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/. USAMMENFASSUNG

Diese Arbeit beschiftigt sich mit der Maximum-Entropie-Methode im Zusammenhang
statistischer Modellierung. Anwendungsbeispiele sind dem aufkommenden Forschungs-
bereich der Krebsgenomik entnommen.

Wir beginnen mit einer kurzen Einfiihrung in die Biologie von Krebserkrankungen in
Kapitel 1. In Kapitel 2 diskutieren wir die Grundlagen der statistischen Modellierung, wo-
bei wir eingehend die Maximum-Entropie-Methode besprechen. Insbesondere zeigen wir,
dass viele statistische Modelle in einen einheitlichen Rahmen, basierend auf der Maximum-
Entropie-Methode, gebracht werden kénnen, der diese auf Probleme der statistischen Me-
chanik abbildet. In Kapitel 3 befassen wir uns mit einem bestimmten Maximum-Entropie-
Modell, dem Ising-Modell, im Kontext des inversen Ising-Problems. Wir fithren eine Bethe—
Peierls-Ndherung fiir das inverse Ising-Problem ein. Des Weiteren schlagen wir eine modi-
fizierte Version der Molekularfeld-Néaherung vor, welche auch fiir niedrige Temperaturen
funktioniert. Die folgenden Kapitel wenden Maximum-Entropie-Modelle auf verschiede-
ne Probleme aus dem Bereich der Krebsgenomik an. Eine direkte Anwendung des inver-
sen Ising-Problems auf Daten zur Anzahl von Genkopien in Krebszellen wird in Kapitel 4
beschrieben. In Kapitel 5 erweitern wir die Konzepte der indirekten Korrelationen und
der direkten Kopplungen des inversen Ising-Problems um den Einfluss der Anzahl von
Genkopien auf die Expression von Genen in Krebszellen zu untersuchen. Wir zeigen, dass
die Korrelationen in der Genexpression nicht unbedingt durch regulatorische Wechselwir-
kung zwischen Genen hervorgerufen werden miissen. Stattdessen konnen die Korrelatio-
nen in der Genexpression durch die Korrelationen in der Anzahl von Genkopien hervor-
gerufen werden, was auf der geometrischen Organisation des Genoms beruht. Wir zeigen,
dass ein einfaches Maximum-Entropie Modell die Korrelationen in der Anzahl von Gen-
kopien von den sogenannten “blanken Korrelationen” in den Genaktivitdten, welche nur
den Effekt der regulatorischen Wechselwirkungen beschreiben, trennen kann. Kapitel 6 ist
der Klassifizierung von Krebs gewidmet. Wir fithren einen einfachen semi-tiberwachten
Lernalgorithmus ein um eine Mischung aus paramagnetischen Modellen mit Ising-Spins
dahingehend zu trainieren, Krebsmutationsprofile zu klassifizieren. Wir zeigen, dass die-

ser Lernalgorithmus, mit der Moglichkeit sowohl von den nicht zugeordneten Proben zu



lernen als auch eine falsche Zuordnung von Proben zu korrigieren, sowohl die tiberwach-
ten als auch die uniiberwachten Lernalgorithmen tibertrifft. Die zwei Anhdnge A und B
fassen die jiingeren Studien iiber die Sensibilitdt und die Widerstandsfahigkeit von Krebs-
zellen gegeniiber Therapien zusammen.

Die Ergebnisse von Kapitel 3 wurden in H. C. Nguyen and J. Berg (2012a). “Bethe-
Peierls approximation and the inverse Ising problem”. J. Stat. Mech. P03004; and H. C.
Nguyen and J. Berg (2012b). “Mean-field theory for the inverse Ising problem at low tem-
peratures”. Phys. Rev. Lett. 109, p. 50602 publiziert. Einige der Resultate aus Kapitel 6 wur-
den als Teil von The Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic
Medicine (NGM) (2013). “A genomics-based classification of human lung tumors”. Science
Transl. Med. 5.209, 209ra153 publiziert.
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ABSTRACT

This thesis studies the maximum entropy principle in statistical modelling. Applications
are taken from the emerging field of cancer genomics.

We start with a short introduction to the biology of cancer in chapter 1. In chapter 2,
we discuss general principles of statistical modelling. We discuss in detail the maximum
entropy principle in statistical modelling. In particular, we show that many statistical mod-
els can be put in a unified framework based on the principle of maximum entropy, which
maps them into problems of statistical mechanics. In chapter 3, we consider a particular
maximum entropy model, the Ising model, in the context of the inverse Ising problem. We
introduce a Bethe—Peierls approximation to the inverse Ising problem. We then also sug-
gest a modification for the mean-field approximation to work at low temperatures. The
following chapters apply maximum entropy models to different problems of cancer ge-
nomics. A direct application of the inverse Ising problem to gene copy-number data of
cancer cells is described in chapter 4. In chapter 5, we extend the concepts of indirect cor-
relations and direct couplings of the inverse Ising problem to investigate the influence of
gene copy-numbers on gene expressions in cancer cells. We show that the correlations in
gene expression need not be due to regulatory interactions between genes. Instead, corre-
lations in gene expression of cancer cells can be induced by the correlations in their copy-
numbers, which is due to the geometrical organisation of the genome. We show that a
simple maximum entropy-model can disentangle copy-number-induced correlations and
the so-called “bare-correlations” in gene expression, which capture the effect of regula-
tory interactions alone. Chapter 6 is devoted to cancer classification. We introduce a sim-
ple semi-supervised learning algorithm to train a mixture of paramagnetic models with
Ising spins to classify cancer mutation profiles. We show that, with the capability of both
learning from unlabelled samples and correcting mislabelled samples, this learning algo-
rithm outperforms both the supervised and unsupervised learning algorithms. The two
appendices A and B summarise recent studies on sensitivity and resistance of cancer cells
to therapy.

The results of chapter 3 were published in H. C. Nguyen and ]. Berg (2012a). “Bethe-
Peierls approximation and the inverse Ising problem”. J. Stat. Mech. P03004; and H. C.
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Nguyen and J. Berg (2012b). “Mean-field theory for the inverse Ising problem at low tem-
peratures”. Phys. Rev. Lett. 109, p. 50602. Some results of chapter 6 were published
as a part of The Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic
Medicine (NGM) (2013). “A genomics-based classification of human lung tumors”. Science
Transl. Med. 5.209, 209ra153.
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1.1

CHAPTER 1

INTRODUCTION TO THE BIOLOGY OF CANCER

More is different.
P. W. Anderson

In this chapter, we discuss some aspects of cancer biology to set the basis for the quan-
titative discussions in the following chapters. We keep the contents at the minimal level
and more detailed discussions are given as separate additional remarks so that interested
readers may have quick references. We close the chapter with a brief introduction to sev-
eral data types emerging in cancer genomics research that are most relevant to our analysis

throughout this thesis.

The human body homeostasis

In many aspects, a human body can be regarded as a spatial system of some trillions of cells
of different types living in a common environment. These cells are organised in tissues,
tissues make organs and organs make systems; all are working in harmony to maintain

the body as a whole.

Remark: Cells in the human body

Cells are the building blocks of the human body, and arguably of all organisms. A cell is sur-
rounded by the cell membrane, which separates the intracellular space from the extracellular space.
Inside the intracellular space is the cytoplasm, where billions of biochemical processes are taking

place at any time.

Proteins are the main elements of all biochemical reactions

Proteins are sequences of amino acids folded in specific spatial conformations. There are mil-
lions of them in a cell. Proteins can interact with each other, changing their chemical details or
their conformations, or forming protein complexes. Virtually all biological processes in a cell

are performed by proteins and protein complexes: they break up nutrient molecules for energy;
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CHAPTER 1: INTRODUCTION TO THE BIOLOGY OF CANCER

they carry other substances to places where they are needed; they also catalyse the synthesis of

fundamental materials for the cell, including the proteins themselves.

Genes are the templates for protein synthesis

Proteins are not very stable molecules; old proteins are degraded, and new proteins are constantly
synthesised. A protein is synthesised according to a very stable template — the genes. Genes are
specific sequences of nucleotides lying on a great polymer chain, the DNA molecule (deoxyri-
bonucleic acid), which (in eukaryotes such as humans) are protected in the nucleus of the cell,

separated from the cytoplasm by the nuclear membrane.

A DNA molecule is a double-stranded sequence of four nucleotides, or bases, namely adenine
(A), thymine (T), guanine (G) and cytosine (C). Along a single strand, the nucleotides are linked
via covalent bonds and the two strands are bound by hydrogen bonds complementarily, A-T, G-C.
In normal conditions, together with some special proteins, the double stranded DNA molecules
are twisted and folded multiple times in a very condensed structure, appearing as chromosomes,
which were first observed by biologists of the eighteenth century. Chromosomes appear in pairs.

There are 23 pairs of chromosomes in the nucleus of a human cell, known as the human genome.

Protein synthesis

The sequence of a gene on the DNA molecule is first copied to a shorter messenger RNA sequence
via special proteins — the RNA polymerases — in a process known as transcription. Similar to DNA,
a messenger RNA is also a sequence of the four nucleotides, but with thymine (T) replaced by
uracil (U). Messenger RNA are single-stranded, much shorter and more dynamic than DNA.
After transcription, the messenger RNA sequences are further processed and transported out of
the nucleus to cellular organelles called ribosomes in the cytoplasm. At the ribosomes, they are
translated into the amino acid sequences, where every three nucleotides (a codon) make an amino
acid. The amino acid sequences then fold into a specific spatial conformations, giving rise to
mature proteins. When a gene is actively making proteins, we say the gene is expressed or active,

otherwise it is said to be silenced or inactive.

Gene expressions are controlled by gene regulation mechanisms at multiple levels. The ex-
pression of gene A (i.e., protein A) can seek and bind specifically to a short sequence before the
starting point of gene B on the DNA, blocking (or promoting) the RNA polymerases from tran-
scribing the gene. This is called transcriptional regulation. Alternatively, a protein can degrade the
mRNA sequence of another gene or modify another protein in a way to deactivate or activate its
function; the former mechanism is called post-transcriptional regulation and the latter mechanism

is called post-translational regulation.

Cell stability and flexibility

Protein reactions, including those with DNA and with other substrates in the cell plasma form
a complex network of biochemical reactions. The network has multiple alternative pathways,
complicated feedback and feedforward pathways, which aim to give the cell both stability and
flexibility. Stability means that the network is stable under small disturbances or fluctuations
from inside the cell (intrinsic fluctuations) or from the environment outside (extrinsic fluctuations).
Flexibility means the network can change to an other state with other active genes in a necessary
response to large disturbances. Importantly, in a multicellular organism, cell flexibility also im-
plies the ability to response to external signals from the other cells of the body. An external signal
is usually a protein (factor) generated by some specific cell in the body that binds onto a protein

on the surface of another cells (receptor). Upon the binding of the factor, the receptor changes its
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CHAPTER 1: INTRODUCTION TO THE BIOLOGY OF CANCER

characters and ignites a cascade of biochemical reactions into the cells (called signalling pathway),
which changes the expression profile and therefore the biological state of the cell. We will see that

such signalling pathways are of great importance for the integration of a multicellular organism.

Cells of the body are embedded in a slowly flowing extracellular fluid, which is con-
nected throughout the body, forming the living environment of the cells. The concentra-
tions of small dissolved molecules in the extracellular fluid are highly homogeneous and
stable. The narrow ranges of allowed variations of the concentrations of different elements

in the extracellular fluid in table 1.1 illustrate this stability.

short-term

normal value normal range nonlethal limit unit
Oxygen 40 3540 10-1000 mm Hg
Carbon dioxide 40 35-45 5-80 mm Hg
Sodium ion 142 138-146 115-175 mmol/1
Potassium ion 42 3.8-5.0 1.59.0 mmol/1
Calcium ion 1.2 1.0-14 0.5-2.0 mmol/I
Chloride ion 108 103-112 70-130 mmol/1
Bicarbonate ion 28 24-32 8-45 mmol/1
Glucose 85 75-95 20-1500 mg/dl
Body temperature 37.0 37.0 18.3-43.3 °C
Acid-base 7.4 7.3-7.5 6.9-8.0 pH

Table 1.1: The composition of the extracellular fluid as from Guyton and Hall 2006.

The stability of the extracellular fluid is maintained by the cells themselves through the
activities of all organs and systems of the body. The circulating system keeps the extra-
cellular fluid in flowing state; the respiratory system regulates oxygen and carbon dioxide
concentrations; the kidneys control the water volume of the body and the ion concen-
trations; etc. Either directly or indirectly, virtually every cell contributes to maintaining
constant living conditions for the whole population of cells, ensuring the stability of the
tissues and therefore the whole body.

The cell populations in tissues normally remain in local equilibrium, but this equilib-
rium is very dynamic. Cells age and die; other cells continuously divide giving rise to new
cells to replace the old ones. The cell renewal process needs to be very strictly regulated to
ensure the tissue equilibrium. Cells can only grow and divide when they receive signals
to grow and divide. They have to die when they receive signals to die. Even the ways they
die is carefully controlled and organised, which are usually very soft deaths, avoiding any
harm to the other cells (apoptosis). These control signals are often the responses of the body

to the deviations of the cell population from equilibrium.



CHAPTER 1: INTRODUCTION TO THE BIOLOGY OF CANCER

Remark: Tissue architectures and cell renewal

Tissues usually consist of cells of several types. Cells can be glued together by direct contacts via
proteins hanging in their membrane. They can also secrete special proteins (collagens) to form a
network of filaments called extracellular matrix which mechanically supports the tissues. Tissue

architectures are classified into two classes: epithelial and connective.

Epithelial architecture and connective architecture

Epithelial architecture appears in organ surfaces. Skin, gut lumen and lung squamous are exam-
ples of epithelial architecture. They are usually thin and dense layers of cells. The cell walls are
directly attached to each other via transmembrane proteins. In the upper layer, cells usually have
enzyme production activities. At the base of epithelial tissues, cell walls have integrins, which go
through the cell membrane and connect to the cytoskeleton (which are the “bones” that support
the whole mechanical shape of the cells) at one end and attach to the extracellular matrix of the
connective architecture lying below.

Below the epithelial layer is the connective architecture, which consists largely of extracellu-
lar matrix with cells scattering among. The extracellular matrix generates the tensile forces of the
tissue. The space in the network is filled with proteins and polysaccharide, which provide com-
pression resistance. The cells are attached to the collagen filaments of the extracellular matrix via
integrins.

Cells in the connective architectures are of very different types. The endothelial cells and
pericytes form blood vessels which bring nutrients and oxygen in, carbon dioxide and waste
products out of the tissue, maintaining the local stability of the extracellular fluid. Nerve cells
provide a way of sensing and feedback control on the tissue from the nervous system. Cells from
the immune system protect the tissue from invasion by aliens such as bacteria, or digest old dying

non-function cells to clean up the tissue environment.

Cell renewal

Cells age and die. Aged cells are usually prone to apoptosis, where a special series of reactions
is activated resulting in cell destruction without releasing toxic proteins that are harmful to the
tissue. Dying cells or their debris are also taken up by the immune system. Dying cells of the
epithelial layers such as the skin or the gut lumen are usually directly detached and washed out.

New cells to replace the dying ones come about by cell divisions. Interestingly, not all cells
in a multicellular organism can divide. Cells are organised into classes of differentiated cells and
stem cells. Differentiated cells are functional, but they do not divide. The population of these
differentiated cells is relied on the divisions of stem cells. A stem cell can perform a symmetric
division, giving rise to two new stem cells, or an asymmetric division, giving rise to one stem cell
and one differentiated cell. In reality, one type of stem cells can often differentiate into different
types of differentiated cells. The differentiation process is also usually multi-step with cells of
different levels of “stemness".

To maintain the homeostasis of the population, cell renewals are strictly regulated. Cells
can only divide when they received signals that allow them to divide; new cell can only survive
when they received signals that allow them to survive. There are also inhibitors that block the
cell divisions or induce cell deaths. Cell renewal is strictly controlled by the balance of many

positive and negative control signals.

The dynamical equilibrium of the body is usually known as the human body homeostasis.
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Depending on the context, the homeostasis may refer to the stability of the extracellular
fluid, or the equilibrium of the cell population. On the other hand, these are ultimately
two sides of the same problem. In any case, a disturbance in the human body homeostasis
is always either a cause or a consequence of some disease (Guyton and Hall 2006). In
particular, the disturbance in cell population homeostasis is the ultimate nature of cancer,

the topic of the following sections.

Tumours in the human body

Tumour as a disease is the disturbance of cell population homeostasis. Tumours are abnor-
mal tissue bulks developing within normal tissues. Such tissue bulks contain uncontrolled
growing cells.

Tumours are very diverse; they differ enormously in their levels of abnormality. Some tumours
are slightly hyper-growing bulks of cells; other than that they are rather normal and can
integrate well to the tissue. These are called hyperplastic. When the cells in a tumour ap-
pear abnormal in their shapes, their nuclei and their cytoplasmic activities, the tumour is
called dysplastic. When such tumours archive macroscopic sizes, they are called polyps or
adenomas. Adenomas however do not invade nearby tissues, respecting their boundary;
they are thus called benign tumours, which can normally be removed by surgery. This is to
distinguish from malignant tumours, which invade into nearby tissues, destroying the basal
layers and can migrate to distal parts of the body via the blood streams or lymph streams
to seed new tumours — a process called metastasis. Surgery and other treatments usually
fail to treat malignant tumours because of their “roots” in the nearby tissues and because
of their metastatic seeds. The explosive growth of metastasis tumours all over the body
seriously disrupts the functions of different tissues of the body, causing pain and death of
the organism (Weinberg 2007).

The word cancer refers to malignant tumours in clinical contexts. However, in cancer
research, the terms “cancer” and “cancer cells” are usually also used for benign tumours
and their cells. Following the convention of cancer research, we will also use “cancer” and
“cancer cells” for a general tumour and tumour cells.

It is generally believed that tumours progress through at least some of the different levels of
abnormality. Consistent evidence is available for some well-studied cases such as colorectal
tumours; extension to all types of tumours is very difficult to verify due to the diversity
and the complexity of the disease: any tumour is different from any other (Weinberg 2007).

A tumour does usually resemble, to some extent, the tissue and even the cell type from which it
originates. Tumours and cancers can therefore be named according to their original tissues

and their original cell types.
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Tumours that develop in epithelial layers are called carcinomas, which make up 90%
of clinical cases (Weinberg 2007). We can also distinguish two cell types in the epithelial
layers: cells that do not have enzymatic secretory functions and those do have. Carcinomas
of the former are called squamous cell carcinomas, while carcinomas of the latter are called
adenocarcinomas.

There are also non-epithelial tumours. Tumours that form in the connective architec-
tures such as the cartilage are called sarcomas. Leukemias are tumours in the blood-forming
system (hematopoietic); lymphomas are tumours in the immune system. Tumours that form
in the nervous systems are collectively called neuroectodermal tumours, which include, for
example, gliomas and glioblastomas.

These classifications are by no mean clear-cut. In fact, they are sometimes not applica-
ble, for example, when the original cell type of a tumour cannot be definitely determined.
Small cell lung cancer is one example. Moreover, more often than not, many tumours such
as those grow in lungs contain mixtures of squamous cell carcinomas and adenocarcino-

mas, rather than a simple homogenous type (Weinberg 2007).

Tumours are of genetic nature

If we zoom-in to look at the cells of a tumour, we find that they are physiologically different
from normal cells. They are different in volumes, stiffnesses, shapes, surface structures,
etc. In fact, it is always found that tumour cells either express abnormal proteins, or fail
to express important proteins, or accumulate normal proteins at abnormal levels. As a
result, different pathways of biochemical reactions are seriously disturbed, changing the
behaviours of the cells in the tissue.

Today, it is clear that the alterations in the physiology of tumour cells are down to the
alterations in their genetic contents. Indeed, it was found that in tumour cells, many genes
that code for proteins that are crucial to the cell physiology are modified, or mutated. In
fact, the genetic contents of tumour cells are usually very seriously damaged: not a few,
but thousands of genes are modified — a phenomenon called genetic instability, which we
will discuss in more detail in a following section.

Today; it is also clear that a tumour is generally initiated by a single cell. The accumula-
tion of the mutations in some key genes of a cell in the body during the living time of the organism
alters the cell physiology in a way that allows it to escape from the cell homeostasis regqulation of
the body. The cell divides and divides, initiating a clonal population of tumour cells; and
there a primary tumour emerges and grows.

The life of a tumour is however not easy. Indeed, as we have learned, cells in a human

body suffer from very strict regulations. During the growth of a tumour, the genetic materials
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of the tumour cells need to change many times to adapt to and overcome such strict constraints. In
other words, a tumour keeps evolving by means of mutation and selection in the somatic

environment (somatic evolution).

Somatic mutations and the tumour founder cells

It is worth noting that essentially all normal cells of a human body share nearly identi-
cal genetic content. Indeed, starting from a single fertilised egg, cells continuously divide
forming the whole organism. Cell divisions continue during the whole life of the organ-
ism: new cells are continuously born balancing old dying ones during cell renewals. A
crucial point is that during such processes the genetic contents are highly conserved: the
DNA molecules of new cells are meant to be the exact copies of the DNA molecules of the
old ones.!

In reality, little changes in the genetic contents in the cells of a human body — or somatic
mutations —nevertheless do occur. Somatic mutations can be due to the chemical instability
of DNA molecules under environmental damages, or errors in DNA replications during
cell divisions, which somehow survive the DNA repair mechanisms. In most cases, so-
matic mutations have no important effects on the cells, and the cells and their descendants
will be continuously washed out from the body during cell renewals. In some other cases,
somatic mutations are accumulated until some fatal mutations alter a cell in a way that
allows it to proliferate; a tumour then starts.

It has been difficult to measure the somatic mutation rate, which is now estimated to
be 1076107 per gene per division (Frank and Nowak 2004). Suppose a human body con-
sists of some 10'3 cells, which all originated from a single cell, then there have been no less
than 10'3 cell divisions (when cell deaths are ignored). Then on the way to get to our ma-
ture body, we should have encountered 10°~10” mutations for each gene (!) This is already
very large despite that the number of cell divisions was underestimated. Luckily a muta-
tion in one gene is usually not sufficient to cause tumour; several mutations are required.
The requirement for several simultaneous mutations is essential, which radically changes
the picture. Indeed, if we assume that some three specific mutations are independently
needed to initiate a primary proliferation, the above estimation would yield less than 10~°
cells that may have all the three mutations.’

The somatic mutation rate is significantly elevated through the exposure to mutagens.

10One may also wonder how different cell types in a human body arise despite their identical genetic con-
tent. This is due to a process called cell differentiation, during which the genomes of the cell are epigenetically
modified, i.e., some chemical groups are attached to the nucleotide without changing the basic sequence. The
result of these epigenetic modifications is that selective set of genes are silent in specific cell-types.

2Nevertheless, there is a speculation that most of us do indeed develop some covert tumours during our
life-time (Greaves 2014).
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Physical mutagens include ionising radiation and ultraviolet radiation. Chemical muta-
gens are very diverse, ranging from soot to some insecticides. Ionising radiations may di-
rectly cause double-stranded breaks, a very fatal type of damages to the DNA molecules.
Ultraviolet radiation and chemical mutagens on the other hand chemically modify the
bases of DNA molecules. The results of these modifications may be the conversion of the
bases to other bases, or inducing interactions between the bases. The interactions between
the bases can form obstacles which interfere with the movements of the replication ma-
chinery on the DNA molecule during replication, causing insertions, deletions or single-
and double-stranded breaks in the synthesised sequences (Alberts et al. 2010, Weinberg
2007).

As the somatic mutation rate increases, tumours are more likely to occur — a fact that
has been well-confirmed in tumour epidemiology. Thus, mutagens are also regarded as car-
cinogens — agents that cause cancer. Tobacco is well-known to cause tumours, in particular
lung tumours. In the US, it was estimated that tobacco causes 90% of lung cancer deaths
in male, and 75%-80% in female (Hecht 1999). There are some 55 mutagens in the tobacco
smoke which are known to cause tumours when administrated on laboratory animals.
The mutagens usually form covalent bonds with the bases of the DNA molecules, called
DNA adducts, which normally block the replication machinery causing disruption of the
synthesised DNA molecules (Hecht 1999).

Genetic instability and tumour hypermutations

It can be seen under a microscope that the chromosomes of a tumour cell usually appear in
very different abnormal conformations. Here and there, parts of a chromosome or whole
chromosomes are missing; other parts present in multiple copies; the chromosome frag-
ments have strange shapes, sometimes stuck at the ends, see Hanahan and Weinberg 2011
and the references therein. Given the chaotic picture, it is obvious that thousands of genes
may be deleted, other thousands may be amplified. When we zoom into their sequences,
we also find excessive point mutations (i.e., alterations of single bases), short and long
insertions, deletions all over the genome. Tumours are said to express genomic instability.>

There are two proposed mechanisms by which genomic instability may arise (Negrini
et al. 2010). The mutator hypothesis is rather natural: at some point sooner or later in the
development of the tumour, the tumour cells confer mutations which render its DNA care-

taker machinery defective, of which the normal function is to keep the DNA integration

3Chromosomal instability is the major class of genomic instability. There are also other forms of genomic
instability such as micro-satellite instability, which we will not discuss here, see Popat et al. 2005 for example.
Moreover, it was also found that large parts of the DNA chains are usually also epi-genetically modified. We also
skip the discussion of epigenetic modifications; interested readers are redirected to Dawson and Kouzarides
2012, Virani et al. 2012.
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in check and to perform reparation when necessary. The obvious consequence of such
defections is that an enormous number of DNA damages or DNA replication errors are
left un-repaired. Inreality, it was however found that in many cases, mutations in the DNA
repair machinery are rare and late, despite the well established chromosomal instability of
the tumour cells. This called for a second hypothesis: oncogene-induced genomic instability,
where abnormal proteins made by mutated genes in tumour cells may directly interfere
with the replication process, blocking of the replication machinery and causing replication
errors (Negrini et al. 2010).

Regardless of the origin of genomic instability, it is generally believed that the high
mutation rate it implies is necessary for the tumour to find its evolutionary path to escape

from the strict constraints imposed by the human body environment.

Somatic selection and the evolution of a tumour

As we have already mentioned, there are multiple mechanisms that allow the body to
regulate the cell homeostasis, which directly suppress or eradicate tumours. On its way to
malignancy, a tumour keeps evolving to overcome the regulation of the body. Interestingly,
in many aspects the evolution of a tumour resembles the familiar evolutionary process of
a normal biological population (Okasha 2012): on one hand, somatic mutations continu-
ously give rise to new genotypes; on the other hand, the cells carrying genes that allow them
to overcome the body regulation divide faster than the others, driving the dynamics of the
genetics of the whole population toward escaping the regulation. In that sense, tumour de-
velopment is an evolutionary process by means of mutation and selection in somatic context (Frank
2007, Greaves and Maley 2012).

The evolution model of tumour development forms a very comprehensive picture of
tumourigenesis, clarifying and systemising the hallmarks of cancer. One may recall the
words from Theodosius Dobzhansky (Dobzhansky 1973),

“Nothing in biology makes sense except in the light of evolution.”

Having conceptually identified the tumour development with an evolution process,

we may attempt to extrapolate the sentence to the case of tumour biology,
“Nothing in tumour biology makes sense except in the light of tumour evolution.”

We do not try to push such an extrapolation to extreme. What it implies here is that a
hallmark of cancer should have some rationale under the light of tumour evolution.

The hallmarks of cancer have been summarised in the landmark papers by Hanahan
and Weinberg (Hanahan and Weinberg 2011, Hanahan and Weinberg 2000). The hallmarks
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of cancer in the context of tumour evolution consists of sustaining proliferative and sur-
vival signals; resistant to anti-growth and apoptosis signals; modifying stress responses;
modifying cellular metabolism; invading the immune system; activating indefinite replica-
tions; inducing angiogenesis and activating invation and metastasis. Interested readers may
find a more detailed discussion of these hallmarks in the following additional remark, or

in Hanahan and Weinberg 2011, Hanahan and Weinberg 2000 and the references therein.

Remark: The hallmarks of cancer

Sustaining survival and growth signals

Starting from a normal cell, tumour cells will not be able to survive and grow if they do not receive
special signal proteins that allow them to survive and grow. To promote their development,
tumour cells implement several strategies to sustain the proliferative and survival signals. For
example, they can activate the genes that code for these signals, which are often silent in normal
differentiated cells. Alternatively, they can distort the signalling pathways that sense and relay

the signals into the cell nucleus in a way that the pathway is consecutively activated.

Resistant to anti-growth and apoptosis signals

Anti-growth and apoptosis signals are examples of negative regulation of cell proliferation. In
order to develop, tumours evolve to resist to these anti-growth and apoptosis signals. More in-
terestingly, while being resistant to, tumour cells may actively produce these anti-growth and

apoptosis signals as a mean of suppressing the normal cells in the neighbouring tissues.

Modifying stress responses

Tumour cells have abnormal genetic contents and express abnormal proteins. This is necessary
for the tumour cells to invade the body regulation, but also seriously disturbs the normal living
physiology of the cells. These disturbances may lead to cell cycle arrest or cell apoptosis as stress
responses. As an example, protein p53 (coded by gene TP53) is activated as a result of DNA
damages. Activated p53 proteins act as transcription factors which mediate the DNA repair ma-
chinery. When the damage is so serious that repair is not possible, p53 alternatively activates the
apoptosis program. In order to develop, a tumour needs to invade these lethal stress responses.
In particular, to avoid the destiny driven by p53, many tumours often evolve to mutate the gene
TP53 so that the protein can no longer function properly. In fact, TP53 is non-functional in more

than half of tumours of all kinds.

Modifying cellular metabolism

Cellular metabolism of glucose is a process which produces energy and necessary materials for
the cell. Glucose after being transported into the cell is converted to pyruvate via a process called
glycolysis. Pyruvates are then transported to the mitochondria where they are oxidised by oxy-
gen. Both of these two steps produce energy in the form of highly energetic substances such
as ATP (adenosine triphosphate). The latter process gives much more energy in comparison to
the former; the price to pay is that it requires oxygen (aerobic metabolism) while the former does
not (anaerobic metabolism). Anaerobic metabolism is important in iypoxia environment (i.e., lack-
ing oxygen). However, it has been observed long ago that anaerobic metabolism is favoured in
tumour cells even in the oxygen-sufficient environment. The phenomenon is known as aerobic

glycolysis, which can happen quite early in tumour development. The exact rationale of tumour
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aerobic glycolysis is yet to be clarified, but according to an old hypothesis, glycolysis is impor-
tant to tumour cells perhaps because it gives rise to many other intermediate products which
are important for synthesising diverse biomolecules necessary to build a new cell (Hanahan and
Weinberg 2011).

Activating indefinite replications

Already in the 1960s it was known that a normal cell can divide only a finite number of times.
A cell culture after a number of generations would come into a senescence state, where the cells
remain alive but can no longer divide. Genetic techniques can kick them back into cell-cycles
for some more generations. But soon after that, the culture comes to a second state called crisis,
where most of the cells die with heavily damaged genomes. Few of them, however, survive the

crisis and become immortal in the sense that they can divide indefinitely many times.

Today, it is known that the repeated sequences that cap the two ends of chromosomes — the
telomeres — play a central role in this phenomenon. Normal DNA replication machineries cannot
replicate those very ends of the chromosomes. As a result, the telomeres are shortened and
shortened after each replication. When the caps can no longer be formed, the chromosome ends

are unprotected and exposed to damage.

Stem cells are the source of cells for cell renewal; we expect that they must be able to divide
indefinitely. How do they do that? In stem cells, there is a special protein, the telomerase, that takes
the role of adding the repeated sequences to the DNA molecules after replications. Telomerase

is deactivated at some point in cell differentiation.

Many tumours emerge from normal differentiated cells, where telomerase has been deac-
tivated. It can be argued that without overcoming the cell senescence and the crisis, a tumour
can never get to the sizes big enough to threaten the life of the organism. Although a normal
differentiated cell can live up to some 70-80 generations before senescence, which already gives

rise to some 270

cells — larger than the number of cells of any body, we should not forget that cells
in a tumour are dying and washing out very fast. A simple correction to the above calculation
shows that with such a limit in the number of generations, tumours are indeed limited to very
small sizes. Suppose the birth rate is b = 1.4 divisions per cell per day (Chmielecki et al. 2011),
the time it takes for 70-80 generations is T = 70/1.4 = 50 days. If the death rate is d = 1.3 deaths
per cell per day (Chmielecki et al. 2011), by the 50th day the tumour reaches e(!~47 x 150 cells

— far too small for any harm.

Cancer genomics research found that telomerase is (re)activated in 80-90% of tumours (Harley
2008). It can be argued that the reactivation of telomerase is a frequently used strategy of cancer
cells tobecome immortal. This raises the hope of targeting telomerase for cancer treatment (Harley
2008, Williams 2013).

Invading the immune system

Tumour is different from infectious diseases in that the tumour cells are from the organisms
themselves, and not from the outside. While the infectious factors such as bacteria or viruses
are usually easily recognised and destroyed by the powerful immune system of the body, we
expect that tumour cells are not recognisable. One may be surprised when first learning that the

immune system can also pinpoint and destroy tumour cells, sometimes very efficiently.

Evidences from laboratory experiments and clinical records have confirmed that the immune
system have important prevention of tumours from developing in the body (Hanahan and Wein-
berg 2011, MacKie et al. 2003, Servan-Schreiber 2009). It is believed that the immune system
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recognises tumour cells because of their abnormal features on the surface of tumour cells (abnor-
mal proteins, missing immune suppressing complexes...) In considering the immune response as
a promising cancer therapy, a large body of research has enumerated abnormal surface proteins
(surfaceome) as targets for the immune system (Scott et al. 2012). Tumour-specific targets, defined
as those antigens only expressed in tumour cells but not in normal cells, are yet to be found.
However, there are a number of non-specific targets that invoke stronger immune responses in

tumour cells than in normal cells.

Inducing angiogenesis

Cells require a connection to the blood streams for nutrients and waste transport; in fact, a cell
in the human body cannot live at more than few micrometers away from a micro blood vessel.
Because tumour cells grow and replicated faster, nutrients are even more essential for tumour
cells than for normal cells. Indeed, it is now clear that solid tumours need to recruit blood vessels,

without which they cannot grow to a macroscopic size and would be of no harm.

To recruit blood vessels (angiogenesis), tumours utilise the mechanisms by which blood ves-
sels develop in newly forming organ or in wound healing processes (Jain and Carmeliet 2001,
National Cancer Institute 2011). These involve mutual interactions between tumour cells and the
cells that form the blood vessels. One of the well-known molecules which realises such interac-
tions is the VEGF signalling protein (vasculature epidermal growth factor). The tumour cells activate
and produce VEGF proteins; or they can also elicit other cells to do so. VEGEF signalling proteins
from the region of the tumour diffuse and bind to the VEGF receptors on the surface of the cells
that form the blood vessels (endothelial cells). These endothelial cells are therefore excited and

divide to form new blood vessels toward the tumour.

Tumour angiogenesis is conceptually promising for cancer therapy. By inhibiting, for ex-
ample, VEGF, we expect that the development of tumour is called to a halt. Angiogenesis is
a character of neoplastic tissues, therefore we also expects that angiogenesis inhibitors do no
or little harm to normal stable tissues. In fact, it was hoped that cancer will be cured in few
years after the discovery of angiogenesis molecules (Jain and Carmeliet 2001). Unfortunately,
things were more complicated. Angiotherapy did not show high efficacy in clinical trials and/or
tumours developed resistance to anti-angiogenesis agents. More importantly, after treatments,
anti-angiogenesis resistant tumours were even more aggressive than before therapy, which led
to the withdrawal of some FDA-approved angiogenesis inhibitors (Bergers and Hanahan 2008,
Bottsford-Miller et al. 2012). Nevertheless, angiotherapy continues to be an active area of research
and there is hope that such obstacles may be overcome at some point in the future, see also Berg-
ers and Hanahan 2008, Bottsford-Miller et al. 2012, Cook and Figg 2010, Hanahan and Weinberg
2011.

Activating invasion and metastasis
Most of tumours eventually turn malignant, aggressively invading the nearby tissues and send-
ing out tumour cells to colonise other parts of the body. Invasion and metastasis are highly com-

plicated, of which many aspects are still elusive (Chambers et al. 2002).

Cells in a malignant tumour lose cell-cell adhesion molecules which held the cells together,
and which also transduce antigrowth control signals from cell to cell. Alterations in integrins
which help the cell attach to the extracellular matrix are also observed. Inside the cells, the cy-
toskeletons and other related proteins are altered. These changes are believed to be necessary for

the cells to perform the very complicated metastasis process: damaging the basal layer, detach-
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ing from the tumour, crawling through the extracellular matrix, leaking into the blood vessels,
circulating throughout the body, leaking out of the blood vessels, and starting a new tumour at
a new organ (Chambers et al. 2002, Wirtz et al. 2011).

Although metastasis is ubiquitous, the exact evolutionary forces that drive a tumour into the
metastasis state are still a subject of debate (Chen et al. 2011). Note that if a cell of a non-malignant
tumour at some point gains the ability to migrate (for metastasis), it is likely to move out of the
tumour and leaves behind the static core of the tumour. In terms of tumour evolution, metastatic
cells in a tumour have lower fitness than the other non-metastatic cells. Therefore, they cannot
expand to dominate the tumour. Then how does a tumour become metastatic? The solution
may lie in the fact that the transformation from non-metastasis to metastasis is more complicated
than a one-step transformation sketched above: the complicated multi-step nature of the process
and the spatial heterogeneity may be important factors that influence the evolution of a tumour

toward metastasis (Quail and Joyce 2013).

1.2.5 Tumour heterogeneity, clonal interactions and cancer stem cells

The picture of the evolution of a tumour above is simple and clear. However there are com-
plications behind the scene, which make tumour evolution a hard evolutionary problem.
These complications are of multi-faceted: the exceedingly high mutation rate of tumour
genomes, weak competence between clones, the environment heterogeneity, etc. One of
the very important consequences is that there are often multiple clones with complicated
interactions living together in the bulk of a tumour.

Tumour cell cooperation seems to be popular. Cooperation in sustaining growth sig-
nals and angiogenesis signals are prototype examples: few cells in a tumour produce those
signals which bring the benefit not only to themselves but also to all the cells in the pop-
ulation. Cooperation in metabolism is another example: some tumours are divided into
subpopulations with different metabolism schemes, where waste products of this subpop-
ulation can serve as nutrients for the other subpopulation, see Hanahan and Weinberg 2011
and the references therein. There is also direct interference between tumour cell clones:
it has been known that a primary tumour can secrete signals to suppress the growth of
metastasised tumours; as a result, removing the former may boost the growth of the latter
(Chambers et al. 2002).

It has been difficult to access the tumour heterogeneity experimentally. Molecular measure-
ments performed on tumours are normally at the level of population-average. Any tumour
specimen contains thousands of cells which are different from each other. By sequencing
the specimen, for example, we are somehow accessing the population-averaged sequence;
this calls for care in analysis and interpretation of the experiment data. Although there
have been attempts in bioinformatics to infer the sequences of different clones in a tumour

based on population-averaged measurements, this is still a difficult problem (Carter et al.
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2012, Fischer et al. 2014, Oesper et al. 2013).

At the heart of cancer heterogeneity is the cancer stem cell hypothesis. The starting point of the
hypothesis was the observation that only a minority of cells in a tumour can initiate new
tumours when injected in laboratory animals (xenograft); the vast majority cannot (Beck
and Blanpain 2013, Nguyen et al. 2012, Reya et al. 2001). The former was defined as can-
cer stem cells. Different surface markers for cancer stem cells were subsequently identified
in some tumour types. The cancer stem cell hypothesis ventures that a tumour consist-
ing of millions of cells is maintained only by a much smaller population of cancer stem
cells, much in a similar way that normal tissues are maintained by normal stem cells. This
hypothesis clearly has a great implication for cancer research. Since the cancer stem cell
population is small, population-average measurements or even multiple-sampling mea-
surements could not reveal them. This hinders understanding the genetics of cancer stem
cells; and difficulties in designing therapies that address cancer stem cells follow. Much of
current therapies are believed to address normal tumour cells instead of cancer stem cells.
Cancer stem cells are less sensitive or hidden from therapy by the natural organisation of
a tumour, which may also explain the invariable resistance of tumours to therapies. The
analysis of cancer stem cells in different tumours and deeper understanding of their na-
ture are waiting for future research, which may be critical to advances in cancer research

and cancer therapy in the near future.

Remark: Towards a more complete picture: tumour ecosystem

The concept of tumour evolution shapes a very comprehensive picture of tumour development.
Yet, there is an important conceptual limitation. In particular, the evolution model of tumours
sets the tumour cells in the centre of the picture, which may lead to underestimate of the role
of the responses of the body to the development of the tumour. Here, by the body, we mean not
only the normal cells in the tumour or in its neighbourhood (which form the tumour stroma), but
also the body as a whole. Recently, there seems to be a shift from the evolution model of tumours
toward the ecosystem model of tumours (Quail and Joyce 2013): instead of thinking of a tumour as a
population of tumour cells, we think of a tumour as a composite, co-evolving system of tumour
cells and the body. This view is supported by abundant evidences of the mutual interactions
between tumours and different elements of the body, of which the results are both promoting
and preventing tumour development. It also changes the approach to cancer therapy: instead of
addressing the tumour cells, one may target different components of the tumour ecosystem. In
fact, the angiotherapy, which inhibits endothelial cells, already uses this approach. With the view
of tumour ecosystem, therapeutic targets are now extended to include many other elements, e.g.,
the cells of the immune system or the fibroblasts.

Among the different cells that influence the development of a tumour, the cells from the im-
mune system with their paradoxical roles are being of central interest (Visser et al. 2006). We
learned that the immune system prevents a tumour from emergence and growth, but it also pro-

motes tumour development in several ways. It has been known for a long time that a tumour
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causes inflammation, followed by the infiltration of innate immune cells such as macrophages,
neutrophils and mast cells into the neoplasia region. Macrophages and neutrophils are phago-
cytes, which are important to protect the body from the infection of alien agents such as bacteria
or viruses. It was believed that the infiltration of the immune cells into a tumour reflects the at-
tempt of the immune system in eradicating the tumour. Surprisingly, this belief turned out not
quite true! There is evidence showing that the activities of the cells also promote tumour devel-
opment in many ways. The recruited immune cells generate many important signalling proteins
such as growth factors (e.g., TNFa) and vascular epidermal growth factor (VEGF), which are
essential for the tumour growth. These cells also secrete MMP proteins (matrix metalloproteinase)
that modify the extracellular matrix and cell adhesion proteins, supporting angiogenesis and cell
migration in metastasis. Their highly reactive products are also thought to contribute to tumour
genomic instability. Moreover, through multiple feedback interactions, the macrophages and the
mast cells (which belong to the innate arm of the immune system) also inhibit the attempt of other
components of the immune system in eradicating the tumour (which are often found to be of the
adaptive arm of the immune system). Experiments have confirmed that suppressing the innate
arm of the immune system does indeed slow down tumour progression, see Visser et al. 2006
and the references therein.

Further research is going on to reveal the exact activities of different immune components
and their mutual interactions in response to a tumour (Gajewski et al. 2013). Once we under-
stand and are able to harness the tumour immune response, the next generation immunotherapy
will appear to be among the most promising approaches for tumour treatment and prevention
(Couzin-Frankel 2013, Gajewski et al. 2013, Hanahan and Weinberg 2011, Scott et al. 2012, Visser
et al. 2006).

Let us come back to the story of the blood vessels of tumours. We learned that angiogen-
esis inhibitors founded the basis for angiotherapy. Things go further than that. It was known
long ago that tumour blood vessels are different from normal blood vessels. Tumour vessels are
highly irregular. The fact that the slots on the walls of tumour blood vessels are much larger
than that of normal blood vessels inspires the idea of nano-medicine. The idea is as follows: if
the drug molecules are larger than normal vessel slots and smaller than the tumour vessel slots,
they can get out of tumour blood vessels but not of normal blood vessels. Using nano-particles
with appropriate sizes as drug transporters therefore may lead to the accumulation of drugs in
the tumour but not in normal tissues, thereby increasing drug specificity (Grossman and McNeil
2012).

Pericytes are cells that form the outer cover to support the endothelium of normal blood ves-
sels. Recent research reveals diverse functions of pericytes with close interactions with the en-
dothelial cells (Bergers and Song 2005). In particular, pericytes have growth signalling activity,
playing important roles in angiogenesis and the stabilisation of neovasculatures. Interestingly,
in normal tissues, pericytes still function when the density is reduced by even 90%. In tumours,
pericytes are normally sparse, and only loosely attached to the endothelia. Still, they are believed
to be essential to the tumour blood vessels. Indeed, inhibition of pericytes leads to the destabili-
sation of tumour blood vessels (while normal blood vessels can cope with such slight reduction
of pericytes), making them more susceptible to vessel destroying therapies. In experiments, peri-
cyte inhibitors indeed improve the efficacy of endothelial-targeted agents and angiogenic therapy,
see Bergers and Song 2005 and the references therein.

Fibroblasts are cells imbedded in and maintaining the extracellular matrix in normal tissues.
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Fibroblasts are recruited to tumours in very early stages. Under the interactions with tumours
and other cells in the tumour stroma, fibroblasts become active, proliferating and synthesising
a large amount of extracellular matrix. The active fibroblasts secrete MMPs (matrix metallopro-
teinases) which degrade the extracellular matrix, thereby remodelling the extracellular matrix.
These activities are thought to be important to tumour angiogenesis and metastasis activation.
Fibroblasts also secrete growth factors, which directly affect tumour growth and cell motility. In
addition, they are also sources of signalling molecules that regulate the activity of the immune
system. Therapies that address fibroblasts are also under current investigation (Kalluri and Zeis-
berg 2006).

Many other cell types in the neighbourhood of the tumour also contribute to the tumour
development, see Pienta et al. 2008, for example. Many other signalling interactions between
different cell types in a tumour are still unknown. We are waiting for a more complete picture
and great potential advances in cancer therapy fostered by the on-going researches in the field

(Gatenby 2009, Gatenby and Gillies 2008, Merlo et al. 2006).

As alast note for this section, I would like to mention that given the complex nature of the in-
teractions between the tumour and the body, high level responses of the body to tumours should
be seriously considered. Likewise, the effects of alternative and complement therapies such as
diets, traditional medicines, sports, meditations, etc. should be looked into scientifically. In the

future, highly integrative therapies are perhaps to be expected.

Cancer genomics and statistical modelling

The above discussed picture of tumour development is the knowledge of centuries of can-
cer research in conjunction with biology and other scientific areas. Most significantly, one
should mention the influence of molecular biotechnology in the last two, three decades.
During the time, molecular biotechnology has been developing in a very fast pace in many
different aspects, a very important consequence of which was the starting of the era of ge-
nomic research. A molecular biology measurement nowadays can consist of thousands of
parallel specific simpler measurements. We are now able to measure the expression levels
of a large part of a genome (in terms of messenger RNA concentrations). We are also able
to measure the copy-numbers of most genes in parallel, or even to access to the sequences
of the whole genome of an organism. These genomic measurements have provided a way
for researchers of cancer research to look into the defects in the molecular machinery of
cancer cells.

Cancer genomic research comes with big data. Here we will discuss several data types
that are most relevant to our analysis. In particular, we summarise the ideas of a gene
expression measurement (by microarrays) and a copy-number measurement. Although
the exact protocol and detailed technology vary from experiment to experiment, these

basic ideas remain relatively the same.
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The gene expression measurement

In this thesis, gene expression measurement refers to the measurement of messenger RNA
concentrations. Here we are interested in gene expression measurements by microarrays.
In these measurements, messenger RNA are first extracted from a tumour sample and
reverse-transcribed to the short complementary DNA sequences (oligonucleotides) by spe-
cific enzymes. The DNA sequences are then labelled by fluorescent agents. These labelled
DNA short sequences are subsequently hybridised with their complementary sequences
that have been prepared at specific places on an array (microarray). By scanning the fluo-
rescent intensities on the array, the concentrations of the messenger RNA can be inferred.
For the details of the measurement of gene expressions by microarrays, see Parmigiani and

Garett 2003 for example.

The gene copy-number measurement

Copy-numbers refer to the numbers of copies of genes in the genome of a cancer cell, which
are often different from two (diploid) because of genetic instability. Microarrays have been
adapted to measure the copy-numbers of cancer cells. The procedure remains very similar
to that of the gene expression measurement. Generally, DNA molecules are first cut into
oligonucleotides by special enzymes and amplified by polymerase chain reactions (PCR).
The oligonucleotides are then labelled by fluorescent agents and these labelled oligonu-
cleotides are then hybridised with their complementary sequences prepared on an array.
The array is then scanned to measure the fluorescent intensities. By this construction, these
fluorescent intensities are directly related to the numbers of copies of the short sequences
present in the sample. For the details of the measurement of copy-number by microarrays,
see Huang et al. 2004, Pinkel et al. 1998.

DNA sequencing

Besides gene expressions and copy-numbers of cancer cells, we will also work with se-
quencing data. However, we will be concerned only with gene-specific sequencing in-
stead of who genome sequencing. One of the classic technologies for sequencing is called
Sanger sequencing. The DNA segment to be sequenced may first be amplified if necessary.
One then lets the sequences replicate under the activity of polymerases in a medium with
sufficient nucleotides. A small fraction of the nucleotides in the medium are modified so
that they do not allow DNA elongation. The replicated sequences therefore are stopped
at a random base if by chance a modified nucleotide is added at that position. Sequences

of different lengths can be separated using the so-called gel-electrophoresis effect. If the
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modified nucleotides are labelled with fluorescent agents of four different colours which
correspond to four different nucleotides, then the ending bases of the random-stopped
sequences can be identified. From these data, the sequence of the DNA segment can be
inferred. For a more detailed description of the basis of Sanger sequencing, see Alberts
et al. 2010.

Although we already mentioned in the last section, it is also worth emphasising again
that often both the gene expression measurement and the copy-number measurement
mentioned above only capture the population-averages of the messenger RNA concentra-
tions and the DNA copy-numbers as they both require biological samples which contain

thousands of cells. This calls for care in the interpretation of the results.*

Together with these molecular techniques, analytical methods to analyse the emerg-
ing data have been developing in a very fast pace. We will have short reviews of such
analytical methods in the specific contexts of the following chapters before describing our

corresponding approaches.
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CHAPTER 2

PROBABILITY, INFORMATION AND STATISTICAL MODELLING

More is the same...
L. P. Kadanoff

We start this chapter with a short review of some aspects of probability theory and
information theory. We then discuss the general workflow of a statistical model, start-
ing from making parametric assumptions to parameter estimation. Having done so, we
concentrate on a specific strategy of building a statistical model, namely the maximum
entropy reasoning. We will then discuss several linear models in a comprehensive view of
the maximum entropy reasoning. Some interesting technical topics are given as additional

remarks.

Probability and information

Probability

In statistical modelling, we often realise a discrete probabilistic space (Rosenthal 2010) by
imagining a system C which takes random states (or configurations) in a discrete sampling
space () according to a probability distribution p : QO — [0,1]. A subset of Q) is called an

event. The probability of observing an event E is given by

P(E) =) p(C). (2.1)

CeE

The family of all subsets of (2 is the family of events of (), denoted by .# . Note that P is a (set)
function from .# to [0, 1]. The triplet (Q), .#, P) constitutes a probabilistic space (Rosenthal
2010).

When we know that a non-empty event E happens, C is limited to the elements of E.

The probability for another event E’ to happen therefore also changes. The probability of
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E’ conditioned on E is formally defined as

P(E'NE)

P(E'E) = ~prpy

(2.2)
A real function from Q) to R, Q : O — R, will be called an observable. The mean value

of an observable Q is defined as

(Q = ;P(C)Q(C) (2.3)
In general, a function from () to a measure space is called a random variable (Rosenthal
2010). In this extension, the system C itself can be considered as a random variable defined
by the identity map on (). Note that we will distinguish the different notations for random
variables (which are functions) and their values; for example, x, y, ¢ and s are values of
random variables X, Y, ® and o.

Of continuous sampling spaces, we consider only finite dimensional Euclidean spaces.
With little care when taking the continuum limit, these definitions are also applied for
Euclidean sampling spaces. In particular, the probability distribution p(C) for a discrete
sampling space turns into a probability density function p(x) in the continuum limit, and

the probability of an event E is given by

P(E) = /dep(x), 2.4)

where the event E is limited to Lebesgue integrable sets. The summation in the definition

of mean values of observables is also turned into an integral accordingly

Q) = [ dxQ(x). 25)

The definition of conditional probabilities (2.2) is still valid when P(E) # 0. Little care
is needed when P(E) = 0: one will need to discretise the sampling space () and take the
continuum limit of the ratio P(E’ N E) /P(E) properly. For the formal theory of probability,
we refer to Feller 1950, Hu 1967, Rosenthal 2010. In the following, if not noted otherwise,
we implicitly assume that Q2 is discrete for the sake of convenience. The discussions can

always be adapted to continuous spaces with minor modifications.

Information: entropy and relative entropy

Information theory all started with the theory of practical communication with Shannon’s

seminal paper (Shannon 1948). The implication of the theory gradually turns out much
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more broad, penetrating into many different areas of science, in particular physics (Cover
and Thomas 2006). Here, we concentrate on some aspects of information theory which
will be useful for our discussions, in particular, the measures of information, the entropy

function and the Kullback-Leibler divergence (or the relative entropy function).

Consider a finite element sampling space (), with all subsets of () as events. A proba-
bility measure P on such a finite space is completely determined by a distribution function
p: Q — R, defined by p(C) = P({C}) with Y ccq p(C) = 1. We denote by Z2(Q)) the set
of all possible probability distribution on Q).

The information entropy is a functional S : #(Q)) — R, defined by'

Z —p(C)Inp(C). (2.6)

cen

For an axiomatical (and more general) definition of entropy, see Khinchin 1957. In in-
formation theory, the information entropy measures the minimal average length of a code-
word to code an event, see Cover and Thomas 2006. In general, the information entropy is
usually interpreted as a measure of the unpredictability of a probability distribution. The
latter interpretation merges the information entropy with the thermodynamic entropy in
statistical mechanics, see Landauer 1961, Merhav 2010, Sagawa 2012, Zurek 1990 for de-

tailed discussions.

Let p and g be two distributions on (), we define the Kullback-Leibler divergence from q

topas
p(C
L(plg) = ) p(C lni( ) 2.7)
CeQ EI( )
The Kullback-Leibler divergence has a very important property: for any distributions g

and p, KL(p|q) > 0, and for any distribution p, KL(p|p) = 0.

The Kullback-Leibler divergence is also known as the relative entropy, which measures
how much a distribution g is different from a distribution p (Cover and Thomas 2006).
In information theory, the Kullback-Leibler divergence can be interpreted as the cost (re-
dundant code length) of using a wrong distribution for the source in coding (Cover and
Thomas 2006). In statistical mechanics, the Kullback-Leibler divergence has a relation to

works in thermodynamic processes (Bavaud 2009).

Tn general, the entropy function S is defined on probability simplexes, and it is continuous at the boundary
of the simplexes.
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Statistical modelling

Consider a probabilistic space () with some specific event family .#, but the probabil-
ity measure P is unknown. By statistical modelling, we mean to experimentally estimate
the probability measure P on (), often through estimating the corresponding probability
distribution function p.

We will see that to make the estimation for the probability distribution function p, one
usually proceeds in two steps: making assumptions about the mathematical form of the
distribution, which usually contains unknown parameters (parametric assumptions), then
estimating the parameters by fitting the model to some standard sample data called train-

ing data.

Assumptions

A series of independent states of C, each called a sample, constitutes a training dataset. A
dataset of M samples, D = {Cl,Cz, ...,cM }, reproduces the probability distribution p

approximately in the sense that

1 M
p(C) =~ 5; 215(6’,0”), (2.8)
Il,{:

where ¢ is the Kronecker delta function. The approximation becomes exact in the limit of
infinite number of samples. In practice, however, the sampling space () is very large while
the sizes of datasets are much smaller. This estimation for p is therefore not very useful.
A practical solution is to restrict the searching space to some subspace of the space of all

distributions on Q) by parametric assumptions.

Parametric assumptions

A parametric assumption restricts the probability distribution to some specific functional
form with some unknown parameters. For example, assuming that the heights X of people

in a population are normally distributed restricts the form of the probability distribution

of the heights to that of p(x) = \/2;7 exp{— (xz_g é’)z }, which contains two parameters p

and o. Often, the parameters of a parametric distribution have specific interpretations,
bringing important insights into the problem. In this case, y and ¢ are simply the mean
and the standard deviation of the heights of the people.

Making such parametric assumptions is rather subjective. In some rare cases, the as-
sumptions can be derived from some general theory of the phenomena investigated. Most

of the time, there is however no clear basis for such parametric assumptions. Therefore
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most of statistical models are phenomenological.

Parameter estimation

The parametric assumptions identify the model distribution up to some unknown param-
eters. To make quantitative predictions, one needs to estimate the values of the parameters

in the model.

Maximum likelihood estimation (ML)

A classic criterion for estimating the parameters for a model, seemingly intuitive, is the
maximume-likelihood criterion: the parameters are chosen so that the probability of observing

the training dataset is maximised.

Consider again a random system C taking states in sampling space (). We are to es-
timate the probability distribution p(C) on the basis of an experimental dataset, D =
{C1,Cy,...,Cpm}, which are M states independently sampled from the sampling space.
Suppose under the parametric assumptions, the distribution of the system is p, (C), where
A collectively denotes the set of parameters. Then the maximum-likelihood criterion for
parameter estimation is stated as

AML — argmaxIn p, (D), (2.9)
A

where In p, (D) is the logarithm of the probability of observing the data D, referred to as
the log-likelihood function, with the logarithm is used for the sake of convenience. Note that
under the assumption that the samples are independent instants of the sampling space,
we have
M
Inpy(D) = Y Inpy(CH). (2.10)
u=1
Therefore, the log-likelihood function is scaled linearly with the size M of the training

dataset.

Bayesian modelling

Bayesian inference takes a different view on the parameters in the parameteric distribution:
as one does not know exactly where the best model (i.e. the best values for the parameters
for the model distribution) is in the space of parametric models defined by the parameteric

assumptions, one oughts to assign “a degree of belief” to every point in the space of the
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parametric models which quantifies how likely the model is at that point.> Cox showed
that with plausible axioms for the arithmetics of this degree of belief, it is a probability
measure on the space of parametric models (Cox 1946). In fact, the key-point in Bayesian
inference is to identify “degree of belief” with probability, and the arithmetics of degree
of belief with the arithmetics of probability. This degree of belief is also called the prior
distribution for the parameters due to the reason which will be clear shortly. Note that the

prior distribution is an (further) assumption — a quantitative assumption (MacKay 2002).

The starting point of Bayesian inference is to assume a prior distribution p(A) for the
model parameters. With this quantitative assumption, the probability of observing state

C can readily be found by marginalising overall the space of parameters,

p(C) = [drp(p(Cia), @11)

where we assumed that the space of parameters is continuous, which is often the case
in practice. Note that changing the philosophy from maximum-likelihood estimation to
Bayesian inference, we also change the notation for the model distribution from p, (C) to

p(C|A), exploiting the notation of conditional probability.

The prediction (2.11) is entirely based on the quantitative assumption, namely the prior
distribution p(A). This is called the prior prediction. It seems that, by making a quantita-
tive assumption, we have based our prediction on the prior knowledge (quantitative as-
sumption), disregarding the ability to adapt the model to a specific situation with specific
training data as in the maximum likelihood approach. Not quite so! The whole strength
of Bayesian inference is that the degree of belief can be updated when evidence such as
a training dataset is available. Having identified the degree of belief with probability, the

rule of updating the belief is simply expressed in Bayes’ theorem,

p(AD) = p(Dr)'f‘[))")’()‘), (2.12)

where the probability of observing data D (or the evidence) is
p(D) = [ dAp(DIA)P(2). 219)

The quantity p(A|D) is also referred to as the posterior distribution of model parameters.

Therefore, the probability of observing state C under the evidence D is also updated ac-

2“A density of belief” is applied for continuous parameters in a similar way to probability density in con-
tinuous spaces.
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cordingly,
p(CID) = [ dAp(CIAPAID). (214

The quantity p(C|D) is referred to as the posterior prediction.

We see that by identifying the degree of belief with probability, the Bayesian approach
provides us with a very clear way of going from assumptions, incorporating evidence
from training data to deriving predictions. These steps were performed entirely within
the framework of probability theory, in particular Bayes” theorem. There are, however,
two technical difficulties in Bayesian modelling. The first is that it is often rather difficult to
make quantitative assumptions, namely to choose a prior distribution for the parameters.
In most of the cases, this is done on the basis of subjective convenience. Secondly, Bayesian
modelling is often computationally more difficult than the maximum likelihood approach.
In practice, approximations are almost always needed in performing Bayesian inference.
Interestingly, under certain approximations, Bayesian inference mathematically reduces

to the maximum likelihood estimation.

Maximum a posteriori approximation (MAP)

Maximum a posteriori approximation (MAP) assumes that for large enough training datasets,
the posterior distribution p(A|D) is sharply peaked at some value of parameters (which,
for the sake of simplicity, is assumed to be unique). This makes it plausible to approximate

the posterior distribution by a delta function,
p(AID) &~ 6(A — AMAT), (2.15)

where
AMAP — argmax p(A|D). (2.16)
A

By inserting the delta function approximation (2.15) into (2.14), we obtain
p(C|D) = p(C]AMAT), (2.17)

which is essentially the prediction within maximum-likelihood estimation with AML re-
placed by AMAP,

Note that p(A|D) and p(D, A) are different by only a normalisation factor p(D), which

does not depend on A,
p(D,A) = p(A[D)p(D). (2.18)

29



CHAPTER 2: PROBABILITY, INFORMATION AND STATISTICAL MODELLING

That means one can also write
AMAP — argmax p(D, A). (2.19)
A

Then the joint probability p(D, A) can be decomposed into the likelihood p(D|A) and the
prior p(A),
p(D,2) = p(DIA)p(A), (220)

therefore
AMAP — argmax p(D|A)p(A). (2.21)
A

Since logarithm is a monotonic function, one can also write

AMAP — argmax {In p(D|A) +Inp(A)}. (2.22)
A

In comparison to the maximum-likelihood estimation (2.9), MAP modifies the log likeli-

hood function by the logarithm of a prior distribution.

One sees immediately that the two values AME and AMAP are identical when p(A) is
constant with respect to A (flat prior).> When the prior is not flat, as In p(D|A) scales lin-
early with the size of the training dataset (see equation (2.10)) while the log-prior In p(A)

does not, MAP estimation AMAP AML

also asymptotically tends to at the large dataset limit.
Hence, when the training dataset is small, the difference between maximum-likelihood
estimation and maximum a posteriori approximation is important. A limited training
dataset causes a phenomenon called overfitting in maximum-likelihood estimation, where
the likelihood function does not express a sharp peak and the likelihood maximiser is
un-certain. In Bayesian modelling, inference with limited data is driven by prior knowl-
edge. Mathematically, the posterior probability can still maintain a relatively sharp max-
imal peak because of the contribution of the prior. Therefore, by incorporating appropri-
ate prior knowledge, the overfitting problem can be avoided, or at least reduced. MAP is

therefore also referred to as regularised maximum-likelihood estimation.

Maximum a posteriori approximation is nothing but the saddle point approximation
known in physics. A next step of the approximation can be expanding the posterior dis-
tribution to the second order around the maximum, which results in the so-called Laplace
approximation (known in physics as Gaussian approximation); for the details, see Bishop
2006, MacKay 2002.

3These flat priors may be improper in the sense that they are not normalisable, since they span over infinite
spaces.
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Maximum entropy principle and linear models

In this section, we introduce a heuristic strategy for making parameteric assumptions — the
maximum entropy reasoning. Using the maximum entropy reasoning approach, we setup a
unified framework for many statistical models, including Gaussian model, linear regres-
sion, logistic classification and some other related models. During this section, interesting
and important aside topics such as model regularisation, subset selection, will also be dis-

cussed as additional remarks.

Maximum entropy reasoning

Suppose we are to estimate the distribution p for a random system C with a configuration
space (). In practice, the system under investigation is usually not yet clearly understood,
and the parameteric assumptions that restrict the mathematical form of the distribution
p(C) are not easy to made. However, usually we have the idea of which observables (of
which the values can be estimated from the data) are most relevant to the system. For ex-
ample, one may not know the distribution of a random variable but its mean and variance
are naturally considered important. Yet, we want to know about its distribution, and not
just the mean values of such observables. Maximum entropy modelling helps bridging a
set of mean values of observables and a parametric distribution.

Let us recall that an observable is simply a (measurable) function that maps () to R,

Q: O — R
C— Q(C). (2.23)

The average of Q, with respect to the distribution of the system p is defined as

(Q) = ), p(€)Q(C). (224)

cen
We will also sometimes refer to the average of an observable as the observable itself, which
meaning we imply for the term ‘observable” will be always clear from the contexts. In our
case, the distribution p(C) is unknown, but the average of an observable can be estimated

from a training dataset,

Q)P = % Yy Q(ch), (2.25)
M

where the dataset contains M independently sampled states of the system, D = {C,},
withpy =1,2,..., M. Now, suppose we can point out K observables that are most relevant

to the system, {Q}, with k = 1,2,...,K. These observables make up K corresponding
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estimated averages,

(Qe) = (Qu)"”. (2.26)

We will further assume that these K observables capture the key aspects of the system. We
will refer to them as sufficient statistics of the system, and try to find a parametric distribu-
tion for the system that is consistent with the values of these observables.* There are still
many distributions that are consistent with these constraints, which one should be cho-
sen? The maximum entropy criterion says: one should choose from those the distribution

that maximises the information entropy,

S[p(C)] = —CZQP(C)IHP(C)- (2.27)

Mathematically, we need to conditionally maximise the entropy (2.27) with constraints

(2.26) and the normalisation condition,

Y p(C)=1. (2.28)
CceQ
This maximisation problem can be solved by introducing K + 1 Lagrange multipliers for
(2.26) and for (2.28). The solution then can be shown to take the form of the Boltzmann

distribution,
1
p(C) = 7 exp{—H(C)}, (2.29)

with the Hamiltonian

H(C) = —)_ MQk(C), (2.30)
k

where the Lagrange multipliers {A;} are found by solving the constraints (2.26), and the

partition function Z is determined by the normalisation condition (2.28).

As an example, consider a system C consisting of N binary variables, C = (01,02,...,0N),
of which the parametric distribution is unknown. Suppose we are most interested in the
first moments <cTi)D (magnetisations) and the second moments <0’i0']'>D (correlations), and
higher moments are of less importance. Claiming that these observables are the sufficient

statistics of the system, we can write down the maximum entropy distribution as

p(C) = %e*H(C), (2.31)

4This is identical with the concept of sufficient statistics in statistics: we will see that the likelihood function
for the model parameters will be the function of the average values of these observables, and only these
observables.
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with
H(C) = =) Jijsisj — ) _ hisi, (2.32)
(i) i

where J;j and h; are the Lagrange multipliers determined by the constraints

() = (o)? (2.33)
(oioj) = <0’in>D. (2.34)

In that way, the pairwise interaction Ising Hamiltonian with couplings J;; and fields h; was
derived from the choice of observables and the maximum entropy principle. The problem
of inferring the couplings J;; and fields k; is from (2.33) and (2.33) is known as the inverse

Ising problem, which we will discuss in detail in chapter 3.

We will refer to the Lagrange multipliers Ay as conjugate parameters with respect to the
corresponding observables. For example, in the inverse Ising problem, J;; and h; are con-
jugate parameters of (0;) and (0;0;), respectively. Often, the conjugate parameters have
specific interpretations and the analysis of conjugate parameters reveals important infor-
mation about the system. Take the inverse Ising problem for example. Although the con-
nected correlation (or covariance) (ojoj) — (0;) (0;) somehow measures the dependency
between two variables 0; and 0;, this kind of dependency can be indirect. Indeed, in the
case of a pairwise interacting Hamiltonian, if both ¢; and ¢} interact strongly with a third
spin 0y, there can be a strong connected correlation between ¢; and 0; despite there might
be no direct coupling between them. This direct coupling, or direct dependency, is measured
by the conjugate parameters J;;; more precisely, if J;; = 0, then ¢; and 0; are independent
given all the other variables.

Maximum entropy reasoning and its relation to statistical physics date back to 1957
with the seminal papers by Jaynes (Jaynes 1957a,b). Since then there has been a lot of de-
velopment in applications of maximum entropy models in physics and engineering (Jaynes
1989, Pressé et al. 2013, Shore and Johnson 1980). Here, we discuss various linear mod-
els in their relation to the maximum entropy reasoning. We will find that the maximum
entropy reasoning provides a comprehensive unified view for the many different models,

which formally map to problems in statistical physics.

Gaussian model

Consider the case where the configuration C consists of N real valued random compo-
nents, C = {X;}, wherei =1,2,...,N. The simplest sufficient statistics in this case could
be the means (X;) and the correlations <Xin> (including the “self-correlations” (X;X;)).
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The maximum entropy model defined by these observables is
1
H(x1,%2,...,XN) = —Zbixi + EZAijxixj’ (2.35)
i ij

where b; and A;; are conjugate parameters. The signs and the factor of 1/2 are for the
sake of convenience. Note that we have the symmetry (X;X;) = (X;X;), which implies
a symmetric constraint on {A;;}, A;j = Aj;. In similarity to the Ising model discussed in
the previous section, A;; measures the strength of direct interaction or direct dependency
between variable X; and X;.

For the sake of convenience, we introduce a simple graphical presentation for this set of
observables in figure 2.1. Each node represents a component variable. All the observables
involved one variable (e.g. « x;, & x?) are implicit. An observable involved two variables
(e.g. o x;x)) is represented by a link that connects the two variables. Our model in this

case is represented by a fully connected graph.

Figure 2.1: A graphical presentation of Gaussian model. Each node represents a variable. All
the observables involved one variable (e.g. o x;, xf) are implicit. An observable involved two
variables (e.g. o« x;x;) is represented by a link that connects the two variables. The Gaussian model
is represented by a fully connected graph.

The corresponding Boltzmann distribution of the Hamiltonian (2.35) is nothing but the

multivariate Gaussian distribution,

1
p({xi}) = - exp {+ Zbixi — ;ZAijxixj} , (2.36)
i ij
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with the partition function

(27‘[)N /2 1 4
g

From the partition function, the averages (X;) and (X;X;) (or the covariance (X;X;) —

(Xi) (Xj)) can then be easily obtained as

19Z 1 0°Z
<Xl‘> = fafbl and <X1X]> = 278blab], (238)
which yield
(X;) = (Ab);, (2.39)
(XiXp) = (Xi) (X) = (A7Y)y; (2.40)

The conjugate parameters b; and A;; are determined by solving (2.39) and (2.40) with the

averages on lefthand sides estimated from data. The solutions are

A = 271 (2.42)
where we have denoted the sample means and the sample covariances by p; = (Xi>D and

2y = (X:X;)” = (X)7 (x)".

Unfortunately, equation (2.42) often suffers from over-fitting: the sample covariance
matrix X is usually singular. Indeed, it is easy to show that rank(X) < min{M —1,N},
where M is the number of samples in the dataset, which is often smaller than N. There are
several known ways to get around this difficulty, the following additional remark presents

a simple one — the method of pseudo-counts.

Remark: Model regularisation: pseudo-counts

Imagine that we appended priorly to the real training dataset D (which we used to estimate
the means i and the covariances X) another artificial dataset Dy. Now let us estimate the average

observables from the combined data set D U DY,
(X)PP = (=) ()P ()P, (243)
DUD, D Do
<X1-X/-> (1-7) <X,-Xj> + <X,vxj> , (2.44)

where v = My /(M + M) with My and M denoting the numbers of samples in the datasets Dy

35



CHAPTER 2: PROBABILITY, INFORMATION AND STATISTICAL MODELLING

and D, respectively. Note that when 7 tends to 1, the estimations are driven by dataset Dy, and
when + tends to 0, the estimations are driven by dataset D.
Suppose we have some idea of how the parameters {b;} and {A;;} should be, say around

{b?} and {A?]} We then assume that dataset Dy was designed so that it gives the exact estimates

for the means (X,v)D ? and the covariances <X,-X/->DO corresponding to this set of parameters.
Therefore, at y = 1, with the estimated averages (2.43) and (2.44) driven by Dy, equations (2.39)
and (2.40) have the solutions b; = b? and A;; = A?j (therefore they are not singular). Now imagine
we reduce y down to some intermediate values between 1 and 0, keeping the equations non-
singular. As the data averages are compromises of the two datasets D and Dy, as seen from
equations (2.43) and (2.44), the solution now is expected to be a compromise between our prior
guess b¥ and A® and the suggested solution by the real dataset D. Thus, the singularity is remedied,
and we still hopefully retain the properties of the solution suggested by D. In practice, we usually
have to guess bY and A%, and choose -y small enough so that the particular values of our guess

are (hopefully) not so important.

2.3.2 Linear regression

In a regression problem, we are interested in the response of a variable Y, which is referred
to as response, with respect to the other N variables { X;}, which are referred to as signals.
In this case, we are interested in systems with sampling space RN*!, C = (Y; {X;}), where
i=12,...,N.

X1

X3

Figure 2.2: Graphical presentation of a linear regression model. Each link represents a two-
variable observable (coupling) between a component of the signals and the response. The signals
are imbedded in a box, indicating the model for the signals is implicit.

We now define our maximum entropy model by specifying a set of sufficient statis-
tics. These are the mean of the response (Y), the second moment of the response (Y?)
(which determines the variance (Y?) — <Y>2), and the covariances of the response with all

the signals (YX;), where i = 1,2,..., N. With those observables, the maximum entropy
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Hamiltonian is partly specified,
1
H(y; {xi}) = H*({x;}) = Y_bixjy —ay + ECyZ/ (2.45)
i
where we introduced the conjugate parameters a, {b;} and c. The signs and the factor 1/2
are for the sake of convenience. The term HX({x;}) is meant to model the signals {X;}
(jointly) in a way we do not have to specify now; the point is that it does not depend on 4,
{b;}, and c.
The corresponding Boltzmann distribution is
1 X 1 2
p(y;{xi}) = S exp § —H ({xi}) + L bixiy +ay — Sey’ o, (2.46)
i

where Z is the partition function.

If we define « = a/c, B; = b;/c and 0 = 1/c, it is straightforward to show that

Ca— Y Bix:)2
py{xi}) = eXp{—(y Lipixi) } (2.47)

which is the statistical model defining the linear regression.

Temporally keeping the old variables a, b and c;, we come back to (2.45) to calculate the

partition function,

Z = /RN]?[dxi (i”)m exp {—HX({xi}) + W} . (2.48)

Note that the partition function Z(a, b, {c;}) is the generating function of observables
(Y), <Y2> and (YX;),

13z <Y2>_ 192 13z

Y)=-5" (% (2.49)

Calculating these derivatives of Z using (2.48), after some algebraic manipulations, we

arrive at

(YX;) —(Y)(X;) = Zﬁj(<Xin> — (Xi) (X;)), (2.50)
j
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and

vo= (Y) =) Bi(Xi), (251)

2
P <(Y—Z ;3ixi> > (2.52)

where we used the newly defined variables a« = a/c, B; = b;/c, a2 =1/c.

The averages (Y), (YX;) in (2.50) and (2.51) are estimated from data, as demanded
by the maximum entropy reasoning. But solving for «, {B;} also requires observables
such as (X;) and (X;X;). Taking the values estimated from data for these observables,
from the maximum entropy reasoning point of view, is equivalent to model the signal X;
with some distribution that contains at least the first and second moments of the signals,
namely (X;) and (X;X;), as sufficient statistics observables. However, taking the averages
(X;) and (X;X;) from the data like that does not mean that the model for the signals is
Gaussian. A proper model for the signals can include higher moments, such as (X;X;Xy),
independently; the point is that those deviations from a Gaussian model are not relevant to
the linear response Y.> On the other hand, if for some reason, we know the exact model
of the signals, especially when it is simple, we can directly use it to calculate (X;) and
<XZ-X]-> ; this results in the so-called mixture models, which will also be discussed later in

this chapter.

Regression with a categorical variable

So far we assumed that the signal variables {X;} are continuous, so that observables of
the forms (X;), (X;X;) make sense. Now suppose we want to study the dependency of
the heights of people in a population on their nutrient conditions and on their origins
(European, American, African...) The origins of the people are examples of categorical vari-
ables. Such a categorical variable can take some K different values, but no addition and
multiplication can be defined among them.

We will split the categorical variable from the other variables to treat it differently, so
that the joint configuration is written as C = (Y; ®, {X;}), where ® stands for the categor-
ical component of K levels taking values in {1,2,...,K} while Y and X; are real-valued
random variables.

If ® has only two levels, observables such as (), (X;®P) and (YP) still make sense.

Therefore, the linear regression model discussed above still applies. Here we are con-

5Tf we insist a Gaussian model for the signal, we found ourselves back at the Gaussian model for the joint
response-signal configuration (Y, {X;}).
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X1

Xz

Figure 2.3: Graphical presentation of linear regression with categorical variables. This is similar
to graphical presentation of linear regression in general. The signal ® is separated to indicate its
categorical nature.

cerned with the cases where ® has more than 2 levels. In these cases, no multiplication
or summation can be defined among the categorical variables and between the categorical
variables and the other continuous variables. In replacing for non-sensical observables
such as (Y®), we simply take observables (6(®,t)Y) with t = 1,2,...,K. Overall, the
set of observables now consists of (YX;), (Y6(®,t)) and (Y?) with t = 1,2,...,K and
i=1,2,...,N. Note that we do not need to include the observable (Y) anymore because
it would be redundant since (Y) = Y, (§(®,t)Y). The Hamiltonian for the model can now

be written down directly,
1
H(y; ¢, {xi}) = H (¢, {xi}) = Lbixiy — Y ad (¢, t)y + Sy’ (2.53)
i t

Note that we again left the part related to the signals alone H* unspecified. Going through

similar calculations as above, starting with the partition function

7 — Z/ dez( )UZexp{—HX(cp,{xi})-i- (Ztﬂlt(5(¢/2c+2ibixi)2}, (2.54)

with

19Z 19Z Y2 19Z
(YX;) = 735 (Y6(®D, 1)) = 79 and < > = (2.55)

we can show that, in similarity to (2.50),

o(P, o(
(rx) - g PR %) =~ LA (<XX> o t><§<q><,t>> 7).

t

(2.56)
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and in similarity to (2.51) and (2.52),

(Yo(, 1))

" e &P
2
i <<Y—Zﬁixi—2at(5(®,t)> > (2.58)

(Xi6(, 1))
<5(q), t)> , (2.57)

where we used a; = a;/c, B; = b;/c and 0% = c.

We see that with the presence of the categorical variable ®, the equations for the lin-
ear regression parameters maintain their forms with a modified definition of covariances.
Moreover, we see that the effect of a categorical variable of K levels in a linear regres-
sion should be thought of as the effect of introducing K different constant intercepts in
the response axis (instead of a single constant as in the linear regression with continuous
variables).

Note that the standard way to treat categorical variable in linear regression is to do
the so-called dummy coding procedure. Dummy coding works by replacing one categori-
cal variable by K — 1 binary variables; and then we are back at the linear regression with
categorical variables. The interpretation of coefficients in linear regression with dummy
coding needs to be taken with care, however. Within the maximum entropy framework,
we have introduced a more direct way of treating categorical variables with simpler inter-

pretation.

Remark: Model regularisations: ridge and lasso

In linear regression, the key equation to be solved for {5;} is

r =35, (2.59)
with
no= (YX) - (V) (X)), (2.60)
T = <Xl-X]->7(X,‘)<Xj>, (2.61)

if the signals have no categorical component, or

=
Il

rx;) -y, Gl % (2.62)

t

(2.63)

T = (XX) -}

if there is a categorical component in the signals.

Noting that the generalised covariance matrix X is a positive matrix, then the solution to the
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linear equation (2.59) can be written as an optimisation problem,

B* = argmin S(B), (2.64)
B

with the objective function

S(B) = %ﬁfm —r'B. (2.65)

Equation (2.59) can be found back by setting the derivatives of S with respect to 8; to zero. Pro-

vided the covariance matrix X is invertible, equation (2.59) has the solution
g*=x"1r, (2.66)

which is also the minimiser of (2.65).

As we already discussed in the context of Gaussian models, due to the insufficiency of train-
ing data, the covariance matrix X is usually degenerate or close to degenerate. The consequence
of this degeneracy is that equation (2.59) no longer has one unique solution. In the space of g
(which is RN), the set of solutions expands over a linear manifold (a linear subspace plus a con-
stant vector) in the degenerate directions of X.. Along these degenerate directions, which span to
infinity, the objective function S(p) is flat. To avoid this flat stationary set, a common procedure
is to deform the objective function by a regularisation. Note that although regularisations such as
ridge or lasso can be thought as special choices of prior distributions for the model parameters,
such choices are poorly motivated. For that reason, we will call them ‘model regularisations’,
instead of ‘priors for parameters’”.

In ridge regularisation, the regularisation term is proportional to the Euclidean norm (I-norm)

of B. The objective function to be minimised then changes to
& i
S(B) =S(B) + 5 LB, (2.67)
i

with some positive . As this new objective function is still quadratic in §;, the minimisation is
straightforward. By inspecting the derivatives of S(), we find that the stationary equation (2.59)
changes accordingly,

r=(Z+I)B. (2.68)

As ¥ + 71 is non-degenerate for any arbitrary positive -, the solution is uniquely determined,
B* = (Z+D) " tr. (2.69)

Such a parabolic regularisation directly deforms the flat solution set, shrinking the solution to-
wards zero (shrinkage).
In lasso reqularisation, the regularisation term is proportional to the /;-norm of 8. Now the

objective function is

S(B) =SB+ L IBil, (2.70)

with some positive . This problem is still convex, which means standard optimisation tech-
niques such as gradient descent can be applied directly. However it is no longer quadratic, so the
computation can be rather tedious. But there came a surprising news: under some rather general

conditions, there exists a simple algorithm to recover the whole solution of the problem for all
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with the same computational expense as that of ridge regression (Efron et al. 2004, Hastie et al.
2009).

Similar to ridge regression, lasso regression is also a shrinkage procedure. But it has another
very important property: subset-selection (Hastie et al. 2009, Tibshirani 1996). For some large
enough value of v, it may happen in regression with lasso that one or several components of
may vanish exactly. In effect, we retain only components of the signals that are relevant to the re-
sponse. This is very important in practice for understanding the phenomena under investigation
(Hastie et al. 2009, Tibshirani 1996).

2.3.3 Logistic regression

In linear regression, the configuration C = (Y;{X;}) has a continuous response variable
Y. What if the response variable is binary or categorical? For simplicity, we assume no

categorical component in the signals {X;}.

Binary logistic regression

In this case y € {—1,+1}. Now (Y?) is no longer informative because it is just identically
1. The set of observables is reduced to the mean of the response (Y), and the correlations
with the signals (YX;), wherei =1,2,..., N. The Hamiltonian of the model is then

H(y; {x;}) = H ({x;}) Zb xiy — (2.71)

in similarity to (2.45).

It is also easy to derive the probability of the response given the signals,

1
P(Y = +1[{X; = x:}) RS Y T 2.72)
P(Y = ~1[{X; = x}) ! 73)

14+ exp{—a—Y; Bix;}’
where a« = 24, B; = 2c;, which identify the model with the logistic regression model (Bishop
2006).

Coming back to the Hamiltonian (2.71), keeping in mind that y = {—1, +1}, the cor-

responding partition function can be shown to be

{X, )
Z= /RNdee 2.ch( a+2bx]). (2.74)
Note that 57 57
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the self-consistent equations can be written easily,

vy = <th(a+2bjxj)>, (2.76)
j

(YX;) = (th(a+)_ bX)X;). (2.77)
j

Unfortunately, with the averages taken from data, this system of equations for 2 and
{b;} is non-linear and difficult to solve. In practice, it easier turning the problem to an
optimisation problem and then apply various optimisation techniques. We will not go into

the details of these technical points, which are covered in Hastie et al. 2009, for example.

Remark: The pseudo-likelihood method for the inverse Ising problem

In the inverse Ising problem, we want to estimate the couplings J;; and the fields h; in a pairwise

interacting Ising Hamiltonian of N spins,
H({Sl}) = — Z]ijsisj - ZhiSj, (2.78)
(i) i

on the basis of a dataset of some M sampled configurations of the spins, D = {C!} with u =
1,2,...,M,where CH = (s’f , sg PR si,) The maximum likelihood reasoning requires that | ij and

h; satisfy a system of equations,

(@) = ()P, 2.79)
<0’,’0’j> = <0’i0']'>D. (2.80)

which identify the model averages (c;) and <¢7,-(7]-> with their corresponding sample averages.

In the next chapter, we will discuss various methods to solve this problem. Here, in the
context of regression models, we explain the idea of the pseudo-likelihood approach (Besag 1975,
Ravikumar et al. 2010), which has become attractive because of its robustness against sampling
noise (Aurell and Ekeberg 2012).

The idea is rather simple. Imagine we pick a spin ¢;, and think of it as a regression function
of the other spins {c}} (j # 7). The regression reveals the coupling strength ;; of the spin ¢; to the
others 0; for j # i. The response, spin i, is binary, so the problem is a binary logistic regression.
The inverse Ising problem of N spins is reduced to N regression problems and can benefit from
various developed regression techniques, in particular subset-selection techniques such as lasso.

If we apply a subset selection regularisation such as lasso to the problem, those spins j that
do not directly interact with spin 7 are expected to be excluded, J;; = 0. For every spin, we can
point out the set of spins that interact with 7, together with the strength of interaction J;;. Note
that the estimated couplings J;; are in general asymmetric, J;; # Jji- Combining the two values is
a little bit arbitrary, one can take their average, for example. In practice, this simple idea works
surprisingly well in reconstructing the network of interactions of an Ising model (Aurell and
Ekeberg 2012, Ravikumar et al. 2010).
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As we discussed, solving equations (2.86) and (2.87), or equivalently maximising the corre-
sponding likelihood function, is hard. Adding lasso regularisation to the minimisation makes the
problem even harder. The problem is however still convex and there are recent new techniques
to solve (Aurell and Ekeberg 2012, Friedman et al. 2010, Ravikumar et al. 2010).

Categorical logistic regression

This picture of logistic regression can be easily extended to the case where Y is a categorical
response of K levels. We will use the symbol ® for the response to emphasise its categorical
nature. In this case, the natural set of observables can be (6(®,t)) and (§(®, t)X;), where
t=1,2,...,Kandi=1,2,...,N,leading to the Hamiltonian

H(gs i) = B (i) = LY bixid(9,4) = Loaid (1), (2.81)

Note that since the set of observables (6(®,t)) are not independent, namely we have a
constraint ), (6(®, t)) = 1, we will need to set a constraint on the set of conjugate variables

{a:} in order for them to be completely determined.

The corresponding conditional probability of the response given the signals in this case

can be found to be

P(CI) — (P’{Xl — xi}) . eXp{Zt Zi bfxifs(‘f’/ t) + Zt at5(¢/ t)} ) (282)

B Yy exp{y; i bjxid(¢',t) + Xy ad (¢, 1)}

The formula looks more complicated that it actually is: the summation over delta Kro-

necker can be performed directly,

g exp{y; b?xi}
Y Tty exp{Y; b?’,xi} '

P(® = ¢p{X;i =xi}) = (2.83)

where we denoted 71 o % (the exact proportional coefficient is irrelevant).

The self-consistent equations for the multivariate logistic regression can also be found

easily. Note that the partition function is

_ o HX({xi}) Y7 pXi bl xita
Z = /RNITIdee ge ¢, (2.84)
and 5 5
107 1927
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we can show that

(5(®@,1)) = <W> ) (2.86)

.
Zt/ nt,@):i by X;

(5(®,1)X;) = <XW> (2.87)

i 7
Zt/ nt,eZi bf X;

where 71; « e%. This is again a system of non-linear equations, techniques to solve these
equations can be found in textbooks about logistic regressions, e.g. Hastie et al. 2009.
Note that in all regression models we did not explicitly specify the distribution of the
signals H X but matching of certain observables with the data is required. As discussed,
this may help avoiding a wrong model for the signals. On the other hand, it may result in
complicated non-linear equations for the parameters, such as (2.86) and (2.87). Explicitly
introducing a model for signals can help simplifying these equations. This is the advantage

of using mixture models over logistic regressions.
Mixture model classification

Gaussian mixture model

In the model for categorical logistic classification (2.81), let us assume that HX is Gaussian.

The Hamiltonian of the model is modified to®
1
H(q), {xi}) = E ZAZ‘]'XZ‘X]' — ZZbltxlfs(q), t) — Zaté(cp, i’). (288)
ij t o t

Note that we do not need to include the mean of X in the set of observables, since they can
be directly derived from (6(®D, t)X;),

(X) =Y (5(@,1)X;) . (2.89)

t

In this case, the conditional probability density of {X;} given ® = t can be found to be

1/2
P({xi}|CI>:t) = %exp{—i—ibfxi—;ZAijxixj}. (2.90)
i ij

This equation can be interpreted as if the configurations {X; = x;} are generated from

K different Gaussian models, each with different mean (or conjugate parameters b!) but

5Here we implicitly suppose that the signals X; are continuous, so that a Gaussian distribution can be
assumed. When the signals X; are binary, we will have a mixture of Ising models, which will be discussed in
the next section. Note that logistic regression however applies to both: whether X; are continuous or binary,
the logistic regression still takes the same form; the only thing that matters is that Y is binary/categorical.
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shared covariance (or conjugate parameters A~!); thus the name Gaussian mixture model.
Strictly, a Gaussian mixture model allows the covariance matrices of the Gaussian compo-
nent distribution to depend on t as well; although this can be done by introducing observ-

ables such as (6(Y, ) X;X;), we avoid that complication here.

X1 X1 F1
X5 ® X5 ®
X3 x3 FS
(a) (b)

Figure 2.4: Graphical presentation of Gaussian mixture models. (a) Gaussian mixture model with
shared covariance. The signals are now explicitly modelled by a Gaussian distribution. Overall, the
graphis a fully connected graph. (b) Gaussian mixture model with different covariance matrices for
different Gaussian components. The three-variable observables are introduced (squared nodes).

Now, the partition function (2.84) can be evaluated,

]N/z

2 1
Z= Zeﬂt[([iefw exp {2 Z(Al)ijbfb]t} : (2.91)

t ij

Then equations (2.86) and (2.87) can also be written down explicitly in terms of the

newly introduced parameters A;;,

eﬂ[e%zij(Ail)l’jbfbﬁ
<5(q>/t)> - 0, 3 (AT b bt (2.92)
Yy eter = 7T
e“fe% Eij(Ail)ijbfb/t' o
(0(D,1)X;) = = e B AT Y (A7)t (2.93)
o et g2 =i 171 Y ]

These equations look rather complicated, but if we set

eate% (AT )ijbib}

T = (2.94)

1 _ S o4l 7
Y pete? Lij(A=)ibi bj
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which is nothing but the probability of ® = t, marginalised over {X;}, that is 1y =
(6(D, t)), equation (2.93) becomes fairly simple,

(6(P, 1) Xi)

HCn (AbY);. (2.95)

This resembles equation (2.39), which relates the means with its conjugate partners in a

Gaussian model.

Finally, we need to find the equations for A;;. Because

192 1 92
(0(,1)X;) = 50, then (0(@,1)XiX;) = Z anjab”
SO 1 9°Z
(X%} = ;zabfab;’ (2.96)

where we have used (X;X;) = ¥ (6(®, ) X;X;). From that we find

(6(@,)Xi) (5(P,1)X;)

(A7) = (XiX;) — ; 50,0 . (2.97)

This equation, together with (2.95), completes the necessary equations to determine the
model parameters b} and A;;. The Gaussian mixture model has a significantly larger num-
ber of parameters in comparison to the logistic regression, namely N(N + 1) /2 elements
of Ajj, which may cause over-fitting.” In particular, equation (2.97) is usually degenerate

and cannot be inverted to find A;j; regularisation of (2.97) is often needed.

Paramagnetic Ising mixture model

The other example where the equations for parameters in the logistic regression (2.86) and
(2.87) can be simplified by introducing an explicit model for signals is the paramagnetic
Ising mixture model. In this case, we are dealing with binary signals, 0; € {—1,+1}.
Note that we denote binary signals by o; instead of X;, which denote continuous signals.
The simplest Hamiltonian for the signals (so that the model can be solved analytically) is
the paramagnetic Ising model. Note that including observables (c;) into the model for

the categorical logistic regression (2.81) is redundant because Y, (6(®, t)o;) = (0;). That

’This comparison is actually not quite fair. A mixture model has no implicit observation or implicit pa-
rameter, whereas in logistic regressions, over-fitting can come from the implicit model for the signals.
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X1

X, @ )

X3

Figure 2.5: Graphical presentation of paramagnetic Ising mixture model. The signals now are
explicitly modelled by a non-interacting Ising model (paramagnetic model).

means, the total Hamiltonian is simply
H(gp, {si}) = =} ) bisio(¢,t) — ) ad(¢, ). (2.98)
t i t
This Hamiltonian describes a system of N Ising spins ¢; coupled to a Potts spin ®. For this

system, the partition function (2.84) (with the integral replaced by the sum over discrete

values {+1, —1}) can also be found explicitly,
z=Y e"]]2ch(®!). (2.99)
¢ i

This partition function results in simple equations for the model parameters

(6(d,t) = m, (2.100)
m = th(b}), (2.101)

where
e TT;2ch (1)

- Zt’ e Hi 2 Ch(blt/) )

Tt

(2.102)

Equations (2.100) and (2.101) with the left-hand sides estimated from data, can be
solved directly for 77; (or equivalently 4;) and b!. We will make use of this model to classify

lung cancer samples into different types based on molecular biological data in chapter 6.
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Beyond parametric and probabilistic models

This chapter was devoted to probabilistic models, and in particular parametric models. It
would be however incomplete without mentioning non-parametric models, or more gen-
erally, non-parametric analytical methods, as well.

Non-parametric methods refer to those that do not assume an explicit form of the dis-
tribution for the system under consideration, instead, they rely on general features of prob-
ability measures. Examples of non-parametric analytical methods are Spearman correla-
tion, sign test, or rank test (Higgins 2004).

There is also a great effort in developing Bayesian non-parametric models. The non-
parametric Bayesian approach is a natural extension of Bayesian modelling discussed in
this chapter: instead of assigning a belief to every point in the space of parametric dis-
tributions defined by the parametric assumptions, one assigns a belief to every point in
the space of all possible distributions. Since the space of all possible distribution is often
of high cardinality, Bayesian non-parametric models require advanced techniques of dis-
tributions in such high cardinal spaces (e.g., Gaussian processes or Dirichlet processes)
(Orbanz and Teh 2010).

Besides parametric and non-parametric models, there are also non-probabilistic or
semi-probabilistic models. Linear classification, K-means clustering, hierarchical cluster-
ings and neural networks are examples (Bishop 2006). They do not explicitly rely on prob-
abilistic statements. However, usually one can find some relations in one way or another
to the probabilistic basis behind these models, which are often too complicated to exploit

directly.
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3.1

CHAPTER 3

THE INVERSE ISING PROBLEM

We start this chapter with a review of the definition of the inverse Ising problem discussed
in the context of maximum entropy models in chapter 2. After a quick review of some
different methods for the problem, we explain how the Bethe—Peierls approximation can
solve the inverse Ising problem, exactly in trees and approximately in general graphs. We
will show that the solution given by the Bethe—Peierls approximation outperforms many
known mean-field-like methods, including (naive) mean-field approximation, Thouless—
Anderson-Palmer (TAP) approximation, Sessak-Monasson expansion. We then study the
inverse Ising problem at low temperatures, where the mean-field-like methods generally

fail. We suggest a modification for the mean-field solution to work at low temperatures.

The inverse Ising problem

Consider an arbitrary system of N binary spins ¢; € {-1,+1}, withi = 1,2,...,N. We
denote a training dataset of M independently sampled configurations of the system by
D = {s?}, wherei = 1,2,...,Nand 4 = 1,2,..., M. Very often we are most interested
in the first moments (0;) and the second moments (0;0;) of these variables. If we consider
these first two moments as sufficient statistics of the system, then the maximum entropy

model of the system assumes a Hamiltonian with pairwise interactions,
HICl = =) hisi— Y Jijsisj, (3.1)
: (i)

with couplings J;; and fields h;, and C = (sy, 52, . ..,sn). The couplings J;; and fields ; are

subject to the self-consistent equations,

(o) = (o3)7, (3.2)
(i) = (o)”, (3.3)
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where the left-hand sides are the averages of 0; and 0,0 over the model distribution and
the right-hand sides are their averages over the training dataset D (see also chapter 2). The

latter equation can also be written in terms of the connected correlations,
D D
(i0y) — (1) (o3) = (0107)" = (@0)" (o) - (3.4)

In the following, we will often denote the common values of both sides of these self-
consistent equations by the same symbols, m; = (0;) = (03)” and C;j = (070;) — (c3) () =
(0307)” = {00)® ().

The calculation of (c;) and <(7i(7j> as functions of &; and Jj; is referred to as the forward
problem, while the inverse problem is to solve equations (3.2) and (3.3) for J;; and ;. The cal-
culation of the model averages (¢;) and (0;07) as functions of J;; and £; is in general a highly
non-trivial task. In practice, Markov Chain Monte Carlo simulations are involved, where
the configuration space is sampled stochastically via a Markov chain that gives rise to the
Boltzmann measure as its equilibrium distribution (MacKay 2002, Mézard and Montanari
2009). This can be used to solve equations (3.2) and (3.3) by gradually updating step by

step the parameters h; and J;; as

Abi = —q[{er) = (o)), (3.5)
AJij = —n[(aiaj)—<(7iaj>D], (3.6)

where 7 is a small positive parameter called the learning rate. The minus signs in the equa-
tions account for the correct direction of changing k; and J;; so that (c;) and (c;0j) change
towards (0;)P and (0;07)", which can be derived formally by studying the likelihood func-
tion of h; and J;; explicitly (MacKay 2002). These update rules are known as the Boltzmann
machine update rules. Such a solution to the inverse problem via Markov Chain Monte Carlo

simulation is often rather slow, especially for large systems and at low temperatures.

There exist alternatively a number of approximate methods. The simplest approxi-
mation of all considers every pair of spins independently from the rest, resulting in the

reconstructed couplings as

1 ((1+mi)(1+m]') +C1’]‘) ((1 —mi)(l —7’1’1]') —i—Ci]')
]ij =-In ’ (37)
4 ((1—{—71’11‘)(1 —m]-) —Ci]‘) ((1 —mi)(1+mj) —Cl‘]‘)
and an additional heuristic argument yields the reconstructed fields as
1 14 m; 1 1—m]-—CZ-]-/(1+mZ-)
=1 -y 1 . .
hi 2n[1—m1}+22n[1—mi+cﬁ/(1—mi) (3:8)

j#i
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This is known as independent-pair approximation (Roudi et al. 2009).

In the mean-field approximation, explicit formulas for m; and C;; as functions of k; and
Jij can also be found and we are able to solve equations (3.2) and (3.3) explicitly under this

approximation (Kappen and Rodiguez 1998). The solution takes an elegant form,

Jij = —(C” )1]/ (i #J), 3.9)
h; = arcth(m;) ELJ’"J' (3.10)
j#i

where C~! is the inverse of the connected correlation matrix C. We will derive this equa-

tion in section 3.2

In Thouless-Anderson-Palmer (TAP) approximation, one can also derive similar equations
(Thouless et al. 1977),

Jij +2(Jij)?mim; = —(C™ 1)y, (i #7), (3.11)
h;j = arcth(m;) Ejz]m]+mlz 2(1—m (3.12)

Recently, Sessak and Monasson introduced an expansion of the couplings J;; with re-

spect to the correlation C;; (Sessak and Monasson 2009),

loo IP
]ij = ]ij P +Iij -

(1= m2)(1—m?) — (Cy)*’ (i #7), (3.13)
where

T = (LiLy) V2 [M(I + M)~ Y]

p (3.14)

ijr
with L; = 1 — m?, Mj; = C;;(L;Lj)~1/? for i # j and M;; = 0 and the quantities ]l-IjP are the

couplings calculated in the independence-pair approximation (3.7),

1 ((1+mi)(1+m/)+Cij) ((1—mi)(1—m]-)+Ci]-)

].I.P = Zln (3.15)
Y 4 ((1—|—ml)(1—m]) —C,‘]') ((1—m1)(1—|—m]) —Ci]')
The fields then can also be calculated,
h; = arcth(m;) Z]l]m] + ZKl]m L;, (3.16)

with Kj; = C;;/ (LiLj), where we stopped at the second order in the correlation C;; for the
sake of simplicity (Sessak and Monasson 2009). Roudi et al. then pointed out that the term

]l.ljaoP is actually equivalent to the mean-field solution and gave a simple explanation for the
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expansion (Roudi et al. 2009).

The inverse Ising problem is also of central interest among the machine learning com-
munity. There are many important contributions of the machine learning researchers to
the inverse Ising problem. With the rising interests among the machine learning commu-
nity in the so-called message-passing algorithms, in particular belief-propagation, Mézard and
Mora introduced susceptibility propagation for the inverse Ising problem, where the up-
date rules are simple hybridisations of the Boltzmann machine update rules (3.5) and (3.6)

and the iterative procedure of the belief-propagation (Mézard and Mora 2009).

In the context of the forward problem, Yedidia has pointed out that the equations of
belief-propagation actually describe the stationary points of the so-called Bethe free en-
ergy appearing in Bethe—Peierls approximation (Yedidia et al. 2001, 2003). It is also known
long time ago that the connected correlation function within Bethe—Peierls approximation
can be calculated via the so-called linear response relation (Welling and Teh 2004). Curiously,
it took some time to realise that the correlations calculated from Bethe—Peierls approxima-
tion directly give a simple solution to the inverse Ising problem. We and others recently
studied the Bethe—Peierls approximation in the context of the inverse Ising problem and
showed that the resulted solution is exact in trees and outperforms many known meth-
ods in loopy graphs (Nguyen and Berg 2012a, Ricci-Tersenghi 2012). The next section is

devoted to Bethe—Peierls approximation in the context of the inverse Ising problem.

Although these methods (which are referred to as mean-field-like methods) perform
well at high temperatures (weak couplings), at low temperatures (strong couplings) they
often fail to produce correct couplings. Other effort has been made in solving the problem
at low temperatures. Several methods have been proposed, including adaptive cluster
expansion (Cocco et al. 2009) and pseudo-likelihood maximisation (Ravikumar et al. 2010).
Recently, we also introduced a hybridisation of clustering algorithms and the mean-field
approximation to solve the inverse Ising problem at low temperatures (Nguyen and Berg
2012b), which will be the topic of the last section.

Bethe-Peierls approximation and mean-field-like methods

For the pedagogical reason, we start with a discussion of mean-field approximation. We
will derive the mean-field approximation from the framework of variational approximate
inference. We then discuss how the forward and the inverse Ising problem can be solved

within the mean-field approximation.
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Mean-field approximation

Consider a system of N Ising spins with the Hamiltonian (3.1), which amounts to the

Boltzmann distribution
p(C) = %e‘H(C), (3.17)

where C is a configuration of the system, C = (s1,52,53...,sn), and Z is the partition func-
tion. The idea of the variational approximate inference is to find a surrogate distribution
g for the Boltzmann distribution of the system (p), which should be simple enough for
inference. The simplest distributions of all, the mean-field family of approximate distributions

(Opper and Saad 2001), factorise over all spins,

q(C) =11 # (3.18)
i

where m; are now the magnetisations of spins i calculated under the approximate distribu-
tion, which are generally only approximates for the exact magnetisations of the system. To
determine the values of m; so that q best approximates p, the variational principle states
that the parameters of g should be chosen to minimise the Kullback-Leibler divergence
from p to g, see chapter 2. In physics, instead of the Kullback-Leibler divergence, we often
use a slightly different quantity, the functional free energy (Opper and Saad 2001). The two

quantities are different only by an additive constant,

KL(q|p) = Fylq] — Fo, (3.19)

where F,[q] is the functional free energy, which is a functional of g, and Fj is the exact free
energy of the system. Since Fy does not depend of g, minimising KL(g|p) is equivalent to
minimising F,[q] (both with respect to g). The functional free energy can be written in a

similar way of thermodynamics equations,

Fylq] = Uylq] — Splql, (3.20)

where U, [q] = Y¢q(C)H(C) and S,[q] = — ¥ 9(C) Ingq(C). Ignoring the index p of F for
simplicity, with the mean-field distribution (3.18), the functional free energy can be found

easily,

F[{ml}] = — Zhimi — Z]l]mlm] +
i ij

14+m;, 14+m 1—m;, 1—m;
1 | . 21
+Zi: 5 In— + ; In— (3.21)
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Taking the derivatives of F[{m;}] with respect to m; and set them to zero, we obtain the

mean-field self-consistent equation

arcth(mi) = Z],]m] + h;. (3.22)
j#i
In the forward problem, this equation is used to solve for the magnetisations m;, which

are the mean-field approximate magnetisations of the spins in the system.

In the inverse problem, however, we need to find h; and Jij- To do so, we also need to
calculate the correlations (¢;07). In practice, it is more convenient to calculate the connected

correlations instead,
Cy = {o103) — (o3 (7). 629

Since the mean-field distribution (3.18) factorises over the spins, the approximate con-
nected correlation between any pair of spins would be zero under direct calculation. Is
there any other way to have estimate values for the correlations? The trick is to use the
so-called linear response relation, which relates the connected correlation function with the

susceptibility,
ami
oh;’

Cii = (3.24)

Note that this linear response relation holds exactly under any general distribution. Taking

the derivatives of (3.22) with respect to /i, we have

C.
i j#i

This equation has a simple solution for Jj;,

5ii
1

With the solutions J;;, equation (3.22) can be used to solve for 1;, completing the mean-field

solution to the inverse Ising problem.

The computation of the mean-field solution, which consists mainly the inversion of the
connected correlation matrix, is among the fastest methods for the inverse Ising problem.
In many cases, the mean-field approximation gives satisfactory estimates for J;; and h;.
However, we will see that mean-field approximation often overestimates the couplings,
especially at low temperatures (see also chapter 4), for which there is a better approxima-

tion: the Bethe—Peierls approximation.
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Bethe—Peierls approximation

Since Bethe—Peierls approximation is exact when the underlying interacting topology is
a tree (i.e., in (3.1) the summation over (i, ) is restricted to a subset of spin pairs which
form a tree) (Bethe 1935), we first restrict our discussion to this case. We also first assume
that although the coupling strengths are not known, this tree topology of interactions is

known. Later, we will relax this assumption.

We construct the Bethe family of distributions as follows. To every spin i, we assign a
distribution b;(s;), and to every pairwise interaction (i, j), we assign a pairwise distribution

bz-]- (si,s ]-). These distributions are called beliefs, which are consistently normalised,

L bijlsivs) = blsi), (3.27)

Y bi(si) = 1. (3.28)

Noting that the Ising spins take values in {+1, —1}, these distributions can be parame-

terised as follows,

1+ m;s;

bi(si) = 5 (3.29)
bij(si,;s)) = SRALL +4mjsj) - CijSiSj' (3.30)

with
1<m<1 (3.31)
—1+ [m; +m;| —mim; < Cjj < +1 — |m; — m;| — mjm; (3.32)

A distribution in the Bethe family, or a Bethe ansatz, is defined as

sz,s]

q({si}) Hb ]‘[b bi ()b (s)" (3.33)

where the first product is over all spins, and the second product is over all interactions.
It can be shown that g({s;}) is properly normalised with one-spin marginals b;(s;) and
two-spin marginals b;;(s;, sj), provided the topology of interaction is a tree (Mézard and

Montanari 2009). Using (3.33), we can write down the functional free energy easily,

F[{m;, C;j}] = U[{m;, C;j}] — S[{m;, Cj}], (3.34)
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where the energy is

Uf{m;, Cij}] = (X; Jij(Cij + mm;) Zhimi, (3.35)
i ;
while the entropy is
S[{mi, Cij}] = S1[{mi, Cij}] + Sa[{mi, Cij}], (3.36)
with
Sil{mi Gl = L1 —z) - L (3.37)

i Si
= 1+ mys;)(1+mjs;) + Cisisi - (1+mys;)(1+ms;) + Cisisi
SZ[{mi/Cij}] _ ZZ( i z)( 1 ] ]) 121 ]ln( i z)( i ]]) ijoi ],

(i,j) sis5j

(3.38)

where z; is the number of spins that connect to spin i (its degree). By setting the derivatives

of F[{m;, Cjj}] with respect to m; and Cj; to zero, we have

h; + Z L]m] = (1 — Zl‘) arcth (mz) +
jcoi

si —|—mss (1—|—m's')(1—|—m‘s')—|—c~s‘s'
+ZZZ Jo ] 1 4]] l]l], (339)

]Eal SisSj

SiS; (1+m's')(1+m‘s')+c~s's'
i = ¥ et ) + Gy .40

S,‘,S]'

where di stands for the boundary set containing all spins that interact with spin i. In the
forward problem, these equations (3.39) and (3.40) are to be solved for m; and C,], which
define the best approximate distribution g according to the variational principle. In fact,

equation (3.40) can be solve explicitly for C;;,

(1= m? —m3)tij + 2mm;
Ci]‘ =

T+ VD,

where Dj; = 1 —2m;mjt;; — (1 —m? — )t‘2 and t;; = th(2];;). By substituting (3.41) into

1

- mimj, (3.41)

(3.39), we have a self-consistent equatlon to be solved for m;.

In this case, the topology of interactions is a tree, the best approximate distribution is
the exact one. It follows that m; are the exact magnetisations and C;j are the exact connected

correlations of the system. However, C;; are defined only for interacting pairs of spins,
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therefore, in this way, only the connected correlations between interacting spins can be
found. In the inverse problem, equations (3.39) and (3.40) can be used to calculate /; and
Jij directly given that the values m; and C;; are identified with the magnetisations and the
connected correlations estimated from data. In fact, this procedure turns out identical to
the independent-pair approximation. If the topology of interaction is known (which is a
tree, by our assumption), the procedure gives the exact values for the couplings and the
fields.

Unfortunately, in most of the cases, even when the assumption that the topology of
interaction is a tree is met, the concrete tree is not known. In fact, in many applications,
the foremost interest is to infer the topology of interaction, while the values of coupling
strengths are of less importance. Yet, we will show that given the topology of interaction
is a tree, it is possible to infer the exact topology with the exact coupling strengths using
another formula for the connected correlations, which are now defined for all pairs of
spins. This is based on the linear response relation, which we already learned in the last

section,
om;
1

oh;”

Cji = (3.42)

Keeping the linear response relation in mind, and with C;; substituted from (3.41), taking

the derivative of (3.39) with respect to &;, we have

1-— Zj S; 1
—Cix + — = X
1_ mlz ik ];SIZS]: 41+ ms; + m;s; + (Ci]' + mz'm]')Sij
SiS; SiS;
X S; — #(miti]’ — m]) Cik + 5j — L (ﬂ’l]tl] — mi) C] = 5ik/
v Dij ij
(3.43)
which can be solved to give
1y S (i £ ) .44
ij (Cyj)? = (1 —m2)(1 - m?)’ ' '
1—2z; 1—m3
(€ = 5= Y, = ! , (3.45)
" 1—m; jgi (Cij)? = (1= m3) (1 —m3)

where Cj; were extended to all pairs of spins so that C;; = 0if i and j do not interact directly.

If m; = 0 (due to the absence of the local fields ; and spontaneous magnetisations),
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we obtain particularly simple equations,

(Chy = _%Sh(zfij)/(i#j)f
(Chi = 1+ Y sh®(Jy). (3.46)
jcoi

In the forward problem, where ; and J;; are known, after solving (3.39) and (3.40),
equations (3.44) and (3.45) can be used to solve for C;;. In the inverse problem, where m;
and C;; are estimated from data, equation (3.44) is solved for C_ij, and then (3.40) is solved
for J;;. Interestingly, even if we do not know the topology of interactions, given it is a tree,
this procedure gives the exact topology of interaction and coupling strength: if i and j do
not interact directly with each other, (C‘l)ij = 0, therefore Ci]- = 0 and J;; = 0. Having Jj;,
equation (3.39) can be used to calculate for 5;.

In the case of loopy graphs, the Bethe ansatz (3.33) is no longer properly normalised
and cannot be considered as a probability distribution. However, one can still write down
and minimise the Bethe functional free energy. The values m; and Cj; found by solv-
ing (3.39) and (3.40) are the approximate magnetisations and the approximate connected
correlations for the system. Moreover, solving (3.44) and (3.45) for C;;, we will have an-
other approximation for the connected correlations (which is a better one, see Opper and
Winther 2004). Likewise, in the inverse problem, equation (3.44) can again be used to cal-
culate for the coupling J;j and (3.39) can be used to calculate for h; with the magnetisations
m; and the connected correlations C;; estimated from data, as if the topology of interactions

were a tree.

Relation to belief propagation and susceptibility propagation

While both Bethe—Peierls approximation and belief propagation are widely used in physics
and machine learning, their ultimate relation was pointed out by Yedidia only recently
(Yedidia et al. 2001, 2003). Specifically, he showed that belief propagation emerges as an
algorithm to minimise the Bethe functional free energy, where messages are simply the
Lagrange multipliers to impose the normalisation condition for the beliefs.

This close relation opens another way to calculate the correlation function within belief-
propagation without propagating the susceptibility. Upon the convergence of belief prop-
agation, the magnetisations are known. In fact, the correlations between interacting spins
can also be derived. These magnetisations and correlations can be identified with m; and
C_Z-]- in the Bethe—Peierls approximation. Then, equations (3.44) and (3.44) can be used to
find the connected correlations C;;. For details of this relationship, we refer to (Opper and
Saad 2001, Yedidia et al. 2001, 2003).
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Benchmark the mean-field-like methods

To benchmark different methods for the inverse Ising problem, we apply them to simu-
lated data. We set up a system of N spins with couplings ]sz and fields 1. To study the
effect of the strength of the couplings and the field, we will also explicitly introduce the
inverse temperature 8, which effectively varies the strengths of the couplings and fields
to BJ IQ]. and BhY, respectively. We then calculate the correlations Cij and the magnetisations
m; either by direct enumeration for small systems (infinite number of samples) or by Markov
Chain Monte Carlo simulation for large systems (finite number of samples). These correla-
tions and magnetisations are then used to reconstruct the couplings BJ;; and the fields h;
by mean-field approximation (and TAP modification), Bethe—Peierls approximation and
Sessak-Monasson expansion, which are all considered as mean-field-like methods. Sus-
ceptibility propagation is also performed to compare with Bethe-Peierls approximation.
Concentrating on the reconstruction of the couplings, we access the quality of the recon-

structed couplings by the quantity d, defined as

Y, (Blij — BI})?

3 0y =
WPIEAPI == - By

, (3.47)

(note that in fact the B in the nominator and in the dominator cancel.)

Simulated data: infinite number of samples

We start with small systems (N = 20), where infinite sampling (configuration enumerat-
ing) to derive the exact magnetisations m; and the exact correlations C;; is possible. We con-
sider two topologies of interaction for | sz: a Cayley tree of degree z = 3 and a Sherrington—
Kirkpatrick (SK)-model.

A Cayley tree of degree z is constructed by induction as follows. Starting from one
node which constitutes the zeroth layer of the tree, we add the first layer that consists of
z spins that are connected to the single spin of the zeroth layer; the second layer consists
of z(z — 1) spins, where every z — 1 spins connect to one spin in the second layer, and so
on (see figure 3.1). Note that, every node has degree z = 3 except for the leaves, which are
at the outermost layer. For every link, a coupling is drawn from a uniform distribution on
the interval [—1, +1] while the field at every spin is set to zero for the sake of simplicity.

Figure 3.2a shows the distances between the reconstructed couplings by mean-field ap-
proximation (and TAP modification), Sessak-Monasson expansion, susceptibility propa-
gation and Bethe—Peierls approximation and the known original couplings, d({];;}, { B/ ZQ]- ),

as functions of inverse temperature B. Note that in this case, since the magnetisations are
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Figure 3.1: Construction of a Cayley tree with z = 3. Starting from one node which constitutes
the zeroth layer of the tree, we add the first layer that consists of z spins that are connected to the
single spin of the first layer. The second layer consists of z(z — 1) spins, where every z — 1 spins
connect to one spin in the second layer, and so on.

all zero, the TAP reconstruction is identical to that of mean-field. We see that while mean-
field reconstruction and Sessak-Monasson expansion give approximate solutions, Bethe—
Peierls approximation can reconstruct the couplings of the system exactly to the numerical
accuracy. Susceptibility propagation indeed also gives the exact reconstruction, but only
for small coupling strength (small §); for strong couplings, susceptibility propagation con-

verges to a wrong stationary point with wrong Couplings.

A Sherrington-Kirkpatrick (SK) model is a fully connected network of spins where
each coupling is drawn from a Gaussian distribution with zero mean and unit standard
deviation. We again consider the system at zero field. In this case, the topology is highly
loopy, therefore Bethe—Peierls approximation is no longer exact. Still, Bethe-Peierls ap-
proximation yields a very good approximation in comparison to mean-field approxima-
tion and Sessak-Monasson expansion in the strong coupling regime, see figure 3.2b. Note
that Sessak-Monasson expansion (at zero field) is also very competitive, which gives the
best approximation when the couplings are small enough. At small couplings, suscepti-
bility propagation again follows Bethe-Peierls approximation closely in quality, but fails
to converge to the Bethe solution completely perhaps because of the numerical precision

in computation. Susceptibility propagation again fails at strong couplings.
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Figure 3.2: Benchmark of the mean-field-like solutions of the inverse Ising problem of N = 20
spins (with infinite number of samples). The deviations d of reconstructed couplings by mean-
field (MF) and TAP approximation (TAP), Bethe—Peierls approximation (Bethe), Sessak-Monasson
expansion (SM) and susceptibility propagation (SusP) from the true couplings are plotted as func-
tions of inverse temperatures . (a) In a Cayley tree: while mean-field approximation and Sessak-
Monasson expansion are approximate, Bethe—Peierls reconstruction is exact. Susceptibility prop-
agation is also exact at weak couplings (small ) but fails to converge to the correct couplings at
strong couplings (large ). (b) In a SK model: while Sessak-Monasson expansion works the best
for weak couplings, Bethe—Peierls reconstruction also gives good reconstructed couplings, and be-
comes the best reconstruction at strong couplings.

Simulated data: finite number of samples

We then turn to a more realistic situation where the number of spins are large and enu-
merating all the configurations of the system is not possible. The magnetisations and cor-
relations in this case are estimated from M sampled configurations of the system obtained

by Markov Chain Monte Carlo simulation.

We set up N = 100 spins on a random graph of fixed degree z, which can be sim-
ulated using an R-package provided by Viger and Latanpy (Viger and Latapy 2005). At
large N, the graph resembles a Cayley tree: it does contain loops, but the loops are long
(of the order of In N). The couplings J;; are drawn from a uniform distribution on the
interval [—1,+41] and the fields h; are drawn from a uniform distribution on the inter-
val [—0.3,40.3]. Figure 3.3a shows the quality of reconstruction of mean-field, TAP and
Sessak-Monasson expansion as functions of inverse temperature g with M = 5000 sam-
ples. The figure clearly shows that in general, TAP approximation improves mean-field ap-
proximation, and Sessak-Monasson expansion significantly improves TAP. Bethe—Peierls
approximation is still the best option especially at strong couplings. At weak couplings,

the differences between the method are smeared out due to sampling noise. The effect of
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Figure 3.3: Benchmark of the mean-field solutions of the inverse Ising problem for N = 100
spins on a random graph with fixed degree z = 3 (with finite number of samples). (a) The devi-
ations d of reconstructed couplings by mean-field (MF), TAP reconstruction (TAP), Bethe-Peierls
reconstruction (Bethe), Sessak-Monasson expansion (SM) and susceptibility propagation (SusP)
from the true couplings as functions of inverse temperatures g with M = 5000 simulated samples.
While the differences between the reconstructed couplings by different methods are insignificant
at weak couplings (small ), Bethe—Peierls reconstruction gives the best reconstructed couplings
at relatively strong couplings (large ). (b) The deviations d from the true couplings of the re-
constructed couplings by the same methods as functions of number of simulated samples M with
B = 1. When the number of samples is small, the difference between the reconstructed couplings by
different methods are insignificant. When the number of samples is relatively large, Bethe—Peierls
reconstruction gives the best estimations for the couplings.

sampling noise is also illustrated in figure 3.3b. We see that the mean-field-like methods
for the inverse Ising problem requires rather large number of samples for high quality re-
construction. The reconstruction quality quickly decreases as the number of samples in the
dataset decreases. In addition, the differences between these methods are not significant

when the numbers of samples are small.

The inverse Ising problem at low temperatures with mean-field approximations

While mean-field-like reconstructions perform well at high temperatures (weak couplings),
at low temperatures the quality of the reconstructed couplings quickly gets worse. The
breakdown of mean-field reconstructions can have different roots: the emergence of mul-
tiple thermodynamic states at a phase transition, an increasing correlation length at lower
temperatures, or the freezing of the spins into a reduced set of configurations at low tem-
peratures requiring more samples to measure the correlations between spins. To inves-
tigate this issue, we first consider a very simple case where mean-field theory is exact:

the Curie-Weiss model. The zero-field Hamiltonian of N binary spins s; is Hj({s;}) =
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—J/NY; <j SiSj with | = 1. This corresponds to equal couplings ]10]. = J/N between all
pairs of spins, a fact that is of course not known when reconstructing the couplings. M
samples of spin configurations are taken from the equilibrium measure exp{—fH;({s:})}/Z,
where f is the inverse temperature and Z is the partition function. One then can calculate
the observed magnetisations 11; = ﬁ Y sft and connected correlations C;, = % Y s? SZ —
m;my, with y = 1,..., M denoting the sampled configurations. Note that in this section,
we will need to carefully distinguish the Boltzmann distribution averages (m; for the mag-
netisations and C;; for the connected correlations) and the data average (17; for the mag-

netisations and C_ij for the connected correlations).

The mean-field prediction for the magnetisations of the Curie-Weiss model is also

given by the solution of the self-consistent equation (3.22),

m; = th(}_ Jijm; +h;), (3.48)
j#i

where the couplings are rescaled with temperature J;; = 8 As we also discussed, the

connected correlations follow from (3.48) by considering the linear response

_omi _ 2 om;
Cik = ol - (1_mi) <j;]l]ahk+5lk>

= (1 — mf") (Z ]1]C]k + 5ik> . (3.49)
j#i
Inserting the observed magnetisations and correlations into (3.49) gives (Kappen and
Rodiguez 1998)

Y JiiCik = =6+ Cu/ (1 — 107, (3.50)
j#i
which can be solved directly for the couplings J;; = —(ChH ij (i # j) and the fields h; =
arcthm; — };4; Jijim; using (3.48).
Figure 3.4a shows how well this reconstruction performs at different inverse temper-
atures  and different number of samples M. For B < B, = 1, the reconstruction error

1/2. gince for the Curie~Weiss model the

goes to zero with the number of samples as M~
self-consistent equation (3.48) is exact, the reconstruction is limited only by fluctuations of
the measured correlations resulting from the finite number of samples and by the finite

system size.

Yet for B > B, the difference between the underlying couplings and the reconstructed
couplings does not vanish with increasing number of samples. While the self-consistent

equation (3.48) is still correct, the identification of its solutions with the observed magneti-
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sations 771; is mistaken. For the ferromagnetic phase at f > B, there are two solutions of
the self-consistent equation, denoted mljE = £m. The observed magnetisations are aver-
ages over these two thermodynamic states and they have nothing to do with either of the
two solutions of (3.48). The same holds for the connected correlations C;jr and CZ.; in the

two states, and the observed correlations C,-]-.

0.5 1 2 4 M=4.10
M (x 10°)

M=2.10°

L M=10°

I

02 06 1[‘.30 14 1802 06 1Bo 14 18

Figure 3.4: Reconstructing couplings of the Curie-Weiss ferromagnet. The root-mean-
squared deviation between the reconstructed couplings and underlying couplings, v =

\/ m Yi<j(Jij/B—]/N)?, is plotted against the inverse temperature § for different numbers

of configurations. The system size is N = 100. The insets show this deviation on a logarithmic
scale versus the number of samples M at different inverse temperatures indicated by the colours of
the curves (8 = 0.3,0.58,0.86,1.14,1.42,1.7). a) Reconstruction based on a single thermodynamic
state breaks down in the low-temperature phase § > 1 and the deviation between reconstructed
and underlying couplings does not vanish with an increasing number of samples M (see the blue
curves in the inset). b) Reconstruction based on two thermodynamic states is asymptotically exact.
The deviation between reconstructed and underlying couplings vanishes like M1/ even at low
temperatures.

A simple cure suggests itself: Since each sample stems from one of the two thermody-
namic states, we divide the M configurations into those configurations with positive total
magnetisation ) ; s? , and those with negative total magnetisation. Then the magnetisations
in the two thermodynamic states can be calculated separately, giving ;" = N% Yuet st
and similarly for 7, and the connected correlations. Identifying these magnetisations

with the solutions of the self-consistent equation (3.48), we obtain in the place of (3.50) two
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sets of equations

Y JiCi = —ou+ G/ (1~ (mf)?), (3.51)
i#i
;jijc_jk = =6+ Cy /(1= (m])?). (3.52)
j#i

Reconstructing the couplings using a single state only, by solving say (3.51), the observed
positive magnetisation can be accounted for equally well by positive external fields (even
though the samples were generated by a model with zero field), or alternatively, by fer-
romagnetic couplings between the spins. One finds that solving (3.51) leads to an under-
estimate of the couplings, and positive external fields calculated by (3.48) follow. Corre-
spondingly, basing the reconstruction only on data from the down state by solving (3.52)
also leads to an underestimate of the couplings, and large negative fields. This effect has
already been noted in the context of the inverse Hopfield problem (Braunstein et al. 2011).
We thus demand that the reconstructed fields obtained from either state are equal to one
another

Z]ij(mj* — ;") = arcth m;" — arcthii; (3.53)

j#i
and claim that jointly solving equations (3.51), (3.52), and (3.53) gives the correct mean-

field reconstruction at low temperatures.

Already equations (3.51) and (3.52) are two linear equations per coupling variable,
so in general there is no solution to these equations. However, we expect that the un-
derlying couplings used to generate the M configurations actually solve these equations,
at least up to fluctuations due to the finite number of configurations sampled and the
finite size effect. For an overdetermined linear equation of the form A - x = b with vec-
tors of different lengths x and b and a non-square matrix A, the Moore-Penrose pseu-
doinverse A* (Moore 1920, Penrose 1955) gives a least-square solution x = A™ - b such
that the Euclidean norm ||A - x — b||2 is minimised. In this sense, the Moore-Penrose
pseudoinverse allows to solve (3.51), (3.52), and (3.53) as well as possible. The linear
equations (3.51), (3.52), and (3.53) can be written as a single matrix equation J- A = B,
where A is the N x (2N + 1) matrix (C*,C~,m* —m~) and B is the N x (2N + 1) ma-
trix (b, b, m* — M), with E;]f = —d; + Ci;r/(l — (m")?) and analogously for Ei;, and
" = arcthm and analogously for 7ii; . The Moore-Penrose inverse is calculated us-
ing singular value decomposition (Press et al. 2002) and right-multiplied with B to ob-
tain the the optimal solution J. In general, this matrix will not be symmetric, and we use
(Jij + Jji)/2, i # j for the reconstructed couplings. The external fields can be computed

for each state from h;" = arcthri” — ¥;; J#;", and analogously for h;". Their averages
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over the two states is used for the reconstructed fields.

1/2 also in the

Figure 3.4b shows how the reconstruction error now vanishes with M~
ferromagnetic phase, albeit with a prefactor which grows as the temperature decreases.
So while the mean-field reconstruction from many samples is still successful at low tem-
peratures, more configurations are needed to obtain a certain reconstruction error: At very
low temperatures, most spins will be in the same state (either up or down); the connected
correlations are small as a result and require many samples for their accurate determina-

tion.

In practice, couplings between spins will not all be equal to each other like in the Curie—
Weiss model. Ferromagnetic as well as antiferromagnetic couplings may be present in
magnetic alloys, neurons have excitatory and inhibitory interactions, regulatory interac-
tions between genes can either enhance or suppress the expression of a target gene. The
Curie-Weiss ferromagnet is not a good model for all those cases where the couplings are of
different signs and magnitudes. In fact, in models where all spins interact with each other
via couplings that can be positive or negative (Sherrington and Kirkpatrick 1975), the low-
temperature regime may be characterised not by two, but by many thermodynamic states
(Mézard, Parisi, et al. 1987, Thouless et al. 1977). These so-called glassy states cannot be
identified simply by the total magnetisation of each sample, as is the case for the ferromag-
net. Nevertheless, configurations y, 4’ from the same thermodynamic state are typically
close to each other, having a large overlap (1/N) Y s's! ; Glassy thermodynamic states
thus appear as clusters in the space of configurations (Hed et al. 2001, Krazakala et al.
2007).

We use the k-means clustering algorithm (Bishop 2006) to find these clusters in the
sampled spin configurations. Starting with a set of randomly chosen and normalised
cluster centres, each configuration is assigned the cluster centre it has the largest overlap
with. Then the cluster centres are moved to lie in the direction of the centre of mass of all
configurations assigned to that cluster, and the procedure is repeated until convergence.
We also tried out different algorithms from the family of hierarchical clustering meth-
ods, but found no significant difference in the reconstruction performance. Then mag-
netisations and connected correlations are computed for each cluster separately. Equa-
tions (3.51), (3.52), and (3.53) can be written for k thermodynamic states. The mean-field
equation for each state and the condition that the external fields are equal in all states
can be written again in the form of a matrix equation J- A = B. A is the N x (kN + k)
matrix (C!,...,CK, m! — (m),..., m* — (m)) where (-) denotes the average over clusters,
(i) = (1/k) X¥_; m?, and analogously for B. The pseudoinverse of A can be computed in

O(kN3) steps (Press et al. 2002), so up to a factor of k coming from the number of clusters,

68



CHAPTER 3: THE INVERSE ISING PROBLEM

this is just as fast as the high-temperature mean-field reconstruction based on Gaussian

elimination to invert the correlation matrix.

We test this approach using couplings drawn independently from a Gaussian distribu-
tion of zero mean and variance 1/ N (the Sherrington—Kirkpatrick model, see Sherrington
and Kirkpatrick 1975). Figure 3.5a shows the reconstruction at low temperatures getting

better with the number of clusters k and configuration samples M.

@ ()

02 06 10 14 18 02 06

Figure 3.5: Reconstructing couplings of the Sherrington-Kirkpatrick model. The Pearson cor-
relation coefficient r quantifies the correlation between reconstructed couplings and underlying

m Tz Ti= N U—=()

/var(]) var(J0)

reconstructed couplings across bonds, and similarly for the underlying couplings. r = 1, or
1 —r = 0, corresponds to perfect reconstruction. The main plots show 1 — r against the in-
verse temperature 3 for different numbers of clusters k. The insets show how 1 — r depends on
the number of clusters k at different inverse temperatures indicated by the colours of the curves
(8 =0.3,0.58,0.86,1.14,1.42,1.7). The numbers of samples M are scaled with the numbers of clus-
ters M = k x 5 x 10* to ensure a constant average number of states per cluster. The system size is
N = 100. a) Reconstruction based on mean-field approximation. b) Reconstruction based on the
TAP approximation with gradient descent.

couplings, r = , where (J) , var(J) are the mean and variance of the

A further improvement is possible. For disordered systems, the self-consistent equa-
tion (3.48) is not exact. An additional term is required, the so-called Onsager reaction term
describing the effect a spin has on itself via the response of its neighbouring spins. The
Thouless—Anderson-Palmer (TAP) equation (Thouless et al. 1977)

m; = th(Z]Z]m] — m; 2]12](1 - mjz) + I’lz) (354)
JFi j#i

turns out to be exact for models where all spins interact with each other. For each state a
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we now obtain instead of (3.51)

D JiiCli = =0+ Cie/ (1 = (1)) +
j#i
Ch ) Ji(1—( —2mf Y JEmiCh . (3.55)
j#i j#i

These equations are no longer linear in the couplings J;; and cannot be solved by the
pseudoinverse. A simple gradient descent method still allows to solve these equations
in O(kN3) steps per iteration. We define a quadratic cost function S for the couplings J
by squaring the difference between lhs and rhs of equation (3.55) and summing over all
spin pairs i,k and states a. Differences in the external fields 1f = arcthmy —}.;; Jijm] +
i Yz 12](1 — (ﬁz;’)z) across thermodynamic states are penalized by an additional term
Yia (h— (hi>)2. The iterative prescription with rate 7, J;; < Jij — 179S/d];j, converges to
a point near the solution of the TAP equation with small differences in the external fields
across states (the deviations resulting from the finite number of samples and finite system
size). Figure 3.5b shows how the reconstruction error asymptotically now tends to zero
with growing k and M.

Mean-field theories exists beyond the Curie-Weiss, or the Sherrington—Kirkpatrick
model discussed here (Opper and Saad 2001). We have shown that the use of mean-field
methods to solve the inverse Ising problem at low temperatures hinges on our ability to
reconstruct the thermodynamic states from the sampled data. With this proviso, the entire
range of mean-field methods can be now be used, for instance, for the Bethe approximation

or Kikuchi approximation (Kikuchi 1951).

Conclusions and outlook

In this section, we discussed the methods of the inverse Ising problem. We introduced
Bethe-Peierls approximation to the mean-field-like methods for the inverse Ising problem.
At low temperatures, using clustering techniques, we showed that the problem can also
be solved by mean-field methods.

The inverse Ising problem and its variants have been applied to many different prob-
lems, in particular in quantitative biology, ranging from neural network (Schneidman et al.
2006), protein-protein interaction (Weigt et al. 2009) to gene regulatory networks (Bailly-
Bechet et al. 2010). In chapter 4 of this thesis, we present an application of the inverse Ising
problem to analyse a dataset of copy-numbers of cancer patients. Chapter 5 can also be
considered as an extension of the inverse Ising problem to analyse the correlations in gene

expression of cancer cells.

70



CHAPTER 3: THE INVERSE ISING PROBLEM

REFERENCES

Bailly-Bechet, M., A. Braunstein, A. Pagnani, M. Weigt, and R. Zecchina (2010). “Inference of sparse
combinatorial-control networks from gene-expression data: a message passing approach”. BMC
Bioinformatics 11.1, p. 355.

Bethe, H. A. (1935). “Statistical theory of superlattices”. Proc. R. Soc. A 150, pp. 552-575.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Braunstein, A., A. Ramezanpour, R. Zecchina, and P. Zhang (2011). “Inference and learning in
sparse systems with multiple states”. Phys. Rev. E 83, p. 56114.

Cocco, S., S. Leibler, and R. Monasson (2009). “Neuronal couplings between retinal ganglion cells
inferred by efficient inverse statistical physics methods”. Proc. Natl. Acad. Sci. 106.33, pp. 14058-
14062.

Hed, G., A. K. Hartmann, D. Stauffer, and E. Domany (2001). “Spin domains generate hierarchical
ground state structure in | = %1 spin glass”. Phys. Rev. Lett. 86, pp. 3148-3151.

Kappen, H. J. and F. B. Rodiguez (1998). “Efficient learning in Boltzmann machines using linear
response theory”. Neural Comput. 10, pp. 1137-1156.

Kikuchi, R. (1951). “A theory of cooperative phenomena”. Phys. Rev. 81, pp. 988-1003.

Krazakala, F., A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova (2007). “Gibbs states
and the set of solutions of random constraint satisfaction problems”. Proc. Natl. Acad. Sci. 104.25,
pp. 10318-10323.

MacKay, D. J. C. (2002). Information theory, Inference and Learning Algorithms. Cambridge University
Press.

Mézard, M. and A. Montanari (2009). Information, Physics, and Computation. Oxford University Press.

Mézard, M. and T. Mora (2009). “Constraint satisfaction problems and neural networks: A statistical
physics perspective”. J. Physiol. Paris 103.1-2, pp. 107-113.

Meézard, M., G. Parisi, and M. Virasoro (1987). Spin Glass Theory and Beyond. World Scientific Pub-
lishing.

Moore, E. H. (1920). “On the reciprocal of the general algebraic matrices”. Bull. Amer. Math. Soc. 26,
pp- 394-395.

Nguyen, H. C. and J. Berg (2012a). “Bethe-Peierls approximation and the inverse Ising problem”.
J. Stat. Mech. P03004.

Nguyen, H. C. and J. Berg (2012b). “Mean-field theory for the inverse Ising problem at low temper-
atures”. Phys. Rev. Lett. 109, p. 50602.

Opper, M. and D. Saad, eds. (2001). Advanced Mean-field Methods: Theory and Practice. The MIT Press.

Opper, M. and O. Winther (2004). “Variational linear response”. In: Advances in Neural Information
Processing Systems 16. Ed. by S. Thrun, L. K. Saul, and B. Scholkopf. Cambridge, MA: MIT Press,
pp- 1157-1164.

Penrose, R. (1955). “A generalized inverse for matrices”. Math. Proc. Camb. Phil. Soc. 51.03, pp. 406—
413.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2002). Numerical Recipes in C++.

Cambridge University Press.

71



CHAPTER 3: THE INVERSE ISING PROBLEM

Ravikumar, P.,, M. J. Wainwright, and J. D. Lafferty (2010). “High-dimensional Ising model selection
using l1-regularized logistic regression”. Ann. Stat. 38.3, p. 1287.

Ricci-Tersenghi, F. (2012). “On mean-field approximations for estimating correlations and solving
the inverse Ising problem”. J. Stat. Mech. P08015.

Roudji, Y., E. Aurell, and J. A. Hertz (2009). “Statistical physics of pairwise probability models”.
Front. Comput. Neurosci. 3, p. 22.

Schneidman, E., M. J. Berry, R. Segev, and W. Bialek (2006). “Weak pairwise correlations imply
strongly correlated network states in a neural population”. Nature 440.7087, pp. 1007-12.

Sessak, V. and R. Monasson (2009). “Small-correlation expansions for the inverse Ising problem”.
J. Phys. A 42, p. 55001.

Sherrington, D. and S. Kirkpatrick (1975). “Solvable model of a spin-glass”. Phys. Rev. Lett. 35.26,
pp- 1792-1796.

Thouless, D. J., P. W. Anderson, and R. G. Palmer (1977). “Solution of a ‘solvable model of a spin
glass’”. Phil. Mag. 35, p. 593.

Viger, F. and M. Latapy (2005). “Efficient and simple generation of random simple connected graphs
with prescribed degree sequence”. In: Annual International Conference on Computing and Combi-
natorics. Ed. by L. Wang. Springer, pp. 440-449.

Weigt, M., R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa (2009). “Identification of direct residue
contacts in protein-protein interaction by message passing”. Proc. Natl. Acad. Sci. 106.1, pp. 67—
72.

Welling, M. and Y. W. Teh (2004). “Linear response algorithms for approximate inference in graph-
ical models”. Neural Comput. 16, pp. 197-221.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2001). Characterization of belief propagation and its general-
izations. Tech. rep. 15. MERL.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2003). “Understanding belief propagation and its gen-
eralizations”. In: Exploring Artificial Intelligent in the New Millennium. Ed. by G. Lakemeyer and
B. Nebel. Morgan Kaufmann Publishers. Chap. 8, pp. 239-270.

72



4.1

CHAPTER 4

(GENE COPY-NUMBER CORRELATIONS IN CANCER CELLS

In this chapter, we study the correlations in gene copy-number among different loci of the
genome of cancer cells. The matrix of correlations between copy-numbers shows a dense
blocked form. We speculate that such a dense blocked correlation matrix can be explained
by simpler, sparse direct interactions between the loci. Mapping the problem into the
inverse Ising problem, we show that this is indeed the case. We also compare the inferred
coupling matrix with the contact frequency map of chromosomes (Hi-C data) to show that
strongest coupled loci indeed have higher mean contact frequency than highest correlated
loci. Analysis of weaker couplings between distal parts of a chromosome is however not

yet possible in this study.

The gene copy-number variation in cancer cells

Advances in biotechnology during the last decades have made it possible to measure the
copy-numbers over a genome with relatively high resolution (Huang et al. 2004, LaFram-
boise 2009, Pinkel et al. 1998). To archive this, generally, DNA molecules are first cut into
short sequences of nucleotides (oligonucleotides) by special enzymes. The oligonucleotides
are amplified and then labelled with fluorescent agents. The labelled oligonucleotides hy-
bridise with their complementary sequences (probes) prepared on an array. The array is
then scanned to measure the fluorescent intensities for every probe. By construction, these
fluorescent intensities are directly related to the copy-numbers of the oligonucleotides
present in the sample (Huang et al. 2004, Pinkel et al. 1998).

The fluorescent intensities at the probes are very noisy measures of the DNA copy-
numbers. Luckily, loci that are close to each other on a chromosome tend to have the
same copy-numbers, forming long segments of chromosome with the same copy-number
separated by so-called breakpoints. This provides a way to smoothen the fluorescent in-
tensities with a piecewise constant function, significantly reducing noise in the data. This

procedure is called segmentation, and the resulted data are called segmented data. In fig-
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ure 4.1, panel (a) shows an example of raw copy-number data and segmented smoothen-
ing, while panel (b) shows a few samples in a segmented dataset in the Integrated Ge-
nomic Viewer (IGV) (Robinson et al. 2011, Thorvaldsdéttir et al. 2013). Note that the copy-
numbers are often non-integers because a tumour sample usually contains different tu-
mour clones as well as contamination by normal cells, making the copy-number measure-
ment a population-averaged measurement (see chapter 1). Luckily, due to the discrete
nature of copy-numbers, there exist impurity correction methods to eliminate the copy-
numbers of contaminated normal cells and infer the copy-numbers of the main clone in the
population and sometimes also the subclone structure of the tumour population (Carter
et al. 2012, Fischer et al. 2014, Oesper et al. 2013). In this chapter, we will work with an
impurity-corrected copy-number dataset provided by our collaborators at Department of

Translational Genomics.
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Figure 4.1: The copy-number data. (a) The signal intensities of copy-number data (grey) and seg-
mentation smoothening (example in Circular Binary Segmentation package developed by Olshen
et al. 2004). (b) Few sample tracks of segmented copy-number data viewed in IGV with red colour
for amplification and blue colour for deletion.

We observe from figure 4.1 that there are indeed many copy-number mutations in the
copy-number profile of a tumour sample. Many of these copy-number mutations are ran-
dom, but few amplifications or deletions recurrently appear across all samples or samples of
a particular type of cancers. This observation has two implications. First, these recurrent
amplifications and deletions suggest that the affected regions are important to tumour de-
velopment, inviting further investigation to shed light on their biological effects. Second,
since different types of cancer may have different recurrent patterns of copy-number muta-
tions (and hence different biological properties), the copy-number data of a cancer sample
can be used to classify the tumour into tumour class to inform treatments. Of course, in a
way, these two implications are simply two sides of the same problem.

A number of statistical methods have been suggested to find recurrent patterns of copy-
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number mutations in cancers or in a particular type of cancers. One important example is
GISTIC developed by Mermel et al. 2011 and its variants. The ideas behind such statistical
methods are often rather simple: suppose we sum up over all the copy-number profiles of
a subtype of cancer, recurrent amplifications or deletions would stand out as peaks (see fig-
ure 4.1b, top track). Statistical tests can be used to assign a p-value to each peak to indicate
how less likely such a peak emerges purely by chance. Such approaches have successfully
revealed that many of the recurrent amplifications indeed contain oncogenes that play key
roles in cancer development, and many of the recurrent deletions contain genes that are
tumour suppressors. For example, EGFR and KRAS are recurrently amplified in lung can-
cers, prostate cancers and some other cancer types, while TP53 is recurrently deleted in
cancers of many types, especially those in late stages of the disease.

From another perspective, we may ask another question: are copy-number mutations
correlated? In physical terminology, while GISTIC-like methods are dealing with the “one-
point function”, we want to ask the question about the “two-point function”. We speculate
that, since copy-number mutations in cancer can arise because of tandem replication of
different segments of chromosomes, the correlations between copy-numbers of different
parts of a chromosome could be related to the spatial organisation of the genome.

Complementarily, recent advances, especially the landmark works by Lieberman-Aiden,
have made it possible to capture the spatial organisation of DNA (Lieberman-Aiden et al.
2009). By locking the chromosome segments that are closest to each other by special pro-
teins before cutting the genome by enzymes and analysing the resulted short sequences,
the interacting segments of chromosomes are recorded. Such a measurement results in
a contact frequency matrix, of which each element is the frequency of physical contact of
two loci in the genome. The contact map thus shows rough picture of the geometrical
organisation of the genome. An example of such a contact frequency matrix is shown in
the terrain colour scale' in figure 4.2a. The study of the spatial organisation of genomes
reveals an important picture, see figure 4.2b. The interacting partners of a human chromo-
some are often continuous segments, here referred to as sectors.” For the purpose of this
simple study, we determine the sectors in a very simple way, see figure 4.2 and its caption.
Slight difference in determining the sectors do not affect the results. For a more careful

definition of sectors, see Lieberman-Aiden et al. 2009.

ITerrain colour scale: green and yellow hues indicate low frequencies, brown and white hues indicate high
frequencies.

2 According to Lieberman-Aiden et al. 2009, sectors are of two types A or B. Sectors of the same types tend
to interact more frequently with each other, and sectors of different types interact less frequently with each
other. Moreover, one type of sectors contains more genes and are more accessible (more open) than the other
(more close). Further statistical analyses also reveal that such a compartment structure of the human genome
is also correlated with the DNA replication timing and also the presence of the so-called fragile sites in the
genome (De and Michor 2011).
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Figure 4.2: Chromosome contact frequency map and its sector structure. (a) The contact fre-
quency matrix of chromosome 1 is shown as a terrain map (data from Lieberman-Aiden et al.
2009). Chromosome 1 is binned with the resolution of 1000 base-pairs, and the contact frequency
of every pair of bins is presented. (b) The first eigenvector of the correlation matrix of the contact
frequency, following Lieberman-Aiden et al. 2009. The components of the eigenvector have alter-
nating signs, indicating the two types of sectors (compartments) on the chromosome; for more
details, see Lieberman-Aiden et al. 2009. (c) We determine the sector of chromosomes by sim-
ply segmentation smoothening the eigenvector into segments (with Circular Binary Segmentation
CBS by Olshen et al. 2004). (d) Copy-number matrix of sectors for all samples extracted from the
segmented data.

We speculate that the sector structure may play a role in copy-number mutations in
cancer cells. Therefore, we extract the copy-numbers of those sectors and study the corre-

lations in copy-number across these sectors over cancer genomes, see figure 4.2c.

Figure 4.3 shows the correlation matrix between the copy-numbers of the sectors on
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Figure 4.3: The copy-number correlation matrix. (a) The terrain map of the matrix of connected
correlations in copy-number between different sectors on chromosome 1. (b) A small block on the
diagonal of the correlation matrix.

chromosome 1. Again, statistical methods with careful manipulations of the data may
pinpoint which pairs of loci are more correlated than expected by chance. Such an ap-
proach has been discussed, for example, by Klijn et al. 2010.

However, these statistical models have an intrinsic difficulty: correlation matrices, by
their nature, are often dense, that is, many sectors are highly correlated with each other.
Indeed, having a closer look at the correlation matrix shown in figure 4.3, we find that it
shows dense correlated blocks. But do these correlated blocks demonstrate dense direct
interactions among the loci? (The exact meaning of the term ‘direct interaction” will be
explained in the following section.) We will show that such dense blocked form of the cor-
relation matrix can be deceptive. In fact, the correlations can be explained by a very sparse

interaction matrix with most interactions concentrating among the nearest neighbours.

Correlation and interaction: the inverse Ising problem

To understand the nature of the question we posed, let us go back to the Ising model for
an analogy. Consider a linear chain of three Ising spins S, S and S3. Suppose S1 and S,
are coupled by a strong coupling, and so do S; and S3. There is no coupling between S;
and S3. However, it is clear that there can be strong correlation between S; and S3, which
is induced by the shared interaction partner S;. Therefore, the strong block of correlation
between Si, S and S3 in this case can be explained simply by their linear geometrical

organisation.
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This example of the Ising model elucidates the central point: it is important to distin-
guish the concept of correlation from that of interaction. In the context of Ising models,
the problem of inferring the couplings (and fields) from the correlations (and magnetisa-
tions) is known as the inverse Ising problem, which we discussed in chapter 3. The inverse
Ising problem and its variants have been successfully applied to disentangle the (indirect)
correlations and (direct) interactions in the contexts of neural networks (Schneidman et al.
2006), protein-protein interaction networks (Weigt et al. 2009) and gene-regulatory net-
works (Bailly-Bechet et al. 2010). Here, we apply the inverse Ising problem to analyse the

interactions that underlie the correlations in the dataset of copy-numbers of lung cancers.
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Figure 4.4: Copy-number data in binary format. (a) The copy-number of sectors on chromosome
1 for all samples in binary format. (b) The correlation matrix recalculated with binary data.

In order to map the problem into the inverse Ising problem, technically we have to map
copy-number values to binary format. Fortunately, with the impurity-corrected dataset
provided by our collaborators, this binarisation of copy-number values is rather straight-
forward: for any sector, we assign value +1 (positive or affected) if the copy-number is larger
than 2.5 or smaller than 1.5, and assign value —1 (negative or unaffected) if otherwise. This
results in a binary copy-number dataset and the correlation matrix is recalculated accord-
ingly; these are shown in figure 4.4. (Here, we are consider the amplifications and dele-
tions of the sectors jointly, similar approaches can be used to study the amplifications or

the deletions of the sectors separately.)
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The inverse Ising problem in mean-field approximation

Methods for the inverse Ising problem have been discussed in chapter 3. In the follow-
ing, we will use with the simple mean-field reconstruction (with a minor modification
described below) throughout, which gives the couplings between the spins as

Jij = Cif, fori # j, (4.1)
where C is the connected correlation (covariance) matrix among the spins. We found that
in our case, the differences between different mean-field-like methods are not significant as
the number of samples are small (see chapter 3, figure 3.3). On the other hand, mean-field
reconstruction has an important advantage compared to the others: itis easy to incorporate
a model regularisation. In particular, it easy to show that a ridge regularisation (Hastie et

al. 2009) for the mean-field reconstruction is simply given by
Jij = —(C+D);!, fori #, 4.2)

where [ is the identity matrix and y is the regularisation coefficient (see also chapter 2).

Analysing the copy-number data of lung cancers

With the binarised copy-number data (see figure 4.4), it is rather straightforward to infer
the couplings using the mean-field approximation. We perform the inference for each
chromosome separately. The results here are from the data of chromosome 1; results for

other chromosomes are similar.

Modifying the mean-field solution

We infer the couplings J;; using (4.2) with a small value of the regularisation coefficient,
v = 0.01. As expected, we find that the coupling matrix is much sparser than the cor-
relation matrix with strong couplings concentrating on the subdiagonal, namely between
nearest neighbouring spins. While these nearest neighbour couplings are expected to be
strong, these mean-field reconstructed couplings turn out to be enormously large.> The
fact that the couplings of the nearest neighbours are large means that considering a pair
of neighbouring spins independently from the other spins can be a good approximation.
Therefore, the independent-pair approximation (see chapter 3) is expected to be good
for these couplings. Figure 4.5a shows the scatter plot between independent-pair recon-

structed couplings and mean-field reconstructed couplings of nearest neighbours. This

3A coupling of 50 gives a difference in energy of 100, and therefore a difference in probability of 100
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Figure 4.5: Modification of the mean-field solution. The scatter plots between nearest neigh-
bour couplings reconstructed by the independent-pair approximation versus the couplings re-
constructed by the mean-field approximation (y = 0.01) without arcsh modification (a) and with
arcsh modification (b). While without arcsh modification, mean-field reconstructed couplings can
be enormously large in comparison to independent-pair approximation, the arcsh transformation
makes the mean-field reconstructed couplings very similar to that of the independent-pair approx-
imation for nearest neighbours.

figure shows a clear difference between them.

How do we resolve this difference? Surprisingly, the answer lies in the Bethe—Peierls
approximation. Let us recall from chapter 3 that Bethe-Peierls approximation suggests
that the coupling matrix when the magnetisations are zero should be inferred as J; =
—1/2arcsh(2C i 1), for i # j, instead of Jij=—C; ! (for i # j) as in mean-field approxima-
tion. We speculate that for strong couplings, this arcsh-modification would be generally

needed. The reconstruction formula (4.2) then changes to
— Laresh [2(C+41)71], fori # 4.3
]ij—_iarcs [( +’7)ij}’ ori # j. (4.3)

Indeed, after this modification, the couplings between nearest neighbours reconstructed
by independent-pair approximation and by mean-field are in better agreement, as shown
in figure 4.5b. In the figure, one also observes that the modified mean-field reconstruc-
tion slightly underestimates the couplings. This is however expected because of the ridge

regularisation, which shrinks the estimation towards zero (shrinkage — see chapter 2).
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Analysing the coupling matrix

Figure 4.6b shows the terrain map of the reconstructed coupling matrix. We see that the
coupling matrix is much sparser than the correlation matrix shown in figure 4.6a. The
strongest couplings are concentrated on the near neighbours. The scatter plot between
the correlations and the couplings in figure 4.6c shows that many pairs of sectors that are

strongly correlated in copy-number actually have small direct couplings.
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Figure 4.6: Connected correlations, couplings and the contact frequencies. (a) The connected
correlation matrix is dense with large correlated blocks. (b) The coupling matrix is sparse with
strong couplings concentrating mainly among close neighbours. (c) A scatter plot of the couplings
versus the connected correlations shows that many pairs of sectors that have strong connected
correlations are only weakly coupled. (d) For a comparison, we also plot the terrain map of the
contact frequency matrix (in log scale, pairs that have contact frequency 0 are left white).
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Figure 4.7: Agreement of the coupling matrix with the contact frequency matrix. The mean con-
tact frequencies of the pairs of sectors chosen in decreasing coupling strengths (red) or decreasing
connected correlations (green) and a random order (a permutation of all sector pairs) (grey).

Comparing the coupling matrix and the contact frequency matrix

As a first attempt to analyse the coupling matrix, we investigate the agreement between
the coupling matrix and the contact frequency matrix of the chromosome measured in-
dependently using the Hi-C technique (Lieberman-Aiden et al. 2009) as described above?,
see figure 4.2. To have a comparison, we will also consider the agreement between the
connected correlation matrix and the contact frequency matrix. We do so in the following
way. First, all pairs of sectors are ordered according to their absolute coupling strengths
(or correspondingly, their connected correlations). We use p# to denote the ith pair, with
« denoting either the ordering using couplings (¢ = 1) or using connected correlations
(« = 2). The contact frequency of the pair is denoted by x(p). Suppose we choose n pairs
of sectors with strongest couplings (or strongest correlations), we then ask: what is their
mean contact frequency? This mean contact frequency of n chosen pairs can be calculated
as
o 1 g 14
y(n) = - ) x(pi)- (4.4)

k=1

“This aligns with our speculation that pairs of DNA segments are jointly mutated because they are fre-
quently in close proximity. However, in this study we are able to confirm this hypothesis yet.
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The mean contact frequencies y* are shown in figure 4.7a. For a comparison, the mean
contact frequencies for 7 fist sector pairs of a random mutation of all the sector pairs are
also presented. The figure shows that the mean contact frequency of n pairs of sectors
that have strongest couplings is higher than that of n pairs of sectors that are most corre-
lated when 7 is small (n < 100). When n is large, however, the mean contact frequency
of n most correlated pairs is higher. Therefore, while the strong couplings inferred by the
inverse Ising model are reliable, weak couplings are noisy. Further investigation of fig-
ure 4.6 shows that strong couplings are often among the close near neighbours, indicating

the one-dimensional organisation of the chromosome.

Conclusions and outlook

In this chapter, we studied the correlation in copy-number of sectors of chromosomes
(which are defined by their physical contact map). We emphasised the conceptual differ-
ence between the (indirect) correlations and the (direct) interactions. To accomplish this
discrimination, we binarised the copy-number data and applied methods of the inverse
Ising problem to infer the couplings that underlie the correlations observed. We showed
that a very sparse coupling matrix, which is compatible with the one-dimensional organ-
isation of chromosomes, can explain the dense, blocked-form copy-number correlation
matrix. We compared the inferred coupling matrix and the connected correlation ma-
trix with the contact frequency matrix of chromosome 1, where strong inferred couplings
shows better agreement.

While the coupling matrix is mainly one-dimensional, we expect that occasional long
range couplings between distal parts of a chromosome may also be important. Inferring
these sparse long range couplings is still difficult as they are generally weak. Extending the
analysis for the couplings between distal parts of a chromosome can be a fruitful project

in the future.
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CHAPTER 5

(GENE EXPRESSION CORRELATIONS IN CANCER CELLS

In this chapter, we extend the concepts of indirect correlation and direct interaction to
study the influence of copy-number alterations on gene expression correlations. Specifi-
cally, we will show that correlations in gene expression level in cancer cells (called observed
correlations) do not necessarily imply regulatory interactions: they can be simply induced
by the correlations in gene copy-number. We also show that with a simple maximum en-
tropy model it is possible to eliminate this induced correlation. This model brings the
concept of bare correlation in gene expression, which captures the regulatory interactions
alone. A Gene Ontology similarity analysis shows that gene pairs that are strongly cor-
related in terms of bare correlation are indeed more likely to be biologically related than

those that are correlated in terms of observed correlation.

Gene expressions of cancer cells and the influence of copy-number alterations

Although direct high-throughput measurements of protein concentrations have been lim-
ited, high though-put measurements of messenger RNA (mRNA) concentrations as sur-
rogates to gene expressions are rather popular (Parmigiani and Garett 2003). Due to the
early development of microarrays for mRNA gene expression measurement (Lashkari et
al. 1997, Schena et al. 1995), methods to analyse genome-wide gene expression levels of
cancer cells have attracted interests over the last decades (Parmigiani and Garett 2003).
These early analyses concentrated mostly on either molecular classification of tumours or
cancer-related gene prediction (Golub 1999). Gene expressions were then used to anal-
yse the regulatory networks of cancer cells (Rhodes et al. 2007). Such analyses were often
based on defining clusters of co-expressed genes, or utilising different ways of reconstruct-
ing the gene regulatory networks based on gene expression correlations (Bonnet et al. 2010,
D’haeseleer et al. 2000, Segal, Friedman, et al. 2004, Segal, Shapira, et al. 2003). For a thor-
ough introduction to gene expression analysis, see Parmigiani and Garett 2003.

Later came the technology to measure gene copy-numbers on a genome-wide scale
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with high resolution (J. Huang et al. 2004, LaFramboise 2009, Pinkel et al. 1998). While
gene expressions can vary from cell to cell, gene copy-numbers are believed to remain
rather stable in a clonal population. Therefore, cancer analysis based on copy-numbers
are believed to be more reliable. Still, analyses at the genome-wide scale (such as GISTIC)
are of high dimension and also subject to the curse of dimensionality and other problems,

see also chapter 4.

200
200

150
150

200 genes on chromosome 1
100
L
200 genes on chromosome 1
100

50
ol
50

50 100 150 200 50 100 150 200

200 genes on chromosome 1 200 genes on chromosome 1
(a) (b)

Figure 5.1: Impacts of copy-number alterations on the correlations in gene expression. (a) The
correlation matrix of expressions of 200 genes on chromosome 1. A closer look reveals correlated
blocks along the chromosome, i.e. genes that are close to each other tend to be correlated. (b) The
correlation matrix of copy-number of the same 200 genes. We will show that the block structure of
the correlation matrix of expressions partly originates from the block structure of the correlation
matrix of copy-numbers.

A natural idea is to combine the copy-number data with the gene expression data to
maximise the information for analysis. Many approaches to incorporating the two differ-
ent data types have been proposed; although several formalisms emerged (N. Huang et al.
2012, Kirk et al. 2012, Masica and Karchin 2011, Menezes et al. 2009, J. Wang et al. 2012),
there seems to be no convincing unique framework.

In this chapter, we highlight a very simple effect of copy-number alterations on gene
expression in cancer cells. The effect is illustrated in figure 5.1a, which shows the terrain
map of the correlation matrix of some 200 genes on chromosome 1, ordered in the chro-
mosomal order. Although it is not easy to detect with the naked eyes, a careful look at
the figure reveals that it has block structure: genes in the chromosome order tend to form
correlated blocks, which seem to act as single units. Where do such blocks come from?
It could be that genes that are close to each other on a chromosome tend to be regula-

torily related (e.g., they may share the same transcription factors or the same chromatin
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structures). However, we will show that there is another source that induces the correla-
tion between genes that are close to each other on a chromosome, which is (incidentally)
important for cancer cells.

Figure 5.1b shows the terrain map of the correlation matrix of copy-numbers of the
same 200 genes. The correlation matrix of copy-numbers also has very clear blocks, re-
flecting the geometrical organisation of the chromosome (see also chapter 4). Putting the
two correlation matrices side-by-side, we speculate that the blocks in the gene expression
correlation matrix may be in fact some “images” of the blocks in the copy-number corre-
lation matrix. This turns out to be true and the phenomenon can be explained in a rather
simple way. If gene A and gene B are close to each other in the genome, then they should
be strongly correlated in gene copy-numbers as shown in the copy-number correlation ma-
trix. On the other hand, the expression of gene A is correlated with its copy-number and
the expression of gene B is also correlated with its copy-number. Therefore, even without
any biological relation (a shared transcription factor or shared chromatin structure), the
expression of gene A and the expression gene B may still be correlated. The phenomenon
becomes even more obvious in a comparison with an Ising model of four spins, as shown

in figure 5.2.

DNA 1 mMRNA 1

——————

~~~~~~~~

DNA 2 mRNA 2

Figure 5.2: A system of four Ising spins. The spins correspond to the copy-numbers and expres-
sions of two genes: DNA1, DNA2, mRNA1, mRNA2. The copy-numbers, DNA1 and DNA2, are
coupled. On the other hand, mRNA1 is coupled to DNA1 and mRNA?2 is coupled to DNA2. There-
fore, even without regulatory interactions, i.e. a direct coupling (red lines), between mRNA1 and
mRNAZ2, one still observes correlation (green arcs) between them.

We conclude that the correlations observed among gene expressions, apart from bi-
ological reasons, can also be induced by the correlations in copy-numbers of the genes.

(Although the visual signal of the induction in figure 5.1 seems weak, we will show that

87



CHAPTER 5: (GENE EXPRESSION CORRELATIONS IN CANCER CELLS

the effect is clear at the genome-wide scale.) In the following, based on the maximum
entropy principle, we formulate a model that allows us to eliminate these induced correla-
tions from the observed correlations, resulting in the so-called bare correlations in expression

between genes.

5.2 Elimination of the copy-number-induced correlation

5.2.1 Maximum entropy model for induced-correlation elimination

With both copy-number and gene expression data available for N genes, a cancer sample
is characterised by N pairs of variables (X;, Y;), where X; stands for the copy-number and
Y; stands for the expression of gene i, with i = {1,2,..., N}. More precisely, X; and Y;
are the signal intensities measured by microarrays subjected to preprocessing methods,
taking on real values.! We note that this is different from chapter 4, where copy-numbers
are integers obtained as the outputs of an impurity correcting algorithm which takes the
measured signals as inputs. Here, it is more convenient to work with the real-valued copy-
numbers before impurity-correction. This is also to be consistent with the expression data,
where, to our knowledge, no impurity-correction is possible.

Following the general maximum entropy reasoning, in order to model the data, we
need to specify the set of relevant observables, which constitutes the sufficient statistics.

In this case, we choose the set of observables as

(i) the mean values of gene expressions, (Y;);
(i) the correlations among gene expressions, (Y;Y;);

(iii) the correlations between copy-numbers and gene expressions of the same genes, (X;Y;).

The corresponding maximum entropy model is then
H({xi,yi}) = H*({x}) — LAy +

1
— LB+ 5 Y AgyiYy, (5.1)
i ij

where HX({x;}) models the copy-numbers in a way which we do not need to specify here

(see also chapter 2). The corresponding partition function is

z = [TTdxdyiexpl-H({x,yi}). (5.2)

IRaw data of gene expression were subjected to quantile normalisation and then log transformed. Raw
copy-number data were segmentation smoothened as explained in chapter 4 and copy-numbers of genes were
then derived from the segmented data.
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The gene expression variables y; in the partition function can be integrated out to yield

Z = / [T dxe ), 5.3)
where
~ X N 1
H({x;}) = H ({xi}) - 51n27r+ Elndet(A) +
1
) Y Bij(Bi + Aixi) (Bj + Ajx;), (5.4)
ij
withB= AL

From the Hamiltonian (5.1), we see that the quantities B;; are the correlations in gene
expression if there are no copy-number alterations (i.e., X; = const). These quantities B;;
are different from the observed correlations Cij = (Y;Y;) — (Y;) (Y;), which are calculated in
the presence of copy-number alterations (and which are observed in experiments). There-
fore, we call B;; bare correlations, which imply that B;; are the correlations in gene expression
after eliminating from C;; the correlation induced by the copy-numbers. Bare correlations

are supposed to be due to regulatory interactions exclusively.

From (5.3) and (5.4), and noting that

19Z
(Xiv;) = Z A" (5.5)

102
(i) = VAT (5.6)

1 9°Z
YiYj) = —Zao=r 7
< ! ]> Za,Bia,Bj’ (5 )
it is straightforward to show that
Cij = Bij+) BiBiDuMA, (5.8)
ki
R; = Y BiDjA;, (5.9)
j

with R; = (X;Y;) — (X;) (V) and Dj; = (X;X;) — (X;) (X;j). The observed gene expres-
sion correlations C;; and the gene expression—copy-number correlations R; are identified
with the corresponding estimated values from data by the requirement of maximum en-
tropy models (see also chapter 2). If we further also use the experimental estimated values
for D;j, equations (5.8) and (5.9) can be solved for the bare correlations B;; and the copy-

number-gene expression couplings A;. However, a careful look at equation (5.9) reveals
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that it suffers from an over-fitting problem. Indeed, the correlation matrices C;; and D;;
are usually degenerate since the number of genes far exceeds the number of samples.”
This means that there is no guarantee that the matrix BZ-]-Di]- is invertible; in practice, it is
always found to be degenerate. To get around this difficulty, we introduce the so-called

weak-correlation approximation.

Weak-correlation approximation

The weak-correlation approximation assumes that the gene-gene bare correlations in ex-
pression are small, so that to the first approximation we can substitute B;; by a diagonal
matrix. This directly lifts the degeneracy of (5.9). In fact, both first approximations for B;;

and A; can then be found easily,

Bi = GCi——- (5.10)

A= . 5.11
Z BiiDi; G0
In the second round of approximation, we use the solution of A;, and numerically solve

equation (5.8) for B;;. Using linear algebra notation, we rewrite (5.8) as a matrix equation
C =B+ BEB, (5.12)

where E;; = D;;jA;A; and we have used the symmetry of B, B;; = Bj;. Since E is symmetric
and positive definite, there exists F so that E = F2. (The matrix F can be found by first using
a similarity transformation to diagonalise E, taking the square-root of the eigenvalues, then
back transforming the root with the reverse similarity transformation.) By multiplying the

two sides of equation (5.12) from the left and the right by F, we have
C=B+5B? (5.13)

where C = FCF and B = FBF. Equation (5.13) implies that the eigenvectors of B are
also the eigenvectors of C. Therefore, by a similarity transformation that brings C into
diagonal form, (5.13) becomes quadratic algebraic equations of eigenvalues, which can be
solved easily.

Although the above procedure allows to solve for the bare correlation matrix B ex-
plicitly, the computational cost at the level of genome-wide scale is still not affordable in

practice. Moreover, for very large system sizes, noise may be added up in such a global

2We have rank(C) < min{N, M — 1}, where N is the number of genes and M is the number of samples.
The same is true for D.
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solution. We therefore introduce a further approximation.

Isolated-pair approximation

The isolated-pair approximation implies considering each pair (i, j) independently from
all the other genes. As a result, we have N(N — 1) /2 versions of equation (5.8) for all pairs
of genes, each has the B matrix of degree (2 x 2). Moreover, if we fix the diagonal elements
Bj; and Bj; by the weak-correlation approximation (5.10), a quadratic equation for the only

unknown B;; can be obtained explicitly,

Cij = EiBj+ (14 BiEi+ BjEj;)Bi; +
+Bi;iBj;Eij, (5.14)

where E;; = D;jA;A;. One of the two solutions of B;; to the equation can be chosen by the

condition that B;; tends to C;; as E;; vanishes, namely

B —(1 + BjE; + B]']‘E]']‘) + \/K

(5.15)

where A = (1 + BjiEi; + B]]E]])Z — 4BZZB]]E5
Under these approximations, the calculation of Bi]' is very fast. Moreover, the effective
number of (intermediate) parameters is reduced from O(N?) in one problem to 1 param-

eter in N(N — 1) /2 separated problems. Overfitting problems can therefore be avoided.

Analysing the copy-number and gene expression data of lung cancer patients
Test of the isolated-pair approximation

To study the quality of the isolated-pair approximation, we perform the inference for a
restricted number of genes on chromosome 1 and compare the results with that of weak-
correlation approximation alone (i.e., without isolated-pair approximation). The bare cor-
relations inferred by the two methods after normalised as Bij = Bjj/ \/m are plotted
versus the normalised observed correlations Cij = Cjj/ m in figure 5.3. We see that
for many pairs of genes, while the observed correlations are large, the bare correlations
inferred by either methods are rather small. Importantly, when the correlations are suffi-
ciently strong, the results inferred by the isolated-pair approximation agree well with that
of the weak-correlation approximation (region III in figure 5.3). This means it is safe us-
ing the isolated-pair approximation for pairs of genes that are correlated strongly enough.
Note that it is also those correlated genes that we are most interested in. In the follow-

ing, we will use isolated-pair approximation exclusively to eliminate the gene expression
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Figure 5.3: Test of isolated-pair approximation. The normalised bare correlations, Bij =
Bl-]- /\/ BiiB]-]-, inferred by weak-correlation approximation (green) and isolated-pair approximation

(red) are plotted versus the normalised observed correlations Ci]- = Cij//CiiCjj. The bare correla-

tions inferred by both methods agree well for pairs that are strongly correlated (region III), which
are of our central interest.

correlations induced by the correlations in copy-number at genome-wide scale.

Sliding windows and strong correlation cutoffs

The induction of correlation in gene expression by copy-number correlations is most im-
portant when the copy-number correlations D;; are strong. Instead of scanning all pairs
of genes over the whole genome, we restrict ourselves to those pairs of genes that are not
further than W base-pairs (bp) away from each other, for which the copy-numbers are
indeed highly correlated. Figure 5.4 shows a scatter plot between the inferred bare cor-
relations, normalised as Bi]- = Bi]-/ \/m, and the observed correlations, normalised as
Ci]' = G/ m, with W = 500000 bp. A threshold t is set on both axes to select for
strong correlated pairs. The difference between the sets of pairs selected by B;; > t and by

Cij > tis clear from the figure.

Connection between bare correlations and gene function

We study the connection between bare correlations and gene function using Gene Ontol-
ogy (The Gene Ontology Consortium 2000). Gene Ontology (GO) is a system of terms
to describe genes. The terms can be related to each other by different relations, which

form a so-called semantic network. The GO consists of three of such networks (three fam-
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bare correlations

-0.5 0.0 0.5
observed correlations

Figure 5.4: Inferred bare correlations versus observed correlations. Strong observed correlations
can show very small bare correlations. Selection of strongly correlated pairs by setting the cutoff at
t = 0.6 on the (normalised) bare correlations B;; (red, solid line) excludes a large number of pairs

that are suggested by setting the same cutoff over the (normalised) observed correlation Cij (green,
dashed line).

ilies): Molecular Function (MF), Biological Process (BP) and Cellular Component (CC).
Each gene can be described by a set of terms in the networks. Here we are interested in
the similarities between pairs of genes, which can be measured by different semantic sim-
ilarity measures defined on the network. Specifically we use Wang’s measure (J. Z. Wang
et al. 2007), which is implemented in the R package GOSemSim (R Core Team 2012, Yu
et al. 2010). Wang’s similarity ranges from 0 to 1, with 1 for maximum similarity. A pair

of genes will be called GO-closely-related if their GO similarity is larger than 0.95.

The fractions of GO-closely-related pairs in the sets of strongly correlated gene pairs
selected using either Cij > tor Bjj > t reflects how good the selections are in discovering
genes that are biologically related. Figure 5.5 shows the fractions of GO-closely-related
pairs in all the correlated pairs, selected either as Cij > t (green) or as Bij > t (red), when
the threshold t varies from 0.5 to 1.0. Higher fractions of GO-closely-related pairs selected
by using bare correlations, Bj; > t, than that by using observed correlations, C;j > t,
persist essentially for all thresholds ¢ in the range (apart from the fluctuations happening
when the thresholds are high). The differences are particularly clear in the case of Cellular

Component GO family.
We then vary the window size W, keeping the threshold for correlation fixed at t = 0.7

(dashed black lines in figure 5.5). Because the fractions of GO-closely-related pairs in all

considered pairs (i.e., all pairs of genes that are not farther than W bp from each other)
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Figure 5.5: Fractions of GO-closely-related gene pairs in the selected pairs versus the selection
threshold t at W = 1000 kbp. Fractions of GO-closely-related gene pair (for three families: Molec-
ular Function, Biological Process, Cellular Component) in the gene pairs selected using bare corre-
lations Bi]- > t (red, solid) are consistently higher than that selected by using observed correlations

Cij > t (green, dashed). When the threshold is too high (more than 0.85), the fractions show fluc-
tuations due to the small numbers of gene pairs selected.

decrease as the window sizes W get large, the fractions of GO-closely-related pairs in the
selected pairs using B;; > t or using C;j > t both slowly decrease as W increases, see figure
5.6. Higher fractions of GO-closely-related selections using bare correlations Bj; however

persist for all three GO families in the full ranges of W up to 1000 kbp.

Conclusions and outlook

We have shown that the correlations in gene expression induced by the correlations in
copy-number are significant in cancer cells with copy-number alterations. The effect is
particularly strong for those genes that are close to each other in the genome. Based on
the maximum entropy principle, we formulated a simple model to tell apart the effects
from copy-number correlations and the effects from regulatory interactions in the gene
expression correlation, introducing the concept of bare correlations which capture the ef-
fect of regulatory interactions alone. Gene pairs that have strong bare correlations indeed
showed a closer similarity in terms of Gene Ontology than gene pairs that have strong
observed correlations.

The copy-number-induced correlations in gene expressions studied in this chapter are
closely related to the concept of indirect correlations introduced in the context of the in-

verse Ising problem in chapter 4. We consider the maximum entropy modelling as a gen-
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Figure 5.6: Fractions of GO-closely-related gene pairs in the selected pairs versus window sizes
W at selection threshold { = 0.7 (black dashed line in figure 5.5). Varying the window size W
up to 1000 kbp, we clearly observed that the fractions of GO-closely-related pairs using B;; > t are

consistently higher than that of using Cij > t for all three families of Gene Ontology.

eral framework to address this problem, leading to simple and conceptually straightfor-

ward solutions.
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CHAPTER 6

SEMI-SUPERVISED CLASSIFICATION OF LUNG CANCERS

Based on mutation profiles, cancer samples are classified into different subtypes for further
study and for appropriate treatments. In this chapter, we introduce a simple method for
cancer mutation profile classification using a mixture of several paramagnetic models with
Ising spins (or mixture of paramagnetic Ising model, for simplicity). We further suggest a
semi-supervised learning algorithm for the model, which is capable of both learning from
unclassified (unlabelled) samples as well as correcting misclassified (mislabelled) samples.
Comparison of the performance of the semi-supervised model with that of the supervised
and unsupervised models on simulated datasets demonstrates its superior performance.
We then apply the the model to a dataset of lung cancers to review the initial histological

classifications of the samples.

Cancer classification based on mutation profiles

Today, cancer is viewed as a complex disease consisting of many different types of tumours
with different behaviours. Traditionally, cancers are classified according to the tissues and
cell-types from which they originated (see chapter 1). With deeper understanding of the
molecular origin of cancer it is natural to think of classifying cancers according to their
molecular markers (e.g., some particular mutated genes) (Lakhani and Ashworth 2001).
Indeed, tumours with different molecular markers behave differently even when they orig-
inate from the same tissue and the same cell type. On the other hand, few markers are
shared between cancers of different origins, indicating some common behaviours between
them. More importantly, when cancers are classified according to molecular markers, their
molecular defects are highlighted and personalised treatment strategy can be designed
(Lakhani and Ashworth 2001).

Early molecular classifications of cancer were based on one or two molecular mark-
ers. With the development of genomic study, molecular signatures of cancer have been

extended from few or single markers (e.g., single mutated genes) to genomic profile classi-
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fication, which collectively involves a large number of markers. Early cancer classification
methods based on genome-wide gene expression (which contain some thousands of genes
at the time) were often simple applications of machine learning techniques of clustering,
e.g., K-means clustering (Golub 1999). During the last decade, a diverse set of methods of
classification of gene expression profiles, copy-number profiles and other kinds of muta-
tion profiles have been proposed (Nutt et al. 2003, Pusztai et al. 2006, Sotiriou et al. 2003,
Souto et al. 2008, Wang et al. 2006). However, classification at the level of genome-wide is a
high dimensional problem, and is therefore subject to the curse of dimensionality as we also
discussed in chapter 4 and chapter 5. A better approach is to concentrate on a smaller sub-
set of markers, which may be still much larger than one or few selected markers, but not
the whole genome. Since such a subset often requires other sources of knowledge, those
methods are also knowledge-driven. To date, classification and molecular characterisation
of cancer has been developed for many different types of cancers (The Cancer Genome
Atlas Research Network 2012a,b,c, 2014, Viale 2012).

Working with collaborators from Department of Translational Medicine (University of
Cologne), we are involved in the problem of classifying lung cancers (The Clinical Lung
Cancer Genome Project (CLCGP) and Network Genomic Medicine (NGM) 2013). The col-
lected dataset consists of 766 mutation profiles of lung cancer samples, each contains the
binary states (‘mutated” or ‘not mutated’) of 18 molecular markers, including gene copy-
number alterations (amplification or deletion) or gene sequence mutations, as shown in
the first panel of figure 6.1. The cancer samples are initially classified into five histological
types by pathologists on the basis of visual appearance of cells under a microscope: ade-
nocarcinomas (AD), squamous carcinomas (SQ), small cell lung carcinomas (SCLC), large
cell carcinomas (LCC) and large cell neuroendocrine carcinomas (LCNEC), as shown in

figure 6.1.

This dataset and the initial histological classification can be used to train a model for
lung cancer classification. Many different statistical models can be used. Here, we focus
on a simple one. We can think of the 18 molecular markers as 18 Ising spins. We start with
associating each type of cancer with a paramagnetic Ising Hamiltonian characterised by a
distinct set of fields acting on the 18 spins. Since there are 5 cancer types in the dataset,
we have a system of 5 paramagnetic Ising Hamiltonians (called a mixture model). From
the data, the fields for each Hamiltonian can be estimated (or learned). Now for each new
sample, we can calculate the probability for it to come from a specific Hamiltonian. Based

on the calculated probabilities, the sample is then classified into one of the 5 types.

The problem with such approach is: the initial classifications of the cancer samples

used to train the model can be incorrect. These initial classifications were based on visual
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Figure 6.1: Summary of the dataset. The first panel shows the data matrix with loci on the columns
and samples on the rows. A green line indicates that the locus is mutated. The grey lines are fail-
ures in measurements. The second panel (histo) shows the initial histological classifications of the
samples into five types: adenocarcinomas (AD), squamous carcinomas (SQ), small cell lung carci-
nomas (SCLC), large cell lung carcinomas (LCC) and large cell neuroendocrine lung carcinomas
(LCNEC). The last panel presents a secondary more reliable classification of the samples termed
central pathological reviews (CPR).

inspection by pathologists and there can be errors: sometimes adenocarcinomas could be
erroneously observed as squamous carcinomas, for example. Indeed, a more reliable sec-
ondary classification of a subset of the samples (will be referred to as central pathological
reviews — CPR) reveals discrepancy, see the third panel of figure 6.1. Such misclassifica-
tions in the training dataset apparently affect our classification model: the fields of the
paramagnetic Hamiltonian can be wrongly estimated. In the following, after detailing the
framework of paramagnetic Ising mixture model, we design a semi-supervised learning

algorithm that allows the model to correct the misclassified samples during learning.

There is another bonus to such a model: it can also learn from both classified (or la-
belled) and unclassified (or unlabelled) samples. This is important in many situations
where the initial classifications of samples to train a supervised model are rare, while un-
classified samples are abundant. Although unsupervised clustering methods are available
for learning from unclassified samples, they waste available classified samples and the per-
formance can be poor as a result. By learning from both classified samples (as a supervised

model does) and unclassified samples (as an unsupervised model does), semi-supervised
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models maximise the data available for learning, significantly improving the performance.

Curiously, although semi-supervised learning is widely discussed in machine learning
literature (Zhu 2005, Zhu and Goldberg 2009), there are few explicit applications of them
in cancer research to our knowledge. We also note that there is no single way of semi-
supervising a model, many of them are rather arbitrary tricks. Here, we introduce a very
simple one (The Clinical Lung Cancer Genome Project (CLCGP) and Network Genomic
Medicine (NGM) 2013).

Semi-supervised model to classify cancer mutation profiles

Semi-supervising the mixture of paramagnetic Ising models

Let us recall the mixture of paramagnetic Ising models discussed in chapter 2. Instead of
considering a mixture of separate paramagnetic Ising Hamiltonians, we can equivalently
consider a system which consists of a Potts spin ® coupled to N binary Ising spins {X;},

i=1,2,...,N,with Hamiltonian
H(p, {x:i}) = =) ) bixio(¢,t) — ) ab(¢, 1), (6.1)
to t

where t denotes the state of the Potts spin and ¢ is the Kronecker-delta function. The coeffi-
cient a; can be interpreted as a field acting on state t of the Potts spin and b! is the coupling
between state ¢ of the Potts spin to Ising spin i. Recall that this is also the maximum en-
tropy model with observables (§(®,t)X;) and (§(P,t)) as sufficient statistics. Moreover,
note that there is a constraint on the observables, Y, 6(®,t) = 1, thus a; are underdeter-

mined.

The Boltzmann distribution corresponding to this Hamiltonian is

p(p, () = e HOtD, (62)

where

z=Y e ]]2ch(®?). (6.3)
¢ i
In considering our discussion in chapter 2, we define new parameters

_ e"TI;2ch(b})
- Ztl e Hi 2Ch(bltl) ’

100

(6.4)
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and rewrite the distribution in a somewhat simpler form,

P 4xd) = [T map({x} 1017, (65)
where p({x;}|t) = eZiti%/Z, with Z, = [[;2¢ch bl. Note that while 4; are underdeter-
mined, 7y satisfy ), 77y = 1 and are completely determined.

In the context of cancer classification, the Potts spin ® represents K different types of
cancers, and the N spins represent N binary states of N loci (mutated or not mutated) —
the mutation profile. The classification is the problem of inferring the state of the Potts
spin ® based on the observed Ising spins {x;}. The problem can also be considered as
labelling the Ising spin configurations with the states of the Potts spins; therefore the type
of a cancer sample is also called label. In order to do so, we have to estimate the parameters

{as, bt}, or equivalently {7, bt}.

Supervised learning

In the standard supervised learning, we need a training dataset of M samples, D = {¢*, x'},
where all mutation profiles {x" } and the types {¢* } of the cancer samples are known. The

log-likelihood for the parameters {7, bf} can be written down easily,
InL({m,bj}) =Y Y (", t) |Inm + Y (hixl —In2chb}) |, (6.6)
not i

which is to be maximised, taking into account the normalisation constraint ) , 7y = 1.
To incorporate the normalisation constraint, we introduce a Lagrange multiplier A, and

modify the log-likelihood function to
[({m;, b!}) = InL({m, bi}) — Em—l (6.7)
Taking the derivatives of I with respect to 71; and setting them to zero, we can solve for 7y,

= % Y o(",t), (6.8)
M

where we have used the constraint } ; 7; = 1 to find that A = M.
Taking the derivatives of [ with respect to m! and setting them to zero, we can solve for
b,
Yy % 0(9" 1)
Yo, 1)

101
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Note that (6(®, 1)) = 11, (5(®, t)x;) = thbl, (6(P,1))” =1/ML, 5(9*,t), (5(P,t)x;)7 =
/MY, x?&(qb“, t), equations (6.8) and (6.9) are identical to (2.100) and (2.101),

(5(@,1)) = (6(D,1))7, (6.10)
O@HX) (0@ nHX)"
O@t) (@, (6.1)

In practice, training datasets, for which the types of all the cancer samples are known (la-
belled samples), are usually small. On the other hand, samples to be classified, of which
the types are not known (unlabelled samples), are abundant. Let us discuss the unsuper-
vised learning (or clustering), which is capable of learning from unlabelled samples (see

figure 6.2).

machine machine
labelled

samples

model emies T model a’@ls'

unlabelled —l—> predicted labels

samples

(a) (b)

Figure 6.2: The workflows of supervised and unsupervised models. (a) A supervised learning
algorithm learns from labelled samples and classifies unlabelled samples. (b) An unsupervised
learning algorithm takes all samples as unlabelled and classifies them using the clustering effect.

Unsupervised learning: EM algorithm

The presence of different discrete levels of ®, which are coupled to the Ising spins, causes
the configurations of the Ising spins to group into clusters in their configuration space.
(Each cluster corresponds to a single state of the Potts spin, and therefore a single param-
agnetic Ising Hamiltonian.) So, even though the states of ® are not observed, the clustering
structure of the Ising spins gives us some information about the presence of these states.
In fact, this clustering effect allows us to infer these hidden states of ® up to a permutation
of the states.

Suppose the dataset consists of M configurations of N Ising spins D = {x!'} and ¢*

are completely unobserved. The log-likelihood function for the parameters {7;, b!} in this
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case needs to be marginalised over the unobserved variable ®,
InL({r, bi}[D) =In[ Y ple, {si}), (6.12)
B¢

or explicitly,
InL({m, b'}) = Zln{zn ep(xl|t)] 4’”}.
H ¢t
= Zln{Z[mp ”\t}} (6.13)
7

t

To implement the constraint )}, 71y = 1, we introduce a Lagrange multiplier A and modify

the likelihood function accordingly,
[({m;, b!}) = InL({m, bi}) — Em—1 (6.14)

Taking the derivatives of [ with respect to 7; and setting them to zero, we find

o=y D

—_—, (6.15)
i Zemp({x] HE)
where we have used the constraint ), 77; = 1 to find that A = M. Defining
I
S|t
b ntp({xz y ) , (616)
Y ep ({5 HE)
then
=Y 7. (6.17)
I3

Similarly, taking the derivatives of [ with respect to bf and setting them to zero, we find

ol
Ly Vi

thb! = )
: Y Vi

(6.18)

From (6.16), we see that 'y; is the posterior probability for sample y to belong to type
t, given the observed configurations {x!'}. This posterior probability is dependent on the
unknown parameters 77y, bf. Therefore, equations (6.15) and (6.18) together with the def-
inition of 'yL in (6.16) form a system of self-consistent equations to be solved for {7, b!}.
The coupled system of equations can be solved by initiating the values for 'y;, to calculate

7 using (6.15) and b! using (6.18); and then the results are used to update 'y; using (6.16).
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Such a procedure can be proved to converge to a (local) maximum of the likelihood func-
tion. In fact, it belongs to a general categories of algorithms, the expectation-maximisation
(EM) algorithms, see Bishop 2006, for example.

Although the EM algorithm allows us to find the maximum of the likelihood function,
the solutions are sometimes not good in validation. This is because the maxima of the
likelihood function are not sharp, and the likelihood maximisers are rather uncertain. In
addition, by the nature of unsupervised learning, the likelihood function is always invari-
ant under a permutation of the K types, its maximum is therefore also K!-fold degenerate.
The reason for these limitations is because unsupervised models waste labelled samples

in training datasets; these all will be overcome by semi-supervised models.

Semi-supervised learning

It is easier to introduce the semi-supervised learning algorithm by discussing the problem
of correcting the errors in the known types of the training data as mentioned when opening
this chapter. Let us think about how a pathologist does the classification for the training
dataset: the classifications are normally based on the colours, the volumes or the shapes
of the cancer cells. In any case, histological classification is always based on some sort of
observation, much in the same way that we use the mutation profiles to classify the samples.
From that perspective, it is rather obvious that we should somehow treat the classifications
of the pathologist as noisy observations. This was not the case for the supervised model,
where initial classifications were considered exact (while the unsupervised model did not
consider these observations).

The difficulty in the implementation of this idea is that normally the observations made
by the pathologists are based on human judgement, rather complicated and only qualita-
tive. Nevertheless, we can model them in a simplified way as follows: we think of the
initial classification of the pathologist not as the true state of ® (the cancer type), but as
the state of a Potts spin @' which is coupled to ® by a finite coupling, as illustrated in fig-
ure 6.3. Since the coupling is finite, the observed types @’ can be different from the hidden
true types ®. A sample p now consists of the observed state of ¢'# and the mutation states
of N loci, x!'. The joint probability distribution for ®, ® and {X;} can be modelled as

(0,0 {x:}) =TT [mep(¢|Op({xi} 1], (6.19)

t

where we also assumed that given the true type ® = t, ® and {X;} are independent. In
comparison to (6.5), the key modification in the joint distribution is p(¢’|t), which depends

on the nature of the initial classifications and can vary from sample to sample. In the case
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I
@]

X, @

X3

Figure 6.3: Graphical presentation of the semi-supervised model. The semi-supervised model
considers the initial classifications as an observation of a variable ’, denoted by O (observed) in
the figure, which is coupled by a finite coupling to the true type ®, denoted by H in the figure
(hidden) . Since the coupling is finite, the states of ' (O) and ® (H) can be generally different.

where the initial classification is certain, p(¢'*|t) can be modelled by a Kronecker delta
function, p(¢'*|t) = 6(¢'*, t). In the case where classification is unknown, p(¢'*|t) can be
modelled by a flat distribution, p(¢'*|t) = 1/K, where K is the number of cancer types.
More generally, for the cases where the initial classifications are available, but not always

correct, we can model p(¢'*|t) by some finite confidence in the initial classifications,

f if t = ¢/,

(1—f)/(K=1) ift # ¢, (6.20)

p(¢™|t) = {
with the confidence f taking values between 0 and 1. When f = 1, we completely trust
the initial classifications and when f = 0, we disregard the information of the initial clas-
sifications. A finite value of confidence f allows the posterior values of ® given @, { X;}
to be different from @’'; errors in the initial classification can be therefore corrected.
By considering the initial classifications ¢'* as noisy observations to infer the hidden
true types ¢, the inference problem is very similar to the procedure discussed in unsu-
pervised learning equations (6.17) and (6.18). The only modification is the definition of

7}, now includes p (¢ |t) explicitly

V. mp (¢ p({x]' }Ht) ‘
T mp (et p({a )

(6.21)

The confidence in the initial classification f can vary from sample to sample. This

provides a way for the model to learn from both labelled (classified) and unlabelled (un-
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Figure 6.4: The workflow of semi-supervised model. Semi-supervised model learns from all re-
liably labelled, un-reliably labelled and unlabelled samples and reclassify them by incorporating
the genetic data.

classified) samples, see figure 6.4, where f = 0 for every labelled samples and f # 0 for
every labelled samples, in particular f = 1 for reliably labelled samples.

To compare the performance of the semi-supervised model with the supervised and
unsupervised model, we first use a simulated dataset. To this end, we simulate a mixture
of paramagnetic Ising models, which consists of 2 paramagnetic Hamiltonians of 30 Ising
spins, each with a distinct set of fields. The two components of the Hamiltonian can be
regarded as two types of cancer, say AD —adenocarcinomas, traditionally coloured orange,
and SQ — squamous carcinomas, traditionally coloured blue. The dataset consists of 200
configurations for each Hamiltonian, as shown in figure 6.5a. We then study the models
in two aspects: learning from both labelled and unlabelled samples, and correct erroneous

labels (misclassifications).

Simulated data: learning from both labelled and unlabelled samples

We delete a fraction « of the labels in the dataset with a ranging from 0.01 to 0.99, as shown
in the right panel in figure 6.5b, second panel. We then use the supervised learning algo-
rithm and the semi-supervised learning algorithm to train the mixture of Ising models to
predict the deleted labels. Note that for « — 1, the semi-supervised model becomes un-
supervised. The initial classifications, when being known (labelled samples), are taken as
perfect (f = 1). Unlabelled samples can be considered as samples with arbitrary initial
labels but without any confidence (f = 0). The results are summarised in figure 6.5b. The
first panel plots the fraction of labels correctly predicted for both types by the model train-
ing with the supervised learning algorithm and the semi-supervised learning algorithm.
The figure clearly shows that the fractions of correct predictions of the semi-supervised

model are consistently higher than that of supervised model. While the second panel
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shows the deleted labels in the dataset, the third panel and the fourth panel detail the
predictions of the supervised model and the semi-supervised model. It is easy to see by
eyes that the semi-supervised model gives better prediction even when a large number of
labels are deleted. The classifications by unsupervised model, which correspond to that

of the semi-supervised model at « — 1, are also rather poor.

01 a 0.99

—— semi-supervised
—— supervised

105

loci

agreement
0.7

0.4

data
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semi-supervised

I‘\ UL

data matrix true types

(a)

supervised

(b)

Figure 6.5: Prediction of missing labels in a simulated dataset. (a) A simulated data matrix of
a mixture of two paramagnetic Ising models. Each component of the mixture is a paramagnetic
model of 30 spins with specific pre-determined fields. Each row of the first panel is a configuration
of the spins, with green bars for +1, and white bars for —1. The second panel indicates the types
of the samples, AD (orange) or SQ (blue). (b) Prediction of the missing labels. The top panel
summaries the overlaps of the predictions by the supervised model (green) and semi-supervised
model (red) with the true types known from the original simulated dataset. The second panel
describes the dataset after randomly deleting labels (white bars) with varying fractions a from 0.01
to 0.99. The third panel shows the predictions of the semi-supervised model and the fourth panel
shows the predictions of the supervised model. Note that the classifications by the unsupervised
model correspond to the semi-supervised model when & — 1.

Simulated data: reclassification of the erroneous initial classifications

Next we examine the ability of correcting misclassifications of the semi-supervised model.
From the original dataset, we turn 20% of AD labels into SQ, and 20% of SQ labels into AD.
We then run the semi-supervised learning algorithm with varying confidence in the initial
classification f. The results are presented in figure 6.6. Starting from f = 1, meaning we
completely trust the initial classification, the model gives the outputs identical to the ini-
tial classifications. And therefore, at f = 1, only 80% of the reclassifications for both types
are correct. As f decreases from 1 to 0, we lift our confidence on the initial classification

and misclassifications gradually get corrected, see the lower panel of figure 6.6. Corre-
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spondingly, the fractions of correct classifications of both types increase up to 90% when
f =~ 0.7, see the upper panel of figure 6.6. These fractions then decrease as the confidence
in the initial classifications gets lower; this is because of the decrease in the supervising
information at small f; in fact at f = 0, the model becomes unsupervised. We know that
unsupervised models, which are based on clustering effects, cannot distinguish permuta-
tions of labels in the results. Interestingly, we observed accordingly a label-permutation

of the two types, signalled by a colour-swapping in the lower panel of figure 6.6 at f = 0.

confidence in initial classification
1 (supervised) (unsupervised) 0

1.0

AD
= SQ

0.8 0.9

agreement

0.7

0.6

[
Q
2
[}
=]
=

observed

Figure 6.6: Reclassifications of misclassified samples. In the simulated dataset, 20% of the la-
bels are swapped (lower, left and middle panels). The semi-supervised model then reclassifies the
samples with varying confidence in the initial classification f from 1 to 0. The fractions of cor-
rect reclassifications when comparing with the true types known from the samples in the original
dataset as functions of f are plotted in the upper panel for the two types. The lower panel details
the predicted types for each samples at different values of the confidence f.

Analysing the lung cancer mutation profiles

We now come back to the dataset of mutation profiles of lung cancer patients, where the
problem is the potential misclassifications in the supervising data (panels labelled Histo
in figure 6.1 and figure 6.7). We run the semi-supervised learning algorithm for the model
with varying confidence in the initial classification f. The results are shown in figure 6.7 in
the same spirit of figure 6.6. We take the secondary more reliable classifications, namely;,
the central pathological reviews (CPR), as the validation data. In contrast to the appear-
ance of the data in figure 6.1, we reorder the samples in types labelled by the central patho-
logical reviews (considered as true types) instead of the initial histological classifications

by visual signatures (considered as noisy observations). The fractions of corrected types
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classified by the model are plotted as a function of the confidence in the initial classifica-
tion f separately for different types. The lower panel details the predictions by the model,
and the data matrix is shown for a reference.
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Figure 6.7: Reclassification of mutation profiles of lung cancer patients. The central pathological
reviews and the initial histological classifications are shown on the left. The middle panel gives
the semi-supervised reclassification based on mutations and copy number calls from 18 marker
genes (on the right genetic alterations are indicated per sample as green lines). For each sample,
the prediction is given as a function of the confidence in the initial histological classification (x-axis:
free parameter 1 to 0.3). The right end of this plot describes an unsupervised classification of the
samples, disregarding of the initial classification but only taking genetic alterations as the basis for
prediction. Prediction tends to agree with the pathological review for AD (orange), SCLC (red),
and SQ (blue) (upper panel). On the contrary, LC and LCNEC samples are quickly reclassified into
other types on the basis of the genetic data, traceable through the drop of the lines in the top panel.

We observed that adenocarcinomas (AD) and squamous carcinomas (SQ) gradually
get corrected. Small cell lung carcinomas (SCLC) are known to be very well characterised;
nevertheless, few of them are also corrected. Interestingly, large cell carcinomas (LCC) and
large cell neuroendocrine carcinomas (LCNEC) are all reclassified into other types, causing
the agreement curves going down very early when f decreases. Conservatively, the result
suggests that LCC and LCNEC are not characterised by the mutation at the inspected loci.
Comparing the initial classifications with the central pathological reviews, we observe that
many LCC and LCNEC samples are also reclassified. This suggests that LCC and LCNEC
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are also not well characterised in histological inspection or CPR (The Clinical Lung Cancer
Genome Project (CLCGP) and Network Genomic Medicine (NGM) 2013).

Interestingly, at f < 0.3, we also observe a colour-swapping in the figure, where the
green colour of large cells (LCC) occupies a subset of samples in adenocarcinomas (AD).
Inspection of the mutation data shows that the subset of samples is a subtype of adeno-

carcinomas, which is well characterised by mutated EGFR.

Conclusions and outlook

In this chapter we discussed a simple semi-supervised learning algorithm for a mixture of
paramagnetic Ising model to classify cancer mutation profiles. We run the model on a sim-
ulated dataset to study its performance. The semi-supervised model showed a superior
performance in comparison to supervised and unsupervised learning algorithms. The ad-
vantage of the semi-supervised model is two-fold. On one hand, it maximises the training
data by learning from both classified (labelled) and unclassified (unlabelled) samples. On
the other hand, the semi-supervised model is capable of correcting the misclassifications
in the training data. Both problems are often met in practice. We then applied the model
to classify the mutation profiles of lung cancer samples. The model reclassifications agree
better with secondary more reliable classifications of the samples, except for large cell car-
cinomas. The result suggests that large cell carcinomas are not well characterised, at least

by the mutations in the proposed set of loci.
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APPENDIX A

DRUG SENSITIVITY OF CANCER CELLS

In this appendix, we are interested in the association of drug sensitivity and genetic fea-
tures of cancer cells. The traditional method for this problem is to use regression models
with appropriate regularisation. This approach is however not the optimal way to exploit
the information from the data since the dependence between drugs is ignored. Although
a vector regression model takes this dependence into account, it requires that the training
dataset contains complete vectors of observations. This is however an important limitation,
since training datasets very often contain missing values. Therefore, the problem should
be considered as a data-recovery problem, that is, the problem of estimating the values of
missing values in a dataset and parameters are estimated consistently. Interestingly, this
turns out to be closely related to the semi-supervised model we discussed in chapter 6.
From that point of view, it is clear that the purpose of the data-recovery procedure here
is not only to predict the missing values in the dataset, rather, is to optimally exploit the
information in the dataset. We illustrate that the data-recovery model has lower variations
in the estimated parameters in comparison to the regression model. The trade-off is that

it contains significantly more parameters than the regression model.

The drug responses of cancer cells

Targeted therapy is a very important advance in cancer treatment of the last one or two
decades. Targeted therapy directly fix the defects in the molecular machine of cancer cells
(Huang et al. 2014). Each targeted drug is often designed to interfere with some specific
biomolecules in the biochemical networks of the cancer cells (their targets). Therefore, tar-
geted therapy is usually more cancer-specific and less toxic than cytotoxic chemotherapy,
potentially reducing side-effects for long-term cancer treatments. Developing targeted
therapies requires detailed understanding of the molecular biology of cancer cells, which
is in most cases patient-specific. Targeted therapy therefore also came with the concept of

personalised medicine.
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A broad range of compounds is used in targeted therapy. Some of them are complex
proteins found in nature. Some others are mono-clonal antibodies. A large class of drug
molecules are small molecules engineered in laboratories. While the detailed biology of
different types of cancers is still to be explored, small molecules are constantly generated in
laboratories by small chemical modifications of the other compounds, forming a so-called
drug library'. In many cases, the targets of those molecules are only poorly characterised;

many of them have unknown targets and may show unexpected effects.
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Figure A.1: The response curves of imatinib (data from Garnett et al. 2012). Imatinib is screened
on 359 cell-lines at 9 concentrations (we use the logarithm of concentration measured in uM), re-
sulting in a family of response curves. The response curves that show a signature of drug efficacy
are coloured red, while the others are coloured cyan.

The very first step to benchmark the anti-cancer effects of these drugs is to experimen-
tally screen them on cancer cells in laboratories. The aim is to find out how much a drug
inhibits the growth of a population of cancer at different concentrations. Conventionally,
the inhibition activity is measured by the ratio of cell population treated with the drug
and that of a control population, both taken after 96 hours. We refer to this ratio as rela-
tive cell viability. The outcome of many screening experiments at different concentrations
of the drug is an inhibitory curve for a specific drug and a specific cancer cell-line. An
example of inhibitory curves of imatinib on 359 cell-lines is plotted in figure A.1. From
such curves, one obtains an idea if a particular cell-line is sensitive to a particular drug
or not. However, more often than not, distinguishing sensitive cell-lines from insensitive

cell-lines on the basis of their response curves is less straightforward than in the case pre-

n principle, these small molecules are called compounds. They are only called drugs after they have passed
certain tests for their efficacy. However, in this chapter, we refer to them as drugs for the sake of simplicity.
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sented in figure A.1. Instead of assigning a binary value to a response curve (‘sensitive’
or ‘insensitive’), we may think of quantitatively summarising the response curve by some
continuous quantity.

Often, a response curve is fitted with a logistic function,

1

= A (A1)

y

where x is the drug concentration (often in logarithmic scale), y is cell viability and « and
B are parameters of the logistic function. There emerge three quantities that can be use
to characterise the sensitivity of a cell-line to a drug: the half-inhibitory concentration

IC50, the tangent of the response curve at IC50 and the area under the response curve, see

figure A.2a.
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Figure A.2: The definitions of IC50, tangent at IC50 and AUC. (a) A response curve is fitted with
a logistic function y = 1/(1 4 eA(~B)). The raw data (Garnett et al. 2012) is shown in red, while
the fitted curve is shown in green. The IC50 values at which the viability equals 0.5 is indicated
on the figure. The tangent of the response curve at IC50 is shown in a dashed green lines. The
AUC is coloured light-brown. (b) The AUC calculated from raw data is well agreed with the AUC
calculated from the fitted curve when the fitting is converged.

The first is called the half-inhibitory concentration, IC50. This is the concentration at
which the inhibition activity reaches 0.5, in terms of the logistic fitting function IC50 = B.
However, it cannot be used to compare different drugs.

Another quantity is the tangent of the response curve at IC50. This quantity is interesting
in that it is dimensionless if the x-axis is presented on a logarithmic scale. Therefore,
in principle, it is possible to compare the tangents at IC50 of different drugs. A steeper

tangent at IC50 indicates that the cell-line may be more sensitive to the drug, and vice
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versa.

The third quantity is the area under the curve (AUC), or the acting area. As the name
indicates, it is the area under the response curve, spanning the minimum concentration to
the maximum concentration (in log scale). The AUC is often normalised to the area of the
curve y = 1 (no response) spanning on the same range. A normalised AUC of 1 means
no response, and a small AUC means strong response of the cell-line to the drug. As with
IC50, it is not possible to compare AUC of different drugs. However AUC has an important
advantage: it can be calculated from the raw data instead of from the fitted curve, therefore
it does not suffer from ambiguities in the fitting procedure. On the other hand, the IC50
and the tangent of a response curve at IC50 can only be determined from fitted curves, and
are sensitive to the choice of fitting function. In practice, the AUC of the raw curves are in
agreement with the AUC of the fitted curves when the fitting convergences, as shown in
figure A.2b. In the following, we will choose to use AUC to summarise the information of a
drug-cell-lines response curve (where the we use the logarithm of concentration measured
in uM). In fact, we often use the logarithm of AUC in our analysis, but also referred to as

AUC for simplicity.

Assuming it can be determined that a particular cell-line is sensitive to a particular
drug from the response curves (or at least an estimate of an AUC), the next step is to de-
termine which genetic features make a particular cell-line sensitive to a particular drug.
This requires the study of the genetics of the cell-lines. Sequencing or gene expression
profiling the cell-lines are then necessary. By comparing the genetic contents of the drug-
sensitive cell-lines and the drug-insensitive cell-lines, we can in principle statistically pin-

point which genetic features characterise their difference.

For this reason, the development of targeted therapy from small molecules demands
not only for the drug—cell-line screening data, but also the genetic data of the cell-lines. Re-
cently, two large databases of drug-sensitivity together with genetic data have been com-
piled, which call for detailed analysis (Barretina et al. 2012, Garnett et al. 2012). In the
analysis presented in this appendix, we will use the dataset from Welcome Trust Sanger
Institute as an example (Garnett et al. 2012, Yang et al. 2013). This dataset consists of 707
genetically annotated cell-lines of 16 cancer types classified according to the tissues where
they emerged, see figure A.3. Information on mutations at 64 loci known to be involved
in cancer is also given for the cell-lines. This includes both sequence mutations and copy-
numbers alterations. After filtering those loci with too low frequencies of mutation, we
retain 61 loci, see the middle panel of figure A.3. We also restrict drugs to those that have
more than 60% of AUC measured, see the right panel of figure A.3, which shows the data
before the restriction. The AUC of all drug—cell-lines in the database of Sanger Institute
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Type Mutation Sensitivity

Figure A.3: Data summary. 16 types of the cancer cell-lines are shown in the 16 colours in the left
panel. The genetic information of the cell-lines at 64 loci is summarised in the middle panel (green
bars: mutated, cyan bars: white type, white bars: no information). In the right panel, the AUCs
of the cell-lines with respect to 139 drugs are presented in terrain scale (green-like colours: small;
white-like colours: large).

are extracted, which result in a data matrix of AUC with cell-lines on the row and drugs
on the columns, as shown in the right panel of figure A.3.

We are interested in the dependence between the drug sensitivity data and the genetic
data. A standard way to study this dependency is to use linear regression with drug re-
sponses as response variables and genetic information as signals (see chapter 2). However,
we will show that this is not the optimal way of exploiting the available information. This
is because the dependency between the drugs is not taken into account in linear regres-
sion. Considering the dependency between the drugs, the problem turns from a regres-
sion problem to a data-recovery problem. Interestingly, this turns out to be also formally

related to the formalism of semi-supervised learning methods discussed in chapter 6.

Turning the regression problem to a data-recovery problem

Drug response as a regression problem

The association of genetic information with response to a drug can be viewed as a simple
regression problem, where the response variable is the AUC values of the drugs and the

signal is the mutation profile of the cell-line (Garnett et al. 2012). In practice, it turns out
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that besides the mutation profiles, the cell types also play an important role in predicting
the response of a cell-line to drugs. We begin with the regression model as discussed in
chapter 2, Y as a function of (®,{X;}), where Y stands for the response of a sample to
some particular drug, ® is the tissue type of the sample and {X;} is its mutation profile.

Note that & is categorical (see chapter 2). The Hamiltonian can be written as
c
H(y; ¢, {xi}) = H(¢, {xi}) = }_apd (¢, )y — }_bixiy + 57, (A2)
t i

or in terms of conditional probability,

1y 1 (y — X Bixi — %)2
p(ylg, {xi}) = Vo2 &P {— 72 } (A.3)

where ay, b;, a;, B;, c and ¢ are model parameters. The coefficients B; or b; characterise
the effect of the genetic mutation on the response of the cell-line to the drug. Note that
this corresponds to the maximum entropy model with sulfficient statistics (Y) and (YX;)
and (YJ(®, t)) and an implicit model for (®, {X;}). In analogy to the Ising model, we also
refer to B; as couplings between the genetic mutations and the drug response, and refer to

«; as couplings between the cancer types and the drug response.

Vector regression

The regression model described above ignores the dependence between the drugs. In prac-
tice, as many drugs are different only in small chemical modifications, this dependency is
important (Garnett et al. 2012). How do we model such dependency? We can think of pre-
dicting a vector of drug responses instead of single-drug regression. From the maximum
entropy reasoning perspective, the solution is simply adding the observables (Y;Y;) into
the sufficient statistics of the regression model. The model becomes a vector regression
problem, of which the conditional probability of observing the response vector {y; } given

the genetic data {x;} is given by

p({yr}l¢, {xi}) < exp {—; ;Akl(yk - Zﬁfxi —af)(y; — Zﬁ;xj - "‘;P)} . (A9
i j

In this model, the response of one drug can tell us about the response of the other drug
via the interacting coefficient Ay;. As a simple application, this vector regression problem
can be used to reconstruct missing values of AUC of the drug—cell-line response curve.
Suppose we know the mutation profile (¢, {x;}) and the response y, to a set of drugs a of

a particular cell-line, and we want to find the (mean) responses to the other set of drugs
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Up|e- From (A.4), we find that this is a conditional Gaussian inference problem (Bishop
2006), which leads to

Yola = Yo + Bba(Baa)_lyaz (A.5)
where B = A~! and 7, is the mean AUC predicted by the genetic information alone,
7y = Blx +af. (A.6)

Note that ocz), Ya, ¥p and ¥y, are partitioned vectors and B, By, and B,, are partitioned

matrices with respect to the sets of drugs a and b.

X Y X Y

learning learning learning

prediction prediction prediction

(a) (b) (©)

Figure A.4: From regression problem to data-recovery problem. (a) Single drug regression does
not use the information of the dependency between different drugs. (b) Vector regression does use
the dependence between different drugs, but needs to learn from a complete training dataset to
predict an incomplete dataset. (c) Turning the regression to a data-recovery problem, we do not
distinguish between learning and predicting. The model consistently learns the incomplete data
and predicts the missing values.

From regression to data-recovery problem and semi-supervised problem

Note that to train a vector regression model, one needs a large complete dataset, which is
not always available. A better model is to consistently learn from an incomplete dataset
and predict the missing values. This is done in the framework of data-recovery instead of re-
gression. The missing data in the data-recovery problem can be considered as unobserved
data, which can be estimated by maximum likelihood estimation via EM-algorithm (see
chapter 6). Instead of writing the procedure formally, we give here a practical description.

1. Initiation: for each drug, we run the single drug regression algorithm (A.3) based on
observed data and fill in the missing data with the corresponding predicted values by the
regression model.

2. Maximisation: use the newly (fully) filled data to learn the parameters for the vector

regression model (A.4).
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3. Expectation: use the vector regression (A.5) to (re)infer new values for the missing
data. If the differences between the new values and the old ones are smaller than some pre-
defined small value €, then exit and return the recovered data matrix, otherwise, return to
step 2.

Note that in such a model, there is no distinguishing between training data and data for
prediction anymore, see figure A.4. Let us recall from chapter 6, where we used the semi-
supervised model to predict missing labels (classifications) in a simulated dataset of lung
cancer classification. This is nothing but a data-recovery problem. This unification of the
data-recovery problem and the semi-supervised model brings an interesting perspective,
normally not considered in data-recovery problems. We suggest: the aim of the data-
recovery procedure is not only to infer the missing values in the dataset, rather, it should be
considered as a way of improving the analysis by maximising the use of the information in
the training dataset. In the same way, the semi-supervised classification model discussed
in chapter 6 is not only to predict missing labels but also to exploit the information in the
training dataset efficiently. We will show that the parameters in the data-recovery model

are estimated more reliably than that in the regression model.

Analysis of the drug-response library

In the following, we will apply this data-recovery procedure to the drug sensitivity data
from Welcome Trust Sanger Institute (Garnett et al. 2012, Yang et al. 2013) and compare
the results with the single-drug regression model.

To verify the predictive power of the different procedures, we randomly delete 30% of
the measured AUC values (in figure A.3, panel c), saving them for cross validation. The
resulting data is then used to run both the data-recovery algorithm and single regression.
The cross validation results are shown in figure A.5. The data recovery algorithm gives
a higher predictive power than the regression, sometimes much higher as in the case of
gemcitabine. This is to be expected: the data-recovery procedure exploits the correlation
between drugs for the predictions while the single-drug regression is entirely based on
the genetic data.

However, we want to emphasise again that it may not be the sensitivity prediction the
most important point, rather the better estimate for the parameters may be more impor-
tant. This can be observed in the plot of the standard deviations of the model parame-
ters inferred by data-recovery procedure and by single-drug regression in figure A.6. The
standard deviations are estimated by bootstrapping 300 times on the data with 10% of the
measured AUC deleted. The figure clearly shows that while the means of the coefficients

agree well between the two methods, the standard deviations of the coefficients inferred by
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Figure A.5: Scatter plot between values of deleted AUC against reconstructed AUC. (a) For all
drugs, (b) dasatinib, (c) gemcitabine (d) tipifarnib. The predictions by single-drug-regression are
coloured green, while the predictions by the data-recovery procedure are coloured red. One sees

that the data-recovery model gives better predictions than the regression model does.

the data-recovery procedure is consistently lower than that of the single-drug regression

model.

There is however a drawback of the data-recovery model: its has significantly more
parameters than the regression model. This causes the failure of the data-recovery model
when there are too many missing values in the dataset indicating by the divergence of
the model parameters. Note that, however, this is the problem of this particular model

(Gaussian model); in general, the number of parameters of data-recovery model is not

necessarily much larger than that of the corresponding regression problem.
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Figure A.6: Scatter plot to compare the model parameters estimated by data-recovery procedure
and single-drug regression. (a) Comparison of the means of couplings a between the types of
cancer and the AUC (see equations (A.3) and (A.4)). (b) Comparison of the variances of «. (a) Com-
parison of the means of the couplings 8 between the mutation states and the AUC (see equations
(A.3) and (A.4)). (b) Comparison of the variances of S.

-0.10

Conclusions and outlook

In this chapter, we examined the drug sensitivity data library from Welcome Trust Sanger
Institute using the method of linear regression and data-recovery. We suggested that the
problem should be viewed as a data-recovery problem, instead of a regression problem.
We brought a unified view on data-recovery and the semi-supervised learning algorithm
developed in the previous chapter. Our discussions are a proof of principle. Downstream
analysis and biological validation of the outputs of the data-recovery procedure are still to
be developed. Incorporating the data-recovery procedure with different regularisations,

in particular subset-selective regularisations (Hastie et al. 2009), can also be considered.
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APPENDIX B

THE EMERGENCE OF DRUG RESISTANCE IN EXPANDING TUMOURS

We are to study the evolution of drug resistance in cancer. While therapy resistant clones
often exist as minority in a stable tumour, we observe that under specific circumstances,
resistant clones can be found more frequently in expanding tumours. We illustrate thisin a
logistic model of tumour growth and numerically determine the range of parameters that
allow for such a phenomenon. The mathematical basis to analyse the model is the theory
of non-homogeneous birth-death processes with arrivals (or migrations), which will also

be discussed in detail.

Evolution of drug resistance in cancer

Despite great advances during the last decades, cancer treatments are hindered by therapy
resistance. Indeed, most of cancers respond either partly or completely at least to some
particular therapy, but almost invariably relapse within a few months or a few years with
resistance to the therapy (Gottesman 2002, Holohan et al. 2013). Further treatments may
be applied, but again fail at some point. This short appendix discusses several aspect of
the emergence of drug-resistance.

Within the evolution model of cancer, it is believed that cancer resistance has its main
root in the fast evolving nature of the population of cancer cells. Under the selective pres-
sure exerted by therapy, cells with genetic (or epigenetic) features that allow them to live
in the therapeutical environment have tremendous reproductive advantage and spread in
the population. Do these resistant cells pre-exist in the population or do they emerge (de
novo) during therapy? This is of course not a well-defined question, unless we give it a
probabilistic nature: are these resistant cells more likely to pre-exist in the cell population
or more likely to emerge during therapy?'

In many cases, it is observed the majority of the cells in a cancer cell population carry

IThis is different from the question: does the mutation rate rise under therapy (hypermutation), which is
well-defined biologically and of non-probabilistic nature.
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the genetic contents that can be directly targeted by (some) drug. If the resistant cells pre-
exist, they only constitute a minority in the population. This reflects that in therapy-free
environments, drug-sensitive cells often grow faster than resistant cells. In some case,
resistance arises because of the development of pump proteins on the surfaces of cancer
cells, which pump the drug out of the cells. As this pumping activity requires energy, the

cells have less resource for division (Gottesman 2002).

Imagine a picture of a tumour freely expanding from a single cell, which is sensitive to
a particular therapy. This gives rises to an exponentially expanding clone of sensitive cells.
Errors in DNA replications create genetic variation in the population, and resistant cells
may occur during the divisions of sensitive cells. Over time, the resistant cells accumulate.
They also divide forming sub-clones of resistant cells in the tumour. But if the resistant
cells divide sufficiently slower than the sensitive cells, they remain at small fractions in the
population. This model of accumulation of resistant cells in a freely expanding population
was discussed by Luria and Delbriick and then by Iwasa and Michor, see Iwasa et al. 2006.
According to this model, the resistant cells are almost sure to pre-exist in tumours at a
detectable size (Iwasa et al. 2006).

One may be unsatisfied with this answer. Indeed, the picture of an exponentially ex-
panding population of cancer cells is unrealistic: it essentially assumes that cancer cells
grow and divide limited only by their intrinsic ability to grow and divide (division rate).
In reality, cancer cell growth and division are heavily dependent on the resources they
compete for, which are usually limited in the internal environment of the body (Greaves
and Maley 2012). We also learned that tumour cells may also compete for space, direct

inhibit each other by mechanical stress, see chapter 1.

The cell-cell competition changes the picture of tumour expansion and resistant cell
accumulation radically. When the tumour expands to some large size, cell-cell competition
becomes apparent; as a result, cell divisions decrease and cell deaths may also increase.
The whole population suffers from this slowing down in growth, but resistant cells may
suffer more because of their disadvantage in competition. This means, at some point in
the expanding phase of the tumour, it may happen that resistant cells do not accumulate
in the tumour but actually are lost from the tumour due to the competition with sensitive
cells. The consequence is that there may be an intermediate maximum of the number of
resistant cells in the population. We will call this phenomena boosting of resistance during

tumour expansion.

In the following, we illustrate quantitatively the possibility of such boosting in a simple
model of tumour expansion when the competition between cells is considered. We start

with a discussion of the birth-death processes with arrivals, which will serve as the basis
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for our model.

The mergence of a mutated clone in an expanding population

Birth-death process with arrivals

Definition (birth-death processes). A (linear) birth-death stochastic process X(t) with ar-

rivals taking values in {0, 1, ...} is defined by the transition rates

Gksk+1 = b(H)k+r(t), (B.1)
Tk—sk—1 = d(t)k, (B.2)
Tk—sk = 1= Gkokr1 — Gr—k—1, (B.3)
Gesp = 0 forp #kk—1k+1, (B.4)

where b(t), d(t) and r(t) are continuous functions of t almost everywhere, which are called
the birth rate, the death rate and the arrival rate respectively. If r(t) = 0, the process is called
linear birth-death process without arrivals or simple birth-death process. If b(t), d(t) and r(t) are

constant over time, the process is called homogeneous.

In practice, we usually think of X(t) as the number of cells or number of particles at
time t. Note that, for the process to be fully defined, we need to specify the initial condition,

for example, X(0) = k.

The master equation for the distribution pj for such a birth-death process with arrivals,
defined as p, = P{X(t) = k}, can be written down explicitly,
d Pk

a4 = Wk=1)b(t) +r(D)]pea + (k+ 1)d(t)peir — [r(t) +kb(t) +kd(t)]pr. (B5)

Multiplying the two sides of (B.5) with z¥, and performing the summation over k, we obtain

the equation for probability generating function,

8G§i,t) — (b()z— d(8)](z 1)8‘3;?” L r(t)(z—1)G(z 1), (B.6)

where too
Gz t) = Y pil(t)z". (B7)

k=0

From the equation for the probability generating function, the equation for the mean m(t) =
(X(#)) and the variance s(f) = (X(t)2) — (X(t))? of X can be found easily. Indeed, noting
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that 3G (2,1
z,t
= : B.
m(n = Z2) (B.3)
by taking the derivative of (B.6) with respect to z, we obtain
dm
a5 = [b(t) —d(t)]m(t) +r(t), (B.9)
which can be solved to yield
t /
m(t) = e [mo +/ dt'e_w(t)r(t/)} , (B.10)
0

with w(t) = fot d¥'[b(t') — d(t')] and my is the initial value of m at t = 0.
Suppose the process is initiated at t; with X(#;) = 1 and we are interested in the prob-

ability of the process to be at extinction,
Po(t1, t2) = P{X(t2) = 0}. (B.11)

If the arrival rate is non-zero, this extinction is temporal since at some point a new arrival
will set a new clone. If the process is a birth-death process without arrivals, the extinction

is permanent and we use another notation
Pext(t1,t2) = P{X(t2) = 0}. (B.12)

Note that P{X(t) = 0} = G(0, t); in principle, equation (B.6) can be solved, and Py(t1, )
can be found (see Stirzaker 2005 and Foo and Michor 2010, for example). We however use

another route, which elucidates some important properties of birth-death processes.

Lemma. The probability of (permanent) extinction by time t; of a non-homogeneous birth-death
process without arrivals X (t) with birth rate b(t) and death rate d(t), which is initiated at t = t,
as X(t1) = 1, is given by

1
e~wltut) 4 f:lz d te—wttp(t)’

Pext(tlz tZ) =1- (B-13)

where w(ty, t2) = [;> dt[b(t) — d(t)].

Proof. The lemma can be proved by the standard first step analysis of the process (Stirzaker
2005). Think of Pext(1,t2) as a function of #; when t; is fixed. At time t = t; + h, to the
first order of h, the process can be at X(t; +h) = 0, X(ty +h) = 1 or X(t; +h) = 2. We
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have the decomposition of Pex(t1, £2) with respect to these three events,

+Pext/x(t+1)=1(t1 + 1, t2) P{X(t1 + h) =1} +
+Pextix(+m—2(ti + 1, ) P{X(t1 +h) =2} + O(K?),  (B.14)

where, by the definition of the process

P{X(t; +h) =0} = d(t;))h+O(h?), (B.15)
P{X(t; +h) =2} = b(ty)h+O(H?), (B.16)
P{X(t;+h) =1} = 1—[b(ty) +d(t;)]h+OH?), (B.17)

and

Pextix(ti+m=0 = 1, (B.18)
Pext|X(t1+h):1 = Pext(tl +h, fz), (B.19)
Pextix(tytm)=2 = Pai(ti+ht), (B.20)

where, in the last expression we have used the fact that conditioned on X (#; + ) = 2, the
two cells at t; + h initiate two independent birth-death sub-processes with the same birth
rate b(t) and death rate d(t), for the process X(t) to go extinct by t,, both of these sub-
processes should go extinct. Now, expanding the decomposition (B.14) to the first order

in h then taking the limit 1 — 0, we have a differential equation for Pey as a function of ¢,
Ot Pext = — P2, b(t1) + Pexe[b(t1) +d(t1)] — d(t1). (B.21)

Solving this differential equa‘cion2 with the ending condition Pext(t2, t2) = 0, we have the
solution (B.13). O

Theorem. Consider a non-homogeneous birth-death process with arrivals X (t) with birth rate
b(t), death rate d(t) and arrival rate r(t), which is initiated at t = t as X(t1) = 0. The probability

for the process is at temporal extinction at t, is then give by

Po(ty, t2) —exp{ [ dt e " r(t) (B2)
0\t1,t2) = p f K(t]/ t) _ K(tll tz) _ e*w(tl,tZ) 4 .

where w(ty, t) = [;> dt[b(t) —d(t)] and K(ty, t2) = [;> dte=*(11)b(t).

2The equation can be solved by Kendall’s transformation Pext(t1,t2) = 1/u(ty, ) + 1
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Proof. The idea is that in a birth-death process with arrivals, each arrival (which comes
at rate r(t)) will initiate a simple birth-death process (without arrivals) independently from
each other. This new process starts a new clone. The probability that the process has no
cell at time tp, P{X(t2) = 0}, is the probability that all such clones initiated at any time
t < t all have gone extinct by t,. We implement this idea in the first step analysis. Let
us consider the decomposition of Py(t1,t) into the conditions {X(¢; + ) = 0} (no clone
initiated) and {X(t; + h) = 1} (a clone initiated) to the first order in /, where / is a small

time interval,

Py(ti,t2) = Pox(r4m=o(ti, t2) P{X(t1 +h) =0)} +
+ Py x(ty+m)=1(t1, £2) P{X(t1 + h) = 1)} + O(h?). (B.23)

Note that at t = 1, X(t;) = 0, we have

P{X(t; +h) =0} = 1—r(t)h+0(K?), (B.24)

P{X(t;+h) =1} = r(t)h+0O(H?), (B.25)
and

Pox(t+m=0 = Po(ti+h,t2), (B.26)

Pox(h+my=1 = Po(t1 +h,t2)Pext(ts + 1, t2), (B.27)

where in the last equation, conditioned on X(t; + h) = 1, there is a clone initiated by
this single cell, and Pext(t1 + ki, t2) is the probability for this clone to die out by t,, given
by (B.13). Expanding the decomposition (B.23) to the first order in / and taking the limit

h — 0, we have a differential equation for Py(t1,t) as a function of t1,

atho(tl, tz) = T’(tl)[l — Pext(tl,tz)]Po(tl,tz), (B.28)

which can be solved with the boundary condition Py(f,t,) = 0 to gives

)
Py(t1,t2) = exp {— /t d#ir(t])[1 — Pext(t:, tz)]} . (B.29)
1
With Pe(t1, £2) calculated by (B.13), we obtain equation (B.22). O

This proof is complementary to the proof by Foo and Michor 2010, where an integral
argument was used instead of the first-step differential equation. The following corollary

follows:
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Corollary. Consider a non-homogeneous birth-death process with arrivals X(t) with birth rate
b(t), death rate d(t) and arrival rate r(t), which is initiated at t = t as X (t1) = ko. The probability

for the process to be at temporal extinction at t; is give by
Po(t1, ta;ko) = [Pext(t1, £2)]Po(t1, £2), (B.30)

where Py(t1, t2) is the probability for the process starting with no cell to be at temporal extinction
at tp given by (B.22), and Pey is the probability of extinction of a birth-death process with birth rate
b(t) and death-rate d(t) but without arrivals and starting with a single cell, given by (B.13).

We now analyse the birth death processes with arrivals at equilibrium. Let b, =
My 400 b(t), doo = limy—y 100 d(t), Yoo = limys oo 7(t) and assuming ro, > 0. It is clear
that if bo > de, the mean number of cell keeps increasing and the process escapes to

infinity and there is no stationary distribution. We are concerned with the case
beo < deo, (B.31)

where the process is trapped above extinction. In this case, there exists a stationary dis-
tribution of the number of cells. The equation for the probability generating function at

equilibrium, G(z) = lim;, ;o G(z, t), can be found by letting t — o0 in (B.6), which gives

(booz — doo)G'(2) + 100G(2) = 0. (B.32)

Solving this differential equation with the condition G(1) = 1, we have

. —Teo/beo
Aoo/ boo Z> : (B.33)

) = <dm/bm—1

It follows that the mean number of cells at equilibrium e = lim;_, ;. m(t) can be found

as

me = G'(1)
— T (B.34)

and the probability for the process to be at temporal extinction at equilibrium, P, =

limy,  yoo Po(t1, t2) (Which does not depend on t1), can be found as

Po = G(0)

deo/bo \ /"
- (doo/b; _1) . (B.35)
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Monte Carlo simulation

The non-homogeneous birth-death processes can be simulated via the rejection (or projec-
tion) method (Lewis and Shedler 1978). This is a general method to simulate any Markov
process with time-dependent transition matrix. Consider such a time-dependent Markov
process in a space .#, defined by the time dependent transition matrix W;_,;(t). Suppose
at time t = 0, the system is at state j, we want to simulate the next jump of the process
according to the time-dependent rate W;_,;(t). We determine the jump in two steps: (a)
decide when the jump happens and (b) decide where the jump ends at.

(a) The next event happens with a time-dependent rate,

anéywﬂﬂ. (B.36)
17]

The probability for the waiting time T to be larger than t + & is the joint probability for T
to be larger than t and no event happens in [t, t + h], that is

P(t > t+h) =P(t > t)(1 - A(t)h) + O(K?). (B.37)
Therefore
dP(;;t) — _P(r > HA(), (B.38)

which can be solved with the initial condition P(t > 0) = 1 to give

P(t >t) =exp {— /Otdt’/\(t’)} . (B.39)

The following lemma allows us to simulate the waiting time according to this accumulated

distribution.

Lemma (accumulated rejection). Consider a Poisson process with time-dependent rate A(t).
Starting at t = 0, the waiting time of the next event to happen is given by (B.39). Let Amax =
sup{A(t)}. We simulate a process, startingat i = 1and T = 0:

(i) Generate a waiting time T; exponentially distributed with inverse mean Amax.

(ii) Let T = T + T;. Generate a uniformly distributed random variable p between 0 and 1. If
p < A(T)/ Amax, accept the event and exit; otherwise increase i by 1 and come back to (i).

The outcome of this accumulated rejection procedure is a value of the random number T, which

is the expected waiting time with accumulated distribution (B.39).

We skip the simple proof, interested readers are redirected to Lewis and Shedler 1978.

(b) After the waiting time T is simulated, the actual state for the transition to happen
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is chosen with probability

(B.40)

A series of two-step simulation allows us to simulate any Markov process with arbi-

trary time-dependent rates.

A model of tumour expansion and the emergence of resistant cells

Consider the expanding of a population of tumour cells starting from a single cell which
is assumed to be sensitive to a particular drug. To model the competition between cells,
we assume the logistic growth of the tumour in a deterministic description (Otto and Day

2007), N
t
dt

where by is the competition-free birth rate and dy is the death rate of the sensitive cells and

= o[l — N(t)/CIN(t) — doN(t), (BA1)

C is the environment carrying capacity. The environment carrying capacity C models the
competition of the cells for resources by linearly modifying the actual birth rate by to by (1 —
N/C) in the present of N cells in the population (Otto and Day 2007). The differential

equation can be solved easily to yield

Nmax

N(t) = ,
( ) 1 + (Nmax/NO — 1)e*(b0*do)t

(B.42)

where Nmax = C(1 — dy/bp) is the maximum number of cells the environment with car-
rying capacity C can carry and Nj is the initial number of cells at t = 0, here Ny = 1. The
population of sensitive cells is usually very large, constituting the most part of a tumour,
therefore such a deterministic description is plausibly sufficient. Such the growth of the

population of sensitive cells is sketched in figure B.1.

Cells that are resistant to the drug emerge as mutant clones from the sensitive cells.
Since they are normally present in minority in the population in a therapy-free environ-
ment, a stochastic description will be necessary. We assume that during a replication of a
sensitive cell, a resistant cell arises at rate ;1 due to replication errors. Since the number of
divisions per time unit of sensitive cells is by[1 — N(t)/C|N(t), the rate of emergence of a

resistant cell per time unit is
v(t) = ubo[1 — N(t)/C]N(t). (B.43)

Let K(t) be the stochastic number of resistant cells, the transition rates between different
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Sensitive cells

Time

Figure B.1: A sketch of the logistic growth of the population of sensitive cells.

state of K are

Gk—ske1 = b1 —=N(t)/Clk+v(t), (B.44)
Qoo = dk, (B.45)
T~k = 1= Geskt1 — Gr—k-1, (B.46)
Grsp = Oforp#kk—1k+1, (B.47)

where b is the competition-free birth rate of resistant cells, which is modified to b[1 —
N (t) / C] in the present of competition, and 4 is the death rate of resistant cells. Note that
we ignored the number of resistant cells in the competition, b[1 — (N(t) + K(t))/C| =
b[1 — N(t)/C], and ignored the reduction of the birth rate of sensitive cells due to mutation

to resistant cell, 1 — u ~ 1.

This process is nothing but a non-homogeneous birth-death process with arrivals with
birth rate b(t) = b[1 — N(t)/C], death rate d(t) = d and arrival rate #(t) = v(t); note that
b(c0) = bdg/by, d(c0) = d, 7(00) = udoNmax- The condition for the number of resistant

cells to be small in the population, which is expressed in (B.31), implies
— > . (B.48)

This equation can be loosely interpreted as resistant cells having lower fitness than sen-

sitive cells. In fact, our approximation, K < N, implies m(c0) < Nmax, which means
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———>u (B.49)
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Figure B.2: The number of sensitive cells (cyan), the mean number of resistant cells (orange) and
the probability of having at least one resistant cell (red, insets) as functions of time (solid lines:
numerical calculations, dashed lines: asymptotic values, circles: Monte Carlo simulation). We use
Nmax = 10%, U= 1074, and the initial conditions N(0) =1and K(0) = 0. (a)bp = 1,b = 0.5,
dgp = 0.6, d = 0.4 (in an arbitrary inverse time unit), the mean number of resistant cells and the
probability of resistance increase monotonically to stable values (type I-monotonic); (b) by = 1,
b =05,dy =02,d = 0.4 (in an arbitrary inverse time unit), the mean number of resistant cells
and the probability of resistance increase to maxima and then decrease to stable values (type 1I-
non-monotonic).

Assuming that the tumour starts from a single sensitive cell, therefore, there is no re-
sistant cell at the beginning (K(0) = 0). The mean number of resistant cells m(t) and the
probability that the population has no resistant cells Ps(t) (or conversely, the probability
of having at least one resistant cell Pr(t) = 1 — Ps(t), or simply the probability of resistance)
can be calculated numerically via (B.10) and (B.22), respectively. The results are shown in
figure B.2 for two different sets of parameters. We observed that both the number of re-
sistant cells and the probability of resistance in the expanding course of sensitive cells are
of two types: type I-monotonic or type II-non-monotonic. For by = 1, b = 0.5, dy = 0.6,
d = 0.4 (in arbitrary inverse time units), the mean number of resistant cells and the prob-
ability of resistance increase monotonically to stable values (type I, figure B.2 a). Instead,
forbp = 1,b = 05,dy = 0.2, d = 0.4 (in arbitrary inverse time units), the mean num-
ber of resistant cells and the probability of resistance increase very fast to maxima before
decreasing towards stable values (type II, figure B.2 b).

The next question is which parameters determine the two different types of emergence
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of the resistant clone? We have six parameters: i, Nmax, bo, do, b and d. From (B.10) and
(B.22), we see that m(t) o< pand In Py(t) « p, the mutation rate therefore does not affect the
monotonicity of m(t) and Pr(t). Likewise, Nmax can only weakly affect the monotonicity
of m(t) and Pg(t). This can be seen by observing that in (B.42), the phenomena should not
change drastically by changing from Ny = 1 to Ny = 1/ f for some arbitrary f relatively
large. Therefore, if we increase Npmax by some factor f, and decrease Ny by the same factor
f, the function N(t) simply scales by f but N(t)/Nmax remains invariant. This leads to
the rescaling by a factor of f of m(t) and In Pr(t) without changing their monotonicity.
Therefore we are left with four rates, by, do, b and d, from which, only three dimensionless

ratios can be derived. We then explore the phenomena numerically.
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Figure B.3: The “order parameters” I, (a) and Ip (b) as functions of (dy/bo,d/bg) in log scale.
The diagram defines three different regimes where the emergence of the resistant clone has differ-
ent characters: (I) monotonic; (II) non-monotonic; (III) resistant cells are fitter than sensitive cells.
(Nmax = 104, U= 1074; by = 1; effective zero: € = 1072.)

To distinguish the two types of emergence of the resistant clones, we define an “order

parameter” for the mean number of resistant cells,

p, = i} g (B.50)
Meo

and another “order parameter” for the probability of resistance,

s (P}

b (B.51)

If the emergence of the resistant clone is of typel, [, = 0 and/or Ip = 0; on the other hand,
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if the emergence of the resistance clone is of type II, Iy # 0 and Ip # 0. Figure B.3 plots
the terrain maps of In/,, and In/p as functions of dy/bg and d/by. The terrain map of Inl,,
defines a clear boundary between the two types (figure B.3 a). Further analytical analy-
sis (not shown) confirms this numerical results, and a “phase boundary” can be drawn
(dashed line, figure B.3 a). For the terrain map of In/p, the boundary of the two types are
very similar, but do not coincide with the that of In/,, (figure B.3 b). Analytical analysis

for the boundary on the terrain map of In Ip has not been possible.

Conclusions and outlook

Our minimal model illustrates a very particular effect of cell-cell competition, namely the
possibility of boosting of a resistant clone in the course of expansion of a sensitive clone.
Current models of evolution of drug resistance in cancer do not explicitly consider clone
competition (Iwasa et al. 2006) or treat the competition insufficiently (Bozic etal. 2012). The
biological nature of clone competition in cancer is also not well explored, despite strong
evidences (Greaves and Maley 2012). Interestingly, the situation is rather different for epi-
demic diseases. For example, in the research of malaria drug resistance, different mech-
anisms of clone competition between clones in the population have been investigated in
detail (Mideo 2009, Read and Taylor 2001). Nevertheless, recently clone competition in
the context of cancer has been recognised as more and more important (Chmielecki et al.
2011, Gatenby 2009). One of the innovative concepts is the adaptive therapy, introduced
by Gatenby et al. 2009, which also leads to the development of optimally controlling a tu-
mour (Fischer et al. 2014). In the next decades, we are waiting for more and more knowl-
edge of clone competition in the context of cancer research, which may radically change

our view on cancer treatment (Gatenby 2009).
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