the ab-plane. For small J2/J1,
on the other hand, the kagome spins inside the bipyramids can arrange in more
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Figure 10.1.4.: Degeneracy of a single bipyramid as a function of J2. Shown is the
fraction of randomly initialized spins on a bipyramid that fulfill Eq. (10.1.5).

ways without violating Eq. (10.1.4), which effectively destroys correlations in the
ab-plane after a few lattice sites. Khalyavin et al. have caluclated the correla-
tions of the kagome spins inside the ab-plane for a system consisting 21×21×13
unit cells with open boundary conditions in Ref. 110. Their results, shown in
Fig. 10.1.5, confirm this anisotropic decay of correlations.
As in the regime J2/J1 ≥ 3/2, the triangular spins within the same column of
stacked bipyramids are still aligned parallel and thus long-range ordered along
c-direction. The kagome spins of that column are restricted by Eq. (10.1.4) and
will thus on average have an (J2/J1 dependent) anti-parallel component to the
respective triangular spins of the particular column. Consequently, the kagome
spins are also long-range ordered along c-direction.

J2/J1 = 0 In this limit, the system consists of decoupled kagome layers. Ac-
cording to the discussion in Sec. 7.4, these layers form individual two-dimensional
kagome spin-liquids on their own, which undergo independent order-by-disorder
transitions to coplanar ground states at T/J1 ≈ 10−3. Since the layers are de-
coupled, there exists however no common spin plane for the system as a whole.
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Figure 10.1.5.: The correlation function of the kagome spins along the direction of the
nearest neighbor bonds in the ab-plane for a system consisting of 21×21×13 unit cells
with open boundary conditions. Jout and Jin correspond to J2 and J1 in the notation
used in this thesis. Picture taken from Ref. 110.

10.2. Nematic order parameter and
order-by-disorder transition

In this section, I introduce the nematic order parameter which can be used to
measure whether a spin configuration is coplanar. For these states, the magneti-
zation itself is not an order parameter since the average 〈Si〉 still vanishes if no
specific direction inside the spin plane is preferred [124, 125]. Since the selection
of a common spin plane lowers the symmetry of the ground state from O(3) to
O(2), it is desirable to have an order parameter which is sensitive to this type of
symmetry breaking.
In general, it is not possible to describe nematic phases, i. e. phases in which
the spins align in certain planes or along certain axes, by a simple vector order
parameter and one has to consider higher harmonics, i. e. tensors, instead. A
natural extension is the 3× 3 second rank tensor

Qαβ =
1

N

∑
i

(
Sαi S

β
i −

1

3
δαβ
)
, α, β = {x, y, z}, (10.2.6)

which has the following properties [125]:

1. It is a symmetric tensor, i. e. Qαβ = Qβα.

2. It is traceless, i. e. Qαα = 0.

146



10.2. Nematic order parameter and order-by-disorder transition

3. The first two properties reduce the number of independent components
from nine to five.

4. It vanishes in the isotropic phase where no specific plane or axis is preferred.
To prove this one can transform into spherical coordinates

Sxi = sin θ cosφ,

Syi = sin θ sinφ,

Szi = cos θ

(10.2.7)

and obtains

Qαβ =

∫ 2π

0

dφ

∫ π

0

sin θdθP (θ, φ)

(
Sαi S

β
i −

1

3
δαβ
)
, (10.2.8)

where P (θ, φ) is the probability that a spin is aligned in the direction de-
scribed by the angles θ and φ. In the isotropic phase, P (θ, φ) is constant
and takes the value Piso(θ, φ) = 1/(4π) as required by the normalization
condition

∫ 2π

0
dφ
∫ π

0
sin θdθP (θ, φ) = 1. It is obvious that all off-diagonal

components Qxy, Qxz and Qyz vanish in the isotropic phase due to the in-
tegration over φ. For the diagonal components, this is not that easy to see.
For Qzz, one obtains

Qzz =

∫ 2π

0

dφ

∫ π

0

sin θdθ
1

4π

(
cos2 θ − 1

3

)
=

1

2

∫ 1

−1

d(cos θ)

(
cos2 θ − 1

3

)
=

1

6

[
cos3 θ − cos θ

]cos θ=1

cos θ=−1

= 0.

(10.2.9)

In a similar fashion it can be shown that Qxx = Qyy = 0.

5. In a perfect coplanar spin configuration with Szi = 0, Q becomes

Q =

1/6 0 0
0 1/6 0
0 0 −1/3

 . (10.2.10)

Again, the off-diagonal components vanish due to the integration over φ.
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Using P (θ, φ) = δ(θ − π/2)/2π, one obtains for Qzz

Qzz =

∫ 2π

0

dφ

∫ π

0

sin θdθ
δ(θ − π/2)

2π

(
cos2 θ − 1

3

)
=

[
cos2 θ − 1

3

]
θ=π/2

= −1

3
.

(10.2.11)

The other diagonal components follow from this as Qxx = Qyy = −Qzz/2
due to the symmetry of the spin configuration and the tracelessness of the
tensor.

6. If all spins point either parallel or anti-parallel to the z-axis, Q becomes

Q =

−1/3 0 0
0 −1/3 0
0 0 2/3

 . (10.2.12)

To prove this, it is again sufficient to calculate only Qzz using P (θ, φ) =
(δ(θ) + δ(θ − π))δ(φ)/2,

Qzz =

∫ 2π

0

dφ

∫ π

0

sin θdθ
δ(θ) + δ(θ − π)

2
δ(φ)

(
cos2 θ − 1

3

)
=

1

2

([
cos2−1

3

]
θ=0

+

[
cos2−1

3

]
θ=π

)
=

2

3
.

(10.2.13)

To construct a Landau mean-field theory, one has to build scalar quantities out of
the tensor order parameter by taking traces. The leading terms in this expansion
take the form

F = AQαβQβα +BQαβQβγQγα + CQαβQβαQγδQδγ +O(Q5), (10.2.14)

where A,B and C are the parameters of the expansion. The fact that the cubic
term is not forbidden by any symmetry implies that any transition with this or-
der parameter is generically first-order [126].

Usually, one does not know the spin-plane or spin-axis in advance, and in an
arbitrary basis, the order parameter tensor will in general not be diagonal. It is
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10.2. Nematic order parameter and order-by-disorder transition

thus more convenient to measure the trace of this tensor and its powers which
are basis independent. The first non-vanishing trace is

QαβQβα =
1

N2

∑
ij

(
Sαi S

β
i −

1

3
δαβ

)(
Sαj S

β
j −

1

3
δαβ

)

=
1

N2

∑
ij

(
(Si · Sj)2 − 1

3

) (10.2.15)

and can be easily measured in numerical simulations. In a completely coplanar
or uni-axial state, this quantity takes the values 1/6 and 2/3, respectively, as can
be seen by transforming to a basis where Q is diagonal and Eqs. (10.2.10) and
(10.2.12) hold. By taking the trace of this quantity, one has lost all directional
information about the nematic, i. e. one cannot specify the spin-plane or spin-
axis from QαβQβα alone anymore.
Being mainly interested in coplanar ordered states, the normalized scalar order
parameter

Ψ2 =
6

N2

∑
ij

(
(Si · Sj)2 − 1

3

)
. (10.2.16)

is considered from now on. Fig. 10.2.6 shows this order parameter as obtained
from Monte Carlo simulations for several values of J2/J1 at L = 9.

For J2/J1 ≥ 3/2, the order parameter rises straight to 1 due to the coplanarity
of the unique ordered ground state in this regime. As J2/J1 is reduced below
3/2, the order parameter rises first to a plateau, whose height depends on the
ratio J2/J1, before it eventually rises to 1 at a much lower temperature. The
plateau originates from the fact that the ground state constraint on the bipyra-
mids (Eq. (10.1.4)) already imposes some J2/J1-dependent local coplanarity to
the ground state which is further enhanced by the periodic boundary conditions.
This interpretation is backed up further by the fact that the height of the plateau
decreases for smaller ratios J2/J1, where the ground state constraint is not so
restrictive anymore and allows for more configurations.
The second rise of the order parameter corresponds to the actual transition to
the coplanar ordered phase. For smaller ratios J2/J1, the order parameter seems
to jump discontinuously at the transition, indicating that the transition is first-
order. From a numerical point of view, it is in general difficult to make statements
about the nature of a phase transition just by the analysis of the temperature
dependence of the order parameter. An unambiguous statement can, however, be
made by recording a frequency histogram of the order parameter exactly at the
critical temperature: If the phase transition is second order, there will be only
one peak in the histogram since the order parameter rises continuously. If, on
the other hand, the transition is first-order, i. e. if there is phase coexistence, one
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Figure 10.2.6.: Temperature dependence of the nematic order parameter for L = 9
obtained by Monte Carlo simulations. For J2/J1 < 1.20 the first-order transition could
not be equilibrated anymore and the corresponding curves are thus not shown.

should find two separated peaks in the histogram, corresponding to the values
in the respective phases. Fig. 10.2.7 shows the order parameter histograms for
different values J2/J1 at L = 9. One can clearly observe how the aforementioned
double peak structure emerges for J2/J1 . 1.40, yielding proof that the transi-
tion is indeed first-order. For values J2/J1 & 1.40, the discontinuity ∆Ψ2 is of
the same size as the peak width and the two peaks cannot be separated anymore.
For J2/J1 < 1.20, it was not possible to equilibrate the first-order transition any-
more and the corresponding curves are thus only shown for temperatures above
the transition.
Fig. 10.2.8 shows the dependence of ∆Ψ2 on J2/J1. Fitting a linear function to
the data points yields

∆Ψ2 = (−0.940± 0.035) J2/J1 + (1.401± 0.044) (10.2.17)

which can be extrapolated to larger values of J2/J1 to find that the discontinuity
vanishes at J2/J1 = 1.49 ± 0.07. This is consistent with the assumption that
the transition to the coplanar ordered ground states is always first-order for
J2/J1 < 3/2, whereas, for J2/J1 ≥ 3/2, the (unique) ground state is always
coplanar and the order-by-disorder transition ceases to exist.
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Figure 10.2.7.: Frequency histograms of the nematic order parameter for various ratios
J2/J1 at L = 9.
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Figure 10.2.8.: The discontinuity ∆Ψ2 of the order parameter at the phase transition
in dependence on J2/J1 for L = 9. For J2/J1 & 1.40, the two peaks in the histogram
could not be separated due to a large overlap, whereas the phase transition could not
be equilibrated anymore for J2/J1 < 1.20. The straight line is a linear fit to the data
points. Extrapolating to larger values J2/J1, one finds that the discontinuity vanishes
at J2/J1 = 1.49± 0.07.
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10.3. Spin-wave analysis
It was shown in the previous section that coplanar ground states are selected
out of the degenerate ground state manifold in a first-order transition at low
temperatures. In this section, I present a harmonic spin-wave analysis following
the lines of Chalker [78] that explains why this selection takes place and proof
that it exists in the whole regime 0 < J2/J1 < 3/2. I first discuss fluctuations
around a finite number of spins located around a single hexagon in the kagome
plane for pedagogical purposes, followed by a full spin-wave analysis around the
unique ground state for J2/J1 ≥ 3/2. At the the end, the analysis is extended to
arbitrary degenerate coplanar ground states for J2/J1 < 3/2.

Fluctuations around a single hexagon The unique ground state for J2/J1

≥ 3/2 can be described completely using only three different types of spins
SGS
A ,SGS

B and SGS
C (and their anti-parallel counterparts), which one can choose

to be

SGS
A = (0, 1, 0)T ,

SGS
B = (

√
3/2,−1/2, 0)T ,

SGS
C = (−

√
3/2,−1/2, 0)T .

(10.3.18)

In the anticipation that a possible soft mode will show some similarity with
the soft mode known from the kagome lattice, I first consider a finite system
consisting of only one hexagon as shown in Fig. 10.3.9 and allow only the spins
on the inner hexagon to tilt out of the ground state plane. These six spins can
be parametrized as (c. f. Fig. 10.3.9 for the labeling of the spins).

S1 =
√

1− ε21SGS
A + ε1(0, 0, 1)T ,

S2 =
√

1− ε22SGS
B + ε2(0, 0, 1)T ,

S3 =
√

1− ε23SGS
B + ε3(0, 0, 1)T ,

S4 =
√

1− ε24SGS
C + ε4(0, 0, 1)T ,

S5 =
√

1− ε25SGS
C + ε5(0, 0, 1)T ,

S6 =
√

1− ε26SGS
A + ε6(0, 0, 1)T .

(10.3.19)

Expanding the Hamiltonian Eq. (8.1.2) up to second order in these deviations
yields

H = EGS + εTH2ε+O(|ε|4) (10.3.20)
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1 2

3

45

6 Figure 10.3.9: Spin-wave analysis for a sin-
gle hexagon. The red spins are allowed to
tilt out of the ground state plane whereas
the black spins are fixed in their respective
ground state positions. Note that the ground
state is completely built out of the spins
±SGS

A ,±SGS
B and ±SGS

C , c. f. Eq. (10.3.18).

with EGS = −3J2
2/J1−9J1/2 being the ground state energy, ε = (ε1, ..., ε6)T and

H2 =



J2 − J1
2

J1
2 0 0 0 J1

2
J1
2 J2 − J1

2
J1
2 0 0 0

0 J1
2 J2 − J1

2
J1
2 0 0

0 0 J1
2 J2 − J1

2
J1
2 0

0 0 0 J1
2 J2 − J1

2
J1
2

J1
2 0 0 0 J1

2 J2 − J1
2

 . (10.3.21)

This matrix has an eigenvalue ω = J2 − 3J1/2 that vanishes exactly at J2/J1 =
3/2, i. e. when the ground state is about to become degenerate. For J2/J1 < 3/2,
the eigenvalue does not become negative as one might naively think. Instead, the
above analysis breaks down since one has to expand the Hamiltonian around a
different ground state.
The eigenvector corresponding to the above mentioned eigenvalue is

ε = ε(+1,−1,+1,−1,+1,−1)T , (10.3.22)

implying that the soft mode is given by the spins on the hexagon tilting out
of the ground state plane in an alternating fashion by the same amount, c. f.
Fig. 10.3.10. Apparently, this mode is closely connected to the mode already
known from the kagome lattice, c. f. Fig. 7.4.10. Inserting the eigenvector back
in the Hamiltonian Eq. (8.1.2), one finds that the excitation energy of this mode
at J2/J1 = 3/2 is quartic in leading order,

E =
15J1

8
ε4 +O(ε6). (10.3.23)
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Figure 10.3.10.: Local soft mode in coplanar ground state configurations for J2/J1 =
3/2: blue spins are idle while red spins tilt out of the plane by ±ε in an alternating
fashion.

Fluctuations around the unique ground state for J2/J1 ≥ 3/2 After
this pedagogical introduction, I continue by presenting a full harmonic spin-wave
analysis around the unique ground state, i. e. all spins are now allowed to tilt
out of their respective ground state positions. As in Sec. 7.4, fluctuations around
the ground state can be parametrized best in a local basis on each lattice site i
with ẑi parallel to Si in the respective ground state position and ŷi orthogonal to
the ground state plane with all ŷi mutually parallel. The remaining coordinate
x̂i is chosen such that the resulting coordinate system is right handed on every
lattice site. Using this coordinate system, every spin can be parametrized by the
in-plane and out-of-plane deviations from the ground state, εxi and εyi , as

Si =

(
εxi , ε

y
i ,
√

1− (εxi )2 − (εxi )2

)T
. (10.3.24)

Inserting this into the Hamiltonian Eq. (8.1.2), one obtains

H = EGS +
∑
〈ij〉

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)εyj

+
√

1− (εxi )2 − (εyi )2Jij(ẑi · ẑj)
√

1− (εxj )2 − (εxj )2

)
,

(10.3.25)

where EGS = (−J2
2/2J1−3J1/4)N is the ground state energy and N the number

of lattice sites. In the harmonic approximation, all terms beyond quadratic order
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are neglected and Eq. (10.3.25) becomes

H = EGS +
∑
〈ij〉

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)εyj

− 1

2

(
(εxi )2 + (εyi )2 + (εxj )2 + (εyj )2

)
Jij(ẑi · ẑj)

)
,

(10.3.26)

which can be written in a more compact form after introducing the abbreviation

γi =
1

2

∑
j

Jij(ẑi · ẑj) (10.3.27)

as

H = EGS +
1

2

∑
ij

(
εxi Jij(x̂i · x̂j)εxj + εyi Jij(ŷi · ŷj)εyj − δij

(
εxi 2γiε

x
j + εyi 2γiε

y
j

) )
= EGS +

1

2

(
εx εy

)(Mx 0
0 My

)(
εx

εy

)
,

(10.3.28)

where the sum now extends over all spin pairs i and j, εx/y = (ε
x/y
1 , ..., ε

x/y
N ) and

Mx
ij = Jij(x̂i · x̂j)− 2γiδij ,

My
ij = Jij(ŷi · ŷj)− 2γiδij .

(10.3.29)

In the above matrix notation it becomes clear that the in-plane and out-of-plane
excitations are not coupled in the harmonic approximation.
The next step is to exploit the translation symmetry of the lattice by performing
a Fourier transform of the matricesMx andMy to momentum space. Before one
proceeds, it is however useful to simplify all equations by specifying the relative
spin positions in the ground state explicitly. Using Fig. 10.1.3, one finds for two
neighboring kagome spins i and j

(x̂i · x̂j) =

{
1 i, j ∈ same bipyramid
−1/2 i, j ∈ same intermediate triangle

, (10.3.30)

(ŷi · ŷj) = 1, (10.3.31)

(ẑi · ẑj) =

{
1 i, j ∈ same bipyramid
−1/2 i, j ∈ same intermediate triangle

(10.3.32)

whereas one finds
(x̂i · x̂j) = −1

(ŷi · ŷj) = +1

(ẑi · ẑj) = −1

(10.3.33)
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if one of the two spins is located on the triangular lattice. All matrix products
between non-neighboring spins vanish. With these definitions, γi becomes

γi =

{
J1/2− J2 i ∈ kagome lattice
−3J2 i ∈ triangular lattice

. (10.3.34)

Transforming to momentum space by

ε
x/y
i =

1√
N/8

∑
k

ε
x/y
k eik·ri (10.3.35)

yields two 8 × 8 matrices Mx
k and My

k , whose matrix elements are given in ap-
pendix A. By construction, the eigenvalues of Mx

k correspond the energies asso-
ciated with in-plane deviations of the spins out of their ground state position,
whereas the eigenvalues ofMy

k correspond the excitation energies for out-of-plane
excitations. These energies are shown in Fig. 10.3.11 along a path connecting high
symmetry points in the Brillouin zone separately for in-plane and out-of-plane
excitations and for various values of J2/J1. The fact that there are no excita-
tions with negative energy yields a cross-check for correctness of the spin-wave
calculation.

One finds that there is a doubly degenerate completely flat band corresponding
to out-of-plane excitations that is continuously shifted to lower energies as J2/J1

is reduced and becomes gapless exactly at J2/J1 = 3/2. One thus recovers the
previous result from the simple spin-wave analysis for a single hexagon of spins
where it was also found that the mode shown in Fig. 10.3.10 becomes soft at this
point. For the in-plane excitations, there is no such flat band, indicating that
these excitations never go soft.
Based on the above spin-wave analysis, one can also calculate the expected re-
duction of the specific in the limit T → 0 for J2/J1 = 3/2. Since there are in total
eight quadratic in-plane and six quadratic and two quartic out-of-plane modes,
one would expect the specific heat in the low-temperature limit to be

cV =

(
8

8
× 1

2

)
︸ ︷︷ ︸
in-plane

+

(
6

8
× 1

2
+

2

8
× 1

4

)
︸ ︷︷ ︸

out-of-plane

=
15

16
(10.3.36)

according to the discussion in Sec. 7.4. It will be shown in Sec. 10.4 that this
value agrees excellently with the numerical results from the classical Monte Carlo
simulation.

Fluctuations around an arbitrary coplanar state It is also possible to
describe the out-of-plane fluctuations around an arbitrary coplanar ground state
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Figure 10.3.11.: The harmonic excitation spectrum around the unique ground state
for J2/J1 ≥ 3/2. Red and blue lines correspond to in-plane and out-of-plane excitations,
respectively. There is a doubly degenerate dispersionless band belonging to out-of-plane
excitations that becomes soft exactly at J2/J1 = 3/2.
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for J2/J1 < 3/2 in the same way as before, even though the ground state is not
unique anymore. This is rooted in the fact that, in the local basis with mutually
parallel ŷi, the product (ŷi · ŷj) that enters the matrix My

k always equals 1 for
neighboring spins. Additionally, the γi’s that enter My

k also do not depend on
the particular ground state: For an arbitrary spin ST on the triangular lattice,
one finds (c. f. Fig. 10.3.12 for the numbering of the spins)

γT =
1

2

∑
j

JijST · Sj

=
1

2
J2ST ·

(
S1
K + S2

K + S3
K + S4

K + S5
K + S6

K

) (10.3.37)

Using the ground state constraints Eq. (10.1.3) and (10.1.4), which in this nota-
tion read

S1
K + S2

K + S3
K = −2

J2

J1
ST ,

S4
K + S5

K + S6
K = −2

J2

J1
ST ,

(10.3.38)

one can reduce γT to the universal value

γT = −2
J2

2

J1
, (10.3.39)

which is independent of the particular spin configuration in the ground state.
The same is also possible for γK , which is in the notation of Fig. 10.3.13 given
by

γK =
1

2

∑
j

JijSK · Sj

=
1

2

(
J1SK ·

(
S1
K + S2

K + S3
K + S4

K

)
+ J2SK ·

(
S1
T + S2

T

) )
.

(10.3.40)

The 120◦ angles on the intermediate triangles imply SK · S3
K = SK · S4

K = −1/2
and one is left with

γK = −J1

2
+
J1

2
SK ·

(
S1
K + S2

K +
J2

J1

(
S1
T + S2

T

))
. (10.3.41)

Using once again the ground state constraint Eq. (10.1.4), in this notation given
by

S1
K + S2

K +
J2

J1

(
S1
T + S2

T

)
= −SK , (10.3.42)
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Figure 10.3.12.: Spin num-
bering used for the determi-
nation of γT .
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Figure 10.3.13.: Spin numbering used for the deter-
mination of γK .

one finally obtains

γK = −J1. (10.3.43)

Unfortunately, the in-plane fluctuation matrix Mx
k depends on the products

(x̂i · x̂j), which are in contrast to (ŷi · ŷj) different for each ground state. It
is therefore not possible to give a general result for the in-plane excitation spec-
trum and I will hence focus only on the out-of-plane excitations.

Fig. 10.3.14 shows the out-of-plane excitation spectrum around an arbitrary
coplanar ground state for various values J2/J1.
The doubly degenerate flat band that appeared at J2/J1 = 3/2 is still present
for all values J2/J1 down to 0, implying that coplanar ground states always
feature soft excitations in this regime. Based on this powerful result, one can
conclude that the corresponding order-by-disorder transition must exist for all
J2/J1 ≤ 3/2 as well, which allows further insight into the regime J2/J1 . 1.2,
where the transition is strongly first-order and cannot be equilibrated anymore
in Monte Carlo simulations, c. f. Sec. 10.2.

As J2/J1 is lowered towards 0, the excitation spectrum collapses continuously
into a two-fold degenerate spectrum. This spectrum simply represents the two
independent kagome planes, each having a soft excitation according to Sec. 7.4,
and two additional flat bands corresponding to the non-interacting triangular
spins per unit cell.
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Figure 10.3.14.: The harmonic excitation spectrum for out-of-plane excitations around
an arbitrary coplanar ground state for J2/J1 < 3/2. There is always a doubly degenerate
flat band at E = 0, indicating that all coplanar ground states have two soft modes.
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10.4. Specific heat
Another interesting quantity besides the order parameter is the specific heat since
it allows the identification of phase transitions and crossovers without knowing
the corresponding order parameter. In addition to that, its low-temperature be-
havior yields information about the presence of soft modes and provides thus an
unbiased way to find order-by-disorder transitions. Fig. 10.4.15 shows the specific
heat for various ratios J2/J1 over five orders of magnitude in temperature. The
different observed features are explained separately in the following.

Phase transition/crossover at high temperatures Starting at the largest
simulated value J2/J1 = 2, one finds a peak in the specific heat at T/J1 =
10−1...100 whose height continuously decreases as J2/J1 is decreased. At J2/J1 ≈
1, this peak has vanished completely and for ratios lower than J2/J1 ≈ 1, the
specific heat rises straight to one without showing any features.
Following the discussion of the ground state degeneracy in Sec. 10.1, the ground
state is unique and long-range ordered for J2/J1 ≥ 3/2, whereas it is degen-
erate for J2/J1 < 3/2. The observed peak in specific heat for J2/J1 ≥ 3/2
thus indicates a true thermodynamic singularity corresponding to a second order
phase transition. For J2/J1 < 3/2, on the other hand, the system only enters a
spin-liquid regime where it is governed by local constraints and there is conse-
quently no long-range order. The observed hump in the specific heat for values
J2/J1 . 3/2 thus corresponds to a crossover instead of a phase transition.
Although this statement is obvious from the discussion of the ground state de-
generacy in Sec. 10.1, it is difficult to proof numerically. In principle, one would
measure the specific heat for different system sizes and analyze the scaling be-
havior of the peak: if the peak originates from a true phase transition with a
diverging correlation length, it would become narrower and sharper with increas-
ing system size, c. f. Sec. 1.4. On the other hand, if the peak originates from
a crossover, in which the correlation length only grows to a finite value, one
would observe that the peak does not scale any more once the linear system size
exceeds this correlation length. Following the discussion in Sec. 10.1, the corre-
lation length is still very large if J2/J1 is close to 3/2 and it is thus impossible to
simulate system sizes large enough to see this effect. For smaller values J2/J1,
however, one indeed observes that the specific heat is independent of the system
size already between a linear system size of L = 6 and L = 9, see e. g. the curve
for J2/J1 = 0.5 in Fig. 10.4.16. Since the whole regime J2/J1 < 3/2 is concep-
tional equivalent, c. f. Sec. 10.1, one can expect that this effect could in principle
also be observed for J2/J1 close to 3/2, provided that one could simulate larger
systems.
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Figure 10.4.15.: The specific heat for different values J2/J1 at L = 9. Different curves
have been shifted by an offset of 0.2 for visibility. The two curves for J2/J1 = 1.1 and
1.0 end at T/J1 = 0.01 because the first-order transition could not be equilibrated
any more for these values. For J2/J1 ≤ 0.9, the first-order transition is pushed to
very low temperatures T/J1 < 10−4 and equilibration could be achieved in the whole
temperature range T/J1 ≥ 10−4.
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L=6,9

Figure 10.4.16.: The specific heat cV for selected ratios J2/J1 and L = 6 (as well as
L = 9 for J2/J1 = 0.5, 1.3, 1.6). In the limit T → 0, the curve for J2 = 1.6 approaches
1 while the ones for J2/J1 = 1.5 and 1.3 approach 15/16. For J2/J1 = 0.1 and 0.5, the
specific heat seemingly approaches 1, but the first-order transition is pushed to very low
temperatures. The arrows on the cV -axis mark the values 15/16 and 11/16, see main
text.

Order-by-disorder transition and low-temperature behavior For J2/J1

< 3/2, the specific heat shows an additional peak at the temperature of the order-
by-disorder transition, c. f. Sec. 10.2. Already for L = 9, this peak is very sharp
pronounced and has a shape close to a delta distribution, the expected shape for
a first-order transition in the thermodynamic limit, c. f. Fig. 10.4.16. For ratios
J2/J1 < 1.20, it was not possible to equilibrate this transition anymore and
the corresponding curves are hence only shown for T/J1 ≥ 0.01 in Fig. 10.4.15.
For J2/J1 . 0.9 the transition temperature is pushed below T/J1 = 10−4, the
smallest temperature analyzed in the simulations. It should again be emphasized
that the existence of the order-by-disorder transition is guaranteed for all J2/J1 <
3/2 by the spin-wave analysis, c. f. Sec. 10.3.
Based on this analysis and a mode counting argument, it was also predicted in
Sec. 10.3 that the specific heat should approach the value 15/16 in the limit T →
0. This value, marked by the upper black arrow on the cV -axis in Fig. 10.4.16,
agrees remarkably well with the numerical data and lends further support to the
previous analyses. For values J2/J1 > 3/2, the specific heat clearly approaches
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the value 1 as T → 0, proving the absence of soft modes in this regime. Exactly
at J2/J1 = 3/2, the specific heat approaches the predicted value of 15/16 without
showing any further features after the high-temperature peak. The absence of an
additional peak at low temperatures is rooted in the fact that there is no order-
by-disorder transition since the unique ground state for J2/J1 = 3/2 is already
coplanar.

Behavior for small J2/J1 The curve for J2/J1 = 0 essentially reproduces the
known result from the 2d kagome lattice with the specific heat being rescaled by a
factor of 6/8 to account for the two effectively non-interacting kagome spins. This
modifies the low-temperature value of the specific heat from 11/12 to 11/16.
If the out-of plane coupling is finite but sufficiently small, i. e. J2/J1 . 0.3,
one finds that at high temperatures, the system first behaves as if the kagome
plane were completely decoupled in the sense that the corresponding specific heat
curves do not deviate from each other (compare curves for J2/J1 = 0.1 and 0.0
in Fig. 10.4.16). The first plateau in the specific heat signals that the different
kagome planes enter their respective ground state manifold and form independent
2d spin-liquids. In this regime, the six kagome spins per unit cell have purely
quadratic excitations in the two directions perpendicular to the respective ground
state orientation, whereas the two triangular spins are effectively non-interacting.
Following Sec. 7.4, the low-temperature value of the specific heat per spin in this
regime should therefore be

cV = 2×
(

6

8
× 1

2
+

2

8
× 0

)
=

3

4
, (10.4.44)

which agrees again well with the numerical data.
Upon lowering the temperature further, the out-of-plane coupling becomes rele-
vant and the system crosses over into the 3d spin-liquid regime governed by the
local constraint on the bipyramids. The triangular spins now also feel a quadratic
potential and the specific heat consequently approaches 1 as T → 0. As predicted
by the spin-wave analysis, the system will also undergo a first-order transition to
a coplanar ground state at some small temperature (that was not reached in the
Monte Carlo simulations), which eventually reduces the specific heat to 15/16
again.

10.5. Phase diagram
Fig. 10.5.17 shows the finite temperature phase diagram in dependence on the
ratio J2/J1. In the following, I discuss how the different phase boundaries and
crossover lines have been determined.
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Figure 10.5.17.: Phase diagram: For J2/J1 ≥ 3/2, there is a unique ground state
which is selected after a second-order transition. For J2/J1 < 3/2, the dashed line
continues the second-order transition but is a crossover line instead (set by the scale
J2
2/J1), separating a standard paramagnet from a 3d classical spin liquid. At low T ,

there is a first-order transition to a nematically ordered phase. The dots emerge from an
analysis of the specific heat, whereas the triangles are determined from the diffusivity
of the replicas, see the main text for more explanations. The nematic phase extends all
the way to J2 = 0 but is not shown due to the logarithmic temperature scale.

The phase boundary that separates the unique ground state from the param-
agnetic phase was obtained from the corresponding peak in the specific heat.
Alternatively, one could have also analyzed the peak in the susceptibility

χ =
〈M2〉 − 〈M〉2

T
, (10.5.45)

of the corresponding order parameter, given by the staggered magnetization at
Q = (4π/3, 0, 0)T , which would have led to the same result.
For J2/J1 < 3/2, the crossover temperature was determined from the hump in
the specific heat down to J2/J1 ≈ 1, where the hump vanishes. For smaller ratios
J2/J1, the point at which the specific heat approaches 1 was used instead.
For very small J2/J1 . 0.3, it was shown in Sec. 10.4 that the specific heat first
rises to a plateau at cV = 3/4, indicating that the individual Kagome layers have
entered their respective ground state manifold. The triangular spins, on the other
hand, remain disordered until a much lower temperature, where the specific heat
finally rises to 1. The intermediate regime with the plateau at cV = 3/4 can
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thus be interpreted as 2d kagome spin-liquid. The corresponding crossover lines
have again been determined from the temperatures at which the specific heat
approaches 3/4 and 1, respectively.
Interestingly, the temperature that separates the paramagnetic regime from the
unique ground state for J2/J1 ≥ 3/2 and the spin liquid regime for J2/J1 < 3/2,
scales proportional to J2

2/J1, which is the effective ferromagnetic coupling be-
tween the triangular spins along c-direction, c. f. Eq. (10.1.1).

The determination of the first-order phase boundary separating the nematic
phase from the spin liquid is not that easy since the corresponding phase transi-
tion could only be equilibrated for J2/J1 ≥ 1.20. Nevertheless, it is possible to
initialize all replicas of the parallel tempering simulation in a coplanar ground
state and to monitor the diffusivity of these replicas through temperature space.
Since the phase transition is according to the discussion in Sec. 2.3 a bottle-
neck for the diffusion of the replicas, one finds that the diffusivity is strongly
suppressed at the transition temperature. Fig. 10.5.18 shows the diffusivity ac-
cording to Eq. (2.3.9) for J2/J1 = 1 at L = 6. At the critical temperature,
the diffusivity drops by about four orders of magnitude, which allows to deter-
mine the transition temperature with sufficient accuracy to continue the phase
separation line in Fig. 10.5.17 for J2/J1 < 1.20. It should again be emphasized
that the corresponding phase transition exists all the way down to J2/J1 → 0,
even though the line is only shown down to T/J1 = 10−4 on the logarithmic
temperature scale in the phase diagram.

166



10.6. Structure factors and correlations

10−10

10−8

10−6

10−4

10−2

100

102

104

10−4 10−3 10−2 10−1 100

di
ffu

si
vi
ty

T/J1

phase
transition

Figure 10.5.18.: The diffusivity according to Eq. (2.3.9) for J2/J1 = 1 at L = 6.
The sharp drop in the diffusivity of about four orders of magnitude at Tc ≈ 3.610−4 J1
indicates a phase transition.

10.6. Structure factors and correlations
As already discussed for the Ising model in Sec. 9.4, correlations are best analyzed
in momentum space. The magnetic structure factor

S(q) =
1

N

∑
ij

〈Si · Sj〉eiq(ri−rj) (10.6.46)

at T/J1 = 0.01 is shown for various ratios J2/J1 in the (qx, qy, qz = 0) and
(qxy, qxy, qz) planes in Fig. 10.6.19 and Fig. 10.6.20, respectively.
For J2/J1 = 0.1, the system is in the 2d spin-liquid phase at T/J1 = 0.01 (c. f.
phase diagram in Fig. 10.5.17), i. e. the triangular spins are not yet ordered along
c-direction, resulting in vanishing correlations along this direction, whereas the
structure factor in the qx−qy plane basically resembles the result for the kagome
lattice, c. f. Fig. 7.4.13. As J2/J1 is increased above ∼ 0.2, the triangular spins
order along c-direction, leading to sharp Bragg spots along qz direction.
According to the discussion in Sec. 10.1, an increase of the out-of-plane inter-
action leads also to stronger correlations in the ab-plane. This is in agreement
with the observation that the Bragg peaks in the qx − qy plane become sharper
as J2/J1 is increased.
For J2/J1 ≥ 3/2, the Bragg peaks are not broadened anymore due to the long-
range ordered unique ground state. Interestingly, it is very difficult to distinguish
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the structure factor for 1 . J2/J1 . 3/2 from J2/J1 ≥ 3/2. Since the correla-
tion length in the first regime is already very large compared to the simulated
linear lattice size of L = 12, the structure factor gives the impression that the
ground state is already long-range ordered, which contradicts the discussion of
the ground state degeneracy in Sec. 10.1. If one could simulate larger lattice
sizes, one would observe a small broadening of the Bragg peaks in this regime as
well.

For the 2d kagome antiferromagnet, it was shown in Sec. 7.4 that one can observe
additional features in the structure factor once coplanar ground states have been
selected. It is an interesting question whether such additional features can also be
observed in the coplanar ordered phases on the swedenborgite lattice. Fig. 10.6.21
shows the structure factor for J2/J1 = 1.3 at T/J1 = 10−2 and T/J1 = 10−4, i. e.
before and after the order-by-disorder transition, c. f. Fig. 10.5.17), on a logarith-
mic intensity scale. One can clearly observe that additional very weak correlations
at the reciprocal wave vectors k1 = 2π(1,−1/

√
3, 0)T , k2 = 2π(0, 2/

√
3, 0)T and

wave vectors related by symmetry occur below the transition temperature. Since
the structure factor is in contrast to the nematic order parameter an experimen-
tally accessible quantity, the presence or absence of these features in neutron
scattering experiments can be used as a guidance to decide whether a coplanar
ground state is realized in a certain compound. Together with the information
about the specific heat, this provides an important assistance for the experimental
verification of an order-by-disorder transition.
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Figure 10.6.19.: The magnetic structure factor in the (qx, qy, qz = 0) plane for various
ratios J2/J1 at T/J1 = 0.01 and L = 12. Note the different scales of the color code in
the different images.
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Figure 10.6.20.: The magnetic structure factor in the (qxy, qxy, qz) plane for various
ratios J2/J1 at T/J1 = 0.01 and L = 12. Note the different scales of the color code in
the different images.
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Figure 10.6.21.: The magnetic structure factor for J2/J1 = 1.3 above (left) and below
(right) the temperature of the order-by-disorder transition in the (qx, qy, qz = 0) plane.
The white circles denote some of the positions of the additional features in the nematic
phase.

10.7. Conclusion and experimental verification

Swedenborgites are very promising candidates for an experimental observation
of the predicted order-by-disorder transition. As it was already mentioned in
Ch. 8, it is possible to synthesize compounds with various magnetic and non-
magnetic ions, which translates to a very desirable tunability of the ratio J2/J1

in the simplified model Eq. (8.1.2). By tuning this ratio to the interval 1.2 to 1.4,
the transition temperature of the order-by-disorder transition can be maximized
to a value of Tc ≈ 5 · 10−3 J1, a value which is well within experimental reach,
considering that the exchange interactions in many compounds are of the order
O(2000K) [111, 114].
An experimental observation also depends on how much the simplified model,
Eq. (8.1.2), which considers only two distinct nearest neighbor interactions, devi-
ates from the true model, which incorporates all interaction effects. Any pertur-
bation to the Hamiltonian usually lifts the ground state degeneracy and leads to
a unique ground state at zero temperature. Such a perturbation is e. g. given by
the Dzyaloshinskii-Moriya interaction, which one can expect to be present here
due to the lack of inversion symmetry in the lattice structure, c. f. Fig. 8.1.2.
Nevertheless, the presence of these interactions does not necessarily exclude the
existence of an order-by-disorder transition at finite temperatures, provided that
the energy scale ∆E set by these interactions is small enough. This is the case
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Figure 10.7.22.: Possible hierarchies of energy scales: a) The additional interactions
are weak enough that the entropic selection of a coplanar ground state can take place
before a unique ground state is eventually selected. b) A unique ground state is se-
lected due to the relatively strong additional interactions before the order-by-disorder
transition to coplanar ground states can place.

if the transition temperature Tc of the order-by-disorder transition is sufficiently
large compared to ∆E, i. e. if the additional interactions are not yet relevant at
the temperature of the order-by-disorder transition. In this scenario, one would
first observe the order-by-disorder transition to coplanar ground states followed
by a second transition to the unique ground state at lower temperatures. On the
other hand, if Tc is smaller or of the same size as ∆E, the unique ground state is
selected before the order-by-disorder transition can take place and consequently,
one will observe only one transition. Both scenarios are shown in Fig. 10.7.22.
Which scenario is eventually realized might differ from compound to compound,
but a realization of the first scenario seems likely in compounds with large ex-
change interactions and a ratio J2/J1 in the range of approximately 1.2 to 1.4.
Further experimental studies might also be performed with compounds which are
synthesized specifically to meet to these demands.
Finally, the presence of a structural phase transition that relieves the geomet-
ric frustration (and is found e. g. in YBaCo4O7 [117]) could also exclude the
observation of an order-by-disorder transition. One should thus concentrate on
compounds that do not show such a transition in the search for suitable com-
pounds for further studies.

Following the discussion of the previous sections, an experiment with the aim
to confirm the predicted order-by-disorder transition could consist of neutron
diffraction and high-temperature susceptibility measurements to find compounds
with a suitable ratio J2/J1 and a large Curie-Weiss temperature (i. e. large
exchange interactions). For these compounds, one could measure the low-tem-
perature specific heat and look for a first-order phase transition at a temperature
that can be estimated from the phase diagram presented in Fig. 10.5.17. If such
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a transition is found, one should further check whether it goes along with the
predicted change of the magnetic structure factor according to Sec. 10.6 to verify
that it corresponds indeed to the selection of a common spin plane.

Due to the unique tunability of energy scales and the large exchange interactions,
one can conclude that it is very likely that an experimental observation of the
order-by-disorder transition is possible and one can expect that the results of this
chapter will stimulate both experimental and theoretical follow up works.
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A. Matrix elements for the
spin-wave calculation

Only the non-vanishing matrix elements Mij with i ≤ j are stated here for
compactness. Matrix elements Mij with i > j follow from the given elements as
Mij = M∗ji.

Matrix elements for J2/J1 ≥ 3/2

Mx
11 =

J1
2
− J2 Mx

45 = J2e
−i(−kx/6−ky/6+kz/4)

Mx
12 = J1

(
e−iky/2 − 1

2
eiky/2

)
Mx

46 = J2e
−i(kx/3−ky/6+kz/4)

Mx
13 = J1

(
ei(kx−ky)/2 − 1

2
e−i(kx−ky)/2

)
Mx

47 = J2e
−i(−kx/6+ky/3+kz/4)

Mx
14 = J2e

−i(−kx/6+ky/3+kz/4) Mx
55 =

J1
2
− J2

Mx
18 = J2e

−i(−kx/6+ky/3−kz/4) Mx
56 = J1

(
e−ikx/2 − 1

2
eikx/2

)
Mx

22 =
J1
2
− J2 Mx

57 = J1

(
e−iky/2 − 1

2
eiky/2

)
Mx

23 = J1

(
eikx/2 − 1

2
e−ikx/2

)
Mx

58 = J2e
−i(kx/6+ky/6+kz/4)

Mx
24 = J2e

−i(−kx/6−ky/6+kz/4) Mx
66 =

J1
2
− J2

Mx
28 = J2e

−i(−kx/6−ky/6−kz/4) Mx
67 = J1

(
ei(kx−ky)/2 − 1

2
e−i(kx−ky)/2

)
Mx

33 =
J1
2
− J2 Mx

68 = J2e
−i(−kx/3+ky/6+kz/4)

Mx
34 = J2e

−i(kx/3−ky/6+kz/4) Mx
77 =

J1
2
− J2

Mx
38 = J2e

−i(kx/3−ky/6−kz/4) Mx
78 = J2e

−i(kx/6−ky/3+kz/4)

Mx
44 = −3J2 Mx

88 = −3J2
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My
11 =

J1
2
− J2 My

45 = J2e
−i(−kx/6−ky/6+kz/4)

My
12 = J1

(
eiky/2 + e−iky/2

)
My

46 = J2e
−i(kx/3−ky/6+kz/4)

My
13 = J1

(
ei(kx−ky)/2 + e−i(kx−ky)/2

)
My

47 = J2e
−i(−kx/6+ky/3+kz/4)

My
14 = J2e

−i(−kx/6+ky/3+kz/4) My
55 =

J1
2
− J2

My
18 = J2e

−i(−kx/6+ky/3−kz/4) My
56 = J1

(
eikx/2 + e−ikx/2

)
My

22 =
J1
2
− J2 My

57 = J1
(
eiky/2 + e−iky/2

)
My

23 = J1
(
eikx/2 + e−ikx/2

)
My

58 = J2e
−i(kx/6+ky/6+kz/4)

My
24 = J2e

−i(−kx/6−ky/6+kz/4) My
66 =

J1
2
− J2

My
28 = J2e

−i(−kx/6−ky/6−kz/4) My
67 = J1

(
ei(kx−ky)/2 + e−i(kx−ky)/2

)
My

33 =
J1
2
− J2 My

68 = J2e
−i(−kx/3+ky/6+kz/4)

My
34 = J2e

−i(kx/3−ky/6+kz/4) My
77 =

J1
2
− J2

My
38 = J2e

−i(kx/3−ky/6−kz/4) My
78 = J2e

−i(kx/6−ky/3+kz/4)

My
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