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Abstract 

The mammalian epidermis is a self-renewing protective epithelial barrier against 

external challenges and dehydration, which is formed during embryogenesis through 

a stratification program. The external signals that initiate and regulate this program 

are presently unknown. Previous findings in the laboratory identified epidermal 

insulin/IGF-1 signaling (IIS) as key regulators of epidermal morphogenesis. Mice with 

an epidermal deletion of either the insulin receptor, the IGF-1 receptor or both 

showed a increasing reduction in the formation of suprabasal layers, impaired 

proliferative potential with a temporary arrest in mitosis. The goal of this thesis was to 

identify how epidermal IIS controls self-renewal and stratification during 

embryogenesis and address the role of the IIS controlled Forkhead box-O (FoxO) 

transcription factors, in these processes. The results show that IIS signaling is 

activated in mitosis and sufficient to drive mitotic progression. Initiation of 

stratification is accompanied by a shift from symmetric (SCD) to asymmetric division 

(ACD). This shift is impaired upon loss of IIS as a result of a biased loss of ACDs.  

We further identified the transcription factor p63 as a downstream signaling target of 

IIS. P63 is a master regulator of epidermal specification, controls the shift towards 

ACDs and promotes proliferative potential. Upon loss of IIS, FoxO transcription 

factors were retained in the nucleus where they bind and inhibited p63-regulated 

transcription, which was independent of direct FoxO DNA binding. Small interfering-

RNA mediated knockdown of FoxOs reversed IIS loss induced alterations in p63 

target gene expression. Accordingly, transgenic expression of a constitutive nuclear 

FoxO variant in mice epidermis abrogates ACD, inhibits p63-regulated transcription 

and stratification, mimicking loss of p63. In summary, this study revealed a critical 

role for IIS-dependent control of p63 activity in coordination of ACD and stratification 

during epithelial morphogenesis. 
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Zusammenfassung 

Die Epidermis von Säugetieren bildet eine sich selbst erneuernde Schutzbarriere 

gegen äußere Einflüsse und Dehydrierung, die während der Embryonalentwicklung 

durch Stratifizierung entsteht. Die äußeren Signale, die dieses Programm initiieren 

und regulieren sind momentan noch nicht bekannt. Vorrangegangene 

Laborergebnisse haben gezeigt dass Insulin/IGF-1 wichtige Regulatoren der 

epidermalen Morphogenese sind. Mäuse denen der Insulinrezeptor (IR), der IGF-1 

Rezeptor (IGF-1R) oder beide Rezeptoren gleichzeitig in der Epidermis fehlten, 

entwickelten weniger suprabasale Schichten und hatten ein verringertes 

proliferatives Potential mit vorrübergehendem Mitosearrest. Ziel dieser Arbeit war es 

nun zu verstehen, wie epidermales IIS Selbsterneuerung und Stratifizierung während 

der Embryogenese kontrolliert und zu fragen welche Rolle Forkhead box-O (FoxO) 

Transkriptionsfaktoren dabei spielen. Unsere Ergebnisse zeigten dass IIS während 

der Mitose aktiv ist und die Mitose fortführen konnte. Während der Initiierung der 

Stratifizierung findet ein Umschalten von symmetrischen (SCD) zu asymmetrischen 

Zellteilungen (ACD) statt. Diese Verschiebung wurde durch den Verlust von IIS 

gestört und resultierte in weniger ACDs. Des weiteren identifizierten wir den 

Transkriptionsfaktor p63 als nachgelagertes Regulationsziel von IIS. P63, der 

Hauptregulierer der epidermalen Spezifizierung, kontrolliert diese Umverteilung zu 

ACDs und das proliferative Potential der Zellen. Durch den Verlust von IIS wird FoxO 

im Nukleus zurückgehalten, bindet und hemmt dort die p63 regulierte Transkription 

unabhängig von einer direkten FoxO-DNA Interaktion. SiRNA vermittelter knockdown 

von FoxO konnte den Verlust von IIS auf die p63 Zielgenexpression umkehren. Wie 

erwartet, führte die transgene Expression einer konstitutiv nukleären FoxO Variante 

in der Mausepidermis zum Verlust von ACDs, inhibierte die p63-regulierte 

Transkription und Stratifizierung, ähnlich dem Verlust von p63. Diese Studie konnte 

eine wichtige Funktion für die IIS-abhängige Kontrolle von p63 bei der Koordination 

von ACDs und Stratifizierung aufzeigen. 
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1. Introduction 

1.1. The mammalian epidermis 

The mammalian skin is composed of two distinct compartments, the dermis and the 

epidermis, which are separated by a basement membrane. The outermost layer, the 

epidermis, is a stratifying epithelium that forms a protective barrier against external 

challenges and dehydration (Fig. 1). This life-long self-renewing tissue is composed 

of the interfollicular epidermis (IFE) and its appendages, the hair follicles, sebaceous 

glands and sweat glands (Chuong et al., 2000; Fuchs et al., 2002; Watt et al., 2013). 

The majority of the cells in the epidermis are keratinocytes but also other cell types, 

e.g. dendritic cells, macrophages or melanocytes, are present. The IFE is organized 

in distinct layers beginning with the basal cell layer (stratum basale), which through 

cell adhesion receptors such as integrins adhere to the underlying basement 

membrane. The keratinocytes in this layer are undifferentiated, have a high 

proliferative potential and are characterized by the expression of the cytoskeletal 

intermediate filaments keratin 14 and keratin 5 (K5 and K14) (Nelson and Sun, 1983; 

Eichner et al., 1986; Koster and Roop, 2007). Due to yet ill-defined stimuli certain 

cells of the basal layer move outwards into the suprabasal spinous layer (stratum 

spinosum) with post-mitotic cells that undergo further differentiation (Smart, 1970). 

This layer is mainly characterized by the stratification markers keratin 1 and keratin 

10 (K1 and K10). These spinous cells undergo terminal differentiation and form the 

granular layer (stratum granulosum) and the subsequent cornified layer (stratum 

corneum). This final process is accompanied by the initiation of the late stratification 

markers loricrine and involucrin and involves the formation of the epidermal barrier 

(Bickenbach et al., 1995). A major component of the granular layer are the 

intercellular tight junctions, which are ion and size selective paracellular diffusion 

barriers that prevent diffusion of solutes through the intercellular space and thereby 
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form the paracellular diffusion barrier (Furuse et al., 2002; Tunggal et al., 2005); 

Morita et al., 2011). The dead cornified layer consists of corneocytes that together 

with extracellular lipids forms the outer most barrier. During the final terminal 

differentiation step cells flatten, degrade their DNA and subsequently assemble the 

cornified envelope underneath the plasma membrane by the incorporation and 

processing of precursor proteins, such as filaggrins and small proline-rich proteins 

(Sprr’s) (Segre, 2003). Finally, the cells become more permeable and the influx of 

calcium activates transglutaminases that crosslink proteins of the cornified envelope, 

which forms a scaffold for the lipids that are produced by the layers underneath 

(Segre, 2003).  

Although essential structural components of the epidermis are identified, the precise 

regulation of the balance between proliferation and differentiation during epidermal 

homeostasis to maintain the barrier needs further investigation. For example, it is 

poorly understood which signals are important for the initiation of this stratified 

epithelium and how these signals are altered during epidermal pathogenesis. 
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Figure 1: Schematic representation of the mammalian interfollicular epidermis. The interfollicular 

epidermis (IFE) is a stratified epithelium with different layers. The basal layer (stratum basale) 

contains proliferating keratinocytes. Cells in this layer can either divide symmetrically expanding the 

basal layer or asymmetrically resulting in one basal and one suprabasal daughter. Upon differentiation 

keratinocytes migrate into the spinous layer (stratum spinosum). In the granular layer (stratum 

granulosum), the cells are more flattened and form the tight junction barrier. The stratum corneum 

forms the most outer layer of the epidermis and fuctions as a the lipid barrier. SCD- symmetric cell 

division, ACD-asymmetric cell division 
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1.2. Epidermal morphogenesis 

The barrier function of the epidermis is established during embryogenesis as a result 

of a precisely coordinated stratification program (Koster and Roop, 2007) (Fig. 2). In 

mice, the execution of this program initiates at around embryonic day 8.5 (E8.5) 

when cells of the ectoderm are committed to an epidermal fate and start to express 

the fibrous structural proteins K5 and K14 (Byrne et al., 1994). This initial step of 

stratification is controlled by p63, a member of the p53 transcription factor family, 

which specifies the epidermal lineage (Green et al., 2003) by blocking neural 

specification in the surface ectoderm (Bakkers et al., 2002). Subsequently, at E9.5 

the first newly formed layer of keratinocytes gives rise to the periderm, a specialized 

simple epithelium that forms a barrier towards placental fluids and is shed off before 

birth, when the functional barrier of the epidermis is formed (M'Boneko and Merker, 

1988). At around embryonic day 12.5 (E12.5) stratification is initiated and the 

epidermis becomes multilayered resulting in the formation of the intermediate 

spinous layer between the basal layer and the periderm (Smart, 1970; Weiss and 

Zelickson, 1975). In this layer the keratinocytes are committed to differentiation, 

which is accompanied by the expression of K1 and K10. How this cell layer is 

initiated and maintained is not completely understood. The prevailing model suggests 

that a change in the plane of cell division in the basal keratinocytes, switching from 

parallel to perpendicular to the basement membrane, is important for this process 

(Smart, 1970; Lechler and Fuchs, 2005). Moreover, this division in the cells of the 

basal layer is associated with the asymmetric distribution of proteins, which have 

been implicated in asymmetric cell divisions (ACD) in lower organisms (Lechler and 

Fuchs, 2005; Poulson and Lechler, 2010) Williams et al., 2011). In lower organisms, 

this asymmetric distribution of cell fate determinants is responsible for the 

development of daughter cells with two distinct cell fates. In the epidermis, this 
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perpendicular or asymmetric division results in one daughter cell that remains in the 

basal layer and contributes to the maintenance of this layer and the other daughter 

cell is committed towards differentiation and thereby contributes to suprabasal layers 

(see also section 1.2.1).  

During the transition from E15.5 to E16.5 the suprabasal layers expand from 2-3 to 4-

6 layers accompanied by the formation of the granular layer and the initiation of 

stratum corneum formation at the dorsal site resulting in local barrier function (Byrne 

et al., 1994). At this step a program for the expression of essential proteins for barrier 

formation and terminal differentiation, such as loricrin and filaggrin, is initiated 

(Bickenbach et al., 1995). This program involves the transcriptional activation of 

specific sets of genes, which are found in the epidermal differentiation complex 

(EDC) of mouse chromosome 3 (Marshall et al., 2001; Martin et al., 2004). The 

coordinated expression of these genes eventually leads to the development of the 

cornified envelope, which forms a scaffold for the barrier lipids. Additionally, the tight 

junction barrier, which has been shown to depend on Claudin 1 and E-cadherin 

function (Furuse et al., 2002; Tunggal et al., 2005), is a crucial part of the granular 

layer. Finally, the epidermal morphogenesis is completed at E18.5 when a fully 

functional epidermal barrier is formed.  

Several signaling pathways have been implicated in the regulation of different steps 

of this morphogenetic stratification program. For example, Notch signaling was 

shown to be essential for the onset of stratification and formation of spinous layers as 

loss of all Notch activity, or its processing enzyme ADAM10 in the epidermis resulted 

in hyperproliferation and inhibited the induction of the differentiation markers K1 and 

involucrin resulting in a reduced number of spinous layers (Rangarajan et al., 2001; 

Blanpain et al., 2006; Weber et al., 2011). Another pathway involves serine/threonine 

protein kinase C (PKC) activity that specifically regulates the transition from spinous 
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to granular layers, which was indicated by the down regulation of K10 and the 

induction of loricrin in vitro in keratinocytes (Dlugosz and Yuspa, 1993).  

However, how all these signaling cascades involved in the different steps during this 

stratification process are orchestrated requires further investigation. To date, only the 

transcription factor p63 has been implicated in most of these processes, the onset of 

epidermal specification, regulation of ACD/SCD, control of proliferative potential, 

differentiation and formation of the barrier (Koster and Roop, 2007). This transcription 

factor is therefore regarded as the “master regulator“ of epidermal morphogenesis.  
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Figure 2: Schematic representation of epidermal morphogenesis. During murine epidermal 

morphogenesis from E8.5 to E18.5, the single layered surface ectoderm initiates a stratification 

program leading to the formation of the different epidermal layers with the different stratification 

markers (left) and eventually the barrier. SCD- symmetric cell division, ACD-asymmetric cell division 
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1.2.1. Asymmetric cell division in the epidermis 

Asymmetric cell division (ACD) is the process by which a cell divides into two 

daughter cells with differential cell fates (Fig. 3). In contrast to ACDs in symmetric cell 

divisions (SCDs) the two daughter cells maintain the same fate. Studies in C. 

elegans and Drosophila melanogaster were instrumental to unravel the conserved 

molecular machinery regulating ACDs (Fig. 3) (Morin and Bellaiche, 2011). In 

Drosophila neuroblasts, polarity signaling coordinates the orientation of the spindle 

with the asymmetric distribution of cell fate determinants. The initial polarity of these 

cells is achieved by apical localization of the partitioning defect (Par)-complex, which 

consists of Par3, Par6 and the atypical protein kinase C (aPKC), resulting in a 

neuroblast cell with an apical-basal axis along which the spindle aligns (Knoblich, 

2008; Poulson and Lechler, 2012). This polarity is transmitted to the spindle by the 

protein Inscutable (Insc), which binds directly to Par3 and forms an apical cortex 

(Schober et al., 1999). This alignment is accompanied by the basal localization of cell 

fate determinants, including Numb (Knoblich, 2010; Poulson and Lechler, 2012). By 

the interactions with further proteins involving LGN and NuMA the proper spindle 

alignment is achieved and the cell is able to divide asymmetrically into two daughter 

cells with different cell fate, one neuroblast and one ganglion mother cell (Poulson 

and Lechler, 2012). 

In mammals, ACD provides a mechanism to generate distinct cell types and thereby 

can generate cellular diversity in a three dimensional tissue (Niessen et al., 2012). 

Already in 1970, divisions perpendicular to the basement membrane were observed 

in esophagus, a stratifying epithelium (Smart, 1970), suggesting that ACD might 

regulate stratification. More direct evidence came from a study by Lechler and Fuchs 

(2005), in which a shift in division orientation was linked to the initiation of 

stratification. Cells in the basal layer of the epidermis can divide in parallel to the 
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basement membrane resulting in two daughter cells, thus contributing to expansion 

of the surface area. In contrast, cells that dividing perpendicular to the basement 

membrane fuel the suprabasal epidermal layers. In these ACDs, one daughter 

remains in the basal layer and one daughter cell is committed towards differentiation 

(Lechler and Fuchs, 2005). At E12.5, when stratification is initiated, a major shift from 

SCDs to ACDs occurs in the basal layer. In these ACDs, the basal daughter 

expresses the basal layer marker K14 and the suprabasal daughter of the ACD 

begins to express K10 (Williams et al., 2011; Poulson and Lechler, 2012). 

Interestingly, this switch towards more asymmetrical divisions was completely lost in 

mice lacking p63 (Lechler and Fuchs, 2005), implicating p63 in the regulation of 

oriented cell divisions in the epidermis. Further studies investigating the role of the 

polarity proteins Insc and NuMA showed that the expression of Insc and the 

recruitment of NuMA to the apical cell cortex are necessary for ACDs and epidermal 

stratification (Poulson and Lechler, 2012). Importantly, p63-/- did not alter the 

expression or localization of both proteins, suggesting a more indirect regulation of 

ACD by p63 (Lechler and Fuchs, 2005). Additionally, knockdown of either LGN or 

NuMA during initiation of stratification resulted in a shift from ACDs to SCDs. This 

switch was accompanied by a reduction in Notch signaling, which is important for 

suprabasal cell differentiation (Williams et al., 2011). Interestingly, this depletion did 

not affect the Par-complex localization, suggesting that aPKC and Par3 are upstream 

of NuMA and LGN in the regulation of ACD (Williams et al., 2011). In line with this, 

the epidermal inactivation of the aPKCλ isoform produced more ACDs in the 

developing IFE and in different hair follicle compartments, accompanied by an altered 

cellular fate (Niessen et al., 2013). 

These results indicate that division orientation is crucial for epidermal morphogenesis. 

However, whether signals from the niche control SCDs and ACDs during epidermal 
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morphogenesis and how p63 regulates these processes are still not known and will 

be important subjects for future investigations. 

 

 

Figure 3: Asymmetric cell division in Drosophila and mammalian epidermis. In drosophila 

neuroblast (right panel) and SCD/ACD in the mammalian epidermis (left panel) (Niessen et al., 2012) 

aPKC- atypic protein kinase C, Baz- drosophila Par3, Par6- patitioning defect 6, Par3 patitioning 

defect 3, Insc- inscutible, NuMA- nuclear mitotic apparatus protein. Figure was adapted from Niessen 

et al. (2012). 

 

1.2.2. The transcription factor p63: structure, expression and function 

P63 is a member of the p53 family of transcription factors, which consists of p53, p63 

and p73. All three genes share a significant sequence homology and contain a N-

terminal transactivation domain, a DNA-binding domain (DBD) and an 

oligomerization domain (Yang et al., 2002). In addition, they all can bind DNA at a 

canonical p53-binding site and thereby regulate the expression of a subset of similar 

target genes (Yang et al., 2002; Yang et al., 2006).  

P63 is a tetrameric transcription factor that is expressed from two different promoters, 

thereby generating at least six different isoforms with identical DBD, but different 

transactivation capabilities (Yang et al., 1998). Three of these isoforms contain a N-

terminal transactivation domain (TA) similar to p53 whereas three Δ N isoforms 
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contain a shorter alternative TA domain (Yang et al., 1998) (Fig. 4). Furthermore, the 

p63α isoforms contain a C-terminal sterile alpha motif (SAM), thus suggesting the 

interaction with other co-regulating proteins (Yang et al., 1998; Thanos and Bowie, 

1999; Cicero et al., 2006). Initially, it was thought that the ΔN isoforms were unable to 

induce target gene expression due to the presence of the alternative TA domain and 

therefore would function as dominant negative transcriptional repressors. However, 

later it was shown that ectopic ΔNp63 isoform expression could transactivate p53 

reporter and induce expression of endogenous p53 targets (Dohn et al., 2001; Ghioni 

et al., 2002; King et al., 2003). 

At present, contradictory opinions about the expression of the different p63 isoforms 

during surface ectoderm initiation and epidermal morphogenesis exist. One model 

suggests that TAp63α functions as a molecular switch to initiate epithelial 

stratification as it is expressed as one of the first genes in the surface ectoderm prior 

to the expression of K5/K14 at E7.5 (Koster et al., 2004; Romano et al., 2009). 

Indeed, induced ectopic expression of TAp63 in simple epithelia induced a 

stratification program (Koster et al., 2004). ΔNp63α, the major isoform responsible for 

epidermal development and homeostasis, suppresses TAp63α and is expressed 

later at E8.5 (Koster et al., 2004; Laurikkala et al., 2006). During ectodermal 

specification Bmp signaling is essential for the initiation of p63 expression, which 

blocks neural development and promotes epidermal commitment (Bakkers et al., 

2002; Aberdam et al., 2007).  
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Figure 4: Schematic representation of p63 isoforms. Exon/intron organization of the human p63 

gene and the alternative promoter and splicing site that give rise to the six different p63 isoforms 

(Vanbokhoven et al., 2011). DBD- DNA-binding domain, aa- amino acids, OD- oligomerization domain, 

SAM- sterile alpha motif, TA- transactivation domain, TI- transactivation inhibitory domain. (adapted 

from Vanbokhoven et al. 2011) 

 

The importance of p63 for stratifying epithelia became first obvious when mice 

lacking p63 were investigated. These mice die from dehydration shortly after birth 

and display cleft palate, limb truncation and fail to develop all stratified epithelia, 

including the epidermis (Mills et al., 1999; Yang et al., 1999). This severe epidermal 

phenotype indicated a non-redundant role for p63 in this tissue and was associated 

with the loss of proliferative potential in progenitor cells (Yang et al., 1999; Senoo et 

al., 2007), impaired epidermal stratification and alterations in the differentiation of 

keratinocytes (Mills et al., 1999; Koster et al., 2004).  

This key role for p63 as regulator of ectodermal development is in line with 

observations in human syndromes that have been linked to mutations in p63 

resulting in altered p63 function. These ectodermal dysplasia (ED) syndromes are 

characterized by split hand/foot malformations and orofacial clefting. It was shown 

that dominant mutations in the p63 gene can cause at least five different syndromes: 

ectrodactyly, ectodermal dysplasia and cleft lip/palate syndrome (EEC), 
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ankyloblepharon-ectodermal defects-cleft lip/palate syndrome (AEC), limb-mammary 

syndrome (LMS), acro-dermato-ungual-lacrimal-tooth syndrome (ADULT) and Rapp-

Hodgkin syndrome (RHS). One of the main characteristics of these syndromes is ED. 

In this condition skin, hair, teeth, nails and several glands are usually abnormally 

developed. In extreme cases large areas of the skin can be eroded. The 

genotype/phenotype correlations of these patients can provide information about the 

function of the different p63 domains in the different ectodermal compartments 

(Rinne et al., 2007). 

For example, EEC syndrome is associated with mutations in the DBD of the p63 

gene and thereby impairs the binding of p63 to the DNA (Rinne et al., 2007). One 

potential target that is miss-regulated by altered DNA-binding of p63 is the interferon-

regulated factor 6 (IRF6) as mutations in the gene encoding this protein display 

similar phenotypic outcome as p63 mutations (Thomason et al., 2010; Moretti et al., 

2010). These patients suffer mainly from cleft lip/palate (40% of the patients), which 

demonstrates the importance of this domain for craniofacial development (Rinne et 

al., 2007). AEC and RHS syndrome patients in contrast, mainly harbor mutations in 

the SAM domain of p63 (Rinne et al., 2007). The SAM domain is known to be 

involved in protein-protein interactions and mutations in this domain are thus most 

likely hampering the binding to interacting proteins (Rinne et al., 2007). The main 

features of AEC/RHS patients are nail and teeth defect (80% of patients), hair 

defects e.g. alopecia (94% of patients) and severe skin erosions (80% of patients), 

indicating the crucial role for p63-protein interactions in the regulation of specific 

target gene (Rinne et al., 2007). 

In the epidermis p63 is predominantly expressed in the basal and the spinous layer 

and is downregulated upon initiation of differentiation in the suprabasal layers (Yang 

et al., 1999; Westfall et al., 2003; Koster et al., 2004; Koster and Roop, 2007). In the 
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basal layer p63 was shown to maintain keratinocyte proliferative potential and 

regulates cell adhesion (Yang et al., 1999; Truong et al., 2006; Carroll et al., 2006). It 

was proposed that p63 regulates proliferation by preventing senescence, as shown 

by the loss of the senescence markers p16 and promyelocytic leukemia (PML) 

protein in p63 deficient cells (Keyes et al., 2005). In addition, p63 promotes cell cycle 

progression by transcriptional regulation of genes, such as p21, p57Kip2 and Skp2 

(Westfall et al., 2003; Beretta et al., 2005; McDade et al.). However, the cell cycle 

defect that was observed in p63-depleted keratinocytes could be rescued by the 

down-regulation of p53, indicating that p63 effects on proliferation are at least in part 

dependent on p53 (Truong et al., 2006). As p63 is able to regulate p53 genes (King 

et al., 2003; Westfall et al., 2003), it is possible that p53 and p63 compete for the 

same p53 consensus sequences and thereby regulate a similar set of target genes in 

the opposing manner (Westfall et al., 2003). Moreover, p63 knockdown in 

keratinocytes resulted in the down-regulation of adhesion genes, such as integrin α3 

and integrin β4, and in cell detachment, suggesting a role for p63 in the regulation of 

cell adhesion (Carroll et al., 2006). 

In addition to proliferation and adhesion, ΔNp63α regulates keratinocyte 

differentiation and epidermal stratification. This becomes evident by the investigation 

of its transcriptional targets. Thus, p63 inhibits a range of proteins that are implicated 

in cell cycle arrest and differentiation. For example, 14-3-3σ is suppressed by p63 in 

the basal layer. Suprabasal commitment of keratinocytes was accompanied by the 

loss of p63 repression on 14-3-3σ allowing 14-3-3σ to induce, most likely, a G2/M 

arrest (Hermeking et al., 1997) resulting in the cell cycle exit of these differentiating 

keratinocytes (Pellegrini et al., 2001). In agreement mice that overexpressed 14-3-3σ 

in the basal epidermal layer display a hypoplastic phenotype and fail to develop a 

stratified epidermis (Cianfarani et al., 2011). Another example of a p63 target gene 
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implicated in epidermal differentiation is Zfp750. This transcription factor promotes 

terminal differentiation by transactivation of another transcription factor, the Krüppel-

like factor 4 (Klf4) (Sen et al., 2012), which is required for the establishment of the 

epidermal barrier function (Segre et al., 1999). Moreover, p63 regulates several 

genes of the EDC indirectly by epigenetic modulation. In mice the special AT-rich 

sequence-binding protein 1 (Satb1), another direct p63 target, functions as chromatin 

remodeler regulating the EDC locus opening during terminal differentiation of 

keratinocytes and thereby allows the expression of these genes, such as late 

cornified envelope 3c (Lce3c) and Involucrin (Fessing et al., 2011). Thus, p63 has 

been implicated in both early and late steps of the epidermal stratification program. 

Understanding how p63 orchestrates proliferation, differentiation and stratification will 

be essential to understand how mutations in p63 can result in such a wide spectrum 

of patient phenotypes and will thus require further investigation. In addition, the 

identification of upstream signals that regulate the different functions of p63 during 

morphogenesis and homeostasis is another important research area for the future. 

 

1.3. Insulin/IGF-1 signaling 

Insulin and insulin-like growth factor 1 (IGF-1) are endocrine hormones with high 

structural similarity. Insulin is produced by the β-cells in the pancreas and is central 

for the regulation of carbohydrate metabolism. IGF-1 is primarily produced by the 

liver, but can also be secreted by other tissues, including stromal fibroblasts. Both 

ligands control energy metabolism and tissue growth through binding to their 

receptors. The insulin-like growth factor 1 receptor (IGF-1R) and the insulin receptor 

(IR) are related tyrosine kinase transmembrane proteins, which are ubiquitously 

expressed. Thus, IGF-1 binds the IGF-1R with high and the IR with low affinity the IR 

and vice versa insulin binds to the IR with high and to the IGF-1R with low affinity. 
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Furthermore, both receptors can form heterodimers and thereby fine-tune the 

response to ligand binding. In addition, the insulin-like growth factor 2 (IGF-2) ligand 

is also able to bind, with reduced affinity, to both receptors. In contrast to the IR and 

IGF-1R, the insulin-like growth factor 2 receptor (IGF-2R) has no reported tyrosine 

kinase activity (Baserga et al., 1997; Pollak et al., 2004). 

The IR and the IGF-1R share approximately 70% amino acid identity and both are 

synthesized as single chain pre-proreceptors. The processed proreceptors are 

further glycosylated, proteolytic cleaved and finally cross-linked by cysteine bonds to 

form a αβ transmembrane protein. Whereas the putative ligand-binding site is found 

in the extracellular α subunit, the tyrosine kinase domain is located in the intracellular 

β subunit. Ligand binding to IR or IGF-1R results in kinase activation and 

autophosphorylation on three conserved tyrosines in the kinase domain, which 

further leads to phosphorylation at carboxy-terminal and juxta-membrane tyrosines. 

This results in the recruitment and subsequent phosphorylation of specific binding 

proteins, such as insulin receptor substrate 1 (IRS1) (Pollak et al., 2004). These 

molecules can activate different signaling cascades. For example, upon activation 

IRS1 can recruit and activate the phosphoinositide-3 kinase (PI3K). This interaction 

results in the accumulation of phosphatidylinositol-3,4,5-trisphosphate (PIP3), which 

in turn activates the phosphoinositide dependent kinase 1 (PDK1) resulting finally in 

the activation of protein kinase B (PKB also known as Akt). Akt itself can regulate a 

plethora of downstream signaling targets, such as Forkhead box O transcription 

factors (Fig. 5) (Ogg et al., 1997). Additional downstream effectors of IR/IGF-1R (IIS) 

include the mammalian target of rapamycin complex (mTORC), extracellular signal-

regulated kinases (ERK) and c-jun N-terminal kinases (JNK) (Pollak et al., 2004). 

Although structurally very similar, the function of IR and IGF-1R can be quite distinct 

in different tissues. Thus, the IR was suggested to be more important for energy 
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metabolism, as demonstrated by IR-/- mice, which are born largely normal, but have 

an early onset of diabetes and die due to ketoacidosis (Accili et al., 1996; Pollak et al., 

2004). IGF-1R-/- mice, in contrast, are much smaller then control mice at birth (±45% 

of normal size) and die due to severe organ hypoplasia, thus indicating the 

importance of IGF-1 for tissue growth (Liu et al., 1993). Nevertheless, IR/IGF-1R 

double knockout studies indicate an additional growth related role of the IR during 

embryogenesis (Kitamura et al., 2003). Single mutations ablating IR function result in 

embryos that are 90% of normal size, whereas single IGF-1R mutations result in 

small embryos (±45% of normal size). Combined ablation of IR and IGF-1R, however, 

resulted in even smaller embryos that are 30% of normal size, demonstrating a 

growth-promoting role during embryogenesis not only for the IGF-1R but also for IR 

(Kitamura et al., 2003). 
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Figure 5: Schematic representation of the IR/IGF-1R signaling pathway. The insulin/IGF-1 binding 

dependent signaling cascade with conserved downstream regulators. IRS- insulin receptor substrate, 

PI3K- phosphoinositide-3 kinase, PIP3- phosphatidylinositol 3,4,5-trisphosphate, PDK- 

phosphoinositide dependent kinase, PTEN- phosphatase and tensin homolog, Akt- protein kinase B, 

FoxO- forkhead box O factor, mTORC- mammalian target of rapamycin complex, MAPK- mitogen 

activated protein kinase 
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1.3.1. FoxO transcription factors 

Forkhead box O transcription factors (FoxOs) belong to the family of FOX 

transcription factors. The defining feature of this family is a 80-100 amino acid motif 

that binds DNA. This motif is a highly conserved “winged-helix” DBD and was first 

described in Drosophila melanogaster (Lam et al., 2013). The sub-family of FoxO 

proteins mainly acts as transcriptional activators by binding to a conserved 

TTGTTTAC consensus core recognition motif in diverse target genes (Furuyama et 

al., 2000) thereby controlling various cellular processes including cell cycle, cell 

survival and metabolism by regulating the expression of diverse target genes (Calnan 

and Brunet, 2008). FoxOs are highly conserved and in mammals consists of four 

members, FoxO1, FoxO3, FoxO4 and FoxO6. They are controlled by a wide range of 

stimuli, such as growth factors, nutrients, cytokines and oxidative stress stimuli (Fig. 

6) (Calnan and Brunet, 2008; Eijkelenboom and Burgering, 2013). For example, 

insulin/IGF-1, act through PI3K to activate PDK1 and subsequently Akt. Active Akt 

then translocates to the nucleus and phosphorylates FoxO at three conserved 

phosphorylation sites leading to nuclear export and cytoplasmic retention of FoxO 

(Fig. 7) (Calnan and Brunet, 2008; Eijkelenboom and Burgering, 2013). FoxO6 in 

contrast lacks the third phosphorylation site and is not regulated by nucleo-

cytoplasmic shuttling (Jacobs et al., 2003). In addition, stress signaling (mainly high 

levels of reactive oxygen species) activates FoxO in the opposite way and induces 

translocation to the nucleus. This was initially shown to involve JNK-mediated 

phosphorylation of FoxO (Eijkelenboom and Burgering, 2013).  
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Figure 6: Schematic representation of human FoxO isoforms. The structure and the 

phosphorylation sites of the different mammalian FoxO isoforms are shown. FKH- forkhead domain, 

NLS- nuclear localization signal, NES- nuclear export sequence, TA- transactivation domain. (adapted 

from van der Horst et al. 2007) 

 

The FoxO homologue Daf-16 in C. elegans extends longevity (Lin et al., 1997; Ogg 

et al., 1997; van der Horst and Burgering, 2007). The effects of loss of the C. elegans 

homologue Daf-2 resulting in longevity, were bypassed by the loss of Daf-16, 

indicating that Daf-2 antagonizes Daf-16 function. In C. elegans, loss of Daf-2 leads 

to a developmentally arrested dauer stage, but animals bearing weak Daf-2 mutants 

could develop reproductively, but showed increased energy storage and longevity 

(Lin et al., 1997; Ogg et al., 1997). These findings suggested a potential role for the 

insulin/IGF-1/FoxO axis in longevity and ageing of higher organisms. In agreement, 

deregulation of FoxO activity was identified in several age-related diseases, such as 

cancer and diabetes (van der Horst and Burgering, 2007; Eijkelenboom and 

Burgering, 2013). 

 

 

 



Introduction 

21 

 

Figure 7: Simplifies Scheme of insulin/IGF-1 mediated regulation of FoxOs. Insulin/IGF-1 

regulate FoxO cytoplasmic retention by Akt dependent phosphorylation. Upon ligand binding IR/IGF-

1R phosphorylate Akt via IRS and PI3K. Akt translocates to the nucleus and phosphorylates FoxOs. 

Phosphorylated FoxOs are actively exported from the nucleus. IRS- insulin receptor substrate, PI3K- 

phosphoinositide-3 kinase, Akt- protein kinase B, FoxO- forkhead box O factor 

 

1.3.2. Regulation of FoxO transcriptional activity 

As shown by the IIS/PI3K/Akt mediated cytoplasmic retention, FoxO regulation is 

achieved mainly by post-translational modification (PTM). Phosphorylation of FoxO at 

the first and the second phosphorylation site that regulate nuclear export creates 

binding sites for the chaperone protein 14-3-3 (Brunet et al., 1999; Obsilova et al., 

2005). This binding allows the active export of FoxOs by exposing the nuclear export 

sequence (Brunet et al., 2002). Additionally, the second phosphorylation site 

prevents re-entry to the nucleus by the introduction of a positive charge in the nuclear 

localization signal (Rena et al., 2001). Multiple other kinases can also regulate FoxO 
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activity at other sites than those targeted by Akt and regulate FoxO cytoplasmic 

sequestration (Rena et al., 2001). E.g. cyclin dependent kinase 1 and 2 are able to 

phosphorylate FoxO1 at serine 249 and also induce sequestration in the cytoplasm 

(Huang et al., 2006; Yuan et al., 2008). Although this is connected to DNA-damage 

responses the functional consequence of this is unclear. 

Vice versa stress stimuli promote nuclear translocation of FoxOs, even in the 

presence of growth factors. In response to oxidative stress, the kinase MST1 

phosphorylates FoxO3 at Ser207 (human) in the DNA-binding domain and disrupts 

14-3-3 binding. This enables FoxO3 re-localization from the cytoplasm to the nucleus 

(Lehtinen et al., 2006; Calnan and Brunet, 2008). Similarly, the stress activated 

protein kinase JNK phosphorylates FoxO4 at two phosphorylation sites (Thr447 and 

Thr 451), which also results in FoxO nuclear localization (Essers et al., 2004). 

The AMP-activated protein kinase (AMPK), which has a central role in cellular energy 

homeostasis controls cell growth and energy expenditure by among others 

phosphorylating FoxO3 at three conserved serine residues (Ser413, Ser588 and 

Ser626) (Hardie et al., 2012). This leads to FoxO transcriptional activity in response 

to low energy levels and contributes to stress resistance, by the up-regulation of the 

superoxide dismutase Sod3 (Greer et al., 2007). This activation of FoxO is 

independent of the regulation of its subcellular localization and also independent of 

additional growth factor stimulation. 

Acetylation is another PTM that can regulate FoxO nuclear activity. For example, 

Histone deacytelases, including sirtuins (Sirt), regulate FoxO acetylation leading to 

changes in FoxO DNA-binding capacities in response to stress signaling (Brunet et 

al., 2004; van der Horst et al., 2004). Thus, the de-acetylation of FoxO by Sirt1 has 

been proposed to induce a switch in gene expression from apoptosis to stress 

resistance and cell cycle arrest. This was shown by the deletion of Sirt in mouse 
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embryonic fibroblasts (MEFs), which reduced FoxO-dependent CDKN1B and 

GADD45 expression but not the pro apoptotic gene BCL2 (Brunet et al., 2004). 

In response to insulin and growth factor signaling through the PI3K-Akt pathway, 

FoxOs are not only sequestered in the cytoplasm but also can be targeted for 

degradation. This degradation is also induced by Akt phosphorylation resulting in 

poly-ubiquitinylation of FoxO by the E3 ligase SCFskp2 complex (Huang et al., 2005).  

Moreover, the interaction of FoxOs with other transcription factors creates further 

variation in the transcriptional output in different cell types. Through these 

interactions FoxOs are able to mediate crosstalk with other signaling pathways and 

integrate their upstream information into target gene regulation. Several 

transcriptional interaction partners have been described. FoxOs can bind nuclear 

receptors (e.g. oestrogen receptor, retinoic acid receptors), metabolic regulators 

(PPARγ) and transcription factors (e.g. SMAD proteins) (Eijkelenboom and Burgering, 

2013).  

Interestingly, FoxO and p53 are both involved in regulation of cell cycle progression 

and cellular survival. They also both can control expression of enzymes such as Sirt1 

and MDM2. Moreover, it was shown that in response to nutrient deprivation FoxO 

releases p53 mediated Sirt1 repression and thereby leads to Sirt1 up regulation. This 

repression appeared to be independent of the presence of a FoxO-binding site in the 

Sirt1 promoter (Nemoto et al., 2004). This binding is mediated by two conserved 

regions in the FH domain and the C-terminal transactivation domain of FoxO, which 

interact with the DNA-binding domain of p53 (Wang et al., 2008). Thus, FoxO may 

also regulate gene expression independent of FoxO binding to DNA. 

Further, it was proposed that FoxO and the myelocytomatosis viral oncogene (MYC) 

act as antagonists during the regulation of mitochondrial homeostasis. Hypoxia 

induced binding of FoxO3 to the promoter of mitochondrial genes is inversely 
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correlated with MYC promoter binding. Thus, siRNA knockdown of FoxO3 increased 

the binding of MYC to these promoters suggesting that FoxO3 directly inhibits MYC 

DNA interactions. Generally, FoxO and MYC directly and indirectly inhibit each other 

and have opposing effects on proliferation and energy consumption independent of 

FoxO-DNA binding (Jensen et al., 2011). 

It was also demonstrated that upon increased oxidative stress FoxO and β-catenin 

can interact and regulate FoxO transcriptional activity. β-catenin is a transcriptional 

co-activator downstream of Wnt signaling that binds to and activates TCF (T cell 

factor) transcription factors. Interestingly, in osteoblasts oxidative stress causes a 

switch from TCF dependent transcription to FoxO-dependent target expression. This 

is most likely due to FoxO-sequestration of β-catenin away from TCF (Essers et al., 

2005; Hoogeboom et al., 2008). Overall, FoxO transcription factors function at the 

intersection of numerous signaling pathways and transmit external stimuli into 

transcriptional regulation of the appropriate target genes. Therefore, FoxO function 

has to be fine-tuned at various levels to induce the proper cellular responses. 

 

1.3.3. FoxO function in stem cells 

FoxO transcription factors mainly function to regulate cellular and organismal 

homeostasis. In addition to their roles in differentiated cells they also are critical to 

limit the expansion of stem and progenitor cells of tissues.  

In the hematopoietic system FoxOs normally limit the expansion of myeloid and 

lymphoid cell lineages by inhibiting stem cell proliferation and maintaining quiescence 

(Eijkelenboom and Burgering, 2013). Conditional ablation of FoxO1, -3 and -4 in 

hematopoietic system resulted in hematopoietic stem cell (HSC) pool exhaustion and 

increased reactive oxygen species (ROS) and apoptosis. HSCs are considered to be 

quiescent stem cells and FoxOs control the G0 to G1 and G1 to S phase progression 
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during cell cycle through the regulation of transcriptional targets including CCNG2, 

CDKN1A, CDKN1B and CCND2. In addition, they protect HSCs from cell death and 

maintain their self-renewal capacity, which is mediated by the resistance to oxidative 

stress through upregulation of Sod2, Catalase, ATM and CDKN2A (p16) (Tothova et 

al., 2007; Miyamoto et al., 2007). 

In neural stem cells (NSC), FoxO family members play a prominent role in 

proliferation and stem cell renewal (Eijkelenboom and Burgering, 2013). Combined 

knockout of FoxO1, 3 and 4 in the brain of mice resulted in increased brain size and 

proliferation of neural progenitor cells during early postnatal life. In adults, the effect 

was reversed and resulted in a decline of NSC pool. Similar to HSCs, FoxOs 

regulates genes and pathways that control cellular proliferation, differentiation and 

oxidative defense by the up-regulation of several cyclins and cyclin dependent 

kinases (CDKs) and the suppression of p57/KIP2 (Paik et al., 2009). 

Together, the data on FoxO function in HSCs and NSCs suggest a general 

mechanism by which FoxOs mediate self-renewal and stem cell maintenance of adult 

stem cells through transcriptional regulation of cell cycle arrest and oxidative stress 

resistance. 

 

1.3.4. FoxO function in the epidermis 

The role of FoxOs in epidermal keratinocyte homeostasis is largely unknown. 

However, signals crucial for epidermal morphogenesis, such as tumor necrosis factor 

α (TNFα) or Notch can regulate FoxO activity in other tissues (Hu et al., 2004; Hu 

and Hung, 2005; Kitamura et al., 2007). In human keratinocytes FoxOs were 

implicated in regulating immediate gene activation responses to tumor growth factor-

β1 (TGF-β1) treatment (Gomis et al., 2006). Interestingly, activation of these target 

genes required Smad4 as a co-regulator of FoxOs. Among the FoxO-Smad regulated 
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genes were stress response genes, including GADD45A and GADD45B, and 

adaptive cell signaling response genes, such as JAG1, OVOL1 and CTGF (Gomis et 

al., 2006). Furthermore, in murine wound healing experiments FoxO1 promoted 

keratinocyte migration and blocked apoptosis, which is in contrast to other cell types 

where it inhibits proliferation and induced apoptosis (Eijkelenboom and Burgering, 

2013; Ponugoti et al., 2013).  

These data thus indicate that FoxOs may integrate multiple upstream signals to 

differentially regulate proliferation and oxidative stress responses also during 

epidermal development and homeostasis. 

 

1.3.5. IIS/FoxO in skin pathogenesis 

Several insulin/IGF-1 related skin conditions have been described, such as impaired 

wound healing in type 2 diabetes mellitus, psoriasis and skin cancer, that correlate 

with and might be due to an altered insulin/IGF-1 function. 

Diabetes affects 8.3% (2013) of the population worldwide and more then 80% of that 

account for type 2 diabetes mellitus (Tamayo et al., 2013). Type 2 diabetes is a result 

of impaired insulin action and inadequate insulin secretion from the β-cells of the 

pancreas. Dermatologic problems are common in type 2 diabetes patients and often 

involve bacterial skin infections and skin barrier breakdown. These conditions appear 

to be secondary to multiple factors, including poor microvasculature, peripheral 

neuropathy and the decreased immune response (Ahmed and Goldstein, 2006). 

Some of these factors may also contribute to impaired wound healing, which is the 

major characteristic of diabetic skin complications with an incidence of about 15% of 

all diabetic patients (Faglia et al., 2001). These wound closure problems can lead to 

severe ulcerations, diabetic foot and ultimately to amputations. However, the role of 

IR/IGF-1R signaling in diabetes-associated wound healing problems in the skin is not 
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clear. In a well-characterized mouse model of obese mice (Ob/Ob mice) that 

ultimately develop diabetes severe impairment of insulin signaling in the skin was 

observed in wound healing experiments (Goren et al., 2006). Accordingly, conditional 

overexpression of the insulin relative IGF-1 in murine keratinocytes accelerated 

wound closure (Semenova et al., 2008), suggesting the involvement of skin IIS in 

these processes. 

Insulin resistance in diabetes can compromise negative regulation of FoxOs. This 

has been observed in various tissues and cell types in connection with diabetes, 

such as liver, pancreas and adipose tissue (Nakae et al., 2008). However, the role of 

FoxOs in diabetic skin complications is unknown. Interestingly, conditional 

inactivation of FoxO1 in murine epidermis altered wound closure, suggesting a 

promoting role for FoxO in tissue regeneration. Surprisingly, FoxO regulated 

keratinocyte migration by up-regulation of TGF-β1 signaling (Ponugoti et al., 2013). 

Psoriasis, a common, chronic skin disease that affects approximately 2% of the 

population is another skin disease associated with impaired insulin function 

(Christophers, 2001). Around 85-90% of these patients suffer from the most common 

variant psoriasis vulgaris (Griffiths and Barker, 2007). One main feature of this 

disease are scales, which are the result of a hyper-proliferative epidermis with 

premature keratinocytes and incomplete cornification with retention of nuclei in the 

stratum corneum (Nestle et al., 2009) resulting in skin barrier impairment. This in 

combination with dermal inflammatory infiltrate, which consists mainly of dendritic 

cells, macrophages and neutrophils, contributes to the overall thickness of psoriatic 

lesions (Nestle et al., 2009). Population based studies have shown that psoriasis is 

linked to diabetes mellitus and insulin resistance (Takahashi and Iizuka, 2012). How 

both conditions are linked is still not completely understood. One recent study 

suggested the involvement of inflammatory cytokine interleukin 1β (IL-1β). IL-1β is 
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present in high quantities in psoriatic lesions and was suggested to induce insulin 

resistance through p38MAPK (mitogen-activated protein kinase) signaling resulting in 

a block of insulin-dependent differentiation of keratinocytes (Buerger et al., 2012). In 

addition, IGF-1, secreted by dermal fibroblasts, may contribute to the epidermal 

hyperplasia of psoriasis by promoting keratinocyte proliferation (Krane et al., 1992; 

Miura et al., 2000). In line with this, targeting the IGF-1R by oligonucleotide 

interference reduced epidermal hyperproliferation in psoriasis (Wraight et al., 2000).  

Additionally, several downstream signaling targets of insulin/IGF-1 have been studied 

in the context of psoriasis. The PI3K/Akt axis e.g. was proposed to activate the anti-

apoptotic nuclear factor-κ B signaling cascade and inhibits pro-apoptotic Bcl2-

associated death promoter (BAD) signaling in keratinocytes, which contributes to the 

thickening of psoriatic skin (Madonna et al., 2012). Although the functional role for 

FoxOs in psoriasis is not known, pathways that have been demonstrated to regulate 

FoxO activity are essential for psoriasis pathogenesis, such as TNF receptor 

signaling, suggesting potential involvement of FoxOs (Hu and Hung, 2005; Hu et al., 

2004; Kitamura et al., 2007; Kumari et al., 2013). 

Moreover, insulin/IGF-1 and FoxO have been shown to be crucial regulators of 

carcinogenesis and tumor growth (Pollak, 2008; Kloet and Burgering, 2011), which 

indicate also a role in epidermal cancers, such as basal cell carcinoma and 

squamous cell carcinoma. Overall this pathway might thus be a promising candidate 

for potential therapies of skin diseases, such as diabetic wound problems, psoriasis 

and skin cancer, even though the precise role of IIS regulated FoxOs in these 

conditions is not fully understood. 
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1.3.6. IIS regulates epidermal thickness and proliferative potential 

In addition to circulating insulin and IGF-1, dermal fibroblasts are the major source of 

IGF-1 in the skin. Epidermal keratinocytes express both receptors, the IR and the 

IGF-1R, but they do not produce insulin or IGF-1 ligands (Misra et al., 1986; 

Verrando and Ortonne, 1984; Wertheimer et al., 2000). In the skin, dermal fibroblasts 

secret IGF-1 and insulin and thereby could support keratinocyte proliferation. 

Interestingly, IGF-1R-/- mice had an abnormal thin skin with translucent epidermis, 

indicating a role for IGF-1 signaling in epidermal development (Liu et al., 1993). 

Consistently, the combined deletion of Akt1 and Akt2, the main downstream targets 

of the IIS pathway, also resulted in a hypoplastic skin phenotype (Peng et al., 2003). 

In contrast, IR-/- mice showed no obvious skin phenotype, suggesting that IR 

signaling does not directly contribute to epidermal morphogenesis and homeostasis. 

In summary, these data suggested a putative role for IIS in skin development 

primarily through IGF-1R action.  

To test whether cell autonomous IIS regulates epidermal morphogenesis, conditional 

epidermal IRepi-/- and IGF-1Repi-/- mice were generated by K14-Cre driven inactivation 

(Stachelscheid et al., 2008). Investigation of these mice revealed that IRepi-/- mice 

were viable, showed no obvious macroscopic phenotype and developed normally to 

adulthood. In contrast, the loss of IGF-1R resulted in newborn mice with thin 

translucent skin and reduced survival rate (60% viable). In addition, the surviving 

IGF-1Repi-/- mice maintained a thinner epidermis throughout lifetime and showed 

occasional hair loss. Most interestingly, the simultaneous deletion of IR and IGF-1R 

(dkoepi) resulted in an even more severe phenotype and perinatal lethality due to a 

major barrier defect resulting in dehydration (Stachelscheid et al., 2008). 

Histological investigation of these three different knockout mice revealed that 

although they have a normal macroscopic appearance, there was a slightly 
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decreased epidermal thickness in the IRepi-/- mice compared to control. This reduction 

in suprabasal layers was much more severe in the IGF-1Repi-/- mice and most severe 

in the dkoepi mice (Fig. 8A) (Stachelscheid et al., 2008). These results indicate an 

essential, non-redundant role for IIS during epidermal morphogenesis and 

furthermore show that IGF-1R is the major regulator of this signaling pathway in the 

epidermis. 

 

 

Figure 8: IIS regulates epidermal thickness and proliferative potential. (A) H&E staining of ctr, 

IRepi-/-, IGF-1Repi-/- and dkoepi newborn mice show decreased epidermal thickness. (B) CFA with 

primary murine IRepi-/- and IGF-1Repi-/- keratinocytes indicate loss of proliferative potential in upon loss 

of IIS (adapted from Stachelscheid et al., 2008). 

 

Interestingly, overall differentiation of the keratinocytes in the IGF-1Repi-/- and the 

dkoepi mice did not seem to be obviously impaired as the localization of markers for 

the different layers K14, K10 and loricrin was not altered (Stachelscheid et al., 2008). 

As IIS can promote cell survival through Akt activation, increased cell death could 

explain the loss of keratinocytes in the epidermis. However, apoptosis was not 

changed upon loss of IIS. Ki67 staining also revealed no obvious change in 

proliferation of newborn IGF-1Repi-/- and dkoepi epidermis compared to control 



Introduction 

31 

epidermis. This was remarkable as keratinocytes isolated from IGF-1Repi-/- mice were 

growth impaired and displayed a severe loss of proliferative potential in cell culture 

conditions, as assessed by colony-forming assays (CFA) (Fig. 8B). In CFAs colony-

size signifies the number of cell division each cell can undergo (Izumi et al., 2007). 

The largest colonies are thought to represent stem cell like progenitor cells with high 

proliferative potential (Izumi et al., 2007). This suggested that in the epidermis the 

reduction of suprabasal cells was indirectly caused by a decrease in progenitor cells. 

In line, progenitor markers, such as Keratin 15 (K15) and IGF-binding protein 5 

(Igfbp5), were down regulated upon loss of IIS in vivo (Stachelscheid et al., 2008). 

The hypomorphic epidermis and the loss of the proliferative potential were partially 

rescued by expression of constitutive active Rac1. Thus, IIS to regulates proliferative 

potential and epidermal morphogenesis through the small GTPase Rac 

(Stachelscheid et al., 2008). 

The question remained how IIS promotes proliferative potential and how an altered 

proliferative potential resulted in a loss of suprabasal layers. Further analysis of 

different embryonic stages of these mice showed that the hypoplastic epidermis was 

first obvious at E16.5 (Fig. 9A), which is the developmental stage when there is a 

strong increase in number of suprabasal layers. Surprisingly, Ki67 labeling did not 

reveal any changes in proliferation at this stage, similar to what was observed in 

newborn mice. However, one day later at E17.5 Ki67 staining was reduced. As Ki67 

is expressed in all stages of the cell cycle, it may not detect either a G2/M or mitotic 

arrest at E16.5. Quantification of the number of anaphase spindles at E16.5 revealed 

a decrease of cells in anaphase at E16.5 in the epidermis (Fig. 9B). Interestingly, this 

decrease was in agreement with the severity of the phenotype with dkoepi mice 

having the strongest reduction in anaphase divisions. Further analysis showed an 

increase of cells in metaphase spindles in E16.5 dkoepi epidermis and IGF-1Repi-/- 
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keratinocytes concomitant with a decrease in anaphase stage, thus indicating a 

mitotic checkpoint arrest (Fig. 9C). This was associated with altered expression of 

regulators of cell cycle progression in keratinocytes, such as Mdm2, 14-3-3σ, Ccng1 

and p63 in the epidermis of newborn dkoepi mice.  

 

 

 

Figure 9: IIS regulates cell cycle progression at E16.5. (A) H&E staining of embryonic ctr and 

dkoepi epidermis show first appearance of hypomorphic epidermis at E16.5. (B) Less anaphase cell 

division upon loss of IR, IGF-1R or both (dkoepi) in E16.5 epidermis. (C) Quantification of metaphase 

and anaphase divisions in E16.5 dkoepi epidermis reveal a mitotic block (adapted from the PhD thesis 

of Heike Stachelscheid 2010).  
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As expansion of suprabasal layers at least in part is driven by ACD (Lechler and 

Fuchs, 2005; Williams et al., 2011; Poulson and Lechler, 2012) cell division 

orientation was quantified based on DAPI stainings. This initial analysis revealed a 

biased loss of ACDs in the different IIS mice, the severity of which correlated with the 

phenotype, thus providing a potential explanation for the reduction in suprabasal 

layers. These findings by Heike Stachelscheid were first indications for a temporary 

arrest in mitosis and a biased loss of ACDs during epidermal morphogenesis in IRepi-/-, 

IGF-1Repi-/- and dkoepi mice. These data form the basis for the major aims of this 

thesis. They also indicate that IIS couples proliferative potential to the regulation of 

ACD thereby promoting the expansion of suprabasal layers and thus stratification. 
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1.4. Aims of this thesis 

The overall aim of this thesis was to determine how IIS regulates epidermal 

morphogenesis and to ask whether the FoxO family of transcription factors control 

embryonic stratification and barrier formation in the epidermis downstream of IIS.  

 

Specifically the following questions were addressed: 

1. Does IIS control asymmetric division and mitotic progression? 

2. Which FoxO transcription factors are expressed in the epidermis?  

3. Is epidermal FoxO nuclear activity regulated by the loss of IIS? 

4. Do FoxOs contribute to epidermal morphogenesis? 

5. What are the molecular mechanisms by which the IIS/FoxO axis regulates 

epidermal morphogenesis? 

6. Which potential transcriptional target genes are controlled by IIS/FoxO? 
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2. Results 

2.1. Epidermal IIS controls mitotic progression 

The previous findings that keratinocytes lacking the IGF-1R were arrested in the 

spindle checkpoint indicate that mitotic progression was regulated by IIS. Thus, we 

asked whether IIS is activated and necessary during mitosis. Therefore we first 

synchronized human HaCat keratinocytes in G1 by thymidine treatment, after G 

release, cells were subsequently serum starved during G2 and arrested in mitosis by 

treating them with nocodazole. Subsequently, these cells were allowed to progress in 

mitosis by removing nocodazole either in the absence of growth factors or in the 

presence of insulin/IGF-1 or, as a positive control, fetal calf serum (FCS).  Both 

insulin/IGF-1 and FCS induced Akt phosphorylation, whereas no increased in 

phosphorylation was observed in the no FCS condition, thus indicating that IIS is 

activated during mitosis (Fig. 10A). More importantly, FACS analysis revealed that 

the addition of insulin/IGF-1 alone was sufficient to release cells from the mitotic 

arrest resulting in significant more cells in G1 cell cycle phase compared to serum 

starved cells. This indicates that IIS activity is directly required during mitosis (Fig. 

10B). 
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Figure 10: IIS is sufficient to drive more cells into G1-phase after cell cycle block. (A) Western 

blot analysis of HaCat keratinocytes, which were synchronized using thymidine, nocodazole (Noc) in 

combination with or without serum starvation to arrest cells in mitosis. Subsequently, cells were 

incubated for 15 min in starvation medium alone or containing either 10% FCS as a positive control or 

insulin/IGF-1, after which activation of Akt was assessed using phosphorylation of Akt Serine 473 

(S473) as a read out for IIS activity. (B) Cell cycle analysis of HaCat keratinocytes, which were starved 

in G2 by serum removal and subsequently arrested in mitosis, by nocodazole treatment. This arrest 

was released by removing nocodazole either without serum or by insulin/IGF-1 alone or by FCS as 

positive control. Each column represents the mean of n=5 independent experiments ± SEM. 

Significance was tested using student’ T-test and were indicated by *p< 0.05. Each column indicates 

the mean of n=5 independent experiments ± SEM. 

 

2.2. Epidermal IIS promotes ACD 

During embryonic development, the initiation of stratification in epidermal 

morphogenesis coincides with a reorientation of the mitotic spindle from parallel 

(SCD) to predominantly perpendicular (ACD) to the basement membrane (Lechler 

and Fuchs, 2005). ACD results in one basal daughter and one suprabasal daughter 

that differentiates (Poulson and Lechler, 2010; Williams et al., 2011), suggesting that 

these perpendicular divisions promote differentiation and formation of suprabasal 

layers. Mice lacking the epidermal IGF-1R and the IGF-1R in combination with the IR 

showed a severe stratification defect (Fig. 8A), which was first obvious at E16.5 (Fig. 
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9A). This defect was accompanied by a loss of cells in anaphase, which was most 

strong in IGF-1epi-/- and dkoepi epidermis (Fig. 9B). We therefore asked whether the 

loss of IIS in the epidermis resulted in loss of SCD and/or ACD in the basal epidermal 

layer. As IGF-1Repi-/-and dkoepi epidermis showed a more severe reduction in 

suprabasal layers, skin sections of these E16.5 mice were analyzed. We used 

survivin staining, which marks the mid-body of anaphase and telophase spindles by 

two dots. The trans-section through both dots determined the axis of spindle 

orientation and thus of division, which was used to measure the angle to the 

basement membrane, marked by collagen IV (Fig. 11A). This angle measurement 

allowed a more precise evaluation of ACDs and SCDs compared the identification of 

mitotic cells by DAPI-DNA staining. The obtained angles were plotted in a radial 

histogram (Fig. 11B) and further categorized in SCD 0-30°, random 30-60° and ACD 

60-90° (Fig. 11C).  In control epidermis the majority of cells divide in a perpendicular 

orientation to the basement membrane with an angle of 80-90° degree, whereas less 

than 10% of the cells divided symmetrically with an angle of 0-10% to the basement 

membrane. In both IGF-1Repi-/- and dkoepi epidermis a shift from cells dividing 

perpendicular to cells dividing in parallel to the basement membrane was observed 

when compared to control E16.5 embryos (Fig. 11B). To examine whether this shift 

in the ratio towards SCD was due to a more extensive loss of ACD, the relative 

percentage of each division was plotted against the control. This revealed a biased 

reduction in ACD in both IGF-1Repi-/- ( 50% reduction) and dkoepi (85% reduction) 

compared to control embryos (Fig. 11C), whereas SCDs were reduced only in the 

dkoepi mice albeit to a lesser extent. These results are in agreement with the more 

severe phenotype of the dkoepi and the most extensive reduction of cells in anaphase 

in these mice (Fig. 9B). 
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Figure 11: IIS controls epidermal stratification through regulation of asymmetric cell division. 

(A) Survivin staining (red) of SCD (symmetric) and ACD (asymmetric) in the basal layer of the 

epidermis. The dotted line indicates the basement membrane and the continuous line indicates the 

orientation of the division. Nuclei were counterstained with DAPI and the scale bar is 10 µm. (B) 

Radial histogram quantification of division angles (n=3 E16.5 embryos per genotype) shown as 

fraction of total division. (C) Relative comparison of different division orientations in basal 

keratinocytes of IGF-1Repi-/- (n=49 divisions), dkoepi (n=25 divisions) and control (n=71 divisions) 

categorized in 0-30° as SCD, 30-60° as random and 60-90° as ACD. Significance was tested 

separately for each type of division using one-way ANOVA and were indicated by *p< 0.05, **p<0.01 

and ***p<0.001. Each column indicates the mean of n=3 E16.5 embryos/genotype ± SEM. 
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2.3. IIS regulates p63 activity in keratinocytes in vitro 

The transcription factor p63 is a crucial regulator of epidermal development and 

stratification (Koster and Roop, 2007). Lechler and Fuchs (Lechler and Fuchs, 2005) 

showed that the deletion of p63 leads to an almost complete loss of asymmetrically 

dividing cells in the developing epidermis. In addition, p63 regulates cell cycle 

progression and proliferative potential (Truong et al., 2006; Koster and Roop, 2007; 

Beretta et al., 2005), which are both disturbed in keratinocytes of IGF-1Repi-/- and 

dkoepi epidermis (Fig. 8B and 9B&C). Thus regulation of p63 might provide a potential 

mechanism how IIS controls epidermal morphogenesis. To test whether loss of IIS 

has an effect on p63 activity we isolated primary keratinocytes from control and IGF-

1Repi-/- newborn mice and performed p63 reporter assays. Transient transfection with 

a luciferase reporter that is repressed by p63 (pG13-Luc) (Hermeking et al., 1997; 

Yang et al., 1998) revealed a significant increase in reporter activity in IGF-1R 

deficient keratinocytes compared to control cells (Fig. 12A), suggesting a reversion of 

the repressive function of p63 upon loss of IGF-1R. In line with these data, 

transfection with a p63 transactivated reporter (BDS-2(3x)) (King et al., 2003) 

resulted in a decrease of reporter activity in IGF-1Repi-/- cells, again indicating a 

reduced p63 transcriptional activity (Fig. 12B). Furthermore, this inhibition could be 

reversed by expression of additional exogenous ΔNp63α. As both reporters consist 

mainly of p63 binding sites, this indicates a change of p63 activity on target gene 

regulation.  

One possible explanation for these changes in p63 reporter activity in IGF-1R 

deficient keratinocytes would be a decrease in the expression of p63 itself. Thus, we 

asked whether p63 expression is altered upon loss of IIS. Realtime qPCR and 

Western blot analysis of primary keratinocytes revealed no change in total p63 RNA 

or protein expression in IGF-1Repi-/- cells (Fig. 12C&D). To assess whether the 
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altered p63 reporter assays also were reflected in functional p63 changes, we asked 

whether mRNA expression of endogenous p63 target genes was changed in IGF-

1Repi-/- keratinocytes. Quantitative realtime PCR analysis on RNA isolated from 

primary keratinocytes revealed an increase in expression of e.g. Sfn (14-3-3σ), 

Runx2 and Tgfb1, which are known p63 repressed targets in the absence of IGF-1R 

(Fig. 12C), whereas other known p63 targets, such as Fgf2r and Cdkn1a, were not 

altered. These data indicate loss of IIS induced alterations in p63 transcriptional 

activity on a subset of endogenous target genes, which is independent of changes in 

p63 expression in primary keratinocytes. 
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Figure 12: IGF-1 signaling negatively regulates p63 transcriptional activity in keratinocytes. (A) 

Luciferase reporter assay using the p63-repressed pG13 reporter in IGF-R-/- keratinocytes compared to 

control keratinocytes. Control keratinocytes were set to 1 and displayed is the mean of n=4/genotype 

independent experiments ± SEM. Statistical significance was tested by student’s T-test and indicated 

as * p< 0.05. (B) Luciferase reporter assay using the p63-transactivated BDS-2(3x) luciferase gene 

reporter in IGF-1R-/- keratinocytes. The reporter was co-transfected with GFP or ΔNp63α to test for 

rescue capabilities of p63 on reporter activity. Control activity was set to 1 and displayed is the mean 

of n=4/genotype independent experiments ± SEM) Statistical significance was tested by student’s T-

test and indicated as * p< 0.05. (C) Quantitative realtime PCR showing relative gene expression of 

several putative p63 targets in control and IGF-1R-/- primary cultured keratinocytes. Control cells were 

set to 1 and displayed is the mean of n=3 independently isolated cell lines ± SEM. Statistical 

significance was tested by student’s T-test and indicated as * p< 0.05 and **p<0.01. (D) Western blot 

analysis of p63 expression in primary control and IGF-1R-/- keratinocytes. 

 

2.4. IIS and p63 share an overlapping gene expression set 

To test whether these alterations in p63 transcriptional activity have functional 

consequences for p63 target gene expression in vivo, total gene expression analysis 

on RNA isolated from newborn epidermis of control and dkoepi mice was performed. 

The obtained expression data set was compared with published expression data sets 

of either mouse keratinocytes in which p63 was depleted by siRNA interference 

(Della Gatta et al., 2008) or E18.5 p63-/- whole skin data (Koster et al., 2006). 

Calculation of the hypergeometric distribution revealed a statistically highly significant 

overlap of the dkoepi gene expression set with both p63 regulated data sets (Fig. 13A). 

This percentage was in a similar range as the overlap of the p63 gene expression 

sets (Fig. 13B), thus suggesting  that p63 and IIS regulate partially the same genes. 

More importantly, gene ontology terms related to epidermal development, such as 

regulation of cell proliferation and ectodermal development, were only significantly 

enriched in the overlapping gene sets of dkoepi with either the p63 KD keratinocytes 
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or the p63-/- E18.5 skin but not in the non-overlapping sets. These data indicate that 

p63 and IIS regulate a subset of similar target genes. 
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Figure 13: Overlap in global gene expression data of dkoepi epidermis and p63 deficient 

keratinocytes/skin. (A) Comparison of gene expression microarray analysis of newborn dkoepi 

epidermis with arrays of p63 knockdown keratinocytes (upper panel) (Della Gatta et al., 2008) or p63-/- 

E18.5 skin (Koster et al., 2006) show overlap in gene sets (Pie charts). The significance of the array 

overlap was calculated using hypergeometric distribution algorithm (p-values). Analysis of gene 

ontology (GO) terms for overlapping genes and non-overlapping GO terms is displayed in the table 

right to the pie chart. (B) Pie charts showing the percentage of overlapping and non-overlapping genes 

of the p63-/- E18.5 skin gene set (Koster et al., 2006) with the p63 kd keratinocytes gene expression 

set (Della Gatta et al., 2008). Tables show GO terms for the overlapping genes and the unique genes 

for either of the p63 gene sets. 

 

2.5. Epidermal IIS regulates p63 target gene expression 

The microarray comparison indicated that IIS and p63 regulate the same 

transcription targets. To confirm this we tested specific targets identified in the dkoepi 

newborn epidermis array by realtime qPCR and found an increased expression of 

several known p63 repressed target genes, such as Sfn (14-3-3σ), whereas the 

expression of positively regulated targets, such as Keratin 15, were decreased (Fig. 

14A). In line with the in vitro data , the expression of other known p63 targets, such 

as Fgf2r, was not affected by the loss of IR/IGF-1R (Fig. 14A). Interestingly, the 

global gene expression analysis revealed increased expression of genes that are a 

part of the epidermal differentiation complex (EDC), which is known to be indirectly 

regulated by p63 (Fessing et al., 2011). Realtime PCR analysis confirmed the strong 

upregulation of several of these EDC members, e.g. the late cornified envelope (Lce) 

protein families and the small proline rich (Sprr) (Fig. 14C). 

As the phenotype induced by loss of epidermal IIS signaling becomes first obvious at 

E16.5, we also tested whether the expression of different p63 target genes was 

changed in the epidermis at this developmental stage. Realtime PCR analysis 

showed that several targets that are repressed by p63 activity, such as Sfn (14-3-3σ) 
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and Runx2 were upregulated, whereas other targets, such as Keratin 15 or Tgfbi, 

were downregulated in the epidermis of IGF-1Repi-/- mice (Fig. 14B). As expected, 

RNA expression of p63 at E16.5 was not reduced and even slightly increased in IGF-

1Repi-/- epidermis (Fig. 14B), similar to the changed RNA and protein expression 

observed in vitro (Fig. 12C&D). Furthermore, immunofluorescence (IF) analysis of 

skin sections revealed that the localization and staining intensity of p63 was 

unaltered in the epidermis of E16.5 IGF-1Repi-/- and dkoepi mice (Fig. 14D). 
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Figure 14: Insulin/IGF-1 signaling regulate the expression of p63 target genes. (A) Quantitative 

realtime PCR analysis analyzing relative gene expression of p63 regulated genes in (ctr) and dkoepi 

newborn epidermis. Displayed is the mean of n=3 newborn epidermis/genotype ± SEM. Control was 

set to 1. (B) Quantitative realtime qPCR analysis to determine relative gene expression of indicated 

p63 regulated genes in control and IGF-1Repi-/- E16.5 epidermis. Displayed is the mean of n=3 

embryos/genotype ± SEM. (C) Quantitative realtime PCR analysis showing relative gene expression 

of selected EDC genes in control (ctr) and dkoepi newborn epidermis. Displayed is the mean of n=3 
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newborn epidermis/genotype ± SEM. Control was set to 1. (D) Immunofluorescence analysis of p63 

(red) and keratin 14 (green) in the epidermis of E16.5 embryos showing p63 localization in control (ctr), 

IGF-1Repi-/- and dkoepi mice. 

 

2.6. Binding of p63 to target promoters is not altered 

The altered expression of a subset of p63 targets genes observed in vitro and in the 

developing epidermis in vivo may be explained by a reduced binding of p63 to p63 

consensus elements in the promoters/enhancers of these genes. To test this we 

identified p63 consensus binding sequences in promoters and enhancers of a subset 

of these targets. The conserved p63-binding element for Fgf2r was already described 

(Ferone et al., 2011) and as its expression is not changed upon IIS alteration served 

as control. For mouse Sfn (14-3-3σ), Cdkn1a and Runx2 we identified new p63 

consensus sites in the promoter regions by comparing their promoter region to the  

published human p63 binding sites identified in these genes using chromatin-

immunoprecipitations (ChIP) followed by next generation sequencing (ChIP-seq) 

data in human keratinocytes (Kouwenhoven et al., 2010). Using ChIP assays 

followed by quantitative PCR analysis (ChIP-qPCR), we next asked if p63 binding to 

these sites was changed after loss of IGF-1R. Surprisingly, similar amounts of p63 

protein were bound to p63 consensus sites in the promoters of Runx2, Sfn (14-3-3s), 

Cdkn1a and, as a negative control, Fgfr2 in IGF-1R-/- and control primary 

keratinocytes (Fig. 15). Thus, p63 binding to the p63 consensus binding sites was not 

affected by the loss of IGF-1R in keratinocytes despite the change in expression of 

these targets. Together, these data suggest that IIS regulates p63 transcriptional 

activity independent of alterations in p63 expression and promoter binding. 
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Figure 15: No change in binding of p63 to consensus sites in promoters/enhancers of 

regulated genes. Chromatin immunoprecipitation–qPCR (ChIP-qPCR) analysis in primary 

keratinocytes showing binding of p63 to p63 binding regions in different target promoters of control 

(ctr) and IGF-1Repi-/- keratinocytes. Shown is one example that represents the mean of three technical 

qPCR replicates ± SD of three independent experiments. 

 

2.7. IIS regulated FoxO transcription factors are expressed during epidermal 

development and in keratinocytes in vitro 

FoxO transcription factors are key downstream targets through which IIS exerts its 

transcriptional regulation and thereby its biological effects (Calnan and Brunet, 2008; 

Eijkelenboom and Burgering, 2013). Interestingly, FoxOs were shown to regulate 

transcriptional activity of other transcription factors, which did not seem to require 

FoxO binding to its consensus site in promoters (Nemoto et al., 2004; Jensen et al., 

2011). Therefore, FoxOs may serve as potential candidates to mediate IIS control of 

p63 target genes and p63 activity in keratinocytes. 

Very little is known on the expression of FoxO isoforms in the developing epidermis. 

We therefore first investigated the expression of FoxO mRNA in the developing 

epidermis and in keratinocytes.  Realtime qPCR analysis indicated that three 

members of the FoxO family, namely FoxO1, FoxO3 and FoxO4, were expressed in 

E16.5 epidermis (Fig. 16A) and in primary keratinocytes (Fig. 16B). We additionally 
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detected FoxO6 mRNA in E16.5 epidermis, but as IIS does not regulate nuclear 

shuttling of FoxO6 (Jacobs et al., 2003), we did not further analyze this member. 

Western blot analysis for FoxO1 and FoxO3 also showed protein expression at E16.5 

and in newborn epidermis as well as in primary keratinocytes (Fig. 16C). For FoxO4 

a specific band could be detected in primary keratinocytes but not in E16.5 epidermis 

despite RNA expression at this developmental stage (Fig. 16A). 

Thus at least two of the four FoxO transcription factors, FoxO1 and FoxO3, are 

expressed on the RNA and the protein level in the developing epidermis at E16.5, 

whereas primary keratinocytes express FoxO1, -3 and -4. 

 

 

Figure 16: FoxO transcription factors are expressed in E16.5 epidermis and primary 

keratinocytes. (A) Quantitative realtime PCR analysis of the mammalian FoxO family members in 

RNA isolated from E16.5 epidermis and in RNA isolated from keratinocytes that were transfected with 

a combination of siRNAs for FoxO1/3/4 served as negative control. Expression of FoxO1 was set to 1. 
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Displayed is the mean of n=3 embryos/knockdown cell lines ± SEM. (B) Quantitative realtime PCR 

analysis of FoxOs in primary murine keratinocytes transfected with siRNAs targeting FoxO1/3/4 or 

scrambled siRNA as control. Scrambled siRNA cell lines were set to 1. Displayed is the mean of n=3 

cell lines ± SEM. (C) Western blot analysis of FoxO family member expression in E16.5 epidermis and 

primary keratinocytes. Specificity of FoxO1 and FoxO3 antibody was tested by siRNA knockdown. 

 

2.8. IIS regulates nuclear translocation of FoxOs in keratinocytes 

IIS activates the Akt kinase, which phosphorylates FoxO proteins at 3 conserved 

sites resulting in nuclear export of FoxOs (Calnan and Brunet, 2008; Eijkelenboom 

and Burgering, 2013). We therefore asked whether more FoxO remains in the 

nucleus and is transcriptional active upon loss of IIS. First, we transfected primary 

keratinocytes with the FoxO binding site only reporter 6xDBE and observed a two-

fold increase in luciferase activity in IGF-R deficient cells compared to control cells 

(Fig. 17A). Nuclear fractionation experiments of control and IGF-1R-/- keratinocytes 

revealed an increase in levels of nuclear FoxO1 in cells that lack the IGF-1R, 

although no change in total FoxO1 or FoxO3 protein expression were observed in 

these cells (Fig. 17B). Importantly, using western blot analysis, we also detected less 

phospho-FoxO1 in E16.5 IGF-1Repi-/- compared to control epidermis, indicating a loss 

of IIS-stimulated Akt phosphorylation of FoxO and more nuclear FoxO localization 

(Fig. 17C). Quantification of this phosphorylation western blot revealed a three-fold 

decrease of phospho-FoxO1 in IGF-1Repi-/- epidermis (Fig. 17D).   RNA expression of 

FoxO1 and FoxO3 was also not changed (Fig. 17E), in agreement with the unaltered 

protein level. In conclusion, loss of IIS signaling promotes nuclear FoxO activity. 
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Figure 17: Epidermal FoxO transcription factors are negatively regulated by IIS. (A) Luciferase 

reporter analysis of control (ctr) and IGF-1R-/- keratinocytes using the FoxO reporter 6xDBE. Control 

was set to 1. Shown is the mean of n=4 independent experiments ± SEM. Statistical significance was 

tested by student’s T-test. (B) Western blot analysis of cell fractionations from control and IGF-1R-/- 

keratinocytes tested for FoxO1 expression/localization in cytoplasmic or nuclear fractions. Gapdh 

served as cytoplasmic and histone 3 as nuclear control. (C) Western blot analysis showing the 

expression of FoxO1 and FoxO3 in E16.5 epidermis of control (ctr) and IGF-1Repi-/- mice. 

Phosphorylation at Serin 256 determines the cytoplasmic localization of FoxO1. (D) Quantification of 

phospho-FoxO1 intensities in (C) normalized to total FoxO1 with control set as 1. Displayed is the 

mean of n=3 E16.5 epidermis/genotype ± SD. (C) Quantitative realtime PCR analysis of E16.5 

epidermis for FoxO1 or FoxO3 expression in control (ctr) and IGF-1Repi-/- mice. Control was set as 1 

and displayed is the mean of n=3 embryos/genotype ± SEM. 
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2.9. Nuclear FoxO1-ADA impairs p63 activity 

We next asked whether FoxO is able to regulate p63 activity. To uncouple FoxO 

regulation from IIS/Akt signaling the three Akt-phosphorylation sites were mutated 

resulting in a constitutive nuclear FoxO (FoxO1-ADA), which thus mimics loss of IIS. 

First, we asked whether this FoxO mutant affected p63 luciferase reporter activity. 

We transiently transfected primary keratinocytes with the p63-transactivated reporter 

(BDS-2.3x) together with either FoxO1-ADA or FoxO1-WT cDNA (wild-type FoxO1) 

as a control, as this is excluded from the nucleus due to Insulin/IGF-1 in the serum. 

Co-transfection of the reporter with FoxO1-ADA resulted in a decrease in reporter 

activity compared to co-transfection with FoxO1-WT (Fig. 18A). In addition, upon 

transfection of keratinocytes with the p63-repressed reporter (pG13) resulted in an 

increase in reporter activity when co-transfected with FoxO1-ADA compared to 

FoxO1-WT (Fig. 18B). These data suggest that nuclear FoxO counteracts p63 

activity in primary keratinocytes similar to the loss of IIS. 

To examine whether FoxO-mediated regulation of p63 reporters required p63 

expression, we used transfected chinese hamster ovarian (CHO) cells as these cells 

do not express endogenous p63 in combination with the p63-transactivated reporter 

Whereas FoxO1-ADA transfection alone did not induce p63 reporter activity above 

GFP transfected background activity, ΔNp63α transfection strongly increased 

reporter activity.  This increase was reversed upon co-transfection of FoxO1-ADA 

and ΔNp63α (Fig. 18C). Together, these data indicate that FoxO cannot directly bind 

to p63 DNA consensus sites to induce reporter activity but requires the presence of 

p63.   
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Figure 18: Nuclear FoxO counteracts p63 activity. (A) Transient transfection luciferase reporter 

analysis of p63-induced BDS-2(3x) reporter activity upon co-transfection with wild type FoxO1 

(FoxO1-WT) or FoxO1-ADA in primary keratinocytes. Displayed is the mean of n=4 independent 

experiments ± SEM and statistical significance was tested by student’s T-test and indicated as 

***p<0.001. (B) Luciferase reporter analysis of p63-repressed reporter pG13 activity in primary 

keratinocytes, which were co-transfected with wild-type FoxO1 (FoxO1-WT) or FoxO1-ADA. Displayed 

is the mean of n=4 independent experiments ± SEM and statistical significance was tested by 

student’s T-test and indicated as ***p<0.001. (C) Transient luciferase reporter analysis of the p63-

activated (BDS-2(3x)) reporter in CHO cells, which were co-transfection with GFP/FoxO1-ADA, 

GFP/ΔNp63α or FoxO1-ADA/ΔNp63α. Shown is the mean of n=4 independent experiments ± SEM. 

Statistical significance was tested by student’s T-test and indicated as * p< 0.05. 

 

2.10. FoxO regulation of p63 activity is independent of FoxO-DNA interaction 

Our observations suggested that the regulation of p63 activity was independent of 

FoxO's ability to bind DNA. To directly test this we introduced a point mutation in the 

DNA-binding site of FoxO1-ADA resulting in a constitutive nuclear FoxO1 that cannot 

bind DNA (FoxO1-ADA-ΔDBD). FoxO-reporter assays showed that this mutant was 

unable to activate luciferase activity whereas FoxO-ADA strongly activated the 

reporter in comparison to FoxO1-WT (Fig. 19A). We then tested whether the FoxO1-

ADA-ΔDBD mutant was able to regulate the p63-transactivated reporter (BDS-2(3x)) 

in primary keratinocytes. Similar to FoxO1-ADA, co-transfection of FoxO1-ADA-
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ΔDBD reduced p63-transactivated reporter activity in keratinocytes, although the 

effect was not as strong as for FoxO1-ADA (Fig. 19B). In addition, in CHO cells 

transfection of FoxO1-ADA-ΔDBD with p63 reduced the p63 reporter activity to a 

similar extent as FoxO1-ADA (Fig. 19C). Again, this regulation required the presence 

of p63, as FoxO1-ADA-ΔDBD expression alone had no effect on reporter activity. 

These data suggest that FoxO modulates p63 activity independent of its ability to 

bind DNA. 

 

 

Figure 19: Nuclear FoxO negatively regulate p63 transcriptional activity independent of DNA 

binding. (A) FoxO-luciferase reporter (6xDBE) transfection experiments in primary keratinocytes 
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transfected with wild-type FoxO1 (FoxO1-WT), constitutive nuclear FoxO1-ADA and the nuclear 

mutant FoxO1-ADA-ΔDBD. Displayed is one example of n=2 experiments ± SD of 3 technical 

replicates. (B) Transient Luciferase reporter assays using the p63-activated reporter BDS-2(3x) in 

combination with FoxO1-WT, FoxO1-ADA or the DNA-binding deficient mutant FoxO1-ADA-ΔDBD in 

primary keratinocytes. Displayed is the mean of n=4 independent experiments ± SEM. Statistical 

significance was tested by student’s T-test and indicated as **p<0.01. (C) Luciferase reporter analysis 

in CHO cells, which were co-transfected with the p63-activated reporter BDS-2(3x) and p63/FoxO1 

expression plasmids in the following combinations: GFP/FoxO1-WT, GFP/FoxO1-ADA, GFP/FoxO1-

ADA-ΔDBD, ΔNp63α/FoxO1-, ΔNp63α/FoxO1-ADA and ΔNp63α/FoxO1-ADA-ΔDBD. Shown is the 

mean of n=3 technical replicates ± SD as an example of n=3 independent experiments. 

 

2.11. FoxO interacts with p63 

The observation that FoxO-mediated suppression of p63 reporter activity requires 

ΔNp63α expression and is independent of FoxO-DNA binding suggested a direct 

interaction of FoxO with p63. We therefore performed co-immunoprecipitation (Co-IP) 

experiments using CHO cells and transiently transfected them with either GFP in 

combination with FoxO1-ADA or Flag-ΔNp63α, or with FoxO1-ADA together with 

Flag-ΔNp63α experiments. Using an antibody against the Flag-tag FoxO1 was co-

precipitated with Flag-ΔNp63α whereas no FoxO1 was precipitated by control IgG 

(Fig. 20A). Vice versa, only antibodies to FoxO1-ADA but not control IgG precipitated 

ΔNp63α (Fig. 20B), thus providing evidence that overexpressed FoxO1-ADA and 

ΔNp63α can interact in a heterologous cell system. To examine if endogenous p63 

and FoxOs could interact and whether loss of IGF-1R would increase this interaction 

as more FoxO is present in the nucleus (see Fig. 17A&B), we performed Co-IPs in 

keratinocytes after formaldehyde fixation followed by western blot analysis (ChIP-

western blot). More endogenous FoxO1 was precipitated in IGF-1R-/- keratinocytes 

compared to control using antibodies against endogenous p63α (Fig. 20C), thus 
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confirming the CHO data. Finally, to address whether FoxO and p63 also interact in 

vivo in the epidermis, we sued epidermal splits of newborn IGF-1Repi-/- mice, which 

additionally expressed GFP-tagged FoxO1 (FoxO1-GFP) in the epidermis. Using 

GFP antibodies more p63 was co-precipitated with FoxO-GFP in IGF-1Repi-/- 

epidermis compared to control epidermis (K14-Cre, IGF-1Rfl/+, FoxO1-GFP) (Fig. 

20D). Taken together, these results show that FoxO interacts with p63 both in vivo 

and in vitro and that loss of IIS leads to an increase in this interaction.  

 

 

Figure 20: FoxO1 interacts with p63 in heterologous overexpression experiments, in 

keratinocytes and in vivo. (A and B) Co-immunoprecipitation (Co-IP) analysis in CHO cells 

transiently transfected with FoxO1-ADA and Flag-ΔNp63α tested for (A) immunoprecipitation (IP) of 

FoxO1-ADA by ΔNp63α using Flag antibodies and vice versa (B) FoxO1 antibodies precipitate 

FoxO1-ADA and p63. Shown is one representative experiment of three independent ones. (C) Co-IP 

analysis of endogenous FoxO1, which was immune-precipitated with p63 antibodies from primary IGF-

1R-/- but control keratinocytes. (D) Co-IP experiment in newborn epidermis of control and IGF-1Repi-/- 

mice, which express epidermal FoxO1-GFP. GFP antibodies were used for IP and detected was p63 

by western blot. 
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2.12. IIS signaling regulates recruitment of FoxO to p63-DNA consensus 

binding sites 

The data thus far would predict that loss of IIS promotes association of FoxOs with 

p63 at p63 binding sites in endogenous promoters of regulated genes. To test 

whether more FoxO is associated with these p63 consensus sites, we performed 

ChIP-qPCR experiments using FoxO1 antibodies. In line with our prediction, we 

observed that upon loss of IGF-1R FoxO1 was enriched 2- to 3-fold on p63 

consensus sequences in the promoters of altered genes, such as Sfn (14-3-3σ) and 

Runx2 (Fig. 21). As a negative control we used the p63-binding site in the promoter 

of Fgf2r, as expression of this gene was not altered upon loss of IIS. As expected no 

increase was observed in FoxO1 binding to this promoter (Fig. 21). Together with the 

Co-IP data these results indicate that FoxOs interact with p63 on endogenous p63 

binding sites to regulate the expression of these targets. 

 

 

Figure 21: Epidermal FoxOs binds p63 at consensus site. Chromatin immunoprecipitation (ChIP)-

qPCR analysis in primary mouse control and IGF-1R-/- keratinocytes using FoxO1 antibodies for 

precipitation. Precipitates were analyzed with primers for p63 binding sites in promoter regions of 

known p63 target genes. Results were normalized to a negative binding region and are shown as 

enrichment over control keratinocyte IP, which was set to 1. Shown is the mean of n=3 independent 
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experiments ± SD (n=2 for Fgf2r). Statistical significance was tested by student’s T-test and indicated 

as * p< 0.05. 

 

2.13. FoxO binding to p63 is important for target gene regulation 

The next question that was addressed was whether the increased binding of FoxO to 

the p63 consensus promoters of p63 targets is indeed responsible for their altered 

expression upon loss of IIS. We therefore performed siRNA-mediated knockdown of 

FoxO-1,-2 and -4 in IGF-1R-/- keratinocytes and asked whether downregulation of 

FoxOs would reverse the increased expression of these genes using realtime qPCR. 

FoxO siRNA-mediated knockdown but not scrambled siRNA downregulated 

expression of p63 target genes which showed increased expression upon loss of IIS 

(see Fig. 14), such as Sfn (14-3-3σ) and Runx2 (Fig. 22A). No significant difference 

was observed upon FoxO knockdown in Fgf2r expression, in agreement with the fact 

that loss of IIS signaling does not alter expression of this gene. Most importantly, 

FoxO siRNAs did no affect mRNA expression of these targets in control cell (Fig. 

22B). These data indicate that the increased expression of these targets upon loss of 

IGF-1R is a direct consequence of increased nuclear FoxO activity.  

 

 

Figure 22: Epidermal FoxOs are important regulators of p63 transcriptional activity in 

keratinocytes. (A and B) Realtime PCR analysis of primary mouse (B) control and (A) IGF-1R-/- 

keratinocytes transiently transfected with either scrambled siRNA or combined knockdown of 
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FoxO1/3/4 using smart pool siRNAs to each of the FoxOs. Tested were p63 target genes, which were 

regulated in IGF-1Repi-/- E16.5 epidermis (see Fig. 14B). Shown are the mean of n=4 independent 

experiments ± SEM. Significance was tested using student’s T-test and is indicated as *p<0.05. 

 

2.14. Overexpression of FoxO1-DN does not rescue IGF-1Repi-/- phenotype 

The data thus far indicate that in the epidermis FoxO regulates p63 activity 

downstream of IIS independent of FoxO's ability to bind DNA. If also true in vivo, then 

the prediction would be that epidermal expression of a dominant negative FoxO1 

mutant that only consists of the DNA interaction domain (FoxO1-DN) would not 

interfere with stratification and this mutant would not be able to rescue the 

phenotypes caused by IGF-1R loss. We hypothesized that this mutant would occupy 

all accessible FoxO consensus sites and thereby inhibit the endogenous FoxO-DNA 

binding-dependent function in control and/or IIS deficient epidermis.  

We first tested whether this mutant would alter p63 reporter activity in transiently 

transfected CHO cells. Surprisingly, FoxO1-DN also suppressed the p63-induced 

activity of the p63-transactivated reporter (Fig. 23A), suggesting that the DNA binding 

domain might be involved in the FoxO-p63 interaction.  

To further assess the ability of FoxO1-DN to rescue the loss of IGF-1R, we crossed 

mice that carry a flox-stop-flox cassette followed by a FoxO1-DN-IRES-GFP cassette 

in the Rosa26 locus (Belgardt et al., 2008) with Keratin14-Cre mice (Hafner et al., 

2004) and with the IGF-1Rfl/fl mice. We isolated primary keratinocytes of these mice 

and tested the FoxO1-DN function by FoxO reporter assays. As expected the FoxO 

reporter activity was induced by the loss of IGF-1R and the expression of FoxO1-DN 

was able to rescue this effect (Fig. 23B). This shows that the FoxO DNA-binding 

mutant is indeed dominant negative towards DNA-binding dependent FoxO 

transcriptional activity.  
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More importantly, histological investigations of newborn skin sections revealed that 

the expression of FoxO1-DN did not rescue the IGF-1Repi-/- phenotype whereas 

FoxO1-DN expression alone had no effect on epidermal morphogenesis (Fig. 23C). 

In summary, these data suggest that FoxO binding to FoxO consensus sites is not 

important for the developmental phenotype observed in IGF-1Repi-/- mice. 

 

 

Figure 23: Epidermal expression of dominant negative FoxO1 does not rescue IGF-1Repi-/- 

phenotype. (A) Luciferase reporter analysis in CHO cells using the p63 induced BDS-2(3x) reporter, 

which was co-transfected with FoxO1-DN, ΔNp63α or pcDNA3 as transfection control. Shown is the 

mean of n=3 technical replicates ± SD as an example of n=2 independent experiments. (B) Transient 
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luciferase reporter analysis of FoxO reporter (6xDBE) activity in keratinocytes isolated from control, 

IGF-1Repi-/-, FoxO1-DN and IGF-1Repi-/-/FoxO1-DN newborn mice. Displayed is the mean of n=4 

independent experiments ± SEM. Statistical significance was tested by student’s T-test and indicated 

as ***p<0.001. (C) H&E staining of skin sections of control, IGF-1Repi-/-, FoxO1-DN and IGF-1Repi-/-

/FoxO1-DN newborn mice. Scale bar is 25 µm. 

 

2.15. Perinatal death of mice expressing epidermal FoxO1-ADA 

As nuclear FoxO1-ADA is able to bind p63 and thereby inhibit the function p63, we 

hypothesized that the epidermal phenotype of mice overexpressing epidermal 

FoxO1-ADA would resemble the phenotype of p63-/- mice. To test this we crossed 

K14-Cre mice (Hafner et al., 2004) with mice carrying the flox-stop-flox cassette 

followed by the FoxO1-ADA-IRES-GFP in the Rosa26 locus (Stohr et al., 2011). 

Epidermal FoxO1-ADA expression resulted in a fragile, translucent skin and perinatal 

death (Fig. 24A) caused by massive dehydration (not shown). Histochemical analysis 

of these newborn mice revealed a striking hypoplastic epidermis with only one or two 

layers of keratinocytes (Fig. 24B). Immunohistochemical analysis of different 

embryonic stages using a FoxO1 antibody revealed that upon Cre mediated excision 

of the stop cassette FoxO1-ADA was expressed already at E13.5 (Fig. 24C). 

Western blot analysis of E16.5 epidermis showed an approximately 5 fold higher 

expression of FoxO1-ADA compared to endogenous FoxO1 (Fig. 24D). The 

hypoplastic phenotype of FoxO1-ADA mice became first apparent at E14.5 and was 

sustained throughout epidermal development and in newborn mice, thus indicating 

that epidermal overexpression of FoxO1-ADA resulted in a major defect in epidermal 

stratification (Fig. 24B&E). This phenotype is highly similar to the phenotype of p63-/- 

mice (Yang et al., 1999; Mills et al., 1999). 
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Figure 24: FoxO1-ADA mice show striking epidermal phenotype with hypomorphic epidermis. 

(A) Macroscopic appearance of control and FoxO1-ADA newborn mice. (B) H&E staining of paraffin 

sections of newborn control and FoxO1-ADA skin. Scale bar is 50 µm. (C) Immunofluorescence 

analysis of FoxO1 expression (green) in sections from different embryonic stages in control and 

FoxO1-ADA mice. Nuclei were counterstained with DAPI (blue). Scale bar is 25 µm. (D) Western blot 

analysis of FoxO1 on protein lysates of E16.5 epidermis from control and FoxO1-ADA mice. (E) H&E 

staining on paraffin sections of ctr and FoxO1-ADA embryos at E14.5 and E17.5. Scale bar is 50 µm. 
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2.16. Strongly impaired stratification in FoxO1-ADA mice 

To analyze the FoxO1-ADA-induced stratification defect in more detail, we asked 

whether the of basal and suprabasal markers is impaired during morphogenesis in 

FoxO1-ADA mice. Immunofluorescence analysis revealed a loss of signal for 

suprabasal stratification markers in the developing FoxO-1ADA epidermis (Fig. 25). 

Keratin 14, which marks the basal cell layer of the epidermis, was normally 

distributed during embryonic development of FoxO1-ADA mice (Fig. 25 upper panel 

left). In contrast, staining for Keratin 10, a marker that labels suprabasal layers that is 

first induced upon formation of the spinous layer, was already decreased at E14.5 in 

FoxO1-ADA epidermis compared to control (Fig. 25 upper panel right). No staining 

could be observed for, the late stratification marker loricrin at E14.5 in FoxO-1-ADA 

embryos whereas control epidermis showed patchy positive staining at this time point, 

indicating formation of the stratum granulosum in these E14.5 embryos (Fig. 25 lower 

panel left). Interestingly, small patches of K10 and loricrin staining were observed at 

E15.5 in the FoxO1-ADA epidermis but staining for these markers was absent later 

during development. The expression of Keratin 6, which is a marker of the late 

periderm, was also reduced and mislocalized upon epidermal FoxO1-ADA 

expression (Fig. 25 lower panel right), suggesting that FoxO1-ADA expression might 

interfere with proper periderm formation. These data show that FoxO1-ADA mice fail 

to initiate a proper stratification program during epidermal morphogenesis resulting in 

a very strong reduction of suprabasal layers. 
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Figure 25: Impaired stratification in FoxO1-ADA embryonic epidermis. Immunofluorescence 

analysis of stratification markers during epidermal development in control and FoxO1-ADA epidermis. 

Keratin 14 (K14, green) is a marker of the basal epidermal layer (upper left panel). Keratin 10 (K10, 

green, upper right panel)  and Loricrin (green, lower left panel) are markers of the suprabasal 

epidermal layers. Keratin 6 (K6, green, lower right panel) is a marker for the periderm. Nuclei were 

counterstained with DAPI (blue) and the scale bar is 50 µm. 
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2.17. No increase in apoptosis in FoxO1-ADA mice  

FoxOs have been implicated in the regulation of apoptosis (Eijkelenboom and 

Burgering, 2013) and the loss of suprabasal layers in the FoxO1-ADA mice might 

thus be explained by increased cell death. However, TUNEL stainings on embryonic 

sections revealed no increase in apoptosis in the developing epidermis of K14-Cre-

FoxO1-ADA mice compared to control, similar to what was observed in dko 

epidermis (Stachelscheid et al., 2008), and thus likely is not causative of the 

phenotype. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Apoptosis is not increased in FoxO1-ADA epidermis. TUNEL staining analysis (green) 

of control and FoxO1-ADA expressing epidermis at embryonic days E13.5, E14.5 and E17.5. Nuclei 

were counterstained with DAPI (blue). Negative indicates non-labeled control and positive indicates a 

DNAse treated positive control. Scale bar is 50 µm. 
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2.18. Biased loss of ACD in FoxO1-ADA mice 

The phenotype of FoxO1-ADA mice, although much stronger, resembled the 

epidermal loss of IIS and phenol-copied the p63-/- mice. If the phenotype is indeed 

caused by similar mechanisms as in these mice one would predict that FoxO1-ADA 

expression would result in biased loss of ACD. We first quantified the number of cells 

in anaphase and, similar to the IGF-1Repi-/- and the dkoepi epidermis, FoxO1-ADA 

mice showed a strong reduction of anaphase spindles at E16.5 compared to control 

(Fig. 27A), thus suggesting an arrest in mitosis, as observed upon epidermal loss of 

IIS. This reduction in anaphase spindle divisions was even more decreased in the 

FoxO1-ADA mice compared to the dkoepi epidermis and indicates that FoxO is 

indeed downstream of IIS in the regulation of epidermal morphogenesis. More 

importantly, analysis of spindle orientation revealed a shift from predominantly SCD 

to ACD in E16.5 FoxO1-ADA embryos compared to control (Fig. 27B). Again, as 

shown for the loss of epidermal IIS this shift was driven by a strongly biased loss of 

ACDs to approximately 10% of control ACDs, whereas the relative number of SCDs 

was not significantly altered (Fig. 27C). This biased loss of ACD in FoxO1-ADA mice 

is also similar to the loss of ACD observed in p63-/- mice (Lechler and Fuchs, 2005). 

 

Figure 27: ACD is severely impaired in FoxO1-ADA epidermis. (A) Quantification of anaphase cell 

divisions in E16.5 control and FoxO1-ADA mice in the basal epidermal layer. Shown is the mean of 

n=3 embryos/ genotype ± SD. Statistical significance was tested using student’s T-test and indicated 
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as *p<0.05. (B) Analysis of division orientation based on survivin staining of basal epidermal 

keratinocytes at E16.5 in control and FoxO1-ADA mice. Radial histograms show the relative number 

of division angles (n=3 of each genotype). (C) Relative comparison of symmetric, random and 

asymmetric divisions in control (n=70 divisions) and FoxO1-ADA (n=22 divisions) epidermis at E16.5. 

Angles of divisions were categorized in 0-30° as SCD, 30-60° as random and 60-90° as ACD- 

Significance was tested separately for each division type using student’s T-test and indicated as 

*p<0.05. 

 

2.19. Altered p63 target gene expression in FoxO1-ADA mice 

If FoxO is downstream of IIS signaling in the regulation of epidermal morphogenesis 

and altered IIS/FoxO activity would impair in vivo stratification by inhibiting p63 

transcriptional activity, then p63 target genes should also be altered in the FoxO1-

ADA epidermis. To investigate this we isolated RNA from E16.5 FoxO1-ADA and 

control epidermis and performed realtime qPCR analysis for p63 target gene 

expression. As expected, a range of p63 target genes showed an altered expression 

in 16.5 FoxO1-ADA epidermis, most of which were also altered in IGF-1Repi-/- 

epidermis, whereas targets not altered by loss of IIS were again not changed (Fig. 

28A). Furthermore, we investigated whether p63 localization was altered in FoxO1-

ADA mice. No change in p63 localization or staining intensity was observed in the 

basal layer of FoxO1-ADA epidermis compared to control, indicating that FoxO1-ADA 

expression did not alter p63 localization. This is in agreement with the observation 

that loss of IIS signaling also did not alter p63 RNA or protein expression (see Fig. 

14B&D). Together, these data suggest that nuclear FoxO is a crucial regulator of p63 

transcriptional activity at E16.5. 
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Figure 28: Epidermal FoxO regulates p63 target gene expression. (A) Realtime qPCR analysis of 

RNA isolated from E16.5 control and FoxO1-ADA epidermis and tested for expression of p63 target 

genes, which were altered in E16.5 IGF-1Repi-/- mice (see Fig. 14). Shown are n=4 embryos/genotype 

± SEM and the control was set to 1. Statistical significance was tested using student’s T-test and 

indicated as *p<0.05, **p<0.01 and ***p<0.001. (B) Immunofluorescence analysis of p63 (red) and 

Keratin 14 (green) in epidermis of E17.5 FoxO1-ADA mice. Nuclei are counterstained with DAPI (blue). 

Scale bar is 10 µm. 

 

2.20. Wnt/β-catenin signaling is impaired in FoxO1-ADA mice 

Although the stratification phenotype of p63-/- (Yang et al., 1999; Mills et al., 1999) 

and the FoxO1-ADA mice in the IFE is very similar, epidermal FoxO1-ADA mice did 

develop hair follicles during morphogenesis , in contrast to p63-/- mice (Fig. 29A). As 

Wnt/β-catenin is an important regulator of hair follicle initiation (Huelsken et al., 2001), 

and FoxOs have been shown to regulate β-catenin, we asked whether Wnt/β-catenin 

target genes were altered by the expression of FoxO1-ADA. To investigate β-catenin 

targets we isolated RNA from E16.5 control and FoxO1-ADA epidermis and 

performed realtime qPCR analysis. Interestingly, several β-catenin signaling targets, 

such as Axin2, Ccnd1 and Wnt3, are significantly increased at this developmental 
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stage (Fig. 29B). This suggests a potential role for nuclear FoxOs in the regulation of 

hair follicle development. 

 

Figure 29: FoxO1-ADA mice develop hair follicles. (A) Histochemical analysis of FoxO1 (brown) 

expression in E16.5 FoxO1-ADA epidermis. Scale bar is 50 µm. (B) Realtime qPCR analysis of RNA 

isolated from E16.5 control and FoxO1-ADA epidermis and tested for the expression of β-catenin 

target genes. Shown are n=3 embryos/genotype ± SD and the control was set to 1. Statistical 

significance was tested using student’s T-test and indicated as *p<0.05 and ***p<0.001. 



Discussion 

69 

3. Discussion 

This study identified a role for IIS in FoxO-dependent control of p63, a key 

determinant of epidermal cell fate (McKeon, 2004), to regulate ACD and progression 

of mitosis during epidermal morphogenesis. We could demonstrate that the loss of 

IIS leads to a hypomorphic epidermis at E16.5. This was accompanied by a mitotic 

arrest, a biased loss of ACDs and alterations in p63 transcriptional activity. 

Furthermore, we could demonstrate that IIS regulated FoxOs impair p63 activity by 

the direct binding of p63 at target promoters independent of FoxO-DNA interaction. 

Moreover, the expression of constitutive nuclear FoxO1 resulted in a hypomorphic 

IFE similar to the epidermis of p63-/- mice and was due to less proliferation, a loss of 

ACDs and alterations of p63 target genes. In contrast to p63-/- mice, these FoxO1-

ADA mice developed hair follicle plugs, suggesting an additional role for nuclear 

FoxO in hair follicle initiation. In agreement with the role of Wnt/β-catenin signaling 

for hair follicle formation, FoxO1-ADA mice showed altered Wnt/β-catenin target 

gene expression (Huelsken et al., 2001). 

 

3.1. A role for IIS in mitotic progression 

In the previous work by Heike Stachelscheid a role for IIS in the control of G2/M or 

mitotic block was identified. It was found that keratinocytes lacking IIS arrested in this 

stage. Here, we show that IIS is sufficient to drive cells into cell cycle upon release 

from the mitotic block. This is intriguing, as IIS has been shown to regulate G1/S 

transition rather than G2/M or mitotic block in other cells (Stull et al., 2002; Mairet-

Coello et al., 2009). How IIS regulates this progression in keratinocytes is not clear. 

In previous findings the expression of the mitotic regulators, such as polo-like kinase 

1 (PLK1) and Aurora B, were decreased in dkoepi keratinocytes. This could be a 

reason for the mitotic arrest and the loss of anaphase cell divisions observed in these 
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mice. In addition, mice that lack epidermal Aurora A, a related Aurora kinase, fail to 

develop a stratified epidermis similar to dkoepi mice (Torchia et al., 2013). This 

hypoplastic epidermal phenotype was accompanied by an increased number of 

phospho-Histone 3 positive keratinocytes in the basal layer, which was not observed 

in the dkoepi mice. As Aurora B is required for Histone 3 phosphorylation at Ser10 

(Hsu et al., 2000), it suggests that histone 3 phosphorylation during epidermal 

development in dkoepi mice might be disturbed. This could impair chromosome 

segregation and result in a G2/M arrest. Aurora A has been identified as a 

downstream target of the IIS target Akt kinase and in response to Akt inhibition 

Aurora A expression decreases resulting in disorganized spindles, defects in 

centrosome separation and finally in G2/M arrest (Liu et al., 2008). Furthermore, it 

has been shown that the activation of Akt, via overexpression of a constitutively 

active form, could overcome DNA-damage induced G2/M cell cycle checkpoint arrest 

(Kandel et al., 2002). These results indicate that the PI3K/Akt pathway plays a role in 

the regulation of the G2/M transition and perhaps Aurora kinases are putative targets 

of IIS in keratinocytes. 

FoxO transcription factors are downstream targets of IIS/Akt, which have been 

shown to control G1/S cell cycle progression by the activation of CDK inhibitors, such 

as Cdkn1a (p21) or Cdkn1b (p27) (Ho et al., 2008). Interestingly, FoxOs are also 

implicated in G2/M transition regulation. Thus, overexpression of FoxO1 decreased 

the expression of genes essential for G2/M transition, such as CDK2, cyclin B1 and 

B2 (Takano et al., 2007). Cyclin G2, an unconventional cyclin that facilitates G2/M 

arrest by inhibiting cyclin B/CDK1 complex formation, has been identified as a direct 

target of FoxOs (Martinez-Gac et al., 2004). In response to DNA damage, FoxO3a 

promotes the expression of Gadd45a to mediate G2/M cell cycle arrest and trigger 

DNA repair (Tran et al., 2002), which blocks cyclin B/CDK2 activation (Zhan et al., 
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1999). Although this was demonstrated in other cell types, it suggests that the 

IIS/Akt/FoxO axis could regulate G2/M transition in keratinocytes. To test this, 

experiments that investigate the expression of these FoxO regulated genes in 

FoxO1-ADA mice and dkoepi mice would be important. 

Another potential regulator of G2/M or mitotic block regulation downstream of IR/IGF-

1R is the p38 MAPK pathway. P38 is able to induce a G2/M checkpoint arrest either 

by the activation and stabilization of p53 (Bulavin et al., 1999) or by the 

phosphorylation and inhibition of the phosphatase Cdc25B (Bulavin et al., 2001). 

Cdc25B dephosphorylates CDK2 and activates the cyclin B/CDK2 complex driving 

the progression of the cell cycle. This would be a potential pathway by which G2/M 

transition is regulated in response to IIS. In line with this, p38 phosphorylation was 

increased in the dkoepi newborn epidermis. 

 

3.2. The role of IIS/FoxO in the regulation of SCD and ACD 

Stratification is a crucial process to induce and maintain the multiple epidermal layers.  

During this process the suprabasal layers are initiated at around E14.5, which is 

accompanied by the commitment to terminal differentiation of cells in the most outer 

layer (Smart, 1970). One model that tries to connect basal cell proliferation and 

suprabasal differentiation suggests the contribution of SCDs and ACDs during 

stratification (Smart, 1970; Lechler and Fuchs, 2005). In this study we suggest that 

IIS via FoxO regulation controls cell division orientation as the loss of IIS results in 

less asymmetrically dividing cells (ACDs).  

The ratio of SCD to ACD is determined by specific polarity signals in the epidermis. 

Lechler and Fuchs (2005) suggested that this polarity regulation is regulated by the 

transcription factor p63 (Lechler and Fuchs, 2005). In this study we identified p63 as 

a target of IIS, but were unfortunately not able to elucidate the role of IIS-p63 in the 
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regulation of polarity regulators, such as Par3, NuMA and LGN. Previous data 

showed that the expression of Insc and the recruitment of NuMA to the apical cell 

cortex is necessary for ACDs in the epidermis (Poulson and Lechler, 2012) and that 

p63-/- did not alter the expression or localization of these proteins, suggesting that 

p63 cannot directly control these polarity regulators. In addition, the knockdown of 

either LGN or NuMA during stratification initiation results in a strong decrease of 

ACDs and increased SCDs in the basal epidermal layer and this switch affects Notch 

signaling (Williams et al., 2011). Given these findings, it would be interesting to 

investigate IIS deficient epidermis for alterations in the Notch signaling pathway. In 

contrast to the phenotype of the dkoepi/FoxO1-ADA mice, which showed a severe 

decrease in ACD, mice with the epidermis specific deletion of the Par-complex 

member aPKCλ produced more ACDs in different hair follicle compartments (Niessen 

et al., 2013). If there is a relation between IIS and aPKC, it would suggest that loss of 

IIS leads to alterations in aPKC expression or localization. 

Although the deletion of p63 did not alter the expression of Insc and NuMA, several 

polarity regulators, such as Par3 and NuMA, have putative p63 binding sites in their 

promoters, which were identified by whole genome ChIP-seq analysis for p63 binding 

sites in human keratinocytes (Kouwenhoven et al., 2010). This suggests, at least in 

human keratinocytes, that p63 could regulate to some extend the expression of these 

regulators and thereby contribute to the SCD/ACD regulation. 

Alternatively, it was shown that components of the IIS cascade contribute to ACD. 

Thus, Akt, the downstream target of IIS, has been implicated in ACD regulation in 

cancer cells and it has been demonstrated that Akt is asymmetrically suppressed in 

one of the daughter cells (Dey-Guha et al., 2011). Interestingly, mice with a 

combined loss of Akt1 and Akt2 have less suprabasal layers, which is similar to the 

epidermal loss of IR and IGF-1R phenotype (Peng et al., 2003). Therefore, it would 
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be interesting to investigate these mice for SCDs and ACDs. Moreover, the small 

GTPase Rac, which previously was shown to mediate IIS regulation on epidermal 

morphogenesis (Stachelscheid et al., 2008), has also been implicated in the control 

of ACD in drosophila germline stem cells (Lu et al., 2012). 

However, how IIS and p63 regulate cell polarity and SCD/ACD in the mammalian 

epidermis is still poorly understood and will need further investigations. 

 

3.3. The role of IIS regulation of p63 in epidermal development 

The transcription factor p63 is crucial for the formation of stratifying epithelia such as 

the epidermis. Here we unravel a new mechanism that regulates p63 activity. So far, 

the upstream regulators of p63 were largely unknown and only Bmp signaling in 

zebrafish has been shown to regulate p63 activity (Bakkers et al., 2002). In this study 

was shown that p63 is an ectoderm-specific direct transcriptional target of Bmp 

signaling required for non-neural cell development and thereby initiates epidermal 

development (Bakkers et al., 2002). Here, we identify IIS as an upstream regulatory 

pathway for p63. We could show that in mice lacking epidermal IIS the regulation of a 

subset of p63 targets, such as 14-3-3σ and Runx2, was altered at E16.5, suggesting 

the loss of p63 function. Later, in newborn mice this resulted in a decreased 

expression of p63 itself in dkoepi mice, probably caused by a self-regulatory loop on a 

specific enhancer with conserved p63 binding sites (Antonini et al., 2006). 

Interestingly, the alteration of 14-3-3σ is reflected in the phenotype of 14-3-3σ 

transgenic mice. 14-3-3σ expression is up-regulated in suprabasal epidermal layers, 

suggesting a role for this protein in the control of cell cycle exit terminally 

differentiating keratinocytes (Dellambra et al., 2000). The epidermis specific 

overexpression of 14-3-3σ resulted in a hypomorphic epidermal phenotype 

(Cianfarani et al., 2011). Moreover, these mice have less suprabasal layers and 
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keratinocytes have a reduced proliferative potential (Cianfarani et al., 2011), which is 

similar to IGF-1Repi-/- and dkoepi mice. Runx2 null mice showed a slightly but 

significant thinner epidermis and decreased proliferation based on Ki67 staining 

(Glotzer et al., 2008). This is in contrast to our observation that Runx2 is up-regulated 

in IR/IGF-1R deficient epidermis, which might be explained by differential regulation 

of the Runx2 gene. As shown in osteogenesis, FoxO3a in complex with Sirt1 can 

regulate Runx2 (Tseng et al., 2011). 

Another important observation in IGF-1Repi-/- and dkoepi mice is the alteration of 

genes of the EDC. This gene cluster is largely regulated on epigenetic level by 

different chromatin remodelers (Botchkarev et al., 2012). P63 has been involved in 

the regulation of these chromatin organizers. Thus, it was demonstrated that p63 

regulates the genome organizer Satb1, which is important for higher order chromatin 

regulation (Fessing et al., 2011). This is in line with our observation that IIS perturbes 

p63 function, which could lead to altered regulation of Satb1 resulting in the 

increased expression of EDC genes, such as Sprr2f and Lce3b (Fig. 14C). But also 

other chromatin regulating proteins could be responsible for the alteration of this 

locus. One possible candidate downstream of IIS is FoxO. It was shown that FoxO1 

is able to disrupt the histone-DNA contacts leading to the de-compaction of 

nucleosomal arrays and that the C- as well as the N-terminal regions of FoxO1 can 

interact with core histones H3 and H4 (Hatta and Cirillo, 2007). This would mean that 

FoxO-p63 regulation is not necessary for the EDC opening and gene expression. 

Another EDC regulator is c-MYC and its related regulatory chromatin organizer, such 

as Setd8 and Sin3a. For example, the histone methyltransferase Setd8 is required 

for epidermal homeostasis. Thus, the conditional deletion of Setd8 in the epidermis 

resulted in the loss of p63 expression, most likely by epigenetic reorganizations, and 

the increase in p53 expression (Driskell et al., 2012). These mice, similar to dkoepi 
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mice, have a severe hypomorphic epidermal phenotype and fail to develop a 

stratified epidermis (Driskell et al., 2012). The transcriptional regulator Sin3a 

functions as co-repressor of c-MYC. It was demonstrated the loss of Sin3a results in 

increased c-MYC binding to the EDC genes and thereby a transcriptional activation 

of these genes (Nascimento et al., 2011). If the EDC is regulated in a FoxO-p63 

dependent manner, need further investigation. Therefore, ChIP-seq investigations of 

p63 and FoxO could elucidate the regulation of these genes in the IIS deficient 

epidermis and how this regulation contributes to the barrier defect of dkoepi mice. 

The transcription factor p63 is a member of the p53 family of transcription factors and 

is able to bind similar target promoters as p53 (Truong et al., 2006). Interestingly, the 

investigation by Heike Stachelscheid showed that the expression of p53 is increased 

in newborn IGF-1Repi-/- and dkoepi epidermis. This could explain changes in p63 target 

gene expression and contribute to the phenotype. However, unpublished data in the 

lab indicate that loss of p53 did not rescue the hypomorphic epidermal phenotype of 

IGF-1epi-/- mice (not shown), indicating that increased p53 action is not responsible 

developmental phenotype of IIS deficient epidermis. 

In general, p63 is a crucial regulator of epidermal development and homeostasis, 

which regulates proliferation and differentiation. Here, we show a novel regulator of 

p63 activity. But overall, the precise function how p63 mediates these processes and 

how it contributes to the regulation of SCD and ACD in response to IIS needs to be 

further investigated. 

 

3.4. The interaction of FoxO and p63 

IP experiments identified FoxO transcription factors as direct interaction partners of 

p63. This interaction alters p63 target gene expression and is independent of FoxO-
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DNA binding. P63 is highly similar to the p53 tumor suppressor and has a key 

function in ectodermal development and homeostasis. 

It has been demonstrated that FoxO3a is able to interact with p53 to regulate Sirt1 

expression in response to changed nutrient availability (Nemoto et al., 2004). This 

Sirt1 regulation was independent of FoxO3a-DNA binding and resulted in the 

reversion of p53 activity on Sirt1. The FKH-DNA binding domain and the C-terminal 

CR3 domain of FoxO3a mediate this interaction, which embrace p53 (Wang et al., 

2008). Interestingly, the FoxO3a binding sites are found in the DBD of p53, which 

has the highest conservation, with over 60% sequence identity, in the p53 family of 

transcription factors (Vanbokhoven et al., 2011). This together with the high 

conservation among FoxOs in the FKH-domain and CR3 domain (Wang et al., 2008) 

suggest the possible interaction of FoxOs with other p53 family proteins. Thus, for 

p63 we could demonstrate the interaction with FoxO1. In addition, the DBD only 

FoxO1 mutant (FoxO1-DN) was able to alter p63 function in heterologous CHO cell 

systems confirming the importance of this domain for the p53/p63-FoxO interaction. 

Moreover, FoxOs interact with a number of additional transcriptional regulators, 

which are important for IFE morphogenesis and homeostasis. One example is β-

catenin. Thus, it was shown that FoxO3a as well as FoxO4 compete with TCF 

transcription factors for β-catenin binding (Almeida et al., 2007; Hoogeboom et al., 

2008). This resulted in β-catenin mediated increase in FoxO target gene transcription 

of e.g. Catalase and Gadd45 and vice versa altered the expression of TCF regulated 

target genes, such as Axin2, in response to increased oxidative stress (Almeida et al., 

2007). Furthermore, it was recently suggested that autocrine Wnt/β-catenin signaling 

regulates IFE stem cell self-renewal and thereby maintains the IFE homeostasis (Lim 

et al., 2013; Choi et al., 2013). If nuclear FoxO interferes with Wnt/β-catenin 
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regulation in keratinocytes one could speculate that these IFE stem cells are altered 

or even lost. 

Another interaction partner of FoxOs, which has been shown to regulate IFE 

homeostasis, is c-MYC (Jensen et al., 2011). MYC is predominantly expressed in the 

basal layer of the IFE and promotes differentiation (Watt et al., 2008). In addition to 

p63, FoxO could also interact with MYC and thereby impair the development of 

differentiated suprabasal layers. 

Nevertheless, there are multiple possibilities how FoxO might interfere with epidermal 

morphogenesis independent of FoxO-DNA binding, but how these are involved in the 

regulation of ACD and stratification remains to be analyzed. Moreover, the DNA 

binding independent function of FoxOs to regulate transcriptional programs seems to 

be an important mode of FoxO activity.  

 

3.5. The role of FoxO during hair follicle development 

In contrast to p63-/- mice, FoxO1-ADA mice develop hair follicle, which suggests that 

the abundance of active FoxO in the nucleus does not alter the initiation of hair 

follicles. As FoxO1-ADA is already expressed at E13.5 (Fig. 24C), a time-point when 

no hair follicle plugs can be observed in control mice, one could speculate that 

nuclear FoxO is crucial or at least does not compromise hair follicle development. 

This observation is further emphasized by alterations in Wnt/β-catenin signaling in 

the epidermis of E16.5 FoxO1-ADA mice (Fig. 29B). Wnt/β-catenin is a crucial 

regulator of hair follicle initiation and the deletion of epidermal β-catenin results in 

mice, which do not develop proper hair follicles (Huelsken et al., 2001). FoxOs are 

able to compete with TCF for β-catenin binding. This leads to a mutual inhibition 

resulting in differential regulation of FoxO and Wnt target genes (Almeida et al., 

2007; Hoogeboom et al., 2008). If FoxO is important for hair follicle formation or 
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homeostasis, it suggests a balanced regulation of FoxO and Wnt-signaling targets in 

hair follicles during epidermal development and homeostasis. In line with this 

hypothesis, investigations of mice that express a nuclear mutant of Akt show 

alterations of hair follicle cycling (Segrelles et al., 2008), which is accompanied by 

hyper-phosphorylation of FoxO3 in tumor-derived keratinocytes of these mice 

indicating FoxO inactivation (Segrelles et al., 2006). In addition, another regulator 

downstream of IR/IGF-1R and upstream of FoxO, the protein phosphatase PTEN, 

has been demonstrated to control hair follicle cycling. Mice with epidermis specific 

deletion of PTEN showed epidermal hyperplasia and accelerated hair follicle 

morphogenesis. Moreover, in these mice a higher density of hair follicles and less 

IFE was observed (Suzuki et al., 2003). These data suggest that mediators of IIS are 

important for hair follicle morphogenesis and homeostasis and that FoxOs could 

contribute to this regulation. In contrast to these observations, the hair follicles in 

IGF-1Repi-/- mice looked normal and alterations in the hair cycling were transiently 

and rarely seen. This could be due to other upstream regulators of FoxOs and might 

be related to TGF-β/Smad signaling. Thus, it was shown that TGF-β regulated Smad 

proteins can form complexes with FoxO transcription factors (Seoane et al., 2004) 

and both together can cooperatively regulate target genes in keratinocytes, such as 

Ovol1 and Gadd45a (Gomis et al., 2006). In addition to TGF-β, Smads are regulated 

by the Bmp receptor signaling cascade and this interplay is important for hair follicle 

stem cell activation (Oshimori and Fuchs, 2012).  

As FoxOs are at the crossroads of multiple upstream signaling pathways, which have 

been shown to regulate hair follicle development and homeostasis, such as Wnt/β-

catenin signaling and TGF-β1/Bmp signaling, it is possible that they are crucial 

contributors to hair follicle regulation. However, if FoxO is important for these 
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processes needs to be tested by the conditional deletion of the different FoxO 

isoforms. 

 

3.6. Model 

Our data revealed a novel mechanism by which IIS regulates the onset of 

stratification and normal epidermal development (Fig. 30). When insulin/IGF-1 bind to 

its receptors IIS leads to Akt phosphorylation and subsequently Akt translocates to 

the nucleus and phosphorylates FoxOs. Thereby FoxOs are excluded from the 

nucleus and are unable to bind p63 resulting in normal p63 transcriptional activity. 

These target genes are important for keratinocyte proliferative potential, ACD and 

stratification. Thus, the keratinocytes of the basal layer can divide asymmetrically and 

give rise to more suprabasal layers and finally form a barrier. When IIS is impaired, 

more FoxO remains in the nucleus and alters p63 function. This leads to altered p63 

target gene expression and a loss of proliferative potential and less ACDs resulting in 

a hypomorphic epidermis. Furthermore, the constitutive expression of nuclear 

FoxO1-ADA impaired the p63 function resulting in an epidermal phenotype similar to 

p63-/- mice and the complete loss of ACDs and stratification. 
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Figure 30: Model of IIS mediated regulation of FoxO and p63 during epidermal 

morphogenesis. IRS- insulin receptor substrate, PI3K- phosphoinositide-3 kinase, Akt- protein 

kinase B, FoxO- forkhead box O factor 
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3.7. Future prospects 

During epidermal morphogenesis p63 is an important regulator of proliferative 

potential and stratification and we could show that IIS is a crucial upstream regulator 

to inhibit FoxO mediated p63 impairment. However, we were not able to rescue 

epidermal stratification in vivo. Thus, it would be important to analyze IGF-1Repi-/- 

mice with a conditional ablation of FoxOs to conclude about the biological importance 

of this FoxO driven mechanism during epidermal stratification. Furthermore, it would 

be important to investigate potential targets of IIS/FoxO/p63 regulation to identify 

important regulators of ACD and epidermal stratification.  

In addition, it is not clear how IIS regulates the spindle block in keratinocytes. A 

potential interesting downstream target of IIS could be the p38 MAPK pathway, which 

has been implicated in the regulation of similar processes (Bulavin et al., 2001). 

Finally, FoxO is a known regulator of haemapoetic and neuronal stem cells, therefore 

it would be interesting to investigate the role of FoxOs in distinct IFE and hair follicle 

stem cell populations and as initial analysis suggest FoxO might be crucial for hair 

follicle morphogenesis. 
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4. Material and Methods 

4.1. Mice 

4.1.1. Epidermis specific IR and IGF-1R knockout mice 

The epidermis specific deletions of IR and IGF-1R have been described 

(Stachelscheid et al., 2008). Briefly, IGF-1R floxed mice were generated using a 

targeting vector spanning a region from intron 2 to intron 3 of the IGF-1R gene 

flanked by loxP sites. Cre mediated recombination leads to the excision of exon3 and 

a frame shift resulting in a stop codon in exon4. Genotyping for IGF-1Rfl/fl was 

performed by PCR on DNA from tail cuts using the following primers: 5’-TCC CTC 

AGG CTT CAT CCG CAA-3’ (fwd) and 5’-CTT CAG CTT TGC AGG TGC ACG-3’ 

(rev). In the IR mice exon 4 is floxed and will be excised upon Cre recombination. For 

genotyping following primers were used: 5’-GAT GTG CAC CCC ATG TCG-3’ (fwd); 

5’-CTG AAT AGC TGA GAC CAC AG-3’ (rev). IGF-1Rfl/fl mice and IRfl/fl mice were 

crossed with the Keratin 14- Cre mice (Hafner et al., 2004) to generate epidermis 

specific deletion. 

 

4.1.2. FoxO1-DN and FoxO1-ADA mice 

For epidermis specific expression of FoxO1 mutants, mice carrying a CAGG 

promoter, a loxP-flanked stop cassette followed by the cDNA of constitutively nuclear 

FoxO1 (FoxO1-ADA) or dominant negative FoxO1 (FoxO1-DN) in the Rosa26 locus 

were generated (Belgardt et al., 2008; Stohr et al., 2011). For genotyping the 

following primer sets were used: 5’- GAT ATG GAA TAC TGG GCT CTT-3’ (rev); 5’-

AAA GTC GCT CTG AGT TGT TAT C-3’ (fwd); 5’-TGT CGC AAA TTA ACT GTG 

AAT C-3’ (rev).  To conditionally knock-in these mutants specifically in the epidermis, 

FoxO1 mutant mice were crossed with the Keratin 14 Cre mice (Hafner et al., 2004). 
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FoxO1-DN mice were additionally crossed with the IGF-1Rfl/fl mice to obtain K14-Cre; 

IGF-1Rfl/fl; FoxO1-DN mice. 

 

4.1.3. FoxO1-GFP mice 

To conditionally express GFP tagged FoxO1, mice with a floxed stop cassette 

followed by the cDNA of human GFP-tagged FoxO1 at the Rosa26 locus (Fukuda et 

al., 2008) were crossed with K14-Cre mice (Hafner et al., 2004). For the investigation 

of the subcellular localization of FoxO1-GFP, these mice were additionally crossed 

with IGF-1Rfl/fl mice to obtain K14-Cre; IGF-1Rfl/fl; FoxO1-GFP mice. For genotyping 

of the FoxO1-GFP construct the following primer sets were used: 5’-GGA GGG GAG 

TGT TGC AAT ACC T-3’ (fwd), 5’-GCG GGA GAA ATG GAT ATG AAG T-3’ (rev); 5’-

CCG GAT CCA CTA GTT CTA GAG C-3’ (rev). 

 

4.1.4. Isolation of epidermis of newborn mice 

The epidermis of newborn mice was separated from the dermis by floating the whole 

dissected skin on buffer containing 0.5 M ammonium thiocyanate (NH4SCN) diluted 

in phosphate buffer (0.1 M Na2HPO4, pH 6.8) for 20 min on ice. After stripping, the 

epidermis was either snap frozen in liquid nitrogen or immediately processed for RNA 

isolation or protein extraction. 

 

4.1.5. Isolation of epidermis of E16.5 embryos 

Epidermis of embryos was separated using dispase digestion. Therefore the 

dissected skin was incubated for 2 to 4 hours in mouse keratinocyte medium 

supplemented with Dispase II (Sigma) at 4°C (500mg/ml diluted in 10 ml medium). 

After incubation the epidermis was split, briefly washed in PBS and snap frozen in 

liquid nitrogen or directly processed. 
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4.2. Immunohistochemistry 

4.2.1. Paraffin embedded skin sections 

For histology embryos or mouse skin were fixed in 4% PFA and embedded in 

paraffin. 5 µm paraffin sections were deparaffinized and stained with Haematoxylin & 

Eosin (H&E) and imaged with an Olympus BX51 microscope. For 

immunofluorescence paraffin sections were deparaffinized, antigens were retrieved 

with buffer A, UG or AG (EMS) by high pressure cooking and sections were blocked 

in PBS containing 5% normal goat serum and 0.1% Triton X-100. Slides were 

incubated with primary antibody diluted in IF buffer (10% normal goat serum, PBS, 

0,1% Triton X) followed by washing and incubation with the appropriate secondary 

antibodies coupled to Alexa 488, Alexa 594 or Cy3. Nuclei were counterstained with 

DAPI (Sigma) and sections examined using Olympus IX81 fluorescence or Olympus 

FV1000 confocal microscopes. Primary antibodies are listed in Table 1. 

 

4.2.2. Division axis orientation determination 

To analyze the angle of divisions, the axis of divisions in E16.5 embryos was 

determined in anaphase/telophase cells by using survivin staining as a marker for 

spindle orientation, described by Williams et al. 2011 (Williams et al., 2011). The 

angle of division was determined by measuring the angle of the plane transecting two 

daughter cells, marked by survivin, relative to the plane of the basement membrane. 

The angles of divisions were quantified and angle orientation was plotted with Oriana 

4 (KCS). The different divisions were then categorized with asymmetric divisions 

having an angle of 60-90 degrees, random 30-60 degrees and symmetric 0 and 30 

degrees. Each of the total number of asymmetric, random or symmetric divisions of 

the control were then set to 100% to compare the relative loss within each of the 

division categories to either knockouts or transgene. 
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4.3. Protein biochemistry and molecular biology 

4.3.1. Protein extraction from epidermal splits and keratinocytes 

Primary keratinocytes or epidermis was lysed, after washing with PBS, using 

stringent SDS Lysis Buffer (20mM Tris pH 7.9, 200 mM NaCl, 1% SDS) 

supplemented with phosphatase inhibitors, mammalian protease inhibitor cocktail 

(Sigma-Aldrich) and 2 mM PMSF (Sigma-Aldrich) to prevent protein degradation by 

phosphatases and proteases. For cellular fractionation of primary keratinocytes 

detergent-free lysis buffer (20 mM HEPES, pH 7.9, 25% glycerol, 1.5 mM MgCl2, 1.2 

M KCl, 0.2 mM EDTA, 0.5 mM DTT, 0.2 mM PMSF) was used and nuclei were 

extracted after sequential washes with SDS lysis buffer. 

Newborn epidermis was lysed by homogenizing the frozen tissue with a mixer mill for 

3 min at 30 Hz. Embryonic epidermis was lysed by sequential tissue disruption using 

syringes with decreasing tip diameter. Cells were washed with PBS twice before the 

lysis buffer was added and then dissociated from the dish using a cell scraper. 

Subsequently, the lysates were transferred into reaction tubes and centrifuged for 10 

min at 4°C and 13000 rpm. Supernatants were transferred into a new reaction tubes. 

Protein concentration was determined by the modified Lowry method (BioRad) 

according to manufacturers protocol. 

 

4.3.2. SDS-Polyacrylamid-gelelectrophoresis (SDS-PAGE) and immunoblot 

For SDS-PAGE protein lysates were dissolved in Laemmli buffer and incubated for 

10 min at 95°C. Equal amounts of total protein lysate were loaded on precast 4-12% 

gels (Novex, Life Technologies) and separated at 40mA per gel. 

After running the gels were transferred to PVDF membrane by semidry blotting or 

tank-blot. Membranes were blocked with 5% of western blot blocking solution 

(Roche) in TBS-T (0.1% Tween 20, 20 mM Tris pH 7.5, 137 mM NaCl) for 1 hour and 
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subsequently incubated with the primary antibody diluted in blocking solution over 

night at 4°C. After washing in TBS-T, the membranes were incubated with the 

appropriate horseradish peroxidase coupled secondary antibody. Protein bands were 

detected by chemiluminescence on a luminescence detector (Biometra) using 

SuperSignal West Pico or SuperSignal West Femto Kit (Thermo Fisher Scientific). 

 

4.3.3. Co-immunoprecipitation 

For Co-immuno-precipitations, transiently transfected CHO cells were lysed using 

HEPES buffer (50 mM HEPES-KOH pH 7.9, 140 mM NaCl, 1 mM EDTA, 10% 

glycerol, 0.25% Triton X-100, 1% NP-40) for 20 min at 4°C. Then the nuclei were 

disrupted by mild sonication and the lysate was pre-cleared using PBS washed 

Protein A/G agarose beads (Roche) for 1 hour at 4°C. After overnight antibody- 

incubation at 4°C antibody/protein complexes were precipitated with Protein A/G 

beads followed by sequential washing in IP buffer (150 mM NaCl, 20 mM Tris pH 8, 2 

mM EDTA). The immune-precipitated samples were analyzed by western blot. 

 

4.3.4. RNA extraction 

Gene expression was analyzed using quantitative real time RT-PCR. RNA was 

extracted from keratinocytes and epidermis using Trizol (Invitrogen) followed by 

ethanol precipitation and the RNeasy Minikit (Qiagen) according to manufacturers 

protocol. 

 

4.3.5. cDNA synthesis and realtime qPCR analysis 

RNA was reversely transcribed with Quantitect Reverse Transcriptase (Qiagen) to 

obtain cDNA according to manufacturers instructions. CDNA was amplified using the 

TaqMan Universal PCR Master Mix (Applied Biosystems) and PCR was performed 
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on an ABI StepONE Plus machine. Samples were compared by calculation of the 

comparative cycle threshold (ΔΔCt) with data normalized relative to 18S and Hprt1.  

Probes for target genes were ordered from TaqMan Assay-on-Demand Kits (Applied 

Biosystems). Taqman probes are listed in Table 3. 

 

4.3.6. Global genome expression analysis 

For microarray analysis, RNA was isolated from epidermis of control and dkoepi-/- 

newborn mice (N=4 each) and sent to the DNA Sciences Core at the University of 

Virginia for labeling, amplification and hybridization to the Affymetrix 430-2.0 platform. 

To analyze global gene expression, significantly regulated gene sets (p<0.05) from 

the different microarrays were analyzed for overlap using VENNY Tool (Oliveros et 

al., 2007) (http://bioinfogp.cnb.csic.es/tools/venny/index.html). The significance of 

overlapping and non-overlapping genes was determined using hypergeometric 

distribution algorithm. Overlapping and non-overlapping gene sets were then 

annotated using DAVID functional annotation tool (Dennis et al., 2003). 

 

4.3.7. Chromatin-immunoprecipitation followed by qPCR 

For ChIP assays approximately 3 *106 primary mouse keratinocytes or one total 

newborn epidermis were cross-linked with 1% formaldehyde. Crosslinking was 

stopped and cells lysed with SDS lysis buffer. Lysates were extensively sonicated on 

ice to obtain DNA fragments ranging from 200 to 1000 bp in length. The supernatant 

was diluted for immunoprecipitation in IP buffer (150 mM NaCl, 20 mM Tris pH 8, 2 

mM EDTA) and pre-cleared with protein A beads (Roche). Supernatant was 

incubated with 4 µg antibody overnight at 4°C and than beads were sequentially 

washed in IP buffer, high salt buffer (500 mM NaCl, 20 mM Tris pH 8, 2 mM EDTA), 

LiCl buffer (250 mM LiCl, 10 mM Tris pH 8, 1 mM EDTA, 1% NP-40) and again with 
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IP buffer (Ferone et al., 2011). Chromatin was eluted with elution buffer (100 mM 

NaHCO3, 1% SDS), DNA purified by phenol/chloroform precipitation and analyzed by 

quantitative realtime PCR or protein complexes analyzed by western blot (see 4.3.2.). 

Realtime PCR was performed using the SYBR Green PCR master mix (Applied 

Biosystems) in an ABI StepOne light cycler. Primersets for analysis are listed in 

Table 4. 

 

4.3.8. Site directed mutagenesis 

For FoxO1-ADA DNA binding domain (DBD) mutation the QuikChange Sit-Directed 

Mutagenesis Kit (Stratagene/Agilent) was used. The FoxO1-ADA target plasmid was 

amplified using the following primers, which contain mutations of the histidin-codon at 

position 212 of the DBD to arginine: 5’-GGA AGA ATT CAA TTC GCA GGA ATC 

TGT CCC TTC ACA GC-3’ ; 5’-ACC TTC TTA AGT TAA GCG TCC TTA GAC AGG 

GAA GTG TC-3’. Each primer was used in a separate PCR reaction and amplified 

according to manufacturers protocol. Transformation was performed using XL1-

Supercompetent bacteria (Stratagen/Agilent) according manufacturers instructions. 

The correct mutagenesis was confirmed by DNA sequencing. 

 

4.4. Cell biology 

4.4.1. Isolation and cultivation of primary keratinocytes 

Epidermis of newborn pubs was separated from dermis. After overnight dispase II 

digestion a single cell suspension was obtain by subsequent Trypsin (TrypLE, 

GIBCO) digestion for 30min. The isolated keratinocytes were plated on collagen type 

1 coated dishes in co-culture with a J2 3T3 fibroblast feeder layer and cultured in 

keratinocyte cell culture medium (DMEM-medium, 10% chelated FCS, 5µg/ml 

insulin,10 ng/ml epidermal growth factor (EGF), 10-10 M cholera toxin, 100 U/ml 
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penicillin, 10 µg/ml streptomycin, 2mM L-glutamine). Primary mouse keratinocytes 

were cultured at 32°C, 5% CO2 and medium was changed every second day. To split 

the cell, growth medium was removed and keratinocytes were washed with PBS and 

trypsinized for 10 min at 37°C. Trypsin was inactivated by the addition of keratinocyte 

medium. The suspension was centrifuged at 850 rpm for 5 min and the supernatant 

discarded. The cells were resuspended and plated on new pre-coated dishes. 

 

4.4.2. Chinese hamster ovarian cell culture 

Chinese hamster ovarian cells were cultivated in Ham’s/F-12 (GIBCO) supplemented 

with 10% FCS and penicillin (100 U/ml) /streptomycin (100 µg/ml streptomycin). 

 

4.4.3. Transfection of keratinocytes and CHO cells and luciferase reporter 

assays 

For overexpression, primary mouse keratinocytes or CHO cells were transfected 

using Lipofectamine 2000 (Invitrogen) or Lipofectamine (Invitrogen), respectively, at 

a confluency of 70-90% according to manufacturer’s protocol.  

For Luciferase assays cells were transfected at 70-90% in 24 well plates. 

Transfection solution (250 ng of each reporter or expression plasmid, 25 ng Renilla 

plasmid, 2-3 µg Lipofectamine 2000 (keratinocytes) or Lipofectamine (CHOs) in 100 

µl Medium without additives) was prepared and cells washed twice with PBS. 100 µl 

transfection solution and 200 µl medium (no additives) were added to each well for 5 

hours. Cells were washed twice and cultured in normal medium for 24-48 hours post 

transfection. Afterwards cells were washed twice with PBS, lysed and Luciferase 

activity measured using the Dual Luciferase Reporter Asay Kit (Promega) according 

to manufacturers instructions. 
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4.4.4. RNA interference 

To silence FoxO gene expression keratinocytes were transfected with ON-TARGET 

plus SMARTpool siRNAs (Thermo Fisher Scientific) targeting FoxO1, FoxO3 and 

FoxO4. Subconfluent primary mouse keratinocytes were transfected using 50nM of 

each SMARTpool or non-targeting control pool and Lipofectamine2000 Reagent 

(Invitrogen) according to manufacturer’s protocol. Efficient knockdown was observed 

48 hours post-transfection by RT-PCR and Western blot analysis. 

 

4.5. Statistical methods 

Data were analyzed for statistical significance using two-tailed unpaired Student’s t 

test unless otherwise stated. Relative loss of ACD, random divisons and SCD were 

tested using One-way ANOVA in Prism 5 (GraphPad). The asterisks shown in graphs 

correspond to the p-values as stated in the figure legends. The results were 

presented as the average of at least three independent experiments unless otherwise 

stated in the legends and arrow bars indicate standard deviation (SD) or standard 

error of the mean (SEM). 
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4.6. Antibodies, primer and plasmids 

4.6.1. Primary antibodies 

Table 1: List of primary antibodies used for IF, WB or IP 
Antigen Species Dilution Manufacturer 
Actin (C4) mouse WB 1:10000 MP Biomedicals 

FoxO1 (C29H4) rabbit 
WB 1:1000 

IF 1:100 Cell Signaling Technology 
FoxO1 (H-128x,sc-11350) rabbit IP 4 µg  
FoxO3a (75D8) rabbit WB 1:1000 Cell Signaling Technology 
FoxO4 (sc-34899) rabbit WB 1:500 Santa Cruz Biotechnology 
phospho-FoxO1 (S256) rabbit WB 1:500 Cell Signaling Technology 
Flag M2 mouse IP 4 µg Sigma-Aldrich 
GFP (ab-13970) chicken WB 1:5000 Abcam 
GFP (beads) alpaca IP 20 µl Chromotek 
IGF-1Rβ (C20, sc-713) rabbit WB 1:500 Santa Cruz Biotechnology 
Keratin 10 rabbit IF 1:2000 Covance 
Keratin 14 rabbit IF 1:2000 Covance 
Keratin 6 rabbit IF 1:2000 Covance 
Loricrin rabbit IF 1:2000 Covance 

p63α (H129) rabbit 
WB 1:2000 
IF 1:1000 Santa Cruz Biotechnology 

p63 (4A4) mouse 
WB 1:2500 
IF 1:1500 Santa Cruz Biotechnology 

Survivin (71G4B7) rabbit IF 1:100 Cell Signaling Technology 
 

4.6.2. Secondary Antibodies 

Table 2: List of secondary antibodies used for IF and WB 
Antigen Species Dilution Manufacturer 
Alexa 488 anti-rabbit donkey 1:1000 Molecular Probes (Life Tech.) 
Alexa 488 anti-mouse goat 1:1000 Molecular Probes (Life Tech.) 
Alexa 594 anti-rabbit donkey 1:1000 Molecular Probes (Life Tech.) 
Cy3 anti-mouse goat 1:1000 Cell Signaling Technology 
HRP anti-rabbit goat 1:5000 BioRad 
HRP anti-mouse goat 1:5000 BioRad 
HRP anti-chicken rabbit 1:5000 Upstate (Millipore) 
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4.6.3. Primer 

Table 3: List of Taqman probes used for realtime qPCR 
Gene Symbol Probe number 

 Foxo1 Mm00490672_m1 
 Foxo3 Mm01185733_m1 
 Foxo4 Mm00840140_g1 
 Foxo6 Mm00809934_s1 
 Hprt Mm00446986_m1 
 18s Mm03928990_g1 
 Runx2 Mm00501584_s1 
 Sfn Mm01180869_s1 
 Trp63 Mm01144752_m1 
 Krt15 Mm00492972_m1 
 Krt14 Mm00516876_m1 
 Krt10 Mm03009921_m1 
 Ccng1 Mm00438084_m1 
 Fgfr2 Mm01269930_m1 
 Sprr2f Mm00448855:s1 
 Sprr2i Mm007268832_s1 
 Lce3b Mm01333146_g1 
 Cdkn1a Mm01303209_m1 
 Tgfbi Mm00493634_m1 
 Pip4k2a Mm00435721_m1 
 Epha2 Mm00438726_m1 
 Jag1 Mm00496902_m1 
  

Table 4: List of primers used for ChIP-qPCR assays 

Gene Symbol 
Sense/ Antisense Primer 
Sequence 

1433sigma (Sfn) CGATGTGGAGAACCAGAGAG 
  CCAATATGTTTGTTGGACACCT 
Cdkn1a CATGTTCAGCCCTGGAATTG 
  GTAGTTGGGTATCATCAGGTCTC 
Runx2 GACTGTCAGGAGCTGGGAAG 
  GGCCATATAGCCTTGCATCA 
Fgfr2 AATGAGCGCGCAAGTTAGAAC 
(Ferone et al., Embo Mol Med, 2011) GCCGCGCCGAGATGT 
negative control ACTCTGACGGATGGCTCTTCA 
(Ferone et al., Embo Mol Med, 2011) AGGCAGACTTGTGTGGAGATGA 
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4.6.4. Plasmids 

Table 5: List of plasmids used for protein overexpression and luciferase assays 
Plasmid Insert 
pcDNA3-FoxO1-ADA mouse 
pcDNA3-FoxO1-DN mouse 
pcDNA3-FoxO1-ADA-ΔDBD mouse 
pCMV5-Flag -FoxO1 mouse 
pCMV2-Flag-ΔNp63α mouse 
pCMV2-Flag-ΔNp63α-L514F mouse 
pCMV-Renilla reporter Renilla 
pG13 (p63 reporter) human 
pBDS-2(3x) (p63 reporter) human 
p6xDBE (FoxO reporter) human 
pEGFP mouse 
pcDNA3 no 
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5. Abbreviations 

ACD asymmetric cell division 

ADULT acro-dermato-ungual-lacrimal-tooth syndrome 

AEC ankyloblepharon-ectodermal defects-cleft lip/palate syndrome  

Akt protein kinase B 

AMP adenosin-mono-phosphate 

AMPK AMP-aktivierte protein kinase 

aPKC atypical protein kinase C 

ATM ataxia telangiectasia mutated protein kinase 

ATP adenosin-tri-phosphate 

BAD Bcl2-associated death promoter 

CCND2 cyclin D2 

CCNG2 cyclin G2 

CDKN1A cyclin dependent kinase inhibitor 1A 

CDKN1b cyclin dependent kinase inhibitor 1B 

CDKN2A cyclin dependent kinase inhibitor 1A 

cDNA contemplementary DNA 

Cre site specific recombinase 

DAPI 4'6-Diamidino-2-phenylindol 

DBD DNA-binding domain 

DMEM Dulbecco's modified eagle medium 

DNA deoxyribonucleic acid 

ED ectodermal diysplasia 

EDC epidermal differentiation complex 

EEC ectodermal dysplasia and cleft lip/palate syndrome  

EGF epidermal growth factor 

ERK extracellular-signal regulated kinase 

EtOH ethanol 

FACS fluorescence activated cell sorting 

FCS fetal calf serum 

FoxO forkhead box O transcription factor 

GADD45A growth arrest and DNA-damade inducible protein 

GFP green fluorescent protein 
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H&E hematoxylin & eosin 

HRP horseraddish peroxidase 

HSC hemapoetic stem cells 

IF immunofluorescence 

IFE interfollicular epidermis 

IGF-1 insulin-like growth factor 1 

IGF-1R insulin-like growth factor 1 receptor 

IIS insulin IGF signaling 

IL-1 interleukin 1 

Insc inscutable 

IR insulin receptor 

IRS insulin receptor substrate 

JAG1 jagged 1 

JNK c-jun-N-terminal kinase 

K1 keratin 1 

K10 keratin 10 

K14 keratin 14 

K15 keratin 15 

K5 keratin 5 

Klf4 krüppel-like factor 4 

LGN Leu-Gly-Asn repeat-enriched protein 

LMS limb-mammary syndrome  

MAPK mitogen-activated protein kinase 

min minute 

ml milliliter 

mRNA messenger ribonucleic acid 

MYC myelocytomatosis oncogene homolog 

NGS normal goat serum 

NSC neural stem cell 

NuMA nuclear mitotic apparatus protein 

PAGE polyacrylamide gel electrophoresis 

Par3 partitioning defect 3 

Par6 partitioning defect 6 

PBS phosphate buffered saline 
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PCR polymerase chain reaction 

PDK1 phosphoinositide-dependent protein kinase 

PFA para-formaldehyde 

PI3K phosphatidylinositol 3 kinase 

PIP2 phosphatidylinositol-4,5-biphosphate 

PIP3 phosphatidylinositol-3,4,5triphosphate 

PMSF phenylmethylsulphonylfluorid 

PTM posttranslational modification 

qPCR quantitative PCR 

Rac1 Ras-related C3 botulinum toxin substrate 

RHS Rapp-Hodgkin syndrome 

RNA ribonucleic acid 

rpm rounds per minute 

SAM sterile alpha motif 

Satb1 special AT-rich sequence-binding protein 1 

SCD symmetric cell division 

SDS sodium dodecyl sulphate 

siRNA small interfering RNA 

Skp2 S-phase kinase-associated protein 

SMAD mother against decapentaplegic protein 

Sod2 superoxid dismutase 2 

Sprr small proline-rich protein 

TA transactivation domain 

TBS tris buffered saline 

TCF T-cell factor protein 

TGF tumor growth factor 

TNF tumor negrosis factor 

Wnt wingless protein 

µg microgramm 

µl microliter 
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