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“If the brain were simple enough for us to understand it, we would be too simple to 
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II. SUMMARY 

 

RATIONALE: The Cav2.3 (R-type) voltage-gated calcium channel represents the most 

enigmatic of all voltage-gated calcium channels due to its pharmacoresistance, mixed 

characteristics of high voltage-activated and low voltage-activated calcium channels and 

relatively low expression levels. Lamotrigine (LTG) is a modern antiepileptic drug 

however, its mechanism of action has yet to be fully understood, as it is known to 

modulate several ion channels and other targets. In heterologous systems, LTG inhibits 

Cav2.3 (R-type) calcium currents, which contribute to kainic-acid (KA)–induced epilepsy 

in vivo. LTG has been suggested to increase the risk of sudden unexpected death in 

epilepsy (SUDEP), in which cardiac and respiratory mechanisms are proposed to be 

involved. In addition to the higher risk of SUDEP during sleep, epileptic patients are at 

higher risk of seizures during sleep, especially during slow wave sleep (SWS). The 

bidirectional relationship between sleep and epilepsy has long been acknowledged, 

however it remains far from understood. 

AIM: The goal of the present project was to perform an in depth investigation of the role 

of R-type signaling in the epileptic brain and heart, by analyzing its contribution to 

experimental epilepsy, antiepileptic pharmacotherapy and sleep.  

METHODS: In the first study we compared the effects of LTG to two other AEDs 

(Topiramate and Lacosamide) in Cav2.3-deficient mice and controls on KA-induced 

seizures. Behavioral seizure rating and quantitative electrocorticography were performed 

after KA induced epilepsy, as well as immunohistochemistry and western blot analysis of 

Cav2.3 expression in the brain. In the second study we investigated cardiac parameters 

during KA-induced epilepsy and LTG treatment in awake and sleeping C57Bl6 mice. 

Continuous electrocardiograms and electrocorticograms were collected telemetrically 

from freely moving mice, and time- and frequency-domain analysis performed on the 

electrocardiograms. In the third study, we analyzed sleep architecture in Cav2.3-deficient 

and control mice also using radiotelemetric electrocorticography and electromyography 

during spontaneous and urethane-induced sleep. 

RESULTS: LTG treatment displayed no antiepileptic potency in Cav2.3-deficient mice, 

but contrarily significantly aggravated seizures and increased neurodegeneration in the 
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CA1 region of the hippocampus as well as increasing ultra-high frequency oscillations 

(ripples) known to be associated with seizure generation. This effect was specific to LTG 

in Cav2.3-deficient mice, as the two other AEDs tested - one with and one without Cav2.3 

inhibiting capacity- did not aggravate seizures. In our second study we found LTG to 

alter autonomous nervous control of the heart during SWS after induction of chronic 

epilepsy promoting sympatho-vagal imbalance. Furthermore, we found LTG to increase 

the squared-coefficient of variation of the heart rate during SWS, but not during 

wakefulness. Our third study was able to demonstrate, that ablation of Cav2.3 robustly 

impacts sleep architecture, producing deficits in the amount and depth of SWS. 

Interestingly, although Cav2.3 mice sleep less and display shorter SWS phases, they do 

not compensate for this deficit by increasing sleep depth, pointing to disturbances in sleep 

homeostasis.  

DISCUSSION: We provide first in vivo evidence for a crucial role of R-type signaling in 

LTG pharmacology and shed light on a paradoxical effect of LTG in the absence of 

Cav2.3.  LTG appears to promote ictal activity in Cav2.3-deficient mice by increasing 

high frequency components of seizures, resulting in increased neurotoxicity in the CA1. 

This paradoxical mechanism, possibly reflecting rebound hyperexcitation may be key in 

understanding LTG-induced seizure aggravation observed in patients. Furthermore, we 

find Cav2.3 to be a critical mediator of sleep homeostasis, potentially representing a 

pivotal link between sleep and epilepsy. Cav2.3 has been shown to be crucial for bursting 

in the reticular thalamus, which underlies delta-rhythm during SWS and generation of 

spike-and-wave discharges, the hallmark of absence epilepsy. Therefore, seizure 

resistance and SWS impairment of Cav2.3-deficient mice may be symptomatic of 

impairment of bursting in the thalamus and therefore of the generation and maintenance 

of highly synchronized slow rhythms. Remarkably, we found LTG to only affect 

autonomous control of the epileptic heart during SWS, possibly indicating a mechanism 

by which LTG could increase the risk for SUDEP. LTG-induced increased sympathetic 

tone during SWS, may also reflect impaired SWS, found in LTG-treated patients and in 

our Cav2.3-deficient mice. 

CONCLUSION: Because Cav2.3-deficient mice display a subtle phenotype as oppposed 

to an obvious one, because of the expression of Cav2.3 in rhythmically active tissue and 
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because of Cav2.3’s unique electrophysiological properties, it is conceivable that a 

general function of R-type currents is the “fine tuning” of oscillatory networks One may 

assume that a loss of “fine-tuning” in Cav2.3KO mice is only minimally noticeable under 

physiological conditions, but becomes evident in certain pathological conditions exerting 

a strain on an oscillatory network such as during experimentally induced epilepsy. This 

may explain how R-type signaling is crucial for sustaining physiological rhythmic 

activity of an entire network despite relatively low expression levels. 
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III. ZUSAMMENFASSUNG 

 

HINTERGRUND: Der Cav2.3 (R-Typ) spannungsgesteuerte Kalziumkanal ist der 

enigmatischste aller Kalziumkanäle aufgrund von seiner Pharmakoresistenz, 

Charakteristika zwischen hoch- und niedrig- spannungsgesteuerten Kalziumkanälen und 

relativ niedrigen Expression. Lamotrigin (LTG) ist ein beliebtes modernes 

Antiepileptikum (AED), jedoch sind seine Wirkmechanismen noch unklar, da LTG viele 

Ionenkanäle und andere Zielstrukturen moduliert. Im heterologen System, inhibiert  LTG 

R-Typ Ströme, die in vivo zu Kainat (KA)-induzierter Epilepsie beitragen. Es wurde 

gezeigt, dass LTG das Risiko für plötzlich auftretenden, ungeklärten Tod bei Epilepsie 

(SUDEP) erhöht, ein Phänomen, bei dem kardiale und respiratorische Mechanismen 

impliziert sind. Außerdem ist das Risiko für  epileptische Anfälle bei Patienten höher im 

Schlaf, besonders im Langsame-Wellen-Schlaf (SWS). Die bidirektionale Beziehung 

zwischen Schlaf und Epilepsie ist schon lange bekannt, jedoch dem vollen Verständnis 

noch fern.  

ZIELE: Ziel des gegenwärtigen Projekts, war es eine tiefgründige Analyse der Rolle des 

R-Typ Kalziumkanals in dem epileptischen Hirn und Herz durchzuführen, indem seine 

Mitwirkung bei experimenteller Epilepsie, antiepileptischer Pharmakotherapie und Schlaf 

analysiert wird.   

METHODEN: In der ersten Studie wurden die Effekte von LTG  und zwei anderen 

AEDs (Topiramat und Lacosamid)  auf Cav2.3-defizienten und Kontrollmäusen bei KA–

induzierter Epilepsie untersucht. Neben telemetrischer Erfassung von 

Elektrokortikogrammen, wurde der Schweregrad der Anfälle quantifiziert. 

Immunohistochemie und Westernblot Analyse von Cav2.3 Expression im Hirn wurden 

auch ausgeführt. In der zweiten Studie wurden kardiale Parameter nach KA-induzierter 

Epilepsie und anschließender LTG-Behandlung in wachen und schlafenden C57Bl6 

Mäusen untersucht. Langzeit Elektrokardiogramme und Elektrokortikogramme wurden 

telemetrisch von sich–frei bewegenden Mäusen erhoben und anschließend Zeit- und 

Frequenzdomänen ausgewertet. In der dritten Studie wurde spontanes und Urethan-
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induziertes Schlafverhalten in Cav2.3-defizienten und Kontrollmäusen mittels 

telemetrische Elektrokortikographie und Elektromyographie untersucht. 

ERGEBNISSE: In Cav2.3-defizienten Mäusen zeigt LTG keine antiepileptische Potenz, 

sondern verstärkt epileptische Anfälle und Neurodegeneration in der CA1 Region des 

Hippokampus und verstärkt ultra-hochfrequente Oszillationen (Ripples), von denen 

gezeigt wurde, dass sie mit der Entstehung von iktaler Aktivität assoziiert sind. Dieser 

Effekt war spezifisch für LTG in Cav2.3-defizienten Mäusen und entstand nicht bei der 

Behandlung von Cav2.3-defizienten Mäusen oder Kontrollmäusen mit den anderen 

beiden getesteten AEDs. In der zweiten Studie konnte gezeigt werden, dass bei chronisch 

epileptischen Mäusen, LTG die autonom-nervöse Kontrolle des Herzes während SWS  

beeinflusst, indem sympathische Kontrolle der Herzaktivität verstärkt wird. Zudem 

fanden wir eine Zunahme des Variationskoeffizienten im Quadrat im SWS, jedoch nur 

bei SWS und nicht bei Wachheit. Unsere dritte Studie konnte zeigen, dass die Ablation 

von Cav2.3 durch verkürzte SWS Phasen und reduzierte SWS Tiefe, robuste 

Veränderungen des Schlafverhaltens verursacht. Obwohl Cav2.3-defiziente Mäuse 

weniger Schlafen und kürzere SWS Phasen zeigen, kompensieren sie dieses nicht durch 

Vertiefung des SWS, was auf eine Beeinträchtigung von homöostatischen Mechanismen 

deutet. 

DISKUSSION: Wir zeigen erste in vivo Belege für eine entscheidende Rolle von R-Typ 

Kalziumkanälen in dem Wirkmechanismus von LTG und decken einen paradoxen Effekt 

von LTG in der Abwesenheit von Cav2.3 auf. LTG scheint iktale Aktivität in Cav2.3-

defizienten Mäusen  zu fördern, indem es ultra-hochfrequente Komponente von Anfällen 

verstärkt, was erhöhte Degeneration von CA1 Neurone verursacht. Dieser paradoxe 

Mechanismus, der womöglich reaktive Hyperexzitation reflektiert, könnte 

ausschlaggebend für das Verständnis von anfallsverstärkenden Effekten von LTG sein, 

die bei epileptischen Patienten auftreten. Cav2.3 zeigt sich als bedeutender Vermittler der 

Schlafhomöostase, und könnte somit ein entscheidender Knotenpunkt zwischen Epilepsie 

und Schlaf darstellen. Cav2.3 spielt eine entscheidende Rolle beim Bursting im Thalamus, 

welches dem Delta-Rhythmus unterliegt aber auch der Generation von Spike-and-Wave 

Discharges (SWD). Demzufolge könnte die Resistenz gegenüber Chemokunvulsiva und 

gestörtes SWS der Cav2.3-defizienten Mäuse symptomatisch für gestörtes Bursting im 
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Thalamus, und somit für die Generation und Aufrechterhaltung von hoch-

synchronisierten langsamen Rhythmen sein. Bemerkenswerterweise, verschiebt LTG nur 

im SWS die autonom-nervöse Kontrolle des Herzes in sympathischer Richtung, was ein 

potentieller Mechanismus hinter dem erhöhten Risiko für SUDEP im Schlaf sein könnte. 

LTG-induzierter erhöhter Sympathikotonus im SWS könnte auch beeinträchtigtes SWS 

wiederspiegeln, ein Phänomen, das auch in LTG-behandelten Patienten auftritt. 

KONKLUSION: Weil Cav2.3-defiziente Mäuse einen subtilen statt einen eindeutigen 

Phänotyp zeigen, weil Cav2.3 eine einzigartige Kombination elektrophysiologischer 

Eigenschaften besitzt  und weil Cav2.3 in verschieden rhythmisch-aktiven Geweben 

exprimiert wird, ist es annehmbar, dass eine Hauptfunktion dieses Kanals in der 

„Feinjustierung“ von oszillierenden Netzwerken besteht. Es ist möglich, dass ein Verlust 

von „Feinjustierung“ unter physiologischen Bedingungen kaum auffällt, jedoch unter 

pathophysiologischen Bedingungen bzw. wenn das Netzwerk stark belastet wird, große 

Auswirkungen hat wie z.B. bei der Epilepsie. Das würde erklären, wie R-Typ Kanäle, 

trotz relativ niedriger Expression, ausschlaggebend für die Generation und 

Aufrechterhaltung von rhythmischer Aktivität in ganzen Netzwerken sein können. 
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1.  INTRODUCTION 

 

1.1 Epilepsy 

 

1.1.1 A Concise History of Epilepsy 

Epilepsy has been known to man for over 3000 years. The earliest written of account of 

an epilepsy disorder is an Akkadian text, the Sakikku, written around 1067-1046 BC 

(Kinnier Wilson and Reynolds, 1990), describing the “falling disease”. Although 

Hippocrates already identified epilepsy as a disorder of the brain in the 4
th

 century BC, 

the belief that epilepsy was of supernatural origin, for example due to possession by 

ghosts, demons, ancestors or even gods persisted into the 18
th

 century in many cultures.  

The concept of epilepsy as a disorder of the brain slowly began to gain acceptance in the 

late 17
th

 century and by the early 19
th

 century it was though that epilepsy was caused by 

vascular dysfunction. Robert Bentley Todd was the first to recognize electrical 

dysfunction as the underlying cause of epilepsy refuting the hypothesis of vascular 

congestion. In the Lumleian Lectures delivered at the Royal College of Physicians in 

London in 1849, Todd describes animal experiments, in which he found excitation of 

certain brain regions by “stimulus of galvanism” to cause convulsions (Todd, 2005). The 

International League Against Epilepsy (ILAE) was founded by a group of physicians in 

1909 in Budapest, which greatly influenced the advancement of the understanding of 

epilepsy. However, it was only until the discovery of the electroencephalogram (EEG) in 

1929 by Hans Berger (Berger, 1929), that the electrical basis of epilepsy could be fully 

confirmed. By this time, phenobarbital, the first antiepileptic drug (AED) (after 

potassium bromide, which has a very low therapeutic index) had been available for 17 

years, offering a first non-toxic method of seizure control, but at a high price, as 

phenobarbital, a barbiturate is extremely sedative and becomes hypnotic at higher doses. 

Interestingly, despite the availability of over 30 FDA approved AEDs today, 

phenobarbital remains the most commonly used AED in the world.  
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1.1.2 Epilepsy Today  

Epilepsy is defined as the propensity for a person to suffer recurrent unprovoked seizures 

(WHO, 2005). The prominent British neurologist Gordon Morgan Holmes (1876-1965) 

defined a seizure as “a sudden, involuntary, time-limited alteration in behavior, motor 

activity, autonomic function, consciousness, or sensation, accompanied by an abnormal 

electrical discharge in the brain”. 

Today, epilepsy is one of the most prevalent serious neurologic disorders, affecting over 

50 million people worldwide (WHO, 2005). The mean number of people with epilepsy 

per 1000 is higher in low-income countries than in high income countries (9.55 vs 7.99), 

with 80-90% of people with epilepsy in most developing countries not receiving any 

treatment at all (WHO, 2005). Incidence rates of epilepsy are also higher in developing 

countries, which is thought to be due to higher rates of brain trauma, HIV, parasitic 

infection (particularly neurocysticercosis), perinatal morbidity and consanguinity (WHO, 

2005).  However, despite many other known circumstances that can cause epilepsy such 

as stroke, fever, tumors, infection or substance abuse, two thirds of epilepsy cases are 

idiopathic or cryptogenic (WHO, 2012).  According to the ILAEs guidelines for 

classification, epilepsy, may be classified by etiology (1) and type of seizures (2):  

(1):  symptomatic: identifiable etiology  

 cryptogenic:  presumed symptomatic but unknown etiology 

 idiopathic: presumed genetic but unknown etiology 

(2): partial: focal onset 

 generalized: initial involvement of both hemispheres 

unclassified: unknown onset 

The ILAE recognizes 32 different epilepsy syndromes (Engel, 2006) with mesial 

temporal lobe epilepsy (MTLE) representing one of the most common epilepsy 

syndromes. 

 

1.1.3 Mesial Temporal Lobe Epilepsy  

MTLE, the most common type of temporal lobe epilepsy (TLE) is characterized by 

seizures originating in the mesial temporal lobe i.e. in the hippocampus and 

parahippocampal gyrus (Margerison and Corsellis, 1966) (See Figure 1 for connectivity 
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of the mesial temporal lobe). In MTLE aura and automatisms lasting 1-2 minutes, 

accompanied by autonomic or psychic symptoms precede complex partial seizures, 

which can evolve into generalized seizures or status epilepticus. If left untreated, 

neurologic and psychiatric health of MTLE sufferers deteriorates rapidly: seizures occur 

more frequently and with greater severity causing always greater damage to the brain and 

manifestation of psychiatric disease such as depression or personality changes. Compared 

to the general population, morbidity and mortality are increased in people with MTLE, 

due to accidents occurring from sudden loss of consciousness accompanying seizures. 

However, high mortality also results from sudden unexpected death in epilepsy 

(SUDEP).  Patients with therapy refractory MTLE, have a risk of sudden death that is 50 

times greater than that in the general population, but are also at risk of dying during status 

epilepticus (SE). EEG is the primary tool used in diagnosis of MTLE. Interictal spikes 

and sharp waves (interictal epileptiform discharges (IEDs)), periodic-lateralized 

epileptiform discharges (PLEDs), lateralized focal or regional polymorphic delta activity 

(“slowing”) and a build-up of lateralized rhythmic 5-10 Hz sharp activity during seizures 

are characteristic for MTLE (Javidan, 2012). Generally, MTLE is considered to originate 

from lesions from febrile convulsions, status epilepticus (SE), mechanical trauma or 

cerebral infection during childhood, which cause spontaneous seizures after a 5-10 year 

latency period (Engel, 1993). Hippocampal sclerosis (HS), detectable in a structural MRI 

using a fluid-attenuated inversion recovery sequence (FLAIR), is considered by many to 

be the hallmark of MTLE; however one must note that HS does not occur in 30% of 

MTLE patients, who are therefore diagnosed with paradoxical temporal lobe epilepsy 

(PTLE).  HS describes “scarring” of the hippocampus involving degeneration of neurons 

and gliosis in the cornu ammonis (Babb and Brown, 1986) as well as pathological 

sprouting of mossy fibers (MF) in the inner molecular layer of the dentate gyrus (DG) 

(Sutula et al., 1989). It is presumed that pathological remodeling of circuitry due to 

aberrant MF sprouts, forming synapses with spines of predominantly excitatory granule 

cells represents recurrent excitatory circuitry, which may underlie seizure generation 

(Lothman et al., 1992;Buckmaster et al., 2002). Seizures in MTLE are also referred to as 

“limbic” seizures, as the Papez circuit (=subiculum → fornix → mammillary bodies → 

mammillothalamic tract → anterior thalamic nucleus → cingulum → entorhinal cortex 
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→ (via perforant path) hippocampus), which is part of the limbic system, may be 

involved in seizure generation. It has been suggested that pathologic hyperexcitation from 

the hippocampus is transmitted to other limbic areas via the Papez circuit and then returns 

to the hippocampus as amplified input resulting in generalized seizures. 

 

 

Figure 1 Schematic of connectivity of the hippocampus superimposed on a NeuN-stained coronal paraffin 

section of mouse brain at approximately -1.5 mm Bregma. The hippocampus forms a uni-directional 

network receiving most input from the entorhinal cortex (EC) and projecting back to the EC. The different 

layers of the EC project to the dentate gyrus (DG) and CA3 pyramidal layer via the perforant path (PP). 

The CA3 also receives input from the DG via the mossy fibers (MF) and projects to the ipsilateral CA1 via 

the Schaffer Collateral Pathway (SC) and to the contralateral CA1 via the Associational Commissural 

Pathway (AC). The main output of the hippocampus is from the CA1 to the lateral EC (LEC) and from the 

subiculum (SB)  to the medial EC (MEC). 

 

 

1.1.4 Treatment of Mesial Temporal Lobe Epilepsy  

MTLE  is the most common type of epilepsy referred for epilepsy surgery, making it the 

most medically refractory type of epilepsy (Wass et al., 1996;Engel, 2001). 

Approximately half of MTLE patients achieve complete seizure control with antiepileptic 

pharmacotherapy, with lamotrigine (LTG) and carbamazepine (CBZ) often being the 

AEDs of choice, to which another AED can be added if necessary.  A small group of 
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MTLE patients achieve seizure freedom by combination of three or more AEDs, however 

in many cases, MTLE is susceptible to AED (mono-) therapy in childhood and 

adolescence and becomes pharmacoresistant with age. For intractable MTLE, 

anteromedial temporal resection (AMTR) is the treatment of choice, achieving seizure 

control in 60-90% of patients (Engel, 1996). Despite the high success rate, this surgical 

procedure comes at a high price, often causing anterograde amnesia and verbal memory 

deficits.  Vagal nerve stimulation is a less invasive surgical procedure that is sometimes 

recommended before AMTR, however success rates are drastically lower. 

 

1.1.5 The Kainic-Acid Model of Temporal Lobe Epilepsy  

2-carboxy-4 (1-methylethenyl)-3-pirrolidiacetic acid or “kainic-acid” (KA) is a non-

degradable cyclic analog of glutamate, which causes hyperexcitation by agonism of 

kainate-class ionotropic glutamate receptors (Wang et al., 2005). Rodent models using 

systemic or local injections of KA are among the most popular models of epilepsy and 

neurodegeneration. MTLE is easily modeled by systemic injection of KA, which induces 

automatisms, partial seizures which can evolve into generalized seizures and progressive 

sclerosis of the hippocampus leading to recurrent spontaneous seizures (Sharma et al., 

2007). KA, administered by intraventricular injection, was first used to experimentally 

model MTLE in rats in 1978 and was found to selectively destroy hippocampal 

pyramidal cells (Nadler et al., 1978). Since then numerous KA models have probed 

different protocols (several low doses vs one high dose) and administration routes from 

intrahippocampal injection to intravenous injection to intraperitoneal injection. Because 

systemic administration of KA still causes specific degeneration of hippocampal 

pyramidal cells, does not require surgery but is easily executed as an intraperitoneal (i.p) 

or subcutaneous (s.c.) injection, it is preferred by many researchers. Rodent KA models 

closely mimic phenomena observed in MTLE patients. KA causes necrosis and apoptosis 

of pyramidal cells in the CA1 and CA3 subfields of the hippocampus and MF sprouting 

in the inner molecular layer (IML) of the DG (Tauck and Nadler, 1985;Okazaki et al., 

1995) as well as changes in expression of AMPA-receptor subunits GluR1 and GluR2 

(Sommer et al., 2001). Neurodegeneration is also detectable in associated limbic and 

neocortical structures(Ben-Ari et al., 1979;Pollard et al., 1994). Astrogliosis, microgliosis 
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and neurogenesis in the hippocampus have also been confirmed by TUNEL, MHC I and 

II and BrdU immunohistochemistry, respectively. All in all, histopathologic alterations of 

the rodent hippocampus after systemic KA injection are very similar to histopathology of 

surgically resected hippocampal tissue from MTLE patients. Mouse models of human 

pathology offer several advantages, most notably genetic homogeneity and availability of 

transgenic animals, but they can be technically challenging due to the small size of mice. 

The same evolution of seizures found in MTLE patients i.e. aura → automatisms → 

partial seizure → generalized seizure →status epilepticus can analogously be observed in 

mice after systemic KA injection as: immobility (“freezing”)→ automatisms → 

myoclonic jerking→ tonic-clonic seizure → status epilepticus. When faced with the task 

of quantifying behavioral severity of seizures, seizure rating scales adapted for mice such 

as one used by Morrison and colleagues allow for reproducible and accurate assessment 

of seizure intensity (Morrison et al., 1996).   

 

1.2 The Cav2.3 (R-type) Voltage-Gated Calcium Channel  

 

1.2.1. Structure of Voltage-gated Calcium Channels 

In vertebrates, calcium is one of the most tightly regulated physiological variables. The 

intracellular calcium concentration must be kept within precise limits in order to maintain 

physiological signal transduction, during which calcium ions are crucial as charge 

carriers and also as second messengers, neurotransmitter release, contraction of 

myocytes, hormone release and several other processes (Burgen, 1968;Rubin, 

1970;Ashley, 1971;Rasmussen et al., 1976;Rasmussen and Barrett, 1984).  

 

Voltage-gated calcium channels (VGCCs) are heterooligomeric complexes of up to four 

subunits (α1, α2δ, β, and sometimes γ), however they are primarily characterized by their 

pore-forming α1 subunit (212-250 kDa), which harbours the voltage-sensing machinery 

and the drug/toxin-binding sites and for which ten different encoding genes in the human 

genome are known (Catterall, 2011;Catterall, 2000). The α1 subunit consists of four 

homologous repeats (I–IV) containing six transmembrane α-helical segments each (S1-

S6)(Lacinova, 2005). The linker between segments S5 and S6 of each domain, which 
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loops back from the extracellular side of the cell membrane (pore loop or P-region), 

forms the inner pore surface, determining ion conductance and selectivity (Guy and 

Conti, 1990). With their positively charged residues (arginine or lysine), S4 segments act 

as the main voltage-sensors, carrying gating charges through the membrane upon opening 

or closing. It remains a matter of debate how exactly the S4 segments move at gating, and 

movement as a helical screw or a sweeping paddle have been proposed (Guy and 

Seetharamulu, 1986;Jiang et al., 2003;Tombola et al., 2006). Negative residues of 

segments S2 and S3 are thought to create the electric field necessary for movement of S4 

(Tombola et al., 2006). 

 

In addition to phosphorylation sites for protein kinases such as PKA, PKC and CAMKII, 

the α1 subunit also harbours the so-called alpha subunit interaction domain (AID), an 18 

amino-acid-long motif in the I-II linker representing the site of interaction with the β 

subunit (Pragnell et al., 1994). Not only does the β subunit mediate trafficking of the α1 

subunit to the plasma membrane, partly by masking an endoplasmic reticulum retention 

signal in the α1 subunit (Bichet et al., 2000), its association with the α1 subunit 

specifically modulates biophysical properties of the channel (Sokolov et al., 

2000;Dolphin, 2003). Co-expression with some α2δ subunits such as α2δ-1 enhances 

membrane trafficking of α1 subunits and can increase current amplitude and activation 

and inactivation kinetics as well as induce a hyperpolarizing shift in the voltage 

dependence of activation (Felix et al., 1997;Gao et al., 2000). Initially, γ subunits were 

considered to be restricted to skeletal muscle VGCCs, however later studies could prove 

the existence of a neuronal γ subunit (Letts et al., 1998). In contrast to α2δ and β subunits, 

γ subunits do not appear to influence surface expression of the channels, instead they 

appear to only alter biophysical properties of the channel for example: γ1 and γ2 subunits 

can exert an inhibitory effect on some calcium currents and can modulate activation and 

inactivation kinetics (Kang et al., 2001;Rousset et al., 2001). 

 

1.2.2. Classification of Voltage-gated Calcium Channels 

In accordance with newer nomenclature used for naming sodium and potassium channels, 

VGCCs are named by the chemical symbol of the permeating ion i.e. (“Ca”), followed by 
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the physiological regulator (“v” for voltage) in subscript, followed by the number 

corresponding to the α1 subunit gene family (1-3), followed by the subunit. Traditionally, 

VGCCs are grouped into low- and high-voltage activated calcium channels (LVACCs 

and HVACCs), according to the membrane potential at which the channels activate 

(Catterall, 2000;Lacinova, 2005;Zamponi et al., 2010). VGCCs can be further grouped 

into L, N, P/Q, R and T subtypes with L standing for long-lasting current, comprising the 

dihydropyridine-sensitive channels Cav1.1 through Cav1.4. The LVACCs Cav3.1-Cav3.3 

are referred to as “T-type” channels, standing for tiny, transient current, whereas the 

remaining HVACCs i.e. Cav2.1-Cav2.3 (P/Q-type, N-type and E/R-type) are often 

referred to as “non-L-type” channels. Non-L-type HVACCs are insensitive to 

dihydropyridines but can be inhibited by specific spider and marine snail toxins (Cav2.1 

by -agatoxin IVA, Cav2.2 by -conotoxin GVIA and Cav2.3 by SNX-482)(Catterall et 

al., 2005). After blockade of L-type, T-type, Cav2.1 and Cav2.2 channels, the remaining 

or resistant current was referred to as R-type current and was later found to be carried by 

Cav2.3 channels (Randall and Tsien, 1995;Zhang et al., 1993). Characterization of this 

channel proved difficult until the discovery of its fairly specific inhibitor SNX-482 in 

1998 (Newcomb et al., 1998), which remains the only specific modulator of Cav2.3 to 

date. However, although not specific, Cav2.3 channels are highly sensitive to blockade by 

Ni
2+ 

and potentially other divalent heavy metal cations (Zamponi et al., 1996;Kang et al., 

2006). 

 

 

 

1.2.3 The Cav2.3 (R-type) Voltage-Gated Calcium Channel and its Physiological 

Functions 

The Cav2.3 (R-type) voltage-gated calcium channel represents the most enigmatic of all 

voltage-gated calcium channels due to its pharmacoresistance and to its mixed 

characteristics of HVA and LVA calcium channels. Its eponymous attribute of 

pharmacologic inertness initially made in depth investigation of the channel difficult, 

however the identification of the tarantula toxin SNX-482 as a fairly specific inhibitor of 

Cav2.3 in the nanomolar range has enabled insights into the channels properties. 
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Cav2.3 splice variants are expressed in several regions of the central nervous system as 

well as in the heart and endocrine tissues. In the brain high expression levels are found in 

the hippocampus, cerebellum, neocortex and reticular thalamus (Soong et al., 1993). 

Cav2.3 triggers the release of several neurotransmitters such as dopamine in the 

substantia nigra (Bergquist and Nissbrandt, 2003) and contributes to fast glutamatergic 

transmission (Gasparini et al., 2001) in the hippocampus, where it is also involved in long 

term potentiation at the mossy fiber – CA3 synapses. By these mechanisms, Cav2.3 is 

involved in basic processes related to learning and memory formation (Kubota et al., 

2001;Isomura et al., 2002;Breustedt et al., 2003;Dietrich et al., 2003). R-type currents are 

available at  resting potential and contribute to after-depolarization, and therfore to the 

initiation of burst firing in CA1 hippocampal neurons (Metz et al., 2005). 

Moreover, R-type currents have been shown to be involved in the secretion of several 

different hormons. Cav2.3KO mice display disturbances in glucose-induced insulin 

release (Pereverzev et al., 2002;Jing et al., 2005), glucose-mediated glucagon suppression 

(Pereverzev et al., 2005), and most importantly in glucose-mediated somatostatin-release 

(Zhang et al., 2007).  SNX-482 sensitive R-type currents have been shown to mediate the 

release of gonadotropin-releasing hormone (Watanabe et al., 2004) and of oxytocin 

(Wang et al., 1999;Ortiz-Miranda et al., 2005).  

Whether Cav2.3 is functionally expressed in cardiomyocytes is controversial: although 

Cav2.3 transcripts have been amplified from microscopically identified myocytes (Lu et 

al., 2004;Weiergräber et al., 2005), Cav2.3 protein have yet to be reliably detected in 

murine cardiomyocytes. Cardiac arrhythmia and impairment of autonomic cardiac control 

are displayed by Cav2.3KO mice, suggesting that in pacemaker cells and in autonomic 

nerve endings R-type currents may be crucial for cardiac rhythmicity (Galetin et al., 

2013). 

Because Cav2.3KO mice display a subtle phenotype as oppposed to an obvious one, and 

because of the expression of Cav2.3 in rhythmically active tissue, it is conceivable that a 

general function of R-type currents is “fine tuning” of  oscillatory networks. The distinct 

biophysical properties of Cav2.3 bestow upon the channel the unique capacity to elicit a 

rapid calcium current at realtively low i.e. close to resting potentials, enabling 

modulatory effects on oscillatory activity such as on the after-depolarization, necessary 
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for initiation of burst firing in CA1 hippocampal neurons. One may assume that a loss of 

“fine-tuning” in Cav2.3KO mice is only minimally noticeable during normal conditions, 

but becomes evident in certain pathological conditions exerting a strain on an oscillatory 

network such as during experimentally induced epilepsy. 

 

1.3 Cav2.3 in Epilepsy and Antiepileptic Pharmacotherapy 

 

 

1.3.1 Cav2.3 VGCCs in Epilepsy 

In some epilepsy syndromes aberrant function or pathologic expression patterns of 

neuronal VGCCs is a major contributor to hyperexcitability and therefore to 

epileptogenesis (Turnbull et al., 2005). For example reticular thalamic (RT) neurons of 

the generalized absence epilepsy rat of Strasbourg (GAERS) display 55% larger LVA 

calcium currents than controls and also display a 16% increase in mRNA of the LVACC 

Cav3.2 (Talley et al., 2000;tsakiridou et al., 1995), corresponding to data from human 

studies identifying CACNA1H, the gene coding for Cav3.2’s functional subunit, as an 

epilepsy susceptibility gene (Chen et al., 2003). Findings in mice reveal that pilocarpine 

induced status epilepticus (SE) causes a selective increase in Cav3.2 mRNA and protein 

in the CA1 region of the hippocampus (Becker et al., 2008). Furthermore, Cav3.2KO 

mice were protected from hippocampal sclerosis found in CA1 and CA3 regions of 

control mice 10 days after SE. 

Interestingly, GAERS also exhibits changes in Cav2.3 expression: Cav2.3 transcripts have 

been found to be significantly reduced in the cerebellum and brain stem (De Borman et 

al., 1999;Lakaye et al., 2002), which projects to rostral reticular thalamic nucleus (rRTn), 

a key region in the control of thalamic oscillation and bursting and therefore in absence 

epilepsy. Interestingly, whole-cell current clamp measurements revealed that 

pharmacologic inhibition or genetic ablation of the Cav2.3 calcium channel not only 

strongly reduces (and in some cases also almost eliminates) rhythmic bursting, but also 

reduces the amplitude of the slow AHP following the initial low threshold burst (Zaman 

et al., 2011). The same study also demonstrates that for bursting, LVACCs recruit Cav2.3 

channels to generate depolarizations, providing preliminary evidence for a synergistic 

method of action of Cav2.3 and Cav3.2 in absence epilepsy. In the genetically epilepsy-



23 

 

prone rat (GEPR), a model of acoustically evoked seizures (audiogenic epilepsy), Cav2.3 

protein and R-type currents have been shown to be increased in the inferior colliculus 

(IC) compared to controls thereby contributing to hyperexcitability (N'Gouemo and 

Morad, 2003;N'Gouemo et al., 2010). In the CA1 region of the hippocampus, where R-

type currents, have been shown to be increased by stimulation of muscarinic 

acetylcholine receptors (Meza et al., 1999;Bannister et al., 2004;Tai et al., 2006), 

increased R-type currents after cholinergic stimulation enhance plateau potentials 

possibly promoting epileptiform discharges (Williams and Kauer, 1997;Kuzmiski et al., 

2005). 

 

1.3.2 Experiments with Cav2.3KO Mice Experimental Models of Epilepsy 

A 2006 study investigating the effects of two different chemoconvulsants in Cav2.3KO 

mice found that while there was no difference in 4-aminopyridine susceptibility between 

Cav2.3KO and control mice, Cav2.3KO mice were less susceptible to seizures induced by 

pentylenetetrazol (PTZ), a compound that impairs GABA-mediated inhibitory 

neurotransmission (Weiergräber et al., 2006). In this study, lethality of Cav2.3KO mice 

after 80mg/kg s.c. PTZ was significantly lower, as was the latency, duration and 

frequency of tonic-clonic-seizures. In a later study, the same authors found that in the 

KA-model of TLE, Cav2.3KO mice displayed strong seizure resistance as well as 

protection from degeneration of  CA3 pyramidal neurons (Weiergräber et al., 2007). 50% 

of control mice reportedly died as a result of 30 mg/kg i.p. KA and those surviving 

exhibited a loss of 90% of CA3 pyramidal neurons 7 days later. Contrastingly not one 

single Cav2.3 mouse died as a result of 30 mg/kg KA with these mice displaying a loss of 

only 10% of CA3 pyramidal neurons. Interestingly however, although a similar tendency 

for seizure severity in NMDA induced seizures was found, the authors failed to identify 

differences in EEG ictal activity between both genotypes, possibly due to the chosen dose 

of KA, which is quite high.  

 

1.3.3 Cav2.3 as a Target of Antiepileptic Drugs 

Ion channels are popular targets for many AEDs, however Cav2.3 is not considered a 

classical target. Lamotrigine (LTG) was approved by the FDA for the treatment of partial 



24 

 

seizures in 1994, showing favorable pharmacokinetics, improved tolerability and lower 

potential for drug interactions compared to several older antiepileptic drugs (AEDs). In 

addition to its approval for maintenance treatment of bipolar I disorder, off-label 

prescription of LTG is becoming increasingly popular, as it shows therapeutic effects on 

several neurologic and neuropsychiatric diseases of completely diverse etiologies such as 

borderline syndrome or cocaine dependence. LTG’s wide therapeutic applicability 

reflects the “unspecificity” of the drug which has shown to modulate several different 

sodium, calcium and potassium currents (Beck and Yaari, 2012). Anticonvulsive 

properties of LTG were initially mainly attributed to its capacity to inhibit transient and 

persistent sodium currents, selectively prolonging slow inactivation thereby suppressing 

the release of excitatory amino acids (Brodie, 1996;Xie et al., 1995). Over the following 

years more than 15 other targets of LTG could be identified including several voltage- 

and ligand- gated cation channels and neurotransmitter receptors and transporters (see 

Table 1). One of the newly found mechanisms of LTG was  potentiation of the outward 

cation current through hyperpolarization-activated cyclic nucleotide-gated  (HCN) 

channels (Poolos et al., 2002), which are localized on CA1 dendrites, where they are 

proposed to modulate dendritic integration of excitatory input (Magee, 1998;Magee, 

1999).  

Furthermore, LTG as well as its derivative sipatrigine have been shown to inhibit R-type 

currents carried by Cav2.3 voltage-gated calcium channels in heterologous systems 

(Hainsworth et al., 2003). In this study, R-type currents from human α1E subunits with 

β3 subunits stably transfected in HEK 293 cells were inhibited by 10 μM of LTG, a 

concentration within the estimated range of therapeutic brain concentrations  of 4–40 μM 

(Leach et al., 1995). 

Topiramate (TPM) another broad spectrum anticonvulsant was FDA approved two years 

after LTG in 1996 and like LTG enjoys a wide-spectrum of use from treatment of 

Lennox-Gastaut Syndrome and bipolar disorder to migraine.  In addition to its known 

mechanisms involving sodium channel blockade, TPM was later found to be an inhibitor 

of R-type currents at concentration within the estimated range of therapeutic brain 

concentrations  (IC50= 50.9 μM) (Kuzmiski et al., 2005). In transiently transfected tsA-

201 cells, application of 100 μM TPM causes a negative shift in the voltage dependence 
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of steady-state inactivation of Cav2.3. Because the authors also found that R-type 

inhibition by TPM in CA1 neurons causes a reduction in the Ca
2+

 influx, necessary for 

plateau potential activation, they hypothesize that TPM directly inhibits R-type calcium 

spike generation by increasing steady-state inactivation of Cav2.3 calcium channels at 

resting potentials. 

 
Table 1 Known molecular targets of lamotrigine. 

Target / Mechanism System / Organism Author 

Inhibition of Na
+
 current: 

negative shift of the steady-

state inactivation curve, 

delay of recovery from 

inactivation, 

mouse primary spinal 

cord neurons; 

rat primary 

hippocampal pyramidal 

neurons; 

rat cerebellar granule 

cells; 

rat primary pyramidal 

cortical neurons; 

Cheung et al 1992 Epilepsy Res 

Xie et al 1995 Pflugers Arch 

Zona et al 1997 Epilepsia; 

Stefani et al 1997 Exp Neurol 

Inhibition of N-type 

HVACC (Cav2.2) 

rat primary pyramidal 

cortical neurons; 

rat amygdalar neurons 

Stefani et al 1996 Eur J 

Pharmacol ; 

Wang et al 1996 Neuroreport 

Inhibition of P-type 

HVACC (Cav2.1) 

rat primary pyramidal 

cortical neurons 

Stefani et al 1996 Eur J 

Pharmacol 

Inhibition of R-type 

HVACC (Cav2.3) 

transfected HEK-293 

cells 

Hainsworth et al 2003 Eur J 

Pharmacol 

Weak inhibition of  

LVACC through alpha1G 

subunits (Cav3.1) 

transfected HEK-293 

cells 

Hainsworth et al 2003 Eur J 

Pharmacol 

Enhancement of K
+ 

current rat CA1 pyramidal 

cells; 

rat primary cortical 

neurons and slices 

Grunze et al 1998 Brain Res ; 

Zona et al 2002 Epilepsia 

Inhibition of 5-HT-, 

noradrenaline- and 

dopamine uptake 

human platelets and rat 

brain synaptosomes 

Sotham et al 1998 Eur J 

Pharmacol 

Inhibition of TRPM7 

(csNSC) 

mouse hippocampal 

neurons 

Xiong et al 2001 J Neurophysiol 

Increase of HCN current rat hippocampal 

neurons 

Poolos et al 2002 Nat Neurosci 

Increase of gene expression 

of GABAAR beta3 subunit 

primary rat 

hippocampal neurons 

Wang et al 2002 

Neuropsychopharmacology 

Inhibition of inwardly-

rectifying K
+
 current 

transfected HEK-293 

cells 

Danielsson et al 2005 Epilepsy 

Res 
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Inhibition of monoamine 

oxidases (MAO) A and B  

in vitro assay Southam et al 2005 Eur J 

Pharmacol 

Phosphorylation of GluR1, 

enhancing surface 

expression of GluR1 and 

GluR2 

embryonic rat primary 

hippocampal neurons 

Du et al 2007 

Neuropsychopharmacology 

Open channel block of 

nicotinic acetylcholine 

receptor (nAChR) 

transfected CHO-

K1/A5 cells 

Vallés et al 2007 Neuroreport 

Transition from the resting 

(closed) state to the 

desensitized state (nAChR) 

transfected CHO-

K1/A5 cells 

Vallés et al 2008 Biochim 

Biophys Acta 

Inhibition of TRESK K
+
 

channels (KCNK18) 

primary rat DRG 

neurons and transfected 

COS-7 cells 

Kang et al 2008 Biochem 

Biophys Res Commun 

Inhibition of postsynaptic 

AMPAR 

rat primary dentate 

gyrus granule cells 

Lee et al 2008 Epilepsia 

Downregulation of COX-2 

mRNA and protein 

rat frontal cortex Lee et al 2008 Neurochem Res 

 

 

1.4 Cardiac Phenomena during Epilepsy 

 

1.4.1 Cardiac Phenomena in Epileptic Patients 

In epileptic patients, seizures have been shown to be preceded and accompanied by ECG 

changes, fueling the discussion of brain to heart interactions, which may be of great 

relevance in the context of sudden-unexpected death in epilepsy (SUDEP). Ictal 

tachycardia is detectable in almost all patients of different age groups (Jansen et al., 

2013). Several studies of different epilepsy syndromes have described the occurrence of 

sympathovagal imbalance (increase of sympathetic and decrease of parasympathetic 

control of heart rhythm)(Brotherstone and McLellan, 2012;Lotufo et al., 2012;Meghana 

et al., 2012;Ponnusamy et al., 2012), which is known to contribute to mortality and 

morbidity in cardiovascular disease (Mortara et al., 1997;Schwartz et al., 1988). 

Furthermore, pre-ictal tachycardia has been observed  in children and adults with 

generalized seizures (Schernthaner et al., 1999;Jansen et al., 2013), in adults with 

refractory epilepsy (Zijlmans et al., 2002) and in children with refractory TLE (Mayer et 

al., 2004). 
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1.4.2 Effects of AEDs on Cardiac Function 

Conflicting data has resulted in an ongoing debate about how AEDs affect cardiac 

function in epileptic patients, and the clinical relevance thereof. Moreover, mechanisms 

underlying SUDEP, proposed to be mainly of cardiac and respiratory origin, remain 

unknown, further complicating the debate. One study found AEDs to ameliorate 

sympathovagal imbalance (Hallioglu et al., 2008), another found AEDs to reduce ECG 

power and heart rate variability (HRV) (Lossius et al., 2007), which may predispose 

epileptic patients to cardiac arrhythmia, a potential contributor to SUDEP. A recently 

performed meta-analysis identified a trend of increased low frequency power (LF) in 

patients taking AEDs, (Lotufo et al., 2012), possibly representing a cardiac risk.  

 

In this regard LTG is of special interest, as it modulates several targets which are 

involved in cardiac pacemaking such as hyperpolarization-activated cyclic nucleotide-

gated (HCN) channels, which contribute to pacemaking in the sinoatrial and 

atrioventricular node and Purkinje fibers in the ventricle (DiFrancesco, 

1993;DiFrancesco, 1995;Poolos et al., 2002) and the delayed rectifier potassium current, 

which is crucial for cardiac repolarization and therefore plays a critical role in 

maintenance of cardiac rhythm (Danielsson et al., 2005). Furthermore, Cav2.3 VGCCs, 

which contribute to cardiac autonomous control and to intrinsic rhythm propagation 

(Galetin T. et al., 2012) are also inhibited by LTG (Hainsworth et al., 2003), representing 

another potential arrhythmogenic mechanism. Indeed, based on their own isolated 

observations, some physicians have voiced concern about unwanted and potentially 

dangerous cardiac side effects of LTG, especially prolongation of the QT-interval, a risk 

factor of arrhythmia and sudden cardiac death. This prompted an investigation by 

GlaxoSmithKline, manufacturer of the initial LTG product Lamictal®, which did not 

observe QT prolongation or related safety issues (Dixon et al., 2008). However, LTG was 

found to significantly prolong the PR interval (Matsuo et al., 1993;Dixon et al., 2011). 

For this reason, and because LTG has been controversially found to increase the risk of 

SUDEP (Hesdorffer et al., 2011;Aurlien et al., 2012), clarification whether LTG has 

potentially arrhythmogenic effects on the epileptic heart is of great interest. 

 



28 

 

 

1.5 Epilepsy and Sleep 

 

1.5.1 Physiological Sleep 

In physiological sleep, two main states can be distinguished: rapid-eye-movement (REM) 

sleep and non-rapid-eye-movement (NREM) sleep, which is also referred to as slow-

wave-sleep (SWS) (Rechtschaffen and Kales, 1968;Iber et al., 2007). Sleep architecture 

is one of the rare things many vertebrates have in common: the same cyclic pattern of 

REM and SWS can be recorded in mammals, birds and monotremes. During the night, 

SWS and REM sleep phases alternate cyclically with sleep initiating with SWS stage 1 

progressing through SWS stages 2 and 3, finally reaching the deepest sleep phase SWS4 

(which in newer studies is grouped together with stage 3), before entering REM sleep. 

This cycle is repeated every 90 to 120 minutes throughout the night, with later cycles 

lasting slightly longer than earlier ones (Guilleminault and Kreutzer, 2003).  

 

EEG was the first and remains the most important tool in characterizing sleep. Upon 

falling asleep i.e. transitioning into the first sleep stage (S1) the EEG slows down with 

alpha waves (8-12 Hz) increasingly becoming substituted by theta waves (4-7 Hz) (Iber 

et al., 2007). S2 is characterized by sleep spindles, which are visible in the EEG burst of 

12-14 Hz oscillations and K-complexes, which are brief negative high-voltage peaks 

followed by a slow positive complex and a final negative peak (Silber et al., 2007). Slow 

delta waves (0.5-4 Hz) reflect synchronization of periods of neuronal depolarization or 

high firing (up-phase) followed by periods of hyperpolarization (down phase) within 

large areas of the cortex in S3 and globally in S4 (Rechtschaffen and Kales, 1968;Iber et 

al., 2007;Silber et al., 2007). Sleep-depth is measured as SWS intensity by quantifying 

delta power by Fast Fourier Transform of the delta band of the EEG. REM sleep is also 

commonly referred to as “paradoxical sleep”, as like wakefulness it is characterized by a 

desynchronized EEG, however hippocampal theta rhythms are also present and can be 

measured depending on the quality of the EEG recording. REM sleep can be further 

subdivided into intermittent episodes of “phasic REM sleep”, during which muscle 
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twitches and rapid-eye-movements occur, and persistent “tonic REM sleep”, which is 

characterized by muscle atonia. 

 

1.5.2 Regulation of Sleep 

Duration, timing and depth of sleep are regulated by two interacting factors: a 

homeostatic factor, regulating depth and duration of sleep, within a circadian rhythm, 

which in turn is the factor that determines the timing of sleep (Borbely, 1995;Borbely and 

Achermann, 1999). While SWS activity is not strongly influenced by circadian factors, 

sleep-depth and therefore delta power as well as the propensity to sleep (=”sleepiness”) 

are both proportional to the duration of prior wakefulness (Feinberg et al., 1985). Sleep 

homeostasis thus is dependent on the interval since the last sleep episode and the depth of 

this sleep. Circadian regulation is demonstrated by the maintenance of a 24 hour rhythm 

in sleep propensity even in the absence of temporal clues. Circadian rhythm is less 

dependent on sleep history but instead is generated by an intrinsic pacemaker that 

regulates several physiological processes and variables such as core body temperature, 

and production and secretion of hormones such as cortisol and melatonin. The circadian 

rhythm of human sleep propensity is approximately the inverse of the core body 

temperature rhythm: maximal sleep propensity and the highest continuity of sleep occur 

in proximity to the minimum temperature (Dijk and Czeisler, 1993).  

 

1.5.3 The Relationship between Sleep and Epilepsy 

The bidirectional relationship of sleep and epilepsy has been acknowledged for a long 

time; however underlying interdependent mechanisms have yet to be fully understood 

despite decades of experimental and clinical research. Not only does epilepsy impact 

sleep (epileptic patients display a variety of sleep disturbances) but sleep is known to 

impact epilepsy, the simplest example being the pro-convulsive effect of sleep 

deprivation. In most human epilepsy syndromes seizures and inter-ictal epileptiform 

discharges (IED) are precipitated during SWS and relatively inhibited by REM sleep 

(Bazil and Walczak, 1997;Malow et al., 1998;Kumar and Raju, 2001). The relationship 

between spike-and-wave discharges (SWD), the hallmark of absence epilepsy, and SWS 

has been well established (Shouse et al., 1996) and is known to contribute to electrical 
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status epilepticus in sleep (ESES) (Nickels and Wirrell, 2008). Continuous spike-and-

wave activity during slow sleep (CSWS) are classified by the International League 

Against Epilepsy (ILAE) as an epilepsy syndrome but also represent an EEG pattern 

occurring in other epilepsy syndromes such as  Landau-Kleffner syndrome (Veggiotti et 

al., 1999). Based on the available data, the concept of physiological brain oscillations 

being “hijacked” and used as a template from which paroxysmal waveforms are 

generated has gained wide acceptance (Beenhakker and Huguenard, 2009). Indeed 

transition from cortical slow oscillations (CSO) to SWD has been demonstrated in 

epileptic patients and animals (Steriade and Amzica, 1994;Steriade and Amzica, 

2003;Tucker et al., 2009). 

 

1.6 Experimental Goals 

 

The goal of the present project was to perform an in depth investigation of the role of R-

type signaling in the epileptic brain and heart, by analyzing its contribution to 

antiepileptic pharmacotherapy and sleep. To date a third of epileptic patients suffer from 

pharmacoresistant epilepsy, with no hope for pharmacological seizure control and the 

constant fear of cognitive deterioration and sudden death. Therefore identification of 

novel pharmacological targets is of urgent importance. 
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2. RESULTS 

 

2.1 Cav2.3 (R-type) calcium channels are critical for mediating 

anticonvulsive and neuroprotective properties of lamotrigine 

in vivo 

 

Maxine Dibué, Marcel A. Kamp, Serdar Alpdogan, Etienne E. Tevoufouet, Wolfram F. 

Neiss, Jürgen Hescheler, Toni Schneider 

 

Lamotrigine (LTG) is a popular modern antiepileptic drug (AED), however, its 

mechanism of action has yet to be fully understood, as it is known to modulate many 

members of several ion channel families. In heterologous systems, LTG inhibits Cav2.3 

(R-type) calcium currents, which contribute to kainic-acid- (KA) induced epilepsy in 

vivo. To gain insight into the role of R-type currents in LTG drug action in vivo, we 

compared the effects of LTG to two other AEDs in Cav2.3-deficient mice and controls on 

KA-induced seizures. Behavioral seizure rating and quantitative electrocorticography 

were performed after injection of 20 mg/kg [and 30 mg/kg] KA. One hour before KA 

injection, mice were pretreated with 30 mg/kg LTG, 50 mg/kg topiramate (TPM) or 30 

mg/kg lacosamide (LSM). 

Ablation of Cav2.3 reduced total seizure scores by 28.6% (p=0.0012) and pretreatment 

with LTG reduced seizure activity of control mice by 23.2% (p=0.02). In Cav2.3-deficient 

mice LTG pretreatment increased seizure activity by 22.1% (p=0.018) and increased the 

percentage of degenerated CA1 pyramidal neurons (p=0.02). All three AEDs reduced 

seizure activity in control mice, however only the non-calcium channel modulating AED, 

LSM had an anticonvulsive effect in Cav2.3-deficient mice. Furthermore LTG altered 

electrocorticographic parameters differently in the two genotypes, decreasing relative 

power of ictal spikes in control mice but increasing relative power of high frequency fast 

ripple discharges during seizures in Cav2.3-deficient mice.  

These findings give first in vivo evidence for an essential role for Cav2.3 in LTG 

pharmacology and shed light on a paradoxical effect of LTG in their absence. 
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Furthermore, LTG appears to promote ictal activity in Cav2.3-deficient mice by 

increasing high frequency components of seizures resulting in increased neurotoxicity in 

the CA1. This paradoxical mechanism, possibly reflecting rebound hyperexcitation of 

pyramidal CA1 neurons after increased inhibition, may be key in understanding LTG-

induced seizure aggravation, observed in clinical practice.  

 

Own Contribution to Publication I 

 

I independently conceptualized and designed this study after establishing the hypothesis, 

that LTG would lack antiepileptic potency in Cav2.3KO mice with my principal 

investigator Prof. Toni Schneider. I performed all data analysis on my own, as well as 

writing the manuscript and creating all images. I performed surgery on the mice, initially 

under supervision of Dr. Kamp. I isolated membrane fractions from mouse brains with 

the assistance of Serdar Alpdogan. I performed immunohistochemistry on paraffin 

sections, western blot of membrane fractions, electrocorticography and behavioral seizure 

analysis without assistance. Epilepsy induced by kainic acid injection and all 

pharmacological treatment (antiepileptic and analgesic post-operative care) was carried 

out by me.  I also handled the submission and review process of the manuscript. 
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Contribution of Co-uthors to Publication I 

 

As a neurosurgeon, Dr. Kamp initially supervised me during mouse surgery, and aided in 

the optimization of the procedure. Serdar Alpdogan, at that time a Bachelor’s student 

assisted me during isolation of membrane fractions. Etienne E. Tevoufouet was involved 

with establishing the novel method of membrane fraction isolation our lab. Prof. Wolfram 

Neiss prepared paraffin sections of brains from mice used in the other experiments. Prof. 

Hescheler provided the facilities for experimentation and Prof. Schneider, as principal 

investigator supervised and chaperoned the project, making adjustments to experimental 

procedures, aiding in interpreting data and proof-reading the manuscript. 
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2.2 Cardiac Phenomena During Kainic-acid Induced Epilepsy and 

Lamotrigine Antiepileptic Therapy 

 

Maxine Dibué, Marcel A. Kamp, Felix Neumaier,  Hans-Jakob Steiger, Daniel Hänggi, 

Jürgen Hescheler, Toni Schneider. 

 

Pathologic ECG events are known to accompany seizures and to persist in several 

chronic epilepsy syndromes. The contribution of antiepileptic drugs (AEDs) to these 

events and the implications in the etiology of sudden-unexpected death in epilepsy 

(SUDEP) continue to be a matter of debate. We therefore investigated cardiac parameters 

during kainic-acid (KA) induced experimental epilepsy and antiepileptic treatment with 

lamotrigine (LTG). Epilepsy was induced in seven C57Bl/6 mice by injections of KA (20 

mg/kg) on days 1 and 5, which produced severe acute seizures and spontaneous seizures 

10 days later. Treatment with LTG (30 mg/kg) was initiated on day 11 and repeated on 

day 12. Continuous ECGs and ECoGs were collected telemetrically from freely moving 

mice. Mice displayed pre-ictal but not ictal tachycardia. The squared coefficient of 

variation (SCV) of R—R intervals was significantly elevated 30 s before and during 

seizures compared to control conditions. LTG produced a significant reversible increase 

in SCV and LF/HF ratio during slow-wave sleep (SWS), potentially indicative of 

sympatho-vagal imbalance during this state of vigilance, in which epileptic patients are 

known to be particularly vulnerable to SUDEP. The KA model used in this study permits 

the investigation of cardiac phenomena during epilepsy, as it features many effects found 

in human epileptic patients. Increased LF/HF, a known risk factor for cardiac disease, 

which is often found in epileptic patients, was observed as a side-effect of LTG treatment 

during SWS, suggesting that LTG may promote imbalance of the autonomous nervous 

system in epileptic mice. 
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Own Contribution to Publication II 

 

I formulated the hypothesis for this project, based on observations I had made in previous 

experiments and designed the study accordingly. After optimizing the surgical procedure 

with Dr. Kamp and Prof. Hänggi, I performed surgery on mice. Epilepsy induced by 

kainic acid injection and all pharmacological treatment (antiepileptic and analgesic post-

operative care) was carried out by me. I independently acquired all data, analyzed all 

data, wrote the manuscript and created all images. I also handled the submission and 

review process of the manuscript. 

 

All images were created by Maxine Dibué depicting data collected by Maxine Dibué. 

 

 

Contribution of Co-Authors to Publication II 

 

As neurosurgeons, Dr. Kamp and Prof. Hänggi aided in the optimization of the surgical 

procedure. Felix Neumaier was crucial in overcoming technical difficulties concerning 

signal quality of both simultaneously recorded biopotentials (ECG and ECoG). Prof. 

Hescheler and Prof. Steiger provided the facilities for experimentation and Prof. 

Schneider, as principal investigator supervised and chaperoned the project, proof-reading 

the manuscript. 
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2.3 Cav2.3 E-/R-type voltage-gated calcium channels modulate sleep in 

mice 

 

Angela Münch*,  Maxine Dibué*, Jürgen Hescheler, Toni Schneider 

*contributed equally  

 

Mammalian sleep is characterized by cycles of REM and non-REM (NREM), i.e. slow-

wave sleep (SWS) phases. The major neuroanatomical basis of SWS is the 

thalamocortical circuitry, which operates in different functional modes to determine the 

state of vigilance. At high vigilance, the tonic mode predominates; stages of low 

vigilance and SWS are characterized by rebound burst firing. Electrophysiologically, 

rebound bursting depends on low-threshold Ca2+ spikes and T-type Ca2+ channels have 

been shown to modulate SWS. We recently demonstrated that Cav2.3 R-type Ca2+ 

channels are capable of modulating absence seizures, a pathophysiological aberration of 

the thalamocortical oscillations related to SWS. We thus analyzed sleep architecture in 

control and Cav2.3(−|−) mice using implantable electroencephalography 

(EEG)/electromyography (EMG) radiotelemetry during spontaneous and urethane-

induced sleep. The results demonstrate significantly reduced total sleep time and 

impairment of SWS generation in Cav2.3(−|−) mice, which affects global sleep 

architecture (i.e. the ratio of REM to NREM). Furthermore, the relative δ power is 

significantly reduced in Cav2.3(−|−) mice during NREM sleep although these mice 

display longer prior wakefulness, possibly indicating disturbances in sleep homeostasis. 

This observation is supported by recordings following urethane administration. This is 

the first study to shed light on the fundamental role of Cav2.3 channels in rodent sleep 

physiology. 
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Own Contribution to Publication III 

 

I performed frequency domain analysis for this study and wrote the manuscript with the 

exception of the results section of the time domain analysis, which was written by Prof. 

Schneider. I created image 4 and handled the review process of the manuscript.   

 

Figure 4: Spectral analysis of normal sleep from control and Cav2.3-deficient mice 

This image was created by Maxine Dibué depicting results from the spectral analysis 

performed by Maxine Dibué. 

 

Contribution of Co-Authors to Publication III 

 

Angela Münch performed surgery on the mice, recorded electrocorticograms and created 

images 2 and 3.  Next to designing, supervising and chaperoning the project Prof. 

Schneider created images 1 and 5. Prof. Hescheler provided the facilities for 

experimentation 
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3. DISCUSSION 

 

3.1 Results from the three presented studies in summary: 

 

1. R-Type calcium channels are critical in epileptogenesis. 

2. R-Type calcium channels are critical in mediating anticonvulsive and neuroprotective   

    effects of LTG.  

3. R-type calcium channels are critical in maintenance of SWS 

4. LTG promotes sympathovagal imbalance during SWS of epileptic mice 

5. In the absence of R-type calcium channels LTG enhances ultra-high frequency   

oscillations, promoting neurodegneration in the CA1 region of the hippocampus. 

 

 

3.2 Cav2.3 in Oscillatory Networks  
 

3.2.1 R-type Currents in Thalamo-Cortical and Hippocampal Rhythmicity 

Viewing the above results in summary, the importance of R-type signaling in the 

generation and maintenance of rhythmic activity such as in the delta rhythm of slow wave 

sleep or in repetitive spiking in the delta-theta range during experimentally induced 

epilepsy becomes evident. Spike-and-wave discharges (SWDs), the hallmark of absence 

epilepsy reflect pathological hyperoscillations generated by bidirectional thalamo-cortical 

circuitry. Accordingly, Zaman et al recently demonstrated in brain slices that Cav2.3 

channels are critical for oscillatory burst discharges in the reticular thalamus (RT) and 

that Cav2.3KO mice display decreased sensitivity to γ-butyrolactone-induced absence 

epilepsy (Zaman et al., 2011). This study revealed that oscillatory burst discharges and 

the slow after-hyperpolarization (AHP) were both significantly reduced in RT neurons in 

brain slices from Cav2.3KO mice. Contrarily, Weiergräber et al found increased 

susceptibility of Cav2.3KO mice to γ-butyrolactone-induced absence epilepsy: in 

Cav2.3KO mice the latency to SWDs and the number of SWD episodes increased, 

however contrarily the duration of SWD episodes was reduced (Weiergräber et al., 2008). 

However, Zaman et al point out that their data may not be directly comparable to that of 

Weiergräber et al due to their use of monopolar EEGs instead of the bipolar subtraction 
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method used by Weiergräber et al. Zaman et al found SWDs in bipolar recordings to be 

10-fold smaller than in monopolar recordings, possibly due to cancellation of the 

hemispherically symmetrical synchronous SWDs characteristic of absence seizures. 

Nevertheless, both studies report altered ictal activity of Cav2.3KO mice after systemic 

administration of γ-butyrolactone and in addition, the direct role of R-type currents in 

oscillatory bursting of RT neurons has been elucidated. 

 

RT neurons are reciprocally connected to thalamocortical (TC) neurons, which they 

hyperpolarize by GABA release upon bursting. The hyperpolarized membrane potential 

deinactivates low-voltage gated calcium channels enabling regenerative calcium spikes 

promoting bursting of TC neurons, which in turn causes excitation of RT neurons, 

initiating the next cycle of bursting. Rebound burst firing of  RT neurons  is known to 

occur during cortical slow-wave activity, proposed to serve as a motif from which ictal 

activity can evolve (Beenhakker and Huguenard, 2009). It is therefore conceivable that, 

genetic ablation or modulation of Cav2.3 by LTG significantly alters bursting of RT 

neurons and post-inhibitory rebound firing of TC neurons, possibly disturbing slow-wave 

sleep and preventing the generation of SWDs.  

 

Similar mechanisms are conceivable in the hippocampus, where Cav2.3 also contributes 

to AHP and thereby to bursting (Metz et al., 2005) and is suggested to mediate atropine-

sensitive theta oscillations (Muller et al., 2012). In hippocampal CA1 neurons during 

carbachol-induced epilepsy, R-type currents are enhanced, promoting Ca
2+

 spikes and 

thus plateau potentials, which share characteristics with ictal depolarizations (Kuzmiski 

et al., 2005;Tai et al., 2006). Here inverse effects of LTG in Cav2.3KO mice may reflect 

post-inhibitory rebound firing of CA1 pyramidal neurons after stimulation of HCN 

channels, a paradoxical phenomenon observed after increased inhibition via HCN 

currents as a reaction to experimentally induced seizures (Chen et al., 2001). As the 

neuroprotection and seizure resistance of Cav2.3KO mice, may involve increased 

synaptic inhibition due to robustly reduced calcium influx into hippocampal neurons, 

rebound excitation of CA1 pyramidal neurons may be increased to a greater degree in 

Cav2.3KO mice when HCN currents are stimulated by LTG. 
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3.2.2 R-type Signaling as a Mediator of Sleep Homeostasis –an Intersection Point 

between Sleep and Epilepsy? 

 

It is remarkable that the genetic ablation of a calcium channel that is expressed at 

relatively low levels is sufficient to disturb sleep depth but also sleep homeostasis itself, 

considering all the neurotransmitter systems and brain structures involved in sleep and its 

homeostasis. Cav2.3KO mice sleep less and display less SWS than controls. If 

homeostatic mechanisms were intact, Cav2.3KO mice should compensate for lack of 

SWS or sleep in general by increasing delta-power i.e. the depth of sleep which they do 

not. However, one may also argue inversely i.e. that reduced delta-power, that Cav2.3KO 

display would be compensated by increased sleep time if homeostatic mechanism were 

intact. In either way, one may hypothesize that this points to impaired generation and 

maintenance of highly synchronized delta-activity due to lack of R-type signaling, which 

ultimately undermines homeostatic mechanisms. Delta activity reflects highly 

synchronized switching of cortical cells between a hyperpolarized and a depolarized 

state. Delta rhythm occurs in both isolated thalamic and cortical slices, however is more 

regular in vivo and therefore thought to be cortically generated but also thalamically 

driven. The hyperpolarization required for delta-initiation is induced by corticothalamic 

volleys, pointing to GABA-ergic RT neurons in facilitation and synchronization of delta 

rhythm (Steriade et al., 1991). Thalamically generated delta rhythm is the result of 

interplay between T-type and HCN currents. During SWS, hyperpolarized TC neurons 

initiate slow activation of HCN currents, which depolarize  the cell triggering rebound 

bursting, mediated by LVACCs, which were de-inactivated by the hyperpolarization 

(McCormick and Pape, 1990;Llinas and Steriade, 2006). Both channels inactivate during 

the burst, promoting hyperpolarization, which in turn initiates the next cycle of bursting. 

As post-inhibitory rebound activation of T-type currents was found to recruit R-type 

currents mediating the burst response, this may be the point at which R-type ablation 

impairs delta-activity. This impairment however, may be at the root of the seizure 

resistance of Cav2.3KO mice: impairment of the thalamic “bursting apparatus” may 
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hamper SWS but may prevent the generation of SWDs, lending weight to the widely 

accepted hypothesis that SWDs “mutate” from slow oscillations. Although speculative, 

one may hypothesize that the impairment of SWS by LTG found in epileptic patients 

(Foldvary et al., 2001;Placidi et al., 2000b;Placidi et al., 2000a) corresponds to inhibition 

of R-type currents, as it mirrors the findings from Cav2.3KO mice. Reduction of SWS 

time and intensity may represent a key antiepileptic strategy of LTG, as seizures are 

precipitated by SWS and inhibited by REM sleep, (Bazil and Walczak, 1997;Malow et 

al., 1998;Kumar and Raju, 2001), which we found to be significantly increased in 

Cav2.3KO mice. 

 

 

3.2.3 Cav2.3, a “Fine Tuner” of Oscillatory Activity? 

Intrinsic properties of Cav2.3 may enable this channel to exert a specialized pacemaking 

function. This may also be reflected by its’ expression in oscillating tissues such as the 

heart, RT, hippocampus and endocrine pancreas. A calcium channel capable of eliciting a 

rapid calcium influx, due to fast activation and deactivation kinetics at an activation 

potential much lower than all other HVACCs and much higher than LVACCs is unique 

and may represent a key element in certain physiological rhythms such as bursting in RT 

neurons. The role of T-type channels in bursting of RT neurons has been studied in great 

detail and it appears that due to their slow kinetics T-type VGCCs are more suitable for 

sustaining slow pacemaker activity such as post-inhibitory rebound firing, whereas R-

type VGCCs can convey a more rapid and transient influx of calcium (Randall and Tsien, 

1997). In RT neurons post-inhibitory rebound activation of T-type VGCCs recruits R-

type VGCCs which then mediate the burst response (Zaman et al., 2011). Furthermore, 

activation of  R-type currents also promotes the calcium-dependent slow AHP in RT  

neurons, which increases burst firing and is crucial for intrinsic rhythmic discharge 

within RT neurons reinforcing synaptic network activity (Paz and Huguenard, 2012). 

Data from Cav2.3KO mice, which display reduced rebound bursts, reduced post-burst 

AHPs as well as a severely impaired ability of the neuron to discharge oscillatory bursts 

(Zaman et al., 2011) depicts how R-type signaling is crucial for sustaining physiological 

rhythmic activity of an entire network despite relatively low expression levels. 
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3.3 Cav2.3 as a Key Player in Lamotrigine Pharmacology 

 

The investigation of Cav2.3’s eligibility as an antiepileptic target is complicated by the 

lack of specific modulators that can be employed in in vivo models. SNX-482, the only 

Cav2.3 specific inhibitor is a small peptide which is very costly due to its recombinant 

generation and which would have to be applied intra-thecally, rendering its use inefficient 

in animal models. Our investigation of LTG as a potent but unspecific Cav2.3 inhibitor in 

Cav2.3KO mice and controls reveals the importance of Cav2.3KO inhibition in the 

antiepileptic and neuroprotective mechanisms of this unspecific drug. It is therefore 

conceivable that R-type inhibition alone could represent a novel and effective 

antiepileptic and neuroprotective strategy, with lesser unwanted side-effects.  

 

The paradoxical effects caused by LTG in Cav2.3KO mice found in our study may 

potentially represent the first experimental description of paradoxical effects of LTG 

found in epileptic patients. In severe myoclonic childhood epilepsy, there is a frequent  

aggravating effect (clinical and EEG) of LTG at therapeutic doses (Guerrini et al., 

1998;Genton, 2000). Another study reports, pro-ictogenic effects of LTG in adults:  

patients with idiopathic generalized epilepsies treated with LTG experienced 

exacerbation or de novo appearance of myoclonic jerks (Crespel et al., 2005).  In 

Unverricht-Lundborg Disease, a progressive myoclonic epilepsy with tonic–clonic 

seizures, LTG had an aggravating effect in three out of five patients and had no 

therapeutic effect in the other two patients (Genton et al., 2006). Furthermore, 

aggravation of absence seizures by LTG leading to absence status epilepticus (Hasan et 

al., 2006) and seizure deterioration, appearance of a new seizure type, and transient 

cognitive impairment in idiopathic rolandic epilepsy at a low LTG dose after slow 

titration  have been reported (Cerminara et al., 2004). As the occurrence of paradoxical 

effects of LTG does not appear to be restricted to specific epilepsy disorders or to a 

certain age group, identification of underlying mechanisms remains difficult. However 

paradoxical effects of LTG may be symptomatic of misbalance of the various 

mechanisms of the drug.  
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Furthermore, LTG also offers another valuable insight into the relationship between sleep 

and epilepsy in regard to cardiac mechanisms, which next to respiratory mechanisms are 

proposed to underlie SUDEP. Only during slow-wave sleep i.e generalized delta-activity 

does LTG affect autonomous control of the heart. One may hypothesize that inhibition of 

“fine-tuning” of delta rhythm, which is highly synchronized throughout the cortex, has 

downstream effects possibly affecting autonomous nervous control of cardiac activity. 

The identified increase in sympathetic activity during slow wave sleep, reflected by an 

increase in LF/HF ratio, a known risk factor in heart disease may represent a possible 

mechanism by which LTG could increase the risk for SUDEP as found by (Hesdorffer et 

al., 2011;Aurlien et al., 2012). LTG-induced increased sympathetic activity during SWS 

may also reflect impaired SWS, found in LTG-treated patients, as parasympathetic tone is 

known to dominate during SWS, the opposite applying to REM sleep (Tobaldini et al., 

2013).  

 

 

3.4 Concluding Remarks 

 

For an unlucky few, therapy resistant epilepsy is a frightening debilitating and life-

threatening burden, bringing great sadness and distress to sufferers and their families. 

Here, it is evident that the classic targets of AEDs such as GABA receptors, sodium 

channels and T-type calcium channels are not suitable, rendering the search for new 

targets vital. A growing body of evidence implicates the “pharmacoresistant” R-type 

calcium channel to be involved in epileptogenesis, antiepileptic pharmacotherapy and 

mechanisms associated with epilepsy such as SWS. The fact that Cav2.3KO mice display 

impaired delta rhythm generation and reduced seizure susceptibility may reflect an 

essential link between slow-wave sleep and epilepsy and the role of R-type signaling 

therein. It is therefore conceivable that pharmacological inhibition of R-type currents has 

the potential to prevent seizures developing from delta waves during slow-wave sleep, a 

state during which epileptic patients are at higher risk of seizures and SUDEP. 

Development of specific Cav2.3 inhibitors, which can be administered orally and 
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intravenously, could represent a new frontier in epilepsy therapy, possibly bringing hope 

to the millions of sufferers of therapy refractory epilepsy disorders. 
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SUMMARY

Purpose: Lamotrigine (LTG) is a popular modern antiepi-

leptic drug (AED); however, its mechanism of action has

yet to be fully understood, as it is known to modulate

manymembers of several ion channel families. In heterol-

ogous systems, LTG inhibits Cav2.3 (R-type) calcium cur-

rents, which contribute to kainic-acid (KA)–induced
epilepsy in vivo. To gain insight into the role of R-type cur-

rents in LTG drug action in vivo, we compared the effects

of LTG to two other AEDs in Cav2.3-deficient mice and

controls on KA-induced seizures.

Methods: Behavioral seizure rating and quantitative elec-

trocorticography were performed after injection of

20 mg/kg (and 30 mg/kg) KA. One hour before KA injec-

tion, mice were pretreated with 30 mg/kg LTG, 50 mg/kg

topiramate (TPM), or 30 mg/kg lacosamide (LSM).

Key Findings: Ablation of Cav2.3 reduced total seizure

scores by 28.6% (p = 0.0012), and pretreatment with LTG

reduced seizure activity of control mice by 23.2%

(p = 0.02). In Cav2.3-deficient mice, LTG pretreatment

increased seizure activity by 22.1% (p = 0.018) and

increased the percentage of degenerated CA1 pyramidal

neurons (p = 0.02). All three AEDs reduced seizure activ-

ity in control mice; however, only the non–calcium chan-

nel modulating AED, LSM, had an anticonvulsive effect in

Cav2.3-deficientmice. Furthermore, LTG altered electro-

corticographic parameters differently in the two geno-

types: decreasing relative power of ictal spikes in control

mice but increasing relative power of high frequency fast

ripple discharges during seizures in Cav2.3-deficientmice.

Significance: These findings provided the first in vivo evi-

dence for an essential role for Cav2.3 in LTG pharmacol-

ogy and shed light on a paradoxical effect of LTG in their

absence. Furthermore, LTG appears to promote ictal

activity in Cav2.3-deficient mice by increasing high fre-

quency components of seizures, resulting in increased

neurotoxicity in the CA1. This paradoxical mechanism,

possibly reflecting rebound hyperexcitation of pyramidal

CA1 neurons after increased inhibition, may be key in

understanding LTG-induced seizure aggravation

observed in clinical practice.

KEYWORDS: Lamotrigine, R-type, Cav2.3, Antiepileptic

drugs, Toxicity, Quantitative electroencephalography.

Today lamotrigine (LTG) is among the most prescribed
antiepileptic drugs (AEDs) worldwide. In addition, LTG is
approved by the U.S. Food and Drug Administration(FDA)
for treatment of bipolar disorder and has become a popular
off-label drug for treatment of other neurologic and psychi-
atric conditions such as borderline personality disorder.
This diverse therapeutic capacity of LTG probably reflects
the nonspecificity of the drug, which is known to inhibit
several different calcium, potassium, and sodium currents

(Beck & Yaari, 2012). LTG is thought to mediate its anti-
convulsant and neuroprotective effects in vivo predomi-
nantly by inhibiting voltage-dependant sodium currents and
the subsequent glutamate release; however, recent evidence
suggests that in mice, inhibition of Cav2.3 channels could
play an important role in the mechanism of action of LTG
during experimentally induced epilepsy. It has been demon-
strated that LTG and another modern AED, topiramate
(TPM), inhibit R-type currents in heterologous systems and
brain slices (Hainsworth et al., 2003; Kuzmiski et al.,
2005). Furthermore, Cav2.3-deficient (Cav2.3-KO) mice
display seizure resistance and reduced hippocampal neuro-
toxicity after kainic acid (KA) injection (Weiergr€aber et al.,
2007). Parenteral administration of KA is a well-established
method of modeling temporal lobe epilepsy, causing
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seizures in the hippocampus and temporal lobe and degener-
ation of hippocampal pyramidal neurons (Tremblay & Ben
Ari, 1984; Sperk et al., 1985). Using the KA model of tem-
poral lobe epilepsy, we investigated the effect of LTG next
to TPM and lacosamide (LSM) in Cav2.3-KO and controls.
The new AED lacosamide (LSM), which enhances slow
inactivation of voltage-gated sodium channels(Errington
et al., 2008), was used as a positive control, as it has been
shown not to effect calcium or potassium currents (Erring-
ton et al., 2006; Wang & Khanna, 2011). Gaining insight
into the role of Cav2.3 calcium channels in antiepileptic
pharmacotherapy may allow identification of new antiepi-
leptic mechanisms and therefore of novel potential drug tar-
gets, offering hope for patients with drug refractory
epilepsy.

Materials and Methods
Animals

Cav2.3-KO and control mice are separate mouse lines
derived from heterozygous parents (fourth backcrossing
into C57Bl/6). Homozygous littermates are regularly inter-
bred with each other and back-bred into C57Bl/6 (for fur-
ther information on knock out generation see (Pereverzev
et al., 2002; Weiergr€aber et al., 2006). Mice were kept at
20°C in polycarbonate cages under a 12 h light–dark cycle
(7:00 a.m./p.m.) with food and water ad libitum. All animal
experiments were in line with the European Communities
Council Directive for the care and use of laboratory animals
and were approved by the local institutional committee on
animal care.

Antiepileptic pretreatment and seizure induction
Between 9:00 and 10:30 a.m., saline or AEDs LTG

(30 mg/kg), TPM (50 mg/kg) (both Sigma Aldrich, Crails-
heim, Germany), or LSM (30 mg/kg) (UCB Pharma SA,
Brussels, Belgium) dissolved in saline were injected intra-
peritoneally into male mice of both genotypes (Cav2.3-KO
and Cav2.3+|+) within the age range of 20–25 weeks. One
hour later 20 mg/kg KA (n = 40) or 30 mg/kg KA (n = 46)
(Sigma Aldrich) dissolved in saline was injected intraperito-
neally. Immediately after administering KA, mice were set
in separate single cages and filmed for the next 24 h.

Behavioral seizure analysis
The initial 2 h after the application of KA was evaluated

using an adapted version of Morrison’s Seizure Rating Scale
(Morrison et al., 1996) (see Data S1 for further informa-
tion):

Stage 0: normal behavior.
Stage 1: immobility.
Stage 2: facial clonus, head bobbing/nodding, automa-
tisms.
Stage 3: limb clonus, jerking of the torso.
Stage 4: rearing.

Stage 5: falling.
Stage 6: tonic–clonic seizure.
Stage 7: tonic–clonic seizure with jumping.
Stage 8: tonic–clonic seizure causing death.
For a 2 h period the highest seizure score was noted for

every 5-min interval. Interval scores were added for total
seizure scores. Total seizure scores of pretreated groups
were compared to those of the untreated group of the same
genotype and differences were expressed as relative
changes in total seizure score from the untreated group.

Radiotelemetric electrocorticographic recording of
seizures

Radiotelemetric electrocorticography (ECoG) of KA-
induced seizures was recorded on LTG pretreated and
untreated animals of both genotypes (n = 4 per group). Ani-
mals were anesthetized with 100 mg/kg body weight (BW)
ketamine hydrochloride (Ketanest, Parke-Davis/Pfizer, Berlin,
Germany) and 10 mg/kg BW xylazine hydrochloride (Rom-
punR 2%; Bayer Vital, Leverkusen, Germany). TL11M2-F20-
EET transmitters (Datascience International, Lexington, MA,
U.S.A.) were implanted subcutaneously and burr holes were
drilled over the somatosensory cortex (�1 mm and 3 mm lat-
eral from bregma) and cerebellum (�6.3 mmand 1 mm lateral
from bregma), leaving the dura intact. Electrodes were
inserted and fixed into position with glass ionomer cement
(Kent DentalR, Kent Express, Kent, United Kingdom). Ani-
mals were allowed 7 days to recover from surgery (all
made full recovery) and were then recorded before (control
condition) and after injection of 20 mg/kg KA, i.p. ECoG
studies were obtained at a sampling rate of 1,000 Hz with-
out cutoff from freely moving animals in their cages, which
were placed on the telemetry receiver platforms.

ECoG analysis
NEUROSCORE 2.1.0 (Datascience International) was

used to calculate absolute and relative power of frequency
bands (Fast Fourier Transform based using a Hamming
window) in the first hour after KA injection (totally and
fractioned into 5-min intervals). The frequency spectrum
was defined as follows: Delta (0.5–4 Hz), Theta (4–8 Hz),
Alpha (8–12 Hz), Sigma (12–16 Hz), Beta (16–24 Hz),
Gamma (30–80 Hz), Ripples (80–200 Hz), and Fast
Ripples (200–500 Hz). An automated seizure detection
protocol was written to quantify ictal activity. The protocol
recognizes waveforms shorter than 200 msec that are
between 2.5- and 25-fold the baseline amplitude as spikes.
Spikes occurring in intervals between 30 and 1,500 msec
are recognized as belonging to a spike train, which must be
at least 300 msec long and contain a minimum of four
spikes. No ictal events were detected in the control condi-
tion (before KA injection). The Z-ratio reflecting the ratio
between low and high frequency power (LF [0.5–8 Hz]
and HF [8–20 Hz], respectively) was calculated using the
following equation: (LF � HF)/(LF + HF).
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Histology and immunohistochemistry
Seven days after injection of 30 mg/kg, KA brains were

extracted and kept in 30% sucrose for 24 h prior to freez-
ing them in methyl-butane. Brains were sliced 10 lm
thick in a cryotome (CM3050S; Leica Microsystems,
Wetzlar, Germany), and then fixed in 4% formaldehyde
and Nissl stained according to standard protocol. Brains
for immunohistochemistry were kept in 4% paraformalde-
hyde for 24 h and—using a slow regimen of manual
changes over 12 days—embedded in paraffin. Ten micron
sections were cut with slim Feather blades for low com-
pression (cutting angle 25 degrees) on a motor-driven
rotary microtome (Reichert-Jung 1140 Autocut, Leica
Microsystems, Nussloch, Germany) and mounted on silan-
ized glass slides. Sections were deparaffinized and rehy-
drated before incubation with anti-neuron specific nuclear
protein (anti-NeuN) antibody from mouse (GeneTex Asia
Ltd, Hsinchu City, Taiwan) and detection thereof using
VECTOR M.O.M Peroxidase Immunodetection Kit
(Vector Laboratories Inc, Burlingame, CA, U.S.A.). Using
the cell counter tool of NIH IMAGEJ software (http://
rsbweb.nih.gov/ij/), hippocampal neurons were counted
and the percentage of pyknotic neurons calculated.

Protein isolation, Western blot analysis, and protein
quantification

Twenty-four hours after 30 mg/kg KA (or saline) injec-
tion, membrane proteins were isolated from control mouse
(n = 10) hippocampi using a high-salt high-pH extraction
method (for further information see [Wisniewski, 2009]).
Fifty micrograms of membrane protein per sample were
separated by electrophoresis on an sodium dodecyl sulfate
polyacrylamide gel and then blotted onto a polyvinylidene
fluoride membrane. The Cav2.3 calcium channel was
detected using a self-generated antibody (rabbit) directed
against AA 256–272 in the loop IS5 to pore region of the
human alpha1E subunit (for further information see [Pere-
verzev et al., 1998]), ECL-Anti-Rabbit IgG and ECL detec-
tion system (GE Healthcare, Buckinghamshire, United
Kingdom). Because the expression of the reference protein
synaptophysin (SYN) has been shown to be unaffected by
hyperexcitation (Chen et al., 2001a; Wierschke et al.,
2010), Cav2.3 bands were quantified by normalizing them
to SYN, which was detected using anti-SYN antibody from
mouse (Antibodies-online, Atlanta, GA, U.S.A.) and
ECL-Anti-Mouse IgG (GE Healthcare). Cav2.3 protein was
quantified manually using IMAGEJ 1.46 (NIH) and auto-
matically using GELSCAN 6.0 (BioSciTec, Frankfurt,
Germany).

Statistical analysis
Seizure scores and relative spectral power were assessed

using the Shapiro-Wilk test of normality and found to be
mostly nonnormally distributed. Therefore, the nonparametric
Mann-Whitney test was used to determine significance of

seizure scores. Relative power values were log transformed
(log(x/[1 � x])) to obtain a more Gaussian distribution and
were then subjected to analysis of variance (ANOVA)
(Gasser et al., 1982). Statistical significance of frequencies
of the seizure stages was determined using Fisher’s exact
probability test. p-Values of 0.05 and below were consid-
ered statistically significant.

Results
Behavioral seizure analysis

After injection of 20 mg/kg KA in all groups, normal
explorative behavior ceased within 10 min and mice
“froze” exhibiting a rigid posture and staring into space
(immobility stage i.e., stage 1). In this stage, mice only
reacted scarcely to their environment (i.e., when nudged) if
at all. Six of eight control mice experienced tonic–clonic
seizures (Fig. 1A), whereas Cav2.3-KO mice did not
develop tonic–clonic seizures or enter seizure stages higher
than stage 3 (Fig. 1E), displaying a reduction of total sei-
zure scores of 28.6% compared to control mice (from
57.8 � 2.6 to 41.4 � 3.7, p = 0.0012; U = 2.5) (Fig. 2A).
In control animals, LTG prevented tonic–clonic seizures
(Fig. 1B) and reduced total seizure scores by 23.2%, from
57.8 � 2.6 to 44.3 � 3.6 (p = 0.02; U = 6.5). TPM did not
prevent tonic–clonic seizures in all control mice (Fig. 1C)
but reduced total seizure scores by 21%, from 57.8 � 2.6 to
45.6 � 3.8 (p = 0.029; U = 5). LSM was most effective in
reducing seizure scores in control mice, eliciting a reduction
of the total seizure score of 42.2%, from 57.8 � 2.6 to
33.4 � 2.5 (p = 0.0016; U = 0) (Fig. 1D). TPM had no
significant effect on total seizure scores in Cav2.3-KOmice,
whereas LTG significantly increased total seizure scores by
22.1%, from 41.4 � 3.7 to 50.6 � 1.5 (p = 0.018;
U = 6.5) and the frequency of the convulsive stage 3
(Fig. 1F and Table S1) in Cav2.3-KO mice. Both LTG and
TPM were effective in reducing total seizure scores of con-
trol mice but were ineffective in doing the same in Cav2.3-
KO mice. LSM was the only AED of the three that reduced
seizure scores in Cav2.3-KO mice, doing so by 19.4%, from
41.4 � 3.7 to 33.4 � 0.6 (p = 0.048; U = 5) (Fig. 2A). No
animals died as a result of 20 mg/kg kainic acid injection.
In control mice, all three AEDs significantly increased the
frequency of stage 1, the lowest pathologic seizure stage,
whereas LTG had the opposite effect in Cav2.3-KO mice
(Table S1A). TPM did not alter the frequencies of occur-
rence of the seizure stages in Cav2.3-KOmice.

We retested the effect of LTG in Cav2.3KO and control
mice at 30 mg/kg KA (Fig. 2B), a dosage at which
Cav2.3KO mice develop tonic–clonic seizures and exhibit
similar seizure activity as control animals at 20 mg/kg KA,
to determine whether LTG can prevent tonic–clonic
seizures in Cav2.3KO mice and to further investigate the
convulsive effect of LTG in Cav2.3KO mice observed at
20 mg/kg. At 30 mg/kg KA, LTG pretreatment reduced
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total seizure scores of control mice by 30% (p = 0.0079;
U = 0) and total seizure scores of LTG-treated Cav2.3-KO
mice were 33% (p = 0.015; U = 1.5), higher than those
of LTG-treated control mice (69 � 6.4 compared to
51.6 � 1). An increase (not significant) of total seizure
scores of 15.8% (69 � 6.4 compared to 59.6 � 4.1) was
observed in LTG-treated Cav2.3-KO mice compared to
Cav2.3-KO mice without pretreatment, which is in line with
the significant increase of total seizure scores caused by
LTG in Cav2.3-KO mice observed at 20 mg/kg KA. At both
KA concentrations, LTG increased the frequency of stage 3
(Tables S1A,B) in Cav2.3KO mice (but not in controls),
which contributes to the increased total seizure scores of
LTG-treated Cav2.3-KO mice compared to untreated
Cav2.3-KOmice.

Histology and immunohistochemistry
NeuN- and Nissl-stained brain sections of mice from

30 mg/kg groups (n = 4 per group) were evaluated by
determining the percentage of pyknotic to healthy pyrami-
dal neurons in the CA1 (Fig. 3) CA2, CA3, and dentate
gyrus (DG) regions of the hippocampus. Cav2.3-KO mice
were found to display significantly less pyknotic pyramidal
neurons than control mice in the CA1 and CA3 regions of
the hippocampus (CA1 4.14 � 2.07% compared to
26.5 � 6.41%; CA3 6.89 � 0.75% compared to 27.17 �
4.75%), which is in line with findings from Weiergr€aber
et al. (2007). Both stains revealed that LTG-treated

Cav2.3-KO mice displayed significantly increased degener-
ation of pyramidal CA1 neurons compared to untreated
Cav2.3KO mice (NeuN 14.65 � 3.45% compared to
4.14 � 2.07%, p = 0.048; Nissl 20.6 � 2.6% compared to
11 � 2%, p = 0.02;), although a similar trend is visible in
the other three regions. Furthermore, in control mice, LTG
significantly reduced neurodegeneration in the CA1, CA3,
and DG. Cav2.3KO and LTG-treated control mice displayed
similar degrees of degeneration in all evaluated regions
except the CA2.

Expression of Cav2.3 protein
Both manual and automated quantification of western

blotted Cav2.3 bands by normalization to SYN revealed no
significant differences in Cav2.3 protein expression between
KA- and saline-injected groups (Fig. 4).

Electrocorticography studies
Relative power was used in the evaluation and statistical

testing due to better inter-individual comparability; how-
ever, absolute power was also computed and is shown in
Fig. 5.

Effect of LTG in control condition
Spectral analysis of the recorded ECoG studies revealed

significant differences between Cav2.3-KO and control
mice and between the effects of LTG in both genotypes in
control recordings and after injection of 20 mg/kg KA. In

A B C D

E F G H

Figure 1.

Individual seizure scores of mice at 20 mg/kg kainic acid. Seizure scores are plotted for each mouse during the course of the 2 h

video-monitoring period. (A–D) Seizure scores for control mice without (A) and after pretreatment with LTG (B), TPM (C), or LSM

(D). (E–H) Seizure scores for Cav2.3KOwithout (E) and after pretreatment with LTG (F), TPM (G), or LSM (H).

Epilepsia ILAE
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control conditions, Cav2.3-KO mice displayed significantly
reduced relative delta power compared to control mice
(29 � 1.7% vs. 22.1 � 2.0% [p = 0.037]) (Fig. S1A). LTG

treatment increased relative beta power in control mice
(from 4.6 � 0.48% to 7.5 � 1% [p = 0.037]) (Fig. S1B),
but not in Cav2.3-KO mice in which LTG reduced relative
alpha power from 16 � 1.5% to 11.1 � 0.9% (p = 0.034)
(Fig. S1C).

Effect of KA compared to control condition
KA injection elicited spikes, sharp waves, and spike

trains in all four groups, with ictal activity predominantly
occurring within the delta–theta range (Fig. 6). Accord-
ingly, KA injection significantly increased relative delta
power in both genotypes (Fig. S2A,C), however, to a greater
degree in control mice. Of interest, in control mice, LTG
pretreatment prevented the KA-induced shift in spectral
distribution (Fig. S2B), whereas in LTG-pretreated Cav2.3-
KO mice, KA injection caused a significant reduction of
alpha power (Fig. S2D).

Effect of LTG onKA-induced seizures
Both genotypes displayed different spectral distribution

after KA injection (Fig. 7), with Cav2.3-KOmice exhibiting
significantly increased relative sigma and beta power com-
pared to control mice (4 � 0.2% vs. 3.2 � 0.1%
[p = 0.009] and 4.9 � 0.4% vs. 3.5 � 0.3% [p = 0.024],
respectively), reflecting less ictal activity in the delta theta
range and thus the reduced seizure susceptibility found by
other authors (Weiergr€aber et al., 2007) and observed in
behavioral analysis in this study.

Similarly LTG-pretreated control mice exhibited reduced
relative theta power compared to untreated control mice
(31 � 1.9% vs. 20.4 � 2.7% [p = 0.04]), and therefore a
distinct shift in spectral distribution toward sigma and beta
frequencies (5.4 � 0.9% vs. 3.2 � 0.1% [p = 0.007] and
6.5 � 1% versus 3.5 � 0.3% [p = 0.008], respectively)
away from delta–theta frequencies and thus less ictal activ-
ity in this frequency range. In contrast, LTG pretreatment of
Cav2.3-KO mice did not significantly alter spectral distribu-
tion when the complete recording period was analyzed.

Analysis of maximal seizure activity
Using the automated spike detection protocol, the longest

spike train, that is, maximal seizure activity, was identified
and analyzed in further detail in order to gain more detailed
insight into the effect of LTG on ictal activity in both geno-
types. Although analysis of the parameters latency to first
spike, longest spike train, spikes per second, and average
spike interval revealed trends corresponding to the rest of
the data, results did not reach statistical significance, as
inter-individual spiking patterns proved to be highly vari-
able within the groups. However, analysis of maximal sei-
zure activity revealed a robust reduction of relative delta
power in LTG-pretreated control mice compared to those
without pretreatment (51 � 7.2% vs. 24.9 � 2.6%
[p = 0.03]) (Fig. 8B). This effect of LTG on maximal
seizure activity did not occur in Cav2.3-KOmice.

A

B

Figure 2.

Effect of LTG, TPM, and LSM on experimentally induced epi-

lepsy in Cav2.3-deficient and control mice. Seizures were

induced in n = 7 Cav2.3KO and n = 8 control mice by intra-

peritoneal administration of KA. The animals were video-moni-

tored for 2 h after injection. A semiquantitative scale was used

as described in methods. Cav2.3KO and control mice were

injected with 30 mg/kg LTG (n = 7 and n = 8, respectively) or

50 mg/kg TPM (n = 6 and n = 6, respectively), or 30 mg/kg

LSM (n = 5 and n = 5, respectively) 1 h before KA injection.

(A) Total seizure scores in control and Cav2.3-KO mice with

and without antiepileptic pretreatment after 20 mg/kg KA. All

AEDs reduce total seizure scores in control mice; however,

only LSM reduces total seizure scores in Cav2.3KOmice. Note,

Cav2.3KO mice reach significantly higher scores under LTG

than without pretreatment. (B) Effects of LTG on total seizure

scores after 30 mg/kg KA injection are comparable to those

after 20 mg/kg.
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Of interest, LTG-pretreated Cav2.3-KO mice displayed
significantly increased relative fast ripple power compared
to untreated Cav2.3-KO mice (1.2 � 0.4% vs. 0.036 �
0.001% [p = 0.003]), possibly underlying the pro-ictogenic
effect of LTG observed in behavioral seizure analysis
(Fig. 8C). Correspondingly, in control mice but not in
Cav2.3-KO mice, LTG significantly reduced the Z-ratio of

maximal seizure activity from 0.51 to 0.07 (p = 0.04), indi-
cating an increase of high frequency power and thus a shift
away from spiking in the delta–theta range.

Discussion
In this study we show that the Cav2.3 calcium channel is

critical in mediating the anticonvulsant properties of LTG
in the KA model of epilepsy and that LTG elicits pro-icto-
genic effects in mice lacking the Cav2.3 calcium channel.
Neither LTG nor TPM, which have been shown to inhibit R-
type currents in heterologous systems, could reduce seizure
scores in Cav2.3-KO mice, indicating the importance of
Cav2.3 inhibition in mediation of their anticonvulsive
effects. In contrast, LSM, which has no calcium channel
modulating properties, was the only AED of the three tested
that could reduce seizure scores in Cav2.3-KO mice. It
should be taken into account that in control mice neither
LTG nor TPM was capable of reducing seizure scores
beyond the degree that is reached when the Cav2.3 is
ablated. Furthermore, this study reveals a convulsive and
neurotoxic effect of LTG in the absence of Cav2.3 calcium
channels. Of interest, toxicity of LTG was located in the
CA1 region of the hippocampus, where LTG is known to be
most neuroprotective (Leach et al., 1991; Crumrine et al.,
1997; Englund et al., 2011). Therefore, it is assumable that
the underlying neuroprotective mechanisms may include
inhibition of signaling through Cav2.3, which we found not
to be upregulated after KA injection. The fact that the
convulsive effect of LTG is more specifically related to the

A B

C D

E G

F

Figure 3.

Neurotoxicity after 30 mg/kg KA. NeuN-stained paraffin sections of the CA1 (A), CA2 (B), CA3 (C), and DG (D) regions of the hip-

pocampus at 209magnification from control mice (top left of each quadrant), LTG pretreated control mice (bottom left), Cav2.3KO

mice (top right), and LTG pretreated Cav2.3KO mice (bottom right). Higher (409) magnification of NeuN- (E) and Nissl- (F) stained

sections showing the CA1 region. Arrows indicate pyknotic pyramidal neurons, that is, pyramidal neurons with condensed nuclear

material indicating apoptosis. (G) Evaluation of the percentage of pyknotic neurons in regions of the hippocampus.
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A B

Figure 4.

Cav2.3 protein expression in the hippocampus. (A) Western

blot of control mice hippocampal membrane fractions. (B) Stu-

dent’s t-test of manual (using IMAGEJ 1.46) and automated

(using GELSCAN 6.0) quantification of Cav2.3 protein by nor-

malization to synaptophysin expression revealed no significant

difference between KA- and saline-injected animals. Although

manual quantification produced a greater difference between

the groups, standard error was also much increased.
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CA1 region, must lead to a novel interpretation of its mecha-
nism of action. Underlying this finding could be postinhibi-
tory rebound firing of CA1 pyramidal neurons promoted by
HCN channels (hyperpolarization-activated cyclic nucleo-
tide-gated channels), a paradoxical phenomenon observed
as a reaction to increased inhibition after experimentally
induced seizures (Chen et al., 2001b). LTG has been shown
to enhance HCN currents in CA1 pyramidal neurons, con-
veying an inhibitory effect (Poolos et al., 2002). However,
due to the capacity of HCN channels to activate at hyperpo-
larized potentials and slow deactivation kinetics, increased
synaptic inhibition, a condition predictable in Cav2.3KO
mice, may cause rebound excitation of CA1 pyramidal neu-
rons when HCN currents are stimulated by LTG. It should
be noted that no compensatory upregulation of other cation
channels that may increase excitability was identified after
injection of 30 mg/kg KA in hippocampi of Cav2.3-KO
mice compared to control mice in a full transcriptome anal-
ysis that was performed in our laboratory prior to the present
study (results not shown).

Furthermore, in this study, telemetrically recorded ECoG
revealed that LTG cannot attenuate ictal discharges in
Cav2.3KO mice as it does in control mice, but instead
increases ultra-high frequency components of ictal activity,
which are known to be associated with generation of epilep-
tic activity in humans and in animals (Allamand et al.,
1997; Traub et al., 2001; Bragin et al., 2004). Clinically,
this phenomenon observed in mice and in brain slices, may
be represented by the capacity of LTG to aggravate seizures
in certain epilepsy syndromes. Although toxic doses of

A B

C D

Figure 5.

Evolution of absolute power after

KA injection. Absolute power of

the frequency bands for 5-min

epochs after KA injection of

control mice (A) with LTG

pretreatment (B) and Cav2.3KO

mice (C) with LTG pretreatment

(D). The robust increase of

absolute delta and theta power

over time in control mice and

LTG-pretreated Cav2.3KOmice

represents the genesis of ictal

discharges, which occur

predominantly in these two

frequency bands. Note the effect

of LTG on HF bands in both

genotypes.
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Figure 6.

Ictal activity in ECoG recordings after 20 mg/kg KA. Raw ECoG

traces of seizures in individual mice of each group. Blue dots

indicate individual ictal spikes; green lines indicate spike trains.
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several (nonsedative) AEDs can cause seizures, LTG has
been reported to cause and aggravate seizures and seizure
frequency at doses within its therapeutic range. In severe
myoclonic childhood epilepsy, there is a frequent aggravat-
ing effect of LTG at therapeutic doses (Guerrini et al.,
1998; Genton, 2000). Another study reports that adults with
idiopathic generalized epilepsies treated with LTG experi-
enced exacerbation or de novo appearance of myoclonic
jerks (Crespel et al., 2005). Whether this paradoxical effect
of LTG in clinical practice reflects rebound hyperexcitation
after increased inhibition, possibly due to antiepileptic poly-
therapy or intake of other drugs with an inhibitory effect on
certain neuron types, must be investigated in further studies.
It is notable that nothing is known about expression or
genetic variants of Cav2.3 in human patients with epilepsy.
Although gain-of-function mutations in the CACNA1H
gene encoding for the low-voltage activated (T-type) cal-
cium channel Cav3.2 have been identified in patients with
hereditary forms of absence epilepsy (Liang et al., 2006),
no variants of Cav2.3 have been identified to date in patients
with epilepsy. However, increased R-type currents have
been measured in the genetically epilepsy-prone rat

(GEPR), suggesting that increased R-type signaling contrib-
utes to the genetic basis of the enhanced seizure susceptibil-
ity of GEPR (N’Gouemo et al., 2010). Whether expression
of Cav2.3 is altered in the hippocampus of human patients
with epilepsy is a matter of great interest; however, gaining
access to resected hippocampal tissue can be difficult, and is
a limiting factor for several epilepsy researchers. Neverthe-
less, investigation of genetic variants of CACNA1E in
patients with epilepsy who experience a worsening of symp-
toms with LTG could produce valuable insights.

Because LTG is not able to prevent or attenuate ictal
activity in the absence of Cav2.3 calcium channels, one
must assume that its anticonvulsive properties are not
based primarily on inhibition of sodium currents, but that
R-type modulation plays a major role in mediating net
anticonvulsive properties of LTG. A complex and multi-
modal mechanism of LTG is highly likely, also consider-
ing that LTG has been shown to attenuate several
neuropsychiatric disorders such as bipolar depression,
borderline disorder, and anxiety disorder, and to contribute
to a better outcome in animal models of stroke and
subarachnoid hemorrhage.

A B C

Figure 8.

Spectral distribution during maximal seizure activity. Relative power of the frequency bands during the longest spike train identified by

the seizure detection protocol averaged from 10-s epochs. (A) Cav2.3KO versus control mice. (B) Control versus LTG-pretreated

control mice. (C) Cav2.3KO versus LTG-pretreated Cav2.3KOmice. LTG increases fast ripples and fails to reduce spiking in the delta

theta range in Cav2.3KOmice as it does in control mice.
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Figure 7.

Spectral distribution after KA injection. Relative power of the frequency bands after KA injection averaged from 10-s epochs of 60-

min recording time. (A) Cav2.3KO versus control mice. (B) Control versus LTG-pretreated control mice. (C) Cav2.3KO versus LTG

pretreated Cav2.3KOmice. Note the similar effect of ablation of Cav2.3 and LTG pretreatment (of control mice).
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Summary
Rationale:  Pathologic  ECG  events  are  known  to  accompany  seizures  and  to  persist  in  several
chronic epilepsy  syndromes.  The  contribution  of  antiepileptic  drugs  (AEDs)  to  these  events  and
the implications  in  the  etiology  of  sudden-unexpected  death  in  epilepsy  (SUDEP)  continue  to
be a  matter  of  debate.  We  therefore  investigated  cardiac  parameters  during  kainic-acid  (KA)
induced  experimental  epilepsy  and  antiepileptic  treatment  with  lamotrigine  (LTG).
Methods: Epilepsy  was  induced  in  seven  C57Bl/6  mice  by  injections  of  KA  (20  mg/kg)  on  days  1
and 5,  which  produced  severe  acute  seizures  and  spontaneous  seizures  10  days  later.  Treatment
with LTG  (30  mg/kg)  was  initiated  on  day  11  and  repeated  on  day  12.  Continuous  ECGs  and  ECoGs

were collected  telemetrically  from  freely  moving  mice.
Results:  Mice  displayed  pre-ictal  but  not  ictal  tachycardia.  The  squared  coefficient  of  variation
(SCV) of  R—R  intervals  was  significantly  elevated  30  s  before  and  during  seizures  compared  to

control conditions.  LTG  produced  a  significant  reversible  increase  in  SCV  and  LF/HF  ratio  during
slow-wave  sleep  (SWS),  potentially  indicative  of  sympatho-vagal  imbalance  during  this  state  of
vigilance, in  which  epileptic  patients  are  known  to  be  particularly  vulnerable  to  SUDEP.
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Significance:  The  KA  model  used  in  this  study  permits  the  investigation  of  cardiac  phenomena
during epilepsy,  as  it  features  many  effects  found  in  human  epileptic  patients.  Increased  LF/HF,
a known  risk  factor  for  cardiac  disease,  which  is  often  found  in  epileptic  patients,  was  observed
as a  side-effect  of  LTG  treatment  during  SWS,  suggesting  that  LTG  may  promote  imbalance  of  the
autonomous  nervous  system  in  epileptic  mice.
© 2014  Elsevier  B.V.  All  rights  reserved.
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Introduction

Kainic-acid  (KA)  is  a  non-degradable  analog  of  glutamate,
which  causes  excitotoxicity  by  agonism  of  kainate-class
ionotropic  glutamate  receptors  (Wang  et  al.,  2005).  Ani-
mal  models  involving  systemic  or  local  injection  of  KA
are  among  the  most  popular  models  of  epilepsy  and  neu-
rodegeneration,  with  over  1500  articles  published  on  the
subject  in  the  last  10  years1.  Systemic  injection  of  KA  is
commonly  used  to  model  mesial  temporal  lobe  epilepsy
(MTLE),  as  it  produces  generalized  seizures  and  progres-
sive  sclerosis  of  the  hippocampus,  which  in  turn  -like  in
MTLE  patients-  leads  to  recurrent  spontaneous  seizures
(Sharma  et  al.,  2007).  Mouse  models  of  human  pathology
offer  several  advantages,  most  notably  genetic  homo-
geneity  and  availability  of  transgenic  animals,  but  they
can  be  technically  challenging  due  to  the  small  size  of
mice.

In  epileptic  patients,  seizures  have  been  shown  to  be
preceded  and  accompanied  by  ECG  changes,  fueling  the
discussion  of  brain  to  heart  interactions,  which  may  be
of  great  relevance  in  the  context  of  sudden-unexpected
death  in  epilepsy  (SUDEP).  Ictal  tachycardia  is  detectable
in  almost  all  patients  of  different  age  groups  (Jansen
et  al.,  2013).  Several  studies  of  different  epilepsy  syndromes
have  described  the  occurrence  of  sympathovagal  imbalance
(increase  of  sympathetic  and  decrease  of  parasympathetic
control  of  heart  rhythm)  (Brotherstone  and  McLellan,  2012;
Lotufo  et  al.,  2012;  Meghana  et  al.,  2012;  Ponnusamy  et  al.,
2012),  which  is  known  to  contribute  to  mortality  and  morbid-
ity  in  cardiovascular  disease  (Mortara  et  al.,  1997;  Schwartz
et  al.,  1988).  Furthermore,  pre-ictal  tachycardia  has  been
observed  in  children  and  adults  with  generalized  seizures
(Jansen  et  al.,  2013;  Schernthaner  et  al.,  1999),  in  adults
with  refractory  epilepsy  (Zijlmans  et  al.,  2002) and  in  chil-
dren  with  refractory  TLE  (Mayer  et  al.,  2004).  How  and
whether  antiepileptic  drugs  (AEDs)  affect  cardiac  function  of
epileptic  patients  is  a  matter  of  debate,  as  data  is  conflicting
and  non-conclusive.  One  study  found  AEDs  to  ameliorate
sympathovagal  imbalance  (Hallioglu  et  al.,  2008),  whereas

another  found  AEDs  to  reduce  ECG  power  and  heart  rate
variability  (HRV)  (Lossius  et  al.,  2007),  possibly  predisposing
patients  to  cardiac  arrhythmia  which  may  be  an  impor-
tant  contributor  to  SUDEP.  A  recent  meta-analysis  of  39

1 PubMed search of the words ‘‘kainic’’ and ‘‘acid’’ occur-
ring in combination with the words ‘‘eplilepsy’’, ‘‘seizure’’,
‘‘excitotoxicity’’, ‘‘neurodegeneration’’, ‘‘hyperexcitation’’ in the
title or abstract of articles published between October 2003 and
October 2013.
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tudies  found  a  trend  of  increased  low  frequency  power
LF)  in  patients  taking  AEDs,  presumably  reflecting  increased
ympathetic  tone  (Lotufo  et  al.,  2012),  possibly  posing  a  car-
iac  risk.  Of  AEDs  potentially  affecting  cardiac  function,  the
odern  broad  spectrum  AED  lamotrigine  (LTG)  is  of  special

nterest.  LTG,  FDA  approved  for  treatment  of  partial  seizures
n  1994,  and  later  for  maintenance  treatment  of  bipolar  I  dis-
rder,  enjoys  great  popularity  and  is  employed  in  treatment
f  several  epilepsy  syndromes  and  [also  as  an  off-label  drug]
f  several  neuropsychiatric  diseases.  LTG’s  wide  therapeu-
ic  applicability  reflects  the  multi-target  nature  of  the  drug
hich  has  been  shown  to  modulate  several  different  sodium,
alcium  and  potassium  currents  (Beck  and  Yaari,  2012).  In
articular,  LTG  has  been  demonstrated  to  inhibit  the  delayed
ectifier  potassium  current,  which  is  crucial  for  cardiac  repo-
arization  and  therefore  plays  a  critical  role  in  maintenance
f  cardiac  rhythm  (Danielsson  et  al.,  2005).  Cav2.3  (R-type)
oltage-gated  calcium  channels,  which  contribute  to  car-
iac  autonomous  control  and  to  intrinsic  rhythm  propagation
Galetin  et  al.,  2012) are  also  inhibited  by  LTG  (Hainsworth
t  al.,  2003),  representing  another  potential  arrhythmo-
enic  mechanism.  Prolongation  of  the  QT-interval,  a  risk
actor  of  arrhythmia  and  sudden  cardiac  death,  was  an  initial
oncern  in  regard  to  LTG  treatment,  however,  some  stud-
es  could  dismiss  this  concern  (Saetre  et  al.,  2009)  and  a
tudy  by  GlaxoSmithKline,  manufacturer  of  the  initial  lam-
trigine  product  Lamictal® found  no  QT  prolongation  or
elated  safety  concerns  (Dixon  et  al.,  2008).  Interestingly
owever,  prolonged  PR  interval  due  to  LTG  treatment  has
een  reported  (Dixon  et  al.,  2011;  Matsuo  et  al.,  1993).  Clar-
fication  whether  LTG  has  potentially  arrhythmogenic  effects
n  the  epileptic  heart  is  of  great  importance,  also  because
t  has  been  reported  that  LTG  increases  the  risk  of  SUDEP
Aurlien  et  al.,  2012;  Hesdorffer  et  al.,  2011),  although  find-
ngs  are  controversial.  Therefore  exact  characterization  of
ardiac  phenomena  in  the  murine  KA  model  of  epilepsy  and
nvestigation  of  cardiac  effects  of  LTG  in  this  model  are  of
reat  importance.

aterials and methods

nimals
even  male  C57Bl/6  mice  between  18  and  22  weeks  of
ge  were  used  in  this  study.  Mice  were  kept  at  20—22 ◦C
n  makrolon  type  II  cages  under  a  12  h  light—dark  cycle
7:00  a.m./p.m.)  with  food  and  water  ad  libitum.  All  animal
xperiments  were  in  line  with  the  European  Communities
ouncil  Directive  for  the  care  and  use  of  laboratory  animals
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nd  were  approved  by  the  local  institutional  committee  on
nimal  care.

adio  telemetric  electrocorticographic  and
lectrocardiographic  recording

adio  telemetric  electrocorticograms  (ECoG)  and  electro-
ardiograms  (ECG)  were  recorded  from  a  total  of  7  mice.
nimals  were  anesthetized  with  100  mg/kg  BW  ketamin-
ydrochloride  (Ketanest,  Parke-Davis/Pfizer,  Germany)  and
0  mg/kg  BW  xylazinehydrochloride  (RompunR  2%  BayerVi-
al,  Leverkusen,  Germany).  TL11M2-F20-EET  transmitters
Datascience  International,  Lexington,  USA)  were  implanted
ubcutaneously  over  the  left  hindlimb  and  burr  holes  drilled
ver  the  somatosensory  cortex  (−1  mm  and  3  mm  lateral
rom  bregma)  for  the  positive  lead  and  cerebellum  (−6.3  mm
nd  1  mm  lateral  from  bregma)  for  the  negative  lead,  leaving
he  dura  intact.  Electrodes  were  inserted  and  fixed  into  posi-
ion  with  glass  ionomer  cement  (Kent  DentalR,  Kent  Express,
K).  Subcutaneous  ECG  leads  were  positioned  laterally  on
ither  side  of  the  animals’  torso.  Animals  were  allowed
even  days  to  recover  from  surgery  (all  made  a  full  recov-
ry)  before  initiating  the  experimental  conditions.  ECoGs
nd  ECGs,  were  recorded  by  DataquestTM A.R.T.TM 3.1  soft-
are  (DSI)  at  a  sampling  rate  of  1000  Hz  without  cut-off  or
ltering  from  freely  moving  animals  in  their  cages  (1  mouse
er  cage),  which  were  placed  on  the  telemetry  receiver  plat-
orms  located  in  the  same  room  in  which  the  animals’  cages
ere  kept  previously.  Locomotion  was  also  recorded  at  a

ampling  rate  of  250  Hz.

hronic  epilepsy  and  antiepileptic  therapy  protocol
n  order  to  reduce  inter-individual  variability  of  overall
eizure  severity  and  to  enhance  the  occurrence  of  sponta-
eous  seizures,  a  double  kainic  acid  injection  protocol  was
mployed.  For  further  information  of  repetitive  injection
rotocols  see  Dudek  et  al.  (2005).  The  experimental  proto-
ol  to  produce  a  chronic  epileptic  condition  characterized
y  spontaneous  seizures  involved  2  injections  of  KA:  on  days

 and  5  20  mg/kg  KA  (Sigma  Aldrich,  Crailsheim  Germany)
issolved  in  saline  was  injected  intra-peritoneally  between
:00  and  10:30  in  the  morning.  30  mg/kg  LTG  KA  (Sigma
ldrich,  Crailsheim  Germany)  was  injected  in  the  same  man-
er  on  days  11  and  12.  24  h  recordings  were  carried  out  on
ays  1,  3,  5,  10,  11,  12  and  13.  Before  the  initial  KA  injec-
ion,  recording  was  carried  out  for  an  hour  to  establish  the
ontrol  condition.

CoG  analysis

EUROSCORE  2.1.0  (Datascience  International)  was  used  to
nalyze  recordings.  An  automated  seizure  detection  proto-
ol  was  written  to  be  able  to  quantify  ictal  activity.  The
rotocol  recognizes  waveforms  shorter  than  200  ms  that  are
etween  2.5-  and  25-fold  the  baseline  amplitude  as  spikes.
pikes  occurring  in  intervals  between  30  and  1500  ms  are
ecognized  as  belonging  to  a  spike  train,  which  must  be  at

east  300  ms  long  and  contain  a  minimum  of  four  spikes.
eizure  with  motor  signs  (SMS)  were  defined  as  spike-trains
asting  longer  than  10  s  during  which  locomotion  took  place,
hereas  non-convulsive  seizures  (NCS)  were  defined  as  a
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luster  of  spike-trains  occurring  with  inter-train  intervals  of
ess  than  3  s  lasting  longer  than  10  s  during  which  no  loco-
otion  took  place.
In  a  previous  study,  in  which  we  collected  ECoGs

nd  video-monitored  mice  after  injection  of  20  mg/kg
Dibué  et  al.,  2013),  we  observed  increased  locomotion,
ecorded  by  TL11M2-F20-EET  transmitters  to  reflect  motor
omponents  of  seizures.  Generalized  seizures  began  with
yoclonic  jerks  in  the  forelimbs,  which  then  expanded  to

he  whole  body,  increased  in  frequency  and  then  became
ncreasingly  tonic  when  the  seizure  had  progressed  for
onger  than  10  s.  Underlying  repetitive  myoclonic  jerk-
ng  were  spikes,  polyspikes  and  spike-and-wave  discharges
ccurring  in  the  delta  and  theta  ranges  (0.4—8).  Tonic  com-
onents  were  reflected  by  the  progression  of  spiking  to
igher  frequencies  in  the  sigma  and  beta  range  (10—25  Hz)
see  Fig.  1A).  Digital  filtering  also  revealed  bursts  of  ultra
igh  frequency  oscillations  (ripples  and  fast-ripples)  during
MS.  During  the  episodes  of  spiking  without  locomotion,  that
e  termed  NCS,  mice  appeared  to  ‘‘freeze’’,  exhibiting  a

igid  posture  and  display  impaired  consciousness,  as  they
o  not  reacting  to  any  stimuli  (for  details  on  murine  KA-
nduced  epilepsy  and  seizure  severity  rating  see  Dibué  et  al.
2013)).  SWS  was  detected  by  Fast  Fourier  Transformation
FFT)  (Hamming  window  with  50%  overlap)  of  the  ECoG  sig-
al:  periods  in  which  the  ratio  of  delta  power  (0.5—4  Hz)  to
otal  power  exceeded  0.4  (i.e.  dominant  delta  band)  and  in
hich  there  was  no  locomotion  were  defined  as  SWS  periods.
akefulness  was  defined  as  periods  in  which  neither  SWS
or  rapid-eye-movement  (REM)  sleep  (defined  by  a  dominant
heta  band  (4—8  Hz)  and  rise  in  theta/delta  ratio)  occured,
xcluding  periods  with  maximal  locomotion.

CG  analysis

requency  domain  analysis  of  the  ECG  was  performed  in
rder  to  calculate  LF/HF  ratios  during  the  various  experi-
ental  conditions.  The  R-peak  of  the  ECG  QRS  complex  was
etected  automatically  and  used  to  calculate  heart  rate  and
—R  intervals.  The  coefficient  of  variation  (CV)  was  cal-
ulated  from  R—R  intervals.  For  each  animal,  data  from
ve  independent  1  min  SWS  periods  (for  each  of  the  differ-
nt  experimental  conditions)  were  combined  and  used  in
he  analysis.  For  the  wake  periods  (control,  pre-SMS,  SMS,
ost-SMS,  NCS,  LTG  (measured  on  day12)  and  withdrawal
rom  LTG)  data  from  three  independent  30  s  periods  were
ombined  and  analyzed.  If  SMS  lasted  less  than  30  s,  data
rom  shorter  SMS  periods  was  combined  to  obtain  the  same
mount  of  data  points..

tatistical  analysis

raphPad  Prism  4  (GraphPad  Software,  Inc,  La  Jolla,  CA,
SA)  was  used  for  statistical  analysis.  Coefficients  of  vari-
tion  were  below  30%  and  were  therefore  squared  and
ubjected  to  the  F-test  for  comparison  of  equality  of  vari-
nce  according  to  (Lewontin,  1966).  Heart-rate  and  LF/HF

atios  were  assessed  for  significant  differences  using  stu-
ents’  paired  samples  t-test.  Data  are  presented  as  the
ean  ±  SEM  based  on  n,  the  number  of  independent  recor-
ings  in  the  corresponding  condition.
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Figure  1  Sample  ECoG  and  ECG  traces  of  control  and  ictal  conditions.  Example  of  progression  of  a  seizure  with  motor  signs  (SMS),
which begins  with  spike-and-wave  discharges,  which  increase  in  frequency  and  then  become  accompanied  by  high  frequency  ictal
discharges (A).  Control  ECoG  and  ECG  (B).  Heart  rate  is  increased  before  SMS  (C)  but  not  during  the  seizure  itself  (D).  Variation  of
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R—R intervals  however,  is  increased  before  and  during  SMS  and  

Results

Kainic  acid-induced  model  of  chronic  epilepsy

The  first  KA  injection  elicited  severe  seizures  in  all  ani-
mals  persisting  for  about  2—3  h.  Seizures  were  characterized
by  several  ictal  waveforms  like  spike-and-wave  discharges,
spikes  and  poly-spike  complexes  (Fig.  1).  One  animal  died
nearly  two  hours  after  the  first  KA  injection.  The  sec-
ond  KA  injection  on  day  5  elicited  seizures  that  were
slightly  less  severe  than  those  observed  on  day  1.  Spon-
taneous  spike  trains  occurred  on  days  3  and  10.  No  spike
trains  occurred  on  the  days  LTG  was  injected  or  on  the
day  of  LTG  withdrawal,  however  inter-ictal  spikes  dur-
ing  sleep  and  wakefulness  were  observed  on  these  days.
No  spike  trains  were  detected  in  the  control  condition
(i.e.  prior  to  KA  injection)  (Fig.  2),  however  in  3/7  ani-
mals,  sleep  spindles  and  other  high  amplitude  waveforms
during  slow  wave  sleep  (SWS)  caused  false  positive  detec-

tion  of  single  spikes.  Therefore,  each  SWS  period  used
for  analysis  was  manually  evaluated  for  false  positive
spikes,  to  allow  distinction  from  seizures  occurring  during
SWS.
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during  non-convulsive  seizures  (NCS),  which  is  shown  in  (E).

ime  domain  ECG  analysis

FT  of  the  ECG  signal  during  wakefulness  under  the  con-
rol  condition  produced  a  periodogram  with  two  peaks
Fig.  3).  Accordingly,  for  frequency  domain  analysis,  the
ow  frequency  ECG  band  (LF)  was  defined  as  0.1—1  Hz
nd  the  high  frequency  band  (HF)  as  1—5  Hz.  Evaluation
f  heart  rate  during  the  different  experimental  condi-
ions  revealed  the  occurrence  of  pre-ictal  tachycardia.
n  the  30  s  preceding  SMSs,  heart  rate  increased  from
87  ±  23  bpm  to  436  ±  23  bpm  (p  =  0.0007),  whereas  during
MSs,  heart  rate  was  significantly  lower  than  in  pre-ictal
eriods  (388  ±  27  bpm  vs  436  ±  23  bpm  p  =  0.0038)  (Fig.  4A).
TG  treatment  did  not  affect  heart  rate,  however  it  did  show
ffects  on  the  squared  coefficient  of  variation  (SCV)  of  R—R
ntervals.  The  SCV  exhibited  a  highly  significant  increase  in
he  pre-ictal  period  as  well  as  during  SMS  (259  ±  136  and
92  ±  187)  compared  to  the  control  condition  and  to  the
ost-ictal  period  (91  ±  16  and  97  ±  15)  p  <  0.001  for  all  com-

arisons  (Fig.  4B).  A  small  but  significant  increase  in  of
CV  was  also  seen  during  NCSs  compared  to  the  control
ondition  (145  ±  49  vs  91  ±  16  p  =  0.0152).  Interestingly,  on
he  second  day  of  LTG  treatment  (day  12),  the  SCV  was
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Figure  2  Kainic  acid-induced  model  of  TLE.  Plotted  are  the  average  summed  duration  of  spike  trains  occurring  in  24  h  (A).  Number
of spike  trains  occurring  in  24  h  recording  periods.  KA  injections  on  days  1  and  5  elicit  severe  seizures  with  motor  signs  and  non-
convulsive seizures.  Spontaneous  seizures  occur  on  days  3  and  10,  but  not  on  days  on  which  lamotrigine  was  injected,  or  upon
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ithdrawal (B).  Interestingly,  although  less  individual  spike  tra
njected (1,5)  the  over  all  duration  of  ictal  activity  is  comparab

ignificantly  elevated  compared  to  the  control  condition
187  ±  82  vs  91  ±  16  p  =  0.0015).  This  LTG-induced  elevation
lso  occurred  during  SWS  compared  to  control  SWS  (216  ±  93
s  88  ±  28  p  =  0.0129)  and  was  found  to  be  reversible,  as  the
CV  returned  to  baseline  at  withdrawal  from  LTG  (216  ±  93
o  95  ±  25  p  =  0.0322)  (Fig.  4C).

requency  domain  ECG  analysis
nalysis  of  the  LF/HF  ratio  as  a  measure  of  sympatho-vagal
alance  in  the  autonomic  nervous  system  (ANS)  did  not
eveal  sympatho-vagal  imbalance  during  wakefulness  after
A  injection.  Although  a  trend  for  higher  ratios  after  KA

njection,  especially  during  SMS  and  NCS  was  observed,  it
id  not  reach  significance,  as  inter-individual  differences
ere  quite  large.  However,  LTG  treatment  significantly

ncreased  the  LF/HF  ratio  during  SWS  compared  to  con-
rol  SWS  (3  ±  0.28  vs  1.5  ±  0.33  p  =  0.0167).  This  effect  was
ostly  reversed  by  termination  of  LTG  treatment  with  the
F/HF  ratio  returning  to  values  closer  to  baseline  (from
 ±  0.28  to  2.1  ±  0.17  p  =  0.0418),  potentially  indicating  a
ympathomimetic  or  parasympatholytic  effect  of  LTG  on  the
pileptic  murine  heart  during  slow  wave  sleep  (Fig.  5).
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igure  3  FFT  periodogram  of  the  ECG  signal  under  control  wake  c
‘low frequency  power’’  =  LF  was  defined  as  0.1—1  Hz  and  ‘‘high  fr
epresents sympatho-vagal  balance  with  high  values  reflecting  high  
ccur  on  days  3  and  10  compared  to  the  days  on  which  KA  was
 days  1,3,5  and  10.

eath  case

ne  mouse  died  110  min  after  the  first  KA  injection.  The
ouse  did  not  display  more  severe  seizure  activity  than

ther  mice  and  did  not  die  due  to  acute  SMSs  as  the  last
MS  occurred  24  min  before  death  (Fig.  6A and  B).  However,
ingle  high  amplitude  spikes  with  inter-spike  intervals  of
0—20  s did  occur  peri-mortally  (about  10  min  before  death).
n  the  last  7 min  before  death,  respiration  took  on  to  a  gasp-
ng  pattern,  with  gasps  occurring  every  10—15  s.  The  EcoG
atlined  for  3  min  before  cardiac  arrest  occurred.  In  the  fre-
uency  domain  of  the  ECG,  about  30  min  after  KA  injection
F  power,  which  was  previously  dominant,  decreased  and
he  ECG  shifted  to  a  pattern  dominated  by  HF  components,
hich  persisted  for  30  min.  60  min  after  KA  injection  total
CG  power  finally  dropped  and  remained  low  until  death
ccured  50  min  later  (Fig.  6C).

iscussion
n  this  study  we  identified  several  cardiac  phenomena  asso-
iated  with  KA-induced  epilepsy  in  mice.  Like  in  some  human
pilepsy  disorders,  tachycardia  preceded  SMSs,  however

ondition  revealed  two  peaks  between  0.1  and  10  Hz.  Therefore
equency  power’’  =  HF  was  defined  as  1—5  Hz.  The  LF/HF  ratio
sympathetic  tone  and  low  values  parasympathetic  tone.
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Figure  4  Paired  t-test  revealed  that  heart  rate  significantly  increased  in  the  30  s  preceding  seizures  with  motor  signs  (SMS),  but
not during  the  SMS  itself  (p  =  0.0038)  (A).  LTG  treatment  did  not  affect  heart  rate  in  any  state  of  vigilance.  The  squared  coefficient  of
variation (SCV)  increased  significantly  in  the  30  s  preceding  SMS  and  during  SMS.  Non-convulsive  seizures  were  also  characterized  by
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increased SCV.  Lamotrigine  significantly  increased  SCV  compare
was also  observed  during  slow  wave  sleep  and  was  found  to  be  

ictal  tachycardia  was  not  observed.  Furthermore,  pre-ictal
and  ictal  increases  in  the  coefficient  of  variation  may  reflect
the  potential  for  peri-ictal  cardiac  arrhythmia.  LTG  treat-
ment  produced  a  reversible  increase  of  the  coefficient
of  variation,  which  was  most  prominent  during  SWS.  Fur-
thermore,  during  SWS  LTG  reversibly  increased  the  LF/HF
ratio  (Fig.  7),  presumably  reflecting  dominating  sympathetic
tone,  a  known  risk  factor  for  cardiovascular  disease.  Inter-
estingly,  effects  of  LTG  on  sleep  architecture  have  been
reported  before.  Three  previous  studies  have  found  LTG

to  reduce  SWS  time,  stage  shifts  and  number  of  arousals
and  increase  REM  sleep  time  in  epileptic  patients  (Foldvary
et  al.,  2001;  Placidi  et  al.,  2000a,  2000b).  This  may  be  an
antiepileptic  mechanism  of  LTG,  as  seizures  and  inter-ictal

d
P
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control  conditions  (B).  This  increase  in  SVC  due  to  lamotrigine
sible  at  withdrawal  (C).

pileptiform  discharges  (IED)  are  precipitated  during  SWS
nd  relatively  inhibited  by  REM  sleep  in  most  human  epilepsy
yndromes  (Bazil  and  Walczak,  1997;  Kumar  and  Raju,  2001;
alow  et  al.,  1998).  However,  because  sympathetic  tone  is
nown  to  be  predominant  during  REM  sleep,  the  opposite
pplying  to  SWS  sleep  (Tobaldini  et  al.,  2013),  sympathetic
one  during  sleep  may  be  generally  enhanced  by  LTG,  pos-
ibly  also  affecting  SWS.  Whether  this  poses  a  potential
ardiac  risk,  must  be  investigated  in  further  studies,  as  well
s  possible  underlying  mechanisms.
Furthermore,  SUDEP  appears  to  occur  more  commonly
uring  sleep,  although  mechanisms  remain  unclear  (Asadi-
ooya  and  Sperling,  2009;  Nobili  et  al.,  2011).  Several
tudies  have  observed  autonomic  changes  in  epileptic
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Figure  5  LF/HF  ratios,  reflecting  autonomous  nervous  system  balance  during  the  different  experimental  conditions.  Lamotrigine
significantly increased  LF/HF  during  slow  wave  sleep  (SWS)  compared  to  control  SWS  (3  ±  0.28  vs  1.5  ±  0.33  p  =  0.0167),  indicating
increased sympathetic  tone  during  SWS.  This  increase  is  reversible  as  LF/HF  ratios  are  no  longer  elevated  upon  withdrawal  SWS.

Figure  6  Heart  rate  and  total  ECoG  power  of  the  30  min  before  death  of  the  only  mouse  that  died.  Heart  rate  drastically  dropped
when the  ECoG  flatlined  but  continued  to  beat  regularly  for  another  3  min  (A).  ECoG  (B)  and  ECG  (C)  spectra  of  the  mouse  that  died
nearly 2  h  after  the  first  KA  injection.  Note  the  clear  shift  of  LF  dominance  to  HF  dominance  of  the  ECG  around  30  min.
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Figure  7  ECG  spectrum  of  one  mouse  during  the  full  experim
elevation of  LF  power  and  reduction  of  HF  power  is  visible  unti

patients  during  sleep,  finding  decreased  heart  rate  variabil-
ity  during  night-time,  suggesting  that  nocturnal  sleep  may  be
more  vulnerable  to  impaired  autonomic  control  (Ferri  et  al.,
2002;  Persson  et  al.,  2007;  Ronkainen  et  al.,  2005).  A  growing
body  of  evidence  lends  weight  to  the  hypothesis  of  extreme
autonomic  imbalance  in  SUDEP  victims  and  it  has  been  sug-
gested  that  mechanisms  similar  to  those  involved  in  sudden
cardiac  death,  such  as  reduced  vagal  tone  during  sleep  and
a  sudden  increase  of  catecholamines  upon  awakening  are
involved  (Nei  et  al.,  2004).  Nevertheless,  the  exact  identifi-
cation  of  risk  factors  for  SUDEP  may  be  key  in  understanding
potentially  reciprocal  mechanisms  behind  brain-heart  inter-
actions  during  epilepsy  and  antiepileptic  pharmacotherapy.
We  conclude  that  this  model  is  permits  the  investigation
of  cardiac  phenomena  during  epilepsy,  as  it  features  many
effects  found  in  human  epileptic  patients.
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Cav2.3 E-/R-type voltage-gated 
calcium channels 
modulate sleep in mice

Introduction

Voltage-gated calcium channels (VGCCs) 
are key components in the pathogenesis 
of various forms of epilepsy [1]. Recent-
ly, we could demonstrate that Cav2.3 E-/R-
type Ca2+ channels are important in mod-
ulating absence epilepsy [2], a pathophys-
iological aberration of the thalamocorti-
cal oscillations that are related to slow-
wave sleep (SWS) [3, 4]. During the last 
decade, several reports have discussed the 
intimate relationship between sleep and 
epilepsy. Even Aristotle noted that “sleep 
is like epilepsy and epilepsy is like sleep” 
(cited in [5]). Epilepsy and sleep both rep-
resent states of the brain. However, while 
sleep is a normal physiological event, ep-
ileptic seizures are of pathophysiological 
origin. Critical comparison of both states 
has led to a more careful distinction be-
tween them [6], particularly in relation to 
the underlying mechanisms of the thal-
amocortical oscillations observed dur-
ing electroencephalogram (EEG) record-
ings, for which some common features 
were initially discussed [6, 7]. Differential 
origins of sleep spindles and spike-and-
wave discharges (SWDs) were identified 
[6], which led to the conclusion that an 
understanding of the underlying mecha-
nisms involved—in which the thalamus 
and the thalamocortical network play a 
central role [9]—will require a detailed 
description of sleep-related ion channels, 
transporters [8] and transmitter receptors.

Shortly after the cloning of T-type 
VGCCs, their neuronal distribution was 
determined by in situ hybridization [10]. 
The transcripts of each of the three T-type 
Ca2+ channels had a unique distribution 

in the central nervous system, particular-
ly in the thalamus and the thalamic reticu-
lar nucleus (nRt), and their patterns of ex-
pression were largely complementary. As 
T-type Ca2+ channels affect afterpotential 
properties and excitability in neurons [11], 
their distribution was also determined in 
the Genetic Absence Epilepsy Rats from 
Strasbourg (GAERS). In addition to ex-
pression of Cav3.1 (alpha1G), Cav3.2 (al-
pha1H) and Cav3.3 (alpha1I), transcripts for 
Cav2.3 (alpha1E) were also analyzed [12]. 
Compared to non-epileptic control rats, 
juvenile GAERS rats display higher ampli-
tude T-type Ca2+ currents in neurons of the 
nRt. Transcripts of Cav2.3, which should be 
considered a mid-voltage-gated Ca2+ chan-
nel, did not differ between the two animal 
groups. This led to the conclusion that 
Cav2.3 may not contribute to the patholog-
ical thalamocortical oscillations character-
istically found in GAERS rats. However, in 
another study using quantitative reverse 
transcription (RT)-PCR and in situ hybrid-
ization, reduced Cav2.3 levels were found in 
the cerebellum and brain stem of GAERS 
rats compared to non-epileptic animals 
[13]. No difference was found in younger 
animals lacking the GAERS epileptic phe-
notype and no difference was recorded for 
Cav3.1 transcripts.

As important as T-type Ca2+ channels 
are in epileptogenesis, they are also cru-
cial for the regulation of sleep and wake-
fulness. T-type Ca2+ channels contrib-
ute substantially to the oscillatory output 
of the thalamus region [14, 15, 16, 17, 18]. 
Although it is well known that all three 
Cav3 T-type Ca2+ channels are comple-
mentarily expressed in the thalamocorti-
cal system, their respective distinct con-

tributions to sleep have yet to be fully de-
scribed. In the nRt, the Cav3.3 T-type Ca2+ 
channel is expressed abundantly, similar-
ly to Cav2.3 E-/R-type channels. Con-
sequently, inactivation of Cav3.3 causes 
a disturbance in the synchronized tha-
lamic network oscillations underlying 
sleep-spindle waves. These were mark-
edly weakened because of a reduced inhi-
bition of the thalamocortical neurons by 
the nRt cells, confirming the central role 
of Cav3.3 T-type channels in rhythmogen-
esis of the sleep-spindle generator [19].

Although it was believed that high-volt-
age-activated Ca2+ channels may not be in-
volved in seizure processes in rat models 
of absence epilepsy, recent evidence from 
Cav2.3-deficient mice suggests their in-
volvement in the murine model [20]. Re-
cordings from tissue slices revealed that 
neurons of the reticular thalamus (RT) 
display oscillatory discharges, which are 
believed to be critical for thalamocortical 
network oscillations related to absence ep-
ilepsy. In brain slices from Cav2.3-deficient 
mice, injection of hyperpolarizing currents 
initiated a low-threshold burst of spikes in 
RT neurons. However, subsequent oscil-
latory burst discharges were severely sup-
pressed and accompanied by significant-
ly reduced slow afterhyperpolarization 
(AHP), suggesting that not only T-type 
Ca2+ channels, but also mid-voltage-gat-
ed Cav2.3 E-/R-type channels contribute to 
oscillatory burst discharges in RT neurons. 
Cav2.3 (highly expressed in the nRt) may 
cooperate with the T-type Ca2+ channels 
expressed in the same or different neurons 
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of the thalamocortical loop, which is part 
of a common neuronal network for sleep 
spindles and SWDs [21].

Since the thalamocortical network 
is connected to absence epilepsy [2, 22] 
and sleep [9, 23], the present study was 
undertaken to elucidate the role of the 
Cav2.3 VGCC in rodent sleep. Sleep ar-
chitecture was investigated in control 
and Cav2.3(−|−) mice using implantable 
EEG/electromyography (EMG) radiote-
lemetry in a spontaneous 24 h sleep para-
digm and pharmacologically (urethane)-
induced sleep.

Materials and methods

Chemicals

All chemicals were analytical grade. Ure-
thane (>99% purity) was obtained from 
Sigma-Aldrich (Steinheim, Germany) and 
dissolved in 0.9% (w/v) NaCl solution.

Study animals

The cacna1e gene encoding Cav2.3 was tar-
geted by homologous recombination in 
E14.1 embryonic stem (ES) cells. A loxP-
flanked neomycin cassette was inserted in-
to the NsiI site of intron 2 and a third loxP 
site was inserted downstream of the Hin-
dIII site. The cyclic DNA-producing re-
combinase (Cre-recombinase) was tran-
siently expressed in correctly targeted ES 
cells, from which the Tα1E1E8 clone was 
identified by Southern blotting of its ge-
nomic DNA. From those ES cells surviv-
ing on puromycin, cells were selected that 
had lost their neomycin cassette (type II 
deletion) to generate a recombined cac-
na1e gene in which exon 2 was flanked by 
two loxP sites [24]. Exon 2 corresponds to 
nucleotides 269–375 of the murine Cav2.3 
subunit (GB L29346).

LoxP-flanked exon 2 ES cells were in-
jected into C57Bl/6 blastocysts. Result-
ing male chimeras were bred to C57Bl/6 

females and the Cav2.3fl/+ genotype of 
agouti-colored offspring was deter-
mined by Southern blot analysis. The cac-
na1e gene was ablated in vivo by mating 
Cav2.3fl/+ and Cre-deleter mice express-
ing Cre-recombinase under the constitu-
tive control of the cytomegalovirus pro-
moter. The Cav2.3 null mutant was back-
crossed into C57Bl/6 as previously de-
scribed [25]. Cav2.3(+|+) control animals 
and Cav2.3(−|−) mice were generated 
from Cav2.3(+|−) littermates by inbreed-
ing two parallel mouse lines with identical 
genetic backgrounds. Cav2.3-deficient and 
control mice of both genders were used in 
this study. Mice were housed in Makrolon 
type II cages and maintained on a conven-
tional light/dark cycle with food and water 
available ad libitum.

The mean body weight of the six mice 
used from each genotype was 32.5±1.0 g 
for control mice and 32.7±2.2 g for Cav2.3-
deficient animals. Mice from both geno-
types were age-matched at the day of im-
plantation (age was 161±5 days for con-
trols and 164±10 days for Cav2.3-deficient 
mice). Mice were used for EEG recordings 
after 10–12 days of implantation.

All animal experimentation was ap-
proved by the local institutional commit-
tee on animal care. All efforts were made 
to minimize animal suffering and to use 
the minimum number of animals re-
quired to produce reliable scientific data.

Telemetric EEG recordings

The telemetry system, anesthesia, implan-
tation procedure and postoperative treat-
ment have been described in detail pre-
viously [26]. The positive electrode of 
the F20-EET transmitter (DSI, St. Paul, 
MN, USA) was implanted over the pri-
mary somatosensory cortex (−1 mm cau-
dally, −3 mm laterally from bregma) and 
the negative electrode over the cerebellum 
(−6.3 mm caudally, −1 mm laterally from 
bregma). Electrodes from the second 
channel of the transmitter were implant-
ed into the trapezius muscle. Mice were al-
lowed 10–12 days to recover from surgery 
before radiotelemetric EEGs and EMGs 
[26] were recorded from six freely mov-
ing Cav2.3-deficient and six control mice 
over a 24 h period to permit recording of 
spontaneous sleep. Thereafter, pharma-

Fig. 1 8 Example 30 s radiotelemetric EEG recordings from control (panel a and c) and Cav2.3-defi-
cient mice (panel b and d). Example traces were selected from recordings during typical slow-wave 
sleep (SWS) periods. During normal sleep, EMG (top) and EEG traces (bottom) were collected during 
the light period, when Cav2.3-competent control mice (a) and Cav2.3-deficient mice (b) had started to 
sleep. During urethane-induced sleep, EMG (top) and EEG traces (bottom) were collected from Cav2.3-
competent control mice (c) and for Cav2.3-deficient mice (d) for 1 h after injection
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cologically-induced sleep was invoked by 
systemic intraperitoneal (i.p.) administra-
tion of 800 mg urethane/kg body weight, 
which was followed up by EEG/EMG re-
cording for 24 h. Because urethane devel-
ops its maximum effect within 30 min af-
ter injection, the first 60 min after injec-
tion were selected for the evaluation of 
sleep stage. During induced sleep, mice 
were placed on a heating plate to main-
tain proper body temperature.

Dataquest™ A.R.T.™ 3.1 software (DSI) 
was used to record EEGs, which were sam-
pled at 1000 Hz without filtering. Neuros-
core 2.1.0 (DSI) was used to calculate the 
absolute and relative power of frequency 
bands (fast Fourier transform based us-
ing a Hamming window). The frequency 
spectrum was defined as follows: δ: 0.5–
4 Hz, θ: 4–8 Hz, α: 8–12 Hz, β: 16–24 Hz. 
The rodent sleep scoring analysis protocol 
assigned a vigilance stage to each epoch 
based on EEG, EMG and activity data. Ac-
cordingly, the sleep stages were grouped 
into: “active wake”, “quiet wake”, “para-
doxical sleep” (PS), “slow-wave sleep 1” 
(SWS1) and “slow-wave sleep 2” (SWS2). 
“Total sleep time” is the time from sleep 
onset until the last wake episode, exclud-
ing wakefulness occurring in that interval. 
“Wake time after sleep onset” (WASO) is 
the summed wake time occurring within 
the sleep period. “Sleep onset” is the dura-
tion from start of scoring until the first oc-
currence of sleep stages (PS or SWS). “PS 
onset” is the duration from start of scor-
ing until the first occurrence of PS. ”SWS 
onset” is the duration from start of scoring 
until the first occurrence of SWS.

The active wake stage was scored when 
muscle tone was high and movements of 
the mice were between low and high. PS 
was recognized by a dominant θ power 
band and an increase in the θ/δ ratio. A 
dominant δ component is significant for 
SWS (i.e. deep sleep) and when the ratio of 
δ power to total power exceeds the thresh-
old of 0.35, SWS2 is awarded, otherwise 
SWS1. The EMG threshold was lowered 
from 20 to 10 μV to ensure a more sensi-
tive detection of movements. In four ran-
domly picked mice (two of each genotype), 
the accuracy of the automatic sleep scoring 
protocol was assessed by manually deter-
mining REM and NREM sleep according 
to classic EEG definitions and evaluating 

the level of activity (locomotion) indepen-
dently of EMG. In these evaluated cases, we 
found the automated protocol to be com-
parable to classic definitions of NREM and 

REM sleep and therefore suitable for com-
parison of sleep parameters in this study.

Spectral analysis was performed on the 
first clearly distinguishable full sleep cy-
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Abstract
Mammalian sleep is characterized by cycles 
of REM and non-REM (NREM), i.e. slow-wave 
sleep (SWS) phases. The major neuroanatom-
ical basis of SWS is the thalamocortical cir-
cuitry, which operates in different functional 
modes to determine the state of vigilance. At 
high vigilance, the tonic mode predominates; 
stages of low vigilance and SWS are charac-
terized by rebound burst firing. Electrophysi-
ologically, rebound bursting depends on low-
threshold Ca2+ spikes and T-type Ca2+ chan-
nels have been shown to modulate SWS. We 
recently demonstrated that Cav2.3 R-type 
Ca2+ channels are capable of modulating ab-
sence seizures, a pathophysiological aberra-
tion of the thalamocortical oscillations relat-
ed to SWS. We thus analyzed sleep architec-
ture in control and Cav2.3(−|−) mice using 
implantable electroencephalography (EEG)/
electromyography (EMG) radiotelemetry 

during spontaneous and urethane-induced 
sleep. The results demonstrate significant-
ly reduced total sleep time and impairment 
of SWS generation in Cav2.3(−|−) mice, which 
affects global sleep architecture (i.e. the ratio 
of REM to NREM). Furthermore, the relative δ 
power is significantly reduced in Cav2.3(−|−) 
mice during NREM sleep although these mice 
display longer prior wakefulness, possibly in-
dicating disturbances in sleep homeostasis. 
This observation is supported by recordings 
following urethane administration. This is the 
first study to shed light on the fundamental 
role of Cav2.3 channels in rodent sleep phys-
iology.

Keywords
Telemetry · Electroencephalography · Slow-
wave sleep · REM sleep · Ion channel

Modulation des Schlafs durch spannungsgesteuerte 
Cav2.3-E- und Cav2.3-R-Typ-Kalziumkanäle in Mäusen

Zusammenfassung
Säugerschlaf ist von zyklischen REM- und 
Non-REM-Stadien [Langsame-Wellen-Schlaf, 
„slow-wave sleep“ (SWS)] gekennzeichnet. 
Die wichtigste neuroanatomische Grund-
lage für den SWS bildet der thalamokorti-
kale Schaltkreis, der in zwei verschiedenen 
funktionalen Modi arbeitet, die die Vigilanz 
bestimmen: im tonischen und im Rebound-
burst-Modus. Bei hoher Aufmerksamkeit do-
miniert der tonische Modus, wohingegen 
schwache Aufmerksamkeit und langsamer 
Wellenschlaf von „rebound bursts“ ge-
prägt sind. Elektrophysiologisch hängen „re-
bound bursts“ von niederschwelligen Ca2+-
Spikes ab. Dementsprechend wurde gezeigt, 
dass T-Typ-Kalziumkanäle SWS modulie-
ren. Kürzlich zeigten wir, dass Cav2.3-E- bzw. 
Cav2.3-R-Typ-Kalziumkanäle für die Modu-
lierung von Absencen verantwortlich sind. 
Diese beinhalten eine pathophysiologische 
Störung der thalamokortikalen Oszilla-
tion, die mit dem SWS verwandt ist. Deswe-
gen untersuchten wir die Schlafarchitek-
tur von Cav2.3-kompetenten und Cav2.3-

defizienten Mäusen wofür wir die implan-
tierbare Elektroenzephalographie(EEG)/
Elektromyographie(EMG)-Radiotelemetrie 
während des natürlichen 24-h-Schlafs und 
des mit Urethan pharmakologisch induzi-
erten Schlafs einsetzten. Unsere Ergebnisse 
zeigen im Vergleich mit Kontrollmäusen, dass 
die generelle Inaktivierung der Cav2.3-Kanäle 
in einer Mauslinie die Gesamtschlafzeit sig-
nifikant reduziert, die Generierung von SWS 
in Cav2.3-defizienten Mäusen beeinflusst 
und in die globale Schlafarchitektur eingreift, 
d. h., das Verhältnis von REM und SWS verän-
dert. Interessanterweise wird diese Beobach-
tung auch durch die Aufzeichnungen bei der 
darauf folgenden Gabe von Urethan gestüt-
zt. Dies ist die erste Studie, die eine funda-
mentale Rolle des Cav2.3-Kanals in der Schlaf-
physiologie der Nager aufzeigt.

Schlüsselwörter
Telemetrie · Elektroenzephalographie · 
Langsame-Wellen-Schlaf · REM-Schlaf · 
Ionenkanal
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cle of the 24 h recording of spontaneous 
sleep performed for each mouse. A sleep 
cycle was defined as an episode of all three 
sleep stages (SWS1, SWS2 and PS), bor-
dered by at least 1 min of active wakeful-
ness. The average relative power of the fre-
quency bands δ, θ, α and β was comput-
ed for the three sleep stages and compared 
between the two genotypes.

Statistical analysis

Data are displayed as mean ± SEM. The 
distribution of relative spectral power was 
assessed using the Shapiro–Wilk test of 
normality and found to be mostly non-

normally distributed. Therefore, relative 
power values were log transformed (log(x/
(1-x))) to obtain a more Gaussian distri-
bution, before being subjected to analy-
sis of variance (ANOVA) [27]. Statisti-
cal comparison was performed for the da-
ta in . Fig. 4 and . Fig. 5  using the stu-
dent t-test, with p<0.05 considered as sig-
nificant (*) and p<0.01 as highly significant 
(**). For the parameters of total sleep time, 
WASO and active wake (. Fig. 1, 2, 3, 4), 
the denoted values were certified with the 
Levene’s test for equality of variances and 
represent assumed variances. The Mann–
Whitney U test verified the significanc-
es for the duration of SWS2, the SWS2–

PS transition and the single longest active 
wake and SWS2 sleep stages.

Results

Analysis of duration and 
latencies of sleep stages during 
the 24 h spontaneous sleep

Telemetric EEG recordings of normal 
and urethane-induced sleep reveal no ob-
vious differences between Cav2.3-com-
petent (. Fig. 1a and c) and Cav2.3-defi-
cient mice (. Fig. 1b and d) during short 
30 s recordings from SWS periods. How-
ever, differences between the genotypes 
became evident when evaluating the total 
recording periods (24 h for normal sleep 
and 60 min for urethane-induced sleep).

During the 24 h of spontaneous sleep/
wakefulness activity, WASO, sleep on-
set and PS onset were comparable be-
tween both genotypes (. Fig. 2), howev-
er the total sleep time of control animals 
(910±127 min) was significantly longer 
(p=0.039) than that of Cav2.3(−|−) mice 
(597±36 min, compare the mean values la-
beled by an asterix in . Fig. 2a and c). As 
depicted in . Fig. 3, the duration of sleep 
stages quiet wake, PS and SWS1 did not 
differ between the two genotypes, how-
ever control animals exhibit significant-
ly shorter (p=0.043) active wake periods 
(501±133 min) compared to Cav2.3-defi-
cient mice (821±38 min). SWS2 was sig-
nificantly longer in control (503±43 min, 
. Fig. 3a) than Cav2.3 knockout (KO) 
mice (227±44 min, p=0.001 . Fig. 3b). 
Correspondingly, Cav2.3(−|−) mice ex-
hibited the longest single active wake 
(p=0.015) and the shortest SWS2 stage 
(p=0.002, . Fig. 3b). Furthermore, the 
number of transitions from SWS2 to PS 
shows a significant difference between 
the genotypes (controls: 16±5 vs. Cav2.3-
KO: 2±1, p=0.022), while all other tran-
sitions were comparable between both 
genotypes. Noticeably, a high scatter was 
found in control animals for total sleep 
time, WASO and active wake (. Fig. 2 
and . Fig. 3). In conclusion, ablation of 
Cav2.3 disturbs normal sleep behavior in 
adult male mice by shortening SWS2 and 
total sleep time, which is logically accom-
panied by an increase in active wake time 
in Cav2.3-deficient mice.
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Spectral analysis of 
spontaneous sleep

Spectral analysis of the first sleep cycle re-
vealed significant differences in the spec-
tral distributions of the two genotypes dur-
ing all three sleep stages (. Fig. 4a). Dur-
ing both SWS stages, Cav2.3-KO mice dis-
play significantly less relative δ power com-
pared to controls, potentially representing 
reduced depth of NREM sleep (. Fig. 4b, 
left and middle panels). During SWS and 
PS, Cav2.3-KO mice display significant-
ly increased relative θ power compared to 
control mice, reflected by the decrease in 
other frequency bands (. Fig. 4b). Inter-
estingly, although Cav2.3-KO mice appear 
to sleep less, they do not display increased 
δ power that would reflect a greater inten-
sity of SWS.

Urethane-induced sleep

For the evaluation of urethane-induced 
sleep, the first 60 min after injection of 
urethane were selected, since urethane 
develops its maximum effect 30 min af-
ter injection. As shown in . Fig. 5, dur-
ing urethane-induced, i.e. artificial sleep, 
total sleep time was significantly lon-
ger in control animals (p=0.034). The 
duration of active wake is increased in 
Cav2.3(−|−) mice (controls: 7±2 min vs. 
Cav2.3-KO: 22±6 min; p=0.027). Further-
more, a significant difference in the du-
ration of PS was observed between both 
genotypes (controls: 1.4±1.5 vs. Cav2.3-
KO: 0.03±0.08 min; p=0.048).

In contrast, no difference was found 
between the two genotypes in the du-
ration of deep sleep (SWS2) (controls: 

45±2 min vs. Cav2.3-KO 35±6 min; stu-
dent’s t-test p=0.16). SWS1 comparisons 
were also equal. The number of transi-
tions from active wake to quiet wake was 
significantly increased in Cav2.3-KO mice 
(p=0.022). Furthermore, the maximum 
single active stage duration is also in-
creased in control animals (p=0.008). The 
Mann–Whitney U test verified the signifi-
cances for the total sleep time, sleep onset, 
SWS onset, duration of active wake and 
PS and the active wake–quiet wake tran-
sition. Interestingly, the scatter is higher in 
the Cav2.3(−|−) mice group, whereas con-
trols exhibit homogeneous values (for all 
p-values: two-tailed t-test with n=6 and 
significance level p<0.05). The results for 
urethane-induced sleep are summarized 
and compared to normal sleep (. Fig. 5).

Discussion

The observed differences in sleep ar-
chitecture mainly affected the duration 
(. Fig. 5) and intensity of deep NREM 
sleep (. Fig. 4). The number of transi-
tions from SWS2 to PS during 24 h, as well 
as the duration of SWS2 and PS implicate 
Cav2.3 E-/R-type Ca2+ channels as modu-
lators of thalamocortical signal transduc-
tion. Duration, timing and depth of sleep 
are regulated by two interacting process-
es: a homeostatic factor (which regu-
lates depth and duration of sleep), with-
in a circadian rhythm (which is the factor 
that determines the timing of sleep) [28]. 
While slow-wave activity is mainly not in-
fluenced by circadian factors, the intensi-
ty of δ waves in deep sleep stages and the 
propensity to sleep are both proportional 
to the duration of prior wakefulness [29, 
30]. Sleep homeostasis is therefore depen-
dent on the interval since the last sleep ep-
isode and the depth of this sleep. Remark-
ably, although Cav2.3-KO mice sleep less 
and therefore endure longer periods of 
wakefulness, they do not exhibit deep-
er sleep, indicating disturbances in sleep 
homeostasis and therefore a role of Cav2.3 
calcium channels in sleep homeostasis.

As recently summarized for other re-
gions and species [33], murine Cav2.3 
VGCCs are expressed in most basal gan-
glia regions, the thalamus, the hypothala-
mus, the amygdala, the hippocampus and 
the cortex [31, 32]. Two major splice vari-
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ants exist in the central nervous system 
[34]; one being unique to the cerebellum 
[35]. On the protein level, Cav2.3 has been 
identified in the nRt region, the neocortex 
and the hippocampus [34]. Thus, Cav2.3 
is expressed in regions that are known to 
contribute to the modulation of the thala-
mocortical network.

Humans and animals spend a third of 
their lives asleep. However, we have yet 
to fully understand why sleep is neces-
sary. Although it is evident that it is main-
ly the brain that requires sleep, the main 
function of sleep and the induction there-

of have yet to be completely elucidated. 
Sleep induction and the increasing depth 
of NREM sleep measured as slow oscilla-
tions are proposed to result from the inhi-
bition of the thalamic relay nuclei mediat-
ed by the nRt, where Cav2.3 is highly ex-
pressed [12]. A finely tuned interplay be-
tween GABAergic inhibitory postsynaptic 
potentials received from nRt neurons and 
two types of voltage-gated channels (T-type 
Ca2+ channels and hyperpolarization-acti-
vated cation channels) modulates the ac-
tivity of thalamocortical projections [36]. 
Besides this interplay, additional changes 

in conductance contribute to such oscil-
lations as well [37, 38]. Recently, a T-type 
Ca2+ channel has been connected to the 
initiation of synchronized thalamic net-
work oscillations underlying sleep spindle 
waves: deletion of Cav3.3 markedly weak-
ened (but did not abrogate) thalamic net-
work oscillations suggesting a central role 
for Cav3.3 VGCCs in the rhythmogenic 
properties of the sleep spindle generator 
[39]. One may postulate that Cav2.3 could 
contribute to such a regulation, since both 
channels are expressed in the nRt region. 
Repetitive burst firing in nRt neurons was 
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also shown to be dependent on intracellu-
lar Ca2+ homeostasis, which is affected by 
several mechanisms and actions of trans-
porters and ion channels [8, 40].

The use of γ-butyrolactone to induce 
absence epilepsy in two Cav2.3-deficient 
mouse models has led to opposite conclu-
sions regarding to the ability to induce ab-
sence epilepsy [2, 41]. In brain slices from 
Cav2.3-deficient mice, injection of hyper-
polarizing current initiated low-threshold 
bursts of spikes in nRt neurons. Howev-
er, subsequent oscillatory burst discharg-
es were severely suppressed in Cav2.3-de-
ficient mice, with a significantly reduced 
slow AHP [41].

In our own model of Cav2.3-defi-
cient mice, we investigated absence-spe-
cific SWD susceptibility by systemic ad-
ministration of γ-hydroxybutyrolactone 
followed by electrocorticographic radio-
telemetric recordings, behavioral analy-
sis and histomorphological characteriza-
tion. Based on motoric studies, SWD and 
power-spectrum density (PSD) analysis, 
our results demonstrated that Cav2.3-de-
ficient mice exhibit increased absence sei-
zure susceptibility [2]. So far, the discrep-
ancy between the different mouse knock-
out models is unclear. However thala-
mocortical rhythmicity is altered in both 
models as compared to the corresponding 
control mouse line.

Furthermore, spectral analysis re-
vealed differences between both geno-
types during REM (PS) sleep. Interest-
ingly, SNX-482—a selective antagonist of 
Cav2.3—was found to attenuate carbachol 
inhibition of somatic spike-evoked calci-
um transients in the laterodorsal tegmen-
tum (LDT), which projects to the REM-
induction site of the brainstem [42]. Be-
cause the spike-evoked calcium influx 
dampens excitability in the LDT, it is con-
ceivable that muscarinic control of Cav2.3 
regulates firing rate and responsiveness to 
excitatory inputs during states of high fir-
ing, like during REM sleep.

Future studies involving region-spe-
cific neuronal inactivation of Cav2.3 may 
help to understand the interplay of ion 
channels, transporters and signaling re-
ceptors that is important for sleep homeo-
stasis. In mice, Cav2.3 evidently represents 
an important participant, as far as it can be 
concluded from its general ablation.
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