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Abstract  

 

The inhibitor of apoptosis (IAP) protein family encodes a group of structurally related 

proteins that were initially identified based on their ability to inhibit cell death. Due to their 

cytoprotective properties and their elevated expression levels in many types of human 

cancer, small molecular pharmacological inhibitors of IAPs (SMAC mimetics, SM) were 

developed in the last years (Kashkar, 2010; Fulda & Vucic, 2012; Bai et al, 2014). 

Numerous studies have focused on the role of SM-induced cell death in cancer cells. 

Accordingly, many SM compounds are currently in clinical trials to evaluate their potential 

in cancer therapy and so far, SM-mediated cell death is believed to directly target 

malignant cells (Fulda & Vucic, 2012; Fulda, 2014; Bai et al, 2014).  

 

In order to study the underlying mechanisms in more detail in vivo, we used a B16 

melanoma mouse model with immune competent mice. The obtained results 

demonstrated that IAP antagonization by a pan-IAP antagonist inhibits tumor growth in 

vivo not by inducing direct cytotoxicity towards tumor cells. In fact, our work showed that 

SM triggers a TNF-dependent disruption of the vasculature in the tumor 

microenvironment. 

Specifically, SM treatment facilitated the production of TNF by B16 melanoma tumor cells, 

which is consistent with previous observations concerning the cellular responses to SM 

exposure (Wu et al, 2007). Two key components of tumor stroma, infiltrating immune cells 

and endothelial vasculature, were scrutinized in our study. While no significant differences 

in the immune cell infiltration of B16 mouse tumors were observed, we found a striking 

reduction of the vascularization in B16 tumors treated with SM. The lack of vascularization 

in B16 melanoma tumors or implanted matrigel plugs in wild type but not in TNF-R1/2-/--

mice and the potentiated susceptibility of two independent EC cultures towards TNF in the 

presence of SM, identified the endothelial cells of the tumor vasculature as the major 

target of SM-induced cell death within the tumor microenvironment. 

 

Taken together, our work identified a novel anti-angiogenic activity of a pan-IAP 

antagonist in the presence of elevated TNF levels under inflammatory conditions within 

the tumor microenvironment. This could constitute an additional and perhaps 

complementary potential of SM, which could improve current cancer therapies. 
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Zusammenfassung 

 

Die Mitglieder der Familie der inhibitor of apoptosis Proteine (IAPs) wurden ursprünglich 

aufgrund ihrer Fähigkeit beschrieben den Zelltod zu blockieren. IAPs haben nicht nur 

zytoprotektive Eigenschaften, sondern werden zudem in malignen Zellen häufig 

überexprimiert und stellen daher ein attraktives therapeutisches Ziel in der Krebstherapie 

dar. In den letzten Jahren wurde eine große Anzahl von kleinen, pharmakologischen IAP-

Inhibitoren, sogenannte SMAC mimetics (SM), mit dem Ziel der Einleitung der Apoptose 

in Krebszellen entwickelt. Eine Vielzahl an SM werden derzeit in klinischen Studien 

getestet um ihr Potential in der Behandlung von malignen Erkrankungen zu untersuchen 

(Kashkar, 2010; Fulda & Vucic, 2012; Bai et al, 2014). Zur Zeit wird angenommen, dass 

die anti-kanzerogene Wirkung von SM auf einen direkten zytotoxischen Effekt von SM auf  

maligne Zellen zurückzuführen ist (Fulda & Vucic, 2012; Fulda, 2014; Bai et al, 2014). 

 

Zur genaueren Untersuchung des zugrundeliegenden Wirkmechanismus von SM in vivo, 

wurde in der vorliegenden Arbeit ein B16 Melanom Modell in immun-kompetenten 

Mäusen verwendet. In diesen Untersuchungen wurde eine Reduktion des 

Tumorwachstums bei der Verabreichung eines pan-IAP Antagonisten, allerdings ohne 

dabei eine direkte Zytotoxizität in Tumorzellen auszulösen, beobachtet. Es konnte 

vielmehr veranschaulicht werden, dass SM zu einer TNF-abhängigen Zerstörung der 

Tumor-Blutgefäße führte.  

In Übereinstimmung mit veröffentlichten Studien in anderen Tumorzellen (Wu et al, 2007) 

haben unsere weiteren detaillierten Untersuchungen gezeigt, dass B16 Zellen durch die 

Behandlung mit SM TNF sezernieren. Zur genaueren Identifikation des Wirkmechanismus 

wurden zwei Hauptkomponenten des Tumor-Stromas untersucht, Tumor-infiltrierende 

Immunzellen und die endotheliale Vaskulatur. Hierbei wurden keine Veränderungen der 

Infiltration von Immunzellen festgestellt. Es konnte jedoch eine deutliche Reduktion an 

Tumor-Blutgefäßen beobachtet werden. Diese Reduktion konnte in implantierten Matrigel-

Plugs bestätigt werden. Bemerkenswerterweise war dieser Effekt bei implantierten 

Matrigel-Plugs und bei der Analyse des Tumorwachstums in TNF-R1/2-/--Mäusen nicht zu 

beobachten, wodurch die Rolle von TNF-induzierten zytotoxischen Signalkaskaden in der 

anti-kanzerogenen Wirkung von SM bestätigt wurde. Im Gegensatz zu malignen Zellen 

wurde eine eine hohe Anfälligkeit gegenüber SM/TNF induzierten Zelltod in zwei 

Endothelzelllinien gezeigt. Diese Ergebnisse veranschaulichen, dass vor allem 
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Endothelzellen der Blutgefäße im Tumorstroma durch die Behandlung mit SM zerstört 

werden, wobei die zytotoxische Wirkung auf maligne Zellen marginal ist 

 

Zusammenfassend wurde in dieser Arbeit erstmalig gezeigt, dass pan-IAP Antagonisten 

aufgrund von erhöhtem TNF im Tumorstroma zu einer Reduktion der Blutgefäße führen. 

Diese bisher unbekannte Charakteristik könnte zu einer Verbesserung des 

therapeutischen Nutzens von SM in der Krebstherapie führen.  

.  
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1. Introduction 

1.1 The inhibitor of apoptosis protein gene family 

The IAP (inhibitor of apoptosis protein) gene family encodes a group of structurally related 

proteins that were initially identified based on their ability to inhibit cell death. The 

baculovirus inhibitors of apoptosis Cp-IAP and Op-IAP were the first members of the IAP 

family that were discovered as functional homologs of the cell death inhibitor p35 in 1993. 

They were able to complement the cell death function of p35 in mutant virus (lacking p35) 

(Crook et al, 1993). Subsequent work by Clem and co-workers demonstrated that IAPs 

were capable of blocking apoptosis induced by the RNA synthesis inhibitors actinomycin 

D or Autographa californica nuclear polyhedrosis virus (AcMNPV) infection (Clem & Miller, 

1994). A common structural feature of IAP family proteins is the presence of up to three 

copies of a BIR (baculoviral IAP repeat) domain (Birnbaum et al, 1994) frequently in 

conjunction with a carboxy-terminal zinc-finger like motifs. In the following years, IAPs 

were identified in a variety of eukaryotic species like yeast, nematode, fruit fly and in the 

mammalian species mice, rats, pigs, and humans (Deveraux, & Reed, 1999).  

  

The first human IAP, NAIP (neuronal apoptosis inhibitory protein) also called BIRC1 (BIR 

containing protein 1) was found to be involved in the neuronal disease SMA (spinal 

muscular atrophy) in which it blocks cell death in response to treatment such as 

menadione and TNF (tumor necrosis factor) (Roy et al, 1995; Liston et al, 1996). Further 

IAPs including cIAP1 (cellular IAP1; BIRC2), cIAP2 (cellular IAP2; BIRC3), XIAP (X-

chromosome-linked IAP; BIRC4), survivin (BIRC6), apollon (BIR-containing ubiquitin-

conjugating BIR domain enzyme; BIRC6), ML-IAP (melanoma IAP; Livin; BIRC7) and ILP-

2 (IAP-like protein; BIRC8) (Fig. 1.1) were subsequently identified based on their 

conserved BIR-domains and examined for their anti-apoptotic capacity. Despite their 

nomenclature, several IAPs have functions other than regulating apoptosis and are 

involved in a plethora of different cellular actions including cell cycle regulation, protein 

degradation, immune signaling and inflammation (Salvesen & Duckett, 2002; Estornes & 

Bertrand, 2014).  

 

Several IAPs regulate apoptosis and a direct caspase (Cysteine Aspartic Acid Specific 

Protease) inhibition was assumed as an important conserved function among most family 

members. However, detailed biochemical and structural studies have mapped the 

elements of IAPs required for caspase inhibition, showing that these elements are not 
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conserved among IAPs, suggesting that XIAP is probably the only bona fide cellular 

caspase inhibitor. Especially the BIR2 and BIR3 domains of XIAP were biochemically 

identified as the elements with inhibitory capacity towards caspases (Uren et al, 1996; 

Deveraux et al, 1997; Eckelman et al, 2006). Within these binding-sites a conserved 

surface groove was found, defined as the IBM (IAP-binding motif)-interacting groove. 

Beside their BIR domains, some IAP proteins such as XIAP, cIAP1, cIAP2 or ML-IAP 

have a carboxy-terminal domain termed RING (Really Interesting New Gene), which has 

been demonstrated to act as a E3 ubiquitin ligase hence conducting important functions of 

IAPs in survival and signaling pathways (Vaux & Silke, 2005; Varfolomeev et al, 2008). 

Furthermore, cIAPs, ILP2 and XIAP can bind to mono- or polyubiquitin chains of various 

linkages because of a UBA (conserved ubiquitin-binding) domain (Gyrd-Hansen et al, 

2008). Some IAPs, such as cIAPs, have an additional CARD domain (caspase recruitment 

domain) that suppresses the activation of the RING domain E3 ligase activity (Lopez et al, 

2011) .  

 

 

 

Fig 1.1 Functional domains of mammalian inhibitors of apoptosis proteins (IAPs).  

The mammalian family of IAPs including NAIP (neuronal apoptosis inhibitory protein, BIRC1, BIR-

containing 1), cIAP1 (cellular IAP1; BIRC2), cIAP2 (cellular IAP2; BIRC3), XIAP (X-chromosome-

linked IAP; BIRC4), survivin (BIRC6), apollon (BIR-containing ubiquitin-conjugating BIR domain 

enzyme; BIRC6), ML-IAP (melanoma IAP; Livin; BIRC7) and ILP-2 (IAP-like protein; BIRC8). All 

IAPs feature the conserved BIR domain (baculoviral IAP repeat domain) up to three copies. Beside 
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BIR domains, IAPs can harbor different functional domains: UBA: ubiquitin-associated domain; 

CARD: caspase recruitment domain; RING: really interesting new gene finger domain.    

 

 

1.2 Inhibitor of apoptosis proteins and programmed cell death 

Inhibitor of apoptosis proteins are best characterized in the regulation of apoptosis that 

plays an important role in organismal and embryonic development and adult tissue 

homeostasis.  

In general, the execution of programmed cell death can involve different pathways like 

apoptosis and necroptosis. In addition to the well-studied apoptosis, necroptosis has 

recently been identified as a new type of caspase-independent cell death leading to 

necrosis. Contrary to necroptosis, apoptosis involves the activation of caspases leading to 

a tightly controlled removal of dying cells.    

 

1.3 Apoptosis 

Apoptosis is a well described and the most common form of programmed cell death and 

was first described based on the distinct morphological features of an apoptotic cell (Kerr 

et al, 1972). It is essential for, amongst others, embryonic development, tissue 

homeostasis and immune system functions. The greek word “apoptosis” describing the 

“dropping off” petals from flowers was introduced by Kerr and co-workers, based on their 

observation that programmed cell death could be morphologically distinguished from 

necrotic (traumatic) cell death (termed necrosis), which is caused by external factors like 

infections, toxins or trauma (Kerr et al, 1972). Apoptosis leads to characteristic 

morphological cell changes including cell shrinkage, nuclear fragmentation, chromatin 

condensation and chromosomal DNA fragmentation (Wyllie et al, 1980), resulting in the 

fragmentation of dying cells and the appearance of apoptotic bodies. Subsequent 

clearance of apoptotic bodies by phagocytosis prevents from damage to the surrounding 

tissue and assures the recovery of precious cellular constituents. By contrast, necrosis 

results in cellular swelling, disorganized hydrolysis of chromatin and perturbations of the 

cell membrane. The loss of membrane integrity leads to the uncontrolled burst and spilling 

of intracellular contents characteristic for necrosis, subsequently increasing tissue 

damage. 

Apoptosis can be induced either by cell autonomous mechanisms, e.g. overwhelming 

intracellular stress caused by e.g. DNA damage, viral infections or growth factor 



  INTRODUCTION 

                   

 

7 

withdrawal (intrinsic pathway) or by extracellular signals involving the TNF-receptor family 

(extrinsic pathway). The cellular decomposition during apoptosis is mainly mediated by a 

family of cysteine proteases known as caspases (Fuentes-Prior & Salvesen, 2004). This 

family of proteases cleave their substrates after specific aspartate residues (the “asp” in 

the word caspases) and the hydrolysis of the peptide bond is catalyzed by a cysteine in 

the active site (the “c” in the word caspases) (Nicholson & Thornberry, 1997). Caspases 

are highly conserved and can be divided in three subgroups according to their function: 

cytokine activators (caspase-1, -4, -5, -11, -12, -13 and -14), initiator caspases (caspase-

2, -8, -9 and 10) and effector caspases (caspase-3, -6 and -7) (Denault JB, 2002). Of 

these, initiator together with effector caspases trigger apoptosis and they occur in two 

major pathways named “intrinsic or mitochondrial” and “extrinsic” apoptotic pathways 

(Kumar & Lavin, 1996; Nicholson & Thornberry, 1997) (Fig. 1.2).  

 

 

1.3.1 The intrinsic apoptotic pathway 

The intrinsic pathway of apoptosis is often described as the mitochondrial pathway of 

apoptosis, highlighting that MOMP (mitochondrial outer membrane permeabilization) and 

the release of mitochondrial IMS (intermembrane space) proteins into the cytoplasm is a 

key event, initiated by a cell autonomously upon overwhelming intracellular damage. Upon 

cellular stress such as DNA damage, viral infection or growth factor withdrawal, the pro-

apoptotic Bcl2 proteins BAX and BAK undergo conformational changes and form 

homodimers in the mitochondrial outer membrane (Hsu et al, 1997) thereby provoking the 

release of mitochondrial IMS proteins such as cyt c (cytochrome c), SMAC/DIABLO 

(second mitochondria-derived activator of caspases/direct IAP binding protein with low pI) 

and OMI (also called HtrA2) (Youle & Strasser, 2008; Chipuk et al, 2010; Czabotar et al, 

2014). Cytosolic cyt c, together with APAF1 (apoptotic protease activating factor 1) forms 

the multi-protein complex termed apoptosome at which the initiator caspase-9 is cleaved 

and activated (Li et al, 1997). Activated caspase-9 then cleaves and activates executioner 

caspases (caspase-3 and caspase-7), leading to the cleavage of downstream substrates 

and ultimately resulting in apoptosis (Fig. 1.2).  

The mitochondrial apoptotic pathway is tightly controlled by Bcl2 protein family members. 

The Bcl2 protein family consists of anti-apoptotic (e.g. Bcl2, BclXL and A1) and two groups 

of pro-apoptotic members: the multi-domain proteins BAX and BAK and the divergent 

class of BH3-only proteins (e.g. Bid, Bad, Bik, Noxa and Puma).  
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BAX and BAK, responsible for MOMP, are regulated by pro- and anti-apoptotic Bcl2 

proteins. Anti-apoptotic Bcl2 proteins such as Bcl2, BclxL and Mcl-1 can directly bind and 

inhibit BAX- or BAK-mediated MOMP. The divergent class of BH3-only proteins including 

Bad, Bid, Bik, Bim, Bmf, Noxa and Puma, feature a conserved BH3-domain. BH3-only 

proteins are sentinels for cellular damage and promote apoptosis either by neutralizing 

anti-apoptotic Bcl2 proteins (sensitizer) (Westphal et al, 2014) or by activating BAX and 

BAK directly (direct activators) (Tait & Green, 2010).  

 

Fig. 1.2 Programmed cell death pathways 

Upon binding of a death ligand like TNF to its receptor on the surface of the plasma membrane, the 

DISC (death inducing signaling complex) complex assembles. This can either lead to necroptosis 

involving the formation of the necrosome or to apoptosis by activation of caspase-8. Caspase-8 

can directly activate executioner caspase-3/-7 or indirectly by cleaving the BH3-only protein Bid to 
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tBid which subsequently translocates to mitochondria. On the outer mitochondrial membrane tBid 

can activate the pro-apoptotic BAX/BAK Activation of BAX/BAK is regulated by anti-apoptotic Bcl-2 

proteins. Induction of MOMP by Bax/Bak results in the release of SMAC and cytochrome c from the 

mitochondria into the cytosol. SMAC potentiates apoptosis by binding to and antagonizing IAPs like 

XIAP. Cytochrome c release results in the activation of caspase-9, followed by activation of 

caspase-3/-7. Activated caspase-3/-7 lead to apoptotic cell death.  

 

 

1.3.2 The extrinsic apoptotic pathway 

The extrinsic apoptotic pathway is mediated by DRs (death receptors) of the TNF-receptor 

(TNF-R, tumor necrosis factor receptor) family, including TNF-R1 (DR1), Fas/Apo-1 (DR2) 

and DR4/5 on the cell surface (Bhardwaj & Aggarwal, 2003). Characteristic for these DRs 

is a cytosolic DD (death domain) and a DED (death effector domain) which initiate the 

receptor-oligomerization and interaction with adapter proteins upon activation by binding 

of specific death ligands such as TNF-α, FAS (TNF receptor superfamily member 6) or 

TRAIL (TNF-related apoptosis inducing ligand). For instance, upon activation, TNFR1 

recruits the signaling adaptor TRADD (TNF receptor 1 associated death domain) which 

serves as a signaling scaffold for the assembly of the receptor bound complex (Ermolaeva 

et al, 2008). Additionally, this complex contains TRAF2 (TNF-R1 associated factor 2), 

TRAF5, RIPK1 (receptor interacting protein kinase 1), cIAP1 and cIAP2 and is frequently 

referred to as complex I. In the presence of cIAPs this complex mainly mediates cell 

survival signals such as NF-κB (nuclear factor kappa B) signaling through the IKK (IκB 

kinase) complex, MAPK signaling (p38 mitogen-activated protein kinases) and JNK 

activation (c-Jun N-terminal kinase). In contrast, activation of the TNF receptor signaling 

can also lead to the formation of a cytoplasmic complex after internalization of TNFR-1, 

resulting in a switch from pro-survival signaling to cell death. In detail, the dissociation of 

TRAF2 and RIPK1 from TRADD that in turn associates with FADD (FAS-associated via 

death domain protein) leads to the recruitment of caspase-8 to the cytosolic complex 

termed complex IIa (Fig. 1.2). In complex IIa, procaspase-8 forms homotypic procaspase-

8 dimers leading to subsequent activation of caspase-8 by reciprocal cleavage of the 

procaspase-8 isoforms. The activated caspase-8 initiates cleavage activation of the 

executioner caspases-3, -6 and -7 leading to apoptosis (Ashkenazi, 2008). 

Both pathways of apoptosis are interconnected by the cleavage of the BH3-only protein 

Bid to tBid (truncated Bid) by caspase-8. tBid translocates to the mitochondrial membrane, 

binds to BAX and BAK, subsequently leading to the initiation of MOMP (Luo et al, 1998; 

Wright et al, 2007; Kaufmann et al, 2012).   
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Alternatively to complex IIa, RIPK1 instead of TRADD can bind FADD and thereby recruit 

procaspases-8 to a complex referred to as complex IIb. This RIPK1-dependent complex 

can only be formed in the absence of cIAPs (Vince et al, 2007; Varfolomeev et al, 2007; 

Petersen et al, 2007) or in presence of the deubiquitinase CYLD (Wright et al, 2007; 

Wang et al, 2008) either resulting in apoptosis or necroptosis (Fig. 1.2). 

 

 

1.4 Necroptosis  

Although initial studies concerned apoptosis as the only form of programmed cell death 

governing tissue homeostasis, recent evidence indicates that apoptosis may not solely 

represent the controlled demolition of a cell. Accumulating evidence indicated that the 

execution of programmed cell death involves more than just the apoptotic program. 

Necroptosis has recently been identified as a new type of programmed cell death which 

does not involve caspase activity and lead to necrotic cell death. First reports on 

programmed necrotic cell death in the 1980s and 1990s showed that TNF is able to 

induce both apoptotic and necrotic cell death (Laster et al, 1988; Fady et al, 1995). 

Further findings challenged the notion that necrosis is only an unregulated form of cell 

death showing that TNF stimuli (or FAS and TRAIL) can induce a RIPK1 dependent cell 

death (Holler et al, 2000). After the discovery of necrostatin-1, the inhibitor of RIPK1 

kinase, that was able to block necrosis after death receptor signaling, programmed 

necrosis was termed necroptosis (Degterev et al, 2005).  

Upon TNF stimulation the death-promoting complex IIb can be formed which leads to 

apoptotic signaling when functional caspase-8 is present. In contrast to that, cells lacking 

functional caspase-8 (or FADD) undergo necroptosis (Holler et al, 2000). Here, RIPK1 

interacts with RIPK3 resulting in a cross-phosphorylation step that stabilizes their 

association and leads to the activation of their pro-necroptotic kinase activity. Activated 

RIPK3 binds to and phosphorylates MLKL (mixed lineage kinase domain-like) leading to 

the formation of a so called necrosome, a pro-necroptotic complex initiating necroptosis 

(Declercq et al, 2009; Vandenabeele et al, 2010; Sun et al, 2012). To date, not all details 

are known about the signaling events downstream of the necrosome, but it is suggested 

that RIPK3 activation regulates key metabolic enzymes leading to increased production of 

ROS (reactive oxygen species) in turn facilitating necrosis (Zhang et al, 2009). Recent 

findings also imply that MLKL can be located at the membrane to mediate Ca2+ influx and 

TNF-induced apoptosis (Cai et al, 2014).  
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1.5 Inhibitor of apoptosis proteins as key regulators of apoptosis and 

necroptosis 

IAPs were initially identified as the key regulators of apoptotic signaling by inhibiting the 

activities or activation of caspases. Although the precise mechanism is still debated, initial 

evidence demonstrated that IAP proteins, in particular XIAP, can act as direct inhibitors of 

pro-apoptotic caspases (Deveraux & Reed, 1999). However, subsequent biochemical 

analyses identified XIAP as the only bona fide caspase inhibitor within this protein family 

(Eckelman et al, 2006). Further biochemical analysis unraveled that the BIR2 and BIR3 

domains of XIAP are responsible for the inhibition of caspases by a two-site binding 

mechanism (Uren et al, 1996; Deveraux et al, 1997; Eckelman et al, 2006). On the one 

hand, XIAP can bind to the dimerization surface of initiator caspase-9, thereby preventing 

its homodimerization and subsequent activation. Furthermore, structural studies showed 

that the inhibition of caspase-9 is mediated by the peptide-binding groove of the BIR3 

domain of XIAP, interacting with a N-terminal region of the small subunit p12 of processed 

caspase-9 containing a four-amino-acid IBM (IAP binding motif) (Srinivasula et al, 2001; 

Shiozaki et al, 2003). On the other hand, XIAP has also been shown to inhibit effector 

caspases-3 and -7 by interaction of the linker region of its BIR1 and 2 domains with the 

substrate-binding site in the small subunits of the activated caspases (Chai et al, 2001; 

Riedl et al, 2001). The IBM is not only present in the small subunits of caspases but also 

in several mitochondrial IBM-containing proteins which regulate the inhibitory action of 

XIAP. The most important IBM-containing members involved in apoptosis are SMAC and 

OMI that reside in the mitochondrial IMS and are released into the cytosol after MOMP 

(Vaux & Silke, 2003). SMAC harbors an N-terminal MTS (mitochondrial-targeting 

sequence) that is proteolytically removed upon its release, whereby the IBM, a AVPI (Ala-

Val-Pro-Ile) tetrapeptide motif for binding of XIAP, cIAP1 and cIAP2 (Chai et al, 2000a; 

Verhagen et al, 2000; Du et al, 2000) becomes exposed. Even though cIAP1 and cIAP2 

are described only as weak inhibitors of caspases, they can bind to SMAC with high 

affinity and thereby may prevent it from blocking XIAP-mediated caspase inhibition 

(Eckelman et al, 2006).  

Furthermore, cIAPs are also key regulators of the extrinsic apoptotic pathway by 

stabilizing complex I and thereby inhibiting the formation of complex II. Unlike the BIR1 

domain of XIAP, the BIR1 domain of both cIAPs mediate the interaction with TRAF2 in 

complex I of the TNFR1 signaling pathway (Samuel et al, 2006; Varfolomeev et al, 2007). 

cIAP-mediated ubiquitination (K63-linked chains) of RIPK1 is essential for the activation of 

NF-κB signaling beside ubiquitination by LUBAC (Mahoney et al, 2008; Varfolomeev et al, 
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2006; Bertrand et al, 2008). Non-ubiquitinated RIPK1 (instead of TRADD) recruits FADD 

and caspase-8 to complex IIb and induce a switch to cell death signaling. This complex 

can only be formed in the absence of cIAPs and results in the activation of caspase-8 and 

induction of apoptosis (Petersen et al, 2007; Varfolomeev et al, 2007; Vince et al, 2007) or 

in the activation of RIPK1-RIPK3 mediated necrosis (Zheng et al, 2006; He et al, 2009). 

 

 

1.6 Inhibitor of apoptosis proteins as regulators of nuclear factor κB 

signaling pathways 

Beside the role in apoptotic signaling, IAPs are also key regulators of pro-survival NF-κB 

signaling pathways, regulating a range of target genes that are involved in several 

pathways such as inflammation, survival, cell death, migration and angiogenesis (Perkins, 

2012; DiDonato et al, 2012). In mammals, the NF-κB family of transcription factors 

consists of the five proteins p65 (RelA), RelB, c-Rel, NF-κB1 (p105/p50) and NF-κB2 

(p100/52) that form distinct homo- and heterodimeric complexes which bind to κB sites in 

promotor- and enhancer-regions of target genes. Under unstimulated conditions NF-κB 

proteins are bound to inhibitor of κB (IκB) proteins to retain inactive NF-κB dimers in the 

cytosol. Different stimuli like bacterial and viral infection, oxidative stress and inflammatory 

cytokines induce the degradation of IκB proteins through phosphorylation by the IκB 

kinase (IKK) complex. This complex consists of IKKα and IKKβ, two catalytically active 

kinases and the regulatory subunit IKKγ (also known as NEMO, NF-kB essential 

modulator). The expression of NF-κB genes can be either regulated by the canonical or 

the non-canonical signaling pathway, but both involve the cIAPs as crucial regulators (Fig. 

1.3).  

The canonical signaling pathway is activated by cIAPs through their ubiquitin ligase 

activity upstream of the activation of NF-κB in a number of TNF superfamily receptors 

such as TNFR1. For instance, in the TNF-R signaling complex I, cIAPs promote a K63-

linked poly-ubiquitination of RIPK1 (Bertrand et al, 2008; Varfolomeev et al, 2008) serving 

as a binding platform to recruit the IKK complex, TAK complex (TAK1 and TAB1/2) and 

LUBAC (linear ubiquitin chain assembly complex) (see Fig. 1.3). This results in the 

activation of IKKβ that in turn phosphorylates the inhibitor of NF-κB, IκB and leads to its 

poly-ubiquitylation and subsequent degradation. This yields in the activation and nuclear 

translocation of NF-κB (RelA-p50) and hence the expression of canonical NF-κB target 

genes.  
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Noteworthy, beside the regulation by cIAPs, XIAP can also induce the NF-κB activation 

during TGF-β and BMP signaling in response to genotoxic stress. TAB1 is activated by 

the BIR1 domain of XIAP and couples the activated TAK1 to the IKK complex, promoting 

canonical NF-κB signaling (Lu et al, 2007; Jin et al, 2009). Furthermore, in addition to the 

well-recognized function as an inhibitor of apoptosis, XIAP has also been shown to play 

an important role in NOD signaling, regulating the activation of NF-κB during inflammatory 

signaling (Andree et al, 2014; Gyrd-Hansen & Meier, 2010). 

 

In contrast to their positively regulating role in canonical NF-κB signaling, cIAP proteins 

are also main negative regulators of non-canonical signaling (Fig. 1.3). In unstimulated 

cells cIAPs reside in a cytoplasmic complex composed of NIK, TRAF2 and TRAF3 

proteins, maintaining low levels of NIK (NF-κB inducing kinase) by its constitutive 

ubiquitin-dependent proteasomal degradation (Varfolomeev et al, 2007; Vince et al, 2007). 

Upon stimulation of a member of the TNFR family such as the TWEAK receptor FN14 

(TNF-related weak inducer of apoptosis, fibroblast growth factor-inducible 14), CD40 

ligand receptor and LT-βR (lymphotoxin-β receptor), TRAF2, TRAF3 and cIAPs are 

recruited to the receptor-signaling complex. This leads to the self-ubiquitination and 

subsequent degradation of cIAPs accompanied by the degradation of TRAF2 and TRAF3. 

As a consequence, NIK is stabilized and accumulates followed by phosphorylation and 

activation of IKKα which in turn triggers the nuclear translocation of NF-κB (RelB-p52) 

(Senftleben et al, 2001; Xiao et al, 2001).  
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Fig. 1.3 Canonical and non-canonical NF-κB signaling pathways 

cIAPs are positive key regulators of canonical NF-κB signaling and negative key regulators of non-

canonical NF-κB signaling. In the canonical NF-κB signaling pathway, ubiquitinated cIAPs and 

RIPK1 (ubiquitinated by cIAPs) serve as a binding platform for the recruitment of TAB/TAK, the IKK 

complex (NEMO, IKKβ, IKKα) and the LUBAC complex (HOIL, HOIP, Sharpin) to activate IKKβ. 

This leads to the degradation of IκB and the translocation of p50 and RelA to the nucleus. In the 

non-canonical NF-κB pathway, cIAPs together with the adapter proteins TRAF2/3 constitutively 

ubiquitinate NIK, leading to its proteasomal degradation. Upon activation of TNF family receptors 

(e.g. CD40, FN14) cIAPs get recruited to a receptor-signaling complex, followed by self-

ubiquitination and subsequent degradation of cIAPs. This liberates NIK leading to the activation of 

IKKα, partial degradation of p100 to p52. Translocation of p52 and RelB to the nucleus results in 

the activation of non-canonical NF-κB signaling. 
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1.7 Inhibitor of apoptosis proteins and human cancer 

Apoptosis is substantial for maintaining tissue homeostasis by counteracting mitosis or by 

eliminating the so called un-wanted cells such as transformed or infected cells (Hanahan 

& Weinberg, 2011). Dysregulation of apoptosis has been implicated in numerous 

pathological conditions, including autoimmune diseases, degenerative disorders and 

cancer. The expression and function of IAPs are reported to be dysregulated in a variety 

of human cancers. This can be due to genetic aberrations, an increase in their mRNA or 

protein expression or the loss of endogenous regulatory circuits e.g. mitochondrial IBM 

proteins. The elevated expression of IAPs in cancer frequently correlated with the 

resistance to anti-cancer therapy and poor prognosis in several types of cancer entities 

(Fulda & Vucic, 2012; Bai et al, 2014). In the following, the role of XIAP, cIAP1 and cIAP2 

in human cancer will be discussed in more detail. 

The genomic amplification of 11q21-22 which contains the genes encoding for cIAP1 and 

cIAP2 have been identified in several types of cancers indicating that alteration of cIAPs 

may contribute to oncogenic transformation. The 11q21-22 amplification is found in 

human cancers including esophageal carcinoma (Imoto et al, 2001), glioblastoma (Weber 

et al, 1996), hepatocellular carcinoma (Zender et al, 2006), non-small-cell lung cancer 

(NSCLC), small cell lung cancer (Dai et al, 2003) and pancreatic cancer (Bashyam et al, 

2005). Furthermore, in cervical squamous cell carcinoma an elevated cIAP1-expression is 

associated with resistance to radiotherapy (Imoto et al, 2002) and a correlation of elevated 

cIAP protein level with advanced stages of tumors and poor survival is seen in colorectal 

and bladder cancer (Che et al, 2012; Krajewska et al, 2005). A constitutive activation of 

the NF-κB signaling pathway is frequently observed in mucosa-associated lymphoid tissue 

lymphoma (Morgan et al, 1999; Zhou et al, 2005; Varfolomeev et al, 2006). Here, a 

t(11;18)(q21;q21) translocation results in a fusion protein composed of the BIR domains of 

cIAP2 with MALT1 (paracaspase mucosa-associated lymphoid tissue lymphoma 

translocation protein 1) (Akagi et al, 1999; Dierlamm et al, 1999). Elevated levels of XIAP 

are associated with poor prognosis in many types of human cancer such as breast cancer 

(Zhang et al, 2011), colorectal cancer (Moussata et al, 2012), prostate cancer (Seligson et 

al, 2007) and chronic lymphocytic leukemia (Grzybowska-Izydorczyk et al, 2010). In 55% 

of patients with diffuse large B cell lymphoma, elevated levels of XIAP where observed, 

correlating with poor clinical outcome (Hussain et al, 2010). High expression of XIAP, 

cIAP1 and cIAP2 correlate with poor outcome of multiple myeloma patients after 

chemotherapy (Nakagawa et al, 2006). Furthermore, the natural IAP antagonist SMAC is 

also associated with different tumor stages. For instance, low levels of SMAC correlate 

with advanced tumor stage, high grade and poor prognosis in renal cell carcinoma 
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(Kempkensteffen et al, 2008) and in breast carcinoma SMAC expression inversely 

correlates with the tumor stage (Pluta et al, 2011).  

Taken together, these observations indicated a possible role of IAPs in human cancer and 

identified a promising therapeutic target in cancer patients. 

 

1.8 Targeting inhibitor of apoptosis proteins for cancer therapy 

From the discovery of XIAP in the second half of the 1990s, research on this unique IAP 

has been exponential, giving us a detailed structural and mechanistic view of its function. 

As a result, XIAP was considered as a promising therapeutic target in mammalian cancer, 

and research efforts have been focusing on the development of drugs targeting XIAP (IAP 

inhibitors), as a new way to counteract cancer and overcome drug resistance (Kashkar, 

2010). Two broad approaches have been taken to develop clinical inhibitors of XIAP, 

including antisense oligonucleotides diminishing XIAP expression and small molecule 

inhibitors antagonizing XIAP function (caspase binding and/or inhibition). In particular, the 

generation of small-molecule IAP antagonists is considered to be one of the most 

promising amongst them (Vucic & Fairbrother, 2007; Ndubaku et al, 2009; Fulda & Vucic, 

2012).  

 

Within a cell IAPs can be antagonized by their natural antagonist SMAC which has been 

used to design and to develop small-molecule IAP antagonists (Du et al, 2000; Verhagen 

et al, 2000). After proteolytic cleavage of the N-terminal MTS and the release upon 

MOMP, the cytosolic SMAC with an N-terminal AVPI motif can directly bind and inhibit the 

interaction of IAP with their target proteins e.g. caspases. Eventually, SMAC dimerizes 

and binds to the BIR2 and BIR3 domain of XIAP and disrupt its interaction with caspase-9, 

3 and 7 (Liu et al, 2000; Wu et al, 2000). SMAC may additionally bind to the BIR3 domain 

of cIAPs, promoting the auto-ubiquitination of cIAPs which in turn results in their 

degradation (Yang & Du, 2004). These observations indicated that SMAC can antagonize 

different IAPs and the therapeutic targeting of XIAP based on the biochemical features of 

cellular SMAC may result in the antagonization of XIAP but also cIAPs. The feasibility of 

disrupting IAP function by SMAC-derived peptidomimetic compounds frequently referred 

to as SMAC mimetics (SM) has been broadly accepted and an increasing number of 

patent applications and reports on the use of SM compound in pre-clinical and clinical 

studies aims at evaluation of these compound in cancer therapy.  
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The design of SM was greatly facilitated by the determination of the structural and 

biochemical basis of apoptotic activation by SMAC. Especially, co-crystal structure of the 

SMAC protein with the XIAP-BIR3 domain (Chai et al, 2000) and the solution structure of 

a SMAC peptide complexed with XIAP-BIR3 domain (Liu et al, 2000) form the basis for 

the design of SM. Biochemical data indicate that the four-residue peptide AVPI can bind to 

the XIAP-BIR3 domain with similar affinity as SMAC protein and coupled with 

understanding of the topology of SMAC peptide binding in a well-defined surface groove 

on XIAP-BIR3, resulted in the design of various SM and several of them are currently in 

clinical development for cancer treatment (Fulda & Vucic, 2012).  

 

1.9 Development of SM as antagonists of inhibitor of apoptosis 

proteins 

Initial studies developed SMAC-derived peptides using the IAP-binding motif to mimic the 

activity of SMAC proteins (Vucic et al, 2002; LaCasse et al, 2008). These and other 

studies could show that SMAC-derived peptides have the capacity to induce an anti-

tumoral effect in vitro and in xenograft models but unfortunately these peptides do not 

possess good pharmacological properties. However, these studies provided scientific and 

technical insights which led to the development of small-molecule IAP antagonists (Vucic 

et al, 2002; Arnt et al, 2002; Fulda et al, 2002). 

In the following years, SMAC mimicking IAP antagonists (SMAC based peptidomimetics) 

with improved IAP-binding capacities and better pharmacological properties were 

developed. Here, an important step in the development was the increased rigidity into the 

scaffold. Altogether, small-molecule IAP antagonists can be divided into monovalent 

versus bivalent compounds and IAP-selective versus pan-selective compounds. While 

monovalent compounds harbor one IAP binding motif, bivalent compounds consist of two 

SM connected with a chemical linker (Ndubaku et al, 2009). Though bivalent SM are 

shown to generally display higher binding affinities to IAPs than monovalent compounds, 

featuring a high potency in cell death assays and inhibition of tumor growth they may also 

be associated with more toxic side effects (Varfolomeev et al, 2007; Vince et al, 2007; 

Bertrand et al, 2008). However, both types of SM were (so far) well tolerated in clinical 

trials, suggesting that both may be useful and tolerated in the clinic. 

The majority of developed SM are pan-selective inhibitors, having a broad specificity to 

simultaneously antagonize XIAP, cIAP1 and cIAP2. During the last years SM were also 

designed to be specific for one IAP or a group of IAPs to target individual IAP proteins that 

have a defined biological role. Comparison of pan-IAP and IAP-selective antagonists 
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suggest that pan-IAP antagonists are in general more potent in promoting cell death in 

tumor cells (Ndubaku et al, 2009). 

The first monovalent SMAC mimetic that showed a therapeutic potential for the treatment 

in a subset of cancer was compound 1 which was developed by Oost and colleagues 

(Oost et al, 2004) (Fig.1.4). Compound 1, is a potent and cell-permeable peptidomimetic, 

designed through extensive chemical modifications of residues in the AVPI motif. 

Compound 1 inhibits cell growth in several cancer cell lines and was active in a MDA-MB-

231 breast cancer mouse xenograft model, representing the first study of a small-

molecule SMAC mimetic with therapeutic potential. Another potent and orally active 

monovalent pan-IAP antagonist, primarily binding to cIAP1/2 (SM-406, AT-406, Fig.1.4) 

has been advanced into clinical development (Cai et al, 2011). Genentech developed a 

pan-IAP antagonist which inhibits tumor growth in the MDA-MB-231 xenograft model and 

has advanced into clinical development showing low oral clearance in mouse, rat and dog 

(GDC-0917, Fig.1.4) (Wong et al, 2013).  

Bivalent SM were designed due to the fact that the natural SMAC forms a homodimer that 

is able to block the BIR2 and BIR3 domain of XIAP thereby blocking the interaction of 

XIAP with caspase-9/-3/-7. Therefore, it was hypothesized that bivalent SM may have a 

much higher binding affinity to XIAP. The first bivalent SMAC mimetic that linked two 

identical AVPI motifs (compound 2, Fig. 1.4) was reported 2004 by the Harran group (Li et 

al, 2004). Compound 2 revealed a high potency against a subset of human cancer cell 

lines and inhibited tumor growth in xenograft models of non-small cell lung cancer. In the 

following, recognizing the huge potential of this new class of SM, great efforts were made 

to develop new bivalent IAP antagonists. SM-164 was developed in 2007, showing very 

high affinity for targeting BIR2 and BIR3 of XIAP, being 100-times more potent than its 

monovalent counterpart and the natural SMAC AVPI peptide (Fig. 1.4) (Sun et al, 2007).  

TetraLogic Pharmaceuticals developed a bivalent SM for clinical applications named 

Compound A (Cpd A, Fig.1.4) (Vince et al, 2007). Cpd A, is a pan-IAP antagonist which is 

shown to efficiently antagonize XIAP, cIAP1 and cIAP2 leading to killing of several cancer 

cell lines. Here, compound A is able to induce cell death as a single agent by sensitizing 

cells for a TNF-induced apoptotic death. The degradation of cIAP enhances RIPK1 

binding to TNF-R1, stabilizes NIK, activates the non-canonical NF-κB signaling and 

induced TNF secretion (Vince et al, 2007). Moulin and co-workers highlighted the role of 

cIAPs in signaling and cell death during development and could also show that Cpd A, 

together with TNF can lead to a necroptotic cell death of MEFs (Moulin et al, 2012a). 

Recent findings imply that cIAPs and XIAP regulate myelopoiesis through cytokine 

production (Wong et al, 2014). The combined loss of XIAP, cIAP1 and cIAP2 can lead to 

death of macrophages and treatment with a pan-IAP antagonist induces the production of 
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several inflammatory cytokines in a TNF-R1 signaling dependent manner including TNF. 

These data indicate that a systemic treatment with pan-IAP SM could influence tumor 

immune cell infiltration. Despite its beneficial effects, recently it was shown that Cpd A is 

poorly tolerated in vivo, leading to body weight loss and treatment-related deaths of mice 

(Condon et al, 2014b).  

In the last years, TetraLogic Pharmaceuticals generated a second-generation SMAC 

mimetic called Birinapant (TL32711, Fig.1.4) (Krepler et al, 2013; Benetatos et al, 2014). It 

is shown to primarily bind to cIAP1 and potentiated the activity of a variety of 

chemotherapeutic cancer drugs leading to inhibition of tumor growth in multiple primary 

patient-derived xenotransplant models. Furthermore, it can be used in well-tolerated 

doses and is currently in clinical trials. Future studies will illustrate the potential of 

Birinapant in human cancer therapy, and quite recently it got available for scientific and 

commercial use. 
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Fig. 1.5 Chemical structures of representative SMAC mimetics 

Monovalent SMAC mimetics: Compound 1 ((Oost et al, 2004), SM-406 /AT-406 (Cai et al, 2011)) 

and GDC-0917 (Genentech) (Wong et al, 2013). Bivalent SMAC mimetics: Compound 2 (Li et al, 

2004), Compound A (TetraLogic Pharmaceuticals) (Vince et al, 2007) and Birinapant (TetraLogic 

Pharmaceuticals) (Krepler et al, 2013). 
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1.10 Mechanisms of the antitumoral activities of SM 

The majority of IAP antagonists was designed to harbor an antitumoral effect due to the 

binding to XIAP and to relieve caspase activity. However, studies on SM application in 

different cancer models demonstrated, that IAP antagonists induce apoptosis by 

specifically triggering cIAP degradation, NF-κB activation and autocrine TNF production 

(Varfolomeev et al, 2007; Vince et al, 2007).  

Biochemical studies of unstimulated cIAP1 proteins show that the unliganded, 

multidomain cIAP sequester the RING domain within a compact, monomeric structure that 

prevents RING dimerization and thereby its E3-ligase activity (Dueber et al, 2011). Upon 

binding of SM to the BIR3 domain, crucial BIR3-RING interactions are blocked. This 

causes a conformational re-arrangemt enabling RING dimerization and formation of the 

active E3 ligase which leads to the auto-ubiquitination of cIAP1 (Fig. 1.6). 

 

Fig. 1.6 Model for the induction of cIAP protein ligase activity by IAP antagonists  

Unstimulated cIAP proteins form a closed, inactive and monomeric form. Upon SM binding to the 

BIR3 domain, crucial BIR3 interactions with the RING domain are disrupted, leading to a 

conformational change. The RING domains dimerize and form an active ubiquitin ligase. 

Subsequent auto-ubiquitination (K48) leads to proteasomal degradation of cIAP proteins and 

initiation of apoptosis.  

 

Following the subsequent degradation of cIAP proteins NIK can accumulate, resulting in 

the activation of the non-canonical NF-κB signaling (Varfolomeev et al, 2007; Vince et al, 

2007). One of the responsive genes is TNF that can in turn activate TNF-R1 in a 

paracrine/autocrine manner (Gaither et al, 2007; Petersen et al, 2007) (Fig. 1.7). Due to 

the loss of cIAPs in the transmembrane TNF-R1 complex, RIPK1 is non-ubiquitinated 

which allows the binding of FADD and caspase-8 to form the so called complex IIb leading 

to apoptosis (Fig.1.7). Therefore, IAP antagonization by SM leads to elimination of cIAPs 
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by activating its E3 ligase activity, resulting in a switch from pro-survival TNF signaling to 

pro-apoptotic signaling especially in cancer cells.  

In contrast to the well established induction of apoptosis by SM compounds in tumor cells 

via degradation of cIAPs, the role of XIAP is less defined. On the one hand, activation of 

caspase-3 and -8 play a major role in SM induced apoptosis, whereas caspase-9 plays no 

or only minimal role. This suggests that the binding to the XIAP BIR3 domain is less 

important. On the other hand, absence of XIAP by siRNA or genetic deletion enhances 

the potency of SM to induce cell death in cancer cells. In addition, antagonization of cIAP 

and XIAP by pan-IAP antagonists is more potent in apoptosis induction than cIAP 

selective antagonists (Lu et al, 2007; Ndubaku et al, 2009b). Altogether, these 

observations suggest that an effective antagonization of XIAP can facilitate the TNF-

dependent cell death upon SM treatment in cancer cells. 

Aside from activating apotosis, SM is reported to activate necroptosis in some cancer cells 

by involving the formation of necrosome (Fig. 1.7). While inhibiting caspase activity, a 

strong necroptotic response is seen in SMAC-resistent cancer cells which is determined 

by RIPK3 (He et al, 2009). Likewise, apoptosis resistent FADD- or caspase-8 deficient 

leukemia cells are primed for TNF-induced necroptotic death by treatment with SM 

(Laukens et al, 2011).  
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Fig.1.7 IAP antagonization by SM results in NF-κB activation and induction of apoptosis or 

necroptosis 

Antagonization of cIAP1/2 results in the activation of the non-canonical NF-κB signaling due to a 

stabilization of NIK which can lead to the expression and secretion of TNF. TNF can activate the 

TNF-R1 signaling in a paracrine/autocrine manner resulting in a switch from pro-survival signaling 

towards cell death. Here, non-ubiquitinated RIPK1 together with caspase-8, FADD form the so 

called complex IIb that can either result in the activation of caspase-8 and apoptosis or in the 

formation of a necrosome (involving MLKL and RIPK3) leading to necroptosis. Additional 

antagonization of XIAP can effectively support the SM induced cell death. 

 

Collectively, SM compounds so far were able to act directly on tumor cell survival primarily 

by promoting a TNF-dependent cell death which was enabled upon degradation of cIAPs.  
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1.11 Aim of the work 

IAP proteins are promising targets for drug development, given their potent anti-apoptotic 

activity and their overexpression which frequently occurs in various human tumor entities. 

Therefore, great effort has been made to design small pharmacological inhibitors of IAPs, 

called SMAC mimetics for the treatment of cancer. 

One of the major focuses of our laboratory is to understand the role of IAPs in cancer. 

Based on our own previous results and accumulating evidence obtained by a number of in 

vitro analyses, the current work aims to explore the efficacy of SM as an anti-cancer drug 

in vivo. So far, SM treatment of cancer models like melanoma, are mainly performed in 

immune deficient NUDE mice (Lecis et al, 2010; Krepler et al, 2013; Condon et al, 2014; 

Benetatos et al, 2014). Here we study the impact of the SMAC mimetic compound A 

(Tetralogic) on tumor growth, using a B16 melanoma model in immune competent C57/Bl-

6 mice. 
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2. Materials and Methods 

 

2.1 Chemicals and reagents 

Unless indicated otherwise, all chemicals were from Sigma (Deisenhofen, Germany) or 

Roth (Karlsruhe, Germany). Compound A (Cpd A, SM) and Compound B (Cpd B, ent-SM) 

were provided by TetraLogic Pharmaceuticals (Malvern, USA) and m-TNF by Roche 

Applied Sciences (Mannheim, Germany). Necrostatin-1 and zVAD-fmk were obtained 

from Enzo Life Science. Matrigel (Phenol-red free, high conc.) was purchased from BD 

Biosciences (Heidelberg, Germany). 

 

 

Table 1: Primary and secondary antibodies  

Antibody Isotype Supplier 

β-Actin mouse, monoclonal Sigma-Aldrich 

(Deisenhofen, Germany) 

CD31 rat, monoclonal BD Biosciences 

(Frankfurt a.M., Germany) 

CD45 rat, monoclonal  AbD Serotec 

(Puchheim, Germany) 

CD68 rat, monoclonal AbD Serotec 

(Puchheim, Germany) 

cIAP1 goat, polyclonal R&D Systems  

(Wiesbaden, Germany) 

cIAP2 mouse, monoclonal R&D Systems  

(Wiesbaden, Germany) 

cleaved caspase-3 rabbit, monoclonal  Cell Signalling, 

(Frankfurt a.M., Germany) 

Ki67 rabbit, polyclonal Abcam 

(Cambridge, UK) 

PARP mouse, monoclonal BD Biosciences  

(Heidelberg, Germany) 

LYVE rabbit, polyclonal Abcam 

(Cambridge, UK) 
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Tubulin mouse, monoclonal Sigma-Aldrich 

(Deisenhofen, Germany) 

XIAP mouse, monoclonal BD Biosciences 

(Heidelberg, Germany) 

Antibody Isotype Supplier 

Anti-mouse IgG HRP-linked goat Sigma  

(Deisenhofen, Germany) 

Anti-rabbit IgG HRP-linked goat Sigma  

(Deisenhofen, Germany) 

Anti-goat IgG HRP-linked donkey Santa Cruz  

(Heidelberg, Germany) 

Anti-rat IgG HRP linked goat Life Technologies 

(Karlsruhe, Germany) 

 

 

2.2 Cell lines 

The murine melanoma cell line B16-F1 was purchased from ATCC (Bethesda, Maryland, 

USA) and was maintained in DMEM supplemented with 10% FCS, 2 mM L-glutamine, 100 

µg/mL streptomycin, and 100 U/mL penicillin (Biochrom, Berlin, Germany). Human 

Umbilical Vein Endothelial Cells (HUVEC) and Human Dermal Microvascular Endothelial 

Cells (HDMEC) were purchased from Promocell (Heidelberg, Germany) and cultivated in 

endothelial cell growth medium (Endothelial Cell Growth Medium 2, Endothelial Cell 

Growth Medium MV, respectively) between passage 2-6. Plastic material was obtained 

from TPP (Trasadingen, Switzerland), BD Biosciences (Falcon™,Franklin Lakes USA) or 

Nunc (Roskilde, Denmark).  

In brief, cells were expanded to an adequate amount and aliquots were frozen by -150°C 

in FCS containing 10% DMSO. For experiments, cells were thawed and expanded for 2 

passages while culturing at 37°C.  

Cells were transfected using Lipofectamine™LTX (Life Technologies, Karlsruhe, 

Germany) according to manufacturer’s instructions.  

 

2.3 Animal tumor models 

C57BL6/J mice were purchased from Charles River (Sulzfeld, Germany) and TNF-R1/2-/--

mice were obtained from P. Knolle (Munich, Germany) (Wohlleber et al, 2012). For the 

tumor experiments, 400 μl of chilled matrigel (BD Bioscience, Heidelberg, Germany) were 

mixed with 1 × 106 B16-F1 tumor cells and the SMAC-mimetic Cpd A (at a final 
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concentration of 2μM) or vehicle (PBS) at 4°C, for subcutaneous injection into recipient 

mice. Tumor size was measured every other day using precision calipers. Tumor volume 

was calculated as length x width2 x π ⁄ 6 and expressed as fold induction relative to day 1 

±SEM.  

For the in vivo vascularization assay, 500 µL matrigel was mixed (4 °C) with vehicle, SM 

(2 µM), TNF (50 ng/mL) or SM combined with TNF and subcutaneously-injected into the 

flank region of recipient mice for 12 days (Coutelle et al, 2014). 

Animals were housed in the animal care facility of the University of Cologne under 

standard pathogen-free conditions with a 12 hours light/dark schedule and provided with 

food and water ad libitum. All animal experiments were performed in accordance with the 

German animal protection law.  

 

2.4 Tumor and matrigel plug preparation 

Tumors or matrigel-plugs were removed after sacrificing the mice. Samples were were cut 

into appropriate pieces for further processing: (i) H&E staining, (ii) immunostaining and (iii) 

multiphoton-microscopy. 

(i) appropriate pieces of tumors or matrigel-plugs were fixed in paraformaldehyde (PFA, 

3% in PBS) at 4°C overnight and paraffinized for storage. Paraffin sections were first 

deparaffinized by xylol and ethanol incubations, H&E (Shandon, Thermo Scientific) 

stained and recorded using a DM4000B microscope (Leica Microsystems, Wetzlar, 

Germany). 

(ii) appropriate pieces of tumors or matrigel-plugs were  were directly snap-frozen in 

Tissue-Tek ® OCT™ Compound for storage and further processing.  

(iii) appropriate pieces of tumors or matrigel-plugs were were fixed in PFA (3%) overnight 

and stored in 0,1% PFA for further analyses. 

 

 

2.6 FITC-dextran application 

For visualization of vessel perfusion, 200µl FITC-Dextran (15mg/ml in PBS, MW 

2,000,000, Sigma-Aldrich) was injected into the tail vein of mice 30 minutes before 

animals were sacrificed. 

 

2.5 Cell viability and cell death measurements 

Cell death was measured after treatment and viability was quantified by trypan-blue 

exclusion using an automated cell counter (Countess, Invitrogen, Karlsruhe, Germany) 

according to the manufacturer’s instructions. In brief, before counting cells were detached 
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with trypsin and diluted to appropriate working concentrations. Cell suspension was then 

diluted with trypan blue in a ratio of 1:1 (v/v) and dead cells were measured. 

 

2.7 Cell growth assay 

Cells were seeded (30% confluence) on 3 cm dishes, treated as indicated. Cell growth 

was analyzed by relative change in confluence using JuLI Br Live Cell Analyzer.  

JuLi Br Live Cell Analyzer, Peqlab (brightfield microscope in a cell incubator, 4xplus digital 

zoom, High resolution digital camera) was used for the longterm acquisition of growth 

curves. B16-F1 cells (3,5x105, 4 hours prior to experiment) were treated for 48 hours. 

Images were taken every 10 min. 

 

 

2.8 NF-kB activity 

ELISAs were performed after nuclear extraction using the TransAM®Nuclear Extract Kit 

and the TransAM NfκB p65 or p52 Kit (Active motif, Roxensart, Belgium) according to the 

instructions of the manufacturer. Read out was performed on a ELISA reader (Anthos 

HT2) at a wavelength of 450/620 nm.  

 

 

2.9 TNF-ELISA 

The amount of m-TNF was measured after treatment with SM (2µM) compared to control. 

After treatment of cells, supernatant was removed and used for the subsequent analyses 

of secreted m-TNF, using the Mouse TNF-alpha High Sensitivity ELISA (eBIOSCIENCE, 

Frankfurt a.M., Germany) according to the manufacturer’s instructions. 

 

 

2.10 RNA isolation 

To obtain pure RNA from indicated cells for the quantitative real-time analysis, the 

standard phenol-chloroform-method was used (Chomczynski & Sacchi, 1987). After 

resuspending the cells in TRIzol, samples were further homogenized using QIAshredder 

columns. Chloroform was added and the homogenate was incubated to allow separation 

into a red lower organic layer (DNA and Proteins), interphase and a clear upper aqueous 

layer (RNA). Precipitations of RNA were performed with isopropanol and washed with 

70% EtOH prepared with nuclease free H2O. For quantification of RNA in solution, a 

spectral photometer (NanoDrop® instrument) was used at a wavelength of 260nm. RNA 

was dissolved in DNase/RNase free water and stored at -80°C. 
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2.11 DNaseI 

Isolated RNA from cells was purified with DNaseI (Thermo Scientific, Rockford, USA) to 

digest contaminating single- and double-stranded DNA according to the manufacturer’s 

instructions.  

 

 

2.12 Agarose gel electrophoresis 

The quality of purified RNA was confirmed by agarose gel electrophoresis (1% agarose). 

Intact total RNA running on a denaturating gel, will separate into two distinct bands, 

representing the 28S and 18S rRNA (eukaryotic samples like HUVECs).  

 

2.13 Reverse transcription (RT) 

RT-PCR was performed using the Maxima H Minus First Strand cDNA Synthesis Kit 

(Thermo Scientific, Rockford, USA) with oligo dt-primers to generate cDNA for subsequent 

real-time analysis. Template RNA, primers and dNTPs (+ additional nuclease free water) 

were pre-incubated at 65°C for 5 minutes. The samples were chilled on ice for 3 minutes. 

RT-buffer and enzyme were added and subsequently incubated first at 25°C for 10 

minutes, followed by incubation at 60°C for 30 minutes. Afterwards the reaction was 

terminated by heating to 85°C for 5 minutes. cDNA was stored at -80°C for long term 

storage or at -20°C up to 1 week.  

 

2.14 Quantitative Real-Time PCR (qRT-PCR) 

Quantitative real time PCR was used to measure expression levels of genes listed in table 

2 qPCR was performed using LightCycler®SYBR-Green I Mix in triplicates (Roche 

Applied Sciences, Mannheim, Germany) using a 96well-plate Multicolor Real-Time PCR 

Detection System (iQ™5, BIO-Rad, Herkules, USA). Specific primers were used for each 

gene (table 2) and GAPDH was used as housekeeping control for normalization. Data 

were further evaluated using the Pfaffl-method ((Pfaffl, 2001)).  

Table 2: Primer for qRT-PCR 

Primer notation  Sequence 

h-Cyr61 fwd 5’-CCC GTT TTG GTA GAT TCT GG-3’ 

h-Cyr61 rev 5’-GCT GGA ATG CAA CTT CGG-3’ 

h-GAPDH fwd 5’-GGT ATC GTG GAA GGA CT-3’ 

h-GAPDH rev 5’-GGG TGT CGC TGT TGA A-3’ 

h-PDGF-A fwd 5’-GCA AGA CCA GGA CGG TCA TTT-3’ 
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h-PDGF-A rev 5’-GGC ACT TGA CAC TGC TCG T-3’ 

h-VEGF-A fwd 5’-AGG GCA GAAT CAT CAC GAA GT-3’ 

h-VEGF-A rev 5’-AGG GTC TCG ATT GGA TGG CA-3’ 

h-VEGF-C fwd 5’-GAG GAG CAG TTA CGG TC TGTG-3’ 

h-VEGF-C rev 5’-TCC TTT CCT TAG CTG ACA CTT GT-3’ 

h-VCAM-1 fwd 5’-GTC TCC AAT CTG AGC AGC AA-3’ 

h-VCAM-1 rev 5’-TGA GGA TGG AAG ATT CTG GA-3’ 

m-GAPDH fwd  5’- TCA CCA CCA TGG AGA AGG C-3’ 

m-GAPDH rev 5’- GCT AAG CAG TTG GTG GTG CA-3’ 

m-TNF fwd 5’- AGA ACT CCA GGC GGT GC-3’ 

m-TNF rev 5’- AGG GTC TGG GCC ATA GAA CT-3’ 

 

Table 3: qPCR-program 

qRT-PCR Program 

qPCR 1. 95°C 1min 

 2. 95°C 15 sec 

 3. 60°C 30 sec 

 4. 72°C 30 sec 

     40-45 cycles (step 2.-4.) 

 5. 72°C 5 min 

 6. 4°C endless 

 

 

2.15 Sample preparation for immunoblotting (IB)  

Whole cell lysates were prepared by incubating cell pellets upon washing in CHAPS lysis 

buffer on ice for 25 minutes. After centrifugation, either pellets were prepared for Poly 

(ADP-ribose) polymerase (PARP) cleavage or supernatants were recovered for further 

applications. For PARP cleavage pellets were incubated in urea extraction buffer following 

denaturation at 100°C for 10 minutes. Protein concentration of supernatants was 

determined using BCA assay (BCA Assay Protein Quantification; Pierce, Bonn, Germany) 

according to the instructions of the manufacturer. 

For Western blotting, equal amounts of protein were adjusted in 1x Laemmli buffer 

containing 4% beta-mercaptoethanol, followed by incubation at 100°C for 5 minutes. 
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Proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) using 10-14% polyacrylamide gels and Western Blotting Apparatus (BIO-

RAD laboratories, Herkules, USA). Gels were started at 100mV and continued at 140-

160mV in SDS running buffer prior to transfer onto nitrocellulose membranes (Protran, 

Schleicher & Schuell, Dassel, Germany) for 90 minutes in blot transfer buffer. After 

blocking and appropriate incubation in primary and secondary antibodies, protein signals 

were visualized by enhanced chemiluminescence (ECL; Thermo Scientific, Rockford, 

USA) 

 

 

Table 4: Buffers for sample preparation and Western blotting 

CHAPS lysis buffer 10 mM HEPES, pH 7.4, 150 mM NaCl, 1% CHAPS, 

protease complete cocktail 

Urea extraction buffer 50 mM Tris (pH 6.8), 6 M urea, 3% SDS, 10% 

glycerol, 0.00125% bromphenol blue, 5% 2-

mercaptoethanol 

HEP buffer 20 mM Hepes, pH 7.5, 10 mM KCl, 1.5 mM MgCl2, 

1 mM EDTA, 10 µM cytochalasin B, 1 mM DTT, 

protease inhibitor 

SDS running buffer 14.4 % (w/v) Glycin, 3 % (w/v) Tris Base, 0.1% (w/v) 

SDS 

Laemmli sample buffer (5 x)  0,6 M Tris-HCL pH 6.8, 144 mM SDS, 25 % (v/v) 

Glycerol, 0.1% (w/v) bromphenol blue, 5% (v/v) 

-Mercaptoethanol 

Blot transfer buffer 25 mM Tris base pH 8.3, 192 mM Glycin, 20 % (v/v) 

Methanol 

Blocking buffer 10 mM Tris-HCl pH 7.4 – 7.6, 150 mM NaCl, 5 % 

(w/v) skim milk powder, 2 % (w/v) BSA, 0.1 % (v/v) 

Tween-20 

Antibody dilution buffer 50 mM Tris, pH 7.6, 150 mM NaCl, 0.1% Tween-20, 

5% BSA 

S-PBS 1.2 M NaCl, 0.1 M NaH2PO4, 0.3 M  K2HPO4, pH 7.6  

 

 

 

2.16 Clonogenicity Assays 

1x104 cells per well were seeded in 6-well plates and allowed to settle. Cells were then 

transiently exposed to Cpd A, Cpd B or TNF at indicated concentrations for 48 hours. 

After recovering for 10 days in fresh medium without treatment, colony formation was 

assessed by crystal violet staining. Cells were washed in PBS, stained with crystal-violet 

(0.2% in 2% EtOH) and dissolved in 0.2 M sodium citrate and 100% EtOH (1:1). 
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2.17 Tube formation assay 

Matrigel (500 µl/12well) (5 mg/ml, BD Biosciences, Heidelberg, Germany) in 12 well plates 

was allowed to reach the solid phase after one hour at 37°C. HUVEC cells in endothelial 

cell growth medium containing Cpd A (2µM), Cpd B (2µM) or TNF (20ng/ml) at the 

indicated concentrations were seeded on top of the Matrigel at a density of 5x104 cells per 

well (developing network). After incubation at 37°C for 36 hours the wells were 

photographed using an inverted phase contrast microscope (Cell-R, Olympus, Hamburg, 

Germany). Established network: Tube formation assay; therefore HUVEC cells were 

incubated for 36 hours in endothelial cell growth medium before Cpd A and TNF was 

added to the media. The wells were photographed after additional 48 hours. Four images 

were used per well for quantification. For quantification of tubes, each branch point with 3 

or more branches was counted. Branch point counts per image constituted the raw data 

for statistical analysis. 

 

 

2.18 Tissue Immunostaining 

H&E: Tumors or matrigel plugs were fixed in 4% paraformaldehyde overnight. Samples 

were processed using an ASP300 S Tissue Processor (Leica, Wetzlar, Germany). 

Embedded samples were cut using a sliding microtome HM 400 (Thermo Scientific, Fisher 

Scientific GmbH, Schwerte, Germany) to produce 7 - 15 μm thick sections. Staining was 

performed with haematoxylin/eosin (Thermo Scientific, Fisher Scientific GmbH).  

Immunostaining: Samples were cut to produce 20 – 30 µm thick sections. These sections 

were fixed in aceton (-20°C) for 2 minutes. Blocking was performed with normal goat 

serum (10%) in PBS for 30 minutes (room temperature). Subsequently sections were 

incubated with primary antibodies at 4°C overnight. Followed by washing for two times 

with PBS for 5 minutes. Sections were incubated with secondary antibodies for 1 hour at 

room temperature and embedded with Immu-Mount (Thermo Scientific) subsequent to two 

washes with PBS for 5 minutes.  

 

 

2.19 Microscopy 

For immunofluorescence analyses, a motorized inverted microscope (Olympus IX81 or 

IX71 equipped with Cell^R Imaging Software; Tokyo, Japan) was used. For staining of 

HUVEC cells (Tubulin, DAPI, cleaved caspase-3), 3x105 were fixed with 3% 

Paraformaldehyde, permeabilized with 0.1% saponin for 30 minutes and blocked with 
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blocking buffer for 30 minutes. Subsequently cells were incubated with the appropriate 

primary antibody in blocking buffer containing 0.1% saponin over night at 4°C. Afterwards  

 

cells were washed twice for 5 minutes with blocking buffer and incubated with secondary 

antibody for 1 h at room temperature. Cells were washed twice with blocking buffer and 

once with PBS for 5 minutes. DAPI (Molecular Probes, Life technologies, Karlsruhe, 

Germany) was added into the first washing step (1:5000) for nuclei staining. Cover slides 

were mounted using Mowiol mounting medium 

 

Two-photon fluorescence microscopy for deep tissue imaging was performed with an 

upright laser scanning microscope (TCS SP8 MP, Leica). For excitation of FITC dextran 

staining, the infrared laser (Chameleon Vision II, Coherent) was tuned to 960 nm. Images 

were acquired using a 25x water objective (HCX IRAPO L25x/0.95 W) and the resulting 

signal was collected using an internal non-descanned detector. 3D presentation and 

volume rendering of the acquired images were performed using the software Imaris 7.0.0 

(Bitplane). 

 

Z-stacks of matrigel plugs were taken using a motorized Leica M165 FC fluorescent 

stereomicroscope equipped with a DFC490 CCD camera and GFP2 (ex.480/40nm) filter 

set. Images were processed using a Multifocus module of the LAS 3.7.0 software (Leica). 

 

 

Table 5: Buffers and sample preparation for microscopic analysis 

Permeabilization buffer 0.1% Saponin, PBS 

Blocking buffer 3% BSA, 0.1% Saponin, PBS 

Mowiol 10% Mowiol, 25% Glycerol, 0.1 M Tris, 2.5% 
DABCO, H2O 

Phosphate buffer 0.12 M phosphate in H2O 

Fixation buffer  2% glutaraldehyde, 0.12 M phosphate buffer 
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2.20 Statistical analyses 

Significance of differences between the means of two groups were analyzed by two-sided 

unpaired Student´s t-test. Differences were considered statistically significant at *p<0.05, 

**p<0.01, ***p<0,001. Statistical analyses were performed using GraphPad Prism5 

(GraphPad Software, Inc., San Diego, CA, USA). 
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3. Results 

3.1 IAP antagonization inhibits tumor growth in vivo 

Previous studies showed that SMAC mimetics (compound A, SM) efficiently promote 

cytotoxicity towards malignant tumor cells in vitro and the initial in vivo analyses 

employing the xenograft tumor models in immune incompetent mice confirmed the anti-

tumor activity of these compounds (Lecis et al, 2010; Krepler et al, 2013; Condon et al, 

2014a; Benetatos et al, 2014). To further investigate the anti-tumor activity of SM we 

established a melanoma mouse model by using immune competent mice bearing B16 

melanoma tumors. Previous studies concerning the anti-tumor activity of SM 

demonstrated that the systemic application of compound A resulted in body weight loss 

(10-18%) and treatment-related deaths (4/7) (Condon et al, 2014a). Therefore, to 

overcome the poor systemic tolerability of this SM, B16 melanoma cells were mixed with 

matrigel containing SM at a final concentration of 2 µM or vehicle (control) and injected 

into the flank region of C57/Bl6 mice (Fig. 3.1).  

 

Fig. 3.1 Subcutaneous application of (matrigel-) tumor cells into wt-mice 

B16 melanoma cells were mixed with matrigel (4x10
5
/400µl) containing SM (compound A) at a final 

concentration of 2 µM or vehicle. After injection into the flank region of C57/Bl6-mice, tumor growth 

was recorded for 12 days. After sacrifing the mice, (matrigel-) tumors were dissected for further 

analysis.  
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Tumors were recorded and measured daily for up to 12 days until the tumor volume 

reached a critical size (diameter, 2cm). These analyses showed that tumor growth was 

significantly attenuated in the presence of SM compared with vehicle-treated controls (Fig. 

3.2A). Especially at day 6-7, tumor growth started to accelerate in vehicle treated mice. 

Histological analysis further confirmed the lack of tumor growth when matrigel plugs were 

supplemented with SM. H&E staining visualized tumor cells (blue) within control matrigel 

plugs, whereas the SM-containing matrigel plugs lack any tumor cells (pink) (Fig. 3.1B).  

 

 

Fig. 3.2 IAP antagonization inhibits tumor growth in vivo 

A. The murine melanoma cell line B16 was mixed with matrigel and vehicle or SM (2 µM) and 

subcutaneously injected into the flank region of recipient C57/Bl6 mice. Tumor size was measured 

in 2 dimensions and the calculated volume was recorded daily. Data points represent the mean + 

SEM. 

B. Histological analysis of B16 tumors was performed on day 12 by H&E staining and 

representative pictures are illustrated. 

 

 

In line with previous studies, our data showed that the IAP antagonist SM is also capable 

to inhibit tumor growth in immune competent mice (Fig. 3.2). Previous studies indicated 

that SM provokes direct cytotoxicity towards tumor cells. In order to prove this notion, 

tumor sections on day 5 and 12 were analyzed and tumor cell proliferation was assessed 

by specific staining of Ki67 (marker for proliferation), using a specific anti-Ki67 antibody 

(Fig. 3.3). The number of proliferating tumor cells however revealed no significant 

difference between control and SM-treated tumor cohorts (Fig. 3.3).  
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Fig. 3.3 IAP antagonization inhibits tumor growth in vivo without an attenuated proliferation 

in tumor cells 

A Histological analysis of implanted tumors (Fig. 3.2) stained for proliferation using a Ki-67 

antibody (red) and nuclei were counterstained with DAPI (blue). Sections on day 12 of intratumoral 

regions (i) are illustrated.  

B The quantification of proliferating cells was made by automated counting of Ki67 positive and the 

total DAPI stained nuclei. The number of Ki67-positive cells was then expressed as a percentage 

of the total. The quantification was performed in 2 fields of 200x magnified tumor regions 

(intratumoral). Data represents the mean ± SEM.  

 

 

To investigate if the attenuated tumor growth in SM-treated mice is a result of an 

increased apoptotic death of tumor cells (as previously shown), the activation of the 

executioner caspase-3 was investigated using an anti-active-caspase-3 antibody in tumor 

sections on day 5 and 12 (Fig. 3.4). At day 5 (nearly) no cells underwent cell death. 

Tumors at later stages (day 12) showed only a weak immunoreactivity to the anti-active-

caspase-3 antibody in SM-treated and untreated cohorts (Fig. 3.4B), indicating the lack of 

apoptotic death of tumor cells upon SM exposure.  
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Fig.3.4 IAP antagonization inhibits tumor growth in vivo without any direct cell death of 

tumor cells 

A Histological analysis of implanted tumors (Fig. 3.2) stained for cell death using an antibody for 

active caspase-3 (red) and nuclei were counterstained with DAPI (blue). Sections on day 5 of 

intratumoral (i) and peritumoral (p) regions are illustrated.  

B Amount of caspase-3 positive tumor cells was qualitatively estimated according to the intensity of 

specific staining and were arbitrarily set as the following: -, not expressed; +, low expression; ++, 

moderate expression; +++, strong expression. 

 

 

To further substantiate our in vivo observations, cultured B16 cells were exposed to 

increasing amounts of SM or an inactive control SMAC mimetic enantiomer (compound B, 

ent-SM) and cell death was examined (Fig. 3.5). Notably, the majority of previous reports 

indicated that SM induces anti-tumor activity by promoting TNF-induced cell death. 

Therefore, cell death was also examined when tumor cells were exposed to SM or ent-SM 

in conjunction with TNF (20 ng/ml). Neither alone nor in combination with TNF, SM was 

able to induce any cytotoxicity in tumor cells up to 48 hours (Fig. 3.5A). Similar results 

were observed using ent-SM (Fig. 3.5B).  

 

 

Fig 3.5 B16 cells are resistant to SM and TNF treatment in vitro 

B16 cells were treated with increasing amounts of SM (A) or ent-SM (B) alone or combined with 

TNF (20 ng/ml). Cell viability was measured by trypan blue exclusion after treatment for 48 hours. 

Data represent the mean ± SEM. 

 

 

To investigate the proliferation of cultured B16 cells upon treatment with SM or SM 

combined with TNF, growth rate of B16 cells was documented by videography every ten 

minutes for 48 hours. The confluency of cells was automatically calculated using a JuLi Br 
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Live Cell Analyzer (Peqlab). Analysis of growth rate of tumor cells revealed no significant 

difference in proliferation upon stimulation (Fig 3.6).  

 

 

Fig. 3.6 Cell growth of B16 cells is not altered upon SM and TNF treatment in vitro 

The relative cell growth of B16 cells, treated with SM (2 µM) alone or combined with TNF (20 

ng/ml) was analyzed with JuLi Br Live Cell Analyzer (Peqlab) for 48 hours (interval of 10 minutes).  

 

 

Taken together, our in vitro and in vivo analyses showed that SM did not induce any direct 

cytotoxicity towards tumor cells or attenuate their proliferation rate, either alone or in 

conjunction with TNF (Fig. 3.1–3.6)  

 

In addition to its cytotoxic effects, the initial studies concerning the cellular response to SM 

compounds showed that SM treatment induced canonical and non-canonical p52 NF-κB 

activity (Vince et al, 2007; Varfolomeev et al, 2007; Petersen et al, 2007). In line with 

these observations, analysis of NF-κB activity using ELISAs showed that SM treatment 

potently induced the non-canonical NF-κB activation. In contrast to previous data, no 

induction of canonical NF-κB activity was observed when B16 cells were treated with SM 

(Fig. 3.7A). Non-canonical NF-κB signaling upon SM stimulation was reported to induce 

TNF secretion, which was shown to be responsible for the SM-mediated cytotoxicity in a 

subset of tumor cell lines. Consistent with the increased non-canonical NF-κB activation 

transcriptional up-regulation of TNF was detected in B16 melanoma cells upon SM 

treatment (Fig. 3.7B, left panel). TNF was also detectable in the supernatant of B16 cells 

after SM treatment as analyzed by TNF-ELISA (Fig. 3.7B, right panel).  

 



  RESULTS 

                   

 

40 

 

 

Fig. 3.7 IAP antagonization induces non-canonical NF-κB signaling and TNF secretion in 

B16 cells 

A. Measurement of canonical and non-canonical NF-κB activation in B16-F1 cells by ELISA 

(TransAM) after stimulation with SM (2 µM) at indicated time points. Data represent the mean ± 

SEM.  

B. qRT-PCR analysis of B16 cells after stimulation with SM (2 µM) at indicated time points using 

specific primers for TNF (left panel). TNF secretion was measured by TNF-ELISA (right panel). 

Data represent the mean ± SEM. 

 

 

Importantly, additional exposure to TNF did not impact on SM-induced non-canonical NF-

κB activity, vice versa SM did not interfere with TNF-induced canonical NF-κB activation, 

together demonstrating the specific mode of SM in interacting with the non-canonical NF-

κB signaling in B16 melanoma cells (Fig. 3.8).  
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Fig. 3.8 SM do not alter TNF induced canonical NF-κB signaling in B16 cells 

Measurement of canonical and non-canonical NF-kB activation in B16 cells by ELISA (TransAM) 

after stimulation with TNF (20 ng/ml) or TNF combined with SM (2 µM). Data represent the mean ± 

SEM 

 

 

Due to the discrepancy between attenuated tumor growth in vivo and tumor cell resistance 

in vitro we hypothesized that rather the tumor microenvironment than the tumor cells 

themselves, represents the primary target of SM.  

 

 

3.2 IAP antagonization inhibits tumor vasculature in vivo 

The tumor microenvironment is made up of different components including blood vessels, 

tumor infiltrating immune cells, and cytokines that affect tumor growth and progression 

(Mantovani et al, 2008; Carmeliet & Jain, 2000). Therefore, we first investigated the 

vasculature structures and immune cell infiltration of B16 tumors after treatment with SM. 

Immunofluorescence microscopy of B16 melanoma tumor sections revealed CD31 

(marker for endothelial cells) positive endothelial cells (ECs) 12 days after tumor cell 

implantation (control), whereas no CD31 signal was seen on day 5 (Fig. 3.9A, upper panel 

and 3.9B). This indicates that an angiogenic switch had occurred between day 5 and 12 

coinciding with exponential tumor growth (Fig. 3.2). In contrast to control tumors, those 

treated with SM were significantly less vascularized intratumoraly at day 12 (Fig. 3.9A, 

lower panel and 3.9B) as demonstrated by the lack of CD31 positive cells. These data 

suggest that SM may act as an anti-angiogenic drug.  
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Fig. 3.9 Intratumoral vascularization is reduced after IAP anatgonization in vivo  

A. The murine melanoma cell line B16 was mixed with matrigel and vehicle or SM (2 µM) and then 

subcutaneously injected into the flank region of recipient wild type mice. Histological analysis of 

implanted tumors by staining of vascular endothelial cells using a CD31 antibody was performed. 
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Nuclei were counterstained with DAPI (blue). Sections of intratumoral (i) and peritumoral (p) 

regions on day 5 and 12 are illustrated.  

B. Amount of vascular endothelial cells from (A) was qualitatively estimated according to the 

intensity of specific staining and were arbitrarily set as the following: -, not expressed; +, low 

expression; ++, moderate expression; +++, strong expression. 

 

 

Notably, in contrast to CD31-positive vascular endothelial cells, lymphatic endothelial cells 

were not affected by SM. Histological investigation of lymphatic endothelial cells by 

immunostaining of the hyaluronan receptor LYVE, specifically expressed on lymphatic 

endothelial cells, revealed no significant changes in lymphatic endothelium upon exposure 

to SM (Fig. 3.10).  
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Fig.3.10 The amount of lymphatic endothelial cells is not altered after IAP  

antagonization in SM treated mice 

A. The murine melanoma cell line B16 was mixed with matrigel and vehicle or SM (2 µM) and then 

subcutaneously injected into the flank region of recipient mice. Histological analysis of implanted 

tumors by staining of lymphatic endothelial cells using a LYVE antibody was performed. Nuclei 



  RESULTS 

                   

 

45 

were counterstained with DAPI (blue). Sections of intratumoral (i) and peritumoral (p) regions on 

day 5 and 12 are illustrated.  

B. Amount of lymphatic structures of (A) was qualitatively estimated according to the intensity of 

specific staining and were arbitrarily set as the following: -, not expressed; +, low expression; ++, 

moderate expression; +++, strong expression. 

 

 

Tumor infiltrating immune cells are increasingly recognized as one of the major drivers of 

tumor growth by directly interfering with tumor cell homeostasis and proliferation or by 

conditioning the favorable tumor microenvironment (e.g. angiogenesis) (Stockmann et al, 

2014). Therefore, we examined whether SM-treatment impacts on infiltration of immune 

cells in melanoma tumors. Intra- and peritumoral leukocyte (CD45) and macrophage 

(CD68) infiltrations were investigated by specific staining of CD45 and CD68, respectively, 

in tumor sections with or without SM treatment. However, there was no significant 

difference between immune cell infiltration of SM treated and control B16 melanoma 

tumors, for a period of up to 12 days after transplantation (Fig. 3.11). 
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Fig. 3.11 The amount of inflammatory cells is not altered after IAP antagonization in SM 

treated mice 

The murine melanoma cell line B16 was mixed with matrigel and vehicle or SM (2 µM) and then 

subcutaneously injected into the flank region of recipient mice. Histological analysis of implanted 

tumors stained for inflammatory cells.  

A. Tumor sections were stained for CD68 expressing cells (red, upper panel) or CD45 expressing 

cells (red, lower panel) Nuclei were counterstained with DAPI (blue). Sections of intratumoral (i) 

and peritumoral (p) regions on day 5 and12 are illustrated. 

B. The amount of inflammatory cells was qualitatively estimated according to the intensity of 

specific staining and were arbitrarily set as the following: -, not expressed; +, low expression; ++, 

moderate expression; +++, strong expression. 

 

 

These data showed that in contrast to the lymphatic endothelial cells and infiltrating 

immune cells, SM-treatment efficiently reduced the appearance of vascular endothelial 
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cells and thus inhibits the vascularization of the melanoma tumors. In order to investigate 

tumor vascularization and blood supply, tail vein injection of high molecular weight FITC-

conjugated dextran was performed and the intratumoral vasculature at day 12 was 

analyzed by multi-photon microscopy. Multi-photon microscopy clearly showed an 

established vasculature in vehicle treated tumors contrary to SM treated tumors that 

revealed no vasculature formation (Fig. 3.12).  

 

Fig. 3.12 Deep tissue imaging (multi-photon microscopy) of SM treated tumors illustrates 

IAP antagonized induced destruction of intratumoral vasculature 

A. Intratumoral vasculature of tumors at day 12 was analyzed by multi-photon microscopy for deep 

tissue imaging using FITC-Dextran staining of vessels. FITC-Dextran was injected into the tail vein 

of mice 30 minutes before sacrificing the mice.  

B. 3D presentation and volume rendering of the acquired images obtained in (A). 

 

 

Taken together, these findings suggested that rather than targeting the tumor cells per se, 

IAP antagonization attenuated tumor growth in vivo by specifically targeting the tumor 



  RESULTS 

                   

 

48 

blood supply. Further analyses were performed to investigate the effect of IAP 

antagonization in endothelial cells, to verify the finding that ECs are sensitive for SM-

induced cell death under inflammatory conditions in the tumor microenvironment. 

 

 

3.3 IAP antagonization promotes TNF-induced endothelial cell death 

To better define the effects of IAP antagonization on vascular ECs we first examined the 

cytotoxic activity of SM and ent-SM on cultured Human Umbilical Vein ECs (HUVEC) and 

Human Dermal Microvascular ECs (HDMEC). In contrast to B16 cells, SM (but not ent-

SM) efficiently potentiated TNF-induced cell death in HUVEC and HDMEC (Fig. 3.13A). 

Similarly, TNF treatment reduced the clonogenicity of HUVECs only in conjunction with 

SM but not ent-SM, clearly indicating the efficiency of SM to potentiate TNF-cytotoxicity in 

ECs (Fig. 3.13B).  
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Fig. 3.13 IAP antagonization results in TNF induced cell death 

A. Measurement of cell viability of HUVECs and HDMECs in response to SM, ent-SM or combined 

TNF with SM (ent-SM) treatment. Viability was assessed by trypan blue exclusion after 48 hours. 

Data points represent the mean ± SEM.  

B. Measurement of clonogenicity of HUVECs treated as in indicated. After 48 hours media was 

changed to normal growth media. Clonogenicity was assessed by crystal violet staining of adherent 

colonies 10 days after treatment.  

 

 

Mechanistically, SM was shown to promote cytotoxic effects by inducing cIAP1 

degradation (Vince et al, 2007; Varfolomeev et al, 2007). In order to gain more insight 

about the mode of SM-induced susceptibility to TNF, we performed western blot analysis 

of cIAP1, cIAP2 and XIAP in HUVECs with or without SM treatment. In line with previous 

reports, cIAP1 was efficiently depleted when HUVECs were exposed to SM but not ent-

SM. cIAP2 was only detectable when HUVECs were exposed to TNF (Stehlik et al, 1998) 

but was significantly reduced upon SM co-treatment (Fig 3.14A). In contrast to cIAP1 and 

2 no alteration of XIAP protein level was detectable. The depletion of cIAPs was 

associated with the activation of executioner caspase-3 and the processing of PARP (Fig. 

3.14B) representing an ongoing apoptotic process in HUVECs upon TNF and SM 

combination treatment. Caspase-3 activation upon TNF/SM double treatment was also 

confirmed on the basis of flow cytometric analysis and immunofluorescence staining of 

HUVECs (Fig. 3.14C and D).  
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Fig. 3.14 IAP antagonization promotes TNF-induced endothelial apoptotic cell death 

A. Western blot analysis using cIAP1, cIAP2, XIAP and β-Actin antibodies on HUVECs whole cell 

lysates after 6h, treated as indicated.  

B. Western blot analysis using caspase-3, PARP and β-Actin antibodies on HUVECs whole cell 

lysates after 16h, treated as indicated.  

C. Flow cytometric analysis for cleaved caspase-3 staining was performed on HUVECs at indicated 

time points and treated as indicated. Data points represent the mean ± SEM. 

D. Immunofluorescence analysis with α-Tubulin (green), cleaved caspase-3 (red) antibodies and 

DAPI (blue) on HUVECs after indicated treatment for 16h.  

 

 

These data suggest that SM potentiate TNF-induced apoptosis of HUVECs. In order to 

further substantiate this finding, HUVECs treated with SM and TNF were additionally 

exposed to the pan-caspase inhibitor zVAD-fmk (zVAD, inhibition of apoptosis) or the 
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inhibitor of RIPK1, Necrostatin-1/Nec-1 (inhibition of necroptosis). Viability assays showed 

that the TNF-induced EC death could be mainly blocked by inhibition of caspase activity 

as previously shown (Vince et al, 2007; Varfolomeev et al, 2007; Petersen et al, 2007). 

Intriguingly, the inhibition of RIP1 kinase activity alone exhibited no effect on cell viability 

upon TNF/SM treatment. However, TNF/SM-induced cell death was almost completely 

abolished when caspase- and RIPK1 kinase-activity were simultaneously inhibited (Fig. 

3.15), indicating that necroptosis is initiated when caspase activation is inhibited. 

 

Fig. 3.15 IAP antagonization promotes TNF-induced endothelial apoptotic cell death 

A. Measurement of cell viability of HUVECs in response to TNF, SM or combination of TNF with 

SM treatment after addition of Nec-1 (30 µM) and zVAD-fmk (30 µM). Viability was assessed by 

trypan blue exclusion after 40 hours of treatment. Data points represent the mean ± SEM. 

 

 

These data so far showed that SM efficiently provoked TNF-induced cell death. However, 

TNF additionally has a pivotal role in angiogenesis and EC growth by activating NF-κB. 

TNF-induced canonical NF-κB activity in turn up-regulates the expression of pro-

angiogenic factors and promotes angiogenesis. In order to address this issue the 

canonical NF-κB activity was first examined in ECs exposed to TNF with or without SM. 

Accordingly, although the canonical NF-κB signaling was significantly up-regulated upon 

TNF stimulation, no significant alteration was detected when ECs were co-treated with SM 

(Fig. 3.13 A). Notably, like in B16 melanoma cells SM alone did only slightly induce 

canonical NF-κB activation.  

Furthermore, we performed qRT-PCR analyses of a panel of genes that have been shown 

to be activated by TNF and to regulate endothelial angiogenesis and growth. The 

expression of angiogenesis-related genes, such as cell adhesion molecules (vascular cell 

adhesion molecule type I (VCAM-1)) (Mackay et al, 1993) and such as pro-angiogenic 

factors (vascular endothelial growth factor (VEGF) -A and –C) (Salvucci et al, 2004; 
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Hoeben et al, 2004) were specifically analyzed as important pro-angiogenic factors that 

have been shown to be up-regulated by TNF. To clarify, if SM treatment interfered with 

the reported TNF mediated transcriptional regulation of these factors, we examined their 

expression levels in ECs exposed to TNF in the presence or absence of SM. Our data 

confirmed the reported up-regulation of VEGF-A, VEGF-C and VCAM-1 in response to 

TNF. However, in line with the lack of alteration of TNF-induced NF-κB activity, SM did not 

affect the TNF-induced expression of these factors (Fig. 3.16B). The expression levels of 

angiogenic factors including PDGF-A (Platelet-derived growth factor A 

) and cyr61 (cysteine-rich angiogenic inducer 61) were not altered neither by TNF nor SM 

(Fig. 3.16B).  

Together these data suggest that IAP antagonization in conjunction with TNF-signaling 

does not interfere with TNF-mediated neo-angionesis, but rather results in EC apoptosis.  
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Fig. 3.16 Analysis of Nf-κB signaling and angiogenesis related-genes after TNF stimulation 

and additional SM treatment 

A. NF-κB activation (canonical) was measured by NF-κB ELISA (TransAM) after stimulation of 

HUVECs with TNF, SM and TNF combined with SM at indicated time points. Data represents the 

mean ± SEM. 

B. qRT-PCR of angiogenesis-related genes after stimulation of HUVECs with TNF and TNF 

combined with SM at indicated time points. Data represents the mean ± SEM. 

 

 

To further gain more mechanistic insight how SM inhibits tumor vascularization, we 

conducted an in vitro HUVEC tube formation assay. This assay is a well-established 

method to investigate EC functions in vitro by using a basement membrane matrix with 

biological activity (Kleinman & Martin, 2005). Both, TNF and SM treated HUVECs formed 

extensive capillary-like tubular networks within 36 hours (developing network), indicating 

that normal EC function was not impaired by TNF or SM treatment (Fig. 3.17A, upper 

panel). In contrast, network formation was inhibited when HUVEC were seeded on 

matrigel containing TNF in combination with SM. These data clearly showed that TNF in 

combination with SM efficiently inhibits capillary formation. More strikingly, when 

established capillary tubes that were grown for 36 hours (normal growth medium) were 

exposed for additional 48 hours to TNF in combination with SM, endothelial capillary 

network was similarly disrupted (Fig. 3.17A, lower panel, established network). These 

data indicate that SM potentiate TNF-induced death of ECs in established and developing 

capillary network. The involvement of TNF-induced apoptosis in this process was 

demonstrated by using caspase inhibitors. The pan-caspase inhibitor zVAD efficiently 

protected capillary network from TNF/SM-induced cell death (Fig. 3.17C), which is 

consistent with the pro-apoptotic role of SM in ECs shown in Fig. 3.13 and Fig. 3.14. 

Notably, the inactive ent-SM had no effect on network formation, neither alone nor 

combined with TNF (Fig. 3.17B). 
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Fig. 3.17 Tube formation assay 

A. ECs were seeded on matrigel and pictures were taken with a brightfield microscope. Developing 

network: EC growth was recorded after 36 hours treatment (SM 2 µM, TNF 20 ng/ml, A upper 

panel)). Established network: to investigate established capillary-like tubes, ECs were treated after 

36 hours growing in normal media, for 48 hours treatment as indicated (A, lower panel).  

B. Network formation of HUVECs treated with ent-SM alone or combined with TNF. 

C. Developing network + zVAD: ECs were treated for 48 hours with additional zVAD (20 µM). 

 

 

Taken together, these in vitro results point at a direct cytotoxic effect of SM towards ECs 

in combination with TNF. 

 

3.4 IAP antagonization potentiates TNF-induced vascular disruption in 

vivo 

To verify our in vitro analyses concerning the TNF dependency of endothelial cell death in 

response to IAP antagonization in vivo, we implanted matrigel plugs supplemented with 

angiogenic growth factors and SM with or without TNF (but lacking tumor cells in contrast 

to Fig. 3.1) subcutaneously into the flank region of recipient mice. Ingrowing perfused 
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blood vessels sprouting from adjacent vessels into the matrigel plugs were then visualized 

by injecting high molecular weight fluorescent FITC-dextran (2000 kDa) into the tail vein of 

these mice. Strikingly, only matrigel plugs containing SM in combination with TNF showed 

a significant reduction in angiogenesis and vascular formation, whereas matrigel plugs 

containing either SM or TNF alone were normally vascularized (Fig. 3.18A). In line with 

this, hematoxylin and eosin staining of the matrigel plugs showed vessels as holes 

bordered with blue stained nuclei in contrast to none infiltrated matrigel areas seen in pink 

(Fig. 3.18). This is in stark contrast to our initial observation that SM alone was sufficient 

to reduce tumor vascularization in matrigel plugs containing B16 tumor cells. These 

findings suggest, that the tumor microenvironment e.g. immune cells or B16 cells (Fig. 

3.7) represent the source of TNF in these melanoma tumors that is sufficient to induce EC 

death when combined with IAP inhibition. Alternatively, SM-induced up-regulation and 

secretion of TNF by B16 melanoma cells may additionally impact on the cytotoxic activity 

of SM towards ECs. Taken together, the analyzed matrigel plugs showed characteristics 

of vascularization (neo-angiogenesis) except for combined TNF and SM plugs. 
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Fig. 3.18 In vivo analysis of vascularization upon IAP antagonization in wt-mice 

Matrigel plugs were supplemented with SM, TNF, SM + TNF or vehicle and injected 

subcutaneously into the flank region of recipient wild type-mice. After 12 days, high molecular 

weight fluorescent FITC-Dextran was injected into the tail vein of mice. Mice were sacrificed after 

30 minutes and plugs were fixed in 4% PFA. 

First panel: photographs of multiple image alignment of matrigel plugs on day 12. 

Second panel: matrigel plugs were stained for H&E after embedding in paraffin and sectioning with 

a microtome.  

Third and fourth panel: Z-stacks of matrigel plugs were taken using a motorized Leica M165 FC 

fluorescent stereomicroscope equipped with a DFC490 CCD camera and GFp2 (ex.480/40nm) 

filter set. Images were processed using a Multifocus module of the LAS 3.7.0 software (Leica).  

 

 

To further confirm the critical role of TNF signaling during tumor growth and angiogenesis 

we employed TNF-receptor-1 and -2 knockout mice (TNFR1/2-/-) (Wohlleber et al, 2012). 
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To verify the TNF-dependent death of endothelial cells in vivo, matrigel plugs were 

injected into TNFR1/2-/--mice (accordingly to Fig. 3.16). In striking contrast to the 

observations made in wild type mice, SM and TNF supplemented matrigel plugs exhibited 

normal vascularization and showed no detectable alteration of neo-angiogenesis 

compared to SM or TNF alone, providing a strong evidence for the role of TNF and TNF-R 

signaling in ECs in SM-induced cytotoxicity (Fig. 3.19) 

 

Fig. 3.19 In vivo analysis of vascularization upon IAP antagonization in TNF-R1/2
-
mice 

Matrigel plugs were supplemented with SM, TNF, SM + TNF or vehicle and injected 

subcutaneously into the flank region of recipient TNF-R1/2
-/-

-mice. After 12 days, high molecular 

weight fluorescent FITC-Dextran was injected into the tail vein of mice. Mice were sacrificed after 

30 minutes and plugs were fixed in 4% PFA. 

First panel: photographs of multiple image alignment of matrigel plugs on day 12. 

Second panel: matrigel plugs were stained for H&E after embedding in paraffin and sectioning with 

a microtome.  
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Third and fourth panel: Z-stacks of matrigel plugs were taken using a motorized Leica M165 FC 

fluorescent stereomicroscope equipped with a DFC490 CCD camera and GFp2 (ex.480/40nm) 

filter set. Images were processed using a Multifocus module of the LAS 3.7.0 software (Leica).  

 

 

In analogy to our initial experiment (Fig. 3.2) matrigel plugs containing B16 tumor cells 

with or without SM were implanted into TNFR1/2-/--mice. In contrast to the growth 

attenuating effect of SM in wild type mice (Fig. 3.2) where we observed a significant 

reduction of tumor size without a direct cytotoxicity against tumor cells, no effect on tumor 

growth rates in the absence of TNF-R signaling in tumor microenvironment was observed 

(Fig. 3.20). This further highlights the involvement of tumor microenvironment including 

endothelial compartment in the anti-tumor activity of SM.  

 

Fig. 3.20 Tumor growth is not attenuated in TNFR1/2
-/-

-mice 

A. The murine melanoma cell line B16 was mixed with matrigel and vehicle or SM (2µM) and 

subcutaneously injected into the flank region of recipient TNF-R1/2
-/-

-mice. Tumor size was 

measured in 2 dimensions and calculated volume was recorded daily. Data points represent the 

mean + SEM.  

B. Histological analysis of B16 tumors was performed on day 12 by H&E staining and 

representative pictures are illustrated. 

 

Indeed, multi-photon microscopy showed tumor vascularization in both vehicle and SM 

treated tumors (Fig. 3.21), further indicating that the cytotoxic effects of SM towards 

vascular endothelium is provided by TNF and TNF-R signaling in ECs (Fig. 3.2). 
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Fig. 3.21 Intratumoral vasculature in TNFR1/2
-/-

-mice  

Deep tissue imaging (multi-photon microscopy) of SM treated tumors illustrates IAP antagonized 

do not induce destruction of intratumoral vasculature 

Intratumoral vasculature of tumors at day 12 was analyzed by multi-photon microscopy for deep 

tissue imaging using FITC-Dextran staining of vessels. FITC-Dextran was injected into the tail vein 

of mice 30 minutes before sacrificing the mice.  

 

In summary, these findings confirm that IAP antagonization has the capacity to induce a 

TNF dependent cell death which is seen specifically in the endothelial cells within the 

tumor-microenvironment and in this way could interrupt neo-angiogenesis of tumors.  
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4. Discussion 

 

In this work we discovered a novel effect of SMAC mimetics (SM) on tumor growth. Our 

data showed that SM treatment leads to substantial inhibition of tumor growth, which was 

not due to direct cytotoxicity towards tumor cells but by provoking TNF-dependent 

endothelial cell death and disruption of tumor blood vessels. Specifically, SM induced non-

canonical NF-κB activity results in TNF production. Increased local concentration of TNF 

together with SM induced endothelial cell death and inhibited tumor vascularization. Our 

data represent a novel strategy to combat cancer by potentiating inflammatory destruction 

of tumor blood vessels using SMAC mimetics.  

 

 

4.1 IAP antagonization inhibits tumor growth without inducing direct 

cytotoxicity against tumor cells 

 

Resting or evasion of programmed cell death is one of the crucial characteristics of cancer 

cells (Hanahan & Weinberg, 2000) and IAPs have been reported to play a major role in 

this process (Kashkar, 2010; Fulda & Vucic, 2012; Dubrez et al, 2013). Therefore, IAPs 

were considered to be an attractive target for therapeutic applications in human 

malignancies. Various targeting strategies have been intensively investigated and the 

generation of small-molecule IAP antagonists is considered to be one of the most 

promising amongst them (Vucic & Fairbrother, 2007;Ndubaku et al, 2009; Fulda & Vucic, 

2012). Indeed, SM have been shown to restore TNF-dependent apoptosis directly in 

melanoma cancer cells xenografted into NUDE mice (Benetatos et al, 2014; Condon et al, 

2014a; Krepler et al, 2013). Especially pan-IAP antagonists have been shown to be very 

potent in promoting cell death in cancer cells (Ndubaku et al, 2009b).  

In the present work, a murine B16 melanoma model was chosen to analyze the anti-

tumoral efficiency of a pan-IAP antagonist (compound A) in an immune competent mouse 

tumor model. We could show that tumor growth is significantly attenuated in the presence 

of SM (Fig. 3.2). Subsequent analyses however revealed no direct cytotoxicity against 

tumor cells, in vivo and in vitro (Fig. 3.2-3.6). Although our data show that the B16 mouse 

melanoma tumor cells produce and secrete elevated levels of TNF in response to SM 

(Fig. 3.7), they are yet not sensitive to SM treatment in vitro. 
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In recent years, numerous studies have focused on the effect of SM on cancer cells 

(Fulda & Vucic, 2012; Fulda, 2014; Bai et al, 2014) and in general 3 categories of 

responses have been observed: (i) sensitive to single SM treatment, (ii) sensitive to SM in 

combination with TNF and (iii) resistant to SM. Additional analyses conclusively showed 

that the cytotoxic activity of SM is mainly dependent on TNF and TNF-induced cell death. 

Accordingly, SM compounds were thought to be more effective in patients whose tumors 

produce large quantities of inflammatory cytokines, including TNF (induced by SM or not). 

Based on our findings, B16 cells could be categorized as a SM-resistant tumor cell line. 

Several potential resistance mechanisms could be envisaged that are briefly being 

discussed in the following. 

A major discovery concerning the susceptibility of tumor cells towards SM induced 

apoptosis was the observation that SM induced the degradation of cIAPs (Varfolomeev et 

al, 2007; Vince et al, 2007). Correspondingly, one possible mechanism conferring 

resistance to SM in tumor cells was supposed to arise from the level of cIAP2. Cancer cell 

lines evade SM-induced apoptosis by up-regulation of cIAP2. Resistance to SM induced 

apoptosis was observed when cIAP2 levels were restored after initial SM-induced 

degradation in lung carcinoma (Petersen et al, 2010), colon carcinoma and in melanoma 

cell lines (Darding et al, 2011). cIAP2 gene expression has been reported to be induced 

upon non-canonical NF-κB activation and its degradation depends on the presence of 

cIAP1 (Darding et al, 2011). We could show that SM treatment of B16 melanoma cells 

results in the activation of non-canonical NF-κB signaling (Fig. 3.7). One intriguing task 

would be to examine the expression levels of cIAP1 and cIAP2 in B16 cells to explore 

their role in mediating resistance to SM. However, there is still no explanation why cIAP1 

and 2 are altered in specific cells. 

SM-mediated cell death is highly dependent on (de-ubiquitinated) RIPK1 that is 

associated with FADD and caspase-8 in the formation of the ripoptosome (Varfolomeev et 

al, 2007; Vince et al, 2007). The inability to form this complex can confer resistance to SM 

which was recently seen in CLL (Maas et al, 2013). Especially CYLD (de-ubiquitinates 

RIPK1) is implicated in cancer progression (Almeida et al, 2008; Masoumi et al, 2011; 

Hayashi et al, 2014). Inactive or low levels of CYLD could result in blunted cell death 

signaling, leading to SM resistance.  

An additional resistance mechanism may arise from the expression of different cFLIP 

isoforms. The long isoform of cFLIP (cFLIPL) has been reported to regulate the activation 

of RIPK1-dependent cell death (Geserick et al, 2009; Oberst et al, 2011; Feoktistova et al, 

2011) and B16 cells might express persistent cFLIP levels, hence impeding SM-mediated 

cell death that was already shown in a panel of other cancer cell lines (Cheung et al, 

2009).  
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Regardless of the underlying molecular mechanisms involved in conferring SM-resistance 

in B16 cells, the attenuated tumor growth observed in vivo, prompted us to investigate in 

more detail the impact of SM on B16 tumor growth in mice. In particular, the discrepancy 

between attenuated tumor growth in vivo and tumor cell resistance in vitro, led us to the 

hypothesis that an indirect effect of SM treatment could be responsible for the attenuated 

tumor growth in vivo.  

This phenomenon has previously been described in other studies. Krepler and colleagues 

for example, reported several melanoma cell lines to be remarkably unresponsive towards 

SM in vitro yet showed attenuated tumor growth upon SM treatment in vivo (Krepler et al, 

2013). An explanation for the observed discrepancy in this model has not yet been 

suggested.  

 

 

4.2 IAP antagonization results in the destruction of the vasculature in 

the tumor microenvironment 

 

The tumor microenvironment comprises of different cellular and non-cellular components 

including vascular endothelial cells and tumor-infiltrating immune cells, as well as 

cytokines that affect tumor growth and progression (Mantovani et al, 2008; Carmeliet & 

Jain, 2000). TNF plays a critical role in these processes, by acting as an amplifier of the 

inflammatory milieu. Indeed, we showed an increased TNF secretion by B16 cells upon 

SM exposure. This increased local concentration of TNF may induce paracrine TNF-R 

signaling, culminating in an inflammatory response or cytotoxicity in the tumor stroma.  

 

There is controversy regarding the role of TNF in tumorigenesis. High concentrations are 

associated with an antitumoral response, shown in a murine model of sarcoma and also in 

sarcoma patients (Wiemann & Starnes, 1994; Havell et al, 1988) while low levels of TNF 

can induce tumor growth (Balkwill, 2006). The tumor promoting mechanism are based on 

ROS (reactive oxygen species) and RNS (reactive nitrogen species) accumulation that 

can induce DNA damage and thereby facilitate tumorigenesis (Woo et al, 2000; Hussain 

et al, 2003). Depending on its concentration, TNF might also have pro-or antiangiogenic 

effects (Fajardo et al, 1992; Yoshida et al, 1997; Weichselbaum et al, 2002; Li et al, 

2009). High TNF levels inhibit angiogenesis while low levels of TNF increase tumor 

growth. Independently of its anti- or pro- effects in tumors, TNF in the tumor 

microenvironment is considered to be derived from either immune infiltrating myeloid cells 

and/or the tumor cells themselves (Kulbe et al, 2007; Wong et al, 2014). Our data clearly 
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showed that SM induces non-canonical NF-κB activity and TNF secretion by tumor cells. 

However, these data, do not exclude the tumor stroma in producing TNF in response to 

SM. Indeed, SM compounds have been shown to induce cytokine production in myeloid 

cells of the tumor stroma (Wong et al, 2014).  

 

Independent of the source of TNF in the tumor microenvironment, our histological 

analyses demonstrated that SM treatment in vivo, leads to a clear disruption of the tumor 

vasculature (Fig. 3.9 - 3.12). In healthy adults, ECs remain quiescent for years. However, 

these cells can very rapidly start to proliferate and migrate to form new vessels following 

tissue injury, inflammation, cancer, or other pathologies (Verdegem et al, 2014). The 

stromal vasculature in tumors is a vital pipeline of nutrients for tumor cells, which 

reciprocally interacts with tumor cells and facilitates tumor growth. Accordingly, in order to 

manage their increasing metabolic demand tumor cells secrete a plethora of pro-

angiogenic factors, which support vessel growth and in a positive feed-forward loop 

enable tumor growth. In our model of B16 melanoma tumors, this resulted in the 

“angiogenic switch” between day 5 and 12 following subcutaneous tumor cell implantation, 

which subsequently triggers rapid tumor growth (Fig. 3.2 and 3.9). However, intermittently 

the tumor growth can exceed its blood supply, leading to hypoxia and nutrient deprivation 

which in turn initiates a new wave of pro-angiogenic activity to restore the balance 

between blood supply and tumor growth. Upon SM treatment, tumors lack CD31 positive 

endothelial cells and fail to be vascularized (Fig. 3.9 and 3.12). Our data indicated that SM 

potently interfered with EC function and impact on tumor growth by inhibiting its 

vasculature.  

 

Although we observed no significant alteration in tumor immune cell infiltration in our 

model, we cannot exclude a role for SM in modulating immune cell function (Dougan et al, 

2010) such as tumor-infiltrating macrophages, which may be affected by SM treatment as 

previously demonstrated (Müller-Sienerth et al, 2011; McComb et al, 2012; Lecis et al, 

2013). In line with this, Wong and colleagues report that the loss of XIAP, cIAP1 and 

cIAP2 resulted in reduced number of mature macrophages (Wong et al, 2014). 

Additionally, more detailed analyses of tumor infiltrating immune cells could further 

substantiate our findings, regarding the specific effect of SM towards blood vessels and 

clarify whether or not there is an interplay with infiltrating immune cells. Therefore, 

additional staining of CD8-positive cells, NK cells and myeloid suppressor cells is currently 

pursued by us.  
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4.3 IAP antagonization promotes TNF-induced cell death of endothelial 

cells 

 

Endothelial cell death is implicated in the pathogenesis of several cardiovascular diseases 

such as arteriosclerosis, congestive heart failure and ischemia-reperfusion disorders 

(Winn & Harlan, 2005). Subsequent analyses of SM-mediated and TNF-dependent cell 

death of ECs, support our hypothesis that the tumor microenvironment, in particular ECs, 

rather than the tumor cells per se, represents the primary target of SM in our model. 

Vascular endothelial cells are a major target of TNF that can activate both, cell survival 

and cell death. Beside proteins of the Bcl-2 family, IAPs have been identified as TNF-

induced genes that induce resistance against TNF-initiated cell death in endothelial cells 

(Stehlik et al, 1998; Badrichani et al, 1999; Hofer-Warbinek et al, 2000). Our study 

demonstrated that SM potently induced the degradation of cIAPs in cultured ECs (Fig. 

3.14) which in turn provoke cytotoxicity upon TNF treatment (Vince et al, 2007; 

Varfolomeev et al, 2007; Gaither et al, 2007).  

In HUVECs, cIAP1 was degraded upon addition of SM (Fig. 3.14). Similarly, degradation 

of cIAP2 could be shown following SM treatment in the presence of TNF (Fig. 3.14) 

although cIAP2 seemed to be present only in low abundance in the absence of TNF 

stimulation. Studies using cIAP1 deficient mice, which harbor elevated cIAP2 protein 

levels with normal mRNA levels, showed that cIAP2 is a direct target of cIAP1-mediated 

ubiquitination and degradation (Conze et al, 2005). In line with this, an upregulation of 

cIAP2 was similarly seen in mouse embryonic fibroblast (Mahoney et al, 2008) and certain 

tumor cells in the absence of cIAP1(Cheung et al, 2008). Hence, the low level of cIAP2 in 

unstimulated HUVEC cells is most likely due to the fact that the expression levels of cIAP2 

are maintained by constitutive ubiquitination and subsequent degradation by cIAP1. In line 

with this, an upregulation of cIAP2 was similarly seen in mouse embryonic fibroblast 

(Mahoney et al, 2008) and certain tumor cells (Cheung et al, 2008) in the absence of 

cIAP1. 

The observed degradation of cIAPs leads to TNF-dependent apoptotic cell death shown 

by caspase-3 and PARP cleavage upon SM treatment (Fig. 3.14). Whether XIAP is also 

affected in HUVECs upon treatment was not analyzed in detail, but since previous studies 

using protein binding assays showed that the SM compound used in our work also inhibits 

XIAP, an inhibition of XIAP can be assumed (Vince et al, 2007; Condon et al, 2014).  

 

In contrast to the effects of pan-IAP antagonists tested here, our preliminary analyses 

using specific siRNA against individual IAPs or the cIAP1-specific SM compound 
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Birinapant showed no similar effect of single IAP antagonization in the presence of TNF 

(data not shown). This indicates that targeting of all IAPs by SM compounds might be 

required to obtain an anti-angiogenic effect.  

Similarly, a single genomic ablation of IAPs did not cause any severe phenotype. Only the 

combined lack of cIAP1-cIAP2 or cIAP1-XIAP has been shown to be lethal in mice (Moulin 

et al, 2012b). This was due to cardiovascular defect in the embryonic development. In line 

with our observations, the observed cardiovascular defects and the lethality was 

significantly reduced when TNF-R was simultaneously deleted. Moreover, similar 

observations were also made in zebrafish (Santoro et al, 2007). In contrast to mammalian 

genomes that contain two closely related cIAPs, zebrafish genomes contain only one cIAP 

gene (birc2). Genetic ablation of birc2 resulted in the tomato phenotype, which is 

characterized by severe haemorrhage and vascular regression during development. This 

regulation of endothelial cell integrity and blood vessel homeostasis was also dependent 

on TNF-R signaling. Together, these data indicate the central role of IAPs in the 

homeostasis and function of ECs. Moreover, this implies that especially pan-IAP 

antagonists (like CpdA in this work) could be very potent inducer of EC death.  

 

IAPs play a major role in the regulation of NF-κB signaling and it is quite established that 

SM treatment can lead to activation of non-canonical NF-κB signaling due to the 

stabilization of NIK (Varfolomeev et al, 2007; Vince et al, 2007). This is in line with our 

data that showed non-canonical NF-κB activation in B16 cells that resulted in TNF 

secretion. The impact on canonical NF-κB signaling using SM was shown in different 

studies that illustrated a clear activation of canonical NF-κB signaling (Vince et al, 2007; 

Varfolomeev et al, 2008; Ndubaku et al, 2009b). In contrast to these studies, canonical 

signaling was only slightly (if at all) activated after SM stimulation in the present work (Fig. 

3.7 and 3.16).  

This observation gives rise to further questions regarding this discrepancy. To our 

knowledge, SM-mediated NF-κB signaling has so far not been investigated in B16 and 

endothelial cells (HUVEC) and these cells might exhibit a different response to SM. Also, 

it might be that the SM compound used in our work induced a different mechanism to 

activate canonical NF-κB signaling. In previous studies, canonical NF-κB signaling has 

mainly been demonstrated by western blot analysis. Furthermore, the activation was 

analyzed within the first minutes after treatment and the response oscillated over time (as 

reported by (Werner et al, 2005)). In our study, NF-κB activation was analyzed by ELISA 

(TransAM) and this may result in a decreased level of canonical NF-κB activation due to a 

different method and different time points of stimulation.  
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Additionally, TNF induced the canonical NF-κB activity, which was not altered by 

additional SM treatment in our study. Contrary to this, Varfolomeev and colleagues 

reported that SM abrogates TNF induced NF-κB activation (Varfolomeev et al, 2008).  

Our analyses of NF-κB induced genes (e.g. VEGF-A, VCAM-1) demonstrated that their 

mRNA levels were not effected in the presence of SM. Furthermore, NF-κB activation was 

investigated up to 24 hours and also pre-treatment of cells with SM, revealed no change 

in TNF induced NF-κB activation (data not shown).  

However, to characterize NF-κB signaling in more detail, additional analyses like Western 

blot analyses are being persued. On the one hand, this could substantiate our findings 

and may provide new details about the crosstalk of IAPs and TNF-induced signaling, 

especially in the endothelium. On the other hand, subsequent analyses might illustrate a 

clear activation of canonical NF-κB signaling that were not seen by ELISA assays.  

 

To further substantiate our in vivo observations concerning the anti-angiogenic effects of 

SM, we performed qRT-PCR analyses of endothelial growth signals known to be engaged 

by TNF-induced NF-kB signaling (Hoeben et al, 2004). Our analyses of pro-angiogenic 

growth factors and cell adhesion molecules, excludes an alteration of TNF mediated 

angiogenic signaling by SM treatment (Fig. 3.16). Furthermore, this implies that IAP 

antagonization in conjunction with TNF-R signaling resulted in EC apoptosis rather than 

alteration of the TNF-induced neo-angiogenesis, at least in vitro.  

 

 

4.4 IAP antagonization leads to TNF induced vascular disruption in 

vivo 

 

The potency of SM in disrupting tumor vascularization in vivo was conclusively 

demonstrated by implanting matrigel plugs containing tumor cells in mice and subsequent 

analyses of matrigel vascularization (Fig. 3.18). In the absence of tumor cells, i.e. when 

pure matrigel was implanted into mice, SM was only able to inhibit angiogenesis when 

ectopic TNF was also included in the matrigel plugs. Strikingly, when matrigel plugs, 

supplemented with TNF and SM were implanted in TNF-R1/2-/--mice no alteration in 

angiogenesis could be detected when ECs lack TNF-R signaling (Fig. 3.19). This 

conclusively demonstrated that the anti-angiogenic effect of SM is dependent on TNF. 

Similar results were obtained upon tumor cell implantation in TNF-R1/2-/--mice. SM failed 

to inhibit tumor growth and vascularization in TNF-R1/2-/--mice (Fig. 3.20 and 3.21). This 
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furthermore demonstrated that the reduction in tumor growth in wild type mice was not 

due to a direct effect on B16 cells. 

 

Notably, it has already been shown that loss of IAPs within the myeloid compartment 

causes the over-production of many pro-inflammatory cytokines including TNF (Wong et 

al, 2014). Thus, targeting IAP proteins by SM could further potentiate the production of 

inflammatory cytokine by immune infiltrating cells within a tumor and thereby expand the 

SM-mediated cytotoxicity towards adjacent tissues, including ECs. Indeed, it has been 

shown that SM and stimulation of the innate immune system by pathogen mimetics, can 

synergize to potentiate the effect of SM (Beug et al, 2014). In particular, the group of R. 

Korneluk reported that oncolytic viruses and adjuvants (such as poly(I:C) and CpG) that 

are proven safe in clinical trials, stimulate a potent safe “cytokine storm”. These findings 

lend support to the idea that enhanced cytokine production in the tumor stroma, might 

create a bystander effect combined with SM. Conceivably, similar bystander effects could 

help potentiate cytotoxicity mediated by SM towards the tumor vasculature. 

 

Our data showed that TNF-R signaling can be directly modified by SM in ECs and the 

main trigger for an attenuated tumor growth in the presented work seems to be the 

disruption of the tumor vasculature. One possible strategy to elucidate the role of TNF-R 

signaling in different tissue compartments within a tumor in more detail, could be a tissue 

specific ablation of TNF-R signaling (e.g. EC or macrophages) followed by the analysis of 

tumor growth after SM treatment.  

 

Overall, these data confirm endothelial cell death as the main cause for attenuated tumor 

vascularization in the presence of SM and TNF.  

 

 

4.5 Therapeutic implications 

 

Numerous studies focusing on SM in cancer therapy have contributed to the current 

dogma that SM application typically targets the malignant cells of a tumor. However, the 

ongoing clinical evaluation of SM in cancer patients has yielded only limited success. 

Indeed, the tumor microenvironment may represent a more potent antitumoral activity of 

SM.  

The present study showed SM-mediated destruction of tumor-associated blood vessels, 

thus highlighting the potential for targeting tumors that otherwise might be expected to 
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resist SM therapy (Krepler et al, 2013). Although disruption of the vascular endothelium 

appears to be the primary mechanism of tumor reduction in the B16 melanoma model, 

this may not apply to all tumors. Indeed, direct effects of SM towards cancer cells are well 

established (Bai et al, 2014; Fulda & Vucic, 2012). Thus, SM-mediated cell death of the 

tumor-vasculature may constitute an additional and perhaps complementary therapeutic 

paradigm for SM therapy. 

 

Congruent with our findings, anti-angiogenic drugs have been shown to be highly potent in 

cancer treatment. Notably, vascular disruption agents (VDA) (Mita et al, 2013; Porcù et al, 

2014) are used to limit tumor growth and are evaluated in clinical trials. In line with this, 

antitumor activity was shown with an oligomeric form of the DR5 ligand Apo2L/TRAIL, 

which is able to induce specific death of tumor-ECs (expressing DR5) and resulting in 

inhibition of tumor growth in Lewis lung carcinoma (Wilson et al, 2012). These studies 

further underline the potential clinical relevance for targeting the tumor-vasculature. 

 

In this work, tumor cells and SM were co-injected into the recipient mice leading to an 

attenuation of tumor growth. This may not represent a clinically relevant regiment. Indeed, 

evaluating whether SM can block already established tumor vessels, might represent a 

more physiological and clinically relevant setting. Our in vitro experiments, using tube 

formation assays as well as established networks (Fig. 3.17), already point at the potential 

activity of SM/TNF on already established blood vessels. These questions are currently 

being addressed by ongoing experiments. It is important to realize, however, that targeting 

established vasculature also harbors the potential for causing damage to quiescent 

normal vasculature. It will be of particular interest therefore to establish if normal blood 

vessels are affected by SM treatment. Interestingly, in vivo studies using SM (Petersen et 

al, 2007) largely failed to detect substantially increased TNF levels in the circulation, 

suggesting that TNF is primarily produced  locally in the immediate tumor 

microenvironment and therefore potentially limiting the activity to sites of pathological 

blood vessel growth. If so, SM could be valuable to target tumor-associated blood vessels 

but simultaneously minimizing collateral damage to the normal vasculature.  
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4.6 Conclusion 

 

Numerous studies have focused on the potential of SM to induce cell death in cancer cells 

(Fulda & Vucic, 2012; Fulda, 2014; Bai et al, 2014) and various SM compounds are 

currently in clinical trials to evaluate their potential use in cancer therapy. So far, SM 

mediated cell death is believed to directly target malignant cells.  

 

Here we show in a B16 melanoma tumor model, that treatment with SMAC mimetics leads 

to a clear attenuation of tumor growth in vivo. Exploring the underlying mechanisms, our 

results demonstrate for the first time that SMAC mimetics have the potential to inhibit 

tumor growth not by inducing direct cytotoxicity in tumor cells but by disruption of the 

tumor vasculature. The high susceptibility of endothelial cells to a SMAC mimetic 

mediated and TNF-dependent cell death was shown in vitro and in vivo. Using the TNF-

R1/2-/--mice, we show that the disruption of the tumor vasculature is highly dependent on 

TNF signaling in the tumor microenvironment, leading to a so far unrecognized anti-

angiogenic activity of SMAC mimeitcs. 

 

Together, these findings may offer a novel approach to target the tumor vasculature using 

SM to control pathological angiogenesis while minimizing collateral damage to normal 

blood vessels. This could constitute an additional and perhaps complementary utility of 

SMAC mimetics which could subsequently lead to improvement of current cancer therapy.  
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Conclusion: Proposed model of SMAC mimetic induced destruction of vascular 

endothelium, leading to inhibition of tumor growth under inflammatory conditions. 

IAP antagonization by SMAC mimetics (SM) does not induce a direct cytotoxic effect 

against tumor cells in our model but leads to a hitherto unrecognized disruption of the 

vasculature in the tumor microenvironment. Upon SM treatment, induction of non-

canonical NF-κB activity facilitates the production of TNF by tumor cells. In the presence 

of SM, endothelial cells in the tumor microenvironment become highly susceptible to a 

TNF-induced apoptotic death. This novel anti-angiogenic effect of SM towards endothelial 

cells results in the inhibition of tumor growth.  
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