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Introduction

Neurobiology is a field of science that has had its advances in the twentieth century: indeed
the nerve cell had not been known before 1891 when the Spanish scientist Santiago Ramén y
Cajal (1852-1934) found it. Before this finding thinkers like Plato and Descartes believed that
the brain is tightly connected with the soul but its structure and physics was not analyzed
in its elements, the neurons. Hence this field of science is rather young and we should not
expect too much knowledge of the mechanisms underlying the population dynamics of such a
large assembly of excitable cells as our brain is. Further, if our behavior, consciousness and
free will are emergent phenomena of the nervous system, the complete understanding of the
mechanisms of the brain would provide a logical paradox. So it is not surprising that, when
we observe our inherent instrument of observation, we drown in a sea of complexity.

Nevertheless, progress has been made and eleven Nobel prices in physiology stress the
attention that is paid to this field. Whereas physiological discoveries continue, another aspect
has gained attention in the last decades. Driven also by the desire to build machines that
can think, an understanding of the functional properties of the nervous system like memory,
object recognition, classification of data, etc. is a very attractive research subject. Scientists
try to capture these phenomena with computer simulations of mathematical models which
are inspired by physiological findings.

A

X
real brain

unit complexity

computable models

network complexity

The figure should illustrate the problem that arises from limited computational facilities.
Either a model includes many details of the single neurons and simulations are restricted to
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small networks with a small number of synapses or the model uses a very reduced model of
the single neuron and achieves the computability of more complicated networks. In that way
the dynamics of real neural networks can be approached from two directions. One approach
is based on the Hodgkin-Huxley model which was found in 1951 and which describes the
dynamics of a neuronal membrane by a set of nonlinear differential equations. Models of this
type are mainly used to analyze the dynamics of neural networks. The other approach, which
is represented by e.g. the Hopfield model from 1982, tries to capture cognitive aspects like
memory with very abstract models of the single neuron.

Epilepsy research in the past has mainly been carried out by using detailed differential
equation models of single neurons which are interconnected to networks. This thesis tries to
approach the phenomenon of epileptic seizures using a method that comes from the other
side. Inspiring to this work was the previously started research at the mathematical institute
here at the university of Cologne. In the group of Prof. Kiipper the analysis of a differential
equation model and computer simulations of small networks are employed in the investigation
of epileptiform dynamics.

It is the crucial question of this work if the dynamics which underlie epileptic seizures can
also be captured when we use a neuron model which is reduced as much as possible. The sim-
plicity of the units should help to identify the part of the network in epileptogenesis. Starting
with the very reduced Hopfield model which originates from theoretical physics, modifications
and refinements will be made until eventually the model captures the characteristic features
of epileptiform activity:

A spontaneous onset of regularly oscillating activity, with an increased amp-
litude and a decreased frequency.

The first chapter will briefly summarize the physiological facts of neural networks as well
as the phenomenology of brain waves and epilepsy. The second chapter will review some of
the important network models which are applied to computer simulations of neural networks.
This chapter shows the width of the spectrum of the current models of neural networks from
the compartment models with up to 30 differential equations per neuron to the very reduced
Hopfield model. Computer simulations of the latter were the starting point of my work.
The quest for a simple epilepsy model converged to the model which is described in the
third chapter. Simulation results of the newly developed model, the phenomenology and the
parameter dependence are presented in chapter four. Chapter five concludes the thesis with
a discussion of the new results presented in chapters 3 and 4.



1 Biological Neural Networks

1.1 Neurons

A neuron is one type of the variety of specialized cells animals are built of. Being a cell means
that a couple of complex structures swimming within an electrolytic liquid is enclosed by a
double lipid layer which is called membrane. The complex structures inside include those
which are found in most cells and maintain the metabolism, i. e. nucleus, mitochondria, Golgi
apparatus etc. The important specializing features of the nerve cell are its special shape and
its excitability.

1.1.1 Structure

The shape of the neuron includes comparably long ramified tentacles which project from the
cell body and reach a couple of millimeters or, in the case of motoneurons, even centimeters.
This structure is usually divided into axonal tree, dendritic tree and soma. The general case
is that a cell spreads its informational output via the axonal tree whereas it receives its input
via the dendritic tree. In the middle of these branches is the soma where all the input comes
together and the output is formed (cp. fig. 1.1). Information is passed in form of electrical
potentials which propagate from the soma along the axon to the synapses thereby scattering
the signal in various directions. The synapses transfer the signal to other neurons via chemical
substances and thus induce electric potentials in the postsynaptic cell. Postsynaptic potentials
(PSPs) in turn propagate along the dendrites and accumulate at the soma.

1.1.2 Membrane potential

An important feature which the neuron shares with e.g. the heart cell is that it is excitable.
This means that the electrical potential difference at the membrane is used to communicate
with other cells. There are many types of ions present in the fluid inside and outside the
cells, the most important are Nat, K+, Ca®™t, C1 . The ions are not equally distributed: K
is accumulated inside the cells whereas Na* is concentrated outside. Selective permeability
of the membrane and active transport of the ions by ion pumps under consumption of ATP,
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Figure 1.1: A schematical illustration of the neuron which consists of dendrites, soma and
axon. The information flow is ideally from left to right: APs propagate along the
axons to the synapses, at the synapses PSPs are induced in the dendrites.

maintain these concentration gradients against the equilibrating effect of leaks and functional
membrane currents. The different concentrations of ions on both sides of the membrane bring
along a gradient of the electric potential which also contributes to the energy balance of the
system. The electrochemical potential with respect to a single type of ions is minimized at a
certain potential difference E; across the membrane, which is called the reversal potential of
this kind of ion.

Thus, if by any reason a Na™ channel opens, which selectively allows Na™-ions to pass
the membrane, the membrane potential will be attracted by FEn,, the reversal potential of
Na™. When the membrane potential, measured as inside minus outside, is below the reversal
potential Fya, the opening of the channel will result in an increase of the membrane potential.
When the current membrane potential is higher than the reversal potential of Na™, then the
opening of a Nat-channel will decrease the membrane potential. This is the mechanism by
which transmembrane proteins which are selectively permeable for different kinds of ions can
locally regulate the membrane potential. The capacity of the neural membrane is rather small
so that even the ion currents of action potentials hardly affect the concentration gradient [36].

When the neuron is passive, the membrane potential is about -70mV whereas the reversal
potentials for Na™ and K™ are +90mV and -90mV respectively [46]. As the resting potential
of the membrane corresponds to a negative polarization of the membrane, ionic currents which
increase the membrane potential are referred to a depolarizing currents whereas ionic currents
that decrease the membrane potential are called repolarizing or hyperpolarizing respectively.
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1.1.3 Action potential

The action potential (AP) is a sudden increase of the membrane potential to about +60mV
which is then immediately repolarized. The process is triggered by a sufficient depolarization of
the membrane to -60mV at the initial segment or axon hillock where the axon sprouts from the
soma. In this region the membrane is especially excitable and thus a membrane depolarization
of the soma effects first of all a conformational change of ion channels in this region. As the
permeability of the ion channels in turn regulates the membrane potential, the AP is the result
of a complex feedback process. The ion channels which react first to the depolarization are
selectively permeable for sodium ions, thus a depolarizing current occurs and the membrane
potential rises. With the increasing depolarization the sodium conductivity is further increased
and thus the process is accelerating rapidly. With a certain delay, when the membrane is
sufficiently depolarized, also the potassium channels open and effect a strong repolarizing
current that decreases the membrane potential below the resting potential to -80mV. This
hyperpolarization terminates the action potential which lasts one millisecond. After each AP
it takes some time until the membrane potential regains its resting value. Immediately after
the action potential the ion channel proteins can not switch into the conductive conformation
and the membrane is inexcitable, thus another action potential can not be fired until about
2 to 5 milliseconds have passed. This period is called the refractory period and it limits the
firing frequency of the neuron.

Due to the cable properties of the axon the depolarization of the membrane during the
action potential spreads also to the membrane section next to the initial segment. This
depolarization suffices to trigger the same sequence of ionic currents in the adjacent membrane
section and this way the iteration of this process makes the AP propagate along the axon. The
refractory period of the ion channels implies that the propagation is directed. The achieved
propagation speed of APs in axons of cortical neurons is about 2m/s. In motoneurons the
cable properties of the axons can be improved by a myelinic covering of the membrane which
decreases the capacity and increases the resistance of the membrane. The myelinic cover is
frequently interrupted at segments where the ion channel density is very high and thus an
action potential can easily be triggered. Between these points the signal propagates via the
electrotonic conduction mechanism of the axon. The combination of electrotonic conduction
and active amplification by action potentials, which is called saltatory conduction, yields a
maximized propagation speed of 10-120m/s.

Hodgkin and Huxley developed a detailed mathematical model describing the generation
of action potentials which until today plays an important part in computer simulations of
neural processes [43]. The model is thus briefly described in section 2.1.1.

1.1.4 Synapses

Synapses are the junctions between neurons, they can be divided into electrical and chemical
synapses, further they are classified as axo-axonical, dendro-dendritical, axo-somatical, etc.
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according to the tangent segments of the neurons. Among this variety the most common type
is the chemical synapse where the axon of the presynaptic neuron and the dendrites of the
postsynaptic neuron meet.

On the presynaptic side of the synapse small vesicles accumulate within the axon. The ves-
icles carry the neurotransmitters, chemical substances which affect transmembrane proteins in
the postsynaptic dendrital membrane. Ca™t-influx associated with a passing or terminating
action potential effects a fusion of the vesicles with the membrane of the presynaptic cell and
a release of the neurotransmitter into the synaptic cleft. When the neurotransmitter arrives
at receptor proteins in the postsynaptic membrane it effects the opening of ion channels which
induces currents through the postsynaptic membrane. Depending on the sign of these post-
synaptic currents (PSCs), i.e. whether they result in a depolarization or a hyperpolarization
of the postsynaptic membrane, they are called excitatory or inhibitory. The induced alter-
ations of the membrane potential are called excitatory postsynaptic potentials (EPSPs) or
inhibitory postsynaptic potentials (IPSPs) respectively. The temporal structure of PSPs (if
they are fast or slow) is important for the network dynamics as the input coming from the
network to one neuron accumulates spatially and temporally: a volley of EPSPs which are
induced by different neurons of the network is more likely to induce an action potential in the
postsynaptic cell when the single EPSPs arrive in fast temporal sequence.

The variety of the chemical substances and the appropriate receptors make the synaptic
transmission a very complex procedure. Different transmitter substances and receptors in-
duce PSPs of different sign, i.e. excitatory or inhibitory and different kinetics, e.g. different
duration, time to peak. The general case is that every transmitter substance affects only
certain types of receptors and that every receptor regulates the permeability only for certain
types of ions. Now Dale’s principle states that through its metabolic unity a neuron has the
same collection of transmitters at all its synapses [22], thus it comes out that in the majority
of cases a neuron exclusively has either inhibitory synapses or excitatory synapses. However
the truth is more complex: as the equilibrium potentials of ions depend on the extracellular
concentrations which are subject to fluctuations and are even modulated it may occur that
the postsynaptic potentials reverse in some cases. Recently the GABA, receptor which is
usually believed to induce inhibitory PSPs has been hypothesized to induce depolarization
with a slower characteristic time than most other excitatory PSPs [11].

Neurological disorders like e. g. epilepsy may be related to malfunctions of the transmitter
production or the receptors. Most pharmaceuticals for the treatment of brain disorders,
narcotics, toxins etc. work via influencing synaptic transmission. The principles are either
mimicking a neurotransmitter by a substance which docks at the receptor protein and causes
the opening of ion channels, these substances are called agonists, or blocking the receptor
without an effect but making the receptor irreceptive to any agonist, these substances are
called antagonists. Table 1.1 gives an overview of the most important neurotransmitters,
receptor types, their agonists and antagonists. Further, one can not only block selected types
of postsynaptic potentials but pharmacology also provides the possibility to change their
shape. The application of barbiturates, e.g. pentobarbitone, prolongs the IPSPs effected by
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receptor type ions agonist antagonist
AMPA (exc., fast) | Nat, KT, Ca*t™ AMPA DNQX, NBQX
NMDA (exc., slow) | Nat, KT, Ca’* | ACPD, NMDA | D-AP5, CPP, NBQX
GABA, (inh., fast) Cl- GABA, muscimol | bicuculline, picrotoxin
GABAg (inh., slow) K* GABA, baclofen phaclophen

Table 1.1: The most important receptors for synaptic transmission in the cortex.

f-band name correlated behavior
30-100Hz gamma alert, concentrated
15-30Hz beta

8-12Hz alpha  awake, relaxed, eyes closed

3-THz theta sleep

0.5-2Hz delta deep sleep

Table 1.2: Brain waves

GABA, receptors. In the case of 40Hz oscillations (cp. section 1.2.1) this change of PSP
duration can also have an effect apparent at the system level as lowering the frequency of
population oscillations [30, 89].

1.2 Oscillations in Neural Networks

1.2.1 Brain waves, 40Hz Oscillations

Oscillations in the electrical activity of neural networks have been found in 1929 by the German
physician Hans Berger [8]. He was one of the first who measured potential differences from the
scalp of humans and is often called the inventor of electroencephalography. In particular he
observed oscillations of the measured potential in a frequency range between 8 to 13 Hz which
are called alpha waves. The discovery that alpha waves become apparent in the EEG when
the measured person closes his eyes has been named “Berger effect”. Similar oscillations of
different frequencies are apparent in the EEG at any time, these oscillations are called “brain
waves”. The brain waves have been classified according to their frequencies, further it has
been found that brain waves of different frequencies are roughly correlated with the behavioral
state, (see table 1.2). Although there are some plausible hypotheses concerning the functions
and mechanisms of the brain waves, research in this field is far from being complete.
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Function: feature binding, scene segmentation and perception

From the beginning of electroencephalography until the end of the 1970ies it was believed that
the EEG waves are nothing but noise corresponding to “idling of the brain” which has to be
filtered out in order to get to the important data, i.e. the event related potentials [6]. Later
oscillations have been observed to be in many cases correlated with certain stimuli. Since the
early eighties several publications have been made suggesting that oscillations serve important
functions in the cognitive processes. Especially in the olfactory bulb gamma waves appear as
a reaction to stimulation with odorants [38]. Oscillations in this area have been hypothesized
to rely on inhibitory feedback and the frequency of the oscillations to be determined by the
time delay of the feedback loop.

In recent years gamma waves have been found to play a major roll in the synchronization
of distributed parts of the brain which is important for the recognition of objects as ensembles
of features and the distinction of features belonging to different objects [29]. It is thought that
objects in the surrounding world are represented in the brain by ensembles of neurons. There
are two competing theories of how this is organized. The “single cell hypothesis” claims that
objects are generally represented by synaptically interconnected ensembles of neurons. Thus
all memorized patterns are hard wired in the brain and can be recalled by synchronous mutual
ignition of APs within the representing set of neurons (cp. section 2.2.1). Thus the problem
arises that the number of thinkable objects is reduced: even if every single cell represents a
single object then the combinatorial variety of objects that can be distinguished by far exceeds
the number of neurons in our brain. If however various ensembles of neurons taken from the
same basic set represent the objects, the combinatorial variety is also present inside the brain
as a very large number of possible sets. But then the resolution of the different memories is
gone as computer simulations with simple attractor neural networks show [86].

An alternative suggestion has been that only features of objects like green, round, soft, etc.
are hard wired and that the combinatorial variety within the brain is achieved by temporal
coding. This means that ensembles that represent features of the same object are in phase
whereas ensembles that represent features of different objects are out of phase. It has been
suggested that this phase relation is bound to different cycles in the gamma oscillation which
is known to correlate with attention. Thus when we see a scene in which a red circle and a
blue triangle appear the ensemble ‘triangle’ and the ensemble ‘blue’ fire within one gamma
cycle whereas the ensembles ‘circle’ and ‘red’ fire in the next [55].

Final evidence of the correlation of 40Hz gamma oscillations and cognitive processes has
been given in 1999 by Rodriguez et al. [77, 80]. Probands have been shown moony faces
which could be either recognized as a face or discarded as meaningless, the test persons were
asked to push a button when they saw a face. During the period from the beginning of the
presentation up to 400ms after presentation increased gamma activity has shown up which
has been significantly stronger when the proband perceived a face in the picture. The most
convincing observation, however, has been that when perceiving a face, synchrony of the
gamma oscillation over distant parts of the scalp could be seen whereas the oscillations were
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not synchronous when no face was recognized. To summarize the idea: Perception of a face
from this type of picture requires a lot of different features, i. e. angles, curves etc., which have
to be put together to form a face. Assuming that the representing neuronal ensembles of the
single features are spread over the scalp, long range synchrony may be the clue that these
features have been identified as belonging to the same object and can be recognized as a face.

Later, this principle has been expanded such that 6Hz theta oscillations in the hippocam-
pus bind objects together and form ensembles of objects [54, 55]. According to this latter
hypothesis the period of the theta oscillation covers about seven cycles of the gamma oscil-
lation each of which represents another object. This ratio of periods has been proposed to
explain why one can have in mind only seven objects at the same time, a fact that has been
found out in psychological experiments in 1956 [66]. The hypothesis is that a hierarchical
order exists such that basic features are represented by synaptically interconnected neuronal
ensembles, objects are represented by ensembles of features which are temporally bound to-
gether in gamma cycles and associations are represented by ensembles of objects which are
temporally bound together in theta cycles.

Mechanisms of 40Hz oscillations

Not much is definitely known on the mechanisms which underlie brain waves whereas there
are lots of different hypotheses. It is possible that brain waves of different frequency bands
and in different regions of the brain depend on different mechanisms. Most theories agree
that as the EEG measures a large population of neurons, thus the oscillation of the EEG
signal indicates synchronous firing of the neurons as a collective phenomenon. Some possible
mechanisms that have been proposed to underlie that synchronization are listed below.

e The oscillation could be initiated by pacemaker neurons which are intrinsically oscillating
and drive the rest of the population [57]. In this case the conditions for synchronization
of the neurons would be interesting, but the population serves as an amplification of the
pacemaker and has no indispensable contribution to the mechanism of the oscillation.

e Second the oscillation can arise in a network where the interplay of inhibitory and
excitatory neurons exhibits a temporal delay in between the two subpopulations which
is due to finite times of signal propagation (feedback loops) [27]. This includes the
hypothesis that there exists a phase lag between inhibitory and excitatory neurons [32].

e A third variant of the oscillating mechanism is that the different durations of excitatory
and inhibitory synaptic potentials lead to a late superiority of the IPSPs such that
the action potentials of all neurons are in phase whereas the cumulative inhibitory and
excitatory postsynaptic potentials have a phase lag. The inhibitory neurons effect IPSPs
in many other neurons. As the IPSPs last longer than the EPSPs they effect a resetting
of all neurons and the simultaneous release from inhibition causes a synchronous onset
of neural firing [18].
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Blocking either excitation or GABA, mediated inhibition has been found to abolish 40Hz
oscillations and so both are essential for 40Hz population oscillations [89, 30]. The first hypo-
thesis however does not answer why inhibition is necessary for population oscillations. Com-
puter simulations of neural networks with excitatory coupling only could produce synchronous
population oscillations [72, 7]. In this case neurons had intrinsic oscillatory properties due
to a refractory period and external stimulation. Thus if the first hypothesis applies to brain
waves, excitatory connections should suffice for synchronization which disagrees with in vitro
experiments.

The second hypothesis has been rejected at least for the case of gamma oscillations in the
hippocampus where excitatory and inhibitory neurons have been found to fire in phase [12].

On the other hand there have been several indices pointing at the third hypothesis.
Whereas a phase lag is not found between action potentials of excitatory and inhibitory
neurons, experiments showed that there exists one between the excitatory and inhibitory
postsynaptic potentials in this way that the IPSPs peak later [30]. The synchronizing effect
of GABA mediated IPSPs in a population of cortical networks has experimentally been found
by Cobb et al., further Whittington et al. found that the frequency of population oscillations
can be regulated by changing the duration (time constant) of IPSPs [89].

Thus there are lots of indicators that the third hypothesis of the mechanism of population
oscillations applies in a lot of cases. We anticipate here that mechanism three will also apply
to oscillations in the newly developed model which is presented in this thesis (cp. section 4.2).
Further a hypothetical mechanism of how this works when population IPSPs are considered
will be outlined in section 4.2.1.

1.2.2 Epilepsy

Epilepsy is a chronic neurological disorder, its symptoms are seizures which spontaneously oc-
cur once in a while and are accompanied by loss of consciousness, rhythmic convulsions of the
muscles, falling to the ground, temporary absence, etc. The duration of such seizures ranges
from a couple of seconds to some minutes, most seizures end by themselves without treat-
ment. About one percent of the world population is classified as having epilepsy, which means
that seizures occur repeatedly whereby the frequency ranges from once within three months
to many seizures every day. The origin of the disorder can be genetic as well as localized
modifications of the tissue which are induced by a lesion, a tumor or developmental malfunc-
tion. Although patients with epilepsy do not sense their disease during the time between the
seizures they are hindered in their every day life because the time point of the next seizure
is not known: having a seizure while driving very fast in a car on a highway can be deadly.
The medical treatment of the disease is usually pharmacological and prophylactic applica-
tion of antiepileptic drugs (AEDs) in many cases helps to reduce the frequency of seizures
significantly. About 20% of the cases can not be controlled with AEDs and require surgical
treatment [24]. The necessity of a medical treatment is justified also because of the progress-

10
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ive nature of some kinds of epilepsy, i.e. the seizures can induce secondary epileptogenesis in
other, currently intact regions of the brain [52].

The detailed symptoms of the seizures and the possible origins are various and a classifica-
tion of the epilepsies leads to numerous subtypes [28]. A principal distinction is made between
focal seizures which are restricted to a small area of the brain and generalized seizures that
affect the whole brain. The focal seizures arise from a localized area of epileptogenic tissue
which lies often in the cortex and can be surgically removed in certain cases when pharmaco-
logical treatment of the disease does not apply. The extent of the removed brain tissue ranges
from an area as large as a thumbnail to half of the brain.

Encephalography of epileptic brains

Epilepsy is closely related to brain oscillations. An important method for diagnosis and ana-
lysis of epilepsy is the EEG. The onset of an epileptic seizure is accompanied by a qualitative
change which can be seen from figure 1.2. Characteristic for epileptic seizures is a significant
increase of the EEG amplitude whereby the oscillations become very regular. In some cases
as it is presented here the frequency decreases to 3Hz. Several patterns of EEG signals are

WMWWWMV\
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Figure 1.2: Example of the EEG at the onset of an epileptic seizure (modified from [48]).

called epileptiform as they are often observed during epileptic seizures [25]. The distinction is
made as epileptiform activity may occur without a seizure. The common phenomenon which
is thought to underlie all kinds of epileptiform patterns in the EEG is that many neurons
fire synchronously. Whereas synchronous firing occurs also during the appearance of brain
waves it is much more pronounced during epileptic seizures and thus called hypersynchron-
ous. Epileptiform patterns of the EEG signal can be seen not only during seizures (ictal) but
also between the seizures (interictal). An example of interictal activity is the occurrence of
isolated high amplitude spikes, i.e. monophasic or biphasic potentials with a high amplitude
(cp. section 4.8).

As the regularity of oscillations leaves it fingerprint in the kinetics of the EEG, since 1986
[5] it has been investigated if an epileptic seizure is the occurrence of low-dimensional chaos in
the very complex dynamical system of the brain. Today the nonlinear time series analysis of
the EEG has become an important method of seizure prognosis and detection of the epileptic
focus [51, 52, 4] (cp. section 4.3).

11
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Physiology of epileptic seizures

Characteristic of the behavior of single cells in a neural network during epileptic behavior
is a prolonged depolarization of the membrane which results in burst discharges. A burst
is a brief sequence of action potentials initiated by a slow depolarization of the membrane.
While a burst may occur in an isolated cell as a response to a single stimulus due to special
intrinsic properties in certain rare types of neurons [20], it might also be evoked by synaptic
stimuli from many neurons. Thus the distinction between endogenous and network bursts has
been made. Strong experimental support exists for the hypothesis that network bursts during
epileptic seizures are evoked by a compound EPSP triggered by the firing of many neurons in
the network [45]. Further, the bursts are thought to correspond with the interictal discharges
in the EEG.

12



2 Mathematical Models of Neural
Networks of the Brain

Besides animal models, slice preparations and single cell experiments, computer simulations
of neural networks become more and more important in neuroscience. The appealing advant-
ages of computational methods are the repeatability of experiments with exactly the same
initial conditions, the opportunity to measure lots of details synchronously and - hopefully -
a reduction of the number of animal experiments. The beginning of this development was the
model of the dynamics of the giant squid axon published by Hodgkin and Huxley in 1952 [43].
Since then many refined models have been derived from this work and are applied in computer
simulations of neuronal and neural network dynamics. On the other hand a second group of
neural network models was initiated with the Hopfield model in 1982 [44]. These models
concentrate on the function of the network as a whole whereas the complexity of physiological
details of single neurons is substantially reduced. The two classes of the underlying mathem-
atical models which have been employed in the computational analysis of brain function and
neurological disorders are briefly reviewed in this chapter.

2.1 Continuous models

The Hodgkin-Huxley model [43] has been the first model of the dynamics of a single neuron. Its
characteristics are that the different ionic currents are explicitly modeled and that the neuronal
dynamics are nonlinear. The kinetics of an action potential are modeled with great accuracy
but in many cases the details are too many and an easier model is wanted. Simplifications
of the Hodgkin-Huxley model have been developed since then: the FitzHugh-Nagumo model
[31, 70] or the Morris-Lecar model [68] have been applied in the computer simulation of
epilepsy [76, 34, 35]. The complexity of the single neuron in these models limits the size
of the population that can be simulated on the computer. One of the largest population of
neurons which were modeled by a Hodgkin-Huxley derivative consisted of 6400 neurons and
was simulated on a cluster of 19 Inmos T800 transputers in 1993 [90].

On the other hand also more complex derivatives of the Hodgkin-Huxley model have been
developed by subdividing a neuron into compartments which interact via ionic currents or

13
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by introducing additional ionic currents. These compartment models are the most complex
models which have been used for the simulation of neural network dynamics [59, 85, 91].

2.1.1 Hodgkin-Huxley Model

The Hodgkin-Huxley model captures the dynamics of the action potential in a set of differential
equations. The point is that the membrane potential is determined by the ionic currents
belonging to various types of ions. On the other hand the transmembrane conductivities of the
various types of ions are determined by the membrane potential. The latter dependence is due
to conformational changes of the channel proteins according to the membrane potential. This
feedback constellation leads to the action potential which can be mathematically described in
the following equations.

The total current which determines the change of the membrane potential is given as the
sum of the input from the synapses Iy, the external input I, which for example might
be applied by the experimentalist through electrodes, and the ionic currents which generate
the action potential. These are Nat- and K'- currents and a leak current gathering the
contributions of the other ions.

dv
Cm% = Igyn + Iexs — gna(V — Exa) — 9x(V — Ex) — gu(V — EL) (2.1)
A stochastic model now assumes that the conductivities are related to the fraction of ion
channels which are open. Thus if gx and gy, are the maximal conductivities which correspond
to the situation that all channels are open, the present conductivities are given by this maximal
conductivity multiplied by the probability that a channel permeable for the respective ion is
open.

gx = gxn' (2.2)
gNa = gNam3h (23)
Here n, m and h are probabilities of some permeability allowing states of certain substructures

of the transmembrane channel protein. The K*-channel is thought of requiring four equally
probable events to occur in order to be permeable, whereas the Nat-channel is more complex.

The probabilities n, m and h are modeled as first order reactions and the two reaction
coefficients a(Vi,) and 8(Vi,) describe the opening rate and the closing rate respectively, which
are both dependent on the membrane potential. Thus the gating equations are

dn

= = a(Va)1=n) = B:(Va)n (2:4)
dm

= = an(Va)(1 = m) = Bu(Va)m (2:5)
% — an(V)(1 = h) — Bu(Via)h (2.6)
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2.1 Continuous models

The solutions of equations (2.4), (2.5) and (2.6), each regarded as isolated, are exponential
time courses which are characterized by the time constants and equilibrium values given in
equations (2.7) and (2.8).

1
Tn(Vm) = an(Vm) +,8n(Vm) (27)
(Vi)
neo(Ve) = ) + Ba(Vi) 28

Equations (2.7) and (2.8) can analogously be written for m and h.

Hodgkin and Huxley experimentally measured the time constants and equilibrium values
and thus determined the reaction constants. Calculations of the whole model, i.e. equations
(2.1) to (2.6), agree very well with the measured dynamics of the membrane potential when
an action potential occurs.

2.1.2 Integrate and Fire Models of Neural Dynamics

Another class of simplified models consists of the so called integrate-and-fire models which are
employed in many simulational studies of the dynamics of neural networks. Characteristic is
that the dynamics of an action potential are reduced to a point like event in time whereas
the postsynaptic mechanisms of temporal and spatial summation can be found more or less
detailed in various subtypes.

The heart of the integrate-and-fire neuron is the membrane potential V; which is charged
by postsynaptic currents according to equation (2.9)

Tm% = Vi + RuLi(t) (2.9)

Here 7, = Ry Chy, is the time constant of the membrane which is modeled as an RC' circuit.
The synaptic current is generated by firing events of other neurons in the network, a general
description is given by equation (2.10).

Li(t) = Zw,-,- Y K(t—T) (2.10)

TEAJ'

Here w;; is the coupling constant giving the strength of the synapse which neuron j projects
onto neuron %, A; is the set of time points when an action potential is fired by neuron j and
the kernel function K (¢) gives the temporal course of a single PSP.

The various subtypes of the integrate-and-fire model use different shapes of the PSPs.
According to how close the modeler wants to stick to the findings of the physiologists he can

15



2 Mathematical Models of Neural Networks of the Brain

choose the kernel function K (t) among discontinuous onset with exponential decay, power law
onset with exponential decay, sum of two exponentials with different time constants etc. (see

e.g. [33]).

An action potential is triggered when V; reaches a given firing threshold. Then the current
time is joined to the set A; and the membrane potential V; is reset to zero.

2.2 Discrete Attractor Neural Networks

Twenty years ago discrete neural networks have been developed as a model of human memory.
The inspiration came from the physics of spin glasses. Indeed not much was changed in order to
make a neural network out of the spin glass model. The magnetic moments in the spin glasses
of Edwards and Anderson [26] can orientate in two directions: either parallel to the exterior
field or antiparallel. In contrast to ferromagnetic or antiferromagnetic Ising models the sign
of the couplings between neighboring spins is not generally positive or generally negative, but
randomly set for each pair of neighboring spins. The emergent difference to the ferromagnetic
Ising model is that the spin glass has multiple ground states at zero temperature. Whereas
the energy of the ferromagnetic Ising model at zero temperature is minimal for a completely
parallel oriented array of spins, either all up or all down, the ground states of a spin glass
are frustrated such that not all pairs of spins can simultaneously obtain the state of lowest
energy and many couplings that yield a positive contribution to the energy remain when the
energy of the system is minimal. Thus the ground state energy is higher than that of the
ferromagnetic Ising model and further the number of ground states is much larger: many
different conformations of the spin glass model have the same ground state energy.

In 1982 the physicist John Hopfield formulated a neural network model which is based
on the spin glass dynamics [44]. The spins have been identified with neurons, the couplings
have been extended to a complete graph and different ground states have been regarded
as memorized patterns. This was the first model of the class of discrete attractor neural
networks which are models of human memory. Since then a whole family of such discrete
attractor neural networks arose [3] from the model which is described in the following section.

2.2.1 The Hopfield Model

The Hopfield model consists of IV neurons each of which can take the values —1 or +1. Each
neuron represents a pixel in a certain position of the stored patterns which are thus taken from
the set {—1,1}" of all possible states of the Hopfield-network. The neurons are connected in
complete graph manner by (g) couplings. A set of patterns {¢!,...,6F} C {—1,1}" is stored
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2.2 Discrete Attractor Neural Networks

by fixing the coupling weights according to the Hebb-learning rule (cp. chapter 3)

P

p=1

Here &/ denotes the i-th pixel in pattern p and the integer w;; € Z denotes the coupling-weight
of neurons i and j for i,j € {1,..., N}. The couplings of the neurons are symmetric, i.e.
w;j = Wj;, and can be written as a symmetric weight-matrix W.

To retrieve the stored information the network is initialized with a pattern S(0) € {—1,1}¥
similar to one of the stored patterns and then iteratively updated according to the following
update rule.

S(t+1), = sign (Z wi]—S(t)j) = sign (WS(¢)),) (2.12)

i=1

The iteration is continued until a fixed point or a periodic cycle of length two is reached
(cp. next section). The final state of the network Sf or respectively one of the two states
in the cycle S, SI is supposed to be the desired stored information or at least not to differ
significantly from it. In terms of human memory the initial state S(0) represents the stimulus
and the final pattern St represents the association.

Thus the hypothesis that representations of objects in the human brain are ensembles of
neurons and the principle of learning through synaptic plasticity which was formulated by
the Canadian psychologist Donald Hebb elegantly entered the model. The information of
all stored patterns is kept in the totality of the coupling weights of the neural network. On
the other hand the Hopfield network is nothing but a dynamical system with several stable
solutions, each of which has its basin of attraction.

If however too many patterns are loaded onto the network, the basins of attraction be-
come blurred or even merge and simultaneously none of the stored patterns can be properly
retrieved. It has been found that the number of patterns at which this phase transition from
the retrieval phase to the spin glass phase occurs scales linearly with the system size N [2]. If
one defines the capacity a of the network as the ratio of the number P of stored patterns to
the number N of neurons, the estimates of the critical value scatter roughly around o, ~ 0.14.
The controversy concerning the exact value of the critical threshold and a large scale simu-
lational study were the very beginning of this work, the results are summarized separately
(86].

Finally, there are some technical applications of the Hopfield model. The possibility to
retrieve stored patterns when a distorted variant of the pattern is presented can be employed
in optical character recognition, or speech recognition for instance. It can be assumed that
the basic model is refined upon when it is employed for technical purposes.

Whereas this work concentrates on the oscillatory properties of neural networks, the Hop-
field model does not have oscillatory properties. When asynchronous update is used the
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2 Mathematical Models of Neural Networks of the Brain

Hopfield network does not oscillate but its dynamics always run into a fixed point. When
synchronous update is employed also limit cycles of length two occur, which becomes more
probable when the memory load of the network is increased [86]. One can imagine that the
density of local minima in state space increases and that the network is switching between
these minima when they are close enough. However, more complex oscillations are not pos-
sible. This fact can easily be proven by defining a Lyapunov function which can be thought
of an energy of the system that monotonically decreases with time. Let us define

E(t) := — Z wi;Si(£)S;(t — 1) = =SE)WS(t — 1) (2.13)

If W is symmetric, which is the case in the Hopfield model,

i

The definition of the systems dynamics, equation (2.12), shows that the second sum has the
sign of S;(t + 1) whereas the difference S;(¢ + 1) — S;(t — 1) yields either zero or 25;(t + 1).
Thus all contributions to the sum in equation (2.14) are greater than or equal to zero. Thus
E(t+ 1) < E(t) holds for all ¢ > 1 and E(t) is a Lyapunov function of the dynamical
system. If the system is caught in a periodic limit cycle of length p which is given by the
states Si,S), .. .,SZIJ then the energy of all these states must be equal. However, from the
argumentation above it can easily be seen that E(t+ 1) = E(¢) iff S(t+ 1) = S(t — 1) and
thus it holds that p < 2. This result is a special case of a more general mathematical theorem
stating this “Period-Two-Property” holds for a larger class of discrete mathematical models
[67].

2.2.2 Sompolinsky-Kanter Model

The oscillatory properties of the Hopfield model are rather poor but a minimal variation leads
to a much richer behavior of the neural network. If the symmetry of the synaptic matrix is
given up, then the theorem no longer holds and longer sequences can occur as limit cycles
of the neural network. Aiming at a model of temporal associations between memories this
modification of the Hopfield model has been introduced by Sompolinsky and Kanter in 1986
[82]. The modified network uses the same equation 2.12 for the time evolution, but the
synaptic wiring has changed

P P
Wij = Zfﬁf +AY T, wi =0, (2.15)

p=1 p=1
Here the synaptic couplings consist of two contributions: the first stabilizes the patterns
whereas the second invokes the recalling of the next pattern when one of the stored patterns

has been remembered. When the parameter A is appropriately adjusted, the network fully
remembers one state before it starts recalling the next state. Thus the model is capable
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2.2 Discrete Attractor Neural Networks

of subsequently recalling memorized patterns which is a model for association of different
memories and temporal sequences. Further the system may now show complex oscillations
and it has been employed in epilepsy models [63].

discrete time Hopfield | Sompol.-Kanter
continuous time Integrate & Fire | Hodgkin-Huxley
network complexity || full symm. full asymm. arbitrary arbitrary
PSP complexity binary binary kernel function | kernel function
temporal summation no no yes yes
AP complexity binary binary binary dyn. membrane
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3 A discrete model of cortical neural
networks

In this chapter a description of a newly developed model of neural networks is given. The
model has discrete time and state variables like the attractor neural networks described in the
previous chapter and has been provided with additional features known from neurophysiology
which appear important for the dynamics of real neural networks. Thus the discrete model
should combine the essential features of earlier models that have been described in the previous
sections. These are:

e Dale’s principle: distinction between excitatory and inhibitory neurons
e Asymmetric synaptic connections
e Temporally extended synaptic action, i.e. temporal summation of PSPs

e Refractory period of single neurons

As we are targeting on the dynamical properties, in particular the oscillatory behavior, of
the neural network rather than its cognitive functions such as the formation of memory and
the recognition of memorized patterns, some of the features which do not appear essential for
oscillatory dynamics are put back for later stages of the development of the model. Further, to
keep the number of parameters manageable, some known interactions and dynamical aspects of
biological neural networks which are unlikely to play a major part in the population dynamics
are also put back. Introducing additional features of the brain to the discrete model can be
done with respect to particular questions. The addition of a second slow IPSP for example
will be discussed in section 4.8. First of all we want to investigate the dynamics of a network
which is built of very simple neurons. The basic model will thus not take into account the
following mechanisms which are inherent in neural networks of the brain:

e Morphological and dynamical diversity of neurons
e Diversity of receptors transmitters and ionic currents

e Long term potentiation (Hebbian learning)
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3 A discrete model of cortical neural networks

e Neuromodulation
e Electric synapses (gap junctions)

e Ephaptic interactions (interactions between neighboring axons via the electro-magnetic
field)

It has recently been published that inhibitory neurons could be classified into 14 different
types according to the choice of their targets and to their postsynaptic effects [65, 39]. Thus,
if a rapid of sequence of IPSPs is released, the amplitude of the IPSPs within the sequence
will increase in one type whereas it will decrease in the other. Moreover there are different
shapes of inhibitory neurons and correlations between the shapes and the kinetic behavior
exist. Although it has been hypothesized since that these differences are related with different
functions of the neurons [15], these findings will be neglected in our model. The introduction
of a variety of neurons will dramatically increase the number of parameters and the simplicity
of our model would be destroyed.

Also the variety of neurotransmitters and their corresponding receptors is large. For our
basic model we will assume that all EPSPs and all IPSPs are equal respectively. In section
4.8 the introduction of a second inhibitory receptor will be discussed.

Long term synaptic potentiation (LTP) is the mechanism which is thought to underlie
memory. The Canadian psychologist Donald Hebb postulated in 1949 that the development
of memory in our brain is due to changes of the synaptic connections [41]. He suggested
that a synapse by the use of which a neuron repeatedly excites another neuron above the
firing threshold will increase its efficiency. This idea has been the fundamental principle for
associative memory in attractor neural networks (cp. section 2.2). Meanwhile there have been
lots of physiological experiments which give strong support to this principle (see [10] for a
review). A quantitative analysis of the time scale of this process and the extent to which
synapses can be changed has been done by Markram et al. [60]. Repeated dual stimulation of
nearby neurons in vitro has lead to either increased or decreased EPSP amplitudes depending
on the precise timing of the two stimuli. It is believed that the action potential in the
postsynaptic neuron is propagating antidromically along the dendrites to the synapses where
it meets an EPSP which has almost ceased and that this constellation effects the synaptic
efficacy. Thus if the presynaptic cell is stimulated (and fires thereupon) 10ms before the
postsynaptic cell, the EPSP amplitude of synapses between this neurons increased by 20%.
Synapses that are pointing in the other direction “sense” the back-propagating action potential
before the EPSP, this leads to a reduction of efficacy, also by 20%. However, it takes about
five minutes of repeated stimulation until the effect becomes apparent. Thus the time scale of
LTP is larger than that of our simulations. Nevertheless it would be interesting to investigate
whether the synaptic connections in a neural network self-organize, via LTP, to a state which
facilitates regular oscillations.

Neuromodulation means tuning the parameters of single neuron dynamics simultaneously
in a large neural population on a time scale of more than a minute. This can be done
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in vitro by adding neuromodulators to the artificial cerebrospinal fluid (ACSP) where the
slice preparation is bathed in. Neuromodulators are neurotransmitters in most cases, the
deviant terminology indicates that the substance is not locally present at a single synapse
but rather in the surrounding fluid. Neuromodulators change the dynamics of the neural
tissue and might thereby activate certain functions. Adding ACh (Acetylcholin) for example
facilitates oscillations of the local field potential in the olfactory cortex [53]. Acetylcholin
as well as Norepinephrine are known to support LTP in the hippocampus [71]. In vivo the
concentration of neuromodulating substances varies with the arousal or mood of the individual.
The transition from sleep to arousal for instance is accompanied by a widespread release of the
neurotransmitters Acetylcholin (ACh), Norepinephrine (NE), Serotonin (5-HT), Histamine
and Glutamate in the cortex and thalamus [83]. With respect to epilepsy this could be
the clue to why some patients always have seizures at the same hour, e.g. in the morning.
These neurotransmitters effect that firing rates of the neurons increase and low frequency
rhythms (delta waves) are replaced by more rapid activity (gamma waves). However, as
neuromodulators change large populations of neurons on a comparatively large time scale we
can realize neuromodulation in our model by simply changing the parameters. The duration
of our simulations will be too short to sense neuromodulation as a dynamical feature.

Gap junctions (electrical synapses) are channels which permanently connect the interior of
two cell bodies and allow the exchange of molecules and electrical signals. The low resistance
of gap junctions allow a very fast transmission of electrical signals between adjacent cells
which is important in the propagation of action potentials among heart cells [81]. Although
gap junctions are relatively rare in neural networks of the mammalian brain [79], they have
been found to play a crucial part in the generation of high frequency (200Hz) population
oscillations in the hippocampus [23], but the influence of gap junctions on the slower brain
waves of the gamma band or lower frequencies is assumed to be negligible, these oscillations
have been shown to be constituted by chemical synapses [18, 89](cp. also section 4.2). However
the interaction through gap junctions may be added to the model at any time when the basic
model has been analyzed.

Adjacent cells can also interact via their electromagnetic field. If one cell has for instance a
strong Na™ influx as in the case of an action potential then the extracellular current may evoke
an electric potential in the neighboring cell. Ephaptic interactions are rather weak and do not
contribute noticeable when the strong potentials of chemical synapses are present. Ephaptic
interactions become important when bundles of unmyelinated axons are tightly packed as in
the olfactory nerve fibers and recently even those weak interactions have been found to play
a role in the synchronization of neuronal firing [11].

As we make a lot of simplifications the dynamics of a single neuron of our model are
explicitly different than those of a real neuron. On the network level however, if the number
of neurons is at least 1000, the dynamics of the model network will be comparable with
reality. The additional benefits of our simple model in comparison with differential equation
models are that the number of parameters is smaller and that computer simulations are about
a hundred times faster.
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3 A discrete model of cortical neural networks

3.1 Description of the model

Modeling the neuron

After the simplifications mentioned above have been made a single neuron remains with two
important types of electric potentials, action potentials (APs) and postsynaptic potentials
(PSPs). The information carried by action potentials is rather binary, whereas the PSPs
differ in strength and duration. The characteristic duration of the PSPs is much larger than
the duration of an action potential which is about one millisecond. Events of a shorter
characteristic time are not known. As a basic time unit of our model we therefore choose
one discrete time step to correspond to one millisecond. Each neuron has further a limited
spike frequency which is due to a refractory period or afterhyperpolarization (AHP) which
lasts about six milliseconds and follows each action potential. During the refractory period a
neuron cannot fire another AP.

Let N denote the number of neurons in our network and let pj,, be the fraction of the
inhibitory units. In the following indices 1, ..., Np,, refer to the inhibitory neurons whereas
indices Npinnh+1, ..., N denote excitatory units. Throughout all our simulations p;,, has been
set to 0.15 which is in agreement with physiological data [1]. We use one (binary) variable z;
to flag an action potential in neuron ¢ and another integer variable r; to count the remaining
time steps, i.e. milliseconds, of the refractory period. The duration of the refractory period
in milliseconds is denoted by r. Thus the pair (z;(t),7:(t)) € {0,1} x {0,1,...,7} describes
the state of neuron ¢. How the two variables correspond with the action potential is shown in
figure 3.1.

Modeling the network

Simulating a microscopic model of the human neocortex on a computer is rather impossible:
The computer is too slow. If we compare the 40Hz cycle of the binding relevant gamma
oscillations with the clock pulse of the computer then it appears as if the brain computes
rather slowly. Of course the brain has no clock pulse on the single neuron level but the firing
frequency of a single neuron is limited, due to the refractory period, to 200Hz which is still
not much faster when compared with the clock rate of today’s computers. On the other hand
the 10'° neurons in the brain are working simultaneously and the emulation of such a large
network is beyond today’s computer power. If we assume that each neuron has 10* synapses
which have to be updated with the state of the neuron one could guess that the update of a
single neuron takes about 10°® clock cycles on the computer under the additional assumption
that a very elementary model of a synapse is employed. In this case today’s typical computer
with a clock rate of 10°Hz would still be a billion times too slow. There is no need to talk
about the required amount of memory to conclude that one has to restrict a microscopic model
to a small part of the brain.
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Figure 3.1: Discretization of an action potential (left) and a postsynaptic potential (right).
The scale bars give the time scale for the real (upper) and model (lower) dynamics.
The two variables z; and r; correspond to the presence of an AP and the remaining
duration of the refractory period respectively. A PSP which is characterized in
reality by a peak amplitude and a decay time constant is simplified to a square
pulse with duration § and amplitude o.

With respect to epilepsy this makes sense as in the case of focal epilepsy seizures origin-
ate in a very restricted part of the brain. Due to a head trauma, a brain tumor, infections
(encephalitis) or stroke the neuronal tissue of this epileptic focus could have slightly different
structure or different neuronal properties. From this piece the epileptiform activity spreads
through the brain tissue finally affecting the whole organism. If patients have pharmacologic-
ally intractable focal epilepsy the excision of the epileptic focus, a small piece of brain tissue,
may cure the patient from epilepsy. Thus the alterations of neuron and network properties
which are crucial for hyper-excitability and the generation of epileptiform activity can be
found in a small region of neural tissue [75].

Concerning our computer simulation we desire the simulation of a cubic millimeter of
cortex tissue. This tiny bit may contain about 90000 neurons which is still too much to
perform simulations within a reasonable time on a single processor workstation. This value of
neuronal density corresponds to a mouse [14], whereas the human brain is different. Among
mammals brain weight and body weight are related sublinear by a power law with exponent
0.7 and the density of neurons is the smaller the larger the whole brain is [1, 78|. Further,
the density of neurons varies among the different areas of the human cortex: The density in
the visual cortex is about 106 000 neurons per cubic millimeter whereas it is only 30000 in
the motor cortex [9]. Finally, the neuronal density varies between gyri and sulci within the
same cortical region. Epilepsy may occur in mice as well as in humans and an epileptic focus
might be located anywhere on the cortex, thus we will only keep in mind that the order of
magnitude of neuronal density is between 10* and 10° neurons per cubic millimeter.
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3 A discrete model of cortical neural networks

Figure 3.2: A cubic millimeter of cortex tissue contains approximately 90000 neurons. As
the reach of a neural axon is about one millimeter, such “small” networks are
accurately modeled by a directed random graph. The right picture shows directed
synaptic connections of two neurons as an example. The connections are set
randomly according to a given density parameter. Shaded circles represent the
inhibitory neurons which are about 15% of the neural population.

The reach of an axon is about one millimeter and so any neuron within this small box
can in principle reach any other neuron in this box. Thus as long as we want to capture
the structure of the cortex and we have neuron numbers below 30000 we should construct
the neural network as a random graph rather than placing the neurons on a lattice and
assuming nearest neighbor interactions only. The latter would rather suit an assembly of
heart cells among which action potentials affect the neighboring cells via electrical synapses,
so called gap junctions [81]. The synaptic connections are determined randomly. Thereby we
allow excitatory neurons to have a connectivity, i.e. a probability to have a synapse onto any
arbitrary other neuron, which is different from inhibitory neurons. The probabilities are given
by the network parameters . and k;. The strength of the synaptic coupling will be the same
for all inhibitory synapses and for all excitatory synapses respectively and will be given by the
parameters o, and o;. The synaptic connections (where w;; denotes the influence of neuron
j on neuron %) are initialized according to equation (3.1) and kept constant throughout the

simulation.
e { 40, with probability ke, if 7 > Npinn

Wij = 0 else (3.1)
wi = O with probability i, if 5 < Npinn ’
g 0 else

Calculation of the membrane potential and update rules

In each time step the membrane potential of the individual neurons is calculated. Thereby the
spatial convergence of synaptic input from different neurons in the network and the temporal
summation of the temporally extended PSPs are considered. Further the action potential flag
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and refractory counter are updated corresponding to the following rules:

e temporal summation of PSPs:!

zi(t) = zit)+z(t—1)+...+zi(t -3 — 1) (3.2)
zi(t) = z@t) +zt—-1)+... +xi(t—6—1) (3.3)

e spatial summation of PSPs:

Vi(t) = Z (w§;z5(t) + wi;zi(t)) (membrane potential) (3.4)

(V]

e flag action potential if firing threshold € is reached:

1 .. Vit)>8and r(t) =0
zi(t+1) = { 0 if else (3.5)
e updating refractory status:
T zi(t+1)=1
ri(t+1)=4¢ ri(t)—1 if r(t)>0and z;(¢+1)=0 (3.6)
0 else

Random sequential update is applied in order to prevent the system from falling into unnatural
limit cycles which is typical for synchronous updating. Random sequential update means
that NV times in each time step a neuron is randomly chosen and equation 3.5 is applied.
Thereafter equation 3.6 will be applied. Whereas the application of equation 3.5 underlies
chance, equation 3.6 is rigorously applied to any neuron in any time step such that the actual
duration of the refractory period exactly equals the prescribed value r. Further will z; be
initialized to zero for each neuron at the beginning of each new time step.

In this way approximately a fourth of the neurons is chosen more than once in one time
step. In this case a neuron which has already been set to fire an AP in the same time step will
not be updated again, the effect is as if it was chosen just once. On the other hand in every
time step there is some other group of neurons, approximately 37%, which is not updated at
all. This causes some temporal jitter in the dynamics of every neuron as it may happen that
a neuron is not updated for a couple of time steps. This is a source of noise which represents
individual time delays occurring e.g. because of the release of neurotransmitter vesicles at
the synapses or the electrotonic spread of PSPs along the dendrites [46]. The time that a
neuron is waiting for being updated follows a geometric distribution, the expectation of the
required number of trials is about 1.6 time steps (milliseconds) instead of one which would be

!The actual implementation does not execute this calculation explicitly. To save time the algorithm performs
an event-related switching “on” or “off” a permanent contribution to the membrane potential.
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3 A discrete model of cortical neural networks

the case for sequential update. The difference of 0.6 milliseconds corresponds very well to the
synaptic time delay between the arrival of the action potential at the synapse and the release
of neurotransmitter [46] and is therefore not problematic but rather welcome. The standard
deviation of the waiting time is 0.97ms and will be referred to as jitter in the following.

There are three alterations when we use random sequential update instead of synchronous
update:

e When a neuron fires an action potential, this affects the connected neurons that are
subsequently updated within the same time step.

e As the sub-steps influence the results of further sub-steps within the same time step,
also the order of the successive sub-steps becomes important.

e 37% of the neural population are not updated in every time step.

Whereas the first two points are negligible the major difference with respect to our model is
the third one of this list. A comparison of synchronous update, sequential update with fixed
order and sequential update with random order which has been newly determined in each
time step showed no significant difference in the resulting network dynamics as long as all
neurons have been regarded in each time step. The problem of all these variants of updating
is that the activity is always attracted by some limit cycle. The resulting activity is what the
EEG might look like if the brain had a clock pulse like a computer CPU.

On the cellular level the brain has no clock pulse, but delays of the molecular processes,
fluctuations of ion-concentrations and other various kinds of noise are present. The conduction
times of the axons as well as the exact time point of spike generation in sufficiently excited
neurons are subject to jitter. There are four sources of jitter in the neural transmission process:

Different lengths of axonal distance that has to be covered by the action potential, about
0.2ms (estimation by the author)

Varying time of transmitter release in the synapse, about 50us [1, 21]

Different dendrital distance from synapse to soma, about 1ms [46]

Fluctuations of the membrane potential lead to jitter in the time point of AP generation
which is about 0.43ms (estimation by Abeles [1])

The summation of the jitter given above (Gaussian distributions granted) yields approximately
1.1ms which is roughly in agreement with the random sequential response jitter of 0.97ms
in this model. In a continuous model with nonlinear dynamics, for example a network of
Hodgkin-Huxley model neurons, those fluctuations may be hidden in the chaotic dynamics of
the system. Tiny deviations of the state variables may have any order of magnitude and can
develop now and then to a noticeable extent and cause the jitter which jeopardizes synchrony.
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3.2 Which values should be chosen for the parameters?

In a model with discrete time and discrete state variables there is a lower bound for the size
of fluctuations which are explained by the systems dynamic equations. So random sequential
update is an elegant way to introduce those features which cause small fluctuations into the
model.

Also noise of a very low level has been added to the membrane potential in some simulations
but this did not change the dynamics of the system substantially.

3.2 Which values should be chosen for the parameters?

Fraction of inhibitory neurons: p;,;,

The percentage of inhibitory neurons in the cortex varies between 10 and 15 percent. In
the simulations we always use pinn = 0.15, this value has not been changed throughout the
simulations.

Connection probabilities: . and k;

Our model implies that between one pair of neurons there is only one synapse or none. Of
course the possibility of multiple synapses between two neurons exists in principle but the
probability under certain assumptions is low.

In our model a neuron establishes Nk synapses onto targets randomly selected from the
N neurons within the “cube”. Thus, given that NV >1000 and x <0.2, the probability that a
neuron receives k synapses from one distinct other neuron follows a Poisson distribution, i. e.
p(k, k) = e *k*/k!. Thus the probability that a neuron has more than one synapse from one
other neuron is given by

Poyw=1—e"—ke™ (3.7

Equation (3.7) yields that as long as k < 0.2 the fraction of multiple synaptic connections
between neurons is below 2% and if k < 0.1 the fraction is even less than 0.5%. Thus the
effect of multiple synapses appears negligible. The number of synapses per neuron is about
8000 in the mouse cortex [14], thus with respect to the 90 000 neurons within the I1mm3-cube
of mouse brain one gets an order of magnitude for the relative connectivity of x &~ 0.1. The
important inhibitory synapses are located on the somata of the target cells and thus dominate
the synapses targeting on the dendrites of cortical cells. Further, the reach of the axons of
stellate cells, which are mainly inhibitory, is smaller [14]. Thus the connectivity of inhibitory
neurons is assumed to be lower than the excitatory connectivity. A study of pyramidal cells in
the motorcortex of the cat yielded connectivity values for the number of terminating inhibitory
synapses around 60 per neuron [17]. Variations of the connectivities are discussed in the next
chapter.
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3 A discrete model of cortical neural networks
PSP amplitudes: o, and o;

The inhibitory synapses are supposed to have a higher amplitude than excitatory synapses
for two reasons. First the IPSP measured directly at the location of the synapse in the
postsynaptic cell is more pronounced than the EPSP. Second the inhibitory synapses to a large
part terminate directly on the soma [1, 59, 17] whereas excitatory synapses terminate on spines
which are located somewhere on the dendritic tree further away from the cell body. As the
dendrites have the properties of leaky cables the impulse of the EPSP is more than the IPSP
attenuated during its propagation from the synapse to the soma [46]. That inhibitory synapses
are situated close to the soma is however again a simplification and not true in general. In the
hippocampus inhibitory synapses have been shown to have qualitatively different functions
whether they are targeting on the dendrites or the soma of a pyramidal cell [64]. We want to
keep the model simple and therefore decide not to differentiate between somatic and dendritic
inhibition rather than approximate the real situation by a mean IPSP which is stronger than
the EPSP. In most simulations we set 0,=20 and 0;=120 whereby the firing threshold §=180.
The threshold value of 180 was thought to correspond to 18mV of depolarization which is
necessary to evoke the firing of an action potential. However, an interpretation of these values
in mV is problematic as the summation of PSPs is nonlinear in reality whereas it is linear in
the model. The dependence of the population dynamics on PSP strengths will be investigated
in detail in the next chapter.

The value of the firing threshold will not be varied as this would be redundant. From
equations (3.1) to (3.6) it follows that the ratios o./6 and o0;/6 are crucial.

PSP durations: §. and §;

The durations of inhibitory PSPs have a longer duration than the EPSPs. The most common
excitatory neurotransmitter is NMDA, the duration of NMDA-mediated EPSPs is about 10ms.
The prevalent inhibitory neurotransmitter is y-amino-butyric acid (GABA). In contrast to
the EPSPs the IPSPs appear in two markedly different variations which are initiated by
two different variants of the GABA receptor. The early IPSP is mediated by the GABA
receptor, it has a time to peak of 28ms and a duration of about 80ms. The late IPSP which is
mediated by the GABAg receptor, has a duration of 150-200ms and a time to peak of 135ms
[61, 19]. In spite of this fact the basic model will include only one type of inhibitory PSP
which corresponds to the GABA ;-mediated potential, this has been shown to be essential for
40Hz oscillations in the cortex (cp. sections 1.2.1 and 4.2). The influence of GABAp mediated
IPSPs on the network dynamics has a special importance with respect to epilepsy and will be
discussed in section 4.8.
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3.2 Which values should be chosen for the parameters?

parameter suitable range natural unit
Ke 0.0-0.2 1
Ki 0.0-0.1 1
Je 0-30 ms
(51 0-150 ms
Oe 0-40 mV
o 0-240 mV
T 2-5 ms
N 0-100 000 1
6 (fixed) 180 mV
Pinn (fixed) 0.15 1

Table 3.1: Suitable values for the model parameters
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3 A discrete model of cortical neural networks
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4 Simulation of the discrete neural
network model

Now that a simple neural network model has been established we wish to employ it in an-
swering the following questions:

e Which properties of a neural network support the synchronized firing of action potentials
among the neural population?

e Does an order parameter exist, which characterizes the dynamics of the neural network?

e How can a spontaneous change of network activity from disordered firing to synchronized
activity occur?

e Which parameters of the model network yield spontaneous oscillations?

e How do noise and stimulation contribute to (spontaneous) synchronization in the neural
network?

With respect to these questions the newly constructed model offers appropriate requisites.
As neural networks are complex systems which can hardly be treated analytically, informa-
tion concerning the parameter dependent behavior is mainly obtained by means of (computer)
experiments. The comparably small number of parameters and the high simulation speed of
the simple discrete model are excellent preconditions for the investigation of parameter de-
pendencies. We now can scan the parameter space point by point with thousands of test
runs of different neural networks. Nevertheless, the analysis of the parameter dependen-
cies will remain difficult as the parameter space is eight-dimensional’ whereas one is used
to two-dimensional graphs. The employment of three-dimensional graphs and greyscale im-
ages helps a little whereas the use of movies (with the time as third abscissae) could enable
four-dimensional demonstrations which is not possible in this written document. Thus our
phase-diagram of a neural network has to be pasted together from different projections of the
parameter space.

1The firing threshold © can be easily canceled out as only the ratios o./© and o;/© are relevant. pj,, will
be kept fixed.
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4 Simulation of the discrete neural network model

activity at) = N zi(t)

mean activity (a(t))

amplitude D(a(t)) = +/(a(t)?) — (a(t))?
autocorrelation C(r) = A(a(t)a(t+ 7)) — (a(t))(a(t + 7))
period T := 1st Maximum of C(7)

Table 4.1: Observed quantities

For sure our model contains some rude simplifications which might render it worthless
when we want to describe the neural tissue of real brains. We will thus compare the results
of our computer simulations with physiological experiments and we will check if they agree.
However, the brain is not homogeneous, it has different compartments which are all differently
built with various types of neurons. A precise model of the cortex cannot be a model of the
hippocampus. Our model just captures the essential features which are common in all types
of neurons. It therefore can only describe the behavior of a general neural network. Diverging
results indicate that the simulation of a certain part of the brain requires special improvements
or upgrades of the basic model. Such results can also be regarded as important because we
can learn which microscopic features of a neural network are essential to yield a certain
phenomenon.

Moreover, although it is physiologically not correct we will also investigate the dynamics
of a model without refractory period, i.e. r = 0. This will momentarily reduce the number of
parameters of the model and gives us a chance to understand the role of the refractory period
by observing the change of the dynamics with its introduction.

Table 4.1 gives definitions of some useful quantities which we will refer to in the sub-
sequent investigations. The angular brackets denote a temporal average calculated in a time
window of appropriate length, which is chosen to be 1500 (in some case also 4096) time steps
(milliseconds).

4.1 Definition of different regimes of network activity

If we vary a single network parameter we can observe that the behavior of the simulated
network changes. Let us have a quick view on what happens if we vary k;, the outward
connectivity of the inhibitory neurons, when all other parameters are kept fixed. Figure 4.1
shows epochs of simulated network activity, i.e. a(t) is plotted versus time. The different
epochs, each of length 500 time steps, correspond to different values of x;. In all cases the
network has been initialized with half of the neurons firing. After initialization it takes the
system about 200 time steps to equilibrate to its final mean activity. The epochs have been
recorded between time steps 1000 and 1500. We do not see synchronized firing when x; is
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4.1 Definition of different regimes of network activity

small. Synchrony means that the action potentials accumulate around certain time points
whereas they are rare in between these time points, thus we would expect large fluctuations of
the activity. If we raise k;, we observe that the mean activity is reduced. We would intuitively
expect this because more inhibitory synapses lead to a lower average membrane potential and
thus to a smaller number of neurons reaching the firing threshold. Further we see that more
and more regular oscillations become apparent, the amplitude of which increases rapidly. If we
further raise x; above some critical value &7, the network is not able to maintain any network
activity autonomously and the firing of action potentials ceases. Thus the next epoch to the
right which has not been plotted in figure 4.1 would show nothing but a straight line telling us
that a(t) constantly remains zero. We will call a network with such conditions over-inhibited.

1400
| 0.002 0.004 0.006 0.008 0.018 |

1200 - i WWW MM 0.012
| WW ho.oﬁmw 0.016

1000 r

800 |-

a(t)

600 |-

400 ~
500 time steps

200 r

Figure 4.1: Epochs of 500 ms of the network activity corresponding to different values of k;,
the efferent (outward) connectivity of the inhibitory neurons. &; is raised in steps
of 0.002 from 0.002 to 0.018 (left to right). The other parameters are x.=0.060,
(0e, 6:)=(7,20), (0e, 07)=(20,120), r=0, N=2000. For x; > 0.012 population oscil-
lations with a frequency of 25Hz become apparent. When k; > 0.02 the network
can not autonomously maintain activity.

We will now face the following questions:

e Is the transition from fluctuating dynamics to synchronous population firing smooth or
a sharp first-order phase transition of the dynamical system?
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4 Simulation of the discrete neural network model

e Where are the borders of the different regimes in the parameter space?

e Is there a bistable domain in the parameter space where the system spontaneously
switches between fluctuating and oscillating dynamics?

Some points can be answered right away. Figure 4.2 shows the dependence of the amplitude
D(a(t)) and the mean activity (a(t)) on ; which has been altered in small steps. The sudden
increase of the amplitude at { ~ 0.017 strongly suggests that a sudden qualitative change of
the dynamics from fluctuating to oscillating dynamics takes place. It is yet not clear whether
the graph is discontinuous or not and the value of x; at which the transition occurs varies
with different arrangements of the synapses. Simulations of larger systems do not show that
the increase of the amplitude becomes steeper with increasing system size (cp. section 4.4.2).
However, the abrupt change of the dynamics within one simulation run, as it may occur
in systems that are right at the critical point (cp. section 4.3), indicates that the attractor
changes fundamentally. A clear discontinuity appears when the dynamics change from the
oscillating to the flat regime.

However, the simulation results, particularly the values of x{ and &}, depend not only on
the parameters but also on the initialization of the random number generator which determines
the details of synaptic wiring. Thus simulation results obtained using the same parameters
but different random number generator seeds (RNGSs) are scattered. In the following sections
the measured quantities will be averaged among a couple of simulations with different RNGSs.
As we will show in section 4.4, the dispersion of simulation results decreases when the system
size N is raised.

We have shown that there are three different regimes:

e The fluctuating regime is characterized by a low amplitude. Even in this regime popula-
tion oscillations may appear in form of transitory waves with a characteristic duration of
about 300 ms and a low amplitude. These waves occur the more pronounced the closer
the system is located in the parameter space to the border of the oscillating regime.
Characteristic for the fluctuating regime is a low value of D(a(t)), an example is given
in the lower graph in figure 4.3.

e The oscillating regime in which the activity a(t) follows a steady regular oscillation with
a high amplitude, an example is given in the upper graph in figure 4.3.

e The flat regime in which the network activity will cease very soon after external stimu-
lation because the inhibitory potentials are too strong.

If the network parameters are very close to the boundary of the oscillating and the flat
regime transition the system may also be bistable. It then switches between the fluctuating
and the oscillatig regimes (cp. section 4.3).
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4.2 The mechanism of population oscillations
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Figure 4.2: D(a(t)) and (a(t)) vs. k;. At & ~ 0.017 the amplitude of the network activity
jumps to a higher value. At xf ~ 0.01825 autonomous activity is not longer
possible. The other parameters are k.=0.060, (e, d:)=(7,20), (e, 0:)=(20,120),
r=0, N=2000, RNGS fixed.

4.2 The mechanism of population oscillations

It has been found that synchronization of neural firing is a collective network phenomenon in
which inhibitory neurons are pivotal. Cobb et al. suggested that “synchronization of principal
cell activity may be a fundamental role for these interneurons” [18]. They observed that
in slice preparations of the rat hippocampus single action potentials of inhibitory neurons
were able to reset the phase of excitatory pyramidal neurons. Shortly after the IPSPs have
ceased, pyramidal neurons in the vicinity began firing synchronous volleys of action potentials
which dispersed after a few cycles. In vitro experiments showed that the blockade of GABA 4-
mediated inhibition with bicuculline stopped the 40Hz population oscillations whereas a slight
stimulation of inhibitory neurons entrained the firing of action potentials in the pyramidal
neurons of the slice preparation [16, 30]. In comparison with isolated IPSPs evoked by single
synapses, the compound IPSPs measured during the oscillation have an amplitude which is
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4 Simulation of the discrete neural network model
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Figure 4.3: Examples of network activity in different regimes: The upper graph corresponds
to k;=0.01698 and shows a steady regular oscillation. In the lower graph, when
k;=0.01550, we see small oscillations which are coherent only for a few cycles. All
other parameters are as in figure 4.2.

ten times higher and of a different shape [89]. Additionally, the frequency of the population
oscillations can be lowered by addition of pentobarbitone, which increases the duration of
GABA ;-mediated IPSPs [89, 16] (cp. also section 4.6).

These findings support the point of view that synchronization of action potentials is
achieved rather by the inhibitory action in the network than by phase resetting of excit-
atory coupled neuronal oscillators. Further, the experiments cited above also showed that
excitatory coupling is essential for synchronized firing: population oscillations can be induced
by adding glutamatergic agonists whereas glutamate receptor antagonists do abolish oscilla-
tions. Thus excitatory and inhibitory couplings play a part in the synchronization of real
neural networks.

We now have a look at the mechanism of population oscillations in our simulations. One
major advantage of computer simulations is that one can easily observe all quantities of the
system at the same time. This helps very much in understanding the mechanism of population
oscillations in neural networks, which is rather difficult from experimental observations in
real neural tissue. We record the time course of the activity a(t) and further the globally
accumulated excitatory and inhibitory postsynaptic potentials in simulations of our model.
These two quantities which we call E(t) and I(t) are defined by equations (4.1) and (4.2).

N 6.1 N
E(t) = Z Z zi(t— ) Z Wj; (excitatory) (4.1)

i=Np;+1 7=0
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4.2 The mechanism of population oscillations

Np; 6i—1 N
I(t) = Z Z zi(t—T) Z Wj; (inhibitory) (4.2)
i=1 7=0 j=1

Based on the information given in figure 4.4 we hypothesize that the following mechanism
in three steps underlies the population oscillations in our neural networks:
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Figure 4.4: Projections of the attractor of a steady population oscillation in three-dimensional
“phase space”. The coordinates refer to a(t)(solid line), E(t)(dotted line) and
I(t)(dashed line). The values have been divided by N, N?(1 — piy)ke0ede and
N2pinkio;id; respectively. Label 1 marks to the minimum of the activity, labels 2,
3 and 4 indicate the maxima of a(t), E(t) and I(t) respectively. The parameters
are (e, 5)=(0.160,0.032), (8, 5)=(20,73), (de, 5)=(20,120), r=0, N=1000.

e Chain reaction of AP firing:
Let the cycle begin when the network activity is low and no significant IPSPs are present.
This situation corresponds to label 1 in figure 4.4. In this example the number ratio of
excitatory and inhibitory neurons is (1 — piyn)/Pinn & 5.7 and the ratio of the number of
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4 Simulation of the discrete neural network model

synapses per neuron is ke/k;=>5b, on the other hand the ratio of synaptic strength o./0o;
equals 1:6. Thus at the moment the firing of action potentials statistically increases
the membrane potential of the neurons and more neurons are excited above the firing
threshold. A sufficiently high initial activity thus triggers a chain reaction of neural
firing. The increase of the network activity is limited only by the size of the total
population, not by the inhibition in the network. Due to random sequential update it
therefore saturates at 0.63N (label 2 in figure 4.4).

e Accumulation of the PSPs:
The power of the inhibitory neurons lies to a great extent in the longer duration of the
IPSPs. When the activity has saturated, I(t) further increases for a longer time than
E(t). Thus E(t) peaks significantly earlier than I(¢) (labels 3 and 4). As in this example
d; is long enough, I(t) grows until the neural population gets so much inhibition that
the activity decreases.

e Ceasing of the accumulated IPSPs:
When §; is not too high I(¢) ceases before the activity is completely extinguished. This
activity is needed to ignite the chain reaction of action potentials at the beginning of
the next cycle. After the IPSPs have ceased the state of the first step is reached again
(label 1) and the sequence repeats.

It should be stressed that the excitatory and inhibitory subpopulation are in phase. This
is not surprising as during the initial process of synaptic wiring the targets are not distin-
guished. The mechanism is therefore not the alternated firing of the excitatory and inhibitory
subpopulation but the delayed power of the inhibitory neurons. This temporal sequence of the
peak of action potential probability, the peak of the excitatory postsynaptic action and the
peak of the inhibitory postsynaptic action within an oscillation cycle has also been observed in
experiments with slice preparations in vitro [16, 30]. In those experiments a spike histogram
in time bins of one ms has been created in order to measure the action potential probability.
This quantity corresponds to a(t) in our model and during population oscillations it is never
zero but always in phase with the membrane potential in our model as well as in the in vitro
experiments. Thus our assumption on the underlying mechanism is well supported by these
experimental results.

In this case, where r=0, the neurons of our model do not have oscillatory properties.
Thus obviously the synchronizing mechanism must be the inhibitory action in the network
and phase resetting through excitatory coupling does not apply here. The contribution of the
excitatory couplings to synchronized firing of the population is rather that they increase the
speed of the chain reaction in the network and thus increase the synchrony of the neurons.

The oscillatory dynamics described above lacks two characteristic features of epileptiform
activity. Further we would like to see the following phenomena (cp. section 1.2.2).

e A lower frequency of the regular population oscillations.
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4.2 The mechanism of population oscillations

e A spontaneous onset of the hypersynchronous activity out of otherwise fluctuating net-
work activity.

e So called “bursts”, these are sequences of multiple action potentials rapidly fired by a
single neuron with a frequency of about 200Hz.

Spontaneous synchronization and the frequency shift will be investigated in sections 4.3,
4.6.3 and 4.8. The high frequency oscillations of burst discharges are a consequence of a long
lasting compound network EPSP and the reduced spiking frequency due to the refractory
period, which will be shown in the next section.

The role of the refractory period

The refractory period in a real neuron is part of the complex mechanisms of an action potential
(cp. section 1.1.3). These intrinsic mechanisms appear implicitly in the Hodgkin-Huxley model
and its derivatives (cp. section 2.1.1). Whereas many continuous models include a detailed
description of the exact dynamics of the recovery process, in our discrete model the refractory
period is nothing but some idle time of each neuron after it has fired an AP. We assume that
on the network level this will be all that counts and we remark here again that the reduction
of action potential dynamics is one of the essential simplifications of our model.

On the single neuron level the effect of the refractory period is a decrease of the maximal
frequency of action potential firing. Below we enlist the implications on the dynamics of the
neural population.

e The introduction of the refractory period results in a noticeable decrease of the average
activity and the amplitude of the oscillations. This is intuitively clear, as the neurons
can only fire once in r 4+ 1 time steps. Thus the average activity is lowered to a more
realistic level around 0.1 N whereas it is unnaturally high without a refractory period.

e The mechanism of the slow population oscillations is not changed, nevertheless another
oscillation of a higher frequency is superimposed (see figure 4.5).

e In the oscillating regime population oscillations of a second frequency f =~ 1/(r + 1) are
apparent in the dynamics of a(t). Looking at the time course of a(t) in figure 4.5 we see
that population spikes are situated on top of a slow wave of activity. The rapid increase
of a(t) after the suppression of the network initiates synchronous firing of the neurons
with the frequency f = 1/(r + 1) which is determined by the duration of the refractory
period. The amplitude of this fast oscillation decays quickly.

These population bursts are believed to underlie epileptiform sharp waves in the EEG and
fast ripples in local field potentials which are measured in slice preparations in the intercellular
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4 Simulation of the discrete neural network model

space. Fast ripples are intermittently occurring high frequency oscillations (200-500Hz) which

occur in epileptic patients and rat models of epilepsy [13].

On the single neuron level a paroxysmal depolarization shift, i.e. a long lasting depolariz-

ation composed of many EPSP from different source neurons which induces a burst of several
action potentials can be observed (cp. figure 4.10 in section 4.3).
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Figure 4.5: The sequence of spikes and postsynaptic potentials are presented in the same way
as in figure 4.4. Except for r=5 the parameters are not changed. Due to the
refractory period the activity a(t) is apparently lower, further another type of
oscillation with a high frequency is superimposed.
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4.2 The mechanism of population oscillations
4.2.1 Why inhibition leads to synchronization

This section wants to give a qualitative explanation why the transition to synchronous network
activity occurs when the inhibition in the network is strengthened. The basic idea is that a
long duration of single IPSPs, a high inhibitory connectivity and also a high amplitude of single
IPSPs sharpen the onset and decay of the cumulative inhibition I(¢) and thus contribute to
the synchronization among the neural population.

Our model is complex and for that reason an accurate analysis is not possible. Thus this
will be rather a demonstrative explanation with crude simplifications than a mathematical
analysis.

We assume that the chain reaction of action potential firing within an oscillation cycle
is a stochastic process which depends in some subtle manner on E(t) and I(¢) which we do
not know. For this consideration we will just use that E(¢) accelerates the increase of a(t)
whereas I(t) decelerates the increase of a(t). Thus we want to assume the following hypothetic
refinements of the mechanism of the population oscillations from the last section:

e The trigger for the chain reaction of AP-firing within an oscillation cycle is that I(t)
ceases below some threshold I,;,. When I(t) exceeds this threshold the activity in the
network will be suppressed.

e The rapidness of the chain reaction which is represented by the slope Aa(t)/At in cycle
j is decreased by any remaining network inhibition from the preceding cycle, i.e. when
I(t) is decaying slowly.

The first hypothesis is supported by our observations from figures 4.4 and 4.5. The second
hypothesis is supported by comparative measuring of the slopes AI(t)/At and Aa(t)/At in
the subsequent cycle in simulations which yielded varying oscillations. The measurements
showed that the slope of I(¢) and the slope of a(t) in the subsequent cycle are related by
a power law with exponent 1.5. Figure 4.6 shows an epoch of an unsteady oscillation in
which it can be seen that a slow decay of I(t) and thereafter a slow increase of a(t) precede
a desynchronous period.

In the following we will argue that a fast increase of activity in the neural network at
stage one will induce a fast decay of I(t). Together with our assumptions this constitutes a
feedback mechanism: A fast decrease of I(t) leads to a fast increase of a(t) and vice versa.

We constitute a very simplified mathematical model which describes the transition from
fluctuating to oscillating behavior due to increasing values of ¢;.

Let us have a look at a single volley of action potentials and define the synchrony within
the volley via the dispersion of the time steps at which action potentials are fired. We assume
that the time points of firing events follow a Gaussian distribution with standard deviation
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Figure 4.6: The slow decay of I(t) (arrow in the upper frame) in turn decelerates the sub-
sequent rising edge of the activity (arrow in the lower frame). A short desyn-
chronous period follows. Again a(t) and I(t) have been normalized as described
in the caption of figure 4.4.

¢ which represents the jitter (temporal scattering) of the action potentials of the volley. The
time course of the accumulated inhibition in the network is then given as the convolution of
the time course of a single IPSP and the temporal distribution function of firing events.

In our model the IPSPs have the shape of a square pulse of height o; and duration §;, a
single IPSP triggered at t=0 is thus described by the following function.

0iX[0,8:] (4.3)

The temporal distribution of action potential firing events is given by the following probability
density whereby ¢ has the dimension time.
1

f(t):me

The number of synapses Nk; and o; which will enter the network inhibitory postsynaptic
potential I(¢) as a multiplicative constant will be omitted in the following. Of course, a

/24 (4.4)
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4.2 The mechanism of population oscillations

discrete calculation would be appropriate as in this context the model underlies discrete time.
Nevertheless we will use continuous time in the following calculation. Then I(¢) is given by
the convolution of (4.3) and (4.4).

I(t) = /t—a- f(r)dr (4.5)

The slope of the rising edge of I(t) can be approximated by I'(0)

1
V21

The shape of such a cumulative IPSP depends on §; and ¢, examples are shown in figure 4.7.
An increase of ¢ decreases the slope of the rising edge whereas an increase of d; increases the
slope. Raising ¢; thus might stabilize synchronous firing which will otherwise be destroyed by
sources of jitter in the neural network.

I'0) = (1—e %729%) (4.6)
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Figure 4.7: Left: examples of I(t) for different values of jitter ¢ = 5, 15,25 and ¢; = 40. Right:
maximal slope vs. ¢; for ¢ = 5,15,25 (from top to bottom).

A simplified model shows indeed a transition at some value of é;: Let s; denote the maximal
slope of the rising edge of I(¢) in the jth cycle of an oscillation. We now assume that the
jitter which is induced in the subsequent volley of action potentials is reciprocally coupled to
that slope. Further we add some constant ¢;,; which represents the jitter which is caused by
the random sequential update (cp. section 3.1). Then equation (4.7) holds.

¢ =1/sj + Ping (4.7

Now the maximal slope of the rising edge of I(t) in the next cycle s;,; can be approximated
by equation (4.8) where the slope given by equation (4.6) is multiplied by some constant
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4 Simulation of the discrete neural network model

a which represents the influence of the number of inhibitory synapses per neuron and the
amplitude of a single IPSP.

1
V27,

For a = 3.5 and ¢;,; = 2.0 we can see that for small values of §; only s*=0 is a stable fixed
point whereas for larger values of ¢; another stable fixed point appears which corresponds to
a synchronous population oscillation, see figure 4.8.

(1— e~%/293) (4.8)
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Figure 4.8: Left: Increasing « leads to nonzero stable fixed points when &; is kept fixed,
this corresponds to increasing k; or g;. Here o=1,2,3,4 and 6;=15. Right: Also
increasing d; can induce oscillations (cp. section 4.5). Here 6;=10,15,20,25,30 and
a=3.5, in all graphs ¢;,;=2.

4.3 Spontaneous synchronization

In most in vitro experiments with slice preparations the transition from normal to epileptic
behavior is induced by the addition of neuromodulators. An interesting question is whether
we can find spontaneous switching of the dynamics of a model neural network from fluctuating
to oscillating behavior which is a sign for bistability. The term “spontaneous” means that the
change of the dynamics occurs without a stimulus and without changing any parameter. We
expect to find such a behavior close to the border between the fluctuating and the oscillating
regime.

In real brains as well as in our model random fluctuations can trigger the change of the
dynamics from fluctuating to oscillating and back. A long time computer simulation of seven
hours simulated network activity yielded that the system spent half of the time in each of the
two dynamical attractors. Figure 4.11 shows that the durations of the seizures and that of the
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4.3 Spontaneous synchronization

normal periods follow exponential distributions which indicates that the transition between
the two regimes is triggered with a constant rate.

A mechanism which might be responsible for the end of the seizure in real brains is that
with some time delay the ongoing oscillating dynamics themselves change the circumstances
which initiated the oscillations. One can think of exhaustion of transmitter reservoirs in
certain types of synapses or that on a longer time scale of e.g. a minute the concentration
gradients of various ions are altered due to the rhythmic firing.

Figure 4.9 shows the spontaneous change to synchronous population activity. Looking at
a single neuron does not tell us that a dominant oscillation of 26Hz is present, a particular
neuron may fire as well in the valleys of population activity. Rather the action potentials are
stochastically concentrated at the periodic maxima of field potential oscillations. The fact that
population oscillations can not be observed when one is looking at a single neuron is also known
from computer simulations of continuous models of neural networks [84]. Interestingly, with
the onset of the seizure epoch even a single neuron may exhibit a change of its firing behavior
from firing isolated spikes to burst discharges which is characteristic for epileptiform behavior
of the network (see figure 4.10). The phenomenon of intermittently occurring synchronization
can be found in many simulations where parameters are right at the transition border between
the oscillating and the fluctuating regimes.

Nonlinear time series analysis of simulation data

As in recent years the methods of nonlinear time series analysis applied to EEG data of epi-
lepsy patients continuously gained attention, we applied the estimation of the autocorrelation
dimension to epochs of the “seizure” and the low amplitude activity. The method has been
introduced to measure the dimension of strange attractors [37] and has later been applied to
EEG time series of epilepsy patients before and during seizures [5]. The estimated autocorrel-
ation dimension has been found to significantly decrease with the onset of an epileptic seizure,
which suggests that the brain activity becomes “less chaotic”. A detailed description of the
methods will be omitted here.

Figure 4.12 shows reconstructed attractors of the dynamical system obtained by embedding
a seizure epoch and a normal epoch into two-dimensional space using delay coordinates, i. e.
plotting a(t) vs. a(t + 7). The hole in the middle of the plot of the seizure epoch suggests
that the dynamical system might show low-dimensional chaos. Here the attractor is close to
a limit cycle.

The Ds,-values shown in figure 4.12 were obtained using the TISEAN software package
[42]. Similar to the analysis of true epilepsy EEG time series [73] the plateau at r ~ 160
indicates an effective Dy-value between 1.5 and 2 for the seizure epoch whereas the value can
not be estimated for the normal epoch where the dimension of the attractor is assumed to be
higher.
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Figure 4.9: Top: The system switches between oscillating and fluctuating dynamics. Bottom:
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A raster plot of the onset of the first “seizure” shows the time steps at which
action potentials are fired for 500 neurons of the network. The synchronization
and the transition to the firing of burst discharges can be seen. The number of
spikes per burst varies among the population and different cycles. Parameters are
(Ke, £1)=(80,32), (0, 0;)=(10,20), (0., 01)=(20,120), r=5, N=2000.



4.3 Spontaneous synchronization

AR A

Figure 4.10: Here the oscillations of the membrane potential are shown, a spike is pasted
on top when an action potential is fired. During normal activity APs are fired
irregularly. With the onset of the synchronized firing the slope of the membrane
potential increases and the neuron is entrained in the population oscillations and
fires burst discharges which are characteristic for epileptic seizures. Data from
the simulation shown in figure 4.9.
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Figure 4.11: The durations of normal periods (circles) and seizures (squares) follow exponen-
tial distributions.
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Figure 4.12: Top: Epochs of normal activity (left) and hypersynchronous activity (right) have
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been embedded into two-dimensional space using delay coordinates with 7=14.
The “epileptic” epoch exhibits the conjectural fingerprint of low-dimensional
chaos. Bottom: An estimation of the autocorrelation dimension yields DST ~ 2
in the synchronous epoch whereas DST is higher in the normal epoch. The data
correspond to figure 4.9.
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4.4 The dependence on network parameters

This section illustrates how alterations of the connectivities and the network size change the
systems dynamics. The main results are listed below:

e An increasing number of inhibitory synapses leads to the transition from the fluctuating
to the oscillating regime.

e The absolute number of synapses originating from a single neuron determines the regime,
not the relative fractions k. and k;.

e When the number of excitatory synapses per neuron is low only a smaller subnetwork is
active in which the network parameters are different from those of the whole network.

e With increasing system size the sensitivity of the network dynamics to the details of
synaptic wiring decreases.

e In large systems with sufficiently many synapses the border of the oscillating regime in
the ke-k;i-plane is roughly characterized by a linear equation «{ ~ ak. + 3.

4.4.1 The dependence on connectivities

Figure 4.13 shows where the regimes are located in the k.-x;-plane. In this context the contents
of the previous section is a closer look at an intersection through the graphs in figure 4.13.
Now we can also see the influence of the k.-parameter. Remarkable in figure 4.13 are the
following observations:

e The shape of the borders between the regimes in the ke-x;-plane remain the same if
we alter the system size. Note that the x-values scale reciprocally with the system
size. Thus the underlying regime of the network dynamics appears to be dependent on
absolute numbers of synapses rather than on the relative connectivity parameters.

e The oscillating regime, where D(a(t)) is large, i.e. the neurons fire synchronously, is
situated between the flat regime and the fluctuating regime.

e In the domain where the number of excitatory/inhibitory synapses is below 50/75 we
see a strange bump. This means that in this region of parameter space the transition
from the oscillating to the flat regime is counterintuitively achieved by increasing the
number of excitatory synapses. This effect is explained in section 4.4.3.

We will now determine the critical value ki (N, ke) at which the transition between the
oscillating and the flat regime occurs. Of course this value also depends on the other model
parameters, but we will keep J, o and r fixed. To estimate this critical value of inhibitory
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Figure 4.13: The upper graphs show (a(t)) (left) and D(a(t)) (right) vs. k. and ;. The other
parameters are (0e,d;)=(15,46), (0., 0;)=(20,120), r=0 and N=5000. Results
have been averaged among four initializations with different RNGSs. The lower
graphs show phase diagrams for N=5000 (left) and N=500 (right).

connectivity, for each pair (V, k.) we run several simulations, where k; starts at a small value
and is then successively raised until inhibition is too strong that any autonomous firing activity
could be autonomously maintained by the network. The first value of k; for which network
activity has ceased 50 time steps after initialization is the first step into the domain of the
flat regime and thus an upper estimation of the critical value. This procedure is repeated 20
times with different RNGSs and we calculate the mean value which we denote by .

A network was classified as “over-inhibited” if a(t = 50) < 3. Usually after 30 time steps
the activity in an over-inhibited network had ceased although a small rest of a few neurons still
blinking for some longer period occasionally occurred. In order to test if the above criterion
is suitable, the tracing was also done in reversed order. Starting with high values of k; the
parameter was decreased until a(t = 50) > 0.02N to determine }. The difference of s and

r; was below 3% when using a k;-step of 0.001. In the followin_g we only estimated_/i_i* for
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Figure 4.14: The dependency of «{ on k. shows a bump in the range of low connectivities. The
connectivity values have been scaled with the system size N, thus the values on
the axes correspond to the average number of synapses per excitatory/inhibitory
neuron. The number of neurons is N=>500, 1000, 10000 (from top to bottom).
The other parameters are (e, 0;)=(20,120), (de, &)=(7,20), r=0.

larger networks in order to save computing time? .

Figures 4.14 and 4.15 show the results from a couple of such trace runs. The bump in
the region of low connectivities will be explained in the following section. Further we observe
that with increasing N as well as with increasing r a linear relationship xf(k.) ~ ak. is
approximated. Thus in the case of large systems (N > 5000) with a realistic refractory
period of five or six milliseconds the ratio ke/k; is a suitable value to distinguish between the
flat and the active regimes.

4.4.2 The dependence on system size

The following list summarizes the effects that occur with an increasing number of neurons:

e The transitions between the regimes are bound to absolute numbers of excitatory and

2The computing time for simulations of our model with an event related implementation increases linearly
with the activity a(t). Thus simulation runs of over-inhibited networks are very fast.
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Figure 4.15: With increasing duration of the refractory period the bump vanishes and the
linear approximation becomes more accurate. N=10000, =0, 1,2, 3,4 (from top
to bottom). All other parameters are as in figure 4.14.

inhibitory synapses. Thus, to stay in the same regime when N is altered, one has to
adjust the connectivities accordingly: k. ~ 1/N and s; ~ 1/N

e When the numbers of synapses and other parameters are kept fixed (a(t)) is proportional
to N, whereas D(a(t)) is roughly proportional to v/N (see figure 4.17).

e The dispersion of values obtained from different random initializations with the same

parameters slightly decreases with larger numbers of neurons (see figure 4.18).

Simulations of a few individual networks of different sizes whereby inhibitory synapses
have been successively added failed to show an increasing slope of D(a(t)) in the region of
the transition which would be characteristic for a sharp first-order phase transition (see figure
4.18).

4.4.3 Percolation effects in neural networks: The bump

When the number of couplings in the networks is small, the counterintuitive effect may oc-
cur that the addition of excitatory couplings can extinguish the autonomous activity in the
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Figure 4.16: For better comparability of differently large systems we plot D?(a(t))/{a(t)) vs.
the average number of synapses per neuron. The critical number of inhibitory
synapses per neuron scatters for differently wired networks. Here the transition
is sharpest for N=20000.

network. This can be seen in the previous section where the border between the regimes in
the Ke-ki-plane has a bump. Actually, this bump gives us an example of possible anomalies
due to fluctuations in the synaptic connectivity. This finding could apply to experiments with
slice preparations in vitro where the connectivity within the neural tissue is reduced as many
neurites are cut off: the thickness of a slice preparation is approximately 400um. However,
the effect does not show up when the refractory period is sufficiently high and thus it is ques-
tionable whether it has an analogy in reality. Anyway, this effect represents an interesting
occurrence of self-organization, a principle which is observed in many complex systems and
moreover thought to be an essential ingredient in the emergence of life [47].

The position of the bump in the k.-k;-plane also scales reciprocally with the number of
neurons as we already know from section 4.4.1. Figure 4.19 shows a detailed map of the
bump in a system of N = 500 neurons. The figure does not contain any information on the
average activity, we just recorded the instantaneous activity 50 time steps after initialization.
This time suffices to let activity cease in an over-inhibited network. We regard an activity of
eight action potentials fired in time step 50 as threshold to distinguish between the network
being still active and the other case that activity has ceased. As the bump appears in many
different synaptic wirings, it is not a casual phenomenon due to some very exotic set of
synaptic connections, but a true feature of the model. We can guess that the bump is due
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Figure 4.17: The amplitude D(a(t)) is roughly proportional to v/N. The different graphs
correspond to the different regimes shown in figure 4.3 (from top to bottom
respectively). k; and k. were reciprocally scaled with N in order to stay in the
same regime.

to certain properties of the organization of synaptic connections, e.g. the establishment of
certain subnetworks which are decoupled (in some sense that applies here). In fact the bump
does not show up, when we investigate a fully interconnected network and alter the synaptic
strength as we can see in the right graph of figure 4.19, thus it is a phenomenon which is due
to fluctuations in the synaptic connections.

This effect which may appear puzzling at first sight is indeed counterintuitive. The initial-
ization of the synaptic matrix is done by comparing random numbers with the appropriate
k-value for each entry. If we use the same RNGS in each simulation, raising x, thus will result
in the addition of extra excitatory synapses but not in the removal of any synapse which has
been established in a simulation with a lower x.-value. Following a horizontal cross-section
(k; fixed, k. increasing) which intersects the bump leads to a sequence flat-active-flat-active

whereby each step corresponds to an enlargement of the set of excitatory synapses (cp. figure
4.20).

The explanation is that some percolation phenomenon is occuring here. We can imagine
that in the case of low connectivity some neurons do not participate in the network activity at
all. When we keep k; fixed at 0.3 and follow the trace which is indicated by the line in figure
4.20, the number of neurons which have fired within the first 50 time steps increases. The
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Figure 4.18: Amplitude D(a(t)) vs. average number of inhibitory synapses per neuron in sys-
tems with N=2000, 4 000, 8 000, 16 000. The other parameters are k,=0.06, 0.03,

0.015, 0.0075 respectively, (de, d;)=(7,20), (0., 01)=(20,120), r=0.

number of synapses which terminate on neurons which have not fired a single action potential
do not contribute to the network activity. It makes thus sense that we have a look at the

active subnetwork which we will define as consisting of:

e those neurons which have been pushed over the firing threshold by a sufficient accumu-
lation of postsynaptic potentials at least once within the first 50 time steps® and

e those synapses which sprout from active neurons and terminate on active neurons.

Other parts of the network do not influence its dynamics. We denote the number of neurons
in the active subnetwork by N®" and the fraction of inhibitory neurons calculated within

3At the beginning of a simulation run about half of the neurons are initialized as firing an action potential.
These neurons do not automatically belong to the active subnetwork. Yet they may be counted when they

fire again at some later instant of the simulation.
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Figure 4.19: Left: the bump in a system of 500 neurons, the greyscale values give the fraction of
active networks within 20 experiments with different RNGSs (white=1, black=0).
Right: simulation of a completely connected network, i.e. k. = k; = 1. Pseudo
kappa values k'(0) have been calculated according to k' = 0 /0, Where oyt
is the corresponding fixed o-value which is used in the left graph. The other
parameters are (Je, 6)=(7,20), (oe,0;) = (20,120), r=0, N=500.

the active subnetwork by pf%. In the domain of low connectivity this fraction pf%P deviates

from the prescribed value py,, (cp. figure 4.21). We can see that pf% is significantly lower in
those networks with sustained autonomous activity, which could explain why the activity is

not extinguished.

However, the formation of those low inhibited subnetworks depends on the initialization
and on the sequence of the first action potentials. Obviously it turns out that a critical
threshold of excitatory synaptic connectivity is needed to ignite a subnetwork which self-
organizes in such a way that it is able to maintain autonomous firing of the neurons. When
the number of couplings is further increased it becomes less likely that a subnetwork will
remain isolated from the rest of the network.

It is difficult to determine the size of such a percolation cluster analytically. Whether a
neuron belongs to the active part of the network or not depends not only on the synaptic wiring
but also on the durations between incoming PSPs because of their temporal extension. With
the parameters used in most of the simulations of this work a neuron requires the addition
of nine EPSPs. These must arrive within a period no longer than §. to allow temporal
summation. Additionally the situation is very sensitive to small details: An IPSP annihilates
six EPSPs, thus an additional EPSP might paradoxically decrease the activity in the network
when it pushes an inhibitory neuron over the threshold which was not sufficiently excited
before. The determination of the size of the active cluster, and the internal (i.e. with respect
to this cluster) network parameters was done with computer simulations (see figure 4.21).

98



4.4 The dependence on network parameters

0.055

0.045 | .

0.035 + 530000000 00 6 oo

0.025

T
o
<]

0.015 -

0.005 i S g i S S
0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

K

e

Figure 4.20: Here the RNGS is kept fixed. A symbol is placed at each pair of values (ke, k;)
which showed self-sustained activity after inital firing of one half of the neurons.
The line indicates the intersection which is viewed in detail in figure 4.21. The
other parameters are (0, 0;)=(7,20), (0., 01) = (20,120), =0, N=1000.
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Figure 4.21: Top: The size of the active subnetwork was separately averaged among the “act-
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line corresponds to the right scale and gives the fraction of “active” networks

among 50 samples with different RNGSs.
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4.5 The dependence on synaptic parameters

The reaction of the systems dynamics with respect to changes of the synaptic parameters is
especially interesting as this corresponds to the application of drugs to a neural network in
vivo or in vitro, where it is not possible to change the connections. Most antiepileptic drugs
and, more general, most pharmaceuticals affecting the neural system of an organism act either
via activation of postsynaptic receptors, mimicking neurotransmitters and thus increasing the
strength or the duration of postsynaptic potentials, or by blocking the receptors without
activation of postsynaptic transmembrane currents which decreases the synaptic function
(cp. section 1.1.4). The effect of blockade or activation of various excitatory and inhibitory
transmitter systems onto the oscillatory behavior of the neural network has been documented
in a lot of publications which are compared with the results of our model.

With respect to our results it may appear puzzling that the transition between the regimes
occurs at average synapse numbers which are lower than realistic values (see section 3.2). From
the data shown in this section we can see that with respect to the position of the critical values
the number of synapses scales reciprocally with the amplitude of the single PSPs. Thus that
the critical range in our simulations lies at 35 synapses per neuron could be due to unrealistic
high PSP amplitudes.

The main results of this section are:

e The transitions from the fluctuating regime to the oscillating regime and further to the
flat regime occur when inhibition is increased or when excitation is decreased either by
altering the duration or the amplitude of the respective PSPs.

e When other parameters are fixed the three regimes can again be found in different sectors
of the d.-d;-plane.

e Increasing the PSP-durations leads to lower frequency of oscillations which agrees very
well with results obtained from in vitro experiments.

e The introduction of the refractory period reduces (a(t)) and D(a(t)) (cp. section 4.4.2)
and the transition borders of the regimes are shifted.

e In the d.-k;-plane and the ke-d;-plane the oscillating regime is characterized by a linear
relationship of the respective parameters.

e Another regime which has not been mentioned so far has been found for large J. and
high k;. This regime is characterized by oscillatory dynamics and a low average activity.
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Figure 4.22: The images show the amplitude of population oscillations D(a(t)) averaged
among ten different network initializations. The white range (D(a(t)) high) rep-
resents the oscillating regime whereas again we find the flat regime neighboring
in the direction of higher k;-values and the fluctuating regime at lower k;-values.
The parameters are ke=0.1, (d,d;)=(15,46), =0, N=1000, ;=120 (left) and
0e=20 (right).

4.5.1 Dependence on PSP amplitudes

The amplitude of the PSPs shifts the range of the oscillatory regime in the projection onto
the kj-axis. Within the scanned range the dependence of the k;-value corresponding to the
maximal oscillation amplitude on o, is approximately quadratic (fitting exponent =~ 2.1)
whereas its dependence on o; is reciprocal (fitting exponent &~ -2). The data are shown in
figure 4.22.

It can bee seen that below certain PSP amplitudes, whether excitatory or inhibitory, no
oscillating phase is present, thus the model predicts that blocking either EPSPs or IPSPs
abolishes oscillations which is agrees with in vitro experiments [16, 30].

4.5.2 Dependence on PSP durations

Figure 4.23 shows how (a(t)) and D(a(t)) change with increasing &; when J. is kept fixed at
different values. The fluctuating and oscillating regimes are separated by a sudden increase of
the slope AD(a(t))/Ad;. The border between the oscillating and the flat regime is character-
ized by the average activity. The transition is not sharp for larger values of ., the d;-value at
which the network switches off then depends sensitively on the RNGS, i.e. on the details of
the synaptic wiring. The discrete steps of the {(a(t))-values which have been averaged over six
different networks indicate that mainly the number of active networks decreases (presumably
exponentially). The border of the two regimes is thus best described by two values delimiting
the range in which the networks switch off. Phase diagrams for the d.-d;-plane for networks of
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Figure 4.23: Mean activity (left) and amplitude (right) vs. §; for de=15, 20, 25, 30 (from left to
right). The other parameters are k,=0.06, x;=0.03, (¢, 0;)=(20,120), r=0 and
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Figure 4.24: Phase diagrams obtained from scanning the J.-d;-plane for r=0 and r=2 averaged
among six different networks. The data correspond to figure 4.23.

1000 neurons and refractory periods 7=0 and 7=2 have been estimated with threshold criteria
and are shown in figure 4.24.

Here the refractory period shifts the boundaries to lower d;-values and decreases the dis-
persion of the “switch off”-values.
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4.5.3 Interdependence of synaptic and network parameters

This section investigates how the location of the regimes in the J.-d;-plane changes when the
connectivities are varied.

For low d.-values and high k;-values the line which separates the oscillating and the flat
regime in the de-d;-plane is approximately linear. Analogously to section 4.1 we denote by 4;*
the value of §; at which the transition from the oscillating to the flat regime occurs. The slope
Ad; /A, of this separating line has been determined in networks where the connectivity of
the excitatory neurons has been varied. The results which are shown in figure 4.25 indicate
that the slope of the separating line depends linearly on k.

Further, as a more detailed investigation of the parameter dependencies, also the §e-x;-
plane and the k.-d;-plane have been scanned.

Figure 4.26 shows that also in the d.-x;-plane the oscillating regime is characterized by a
linear relation, here k; ~ 0.25d.. Additionally, another oscillatory regime was found which is
characterized by a low average activity. This “low activity, oscillatory” regime is located in
the domain of long lasting excitatory PSPs.

Interestingly, the transition from the new regime to the oscillating regime is achieved by
decreasing the inhibitory connectivity and further this transition is accompanied by a change
of the frequency from 14Hz to 11Hz as shown in figure 4.26. Thus this transition is also a
candidate for the transition from normal to epileptiform behavior. Unlike the other transitions
mentioned in sections 4.3 and 4.8 this transition further brings along an increase of the average
activity.
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Figure 4.25: Left: For J, <40 ¢F increases linearly. x.=0.13, 0.15, 0.17, 0.19 (from bottom to
top). The other parameters are x;=0.064, (0., 0;)=(20,120), r=0, N=1000. 20
different RNGSs per d.-value. Right: The slope of the lines which separate the
oscillating and flat regimes increases linearly with k.. Circles correspond to r=0,
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Figure 4.26: Top: For larger values of J, also high values of the inhibitory connectivity allow
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autonomous oscillations with a much lower amplitude. Parameters are k.=0.1,
0;=46, (0., 0;)=(20,120), =0, N=1000. Bottom: The phase diagram on the
left shows the location of the regimes. The examples on the right correspond to
0e=27 and k; =0.066 (0.192) in the upper (lower) trace. The oscillation frequency
is 11Hz (14Hz). The phase diagram is principally the same when r=2 (data not
shown).
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Figure 4.27: Top: The simulation results on the left, D(a(t)) is plotted against . and &;, yield
the phase diagram on the right. Without a refractory period a domain exists
where depending on the details of synaptic wiring the networks are either flat
or oscillating. Probably this phenomenon relies on the mechanism described in
section 4.4.3. Parameters are x;=0.035, 6.=15, (o., 0;)=(20,120), r=0, N=1000.
Simulation results using eight different RNGSs have been averaged. Lower: When
r=2 the bump has nearly vanished.
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4 Simulation of the discrete neural network model

4.6 Frequency of population oscillations

In section 1.2 we have mentioned that the EEG shows oscillations of various frequencies.
The frequencies differ according to the type of the stimulus (in the case that they are event
related) and the location within the brain where the oscillation is measured. Further it
has been suggested that oscillations of different frequencies have different functions in the
cognitive processes. Although there is strong support to the hypothesis that brain waves of
different frequencies have these functions described in section 1.2.1 there are many questions
open concerning the brain waves. Nevertheless can they be measured and obviously the brain
has to be organized in a manner that allows oscillations of different frequencies in different
parts of the brain. Further, the change of the frequency of neural oscillations represents a
characteristic feature of many epileptic seizures (cp. section 1.2.2).

Thus we are interested in the quantities which determine the population frequency of neural
oscillations. In our discrete computer model the frequency of population oscillations is mainly
determined by the temporal parameters d. and d;, their influence on the frequency of the
population oscillations is highlighted in this section. Other parameters, i.e. the connectivity,
PSP-strength and refractory period do not have a noteworthy influence on the frequency of
population oscillations.

4.6.1 Measuring the population frequency

The frequency of population oscillations has been determined via autocorrelation function and
Fourier transformation. For each parameter set and random number generator seed a sample
of length L=4096ms of the population activity a(¢) has been recorded. After initialization
and before recording each simulation ran 1000ms without recording in order to let the system
equilibrate.

Frequency determination via autocorrelation function

The autocorrelation function of an activity sample of length L has been calculated for values
of 7 between 0 and 500 according to equations (4.9) and (4.10). Periods larger than 500ms
have not been considered.

L—1

C.=1/L) (a(t) — (a))(a(t +7) — (a)) 7=0,1,...,500 (4.9)

t=1

C,:=C,/Cy (4.10)

The population frequency has been regarded as the position 7., of the global maximum of
the autocorrelation function beyond the first zero crossing. If the autocorrelation function
has no zero crossing, the signal is not oscillating. The maximum value Ci,,x characterizes the
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4.6 Frequency of population oscillations

regularity of the oscillation, 7yax and Cpax are characterized by definitions (4.11), (4.12) and
(4.13).

Tneg = min{7 | 7 < 0} (4.11)
Cmax = max{C; | T > Tneg} (4.12)
Tmax := Min{7 | C; = Cpax} (4.13)

However, the dynamics of a network does not only depend on the parameters but also on the
random number generator seed (RNGS). For many parameter sets there are some networks
which fall into the oscillating regime as well as others which do not oscillate. The differ-
ence between networks belonging to different RNGSs is the particular wiring of the synaptic
connections. If a particular realization of a network is over-inhibited (so that 20ms after ini-
tialization the activity in the network has ceased) the autocorrelation function equals zero,
if it is fluctuating without a prominent oscillation frequency the algorithmically determined
values of T,., appear as if they have been picked randomly between 0 and 500. This leads to
the “snow” in figure 4.29 in the domain of low d;-values. These results should not enter aver-
aging the oscillation frequency as the result would be distorted, rather we prefer a preselection
of cases which are oscillating and record their percentage. As the unwanted autocorrelation
peaks are coupled with small values of Cp,a, they can be sorted out by a threshold criterion
Cmax Z Cth-

Frequency determination via Fourier transformation

Additionally to the autocorrelation measurement the power spectrum of the simulated network
activity has been calculated and analyzed to check the results. The FFT algorithm taken from
[74] has been applied to the same epochs of length L = 4096 and the absolute value of the
Fourier coefficients has been recorded for frequencies between 1/4 and 24 Hz from which the
frequency fmax corresponding to the maximal power has been extracted. Again a preselection
via a cutoff criterion has been applied before averaging, and for better comparability with
the results from the autocorrelation measurement the corresponding period 7' =1/f has also
been calculated. A comparison has shown that both methods yield the same frequencies or
periods respectively. However the resolution of the power spectrum in the frequency domain
is limited due to the short epochs and thus the frequency determination is more accurate via
autocorrelation.

Of course, the notation of calling a network oscillating if the autocorrelation or the power
spectrum of the time course of its oscillation has a high maximum has to be consistent with
our earlier synchrony measure. So far we have always measured the amplitude of the os-
cillation which we defined as the standard deviation of a(t) in a time window of a certain
length. In the case of pure noise the standard deviation, which does not take into account
any temporal relationship of the data points, might be high whereas the autocorrelation has
no first maximum at all. However, if the measurement is limited to the dynamics of our
neural networks, the amplitude (standard deviation) of the activity is an equally appropriate
measure for synchrony as Ciax 0r Ppay respectively (see figure 4.28).
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Figure 4.28: Relation between amplitude (standard deviation) and Cpax(left), Ppax(right).
Parameters are (ke, k;)=(0.160,0.032), §e=20, 6;=56, 57, . . ., 80, (e, 0;)=(20,120),
r=0, N=1000.

4.6.2 The influence of §; on the population frequency

Looking at the projection of the parameter-space onto the d;-axis the transition between the
regimes occurs at some critical value §f which is of course dependent on the other paramet-
ers. Figure 4.29 shows autocorrelation maxima determined from simulations with r=0 as an
example. In the upper graph where Cp,.y is plotted, we can see clearly the transition from the
fluctuating to the oscillating regime. The critical value ¢ at which the transition occurs is
linearly shifted to higher d;-values when J, is raised. The extension of the domain of the oscil-
lating regime in the é;-projection grows faster than linearly with d, (cp. section 4.5). Looking
at the frequencies in the oscillating regime one observes that when minor shifts, which are
due to different values of d., are neglected a linear approximation yields 7" ~ 24;.

In order to measure the population frequency in the oscillating regime and its dependency
on the synaptic parameters we collect the values of 7n., for a hundred different RNGSs.
Those cases where the corresponding value of Cp.x is low are classified as “not oscillating”
and do not enter averaging. Figure 4.30 shows the resulting average period as well as the
fraction of networks that yield oscillations with Chax > 0.9. The fraction of networks fulfilling
this condition peaks at & = 79. When we move from this peak to lower d;-values more and
more networks are lost to the fraction with lower C,a.-values, i. e. they have a more distorted
oscillation which means a transition to the fluctuating regime. Moving to higher d;-values we
find that an increasing number of networks is lost to the flat regime. Whereas the dependency
of T on ¢; is linear on the right side of the peak value (AT = A4;), the slope is higher on the left
side of the peak, a linear fit yields 2.6. This interesting feature is due to the relation between
frequency and stability of population oscillations which is described in the next section.
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Figure 4.29: Here we show all resulting values of the frequency determination via the auto-

correlation method. For each pair (e, d;) three simulations with different RNGSs
have been run. The upper graph shows the transition from the fluctuating to
the oscillating regime which is characterized by a significant increase of Cpax-
The critical d;-value at which this transition occurs shifts linearly when §, is
raised (here 0f = 3.46,). The lower graph shows 7Tyax which estimates the period
of the population oscillations. At very low levels of §; the network dynamics
are insensitive to changes of d. and 9;, thus the three horizontal lines in the
very left half represent simulation runs which are exactly identical. The “snow”
that appears when §; < df is due to spurious periods which are found by the
Cmax-detection algorithm and correspond to very low maxima of auto-correlation
functions in the fluctuating regime. In the oscillating regime the duration of the
period clusters around the approximation 7' & 26; (dashed line). Parameters are
(Ke, k1)=(0.160,0.032), (¢, 03)=(20,120), r=0, N=1000.
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Figure 4.30: The average period of the population oscillations determined via autocorrelation
is plotted versus d;. The dashed line corresponds to the right scale and gives the
percentage of oscillating networks. Parameters are (., k;)=(0.160,0.032), §.=20,
(0e,01)=(20,120), r=0, N=1000. A hundred simulations with different RNGS
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Figure 4.31: The data of figure 4.30 have been classified into two bins. Circles and squares
correspond to the left ordinate scale and give the average value of 7p,,y for Cphax €
[0.9,0.95] and Cpax € [0.95,1.0] respectively. The dashed and dot-dashed lines
correspond to the right ordinate scale and give the relative fraction of simulation
runs classified into the corresponding bin.
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4.6 Frequency of population oscillations
4.6.3 Frequency-shift with increasing synchrony

In many cases EEG recordings of epileptic seizures show a characteristic frequency shift: the
oscillation of the signal is decelerated to a frequency of 3 Hz just with the onset of the epileptic
seizure (cp. section 1.2.2). Which mechanism is responsible for this phenomenon? Although
it is likely that there are additional mechanisms which contribute to the frequency shift of
epileptic seizures (cp. section 4.8), the results obtained in the previous section indicate that,
even without further ingredients to our network model, synchrony of network oscillations is
accompanied by a deceleration of their rhythm. Also experiments show this relation between
the power of an oscillation (highest peak in the power spectrum) and its frequency [30]. Figure
4.32 shows this relation for data obtained from different simulations with the same parameters.

Taking up the simple model which was introduced in section 4.2.1 this section will provide
a rough explanation of the mechanism which is supposed to underlie this implicit frequency
change. Additionally the change of the slope in graph 4.30 can be explained with the same
model.

The results of the previous section exhibit at least two interesting phenomena which we
want to explain qualitatively by the following considerations:

e The slope ATyax/Ad; changes at 6; ~ 78 (see figure 4.30).

e Within a set of simulations with the same parameter values, especially ¢; is kept fixed,
the frequency decreases with increasing amplitude (see figures 4.31 and 4.32).

In section 4.2.1 we assumed that there exists a threshold I, such that with some exclu-
sions firing activity is suppressed when I(t) > I,. Let us now accept another refinement of
our assumed mechanism of the population oscillations from sections 4.2 and 4.2.1:

We call the duration of the suppression period Ty, and assume that it yields
an additive contribution to the period of the population oscillation.

Now we can qualitatively derive the two phenomena which have been observed in the last
section. The time Ty, during which firing is suppressed is given by the time during which I(t)
exceeds Imin. Figure 4.33 shows how Ty, changes when d; is increased. The resulting curve
bends apparently similar to the measured curve describing the dependency of the period on
& (cp. figure 4.30). AT,pp/Ad; > 1 holds when the tip of I(¢) has just crossed the threshold.
When the shape of the convolution is close to the square pulse because & > ¢, ATy,pp /A ~ 1
(cp. figure 4.33).
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Figure 4.32: A hundred simulations of networks with the same parameters and different
RNGSs yield different oscillations with different amplitudes. We can see that
the frequency of the oscillation is related to the amplitude. The data correspond
to the data shown in figure 4.30, here the case §;=74 has been extracted.

4.7 Propagation of oscillatory activity

So far the model explains that a tiny piece of cortex tissue can become critical in the sense
that it may spontaneously flip to synchronous oscillations of the neural population. However,
an epileptic seizure is a phenomenon that involves a larger part of the brain and eventually
the whole organism. Whereas generalized epileptic seizures arouse from central parts of the
brain in the case of focal epilepsy the seizure is ignited in a very localized part of the cortex.
In this case excision of that so called epileptic focus may help the patient. This operation is
risky but it is sometimes done when treatment with drugs does not apply.

Usually a piece of cortex tissue becomes an epileptic focus through a physiological change
of the neural network in that particular region of the focus, in many cases epilepsy is due to
an injury of the head. In a recent paper [75] it is shown that in the case of post-traumatic
epilepsy, the cortex tissue of rats has changed such that inhibition is stronger than usual. This
is due to larger amplitude of IPSPs as well as to a higher number of inhibitory synapses. It is
presumed that after injury axons of inhibitory neurons sprout to establish additional synapses
and thus lead to stronger inhibition.
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Figure 4.33: Left: Ty, vs. 6; for 6=0.7,0.8,0.9 and ¢ = 10. The graph bends similar to the
measured dependency of the period on ¢; shown in figure 4.33. Right: Ty, vs.
¢ for 6=0.7,0.8,0.9 (from top to bottom) and § = 20.

We note that in this observations the direction of change the neural network has undergone,
i.e. stronger inhibition (either by strength or by number of synapses), is the same as in our
discrete computer model. Simulating a small cube of cortex tissue may thus be a suitable
model of post-traumatic focal epilepsy. It remains to explain how the synchronous oscillations
of the neural tissue spread over the cortex after they are ignited in the focus which has changed
due to an external impact. Thus we take a look at how stimulation of the model neural network
influences its dynamics. The stimulation may be thought of coming from the nearby neural
tissue which is already ignited. If periodic stimulation of neural tissue lowers the borders of
the oscillating regime, epileptiform activity may spread over the cortex similar to a forest fire.

To investigate this assumption we will recall the transition from oscillating to epileptiform
regimes due to increasing the inhibitory synaptic density which is shown in figures 4.2 and
4.13 respectively. Say that { is a critical value for the inhibitory connectivity such that
synchronous oscillations occurred when k; > kf. We now expect that the value of k{ which
separates the oscillating regime from the epileptiform regime decreases when stimulation of
the form 4.14 is simultaneously added to the membrane potential of every neuron.

€; = Ostim SIN(27t / Tytim) (4.14)

Figure 4.34 shows how this transition shifts when we impose periodic stimulation of differ-
ent strength oyim and period Ty;m on the simulated network. We can see that with increasing
Ostim the value of x{ decreases. Further, there seems to be some resonance phenomenon, i.e.
we see a maximal decrease of x{ when the period of the stimulation matches that of the
autonomous network, which in this case is T}, = 86ms.

It has also been observed that stimulation raises x{ when the period of the stimulating
signal is somewhat smaller than T,,;,. Further it has been observed that stimulation with a
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Figure 4.34: The greyscales code the value of D(a(t). Increasing x; leads to a transition
from the fluctuating regime (dark, D(a(t)) small) to the oscillating regime (light,
D(a(t)) large). Left: «{ is lowered most when Ty, =86, here 0gim=>500 is fixed.
Right: The strength of the stimulation is varied whereas Ty, =86 is fixed.

sinusoidal shape was more facilitating than stimulation with a truncated sine wave leaving only
the positive part which again shows the importance of inhibition in synchronous population
oscillations.

4.8 Introduction of slow inhibitory PSPs

Although not all epileptic seizures which arise in the cortex show this feature one prominent
attribute of many EEG recordings of epileptic seizures is a significantly decreased frequency
of the dominant oscillation (cp. section 1.2.2). However, the conclusion of section 4.6 has
been that the frequency of the oscillation is, except for a minor frequency deviation at the
onset of the oscillating regime, mainly determined by the PSP durations. A frequency shift
did not occur together with the transition to epileptiform activity shown in section 4.3. Thus
modeling the frequency shift during an epileptic seizure requires a refinement of the model.

From the physiological point of view there are at least two features that have been neglected
in the basic model and which are good candidates to bring along a change of the frequency
accompanying the onset of synchronized activity.

e The simplification of the PSP shapes to square pulses may change the dependence of
the frequency on the synchrony (cp. section 4.6.3). Thus the shape of the PSPs could
be modified so that it looks more like an exponentially decaying potential.

e Most inhibitory gabaergic neurons activate two kinds of inhibitory GABA receptors, the
GABA, receptor which induces a fast C1~ mediated IPSP with a time constant of about
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40ms and the GABAg receptor which induces K+ mediated IPSPs of a much longer time
constant of 150-200ms [61].

Another point that suggests a refinement of the model is that our results of the basic
model indicate that more inhibition instead of less induces oscillations in neural tissue whereas
physiological findings at first view suggest the opposite. Dysfunctions of the GABA 4 receptor
mediated inhibition have been found in many cases of epilepsy [50] and GABA, antagonists
like penicillin for instance are known to induce seizures in slice preparations. On the other
hand many anti-epileptic drugs in clinical practice strengthen GABA mediated inhibition in
order to stop seizures [62].

This indeed seems to contradict our simulation results, but the matter is more complex.
It has also been observed that the number of inhibitory synapses is increased in the tissue
of epileptic foci which have been excised in epilepsy surgery [75]. Further, there are cases
where activation of gabaergic inhibition aggravates the seizures. The clue might be that the
neurotransmitter GABA affects two receptors which induce different IPSPs. Blocking the
GABA , receptor does not mean that there is no inhibition in the neural network. It also has
been found that GABAg, the slow inhibitory receptor plays a crucial role in the mechanism of
epileptiform 3Hz spike-and-wave discharges which are related to absence seizures [56]. Further,
activation of GABAg receptors leads to seizures in rats [69].

Now the second suggestion appears to be a promising modification. We thus introduce a
third type of postsynaptic potential with duration s and strength o;. The number of synaptic
sites is not changed: this slow IPSP will be triggered together with the fast IPSP by action
potential firing of inhibitory neurons. Like in reality an inhibitory postsynaptic potential is
thus composed of a fast and a slow component [61]. However, as we do not care about the
detailed curvature of the PSPs, the modification can be interpreted either as introduction of
another neurotransmitter with a long characteristic time or the introduction of a two step
prolonged IPSP as a discrete approximation of the exponentially decaying PSP. Figure 4.35
illustrates the compound synaptic PSP consisting of the fast and the slow part.

Figure 4.35: The compound inhibitory PSP.

Simulation results with slow IPSP: spiking regime

An interesting change that comes along with the introduction of the new inhibitory potential
is that another regime is inserted between the fluctuating and the oscillating regime which
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have already been described in section 4.1. Figures 4.36 and 4.38 (without and with refractory
period respectively) show how the amplitude and the average activity change in the sequence
of the now four regimes (fluctuating, spiking, oscillating, flat) of the extended model.
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Figure 4.36: D(a(t)) and (a(t)) have been calculated for different values of k; and four
different RNGSs. The other parameters are ke=0.1, (de,d;,ds)=(15,62,140),
(0e, 01, 95)=(20,60,60), r=0, N=1000.

The network activity in the spiking regime is characterized by fluctuating activity of a high
frequency and intermittently occurring spikes of a low frequency. An example is presented in
figure 4.37. The number of occurrences of high amplitude spikes increases with higher values
of ;. Eventually the network is continuously spiking with a rather steady frequency, but the
transition to the oscillating regime brings along another kind of oscillation (see figure 4.39).
The increase of the spike frequency within the range of the intermediate regime is shown in
figure 4.41.

Introducing the refractory period does not change the situation very much: the x;-values
where transitions occur are lowered and of course the average activity and the amplitude are
decreased.
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Figure 4.37: The spontaneously occurring spikes correspond to a frequency of 4.3 Hz, whereas
the frequency of the fluctuating activity varies between 5 and 12Hz. Here
k;=0.0160, the other parameters are the same as in figure 4.36.

The isolated spikes are spontaneously arising events of hypersynchrony which are observed
in the EEG of epileptic patients during interictal periods. It thus remains to examine if the
mechanism which underlies these spikes is similar to the mechanism of interictal spikes in the
EEG of epileptic persons.

Many experiments in vitro show that either activation of excitatory synapses or blocking
the GABA, receptors which induce the fast IPSP lead to oscillation whereas activation of
the gabaergic inhibitory synapses abolishes oscillations. Further do many antiepileptic drugs
activate the GABA receptors. Thus it may appear puzzling that in the basic model which
does not include the slow inhibitory potentials increasing inhibition leads to oscillations and
increasing excitation leads to fluctuations as it has been shown in section 4.4.

Now that a second slow IPSP has been added to the model the situation is different. As
shown in figure 4.42 simultaneously increasing the strength of both types of IPSPs diminishes
the amplitude of the oscillations which corresponds to the application of AEDs. Further, when
the GABAg receptors are active, increasing the amplitude of fast IPSPs stops oscillations
whereas increasing the amplitude of EPSPs induces oscillations.
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Figure 4.38: With refractory period r=5 the transitions between the regimes are shifted to
lower k;-values, the other parameters are the same as in figure 4.36.
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Figure 4.39: Example epochs of the activity in the three active regimes shown in figure 4.38.
The connectivities are x;= 205, 146, 145 from top to bottom.
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Figure 4.40: Intermittently occurring spikes are characteristic for the intermediate regime.
A spontaneously occurring oscillatory period exhibits an average frequency of
5.6Hz. xj= 194, the other parameters are as in figure 4.38, high frequencies have
been filtered by averaging over a moving time window of 15 ms. The upper trace
gives a detailed view at the onset of the spiking period.
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Figure 4.41: The frequency of occurrence of spikes increases with ;. The number of spikes
has been counted in four differently initialized simulations of 40 000 ms each. The
parameters are the same as n figure 4.36
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4.8 Introduction of slow inhibitory PSPs

250
200

Figure 4.42: The upper graphs show the dependence of the average activity a(t) (left) and the
amplitude D(a(t)) (right) on o; and o5 as greyscale plots. g.=20 is fixed. The
light region in the upper right graph corresponds to oscillations with a high amp-
litude. Simultaneously increasing both types of IPSPs diminishes the amplitude
and finally abolishes the oscillations. The lower graphs show the dependency of
a(t) (left) and D(a(t)) (right) on o, and o; when 03=60 is fixed. When slow
inhibition persists, increasing o, leads to oscillations (light region in the right
graph), whereas increasing o; abolishes oscillations. The other parameters are
(Ke, ki)=(0.1,0.03), (de, i, 05)=(15,62,140), r=0, N=1000.
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4 Simulation of the discrete neural network model
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5 Discussion

All neural network models of the brain are rather approximative and simplifications are a
natural feature of any model. The physiological knowledge of the structure of the brain, the
measured details of electric potentials and the biochemical processes in neurons provide more
information than is contained in any single model. For that reason the crucial point is the
selection of the right features which should enter the model.

Neural networks of the cortex exhibit a very complex structure, the input to a cortical
neuron is the superposition of postsynaptic potentials from 10* synaptic terminals. The shape
of a neuron with its long and ramified neurites yet indicates that the connections reach many
other neurons which are located far away. It is thus likely that the mechanism which leads
to the synchronization of neural firing at the onset of an epileptic seizure is determined to a
great extent by the compound action of a large number of postsynaptic potentials. On the
other hand the single unit itself underlies complex mechanisms which are hardly understood
and the precise timing of action potential firing and the phase relations of interacting neurons
might also be crucial for the emergence of synchronized population activity.

In order to investigate epilepsy one now has to decide whether to use a reduced unit
model in combination with a detailed network or a reduced network in combination with a
detailed unit. These alternatives are imposed by the limited computational possibilities. The
dilemma is similar to problems of modeling and simulating other types of complex systems
like earthquakes, granular media, proteins, spin glasses, stock markets, traffic, weather etc.
Concerning epilepsy in neural networks we believe that a competitive comparison of both
approaches which are characterized above is needed to get maximal insight into the matter.

In addition to a summary of the simulation results obtained with the newly developed
discrete model this discussion also includes a comparison with a differential equation model
which has simultaneously been applied to epilepsy by Christian Hauptmann [40]. During the
whole process of the investigation both points of view have frequently been compared.

The essential aspects of this thesis as the applied simplifications, the influence of random-
ness, the dependence on the parameters, spontaneous occurrence of epileptiform activity, the
proposed mechanism of oscillations and a comparison with physiological results are summar-
ized and discussed in the following:
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5 Discussion
Simplifications and computational cost

The concept of the discrete model aims at a reduction of the complexity of the original
dynamical system and a reduction of the computational cost. It is based on the two following
simplifications:

e Introduction of a discrete time step of one millisecond which resembles the duration of
an action potential.

e Reduction of the postsynaptic potentials to square pulses.

The first simplification eliminates the influences of the detailed dynamics of an action
potential on the network behavior. In real neural networks small differences in the firing
times of two neurons can grow or decrease with the temporal evolution of the network. Thus
temporal rejection of action potential firing in two neurons is thinkable as well as attractive
mechanisms which lead to synchrony. These effects have been found to play a part in the
synchronization of neurons in microcircuits of a few neurons [40].

An implication of the discrete time step is that action potential firing is always quantized
in the discrete model. As a consequence the use of parallel update of all neurons in one time
step implies some artificial synchrony on this millisecond raster and leads to unnatural limit
cycles. Now the simulation of epilepsy aims at regular firing which spontaneously emerges out
of chaotic behavior. Thus a discrete model with parallel update which is generally prone to
exhibit regular dynamics is not suitable. In order to obtain irregular network dynamics the
application of random sequential update is an appropriate method to insert fluctuations.

In a large network a single PSP represents only a very small fraction of the total synaptic
input to a neuron. For that reason it is justified to reduce the shapes of action potentials and
postsynaptic potentials to square pulses. The characteristics of a PSP can be reduced to a
single time constant and an amplitude. Nevertheless, the influence of a more detailed PSP
shape and the increased complexity which results from that refinement can partly be seen in
section 4.8.

The computing time that is saved by the above simplifications allows to simulate more
complex structures of the network, i.e. more neurons and first of all more synapses. Fur-
ther, the simulation speed makes it possible to run many simulations and to vary different
parameters in order to obtain phase diagrams.

The computer simulations of the discrete model run about 500 times faster than computer
simulations of the differential equation model described in [40]. The comparison is based on
simulations with 800 neurons and about 20 synapses per neuron. A general comparison is
difficult as the computing time in the discrete model is proportional to the activity and the
number of synapses, whereas the computing time of the differential equation model depends
on the number of units and the number of synapses.
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Randomness

Random influences in computational models are introduced in order to represent those influ-
ences in the real system which are not explicitly modeled. Here two sources of randomness
enter the model:

e The synaptic connections of the neurons are randomly set.

e Random sequential update represents a permanent source of jitter in the firing of action
potentials.

Random synaptic connections correspond very well to the structure of small parts of the
cortex. On the other hand directed neuronal connections like circular connections of excitatory
and inhibitory neurons can be found in the thalamus [58] and the olfactory system [27] and
have been suggested to induce oscillations.

As discussed before jitter has been introduced into the model by using random sequential
update in order to distort the artificial regularity which is imposed by the discrete time
step. The use of random sequential update can be justified as substituting the missing signal
propagation times and the various sources of noise in the cortical network.

Parameter dependence

Due to the multitude of parameters, scanning the entire parameter space is very time con-
suming even if the model allows comparably fast computer simulations. We investigated a
couple of planar intersections of the parameter space in order to give a qualitative overview
of the dependence of the network dynamics on the parameters.

The result was that in large systems with many synapses the linear ratio of the synaptic
connectivities roughly characterizes the regime. Low values of the ratio k;/k. correspond
to fluctuating dynamics whereas high values induce too much inhibition in the network and
abolish autonomous activity. Intermediate values lead to oscillations of the population activity.

In a similar manner the ratios 0;/de, 0;/Ke, ki/de determine the network dynamics.

These are rough approximations which are valid only in a certain domain of the parameter
space. At least two further interesting phenomena have been observed in sections 4.4.3 and
4.5.3:

e For low numbers of excitatory synapses the regime borders deviate substantially from
the above estimation due to the self-organized formation of active subnetworks which
have different network parameters.
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5 Discussion

e Long lasting EPSPs induce another interesting regime presented in section 4.5.3 which
might be interesting with regard to epilepsy but has not been observed in detail.

Spontaneous occurrence of epileptiform activity

Not only variation of the parameters leads to strong oscillatory dynamics in the dynamics of
the model. Spontaneous switching to hypersynchronous activity was found when the para-
meters of the model were located at the border of the oscillating and the fluctuating domains.

In agreement with physiological findings the transition from normal to hypersynchronous
network behavior is accompanied by a transition to bursting behavior on the single neuron
level. The observed burst discharges are evoked by a compound long lasting network EPSP.

Many epileptiform patterns in real EEG data are accompanied by a decrease of the fre-
quency to about 3Hz with the onset of the regular hypersynchronous oscillations. Whereas the
spontaneous transitions in simulations of the basic model which have been shown in section
4.3 did not exhibit such a frequency shift, the extended model, which in comparison to the
basic model further included a slow IPSP, could produce this frequency shift. The simulation
results shown in section 4.8 exhibit spontaneous synchronization whereby the frequency of the
hypersynchronous oscillations was significantly reduced.

The mechanism of the oscillations

Today the mechanism of brain waves is still not understood. Some hypothetical mechan-
isms have been described in section 1.2.1. The hypothesis that brain waves are an emergent
phenomenon of a population of neurons rather than synchronized activity of individually os-
cillating units is strongly supported by computer simulations and physiological experiments.
It has been shown that excitatory and inhibitory synaptic coupling is needed for population
oscillations. Further it has been observed that single neurons do not fire action potentials
in all oscillation cycles and occasionally spike in the valleys of population activity. Rather
the firing of action potentials is a stochastic process whereby the probability of AP firing
oscillates. The importance of inhibitory neurons in neural population oscillations is widely
accepted, but different network architectures imply minor differences in the mechanisms of
synchronization.

e The oscillations of the discrete model do not show a phase shift between inhibitory and
excitatory firing events. Nevertheless the cumulative postsynaptic potentials peak at
different times because of the different synaptic time constants. That excitatory and
inhibitory neurons are in phase is clearly a consequence of the network architecture: as
the synaptic connections are set without regarding the type the of the target neuron the
membrane potentials of both types of neurons follow the same probability distributions.
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e Oscillations in the differential equation model studied by Hauptmann [40] exhibit a
phase shift between excitatory and inhibitory neurons which is also induced by the
architecture of the network. To fire an action potential an inhibitory neuron requires
the accumulation of several EPSPs evoked by previously fired action potentials of its
local excitatory neighbor.

In both models the restorative action of the inhibitory neurons has been identified as
being essential for synchronization of neuronal firing. The characteristic sequence of the peak
of population activity being followed by the peak of the cumulative EPSPs and thereafter
by the peak of the cumulative population IPSPs can be found in simulations of both models
during population oscillations. This sequence agrees with experimental findings [30].

A schematical description of the mechanism of synchronization has been suggested in
section 4.2.1. In section 4.6.3 this description could be used to explain other phenomena
concerning the dependence of the frequency on the duration of the IPSPs.

Comparison with physiological results

Many anti-epileptic drugs (AEDs) effect an enhancement of the gabaergic system, i.e. a
strengthening of inhibition, in order to suppress oscillations. Further, blocking the inhib-
itory GABA, receptor in experiments with slice preparations in vitro is known to result in
epileptiform discharges. In this context it may appear puzzling that increasing the number of
inhibitory synapses in the basic model leads to oscillations whereas a reduction of inhibition
leads to fluctuations.

The putative discrepancy between the experimental findings and the results obtained from
the basic model is due to the fact that there are two different inhibitory receptors in real brains
whereas the basic model has only one. Blocking GABA, receptors in experiments with slice
preparations often induces epileptiform oscillations. However, this can not be compared with
decreasing inhibition in the basic model because in the slice preparation the slow inhibitory
GABAG receptors persist to be active and contribute to oscillatory activity. For that reason
and also, as mentioned above, in order to obtain a reduced frequency of oscillations during
hypersynchronous activity the basic model has been extended so that two inhibitory PSPs, a
fast and a slow IPSP, appear in the model.

As section 4.8 shows, the clinical practice agrees with the simulation results of the extended
model where two inhibitory receptors are present: many AEDs increase the concentration of
the inhibitory neurotransmitter GABA in the extracellular medium and thus activate slow
as well as fast inhibitory receptors. In agreement with the clinical experience the simulation
results indicate that simultaneously increasing the synaptic strength of both types of IPSPs
abolishes regular oscillations.

Experimental results yield that an increased number of inhibitory synapses occurs in epi-
leptic foci [75]. This has been interpreted in two ways: as part of the epileptogenic process
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5 Discussion

and as counter-reaction of the organ to suppress the excessive firing. A classic opinion which
is based on the observation that disinhibition produces epileptogenesis follows the simple rule
that more inhibition decreases oscillations. According to this rule one would rather believe
the second interpretation. The simulation results support the first interpretation.

Finally, the period of population oscillations increases linearly with the time constant of
the IPSPs which has also been observed in experiments.

Conclusion

It could be shown that the simplified discrete model which is presented in this thesis is able
to reproduce epileptiform behavior according to the criteria mentioned in the introduction.
Computer simulations of the discrete model are significantly faster than computer simulations
of differential equation models which include a more detailed description of the dynamics of
single action potentials and single postsynaptic potentials. Therefore the new model can be
employed in large scale computer simulations of neural networks and scanning of the parameter
space.

The simulation results are similar to results obtained from a model which is based on
differential equations. Nevertheless there are differences in some details. We hypothesize that
different network architectures rather than the different modeling approaches account for that
minor differences in the simulation results.

The dependence of the systems dynamics on the parameters qualitatively agrees with
physiological findings. Dependent on the chosen parameters fluctuating and oscillating dy-
namics occurred in simulations of the model as well as spontaneous transitions from fluctuating
to regularly oscillating behavior similar to epileptiform events in vivo. A significantly reduced
frequency of the oscillations which appears during many epileptic seizures could be simulated
when slow IPSPs have been introduced into the model.
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List of abbreviations and symbols

action potential

number of action potentials fired within time step ¢
artificial cerebrospinal fluid

antiepileptic drug

afterhyperpolarization
amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid, excitatory neurotrnsmitter
first maximum of autocorrelation function

temporal standard deviation of a(t)

duration of excitatory PSPs

duration of GABA mediated inhibitory PSPs
duration of slow GABAg mediated inhibitory PSPs
global and temporal sum of EPSPs in the network
electroencephalogram

excitatory postsynaptic potential

~v-aminobutyric acid, inhibitory neurotransmitter
global and temporal sum of IPSPs in the network
inhibitory postsynaptic potential

average number of synapses per neuron divided by NV
average number of synapses per neuron divided by N
long term potentiation

number of neurons in the neural network model
N-methyl-D-aspartate, excitatory neurotransmitter
paroxysmal depolarization shift

postsynaptic current

postsynaptic potential

fraction of inhibitory neurons in neural network model
random number generator seed

amplitude of excitatory PSPs

amplitude of GABA, mediated inhibitory PSPs
amplitude of slow GABAg mediated inhibitory PSPs
position of first maximum of autocorrelation function
firing threshold of a neuron
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Zusammenfassung

Die vorliegende Arbeit beschiftigt sich mit der Modellierung und der Simulation biologischer
neuronaler Netzwerke, insbesondere mit dem Ziel ein dynamisches Verhalten zu reproduzieren,
das epileptischen Anféllen zugrundeliegt.

Die Nervenaktivitdt wiahrend epileptischer Anfille wird als Elektroenzephalogramm (EEG)
gemessen und ist durch die folgenden Punkte charakterisiert.

e Regelmiflige Ostzillation
e Hohe Amplitude im Vergleich zur Zeit vor dem Anfall

e Niedrige Frequenz von etwa 3Hz (oftmals, nicht immer)

Weiter ist das spontane Auftreten dieser sogenannten epileptiformen Aktivitdt wesentlich.
Die hohe Amplitude des EEG-Signals wihrend epileptischer Anfille wird auf ein iiberméflig
synchrones Feuern der Neuronen in einem Gehirnareal zuriickgefiihrt. Betrachtet man einzelne
Neuronen, so beobachtet man mit dem Einsetzen der synchronen Netzwerkaktivitdt einen
Wechsel vom unregelméfligen Feuern isolierter Aktionspotenziale zum Feuern rascher Abfolgen
von jeweils mehreren Aktionspotenzialen, denen eine lingere Pause folgt. Diese sogenannten
,bursts“ sind auf zelluldrer Ebene charakteristisch fiir epileptiforme Aktivitit.

Wihrend zur Untersuchung der Dynamik neuronaler Systeme hiufig kontinuierliche ma-
thematische Modelle benutzt werden, die durch Differentialgleichungen beschrieben werden,
ist das Ziel dieser Arbeit die Entwicklung eines diskreten, moglichst einfachen Modells, das
epileptiforme Aktivitdt mit den oben genannten Charakteristika reproduziert. Ein einfaches
diskretes Modell hat vor allem zwei Vorteile: Zum einen wird eine wesentlich geringere Re-
chenzeit bei Computersimulationen erwartet. Dadurch werden Simulationen gréflerer Systeme
und das Abtasten groBlerer Parameterbereiche moglich. Weiter ldsst das Weglassen von Details
die wesentlichen Mechanismen, die neuronaler Dynamik zugrundeliegen, stirker hervortreten.

Der Ausgangspunkt des in dieser Arbeit dargestellten neu entwickelten Modells ist das
Hopfield-Modell. Dieses Modell des assoziativen Gedachtnisses wurde von diskreten physika-
lischen Modellen fiir Spin-Gléaser inspiriert und begriindet eine Klasse von Modellen neuronaler
Netzwerke, die als sogenannte Attraktornetzwerke zusammengefasst werden. Das Hopfield-

101



Zusammenfassung

Modell zeichnet sich durch diskrete Zustdnde und eine zeitliche Entwicklung in diskreten
Zeitschritten aus.

Das dynamische Verhalten des Hopfield-Modells beschriankt sich auf die Konvergenz zu
lokalen Energieminima. Verwendung einer Hebbschen Lernregel ermdglicht es, verschiedene
Zustédnde einzuspeichern, so dass diese lokale Energieminima und somit stabile Fixpunkte der
Netzwerkdynamik sind. Sofern die Speicherkapazitét, d. h. das Verhéltnis der Zahl der einge-
speicherten Muster zur Zahl der Neuronen nicht zu grof ist, besteht Ahnlichkeit der stabilen
Zustinde mit den Zustdnden ihres jeweiligen Attraktionsbereichs im Sinne eines geringen
Hamming-Abstandes. Das Hopfield-Modell kann somit zur Erkennung von zuvor eingespei-
cherten Mustern aus verrauschten Vorlagen verwandt werden.

Den Anfang dieser Doktorarbeit bildeten Computersimulationen des Hopfield-Modells mit
dem Ziel der Bestimmung der kritischen Speicherkapazitdt. Die einfachen dynamischen Ei-
genschaften des Hopfield-Modells gestatten allerdings keine Oszillationen in der Art wie sie
in Aufzeichnungen des EEGs auftreten. In Hinblick auf die Simulation von Epilepsie wurde
das Modell daher modifiziert, indem Eigenschaften von anderen Modellen integriert wurden.
Weiter wurde die Funktion des Hopfield-Modells als Gedéchtnis aufgegeben.

Die wesentlichen Merkmale des so erhaltenen Modells sind

o Diskrete Zustdnde

e Diskreter Zeitschritt

e Unterscheidung exzitatorischer und inhibitorischer Neuronen

e Zufillig vernetzter, gerichteter Graph als Modell des Netzwerks

e Zeitlich ausgedehnte postsynaptische Potenziale

e Refraktirzeit nach dem Feuern eines Neurons

o Zufillig sequentieller Update der einzelnen Neuronen

Die Verwendung zuféllig sequentiellen Updates hat sich im Vergleich mit parallelem Up-
date als geeigneter fiir die Simulation des diskreten Modells herausgestellt. Die Verwendung
parallelen Updates fiihrte grundsétzlich zu unnatiirlich regelméfligen Oszillationen. Zuféllig
sequentieller Update bringt zuféllige zeitliche Verzégerungen beim Feuern eines Aktionspoten-
zials (jitter) von der GréBenordnung einer Millisekunde in das Modell ein. Diese entsprechen

Fluktuationen verschiedener Ursachen im biologischen Gehirn, die das Feuern von Aktions-
potenzialen zeitlich verzerren.

Die wesentlichen Vereinfachungen gegeniiber anderen, kontinuierlichen Modellen sind

e Einfiihrung eines diskreten Zeitschritts entsprechend einer Millisekunde.
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e Vereinfachung der postsynaptischen Potenziale zu Rechteck-Impulsen.

Die Dauer eines Aktionspotenzials ist etwa eine Millisekunde. Daher ist mit der ersten
Vereinfachung das Aktionspotenzial auf eine bindre Information reduziert. Von der detaillier-
ten Dynamik der Membranprozesse, die einem Aktionspotenzial unterliegt, wird im diskreten
Modell also abstrahiert. Die zweite Vereinfachung rechtfertigt sich durch die grofle Zahl post-
synaptischer Potenziale, die zusammen auf ein Neuron wirken. Im Cortex existieren etwa 10%
synaptische Verbindungen pro Neuron. Aufgrund ihrer zeitlichen Ausdehnung addieren sich
weiterhin postsynaptische Potenziale, die zu verschiedenen Zeiten im Dendritenbaum eines
Neurons erzeugt werden.

Der relative Anteil der inhibitorischen Neuronen in den Neuronennetzen wurde konstant
auf dem physiologisch gerechtfertigten Wert von 15% gehalten. Um verschiedene Dynamiken
des Modells zu finden, wurden die acht anderen Parameter variiert: Die Anzahl der Neuro-
nen, die Dauer der Refraktirperiode und, jeweils separat fiir exzitatorische und inhibitorische
Neuronen, die Anzahl der Synapsen pro Neuron sowie die Dauer und die Amplitude postsyn-
aptischer Potenziale.

Bei der Untersuchung der Simulationsergebnisse wurden vor allem die mittlere Aktivitét,
d. h. die mittlere Anzahl der Aktionspotenziale pro Zeitschritt, und die Amplitude gemessen,
die als Standardabweichung der zeitlichen Entwicklung definiert wurde.

In Abhéngigkeit von unterschiedlich eingestellten Parameterwerten fillt die Dynamik des
Modells nach einer Initialisierung mit zufélliger Aktivitdt in eines von drei verschiedenen Re-
gimes. Die Dynamik im fluktuierenden Regime ist charakterisiert durch eine geringe Amplitude
und allenfalls gelegentlich auftretenden Oszillationen mit kurzer Kohédrenzldange. Die Dynamik
im oszillierenden Regime ist charakterisiert durch eine regelméfiige Oszillation mit einer hohen
Amplitude. Ein drittes Regime ist dadurch gekennzeichnet, dass die Inhibition im Netzwerk
so stark ist, dass eine anfinglich gesetzte Aktivitdt nach einer kurzen Zeit erlischt.

Ein Ubergang von fluktuierender zu oszillierender Dynamik erfolgt durch Verstirkung der
Inhibition im Netzwerk. Dies kann entweder durch Verdndern der Netzwerkparameter, d.h.
durch Erhéhen der Synapsenzahl inhibitorischer Neuronen, oder durch Verdndern synaptischer
Parameter, d.h. Erhéhung der Amplitude oder der Dauer inhibitorischer postsynaptischer
Potenziale, geschehen.

Entsprechende Variation der Exzitation zeigt, dass in vielen Fillen das Verhéltnis von Inhi-
bition zu Exzitation mafigeblich ist. Vergleichsweise geringe Inhibition fiihrt zu fluktuierender
Dynamik, wihrend bei zu starker Inhibition keine autonome Aktivitdt im Netzwerk moglich
ist und die Aktivitdt sehr bald nach der Initialisierung erlischt. In einem dazwischenliegenden
Parameterbereich treten regelméflige Oszillationen mit hoher Amplitude auf.

Allgemein ist der Mechanismus der ,,brain waves“ noch nicht geklart. Diesbeziiglich exis-
tieren jedoch verschiedene Hypothesen, die in Kapitel zwei vorgestellt wurden. Die Rolle
inhibitorischer Neuronen bei der Synchronisation wird von vielen Experimenten belegt. In
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Zusammenfassung

den Computersimulationen wird Synchronisation durch langsame inhibitorische postsynap-
tische Potenziale bewirkt. Diese unterdriicken das Feuern von Aktionspotenzialen durch die
starke axonale Verzweigung gleichzeitig in vielen Neuronen bis exzitatorische postsynaptische
Potenziale weitgehend abgeklungen sind. Das gleichzeitige Abklingen inhibitorischer postsyn-
aptischer Potenziale funktioniert dann als Startschuss fiir neuronales Feuern. Bei hinreichender
exzitatorischer Koppelung des Netzwerks wird durch wechselseitige Erregung vieler exzitato-
rischer Neuronen eine rasche Kettenreaktion ausgelost, die somit zum synchronen Feuern der
Population fiihrt.

Die Untersuchung des Mechanismus in den Computersimulationen des Modells inspirierte
ein stark vereinfachtes mathematisches Modell der Synchronisation durch Populationssum-
men inhibitorischer postsynaptischer Potenziale. In Ubereinstimmung mit den Ergebnissen
aus Computersimulationen erklirt dieses Modell, weshalb eine Stirkung der Inhibition zur
Synchronisation der Neuronen und damit zum Oszillieren der Populationsaktivitét fiihrt.

Spontanes Wechseln der Dynamik vom fluktuierenden zum oszillierenden Regime tritt im
diskreten Modell auf, wenn die Parameter gerade im Grenzbereich zwischen den beiden Regi-
mes sind. In Ubereinstimmung mit physiologischen Messungen ist der Wechsel zu Oszillationen
der Populationsaktivitit verbunden mit dem Ubergang des Verhaltens einzelner Neuronen von
unregelméBigem Feuern isolierter Aktionspotenziale zum Feuern von , bursts“.

Die bei vielen epileptischen Anfillen auftretende Anderung der Frequenz kann allerdings
bei Simulationen dieses Modells nicht beobachtet werden. Um auch dieses Phinomen zu mo-
dellieren, wurde ein zweites inhibitorisches postsynaptisches Potenzial in das Modell integriert.
Entsprechend der realen Situation gibt es im so erweiterten Modell langsame und schnelle in-
hibitorische postsynaptische Potenziale.

Im erweiterten Modell konnte ein viertes Regime beobachtet werden, das durch gelegentlich
auftretende Spikes gekennzeichnet ist. In diesem Regime treten auch lingere Perioden von
regelméfigen Oszillationen mit geringerer Frequenz auf.

Schlielich stimmen die Resultate der Computersimulationen qualitativ mit physiologi-
schen Resultaten {iberein.

e Die gleichzeitige Erh6hung der Amplituden langsamer und schneller inhibitorischer post-
synaptischer Potenziale, entsprechend einer Aktivierung der durch den Neurotransmitter
GABA vermittelten Inhibition, unterdriickt die Amplitude der Oszillationen. Dies ent-
spricht der Wirkung vieler Medikamente zur Behandlung von Krampfanfillen.

e Die Periodendauer der Aktivitdt im oszillierenden Regime ist linear abhingig von der
Dauer der inhibitorischen postsynaptischen Potenziale.

e Eine Erh6hung der Konnektivitdt der inhibitorischen Neuronen induziert Oszillationen.

Dies entspricht der Beobachtung, dass in verletzungsbedingten cortikalen Epilepsieher-
den bei Ratten die Anzahl inhibitorischer Synapsen héher ist [72].
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Insgesamt konnte gezeigt werden, dass das in dieser Arbeit neu entwickelte diskrete Modell
biologischer neuronaler Netze epileptiforme Aktivitdt mit den anfangs erwdhnten Merkmalen
reproduzieren kann. Die Abhéngigkeit der Dynamik von den Modellparametern stimmt qua-
litativ mit den Ergebnissen physiologischer Experimente iiberein. Weiter konnten Details wie
das Feuern von , bursts® wahrend der stark synchronen Populationsaktivitdt beobachtet wer-
den. Computersimulationen des neuen Modells sind erheblich schneller als Simulationen von
Modellen, die auf Differentialgleichungen beruhen und die detaillierte Dynamik von Akti-
onspotenzialen und postsynaptischen Potenzialen modellieren. Daher eignet sich das Modell
besonders gut, um den Einflufl verschiedener Parameterkonfigurationen auf die Netzwerk Dy-
namik zu untersuchen.
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