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ABSTRACT

The Plateau problem asks whether every Jordan curve in R3 can bound a min-

imal surface. Its solution by Douglas and Radó dates back to the 1930s. In

recent work Lytchak–Wenger have generalized the solution of Plateau’s prob-

lem to singular metric ambient spaces. This thesis studies the structure of the

arising metric space valued minimal surfaces. We investigate the analytical and

topological regularity of these minimal surfaces, as well as their intrinsic ge-

ometry. We also provide applications of the metric theory that are new even

for Euclidean space. E.g. we solve the Plateau problem (and the more general

Plateau–Douglas problem) for singular boundary values where self-intersections

are allowed.

Zusammenfassung

Das Plateau Problem fragt, ob jede Jordan Kurve im Rn eine Minimalfläche

berandet. Seine Lösung durch Douglas und Radó datiert zurück in die 1930er

Jahre. In einer kürzlich veröffentlichen Arbeit verallgemeinern Lytchak–Wenger

die Lösung des Plateau Problems vom Rn auf allgemeine metrische Räume. In

dieser Dissertation untersuchen wir die Struktur der sich ergebenden metrischen

Minimalflächen. Wir betrachten hierbei die analytische und topologische Reg-

ularität der Minimalflächen, sowie ihre innere Geometrie. Ebenfalls geben wir

Anwendungen der metrischen Theorie, die sogar für den euklidischen Raum

neu sind. Beispielsweise lösen wir das Plateau Problem, sowie das allgemeinere

Plateau–Douglas Problem, auch für singuläre Randwerte bei denen Selbstschnit-

te erlaubt sind.
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ORGANIZATION

This cumulative thesis is comprised of the following articles and preprints.

[A] Paul Creutz and Nikita Evseev. An approach to metric space valued

Sobolev maps via weak* derivatives. Preprint, arXiv:2106.15449, submit-

ted, 2021.

[B] Paul Creutz. Majorization by hemispheres and quadratic isoperimetric

constants. Trans. Amer. Math. Soc., 373(3):1577–1596, 2020.

[C] Paul Creutz. Rigidity of the Pu inequality and quadratic isoperimetric

constants of normed spaces. Rev. Mat. Iberoam., online first, 2021.

[D] Paul Creutz. Plateau’s problem for singular curves. Comm. Anal. Geom.,

to appear.

[E] Paul Creutz and Matthew Romney. The branch set of minimal disks in

metric spaces. Int. Math. Res. Not. IMRN, online first, 2022.

[F] Paul Creutz. Space of minimal discs and its compactification. Geom.

Dedicata, 210(1):151–164, 2021.

[G] Paul Creutz and Matthew Romney. Triangulating metric surfaces. Proc.

Lond. Math. Soc. (3), to appear.

[H] Paul Creutz and Elefterios Soultanis. Maximal metric surfaces and the

Sobolev-to-Lipschitz property. Calc. Var. Partial Differential Equations,

59(5):Paper No. 177, 34 pp., 2020.

[I] Paul Creutz and Martin Fitzi. The Plateau–Douglas problem for singular

configurations and in general metric spaces. Preprint, arXiv:2008.08922,

submitted, 2020.

In a wider sense all these works are related to the Plateau problem in singular

metric ambient spaces. After summarizing each of the articles separately in

Chapter 1 we outline these connections in detail in the introductory Chapter 2.

In all of the joint projects [A], [E], [G], [H] and [I] I have intensively collab-

orated with my coauthors and we have respectively both contributed an equal

share of input concerning results as well as concerning presentation.
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CHAPTER 1

Main results

In this chapter we quickly go through the main results of the respective articles

and preprints. For the a more streamlined overview the reader is referred to

Chapter 2 and for more detailed summaries to the respective introductions of

Chapters A–I. Note that throughout this chapter solutions of Plateau’s prob-

lem will formally refer to infinitesimally isotropic area minimizers as defined

in Chapter 2. The reader should think of these objects as analogs of minimal

surfaces that make sense in metric ambient spaces.

1.A An approach to metric space valued Sobolev maps

via weak* derivatives

In this chapter we propose the following definition of the first-order Sobolev

spaceW 1,p(Ω, X) where Ω ⊂ Rn is a bounded domain, X is a complete separable

metric space and p ∈ [1,∞].

Definition 1.1. Denote by κ the Kuratowski embedding of X into the Banach

space `∞ of bounded sequences.

(i) The space Lp(Ω, `∞) consists of those maps f : Ω→ `∞ that are Bochner

measurable and for which the function x 7→ ||f(x)||∞ lies in Lp(Ω).

(ii) The space Lp∗(Ω, `
∞) consists of those maps u : Ω → `∞ that are weak*

measurable and for which the function x 7→ ||u(x)||∞ lies in Lp(Ω).

(iii) A map u lies in W 1,p(Ω, `∞) if u ∈ Lp(Ω, `∞) and for every j = 1, . . . , n

there is a map uj ∈ Lp∗(Ω, `∞) such that∫
Ω

∂ϕ

∂xj
(x) · u(x) dx = −

∫
Ω

ϕ(x) · uj(x) dx for every ϕ ∈ C∞0 (Ω)

in the sense of Gelfand integrals.

(iv) A map u lies in W 1,p(Ω, X) if κ ◦ u lies in W 1,p(Ω, `∞).
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The main result of this chapter is the equivalence of Definition 1.1 to other def-

initions of metric space valued Sobolev maps proposed in the literature before.

It is tempting to instead require the weak derivatives uj in Definition 1.1 to

lie in Lp(Ω, `∞). However we prove that in this case all maps in W 1,p(Ω, X)

would be constant. This more restrictive definition has previously been used in

several articles. Hence some results in the literature turn out to be not correct

as stated.

1.B Majorization by hemispheres and quadratic

isoperimetric constants

The main result of this chapter is the following analog of Reshetnyak’s majoriza-

tion theorem for CAT spaces.

Theorem 1.2. Let V be a Banach space and η : S1 → V be 1-Lipschitz. Then

there is a 1-Lipschitz extension m : S2 → V of η.

The proof relies on explicitly constructing an isometric embedding of the

hemisphere into the 1-Wasserstein space over S1, and hence optimal transport

techniques. It applies more generally for metric spaces which admit a coni-

cal geodesic bicombing as introduced by Descombes–Lang. Theorem 1.2 im-

plies that Banach spaces support a quadratic isoperimetric inequality with the

spherical isoperimetric constant.

Theorem 1.3. Let V be a Banach space. Then V supports a quadratic isoperi-

metric inequality with constant 1
2π .

By work of Ivanov the optimal isoperimetric constant of `∞ is at least 1
2π ,

and hence Theorem 1.3 is sharp. Combining Theorem 1.3 with a regularity

result of Lytchak–Wenger we obtain the following corollary.

Corollary 1.4. Let X be a compact Finsler manifold and u : D2 → X be a

solution of Plateau’s problem. Then u is locally α-Hölder continuous on D2 for

any α < π
8 .

1.C Rigidity of the Pu inequality and quadratic

isoperimetric constants of normed spaces

In this chapter we refine and apply the results from Chapter B. The starting

point is the following nontrivial observation: if the curve η in Theorem 1.2 is

not an isometric embedding then the majorization map m is area decreasing.

As consequences we derive rigidity of Pu’s classical systolic inequality and the

following theorem.

Theorem 1.5. For a Banach space V we denote by C(V ) its optimal quadratic

isoperimetric constant.

7



(i) For n ∈ N with n ≥ 2 there is a constant Cn <
1

2π such that

{C(V ) : V normed space of dimension n} =
[

1
4π , Cn

]
.

(ii) Furthermore Cn → 1
2π as n→∞ and hence

{C(V ) : V Banach space} = {0} ∪
[

1
4π

1
2π

]
.

Theorem 1.5 allows to improve the constant α in Corollary 1.4 beyond the

threshold case of π
8 . Further auxiliary results of independent interest are that

isoperimetric curves in Banach spaces must be bi-Lipschitz embeddings and the

following lemma.

Lemma 1.6. Let V be a finite dimensional normed space. Then one cannot

isometrically embed S1 into V .

1.D Plateau’s problem for singular curves

The Plateau problem asks whether every Jordan curve Γ in Rn can bound a

minimal surface. Its solution gained Douglas the first Fields medail back in

1936. In turn not every self-intersecting curves Γ can bound a minimal surface.

Nevertheless we are able to prove the following existence result.

Theorem 1.7. Let Γ be a closed rectifiable curve in Rn. Then there exists a

Hölder continuous disk u : D̄2 → Rn spanning Γ that is of least area among all

disks in W 1,2(D2, X) spanning Γ.

The proof of Theorem 1.7 relies on the metric category’s flexibility for con-

structions and Lytchak–Wenger’s solution of the Plateau problem for general

metric spaces. In particular it seems impossible to prove the result using only

classical smooth techniques. More generally a variant of the theorem applies

when X is proper and supports a quadratic isoperimetric inequality. Theo-

rem 1.7 improves a previous result of Hass which shows the existence of contin-

uous area minimizers. Indeed even for Jordan curves of low analytic regularity

the existence of globally Hölder continuous area minimizers is new. Theorem 1.7

has the following technical but useful corollary.

Corollary 1.8. Let X be a proper metric space. If X supports a quadratic

isoperimetric inequality with constant C ′ for every C ′ > C then X supports a

quadratic isoperimetric inequality with constant C.

E.g. Corollary 1.8 can be used to prove a geometric characterization of

quadratic isoperimetric inequalities when X is a surface and that quadratic

isoperimetric inequalities are stable under ultralimits.

1.E The branch set of minimal disks in metric spaces

Recent results of Lytchak–Wenger and Stadler respectively state that any space

with quadratic isoperimetric constant 1
4π is CAT(0) and that solutions to the
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Plateau problem in CAT(0) spaces are local embeddings outside a finite set of

branch points. The following main result of this chapter shows that nothing

similar is true for larger isoperimetric constants.

Theorem 1.9. Let C > 1
4π and E ⊂ R2 be a non-degenerate cell-like set. Then

there are a compact metric space X which supports a quadratic isoperimetric

inequality with constant C, a solution to Plateau’s problem u : D2 → X and a

point x ∈ X such that u−1(x) is homeomorphic to E.

Theorem 1.9 answers two questions formulated by Lytchak–Wenger in [108].

Also we prove several related results concerning energy-minimizing parametri-

zations of disks. An example of these is the following theorem.

Theorem 1.10. Let Z be a metric space which is homeomorphic to D̄2, supports

a quadratic isoperimetric inequality and has a bi-Lipschitz boundary curve ∂Z.

If u is an energy-minimizing parametrization of Z and . . .

(i) . . .Z is doubling then u is a quasisymmetric homeomorphism.

(ii) . . .Z is quasiconformally equivalent to D̄2 then u is a quasiconformal

homeomorphism.

1.F Space of minimal disks and its compactification

In this chapter we investigate the collection of all minimal disks as a subset of

Gromov–Hausdorff space. The main result is the following theorem.

Theorem 1.11. Let C,L ∈ (0,∞). Denote by D(L,C) the collection of geodesic

metric disks Z satisfying `(∂Z) ≤ L and a quadratic isoperimetric inequality

with constant C. And by E(L,C) the collection of geodesic metric disk retracts

satisfying the same two properties. Then E(L,C) is compact in the Gromov–

Hausdorff topology and

D(L,C) ⊂ E(L,C) ⊂ D(L,C + 1
2π ).

1.G Triangulating metric surfaces

The main result of this chapter is the following triangulation theorem.

Theorem 1.12. Let X be a geodesic metric space homeomorphic to a closed

surface and ε > 0. Then X may be decomposed into finitely many non-over-

lapping convex triangles, each of diameter at most ε.

Theorem 1.12 generalizes a classical result by Alexandrov–Zalgaller for sur-

faces of synthetically bounded integral curvature. We also simplify the proof

for the bounded curvature case and correct several technical mistakes in its

proof. As the classical result Theorem 1.12 allows for applications concerning

the smooth approximation and uniformization of metric surfaces [123].
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1.H Maximal metric surfaces and the

Sobolev-to-Lipschitz property

By a recent result of Lytchak–Wenger every Ahlfors 2-regular, linearly locally

connected metric sphere Z admits a unique energy-minimizing parametrization.

This parametrization gives rise to a measurable almost everywhere defined pull-

back Finsler structure FZ on S2. We call two such spheres analytically equivalent

if they give rise to the same Finsler structure. The main result of this chapter

is the following theorem.

Theorem 1.13. Let Z be a linearly locally connected, Ahlfors 2-regular sphere.

Then there is a unique sphere Ẑ in the analytic equivalence class of Z that is

equivalently characterized by any of the following properties.

(1) 2-Sobolev-to-Lipschitz property. If f ∈ N1,2(Ẑ) has 2-weak upper gradi-

ent 1, then f has a 1-Lipschitz representative.

(2) 2-thick geodecity. For arbitrary measurable subsets E,F ⊂ Ẑ of positive

measure and C > 1, one has Mod2 Γ(E,F ;C) > 0.

(3) Maximality. If Y is analytically equivalent to Ẑ then there exists a 1-

Lipschitz homeomorphism f : Ẑ → Y .

(4) Volume rigidity. If Y is a linearly locally connected Ahlfors 2-regular

sphere and f : Y → Ẑ is a 1-Lipschitz area preserving map which is more-

over cell-like, then f is an isometry.

Variants of the seemingly unrelated properties that appear in Theorem 1.13

have before been studied by different research communities. Ẑ is constructed

from Z using a more general construction scheme. Applying this scheme in less

restrictive contexts we obtain the following result.

Theorem 1.14. Let (X, d, µ) be a doubling metric measure space which is p-

thick quasiconvex where p ∈ [1,∞]. Then there exists a minimal metric dp ≥ d

such that (X, dp, µ) is p-thick geodesic.

Also we prove that the equivalence of Sobolev-to-Lipschitz property and

thick geodecity holds almost unconditionally.

Theorem 1.15. Let X be a doubling metric measure space and p ∈ [1,∞]. Then

X has the p-Sobolev-to-Lipschitz property if and only if X is p-thick geodesic.

Furthermore we apply a refined version of our construction scheme to solu-

tions of the Plateau problem and obtain a variant of the intrinsic disk studied

by Lytchak–Wenger. Also here the resulting disks are characterized by a maxi-

mality condition and have the Sobolev-to-Lipschitz property.

10



1.I The Plateau–Douglas problem for singular

configurations and in general metric spaces

The Plateau–Douglas problem is a variant of the Plateau problem. One pre-

scribes a finite configuration of disjoint Jordan curves Γ and searches for a min-

imal surface of fixed topological type that bounds the given configuration Γ. It

was first solved by Douglas in Euclidean space and then more generally by Jost

in homogeneously regular Riemannian manifolds. In this chapter we generalize

the existence result to arbitrary Riemannian ambient manifolds.

Theorem 1.16. Let M be a compact connected orientable surface with k bound-

ary components, X = (N , g) be a complete Riemannian manifold and Γ be a

configuration of k rectifiable disjoint Jordan curves. If the Douglas condition

holds then there is a solution to the Plateau–Douglas problem for (M,Γ, X).

Again the proof relies on a metric construction and a quite general re-

sult of Fitzi–Wenger who solve the Plateau–Douglas problem in proper met-

ric spaces which support a local quadratic isoperimetric inequality. Indeed we

prove Theorem 1.16 not only for Riemannian manifolds but for all proper metric

spaces X. Hence we also obtain a full generalization of the existence result by

Fitzi–Wenger.

We also extend Theorem 1.7 from Chapter D to the Plateau–Douglas prob-

lem. That is we prove the existence of area minimizers of given topological

type for singular configurations Γ of possibly non-disjoint or self-intersecting

curves. We remark that Hass’ method to prove the existence of continuous area

minimizers seems limited to the disktype case. Hence our existence result for

singular boundary values and non-disktype surfaces is completely new even in

Euclidean space.
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CHAPTER 2

Introduction

In this chapter we give an overview on the Plateau problem in R3, and discuss

generalizations of the classical results concerning existence, regularity and geo-

metric structure of solutions for singular ambient spaces. We will also see some

surprising applications of the generalized singular theory to classical smooth

questions.

2.1 Existence

The classical Plateau problem asks whether every simple closed curve Γ in R3

can bound a minimal surface. It is named after the 19th century physicist Joseph

Plateau. In his experiments Plateau had made the following observation: if one

takes a thin circle-shaped metal wire and arbitrarily bends it in space then

it is always possible to produce a stable soap film spanned by the deformed

wire [129]. Indeed the mathematical existence question is even older. It was first

formulated by Lagrange [97] more than 250 years ago. However it turned out

to be an extremely challenging problem that was studied intensively by leading

mathematicians of the 19th and early 20th century. For example Riemann and

Schwarz constructed solutions for certain quadrilaterals [140, 142], Weierstrass

handled all polygonal curves [157] and Haar proved existence when Γ projects

to a planar convex Jordan curve [70]. A satisfying solution for general rectifiable

curves Γ was however only given by Douglas [45] and Radó [130] independently

around 1930.

By definition a minimal surface is a local minimum of the area functional.

Hence the existence of a minimal surface can be established by showing that

the area functional achieves a global minimum among surfaces that span the

given contour Γ. In the mentioned early works the topological type of the

bounding surface is usually assumed to be that of the disk. This allows to

think of the competing surfaces as maps with values in R3 that are defined on

the unit disk in R2. Classically often the more restrictive question whether a

global minimum of the area functional exists among disk-type surfaces is called

the Plateau problem. From now on, throughout this thesis, we will also follow

this convention. The straightforward approach to this strengthened Plateau
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problem is the following: First one specifies a sufficiently compact class of maps

D2 → R3 for which it is possible to prove by a direct argument that the infimum

of a suitable area functional is achieved. Then only a posteriori one establishes

further regularity of the obtained minimizers. We will now discuss possible

choices of the class of admissible maps, existence proofs for these classes and

their generalizability to more general ambient spaces. The regularity question

will mostly be postponed to the next section.

Naively one might consider the class of smooth embedded or immersed disks

that bound the given contour. These classes however radically lack any suitable

compactness condition. In the case of Douglas’ solution one can instead take

the class of those continuous maps u : D̄2 → R3 that are harmonic on the

interior and restrict to a monotone parametrization of Γ on S1. The area of

such admissible map is defined in terms of the usual formula

(2.1) Area(u) :=

∫
D2

√∣∣∣∂u
∂x

∣∣∣2∣∣∣∂u
∂y

∣∣∣2 − (∂u
∂x
· ∂u
∂y

)2

d(x, y).

Geometrically this is justified by the area formula which states that

(2.2) Area(u) =

∫
R3

card(u−1(x)) dH2
R3(x)

where H2
R3 denotes the Hausdorff 2-measure on R3. By uniqueness of harmonic

extensions the admissible maps of Douglas are determined by their boundary

values. This allowed Douglas to reduce the Plateau problem to the simpler

minimization of an integral depending only on a single variable function. An

obvious advantage of this approach is that his minimizers come with a lot of

ad-hoc regularity. A disadvantage is that it is not very flexible. In particular it

does not seem amenable for a generalization to other ambient spaces.

While Douglas minimizes over a relatively small class of objects, Radó takes

the other extreme and minimizes over all continuous maps u : D̄2 → R3 that

bound Γ. For such general maps neither (2.1) nor (2.2) can be generalized to

define an area functional with suitable properties. Instead Radó works with

the so-called Lebesgue notion of surface area, see [134, 25]. This functional

is somewhat harder to handle but it can be generalized for metric ambient

spaces. And indeed in 1979 Nikolaev extended the existence result of Radó

to metric spaces satisfying upper curvature bounds à la Alexandrov [118]. For

more general ambient spaces X however this approach seems hardly tractable.

Furthermore anyway the generalized Lebesgue surface area does not appear

particularly natural when X has non-Euclidean tangent spaces.

A third intermediate choice of admissible maps essentially goes back to Mc-

Shane [111]. Here the admissible class, denoted Λ(Γ,R3), contains those Sobolev

maps u ∈ W 1,2(D2,R3) for which the trace tr(u) ∈ L2(S1,R3) is a monotone

parametrization of Γ. Since elements of W 1,2(D2,R3) have square integrable

weak partial derivatives, their area can be defined in terms of (2.1). We will

discuss here only a more refined version of McShane’s solution of the Plateau

problem which relies on work of Courant [31]. Courant’s idea was to solve the

13



Plateau problem by minimizing the so-called Dirichlet energy instead of the area

functional directly. The Dirichlet energy of a Sobolev map u ∈W 1,2(D2,R3) is

defined as

E(u) :=
1

2
·
∫
D2

∣∣∣∂u
∂x

∣∣∣2 +
∣∣∣∂u
∂y

∣∣∣2 d(x, y).

Hence by the AM-GM inequality

(2.3) Area(u) ≤ E(u)

with equality if and only if f is weakly conformal. That is if∣∣∣∂u
∂x

∣∣∣ =
∣∣∣∂u
∂y

∣∣∣ and
∂u

∂x
· ∂u
∂y

= 0

almost everywhere on D2. Much less trivial, but true, is that

(2.4) inf
u∈Λ(Γ,R3)

Area(u) = inf
u∈Λ(Γ,R3)

E(u).

In particular the Dirichlet energy calibrates the area functional in the sense

that energy minimizers are area minimizers and weakly conformal. Using the

Courant–Lebesgue lemma, Courant was able to derive equicontinuity of cer-

tain energy minimizing sequences and hence conclude the existence of energy

minimizers. Thus his approach allows to conclude the following theorem.

Theorem 2.1.1 ([31]). Let Γ ⊂ R3 be a rectifiable Jordan curve. Then there is

an admissible map u ∈ Λ(Γ,R3) which is weakly conformal and such that

Area(u) = inf
v∈Λ(Γ,R3)

Area(v).

The weak conformality guaranteed by Theorem 2.1.1 already provides some

nice ad-hoc regularity. In particular it excludes degenerate area minimizers

such as the so-called hairy disk, see e.g. [40, p. 248]. Beyond this ad-hoc reg-

ularity, another nice feature of Courant’s approach is its generalizability for

metric ambient spaces X. To obtain such generalization is however not com-

pletely straightforward. A first obstacle is to make sense of X-valued Sobolev

maps as well as of the corresponding area and energy functionals.

When X = (N , g) is a Riemannian manifold this is relatively straightfor-

ward. Namely, by Nash’s theorem, there is a Riemannian isometric embedding

ι : X → RN . Hence one can define W 1,2(D2, X) as the collection of those maps

u : D2 → X for which ι◦u lies in the classical Sobolev space W 1,2(D2,RN ). For

maps u ∈W 1,2(D2, X) area and energy are then respectively given by the area

and energy of ι ◦ u. The admissible class Λ(Γ, X) consists of those f for which

ι ◦ u lies in the admissible class Λ(ι ◦ Γ,RN ). Certainly inequality (2.3) holds

when R3 is replaced X and Morrey proved that also the nontrivial equality (2.4)

generalizes [117]. This allowed Morrey to apply Courant’s method and solve the

Plateau problem for Riemannian ambient manifolds. More precisely he deduces

the existence of weakly conformal area minimizers in Λ(Γ, X) whenever X is a
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so-called homogeneously regular Riemannian manifold and the necessary con-

dition Λ(Γ, X) 6= ∅ is satisfied. Here homogeneous regularity means that X is

locally uniformly bi-Lipschitz equivalent to the respective Euclidean unit ball.

In particular the large class of homogeneously regular Riemannian manifolds in-

cludes all compact manifolds as well as more generally all manifolds of bounded

geometry. Before this quite general result of Morrey existence had only been

generalized to the hyperbolic space H3 [103].

Morrey’s paper on the Plateau problem in Riemannian manifolds dates back

to the 1940’s. For nonsmooth spaces X it was however only over the last 30

years that a satisfactory theory of X-valued Sobolev maps (and hence a suitable

framework to attack the Plateau problem via Courant’s method) have been de-

veloped. Nevertheless nowadays numerous equivalent definitions of the metric

Sobolev space W 1,2(D2, X) are well established, see [79, 9, 139]. Here we will

however promote another characterization that we provide in Chapter A. The

key observations are that every separable space X admits an isometric embed-

ding κ : X → `∞ (called the Kuratowski embedding) and that `∞ is the dual

of the separable Banach space `1. This allows to define W 1,2(D2, `∞) as the

collection of square integrable maps that have square integrable weak partial

derivatives in a weak* sense (see Definition 1.1), and then set

W 1,2(D2, X) :=
{
u : D2 → X | κ ◦ u ∈W 1,2(D2, `∞)

}
.

Our definition has the advantage that Sobolev maps u ∈ W 1,2(D2, X) come

with actual linear differentials

duz : R2 → `∞

defined at almost every z ∈ D2. From this differentials one can almost every-

where recover the approximate metric differential seminorms

apmduz : R2 → [0,∞) as apmduz(V ) := ||duz(V )||∞.

When X is complete there is also a natural trace function tr(u) ∈ L2(S1, X) for

given u ∈ W 1,2(D2, X). Thus for a Jordan curve Γ ⊂ X the admissible class

Λ(Γ, X) can be defined virtually as before upon replacing R3 by X.

The rich variety of natural equivalent characterizations (compare [95, 71,

138, 26, 144, 74, 10] and Chapter A below) strongly indicates that W 1,2(D2, X)

and hence also Λ(Γ, X) are the right classes to consider. Unfortunately however,

there does not seem to be ‘the’ way of defining area and energy of Sobolev maps

u ∈ W 1,2(D2, X). Instead there are many non-equivalent definitions that all

come with their own respective advantages and disadvantages. One example

is the Busemann area functional Areab. It corresponds to the Hausdorff 2-

measure H2
X in the sense that

Areab(u) =

∫
X

card
(
u−1(y)

)
dH2

X(y).

for disks u : D2 → X of reasonable regularity. However depending on the context

sometimes other definitions seem more natural, compare e.g. [7]. Concerning
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energy functionals one possibility is to consider the Reshetnyak energy E+ given

by

E+(u) :=

∫
D2

sup
V ∈S1

(
apmdu(x,y)(V )

)2
d(x, y).

The Reshetnyak energy satisfies

(2.5) Areab(u) ≤ E+(u)

with equality if and only if u is weakly conformal. Here weak conformality

means that at almost every z ∈ D2 the approximate metric differential seminorm

apmduz is a scalar multiple of the standard Euclidean norm on R2. However

again there are many other reasonable energy functionals, compare e.g. [105].

Optimally to solve the Plateau problem for a given area functional one would

choose an energy functional that is lower semicontinuous and calibrates in the

sense of (2.3) and (2.4). However e.g. for the Busemann area functional it is not

known whether an energy functional enjoying both these properties exists.

Non-uniqueness of area functionals and non-existence of calibrating lower

semicontinuous energy functionals do not occur when X has property (ET).

This property means that for every u ∈ W 1,2(D2, X) the metric differential

seminorm apmduz is Euclidean at almost every z ∈ D2. It holds e.g. when

X is a Riemannian manifold, an equiregular sub-Riemannian manifold or of

curvature bounded from above/below in the Alexandrov sense, see [104, Sec-

tion 11]. On the other hand it fails for non-Euclidean normed spaces. When X

has property (ET) then all reasonable area functionals agree with Areab. Hence

by Theorem 1.1 in [105] one has

(2.6) inf
u∈Λ(Γ,X)

Areab(u) = inf
u∈Λ(Γ,X)

E+(u).

In particular, when X has property (ET) it might not be surprising that the

Plateau problem can be solved via the energy minimization method. This had

been succesfully worked out by Jost [90] and Mese–Zulkowski [116] respectively

when X is compact and satisfies a weak local convexity condition, or when X is

an Alexandrov space. In full generality it is a recent result of Lytchak–Wenger.

Theorem 2.1.2 ([104]). Let X be a proper metric space which has property

(ET), and Γ ⊂ X be a Jordan curve. If Λ(Γ, X) is non-empty then there is an

admissible map u ∈ Λ(Γ, X) which is weakly conformal and such that

Areab(u) = inf
v∈Λ(Γ,X)

Areab(v).

Here a metric space X is called proper if bounded closed subsets of X are

compact. This assumption implies that the Arzelà–Ascoli theorem holds for

sequences of X-valued maps. Indeed it is possible to prove Theorem 2.1.2 (and

Theorem 2.1.4 below) more generally for spaces satisfying much weaker local

compactness conditions [69]. By [69, Example 5.1] however the theorems fail

when the properness condition is completely dropped.
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When X does not have property (ET) the energy minimization method does

not apply directly. Hence more surprising than Theorem 2.1.2 might be that

Lytchak–Wenger also provide solutions for this case. As mentioned above the

choice of area functional is quite ambiguous when not assuming property (ET).

For simplicity here in Chapter 2 we will restrict to discussing the Busemann

area functional. Note however that many of the discussed results or at least

variants of them apply in much wider generality. As a replacement for weak

conformality Lytchak–Wenger introduce what they call infinitesimally isotropic

maps. A map u ∈ W 1,2(D2, X) is called infinitesimally isotropic if at almost

every point z ∈ D2, at which apmduz : R2 → R does not vanish, apmduz is a

norm and the ellipse of maximal area inscribed in its unit ball is a scalar multiple

of the standard disk D2. When X has property (ET) weak conformality is

derived from the existence of Reshetnyak energy minimizers, equality (2.6) and

the rigidity case of (2.5). This is not possible in the presence of non-Euclidean

tangent spaces. Instead the following theorem comes into play.

Theorem 2.1.3 ([105]). Let X be a complete metric space and u ∈W 1,2(D2, X).

Then u is infinitesimally isotropic if and only if

E2
+(u) = inf

{
E2

+(u ◦ ϕ) | ϕ : D2 → D2 biLipschitz homeomorphism
}
.

To solve the Plateau problem for the general case Lytchak–Wenger pro-

ceed as follows: First they deduce from Courant’s argument that for every

u ∈ Λ(Γ, X) the infimum of the Reshetnyak energy over{
v ∈ Λ(Γ, X) : Areab(v) ≤ Areab(u)

}
is achieved. Thus when choosing an area minimizing sequence in Λ(Γ, X)

they can assume that all of its elements are infinitesimally isotropic. This

implies a uniform energy bound on the sequence. Now they apply Courant’s

method to this sequence and derive that there is a Busemann area minimizer

within Λ(Γ, X). By the initial observation and Theorem 2.1.3 they can even as-

sume that the area minimizer is infinitesimally isotropic. Hence they conclude

the following theorem.

Theorem 2.1.4 ([104]). Let X be a proper metric space and Γ ⊂ X be a Jordan

curve. If Λ(Γ, X) is non-empty then there is an admissible map u ∈ Λ(Γ, X)

which is infinitesimally isotropic and such that

Areab(u) = inf
v∈Λ(Γ,X)

Areab(v).

Before [104] the only results concerning the classical Plateau problem that

do not fall into the property (ET) setting where due to Overath–von der Mosel

and Pistre–von der Mosel [125, 128]. In these works the Plateau problem is

solved for certain Finsler manifolds diffeomorphic and bi-Lipschitz equivalent

to Rn [125, 128]. Their idea is to interpret the area functional on X as a

so-called Cartan functional on Rn. Then the existence of area minimizers is
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derived from the theory of Cartan functionals developed by Hildebrandt–von

der Mosel in [84, 85]. This approach however seems to heavily rely on coordinate

representations and smooth analytic methods. In particular it appears not well

suitable for a generalization to nonsmooth ambient spaces.

2.2 Analytic regularity

In this section we discuss the analytic regularity theory of the solutions guaran-

teed by Theorems 2.1.1, 2.1.2 and 2.1.4. To this end we will distinguish between

interior and boundary regularity.

2.2.1 Interior regularity. In the setting of Theorem 2.1.1 there is a simple

answer to the interior regularity question: Weakly conformal area minimizers

are energy minimizers and hence weakly harmonic. Thus the Weyl Lemma [159]

implies that the minimizers are smooth and harmonic. Already when the ambi-

ent space X = (N , g) is a Riemannian manifold the situation is more delicate.

In this case the weakly conformal area minimizers guaranteed by Theorem 2.1.2

are still weakly harmonic. If u is continuous, this implies that u fulfills an

explicit variational equation in local coordinates. Thus, as a consequence of

classical PDE results, u is smooth and harmonic, see e.g. [91]. In general how-

ever the minimizers in Theorem 2.1.2 do not need to be continuous even when

X is a complete Riemannian manifold. For example in [117] Morrey describes a

simple configuration (Γ, X) for which the admissible class Λ(Γ, X) is non-empty

but all of its elements are discontinuous. Nevertheless when X = (N , g) is ho-

mogeneously regular he shows that minimizers as in Theorem 2.1.2 are locally

α-Hölder continuous and hence smooth. Indeed by more recent works not only

weakly conformal area minimizers but all weakly harmonic surfaces in ambient

manifolds X of bounded geometry are continuous and hence smooth [81, 91].

More interesting to us however is that Lytchak–Wenger generalize the regularity

result of Morrey to nonsmooth ambient spaces.

Theorem 2.2.1 ([104]). Let X be a complete metric space which supports a local

quadratic isoperimetric inequality and Γ ⊂ X be a Jordan curve. If u ∈ Λ(Γ, X)

is an infinitesimally isotropic area minimizer then u is locally α-Hölder contin-

uous on D2. The Hölder exponent α ∈ (0, 1] depends only on the isoperimetric

constant of X.

Here we say that a metric space X supports a local quadratic isoperimetric

inequality if there is a constant C ≥ 0 such that every sufficiently short Lipschitz

curve γ : S1 → X is the trace of a disk u ∈W 1,2(D2, X) for which

Areab(u) ≤ C · length(γ)2.

The isoperimetric constant of the Euclidean plane R2 is 1
4π . Hence by Reshet-

nyak’s majorization theorem [137] every CAT(0) space X supports a quadratic

isoperimetric inequality with constant C = 1
4π . This implies that homoge-

neously regular Riemannian manifolds support a local quadratic isoperimetric
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inequality with constant C for any C > 1
4π . On the other hand by Theorem 2.2.1

and Morrey’s counterexample not every complete Riemannian manifold can sup-

port a local quadratic isoperimetric inequality.

Quadratic isoperimetric inequalities are not limited to spaces which have

property (ET). Indeed in Chapters B and C we prove a variant of Reshetnyak’s

majorization theorem for Banach spaces and conclude the following result.

Theorem 2.2.2. Every Banach space X supports a quadratic isoperimetric

inequality with constant C = 1
2π . If X is finite dimensional with dim(X) = n

then C improves to a constant Cn <
1

2π .

Theorem 2.2.2 is sharp. Namely by [88] and [87] the Banach space `∞ cannot

support a quadratic isoperimetric inequality with a constant smaller than 1
2π .

Furthermore by Theorem 1.4 in [C] there are finite dimensional normed spaces

with optimal isoperimetric constants arbitrary close to 1
2π . Theorem 2.2.2 im-

plies that every homogeneously regular Finsler manifold of dimension n supports

a local quadratic isoperimetric inequality with a constant Cn <
1

2π . Combining

this with Theorem 2.2.1 gives the following corollary.

Corollary 2.2.3. Let X be a homogeneously regular Finsler manifold of di-

mension n and Γ ⊂ X be a Jordan curve. If u ∈ Λ(Γ, X) is an infinitesimally

isotropic area minimizer then u is locally α-Hölder continuous on D2 for some

Hölder exponent αn > π/8.

For Finsler manifolds that are diffeomorphic and bi-Lipschitz equivalent

to Rn, Corollary 2.2.3 improves regularity results from [125, 128]. Namely

the Hölder exponents of the Cartan minimizers in [125, 128] depend on the

bi-Lipschitz constants while the constant π/8 in Corollary 2.2.3 is uniform.

Beyond these smooth examples also many nonsmooth spaces fall into the

quadratic isoperimetric inequality setting. For example quadratic isoperimetric

inequalities are supported by the higher dimensional Heisenberg groups and

quite degenerate surfaces, see [3] and Chapter E.

In some situations, such as when X is a CAT(κ) space, the Hölder regularity

in Theorem 2.2.1 can be improved to local Lipschitz continuity [95, 143, 19].

Example 8.3 in [104] however shows that solutions to the Plateau problem in

ambient spaces X which support a local quadratic isoperimetric inequality are

not always locally Lipschitz continuous. In particular Theorem 2.2.1 is sharp

in general. For Finsler manifolds it remains an open question whether some

higher regularity in the sense of Lipschitz regularity or even smoothness can

be achieved. So far the only result in this context is due to Overath–von der

Mosel [125]. They find area minimizers of C1,α-regularity when the Finsler

manifold is close in C2-sense to the standard Euclidean metric on R3. There is

the hope that the results from Chapter C can be used to prove similar results

in less restrictive settings.

2.2.2 Boundary regularity. Since weakly conformal area minimizers in R3

are harmonic they are continuous up to the boundary. As discussed above for
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mere metric spaces X this need not be true even in the interior. But Lytchak–

Wenger prove that infinitesimally isotropic area minimizers are continuous up

to the boundary when the ambient space X supports a local quadratic inequal-

ity [104].

Concerning higher boundary regularity of weakly conformal area minimizers

u ∈ Λ(Γ,R3) the situation is more complicated. One would hope that if Γ

enjoys a certain regularity then this regularity is shared by u. The first result

of this spirit is already from 1951 and due to Lewy. He proves that if Γ is real

analytic then u is real analytic up to the boundary [102]. About 20 years later

similar results for smooth curves, curves of Cm,α-regularity where m ≥ 1 and

curves with Dini continuous derivatives have been established by Hildebrandt,

Nitsche, Kinderlehrer, Warschawski and Lesley [82, 119, 94, 156, 100]. These

regularity theorems generalize to Riemannian ambient manifolds [80] but they

cannot even be formulated properly for nonsmooth ambient spaces. Around the

same time however also another boundary regularity result has been obtained

by Goldhorn–Hildebrandt and Nitsche [61, 120]. They prove that if Γ is bi-

Lipschitz then u is globally Hölder continuous. This theorem indeed generalizes

to nonsmooth spaces.

Theorem 2.2.4 ([104]). Let X be complete metric space which supports a local

quadratic isoperimetric inequality and Γ ⊂ X be a bi-Lipschitz Jordan curve.

If u ∈ Λ(Γ, X) is an infinitesimally isotropic area minimizer then u is Hölder

continuous on D̄2.

For Lipschitz curves in R3 a classical result of Tsuji from 1942 says that

weakly conformal area minimizers have absolutely continuous traces [154]. How-

ever when Γ has cusps then weakly conformal area minimizers are not always

globally Hölder continuous, compare e.g. [92]. In this light the following result

that we derive in Chapter D from Theorem 2.2.4 might seem quite surprising.

Theorem 2.2.5. Let Γ ⊂ Rn be a rectifiable Jordan curve. Then there is an

admissible map u ∈ Λ(Γ, X) which is 1
27 -Hölder continuous on D̄2 and such that

Areab(u) = inf
v∈Λ(Γ,X)

Areab(v).

Furthermore, u may be chosen weakly conformal, smooth and harmonic on the

open set D2 \ u−1(Γ).

Note that the Hölder exponent of weakly conformal area minimizers depends

on the bi-Lipschitz constant of Γ. Hence Theorem 2.2.5 is even partially new

for bi-Lipschitz curves Γ. The proof of Theorem 2.2.5 relies on Theorem 2.2.4

and the metric category’s flexibility for constructions. More generally it allows

to conclude the following theorem.

Theorem 2.2.6. Let X be complete metric space which supports a local quad-

ratic isoperimetric inequality and Γ ⊂ X be a rectifiable Jordan curve.

If Λ(Γ, X) is non-empty then there is an admissible map u ∈ Λ(Γ, X) which is
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α-Hölder continuous on D̄2 and such that

Areab(u) = inf
v∈Λ(Γ,X)

Areab(v).

Here the Hölder exponent α ∈ (0, 1) depends only on the isoperimetric con-

stant of X. Furthermore, u may be chosen infinitesimally isotropic on the open

set D2 \ u−1(Γ).

2.3 Topological regularity

In this section we discuss the topological behaviour of solutions to the Plateau

problem. Optimally weakly conformal area minimzers u ∈ Λ(Γ,R3) would be

embeddings and hence correspond to actual submanifolds. This would be de-

sirable from the physical viewpoint if one wants the minimizers to model actual

soap films. In general however it cannot hold. A simple obstruction is that

the boundary curve Γ most be unknotted. Nevertheless there are two known

conditions that imply embeddedness. The first one is due to Meeks–Yau who

show (improving results from [133, 68, 150, 4]) embeddedness when Γ is con-

tained in the boundary of a convex body [113]. Variants of this result hold

for 3-dimensional Riemannian and more generally Finsler manifolds [113, 126].

The other condition is due to Ekholm–White–Wienholtz [50] who prove embed-

dedness when Γ is of total curvature bounded above by 4π. This result is not

restricted to dimension 3. Indeed variants of it were even proven for manifolds

satisfying upper curvature bounds by Choe–Gulliver [29] and for CAT(0) spaces

by Stadler [148].

For general curves Γ ⊂ R3 one can only hope for immersed minimizers.

Indeed back in 1928 (even before the works of Douglas and Radó) Garnier pub-

lished a proof that every piecewise smooth Γ bounds an immersed minimal

disk [57]. The article of Garnier however seems hardly readable and contains

several gaps. This is why the solution of Plateau’s problem is usually credited

to Douglas and Radó. Indeed a few years ago Desideri and Desideri–Jakob

worked through Garnier’s paper trying to fill the gaps [38, 39]. Their conclusion

was that Garnier’s proof seems to work only when Γ is of total curvature at

most 6π. In any case Garnier neither claims that there is an area minimizing

disk u nor that every such u is immersed. Indeed Douglas and Courant gave

examples of non-immersed minimal disks in R3 which they claim to be area

minimizing [46, 32]. Concerning Douglas counterexample already Radó argued

why it does not seem correct [133]. Courant’s counterexamples however survived

until a breakthrough paper of Ossermann appeared in 1970, [124]. Ossermann

proves that all weakly conformal area minimizers in R3 are immersed. Unfor-

tunately also Ossermann’s argument was not completely clean. But after some

complementary work by Alt, Gulliver and Gulliver–Osserman–Royden the re-

sult turned out to be true [5, 6, 65, 67]. Indeed it more generally applies for all

homogeneously regular Riemannian 3-manifolds.

Note that the results from the preceeding paragraph only concern the inte-

rior. Nevertheless Gulliver–Lesley proved in the ’70s that when Γ is real analytic
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then also boundary branch points do not occur [66]. However it is not known

whether boundary branch points can be excluded for all smooth curves Γ. Clas-

sifications of potential boundary branch points have been developed and by now

most types of them can be excluded [162, 83]. It seems however that the re-

maining cases cannot be handled using the classical techniques [153]. I believe

that the collar extension trick developed in Chapters D, F, I and [148] might

prove useful to tackle this classical question.

The results from the preceeding two paragraphs are stated for dimension 3.

This is not by accident. Indeed all complex varieties are area minimizers [53].

Hence in Rn with n ≥ 4 there are many examples of weakly conformal area

minimizers that do have singularities. On the other hand if u ∈ Λ(Γ,R3) is a

weakly conformal area minimizers then u is harmonic and hence real analytic.

In particular the branch points of u must lie discretely within D2. Indeed by

Lewy’s boundary regularity result [102] when Γ is real analytic then u can only

have finitely many branch points.

For nonsmooth ambient spaces X there are no linear differentials and even

apmdu is defined only almost everywhere. Hence one cannot talk about branch

points in an analytic sense. Nevertheless one can still study the topological

branch points of infinitesimally isotropic area minimizers u ∈ Λ(Γ, X). That is

the points at which u is not a local embedding. In [148] Stadler proves that if

X is CAT(0) then u has only finitely many topological branch points. On the

other hand there is the following counterexample: Let X be the quotient of the

Euclidean disk D̄2 where a small ball B in its interior is collapsed to a point.

Then the canonical projection u : D̄2 → X is an infinitesimally isotropic area

minimizer and every point in B is a topological branch point of u. Furthermore

X supports a quadratic isoperimetric inequality with constant 1
2π . This coun-

terexample and the result of Stadler motivated Question 11.4 in [108]. This

question by Lytchak–Wenger asks whether the set of topological branch points

can be controlled when the isoperimetric constant of X is between 1
4π and 1

2π .

In Chapter E we provide the following negative answer.

Theorem 2.3.1. Let C > 1
4π . Then there are a compact metric space X

which supports a quadratic isoperimetric inequality with constant C and a weakly

conformal area minimizer u : D̄2 → X that is constant on an open set.

Furthermore in Chapter E we answer Question 11.5 from [106]. This one

concerns the topological structure of the fibers of u. More precisely it asks

whether the connected components of fibers of infinitesimally isotropic area

minimizers need to be contractible. Since cell-like sets can be non-contractible

it is a consequence of the following theorem that such fibers may occur.

Theorem 2.3.2. Let X be a complete metric space which supports a quadratic

isoperimetric inequality, u : D̄2 → X be an infinitesimally isotropic area mini-

mizer and E ⊂ R2 be a cell-like subset. If u−1(x) is non-discrete for some x ∈ X
then there is another infinitesimally isotropic area minimizer v : D̄2 → X such

that some connected component of v−1(x) is homeomorphic to E.
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The preceeding theorem also relates to another classical question which con-

cerns the uniqueness of solutions. If u ∈ Λ(Γ,R3) is a conformal area mini-

mizer and ϕ : D̄2 → D̄2 is a conformal diffeomorphism then u ◦ ϕ ∈ Λ(Γ,R3)

is another conformal area minimizer. Hence one can only ask whether con-

formal area minimizers or more generally minimal disks for a given curve Γ

are unique up to conformal diffeomorphism of D̄2. This was proven when Γ

projects to planar convex Jordan curves by Radó [131, 132], when Γ is C2-close

to a planar curve by Tromba [152] and when Γ is of curvature at most 4π by

Nitsche [121]. A further uniqueness result for certain graphs over non-convex

curves is due to Sauvigny [141]. On the other hand (building on previous work

in [101, 33, 96, 114, 146]) White [160, 161] proved in 1994 that there are Jor-

dan Γ ⊂ R3 which bound uncountably many minimal disks. However it is not

known whether a Jordan curve in R3 can also bound infinitely many weakly

conformal area minimizers. Indeed by work of Tomi [149] real analytic curves

only bound finitely many such minimizers and by work of Böhme–Tromba [16]

the same is true for generic smooth curves. At least in the metric space setting

however finiteness fails in general by the following Corollary of Theorems 2.3.1

and 2.3.2.

Corollary 2.3.3. Let C > 1
4π . Then there are a compact metric space X which

supports a quadratic isoperimetric inequality with constant C and a rectifiable

Jordan curve Γ ⊂ X which bounds uncountably many weakly conformal area

minimizers.

2.4 Intrinsic geometry

Equivalently minimal surfaces in R3 can be characterized as surfaces of vanishing

mean curvature. The mean curvature however is not an intrinsic quantity of the

surface. Hence the inner geometry of the surface does not determine whether it is

minimal. In turn, by Gauß’ theorema egregium, the Gauß curvature is indeed an

intrinsic quantity. While the mean curvature is the average of the two principal

curvatures, the Gauß curvature is the product of these. In particular, the Gauß

curvature of minimal surfaces in R3 is pointwise bounded above by zero. More

generally when X is a Riemannian manifold with sectional curvatures bounded

above by K then the Gauß curvature of minimal surfaces in X is also bounded

above byK. This imposes strong geometric constraints on the intrinsic geometry

of minimal surfaces. For example by Toponogov’s comparison theorem small

geodesic triangles in minimal surfaces are at least as convex as the corresponding

comparison triangles in the respective model space.

One has to be a bit careful about actually defining the intrinsic geometry

of weakly conformal area minimizers even when f ∈ Λ(Γ,Rn). This is be-

cause f might have branch points and because Γ might be nonsmooth. When

X = (N , g) is a homogeneously regular Riemannian manifold then the intrin-

sic geometry of weakly conformal area minimizers u ∈ Λ(Γ, X) can be defined

as follows: First one considers the (possibly degenerate) pullback Riemannian
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metric u∗g on D2 given by

(u∗g)z(V,W ) := gu(z) (duz(V ),duz(W )) .

Then one defines the u-length of piecewise smooth curves γ : [a, b]→ D2 as

`u(γ) :=

∫ b

a

√
(u∗g)γ(t) (γ′(t), γ′(t)) dt

and the u-metric on D2 by

(2.7) d̄u(x, y) := inf
γ : x y

`u(γ).

Since the branch points of u are isolated, the u-metric is indeed a metric. The

intrinsic disk Zu is defined as the metric completion of (D2, du).

When X is nonsmooth and u ∈ Λ(Γ, X) is an infinitesimally isotropic area

minimizer then there is no pullback Riemannian metric u∗g. Nevertheless

apmdu defines a measurable Finsler structure on D2. The main problem is

that this Finsler structure is defined only almost everywhere. Hence it is not

straighforward to define a metric d̄u as in (2.7) in terms of this Finsler structure.

Instead one can define a semimetric on D̄2 by

du(x, y) := inf
γ : x y

`(u ◦ γ).

If X is homogeneously regular then du defines an actual metric and (D̄2, du)

is isometric to Zu. In general however we have to identify points in D̄2 at

zero du-distance and define Zu as the arising quotient space. This intrinsic

disk Zu comes with a canonical surjection Pu : D̄2 → Zu and a 1-Lipschitz map

ū : Zu → X such that

D̄2 X

Zu

u

Pu ū

commutes.

By work of Mese and Lytchak–Wenger the initial observations on curvature

bounds generalize to the singular setting [115, 107]. More precisely, when X is

a CAT(κ) space and u ∈ Λ(Γ, X) is a weakly conformal area minimizer then the

intrinsic disk Zu is a CAT(κ) space homeomorphic to D̄2. Indeed more gener-

ally this holds for so-called metric minimizing disks [127, 155]. We have noted

in Section 2.2.1 that CAT(0) spaces support a quadratic isoperimetric inequal-

ity with constant 1
4π . Conversely Lytchak–Wenger prove in [107] that proper

geodesic spaces supporting a quadratic isoperimetric inequality with constant 1
4π

are CAT(0). In this light one may think of quadratic isoperimetric inequalities

as very weak notions of upper curvature bounds. Thus the following structure

theorem by Lytchak–Wenger may be considered a generalization of the fact that

minimal surfaces inherit upper curvature bounds from their ambient spaces.
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Theorem 2.4.1 ([106]). Let X be a complete metric space which supports a

quadratic isoperimetric inequality with constant C. Further let Γ ⊂ X be a

rectifiable Jordan curve and u ∈ Λ(Γ, X) be an infinitesimally isotropic area

minimizer. Then we have the following list of properties.

(i) Zu is a geodesic metric space homeomorphic to D̄2.

(ii) Zu supports a quadratic isoperimetric inequality with constant C.

(iii) Pu ∈ Λ(∂Zu, Zu) is an infinitesimally isotropic area minimizer. Further-

more the approximate metric differential seminorms of u and Pu agree at

almost every z ∈ D2.

(iv) ∂Zu is rectifiable and `(∂Zu) = `(Γ).

2.4.1 The space of minimal disks. Denote by D the collection of all geo-

desic metric spaces Z homeomorphic to D̄2 which support a quadratic isoperi-

metric inequality and have a rectifiable boundary curve ∂Z. By Theorem 2.4.1

every intrinsic minimal disk Zu is an element of D. Indeed up to isometry all

elements of D arise this way. Namely by Theorem 2.1.4 there is an infinitesi-

mally isotropic area minimizer u ∈ Λ(∂Z,Z) for Z ∈ D. Thus this is implied by

the following result from Chapter F.

Theorem 2.4.2. Let Z ∈ D. If u ∈ Λ(∂Z,Z) is an infinitesimally isotropic

area minimizer then ū : Zu → Z is an isometry.

In particular one may think of D as the space of minimal disks and study

its properties as a subset of Gromov–Hausdorff space. E.g. one may hope to

understand its closure or to find a dense subset of ‘nice’ disks. The space

D as a whole however seems too large to hope for interesting results of this

type. Compare this to the smooth situation where one wants to understand

the class R(n) of n-dimensional Riemmanian manifolds. To obtain interesting

results however one would further impose uniform bounds on parameters such

as curvature, volume and diameter, see e.g. [63, 64, 22, 27]. Similarly we denote

by D(L,C) the collection of those Z ∈ D with isoperimetric constant at most C

and boundary length at most L. It follows from Theorem 2.4.2, results in [106]

and Gromov’s compactness criterion that D(L,C) is precompact in Gromov–

Hausdorff space. Thus a natural task is to understand the closure of D(L,C).

As noted above when C = 1
4π then D(L,C) is the class of CAT(0) disks of

boundary length at most L. An upper bound concerning the closure for this

special case was given by Petrunin–Stadler [127]. They show that the larger class

of CAT(0) disk retracts of boundary length at most L is compact in Gromov–

Hausdorff space. Here Z is called a disk retract when there is a closed curve

γ : S1 → Z such that the mapping cylinder of γ is homeomorphic to D̄2. Further

we call the length of γ the boundary length of Z. The following main result

of Chapter F is a generalization and refinement of the compactness theorem by

Petrunin–Stadler.
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Theorem 2.4.3. Let C,L ∈ (0,∞). Denote by E(L,C) the collection of geodesic

disk retracts which support a quadratic isoperimetric inequality with constant C

and are of boundary length at most L. Then E(L,C) is compact in Gromov–

Hausdorff space and

D(L,C) ⊂ E(L,C) ⊂ D(L,C + 1
2π ).

Theorem 2.4.3 provides us with a quite good understanding of the closure

of D(L,C). Very interesting however is also the dual question whether D(L,C)

has a dense subset of ’nice’, say smooth, disks. Again this restrictive question

might be unreasonably hard. But at least one may hope to answer the following

one.

Question 2.4.4. Can any disk Z ∈ D(L,C) be approximated by smooth disks

satisfying comparable bounds on boundary length and isoperimetric constant?

An example of similar approximation results is a classical theorem by Alex-

androv–Zalgaller. It states that every surface of synthethically bounded integral

curvature is the limit of smooth surfaces with comparable curvature measure [2].

A key ingredient for the proof of their approximation theorem is a triangulation

result for surfaces of bounded integral curvature. The latter says that every

such surface admits a tessellation by arbitrary small convex geodesic triangles.

The following main result of Chapter G generalizes this triangulation theorem

of Alexandrov–Zalgaller to general metric surfaces.

Theorem 2.4.5. Let X be a geodesic metric space homeomorphic to a closed

surface and ε > 0. Then X may be decomposed into finitely many non-over-

lapping convex triangles, each of diameter at most ε.

Theorem 2.4.5 has been successfully applied by Ntalampekos–Romney to

show that every metric surface of finite area is a limit of smooth surfaces of

uniformly bounded area [123]. In [123] this approximation result is then itself

applied to deduce a generalization of the celebrated uniformization theorems

by Bonk–Kleiner, Rajala and Lytchak–Wenger [17, 135, 108]. I believe that

the techniques developed in [123] together with Theorem 2.4.5 (or more pre-

cisely the refined version Theorem 1.2 in [G]) can be used to positively answer

Question 2.4.4.

2.4.2 Intrinsic geometry from analytic data. Let X be a complete metric

space and u : D̄2 → X be an infinitesimally isotropic area minimizer. At the

beginning of this section we have discussed why it is not straightforward to

define a reasonable intrinsic disk for u only in terms of the analytic data. That

is in terms of the Finsler structure Fu = apmdu. Nevertheless in Chapter H we

demonstrate that it is possible.

One idea could be to use the following definition proposed by De Cecco–

Palmieri in the context of Lipschitz Finsler manifolds [35, 36]: An absolutely

continuous curve γ : [a, b] → D̄2 is called transversal to E ⊂ D̄2 if γ−1(E) is a
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Lebesgue null set. If γ is tranversal to the set of point at which Fu is undefined

then the u-length of γ is given by

`u(γ) :=

∫ b

a

Fu (γ(t), γ′(t)) dt.

The ∞-essential u-semimetric on D̄2 is defined as

d∞u (x, y) := sup
E⊂D̄2, |E|=0

inf {`Fu(γ) | γ : x y, γ transversal to E} .

This definition can be rephrased in terms of modulus. The modulus of

curve families is a classical concept from complex analysis. More recently it

also turned out to be a powerful tool for developing the research field nowadays

called “Analysis on metric spaces”, see [79]. For given coefficient p ∈ [1,∞] and

metric measure space Y the p-modulus is an outer measure on the collection

of all absolutely continuous curves in Y . Using the modulus language d∞u (x, y)

is precisely the essential infimum of the u-length with respect to ∞-modulus

among all curves from x to y. This definition works well when u is a Lipschitz

map. Essentially the reason is that Lip = W 1,∞. In our setting u is however

only of W 1,2-regularity. Thus for us it would make more sense to consider

something like an essential infimum with respect to 2-modulus. This does not

quite work directly since the entire class of all paths from x to y is a 2-modulus

nullset. Nevertheless the idea can be implemented and in Chapter H we define

the 2-essential u-semimetric d2
u.

We call the quotient space Ẑu corresponding to (D̄2, d2
u) the essential in-

trinsic disk. Also Ẑu comes with a canonical surjection P̂u : D̄2 → Ẑu and a

1-Lipschitz map û : Ẑu → X such that

D̄2 X

Ẑu

u

P̂u
û

commutes. The relevant properties of the essential intrinsic disk are summarized

by the following theorem from Chapter H.

Theorem 2.4.6. Let X be a complete metric space which supports a quadratic

isoperimetric inequality with constant C. Further let Γ ⊂ X be a bi-Lipschitz

Jordan curve and u ∈ Λ(Γ, X) be an infinitesimally isotropic area minimizer.

Then we have the following list of properties.

(i) Ẑu is a geodesic metric space homeomorphic to D̄2.

(ii) Ẑu supports a quadratic isoperimetric inequality with constant C.

(iii) P̂u ∈ Λ(∂Ẑu, Ẑu) is an infinitesimally isotropic area minimizer. Further-

more the approximate metric differential seminorms of u and P̂u agree at

almost every z ∈ D2.
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(iv) Ẑu has the Sobolev-to-Lipschitz property.

The factorization is uniquely characterized by the following universal property:

If u = ũ◦ P̃ , where P̃ : D̄2 → Z̃ and ũ : Z̃ → X satisfy (i)-(iii), then there exists

a surjective 1-Lipschitz map f : Ẑu → Z̃ such that P̃ = f ◦ P̂u.

Propertywise the main advantages of Ẑu over Zu are its characterization

in terms of a universal property and that Ẑu satisfies the so-called Sobolev-to-

Lipschitz property. This property was introduced by Gigli in the context of

RCD spaces [59, 60]. Geometrically it essentially means that the space has a

rich family of geodesics in the sense of 2-modulus, see Theorem 1.7 in [H]. This

property is closely related to thick quasiconvexity and Poincaré inequalities. On

the other hand the essential intrinsic disk also comes with two drawbacks. The

first is that we do not know whether ∂Ẑu needs to be rectifiable. The other

is that we can only prove Theorem 2.4.6 when Γ is bi-Lipschitz because then

Theorem 2.2.4 grants a quantitative control on the continuity of u.

2.5 Applications: Singular boundary values and the

Plateau–Douglas problem

After solving the Plateau problem Douglas moved on to tackle the following

much harder question:

Question 2.5.1. Given a compact surface M with k boundary components and

a configuration of disjoint Jordan curves Γ = (Γ1, . . . ,Γk) in R3. When is there

a minimal surface which is of the topological type of M and bounds the given

configuration of Jordan curves?

This question is nowadays called the Plateau–Douglas problem, the Douglas

problem or also the general Plateau problem. It was first posed in a research

announcement by Douglas from 1930 in which he announces its solution [43].

During the next years Douglas published many further research announcements

but only two related articles [44, 46]. In these he provides answers when M is

an annulus or a Möbius strip. His treatement of the general case appeared only

some years later in [47, 48, 49]. The proof is a generalization of his technique

developed to handle the Plateau problem. However, while his approach worked

quite well to solve the Plateau problem, for the Plateau–Douglas problem it

becomes extremely technical. Indeed later several people have raised doubts

about the correctness of his proof [89, 151, 62]. In any case as of today his

result is certainly known to be correct. It states that if the so-called Douglas

condition holds then indeed such minimal surface exists. The Douglas condition

asserts that in terms of area infima the configuration Γ cannot be filled equally

well by surfaces of lower topological complexity than M . Here lower complexity

refers to a lower genus or a larger number of connected components. Indeed

existence cannot hold unconditionally. E.g. a planar convex curve in R3 cannot

bound a minimal surface of positive genus [112].
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Another proof of Douglas’ theorem was suggested by Courant [30, 31]. Again

he proposes to again attack the problem by minimizing the Dirichlet energy.

This does indeed work but also needs much more care than before. The reason

is that now the Dirichlet energy not only depends on the map u : M → R3 but

also on choosing a geometry on M . Thus one has to minimize the Dirichlet

energy not only over all admissible maps u ∈ Λ(M,Γ,R3) but also simultane-

ously over all Riemannian metrics g on M . The energy minimizing admissible

map is then an area minimizer which is weakly conformal with respect to the

minimizing Riemannian metric on M . In principle Courant’s reasoning can be

implemented. Courant himself however discussed only certain special cases and

even concerning these his arguments are somewhat vague. Partly this might be

due to his mathematical style [136]. But also partly a reason might be that the

necessary tools to formalize his reasoning were not yet available to him. E.g.

Teichmüller’s theory of moduli space of conformal structures on surfaces was

only developed about the same time over in Germany from where Courant had

just fled.

Thus it seems that the first complete and clean proof of Douglas theorem

appeared only about 50 years later in an article by Jost [89, 151, 62]. Jost’s

actual main intent however was to generalize Douglas’ result from Rn to ho-

mogeneously regular ambient Riemannian manifolds. Jost limits himself to the

case of orientable surfaces M . But some years later also the nonorientable case

was worked out by his student Bernatzki [15]. In a recent article by Fitzi–

Wenger Douglas’ theorem has been further generalized to proper metric spaces

which support a local quadratic isoperimetric inequality [56]. In contrast to

Theorem 2.1.4 here also the existence proof seems to rely on cut-and-paste ar-

guments and hence the quadratic isoperimetric inequality. The following first

main result of Chapter I shows that this assumption can be dropped.

Theorem 2.5.2. Let M be a compact connected orientable surface with k bound-

ary components, X be a proper metric space and Γ be a configuration of k

disjoint rectifiable Jordan curves. If the Douglas condition holds for the con-

figuration (M,Γ, X) then there exists u ∈ Λ(M,Γ, X) as well as a Riemannian

metric g on M such that

Areab(u) = inf
v∈Λ(M,Γ,X)

Areab(v)

and f is infinitesimally isotropic with respect to g.

Note in particular that Theorem 2.5.2 is new when X is a nonhomogeneously

regular Riemannian manifold. The proof combines the generalized Douglas

theorem of Fitzi–Wenger with Wenger’s thickening trick [56]. In particular this

result is new in smooth settings but proofwise relies on metric constructions.

The even more interesting contribution of Chapter I however is that we

are also able to handle singular curve configurations. That is we allow for

singular configurations Γ = (Γ1, . . . ,Γk) where the curves are possibly non-

disjoint or self-intersection. For such situations the approaches of Douglas and

Courant cannot work even in R3. Both methods would produce conformal area

29



minimizers and such cannot always exist. A simple counterexample is the planar

figure eight curve which does not bound a disk type conformal area minimizer,

see e.g. [77].

The Plateau problem for self-intersecting curves has before been investigated

by Hass [77]. His method for the figure eight curve Γ would proceed as follows:

1.) Cut Γ along the self intersection as to form two Jordan curves Γ1 and Γ2.

2.) Fill each of the Jordan curves Γ1 and Γ2 separately by energy minimizers

u1 ∈ Λ(Γ1,R3) and u2 ∈ Λ(Γ2,R3).

3.) Paste the minimizers u1 and u2 together to form a single map u ∈ Λ(Γ,R3).

When considering more complicated self-intersections the pasting process can

mess up the regularity. In particular the constructed map u would no longer

be of Sobolev regularity. Hence Hass has to work with the Lebesgue notion of

surface area mentioned in Section 2.1. In this light the following main result of

Chapter I is interesting even for the Plateau problem and R3.

Theorem 2.5.3. Let M be a compact connected orientable surface with k bound-

ary components, X be a proper metric space and Γ be a configuration of k rectifi-

able closed curves. If the Douglas condition holds for the configuration (M,Γ, X)

then there exists u ∈ Λ(M,Γ, X) as well as a Riemannian metric g on M such

that

Areab(u) = inf
v∈Λ(M,Γ,X)

Areab(v)

and f is infinitesimally isotropic with respect to g on M \ f−1(Γ).

By the figure eight counterexample in general a map u as in Theorem 2.5.3

cannot be infinitesimally isotropic everywhere on M . When X supports a

quadratic isoperimetric inequality one can as in Theorem 2.2.6 assume that

u is globally Hölder continuous. In the case of R3 and smooth curves Γi one

can furthermore achieve local Lipschitz continuity on M \ ∂M .

Again the proof exploits the metric category’s flexibility for constructions.

The idea is the following: Say we start with a singular configuration Γ in a

regular space such as X = Rn. Then one constructs a new singular metric

space X̃ and a system of disjoint Jordan curves Γ̃ ⊂ X̃ such that the Plateau–

Douglas problem for (M,Γ, X) is equivalent to the Plateau–Douglas problem

for (M, Γ̃, X̃). Now Theorem 2.5.2 solves the Plateau–Douglas problem for

(M, Γ̃, X̃) and hence concludes the proof. Thus the idea is to trade the singu-

larity from the curve side to the space side, and to then apply the generalization

of a classical result for nonsmooth ambient spaces. A sketch of the construction

for a simple example is illustrated in Figure 2.1.

For regular configurations Γ ⊂ R3 of disjoint Jordan curves there is a weaker

condition than the one by Douglas which still implies existence. This condi-

tion is called the condition of cohesion. It asserts that the energy infimum

over Λ(M,Γ, X) can be approximated by a sequence of fillings which satisfy

a geometric non-degeneracy condition. That the condition of cohesion implies
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Γ2
Γ1

X = R2
Γ̃1

Γ̃2

X̃
 

Figure 2.1: Construction of (X̃, Γ̃)

the existence of weakly conformal area minimizers was already noted by Shiff-

man [145] in 1939. However only about 50 years later in [151] Tomi–Tromba

proved that the Douglas condition implies the condition of cohesion. In [56]

Fitzi–Wenger also generalize the condition of cohesion to nonsmooth ambient

spaces and prove that it implies the existence of energy minimizers. Note how-

ever that when X does not have property (ET) then neither the Douglas condi-

tion implies the condition of cohesion nor the condition of cohesion the existence

of area minimizers.

Also concerning the condition of cohesion additional difficulties arise for

singular curve configurations Γ ⊂ Rn. Nevertheless imposing an additional

so-called condition of adhesion Iseri was able to prove the existence of energy

minimizers [86]. Note however that the Douglas condition does in general not

imply that adhesion. Hence his result can only be applied to obtain existence

for very particular configurations, cf. [86]. In Chapter I we also generalize the

condition of adhesion and Iseri’s result to metric ambient spaces.

2.6 Further remarks

We refer to [122, 136, 62, 40, 41] for more detailed accounts and references

concerning the history of the classical Plateau problem.

Admittedly there are some serious drawbacks concerning the classical formal-

izations and solutions of Plateau’s problem as discussed here and in [122, 40, 41].

For example these seem limited to dimension two and from the physical view-

point one would also not count multiplicities as in (2.4). Thus over the years

many other frameworks to formalize and solve the Plateau problem have been

developed. To discuss all these approaches is much beyond the scope of this

introduction. Instead we refer to the overview article [34] for further reading.

Here we only remark that the nowadays most standard formalization and so-

lution of the Plateau problem in terms of currents has also been generalized

to metric ambient spaces, see [11, 98]. Note that the proof of the existence of

minimizing currents is quite straightforward once the machinery has been built

up. However as of today a satisfactory regularity theory for the obtained mini-

mizing currents in nonsmooth ambient spaces seems still quite out of reach. As

we saw in Section 2.2 this is in contrast to the ’classical’ solutions guaranteed

by Theorem 2.1.4.
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CHAPTER A

An approach to metric space valued

Sobolev maps via weak* derivatives

with Nikita Evseev

A.1 Introduction

A.1.1 Objective. The present article concerns possible definitions of the

first-order Sobolev space W 1,p(Ω;X) for an open subset Ω ⊂ Rn, a metric

space X and a coefficient p ∈ (1,∞). Since the early 1990’s several definitions

of such Sobolev spaces have been proposed in [95, 71, 138, 26, 144, 74, 10].

Many of these make sense when Ω is an arbitrary metric measure space and, in

such generality, the arising Sobolev space may depend on the chosen definition.

However, for bounded domains Ω ⊂ Rn, all of these definitions are equivalent,

see [139, 9, 79]. The mentioned characterizations of W 1,p(Ω;X) take very differ-

ent approaches that mostly involve slightly advanced concepts such as energy,

modulus of curve families or Poincar inequalities. Hence, from the point of view

of classical analysis, all these characterizations might either seem a bit compli-

cated or at least not very straightforward. Another definition of the Sobolev

space W 1,p(Ω;X) was proposed in [76] which is more similar to the traditional

definition of classical Sobolev spaces in terms of weak derivatives. Our first

main result, Theorem A.1.2 below, however shows that for technical reasons the

space W 1,p(Ω;X) as introduced in [76] is essentially empty. The main objective

of this article is then to propose a variation on the definition from [76] and

show that this new definition indeed gives an equivalent characterization of the

Sobolev spaces introduced in [95, 71, 138, 26, 144, 74, 10].

A.1.2 Definitions and main results. If X is a Riemannian manifold then,

by Nash’s theorem, there is a Riemannian isometric embedding ι : X → RN .

In this case W 1,p(Ω;X) can be defined as the set of those functions f : Ω→ X

for which the composition ι ◦ f lies in the classical Sobolev space W 1,p(Ω;RN ).

Similarly one can embed any metric space X isometrically into some Banach

space V as to force a linear structure on the target space. For example every

separable metric space embeds isometrically into `∞ by means of the Kuratowski
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embedding. Thus it is natural to first define Sobolev functions with values in

the Banach space V and then W 1,p(Ω;X) as the subspace of those functions

in W 1,p(Ω;V ) that take values in X with respect to the fixed embedding. The

following definition of Banach space valued Sobolev functions goes back to [147].

Definition A.1.1. Let V be a Banach space and p ∈ [1,∞). The space

Lp(Ω;V ) consists of those functions f : Ω → V that are measurable and essen-

tially separably valued, and for which the function x 7→ ||f(x)|| lies in Lp(Ω).

A function f lies in the Sobolev space W 1,p(Ω;V ) if f ∈ Lp(Ω;V ) and for every

j = 1, . . . , n there is a function fj ∈ Lp(Ω;V ) such that∫
Ω

∂ϕ

∂xj
(x) · f(x) dx = −

∫
Ω

ϕ(x) · fj(x) dx for every ϕ ∈ C∞0 (Ω)

in the sense of Bochner integrals.

It was claimed in [76] that if Y is separable then W 1,p(Ω;Y ∗) is equal to the

Reshetnyak–Sobolev space R1,p(Ω;Y ∗) introduced in [138]. This would imply

that the Sobolev space W 1,p(Ω;X), defined in terms of Definition A.1.1 and

the Kuratowski embedding κ : X → `∞, is the same as the Sobolev spaces

introduced in [138, 95, 144, 71, 74, 26, 10]. Unfortunately, it has recently been

observed in [23] that there is a subtle measurability-related mistake in the proof

of the equality and indeed W 1,p(Ω;Y ∗) equals R1,p(Ω;Y ∗) only if Y ∗ has the

Radon–Nikodým property. For the sake of defining metric space valued Sobolev

maps this is potentially problematic because many spaces of geometric interest,

such as the Heisenberg group or even S1 (equipped with the angular metric),

do not isometrically embed into a Banach space which has the Radon–Nikodým

property, see [28] and Remark 4.2 in [C]. Our first main result shows that indeed

W 1,p(Ω;X), as defined in [76] in terms of Definition A.1.1 and the Kuratowski

embedding, is always trivial, and hence W 1,p(Ω;X) is not equal to R1,p(Ω;X)

for any geometrically interesting space X.

Theorem A.1.2. Let Ω ⊂ Rn be a bounded domain, X be a complete separable

metric space and p ∈ [1,∞). Denote by κ : X → `∞ the Kuratowski emdedding

of X. Then every function in

(A.1) W 1,p(Ω;X) := {f : Ω→ X | κ ◦ f ∈W 1,p(Ω; `∞)}

is almost everywhere constant.

Note that, by Theorem A.1.2, if X is a separable Banach space then the

definition of W 1,p(Ω;X) given in (A.1) is not compatible with the one given in

Definition A.1.1. For example, most trivially, one may consider the case X = R
where Definition A.1.1 gives the classical Sobolev space W 1,p(Ω).

There is a number of articles subsequent to [76] that have worked with (A.1)

as definition of metric space valued Sobolev maps, see [72, 163, 73, 14, 13, 75, 37].

In particular, important results such as [163, Theorem 1.2], [73, Theorem 1.4]

or [75, Theorem 1.9] are formally not correct as stated. To fix this technical

problem, instead of Definition A.1.1, we suggest the following one.
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Definition A.1.3. Let V ∗ be a dual Banach space and p ∈ [1,∞). The space

Lp∗(Ω;V ∗) consists of those functions f : Ω → V ∗ that are weak* measurable

and for which the function x 7→ ||f(x)|| lies in Lp(Ω).

A function f lies in the Sobolev space W 1,p
∗ (Ω;V ∗) if f ∈ Lp(Ω;V ∗) and for

every j = 1, . . . , n there is a function fj ∈ Lp∗(Ω;V ∗) such that∫
Ω

∂ϕ

∂xj
(x) · f(x) dx = −

∫
Ω

ϕ(x) · fj(x) dx for every ϕ ∈ C∞0 (Ω)

in the sense of Gelfand integrals.

The main difference between W 1,p
∗ and W 1,p is that for W 1,p

∗ the weak deriva-

tives do not need to be measurable and instead one only assumes weak* mea-

surability. In particular, the functions fj in Definition A.1.3 do not need to be

Bochner integrable. Our second main result shows that W 1,p
∗ indeed gives the

right Sobolev space.

Theorem A.1.4. Let Ω ⊂ Rn be open, Y be a separable Banach space, and

p ∈ [1,∞). Then

W 1,p
∗ (Ω;Y ∗) = R1,p(Ω;Y ∗).

Thus, for a bounded Ω and a separable metric space X, one can define

W 1,p
∗ (Ω;X) as the set of those functions f : Ω→ X such that κ◦f ∈W 1,p

∗ (Ω; `∞)

and deduce that

W 1,p
∗ (Ω;X) = R1,p(Ω;X).

We believe that essentially all results in the articles [76, 72, 163, 73, 14, 13, 75, 37]

become true if one respectively replaces W 1,p(Ω;X) by W 1,p
∗ (Ω;X) and that the

proofs apply up to straightforward adjustments.

An advantage of our definition of W 1,p
∗ (Ω;X) over the other equivalent def-

initions of metric space valued Sobolev maps is that it gives a characterization

in terms of actual linear differentials and not just upper gradients, metric dif-

ferential seminorms or alike. It might seem that such linear differentials are

somewhat artificial in the context of general metric target spaces. However,

indeed there are some nice arguments and constructions that heavily rely on

this sort of objects, see e.g. [73, 37, 12, 87].

A.1.3 Organization. First in Section A.2 we will go through some auxiliary

results and definitions concerning the calculus of functions with values in Banach

spaces. More precisely, in Sections A.2.1 and A.2.2 we discuss different notions

concerning measurability and integrals of Banach space valued functions. Then

in Section A.2.3 we study some basic properties of the weak* derivatives of ab-

solutely continuous curves in dual-to-separable Banach spaces. Section A.3 is

dedicated to Sobolev maps with values in Banach spaces and more particularly

the proof of Theorem A.1.4. To this end we will consider an auxiliary space

R1,p
∗ (Ω;Y ∗) whose definition interpolates between the definitions of R1,p(Ω;Y ∗)

and W 1,p
∗ (Ω;Y ∗). In Sections A.3.1 and A.3.2 we then respectively prove the

equalities R1,p
∗ = R1,p and R1,p

∗ = W 1,p
∗ . The more original part here is the
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proof of the equality R1,p
∗ = R1,p since the proof of R1,p

∗ = W 1,p
∗ is very much

along the lines of the intended proof of W 1,p = R1,p in [76]. In the final Sec-

tion A.4 we discuss Sobolev functions with values in a metric space X. First

in Section A.4.1 we shortly introduce the Sobolev spaces W 1,p
∗ (Ω;X). Then in

Section A.4.2 we focus on W 1,p(Ω;X) and prove Theorem A.1.2. The proof here

is a slightly involved argument that exploits the strange analytic properties of

the Kuratowski embedding.

A.2 Calculus of Banach space valued functions

During this section let E ⊂ Rn be Lebesgue measurable and V be a Banach

space.

A.2.1 Measurability of Banach space valued functions. We call a func-

tion f : E → V measurable if it is measurable with respect to the Borel σ-algebra

on V and the σ-algebra of Lebesgue measurable subsets on E. It is called weakly

measurable if x 7→ 〈v∗, f(x)〉 defines a measurable function E → R for every

v∗ ∈ V ∗ and essentially separably valued if there is a null set N ⊂ E such that

f(E \ N) is separable. Trivially measurability implies weak measurability. If

additionally one assumes that f is essentially separably valued then, by Pettis’

measurability theorem, also the converse implication holds, see e.g. [79, Sec-

tion 3.1]. In general however, weakly measurable functions do not need to be

measurable, see [79, Remark 3.1.3].

A function f : E → V is called approximately continuous at x ∈ E if for

every ε > 0 one has

lim
r↓0

Ln ({y ∈ B(x, r) ∩ E : ||f(y)− f(x)|| ≥ ε})
Ln (B(x, r))

= 0.

The following characterization of measurability will be important in the proof

of Theorem A.1.2.

Theorem A.2.1 ([53], Theorem 2.9.13). Let f : E → V be essentially separably

valued. Then f is measurable if and only if f is approximately continuous at

a.e. x ∈ E.

A function f : E → V ∗ is called weak* measurable if x 7→ 〈v, f(x)〉 defines a

measurable function E → R for every v ∈ V . We will need the following slight

strengthening of Pettis’ theorem.

Lemma A.2.2. Let f : E → V ∗ be essentially separably valued. Then f is

measurable if and only if f is weak* measurable.

Proof. Clearly measurable functions are weak* measurable. So we only prove

the other implication.

By assumption there is a null set N ⊂ E such that f(E \ N) is separable.

Let D = {v∗1 , v∗2 , . . . } be a countable dense subset in f(E \N). Then D−D is a

countable dense subset of the difference set f(E \N)− f(E \N). By definition
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of the dual norm for every i, j ∈ N there is a sequence (vijk )k∈N of unit vectors

in V such that

〈vijk , v
∗
i − v∗j 〉 → ||v∗i − v∗j || as k →∞.

Thus, it follows from the weak* measurability of f that for every i ∈ N the

function

x 7→ ||f(x)− v∗i || = sup
j,k∈N

〈vijk , v
∗
i − f(x)〉

is measurable. In particular, f−1(B) is measurable for every open ball B ⊂ V ∗
with center in D.

Let U ⊂ V ∗ be open. Then there is a countable collection (Bi)i∈N of balls

in V ∗ with centers in D such that

f(E \N) ∩ U = f(E \N) ∩

(⋃
i∈N

Bi

)

and hence

(A.2) f−1(U) ∪N =

(⋃
i∈N

f−1(Bi)

)
∪N.

Since
⋃
i∈N f

−1(Bi) is Lebesgue measurable and N is a null set, (A.2) implies

that f−1(U) is Lebesgue measurable. The open subsets generate the Borel

σ-algebra of V , so we conclude that f is measurable.

A.2.2 Integrals of Banach space valued functions. A function f : E → V

is called simple if there are measurable subsets E1, . . . , Ek of E and vectors

v1, . . . , vk in V such that f =
∑k
i=1 χEi ·vi. If f is simple and all the subsets Ei

are of finite Ln-measure, then f is called integrable and one defines the integral

of f as ∫
E

f(x) dx :=

k∑
i=1

Ln(Ei) · vi.

A function f : E → V is called Bochner integrable if there are integrable simple

functions (fk : E → V )k∈N such that

lim
k→∞

∫
E

||fk(x)− f(x)|| dx = 0

The Bochner integral of such Bochner integrable function f is defined as∫
E

f(x) dx := lim
k→∞

∫
E

fk(x) dx.

Indeed, a function f is Bochner integrable if and only it lies in the space L1(E;V )

introduced in Definition A.1.1, see [79, Proposition 3.2.7]. Furthermore, if f is

Bochner integrable and v∗ ∈ V ∗ then x 7→ 〈v∗, f(x)〉 is integrable and

(A.3)

〈
v∗,

∫
E

f(x) dx

〉
=

∫
E

〈v∗, f(x)〉 dx.
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The Bochner integral is arguably the most popular notion concerning inte-

grals of Banach space valued functions. However, its limitation to essentially

separably valued measurable functions is somewhat to rigid for our purposes.

Instead we will often work with the so-called Gelfand integral which is a weak*

variant of the more well-known Pettis integral that is defined for weakly measur-

able functions. It goes back to [58] and can be defined in terms of the following

lemma. See also [42, p. 53].

Lemma A.2.3. Let f : E → V ∗ be a weak* measurable function such that for

every v ∈ V the function x 7→ 〈v, f(x)〉 lies in L1(E). Then there is a unique

vector v∗f ∈ V ∗ such that

〈v, v∗f 〉 =

∫
E

〈v, f(x)〉 dx for every v ∈ V.

Proof. First we claim that the operator T : V → L1(E) defined by Tv = 〈v, f〉 is

continuous. To this end let (vk, T vk)k∈N belong to the graph of T . Suppose that

vk → v in V and Tvk → g in L1(E). Then there is a subsequence (Tvkm)m∈N
which converges a.e. on E to g. In particular

g(x) = lim
m→∞

Tvkm(x) = lim
m→∞

〈vkm , f(x)〉 = 〈v, f(x)〉 = (Tv)(x)

for a.e. x ∈ Ω. Hence the linear operator T has a closed graph and the closed

graph theorem implies that T is continuous.

Thus for every v ∈ V one has∣∣∣∣∫
E

〈v, f(x)〉 dx

∣∣∣∣ ≤ ‖Tv‖ ≤ ‖T‖ · ‖v‖.
This shows that the functional v∗f given by v∗f (v) :=

∫
E
〈v, f(x)〉 dx is continuous

and hence completes the proof.

Functions f : E → V ∗ that meet the assumptions of Lemma A.2.3 are called

Gelfand integrable and for such f the arising functional v∗f is called the Gelfand

integral of f . By (A.3) and Lemma A.2.3, if f : E → V ∗ is Bochner integrable

then f is Gelfand integrable and
∫
E
f(x) dx = v∗f . Hence we will not create

ambiguity when we also denote Gelfand integrals by
∫
E
f(x) dx instead of v∗f .

Note that if Ω ⊂ Rn is open and f ∈ Lp∗(Ω;V ∗), then ϕ · f is Gelfand inte-

grable for every ϕ ∈ C∞0 (Ω) and hence the Gelfand integrals that appear in

Definition A.1.3 are well-defined.

A.2.3 Absolutely continuous curves in Banach spaces. Recall that a

function f : [a, b]→ R is called absolutely continuous when it satisfies the funda-

mental theorem of calculus. That is when f is differentiable almost everywhere,

the derivative f ′ is Lebesgue integrable and

f(t)− f(a) =

∫ t

a

f ′(s) ds

37



for every t ∈ [a, b]. The length of a continuous curve γ : [a, b]→ V is defined as

l(γ) := sup

n∑
i=1

||γ(ti)− γ(ti−1)||

where the supremum ranges over all n ∈ N and all a = t0 ≤ t1 ≤ · · · ≤ tn = b.

The curve γ is called rectifiable if l(γ) is finite. For a rectifiable curve γ we

define its length function sγ : [a, b]→ [0, l(γ)] by

sγ(t) = l(γ|[a,t]).

The length function gives rise to a unique curve γ̄ : [0, l(γ)]→ V such that

γ̄ ◦ sγ = γ.

The curve γ̄ is called the unit-speed parametrization of γ because one has for

every t ∈ [0, l(γ)] that

l(γ̄|[a,t]) = t− a.

A curve γ : [a, b] → V is called absolutely continuous if it is rectifiable and

the length function sγ is absolutely continuous. Absolutely continuous curves

in a Banach space V do not need to be differentiable almost everywhere unless

V has the Radon–Nikodým property. Nevertheless, if V is dual to a separable

Banach space then absolutely continuous curves in V are weak* differentiable

almost everywhere in the sense of the following lemma.

Lemma A.2.4 ([76, Lemma 2.8]). Let Y be a separable Banach space. Then

for every absolutely continuous curve γ : [a, b]→ Y ∗ there is a weak* measurable

function γ′ : [a, b] → Y ∗ such that for almost every t ∈ [a, b] and every y ∈ Y
one has

(A.4)

〈
y,
γ(t+ h)− γ(t)

h

〉
→ 〈y, γ′(t)〉 as h→ 0.

If t ∈ [a, b] is such that (A.4) holds for every y ∈ Y then γ is called weak*

differentiable at t and γ′(t) is called the weak* derivative of γ at t. By the next

two lemmas weak* derivatives have desirable analytical and metric properties.

Lemma A.2.5. Let Y be a separable Banach space and γ : [a, b] → Y ∗ be

absolutely continuous. Then for every ϕ ∈ C∞0 ((a, b)) one has

(A.5)

∫ b

a

∂ϕ

∂t
(t) · γ(t) dt = −

∫ b

a

ϕ(t) · γ′(t) dt

in the sense of Gelfand integrals.

Lemma 2.11 in [76] claims that the equality (A.5) holds in the sense of

Bochner integrals. In general however, as the subsequent example shows, the

weak* derivative of an absolutely continuous curve in Y ∗ does not need to be

essentially separably valued and hence the Bochner integral
∫ b
a
ϕ(t) · γ′(t) dt

may not be defined.
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Example A.2.6. Consider the curve γ : [0, 1]→ L∞([0, 1]) given by (γ(t))(s) =

|t − s|. Then γ is an isometric embedding and hence in particular absolutely

continuous. Further γ is weak* differentiable at every t ∈ [0, 1] with weak*

derivative

γ′(t) = −χ(0,t) + χ(t,1).

Thus

||γ′(s)− γ′(t)||∞ = 2

for every t 6= s and hence γ′ : [0, 1]→ L∞([0, 1]) cannot be essentially separably

valued.

Proof of Lemma A.2.5. Let ϕ ∈ C∞0 ((a, b)) and y ∈ Y . For t ∈ [a, b] we will

denote γy(t) := 〈y, γ(t)〉. Then γy : [a, b] → R is absolutely continuous and, by

the classical product rule,

(A.6)

∫ b

a

∂ϕ

∂t
(t) · γy(t) dt = −

∫ b

a

ϕ(t) · γ′y(t) dt.

Furthermore by (A.4) for almost every t ∈ [a, b] one has

(A.7) 〈y, γ′(t)〉 = γ′y(t).

By (A.6) and (A.7), and because y ∈ Y was arbitrary, we conclude equal-

ity (A.5).

Lemma A.2.7. Let Y be a separable Banach space. If γ : [a, b] → Y ∗ is abso-

lutely continuous then

||γ′(t)|| = lim
h→0

||γ(t+ h)− γ(t)||
|h|

= s′γ(t)

for almost every t ∈ [a, b].

Proof. Assume t ∈ [a, b] is such that sγ is differentiable at t and that γ is weak*

differentiable at t. Then for every y ∈ Y with ||y|| ≤ 1 one has

〈y, γ′(t)〉 = lim
h→0

〈
y,
γ(t+ h)− γ(t)

h

〉
≤ lim inf

h→0

||γ(t+ h)− γ(t)||
|h|

and hence

(A.8) ||γ′(t)|| ≤ lim inf
h→0

||γ(t+ h)− γ(t)||
|h|

.

Furthermore

(A.9) lim sup
h→0

||γ(t+ h)− γ(t)||
|h|

≤ lim sup
h→0

l(γ|[t,t+h])

|h|
= s′γ(t).

To prove the reverse inequalities, let t, t̄ ∈ [a, b] with t < t̄. Then for every y ∈ Y
with ||y|| ≤ 1 one has

〈y, γ(t̄)− γ(t)〉 =

∫ t̄

t

〈y, γ′(r)〉 dr ≤
∫ t̄

t

||γ′(r)|| dr
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and thus

||γ(t̄)− γ(t)|| ≤
∫ t̄

t

||γ′(r)|| dr.

Since t and t̄ were arbitrary, we conclude that

(A.10)

∫ b

a

s′γ(r) dr = l(γ) ≤
∫ b

a

||γ′(r)|| dr.

(A.8), (A.9) and (A.10) together imply the claim.

A.3 Banach space valued Sobolev maps

Throughout this section let Ω ⊂ Rn be open, V be a Banach space, Y be a

separable Banach space and p ∈ [1,∞).

A.3.1 The Reshetnyak–Sobolev space. The following definition of first-

order Sobolev functions with values in Banach spaces goes back to [138].

Definition A.3.1. The Reshetnyak–Sobolev space R1,p(Ω;V ) consists of those

functions f ∈ Lp(Ω;V ) such that:

(i) for every v∗ ∈ V ∗ the function x 7→ 〈v∗, f(x)〉 lies in the classical Sobolev

space W 1,p(Ω) := W 1,p(Ω;R);

(ii) there is a function g ∈ Lp(Ω) such that for every v∗ ∈ V ∗ one has

|∇〈v∗, f(x)〉| ≤ ||v∗|| · g(x) for a.e. x ∈ Ω.

A function g as in (ii) will be called a weak upper gradient of f . A seminorm is

defined on R1,p(Ω;V ) by

||f ||R1,p :=

(∫
Ω

||f(x)||p dx

)1/p

+ inf
g
||g||Lp

where g ranges over all weak upper gradients of f .

Indeed, Definition A.3.1 is a variation on the original definition by Reshet-

nyak. The reason for the present choice of definition is that, in contrast to the

definition in [138], it also allows for unbounded domains Ω. This extension is

possible because we limit ourselves here to maps with values in Banach spaces

while Reshetnyak considers general metric target spaces. In any case the two

definitions are equivalent if Ω is a bounded domain, see [76, Lemma 2.16] and

[138, Theorem 5.1].

To prove that R1,p(Ω;Y ∗) equals W 1,p
∗ (Ω;Y ∗), we will work with the follow-

ing auxiliary definition that interpolates between the two spaces.

Definition A.3.2. The Sobolev space R1,p
∗ (Ω;V ∗) consists of those functions

f ∈ Lp(Ω;V ∗) such that:
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(i*) for every v ∈ V the function x 7→ 〈v, f(x)〉 lies in W 1,p(Ω);

(ii*) there is a function g ∈ Lp(Ω) such that for every v ∈ V one has

|∇〈v, f(x)〉| ≤ ||v|| · g(x) for a.e. x ∈ Ω.

A function g as in (ii*) will be called a weak* upper gradient of f . A seminorm

is defined on R1,p
∗ (Ω;V ∗) by

||f ||R1,p
∗

:=

(∫
Ω

||f(x)||p dx

)1/p

+ inf
g
||g||Lp

where g ranges over all weak* upper gradients of f .

We will denote by ACL(Ω) the collection of all functions f : Ω→ R for which

the restriction of f to almost every compact line segment, that is contained in Ω

and parallel to some coordinate axis, is absolutely continuous. Recall that every

real valued Sobolev function in f ∈ W 1,p(Ω) has a representative f̃ ∈ ACL(Ω).

The following lemma shows that similar is true for functions in R1,p
∗ (Ω;Y ∗).

Lemma A.3.3. Let V be a Banach space and f ∈ R1,p
∗ (Ω;V ∗). Then for

every j ∈ {1, . . . , n} the function f has a representative f̃ j that is absolutely

continuous on almost every compact line segment which is contained in Ω and

parallel to the xj-axis. Moreover, for every weak* upper gradient g of f one has

(A.11) lim
h→0

‖f̃ j(x+ hej)− f̃ j(x)‖
|h|

≤ g(x) for a.e. x ∈ Ω.

Lemma A.3.3 generalizes Lemma 2.13 in [76] from R1,p to R1,p
∗ . A posteriori

Proposition A.3.4 will show that this is not a proper generalization.

Proof. Fix j ∈ {1, . . . , n} and a weak* upper gradient g of f . Since we have

f ∈ Lp(Ω;V ∗), there is a nullset Σ0 ⊂ Ω such that f(Ω \ Σ0) is separable. Let

(v∗i )i∈N be a dense sequence in the difference set f(Ω\Σ0)−f(Ω\Σ0). For each

i ∈ N let (vik)k∈N be a sequence of unit vectors in V such that

‖v∗i ‖ = lim
k→∞

〈vik, v∗i 〉.

Then for every i, k ∈ N one has 〈vik, f〉 ∈W 1,p(Ω) and

(A.12) |∇〈vik, f(x)〉| ≤ g(x) for a.e. x ∈ Ω.

Denote by fik a representative of 〈vik, f〉 that is in ACL(Ω) and by Σik the

null set on which fik differs from 〈vik, f〉. Then for almost every line segment

l : [a, b]→ Ω that is parallel to the xj-axis one has:

(i) g is integrable over l;

(ii) H1(l ∩ Σ) = 0 where Σ = Σ0 ∪
⋃
i,k Σik;
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(iii) for every i, k ∈ N and every a ≤ s ≤ t ≤ b

|fik(l(t))− fik(l(s))| ≤
∫ t

s

g(l(τ)) dτ.

The Fubini theorem ensures (i) and (ii), while (iii) follows by (A.12).

Let l : [a, b] → Ω be a line segment parallel to the xj-axis for which the

properties (i), (ii) and (iii) are satisfied. For given s, t ∈ l−1(Ω \ Σ) with s ≤ t

there is a subsequence (v∗im) that converges to f(l(t))− f(l(s)) in V ∗. Thus, we

have

‖f(l(t))− f(l(s))‖(A.13)

= lim
m→∞

‖v∗im‖ = lim
m→∞

lim
k→∞

〈vimk, v∗im〉

= lim sup
m→∞

lim sup
k→∞

(
〈vimk, v∗im − (f(l(t))− f(l(s)))〉

+ 〈vimk, f(l(t))− f(l(s))〉
)

≤ lim sup
m→∞

lim sup
k→∞

(
‖v∗im − (f(l(t))− f(l(s)))‖

+ |fimk(l(t))− fimk(l(s))|
)

≤
∫ t

s

g(l(τ)) dτ.

In particular, by properties (i) and (ii), and inequality (A.13) the restriction of f

to l has a unique H1-representative that is absolutely continuous. The unique-

ness implies that these representatives coincide where different line segments

overlap. Hence we conclude that f has a representative f̃ j that is absolutely

continuous on every compact line segment l that satisfies the properties (i), (ii)

and (iii). Furthermore, by (A.13) for every such l one has

‖f̃ j(l(t))− f̃ j(l(s))‖ ≤
∫ t

s

g(l(τ)) dτ

and hence we conclude that (A.11) is satisfied.

Given that in general W 1,p
∗ (Ω;V ∗) does not equal W 1,p(Ω;V ∗) the following

proposition might be a bit surprising.

Proposition A.3.4. Let V be a Banach space. Then

R1,p
∗ (Ω;V ∗) = R1,p(Ω;V ∗)

with || · ||R1,p
∗
≤ || · ||R1,p ≤

√
n|| · ||R1,p

∗
.

Proof. Trivially R1,p(Ω;V ∗) ⊆ R1,p
∗ (Ω;V ∗), and ||f ||R1,p

∗
≤ ||f ||R1,p for func-

tions f ∈ R1,p(Ω;V ∗). For the other inclusion let f ∈ R1,p
∗ (Ω;V ∗) and g be a

weak* upper gradient of f . Since f ∈ Lp(Ω;V ∗), for v∗∗ ∈ V ∗∗ the function

fv∗∗ = 〈v∗∗, f〉 lies in Lp(Ω). For j ∈ {1, . . . , n} let f̃ j be a representative of f

as in Lemma A.3.3. Then f̃ jv∗∗ := 〈v∗∗, f̃ j〉 is a representative of fv∗∗ that is
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absolutely continuous on almost every compact line segment parallel to the xj-

axis. Thus f̃ jv∗∗ is almost everywhere partial differentiable in the xj-direction.

By the product rule and the Fubini theorem it follows that∫
Ω

∂ϕ

∂xj
(x) · fv∗∗(x) dx =

∫
Ω

∂ϕ

∂xj
(x) · f̃ jv∗∗(x) dx =

∫
Ω

ϕ(x) · ∂f̃
j
v∗∗

∂xj
(x) dx

for every ϕ ∈ C∞0 (Ω). In particular
∂f̃j

v∗∗
∂xj

is a j-th weak partial derivative

of fv∗∗ . Furthermore, by Lemma A.3.3 at almost every x ∈ Ω one has∣∣∣∣∣∂f̃ jv∗∗∂xj
(x)

∣∣∣∣∣ ≤ lim
h→0

‖f̃ j(x+ hej)− f̃ j(x)‖
|h|

≤ g(x)

and hence

|∇fv∗∗(x)| =

 n∑
j=1

(
∂f̃ jv∗∗

∂xj
(x)

)2
1/2

≤
√
n · g(x).

Since v∗∗ ∈ V ∗∗ and the weak* upper gradient g ∈ Lp(Ω) were arbitrary, we

conclude that f ∈ R1,p(Ω;V ∗) and

‖f‖R1,p ≤
√
n · ‖f‖R1,p

∗
.

This completes the proof.

A.3.2 The Sobolev space W 1,p
∗ . Let f ∈ W 1,p

∗ (Ω;V ∗). We will denote by

∂jf the function fj as in Definition A.1.1 and call the vector

∇f(x) = (∂1f(x), . . . , ∂nf(x))

the weak* gradient of f at x ∈ Ω. Further we define

|∇f(x)| :=

(
n∑
i=0

||∂if(x)||2
)1/2

and a seminorm on W 1,p
∗ (Ω;V ) by

||f ||W 1,p
∗

:=

(∫
Ω

||f(x)||p dx

)1/p

+

(∫
Ω

|∇f(x)|p dx

)1/p

Proposition A.3.5. Let Y be a separable Banach space. Then

W 1,p
∗ (Ω;Y ∗) = R1,p

∗ (Ω;Y ∗)

with || · ||R1,p
∗
≤ || · ||W 1,p

∗
≤
√
n|| · ||R1,p

∗
.

Proof. Let f ∈ W 1,p
∗ (Ω;Y ∗). Since f ∈ Lp(Ω;Y ∗) we know that for y ∈ Y

the function fy := 〈y, f〉 lies in Lp(Ω). Further, by definition of the Gelfand
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integral, for j ∈ {1, . . . , n} the function 〈y, ∂jf〉 is a j-th weak partial derivative

of fj . Hence fy ∈ R1,p
∗ (Ω;Y ∗) and

|∇fy(x)| =

 n∑
j=1

〈y, ∂jf(x)〉2
1/2

≤

 n∑
j=1

||∂jf(x)||2
1/2

= |∇f(x)|

for a.e. x ∈ Ω. In particular f ∈ R1,p
∗ (Ω;Y ∗) and |∇f | is a weak* upper gradient

of f . The latter also implies ||f ||R1,p
∗
≤ ||f ||W 1,p

∗
.

Now, for the other inclusion, let f ∈ R1,p
∗ (Ω;Y ∗) and g be a weak* up-

per gradient of f . For j ∈ {1, . . . , n} let f̃ j be a representative of f as in

Lemma A.3.3. Define fj(x) as the weak* partial derivative ∂f̃j

∂xj
(x), which is

defined almost everywhere due to Lemma A.2.4. Then the function fj : Ω→ Y ∗

is weak* measurable. Furthermore, by Lemma A.2.5 and the Fubini theorem,

for every ϕ ∈ C∞0 (Ω) one has

(A.14)

∫
Ω

∂ϕ

∂xj
(x) · f(x) dx =

∫
Ω

∂ϕ

∂xj
(x) · f̃ j(x) dx =

∫
Ω

ϕ(x) · fj(x) dx

in the sense of Gelfand integrals. Also, by Lemmas A.2.7 and A.3.3,

‖fj(x)‖ ≤ g(x) for a.e. x ∈ Ω.

In particular, since g ∈ Lp(Ω), we conclude that fj ∈ Lp∗(Ω;Y ∗) and hence by

(A.14) that f ∈W 1,p(Ω;Y ∗) with

|∇f(x)| =

 n∑
j=1

‖fj(x)‖2
1/2

≤
√
n · g(x)

for almost every x ∈ Ω. Since g was an arbitrary weak* upper gradient of f it

also follows that ||f ||W 1,p
∗
≤
√
n||f ||R1,p

∗
.

Propositions A.3.4 and A.3.5 together imply the following quantitative ver-

sion of Theorem A.1.4.

Theorem A.3.6. Let Y be a separable Banach space. Then

W 1,p
∗ (Ω;Y ∗) = R1,p(Ω;Y ∗)

with 1√
n
|| · ||R1,p ≤ || · ||W 1,p

∗
≤
√
n|| · ||R1,p .

It has been shown in [23, 52] that W 1,p(Ω;V ) = R1,p(Ω;V ) if and only if

V has the Radon–Nikodm property. Concerning Theorem A.3.6, it seems to

be a natural conjecture that conversely the equality W 1,p
∗ (Ω;V ∗) = R1,p(Ω;V ∗)

implies that V is separable.

A.4 Metric space valued Sobolev maps

Throughout this section let Ω ⊂ Rn be a bounded domain, X = (X, d) be a

complete metric space and p ∈ [1,∞).
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A.4.1 The Sobolev space W 1,p
∗ (Ω;X). The Reshetnyak–Sobolev space can

be defined as

R1,p(Ω;X) := {f : Ω→ X | ι ◦ f ∈ R1,p(Ω;V )}

where ι : X → V is any fixed isometric embedding of X into a Banach space V .

By the following example such embedding ι always exists.

Example A.4.1. Let X be a metric space. Denote by `∞(X) the Banach space

of bounded functions f : X → R with norm given by

||f ||∞ := sup
z∈X
|f(z)|.

Then for given z0 ∈ X the function κ̄ : X → `∞(X) given by

(κ̄(z))(w) := d(z, w)− d(w, z0)

defines an isometric embedding, see e.g. [78, p. 5].

Furthermore, under the present assumption that Ω is bounded, the defini-

tion of R1,p(Ω;X) does not depend on the chosen embedding ι and is equivalent

to the original definition by Reshetnyak, see [76, Lemma 2.16] and [138, Theo-

rem 5.1]. Thus Theorem A.1.4 has the following consequence.

Theorem A.4.2. Let Ω ⊂ Rn be a bounded domain, X be a complete metric

space, Y be a separable Banach space and ι : X → Y ∗ be an isometric embedding.

Then

R1,p(Ω;X) =
{
f : Ω→ X | ι ◦ f ∈W 1,p

∗ (Ω;Y ∗)
}
.

Certainly not every metric space X isometrically embeds into the dual of a

separable Banach space. A simple obstruction is the cardinality of X which must

be bounded above by 22ω

. For a separable metric space X however, due to the

following example, there is always an isometric embedding as in Theorem A.4.2.

Example A.4.3. Let X be a separable metric space and (zi)i∈N be a dense

sequence of points in X. Denote `∞ := `∞(N). Then `∞ is the dual of the

separable Banach space `1 := `1(N). The function κ : X → `∞ given by

κ(z) := (d(z, zi)− d(zi, z1))i∈N

is called the Kuratowski embedding of X. It is not hard to check that κ defines

an isometric embedding, see e.g. [78, p. 11].

Thus, for a bounded domain Ω and a complete separable metric space X,

one can define

(A.15) W 1,p
∗ (Ω;X) :=

{
f : Ω→ X | κ ◦ f ∈W 1,p

∗ (Ω; `∞)
}

and deduce from Theorem A.4.2 that W 1,p
∗ (Ω;X) = R1,p(Ω;X). The assump-

tion that Ω is bounded is needed to ensure that W 1,p
∗ (Ω;X) is well-defined
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by means of (A.15) and does not depend on the concrete choice of Kura-

towski embedding. For a non-separable complete metric space X one can define

W 1,p
∗ (Ω;X) as the union of the spaces W 1,p

∗ (Ω;S) where S ranges over all sep-

arable closed subsets of X. Since Sobolev functions are essentially separably

valued, also for such non-separable X, Theorem A.4.2 implies that

W 1,p
∗ (Ω;X) ⊂ R1,p(Ω;X)

and that every function in R1,p(Ω;X) has a representative in W 1,p
∗ (Ω;X).

A.4.2 The Sobolev space W 1,p(Ω, X). The aim of this subsection is to

prove Theorem A.1.2. To this end let X be a complete separable metric space,

(xi)i∈N be a dense sequence of points in X and κ : X → `∞ be the corresponding

Kuratowski embedding. The key step for the proof is the following lemma.

Lemma A.4.4. If γ : [a, b]→ κ(X) ⊂ `∞ is a non-constant absolutely continu-

ous curve then the weak* derivative γ′ : [a, b] → `∞ is not essentially separably

valued.

Proof. Since γ is non-constant we have l := l(γ) > 0. As in Section A.2.3 we

factorize γ = γ̄ ◦ sγ where γ̄ : [0, l] → κ(X) is the unit-speed parametrization

of γ and sγ : [a, b] → [0, l] is the length function of γ. First we show that

γ̄′ : [0, l]→ `∞ is not essentially separably valued.

By Lemma A.2.7 for a.e. t ∈ [0, l] one has that

(A.16) ||γ̄′(t)||∞ = lim
h→0

||γ̄(t+ h)− γ̄(t)||∞
|h|

= 1.

Let E be the set of points t0 ∈ (0, l) at which γ̄ is weak* differentiable and

(A.16) holds. By Theorem A.2.1, to show that γ̄′ is not essentially separably

valued, it suffices to prove that γ̄′ is not approximately continuous at every

t0 ∈ E.

So fix t0 ∈ E and let h0 > 0 be so small that for any h ∈ R with |h| ≤ h0

one has

(A.17)
1

2
· |h| < ||γ(t0 + h)− γ(t0)||∞.

Further fix some arbitrary 0 < h < h0 and accordingly choose i ∈ N such that

(A.18) ||κ(xi)− γ(t0)||∞ ≤
1

4
· h.

By Lemma A.2.4 for every point t ∈ [0, l] at which γ̄ is weak* differentiable one

has

γ̄′(t) = (γ̄′i(t))i∈N where γ̄(t) = (γ̄i(t))i∈N

is the coordinate representation of γ̄. From the fundamental theorem of calculus,
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the definition of the Kuratowski embedding, (A.17) and (A.18) it follows that∫ t0+h

t0

γ̄′i(t) dt = γ̄i(t0 + h)− γ̄i(t0)

= ||γ̄(t0 + h)− κ(xi)||∞ − ||γ̄(t0)− κ(xi)||∞

≥ 1

4
· h

Since |γ̄′i(t)| ≤ 1 for a.e. t, this implies that

(A.19) L1
(
F+
h

)
≥ 1

8
· h where F+

h :=

{
t ∈ (t0, t0 + h) : γ̄′i(t) ≥

1

8

}
.

Similarly ∫ t0

t0−h
γ̄′i(t) dt ≤ −1

4
· h

and hence

(A.20) L1
(
F−h
)
≥ 1

8
· h where F−h :=

{
t ∈ (t0 − h, t0) : γ̄′i(t) ≤ −

1

8

}
.

Note that for every t+ ∈ F+
h ∩ E and t− ∈ F−h ∩ E one has

(A.21) ||γ̄′(t+)− γ̄′(t−)||∞ ≥ |γ̄′i(t+)− γ̄′i(t−)| ≥ 1

4
.

Since 0 < h < h0 was arbitrary, (A.19), (A.20) and (A.21) together imply that

γ̄′ cannot be approximately continuous at t0. In turn, because t0 ∈ E was

arbitrary, we conclude from Theorem A.2.1 that γ̄′ is not essentially separably

valued.

Now let N ⊂ [a, b] be an arbitrary nullset. We need to show that γ′([a, b]\N)

is not separable. By Lemma A.2.4, after possibly passing to a larger null set,

we may assume that for every t ∈ [a, b] \N the curve γ is weak* differentiable

at t and the function sγ is differentiable at t. Note that

(A.22) L1(sγ(A)) =

∫
A

s′γ(t) dt

for every measurable subset A ⊂ [a, b]. Thus, we may further assume that for

every t ∈ [a, b] \ N either γ̄ is weak* differentiable at sγ(t) or s′γ(t) = 0. In

particular, it follows that

(A.23) (γ̄′ ◦ sγ)(t) · s′γ(t) = γ′(t)

on [a, b] \ N . By (A.22) one has that M := sγ(N) ∪ sγ({s′γ = 0}) is a null set

and hence γ̄′([0, l]\M) is not separable. On the other hand, sγ is surjective and

hence by (A.23) it follows that

γ̄′([0, l] \M) ⊂ 〈γ′([a, b] \N)〉R

where 〈γ′([a, b]\N)〉R denotes the linear span of γ′([a, b]\N) in `∞. In particular,

the linear span of γ′([a, b]\N) is not separable and hence also γ′([a, b]\N) itself

cannot be separable
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Proof of Theorem A.1.2. Let f ∈ W 1,p(Ω;X). Then, by definition, h := κ ◦ f
lies in W 1,p(Ω; `∞). Trivially this implies that h ∈ W 1,p

∗ (Ω; `∞) and that ∂jh

lies in Lp(Ω;X) ⊂ Lp∗(Ω;X) for each j. Since W 1,p
∗ (Ω; `∞) equals R1,p

∗ (Ω; `∞),

Lemma A.3.3 implies that for each j the function h has a representative h̃j

that is absolutely continuous on almost every compact line segment parallel to

the xj-axis. In particular, there is a nullset N ⊂ Ω such that ∂jh(Ω \ N) is

separable for every j. Note that, since X is complete, for almost every compact

line segment l : [a, b]→ Ω parallel to the xj-axis the image h̃j ◦ l([a, b]) must be

contained in κ(X). Further the proof of Proposition A.3.5 shows that, possibly

enlarging N , we can assume that for each j one has

∂jh(x) =
∂h̃j

∂xj
(x)

for every x ∈ Ω \N .

Assume f was not almost everywhere constant. Since Ω is connected, this

implies that there is some j such that not for almost every line segment parallel

to the xj-axis the restriction of f to the line segment is constant. Hence we can

find a line segment l : [a, b]→ Ω such that

(i) H1(l([a, b] ∩N)) = 0,

(ii) h̃j ◦ l([a, b]) ⊂ κ(X), and

(iii) h̃j ◦ l is absolutely continuous and non-constant.

By Lemma A.4.4, (h̃j ◦ l)′ : [a, b] → X cannot be essentially separably valued.

This gives a contradiction because

(h̃j ◦ l)′(t) = ∂jh(l(t))

for every t ∈ l([a, b]) \N and ∂jh(Ω \N) is separable.
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CHAPTER B
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CHAPTER I

The Plateau–Douglas problem for

singular configurations and in general

metric spaces

with Martin Fitzi

I.1 Introduction and statement of main results

I.1.1 Introduction. The classical Plateau problem asked whether any given

rectifiable Jordan curve Γ in Rn bounds a Sobolev disk of least area. The

positive answer was obtained independently by Douglas and Radó in the early

1930’s, [130, 45]. Over the years their result was generalized from Rn to so-called

homogeneously regular Riemannian manifolds, metric spaces satisfying different

synthetic notions of curvature bounds and particular classes of homogeneously

regular Finsler manifolds, [117, 118, 90, 116, 125, 128]. The solution of Plateau’s

problem in proper metric spaces given by Lytchak–Wenger in [104] covers all

these settings. However, even in Rn, the arguments break down if Γ is allowed

to self-intersect. Still the generality of [104] and a simple extension trick allowed

the first author to solve the Plateau problem for possibly self-intersecting curves

in proper metric spaces which satisfy a local quadratic isoperimetric inequality,

see Chapter D. In Rn this improved a previous existence result due to Hass, [77].

The Plateau–Douglas problem is a variation of the Plateau problem, where

one allows for various boundary components and surfaces of nontrivial topology.

One way to state the solution obtained by Douglas in [49] is the following: as-

sume you are given a finite configuration of disjoint rectifiable Jordan curves Γ

in Rn and a natural number p ≥ 0. Then there exists an area minimizer among

all compact surfaces which have genus at most p and span Γ. Douglas’ result has

since been extended by Jost to homogeneously regular Riemannian manifolds

(closing also a gap in the original proof of Douglas), and recently even further by

the second author together with Stefan Wenger to proper metric spaces admit-

ting a local quadratic isoperimetric inequality, [89, 56]. Again, the machinery

fails if one allows for singular, possibly non-disjoint or self-intersecting config-

urations. Our main result, Theorem I.1.2 below, solves the Plateau–Douglas
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problem for such possibly singular configurations and in general proper metric

spaces. The solution for singular configurations is new even in Rn. Theo-

rem I.1.2 also generalizes the main results of [56] and Chapter D as we are

able to drop the assumption that X admits a local quadratic isoperimetric in-

equality. In particular, existence is new for regular configurations in complete

Riemannian manifolds which might not be homogeneously regular. It is not sur-

prising that existence in this case is harder to obtain, since already for such a

setting discontinuous solutions can only be excluded under additional geometric

assumptions, cf. [117].

Note that the somewhat more modern approach to Plateau’s problem via

currents as in [54, 11] does not allow for bounding the topology of solutions, and

for singular configurations currents would consider the boundary curves rather

as unparametrized objects and could not keep track of the order in which they

are traversed, in contrast to our approach. Moreover, beyond the Riemannian

setting, there is no appropriate regularity theory available.

I.1.2 Main result. Simple examples show that, without additional assump-

tions, one cannot hope for reasonably regular area minimizers of prescribed

topological type to bound a given contour Γ. For example, a Jordan curve

in Rn which is convex and contained in a plane does not span a minimal surface

of genus p > 0, see [112]. There are two ways to handle this issue. As in [49, 89]

we will state our result in terms of the so-called Douglas condition. It is however

not hard to see that that this formulation, which we discuss below, is equivalent

to the one via (possibly disconnected) surfaces of bounded topology promoted

in Section I.1.1, cf. [56].

For the convenience of a reader who might not be familiar with the theory of

metric space valued Sobolev maps, we first state our main result in the smooth

context before moving to the more general setting. To this end, let X be a

smooth complete Riemannian manifold and M be a smooth, orientable, compact

surface (which might be disconnected). Assume furthermore that all connected

components of M have non-empty boundary. For a map u in the Sobolev space

W 1,2(M,X) we denote by Area(u) the parametrized Riemannian area of u.

Assume now that M has k ≥ 1 boundary components ∂Mi and Γ is a

collection of k rectifiable closed curves Γj in X. By a rectifiable closed curve

we mean an equivalence class of parametrized rectifiable curves γ : S1 → X.

We identify two such parametrized curves if they are reparametrizations of each

other, meaning more precisely that their constant speed parametrizations agree

up to a homeomorphism of S1. We say that a map u ∈ W 1,2(M,X) spans Γ if

for each curve Γj there exists a boundary component ∂Mi such that the trace

u|∂Mi is a parametrization of Γj . Let Λ(M,Γ, X) be the family of Sobolev maps

u ∈W 1,2(M,X) which span Γ. We define

a(M,Γ, X) := inf{Area(u) : u ∈ Λ(M,Γ, X)}

and ap(Γ, X) := a(M,Γ, X) if M is the (up to a diffeomorphism) unique con-

nected surface of genus p with k boundary components. We say that the Douglas
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condition holds for p, Γ and X if ap(Γ, X) is finite and

(I.1) ap(Γ, X) < a(M,Γ, X)

for every M as in the previous paragraph and of one of the following types.

Either M is connected and of genus strictly smaller than p, or M is disconnected

and of total genus at most p. Note that in the case where Γ is a single curve

and p = 0, which corresponds to the classical Plateau problem, the Douglas

condition is equivalent to the assumption that there is at least one Sobolev disk

spanning Γ.

Theorem I.1.1. Let X be a smooth complete Riemannian manifold and Γ ⊂ X
be a configuration of k ≥ 1 rectifiable closed curves. Let M be a compact, con-

nected and orientable surface with k boundary components and of genus p ≥ 0.

If the Douglas condition holds for p,Γ and X, then there exists u ∈ Λ(M,Γ, X)

as well as a Riemannian metric g on M such that

Area(u) = ap(Γ, X)

and u is weakly conformal with respect to g on M \ u−1(Γ). Furthermore, if. . .

(i) . . .X is homogeneously regular, then u may be chosen Hölder continuous

on M and smooth on M \ u−1(Γ).

(ii) . . .X is homogeneously regular and Γ is C2, then u may be chosen locally

Lipschitz on M \ ∂M .

(iii) . . . Γ is a union of disjoint Jordan curves, then u and g may be chosen

such that u is weakly conformal with respect to g on M .

Here, by weakly conformal we mean that almost everywhere the weak dif-

ferential of u either vanishes or is angle preserving. Already the most simple

example of a figure eight curve in R2 shows that self-intersecting curves need

not always bound globally weakly conformal area minimizing disks, cf. [77].

So the assumption of (iii) seems quite sharp. Note that the existence of glob-

ally Hölder continuous area minimizers guaranteed by (i) is new already for

topologically regular configurations in Rn which potentially are of low analytic

regularity. Compare the respective discussion for the Plateau problem in Chap-

ter D. Without geometric assumptions one cannot hope for the conclusion of

(i) to be true. See [117, p. 809] for a complete Riemannian manifold X and a

Jordan curve Γ ⊂ X which only bounds discontinuous area minimizers. Parts

(i) and (ii), respectively (ii) and (iii), are compatible in the sense that when

both respective assumptions are satisfied then one can achieve the conclusion

simultaneously for a single map u, compare Remark I.4.4. However, if both the

assumptions in (i) and (iii) hold, we can only cook up a single area minimizer

which is simultaneously weakly conformal and globally Hölder continuous in the

previously known case where all the curves of Γ satisfy a chord-arc condition.

We sketch the main ideas entering in the proof of Theorem I.1.2. For (i), the

procedure is conceptually similar to the respective disk type result obtained in
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Chapter D. Namely, we attach a cylinder to each of the curves in Γ. This way we

obtain a singular metric space XΓ, which admits a local quadratic isoperimetric

inequality and contains X isometrically, as well as a regular configuration Γ̃

in XΓ. Now we apply [56] to solve the Plateau–Douglas problem for the new

pair (XΓ, Γ̃) and project the obtained solution down to X. This gives the

desired solution for (X,Γ). For (ii), the proof follows essentially the same lines.

However, the construction is now performed in a way that is more sensitive to the

concrete geometric situation. The construction scheme, which is a generalization

of the funnel extensions introduced by Stadler in [148], allows us to obtain an

extension space X̂Γ which admits a local quadratic isoperimetric inequality and

is locally of curvature bounded above in the sense of Alexandrov. This latter

feature allows to apply the regularity theory for harmonic maps into spaces of

curvature bounded above as developed e.g. in [95, 143, 19], and hence derive the

desired Lipschitz regularity. For the special case (iii), we use ε-thickenings as

introduced in [158] to approximate X by metric spaces (Xn)n∈N which admit

local quadratic isoperimetric inequalities and contain X isometrically. Then we

apply again [56] to obtain solutions (un)n∈N for the pairs (Xn,Γ) respectively.

A variant of the Rellich-Kondrachov compactness theorem allows us to pass to

a limit surface in X which is our desired solution. The proof of the remaining

general case involves a mix of the arguments discussed for (i) and (iii).

At this point, we would like to emphasize the following remarkable feature of

Theorem I.1.1 and its proof: despite major additional complications that arise,

the results and methods developed in [56] for the Plateau–Douglas problem in

metric spaces are in principle adaptations of respective ones developed for the

classical Plateau–Douglas problem in smooth ambient spaces. However, the

flexibility of the metric setting therein allows us to draw new conclusions in the

smooth setting that seem out of reach within the classical methods.

A theory of metric space valued Sobolev maps has been developed over the

last 30 years. With this language at hand, one can generalize all the introduced

terminology to the setting where X is a complete metric space, see Sections I.2

and I.3 below. Recall that a metric space X is called proper if all closed and

bounded subsets of X are compact. In fact, Theorem I.1.1 is a special case of

the following very general result.

Theorem I.1.2. Let X be a proper metric space and Γ ⊂ X be a configuration

of k ≥ 1 rectifiable closed curves. Let M be a compact, connected and orientable

surface with k boundary components and of genus p ≥ 0. If the Douglas con-

dition holds for p, Γ and X, then there exists u ∈ Λ(M,Γ, X) as well as a

Riemannian metric g on M such that

Area(u) = ap(Γ, X)

and u is infinitesimally isotropic with respect to g on M \u−1(Γ). Furthermore,

if. . .

(i) . . .X admits a local quadratic isoperimetric inequality, then u may be cho-

sen Hölder continuous on M and to satisfy Lusin’s property (N).
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(ii) . . .X is geodesic, admits a local quadratic isoperimetric inequality and is

locally of curvature bounded above, and Γ is of finite total curvature, then

u may be chosen locally Lipschitz on M \ ∂M .

(iii) . . . Γ is a union of disjoint Jordan curves, then u and g may be chosen

such that u is infinitesimally isotropic with respect to g on M .

The respective assumptions and conclusions in Theorem I.1.2 are natural

metric generalizations of the respective smooth ones in Theorem I.1.1. For

example homogeneously regular Riemannian manifolds admit a local quadratic

isoperimetric inequality. In fact, the huge class of metric spaces admitting a local

quadratic isoperimetric inequality includes also homogeneously regular Finsler

manifolds, CAT(κ) spaces, compact Alexandrov spaces as well as more exotic

examples such as higher dimensional Heisenberg groups, cf. [104]. In particular,

the assumption on X in Theorem I.1.2.(ii) is satisfied if X is a CAT(κ) space.

We would also like to remark that, despite the fact that we exclusively

restrict our discussion to the parametrized Hausdorff area (see Definition I.2.3),

an appropriate variant of Theorem I.1.2 holds for any area functional which

induces quasi-convex 2-volume densities in the sense of [105, 8] such as the

Holmes–Thompson area functional. In order to obtain the respective results,

only minor modifications in the proof of the theorem are needed.

I.1.3 Conditions of cohesion and adhesion. As discussed above, in gen-

eral one cannot hope for a given configuration Γ of disjoint Jordan curves to

bound a minimal surface of prescribed topological type if the Douglas condition

for p, Γ and X fails. However, there are still situations where the Douglas con-

dition fails but one can show the existence of such a desired surface. Namely, if

the area infimum may be approximated by a sequence of surfaces which satisfies

a geometric nondegeneracy condition, called condition of cohesion. In increas-

ingly more general settings this has been shown to hold true in [31, 145, 151, 56].

Additional difficulties arise if one allows for singular configurations Γ. Imposing

an additional so-called condition of adhesion, Iseri was able to show a state-

ment of similar spirit for singular configurations in Rn, [86]. In Section I.6 we

generalize the definition of adhesion and Iseri’s result to the setting of metric

spaces. For regular configurations in sufficiently nice ambient spaces, the Dou-

glas condition implies the condition of cohesion for any sequence of surfaces

approaching the energy infimum. Note however that nothing similar is true for

singular configurations and the condition of adhesion. Hence these results can

only be applied to obtain existence for very particular configurations, cf. [86].

I.1.4 Organization. After recalling some basic notions in Section I.2, we

discuss the proof of Theorem I.1.2.(i) in Section I.3, where we first recall some

terminology and the main result of [56] in Subsection I.3.1 before giving the ac-

tual proof of (i) in Subsection I.3.2. Moving forward, we discuss a generalization

of the Cartan–Hadamard theorem due to Bowditch and a gluing result due to

Stadler in Subsection I.4.1, and the proof of Theorem I.1.2.(ii) is performed in

60



Subsection I.4.2. Section I.5 is then dedicated to the proofs of Theorems I.1.2

and I.1.1 in the general case. In Subsection I.5.1, we first discuss how general

proper metric spaces X can be approximated by more regular spaces admitting

local quadratic isoperimetric inequalities and when one can pass from a sequence

of fillings within the approximating spaces to a limit filling in X. Then in Sub-

section I.5.2, we recall two devices from [56] that allow, in spaces admitting a

local quadratic isoperimetric inequality, to lower the topological type of an area

minimizing sequence whenever this sequence degenerates. These devices are

combined in Section I.5.3 with the approximating spaces discussed before. The

proof of Theorem I.1.2 is then completed in Section I.5.4. In Section I.5.5 we

briefly discuss how Theorem I.1.1 follows from Theorem I.1.2. Finally in Sec-

tion I.6, we discuss the method using minimizing sequences satisfying conditions

of cohesion and adhesion.

I.2 Preliminaries

I.2.1 Basic notation. We write |v| for the Euclidean norm of a vector v ∈ R2,

D := {z ∈ R2 : |z| < 1}

for the open unit disk in R2 and D̄ for its closure. The differential at z of a

(weakly) differentiable map ϕ between smooth manifolds is denoted Dϕz.

For a subset A ⊂ R2, |A| denotes its Lebesgue measure. If (X, d) is a

metric space then we use the notation H2
X(A) for the 2-dimensional Hausdorff

measure of a subset A ⊂ X. The normalizing constant is chosen such that H2
X

coincides with the 2–dimensional Lebesgue measure when X is Euclidean R2.

Thus, the Hausdorff 2–measure H2
g := H2

(M,g) on a 2–dimensional Riemannian

manifold (M, g) coincides with the Riemannian area.

I.2.2 Seminorms. The (Reshetnyak) energy of a seminorm s on R2 is defined

by

I2
+(s) := max{s(v)2 : v ∈ R2, |v| = 1}.

If s is a norm on R2, then the Jacobian of s is defined as the unique number

J(s) satisfying

H2
(R2,s)(A) = J(s) · |A|

for some and thus every subset A ⊂ R2 such that |A| > 0. For a degenerate

seminorm s we set J(s) := 0. A seminorm s on R2 is isotropic if s = 0 or if it

is a norm and the ellipse of maximal area contained in {v ∈ R2 : s(v) ≤ 1} is a

Euclidean ball. If s is a Euclidean seminorm, i.e. if s is induced by a (potentially

degenerate) inner product, then s is isotropic precisely if it is a scalar multiple

of the standard Euclidean norm | · |.
If s is a seminorm on a 2-dimensional Euclidean vector space V then we

define the concepts of Jacobian, energy, and isotropy by identifying V with

Euclidean (R2, | · |) via a linear isometry.
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I.2.3 Metric space valued Sobolev maps. Let (X, d) be a proper metric

space and let M be a smooth, compact, orientable 2–dimensional manifold,

possibly disconnected and with non-empty boundary. We fix a Riemannian

metric g on M and let Ω ⊂M be an open set.

Definition I.2.1. A measurable u : Ω → X belongs to the Sobolev space

W 1,2(Ω, X) if there exists h ∈ L2(Ω) with the following property. For every

real-valued 1–Lipschitz function f on X the composition f ◦ u belongs to the

classical Sobolev space H1,2(Ω \ ∂M) and

|D(f ◦ u)z|g ≤ h(z)

for almost every z ∈ Ω.

If u ∈ W 1,2(Ω, X) then for almost every z ∈ Ω there exists a seminorm

ap mduz on TzM , called approximate metric derivative, such that

ap lim
v→0

d(u(expz(v)), u(z))− ap mduz(v)

|v|g
= 0,

where the approximate limit is taken within TzM and expz denotes the expo-

nential map of g at z. See [51] for the definition of approximate limits.

Assume N = (N,h) is a smooth complete Riemannian manifolds. Then,

by Nash’s theorem, there is an isometric embedding ι : N → Rm (in the Rie-

mannian sense). Equivalently one may define W 1,2(Ω, N) as the set of mea-

surable mappings u : Ω → N such that ι ◦ u lies in the classical Sobolev space

H1,2(Ω\∂M,Rm); compare e.g. Lemma 9.3.3 and Exercise 2 in Section 9 of [91].

In particular, for every Sobolev map u ∈W 1,2(Ω, N) there is a measurable weak

differential Du : TΩ→ TN ⊂ N ×Rm. At almost every z ∈ Ω the approximate

metric derivative is given by

(I.2) ap mduz(v) = |Duz(v)|h for all v ∈ TzΩ,

compare Theorem 6.4 and the subsequent remark in [51].

The approximate metric derivative allows one to define the Reshetnyak en-

ergy and the parametrized Hausdorff area of a Sobolev map using the pointwise

quantities introduced in Section I.2.2 above.

Definition I.2.2. The (Reshetnyak) energy of u ∈ W 1,2(Ω, X) with respect

to g is defined by

E2
+(u, g) :=

∫
Ω

I2
+(ap mduz) dH2

g(z).

The energy E2
+ is conformally invariant in the sense that

E2
+(u ◦ ϕ, g′) = E2

+(u, g)

whenever ϕ : (M ′, g′)→ (M, g) is a conformal diffeomorphism.
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Definition I.2.3. The parametrized (Hausdorff) area of u ∈ W 1,2(Ω, X) is

defined by

Area(u) :=

∫
Ω

J(ap mduz) dH2
g(z).

If A ⊂ Ω is measurable, then the area of the restriction u|A is defined analo-

gously.

It is easy to see that

Area(u ◦ ϕ) = Area(u)

for any biLipschitz homeomorphism ϕ : Ω′ → Ω. In particular, Area(u) is inde-

pendent of the choice of the Riemannian metric g. A measurable map u : Ω→ X

satisfies Lusin’s property (N) if H2
X(u(A)) = 0 for every null set A ⊂ Ω. If

u ∈W 1,2(Ω, X), then by the area formula

Area(u) ≤
∫
X

#{z ∈ Ω: u(z) = x} dH2
X(x),

with equality if u satisfies Lusin’s property (N); see [93].

Definition I.2.4. A map u ∈ W 1,2(M,X) is infinitesimally isotropic with

respect to the metric g on a measurable subset A ⊂M if for almost every z ∈ A
the approximate metric derivative ap mduz is isotropic with respect to g(z). If

no subset A ⊂M is specified, it is understood that u is infinitesimally isotropic

with respect to g on M .

It is not hard to see that

Area(u) ≤ E2
+(u, g),

where equality holds precisely if u is infinitesimally isotropic and the approxi-

mate metric derivative of u at almost every z ∈ M is a Euclidean seminorm,

compare [105].

If Ω ⊂ M \ ∂M is a Lipschitz domain, then for every u ∈ W 1,2(Ω, X) there

is a well defined trace tr(u) ∈ L2(∂Ω, X). If u extends to a continuous map ū

on Ω̄, then the trace is simply given by ū|∂Ω. Hence, in abuse of notation, we

also denote the trace of u by u|∂Ω. If no continuous extension exists, define tr(u)

locally around p ∈ ∂Ω in the following way. Choose an open neighborhood U of p

and a biLipschitz map ψ : (0, 1)× [0, 1)→M such that ψ((0, 1)×(0, 1)) = U ∩Ω

and ψ((0, 1) × {0}) = U ∩ ∂Ω. Then for almost every s ∈ (0, 1) the trace at

ψ(s, 0) is given by limt↘0(u ◦ ψ)(s, t), compare [95].

I.3 Proof for regular metric spaces

I.3.1 The Plateau–Douglas problem for regular configurations. Let

M(k) be the family of compact, orientable, smooth surfaces M with k boundary

components and such that each connected component of M has non-empty
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boundary. Denote by Mk,p the, up to a diffeomorphism, unique connected

surface in M(k) of genus p. A reduction of Mk,p is a surface M∗ ∈ M(k) with

one of the following properties. Either M∗ is connected and has genus at most

p− 1 or M∗ has several connected components and the total genus of M∗ is at

most p. Since the Euler characteristic of Mk,p is given by

χ(Mk,p) = 2− 2p− k,

it follows that χ(M∗) > χ(Mk,p) for any reduction M∗ of Mk,p, and hence

χ(M∗) = k if and only if M∗ is the union of k smooth disks. For M ∈ M(k)

with n > 1 connected components, we say that M∗ is a reduction of M if there

exists a partition M∗ = M∗1 ∪ · · · ∪ M∗n such that each M∗l is the reduction

of exactly one connected component of M . Notice that for any M ∈ M(k)

there are only finitely many reductions M∗ up to diffeomorphism, and that any

reduction M∗∗ of such M∗ is also a reduction of M .

Let Γ =
⋃

Γj be a configuration of k ≥ 1 rectifiable closed curves in a

complete metric space X and p ≥ 0. By defining

a∗p(Γ, X) := min{a(M∗,Γ, X) : M∗ is a reduction of Mk,p},

the Douglas condition (I.1) can be rewritten as

ap(Γ, X) < a∗p(Γ, X).

We would like to point out that the notion of reduction used here is broader

than the one given in [56], where a reduction of the second type consists of

exactly two connected components. Consequently, the Douglas condition used

in [56] is à priori a weaker assumption than the respective one in this article,

which turns out to be more convenient for us. However, the two conditions are

in fact equivalent. This follows since ap(Γ, X) < ∞ implies that all curves Γj
lie in the same component of rectifiable connectedness of X, i.e. the curves can

be joined pairwise by paths of finite length, and using this fact one can show

that a(M∗,Γ, X) ≤ a(M∗∗,Γ, X) whenever M∗∗ is a reduction of a reduction

M∗ of Mk,p.

The basis for our proof of Theorem I.1.2 in the special cases (i) and (ii) will

be the existence results [56, Theorem 1.2] and [56, Theorem 1.4.(iii)] for Jordan

curves, which we now state as a combined theorem for convenience of the reader.

Theorem I.3.1. Let X be a proper metric space admitting a local quadratic

isoperimetric inequality, Γ ⊂ X be the disjoint union of k ≥ 1 rectifiable Jordan

curves and p ≥ 0. If the Douglas condition (I.1) holds for p, Γ and X, then there

exists a continuous u ∈ Λ(Mk,p,Γ, X) and a Riemannian metric g on Mk,p such

that

Area(u) = ap(Γ, X)

and u is infinitesimally isotropic with respect to g. Furthermore, if every Jordan

curve in Γ is chord-arc, then any such u is Hölder continuous on Mk,p and

satisfies Lusin’s property (N).
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Here, a metric space X is said to admit a (C, `0)-quadratic isoperimetric

inequality if every closed Lipschitz curve c : S1 → X of length `(c) ≤ `0 is the

trace of a Sobolev disk u ∈W 1,2(D,X) satisfying

Area(u) ≤ C · `(c)2.

If there is no need to specify the constants C, `0 > 0, we simply say that X

admits a local quadratic isoperimetric inequality. A Jordan curve Γ is called

chord-arc if it is biLipschitz equivalent to S1.

The following replacement lemma will be used in the proof of Lemma I.3.4.

It follows from the proof of [106, Lemma 4.8] and the gluing result [95, The-

orem 1.12.3]. While [106, Lemma 4.8] is stated for disk-type surfaces, the ar-

guments in the proof thereof are local around the boundary curve and can be

applied without changes to the present situation.

Lemma I.3.2. Let X be a complete metric space admitting a local quadratic

isoperimetric inequality, Γ ⊂ X be a configuration of k ≥ 1 rectifiable closed

curves and M ∈ M(k). Then for every u ∈ Λ(M,Γ, X) and ε > 0 there is

v ∈ Λ(M,Γ, X) such that

Area(v) ≤ Area(u) + ε

and the continuous representative of tr(v)|∂Mi is a constant speed parametriza-

tion for each i ∈ {1, . . . , k}.

Lemma 3.2 is applied in the proofs of Propositions 5.1 and 6.1 in [56]. It is

one of the implications in [56] making use of the assumption of a local quadratic

isoperimetric inequality. In fact the only implications needing this assumption

and used in the proof of the existence result therein may be phrased as Lem-

mas I.5.3 and I.5.4 below. While these lemmas seem to heavily rely on the

assumption, it is an open question whether Lemma I.3.2, which enters in their

proofs, holds true without it or not.

I.3.2 Proof of Theorem I.1.2.(i). Let X be a complete metric space and

Γ be a configuration of k ≥ 1 rectifiable closed curves Γj in X. Since the

Douglas condition fails as soon as k > 1 and one of the curves Γj is constant,

and since the minimization problem is trivial for a single constant curve Γ, we

may assume without loss of generality that Γ1, . . . ,Γk are all nonconstant. For

each j, let Sj be a geodesic circle of circumference `(Γj), let γj : Sj → X be a

unit speed parametrization of Γj and Zj := Sj × [0, 1] be the cylinder equipped

with the product metric. We define the quotient space XΓ as the disjoint union

X tZ1t· · ·tZk under the identification γj(p) ∼ (p, 0) for every p ∈ Zj , and we

equip this space with the quotient metric, see for example [20]. Furthermore,

let PΓ : XΓ → X be the projection given by

PΓ(x) :=

{
x x ∈ X,
γj(p) x = (p, t) ∈ Zj .
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The proof of Lemma 4.1 in [D] shows that X ⊂ XΓ isometrically and that

PΓ : XΓ → X is a 1-Lipschitz retraction. Lastly, we define Γ̃j as the (equivalence

class of the) rectifiable curve p 7→ (p, 1) ∈ Zj , p ∈ Sj , and Γ̃ as the configuration

consisting of the curves Γ̃1, . . . , Γ̃k. Then Γ̃ is a configuration of disjoint chord-

arc curves and PΓ ◦ Γ̃j = Γj for each j.

Lemma I.3.3. Let X be a complete metric space, Γ ⊂ X be a configuration of

k ≥ 1 rectifiable closed curves and M ∈M(k). Then for every u ∈ Λ(M, Γ̃, XΓ)

one has PΓ ◦ u ∈ Λ(M,Γ, X) and

Area(u) ≥ Area(PΓ ◦ u) +

k∑
j=1

H2(Zj).

In particular, one has the inequality

a(M, Γ̃, XΓ) ≥ a(M,Γ, X) +

k∑
j=1

H2(Zj).

Proof. Let u ∈ Λ(M, Γ̃, XΓ). Without loss of generality, we may assume that M

is connected. By the 1-Lipschitz continuity of PΓ, we have PΓ ◦u ∈ Λ(M,Γ, X).

Since PΓ(Zj) is contained in the rectifiable curve Γj , the area formula in Sec-

tion I.2.3 implies that

Area
(
(PΓ ◦ u)|u−1(Zj)

)
= 0.

Thus, since the restriction PΓ|X is an isometry, we obtain

Area(u) = Area(u|u−1(X)) +
∑
j

Area
(
u|u−1(Zj)

)
= Area(PΓ ◦ u) +

∑
j

Area
(
u|u−1(Zj)

)
.

To complete the proof, it therefore suffices to show that

(I.3) Area
(
u|u−1(Zj)

)
≥ H2(Zj)

for each j. In order to see this, fix j and define Yj as the quotient space XΓ/A,

where A := X ∪
⋃
i 6=j Zi. Then Yj is isometric to Zj/(Sj × {0}). Hence Yj

is homeomorphic to D̄ and, by Theorem 3.2 in [F], admits a local quadratic

isoperimetric inequality. Furthermore, let Qj : XΓ → Yj be the 1-Lipschitz

map given by Qj(x) := [x]. Then the composition Qj ◦ u is an element in

Λ(M,Qj ◦ Γ̃, Yj) with

(I.4) Area(Qj ◦ u) = Area
(
u|u−1(Zj)

)
.

Let ∂Mi be the boundary component of M such that tr(u)|∂Mi
is an element

of Γj , and consider M embedded into a smooth compact surface M̃ ∈ M(1) of

same genus as that of M such that each boundary component ∂Ml bounds a

66



topological disk in M̃ except for ∂Mi, which agrees with the boundary compo-

nent of M̃ . The map Qj ◦ u extends naturally onto M̃ by setting its value on

M̃ \M to be [x] for any x ∈ X, yielding a map vj ∈ Λ(M̃,Qj ◦ Γ̃j , Yj) satisfying

(I.5) Area(vj) = Area(Qj ◦ u).

Apparently, there exists a surface M∗, either being equal to M̃ or else being a

reduction of it, such that

a(M̃,Qj ◦ Γ̃j , Yj) = a(M∗, Qj ◦ Γ̃j , Yj)

and the Douglas condition holds for M∗, Qj ◦Γ̃j and Yj . Hence by Theorem I.3.1

there exists a continuous map wj ∈ Λ(M∗, Qj ◦ Γ̃j , Yj) satisfying Lusin’s prop-

erty (N) and

(I.6) Area(wj) ≤ Area(vj).

Since Yj is homeomorphic to D̄ with boundary curve Qj ◦ Γ̃j , it follows that wj
is surjective. Otherwise assume p ∈ Yj \ wj(M∗). Then Qj ◦ Γ̃j , considered as

a 1-cycle, would be a generator of H1(Yj \ {p}) ∼= H1(D̄ \ {0}) ∼= Z and at the

same time would bound the 2-chain defined in Yj \ {p} by wj , which is a clear

contradiction. Hence, by the area formula, we have

(I.7) Area(wj) =

∫
Yj

#
{
w−1
j (x)

}
dH2(x) ≥ H2(Yj) = H2(Zj).

Combining (I.4), (I.5), (I.6) and (I.7), we finally obtain (I.3).

While we did not need to assume a local quadratic isoperimetric inequality

on X in the previous lemma, this assumption is required in the proof of the

upcoming reverse inequality.

Lemma I.3.4. Let X be a complete metric space admitting a local quadratic

isoperimetric inequality, Γ ⊂ X be a configuration of k ≥ 1 rectifiable closed

curves and M ∈M(k). Then one has

a(M, Γ̃, XΓ) ≤ a(M,Γ, X) +

k∑
i=1

H2(Zj).

Proof. Let ε > 0. By Lemma I.3.2 there exists v ∈ Λ(M,Γ, X) such that

Area(v) ≤ a(M,Γ, X) + ε

and such that tr(v)|∂Mi
is a constant speed parametrization for each i. We

relabel the boundary components of M such that tr(v)|∂Mj is an element of

Γj for each j. Embed M diffeomorphically into a smooth compact surface

M̃ ∈M(k) such that M̃ \ int(M) is the disjoint union of k smooth cylinders Ωj
with boundary, each Ωj having ∂Mj as one boundary component. Notice that M̃

is diffeomorphic to M . Now if γ̃j : Sj → XΓ is a constant speed parametrization

of Γ̃j , then the inclusion ιj : Zj → XΓ is a Lipschitz homotopy between γ̃j
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and γj of area H2(Zj). Thus, by identifying Ωj with Zj via a biLipschitz

homeomorphism, there exist maps wj ∈W 1,2(Ωj , XΓ) with trace γ̃j respectively

γj = tr(v)|∂Mj and of area H2(Zj). Let w : M̃ → XΓ be the mapping obtained

by stitching v together with every wj along ∂Mj , which is a well-defined element

in W 1,2(M̃,XΓ) = W 1,2(M,XΓ) by [95, Thm. 1.12.3]. Then w spans Γ̃ and

satisfies

a(M, Γ̃, XΓ) ≤ Area(w) = Area(v)+

k∑
j=1

Area(wj) ≤ a(M,Γ, X)+

k∑
j=1

H2(Zj)+ε.

Since ε > 0 was chosen arbitrary, the assertion in the lemma follows and the

proof is complete.

With these preparations at hand, it is now not hard to give a proof of

Theorem I.1.2.(i).

Proof of Theorem I.1.2.(i). Since X admits a local quadratic isoperimetric in-

equality, it follows from the proof of Theorem 3.2 in [F] that XΓ admits a local

quadratic isoperimetric inequality as well. Lemmas I.3.3 and I.3.4 imply that

one has the equality

(I.8) a(M̃, Γ̃, XΓ) = a(M̃,Γ, X) +

k∑
j=1

H2(Zj)

for every M̃ ∈M(k). Hence the Douglas condition

ap(Γ̃, XΓ) < a∗p(Γ̃, XΓ)

holds for p, Γ̃ and XΓ. Since Γ̃ is a disjoint configuration of chord-arc curves,

we have by Theorem I.3.1 that there is a Hölder continuous v ∈ Λ(M, Γ̃, XΓ)

satisfying Lusin’s property (N) and a Riemannian metric g on M such that

Area(v) = ap(Γ̃, XΓ)

and v is infinitesimally isotropic with respect to g. By Lemma I.3.3 and equa-

tion (I.8) the projection u := PΓ ◦ v ∈ Λ(M,Γ, X) then satisfies

Area(u) = ap(Γ, X).

Moreover, since PΓ is isometric on X, the map u is infinitesimally isotropic

with respect to g on M \ u−1(Γ) ⊂ M \ v−1(XΓ \X). Thus the proof of (i) is

complete.

I.4 Interior Lipschitz regularity

I.4.1 Upper curvature bounds. Let X be a metric space. Closed piecewise

geodesic curves in X will be denoted x0x1 . . . xm, where xi ∈ X indicate the end-

points of the geodesic segments. For κ ∈ R, let Dκ be the diameter of the model
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space M2
κ of constant curvature κ. That is, Dκ = π/

√
κ for κ > 0 and Dκ =∞

for κ ≤ 0. A geodesic triangle xyz will be called κ-admissible if `(xyz) < 2Dκ.

For every κ-admissible triangle xyz, there is a (up to isometry) unique compar-

ison triangle xκyκzκ in M2
κ which has the same side lengths. A κ-admissible

triangle xyz is called CAT(κ) if there is a 1-Lipschitz map f : xκyκzκ → xyz

such that f(xκ) = x, f(yκ) = y and f(zκ) = z. We say that X is a CAT(κ)

space if X is geodesic and every κ-admissible triangle in X is CAT(κ), and call

X locally CAT(κ) if every point in X has a neighbourhood which is a CAT(κ)

space. Two standard facts are that CAT(κ) spaces are also CAT(κ′) for any

κ′ ≥ κ, and that balls of radius at most Dκ/2 in CAT(κ) spaces are themselves

CAT(κ) spaces. Finally, we say that X is locally of curvature bounded above if

every point p ∈ X has a neighbourhood Up which is a CAT(κp) space for some

κp ∈ R. By the preceeding observations, we may always assume that κp > 0

and Up is a small ball.

If X is geodesic and locally CAT(0), then the Cartan–Hadamard theorem

states that X is a CAT(0) space if and only if X is simply connected. Aiming

to handle also spaces satisfying positive upper curvature bounds, we discuss

a variant of this result due to Bowditch. For Lipschitz curves γ0, γ1 : S1 →
A ⊂ X, we say that γ0 is monotonically homotopic to γ1 in A if there exists a

continuous homotopy h : [0, 1]× S1 → A such that h(0, ·) = γ0, h(1, ·) = γ1 and

`(h(t, ·)) ≤ `(γ0) for all t ∈ [0, 1]. We say that γ is monotonically nullhomotopic

in A if γ is monotonically homotopic to a constant curve in A. If X is a CAT(κ)

space, then Reshetnyak’s majorization theorem (see for example [1]) implies that

every closed Lipschitz curve in X of length smaller than 2Dκ is monotonically

nullhomotopic. Dually, the following holds by Theorem 3.1.2 in [18].

Theorem I.4.1. Let X be a proper geodesic metric space, κ ∈ R and A ⊂ X

be compact such that the Dκ-neighbourhood of A is locally CAT(κ). If a κ-

admissible triangle ∆ ⊂ A is monotonically nullhomotopic in A, then ∆ is

CAT(κ).

Theorem 3.1.2 in [18] is stated under the assumption that the entire space

X is locally CAT(κ). However, as discussed in Section 3.6 of [18], the argument

is local in the Dκ-neighbourhood of any set in which ∆ is monotonically null-

homotopic, and hence the proof readily gives Theorem I.4.1. As a corollary of

Theorem I.4.1, we obtain the following result allowing to derive quantitatively

controlled ”local globalizations”.

Corollary I.4.2. Let X be a proper geodesic metric space, κ ∈ R and B(p, r) be

a ball in X which is locally CAT(κ). If every triangle ∆ ⊂ B̄(p, r/2) is mono-

tonically nullhomotopic in B̄(p, r/2), then B̄(p, r̄) is a CAT(κ̄) space, where

κ̄ = κ̄(κ, r) and r̄ = r̄(κ, r) only depend on κ and r.

Proof. Set κ̄ := max{κ, 4π2r−2} and r̄ := Dκ̄/4. Note that κ̄ is chosen such

that Dκ̄ ≤ r/2. To see that B̄(p, r̄) is convex, let x, y ∈ B̄(p, r̄) and observe that

any geodesic triangle pxy is κ̄-admissible and contained in B̄(p, 2r̄) ⊂ B̄(p, r/2),

and hence by assumption monotonically nullhomotopic within B̄(p, r/2). Then
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Theorem I.4.1 implies that pxy is CAT(κ̄). Since r̄ < Dκ̄/2, it follows that

pxy ⊂ B̄(p, r̄), and we conclude that B̄(p, r̄) is convex. Now let xyz ⊂ B̄(p, r̄).

Then xyz is κ̄-admissible and monotonically nullhomotopic in B̄(p, r/2). Again

Theorem I.4.1 implies that xyz is CAT(κ̄).

For α ≥ 0 and r > 0, we let Sα,r be the ball of radius r around the vertex

in the cone over a compact interval of length α (see [21] for the definition of

cones), and call Sα,r the sector of radius r and angle α. On any sector, we fix

an orientation so that the left leg and the right leg of Sα,r are defined. The

following lemma generalizes [148, Lemma 21] to spaces satisfying positive upper

curvature bounds.

Lemma I.4.3. Let κ ≥ 0, 0 < r ≤ Dκ/2, X be a proper CAT(κ) space, p ∈ X
and η1, . . . , ηl, ν1, . . . , νl ⊂ X be geodesic segments all of length r and starting

at p. For i = 1, . . . , l, let αi ∈ [0, π] be the angle at p between ηi and νi, and

let Si be the sector of angle 2π − αi and radius r. Then the space Z, obtained

by gluing each sector Si to X via isometric identifications of its left leg with ηi
and its right leg with νi, is a CAT(κ) space.

In the lemma, the isometric identifications are chosen such that p corresponds

to the vertex point in Si. In the following, we assume without further mentioning

that the orientations of isometric identifcations are chosen in such a natural way.

Proof. By induction, it is sufficient to prove the statement for l = 1, and hence

we set η := η1, ν := ν1 and α := α1. Reshetnyak’s gluing theorem (see for

example [20]) implies that the space Y , obtained by gluing Sπ−α,r to X via

an isometric identification of the left leg of Sπ−α,r and η, is a CAT(κ) space.

Observe that the angle in Y between the right leg η′ of Sπ−α,r and ν equals π and

that the length of the concatenation η′∪ν is at most Dk. Hence the curve η′∪ν is

a geodesic in Y and in particular a convex subset of Y , see [20, Proposition 1.7].

Thus the claim follows from another application of Reshetnyak’s theorem upon

noting that Z may be constructed alternatively by gluing the sector Sπ,r to Y

via isometric identifications of its left leg with η′ and its right leg with ν.

I.4.2 Proof of Theorem I.1.2.(ii). Let X be a metric space which is locally

of curvature bounded above. The total curvature of a closed piecewise geodesic

curve x0x1 . . . xm in X is defined by

σ(x0x1 . . . xm) :=

m∑
i=0

(π − βi),

where βi denotes the angle at xi between the geodesic segments xixi−1 and

xixi+1. Let L be a closed rectifiable curve. The curve x0x1 . . . xm is called

inscribed to L if the points x0, x1, . . . , xm lie on L and are traversed by L in cyclic

order. The total curvature of L, denoted σ(L), may be defined as limn→∞ σ(Ln),

where (Ln) is a sequence of closed piecewise geodesic curves which are inscribed

to L and converge uniformly to L, see [110, Proposition 2.4].
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Proof of Theorem I.1.2.(ii). Let X be as in the statement of the theorem. As-

sume first L = x0x1 . . . xm is a closed piecewise geodesic curve in X. For

i = 0, . . . ,m, we set Si := Sπ−βi,1 and Qi := Ii × [0, 1], where Ii ⊂ R is a

compact interval of length d(xi, xi+1). We define a geodesic metric cylinder ẐL
by gluing the left end interval of each Qi isometrically to the right leg of Si and

the right end interval of each Qi to the left leg of Si+1. Then, by Reshetnyak’s

gluing theorem, balls of radius at most `(L)/4 in ẐL are CAT(0) spaces. Denote

the inner boundary curve of ẐL by L̄ and the outer boundary curve of ẐL by L̂.

There exist a 1-Lipschitz retraction P̂L : ẐL → L̄ such that P̂L ◦ L̂ = L̄, as well

as a (`(L) + σ(L))-Lipschitz homotopy hL : S1 × [0, 1] → ẐL between L̄ and L̂

such that Area(h) = H2(ẐL). In particular, L̄ is a geodesic circle of circumfer-

ence `(L) and there is a canonical unit-speed parametrization cL : L̄→ L. Now

let L be any closed rectifiable curve of finite total curvature. All the properties

discussed for piecewise geodesic curve are quantitative and hence stable under

ultralimits; see e.g. [1] for the definition and properties of ultralimits. Thus we

may approximate L by a sequence (Ln) of L-inscribed piecewise geodesic curves,

perform the construction for each Ln, pass to an ultralimit and obtain that there

exist ẐL, L̂, L̄, cL, hL, P̂L as above, all enjoying the very same properties.

Let Ẑj := ẐΓj for j = 1, . . . , k. We define the quotient space X̂Γ as the

disjoint union X t Ẑ1 t · · · t Ẑk under the identification cΓj (p) ∼ p for p ∈ Γ̄j ,

and we equip this space with the quotient metric. Also, we let P̂Γ : X̂Γ → X be

the 1-Lipschitz retraction given by P̂Γ(x) := x for x ∈ X and P̂Γ(x) = P̂Γj
(x) for

x ∈ Ẑj . By Reshetnyak’s majorization theorem each Ẑj admits a local quadratic

isoperimetric inequality. This, together with the facts that P̂Γ is 1-Lipschitz and

X admits a local quadratic isoperimetric inequality, makes it straightforward to

modify the proof of Theorem 3.2 in [F] and derive that the space X̂Γ admits

a local quadratic isoperimetric inequality. Let Γ̂ be the configuration formed

by Γ̂1, . . . , Γ̂k. The properties discussed above allow us to imitate the proofs of

Lemmas I.3.3 and I.3.4 for the configuration Γ̂ ⊂ X̂Γ, and hence derive that

(I.9) a(M̃, Γ̂, X̂Γ) = a(M̃,Γ, X) +

k∑
i=1

H2(Ẑi)

for every M̃ ∈M(k).

So far we have not achieved any advantage from our more complicated con-

struction over the one in Section I.3.2. However, and this is the crucial difference,

now we claim that X̂Γ is locally of curvature bounded above. Since X̂Γ \X is

locally CAT(0), it suffices to show that every p ∈ X has a CAT neighbourhood

within X̂Γ. So let p in X and choose κ > 0 as well as 0 < r < Dκ/2 such that

BX(p, r) is a CAT(κ) space. The proof that X is locally of curvature bounded

above will be completed by showing that B̄X̂Γ
(p, r̄) is a CAT(κ̄) space, where

κ̄ and r̄ are as in the statement of Corollary I.4.2. Since κ̄ and r̄ are inde-

pendent of Γ and the CAT(κ̄) condition is stable under ultralimits, we lose no

generality in assuming that Γ1, . . . ,Γk are piecewise geodesic curves. Thus it

remains to verify the assumptions of Corollary I.4.2. Clearly, BX̂Γ
(p, r) \ Γ is

locally CAT(κ). Since we assumed Γ consists of piecewise geodesic curves, for
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q ∈ BX̂Γ
(p, r) ∩ Γ and s > 0 sufficiently small the ball B̄X̂Γ

(q, s) is obtained

from B̄X(q, s) as the space Z is obtained from X in Lemma I.4.3. Thus the

lemma states that B̄X̂Γ
(q, s) is a CAT(κ) space and hence we conclude that

BX̂Γ
(p, r) is locally CAT(κ). To verify the other assumption of Corollary I.4.2,

let ∆ ⊂ B̄X̂Γ
(p, r/2) be a geodesic triangle. Sliding ∆ down to X we see that ∆

is monotonically homotopic in B̄X̂Γ
(p, r/2) to a curve η ⊂ X. Since B̄X(p, r/2)

is a CAT(κ) space and `(η) < 2Dκ, Reshetnyak’s majorization theorem implies

in turn that η is monotonically nullhomotopic in B̄X(p, r/2). Hence we may

apply Corollary I.4.2 and conclude the claim.

Departing from (I.9) and the fact that X̂Γ admits a local quadratic isoperi-

metric inequality, we can proceed as we did when proving (i) in the last section.

The advantage is now that by [143], see also [19, Theorem 1.3], the minimizer

v ∈ Λ(M, X̂Γ, Γ̂) is locally Lipschitz on M \ ∂M , and hence so is our final so-

lution u = P̂Γ ◦ v. In order to apply these regularity results, note that v is a

continuous harmonic map into a space which is locally of curvature bounded

above. Harmonicity of v follows since v is infinitesimally isotropic and X̂Γ is

locally of curvature bounded from above and hence has property (ET), see [104,

Section 11].

Remark I.4.4. The map u we produce in the proof of Theorem I.1.2.(ii) is

also globally Hölder continuous on M . This follows as in the proof of The-

orem I.1.2.(i) upon noting that the configuration Γ̂ we construct consists of

chord-arc curves.

I.5 General case

Throughout this section, we use the terminology introduced in the beginning of

Section I.3.

I.5.1 Approximating sequences. Let X be a complete metric space. We

call a metric space Y an ε-thickening of X if Y contains X isometrically and

X is ε-dense in Y . We will need the following variant of the thickening results

obtained in [158] and [109].

Lemma I.5.1. There is a universal constant C ≥ 0 such that for every proper

metric space X and ε > 0, there exists a (Cε)-thickening Y of X such that Y

is proper and admits a (C, ε)-quadratic isoperimetric inequality.

If X is geodesic, then Lemma I.5.1 follows readily from [109, Lemma 3.3]

and in this case, the space Y may also be chosen geodesic. This version suffices

to obtain Theorem I.1.2 in the special case that X is geodesic, and hence in

particular to obtain Theorem I.1.1. Thus for the convenience of a reader who

is only interested in Theorem I.1.2 for geodesic target spaces, the general proof

of Lemma I.5.1 is postponed to the appendix.

Let X be a proper metric space and (Yn)n∈N be a sequence of proper εn-

thickenings of X. We call (Yn) an X-approximating sequence if εn → 0. The

72



following consequence of the generalized Rellich-Kondrachov compactness the-

orem, [95, Theorem 1.13], allows to pass from a sequence of maps in approxi-

mating spaces to a limit map in X.

Proposition I.5.2. Let X be a proper space and Γ be a configuration of k ≥ 1

disjoint rectifiable Jordan curves in X. Let M ∈ M(k) be connected and be

endowed with a Riemannian metric g. Assume there exist an X-approximating

sequence (Yn)n∈N and mappings un ∈ Λ(M,Γ, Yn) of uniformly bounded energies

E2
+(un, g) and such that the traces tr(un) : ∂M → Γ are equicontinuous with

respect to g. Then there is u ∈ Λ(M,Γ, X) such that

(I.10) Area(u) ≤ lim sup
n→∞

Area(un) & E2
+(u, g) ≤ lim sup

n→∞
E2

+(un, g).

The proof is the following standard argument, which is similar to respective

steps e.g. in the proofs of [69, Theorem 1.5] and [109, Theorem 5.1].

Proof. Let Z be the proper metric space obtained by gluing all the spaces Yn
along X. Note that Yn ⊂ Z isometrically and hence Λ(M,Γ, Yn) ⊂ Λ(M,Γ, Z)

for each n ∈ N. For fixed p ∈ Γ, [56, Lemma 2.4] implies that there is a

constant C such that∫
M

d2(p, un(z)) dH2
g(z) ≤ C ·

(
diam(Γ)2 + E2

+(un, g)
)

for all n ∈ N. In particular,

sup
n∈N

[∫
M

d2(p, un(z)) dH2
g(z) + E2

+(un, g)

]
<∞.

Thus by the metric space version of the Rellich-Kondrachov compactness theo-

rem, [95, Theorem 1.13], there is v ∈W 1,2(M,Z) such that vj → v in L2(M,Z).

In fact, since (Yn)n∈N is an approximating sequence, we may assume that v takes

values in X ⊂ Z and hence v ∈ W 1,2(M,X). By lower semicontinuity of area

and energy, see e.g. [104], the inequalities (I.10) are satisfied for u. Finally, the

Arzelà-Ascoli theorem and [95, Theorem 1.12.2] imply that v ∈ Λ(M,Γ, X).

I.5.2 Reductions of fillings. Let X be a complete metric space, p ≥ 0 and

Γ ⊂ X be a configuration of k ≥ 1 disjoint rectifiable Jordan curves Γj . The two

following results are needed for the proof of Lemma I.5.6 and can be extracted

from the proofs of [56, Proposition 6.1] and [56, Proposition 5.1] respectively.

For the first lemma, we assume that k + p > 2, which is equivalent to the

assumption that the surface Mk,p is neither of disk- nor of cylindrical type. In

this case Mk,p may be endowed with a hyperbolic metric, which we define to

be a Riemannian metric g of constant sectional curvature −1 and such that the

boundary ∂Mk,p is geodesic with respect to g. By a relative geodesic in (Mk,p, g)

we mean either a simple closed geodesic in Mk,p or a geodesic arc with endpoints

on ∂Mk,p that is non-contractible via a homotopy of curves of the same type.

We define sysrel(Mk,p, g) as the infimal length of relative geodesics in (Mk,p, g).
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Furthermore, we choose for each ρ > 0 a parameter ρ′Γ = ρ′Γ(ρ) as in the first

paragraph in the proof of [56, Proposition 6.1]. That is, for each ρ > 0 we choose

0 < ρ′Γ < ρ such that whenever two points x, x′ ∈ Γ satisfy dX(x, x′) ≤ ρ′Γ, then

they lie on the same Jordan curve Γj and the shorter segment of Γj between x

and x′ has length at most ρ. The notation emphasizes that ρ′Γ only depends on

the induced metric on Γ ⊂ X.

Lemma I.5.3. Let C,K, ρ > 0. Assume X admits a (C, 2ρ)-quadratic isoperi-

metric inequality and g is a hyperbolic metric on Mk,p such that

sysrel(Mk,p, g) < min

{
ρ′2Γ (ρ)

4K
, arsinh

(
1

sinh(2)

)}
.

Then for every u ∈ Λ(Mk,p,Γ, X) with E2
+(u, g) ≤ K, there exist a reduction M∗

of Mk,p and a map u∗ ∈ Λ(M∗,Γ, Y ) such that

Area(u∗) ≤ Area(u) + 8Cρ2.

An analogue of the above lemma holds for cylindrical Mk,p endowed with a

flat metric, which we define as a Riemannian metric with vanishing sectional

curvature and such that the Riemannian area of (Mk,p, g) is equal to 1 and

the boundary ∂Mk,p geodesic. The analogue follows by using a basic flat collar

(instead of a hyperbolic one) in the proof of [56, Proposition 6.1]. Compare also

the respective remark in the proof of [56, Theorem 1.2].

For the second lemma, we assume that k+p ≥ 2, hence we only exclude that

Mk,p is of disk-type. Let g be a Riemannian metric on Mk,p and 0 < δg < 1 be

so small that every point z0 ∈ ∂Mk,p has a neighbourhood in (Mk,p, g) which is

the image of the set

B := {z ∈ C : |z| ≤ 1 and |z − 1| <
√
δg}

under a 2-biLipschitz diffeomorphism ψ with z0 = ψ(1).

Lemma I.5.4. Let C,K, ρ > 0. Assume that X admits a (C, 2ρ)-quadratic

isoperimetric inequality and 0 < δ ≤ δg is so small that

π ·
(

8K

| log(δ)|

) 1
2

< ρ′Γ(ρ).

If there exist u ∈ Λ(Mk,p,Γ, Y ) with E2
+(u, g) ≤ K and a subarc γ− ⊂ ∂Mk,p

satisfying

`g(γ
−) ≤ δ & `X(tr(u) ◦ γ−) > ρ,

then there exist a reduction M∗ of Mk,p and a map u∗ ∈ Λ(M∗,Γ, X) such that

Area(u∗) ≤ Area(u) + 8Cρ2.
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I.5.3 Reductions of approximating sequences. Let X be a proper metric

space, Γ be a configuration of k ≥ 1 disjoint rectifiable Jordan curves in X

and p ≥ 0. The next proposition is going to be important in the proof of

Theorem I.1.2.

Proposition I.5.5. Let (Yn) be an X-approximating sequence. If there exist

maps un ∈ Λ(Mk,p,Γ, Yn) satisfying

a := lim sup
n→∞

Area(un) < a∗p(Γ, X),

then there exists u ∈ Λ(Mk,p,Γ, X) such that Area(u) ≤ a. Moreover, for any

sequence (gn) of Riemannian metrics on Mk,p, there exists u as above and a

Riemannian metric g on Mk,p such that

E2
+(u, g) ≤ lim sup

n→∞
E2

+(un, gn).

The proposition follows by repeatedly applying the next lemma.

Lemma I.5.6. Let (Yn) be an X-approximating sequence, M ∈ M(k), (gn) be

a sequence of Riemannian metrics on M and un ∈ Λ(M,Γ, Yn) be fillings such

that Area(un) is uniformly bounded. Then one of the following two options

holds. Either there is u ∈ Λ(M,Γ, X) and a Riemannian metric g on M such

that

Area(u) ≤ lim sup
n→∞

Area(un) & E2
+(u, g) ≤ lim sup

n→∞
E2

+(un, gn),

or there exist a reduction M∗ of M , an X-approximating sequence (Y ∗n ) and

maps u∗n ∈ Λ(M∗,Γ, Y ∗n ) such that

lim sup
n→∞

Area(u∗n) ≤ lim sup
n→∞

Area(un).

Proof of Proposition I.5.5. Let M , Yn, un and gn be as in the proposition. If

the first possibility in Lemma I.5.6 when applied to these elements is true, i.e. if

the existence of u ∈ Λ(M,Γ, X) and a metric g on M as in this lemma is given,

then the proposition follows immediately. We claim that the second possibility

in the lemma cannot occur. Otherwise, we could iteratedly apply Lemma I.5.6

to M∗, the sequences (Y ∗n ) and (u∗n) given by the lemma and arbitrarily chosen

metrics g∗n on M∗, as well as their respective successors, until eventually the first

possibility holds. This has to be the case after finitely many iterations, since

the Euler characteristic strictly increases when passing to a reduction, but is

also bounded from above by k in our setting. Thus we would obtain a reduction

M∗ of M and a map u ∈ Λ(M∗,Γ, X) such that

Area(u) ≤ lim sup
n→∞

Area(un) < a∗p(Γ, X),

which gives a contradiction.

At the end of this section, we give a proof for Lemma I.5.6. It is based on

Proposition I.5.2 as well as Lemmas I.5.3 and I.5.4.
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Proof of Lemma I.5.6. Without loss of generality, we may assume that M is

connected. Define

a := lim sup
n→∞

Area(un) <∞ & e := lim sup
n→∞

E2
+(un, gn).

If e is infinite, we choose a sequence of auxiliary metrics g′n on M satisfying

E2
+(un, g

′
n) ≤ 4

π
Area(un) + 1,

which exist by [55, Theorem 1.2] and [55, Section 5]. Thus, after potentially

redefining gn := g′n, we may assume that e is finite.

We first address the special setting where Γ is a single Jordan curve and M

a disk-type surface. We may assume that M = D̄ and, since all Riemannian

metrics on D̄ are conformally equivalent, that each gn is equal to the standard

Euclidean metric gEucl. Now precompose each un with a conformal diffeomor-

phism ϕn of D̄ such that tr(un ◦ ϕn) satisfies for each n the same prefixed

three-point condition on ∂D and Γ, see p. 1149 in [104]. Note that the maps

vn := un◦ϕn satisfy Area(vn) = Area(un) and E2
+(vn, gEucl) = E2

+(un, gEucl). It

then follows by [104, Proposition 7.4] that the family {tr(vn) : n ∈ N} is equicon-

tinuous, and therefore by Proposition I.5.2 that there exists u ∈ Λ(D̄,Γ, X) with

Area(u) ≤ lim sup
n→∞

Area(vn) = a & E2
+(u, gEucl) ≤ lim sup

n→∞
E2

+(vn, gEucl) = e

as in the first option proposed by the lemma.

From now on, we assume that M is a connected surface which is not of disk-

type. Since every conformal class of Riemannian metrics on M has a hyperbolic

representative (respectively a flat one if M is of cylindrical type), we lose no

generality in assuming that all the metrics gn are hyperbolic (respectively flat).

In the rest of the proof, we discuss three different cases of outcomes in which ul-

timately either Lemma I.5.3, Lemma I.5.4 or Proposition I.5.2 is used to deduce

one of the options stated in the lemma itself.

First assume that

(I.11) inf{sysrel(M, gn) : n ∈ N} > 0.

Then by [56, Theorem 3.3] (respectively its analogue for flat metrics) there exist

diffeomorphisms ϕn of M and a metric g on M such that the pullback-metrics

ϕ∗ngn converge (up to a subsequence) smoothly to g. This convergence implies

for the maps vn := un ◦ ϕn ∈ Λ(M,Γ, Yn) that

E2
+(vn, g) ≤ Cn · E2

+(un, gn),

where Cn ≥ 1 tends to 1 as n → ∞. In particular, the energies E2
+(vn, g) are

uniformly bounded. Now assume furthermore that the family

(I.12) {tr(vn) : n ∈ N} is equicontinuous
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with respect to the metric g. Then by Proposition I.5.2 there exists a filling

u ∈ Λ(M,Γ, X) with

Area(u) ≤ a & E2
+(u, g) ≤ e

as in the first option of the lemma.

In the remaining two cases, we discuss the outcomes if either the bound (I.11)

does not hold; or if it does indeed, but property (I.12) fails for the traces of the

constructed maps vn ∈ Λ(M,Γ, Yn). Let

ρj :=
1√

C2j+3
,

where C ≥ 0 is the universal constant from Lemma I.5.1, and ρ′j := ρ′Γ(ρj) for

each j ∈ N. We claim that in either of these subcases, there exist a sequence of

reductions M∗j of M , a subsequence (unj
) ⊂ Λ(M,Γ, Ynj

), (2Cρj)-thickenings

Y ∗j of Ynj and fillings

u∗j ∈ Λ(M∗j ,Γ, Y
∗
j )

such that

Area(u∗j ) ≤ Area(unj ) + 2−j .

The existence of a sequence as implied in the lemma is then true by the following

two observations. Firstly, there are only finitely many reductions of M up

to diffeomorphism, hence we may assume that each M∗j is equal to the same

reduction M∗ of M by passing to a subsequence of M∗j . Secondly, the spaces Y ∗j
are (εnj

+ 2Cρj)-thickenings of X, where εn is the thickening parameter of Yn,

and thus (Y ∗j ) an X-approximating sequence.

We continue by showing the claim and first suppose that (I.11) is violated.

We only discuss the case for hyperbolic metrics, the situation for flat metrics

being analogous. The assumption on the systoles of gn implies that there exists

a subsequence (gnj
) such that

sysrel(M, gnj
) =: λj → 0.

Choosing this subsequence appropriately, we may assume that

λj < min

{
ρ′j

2

4K
, arsinh

(
1

sinh(2)

)}
,

where we define K := supnE
2
+(un, gn) <∞. By Lemma I.5.1, for each j there

exists a (2Cρj)-thickening Y ∗j of Ynj
admitting a (C, 2ρj)-quadratic isoperimet-

ric inequality. Since the spaces Y ∗j contain X (and hence Γ) isometrically and

since the metrics gn are all hyperbolic, we have by Lemma I.5.3 that there exist

reductions M∗j of M and maps u∗j ∈ Λ(M∗j ,Γ, Y
∗
j ) with

Area(u∗j ) ≤ Area(unj ) + 8Cρ2
j ≤ Area(unj ) + 2−j .

This shows the claim in the first subcase.
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Lastly, we address the case where (I.11) is true, but (I.12) is violated for the

obtained metric g. Choose for each j ∈ N a number 0 < δj ≤ δg such that

π ·
(

8K

| log(δj)|

) 1
2

≤ ρ′j .

From the assumption of nonequicontinuity of {tr(vn)}, it follows that there

exists ε > 0 such that for every j there exists a map tr(vnj
) : M → Ynj

and a

segment γ−j ⊂ ∂M satisfying

`g(γ
−
j ) ≤ δj & `X(tr(vnj

) ◦ γ−j ) > ε.

Notice that for all j big enough we have that ρj ≤ ε, so in particular

`X(tr(vnj
) ◦ γ−j ) > ρj .

Let Y ∗j be given analogously as in the previous subcase. Then by Lemma I.5.4

there exist reductions M∗j of M and mappings u∗j ∈ Λ(M∗j ,Γ, Y
∗
j ) satisfying

Area(u∗j ) ≤ Area(vnj
) + 8Cρ2

j ≤ Area(unj
) + 2−j .

This shows the claim in the second subcase and completes the proof of the

lemma.

I.5.4 Proof of the main result. Finally, we are able to complete the proof

of Theorem I.1.2.

Proof of Theorem I.1.2. The statements (i) and (ii) of the theorem have already

been proved in Sections I.3.2 and I.4.2. Thus it remains to show (iii) as well

as existence in the general case, where X might not admit a local quadratic

isoperimetric inequality and Γ might be a configuration of overlapping or self-

intersecting curves.

We begin with the proof of part (iii) and assume that Γ is a collection of

disjoint rectifiable Jordan curves. For n ∈ N we set Yn := X and choose maps

un ∈ Λ(M,Γ, X) such that

Area(un) ≤ ap(Γ, X) + 2−n.

Since we assumed that the Douglas condition holds for p, Γ and X, we may

apply Proposition I.5.5 to the sequences (Yn) and (un). This shows that

Λmin := {u ∈ Λ(M,Γ, X) : Area(u) = ap(Γ, X)}

is non-empty. Choose sequences of maps un ∈ Λmin and Riemannian metrics gn
on M such that

lim
n→∞

E2
+(un, gn) = inf{E2

+(w, h) : w ∈ Λmin, h a Riemannian metric on M}︸ ︷︷ ︸
=:e

.

Applying Proposition I.5.5 to the sequences (Yn), (gn) and (un), one sees that

there exist u ∈ Λmin and a Riemannian metric g on M such that E2
+(u, g) = e.
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Then by [55, Corollary 1.3] u is infinitesimally isotropic with respect to g. This

completes the proof in the special case that the configuration is assumed to

consist of disjoint Jordan curves.

We move on to the general case. Let (Xn) be an X-approximating sequence,

where every Xn admits some local quadratic isoperimetric inequality: such an

approximating sequence exists by Proposition I.5.1. Then (Yn) := ((Xn)Γ) de-

fines an XΓ-approximating sequence, where the collar extensions are performed

as defined in Section I.3.2. By Lemma I.3.4, there exist maps un ∈ Λ(M, Γ̃, Yn)

such that

Area(un) ≤ ap(Γ, Xn) +

k∑
j=1

H2(Zj) + 2−n ≤ ap(Γ, X) +

k∑
j=1

H2(Zj) + 2−n.

Then by Lemma I.3.3, and since the Douglas condition holds for p, Γ and X,

one has

lim sup
n→∞

Area(un) ≤ ap(Γ, X)+

k∑
j=1

H2(Zj) < a∗p(Γ, X)+
k∑
j=1

H2(Zj) ≤ a∗p(Γ̃, XΓ).

Thus applying Proposition I.5.5 to the sequences (Yn) and (un) shows that the

Douglas condition holds for p, Γ̃ and XΓ and that

ap(Γ̃, XΓ) ≤ ap(Γ, X) +

k∑
j=1

H2(Zj).

Since Γ̃ is a configuration of disjoint Jordan curves, the Douglas condition and

the first part of the proof imply that there exist v ∈ Λ(M, Γ̃, XΓ) and a Rie-

mannian metric g on M such that Area(v) = ap(Γ̃, XΓ) and v is infinitesimally

isotropic with respect to g. For the projection u := PΓ ◦ v Lemma I.3.3 implies

that u ∈ Λ(M,Γ, X) with

Area(u) ≤ Area(v)−
k∑
j=1

H2(Zj) ≤ ap(Γ, X),

and thus Area(u) = ap(Γ, X). Furthermore, the composition PΓ◦v agrees with v

on the complement of v−1(Z) = u−1(Γ), hence u is infinitesimally isotropic on

M \ u−1(Γ) with respect to g. This concludes the proof of the theorem in the

general case.

I.5.5 Translation to the smooth setting. To obtain Theorem I.1.1, we

make the following observations for M ∈ M(k), a complete Riemannian mani-

fold (X,h) and u ∈W 1,2(M,X).

• By the Hopf-Rinow theorem, X defines a proper geodesic metric space.

• Homogeneously regular Riemannian manifolds admit a local quadratic

isoperimetric inequality. See [89] for the definition and compare Section 4.3

in [B] for the simple argument.
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• Smooth Riemannian manifolds are locally of curvature bounded above,

compare for example [20, Theorem II.1A.6].

• Compact C2 curves in smooth Riemannian manifolds have finite total

curvature, see [24].

• As a consequence of (I.2), for almost every z ∈M the approximate metric

derivative ap mduz defines a Euclidean seminorm on TzM , and hence u

is infinitesimally isotropic if and only if it is weakly conformal.

• Weakly conformal area minimizers in X are minimizers of the Dirichlet en-

ergy, and thus weakly harmonic in the classical sense. Continuous weakly

harmonic maps between Riemannian manifolds are however smooth by [91,

Theorem 9.4.1].

With these observations at hand, Theorem I.1.2 is easily seen to imply Theo-

rem I.1.1.

I.6 Minimizers under the conditions of cohesion and

adhesion

Let X be a complete metric space, M a smooth compact and connected surface

and η > 0. A mapping u : M → X is said to be η-cohesive if u is continuous

and

`(u(c)) ≥ η

for every non-contractible closed curve c in M .

Definition I.6.1. A family F of maps from M to X is said to satisfy the

condition of cohesion if there exists η > 0 such that every map in F is η-

cohesive.

Now let c ⊂M be an embedded arc such that the endpoints of c lie on ∂M

and let u : M → X be continuous. If the endpoints of c lie on a single compo-

nent ∂Mj , then they divide ∂Mj into two components c− and c+, where the

notation is chosen such that `(u(c−)) ≤ `(u(c+)). Let ρ̄ : (0,∞) → (0,∞) be

a function such that ρ̄(ρ) ≤ ρ for every ρ ∈ (0,∞). We say that u : M → X

is ρ̄-adhesive if u is continuous and for every arc c with endpoints in ∂M and

of image-length `(u(c)) ≤ ρ̄(ρ), one has that the endpoints lie in the same

connected component of ∂M and

`(u(c−)) < ρ.

Definition I.6.2. A family F of maps from M to X is said to satisfy the

condition of adhesion if there exists a function ρ̄ : (0,∞) → (0,∞) as above

such that every map in F is ρ̄-adhesive.

Let Γ be a configuration of k ≥ 1 rectifiable closed curves in X and let

M ∈M(k). Set

e(M,Γ, X) := inf{E2
+(u, g) : u ∈ Λ(M,Γ, X), g a Riemannian metric on M}.
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An energy minimizing sequence in Λ(M,Γ, X) is a sequence of pairs (un, gn) of

mappings un ∈ Λ(M,Γ, X) and Riemannian metrics gn on M such that

E2
+(un, gn)→ e(M,Γ, X)

as n tends to infinity.

Theorem I.6.3. Let X be a proper metric space and Γ ⊂ X be a configuration

of k ≥ 1 rectifiable closed curves. Let M ∈M(k) be connected. If there exist an

energy minimizing sequence in Λ(M,Γ, X) satisfying the conditions of cohesion

and adhesion, then there exist u ∈ Λ(M,Γ, X) and a Riemannian metric g on

M such that

E2
+(u, g) = e(M,Γ, X).

For any such u and g the map u is infinitesimally isotropic with respect to g.

If X is a complete Riemannian manifold, then energy minimizers are pre-

cisely weakly conformal area minimizers. For more general spaces X however,

the relation is more complicated and energy minimizers need not be area mini-

mizers, see for example [105, 104]. Nevertheless, one can obtain existence of area

minimizers for singular configurations in proper metric spaces if there exists an

area minimizing sequence satisfying the conditions of cohesion and adhesion by

modifying the proofs of [55, Theorem 1.6] and [55, Proposition 5.3] accordingly.

However, as in [55, Theorem 1.6] and [55, Proposition 5.3], either the obtained

area minimizers are potentially not infinitesimally isotropic, or one has to choose

a somewhat different interpretation of the term ’area’.

Proof of Theorem I.6.3. It follows from [55, Corollary 1.3] that any energy min-

imizing pair (u, g) is infinitesimally isotropic. Thus it remains to show existence

of such a pair.

First assume that M is not of disk-type. If Γ is a configuration of disjoint

Jordan curves, then any continuous u ∈ Λ(M,Γ, X) satisfies a ρ′Γ-condition

of adhesion, where ρ′Γ is as in Section I.5.2. In fact, under this observation,

the proof of Theorem I.6.3 for such M is a straightforward generalization of

the proof of [56, Theorem 8.2]. Namely, if one replaces in the statements of

Propositions 8.3 and 8.4 in [56] the assumption that Γ consists of disjoint Jordan

curves by the assumption that u is ρ̄-adhesive, the proofs become virtually

identical upon replacing ρ′ = ρ′Γ by ρ̄. With these modified propositions at

hand, the proof of Theorem I.6.3 is completed as is that of [56, Theorem 8.2].

Finally assume that Γ is a single curve and that M = D̄. If Γ is constant,

the result is trivial. Otherwise we may represent Γ as a composition of 3 curves

Γ1,Γ2,Γ3 of equal length. We also decompose S1 into three consecutive arcs Γ̄1,

Γ̄2, Γ̄3 of equal length. We say that a continuous map u ∈ Λ(M,Γ, X) satisfies

the 3-arc condition if u|Γ̄i
is a parametrization of Γi for every i = 1, 2, 3. Fix

K ≥ 0 and adhesiveness function ρ̄ : (0,∞) → (0,∞). Let F be the family of

maps u ∈ Λ(M,Γ, X) which are ρ̄-adhesive, satisfy the 3-arc condition and have

energy E2
+(u, gEucl) ≤ K. We claim that the trace family {u|S1 : u ∈ F} is
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equicontinuous. To prove this claim, we fix 0 < ε < `(Γ)/3, p ∈ S1 and u ∈ F .

Let 0 < δ < 1 be so small that

π

(
2K

| log δ|

) 1
2

< ρ̄(ε).

For 0 < r < 1, denote by cr the arc {z ∈ D̄ : |z − p| = r}. By the Courant-

Lebesgue lemma, [104, Lemma 7.3], there is r ∈ (δ,
√
δ) such that `(u◦cr) ≤ ρ̄(ε).

The ρ̄-adhesiveness then implies that `(u ◦ c−r ) ≤ ε, and hence it follows from

the 3-arc condition together with the choice of ε that c−r = B(p, r) ∩ S1. Thus,

for any x ∈ B(p, δ) ∩ S1, one has d(u(x), u(p)) ≤ ε. Since the choice of δ was

independent of u and p, the claimed equicontinuity follows.

Now let (un, gn) be an energy minimizing sequence which is ρ̄-adhesive.

Since all metrics on the disk are conformally equivalent, we may assume that

gn = gEucl for each n ∈ N. Furthermore, after precomposing with Moebius

transforms, one has that all un satisfy the 3-arc condition. Thus by the claim

the sequence (un|S1) is equicontinuous and hence Proposition I.5.2 implies the

existence of the desired energy minimizer.

I.7 Appendix

In this section we discuss the proof of Lemma I.5.1. A metric space X will be

called δ-geodesic, where δ > 0, if for all x, y ∈ X satisfying d(x, y) < δ there is

a curve γ in X joining x to y such that `(γ) = d(x, y). Lemma I.5.1 is only a

slight strengthening of the following consequence of [109, Lemma 3.3].

Lemma I.7.1. There is a universal constant C ≥ 0 such that for every proper,

δ-geodesic metric space X and 0 < ε ≤ δ, there exists an ε-thickening Y of X

such that Y is proper and satisfies a (C, ε/C)-quadratic isoperimetric inequality.

[109, Lemma 3.3] is stated for spaces which are globally geodesic, though

the proof readily gives the claimed result for δ-geodesic spaces. Namely, in the

proof the assumption only comes into play when estimating the diameter of the

small ball Bz with respect to its induced intrinsic metric by twice the radius.

This estimate holds in a δ-geodesic space as soon as the radius of the ball is

bounded from above by δ. More precisely, this estimate is used twice: on p. 241

of [158] to estimate the diameter of Xz and on p. 242 to find the curves γ̄j .

For the proof of Lemma I.5.1, recall that the injective hull E(X) of a compact

metric space X is a compact geodesic metric space. Furthermore, X ⊂ E(X)

isometrically and diam(E(X)) = diam(X), see for example [99].

Proof of Lemma I.5.1. We claim that for any δ > 0, there is an (8δ)-thickening

Z of X such that Z is proper and δ-geodesic. Lemma I.5.1 then follows by

first applying the claim to X, yielding a (8Cε)-thickening Z of X which is

proper and (Cε)-geodesic, where C is as in Lemma I.7.1; and then applying

Lemma I.7.1 to Z to obtain a (Cε)-thickening Y of Z which is proper and

admits a (C, ε)-quadratic isoperimetric inequality. It remains to note that Y is

a (9Cε)-thickening of X and redefine C.
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In order to prove the claim, we perform a variation of the construction

discussed in [158] and [109]. Let S be a maximal δ-separated subset in X. For

z ∈ S set Bz := B(z, 2δ) and Xz := E(Bz). Then diam(Bz) ≤ 4δ and hence

diam(Xz) ≤ 4δ. We set

Z :=
( ⊔
z∈S

Xz

)/
∼
,

where x ∼ y if x ∈ Bz ⊂ Xz, y ∈ Bw ⊂ Xw and x = y. The space Z is endowed

with the quotient metric. It follows from the construction that Z is proper and

a (4δ)-thickening of X, compare also [109].

It remains to show that Z is δ-geodesic. To this end, let x, y ∈ Z such that

d(x, y) < δ. Then either x and y lie in a common Xz and d(x, y) = dXz
(x, y) or

there are z, w ∈ S, u ∈ Xz ∩X and v ∈ Xw ∩X such that

d(x, y) = dXz
(x, u) + dX(u, v) + dXw

(v, y).

In the former case, the distance is realized by a curve because Xz is geodesic.

By the same reasoning, it suffices to show that d(u, v) is realized by the length

of a curve in Z in the latter case. By maximality of S there exists s ∈ S such

that dX(s, u) ≤ δ and hence u, v ∈ Xs. As Xs ⊂ Z is a geodesic subset, the

claim follows.
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[16] Reinhold Böhme and Anthony J. Tromba. The index theorem for classical

minimal surfaces. Ann. of Math. (2), 113(3):447–499, 1981.

[17] Mario Bonk and Bruce Kleiner. Quasisymmetric parametrizations of two-

dimensional metric spheres. Invent. Math., 150(1):127–183, 2002.

[18] Brian H. Bowditch. Notes on locally CAT(1) spaces. In Geometric group

theory. Proceedings of a Special Research Quarter at The Ohio State Uni-

versity, Spring 1992, Ohio State University Mathematical Research Insti-

tute Publications, Vol. 3, pages 1–48. de Gruyter, Berlin, 1995.

[19] Christine Breiner, Ailana Fraser, Lan-Hsuan Huang, Chikako Mese, Pam

Sargent, and Yingying Zhang. Regularity of harmonic maps from polyhe-

dra to CAT(1) spaces. Calc. Var. Partial Differential Equations, 57(1):Pa-

per No. 12, 35 pp., 2018.
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