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ABSTRACT

The center of our Galaxy is made up of stars, stellar remnants, dust, molecular and ioni-

zed gas, with a supermassive black hole at its heart. This black hole is surrounded by a

small cluster of high velocity stars, known as the S-stars. One aim of this thesis is to cons-

train the amount and nature of the stellar and dark mass associated with this cluster in

the immediate vicinity of the black hole. I use near-infrared imaging to determine the Ks-

band luminosity function of the S-star cluster members, and the distribution of the diffuse

background emission and the stellar number density counts around the central black ho-

le. This allows one to determine the stellar light and mass contribution expected from the

faint members of the cluster. I then use post-Newtonian N-body techniques to investigate

the effect of stellar perturbations on the motion of S2, as a means of detecting the num-

ber and masses of the perturbers. I find that the stellar mass derived from the Ks-band

luminosity extrapolation is much smaller than the amount of mass that might be present

considering the uncertainties in the orbital motion of the star S2. Also the amount of light

from the fainter S-cluster members is below the amount of residual light at the position

of the S-star cluster after removing the bright cluster members. If the distribution of stars

and stellar remnants is peaked near the supermassive black hole, observed changes in the

orbital elements of S2 can be used to constrain both their masses and numbers. Based on

simulations of the cluster of high velocity stars, I find that at a wavelength of 2.2 µm, close

to the confusion level for 8 m class telescopes, blend stars will occur. These line-of-sight

clusterings will last for typically three years before they dissolve due to proper motions.

I also present the analysis of mid-infrared VISIR observations. Their field of views are

centered on the major Galactic Center targets that we plan to observe with the MIRI in-

strument aboard the James Webb Space Telescope (JWST). The value of these new ob-

servations lies in the fact that they are the first and only data that cover a large field of

view of the region with spatial resolutions better than Spitzer survey data. The spectral

indices of the compact sources detected in our multi-band observations will aid in the

identification of massive young stellar objects, and will allow the tracing of their spatial

distribution and concentration. When combined with the current multi-wavelength sur-

veys and future MIRI observations it will enable us to trace and draw a better picture of

the past 8 Myr of cluster based star formation in the Galactic Center. Furthermore, I report
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a curious convex-like mid-infrared feature at a distance of 0.68 pc (17′′) from the position

of the supermassive black hole. This feature resembles a stellar bow shock with a symme-

try axis pointing toward the Center. I discuss the possible nature of this feature and the

implications of its alignment with other dusty comet-like objects previously found inside

the central parsec. All of these objects are remarkably aligned perpendicular to the plane

of young mass-losing stars very close to the central SMBH. The lack of a larger number of

similar objects in the field can be explained either by the short life span of massive stars

and/or the intermittent nature of the responsible mechanism.



ZUSAMMENFASSUNG

Das Zentrum unserer Galaxie setzt sich aus Sternen, Sternüberresten, Staub, molekularem

und ionisiertem Gas zusammen. In deren Mitte befindet sich ein supermassives schwar-

zes Loch. Dieses supermassive schwarze Loch ist unmittelbar von einer kleinen Anhäu-

fung von Sternen mit hohen Geschwindigkeiten umgeben, den sogenannten S-Sternen.

Der erste Teil dieser Arbeit ist es die stellare und die dunkle (nicht sichtbare) Masse dieses

Haufens und ihre Eigenschaften näher zu bestimmen. Anhand von Nahinfrarotaufnah-

men ermittele ich die Ks-Band Leuchtkraftfunktion der S-Sternhaufen Sterne, die Vertei-

lung der diffusen Hintergrundemission und die Sternanzahldichte in der Umgebung des

supermassiven schwarzen Lochs. Auf diese Weise kann man den Beitrag der lichtschwä-

cheren Sterne zur Gesamtleuchtkraft und -masse abschätzen. Darüber hinaus untersuche

ich mit Hilfe von post-Newtonschen N-Teilchen Simulationen die Störung der Bahnbewe-

gung von Stern S2 durch andere S-Sterne, um die Anzahl und Masse der störenden Sterne

zu bestimmen. Hierbei stelle ich fest, dass die stellare Masse basierend auf der Extrapo-

lation der Ks-Band Leuchtkraft wesentlich kleiner ist als die Abweichungen der Bahnbe-

wegung von S2 andeuten. Außerdem ist die Lichtmenge der lichtschwächeren S-Sterne

geringer als die Restlichtmenge an der Stelle des S-Sternhaufens nach Abzug aller hellen

S-Sterne. Unter der Annahme, dass die Verteilung der Sterne und Sternäberreste ihr Ma-

ximum in der Nähe des supermassiven schwarzen Lochs erreicht, kann man die Massen

und die Anzahl der (störenden) Sterne anhand der beobachten Änderungen der Bahnpa-

rameter von S2 abschätzen. Meine Simulationen des Hochgeschwindigkeitssternhaufens

zeigen, dass bei Beobachtungen bei einer Wellenlänge von 2.2 µm und nahe an der Konfu-

sionsgrenze für Teleskope der 8 m-Klasse einzelne Sterne sich überdecken können. Diese

Anhäufungen entlang der Sichtlinie hält für gewöhnlich 3 Jahre an bevor sie sich auf Grund

ihrer Eigenbewegung der Sterne wieder auflösen.

Der zweite Teil meiner Arbeit behandelt die Analyse von Aufnahmen im mittleren In-

frarot mit VISIR von Hauptbeobachtungsobjekten im Galaktischen Zentrum, die wir auch

mit dem MIRI Instrument an Bord des JWST zu beobachten beabsichtigen. Diese Beob-

achtungen decken als erste und einzige ein großes Gesichtsfeld dieser Region mit einer

höheren räumlichen Auflösung als die Spitzer Studie ab. Der Spektralindex der in unseren

Multi-Band-Aufnahmen detektieren Punktquellen hilft bei der Identifizierung von massi-
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ven jungen stellaren Objekten und derer räumlichen Verteilung und Anhäufung. Die Kom-

bination von aktuellen Multi-Wellenlängen-Studien und zukünftigen MIRI Beobachtun-

gen wird uns ein tieferes Verständnis der Sternentstehung der letzten 8 Millionen Jahren

in Sternhaufen im Galaktischen Zentrum in ermöglichen.

Im Zuge meiner Analyse der Daten im mittleren Infrarot fiel mir eine ungewöhnliche,

konvex-förmige Struktur in einer Entfernung von 0.68 pc (17”) von der Position des su-

permassiven schwarzen Lochs auf. Diese Struktur ähnelt einer Bugstoßwelle eines Sterns

und ihre Symmetrieachse weist in Richtung des supermassiven schwarzen Lochs im Zen-

trum. Ich erläutere die mögliche Natur dieser Erscheinung und die Bedeutung ihrer Ori-

entierung in Bezug auf andere staubige, kometenartig geformte Objekte, die im zentralen

Parsec bereits gefunden wurden. Bemerkenswerterweise zeigen all diese Objekte nahezu

senkrecht auf die scheibenhafte Ansammlung junger, Masse-verlierender Sterne direkt um

das supermassive schwarze Loch. Die geringe Zahl ähnlicher Objekte in dem Gebiet lässt

sich durch die kurze Lebensspanne massiver Sterne und/oder das sporadische Auftreten

des verantwortlichen Mechanismus erklären.
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GENERAL INTRODUCTION

In early September, 2014, Nature published an article that adds another detail to our
understanding of our place in the Universe. Tully et al. (2014) study the distances and
velocities of about 8000 galaxies. By removing the effect of cosmic expansion on these
galaxies, they were able to derive a quantity called peculiar velocity that reflects gravita-
tional perturbations. The resulting map showed that our galaxy the Milky Way (MW) is
part of a supercluster they call "Laniakea", of which all the galaxies are moving inward
within its boundary. Our location is in the outskirts of this supercluster close to another
one called "Perseus-Pisces". Their findings shed light on the reason why our galaxy is
moving at a rate of 600 km s−1towards the constellation of Centaurus (Dressler et al.,
1987).

Not only are we located in the outskirts of the local supercluster, but we are also in the

outskirts of the Milky Way, a fact that makes studying the plethora of activity in the Galactic

Center all the more difficult. I will begin this dissertation by giving an overview of our

Galaxy and the Galactic Center environment, and follow this up with a brief description of

the infrared observational techniques I utilize to study the Galactic Center, the subject of

this thesis.

1.1 The Milky Way

The Milky Way is a barred spiral galaxy that harbors about 300 billion stars and has a di-

ameter of ∼ 100 000 light years (see Fig. 1.1). It is viewed across the night sky as a faint

band of light entwined with dark lanes. It is this grand appearance that inspired the name,

1



2 CHAPTER 1. General Introduction

Figure 1.1: Illustration of the Milky Way and its surroundings. Image credit: Finkbeiner (2012) Na-
ture news feature.

the Milky Way, since our ancestors variously described it as a river, as a path, as milk. In

Arabic, it is called "Darb el-Ttabbanah" or "Darb el-Llabbaneh" which translates to either

literally the Milky Way, or the Hay Way. The Hay Way comes from the similarities ancient

Arabs noticed between fallen hay and the way the band appears in the sky. This band of

light is our Galaxy seen edge-on due to the presence of our Solar System in one of the outer

arms of the Galaxy.

Besides the considerable number of stars, the MW also contains nebulae, gas clouds,

dust lanes and dark clouds. Like any other galaxy, a dark matter halo surrounds our own

where astronomers inferred its existence since the 1970s through the gravitational influ-

ence it has on the rotation of the Galaxy. This halo has a spherical shape and a mass of

about 1 trillion Suns and extends hundreds of thousands of light years or in another unit,

hundreds of kiloparsecs, where 1 kpc ∼ 3200 light year. There are also sub-halos of dark

matter within the larger one. In addition to the dark matter, there are about two dozen

dwarf galaxies that are believed to have been formed as a result of those dark-matter sub-

halos pulling in gas which then form stars. Getting closer to the Galaxy itself, observations

revealed the existence of faint streamers of stars that seem to trace the orbits of the dwarf

galaxies as they were crossing the newly-formed Milky Way. One such streamer is illus-

trated in Fig.1.1. Surrounding the disk of the MW (up to about 100 kpc) a faint, diffuse
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halo of stars can be seen. It has a mass of roughly 109 solar masses. Heavy element analy-

sis shows that those stars located furthest from the MW are of older age than those closer

to it. In fact, evidence points to there being two distinct halos where the outer one rotates

against the Galaxy’s rotation while the younger inner one rotates in the same direction

(Carollo et al., 2007).

The disk of the Galaxy is made of young massive blue stars, reddish HII regions (ionized

clouds caused by young stars), young clusters and dust lanes and filaments, where star

formation is taking place. This disk has a diameter of ≤30 kpc and a thickness of ∼1 kpc.

It is believed to have been formed as a result of the interaction between the infalling gas

and the dwarf galaxies. As the matter grew in mass and movement around the center it

flattened into a disk. The spiral arms visible today within that disk are thought to have

been caused by density waves from the interactions between the stars and gas orbiting the

center.

The Galaxy’s center is located at about 8 kpc from the Solar System. It consists of a

spherical distribution of old stars (∼ billion years old) called the bulge, and weighs about

1010 Suns. These old stars appear red in comparison to the white/blue younger stars and

star forming regions in the disk. Inside the bulge there is an indication for a weak bar (or

triaxial bulge) about 3 kpc long. At the very heart of the stellar content of the bulge and

the Galaxy lies a black hole with a mass of roughly 4 million solar masses. Though it is

massive, Sagittarius A*, or shortly Sgr A*1, lies on the lower limit of supermassive black

holes (SMBHs) as some of these galactic black holes can reach billions of solar masses.

In 2012, a group of astronomers (Sohn et al., 2012; van der Marel et al., 2012a,b) were

able to predict the future of the Milky Way. They measured the position and proper motion

of the neighboring Andromeda galaxy and found that it is separated from our own by about

770 kpc. What they also found is that both galaxies are on a collision course (with a speed

of 109 km s−1) estimated to take place 6 billion years from now. The merging process will

be gradual, over a billion years, where an elliptical galaxy will be born from the two spirals.

1.2 The Galactic Center

The Center of our Galaxy is made up of stars, stellar remnants, dust and molecular and ion-

ized gas, with a supermassive black hole at its heart. These different components interact

with each other and provide a very complex region of structures that have long motivated

astronomers into developing new techniques and methods to better understand the phe-

nomena and physical processes taking place there. The importance of studying our Galac-

tic Center lies in it being the nearest galactic nucleus to us. It is located at about 8 kpc or

∼ 28000 light years. The nearest center of a similar galaxy to the MW is Andromeda’s (M31

or NGC 224), which is located at roughly 2.5 million light years from Earth.

1Sgr A* refers to the radio source believed to be associated with the supermassive black hole at the Center.
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Watching the faint band of the MW on a clear night one notices the dark lanes (of dust)

that prevent most of the visible light of the stars from reaching us. These dust lanes are par-

ticularly prominent when looking in the direction of the constellation Sagittarius, where

the brightest region in our Galaxy, the Center, lies. However, switching to other wave bands

one can peer through the dusty MW disk and see a completely different picture. The Cen-

ter is bright in the radio, infrared and X-rays.

The nucleus of the MW spans about 100 pc (∼300 light years). Figure 1.2 shows the

Center with a composite image taken using three different telescopes at three different

wavelengths, two in the infrared and one in the X-ray. The brightest spot in the image is

the location of the core of the Galaxy, Sagittarius A complex. The infrared light (red) reveals

the considerable number of stars hiding in visible light behind the thick veil of dust toward

the Center. The radiation from these stars heats the nearby gas and dust and causes it to

glow (yellow), such as the different-shaped filaments seen across the image. The arcs to

the left of the mosaic are bright due to the nearby massive stellar clusters, the Quintuplet

and Arches cluster, warming up the gas. The presence of massive stars is not exclusive to

the stellar clusters but rather spread across the mosaic as shown by Wang et al. (2010) using

the Hubble Telescope layer of the composite image of Fig. 1.2 (more details in Chapter 3).

In fact, the complex gas structures seen in the mosaic are caused by the radiation and

stellar winds of these massive stars. The X-ray view is quite different from the infrared one

(blue and pink light). Here the higher energy emission is mostly originating from material

being accreted into black holes and compact sources. The brightest region in the X-ray,

Sagittarius A, is caused by diffuse gas heated to millions of degrees by outflows and winds

from the SMBH, in addition to those from winds of giant stars and stellar explosions.

The Sagittarius A complex, a bright region in radio, is believed to trace matter orbiting

the central black hole. One of the best images of the region is the long wavelength (∼ 1 m)

map of the Center shown in Fig. 1.3 from LaRosa et al. (2000). The image shows several

supernova remnants and giant molecular clouds, such as Sgr B1 and B2. Also visible across

are synchrotron emitting filaments. To get closer to the center and reveal more detailed

structures, observing at shorter wavelengths with bigger telescopes becomes necessary.

The largest feature that can be seen as we get closer to the Center is Sgr A East. This shell-

like feature extends about 3′.5×2′.5 or 10.5×8 pc and its non-thermal emission is bright in

the radio as well as in the X-ray. It is believed to be a supernova remnant (SNR), though its

location extremely close to the Galactic nucleus has led some to believe that it might not be

a simple SNR but something more powerful. A more recent claim is that the hypothesized

supernova actually expanded into a region of lower density cleared out by the winds of

massive stars (Yusef-Zadeh and Morris, 1987; Maeda et al., 2002; Fryer et al., 2006).

In projection, Sgr A East appears to enclose a three-armed structure called Sgr A West

and a clumpy ring surrounding it. The clumpy molecular ring, known as the circum-

nuclear disk (CND) (Fig. 1.4) is estimated to have a mass of ∼ 106 solar masses, consist-
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Figure 1.3: A radio (90 cm) image of the GC region spanning a distance of 1000 light-years (∼ 300 pc).
Image credit: NRAO/AUI and N.E. Kassim, Naval Research Laboratory.

ing of several dense clouds of molecular gas (up to 107 cm−3 Guesten et al., 1987; Jackson

et al., 1993; Wright et al., 2001; Herrnstein and Ho, 2002) and warm (few 100 K) dust (Zylka

et al., 1995). The CND, with a radius between 1.5 and 7 pc, is believed to be orbiting the

nucleus and fed by gas infall from dense molecular clouds further away from the Center.

Sgr A West, also known as the "mini-spiral" can be seen in Fig. 1.4 as the three-armed

structure of ionized gas and dust spanning over the central 3 pc. The emission is thermal

in nature contrary to the one detected from Sgr A East. These structures are believed to

be streamers of ionized matter (few tens of solar masses) on in-falling trajectories from

the inner edge of the surrounding CND. This ionized gas appears to be orbiting the Center

in a projected motion from east to west with a speed of about 100 km s−1at a distance of

∼3 light years (Yusef-Zadeh et al., 1998). Assuming a Keplerian rotation around the center,
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Figure 1.4: Multi-wavelength image of the Galactic Center obtained by different telescopes.
The infrared emission from stars by HST/NICMOS, ionized gas HST/NICMOS, and warm dust by
SOFIA/FORCAST. The image covers the central 10 light years of the Galaxy. Image credit: Stars:
NASA/HST/NICMOS; Ionized Gas: NASA/HST/NICMOS; Warm Dust: NASA/DLR/USRA/DSI/FORCAST
Team/Lau et al. (2013).

this corresponds to an enclosed mass of ∼ 3.5×106 M¯. This was the first indication for the

presence of a dark mass at the center of the Galaxy. The in-falling gas also interacts with

the intense winds originating from the stars located in and within the streamers and forms

bow shock-like feature. These streamers are designated as the northern arm, eastern arm

and the western arc. The three arms have been modeled as three bundles of Keplerian

orbits around the SMBH by Zhao et al. (2009), while Irons et al. (2012) prefer a model of

one-armed spiral density wave.

The nuclear stellar cluster (NSC) is what comes further in. Observations in the infrared

have long shown the high density of stars at the heart of the Galaxy. However, tracing

the orbits of individual stars, especially those closest to the densest region of the clus-

ter, its center, only became possible with the aid of special techniques of Speckle imaging

and the introduction of adaptive optics (AO) on 8–10 m class telescopes. Now we can

reach resolutions as high as 40 mas in the near-infrared. The NSC population of stars in-

cludes mostly main sequence stars (∼3 M¯), super-giants, giants and Wolf-Rayet stars. The

brightest are the IRS sources (see Fig. 1.5) such as IRS 7, 3, 13, 16 and the sources embed-

ded in the northern arm of the mini-spiral, which can be seen as well in Fig. 1.5 through

its dust emission at 3.8 µm. The cluster is dominated, as expected for a nuclear cluster,

by old, late-type (red) giants, super-giants and asymptotic giant branch (AGB) stars. How-

ever, spectroscopic observations revealed that some of the bright stars are hot early-types
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Figure 1.5: L′-band (3.8 µm) mosaic of the Galactic Center stellar cluster obtained with VLT NaCo in
2012. Most sources are identified based on Viehmann et al. (2005). One arcsec translates to ∼0.04 pc
for an 8 kpc distance to the GC. The position of the supermassive black hole Sagittarius A* (Sgr A*) is
marked by a cross. North is up and east is to the left.

(Krabbe et al., 1995; Genzel et al., 1996; Paumard et al., 2006; Tanner et al., 2006). They are

"HeI-stars" post main-sequence, blue super-giants and Wolf-Rayet (WR) stars with ages of

2–8 Myrs and zero age main-sequence stars (ZAMS) of masses 30–100 M¯(Martins et al.,

2007).

The dusty and dense IRS 13 complex, just about 0.1 pc from the position of the central

black hole, reveals a concentrated HII emission in addition to X-rays. IRS 13E is made of

three O/WR stars and possibly, though this is highly debatable, an intermediate mass black
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hole (IMBH). The fainter IRS 13N has long been discussed as to whether it is composed of

young stellar objects (YSOs) (e.g. Mužić et al., 2008) or simply dust concentrations (Fritz

et al., 2010). Recently, Jalali et al. (2014) using hydrodynamical simulations showed that

strong orbital compression of clumps orbiting the SMBH on an eccentric orbit leads the

gas densities to increase and overcome the tidal density of the black hole, thereby allowing

stars to form that are similar to those speculated to be in the IRS 13N complex.

The "S-star cluster" (more details in Chapter 2) located in the central arcsecond, cen-

tered on the SMBH, is mainly made up of B-stars. A recently added member to the S-

cluster is the fast moving cloud of gas and dust, G2, that is approaching the black hole on

an eccentric orbit (Gillessen et al., 2012). It is speculated that the cloud will disrupt upon

its closest approach to the SMBH and lead to increased activity, starting in the X-ray band,

that could span months to years. However, Eckart et al. (2013) argue that the object is most

probably a compact dusty object (they refer to it as a dusty s-cluster object, DSO) with a

star at its core. This composition will cause the amount of matter from the cloud that is

accreted onto the black hole much lower that anticipated. Phifer et al. (2013) also prefers

a hidden star scenario. Many ground-based and space telescopes have turned their atten-

tion to monitoring the activity of the galactic black hole, Sgr A*, in order to observe the

disruption of the cloud live. Up to date, no increased activity of Sgr A* has been recorded

besides the frequent modest flares across its observable spectrum. The increased moni-

toring of the central region, especially in the X-rays, led to the recent discovery of a pulsar

only 0.12 pc (0.38 light years) from the black hole. The discovery came when a very bright

flare was recorded by Swift in April, 2013 (Degenaar et al., 2013; Kennea et al., 2013) (see

Fig. 1.6). Shortly afterwards, NuSTAR X-ray telescope confirmed the flaring object to be a

magnetar with a spin rate of 3.76 seconds (Mori et al., 2013) that is gradually slowing down

due to the presence of a high magnetic field that causes the pulsar to radiate energy faster

than it normally does. Eatough et al. (2013) infer from the pulsar’s large Faraday rotation

(the rotation of the plane of polarization of the emission in the presence of an external

magnetic field) a dynamically important magnetic field near Sgr A*. They use the strength

of its magnetic flux to explain the observed emission, from radio to X-ray wavelengths,

from the black hole. Evidence of such dynamically important magnetic fields threading

the accretion disks of extragalactic supermassive black holes have been reported recently

by Zamaninasab et al. (2014).

1.3 Observations in the Infrared

William Herschel was the first to discover infrared (IR) radiation in 1800 when he mea-

sured thermal radiation beyond the red portion of the visible light, hence the name in-

frared. On the electromagnetic spectrum infrared radiation lies in the wavelength range of

∼ 1 – 1000 µm (1 mm). In Astronomy the IR range is divided into subcategories of (i) near-

infrared (NIR) (0.7–5 µm); (ii) mid-infrared (MIR) (5–30 µm); and (iii) far-infrared (FIR) (30

–1000 µm). The Earth’s atmosphere only allows certain bands of radiation to pass through
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Figure 1.6: Multiwavelength view of the field of SGR J1745-2900 and Sgr A*. The blue image shows
the XMM-Newton 6.4 keV Galactic Center view (Ponti et al., 2013), and the black square is a 5′′×5′′
box around the position of the magnetar. The inset shows the first Chandra ACIS observation of the
source. The VLT/NaCo image in the near-infrared is in Ks-band (Schödel et al., 2009). Image credit:
Rea et al. (2013)

to the surface; they are called the atmospheric windows. Atmospheric opacity is essential

for sustaining life on Earth, as it blocks most high energy radiation like X-rays, gamma rays

and most of the ultraviolet light. Visible light passes through in addition to lower energy

radio waves. Infrared radiation, on the other hand, gets for the most part absorbed by

water vapor and also carbon dioxide and oxygen molecules in the atmosphere, and only

reaches us in a few narrow ranges (see Fig. 1.7). Infrared astronomy is the study of the Uni-

verse in the infrared regime. Star forming regions and cool stars with surface temperatures

of a few thousand degrees, and other celestial objects are mostly suited to be studied in the

IR. The most important atomic and molecular transitions occur in the infrared. These are

essential to understand the physical conditions and processes in planetary atmospheres,

interstellar clouds, and in distant galaxies. Also the dust present in the heart of galaxies

and stellar clusters absorbs the optical and ultraviolet light and re-emits it at the longer IR

wavelengths. Circumstellar dusty regions are also bright in the infrared. Almost anything

embedded in dust can be peered through with infrared eyes. As a local example in our own

Solar System, the zodiacal light is the radiation from the dust particles that were created by

evaporating comets and colliding asteroids. Another important application to infrared as-

tronomy is the study of the early Universe, as the visible and ultraviolet light emitted that

early in time is now red-shifted and can be only observed in the infrared. The NASA/ESA

James Webb Space Telescope (JWST) is especially designed to study that era.
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Figure 1.7: Atmospheric electromagnetic transmittance or opacity. Image credit: NASA/JPL-Caltech

Ground-based observations in the NIR started as early as the 1960s. It was not till the

70s that observations at longer wavelengths became possible with the aid of high-flying

airplanes. The first space-borne infrared telescope, the InfraRed Astronomical Satellite

(IRAS), came into operation in 1983. The biggest problem with infrared astronomy is the

emission from the atmosphere, which peaks at about 10 µm. Therefore, ground-based

telescopes are placed on high mountains in dry regions where the emission from astro-

nomical objects does not get absorbed completely by the presence of water vapor. For the

mid to far-IR regimes the only way is to use rockets, balloons, aircraft and space telescopes

as some bands get absorbed completely by the Earth’s atmosphere.

Below I describe two of the techniques that are currently employed on ground-based

telescopes to observe celestial objects in the near and mid-infrared. I am focusing on these

two bands and, hence these two methods only, as they are the ones that will be addressed

in this dissertation. The observations I use were taken using the European Southern Ob-

servatory Very Large Telescope (ESO VLT)2. The VLT is situated on top of Cerro Paranal at

an altitude of 2635 m in the Chilean Atacama desert. The site is particularly suitable for op-

tical and infrared observations as the Atacama desert is considered one of the driest places

on Earth. The telescope is one of world’s most advanced optical instruments, consisting

of four Unit Telescopes (UTs; Antu, Kueyen, Melipal and Yepun) with primary mirros of

8.2 m diameter and four movable 1.8 m diameter Auxiliary Telescopes (ATs). The light of

these individual telescopes can be combined to form a giant "interferometer" (VLTI) that

can achieve resolutions up to 25 times finer than with the individual ones. The location of

the VLT is most suitable to study the Center of our Galaxy as it is mostly visible from the

southern hemisphere (see Fig. 1.8).

2http://www.eso.org/public/teles-instr/paranal/

http://www.eso.org/public/teles-instr/paranal/
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Figure 1.8: A panorama photo, taken by ESO Photo Ambassador Yuri Beletsky, that shows the view of
the starry sky from the site of ESO’s Very Large Telescope (VLT) at Cerro Paranal during the total lunar
eclipse of 21 December 2010. Image credit: ESO/Y. Beletsky.

I first start with the adaptive optics observing technique currently implemented on

the VLT instrument NaCo. The Nasmyth Adaptive Optics System (NAOS) and the High-

Resolution Near IR Camera (CONICA), in short NaCo, provides multimode, adaptive optics

corrected observations in the range 1–5 µm3.

Adaptive Optics in the Near Infrared

Atmospheric turbulence makes it rare for any telescope to reach its diffraction-limited

resolution, which is determined by the diameter of its primary mirror and the observing

wavelength (1.22λ/D). For example, the diffraction limit of the VLT at 2.2 µm is 0.057′′.
Due to the presence of the atmosphere the equation becomes λ/r0 ∼ 0.7′′, where another

factor comes into play, the Fried parameter. The Fried parameter represents the strength

of the turbulence and is dependent on the wavelength by λ(6/5), e.g. at 2.2 µm r0 is about

60 cm. There is another important parameter for observations and that is the correlation

or coherence time of the turbulence, τ0. This parameter is related to r0 and for a wind

speed of 10 m s−1, τ0 ∼ 60 ms at 2.2 µm. The larger these two parameters are the more sta-

ble the atmospheric conditions. Luckily for observing the Center, Sagittarius constellation

culminates at the Zenith during the southern winter, which happens to be the most suited

in terms of the weather conditions.

To improve the telescope’s resolution and bring it closer to its diffraction-limited value,

a method called Adaptive Optics (AO) is employed to account for the atmospheric turbu-

lence. AO does a real-time compensation to the wavefront of the observed astronomical

sources by measuring these distortions on a known bright source called a guide star (GS).

A wavefront sensor measures the distortions on the otherwise flat wavefront coming from

the star where they are processed by a real-time computer and fed into a deformable mir-

ror to correct for them (see Fig. 1.9). The image quality is determined by the Strehl Ratio

3The description and numbers mentioned are optimized for Paranal observing site of the VLT, and
taken from NaCo manual: http://www.eso.org/sci/facilities/paranal/instruments/naco/doc/
VLT-MAN-ESO-14200-2761_v94.pdf

http://www.eso.org/sci/facilities/paranal/instruments/naco/doc/VLT-MAN-ESO-14200-2761_v94.pdf
http://www.eso.org/sci/facilities/paranal/instruments/naco/doc/VLT-MAN-ESO-14200-2761_v94.pdf
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Figure 1.9: Principle of adaptive optics system. Image credit: ESO NaCo user manual.

(SR), which refers to the amount of light inside the diffraction-limited core compared to

the total flux; i.e. the higher the ratio the better the image quality. For Ks-band obser-

vations the optimum achieved SR is ∼ 50%, while for L′ it can reach as high as 70%. For

shorter wavelengths, J-band, the SR may only reach a few percent.

In general a good AO correction depends on the observing conditions characterized

by the seeing (ε = 0.98λ/r0 Fried, 1966), how bright the guide star is and its distance to

the object of interest. The brighter and closer the GS is to the observing region the better

the correction and the resulting point spread function (PSF) is closer to the diffraction

limit. For example, observations of the central cluster utilize the presence of the NIR bright

(Ks-band magnitude ∼ 7) supergiant IRS 7, located about 5.6′′ north of Sgr A*, as an AO

guide star. Other fields of interest that do not have a nearby natural guide star can use

the laser guide star (LGS)4. Adaptive optics works well with short-wavelength observations

(shortward of 4.2µm), while for longer wavelengths the additional components associated

with the AO system introduce higher IR background and the deformable mirror brings

background fluctuations that do not cancel correctly.

All IR observations have to be corrected for sky emission and for detector cosmetics.

The sky background forλ≤ 2.2µm is caused by OH emission at an altitude of ∼ 80 km and

have to be sampled approximately every 2 hours of on-source observations. However, at

longer wavelengths the thermal background of the atmosphere and telescope dominate

4LGS is an artificial source created by a Sodium Laser (589.5 nm) focused at 90 km altitude in the mesosphere.
The atomic sodium present at that height produces an artificial star of visual magnitude of 11.
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and this means that the sky has to be sampled more frequently as the time scale of the

fluctuations is short. The detector cosmetics can be minimized by a method called jitter,

which is done by taking several images offseted by a small value of the object of interest.

This way the astronomical sources do not always lie on the same position of the detector

array. This method can also be used to estimate the sky background for non-crowded

fields. Crowded fields on the other hand need a separate sky observations of a nearby field

relatively devoid of sources. For the crowded Galactic Center (GC) field this is achieved by

observing a dark cloud located about 400′′ north and 713′′ west of the Center.

After the images reach the user, data reduction steps have to be applied to make them

suitable for science investigation. These steps involve:

• sky-subtraction: subtracting the sky frame from the object frames.

• flat-fielding: dividing the object frame by a map of the pixel response of the detector

array.

• correcting for dead or bad pixels: done by replacing the bad/dead pixels with inter-

polations from neighboring pixels.

Then the reduced images are shifted and stacked in a cube with a mean average to get a

mosaic image of the celestial object of interest.

Chopping/Nodding Technique in the Mid Infrared

VISIR, the VLT spectrometer and imager for the mid-infrared, is the instrument used to

obtain the MIR data I discuss in this thesis. It provides diffraction-limited imaging at high

sensitivity in two MIR wavelength ranges: the N -band (≈ 8 – 13 µm) and the Q-band (16.5

– 24.5 µm). It also offers a slit spectroscopy with a spectral resolution between 150 and

30000 km s−15.

As the spatial resolution is either determined by the telescope’s mirror size (solid line

in Fig. 1.10 following the relation 1.22λ/D) or the atmospheric seeing, one can derive the

wavelength dependence of the seeing. This is done by the Roddier formula which ap-

proximates the seeing by studying the spatial coherence radius of the atmosphere in the

telescope beam, ∝λ−0.2 (see dot-dashed lines in Fig. 1.10). According to the figure, for vis-

ible seeing below 0.6′′ VISIR is already providing diffraction limited images. Ideally, MIR

observations are better performed with space-borne telescopes since they would be above

the atmosphere and avoid its bright thermal background. However, the spatial resolution

5The description and numbers mentioned are optimized for Paranal observing site of the VLT, and
taken from VISIR manual: http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/
VLT-MAN-ESO-14300-3514_v89.pdf

http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/VLT-MAN-ESO-14300-3514_v89.pdf
http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/VLT-MAN-ESO-14300-3514_v89.pdf
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Figure 1.10: VLT diffraction limit (solid line) versus seeing. The Roddier dependence is shown for two
optical seeings (dashed-dot). Plotted for comparison is the Spitzer Space Telescope diffraction limits
(dashed line). Image credit: ESO VISIR user manual.

achieved by ground-based observatories are usually higher than those by space telescopes

due to the limited-size mirrors of the latter. For instance, VISIR can reach diffraction-

limited resolutions of ∼ 0.3′′ (FWHM) in the N -band, an order of magnitude better than

what is reached by the Spitzer Space Telescope (SST) (see Fig. 1.10).

The two atmospheric windows, N and Q bands, in the MIR can be seen in Fig. 1.11.

Reading the transmission curve, one can see that the N -band window is almost entirely

transparent in certain ranges, unlike the Q-band which can on average be only 60% trans-

parent. Outside these two windows, the rest of the thermal radiation gets absorbed before

reaching the surface by mainly H2O, CH4, CO2, CO, O2, O3 molecules. Besides absorb-

ing the incoming infrared light, the atmosphere acts as a strong background emitter with

a black-body curve at ∼ 253 K. The telescope also emits thermal radiation, which for the

VLT is at 283 K. For this reason, the VISIR detectors and the whole instrument are cooled

to very low temperatures (few Kelvins for the detectors) to avoid internal background con-

tamination.

To account for the MIR background of the sky and the telescope a method called chop-

ping/nodding is implemented. It is a set of differential observations wherein the sec-

ondary mirror of the telescope is moved at a rate faster than the background fluctuations

between two positions on the sky. The first is on-source and measures the astronomical

source in addition to the background; the second position is referred to as off-source and

measures the background alone. For VISIR at Paranal, observing in the N -band requires

a chopping frequency of 0.25 Hz while for the Q-band 0.5 Hz. The chopping technique
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Figure 1.11: MIR atmospheric transmission at Paranal site computed for an altitude of 2600 m and
1.5 mm of precipitable water vapor at zenith. Image credit: ESO VISIR user manual.

Figure 1.12: Illustration of the chopping and nodding technique on observations of the blue compact
galaxy He2-10. The galaxy only appears after chopping and nodding. Image credit: VISIR commis-
sioning team, June 2004, from ESO VISIR user manual.
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accounts for the sky and telescope emission which is removed by subtracting the images

taken at the two positions, i.e. on-source image - off-source image. However, changing

the position of the secondary mirror introduces a residual background resulting from the

optical path difference between the two chopper positions. This additional background

is removed or mostly suppressed by nodding the whole telescope to an off-source posi-

tion where again the same chopping cycle is repeated. This technique works well as this

residual background varies on a time-scale longer than the sky background. After the im-

ages from the two nodding positions are subtracted from each other, the resulting prod-

uct can contain 3–4 images of the source depending on the settings used for the chop-

ping/nodding of the telescope, see Fig. 1.12 for an illustration of the technique.

The reduction of mid-IR data is similar to NIR data (see previous section 1.3). Besides

the chopping and nodding corrections, bad or dead pixels have to be taken care of. Ac-

cording to the ESO VISIR data reduction guidelines, there is usually no flat fielding done

during the reduction of MIR data as the background fluctuations at mid IR wavelengths

are large.

1.4 Dissertation Outline

This dissertation deals with Galactic Center data taken at two wavelengths regimes, near

and mid-infrared, which I present in two corresponding chapters. Each of these chapters

will have its own abstract, introduction, data and results then the discussion and conclu-

sions.

Chapter 2
Here I analyze NIR 2.2 µm images of the S-star cluster to study the diffuse emission

surrounding the central black hole, Sgr A*. The chapter starts with a reference to

the published works addressing the inner regions of the cluster in terms of stellar

populations, distribution and dynamics. I then lay out the approach we follow to

study the diffuse emission, and the attempt to explain it by a distribution of faint

stars. The effect a dark mass of individual perturbers will have on the orbit of the

star S2, around Sgr A*, is then explored. Finally, I simulate the line-of-sight cluster-

ing of below-the-detection-limit stars and how they can be mistaken as new faint

sources. The chapter ends with a discussion and summary of the results and their

implications.

Chapter 3
This chapter lists the MIR data I use to study the faint compact sources in and

around the nuclear star cluster and Quintuplet cluster. First I give an introduction

to the regions and the properties that make them suitable and interesting for such

an investigation. The details of the data and the reduction process are given be-
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fore highlighting the main results obtained for the two regions. I then conclude the

chapter with a summary and an outlook for future work.

Chapter 4
An interesting source was found while analyzing the mid-infrared mosaics of the

central cluster. This source is worth further investigation for its morphology and

location. The morphology resembles a bow shock caused by the interaction of a su-

personic wind from a star with the surrounding medium. The location is interesting

for the chance alignment of our source with other previously studied bow shocks

and features that are closer to the central black hole, and were found to be caused

by an external wind blowing from its direction. This chapter highlights the discus-

sion of the long-sought jet/outflow from the SMBH and also the combined stellar

wind of the central cluster.

Chapter 5
I conclude the dissertation by highlighting its main results and discussing their im-

plications, while laying the ground for follow-up studies.
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THE NATURE OF DIFFUSE NIR EMISSION IN THE

INNER ARCSECOND

Sgr A*, the supermassive black hole at the center of the Milky Way, is surrounded by a
small cluster of high velocity stars, known as the S-stars. I aim to constrain the amount
and nature of stellar and dark mass associated with the cluster in the immediate vicinity
of the black hole. I use near-infrared imaging to determine the Ks-band luminosity func-
tion of the S-star cluster members, and the distribution of the diffuse background emis-
sion and the stellar number density counts around the central black hole. This allows
us to determine the stellar light and mass contribution expected from the faint members
of the cluster. We then use post-Newtonian N-body techniques to investigate the effect
of stellar perturbations on the motion of S2, as a means of detecting the number and
masses of the perturbers. I find that the stellar mass derived from the Ks-band luminos-
ity extrapolation is much smaller than the amount of mass that might be present consid-
ering the uncertainties in the orbital motion of the star S2. Also the amount of light from
the fainter S-cluster members is below the amount of residual light at the position of the
S-star cluster after removing the bright cluster members. If the distribution of stars and
stellar remnants is strongly enough peaked near Sgr A*, observed changes in the orbital
elements of S2 can be used to constrain both their masses and numbers. Based on sim-
ulations of the cluster of high velocity stars I find that at a wavelength of 2.2 µm close
to the confusion level for 8 m class telescopes blend stars will occur (preferentially near
the position of Sgr A*) that last for typically 3 years before they dissolve due to proper
motions.
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2.1 Introduction

Using 8–10 m class telescopes, equipped with adaptive optics (AO) systems, at near-

infrared (NIR) wavelengths has allowed us to identify and study the closest stars in the

vicinity of the supermassive black hole (SMBH) at the center of our Milky Way. These

stars, referred to as the S-star cluster, are located within the innermost arcsecond, orbit-

ing the SMBH, Sagittarius A* (Sgr A*), on highly eccentric and inclined orbits. Up till now,

the trajectories of about 20 stars have been precisely determined using NIR imaging and

spectroscopy (Gillessen et al., 2009b,a). This orbital information is used to determine the

mass of the SMBH and can in principle be used to detect relativistic effects and/or the

mass distribution of the central stellar cluster (Rubilar and Eckart, 2001; Zucker et al., 2006;

Mouawad et al., 2005; Gillessen et al., 2009b).

One of the brightest members of that cluster is the star S2. It has the shortest observed

orbital period of ∼15.9 years, and was the star used to precisely determine the enclosed

dark mass, and infer the existence of a ∼4 million solar mass SMBH, in our own Galactic

Center (GC; Schödel et al., 2002; Ghez et al., 2003). The first spectroscopic studies of S2,

by Ghez et al. (2003) and later Eisenhauer et al. (2005), revealed its rotational velocity to be

that of an O8–B0 young dwarf, with a mass of 15 M¯and an age of less than 106 yrs. Later,

Martins et al. (2008) confined the spectral type of S2 to be a B0–2.5 V main-sequence star

with a zero-age main-sequence (ZAMS) mass of 19.5 M¯. The fact that S2, along with most

of the S-stars, is classified as typical solar neighborhood B2–9 V stars, indicates that they

are young, with ages of 6–400 Myr (Eisenhauer et al., 2005). The combination of their age

and the proximity to Sgr A* presents a challenge to star formation theories. It is still unclear

how the S-stars were formed. Being generated locally requires that their formation must

have occurred through non-standard processes, like formation in at least one gaseous disk

(Löckmann et al., 2009) or via an eccentricity instability of stellar disks around SMBHs

(Madigan et al., 2009). Alternatively, if they formed outside the central star cluster, about

0.3 parsec core radius (e.g. Buchholz et al., 2009; Schödel et al., 2007), there are several

models that describe how they may have been brought in (e.g. Hansen and Milosavljević,

2003; Kim et al., 2004; Levin et al., 2005; Fujii et al., 2009, 2010; Merritt et al., 2009; Gould

and Quillen, 2003; Perets et al., 2007, 2009). For a detailed description of these processes

see Perets and Gualandris (2010).

Stellar dynamics predict the formation of a cusp of stars at the center of a relaxed stellar

cluster around a SMBH. This is manifested by an increase in the three dimensional stellar

density of old stars and remnants towards the center with power-law slopes of 1.5 to 1.75

(Bahcall and Wolf, 1976; Murphy et al., 1991; Lightman and Shapiro, 1977; Alexander and

Hopman, 2009).

The steep power-law slope of 1.75 is reached in the case of a spherically symmetric

single mass stellar distribution in equilibrium. For a cluster with differing mass composi-
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tion, mass segregation sets in, where the more massive stars sink towards the center, while

the less massive ones remain less concentrated. This leads to the shallow density distri-

bution of 1.5 (Bahcall and Wolf, 1977). Later numerical simulations and analytical models

confirmed these results (Freitag et al., 2006; Preto and Amaro-Seoane, 2010; Hopman and

Alexander, 2006b). These steep density distributions were expected for the central cluster

considering its age, which is comparable to the estimates of the two-body relaxation-time

of 1–20 Gyr for the central parsec (Alexander, 2005; Merritt, 2010; Kocsis and Tremaine,

2011). However, observations of the projected stellar number density, which can be re-

lated to the three dimensional density distribution, revealed that the cluster’s radial profile

can be fitted by two power-law slopes. The slope for the whole cluster outside a radius of

∼ 6′′ (corresponding to 0.22 parsec) was found to be as steep as 1.8±0.1, while inside the

break radius the slope was shallower than expected and reached an exponent of 1.3±0.1

(Genzel et al., 2003; Schödel et al., 2007). These findings motivated the need to derive the

density profiles of the distinct stellar populations, given that recent star formation (6 Myr,

Paumard et al., 2006) at the GC gave birth to a large number of high-mass young stars that

would be too young to reach an equilibrium state. Using adaptive optics and intermediate-

band spectrophotometry Buchholz et al. (2009) found the distribution of late-type stars (K

giants and later) to be very flat and even showing a decline towards the Center (for a radius

of less that 6′′), while the early-type stars (B2 main-sequence and earlier) follow a steeper

profile. Similar results were obtained later by Do et al. (2009) and Bartko et al. (2010).

These surprising findings required new models to explain the depletion in the num-

ber of late-type giants in the central few arcseconds around the SMBH. Such attempts in-

volved Smooth Particle Hydrodynamics (SPH) and Monte Carlo simulations which tried

to account for the under density of giants by means of collisions with other stars and

stellar remnants (Dale et al., 2009; Freitag, 2008). Another explanation could be the dis-

turbance of the cusp of stars after experiencing a minor merger event or an in-spiraling

of an intermediate-mass black hole (IMBH), which then would lead to deviations from

equilibrium; hence causing a shallower power-law profile of the cusp (Baumgardt et al.,

2006). Merritt (2010) explains the observations by the evolution of a parsec-scale initial

core model.

Mouawad et al. (2005) presented the first efforts to determine the amount of extended

mass in the vicinity of the SMBH allowing for non-Keplerian orbits. Using positional and

radial velocity data of the star S2, and leaving the position of Sgr A* as a free input pa-

rameter, they provide, for the first time, a rigid upper limit on the presence of a possible

extended dark mass component around Sgr A*. Considering only the fraction of the cusp

mass MS2apo that may be within the apo-center of the S2 orbit, Mouawad et al. (2005) find

MS2apo /(MSMBH + MS2apo ) ≤ 0.05 as an upper limit. This number is consistent with more

recent investigations of the problem (Gillessen et al., 2009a). Due to mass segregation, a

large extended mass in the immediate vicinity of Sgr A*, if present, is unlikely to be dom-

inated in mass of sub-solar mass constituents. It could well be explained by a cluster of



2.1. Introduction 23

high mass-to-light ratio (M/L) stellar remnants, which may form a stable configuration.

From the observational point of view, several attempts have been made recently to

tackle the missing cusp problem. Sazonov et al. (2011) proposed that the detected 1′′ sized

thermal X-ray emission close to Sgr A* (Baganoff et al., 2001, 2003) can be explained by the

tidal spin-ups of several thousand late-type main-sequence stars (MS). They use the Chan-

dra X-ray data to infer an upper limit on the density of these low-mass main-sequence

stars. Furthermore, using Hubble Space Telescope (HST) data, Yusef-Zadeh et al. (2012b)

derived a stellar mass profile, from the diffuse light profile in the region < 1′′ around Sgr A*,

and by that they explained the diffuse light to be dominated by a cusp of faint K0 dwarfs.

Up to now, the true distribution of the Nuclear Star Cluster, especially the S-stars, is yet

to be determined. No investigations have confirmed or ruled out the existence of a cusp

of relaxed stars and stellar remnants around Sgr A*, as predicted by theory. An excellent

dataset to investigate the stellar content of the central arcsecond around Sgr A* is the NIR

Ks-band (2.2 µm) data (see Fig. 2.1) used in Sabha et al. (2010), hereafter NS10. In that

case I subtracted the stellar light contribution to the flux density measured at the position

of Sgr A*. The aim of this work is then to analyze the resulting image of the diffuse NIR

background emission close to the SMBH. This emission is believed to trace the accumula-

tive light of unresolved stars (Schödel et al., 2007; Yusef-Zadeh et al., 2012b). I explain the

background light by extrapolating the Ks-band luminosity function (KLF) of the innermost

(1–2′′, corresponding to 0.05 parsecs for a distance of 8 kpc to the GC) members of the S-

star cluster to fainter Ks-magnitudes. I compare the cumulative light and mass of these

fainter stars to the limits imposed by observations. We then extend our analysis to explore

the possible nature of this background light by testing its effect on the observed orbit of

the star S2. Furthermore, I simulate the distribution of the unresolved faint stars (Ks > 18)

and their combined light to produce line-of-sight clusterings that have a compact, close

to stellar, appearance.

This chapter is structured as follows: Section 2.2 deals with a brief description of the

observation and data reduction. I describe in Section 2.3 the method used and discuss

the different observational limits employed to test our analysis. Exploring the possible

contributors to the dark mass within the orbit of S2 is done in Section 2.4. In Section 2.5

I give the results obtained by simulating the distribution of faint stars and the possibility

of producing line of sight clusterings that look like compact stellar objects. I summarize

and discuss the implications of our results in Section 2.6. I adopt throughout this chapter

Σ(R) ∝ R−Γ as the definition for the projected density distribution of the background light,

with R being the projected radius and Γ the corresponding power-law index.
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2.2 Observations and Data Reduction

The near-infrared (NIR) observations have been conducted at the Very Large Telescope

(VLT) of the European Southern Observatory (ESO) on Paranal, Chile. The data were

obtained with YEPUN, using the adaptive optics (AO) module NAOS and the NIR cam-

era/spectrometer CONICA (briefly “NaCo"). The data were taken in the Ks-band (2.2 µm)

on the night of 23 September 2004, and is one of the best available where Sgr A* is in a

quiet state. Basic NIR data reduction steps have been applied (see Sect. 1.3) to the individ-

ual frames and then they were combined to form a mosaic of the Center (see Fig. 2.1).

The flux densities were measured by aperture photometry with circular apertures of

66 mas radius. They were corrected for extinction, using AKs = 2.46 derived for the in-

ner arcsecond from Schödel et al. (2010). Possible uncertainties in the extinction of a

few tenths of a magnitude do not influence the general results obtained in this chapter.

The flux density calibration was carried out using zero points for the corresponding cam-

era setup and a comparison to known Ks-band flux densities of IRS16C, IRS16NE (from

Schödel et al., 2010; also Blum et al., 1996) and to a number of the S-stars (Witzel et al.,

2012).

2.3 The Central Few Tenths of Parsecs

In NS10 I gave a stringent upper limit on the emission from the central black hole in the

presence of the surrounding S-star cluster. For that purpose, three independent methods

were used to remove or strongly suppress the flux density contributions of these stars, in

the central ∼ 2′′, in order to measure the flux density at the position of Sgr A*. All three

methods provided comparable results, and allowed a clear determination of the stellar

light background at the center of the Milky Way, against which Sgr A* has to be detected.

The three methods, linear extraction of the extended flux density, automatic and iterative

point spread function (PSF) subtraction were carried out assuming that the extracted PSF

in the central few arcseconds of the image is uniform. Investigations of larger images (e.g.

Buchholz et al., 2009) show that on scales of a few arcseconds the constant PSF assumption

is valid, while for fields ≥ 10′′ the PSF variations have to be taken into account.

Figure 2.2 is a map of the 51 stars adopted from the list in Table 3 of NS10. The stars

are plotted relative to the position of Sgr A*. The surface number density of these detected

stars, within a radial distance of about 0.5′′ from Sgr A*, is 68±8 arcsec−2, with the uncer-

tainty corresponding to the square-root of that value. This value agrees with the central

number density of 60±10 arcsec−2 given by Do et al. (2009). Extrapolating the KLF allows

us to test if the observed diffuse light across the central S-star cluster, or the amount of

unaccounted dark mass, can be explained by stars.
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Figure 2.2: Map of the 51 stars listed in Ta-
ble 3 from NS10. The color of each star in-
dicates its Ks-magnitude. The size of each
symbol is proportional to the flux of the cor-
responding star. The position of Sgr A* is in-
dicated by a cross at the center.

KLF of the S-star Cluster

Figure 2.3 shows the KLF histogram derived for the stars detected in the central field,

(Fig. 2.2). I improve the KLF derivation by choosing a fixed number of bins that allows

for about 10 sources per bin while providing a sufficient number of points to allow for a

clear linear fit. The Red Clump (RC)/Horizontal Branch (HB) stars, around Ks ≈ 14.5, are

in one bin, so the RC/HB bump is visible there (Schödel et al., 2007). For estimating the

uncertainty, I randomized the start of the first bin in an interval between Ks = 13.0 to 14.2

and repeated the histogram calculation 105 times. The number of sources in each bin

was then determined by taking the average of all iterations and the uncertainties were

subsequently derived from the standard deviation. I derive a least-square linear slope of

d log(N )/d(Ks) = α = 0.18±0.07, which compares well with the KLF slope of 0.3±0.1 de-

rived in NS10 and also with the KLF slope of 0.21±0.02 found for the inner field (R < 6′′)
by Buchholz et al. (2009). For the magnitudes up to Ks = 17.50 within the central 0.69′′

radius, I detect no significant deviation from a straight power-law. This implies that the

completeness is high and can be compared to the ∼70% value derived for magK = 17 by

Schödel et al. (2007) where the authors introduced artificial stars into their NIR image and

attempted re-detecting them. However, for Ks = 17.50 to 18.25 the stellar counts drop

quickly to about 20% of the value expected from the straight power-law line; hence the

last Ks-bin is excluded from the linear fit.

Maíz Apellániz and Úbeda (2005) propose an alternative way of binning when dealing

with stellar luminosity and initial mass functions (IMF). Their method is based on choos-

ing variable sized bins with a constant number of stars in each bin. They find that variable

sized binning introduces bias-free estimations that are independent from the number of
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Figure 2.3: KLF histogram of the stars de-
tected in the central field, derived from the
23 September 2004 data. The dashed line
indicates the linear fit of the KLF slope of
α = 0.18 ± 0.07. The vertical dotted line
(red) represents the current detection limit
for faint Ks-magnitudes.

stars per bin. Their method is applicable to small samples of stars. I apply their method

to our KLF calculation and get d(log(N )/δKs)/d(Ks) = 0.12±0.09, consistent with the fixed

sized binning method.

The Diffuse NIR Background

The methods I used in NS10 to correct for the flux density contribution of the stars in the

central 2′′ have revealed a faint extended emission around Sgr A* (NS10 Figures 3b, 4b

and 5). I detected ∼ 1.3 mJy (obtained by correcting the ∼ 2 mJy we quote in NS10 for the

AKs = 2.46 I use here) at the center of the S-star cluster. With a radius of 1′′ (about twice

the FWHM of the S-star cluster) for the Point Spread Function (PSF) used for the subtrac-

tion, we showed that a misplacement of the PSF for about only five stars, located within

one FWHM of Sgr A*, would contribute significantly to the measured flux at the center.

For a median brightness of about 1.3 mJy for these stars, a 1 pixel ∼ 13 mas positional

shift of each of these stars towards Sgr A* would be required to explain all the detected

∼ 1.3 mJy at the center i.e. 0.26 mJy from each star. In Sabha et al. (2011) I showed that

a displacement larger than a few tenths of a pixel would result in a clear and identifiable

characteristic plus/minus pattern in the residual flux distribution along the shift direction.

For a maximum positional uncertainty of 1 pixel, I showed that the independent shifts of

the five stars can be approximated by a single star experiencing five shifts in a random

walk pattern. This resulted in calculating a total maximum contribution of 0.26 mJy from

all the five stars to the center, which translates to about 20–30% of the flux density. Thus,

more than two thirds of the extended emission detected towards Sgr A* could be due to

faint stars, at or beyond the completeness limit reached in the KLF, and associated with

the ∼ 0.5–1′′ diameter S-star cluster.
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Figure 2.4: Azimuthal average of the dif-
fuse background emission as derived from
manual PSF subtracted 23 September 2004
image. The squares (mean flux and 1σ un-
certainty per pixel) have been calculated in
annuli of 39.8 mas (3 pixels) width. The
black dashed line marks a fit to the data
points with an exponential decrease of 0.14.

The diffuse background emission I detect (see Fig. 2.1a) could be compared to the pro-

jected distribution of stars Σ(R) ∝ R−Γ, with R being the projected radius. I found that the

distribution of the azimuthally averaged residual diffuse background emission, centered

on the position of Sgr A*, not to be uniform but in fact decreases gently as a function of

radius (see Figure 7 in NS10) with a power-law index Γdiffuse = 0.20± 0.05. In this inves-

tigation I re-calculate the azimuthally averaged background light from the iterative PSF

subtracted image alone. The azimuthally averaged background light is plotted as a func-

tion of projected radius from Sgr A* in Fig. 2.4. In this new calculation I find the power-law

index to have a value ofΓdiffuse = 0.14±0.07. Both results are consistent with recent investi-

gations concerning the distribution of number density counts of the stellar populations in

the central arcseconds, derived from imaging VLT and Keck data. For the central few arc-

seconds Buchholz et al. (2009), Do et al. (2009) and Bartko et al. (2010) find a Γ∼ 1.5±0.2

for the young stars, but an even shallower distribution for the late-type (old) stars with

Γ ∼ 0.2±0.1. A detailed discussion concerning the different populations and their distri-

bution is given in Genzel et al. (2003); Schödel et al. (2007); Buchholz et al. (2009); Do et al.

(2009) and Bartko et al. (2010).

The small value I obtain for the projected diffuse light exponent Γdiffuse and the high

degree of completeness reached around Ks = 17.5, makes this data set well suited for an-

alyzing the diffuse background light. Especially in investigating the role of much fainter

stars, beyond the completeness limit, in the observed power-law behavior of the back-

ground.
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Extrapolating the KLF of the S-star Cluster

Motivated by the power-law behavior of the diffuse background emission and assuming

that the drop in the KLF counts at magnitude ∼ 18 is caused only by the fact that we have

reached the detection limit, I extrapolate the KLF to fainter magnitudes in order to in-

vestigate how these faint stars contribute to the background light. The true shape of the

luminosity function for Ks-magnitudes below the completeness limit of ∼ 17.5 has yet to

be determined. Investigations into the IMF of the S-cluster have shown that it can be fitted

with a standard Salpeter/Kroupa IMF of d N /dm ∝ m−2.3 and continuous star formation

histories with moderate ages (below 60 Myr, Bartko et al., 2010). Here, I estimate an upper

limit on the stellar light by assuming that the KLF exhibits the same behavior observed for

brighter magnitudes without suffering a break in the slope toward the fainter end.

I use the KLF slope obtained for the innermost central region, 0.18 ± 0.07 (Fig. 2.3)

and extrapolate it over five magnitudes bins to Ks ∼ 25. The Ks-magnitude bins between

18–25 (translating to stellar masses in the range of ∼ 1.68 to 0.34 M¯) correspond to the

brightness of the expected main-sequence stars (luminosity class V) which are likely to

be present in the central cluster. However, I assume that due to mass segregation effects

in the Galactic nucleus (Bahcall and Wolf, 1976; Alexander, 2005), driven by dynamical

friction (Chandrasekhar, 1943) between stars, the heavier objects sink towards the center

while the lighter objects move out. Their volume density will be significantly reduced and

they may even be expelled from the very center. Freitag et al. (2006) show that the main-

sequence stars begin to be expelled outward by the cusp of stellar-mass black holes (SBH)

after a few Gyrs, just shorter than the presumed age of the stellar cluster at about 10 Gyrs.

While the reservoir of lower mass stars may be replenished by the most recent - possibly

still ongoing - star formation episode about 6 million years ago (Paumard et al., 2006), I

assume that stars well below the low mass limit of ∼ 0.34 M¯ with Ks-band brightnesses

around Ks = 25 are affected by depletion.

Figure 2.5 shows the KLF slope of α = 0.18 and the upper limit imposed by the un-

certainty in the fit (α = 0.25) plotted as dashed and dash-dotted lines, respectively. The

extrapolated Ks-bins are shown as hollow circles. I adopt a Monte Carlo approach for cal-

culating the number of stars N from the KLF, taking into account the uncertainty in the

slope. After 105 trials I find as a result for each bin, the median number N and median

deviation d N .

Using the extrapolated Ks-magnitudes, the corresponding flux densities are calculated

using the following relation

fnew star = fS2 ×10−0.4 (Knew star−KS2) , (2.1)
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Figure 2.5: Extrapolation of the KLF
power-law fit. The KLF slope of α = 0.18
and the upper limit imposed by the un-
certainty in the fit (α = 0.25) are plotted
as dashed and dash-dotted lines, respec-
tively. The black filled circles represent the
data while the hollow circles represent new
points based on the extrapolated KLF slope.
The approximate location of the detection
limit is indicated by the vertical dotted/red
line.

where fnew star and Knew star are the flux density and Ks-magnitude for each new star in

the extrapolation. The flux and magnitude for the star S2 were adopted from NS10, Table 3,

and corrected for the extinction value I use here (see § 2.2). The new values are fS2 =
14.73 mJy and KS2 = 14.1. The accumulative flux density for each Ks-bin fbin is obtained

via

fbin = fnew star ×Nnew star. (2.2)

The number of stars per bin Nnew star is randomly picked from the interval between

[Nnew star −d Nnew star] and [Nnew star +d Nnew star]. In 105 trials the accumulative flux per

bin and its uncertainty are determined as the median and median deviation of the ran-

domly drawn fluxes fbin. I then add up all the accumulative flux densities for all the new

Ks-band bins and obtain the integrated brightness of the extrapolated part of the S-star

cluster,

FExtra Stars =
25∑

Ks'18
fbin = (25.72±14.31) mJy. (2.3)

I assume that the faint, undetectable stars follow the distribution of the azimuthally

averaged background light, as shown in Fig. 2.4. Thus, the light from the faint stars that I

introduced in the 0.69′′ radius region can be compared to the measured background light

from our data for the same region. This is achieved by using the total flux density FExtra Stars

to derive the peak light density (IExtra Stars) that would be measured inside one resolution
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Figure 2.6: Relative azimuthally averaged
light density, for the background light taken
from the observations and the extra stel-
lar light calculated from the extrapola-
tion, plotted as a function of distance from
Sgr A*. They are represented by a dotted line
with circles (black) and dashed lines with
squares (blue), respectively. The stellar light
density is normalized to the peak light den-
sity of the background at the central resolu-
tion element. The upper limit of the extrap-
olated extra stellar light is shown as the blue
dashed line with no symbols.

element of 0.033′′ radius centered on the position of Sgr A*, using the following relation:

FExtra Stars =
∫

f (r,φ)r dr dφ

= 2πIExtra Stars

∫ 0.690
′′

0.033′′
r 1−Γdr , (2.4)

with Γ = Γdiffuse = 0.14 (see § 2.3). The peak light density for the extra stars is then

IExtra Stars = (15.24 ± 8.48) mJy arcsec−2. To compare the light caused by the extra stars

with the measured background emission, I plot the stellar light density caused by my

new stars with the azimuthally averaged measured light density of the background

(Fig. 2.6). For illustration purposes I normalize the observed peak stellar light to the

measured background value within the central resolution element, IBackground = (254.30±
58.45) mJy arcsec−2. It is clear that the peak light introduced by the new faint stars, as cal-

culated from the extrapolation of the 0.18± 0.07 KLF slope, is very small and below that

of the background. The dotted line (black circles) represents the background light while

the dashed line (blue squares) corresponds to the extra stellar light. The upper limit of the

extrapolated extra stellar light contribution is presented as a dashed line with no symbols.

The figure shows that the upper limit of the extrapolated light contribution of the S-star

cluster is lower than 15% of the measured background light.

Observational Limits on the Stellar Light and Mass

My analysis shows that if there was a population of very faint stars, following the extrap-

olated Ks-band luminosity function and central cluster profile obtained for the brighter
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stellar population (less than Ks = 18), the additional stellar light and mass lie well below

the limits given by observational data. See following sections and Figs. 2.7 and 2.8.

Limits on the Stellar light

Following the previous calculations and the result displayed in Fig. 2.6, I perform the same

analysis for a range of KLF slopes in order to test if the observed background light can be

solely obtained by the emission of faint stars. The range of KLF slopes I use is based on the

values and uncertainty estimates of the following published KLF slopes for the central 2′′:
0.13±0.02 (Buchholz et al., 2009, early-type stars), 0.27±0.03 (Buchholz et al., 2009, late-

type stars), 0.21±0.02 (Buchholz et al., 2009, all stars) and 0.30±0.1 (NS10), in addition to

the improved newly fitted slope of the KLF in this work 0.18±0.07.

I extrapolate each KLF slope to a Ks-magnitude of ' 25. The peak light density

(IExtra Stars) is calculated using Eq. (2.4). The peak light density of the extra stars is plotted

for the extrapolated KLF slopes in the range of 0.11 to 0.40 in Fig. 2.7 . The limit imposed

by the peak light density of the measured background light (Fig. 2.1) is plotted as a hor-

izontal dashed line (blue). In addition, the KLF slopes derived in this work and by NS10

and Buchholz et al. (2009) are plotted as purple, yellow and green data points, respectively.

Figure 2.7 clearly shows that almost all of the KLF slopes result in a peak light density be-

low the observed limit, except for very high slopes > 0.37 which are not in agreement with

the observations.

Limits on the Stellar Mass

Using the same range of KLF slopes, I estimate the mass that would be introduced to the

central region as a result of the KLF extrapolation. I obtain the stellar mass corresponding

to the extrapolated Ks-bins by calculating their luminosity via

LKs = 10−0.4(MKs−M¯Ks )L¯Ks , (2.5)

where, LKs and MKs are the luminosity of a star and its absolute magnitude in Ks-band,

respectively. L¯Ks & M¯Ks are the Ks luminosity and absolute magnitude of the Sun. Then,

the mass for each Ks magnitude is calculated using

m = (LKs )(1/4) (2.6)

from Duric (2004); Salaris and Cassisi (2005). For example, a Ks-magnitude around 20

corresponds to 1 M¯main-sequence stars of F0V, G0V, K5V spectral types.

In Fig. 2.8 I show the estimated extra mass for all the KLF slopes in units of solar mass.

The figure also shows, as dash-dotted/red line , the upper limit for an extended mass en-

closed by the orbit of the star S2, calculated by Mouawad et al. (2005), where they use

non-Keplerian fitting of the orbit to derive the upper limits, assuming that the composi-

tion of the dark mass is sources with M/L ∼ 2. The dotted/gray line represents the tighter
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Figure 2.7: Estimated peak light density from stars derived from for different KLF slopes. Slopes of
Buchholz et al. (2009) (for different stellar populations) are shown in green, NS10 in yellow and the
KLF slope derived here, in § 2.3, in purple. A limit imposed by the measured peak light density from
the measured background light is plotted as a horizontal dashed line (blue).

upper limit obtained later by Gillessen et al. (2009a) who derive the mass using recent or-

bital parameters of S2. They assume that the extended mass consists of stellar black holes

(Freitag et al., 2006) with a mass of 10 M¯using estimations from Timmes et al. (1996) and

Alexander (2007). It can be concluded from the figure that the introduced stellar mass,

within a radius of ∼ 0.69′′, lies well below the upper limits imposed by the S2 orbit with a

semi-major axis of ∼ 0.123′′ (Gillessen et al., 2009a). See Fig. 2.1 (right) for a comparison

of the sizes of the two regions.

2.4 Dynamical Probes of the Distributed Mass

If the gravitational force near Sgr A* includes contributions from bodies other than the

SMBH, the orbits of test stars, including S2, will deviate from Keplerian ellipses. These de-

viations can be used to constrain the amount of distributed mass near Sgr A* (Mouawad

et al., 2005; Gillessen et al., 2009a). But they can also be used to constrain the “granular-

ity” of the perturbing potential, since the nature and magnitude of the orbital deviations
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Figure 2.8: Estimated stellar mass from the added stars for different KLF slopes. Slopes of Buchholz
et al. (2009) (for different stellar populations) are shown in green, NS10 in yellow and our fitted slope in
purple. A limit imposed by the enclosed mass within the S2 orbit is plotted as horizontal dotted (gray)
and dash-dotted (red) lines from Gillessen et al. (2009a) and Mouawad et al. (2005), respectively.

depend both on the total mass of the perturbing stars, and on their individual masses.

Investigations of a single scattering event were explored by Gualandris et al. (2010)

using high-accuracy N-body simulations and orbital fitting techniques. They found that

an IMBH more massive than 103 M¯, with a distance comparable to that of the S-stars,

will cause perturbations of the orbit of S2 that can be observed after the next peribothron1

passage of S2. Here we examine the effect many scatterers (i.e. smaller masses for the scat-

terers but shorter impact parameters) will have on the trajectory of the star S2 as it orbits.

Around Sgr A*, the stars and scatterers are moving in a potential well that is dominated by

the mass of the central SMBH. In this case the encounters are of a correlated nature and

hence cannot be considered as random events.

An important deviation from Keplerian motion occurs as a result of relativistic correc-

1Peri- or apobothron is the term used for peri- or apoapsis for an elliptical orbit with a black hole present at
the appropriate focus.
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tions to the equations of motion, which to lowest order predict an advance of the argument

of peribothron, ω, each orbital period of

(∆ω)GR = 6πGM•
c2a(1−e2)

. (2.7)

Setting a = 5.0 mpc and e = 0.88 for the semi-major axis and eccentricity of S2, respec-

tively, and assuming M• = 4.0×106 M¯,

(∆ω)GR ≈ 10.8′. (2.8)

The relativistic precession is prograde, and leaves the orientation of the orbital plane un-

changed.

The argument of peribothron also experiences an advance each period due to the

spherically-symmetric component of the distributed mass. The amplitude of this “mass

precession” is

(∆ω)M =−2πGM(e,γ)
√

1−e2

[
M?(r < a)

M•

]
. (2.9)

Here, M? is the distributed mass within a radius r = a, and GM is a dimensionless factor of

order unity that depends on e and on the power-law index of the density, ρ∝ r−γ (Merritt,

2012). In the special case γ= 2,

GM =
(
1+

√
1−e2

)−1 ≈ 0.68 for S2 (2.10)

so that

(∆ω)M ≈−1.0′
[

M?(r < a)

103 M¯

]
. (2.11)

Mass precession is retrograde, i.e., opposite in sense to the relativistic precession.

Since the contribution of relativity to the peribothron advance is determined uniquely

by a and e, which are known, a measured ∆ω can be used to constrain the mass enclosed

within S2’s orbit, by subtracting (∆ω)GR and comparing the result with Eq. (2.11). So far,

this technique has yielded only upper limits on M? of ∼ 10−2M• (Gillessen et al., 2009a).

The granularity of the distributed mass makes itself felt via the phenomenon of “res-

onant relaxation” (RR) (Rauch and Tremaine, 1996; Hopman and Alexander, 2006a). On

the time scales of interest here, orbits near Sgr A* remain nearly fixed in their orientations,

and the perturbing effect of each field star on the motion of a test star (e.g. S2) can be

approximated as a torque that is fixed in time, and proportional to m, the mass of the field

star. The net effect of the torques from N field stars is to change the angular momentum,

L, of S2’s orbit according to
|∆L|
Lc

≈ K
p

N
m

M•
∆t

P
(2.12)
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where Lc = p
GM•a is the angular momentum of a circular orbit having the same semi-

major axis as that of the test star. (Eq. 2.12 describes “coherent resonant relaxation”; on

time scales much longer than orbital periods, “incoherent” resonant relaxation causes

changes that increase as ∼ p
∆t .) The normalizing factor K is difficult to compute from

first principles but should be of order unity (Eilon et al., 2009). Changes in L imply changes

in both the eccentricity, e, of S2’s orbit, as well as changes in its orbital plane. The latter

can be described in a coordinate-independent way via the angle ∆θ, where

cos(∆θ) = L1 ·L2

L1L2
(2.13)

and {L1,L2} are the values of L at two times separated by∆t . If we set∆t equal to the orbital

period of the test star, the changes in its orbital elements due to RR are expected to be

|∆e|RR ≈ Ke
p

N
m

M•
, (2.14)

(∆θ)RR ≈ 2πKt
p

N
m

M•
, (2.15)

where N is the number of stars having a-values similar to, or less than, that of the test star

and {Ke ,Kt } are constants which may depend on the properties of the field-star orbits.

Because the changes in S2’s orbit due to RR scale differently with m and N than the

changes due to the smoothly-distributed mass, both the number and mass of the perturb-

ing objects within S2’s orbit can in principle be independently constrained. For instance,

one could determine M? = mN from Eqs. (2.7) and (2.11) and a measured ∆ω, then com-

pute m
p

N by measuring changes in e or θ and comparing with Eqs. (2.14) or (2.15).

We tested the feasibility of this idea using numerical integrations. The models and

methods were similar to those described in Merritt et al. (2010). The N field stars were se-

lected from a density profile n(r ) ∝ r−2, with semi-major axes extending to amax = 8 mpc.

Initial conditions assumed isotropy in the velocity distribution. Two values for the field

star masses were considered: m = 10 M¯and m = 50 M¯. One of the N -body particles

was assigned the observed mass and orbital elements of S2; this particle was begun at

apobothron, and the integrations extended for one complete period of S2’s orbit. Each

of the N field-star orbits were integrated as well, and the integrator included the mutual

forces between stars, as well as post-Newtonian corrections to the equations of motion.

The quantities∆ω,∆e etc. for the S2 particle were computed by applying standard formu-

lae to (r,v) at the start and end of each integration. 100 random realizations of each initial

model were integrated, allowing both the mean values of the changes, and their variance,

to be computed.

Figures 2.9 and 2.10a show changes inω for S2. The median change is well predicted by

Eq. (2.11). However, there is a substantial variance. We identify at least two sources for this
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Figure 2.9: Histograms of the predicted change in S2’s argument of peribothron, ω, over the course
one orbital period (∼ 16 yr). The shift due to relativity, (∆ω)GR ≈ 11′, has been subtracted from the
total; what remains is due to Newtonian perturbations from the field stars. Each histogram was con-
structed from integrations of 100 random realizations of the same initial model, with field-star mass
m = 10 M¯, and four different values of the total number: N = 200 (solid/black); N = 100 (dotted/red);
N = 50 (dashed/blue); and N = 25 (dot-dashed/green). The average value of the peribothron shift in-
creases with increasing N m, as predicted by Eq. (2.11). The reasons for the spread in ∆ω values are
discussed in the text.

variance. (1) The number of stars inside S2’s orbit differs from model to model by ∼p
N ,

resulting in corresponding changes to the enclosed mass, and hence to the precession

rate as given by Eq. (2.11). (2) When N is finite, the same torques that drive resonant

relaxation also imply a change in the field star’s rate of peribothron advance as compared

with Eq. (2.11), which assumes no tangential forces. While the dispersion scales roughly asp
N , as evident in Fig. 2.9, the fractional change in ∆ω due to this effect scales as ∼ 1/

p
N

(Merritt et al., 2010). Additional variance might arise from close encounters between field

stars and S2, and from the fact that the mass within S2’s orbit is changing over the course

of the integration due to the orbital motion of each field star.

Whereas the (average) value of ∆ω depends only on the mass within S2’s orbit, the

changes in e and θ depend also on m, as shown in Figs. 2.10b and c. The lines in those
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Figure 2.10: Average values of the changes in ω, e and θ for S2 over one orbital period (∼ 16 yr) in
the N -body integrations. Filled circles are from integrations with m = 50 M¯and open circles are for
m = 10 M¯; the number of field stars was N = {25,50,100,200} for both values of m. The abscissa is the
distributed mass within S2’s apobothron, at r ≈ 9.4 mpc. In each frame, the points are median values
from the 100 N -body integrations, and the error bars extend from the 20th to the 80th percentile of the
distribution. a) Changes in the argument of peribothron. The contribution from relativity, Eq. (2.7),
has been subtracted. The solid line is Eq. (2.11). b) Changes in the eccentricity. Solid and dashed lines
are Eq. (2.14), with m = 50 M¯and m = 10 M¯respectively and with Ke = 1.4. c) The angle between
initial and final values of L for S2. Solid and dashed lines are Eq. (2.15) with Kt = 1.0.

figures are Eqs. (2.14) and (2.15), with

Ke = 1.4, Kt = 1.0.

(We have defined N in Eqs. (2.14) and (2.15) as the number of field stars inside a radius of
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9.4 mpc, the apobothron of S2.) For a given value of the enclosed mass, M? = N m, Fig. 2.10

shows that the changes in e and θ indeed scale as ∼ 1/
p

N or as ∼ p
m, as predicted by

Eqs. (2.14) and (2.15).

We can use these results to estimate the changes inω, e and θ expected for S2, based on

theoretical models of the distribution of stars and stellar remnants at the GC. In dynam-

ically evolved models (Freitag et al., 2006; Hopman and Alexander, 2006b), the total dis-

tributed mass within S2’s apobothron, r ≈ 10 mpc, is predicted to be ∼ a few times 103 M¯.

About half of this mass is in the form of main-sequence stars and half in stellar-mass black

holes, with a total number N ≈ 103. When there are two mass groups, expressions like

Eqs. (2.14) and (2.15) generalize to

|∆e|RR = Ke

[
m1

p
N1 +m2

p
N2

M•

]
(2.16)

(∆θ)RR = 2πKt

[
m1

p
N1 +m2

p
N2

M•

]
(2.17)

assuming

m1 = 1 M¯, m2 = 10 M¯, N1 = 103, N2 = 150

(Hopman and Alexander, 2006b) we find

|∆e|RR ≈ 5.4×10−5, (2.18)

(∆θ)RR ≈ 0′.8, (2.19)

(∆ω)M ≈ −2.5′. (2.20)

For obtaining the dispersion in the value of Eq. (2.20), we scaled the dispersion given in

Fig. 2.10a for the single population case, N = 50,m = 50 M¯ of the same total extended

mass, to the two populations case we are investigating here. The dispersion obtained

from the simulations is ∼ 4′. We scale it using the relation ∆ω/
p

N in order to account

for the SBH and MS populations, independently. The dispersion for the new configura-

tion then becomes ∼ 1.43′, lower than the single population case. This is attributed to the

fact that the number of main-sequence stars is much larger than the stellar-mass black

holes, hence they lower the dispersion in the total Newtonian peribothron shift (∆ω)M.

Considering a higher value for the enclosed mass M? = 104 M¯ while keeping the same

mass scales and abundance ratios of the scattering objects,

m1 = 1 M¯, m2 = 10 M¯, N1 = 4000, N2 = 600
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one gets changes of

|∆e|RR ≈ 1.1×10−4, (2.21)

(∆θ)RR ≈ 1.7′, (2.22)

(∆ω)M ≈ −10′. (2.23)

The dispersion in Eq. (2.23) can be compared, as we did before, to the case considered in

the simulations (N = 200,m = 50 M¯) by scaling the ∼ 8′ dispersion (Fig. 2.10a) to become

∼ 2.86′ for the two mass population.

Repeating the same analysis as before to the M? = 105 M¯ gives the following numbers

for the stellar black holes and low-mass stars

m1 = 1 M¯, m2 = 10 M¯, N1 = 40000, N2 = 6000

that result in

|∆e|RR ≈ 3.4×10−4, (2.24)

(∆θ)RR ≈ 5.2′, (2.25)

(∆ω)M ≈ −100′. (2.26)

Similar to the above cases, the dispersion in Eq. (2.26) can be compared to the single mass

case by scaling the ∼ 25.3′ dispersion to become ∼ 9.1′ for the two mass population. The

∼ 25.3′ value is obtained by scaling with∆ω/
p

N from the value shown in Fig. 2.10a for the

104 M¯extended mass.

We would like to stress that making a definite prediction about the N -dependence of

the variance is beyond the scope of the current work. However, we have noted that in both

cases considered in Fig. 2.10 the relative variance is of the order of unity or larger i.e. the

dispersion is of the order of the Newtonian peribothron shift.

The positional uncertainty is currently of the order of 1 mas. For the highly eccentric

orbit of S2 this implies that the accuracy with which the peribothron shift can be detected

is of the order of 24′. As can be seen for the case of M? = 105 M¯, the shifts are at the

limit of the current instrumental capabilities if the total enclosed mass was entirely com-

posed of massive perturbers. The shifts given in Eqs. (2.20) and (2.23) can be measured

if the accuracy is improved by at least one order of magnitude using larger telescopes or

interferometric methods in the NIR. However, considering the variances in the calculated

shifts one would need to observe more than one stellar orbit in order to infer information

on the population giving rise to the Newtonian peribothron shift. By comparison, the cur-

rent uncertainty in S2’s eccentricity is ∼ 0.003, and uncertainties in the Delaunay angles
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i and Ω describing its orbital plane are ∼ 50′ (Gillessen et al., 2009a). In both cases, an

improvement of a factor ∼ 50 would be required in order to detect the changes given in e

and θ.

Dynamically-relaxed models of the GC have been criticized on the grounds that they

predict a steeply-rising density of old stars inside ∼ 1 pc, while the observations show a

parsec-scale core (Buchholz et al., 2009; Do et al., 2009; Bartko et al., 2010). Dynamically

unrelaxed models imply a much lower density near Sgr A* and an uncertain fraction of

stellar-mass black holes (Merritt, 2010; Antonini et al., 2012). The number of perturbers

is so small in these models that their effect on the orbital elements of S2 would be unde-

tectable for the foreseeable future, barring a lucky close encounter with S2.

In addition to the small amplitude of the perturbations, the potential difficulty in con-

straining N and m comes from the nonzero variance of the predicted changes (Fig. 2.10).

The variance in ∆ω scales as ∼ ∆ω/
p

N and would be small in the dynamically-relaxed

models with N ≈ 103. Another source of uncertainty comes from the dependence of the

amplitude of ∆ω on γ (Eq. 2.9), which is unknown. We do not have a good model for pre-

dicting the variances in |∆e| and ∆θ, but Fig. 2.10 suggests that the fractional variance in

these quantities is not a strong function of N or m, and that it is large enough to essentially

obscure changes due to a factor ∼ 5 change in m at fixed M?. On the other hand, consid-

erably more information might be available than just ∆e and ∆θ for one star; for instance,

the full time-dependence of (r,v) for a number of stars.

Fighting the Limits on the Power of Stellar Orbits

The results from the previous sub-sections clearly show that deriving the net-

displacement for an ideal elliptical orbit for a single star will not be sufficient to put firm

limits on both the total amount of extended mass and on the nature of the correspond-

ing population. However, the situation may be improved if one studies the statistics of

the time and position dependent deviations along a single star’s orbit or instead uses the

orbits of several stars.

Improving the Single Orbit Case

The actual uncertainty in projected right ascension or declination, σ2
position, can be

thought of as a combination of several contributions. Here σ2
apparent is the apparent po-

sitional variation due to the photo-center variations of the star while it is moving across

the sea of fore- and background sources. The scattering process results in a variation of

positions described by σ2
scattering. Finally, systematic uncertainties due to establishing and

applying an astrometric reference frame give a contribution of σ2
systematic.

The value of σ2
position can be measured in comparison to the orbital fit. The value

of σ2
apparent can be obtained experimentally by placing an artificial star into the imaging
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frames at positions along the idealized orbit. A reliable estimate of σ2
apparent is achieved

by comparing the known positions at which the star has been placed and the positions

measured in the image frames. As for the case of the systematic variations, they can be es-

timated by investigating sources that are significantly brighter or slower than the S-stars.

Finally, the value that describes the scattering process, and therefore gives information on

the masses of the scattering sources, can be obtained via

σ2
scattering =σ2

position −σ2
apparent −σ2

systematic. (2.27)

Alternatively, σ2
scattering could be measured directly by near-infrared interferometry

with long baselines. Measuring the position of S2 interferometrically as a function of time

with respect to bright reference objects could allow observing the effects of single scatter-

ing events. Here the assumption is that they happen infrequently enough such that one

can build up sufficient signal to noise on the σscattering measurement provided that the

uncertainties in the interferometric measuring process are sufficiently well known.

Improving by Using Several Stars

If scattering events contribute significantly to the uncertainties in the determination of

the orbits, a number of stars may help to derive the physical properties of the medium

through which the stars are moving. While the influence of the extended mass imposes a

systematic variation of the orbits through the Newtonian peribothron shift, the variations

due to scattering events will be random. This implies that for individual stars the effects

may partially compensate or amplify each other. Averaging the results of N stars, that will

then essentially sample the shape of the distributions shown in Fig. 2.9, may therefore re-

sult in an improvement proportional to N−1/2 in the determination of the extended mass.

2.5 Simulating the Distribution of Fainter Stars

In NS10 I detected three stars that were either previously not identified at all (NS1 & NS2

stars, Figure 1 in NS10) or only allowed an unsatisfactory identification with previously

known members of the cluster (S62, as pointed out in Dodds-Eden et al., 2011). In addition

we have the case of the star S3 which was identified in the Ks-band in the early epochs 1992

(Eckart and Genzel, 1996), 1995 (Ghez et al., 1998) and lost after about 3 years in 1996/7

(Ghez et al., 1998), 1998 (Genzel et al., 2000). I investigate this phenomenon using my

method of extrapolating the KLF in the inner 1–2 arcsec region, surrounding Sgr A*, to stars

fainter than the faintest source (Ks = 17.31) I detected in our 30 August and 23 September

2004 dataset, in which Sgr A* shows very low activity (NS10). In this section I describe

the method I use to simulate the distribution of these faint stars, and the possible false

detections that can be caused by the combined light of many stars appearing in projection

to be very close to each other, such that they cannot be individually resolved with 8–10 m

class telescopes.
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The calculations were done by taking all the extra (extrapolated) faint stars in the Ks-

magnitude interval of 18 to 25. The stars were then distributed in a 23×23 grid that cor-

responds to 529 cells. Each cell has the dimensions of 0.06′′ × 0.06′′, i.e. about one an-

gular resolution element in Ks-band, this grid, therefore, simulates observations of the

inner 1.38′′×1.38′′ projected region surrounding Sgr A*. I distributed the faint stars in the

grid such that their radial profile centered on Sgr A* reproduces that of the stellar num-

ber density counts of the inner region of the central stellar cluster with a power-law index

of Γ = 0.30±0.05 from Schödel et al. (2007). This way each cell has a specific number of

stars that can be inserted into it, with the maximum number of stars being located in the

central cell, i.e. the peak of the radial profile. My algorithm fills each cell with its spec-

ified number of stars by choosing them randomly from a pool of stars created from the

extrapolated KLF. The pool is created such that for each Ks-magnitude bin above ∼ 18, a

number of stars N get their Ks-band magnitudes according to the KLF. From this pool of

stars I then randomly pick objects to fill the cells of the grid such that they obey the power-

law radial number density profile. Then, the fluxes of the stars in each individual cell are

added up and compared to the value of 0.76 mJy which is the flux density of the faintest

stellar source in our S-star cluster data, i.e. Ks = 17.31 (NS10).

I ran the simulation 104 times in order to get reliable statistical estimates for the bright-

nesses in each resolution cell. Hence I can estimate how likely it is to find strong apparent

clusterings along the line of sight that are brighter than the faintest star I identified in the

S-cluster (flux larger than 0.76 mJy).

Taking into account the uncertainties of the quantities that describe the central S-star

cluster I repeat the simulation for a combination of three KLF slopes (0.11, 0.18 and 0.25),

three radial profile power-law indices (Γ= 0.19, 0.30 and 0.35) and two Ks-magnitude cut-

offs for the extrapolation, 21 and 25 (corresponding to 0.0258 and 0.0009 mJy, respec-

tively). Here the brighter cutoff is very close to the brightness of the faintest stars that

have been detected. The choice for the KLF slope satisfies the range of the power-law fit

Γ= 0.18±0.07. The power-law indices were taken from Table 5 of Schödel et al. (2007) for

the cusp radial profiles.

The results of the simulations are summarized in Table 2.1. Three different realizations

of a cluster simulation as well as the average of 104 simulations are shown in Fig. 2.11. I find

that for the measured KLF slope of 0.18, a measured power-law index of Γ= 0.3 and a faint

Ks-magnitude cutoff I obtain a false star in about a quarter of all simulations. For steeper

KLF and power-law slopes Γ I get this result in more than 70% of all cases independent of

the cutoff magnitude.

In Table 2.2 I show the same statistics as in Table 2.1 but for the central cell in the grid,

at the projected position of Sgr A*. Also given, in parentheses, is the number of stars in

the central cell that gives rise to the detection of a false star at a distance of less than one
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Table 2.1: Probabilities of detecting a false star (brighter than Ks = 17.31) in a 1.38′′×1.38′′
region.

Ks-band Power-law index
magnitude
cutoff 0.19 0.30 0.35

KLF slope = 0.11

20.99 0.0000 0.1471 0.1500

24.67 0.0285 0.0292 0.0224
KLF slope = 0.18

20.99 0.0848 0.1286 0.3016

24.67 0.2058 0.2426 0.2927
KLF slope = 0.25

20.99 0.7776 0.7442 0.9085

24.67 0.9462 0.9725 0.9802

Table 2.2: Probabilities of detecting a false star (brighter than Ks = 17.31) at the position
of Sgr A*. The number of stars contributing to the detected flux of the false star is given in
parentheses for each considered case.

Ks-band Power-law index
magnitude
cutoff 0.19 0.30 0.35

KLF slope = 0.11

20.99 0.0000(2) 0.0752(4) 0.0757(4)

24.67 0.0094(6) 0.0103(6) 0.0099(6)
KLF slope = 0.18

20.99 0.0423(4) 0.0438(4) 0.1181(5)

24.67 0.0345(15) 0.0591(18) 0.0821(20)
KLF slope = 0.25

20.99 0.3120(8) 0.3149(8) 0.5448(10)

24.67 0.3223(59) 0.4756(70) 0.5291(74)

angular resolution element away from the line of sight to Sgr A*. I find that for a KLF slope

of 0.25 I get a false star in 30% to 50% of all simulations, independent of the power-law
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index Γ and the cutoff magnitude. This is consistent with the offsets found in different

observational epochs of Sgr A* light curves (Witzel et al., 2012; Dodds-Eden et al., 2011). In

this case the blend consists of 8 to 74 stars below the unresolved background in the S-star

cluster region. For flatter KLF slopes (i.e. 0.11 and 0.18) I find that a blend star only occurs

in less than about 10% of all cases, which appears to be well below the upper limit found

from observations. For a KLF slope of α = 0.25 and a number density power-law index of

Γ around 0.3 the total number of stars in the simulated S-star cluster is a few 1000. This is

consistent with the number of main-sequence stars assumed by Freitag et al. (2006).

I repeat the same simulations as explained above but for a grid of 0.075′′ cell size. This

cell size is specific to the resolution achieved in the K -band (1.95 – 2.45 µm) with SIN-

FONI2 instrument. The results are displayed in Tables 2.3 & 2.4 and Fig. 2.12.

Table 2.3: Probabilities of detecting a false star (brighter than Ks = 16.39), using SINFONI
in a 1.28′′×1.28′′ region.

Ks-band Power-law index
magnitude

cutoff 0.19 0.30 0.35

KLF slope = 0.11

20.99 0.0510 0.0493 0.0858

24.67 0.0478 0.0722 0.0765
KLF slope = 0.18

20.99 0.1302 0.1103 0.2897

24.67 0.2224 0.2905 0.4162
KLF slope = 0.25

20.99 0.5259 0.6160 0.8987

24.67 0.8924 0.9444 0.9518

2SINFONI is an ESO VLT integral field spectrograph installed at the Cassegrain focus of UT4. It observes in
the NIR (1.1 – 2.45 µm) assisted by an adaptive optics module.
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Table 2.4: Probabilities of detecting a false star (brighter than Ks = 16.39), using SINFONI
at the position of Sgr A*. The number of stars contributing to the detected flux of the false
star is given in parentheses for each considered case.

Ks-band Power-law index
magnitude
cutoff 0.19 0.30 0.35

KLF slope = 0.11

20.99 0.0250(4) 0.0246(4) 0.0612(5)

24.67 0.0119(8) 0.0214(10) 0.0271(11)
KLF slope = 0.18

20.99 0.0504(6) 0.0522(6) 0.1502(8)

24.67 0.0491(25) 0.0769(29) 0.1290(35)
KLF slope = 0.25

20.99 0.1468(10) 0.2507(12) 0.5111(16)

24.67 0.3208(98) 0.4761(115) 0.5193(122)

2.6 Summary and Conclusion

By determining the KLF of the S-star cluster members from infrared imaging, using the

distribution of the diffuse background light and the stellar number density counts, we

have been able to shed some light on the amount and nature of the stellar and dark mass

associated with the cluster of high velocity S-stars in the immediate vicinity of Sgr A*.

The amount of light from the fainter S-cluster members is below the amount of resid-

ual light after removing the bright cluster members. One implication could be that both

the diffuse light and dark mass are overestimated. However, while NS10 estimate that only

a maximum of one third of the diffuse light could be due to residuals from the PSF sub-

traction, I find that faint stars at or beyond the completeness limit reached in the KLF can

account only for about 15% of the background light. Additional light may also originate

from accretion processes onto a large number of 10 M¯black holes that may reside in the

central region, covered by the S-stars. I find that the stellar mass derived from the KLF ex-

trapolation is much smaller than the amount of mass that may be present considering the

uncertainties in the orbital motion of the star S2. Higher angular resolution and sensitivity

are needed to resolve the background light and analyze its origin.

By investigating the effects of orbital torques due to resonant relaxation, we find that

if a significant population of 10 M¯black holes is present, with enclosed masses between
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103 M¯and 105 M¯(see e.g. Freitag et al., 2006), then for trajectories of S2-like stars, contri-

butions from scattering will be important compared to the relativistic or Newtonian peri-

bothron shifts. This clearly shows that observing a single stellar orbit will not be sufficient

to put firm limits on the total amount of extended mass and on the importance of rela-

tivistic peribothron shift. In this case only the observation of a larger number of stars will

allow to sample the statistics of the effect, i.e. the distributions in Fig. 2.9. However, if the

distribution of 10 M¯black holes is cuspy then this may become even more difficult (and

close encounters should be frequent in this region).

In general, the inclusion of star-star perturbations allows us to probe the distribution

and composition of mass very close to the SMBH simultaneously, if the astrometric accu-

racy can be improved by an order of magnitude by using either larger telescopes or inter-

ferometers in the NIR.

With measurements and extrapolations of the S-star cluster KLF slope, and number

density counts with assumptions on the KLF cutoff magnitude, I can show that the con-

tamination for the members of the cluster, and especially at the position of Sgr A*, by blend

stars is fully consistent with measurements. I show that for 8–10 m class telescopes the

presence and proper motion of faint stars close to the confusion limit in the region of the

S-star cluster is highly contaminated by blend stars. Due to the 2-dimensional velocity

dispersion of the stars within the S-star cluster of about 600 km/s the blend stars will last

for about 3–4 years before they fade and dissolve. Close to the center, I find the probability

of detecting blend stars at any time is about 30–50%. At the central position the change

from the appearance of a blend star to the appearance of another may also give the illu-

sion of high proper motions for 8–10 m class telescopes. Such a prime example would be

S3, detected close to the position of Sgr A*, which had both a limited lifetime and high

proper motion (Eckart and Genzel, 1996; Ghez et al., 1998; Genzel et al., 2000). Blending

of sources along the line of sight may also severely contaminate the proper motion mea-

surements of individual stars close to the confusion limit. Only with the help of proper

motion measurements over time significantly longer than 3 years one will be able to de-

rive reliable orbital parameters for a single star. Also, spectroscopy may help to resolve

blend stars, however, the objects are faint and spectroscopy will be difficult.

These findings clearly demonstrate the necessity of higher angular resolution, astro-

metric accuracy and point source sensitivity for future investigations of the S-star cluster.

They would also greatly improve the derivation of the amount and the compactness of the

central mass as well as the determination of relativistic effects in the vicinity of Sagittar-

ius A*.

The work presented in this chapter is published in Sabha, Eckart, Merritt, Zamani-

nasab, Witzel, García-Marín, Jalali, Valencia-S., Yazici, Buchholz, Shahzamanian, Rauch,

Horrobin, and Straubmeier (2012). Also, Eckart et al. (2012); Sabha et al. (2015).
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3
MID INFRARED MAPPING OF THE CENTRAL

CLUSTERS

The Galactic Center is one of the targets planned to be observed with the MIRI in-
strument aboard the James Webb Space Telescope (JWST). Here I report part of the
"pathfinder" observations we obtained with the ground-based instrument VISIR. The
value of these new observations lies in the fact that they are the first and only data that
cover a large field of view of selected regions within the central tens of parsecs of the
Galaxy, with spatial resolutions better than Spitzer survey data. The spectral indices of
the compact sources detected in our multi-band observations will aid in the identifica-
tion of massive young stellar objects, and will allow the tracing of their spatial distribu-
tion and concentration. When combined with the current multi-wavelength surveys and
future MIRI observations it will enable us to trace and draw a better picture of the past
8 Myr of cluster based star formation in the Galactic Center.

3.1 Introduction & Motivation

In 2018 the James Webb Space Telescope1 (JWST) is expected to be launched and sent on

its way to its new permanent home, the second Lagrange point (L2) of the Sun-Earth sys-

tem. There the telescope shield will effectively prevent the heating of its components from

the radiation of the Sun, Earth and Moon. This setup is essential to keep the telescope

cold as it is designed to observe faint and distant objects in the infrared. One of the three

1http://www.jwst.nasa.gov
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instruments that will be mounted on JWST is the Mid-Infrared Instrument (MIRI) which

will provide imaging, spectroscopy and coronagraphy in the 5–18 µm wavelength regime.

MIRI is an international (50/50) partnership between JPL (Jet Propulsion Laboratory) and

a nationally funded consortium of European institutes, working with ESA (European Space

Agency) and NASA (National Aeronautics and Space Administration).

The instrument’s main target of interest is observing the red-shifted light of distant

galaxies, newly forming stars, and faint objects in the solar system. The high sensitivity of

the instrument makes it difficult to observe the bright structures at the Center: the Nuclear

Stellar Cluster (NSC), the Arches and Quintuplet cluster as well as some filaments nearby.

However, faint objects and filaments within and near these clusters can be observed using

the MRS (Medium Resolution Spectrometer) integral field units (IFUs) but they require high

pointing accuracy and accurate positional information of these targets in order to avoid

placing the IFUs on the bright objects. For this reason, large field of view (FOV) high spatial

resolution mid-infrared (MIR) observations are required for these regions in order to map

the exact positions of the interesting targets.

The Galactic Center (GC) is particularly interesting for studying star formation as the

environmental factors there are quite extreme. Even though the cloud density, velocity

dispersion, magnetic field strength, and metallicity are all large there (Morris, 1993), stars

do form in the Center. In fact, the star formation activity today may be characteristic of the

entire history of the central 100 pc (Serabyn and Morris, 1996). For example, a molecular

clump has been identified recently (60 pc from Sgr A*) as a progenitor of Arches-like clus-

ters (Longmore et al., 2012). In the central few hundred parsecs one finds three compact,

massive and young clusters (see Fig. 1.2 in Chapter 1): the central stellar cluster containing

the supermassive black hole (SMBH) Sgr A* and two others located about 30 pc away in

projection, the Quintuplet and the Arches cluster (Morris and Serabyn, 1996; Figer et al.,

1999c; Serabyn et al., 1998, and references therein).

These clusters, which occupy the low-mass end of the range of "super star clusters"

(Ho and Filippenko, 1996), are among the most massive in the Galaxy, accounting for a

good fraction of the total star formation near the GC. With the estimated cluster/starburst

ages, these three clusters allow us to study the star formation history in clusters over the

past 8 Myrs. The Arches cluster covers the past 2-3 Myr, the Quintuplet cluster the past

4-5 Myr, and the central stellar cluster that harbors Sgr A* covers mainly the past 6-8 Myr.

Stolte et al. (2002, 2008) estimate the Arches cluster’s mass to be ∼ 104 M¯. It consists of O

and WR stars (Nagata et al., 1995; Cotera et al., 1996). The age of the cluster is about 2.5 Myr

(Figer et al., 2002). Stellar disk candidates are found as reddened proper motion members

with some stellar disk candidates showing CO-bandhead lines in their 2.3 µm emission

(Stolte et al., 2008, 2010). Other interesting regions are the Arched Filaments and the Sickle,

as they are most likely excited by the nearby young and luminous stars of the Arches and

Quintuplet clusters (Simpson et al., 2007).
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Figure 3.1: Same as Fig. 1.5, L′-band (3.8 µm) mosaic of the Galactic Center stellar cluster obtained
with VLT NaCo in 2012. Most sources are identified based on Viehmann et al. (2005). One arcsec
translates to ∼0.04 pc for an 8 kpc distance to the GC. The supermassive black hole Sagittarius A*
(Sgr A*) position is marked by a cross. North is up and east is to the left.
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Figure 3.2: L′-band (3.8 µm) image from the same 2012 data set as Fig. 3.1. IRS 13N & IRS 13E
association of stars are labeled. The position of the SMBH, Sgr A*, is marked. North is up and east is to
the left.

There are several lines of observational evidence for the presence of young stars in the

NSC. It is, however, still unclear how they came to form there. IRS 16 is one cluster of young

(∼1 Myr) He-stars (Fig. 3.1). IRS 13E, an extremely dense stellar association located ∼3.2”

from Sgr A*, is also young and contains several Wolf-Rayet (WR) and O-type stars, about

four of which show a common velocity. A distance 0.5” to the north of IRS 13E, there is a

complex of extremely red sources referred to as IRS 13N (see Fig. 3.2). It is an association of

co-moving sources that are believed to be the best candidates for young (recently formed)

stellar objects (YSOs) in the central cluster. Their ages are estimated to be <1 Myr for a co-

moving and dynamically young group of Herbig Ae/Be stars, as inferred from photometric

and spectroscopic analysis (Eckart et al., 2013, 2004; Mužić et al., 2008). Similarly, the

compact mid-infrared (MIR) sources located east of IRS 5 and the northern arm of the

mini-spiral are also considered to be young stellar candidates (Perger et al., 2008) and/or

low luminosity versions of the brighter bow-shock sources (Tanner et al., 2002, 2005).

This chapter starts with the details of the MIR observations I used. In Sect. 3.3, I de-

scribe the data reduction and flux calibration process implemented toward getting the

final mosaics. Section 3.4 presents and discusses the results I get from the initial analysis

of the data, for both the central stellar cluster and the Quintuplet cluster. I summarize and

discuss the implications of my results in Section 3.5.

3.2 Observations

The MIR imaging data used in this work were obtained as part of the larger program

ProgId:085.C-0047 designed to map five GC targets in preparation for future MIRI obser-

vations (see Sect. 3.1). After performing basic data reduction steps for all the datasets, I
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inspected the resulting mosaics and performed an initial point source detection. The sub-

set of datasets I report here were the ones that yielded reliable flux density estimates. The

remaining sets had either very bad weather conditions during the observations or con-

tained only a few compact sources that were too faint to obtain a reliable estimate of their

flux densities.

The observations I report here were performed on the nights of 10th, 11th, and 12th of

September 2010 at the ESO VLT, using the MIR camera VISIR (Lagage et al., 2004). We used

the N -band PAH1 filter, with a central wavelength of 8.59 µm and a half-band width of

0.42 µm, and the NeI I2 filter, with a central wavelength of 13.04 µm and a half-band width

of 0.22 µm. The pixel scale was 0.127′′ per pixel (intermediate field, IF) and the observa-

tions were designed to cover a ∼ 74′′× 74′′ region centered on the position of Sgr A*, for

the NSC, and on the position of the Pistol Nebula for the Quintuplet cluster. The resulting

large field of view (FOV) was obtained from 10 snapshots each with a ∼ 32.5′′×32.5′′ FOV

(see Fig. 3.3). Six of the snapshots were observed with the standard nodding (east of north,

position angle = 270 degrees) and chopping (30′′ chop throw) technique (see Sect. 1.3).

The remaining four snapshots were obtained with a nodding position angle of 90 degrees.

The details of the observation were as follows; N D I T×D I T×NC Y C LES = 30×0.0625×23,

where N D I T is the total number of stacked images for each chopping position, D I T the

detector integration time in seconds and NC Y C LES is the number of chopping cycles.

The DIMM seeing during the observation was on average ∼ 1′′ for all three nights (see

Table 3.1).

Table 3.1: Details of the VISIR observations used in this work. They are part of the larger
program of ESO ProgID 085.C-0047 designed to map compact sources in the GC.

Observation Target Filter Central DIMM Photometric
start in UTC name used wavelength seeing standard star

2010-09-11 Central PAH1 8.59 µm ∼ 0.85 HD198048
01:00 Stellar Cluster

2010-09-12 Central NeI I2 13.04 µm ∼ 1.12 HD178345
23:48 Stellar Cluster

2010-09-10 Quintuplet PAH1 8.59 µm ∼ 0.85 HD217902
03:31 Cluster

2010-09-11 Quintuplet NeI I2 13.04 µm ∼ 1.16 HD198048
01:54 Cluster
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Fig.2: a) Color composite of the Arches cluster containing 3 images obtained in the following filters: F205W
(red), F160W (green), and F110W (blue; Figer et al. 1999). b) Color composite of the Quintuplet cluster.
In Fig. 2a and Fig. 2b we have placed -as an example - three representative footprints of both the two short
(7-12µm) and the two long wavelength (12-28µm) IFUs. For the Arches cluster we already know that a major
fraction of disk candidates is contained in such pointings. For the Quintuplet scheduled observations (Stolte
et al. in prep.) will result in disk candidates there. c) Location of the SWS apertures on a 7.4µm ISOCAM
image of the Quintuplet Cluster. The intensity scale is logarithmic, north is up and east is to the left. The
naming convention is that of Glass, Monetti & Moorwood, 1990 (GMM90). Solid line is aperture 1 (14”×20”),
and dashed lines is aperture 2 (14”×27”). The source to the NE of Q4 was denoted Q5 in GMM90 (Moneti et
al. 2001). d) Mosaic of the Quintuplet Cluster and the Pistol Nebula at 11.7µm (Moneti et al. 2001). Fig.3:
SPITZER and CHANDRA sources in the 5 fields that may qualify as pointing offset sources for the planned
MIRI JWST observations if they are proven to be sufficiently compact. The data are taken from Ramirez, et
al. 2009, VizieR On-line Data Catalog: J/ApJS/175/147 and Monu et al 2006 ApJS 165, 173, and Baganoff et
al. 2003 for the central GC field. In the legend box to the lower right the circles indicate the minimum and
maximum radius within which they have to be located. The squares I - IX indicate the 9 times 32.5”×32.5”
VISIR FOV that are required to map out circumference of the sources in order to cover the entire region suitable
for MIRI science and offset pointing.

Literature: see BOX 11 and: Boogert et al. , ApJ 678, 985; Figer, D.F., 1999, ApJ 525, 750; Moneti, A.,
2001, A&A 366, 106; Öberg, K.I., 2008, ApJ 678, 1032; Figer, D.F., 1999, ApJ 514, 202; Simpson, J.P., ApJ
670, 1115 ; Feuchtgruber, H., 2000, ApJ 535, L111; and references therein.
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Figure 3.3: a) HST & Spitzer composite image of the larger Galactic Center region. The dimensions of
the figure are about 300×115 light years which is equivalent to 91×34.8 parsec or 38.3×14.7 arcmin.
Image credit: Hubble: NASA, ESA and D.Q. Wang (U. Mass, Amherst); SPITZER: NASA, JPL and S.
Stolovy (SSC/Caltech). b) Top: ∼ 74′′×74′′ mosaic of the Quintuplet cluster obtained with VISIR PAH1
filter (8.59 µm) with compact sources marked with star symbols. Prominent sources are also labeled.
Bottom: The same as top but obtained with VISIR NeI I2 filter (13.04µm). c) The squares I - IX indicate
the layout of the 9 snapshots of ∼ 32.5′′×32.5′′ VISIR FOV that were used to map out circumference of
the sources in order to cover the entire region suitable for MIRI science and offset pointing, as it was
one of the main goals of our proposal 085.C-0047. The circles indicate the minimum and maximum
radius within which the previously identified Spitzer and Chandra sources have to be located. d)
Top: ∼ 74′′×74′′ mosaic of the central cluster (Sgr A) obtained with VISIR PAH1 filter (8.59 µm) with
potential point sources marked with star symbols. Prominent sources are also labeled. Bottom: The
same as top but obtained with VISIR NeI I2 filter (13.04 µm).
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3.3 Data Reduction

The data reduction process involved sky background subtraction using sky frames ob-

served as part of the chopping and nodding technique, and correcting for dead/bad pixels.

The ESO VISIR pipeline could not be used to reduce these datasets as they were observed

with "raster mode" to cover a large field of view, which is not supported in the standard

pipeline. For that reason, I developed my own data reduction routines using IDL.

Images obtained with VISIR DRS (former Boing) 256 BIB detector suffer from horizon-

tal striping and appearances of ghosts (ESO VISIR manual2). The stripes repeat every 16

pixels in the y-direction and appear in most of the images, especially when bright objects

are in the FOV. Correcting for these stripes was done by two approaches depending on

their contrast. For low-contrast stripes I made use of the Multiresolution (MR) Software3

implemented within IDL scripts (del_pattern.pro). However, for high-contrast stripes one

has to first get an image of the repetitive pattern (obtained from the pixels at the end of

each row of the science frame), subtract it and then apply the MR-algorithm. The result-

ing pattern images were then inspected to make sure that the MR-algorithm did not over-

correct and remove any astronomical signal. The resulting images were then combined

into a large (FOV' 73′′×73′′) mosaic using Montage4 astronomical tool (Figs. 3.3 & 4.1).

The detections and centroid positions of the compact faint sources were obtained by

find.pro) from the public IDL Astronomy User’s Library and inspected by eye to confirm

the detections. The flux calibration of the sources was done with aperture photometry.

The zero points for both filters were measured via standard star observations within a max-

imum of 40 min before or after the GC observations (see Table 3.1). The observations of

the standard stars followed the ESO VISIR calibration plan and the zero points were deter-

mined using the visir_img_phot algorithm of the ESO Common Pipeline Library (CPL).

I used two aperture sizes, 0.5” and 1” in radius, for extracting the flux densities. Similar

to Viehmann et al. (2006), the sky contribution was fitted to an annulus situated between

radii of 1” and 1.5” (from the center of the aperture) for the 0.5” aperture, and between

1.6” and 2.1” for the 1” apertures. The flux density extraction was done using the algo-

rithm (aper.pro) from the public IDL Astronomy User’s Library and the resulting values

were compared to those obtained by Viehmann et al. (2006) for the bright IRS sources in

the central cluster. For the same extinction value they use, 1.75 at 8.6 µm, I get a flux den-

sity value of 5.17 Jy for IRS 5, very close to their value of 5.11 Jy (using the 1” aperture).

Since the aim of the project is to analyze faint compact sources, I report the flux density

values as obtained from the smaller aperture size, 0.5”. This choice is more suitable since

2http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/
VLT-MAN-ESO-14300-3514_v85.pdf

3www.multiresolution.com
4Montage is a toolkit for assembling Flexible Image Transport System (FITS) images into custom mosaics.

http://montage.ipac.caltech.edu/

http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/VLT-MAN-ESO-14300-3514_v85.pdf
http://www.eso.org/sci/facilities/paranal/instruments/visir/doc/VLT-MAN-ESO-14300-3514_v85.pdf
www.multiresolution.com
http://montage.ipac.caltech.edu/
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the sources are compact and some are located close to bright nearby objects within the

mini-spiral. I also adopt the more recent values for the extinction reported by Fritz et al.

(2011), ∼ 2.0 and ∼ 1.34 for the PAH1 and NeI I2 filters, respectively. The extinction val-

ues used for the Quintuplet cluster are ∼ 1.82 and ∼ 1.65 for the PAH1 and NeI I2 filters,

respectively (Moneti et al., 2001).

3.4 Results and Discussion

The stellar disk candidates in the three clusters, e.g. IRS 13N IR-excess sources east of

IRS 5 in NSC, can be studied to understand the fate of stellar disks in dense cluster en-

vironments. The massive stars in the center of the clusters are the engines which drive

these processes and show disks that are highly affected by gravitational drag, by stellar en-

counters, and evaporation by strong stellar winds and radiation. The interaction of these

young stellar disks with the radiation field of the bright cluster members can be probed

with NIR/MIR fine structure lines observable with MIRI. The disk properties can be inves-

tigated via molecular lines observations and detections of ice features. Ionic lines will help

to identify the physical conditions for the Arched filaments and the Sickle and determine

whether they are shock features or simple in-situ accumulation features.

Within the central 400 pc × 50 pc about 150 YSOs with a mass of 10–20 M¯have been

traced down via their infrared spectral energy distribution (SEDs) (Yusef-Zadeh et al., 2009,

with Spitzer). YSOs can be bright around 10 µm due to their infrared excess in dust emis-

sion. Their existence implies a recent star formation peak only ∼ 105 yrs ago. The VISIR

data provide a database for a sensitive and systematic search for class I candidates near

the Center. Our data gives a census of disk candidates as already found for Arches (Stolte

et al., 2010) and IRS 13N (Eckart et al., 2013, 2004; Mužić et al., 2008), but now at larger

distances from the cluster centers. One aim is to show how frequent they are in the field,

and whether there is an increased density of these candidates towards the central stellar

cluster and towards the nuclei of the Arches and the Quintuplet.

The Central Stellar Cluster

Figure 3.4 shows the two N -band (8.59 µm and 13.04 µm) mosaics of the central stel-

lar cluster (∼ 73′′ × 73′′). Visible in both mosaics are the mini-spiral arms of ionized gas

and dust, Sgr A West, which feed the SMBH at the center of the image. Several bright in-

frared sources such as IRS 8, IRS 5, IRS 3 and IRS 1W can be identified and are labeled (see

also Fig. 3.3). The darker regions in the mosaics (left and right of the central cluster) are

residues from the sky subtraction applied via the chopping/nodding observing method of

VISIR (see Chapter 1).

The newly detected compact sources, in addition to known objects, are marked with

star symbols. The known sources, e.g. IRS 5, were analyzed for comparison with the previ-
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ous analysis of Viehmann et al. (2006) who studied several dusty objects within and close

to the mini-spiral. The new mosaics, however, cover a larger FOV and hence contain new

detections. The position of Sgr A* in the MIR images was determined relative to prominent

sources, like IRS 16NW, IRS 7 or IRS 29 and compared to the position obtained by Schödel

et al. (2007). Noticeable is the lack of detections to the east and west of the cluster due to

the negative images of the cluster lying in these regions.

A Census of Compact Sources

The detection of compact sources was done using the 8.59 µm mosaic. The flux density

values were extracted and then compared to the values obtained for the same positions at

the longer wavelength, 13.04 µm, image. About 90 sources were analyzed but only 77 had

reliable flux density measurements in both bands. Consequently, spectral index values

were calculated as follows:

α= log(F13.04/F8.59)

log(8.59/13.04)
. (3.1)

Table 3.2 lists the sources that had reliable detections in both wavelengths. Listed in the

table are their offset position (in arcsec) from the location of Sgr A*, the flux density values

at both wavelengths with their uncertainties and the estimated spectral index. The previ-

ously known sources are designated by their name in the last column of the table. Sources

labeled as "contaminated" refer to the ones that had an unreliable background subtrac-

tion, due to the fact that the corresponding sky annulus includes counts from other nearby

sources. The flux density values reported for the extended sources were obtained using the

same aperture size, 0.5”, as the compact ones. The aperture was positioned on the region

of highest pixel counts.

Most of the newly detected faint sources show an increase in flux density towards

longer wavelengths. Based on previous classifications of the MIR objects in the same re-

gion by Viehmann et al. (2006), most of these new faint dusty objects are consistent with

trends observed for bow-shock sources (Fig. 3.5). As one can see in Fig. 3.6 when one sep-

arates the objects based on the apparent morphology most of the newly detected faint

objects show a sharper increase of flux towards longer wavelengths. This is in agreement

with Viehmann et al. (2006) where they report a similar trend for the low-luminous bow

shock sources. However, we would like to note that one cannot conclusively classify any

of those objects only based on observations taken at two wavelengths. Our observations

were only limited to two bands since the primary goal was to provide a high spatial resolu-

tion and deep map of the region as pioneer target selection for future MIRI observations.

I have successfully identified several faint potentially interesting targets (see the next

chapter for detailed analysis of one object) and accurately mapped the position of the

bright sources in order to avoid them in selecting FOVs for future MIRI observations. Fig-

ure 3.7 shows a spectral index map of 77 sources, in offsets from the position of Sgr A*,
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Figure 3.5: Histogram of spectral index
values for compact sources in the central
cluster.
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Figure 3.6: Similar to the Fig. 3.5. Here
blue represents compact sources, green are
the objects which show extended mor-
phologies and pink indicates the sources
whose flux measurements are contami-
nated by uncertainty in the sky subtraction
in at least one band.
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Figure 3.7: Spectral index map of the 77
sources listed in Table 3.2. The color of each
source indicates its spectral index, α. The
size of each symbol is proportional to the
flux obtained at PAH1-band, 8.59 µm of
the corresponding source. The position of
Sgr A* is indicated by a cross.

which are listed in Table 3.2. The color of each source indicates its spectral index, α. The

size of each symbol is proportional to the flux obtained at PAH1-band, 8.59 µm of the

corresponding source.

The Quintuplet Cluster

Figure 3.8, similar to 3.4, shows the two N -band (8.59 µm and 13.04 µm) mosaics of

the Quintuplet cluster (∼ 73′′×73′′). Visible in both mosaics are the five luminous near-

infrared (NIR) dusty carbon WR stars (Moneti et al., 2001), that give Quintuplet its name.

The age of the cluster is estimated to be ∼ 4±1 Myr (Figer et al., 1999b,c). The pistol nebula

can be seen as well, especially in the longer wavelength. It is believed to have been ejected

from the pistol star several thousand years ago (Figer et al., 1999a). The darker regions in

the mosaics (left and right of the Q-stars) are residues from the sky subtraction applied via

the chopping/nodding observing method of VISIR (see Chapter 1).

The detected compact sources, in addition to known sources, are marked with star

symbols. The known sources, e.g. Q3, were analyzed for comparison with the previous

analysis of Moneti et al. (2001). These new mosaics, however, cover a larger FOV and hence

contain new sources. Noticeable is the lack of detections to the east and west of the clus-

ter due to the negative images of the cluster lying in these regions. The detection of the

compact sources was done using the 8.59 µm mosaic. The flux density values were ex-

tracted and then compared to the values obtained for the same positions from the longer

wavelength, 13.04 µm, image. About 31 sources were analyzed but only 26 gave reliable

flux density values in both bands. Consequently, spectral index values were calculated us-

ing Eq. (3.1). Table 3.3 lists the sources that had reliable detections in both wavelengths.
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Figure 3.9: Histogram of spectral index
values for compact sources in the Quintu-
plet cluster.
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Figure 3.10: Spectral index map of the 26
sources listed in Table 3.3. The color of each
indicates its spectral index, α. The size of
each symbol is proportional to the flux ob-
tained at PAH1-band, 8.59 µm of the corre-
sponding source. The position of the pistol
star is indicated by a cross.
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Listed in the table are their positions in offset in arcsec from the position of the pistol star,

the flux density values at both wavelengths with their uncertainties and the calculated

spectral index. The known sources are designated by their name in the last column of the

table.

Similar to the NSC, most sources appear to have negative spectral index, α, values

(Fig. 3.9). As noted before, this is in agreement with the previous reports of increasing flux

towards longer wavelengths for the known low-luminous bow shock sources Viehmann

et al. (2006). Figure 3.10 shows a spectral index map of the 26 sources, in offsets from the

position of the pistol star, listed in Table 3.3. The color of each source indicates its spec-

tral index, α. The size of each symbol is proportional to the flux obtained at PAH1-band,

8.59 µm of the corresponding source.

3.5 Summary

Some dynamical processes at the GC - like existence and kinematics of young stars within

0.1 pc from Sgr A* - are well explained by the presence of IMBHs (intermediate-mass black

holes 102–105 M¯). In the immediate surroundings of higher mass concentrations (the

central cluster itself as well as dense stellar clusters like Arches and Quintuplet) the space

density of IMBHs is likely increased with respect to the field and these objects can be

searched for and isolated against luminous young stars. IMBHs are likely to sink towards

the cluster centers due to gravitational friction (Portegies Zwart et al., 2006). Nayakshin

and Sunyaev (2007) find the total luminosity of stellar mass remnant cusps to be in some

cases comparable to that of the central SMBH at low gas densities, as is likely the case in

the GC. Individual IMBHs and stellar mass remnants will be bright around 10 µm due

to steep spectrum synchrotron radiation that may occur during accretion. The spectral

indices of the point sources detected from the data, using both MIR filters 8.59 µm and

13.04 µm, will aid in the identification of such candidates. If combined with follow up (i.e.

different epochs of observations) the currently studied mosaics will prove to be a unique

asset to determine the variability of the faint sources and measure possible proper mo-

tions for applicable ones. In addition, these sources can be compared with the higher

frequency archival data (e.g. NaCo, Spitzer’s and Chandra’s already detected sources) to

identify possible counterparts.

A full analysis of the detected sources in terms of flux densities and accurate positions

will be presented and made available in an upcoming paper (Sabha et al. 2015b, in prep.).

The MIR data presented here are the first and only data that cover a large FOV ∼
74′′×74′′ in the GC region, which is essential in scheduling future MIRI JWST observing

campaigns. Although the primary goal of our observations was to obtain a deep and accu-

rate MIR map of the important fields in the GC region (in which we successfully located all

bright sources with high accuracy and identified empty fields for future MIRI calibrations),
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however, several new faint objects emerged from my analysis. While the combination of

the two available bands enables us to acquire some insight on these newly detected dusty

objects, only dedicated multi-frequency studies of each individual source would enable

us to draw conclusions about it in order to get a better picture of the nature and distri-

bution of such faint sources inside prominent GC star clusters. In the following section, I

present such a follow up study focusing on one of the newly detected MIR objects whose

morphology resembles a bow shock at a distance of 0.68 pc from the central supermassive

black hole.
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Table 3.2: List of the compact and some of the known MIR objects detected in the NSC.

Positions are the offset from Sgr A* (in arcsec) and observed fluxes at PAH1 and NeI I filters

are reported in mJy.

Detected ∆α ∆δ F8.59 ± F13.04 ± α ±
source (arcsec) (arcsec) (mJy) (mJy) (mJy) (mJy)

1 0.93 0.79 185.18 19.76 264.83 65.11 -0.86 0.11

2 1.19 1.23 193.27 15.02 372.76 42.20 -1.57 0.06

3 -1.18 2.29 26.48 12.25 57.92 23.00 -1.88 0.25

4 -5.31 1.10 399.42 44.81 1389.71 228.76 -2.99 0.08 contaminated

5 -0.11 5.80 1355.61 37.00 2506.66 51.02 -1.47 0.01 IRS7

6 0.42 -7.07 151.72 15.46 896.61 51.30 -4.26 0.05 faint

7 -0.38 -7.09 115.86 15.53 715.48 36.89 -4.36 0.06 contaminated

8 6.26 -3.57 259.66 22.58 865.81 46.60 -2.89 0.04 extended

9 -3.39 -6.63 324.15 18.30 902.59 31.46 -2.45 0.03 contaminated

10 -7.34 -1.37 540.93 23.35 1413.30 89.52 -2.30 0.03 contaminated

11 -1.28 -7.47 113.38 13.24 455.53 22.81 -3.33 0.05 contaminated

12 -0.47 7.62 159.88 12.99 234.48 17.34 -0.92 0.05 IRS7/tail3

13 0.76 -7.86 155.87 18.58 322.67 26.93 -1.74 0.06 contaminated

14 -0.29 8.12 149.68 13.15 181.19 15.09 -0.46 0.05 IRS7/tail2

15 -2.51 7.89 75.41 10.11 8.60 10.10 5.20 0.49 contaminated

16 -1.35 -8.36 98.33 10.53 238.08 18.35 -2.12 0.06

17 -0.32 -8.64 26.75 7.25 42.05 33.51 -1.08 0.35 contaminated

18 -7.79 -4.15 84.49 11.22 59.50 27.32 0.84 0.20 extended

19 -0.15 8.86 77.16 10.82 26.65 13.78 2.55 0.22 IRS7/tail1

20 8.85 0.77 237.75 24.54 13.68 64.42 6.84 1.97 contaminated

21 -3.49 -8.24 47.40 7.37 90.81 11.06 -1.56 0.08 edge

22 -2.43 8.75 58.81 8.77 29.32 9.52 1.67 0.15 contaminated

23 -6.69 6.22 31.25 6.80 28.97 20.16 0.18 0.30 faint

24 -8.23 -4.58 45.21 8.35 75.11 22.83 -1.22 0.15 contaminated

25 -8.93 3.64 59.76 8.58 127.43 15.08 -1.81 0.08 extended

26 -10.01 1.00 169.51 14.30 591.56 39.89 -2.99 0.05 extended

27 6.97 -7.47 279.80 24.46 1511.44 163.06 -4.04 0.06 contaminated

28 -10.50 0.88 106.35 13.21 460.99 48.39 -3.51 0.07 contaminated

29 3.44 10.88 75.90 10.64 300.39 34.63 -3.30 0.08 extended

30 1.04 11.53 88.02 10.10 74.16 12.77 0.41 0.09

31 3.51 -11.07 27.65 8.50 133.42 19.26 -3.77 0.14

32 -11.46 2.78 114.09 11.21 367.58 22.85 -2.80 0.05 extended

33 10.45 -5.63 298.56 24.68 582.91 76.61 -1.60 0.06 extended

34 9.07 8.34 599.17 30.30 760.86 62.39 -0.57 0.04 contaminated

35 10.64 7.28 549.21 27.44 929.80 62.06 -1.26 0.03 IRS5/extended

36 8.46 10.05 4620.82 73.01 4090.20 136.06 0.29 0.02 IRS5

37 -10.69 -7.84 12.89 4.07 84.55 14.88 -4.51 0.15 faint

38 -8.67 -10.82 14.13 4.17 17.55 6.59 -0.52 0.20 faint
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Table 3.2: continued.

Detected ∆α ∆δ F8.59 ± F13.04 ± α ±
source (arcsec) (arcsec) (mJy) (mJy) (mJy) (mJy)

39 10.87 9.64 510.11 24.82 942.23 37.28 -1.47 0.03 IRS5/5E

40 14.35 -5.41 216.61 19.23 1035.76 57.89 -3.75 0.04 extended

41 -9.61 12.17 58.34 8.59 169.19 15.94 -2.55 0.07 contaminated

42 -3.73 -15.37 30.55 6.55 62.51 15.29 -1.72 0.14 edge

43 -8.55 13.75 132.73 12.08 376.97 28.04 -2.50 0.05 contaminated

44 12.71 10.96 618.06 25.24 685.50 35.10 -0.25 0.03 IRS5/5NE

45 -9.27 -14.52 107.70 10.80 447.74 22.36 -3.41 0.05 extended

46 17.42 5.71 38.80 7.41 116.07 16.21 -2.63 0.10

47 15.15 -10.52 52.67 14.45 212.53 68.09 -3.34 0.18 contaminated

48 -9.17 18.30 37.35 7.09 140.45 14.00 -3.17 0.09 contaminated

49 -8.67 -19.41 8.07 4.46 48.83 9.87 -4.31 0.25

50 12.92 16.92 123.02 11.48 236.57 18.15 -1.57 0.05 edge

51 1.30 -21.49 27.12 6.00 112.24 13.38 -3.40 0.10

52 12.95 17.20 113.59 11.12 220.13 19.32 -1.59 0.05

53 -6.06 -21.06 34.75 6.52 53.86 10.35 -1.05 0.11

54 -4.18 -21.70 19.87 5.51 28.77 8.77 -0.89 0.17

55 14.49 -18.26 162.31 13.66 124.31 22.82 0.64 0.08

56 14.82 -18.43 151.59 13.33 105.51 22.81 0.87 0.10

57 -13.96 20.69 43.70 7.23 83.62 17.28 -1.55 0.11

58 -2.71 -25.43 90.78 10.12 60.00 11.92 0.99 0.10

59 16.17 -21.44 28.47 6.61 8.94 9.51 2.77 0.45

60 1.40 -27.17 24.68 5.82 68.70 10.25 -2.45 0.12

61 -3.80 -27.00 39.76 7.01 11.28 8.59 3.02 0.33

62 7.95 -27.42 476.60 22.30 444.30 29.25 0.17 0.03

63 -16.41 23.76 11.14 5.34 34.79 9.15 -2.73 0.23

64 -7.80 -28.22 90.99 10.07 208.07 16.10 -1.98 0.06

65 1.88 -29.49 18.78 5.28 52.73 10.38 -2.47 0.14

66 27.69 10.52 37.24 7.30 105.22 14.03 -2.49 0.10

67 -8.28 -30.54 31.03 6.30 31.69 7.85 -0.05 0.13

68 -23.13 21.64 40.37 7.91 103.70 22.73 -2.26 0.12

69 -18.76 -25.78 39.21 7.40 170.01 17.27 -3.51 0.09

70 29.08 16.51 51.93 8.75 74.79 13.02 -0.87 0.10

71 -24.24 23.39 6.45 4.87 63.25 17.06 -5.47 0.33

72 31.36 15.32 74.45 9.58 122.28 16.65 -1.19 0.08

73 -26.89 23.85 38.85 7.74 21.72 15.56 1.39 0.31

74 -33.20 -17.69 88.19 10.38 137.21 15.43 -1.06 0.07

75 -26.56 -34.20 55.71 8.31 125.21 17.77 -1.94 0.09

76 35.22 30.98 292.70 27.58 407.24 40.10 -0.79 0.06

77 31.47 35.38 134.35 13.51 270.07 36.19 -1.67 0.07
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Table 3.3: Similar to Table 3.2 for the sources in the Quintuplet cluster. Positions are the
offset from the position of the pistol star (in arcsec).

Detected ∆α ∆δ F8.59 ± F13.04 ± α ±
source (arcsec) (arcsec) (mJy) (mJy) (mJy) (mJy)

1 0.00 0.00 126.81 11.34 166.64 15.40 -0.65 0.05 pistol star
2 7.84 -6.23 30.25 5.84 91.26 11.74 -2.65 0.10
3 -11.03 1.09 94.46 9.80 229.65 16.05 -2.13 0.05
4 4.16 -14.63 78.38 9.04 131.18 13.16 -1.23 0.06
5 8.19 17.89 7932.36 89.60 12070.48 110.59 -1.01 0.01 Q3
6 4.22 -19.87 12.48 4.11 31.66 8.09 -2.23 0.17
7 17.80 13.74 76.08 9.17 212.97 17.35 -2.47 0.06
8 -7.01 22.68 13463.83 117.20 22174.71 154.71 -1.20 0.00 Q2
9 23.70 -3.22 130.52 11.74 328.92 20.30 -2.21 0.05

10 -1.67 26.31 38.74 6.39 45.17 8.57 -0.37 0.10
11 9.18 25.52 16.57 4.30 28.45 6.31 -1.29 0.14
12 2.06 28.86 97.70 10.00 130.44 12.03 -0.69 0.06
13 23.65 16.89 114.12 11.04 344.57 20.81 -2.65 0.05
14 -5.90 29.12 1835.36 42.93 2902.18 54.32 -1.10 0.01 Q4
15 28.27 -10.42 84.49 9.75 218.50 17.85 -2.28 0.06
16 -14.56 26.73 6733.51 82.57 14941.14 126.84 -1.91 0.01 Q1
17 -32.17 1.17 10.22 3.82 24.89 9.40 -2.13 0.22
18 7.86 33.82 35.46 6.29 108.15 11.90 -2.67 0.09
19 -1.12 35.44 299.94 17.50 851.53 29.90 -2.50 0.03
20 -32.31 -18.76 19.64 5.14 72.64 11.39 -3.13 0.13
21 2.69 37.68 25.51 5.47 3.89 6.36 4.51 0.69
22 23.59 36.85 120.98 11.49 337.89 20.91 -2.46 0.05
23 3.74 44.10 9.97 3.84 6.47 6.45 1.04 0.45
24 19.88 40.93 6.40 4.34 13.16 10.27 -1.73 0.43
25 -36.88 26.73 15.21 4.87 49.23 11.26 -2.81 0.16
26 -28.57 38.16 19.02 5.37 14.33 11.09 0.68 0.34
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NEW MIR BOW SHOCK SOURCE AT THE GALACTIC

CENTER

I find a convex-like mid-infrared feature at a distance of 0.68 pc (17′′) from the position
of the supermassive black hole, Sgr A*, at the center of the nuclear stellar cluster. This
feature resembles a stellar bow shock with a symmetry axis pointing toward the Center.
I discuss the possible nature of this feature and the implications of its alignment with
other dusty comet-like objects inside the central parsec. If it is indeed a stellar bow shock,
the estimates I get for the velocity of an external wind, ∼ 500–1000 km s−1, hint toward
a collimated outflow, either from the disk of mass-losing GC stars or the position of the
SMBH Sgr A*. The latter argument supports the claims of equatorial outflows that have
been found in extragalactic nuclei.

4.1 Introduction

Several studies discuss whether the Galactic Center (GC) black hole can be considered a

member of the Low Luminosity Active Galactic Nuclei (LLAGN) class (Contini, 2011; Ho,

2008). For instance, Contini (2011) find that the GC is comparable to faint LLAGN in its

radio and far-infrared continuum and line emission ([OI] 63 µm & 145 µm, [NII] 122 µm,

[CII] 158 µm). Ho (2008), on the other hand, consider the short duty cycle of the black

hole accretion to be responsible for most AGN spending their life in a low state. This leads

to modest luminosities for most of the AGN population. Hence, one has to take into ac-

count alternative mechanisms and not rely only on the absolute luminosity of an AGN

to define the nuclear activity. Strong similarities present themselves when comparing the

69
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continuum spectra from radio to X-ray of the Galactic Center to that of some LLAGNs. Ob-

servations of these galaxies suggest theoretical models of radiatively inefficient accretion

flows (RIAF) where the luminosities are ≤ 10−7LEdd, and when Lbol/LEdd ≤ 10−3 the broad

line region (BLR) disappears and a temporarily existing disk becomes very probable (Laor,

2003; Nicastro, 2000; Xu and Cao, 2007).

As of yet, observations have not been able to either confirm or deny the existence of an

outflow/jet emanating from the center of the Galaxy, where the supermassive black hole

(SMBH) is located. However, there are hints of past AGN-like activity of the black hole as

evident by the detected X-ray light echo off the Sgr B2 giant molecular cloud. This allows

an estimate to be made of a higher luminosity for Sgr A* by about few 105 times a few

hundred years ago (Sunyaev et al., 1993; Koyama et al., 1996; Revnivtsev et al., 2004; Muno

et al., 2007; Ponti et al., 2010, see (Fryer et al., 2006) for an alternative explanation for the

echo). Another indication of such activity is argued by Silk et al. (2012): the presence of

OB hypervelocity stars (HVS; 300 to 1000 km s−1away from the Center) are believed to be

caused by the interactions of an AGN jet from the central black hole with a dense molecular

cloud.

The underluminosity of the source makes it difficult to distinguish among the different

physical processes responsible for its variable emission from the radio up to the X-rays. No

optical wavelength information can be obtained from the GC due to the line-of-sight ex-

tinction of ∼ 30 magnitudes (Becklin and Neugebauer, 1968; Becklin et al., 1978; Rieke and

Lebofsky, 1985; Rieke et al., 1989). Analysis of the radio–mm regime emission points to-

ward a synchrotron process and a radiatively inefficient, advection-dominated accretion

flow (e.g. Markoff et al., 2001; Narayan and McClintock, 2008; Yuan, 2011). Highly resolved

radio observations using the very long baseline interferometry (VLBI) technique show that

the source associated with the SMBH is compact (Doeleman et al., 2008) which supports

the no-jet hypothesis. However, Markoff et al. (2007) use the spectrum and morphology of

Sgr A* across all observable wavelengths and derive constraints on the inclination and po-

sition angles of a bi-polar putative jet. Recent VLBA 7 mm observations of the radio source

Sgr A* show its morphology to be consistent with emission from a jet or an accretion disk

(Bower et al., 2014). They model the source by an elliptical Gaussian with the major-axis

position angle of 95◦ east of north. The multi-wavelength observations of Bower et al.

(2014) suggest that not all X-ray and near infrared (NIR) flares have a radio counterpart.

They interpret this by attributing the high energy flares to electron excitation rather than

an enhanced accretion onto the SMBH.

There have been several structures observed in the radio, infrared or the X-ray regime,

which are within a few parsecs of the position of the SMBH. These structures have been

interpreted as evidence of interaction regions between a jet/outflow emanating from the

black hole position, and the interstellar medium. The most recent of these reports favoring

an outflow direction (semi-) parallel to the Galactic plane i.e. the NE or SW direction are
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(i) the presence of NIR filamentary structures and bow-shock-shaped features, in addition

to the mini-cavity (Mužić et al., 2007, 2010); (ii) a linear feature in the radio cm-maps of

the GC and a number of weak blobs along its direction (Yusef-Zadeh et al., 2012a); (iii) an

earlier finding of a NIR bubble of hot gas engulfed within the mini-spiral to the south-west

of the SMBH (Eckart et al., 1992). The evidences supporting a NW/SE as an alternative

direction are (i) a NIR linear feature (Eckart et al., 2006); (ii) gamma-ray bubbles and lin-

ear gamma-ray features along opposite directions from the Center (Su et al., 2010; Su and

Finkbeiner, 2012); (iii) a linear X-ray feature, G359.944-0.052, pointing to the position of

Sgr A* Muno et al. (2008); (iv) the same X-ray feature supported by the presence of a radio

shock front on the Eastern Arm of the mini-spiral (Li et al., 2013b).

The Galactic Center has been observed in the near-infrared intensively. These obser-

vations have allowed accurate investigations of the stellar population of the nuclear star

cluster (NSC, Schödel et al., 2009; Buchholz et al., 2009; Do et al., 2009; Bartko et al., 2010,

and several others) and provided the first compelling evidence for the existence of a SMBH

via orbital fitting of the high velocity star S2 (Schödel et al., 2002; Ghez et al., 2003). How-

ever, GC observations in the mid-infrared (MIR) regime, using ground-based telescopes,

have been less extensive and were mostly concentrated on the inner parsec of the cluster.

These studies were dedicated to examine dusty structures associated with the mini-spiral,

especially the northern and eastern arm, and parts of the western arc, as well as several

bright circumstellar dusty sources Moultaka et al. (2005, 2009); Viehmann et al. (2006).

Several bow shocks -caused by the interaction of a stellar wind with in-falling material of

the mini-spiral- were also found, e.g. IRS 1W, 5, 10W, 21 and the very bright IRS 8 (Tanner

et al., 2002, 2005; Rauch et al., 2013; Sanchez-Bermudez et al., 2014). Irons et al. (2012) use

NeII emission to study the kinematics of the ionized gas in the Sgr A west (mini-spiral).

They explain the structure by an one-armed spiral density wave that may be caused by the

precession of elliptical orbits in the potential of the black hole and the central cluster.

In this chapter I investigate the presence of a convex-like mid-infrared feature at a dis-

tance of 0.68 pc (17′′) from the position of the SMBH, Sgr A*, at the center of the NSC. This

feature resembles a stellar bow shock with a symmetry axis pointing toward the Center. I

discuss the possible nature of this feature and the implications of its alignment with other

dusty comet-like objects inside the central parsec. In Section 4.2 I present the results from

the data reduction analysis of the previous chapter, and relate them to other mentions of

the source in the literature. I then discuss the bow-shock scenario of the feature and the

possible nature of the external wind that may cause it. I summarize and discuss the im-

plications of my results in Section 4.3. I adopt a distance to the Galactic Center of 8 kpc,

where 1 arcsec translates to 0.04 pc projected distance.



72 CHAPTER 4. New MIR Bow Shock Source at the Galactic Center

Figu
re

4.1:
Left:

P
A

H
1

(8.59
µ

m
)

m
osaic

of
th

e
cen

tral
stellar

clu
ster

w
h

ere
th

e
p

osition
of

Sgr
A

*
is

m
arked

an
d

several
IR

S
sou

rces
are

labeled
.

T
h

e
in

set
sh

ow
s

a
zoom

ed
im

age
of

th
e

featu
re

X
24

-as
called

by
Z

h
ao

et
al.(2009).

R
igh

t:
sam

e
as

th
e

th
e

left
m

osaic
bu

t
in

N
eII

(13.04
µ

m
)

fi
lter.

T
h

e
n

u
m

bers
on

th
e

colorbars
are

in
d

igital
cou

n
ts.

T
h

e
con

tou
r

levels
w

ere
p

rod
u

ced
by

resam
p

lin
g

th
e

fi
ts

fi
les

20
tim

es
an

d
are

at
95%

,90%
,80%

,70%
,

60%
,50%

,40%
,30%

ofth
e

m
axim

u
m

fl
u

x
valu

e
for

each
im

age.



4.2. Results 73

4.2 Results

Figure 4.1 shows two N -band (8.59 µm and 13.04 µm) mosaics of the central stellar cluster

(∼ 73′′× 73′′). The details of the observation and data reduction have been described in

Sect. 3.2 & 3.3 of the previous chapter. Visible in both mosaics is the mini-spiral arms of

ionized gas, Sgr A West, which feed the SMBH at the center of the image. Several bright

infrared sources such as IRS 8, IRS 5, IRS 3 and IRS 1W can be identified and are labeled.

A very faint bow-shock-like feature is noticeable at a distance of ∼ 17′′ (0.68 parsec) from

Sgr A* in the south-west direction (PA ' 212◦ east of north). The feature is marked with

a box and the inset is zoomed to the bottom right corner to show the details of its mor-

phology, the convex shape. The darker regions in the mosaics (left and right of the central

cluster) are residues from the sky subtraction applied via the chopping/nodding observing

method of VISIR (see Chapter 1).

The contours overlaid on the bottom right squares of Fig. 4.1 were produced by resam-

pling (rebinning) the fits files 20 times. The minimum value for the contours were chosen

to be the 2 σ of the noise of the image inset, as estimated from the Gaussian fit of the dis-

tribution of pixels (see description of Fig. 4.2). The position of this feature, with respect

to the position of Sgr A*, interestingly coincides with several previously reported features

to the south west of the SMBH (Mužić et al., 2010). Below I review the properties of the

source from the literature, and lay the grounds for my interpretation of its nature.

Figure 4.2: The left panel, same as the inset of Fig. 4.1, shows the X24 feature in the PAH1 (8.59 µm)
filter. The contours (in yellow) are plotted above 2-σ of the noise component estimated from the Gaus-
sian fit to the image histogram shown in the right panel.

The Extended Source X24

Zhao et al. (2009) identify an unresolved extended source in their 3.6 cm Very Large Array

(VLA) multi-epoch archive observations. The source is located at ∆α = −9.180′′±0.005′′

and ∆δ = −14.680′′±0.010′′, with respect to the position of Sgr A*. They refer to it as X24
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and associate it with the infrared source MP-09-14.4 from Genzel et al. (2000). They report

a proper motion of the source of µα = −3.5± 0.6 mas yr−1and µδ = −5.4± 1.3 mas yr−1,

which corresponds to vt = 244 ± 43 km s−1(position angle= −147◦ ± 9◦ measured from

north to east), and a line of sight velocity of −18±8 km s−1. X24 is at the same position in

projection as our feature and has a similar shape as can be seen from their Figure 6 (see

also their Figures 2 & 12).

In our resolved MIR images, the source appears with a convex-like morphology in its

north-east corner (the part closest to the position of Sgr A*). The radio proper motion

(as measured by Zhao et al., 2009) indicates that X24 moves through the GC medium in

the opposite direction, i.e. south-westward from Sgr A*, which hints toward an external

wind blowing from the north-east direction that may be considered responsible for the

observed shape. Considering the magnitude of the transverse velocity on the plane of

the sky, this means that the external wind should be faster than ≈ 250 km s−1to cause

the convex-like shape. Otherwise, the apparent proper motion could be explained by the

apparent change of the emission centroid of the source if the source experiences slight

variations in the measured flux density across its extended shape. The source is bright as

well in the Paschenα (Paα) emission studied in (Wang et al., 2010, their Figure 4a). Paα
emission from warm ionized gas is used to trace massive stars and their environments. It

is caused by Lyman continuum radiation from the stars which ionizes the gas in the stellar

winds and the surrounding circum-stellar material and ISM.

Irons et al. (2012) detect the source in their NeI I spectroscopic observations. Inspect-

ing the publicly available reduced data cube1 X24 has a VLSR ' −24 km s−1(see Fig. 4.3).

The feature cannot be fitted in their density wave model by which they explain the mini-

spiral structure (Figure 6 in Irons et al., 2012), and thus it is most probably independent

from the structure of the nearby western arc. The extended Paα emission, the detection in

MIR due to the presence of dust, dominated by Polycyclic Aromatic Hydrocarbon (PAH)

emission, and having evidence for ionized gas from the NeI I spectroscopic and imaging

observations all point to a peculiar nature of the source. Its convex-like morphology and

location adds to its importance for it is aligned with the same direction of earlier claims

for an outflow/jet from Sgr A*.

X24 is faint (∼ 0.22 Jy) and still it appears to have the morphology of a bow shock with

the tip pointing toward the center of the cluster. To investigate whether the shape we see

is real or just random noise, I plot the histogram of the pixel value distribution. While the

noise has a Gaussian profile, the science signal contributes a power-law component to the

histogram. Figure 4.2 shows the shape of X24 traced by the yellow contours which I have

plotted above the noise level of the image. The histogram of the pixel distribution of the

part of the mosaic where our source is located is shown on the right panel of Fig. 4.2 and is

1http://iopscience.iop.org/0004-637X/771/1/75/suppdata/apj475593_fits.tar.gz

http://iopscience.iop.org/0004-637X/771/1/75/suppdata/apj475593_fits.tar.gz
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Figure 4.3: Slice of the MIR NeI I data
cube taken from Irons et al. (2012). The slice
is taken at a VLSR ' −24.41 km s−1where
the emission from the feature X24, marked
by a square, is most prominent.

fitted with a Gaussian profile. The median and σ of the fit are used to determine the min-

imum value (2.79+0.94 counts) for the contour plot shown on the left panel of the same

figure (Fig. 4.2). The shape traced by the contours supports my stellar bow shock interpre-

tation. Investigating the intensity profile along different axes dissecting X24 indicates that

the symmetry axis of the potential bow shock points toward the center of the cluster, at an

angle ∼ 225◦ east of north (see Fig. 4.4).

In the following section I investigate the possibility of the source to be a stellar bow

shock caused by the interaction of a “supersonic" stellar wind with the surrounding

medium.

Stellar Bow Shock Scenario

In order to find a stellar counterpart for our bow-shock candidate, I overlaid the VISIR

image on an older mosaic in the Ks-band (2.2 µm) taken in 2006 Schödel et al. (2009).

Figure 4.5 shows at least two potential candidates located, in projection, at the posi-

tion of X24. I then compare with the list of K -band (2.18 µm) stars from Buchholz

et al. (2009) (online table typelist.dat) and Ks-band (2.2 µm) Schödel et al. (2009) (on-

line table tableb1.dat). From Fig. 4.6 (also, see Fig. 4.5) I find the best stellar candidates,

designated hereafter by Bu09 for sources Buchholz et al. (2009) and Sc09 for Schödel

et al. (2009), to be star Bu09#1211 in Buchholz et al. (2009) (no counterpart in Schödel

et al., 2009), star Bu09#153 (Sc09#4712) and star Bu09#184 (Sc09#4728). Star Bu09#38

(Sc09#4392) is the brightest with a K -mag of 10.8, however, its location makes the asso-

ciation with the extended feature X24 to be less probable. The remaining stars closeby are

very faint and hence are excluded from consideration.
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Figure 4.4: The left panel shows that the feature is symmetric along an axis with an angle 212◦ east
of north (black dashed line). The white dotted line represents the line passing through the center of
the cluster, the position of Sgr A*. The black dashed line in the right panel shows the best Gaussian fit
to the intensity profile along a path perpendicular to the axis plotted on the image of the source with
similar color (black circles). Here λ represents the normalized width of the feature. Similarly, the red
dashed-dotted line shows the best Gaussian profile along a path perpendicular to the red line. The
offset between the two profiles indicate a quantified measure for deviation from circular symmetry
(i.e. a simple point source) which is also evident from the apparent shape of the source.

Figure 4.5: Overlay of VISIR contours of
the source X24 and surroundings on a NaCo
Ks-band mosaic. The image spans∼ 7′′×7′′,
a larger FOV than Fig. 4.6. North is up and
east is to the left.

Considering that the K -band positions in both publications have been based on data

taken around the spring of 2004 with a systematic uncertainty of 0.1′′ the stars I mentioned

appear coincident with or close to the center of the MIR source in projection. This moti-

vated me to study these three stars and investigate whether they could be responsible for

the observed shape of X24. Below I address the case for each star individually:
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Figure 4.6: The left panel shows that the feature as the VISIR image with the stars taken from Buch-
holz et al. (2009) plotted as green stars. The stellar candidates for the bow shock star are labeled with
their sequence numbers for easier comparison with the text. The star that have measured proper mo-
tion in Schödel et al. (2009) are shown as white arrows. The right panel shows the X24 feature with
contours (similar to Fig. 4.1). Also shown on the right panel, as a red arrow, is the proper motion
measurement of X24 as obtained by Zhao et al. (2009).

Star A

With a K -mag =14.7 (RAoff =−9.15′′, Decoff =−14.81′′) it is classified as a late-type K giant

(Star Bu09#1211 in Buchholz et al., 2009). I could not find any reported proper motion

measurement for this star. Late-type K giants have typical stellar luminosities of L? =
10(2...5) L¯and typical stellar wind-loss rates of Ṁw = 10(−10...−7) M¯ yr−1. I derive the stellar

wind velocity vw using the following (adapted from Reimers, 1975; Suzuki, 2007)

Ṁw ' 4×10−13ηR
L?R?

M?
M¯/yr (4.1)

v2
esc = M?

R?
v2

esc¯ (4.2)

Ṁw ' 4×10−13ηR
L?v2

esc¯
v2

esc
M¯/yr (4.3)

vesc '
[

4×10−13ηR
L?
Ṁw

]1/2

vesc¯, (4.4)

where L?, R? and M? are the stellar luminosity in L¯, radius in R¯ and mass in M¯, re-

spectively. ηR is a proportional coefficient of an order of unity ( 1
3 < ηR < 3) based on a

dimensional analysis of stellar wind energetics. vesc is the star escape velocity with typical
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values of 0.16 < vw
vesc

< 0.8. Assuming vw = 0.5vesc and ηR = 1 one gets:

vw = 0.5

[
4×10−13 L?

Ṁw

]1/2

×617 km s−1, (4.5)

which gives a stellar wind velocity.

Using the bow shock solutions derived by Wilkin (1996) for an isotropic stellar wind;

R◦ =
√

Ṁwvw

4πρambv2
?

(4.6)

with R◦ being the stand-off distance, Ṁw the wind mass-loss rate, vw the terminal wind

velocity, ρamb the ambient medium density and v? as the velocity of the star causing the

shock. Using the formula derived in (Tanner et al., 2005, page 747) to account for the units,

the previous equation becomes:

R◦ = 1.74×1019

√√√√ Ṁwvw

µHnHv2
rel

(4.7)

with R◦ being the stand-off distance in cm, Ṁw the wind mass-loss rate in units of

10−6 M¯ yr−1, vw the terminal wind velocity in 108 cm s−1, µH the mean molecular weight

of Hydrogen, nH number density of the gas in cm−3and vrel as the velocity of the star rel-

ative to the surrounding medium in units of 106 cm s−1. I use a value of 20 cm−3for the

number density of the ambient medium. This value is lower than nH = 26 cm−3estimated

by Baganoff et al. (2003) since X24 located in a less dense region than close to the black

hole.

To derive the relative velocity for a range of stand-off distances and a range of stellar-

wind velocities, I re-arrange Eq. (4.7) to become

vrel =
1.74×1019

R◦

√
Ṁwvw

µHnH
. (4.8)

The results are shown in Fig. 4.7. From Fig. 4.6, R◦ is approximately 0.5′′, which leads

to a range of relative velocities between the star and the surrounding medium of vrel ≈
(3−103) km s−1.

Star B

With a K -mag of 11.9 (RAoff = −9.48, Decoff = −15.34) it is classified as a late-type M gi-

ant (Star Bu09#153 in Buchholz et al., 2009). The star has a Ks magnitude of 12.46±0.15

(Star Sc09#4712 in Schödel et al., 2009) due to an improved extinction value used in

that work. The reported right ascension and declination proper motions are RApm =
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Figure 4.7: Relative velocity between a star
and the medium for a late-type K-giant,
star A, for a range of stand-off distances (R0)
and stellar mass-loss rates ( dM

dt ).

Figure 4.8: Relative velocity between a star
and the medium for a late-type M-giant,
star B, for a range stand-off distances (R0)
and stellar mass-loss rates ( dM

dt ).

57.9± 8.3 km s−1and Decpm = 213.9± 20.2 km s−1, respectively (see Fig. 4.6). Late-type

M giants have typical stellar luminosities of L? = 10(2...5) L¯and typical stellar wind-loss

rates of Ṁw = 10(−9...−6) M¯ yr−1. To calculate the stellar wind velocity I use the approach I

described in the case of star A and show the results in Fig. 4.8. For R◦ of 1.2”, I get a range

of relative velocities between the star and the surrounding medium of vrel ≈ 2 – 77 km s−1.



80 CHAPTER 4. New MIR Bow Shock Source at the Galactic Center

Star C

With a K -mag of 12.3 (RAoff = −9.59, Decoff = −15.33) it is classified as a early-type O

supergiant (Star Bu09#184 in Buchholz et al., 2009). The star has a Ks magnitude of

12.79±0.14 (Star Sc09#4728 in Schödel et al., 2009) due to an improved extinction value

used in that work. The reported right ascension and declination proper motions are

RApm =−24.5±11.3 km s−1and Decpm =−11.6±14.8 km s−1, respectively (see Fig. 4.6).

Following Lamers and Cassinelli (1999), the stellar wind parameters of O and B galactic

stars can be described by:

log(ṀwvwR0.5
? ) =−1.37+2.07log(L?/106), (4.9)

where Ṁw is in M¯ yr−1, vw in km s−1, R? in R¯ , and L? in L¯. Early-type O supergiants

have typical stellar luminosities of L? = 10(5.8) L¯(Weidner and Vink, 2010; Bouret et al.,

2012) and typical stellar radii ∼ 25 R¯ (from Allen’s Astrophysical Quantities). Using these

typical values, one gets Ṁwvw ' 3.29×10−3 M¯ yr−1 km s−1.

This star is located further away from the X24, hence I choose a range for R◦ (stand-off

distance) between 0.4′′ to 1.6′′, similar to star B. The resulting relative velocity, according

to Eq. (4.8), is vrel = 365 – 1339 km s−1. At a stand-off distance ∼ 1.2′′, the relative velocity

is about 476 km s−1.

Star D (Bu09#184), as evident from Fig. 4.6, seems to be moving away from the Center,

almost to the west of the feature X24. However, the measured velocities are small and the

source can be considered stationary.

Nature of the External Wind

Considering the above three cases, star B has the highest proper motion velocities (∼
220 km s−1, to the north-east), but it gives a low relative velocity. Star C, on the other

hand, yields a high relative velocity. Assuming that the stellar counterpart of X24 has the

same proper motion as measured in radio band Zhao et al. (2009) and considering that

they report a proper motion south-westward from Sgr A*, the external wind velocity ranges

(considering the different classes of stellar counterpart) from ∼ 250 to 1600 km s−1. For the

more likely scenario of an early-type O supergiant counterpart the plausible estimate for

the external wind speed ranges ∼ 500–1000 km s−1.

In Fig. 4.9 I compare the position of our N -band bow-shock candidate with other

sources of interest in the field. Mužić et al. (2007) reported two bow shock features X3

and X7 (marked on Fig. 4.9 and zoomed on the upper-right side of the figure) that were

detected in their L′-band (3.8 µm) mosaics. The two sources are located within few arc-

seconds from Sgr A* to its south-west, in the same direction as X24. They were later an-

alyzed in detail in Mužić et al. (2010) taking into account their observed morphologies at
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3.8 µm, proper motions and types of their stellar counterparts detected at 2.2 µm. Both

sources can be explained using a stellar bow shock model caused by a partially-collimated

outflow coming from the direction of Sgr A*, at a distance of 0.8′′ for X7. Another ob-

servational evidence supporting the same outflow/jet direction as Mužić et al. (2010) is

reported by Yusef-Zadeh et al. (2012a) in the radio regime. They use radio continuum im-

ages at 8.4 GHz and detect a faint continuous linear structure coinciding with weak radio

blobs along an angle of ∼ 60◦ from the galactic plane, indicated on Fig. 4.9 by a dotted line.

From the theoretical point of view, Zamaninasab et al. (2011) use a ray-tracing GR code

to analyze the NIR polarized lightcurves from the black hole associated with Sgr A*. They

find the orientation of the Sgr A* system to be θ = 50◦+30◦
−20◦ , which I indicate on Fig. 4.9 by a

solid line.

Table 4.1: List of known bright bow-shock sources in the Galactic Center with their positions
in arcsec offset from Sgr A* and where they are analyzed in the literature. The positions have
been reported from the latest publication.

Bow-shock ∆α ∆δ studied
source (arcsec) (arcsec) in

IRS 1W 5.26′′ 0.61′′ Tanner et al. (2005); Buchholz et al. (2011)
Sanchez-Bermudez et al. (2014)

IRS 5 8.62′′ 9.83′′ Tanner et al. (2005); Sanchez-Bermudez et al. (2014)

IRS 8 1.11′′ 29.09′′ Tanner et al. (2005); Geballe et al. (2006)
Rauch et al. (2013)

IRS 10W 6.50′′ 5.15′′ Tanner et al. (2005); Sanchez-Bermudez et al. (2014)

IRS 21 2.35′′ −2.69′′ Tanner et al. (2005); Buchholz et al. (2011)
Sanchez-Bermudez et al. (2014)

unknown 3.4′′ 2.9′′ Clénet et al. (2004)

X3 −2.5′′ −2.3′′ Mužić et al. (2010)

X7 −0.5′′ −0.5′′ Mužić et al. (2010)

X24 −9.18′′ −14.68′′ this work

Most bow shocks in the Center are found in the mini-spiral northern arm where they
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interact mainly with the ionized gas there. Table 4.1 lists all the known bow shocks in

the GC. The location of our potential bow shock at a distance of ∼ 17′′ (0.68 parsec)

from Sgr A* makes it instead experience the combined ram pressure of the stellar winds

of about two dozen GC WR-stars. The combined isotropic wind of all these stars is es-

timated to be of vw = 1000 km s−1and mass-loss rate ∼ 3 × 10−3 M¯ yr−1(Fryer et al.,

2007). I follow the same approach as Mužić et al. (2010) in their Sect. 7.3 to estimate the

terminal velocity of the wind at 17′′. I use their values for the wind velocity and mass-

loss rate (Ṁw = 10−3 M¯ yr−1and vw = 750 km s−1) in the equation nHv2
s ≈ 1.7× 109 ×

(d [′′])−2 cm−3 km2 s−2. With nH = 26 cm−3, the resulting velocity is vs = 475 km s−1at a

distance d = 17′′. This matches the lower-limit values I get for the external wind.

Crocker et al. (2011) estimate the total kinetic power of such massive stars winds at

the Center to be 1.3 × 1039 erg yr−1. They assume a wind speed of 700 km s−1and a

∆Ṁw ' 0.01 M¯ yr−1considering that about half of the Center’s massive stars are located

outside the three stellar clusters, the nuclear cluster, the Quintuplet and Arches clusters,

as pointed out by Wang et al. (2010) using Pa α emission.

While our source, X24, is located at a distance far enough from the Center to experience

the combined wind of all GC stars, X3 and X7 of Mužić et al. (2010) are much closer, at ∼ 5′′

and 1′′ respectively. Their positions lie within the outward-bound wind component of the

accreting matter that never reaches the SMBH (Shcherbakov and Baganoff, 2010; Eckart

et al., 2014). The rms of the stellar wind at ∼ 17′′, the distance of our source to Sgr A*, is

lower and of the order of few hundred km s−1(Fig. 3 in Shcherbakov and Baganoff, 2010).

4.3 Summary and Conclusion

Li, Ostriker, and Sunyaev (2013a) find that in the case of a low inflow rate of the accreting

matter into a SMBH, viscous forces can drive an equatorial outflow that propagates out

beyond the Bondi radius (1.5′′ for Sgr A*). Such an outflow has been detected in NGC 5929

(Riffel et al., 2014). Taking the equatorial outflows concept and in the light of the recent

claim of detecting a parsec-scale jet from Sgr A* by (Li et al., 2013b, see note in Sect. 4.1),

our feature, along with X3 and X7, interestingly lie in a direction perpendicular to that

jet. Morris et al. (2014) discuss several filaments detected in the radio with the newly im-

proved Very Large Array2 (VLA) within few parsec from the SMBH roughly to its south and

north, they are denoted as the Southern and Northern Curls. They are believed to be or-

dered magnetic field structures illuminated along its length by synchrotron emission. The

line connecting the tips of both curls hint toward a collimated outflow of plasma from the

position of Sgr A*.

Several observational arguments support the presence of an outflow originating from

the inner portions of the GC (Eckart et al., 1992; Mužić et al., 2007, 2010; Su et al., 2010;

2http://www.vla.nrao.edu

http://www.vla.nrao.edu
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Markoff, 2010; Crocker et al., 2011). The alignment of our feature with two previously

found bow-shock sources (marked by X7 and X3 in Fig. 4.9; see Mužić et al., 2010) and the

mini-cavity may imply that all four features are produced by the same mechanism/event.

All of these objects are aligned perpendicular to the plane of young mass-losing stars

very close to the central SMBH. We estimate the velocity of a collimated flow that can

cause such features, either from the disk of stars or the position of Sgr A*, to be ∼ 500–

1000 km s−1. It is comparable with the estimates for the asymptotic speed of the nuclear

star cluster’s wind (∼ 700 km s−1). Our value is slightly lower than the speed reported in

Mužić et al. (2010), a possible indicator of mass loading between ∼ 0.06 pc and ∼ 0.68 pc.

Although, by any astronomical standards, Sgr A* is not an active black hole, there is,

however, a growing body of evidence for the presence of an outflow from the material ac-

creting onto the SMBH (Wang et al., 2013), even indications for a jet (Yusef-Zadeh et al.,

2012a; Li et al., 2013b) with the evidence pointing to different position angles for the flow.

The interaction of such an outflow with the ISM and the wind of massive stars would pro-

duce signatures similar to our observations. The lack of a larger number of similar objects

in the field can be explained either by the short life span of massive stars and/or the inter-

mittent nature of the responsible mechanism.

The work presented in this chapter has been partly published in Sabha, Zamaninasab,

Eckart, and Moser (2014) and will be fully presented in an upcoming paper (Sabha et al.

2015b, in prep.).
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5
FINAL REMARKS

In this thesis I first investigate the impact of stellar scattering on the trajectory of high ve-

locity stars orbiting very close to the Galactic supermassive black hole. It is shown that the

so-called resonant relaxation effect caused by the accumulative perturbation of the stars

on each other can cause a significant impact on their orbits. For the case of the star S2,

orbital fitting allows for a dark mass enclosed within its orbit and surrounding the black

hole (∼ 103 M¯to 105 M¯). If the mass contains a significant population of 10 M¯black

holes (see e.g. Freitag et al., 2006), then the impact of resonant relaxation would compete

with the known relativistic or Newtonian peribothron shifts. Since this is a plausible sce-

nario, any attempt aiming at measuring such relativistic peribothron shifts would be upset

by the aforementioned degeneracy. While this may be considered bad news for any trial

relying on a single orbit, this degeneracy could be resolved by simultaneous observations

of a larger number of stars. One must note that the effect of resonant relaxation highly

depends on the granularity and radial distribution of the enclosed dark mass around the

black hole. Hence it can be used to probe the number and mass of the perturbers.

The above discussion emphasizes the importance of obtaining a better constraint on

the amount and structure/composition of the dark mass surrounding the Central black

hole. I show that the combined light of the fainter S-cluster members (their number can

be approximated by extrapolating the observed Ks-band luminosity function for the faint

members) can only account for up to one third of the diffuse residual flux density that I

measure after the PSF subtraction. However, with the current angular resolution and sen-

sitivity one can not rule out the possibility of a non-stellar origin of the additional back-

ground light. It may originate from the accretion of matter onto a number of ∼10 M¯black
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Figure 5.1: Same as Fig. 2.9, the average value of S2’s argument of peribothron shift increases with
increasing mass and number of the perturbers as predicted by resonant relaxation effect.

holes. In the future, such uncertainty will only be resolved with higher angular resolution

and more sensitive future observations.

On a related subject, I simulate how frequently a random line-of-sight association of

several faint stars can resemble a false detection, a so-called blend star. In these simu-

lations, I make use of the known radial distribution of stars in the cluster and their mass

function and estimate that such blend stars would dissolve after about 3 years due to their

proper motion. For example, in Sabha et al. (2010) I reported three stars that were either

previously not known, or misidentified with previously known members of the cluster (one

of them is S62, as pointed out in Dodds-Eden et al., 2011). In addition, there are other re-

ports of similar incidents, the case of the star S3 which was identified in the K -band in the

early epochs 1992 (Eckart and Genzel, 1996), 1995 (Ghez et al., 1998) and lost after about 3

years in 1996/7 Ghez et al. (1998); Genzel et al. (2000).

While upcoming 30 m class telescopes (e.g. ELT, TMT, JWST) promise images of the re-

gion with higher angular resolution and greater sensitivity, near future observations taking

advantage of interferometric techniques (e.g. LINC-NIRVANA and GRAVITY experiments)

can provide a significant boost in angular resolution, enough to probe some faint stellar
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Figure 5.2: The bow shock candidate X24 might probe the dark outflow originating from the vicinity
of the supermassive black hole.

objects or resolve potential "blend stars".

Parts of this thesis are dedicated to the analysis of the mid-infrared VISIR observations

of the Galactic Center. The observations presented here are part of a bigger program, ESO

ProgId:085.C-0047, designed to map five GC targets in preparation for future MIRI obser-

vations. Since the Galactic Center is a fairly crowded field, it is essential to plan each ob-

serving run delicately in order to avoid bright sources in the field of view that would satu-

rate the sensitive detectors of MIRI. My results are the first mid-infrared observations with

large FOV and high angular resolution of the region, and can provide critical information

for planning future MIRI JWST observations. In addition to mapping the empty regions,

these observations spot several new compact dusty objects in the nuclear star cluster and

the Quintuplet. A comparison between the two available wavelengths provides some ba-

sic insight on these newly found objects. However, the information extracted from these

two bands provides a still inconclusive picture.

I present a detailed analysis of one of these newly found objects in the last chapter.

This source resembles a bow-shock morphology with its axis aligned with a position angle

of 212◦ east of north. Interestingly, this source could be cross-identified with a curious ob-

ject with similar morphology in radio maps of the same region. This source is also aligned
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with two other bow-shock like objects and the mini-cavity (argued to be a shock front in-

side the mini-spiral region). Such alignment may imply that all four features are produced

by the same mechanism/event, e.g. a collimated outflow. I estimate the velocity of such an

outflow originating from the vicinity of Sgr A* to be ∼500 – 1000 km s−1, which is compa-

rable with both the asymptotic estimates for the nuclear star cluster’s wind (∼ 700 km s−1)

and the mechanical power of a dark flow originating from the supermassive black hole

itself.

A full multi-wavelength investigation of this source (and similar newly found objects)

might shed some light on the recent history of star formation in the very center of our

Galaxy. Similar investigations also have the potential to probe dark outflows in the region.

Although these powerful flows might play a significant role in star formation processes

or even the formation of larger scale galactic structures, they remain extremely difficult

to probe. Future observations and more studies promise a better understanding of these

phenomena.
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nian, B., Yazici, S., Moser, L., García-Marin, M., Valencia-S., M., Borkar, A., Bursa, M.,
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Baganoff, F. K., Morris, M. R., Dovčiak, M., Duschl, W. J., García-Marín, M., Karas, V., König,

S., Krichbaum, T. P., Krips, M., Lu, R.-S., Mauerhan, J., Moultaka, J., Mužić, K., Sabha, N.,
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Zamaninasab, M., Eckart, A., Dovčiak, M., Karas, V., Schödel, R., Witzel, G., Sabha, N.,
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