
Incremental Scheme: A General

Approach For

Electron Correlation Computations of

Large Molecules

Inaugural-Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln
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Abstract

The first part of this work introduces incremental scheme as a general approach for
electron correlation computations of large molecules, especially its latest implementa-
tion: third-order incremental dual-basis set zero buffer (inc3-db-B0) approach. This
approach can combine with CCSD, CCSD(T) and their explicit correlation variants to
obtain accurate correlation energies in a highly efficient way, and is presented in detail
in this work. A program Apts has be developed for a black-box and automatic im-
plementation of these methods. With various strategies, the inc3-db-B0 approach can
reduce the wall time of a calculation of a large molecule by up to 10 times, and the
error in absolute and especially relative energies can be less than 1 kcal mol−1, making
it a reliable method for the treatment of energetically nearly degenerate isomers of large
molecules and other kinds of chemical species. A series of applications of the inc3-db-B0
approach in many real chemical problems are then described, including: benchmark set
validation; energies of isomers of water clusters; the rotational barrier of biphenyl; hy-
dration of lanthanide trivalent ions; the relative stability of isomers of double fullerene
adducts; singlet-triplet gap of biphenylcarbene, and vertical detachment energy of green
fluorescent protein chromophore. These problems involve both inorganic and organ-
ic chemistry, closed-shell and open-shell molecules. The inc3-db-B0 approach exhibits
excellent performance in various kinds of chemical problems, confirming it a promis-
ing method for general chemical problems. Finally, the potential direction of further
extension of incremental scheme is discussed.

The second part of this work introduces the idea of labile capping bond phenomenon.
For a wide range of trivalent lanthanide ion coordination complexes of tricapped trigonal
prism or monocapped square antiprism configurations, the bonds between the central
lanthanide ions and the capping ligands are found to violate Badger’s rule: they can
get weaker as they get shorter. We demonstrate that this observation originates from
the screening and repulsion effect of the prism ligands. Both effects enhance as the
electric field of the central ion or the softness of the prism ligands increases. Thus for
heavier lanthanides despite that the capping bond could be shorter, it is more efficient
to be weakened by the prism ligands, being inherently labile. This concept of “labile
capping bonds” has been successfully used to interpret many experiments, especially
we have built an elegant model to solve a problem in the water exchange kinetics of
lanthanide ions that has puzzled investigators for a long time: why the exchange rate
reaches a maximum for the middle region, but is low at the beginning and end of the
lanthanide series. We also use it to interpret why the twistted square antiprism isomer
of some lanthanide complexes exhibits much higher water exchange rate than the square
antiprism isomer does. We believe that the labile capping bond phenomenon can offer
new insights in understanding chemical problems.
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Kurzzusammenfassung

Der erste Teil dieser Arbeit stellt die Inkrementenmethode als eine Methode für Elek-
tronenkorrelationsrechnungen an groen Molekülen vor, besonders im Hinblick auf den
‘third-order incremental dual-basis set zero buffer ’, im Folgenden inc3-db-B0-Ansatz
genannt. Dieser ermöglicht die effiziente Berechnung von Korrelationsenergien mit Hil-
fe von CCSD, CCSD(T) und deren Verbindung mit expliziten Korrelationsmethoden.
Das Programm APTS wurde für die automatische Implementierung dieser Methoden
entwickelt. Durch verschiedene Strategien kann mit Hilfe des inc3-db-B0-Ansatzes die
Rechenzeit bei großen Moleklen stark reduziert werden. Der Fehler in absoluten - und
besonders relativen Energien - beträgt dabei weniger als 1 kcal mol−1, so dass dies auch
für die Behandlung von energetisch, oft annähernd großer Moleküle, und die Behand-
lung von anderen Arten von chemischen Problemen eine zuverlässige Methode darstellt.
Die Anwendung der inc3-db-B0-Methode bietet verschiedene Anwendungsmöglichkeiten:
Benchmark-Berechnungen, Energie von Isomeren verschiedener Wassercluster, Rota-
tionsbarriere von Biphenyl, der Hydratation dreiwertiger Lanthanoidionen, der rela-
tiven Stabilität von der Fullerene-Addukt-Isomeren, dem Singlet-Triplett Abstand von
Biphenyl-Carbon und vertikale Ablöseenergie von Chromophor des grün fluoreszierenden
Proteins. Diese Probleme betreffen anorganische und organische Chemie, geschlossen-
schalige und offenschalige Moleküle. Der inc3-db-B0-Ansatz ermglicht also die Beschrei-
bung verschiedener Arten von chemischen Problemen. Abschlieend werden weitere En-
twicklungsmöglichkeiten der Inkrementenmethode vorgestellt.

Der zweite Teil der Arbeit stellt die das ‘labile capping bond ’-Phänomen vor. Für ein
breites Spektrum von trivalenten Lathanoidionenkoordinationskomplexe von dreifach-
überkappter prismatischer oder einfach überkappter antiprismatischer Struktur gehorchen
die Bindungen zwischen Zentralion und Kappenligand nicht der Regel von Badger: Ob-
wohl sie kürzer werden, werden sie schwächer. Diese Beobachtung wird im Hinblick auf
Abschirmungs und Abstoßungseffekte diskutiert. Des weiteren wird dies auf die Härte
der Prismaliganden, sowie das elektrische Feld des Zentralions zurückgeführt. Im Falle
der späteren Lanthanoide kann die Bindung zum Kappenligand also geschwächt sein,
obwohl dies aufgrund der Bindungslänge nicht zu erwarten wäre. Dieses ‘labile cap-
ping bond’-Konzept wird erfolgreich zur Erklärung vieler Experimente verwendet, wie
etwa der Austauschrate von Wasser im Bereich der Kinetik von Lanthanoidionen: Die
Austauschrate erreicht ein Maximum im Bereich der mittelschweren Lanthanoide und
nimmt zu der schwereren Lanthanoiden deutlich ab. Dieses Phänomen wird auf Hin-
blick des ‘labile capping bond’-Konzepts untersucht und knnte zu neuen Erkenntnissen
im Bereich bestimmter chemischer Problem beitragen.
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Chapter 1

Basic Principles of Quantum
Chemistry

1.1 Introduction

1.1.1 Molecular Hamiltonian

Quantum chemistry has become a routine tool for scientists to understand a chem-
ical problem in a microscopic way. It applies quantum mechanics as well as other
modern physics to chemistry to study the movement of electrons in atoms, molecules,
clusters, surface, proteins, periodic systems and bulk matters. The starting point to
explore the movement of electrons is the molecular Hamiltonian. In this work the
Born–Oppenheimer approximation[1] (BO) (fixed nuclei) is assumed, and the nuclei and
electrons will be treated as point charges. Thus, in the nonrelativistic case, the Hamil-
tonian of a molecule can be written as (in atomic unit):

Ĥ = T̂E + V̂NE + V̂EE + V̂NN

≡
N∑
i=1

(
−1

2
∇2
i

)
+

N∑
i=1

K∑
A=1

(
−ZA
riA

)
+

N∑
i,j=1
i<j

1

rij
+

K∑
A,B=1
A<B

ZAZB
rAB

(1.1.1)

In (1.1.1), N and K stand for the number of electrons and nuclei, respectively; ZA is
the nuclear charge of the nucleus A; the four terms represent the electron kinetic en-
ergy, electron-nucleus attraction energy, electron-electron repulsion energy and nucleus-
nucleus repulsion energy, respectively. For V̂NE, we can extract its form for a single
electron vext (r), which is often called external potential. This term is determined by the
molecular framework.

Since V̂EE is a two-electron operator, the molecular quantum mechanics problem
becomes a many-body problem, solution of whose equation-of-motion (EOM) is quite
nontrivial and becomes the central topic of quantum chemistry.

When a molecule contains heavy atoms (heavier than Fe or ZA > 26), the relativistic
effects cannot be neglected. In this case one can use Dirac–Coulomb Hamiltonian:

Ĥ =
N∑
i=1

cα · p̂i + βmc2 + V̂NE + V̂EE + V̂NN (1.1.2)

α =

(
0 σ
σ 0

)
(1.1.3)

β =

(
I2 0
0 −I2

)
(1.1.4)

1
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In (1.1.2), c and m are the speed of light and the rest mass of electron, respectively. The
three components of σ are Pauli matrices. Note that we do not consider higher-order
effects like Breit interation in VEE yet in (1.1.2).

However this Hamiltonian is quite difficult to work with. Since relativistic effects are
most significant in the atomic core region, which is usually chemically inert and thus
transferable, one can replace the core part of an atom by an effective one-electron po-
tential and only treat the valence electrons explicitly. This is the effective core potential
(ECP) approach[2]. It cannot only save the computational cost, but can also take the
relativistic and quantum electrodynamic effects, etc. into account in the framework of
nonrelativistic theory. In this case the Hamiltonian becomes:

Ĥ = T̂E + V̂EE + V̂CV + V̂CC (1.1.5)

where

V̂CV =

NV∑
i=1

K∑
A=1

(
−QA
riA

+ ∆VCV,A (ri)

)
(1.1.6)

V̂CC =

K∑
A,B=1
A<B

QAQB
rAB

(1.1.7)

From (1.1.5) to (1.1.7), NV is the number of valence electrons and QA is the core charge
of the nucleus A. ∆VCV,A (ri) is the pseudopotential (PP) that constitutes the ECP of
nucleus A, with the form[3]:

∆V̂CV (r) =
∑
l,m

Vl (r) |lm〉 〈lm| (1.1.8)

In (1.1.8) |lm〉 is the spherical harmonics function Ylm (Ω); Vl (r) is the radial part of
the PP, which is often written as a linear combination of Gaussian functions multiplied
with powers of r[4]:

Vl (r) =
∑
k

Alkr
nlk exp

(
−αlkr2

)
(1.1.9)

In this work we will only consider the Hamiltonian (1.1.1) and (1.1.5).

1.1.2 Wave Function

In quantum mechanics, the motion of an electron is described by its wave function
(WFN) ψ (x, t), where x is a collective variable of spatial and spin coordinates x ≡ (r, s)
and t is time. For stationary state considered in this work ψ is independent of time. The
Copenhagen school interprets the WFN as probability amplitude, that is, the probability
density of finding the particle at x at time t is |ψ (x, t)|2.

An exact molecular electron WFN must satisfy the following conditions:

• ψ is a function of N electrons, or N -representable.

• For bound states, ψ has to be square-integrable (belongs to Hilbert space L2
(
R3N

)
),

thus normalizable:
〈ψ| ψ〉 = 1 (1.1.10)

• Since electrons are Fermions, ψ has to be antisymmetric with respect to the per-
mutation of two electronic indices:

Pijψ = −ψ (1.1.11)
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• ψ has to satisfy the spin symmetry, being an eigenfunction of the total and pro-
jected spin operators:

Ŝ2ψ = S(S + 1)ψ (1.1.12)

Ŝzψ = Mψ (1.1.13)

• ψ has to also satisfy the spatial symmetry, being a basis of one irreducible repre-
sentation of the point group to which the molecule belongs.

• Due to the existence of 1/r-like operators in the molecular Hamiltonian, it has to
satisfy specific cusp conditions, which will be discussed in Subsection 1.3.2.

• At long range the electron density related to ψ

n (r) ≡ N
∫

dsdx2 · · · dxN |ψ (rs,x2, · · · ,xN )|2 (1.1.14)

decays as[5]:

n (r)→ exp
(
−
√

8Ir
)

(r →∞) (1.1.15)

where I is the first ionization potential of the molecule.

Of course this list is far from complete, but a good approximation of the exact WFN
should try to satisfy the above conditions as close as possible.

In practice, an approximate WFN is constructed from a set of simple analytical
functions, like plane waves or Gaussian functions, which is usually termed as basis set.

1.1.3 Solving the Schrödinger Equation

To obtain the eigenfuntion and eigenvalue of the Hamiltonian, we should solve the time-
independent Schrödinger equation (SE)[6]:

Ĥψ = Eψ (1.1.16)

Except for a few cases, the SE is impossible to be solved analytically. At this stage
the variation principle[7] can be established: the solution of SE is equivalent to the
stationary of the energy functional

E [φ] =
〈φ| Ĥ |φ〉
〈φ| φ〉

(1.1.17)

Proof. Let φ be an exact WFN that satisfies (1.1.16). Assume a variation φ̃ = φ + δφ
then

E [φ+ δφ] =
〈φ| Ĥ |φ〉+ 〈δφ| Ĥ |φ〉+ 〈φ| Ĥ |δφ〉+ 〈δφ| Ĥ |δφ〉

〈φ| φ〉+ 〈δφ| φ〉+ 〈φ| δφ〉+ 〈δφ| δφ〉
= E + 〈δφ| Ĥ − E |φ〉+ 〈φ| Ĥ − E |δφ〉+O

(
δφ2
)

= E +O
(
δφ2
) (1.1.18)

The energy functional proves to be stationary since it does not change at the first-order.
Conversely, if the energy functional is stationary at φ, then according to (1.1.18),

for variations φ̃ = φ+ δφ and φ̃ = φ+ iδφ we have

〈δφ| Ĥ − E [φ] |φ〉+ 〈φ| Ĥ − E [φ] |δφ〉 = 0 (1.1.19)

〈δφ| Ĥ − E [φ] |φ〉 − 〈φ| Ĥ − E [φ] |δφ〉 = 0 (1.1.20)
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Adding (1.1.19) to (1.1.20) we obtain:

〈δφ| Ĥ − E [φ] |φ〉 = 0 (1.1.21)

Since δφ is arbitrary we have (1.1.16). Therefore, the stationary points of the energy
functional (1.1.17) and the solutions of SE (1.1.16) have a one-to-one mapping.

In fact, for the exact ground state WFN ψ and a trial WFN φ, we always have

E[ψ] ≤ E[φ] (1.1.22)

In practice the variation principle is always used by constructing a trial WFN with
some parameterization ansätze and minimizing the energy functional (1.1.17). One
property of parameterization ansatz is the size-extensivity [8]: for a system containing
two noninteracting subsystems A and B, the Hamiltonian being

ĤAB = ĤA + ĤB (1.1.23)

then the energy of the total system is additive and the WFN is multiplicative:

EAB = EA + EB (1.1.24)

ψAB = ψA ⊗ ψB (1.1.25)

A related concept is size-consistency [9]: for a system containing two subsystems A
and B, when A and B are very far apart, the energy is additive:

EAB = EA + EB (1.1.26)

The size-extensivity and consistency ensure that the accuracy of energies of large
and small systems can be consistent, otherwise the error for the larger system tends to
be larger, leading to a relative energy of bad quality.

1.2 Single-particle Approximation

1.2.1 Hartree–Fock Method

The first step of approximating an exact N-electron molecular WFN is assuming it be
the product of N one-electron WFNs:

ψHartree

(
xN
)

=

N∏
i=1

φi (xi) (1.2.1)

This is called Hartree product [10, 11]. The φi describes the motion of electron i thus
it is called molecular orbital (MO). To make it satisfy the antisymmetry requirement
(1.1.11), an antisymmtrizer A can be applied, leading to a Slater determinant (SD)[12]:

ψSD

(
xN
)

= |φ1 · · ·φN 〉 ≡
1√
N !

∣∣∣∣∣∣∣
φ1 (x1) · · · φ1 (xN )

...
. . .

...
φN (x1) · · · φN (xN )

∣∣∣∣∣∣∣ (1.2.2)

A single SD can be used as the trial WFN, which is the Hartree–Fock (HF) WFN[13]:

|HF〉 =
N∏
i=1

a†i |vac〉 (1.2.3)
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Now we can optimize the energy functional (1.1.17) with respect to the MOs. To
ensure |HF〉 is normalized, we can restrict that the MOs are orthonormal:

〈φi| φj〉 = δij (1.2.4)

In this case we have to optimize the Lagrangian

L [{φ}] = 〈HF| Ĥ |HF〉 −
N∑

i,j=1

εij (〈φi| φj〉 − δij) (1.2.5)

rather than the energy functional directly. Using the Hamiltonian (1.1.1)

EHF ≡ 〈HF| Ĥ |HF〉 =
N∑
i=1

〈φi| ĥ |φi〉+
1

2

N∑
i,j=1

(〈φiφj | φiφj〉 − 〈φiφj | φjφi〉) + ENN

(1.2.6)
where ENN is the nucleus-nucleus repulsion energy. Now we can compute the variation
of (1.2.5):

δL [{φ}] =

N∑
i=1

〈δφi| ĥ |φi〉+

N∑
i,j=1

(〈δφiφj | φiφj〉 − 〈δφiφj | φjφi〉)

−
N∑

i,j=1

εij 〈δφi| φj〉+ c.c.

=
N∑
i=1

∫
dx1δφ

∗
i (x1)

ĥφi +
N∑
j=1

(∫
dx2φ

∗
j (x2)

1

r12
φj (x2)

)
φi (x1)

−
N∑
j=1

(∫
dx2φ

∗
j (x2)

1

r12
φi (x2)

)
φj (x1)−

N∑
j=1

εijφj (x1)

+ c.c.

≡
N∑
i=1

∫
dx1δφ

∗
i (x1)

(ĥ (1) + Ĵ (1)− K̂ (1)
)
φi (x1)−

N∑
j=1

εijφj (x1)


+ c.c.

≡
N∑
i=1

∫
dx1δφ

∗
i (x1)

f̂ (1)φi (x1)−
N∑
j=1

εijφj (x1)

+ c.c.

(1.2.7)

In (1.2.7), Ĵ and K̂ are the Coulomb and exchange operator, respectively. f̂ is called
Fock operator, which is the effective one-electron operator that determines the optimized
MOs. Note that Lagrangian (1.2.5) has to be real thus by L = L∗ we can prove that
ε∗ij = εji, i.e. ε is an Hermite matrix, being diagonalizable. Therefore we can find a
unitary transformation U of the MOs {φ}

φ̃i =

N∑
j=1

φjUji (1.2.8)

φi =

N∑
j=1

φ̃jU
∗
ij (1.2.9)
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that diagonalizes ε
N∑

k,l=1

U∗kiεklUlj = δijεi (1.2.10)

Substitute (1.2.9) into (1.2.7), and use (1.2.10), let δL = 0. Note that {δφ} is
arbitrary, we obtain the canonical Hartree–Fock equation (tildes removed):

f̂φi = εiφi (i = 1, · · · , N) (1.2.11)

Since f̂ depends on {φ}, (1.2.11) has to be solved iteratively. Thus it is also called
self-consistent field (SCF) method. Except for atoms and diatomic molecules, (1.2.11)
usually cannot be solved numerically. To transform it into an algebraic problem, given
a basis set {χ} is used (also known as atomic orbitals (AOs)) that expands MOs:

φp =
∑
µ

χµCµp (1.2.12)

Note that we use subindex p instead of i, implying that φp is not necessarily an occupied
orbital. We will always use i, j, k, l to stand for occupied orbitals, a, b, c, d for
unoccupied (virtual) orbitals and p, q, r, s for arbitrary orbitals.

By substituting (1.2.12) into (1.2.11) and taking the inner product with χ∗, we obtain
the Roothaan–Hall equation[14, 15]:

FC = SCε (1.2.13)

Fµν = 〈µ| ĥ |ν〉+
∑
ρτ

Dρτ (〈µρ| ντ〉 − 〈µρ| τν〉) (1.2.14)

Dµν =
∑
i

C∗µiCνi (1.2.15)

Sµν = 〈µ| ν〉 (1.2.16)

Here D is the density matrix in AO basis. This equation is much easier to solve. The
obtained orbitals from (1.2.14) are called canonical MOs (CMOs).

1.2.2 Molecular Orbitals

The Hartree–Fock method is not only the cornerstone of advanced ab initio methods,
but also has its own value. For the Hilbert space spanned by a basis set {χ}, the MO
basis can be transformed into another one by a unitary transformation (preserving their
inner products), and the WFN constituted by these two bases can be related as:∣∣∣ψ̃〉 = exp (−κ̂) |ψ〉 ≡ exp

(
−
∑
pq

κpqa
†
paq

)
|ψ〉 (1.2.17)

Now we look at the HF energy with transformed orbitals:

E (κ) = 〈HF| exp (κ̂) Ĥ exp (−κ̂) |HF〉

= EHF + 〈HF|
[
κ̂, Ĥ

]
|HF〉+ · · ·

= EHF +
∑
pq

〈HF|
[
a†paq, Ĥ

]
|HF〉κpq + · · ·

(1.2.18)

If the energy E is already stationary, we will have

0 =
∂E (κ)

κpq

∣∣∣∣
κ=0

= 〈HF|
[
a†paq, Ĥ

]
|HF〉 (1.2.19)
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For nonredundant rotations, e.g. pq = ai, we have

〈HF|
[
a†aai, Ĥ

]
|HF〉 =

〈
a
i

∣∣∣∣ Ĥ |HF〉 = fai = 0 (1.2.20)

which is known as Brillouin theorem[13].
For redundant rotations, i.e. p, q are both occupied or unoccupied orbitals, ∂E (κ) /∂κpq

and hence higher-order terms involving these κpq will always be zero due to the Pauli’s
principle, indicating that orbital rotations within occupied or virtual space do not change
the WFN and its energy. Thus it is possible to transform the occupied MOs obtained
from (1.2.14) into a chemically more meaningful set without changing the WFN and
energy.

Since CMOs are orthogonal and symmetry-adapted to the molecular point group,
they are often very delocalized, thus one can rotate them to obtain localized MOs (LMO)
with specific criteria. Two typical choices are:

• Boys criterion[16], which aims at minimizing the spatial extent:

LBoys [{φ}] = max :

occ∑
i

〈φiφi |(r1 − r2)|φiφi〉 (1.2.21)

• Edmiston–Ruedenberg criterion (ER)[17], which aims at maximizing the self-repulsion
energy:

LER [{φ}] = max :

occ∑
i

〈φiφi | φiφi〉 (1.2.22)

One advantage of ER over Boys criterion is that the former can preserve the σ-π
symmetry of the MOs[18], but both have a very good localization effect. An example of
CMO and LMO can be seen in Figure 1.2.1.

CMO Boys ER

Figure 1.2.1: A CMO and Boys-, ER-localized orbital of acetaldehyde.

Localization is usually performed in an iterative way[17]. In each iteration, every
two orbitals are rotated with an optimized angle that satisfies (1.2.21) or (1.2.22):(

φ̃i
φ̃j

)
=

(
cos θ sin θ
− sin θ cos θ

)(
φi
φj

)
(1.2.23)

tan 4θ = −Aij
Bij

(1.2.24)

Aij = 〈φiφi| Γ̂ |φiφj〉 − 〈φjφj | Γ̂ |φiφj〉 (1.2.25)

Bij = 〈φiφj | Γ̂ |φiφj〉 −
1

4

(
〈φiφi| Γ̂ |φiφi〉+ 〈φjφj | Γ̂ |φjφj〉 − 2 〈φiφi| Γ̂ |φjφj〉

)
(1.2.26)
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where Γ̂ is the operator related to (1.2.21) or (1.2.22). The iteration continues until
convergence is reached.

This method is effective for occupied orbitals of most molecules. For virtual or-
bitals or very delocalized systems (like graphene), this method can be very difficult to
converge[19]. In this case one can explicitly optimize the orbital rotation parameters in
(1.2.17) to force convergence[20].

1.3 Electron Correlation

1.3.1 Fermi and Coulomb Correlation

With a molecular WFN, we can define the one-electron and pair probability density :

P (r) ≡
∫

ds1dx2 · · · dxN |ψ (rs1,x2, · · · ,xN )|2 (1.3.1)

P
(
r, r′

)
≡
∫

ds1ds2dx3 · · · dxN
∣∣ψ (rs1, r′s2,x3, · · · ,xN

)∣∣2 (1.3.2)

as well as a conditional probability density :

P
(
r|r′
)
≡ P (r, r′)

P (r′)
(1.3.3)

For two electrons 1 and 2, their motion is said to be uncorrelated if

P (r1|r2) = P (r1) (1.3.4)

Take the 3Σ+
u state of a two-electron molecule H2 as an example. Assuming it

contains only two orbitals: σg and σu, we can see that for a Hartree product WFN
(1.2.1):

P (r1|r2) = P (r1) = |σg (r1)|2 (1.3.5)

the two electrons are uncorrelated.
For a SD WFN |σgσu〉, we have

P (r1) =
1

2

(
|σg (r1)|2 + |σu (r1)|2

)
(1.3.6)

P (r1, r2) =
1

2

(
|σg (r1)|2 |σu (r2)|2 + |σu (r1)|2 |σg (r2)|2 − σ∗u (r1)σg (r1)σ

∗
g (r2)σu (r2)

)
(1.3.7)

Therefore there is electron correlation generated from the antisymmetry requirement of
SD, known as Fermi correlation. In this case, the Fermi correlation lowers the probability
density of finding an electron at r1 and an electron at r2, thus it is called Fermi hole.
For the 1Σ+

u state, the Fermi correlation increases this probability, thus it is a Fermi
heap.

Due to the two-electron Coulomb interactions, a single SD WFN (1.2.2) is far from
being accurate although it is a good zero-order approximation. An exact WFN should
contain an infinite number of SDs, written as

|ψ〉 = |HF〉+ |excited SDs〉 (1.3.8)

The extra terms also introduce electron correlation, known as Coulomb correlation.
Recovering Coulomb correlation is critical to get a chemically useful WFN and energy,
however it is also quite difficult.
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1.3.2 Cusp Conditions

The 1/r-like operators in Hamiltonians (1.1.1), (1.1.2) and (1.1.5) are singular at r = 0.
To keep the eigenvalue of Ĥ or the energy finite, the kinetic term, i.e. ∇2ψ-like term,
should also be singular. This implies at r = 0 the ∇ψ might be discontinuous. In fact,
Kato stated the famous cusp condition[21] in 1957 that for a nonrelativistic Hamiltonian
(1.1.1), the first-order derivative of an exact eigenfunction must be discontinuous at the
singular points of the Coulomb operators.

This can be understood by analyzing the behavior of SE at the neighborhood of a
point where two particles of charge q1 and q2 meet, their reduced mass being µ. In this
region we can expand the WFN:

ψ (r) =
∑
lm

∑
k=0

rl+kfklmYlm (Ω) (1.3.9)

and only the Hamiltonian involving the two particles becomes significant. Then:

Eψ (r) =

(
− 1

2µ
∇2 +

q1q2
r

)
ψ (r)

=

(
− 1

2µ

1

r

∂2

∂r2
r +

1

2µ

L̂2

r2
+
q1q2
r

)∑
lm

∑
k=0

rl+kfklmYlm (Ω)

(1.3.10)

After rearrangement and taking an inner product with Y ∗lm (Ω):(
l + 1

µ
f1lm − q1q2f0lm

)
rl−1

+
∑
k=0

(
Efklm − q1q2fk+1

lm +
1

2µ
(k + 2) (k + 2l + 3) fk+2

lm

)
rl+k = 0

(1.3.11)

Since r is arbitrary, we have

f1lm =
µq1q2
l + 1

f0lm (1.3.12)

Also note that

fklm =
1

(l + k)!

˜(∂l+kψ
∂rl+k

)lm∣∣∣∣∣∣
r=0

(1.3.13)

where (̃ )
lm

means projection of angular coordinates onto |lm〉.
For two electrons, µ = 1/2 and q1 = q2 = −1. If the WFN is totally symmetric, then

(1.3.12) holds for l = 0:
∂ψ

∂r

∣∣∣∣
r=0

=
1

2
ψ (r = 0) (1.3.14)

or

ψ (r) =

(
1 +

1

2
r

)
ψ (r = 0) +O

(
r2
)

(1.3.15)

(1.3.14) or (1.3.15) are often called s-wave coalescence condition or simply electron cusp
condition. For triplet symmetry, l = 1, we have p-wave coalescence condition:

ψ (r) =

(
1 +

1

4
r

)
r · ∇ψ (r = 0) +O

(
r3
)

(1.3.16)

For WFN of other symmetries or relativistic Hamiltonians, different coalescence
conditions are required[22, 23].

The cusp condition poses a tough requirement on the basis set by which a WFN is
constructed. Since an exact WFN contains odd powers of the inter-electron distance,
basis functions of very high angular momentum and a large number of many-particle
basis functions are required to model this behavior.
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1.3.3 Correlation Energy

According to Löwdin[24], the correlation energy is defined as the difference between the
exact nonrelativistic energy and the HF energy (both computed in a complete basis set
(CBS)):

Ecorr = E − EHF (1.3.17)

In practice, quantum chemistry is often used to compute relative energies, and the
magnitude of correlation energy is often the largest one. For a typical relative electronic
energy of a molecule containing only light elements, the correlation part usually amounts
to 1%–2%. Other parts, like relativistic effect and diagonal BO correction, are less than
0.2%. Thus, a large amount of effort has been invested to efficiently obtain accurate
correlation energies.

1.4 Many-body Approaches

1.4.1 Full Configuration Interaction Expansion

Linear Parameterization Ansatz

The HF WFN (1.2.6), i.e. a single SD (1.2.2), is not an exact solution of the SE
(1.1.16). To approach the exact WFN more many-particle basis functions are needed.
In the solution of Roothaan–Hall equation (1.2.14), we obtain not only occupied orbitals
O but also virtual (unoccupied) orbitals V. The many-particle basis {|µ〉} can then be
constructed systematically by excitation of 1, 2, · · · , N electrons from the HF WFN:∣∣∣∣ ai

〉
≡ a†aai |HF〉 =

{
a†aai

}
|HF〉 (1.4.1)

∣∣∣∣ abij
〉
≡ a†aa

†
bajai |HF〉 =

{
a†aaia

†
baj

}
|HF〉 (1.4.2)

where {} denotes the normal order relative to the Fermi vacuum, i.e. HF WFN. The
exact WFN can be approximated by the linear combination of all the SDs:

|FCI〉 = |HF〉+
∑
ai

cai

{
a†aai

}
|HF〉+

1

4

∑
abij

cabij

{
a†aaia

†
baj

}
|HF〉+ · · ·

≡
(

1 + Ĉ1 + Ĉ2 + · · ·
)
|HF〉

(1.4.3)

This is the full configuration interaction (FCI) WFN, where a linear parameterization
ansatz is implemented. In practice a truncated version of (1.4.3) has to be used. However
a truncated CI WFN suffers from lacking size-extensivity. This can be seen from two
noninteracting systems A and B described by CI doubles (only doublet excitations
are considered, CID), the direct product of |CID〉A and |CID〉B contains quadruple
excitations, which is not taken in account in |CID〉AB.

Determination of parameters in the CI WFN is a seemingly trivial task. Assuming
the WFN is real:

|CI〉 =
∑
µ

cµ |µ〉 (1.4.4)

E (c) =
〈CI| Ĥ |CI〉
〈CI |CI〉

=

∑
µν cµcνHµν∑

µ c
2
µ

(1.4.5)

gµ (c) ≡ ∂E

∂cµ
g =

2 (H− E (c) I) c

cTc
(1.4.6)
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Gµν (c) ≡ ∂2E

∂cµ∂cν
G =

2
(
H− E (c) I− g (c) cT − cg (c)T

)
cTc

(1.4.7)

Using g = 0, we can obtain the scalar equation:

Hc = Ec (1.4.8)

Davidson Iteration

Equation (1.4.8) can be solved by, say Jacobi–Givens iteration. However, for large
systems, it is sometimes even not possible to store the whole H in memory, thus one
is always trying to avoid the explicit construction of H. If the solving procedure only
involves Hc then the avoidance is possible. An additional advantage is that we need not
to calculate all the eigenvalues but only some interested ones, like ground and lowest
excited states.

A popular method is the Davidson iteration[25]. We need a reference H0 whose
eigenvector c0 and eigenvalue E0 are easy to compute (usually the diagonal part of H).
Consider the required solution c = c0 + d, and a Taylor expansion of energy (1.4.5) at
c0:

E (c0 + d) = E0 + dTg (c0) +
1

2
dTG (c0)d + · · · (1.4.9)

Truncate (1.4.9) at second-order, and optimized E with d, we obtain

d = −G (c0)
−1 g (c0)

= −
(
H− E0I− g (c0) c

T
0 − c0g (c0)

T
)−1

(H− E0I) c0
(1.4.10)

If c0 is a good approximation, then g (c0) ≈ 0, and we replace H in the inverse by H0,
we obtain the final iteration formula:

d = − (H0 − E0I)
−1 (H− E0I) c0 (1.4.11)

This is much more efficient then the diagonalization of H (1.4.8). Note that in (1.4.11),
the convergence slows down if H0 and H are close to each other. In fact:

d→ −c0 as H0 → H (1.4.12)

Convergence to the Exact Solution of the Schrödinger Equation

Finally we want to give some results from functional analysis. If the (one-particle) basis
set is complete in the Hilbert space L2

(
R3
)
, then the set of all possible SDs forms

a complete many-particle basis in the Hilbert space L2
(
R3N

)
. Therefore a complete

basis set can in principle be used to obtain convergence towards the exact WFN to any
accuracy in the norm

√
〈f |f〉 (i.e., not pointwisely convergent). However, to ensure the

solutions of FCI (1.4.8) converge to the exact WFNs, it has been proved[26, 27] that
the basis set has to be complete in the first Sobolev space (the space of functions where
the function and its first-order derivative are square-integrable). This is obviously a
consequence of the kinetic operator T̂e.

1.4.2 Perturbation Theory

Formal Theory

Since HF WFN is an eigenfunction of the effective Hamiltonian

Ĥ0 =

N∑
i=1

f̂i (1.4.13)
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with eigenvalue E
(0)
0 =

∑N
i=1 εi, then it is also possible to improve HF (|HF〉 ≡ |0〉) using

{|µ〉} by perturbation expansion of an flucuation potential :

Ŵ ≡ Ĥ − Ĥ0 (1.4.14)

Here we give a general derivation of perturbation theory[28]. For exact WFN ψ and its
SE, we project it onto the HF WFN:

〈0| Ĥ0 |ψ〉+ 〈0| Ŵ |ψ〉 = E 〈0|ψ〉 (1.4.15)

at this step it is convenient to assume intermediate normalization: 〈0|ψ〉 = 1 so that

∆E = 〈0| Ŵ |ψ〉 (1.4.16)

where ∆E = E − E(0)
0 . This is the energy expression.

To derive the WFN expression, we introduce a projection operator

P̂ = |0〉 〈0| (1.4.17)

Q̂ =
∑
µ

′ |µ〉 〈µ| (1.4.18)

where “′” means that the summation does not include |0〉. Then we the rearrange SE,

and add E
(0)
0 to both sides, and apply Q̂:

Q̂
(
E

(0)
0 − Ĥ0

)
ψ = Q̂

(
E

(0)
0 + Ŵ − E

)
ψ (1.4.19)

Note that Q̂ commutes with Ĥ0 and is idempotent, the left operator can completely
work in Q-space:

Q̂
(
E

(0)
0 − Ĥ0

)
Q̂ψ = Q̂

(
E

(0)
0 + Ŵ − E

)
ψ (1.4.20)

Due to the nature of Q̂, the inverse operator in the Q-space (means ÂB̂ = B̂Â = Q̂)

of Q̂
(
E

(0)
0 − Ĥ0

)
Q̂ exists, which is written as

R̂0 ≡
Q̂

E
(0)
0 − Ĥ0

(1.4.21)

this is the resolvent of Ĥ0. Apply it to (1.4.20):

Q̂ψ = R̂0

(
E

(0)
0 + Ŵ − E

)
ψ (1.4.22)

and using ψ = Q̂ψ + |0〉

ψ = |0〉+ R̂0

(
E

(0)
0 + Ŵ − E

)
ψ (1.4.23)

This expression can be used in a Picard iteration way:

|ψ〉 =

+∞∑
m=0

(
R̂0

(
E

(0)
0 + Ŵ − E

))m
|0〉 (1.4.24)

Using (1.4.16), we have Rayleigh–Schrödinger perturbation theory (RSPT) formulae:

∆E =
∞∑
m=0

〈0| Ŵ
(
R̂0

(
Ŵ −∆E

))m
|0〉 (1.4.25)
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|ψ〉 =
∞∑
m=0

(
R̂0

(
Ŵ −∆E

))m
|0〉 (1.4.26)

For (1.4.25), we again use Picard iteration to get an explicit expression of ∆E.

∆E = 〈0| Ŵ |0〉+ 〈0| Ŵ R̂0Ŵ |0〉+ 〈0| Ŵ R̂0

(
Ŵ − 〈0| Ŵ |0〉

)
R̂0Ŵ |0〉+ · · ·

≡ E(1)
0 + E

(2)
0 + E

(3)
0 + · · ·

(1.4.27)

In fact,

E
(1)
0 = −1

2

∑
ij

〈ij| |ij〉 (1.4.28)

Adding E
(1)
0 to E

(0)
0 one obtains EHF. Define:

V̂ ≡ Ŵ − 〈0| Ŵ |0〉 (1.4.29)

and note that for any constants c, R̂0c |0〉 = 0, so

Ecorr = 〈0| V̂ R̂0V̂ |0〉+ 〈0| V̂ R̂0V̂ R̂0V̂ |0〉+ · · · (1.4.30)

Linked-diagram Theorem

Linked-diagram theorem[28, 29] states that, only terms of linked-diagram can contribute
to the energy and WFN, i.e.

|ψ〉 =

+∞∑
m=0

(
R̂0V̂

)m
|0〉L (1.4.31)

Ecorr =

+∞∑
m=1

〈0| V̂
(
R̂0V̂

)m
|0〉L (1.4.32)

As a trivial example, the second-order energy E
(2)
0 is

E
(2)
0 = 〈0| V̂ R̂0V̂ |0〉

=

=
1

4

∑
abij

〈ij| |ab〉 〈ab| |ij〉
εabij

(1.4.33)

where εabij ≡ εa + εb − εi − εj . When adding it to the HF energy, the obtained one is
called second-order Møller–Plesset (MP2) energy.

A nontrivial example is the fourth-order energy E
(4)
0 :

E
(4)
0 = 〈0| V̂ R̂0V̂ R̂0V̂ R̂0V̂ |0〉 − 〈0| V̂ R̂0R̂0V̂ |0〉 〈0| V̂ R̂0V̂ |0〉 (1.4.34)

The two terms in (1.4.34) are called principal and renormalization terms, respectively.
In fact, the unlinked diagrams in the first term cancel with the renormalization term.
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There are only two unlinked diagrams which are

+

=
1

16

∑
abcd
ijkl

〈ij| |ab〉 〈ab| |ij〉 〈cd| |kl〉 〈kl| |cd〉
εabij ε

abcd
ijkl ε

cd
kl

+
1

16

∑
abcd
ijkl

〈ij| |ab〉 〈ab| |ij〉 〈cd| |kl〉 〈kl| |cd〉
εabij ε

abcd
ijkl ε

ab
ij

=

1

4

∑
abij

〈ij| |ab〉 〈ab| |ij〉(
εabij

)2

1

4

∑
abij

〈ij| |ab〉 〈ab| |ij〉
εabij


= × = 〈0| V̂ R̂0R̂0V̂ |0〉 〈0| V̂ R̂0V̂ |0〉

(1.4.35)

which confirms the linked-diagram theorem.

1.4.3 Coupled-cluster Ansatz

Coupled-cluster Equation

A more advanced parameterization ansatz can be constructed from some physical con-
sideration. Define m-body excitation operator:

T̂m ≡
1

(m!)2

∑
a1a2···am
i1i2···im

ta1a2···ami1i2···im

{
a†a1ai1a

†
a2ai2 · · · a

†
amaim

}
(1.4.36)

Here we use t as parameters, different from c in (1.4.3). In a molecule, T̂m describes
that m electrons being excited simultaneously (connected cluster) from Fermi vacuum.
In a FCI expansion, T̂m also contribute to the case of two independent (unconnected
cluster) m-excitation as 1

2 T̂
2
m, three independent m-excitation as 1

3! T̂
3
m, etc. Thus its

whole contribution is:

1 + T̂m +
1

2
T̂ 2
m +

1

3!
T̂ 3
m + · · · = eT̂m (1.4.37)

Note that as T̂m and T̂n are commutative, the FCI expansion can be written as a product
over all levels of excitation, also known as coupled-cluster (CC) expansion[30]:

|CC〉 =
∏
m

eT̂m |HF〉 = exp

(∑
m

T̂m

)
|HF〉 ≡ eT̂ |HF〉 (1.4.38)

where T̂ is called cluster operator.
CC is one of the most successful ab initio quantum chemistry methods. Due to the

exponential parameterization ansatz, even a truncated version can implicitly describe
higher-order excitations via unconnected terms, thus its energy can be very accurate. In
fact, it is these unconnected terms that make CC an size-extensive method. A variation
determination of CC parameters is rather difficult due to the complexity of the equations.
Thus, one can project the SE onto HF and excited SD states to obtain the linked CC
equation:

ECC = 〈HF| e−T̂ ĤeT̂ |HF〉 (1.4.39)
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0 = 〈µ| e−T̂ ĤeT̂ |HF〉 (1.4.40)

When the cluster operator is truncated at the second-order, we obtain CC singles and
doubles (CCSD) equations[31]. An explicit expression is rather awkward to derive al-
gebraically. However, diagrammatic notations can facilitate the procedure significantly
and elegantly. The CC energy:

ECC = EHF + 〈HF| e−T̂ ĤNeT̂ |HF〉

= EHF + 〈HF| ĤN

(
T̂1 + T̂2 +

1

2
T̂ 2
1

)
|HF〉C

= EHF + + +

= EHF +
∑
ai

fait
a
i +

1

4

∑
ab
ij

〈ij| |ab〉 tabij +
1

2

∑
ab
ij

〈ij| |ab〉 tai tbj

(1.4.41)

where ĤN is the normal-ordered Hamiltonian, “C” means that only terms involving
contractions of ĤN and all T̂ on the right are considered. This leads to the fact that
only linked diagrams are involved. Of course for a HF reference all fai will be zero.
For the amplitude equation (1.4.40) more diagrams are required but the procedure is
similar. These equations are solved iteratively.

Perturbative Treatment of Coupled-cluster Ansatz

For chemical accuracy, three-body cluster operator T̂3 must be taken into account, but
the extremely high computational cost forbids this for even some small molecules. How-
ever, it is found that these three-body cluster amplitudes can be treated using the
converged single and double amplitudes in a perturbative way without too much loss of
accuracy, leading to the CCSD(T) method[32].

It is argued that the performance of CCSD(T) relies on an error cancelation: the
perturbative treatment overestimates the energy associated with triples, and canceled
by the neglect of quadruples In fact, the accuracy of CCSD(T) is comparable with
that of all-electron, relativistic CCSDT(Q)[33]. Thus, CCSD(T)/CBS is often used as
benchmark reference and recognized as the “gold standard” of quantum chemistry.

1.4.4 Explicit Correlation Methods

The basis set used in practice is often incomplete, leading to the basis set incompleteness
error (BSIE). In fact, in order to reproduce the cusp condition (1.3.15), basis functions
of very high angular momenta up to f, g, · · · are needed. To reduce the basis set size
and accelerate the basis set convergence, one can explicitly introduce the inter-electron
distance r12 to the WFN parameterization ansatz in a (1.3.15)-like way[23, 34].

A popular way is to introduce r12 into the CCSD formula, obtaining the simplified
CCSD-F12 theory[35, 36]. Its WFN is:

|ψ〉 = exp
(
T̂1 + T̂2 + T̂ ′2

)
|HF〉 (1.4.42)

T̂ ′2 =
1

4

∑
αβij

tαβij

{
a†αaia

†
βaj

}
(1.4.43)

where α, β are indices of a formally “complete virtual space”.
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The r12 will be introduced in the amplitude tαβij :

tαβij =
∑
kl

tklijF
αβ
kl (1.4.44)

Fαβkl ≡ 〈kl|F12 (r12) Q̂12 |αβ〉 (1.4.45)

Q̂12 ≡
(

1− Ô1

)(
1− Ô2

)(
1− V̂1V̂2

)
(1.4.46)

F12 (r12) = −1

η
e−ηr12 (1.4.47)

where Ô and V̂ are the projectors of occupied and virtual space, respectively. In practice
(1.4.47) is fitted by linear combinations of Gaussian geminals exp

(
−αr212

)
[37].

This ansatz improves the WFN since T̂ ′2 incorporates terms like

|uij (r1, r2)〉 =
∑
kl

tklij Q̂12F12 (r12) |φk (r1)φl (r2)〉 (1.4.48)

In the summation, it seems that the terms for kl = ij or kl = ji are most important
since they directly affect the configuration |φi (r1)φj (r2)〉. Thus, one can use a fixed
amplitude ansatz [38]:

tiiii =
1

2
; tijij =

3

8
; tjiij =

1

8
; tklij = 0 (kl 6= ij or kl 6= ji) (1.4.49)

These values are estimated from (1.3.15) and (1.3.16)[38]. In (1.4.42), expanding the
cluster operator, we note

|ψ〉 = · · ·+ tiiiir12
∣∣φi (r1)φi (r2)

〉
+
(
tijij − t

ji
ij

)
r12

1√
2

(∣∣φi (r1)φj (r2)
〉

+
∣∣φi (r1)φj (r2)

〉)
+
(
tijij + tjiij

)
r12

1√
2

(∣∣φi (r1)φj (r2)
〉
−
∣∣φi (r1)φj (r2)

〉)
+ · · ·

(1.4.50)

thus we have tijij − t
ji
ij = 1

4 and tijij + tjiij = 1
2 , resulting (1.4.49).

During the period of solving the amplitude equations, many approximations have to
be introduced, leading to CCSD-F12a and CCSD-F12b formulae[35, 36]. Benchmarks
reveal that CCSD-F12a is closer to the CBS limit[36]. Also it is observed that diffuse
basis functions are necessary for obtaining accurate F12 energies [36].

The F12 methods can reduce the BSIE of the correlation energy very efficiently.
However, in this case the BSIE of HF may dominate the error. Therefore, one can add
an operator for single excitations (orbital rotation) into the formally complete virtual
space and compute an energy correction with perturbation theory [35, 36]. This is called
complementary auxiliary basis sets (CABS) [39] singles correction. Its computational
cost is very low, usually negligible.

1.5 Multi-reference Approaches

For all the methods mentioned above, the reference state is a single SD. However, for
molecules containing nearly degenerate MOs, a single SD is usually a bad initial guess.
In this case, a linear combination of several SDs can be used as the reference state.
These are called multi-reference (MR) methods. This class of methods is extremely
important for the accurate construction of a potential energy surface (PES) or excited
state computations. However they are also quite complex. In this work we do not discuss
these methods.



1.6. DENSITY FUNCTIONAL THEORY 17

1.6 Density Functional Theory

1.6.1 Hohenberg–Kohn Theorem

The ab initio methods in quantum chemistry are based on the WFN, which is a function
of 3N variables (4N if the spin variables are also to be determined). However, the first
Hohenberg–Kohn theorem[40] states that for non-degenerate ground states, the external
potential vext is determined within a constant by the electron density n (r).

Proof. Assume for two different external potential vext and v′ext, we have identical n (r).
In this case, the number of electrons in the two systems are the same due to (1.1.14),
thus the corresponding Hamiltonians Ĥ and Ĥ ′ differ only in the external potential.
They have different ground state WFNs ψ, ψ′ and energies E, E′. Now, we can apply
the variation principle (1.1.22):

E <
〈
ψ′
∣∣ Ĥ ∣∣ψ′〉 =

〈
ψ′
∣∣ Ĥ ′ ∣∣ψ′〉+

〈
ψ′
∣∣ Ĥ − Ĥ ′ ∣∣ψ′〉 = E′ +

∫
drn (r)

(
vext (r)− v′ext (r)

)
(1.6.1)

similiarly we have

E′ < E +

∫
drn (r)

(
v′ext (r)− vext (r)

)
(1.6.2)

Combining (1.6.1) and (1.6.2) we have E + E′ < E + E′ which is impossible. This
concludes that the two electron densities n (r) and n′ (r) must be different.

Therefore the electron density can determine the external potential and thus the
Hamiltonian and energy. Then it is possible to write the energy as a functional of the
electron density (ENN omitted):

E [n] =

∫
drNψ∗T̂eψ +

∫
drNψ∗V̂eeψ +

∫
drn (r) vext (r)

≡ T [n] + VEE [n] +

∫
drn (r) vext (r)

≡ FHK [n] +

∫
drn (r) vext (r)

(1.6.3)

where FHK is called universal functional for an N -electron system.

The second Hohenberg–Kohn theorem[40] states that for the exact N-electron density
n (r) and a trial one ñ (r), we always have E [n (r)] ≤ E [ñ (r)].

Due to this theorem, we can optimize the energy with respect to n (r), however with
the restriction

∫
drn (r) = N , thus we have a Lagrangian :

L [n] = E [n]− µ
(∫

drn (r)−N
)

(1.6.4)

The obtained Euler equation is:

µ =
δFHK [n]

δn
+ vext (r) (1.6.5)

The trial density n (r) has to be N - and v-representable.
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1.6.2 Kohn–Sham Scheme

It is not trivial to use (1.6.5) directly. However, if we assume a system of N noninter-
acting electrons, with Hamiltonian Ĥs = T̂e + V̂s, then its WFN is exactly a SD (1.2.2)
constructed from single-electron WFNs φ1, · · · , φN that satisfy(

−1

2
∇2 + vs (r)

)
φi (r) = εiφi (r) (i = 1, 2, ...N) (1.6.6)

thus

ns (r) =
N∑
i=1

|φi (r)|2 (1.6.7)

with the energy functional

Es [ns] = Ts [ns] +

∫
drns (r) vs (r) (1.6.8)

The purpose of the introduction of the fictious system is to solve the real molecule
problems. If we require ns (r) to be equal to the ground state density n (r) of a real
molecule, then the two functional (1.6.8) and (1.6.3) should be the same, then:∫

drn (r) vs (r) = (T [n]− Ts [n]) + (VEE [n]− J [n]) + J [n]

+

∫
drn (r) vext (r)

≡J [n] +

∫
drn (r) vext (r) + EXC [n]

(1.6.9)

where J [n] is the classical electrostatic potential energy:

J [n] ≡ 1

2

∫
drdr′

n (r)n (r′)

|r− r′|
(1.6.10)

The EXC [n] is exchange-correlation functional (XC) which takes all nonclassical
effects into account. Using these quantities, we can solve (1.6.6) in an analog way to the
HF method. This is the Kohn–Sham scheme (KS)[41].

1.6.3 Explicit Functionals

The essential part of KS equations is EXC [n]. Numerous approximate EXC have been
proposed:

• Local density approximation (LDA), depending only on the density. Example:
Xα[42].

ELDA
XC [n] =

∫
drf (n (r)) (1.6.11)

• Generalized gradient approximation (GGA), depending on the density and its
gradient. Example: PBE[43].

EGGA
XC [n] =

∫
drf (n (r) ,∇n (r)) (1.6.12)

• meta-GGA, generalizing GGA by including higher order derivatives or the kinetic
energy density τ (r) = 1

2

∑N
i=1 |∇φi (r)|2. Example: TPSS[44].

EmGGA
XC [n] =

∫
drf (n (r) ,∇n (r) , τ (r)) (1.6.13)



1.7. MOLECULAR GEOMETRY OPTIMIZATION 19

• Hybrid functionals. This class of functionals incorporates the Hartree exchange
energy by a parameter. Example: B3LYP[45].

• Others like double-hybrid functionals B2PLYP[46].

All the functionals above fail to treat van der Waals interactions (vdW) due to their
incorrect asymptotic behavior[47]. A simple but successful solution is using a r−6-like
empirical correction, like DFT-D3[48]:

ED3BJ
disp =

K∑
A,B=1
A<B

(
s6

CAB6

r6AB + f
(
R0
AB

)6 + s8
CAB8

r8AB + f
(
R0
AB

)8
)

(1.6.14)

with Becke–Johnson damping function[49]

f(x) = a1x+ a2 (1.6.15)

where s6, C
AB
6 , s8, C

AB
8 , R0

AB and a1,a2 are fit by ab initio calculations, specifically for
each functional.

1.7 Molecular Geometry Optimization

Within the BO approximation, the energy parametrically depends on the nuclear coor-
dinates, forming a so-called potential energy surface (PES). The procedure of locating
stationary points on the PES is called optimization. For a molecule not involved in
a chemical reaction, it is often a (local or global) minimum. Searching the minimum
requires iterations. In each iteration, one can expand the PES at the initial point R0,
truncating at the second-order:

E (R0 + d) = E (R0) + dTg (R0) +
1

2
dTG (R0)d (1.7.1)

Thus one can update the step d by a quasi-Newton strategy[50], i.e. using an ap-
proximate Hessian G0 rather than the accurate one:

d = −G−10 (R0)g (R0) (1.7.2)

where G0 can be updated by, e.g. Broyden–Fletcher–Goldfarb–Shanno method[50].
An efficient search also requires suitable coordinate systems (CSs). The Cartesian

CS is simple but since it involves very high order couplings between the coordinate
components, it is only used for molecules with highly complex topologies. A more
natural choice is the internal CS, i.e. bond lengths, bond angles and dihedral angles
(and perhaps others). In modern quantum chemistry one often constructs an internal
CS of more than 3N − 6 components, i.e. a redundant internal CS [51]. However they
must be used carefully since some coordinates like dihedral angels could become singular
during optimization.

After optimization, one can compute the eigenvalues of the Hessian at this point. If
all the eigenvalues are positive, this point is indeed a minimum, otherwise the stationary
point is a maximal or saddle one.

1.8 Wave Function Analysis

1.8.1 Electron Localization Function

After solving a molecular SE, one obtains both energy and WFN. The WFN also contains
much valued information, which must be revealed by analysis. The first one is the so-
called electron localization function (ELF)[52]. Consider a conditional probability (1.3.4)
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of finding a σ-spin electron at r1 given that a σ-spin electron is at r2, for which a SD
WFN is used:

Pσσ (r1|r2) ≡ f (r1, r2) = nσ (r1)−
(
∑σ

i φ
∗
i (r1)φi (r2))

2

nσ (r2)
(1.8.1)

with σ-spin electron density

nσ (r) =

σ∑
i

φ∗i (r)φi (r) (1.8.2)

Now we perform a coordinate transformation

r1 = r +
1

2
s (1.8.3)

r2 = r− 1

2
s (1.8.4)

for (1.8.1), and perform a spherical average for s followed by a Taylor expansion of s[53]:

f (r, s) =
1

3

(
2τσ −

1

4

|∇n (r)|2

n (r)

)
s2 + · · · ≡ 1

3
Dσ (r) s2 + · · · (1.8.5)

One can see from (1.8.5) that a lower Dσ (r) indicates that an electron is more highly
localized at r. To make the index bounded from above and below, Becke introduced an
ELF of the following form[52]:

ELF (r) =
1

1 + (Dσ (r) /D0
σ (r))2

(1.8.6)

D0
σ (r) ≡ 3

5

(
6π2
)2/3

nσ (r)5/3 (1.8.7)

where D0
σ is the corresponding Dσ of the uniform gas with density identical to nσ (r). In

this case ELF is restricted in the range [0, 1], where ELF = 1 means perfect localization.
Generally, a large ELF suggests the existence of core regions, lone pairs or covalent
bonds, which is illustrated in Figure 1.8.1.
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Figure 1.8.1: The filled-color map of ELF in the plane of water molecule.
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1.8.2 Topology Analysis of Electron Density

The topology of the electron density n (r) can also reveal much information, forming
the so-called atoms in molecule (AIM) theory[54]. In real space, n (r) contains many
stationary points. These stationary points can be characterized by the signs of the
eigenvalues of its Hessian. The number of nonzero eigenvalues is called the rank (ω),
and the sum of their signs is called the signature (σ). Both can be symbolized as (ω, σ).
Then one can obtain[54]:

• Nuclear critical point (NCP): (3,−3);

• Bond critical point (BCP): (3,−1);

• Ring critical point (RCP): (3,+1);

• Cage critical point (CCP): (3,+3).

For an isolated molecule, the numbers of these critical points satisfy the Poincaré–Hopf
relationship[54]:

nNCP − nBCP + nRCP − nCCP = 1 (1.8.8)

The electron density at the BCP (nBCP) of a chemical bond can be used as an index
of its strength[54, 55, 56, 57]. A larger nBCP indicates a stronger bond.

The Laplacian of the electron density at the BCP, ∇2nBCP can reveal the nature of
a bond. It is well known that in real space ∇2n (r) > 0 and ∇2n (r) < 0 implies that the
electron density is locally depleted and concentrated at r, respectively. Consequently, if
∇2nBCP > 0, the interaction between the two bonding atoms is a closed-shell one, e.g.
highly polar covalent bond, ionic or van der Waals (vdW) interactions; if ∇2nBCP < 0,
the interaction is usually a typical covalent one.

To calculate the covalent component of a bond, one can integrate the negative Lapla-
cian of the electron density in the “region of bonding”, obtaining the Laplacian bond
order (LBO)[58]:

LBOA,B = −10

∫
∇2n<0

drwA (r)wB (r)∇2n (r) (1.8.9)

where wA is a weighting function that determines the “region” of atom A. An expression
proposed by Becke[59] has been widely used.

1.8.3 Noncovalent Interaction Plot

An interesting physical quantity, the reduced density gradient (RDG)

s =
1

2 (3π2)1/3
|∇n|
n4/3

(1.8.10)

has been used in the construction of XC functionals[60]. However, it also has been proved
to be useful in detection of noncovalent interactions[61]. For covalent interactions, the
regions of low n are those far from the molecule, and it decays exponentially: see (1.1.15).
Thus, the RDG can be very large in those regions due to its large denominator.

However, for noncovalent interactions, which formed by the tail regions (low n) of
two molecular fragments, the decay rates of n and |∇n| are very similar, and |∇n| is very
close to zero within the region of BCP, thus a low density and low RDG becomes the
character of covalent interaction. Furthermore, the sign of the second large eigenvalue of
its Hessian (λ2) can be used to identify the interaction nature: λ2 < 0 and λ2 > 0 implies
attractive and repulsive interactions, respectively. Thus, one can plot the isovalue surface
of RDG rendered by the sign of λ2 to identify the noncovalent interactions, as illustrated
in Figure 1.8.2. This is often called NCI plot.
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Figure 1.8.2: The NCI plot of benzene dimer. The red and green surface implies the
repulsion and weak vdW interaction, respectively.

1.9 Linear-scaling Methods

1.9.1 Locality of Electron Correlation

The high computational barriers of ab initio quantum chemical methods prohibit their
application to large molecules. For instance, while SCF is a O

(
n4
)

procedure, MP2,
CCSD and CCSD(T) are O

(
n5
)
, O

(
n6
)

and O
(
n7
)
, respectively! However, the high

computational cost seems to be unphysical.
First, one can see the physical meaning of EHF and Ecorr. The former describes most

of the physical processes during the formation or change of a molecule, like electrostatic
energy, Fermi exchange energy and orbital relaxation. In the computation of Ecorr, one
has to introduce the excited SDs in the WFN, thus it describes the effects of “induced
dipole moments”, i.e. the dispersion interaction. Thus EHF and Ecorr is long- and
short-range, thus the latter should be easier to calculate.

Second, the molecular electronic equilibrium properties are nearsighted [62], i.e., a
perturbation at r′ has significant implifications on the properties at r only when |r− r′|
is sufficiently small. Indeed, Kohn proposed that for molecules with large highest oc-
cupied MO-lowest unoccupied MO (HOMO-LUMO) gap G, the implication of effective
potential v at r′ on a property Q at r decays exponentially[62]:

δQ(r)

δv(r′)
≈ exp

(
−
√
G
∣∣r− r′

∣∣) (1.9.1)

Therefore, for each point r, the molecule should only “see” finite surroundings. When
the molecule is sufficiently large, the computational scaling should be linear, i.e. O (n)!

However, none of the ab initio or DFT quantum chemical methods satisfy linear-
scaling. One reason is that the CMOs used to construct the total one are usually very
delocalized, or farsighted. To reduce the computational cost and treat only the essential
part of electron correlation, the CMOs must be localized, and then for each obtained
LMO, the redundant and insignificant numerical quantities (like molecular integrals)
can be discarded. This is a possible way of achieving linear-scaling.

1.9.2 Linear-scaling Correlation Methods

In order to make accurate but costly correlation methods feasible for large molecules,
in the last three decades quantum chemists have invested large effort in developing new
algorithms to lower this computational barrier. Nearly all the methods will first generate
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a set of LMOs according to Boys or other criteria, then for each single, pair, triplet, · · ·
of the LMOs, one can compute its correlation energy by discarding the small coupling
parts, saving computational cost in this way. These methods mainly fall into two groups:
class I and II.

Class I methods divide the system into small fragments and combine the results
of the correlation computations of these fragments in specific ways. Some examples
are the divide-and-conquer (DC) method by Bartlett[63, 64], the cluster-in-molecule
(CIM) strategy by Li[65, 66, 67, 68], the divide-expand-consolidate (DEC) scheme by
Jørgensen[69, 70, 71], local CCSD by Head-Gordon[19, 72, 73, 74, 75] and some others[76,
77, 78, 79]. This class of methods is very easy to be realized and parallelized, and is
relatively more accurate than class II. They treat correlation energy in a way like

Ecorr =
∑
D

∆ED (1.9.2)

where D denotes a “fragment” of the molecular geometrical or electronic structure. For
each fragment the virtual space required for correlation to achieve a specific accuracy
can be reduced relative to a standard correlation method. However, comparing with
class II, their computational costs are larger, the bottleneck being the calculations of
the couplings between the fragments.

Class II methods explore the locality of electronic correlation by reconstruction of the
occupied and virtual orbital spaces. This group begins with Pulay and Sæbø’s pioneering
works [80, 81, 82, 83, 84] which introduced the important concept of projected atomic
orbitals (PAOs):

|χ̃µ〉 =

(
1−

∑
i

|φi〉 〈φi|

)
|χµ〉 (1.9.3)

PAOs were then extensively used by Werner and co-workers in their local correlation
methods [85, 86, 87, 88, 89, 90, 91]. Recently Neese proposed that by pair natural
orbitals (PNOs) CCSD and CCSD(T) can be highly efficiently implemented [92, 93, 94,
95, 96, 97, 98]. For each pair of LMOs ij its PNOs are constructed by diagonalizing the
matrix Dij :

Dij =
(
t̃ij
)†

tij + t̃ij
(
tij
)†

(1.9.4)

where tij and t̃ij are some kind of MP2 amplitudes. Yang proposed orbital specific
virtuals (OSVs) [99, 100] which combine some advantages of PAOs and PNOs. All the
methods mentioned above will construct a virtual space that is assumed to contribute
to the correlation energy most significant by using a standard of some “indices” be-
ing greater than a threshold athres, like Mulliken-Löwdin charge[85] or density-of-states
(DOS)[101]. Class II is usually much faster than class I, however, their accuracy could
be very low for a large athres. For smaller athres the accuracy can be improved but at
the same time the computational cost will increase significantly, comparable with that
of a standard implementation.

The incremental scheme formally belongs to class I, but it also has virtual space
truncation techniques. This method will be presented in detail in the following chapters.

Before concluding this chapter, it is worth pointing out that for most methods men-
tioned above, the turning point of “linear-scaling” could be rather unpredictable, de-
pending on the molecular shapes, basis sets, correlation methods, and even computa-
tional hardware. Molecules of practical interest often lie before the turning point, but
significant reduction of computational wall time is indeed possible and useful, which
marks great improvements of quantum chemistry in the last three decades.
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Chapter 2

Incremental Scheme

2.1 Incremental Expansion

2.1.1 Introduction

In Subsection 1.9.2, we pointed out that the incremental scheme is one of the linear-
scaling quantum chemical methods. In the 1960s, during the study of the Bethe–
Goldstone equations of atomic calculations[102, 103, 104], Bethe wrote down some for-
mulae which can be viewed as the first form of an “increment”:

e23 = ∆E23 − e2 − e3 (2.1.1)

After several decades, the incremental scheme was formally first proposed in 1992 during
the studies of crystalline solids by Stoll[105, 106, 107]. Thereafter it has been proven
highly successful in obtaining the correlation energies of periodic systems[108, 109, 110,
111, 112]. During the 1990s Dolg applied the incremental scheme to calculations of
polymer and also got good results[113, 114].

From about 2007, Dolg began to generalize the incremental scheme to finite molecules.
The incremental scheme was first applied to CCSD[115], then to MP2, CCSD(T)[116]
and F12 methods[117, 118]. After incorporating many strategies to further reduce the
computational cost[119, 120, 121, 122], the incremental scheme is recognized as an impor-
tant method of obtaining accurate correlation energies[123, 124]. In fact the results from
the incremental scheme can be used as benchmark reference[125, 126]. At the same time
the incremental scheme gained many applications, like computations of optical[127, 128]
and condensed phase[129, 130] properties.

From 2013, the author of the present work started to improve and realize the in-
cremental scheme, and proposed the latest form of incremental scheme: the third-order
incremental dual-basis set zero-buffer approach (inc3-db-B0)[131, 132, 133]. Compared
with the previous implementations, this approach has the following advantages: first, it
uses a simpler and more efficient domain decomposition algorithm; second, the db-B0
approximation can reduce the computational cost significantly without too much loss of
accuracy; third, it is easy to be parallelized, and for users, it is a black-box approach.
This approach is accurate and efficient and has been successfully applied into many
real chemical problems, including the hydration of trivalent lanthanide (Ln3+)[126] and
actinide (An3+)[134] ions, and the isomer stability of large organic molecules[135]. The
inc3-db-B0 approach will be the central topic of this work.

2.1.2 Incremental Expansion in Molecules

In Chapter 1 it is pointed out that for correlation computations the initial HF step will
generate the occupied and virtual orbitals (O and V). Then all or a (usually valence)

25
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subset of O will be correlated with the entire V via the coupled-cluster or other ansätze
to get the correlation energy. In the incremental scheme, the O will be decomposed
into several subsets called 1-site domains, denoted by i, j, k etc. The union of n 1-site
domains i1, · · · , in is called n-site domain, denoted by i1 · · · in. For an arbitary n-site
domain X, let εX be the correlation energy obtained by correlating all occupied orbitals
in domain X. Then, we define the first-, second-, and third-order increment as:

∆εi ≡ εi (2.1.2)

∆εij ≡ εij −∆εi −∆εj (2.1.3)

∆εijk ≡ εijk −∆εij −∆εik −∆εjk −∆εi −∆εj −∆εk (2.1.4)

Generally, an nth-order increment is defined as:

∆εi1···in ≡ εi1···in −
∑

I∈P({i1,··· ,in})/{{i1,··· ,in}}

∆εI (2.1.5)

where P means the power set.
Then, the total correlation energy Ecorr can be written as[131, 132]:

Ecorr =
∑
i

∆εi +
1

2!

∑
ij

∆εij +
1

3!

∑
ijk

∆εijk + · · · (2.1.6)

Since for finite molecules the number of domains nd is finite, this expansion is al-
ways ending at order nd and exact. Expressions like (2.1.3) to (2.1.6) can be found in
many branches of theoretical physics and chemistry, e.g., N -body expansion of a to-
tal intermolecular potential[136], the Hubbard model [137], the discussions in statistical
mechanics[138, 139] and the energy expression in fragment molecular orbital theory[140].
Indeed, the concept “increment” has deep relationship[141] with the important physical
quantity cumulant [142]: the incremental expansion can be derived from the Faddeev-
equation for the many-body problem[143, 144] by a cumulant expansion.

In (2.1.6), the locality of electron correlation is explored by domain decomposition,
while the many-body effects are taken into account by the higher order increments. The
higher the order of increments, the less the increments will contribute to the total corre-
lation energies of systems with reasonably well localized occupied orbitals. Therefore it
is possible to truncate the incremental expansion at a certain order n in practice (incn).

In Figure 2.1.1, we plot the errors of incremental expansions for different systems
versus the truncation order. These systems include dispersion interaction bound clus-
ter (He)8, hydrogen bonding bound cluster (H2O)8, saturate and conjugate long chain
hydrocarbon C8H18 and C8H10. Obviously, the smaller the interactions between the
atoms, the faster the incremental expansion converges. We can also observe that gener-
ally, no matter what nd is, the errors of inc1 and inc2 are too large to accept (> 10−3 kJ
mol−1). The error of inc3 is smaller for a smaller nd, since a large nd makes the decom-
position too fragile and the couplings between the domains are still large beyond the
third-order. Thus, when the decomposition is not too fragile, the incremental expansion
can be truncated at the third-order with best accuracy/cost ratio.

The choice of nd is critical, since both too small or too large nd can deteriorate
the efficiency and accuracy of the incremental scheme. For the chemical systems with
well-defined small “fragments” or “units”, nd should be the number of those chemical
groups. For example, for a cluster of 10 solvent molecules and a small organic molecule,
nd should be set to 11. For systems composed of large “units” or ones with no obvious
“fragments”, nd should be chosen in such a way that for the highest order increments
in the incremental expansion, the number of orbitals to be correlated is still tractable.
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Figure 2.1.1: The errors of incremental expansions for four systems versus the truncation
order. The energy is calculated at the CCSD(T)/6-31G(d) level.

Finally, in terms of εX , the nth-order truncation of (2.1.6) can be written as:

E(n)
corr =

n−1∑
k=0

(−1)k
(
nd − n+ k − 1

k

) ∑
i1<···<in−k

εi1···in−k
(2.1.7)

which can be proved by mathematical induction.

2.1.3 Incremental Expansion for High-spin Open-shell Molecules

For a class of high-spin systems, in which the n unpaired electrons occupy n energetically
well-separated orbitals and couple ferromagnetically to the highest possible spin S =
n/2, the static correlation is often not significant, thus these systems can be treated well
in the single-reference (SR) framework.

The incremental expansion (2.1.6) in principle still works. However, the singly oc-
cupied molecular orbitals, or active molecular orbitals (AMOs), tend to be much more
diffuse than the doubly occupied ones. This means that AMOs may couple with all the
other occupied MOs to a considerable extent. Thus, for the incremental expansion of
high-spin open-shell systems, active orbitals will be correlated in the calculation of each
εX . An additional advantage is that preserving AMOs in each domain X can keep its
spin state identical to that of the entire system. In this way (2.1.6) will repeatedly take
the correlation of AMOs into account, therefore it can be modified as[133]:

Ecorr = εA +
∑
i

∆εi +
1

2!

∑
ij

∆εij +
1

3!

∑
ijk

∆εijk + · · · (2.1.8)

∆εi ≡ εAi − εA (2.1.9)

∆εij ≡ εAij − εA −∆εi −∆εj (2.1.10)

∆εijk ≡ εAijk − εA −∆εij −∆εik −∆εjk −∆εi −∆εj −∆εk (2.1.11)

where “A” stands for AMO and εA is the correlation energy of the AMOs. Note that in
each equation εA and the εX must be calculated with the same X-specific basis set (see
Section 2.3); also there is no “A” superscript for ∆εX ’s since the contribution from the
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AMOs has been deducted. For the singlet (in high-spin case, closed-shell) states, εA = 0
and (2.1.8) becomes (2.1.6). In this way, we successfully generalize the incremental
scheme to high-spin open-shell systems.

2.2 K-Means Clustering Algorithm

In order to make the truncated incremental expansion sufficiently accurate, the interac-
tions between domains should be as small as possible. First the CMOs to be correlated
are localized to obtain the LMOs according to the Boys criterion[16]. Then each LMO φi
is associated to its center of charge ri = 〈φi |r|φi〉 to get a set of points P = {ri|φi ∈ O}.
At this stage we need an algorithm to decompose P into nd domains D1, · · · , Dnd

.
There are many algorithms to do this. One way is to create a graph for P and

use some graph theorems for decomposition (e.g. METIS[145]). However, a simpler
algorithm is K-means clustering (KM)[146, 147], in which we minimize the following
function with respect to all possible distributions of the orbitals in domains:

J (P, nd) =

nd∑
k=1

∑
rki∈Dk

|rki − r̄k|2

|Dk|
(2.2.1)

Here r̄k is the geometrical center of the |Dk| point rki ’s in domain Dk. Obviously,
this procedure aims to minimize the distances between the points within a domain. KM
algorithm has wide applications in artificial intelligence, statistics and chemoinformatics
[148].

Figure 2.2.1: Domain decomposition by KM algorithm. The balls stand for the center
of the LMOs and the balls with identical color belong to the same domain.

To optimize J (P, nd), an initial guess (random decomposition) is generated. Then
in each iteration, each point in P is put into all the domains to determine the domain
in which it minimizes J (P, nd). The iteration stops when the decomposition does not
change. This procedure is very close to the Jacobi sweep algorithm [17] in orbital
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localization. This algorithm is very sensitive to the initial guess and thus could only
be optimized to a local minimum. A simple solution is to use many initial guesses to
perform the optimization, and then choose a decomposition with minimal J (P, nd). In
Figure 2.2.1, we give some decomposition examples, and can see that the KM algorithm
can decompose the systems of various topologies in a chemically very meaningful way.

2.3 Dual-basis Set Zero-buffer Approximation

After domain decomposition by KM algorithms, the LMOs in a domain will distribute in
a spatially compact way, thus for each domain X it is possible to design a X-dependent
virtual space VX to compute the increment ∆εX efficiently and accurately. To achieve
this we will introduce two strategies: dual-basis set (db) and zero-buffer (B0).

2.3.1 Dual-basis Set Technique

The dual-basis set technique has been widely used in quantum chemistry. This termi-
nology was proposed by Jurgens-Lutovsky and Almlöf [149] in 1991, but in fact King
and co-workers had implemented similar strategies a few years earlier [150, 151]. This
method uses different basis sets at different stages of a quantum chemical computation.
Two applications using dual-basis sets are acceleration of MP2 [152, 153] and ab initio
molecular dynamics [154].

For the incremental scheme, we use such a strategy: given the basis set B, at the HF
stage we will use a subset B′ of B, where all the basis functions of angular momenta higher
than p (i.e. angular momentum l = 1) are removed from B; then for the computation of
a domain X, a part of the basis functions removed is added again to get the correlation
energy.

This strategy enables us, in correlation computations of domain X, to use larger
basis sets for the region of the system that has large contribution most to the correlation
energy, while for the rest (or “environment”) B′ is still used. The new basis set applied
for the domain X is denoted as BX . In this way, the virtual space can be significantly
reduced compared to the original basis set B.

Note that in the previous implementation, the reduction of the virtual space is
achieved by domain-specific basis sets, using the whole basis set B at the HF stage,
localization and decomposition, whereas for the computations of increments, the envi-
ronment was treated with a smaller basis set such as STO-3G [120] or SV [124], which
leads to considerable difference between the whole basis set at the HF stage and the one
used for the increment calculation. Therefore for each increment computation a HF and
localization procedure has to be performed, and the obtained LMOs have to be mapped
to the LMOs in basis set B to identify a domain. This mapping is not unique and thus
in some cases problematic, e.g., for aromatic systems. In the new implementation, since
B′ is a subset of BX , the orbital relaxation from basis functions of high angular mo-
menta will be small for SR cases. Thus a repetition of the HF and localization are not
necessary, and the LMOs in B′ can be exactly projected onto BX (see Figure 2.3.1): the
occupied space is preserved and the virtual space is augmented and orthogonalized by
the Löwdin procedure [155]. This generates virtual orbitals which are closest in a least-
squares sense to the original virtual orbitals and the added higher angular momentum
functions [156].

Therefore, besides saving extra HF procedures, there is no ambiguous mapping.
Also, the environment can be described more accurately in B′ than with basis sets such
as STO-3G or SV which are possibly too small for a good HF description and also
unsuitable for correlation computations. In this way, the dual-basis set incremental
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Figure 2.3.1: The procedure of projecting LMOs in B′ onto those in BX .

Table 2.3.1: Benchmark of dual-basis set and standard CCSD, CCSD(T), and their F12
variants.

Basis Set VDZ VTZ VQZ AVDZ AVTZ AVQZ

HF 0.07853 0.08196 0.08161 0.08195 0.08275 0.07445
CCSD 0.00066 0.00059 0.00058 0.00077 0.00061 0.00053

CCSD-F12a 0.00235 0.00100 0.00052 0.00240 0.00074 0.00062
CCSD-F12b 0.00303 0.00096 0.00046 0.00327 0.00062 0.00044
CCSD(T) 0.00031 0.00023 0.00022 0.00036 0.00029 0.00020

CCSD(T)-F12a 0.00257 0.00087 0.00045 0.00257 0.00048 0.00030
CCSD(T)-F12b 0.00327 0.00100 0.00053 0.00351 0.00068 0.00037

In the table are the root mean square deviations (RMSDs. Unit: Hartree):

RMSD =

√√√√( N∑
i

(Eex-db(i)− Est(i))
2 /N

)
(2.3.1)

where Eex-db(i) and Est(i) are the energy of molecule i computed by the dual-basis set
approach and the standard correlation method, respectively. Here, in the dual-basis
set computations, the HF was performed with VXZ(p/s) or AVXZ(p/s) where (p/s)
means only basis functions of angular momenta s and p are preserved for hydrogen and
other elements, respectively; the following correlation computation was performed with
original VXZ or AVXZ basis sets.

scheme can enjoy both a high accuracy and efficiency.

Note that as the incremental order increases, the result converges not towards that of
a standard correlation calculation, but to the corresponding exact dual-basis set result.
To see how the results can differ, we performed a benchmark with 15 small molecules.
The results are listed in Table 2.3.1.

We observe that although energies at the HF stage differ significantly, the total
energies have rather small errors. Meanwhile, the error decreases as the basis set becomes
more complete. This can be understood since the single excitation operator T̂1 in the
CC ansatz compensates for the omitted orbital relaxation when going from the smaller
to the larger basis set. Thus correlation contributions discussed here also contain some
orbital relaxation effect. This implies that for the MP2 method which does not contain
T̂1 the dual-basis set technique could introduce large errors. It is noteworthy that, if
relative energies are considered, the error becomes even more negligible.
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2.3.2 Zero-buffer Approximation

How to determine the atoms that contribute significantly to the correlation energy of a
domain X? Intuitively they are the atoms distributing closely to the domain. In some
previous implementations, these atoms were identified as the atoms whose distance from
the orbital centers of a domain to be computed is less than a parameter tmain [120]. In
this work, we will introduce a new, parameter-free strategy.

As the KM algorithm is used to decompose the MOs, it will then also be used to
decompose the atoms of the system A into nd atomic domains M1, · · · ,Mnd

, but the
difference is that the rki ’s in (2.2.1) are now the coordinates of the atoms xki and r̄k
is not dynamically determined but fixed to the geometric center of orbital domain Dk.
This is the fixed-center KM (FCKM) algorithm, i.e. we try to minimize:

J (A, nd) =

nd∑
k=1

∑
xki
∈Mk
|xki − r̄k|2

|Mk|
(2.3.2)

In this way each orbital domain Dk is associated with Mk that shares the same r̄k.
Thus, in the computation of domain X, only the atoms from Mk’s associated domain
Dk’s in X are treated with basis set B. One may argue that a buffer region “Br” around
the Mk’s with a radius r should also be treated with B to ensure the accuracy. The
buffer region resembles the same terminology proposed by Yang in the development of
divide-and-conquer density functional theory [157, 158].

To determine a suitable r, we examine its effect using the molecule bicyclooctane.
Since bicyclooctane has eight carbon atoms, by chemical intuition the largest nd is 8. We
thus performed the CCSD(T)/VDZ computations of bicyclooctane by the incremental
scheme for 5 ≤ nd ≤ 10. In this case, “B10” is the entire molecule, thus all increments
are evaluated in basis set B. The results are shown in Figure 2.3.2. For each nd ≤ 8,
the accuracies of B0 and B10 correlation energies are similar, with an unsigned error
of less than 0.0011 Hartree. However, when nd goes beyond 8, the accuracy of B0
decreases rapidly. This can be understood by the fact that for nd = 6 each domain is
roughly “one-and-a-half” C–C bond, and the basis functions of other domains have a
small contribution. For nd = 10 the molecule is broken into too small pieces, where
each small domain contains large energy contributions from the basis functions of other
domains. Thus the B0 approximation does not work well and must be extended, e.g. to
B10. However, when considering the efficiency, B0 is faster than B10 by about 6 times,
revealing that Br(r > 0) is not worth implementing since as long as a reasonable nd
is selected, B0, or zero-buffer can enjoy both a high accuracy and efficiency. It is also
observed that while smaller nd yield a more accurate energy, both a too small or a too
large nd will decrease the efficiency.

Thus, as long as the orbital decomposition is chemically meaningful, the buffer region
is not required at all, i.e., a B0 approximation provides very accurate results. Combining
with the dual-basis set technique, this db-B0 approximation is shown in Figure 2.3.3 and
exhibits excellent performance.

2.4 Distance Screening

When two domains i and j are far away from each other, their coupling is small, thus
the increment ∆εij can be approximated as zero and its calculation can be avoided,
saving the computational cost. Thus a truncation distance rt can be defined. If the
distance between i and j is greater than rt, the increments containing the two domains
such as ∆εij or ∆εijk can be neglected. This approximation works very efficiently for
systems with a large spatial extent like long chain hydrocarbons. As shown in Figure



32 CHAPTER 2. INCREMENTAL SCHEME

5 6 7 8 9 10

Num ber3of3Dom ains

0.002

0.000

0.002

0.004

0.006

0.008

0.010

E
rr

o
rs

3i
n

3E
n

e
rg

ie
s3

xH
a

rt
re

e
)

inc3-db-B0-CCSD

inc3-db-B0-CCSDxT)

inc3-db-B10-CCSD

inc3-db-B10-CCSDxT)

5 6 7 8 9 10

Num ber3of3Dom ains

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t in
c3
−

db
−

B
r/

t e
x−

db

inc3-db-B0-CCSDxT)

inc3-db-B10-CCSDxT)

Figure 2.3.2: Impact of nd and buffer on the accuracy and efficiency of the incremental
scheme. In the right figure tX stands for the wall time of a calculation by method X at
the same machine.

VTZ(p/s)

r = 4

B0:VTZ

B4:VTZ

KM fixed-center KM

Figure 2.3.3: Illustration of dual-basis set zero-buffer approximation. Here a HF com-
putation of the molecule is performed with VTZ(p/s) basis set, obtaining the CMOs.
After localization the center of the LMOs are computed and represented by balls, and
are clustered into domains by KM algorithm. The balls of identical color belong to
the same domain. Then the atoms are clustered by FCKM algorithm to determine the
buffer regoin. The last graph illustrates the B0 approximation: to compute the correla-
tion energy of the orange orbital domain, we apply VTZ basis set on the atoms in the
orange atom domain, and VTZ(p/s) for the rest of the molecule.

2.4.1, where the systems are identical with those in Figure 2.1.1, the increment decays
with the distance much faster for the clusters in which the fragments interact weakly
like He8 than the delocalized conjugated hydrocarbon like C8H10. Usually, it is safe to
set rt greater than 6.0 Å.

2.5 Inc3-db-B0 Approach

Combining the strategies proposed in the previous sections in this chapter, we obtain
the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), which can
work with CCSD, CCSD(T) and their F12 variants for all closed-shell and high-spin
open-shell molecules with large HOMO-LUMO gap. The basic procedure of inc3-db-B0
approach is:

1. HF computation to obtain the CMOs;



2.5. INC3-DB-B0 APPROACH 33

0 5 10 15 20

Distance (
◦
A)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

In
cr

e
m

e
n

t 
(a

u
)

Ne8

(H2O)8

C8H18

C8H10

Figure 2.4.1: The values of the increments for four systems versus the distance. The
energy is calculated at CCSD(T)/6-31G(d) level.

2. Localization of the CMOs to obtain the LMOs;

3. Compute the charge center of the LMOs, then use KM algorithm to perform the
domain decomposition;

4. Correlation computations of all incrments, using db-B0 approximation;

5. Collect results and use incremental expasion to obtain the final correlation energy.

Now, for inc3-db-B0-CCSD/CCSD(T), the total energy is written as:

E (B) = EHF

(
B′
)

+
∑
X

∆εX (BX) (2.5.1)

and for inc3-db-B0-CCSD/CCSD(T)-F12a/b, one should add the CABS singles correc-
tion:

E (B) = EHF

(
B′
)

+ ECABS singles correction (B) +
∑
X

∆εX (BX) (2.5.2)

In conclusion, inc3-db-B0 approximation explores the locality of electronic correla-
tion in an elegant way: the orbital localization and decomposition spatially divide the
electronic structure into several fragments in such a way that the B0 approximation
works well. Here we emphasize that the incremental scheme decomposes the electronic
rather than geometrical structure, thus there is no need of considering the spin of each
fragment or saturating valency by adding chemical units, which may be quite awkward.
On one hand, the second- and third-order increments can take the delocalization and
conjugation effects into account that might have been lost in the first-order increments;
on the other hand, since in an increment the orbitals to be correlated are clustered spa-
tially, the extra basis functions of atoms outside the B0 region have little contribution,
thus the truncated virtual space provided by the db-B0 scheme is very accurate. In
fact, according to our benchmarks on some medium-sized molecules[131, 132], the error
of inc3-db-B0 approach in relative energy is often less than 1 kJ mol−1, thus it can be
applied in the cases where the energy difference is very small.
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The implementation and application of inc3-db-B0 approach will be presented in
detail in the following chapters.



Chapter 3

Implementation of Incremental
Scheme

3.1 Introduction of Apts

3.1.1 Basis Features

The program Apts—A Parallel incremenTal Scheme—has been developed by the author
since 2013 to realize a user-friendly, black-box, accurate and efficient implementation
of the inc3-db-B0 approach introduced in this work. Its main functions and features
include:

• Decomposition of a molecule with a given nd by a KM algorithm.

• Arbitrary order n of the incremental expansion (incn).

• Arbitrary buffer size (Br) for the dual basis set strategy.

• It can treat both closed-shell and high-spin open-shell molecules.

• It can combine with CCSD, CCSD(T) and their F12 versions.

• It can be run serially or parallelized with an arbitrary number of cores.

• When a work was interrupted, the program can recover and continue the work
without doing duplicated calculations.

• It is written in a way that is easy to maintain and to be extended.

• It can work with any mature quantum chemical program packages or in-house
codes.

• It is a “black-box”, and user-friendly.

In this work, the geometry optimizations and some DFT calculations were per-
formed with Gaussian03[159] and Orca 3.0.1[160], and all the correlation calculations
were done with Molpro2012[161] and our Apts. The AIM and ELF were calculated
with MultiWFN3.2[162]. The visualization of molecules, MOs, etc. are realized with
CYLview[163], Vmd[164] and Chimera[165].

35
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3.1.2 Code Structures

All parts of Apts are written in standard C++, with 24 files and more than 3500 lines of
code. The pthread library, STL, boosts library, and the C++0x features are extensively
used to simplify the coding. The program consists of 11 modules, with minimal coupling
between them:

• ElapsedTime Perform the time statistics during the calculation.

• KMeanClustering A template class for the KM algorithm.

• Molecule A class for reading and treating molecules.

• Point3D A class for geometrical controlling.

• IncrementalDomain A class for treating domains of the incremental scheme.

• IncrementalFramework A class for global control of the incremental scheme.

• IncrementalInput A class for treating the input file of the incremental scheme.

• IncrementalKeeper A class for treating the incremental expansion.

• IncrementalParallel A class for parallelization of the incremental scheme.

• IncrementalQCInterfaceMolpro The interface between Apts and Molpro.

• Termination A “graceful” termination subroutine.

An exhaustive explanation of the codes is a long story. However, the author wants
to emphasize that most of the essential modules of Apts have been strictly tested in nu-
merous calculations and are thought to be reliable in practice and those modules should
not be changed in most cases! Usually in order to add a new function, modification of
the IncrementalInput and IncrementalQCInterfaceMolpro is sufficient!

3.1.3 Compilation

The only requirement of compilation is a C++ compiler like Gcc and the boosts library.
Since in the program directory there is a Makefile, one simply uses the command make,
and then the program Apts will appear in the directory.

3.2 Files of Apts

3.2.1 Input Files

For an incremental calculation by Apts, exactly three files are always needed: the XYZ
file, node file and increment input file.

XYZ file. This file contains the coordinates of the molecule to be calculated in XYZ
file format specified by, say the OpenBabel program. An example for the CH3CHO
molecule is given below. Note that the unit must be Å!

Code 3.1: Coordinates of CH3CHO.

1 7

2 CH3CHO

3 C -0.234109 0.399573 0.000009

4 H -0.301818 1.511786 0.000075
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5 O -1.237942 -0.277006 -0.000003

6 C 1.171086 -0.148488 -0.000008

7 H 1.713840 0.219448 -0.880789

8 H 1.713933 0.219025 0.880891

9 H 1.155718 -1.240727 -0.000163

Node file. This file contains the host names of the nodes used for parallelization.
The first line is the number of nodes, followed by the node names, each one occupying
one line. Note that for a node, if more than one core is used, the host name must be
duplicated! The following example suggests that one will use two cores of the node cc01
and one core of node cc02 and cc03 for parallelization.

Code 3.2: An example of node file.

1 4

2 cc01

3 cc01

4 cc02

5 cc03

Increment input file. This file contains exactly 28 lines. A typical input file is shown
below:

Code 3.3: Input file for inc3-db-B0-CCSD(T)/VDZ of CH3CHO.

1 0 # 0 new mission; pid: restart

2 ch3cho.xyz # Molecule coordinates

3 0 # Charge

4 1 # Multiplicity , i.e. 2S+1

5 boys # Localization strategy: boys

6 3 # Number of domains

7 3 # Order of incremental expansion

8 6.0 # Truncation distance

9 0 # Distance truncation flag

10 0 # Core correlation

11 No # (Not used yet)

12 0 # (Not used yet)

13 vdz # Basis set

14 (p/s) # Dual basis set flag

15 0.1 # Buffer size

16 0 # ECP information

17 0 # Frozen core in ECP

18 ccsd(t) # Correlation method

19 2000 # Memory size , in MW

20 molpro # Quantum Chemistry Program

21 molpro.exe -W /scratch/$USER -d /scratch/$USER # cmd

22 0 # Orbital cubes

23 ./nodes # File containing nodes to parallelization

24 0 # Canonicalization

25 /scratch/ # Scratch path

26 3.2d-5 # OSV parameter

27 x # Dummy atoms

28 0 # CC shift

For each line, the contents after # is a comment and is ignored.
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1. 0 or a positive integer. For a new calculation it must be 0. To restart a failed
calculation, this is the number of its process ID, which is given in the output file.

2. String. The file name of the XYZ file.

3. Integer. The charge of the molecule.

4. Positive integer. The spin multiplicity (2S + 1) of the molecule.

5. boys. The localization method. Although some other settings are valid, we strong-
ly suggest that the user should always boys.

6. Positive integer. The number of domains in which a molecule is to be decomposed
(nd).

7. Positive integer. The truncated order of the incremental expansion (2.1.6) or
(2.1.8). Usually 3 is a good choice. For molecular clusters 2 could be sometimes
suitable.

8. Positive real number. This is the distance screening parameter rt in Å. For two 1-
site increments with their distance greater than rt, their coupling will be neglected.

9. 0 or 1. For 0 the distance screening is switched off.

10. 0 or 1. For 0 only the valence electrons are correlated; for 1 all the electrons will
be correlated.

11. Not used yet.

12. Not used yet.

13. String. The basis set name. We strongly recommend the following items: VDZ,VTZ,

VQZ,AVDZ,AVTZAVQZ. For explorative calculations 6-31g(d) or sto-3g can be used.

14. 0, (p/s). For 0 no dual-basis set strategy is used; for (p/s) the db-Br approxi-
mation is used.

15. Positive real number. The buffer size r. We strongly recommend 0, that is, B0
approximation. For r greater than 0 the computation time can be very long with
little increase of accuracy.

16. String. The ECP information. For 0, no ECP will be used. To use ECP, one can
write Eu=ECP52MWB-II.

17. Positive integer. The number of electrons that is implicitly treated by the ECP.
For example, if one use ECP52MWB-II for europium, one should write Eu 52.

18. ccsd, ccsd(t), ccsd-f12, ccsd(t)-f12, rccsd and rccsd(t). For high-spin
open-shell molecules, only rccsd and rccsd(t) are allowed. Some other items are
possible but they are still under testing.

19. Positive number. The memory size for each calculation in MW.

20. molpro. This is the interface for the quantum chemical program. Currently only
molpro is possible.

21. String. The command to run the quantum chemical program (currently only
Molpro is available). Note that the scratch path must be given explicitly in the
form of -d some path/$USER.
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22. 0 or 1. For 1 the orbital cube files will be output for visualization.

23. String. The file name of the node file.

24. 0 or 1. For 1 an orbital canonicalization will be performed before doing CC
iteration. Usually this is desirable. However, in rare cases, this can cause failure
of calculation. In this case please change this item to 0.

25. String. This is the scratch path without $USER! For example, if you set /scratch/$USERin
line 21, this item should be set as /scratch/. Note that if you parallelize the pro-
gram on different nodes, this path must be available for all the nodes!

26. For internal use.

27. String. This is used for counterpoise calculations. For x, no counterpoise is applied.
To do a counterpoise calculation, please write down the indices of the dummy
atoms, say: 0 1 2. Note that the indices are separated by spaces and start from
0 !

28. 0 or positive integer. For closed-shell molecules, this item can always be 0. For
high-spin open-shell molecules, when then CC iteration does not converge, one can
increase it to 1, 2, 3, · · · . However, a larger number will increase the computational
cost!

With these three files one can perform an incremental calculation.

3.2.2 Output Files

When a calculation is accomplished, some files are appearing:

• scratch path/*.int* These are the “file 1” for Molpro.

• scratch path/*.wfu* These are the “file 2” for Molpro.

• *.out Main output file.

• A directory x_pid x is the input file name, and pid is the process ID of the task
performed. In the directory the files we have:

– *.inp and *.out The input and output files for the calculation of each in-
crement.

– *.pdb This file contains the domain information in standard protein data
bank (PDB) format.

– *restart* Information for restart. Never change them!

3.3 Practical Guides of Apts

3.3.1 Perform a Standard Calculation

To perform an inc3-db-B0-CCSD(T)/VDZ calculation for CH3CHO with four CPUs, we
first prepare three files: an XYZ file ch3cho.xyz (see Code 3.1), a node file nodes (see
Code 3.2) and an input file ch3cho.inp (see Code 3.3). With these files one can simply
use apts ch3cho.inp > ch3cho.out to perform the calculation. Note: for F12 or high-
spin open-shell calculations, some extra calculations are needed which are introduced in
the following section.

When the calculation is accomplished, one can find ch3cho.out and a directory
(say) ch3cho_2341. One can find the following output in ch3cho.out:
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Code 3.4: Output file of the inc3-db-B0-CCSD(T)/VDZ calculation of CH3CHO (mod-
ified for typesetting).

1 -- CCSD(T) Energy --

2 ---------------------------------------------------

3 domain Correlation Energy Incre Corr -Energy

4 ---------------------------------------------------

5 D_0 -0.2463108771 -0.2463108771

6 D_1 -0.0726881952 -0.0726881952

7 D_2 -0.1409898215 -0.1409898215

8 D_0_1 -0.3856199773 -0.0666209050

9 D_0_2 -0.3946343881 -0.0073336894

10 D_1_2 -0.2598940406 -0.0462160239

11 D_0_1_2 -0.5808648709 -0.0007053587

12 ---------------------------------------------------

13 order Incre Corr -Energy Tot In-Corr -Energy

14 ---------------------------------------------------

15 1 -0.4599888938 -0.4599888938

16 2 -0.1201706184 -0.5801595122

17 3 -0.0007053587 -0.5808648709

18 ---------------------------------------------------

19 Scf Energy: -152.8479006345

20 Total Incremental Correlation Energy: -0.5808648709

21 ---------------------------------------------------

22 Total MP2 Energy: -153.300852374473010 au

23 Total CCSD Energy: -153.413421130912013 au

24 Total CCSD(T) Energy: -153.428765505367011 au

25 +++++++++++++++++++++++++++++++++++++++++++++++++++

26 Hartree -Fock Time: 1s

27 Decomposition Time: 1s

28 Correlation Wall Time: 15s

Most of the items are self-explained. For instance, the line starting with D_0_1 is
the calculation of increment ε01; the Total CCSD(T) Energy etc. is the corresponding
final incremental CCSD(T) energy. Note that the MP2 energy is usually not useful.

3.3.2 Visualization of Domains

To visualize of domains, an easy way is to use the following Tcl script (with file name
domainshow.tcl) with Vmd.

Code 3.5: Tcl script for visualization of domains.

1 # domainshow.tcl

2 proc domainshow { fn } {

3 set id [mol load pdb $fn]

4 mol modselect 0 $id "chain A"

5 mol modstyle 0 $id "Licorice" 0.100000 10 .000000 10

.000000

6 mol modcolor 0 $id "ResId"

7 mol addrep $id

8 mol modselect 1 $id "chain C"

9 mol modstyle 1 $id "VDW" 0.100000 20 .000000

10 mol modcolor 1 $id "ResID"
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11 }

1. Get the file ch3cho_domains.pdb from the directory ch3cho_2341;

2. Load Vmd and open the TkConsole;

3. Load the Tcl script by: source domainshow.tcl;

4. Run the command: domainshow ch3cho_domains.pdb, done!

In the OpenGL window one can see the domains (see Figure 3.3.1). One can further
render it with more configurations.

Figure 3.3.1: Visualization of domains by Vmd.

3.4 Special Issues for F12 and High-spin Open-shell Cal-
culations

3.4.1 Perform a F12 Calculation

For a F12 calculation, one must add a “F12 correction term”. Taking inc3-db-B0-
CCSD(T)-F12/VDZ of CH3CHO as an example, one should first run the following cal-
culation:

Code 3.6: Input file for inc3-db-B0-CCSD(T)-F12/VDZ of CH3CHO.

1 0 # 0 new mission; pid: restart

2 ch3cho.xyz # Molecule coordinates

3 0 # Charge

4 1 # Multiplicity , i.e. 2S+1

5 boys # Localization strategy: boys

6 3 # Number of domains

7 3 # Order of incremental expansion

8 6.0 # Truncation distance
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9 0 # Distance truncation flag

10 0 # Core correlation

11 No # (Not used yet)

12 0 # (Not used yet)

13 vdz # Basis set

14 (p/s) # Dual basis set flag

15 0.1 # Buffer size

16 0 # ECP information

17 0 # Frozen core in ECP

18 ccsd(t)-f12# Correlation method

19 2000 # Memory size , in MW

20 molpro # Quantum Chemistry Program

21 molpro.exe -W /scratch/$USER -d /scratch/$USER # cmd

22 0 # Orbital cubes

23 ./nodes # File containing nodes to parallelization

24 0 # Canonicalization

25 /scratch/ # Scratch path

26 3.2d-5 # OSV parameter

27 x # Dummy atoms

28 0 # CC shift

The output file contains:

Code 3.7: Output file for inc3-db-B0-CCSD(T)-F12/VDZ of CH3CHO.

1 WARNING: For F12 energies , one must add the "F12 singles

correction" to the total energies !!

2 Total CCSD -F12a Energy: -153.554846584366004 au

3 Total CCSD -F12b Energy: -153.539346083519007 au

4 Total CCSD(T)-F12a Energy: -153.569110386199014 au

5 Total CCSD(T)-F12b Energy: -153.553609885352017 au

Now, perform a standard CCSD(T)-F12/VDZ for CH3CHO. Of course this could be
long, but one does not need to wait for the entire calculation to be accomplished, but
just wait until the following output appears:

Code 3.8: Output file for CCSD(T)-F12/VDZ of CH3CHO.

1 CABS -singles contribution of -0.04551365 patched into

reference energy

Now, add −0.04551365 to −153.569110386199014 and −153.553609885352017, one
can obtain the final results of inc3-db-B0-CCSD(T)-F12/VDZ calculation. This is ex-
actly (2.5.2).

3.4.2 Perform a High-spin Open-shell Calculation

For instance, to calculate inc3-db-B0-CCSD(T)/VDZ of a triplet state of CH3CHO, one
should first run the following calculation:

Code 3.9: Input file for inc3-db-B0-CCSD(T)/VDZ of a triplet state of CH3CHO.

1 0 # 0 new mission; pid: restart

2 ch3cho.xyz # Molecule coordinates

3 0 # Charge

4 3 # Multiplicity , i.e. 2S+1
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5 boys # Localization strategy: boys

6 3 # Number of domains

7 3 # Order of incremental expansion

8 6.0 # Truncation distance

9 0 # Distance truncation flag

10 0 # Core correlation

11 No # (Not used yet)

12 0 # (Not used yet)

13 vdz # Basis set

14 (p/s) # Dual basis set flag

15 0.1 # Buffer size

16 0 # ECP information

17 0 # Frozen core in ECP

18 rccsd(t) # Correlation method

19 2000 # Memory size , in MW

20 molpro # Quantum Chemistry Program

21 molpro.exe -W /scratch/$USER -d /scratch/$USER # cmd

22 0 # Orbital cubes

23 ./nodes # File containing nodes to parallelization

24 0 # Canonicalization

25 /scratch/ # Scratch path

26 3.2d-5 # OSV parameter

27 x # Dummy atoms

28 0 # CC shift

The output file contains:

Code 3.10: Output file for inc3-db-B0-CCSD(T)/VDZ of triplet state of CH3CHO.

1 WARNING: For RCCSD(T) energies , one must add the ACTIVE

correction to the total energies !!

2 Total MP2 Energy: -152.257146651653017 au

3 Total CCSD Energy: -153.256639898830002 au

4 Total CCSD(T) Energy: -153.268821998830020 au

Now, perform a dual basis set CCSD(T)/VDZ of a triplet state of CH3CHO, with
only the singly occupied orbitals correlated. One can copy the file ch3cho_corr_0.inp

to ch3cho_open.inp and change the input below the molecular geometry as:

Code 3.11: Input file for standard dual basis set CCSD(T)/VDZ of triplet state of
CH3CHO, with only the singly occupied orbitals are correlated.

1 ! 1-site domain correlation

2 basis={

3 default , vdz;

4 }

5 {rhf; maxit , 1; shift , 1.e+10, 1.e+10; wf, 24, 1, 2; start ,

2102.2; save , 2500.2}

6 {locali , boys; core , 3; print , orbital , charge; save ,

2500.2; order , fock}

7 {rccsd(t); maxit , 100; THRESH ,ENERGY =1.0D-05,COEFF =1.0D

-03;occ , 13; closed , 11; core , 11; wf , 24, 1, 2; orbital ,

2500.2 , ignore_error =1;}

Run this calculation by Molpro. The output contains:
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Code 3.12: Output file for the Molpro calculation.

1 Total correlation energy -0.004083874101

Now, add −0.004083874101 to −153.268821998830020 one can obtain the final re-
sults of the inc3-db-B0-CCSD(T)/VDZ calculation of the triplet state of CH3CHO.
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Applications of the Incremental
Scheme

4.1 Systems from Benchmark Sets

In recent years, numerous benchmark studies appeared establishing the performance
of quantum chemical methods in specific classes of systems. The intrinsic accuracy
of an ab initio method can only be determined when the BSIE is kept small. For
benchmark sets of small systems, such as the halogen bonds set XB18 [166], the CBS
energies are obtained from an AVQZ-AV5Z extrapolation. If the systems are larger, such
extrapolation is too expensive, and several semi-empirical procedures were proposed. For
instance, in the biomolecular interaction energies set S66 [167], CCSD(T)/CBS energies
were estimated as:

E (CCSD(T)/CBS) =E (HF/AVQZ) + Ecorr (MP2/CBS)

+ ∆E (CCSD(T))
(4.1.1)

∆E (CCSD(T)) = E (CCSD(T)/AVDZ)− E (MP2/AVDZ) (4.1.2)

In the large noncovalent complexes set L7 [168] a similar procedure was used. Here we
use inc3-db-B0-F12 to estimate the CBS interaction energies for some selected cases to
examine the performance of our new method as well as to test the validity of (4.1.1)
and (4.1.2)[132].

The following complexes were selected: CH3OH-peptide, pyridine-pyridine(π-π),
CH3NH2-pyridine and N(CH3)3-chlorobenzene. The first two are electrostatic and dis-
persion bound complexes, respectively, and the last two are of mixed intermolecular
force nature. The geometries of the first three and the last one are extracted from the
S66 [166] and X40 [169] sets, respectively. We have performed inc3-db-B0 and exact (if
possible) calculations on the complexes, but only exact ones on monomers.

For all the systems we set nd = 6 and first performed the computations without
distance screening. In Table 4.1.1 we list the timings of those calculations. There
are two competing factors determining the efficiency: increasing the number of domains
raises the computational cost since there are more increments to evaluate; however, since
each increment becomes smaller the time saving brought by the db-B0 scheme increases.
Therefore, our approach will be more efficient for larger basis sets. For the AVDZ, the
inc3-db-B0 calculations take slightly longer than the traditional implementation, since
the two factors counteract each other to some degree. But at the AVTZ level, the inc3-
db-B0 approach undoubtedly outperforms: our method can save up to 30% of the real
time and by parallelization, calculations requiring usually several months become feasible
within a few days. For N(CH3)3-chlorobenzene, we found from the AVDZ calculation

45
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that a truncation distance rt = 5.4 Å can be applied with little accuracy loss, leading
to a reduction of the real time by 33 days at the AVTZ level. By parallelization with 10
to 20 CPU cores, which are available as standard hardware nowadays, these calculations
can be accomplished in less than 5 days. Thus our approach is significantly faster than
the traditional implementation and can be efficiently parallelized.

Table 4.1.1: Efficiency of inc3-db-B0-F12 methods. All the calculations were performed
with the Intel(R) Xeon(R) E5-4620 CPU cores and 16 GB RAM per core.

inc3-db-B0 ex-db
system ne/nbfa wall timeb real time real time

AVDZ

CH3OH-peptide 44/260 2.9 hours (10) 19.8 hours 12.9 hours
pyridine-pyridine(π-π) 60/366 8.7 hours (20) 5.0 days 4.9 days
CH3NH2-pyridine 44/274 3.8 hours (10) 21.1 hours 18.5 hours
N(CH3)3-chlorobenzene 62/383 18.6 hours (20) 7.8 days 6.1 days
N(CH3)3-chlorobenzene(t)c 62/383 16.6 hours (20) 6.0 days 6.1 days

AVTZ

CH3OH-peptide 44/575 1.0 days (20) 13.0 days 16.4 days
pyridine-pyridine(π-π) 60/782 4.4 days (20) 72.1 days N/Ad

CH3NH2-pyridine 44/598 2.5 days (10) 13.3 days 20.2 days
N(CH3)3-chlorobenzene 62/832 14.4 days (20) 87.9 days N/Ad

N(CH3)3-chlorobenzene(t)c 62/832 4.2 days (20) 54.3 days N/Ad

a ne: number of correlated electrons; nbf: number of basis functions.
b The number in parentheses is the number of CPU cores for parallelization.
c Performed with truncation distance rt = 5.4 Å.
d Beyond our computational ability.

Another important aspect is accuracy. We observe that the inc3-B0 error is very
small, i.e., less than 0.15 and 0.04 kcal mol−1 for CCSD(T)-F12x at the AVDZ and
AVTZ level, respectively. The error trend is very similar for F12a and F12b. This sug-
gests that the inc3-B0 scheme grasps the essence of the locality of electronic correlation,
approaching the exact energy in high precision with minimal computational cost. Maxi-
mal errors occur for the dispersion bound pyridine-pyridine(π-π) complex, implying the
delocalized nature of the stacked aromatic system and the sensitivity to the basis set.
Nevertheless, at the inc3-db-B0-CCSD(T)-F12a/AVTZ level, the energies agree with
the standard CCSD(T)-F12a/AVTZ within 0.03 kcal mol−1, and the CCCD(T)/CBS
estimations within 0.24 kcal mol−1. The better performance of CCSD(T)-F12a is com-
patible with the observation that for AVDZ and AVTZ F12a is closer to the CBS limit
than F12b[36]. Thus our inc3-db-B0 approach can work with CCSD(T)-F12 theory per-
fectly to obtain the near CBS energies. At the same time, we also confirm the validity
of (4.1.1) and (4.1.2).

Summing up, with the inc3-db-B0-CCSD(T)-F12a/AVTZ method one can obtain
energies of CCSD(T)/AV5Z quality which at present corresponds to the limit of accuracy
that can be reached for large systems. The results obtained agree with the CBS limit
within a few tenths of a kcal mol−1. Note that our method is trying to approximate
the absolute energy, thus it is very flexible because one can apply the inc3-db-B0 and
traditional implementations simultaneously in practice for molecules of different sizes,
e.g. to evaluate the interaction energies. The calculations for large systems of about 60
correlated electrons and 800 basis functions can be accomplished in only 5 days with
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Table 4.1.2: Interaction energies by inc3-db-B0-F12 methods. Energy unit: kcal mol−1.

AVDZ AVTZ
method inc3-db-B0 standard inc3-db-B0 standard CBS in literature

CH3OH-peptide
CCSD-F12a 6.00 6.18 5.81 5.90
CCSD-F12b 5.93 6.14 5.84 5.94
CCSD(T)-F12a 6.69 6.75 6.43 6.45 6.19a

CCSD(T)-F12b 6.62 6.70 6.46 6.48

pyridine-pyridine(π-π)
CCSD-F12a 3.12 3.82 2.56 N/Ac

CCSD-F12b 2.94 3.66 2.64 N/Ac

CCSD(T)-F12a 4.81 5.33 4.09 N/Ac 3.90a

CCSD(T)-F12b 4.62 5.16 4.18 N/Ac

CH3NH2-pyridine
CCSD-F12a 3.54 3.87 3.27 3.37
CCSD-F12b 3.45 3.79 3.33 3.40
CCSD(T)-F12a 4.48 4.75 4.11 4.14 3.97a

CCSD(T)-F12b 4.34 4.60 4.16 4.17

N(CH3)3-chlorobenzene
CCSD-F12a 1.99 2.03 1.65 N/Ac

CCSD-F12b 1.94 1.98 1.69 N/Ac

CCSD(T)-F12a 2.60 2.63 2.30 N/Ac 2.11b

CCSD(T)-F12b 2.56 2.58 2.34 N/Ac

N(CH3)3-chlorobenzene(t)d

CCSD-F12a 1.85 2.03 1.59 N/Ac

CCSD-F12b 1.80 1.98 1.63 N/Ac

CCSD(T)-F12a 2.42 2.63 2.21 N/Ac 2.11b

CCSD(T)-F12b 2.39 2.58 2.25 N/Ac

a From S66 set[166].
b From X40 set[169].
c Beyond our computational ability.
d Performed with truncation distance rt = 5.4 Å.

10 to 20 CPU cores. We also point out that of course the inc3-db-B0-F12 approach
can also obtain near CBS limit of the CCSD energy. Thus, the inc3-db-B0-CCSD(T)-
F12a/AVTZ is able to serve as benchmark reference!

4.2 Water Clusters

4.2.1 Minimum Structure of Water Hexamers

The water hexamer has been attracting the attention of the scientific community for a
long time [170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180], since it has the size at
which the stable isomer changes from a two-dimensional (2D) to three-dimensional (3D)
structure. For the hexamer, the cage and prism isomer (see Figure 4.2.1) are known to
be more stable than the other isomers. However, which one is most stable has puzzled
investigators for a long time, since they are nearly degenerate in energy. In 2012 a



48 CHAPTER 4. APPLICATIONS OF THE INCREMENTAL SCHEME

rotational spectra study suggested that the cage isomer is the minimum structure [175],
whereas in the same year a quantum simulation with dynamic effects taken into account
argued that the prism is more stable [177]. Since the energy difference between them is
at subchemical accuracy (about 0.2 kcal mol−1), a quantum chemical method applied to
the problem must be extremely accurate to be successful. The inc3-db-B0 approach can
be very efficient for water clusters since the LMOs can be well localized on each water
molecule. However, it is also a challenge that due to the small interaction energy, the
method must be highly accurate or it may even predict the wrong sign. We performed
inc3-db-B0-CCSD(T)-F12 calculations on the two isomers with nd = 6, since in this case
the KM algorithm decomposes the cluster perfectly into 6 water domains. The results
are listed in Table 4.2.1.

Table 4.2.1: Inc3-db-B0-F12 results of water hexamers. The interaction energy is defined
as: Ecage −Eprism with units: kcal mol−1. All the calculations were performed with the
Intel(R) Xeon(R) CPU E7-8837 CPU cores and 8 GB RAM per core.

AVDZ AVTZ
Method inc3-db-B0 standard inc3-db-B0 standard

CCSD-F12a 0.13 0.23 0.16 0.20
CCSD-F12b 0.14 0.22 0.17 0.20
CCSD(T)-F12a 0.16 0.25 0.22 0.24
CCSD(T)-F12b 0.17 0.24 0.23 0.24
CCSD(T)/CBSa 0.25

ne/nbfb 48/246 48/552
prism isomer
real time 18.8 hours 14.1 hours 8.6 days 16.1 days
wall timec 2.7 hours 1.0 days
cage isomer
real time 16.0 hours 13.7 hours 10.6 days 16.1 days
wall timec 2.3 hours 1.3 days

a Geometries and CCSD(T)/CBS results are taken from Bates’ work[174].
b ne = number of correlated electrons; nbf = number of basis functions.
c Parallelized by 10 cores.

We can see from Table 4.2.1 that the inc3-db-B0 approach produces nearly the same
CCSD(T)-F12/AVTZ energy, which differs from the CCSD(T)/CBS for only 0.02 kcal
mol−1. Since this CBS energy is also estimated by an empirical procedure, our result
might be even more accurate. Comparing with a very recent study which gives this
energy as 0.44 kcal mol−1 at the CCSD(T)/AVDZ level[178], the importance of the
elimination of the BSIE is here emphasized again. Even CCSD(T)-F12/AVDZ improves
the result significantly. We also see that for AVTZ our method can save almost 50%
of the real time necessary for the exact dual-basis set approach and by parallelization,
the calculations required only 1 day! We also conclude that the prism isomer is more
stable in the nonrelativistic electronic energy. To further clarify the stability order, other
physical effects like nuclear and thermal motions must be accurately treated.

4.2.2 Larger Clusters

To further examine the performance of the inc3-db-B0 approach, we performed a series
of CCSD(T)/VDZ calculations on some isomers of water hexamer[178], octamer[181],



4.2. WATER CLUSTERS 49

11-mer[182] and 17-mer[183], the structures of which are shown in Figure 4.2.1. The
inc3-db-B0, as well as two other approaches, i.e. OSV[100] and DLPNO[98] schemes,
are used for comparison. The results are listed in Table 4.2.2.

(H2O)6

(H2O)11

(H2O)17

(H2O)8

prism book2cage

434

sphere 441’44 552’5

515a

D2dS4

Figure 4.2.1: Some isomers of the water clusters.

From the aspect of accuracy, the incremental scheme always outperforms DLPNO
and OSV: the error of inc3-db-B0 is always less than 0.02 kJ mol−1, at the level of
subchemical accuracy. Even an inc2-db-B0 implementation exhibited excellent perfor-
mance, of course this is due to the nature of molecular cluster and for other systems,
we cannot expect that “inc2” always shows such high accuracy. The error of the other
two approaches is often larger than 1 kJ mol−1, especially that of the binding energy is
dozens of kilojoule per mole! Our inc3-db-B0 approach is obviously advanced in accura-
cy and can be used to treat systems with very small energy difference safely. OSV and
DLPNO are perheps faster than ours, however the cost is the loss of accuracy. In fact,
For 17-mers, DLPNO has identified an incorrect minimum! Therefore, from the case of
water clusters, the excellent performance of the inc3-db-B0 approach in relative energy
is highlighted.
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Table 4.2.2: Errors of DLPNO-, OSV- and inc(2/3)-db-B0-CCSD(T)/VDZ methods.

Errors of binding energy (E[(H2O)n]− nE[H2O] in kJ mol−1)a

Isomer DLPNO OSV inc2-db-B0 inc3-db-B0 CCSD(T)

book2 5.02 16.38 0.66 0.08 Ref
cage 5.75 17.69 0.67 0.12 Ref
prism 6.93 17.99 0.73 0.15 Ref

D2d 9.05 28.51 1.51 0.16 Ref
S4 7.61 28.56 1.43 0.16 Ref

515a 14.13 39.95 2.29 0.17 Ref
434 16.73 40.66 2.23 0.15 Ref

552’5 30.30 71.89 1.67 Ref N/Ab

sphere 29.99 75.83 1.65 Ref N/Ab

441’44 26.42 74.34 3.03 Ref N/Ab

Errors of conformation energy (E[isomer]− E[minimum isomer] in kJ mol−1)a

Isomer DLPNO OSV inc2-db-B0 inc3-db-B0 CCSD(T)

book2 −1.91 −1.61 −0.07 −0.07 Ref
cage −1.17 −0.30 −0.07 −0.04 Ref
prism minimum isomer

D2d 1.44 −0.06 0.08 0.01 Ref
S4 minimum isomer

515a −2.60 −0.72 0.06 0.02 Ref
434 minimum isomer

552’5 3.87 −2.45 −1.35 Ref N/Ab

sphere 3.57 1.49 −1.38 Ref N/Ab

441’44 minimum isomer

a In the table, the listed numbers of the errors of the corresponding item relative to the
“Ref” one. For instance, the binding energy of the book2 isomer of the water hexamer
calculated by DLPNO- and standard CCSD(T)/VDZ is −249.76 and −254.78 kJ mol−1,
respectively, thus the error is (−249.76)− (−254.78) = 5.02 kJ mol−1.
b Beyond our computational ability.

4.3 The Rotation Barrier of Biphenyl

The rotation barrier of the biphenyl 1–1’ bond is unexpectedly difficult to compute[184,
185, 186, 187, 188, 189, 190, 191, 192, 193, 194]. An experiment reported that the barrier
of rotation occurs at 44.4±1.2◦[195] and the height from the 0◦ conformation is 1.4±0.5
kcal mol−1[196]. However most calculations gave a too high barrier, and Johansson’s
high-level theoretical treatment[194], including core correlation energy, extrapolation
to CBS and FCI limit, relativistic effects, intramolecular basis set superposition error
correction and thermal correction, predicted a barrier of 1.9 kcal mol−1. We tried
to compute the valence correlation part[132] with the inc3-db-B0-F12 approach. This
might be a difficult case for the inc3-db-B0 approach due to the different conformations
of the molecule involved and the aromaticity. The computed barrier height by inc3-db-
B0-CCSD(T)-F12 is shown in Table 4.3.1.

From Figure 4.3.1, we see that for the two conformations the domain decompositions
remain nearly the same, indicating the stability of our KM decomposition algorithm,
which is important for a PES exploration. The results in Table 4.3.1 confirm the accu-
racy of our approach. The CCSD(T)/AVQZ barrier 2.01 kcal mol−1 is only 0.02 kcal
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at 0 degree at 44.4 degree

Figure 4.3.1: Biphenyls. The balls stand for the centers of the LMOs and those with
the same color constitute a domain.

Table 4.3.1: Inc3-db-B0-F12 results for the rotation barrier of biphenyl. The interaction
energy is defined as: E44◦ − E0◦ with unit: kcal mol−1. All the calculations were
performed with the Intel(R) Xeon(R) E5-4620 CPU cores and 16 GB RAM per core.

AVDZ AVTZ
Method inc3-db-B0 standard inc3-db-B0 standard

CCSD-F12a 2.30 2.34 2.22 N/Ab

CCSD-F12b 2.31 2.35 2.25 N/Ab

CCSD(T)-F12a 2.19 2.23 1.99 N/Ab

CCSD(T)-F12b 2.20 2.23 2.02 N/Ab

CCSD/AVQZa 2.25
CCSD(T)/AVQZa 2.01

ne/nbfc 58/366 58/782
0◦ conformation
real time 4.4 days 4.7 days 57.4 days N/Ab

wall timed 15.8 hours 6.9 days
44◦ conformation
real time 4.7 days 4.7 days 58.9 days N/Ab

wall timed 16.8 hours 8.3 days

a Geometries and CCSD(T)/AVQZ results are taken from Johansson’s work[194].
b Beyond our computational ability.
c ne = number of correlated electrons; nbf = number of basis functions.
d Parallelized by 10 cores.

mol−1 higher than the inc3-db-B0-CCSD(T)-F12a/AVTZ result, suggesting that the
valence correlation component of the barrier is of high accuracy. Moreover, we note
that our approach can accurately predict the barrier accurately with a relatively small
basis set (AVTZ) and ordinary hardware (10 CPU cores) in 8 days. An traditional
implementation of CCSD(T)/AVQZ, requires abundant computational resources.

4.4 Hydration of Trivalent Lanthanide Ions

Ion hydration is a fundamental phenomenon in nature, determining the solvation dy-
namics, chemical reactivity and several biological as well as industrial processes. Of
the numerous possible atomic cations and anions, the hydration of lanthanides(III) has
been an active subject of research for a long time since it is involved in many practical
applications. For the extraction and separation of lanthanides, hydration energies and
kinetics are necessary quantities to calculate the relative selectivities and binding rates
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in the development of effective extracting ligands or solvents[197, 198].
The lanthanide(III) hydration is also of academical interest because the very subtle

changes in electronic structures from La3+ to Lu3+ nevertheless induce quite complex
hydration behaviors[199]. It is accepted that the number of water molecules in the
first hydration shell, i.e. the coordination number (CN), is 9 and 8 for light (e.g. La3+,
Ce3+) and heavy (e.g. Yb3+, Lu3+) lanthanides, respectively[199]. From Figure 4.4.1 we
see that the octa- and nona-lanthanide(III) aqua complexes possess a square antiprism
(SAP) and tricapped trigonal prism (TTP) structure, respectively[199].

Figure 4.4.1: Geometries of water clusters (H2O)n and lanthanide(III) aqua complexes
Ln(H2O)3+n (n = 8, 9).

Modern experimental studies of lanthanide(III) hydration are nearly always cou-
pled with theoretical methods. The X-ray absorption spectroscopy method is the most
important one in unraveling lanthanide(III) hydration, and the interpretation of its re-
sults must rely on some models and simulations[200, 201, 202]. From a pure theoretical
point of view, molecular dynamics and quantum chemistry have both been applied to
this field. For quantum chemistry one should realize that the large number of elec-
trons, strong relativistic effects and incomplete 4f shell occupation in lanthanides make
their study quite difficult. Nevertheless, the development of ECP improves the com-
putational ability for lanthanides. The large- and small-core energy-consistent PPs for
lanthanides[203, 204, 205] have proven to be both accurate and efficient. Both sets of
PPs were applied in studies of lanthanide(III) hydration [206, 207, 208, 209, 126].

While DFT and MP2 have been applied to the lanthanide(III) aqua complexes
[206, 207, 208, 209], the intrinsic accuracy of these methods remains unknown, be-
cause a benchmark with a highly accurate ab initio method such as CCSD(T) used to
be impossible due to the large computational effort. Thus, the inc3-db-B0 approach was
used to perform CCSD(T) calculations on Ln(H2O)3+n (n = 8, 9) in gas phase to produce
very accurate results as well to as examine the reliability of the previous studies.

The octa- and nona-aqua lanthanide(III) complexes, i.e. Ln(H2O)3+8 and Ln(H2O)3+9 ,
the free Ln3+ ions as well as the water clusters (H2O)8 and (H2O)9 with are considered[126].
For hydrogen and oxygen aug-cc-pVTZ basis sets were used. For the lanthanides, the
core shell electrons were substituted by scalar-relativistic 4f-in-core PPs [203]. The va-
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lence electrons were represented by (8s7p6d3f2g)/[6s5p5d3f2g] basis sets, which contain
a set of (2s1p1d) diffuse and (3f2g) polarization functions[210]. The geometries opti-
mized at the MP2 level were obtained from Ciupka’s work[209] and are shown in Figure
4.4.1. The energies are calculated with the inc3-db-B0-CCSD(T) method. The gas
phase binding energies according to the following reaction in gas phase are calculated:

Ln3+(g) + (H2O)n(g) −→ Ln(H2O)3+n (g) (n = 8, 9) (4.4.1)

In Table 4.4.1 and Figure 4.4.2 we show the errors of HF, B3LYP, CCSD[126] and
MP2, SCS-MP2[209] energies with respect to the CCSD(T) reference. We observe that
MP2 and CCSD overestimate the binding energies by about 35 and 5 kJ mol−1, respec-
tively, and the errors for octa- and nona-aqua ions are almost identical. In contrast
B3LYP underestimates the binding energies and exhibits size-dependent errors. For
octa-aqua ions its error (15.64 kJ mol−1) is much smaller than for MP2, and for nona-
aqua ions (37.62 kJ mol−1) slightly larger. A similar trend is observed in the case of
SO2−

4 (H2O)n clusters [211]: as n increases from 3 to 6, the binding energy error of MP2
changes from 1.33 to 4.64 kJ mol−1 whereas, that of B3LYP increases drastically from
1.17 to 26.48 kJ mol−1. These observations suggest that for these aqua complexes, the
error of traditional DFT, at least for B3LYP, increases with the system size, whereas
MP2 is more robust.

Table 4.4.1: The RMSDs (unit: kJ mol−1) of the binding energy errors with respect to
the CCSD(T) reference for all the considered methods.

Method Ln(H2O)3+8 Ln(H2O)3+9
HF 3.05 12.71
MP2 35.09 32.06
CCSD 5.72 5.19
B3LYP 15.64 37.62
SCS-MP2 5.13 5.11

Astonishingly, the accuracy of HF is better than the one of MP2 and B3LYP. Howev-
er, the unsystematic behavior of errors reflects that this is an example of “right answer for
wrong reason”, i.e. a lucky error cancellation. SCS-MP2 shows an excellent performance,
comparable with the one of CCSD, however the error changes from an overestimation
at La gradually to an underestimation at Lu. Splitting the MP2 correlation energy
contribution to the energy change of reaction (4.4.1) into triplet and singlet components
suggests that the triplet component always favors reaction (4.4.1), whereas the singlet
component always disfavors it, implying the former being overestimated or/and the lat-
ter underestimated. This is exactly what the spin-component-scaling approach tries to
correct and the physical reason why SCS-MP2 improves MP2 here significantly[126].

By CCSD(T) calculations, we proved that B3LYP and MP2 have similar accuracy
and SCS-MP2 is nearly comparable with CCSD. However B3LYP as well as MP2 cannot
treat the subtle energy change well. This reminds us again that results of DFT or
even low-level ab initio correlation methods like MP2 should be viewed with caution.
SCS-MP2 has been proved very accurate thus its prediction of CNs by Ciupka[209]
is reliable. Moreover, combining Ciupka’s[209] and the author’s[126] work, the most
accurate hydration Gibbs free energies from first principles so far are obtained[126], see
Table 4.4.2: the RMSD of the errors relative to the experimental results[212] is only
25 kJ mol−1. Thus the inc3-db-B0 approach as well as the computational strategies
proposed in these works[209, 126] can be applied to, at least, any hydrated charged
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Figure 4.4.2: The binding energy errors (unit: kJ mol−1) with respect to the CCSD(T)
reference for all the considered methods. The errors of method X here are defined as
DCCSD(T) −DX , where DX is the binding energy computed by method X.

compound systems to get accurate energies. This is especially important for chemical
species that lack experimental data. In fact, a similar study on actinide(III) hydration
has been carried out.

4.5 The Relative Stability of Isomers of Double Fullerene
Adducts

Steric effects are generally accepted as a key factor that determines the stability of
a chemical system. It originates from Paulis principle: as two molecular fragments
approach, their electron clouds will repel each other in order to decrease the overlap-
ping. Thus, a molecule with compact distribution of non-polar functional groups (i.e.
excluding hydroxyl groups or halogens, etc., where electrostatic or hyperconjugation
interactions could play a significant role) is usually thought to be less stable than one
with a more extensive distribution. A textbook example is that cis-2-butene and cis-
dimethylcyclopropane are less stable than their trans isomers. A seemingly exception
is that cis-1,3-dimethylcyclobutane is more stable than the trans isomer. The reason is
that in the cis isomer both methyl groups can occupy the equatorial position to stay
far away from the neighbor C–H bonds, while in the trans isomer one methyl group has
to be in the axial position, experiencing a larger steric congestion with the neighbor
C–H bonds. Thus, the stability order is essentially still determined by the steric effect.
Knowing these examples, it is not surprising that for the double C60 adduct of pentacene
1 (see Figure 4.5.1) the sterically less crowded anti -1 form was assumed to be the most
stable isomer[213].

However, one must keep in mind that the steric effect is only the repulsive part
of the vdW interaction between molecules; there is another attractive part: dispersion
interaction. According to Londons formula, molecular fragments with a larger number
of electrons and a concomitant higher polarizability will exhibit stronger dispersion
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Table 4.4.2: The hydration Gibbs free energies (unit: kJ mol−1) of lanthanide(III) aqua
complexes.

Ln Ln(H2O)3+8
a Ln(H2O)3+9

a Computedb Experimentc

La −3171.63 −3187.01 3187 3145
Ce −3201.16 −3216.71 3217 3200
Pr −3233.51 −3248.23 3248 3245
Nd −3264.83 −3277.78 3278 3280
Pm −3294.75 −3307.10 3307 3250
Sm −3324.28 −3335.82 3336 3325
Eu −3354.10 −3364.55 3364 3360
Gd −3378.82 −3387.95 3388 3375
Tb −3405.57 −3413.09 3413 3400
Dy −3432.29 −3437.84 3437 3425
Ho −3458.33 −3462.90 3462 3470
Er −3484.11 −3486.18 3486 3495
Tm −3509.48 −3508.43 3509 3515
Yb −3534.16 −3533.05 3534 3570
Lu −3556.26 −3553.09 3556 3515

RMSD 25

a The computed hydration free energies ∆GH from the author’s work[126].
b Obtained by averaging ∆GH of octa- and nona-aqua lanthanides(III) with a Boltzmann
factor exp (−∆GH/RT ), where T = 298.15 K.
c The experimental results are taken from Marcus’ work[212].

interaction[214]. Therefore, for bulky functional groups dispersion interactions could
have a great effect and result in many unusual chemical phenomena, like the existence
of all-meta-tert-butylhexaphenylethane[215] and some very long alkane C–C bonds[216].
For the very large C60 cage, dispersion interactions could be of considerable strength.
However, whereas HF omits dispersion interactions, standard DFT is well known to fail
to treat it accurately. Thus, a reliable prediction of the stabilities of syn-1 and anti -1
requires more advanced methods, such as ab initio correlation methods or DFT-D3[48].

Thus, the impact of dispersion interactions on the stability order of 1 were investigated[135].
To gain more insights, we also built three model molecules: the double cyclohexane
2, the [20]fullerene (C20) 3 and the dodecahedrane (C20H20) 4 adduct of pentacene.
To test the accuracy we also considered the corresponding simpler adducts of 1,2,4,5-
tetramethylbenzene (durene) 1’, 2’, 3’ and 4’. All the molecules are shown in Figure
4.5.1.

First we consider 1’ to 4’. We optimized their geometries at the TPSS-D3/SVP level.
Since the D3 dispersion correction favors the compact structures, we also performed ab
initio correlation computations on 2’ to 4’ to examine the possible bias. To make
the calculations feasible we have used the inc3-db-B0 and the DLPNO[98] approach
to perform the CCSD(T) calculations. From Table 4.5.1 we see that for 2’ at the
CCSD(T)/cc-pVDZ level the two methods have an excellent performance and support
the DFT-D3 results in Table 4.5.2. However, for 3’ and 4’, where a standard CCSD(T)
is unaffordable, a larger discrepancy appears and DLPNO even gives different signs for
cc-pVDZ and cc-pVTZ basis sets! Note that for such large systems all local correlation
methods have to discard a great number of numerical quantities to make the calculations
feasible, leading to significant potential errors. It is nontrivial to judge the accuracy for



56 CHAPTER 4. APPLICATIONS OF THE INCREMENTAL SCHEME

syn-1 anti-1

R R

R

R

R =

syn-1

anti-1

syn-2

anti-2

C60

syn-3

anti-3

syn-4

anti-4

Corresponding to 1', 2', 3', 4'

R R R

R

Figure 4.5.1: Molecules investigated for effects of intramolecular dispersion interaction.

3’ and 4’, but based on the performance for 2’, we believe that DFT-D3 is fair for the
relative stability of the syn and anti isomers.

Table 4.5.1: Energy differences between syn and anti isomers of 2’ to 4’ by ab initio
correlation methods forTPSS-D3/SVP optimized geometries.

Energya 2’ 3’ 4’

MP2/cc-pVDZ −0.26 N/Ab N/Ab

MP2/cc-pVTZ −0.26 N/Ab N/Ab

CCSD(T)/cc-pVDZ −0.23 N/Ab N/Ab

inc3-db-B0 CCSD(T)/cc-pVDZ −0.22 −0.09 N/Ab

DLPNO-CCSD(T)/cc-pVDZ −0.20 −0.66 +0.88
DLPNO-CCSD(T)/cc-pVTZ −0.06 +0.11 −0.90

a Electronic energy difference E(syn)− E(anti) in kcal mol−1.
b Beyond our computational ability.
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Confirming the accuracy of DFT-D3, we could determine the stability order of these
isomers. The results in Table 4.5.2 suggest that HF and three representative functionals:
B97, TPSS and B3LYP all suggest that the anti isomer is more stable, and for the bulky
adducted fragments, the energy difference is larger, indicating a larger steric effect.
However, once the D3 dispersion correction is introduced for DFT, all functionals imply
that the syn isomer is the more stable one! Even for syn-2’ the small cyclohexanes can
invert the stability order by about 0.5 kcal mol−1. In all cases, due to the dispersion
stabilization the more compact isomer, i.e. the syn form, is more stable than the trans
form.

Table 4.5.2: Energy differences between syn and anti isomers of all molecules considered
by HF and DFT methods for TPSS-D3/SVP optimized geometries.

Energya 1’ 2’ 3’ 4’

HF/cc-pVTZ +10.05 +0.23 +1.09 +2.09
B97/QZVPP +7.02 +0.20 +0.73 +2.12
TPSS/QZVPP +4.29 +0.13 +0.49 +1.25
B3LYP/TZVPP +5.81 +0.21 +0.73 +1.65
B97-D3/QZVPP −6.26 −0.37 −0.14 −1.25
TPSS-D3/QZVPP −6.15 −0.34 −0.19 −1.26
B3LYP-D3/TZVPP −5.71 −0.29 −0.02 −1.11

Energya 1 2 3 4

HF/cc-pVTZ +9.39 +1.60 +1.94 +2.03
B97/QZVPP +6.00 +1.26 +1.08 +1.37
TPSS/QZVPP +3.46 +0.83 +0.85 +0.73
B3LYP/TZVPP +4.87 +0.95 +1.11 +0.86
B97-D3/QZVPP −5.65 −0.09 −0.79 −0.88
TPSS-D3/QZVPP −5.61 −0.06 −0.67 −0.97
B3LYP-D3/TZVPP −5.19 −0.06 −0.53 −0.99

a Electronic energy difference E(syn)− E(anti) in kcal mol−1.

Some optimized structures as well as their NCI plots[61] are given in Figure 4.5.2.
or 2’ and 2, the dispersion stabilization effect of the latter is much weaker. For 2’
we see from Figure 4.5.2 that the two cyclohexane fragments can be in the energeti-
cally favorable “side-on” arrangement. A related fact is that some anaerobic microbe
are found to use ladderane derivatives to build rigid cellular compartments[217], and
computations[218] revealed that ladderanes in side-on arrangement can form quite strong
interactions. In 4.5.2 due to the rigid benzene constraint the C–H bonds of both cy-
clohexane fragments have to point towards each other, which is quite repulsive. Thus
the strong steric congestion almost cancels the dispersion stability. We also observe
that the dispersion effects are very similar for the aromatic C20 and saturated C20H20.
This is also compatible with other authors’ conclusions that σ/σ, π/π, σ/π dispersion
interactions share many similiarities[219, 220].

Taking the thermal effects into account for 1, we can obtain the Gibbs free energy
difference: ∆G(syn−anti) = −6.36 kcal mol−1 at TPSS-D3 level, and +1.15 kcal mol−1

at TPSS level. Thus, the dispersion stabilization between the two giant C60 cages inverts
the energy difference by more than 7 kcal mol−1, making syn-1 the more stable one. In
the original study[213], anti -1 was computed to be 0.36 kcal mol−1 more stable than syn-
1 by PM3[221], reflecting the inability of this semi-empirical method to treat dispersion
interactions. The more recent PM7[222] shows great improvement: using the TPSS-
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Figure 4.5.2: Geometries and noncovalent interaction visualization. For the surfaces,
red regions mean strong repulsion and green ones mean weak attraction.

D3/SVP geometries of this work, the heat of formation difference ∆H(syn − anti) by
PM3 and PM7 is +3.80 and −11.72 kcal mol−1, respectively. Based on these arguments,
we believe that in the high-speed vibration milling solid state synthesis of 1[213], the syn
isomer is actually the main product. The tendency of forming syn isomers is a positive
one, since while they share similar electronic structure, syn-facial fullerene cages can
facilitate the charge transfer between the moieties or absorption on surfaces, offering a
guide of designing molecular devices.

Besides confirming the usefulness of our inc3-db-B0 approach, we demonstrated that
for bulky functional groups like C60 the dispersion interaction can outperform the steric
effect, making a compact isomer like syn-1 the more stable one. Note that, many similar
stereochemical phenomena have been reported in the literature, but they may have quite
different origins. For instance, the case of cis-1,3-dimethylcyclobutane mentioned above
is still due to a steric mechanism. The “cis effect”, like cis-1,2-difluoroethylene having
lower energy than its trans isomer[223], is related to the hyperconjugation effect[224].
The “heterodox bond” in bimetallic complexes can also cause such consequences[225,
226]. Therefore, for a chemical problem one must be cautious not to be confined too
much by traditional rules and take all significant effects into account, even the usual
“negligible” dispersion force. In some aspects it resembles the gravitational force: it is
much weaker than the electrostatic force, but it can make huge contributions for massive
particles!

4.6 Singlet-triplet Gap of Biphenylcarbene

Carbene is a well-known star in organic chemistry. Its singlet and triplet states can lead
to different reactivity[227]. A recent work by Costa and Sander argues that the stability
of the spin states of diphenylcarbene can be controlled by the methanol solvent[228].
In that work the authors applied B3LYP-D3 to compute the energies of singlet and
triplet states of diphenylcarbene and diphenylcarbene–methanol complex. We will use
the more exact CCSD(T) method to examine these energies.

The results are listed in Table 4.6.1. The singlet-triplet gaps (STG) obtained by the
inc3-db-B0 approach agree well with those of the standard implementations, the largest
error being 0.62 kcal mol−1. The efficiency is also very good: at the VDZ level one can
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save about 30% computational cost for the diphenylcarbene–methanol complex, and
at the VTZ level, the inc3-db-B0-CCSD(T) calculation is even faster than a standard
CCSD one! Thus, the incremental scheme shows excellent accuracy and efficiency for
these high-spin open-shell molecules.

Table 4.6.1: Singlet-triplet gap (unit: kcal mol−1) of diphenylcarbene and its methanol
complex.

diphenylcarbenea diphenylcarbene–methanola

Method E(S− T)b E(S− T)b

standard CCSD/VDZ 5.11 −0.41
inc3-db-B0-CCSD/VDZ 4.63 (0.48) −0.09 (−0.32)
standard CCSD/VTZ 3.78 N/Ac

inc3-db-B0-CCSD/VTZ 3.65 (0.13) −2.56 (N/A)
standard CCSD(T)/VDZ 3.25 −2.20

inc3-db-B0-CCSD(T)/VDZ 2.84 (0.41) −1.58 (−0.62)
standard CCSD(T)/VTZ N/Ac N/Ac

inc3-db-B0-CCSD(T)/VTZ 1.57 (N/A) −4.75 (N/A)
B3LYP-D3/6-311++G(d,p)a 5.06 −0.44

Timed diphenylcarbene diphenylcarbene–methanol

standard CCSD(T)/VDZ 1.7 days 14.0 days
inc3-db-B0-CCSD(T)/VDZ 2.3 days 8.8 days

standard CCSD/VTZ 51.0 days N/A
inc3-db-B0-CCSD(T)/VTZ 42.7 days 187.8 days

a The geometries and energies are taken from Costa’s work[228].
b The number in parentheses is the error of inc3-db-B0 approach relative to the standard
implementation.
c Beyond our computational ability.
d The listed time is for the triplet molecule. These calculations were performed with
Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz.

B3LYP-D3 inc3-db-B0-CCSD(T)
(Costa and Sander) (This work)

singlet
triplet

5.06

−0.44

1.57

free free

binding methanol
binding methanol

−4.75

Figure 4.6.1: Left top: Diphenylcarbene. Right top: Diphenylcarbene–methanol com-
plex. Bottom: The effect of the methanol molecule suggested by B3LYP-D3 [228] and
inc3-db-B0-CCSD(T).

Based on the reliability of our approach, we can calibrate Costa and Sander’s calculations[228].
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CCSD(T) and B3LYP-D3 agree that the ground state of diphenylcarbene changes from
a triplet to a singlet state when it complexes with a methanol molecule. Howev-
er, taking inc3-db-B0-CCSD(T)/VTZ as a reference, the STG of diphenylcarbene and
diphenylcarbene–methanol complex at B3LYP-D3 level is over- and underestimated by
about 4 kcal mol−1, respectively. The tendency of DFT exhibiting a large error for the
STG can also be found for some didehydroazines [229], where B3LYP/VTZ deviates
from CCSD(T)/VTZ by 5 to 15 kcal mol−1! Thus, the STG obtained by DFT should
be interpreted with cautions. The accurate inc3-db-B0-CCSD(T) results reveal that the
methanol molecule can reverse and enlarge the STG of diphenylcarbene, rather than
reverse and reduce the STG as expected by DFT (see Figure 4.6.1). This offers a new
guide for rational design of organic reactions involving diphenylcarbene, and possibly
other carbenes.

4.7 VDE of the GFP Chromophore

Green fluorescent protein (GFP)[230] is an important tool for biological in-vivo s-
tudies. The impact of the GFP matrix on its chromophore, i.e. deprotonated 4-
hydroxybenzylidene-2,3-dimethylimidazolinone anion (dHBDI−), has been discussed the-
oretically by several authors[231, 232, 233]. It was argued that the protein can increase
the vertical detachment energy (VDE) of the dHBDI by more than 2 eV [232], and a
possible reason is that the positively charged Arg96 residue of the GFP (PDB ID: 1E-
MA) [234] stabilizes the anionic form of dHBDI. To examine the effect of this arginine
we built a model: the complex of dHBDI and a guanidinium cation (Gmd+) (see Figure
4.7.1). The VDEs we try to compute are defined as:

VDE(gas) = E[dHBDI]− E[dHBDI−] (4.7.1)

VDE(protein) = E[dHBDI ·Gmd+]− E[dHBDI− ·Gmd+] (4.7.2)

Gmd+Arg96

dHBDI–dHBDI–

Figure 4.7.1: Left: The chromophore part of the GFP. Right: The HBDI−·Gmd+ com-
plex.

The geometries of dHBDI− and dHBDI− · Gmd+ were optimized at the B3LYP/6-
311++G(d) level and the VDEs calculated by the inc3-db-B0 approach are given in
Table 4.7.1.

Obviously, for large basis set like VTZ, the inc3-db-B0 approach saved considerable
computational cost with little loss of accuracy. Using inc3-db-B0-CCSD(T)/VTZ as
reference, DFT is observed to overestimate the VDE by about 0.2 eV, but the quantitive
results are correct. Indeed, the existence of Gmd+ stabilizes the dHBDI−, yielding the
VDE about 2.13 eV larger than that of dHBDI in gas phase, which is very similar to
that of dHBDI in GFP. Thus, the positively charged Arg96 residue of GFP could be
important in controlling the excitation property of its chromophore.

At this stage it is worth highlighting that inc3-db-B0 exhibits consistent accuracy
for systems of different number of electrons.
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Table 4.7.1: VDEs of dHBDI (unit: eV) in gas phase and protein environment.

Method VDE(gas)a VDE(protein)a

standard CCSD/VDZ 2.22 5.53
inc3-db-B0-CCSD/VDZ 2.22 (0.00) 5.52 (0.01)
standard CCSD/VTZ N/Ab N/Ab

inc3-db-B0-CCSD/VTZ 2.67 (N/A) 5.87 (N/A)
standard CCSD(T)/VDZ 2.20 5.51

inc3-db-B0-CCSD(T)/VDZ 2.18 (0.02) 5.48 (0.03)
standard CCSD(T)/VTZ N/Ab N/Ab

inc3-db-B0-CCSD(T)/VTZ 2.68 (N/A) 5.81 (N/A)
B3LYP/6-311++G(d) 2.88 6.05

Timec VDE(gas) VDE(protein)

standard CCSD(T)/VDZ 14.3 days 53.5 days
inc3-db-B0-CCSD(T)/VDZ 9.4 days 55.9 days
standard CCSD(T)/VTZ N/A N/A

inc3-db-B0-CCSD(T)/VTZ 22.6 days 209.4 days

a The number in parentheses is the error of inc3-db-B0 approach relative to the standard
implementation.
b Beyond our computational ability.
c The listed time is for the doublet molecule. These calculations were performed with
Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz.
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Chapter 5

Theory of Labile Capping Bonds
and its Applications

5.1 Theory of Labile Capping Bonds

Low valency, highly charged and large size metal ions, like Ln3+ and An3+, are able to
form electrostatically bound complexes with rather large CNs. To our best knowledge
the complex with the largest CN synthesized up to date is thorium(IV) aminodibo-
ranate Th(H3BNMe2BH3)4 with CN=15[235], although complexes with CN=16 have
been predicted theoretically[236]. The geometries of these complexes are to a large de-
gree determined by the steric and electronic interactions between the ligands. When CN
≥ 7, the binding sites cannot always be distributed quasi-equidistantly, instead, some
sites will be pushed away from the innermost shell forming a polyhedron, and these sites
are the so-called “capping” ones.

The capping bonds in aqua lanthanide(III) complexes are found to exhibit an in-
teresting trend of being shorter and weaker [126], this raises two questions: is this
a general phenomenon in chemistry, that capping bonds do not obey Badger’s bond
length-strength rule[237, 238] and what is the physics behind it?

To explore this problem further[239], we consider two octadentate ligands: 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetaldehyde/tetraethanethial (TZDO/TZDS). The
complex TZDO/TZDS-aqua-Ln3+ has monocapped SAP (MSAP) configuration, the
water molecule occupying the capping site (see Figure 5.1.1). We optimized the ge-
ometries of 30 TZDX-aqua-Ln3+ (X = O,S) complexes at B3LYP/(cc-pVDZ+ECP(Z-
11)MWB[203, 210]) level and computed the electronic structure parameters to examine
the capping Ln–O bonds.

Ln3+

X

N NN

O

XX X

N N

NN

X

X

X

X

TZDX (X=O,S)  

Figure 5.1.1: TZDO/TZDS-aqua-Ln3+.

For the geometrical parameters, we observed that from La3+ to Lu3+, as a result

63
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of the enhanced electric field, all the Ln–N and Ln–X bond lengths decrease (see Table
S1 in the Supporting Information). The capping Ln–O bond equilibrium lengths are
shown in Figure 5.1.2A. It suggests that in TZDO-aqua-Ln3+ they also become shorter;
however, in TZDS-aqua-Ln3+, the capping Ln–O bond first contracts until Eu3+, then
more or less keeps a constant length, and from Tm3+ to Lu3+ gets longer. Now we
turn to the bond strength. Figure 5.1.2B reveals that the capping Ln–O bond in TZDO
is getting stronger until Tm3+ and then slightly weakens. Thus for most TZDO-aqua-
Ln3+ complexes Badger’s rule holds. However, the strength of the capping Ln–O bond
in TZDS-aqua-Ln3+ keeps decreasing, conflicting with Badger’s rule and usual chemical
intuition.

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
s+15
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Figure 5.1.2: The lengths, nBCP’s, and ELF at BCP of the Ln–O bonds in TZDO/TZDS-
aqua-Ln3+.

Thus, the shorter and weaker capping bond observed for aqua lanthanide(III) com-
plexes is not an isolate case in lanthanide chemistry. How can a shorter bond be weaker?
Such cases have been only reported for covalent bonds in some excited molecules[240,
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241]. Since the capping bonds considered are all polar dative ones, this capping bond
phenomenon could be related to some electrostatic effects.

In Figure 5.2.3C and 5.1.2C, we give the values of the ELF at the BCPs of the
considered bonds. Electrons are more likely to be localized in the region with large
ELF values. The figure reveals that for the shorter and weaker capping bonds, the
ELF at BCP has a very fast decay rate with nuclear charge while for those “normal”
capping bonds, it only slightly changed along the lanthanide series. Thus, in the former
case there must be some factors “pushing away” or “depleting” the electrons, and these
factors become stronger along the lanthanide series.

To make it clear, we consider TZDX-aqua-Eu3+, for which the colour filled maps of
the ELF on their two planes are shown in Figure 5.1.3. The lone pairs of the X atoms
are all found to point towards the central Eu3+ ion as expected. More importantly, the
lone pairs of the sulphur atoms are much more diffuse and easier polarizable than those
of the oxygen atoms, i.e. sulphur is a softer ligand. The consequence is that Eu3+ is
“screened” more efficiently by lone pairs on the X ligands in TZDS than in TZDO. This
can be seen from the ELF on the “prism face” in Figure 5.1.3 that while in TZDO a
large part of the valence region of Eu3+ extends outside this face, in TZDS only the tail
region of Eu3+ exposes. From La3+ to Lu3+, the prism face formed by 4 X atoms will
be closer to the central Ln3+, enhancing the screening effect. This is very similar to
the case of heavy atoms, where s and p orbitals will contract due to direct relativistic
effects, thus their screening ability increases, leading as an indirect relativistic effect to
d and f orbitals being more diffuse[242].

Now the unusual capping bond phenomenon can be interpreted. From La3+ to
Lu3+, the increased electric field pulls the prism as well as capping ligands closer to it.
However, this leads to a stronger screening effect of the “prism face”, which makes it
more difficult for Ln3+ to interact with the capping ligand at the opposite side of the
face. Furthermore, the prism ligands can weaken the capping bond by “repelling” (e.g.,
by the lone pairs of X atoms) the electrons away from the region between the capping
ligand and Ln3+. Both effects are significant in TZDS-aqua-Ln3+. In Ln(H2O)3+ 9 the
repulsion effect dominates and the screening effect does not become strong enough before
Eu3+, thus nBCP remains somewhat constant at the beginning of the lanthanide series.
For TZDO-aqua-Ln3+, since the electrons of the carbonyl oxygen tend to be delocalized
over the double bond, it has neither high screening nor repulsion ability. Therefore the
strength of the capping bond is still determined by the direct interaction between Ln3+

and the capping H2O, for which Badger’s rule is valid.

We also check whether the capping bond phenomenon occurs in LnCl(H2O)2+8 . To
optimize their structures, we put Cl− on the prism and capping sites, respectively, as the
starting geometries. Therefore for each LnCl(H2O)2+8 we got two local minima (denoted
by p- and c-, respectively). We give the lengths and nBCP’s of Ln–Cl bonds as well
as ELF at BCPs in Figure 5.1.4. While for all complexes the c-isomer is more stable
than the pisomer by about 0.8 to 1.6 kcal mol−1, interestingly, from La3+ to Nd3+ the
p- and c-LnCl(H2O)2+8 are optimized to very similar MSAP configurations, and in this
range Badger’s rule holds; however, except for Sm3+, from Pm3+, the geometries of p-
and c-LnCl(H2O)2+8 diverge. In the p-isomers the ligands tend to evenly distribute on a
sphere (see Figure 5.1.5), and the Ln–Cl bonds still behave “normally”. The c-isomers
are in MSAP configuration (see Figure 5.1.5), and the capping Ln–Cl bonds are shorter
and weaker. In fact this can be predicted by their fast decay rates of ELF at the BCPs
of Ln–Cl bonds with the nuclear charge. Since Cl− is a large anion and H2O is a hard
ligand, i.e. not efficient in screening, the capping bond phenomenon is not significant
before Eu3+, similar to the case of Ln(H2O)3+9 .

Therefore, the shorter and weaker capping bond phenomenon is essentially an envi-
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Figure 5.1.3: Colour filled maps of the ELF on two planes of TZDX-aqua-Eu3+.

ronmental effect. For larger ions, like An3+, their valence orbitals are well known to be
more diffuse than those of their Ln3+ analogues. Thus the capping bond phenomenon
could be expected only when the prism ligands are sufficiently soft. We performed some
calculations and found that (see Table 5.1.1) it occurs only for heavy An3+ in TZDS-
aqua-An3+

9 , implying that ligands with sulphur atoms are very efficient in screening the
central ions. Although no capping bond phenomenon was observed for AnCl(H2O)2+8
and TZDO-aqua-An3+, however, the increase rate of nBCP becomes very slow, indicat-
ing the existence of the screening and repulsion effect. The optimization of An(H2O)3+9
leads to an even distribution of water molecules, thus no capping bonds exist at all, or
in other words, all bonds are normal ones.

Table 5.1.1: Electronic structure parameters of An3+ complexes.

Ana AnCl(H2O)2+8 TZDO-aqua-An3+
9 TZDS-aqua-An3+

9

Ac
2.924 Å

0.0349 au
0.148

2.671 Å
0.0323 au

0.087

2.720 Å
0.0291 au

0.079

Np
2.828 Å

0.0381 au
0.162

2.562 Å
0.0357 au

0.092

2.629 Å
0.0307 au

0.080

Lr
2.728 Å

0.0388 au
0.167

2.425 Å
0.0383 au

0.093

2.626 Å
0.0242 au

0.060

a The listed data are: bond length, nBCP and ELF at BCP.
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Figure 5.1.4: The lengths, nBCP’s, and ELF at BCP of the Ln–Cl bonds in LnCl(H2O)2+8 .

The capping bond phenomenon is expected to occur for large and highly charged
metal ions, since otherwise (e.g. K+) no complexes with high CNs can exist (no capping
bonds at all). It also seems unlikely to occur for covalent molecules like ReH2−

9 . One
should also realize that it is not because they are short so they are weak, but because
the effects from prism ligands increase. Thus, the fact of the capping Tm–O, Yb–O and
Lu–O bonds in TZDS complexes getting longer and weaker (see in Figure 5.1.2) is also
due to the capping bond phenomenon rather than the usual intuition of “a longer bond
is weaker”.

The capping bond phenomenon is a signature for the bond being hindered by the en-
vironment, thus this class of bonds is inherently labile, being easily disrupted by external
perturbations. This is indeed how we interpreted the water exchange kinetics behaviour
and some NMR experiments for hydrated Ln3+[126]. The labile capping bond phe-
nomenon can be applied to more problems. In an experimental study of Ln(DODPA)+

(DODPA = 6,6’-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid)[243],
it was found that a capping water molecule can remain bound for Eu3+ and Tb3+
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Figure 5.1.5: The geometries of p- and c-LuCl(H2O)2+8 .

but not for Yb3+. Another observation is that the water exchange rate of Ln(DTPA-
BMA)(H2O) (DTPA-BMA = 1,7-bis[(N-methylcarbamoyl)methyl]-1,4,7-triazaheptane-
1,4,7-triacetate) increases along the lanthanide series[244], especially with a steep rise
between Gd3+ and Tb3+. Both observations are the result of the labile capping Ln-O
bond for heavy lanthanides.

That a chemical bond can be affected by its environment has been observed in
many cases. Dispersion interaction is able to hold some long and unstable C-C covalent
bonds together[215]; the active pocket of human carbonic anhydrase II forces Zn2+ to
implement an unusual coordination configuration[245]; the electrostatic interactions can
sometimes even change a chemical bond from a covalent one to a charge-shift one[246]!
Here we demonstrate that in high CN environments, the bond between the capping
ligand and the central metal ion can be weakened by the prism ligands through screening
and repulsion effects. If the prism ligands are very hard, or the central metal ions are
large, then the screening or repulsion effects on the capping bonds are very small. In this
case, it is a normal capping bond and the usual idea of “shorter and stronger bonds”,
i.e. Badger’s rule, still holds. If the ligands are sufficiently soft and therefore efficient in
screening or repulsion, both effects become stronger as the electric field of the central
ions enhances, and the electrons are becoming more difficult to stay in the bonding
region. In this case the bond is observed to be “shorter and weaker”, being inherently
labile. This is the so-called labile capping bond phenomenon which we propose in this
work. We have seen that in the TTP and MSAP configuration of lanthanides(III) it
widely occurs. We believe that it can also exist in higher CN or other suitable chemical
environments, providing new insights in understanding chemical problems.

In the following sections we will give two applications to confirm the validity and
usefulness of our theory.

5.2 Hydration Kinetics of Trivalent Lanthanide Ions

Besides the hydration free energy problem described in Subsection 4.4, there is another
attractive problem involving Ln3+: its kinetics. Lanthanides(III) exhibit very strange
hydration kinetics: the exchange rate of the water molecules between the first hydration
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sphere and the bulk solvent increases from La3+ to Gd3+ and decreases thereafter to
Lu3+, i.e. it reaches a maximum in the middle region of the lanthanide series[247, 248]
(see Figure 5.2.1). The physical reasons for these fanscinating phenomena are not well
understood. We will see that this is related to the labile capping bond phenomenon.

Figure 5.2.1: Water exchange rate of lanthanides(III). The figure is adapted from Helm’s
work[247].

To interpret this[126], we first note that the octa- and nona-aqua lanthanide(III)
complex have SAP and TTP configuration, respectively (see Figure 4.4.1). For the
former there is only one kind of Ln–O bonds, denoted as Ln–O(8); for the latter there
are two kinds of Ln–O bonds: six prism (oxygen atoms on the vertices of the trigonal
prism, called “Ln–O(9P)” hereafter) and three capping ones (“Ln–O(9C)”).

The AIM theory was applied to analyze the Ln–O bonds. In Figure 5.2.2 we provide
the molecular graphs. There exists exactly one BCP for each Ln–O bond. The electron
density at the BCP, nBCP, is used to measure the bond strength here.

Since a larger nBCP indicates a stronger bond, a trend that nBCP is larger for a
shorter Ln–O bond, is expected. This holds for both the Ln–O(8) and Ln–O(9P) bonds.
However, Figure 5.2.3B reveals that the nBCP of the Ln–O(9C) bonds exhibits a non-
monotonic behavior: it fluctuates between 0.0365 and 0.0367 a.u. from La3+ to Sm3+

and then, more astonishingly, decreases from Sm3+ to Lu3+, as the corresponding Ln–
O(9C) bonds are getting shorter!

These nBCP’s tell us that for the same Ln3+, the Ln–O(8) bond is stronger than the
Ln–O(9P) bond, which is stronger than Ln–O(9C); from La3+ to Lu3+, the Ln–O(8)
and Ln–O(9P) bonds become stronger in a parallel manner, while the Ln–O(9C) bonds
remain somewhat constant in strength before Sm3+ and then get weaker. It is just after
Sm3+ that the octa-aqua lanthanide(III) complexes begin to be more stable. By realizing
these facts we can understand the preference of CNs. There is a competition between
the formation of eight Ln–O(8) and nine Ln–O(9) bonds in the water exchange process.
For light lanthanides, the Ln–O(9C) bond is strong enough that a nona-aqua complex
is able to be bound; as going along the lanthanide series, the Ln–O(9C) bond is getting
labile, being easier to be disrupted by the environment. Thus the heavy lanthanide(III)
complexes will switch to the more stable octa-aqua form.

The particularity of the capping bonds has been noticed before in the literature. In
a study of [Ln(H2O)9](CF3SO3)3 salts with crystallography and 2D solid state NMR a
reduced occupancy of the three capping positions was observed for some heavier lan-
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Figure 5.2.2: Molecular graphs of lanthanide(III) aqua complexes. Red-white licorice:
water molecule; cyan ball: lanthanide(III) ion; yellow ball: bond critical point; green
line: bond path; blue line: no physical meaning, just to guide the eye to recognize
the coordination polyhedron. There are no bond paths (green lines) connecting lan-
thanide(III) ions with oxygen atoms since the implementation of PPs for lanthanides
depletes the electron density around the nuclei.

thanide(III) ions[249, 250]: occupancies of 2.91, 2.96, 2.8, 2.7 and 2.4 water molecules
were reported for Ho, Er, Tm, Yb and Lu, respectively. Following older ideas[249, 250]
it was argued in a recent EXAFS spectroscopy and crystallography study of the same
systems that the lanthanide row should be partitioned into four tetrads intersecting
at Nd/Pm, Gd, and Ho/Er[200]. In the first tetrad the capping bonds are relatively
strong, whereas they get weaker in the second tetrad. In the third and fourth tetrad,
due to the smaller ionic radius of the central ion and the increased repulsion between the
water ligand, an asymmetry occurs and one capping bond gets stronger again, whereas
the other two continue to become weaker. However, a corresponding difference in bond
lengths was said to be too small to be detected by the EXAFS technique. The hydrated
lanthanide(III) ions in aqueous solution were said to be in this respect very similar to
the salts.

Although we agree with the authors of these experimental studies that no sud-
den structural change occurs at Gd, e.g. a gadolinium break due to reaching a half-
filling of the 4f shell, and that the capping bonds play a special role, we do not have
any evidence of the postulated asymmetry of the capping bonds for the heavier lan-
thanide(III) hydrates. Exploratory DFT calculations without imposing any symmetry
restrictions on Lu3+ hydrates with one as well as two coordination spheres (Lu3+(H2O)9,
Lu3+(H2O)9(H2O)18) did not give bond length differences larger than 0.01 Å for the
capping bonds.

The present work provides a consistent and quantitative picture regarding the strength-
s of all Ln–O bonds in the equilibrium geometries, revealing a characteristic trend of
the labile capping Ln–O bonds. This can explain the kinetics of the hydrated water
molecules. Duvail et al proposed that the exchange involves a bicapped trigonal pris-
m (BTP) structure of octa-aqua lanthanides[248]. This model can be supported and
extended by our work, as illustrated by Figure 5.2.4. A water molecule at capping posi-
tion is easier to exchange since the Ln–O(9C) bond is much weaker than the Ln–O(9P)
or Ln–O(8) bonds. Thus an octa-aqua complex which has a SAP structure will first
rearrange to a BTP structure so that the water to exchange is on a capping position;
for a nona-aqua ion, a prism water molecule will first rearrange to a capping position
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Figure 5.2.3: The lengths, nBCP’s, and ELF at BCP of the Ln–O bonds in aqua lan-
thanide(III) complexes.

then it can exchange through a BTP intermediate. The possibility of a rearrangement
between capping and prism water molecules has been confirmed by NMR experiments
on crystals of [Ln(H2O)9](CF3SO3)3[250]. Furthermore, these NMR studies reported
that this rearrangement is already fast at 268K for Lu3+, but becomes rapid only at
about 300K for La3+, which can be explained by the strength of their Ln–O(9C) bonds.

Now the unusual trend of water exchange rates can be understood. Since the Ln–
O(9C) bond is relatively either very strong or very weak for light and heavy lanthanides,
respectively, once a nona- or octa-aqua ion forms, it will be very reluctant to dissoci-
ate a water molecule or rearrange to form a BTP intermediate. For the intermediate
lanthanides (from samarium to holmium), the Ln–O(9C) bond is of moderate strength
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SAP
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D

Figure 5.2.4: The water exchange mechanism. Other possible steps of association of a
water molecule or rearrangement of a BTP intermediate for nona-aqua lanthanides(III)
are omitted for clarity. Circle: water molecule; A: association; D: dissociation; R:
rearrangement.

so it can readily both form and break, leading to a faster water exchange. Our model
is also compatible with the Ia and Id mechanism assumed by Helm and Merbach[247].
We also note that the nona- and octa-aqua lanthanide(III) complexes can transform to
each other through the BTP intermediate[248], therefore for intermediate lanthanides,
both nona- and octa-aqua ions can be long-lived, showing a fractional CN. Therefore, it
is the strength of the capping Ln–O bond that determines the preferred CN, exchange
rate, and perhaps other hydration behavior.

Thus, we see that our theory of labile capping bonds can be supported by various
experiments, and successfully interprets this seemingly difficult problem!

5.3 Hydration Kinetics of Lanthanide(III)-DOTAM Com-
plexes

The octadentate ligand 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane
(DOTAM, see Figure 5.3.1) can form a DOTAM-aqua-Ln3+ complex, which exists as M-
SAP and monocapped twisted SAP (MTSAP) isomer (also known as M- and m-isomer,
respectively) (see Figure 5.3.1). The MTSAP isomer gives a water exchange rate more
than 50 times faster than the MSAP isomer does[251]! Is this observation related to the
labile capping bond phenomenon? We optimized the geometries of MSAP- and MTSAP-
DOTAM-aqua-Ln3+ complexes and performed the same analysis for the capping Ln–O
bonds as we did for TZDX-aqua-Ln3+. The results are shown in Figure 5.3.2.

The observation from Figure 5.3.2 completely agrees with our theory of labile capping
bonds. The MTSAP isomers exhibit a faster decay rate of ELF at BCP of the capping
Ln–O bond than the MSAP isomers do, indicating the capping bonds being hindered.
Here, the oxygen atom in the prism ligand “H2N–C=O” of DOTAM is softer than that
in “H–C=O” of TZDO due to the electron donating nature of the NH2 group. Therefore
its screening and repulsion effect become stronger and the “shorter and weaker” Ln-O
bonds appear starting from Dy3+. One can note that the hindrance become also sensible
in the MSAP isomers for Er3+ to Lu3+, but the effect is much weaker than that of the
MTSAP isomers.

Figure 5.3.3A suggests that the more stable isomer is MTSAP and MSAP one before
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Figure 5.3.1: DOTAM-aqua-Ln3+.
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Figure 5.3.2: The lengths, nBCP’s, and ELF at BCP of the Ln–O bonds in DOTAM-
aqua-Ln3+ complexes.
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aqua-Ln3+ (A) and bond lengths of Ln-O(prism) in DOTAM-aqua-Ln3+ (B).

and after Tb3+, respectively, which is compatible with some experiments[252]. This is
because the coordination cavity of the MTSAP isomer is larger, which matches better
with the lighter and larger Ln3+ ions (see Figure 5.3.3B: the distance between Ln3+

and the prism oxygen is always larger for the MTSAP isomer). Therefore, DOTAM
in TSAP geometry has a better screening ability than in SAP geometry (see Figure
5.3.2C), especially for heavier and smaller Ln3+. This is why the labile capping bond
phenomenon occurs in the MTSAP but not in the MSAP isomers.

For two isomers of the same Ln3+ ion, the bond length-strength relation satisfies the
Badger’s rule, but the strength difference becomes larger for the heavier lanthanides,
resulting from mainly the hindrance of prism ligands in the MTSAP isomer. Both factors
(labile and long capping bonds) lead to a much weaker capping Ln–O bond in MTSAP
isomers than in MSAP isomers. This not only successfully interprets why the water
exchange of the MTSAP isomers is much faster than that of the MSAP ones[251], but
also reminds us that the labile capping bond phenomenon can be ligand conformation-
dependent[239]. Of course it also confirms the validity of our theory.



Chapter 6

Summary and Outlook

6.1 Summary

In this work, the author has introduced a new quantum chemical approach: the third-
order incremental dual-basis set zero buffer approach, abbreviated as inc3-db-B0. This
approach can combine with CCSD, CCSD(T) and their F12 variants to compute the
accurate energy of large molecules in an efficient and accurate way. The author have
also constructed a program Apts to enable anyone implement inc3-db-B0 (and in fac-
t, general incremental scheme) in a black-box mode. It can be easily and efficiently
parallelized.

Many examples demonstrate the power of the approach in various kinds of real chem-
ical problems. These includes: benchmark set validation; energies of isomers of water
clusters; the rotational barrier of biphenyl; hydration of lanthanide trivalent ions; the
relative stability of isomers of double fullerene adducts; singlet-triplet gap of biphenylcar-
bene, and vertical detachment energy of green fluorescent protein chromophore. These
problems range from inorganic to organic chemistry, closed-shell to open-shell and small
molecule to biological molecules. The approach exhibits high efficiency, especially for
large and open-shell molecules or large basis set. The db-B0 approximation can reduce
the computational cost more than 70% and by parallelization, the wall time can be
reduced by more than 10 times! For the accuracy, the error of the approach is usually
less than 1 kcal mol−1, and for clusters it is even more accurate, making it possible
to distinguish the energetically nearly degenerate isomers. The inc3-db-B0 approach
may not be so “crazy” fast like some other methods, however, it is the most accurate
one! In fact, is was pointed out in Subsection 4.2.1 that DLPNO cannot even give a
qualitatively correct result regarding the relative energies of the isomers of water 17-
mer, while inc3-db-B0 approach does not have any problem with it. Therefore, the
accuracy is the most important advantage of the approach presented here. In fact inc3-
db-B0-CCSD(T)-F12a/AVTZ can serve as benchmark reference! In my opinion, if a
linear-scaling correlation method has to sacrifice accuracy to achieve efficiency, one can
simply use DFT which is much faster and more robust.

6.2 Outlook

Since the application of quantum chemistry has gone beyond atoms, small- and medium-
size molecules, to more complex systems, such as clusters, nanoparticles, biological
molecules as well as surfaces and solids, the demand for quantum chemistry becomes
more and more stringent, requiring higher and higher accuracy and efficiency for differ-
ent cases. Thus there are still a lot to do with the inc3-db-B0 approach, especially the
following three aspects:

75
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• Molecular properties. An efficient realization of this requires application of incre-
mental scheme on analytical derivatives like:

∂∆εij
∂P

=
∂εij
∂P
− ∂εi
∂P
− ∂εj
∂P

(6.2.1)

Some explorative studies[128] showed that the convergence of derivative is much
more difficult than that of energy, but if this can be solved, one can greatly general-
ize the application field of the incremental scheme, say optical, electric or magnetic
properties.

• Excited states. The EOM-CC[253] is an accurate method for systems involving
electronical excitations, electron detachment or electron attachment. The difficulty
in combination of incremental scheme and EOM-CC is that it is extremely difficult
to identity a specific state in calculations of different increments. One must deeply
hack into EOM-CC to solve this problem. Maybe a state-specific EOM-CC is
preferred.

• MR methods. Although a robust MRCC is not available, some promising devel-
opments have appeared[254, 255, 256]. Also MRCI is an important method for
construction of accurate PES. Thus, an “incremental MRCC/MRCI” is desirable
for photochemistry of large molecules. The difficulty lies also in the identification
of a specific state from different increments.

Finally, we also expect that the incremental scheme can be applied to more kinds of
real chemical problems, like the binding energy of large metal-ligand complexes, stability
of cluster isomers, etc. This will mark a great success of the incremental scheme.
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Abbreviations and Acronyms

2D two-dimensional
3D three-dimensional
AIM atoms in molecule
AMO active molecular orbital
An3+ trivalent actinide ion
AO atomic orbital
Apts A Parallel incremenTal Scheme
BCP bond critical point
BO Born–Oppenheimer approximation
BSIE basis set incompleteness error
BTP bicapped trigonal prism
CABS complementary auxiliary basis set
CABS complementary auxiliary basis set
CBS complete basis set
CBS complete basis set
CC coupled-cluster
CCP cage critical point
CCSD coupled-cluster singles and doubles
CCSD(T) CCSD with perturbative treatment of triples
CID configuration interaction doubles
CIM cluster-in-molecule
CMO canonical molecular orbital
CN coordination number
CS coordinate system
DC divide-and-conquer
DEC divide-expand-consolidate
dHBDI deprotonated 4-hydroxybenzylidene-2,3-dimethylimidazolinone
DLPNO domain localized PNO
DODPA 6,6’-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid
DOS density-of-states
DOTAM 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane
DTPA-BMA 1,7-bis[(N-methylcarbamoyl)methyl]-1,4,7-triazaheptane-1,4,7-triacetate
ECP effective core potential
ELF electron localization function
EOM equation of motion
ER Edmiston–Ruedenberg
FCI full configuration interaction
FCKM fixed-center K-means clustering
GFP green fluorescent protein
GGA generalized gradient approximation
Gmd guanidinium
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HF Hartree–Fock
HOMO highest occupied MO
inc3-db-B0 third-order incremental dual-basis set zero-buffer approach
KM K-means clustering
KS Kohn–Sham
LBO Laplacian bond order
LDA local density approximation
LMO localized molecular orbital
Ln3+ trivalent lanthanide ion
LUMO lowest unoccupied MO
MO molecular orbital
MP2 second-order Møller–Plesset
MR multi-reference
MSAP monocapped SAP
MTSAP monocapped twisted SAP
NCI noncovalent interaction
NCP nuclear critical point
OSV orbital specific virtual
PAO projected atomic orbital
PDB protein data bank
PES potential energy surface
PES potential energy surface
PNO pair natural orbitals
PP pseudopotential
RCP ring critical point
RDG reduced density gradient
RMSD oot mean square deviation
RSPT Rayleigh–Schröinger perturbation theory
SAP square antiprism
SCF self-consistent field
SD Slater determinant
SE Schrödinger equation
SR ingle-reference
STG singlet-triplet gap
TTP tricapped trigonal prism
TZDO/TZDS 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetaldehyde/tetraethanethial
VDE vertical detachment energy
vdW van der Waals
WFN wave function
XC exchange-correlation functional
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Oliver Mooßen, Ilyas Türkmen and Dr. Danial Pape for the friendship and their help.

I thank Dr. Haichang Zhang for being a good cooperator and friend. We together
accomplished many interesting works and it is a delightful experience. Also I want to
express my gratitude to my friends in Department of Chemistry: Dr. Qifang Wang, Dr.
Lisong Xiao, Chengzheng Xu, Qingwei Du and Shuangzhou Wang.

I have a nice time working with so many friends from Gemeinschaft Chinesischer
Chemiker und Chemieingenieure in Deutschland e.V. (GCCCD). Besides Dr. Xiaoyan
Cao-Dolg, Dr. Lisong Xiao, Qingwei Du and Shuangzhou Wang, I also want to thank
Dr. Hongchu Du, Dr. Jianwei Tong, and Yu Qiao. We have organized and attended
several GCCCD annual conferences together.

I want to thank my old and new friends in Germany. Lang Xu kindly helped me in
German languague; Yang Zhang and his wife Yiwen Sun, Xiaonan Xu (“Anna”), Qing
Sun, and Ao Yuan are my close friends in Cologne; Dr. Li Li encouraged and supported
me during a “difficult” peroid. They have become important parts of my life.

I want to give my deep appreciation to my parents: Yingxin Zhang and Yufang Guan,
who gave me my life and a sweet childhood. Without them all the things important to
me will be impossible. They are the best and most important people to my life!

97



98 ACKNOWLEDGMENTS



Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollstndig angegeben und die Stellen der Arbeit —
einschließlich Tabellen, Karten und Abbildungen — die anderen Werken im Wortlaut
oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich
gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität
zur Prfung vorgelegen hat; dass sie — abgesehen von unten angegebenen Teilpublikatio-
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